
Marc Fischlin
Jean-Sébastien Coron (Eds.)

 123

LN
CS

 9
66

6

35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques
Vienna, Austria, May 8–12, 2016, Proceedings, Part II

Advances in Cryptology –
EUROCRYPT 2016

Lecture Notes in Computer Science 9666

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Marc Fischlin • Jean-Sébastien Coron (Eds.)

Advances in Cryptology –

EUROCRYPT 2016
35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques
Vienna, Austria, May 8–12, 2016
Proceedings, Part II

123

Editors
Marc Fischlin
Technische Universität Darmstadt
Darmstadt
Germany

Jean-Sébastien Coron
University of Luxembourg
Luxembourg
Luxembourg

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-49895-8 ISBN 978-3-662-49896-5 (eBook)
DOI 10.1007/978-3-662-49896-5

Library of Congress Control Number: 2016935585

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

Eurocrypt 2016, the 35th annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Vienna, Austria, during May 8–12,
2016. The conference was sponsored by the International Association for Cryptologic
Research (IACR). Krzysztof Pietrzak (IST Austria), together with Joël Alwen, Georg
Fuchsbauer, Peter Gaži (all IST Austria), and Eike Kiltz (Ruhr-Universität Bochum),
were responsible for the local organization. They were supported by a local organizing
team consisting of Hamza Abusalah, Chethan Kamath, and Michal Rybár (all IST
Austria). We are indebted to them for their support and smooth collaboration.

The conference program followed the now established parallel track system where
the works of the authors were presented in two concurrently running tracks. As in the
previous edition of Eurocrypt, one track was labeled R (for real) and the other one was
labeled I (for ideal). Only the invited talks, the tutorial, the best paper, papers with
honorable mentions, and the final session of the conference spanned over both tracks.

The proceedings of Eurocrypt contain 62 papers selected from 274 submissions,
which corresponds to a record number of submissions in the history of Eurocrypt. Each
submission was anonymized for the reviewing process and was assigned to at least three
of the 55 Program Committee members. Submissions co-authored by committee
members were assigned to at least four members. Committee members were allowed to
submit at most one paper, or two if both were co-authored. The reviewing process
included a first-round notification followed by a rebuttal for papers that made it to the
second round. After extensive deliberations the Program Committee accepted 62 papers.
The revised versions of these papers are included in these two-volume proceedings.

The committee decided to give the Best Paper Award to “Tightly Secure
CCA-Secure Encryption Without Pairings” by Romain Gay, Dennis Hofheinz, Eike
Kiltz, and Hoeteck Wee. The two runners-up to the award, “Indistinguishability
Obfuscation from Constant-Degree Graded Encoding Schemes” by Huijia Lin and
“Essentially Optimal Robust Secret Sharing with Maximal Corruptions” by Allison
Bishop, Valerio Pastro, Rajmohan Rajaraman, Daniel and Wichs, received honorable
mentions. All three papers received invitations for the Journal of Cryptology.

The program also included invited talks by Karthikeyan Bhargavan, entitled “Pro-
tecting Transport Layer Security from Legacy Vulnerabilities”, Bart Preneel, entitled
“The Future of Cryptography” (IACR distinguished lecture), and Christian Collberg,
entitled “Engineering Code Obfuscation.” In addition, Emmanuel Prouff gave a tutorial
about “Securing Cryptography Implementations in Embedded Systems.” All the
speakers were so kind as to also provide a short abstract for the proceedings.

We would like to thank all the authors who submitted papers. We know that the
Program Committee’s decisions, especially rejections of very good papers that did not
find a slot among the sparse number of accepted papers, can be very disappointing. We
sincerely hope that the rejected works eventually get the attention they deserve.

We are also indebted to the Program Committee members and all external reviewers
for their voluntary work, especially since the newly established and unified page limits
and the increasing number of submissions induce quite a workload. It has been an
honor to work with everyone. The committee’s work was tremendously simplified by
Shai Halevi’s submission software and his support, including running the service on
IACR servers.

Finally, we thank everyone else—speakers, session chairs, and rump session chairs
—for their contribution to the program of Eurocrypt 2016.

May 2016 Marc Fischlin
Jean-Sébastien Coron

VI Preface

Eurocrypt 2016

The 35th Annual International Conference on
the Theory and Applications of Cryptographic

Techniques

Vienna, Austria
May 8–12, 2016

Track I

General Chair

Krzysztof Pietrzak IST Austria

Program Chairs

Marc Fischlin Technische Universität Darmstadt, Germany
Jean-Sébastien Coron University of Luxembourg, Luxembourg

Program Committee

Michel Abdalla Ecole Normale Superieure and CNRS, France
Shweta Agrawal IIT Delhi, India
Elette Boyle IDC Herzliya, Israel
Christina Brzuska TU Hamburg-Harburg, Germany
Ran Canetti Tel Aviv University, Israel, and Boston University, USA
David Cash Rutgers University, USA
Dario Catalano University of Catania, Italy
Jean-Sébastien Coron University of Luxembourg, Luxembourg
Cas Cremers University of Oxford, UK
Yevgeniy Dodis New York University, USA
Nico Döttling Aarhus University, Denmark
Pooya Farshim Queen’s University Belfast, UK
Jean-Charles Faugère Inria Paris-Rocquencourt, France
Sebastian Faust Ruhr University Bochum, Germany
Dario Fiore IMDEA Software Institute, Spain
Marc Fischlin TU Darmstadt, Germany
Georg Fuchsbauer IST, Austria
Juan A. Garay Yahoo Labs, USA
Vipul Goyal Microsoft Research, India
Tim Güneysu University of Bremen, Germany
Shai Halevi IBM, USA

Goichiro Hanaoka AIST, Japan
Martin Hirt ETH Zurich, Switzerland
Dennis Hofheinz Karlsruhe KIT, Germany
Tibor Jager Ruhr University Bochum, Germany
Abhishek Jain Johns Hopkins University, USA
Aniket Kate Purdue University, USA
Dmitry Khovratovich University of Luxembourg, Luxembourg
Vadim Lyubashevsky Ecole Normale Superieure, France
Sarah Meiklejohn University College London, UK
Mridul Nandi Indian Statistical Institute, Kolkata, India
María Naya-Plasencia Inria, France
Svetla Nikova KU Leuven, Belgium
Adam O’Neill Georgetown University, USA
Claudio Orlandi Aarhus University, Denmark
Josef Pieprzyk Queensland University of Technology, Australia
Mariana Raykova Yale University, USA
Thomas Ristenpart Cornell Tech, USA
Matthieu Rivain CryptoExperts, France
Arnab Roy Fujitsu Laboratories of America, USA
Benedikt Schmidt IMDEA Software Institute, Spain
Thomas Schneider TU Darmstadt, Germany
Berry Schoenmakers TU Eindhoven, The Netherlands
Peter Schwabe Radboud University, The Netherlands
Yannick Seurin ANSSI, France
Thomas Shrimpton University of Florida, USA
Nigel P. Smart University of Bristol, UK
John P. Steinberger Tsinghua University, China
Ron Steinfeld Monash University, Australia
Emmanuel Thomé Inria Nancy, France
Yosuke Todo NTT, Japan
Dominique Unruh University of Tartu, Estonia
Daniele Venturi Sapienza University of Rome, Italy
Ivan Visconti University of Salerno, Italy
Stefan Wolf USI Lugano, Switzerland

External Reviewers

Divesh Aggarwal
Shashank Agrawal
Adi Akavia
Martin Albrecht
Joël Alwen
Prabhanjan Ananth
Ewerton Rodrigues

Andrade
Elena Andreeva

Kazumaro Aoki
Afonso Arriaga
Gilad Asharov
Gilles Van Assche
Nuttapong Attrapadung
Christian Badertscher
Thomas Baignères
Josep Balasch
Foteini Baldimtsi

Subhadeep Banik
Harry Bartlett
Lejla Batina
Carsten Baum
Aemin Baumeler
Christof Beierle
Sonia Belaïd
Fabrice Benhamouda
David Bernhard

VIII Eurocrypt 2016

Ritam Bhaumik
Begül Bilgin
Nir Bitansky
Matthieu Bloch
Andrey Bodgnanov
Cecilia Boschini
Vitor Bosshard
Christina Boura
Florian Bourse
Cerys Bradley
Zvika Brakerski
Anne Broadbent
Dan Brown
Seyit Camtepe
Anne Canteaut
Angelo De Caro
Avik Chakraborti
Nishanth Chandran
Melissa Chase
Rahul Chatterjee
Yilei Chen
Jung Hee Cheon
Céline Chevalier
Alessandro Chiesa
Seung Geol Choi
Tom Chothia
Arka Rai Choudhuri
Kai-Min Chung
Yu-Chi Chen
Michele Ciampi
Michael Clear
Aloni Cohen
Ran Cohen
Katriel Cohn-Gordon
Sandro Coretti
Cas Cremers
Dana Dachman-Soled
Yuanxi Dai
Nilanjan Datta
Bernardo Machado David
Gareth T. Davies
Ed Dawson
Jean Paul Degabriele
Martin Dehnel-Wild
Jeroen Delvaux
Grégory Demay

Daniel Demmler
David Derler
Vasil Dimitrov
Yarkin Doroz
Léo Ducas
François Dupressoir
Frederic Dupuis
Avijit Dutta
Stefan Dziembowski
Keita Emura
Antonio Faonio
Serge Fehr
Claus Fieker
Matthieu Finiasz
Viktor Fischer
Jean-Pierre Flori
Pierre-Alain Fouque
Tore Kasper Frederiksen
Tommaso Gagliardoni
Steven Galbraith
David Galindo
Chaya Ganesh
Luke Garratt
Romain Gay
Peter Gaži
Daniel Genkin
Craig Gentry
Hossein Ghodosi
Satrajit Ghosh
Benedikt Gierlichs
Kristian Gjøsteen
Aleksandr Golovnev
Alonso Gonzalez
Dov Gordon
Louis Goubin
Jens Groth
Aurore Guillevic
Sylvain Guilley
Siyao Guo
Divya Gupta
Sourav Sen Gupta
Helene Flyvholm Haagh
Tzipora Halevi
Michael Hamburg
Carmit Hazay
Gottfried Herold

Susan Hohenberger
Justin Holmgren
Pavel Hubacek
Tsung-Hsuan Hung
Christopher Huth
Michael Hutter
Andreas Hülsing
Vincenzo Iovino
Håkon Jacobsen
Aayush Jain
Jérémy Jean
Claude-Pierre Jeannerod
Evan Jeffrey
Ashwin Jha
Daniel Jost
Charanjit Jutla
Ali El Kaafarani
Liang Kaitai
Saqib A. Kakvi
Chethan Kamath
Bhavana Kanukurthi
Pierre Karpman
Elham Kashefi
Tomasz Kazana
Marcel Keller
Dakshita Khurana
Aggelos Kiayias
Paul Kirchner
Elena Kirshanova
Ágnes Kiss
Fuyuki Kitagawa
Ilya Kizhvatov
Thorsten Kleinjung
Vlad Kolesnikov
Venkata Koppala
Luke Kowalczyk
Ranjit Kumaresan
Kaoru Kurosawa
Felipe Lacerda
Virginie Lallemand
Adeline Langlois
Enrique Larraia
Sebastian Lauer
Gregor Leander
Chin Ho Lee
Tancrède Lepoint

Eurocrypt 2016 IX

Gaëtan Leurent
Benoît Libert
Huijia (Rachel) Lin
Wei-Kai Lin
Bin Liu
Dongxi Liu
Yunwen Liu
Steve Lu
Atul Luykx
Bernardo Magri
Mohammad Mahmoody
Subhamoy Maitra
Hemanta Maji
Giulio Malavolta
Avradip Mandal
Daniel Masny
Takahiro Matsuda
Christian Matt
Willi Meier
Sebastian Meiser
Florian Mendel
Bart Mennink
Eric Miles
Kevin Milner
Ilya Mironov
Arno Mittelbach
Ameer Mohammad
Payman Mohassel
Hart Montgomery
Amir Moradi
François Morain
Paweł Morawiecki
Pedro Moreno-Sanchez
Nicky Mouha
Pratyay Mukherjee
Elke De Mulder
Anderson Nascimento
Muhammad Naveed
Phong Nguyen
Ivica Nikolic
Tobias Nilges
Peter Sebastian Nordholt
Koji Nuida
Maciej Obremski
Frederique Elise Oggier
Emmanuela Orsini

Mohammad Ali
Orumiehchi

Elisabeth Oswald
Ekin Ozman
Jiaxin Pan
Giorgos Panagiotakos
Omkant Pandey
Omer Paneth
Dimitris Papadopoulos
Kostas Papagiannopoulos
Bryan Parno
Valerio Pastro
Chris Peikert
Ludovic Perret
Leo Paul Perrin
Christophe Petit
Krzysztof Pietrzak
Benny Pinkas
Oxana Poburinnaya
Bertram Poettering
Joop van de Pol
Antigoni Polychroniadou
Manoj Prabhakaran
Thomas Prest
Emmanuel Prouff
Jörn Müller-Quade
Tal Rabin
Kenneth Radke
Carla Rafols
Mario Di Raimondo
Samuel Ranellucci
Pavel Raykov
Francesco Regazzoni
Omer Reingold
Michał Ren
Guénaël Renault
Oscar Reparaz
Vincent Rijmen
Ben Riva
Tim Ruffing
Ulrich Rührmair
Yusuke Sakai
Amin Sakzad
Benno Salwey
Kai Samelin
Yu Sasaki

Alessandra Scafuro
Christian Schaffner
Tobias Schneider
Peter Scholl
Jacob Schuldt
Gil Segev
Nicolas Sendrier
Abhi Shelat
Leonie Simpson
Shashank Singh
Luisa Siniscalchi
Boris Skoric
Ben Smith
Juraj Somorovsky
John Steinberger
Noah

Stephens-Dawidovitz
Björn Tackmann
Vanessa Teague
Sidharth Telang
R. Seth Terashima
Stefano Tessaro
Adrian Thillard
Susan Thomson
Mehdi Tibouchi
Jacques Traoré
Daniel Tschudi
Hoang Viet Tung
Aleksei Udovenko
Margarita Vald
Maria Isabel Gonzalez

Vasco
Meilof Veeningen
Vesselin Velichkov
Alexandre Venelli
Muthuramakrishnan
Venkitasubramaniam
Frederik Vercauteren
Marion Videau
Vinod Vikuntanathan
Gilles Villard
Damian Vizar
Emmanuel Volte
Christine van Vredendaal
Niels de Vreede
Qingju Wang

X Eurocrypt 2016

Bogdan Warinschi
Hoeteck Wee
Carolyn Whitnall
Daniel Wichs
Alexander Wild
David Wu

Jürg Wullschleger
Masahiro Yagisawa
Shota Yamada
Kan Yasuda
Scott Yilek
Kazuki Yoneyama

Ching-Hua Yu
Samee Zahur
Mark Zhandry
Zongyang Zhang
Vassilis Zikas
Michael Zohner

Eurocrypt 2016 XI

Contents – Part II

Lattice-Based Schemes

Zero-Knowledge Arguments for Lattice-Based Accumulators:
Logarithmic-Size Ring Signatures and Group Signatures
Without Trapdoors . 1

Benoît Libert, San Ling, Khoa Nguyen, and Huaxiong Wang

Adaptively Secure Identity-Based Encryption from Lattices
with Asymptotically Shorter Public Parameters . 32

Shota Yamada

Zero-Knowledge I

Online/Offline OR Composition of Sigma Protocols 63
Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro,
Luisa Siniscalchi, and Ivan Visconti

Constant-Round Leakage-Resilient Zero-Knowledge
from Collision Resistance. 93

Susumu Kiyoshima

Pseudorandom Functions

Constrained Pseudorandom Functions for Unconstrained Inputs 124
Apoorvaa Deshpande, Venkata Koppula, and Brent Waters

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN. . . 154
Yu Yu and John Steinberger

Multi-Party Computation I

Secure Computation from Elastic Noisy Channels . 184
Dakshita Khurana, Hemanta K. Maji, and Amit Sahai

All Complete Functionalities are Reversible . 213
Dakshita Khurana, Daniel Kraschewski, Hemanta K. Maji,
Manoj Prabhakaran, and Amit Sahai

http://dx.doi.org/10.1007/978-3-662-49896-5_1
http://dx.doi.org/10.1007/978-3-662-49896-5_1
http://dx.doi.org/10.1007/978-3-662-49896-5_1
http://dx.doi.org/10.1007/978-3-662-49896-5_2
http://dx.doi.org/10.1007/978-3-662-49896-5_2
http://dx.doi.org/10.1007/978-3-662-49896-5_3
http://dx.doi.org/10.1007/978-3-662-49896-5_4
http://dx.doi.org/10.1007/978-3-662-49896-5_4
http://dx.doi.org/10.1007/978-3-662-49896-5_5
http://dx.doi.org/10.1007/978-3-662-49896-5_6
http://dx.doi.org/10.1007/978-3-662-49896-5_7
http://dx.doi.org/10.1007/978-3-662-49896-5_8

Separations

On the Power of Hierarchical Identity-Based Encryption 243
Mohammad Mahmoody and Ameer Mohammed

On the Impossibility of Tight Cryptographic Reductions 273
Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge

Zero-Knowledge II

On the Size of Pairing-Based Non-interactive Arguments 305
Jens Groth

Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the
Discrete Log Setting . 327

Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth,
and Christophe Petit

Protocols

On the Complexity of Scrypt and Proofs of Space in the Parallel Random
Oracle Model . 358

Joël Alwen, Binyi Chen, Chethan Kamath, Vladimir Kolmogorov,
Krzysztof Pietrzak, and Stefano Tessaro

Anonymous Traitor Tracing: How to Embed Arbitrary Information
in a Key . 388

Ryo Nishimaki, Daniel Wichs, and Mark Zhandry

Round Complexity

Unconditionally Secure Computation with Reduced Interaction 420
Ivan Damgård, Jesper Buus Nielsen, Rafail Ostrovsky, and Adi Rosén

The Exact Round Complexity of Secure Computation 448
Sanjam Garg, Pratyay Mukherjee, Omkant Pandey,
and Antigoni Polychroniadou

Commitments

On the Composition of Two-Prover Commitments, and Applications
to Multi-round Relativistic Commitments . 477

Serge Fehr and Max Fillinger

Computationally Binding Quantum Commitments . 497
Dominique Unruh

XIV Contents – Part II

http://dx.doi.org/10.1007/978-3-662-49896-5_9
http://dx.doi.org/10.1007/978-3-662-49896-5_10
http://dx.doi.org/10.1007/978-3-662-49896-5_11
http://dx.doi.org/10.1007/978-3-662-49896-5_12
http://dx.doi.org/10.1007/978-3-662-49896-5_12
http://dx.doi.org/10.1007/978-3-662-49896-5_13
http://dx.doi.org/10.1007/978-3-662-49896-5_13
http://dx.doi.org/10.1007/978-3-662-49896-5_14
http://dx.doi.org/10.1007/978-3-662-49896-5_14
http://dx.doi.org/10.1007/978-3-662-49896-5_15
http://dx.doi.org/10.1007/978-3-662-49896-5_16
http://dx.doi.org/10.1007/978-3-662-49896-5_17
http://dx.doi.org/10.1007/978-3-662-49896-5_17
http://dx.doi.org/10.1007/978-3-662-49896-5_18

Lattices

Structural Lattice Reduction: Generalized Worst-Case to Average-Case
Reductions and Homomorphic Cryptosystems. 528

Nicolas Gama, Malika Izabachène, Phong Q. Nguyen, and Xiang Xie

Recovering Short Generators of Principal Ideals in Cyclotomic Rings 559
Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev

Leakage

Circuit Compilers with Oð1= logðnÞÞ Leakage Rate 586
Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust

Randomness Complexity of Private Circuits for Multiplication 616
Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue,
Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud

Indifferentiability

10-Round Feistel is Indifferentiable from an Ideal Cipher. 649
Dana Dachman-Soled, Jonathan Katz, and Aishwarya Thiruvengadam

Indifferentiability of Confusion-Diffusion Networks. 679
Yevgeniy Dodis, Martijn Stam, John Steinberger, and Tianren Liu

Multi-Party Computation II

Fair and Robust Multi-party Computation Using a Global
Transaction Ledger . 705

Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas

Two Round Multiparty Computation via Multi-key FHE 735
Pratyay Mukherjee and Daniel Wichs

Obfuscation

Post-zeroizing Obfuscation: New Mathematical Tools, and the Case
of Evasive Circuits . 764

Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry

New Negative Results on Differing-Inputs Obfuscation 792
Mihir Bellare, Igors Stepanovs, and Brent Waters

Contents – Part II XV

http://dx.doi.org/10.1007/978-3-662-49896-5_19
http://dx.doi.org/10.1007/978-3-662-49896-5_19
http://dx.doi.org/10.1007/978-3-662-49896-5_20
http://dx.doi.org/10.1007/978-3-662-49896-5_21
http://dx.doi.org/10.1007/978-3-662-49896-5_21
http://dx.doi.org/10.1007/978-3-662-49896-5_22
http://dx.doi.org/10.1007/978-3-662-49896-5_23
http://dx.doi.org/10.1007/978-3-662-49896-5_24
http://dx.doi.org/10.1007/978-3-662-49896-5_25
http://dx.doi.org/10.1007/978-3-662-49896-5_25
http://dx.doi.org/10.1007/978-3-662-49896-5_26
http://dx.doi.org/10.1007/978-3-662-49896-5_27
http://dx.doi.org/10.1007/978-3-662-49896-5_27
http://dx.doi.org/10.1007/978-3-662-49896-5_28

Automated Analysis, Functional Encryption, and Non-malleable Codes

Automated Unbounded Analysis of Cryptographic Constructions
in the Generic Group Model. 822

Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt

Multi-input Functional Encryption in the Private-Key Setting: Stronger
Security from Weaker Assumptions . 852

Zvika Brakerski, Ilan Komargodski, and Gil Segev

Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits 881
Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin

Author Index . 909

XVI Contents – Part II

http://dx.doi.org/10.1007/978-3-662-49896-5_29
http://dx.doi.org/10.1007/978-3-662-49896-5_29
http://dx.doi.org/10.1007/978-3-662-49896-5_30
http://dx.doi.org/10.1007/978-3-662-49896-5_30
http://dx.doi.org/10.1007/978-3-662-49896-5_31

Contents – Part I

Best Paper and Honorable Mentions

Tightly CCA-Secure Encryption Without Pairings . 1
Romain Gay, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee

Indistinguishability Obfuscation from Constant-Degree Graded
Encoding Schemes . 28

Huijia Lin

Essentially Optimal Robust Secret Sharing with Maximal Corruptions 58
Allison Bishop, Valerio Pastro, Rajmohan Rajaraman,
and Daniel Wichs

(Pseudo) Randomness

Provably Robust Sponge-Based PRNGs and KDFs 87
Peter Gaži and Stefano Tessaro

Reusable Fuzzy Extractors for Low-Entropy Distributions 117
Ran Canetti, Benjamin Fuller, Omer Paneth, Leonid Reyzin,
and Adam Smith

LPN/LWE

Provably Weak Instances of Ring-LWE Revisited . 147
Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren

Faster Algorithms for Solving LPN . 168
Bin Zhang, Lin Jiao, and Mingsheng Wang

Cryptanalysis I

Provable Security Evaluation of Structures Against Impossible
Differential and Zero Correlation Linear Cryptanalysis. 196

Bing Sun, Meicheng Liu, Jian Guo, Vincent Rijmen, and Ruilin Li

Polytopic Cryptanalysis . 214
Tyge Tiessen

http://dx.doi.org/10.1007/978-3-662-49890-3_1
http://dx.doi.org/10.1007/978-3-662-49890-3_2
http://dx.doi.org/10.1007/978-3-662-49890-3_2
http://dx.doi.org/10.1007/978-3-662-49890-3_3
http://dx.doi.org/10.1007/978-3-662-49890-3_4
http://dx.doi.org/10.1007/978-3-662-49890-3_5
http://dx.doi.org/10.1007/978-3-662-49890-3_6
http://dx.doi.org/10.1007/978-3-662-49890-3_7
http://dx.doi.org/10.1007/978-3-662-49890-3_8
http://dx.doi.org/10.1007/978-3-662-49890-3_8
http://dx.doi.org/10.1007/978-3-662-49890-3_9

Masking

From Improved Leakage Detection to the Detection of Points of Interests
in Leakage Traces . 240

François Durvaux and François-Xavier Standaert

Improved Masking for Tweakable Blockciphers with Applications
to Authenticated Encryption . 263

Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves

Fully Homomorphic Encryption

Sanitization of FHE Ciphertexts . 294
Léo Ducas and Damien Stehlé

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 311
Pierrick Méaux, Anthony Journault, François-Xavier Standaert,
and Claude Carlet

Cryptanalysis II

Improved Differential-Linear Cryptanalysis of 7-Round Chaskey
with Partitioning . 344

Gaëtan Leurent

Reverse-Engineering the S-Box of Streebog, Kuznyechik and STRIBOBr1 . . . 372
Alex Biryukov, Léo Perrin, and Aleksei Udovenko

Number Theory

Complete Addition Formulas for Prime Order Elliptic Curves. 403
Joost Renes, Craig Costello, and Lejla Batina

New Complexity Trade-Offs for the (Multiple) Number Field
Sieve Algorithm in Non-Prime Fields . 429

Palash Sarkar and Shashank Singh

Hash Functions

Freestart Collision for Full SHA-1. 459
Marc Stevens, Pierre Karpman, and Thomas Peyrin

New Attacks on the Concatenation and XOR Hash Combiners 484
Itai Dinur

XVIII Contents – Part I

http://dx.doi.org/10.1007/978-3-662-49890-3_10
http://dx.doi.org/10.1007/978-3-662-49890-3_10
http://dx.doi.org/10.1007/978-3-662-49890-3_11
http://dx.doi.org/10.1007/978-3-662-49890-3_11
http://dx.doi.org/10.1007/978-3-662-49890-3_12
http://dx.doi.org/10.1007/978-3-662-49890-3_13
http://dx.doi.org/10.1007/978-3-662-49890-3_14
http://dx.doi.org/10.1007/978-3-662-49890-3_14
http://dx.doi.org/10.1007/978-3-662-49890-3_15
http://dx.doi.org/10.1007/978-3-662-49890-3_16
http://dx.doi.org/10.1007/978-3-662-49890-3_17
http://dx.doi.org/10.1007/978-3-662-49890-3_17
http://dx.doi.org/10.1007/978-3-662-49890-3_18
http://dx.doi.org/10.1007/978-3-662-49890-3_19

Multilinear Maps

Cryptanalysis of the New CLT Multilinear Map over the Integers 509
Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud,
and Hansol Ryu

Cryptanalysis of GGH Map . 537
Yupu Hu and Huiwen Jia

Message Authentication Codes

Hash-Function Based PRFs: AMAC and Its Multi-User Security. 566
Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

On the Influence of Message Length in PMAC’s Security Bounds 596
Atul Luykx, Bart Preneel, Alan Szepieniec, and Kan Yasuda

Attacks on SSL/TLS

Lucky Microseconds: A Timing Attack on Amazon’s s2n Implementation
of TLS . 622

Martin R. Albrecht and Kenneth G. Paterson

An Analysis of OpenSSL’s Random Number Generator 644
Falko Strenzke

Real-World Protocols

Safely Exporting Keys from Secure Channels: On the Security
of EAP-TLS and TLS Key Exporters. 670

Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

Valiant’s Universal Circuit is Practical . 699
Ágnes Kiss and Thomas Schneider

Robust Designs

Nonce-Based Cryptography: Retaining Security When Randomness Fails. . . . 729
Mihir Bellare and Björn Tackmann

Honey Encryption Beyond Message Recovery Security 758
Joseph Jaeger, Thomas Ristenpart, and Qiang Tang

Contents – Part I XIX

http://dx.doi.org/10.1007/978-3-662-49890-3_20
http://dx.doi.org/10.1007/978-3-662-49890-3_21
http://dx.doi.org/10.1007/978-3-662-49890-3_22
http://dx.doi.org/10.1007/978-3-662-49890-3_23
http://dx.doi.org/10.1007/978-3-662-49890-3_24
http://dx.doi.org/10.1007/978-3-662-49890-3_24
http://dx.doi.org/10.1007/978-3-662-49890-3_25
http://dx.doi.org/10.1007/978-3-662-49890-3_26
http://dx.doi.org/10.1007/978-3-662-49890-3_26
http://dx.doi.org/10.1007/978-3-662-49890-3_27
http://dx.doi.org/10.1007/978-3-662-49890-3_28
http://dx.doi.org/10.1007/978-3-662-49890-3_29

Lattice Reduction

Improved Progressive BKZ Algorithms and Their Precise Cost Estimation
by Sharp Simulator . 789

Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi

Practical, Predictable Lattice Basis Reduction . 820
Daniele Micciancio and Michael Walter

Author Index . 851

XX Contents – Part I

http://dx.doi.org/10.1007/978-3-662-49890-3_30
http://dx.doi.org/10.1007/978-3-662-49890-3_30
http://dx.doi.org/10.1007/978-3-662-49890-3_31

Zero-Knowledge Arguments for Lattice-Based
Accumulators: Logarithmic-Size Ring Signatures

and Group Signatures Without Trapdoors

Benôıt Libert1(B), San Ling2, Khoa Nguyen2(B), and Huaxiong Wang2

1 Ecole Normale Supérieure de Lyon, Laboratoire LIP, Lyon, France
benoit.libert@ens-lyon.fr

2 School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

{lingsan,khoantt,hxwang}@ntu.edu.sg

Abstract. An accumulator is a function that hashes a set of inputs into
a short, constant-size string while preserving the ability to efficiently
prove the inclusion of a specific input element in the hashed set. It has
proved useful in the design of numerous privacy-enhancing protocols,
in order to handle revocation or simply prove set membership. In the
lattice setting, currently known instantiations of the primitive are based
on Merkle trees, which do not interact well with zero-knowledge proofs.
In order to efficiently prove the membership of some element in a zero-
knowledge manner, the prover has to demonstrate knowledge of a hash
chain without revealing it, which is not known to be efficiently possible
under well-studied hardness assumptions. In this paper, we provide an
efficient method of proving such statements using involved extensions
of Stern’s protocol. Under the Small Integer Solution assumption, we
provide zero-knowledge arguments showing possession of a hash chain. As
an application, we describe new lattice-based group and ring signatures
in the random oracle model. In particular, we obtain: (i) The first lattice-
based ring signatures with logarithmic size in the cardinality of the ring;
(ii) The first lattice-based group signature that does not require any GPV
trapdoor and thus allows for a much more efficient choice of parameters.

1 Introduction

Cryptographic accumulators were introduced by Benaloh and de Mare [10] as
alternative to digital signatures in the design of distributed protocols. While
initially used in time-stamping and membership testing mechanisms [10], they
found numerous applications in the context of fail-stop signatures [7], anonymous
credentials [1,19,20,44], group signatures [68], anonymous ad hoc authentica-
tion [28], digital cash [6,22,54], set membership proofs [63,69] or authenticated
data structures [59,60] (see [27] for further examples).

In a nutshell, an accumulator is a sort of algebraic hash function that maps a
large set R of inputs into a short, constant-size accumulator value u such that an
efficiently computable short witness w provides evidence that a given input was
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 1–31, 2016.
DOI: 10.1007/978-3-662-49896-5 1

2 B. Libert et al.

indeed incorporated into the hashed set. In order to be useful, the size of the wit-
ness should be much smaller than the cardinality of the input set. An extension,
suggested by Camenisch and Lysyanskaya [20], allows the accumulator value to
be updated over time, by adding or deleting elements of the hashed set while
preserving the ability to efficiently update witnesses. For most applications, the
usual security requirement mandates the infeasibility of computing an accumu-
lator value u and a valid witness w for an element x outside the set of hashed
inputs. This is made possible by public-key techniques like the existence of a
trapdoor (e.g., the factorization of an RSA modulus or the discrete logarithm of
some public group element) hidden behind public parameters.

So far, number theoretic realizations have been divided into two main fam-
ilies. The first one relies on groups of hidden order [7,10,15,47] and includes
proposals based on the Strong RSA assumption [7,43]. The second main family
[19,57] was first explored by Nguyen [57] and appeals to bilinear maps (a.k.a.
pairings) and assumptions of variabe size like the Strong Diffie-Hellman assump-
tion [14]. Strong-RSA-based candidates enjoy the advantage of short public
parameters and they easily extend into universal accumulators [43] (where non-
membership witnesses can show that a given input was not accumulated). While
pairing-based schemes [19,57] usually require linear-size public parameters in
the number of elements to be hashed, they are useful in applications [6,22]
where we want to limit the number of elements to be hashed. A third family
(e.g., [59]) of constructions relies on Merkle trees [50] rather than number the-
oretic assumptions. Its main disadvantage is that the use of hash trees makes
it hardly compatible with efficient zero-knowledge proofs, which are inevitable
ingredients of privacy-preserving protocols [1,19,20,68]. In fact, currently known
methods [9,15] for reconciling Merkle trees and zero-knowledge proofs require
non-standard assumptions in groups of hidden order [15] or the machinery
of SNARKs, which inherently rely on non-falsifiable [55] knowledge assump-
tions [35].

Despite its wide range of applications, the accumulator primitive still has a
relatively small number of efficient realizations. For the time being, most known
solutions require non-standard ad hoc assumptions like Strong RSA or Strong
Diffie-Hellman. To our knowledge, the only exception is a generic construction
from vector commitments [24], which leaves open the problem of candidates
based on the standard Computational Diffie-Hellman assumption (in groups
without a bilinear map) or zero-knowledge-friendly lattice-based schemes. In
this paper, we describe a new construction based on standard lattice assump-
tions which interacts nicely with zero-knowledge proofs despite the use of Merkle
trees. We show that this new construction enables new, unexpected applications
to the design of lattice-based ring signatures and group signatures.

Our Contributions. We describe a lattice-based accumulator1 that enables
short zero-knowledge arguments of membership. Our construction relies on a

1 A lattice-based accumulator was previously claimed in [38]. However, the generation
of witnesses can only be performed using the secret key of the system. Moreover,
their scheme is seemingly not compact due to the required choice of parameters.

Zero-Knowledge Arguments for Lattice-Based Accumulators 3

Merkle hash tree which is computed in a special way that makes it compatible
with efficient protocols for proving possession of a secret value (i.e., a leaf of
the tree) that is properly accumulated in the root of the tree. More specifically,
our system allows demonstrating the knowledge of a hash chain from the con-
sidered secret leaf to the root in a zero-knowledge manner. This building block
enables many interesting applications. In particular, we use it to design lattice-
based ring and group signatures with dramatic improvements over the existing
constructions. In the random oracle model, we obtain:

– The first lattice-based ring signature with logarithmic signature size in the
cardinality of the ring. So far, all suggested proposals have linear size in the
number of ring members.

– A lattice-based group signature with much shorter public key, signature
length, and weaker hardness assumptions than all earlier realizations.

Our ring signature does not require any other setup assumption than having
all users agree on a modulus q, a lattice dimension n and a random matrix
A ∈ Z

n×m
q (which can be derived from a random oracle). It provably satisfies

the strong security definitions put forth by Bender, Katz and Morselli [11].
Our group signature is analyzed in the setting of static groups using the

definitions of Bellare, Micciancio and Warinschi [8]. Its salient feature (which it
shares with our ring signature) is that, unlike all earlier candidates [33,41,42,46,
58], it does not require the use of a trapdoor (as defined by Gentry, Peikert and
Vaikuntanathan [31]) consisting of a short basis of some lattice. It thus eliminates
one of the frequently cited reasons [49] for which lattice-based signatures tend to
be impractical. In fact, our group signature departs from previously used design
principles – which are all inspired in some way by the general construction of [8]
– in that, surprisingly, it does not even require an ordinary digital signature
to begin with. All we need is a lattice-based accumulator with a compatible
zero-knowledge argument system for arguing knowledge of a hash chain.

Our Techniques. Our accumulator proceeds by computing a Merkle tree using
a hash function based on the Small Integer Solution (SIS) problem, which is a
variant of the hash functions considered in [4,32,53] previously considered by
Papamanthou et al. [59]. Instead of hashing a vector x ∈ {0, 1}m by comput-
ing its syndrome A · x ∈ Z

n
q via a random matrix A ∈ Z

n×m
q , it outputs the

coordinate-wise binary decomposition bin(A · x mod q) ∈ {0, 1}m/2 of the syn-
drome to obtain the two-fold compression factor that is needed for iteratively
applying the function in a Merkle tree. However, Papamanthou et al. [59] did not
consider the problem of proving knowledge of a hash chain in a zero-knowledge
fashion. The main technical novelty that we introduce is thus a method for
demonstrating knowledge of a Merkle-tree hash chain using the framework of
Stern’s protocol [67].

Using this method, we build ring and group signatures with logarithmic size
in the number of ring or group members involved. Our constructions are concep-
tually simple. Each user’s private key is a random m-bit vector x ∈ {0, 1}m and
the matching public key is the binary expansion d = bin(A·xmod q) ∈ {0, 1}m/2

4 B. Libert et al.

of the corresponding syndrome. In order to sign a message, the user considers
an accumulation u ∈ {0, 1}m/2 of all users’ public keys R = (d0, . . . ,dN−1) –
which is obtained by dynamically forming the ring R in the ring signature and
simply consists of the group public key in the group signature – and generates
a Stern-type argument that: (i) His public key dj belongs to the hashed set R;
(ii) He knows the underlying secret dj = bin(A · xj mod q); (iii – for the group
signature) He has honestly encrypted the binary representation of the integer j
determining his position in the tree to a ciphertext attached in the signature.
In order to acquire anonymity in the strongest sense (i.e., where the adversary
is granted access to a signature opening oracle), we apply the Naor-Yung para-
digm [56] to Regev’s cryptosystem [64], as was previously considered in [12]. As
pointed out earlier, the advantage of not relying on an ordinary digital signa-
ture2 lies in that it does not require any party (i.e., neither the group manager
nor the group members in the case of group signatures) to have a GPV trapdoor
[31] consisting of a short lattice basis. As emphasized by Lyubashevsky [49],
explicitly avoiding the use of such trapdoors allows for drastically more effi-
cient choices of parameters. As by-products, our scheme features much smaller
group public key and users’ secret keys, produces shorter signatures, and relies
on weaker hardness assumptions than all of the existing lattice-based group sig-
nature schemes [21,33,41,46,58] in the BMW model [8].

In the following, we give an estimated efficiency comparison among our group
signature and the previous 2 most efficient schemes with CCA-anonymity, by
Ling et al. [46] and Nguyen et al. [58]. The estimations are done with parameter
n = 28, group size N = 1024, and soundness error 2−80 for the NIZKs.

– Ling et al.’s scheme requires q = O(log N ·n2), m ≥ 2n log q, so we set q = 218

and m = 29 · 18. The infinity norm bound for discrete Gaussian samples is
26. The scheme produces group public key size 65.8 MB; user’s secret key size
13.5 KB (a Boyen signature [17]); and signature size 1.20 GB.

– Nguyen et al.’s scheme requires q > m8.5, m ≥ 2n log q, so we set q = 2142

and m = 29 · 142. The scheme produces group public key size 2.15 GB; user’s
secret key size 90 GB (a trapdoor in Z

3m×3m with (log m)-bit entries); and
signature size 500 MB.

– Our scheme works with q = 28, m = 29 · 8, and parameters p = 32719, mE =
7980 for the encryption layer. The scheme features public key size 4.9 MB;
user’s secret key size 3.25 KB; and it produces signatures of size 61.5 MB.

Related Work. While originally suggested as a 3-move code-based identifi-
cation scheme, Stern’s protocol was adapted to the lattice setting by Kawachi
et al. [40] and extended by Ling et al. [45] into an argument system for the Inho-
mogeneous Small Integer Solution (ISIS) problem. In particular, Ling et al. gave a
method, called decomposition-extension framework, which allows arguing knowl-
edge of an integer vector x ∈ Z

m of norm ‖x‖∞ ≤ β such that A · x = u ∈ Z
n
q

2 Recall that all O(log N)-size group signatures employ a signature scheme in the stan-
dard model (for which all known constructions use trapdoors) in order to smoothly
interact with zero-knowledge proofs.

Zero-Knowledge Arguments for Lattice-Based Accumulators 5

without leaving any gap between the vector computed by the knowledge extrac-
tor and the actual witness x. As shown in [46], the technique of Ling et al. [45]
can be used to prove more involved statements such as the possession of a Boyen
signature [17] on a message encrypted by a dual Regev ciphertext [31]. Here,
we take one step further and develop a zero-knowledge argument of knowledge
(ZKAoK) that a specific element of some universe belongs to a hashed set.

Ring signatures were introduced by Rivest, Shamir and Tauman-Kalai [65]
with the motivation of hiding the identity of a source (e.g., a whistleblower in
a political scandal) while providing guarantees of trustworthiness. Bender, Katz
and Morselli [11] gave stringent security definitions while constructions with
sub-linear signature size were given by Chandran, Groth and Sahai [25]. The
celebrated results of Gentry, Peikert and Vaikuntanathan [31] inspired a num-
ber of lattice-based ring signatures. The state-of-the-art construction probably
stems from the framework of Brakerski and Tauman-Kalai [18], which results in
linear-size in the number of ring members. The same holds for all known Fiat-
Shamir-like lattice-based ring signatures (e.g., [2,40]), although some of them
do not require a trapdoor. Thus far, the only logarithmic-size ring signatures
[16,36] arise from the results of Groth and Kohlweiss [36] and it is not clear how
to extend them to the lattice setting.

The notion of group signatures dates back to Chaum and Van Heyst
[26]. While viable constructions were given in the seminal paper by Ateniese,
Camenisch, Joye and Tsudik [5], their security notions remained poorly under-
stood until the work of Bellare, Micciancio and Warinschi [8]. The first lattice-
based proposal came out with the results of Gordon, Katz and Vaikuntanathan
[33], which inspired a number of follow-up works describing new systems with a
better asymptotic efficiency [41,46,58] or additional properties [21,42]. For the
time being, the most efficient candidates are the recent concurrent proposals
of Nguyen et al. and Ling et al. [46,58]. As it turns out, except for one scheme
[12] that mixes lattice-based and discrete-logarithm-related assumptions, all cur-
rently available candidates [21,41,42,46,58] utilize a GPV trapdoor, either to
perform the setup of the system or to trace signatures (or both). Our results
thus provide the first system that completely eliminates GPV trapdoors.

At a high level, our ZKAoK system is partially inspired by the way Langlois
et al. [42] made use of the Bonsai tree technique [23] since it proves knowledge of
a solution to a SIS problem determined by the user’s position in a tree. However,
there are fundamental differences since our tree is built in a bottom-up (rather
than top-down) manner and we do not perform any trapdoor delegation.

2 Preliminaries

Notations. We assume that all vectors are column vectors. The concatenation
of matrices A ∈ Z

k×i, B ∈ Z
k×j is denoted by [A|B] ∈ Z

k×(i+j). For b ∈ {0, 1},
we denote the bit 1− b ∈ {0, 1} by b̄. For a positive integer i, we let [i] be the set

{1, . . . , i}. If S is a finite set, x
$←− S means that x is chosen uniformly at random

from S. All logarithms are of base 2. The addition in Z2 is denoted by ⊕.

6 B. Libert et al.

In this section, we first recall the average-case lattice problems SIS and LWE,
together with their hardness results; and the notion of statistical zero-knowledge
arguments of knowledge. The definitions and security requirements of crypto-
graphic accumulators, ring signatures, and group signatures are deferred to their
respective Sects. 3, 4, and 5.

2.1 Average-Case Lattice Problems

Definition 1 ([3,31]). The SIS∞
n,m,q,β problem is as follows: Given uniformly

random matrix A ∈ Z
n×m
q , find a non-zero vector x ∈ Z

m such that ‖x‖∞ ≤ β
and A · x = 0mod q.

If m,β = poly(n), and q > β · ˜O(
√

n), then the SIS∞
n,m,q,β problem is at least

as hard as the worst-case lattice problem SIVPγ for some γ = β · ˜O(
√

nm) (see
[31,52]). Specifically, when β = 1, q = ˜O(n), m = 2n	log q
, the SIS∞

n,m,q,1

problem is at least as hard as SIVP
˜O(n).

In the last decade, numerous SIS-based cryptographic primitives have been
proposed. In this work, we will extensively employ 2 such constructions:

– Our Merkle tree accumulator is built upon a specific family of collision-
resistant hash functions, which is a syntactic modification (i.e., it takes two
inputs, instead of one) of the one presented in [3,53]. A similar scheme that
works with larger SIS norm bound β was proposed in [59].

– Our zero-knowledge argument systems use the statistically hiding and com-
putationally binding string commitment scheme from [40].

For appropriate setting of parameters, the security of the above two constructions
can be based on the worst-case hardness of SIVP

˜O(n).
In the group signature in Sect. 5, we will employ the multi-bit version of

Regev’s encryption scheme [64], presented in [39,62]. The scheme is based on
the hardness of the LWE problem.

Definition 2 ([64]). Let n,mE ≥ 1, p ≥ 2, and let χ be a probability distribu-

tion on Z. For s ∈ Z
n
p , let As,χ be the distribution obtained by sampling a $←− Z

n
q

and e ←↩ χ, and outputting (a, s� · a + e) ∈ Z
n
p × Zp. The LWEn,p,χ problem

asks to distinguish mE samples chosen according to As,χ (for s $←− Z
n
p) and mE

samples chosen according to the uniform distribution over Z
n
p × Zp.

If p is a prime power, χ is the discrete Gaussian distribution DZ,αp, where αp ≥
2
√

n, then LWEn,p,χ is as least as hard as SIVP
˜O(n/α) (see [51,52,61,64]).

2.2 Zero-Knowledge Arguments of Knowledge

We will work with statistical zero-knowledge argument systems, namely, inter-
active protocols where the zero-knowledge property holds against any cheat-
ing verifier, while the soundness property only holds against computationally

Zero-Knowledge Arguments for Lattice-Based Accumulators 7

bounded cheating provers. More formally, let the set of statements-witnesses
R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗ be an NP relation. A two-party game 〈P,V〉 is
called an interactive argument system for the relation R with soundness error e
if the following two conditions hold:

– Completeness. If (y, w) ∈ R then Pr
[〈P(y, w),V(y)〉 = 1

]

= 1.

– Soundness. If (y, w) ∈ R, then ∀ PPT ̂P: Pr[〈 ̂P(y, w),V(y)〉 = 1] ≤ e.

An argument system is called statistical zero-knowledge if for any ̂V(y), there
exists a PPT simulator S(y) producing a simulated transcript that is statistically
close to the one of the real interaction between P(y, w) and ̂V(y). A related notion
is argument of knowledge, which requires the witness-extended emulation prop-
erty. For protocols consisting of 3 moves (i.e., commitment-challenge-response),
witness-extended emulation is implied by special soundness [34], where the lat-
ter assumes that there exists a PPT extractor which takes as input a set of
valid transcripts with respect to all possible values of the ‘challenge’ to the same
‘commitment’, and outputs w′ such that (y, w′) ∈ R.

The statistical zero-knowledge arguments of knowledge (sZKAoK) presented
in this work are Stern-type [67]. In particular, they are Σ-protocols in the gen-
eralized sense defined in [12,37] (where 3 valid transcripts are needed for extrac-
tion, instead of just 2). Several recent works rely on Stern-type protocols to
design lattice-based [42,45,46] and code-based [29,37] constructions.

3 A Lattice-Based Accumulator with Supporting
Zero-Knowledge Argument of Knowledge

Throughout the paper, we will work with positive integers n, q, k,m, where: n is
the security parameter; q = ˜O(n); k = 	log q
; and m = 2nk. We identify Zq by
the set {0, . . . , q − 1}. We define the “powers-of-2” matrix

G =

⎡

⎢

⎢

⎣

1 2 4 . . . 2k−1

1 2 4 . . . 2k−1

. . .
1 2 4 . . . 2k−1

⎤

⎥

⎥

⎦

∈ Z
n×nk
q .

Note that for every v ∈ Z
n
q , we have v = G · bin(v), where bin(v) ∈ {0, 1}nk

denotes the binary representation of v.

3.1 Cryptographic Accumulators

An accumulator scheme is a tuple of algorithms (TSetup,TAcc,TWitness,
TVerify) defined as follows:

TSetup(n) On input security parameter n, output the public parameter pp.
TAccpp On input a set R = {d0, . . . ,dN−1} of N data values, output an accu-

mulator value u.

8 B. Libert et al.

TWitnesspp On input a data set R and a value d, output ⊥ if d ∈ R; otherwise
output a witness w for the fact that d is accumulated in TAcc(R). (Typically,
the size of w should be short (e.g., constant or logarithmic in N) to be useful.)

TVerifypp On input accumulator value u and a value-witness pair (d, w), output 1
(which indicates that (d, w) is valid for the accumulator u) or 0.

An accumulator scheme is called correct if for all pp ← TSetup(n), we have
TVerifypp

(

TAccpp(R),d,TWitnesspp(R,d)
)

= 1 for all d ∈ R.
The security of an accumulator scheme, as defined in [7,20], says that it is

infeasible to prove that a value d∗ was accumulated in a value u if it was not.
This property is formalized as follows.

Definition 3. An accumulator scheme (TSetup,TAcc,TWitness,TVerify) is
called secure if for all PPT adversaries A:

Pr
[

pp ← TSetup(n); (R,d∗, w∗) ← A(pp) :

d∗ ∈ R ∧ TVerifypp(TAccpp(R),d∗, w∗) = 1
]

= negl(n).

3.2 A Family of Lattice-Based Collision-Resistant Hash Functions

We now describe the specific family of lattice-based collision-resistant hash func-
tions, upon which our Merkle hash tree will be built.

Definition 4. The function family H mapping {0, 1}nk ×{0, 1}nk to {0, 1}nk is
defined as H = {hA | A ∈ Z

n×m
q }, where for A = [A0|A1] with A0,A1 ∈ Z

n×nk
q ,

and for any (u0,u1) ∈ {0, 1}nk × {0, 1}nk, we have:

hA(u0,u1) = bin
(

A0 · u0 + A1 · u1 mod q
) ∈ {0, 1}nk.

Note that hA(u0,u1) = u ⇔ A0 · u0 + A1 · u1 = G · umod q.

Lemma 1. The function family H, defined in 4 is collision-resistant, assuming
the hardness of the SIVP

˜O(n) problem.

Proof. Given A = [A0|A1]
$←− Z

n×m
q , if one can find two distinct pairs (u0,u1) ∈

({0, 1}nk
)2 and (v0,v1) ∈ ({0, 1}nk

)2 such that hA(u0,u1) = hA(v0,v1)mod q,

then one can obtain a non-zero vector z =
(

u0 − v0

u1 − v1

)

∈ {−1, 0, 1}m such that

A ·z = A0 ·(u0−v0)+A1 ·(u1−v1) = G ·hA(u0,u1)−G ·hA(v0,v1) = 0mod q.

In other words, z is a valid solution to the SIS∞
n,m,q,1 problem associated with

matrix A. The lemma then follows from the worst-case to average-case reduction
from SIVP

˜O(n). ��

Zero-Knowledge Arguments for Lattice-Based Accumulators 9

3.3 Our Merkle-Tree Accumulator

We now give the construction of a Merkle tree with N = 2� leaves, where � is
a positive integer, based on the family of lattice-based hash function H defined
above.

TSetup(n). Sample A $←− Z
n×m
q , and output pp = A.

TAccA(R = {d0 ∈ {0, 1}nk, . . . ,dN−1 ∈ {0, 1}nk}). For every j ∈ [0, N − 1], let
(j1, . . . , j�) ∈ {0, 1}� be the binary representation of j, and let dj = uj1,...,j�

.
Form the tree of depth � = log N based on the N leaves u0,0,...,0, . . . ,u1,1,...,1

as follows:
1. At depth i ∈ [�], the node ub1,...,bi

∈ {0, 1}nk, for all (b1, . . . , bi) ∈ {0, 1}i,
is defined as hA(ub1,...,bi,0,ub1,...,bi,1).

2. At depth 0: The root u ∈ {0, 1}nk is defined as hA(u0,u1).
The algorithm outputs the accumulator value u.

TWitnessA(R,d). If d ∈ R, return ⊥. Otherwise, d = dj for some j ∈ [0, N − 1]
with binary representation (j1, . . . , j�). Output the witness w defined as:

w =
(

(j1, . . . , j�), (uj1,...,j�−1,j̄�
, . . . ,uj1,j̄2 ,uj̄1)

) ∈ {0, 1}� × ({0, 1}nk
)�

,

for uj1,...,j�−1,j̄�
, . . . ,uj1,j̄2 ,uj̄1 computed by algorithm TAccA(R).

TVerifyA
(

u,d, w
)

. Let the given witness w be of the form:

w =
(

(j1, . . . , j�), (w�, . . . ,w1)
) ∈ {0, 1}� × ({0, 1}nk

)�
.

The algorithm recursively computes the path v�,v�−1, . . . ,v1,v0 ∈ {0, 1}nk

as follows: v� = d and

∀i ∈ {� − 1, . . . , 1, 0} : vi =

{

hA(vi+1,wi+1), if ji+1 = 0;
hA(wi+1,vi+1), if ji+1 = 1.

Then it returns 1 if v0 = u. Otherwise, it returns 0.

In Fig. 1, we give an illustrative example of a tree with 23 = 8 leaves.
One can check that the above Merkle-tree accumulator scheme is correct.

Furthermore, its security is based on the collision-resistance of the hash function
family H, which in turn is based on the hardness of SIVP

˜O(n).

Theorem 1. The given accumulator scheme is secure in the sense of Defini-
tion 3, assuming the hardness of the SIVP

˜O(n) problem.

Proof. Assuming that there exists a PPT adversary B who has non-negligible
success probability in the security experiment of Definition 3. It receives a
uniformly random matrix A ∈ Z

n×m
q generated by TSetup(n), and returns

(R = (d0, . . . ,dN−1),d∗, w∗) such that d∗ ∈ R and TVerifyA(u∗,d∗, w∗) = 1,
where u∗ = TAccA(R).

Parse w∗ =((j∗
1 , . . . , j∗

�), (w∗
� , . . . ,w∗

1)). Let j∗∈ [0, N−1] be the integer having
binary representation (j∗

1 , . . . , j∗
�) and let uj∗

1 ,...,j∗
�

= dj∗ ,uj∗
1 ,...,j∗

�−1
, . . . ,uj∗

1
,u∗

10 B. Libert et al.

u

u000 u111u011 u100u010 u101u001 u110

d0 d7d3 d4d2 d5d1 d6

u00 u11u01 u10

u0 u1

Fig. 1. A Merkle tree with 23 = 8 leaves, which accumulates the data blocks d0, . . . ,d7

into the value u at the root. The bit string (101) and the gray nodes form a witness to
the fact that d5 is accumulated in u.

be the path from the leave dj∗ to the root of the tree generated by TAccA(R).
On the other hand, let v∗

� = d∗,v∗
�−1, . . . ,v

∗
1,v

∗
0 = u∗ be the path computed

by algorithm TVerifyA(u∗,d∗, w∗). Note that d∗ = dj∗ since d∗ ∈ R. Thus,
comparing the two paths, we can find the smallest integer k ∈ [�], such that
v∗

k = uj∗
1 ,...,j∗

k
. We then obtain a collision for hA at the parent node of uj∗

1 ,...,j∗
k
.

The theorem then follows from Lemma 1. ��

3.4 Zero-Knowledge AoK of an Accumulated Value

Our goal in this section is to construct a zero-knowledge argument system that
allows prover P to convince verifier V that P knows a secret value that is properly
accumulated into the root of the lattice-based Merkle tree described above. More
formally, in our protocol, P convinces V on input (A,u) that P possesses a value-
witness pair (d, w) such that TVerifyA

(

u,d, w
)

= 1. The associated relation Racc

is defined as follows.

Definition 5

Racc =
{

(

(A,u) ∈ Z
n×m
q × {0, 1}nk;d ∈ {0, 1}nk, w ∈ {0, 1}� × ({0, 1}nk)�

)

:

TVerifyA
(

u,d, w
)

= 1
}

.

Before going into the details, we first introduce several supporting notations
and techniques.

– We denote by Bnk
m the set of all vectors in {0, 1}m that have Hamming weight

nk; and by Sm the set of all permutations of m elements.
– For i ∈ {nk,m}, for b ∈ {0, 1} and for v ∈ {0, 1}i, we let ext(b,v) denote the

vector z ∈ {0, 1}2i of the form z =
(

b̄ · v
b · v

)

.

Zero-Knowledge Arguments for Lattice-Based Accumulators 11

– For b ∈ {0, 1}, for π ∈ Sm, we define the permutation Fb,π that transforms

z =
(

z0
z1

)

∈ Z
2m
q consisting of 2 blocks of size m into Fb,π(z) =

(

π(zb)
π(zb̄)

)

.

Namely, Fb,π first rearranges the blocks of z according to b (it keeps the
arrangement of blocks if b = 0, or swaps them if b = 1), then it permutes
each block according to π.

Our strategy to achieve zero-knowledgeness will crucially rely on the following
observation: For all c, b ∈ {0, 1}, all π, φ ∈ Sm, and all v,w ∈ {0, 1}m, we have
the equivalences
{

z = ext(c,v) ∧ v ∈ Bnk
m ⇐⇒ Fb,π(z) = Ext(c ⊕ b, π(v)) ∧ π(v) ∈ Bnk

m ;
y = ext(c̄,w) ∧ w ∈ Bnk

m ⇐⇒ Fb̄,π(y) = Ext(c ⊕ b, π(w)) ∧ π(w) ∈ Bnk
m .

(1)

Warm-up Step. Now, let (d, w) be such that
(

(A,u),d, w
) ∈ Racc, where w is

of the form w =
(

(j1, . . . , j�), (w�, . . . ,w1)
)

, and let v� = d,v�−1, . . . ,v1,v0 be
the path computed by TVerifyA

(

u,d, w
)

. Note that v0 = u and:

∀i ∈ {� − 1, . . . , 1, 0} : vi =

{

hA(vi+1,wi+1), if ji+1 = 0;
hA(wi+1,vi+1), if ji+1 = 1.

(2)

We observe that relation (2) can be equivalently rewritten in a more compact
form: ∀i ∈ {� − 1, . . . , 1, 0},

vi = j̄i+1 · hA(vi+1,wi+1) + ji+1 · hA(wi+1,vi+1). (3)

Equation (3) then can be interpreted as:

j̄i+1 ·(A0 · vi+1 + A1 · wi+1

)
+ ji+1 ·(A0 · wi+1 + A1 · vi+1

)
= G · vi mod q

⇔ A ·
(

j̄i+1 · vi+1

ji+1 · vi+1

)
+ A ·

(
ji+1 · wi+1

j̄i+1 · wi+1

)
= G · vi mod q

⇔ A · ext(ji+1,vi+1) + A · ext(j̄i+1,wi+1) = G · vi mod q.

Therefore, to achieve our goal, it is necessary and sufficient to construct an
argument system in which P convinces V in ZK that P knows j1, . . . , j� ∈ {0, 1}�

and v1, . . . ,v�,w1, . . . ,w� ∈ {0, 1}nk satisfying
{

A · ext(j1,v1) + A · ext(j̄1,w1) = G · umod q;
∀i ∈ [� − 1] : A · ext(ji+1,vi+1) + A · ext(j̄i+1,wi+1) = G · vi mod q.

(4)

To this end, we develop a Stern-type protocol [67], in which we adapt the
extension technique from [45]. Specifically, we perform the following extensions:

– Extend matrix A = [A0|A1] to matrix A∗ = [A0|0n×nk|A1|0n×nk] ∈ Z
n×2m
q .

– Extend matrix G to matrix G∗ = [G|0n×nk] ∈ Z
n×m
q .

12 B. Libert et al.

– Extend v1, . . . ,v�,w1, . . . ,w� into v∗
1, . . . ,v

∗
� ,w∗

1, . . . ,w
∗
� ∈ Bnk

m , respectively.
This is done by appending a length-nk vector of suitable Hamming weight to
each of these vectors.

Let zi = ext(ji,v∗
i) and yi = ext(j̄i,w∗

i) for each i ∈ [�]. Note that now the
conditions in (4) can be equivalently rewritten as:

{

A∗ · z1 + A∗ · y1 = G · umod q;
∀i ∈ [� − 1] : A∗ · zi+1 + A∗ · yi+1 = G∗ · v∗

i mod q.
(5)

The Interactive Protocol. Having performed the above preparation and
transformation steps, we now give a summary and sketch the main ideas of
our interactive protocol, before formally describing it. The public parameters
are n, q, k,m, �, the “powers-of-2” matrix G and its extension G∗.

Common inputs: (A,u). Both parties extend A to A∗.
P’s inputs:

(

(j1, . . . , j�), (v∗
1, . . . ,v

∗
�), (w∗

1, . . . ,w
∗
�), (z1, . . . , z�), (y1, . . . ,y�)

)

.
P’s goal: Prove in ZK that v∗

i ,w∗
i ∈ Bnk

m , zi = ext(ji,v∗
i), yi = ext(j̄i,w∗

i) for
all i ∈ [�], and that (5) holds.

To achieve its goal, P employs the following strategies:

1. To prove in ZK that v∗
i ,w∗

i ∈ Bnk
m and zi = ext(ji,v∗

i) and yi = ext(j̄i,w∗
i)

for all i ∈ [�], the equivalences observed in (1) are exploited. Specifically, for

each i ∈ [�], P samples πi, φi
$←− Sm and bi

$←− {0, 1}, then it demonstrates to
V that:

{

πi(v∗
i) ∈ Bnk

m ∧ Fbi,πi
(zi) = ext(ji ⊕ bi, πi(v∗

i));
φi(w∗

i) ∈ Bnk
m ∧ Fb̄i,πi

(yi) = ext(ji ⊕ bi, φi(w∗
i)).

(6)

Seeing (6), V should be convinced of the facts P wants to prove, while learning
no additional information, thanks to the randomness of πi, φi and bi.

2. To prove in ZK that the � equations in (5) hold, P samples uniformly random

masking vectors r(1)v , . . . , r(�−1)
v

$←− Z
m
q ; r(1)z , . . . , r(�)z , r(1)y , . . . , r(�)y

$←− Z
2m
q ,

and then it shows V that
⎧

⎪

⎨

⎪

⎩

A∗ · (z1 + r(1)z) + A∗ · (y1 + r(1)y) − G · u = A∗ · r(1)z + A∗ · r(1)y mod q;
∀i ∈ [� − 1] : A∗ ·(zi+1 + r(i+1)

z) + A∗ ·(yi+1 + r(i+1)
y) − G∗ ·(v∗

i + r(i)v)
= A∗ · r(i+1)

z + A∗ · r(i+1)
y − G∗ · r(i)v mod q.

Let COM : {0, 1}∗ × {0, 1}m → Z
n
q be the string commitment scheme

from [40], which is statistically hiding and computationally binding if the
SIVP

˜O(n) problem is hard. The interaction between prover P and verifier V
is described in Fig. 2.

Zero-Knowledge Arguments for Lattice-Based Accumulators 13

1. Commitment. P samples randomness ρ1, ρ2, ρ3 for COM and⎧⎨⎩b1, . . . , b�
$←− {0, 1}; π1, . . . , π�, φ1, . . . , φ�

$←− Sm;

r
(1)
v , . . . , r

(�−1)
v

$←− Z
m
q ; r

(1)
z , . . . , r

(�)
z , r

(1)
y , . . . , r

(�)
y

$←− Z
2m
q .

It then sends V commitment CMT = (C1, C2, C3), where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C1 = COM {bi; πi; φi}�

i=1; A∗ · r(1)z + A∗ · r(1)y ;

{A∗ · r(i+1)
z + A∗ · r(i+1)

y − G∗ · r(i)v }�−1
i=1 ; ρ1

)
C2 = COM {πi(r

(i)
v)}�−1

i=1 ; {Fbi,πi(r
(i)
z); Fb̄i,φi

(r
(i)
y)}�

i=1; ρ2

)
C3 = COM {πi(v

∗
i +r

(i)
v)}�−1

i=1 ; {Fbi,πi(zi+r
(i)
z); Fb̄i,φi

(yi+r
(i)
y)}�

i=1; ρ3

)
.

2. Challenge. Receiving CMT, V sends a challenge Ch
$←− {1, 2, 3} to P.

3. Response. Depending on Ch, P sends the response RSP computed as follows:
– Case Ch = 1: For each i ∈ [� − 1], let t

(i)
v = πi(r

(i)
v). For each i ∈ [�], let:

ai = ji ⊕ bi; s(i)v = πi(v
∗
i); s(i)w = φi(w

∗
i); t(i)z = Fbi,πi(r

(i)
z); t(i)y = Fb̄i,φi

(r(i)y).

Then let RSP = {t(i)v }�−1
i=1 ; {ai; s(i)v ; t(i)z ; s(i)w ; t(i)y }�

i=1; ρ2; ρ3

)
. (7)

– Case Ch = 2: For each i ∈ [� − 1], let e
(i)
v = v∗

i + r
(i)
v . For each i ∈ [�], let:

ci = bi; π̂i = πi; φ̂i = φi; e(i)
z = zi + r(i)z ; e(i)

y = yi + r(i)y .

Then let RSP = {e(i)
v }�−1

i=1 ; {ci; π̂i; φ̂i; e(i)
z ; e(i)

y }�
i=1; ρ1; ρ3

)
. (8)

– Case Ch = 3: For each i ∈ [� − 1], let p
(i)
v = r

(i)
v . For each i ∈ [�], let:

di = bi; π̃i = πi; φ̃i = φi; p(i)
z = r(i)z ; p(i)

y = r(i)y .

Then let RSP = {p(i)
v }�−1

i=1 ; {di; π̃i; φ̃i; p(i)
z ; p(i)

y }�
i=1; ρ1; ρ2

)
. (9)

Verification. Receiving RSP, V proceeds as follows.

– Case Ch = 1: Parse RSP as in (7). Check that s
(i)
v , s

(i)
w ∈ Bnk

m for all i ∈ [�]. Next,

for each i ∈ [�], let s
(i)
z = ext(ai, s

(i)
v) and let s

(i)
y = ext(ai, s

(i)
w). Then check that:{

C2 = COM {t(i)v }�−1
i=1 ; {t(i)z ; t

(i)
y }�

i=1; ρ2

)
,

C3 = COM {s(i)v + t
(i)
v }�−1

i=1 ; {s(i)z + t
(i)
z ; s

(i)
y + t

(i)
y }�

i=1; ρ3

)
.

(10)

– Case Ch = 2: Parse RSP as in (8) and check that:⎧⎪⎪⎨⎪⎪⎩
C1 = COM {ci; π̂i; φ̂i}�

i=1; A∗ ·e(1)
z +A∗ ·e(1)

y −G·u;

{A∗ ·e(i+1)
z +A∗ ·e(i+1)

y −G∗ ·e(i)
v }�−1

i=1 ; ρ1

)
C3 = COM {π̂i(e

(i)
v)}�−1

i=1 ; {Fci,π̂i(e
(i)
z); Fc̄i,̂φi

(e
(i)
y)}�

i=1; ρ3

)
.

(11)

– Case Ch = 3: Parse RSP as in (9) and check that:⎧⎪⎪⎨⎪⎪⎩
C1 = COM {di; π̃i; φ̃i}�

i=1; A∗ ·p(1)
z +A∗ ·p(1)

y ;

{A∗ ·p(i+1)
z +A∗ ·p(i+1)

y −G∗ ·p(i)
v }�−1

i=1 ; ρ1

)
C2 = COM {π̃i(p

(i)
v)}�−1

i=1 ; {Fdi,π̃i(p
(i)
z); Fd̄i,˜φi

(p
(i)
y)}�

i=1; ρ2

)
.

(12)

In each case, V outputs 1 if all the conditions hold. Otherwise, it outputs 0.

Fig. 2. A zero-knowledge argument of knowledge for the relation Racc.

14 B. Libert et al.

3.5 Analysis of the Interactive Protocol

The properties of the given protocol are summarized in the following theorem.

Theorem 2. The given interactive protocol has perfect completeness and com-
munication cost ˜O(� · n). If COM is a statistically hiding and computationally
binding string commitment scheme, then it is a statistical zero-knowledge argu-
ment of knowledge for the relation Racc.

Completeness and Communication Cost. Based on the discussion given
in the previous section, it can be checked that the described protocol has per-
fect completeness, i.e., if P is honest and follows the protocol, then V always
outputs 1. It can also be seen that the communication cost of the protocol is
˜O(� · m · log q) = ˜O(� · n) bits.

In order to prove that the protocol is a ZKAoK for the relation Racc, we
will employ the standard simulation and extraction techniques for Stern-type
protocols (see, e.g., [40,45,46]).

Lemma 2 (Zero-Knowledge Property). If COM is statistically hiding, then
the interactive protocol in Fig. 2 is a statistical zero-knowledge argument.

Proof. We construct a PPT simulator S interacting with a (possibly dishonest)
verifier ̂V, such that, given only the public input, S outputs with probability
negligibly close to 2/3 a simulated transcript that is statistically close to the one
produced by the honest prover in the real interaction. The simulator S begins
by selecting a random Ch ∈ {1, 2, 3}. This is a prediction of the challenge value
that ̂V will not choose.
Case Ch = 1: Using linear algebra, S computes z′

1, . . . , z
′
�,y

′
1, . . . ,y

′
� ∈ Z

2m
q and

v′
1, . . . ,v

′
�−1 ∈ Z

m
q such that

{

A∗ · z′
1 + A∗ · y′

1 = G · umod q;
∀i ∈ [1, � − 1] : A∗ · z′

i+1 + A∗ · y′
i+1 = G∗ · v′

i mod q.

Then it samples randomness ρ1, ρ2, ρ3 for COM and
{

b1, . . . , b�
$←− {0, 1}; π1, . . . , π�, φ1, . . . , φ�

$←− Sm;

r(1)v , . . . , r(�−1)
v

$←− Z
m
q ; r(1)z , . . . , r(�)z , r(1)y , . . . , r(�)y

$←− Z
2m
q .

It then sends ̂V commitment CMT = (C ′
1, C

′
2, C

′
3), where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C′
1 = COM

({bi; πi; φi}�
i=1; A∗ · r(1)z + A∗ · r(1)y ;

{A∗ · r(i+1)
z + A∗ · r(i+1)

y − G∗ · r(i)v }�−1
i=1 ; ρ1

)

C′
2 = COM

({πi(r
(i)
v)}�−1

i=1 ; {Fbi,πi(r
(i)
z); Fb̄i,φi

(r
(i)
y)}�

i=1; ρ2

)

C′
3 = COM

({πi(v
′
i+r

(i)
v)}�−1

i=1 ; {Fbi,πi(z
′
i+r

(i)
z); Fb̄i,φi

(y′
i+r

(i)
y)}�

i=1; ρ3

)
.

(13)

Receiving a challenge Ch from ̂V, the simulator responds as follows:

Zero-Knowledge Arguments for Lattice-Based Accumulators 15

– If Ch = 1: Output ⊥ and abort.
– If Ch = 2: Send RSP =

({v′
i + r(i)v }�−1

i=1 ; {bi; πi; φi; z′
i + r(i)z ; y′

i +
r(i)y }�

i=1; ρ1; ρ3
)

.

– If Ch = 3: Send RSP =
({r(i)v }�−1

i=1 ; {bi; πi; φi; r(i)z ; r(i)y }�
i=1; ρ1; ρ2

)

.

Case Ch = 2: S samples
⎧

⎪

⎪

⎨

⎪

⎪

⎩

j′
1, . . . , j

′
�

$←− {0, 1}; v′
1, . . . ,v

′
�,w

′
1, . . . ,w

′
�

$←− Bnk
m ;

b1, . . . , b�
$←− {0, 1}; π1, . . . , π�, φ1, . . . , φ�

$←− Sm;

r(1)v , . . . , r(�−1)
v

$←− Z
m
q ; r(1)z , . . . , r(�)z , r(1)y , . . . , r(�)y

$←− Z
2m
q .

It then computes z′
i = ext(j′

i,v
′
i), y′

i = ext(j̄′
i,w

′
i) for each i ∈ [�], and sends the

commitment CMT computed in the same manner as in (13).
Receiving a challenge Ch from ̂V, it responds as follows:

– If Ch = 1: Send

RSP =
({πi(r

(i)
v)}�−1

i=1 ; {j′
i ⊕ bi; πi(v

′
i); Fbi,πi(r

(i)
z); φi(w

′
i); Fb̄i,φi

(r(i)y)}�
i=1; ρ2; ρ3

)
.

– If Ch = 2: Output ⊥ and abort.
– If Ch = 3: Send RSP computed as in the case (Ch = 1, Ch = 3).

Case Ch = 3: The simulator proceeds with the preparation as in the case Ch = 2
above. Then it sends the commitment CMT := (C ′

1, C
′
2, C

′
3), where C ′

2, C
′
3 are

computed as in (13), while

C ′
1 = COM

({bi; πi; φi}�
i=1; A∗ · (z′

1 + r(1)z) + A∗ · (y′
1 + r(1)y) − G · u;

{A∗ · (z′
i+1 + r(i+1)

z) + A∗ · (y′
i+1 + r(i+1)

y) − G∗ · (v′
i + r(i)v)}�−1

i=1 ; ρ1
)

.

Receiving a challenge Ch from ̂V, it responds as follows:

– If Ch = 1: Send RSP computed as in the case (Ch = 2, Ch = 1).
– If Ch = 2: Send RSP computed as in the case (Ch = 1, Ch = 2).
– If Ch = 3: Output ⊥ and abort.

We observe that, in every case we have considered above, since COM is statis-
tically hiding, the distribution of the commitment CMT and the distribution of
the challenge Ch from ̂V are statistically close to those in the real interaction.
Hence, the probability that the simulator outputs ⊥ is negligibly close to 1/3.
Moreover, one can check that whenever the simulator does not halt, it will pro-
vide an accepted transcript, the distribution of which is statistically close to
that of the prover in the real interaction. In other words, we have constructed a
simulator that can successfully impersonate the honest prover with probability
negligibly close to 2/3. ��

16 B. Libert et al.

To prove that our protocol is an argument of knowledge for the relation
Racc, it suffices to demonstrate that the protocol has the special soundness prop-
erty [34].

Lemma 3 (Argument of Knowledge Property). If COM is computation-
ally binding, then there exists an efficient knowledge extractor K that, on input
3 valid responses (RSP1,RSP2,RSP3) to the same commitment CMT, outputs
a pair (d′ ∈ {0, 1}nk, w′ ∈ {0, 1}� × ({0, 1}nk)�) such that

(

(A,u);d′, w′) ∈ Racc.

Proof. Let the 3 valid responses to CMT = (C1, C2, C3) be
⎧

⎪

⎨

⎪

⎩

RSP1 =
({t(i)v }�−1

i=1 ; {ai; s(i)v ; t(i)z ; s(i)w ; t(i)y }�
i=1; ρ2; ρ3

)

,

RSP2 =
({e(i)v }�−1

i=1 ; {ci; π̂i; ̂φi; e(i)z ; e(i)y }�
i=1; ρ1; ρ3

)

,

RSP3 =
({p(i)

v }�−1
i=1 ; {di; π̃i; ˜φi; p(i)

z ; p(i)
y }�

i=1; ρ1; ρ2
)

.

The validity of RSP1 implies that ∀i ∈ [�] : s(i)v , s(i)w ∈ Bnk
m . Furthermore, it

follows from the verification conditions given in (10), (11), (12), and from the
computational binding property of COM that:

A∗ · e(1)z + A∗ · e(1)y − G · u = A∗ · p(1)
z + A∗ · p(1)

y mod q,

and for all i ∈ [1, � − 1]: t(i)v = π̃i(p
(i)
v); s(i)v + t(i)v = π̂i(e

(i)
v); and

A∗ · e(i+1)
z + A∗ · e(i+1)

y − G∗ · e(i)
v = A∗ · p(i+1)

z + A∗ · p(i+1)
y − G∗ · p(i)

v mod q,

and for all i ∈ [�]:
⎧

⎪

⎨

⎪

⎩

ci = di; π̂i = π̃i; ̂φi = ˜φi;
t(i)z = Fdi,π̃i

(p(i)
z); ext(ai, s

(i)
v) + t(i)z = Fci,π̂i

(e(i)z);
t(i)y = Fd̄i,˜φi

(p(i)
y); ext(ai, s

(i)
w) + t(i)y = Fc̄i,̂φi

(e(i)y).

The knowledge extractor K now proceeds as follows. For each i ∈ [�], let:

ji = ai ⊕ ci; v∗
i = π̂−1

i (s(i)v); w∗
i = ̂φ−1

i (s(i)w); zi = e(i)z − p(i)
z ; yi = e(i)y − p(i)

y .

Note that π̂i(v∗
i) = s(i)v ∈ Bnk

m , and thus v∗
i ∈ Bnk

m (by (1)). Similarly, w∗
i ∈ Bnk

m .
Furthermore, one has that:

– Fci,π̂i
(zi) = ext(ai, s

(i)
v) = ext

(

ji ⊕ ci, π̂i(v∗
i)
)

. By (1), this implies zi =
ext(ji,v∗

i).
– Fc̄i,̂φi

(yi) = ext(ai, s
(i)
w) = ext

(

j̄i ⊕ c̄i, ̂φi(w∗
i)
)

. By (1), this implies yi =
ext(j̄i,w∗

i).

Zero-Knowledge Arguments for Lattice-Based Accumulators 17

Moreover, the following relations hold:
{

A∗ · z1 + A∗ · y1 = G · u mod q

∀i ∈ [1, � − 1] : A∗ · zi+1 + A∗ · yi+1 = G∗ · v∗
i mod q

⇔
{

A∗ · ext(j1,v∗
1) + A∗ · ext(j̄i,w∗

i) = G · u mod q

∀i ∈ [1, � − 1] : A∗ · ext(ji+1,v∗
i+1) + A∗ · ext(j̄i+1,w∗

i+1) = G∗ · v∗
i mod q.

Now, by dropping the last nk coordinates from v∗
1, . . . ,v

∗
� ,w∗

1, . . . ,w
∗
� , the

knowledge extractor K obtains v′
1, . . . ,v

′
�,w

′
1, . . . ,w

′
� ∈ {0, 1}nk, respectively.

These vectors satisfy:
{

A · ext(j1,v′
1) + A · ext(j̄1,w′

1) = G · umod q

∀i ∈ [1, � − 1] : A · ext(ji+1,v′
i+1) + A · ext(j̄i+1,w′

i+1) = G · v′
i mod q

⇔
{

v′
0 = u

∀i ∈ [0, � − 1] : v′
i = j̄i+1 · hA(v′

i+1,w
′
i+1) + ji+1 · hA(w′

i+1,v
′
i+1).

Let d′ = v′
� and w′ =

(

(j1, . . . , j�), (w′
�, . . . ,w

′
1)
)

, then TVerifyA(u,d′, w′) = 1.
In other words, (d′, w′) satisfies

(

(A,u);d′, w′) ∈ Racc. This concludes the
proof. ��

4 A Logarithmic-Size Ring Signature from Lattices

In this section, we construct a ring signature scheme [65] with signature size
˜O(log N · n), where N is the size of the ring, based on the hardness of lattice
problem SIVP

˜O(n). We use the ZKAoK given in Sect. 3 as the building block.

4.1 Definitions

We recall the standard definitions and security requirements for ring signa-
tures [11,36]. A ring signature scheme consists of a tuple of efficient algorithms
(RSetup,RKgen,RSign,RVerify) for generating a public parameter, generating
keys for users, signing messages, and verifying ring signatures, respectively.

RSetup(n): Generates public parameters pp which are made available to all users.
RKgen(pp): Generates a public key pk and the corresponding secret key sk.
RSignpp(sk,M,R): Outputs a signature Σ on the message M ∈ {0, 1}∗ with

respect to the ring R = (pk0, . . . , pkN−1). It is required that (pk, sk) be a
valid key pair produced by RKgen(pp) and that pk ∈ R.

RVerifypp(M,R,Σ): Given a candidate signature Σ on a message M with respect
to the ring of public keys R, this algorithm outputs 1 if Σ is deemed valid or
0 otherwise.

We next describe the following requirements for ring signatures: correctness,
unforgeability with respect to insider corruption, and statistical anonymity.

The correctness requirement says that a user can always sign any message
on behalf of a ring he belongs to. This is formalized as follows.

18 B. Libert et al.

Definition 6 (Correctness). A ring signature (RSetup,RKgen,RSign,RVerify)
is correct if for any pp ← RSetup(n), any (pk, sk) ← RKgen(pp), any R such that
pk ∈ R, any M ∈ {0, 1}∗, we have RVerifypp

(

M,R,RSignpp(sk,M,R)
)

= 1.

A ring signature is unforgeable with respect to insider corruption if it is infeasible
to forge a ring signature without controlling one of the ring members.

Definition 7 (Unforgeability w.r.t. insider corruption). A ring signature
scheme (RSetup,RKgen,RSign,RVerify) is unforgeable w.r.t. insider corruption if
for all PPT adversaries A,

Pr[pp ← RSetup(1n); (M	, R	, Σ) ← APKGen,Sign,Corrupt(pp) :
RVerifypp(M

	, R	, Σ) = 1] ∈ negl(n),

where:

– PKGen on the j-th query runs (pkj , skj) ← RKgen(pp) and returns pkj.
– Sign(j,M,R) returns the output of RSignpp(skj ,M,R) provided: (i) (pkj , skj)

has been generated by PKGen; (ii) pkj ∈ R. Otherwise, it returns ⊥.
– Corrupt(j) returns skj, provided that (pkj , skj) has been generated by PKGen.
– A outputs (M	, R	, Σ) such that Sign(·,M	, R) has not been queried. More-

over, R	 is non-empty and only contains public keys pkj generated by PKGen
for which j has not been corrupted.

Definition 8. A ring signature scheme (RSetup,RKgen,RSign,RVerify) provides
statistical anonymity if, for any (possibly unbounded) adversary A,

Pr

[

pp ← RSetup(1n); (M	, j0, j1, R
) ← ARKgen(pp)(pp)

b
$←− {0, 1};Σ∗ ← RSignpp(skjb

,M	, R)
: A(Σ) = b

]

= 1/2 + negl(n),

where pkj0 , pkj1 ∈ R	.

Remark: Anonymity under full key exposure [11] requires that the random-
ness used by KeyGen be revealed to the adversary. In our construction, it does
not make a difference since we assume computationally unbounded adversaries.
A c-user ring signature scheme is a variant of ring signatures, that only supports
rings of fixed size c. Here, we do not assume any upper bound on the size of a
ring. Similarly to [36], we only assume that all users agree on pre-existing public
parameters pp. In our scheme, these public parameters consist of a modulus q
and a random matrix A ∈ Z

n×2nk
q which can be derived from a random oracle.

In this case, we only need all users to agree on the parameters q and n.

4.2 The Underlying Zero-Knowledge Protocol

The ring signature scheme that we will present next relies on a simple extension
of the ZKAoK in Sect. 3. Specifically, one more layer is added: apart from proving

Zero-Knowledge Arguments for Lattice-Based Accumulators 19

that it has a secret value d that was properly accumulated to the root of the
tree, P has to convince V that it knows a vector x ∈ {0, 1}m such that bin(A ·
xmod q) = d, or equivalently, A ·x = G ·dmod q. The associated relation Rring

is defined as follows.

Definition 9. Define the relation

Rring =
{

(

(A,u) ∈ Z
n×m
q × {0, 1}nk;d ∈ {0, 1}nk, w ∈ {0, 1}� × ({0, 1}nk)�,

x ∈ {0, 1}m
)

: TVerifyA
(

u,d, w
)

= 1 ∧ A · x = G · dmod q
}

.

A ZKAoK for Rring can be obtained from the one in Sect. 3, where the new layer is
handled by the same “extend-then-permute” technique. As before, the protocol
relies on the string commitment scheme from [40], which is statistically hiding
and computationally binding if the SIVP

˜O(n) problem is hard.

Lemma 4. Let us assume that the SIVP
˜O(n) problem is hard. Then, there exists

a statistical ZKAoK for the relation Rring with perfect completeness and commu-
nication cost ˜O(� · n). In particular:

– There exists an efficient simulator that, on input (A,u), outputs an accepted
transcript which is statistically close to that produced by the real prover.

– There exists an efficient knowledge extractor that, on input 3 valid responses
(RSP1,RSP2,RSP3) to the same commitment CMT, outputs (d′, w′,x′) such
that

(

(A,u),d′, w′,x′) ∈ Rring.

The full description and analysis of the argument system are given in the full
version of the paper.

4.3 Description of the Ring Signature Scheme

We now will construct a ring signature scheme for rings of N = 2� users based
on the Merkle-tree accumulator presented in Sect. 3. Our ring signature can be
easily adapted for the case when the size of the ring is not a power of 2 (see
Remark 1). The scheme uses parameters n,m, q defined as in Sect. 3, parameter
κ = ω(log n) that determines the number of protocol repetitions, and a random
oracle HFS : {0, 1}∗ → {1, 2, 3}κ.

RSetup(n): Sample A $←− Z
n×m
q , and output pp = A.

RKgen(pp = A): Pick x $←− {0, 1}m, compute d = bin(A · xmod q) ∈ {0, 1}nk,
and output (sk, pk) = (x,d).

RSignpp(sk,M,R): Given a ring R = (d0, . . . ,dN−1), where di ∈ {0, 1}nk for
every i ∈ [0, N − 1], and sk = x ∈ {0, 1}m such that d = bin(Axmod q) ∈ R,
this algorithm generates a ring signature Σ on M ∈ {0, 1}∗ as follows:

20 B. Libert et al.

1. Run algorithm TAccA(R) to build the Merkle tree based on R and the
hash function hA, and obtain the root u ∈ {0, 1}nk.

2. Run algorithm TWitnessA(R,d) to get a witness

w =
(

(j1, . . . , j�) ∈ {0, 1}�, (w�, . . . ,w1) ∈ ({0, 1}nk)�
)

to the fact that d was properly accumulated in u.
3. Generate a NIZKAoK Πring to demonstrate the possession of a valid pair

(sk, pk) = (x,d) such that d is properly accumulated in u. This is done
by running the protocol in Sect. 4.2 with public input (A,u) and prover’s
witness (x,d, w). The protocol is repeated κ = ω(log n) times to achieve
negligible soundness error and made non-interactive via the Fiat-Shamir
heuristic as a triple Πring = ({CMTi}κ

i=1,CH, {RSP}κ
i=1), where

CH = HFS

(

M, ({CMTi}κ
i=1,A,u, R

) ∈ {1, 2, 3}κ.

4. Let Σ = Πring.
RVerifypp(M,R,Σ): Given pp = A, a message M , a ring R = (d0, . . . ,dN−1),

and a signature Σ, this algorithm proceeds as follows:
1. Run algorithm TAccA(R) to compute the root u of the tree.
2. Parse Σ as Σ = ({CMTi}κ

i=1, (Ch1, . . . , Chκ), {RSP}κ
i=1). Return 0 if

(Ch1, . . . , Chκ) = HFS

(

M, ({CMTi}κ
i=1,A,u, R

)

.
3. For each i = 1 to κ, run the verification phase of the protocol from

Sect. 4.2 with public input (A,u) to check the validity of RSPi with
respect to CMTi and Chi. If any of the conditions does not hold, then
return 0. Otherwise, return 1.

4.4 Analysis of the Ring Signature Scheme

We first summarize the properties of the given ring signature scheme in the
following theorem.

Theorem 3. The ring signature scheme described in Sect. 4.3 is correct, and
produces signatures of bit-size ˜O(n · log N). In the random oracle model, the
scheme is unforgeable w.r.t. insider corruption based on the worst-case hardness
of the SIVP

˜O(n) problem, and it is statistically anonymous.

Correctness. The correctness of the ring signature scheme directly follows from
the correctness of the accumulator scheme in Sect. 3 and the perfect completeness
of the argument system in Sect. 4.2: A member of a ring can always obtain a
tuple (x,d, w) such that

(

(A,u),d, w,x
) ∈ Rring, and thus, his signature on any

message always get accepted by the verification algorithm.
Efficiency. Since the underlying protocol has communication cost ˜O(� · n), the
signatures produced by the scheme has bit-size ˜O(κ · � · n) = ˜O(log N · n).
Unforgeability with Respect to Insider Corruption. For simplicity, the
proof of unforgeability assumes that the cardinality of each ring R	 is a power
of 2. However, this restriction can be easily eliminated, as we will see later on.

The proof of unforgeability relies on the following Lemma from [48].

Zero-Knowledge Arguments for Lattice-Based Accumulators 21

Lemma 5 ([48], Lemma 8). For any matrix A ∈ Z
n×m
q and a uniformly ran-

dom x ∈ {0, 1}m, the probability that there exists another x′ ∈ {0, 1}m\{x} such
that A · x = A · x′ mod q is at least 1 − 2n·log q−m.

With m = 2nk and x $←− {0, 1}m, there exists x′ ∈ {0, 1}m\{x} such that
A · x = A · x′ mod q with overwhelming probability 1 − 2−nk.

Theorem 4. The scheme provides unforgeability w.r.t. insider corruption in the
random oracle model if the SIVP

˜O(n) problem is hard. (The proof is available in
the full version of the paper).

Statistical Anonymity. The proof of the following theorem relies on the statis-
tical witness indistinguishability of the argument system of Lemma4. The proof
is straightforward and omitted.

Theorem 5. The scheme provides statistical anonymity in the random oracle
model.

Remark 1. As already mentioned, we can handle arbitrary ring sizes. To this
end, one option is to add dummy ring members dfake,1, . . . ,dfake,r0 whose public
keys are sampled obliviously of their private keys, by deriving them as dfake,j =
bin(G0(j)) ∈ {0, 1}nk for each j ∈ {1, . . . , r0}, where G0 : N → Z

n
q is an additional

random oracle. A simpler solution is to duplicate one of the actual ring members
until reaching a multi-set whose cardinality is a power of two.

5 A Lattice-Based Group Signature Without Trapdoors

This section shows how to use our accumulator and argument systems to build a
lattice-based group signature which is dramatically more efficient than previous
proposals as it does not use any trapdoor. Indeed, surprisingly, the scheme does
not rely on a standard digital signature to generate group members’ private keys.

5.1 Definitions

We recall the standard definitions and security requirements for static group sig-
natures [8]. A group signature scheme is a tuple of 4 polynomial-time algorithms
(GKeygen,GSign,GVerify,GOpen) defined as follows:

– GKeygen: This is a probabilistic algorithm that takes as input 1n, 1N , where
n ∈ N is the security parameter and N ∈ N is the number of group users, and
outputs a triple (gpk, gmsk, gsk), where gpk is the group public key; gmsk is
the group manager’s secret key; and gsk = (gsk[0], . . . , gsk[N − 1]), where for
j ∈ {0, . . . , N − 1}, gsk[j] is the secret key for the group user of index j.

– GSign: is a randomized algorithm that inputs gpk, a secret key gsk[j] for some
j ∈ {0, . . . , N − 1}, and a message M . It returns a group signature Σ on M .

– GVerify: This deterministic algorithm takes as input the group public key gpk,
a message M , a purported signature Σ on M , and returns either 1 or 0.

– GOpen: This deterministic algorithm takes as input the group public key gpk,
the group manager’s secret key gmsk, a message M , a signature Σ on M , and
returns an index j ∈ {0, . . . , N − 1}, or ⊥ (to indicate failure).

22 B. Libert et al.

Expanon-b
GS,A(n, N)

(gpk, gmsk,gsk)
← GKeyGen(1n, 1N)

(st, j0, j1, M
�)

← AGS.GOpen(gpk,msk,.,.)
1 (gpk,gsk)

Σ� ← GSign(gpk, gsk[jb], M
�)

b′ ← AGS.GOpen(gpk,msk,.,.),¬(M�,Σ�)
2 (st, Σ�)

Return b′

Exptrace
GS,A(n, N)

(gpk, gmsk,gsk) ← GKeygen(1n, 1N)
st ← (gmsk, gpk)
C ← ∅ ; K ← ε ; Cont ← true
while (Cont = true) do

(Cont, st, j) ←
AGS.GSign(gpk,gsk[·],·)

1 (st, K)
if Cont = true then C ← C ∪ {j};
K ← gsk[j]

end if
end while;
(M�, Σ�) ← AGS.GSign(gpk,gsk[·],·)

2 (st)
if GVerify(gpk, M�, Σ�) = 0, Return 0
if GOpen(gpk, gmsk, M�, Σ�) =⊥,

Return 1
if GOpen(gpk, gmsk, M�, Σ�) = j�

∧ (j� ∈ {0, . . . , N − 1} \ C)
∧ (no signing query involved(j�, M�))

then Return 1 else Return 0

Fig. 3. Experiments for the definitions of anonymity and full traceability

Correctness. The correctness requirement is stated as follows. For all n,N ∈ N,
all (gpk, gmsk, gsk) produced by GKeygen(1n, 1N), all j ∈ {0, . . . , N − 1}, and
any message M ∈ {0, 1}∗, we have GVerify

(

gpk,M,GSign(gpk, gsk[j],M)
)

= 1
and GOpen

(

gpk, gmsk,M,GSign(gsk[j],M)
)

= j.
In static groups, the security model of Bellare, Micciancio and Warinschi

subsumes the desirable security properties of group signatures using two security
notions called full anonymity and full traceability.

Full Anonymity. Full anonymity requires that, without the group manager’s
secret key, no efficient adversary can infer the identity of a user from its sig-
natures. The adversary should even be unable to distinguish signatures from
two distinct users j0, j1, even knowing their private keys gsk[j0], gsk[j1]. More-
over, this should remain true even when the adversary is granted access to an
oracle that opens arbitrary message-signature pairs (M,Σ) = (M	, Σ), where
(M	, Σ) is the challenge pair generated by the challenger on behalf of user jb,
for some b ∈ {0, 1}. Formally, the attacker, modeled as a two-stage adversary
A = (A1,A2), is run in the first experiment depicted in Fig. 3. The adversary’s
advantage is defined as

Advanon
GS,A(n,N) =

∣

∣Pr[Expanon-1
GS,A (n,N) = 1] − Pr[Expanon-0

GS,A (n,N) = 1]
∣

∣ .

Zero-Knowledge Arguments for Lattice-Based Accumulators 23

Definition 10 (Full anonymity, [8]). A group signature is fully anonymous if,
for any polynomial N and any PPT adversary A, Advanon

GS,A(n,N) is a negligible
function in the security parameter n.

Full Traceability. Full traceability mandates that all signatures, even those cre-
ated by colluding users and the group manager who pool their secrets together,
be traceable to a member of the coalition. The attacker is modeled as a two-stage
adversary A = (A1,A2) which is run in the second experiment of Fig. 3, where
it is further granted access to an oracle GS.GSign(gpk, gsk[·], ·) that returns sig-
natures on behalf of any honest group member. Its success probability against
GS is measured as

SucctraceGS,A(n,N) = Pr[Exptrace
GS,A(n,N) = 1].

Definition 11 (Full traceability, [8]). A group signature scheme GS is fully
traceable if for any polynomial N and any PPT adversariy A, the probabil-
ity SucctraceGS,A(n,N) is negligible in the security parameter n.

5.2 The Underlying Zero-Knowledge Protocol

The group signature scheme that we will present in Sect. 5.3 relies on an exten-
sion of the ZKAoK in Sect. 4.2. An encryption layer is added, and the prover
additionally has to prove that the given 2 Regev ciphertexts both encrypt the
same (j1, . . . , j�)� that was included in w. The associated relation is defined as
follows.

Definition 12. Define Rgroup =
{

(A,u,B,P1,P2, c1, c2),d, w,x, r1, r2
}

as a
relation where

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A ∈ Z
n×m
q ; u ∈ {0, 1}nk; B ∈ Z

n×mE
p ;

∀i ∈ {1, 2} : Pi ∈ Z
�×mE
p ; ci = (ci,1, ci,2) ∈ Z

n
p × Z

�
p;

d ∈ {0, 1}nk; w =
(

(j1, . . . , j�), (w�, . . . ,w1)
) ∈ {0, 1}� × ({0, 1}nk)�;

x ∈ {0, 1}m; r1, r2 ∈ {0, 1}mE

satisfy
{

TVerifyA
(

u,d, w
)

= 1 ∧ A · x = G · dmod q
∀i ∈ {1, 2} : ci,1 = B · ri mod p ∧ ci,2 = Pi · ri +

⌊

p
2

⌉ · (j1, . . . , j�)� mod p.

To prove in ZK that the vector (j1, . . . , j�)T involved in the new layer is the same
(j1, . . . , j�)T that was included in w, we introduce the following technique.

– For each c ∈ {0, 1}, let extbit(c) =
(

c̄
c

)

∈ {0, 1}2.
– For each b ∈ {0, 1}, we define the permutation Tb that transforms vector

z =
(

z0
z1

)

∈ Z
2
p into vector Tb(z) =

(

zb

zb̄

)

.

24 B. Libert et al.

Observe that the following equivalence holds: For all b ∈ {0, 1} and all z ∈ Z
2
p,

z = extbit(ji) ⇔ Tb(z) = extbit(ji ⊕ b). (14)

In Stern’s framework, this equivalence allows us to prove in ZK the possession of
the bit ji, for every i ∈ [�], by extending ji to extbit(ji) and then, by permuting
it with a one-time pad bi. Furthermore, to prove that the same ji is involved in
both layers, we will use the same one-time pad in both layers of the protocol.

Embedding this new technique into the protocol in Sect. 4.2, we obtain an
argument system for the relation Rgroup. As for the previous two protocols, they
also rely on the string commitment scheme from [40], which is statistically hiding
and computationally binding if the SIVP

˜O(n) problem is hard.

Lemma 6. Assume that the SIVP
˜O(n) problem is hard. Then, there exists a

statistical ZKAoK for the relation Rgroup with perfect completeness and commu-
nication cost ˜O(� · n) + O((mE + �) · log p). In particular:

– There exists an efficient simulator that, on input (A,u,B,P1,P2, c1, c2), out-
puts an accepted transcript which is statistically close to that produced by the
real prover.

– There exists an efficient knowledge extractor that, on input 3 valid
responses (RSP1,RSP2,RSP3) to the same commitment CMT, outputs
(d′, w′,x′, r′

1, r
′
2) such that

(

(A,u,B,P1,P2, c1, c2),d′, w′,x′, r′
1, r

′
2

) ∈ Rgroup.

The full description and analysis of the argument system are given in the full
version of the paper.

5.3 Our Construction

Let n be the security parameter, and N = 2� = poly(n) be the maximum
expected number of group users. Parameters m, q, k, κ and the random ora-
cle HFS are defined as in the ring signature scheme in Sect. 4.3. To employ the
�-bit version of Regev’s encryption scheme, we will also need prime modulus
p = ˜O(n1.5), parameter mE = 2(n + �)	log p
, and an LWE error distribu-
tion χ = DZ,2

√
n.

GKeygen(1n, 1N): This algorithm begins by sampling a uniformly random

matrix A $←− Z
n×m
q . Then, it performs the following steps:

1. For each j ∈ [0, N − 1], sample a random binary vector xj
$←− {0, 1}m

and compute dj = bin(A ·xj mod q) ∈ {0, 1}nk. In the unlikely event that
{dj}N−1

j=0 are not pairwise distinct, restart the process. Otherwise, define
the set R = (d0, . . . ,dN−1).

2. Run algorithm TAccA(R) to build the Merkle tree based on R and the
hash function hA, and obtain the root u ∈ {0, 1}nk.

Zero-Knowledge Arguments for Lattice-Based Accumulators 25

3. For each j ∈ [0, N − 1], run algorithm TWitnessA(R,dj) to output a
witness

w(j) =
(

(j1, . . . , j�) ∈ {0, 1}�, (w(j)
� , . . . ,w(j)

1) ∈ ({0, 1}nk)�
)

to the fact that dj was accumulated in u. (Note that (j1, . . . , j�) is the
binary representation of j.) Then define gsk[j] = (xj ,dj , w

(j)).

4. Sample B $←− Z
n×mE
p . For i ∈ {1, 2}, sample Si

$←− Z
n×�
p , Ei ←↩ χ�×mE ,

and compute Pi = S�
i ·B + Ei ∈ Z

�×mE
p .

5. Output

gpk := {A,u,B,P1,P2} ; gmsk := S1; gsk := (gsk[0], . . . , gsk[N − 1]).

GSign(gpk, gsk[j],M): To sign M ∈ {0, 1}∗ using gsk[j] = (xj ,dj , w
(j)), where

w(j) =
(

(j1, . . . , j�), (w
(j)
� , . . . ,w(j)

1)
)

, the user conducts the following steps:
1. Encrypt (j1, . . . , j�) ∈ {0, 1}� twice using Regev’s encryption scheme.

Namely, for each i ∈ {1, 2}, sample ri
$←− {0, 1}mE and compute

ci = (ci,1, ci,2)

=
(

B · ri mod p, Pi · ri +
⌈p

2
⌋ · (j1, . . . , j�)� mod p

)

∈ Z
n
p × Z

�
p.

2. Generate a NIZKAoK Πgroup in order to demonstrate the posses-
sion of a valid tuple τ =

(

xj ,dj , w
(j), r1, r2

)

, where w(j) =
(

(j1, . . . , j�), (w
(j)
� , . . . ,w(j)

1)
)

, such that:

(a) A · xj = G · dj mod q and TVerifyA
(

u,dj , w
(j)
)

= 1.
(b) c1 and c2 are both correct encryptions of (j1, . . . , j�) with randomness

r1 and r2, respectively.
This is done by running the protocol in Sect. 5.2 with public input
(A,u,B,P1,P2, c1, c2) and prover’s witness τ defined above. The pro-
tocol is repeated κ = ω(log n) times to achieve negligible soundness
error and made non-interactive via the Fiat-Shamir heuristic as a triple
Πgroup = ({CMTi}κ

i=1,CH, {RSP}κ
i=1), where

CH = HFS

(

M, ({CMTi}κ
i=1,A,u,B,P1,P2, c1, c2

) ∈ {1, 2, 3}κ.

3. Output the group signature Σ = (Πgroup, c1, c2).

GVerify(gpk,M,Σ): This algorithm proceeds as follows:
1. Parse Σ as Σ =

({CMTi}κ
i=1, (Ch1, . . . , Chκ), {RSP}κ

i=1, c1, c2
)

.
If (Ch1, . . . , Chκ) = HFS

(

M, ({CMTi}κ
i=1,A,u,B,P1,P2, c1, c2

)

, then
return 0.

2. For each i = 1 to κ, run the verification phase of the protocol in Sect. 5.2
with public input (A,u,B,P1,P2, c1, c2) to check the validity of RSPi

w.r.t. CMTi and Chi. If any of the conditions does not hold, then return 0.
3. Return 1.

26 B. Libert et al.

GOpen(gpk, gmsk, Σ,M): On input gmsk = S1 and a group signature Σ =
(Πgroup, c1, c2) on message M , this algorithm decrypts c1 = (c1,1, c1,2) and
returns an index j ∈ [0, N − 1], as follows:
1. Compute (j′

1, . . . , j
′
�) = c1,2 − S�

1 · c1,1 ∈ Z
�
p.

2. For each i ∈ [�], if j′
i is closer to 0 than to 	p

2� modulo p, then let ji = 0;
otherwise, let ji = 1.

3. Output index j ∈ [0, N − 1] that has binary representation (j1, . . . , j�).

Efficiency. The public key consists of a constant number of matrices over Zq

and Zp, where q and p are small moduli. The group signature has bit-size κ ·
(

˜O(� ·n)+O((mE + �) · log p)
)

= ˜O(log N ·n). The scheme is dramatically more
efficient than previous lattice-based realizations of group signatures. Indeed, its
most important advantage is that it does not require any party to hold a GPV
trapdoor. As observed by Lyubashevsky [49], lattice-based signatures without
trapdoor can be made significantly more efficient.
Correctness. The correctness of algorithm GVerify follows directly from the
correctness of the accumulator scheme in Sect. 3, and the completeness of the
argument system in Sect. 5.2. As for the correctness of algorithm GOpen, it suf-
fices to note that

c1,2 − S�
1 · c1,1 = (S�

1 · B + E1) · r1 +
⌈p

2
⌋ · (j1, . . . , j�)� − S�

1 · B · r1
= E1 · r1 +

⌈p

2
⌋ · (j1, . . . , j�)� mod p,

and ‖E1 · r1‖∞ < p/4 with overwhelming probability, for the given setting of
parameters, and the decryption algorithm should return (j1, . . . , j�)�.

Security. The full traceability property of our scheme is stated in Theorem6. In
the proof, which is given in the full version of the paper we prove that any adver-
sary with noticeable probability of evading traceability implies an algorithm for
either breaking the security of the underlying accumulator of Sect. 3, breaking
the computational soundness of the argument system in Sect. 5.2, or solving an
instance of the SIS∞

n,m,q,1 problem.

Theorem 6. The scheme provides full traceability in the random oracle model
if the SIVP

˜O(n) problem is hard.

The proof of full anonymity relies on the fact that applying the Naor-Yung
paradigm [56] to Regev’s cryptosystem yields an IND-CCA2 secure cryptosys-
tem. (A similar argument was used by Benhamouda et al. [12] for an NTRU-
like encryption scheme.) Indeed, the argument system of Definition 12 implies
that c1 and c2 encrypt the same message. In the random oracle model, it
was already observed by Fouque and Pointcheval [30] (see [13] for a more gen-
eral treatment) that applying the Fiat-Shamir heuristic to Σ-protocols gives
simulation-sound proofs [66]. Similarly to [13,30], the proof of Theorem 7 relies
on the fact that applying Fiat-Shamir to the argument system of Definition 12

Zero-Knowledge Arguments for Lattice-Based Accumulators 27

yields a simulation-sound NIZK argument in the random oracle model if the
underlying commitment is computationally binding. This holds even though this
argument system does not have the standard special soundness property (i.e.,
three accepting conversations for distinct challenges are necessary to extract a
witness). Simulation-soundness is actually implied by Lemma 6: suppose that
c1 and c2 encrypt distinct �-bit strings. This means that there exists no vector
(rT

1 | rT
2)T such that

[

B − B
P1 − P2

]

·
[

r1
r2

]

=
[

c1,1 − c2,1

c2,1 − c2,2

]

.

Now, recall that the computational soundness of all Stern-type protocols is
proved by showing that the knowledge extractor obtains either a set of valid wit-
nesses or breaks the binding property of the underlying commitment. Given that
the witnesses do not exist if the statement is false, by rewinding a simulation-
soundness adversary sufficiently many times, the knowledge extractor necessarily
extracts two openings of a given commitment.

The proof of Theorem7 is similar to [66] and given in the full version of the
paper.

Theorem 7. The scheme provides full anonymity if the LWEn,p,χ problem is
hard, and if the argument system is simulation-sound.

Acknowledgements. We thank Damien Stehlé for useful discussions and the anony-
mous reviewers of EUROCRYPT 2016 for helpful comments. The first author was
funded by the “Programme Avenir Lyon Saint-Etienne de l’Université de Lyon” in the
framework of the programme “Investissements d’Avenir” (ANR-11-IDEX-0007). San
Ling, Khoa Nguyen and Huaxiong Wang were supported by the “Singapore Ministry
of Education under Research Grant MOE2013-T2-1-041”.

References

1. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In:
Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol.
6571, pp. 423–440. Springer, Heidelberg (2011)

2. Aguilar Melchor, C., Bettaieb, S., Boyen, X., Fousse, L., Gaborit, P.: Adapting
Lyubashevsky’s signature schemes to the ring signature setting. In: Youssef, A.,
Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 1–25.
Springer, Heidelberg (2013)

3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC, pp. 99–108. ACM (1996)

4. Ajtai, M.: Generating hard instances of the short basis problem. In:
Wiedermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644,
p. 1. Springer, Heidelberg (1999)

5. Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A practical and provably
secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, p. 255. Springer, Heidelberg (2000)

28 B. Libert et al.

6. Au, M.H., Wu, Q., Susilo, W., Mu, Y.: Compact e-cash from bounded accumu-
lator. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 178–195. Springer,
Heidelberg (2006)

7. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

8. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures:
formal definitions, simplified requirements, and a construction based on general.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer,
Heidelberg (2003)

9. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E.,
Virza, M.: Zerocash: decentralized anonymous payments from bitcoin. In: IEEE
S&P, pp. 459–474. IEEE (2014)

10. Benaloh, J.C., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994)

11. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random Oracles. J. Cryptol. 22(1), 114–138 (2009)

12. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
551–572. Springer, Heidelberg (2014)

13. Bernhard, D., Fischlin, M., Warinschi, B.: Adaptive proofs of knowledge in the
random Oracle model. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 629–649.
Springer, Heidelberg (2015)

14. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

15. Boneh, D., Corrigan-Gibbs, H.: Bivariate polynomials modulo composites and their
applications. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873,
pp. 42–62. Springer, Heidelberg (2014)

16. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short
accountable ring signatures based on DDH. In: Pernul, G., et al. (eds.)
ESORICS. LNCS, vol. 9326, pp. 243–265. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24174-6 13

17. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

18. Brakerski, Z., Kalai, Y.T.: A framework for efficient signatures, ring signatures and
identity based encryption in the standard model. IACR Cryptol. ePrint Archive
2010:86 (2010)

19. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

20. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, p. 61. Springer, Heidelberg (2002)

21. Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from
lattices. In: Visconti, I., Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 57–75.
Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/978-3-319-24174-6_13
http://dx.doi.org/10.1007/978-3-319-24174-6_13

Zero-Knowledge Arguments for Lattice-Based Accumulators 29

22. Canard, S., Gouget, A.: Multiple denominations in E-cash with compact trans-
action data. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 82–97. Springer,
Heidelberg (2010)

23. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

24. Catalano, D., Fiore, D.: Vector commitments and their applications. In:
Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer,
Heidelberg (2013)

25. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random Oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007)

26. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

27. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, addi-
tional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA
2015. LNCS, vol. 9048, pp. 127–144. Springer, Heidelberg (2015)

28. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad
Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

29. Ezerman, M.F., Lee, H.T., Ling, S., Nguyen, K., Wang, H.: A provably secure
group signature scheme from code-based assumptions. In: Iwata, T., et al. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 260–285. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48797-6 12

30. Fouque, P.-A., Pointcheval, D.: Threshold cryptosystems secure against chosen-
ciphertext attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 351.
Springer, Heidelberg (2001)

31. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

32. Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice prob-
lems. ECCC 3(42) (1996)

33. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010)

34. Groth, J.: Evaluating security of voting schemes in the universal composability
framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol.
3089, pp. 46–60. Springer, Heidelberg (2004)

35. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidel-
berg (2010)

36. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015)

37. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-
knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012)

38. Jhanwar, M.P., Safavi-Naini, R.: Compact accumulator using lattices. IACR Cryp-
tology ePrint Archive: Report 2014/1015, February 2015

39. Kawachi, A., Tanaka, K., Xagawa, K.: Multi-bit cryptosystems based on lattice
problems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 315–
329. Springer, Heidelberg (2007)

http://dx.doi.org/10.1007/978-3-662-48797-6_12

30 B. Libert et al.

40. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASI-
ACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)

41. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signa-
tures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013, Part II. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013)

42. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme
with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 345–361. Springer, Heidelberg (2014)

43. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer,
Heidelberg (2007)

44. Lin, Z., Hopper, N.: Jack: scalable accumulator-based nymble system. In: WPES,
pp. 53–62. ACM (2010)

45. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013)

46. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449.
Springer, Heidelberg (2015)

47. Lipmaa, H.: Secure accumulators from Euclidean rings without trusted setup. In:
Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240.
Springer, Heidelberg (2012)

48. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008)

49. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

50. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

51. Micciancio, D., Mol, P.: Pseudorandom Knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

52. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013)

53. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

54. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from bitcoin. In: IEEE S&P, pp. 397–411. IEEE (2013)

55. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

56. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertextattacks. In: STOC, pp. 427–437. ACM (1990)

57. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

58. Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg
(2015)

Zero-Knowledge Arguments for Lattice-Based Accumulators 31

59. Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data
structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 353–370. Springer, Heidelberg (2013)

60. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In:
ACM-CCS, pp. 437–448. ACM (2008)

61. Peikert, C.: Public-key cryptosystems from the worst-case shortest vectorproblem:
extended abstract. In: STOC, pp. 333–342. ACM (2009)

62. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

63. Prabhakaran, M., Xue, R.: Statistically hiding sets. In: Fischlin, M. (ed.) CT-RSA
2009. LNCS, vol. 5473, pp. 100–116. Springer, Heidelberg (2009)

64. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93. ACM (2005)

65. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, p. 552. Springer, Heidelberg (2001)

66. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. FOCS 1999, 543–553 (1999)

67. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theor.
42(6), 1757–1768 (1996)

68. Tsudik, G., Xu, S.: Accumulating composites and improved group signing. In:
Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer, Hei-
delberg (2003)

69. Xue, R., Li, N., Li, J.: Algebraic construction for zero-knowledge sets. J. Comput.
Sci. Technol. 23(2), 166–175 (2008)

Adaptively Secure Identity-Based Encryption
from Lattices with Asymptotically Shorter

Public Parameters

Shota Yamada(B)

National Institute of Advanced Industrial Science
and Technology (AIST), Tokyo, Japan

yamada-shota@aist.go.jp

Abstract. In this paper, we present two new adaptively secure identity-
based encryption (IBE) schemes from lattices. The size of the public
parameters, ciphertexts, and private keys are Õ(n2κ1/d), Õ(n), and Õ(n)
respectively. Here, n is the security parameter, κ is the length of the iden-
tity, and d ∈ N is a flexible constant that can be set arbitrary (but will
affect the reduction cost). Ignoring the poly-logarithmic factors hidden in
the asymptotic notation, our schemes achieve the best efficiency among
existing adaptively secure IBE schemes from lattices. In more detail, our
first scheme is anonymous, but proven secure under the LWE assumption
with approximation factor nω(1). Our second scheme is not anonymous,
but proven adaptively secure assuming the LWE assumption for all poly-
nomial approximation factors.

As a side result, based on a similar idea, we construct an attribute-
based encryption scheme for branching programs that simultaneously
satisfies the following properties for the first time: Our scheme achieves
compact secret keys, the security is proven under the LWE assumption
with polynomial approximation factors, and the scheme can deal with
unbounded length branching programs.

1 Introduction

Background. Identity-based encryption (IBE) is an advanced form of public key
encryption (PKE) where any string such as an email address can be used as a
public key. The notion of IBE was proposed by Shamir in 1984 [42]. Since then, it
took nearly 20 years for the first realizations of IBE [10,18,41] to appear. Boneh
and Franklin [10] and Sakai, Ohgishi, and Kasahara [41] used groups equipped
with efficiently computable bilinear maps to construct the first IBE. On the other
hand, Cocks [18] used quadratic residue for a composite modulus. These construc-
tions are only proven secure in the random oracle model. In subsequent works,
pairing-based schemes in the standard model appeared [8,9,15,47,48]. While ear-
lier works [8,15] focus on the constructions that are only selectively secure, later
works [9,47,48] focus on a much more realistic security, i.e., adaptive security.

Another important line of research is construction of IBE from lattices. The
first lattice-based IBE was proposed in the seminal work by Gentry, Peikert,
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 32–62, 2016.
DOI: 10.1007/978-3-662-49896-5 2

Adaptively Secure Identity-Based Encryption from Lattices 33

and Vaikuntanathan [25] in the random oracle model. Later, constructions in
the standard model were proposed [1,12,16]. To achieve adaptive security in
the lattice-based settings, we have to either rely on an analogue of Waters’
hash [47] or an admissible hash [9,16]. In any case, we require O(κ) number of
basic matrices in the public parameters (master public key), where κ is the bit
length of the identities. This results in very large public parameters with size
Õ(n2κ). Here, n is the security parameter (dimension of the lattices). On the
other hand, in the selectively secure variant of lattice IBE in [1], we only require
small constant number of basic matrices in the public parameters. This stands
in sharp contrast to pairing-based settings, in which we have adaptively secure
IBE schemes [17,31] that are as efficient as selectively secure ones [8], up to only
small constant factors. A natural important question is:

Can we construct adaptively secure IBE schemes from lattices, which is as
efficient as selectively secure ones? In particular, can we reduce the size of
the public parameters?

Difficulties. A natural approach to achieve short public parameters in lattice
based IBE schemes would be to mimic the technique for pairing based IBE
schemes. However, all IBE schemes with short public parameters based on pair-
ings are constructed using dual system encryption methodology [48], for which
there is still no lattice analogue. The realization of the dual system encryption
methodology in the lattice settings is an important open problem [38]. Another
possible approach would be to use a technique from Naccache’s IBE scheme [36],
as is done in [44]. Using this approach, we can obtain a scheme with the public
parameters shorter by a factor of u, at the cost of 2u-loss in security. Therefore,
using this approach, we are only allowed to reduce the size of public parameters
up to logarithmic factor.
Our Contribution. Instead of taking the above approaches, we use a tech-
nique unique to the lattice setting. Namely, we use the fully homomorphic com-
putation of trapdoors, which is recently devised in [11] to reduce the size of
the public parameters. We obtain the following two different IBE schemes with
trade-off between the security, efficiency, and underlying hardness assumptions.
See Table 1 in Sect. 6 for the overview.

– We propose an adaptively secure and anonymous IBE with asymptotically
short parameters. In particular, the size of the public parameters, ciphertexts,
and private keys are Õ(n2κ1/d), Õ(n), and Õ(n) respectively. Here, d ∈ N is a
flexible constant which can be set arbitrary. Ignoring poly-logarithmic factors
hidden in the asymptotic notation, our scheme achieves the best efficiency
among all previous adaptively secure IBE schemes from lattices. The security
of the scheme is proven under the LWE assumption with super-polynomial
approximation factors.

– We propose an adaptively secure IBE (without anonymity) that achieves
asymptotically the same efficiency as the above scheme. The difference from
the above scheme is that our scheme can be proven secure assuming the

34 S. Yamada

LWE assumption with all polynomial approximation factor. The assumption
is weaker than the one used in the above scheme, but the sizes of the public
parameters, ciphertexts, and private keys are larger than the above scheme
by a super-constant factor.

In the second construction, different from lattice IBE schemes in the literature
[1,2,12,16], we have to rely on the LWE assumption for all polynomial approx-
imation factors, rather than some fixed polynomial approximation factor (e.g.,
O(n3)). The interesting feature of the reduction is that the problem we reduce the
security to varies according to the power of the adversary. More specifically, as
the number of key extraction queries grows or as the advantage of the adversary
drops, we would need the LWE assumption with larger approximation factor.
This is somewhat similar to the security proof based on the q-type assumptions
(e.g., [24]), in which the problem that the reduction algorithm solves depends on
the number of key extraction queries made by the adversary. However, unlike the
q-type assumptions, our assumptions enjoy reduction to the worst case lattice
problems [13,37,40].

To present our schemes in a unified manner, we define the new notion of
parametrized IBE (PIBE). The syntax of PIBE is the same as that of ordinary
IBE except that it is parametrized by a variable c. As for the security, roughly
speaking, we require the advantage of any adversary to be at most 1/nc if the
number of key extraction queries is bounded by nc. In the case of c is a super-
constant function, the notion of PIBE corresponds to that of (ordinary) IBE. We
then construct a specific PIBE scheme from the LWE assumption. By setting c
to be a super-constant function, we obtain our first IBE scheme. Our second IBE
scheme is obtained by running several instances of the PIBE scheme in parallel
with different values of c. This is captured as a generic conversion from PIBE to
(ordinary) IBE.

We note that our IBE schemes might not be as efficient as previous adaptively
secure lattice IBE schemes [1,12] for a practical choice of parameters, due to the
super-constant factors hidden in the asymptotic notation. However, we believe
that our technique would be of theoretical interest. In particular, the security
proof of our PIBE scheme is based on the traditional partitioning technique [47]
with some novel ideas. In addition, our technique used in the generic construction
of IBE from PIBE, inspired by [7], would be useful for other settings.

Other Application of Our Technique. As a side result, we show an appli-
cation of our technique to attribute-based encryption (ABE). In particular, we
obtain the first ABE scheme that simultaneously satisfies the following prop-
erties: an unbounded length branching program is usable as an attribute, the
sizes of the private keys are compact, the security is proven under the LWE
problem for all polynomial approximation factors. We obtain such a scheme by
applying a simple conversion to the recent ABE scheme for branching programs
by Gorbunov and Vinayagamurthy [28]. The idea for the conversion is similar in
spirit to our PIBE-to-IBE conversion. We note that the original ABE scheme of
[28] is either based on the super-polynomial LWE while dealing with unbounded
length branching programs or based on the polynomial LWE while only

Adaptively Secure Identity-Based Encryption from Lattices 35

dealing with bounded length branching programs. The details appear in the
full version [50].

Related Works. We can obtain efficient PKE as well as IBE schemes over ideal
lattices [22,45]. By switching to the ring setting, we can generally reduce the size
of the public parameters by an factor of O(n). However, we have to rely on the
ring LWE (RLWE) assumption [33,34], which is a stronger assumption than the
LWE assumption.

The techniques for constructing IBE and signatures are somewhat similar
and related. Indeed, we can obtain secure signature from (adaptively) secure
IBE, via the Naor transformation [10]. A construction of short signature with
short public parameters from weak assumptions has been an important research
topic. This problem has been addressed by several previous works [4,7,23,30,32].
However, their techniques heavily depend on the fact that we can convert a non-
adaptively secure signature scheme into adaptively secure (or equivalently, EUF-
CMA secure) one by using chameleon hash functions [43]. There is no known
analogue of the conversion in the setting of IBE. We also note that our technique
of converting PIBE into IBE is similar to the “on the fly adaptation technique”
in [21], which was used to improve the efficiency and the reduction cost of the
Naor-Reingold PRF.

2 Overview of Our Technique

2.1 Overview of the Construction

We follow the general framework for constructing lattice-based IBE schemes,
which is an abstraction of many existing schemes [1,2,16]. In the template, we
associate each identity ID with the following matrix:

(A|H(ID)) ∈ Z
n×(m+m′)
q

where A ∈ Z
n×m
q and H(·) is a function that maps an identity to a matrix in

Z
n×m′
q for some n,m,m′ ∈ N and some prime number q. A ciphertext for an

identity ID includes a vector of the following form:

s�(A|H(ID)) + (x�
1 |x�

2)

where s is a random vector in Z
n
q and x1 ∈ Z

m
q and x2 ∈ Z

m′
q are small error

terms. A private key is a short vector e ∈ Z
m+m′

that satisfies

(A|H(ID))e = u mod q

for some fixed u ∈ Z
n
q . In the adaptively secure variant of the IBE scheme in [1],

the function H(ID) is defined as

H(ID) = B0 +
∑

{i∈[1,κ] | IDi=1}
Bi

36 S. Yamada

where B0,B1, . . . ,Bκ ∈ Z
n×m
q are matrices that are included in the public para-

meters and IDi is the i-th bit of the bit string ID ∈ {0, 1}κ. We typically set
κ = O(n) and require rather long public parameters B0,B1, . . . ,Bκ.

Our first idea is to use the technique called fully homomorphic trapdoor com-
putation, which is introduced in [11], to reduce the size of the public parameters.
Namely, we set � = �√κ� and the public parameters as matrices B1,1 . . . ,B1,�,
B2,1 . . . ,B2,� ∈ Z

n×m
q . We also introduce an injective map S : {0, 1}κ → 2[�]×[�]

that maps an identity to a subset of the set [�] × [�]. Then, we change the defin-
ition of the function as

H(ID) = B0 +
∑

(i,j)∈S(ID)

B1,i · G−1(B2,j),

where G is a gadget matrix whose trapdoor is publicly known [35] and G−1

is a deterministic function1 that maps a matrix in U = Z
n×m
q to a matrix in

V = {0, 1}m×m such that GV = U. By this change, we are able to reduce the
number of basic matrices from O(κ) to O(

√
κ).2

2.2 Overview of the Security Proof

We prove the security of the scheme under the LWE assumption. Let the input
to the reduction algorithm be A ∈ Z

n×m
q and v ∈ Z

m
q . The task of the algo-

rithm is to distinguish whether v� = s�A + x� mod q for some s ∈ Z
n
q and

small x ∈ Z
m, or, v is a random vector. In the security proof, we pick random

y0, y1,1, . . . , y1,�, y2,1, . . . , y2,� ∈ Zq from certain domains, whose sizes grow pro-
portion to the number of key extraction queries Q that the adversary makes
(similarly to in [47]). Since we assume that Q is much smaller than q, these
random values are bounded by some “small” polynomial. Then, the reduction
algorithm picks R0,Ri,j

$← {−1, 1}m×m and embeds these values into the public
parameters as

B0 = AR0 + y0G, Bi,j = ARi,j + yi,jG

for (i, j) ∈ {1, 2} × [1, �]. Then, we have

H(ID) = (AR0 + y0G) +
∑

(i,j)∈S(ID)

(AR1,i + y1,iG) · G−1(B2,j)

= (AR0 + y0G) +
∑

(i,j)∈S(ID)

(AR1,iG−1(B2,j) + y1,iB2,j)

1 Note that we are abusing the notation here. G−1 is not an inverse matrix of G, but
a function.

2 For the sake of simplicity, we present a scheme that is a special case of our scheme
in Sect. 5. More generally, we can further reduce the number of basic matrices from
O(

√
κ) to be O(κ1/d) for any constant d ∈ N.

Adaptively Secure Identity-Based Encryption from Lattices 37

= A

⎛

⎝R0 +
∑

(i,j)∈S(ID)

(

R1,iG−1(B2,j) + y1,iR2,j

)

⎞

⎠

︸ ︷︷ ︸

:=RID, which is“small”

+

⎛

⎝y0 +
∑

(i,j)∈S(ID)

y1,iy2,j

⎞

⎠

︸ ︷︷ ︸

:=Fy(ID)

·G

= ARID + Fy(ID)G.

The reduction algorithm has a trapdoor for the matrix (A‖H(ID)) if Fy(ID) 	=
0 mod q and thus can simulate a private key for such an identity ID. (RID corre-
sponds to the G-trapdoor [35] of (A‖H(ID))). On the other hand, the reduction
algorithm expects the challenge identity ID� to satisfy Fy(ID�) = 0, for which it
does not know the trapdoor. If these conditions are not satisfied, the reduction
fails. We have to estimate the probability that it does not abort. In particular,
we have to show that

Pr[Fy(ID�) = 0 ∧ Fy(ID1) 	= 0 . . . ∧ Fy(IDQ) 	= 0] (1)

is noticeable. Here, ID1, . . . , IDQ are identities for which key extraction queries
are made. By a similar analysis to [6,47], to show a lower bound for the proba-
bility of (1), it suffices to show an upper bound for the following probability

Pr[Fy(ID�) = 0 ∧ Fy(IDi) = 0] (2)

for identities ID� and IDi where ID� 	= IDi. To show an upper bound for (2), we
first observe that

Fy(ID�) = 0 ∧ Fy(IDi) = 0
⇔ Fy(ID�) = 0 ∧ Fy(IDi) − Fy(ID�) = 0

⇔
⎛

⎝y0 +
∑

(j,k)∈S(ID�)

y1,jy2,k = 0

⎞

⎠

︸ ︷︷ ︸

Event (A)

∧
⎛

⎝

∑

(j,k)∈S(IDi)

y1,jy2,k −
∑

(j,k)∈S(ID�)

y1,jy2,k = 0

⎞

⎠

︸ ︷︷ ︸

Event (B)

.

The value of y0 is clearly independent of the Event (B). Therefore, we can easily
estimate the probability of Event (A) occurring, conditioned on that Event (B)
occurs. Thus, it suffices to show an upper bound on the probability of Event (B)
occurring. This can be accomplished by using the Schwartz-Zippel lemma.

38 S. Yamada

Proof Continued. Based on the idea we have explained above, we can simulate
key extraction queries with sufficiently high success probability. However, two
problems remain in order to complete the security proof.

(C) In the above discussion, we assumed that q is much larger than Q. Therefore,
if q is bounded by some polynomial, so is Q. In such a setting, we can only
prove “bounded” security, where the number of key extraction queries is
bounded by a predetermined polynomial.

(D) Furthermore, we are not able to generate a properly distributed challenge
ciphertext, as we explain below.

Let us explain the problem (D). Assume that for the challenge identity ID�,
we have Fy(ID�) = 0 and thus H(ID�) = ARID� . To prove security, we have to
embed the LWE problem instance A and v into the challenge ciphertext, where
v� = s�A + x� or v a random vector. A natural way to do this is to implicitly
set x1 = x and x2 = R�

ID�x and compute the challenge ciphertext as

s�(A|H(ID)) + (x1|x2) = (v�|v�RID�).

The problem with this approach is that the vector x2 is highly correlated to the
value of RID� , which includes the information of y = (y0, {yi,j}(i,j)∈[1,2]×[1,�])
and additionally R0,R1,1 . . . ,R1,�,R2,1 . . . ,R2,�. While a similar (but simpler)
problem is resolved in a previous work [1] using a generalized form of the leftover
hash lemma [20], we are not able to do the same argument due to the additional
correlation to y.

We can resolve the problem by a standard technique. Namely, we “smudge
out” or “eat” the problematic term R�

ID�x by adding a large enough term x′ ∈ Z
m
q

to it. This makes the error terms essentially statistically independent from RID� .
The size of the term x′ should be super-polynomially larger than the size of
R�

ID�x, but it should be polynomially smaller than q. Therefore, the size of q
should be super-polynomially large, which also resolves the problem (C) at the
same time. Appropriately setting the parameters, we obtain our new adaptively
secure and anonymous IBE scheme.

2.3 An Additional Idea

However, making q super-polynomially large is not quite desirable because of the
following two reasons. Firstly, this would negatively impact the performance of
the system. Secondly, since the error term (in our case x) is super-polynomially
smaller compared to q, the corresponding LWE problem becomes easier. While
we are not able to resolve the first problem, we present an idea to avoid the
second problem.

Our first observation is that for any constant c ∈ N, by making q and x′

sufficiently large (but polynomial size), we can show that any PPT adversary
whose number of key extraction queries is bounded by nc cannot break the
security of IBE with advantage non-negligibly larger than 1/nc. Of course, this
is not sufficient because we need the adversary to have only negligible (rather

Adaptively Secure Identity-Based Encryption from Lattices 39

than inverse of polynomial) advantage, even if the number of key extraction
queries is unbounded.

In order to accomplish this, we prepare several instances of IBE scheme with
different size of q. We call each instance of the IBE scheme as a sub-scheme.
The number of sub-schemes is super-constant (rather than super-polynomial)
and therefore the resulting scheme is still efficient. The size of q varies from
very small polynomial to super-polynomial. Furthermore, we “glue” them so
that an adversary must break the security of all of the sub-schemes, in order to
break the resulting IBE scheme. This can easily be accomplished by splitting the
message by k-out-of-k secret sharing scheme, and then encrypt them by each of
the sub-schemes.

In the security proof, we assume an PPT adversary A that breaks the result-
ing IBE scheme. Since A is polynomial time and has non-negligible advantage,
there exists some constant c ∈ N such that the number of the key extraction
queries that A makes is smaller than nc and A’s advantage is non-negligibly
larger than 1/nc. Thus, there exists at least one sub-scheme whose size of q fits
for A, and q is polynomial size. We transform the adversary A into another adver-
sary B that breaks the sub-scheme. Since q is polynomial size, we can reduce the
security to the LWE assumption with polynomial approximation factor. Note
that similar technique is used in [21] to improve the efficiency and the reduction
cost of the Naor-Reingold PRF. There, the reduction algorithm chooses the tar-
get sub-scheme based on the number of queries that the adversary makes. In our
reduction, we choose the target depending on the advantage of the adversary in
addition to the number of key extraction queries.

To present our results in a unified and modular manner, we introduce the
notion of PIBE. Roughly speaking, PIBE is an IBE scheme that is parametrized
by a variable c. Our technique to avoid super-polynomial factor we discussed
above can be generalized to be a generic conversion from PIBE to IBE. Further-
more, our scheme we discussed in the previous subsection also can be captured
as a special case of PIBE, in that c is set to be a super-constant.

3 Preliminaries

Notation. We denote by [n] a set {1, 2, . . . , n} for any integer n ∈ N. We treat a
vector as a column vector. If A1 is n×m and A2 is n×m′ matrix, then (A1|A2)
denotes the n × (m + m′) matrix formed by concatenating A1 and A2. We use
similar notation for vectors. A function f : N → R≥0 is said to be negligible,
if for all c, there exists N such that f(n) < 1/nc for all n > N . We denote by
negl(n) a negligible function. We denote by x

$← X the process of sampling a
value x according to the distribution X. Similarly, for a finite set S, we denote by
x

$← S the process of sampling a value x according to the uniform distribution
over S. Statistical distance between two random variables X and Y with support
Ω is defined as Δ(X;Y) = 1

2

∑

s∈Ω |Pr[X = s] − Pr[Y = s]|. For ensembles of
random variable {X(n)}n∈N and {Y (n)}n∈N, we say that they are negl(n)-close
if Δ(X(n);Y (n)) = negl(n).

40 S. Yamada

3.1 Identity-Based Encryption

Syntax. Let ID be the ID space of the scheme. If a collision resistant hash
function CRH : {0, 1}∗ → ID is available, one can use an arbitrary string as an
identity. An IBE scheme is defined by the following four algorithms.

Setup(1n) → (mpk,msk): The setup algorithm takes as input a security parame-
ter 1n and outputs a master public key mpk and a master secret key msk.

KeyGen(mpk,msk, ID) → skID: The key generation algorithm takes as input the
master public key mpk, the master secret key msk, and an identity ID ∈ ID.
It outputs a private key skID. We assume that ID is implicitly included in skID.

Encrypt(mpk, ID,M) → C: The encryption algorithm takes as input a master
public key mpk, an identity ID ∈ ID, and a message M, It outputs a cipher-
text C.

Decrypt(mpk, skID, C) → M or ⊥: The decryption algorithm takes as input the
master public key mpk, a private key skID, and a ciphertext C. It outputs the
message M or ⊥, which means that the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all n, all ID ∈
ID, and all M in the specified message space, Pr[Decrypt(mpk, skID,Encrypt(mpk,
ID,M)) = M] = 1 − negl(n) holds, where the probability is taken over the ran-
domness used in (mpk,msk) $← Setup(1n), skID

$← KeyGen(mpk,msk, ID), and
Encrypt(mpk, ID,M).

Security. We now define the security for an IBE scheme Π. This security notion
is defined by the following game between a challenger and an adversary A.
- Setup. At the outset of the game, the challenger runs Setup(1n) → (mpk,msk)
and gives mpk to A.
- Phase 1. A may adaptively make key-extraction queries. If A submits ID ∈ ID
to the challenger, the challenger returns skID ← KeyGen(mpk,msk, ID).
- Challenge Phase. At some point, A outputs a message M and an identity
ID� ∈ ID, on which it wishes to be challenged. Then, the challenger picks a
random coin coin

$← {0, 1} and a random ciphertext C
$← C from the ciphertext

space. If coin = 0, it runs Encrypt(mpk, ID�,M) → C� and gives the challenge
ciphertext C� to A. If coin = 1, it sets the challenge ciphertext as C� = C and
gives it to A.
- Phase 2. After the challenge query, A may continue to make key-extraction
queries, with the added restriction that ID 	= ID�.
- Guess. Finally, A outputs guess a ̂coin for coin. The advantage of A is defined
as AdvIBEA,Π =

∣

∣

∣Pr[̂coin = coin] − 1
2

∣

∣

∣ . We say that Π is adaptively anonymous, if
the advantage of any PPT A is negligible.

We also define adaptive security (without anonymity) for Π via a similar
game to the above. To define adaptive security, we change the challenge phase
as follows.

Adaptively Secure Identity-Based Encryption from Lattices 41

- Challenge Phase. A outputs two messages M0, M1 and an identity ID� ∈
ID, on which it wishes to be challenged. Then, the challenger picks a random
coin coin

$← {0, 1}, runs Encrypt(mpk, ID�,Mcoin) → C�, and gives the challenge
ciphertext C� to A.

We also say that Π is adaptively secure, if the advantage of any PPT A is
negligible. We note that the adaptive anonymity implies the adaptive security.
Namely, the former is a stronger security notion.

3.2 Lattice Preliminaries

For positive integers q, m, n, a matrix A ∈ Z
n×m
q , and a vector u ∈ Z

m
q , the

m-dimensional integer lattice Λu
q (A) is defined as Λu

q (A) = {e ∈ Z
m : Ae = u

mod q}. Λ⊥
q (A) denotes Λ0

q (A). Let DΛ,c,σ denote the discrete Gaussian dis-
tribution over Λ with center c and parameter γ. When c is omitted, we set
c = 0.
Matrix Norms. For a vector u, we let ‖u‖ and ‖u‖∞ denote its �2 and �∞
norm respectively. For a matrix R ≤ Z

k×m we denote three matrix norms:

‖R‖ denotes the �2 length of the longest column of R.
‖R‖GS denotes ‖R̃‖ where R̃ is the result of applying Gram-Schmidt to the
columns of R.
‖R‖2 is the operator norm of R defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖.

We have that the following lemma holds [1].

Lemma 1. Let m, n, q be positive integers with m > n, A ∈ Z
n×m
q be a matrix,

u ∈ Z
n
q be a vector, TA be a basis for Λ⊥

q (A), and σ > ‖TA‖GS · ω(
√

log m).
Then we have Pr[x $← DΛu

q (A),σ : ‖x‖>
√

mσ]< negl(n).

Trapdoor Generators and Related Operations

Lemma 2. Let n,m, q > 0 be integers with q prime. There are polynomial time
algorithms such that

1. ([3,5]): TrapGen(1n, 1m, q) → (A,TA)
a randomized algorithm that, when m ≥ 6n�log q�, outputs a full rank matrix
A ∈ Z

n×m
q and a basis TA ∈ Z

m×m for Λ⊥
q (A) such that A is negl(n)-close

to uniform and ‖TA‖GS = O(
√

n log q) with all but negligible probability in n.
2. ([16]): SampleLeft(A,F,u,TA, σ) → e

a randomized algorithm that, given a full rank matrix A ∈ Z
n×m
q , a matrix

F ∈ Z
n×m
q , a vector u ∈ Z

n
q , a basis TA for Λ⊥

q (A), and a Gaussian para-
meter σ > ‖TA‖GS · ω(

√
log m), outputs a vector e ∈ Z

2m sampled from a
distribution which is negl(n)-close to DΛu

q (A|F),σ.
3. ([1]): SampleRight(A,G,R, y,u,TG, σ) → e where F = AR + yG

a randomized algorithm that, given a full rank matrix A,G ∈ Z
n×m
q , y ∈

Zq\{0}, a matrix R ∈ Z
m×m, a vector u ∈ Z

n
q , a basis TG for Λ⊥

q (G), and a
Gaussian parameter σ > ‖TG‖GS · ‖R‖2 ·ω(

√
log m) outputs a vector e ∈ Z

2m

sampled from a distribution which is negl(n)-close to DΛu
q (A|F),σ.

42 S. Yamada

4. ([35]): Let m > n�log q�. Then there is a fixed full-rank matrix G ∈ Z
n×m
q

such that the lattice Λ⊥
q (G) has a publicly known basis TG ∈ Z

m×m with
‖TG‖GS ≤ √

5. Furthermore, there exists a deterministic polynomial-time
algorithm G−1 which takes the input U ∈ Z

n×m
q and outputs R = G−1(U)

such that R ∈ {0, 1}m×m and GR = U.

Note that in the above, we are abusing notation and G−1 is not a matrix but
rather a function. Namely, for any U there are many choices of R such that
GR = U, and G−1(U) deterministically outputs a particular short matrix from
this set. Since we have ‖R‖2 ≤ m for any R ∈ {−1, 0, 1}m×m, ‖G−1(U)‖2 ≤ m
holds for any U ∈ Z

n×m
q .

Learning with Errors. The learning with errors (LWE) problem was intro-
duced by Regev who showed that solving it on the average is as hard as (quan-
tumly) solving several standard lattice problems in the worst case.

Definition 1 (LWE). For an integers n, m = m(n), a prime integer q =
q(n) > 2, an error distribution χ = χ(n) over Zq, and an PPT algorithm A, an
advantage for the learning with errors problem dLWEn,m,q,χ of A is defined as
follows:

Adv
dLWEn,m,q,χ

A = |Pr[A(A, s�A + x�) → 1] − Pr[A(A,v�) → 1]|

where A $← Z
n×m
q , s $← Z

n
q , x $← χm, v $← Z

m
q . We say that dLWEn,m,q,χ

assumption holds if AdvdLWEn,m,q,χ

A is negligible for all PPT A.

Let B = B(n) ∈ N. A family of distributions χ = {χn} is called B-bounded if
Pr[χ ∈ [−B,B]] = 1. For any constant d > 0 and sufficiently large q, Regev [40]
through a quantum reduction showed that taking χ as a q/nd-bounded (trun-
cated) discretized Gaussian distribution, the dLWEn,m,q,χ problem is as hard
as approximating the worst-case GapSVP to nO(d) factors, which is believed to
be hard. In subsequent works, (partial) dequantization of the Regev’s reduction
were achieved [13,37]. More generally, let χmax < q be the bound on the noise
distribution. The difficulty of the problem is measured by the ratio q/χmax. This
ratio is always bigger than 1 and the smaller it is the harder the problem. The
problem appears to remain hard even when q/χmax < 2nε

for some fixed ε that
is 0 < ε < 1/2.

3.3 Basic Facts

Injective Map. Let d and κ be some integers. Furthermore, let � be � = �κ1/d�.
Then, an element of [1, κ] can be written as an element of [1, �]d using some
canonical map. Furthermore, it is also possible to write a subset of [1, κ] as a
subset of [1, �]d, by naturally extending the canonical map. By identifying a bit
string in {0, 1}κ with a subset of [1, κ] (for example, by regarding the former as
the indicator vector of a subset of [1, κ]), we can define an efficiently computable
injective map S that maps a bit string ID ∈ {0, 1}κ to a subset S(ID) of [1, �]d.

The following lemma can be shown by a simple calculation.

Adaptively Secure Identity-Based Encryption from Lattices 43

Lemma 3 (Smudging out Lemma). Let x0 ∈ Z
m be a (fixed) vector such that

‖x0‖∞ ≤ δ and let x ∈ Z
m be a random vector that is chosen as x $← [−B′, B′]m.

Then, two distributions x0 + x and x are within statistical distance mδ/B′.

As observed in [1,40], the following lemma is obtained as a corollary to the
(general) leftover hash lemma.

Lemma 4 (Leftover Hash Lemma). Let q ∈ N be an odd prime and let
m > (n + 1) log q + ω(log n). Let R $← {−1, 1}m×m and A,A′ $← Z

n×m
q be

uniformly random matrices. Then the distribution of (A,AR) is negl(n)-close
to the distribution of (A,A′).

The following lemma is implicitly shown in [6].

Lemma 5. Let a1, . . . , an ∈ R be real numbers such that |∑n
i=1 ai| = ε and

∑n
i=1 |ai| ≤ 1/2. Furthermore, let γ1, . . . , γn ∈ R be real numbers such that

0 < γmin ≤ γi ≤ γmax for i ∈ [n]. Then, we have |∑n
i=1 γiai| ≥ γminε − (γmax −

γmin)/2.

4 Parametrized IBE

In this section, we introduce the notion of parametrized IBE (PIBE), which is
an slight extension of the ordinary notion of IBE. The syntax and the security
notion for PIBE is almost the same, except that it is parametrized by an inte-
ger c. Roughly speaking, the larger c becomes, the more secure PIBE becomes.
In particular, when c is super-constant in n, the security notion for PIBE cor-
responds to that for ordinary IBE. However, in our construction of PIBE in
Sect. 5, in order to prove the security of the scheme for super-constant c, we
need to assume super-polynomial LWE, which is a stronger assumption than the
assumption that is needed for constant c. In this section, to base the scheme on
a weaker assumption, we provide generic construction of adaptively secure IBE
scheme from PIBE scheme that is secure only for constant c.

4.1 Definition of Parametrized IBE

Here, we define PIBE. The syntax of PIBE is the same as ordinary IBE except
that the Setup algorithm is parametrized by an integer c = c(n). Namely, Setup
takes as inputs 1n and 1c and outputs a master public key mpk and a master
secret key msk. Other algorithms, KeyGen, Encrypt, and Decrypt are defined as
in ordinary IBE. We require that these algorithms work within a time that is
polynomial in n and c.

As for the security, we define advantage AdvPIBEA,Π of an adversary A for a
PIBE scheme Π via a game that is almost the same as that of an ordinary IBE
scheme. The only difference is that mpk and msk are generated by Setup(1n, 1c)
at the beginning of the game. The rest of the game is the same. We say that
the scheme is c-adaptively anonymous, if for any PPT adversary A such that
Q(n) ≤ nc/2 − 1,

44 S. Yamada

AdvPIBEA,Π

Q + 1
<

1
nc

+ negl(n) (3)

holds for some negligible function negl(n). Here Q = Q(n) is the upper bound
for the number of key extraction queries made by A during the game.

When c(n) is a constant, the c-adaptive anonymity is an weaker security
notion than the adaptive anonymity for IBE, since it allows an adversary to have
non-negligible advantage. Furthermore, there is a bound on the number of key
extraction queries. On the other hand, when c(n) is super-constant, the security
definition of c-adaptive anonymity corresponds to that of adaptive anonymity
for (ordinary) IBE. More precisely, we have the following theorem.

Theorem 1. If Π = (Setup,KeyGen,Encrypt,Decrypt) is c′-adaptively anony-
mous for some super constant function c′(n) = ω(1) such that c′(n) < poly(n),
Π ′ = (Setup′,KeyGen,Encrypt,Decrypt) is adaptively anonymous (as an ordinary
IBE) if we set Setup′(1n) = Setup(1n, 1c′(n)).

Proof. Since c′(n) < poly(n), Setup′, KeyGen, Encrypt, and Decrypt run in poly-
nomial time. In addition, since c′(n) = ω(1) and thus nc′

is super-polynomial,
there is no bound on the number of key extraction queries for the adversary in the
c′-adaptive anonymity game. Furthermore, since 1/nc′

is a negligible function,
by Eq. (3), we have

AdvPIBEA,Π < (Q + 1)
(

1
nc′ + negl(n)

)

= negl(n)

for any adversary A. Thus, Π ′ defined as above is adaptively anonymous.

Comparison with Bounded Collusion IBE. Our notion of PIBE is similar
to the notion of bounded collusion IBE [19] (also called k-resilient IBE [29]),
in that adversaries only learn private keys of an a-priori bounded number of
identities. The security requirement for the former is weaker than that for the
latter, because we allow adversaries to have non-negligible advantages (in the
case of c is a constant). On the other hand, we pose more severe requirement
on the efficiency for the former. We require the algorithms of PIBE to work
in polynomial time in c, rather than in nc. Because of this, existing bounded
collusion IBE schemes [19,26,29,46,49] do not satisfy the requirement of PIBE.

4.2 IBE from PIBE

In this section, we show a conversion from a PIBE scheme Π = (PIBE.Setup,
PIBE.KeyGen,PIBE.Encrypt,PIBE.Decrypt) to an (ordinary) IBE scheme Π ′ =
(IBE.Setup, IBE.KeyGen, IBE.Encrypt, IBE.Decrypt). In the following, let η(n) be
any function such that η(n) = ω(1) (e.g., η(n) = log log(n)). We also let the
message space of Π and Π ′ be {0, 1}�M for some �M ∈ N.

IBE.Setup(1n): It runs PIBE.Setup(1n, 1i) → (mpk(i),msk(i)) for i = 1, . . . , η. It
outputs

mpk = (mpk(1),mpk(2), . . . ,mpk(η)) and msk = (msk(1),msk(2), . . . ,msk(η)).

Adaptively Secure Identity-Based Encryption from Lattices 45

IBE.KeyGen(mpk,msk, ID): It runs PIBE.KeyGen(mpk(i),msk(i), ID) → sk
(i)
ID for

i = 1, . . . , η. It outputs

skID = (sk(1)ID , sk
(2)
ID , . . . , sk

(η)
ID).

Encrypt(mpk, ID,M): To encrypt M = {0, 1}�M , it picks random M(i) ∈ {0, 1}�M

for i ∈ [η] subject to constraint that M =
⊕η

i=1 M
(i), where

⊕

denotes bitwise
exclusive or. Then it runs

PIBE.Encrypt(mpk(i), ID,M(i)) → C(i) for i = 1, . . . , η.

Finally, it outputs the ciphertext C = (C(1), . . . , C(η)).
Decrypt(mpk, skID, C): It first parses the ciphertext and the private key as C →

(C(1), . . . , C(η)) and skID → (sk(1)ID , . . . , sk
(η)
ID). Then, it runs

PIBE.Decrypt(mpk(i), sk
(i)
ID , C(i)) → M(i) for i = 1, . . . , η.

Finally, it outputs M =
⊕η

i=1 M
(i).

Correctness of the scheme can be shown very easily. The following theorem
addresses the security of the scheme. Note that the resulting IBE scheme is not
anonymous even if the original PIBE scheme is anonymous.

Theorem 2. Assume that PIBE Π is secure for all (constant) c ∈ N. Then, Π ′

is adaptively secure as an (ordinary, not parametrized) IBE scheme.

Proof. Assume an adversary A that breaks Π ′ with non-negligible probability.
Since A is a PPT algorithm, there exist constants c′ ∈ N and c′′ ∈ N such that

– The advantage ε(n) of A is greater than 2/nc′
for infinitely many n.

– The number Q(n) of key extraction queries that A makes is bounded by
nc′′

/2 − 1.

Let i� be i� = c′ + c′′. Then, we have

ε(n)
2(Q(n) + 1)

− 1
ni� ≥ 2

nc′+c′′ − 1
ni� =

1
ni� (4)

for infinitely many n. In particular, ε/2(Q+1)−1/ni�

cannot be bounded by any
negligible function. To show the theorem, we construct an adversary B against
i�-adaptive anonymity of PIBE Π from A. In the following, we assume η ≥ i�.
Since η(n) = ω(1), this holds for sufficiently large n.

Setup. First, PIBE.Setup(1n, 1i�

) → (mpk(i
�),msk(i

�)) is run and mpk(i
�) is given

to B. Then, A runs PIBE.Setup(1n, 1i) → (mpk(i),msk(i)) for i = [1, η]\{i�} and
sets mpk = (mpk(1),mpk(2), . . . ,mpk(η)). B keeps msk(i) for i ∈ [1, η]\{i�} secret,
and returns mpk to A.
Phases 1 and 2. When A makes a key extraction query for an iden-
tity ID, B queries a private key for the same ID to its challenger. Then,

46 S. Yamada

PIBE.KeyGen(mpk(i
�),msk(i

�), ID) → sk
(i�)
ID is run and sk

(i�)
ID is given to B. Then

B runs PIBE.KeyGen(mpk(i),msk(i
�), ID) → sk

(i)
ID for i ∈ [1, η]\{i�} and returns

skID = (sk(1)ID , . . . , sk
(η)
ID) to A.

Challenge. When A makes a challenge query for (ID�,M0,M1), B first picks
random M(i) $← {0, 1}�M for i ∈ [1, η]\{i�}. Then, it sets

M
(i�)
b = Mb ⊕

⎛

⎝

⊕

i∈[1,η]\{i�}
M(i)

⎞

⎠ for b ∈ {0, 1}

and runs PIBE.Encrypt(mpk(i), ID,M(i)) → C(i) for i ∈ [1, η]\{i�}. Then, it picks
random coin coin′ $← {0, 1} and makes the challenge query for (ID�,M

(i�)
coin′) to

its challenger. Then, the challenger picks a coin coin
$← {0, 1} and returns C� to

B. If coin = 0, we have PIBE.Encrypt(mpk(i
�), ID�,M

(i�)
coin′) → C�. Otherwise, C�

is a random element of the ciphertext space. Given C�, B returns the challenge
ciphertext

(C(1), . . . , C(i�−1), C�, C(i�+1), . . . , C(η))

to A.

Guess. Finally, A outputs a guess ̂coin for coin′. If ̂coin = coin′, B outputs 0 as
its guess for coin and outputs 1 otherwise.

Analysis. We can see that B is a valid adversary for the parametrized IBE Π
since A does not make a key extraction query for ID�. Furthermore, B makes
the same number of key extraction queries as A and in particular, we have
Q(n) < ni�

/2− 1. It is easy to see that the view of the adversary A corresponds
to that in adaptive security game for IBE Π ′ when coin = 0. It can also be seen
that the view of the adversary is independent of coin′ when coin = 1. Therefore,
we have

AdvPIBEB,Π =
∣

∣

∣

∣

1
2

Pr[̂coin = coin′|coin = 0] +
1
2

Pr[̂coin 	= coin′|coin = 1] − 1
2

∣

∣

∣

∣

=
1
2

∣

∣

∣

∣

Pr[̂coin = coin′|coin = 0] − 1
2

∣

∣

∣

∣

=
1
2
ε(n).

Thus, by Eq. (4), B is a successful attacker against the i�-adaptive anonymity
of Π.

More Efficient Conversion. In the above conversion, we run η instances
of PIBE scheme in parallel. The number of instances can be reduced to
O(log η). We briefly sketch the construction and the security proof for it. Let
us assume that η is a power of 2. In the setup algorithm of the variant, we
run PIBE.Setup(1n, 1i) → (mpk(i),msk(i)) for i = 1, 2, 4, . . . , 2i, . . . , 2log η(= η),
instead of i = 1, 2, . . . , η. Other algorithms are defined similarly to the above. In
the security proof, the target of the reduction algorithm is set to be i� such that
2i�−1 ≤ c′ + c′′ < 2i�

.

Adaptively Secure Identity-Based Encryption from Lattices 47

5 Our Construction of PIBE from Lattices

Here, we show our constructions of PIBE from lattices. By setting the para-
meter c super-constant or applying the conversions in Sect. 4.2, we obtain IBE
schemes that provide trade-off between the efficiency, security, and the underly-
ing assumptions. (See Sect. 6 for the overview). In this section, we first introduce
some functions that will be needed to describe our construction. Then, we show
our construction of PIBE scheme for single-bit message space. We then prove
the security of the scheme. Finally, we discuss extension of the scheme to the
multi-bit variant.

5.1 Homomorphic Computation

Let d be a natural number. We introduce a function PubEvald : (Zn×m
q)d → Z

n×m
q

which takes a set of matrices B1,B2, . . . ,Bd ∈ Z
n×m
q as inputs and outputs a

matrix in Z
n×m
q . The function is defined recursively as follows:

PubEvald(B1, . . . ,Bd) =

{

B1 if d = 1
B1 · G−1

(

PubEvald−1(B2, . . . ,Bd)
)

if d ≥ 2.

We have that the following lemma holds. The proof appears in the full version.

Lemma 6. Let A, B1, . . . ,Bd be matrices in Z
n×m
q and R1, . . . ,Rd be matrices

in Z
m×m such that Bi = ARi + yiG for i ∈ [d]. Furthermore, we assume that

‖Ri‖2 ≤ m, |yi| ≤ δ for i ∈ [d], and δ > m. Then, there exists an efficient
algorithm TrapEvald that takes R1, . . . ,Rd, y1, . . . , yd as inputs and outputs R′

such that

PubEvald(B1, . . . ,Bd) = AR′ + y1 · · · yd · G (5)

and ‖R′‖2 ≤ mdδd−1.

5.2 Our Construction

In the following, we present our PIBE scheme. Let d be a (flexible) constant. In
addition, let the identity space of the scheme be ID = {0, 1}κ for some κ ∈ N

and the message space be {0, 1}. For our construction, we consider an efficiently
computable injective map S that maps an identity ID ∈ {0, 1}κ to a subset S(ID)
of [1, �]d, where � = �κ1/d�. Such a map can be constructed easily as we explained
in Sect. 3.3. We would typically set κ = O(n), and thus � = O(n1/d) in such a
case.

Setup(1n, 1c): On input 1n and 1c, it sets the parameters q, m, σ, B, B′, and
a distribution χ as specified in Sect. 5.3, where q is a prime number. Then,
it picks random matrices B0

$← Z
n×m
q , Bi,j

$← Z
n×m
q for (i, j) ∈ [d, �] and a

vector u $← Z
n
q . It also picks TrapGen(1n, 1m, q) → (A,TA) ∈ Z

n×m
q ×Z

m×m

such that ‖TA‖GS = O(
√

n log q). It finally outputs

mpk = (A,B0, {Bi,j}(i,j)∈[d,�],u) and msk = TA.

48 S. Yamada

In the following, we use a deterministic function H : ID → Z
n×m
q that is

defined as follows.

H(ID) = B0 +
∑

(j1,...,jd)∈S(ID)

PubEvald(B1,j1 ,B2,j2 , . . . ,Bd,jd
) ∈ Z

n×m
q .

KeyGen(mpk,msk, ID): It first computes H(ID) and picks e ∈ Z
2m such that

(

A|H(ID)
) · e = u

by running SampleLeft(A,H(ID),u,TA, σ) → e. It returns skID = e.

Encrypt(mpk, ID, b): To encrypt a message b ∈ {0, 1}, it picks s $← Z
n
q , x0

$← χ,
x1

$← χm, x2
$← [−B′, B′]m and computes

c0 = s�u + x0 + b · �q/2�, c�
1 = s�(A|H(ID)) + (x�

1 |x�
2).

Finally, it returns the ciphertext C = (c0, c1).
Decrypt(mpk, skID, C): To decrypt a ciphertext C = (c0, c1) using a private key

skID: = e, it first computes

w = c0 − c�
1 · e ∈ Zq.

Then it returns 1 if |w − �q/2�| < �q/4� and 0 otherwise.

5.3 Correctness and Parameter Selection

When the cryptosystem is operated as specified, we have during decryption,

w = c0 − c�
1 · e = b · �q/2� + x0 − (x�

1 |x�
2) · e

︸ ︷︷ ︸

error term

.

Lemma 7. Assuming B′ > B, the error term is bounded by O(B′σm) with
overwhelming probability.

Proof. Since χ is B-bounded distribution, with overwhelming probability, we
have

|x0 − (x�
1 |x�

2) · e| ≤ |x0| + |(x�
1 |x�

2) · e| ≤ |x0| + ‖(x�
1 |x�

2)‖ · ‖e‖
≤ B + max{B,B′} ·

√
2m · σ

√
2m = O(B′σm).

The second inequality above follows from Cauchy-Schwartz and the third
inequality follows from Lemma 1.

Parameter Selection. Now, to satisfy the correctness requirement and make
the security proof work, we need that

Adaptively Secure Identity-Based Encryption from Lattices 49

– the error term is less than q/5 with overwhelming probability (i.e.,
Ω(B′σm) < q),

– that q is sufficiently large so that the simulation works (i.e., q > Θ(κ(dnc)d)),
– that TrapGen can operate (i.e., m ≥ 6n�log q�),
– that the leftover hash lemma (Lemma 4) can be applied in the security proof

(i.e., m = (n + 1) log q + ω(log n)),
– that σ is sufficiently large so that SampleLeft and SampleRight work, (i.e.,

σ > O(
√

n log q) · ω(
√

log m) and σ > m(1 + κddnc(d−1)) · ω(
√

log m), where
the latter condition turns out to be more restrictive),

– that the “noise smudging step” in the security proof works (i.e., m5/2(1 +
κddnc(d−1))B/B′ ≤ d/(κ + 1)(dnc)d+1. See Eq. (11)).

To satisfy the above requirements, we set the parameters as follows:

m = O(n log q), q = O(n3c(d−1)+3c′+6), χ = DZ,
√

n,

σ = mκnc(d−1) · ω(
√

log m), B = O(n), B′ = O(m5/2κ2n2cd+1),

where c′ is a constant such that κ = O(nc′
). Typically, we would set c′ = 1.

5.4 Security Proof

The following theorem addresses the security of the scheme. The proof is based
on the partitioning technique, similarly to [1,6,12,47]. For simplicity, we opt to
use the framework of [6] in our analysis, which does not require the artificial
abort step [47]. The analysis with the artificial abort step is also possible, and it
might lead to a scheme with slightly better efficiency (up to constant factors).

Theorem 3. The above scheme is c-adaptive anonymous assuming
dLWEn,m+1,q,χ is hard, where the ciphertext space is C = Zq × Z

2m
q .

Proof. Let A be a PPT adversary that breaks c-adaptive anonymity of the
scheme. In addition, let ε = ε(n) and Q = Q(n) be its advantage and the
upper bound of the number of key extraction queries, respectively. Without loss
of generality, we assume that A always makes exactly Q key extraction queries.
Let us define c̃ as a constant that satisfies

Q ≤ nc̃

2
− 1 and

ε

Q + 1
− 1

nc̃
= nonneg(n) (6)

where nonneg(n) is some non-negligible function. We explain such c̃ always exist.
In the case of c = c(n) is a constant, we simply let c̃ = c. Let us consider the
case of c(n) = ω(1). Since A is a PPT algorithm, there exists a constant c′ such
that Q(n) ≤ nc′

/2 − 1. Furthermore, since A breaks c-adaptive anonymity of
the scheme and 1/nc is negligible, ε/(Q + 1) is non-negligible. Therefore, there
exists a constant c′′ such that ε/(Q + 1) > 2/nc′′

holds for infinitely many n.
By setting c̃ = max{c′, c′′}, we are done. We note that in any case, c̃(n) ≤ c(n)
holds for sufficiently large n.

50 S. Yamada

We show the security of the scheme via the following games. In each game,
a value coin′ ∈ {0, 1} is defined. While it is set coin′ = ̂coin in the first game,
these values might be different in the later games. In the following, we define Xi

be the event that coin′ = coin.

Game0: This is the real security game. Recall that since the ciphertext space
is C = Zq × Z

2m
q , in the challenge phase, the challenge ciphertext is set as

C� = (c0, c1)
$← Zq × Z

2m
q if coin = 1. At the end of the game, A outputs a

guess ̂coin for coin. Finally, the challenger sets coin′ = ̂coin. By the definition,
we have

∣

∣

∣

∣

Pr[X0] − 1
2

∣

∣

∣

∣

=
∣

∣

∣

∣

Pr[coin′ = coin] − 1
2

∣

∣

∣

∣

=
∣

∣

∣

∣

Pr[̂coin = coin] − 1
2

∣

∣

∣

∣

= ε.

Game1: In this game, we change Game0 so that the challenger performs the
following additional step at the end of the game. First, the challenger picks
y = (y0, {yi,j}(i,j)∈[d,�]) as

y0
$← [−(κ + 1)(dnc̃)d + 1, 0] and yi,j

$← [1, dnc̃] for (i, j) ∈ [d] × [�].

We define a function Fy : ID → Zq as follows:

Fy(ID) = y0 +
∑

(j1,...,jd)∈S(ID)

y1,j1 · · · yd,jd
.

Then the challenger checks whether the following condition holds:

Fy(ID�) = 0 ∧ Fy(ID1) 	= 0 ∧ Fy(ID2) 	= 0 ∧ · · · ∧ Fy(IDQ) 	= 0 (7)

where ID� is the challenge identity, and ID1, . . . , IDQ are identities for which
A has made key extraction queries. If it does not hold, the challenger ignores
the output ̂coin of A, and sets coin′ $← {0, 1}. In this case, we say that the
challenger aborts. If condition (7) holds, the challenger sets coin′ = ̂coin. As
we will show in Lemma 8, we have

∣

∣

∣

∣

Pr[X1] − 1
2

∣

∣

∣

∣

≥ 1
κ + 1

·
(

1
dnc̃

)d

·
(

ε − Q

nc̃

)

.

So as not to interrupt the proof of Theorem3, we intentionally skip the proof
for the time being.

Game2: In this game, we change the way B0 and Bi,j are chosen. At the beginning
of the game, the challenger picks R0,Ri,j

$← {−1, 1}m×m for (i, j) ∈ [d]× [�].
It also picks y as in Game1. Then, A, B0, and Bi,j are defined as

B0 = AR0 + y0G, Bi,j = ARi,j + yi,jG (8)

for (i, j) ∈ [d] × [�]. The rest of the game is the same as in Game1.

Adaptively Secure Identity-Based Encryption from Lattices 51

Then, we bound |Pr[X2] − Pr[X1]|. By Lemma 4, the distributions
(

A, AR0 + y0G, {ARi,j + yi,jG})

and
(

A, B0, {Bi,j}
)

are negl(n)-close, where B0,Bi,j
$← Z

n×m
q . Therefore, we have |Pr[X1] −

Pr[X2]| = negl(n).

Before describing the next game, we define RID for an identity ID ∈ ID as

RID = R0 +
∑

(j1,...,jd)∈S(ID)

TrapEval(R1,j1 , . . . ,Rd,jd
, y1,j1 , . . . , yd,jd

). (9)

Note that by Lemma 6, we have

‖R�
ID‖2 = ‖RID‖2

≤ ‖R0‖2 +
∑

(j1,...,jd)∈S(ID)

‖TrapEval(R1,j1 , . . . ,Rd,jd
, y1,j1 , . . . , yd,jd

)‖2

≤ (

m + κ(md · (dnc̃)d−1)
) ≤ m(1 + κddnc(d−1)) (10)

for any ID ∈ ID. The last inequality above follows from c̃ ≤ c.

Game3: In this game, we change the way the challenge ciphertext is created when
coin = 0. If coin = 0, to create the challenge ciphertext Game3 challenger first
picks s $← Z

n
q , x0

$← χ, x1
$← χm, x2

$← [−B′, B′]m and computes RID� .
Then, the challenge ciphertext C� = (c0, c1) is computed as

c0 = s�u + x0 + b · �q/2�, c�
1 = s�(A|H(ID�)) + (x�

1 |x�
1 RID� + x�

2)

where b ∈ {0, 1} is the message chosen by A.
We then proceed to bound |Pr[X3] − Pr[X2]|. Since x1 is chosen from a B-
bounded distribution, we have

‖R�
ID�x1‖∞ ≤ ‖R�

ID�x1‖2 ≤ ‖R�
ID�‖2 · ‖x1‖ ≤ m3/2(1 + κddnc(d−1))B.

When all randomness other than x2 in this game is fixed, the distributions
x2 and R�

ID� · x1 + x2 are within statistical distance

m‖R�
ID�x1‖∞/B′ = m5/2(1 + κddnc(d−1))B/B′ ≤ d

κ + 1
·
(

1
dnc

)d+1

(11)

by Lemma 3. Averaging over all other randomness, we have that the distribu-
tion of the challenge ciphertext is within statistical distance d/(κ+1)(dnc)d+1

from the previous game, when coin = 0. In the case of coin = 1, the view of
A is unchanged. Therefore, we conclude that the view of A in this game is
within statistical distance d/(κ + 1)(dnc)d+1 from the previous game. Thus,
we have

|Pr[X2] − Pr[X3]| ≤ d

κ + 1
·
(

1
dnc

)d+1

.

52 S. Yamada

Game4 : Recall that in the previous game, the challenger aborts at the end of
the game, if the condition (7) is not satisfied. In this game, we change the
game so that the challenger aborts as soon as the abort condition becomes
true. Since this is only a conceptual change, we have Pr[X3] = Pr[X4].

Game5 : In this game, we change the way the matrix A is sampled. Namely,
Game5 challenger picks A $← Z

n×m
q instead of generating it with a trap-

door. By Lemma 2, this makes only negligible difference. Furthermore, we
also change the way the key extraction queries are answered. When A makes
a key extraction query for an identity ID, the challenger first computes RID

as in Eq. (9). By the definition of RID, it holds that

H(ID) = A · (RID + Fy(ID)G) .

If Fy(ID) = 0, it aborts, as the previous game. Otherwise, it runs

SampleRight(A,G,RID,Fy(ID),u,TG, σ) → e,

and returns e to A. Note that the private key was sampled as

SampleLeft(A,H(ID),u,TA, σ) → e

in the previous game. By Eq. (10) and the choice of σ, the output distribution
of SampleRight is negl(n)-close to DΛu

q (A|H(ID)),σ. Similarly, by the choice of σ,
the output distribution of SampleLeft is also negl(n)-close to DΛu

q (A|H(ID)),σ.
Therefore, the above change alters the view of the adversary only negligibly.
Thus, we have |Pr[X4] − Pr[X5]| = negl(n).

Game6: In this game, we change the way the challenge ciphertext is created
when coin = 0. If coin = 0, to create the challenge ciphertext for the identity
ID� and the message b, Game6 challenger first picks v0

$← Zq, v1
$← Z

m
q ,

x2
$← [−B′, B′]m and computes RID� . Then, it sets the challenge ciphertext

C� = (c0, c1) as

c0 = v0 + b · �q/2�, c�
1 = (v�

1 |v�
1 RID�) + (0�

m|x�
2).

As we will show in Lemma 9, assuming dLWEn,m+1,q,χ is hard, we have
|Pr[X5] − Pr[X6]| = negl(n).

Game7: In this game, we change the challenge ciphertext to be a random vec-
tor, regardless of whether coin = 0 or coin = 1. Namely, Game7 challenger
generates the challenge ciphertext (c0, c1) as c0

$← Zq and c1
$← Z

m
q .

We now proceed to bound |Pr[X7] − Pr[X6]|. Since Game6 and Game7 differ
only in the creation of the challenge ciphertext when coin = 0, we focus
on this case. First, it is easy to see that c0 is uniformly random over Zq

in both of Game6 and Game7. We also have to show that the distribution
of c1 is negl(n)-close to the uniform distribution over Z

2m
q . To see this, it

suffices to show that (v�
1 |v�

1 RID�) is distributed statistically close to uniform
distribution over Z

2m
q . Observe that the following distributions are negl(n)-

close:

(A,AR0,v�
1 ,v�

1 R0) ≈ (A,A′,v�
1 ,v′

1
�) ≈ (A,AR0,v�

1 ,v′
1
�), (12)

Adaptively Secure Identity-Based Encryption from Lattices 53

where A,A′ $← Z
n×m
q , R0

$← {−1, 1}m×m, v1,v′
1

$← Z
m
q . It can be seen that

the first and the second distributions are negl(n)-close, by applying Lemma 4
for (A�|v)� ∈ Z(n+1)×m and R0. It can also be seen that the second and
the third distributions are negl(n)-close, by applying the same lemma for
A and R0. From the above, we have that the following distributions are
statistically close:

(A,AR0,v1,v
�
1 R�

ID)

=

⎛

⎜
⎜
⎝A,AR0,v1,v

�
1

⎛

⎜
⎜
⎝R0 +

∑

(j1,...,jd)
∈S(ID)

TrapEval(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

≈

⎛

⎜
⎜
⎝A,AR0,v1,v

′
1

�
+ v�

1

⎛

⎜
⎜
⎝
∑

(j1,...,jd)
∈S(ID)

TrapEval(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

≈ (A,AR0,v1,v
′
1

�
)

where A,A′ $← Z
n×m
q , R0

$← {−1, 1}m×m, v1,v′
1

$← Z
m
q . The second and

the third distributions above are negl(n)-close by Eq. (12). Therefore, we may
conclude that |Pr[X6] − Pr[X7]| = negl(n).

Analysis. From the above, we have

∣

∣

∣

∣

Pr[X7] − 1
2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Pr[X1] − 1
2

+
6

∑

i=1

Pr[Xi+1] − Pr[Xi]

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

Pr[X1] − 1
2

∣

∣

∣

∣

−
6

∑

i=1

|Pr[Xi+1] − Pr[Xi]|

≥ 1
κ + 1

·
(

1
dnc̃

)d

·
(

ε − Q

nc̃

)

− d

κ + 1
·
(

1
dnc

)d+1

− negl(n)

≥ 1
κ + 1

·
(

1
dnc̃

)d

·
(

ε − Q

nc̃

)

− d

κ + 1
·
(

1
dnc̃

)d+1

− negl(n)

=
1

κ + 1
·
(

1
dnc̃

)d

· (Q + 1) ·
(

ε

Q + 1
− 1

nc̃

)

− negl(n)

=
1

poly(n)
·
(

ε

Q + 1
− 1

nc̃

)

− negl(n). (13)

The third inequality above follows from c ≥ c̃. Since the challenge ciphertext is
independent from the value of coin in Game7, we have Pr[X7] = 1/2 and thus
|Pr[X7] − 1/2| = 0. Therefore, from inequality (13), ε/(Q + 1) < 1/nc̃ + negl(n)
follows. However, this contradicts to Eq. (6).

To complete the proof of Theorem 3, it remains to show Lemmas 8 and 9.

54 S. Yamada

Lemma 8. For any PPT adversary A, we have

∣

∣

∣

∣

Pr[X1] − 1
2

∣

∣

∣

∣

≥ 1
κ + 1

·
(

1
dnc̃

)d

·
(

ε − Q

nc̃

)

.

Proof. For a sequence of identities ID = (ID�, ID1, . . . , IDQ) ∈ IDQ+1, we define
γ(ID) as

γ(ID) = Pr
y

[Fy(ID�) = 0 ∧ Fy(ID1) 	= 0 ∧ Fy(ID2) 	= 0 ∧ · · · ∧ Fy(IDQ) 	= 0]

where the probability is taken over y = (y0, {yi,j}(i,j)∈[d,�]), which is chosen as
specified in Game1. To show the lemma, we first show the following claim, which
gives an upper and lower bounds for γ(ID).

Claim. For any ID = (ID�, ID1, . . . , IDQ) such that ID� 	= IDi for all i ∈ [Q],

1
κ + 1

·
(

1
dnc̃

)d

·
(

1 − Q

nc̃

)

≤ γ(ID) ≤ 1
κ + 1

·
(

1
dnc̃

)d

.

Proof. Showing the upper bound of the probability is very easy. For any {yi,j},
there exists exactly one y0 ∈ [−(κ+1)(dnc̃)d +1, 0] such that Fy(ID�) = 0, since
for any {yi,j}(i,j)∈[d]×[�] and ID, we have

0 ≤
∑

(j1,...,jd)∈S(ID)

y1,j1 · · · yd,jd
≤

∑

(j1,...,jd)∈S(ID)

(dnc̃)d < (κ + 1)(dnc̃)d

Therefore, we have

γ(ID) ≤ Pr
y

[Fy(ID�) = 0] =
1

κ + 1
·
(

1
dnc̃

)d

.

We then proceed to show the lower bound.

γ(ID) = Pr
y

[Fy(ID�) = 0 ∧ Fy(ID1) 	= 0 ∧ Fy(ID2) 	= 0 ∧ · · · ∧ Fy(IDQ) 	= 0]

≥ Pr
y

[Fy(ID�) = 0] −
∑

i∈[Q]

Pr
y

[Fy(ID�) = 0 ∧ Fy(IDi) = 0]

=
1

κ + 1
·
(

1
dnc̃

)d

−
∑

i∈[Q]

Pr
y

[Fy(ID�) = 0 ∧ Fy(IDi) = 0]. (14)

It suffices to show an upper bound for Pr[Fy(ID�) = 0∧Fy(IDi) = 0]. For i ∈ [Q],
we have

Pr
y

[Fy(ID�) = 0 ∧ Fy(IDi) = 0]

= Pr
y

[Fy(ID�) = 0 ∧ Fy(ID�) − Fy(IDi) = 0]

Adaptively Secure Identity-Based Encryption from Lattices 55

= Pr
y

[Fy(ID�) = 0 | F′
y(ID�, IDi) = 0] · Pr

y
[F′

y(ID�, IDi) = 0]

= Pr
y

⎡

⎢

⎢

⎣

y0 = −
∑

(j1,...,jd)
∈S(ID�)

y1,j1 · · · yd,jd

∣

∣

∣

∣

∣

∣

∣

∣

F′
y(ID�, IDi) = 0

⎤

⎥

⎥

⎦

· Pr
y

[F′
y(ID�, IDi) = 0]

=
1

κ + 1
·
(

1
dnc̃

)d

· Pr
y

[F′
y(ID�, IDi) = 0]. (15)

In the above, we defined F′
y(ID�, IDi) as

F′
y(ID�, IDi) := Fy(ID�) − Fy(IDi)

=
∑

(j1,...,jd)∈S(ID�)

y1,j1 · · · yd,jd
−

∑

(j1,...,jd)∈S(IDi)

y1,j1 · · · yd,jd
.

The last equation in Eq. (15) follows since y0 is independent from F′
y(ID�, IDi).

(Observe that y0 does not appear in the definition of F′
y(ID�, IDi).)

We then finally bound Pry[F′
y(ID�, IDi) = 0]. Since ID� 	= IDi and

S is an injective map, we have S(ID�) 	= S(IDi). Therefore, there exists
(j�

1 , . . . , j�
d) ∈ [�]d such that (j�

1 , . . . , j�
d) ∈ S(ID�)�S(IDi), where S(ID�)�S(IDi)

denotes the symmetric difference of S(ID�) and S(IDi). Thus, F′
y(ID�, IDi)

is not a zero-polynomial when we regard it as a polynomial in indetermi-
nates {yj,k}(j,k)∈[d]×[�]. Since each yj,k is uniformly random over [1, dnc̃] and
F′
y(ID�, IDi) is a polynomial with degree d, by the Schwartz-Zippel lemma, it

follows that

Pr
y

[F′
y(ID�, IDi) = 0] ≤ d

dnc̃
≤ 1

nc̃
.

By combining this with Eqs. (14) and (15), the claim follows.

We then proceed to show a lower bound for |Pr[X1] − 1/2|. For ID =
(ID�, ID1, . . . , IDQ) such that ID� 	= IDi for all i ∈ [Q], we define γmax and γmin as
the largest and the smallest value of γ(ID) taken over all such ID, respectively.
We define Q(ID) as the event that A chooses ID� as its challenge identity and it
makes key extraction queries for ID1, . . . , IDQ. We also define Abort as the event
that the challenger aborts. Then, we have

∣

∣

∣

∣

Pr[X1] − 1
2

∣

∣

∣

∣

=
∣

∣

∣

∣

Pr[coin′ = coin] − 1
2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

ID

Pr[Q(ID)] · Pr[coin′ = coin|Q(ID)] − 1
2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

ID

Pr[Q(ID)] ·
(

Pr[coin′ = coin ∧ ¬Abort|Q(ID)]

+ Pr[coin′ = coin ∧ Abort|Q(ID)] − 1
2

)∣

∣

∣

∣

56 S. Yamada

=

∣

∣

∣

∣

∣

∑

ID

Pr[Q(ID)] ·
(

Pr[̂coin = coin|Q(ID)] · γ(ID) +
1
2

· (

1 − γ(ID)
) − 1

2

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

ID

γ(ID) · Pr[Q(ID)] ·
(

Pr[̂coin = coin|Q(ID)] − 1
2

)

∣

∣

∣

∣

∣

≥ γmin · ε − γmax − γmin

2
.

In the third equation above, we used the fact
∑

ID
Pr[Q(ID)] = 1. The fourth

equation above follows from the fact that the probability of the abort is γ(ID),
when conditioned on Q(ID) (regardless of the value of ̂coin). The last inequality
above follows by Lemma 5, since we have

∣

∣

∣

∣

∣

∑

ID

Pr[Q(ID)]
(

Pr[̂coin = coin|Q(ID)] − 1
2

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

ID

Pr[̂coin = coin ∧ Q(ID)] − 1
2

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

Pr[̂coin = coin] − 1
2

∣

∣

∣

∣

= ε

and

∑

ID

∣

∣

∣

∣

Pr[Q(ID)] ·
(

Pr[̂coin = coin|Q(ID)] − 1
2

)∣

∣

∣

∣

≤
∑

ID

Pr[Q(ID)] · 1
2

=
1
2
.

We complete the proof of Lemma 8 by observing

γmin · ε − γmax − γmin

2

≥ 1
κ + 1

·
(

1
dnc̃

)d

·
(

1 − Q

nc̃

)

· ε − 1
2(κ + 1)

·
(

1
dnc̃

)d

·
(

1 −
(

1 − Q

nc̃

))

≥ 1
κ + 1

·
(

1
dnc̃

)d

·
(

ε − Q

nc̃

)

.

The last inequality follows from ε ≤ 1/2.

Lemma 9. For any PPT adversary A, there exists another PPT adversary B
such that

|Pr[X5] − Pr[X6]| ≤ Adv
dLWEn,m+1,q,χ

B .

In particular, under the dLWEn,m+1,q,χ assumption, we have |Pr[X5]−Pr[X6]| =
negl(n).

Proof. Suppose an adversary A that has non-negligible advantage in distinguish-
ing Game5 and Game6. We use A to construct an LWE algorithm denoted B,
which proceeds as follows.

Adaptively Secure Identity-Based Encryption from Lattices 57

Instance. B is given the problem instance of LWE (A′,v′) ∈ Z
n×(m+1)
q ×Z

m+1
q .

Let the first column of A′ be u ∈ Z
n
q and the last m column be A ∈ Z

n×m
q . It

also sets the first coefficient of v′ be v0 and the last m coefficients be v1.

Setup. To construct master public key mpk, B first picks y as in Game1. It also
picks R0,Ri,j

$← {−1, 1}m×m and sets B0 and Bi,j as Eq. (8). Finally, it returns
mpk = (A,B0, {Bi,j}(i,j)∈[d,�],u) to A. B also picks a random bit coin

$← {0, 1}
and keeps it secret.

Phases 1 and 2. When A makes a key extraction query for ID, B first computes
Fy(ID). It aborts and sets coin′ $← {0, 1} if Fy(ID) = 0. Otherwise, B generates
the private key as in Game5.

Challenge Query. When A makes the challenge query for the challenge identity
ID� and the message b, B first computes Fy(ID�). Then, it aborts and sets coin′ $←
{0, 1} if Fy(ID�) 	= 0. Otherwise, it proceeds as follows. If coin = 0, it computes
RID� and picks x2

$← [−B′, B′]m. Then, it sets the challenge ciphertext as

c0 = v0 + b · �q/2�, c�
1 = (v�

1 |v�
1 RID�) + (0�

m|x�
2)

and returns C� = (c0, c1) to A. In the case of coin = 1, B picks c0
$← Zq,

c1
$← Z

2m
q and returns the challenge ciphertext C� = (c0, c1) to A.

Guess. At last, A outputs its guess ̂coin (if the abort condition has not been satis-
fied). Then, B sets coin′ = ̂coin. Finally, B outputs 1 if coin′ = coin and 0 otherwise.

Analysis. We now show that B perfectly simulates the view of A in Game5 if
(A′,v′) is a valid LWE sample (i.e., v′� = s�A′+x� for s $← Z

n
q and x $← χm+1),

and Game6 if v′ $← Z
m+1
q . Note that these games differ only in the generation of

the challenge ciphertext in the case of coin = 0. Furthermore, it is easy to see
that the simulation of the master public key, Phases 1 and 2, and the challenge
ciphertext for the case of coin = 1 are perfect. Therefore, in the following, we
focus on the generation of the challenge ciphertext in the case of coin = 0.

We first show that if (A′,v′) is a valid LWE sample, i.e., v′� = s�A′+x� for
s $← Z

n
q and x $← χm+1, the distribution of the challenge ciphertext corresponds

to that of Game5. Let us denote x� = (x0,x�
1) and assume that Fy(ID�) = 0

holds. Then, we have

c0 = v0 + b · �q/2� = (u�s + x0) + b · �q/2� and
c1 = (v�

1 |v�
1 RID�) + (0�

m|x�
2)

=
(

s�A + x�
1 |(s�A + x�

1)RID�

)

+ (0�
m|x�

2)

= s�(

A|ARID�

)

+ (x�
1 |x�

1 RID� + x�
2)

= s�(

A|H(ID�)
)

+ (x�
1 |x�

1 RID� + x�
2).

The last equation follows because Fy(ID�) = 0. Therefore, the challenge cipher-
text is distributed as in Game5 in this case. It is easy to see that the challenge
ciphertext is distributed as in Game6, if v′ $← Z

m+1
q .

58 S. Yamada

Therefore, we have Adv
dLWEn,m+1,q,χ

B = |Pr[X5] − Pr[X6]| as desired.

5.5 Multi-bit Encryption

Here, we explain that our scheme can be extended to deal with multi-bit messages
without much increasing the sizes of public parameters and ciphertexts, similarly
to [1,39]. To modify the scheme so that it can encrypt messages with N -bit, we
replace u ∈ Z

n
q in mpk with u1, . . . ,uN ∈ Z

n
q . The component c0 = 〈u, s〉 + x0 +

b� q
2� in the ciphertext is replaced with c0 = {〈ui, s〉 + x0,i + bi� q

2�}N
i=1 where

x0,i
$← χ and bi ∈ {0, 1} is the i-th bit of the message. Furthermore, the private

key is changed to be short vectors e1, . . . , eN ∈ Z
m such that (A|H(ID))ei = ui

for i = 1, . . . , N . We can prove the security for the variant from dLWEn,m+N,q,χ

by naturally extending the proof of Theorem3.
As for the efficiency, the size of the master public key and the ciphertexts

become O((�m + N)n log q) and O((m + N) log q) respectively, and these are
asymptotically the same as the case of single-bit encryption when N < O(m).
The case of N > O(m) can also be handled without increasing the size of para-
meters, by employing the KEM-DEM approach. Namely, we encrypt a random
ephemeral key of sufficient length (e.g., O(n)) by IBE and then encrypt the
message by the ephemeral key using a symmetric cipher.

6 Comparisons and Discussions

From the PIBE scheme in Sect. 5, we can obtain the following new IBE schemes:

– By setting c = ω(1), we obtain adaptively anonymous IBE by Theorem1.
However, we have to rely on super-polynomial LWE assumption, namely,
dLWEn,m,q,χ with q/χmax = nω(1).

– By applying PIBE-to-IBE conversion in Sect. 4.2 to our PIBE in Sect. 5, we
obtain (non-anonymous) adaptively secure IBE from polynomial LWE. More
precisely, the security of the scheme can be proven under the assumption that
dLWEn,m,q,χ is hard for all q/χmax = poly(n).

For concreteness, we would set c(n) = O(log log n) in the first construction,
and c(n) = log log n and η(n) = log log n for the second construction. Ignor-
ing poly-logarithmic factors hidden in the asymptotic notation Õ(·), both of
our schemes achieve the best efficiency among existing adaptively secure IBE
schemes. See Table 1 for the comparison. Comparing in more details, ciphertexts
and private keys of both of our schemes are longer than [1,12] by a super-
constant factor. This is because we need to use super polynomially large q. On
the other hand, in both of our schemes, the sizes of master public keys are
asymptotically smaller than [1,12], even though we have to use larger q. This is
because we require smaller number of basic matrices in the master public keys.
Our first scheme is more efficient than our second scheme by super-constant fac-
tors, because the conversion in Sect. 4.2 incurs super-constant efficiency loss. We

Adaptively Secure Identity-Based Encryption from Lattices 59

Table 1. Comparison of IBE from the LWE assumption in the Standard Model.

Schemes |mpk| |C| |skID| Anon? Selective or

adaptive

q/χmax for LWE

assumption

[1] Õ(n2) Õ(n) Õ(n) Yes Selective Fixed poly(n)

[16] Õ(n2κ) Õ(nκ) Õ(n2) Yes Adaptive Fixed poly(n)

[1,12]a Õ(n2κ) Õ(n) Õ(n) Yes Adaptive Fixed poly(n)

Ours: Section 5 + Theorem1 Õ(n2κ1/d) Õ(n) Õ(n) Yes Adaptive nω(1)

Ours: Section 5 + Theorem2 Õ(n2κ1/d) Õ(n) Õ(n) No Adaptive All poly(n)
aIn the security proof for the adaptively secure variant of IBE in [1], we have a restriction that

q > Q. Namely, only bounded form of the security is proven. This restriction is removed in the

refined analysis due to Boyen [12].

also note that our security reduction is very loose even compared to non-tight
reduction of [1,12]. The security degrades exponentially as d grows. Therefore,
in order to have polynomial reduction, we have to set d to be a (possibly small)
constant.

In the table, we compare IBE schemes from the LWE assumption in the
standard model. |mpk|, |C|, and |skID| show the size of the master public keys,
ciphertexts, and private keys, respectively. κ denotes the length of the identity
(which corresponds to the output length of the collision resistant hash if we
first hash the bit string representing identity in the scheme). d ∈ N is a flexible
constant, which can be set to be any value. “Anon?” shows whether the scheme is
anonymous. “Selective/Adaptive” shows whether the scheme is selectively secure
or adaptively secure. “q/χmax” for LWE assumption refers to the ratio of the
modulus to the error size of the underlying LWE assumption used in the security
reduction. “Fixed poly(n)” means that the corresponding scheme is proven secure
under the LWE assumption with q/χmax being some fixed polynomial (e.g.,
n3). “All poly(n)” mean that we have to assume the LWE assumption for all
polynomial q/χmax.

Acknowledgement. The author would like to thank all members of the study group
“Shin-Akarui-Angou-Benkyou-Kai” for fruitful discussion. In particular, the author
thanks Shuichi Katsumata for his comments on improving the presentation, Goichiro
Hanaoka and Jacob. C.N. Schuldt for their helpful advice in the rebuttal phase. The
author also thanks the anonymous reviewers of Eurocrypt 2016 for their insightful
comments.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010)

3. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999)

60 S. Yamada

4. Alperin-Sheriff, J.: Short signatures with short public keys from homomorphic
trapdoor functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 236–255.
Springer, Heidelberg (2015)

5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In:
STACS, pp. 75–86 (2009)

6. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof
and improved concrete security for waters’ IBE scheme. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009)

7. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical signa-
tures from standard assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer, Heidelberg (2013)

8. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

9. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

10. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

11. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer,
Heidelberg (2014)

12. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

13. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC, pp. 575–584 (2013)

14. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS,
pp. 1–12 (2014)

15. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: EUROCRYPT, pp. 255–271 (2003)

16. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

17. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
435–460. Springer, Heidelberg (2013)

18. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) IMA 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg
(2001)

19. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002)

20. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

21. Döttling, N., Schröder, D.: Efficient pseudorandom functions via on-the-fly adap-
tation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
329–350. Springer, Heidelberg (2015)

Adaptively Secure Identity-Based Encryption from Lattices 61

22. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 22–41. Springer, Heidelberg (2014)

23. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp.
335–352. Springer, Heidelberg (2014)

24. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

25. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

26. Goldwasser, S., Lewko, A., Wilson, D.A.: Bounded-collusion IBE from key homo-
morphism. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 564–581. Springer,
Heidelberg (2012)

27. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC, pp. 545–554 (2013)

28. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for
branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9452, pp. 549–573. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48797-6 23

29. Heng, S.-H., Kurosawa, K.: k -resilient identity-based encryption in the standard
model. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 67–80. Springer,
Heidelberg (2004)

30. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009)

31. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013)

32. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008)

33. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

34. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013)

35. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

36. Naccache, D.: Secure and practical identity-based encryption. IET Inf. Secur. 1(2),
59–64 (2007)

37. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: STOC, pp. 333–342 (2009)

38. Peikert, C.: A decade of lattice cryptography. IACR Cryptology ePrint Archive,
Report 2015/939

39. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

http://dx.doi.org/10.1007/978-3-662-48797-6_23
http://dx.doi.org/10.1007/978-3-662-48797-6_23

62 S. Yamada

40. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 843–873 (2005)

41. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing over elliptic
curve. In: The 2000 Symposium on Cryptography and Information Security (2000).
(in Japanese)

42. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

43. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

44. Singh, K., Pandurangan, C., Banerjee, A.K.: Adaptively secure efficient lattice
(H)IBE in standard model with short public parameters. In: Bogdanov, A.,
Sanadhya, S. (eds.) SPACE 2012. LNCS, vol. 7644, pp. 153–172. Springer,
Heidelberg (2012)

45. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption
based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 617–635. Springer, Heidelberg (2009)

46. Tessaro, S., Wilson, D.A.: Bounded-collusion identity-based encryption from
semantically-secure public-key encryption: generic constructions with short cipher-
texts. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 257–274. Springer,
Heidelberg (2014)

47. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

48. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

49. Yamada, S., Hanaoka, G., Kunihiro, N.: Two-dimensional representation of cover
free families and its applications: short signatures and more. In: Dunkelman, O.
(ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 260–277. Springer, Heidelberg (2012)

50. Yamada, S.: Adaptively Secure Identity-Based Encryption from Lattices with
Asymptotically Shorter Public Parameters. Cryptology ePrint Archive, Report/140
(2016). http://eprint.iacr.org/2016/140

http://eprint.iacr.org/2016/140

Online/Offline OR Composition
of Sigma Protocols

Michele Ciampi1(B), Giuseppe Persiano2, Alessandra Scafuro3,
Luisa Siniscalchi1, and Ivan Visconti1

1 DIEM, University of Salerno, Salerno, Italy
{mciampi,lsiniscalchi,visconti}@unisa.it

2 DISA-MIS, University of Salerno, Salerno, Italy
giuper@gmail.com

3 Boston University and Northeastern University, Boston, USA
scafuro@bu.edu

Abstract. Proofs of partial knowledge allow a prover to prove knowl-
edge of witnesses for k out of n instances of NP languages. Cramer,
Schoenmakers and Damg̊ard [10] provided an efficient construction of
a 3-round public-coin witness-indistinguishable (k, n)-proof of partial
knowledge for any NP language, by cleverly combining n executions of Σ-
protocols for that language. This transform assumes that all n instances
are fully specified before the proof starts, and thus directly rules out the
possibility of choosing some of the instances after the first round.

Very recently, Ciampi et al. [6] provided an improved transform where
one of the instances can be specified in the last round. They focus on
(1, 2)-proofs of partial knowledge with the additional feature that one
instance is defined in the last round, and could be adaptively chosen
by the verifier. They left as an open question the existence of an effi-
cient (1, 2)-proof of partial knowledge where no instance is known in the
first round. More in general, they left open the question of constructing
an efficient (k, n)-proof of partial knowledge where knowledge of all n
instances can be postponed. Indeed, this property is achieved only by
inefficient constructions requiring NP reductions [19].

In this paper we focus on the question of achieving adaptive-input
proofs of partial knowledge. We provide through a transform the first
efficient construction of a 3-round public-coin witness-indistinguishable
(k, n)-proof of partial knowledge where all instances can be decided in
the third round. Our construction enjoys adaptive-input witness indis-
tinguishability. Additionally, the proof of knowledge property remains
also if the adversarial prover selects instances adaptively at last round as
long as our transform is applied to a proof of knowledge belonging to the
widely used class of proofs of knowledge described in [9,21]. Since knowl-
edge of instances and witnesses is not needed before the last round, we
have that the first round can be precomputed and in the online/offline
setting our performance is similar to the one of [10].

Our new transform relies on the DDH assumption (in contrast to the
transforms of [6,10] that are unconditional).

Keywords: Σ-protocols · WI · PoKs · Delayed and adaptive input

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 63–92, 2016.
DOI: 10.1007/978-3-662-49896-5 3

64 M. Ciampi et al.

1 Introduction

Proofs of knowledge (PoKs) are ubiquitous in cryptographic protocols. When
enjoying additional features such as honest-verifier zero knowledge (HVZK), wit-
ness indistinguishability (WI) or zero knowledge (ZK), they are used as building
blocks in basically any protocol for secure computation. As such, the degree of
security and efficiency achieved by the underlying PoKs directly (and dramati-
cally) impacts on the security and efficiency of the larger protocol. For instance,
very efficient WI PoKs for specific languages, such as Discrete Log and DDH,
have been instrumental for constructing efficient maliciously secure two-party
computation (see [17] and references within). Furthermore, stronger security
notions of PoKs, such as soundness, WI and ZK in presence of adaptive-input
selection, are useful for constructing round-efficient protocols [18,25].

Proofs of Partial Knowledge. In [10], Cramer et al. showed how to construct
efficient PoKs for compound statements starting from Σ-protocols. More pre-
cisely, the compound statement consists of n instances, and the goal is to prove
knowledge of witnesses for at least k of the n instances. As such, these proofs
are named “proofs of partial knowledge” in [10]. The transform of [10] cleverly
combines n parallel executions of PoKs that are Σ-protocols in an efficient 3-
round public-coin perfect WI (k, n)-proof of partial knowledge. A similar result
was given in [26].

Note that, if efficiency is not a concern, proofs of partial knowledge were
already possible (with computational WI, though) thanks to the general con-
struction of Lapidot and Shamir (LaSh) [19]. Proving compound statements
via LaSh constructions however requires expensive NP reductions. On the other
hand, LaSh PoKs provide a stronger security guarantee: honest players use the
instances specified in the statements only in the last round, and security holds
even if the adversarial verifier (resp., prover) chooses the instances adaptively
after having seen the first (resp., second) round. LaSh’s construction is there-
fore an adaptive-input WI proof of partial knowledge for all NP. As mentioned
above, this property can be instrumental to save at least one round of commu-
nication, when the proof of partial knowledge is used in a larger protocol. The
construction shown in [10], instead, although efficient, does not provide any form
of adaptivity, as all the n instances must be fully specified before the protocols
starts. As a consequence, the better efficiency of [10] can be paid in additional
rounds compared to [19] when the construction is used in larger applications.

The Proof of Partial Knowledge of [6]. A very recent work by Ciampi et al. [6]
makes a first preliminary step towards closing the gap between [10,19]. [6] pro-
poses a different transform for WI proofs of partial knowledge that gives some
adaptiveness at the price of generality. Namely, their technique yields to a (1, 2)-
proof of partial knowledge where the knowledge of one of the two instances can
be postponed to the last round. In more details, they show a PoK for a state-
ment “x0 ∈ L0 ∨ x1 ∈ L1” such that x0 and x1 are not immediately needed (in
contrast to [10]). The honest prover needs x0 to run the 1st round while x1 is

Online/Offline OR Composition of Sigma Protocols 65

needed only in the 3rd round along with a witness for either x0 or x1. The veri-
fier needs to see x0 and x1 only at the end, in order to accept/reject the proof.
Ciampi et al. [6] defined the property of delayed input requiring that the honest
prover does not need to know the instance to start the protocol. In other words,
the need of the input is delayed to the very last round. For clarity, we stress that
a delayed-input protocol is not necessarily secure against inputs that have been
adaptively chosen. Indeed, their technique yields a proof of partial knowledge
that is delayed input for one of the instances but is not adaptively secure against
malicious provers (although it is adaptive-input WI). The security achieved by
their transform is sufficient for their target applications.

The Open Question and its Importance. The above preliminary progress leaves
open the following fascinating question: can we design an efficient transform
that yields an adaptive-input WI (k, n)-proof of partial knowledge where all n
instances are known only in the last round?

Previous efficient transforms require the a-priori knowledge of all instances or
of one out of two instances, even if the corresponding languages admit efficient
delayed-input Σ-protocols. For the sake of concreteness, assume one wants to
prove knowledge of the discrete logarithm of at least one of gx0 or gx1 . There
exists a very efficient Σ-protocol Σdl due to Schnorr [27], for proving knowledge
of one discrete log and that also enjoys the delayed-input property, i.e., the
prover can compute the first round without knowing the instance gx. However,
when we apply known transforms to combine Σdl, the resulting protocol loses
the delayed-input property, as it will still need either both instances gx0 and gx1 ,
if using [10], or at least one gx0 , to be specified in advance if using [6].

1.1 Our Results

In this work we study the above open question and give various positive answers.

Σ-Protocols and Adaptive-input Selection. We shed light on the relation between
delayed-input Σ-protocols and adaptive-input Σ-protocols. Recall that a Σ-
protocols enjoys a special soundness1 property, which means that given two
accepting transcripts for the same statement having the same first round, one
can efficiently extract a witness for that statement.

We show that in general Σ-protocols are delayed-input but are not adaptive-
input sound; that is, they are not sound if the malicious prover can choose
the statements adaptively. Indeed, in Sect. 4.1 we show how a malicious prover,
based on the second round played by the verifier, can craft a false statement that
will make the verifier accept (and the extractor of special soundness fail even
when the statement is true). The attack applies to very popular Σ-protocols
like Schnorr’s protocol for discrete logarithm (DLog), the protocol for proving
equality of DLogs for Diffie-Hellman (DH) tuples and the protocol of [22] for

1 In literature special soundness is often generalized to � > 2 accepting transcripts
with the bound of � being polynomial in the security parameter.

66 M. Ciampi et al.

proving knowledge of committed messages. These protocols all fall into a well
known class of protocols studied by Cramer in [9] and Maurer in [21].

The above issue was already noticed in [1] for the case of non-interactive zero-
knowledge arguments obtained from Σ-protocols by applying the Fiat-Shamir
transform [14]. Indeed there are in literature some incorrect use of the Fiat-
Shamir transform where the instance is not given in input to the random oracle.
As a consequence an adversarial prover can first create a transcript and then can
try to find an instance not in the language such that the transcript is accepting.
Of course in the random-oracle model the above issue has the trivial fix consisting
of giving the instance as input to the random oracle to generate the challenge.
This fix is meaningless in the standard model that is the focus of our work.

We then analyze the transform of [6], that is delayed-input with respect to
one instance only. We observe that when [6] combines protocols belonging to the
class of [9,21], it also suffers from the same attack, when the malicious prover
is allowed to adaptively choose his input. Therefore the transform of [6] is not
adaptive-input sound. We stress however, that in the applications targeted in [6]
the input that is specified only in the last round is chosen by the verifier. As such,
for their applications they do not need any form of adaptive-input soundness,
but only adaptive-input witness-indistinguishability (which they achieve). More-
over, the special soundness of their transform preserves security w.r.t. adaptive-
input selection. Summing up, [6] correctly defines and achieves delayed-input
Σ-protocols and adaptive-input WI and uses it in the applications. However
adaptive-input special soundness is not defined and not achieved in their work.

Adaptive-input Special-sound Σ-protocols. In light of the above discussion, a nat-
ural question is whether we can upgrade the security of the class of Σ-protocols
that are delayed input, but not adaptive-input sound. Towards this, we first clar-
ify the conceptual gap between adaptive-input selection and the adaptiveness
considered in [6] by defining formally adaptive-input special soundness. Then
we show a compiler that takes as input any delayed-input Σ-protocol belonging
to the class specified in [9,21], and outputs a Σ-protocol, that is adaptive-input
sound, i.e., it is sound even when the malicious prover adaptively chooses his
input in the last round. The main idea behind this compiler is to force the prover
to send correctly the first round of the Σ-protocol through another parallel run
of the Σ-protocol. This allows for the extraction of any witness in the proof of
knowledge. The compiler is shown in Sect. 4.2. We also show (in Sect. 5) that
nevertheless, [6]’s transform preserves the adaptivity of the Σ-protocols that are
combined. Namely, on input Σ-protocols that are already adaptive-input special
sound and WI, the [6]’s transform outputs a (1, 2)-proof of partial knowledge
that is an adaptive-input proof of knowledge as well.

Adaptive-input (k, n)-proofs of Partial Knowledge. The main contribution of this
paper is a new transform that yields the first efficient (k, n)-proofs of partial
knowledge where all n instances can be specified in the last round.

Our new transform takes as input a delayed-input Σ-protocol for a relation
R, and outputs a 3-round public-coin WI special-sound (k, n)-proof of partial
knowledge for the relation (R ∨ · · · ∨ R) where no instance is known at the

Online/Offline OR Composition of Sigma Protocols 67

beginning. The security of our transform is based on the DDH assumption. The
WI property of the resulting protocol holds also with respect to adaptive-input
selection, while the PoK property holds also in case of adaptive-input selection
only if the underlying Σ-protocol is adaptive-input special sound.

We also show a transform that admits instances taken from different relations.
Interestingly, this construction makes use as subprotocol of the first construction
where instances are taken from the same relation.

1.2 Our Technique

We provide a technique for composing a delayed-input Σ-protocol for a relation
R into a delayed-input Σ-protocol for the (k, n)-proof of partial knowledge for
relation (R∨. . .∨R). For a better understanding of our technique, it is instructive
to see why the transform of [10] (resp., [6]) requires that all n (resp., 1 out of 2)
instances are specified before the protocol starts.

Limitations of Previous Transforms. Let ΣR be a delayed-input Σ-protocol, and
let (R∨ . . .∨R) be the relation for which we would like to have a (k, n)-proof of
partial knowledge. The technique of [10] works as follows. The prover P , on input
the instances (x1 ∈ R ∨ . . . ∨ xn ∈ R), runs protocols ΣR, . . . , ΣR in parallel. P
gets only k witnesses for k different instances but it needs to somehow generate
an accepting transcript for all instances. How to prove the remaining n − k
instances without having the witness? The idea of [10] consists simply in letting
the prover generate the n − k transcripts (corresponding to the instances for
which he did not get the witnesses) using the HVZK simulator S associated to
the Σ-protocol. Additionally [10] introduces a mechanism that allows the prover
to control the value of exactly (n− k) of the challenges played by V , so that the
prover can force the transcripts computed by the simulator in (n − k) positions.

So, why does the transform of [10] need all instances to be known already in
the 1st round? The answer is that P needs to run S already in the 1st round, and
S expects the instance as input. Similar arguments apply for [6] as it requires
that 1 instance out of 2 is known already in the 1st round.

The Core Idea of Our Technique. Previous transforms fail because the prover
runs the HVZK simulator to compute the 1st round of some of the transcripts of
ΣR. Our core idea is to provide mechanisms allowing P to postpone the use of the
simulator to the 3rd round. The main challenge is to implement mechanisms that
are very efficient and preserve soundness and WI of the composed Σ-protocol.
We stress that we want to solve the open problems in full, and thus none of the
instances are known at the beginning of the protocol. To be more explicit, in the
1st round, the prover starts with the following statement (? ∈ LR∨. . . ∨? ∈ LR).

Assume we have a (k, n)-equivocal commitment scheme that allows the prover
to compute n commitments such that k of them are binding and the remaining
n − k are equivocal, and the verifier cannot distinguish between the two types of
commitment, where the k positions that are binding must be chosen already in
the commitment phase (a similar tool is constructed in [24]). With this gadget
in hand, we can construct a delayed-input (k, n)-proof of partial knowledge ΣOR

k,n

68 M. Ciampi et al.

as follows. Let (a, c, z) denote generically the 3 messages exchanged during the
execution of a Σ-protocol ΣR.

In the 1st round, P honestly computes ai for the i-th execution of ΣR. Here
we are using the fact that ΣR is delayed-input, and thus ai can be computed
without using the instance. Then he commits to a1, . . . , an using the (k, n)-
equivocal commitment scheme discussed above, where the k binding positions
are randomly chosen. Thus, the 1st round of protocol ΣOR

k,n consists of n com-
mitments. In the 2nd round V simply sends a single challenge c according to
ΣR. In the 3rd round, P obtains the n instances x1, . . . , xn and k witnesses. At
this point, for the instances xi for which he did not receive the witness, he will
use the HVZK simulator to compute an accepting transcript (ãi, c, z̃i) and then
equivocate the (n − k) equivocal commitments so that they decommit to the
new generated ãi. For the k remaining instances he will honestly compute the
3rd round using the committed input ai. Intuitively, soundness follows from the
fact that k commitments are binding, and from the soundness of ΣR. WI follows
from the hiding of the equivocal commitment scheme and the HVZK property
of ΣR. Note that in this solution we are crucially using the fact that we are
composing the same Σ-protocol so that P can use any of the ai committed in
the 1st round to compute an honest transcript. This technique thus falls short as
soon as we want to compose arbitrary Σ-protocols together. Nevertheless, this
transformation turns to be useful for the case of different Σ-protocols.

(k, n)-equivocal Commitment Scheme. A (k, n)-equivocal commitment scheme
allows a sender to compute n commitments com1, . . . , comn such that k of
them are binding and n − k are equivocal. We will use the language DH of
DH tuples and we will call non-DH a tuple that is not a DH tuple. We will
implement a (k, n)-equivocal commitment scheme very efficiently under the
DDH assumption as follows. In the commitment phase, the sender computes
n tuples T1 = (g1, A1, B1,X1), . . . , Tn = (gn, An, Bn,Xn) and proves that k out
of n tuples are not in DH (i.e., they are non-DH tuples). We show that this
can be done using the classical [10] (k, n)-proof of partial knowledge that can
be obtained starting with a Σ-protocol Σddh for DH. We then use the well
known [4,5,12,17] fact that Σ-protocols can be used to construct an instance-
dependent trapdoor commitment scheme, where the sender can equivocate if he
knows the witness for the instance. Thus, each tuple Ti can be used to com-
pute an instance-dependent trapdoor commitment comi using Σddh. comi will be
equivocal if Ti was indeed a DH tuple, it will be binding otherwise. Because
the sender proves that k tuples are not in DH, it holds that there are at least
k binding commitment. Hiding follows from the WI property of [10] and the
HVZK of Σddh. Commitment and decommitment can be completed in 3 rounds.

The Case of Different Σ-protocols. We now consider the case where we want to
compose Σ1, . . . , Σn for possibly different relations. Our (k, n)-equivocal com-
mitment does not help here because each ai is specific to protocol Σi, and cannot
be arbitrarily mixed and matched once the k witnesses are known.

For this case we thus use a different trick. We ask the prover to commit to
each ai twice, once using a binding commitment and once using an equivocal

Online/Offline OR Composition of Sigma Protocols 69

commitment. This again can be very efficiently implemented from the DDH
assumption as follows. For each i, P generates tuples T 0

i and T 1
i , that are such

that at most one can be a DH tuple. It then commits to ai twice using the instance-
dependent trapdoor commitment associated to tuple T 0

i and tuple T 1
i . Because at

most one of the two tuples is a DH tuple, at most one of the commitments of ai

can be later equivocated. Thus the 1st round of our transformation consists of 2
commitments of ai for 1 ≤ i ≤ n. In the 3rd round, when P receives instances
x1, . . . , xn and k witnesses, he proceeds at follows. For each i, if P knows the wit-
ness for xi, he will open the binding commitment for position i, and compute zi

using the honest prover procedure of Σi. Instead, if P does not have a witness for
xi, he will compute a new ãi, zi using the simulator on input xi, c and open the
equivocal commitment in position i. At the end, for each position i, one commit-
ment has remained unopened.

This mechanism allows an honest prover to complete the proof with the
knowledge of only k witnesses. However, what stops a malicious prover to always
open the equivocal commitments and thus complete the proof without knowing
any of the witnesses? We avoid this problem by requiring P to prove that, among
the n tuples corresponding to the unopened commitments, at least k out of n
tuples are DH tuples. This directly means that k of the opened commitments
were constructed over non-DH tuples, and therefore are binding.

Now note that proving this theorem requires an (k, n)-proof of partial knowl-
edge in order to implement Σddh, where the instance to prove, i.e., the tuple
that will be unopened, is known only in the 3rd round when P knows for which
instances he is able to open a binding commitment. Here we crucially use the
(k, n)-proof of partial knowledge for the same Σ-protocol developed above mak-
ing sure to first run our compiler that strengthen Σddh with respect to statements
adaptively selected by a malicious prover.

1.3 Comparison with the State of the Art

In Table 1 we compare our results with the relevant related work. We con-
sider [19], a 3-round public-coin WIPoK that is fully adaptive-input and that
works for any NP language. We also consider [10] that proposed efficient 3-
round public-coin WI proofs of partial knowledge (though, without supporting
any adaptivity). Finally, we consider [6] since it was the only work that faced
the problem of combining together efficiency and some form of delayed-input
instances. The last row refers to our main result that allows to postpone knowl-
edge of all the instances to the last round. The 2nd column refers to the compu-
tational assumptions needed by [19] (i.e., one-way permutations) and our main
result (i.e., DDH assumption). The 3rd column specifies the type of WI depend-
ing on the adaptive selection of the instances from the adversarial verifier. The
4th column specifies the soundness depending on the adaptive selection of the
instances from the adversarial prover.

70 M. Ciampi et al.

Table 1. Comparison with previous work.

Assumption Adaptive WI Adaptive PoK NP reduction

LaSh90 [19] OWP k out of n (all adaptive) k out of n (all adaptive) Yes

CDS94 [10] / / / No

CPSSV16 [6] / 1 out of 2 (1 adaptive) / No

This work (main result) DDH k out of n (all adaptive) k out of n (all adaptive) No

1.4 Online/Offline Computations

Our result has the advantage that the prover can compute the first round without
knowing instances and witnesses. The first round is therefore an offline phase.
When the prover interacts with the verifier (online phase) he sends the first
round precomputed and computes only the third round of the protocol. We
stress that [10] requires to know the instances already to compute the first round.
Furthermore the work of [19] allows the prover to compute the first round offline
but in the online phase the prover must perform an NP reduction.

In Table 22 we compare the effort of the prover in the online phase in our work
and in [10,19]. We consider a prover that proves knowledge of discrete logarithms
for 1 instance out of 2 instances (1st column) and a prover that proves knowledge
of discrete logarithms for k instances out of n instances (2nd column). As we
noted, above in the online phase of [19] the prover computes an NP reduction
(2nd row). For our construction and the one of [10] we count the number of
modular3 exponentiations that are computed in the online phase (3rd and 4th
rows). Below we briefly describe how we have computed the above costs. In [10]
the number of exponentiations is 2n − k. This comes from the fact that the first
round of Schnorr’s Σ-protocol requires one exponentiation while the simulator
requires two exponentiations. In [10] the simulator is executed 2(n−k) times and
moreover k exponentiations are needed to run the prover of Schnorr’s protocol.

Table 2. Comparison with previous work proving knowledge of discrete logarithms.
The table illustrates the computations of the prover in the online phase.

(1, 2) DLogs (k, n) DLogs

LaSh90 [19] NP-reduction NP-reduction

CDS94 [10] 3 exps 2n − k exps

CPSSV16 [6] 4 exps /

This work (main result) 2 exps [4 exps] 2(n − k) exps [4(n − k) exps]

2 The actual amount of computations significantly depends on the precise versions of
the subprotocols used in the construction. The adaptive-input special-sound versions
of the subprotocols are more expensive than their non-adaptive counterparts.

3 We will omit the word modular from now on.

Online/Offline OR Composition of Sigma Protocols 71

In the (1,2)-proof of partial knowledge of [6], the 1st round requires 3 expo-
nentiations. Indeed, in the 1st round of [6] the prover runs Schnorr’s simulator
and computes the 1st round of Schnorr’s Σ-protocol. The 3rd round of [6] has
a different analysis depending on which witness is used. When the prover of [6]
uses the witness for an adaptively chosen instance, then there is no addition
exponentiation. Otherwise, another execution of Schnorr’s simulator is required.
For this reason, in the worst case the 3rd round of [6] costs two exponentiations.
Note that in the execution of the construction of [6] 4 exponentiations are per-
formed in the online phase, since only the 1st round of Schnorr’s Σ-protocol can
be precomputed.

The final row corresponds to our main result and shows the general case
of k instances out of n. Our construction involves 10n − k exponentiations.
Indeed a commitment computed according to the commitment scheme described
previously based on DH tuples costs 4 exponentiations. In our construction in
the 1st round we sample n−k DH tuples and k non-DH, sampling a DH/non-DH
tuple costs 3 exponentiations, so this operation costs 3n. Also in the 1st round
we compute n−k equivocal commitments and k binding commitments, and this
sums up to 2n + 2k modular exponentiations. Furthermore the prover computes
the 1st round of Schnorr’s Σ-protocol n times and this costs n exponentiations.
Moreover it has to run [10] to prove knowledge of witnesses for k instances
out of n instances, and this costs 2n − k exponentiations. The only operations
that involve exponentiations at the third round are the n − k executions of the
simulator of Schnorr’s Σ-protocol. Therefore the online phase costs 2(n − k).

The adaptive-input special-sound version of our construction costs 13n − 3k
exponentiations. Consider that in the adaptive-input special-sound version of
Schnorr’s Σ-protocol an execution of the simulator costs 4 exponentiations.
Moreover computing the 1st round involves 2 exponentiations. Hence the first
round of our adaptive-input special-sound construction involves 6n+k exponen-
tiations and the online phase costs 4(n − k) exponentiations.

The exponentiations in square brackets specify the cost of our main result
when Schnorr’s Σ-protocol is transformed into an adaptive-input special-sound
Σ-protocol. The analysis for the case of 1 out of 2 is similar with k = 1 and
n = 2 but in this case, in the offline phase, we do not consider the cost of [10]
since the correctness of the pair of tuples can be self-verified.

2 Preliminaries

We use λ as security parameter. A(x) denotes the probability distribution of the
output of a probabilistic algorithm A when running with x as input. We will
use A(x; r) to denote the randomness r used by A. PPT stands for probabilistic
polynomial time.

If R is a subset of {0, 1}� × {0, 1}� for which membership of (x,w) to R
can be decided in time polynomial in |x| then we say that R is a polynomial-
time relation and w is a witness for the instance x. Given a polynomial-time
relation R, LR defined as LR = {x|∃w : (x,w) ∈ R} is an NP language. For

72 M. Ciampi et al.

generality, we define L̂R to be the input language that includes both LR and
all well formed instances that do not have a witness, as already done in [15]. It
follows that LR ⊆ L̂R and membership in L̂R can be tested in polynomial time.
In proof systems for relation R, the verifier runs the protocol only if the common
input x belongs to L̂R, while it rejects immediately common inputs not in L̂R.

Given two interactive machines M0 and M1, we denote by 〈M0(x0),
M1(x1)〉(x2) the output of M1 when running on input x1 with M0 running
on input x0, both running on common input x2.

Definition 1. A pair (P,V) of PPT interactive machines is a complete protocol
for an NP-language L with relation R if the following property holds:

– Completeness. For every common input x ∈ L and witness w such that
(x,w) ∈ R, it holds that Prob [〈P(w),V〉(x) = 1] = 1.

Definition 2. A complete protocol (P,V) is a proof system for an NP-language
L with relation R if the following property holds:

– Soundness. For every interactive machine P� there exists a negligible function
ν such that for every x /∈ L: Prob [〈P�,V〉(x) = 1] ≤ ν(|x|).

A proof system (P,V) is public coin if V sends only random bits.

Definition 3 ([11]). Let k : {0, 1}∗ → [0, 1] be a function. A protocol (P,V) is
a proof of knowledge for the relation R with knowledge error k if the following
properties are satisfied:

– Completeness: if P and V follow the protocol on input x and private input w
to P where (x,w) ∈ R, then V always accepts.

– Knowledge Soundness: there exists a constant c > 0 and a probabilistic oracle
machine Extract, called the extractor, such that for every interactive prover
P� and every input x, the machine Extract satisfies the following condition.
Let ε(x) be the probability that V accepts on input x after interacting with
P�. If ε(x) > k(x), then upon input x and oracle access to P�, the machine
Extract outputs a string w such that (x,w) ∈ R within an expected number of
steps bounded by |x|c/(ε(x) − k(x)).

A transcript τ of an execution of a public-coin protocol Π = (P,V) for
statement x consists of the sequence of messages exchanged P and V. We say that
τ is accepting if V outputs 1. Two accepting transcripts (a, c, z) and (a′, c′, z′)
for a 3-round public coin proof system with the same common input constitute
a collision iff a = a′ and c
= c′. The one message sent by the verifier V in a
3-round public coin proof system is called the challenge.

Σ-protocols. The most common form of proof system used in practice consists of
3-round protocols referred to as Σ-protocols. For several useful languages there
exist efficient Σ-protocols, and they are easy to work with as already shown in
many transforms [2,3,8,12,20,22,23,28,29].

Online/Offline OR Composition of Sigma Protocols 73

Definition 4. A 3-round public-coin protocol Π = (P,V) is a Σ-protocol for
an NP-language L with polynomial-time relation R iff the following additional
properties are satisfied:

– Completeness. When P,V execute the protocol on input x and private input
w to P where (x,w) ∈ R, the verifier V always accepts.

– Special Soundness. There exists an efficient algorithm Extract that, on input
x and a collision for x, outputs a witness w such that (x,w) ∈ R.

– Special Honest Verifier Zero Knowledge (special HVZK, SHVZK). There
exists a PPT simulator algorithm S that, on input an instance x ∈ L and
challenge c, outputs (a, z) such that (a, c, z) is an accepting w.r.t. x. Moreover,
the distribution of the output of S on input (x, c) is perfectly4 indistinguishable
from the distribution of the transcript obtained when V sends c as challenge
and P runs on common input x and any private input w such that (x,w) ∈ R.

A security parameter 1λ for a Σ-protocol represents challenge length. Therefore
we have that a Σ-protocol with a sufficiently large security parameter 1λ is also
a proof system.

Theorem 1 ([10]). Every Σ-protocol is Perfect WI.

Theorem 2 ([11]). Let Π be a Σ-protocol for a relation R with security para-
meter λ. Then Π is a proof of knowledge with knowledge error 2−λ.

From the above theorem we have that every Σ-protocol with a sufficiently
long challenge is a proof of knowledge with negligible knowledge error. We
observe that in the proof of the above theorem only completeness and spe-
cial soundness of the Σ-protocol are used. Therefore the theorem regardless of
HVZK. Furthermore, using the same proof approach used in the security proof
of this theorem we can consider a relaxed notion of special soundness, t-special
soundness, requiring t ≥ 2 transcripts to extract the witness, with t = poly(λ).
This is still sufficient to obtain a proof of knowledge with negligible soundness
error when the challenge is sufficiently long.

Therefore in this work when interested in proving the proof of knowledge
property we will without loss of generality just prove t-special soundness for a
polynomially bounded t and completeness.

Definition 5 (Delayed-Input Σ-protocol [6]). A Σ-protocol Π = (P,V)
for a relation R is delayed-input if P computes the first round having as input
only the security parameter 1λ and � = |x|.5

4 In this work we stick with the requirement of perfect SHVZK for Σ-protocols. Various
other papers in literature considered also special computational HVZK.

5 For simplicity in the rest of the paper we do not specify anymore that the algorithms
P, V take as input � when the instance x is not known.

74 M. Ciampi et al.

2.1 Adaptive-Input Special Soundness and Proof of Knowledge

The special soundness of a Σ-protocol strictly requires the statement x ∈ L to be
unchanged in the 2 accepting transcripts. We introduce a stronger notion referred
to as adaptive-input special soundness. Roughly speaking, we require that it is
possible to extract witnesses from a collision even if the two accepting 3-round
transcripts are for two different instances. It is easy to see that adaptive-input
special soundness implies extraction against provers that choose the theorem to
be proved after seeing the challenge.

Definition 6. A Σ-protocol Π for relation R enjoys adaptive-input special
soundness if there exists an efficient algorithm AExtract that, on input accepting
3-round transcripts (a, c1, z1) for input x1 and (a, c2, z2) for input x2, outputs
witnesses w1 and w2 such that (x1, w1) ∈ R and (x2, w2) ∈ R.

In this work we also define a protocol Π = (P,V) that is adaptive-input proof
of knowledge. The adaptive-input proof of knowledge property is the same as
the proof of knowledge property, with the difference that the adversarial prover
P� can choose the statement when the last round is played. We require that
the instance x given in output by AExtract must be perfect indistinguishable
from an instance x′ given in output by P� in an execution of Π with V. The
previous discussion about proving the proof of knowledge property from �-special
soundness also applies when proving adaptive-input proof of knowledge from
adaptive-input �-special soundness.

2.2 Adaptive-Input Witness Indistinguishability

The notion of adaptive-input WI formalizes security of the prover with respect
to an adversarial verifier A that adaptively chooses the input instance to the
protocol; that is, after seeing the first message of the prover. More specifically,
for a delayed-input 3-round complete protocol Π, we consider game ExpAWIΠ,A
between a challenger C and an adversary A in which the instance x and two
witnesses w0 and w1 for x are chosen by A after seeing the first message of the
protocol played by the challenger. The challenger then continues the game by
randomly selecting one of the two witnesses, wb, and by computing the third
message by running the prover’s algorithm on input the instance x, the selected
witness wb and the challenge received from the adversary. The adversary wins
the game if she can guess which of the two witnesses was used by the challenger.

We now define the adaptive-input WI experiment ExpAWIΠ,A(λ, aux). This
experiment is parameterized by a delayed-input 3-round complete protocol Π =
(P,V) for a relation R and by PPT adversary A. The experiment has as input
the security parameter λ and auxiliary information aux for A.

ExpAWIΠ,A(λ, aux):

1. C randomly selects coin tosses r and runs P on input (1λ; r) to obtain a;
2. A, on input a and aux, outputs instance x, witnesses w0 and w1 such that

(x,w0), (x,w1) ∈ R, challenge c and internal state state;

Online/Offline OR Composition of Sigma Protocols 75

3. C randomly selects b ← {0, 1} and runs P on input (x,wb, c) to obtain z;
4. b′ ← A((a, c, z), aux, state);
5. if b = b′ then output 1 else output 0.

We set AdvAWIΠ,A(λ, aux) =
∣

∣Prob
[

ExpAWIΠ,A(λ, aux) = 1
] − 1

2

∣

∣ .

Definition 7 (Adaptive-Input Witness Indistinguishability). A delayed-
input 3-round complete protocol Π is adaptive-input WI if for any PPT adver-
sary A there exists a negligible function ν such that for any aux ∈ {0, 1}∗ it holds
that AdvAWIΠ,A(λ, aux) ≤ ν(λ).

About DDH. The DDH assumption posits the hardness of distinguishing a ran-
domly selected DH tuple from a randomly selected non-DH tuple with respect to
a group generator algorithm IG. For sake of concreteness, we consider a specific
group generator that, on input 1λ, randomly selects a λ-bit prime p such that
q = (p − 1)/2 is also prime and outputs the (description of the) order q group G
of the quadratic residues modulo p along with a random generator g of G.

2.3 A Σ-Protocol for Partial Knowledge of DH/Non-DH Tuples

Let G be a cyclic group of order p. We say that T = (g,A,B,X) ∈ G4 is oneNDH
if there exits α, β ∈ Zp such that A = gα, B = gβ ,X = gαβ+1. In this section we
describe a Σ-protocol for proving that at least k out of n tuples are oneNDH.
The Σ-protocol is based on the one of [10] and we stress that, just as in [10],
the Σ-protocol is perfect WI.

Formally, for 1 ≤ k ≤ n − 1, we construct Σ-protocol Πnddh
k,n = (Pk,n,Vk,n)

for the polynomial-time relation

NDHk,n =
{((

(g1, A1, B1, X1), . . . , (gn, An, Bn, Xn)
)
, (αi1 , . . . , αik , βi1 , . . . , βik)

)
:

1 ≤ i1 < · · · < ik ≤ n ∧ Aij = g
αij

ij
∧ Bij = g

βij

ij
∧ Xij = g

αij
βij

+1

ij
, for j = 1, . . . , k

}

of the sequences of the n-tuples such that at least k of them are oneNDH. The
prover Pk,n and the verifier Vk,n of Πnddh

k,n , on input n tuples (g1, A1, B1,X1), . . .
. . . , (gn, An, Bn,Xn) constructs tuples (gi, Ai, Bi, Yi) setting Yi = Xi/gi, for i =
1, . . . , n.

Then prover and verifier start Σ-protocol Σddh of [10] for proving that at
least k of n constructed tuples are DH.

Theorem 3. For every n and 1 ≤ k ≤ n − 1, Πddh
k,n is a Σ-protocol for the

polynomial-time relation NDHk,n with perfect WI.

Proof. The perfect WI property follows from the perfect WI of [10]. The proof
is then completed by the following two simple observations. If at least k of the
input tuples are oneNDH then at least k of the constructed tuples (gi, Ai, Bi, Yi)
are DH and the prover has a witness of this fact. On the other hand, if fewer
than k of the input tuples are oneNDH then the transformed tuples contain
fewer than k DH tuples.

76 M. Ciampi et al.

2.4 Commitments from Σ-protocols

We define the notion of an Instance-Dependent Trapdoor Commitment scheme
associated with a polynomial-time relation R and show a construction that uses
Σ-protocols and fits this definition.

Definition 8 (Instance-Dependent Trapdoor Commitment Scheme).
Let R be a polynomial-time relation. An Instance-Dependent Trapdoor Com-
mitment (a IDTC, in short) scheme for R with message space M is a quadruple
of PPT algorithms (Com,Dec, (Fake1,Fake2)) where Com is the randomized com-
mitment algorithm that takes as input an instance x ∈ L̂R (with |x| = poly(λ))
and a message m ∈ M and outputs commitment com and decommitment dec.
Dec is the verification algorithm that takes as input (x, com, dec,m) and decides
whether m is the decommitment of com.

(Fake1,Fake2) are randomized algorithms. Fake1 takes as input an instance
x, a witness w s.t. (x,w) ∈ R (|x| = poly(λ)) and outputs commitment com,
and equivocation information rand. Fake2 takes as input x, w, m, and rand,
and outputs dec s.t. Dec, on input (x, com, dec,m), accepts m as decommitment
of com.

An Instance-Dependent Trapdoor Commitment scheme has the following
properties:

– Correctness: for all x ∈ L̂R, all m ∈ M , it holds that

Prob [(com, dec) ← Com(x,m) : Dec(x, com, dec,m) = 1] = 1.

– Binding: if x /∈ L then for every commitment com there exists at most one
message m s.t. Dec(x, com, dec,m) = 1 for any value dec.

– Hiding: for every receiver A, for every auxiliary information aux, for all
x ∈ LR and all for m0,m1 ∈ M , it holds that

Prob
[

b ← {0, 1}; (com, dec) ← Com(1λ, x, mb) : b = A(aux, x, com, m0, m1)
]

≤ 1

2
.

– Trapdoorness: the following two families of probability distributions are per-
fect indistinguishable (namely the two probability distributions coincide for all
(x,w,m) such that (x,w) ∈ R and m ∈ M):

{(com, rand) ← Fake1(x,w); dec ← Fake2(x,w,m, rand) : (com, dec)}
{(com, dec) ← Com(x,m) : (com, dec)}.

IDTC from Σ-protocol. Our construction follows similar constructions of [11,
13,17]. Let Π = (P,V) be a Σ-protocol for polynomial-time relation R with
the associated NP-language LR and challenge length λ. Let S be the special
HVZK simulator for Π and let (x,w) be s.t. (x,w) ∈ R. Now we show an IDTC
CSΠ = (ComΠ ,DecΠ , (FakeΠ

1 ,FakeΠ
2)).

– ComΠ takes as input instance x and message m ∈ {0, 1}λ, sets (com, dec) ←
S(x,m) and outputs (com, dec).

Online/Offline OR Composition of Sigma Protocols 77

– DecΠ takes as input instance x and transcript (com,m, dec), runs V on input
the instance and the transcript and returns V’s output.

– FakeΠ
1 takes as input instance x and witness w, samples random string ρ

and runs P on input (1λ, x, w; ρ) to get the 1st message a of Π. FakeΠ
1 sets

rand = ρ, com = a and outputs (com, rand).
– FakeΠ

2 takes as input x,w,m, rand and runs P on input (1λ, x, w,m, rand) to
get the 3rd message z of Π. FakeΠ

1 sets dec = z and outputs dec.

Theorem 4. CSΠ is an IDTC.

Proof. The security proof relies only on the properties of Π. Correctness follows
from the completeness of Π. Binding follows from the special soundness of Π.
Hiding and Trapdoorness follow from the SHVZK and the completeness of Π.

3 Adaptive-Input (k, n)-Proof of Partial Knowledge

In this section we describe in details our new transform for compound statements.
For the high-level overview the reader is referred to Sect. 1.2.

Let R be a polynomial-time relation admitting a delayed-input Σ-protocol
Π = (P,V). Recall that delayed-input means that the prover does not need the
instances of the statement to play the 1st round.

We describe a compiler that on input Π for R outputs a delayed-input
WIPoK Πk = (Pk,Vk) for the (k, n)-threshold relation Rk defined as follows

Rk =
{((

x1, . . . , xn

)

,
(

wi1 , . . . wik

))

: 1 ≤ i1 < · · · < ik ≤ n

and (xij , wij) ∈ R, for j = 1, . . . , k and xj ∈ L̂R, for j = 1, . . . , n
}

.

The main tools involved in our construction are the protocol Πnddh
k,n described

in Sect. 2.3, and an IDTC scheme described in Sect. 2.4. More precisely the IDTC
scheme is constructed using a Σ-protocol for DDH. Therefore given a tuple
T = (g,A,B,X) (either DH or non-DH), a message m and a randomness r, we
can compute (com, dec) using the scheme described in Sect. 2.4. If T is a DH
tuple, with A = gα, then α represents the trapdoor for the commitment com and
dec is equal to ⊥. In this case given a randomness r, com, the tuple T and α for
every message m it is possible to compute dec such that a receiver accepts com
as a commitment of the message m.

1st Round. Pk ⇒ Vk:
1. Set (G, p, g) ← IG(1λ).
2. Randomly choose tuples T1 = (g1, A1, B1,X1), . . . , Tn = (gn, An, Bn,Xn)

of elements of G under the constraint that exactly k are oneNDH and
n − k are DH, along with α1, . . . , αn such that Ai = gαi

i , for i = 1, . . . , n.
3. Let b1, . . . , bk denote the indices of the k oneNDH tuples and ˜b1, . . . ,˜bn−k

denote the indices of the n − k DH tuples.
4. Run the prover of Πnddh

k,n on input T = (T1, . . . , Tn), witnesses
(αb1 , . . . , αbk) and randomness rk,n thus obtaining message ak,n. Send
ak,n to Vk.

78 M. Ciampi et al.

5. For i = 1, . . . , n:
Compute the first round ai of Π by running P with randomness ri.
Compute pair (comi, deci) of commitment and decommitment
of ai using Ti.
Send (Ti, comi) to Vk.

2nd Round. Vk ⇒ Pk: randomly select a challenge c and send it to Pk.
3rd Round. Pk ⇒ Vk:

1. Receive inputs (x1, . . . , xn) and witnesses (wd1 , . . . , wdk
) for inputs

xd1 , . . . , xdk
(we denote by ˜d1, . . . , ˜dn−k the indices of the inputs for which

no witness has been provided).
2. Compute the third round of Πnddh

k,n using c as challenge to get zn,k and
send it to Vk.

3. Pick a random permutation σ of {1, . . . , k} to associate each of the k
oneNDH tuples Tb1 , . . . , Tbk with one of the k inputs xd1 , . . . , xdk

for which
a witness is available.

4. For i = 1, . . . , k:
Set j = dσ(i) and tj = bi.
Compute zj by running P on input (xj , wj), atj , randomness rtj and
challenge c.
Set Mj = (j, tj , dectj , atj , zj).

5. Pick a random permutation τ of {1, . . . , n − k} to associate each of the
n − k DH tuples T

˜b1
, . . . , T

˜bn−k
to one of the k inputs x

˜d1
, . . . , x

˜dn−k
for

which no witness is available.
6. For i = 1, . . . , n − k:

Set j = ˜dτ(i) and tj = ˜bi.
Run simulator S on input xj and c obtaining (aj , zj).
Use trapdoor αtj to compute decommitment dectj of comtj as aj .
Set Mj = (j, tj , dectj , aj , zj).

7. For j = 1, . . . , n: send Mj to Vk.
Vk accepts if and only if all the following conditions are satisfied:

1. (an,k, c, zn,k) is an accepting transcript for Vnddh
k,n with input T .

2. All tj ’s are distinct.
3. For j = 1, . . . , n: dectj is a valid decommitment of comtj with respect to

Ttj .
4. For j = 1, . . . , n: (aj , c, zj) is accepting for V with input xj .

We will show now that Πk is a (adaptive-Input) PoK and is adaptive-input
WI for the relation Rk.

3.1 (Adaptive-Input) Proof of Knowledge

Theorem 5. Protocol Πk is a proof of knowledge for Rk.

Proof. The completeness property follows from the completeness of protocols
Πnddh

k,n and Π, and from the correctness and trapdorness property of the Instance-
Dependent Trapdoor Commitment scheme used.

Online/Offline OR Composition of Sigma Protocols 79

Now we proceed by proving that our protocol is ((n−1) ·k+2)-special sound
and then, using the arguments of Sect. 2 about the proof of knowledge property
of protocols that enjoy t-special soundness, we can conclude the proof claiming
that Πk is a proof of knowledge. There exists an efficient extractor that, for
any sequence (x1, . . . , xn) of n inputs and for any set of N = (n − 1) · k + 2
accepting transcripts of Πk that share the same first message and have different
challenges, outputs the witnesses of k of the n inputs. The extractor is based on
the following observations.

First of all, observe that, by the special soundness of Πn,k, it is possible to
extract the witness that k of the tuple T1, . . . , Tn appearing in the first message
are oneNDH. Let us denote by b1, . . . , bk the indices of the oneNDH tuples. This
implies that commitments comb1 , . . . , combk that appear in the shared first round
of the N transcripts will be opened to the same strings ab1 , . . . , abk . We also
observe that if two transcripts use the same input xi with the same oneNDH
tuple Tbi then we can extract two transcripts of the Σ-protocol Π that share the
same first message and have two different challenges. By the special soundness
of Π there exists an extractor that efficiently extracts a witness. In other words,
in order to be able to extract a witness for xi, xi has to be associated with the
same oneNDH tuple in two distinct transcripts.

The extractor willing to get k witnesses considers the N transcripts one
at the time and stops as soon as it reaches a special transcript Cl in which,
for j = 1, . . . , k, tuple Tbj is associated with input xdj

in Cl and in at least a
transcript Clj with lj < l. Clearly, once such a transcript is reached the extractor
has obtained k witnesses. Now observe that a pair (oneNDH tuple, input xi) can
be used to eliminate at most one transcript. Moreover, there are n · k such pairs
and the first transcript exhibits exactly k of these pairs. Therefore the set of N
input transcripts contains at least one special transcript.

Theorem 6. If Π is adaptive-input special sound then Πk is an adaptive-input
proof of knowledge for Rk.

Proof. We prove the following stronger statement. There exists an efficient algo-
rithm that on input 2 accepting transcripts (a, c1, z1) (a, c2, z2) for Πk, where

– the first one is accepting with respect to a sequence of n theorems (x1
1, . . . , x

1
n),

– the second one is accepting with respect to a sequence of n (potentially dif-
ferent from the previous one) theorems (x2

1, . . . , x
2
n),

– share the same first round and
– have different challenges, outputs, for each of the two sequence, k witnesses

(for a total of 2 · k witnesses).

The extractor is based on the following observations.
First of all, observe that, by the special soundness of protocol Πn,k, it is

possible to extract the witness certifying that k of the tuple T1, . . . , Tn appearing
in the first message are oneNDH let us denote by b1, . . . , bk the indices of the
oneNDH tuples. This implies that commitments comb1 , . . . , combk that appear in
the common first round of the N transcripts will be opened to the same strings
ab1 , . . . , abk .

80 M. Ciampi et al.

To conclude the proof we observe that if two transcripts use the same
oneNDH tuple Tbi then we can obtain two transcripts of Σ-protocol Π that
share the same first message and have two different challenges. By the adaptive-
input special-soundness property of Π there exists an extractor that outputs a
witness.

3.2 Adaptive-Input Witness Indistinguishability

Here we prove that Πk is WI even when A can select instances and witnesses
adaptively after receiving the first round. We have the following theorem.

Theorem 7. Under the DDH assumption, if Π is SHVZK for R then Πk is
adaptive-input WI for relation Rk.

Proof. Let us fix a PPT adversary A and let us denote by X and W 0 and W 1

the instance and the witnesses of Πk output by A at Step 2 of ExpAWIΠk,A.
More precisely, we let X = (x1, . . . , xn) be the sequence of n instances output
by A and W 0 = ((w0

1, d
0
1), . . . (w

0
k, d0k)) and W 1 = ((w1

1, d
1
1), . . . (w

1
k, d1k)) the

two sequences of witnesses. We remark that (xdb
i
, wb

i) ∈ R for i = 1, . . . , k and
b = 0, 1 and that i
= j implies that d0i
= d0j and d1i
= d1j .

Let m ≤ k be the number of instances of Π in X for which W 1 contains a
witness but W 0 does not. Obviously, since W 0 and W 1 contain witnesses for the
same number k of instances of Π in X, it must be the case that m is also the
number of instances of Π in X for which W 0 contains a witness and W 1 does
not. We can rename the instances of X, so that W 0 and W 1 can be written as

W 0 =
(

(w0
1,m + 1), . . . , (w0

m, 2m), (w0
m+1, 2m + 1), (w0

k,m + k)
)

and

W 1 =
(

(w1
1, 1), . . . , (w1

m,m), (w1
m+1, 2m + 1), . . . , (w1

k,m + k)
)

.

For our proof we now consider the case in which m = 0 and m
= 0. When
m = 0 we have that W 1 and W 0 contains witnesses for the same theorems (for
Π). Therefore by the perfect-WI property of Π6 we can claim that if m = 0
then AdvAWIΠk,A(λ, aux) = 0. Now we consider the more interesting case where
m
= 0.

We define the intermediate sequences of witnesses W1, . . . , Wk in the follow-
ing way.

1. For i = 0, . . . , m: Wi consists of witnesses

Wi =
(

(w1
1, 1), . . . , (w1

i , i), (w0
i+1,m + i + 1), . . .

. . . , (w0
m, 2m), (w0

m+1, 2m + 1), . . . , (w0
m+k,m + k)

)

.

Note that Wi contains witnesses for (x1, . . . , xi, xm+1+i, . . . , x2m). Moreover,
W0 coincides with W 0 and in Wm the first m witnesses are from W 1 and the
remaining are from W 0.

6 We observe that Σ-protocols enjoy SHVZK and therefore by Theorem 1 we can claim
that every Σ-protocol is also perfect WI.

Online/Offline OR Composition of Sigma Protocols 81

2. For i = m + 1, . . . , k: Wi consists of witnesses

Wi =
(

(w1
1, 1), . . . , (w1

m,m), (w1
m+1, 2m + 1), . . .

. . . , (w1
m+i,m + i), (w0

m+i+1,m + i + 1), . . . , (w0
m+k,m + k)

)

.

It is easy to see that Wk coincides with W 1.

For i = 0, . . . , k, we define hybrid experiment Hi as the experiment in which
the challenger C uses sequence of witnesses Wi to complete the third step of
the experiment ExpAWIΠk,A. Clearly, H0 is the experiment ExpAWIΠk,A when C
picks b = 0 and Hk is the same experiment when C picks b = 1. We conclude the
proof by showing that, for i = 0, . . . , k − 1, Hi and Hi+1 are indistinguishable.

We start by proving indistinguishability of Hi and Hi+1 for i = 0, . . . , m−1.
We remind the reader that, in Hi and Hi+1, the challenger C uses witnesses for
the following k inputs:

Hi x1 · · · xi xm+i+1 xm+i+2 · · · x2m x2m+1 · · · xm+k

Hi+1 x1 · · · xi xi+1 xm+i+2 · · · x2m x2m+1 · · · xm+k

To prove indistinguishability of Hi and Hi+1 we consider six intermediate
hybrids: H1

i , . . . ,H6
i .

1. H1
i (λ, aux) differs from Hi(λ, aux) in the way that the accepting transcript

for the theorem xi+1 is computed. More precisely in Hi(λ, aux) the SHVZK
simulator of Π was used to compute the transcript for xi+1 while in H1

i (λ, aux)
the transcript for xi+1 is computed using the honest-prover procedure that
has also wi+1 as input. To prove the indistinguishability of the hybrids we can
easily invoke the SHVZK property of Π. We remark that this is possible only
because the commitment of the first round of Π with respect to the theorem
xi+1 is hiding.

2. H2
i (λ, aux) differs from H1

i (λ, aux) in the way the tuples used to compute the
commitments are chosen. More precisely k tuples oneNDH are chosen, n−k−1
tuple DH are chosen and the last tuple is chosen non-DH. The additional non-
DH tuple is used to compute the commitment of the first message of Π that
will be associated to the theorem xi+1 in the third round. Even in this case is
possible to compute an accepting transcript for Πk because k + 1 witnesses
are used instead of k, therefore there is no problem if k + 1 commitments are
binding. The indistinguishability between the two hybrids is ensured by the
DDH-assumption.

3. H3
i (λ, aux) the only difference between this hybrid experiment and

H2
i (λ, aux) is that instead of a non-DH tuple, a oneNDH tuple is chosen.

As in the previous hybrid experiment the considered tuple is used to com-
pute the commitment of the first message of Π that will be associated to the
theorem xi+1 in the third round. The indistinguishability between the two
hybrids is ensured by the DDH-assumption.

4. H4
i (λ, aux). The differences between this hybrid and H3

i (λ, aux) are that we
use k tuples oneNDH n−k−1 tuples DH and one tuple non-DH. In this case

82 M. Ciampi et al.

the additional non-DH tuple is used to commit the first round of Π that will
be use as the first round of the accepting transcript with respect to xm+i+1.
By the DDH-assumption and perfect WI property of Πn,k we can claim that
this hybrid is indistinguishable from the previous one.

5. H5
i (λ, aux). The differences between this hybrid and H4

i (λ, aux) are that we
again use k oneNDH and n−k DH tuples. In this case the additional DH tuple
is used to commit to the first round of Π that will be used as the first round
of the accepting transcript with respect to xm+i+1. By the DDH-assumption
we can claim that this hybrid is indistinguishable from the previous one.

6. H6
i (λ, aux) differs from H5

i (λ, aux) in the way that the accepting tran-
script for the theorem xm+i+1 is computed. More precisely in H5

i (λ, aux)
the honest-prover procedure of Π was used to compute the accepting tran-
script for xm+i+1. In H5

i (λ, aux) the transcript for xm+i+1 is computed using
the SHVZK simulator of Π. To prove the indistinguishability of this hybrid
we invoke the SHVZK property of Π. We remark that this is possible only
because the commitment of the first round of Π with respect to the theorem
xm+i+1 is hiding. We observe that this hybrid is equal to Hi+1(λ, aux).

Now we are able to complete the first part of the proof observing that7.

Hi(λ, aux) ≈ H1
i (λ, aux) ≈ · · · ≈ H6

i (λ, aux) = Hi+1(λ, aux).

We have thus proved that H0 and Hm are indistinguishable. To complete the
proof, we need to prove that Hm+i and Hm+i+1 are indistinguishable for i =
0, . . . , k − 1. This follows directly from the observation that Hm+i and Hm+i+1

only differ in the witness used for x2m+i+1 as in Hm+i the witness from W 0 is
used by C whereas in Hm+i+1 C uses the witness from W 1. Indistinguishability
follows directly from the Perfect WI of Π.

4 On Adaptive-Input Special-Soundness of Σ-Protocols

In this section we show that Σ-Protocols are not secure when the adversarial
prover can choose the statement adaptively, when playing the 3rd round. These
issues for the case of the Fiat-Shamir transform were noted in [1].

We then show an efficient compiler that on input a Σ-protocol belonging to
the general class considered in [9,21], outputs a Σ-protocol that is secure against
adaptively chosen statements.

4.1 Soundness Issues in Delayed-Input Σ-Protocols

We start by showing that the notion of adaptive-input special soundness is non-
trivial in the sense that there are Σ-protocols that are not special sound when
the statement is chosen adaptively at the 3rd round.

7 See the full version of this work [7] for a formal description of the hybrid experiments.

Online/Offline OR Composition of Sigma Protocols 83

Issues with Soundness. Let us consider the following well-known Σ-protocol ΠDH

for relation DH. On common input T = (g,A,B,X) and private input α such
that A = gα and X = Bα for the prover, the following steps are executed. We
denote by q the size of the group G.

1. P picks r ∈ Zq at random and computes and sends a = gr, x = Br to V;
2. V chooses a random challenge c ∈ Zq and sends it to P;
3. P computes and sends z = r + cα to V;
4. V accepts if and only if: gz = a · Ac and Bz = x · Xc.

We now show that the above Σ-protocol is not special sound when an adver-
sarial prover selects X adaptively.

Consider the following two conversations ((a = gr, x = Bs), c1, z1 = r+α ·c1)
and ((a = gr, x = Bs), c2, z2 = r+α ·c2) respectively for tuples (g,A,B,X1) and
(g,A,B,X2) where A = gα, X1 = gγ1 and X2 = gγ2 and γi = zi−s

ci
= α + r−s

ci
,

for i = 1, 2. It is easy to see that both conversations are accepting (for their
respective inputs) and that, if r
= s, neither tuple is a DH tuple and therefore
no witness can be extracted. Notice that this is a very strong soundness attack
since the adversarial prover can succeed in convincing the verifier even though
the statement is false. A similar argument can be used to prove that the Σ-
protocol of [22] for relation Com = {((g, h,G,H,m), r) : G = gr and H = hr+m}
does not enjoy adaptive-input special soundness.

Issues with Special Soundness. Let us now consider the case of Schnorr’s Σ-
protocol [27] for relation DLog = {((G, g, Y), y) : gy = Y }. Clearly, this is a
different case since there is no false theorem to prove, but the attack can only
consist in proving a statement violating special soundness (i.e., even though
there are two accepting transcripts with the same first message no witness can
be extracted).

In Schnorr’s protocol, the prover on input (Y, y) ∈ DLog starts by sending
a = gr, for a randomly chosen r ∈ Zq. Upon receiving challenge c, P replies by
computing z = r + yc. V accepts (a, c, z) if gz = a · Y c.

Consider now accepting transcripts (a, ci, zi) with respect to inputs Yi, i =
1, 2. In this case, to extract witnesses yi s.t. ((G, g, Yi), yi) ∈ DLog one has to
solve the following system with unknowns r, y1, and y2.

{

z1 = r + c1 · y1
z2 = r + c2 · y2

Clearly the system above has q solutions and thus it gives no information on any
of the two witnesses.

4.2 A Compiler for Adaptive-Input Special Soundness

In this section we show how to upgrade special soundness to adaptive-input
special-soundness in all Σ-protocols belonging to the interesting class of Σ-
protocols proposed in [9,21].

84 M. Ciampi et al.

We show a compiler that obtains a Σ-protocol Πa
f for proving knowledge

of the pre-image of a homomorphic function. Our compiler takes as input a Σ-
protocol Πf = (Pf ,Vf) for the same generic relation that includes Schnorr’s [27],
Guillou-Quisquater [16] and the Σ-protocol for DH tuples as special cases [9,21].

Let (G, �) and (H,⊗) be two groups with efficient operations and let f : G →
H be a one-way homomorphism from G to H. That is, for all x, y ∈ G, we have
that f(x � y) = f(x) ⊗ f(y) and it is infeasible to compute w from f(w) for
a randomly chosen w. In protocol Πf for relation Rf = {(x,w) : x = f(w)},
prover and verifier receive as input a description of the groups G and H and
x ∈ H. The prover receives w such that x = f(w) as a private input. The prover
and verifier execute the following steps:

1. Pf picks r ← G, sets a ← f(r) and sends a to Vf ;
2. Vf randomly selects a challenge c and sends it to Pf ;
3. Pf on input r, x, w and c computes z = r � wc and sends it to Vf ;
4. Vf accepts if and only if f(z) = a ⊗ xc.

It is easy to see that this protocol can be instantiated to give Schnorr’s [27] and
Guillou-Quisquater [16] Σ-protocols as special cases. Theorem 3 of [21] describes
necessary conditions for Πf to be special sound. Specifically, given a collision
(a, c1, z1) and (a, c2, z2) for common input x, it is possible to extract w such that
x = f(w) if integer y and element u ∈ G are known and it holds that

1. gcd(c1 − c2, y) = 1;
2. f(u) = xy.

It is not difficult to see that this is the case when the protocol is instantiated for
all the relations described above. We also observe that, since Schnorr’s protocol
is a special case of this protocol, protocol Πf does not enjoy adaptive-input
special soundness.

From Πf to Πa
f . We next show how to efficiently transform this Σ-protocol into

one that enjoys adaptive-input special soundness. The underlying idea is that
an adaptive attack against such protocol consists in misbehaving when playing
the first round. For instance, in the case of the Σ-protocol for DH, P∗ has to
send a non-DH tuple in the 1st round while instead the protocol asks for a
DH tuple. We therefore can convert Πf into Πa

f by asking the prover to also
give an auxiliary proof where it proves knowledge of the randomness used to
correctly compute the first round of Πf . Notice that on this auxiliary proof an
adaptive-input selection attack can not take place since the adversarial prover
is stuck with the content of the 1st round of Πf that therefore specifies already
the statement to prove. We now show that special soundness allows to get the
randomness used to compute the first round of Πf . Then the same argument
shown in Theorem 3 of [21] allows to extract the witness from a single transcript.

We now discuss the compiler and why it works more formally.
Let us start with the following observation. Consider an accepting transcript

(a, c, z) of Πf for input x. If r such that f(r) = a is available, then it is possible
to compute a witness w for x. Indeed, from Theorem 3 of [21] it follows that we

Online/Offline OR Composition of Sigma Protocols 85

can compute w as w = uα�(z�r−1)β , where α and β are such that y·α+c·β = 18.
We use an argument already used in Theorem 3 of [21] in order to prove that
f(w) = x, where w = uα � (z � r−1)β . First we observe that f(z) = a ⊗ xc and
this implies that f(z � r−1) = xc. Then we observe (like in [21]) that f(w) =
f(uα � (z � r−1)β) = f(u)α ⊗ f(z � r−1)β = xyα + xβc = x that proves that
f(w) = x.

Consider protocol Πa
f consisting of the parallel execution of two instances of

Πf . For common input x, the first instance of Πf is executed on common input
x, whereas in the second instance the common input is the first message a of the
first instance. The verifier of Πa

f sends the same challenge to both instances and
accepts if and only if it accepts in both instances. Since in a collision the first
message is fixed, both transcripts have the same first message a and therefore we
can invoke special soundness to extract r such that f(r) = a. Once r is available,
we apply the observation above and extract witnesses for x1 and x2 (the two
inputs of the two 3-round transcripts constituting the collision). We have thus
the following theorem.

Theorem 8. If there exists a Σ-protocol Πf for Rf , then there exists a Σ-
protocol Πa

f for Rf that enjoys adaptive-input special soundness.

5 On the Adaptive-Input Soundness of [6]’s Transform

Ciampi et al. in [6] show a compiler that takes as input two Σ-protocols, Π0 and
Π1 for languages L0 and L1, and outputs a new Σ-protocol ΠOR for L0 ∨ L1

in which the instance for the language L1 is required by the prover only in the
3rd round. The compiler requires that Π1 be delayed input and they show that
the output of the compiler is a Σ-protocol, therefore it enjoys special soundness.
In this section we assume that Π1 is adaptive-input special sound, and we will
show that ΠOR enjoys also adaptive-input special soundness.

5.1 Overview of the Construction of [6]

We start with a succinct description of the main building block used in of [6].

t-Instance-Dependent Trapdoor Commitment. Ciampi et al. in [6] define the
notion of a t-Instance-Dependent Trapdoor Commitment (t-IDTC) scheme. Such
a scheme works with respect to an polynomial-time relation R. More formally,
given the pair x,w s.t. (x,w) ∈ R, it is possible to compute a commitment (with
respect to some massage space M) using only the instance x, and the message.
After that it is possible to open the commitment if one knows the randomness
used in the commitment phase, or it is possible to equivocate the commitment
using the witness w.

8 By the first condition of Theorem 3 of [21] we have that gcd(c, y) = 1 and thus α
and β can be computed by using the extended Euclidean gcd algorithm.

86 M. Ciampi et al.

The t-IDTC scheme is defined by a triple of PPT algorithm (TCom, TDec,
TFake) where TCom, TDec are the honest commitment and decommitment pro-
cedures and TFake is the equivocation procedure that, given a witness for an
instance x, equivocates any commitment computed using x as input of TCom.
The properties of a t-IDTC scheme are: correctness, hiding, trapdoor and t-
Special Extractability. The property of t-Special Extractability informally says
that if the sender opens the same commitment in t different ways, then it is
possible to efficiently extract the witness w. For more details see [6].

The authors of [6] show how to construct a 2-IDTC schemes are perfect hiding,
perfect trapdoor and 2-Special Extractable from Σ-protocols.

In the rest of this section when a player runs the algorithm TCom on input
x,m, obtains the pair (com, dec) where com is the commitment of the message
m, and dec is the decommitment value. To check if dec is a valid decommitment
of com with respect to the message m, we use the algorithm TDec. To compute a
fake opening of the commitment com with respect to a message m′
= m a player
can use the algorithm TFake using as input (com, dec).

The Construction of [6]. Let R0 be a relation admitting a t-IDTC scheme,
with t = 2 or t = 3. Let R1 be a relation admitting an delayed-input Σ-protocol
Π1 with associated simulator S1.

We show a Σ-protocol ΠOR = (POR,VOR) for the OR relation:

ROR =
{

((x0, x1), w) : ((x0, w) ∈ R0 ∧ x1 ∈ L̂R1) OR ((x1, w) ∈ R1 ∧ x0 ∈ L̂R0)
}

.

The initial common input is x0 and the other input x1 and the witness w for
(x0, x1) are available to the prover only at the 3rd round. We let b ∈ {0, 1} be
such that (xb, w) ∈ Rb. The construction of [6] is described below.

Common input: (x0, 1λ), where λ is the length of the instance of L̂R1 .

1. POR executes the following steps:
1.1. pick random r1 and compute the 1st round a1 of the delayed-input Σ-

protocol Π1;
1.2. compute a pair (com, dec1) of commitment and decommitment of a1;
1.3. send com to VOR.

2. VOR sends a random challenge c.
3. POR on input ((x0, x1), c, (w, b)) s.t. (xb, w) ∈ Rb executes the following steps:

3.1. If b = 1, compute the 3rd round of Π1, z1, using as input (x1, w, c);
3.2. Send (dec1, a1, z1) to VORr;
3.3. If b = 0, run simulator S1 on input x1 and c obtaining (a2, z2); use

trapdoor to compute decommitment dec2 of com as a2;
3.4. Send (dec2, a2, z2) to VOR.

4. VOR accepts if and only if the following conditions are satisfied:
4.1. (a, c, z) is an accepting conversation for x1;
4.2. dec is a valid decommitment of com for a message a.

Online/Offline OR Composition of Sigma Protocols 87

5.2 Adaptive-Input Security of ΠOR

We now show that ΠOR preserves the adaptive-input special soundness of the
underlying Σ-protocol.

Theorem 9. If R0 admits a 2-IDTC and R1 admits a delayed-input adaptive-
input special-sound Σ-protocol, then ΠOR is an adaptive-input special-sound Σ-
protocol.

Proof. The claim follows from the adaptive-input special soundness of the under-
lying Σ-protocol Π1 and from the 2-Special Extractability property of the 2-
IDTC scheme. More formally, consider an accepting transcript (com, c, (z, a, dec))
for input (x0, x1) and an accepting transcript (com, c′, (z′, a′, dec′)) for input
(x0, x

′
1), where c′
= c and x1 is potentially different from x′

1. We observe that:

– if a = a′ then by the property of adaptive-input special soundness of Π1 there
exists an efficient extractor AExtract that, given as input ((a, c, z), x1) and
((a′, c′, z′), x′

1), outputs w1 and w′
1 s.t. (x1, w1) ∈ R1 and (x′

1, w
′
1) ∈ R1;

– if a
= a′, then dec and dec′ are two openings of com with respect to x0 for mes-
sages a
= a′; then we can obtain a witness w0 by the 2-Special Extractability
of the 2-IDTC scheme.

A similar arguments can be used to show that if R0 admits a 3-IDTC and R1

admits a delayed-input Σ-protocol with adaptive-input special soundness, then
ΠOR enjoys the adaptive-input proof of knowledge property.

6 Extension to Multiple Relations

In this section, we generalize the result of Sect. 3 to the case of different relations.
More specifically, given delayed-input Σ-protocols Π1, . . . , Πn for polynomial-
time relations R1, . . . ,Rn, we construct, for some positive constant k, Adaptive-
Input Proof of Partial Knowledge Γ for the threshold polynomial-time relation

Rthres =
{

(

(

x1, . . . , xn, k
)

,
(

(w1, d1) . . . , (wk, dk)
)

)

: 1 ≤ d1 < · · · < dk ≤ n

and (xdi
, wi) ∈ Ri for i = 1, . . . , k and x1 ∈ L̂1, . . . , xn ∈ L̂n

}

.

We remind the reader that L̂1, . . . , L̂n are the input languages associated with
the polynomial-time relations R1, . . . ,Rn.

Protocol Γ uses delayed-input protocol Πk, in the adaptive-input special-
soundness version, presented in Sect. 3 for relation NDHk,n. We remark that
protocol Πddh

k,n of Sect. 2.3 would not work here since the prover of Γ learns the
actual statement to be proved just before the third round.

1st Round. Γ.Prover ⇒ Γ.Verifier:
Γ.Prover receives as unary inputs the security parameter λ, the number n of
theorems that will be given as input at the beginning of the third round, and
the number k of witnesses that will be provided.

88 M. Ciampi et al.

1. Set (G, p, g) ← IG(1λ).
2. For j = 1, . . . , n

2.1. Randomly sample a non-DH tuple T 0
j = (gj , Aj , Bj ,Xj) over G, along

with αj such that Aj = g
αj

j .
2.2. Set Yj = B

αj

j and T 1
j = (gj , Aj , Bj , Yj) (note that the quadruple T 1

j

is by construction a DH tuple).
3. Select a random string Rk,n and use it to compute the first round message

ak,n of Πk by running prover Pk.
Send ak,n to Γ.Verifier.

4. For j = 1, . . . , n
4.1. Select random strings R0

j and R1
j and use them to compute the first

rounds a0
j and a1

j of Πj by running prover Pj .
4.2. Compute the pair (com0j , dec

0
j) of commitment and decommitment of

the message a0
j using non-DH tuple T 0

j .
4.3. Compute the commitment com1j (of the message a1

j) using the DH
tuple T 1

j .
4.4. Send pairs (T 0

j , com0j) and (T 1
j , com1j) in random order to Γ.Verifier.

2nd Round. Γ.Verifier ⇒ Γ.Prover: Γ.Verifier randomly selects a challenge c and
sends it to Γ.Prover.

3rd Round. Γ.Prover ⇒ Γ.Verifier:
Γ.Prover receives theorems x1, . . . , xn and, for d1 < . . . < dk, witnesses
w1, . . . , wk for theorems xd1 , . . . , xdk

, respectively. We let ˜d1 < . . . < ˜dn−k

denote the indices of the theorems for which no witness has been provided.
1. For l = 1, . . . , k

1.1. Use j as a shorthand for dl.
1.2. Set Uj = T 1

j and Ûj = T 0
j .

1.3. Compute third round zj of Πj by running prover Pj on input (xj , wi),
randomness R0

j used to compute the first round a0
j , and a challenge c.

1.4. Set Mj = (a0
j , zj , dec0j , Ûj).

2. For l = 1, . . . , n − k
2.1. Set j = ˜dl.
2.2. Set Uj = T 0

j and Ûj = T 1
j .

2.3. Run the simulator Sj of Πj on input xj and c therefore obtaining
(ã1

j , zj).
2.4. Use the trapdoor αj to compute the decommitment dec1j of com1j

as ã1
j .

2.5. Set Mj = (ã1
j , zj , dec1j , Ûj).

3. For l = 1, . . . , n send Ml to Γ.Verifier.
4. Compute the third round zk,n of Πk by running prover Pk of Πk on input

tuples (U1, . . . , Un), witnesses αd1 , . . . , αdk
and randomness Rk,n used to

compute the first round ak,n.
Γ.Verifier accepts if and only if the following conditions are satisfied.
1. Check that (an,k, c, zn,k) is an accepting conversation for Vk for input

U1, . . . , Un.

Online/Offline OR Composition of Sigma Protocols 89

2. For i = 1 . . . n
Check that tuples T 0

i and T 1
i differ only in the last component.

Check that {Ui, Ûi} = {T 0
i , T 1

i }.
Write Mi as Mi = (ai, zi, deci, Ûi).
Check that deci is a decommitment of one of com0i and com1i as ai with
respect to tuple Ûi.
Check that (ai, c, zi) is an accepting conversation for Πi on input xi.

Theorem 10. Γ is a proof of knowledge.

Proof. The completeness property follows from the completeness of protocols Πk

and Πi, for i ∈ {1, . . . , n}, and from the correctness and trapdoorness property
of the Instance-Dependent Trapdoor Commitment scheme used.

Now we proceed by proving that our protocol is (2n + k)-special sound and
then, using the arguments of Sect. 2 about the proof of knowledge property of
protocols that enjoy t-special soundness, we can conclude the proof claiming
that Γ is a proof of knowledge. In more details, we prove that there exists an
efficient extractor which, for any sequence (x1, . . . , xn) of n inputs and for any
set of 2n+ k accepting conversations of Γ that share the same first message and
have different challenges, outputs the witness of wi s.t. (xi, wi) ∈ Ri for some
i ∈ {1, . . . , n}. The extractor considers a set of 2n + k accepting conversations
a, cj , zj (with j = 1, . . . , 2n+k) such that they share the same first message and
have different challenges. For each a, cj , zj (with j = 1, . . . , 2n+k) processed by
the extractor one of the following two cases is possible.

1. There are two conversations of Σ-protocol Πi for theorem xi that share the
same first message ai and have two different challenges. Then by the special
soundness property of Πi one can efficiently get a witness wi for theorem xi.

2. If the new accepting transcript a, cj , zj does not allow the extractor to obtain
the witness then a new non-DH tuple is used for the first time in the accepting
conversation a, cj , zj .

The proof ends with the observation that the algorithm stops after k times
that the first case occurs, while the second case occurs at most 2n times.

Theorem 11. Under the DDH assumption, if Πi is SHVZK for Ri, for i ∈
{1, . . . , n}, then Γ is adaptive-input WI for Rthres, for a constant k.

Proof Sketch. The definition of adaptive-input WI gives to the adversary A the
power to choose both theorems and witnesses upon receiving the first message
from the challenger. This implies that in Γ the first round should be computed
without knowing which witnesses will be chosen by A, and without knowing for
what instances the witnesses will be available in the third round. It is easy to see
that the first round of Γ is independent from the A could have. Unfortunately if
we follow the same proof of Theorem 7, considering a similar sequence of hybrids
experiments, we will have to define hybrid experiments in which the first round
depends on which witnesses will be received from A at the second round. This

90 M. Ciampi et al.

implies that the only way for the challenger to complete these hybrid experiments
consists in guessing the instances that correspond to the witnesses that will be
received. This explains why k is a constant.

We now explain with more details the differences between the security proof
of Theorem 7 and the one needed for protocol Γ . The security proof of Theorem 7
works for every k because the n instances x1, . . . , xn that will be sent by A in
the protocol Πk belong to the same NP-language L. Furthermore the Σ-protocol
Π used in Πk is delayed input. Hence for a first round ai of Π it is possible to
create an accepting transcript (ai, c, z) for a theorem xj , for i, j ∈ {1, . . . , n} (if
one has the witness wj clearly). Therefore the assignment of the values a1, . . . , an

committed in the first round with the theorems x1, . . . , xn is made only at the
third round. This property holds in all hybrid experiments. Now we consider the
protocol Γ . The arguments described above are clearly not applicable to prove
that Γ is adaptive-input WI.

More in details, during the first round of Γ , for each language Li we compute
the first message of protocol Πi and commit to it twice using the instance-
dependent trapdoor commitment associated to a DH tuple and to a non-DH
tuple, for i ∈ {1, . . . , n}. Hence for each ai we compute an equivocal commitment
and a binding commitment. First note that these two commitments are linked to
a fixed language Li (in contrast to the first round of Πk). When in the security
proof we need to consider the hybrid experiment in which n + 1 non-DH tuples
(one non-DH tuple per pair except one pair where both tuples are non-DH)
are used (as in the proof of Theorem7), we have to commit the first round of
ai, for some i ∈ {1, . . . , n}, using two commitments that are perfectly binding.
Therefore the only way that we have to compute an accepting transcript with
respect to the language Li consists in using the witness for the instance xi that
will be sent by A. Unfortunately we have no guarantee that A will send wi, and
thus the experiment will have to try again. For lack of space, further details can
be found in the full version of this work.

Acknowledgments. We thank the anonymous reviewers of Eurocrypt 2016 for many
insightful comments and suggestions. This work has been supported in part by “GNCS -
INdAM” and in part by the EU COST Action IC1306.

References

1. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of the
fiat-shamir heuristic and applications to helios. In: Proceedings of the Advances in
Cryptology - ASIACRYPT 2012–18th International Conference on the Theory and
Application of Cryptology and Information Security, Beijing, China, 2–6 December
2012, pp. 626–643 (2012)

2. Blundo, C., Persiano, G., Sadeghi, A.-R., Visconti, I.: Improved security notions
and protocols for non-transferable identification. In: Jajodia, S., Lopez, J. (eds.)
ESORICS 2008. LNCS, vol. 5283, pp. 364–378. Springer, Heidelberg (2008)

3. Catalano, D., Dodis, Y., Visconti, I.: Mercurial commitments: minimal assumptions
and efficient constructions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol.
3876, pp. 120–144. Springer, Heidelberg (2006)

Online/Offline OR Composition of Sigma Protocols 91

4. Catalano, D., Visconti, I.: Hybrid trapdoor commitments and their applications.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 298–310. Springer, Heidelberg (2005)

5. Catalano, D., Visconti, I.: Hybrid commitments and their applications to zero-
knowledge proof systems. Theor. Comput. Sci. 374(1–3), 229–260 (2007)

6. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR-
composition of sigma-protocols. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A.
LNCS, vol. 9563, pp. 112–141. Springer, Heidelberg (2016)

7. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Online/offline
OR composition of sigma protocols. Cryptology ePrint Archive, Report 2016/175
(2016). http://eprint.iacr.org/

8. Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for NIZK almost
as efficient and general as the fiat-shamir transform without programmable random
oracles. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9563, pp.
83–111. Springer, Heidelberg (2016)

9. Cramer, R., Damg̊ard, I.B.: Zero-knowledge proofs for finite field arithmetic or:
can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 424–441. Springer, Heidelberg (1998)

10. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

11. Damg̊ard, I.: On Σ-protocol (2010). http://www.cs.au.dk/∼ivan/Sigma.pdf
12. Damg̊ard, I., Groth, J.: Non-interactive and reusable non-malleable commitment

schemes. In: Proceedings of the 35th Annual ACM Symposium on Theory of Com-
puting, June 9–11, 2003, San Diego, CA, USA, pp. 426–437 (2003)

13. Damg̊ard, I.B., Nielsen, J.B.: Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)

14. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

15. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols
using signatures. J. Cryptology 19(2), 169–209 (2006)

16. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988)

17. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Con-
structions. Information Security and Cryptography. Springer, Heidelberg (2010)

18. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004)

19. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991)

20. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS and
non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part I. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015)

21. Maurer, U.: Zero-knowledge proofs of knowledge for group homomorphisms. Des.
Codes Crypt. 77(2), 1–14 (2015)

http://eprint.iacr.org/
http://www.cs.au.dk/~ivan/Sigma.pdf

92 M. Ciampi et al.

22. Micciancio, D., Petrank, E.: Simulatable commitments and efficient concurrent
zero-knowledge. In: Proceedings of the Advances in Cryptology - EUROCRYPT
2003, International Conference on the Theory and Applications of Cryptographic
Techniques, Warsaw, Poland, 4–8 May 2003, pp. 140–159 (2003)

23. Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transformations for
concurrent non-malleable zero knowledge. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010)

24. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party com-
putation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 339–358. Springer, Heidelberg (2015)

25. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003)

26. Santis, A.D., Crescenzo, G.D., Persiano, G., Yung, M.: On monotone formula clo-
sure of SZK. In: 35th Annual Symposium on Foundations of Computer Science,
Santa Fe, New Mexico, USA, 20–22 November 1994, pp. 454–465 (1994)

27. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

28. Visconti, I.: Efficient zero knowledge on the internet. In: Bugliesi, M., Preneel, B.,
Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 22–33. Springer,
Heidelberg (2006)

29. Yung, M., Zhao, Y.: Generic and practical resettable zero-knowledge in the bare
public-key model. In: Proceedings of the Advances in Cryptology - EUROCRYPT
2007, 26th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Barcelona, Spain, 20–24 May 2007, pp. 129–147 (2007)

Constant-Round Leakage-Resilient
Zero-Knowledge from Collision Resistance

Susumu Kiyoshima(B)

NTT Secure Platform Laboratories, Tokyo, Japan
kiyoshima.susumu@lab.ntt.co.jp

Abstract. We construct a constant-round leakage-resilient zero-
knowledge argument system under the existence of collision-resistant
hash function family. That is, using collision-resistant hash functions,
we construct a constant-round zero-knowledge argument system such
that for any cheating verifier that can obtain arbitrary amount of leak-
age of the prover’s state, there exists a simulator that can simulate the
adversary’s view by obtaining at most the same amount of leakage of
the witness. Previously, leakage-resilient zero-knowledge protocols were
constructed only under a relaxed security definition (Garg-Jain-Sahai,
CRYPTO’11) or under the DDH assumption (Pandey, TCC’14).

Our leakage-resilient zero-knowledge argument system satisfies an
additional property that it is simultaneously leakage-resilient zero-
knowledge, meaning that both zero-knowledgeness and soundness hold
in the presence of leakage.

1 Introduction

Zero-knowledge (ZK) proofs and arguments [14] are interactive proof/argument
systems with which the prover can convince the verifier of the correctness of a
mathematical statement while providing zero additional knowledge. This “zero
additional knowledge” property is formalized thorough the simulation paradigm.
Specifically, an interactive proof or argument is said to be zero-knowledge if for
any adversarial verifier there exists a simulator that can output a simulated view
of the adversary.

Recently, Garg et al. [12] introduced a new notion of zero-knowledgeness
called leakage-resilient zero-knowledge (LRZK). Roughly speaking, LRZK is a
notion of zero-knowledgeness in the setting where adversarial verifiers can obtain
arbitrary leakage on the entire state of the honest prover (including the witness
and the randomness) during the entire protocol execution. LRZK is motivated
by the studies of side-channel attacks (e.g., [2,18,27]), which demonstrated that
adversaries might be able to obtain leakage of honest parties’ secret states by
attacking physical implementations of cryptographic algorithms.

Informally speaking, LRZK requires that the protocol does not reveal any-
thing beyond the validity of the statement and the leakage that the adversary
obtained. More formally, LRZK is defined as follows. In the definition of LRZK,

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 93–123, 2016.
DOI: 10.1007/978-3-662-49896-5 4

94 S. Kiyoshima

the cheating verifier is allowed to make arbitrary number of leakage queries dur-
ing the interaction with a honest prover, where each leakage query f is answered
by f(w, tape) for the witness w and the randomness tape that the honest prover
generated thus far. On the other hand, the simulator is allowed to make queries
to the leakage oracle Lw, which is parametrized by the witness w of the hon-
est prover and outputs f(w) on input any function f . LRZK is then defined
by requiring that for any cheating verifier V ∗ there exists a simulator S such
that for any � ∈ N, when V ∗ obtains � bits of leakage of the prover’s state via
leakage queries, S can simulate the view of V ∗ by obtaining � bits of leakage of
the witness via queries to the leakage oracle Lw.1

In [12], Garg et al. showed a proof system that satisfies a weaker notion of
LRZK called (1 + ε)-LRZK. Specifically, they showed that for any ε > 0, there
exists a proof system such that when V ∗ obtains � bits of leakage from the prover,
a simulator can simulate the verifier’s view by obtaining at most (1 + ε) · � bits
of leakage from Lw. The round complexity of this protocol is at least ω(log n)/ε,
and its security is proven under a standard general assumption (the existence of
statistically hiding commitment scheme that is public-coin w.r.t. the receiver).

A natural question left open by [12] is whether we can construct a LRZK
protocol without weakening the security requirement. That is, the question is
whether we can reduce ε to 0 in the protocol of [12]. This question is particularly
of theoretical interest because reducing ε to 0 is optimal in the sense that λ-LRZK
for λ < 0 is impossible to achieve in the plain model [12].

Recently, this question was solved affirmatively by Pandey [23], who con-
structed the first LRZK argument system by using the DDH assumption and
collision-resistant hash functions. Pandey’s protocol has only constant number
of rounds; therefore, it follows that asymptotically optimal round complexity
can be achievable even in the presence of leakage.

A question that is explicitly left open by Pandey [23, Section 1] is whether
we can construct LRZK protocols under a standard general assumption. In fact,
although the protocol of Pandey [23] is superior to the protocol of Garg et al.
[12] in terms of both leakage resilience (LRZK v.s. (1 + ε)-LRZK) and round
complexity (constant v.s. ω(log n)/ε), the assumption of the former is seemingly
much stronger than that of the latter (the DDH assumption v.s. the existence
of statistically hiding commitment scheme that is public-coin w.r.t. the receiver,
which is implied by, say, the existence of collision-resistant hash function family
or even the existence of one-way functions2).

Question. Can we construct a (constant-round) leakage-resilient zero-
knowledge protocol under standard general assumptions?

1 In [22], it is pointed out that nowadays leakage tolerance is the commonly accepted
term for this security notion. In this paper, however, we use the term “leakage
resilience” for this security notion for consistency with previous works [12,23].

2 A constant-round one can be constructed from collision-resistant hash functions
[10,21] and a polynomial-round one can be constructed from one-way functions [15].

Constant-Round Leakage-Resilient ZK from Collision Resistance 95

1.1 Our Results

In this paper, we answer the above question affirmatively by constructing a
LRZK protocol from collision-resistant hash functions (CRHFs). Like the proto-
col of [23], our protocol has only constant number of rounds. Also, our protocol
has an additional property that it is public coin (w.r.t. the verifier).

Theorem. Assume the existence of collision-resistant hash function family.
Then, there exists a constant-round public-coin leakage-resilient zero-knowledge
argument for NP.

Simultaneously Leakage-Resilient Zero-Knowledge. Our protocol has an
additional property that it is simultaneously leakage-resilient zero-knowledge
[12], meaning that not only zero-knowledgeness but also soundness holds in
the presence of leakage. The leakage-resilient (LR) soundness (i.e., soundness
in the presence of leakage) of our protocol follows immediately from its public-
coin property. In fact, any public-coin interactive proof/argument system is LR
sound for arbitrary amount of leakage of the verifier because the verifier has no
secret state in public-coin protocols.

To the best of our knowledge, our protocol is the first simultaneously LRZK
protocol. The (1 + ε)-LRZK protocol of Garg et al. [12] is LR sound in a weak
sense—it is LR sound when there is an a-priori upper bound on the amount
of leakage—but is not LR sound when the amount of leakage is unbounded,3

and similarly, the LRZK protocol of Pandey [23] is also not LR sound with
unbounded amount of leakage. In contrast, our protocol is sound even when
cheating verifiers obtain arbitrary amount of leakage.

The summary of the previous results and ours is given in Table 1. In the
table, “bounded-LR sound” means that the soundness holds when there is an
a-priori upper bound on the amount of leakage from the verifier.

Table 1. Summary of the results on LRZK protocols. The round complexity of the
protocol of [12] depends on the assumption that is used to instantiate the underlying
statistically-hiding commitment scheme; in particular, when only one-way functions
(OWFs) are used, there is a polynomial additive overhead because statistically hiding
commitment schemes currently require polynomial number of rounds in this case [15].

LR ZKness LR soundness #(round) Assumptions

[12] (1 + ε)-LRZK Bounded-LR sound poly(n) + ω(log n)/ε OWFs

ω(logn)/ε CRHFs

[23] LRZK - O(1) DDH + CRHFs

This work LRZK LR sound O(1) CRHFs

3 This is because in the protocol of [12], the verifier commits to the challenge bits of
Blum’s Hamiltonicity protocol in advance and hence an cheating prover can easily
break the soundness by obtaining the challenge bits via leakage.

96 S. Kiyoshima

1.2 Related Works

Several works study interactive protocols in the presence of arbitrary leakage
in the models other than the plain model, e.g., the work about leakage-tolerant
UC-secure protocols in the CRS model [5], the work about non-transferable inter-
active proof systems in the CRS model with leak-free input encoding/updating
phase [1], and the works about secure computation protocols in the CRS model
with leak-free preprocessing/input-encoding phase and constant fraction of hon-
est parties [6–8]. We remind the readers that, like [12,23], this work considers
LRZK protocols in the plain model without any leak-free phase.

In [22], Ostrovsky et al. showed an impossibility result about black-box LRZK
in the model with only leak-free input-encoding phase (i.e., without CRS and
preprocessing). We notice that this impossibility result does not contradict our
result since the definition of LRZK in [22] is different from the one we use (i.e.,
the definition given by [12]). Specifically, in the definition of [22], the simulator
is not allowed to obtain any leakage, whereas in the definition that we use,
the simulator can obtain the same amount of leakage as the cheating verifier.
(In other words, Ostrovsky et al. [22] considers leakage resilience whereas we
consider leakage tolerance; see Footnote 1.)

2 Overview of Our Techniques

2.1 Previous Techniques

Since our techniques rely on the techniques that are used in the previous LRZK
protocols of [12,23], we start by recalling these protocols.

Protocol of [12]. In [12], Garg et al. constructed a (1 + ε)-leakage-resilient
zero-knowledge proof system, i.e., a proof system such that when V ∗ obtains �
bits of leakage from the prover, its view can be simulated by obtaining at most
(1 + ε) · � bits of leakage from Lw.

A key idea behind the protocol of [12] is to give the simulator two indepen-
dent ways of cheating—one for simulating prover’s messages and the other for
simulating leakages. Concretely, Garg et al. constructed their protocol by com-
bining two well-known techniques of constant-round zero-knowledge protocols—
the technique by Goldreich and Kahan [13] that requires the verifier to commit
to its challenges in advance and the technique by Feige and Shamir [11] that uses
equivocal commitment schemes. They then proved the security by considering a
simulator that simulates the prover’s messages by extracting the challenges and
simulates the leakages by using the equivocality of the commitment scheme.

In more details, the protocol of [12] consists of the following two phases. In
the first phase, the verifier uses an extractable commitment scheme to commit to
a challenge string ch of Blum’s Hamiltonicity protocol and trapdoor information
td of an equivocal commitment scheme.4 In the second phase, the prover and
4 Actually, there is a coin-tossing protocol that determines the parameter of the equiv-

ocal commitment, and td is the trapdoor for biasing the outcome of the coin-tossing.

Constant-Round Leakage-Resilient ZK from Collision Resistance 97

the verifier execute Blum’s Hamiltonicity protocol that is instantiated with the
equivocal commitment scheme. In simulation, the simulator extracts ch and td
in the first phase and then simulates the prover’s messages and the leakages
in the second phase by using the knowledge of ch and td in the following way.
(For simplicity, we assume that Blum’s protocol is executed only once instead
of many times in parallel.)

When the extracted challenge ch is 0, the simulator commits to a randomly
permuted graph of statement G, and after V ∗ decommits the challenge ch
(which must be 0), the simulator decommits the commitment to the permuted
graph of G.

Notice that the simulator does exactly the same things as a honest prover.
Hence, the simulator can simulate prover’s randomness tape easily and there-
fore can answer any leakage query f from V ∗ by querying f(·, tape) to Lw.

When the extracted challenge ch is 1, the simulator commits to a randomly
chosen cycle graph H at the beginning and then partially decommits it in
the last step so that only the edges on the cycle are revealed.

When V ∗ makes a leakage query, the simulator answers it by using w
and td to compute randomness that “explains” the commitment to H as a
commitment to a permuted graph of G. (Recall that the prover is supposed
to commit to a permuted graph of G.) Specifically, the simulator answers a
leakage query f from V ∗ by querying the following function ˜f(·) to Lw.
1. On input w, function ˜f first computes a permutation π that maps the

Hamiltonian cycle w in G to the cycle in H (i.e., computes π such that
π(G) has the same cycle as H).

2. Then, by using equivocality5 with trapdoor td, it computes randomness
tape that explains the commitment to H as a commitment to π(G) (i.e.,
it computes tape such that committing to π(G) with randomness tape will
generate the same commitment as the one that the simulator has sent to
V ∗ by committing to H).

3. Finally, it outputs f(w, tape).
Notice that since π(G) has the same cycle as H, the simulated leakages (from
which V ∗ may be able to compute π(G)) are consistent with the cycle of H
that is decommitted by the simulator in the last step.

We remark that the reason why the protocol of [12] satisfies only (1 + ε)-
LRZK (rather than standard LRZK) is that the extraction of ch and td involves
the rewinding of V ∗. In fact, since V ∗ can make new leakage queries after being
rewound, the simulator need to obtain new leakages from Lw in each rewinding
and hence the simulator need to obtain more bits of leakage than V ∗.

Protocol of [23]. In [23], Pandey constructed a constant-round LRZK argu-
ment system under the DDH assumption. Roughly speaking, Pandey’s idea is

5 What is actually used here is adaptive security, which guarantees that for each
underlying commitment, it is possible to compute randomness tape0 and tape1 such
that tapeb explains the commitment as a commitment to b for each b ∈ {0, 1}.

98 S. Kiyoshima

to replace the rewinding simulation technique in the protocol of [12] with the
“straight-line” simulation technique of Barak [3]. In particular, Pandey replaced
the first phase of the protocol of [12] with the following one.

1. First, the prover and the verifier execute an encrypted version of so called
Barak’s preamble [3,24,25], which determines a “fake statement” that is false
except with negligible probability.

2. Next, the prover and the verifier execute Yao’s garbled circuit protocol [28]
in which the prover can obtain ch and td only when it has a valid witness for
the fake statement.

From the security of the encrypted Barak’s preamble, no cheating prover can
make the fake statement true; hence, ch and td are hidden from the cheating
prover. In contrast, a non-black-box simulator can make the fake statement
true by using the knowledge of the code of the verifier; hence, the simulator
can obtain ch and td without rewinding V ∗. An issue is that, to guarantee
leakage resilience, it is required that Yao’s protocol is executed in a way that
all prover’s messages are pseudorandom (since otherwise it is hard to simulate
randomness that explains the simulated prover’s messages as honest prover’s
messages during the simulation of the leakages). Since Yao’s protocol involves
executions of an oblivious transfer protocol (in which the prover behaves as a
receiver), this property is hard to satisfy. Pandey solved this problem by using the
DDH assumption, under which there exists an oblivious transfer protocol such
that all receiver’s messages are indistinguishable from random group elements.

2.2 Our Techniques

The reason why the protocols of [12,23] either guarantee only weaker security
or rely on a stronger assumption is that the simulation involves extraction from
V ∗. In fact, in [12], the simulator need to obtain more amount of leakage than
V ∗ because it rewinds V ∗ during extraction, and in [23], the DDH assumption
is required because Yao’s protocol is used for extraction.

Based on this observation, our strategy is to modify the protocols of [12,23]
so that no extraction is required in simulation. We first remove the extraction
of trapdoor td and next remove the extraction of challenge ch.

Removing Extraction of Trapdoor td. We first modify the protocols of
[12,23] so that leakages can be simulated without extracting the trapdoor td of
an equivocal commitment scheme.

Our main tool is Hamiltonicity commitment scheme H-Com [9,11], which is a
well-known instance-dependent equivocal commitment scheme based on Blum’s
Hamiltonicity protocol. H-Com is parametrized by a graph G with q = poly(n)
vertices. To commit to 0, the committer chooses a random permutation π and
commits to the adjacent matrix of π(G) using any commitment scheme Com; to
decommit, the committer reveals π and decommits all the entries of the matrix.
To commit to 1, the committer commits to the adjacent matrix of a random

Constant-Round Leakage-Resilient ZK from Collision Resistance 99

q-cycle graph; to decommit, the committer decommits only the entries that cor-
responds to the edges on the cycle. H-Com satisfies equivocality when G has
a Hamiltonian cycle; this is because after committing to 0, the committer can
decommit it to both 0 and 1 given a Hamiltonian cycle w in G.

Given H-Com, we remove the extraction of td by combining H-Com with an
encrypted variant of Barak’s preamble. Specifically, we replace the equivocal
commitment scheme in the protocols of [12,23] with H-Com that depends on the
fake statement G′ that is obtained by the encrypted Barak’s preamble. From
the security of Barak’s preamble, any cheating prover cannot make G′ true and
hence it cannot use the equivocality of H-Com, whereas the simulator can make
G′ true and hence it can use the equivocality of H-Com as desired.

Remark 1. As observed in [23], it is not straightforward to use the encrypted
Barak’s preamble in the presence of leakage. Roughly speaking, in the encrypted
Barak’s preamble, the prover commits to its messages instead of sending them in
clear, and in the proof of soundness, it is required that the prover’s messages are
extractable from the commitments. The problem is that it is not easy to guaran-
tee this extractability in the presence of leakage (this is because the prover’s mes-
sages are typically not pseudorandom in the techniques of extractability). Pandey
[23] solved this problem by having the prover use a specific extractable commit-
ment scheme based on the DDH assumption. In this paper, we instead have the
prover use a commitment scheme that satisfies only very weak extractability but
the prover’s messages of which are pseudorandom and the security of which is
based on the existence of CRHFs.6 For details, see Sect. 4.1.

Removing Extraction of Challenge ch. Next, we modify the protocols of
[12,23] so that prover’s messages can be simulated without extracting the chal-
lenge ch of Hamiltonicity protocol.

We first notice that although the simulator can use equivocality without
extraction as shown above, it is not easy for the simulator to use equivocality for
simulating prover’s messages. This is because when the leakages to V ∗ includes
the randomness that is used for commitments, V ∗ may be able to determine the
committed values from the leakages and therefore equivocation may be detected
by V ∗.

As our main technical tool, then, we introduce a specific instance-dependent
equivocal commitment scheme GJS-Com that we obtain by considering the tech-
nique of [12] on Hamiltonicity protocol in the context of H-Com. Recall that,
as explained in Sect. 2.1, in [12] Garg et al. use Blum’s Hamiltonicity protocol
that is instantiated with an equivocal commitment scheme. Here, we use H-Com
that is instantiated with an equivocal commitment scheme (i.e., we use H-Com in
which the adjacent matrix is committed to by an equivocal commitment scheme).
The equivocal commitment scheme that we use here is, as above, H-Com that
depends on the fake statement generated by the encrypted Barak’s preamble.7

6 This extractability is used only in the proof of soundness. Hence, the proof of zero-
knowledgeness works even in the presence of this extractable commitment scheme.

7 Actually, we use an adaptively secure H-Com [9,19]. See Footnote 5.

100 S. Kiyoshima

Hence, the commitment scheme GJS-Com is a version of H-Com that is instan-
tiated by using H-Com itself as the underling commitment scheme.8 GJS-Com
depends on two statements of the Hamiltonicity problem: The “outer” H-Com
(the H-Com that is implemented with H-Com) depends on the real statement G,
and the “inner” H-Com (the H-Com that is used to implement H-Com) depends
on the fake statement G′. GJS-Com inherits equivocality from the outer H-Com,
i.e., given a witness for the real statement G, a GJS-Com commitment to 0 can
be decommitted to both 0 and 1.

Since GJS-Com is obtained by considering the technique of [12] in the context
of H-Com, it satisfies a property that is useful for proving LRZK property. First,
observe that given GJS-Com, the second phase of the LRZK protocol of [12] (i.e.,
Hamiltonicity protocol phase) can be viewed as follows.

1. The prover commits to 0 by using GJS-Com.
2. The verifier reveals the challenge ch ∈ {0, 1} that is committed to in the first

phase.
3. When ch = 0, the prover decommits the GJS-Com commitment to 0 honestly,

and when ch = 1, the prover decommits it to 1 by using the equivocality with
the knowledge of Hamiltonian cycle w in G.

When the second phase of the protocol of [12] is viewed in this way, the key
property that is used in the simulation of the leakages in [12] is the following.

– Given a Hamiltonian cycles in G and G′, a GJS-Com commitment to 1 (in
which a random cycle graph is committed) can be “explained” as a commit-
ment to 0 (in which a permutation of G is committed) by using the equivocality
of the inner H-Com.

Furthermore, even after being explained as a commitment to 0, the com-
mitment can later be decommitted to 1 in a consistent way with the explained
randomness (cf. function ˜f in Sect. 2.1).

Because of this property, even when the simulator commits to 1 instead of 0 using
GJS-Com to simulate the messages, the simulator can answer any leakage query
f from V ∗ by querying Lw a function ˜f that, on input w, computes randomness
tape that explains the commitment to 1 as a commitment to 0 and then outputs
f(w, tape).

A problem of this property is that it can be used only in a very limited
situation. Specifically, this property can be used only when the simulator knows
which GJS-Com commitment will be decommitted to 1, and this is the reason
why the extraction of ch is required in the simulation strategy of [12,23]. Hence,
to remove the extraction of ch, we need to use GJS-Com in a way that, given
a witness for the fake statement, the simulator can predict which value each
GJS-Com commitment will be decommitted to.

Our key observation is that we can use this property if we use GJS-Com
to implement the Hamiltonicity protocol in which the fake statement is proven.
Concretely, we consider the following protocol.
8 In the “inner” H-Com, the underlying commitment scheme is Com as before.

Constant-Round Leakage-Resilient ZK from Collision Resistance 101

1. The prover and the verifier execute an encrypted variant of Barak’s preamble.
Let G′ be the fake statement and let q′ be the number of the nodes of G′.

2. (a) The prover commits to a q′ × q′ zero matrix by using GJS-Com.
(b) The verifier sends a challenge ch ∈ {0, 1}.
(c) When ch = 0, the prover sends a random permutation π over G′ to the

verifier and then decommit the GJS-Com commitments to the adjacent
matrix of π(G′) by using the equivocality of GJS-Com with the knowledge
of a witness for the real statement.

When ch = 1, the prover chooses a random q′-cycle graph H and
decommits some of the GJS-Com commitments to 1 by using the equiv-
ocality of GJS-Com so that the decommitted entries of the matrix corre-
spond to the cycle in H.

(d) When ch = 0, the verifier verifies whether the decommitted graph is
π(G′). When ch = 1, the verifier verifies whether the decommitted entries
corresponds to a q′-cycle in a graph.

Since any charting prover cannot make the fake statement G′ true, GJS-Com is
statistically binding when the real statement G is false, and hence soundness
follows. In contrast, the simulator can cheat in Barak’s preamble so that it
knows a Hamiltonian cycle w′ in the fake statement G′, and therefore it can
simulate the prover’s messages by “honestly” proving the fake statement, i.e.,
by committing to π(G′) in step 2(a) for a randomly chosen π and then revealing
the entire graph π(G′) or only the cycle π(w′) depending on the value of ch.
Furthermore, since in step 2(a) the simulator do know which value each GJS-Com
commitment will be decommitted to (the commitments to the edges on π(w′)
will be always decommitted to 1 and others will be decommitted honestly or will
not be decommitted), the simulator can simulate the leakage in the same way
as in the protocol of [12] by using the property of GJS-Com described above.

This completes the overview of our techniques. The details are given in what
follows.

3 Preliminaries

3.1 Notations

We use n to denote the security parameter. For any k ∈ N, we use [k] to denote
the set {1, . . . , k}. For any randomized algorithm Algo, we use Algo(x; r) to
denote the execution of Algo with input x and randomness r, and we use Algo(x)
to denote the execution of Algo with input x and uniform randomness.

We use LHC to denote the languages of the Hamiltonian graphs. For any
G ∈ LHC, we use RHC(G) to denote the set of the Hamiltonian cycles in G.
Generally, for any language L and any instance x ∈ L, we use RL(x) to denote
the set of the witnesses for x ∈ L.

For any two-party protocol 〈A,B〉, we use trans [A(x) ↔ B(y)] to denote
a random variable representing the transcript of the interaction between A
and B with input x and y respectively, and use outputA [A(x) ↔ B(y)] (resp.,

102 S. Kiyoshima

outputB [A(x) ↔ B(y)]) to denote a random variable representing the output of
A (resp., B) in the interaction between A and B with input x and y respectively.

3.2 Leakage-Resilient Zero-Knowledge

We recall the definition of leakage-resilient zero-knowledgeness [12]. For conve-
nience, we use a slightly different formulation of the definition.

For any interactive proof system 〈P, V 〉, any ppt cheating receiver V ∗, any
statement x ∈ L, any witness w ∈ RL(x), and any oracle machine S called
simulator, consider the following two experiments.

REALV ∗(x,w, z)
1. Execute V ∗(x, z) with a honest prover P (x,w) of 〈P, V 〉.

During the interaction, V ∗ can make arbitrary number of adaptive leak-
age queries on the state of P . A leakage query consists of an efficiently
compatible function fi (described as a circuit) and it is answered with
fi(w, tape), where tape is the randomness used by P so far.

2. Output the view of V ∗.

IDEALS(x,w, z)
1. Execute S(x, z) with access to a leakage oracle Lw. A query to Lw consists

of an efficiently computable function f and answered with f(w). Let τ be
the output of S.

2. If τ is not a valid view of V ∗, the output of the experiment is ⊥. Otherwise,
let � be the total length of the leakage that V ∗ obtains in τ . If the total
length of the answers that S obtained from Lw is larger than �, the output
of the experiment is ⊥. Otherwise, the output is τ .

Let REALV ∗(x,w, z) be the random variable representing the output of
REALV ∗(x,w, z) and IDEALS(x,w, z) be the random variable representing the
output of IDEALS(x,w, z).

Definition 1. An interactive argument system 〈P, V 〉 for a language L with wit-
ness relation R is leakage-resilient zero knowledge if for every ppt machine
V ∗ and every sequence {wx}x∈L such that (x,wx) ∈ RL, there exists a ppt oracle
machine S such that the following hold.

Indistinguishability Condition

{REALV ∗(x,wx, z)}x∈L,z∈{0,1}∗ ≈ {IDEALS(x,wx, z)}x∈L,z∈{0,1}∗ .

Leakage-length condition. For every x ∈ L and z ∈ {0, 1}∗,

Pr [IDEALS(x,wx, z) = ⊥] = 0.

Constant-Round Leakage-Resilient ZK from Collision Resistance 103

3.3 Commitment Scheme

Recall that commitment schemes are two-party protocols between a committer
C and a receiver R. We say that a commitment is valid if there exists a value to
which it can be decommitted. We denote by value(·) a function that, on input
a commitment (i.e., a transcript in the commit phase), outputs its committed
value if it is uniquely determined and outputs ⊥ otherwise.

3.4 Naor’s Commitment

We recall Naor’s statistically binding commitment scheme Com, which can be
constructed from one-way functions [16,20].

Commit Phase. The commit phase consists of two rounds. In the first round,
the receiver sends a random 3n-bit string r ∈ {0, 1}3n. In the second round,
the committer chooses a random seed s ∈ {0, 1}n for a pseudorandom generator
PRG : {0, 1}n → {0, 1}3n and then sends PRG(s) if it wants to commit to 0 and
sends PRG(s) ⊕ r if it wants to commit to 1.

We use Comr(·) to denote an algorithm that, on input b ∈ {0, 1}, computes
a commitment to b as above by using r as the first-round message.

Decommit Phase. In the decommit phase, the committer reveals the seed s.

Security. Com is statistically binding and computational hiding. Furthermore,
the binding and hiding property hold even when the same first-round message r
is used in multiple commitments.

Committing to Strings. For any � ∈ N, we can commit to an �-bit string by
simply committing to each bit using Com. We notice that the same first-round
message r can be used in all the commitments.

We abuse the notation and use Comr(·) to denote an algorithm that, on input
m ∈ {0, 1}∗, computes a commitment to m as above by using r as the first-
round message. Notice that Comr(·) has pseudorandom range. Thus, by using
an algorithm Compub that outputs a random 3n�-bit string on input 1�, we can
obtain a “fake commitment” that is indistinguishable from a real commitment.

3.5 Hamiltonicity Commitment

We recall a well-known instance-dependent commitment scheme H-Com [9,11]
that is based on Blum’s zero-knowledge proof for Hamiltonicity.

Commit Phase. H-Com is parametrized by a graph G. Let q be the number of
its vertices. To commit to 0, the committer chooses a random permutation π
over the vertices of G and then commits to the adjacent matrix of π(G) by using
Com. To commit to 1, the committer chooses a random q-cycle graph and then
commits to its adjacent matrix by using Com.

We use H-ComG,r(·) to denote an algorithm that, on input b ∈ {0, 1}, com-
putes a commitment to b as above by using r as the first-round message of all
the Com commitments.

104 S. Kiyoshima

Decommit Phase. When the committer committed to 0, it reveals π, and also
reveals all the entries of the adjacent matrix by decommitting all the Com com-
mitments. When the committer committed to 1, it reveals only the entries cor-
responding to the edges on the q-cycle by decommitting the Com commitments
in which these entries are committed.

Security. H-Com is computationally hiding, and it is statistically binding when
G
∈ LHC.

Equivocality. When G ∈ LHC, a commitment to 0 can be decommitted to 1
given a Hamiltonian cycle w ∈ RHC(G) in G. Specifically, a commitment to 0
can be decommitted to 1 by decommitting the entries that corresponds to the
edges on π(w) (i.e., the cycle that is obtained by applying π on w).

3.6 Adaptive Hamiltonicity Commitment

We recall the adaptively secure Hamiltonicity commitment scheme AH-Com,
which was used in, e.g., [9,19].

Commit Phase. AH-Com is parametrized by a graph G. Let q be the number of
its vertices. To commit to 0, the committer does the same things as in H-Com;
i.e., it chooses a random permutation π over the vertices of G and then commits
to the adjacent matrix of π(G) by using Com. To commit to 1, the committer
chooses a random q-cycle graph and then commits to its adjacent matrix in the
following way: For all the entries corresponding to the edges on the q-cycle, it
commits to 1 by using Com, and for all the other entries, it simply sends random
3n-bit strings instead of committing to 0. (Since Com has pseudorandom range,
random 3n-bit strings are indistinguishable from Com commitments.)

We use AH-ComG,r(·) to denote an algorithm that, on input b ∈ {0, 1},
computes a commitment to b as above by using r as the first-round message of
all the Com commitments.

Decommit Phase. To decommit, the committer reveals all the randomness used
in the commit phase. We use AH-Decr(·, ·, ·) to denote an algorithm that, on
input c, b, ρ such that AH-Comr(b; ρ) = c, outputs a decommitment d as above.

Security. Like H-Com, AH-Com is computationally hiding both when G ∈ LHC

and when G
∈ LHC, and it is statistically binding when G
∈ LHC.

Adaptive Security. When G ∈ LHC, a commitment to 0 can be “explained”
as a valid commitment to 1 given a witness w ∈ RHC(G). Specifically, for a
commitment c to 0, we can compute ρ such that AH-Com(1; ρ) = c. This is
because commitments to the entries that do not correspond to the edges on
π(w) are indistinguishable from random strings.

Formally, there exists an algorithm AH-ExplainAsOne such that for security
parameter n ∈ N, graphs G ∈ LHC, witness w ∈ RHC(G), and string r ∈ {0, 1}3n,
the following hold.

Constant-Round Leakage-Resilient ZK from Collision Resistance 105

Correctness. Given witness w ∈ RHC(G) and c, ρ such that AH-ComG,r(0; ρ) =
c, AH-ExplainAsOneG,r outputs ρ′ such that AH-ComG,r(1; ρ′) = c.

Indistinguishability. Consider the following two probabilistic experiments.
EXPAH

0 (n,G,w, r)
/* commit to 1 and reveal randomness */
1. Computes c ← AH-ComG,r(1).

Let ρ1 be the randomness used in AH-Com.
2. Output (c, ρ1).

EXPAH
1 (n,G,w, r)

/* commit to 0 and explain it as commitment to 1 */
1. Computes c ← AH-ComG,r(0).

Let ρ0 be the randomness used in AH-Com.
Compute ρ1 := AH-ExplainAsOneG,r(w, c, ρ0).

2. Output (c, ρ1).
Let EXPAH

b (n,G,w, r) be the random variable representing the output of
EXPAH

b (n,G,w, r) for each b ∈ {0, 1}. Then, the following two ensembles are
computationally indistinguishable.

{

EXPAH
0 (n,G,w, r)

}

n∈N,G∈LHC,w∈RHC(G),r∈{0,1}3n
{

EXPAH
1 (n,G,w, r)

}

n∈N,G∈LHC,w∈RHC(G),r∈{0,1}3n

3.7 Barak’s Non-black-box Zero-Knowledge Protocols

As explained in Sect. 2, in our LRZK protocol, we use a variant of so called
“encrypted” Barak’s preamble [24,25], which is based on the preamble stage
of Barak’s non-black-box zero-knowledge protocol [3]. In this section, we
recall Barak’s non-black-box zero-knowledge protocol. Our variant of encrypted
Barak’s preamble is described in Sect. 4.1.

Barak’s non-black-box zero-knowledge protocol is constructed from any
collision-resilient hash function family H. Informally speaking, Barak’s proto-
col BarakZK proceeds as follows.

Protocol BarakZK

1. The verifier V sends a random hash function h ∈ H and the first-round
message r1 ∈ {0, 1}3n of Com to the prover P .

2. P sends c ← Comr1(0
n) to V . Then, V sends random string r2 to P .

3. P proves the following statement by a witness-indistinguishable argument.
– x ∈ L, or
– (h, c, r2) ∈ Λ, where (h, c, r2) ∈ Λ holds if and only if there exists a

machine Π such that c is a commitment to h(Π) and Π outputs r2 in
nlog log n steps.

Note that the statement proven in the last step is not in NP. Thus, P proves
this statement by a witness-indistinguishable universal argument (WIUA), with

106 S. Kiyoshima

Stage 1:
The verifier VB sends a random hash function h ∈ H to the prover PB, where
the domain of h is {0, 1}∗ and the range of h is {0, 1}n. VB also sends r1 ∈
{0, 1}3n (the first-round message of Com) to PB.

Stage 2:
1. PB computes c ← Comr1(0

n) and send c to VB.

2. VB sends random r2 ∈ {0, 1}n+n2
to PB.

Stage 3: PB proves statement (h, r1, c, r2) ∈ Λ by using UA.
1. VB sends the first-round message α.
2. PB sends the second-round message β.
3. VB sends the third-round message γ.
4. PB sends the fourth-round message δ.

. .

Language Λ:
(h, r1, c, r2) ∈ Λ if and only if there exist
– a machine Π
– randomness rand for Com
– a string y such that |y| ≤ n2

such that
– c = Comr1(h(Π); rand), and
– Π(c, y) outputs r2 within nlog logn steps.

Fig. 1. Encrypted Barak’s preamble 〈PB, VB〉.

which P can prove any statement in NEXP. Intuitively, BarakZK is sound since
Π(c)
= r holds with overwhelming probability even when a cheating prover
P ∗ commits to h(Π) for a machine Π. On the other hand, the zero-knowledge
property can be proven by using a simulator that commits to h(Π) such that
Π is a machine that emulates the cheating verifier V ∗; since Π(c) = V ∗(c) = r
holds from the definition, the simulator can give a valid proof in the last step.

For our purpose, it is convenient to consider a variant of BarakZK that we
denote by 〈PB, VB〉. 〈PB, VB〉 is the same as BarakZK except that in the last step,
instead of proving x ∈ L∨(h, c, r2) ∈ Λ by using WIUA, P proves (h, c, r2) ∈ Λ by
using four-round public-coin universal argument system UA [4]. (Hence, 〈PB, VB〉
is no longer zero-knowledge protocol.) The formal description of 〈PB, VB〉 is
shown in Fig. 1. We remark that in 〈PB, VB〉, the language proven in the last
step is replaced with a slightly more complex language as in, e.g., [3,23–25]. This
replacement is important for using 〈PB, VB〉 in the setting of leakage-resilient
zero-knowledge, because the cheating verifier can obtain arbitrary information
(i.e., leakage) before sending r2.

In essentially the same way as the soundness of BarakZK, we can prove the
following lemma on 〈PB, VB〉, which roughly states that there exists a “hard”
language LB on the transcript of 〈PB, VB〉 such that no cheating prover can
generate a transcript that is included in LB.

Constant-Round Leakage-Resilient ZK from Collision Resistance 107

Language LB:
τ = (h, r1, c, r2, α, β, γ, δ) ∈ LB if and only if (α, β, γ, δ) is an accepting tran-
script of UA for statement (h, r1, c, r2) ∈ Λ.

Fig. 2. A “hard” language LB.

Lemma 1 (Soundness). Let LB be the language defined in Fig. 2. Then, for
any cheating prover P ∗ against 〈PB, VB〉, any n ∈ N, and any z ∈ {0, 1}∗,

Pr [τ ← trans [P ∗(1n, z) ↔ VB(1n)] : τ ∈ LB] ≤ negl(n).

A proof sketch of this lemma is given in the full version of this paper [17].

3.8 Somewhat Extractable Commitment Scheme

As we mentioned in Remark 1 in Sect. 2.2, in our variant of encrypted Barak’s
preamble, we use a commitment scheme that satisfies only very weak extractabil-
ity, which we call somewhat extractability. An important point is that since only
very weak extractability is required, we can construct a somewhat extractable
commitment scheme such that the committer sends only pseudorandom mes-
sages. Furthermore, we can construct such a scheme from one-way functions.

Concretely, we consider the commitment scheme SWExtCom in Fig. 3.
SWExtCom is the same as the extractable commitment scheme of [26] except
that in the last step, the committer simply reveals the values that it commit-
ted to in the first step (instead of decommitting the commitments). Because of
this simplification, SWExtCom does not satisfy extractability in the standard
sense. Still, it is not hard to see that SWExtCom satisfies extractability in the
sense that, given two valid commitments c and c′ such that the transcripts of
the commit stage are identical but those of the challenge stage are different,
the committed value of c can be extracted. Formally, SWExtCom satisfies the
following extractability.

Lemma 2 (Somewhat Extractability). Let us say that two commitments
c = ({ci,b}i∈[n],b∈{0,1}, {ei}i∈[n], {ai,ei

}i∈[n]) and c′ = ({c′
i,b}i∈[n],b∈{0,1},

{e′
i}i∈[n], {a′

i,ei
}i∈[n]) are admissible if

– ci,b = c′
i,b for every i ∈ [n] and b ∈ {0, 1},

– there exists i∗ ∈ [n] such that ei∗
= e′
i∗ , and

– the committed value of ci,b is uniquely determined for every i ∈ [n] and b ∈
{0, 1}.

Let Extract(·, ·) be the algorithm shown in Fig. 3. Then, for any two admissible
commitments c and c′, if both c and c′ are valid, ṽ

def= Extract(c, c′) is equal to
value(c) (i.e., ṽ is the committed value of c).

108 S. Kiyoshima

Commit phase. The committer C and the receiver R receive common inputs
1n. To commit to v ∈ {0, 1}n, the committer C does the following with the
receiver R.
Commit stage. For each i ∈ [n], the committer C chooses a pair of random

n-bit strings (ai,0, ai,1) such that ai,0 ⊕ ai,1 = v. Then, for each i ∈ [n] in
parallel, C commits to ai,0 and ai,1 by using Com. For each i ∈ [n] and
b ∈ {0, 1}, let ci,b be the commitment to ai,b.

Challenge stage. R sends random n-bit string e = (e1, . . . , en) to C.
Reply stage. For each i ∈ [n], C sends ai,ei to R.

Decommit phase. C sends v to R and decommits ci,b to ai,b for all i ∈ [n]
and b ∈ {0, 1}. R checks whether a1,0 ⊕ a1,1 = · · · = an,0 ⊕ an,1 = v holds
and whether a1,e1 , . . . , an,en are equal to the values that were revealed in the
commit phase.

. .

Extracting algorithm Extract.
On input two commitments c = ({ci,b}i∈[n],b∈{0,1}, {ei}i∈[n], {ai,ei}i∈[n]) and
c′ = ({c′

i,b}i∈[n],b∈{0,1}, {e′
i}i∈[n], {a′

i,ei}i∈[n]) such that ci,b = c′
i,b for every

i ∈ [n] and b ∈ {0, 1}, do the following.
1. Find any i ∈ [n] such that ei �= e′

i. If no such i exist, output fail.

2. Output v
def
= ai,ei ⊕ a′

i,e′
i
.

Fig. 3. A somewhat extractable commitment scheme SWExtCom.

Proof. First, when c and c′ are valid, ai∗,ei∗ and a′
i∗,e′

i∗
are the committed values

of ci∗,ei∗ and ci∗,e′
i∗

(since otherwise, any decommitments of c and c′ would be
rejected because the decommitted values of ci∗,ei∗ and ci∗,e′

i∗
are not consistent

with ai∗,ei∗ and a′
i∗,e′

i∗
). Second, when c and c′ are valid, the committed value of

c can be computed by XORing the committed values of ci∗,ei∗ and ci∗,e′
i∗

(since
otherwise, any decommitments of c and c′ would be rejected). From these, the
lemma follows. ��
A nice property of SWExtCom is that all the messages that the committer sends
in the commit phase are pseudorandom. Formally, we have the following lemma.

Lemma 3 (Existence of Public-Coin Fake Committing Algorithm).
Let C be a honest committer algorithm of SWExtCom. There exists a ppt public-
coin algorithm Cpub such that for any ppt cheating receiver R∗ that interacts
with C in the commit phase of SWExtCom, the following ensembles are compu-
tationally indistinguishable.

– {outputR∗ [C(v) ↔ R∗(1n, z)]}n∈N,v∈{0,1}n,z∈{0,1}∗

– {outputR∗ [Cpub(1n) ↔ R∗(1n, z)]}n∈N,v∈{0,1}n,z∈{0,1}∗

Constant-Round Leakage-Resilient ZK from Collision Resistance 109

Proof (sketch). Cpub is an algorithm that is the same as C except that, instead of
sending commitments of Com, it sends fake commitments of Com using Compub

(i.e., sends random strings with the same length as the Com commitments). Since
Com has pseudorandom range, the indistinguishability can be proven by using a
standard hybrid argument (in which the commitments of Com are replaced with
random strings one by one). The formal proof is omitted. ��

4 Building Blocks

4.1 Special-Purpose Encrypted Barak’s Preamble

In our LRZK protocol, we use a variant of so called “encrypted” Barak’s pream-
ble [24,25]. The encrypted Barak’s preamble is the same as (a variant of) Barak’s
non-black-box zero-knowledge protocol 〈PB, VB〉 in Sect. 3.7 except that PB com-
mits to its UA messages β and δ instead of sending them in clear. In this paper,
we use a variant in which, instead of giving valid commitments, PB gives fake
commitments of Com and SWExtCom by using Compub and Cpub. A nice prop-
erty of this variant is that the prover sends only random strings; as will become
clear later, this property is useful for constructing leakage-resilient protocols.
The formal description of this variant, which we denote by 〈PB,VB〉, is shown
in Fig. 4.

We first show that, as in the case of 〈PB, VB〉, there exists a “hard” language
on the transcript of 〈PB,VB〉.
Lemma 4 (Soundness). Let LB be the language defined in Fig. 5. Then, for
any cheating prover P

∗ against 〈PB,VB〉, any n ∈ N, and any z ∈ {0, 1}∗,

Pr [τ ← trans [P∗(1n, z) ↔ VB(1n)] : τ ∈ LB] ≤ negl(n).

Proof. Assume for contradiction that there exists P
∗ such that for infinitely

many n’s, there exists z ∈ {0, 1}∗ such that

Pr [τ ← trans [P∗(1n, z) ↔ VB(1n)] : τ ∈ LB] ≥ 1
p(n)

for a polynomial p(·). We use P
∗ to construct a cheating prover P ∗ against

〈PB, VB〉 and show that it contradicts the soundness of 〈PB, VB〉 (i.e., Lemma 1).
Consider the following cheating prover P ∗ against 〈PB, VB〉. First, P ∗ inter-

nally invokes P∗. Then, while externally interacting with a honest VB of 〈PB, VB〉,
P ∗ interacts with internal P∗ as a verifier of 〈PB,VB〉 in the following way.

– In Stage 1 and 2 (of 〈PB,VB〉), P ∗ forwards all messages from external VB

to internal P
∗ and forwards all messages from internal P

∗ to external VB.
(Notice that the verifier of 〈PB, VB〉 and that of 〈PB,VB〉 are identical.) Let
(h, r1, c, r2) be the transcript of these stages.

– In Stage 3-1, P ∗ forwards α from external VB to internal P∗.

110 S. Kiyoshima

Stage 1:
The verifier VB sends a random hash function h ∈ H to the prover PB. VB

also sends r1 ∈ {0, 1}3n (the first-round message of Com) to PB.
Stage 2:

1. PB gives a fake commitment c of Com to VB by running c ← Compub(1
n).

2. VB sends random r2 ∈ {0, 1}n+n2
to PB.

Stage 3 (Encrypted UA):
1. VB sends the first-round message α of UA for statement (h, r1, c, r2) ∈ Λ.
2. PB gives a fake commitment of SWExtCom to VB by running Cpub(1

n).

Let β̂ be the fake commitment (i.e., the transcript of this step).
3. VB sends the third-round message γ of UA for statement (h, r1, c, r2) ∈ Λ.
4. PB gives a fake commitment of SWExtCom to VB by running Cpub(1

n).

Let δ̂ be the fake commitment.

. .

Language Λ (same as the one in Fig. 1):
(h, r1, c, r2) ∈ Λ if and only if there exist
– a machine Π
– randomness rand for Com
– a string y such that |y| ≤ n2

such that
– c = Comr1(h(Π); rand), and
– Π(c, y) outputs r2 within nlog logn steps.

Fig. 4. Special-purpose encrypted Barak’s preamble 〈PB,VB〉.

– In Stage 3-2, P ∗ interacts with internal P∗ as a honest receiver of SWExtCom
and obtains ̂β1. Let st be the current state of P

∗. Then, P ∗ rewinds P
∗

to the point just before the challenge stage of SWExtCom, interacts with
P

∗ again, and obtains ̂β2. Then, P ∗ computes a potential committed value
˜β

def= Extract(̂β1, ̂β2) of ̂β1 (recall that Extract is the extracting algorithm of
SWExtCom shown in Fig. 3) and sends ˜β to external VB.

– In Stage 3-3, P ∗ receives γ from VB and sends it to internal P
∗ (which is

restarted from state st).
– In Stage 3-4, P ∗ interacts with internal P∗ as a honest receiver of SWExtCom

and obtains ̂δ1. Then, P ∗ rewinds P
∗ to the point just before the challenge

stage of SWExtCom, interacts with P
∗ again, and obtains ̂δ2. Then, P ∗ com-

putes ˜δ := Extract(̂δ1, ̂δ2) and sends ˜δ to external VB.

Whenever internal P∗ aborts, P ∗ also aborts.
Before analyzing the success probability of P ∗, we first introduce some termi-

nologies regarding the internally emulated interaction between P
∗ and VB. Let

τ = (h, r1, c, r2, α, ̂β1, γ, ̂δ1) be its transcript. Notice that since P ∗ emulates VB

for internal P∗ perfectly, we have τ ∈ LB with probability at least 1/p(n).

Constant-Round Leakage-Resilient ZK from Collision Resistance 111

Language LB:
(h, r1, c, r2, α, β̂, γ, δ̂) ∈ LB if and only if there exist
– decommitments d1, d2 ∈ {0, 1}poly(n) for SWExtCom
– the second-round and the fourth-round messages β, δ ∈ {0, 1}n of UA

such that
– d1 is a valid decommitment of β̂ to β, and
– d2 is a valid decommitment of δ to δ, and
– (α, β, γ, δ) is an accepting transcript of UA for statement (h, r1, c, r2) ∈ Λ.

Fig. 5. Language LB.

– We say that a transcript τ1 up until the commit stage of SWExtCom in Stage
3-2 is good if under the condition that τ1 is a prefix of τ , the probability that
τ ∈ LB holds is at least 1/2p(n).

– We say that a transcript τ2 up until the commit stage of SWExtCom in Stage
3-4 is good if (1) a prefix of τ2 up until the commit stage of SWExtCom in
Stage 3-2 is good and (2) under the condition that τ2 is a prefix of τ , the
probability that τ ∈ LB holds is at least 1/4p(n).

We then analyze the success probability of P ∗ as follows. Let GOOD1 be the
event that a prefix of τ up until the commit stage of SWExtCom in Stage 3-2 is
good, and let GOOD2 be the event that a prefix of τ up until the commit stage
of SWExtCom in Stage 3-4 is good. From an average argument, we have

Pr [GOOD1] ≥ 1
2p(n)

and Pr [GOOD2 | GOOD1] ≥ 1
4p(n)

.

Hence, we have

Pr [GOOD2] = Pr [GOOD1 ∧ GOOD2] ≥ 1
8 (p(n))2

. (1)

Also, from the definition of GOOD2, we have

Pr [τ ∈ LB | GOOD2] ≥ 1
4p(n)

. (2)

Hence, from Eqs. (1) and (2), we have

Pr [GOOD1 ∧ GOOD2 ∧ τ ∈ LB] = Pr [GOOD2 ∧ τ ∈ LB] ≥ 1
32 (p(n))3

. (3)

Next, we observe that when the transcript up until the commit stage of
SWExtCom in Stage 3-2 is good, P

∗ gives a valid commitment of SWExtCom
in Stage 3-2 with probability at least 1/2p(n), and similarly, when the tran-
script up until the commit stage of SWExtCom in Stage 3-4 is good, P∗ gives a
valid commitment of SWExtCom in Stage 3-4 with probability at least 1/4p(n).

112 S. Kiyoshima

(This is because when the transcript is in LB, the SWExtCom commitments in
Stage 3-2 and 3-4 are valid.) Hence, under the condition that GOOD1∧GOOD2∧τ ∈
LB, the probability that both of ̂β2 and ̂δ2 are valid is at least 1/8(p(n))2. Also,
from the definition of LB, both of ̂β1 and ̂δ1 are valid when τ ∈ LB, and further-
more, ̂β1 and ̂β2 (resp, ̂δ1 and ̂δ2) are admissible except with negligible proba-
bility. Hence, from Lemma 2, for ˜β = Extract(̂β1, ̂β2) and ˜δ = Extract(̂δ1, ̂δ2) we
have

Pr
[

˜β = value(̂β1) ∧ ˜δ = value(̂δ1) | GOOD1 ∧ GOOD2 ∧ τ ∈ LB

]

≥ 1
8(p(n))2

− negl(n). (4)

Hence, from Eqs. (3) and (4), we have

Pr
[

GOOD1 ∧ GOOD2 ∧ τ ∈ LB ∧ ˜β = value(̂β1) ∧ ˜δ = value(̂δ1)
]

≥ 1
256(p(n))5

− negl(n).

Notice that from the definition of LB, when τ ∈ LB ∧ ˜β = value(̂β1) ∧ ˜δ =
value(̂δ1), it holds that (α, ˜β, γ, ˜δ) is an accepting UA proof for (h, r1, c, r2) ∈ Λ.
Hence, we have

Pr
[

(h, r1, c, r2, α, ˜β, γ, ˜δ) ∈ LB

]

≥ 1
256(p(n))5

− negl(n),

which contradicts Lemma 1. ��
We next note that a non-black-box simulator can simulate the transcript τ in
such a way that τ ∈ LB holds, and the simulator can additionally output a
witness for τ ∈ LB.

Lemma 5 (Simulatability). Let LB be the language defined in Fig. 5. Then,
for any ppt cheating verifier V

∗ against 〈PB,VB〉, there exists a ppt simulator
S such that the following hold.

– Let S1(x, z) be the random variable representing the first output of S(x, z).
Then, the following indistinguishability holds.

{viewV∗ [PB(1n) ↔ V
∗(1n, z)]}n∈N,z∈{0,1}∗ ≈ {S1(1n, z)}n∈N,z∈{0,1}∗

– For any n ∈ N and z ∈ {0, 1}∗, the following holds.

Pr

[
(v, w) ← S(1n, z);
reconstruct transcript τ from view v of V

∗ : w ∈ RLB(τ)

]
≥ 1 − negl(n)

This lemma can be proven in essentially the same way as the zero-knowledge
property of Barak’s non-black-box zero-knowledge protocol. A proof sketch is
given in the full version [17].

Constant-Round Leakage-Resilient ZK from Collision Resistance 113

4.2 Special-Purpose Instance-Dependent Commitment

In our LRZK protocol, we use a special-purpose instance-dependent commit-
ment scheme GJS-Com, which is shown in Fig. 6. GJS-Com is parametrized
by two graphs, G and G′, and obtained by modifying Hamiltonicity commit-
ment scheme H-ComG,r in such a way that the adjacent matrix is committed
to by using AH-ComG′,r instead of Comr. GJS-Com inherits many properties
from H-Com—hiding, binding, and equivocality—and additionally, thanks to the
adaptive security of AH-Com, it provides adaptive security in the following sense:
When G ∈ LHC and G′ ∈ LHC, a commitment to 1 can be explained as a valid
commitment to 0, and furthermore, even after being explained as a commitment
to 0, it can be decommitted to 1 in a consistent way. Details follow.

Parameters:
– Security parameter n.
– Two graphs G and G′, where the number of vertices in G is q = poly(n)

and that in G′ is q′ = poly′(n).
Inputs:

– C has secret input b ∈ {0, 1}, which is the value to be committed to.
Commit phase:

1. R sends the first-round message r ∈ {0, 1}3n of Com.
2. To commit to 0, C chooses a random permutation π over the ver-

tices of G, computes H0 := π(G), and commits to its adjacent
matrix A0 = {a0,i,j}i,j∈[q] by using AH-ComG′,r, i.e., sends ci,j ←
AH-ComG′,r(a0,i,j) for every i, j ∈ [q].

To commit to 1, C chooses a random q-cycle graph H1 and commits
to its adjacent matrix A1 = {a1,i,j}i,j∈[q] by using AH-ComG′,r, i.e.,
sends ci,j ← AH-ComG′,r(a1,i,j) for every i, j ∈ [q].

Let GJS-ComG,G′,r(·) be a function that, on input b ∈ {0, 1}, computes a
commitment to b as above by considering r as the first-round message from
the receiver.

Decommit phase:
– When C committed to 0, it reveals π and decommits ci,j to a0,i,j for

every i, j ∈ [q]. R verifies whether the decommitted matrix is the adjacent
matrix of π(G).

– When C committed to 1, it decommits ci,j to 1 for every i, j such that
edge (i.j) is on the q-cycle in H1 (i.e., every i, j such that a1,i,j = 1).
R verifies whether the decommitted entries correspond to the edges on a
Hamilton cycle.

Let GJS-Decr(·) be a function that, on input (c, b, ρ) such that
GJS-ComG,G′,r(b; ρ) = c, outputs a decommitment to b as above.

Fig. 6. Special-purpose instance-dependent commitment GJS-Com.

Lemma 6 (Hiding and Binding). GJS-Com is computationally hiding. Fur-
thermore, it is statistically binding when G
∈ LHC and G′
∈ LHC.

114 S. Kiyoshima

Lemma 7 (Equivocality). There exists an algorithm GJS-EquivToOne that
is parametrized by graphs G,G′ and a string r ∈ {0, 1}3n and satisfies the fol-
lowing: When G ∈ LHC, on input any w ∈ RHC(G) and any c and ρ such that
GJS-ComG,G′,r(0; ρ) = c, GJS-EquivToOneG,G′,r outputs a valid decommitment
of c to 1.

Proofs of these two lemmas are straightforward. We give the proofs in the
full version [17].

Lemma 8 (Adaptive Security). There exists an algorithm GJS-ExplainAsZero
that is parametrized by graphs G,G′ and a string r ∈ {0, 1}3n and satisfies the
following.

Correctness. When G,G′ ∈ LHC, on input any w ∈ RHC(G) and
w′ ∈ RHC(G′) and any c and ρ1 such that GJS-ComG,G′,r(1; ρ1) = c,
GJS-ExplainAsZeroG,G′,r outputs ρ0 such that GJS-ComG,G′,r(0; ρ0) = c.

Indistinguishability. For security parameter n ∈ N, graphs G,G′ ∈ LHC,
witnesses w ∈ RHC(G) and w′ ∈ RHC(G′), and string r ∈ {0, 1}3n, consider
the following two probabilistic experiments.
EXPGJS

0 (n,G,G′, w, w′, r)
/* commit to 0 and decommit it to 1 using equivocality */
1. Compute c ← GJS-ComG,G′,r(0).

Let ρ0 be the randomness used in GJS-Com.
2. Compute d1 := GJS-EquivToOneG,G′,r(c, w, ρ0).
3. Output (c, ρ0, d1).

EXPGJS
1 (n,G,G′, w, w′, r)

/* commit & decommit to 1 and explain it as commitment to 0 */
1. Compute c ← GJS-ComG,G′,r(1).

Let ρ1 be the randomness used in GJS-Com.
Compute d1 := GJS-DecG,G′,r(c, 1, ρ).

2. Compute ρ0 := GJS-ExplainAsZeroG,G′,r(c, w,w′, ρ1).
3. Output (c, ρ0, d1).

Let EXPGJS
b (n,G,G′, w, w′, r) be the random variable representing the output

of EXPGJS
b (n,G,G′, w, w′, r) for each b ∈ {0, 1}. Then, the following two

ensembles are computationally indistinguishable.
{

EXPGJS
0 (n,G,G′, w, w′, r)

}

n∈N,G,G′∈LHC,w∈RHC(G),w′∈RHC(G′),r∈{0,1}3n
{

EXPGJS
1 (n,G,G′, w, w′, r)

}

n∈N,G,G′∈LHC,w∈RHC(G),w′∈RHC(G′),r∈{0,1}3n

Proof (sketch). GJS-ExplainAsZero is shown in Fig. 7. A key idea is that given
the ability to explain AH-Com commitments to 0 as AH-Com commitments to
1, we can explain a GJS-Com commitment to 1 (which is AH-Com commitments
to the adjacent matrix of a cycle graph) as a GJS-Com commitment to 0 (which
is AH-Com commitments to the adjacent matrix of a Hamiltonian graph G).
Intuitively, this is because a cycle graph can be transformed to any Hamil-
tonian graph by appropriately adding edges (which corresponds to changing
some entries of the adjacent matrix from 0 to 1). A formal proof is given in the
full version [17]. ��

Constant-Round Leakage-Resilient ZK from Collision Resistance 115

Parameter:
– Graphs G, G′ ∈ LHC

– String r ∈ {0, 1}3n

Input:
– Witnesses w ∈ RHC(G) and w′ ∈ RHC(G′)
– Commitment c and randomness ρ1 s.t. GJS-ComG,G′,r(1; ρ1) = c

Output:
1. Parse c as {ci,j}i,j∈[q], where each ci,j is a AH-Com commitment. Also,

from ρ1, reconstruct A1 = {a1,i,j}i,j∈[q] and {σ1,i,j}i,j∈[q] such that A1 is
the adjacent matrix of a q-cycle graph H1 and AH-ComG′,r(a1,i,j ; σ1,i,j) =
ci,j for every i, j ∈ [q].

2. Choose a random permutation π under the condition that a q-cycle in

H0
def
= π(G) coincides with the q-cycle in H1 (i.e., H0 has the same cycle

as H1).
a Let A0 = {a0,i,j}i,j∈[q] be the adjacent matrix of H0.

3. For every i, j ∈ [q], define σ0,i,j by σ0,i,j
def
= σ1,i,j when a0,i,j = a1,i,j and

by σ0,i,j
def
= AH-ExplainAsOneG′,r(w

′, ci,j , σ1,i,j) when a0,i,j �= a1,i,j .
b

4. Outputs ρ0
def
= (π, {σ0,i,j}i,j∈[q]).

a Given w, this can be done efficiently.
b When a0,i,j �= ai,j , it holds that a0,i,j = 1 and a1,i,j = 0.

Fig. 7. GJS-ExplainAsZero.

5 Our Leakage-Resilient Zero-Knowledge Argument

Theorem 1. Assume the existence of collision-resistant hash function family.
Then, there exists a constant-round public-coin leakage-resilient zero-knowledge
argument system LR-ZK.

Proof. LR-ZK is shown in Fig. 8. Since 〈PB,VB〉 can be constructed from any
collision-resistant hash function family, and SWExtCom can be constructed from
any one-way function (which can be obtained from any collision-resistant hash
function family), LR-ZK can be constructed from any collision-resistant hash
function family. Also, by inspection, it can be seen that LR-ZK is public-coin
and has constant number of rounds.

Roughly speaking, the soundness of LR-ZK can be proven as follows. From the
soundness of 〈PB,VB〉, we have τ
∈ LB (and hence G′
∈ LHC) in Stage 1 except
with negligible probability. Hence, GJS-ComG,G′ is statistically binding except
with negligible probability, and thus we can use essentially the same argument
as in the proof of the soundness of Blum’s Hamiltonicity protocol to show that
any cheating prover can give valid response in Stage 2-3 of all n iterations only
with negligible probability. The formal proof is given in the full version [17].

In the following, we prove leakage-resilient zero-knowledgeness.

Lemma 9. LR-ZK is leakage-resilient zero-knowledge.

116 S. Kiyoshima

Input.
– Common input is graph G ∈ LHC.

Let n
def
= |G|, and q be the number of vertices in G.

– Private input to the prover P is witness w ∈ RHC(G).
Stage 1.

– P and V execute special-purpose encrypted Barak’s preamble 〈PB,VB〉.
Let τ be the transcript.

– P and V reduce statement “τ ∈ LB” to Hamiltonicity problem via general
NP reduction. Let G′ be the graph that P and V obtained. Let q′ be the
number of vertices in G′.

Stage 2.
– V sends the first-round message r ∈ {0, 1}3n of Com to P .
– P and V do the following for n times in parallel.

1. P commits to a q′ × q′ zero matrix in a bit-by-bit manner by using
GJS-ComG,G′,r. That is, P sends ci,j ← GJS-ComG,G′,r(0) to V for
every i, j ∈ [q′]. Let ρi,j be the randomness that was used to compute
ci,j .

2. V sends a random bit ch ∈ {0, 1} to P .
3. When ch = 0:

• P chooses a random permutation π and computes H0 := π(G′).
Let A0 = {a0,i,j}i,j∈[q′] be the adjacent matrix of H0.

• P sends π to V and decommits the GJS-Com commitments in
Stage 2-1 to A0 by using the equivocality of GJS-Com. That
is, for every i, j ∈ [q], P sends a honest decommitment di,j :=
GJS-DecG,G′,r(ci,j , 0, ρi,j) to V when a0,i,j = 0 and sends a
fake decommitment di,j := GJS-EquivToOneG,G′,r(ci,j , w0, ρi,j)
to V when a0,i,j = 1.

• V computes H0 = π(G′) and verifies whether the decommitted
matrix is equal to the adjacent matrix of H0.

When ch = 1:
• P chooses a random q′-cycle graph H1. Let A1 = {a1,i,j}i,j∈[q′]

be the adjacent matrix of H1.
• P decommits ci,j to a1,i,j for every i, j such that a1,i,j = 1

(i.e., for every i, j such that edge (i, j) is on the q′-cycle of H1).
That is, for every such i and j, P sends a fake decommitment
di,j := GJS-EquivToOneG,G′,r(ci,j , w0, ρi,j) to V .

• V checks whether the decommitted entries of the matrix cor-
respond to the edges on a q′-cycle.

Fig. 8. Constant-round leakage-resilient zero-knowledge argument LR-ZK.

In the following, we prove this lemma only w.r.t. a simplified version of LR-ZK
in which Stage 2-1, 2-2, and 2-3 are executed only once (instead of executed n
times in parallel). The proof w.r.t. LR-ZK can be obtained by modifying the
following proof in a straight-forward way.

Proof. Without loss of generality, we assume that after receiving each message
from the prover, the cheating verifier makes exactly a single leakage query.

Constant-Round Leakage-Resilient ZK from Collision Resistance 117

To see that we indeed do not lose generality, observe that instead of making
two queries f1 and f2, the cheating verifier can always query a single query f
such that, on input witness w and prover’s randomness tape, it computes the
first leakage L1 := f1(w, tape), chooses the second query f2 adaptively, computes
the second leakage L2 := f2(w, tape), and outputs (L1, L2).

Description of the Simulator. Given access to leakage oracle Lw and input
(G, z), our simulator S simulates the view of cheating verifier V ∗ by internally
invoking V ∗(G, z) and interacting with it as follows.

Simulating Messages and Leakages in Stage 1. Roughly speaking, S simulates
the messages in Stage 1 by interacting with V ∗ in the same way as the sim-
ulator of 〈PB,VB〉 (cf. Lemma 5). To simulate the leakages in Stage 1, S uses
the fact that Stage 1 of LR-ZK is public coin w.r.t. the prover and therefore all
the randomness that a honest prover generates during Stage 1 is the messages
themselves. Specifically, S simulates the leakages by considering the messages
msgs that it has sent to V ∗ thus far as the randomness of the prover. An issue
is that due to the existence of leakage queries, S cannot use the simulator of
〈PB,VB〉 in a modular way. Nonetheless, S can still use the technique used in
the simulator of 〈PB,VB〉 as long as the length of the leakages is bounded by
n2. (Notice that when the length of leakage exceeds n2, S can simply obtain a
Hamiltonian cycle w of G from Lw.)

Formally, S interacts with V ∗ as follows.

1. After receiving h and r1 from V ∗, S sends c ← Comr1(h(V ∗)) to V ∗. Let rand
be the randomness that was used in this step.
Leakage query: When V ∗ makes a leakage query f , S does the following.

– Let tape := c.
– If the output length of f is more than n2, S obtains w from Lw and

returns f(w‖ tape) to V ∗.
– Otherwise, S queries f(·, tape) to Lw, obtains reply L from Lw, and for-

wards L to V ∗.
If S obtained w, from now on S interacts with V ∗ in exactly the same way
as a honest prover. Otherwise, do the following.

2. After receiving r2 and α from V ∗, S computes the second-round UA message
β by using witness (V ∗, rand, L) and then honestly commits to β by using
SWExtCom. Let ̂β be the commitment and d1 be the decommitment.
Leakage query: When V ∗ makes a leakage query f , S sets tape := msgs,
queries f(·, tape) to Lw, and forwards the reply from Lw to V ∗, where msgs
are the messages that S has sent to V ∗ thus far.

3. After receiving γ from V ∗, S computes the fourth-round UA message δ and
then honestly commits to δ by using SWExtCom. Let ̂δ be the commitment
and d2 be the decommitment.
Leakage query: When V ∗ makes a leakage query f , S answers it in exactly
the same way as above.

118 S. Kiyoshima

Let τ
def= (h, r1, c, r2, α, ̂β, γ, ̂δ) and w̄

def= (d1, d2, β, δ). Since (V ∗, rand, L) is a
valid witness for (h, r1, c, r2) ∈ Λ, we have τ ∈ LB and w̄ ∈ RLB(τ). Let G′

and w′ be the graph and its Hamiltonian cycle that are obtained by reducing
statement “τ ∈ LB” to Hamiltonicity problem through the NP reduction.

Simulating Messages Stage 2. If S obtained w during Stage 1, it interacts with V ∗

in the same way as a honest prover. Otherwise, S interacts with V ∗ as follows.
The idea is that, since S know a witness w′ for G′ ∈ LHC, S can correctly
respond to the challenge for both ch = 0 and ch = 1 by committing to a random
permutation of G′ in the first step.

1. S chooses a random permutation π and computes H := π(G′). Then, S com-
mits to the adjacent matrix A = {ai,j}i,j∈[q′] of H by using GJS-ComG,G′,r.
That is, S sends ci,j ← GJS-ComG,G′,r(ai,j) to V ∗ for every i, j ∈ [q′].
Let {ρi,j}i,j∈[q′] be the randomness used in the GJS-Com commitments and
π(w′) be the Hamiltonian cycle in H that is obtained by applying π on Hamil-
tonian cycle w′ in G′.

2. S receives a random bit ch ∈ {0, 1} from V ∗.
3. When ch = 0 , S sends π to V and decommits ci,j to ai,j honestly for every

i, j ∈ [q′]. That is, S sends di,j := GJS-DecG,G′,r(ci,j , ai,j , ρi,j) to V for
every i, j ∈ [q′].

When ch = 1 , S decommits ci,j to 1 honestly for every i, j such that edge
(i, j) is on the Hamiltonian cycle π(w′) in H. That is, for every such i
and j, S sends di,j := GJS-DecG,G′,r(ci,j , ai,j , ρi,j) to V ∗.

Simulating Leakage Queries in Stage 2. When V ∗ makes a leakage query f ,
S simulates the leakage as follows. Recall that in Stage 2-1, a honest prover
commits to a q′ × q′ zero matrix whereas S commits to the adjacent matrix of
H. Hence, S simulates the leakage by “explaining” commitments {ci,j}i,j∈[q′] to
{ai,j}i,j∈[q′] as commitments to {0} by using the adaptive security of GJS-Com
and the knowledge of w′. Concretely, S does the following.

– First, for each i, j ∈ [q′], S constructs a function Fi,j(·) such that on input
w, it outputs ρ̃i,j such that GJS-ComG,G′,r(0; ρ̃i,j) = ci,j . Concretely, when
ai,j = 0, Fi,j(·) is a function that always outputs ρi,j , and when ai,j = 1,

Fi,j(·) def= GJS-ExplainAsZeroG,G′,r(ci,j , ·, w′, ρi,j).
– Next, S constructs a function ˜f such that on input w, it computes tape :=
msgs‖{Fi,j(w)}i,j∈[q′] and outputs f(w, tape).

– Finally, S queries ˜f to Lw and forwards the reply from Lw to V ∗.

Amount of Total Leakage. From the construction of S, it always obtains at
most the same amount of leakages as V ∗.

Indistinguishability of Views. For any cheating verifier V ∗ and any sequence
{wG}G∈LHC such that wG ∈ RHC(G), we show the following indistinguishability.

{REALV ∗(G,wG, z)}G∈LHC,z∈{0,1}∗ ≈ {IDEALS(G,wG, z)}G∈LHC,z∈{0,1}∗ . (5)

Toward this end, we consider the following hybrid experiments.

Constant-Round Leakage-Resilient ZK from Collision Resistance 119

Hybridhyb0(G, z) is identical with experiment REALV ∗(G,w, z). That is, V ∗

interacts with honest P (G,w) and obtains leakage that is computed honestly
based on witness w and the prover’s randomness. The outputs of this hybrid
is the view of V ∗.

Hybridhyb1(G, z) is the same as HYB0 except for the following.
– In Stage 1, a honest prover is replaced with the simulator. That is, c is

computed by committing to h(V ∗), ̂β is computed by committing to β,
and ̂δ is computed by committing to δ.

Let τ and w̄ be the statement and the witness generated in it. Let
G′ and w′ be the graph and its Hamiltonian cycle that are obtained by
reducing statement “τ ∈ LB” to Hamiltonicity problem through the NP
reduction.

– The leakage queries are answered by considering that the randomness
generated by the prover during Stage 1 is equal to the messages sent to
V ∗ during Stage 1.

Hybridhyb2(G, z) is the same as HYB1 except for the following.
– As in S, a random permutation π is chosen randomly at the beginning of

Stage 2-1. Let H
def= π(G′), and A = {ai,j}i,j∈[q′] be the adjacent matrix of

H. Let π(w′) be the Hamiltonian cycle in H that is obtained by applying
π on Hamiltonian cycle w′ in G′.

We remark that in this hybrid, the prover still commits to a q′ ×q′ zero
matrix as in HYB1. Also, the leakage query immediately after Stage 2-1
is answered in exactly the same way as in HYB1. In particular, when the
leakage query is answered, π is not included in the randomness generated
by the prover in Stage 2-1.

– In Stage 2-3, graph H0 or H1 is chosen as follows.
When ch = 0 , H0 := H.
When ch = 1 , H1 is the graph that is obtained by removing every

edge in H except for the ones on Hamiltonian cycle π(w′).
The leakage query immediately after Stage 2-3 is answered in the same
way as in HYB1 by considering that H0 or H1 was chosen during Stage
2-3 as in HYB1.

Hybridhyb3(G, z) is the same as HYB2 except for the following.
– In Stage 2-1, for every i, j ∈ [q′], commitment ci,j is computed by com-

mitting to ai,j (instead of 0), i.e., ci,j ← GJS-ComG,G′,r(ai,j).
– In Stage 2-3, for every i, j ∈ [q′], if commitment ci,j need to be decommit-

ted, it is decommitted to ai,j honestly.
– When the leakage queries are answered during Stage 2, the randomness ρi,j

used for computing ci,j is simulated by ρ̃i,j that is computed by function
Fi,j as in S for every i, j ∈ [q′].

Hybridhyb4(G, z) is identical with IDEALS(x,w, z). That is, S(G, z) is exe-
cuted given access to Lw. The outputs of this hybrid is that of S.

Claim 1. The output of HYB0(G, z) and that of HYB1(G, z) are computationally
indistinguishable.

120 S. Kiyoshima

Proof. HYB1 differs from HYB0 only in that fake commitments of Com and
SWExtCom are replaced with real commitments. Hence, the indistinguishabil-
ity follows from the security of Compub and Cpub (see Sects. 3.4 and 3.8). ��
Claim 2. The output of HYB1(G, z) and that of HYB2(G, z) are computationally
indistinguishable.

Proof. This claim can be proven by inspection. Observe that HYB2 differs from
HYB1 only in the way graph H0 or H1 is chosen in Stage 2. When ch = 0, the
distribution of H0 in HYB2 is the same as that in HYB1 since H0 is obtained both
in HYB2 and HYB1 by applying a random permutation on G′. When ch = 1, the
distribution of H1 in HYB2 is the same as that in HYB1 since the Hamiltonian
cycle w′ in G′ is mapped to a random q-cycle by π. Hence, the output of HYB2

is identically distributed with that of HYB1. ��
Claim 3. The output of HYB2(G, z) and that of HYB3(G, z) are computationally
indistinguishable.

Proof. Assume for contradiction that for infinitely many G ∈ LHC, there exists
z ∈ {0, 1}∗ such that a distinguisher D distinguishes the output of HYB2(G, z)
and that of HYB3(G, z) with advantage 1/p(n) for a polynomial p(·). Fix any
such G and z. To derive a contradiction, we consider the following intermediate
hybrids.

Hybridhyb2:0(G, z) is identical with HYB2(G, z).
Hybridhyb2:k(G, z), where k ∈ [q′2], is the same as HYB2:k−1 except for the

following. Let u
def= �(k − 1)/q′� + 1 and v

def= k − �(k − 1)/q′� · q′.
– In Stage 2-1, commitment cu,v is computed by committing to au,v (instead

of 0), i.e., cu,v ← GJS-ComG,G′,r(au,v).
– In Stage 2-3, if commitment cu,v need to be decommitted, it is decommitted

to au,v honestly.
– When the leakage queries are answered during Stage 2, the randomness

ρu,v used for computing cu,v is simulated by ρ̃u,v that is computed by
function Fu,v as in S.

Clearly, HYB2:q′2 is identical with HYB3. Hence, there exists k∗ ∈ [q′2] such that
the output of HYB2:k∗−1 and that of HYB2:k∗ can be distinguished with advantage
1/q′2p(n). Furthermore, from an average argument, there exists a prefix σ of the
execution of HYBk∗−1 up until permutation π is chosen in Stage 2-1 (i.e., just
before {ci,j}i,j∈[q′] is sent to V ∗) such that under the condition that a prefix of the
execution is σ, the output of HYB2:k∗−1 and that of HYB2:k∗ can be distinguished
with advantage 1/q′2p(n). Notice that σ determines G′, w′, r, {ai,j}i,j∈[q′].

We derive a contradiction by showing that we can break the adaptive secu-
rity of GJS-Com (Lemma 8). Specifically, we show that EXPGJS

0 (n,G,G′, w, w′, r)
and EXPGJS

1 (n,G,G′, w, w′, r) can be distinguished with advantage 1/q′2p(n).
Toward this end, consider the following distinguisher D′.

– Externally, D′ takes (c, ρ0, d1) as well as (n,G,G′, w, w′, r) as input. D′ also
takes (σ, z) as non-uniform input.

Constant-Round Leakage-Resilient ZK from Collision Resistance 121

– Internally, D′ invokes V ∗ and simulates HYB2:k∗−1(G, z) for V ∗ from σ hon-
estly except for the following. Let u∗ def= �(k∗ − 1)/q′� + 1 and v∗ def=
k∗ − �(k∗ − 1)/q′� · q′. Notice that it must hold that au∗,v∗ = 1 since HYB2:k∗

is identical with HYB2:k∗−1 when au∗,v∗ = 0.
• In Stage 2-1, commitment cu∗,v∗ is defined by setting cu∗,v∗ := c.
• In Stage 2-3, when commitment cu∗,v∗ is decommitted, it is decommitted

to au∗,v∗ = 1 by sending d1.
• When the leakage queries are answered during Stage 2, the randomness

ρu∗,v∗ used for computing cu∗,v∗ is simulated by setting ρ̃u∗,v∗ := ρ0.
Let view be the view of V ∗. Then, D′ outputs D(view).

When (c, ρ0, d1) ← EXPGJS
0 (n,G,G′, w, w′, r) (i.e., when c is a commitment

to 0, ρ0 is the randomness that is used to generate c, and d1 is a decommit-
ment to 1 that is computed by GJS-EquivToOne), D′ emulates HYB2:k∗−1 for
V ∗ perfectly. On the other hand, when (c, ρ0, d1) ← EXPGJS

1 (n,G,G′, w, w′, r)
(i.e., when c is a commitment to 1, ρ0 is randomness that is computed by
GJS-ExplainAsZero, and d1 is a decommitment to 1 that is computed honestly),
D′ emulates HYB2:k∗ for V ∗ perfectly. Hence, from our assumption, D′ distin-
guishes EXPGJS

0 (n,G,G′, w, w′, r) and EXPGJS
1 (n,G,G′, w, w′, r) with advantage

1/q′2p(n), and therefore we reach a contradiction. ��
Claim 4. The output of HYB3(G, z) and that of HYB4(G, z) are computationally
indistinguishable.

Proof. In HYB3, the prover interacts with V ∗ in exactly the same way as S.
Hence, the claim follows. ��
Equation (5) follows from these claims. This concludes the proof of Lemma 9. ��
This concludes the proof of Theorem 1. ��

Acknowledgments. The author would like to thank the anonymous reviewers for
their helpful comments.

References

1. Ananth, P., Goyal, V., Pandey, O.: Interactive proofs under continual memory
leakage. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol.
8617, pp. 164–182. Springer, Heidelberg (2014)

2. Anderson, R., Kuhn, M.: Tamper resistance: a cautionary note. In: WOEC, pp.
1–11 (1996)

3. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp.
106–115 (2001)

4. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.
Comput. 38(5), 1661–1694 (2008)

5. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg
(2012)

122 S. Kiyoshima

6. Bitansky, N., Dachman-Soled, D., Lin, H.: Leakage-tolerant computation with
input-independent preprocessing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 146–163. Springer, Heidelberg (2014)

7. Boyle, E., Garg, S., Jain, A., Kalai, Y.T., Sahai, A.: Secure computation against
adaptive auxiliary information. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 316–334. Springer, Heidelberg (2013)

8. Boyle, E., Goldwasser, S., Jain, A., Kalai, Y.T.: Multiparty computation secure
against continual memory leakage. In: STOC, pp. 1235–1254 (2012)

9. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC, pp. 494–503 (2002)

10. Damg̊ard, I., Pedersen, T.P., Pfitzmann, B.: Statistical secrecy and multibit com-
mitments. IEEE Trans. Inf. Theor. 44(3), 1143–1151 (1998)

11. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer,
Heidelberg (1990)

12. Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011)

13. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptol. 9(3), 167–190 (1996)

14. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

15. Haitner, I., Nguyen, M., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding
commitments and statistical zero-knowledge arguments from any one-way function.
SIAM J. Comput. 39(3), 1153–1218 (2009)

16. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

17. Kiyoshima, S.: Constant-round leakage-resilient zero-knowledge from collision
resistance. Cryptology ePrint Archive, Report 2015/1235 (2015). http://eprint.
iacr.org/

18. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

19. Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively secure
oblivious transfer. J. Cryptol. 24(4), 761–799 (2011)

20. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991)

21. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: STOC, pp. 33–43 (1989)

22. Ostrovsky, R., Persiano, G., Visconti, I.: Impossibility of black-box simulation
against leakage attacks. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 130–149. Springer, Heidelberg (2015)

23. Pandey, O.: Achieving constant round leakage-resilient zero-knowledge. In: Lindell,
Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 146–166. Springer, Heidelberg (2014)

24. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS, pp. 563–
572 (2005)

25. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: STOC, pp. 533–542 (2005)

26. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (2009)

http://eprint.iacr.org/
http://eprint.iacr.org/

Constant-Round Leakage-Resilient ZK from Collision Resistance 123

27. Quisquater, J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

28. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

Constrained Pseudorandom Functions
for Unconstrained Inputs

Apoorvaa Deshpande1(B), Venkata Koppula2(B), and Brent Waters2

1 Brown University, Providence, USA
acdeshpa@cs.brown.edu

2 University of Texas at Austin, Austin, USA
{kvenkata,bwaters}@cs.utexas.edu

Abstract. A constrained pseudo random function (PRF) behaves like a
standard PRF, but with the added feature that the (master) secret key
holder, having secret key K, can produce a constrained key, K{f}, that
allows for the evaluation of the PRF on all inputs satisfied by the con-
straint f . Most existing constrained PRF constructions can handle only
bounded length inputs. In a recent work, Abusalah et al. [1] constructed
a constrained PRF scheme where constraints can be represented as Tur-
ing machines with unbounded inputs. Their proof of security, however,
requires risky “knowledge type” assumptions such as differing inputs
obfuscation for circuits and SNARKs.

In this work, we construct a constrained PRF scheme for Turing
machines with unbounded inputs under weaker assumptions, namely,
the existence of indistinguishability obfuscation for circuits (and injec-
tive pseudorandom generators).

1 Introduction

Constrained pseudorandom functions (PRFs), as introduced by [7,9,23], are a
useful extension of standard PRFs [18]. A constrained PRF system is defined
with respect to a family of constraint functions, and has an additional algorithm
Constrain. This algorithm allows a (master) PRF key holder, having PRF key
K, to produce a constrained PRF key K{f} corresponding to a constraint f .
This constrained key K{f} can be used to evaluate the PRF at all points x
accepted by f (that is, f(x) = 1). The security notion ensures that even when
given multiple constrained keys K{f1}, . . ., K{fQ}, PRF evaluation at a point

A. Deshpande—This work was done while the author was visiting the Simons Insti-
tute for the Theory of Computing, supported by the Simons Foundation and by
the DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-
1523467.
B. Waters—Supported by NSF CNS-0952692, CNS-1228599 and CNS-1414082.
DARPA through the U.S. Office of Naval Research under Contract N00014-11-1-
0382, Google Faculty Research award, the Alfred P. Sloan Fellowship, Microsoft
Faculty Fellowship, and Packard Foundation Fellowship.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 124–153, 2016.
DOI: 10.1007/978-3-662-49896-5 5

Constrained Pseudorandom Functions for Unconstrained Inputs 125

not accepted by any of the functions fi ‘looks’ uniformly random to a computa-
tionally bounded adversary. Since their inception, constrained PRFs have found
several applications such as broadcast encryption, identity-based key exchange,
policy-based key distribution [7] and multi-party key exchange [8]. In particular,
even the most basic class of constrained PRFs called puncturable PRFs has found
immense application in the area of program obfuscation through the ‘punctured
programming’ technique introduced by [25]. The initial works of [7,9,23] showed
that the [18] PRF construction can be modified to construct a basic class of con-
strained PRFs called prefix-constrained PRFs (which also includes puncturable
PRFs). Boneh and Waters [7] also showed a construction for the richer class of
circuit-constrained PRFs1 using multilinear maps [14]. Since then, we have seen
great progress in this area, leading to constructions from different cryptographic
assumptions [4,8,10] and constructions with additional properties [1,4,10,12].
However, all the above mentioned works have a common limitation: the corre-
sponding PRF can handle only bounded length inputs.

The problem of constructing constrained PRFs with unbounded length was
studied in a recent work by Abusalah, Fuchsbauer and Pietrzak [1], who also
showed motivating applications such as broadcast encryption with unbounded
recipients and multi-party identity based non-interactive key exchange with no
apriori bound on number of parties. Abusalah et al. construct a constrained
PRF scheme where the constraint functions are represented as Turing machines
with unbounded inputs. The scheme is proven secure under the assumption that
differing input obfuscation (diO) for circuits exists. Informally, this assump-
tion states that there exists an ‘obfuscation’ program O that takes as input a
circuit C, and outputs another circuit O(C) with the following security guar-
antee: if an efficient adversary can distinguish between O(C1) and O(C2), then
there exists an efficient extraction algorithm that can find an input x such that
C1(x) �= C2(x). However, the diO assumption is believed to be a risky one due to
its ‘extractability nature’. Furthermore, the work of [16] conjectures that there
exist certain function classes for which diO is impossible to achieve.

A natural direction then is to try to base the security on the relatively weaker
assumption of indistinguishability obfuscation (iO) for circuits. An obfuscator
O is an indistinguishability obfuscator for circuits if for any two circuits C1 and
C2 that have identical functionality, their obfuscations O(C1) and O(C2) are
computationally indistinguishable. Unlike diO, there are no known impossibility
results for iO, and moreover, there has been recent progress [2,6,17] towards
the goal of constructing iO from standard assumptions. This brings us to the
central question of our work:

Can we construct constrained PRFs for Turing machines under the
assumptions that indistinguishability obfuscation and one-way functions exist?

Our starting point is three recent works that build indistinguishability obfus-
cation for Turing Machines with bounded length inputs using iO for circuits
[5,11,24]. The works of [5,11] show how to do this where the encoding time
1 Where the constraints can be any boolean circuit.

126 A. Deshpande et al.

and size of the obfuscated program grows with the maximum space used by
the underlying program, whereas the work of [24] achieves this with no such
restriction. An immediate question is whether we can use a Turing machine
obfuscator for constructing constrained PRFs for Turing machines, similar to
the circuit-constrained PRF construction of [8]. However, as mentioned above
the Turing machine obfuscator constructions are restricted to Turing Machines
with bounded size inputs2. Thus, we are unable to use the Turning Machine
obfuscation scheme in a black box manner and have to introduce new techniques
to construct constrained PRFs for unbounded sized inputs.

Our Results: The main result of our work is as follows.

Theorem 1 (informal). Assuming the existence of secure indistinguishability
obfuscators and injective pseudorandom generators, there exists a constrained
PRF scheme that is selectively secure.

Selective Security vs. Adaptive Security: Selective security is a security notion
where the adversary must specify the ‘challenge input’ before receiving con-
strained keys. A stronger notion, called adaptive security, allows the adversary
to query for constrained keys before choosing the challenge input. While adap-
tive security should be the ideal target, achieving adaptive security with only
polynomial factor security loss (i.e. without ‘complexity leveraging’) has been
challenging, even for circuit based constrained PRFs. Currently, the best known
results for adaptive security either require superpolynomial security loss [13],
or work for very restricted functionalities [20], or achieve non-collusion based
security [10] or achieve it in the random oracle mode [19].

Moreover, for many applications, it turns out that selective security is suf-
ficient. For example, the widely used punctured programming technique of [25]
only requires selectively secure puncturable PRFs. Similarly, as discussed in [1],
selectively secure constrained PRFs with unbounded inputs can be used to con-
struct broadcast encryption schemes with unbounded recipients and identity
based non-interactive key exchange (ID-NIKE) protocol with no apriori bound
on number of parties. Therefore, as a corollary of Theorem 1, we get both these
applications using only indistinguishability obfuscation and injective pseudoran-
dom generators. Interestingly, two recent works have shown direct constructions
for both these problems using iO. Zhandry [26] showed a broadcast encryption
scheme with unbounded recipients, while Khurana et al. [22] showed an ID-NIKE
scheme with unbounded number of parties.

We also show how our construction above can be easily adapted to get selec-
tively secure attribute based encryption for Turing machines with unbounded
inputs, which illustrates the versatility of our techniques above.
2 The restriction to bounded length inputs is due to the fact that their iO analysis

requires a hybrid over all possible inputs. They absorb this loss by growing the size of
the obfuscated program polynomially in the input size using complexity leveraging
and a sub-exponential hardness assumption on the underlying circuit iO. Currently,
there is no known way to avoid this.

Constrained Pseudorandom Functions for Unconstrained Inputs 127

Theorem 2 (informal). Assuming the existence of secure indistinguishability
obfuscators and injective pseudorandom generators, there exists an ABE scheme
for Turing machines that is selectively secure.

Recently, Ananth and Sahai [3] had an exciting result where they show adap-
tively secure functional encryption for Turing machines with unbounded inputs.
While our adaptation is limited to ABE, we believe that the relative simplicity
of our construction is an interesting feature. In addition, we were able to apply
our tail-hybrid approach to get an end-to-end polynomial time reduction.

1.1 Overview of Our Constrained PRF Construction

To begin, let us consider the simple case of standard PRFs with unbounded
inputs. Any PRF (with sufficient input size) can be extended to handle
unbounded inputs by first compressing the input using a collision-resistant hash
function (CRHF), and then computing the PRF on this hash value. Abusalah
et al. [1] showed that by using diO, this approach can be extended to work for
constrained PRFs. However, the proof of security relies on the extractability
property of diO in a fundamental way. In particular, this approach will not work
if iO is used instead of diO because general CRHFs are not ‘iO-compatible’3

(see Sect. 2 for a more detailed discussion on iO-compatibility).
Challenges of a similar nature were addressed in [24] by introducing new tools

and techniques that guarantee program functional equivalence at different stages
of the proof. Let us review one such tool called positional accumulators, and see
why it is iO-compatible. A positional accumulator scheme is a cryptographic
primitive used to provide a short commitment to a much larger storage. This
commitment (also referred to as an accumulation of the storage) has two main
features: succinct verifiability (there exists a short proof to prove that an element
is present at a particular position) and succinct updatability (using short auxil-
iary information, the accumulation can be updated to reflect an update to the
underlying storage). The scheme also has a setup algorithm which generates the
parameters, and can operate in two computationally indistinguishable modes. It
can either generate parameters ‘normally’, or it can be enforcing at a particular
position p. When parameters are generated in the enforcing mode, the accumu-
lator is information-theoretically binding to position p of the underlying storage.
This information theoretic enforcing property is what makes it compatible for
proofs involving iO.

Returning to our constrained PRF problem, we need a special hash
function that can be used with iO. That brings us to the main
insight of our work: the KLW positional accumulator can be repurposed
to be an iO-friendly hash function.4 Besides giving us an iO-friendly
3 Consider the following toy example. Let C0, C1 be circuits such that C0(x, y) =

0 ∀(x, y) and C1(x, y) = 1 iff CRHF(x) = CRHF(y) for x �= y. Now, under the diO
assumption, the obfuscations of C0 and C1 are computationally indistinguishable.
However, we cannot get the same guarantee by using iO, since the circuits are not
functionally identical.

4 More formally, it gives us an iO friendly universal one way hash function.

128 A. Deshpande et al.

hash function, this also puts the input in a data structure that is already suitable
for the KLW framework.5

Our Construction: We will now sketch out our construction. Our constrained
PRF scheme uses a puncturable PRF F with key k. Let Hash-Acc(x) represent the
accumulation of storage initialized with input x = x1 . . . xn. The PRF evaluation
(in our scheme) is simply F (k,Hash-Acc(x)).

The interesting part is the description of our constrained keys, and how they
can be used to evaluate at an input x. The constrained key for machine M con-
sists of two programs. The first one is an obfuscated circuit which takes an input,
and outputs a signature on that input. The second one is an obfuscated circuit
which essentially computes the next-step of the Turing machine, and eventually,
if it reaches the ‘accepting state’, it outputs F (k,Hash-Acc(x)). This circuit also
performs additional authenticity checks to prevent illegal inputs - it takes a sig-
nature and accumulator as input, verifies the signature and accumulator before
computing the next step, and finally updates the accumulator and outputs a
signature on the new state and accumulator.

Evaluating the PRF at input x using the constrained key consists of two
steps. The first one is the initialization step, where the evaluator first computes
Hash-Acc(x) and then computes a signature on Hash-Acc(x) using the signing
program. Then, it iteratively runs the obfuscated next-step circuit (also including
Hash-Acc(x) as input at each time step) until the circuit either outputs the
PRF evaluation, or outputs ⊥. While this is similar to the KLW message hiding
encoding scheme, there are some major differences. One such difference is with
regard to accumulation of the input. In KLW, the input is accumulated by
the ‘honest’ encoding party, while in our case, the (possibly corrupt) evaluator
generates the accumulation and feeds it at each step of the iteration. As a result,
the KLW proof for message-hiding encoding scheme needs to be tailored to fit
our setting.

Proof of Security: Recall we are interested in proving selective security, where
the adversary sends the challenge input x∗ before requesting for constrained
keys. Our goal is to replace the (master) PRF key k in all constrained keys
with one that is punctured at acc-inp∗ = Hash-Acc(x∗). Once this is done, the
security of puncturable PRFs guarantees that the adversary cannot distinguish
between F(k, acc-inp∗) and a truly random string. Let us focus our attention on
one constrained key query corresponding to machine M , and suppose M runs
for t∗ steps on input x∗ and finally outputs ‘reject’.

To replace k with a punctured key, we need to ensure that the obfus-
cated program for M does not reach the ‘accepting state’ on inputs with

5 We note that the somewhat statistically binding hash of [21] has a similar spirit to
positional accumulators in that they have statistical binding at a selected position.
However, they are not sufficient for our purposes as positional accumulators provide
richer semantics such as interleaved reads, writes, and overwrites that are necessary
here.

Constrained Pseudorandom Functions for Unconstrained Inputs 129

acc-inp = acc-inp∗. This is done via two main hybrid steps. First, we alter the
program so that it does not reach the accepting state within t∗ steps on inputs
with acc-inp = acc-inp∗. Then, we have the tail hybrid, where we ensure that on
inputs with acc-inp = acc-inp∗, the program does not reach accepting state even
at time steps t > t∗. For the first step, we follow the KLW approach, and define
a sequence of t∗ sub-hybrids, where in the ith hybrid, the obfuscated circuit does
not reach accepting state at time steps t ≤ i for inputs with acc-inp = acc-inp∗.
We use the KLW selective enforcement techniques to show that consecutive
hybrids are computationally indistinguishable.

We have a novel approach for handling the tail hybrids Let T (= 2λ) denote
the upper bound on the running time of any machine M on any input. In KLW,
the tail hybrid step was handled by defining T − t∗ intermediate hybrids. If
we adopt a similar approach for our construction, it results in an exponential
factor security loss, which is undesirable for our application6. Our goal would be
to overcome this to get an end to end polynomial reduction to iO. Therefore,
we propose a modification to our scheme which will allow us to handle the tail
hybrid with only a polynomial factor security loss. First, let us call the time
step 2i as the ith landmark, while the interval [2i, 2i+1 − 1] is the ith interval.
The obfuscated program now takes a PRG seed as input at each time step, and
performs some additional checks on the input PRG seed. At time steps just
before a landmark, it outputs a new (pseudorandomly generated) PRG seed,
which is then used in the next interval. Using standard iO techniques, we can
show that if the program outputs ⊥ just before a landmark, then we can alter
the program indistinguishably so that it outputs ⊥ at all time steps in the next
interval. Since we know that the program outputs ⊥ at (acc-inp∗, t∗ − 1), we can
ensure that the program outputs ⊥ for all (acc-inp∗, t) such that t∗ ≤ t ≤ 2t∗.
Proceeding inductively, we can ensure that the program never reaches accepting
state if acc-inp = acc-inp∗.

1.2 Attribute Based Encryption for Turing Machines
with Unbounded Inputs

We will now describe our ABE scheme for Turing machines with unbounded
inputs. Let PKE be a public key encryption scheme. Our ABE scheme’s master
secret key is a puncturable PRF key k and the public key is an obfuscated
program Prog-PK and accumulator parameters. The program Prog-PK takes as
input a string acc-inp, computes r = F (k, acc-inp) and uses r as randomness for
PKE.setup. It finally outputs the PKE public key. To encrypt a message m for
attribute x, one must first accumulate the input x, then feed the accumulated
input to Prog-PK to get a PKE public key pk, and finally encrypts m using
public key pk. The secret keys corresponding to Turing machine M is simply the
constrained PRF key for M . This key can be used to compute F (k,Hash-Acc(x))
if M(x) = 1, and therefore can decrypt messages encrypted for x.
6 An exponential loss in the security proof of randomized encodings in KLW was

acceptable because the end goal was indistinguishability obfuscation, which already
requires an exponential number of hybrids.

130 A. Deshpande et al.

1.3 Paper Organization

We present the required preliminaries in Sect. 2 and the notions of constrained
PRFs for Turing machines in Sect. 3. The construction of our constrained PRF
scheme can be found in Sect. 4, while our ABE scheme can be found in Sect. 5.
Due to space constraints, part of our constrained PRF security proof is deferred
to the full version of the paper.

2 Preliminaries

2.1 Notations

In this work, we will use the following notations for Turing machines.

Turing Machines: A Turing machine is a 7-tuple M = 〈Q,Σtape,Σinp, δ, q0,
qac, qrej〉 with the following semantics:

– Q is the set of states with start state q0, accept state qac and reject state qrej.
– Σinp is the set of inputs symbols.
– Σtape is the set of tape symbols. We will assume Σinp ⊂ Σtape and there is a

special blank symbol ‘ ’ ∈ Σtape \ Σinp.
– δ : Q × Σtape → Q × Σtape × {+1,−1} is the transition function.

2.2 Obfuscation

We recall the definition of indistinguishability obfuscation from [15,25].

Definition 1 (Indistinguishability Obfuscation). Let C = {Cλ}λ∈N be a family
of polynomial-size circuits. Let iO be a uniform PPT algorithm that takes as
input the security parameter λ, a circuit C ∈ Cλ and outputs a circuit C ′. iO is
called an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies the
following conditions:

– (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ,
for all inputs x, we have that C ′(x) = C(x) where C ′ ← iO(1λ, C).

– (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT
distinguisher B = (Samp,D), there exists a negligible function negl(·) such
that the following holds: if for all security parameters λ ∈ N,Pr[∀x,C0(x) =
C1(x) : (C0;C1;σ) ← Samp(1λ)] > 1 − negl(λ), then

|Pr[D(σ, iO(1λ, C0)) = 1 : (C0;C1;σ) ← Samp(1λ)]

− Pr[D(σ, iO(1λ, C1)) = 1 : (C0;C1;σ) ← Samp(1λ)]| ≤ negl(λ).

In a recent work, [15] showed how indistinguishability obfuscators can be con-
structed for the circuit class P/poly. We remark that (Samp,D) are two algo-
rithms that pass state, which can be viewed equivalently as a single stateful
algorithm B. In our proofs we employ the latter approach, although here we
state the definition as it appears in prior work.

Constrained Pseudorandom Functions for Unconstrained Inputs 131

2.3 iO-Compatible Primitives

In this section, we define extensions of some cryptographic primitives that makes
them ‘compatible’ with indistinguishability obfuscation7. All of the primitives
described here can be constructed from iO and one way functions. Their con-
structions can be found in [24].

Splittable Signatures. A splittable signature scheme is a normal deterministic
signature scheme, augmented by some additional algorithms and properties that
we require for our application. Such a signature scheme has four different kinds
of signing/verification key pairs. First, we have the standard signing/verification
key pairs, where the signing key can compute signatures on any message, and
the verification key can verify signatures corresponding to any message. Next,
we have ‘all-but-one’ signing/verification keys. These keys, which correspond to
a special message m∗, work for all messages except m∗; that is, the signing key
can sign all messages except m∗, and the verification key can verify signatures for
all messages except m∗ (it does not accept any signature corresponding to m∗).
Third, we have ‘one’ signing/verification keys. These keys correspond to a special
message m′, and can only be used to sign/verify signatures for m′. For all other
messages, the verification algorithm does not accept any signatures. Finally,
we have the rejection verification key which does not accept any signatures.
The setup algorithm outputs a standard signing/verification key together with
a rejection verification key, while a ‘splitting’ algorithm uses a standard signing
key to generate ‘all-but-one’ and ‘one’ signing/verification keys.

At a high level, we require the following security properties. First, the stan-
dard verification key and the rejection verification key must be computationally
indistinguishable. Intuitively, this is possible because an adversary does not have
any secret key or signatures. Next, we require that if an adversary is given an
‘all-but-one’ secret key for message m∗, then he/she cannot distinguish between
a standard verification key and an ‘all-but-one’ verification key corresponding
to m∗. We also have a similar property for the ‘one’ keys. No PPT adversary,
given a ‘one’ signing key, can distinguish between a standard verification key and
a ‘one’ verification key. Finally, we have the ‘splittability’ property, which states
that the keys generated by splitting one signing key are indistinguishable from
the case where the ‘all-but-one’ key pair and the ‘one’ key pair are generated
from different signing keys.

We will now formally describe the syntax and correctness/security properties
of splittable signatures.

Syntax: A splittable signature scheme S for message space M consists of the
following algorithms:

Setup-Spl(1λ). The setup algorithm is a randomized algorithm that takes as input
the security parameter λ and outputs a signing key SK, a verification key VK
and reject-verification key VKrej.

7 In the full version of our paper, we describe a toy example to illustrate why we need
to extend/modify certain primitives in order to use them with iO.

132 A. Deshpande et al.

Sign-Spl(SK,m). The signing algorithm is a deterministic algorithm that takes
as input a signing key SK and a message m ∈ M. It outputs a signature σ.

Verify-Spl(VK,m, σ). The verification algorithm is a deterministic algorithm that
takes as input a verification key VK, signature σ and a message m. It outputs
either 0 or 1.

Split(SK,m∗). The splitting algorithm is randomized. It takes as input a
secret key SK and a message m∗ ∈ M. It outputs a signature σone =
Sign-Spl(SK,m∗), a one-message verification key VKone, an all-but-one sign-
ing key SKabo and an all-but-one verification key VKabo.

Sign-Spl-abo(SKabo,m). The all-but-one signing algorithm is deterministic. It
takes as input an all-but-one signing key SKabo and a message m, and outputs
a signature σ.

Correctness: Let m∗ ∈ M be any message. Let (SK,VK,VKrej) ← Setup-Spl(1λ)
and (σone,VKone,SKabo,VKabo) ← Split(SK,m∗). Then, we require the follow-
ing correctness properties:

1. For all m ∈ M, Verify-Spl(VK,m,Sign-Spl(SK,m)) = 1.
2. For all m ∈ M,m �= m∗, Sign-Spl(SK,m) = Sign-Spl-abo(SKabo,m).
3. For all σ, Verify-Spl(VKone,m

∗, σ) = Verify-Spl(VK,m∗, σ).
4. For all m �= m∗ and σ, Verify-Spl(VK,m, σ) = Verify-Spl(VKabo,m, σ).
5. For all m �= m∗ and σ, Verify-Spl(VKone,m, σ) = 0.
6. For all σ, Verify-Spl(VKabo,m

∗, σ) = 0.
7. For all σ and all m ∈ M, Verify-Spl(VKrej,m, σ) = 0.

Security: We will now define the security notions for splittable signature schemes.
Each security notion is defined in terms of a security game between a challenger
and an adversary A.

Definition 2 (VKrej indistinguishability). A splittable signature scheme S is
said to be VKrej indistinguishable if any PPT adversary A has negligible advan-
tage in the following security game:

Exp-VKrej(1λ,S,A):

1. Challenger computes (SK,VK,VKrej) ← Setup-Spl(1λ). Next, it chooses b ←
{0, 1}. If b = 0, it sends VK to A. Else, it sends VKrej.

2. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A never receives any signatures and has
no ability to produce them. This is why the difference between VK and VKrej

cannot be tested.

Definition 3 (VKone indistinguishability). A splittable signature scheme S
is said to be VKone indistinguishable if any PPT adversary A has negligible
advantage in the following security game:

Constrained Pseudorandom Functions for Unconstrained Inputs 133

Exp-VKone(1λ,S,A):

1. A sends a message m∗ ∈ M.
2. Challenger computes (SK,VK,VKrej) ← Setup-Spl(1λ). Next, it computes

(σone, VKone, SKabo, VKabo) ← Split(SK,m∗). It chooses b ← {0, 1}. If
b = 0, it sends (σone,VKone) to A. Else, it sends (σone,VK) to A.

3. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A only receives the signature σone on m∗,
on which VK and VKone behave identically.

Definition 4 (VKabo indistinguishability). A splittable signature scheme S
is said to be VKabo indistinguishable if any PPT adversary A has negligible
advantage in the following security game:

Exp-VKabo(1λ,S,A):

1. A sends a message m∗ ∈ M.
2. Challenger computes (SK,VK,VKrej) ← Setup-Spl(1λ). Next, it computes

(σone, VKone, SKabo, VKabo) ← Split(SK,m∗). It chooses b ← {0, 1}. If
b = 0, it sends (SKabo,VKabo) to A. Else, it sends (SKabo,VK) to A.

3. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A does not receive or have the ability to
create a signature on m∗. For all signatures A can create by signing with SKabo,
VKabo and VK will behave identically.

Definition 5 (Splitting indistinguishability). A splittable signature scheme
S is said to be splitting indistinguishable if any PPT adversary A has negligible
advantage in the following security game:

Exp-Spl(1λ,S,A):

1. A sends a message m∗ ∈ M.
2. Challenger computes (SK,VK,VKrej) ← Setup-Spl(1λ), (SK′,VK′,VK′

rej) ←
Setup-Spl(1λ). Next, it computes (σone, VKone, SKabo, VKabo) ←
Split(SK,m∗), (σ′

one, VK′
one, SK′

abo, VK′
abo) ← Split(SK′,m∗). It chooses

b ← {0, 1}. If b = 0, it sends (σone,VKone,SKabo,VKabo) to A. Else, it
sends (σ′

one,VK′
one,SKabo,VKabo) to A.

3. A sends its guess b′.

A wins if b = b′.

In the game above, A is either given a system of σone,VKone,SKabo,VKabo

generated together by one call of Setup-Spl or a “split” system of
(σ′

one,VK′
one,SKabo,VKabo) where the all but one keys are generated separately

134 A. Deshpande et al.

from the signature and key for the one message m∗. Since the correctness con-
ditions do not link the behaviors for the all but one keys and the one message
values, this split generation is not detectable by testing verification for the σone

that A receives or for any signatures that A creates honestly by signing with
SKabo.

Positional Accumulators. An accumulator can be seen as a special hash func-
tion mapping unbounded8 length strings to fixed length strings. It has two addi-
tional properties: succinct verifiability and succinct updatability. Let Hash-Acc(·)
be the hash function mapping x = x1 . . . xn to y. Then, succinct verifiability
means that there exists a ‘short’ proof π to prove that bit xi is present at
the ith position of x. Note that this verification only requires the hash value
y and the short proof π. Succinct updatability means that given y, a bit x′

i,
position i and some ‘short’ auxiliary information, one can update y to obtain
y′ = Hash-Acc(x1 . . . x′

i . . . xn). We will refer to y as the tape, and xi the symbol
written at position i.

The notion of accumulators is not sufficient for using with iO, and we need
a stronger primitive called positional accumulators that is iO-compatible. In a
positional accumulator, we have three different setup modes. The first one is the
standard setup which outputs public parameters and the initial accumulation
corresponding to the empty tape. Next, we have the read-enforced setup mode.
In this mode, the algorithm takes as input a sequence of k pairs (symi, posi) which
represent the first k symbols written and their positions. It also takes as input
the enforcing position pos, and outputs public parameters and an accumulation
of the empty tape. As the name might suggest, this mode is read enforcing at
position pos - if the first k symbols written are (sym1, . . . , symk), and their write
positions are (pos1, . . . , posk), then there exists exactly one opening for position
pos: the correct symbol written at pos. Similarly, we have a write-enforcing setup
which takes as input k (symbol, position) pairs {(symi, posi)}i≤k representing the
first k writes, and outputs public parameters and an accumulation of the empty
tape. The write-enforcing property states that if (symi, posi) are the first k writes,
and acck−1 is the correct accumulation after the first k − 1 writes, then there is
a unique accumulation after the kth write (irrespective of the auxiliary string).
Note that both the read and write enforcing properties are information theoretic.
This is important when we are using these primitives with indistinguishability
obfuscation.

For security, we require that the different setup modes are computationally
indistinguishable. We will now give a formal description of the syntax and prop-
erties. A positional accumulator for message space Mλ consists of the following
algorithms.

– Setup-Acc(1λ, T) → (PP, acc0, store0): The setup algorithm takes as input
a security parameter λ in unary and an integer T in binary representing the
maximum number of values that can stored. It outputs public parameters
PP, an initial accumulator value acc0, and an initial storage value store0.

8 Unbounded, but polynomial in the security parameter.

Constrained Pseudorandom Functions for Unconstrained Inputs 135

– Setup-Acc-Enf-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗) → (PP,
acc0, store0): The setup enforce read algorithm takes as input a security
parameter λ in unary, an integer T in binary representing the maximum
number of values that can be stored, and a sequence of symbol, index pairs,
where each index is between 0 and T − 1, and an additional index∗ also
between 0 and T −1. It outputs public parameters PP, an initial accumulator
value acc0, and an initial storage value store0.

– Setup-Acc-Enf-Write(1λ, T, (m1, index1), . . . , (mk, indexk)) → (PP, acc0,
store0): The setup enforce write algorithm takes as input a security para-
meter λ in unary, an integer T in binary representing the maximum number
of values that can be stored, and a sequence of symbol, index pairs, where
each index is between 0 and T −1. It outputs public parameters PP, an initial
accumulator value acc0, and an initial storage value store0.

– Prep-Read(PP, storein, index) → (m,π): The prep-read algorithm takes as
input the public parameters PP, a storage value storein, and an index
between 0 and T − 1. It outputs a symbol m (that can be ε) and a value π.

– Prep-Write(PP, storein, index) → aux: The prep-write algorithm takes as
input the public parameters PP, a storage value storein, and an index
between 0 and T − 1. It outputs an auxiliary value aux.

– Verify-Read(PP, accin,mread, index, π) → {True, False}: The verify-read
algorithm takes as input the public parameters PP, an accumulator value
accin, a symbol, mread, an index between 0 and T − 1, and a value π. It
outputs True or False.

– Write-Store(PP, storein, index,m) → storeout: The write-store algorithm
takes in the public parameters, a storage value storein, an index between 0
and T − 1, and a symbol m. It outputs a storage value storeout.

– Update(PP, accin,mwrite, index, aux) → accout or Reject: The update algo-
rithm takes in the public parameters PP, an accumulator value accin, a sym-
bol mwrite, and index between 0 and T − 1, and an auxiliary value aux. It
outputs an accumulator value accout or Reject.

In general we will think of the Setup-Acc algorithm as being randomized
and the other algorithms as being deterministic. However, one could consider
non-deterministic variants.

Correctness: We consider any sequence (m1, index1), . . . , (mk, indexk) of sym-
bols m1, . . . , mk and indices index1, . . . , indexk each between 0 and T−1. We fix
any PP, acc0, store0 ← Setup-Acc(1λ, T). For j from 1 to k, we define storej

iteratively as storej := Write-Store(PP, storej−1, indexj ,mj). We similarly
define auxj and accj iteratively as auxj := Prep-Write(PP, storej−1, indexj)
and accj := Update(PP, accj−1,mj , indexj , auxj). Note that the algorithms
other than Setup-Acc are deterministic, so these definitions fix precise values,
not random values (conditioned on the fixed starting values PP, acc0, store0).

136 A. Deshpande et al.

We require the following correctness properties:

1. For every index between 0 and T −1, Prep-Read(PP, storek, index) returns
mi, π, where i is the largest value in [k] such that indexi = index. If no such
value exists, then mi = ε.

2. For any index, let (m,π) ← Prep-Read(PP, storek, index). Then
Verify-Read(PP, acck,m, index, π) = True.

Remarks on Efficiency: In our construction, all algorithms will run in time
polynomial in their input sizes. More precisely, Setup-Acc will be polynomial in
λ and log(T). Also, accumulator and π values should have size polynomial in λ
and log(T), so Verify-Read and Update will also run in time polynomial in λ and
log(T). Storage values will have size polynomial in the number of values stored
so far. Write-Store, Prep-Read, and Prep-Write will run in time polynomial in
λ and T .

Security: Let Acc = (Setup-Acc, Setup-Acc-Enf-Read, Setup-Acc-Enf-Write,
Prep-Read, Prep-Write, Verify-Read, Write-Store, Update) be a positional accu-
mulator for symbol set M. We require Acc to satisfy the following notions of
security.

Definition 6 (Indistinguishability of Read Setup). A positional accumu-
lator Acc is said to satisfy indistinguishability of read setup if any PPT adversary
A’s advantage in the security game Exp-Setup-Acc(1λ,Acc,A) is at most negli-
gible in λ, where Exp-Setup-Acc is defined as follows.

Exp-Setup-Acc(1λ,Acc,A)

1. Adversary chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . , mk ∈ M and k indices index1, . . . , indexk ∈

{0, . . . , T − 1} to the challenger.
3. The challenger chooses a bit b. If b = 0, the challenger outputs

(PP, acc0, store0) ← Setup-Acc(1λ, T). Else, it outputs (PP, acc0,
store0) ← Setup-Acc-Enf-Read
(1λ, T, (m1, index1), . . . , (mk, indexk)).

4. A sends a bit b′.

A wins the security game if b = b′.

Definition 7 (Indistinguishability of Write Setup). A positional accu-
mulator Acc is said to satisfy indistinguishability of write setup if any PPT
adversary A’s advantage in the security game Exp-Setup-Acc(1λ,Acc,A) is at
most negligible in λ, where Exp-Setup-Acc is defined as follows.

Exp-Setup-Acc(1λ,Acc,A)

1. Adversary chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . , mk ∈ M and k indices index1, . . . , indexk ∈

{0, . . . , T − 1} to the challenger.

Constrained Pseudorandom Functions for Unconstrained Inputs 137

3. The challenger chooses a bit b. If b = 0, the challenger outputs
(PP, acc0, store0) ← Setup-Acc(1λ, T). Else, it outputs
(PP, acc0, store0) ← Setup-Acc-Enf-Write
(1λ, T, (m1, index1), . . . , (mk, indexk)).

4. A sends a bit b′.

A wins the security game if b = b′.

Definition 8 (Read Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ),
m1, . . . , mk ∈ M, index1, . . . , indexk ∈ {0, . . . , T − 1} and any
index∗ ∈ {0, . . . , T − 1}. Let (PP, acc0, store0) ← Setup-Acc-Enf-Read
(1λ, T, (m1, index1), . . . , (mk, indexk), index∗). For j from 1 to k, we define
storej iteratively as storej := Write-Store(PP, storej−1, indexj ,mj). We
similarly define
auxj and accj iteratively as auxj := Prep-Write(PP, storej−1, indexj) and
accj := Update(PP, accJ−1, mj, indexj, auxj). Acc is said to be Read enforc-
ing if Verify-Read(PP, acck, m, index∗, π) = True, then either index1, . . .,
indexK index1, . . ., indexK index1, . . ., indexK index1, . . ., indexK index∗ /∈
{index1, . . ., indexK} and m = ε, or m = mi for the largest i ∈ [k] such that
indexi = index∗. Note that this is an information-theoretic property: we are
requiring that for all other symbols m, values of π that would cause Verify-Read
to output True at index∗ do no exist.

Definition 9 (Write Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), m1, . . . ,
mk ∈ M, index1, . . . , indexk ∈ {0, . . . , T − 1}. Let (PP, acc0, store0) ←
Setup-Acc-Enf-Write(1λ, T, (m1, index1), . . . , (mk, indexk)). For j from 1 to k,
we define storej iteratively as storej := Write-Store(PP, storej−1, indexj ,
mj). We similarly define auxj and accj iteratively as auxj := Prep-Write(PP,
storej−1, indexj) and accj := Update(PP, accJ−1,mj , indexj , auxj). Acc is
said to be write enforcing if Update(PP, acck−1,mk, indexk, aux) = accout �=
Reject, for any aux, then accout = acck. Note that this is an information-
theoretic property: we are requiring that an aux value producing an accumulated
value other than acck or Reject does not exist.

Iterators. In this section, we define the notion of cryptographic iterators.
A cryptographic iterator essentially consists of a small state that is updated
in an iterative fashion as messages are received. An update to apply a new mes-
sage given current state is performed via some public parameters.

Since states will remain relatively small regardless of the number of messages
that have been iteratively applied, there will in general be many sequences of
messages that can lead to the same state. However, our security requirement will
capture that the normal public parameters are computationally indistinguishable
from specially constructed “enforcing” parameters that ensure that a particular
single state can be only be obtained as an output as an update to precisely one
other state, message pair. Note that this enforcement is a very localized property
to a particular state, and hence can be achieved information-theoretically when
we fix ahead of time where exactly we want this enforcement to be.

138 A. Deshpande et al.

Syntax: Let � be any polynomial. An iterator I with message space Mλ =
{0, 1}�(λ) and state space Sλ consists of three algorithms - Setup-Itr, Setup-Itr-Enf
and Iterate defined below.

Setup-Itr(1λ, T). The setup algorithm takes as input the security parameter λ
(in unary), and an integer bound T (in binary) on the number of iterations.
It outputs public parameters PP and an initial state v0 ∈ Sλ.

Setup-Itr-Enf(1λ, T,m = (m1, . . . , mk)). The enforced setup algorithm takes as
input the security parameter λ (in unary), an integer bound T (in binary) and
k messages (m1, . . . , mk), where each mi ∈ {0, 1}�(λ) and k is some polynomial
in λ. It outputs public parameters PP and a state v0 ∈ S.

Iterate(PP, vin,m). The iterate algorithm takes as input the public parameters
PP, a state vin, and a message m ∈ {0, 1}�(λ). It outputs a state vout ∈ Sλ.

For simplicity of notation, we will drop the dependence of � on λ. Also, for any
integer k ≤ T , we will use the notation Iteratek(PP, v0, (m1, . . . , mk)) to denote
Iterate(PP, vk−1,mk), where vj = Iterate(PP, vj−1,mj) for all 1 ≤ j ≤ k − 1.

Security: Let I = (Setup-Itr,Setup-Itr-Enf, Iterate) be an iterator with message
space {0, 1}� and state space Sλ. We require the following notions of security.

Definition 10 (Indistinguishability of Setup). An iterator I is said to
satisfy indistinguishability of Setup phase if any PPT adversary A’s advantage
in the security game Exp-Setup-Itr(1λ, I,A) at most is negligible in λ, where
Exp-Setup-Itr is defined as follows.

Exp-Setup-Itr(1λ,I,A)

1. The adversary A chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . , mk ∈ {0, 1}� to the challenger.
3. The challenger chooses a bit b. If b = 0, the challenger outputs (PP, v0) ←

Setup-Itr(1λ, T). Else, it outputs (PP, v0) ← Setup-Itr-Enf(1λ, T, 1k,m =
(m1, . . . , mk)).

4. A sends a bit b′.

A wins the security game if b = b′.

Definition 11 (Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), k < T and
m1, . . . , mk ∈ {0, 1}�. Let (PP, v0) ← Setup-Itr-Enf(1λ, T,m = (m1, . . . , mk))
and vj = Iteratej(PP, v0, (m1, . . . , mj)) for all 1 ≤ j ≤ k. Then, I =(Setup-Itr,
Setup-Itr-Enf, Iterate) is said to be enforcing if

vk = Iterate(PP, v′,m′) =⇒ (v′,m′) = (vk−1,mk).

Note that this is an information-theoretic property.

Constrained Pseudorandom Functions for Unconstrained Inputs 139

2.4 Attribute Based Encryption

An ABE scheme where policies are represented by Turing machines comprises
of the following four algorithms (ABE.setup,ABE.enc,ABE.keygen,ABE.dec):

– ABE.setup(1λ) → (PKABE,MSKABE): The setup algorithm takes as input the
security parameter λ and outputs the public key PKABE and the master secret
key MSKABE

– ABE.enc(m,x,PKABE) → ct: The encryption algorithm takes as input the
message m, the attribute string x of unbounded length and the public
key PKABE and it outputs the corresponding ciphertext ctx specific to the
attribute string.

– ABE.keygen(MSKABE,M) → SK{M}: The key generation algorithm takes as
input MSKABE and a Turing machine M and outputs the secret key SK{M}
specific to M

– ABE.dec(SK{M}, ct) → m or ⊥: The decryption algorithm takes in SK{M}
and ciphertext ct and outputs either a message m or ⊥.

The correctness of the scheme guarantees that if ABE.enc(m,x,PKABE) → ctx
and ABE.keygen(MSKABE,M) → SK{M} then ABE.dec(SK{M}, ctx) → m.

2.5 Selective Security

Consider the following experiment between a challenger C and a stateful adver-
sary A:

– Setup Phase: A sends the challenge attribute string x∗ of his choice to C.
C runs the ABE.setup(1λ) and sends across PKABE to A.

– Pre-Challenge Query Phase: A gets to query for secret keys corresponding
to Turing machines. For each query M such that M(x∗) = 0, the challenger
computes SK{M} ← ABE.keygen(MSKABE, .) and sends it to A.

– Challenge Phase: A sends two messages m0,m1 with |m0| = |m1|, the
challenger chooses bit b uniformly at random and outputs ct∗ = ABE.enc(mb,
x∗,PKABE).

– Post-Challenge Query Phase: This is identical to the Pre-Challenge
Phase.

– Guess: Finally, A sends its guess b′ and wins if b = b′.

The advantage of A, AdvABE
A (λ) in the above experiment is defined to be |Pr[b′ =

b] − 1
2 |.

Definition 12. An ABE scheme is said to be selectively secure if for all PPT
adversaries A, the advantage AdvABE

A (λ) is a negligible function in λ.

140 A. Deshpande et al.

3 Constrained Pseudorandom Functions for Turing
Machines

The notion of constrained pseudorandom functions was introduced in the con-
current works of [7,9,23]. Informally, a constrained PRF extends the notion of
standard PRFs, enabling the master PRF key holder to compute ‘constrained
keys’ that allow PRF evaluations on certain inputs, while the PRF evaluation
on remaining inputs ‘looks’ random. In the above mentioned works, these con-
straints could only handle bounded length inputs. In order to allow unbounded
inputs, we need to ensure that the constrained keys correspond to polynomial
time Turing Machines. A formal definition is as follows.

Let Mλ be a family of Turing machines with (worst case) running time
bounded by 2λ. Let K denote the key space, X the input domain and Y the
range space. A pseudorandom PRF : K × X → Y is said to be constrained with
respect to the Turing machine family Mλ if there is an additional key space Kc,
and three algorithms PRF.setup, PRF.constrain and PRF.eval as follows:

– PRF.setup(1λ) is a PPT algorithm that takes the security parameter λ as
input and outputs a key K ∈ K.

– PRF.constrain(K,M) is a PPT algorithm that takes as input a PRF key
K ∈ K and a Turing machine M ∈ Mλ and outputs a constrained key
K{M} ∈ Kc.

– PRF.eval(K{M}, x) is a deterministic polynomial time algorithm that takes
as input a constrained key K{M} ∈ Kc and x ∈ X and outputs an element
y ∈ Y. Let K{M} be the output of PRF.constrain(K,M). For correctness, we
require the following:

PRF.eval(K{M}, x) = F (K,x) if M(x) = 1.

For simplicity of notation, we will use PRF(K{M}, x) to denote
PRF.eval(K{M}, x).

3.1 Security of Constrained Pseudorandom Functions

Intuitively, we require that even after obtaining several constrained keys, no
polynomial time adversary can distinguish a truly random string from the PRF
evaluation at a point not accepted by the queried Turing machines. In this work,
we achieve a weaker notion of security called selective security, which is formal-
ized by the following security game between a challenger and an adversary Att.

Let PRF : K×X → Y be a constrained PRF with respect to a Turing machine
family M. The security game consists of three phases.

Setup Phase: The adversary sends the challenge input x∗. The challenger chooses
a random key K ← K and a random bit b ← {0, 1}. If b = 0, the challenger
outputs PRF(K,x∗). Else, the challenger outputs a random element y ← Y.

Constrained Pseudorandom Functions for Unconstrained Inputs 141

Query Phase: In this phase, Att is allowed to ask for the following queries:

– Evaluation Query. Att sends x ∈ X , and receives PRF(K,x).
– Key Query. Att sends a Turing machine M ∈ M such that M(x∗) = 0, and

receives PRF.constrain(K,M).

Guess: Finally, A outputs a guess b′ of b.
A wins if b = b′ and the advantage of Att is defined to be AdvAtt(λ) =

∣

∣

∣ Pr[Att wins] − 1/2
∣

∣

∣.

Definition 13. The PRF PRF is a secure constrained PRF with respect to M
if for all PPT adversaries A AdvAtt(λ) is negligible in λ.

3.2 Puncturable Pseudorandom Functions

A special class of constrained PRFs, called puncturable PRFs, was introduced in
the work of [25]. In a puncturable PRF, the constrained key queries correspond
to points in the input domain, and the constrained key is one that allows PRF
evaluations at all points except the punctured point.

Formally, a PRF F : K × X → Y is a puncturable pseudorandom function
if there is an additional key space Kp and three polynomial time algorithms
F.setup, F.eval and F.puncture as follows:

– F.setup(1λ) is a randomized algorithm that takes the security parameter λ as
input and outputs a description of the key space K, the punctured key space
Kp and the PRF F .

– F.puncture(K,x) is a randomized algorithm that takes as input a PRF key
K ∈ K and x ∈ X , and outputs a key Kx ∈ Kp.

– F.eval(Kx, x′) is a deterministic algorithm that takes as input a punctured
key Kx ∈ Kp and x′ ∈ X . Let K ∈ K, x ∈ X and Kx ← F.puncture(K,x).
For correctness, we need the following property:

F.eval(Kx, x′) =

{

F(K,x′) if x �= x′

⊥ otherwise

The selective security notion is analogous to the security notion of constrained
PRFs.

4 Construction

A High Level Description of Our Construction: Our constrained PRF construc-
tion uses a puncturable PRF F as the base pseudorandom function. The setup
algorithm chooses a puncturable PRF key K together with the public parame-
ters of the accumulator and an accumulation of the empty tape (it also outputs
additional parameters for the authenticity checks described in the next para-
graph). To evaluate the constrained PRF on input x, one first accumulates the
input x. Let y denote this accumulation. The PRF evaluation is F (K, y).

142 A. Deshpande et al.

Next, let us consider the constrained key for Turing machine M . The major
component of this key is an obfuscated program Prog. At a very high level,
this program evaluates the next-step circuit of M . Its main inputs are the time
step t, hash y of the input and the symbol, state, position of TM used at step t.
Using the state and symbol, it computes the next state and the symbol to be
written. If the state is accepting, it outputs F (K, y), else it outputs the next
state and symbol. However, this is clearly not enough, since the adversary could
pass illegal states and symbols as inputs. So the program first performs some
additional authenticity checks then evaluates the next state, symbol, and finally
outputs authentication required for the next step evaluation. These authenticity
checks are imposed via the accumulator, signature scheme and iterator. For
these checks, Prog takes additional inputs: accumulation of the current tape acc,
proof π that the input symbol is the correct symbol at the tape-head position,
auxiliary string aux to update the accumulation, iterated value and signature σ.
The iterated value and the signature together ensure that the correct state and
accumulated value is input at each step, while the accumulation ensures that the
adversary cannot send a wrong symbol. Finally, to perform the ‘tail-cutting’, the
program requires an additional input seed. The first and last step of the program
are for checking the validity of seed, and to output the new seed if required. The
constrained key also has another program Init-Sign which is used to sign the
accumulation of the input. In the end, if all the checks go through, the final
output will be the PRF evaluation using the constrained key.

Formal Description: Let Acc= (Setup-Acc, Setup-Acc-Enf-Read, Setup-Acc-Enf-
Write, Prep-Read, Prep-Write, Verify-Read, Write-Store, Update) be a positional
accumulator, Itr= (Setup-Itr, Setup-Itr-Enf, Iterate) an iterator, S = (Setup-Spl,
Sign-Spl, Verify-Spl, Split, Sign-Spl-abo) a splittable signature scheme and PRG :
{0, 1}λ → {0, 1}2λ a length doubling injective pseudorandom generator.

Let F be a puncturable pseudorandom function whose domain and range
are chosen appropriately, depending on the accumulator, iterator and splittable
signature scheme. For simplicity, we assume that F takes inputs of bounded
length, instead of fixed length inputs. This assumption can be easily removed by
using different PRFs for different input lengths (in our case, we will require three
different fixed-input-length PRFs). Also, to avoid confusion, the puncturable
PRF keys (both master and punctured) are represented using lower case letters
(e.g. k, k{z}), while the constrained PRF keys are represented using upper case
letters (e.g. K, K{M}).

– PRF.setup(1λ): The setup algorithm takes the security parameter λ as input.
It first chooses a puncturable PRF keys k ← F.setup(1λ). Next, it runs the
accumulator setup to obtain (PPAcc, acc0, store0) ← Setup-Acc(1λ). The
master PRF key is K = (k,PPAcc, acc0, store0).

– PRF Evaluation: To evaluate the PRF with key K = (k,PPAcc, acc0, store0)
on input x = x1 . . . xn, first ‘hash’ the input using the accumulator. More
formally, let Hash-Acc(x) = accn, where for all j ≤ n, accj is defined as
follows:

Constrained Pseudorandom Functions for Unconstrained Inputs 143

• storej =Write-Store(PPAcc, storej−1, j − 1, xj)
• auxj =Prep-Write(PPAcc, storej−1, j − 1)
• accj =Update(PPAcc, accj−1, xj , j − 1, auxj)

The PRF evaluation is defined to be F (k,Hash-Acc(x)).
– PRF.constrain(K = (k,PPAcc, acc0, store0),M): The constrain algorithm

first chooses puncturable PRF keys k1, . . ., kλ and ksig,A and runs the
iterator setup to obtain (PPItr, it0) ← Setup-Itr(1λ, T). Next, it computes
an obfuscation of program Prog (defined in Fig. 1) and Init-Sign (defined
in Fig. 2). The constrained key K{M} = (PPAcc, acc0, store0, PPItr, it0,
iO(Prog), iO(Init-Sign)).

– PRF Evaluation using Constrained Key: Let K{M} = (PPAcc, acc0, store0,
PPItr, it0, P1, P2) be a constrained key corresponding to machine M , and
x = x1, . . . , xn the input. As in the evaluation using master PRF key, first
compute acc-inp = Hash-Acc(x).

To begin the evaluation, compute a signature on the initial values using
the program P2. Let σ0 = P2(acc-inp).

Suppose M runs for t∗ steps on input x. Run the program P1 iteratively
for t∗ steps. Set pos0 = 0, seed0 =‘’, and for i = 1 to t∗, compute
1. Let (symi−1, πi−1) = Prep-Read(PPAcc, storei−1, posi−1).
2. Compute auxi−1 ← Prep-Write(PPAcc, storei−1, posi−1).
3. Let out = P1(i, seedi−1, posi−1, symi−1, sti−1, acci−1, πi−1, auxi−1,

acc-inp, iti−1, σi−1).
If j = t∗, output out. Else, parse out as (symw,i, posi, sti, acci,

iti, σi, seedi).
4. Compute storei = Write-Store(PPAcc, storei−1, posi−1, symw,i).

The output at step t∗ is the PRF evaluation using the constrained key.

4.1 Proof of Selective Security

Theorem 1. Assuming iO is a secure indistinguishability obfuscator, F is a
selectively secure puncturable pseudorandom function, Acc is a secure positional
accumulator, Itr is a secure positional iterator and S is a secure splittable signa-
ture scheme, the constrained PRF construction described in Sect. 4 is selectively
secure as defined in Definition 13.

Our security proof will consist of a sequence of computationally indistinguish-
able hybrid experiments. Recall that we are proving selective security, where the
adversary sends the challenge input x∗ before receiving any constrained keys.

Sequence of Hybrid Experiments: We will first set up some notation for the
hybrid experiments. Let q denote the number of constrained key queries made
by the adversary. Let x∗ denote the challenge input chosen by the adver-
sary, (k,PPAcc, acc0, store0) the master key chosen by challenger, acc-inp∗ =
Hash-Acc(x∗) as defined in the construction. Let Mj denote the jth constrained
key query, and t∗j be the running time of machine Mj on input x∗, and τj be the

144 A. Deshpande et al.

Program Prog

Constants : Turing machine M = Q, Σtape, δ, q0, qac, qrej ,

time bound T

Public parametersPPAcc, PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A

Inputs : Time t, String seed, position posin, symbol symin,

TM state stinAccumulator value accin, proof π,

auxiliary value aux, accumulation of input acc-inp

Iterator value itin, signature σin.

1. Let μ be an integer such that 2μ ≤ t < 2μ+1.
If PRG(seed) = PRG(F(kμ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rA = F(ksig,A, (acc-inp, t − 1)).
Compute (SKA, VKA, VKA,rej) = Setup-Spl(1λ; rA).

(b) Let min = (itin, stin, accin, posin).
If Verify-Spl(VKA, min, σin) = 0 output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej output ⊥.

Else if stout = qac output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux).
If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let rA = F(ksig,A, (acc-inp, t)).
Compute (SKA, VKA, VKA,rej) = Setup-Spl(1λ; rA).

(b) Let mout = (itout, stout, accout, posout) and σout =
Sign-Spl(SKα, mout).

7. If t + 1 = 2μ+1, set seed = F(kμ+1, acc-inp).
Else, set seed = .

8. Output posout, symout, stout, accout, itout, σout, seed .

Fig. 1. Program Prog

Constrained Pseudorandom Functions for Unconstrained Inputs 145

Program Init-Sign

Constants: Puncturable PRF key ksig,A, Initial TM state q0, Iterator
value it0

Input: Accumulation of input acc-inp

1. Let F (ksig,A, (acc-inp, 0)) = rsig. Compute (SK, VK, VKrej) =
Setup-Spl(1λ; rsig).

2. Output σ = Sign-Spl(SK, (it0, q0, acc-inp, 0)).

Fig. 2. Program Init-Sign

smallest power of two greater than tj . The program Progj denotes the program
Prog with machine Mj hardwired.

Hybrid0: This corresponds to the real experiment.

Next, we define q hybrid experiments Hybrid0,j for 1 ≤ j ≤ q.

Hybrid0,j : Let Prog-1 denote the program defined in Fig. 3. In this experiment,
the challenger sends an obfuscation of the program Prog-1i (Prog-1 with machine
Mi hardwired) for the ith query if i ≤ j. For the remaining queries, the challenger
outputs an obfuscation of Progi.

Hybrid1: This experiment is identical to hybrid Hybrid0,q. In this experiment, the
challenger sends an obfuscation of Prog-1i for all constrained key queries.

Hybrid2: In this experiment, the challenger punctures the PRF key k at
input acc-inp∗ and uses the punctured key for all key queries. More formally,
after receiving the challenge input x∗, it chooses (PPAcc, acc0, store0) ←
Setup-Acc(1λ) and computes acc-inp∗ = Hash-Acc(x∗). It then chooses a PRF
key k and computes k{acc-inp∗} ← F.puncture(k, acc-inp∗). Next, it receives
constrained key queries for machines M1, . . . , Mq. For each query, it chooses
(PPItr, it0) ← Setup-Itr(1λ) and PRF keys k1, . . ., kλ, ksig,A. It computes an
obfuscation of Prog-1{Mi, PPAcc, PPItr, k{acc-inp∗}, ksig,A}.

Analysis. Let AdvA
i denote the advantage of any PPT adversary A in the

hybrid experiment Hybridi (similarly, let AdvA
0,j denote the advantage of A in

the intermediate hybrid experiment Hybrid0,j).

146 A. Deshpande et al.

Program Prog-1

Constants : Turing machine M = Q, Σtape, δ, q0, qac, qrej , time t∗ ∈ [T]

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A ∈ K
Hardwired accumulated value acc-inp∗

Inputs: Time t, String seed, position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let μ be an integer such that 2μ ≤ t < 2μ+1.
If PRG(seed) = PRG(F(kμ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rsig = F (ksig,A, t − 1). Compute (SK, VK, VKrej) =
Setup-Spl(1λ; rsig).

(b) Let min = (itin, stin, accin, posin, acc-inp). If
Verify-Spl(VK, min, σin) = 0 output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej output ⊥.
(c) If stout = qac and acc-inp = acc-inp∗, output F(k, acc-inp).

Else If stout = qac output ⊥.

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If
wout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let rsig = F (ksig,A, (acc-inp, t)). Compute
(SK , VK , VKrej) ← Setup-Spl(1λ; rsig).

(b) Let mout = (itout, stout, accout, posout, acc-inp) and
σout = Sign-Spl(SK , mout).

7. If t + 1 = 2μ+1, set seed = F(kμ+1, acc-inp).
Else, set seed = .

8. Output posout, symout, stout, accout, itout, σout, seed .

Fig. 3. Program Prog-1

Constrained Pseudorandom Functions for Unconstrained Inputs 147

Recall Hybrid0,0 corresponds to the experiment Hybrid0, and Hybrid0,q corre-
sponds to the experiment Hybrid1. Using the following lemma, we can show that
|AdvA

0 − AdvA
1 | ≤ negl(λ).

Lemma 1. Assuming F is a puncturable PRF, Acc is a secure positional accu-
mulator, Itr is a secure positional iterator, S is a secure splittable signature
scheme and iO is a secure indistinguishability obfuscator, for any PPT adver-
sary A, |AdvA

0,j − AdvA
0,j+1| ≤ negl(λ).

The proof of this lemma involves multiple hybrids. We include a high level
outline of the proof in AppendixA, while the complete proof can be found in
the full version of our paper.

Lemma 2. Assuming iO is a secure indistinguishability obfuscator, for any
PPT adversary A, |AdvA

1 − AdvA
2 | ≤ negl(λ).

Proof. Let us assume for now that the adversary makes exactly one constrained
key query corresponding to machine M1. This can be naturally extended to the
general case via a hybrid argument.

Note that the only difference between the two hybrids is the PRF key hard-
wired in Prog-1. In one case, the challenger sends an obfuscation of P1 =
Prog-1{M1, PPAcc, PPItr, k, k1, . . ., kλ, ksig,A}, while in the other, it sends an
obfuscation of P2 = Prog-1{M1, PPAcc, PPItr, k{acc-inp∗}, k1, . . ., kλ, ksig,A}. To
prove that these two hybrids are computationally indistinguishable, it suffices to
show that the P1 and P2 are functionally identical. Note that program P1 com-
putes F(k, acc-inp) only if acc-inp �= acc-inp∗. As a result, using the correctness
property of puncturable PRFs, the programs have identical functionality.

Lemma 3. Assuming F is a selectively secure puncturable PRF, for any PPT
adversary A, |AdvA

2 | ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that |AdvA
2 | = ε. We will

use A to construct a PPT algorithm B that breaks the security of the puncturable
PRF F .

To begin with, B receives the challenge input x∗ from A. It chooses
(PPAcc, acc0, store0) ← Setup-Acc(1λ). It then computes acc-inp∗ =
Hash-Acc(x∗), and sends acc-inp∗ to the PRF challenger as the challenge input.
It receives a punctured key k′ and an element y (which is either the pseudoran-
dom evaluation at acc-inp∗ or a truly random string in the range space). B sends
y to A as the challenge response.

Next, it receives multiple constrained key requests. For the ith query corre-
sponding to machine Mi, B chooses PRF keys k1, . . ., kλ, ksig,A ← F.setup(1λ),
(PPItr, it0) ← Setup-Itr(1λ) and computes an obfuscation of Prog-1{Mi, PPAcc,
PPItr, k′, k1, . . ., kλ, ksig,A}. It sends this obfuscated program to A as the con-
strained key.

Finally, after all constrained key queries, A sends its guess b′, which B for-
wards to the challenger. Note that if A wins the security game against PRF, then
B wins the security game against F. This concludes our proof.

148 A. Deshpande et al.

5 Attribute Based Encryption for Turing Machines

In this section, we describe an ABE scheme where policies are associated with
Turing machines, and as a result, attributes can be strings of unbounded length.
Our ABE scheme is very similar to the constrained PRF construction described
in Sect. 4.

Let PKE = (PKE.setup,PKE.enc,PKE.dec) be a public key encryption
scheme and F a puncturable PRF for Turing machines, with algorithms
PRF.setup and PRF.constrain. Consider the following ABE scheme:

– ABE.setup(1λ). The setup algorithm chooses a puncturable PRF key k ←
F.setup(1λ) and (PPAcc, acc0, store0) ← Setup-Acc(1λ, T). Next, it com-
putes an obfuscation of Prog-PK{k} (defined in Fig. 4). The public key
PKABE = (PPAcc, acc0, store0, iO(Prog-PK{k})), while the master secret key
is MSKABE = k.

– ABE.enc(m,x,PKABE). Let PKABE = (PPAcc, acc0, store0,Programpk) and
x = x1 . . . xn. As in Sect. 4, the encryption algorithm first ‘accumulates’ the
attribute x using the accumulator public parameters. Let acc-inp = accn,
where for all j ≤ n, accj is defined as follows:

• storej =Write-Store(PPAcc, storej−1, j − 1, xj)
• auxj =Prep-Write(PPAcc, storej−1, j − 1)
• accj =Update(PPAcc, accj−1, xj , j − 1, auxj).

Next, the accumulated value is used to compute a PKE public key. Let pk =
Programpk(acc-inp). Finally, the algorithm outputs ct = PKE.enc(m,pk).

– ABE.keygen(MSKABE,M). Let MSKABE = k and M = a Turing machine.
The ABE key corresponding to M is exactly the constrained key correspond-
ing to M , as defined in Sect. 4. In particular, the key generation algorithm
chooses (PPItr, it0) ← Setup-Itr(1λ, T) and a puncturable PRF key ksig,A, and
computes an obfuscation of Prog{M,k, ksig,PPAcc,PPItr} (defined in Fig. 1)
and Init-Sign{ksig,A (defined in Fig. 2). The secret key SK{M} = (PPItr, it0,
iO(Prog), iO(Init-Sign)).

– ABE.dec(SK{M}, ct, x). Let SK{M} = (PPItr, it0, Program1, Program2), and
suppose M accepts x in t∗ steps. As in the constrained key PRF eval-
uation, the decryption algorithm first obtains a signature using Program2

and then runs Program1 for t∗ steps, until it outputs the pseudorandom
string r. Using this PRF output r, the decryption algorithm computes
(pk, sk) = PKE.setup(1λ; r) and then decrypts ct using sk. The algorithm
outputs PKE.dec(sk, ct).

5.1 Proof of Security

We will first define a sequence of hybrid experiments, and then show that any
two consecutive hybrid experiments are computationally indistinguishable.

Constrained Pseudorandom Functions for Unconstrained Inputs 149

Program Prog-PK

Constants: Puncturable PRF key k
Input: Accumulation of input acc-inp

1. Let F (k, acc-inp) = r. Compute (pk, sk) = PKE.setup(1λ; r).
2. Output pk.

Fig. 4. Program Prog-PK

Sequence of Hybrid Experiments

Hybrid H0: This corresponds to the selective security game. Let x∗ denote the
challenge input, and acc-inp∗ = Hash-Acc(x∗).

Hybrid H1: In this hybrid, the challenger sends an obfuscation of Prog-1 instead
of Prog. Prog-1, on inputs corresponding to acc-inp∗, never reaches the accepting
state qac. This is similar to Hybrid1 of the constrained PRF security proof in
Sect. 4.1.

Hybrid H2: In this hybrid, the challenger first punctures the PRF
key k at acc-inp∗. It computes k′ ← F.puncture(k, acc-inp∗) and
(pk∗, sk∗) = PKE.setup(1λ;F (k, acc-inp∗)). Next, it uses k′ and pk∗ to define
Prog-PK′{k′,pk∗} (see Fig. 5). It sends an obfuscation of Prog-PK′ as the public
key. Next, for each of the secret key queries, it sends an obfuscation of Prog-1.
However unlike the previous hybrid, Prog-1 has k′ hardwired instead of k.

Program Prog-PK

Constants: Punctured PRF key k , Hardwired accumulation acc-inp∗

and public key pk∗.
Input: Accumulation of input acc-inp

1. If acc-inp = acc-inp∗, set pk = pk∗.
Else let F (k , acc-inp) = r. Compute (pk, sk) = PKE.setup(1λ; r).

2. Output pk.

Fig. 5. Program Prog-PK′

Hybrid H3: In this hybrid, the challenger chooses (pk∗, sk∗) ← PKE.setup(1λ);
that is, the public key is computed using true randomness. It then hardwires
pk∗ in Prog-PK. The secret key queries are same as in previous hybrids.

150 A. Deshpande et al.

Analysis. Let AdvA
i denote the advantage of A in hybrid Hi.

Lemma 4. Assuming iO is a secure indistinguishability obfuscator, Acc is a
secure positional accumulator, Itr is a secure iterator, S is a secure splittable
signature scheme and F is a secure puncturable PRF, for any adversary A,
|AdvA

0 − AdvA
1 | ≤ negl(λ).

The proof of this lemma is identical to the proof of Lemma 1.

Lemma 5. Assuming iO is a secure indistinguishability obfuscator, for any
PPT adversary A, |AdvA

1 − AdvA
2 | ≤ negl(λ).

Proof. Similar to the proof of Lemma 2, k can be replaced with k′ in all the
secret key queries, since F (k, acc-inp∗) is never executed. As far as Prog-PK and
Prog-PK′ are concerned, (pk∗, sk∗) is set to be PKE.setup(1λ;F (k, acc-inp∗)), and
therefore, the programs are functionally identical.

Lemma 6. Assuming F is a selectively secure puncturable PRF, for any PPT
adversary A, |AdvA

2 − AdvA
3 | ≤ negl(λ).

Proof. The proof of this follows immediately from the security definition of punc-
turable PRFs. Suppose there exists an adversary that can distinguish between
H2 and H3 with advantage ε. Then, there exists a PPT algorithm B that can
break the selective security of F. B first receives x∗ from the adversary. It com-
putes acc-inp∗, sends acc-inp∗ to the PRF challenger and receives k′, y, where y
is either the PRF evaluation at acc-inp∗, or a truly random string. Using y, it
computes (pk∗, sk∗) = PKE.setup(1λ; y), and uses k′,pk∗ to define the public key
iO(Prog-PK′{k′,pk∗}). The secret key queries are same in both hybrids, and can
be answered using k′ only. As a result, B simulates either H2 or H3 perfectly.
This concludes our proof.

Lemma 7. Assuming PKE is a secure public key encryption scheme, for any
PPT adversary A, AdvA

3 ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that AdvA
3 = ε. Then there

exists a PPT adversary B that breaks IND-CPA security of PKE . B receives
a public key pk∗ from the challenger. It chooses PRF key k, punctures it at
acc-inp∗ and sends the public key iO{Prog-PK′}. Next, it responds to the secret
key queries, and finally, on receiving challenge messages m0,m1, it forwards them
to the challenger, and receives ct∗, which it forwards to the adversary. The post
challenge key query phase is also simulated perfectly, since it has all the required
components.

A Proof Outline of Lemma1

In this section, we provide an outline of the proof of Lemma 1. The detailed proof
is included in the full version of our paper. Let us assume the key query is for
TM M , and M does not accept the challenge input x∗, and let acc-inp∗ denote

Constrained Pseudorandom Functions for Unconstrained Inputs 151

the accumulation of x∗. Our goal in this hybrid is to ensure that the program will
never output F (K, acc-inp∗). This is done via a sequence of hybrids, where we
use the security properties of splittable signatures, accumulators and iterators
together with iO security.

Preprocessing Hybrid: The first step is to modify the program Prog to allow
additional valid signatures without being detected. In particular, we have an
additional PRF key in the program, and this generates ‘bad’ signing/verification
keys. The program first checks if the input signature is accepted by the usual
‘good’ verification key. If not, it checks if it is accepted by the ‘bad’ verification
key. If the incoming signature is bad, then the output signature is also computed
using the bad signing key. Let us call this hybrid Hyb-1. This switch is indistin-
guishable because the Init-Sign program only outputs a good signature, and we
use the rejection-verification key indistinguishability property to show that this
change is indistinguishable.

Intermediate Hybrids Hyb-(1, i): Next, we gradually ensure that the program
does not output the PRF evaluation on acc-inp∗ in the first i steps. If i = T ,
then we are done. Here, we need to define our intermediate hybrid carefully.
In the ith intermediate hybrid, the program does not output PRF evaluation if
t ≤ i. Moreover, if acc-inp = acc-inp∗, it only accepts good signatures for the
first i − 1 steps. For the ith step, if acc-inp = acc-inp∗, it accepts only good
signatures, but outputs a bad signature if the input iterated value, accumulated
value or state are not the correct ones for time step i (here, the program has the
correct values for step i hardwired). We now need to go from step Hyb-(1, i) to
step Hyb-(1, i + 1).

For this, we will first ensure that if acc-inp = acc-inp∗, the only signature
accepted at step i + 1 is the one corresponding to the correct (iterated value,
accumulated value, state) input tuple at step i+1. Intuitively, this is true because
the program, at step i, outputs a bad signature for all other tuples. To enforce
this, we use the properties of the splittable signature schemes. Next, we make the
accumulator read-enforcing. This would mean that both the state and symbol
input at step i + 1 are the correct ones. As a result, the program cannot output
the PRF evaluation at step i + 1 if acc-inp = acc-inp∗. So now, the state and
symbol output at step i + 1 also have to be the correct ones. To ensure that the
accumulated value and iterated value output are also correct, we make the accu-
mulator write-enforcing and iterator enforcing respectively. Together, these will
ensure that the transition from Hyb-(1, i) and Hyb-(1, i+1) are computationally
indistinguishable.

Continuing this way, we can ensure, step by step, that the program does not
output the PRF evaluation on acc-inp∗. However, the approach described above
will require exponential hybrids. To make the number of intermediate hybrids
polynomial, we use the ‘tail-cutting’ technique described in Sect. 1. Note that
the program, after t∗ steps, only outputs ⊥. Suppose t∗ is a power of two. Using
a PRG trick, we can wipe out steps t∗ to 2t∗ in one shot. At every step where
t is a power of two, the program outputs a new PRG seed, and this PRG seed’s

152 A. Deshpande et al.

validity is checked till t reaches the next power of two. Now, if no PRG seed is
output at step t∗, then using the PRG security, one can ensure that the PRG
seed validity check fails. As a result, for all t ∈ (t∗, 2t∗), the program outputs ⊥.

References

1. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Constrained prfs for unbounded inputs.
IACR Cryptology ePrint Archive 2014, 840 (2014). http://eprint.iacr.org/2014/840

2. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. IACR Cryptology ePrint Archive 2015, 173 (2015). http://eprint.iacr.
org/2015/173

3. Ananth, P., Sahai, A.: Functional encryption for turing machines. Cryptology
ePrint Archive, Report 2015/776 (2015). http://eprint.iacr.org/

4. Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-
homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-662-46497-7 2

5. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: Proceedings of the Forty-Seventh Annual ACM Sympo-
sium on Theory of Computing, STOC 2015, Portland, OR, USA, 14–17 June 2015,
pp. 439–448 (2015). http://doi.acm.org/10.1145/2746539.2746574

6. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. IACR Cryptology ePrint Archive 2015, 163 (2015)

7. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

8. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014)

9. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

10. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from
standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015, Part II. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-662-46497-7 1

11. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and
indistinguishability obfuscation for RAM programs. In: Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Port-
land, OR, USA, 14–17 June 2015, pp. 429–437 (2015). http://doi.acm.org/10.1145/
2746539.2746621

12. Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom
functions: Verifiable and delegatable. Cryptology ePrint Archive, Report 2014/522
(2014). http://eprint.iacr.org/

13. Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of
constrained prfs. IACR Cryptology ePrint Archive 2014, 416 (2014)

14. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

http://eprint.iacr.org/2014/840
http://eprint.iacr.org/2015/173
http://eprint.iacr.org/2015/173
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-46497-7_2
http://doi.acm.org/10.1145/2746539.2746574
http://dx.doi.org/10.1007/978-3-662-46497-7_1
http://doi.acm.org/10.1145/2746539.2746621
http://doi.acm.org/10.1145/2746539.2746621
http://eprint.iacr.org/

Constrained Pseudorandom Functions for Unconstrained Inputs 153

15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

16. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014)

17. Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309 (2014). http://eprint.iacr.org/

18. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: FOCS, pp. 464–479 (1984)

19. Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained
pseudorandom functions. IACR Cryptology ePrint Archive 2014, 720 (2014).
http://eprint.iacr.org/2014/720

20. Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudo-
random functions in the standard model. IACR Cryptology ePrint Archive 2014,
521 (2014). http://eprint.iacr.org/2014/521

21. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Proceedings of the 2015 Conference on Innovations in
Theoretical Computer Science, ITCS 2015, Rehovot, Israel, 11–13 January 2015,
pp. 163–172 (2015)

22. Khurana, D., Rao, V., Sahai, A.: Multi-party key exchange for unbounded par-
ties from indistinguishability obfuscation. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 52–75. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48797-6 3

23. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: ACM Conference on Computer and
Communications Security, pp. 669–684 (2013)

24. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, NY, USA, pp. 419–428
(2015). http://doi.acm.org/10.1145/2746539.2746614

25. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC, pp. 475–484 (2014)

26. Zhandry, M.: Adaptively secure broadcast encryption with small system parame-
ters (2014)

http://eprint.iacr.org/
http://eprint.iacr.org/2014/720
http://eprint.iacr.org/2014/521
http://dx.doi.org/10.1007/978-3-662-48797-6_3
http://dx.doi.org/10.1007/978-3-662-48797-6_3
http://doi.acm.org/10.1145/2746539.2746614

Pseudorandom Functions in Almost Constant
Depth from Low-Noise LPN

Yu Yu1,2,3(B) and John Steinberger4

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China

yyuu@sjtu.edu.cn
2 State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China

3 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
4 Institute for Interdisciplinary Information Sciences,

Tsinghua University, Beijing, China
jpsteinb@gmail.com

Abstract. Pseudorandom functions (PRFs) play a central role in sym-
metric cryptography. While in principle they can be built from any
one-way functions by going through the generic HILL (SICOMP 1999)
and GGM (JACM 1986) transforms, some of these steps are inherently
sequential and far from practical. Naor, Reingold (FOCS 1997) and
Rosen (SICOMP 2002) gave parallelizable constructions of PRFs in NC2

and TC0 based on concrete number-theoretic assumptions such as DDH,
RSA, and factoring. Banerjee, Peikert, and Rosen (Eurocrypt 2012) con-
structed relatively more efficient PRFs in NC1 and TC0 based on “learn-
ing with errors” (LWE) for certain range of parameters. It remains an
open problem whether parallelizable PRFs can be based on the “learn-
ing parity with noise” (LPN) problem for both theoretical interests and
efficiency reasons (as the many modular multiplications and additions
in LWE would then be simplified to AND and XOR operations under
LPN).

In this paper, we give more efficient and parallelizable constructions
of randomized PRFs from LPN under noise rate n−c (for any constant
0 < c < 1) and they can be implemented with a family of polynomial-
size circuits with unbounded fan-in AND, OR and XOR gates of depth
ω(1), where ω(1) can be any small super-constant (e.g., log log log n or
even less). Our work complements the lower bound results by Razborov
and Rudich (STOC 1994) that PRFs of beyond quasi-polynomial secu-
rity are not contained in AC0(MOD2), i.e., the class of polynomial-size,
constant-depth circuit families with unbounded fan-in AND, OR, and
XOR gates.

Furthermore, our constructions are security-lifting by exploiting the
redundancy of low-noise LPN. We show that in addition to parallelizabil-
ity (in almost constant depth) the PRF enjoys either of (or any tradeoff
between) the following:

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 154–183, 2016.
DOI: 10.1007/978-3-662-49896-5 6

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 155

– A PRF on a weak key of sublinear entropy (or equivalently, a uniform
key that leaks any (1 − o(1))-fraction) has comparable security to
the underlying LPN on a linear size secret.

– A PRF with key length λ can have security up to 2O(λ/ log λ), which
goes much beyond the security level of the underlying low-noise LPN.

where adversary makes up to certain super-polynomial amount of
queries.

1 Introduction

Learning Parity with Noise. The computational version of learning parity
with noise (LPN) assumption with parameters n ∈ N (length of secret), q ∈ N

(number of queries) and 0 < μ < 1/2 (noise rate) postulates that it is compu-
tationally infeasible to recover the n-bit secret s ∈ {0, 1}n given (a · s ⊕ e, a),
where a is a random q×n matrix, e follows Berqμ, Berμ denotes the Bernoulli dis-
tribution with parameter μ (i.e., Pr[Berμ = 1] = μ and Pr[Berμ = 0] = 1−μ), ‘·’
denotes matrix vector multiplication over GF(2) and ‘⊕’ denotes bitwise XOR.
The decisional version of LPN simply assumes that a · s ⊕ e is pseudorandom
(i.e., computationally indistinguishable from uniform randomness) given a. The
two versions are polynomially equivalent [5,12,36].

Hardness of LPN. The computational LPN problem represents a well-known
NP-complete problem “decoding random linear codes” [9] and thus its worst-case
hardness is well studied. LPN was also extensively studied in learning theory,
and it was shown in [24] that an efficient algorithm for LPN would allow to
learn several important function classes such as 2-DNF formulas, juntas, and
any function with a sparse Fourier spectrum. Under a constant noise rate (i.e.,
μ = Θ(1)), the best known LPN solvers [13,40] require time and query com-
plexity both 2O(n/ log n). The time complexity goes up to 2O(n/ log log n) when
restricted to q = poly(n) queries [42], or even 2O(n) given only q = O(n) queries
[45]. Under low noise rate μ = n−c (0 < c < 1), the security of LPN is less well
understood: on the one hand, for q = n + O(1) we can already do efficient dis-
tinguishing attacks with advantage 2−O(n1−c) that match the statistical distance
between the LPN samples and uniform randomness (see Remark 2); on the other
hand, for (even super-)polynomial q the best known attacks [7,11,15,39,54] are
not asymptotically better, i.e., still at the order of 2Θ(n1−c). We mention that
LPN does not succumb to known quantum algorithms, which makes it a promis-
ing candidate for “post-quantum cryptography”. Furthermore, LPN also enjoys
simplicity and is more suited for weak-power devices (e.g., RFID tags) than other
quantum-secure candidates such as LWE [52]1.

LPN-based Cryptographic Applications. LPN was used as a basis for
building lightweight authentication schemes against passive [31] and even active

1 The inner product of LWE requires many multiplications modulo a large prime p
(polynomial in the security parameter), and in contrast the same operation for LPN
is simply an XOR sum of a few AND products.

156 Y. Yu and J. Steinberger

adversaries [35,36] (see [1] for a more complete literature). Recently, Kiltz et al.
[38] and Dodis et al. [20] constructed randomized MACs based on the hard-
ness of LPN, which implies a two-round authentication scheme with man-in-the-
middle security. Lyubashevsky and Masny [43] gave an more efficient three-round
authentication scheme from LPN (without going through the MAC transforma-
tion) and recently Cash, Kiltz, and Tessaro [16] reduced the round complexity
to 2 rounds. Applebaum et al. [4] showed how to constructed a linear-stretch2

pseudorandom generator (PRG) from LPN. We mention other not-so-relevant
applications such as public-key encryption schemes [3,22,37], oblivious transfer
[19], commitment schemes and zero-knowledge proofs [33], and refer to a recent
survey [49] on the current state-of-the-art about LPN.

Does LPN imply low-depth PRFs? Pseudorandom functions (PRFs) play a
central role in symmetric cryptography. While in principle PRFs can be obtained
via a generic transform from any one-way function [26,29], these constructions
are inherently sequential and too inefficient to compete with practical instanti-
ations (e.g., the AES block cipher) built from scratch. Motivated by this, Naor,
Reingold [46] and Rosen [47] gave direct constructions of PRFs from concrete
number-theoretic assumptions (such as decision Diffie-Hellman, RSA, and fac-
toring), which can be computed by low-depth circuits in NC2 or even TC0.
However, these constructions mainly established the feasibility result and are
far from practical as they require extensive preprocessing and many exponentia-
tions in large multiplicative groups. Banerjee, Peikert, and Rosen [6] constructed
relatively more efficient PRFs in NC1 and TC0 based on the “learning with
errors” (LWE) assumption. More specifically, they observed that LWE for cer-
tain range of parameters implies a deterministic variant which they call “learning
with rounding” (LWR), and that LWR in turn gives rise to pseudorandom syn-
thesizers [46], a useful tool for building low-depth PRFs. Despite that LWE is
generalized from LPN, the derandomization technique used for LWE [6] does not
seemingly apply to LPN, and thus it is an interesting open problem if low-depth
PRFs can be based on (even a low-noise variant of) LPN (see a discussion in
[49, Footnote 18]). In fact, we don’t even know how to build low-depth weak
PRFs from LPN. Applebaum [4] observed that LPN implies “weak randomized
pseudorandom functions”, which require independent secret coins on every func-
tion evaluation, and Akavia et al. [2] obtained weak PRFs in “AC0◦MOD2” from
a relevant non-standard hard learning assumption.

Our contributions. In this paper, we give constructions of low-depth PRFs
from low-noise LPN (see Theorem 1 below), where the noise rate n−c (for any
constant 0 < c < 1) encompasses the noise level of Alekhnovich [3] (i.e., c = 1/2)
and higher noise regime. Strictly speaking, the PRFs we obtain are not con-
tained in AC0(MOD2)3, but the circuit depth ω(1) can be arbitrarily small (e.g.,

2 A PRG G : {0, 1}�1 → {0, 1}�2 has linear stretch if the stretch factor �2/�1 equals
some constant greater than 1.

3 Recall that AC0(MOD2) refers to the class of polynomial-size, constant-depth circuit
families with unbounded fan-in AND, OR, and XOR gates.

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 157

log log log n or even less). This complements the negative result of Razborov
and Rudich [51] (which is based on the works of Razborov and Smolensky
[50,53]) that PRFs with more than quasi-polynomial security do not exist in
AC0(MOD2).

Theorem 1 (main results, informal). Assume that the LPN problem with
secret length n and noise rate μ = n−c (for any constant 0 < c < 1) is (q =
1.001n, t = 2O(n1−c), ε = 2−O(n1−c))-hard4. Then,

1. for any d = ω(1), there exists a (q′ = nd/3, t−q′poly(n), O(nq′ε))-randomized-
PRF on any weak key of Rényi entropy no less than O(n1−c · log n), or on
an n1− c

2 -bit uniform random key with any (1 − O(log n)
nc/2)-fraction of leakage

(independent of the public coins of the PRF);
2. let λ = Θ(n1−c log n), for any d = ω(1), there exists a (q′ = λΘ(d), t′ =

2O(λ/ log λ), ε′ = 2−O(λ/ log λ))-randomized PRF with key length λ;

where both PRFs are computable by polynomial-size depth-O(d) circuits with
unbounded-fan-in AND, OR and XOR gates.

On lifted security. Note that there is nothing special with the factor 1.001,
which can be replaced with any constant greater than 1. The first parallelizable
PRF has security5 comparable to the underlying LPN (with linear secret length)
yet it uses a key of only sublinear entropy, or in the language of leakage resilient
cryptography, a sublinear-size secret key with any (1 − o(1))-fraction of leakage
(independent of the public coins). From a different perspective, let the security
parameter λ be the key length of the PRF, then the second PRF can have security
up to 2O(λ/ log λ) given any nΘ(d) number of queries. We use security-preserving
PRF constructions without relying on k-wise independent hash functions. This is
crucial for low-depth constructions as recent works [17,34] use (almost) ω(log n)-
wise independent hash functions, which are not known to be computable in
(almost) constant-depth even with unbounded fan-in gates. We remark that
circuit depth d = ω(1) is independent of the time/advantage security of PRF,
and is reflected only in the query complexity q′ = nΘ(d). This is reasonable
in many scenarios as in practice the number of queries may depend not only
on adversary’s computing power but also on the amount of data available for
cryptanalysis. It remains open whether the dependency of query complexity on
circuit depth can be fully eliminated.

Bernoulli-like Randomness Extractor/Sampler. Of independent inter-
ests, we propose the following randomness extractor/sampler in constant depth
and they are used in the first/second PRF constructions respectively.

4 t and 1/ε are upper bounded by 2O(n1−c) due to known attacks.
5 Informally, we say that a PRF has security T if it is 1/T -indistinguishable from a

random function for all oracle-aid distinguishers running in time T and making up to
certain superpolynomial number of queries.

158 Y. Yu and J. Steinberger

– A Bernoulli randomness extractor in AC0(MOD2) that converts almost all
entropy of a weak Rényi entropy source into Bernoulli noise distributions.

– A sampler in AC0 that uses a short uniform seed and outputs a Bernoulli-like
distribution of length m and noise rate μ, denoted as ψm

μ (see Algorithm 1).

Alekhnovich’s cryptosystem [3] considers a random distribution of length m that
has exactly μm 1’s, which we denote as χm

μm. The problem of sampling χm
μm dates

back to [12], but the authors only mention that it can be done efficiently, and it is
not known whether χm

μm can be sampled in AC0(MOD2). Instead, Applebaum et
al. [4] propose the following sampler for Bernoulli distribution Berqμ using uniform
randomness. Let w = w1 · · · wn be an n-bit uniform random string, and for
convenience assume that μ is a negative power of 2 (i.e., μ = 2−v for integer v).
Let sample : {0, 1}v → {0, 1} output the AND of its input bits, and let

e = (sample(w1 · · · wv), · · · , sample(w(q−1)v+1 · · · w(q−1)v+v))

so that e ∼ Berqμ for any q ≤ �n/ log(1/μ)	. Note that Berμ has Shannon
entropy H1(Berμ) = Θ(μ log(1/μ)) (see Fact A1), and thus the above converts
a (qH1(Berμ)/n) = O(μ)-fraction of the entropy into Bernoulli randomness. It
was observed in [4] that conditioned on e source w remains of (1 − O(μ))n bits
of average min-entropy, which can be recycled into uniform randomness with a
universal hash function h. That is, the two distributions are statistically close

(e, h(w), h)
s∼ (Berqμ, U(1−O(μ))n, h),

where Uq denotes a uniform distribution over {0, 1}q. The work of [4] then pro-
ceeded to a construction of PRG under noise rate μ = Θ(1). However, for
μ = n−c the above only samples an O(n−c)-fraction of entropy. To convert
more entropy into Bernoulli distributions, one may need to apply the above
sample-then-recycle process to the uniform randomness recycled from a previ-
ous round (e.g., h(w) of the first round) and repeat the process many times.
However, this method is sequential and requires a circuit of depth Ω(nc) to
convert any constant fraction of entropy. We propose a more efficient and par-
allelizable extractor in AC0(MOD2). As shown in Fig. 1, given any weak source
of Rényi entropy Θ(n), we apply i.i.d. pairwise independent hash functions h1,
· · · , hq (each of output length v) to w and then use sample on the bits extracted
to get the Bernoulli distributions. We prove a lemma showing that this method
can transform almost all entropy into Bernoulli distribution Berqμ, namely, the
number of extracted Bernoulli bits q can be up to Θ(n/H1(Berμ)). This imme-
diately gives an equivalent formulation of the standard LPN by reusing matrix
a to randomize the hash functions. For example, for each 1 ≤ i ≤ q denote by ai

the i-th row of a, let hi be described by ai, and let i-th LPN sample be 〈ai, s〉
⊕ sample(hi(w)). Note that the algorithm is non-trivial as (h1(w), · · · , hq(w))
can be of length Θ(n1+c), which is much greater than the entropy of w.

The Bernoulli randomness extractor is used in the first PRF construction.
For our second construction, we introduce a Bernoulli-like distribution ψm

μ that
can be more efficiently sampled in AC0 (i.e., without using XOR gates), and
show that it can be used in place of Bermμ with provable security.

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 159

w

h1

h1(w)

sample

e1

h2

h2(w)

sample

e2

· · ·
· · · · · · · · ·

· · ·

hq−1

hq−1(w)

sample

eq−1

· · · hq

hq(w)

sample

eq· · ·

Fig. 1. An illustration of the proposed Bernoulli randomness extractor in AC0(MOD2).

PRGs and PRFs from LPN. It can be shown that standard LPN implies
a variant where the secret s and noise vector e are sampled from Bern+q

μ or
even ψn+q

μ . This allows us to obtain a randomized PRG Ga with short seed and
polynomial stretch, where a denotes the public coin. We then use the technique
of Goldreich, Goldwasser and Micali [26] with a nΘ(1)-ary tree of depth ω(1)
(reusing public coin a at every invocation of Ga) and construct a randomized
PRF (see Definition 4) Fk,a with input length ω(log n), secret key k and public
coin a. This already implies PRFs of arbitrary input length by Levin’s trick
[41], i.e., F̄(k,h),a(x) def= Fk,a(h(x)) where h is a universal hash function from any
fixed-length input to ω(log n) bits. Note that F̄(k,h),a is computable in depth
ω(1) (i.e., the depth of the GGM tree) for any small ω(1). However, the security
of the above does not go beyond nω(1) due to a birthday attack. To overcome
this, we use a simple and parallel method [8,44] by running a sub-linear number
of independent6 copies of F̄(k,h),a and XORing their outputs, and we avoid key
expansions by using pseudorandom keys (expanded using Ga or Fk,a) for all
copies of F̄(k,h),a. We obtain our final security-preserving construction of PRFs
by putting together all the above ingredients.

The rest of the paper is organized as follows: Sect. 2 gives background infor-
mation about relevant notions and definitions. Section 3 presents the Bernoulli
randomness extractor. Sections 4 and 5 give the two constructions of PRFs
respectively. We include in Appendix A well-known lemmas and inequalities
used, and refer to Appendix B for all the proofs omitted in the main text.

2 Preliminaries

Notations and definitions. We use [n] to denote set {1, . . . , n}. We use
capital letters7 (e.g., X, Y) for random variables and distributions, standard let-
ters (e.g., x, y) for values, and calligraphic letters (e.g. X , E) for sets and events.
The support of a random variable X, denoted by Supp(X), refers to the set
of values on which X takes with non-zero probability, i.e., {x : Pr[X = x] > 0}.

6 By “independent” we mean that F̄(k,h),a is evaluated on independent keys but still
reusing the same public coin a.

7 The two exceptions are G and F , which are reserved for PRGs and PRFs respectively.

160 Y. Yu and J. Steinberger

Denote by |S| the cardinality of set S. We use Berμ to denote the Bernoulli
distribution with parameter μ, i.e., Pr[Berμ = 1] = μ, Pr[Berμ = 0] = 1 − μ,
while Berqμ denotes the concatenation of q independent copies of Berμ. We use
χq

i , i ≤ q, to denote a uniform distribution over {e ∈ {0, 1}q : |e| = i}, where |e|
denotes the Hamming weight of binary string e. For n ∈ N, Un denotes the uni-
form distribution over {0, 1}n and independent of any other random variables
in consideration, and f(Un) denotes the distribution induced by applying the
function f to Un. X∼D denotes that random variable X follows distribution D.
We use s ← S to denote sampling an element s according to distribution S, and
let s

$←− S denote sampling s uniformly from set S.

Entropy definitions. For a random variable X and any x ∈ Supp(X), the
sample-entropy of x with respect to X is defined as

HX(x) def= log(1/Pr[X = x])

from which we define the Shannon entropy, Rényi entropy and min-entropy of
X respectively, i.e.,

H1(X) def= Ex←X [HX(x)], H2
def= − log

∑

x∈Supp(X)

2−2HX(x), H∞(X) def= min
x∈Supp(X)

HX(x).

For 0 < μ < 1/2, let H(μ) def= μ log(1/μ) + (1 − μ) log(1/(1 − μ)) be the binary
entropy function so that H(μ) = H1(Berμ). We know that H1(X) ≥ H2(X) ≥
H∞(X) with equality when X is uniformly distributed. A random variable X of
length n is called an (n, λ)-Rényi entropy (resp., min-entropy) source if H2(X) ≥
λ (resp., H∞(X) ≥ λ). The statistical distance between X and Y , denoted by
SD(X,Y), is defined by

SD(X,Y) def=
1
2

∑

x

|Pr[X = x] − Pr[Y = x]|

We use SD(X,Y |Z) as a shorthand for SD((X,Z), (Y,Z)).

Simplifying Notations. To simplify the presentation, we use the following
simplified notations. Throughout, n is the security parameter and most other
parameters are functions of n, and we often omit n when clear from the context.
For example, μ = μ(n) ∈ (0, 1/2), q = q(n) ∈ N, t = t(n) > 0, ε = ε(n) ∈ (0, 1),
and m = m(n) = poly(n), where poly refers to some polynomial.

Definition 1 (Computational/decisional LPN). Let n be a security para-
meter, and let μ, q, t and ε all be functions of n. The decisional LPNμ,n problem
(with secret length n and noise rate μ) is (q, t, ε)-hard if for every probabilistic
distinguisher D running in time t we have

∣

∣ Pr
A,S,E

[D(A, A·S ⊕ E) = 1] − Pr
A,Uq

[D(A,Uq) = 1]
∣

∣ ≤ ε (1)

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 161

where A ∼ Uqn is a q × n matrix, S ∼ Un and E ∼ Berqμ. The computational
LPNμ,n problem is (q, t, ε)-hard if for every probabilistic algorithm D running in
time t we have

Pr
A,S,E

[D(A, A·S ⊕ E) = (S,E)] ≤ ε,

where A ∼ Uqn, S ∼ Un and E ∼ Berqμ.

Definition 2 (LPN variants). The decisional/computational X-LPNμ,n is
defined as per Definition 1 accordingly except that (S,E) follows distribution X.
Note that standard LPNμ,n is a special case of X-LPNμ,n for X ∼ (Un,Berqμ).

In respect of the randomized feature of LPN, we generalize standard
PRGs/PRFs to equivalent randomized variants, where the generator/function
additionally uses some public coins for randomization, and that seed/key can be
sampled from a weak source (independent of the public coins).

Definition 3 (Randomized PRGs on weak seeds). Let λ ≤ 	1 < 	2, 	3, t, ε
be functions of security parameter n. An efficient function family ensemble G =
{Ga : {0, 1}�1 → {0, 1}�2 , a ∈ {0, 1}�3}n∈N is a (t, ε) randomized PRG on (1, λ)-
weak seed if for every probabilistic distinguisher D of running time t and every
(1, λ)-Rényi entropy source K it holds that

∣

∣ Pr
K,A∼U�3

[D(GA(K), A) = 1] − Pr
U�2 ,A∼U�3

[D(U�2 , A) = 1]
∣

∣ ≤ ε.

The stretch factor of G is 	2/	1. Standard (deterministic) PRGs are implied by
defining G′(k, a) def= (Ga(k), a) for a uniform random k.

Definition 4 (Randomized PRFs on weak keys). Let λ ≤ 	1, 	2, 	3, 	, t, ε
be functions of security parameter n. An efficient function family ensemble F =
{Fk,a : {0, 1}� → {0, 1}�2 , k ∈ {0, 1}�1 , a ∈ {0, 1}�3}n∈N is a (q, t, ε) randomized
PRF on (1, λ)-weak key if for every oracle-aided probabilistic distinguisher D
of running time t and bounded by q queries and for every (1, λ)-Rényi entropy
source K we have

∣

∣ Pr
K,A∼U�3

[DFK,A(A) = 1] − Pr
R,A∼U�3

[DR(A) = 1]
∣

∣ ≤ ε(n),

where R denotes a random function distribution ensemble mapping from 	 bits
to 	2 bits. Standard PRFs are a special case for empty a (or keeping k′ = (k, a)
secret) on uniformly random key.

Definition 5 (Universal hashing). A function family H = {ha : {0, 1}n →
{0, 1}m, a ∈ {0, 1}l} is universal if for any x1 �= x2 ∈ {0, 1}n it holds that

Pr
a

$←−{0,1}l

[ha(x1) = ha(x2)] ≤ 2−m.

162 Y. Yu and J. Steinberger

Definition 6 (Pairwise independent hashing). A function family H = {ha:
{0, 1}n → {0, 1}m, a ∈ {0, 1}l} is pairwise independent if for any x1 �= x2 ∈
{0, 1}n and any v ∈ {0, 1}2m it holds that

Pr
a

$←−{0,1}l

[(ha(x1), ha(x2)) = v] = 2−2m.

Concrete constructions. We know that for every m ≤ n there exists a
pairwise independent (and universal) H with description length l = Θ(n), where
every h ∈ H can be computed in AC0(MOD2). For example, H1 and H2 defined
below are universal and pairwise independent respectively:

H1 =
{

ha : {0, 1}n → {0, 1}m | ha(x) def= a · x, a ∈ {0, 1}n+m−1
}

H2 =
{
ha,b : {0, 1}n → {0, 1}m | ha,b(x)

def
= a · x ⊕ b, a ∈ {0, 1}n+m−1, b ∈ {0, 1}m}

where a ∈ {0, 1}n+m−1 is interpreted as an m × n Toeplitz matrix and ‘·’ and
‘⊕’ denote matrix-vector multiplication and addition over GF(2) respectively.

3 Bernoulli Randomness Extraction in AC0(MOD2)

First, we state below a variant of the lemma (e.g., [28]) that taking sufficiently
many samples of i.i.d. random variables yields an “almost flat” joint random
variable, i.e., the sample-entropy of most values is close to the Shannon entropy of
the joint random variable. The proof is included in Appendix B for completeness.

Lemma 1 (Flattening Shannon entropy). For any n ∈ N, 0 < μ < 1/2 and
for any Δ > 0 define

E def=
{

e ∈ {0, 1}q : HBerqμ(e) ≤ (1 + Δ)qH(μ)
}

. (2)

Then, we have Pr[Berqμ ∈ E] ≥ 1 − exp−min(Δ,Δ2)μq
3 .

Lemma 2 states that the proposed Bernoulli randomness extractor (see Fig. 1)
extracts almost all entropy from a Rényi entropy (or min-entropy) source. We
mention that the extractor can be considered as a parallelized version of the
random bits recycler of Impagliazzo and Zuckerman [32] and the proof technique
is also closely relevant to the crooked leftover hash lemma [14,21].

Lemma 2 (Bernoulli randomness extraction). For any m, v ∈ N and 0 <
μ ≤ 1/2, let W ∈ W be any (�log |W|�,m)-Rényi entropy source, let H be
a family of pairwise independent hash functions mapping from W to {0, 1}v,
let H = (H1, . . . , Hq) be a vector of i.i.d. random variables such that each Hi

is uniformly distributed over H, let sample : {0, 1}v → {0, 1} be any Boolean
function such that sample(Uv) ∼ Berμ. Then, for any constant 0 < Δ ≤ 1 it
holds that

SD(Berqμ, sample(H(W)) | H) ≤ 2
(

(1+Δ)qH(μ)−m
)

/2 + exp− Δ2μq
3 ,

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 163

where
sample(H(W)) def= (sample(H1(W)), . . . , sample(Hq(W))).

Remark 1 (On entropy loss). The amount of entropy extracted (i.e., qH(μ)) can
be almost as large as entropy of the source (i.e., m) by setting m = (1+2Δ)qH(μ)
for any arbitrarily small constant Δ. Further, the leftover hash lemma falls into
a special case for v = 1 (sample being an identity function) and μ = 1/2.

Proof. Let set E be defined as in (2). For any e ∈ {0, 1}q and h ∈ Hq, use short-
hands ph

def= Pr[H = h], pe|h
def= Pr[sample(h(W)) = e] and pe

def= Pr[Berqμ = e].
We have

SD
(

(Berqμ,H), (sample(H (W)),H)
)

=
1
2

∑

h∈Hq,e∈E
ph | pe|h − pe | +

1
2

∑

h∈Hq,e /∈E
ph | pe|h − pe |

≤ 1
2

∑

h∈Hq,e∈E
(

√
ph · pe) ·

(√

ph
pe

∣

∣ pe|h − pe
∣

∣

)

+
1
2

(

∑

h∈Hq,e /∈E
phpe|h +

∑

h∈Hq,e /∈E
phpe

)

≤ 1
2

√

√

√

√

√

⎛

⎝

∑

h∈Hq,e∈E
ph · pe

⎞

⎠ ·
⎛

⎝

∑

h∈Hq,e∈E

ph
pe

· (

pe|h − pe
)2

⎞

⎠ + Pr[Berqμ /∈ E]

≤ 1
2

√

√

√

√ 1 ·
∑

e∈E

(

∑

h∈Hq

php2e|h
pe

− 2
∑

h∈Hq

phpe|h +
∑

h∈Hq

phpe

)

+ exp− Δ2μq
3

≤ 1
2

√

|E| · 2−m + exp− Δ2μq
3

≤ 2
(1+Δ)qH(μ)−m

2 + exp− Δ2μq
3 ,

where the second inequality is Cauchy-Schwarz, i.e., |∑ aibi| ≤
√

(
∑

a2
i) · (

∑

bi)2 and (3) below, the third inequality follows from Lemma 1,
and the fourth inequality is due to (4) and (5), i.e., fix any e (and thus fix
pe as well) we can substitute pe · (2−m + pe) for

∑

h∈Hq php2e|h , and pe for
both

∑

h∈Hq phpe|h and
∑

h∈Hq phpe , and the last inequality follows from the
definition of E (see (2))

|E| ≤ 1/min
e∈E

Pr[Berqμ = e] ≤ 2(1+Δ)qH(μ)

which completes the proof.

Claim 1
∑

h∈Hq,e /∈E
phpe|h =

∑

h∈Hq,e /∈E
phpe = Pr[Berqμ /∈ E] (3)

164 Y. Yu and J. Steinberger

∀e ∈ {0, 1}q :
∑

h∈Hq

php2e|h ≤ pe · (2−m + pe) (4)

∀e ∈ {0, 1}q :
∑

h∈Hq

phpe|h =
∑

h∈Hq

phpe = pe (5)

Proof. Let H (W) def= (H1(W), . . . , Hq(W)). The pairwise independence of H
implies that

H (W) ∼ (U1
v , . . . , Uq

v)

holds even conditioned on any fixing of W = w, and thus sample(H (W)) ∼ Berqμ.
We have

∑

h∈Hq,e /∈E
phpe|h = Pr[sample(H (W)) /∈ E] = Pr[Berqμ /∈ E],

∀e ∈ {0, 1}q :
∑

h∈Hq

phpe|h = Pr[sample(H (W)) = e] = Pr[Berqμ = e] = pe ,

∑

h∈Hq,e /∈E
phpe =

∑

h∈Hq

ph ·
∑

e /∈E
pe = Pr[Berqμ /∈ E],

∀e ∈ {0, 1}q :
∑

h∈Hq

phpe = pe ·
∑

h∈Hq

ph = pe .

Now fix any e ∈ {0, 1}q, and let W1 and W2 be random variables that are i.i.d.
to W , we have

∑

h∈Hq

php2e|h

= Pr
W1,W2,H

[sample(H (W1)) = sample(H (W2)) = e]

≤ Pr
W1,W2

[W1 = W2] · Pr
W1,H

[sample(H (W1)) = e]

+ Pr
H

[sample(H (w1)) = sample(H (w2)) = e | w1 �= w2]

≤ 2−m · pe + Pr[Berqμ = e]2 = 2−m · pe + p2e ,

where the second inequality is again due to the pairwise independence of H, i.e.,
for any w1 �= w2, H (w1) and H (w2) are i.i.d. to (U1

v , . . . , Uq
v) and thus the two

distributions sample(H (w1)) and sample(H (w2)) are i.i.d. to Berqμ.

4 Parallelizable PRFs on Weak Keys

4.1 A Succinct Formulation of LPN

The authors of [22] observed that the secret of LPN is not necessary to be
uniformly random and can be replaced with a Bernoulli distribution. We state a
more quantitative version (than [22, Problem 2]) in Lemma 3 that Bern+q

μ -LPNμ,n

(see Definition 2) is implied by standard LPN for nearly the same parameters
except that standard LPN needs n more samples. The proof follows by a simple
reduction and is included in Appendix B.

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 165

Lemma 3. Assume that the decisional (resp., computational) LPNμ,n problem is
(q, t, ε)-hard, then the decisional (resp., computational) Bern+q

μ -LPNμ,n problem
is at least (q − (n + 2), t − poly(n + q), 2ε)-hard.

Remark 2 (On the security of low-noise LPN). For μ = n−c, a trivial sta-
tistical test suggests (by the piling-up lemma) that any single sample of deci-
sional Bern+q

μ -LPNμ,n is (1/2+2−O(n1−c))-biased to 0. In other words, decisional
Bern+q

μ -LPNμ,n is no more than (q = 1, t = O(1), ε = 2−O(n1−c))-hard and thus
it follows (via the reduction of Lemma 3) that decisional LPNμ,n cannot have
indistinguishability beyond (q = n + 3, t = poly(n), ε = 2−O(n1−c)). Asymptot-
ically, this is also the current state-of-the-art attack on low-noise LPN using
q = poly(n) or even more samples.

4.2 A Direct Construction in Almost Constant Depth

To build a randomized PRG (on weak source w) from the succinct LPN, we first
sample Bernoulli vector (s, e) from w (using random coins a), and then output
a·s⊕e. Theorem 2 states that the above yields a randomized PRG on weak seed
w and public coin a.

Theorem 2 (randomized PRGs from LPN). Let n be a security parameter,
let δ > 0 be any constant, and let μ = n−c for any 0 < c < 1. Assume that
decisional LPNμ,n problem is ((1+2δ)n, t, ε)-hard, then G = {Ga : {0, 1}n1− c

2 →
{0, 1}δn, a ∈ {0, 1}δn×n}n∈N, where

Ga(w) = a · s ⊕ e, s ∈ {0, 1}n, e ∈ {0, 1}δn

and (s, e) = sample(ha(w)), is a (t− poly(n), O(ε))-randomized PRG on (n1− c
2 ,

4c(1 + δ2)n1−c · log n)-weak seed with stretch factor δ·n c
2 .

Proof. We have by Lemma 3 that ((1+2δ)n, t, ε)-hard decisional LPNμ,n implies
(δn, t − poly(n), 2ε)-hard decisional Bern+δn

μ -LPNμ,n, so the conclusion follows

if we could sample (s, e) $←− Bern+δn
μ from w. This follows from Lemma 2 by

choosing q = n+δn, Δ = δ, and m = 4c(1+δ)2n1−c · log n such that the sampled
noise vector is statistically close to Bern+δn

μ except for an error bounded by

2
(

(1+Δ)qH(μ)−m
)

/2 + exp− Δ2μq
3

≤ 2
(

(1+δ)2nH(μ)−2(1+δ)2nH(μ)
)

/2 + 2−Ω(n1−c)

= 2−Ω(n1−c·log n) + 2−Ω(n1−c)

= 2−Ω(n1−c)

where recall by Fact A1 that μ log(1/μ) < H(μ) < μ(log(1/μ) + 2) and thus
m > 2(1 + δ2)n1−c(c log n + 2) > 2(1 + δ2)nH(μ). We omit the above term since
ε = 2−O(n1−c) (see Remark 2).

166 Y. Yu and J. Steinberger

We state a variant of the theorem by Goldreich, Goldwasser and Micali [26]
on building PRFs from PRGs, where we consider PRGs with stretch factor 2v

for v = O(log n) (i.e., a balanced 2v-ary tree) and use randomized (instead of
deterministic) PRG Ga, reusing public coin a at every invocation of Ga.

Theorem 3 (PRFs from PRGs [26]). Let n be a security parameter, let v =
O(log n), λ ≤ m = nO(1), λ = poly(n), t = t(n) and ε = ε(n). Let G = {Ga :
{0, 1}m → {0, 1}2v·m, a ∈ A}n∈N be a (t, ε) randomized PRG (with stretch factor
2v) on (m,λ)-weak seed. Parse Ga(k) as 2v blocks of m-bit strings:

Ga(k) def= G0···00
a (k)‖G0···01

a (k)‖ · · · ‖G1···11
a (k)

where Gi1···iv
a (k) denotes the (i1 · · · iv)-th m-bit block of Ga(k). Then, for any

d ≤ poly(n) and q = q(n), the function family ensemble F = {Fk,a : {0, 1}dv →
{0, 1}2v·m, k ∈ {0, 1}m, a ∈ A}n∈N, where

Fk,a(x1 · · · xdv) def= Ga(Gx(d−1)v+1···xdv
a (· · · Gxv+1···x2v

a (Gx1···xv
a (k)) · · ·)),

is a (q, t − q · poly(n), dqε) randomized PRF on (m,λ)-weak key.

On polynomial-size circuits. The above GGM tree has Θ(2dv) nodes and
thus it may seem that for dv = ω(log n) we need a circuit of super-polynomial
size to evaluate Fk,p. This is not necessary since we can represent the PRF in
the following alternative form:

Fk,a = Ga ◦ muxx(d−1)v+1···xdv
◦ Ga

︸ ︷︷ ︸

G
x(d−1)v+1···xdv
a

◦ · · · ◦ muxxv+1···x2v
◦ Ga

︸ ︷︷ ︸

G
xv+1···x2v
a

◦muxx1···xv
◦ Ga

︸ ︷︷ ︸

G
x1···xv
a

where ‘◦’ denotes function composition, each multiplexer muxi1···iv
: {0, 1}2vm →

{0, 1}m simply selects as output the (i1 · · · iv)-th m-bit block of its input, and
it can be implemented with O(2v · m) = poly(n) NOT and (unbounded fan-in)
AND/OR gates of constant depth. Thus, for v = O(log n) function Fk,p can be
evaluated with a polynomial-size circuit of depth O(d).

Lemma 4 (Levin’s trick [41]). For any 	 ≤ n ∈ N, let R1 be a random func-
tion distribution over {0, 1}� → {0, 1}n, let H be a family of universal hash func-
tions from n bits to 	 bits, and let H1 be a function distribution uniform over H.
Let R1◦H1(x) def= R1(H1(x)) be a function distribution over {0, 1}n → {0, 1}n.
Then, for any q ∈ N and any oracle aided D bounded by q queries, we have

∣

∣ Pr
R1,H1

[DR1◦H1 = 1] − Pr
R

[DR = 1]
∣

∣ ≤ q2

2�+1
,

where R is a random function distribution from n bits to n bits.

Theorem 4 (A direct PRF). Let n be a security parameter, and let μ = n−c

for constant 0 < c < 1. Assume that decisional LPNμ,n problem is (αn, t, ε)-hard

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 167

for any constant α > 1, then for any (efficiently computable) d = ω(1) ≤ O(n)
and any q ≤ nd/3 there exists a (q, t − q poly(n), O(dqε) + q2n−d)-randomized
PRF on (n1− c

2 , O(n1−c log n))8-weak key

F̄ = {F̄k,a : {0, 1}n → {0, 1}n, k ∈ {0, 1}n1− c
2 , a ∈ {0, 1}O(n2)}n∈N (6)

which is computable by a uniform family of polynomial-size depth-O(d) circuits
with unbounded-fan-in AND, OR and XOR gates.

Proof. For μ = n−c, we have by Theorem 2 that the decisional (αn, t, ε)-hard
LPNμ,n implies a (t−poly(n), O(ε)) randomized PRG in AC0(MOD2) on (n1− c

2 ,
O (n1−c log n))-weak seed k and public coin a ∈ {0, 1}O(n2) with stretch factor
2v = n

c
2 . We plug it into the GGM construction (see Theorem 3) with tree

depth d′ = 2d/c to get a (q, t − q poly(n), O(dqε)) randomized PRF on weak
keys (of same parameters) with input length d′v = d log n and output length
2v · n1− c

2 = n as below:

F = {Fk,a : {0, 1}d log n → {0, 1}n, k ∈ {0, 1}n1− c
2 , a ∈ {0, 1}O(n2)}n∈N. (7)

Now we expand k (e.g., by evaluating Fk,a on a few fixed points) into a pseudo-
random (k̄, h̄1), where k̄ ∈ {0, 1}n1− c

2 and h̄1 describes a universal hash func-
tion from n bits to 	 = d log n bits. Motivated by Levin’s trick, we define a
domain-extended PRF F̄k,a(x) def= Fk̄,a ◦ h̄1(x). For any oracle-aided distin-
guisher D running in time t − qpoly(n) and making q queries, denote with
δD(F1, F2)

def=
∣

∣Pr[DF1(A) = 1] − Pr[DF2(A) = 1]
∣

∣ the advantage of D (who gets
public coin A as additional input) in distinguishing between function oracles F1

and F2. Therefore, we have by a triangle inequality

δD(FK̄,A ◦ H̄1, R) ≤ δD(FK̄,A ◦ H̄1, FK,A ◦ H1) + δD(FK,A ◦ H1, R1 ◦ H1)

+ δD(R1 ◦ H1, R)

≤ O(dqε) + q2n−d,

where advantage is upper bounded by three terms, namely, the indistinguisha-
bility between (K̄, H̄1) and truly random (K,H1), that between FK,A and ran-
dom function R1 (of the same input/output lengths as FK,A), and that due to
Lemma 4. Note that A is independent of R1, H1 and R.

4.3 Going Beyond the Birthday Barrier

Unfortunately, for small d = ω(1) the security of the above PRF does not go
beyond super-polynomial (cf. term q2n−d) due to a birthday attack. This situa-
tion can be handled using security-preserving constructions. Note the techniques
from [17,34] need (almost) Ω(d log n)-wise independent hash functions which we
don’t know how to compute with unbounded fan-in gates of depth O(d). Thus,
8 Here the big-Oh omits a constant dependent on c and α.

168 Y. Yu and J. Steinberger

we use a more intuitive and depth-preserving approach below by simply running
a few independent copies and XORing their outputs. The essential idea dates
backs to [8,44] and the technique receives renewed interest recently in some
different contexts [23,25]. We mention that an alternative (and possibly more
efficient) approach is to use the second security-preserving domain extension
technique from [10] that requires a few pairwise independent hash functions and
makes only a constant number of calls to the underlying small-domain PRFs.
This yields the PRF stated in Theorem 5.

Lemma 5 (Generalized Levin’s Trick [8,44]). For any κ, 	 ≤ n ∈ N, let R1,
. . . , Rκ be independent random function distributions over {0, 1}� → {0, 1}n,
let H be a family of universal hash functions from n bits to 	 bits, and let H1,
· · · ,Hκ be independent function distributions all uniform over H. Let FR,H be a
function distribution (induced by R = (R1, . . . , Rκ) and H = (H1, . . . , Hκ)) over
{0, 1}n → {0, 1}n defined as

FR,H(x) def=
κ

⊕

i=1

Ri(Hi(x)). (8)

Then, for any q ∈ N and any oracle aided D bounded by q queries, we have

∣

∣Pr[DFR,H = 1] − Pr[DR = 1]
∣

∣ ≤ qκ+1

2κ�

where R is a random function distribution over {0, 1}n → {0, 1}n.

Finally, we get the first security-preserving construction below. To have com-
parable security to LPN with secret size n, it suffices to use a key of entropy
O(n1−c ·log n), or a uniform key of size n1− c

2 with any (1−O(n− c
2 log n))-fraction

of leakage (see Fact A7), provided that leakage is independent of public coin a.

Theorem 5 (A security-preserving PRF on weak key). Let n be a secu-
rity parameter, and let μ = n−c for constant 0 < c < 1. Assume that the
decisional LPNμ,n problem is (αn, t, ε)-hard for any constant α > 1, then for
any (efficiently computable) d = ω(1) ≤ O(n) and any q ≤ nd/3 there exists a
(q, t − qpoly(n), O(dqε))-randomized PRF on (n1− c

2 , O(n1−c · log n))-weak key

F̂ = {F̂k,a : {0, 1}n → {0, 1}n, k ∈ {0, 1}n1− c
2 , a ∈ {0, 1}O(n2)}n∈N

which are computable by a uniform family of polynomial-size depth-O(d) circuits
with unbounded-fan-in AND, OR and XOR gates.

Proof sketch. Following the proof of Theorem 4, we get a (q, t−qpoly(n), O(dqε))
-randomized PRF F = {Fk,a}n∈N on weak keys (see (7)) with input length
d log n and of depth O(d). We define F ′ = {F ′

(k ,h),a : {0, 1}n → {0, 1}n, k ∈
{0, 1}O(κn1− c

2),h ∈ Hκ, a ∈ {0, 1}O(n2)}n∈N where

F ′
(k ,h),a(x) def=

κ
⊕

i=1

Fki,a(hi(x)), k = (k1, · · · , kκ), h = (h1, · · · , hκ).

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 169

Let δD(F1, F2)
def=

∣

∣ Pr[DF1(A) = 1] − Pr[DF2(A) = 1]
∣

∣. We have that for any
oracle-aided distinguisher running in time t − qpoly(n) and making up to q
queries, we have by a triangle inequality that

δD(F ′
(K ,H),A, R) ≤ δD(F ′

(K ,H),A, FR,H) + δD(FR,H , R)

≤ O(κdqε) + nd(1−2κ)/3

= O(κdqε) + 2−ω(n1−c) = O(κdqε),

where FR,H is defined as per (8), the first term of the second inequality is
due to a hybrid argument (replacing every FKi,A with Ri one at a time), the
second term of the second inequality follows from Lemma 5 with 	 = d log n and
q ≤ nd/3, and the equalities follow by setting κ = n1−c to make the first term
dominant. Therefore, F ′

(k ,h),a is almost the PRF as desired except that it uses
a long key (k ,h), which can be replaced with a pseudorandom one. That is,
let F̂k,a(x) def= F ′

(k ,h),a(x) and (k ,h) def= Fk,a(1)‖Fk,a(2)‖ · · · ‖Fk,a(O(κ)), which
adds only a layer of gates of depth O(d). ��

5 An Alternative PRF with a Short Uniform Key

In this section, we introduce an alternative construction based on a variant
of LPN (reducible from standard LPN) whose noise vector can be sampled in
AC0 (i.e., without using XOR gates). We state the end results in Theorem 6
that standard LPN with n-bit secret implies a low-depth PRF with key size
Θ(n1−c log n). Concretely (and ideally), assume that computational LPN is (q =
1.001n, t = 2n1−c/3, ε = 2−n1−c/12)-hard, and let λ = Θ(n1−c log n), then for
any ω(1) = d = O(λ/ log2 λ) there exists a parallelizable (q′ = λΘ(d), t′ =
2Θ(λ/ log λ), ε′ = 2−Θ(λ/ log λ)))-randomized PRF computable in depth O(d) with
secret key length λ and public coin length O(λ

1+c
1−c).

5.1 Main Results and Roadmap

Theorem 6 (A PRF with a compact uniform key). Let n be a security
parameter, and let μ = n−c for constant 0 < c < 1. Assume that the computa-
tional LPNμ,n problem is (αn, t, ε)-hard for any constant α > 1 and efficiently
computable ε, then for any (efficiently computable) d = ω(1) ≤ O(n) and any
q′ ≤ nd/3 there exists a (q′, Θ(t · ε2n1−2c), O(dq′n2ε))-randomized PRF on
uniform key

F̃ = {F̃k,a : {0, 1}n → {0, 1}n, k ∈ {0, 1}Θ(n1−c·log n), a ∈ {0, 1}O(n2)}n∈N

which are computable by a uniform family of polynomial-size depth-O(d) circuits
with unbounded-fan-in AND, OR and XOR gates.

We sketch the steps below to prove Theorem 6, where ‘C-’ and ‘D-’ stand for
‘computational’ and ‘decisional’ respectively.

170 Y. Yu and J. Steinberger

1. Introduce distribution ψm
μ that can be sampled in AC0.

2. ((1+Θ(1))n,t,ε)-hard C- LPNμ,n =⇒ (Θ(n), t−poly(n), 2ε)-hard C- Bern+q
μ -

LPNμ,n (by Lemma 3).
3. (Θ(n), t, ε)-hard C- Bern+q

μ -LPNμ,n =⇒ (Θ(n), t− poly(n), O(n3/2−cε))-hard
C- ψn+q

μ -LPNμ,n (by Lemma 9).
4. (Θ(n), t, ε)-hard C- ψn+q

μ -LPNμ,n =⇒ (Θ(n), Ω(t(ε/n)2), 2ε)-hard D- ψn+q
μ -

LPNμ,n (by Theorem 7).
5. (Θ(n), t, ε)-hard D- ψn+q

μ -LPNμ,n =⇒ (q, t − q poly(n), O(dq′ε))-randomized
PRF for any d = ω(1) and q′ ≤ nd/3, where the PRF has key length
Θ(n1−c log n) and can be computed by polynomial-size depth-O(d) cir-
cuits with unbounded-fan-in AND, OR and XOR gates. This is stated as
Theorem 8.

5.2 Distribution ψm
µ and the ψn+q

µ -LPNµ,n Problem

We introduce a distribution ψm
μ that can be sampled in AC0 and show that ψn+q

μ -
LPNμ,n is implied by Bern+q

μ -LPNμ,n (and thus by standard LPN). Further, for
μ = n−c sampling ψm

μ needs Θ(mn−c log n) random bits, which asymptotically
match the Shannon entropy of Bermμ .

Algorithm 1. Sampling distribution ψm
μ in AC0

Require: 2μm log m random bits (assume WLOG that m is a power of 2)
Ensure: ψm

μ satisfies Lemma 6

1: Sample random z1, . . . , z2μm of Hamming weight 1, i.e., for every i ∈ [m] zi
$←− {z ∈

{0, 1}m : |z| = 1}.
{E.g., to sample z1 with randomness r1 . . . rlog m, simply let each (b1 . . . blog m)-th

bit of z1 to be rb1
1 ∧· · ·∧r

blog m

log m , where r
bj

j

def
= rj for bj = 0 and r

bj

j

def
= ¬rj otherwise.

Note that AC0 allows NOT gates at the input level.}
2: Output the bitwise-OR of the vectors z1, . . . , z2μm.

{Note: we take a bitwise-OR (not bitwise-XOR) of the vectors.}

Lemma 6. The distribution ψm
μ (sampled as per Algorithm 1) is 2−Ω(μm log(1/μ))-

close to a convex combination of χm
μm, χm

μm+1, . . . , χm
2μm.

Proof. It is easy to see that ψm
μ is a convex combination of χm

1 , χm
2 , . . . , χm

2μm

as conditioned on |ψm
μ | = i (for any i) ψm

μ hits every y ∈ {0, 1}m of Hamming
weight |y| = i with equal probability. Hence, it remains to show that those χm

j ’s
with Hamming weight j < μm sum to a fraction less than 2−μm(log(1/μ)−2), i.e.,

Pr[|ψm
μ | < μm] =

∑

y∈{0,1}m:|y|<μm

Pr[ψm
μ = y]

< μ2μm·2mH(μ)− log m
2 +O(1)

< μ2μm·2μm(log(1/μ)+2)+O(1) = 2μm(− log(1/μ)+2)+O(1)

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 171

where the first inequality is due to the partial sum of binomial coefficients (see
Fact A5) and that for any fixed y with |y| < μm ψm

μ = y happens only if the bit
1 of every zi (see Algorithm 1) hits the 1’s of y (each with probability less than
μ independently) and the second inequality is Fact A1.

By definition of ψn+q
μ the sampled (s, e) has Hamming weight no greater than

2μ(n + q) and the following lemma states that ψn+q
μ -LPNμ,n is almost injective.

Lemma 7 (ψn+q
μ -LPNμ,n is almost injective). For q = Ω(n), define set

Y def= {(s, e) ∈ {0, 1}n+q : |(s, e)| ≤ (n + q)/ log n}. Then, for every (s, e) ∈ Y,

Pr
a←Uqn

[∃(s′, e′) ∈ Y : (s′, e′) �= (s, e) ∧ as ⊕ e = as′ ⊕ e′]

= 2−Ω(q).

Proof. Let H def= {ha : {0, 1}n+q → {0, 1}q, a ∈ {0, 1}qn, ha(s, e) def= as ⊕ e} and
it is not hard to see that H is a family of universal hash functions. We have

log |Y| = log
(n+q)/ log n

∑

i=0

(

n + q

i

)

= O
(

(n + q) log log n/ log n
)

= o(q),

where the approximation is due to Fact A5 and the conclusion immediately
follows from Lemma 8.

Lemma 8 (The injective hash lemma (e.g. [55])). For any integers l1 ≤
l2,m, let Y be any set of size |Y| ≤ 2l1 , and let H def= {ha : {0, 1}m → {0, 1}l2 , a ∈
A,Y ⊆ {0, 1}m} be a family of universal hash functions. Then, for every y ∈ Y
we have

Pr
a

$←−A
[∃y′ ∈ Y : y′ �= y ∧ ha(y′) = ha(y)] ≤ 2l1−l2 .

5.3 Computational Bern+q
µ -LPNµ,n → Computational ψn+q

µ -LPNµ,n

Lemma 9 non-trivially extends the well-known fact that the computational LPN
implies the computational exact LPN, i.e., (Un, χq

μq)-LPNμ,n.

Lemma 9. Let q = Ω(n), μ = n−c (0 < c < 1) and ε = 2−O(n1−c). Assume
that the computational Bern+q

μ -LPNμ,n problem is (q, t, ε)-hard, then the compu-
tational ψn+q

μ -LPNμ,n problem is (q, t − poly(n + q), O(μ(n + q)3/2ε))-hard.

Proof. Let m = n + q and write AdvD(X) def= Pr
a

$←−Uqn,(s,e)←X
[D(a, a·s ⊕ e) =

(s, e)]. Towards a contradiction we assume that there exists D such that
AdvD(ψm

μ) > ε′, and we assume WLOG that on input (a, z) D always out-
puts (s′, e′) with |(s′, e′)| ≤ 2μm. That is, even if it fails to find any (s′, e′)
satisfying as′ ⊕ e′ = z and |(s′, e′)| ≤ 2μm it just outputs a zero vector.
Lemma 6 states that ψm

μ is 2−Ω(μn(log(1/μ))-close to a convex combination of
χm

μm, χm
μm+1, . . . , χm

2μm, and thus there exists j ∈ {μm,μm + 1, . . . , 2μm}

172 Y. Yu and J. Steinberger

such that AdvD(χm
j) > ε′ − 2−Ω(n1−c log n) > ε′/2, which further implies that

AdvD(Bermj/m) = Ω(ε′/
√

m) as Bermj/m is a convex combination of χm
0 , . . . , χm

m,
of which it hits χm

j with probability Ω(1/
√

m) by Lemma 10. Next, we define
D′ as in Algorithm 2.

Algorithm 2. A Bermμ -LPNμ,n solver D′

Require: a random Bermμ -LPNμ,n instance (a, z = a·s ⊕ e) as input
Ensure: a good chance to find out (s, e)

1: Sample j∗ $←− {μm, μm + 1, . . . , 2μm} as a guess about j.
2: Compute μ′ = j∗/m.
3: (s1, e1) ← Bermμ′−μ

1−2μ

. {This makes (a, z⊕(as1⊕e1)) a random Bermμ′ -LPNμ′,n sample

by the piling-up lemma (see Fact A6)}
4: (s′, e′) ← D(a, z ⊕ (as1 ⊕ e1)).
5: Output (s′ ⊕ s1, e

′ ⊕ e1). {D′ succeeds iff (s′ ⊕ s1, e
′ ⊕ e1) = (s, e)}

We denote Esuc the event that D succeeds in finding (s′, e′) such that as′⊕ e′ =
z ⊕ (as1 ⊕ e1) and thus we have a(s′ ⊕ s1) ⊕ (e′ ⊕ e1) = z = as ⊕ e, where values
are sampled as defined above. This however does not immediately imply (s, e) =
(s′ ⊕ s1, e

′ ⊕ e1) unless conditioned on the event Einj that ha(s, e) def= a·s ⊕ e is
injective on input (s, e).

Pr
a←Uqn, (s,e)←Bermμ , (s1,e1)←Berm

μ′−μ
1−2μ

, s′←D(a,y⊕(as1⊕e1))
[(s′ ⊕ s1, e

′ ⊕ e1) = (s, e)]

≥ Pr[Esuc ∧ Einj]
≥ Pr[Esuc] − Pr[¬Einj]

≥ Pr[j∗ = j] · AdvD(Bermj/m) − 2−Ω(m/ log2 n)

= Ω(ε′/μm3/2),

where the bound on event ¬Einj is given below. We reach a contradiction by
setting ε′ = Ω(1) ·μm3/2ε for a large enough Ω(1) so that D′ solves Bermμ -LPNμ,n

with probability greater than ε.

Pr[¬Einj]
≤ Pr[¬Einj ∧ (s, e) ∈ Y ∧ (s′ ⊕ s1, e

′ ⊕ e1) ∈ Y]
+ Pr[(s, e) /∈ Y ∨ (s′ ⊕ s1, e

′ ⊕ e1) /∈ Y]

≤ 2−Ω(m) + Pr[(s, e) /∈ Y] + Pr[(s′ ⊕ s1, e
′ ⊕ e1) /∈ Y]

≤ 2−Ω(m) + Pr
(s,e)←Bermμ

[|(s, e)| ≥ m/ log n] + Pr
(s1,e1)←Berm

μ′−μ
1−2μ

[|(s1, e1)| ≥ (
1

logn
− 2μ)m]

= 2−Ω(m/ log2 n),

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 173

where Y def= {(s, e) ∈ {0, 1}m : |(s, e)| < m/ log n}, the second inequality is from
Lemma 7, the third inequality is that |(u ⊕ w)| ≥ κ implies |w| ≥ κ − |u| and
by definition of D string (s′, e′) has Hamming weight no greater than 2μm, and
the last inequality is a typical Chernoff-Hoeffding bound.

Lemma 10. For 0 < μ′ < 1/2 and m ∈ N, we have that

Pr
[

|Bermμ′ | = �μ′m�
]

= Ω(1/
√

m).

5.4 C- ψn+q
µ -LPNµ,n → D- ψn+q

µ -LPNµ,n → ω(1)-Depth PRFs

Next we show that the computational ψn+q
μ -LPNμ,n problem implies its deci-

sional counterpart. The theorem below is implicit in [5]9 and the case for ψn+q
μ -

LPNμ,n falls into a special case. Note that ψn+q
μ -LPNμ,n is almost injective by

Lemma 7, and thus its computational and decisional versions are equivalent in a
sample-preserving manner. In fact, Theorem 7 holds even without the injective
condition, albeit with looser bounds.

Theorem 7 (Sample preserving reduction [5]). If the computational X-
LPNμ,n is (q, t, ε)-hard for any efficiently computable ε, and it satisfies the injec-
tive condition, i.e., for any (s, e) ∈ Supp(X) it holds that

Pr
a←Uqn

[∃(s′, e′) ∈ Supp(X) : (s′, e′) �= (s, e) ∧ a · s ⊕ e = a · s′ ⊕ e′] ≤ 2−Ω(n).

Then, the decisional X-LPNμ,n is (q,Ω(t(ε/n)2), 2ε)-hard.

Theorem 8 (Decisional ψn+q
μ -LPNμ,n → PRF). Let n be a security parame-

ter, and let μ = n−c for any constant 0 < c < 1. Assume that the decisional
ψn+q

μ -LPNμ,n problem is (δn, t, ε)-hard for any constant δ > 0, then for any
(efficiently computable) d = ω(1) ≤ O(n) and any q′ ≤ nd/3 there exists a
(q′, t − q′poly(n), O(dq′ε))-randomized PRF (on uniform key) with key length
Θ(n1−c log n) and public coin size O(n2), which are computable by a uniform
family of polynomial-size depth-O(d) circuits with unbounded-fan-in AND, OR
and XOR gates.

Proof sketch. The proof is essentially the same as that of Theorem 5, replacing
the Bernoulli randomness extractor with the ψn+q

μ sampler. That is, decisional
ψn+q

μ -LPNμ,n for q = Θ(n) implies a constant-depth polynomial-stretch ran-
domized PRG on seed length 2μ(n + q) log (n + q) = Θ(n1−c log n) and output
length Θ(n), which in turn implies a nearly constant-depth randomized PRF,
where the technique in Lemma 5 is also used to make the construction security
preserving. ��
9 Lemma 4.4 from the full version of [5] states a variant of Theorem 7 for uniformly

random a and s, and arbitrary e. However, by checking its proof it actually only
requires the matrix a to be uniform and independent of (s, e).

174 Y. Yu and J. Steinberger

Acknowledgments. Yu Yu is more than grateful to Alon Rosen for motivating this
work and many helpful suggestions, and he also thanks Siyao Guo for useful comments.
The authors thank Ilan Komargodski for pointing out that the domain extension tech-
nique from [10] can also be applied to our constructions with improved efficiency.
Yu Yu was supported by the National Basic Research Program of China Grant
number 2013CB338004, the National Natural Science Foundation of China Grant (Nos.
61472249, 61572192). John Steinberger was funded by National Basic Research Pro-
gram of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science
Foundation of China Grant 61361136003, and by the China Ministry of Education
grant number 20121088050.

A Well-Known Facts, Lemmas and Inequalities

Fact A1. Let H(μ) def= μ log(1/μ) + (1 − μ) log(1/(1 − μ)) be the binary entropy
function. Then, for any 0 < μ < 1/2 it holds that

μ log(1/μ) < H(μ) < μ(log(1/μ) + 2).

Proof.

μ log(1/μ)

<

(

H(μ) = μ log(1/μ) + (1 − μ) log(1/(1 − μ))
)

= μ log(1/μ) + (1 − μ) log(1 +
μ

1 − μ
)

= μ log(1/μ) + (1 − μ)
ln(1 + μ

1−μ)

ln 2
≤ μ log(1/μ) +

μ

ln 2
< μ(log(1/μ) + 2) ,

where the first inequality is due to (1 − μ) log(1/(1 − μ)) > 0, the second one
follows from the elementary inequality ln(1 + x) ≤ x for any x > 0, and the last
inequality is simply 1 < 2 ln 2.

Lemma 11 (Chernoff bound). For any n ∈ N, let X1, . . ., Xn be independent
random variables and let X̄ =

∑n
i=1 Xi, where Pr[0≤Xi≤1] = 1 holds for every

1 ≤ i ≤ n. Then, for any Δ1 > 0 and 0 < Δ2 < 1,

Pr[X̄ > (1 + Δ1) · E[X̄]] < exp−min(Δ1,Δ2
1)

3 E[X̄],

Pr[X̄ < (1 − Δ2) · E[X̄]] < exp− Δ2
2

2 E[X̄] .

Theorem 9 (The Hoeffding bound [30]). Let q ∈ N, and let ξ1, ξ2, . . .,
ξq be independent random variables such that for each 1 ≤ i ≤ q it holds that
Pr[ai ≤ ξi ≤ bi] = 1. Then, for any t > 0 we have

Pr
[∣

∣

∣

∣

q
∑

i=1

ξi − E[
q

∑

i=1

ξi]
∣

∣

∣

∣

≥ t

]

≤ 2 exp
− 2t2
∑q

i=1(bi−ai)
2

.

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 175

Fact A2. For any σ ∈ N
+, the probability that a random (n + σ)×n Boolean

matrix M ∼ U(n+σ)×n has full rank (i.e., rank n) is at least 1 − 2−σ+1.

Proof. Consider matrix M being sampled column by column, and denote Ei to
be the event that “column i is non-zero and neither is it any linear combination
of the preceding columns (i.e., columns 1 to i − 1)”.

Pr[M has full rank] = Pr[E1] · Pr[E2|E1] · · · · · Pr[En|En−1]
= (1 − 2−(n+σ))·(1 − 2−(n+σ)+1) · · · · · (1 − 2−(n+σ)+n−1)

> 2−
(

2−(n+σ)+1+2−(n+σ)+2+···+2−(n+σ)+n
)

> 2−2−σ+1

> exp−2−σ+1

> 1 − 2−σ+1

where the first inequality is due to Fact A4 and the last follows from Fact A3.

Fact A3. For any x > 0 it holds that exp−x > 1 − x.

Fact A4. For any 0 < x < 2−√
2

2 it holds that 1 − x > 2−(2+
√

2
2)x > 2−2x.

Fact A5 (A partial sum of binomial coefficients ([27], p. 492)). For any
0 < μ < 1/2, and any m ∈ N

mμ
∑

i=0

(

m

i

)

= 2mH(μ)− log m
2 +O(1)

where H(μ) def= μ log(1/μ)+(1−μ) log(1/(1−μ)) is the binary entropy function.

Fact A6 (Piling-up Lemma). For any 0 < μ ≤ μ′ < 1/2, (Berμ ⊕Ber μ′−μ
1−2μ

) ∼
Berμ′ .

Fact A7 (Min-entropy source conditioned on leakage). Let X be any
random variable over support X with H∞(X) ≥ l1, let f : X → {0, 1}l2 be any
function. Then, for any 0 < ε < 1, there exists a set X1 ×Y1 ⊆ X ×{0, 1}l2 such
that Pr[(X, f(X)) ∈ (X1 × Y1)] ≥ 1 − ε and for every (x, y) ∈ (X1 × Y1)

Pr[X = x | f(X) = y] ≤ 2−(l1−l2−log(1/ε)).

B Lemmas and Proofs Omitted

Proof of Lemma 1. Recall that H(μ) def= μ log(1/μ) + (1 − μ) log(1/(1 − μ))
equals to H1(Berμ). Parse Berqμ as Boolean variables E1,. . .,Eq, and for each
1≤i≤q define

ξi
def=

{

1, if Ei = 1
log(1

1−μ)

log(1
μ)

, if Ei = 0

176 Y. Yu and J. Steinberger

and thus we have that ξ1, . . ., ξq are i.i.d. over { log(1/(1−μ))
log(1/μ) ,1}, each of expecta-

tion H(μ)/ log(1/μ).

Pr
[

Berqμ ∈ E]

= 1 − Pr
[q

∑

i=1

ξi > (1 + Δ) · qH(μ)
log(1/μ)

]

> 1 − exp−min(Δ,Δ2)qH(μ)
3 log(1/μ) > 1 − exp−min(Δ,Δ2)μq

3 ,

where the inequality follows from the Chernoff bound (see Lemma 11) and we
recall H(μ) > μ log(1/μ) by Fact A1.

Proof of Lemma 3.
Decisional LPNμ,n → decisional Bern+q

μ -LPNμ,n

Assume for contradiction there exists a distinguisher D that

Pr
A,S,E

[D(A, A·S ⊕ E) = 1] − Pr
A,Uq−(n+2)

[D(A,Uq−(n+2)) = 1] > 2ε,

where A ∼ U(q−(n+2))n, S ∼ Bernμ and E ∼ Berq−(n+2)
μ . To complete the proof,

we show that there exists another D′ (of nearly the same complexity as D) that
on input (a′, b) ∈ {0, 1}qn × {0, 1}q that distinguishes (A′, A′ · X ⊕ Berqμ) from
(A′, Uq) for A′ ∼ Uqn and X ∼ Un with advantage more than ε. We parse the
q × n matrix a′ and q-bit b as

a′ =
[

m
a

]

, b = (bm, ba) (9)

where m and a are (n + 2) × n and (q − (n + 2)) × n matrices respectively,
bm ∈ {0, 1}n+2 and ba ∈ {0, 1}q−(n+2). Algorithm D′ does the following: it first
checks whether m has full rank or not, and if not it outputs a random bit.
Otherwise (i.e., m has full rank), D′ outputs D(am̄−1, (am̄−1)·bm̄ ⊕ ba), where
m̄ is an n×n invertible submatrix of m and bm̄ is the corresponding10 substring
of bm. Now we give the lower bound of the advantage in distinguishing the
two distributions. On the one hand, when (a′, b) ← (A′, (A′ · X) ⊕ Berqμ) and
conditioned on that m̄ is invertible, we have that

m̄ · x ⊕ s = bm̄

a · x ⊕ e = ba
(10)

where a←U(q−(n+2))n, x ← Un, s ← Bernμ, and e ← Berq−(n+2)
μ , and it fol-

lows (by elimination of x) that ba = (am̄−1)s ⊕ (am̄−1)bm̄ ⊕ e, and thus
(am̄−1)bm̄ ⊕ ba = (am̄−1)s ⊕ e. On the other hand, when (a′, b) ← (Uqn, Uq)

10 E.g., if m̄ is the submatrix of m by keeping only the first n rows, then bm̄ is the
n-bit prefix of bm.

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 177

and conditioned on an invertible m it holds that (am̄−1, (am̄−1)·bm̄ ⊕ ba) fol-
lows (U(q−(n+2))n, Uq−(n+2)). Therefore, for A ∼ U(q−(n+2))n, S ∼ Bernμ and
E ∼ Berq−(n+2)

μ we have

Pr[D′(Uqn, Uqn · Un ⊕ Berqμ) = 1] − Pr[D′(Uqn, Uq) = 1]

≥ Pr[Ef] ·
(

Pr
A,S,E

[D(A, A·S ⊕ E) = 1] − Pr
A,Uq−(1+δ)n

[D(A,Uq−(1+δ)n) = 1]
)

> (1 − 2−1)2ε = ε

where Ef denotes the event that m ← U(n+2)×n has full rank whose lower bound
probability is given in Fact A2.

Computational LPNμ,n → computational Bern+q
μ -LPNμ,n

The reduction follows steps similar to that of the decisional version. Assume for
contradiction there exists a distinguisher D that

Pr
A,S,E

[D(A, A·S ⊕ E) = (S,E)] > 2ε,

where A ∼ U(q−(n+2))n, S ∼ Bernμ and E ∼ Berq−(n+2)
μ , then there exists another

D′ that on input (a′, b = a′x ⊕ e′) ∈ {0, 1}qn × {0, 1}q recovers (x, e′) with
probability more than ε. Similarly, D′ parses (a′, b) as in (9), checks if m has full
rank and we define m̄, bm̄ and Ef same as the above reduction. Let (s∗, e∗) ←
D(am̄−1, (am̄−1)·bm̄⊕ba). As analyzed above, conditioned on Ef we have (am̄−1)·
bm̄ ⊕ ba = (am̄−1)s ⊕ e where (am̄−1, s, e) follows distribution (A,S,E) defined
above, and hence (s∗, e∗) = (s, e) with probability more than 2ε. Once D′ got s∗,
it computes x∗ = m̄−1 · (bm̄ ⊕ s∗) (see (10)), e′∗ = a′x∗ ⊕ b and outputs (x∗, e′∗).

Pr[D′(A′, A′ · X ⊕ E′) = (X,E′)]
≥ Pr[Ef] · Pr

A,S,E
[D(A, A·S ⊕ E) = (S,E)]

> (1 − 2−1)2ε = ε

where A′ ∼ Uqn, X ∼ Un and E′ ∼ Berqμ. ��
Proof of Lemma 5. To prove this indistinguishability result we use Patarin’s
H-coefficient technique in its modern transcript-based incarnation [18,48].

Without loss of generality the distinguisher D is deterministic and does not
repeat queries. We refer to the case when the D’s oracle is FR,H as the real world
and to the case where the D’s oracle is R as the ideal world.

D transcript consists of a sequence (X1, Y1), . . . , (Xq, Yq) of query-answer
pairs to its oracle, plus (and following the “transcript stuffing” technique of
[18]) the vector H = H1, . . . , Hκ of hash functions, appended to the transcript
after the distinguisher has made its last query; in the ideal world, H consists
of a “dummy” κ-tuple H1, . . . , Hκ that can be sampled after the distinguisher’s
last query, and is similarly appended to the transcript.

The probability space underlying the real world is Ωreal
def= Hκ ×Fκ

�→n where
F�→n is the set of all functions from 	 bits to n bits, with uniform measure. The

178 Y. Yu and J. Steinberger

probability space underlying the ideal world is Ωideal
def= Hκ ×Fn→n where Fn→n

is the set of all functions from n bits to n bits, also with uniform measure.
We can identify elements of Ωreal and/or Ωideal as “oracles” for D to interact

with. We write Dω for the transcript obtained when D interacts with oracle ω,
where ω ∈ Ωreal in the real world and ω ∈ Ωideal in the ideal world. Thus, the
real-world transcripts are distributed according to DWreal where Wreal is uniformly
distributed over Ωreal, while the ideal-world transcripts are distributed according
to DWideal where Wideal is uniformly distributed over Ωideal.

A transcript τ is attainable if there exists some ω ∈ Ωideal such that Dω = τ .
(Which transcripts are attainable depends on D, but we assume a fixed D). A
transcript τ = ((X1, Y1), . . . , (Xq, Yq),H1, . . . , Hκ) is bad if there exists some
i ∈ [q] such that

Hj(Xi) ∈ {Hj(X1), . . . , Hj(Xi−1)}
for all j ∈ κ. We let Tbad be the set of bad attainable transcripts, Tgood the set
of non-bad attainable transcripts.

We will show that Pr[DWreal = τ] = Pr[DWideal = τ] for all τ ∈ Tgood. In this
case, by Patarin’s H-coefficient technique [18], D’s distinguishing advantage is
upper bounded by Pr[DWideal ∈ Tbad]. We commence by upper bounding the later
quantity, and then move to the former claim.

Let Ei,j , (i, j) ∈ [q] × [κ], be the event that

Hj(Xi) ∈ {Hj(X1), . . . , Hj(Xi−1)}

and let
Ei = Ei,1 ∧ · · · ∧ Ei,κ.

Since the values X1, . . . , Xq and the hash functions H1, . . . , Hκ are uniquely
determined by any ω ∈ Ωideal or ω ∈ Ωreal, we can write Ei(Wideal) (in the ideal
world) or Ei(Wreal) (in the real world) to emphasize that Ei is a deterministic
predicate of the uniformly distributed oracle, in either world. Then

(DWideal ∈ Tbad) ⇐⇒ (E1(Wideal) ∨ · · · ∨ Eq(Wideal)). (11)

Moreover,

Pr[Ei,j(Wideal)] ≤ (i − 1)
1
2�

≤ q

2�

since the hash functions H1, . . . , Hκ are chosen independently of everything in
the ideal world, and by the universality of H, and

Pr[Ei(Wideal)] ≤
(q

2�

)κ

since the events Ei,1, . . . , Ei,κ are independent in the ideal world; finally

Pr[DWideal ∈ Tbad] ≤ q
(q

2�

)κ

=
qκ+1

2�κ

by (11) and by a union bound.

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 179

To complete the proof, we must show that Pr[DWreal = τ] = Pr[DWideal = τ]
for all τ ∈ Tgood. Clearly,

Pr[DWideal = τ] =
1

2nq
· 1
|H|κ

for all attainable τ . Moreover, if

τ = ((x1, y1), . . . , (xq, yq), h1, . . . , hκ)

then it is easy to see that

Pr[DWreal = τ |H (Wreal) = (h1, . . . , hκ)] =
1

2nq

by induction on the number of distinguisher queries, using τ ∈ Tgood. (We write
H (Wreal) for the H -coordinate of Wreal.) Since

Pr[H (Wreal) = (h1, . . . , hκ)] =
1

|H|κ
this completes the proof. ��
Proof of Lemma 8.

Pr
a

$←−A
[∃y ∈ Y : y′ �= y ∧ ha(y′) = ha(y)]

≤
∑

y′∈Y\{y}
Pr

a
$←−A

[ha(y′) = ha(y)]

≤ |Y|·2−l2 ≤ 2−(l2−l1),

where the first inequality is a union bound and the second inequality follows by
the universality of H. ��
Proof of Lemma 10. Assume WLOG that μ′m is integer and use shorthand
pl

def= Pr[|Bermμ′ | = l] and thus

pμ′m =
(

m

μ′m

)

μμ′m(1 − μ′)m−μ′m

For 1 ≤ i ≤ μ′m, we have

pμ′m−i =
(

m

μ′m − i

)

μ′μ′m−i(1 − μ′)m−μ′m+i

=
m!·μ′μ′m(1 − μ′)m−μ′m

(μ′m − i)!(m − μ′m + i)!

= pμ′m
(μ′m − i + 1)(μ′m − i + 2) . . . (μ′m − i + i)

(m − μ′m + 1)(m − μ′m + 2) . . . (m − μ′m + i)
·(1 − μ′

μ′)i

= pμ′m
(1 − i−1

μ′m)(1 − i−2
μ′m) . . . (1 − 0

μ′m)

(1 + 1
m(1−μ′))(1 + 2

m(1−μ′)) . . . (1 + i
m(1−μ′))

.

180 Y. Yu and J. Steinberger

Similarly, for 1 ≤ i ≤ (1 − μ′)m we can show that

pμ′m+i = pμ′m
(1 − 0

m(1−μ′))(1 − 1
m(1−μ′)) . . . (1 − i−1

m(1−μ′))

(1 + 1
μ′m)(1 + 2

μ′m) . . . (1 + i
μ′m)

.

Therefore, we have pμ′m = max{pi | 0 ≤ i ≤ m } and thus complete the proof
with the following

(1 + 2
√

m)·pμ′m ≥
μ′m+

√
m

∑

j=μ′m−min{√
m,μ′m}

pj

≥ 1 − Pr[
∣

∣ |Bermμ′ | − μ′m
∣

∣ ≥ √
m]

≥ 1 − 2 exp−2 = Ω(1)

where the last inequality is a Hoeffding bound. ��

References

1. Related work on LPN-based authentication schemes. http://www.ecrypt.eu.org/
lightweight/index.php/HB

2. Akavia, A., Bogdanov, A., Guo, S., Kamath, A., Rosen, A.: Candidate weak
pseudorandom functions in AC0◦MOD2. In: Innovations in Theoretical Computer
Science, ITCS 2014, pp. 251–260 (2014)

3. Alekhnovich, M.: More on average case vs. approximation complexity. In:
44th Annual Symposium on Foundations of Computer Science (FOCS 2003),
Cambridge, Massachusetts, pp. 298–307. IEEE (2003)

4. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input local-
ity. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 92–110. Springer,
Heidelberg (2007). http://www.eng.tau.ac.il/bennyap/pubs/input-locality-full-
revised-1.pdf

6. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012)

7. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012)

8. Bellare, M., Goldreich, O., Krawczyk, H.: Stateless evaluation of pseudorandom
functions: security beyond the birthday barrier. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 270–287. Springer, Heidelberg (1999)

9. Berlekamp, E., McEliece, R.J., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Trans. Inf. Theor. 24(3), 384–386 (1978)

10. Berman, I., Haitner, I., Komargodski, I., Naor, M.: Hardness preserving reductions
via cuckoo hashing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 40–59.
Springer, Heidelberg (2013)

http://www.ecrypt.eu.org/lightweight/index.php/HB
http://www.ecrypt.eu.org/lightweight/index.php/HB
http://www.eng.tau.ac.il/bennyap/pubs/input-locality-full-revised-1.pdf
http://www.eng.tau.ac.il/bennyap/pubs/input-locality-full-revised-1.pdf

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 181

11. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision
decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760.
Springer, Heidelberg (2011)

12. Blum, A., Furst, M.L., Kearns, M., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

13. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

14. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryp-
tion, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

15. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Trans. Inf. Theor. 44(1), 367–378 (1998)

16. Cash, D., Kiltz, E., Tessaro, S.: Two-round man-in-the-middle security from LPN.
In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 225–248.
Springer, Heidelberg (2016)

17. Chandran, N., Garg, S.: Balancing output length and query bound in hard-
ness preserving constructions of pseudorandom functions. In: Meier, W.,
Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 89–103.
Springer, Cham (2014)

18. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014)

19. David, B., Dowsley, R., Nascimento, A.C.A.: Universally composable oblivious
transfer based on a variant of LPN. In: Gritzalis, D., Kiayias, A., Askoxylakis,
I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 143–158. Springer, Heidelberg (2014)

20. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
355–374. Springer, Heidelberg (2012)

21. Dodis, Y., Smith, A.: Entropic security and the encryption of high entropy mes-
sages. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 556–577. Springer,
Heidelberg (2005)

22. Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: IND-CCA secure cryptog-
raphy based on a variant of the LPN problem. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 485–503. Springer, Heidelberg (2012)

23. Döttling, N., Schröder, D.: Efficient pseudorandom functions via on-the-fly adap-
tation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
329–350. Springer, Heidelberg (2015)

24. Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.K.: New results for learning
noisy parities and halfspaces. In: 47th Symposium on Foundations of Computer
Science, Berkeley, CA, USA, 21–24 October 2006, pp. 563–574. IEEE (2006)

25. Gazi, P., Tessaro, S.: Secret-key cryptography from ideal primitives: a systematic
overview. In: 2015 IEEE Information Theory Workshop (ITW 2015), pp. 1–5 (2015)

26. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

27. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation
for Computer Science, 2nd edn. Addison-Wesley Longman Publishing Co. Inc.,
Boston (1994)

182 Y. Yu and J. Steinberger

28. Haitner, I., Reingold, O., Vadhan, S.P.: Efficiency improvements in constructing
pseudorandom generators from one-way functions. In: Proceedings of the 42nd
ACM Symposium on the Theory of Computing, pp. 437–446 (2010)

29. H̊astad, J., Impagliazzo, R., Levin, L., Luby, M.: Construction of pseudorandom
generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

30. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

31. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

32. Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: 30th Annual
Symposium on Foundations of Computer Science, Research Triangle Park, North
Carolina, 30 October–1 November 1989, pp. 248–253. IEEE (1989)

33. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-
knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012)

34. Jain, A., Pietrzak, K., Tentes, A.: Hardness preserving constructions of pseudo-
random functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 369–382.
Springer, Heidelberg (2012)

35. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005)

36. Katz, J., Shin, J.S.: Parallel and concurrent security of the HB and HB+ protocols.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer,
Heidelberg (2006)

37. Kiltz, E., Masny, D., Pietrzak, K.: Simple chosen-ciphertext security from low-
noise LPN. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 1–18. Springer,
Heidelberg (2014)

38. Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient authentication
from hard learning problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 7–26. Springer, Heidelberg (2011)

39. Kirchner, P.: Improved generalized birthday attack. Cryptology ePrint Archive,
Report 2011/377 (2011). http://eprint.iacr.org/2011/377

40. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)

41. Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica
7(4), 357–363 (1987)

42. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624,
pp. 378–389. Springer, Heidelberg (2005)

43. Lyubashevsky, V., Masny, D.: Man-in-the-middle secure authentication schemes
from LPN and weak PRFs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 308–325. Springer, Heidelberg (2013)

44. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

45. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Wang, X., Lee, D.H. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011)

46. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th Annual Symposium on Foundations of Computer Science, Miami
Beach, Florida, 20–22 October 1997, pp. 458–467. IEEE (1997)

http://eprint.iacr.org/2011/377

Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN 183

47. Naor, M., Reingold, O., Rosen, A.: Pseudo-random functions and factoring. Elec-
tronic Colloquium on Computational Complexity (ECCC) TR01-064 (2001)

48. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F.
(eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009)

49. Pietrzak, K.: Cryptography from learning parity with noise. In: Bieliková, M.,
Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 99–114. Springer, Heidelberg (2012)

50. Razborov, A.A.: Lower bounds on the size of bounded depth networks over a
complete basis with logical addition. Mathematische Zametki 41, 598–607 (1986).
English Translation in Mathematical Notes of the Academy of Sciences of the USSR

51. Razborov, A.A., Rudich, S.: Natural proofs. In: Proceedings of the Twenty-
Sixth Annual ACM Symposium on the Theory of Computing, Montréal, Québec,
Canada, 23–25 May 1994, pp. 204–213 (1994)

52. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing
(STOC 2005)

53. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In: Proceedings of the 19th Annual ACM Symposium on Theory of
Computing (STOC 1987), pp. 77–82 (1987)

54. Dong, T., Stern, J.: A method for finding codewords of small weight. In: Cohen,
G., Wolfmann, J. (eds.) Coding Theory and Applications. LNCS, vol. 388, pp.
106–113. Springer, Heidelberg (2005)

55. Yu, Y., Gu, D., Li, X., Weng, J.: (Almost) optimal constructions of UOWHFs from
1-to-1, regular one-way functions and beyond. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 209–229. Springer, Heidelberg (2015)

Secure Computation from Elastic
Noisy Channels

Dakshita Khurana1(B), Hemanta K. Maji2, and Amit Sahai1

1 Department of Computer Science, Center for Encrypted Functionalities,
UCLA, Los Angeles, USA

{dakshita,sahai}@cs.ucla.edu
2 Department of Computer Science, Purdue University, West Lafayette, USA

hmaji@purdue.edu

Abstract. Noisy channels enable unconditionally secure multi-party
computation even against parties with unbounded computational power.
But inaccurate noise estimation and adversarially determined channel
characteristics render known protocols insecure. Such channels are known
as unreliable noisy channels. A large body of work in the last three
decades has attempted to construct secure multi-party computation from
unreliable noisy channels, but this previous work has not been able to
deal with most parameter settings.

In this work, we study a form of unreliable noisy channels where the
unreliability is one-sided, that we name elastic noisy channels: thus, in
one form of elastic noisy channel, an adversarial receiver can increase
the reception reliability unbeknown to the sender, but the sender cannot
change the channel characteristic.

Our work shows feasibility results for a large set of parameters for the
elastic binary symmetric channel, significantly improving upon the best
results obtainable using prior techniques. In a key departure from exist-
ing approaches, we use a more elemental correlated private randomness
as an intermediate cryptographic primitive that exhibits only a rudimen-
tary essence of oblivious transfer. Toward this direction, we introduce
new information-theoretic techniques that are potentially applicable to
other cryptographic settings involving unreliable noisy channels.

Keywords: Noisy channel · Unfair noisy channel · Elastic noisy chan-
nel · Oblivious transfer · Information-theoretic security · Secure compu-
tation

D. Khurana and A. Sahai—Research supported in part from a DARPA/ARL SAFE-
WARE award, NSF Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096,
and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award,
an equipment grant from Intel, and an Okawa Foundation Research Grant. This
material is based upon work supported by the Defense Advanced Research Projects
Agency through the ARL under Contract W911NF-15-C-0205. The views expressed
are those of the author and do not reflect the official policy or position of the Depart-
ment of Defense, the National Science Foundation, or the U.S. Government.
H.K. Maji—Work done while at UCLA.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 184–212, 2016.
DOI: 10.1007/978-3-662-49896-5 7

Secure Computation from Elastic Noisy Channels 185

1 Introduction

Secure multi-party computation [27,57] helps mutually distrusting parties to
securely compute a function of their private data. General secure computation
is impossible in the information-theoretic plain model for most cryptographi-
cally interesting functionalities even when parties are semi-honest [3,31,36,41–
43]. This necessitates restrictions on the power of the adversaries, for example,
honest majority [6,12,21,50], computational hardness assumptions [27,33] or
physical cryptographic resources, like, noisy channels [4,17,19,37,38], correlated
private randomness [19,38,44,54], trusted resources [10,34] or tamper-proof
hardware [11,23,28,35,46].

Using cryptographic resources like noisy channels, it is possible to securely
compute arbitrary functionalities with unconditional security guarantees against
malicious computationally unbounded adversaries as well [4,17,19,37,38]. Aside
from unconditional security, this line of work also offers advantages in effi-
ciency [5,45,48]. Additionally, all invocations of the noisy channel can be per-
formed in an offline phase that is independent of the target functionality to
be securely computed [54]. But, the security analysis of these protocols cru-
cially hinges on accurate knowledge of the channel characteristic. Inaccurately
estimated or, even worse, adversarially determined channel characteristic can
violate the security guarantees of known secure computation protocols that rely
on noisy channels. We broadly call such channels unreliable noisy channels.

Over the last three decades, a lot of effort has been focussed towards per-
forming information-theoretic secure multi-party computation using unreliable
noisy channels, but with limited success. Weak forms of oblivious transfer1

(OT) [7,8,17,22,55] and noisy channels [16,19,20,22,47,55,56] have been lever-
aged to perform secure computation with strong security guarantees, but only
for limited settings of parameters. For example, the notion of an unfair noisy
channel allows both the adversarial sender and the receiver to increase their
knowledge of the other party’s outputs or inputs to the channel. This model
captures extremely general physical systems. Unfortunately, strong impossibil-
ity results exist for unfair channels [22], thus, significantly limiting the potential
set of feasible parameters (Ref. Fig. 1).

Faced with these daunting impossibility results, in this work we ask whether
security is possible in meaningful relaxations of the unfair noisy channel model.
In particular, we study an unreliable noisy channel model, namely elastic noisy
channels, where only one party, either the receiver or sender, but not both, can
increase their knowledge of the other party’s inputs and outputs to the channel.
We show that an elastic noisy channel with sender advantage is equivalent to an
elastic noisy channel with receiver advantage (see Sect. 5), and thus in the sequel,
we focus on the case where the receiver can increase its knowledge of the sender’s

1 Oblivious Transfer [25,49,53] is a two-party functionality which takes (x0, x1) ∈
{0, 1}2 as input from the sender and c ∈ {0, 1} from the receiver and provides xc as
output to the receiver. Information-theoretic secure general multi-party computation
can be constructed in the OT-hybrid [10,34].

186 D. Khurana et al.

1/20

1/2

β −→

α
−→

Impossible [22]

Unknown

Feasibility Results
due to [20,22,55]

Fig. 1. Unfair binary symmetric channel parameters for binary symmetric channels.
Honest channel flips the input symbol with probability α, where 0 < α < 1/2. Both
the sender and the receiver can make the channel more reliable with flip probability β,
where 0 < β � α.

inputs to the channel. Such a study is motivated, for example, by transmission
and reception of information over physical wireless channels between physically
separated parties. This is because in physical wireless systems, thermal noise
is always present at the receiver’s end and cannot be observed by a physically
distant sender. Thus, the sender, even if malicious, cannot anticipate the entire
error introduced at the receiver antenna. However, an adversarial receiver, on
the other hand, can install a large super-cooled antenna to make its reception
more reliable than the reception available to an honest receiver that uses an
inexpensive antenna.

While this scenario is one example, our study is primarily motivated from a
theoretical standpoint, in the face of severe impossibility results for the full unfair
channel setting, where very little progress has been made despite decades of
research. Interestingly, our elastic channel model avoids the impossibility results
of [22] and, hence, holds the promise to yield secure multi-party computation
protocols based on a wide range of parameters. Nevertheless, previous work
achieve only quite weak results in the elastic noisy channel setting.

Our main result pertains to realization of information-theoretic secure multi-
party computation using (α, β)-BSC, a binary symmetric channel where, infor-
mally,2 an honest receiver obtains the sender’s input bit flipped with probability
α, while the adversarial receiver obtains an the sender’s input bit flipped only
with probability β, where 0 < β � α < 1/2. Figure 2 shows the set of feasible

2 The actual definition of (α, β)-BSC uses a degradation channel model. The channel
output is a degradation of the leakage. But for intuitive purposes the description
presented here suffices. Section 2 provides a more detailed and accurate description.

Secure Computation from Elastic Noisy Channels 187

parameters that can be achieved using the best previous techniques of [22,55].
The figure also illustrates the much larger set of possible (α, β) pairs for which
it is possible to achieve secure multi-party computation on (α, β)-BSC using the
techniques we develop in this paper. As a concrete example, if the best antenna
in the market incurs only 5% error, then prior techniques need to assume that
the honest receiver uses a receiver with at most 14% error. Our protocols, on
the other hand, work even when the honest reception error is as high as 30%.

New Ideas. The crux of this significant gain in feasibility parameters is a new
perspective on how to securely realize OT from unreliable noisy channels. Over
the last several decades, a common underlying theme of previous constructions
is a reduction from unreliable noisy channels to weak OT using two-repetition
of the underlying channel and the rejection sampling technique of [17] and, sub-
sequently, amplifying the weak OT to a full-fledged OT [17,22,55]. The first
reduction in this approach, we find, leads to a significant loss in parameters. We,
instead, reduce from unreliable noisy channels to a correlated private randomness
that provides extremely weak guarantees and ensures only a rudimentary essence
of OT. In this respect, as a departure from prior techniques, our target corre-
lated private randomness is closer to the notion of universal OT as proposed by
Cachin [8]. Then, we morph this elemental correlated private randomness into
a weak variant of OT using the weak converse of Shannon’s Channel Coding
Theorem [26,52] as utilized by [40] and fuzzy extractors [24]. Next, this weak
variant of OT is amplified to (full-fledged) OT using techniques similar to those
proposed in [55]. Section 1.2 provides a summary of our technical contributions
and intuition of the protocol designs.

Looking ahead, we believe that the techniques introduced in this paper are
of independent interest and are likely to find use in other areas of cryptography
where noisy channels are analyzed.

1.1 Our Contributions

Our main contribution is to design protocols that securely realize oblivious trans-
fer and therefore secure multi-party computation, from elastic binary symmet-
ric channels. Before summarizing our results, we explain the notion of elastic
channels.

Elastic Channels. We will model elastic variants of noisy channels as consist-
ing of a pair of noisy channels where the channel for the honest receiver is a
degradation of the channel for the adversarial receiver. In general, we view an
(α, β)-BSC as a pair of channels, such the honest receiver has reception over a
BSC with flip probability α, and an adversarial receiver has reception over a BSC
with flip probability β � α.

General Secure Computation. We prove that general secure computation is
possible for a large range of parameters of elastic binary symmetric channels. In

188 D. Khurana et al.

1/20

1/2

β −→

α
−→

Our
Feasibility Results

Prior Results
due to [22,55]

Fig. 2. Space of parameters (β, α), where 0 < β � α < 1/2, for which we construct
secure computation protocol from (α, β)-BSC. The smaller dark region is the space for
which such protocols can be obtained using prior techniques from [22,55] combined.

particular, we obtain oblivious transfer (OT) using elastic noisy channels, and
then the OT functionality can be used to obtain general secure computation
[10,27,36,57]. Our main theorem is as follows:

Theorem 1 (Elastic BSC Completeness). There exists a universal constant

c ∈ (0, 1), such that for all 0 < β � α < 1/2, if α <
(

1 + (4β(1 − β))−1/2
)−1

then there exists a protocol Πα,β such that, Πα,β securely realizes the OT func-
tionality FOT when given access to ((α, β)-BSC)⊗κ channels with at most 2−κc

simulation error, where κ is the security parameter, with information-theoretic
unconditional security against malicious adversaries.

Refer to Fig. 2 for a summary of the parameter space in Theorem1 and a com-
parison of our results with results from previous work3. Henceforth, we will use

�(β) : =
(

1 + (4β(1 − β))−1/2
)−1

.
In addition to elastic noisy channels, both parties also communicate over

reliable communication channels in our protocols. These reliable channels can be
constructed from the (elastic) noisy channels themselves via standard techniques
in error correcting codes (e.g. using polar codes [1,2,29]).

3 When comparing to previous work, note that no previous work considered the setting
of elastic channels. Instead, to provide some context, we plot parameters that would
be obtained by combining techniques from [22,55] and adapting these to the setting
of elastic channels. We do not attempt to combine also the results from [20], because
of definitional differences.

Secure Computation from Elastic Noisy Channels 189

Furthermore, we can strengthen our completeness theorems using techniques
from [32,34,40] to achieve constant rate: that is, our protocols can produce Θ(κ)
OTs with only O(κ) total communication and only O(κ) calls to the underlying
elastic binary symmetric channels.

Corollary 1 (Constant Rate Elastic BSC Completeness). For all 0 <

β � α < 1/2, if α <
(

1 + (4β(1 − β))−1/2
)−1

then, there exists a protocol

Πα,β and constants cα,β , dα,β such that, Πα,β securely realizes F⊗m
OT when given

access to ((α, β)-BSC)⊗κ channels with at most 2−κcα,β simulation error and
m = dα,βκ.

1.2 Technical Overview

While our protocols have many ingredients and require a careful analysis, in this
section we try to explain the core ideas in our scheme.

A New Take on Previous Approaches. We begin by re-interpreting previous
approaches to realize oblivious transfer from noisy channels. Our new under-
standing of these methods helps abstract out their essence and better illustrate
the bottlenecks in our setting. Then, we develop key ideas to achieve oblivious
transfer even from channels with adversarial receiver-controlled characteristic,
for a large range of parameters of such channels.

To obtain OT from a perfect BSC, a natural starting point is to have the
sender pick appropriate codewords (typically simple repetition codes) and send
them over the BSC to the receiver. The receiver must then partition the received
outputs into two sets establishing two “virtual” channels with the following
property: There exists a threshold R, such that one of the virtual channels has
capacity C∗ > R, while the other channel has capacity C̃ < R. Moreover, the
sender will be unable to tell which virtual channel is which.

In the protocol, the sender pushes information across the virtual channels at
rate equal to R. The receiver recovers the information that is transmitted over
the virtual channel with capacity C∗ > R. But, he incurs errors decoding the
information transmitted over the virtual channel with capacity C̃ < R because
the weak converse of Shannon’s Channel Coding Theorem [26,52] kicks in. This
decoding error can be amplified using fuzzy extractors [24], to completely erase
the other message and guarantee statistical hiding.

But, we would like to design protocols that remain secure even given an
(α, β)-BSC. In the following, we will use α-BSC to denote the channel used by
the honest receiver; and β-BSC to denote the channel used by the adversarial
receiver. Intuitively, the correctness of our protocol needs to be ensured even
for an honest receiver who uses a channel prescribed as the “minimum system
requirement” of the protocol description (the α-BSC). We also require that the
same protocol be secure even against an adversarial receiver who can reduce the
noise level significantly (using the β-BSC). Again, we will think of the problem
as forcing the receiver to establish two virtual channels of noticeably different

190 D. Khurana et al.

capacities. We require the capacity C∗ of the better virtual channel established
by the receiver using α-BSC, to be higher than the capacity C̃ of the worse virtual
channel established by any adversarial receiver using the β-BSC. The sender
will code at a suitable rate intermediate to C∗ and C̃. Then, more information
will be received over the C∗ capacity channel in the honest scenario, than the
information received over one of the two virtual channels (of capacity at most
C̃) created by the adversarial receiver. This will give oblivious transfer.

Challenges in Our Setting. Let us re-examine our quantitative goal: Suppose
the error of the best (adversarial) receiver in the market is 2%, but honest
receivers have 20% error. The adversarial receiver can obtain much more infor-
mation than the honest receiver, without the sender’s knowledge. Yet, we want
to establish two virtual channels such that the capacity of the better virtual
channel established using the α-BSC, is higher than the capacity of the worse
virtual channel established by any adversarial receiver using the β-BSC. Such an
adversarial receiver is allowed to behave arbitrarily, in particular, it could dis-
tribute its total capacity equally between the two channels. Ensuring a capacity
gap between the better honest and the worse adversarial capacities in this situa-
tion, seems to be a tall order. Indeed, previously the results of Wullschleger [55]
could achieve this gap only if the honest adversarial receiver had an error at
most 9%.

Towards a Solution. Our first step is to try and relax this goal. Instead of directly
shooting for 2-choose-1 oblivious transfer, we try to obtain a weaker form of
oblivious transfer, namely (n, 1, n − 1) OT, where a sender has n messages, an
honest receiver gets to choose 1 message, but a dishonest receiver gets n − 1
messages of his choice. The sender gets no output. Using the ‘virtual channel’
intuition presented above, we want the receiver to set up n virtual channels (for
some constant n), with a threshold R such that at least one of the n virtual
channels set up by the honest receiver has capacity C∗ > R, while at least one of
the n virtual channels set up by the adversarial receiver has capacity less C̃ < R.
At this point, we have divided our objective into the following two sub-problems:

1. Reduce (n, 1, n − 1) OT to (α, β)-BSC
2. Reduce 2-choose-1 OT to (n, 1, n − 1) OT

The second result has been considered in the works of [18,51] and can also
be demonstrated using techniques presented in [20,22,55] for the setting of weak
erasure channels. While this reduction is not the focus of our work, for com-
pleteness we provide a protocol securely realizing OT from (n, 1, n − 1) OT in
the full version, achieving security against malicious adversaries.

Now our main goal is to demonstrate the first reduction. Our next question
is, what could be some reasonable ways to take an (α, β)-BSC and build several
virtual channels outs of it with varying reliabilities?

A New Kind of Channel Decomposition. A logical starting point is to have the
sender send λ repetitions of his bit over fresh instantiations of the (α, β)-BSC,

Secure Computation from Elastic Noisy Channels 191

and list all possible outputs obtained by the receiver. Each possible output could
be used by the receiver to define a “virtual channel”. On sending λ repetitions
of a bit b, if the receiver obtains λ identical bits, then his confidence about the
original bit b is extremely high. This is the most reliable channel, and will be set
to be the choice channel (with capacity C∗) by the honest receiver.

Since errors are independently added at each invocation of the (α, β)-BSC,
all receiver outputs with the same number of zeroes, irrespective of the positions
of these zeroes, convey the same amount of information to the receiver. Thus,
such outputs can be classified into the same equivalence class/virtual channel.
Furthermore, for η ∈ [0, �λ/2� + 1], let Sη denote all output strings with either
η zeroes, or η ones. That is, Sη includes all pairs of output strings of the form
{0η1λ−η, 0λ−η1η} and their permutations. This results in the creation of �λ

2 �+1
binary symmetric channels4 of noticeably different capacities, such that the ‘best’
virtual channel of an honest receiver consists of outputs solely from S0. It is easy
to see that the sender, who gets no output from the BSC, cannot distinguish
between various virtual channels created by the receiver.

For security against an adversarial receiver, it suffices to ensure that the
capacity of the virtual channel created using values in S0 corresponding to the
α-BSC, is higher than the average capacity (over all possible channels) over all
the outputs assembled by an adversarial receiver when he uses the β-BSC. We
note that the receiver is never allowed to discard any of the outputs he received;
he must necessarily divide and distribute them all into his virtual channels.

On analyzing this approach, we find that in fact as we increase λ, the situ-
ation improves for many parameters α, β. While both average adversarial and
best honest capacities increase as λ increases, in fact the best honest capac-
ity increases faster. Eventually, then, the best honest capacity becomes bet-
ter than the average adversarial capacity and we obtain the following results
(Ref. Fig. 4 for an example illustration of this phenomenon.). For any constants

0 < β � α <
(

1 +
(

4β(1 − β)
)−1

)−1

, there exists an efficiently computable
constant λ ∈ N for which the above property holds. Figure 3 plots the space of
these parameters for various values of λ and the limiting curve �(β).

Although this completes our high-level overview, making these ideas work
requires a careful use of the weak converse of Shannon’s Channel Coding The-
orem, Fuzzy Extractors and other protocol tools, as well as a careful setting of
parameters. Refer Sect. 3 for more details about our construction.

Commitments. Enroute proving Theorem1, we show that it is possible to obtain
string commitments from any (α, β)-BSC, where 0 < β � α < 15. Using tech-
niques from [32,34,40], we can also obtain string commitments at a constant
rate. We stress that we can obtain commitments from any (α, β) elastic BSC
for all parameters 0 < β � α < 1, unlike our completeness result. Our result is
formally stated in the following theorem:
4 We observe that each set Sη can then be analyzed as a new BSC.
5 This is in contrast to the setting of unfair noisy channels, which become trivial for

a wide range of parameters.

192 D. Khurana et al.

1/20

1/2

β

α

�(β) Curve

λ = 21
λ = 22

λ = 23

λ = 27

Fig. 3. For λ ∈ {21, . . . , 27}, the space of points (β, α) for which the capacity of the
virtual channel created using values in S0 corresponding to the α-BSC is higher than
the average capacity (over all possible channels) over all the outputs assembled by an
adversarial receiver when he uses the β-BSC. Finally the limiting �(β) curve is plotted.

Theorem 2. There exists a universal constant c ∈ (0, 1), such that for all
0 < β � α < 1/2, there exists a protocol Πα,β, constant d ∈ (0, 1) such that,
Πα,β securely realizes the string commitment functionality for strings of length
dκ, Fcom(dκ), when given access to ((α, β)-BSC)⊗κ channels, with at most 2−κc

simulation error, where κ is the security parameter, with information-theoretic
unconditional security against malicious adversaries.

On Adversarial Senders. Finally, we note that noisy channels where only the
sender can make the transmission more reliable (that is, sender-elastic binary
symmetric channels) reduces to the case of elastic noisy channels with an adver-
sarial receiver (receiver-elastic channels), using a tight reduction presented in
Sect. 5. Our one-to-one transformation is optimal and tight.

1.3 Prior Work

There is a lot of literature on constructing secure computation based on noisy
channels [16,17,19,32,38–40]. An elastic noisy channel, whose characteristic can
be altered by adversarial parties, cannot be modeled as a functionality considered
by the completeness theorems of [38,40,44]. However, the following channels in
the literature, are related to the notion of elastic channels.

– Unfair Noisy Channels. Unfair noisy channels were formally defined by
Damgärd et al. [22]: in an unfair noisy channel, both the sender and
the receiver can change the channel characteristic. Furthermore, the work
of [22] showed strong impossibility results in this model. Several works

Secure Computation from Elastic Noisy Channels 193

0 1Cumulative Prob.

1

C
ap

ac
ity

λ = 1

˜C

C∗

λ = 2

˜C

C∗

Avg. Adv.
Capacity ˜C

Best Honest
Capacity C∗

λ = 3

˜C

C∗

λ = 4

˜C
C∗

λ = 5

˜CC∗

λ = 6

˜CC∗

λ = 7
˜CC∗

Fig. 4. Obtaining best honest capacity C∗ higher than average adversarial capacity C̃
for (α, β)-BSC, where (α, β) = (1/3, 1/6). Each graph represents the capacity profile

of sub-channels in the decomposition of (V, V̂), where λ ∈ {1, . . . , 7}. The lighter bars
denote the adversarial receiver case and the darker bars represent the honest receiver
case. When λ = 7, C∗ > C̃.

194 D. Khurana et al.

considered performing secure computation from such unfair noisy chan-
nels [16,17,19,20,22,55,56]. The feasibility parameters achieved by these
works are a small fraction of the parameters not covered by the impossibility
result of [22].

– Weak OT with one-sided leakage. The closest notion to elastic channels, is
that of weak OT6 by Wüllschleger [55]. This is an oblivious transfer which
allows either sender or receiver leakage, but not both. It also allows incorrect
output with some probability. It was shown in [55] that OT reduces to weak
OT with one-sided leakage for a subset of leakage and error parameters.

It is possible to reduce such a weak OT to elastic noisy channels via the
techniques in [20,22,56]. To our knowledge, these give the best known com-
pleteness results using techniques implicit in prior work, in the setting of
elastic BSC. These parameters are denoted as ‘Best Prior Work’ in Fig. 2.

Comparison of Techniques. Prior works on unfair noisy channels rely on the
technique of [17] which invokes the channel twice to transmit a 2-repetition of
the input bit. This implements an erroneous version of unfair oblivious transfer.
Subsequently, this erroneous unfair OT is amplified to full-fledged OT. Surpris-
ingly, we find that the first reduction in this approach is significantly lossy in
parameters, especially when applied to the setting of elastic channels.

Thus, in a departure from previous techniques, we set our first target to
obtaining a set of n � 2 channels – where the honest receiver can obtain infor-
mation on at least one channel, while even an adversarial receiver cannot obtain
information on more than n − 1 channels. To realize such channels, we do not
restrict ourselves to 2-repetitions only. A comparison of our parameter space
against previous work is illustrated in Fig. 2.

2 Preliminaries

In this section, we introduce some basic definitions and notation, and recall some
preliminaries for use in the paper.

Throughout the paper, κ will denote the security parameter. We represent
the set {1, . . . , n} by [n]. The set of all size-k subsets of a set S is represented

by
(

S
k

)

. A vector of length n is represented by (x1, . . . , xn) = x[n]. For S =

{i1, . . . , i|S|} ⊆ [n], we represent xS = (xi1 , . . . , xi|S|). We use Ber(p) to represent
a sample from a Bernoulli distribution with parameter p.

2.1 Elastic Functionalities

We model elastic variants of noisy channels as a pair of noisy channels where
the channel for the honest receiver is a degradation of the channel for the adver-
sarial receiver. The input (say, bit b) is first transmitted over a more reliable
6 Not to be confused with our notion of (n, k, �)- OT which is complete for all constants

n, (1 < k, � < n).

Secure Computation from Elastic Noisy Channels 195

(adversarial) channel to obtain leakage z. Then, z is transmitted over a second
channel (z is further degraded) to obtain honest receiver output b̃, such that b̃
is effectively, the result of transmitting b over a less reliable channel. The honest
receiver obtains output b̃ and the adversarial receiver obtains output leakage z
as well as b̃. Note that in our modeling, the leakage z is strictly more infor-
mative than honest receiver output b̃. This is exactly why we chose to model
elastic channels as degradation channels, as it allows more intuitive analysis. We
formalize this notion, as follows, for specific instances of elastic noisy channels.

Definition 1 (Elastic Binary Symmetric Channel). Let Ber(p) be a sample
of Bernoulli distribution with parameter p. For any 0 < β � α < 1/2, an
(α, β)-BSC channel is defined as follows.

1. Emulate β-BSC on input b: Obtain input b from the sender and sample
e� ∼ Ber(β), the compute z = b ⊕ e�.

2. Emulate γ-BSC on input leakage z: Sample e′ ∼ Ber(γ) and compute b̃ =
z ⊕ e′, where β(1 − γ) + (1 − β)γ = α. Intuitively, γ is chosen such that
Ber(α) ≡ Ber(γ) ⊕ Ber(β).

3. Receiver output: Output b̃ to the receiver and, if the receiver is adversarial,
then additionally output z to the receiver.

Let B, Z and B̃ be the random variables corresponding to b, z and b̃, respec-
tively. We have B̃ = B ⊕ Ber(α) and Z = B ⊕ Ber(β), such that B → Z → B̃.

Definition 2 ((n, k, �)-OT). For 0 < k � � < n, (n, k, �)-OT is defined as:

1. Sender inputs bits x[n] and receiver inputs set T ∈
(

[n]
k

)

.

2. Output {xi:i∈T } to the receiver.

3. If the receiver is corrupted by the adversary, then obtain S ∈
(

[n]
�

)

such

that T ⊆ S from the adversary, and output {xi:i∈S} to the adversary.

2-choose-1 bit OT is equivalent to (2, 1, 1)-OT.

2.2 Basic Information Theory

Entropy. The entropy of a distribution X is defined as: Ex∼X [− lgPx′∼X [x′ =
x]]. Given a joint distribution (X,Y), the mutual information is: I(X;Y) =
H(X) + H(Y) − H(X,Y).

Channel Capacity. The capacity of a channel W is defined to be I(W) =
maxX I(X;W (X)), where X is any probability distribution over the input space.
If W is output symmetric, then I(W) = I(U ;W (U)), where U is the uniform
distribution over the input space.

For 0 � ε � 1, the capacity of ε-BEC is I(ε-BEC) = 1 − ε; and the capacity
of ε-BSC is I(ε-BSC) = 1 − h(ε), where h(x) : = − x lg(x) − (1 − x) lg(1 − x) is
the binary entropy.

196 D. Khurana et al.

(A,B) → (A,C). For a joint distribution (A,B) and (A,C), if there exists f such
that the distributions (A, f(B)) and (A,C) are identical, then we say (A,B) →
(A,C). We say that (A,B) ≡ (A,C), if (A,B) → (A,C) and (A,C) → (A,B).

(J,WJ). A channel (J,WJ) is defined as follows:

On input x, sample j ∼ J(x) and sample z ∼ Wj(x). Output (j, z).
We say that a channel W ≡ (J,WJ), if the distributions (X,W (X)) ≡
(X,J(X),WJ(X)(X)), for all input distributions X.

A binary-input memoryless channel with transition probabilities (W |0) and
(W |1) for input symbols 0 and 1, respectively, is called output-symmetric if the
probabilities of these two distributions are permutations of each other.

If I(X;J(X)) = 0 and all Wj channels are output symmetric, then the capac-
ity of the channel W is I(W) = Ej∼J [I(Wj)], where J is a fixed distribution
over indices (say J(0)).7

Polar Codes. There are explicit rate achieving Polar Codes with efficient encod-
ing and decoding parameters for ε-BEC and ε-BSC, for 0 � ε � 1 [1,2,29].

Definition 3 (Discrete Memoryless Channel). A discrete channel is defined to
be a system W : X → Y between a sender and a receiver with sender (input)
alphabet X , receiver (output) alphabet Y and a probability transition matrix
W (y|x) specifying the probability that of obtaining output y ∈ Y conditioned
on input x ∈ X . The channel is said to be memoryless if the output distribu-
tion depends only on the input distribution and is conditionally independent of
previous channel inputs and outputs.

Imported Theorem 1 (Efficient Polar Codes [29]). There is an absolute
constant μ < ∞ such that the following holds. Let W be a binary-input memory-
less output-symmetric channel with capacity I(W). Then there exists aW < ∞
such that for all ε > 0 and all powers of two N � aW /εμ, there exists a deter-
ministic poly(N) time construction of a binary linear code of block length N and
rate at least I(W)− ε and a deterministic N ·poly(log N) decoding algorithm for
the code with block error probability at most 2−N0.49

for communication over W .

Leftover Hash Lemma. The min-entropy of a discrete random variable X is
defined to be H∞(X) = − log maxx∈Supp(X) P[X = x]. For a joint distribu-
tion (A,B), the average min-entropy of A w.r.t. B is defined as H̃∞(A|B) =
− log(Eb∼B

[

2−H∞(A|B=b)
]

).

Imported Lemma 1 (Generalized Leftover Hash Lemma(LHL) [24]).
Let {Hx : {0, 1}n → {0, 1}�}}x∈X be a family of universal hash func-
tions. Then, for any joint distribution (W, I): SD ((HX(W),X, I), (U�,X, I)) �
1
2

√

2−H̃∞(W |I)2�.

7 Because W is also output symmetric.

Secure Computation from Elastic Noisy Channels 197

Weak Converse of Shannon’s Channel Coding Theorem. Let W⊗N denote N
independent instances of channel W , which takes as input alphabets from set
{0, 1}. Let the capacity of the channel W be C, for a constant C > 0. Let
C ∈ {0, 1}N be a rate R ∈ {0, 1} code. Then, if the sender transmits a random

codeword c $← C over W⊗N , the probability of error of the receiver in predicting
is Pe � 1 − 1

NR − C
R .

2.3 Chernoff-Hoeffding Bound for Hypergeometric Distribution

Imported Theorem 2 (Multiplicative Chernoff Bound for Binomial
Random Variables [13,30]). Let X1,X2, . . . Xn be independent random vari-
ables taking values in [0, 1]. Let X =

∑

i∈[n] Xi, and let μ = E[X] denote the
expected value of the X. Then, for any δ > 0, the following hold.

– Pr[X > (1 + δ)μ] < exp (−nDKL (μ(1 + δ)‖μ)).
– Pr[X > (1 − δ)μ] < exp (−nDKL (μ(1 − δ)‖μ)).

Imported Theorem 3 (Multiplicative Chernoff Bound for Hypergeo-
metric Random Variables [14,30]). If X is a random variable with hyper-
geometric distribution, then it satisfies the Chernoff bounds given in Imported
Theorem2.

2.4 Constant Rate OT Generation

Imported Theorem 4 ([32]). Let π be a protocol which UC-securely realizes
FOT in the f-hybrid with simulation error 1 − o(1). Then there exists a protocol
ρ which UC-securely realizes F⊗m

OT in the f⊗n-hybrid with simulation error 1 −
negl(κ), such that n = poly(κ) and m = Θ(n).

3 Binary Symmetric Channels

3.1 Channel Decomposition

In an (α, β)-BSC, the capacity of each channel invocation in the adversarial
receiver case is higher than the capacity when the receiver is honest. Despite
this bottleneck, our aim is to (non-interactively) synthesize n new noisy channels
such that the highest capacity of these channels when interacting with an honest
receiver surpasses the capacity of at least one channel obtained by any adversarial
receiver. Intuitively, this is achieved by decomposing the original elastic noisy
channel into sub-channels such that the sub-channels are “receiver identifiable.”
Details are provided in the following paragraphs.

It is not evident how to directly decompose an elastic BSC into receiver
identifiable sub-channels with the above property. So, we construct a different
channel from BSC channels and, in turn, we decompose that channel.

Consider the channel Cε (parameterized by λ ∈ N) defined below. Given
input bit b from the sender, pass bλ through (ε-BSC)⊗λ, i.e. λ independent copies

198 D. Khurana et al.

of ε-BSC, and provide the output string to the receiver. The receiver receives an
output string b̃[λ] ∈ {0, 1}λ.

Let id(s) represent the number of minority bits in s ∈ {0, 1}λ.8 So, we have
id : {0, 1}λ → {0, . . . , �λ/2�}. Define Si ⊆ {0, 1}n, as the set of all strings s ∈
{0, 1}λ such that id(s) = i. Given an output string b̃[λ] of the channel ˜C, we
interpret it output from the id(b̃[λ])-th sub-channel.

Now, note that the sub-channel which takes as input {0λ, 1λ} and outputs a
string in Si is (isomorphic to) an εi-BSC channel, for i ∈ {0, . . . , �λ/2�}, where:

εi :=
ελ−i · (1 − ε)i

ελ−i · (1 − ε)i + (1 − ε)λ−i · εi
=

ελ−2i

ελ−2i + (1 − ε)λ−2i

Note that εi is an increasing function of i. The probability that the i-th sub-
channel is stochastically obtained by Cε is:

pi(ε) :=
(

λ
i

)

(

ελ−i(1 − ε)i + εi(1 − ε)λ−i
)

Now, intuitively, we have decomposed Cε, a channel synthesized from ε-BSC,
into a convex linear combination of receiver identifiable sub-channels. More con-
cretely, we have shown that: Cε ≡ ∑	λ/2

i=0 pi(ε) · (εi-BSC).
Now, for any 0 < β � α < 1/2, we consider the (α, β)-BSC channel. Anal-

ogous to the channel Cε, we consider the channel Cα,β . This is identical to the
channel Cε and ε = α when the receiver is honest, and ε = β when the receiver is
adversarial. The maximum capacity of sub-channels in the honest receiver case
is: C∗ = 1−h(α0), where h(x) = −x lg(x)−(1−x) lg(1−x) is the binary entropy
function. The average capacity of sub-channels in the adversarial receiver case is:

˜C = 1 −
	λ/2
+1

∑

i=0

pi(β) · h(βi)

If we have C∗ > ˜C, then we know that best capacity from α-BSC exceeds
the average malicious capacity from β-BSC. We set n = 1/p0(α) and create n-
instantiations of the channel Cε. Then one of the sub-channels in the honest
receiver case has capacity C∗, while the average capacity of sub-channels in
the adversarial receiver case is ˜C. So, out of the n sub-channels, there is one
sub-channel in the honest receiver case which has capacity higher than some
sub-channel in the adversarial receiver case.

The next question is: for what (α, β) does there exist a λ such that C∗ > ˜C?

In the following lemma, we show that, if α < �(β) :=
(

1 + (4β(1 − β))−1/2
)−1

,
then such a λ exists.

For α = 1/3 and β = 1/6, Fig. 4 explains the receiver identifiable decompo-
sition of Cα,β for increasing values of λ until C∗ > ˜C.

8 If s has equal number of 0 s and 1s, then we define id(s) := |s| /2.

Secure Computation from Elastic Noisy Channels 199

Lemma 1. For constants 0 < α < �(β) :=
(

1 + (4β(1 − β))−1/2
)−1

, given an
(α, β)-BSC, there exists a constant λ ∈ N such that it is possible for the receiver
to sender-obliviously construct channels where the maximum capacity C∗ of one
sub-channel in the honest receiver case, over α-BSC, is greater than the average
capacity ˜C of all sub-channels in the adversarial receiver case, over β-BSC.

Consider an elastic binary symmetric channel (α, β)-BSC. For a given a value
of λ ∈ N, define π : {0, 1} → {0, 1}λ as π(b) = bλ (i.e. λ repetitions of the
bit b). Corresponding to this, we obtain channels (V, ̂V) corresponding to the
honest and adversarial receiver respectively. We have C∗ = 1 − h(α(λ)

0) and
˜C = 1 − ∑

i∈[[λ/2]+1] p
(λ)
i (β)h(β(λ)

i). Define two functions: h∗(x(λ)) := h(x(λ)
0)

and h̃(x(λ)) :=
∑

i∈[[λ/2]+1] p
(λ)
i (x)h(x(λ)

i). Note that C∗ = 1 − h∗(α(λ)) and
˜C = 1 − h̃(β(λ)). Consider the following manipulation:

h̃(x(λ)) =
∑

i∈S

p
(λ)
i (x)h(x(λ)

i) > 2
∑

i∈S

p
(λ)
i (x) · x

(λ)
i

= 2
∑

i∈S

(

λ
i

)

xi(1 − x)i · xλ−2i =
∑

i∈S

(

λ
i

)

xλ−i(1 − x)i

This is a binomial distribution with mean (1 − x)λ. By using anti-
concentration bound from [15]:

h̃(x(λ)) >
1
λ2

exp (−λDKL (1/2‖x))

= h

(

h−1

(

1
λ2 exp (λDKL (1/2‖x))

))

Next, we use the inequality h−1(x) � x/ (2 log(6/x)) from [9]. Set t(x) =
x/ (2 log(6/x)). This gives h̃(x(λ)) > h

(

t
(

1
λ2 exp(λDKL(1/2‖x))

))

. For any x ∈
(0, 1/2), consider λ → ∞. We analyze the behavior of t

(

1
λ2 exp(λDKL(1/2‖x))

)

.

Define a such that: 1
λ3 exp(λDKL(1/2‖x))polylog(λ) � t

(

1
λ2 exp(λDKL(1/2‖x))

)

= :
1

1+(1
a −1)λ = h∗(a(λ)) Observe that under these conditions a → a∗ :=

1
1+exp(DKL(1/2‖x)) = 1

1+ 1√
4x(1−x)

. Now for any fixed x and y < a∗ (as defined

above), for all sufficiently large λ ∈ N we have h̃(x(λ)) > h∗(y(λ)).

This shows that for 0 < β � α <
(

1 + (4β(1 − β))−1/2
)−1

, there exists a

constant λα,β such that for λ � λα,β we have h̃(β(λ)) > h∗(α(λ)), i.e. C∗ > ˜C.
Furthermore, this bound is tight.

3.2 Semi-honest Completeness of (α, β)-BSC for 0 < β � α < �(β)

Consider the channel Vε (parameterized by λ ∈ N) which on input a bit b, passes
bλ through (ε-BSC)⊗λ. Then, for the channels (V, ̂V) constructed by sending a λ-
repetition code via an (α, β)-BSC, let C∗ := maxj∈Supp(J) I(Vj) and ˜C := I(̂V).

200 D. Khurana et al.

We use Lemma 1 to compute λα,β corresponding to α, β where 0 < β � α < �(β),
such that C∗ > ˜C, and use the capacity-inverting encoding πα,β(b) = bλα,β . For
ease of notation, we will use λ to represent λα,β .

Let n be an integer, such that n = 1
αλ+(1−α)λ−ε

, where ε ∈ (0, αλ+(1−α)λ
/2).

Let δ = c∗
h

c̃m
− 1. Pick a polar code of rational rate r where c̃m(1 + δ/3) <

r < c̃m(1 + 2δ/3), and block-length κ/n. Let enc, dec denote the encoding and
decoding algorithms of this polar code. Then, Fig. 5 gives a protocol to UC-
securely realize n-choose-1 OT using an (α, β)-BSC, in the semi-honest setting.

Inputs: S has inputs (x1, x2, . . . xn) ∈ {0, 1}n, R has input choice c ∈ [n].
Hybrid: (α, β)-BSC for 0 < β � α < �(β).
The protocol is parameterized by κ, a multiple of n.

1. Correlation Generation:
For all i ∈ [κ2], S picks bit bi ∈ {0, 1} and sends bi,[λ] = bλ

i over the
(

(α, β)-BSC⊗λ
)

to R. Let R obtain output b̃i,[λ].

2. Receiver Message:
Let I =

{

i : i ∈ [κ2] and b̃i,[λ] ∈ {0λ, 1λ}}

. Set b̃i = b̃i,1 for all i ∈ I .

If |I| < κ2/n, abort. Else, let Sc ←
(

I
κ2/n

)

and for all � ∈ [n] \ {c},

set S� ← [κ2] \ (Sc ∪ (S1 ∪ S2 ∪ · · ·S�−1)). For all � ∈ [n], let S� =
{ind (�−1)κ2

n +1
, ind (�−1)κ2

n +2
, . . . ind �κ2

n

}. Send (S1, S2, . . . Sn) to S.

3. Sender Message:
For j ∈ [κ], � ∈ [n], pick mj,�,[rκ/n] ← {0, 1}rκ/n, compute m′

j,�,[κ/n] =
enc(mj,�,[rκ/n]). For all j ∈ [κ], � ∈ [n], i ∈ [κ/n], compute and send
yj,�,i = m′

j,�,i ⊕ b̃ind (�−1)κ2
n

+ (j−1)κ
n

+i

.

For all � ∈ [n], pick h� ← H, a hash function from {0, 1}κ2/n → {0, 1}.
Compute r� = h�(m1,�,[κ/n], m2,�,[κ/n], . . . mκ,�,[κ/n]) ⊕ x�.
For � ∈ [n], send h�, r� to R.

4. Receiver Output:
For all j ∈ [κ] and i ∈ [κ/n], compute m′

j,c,i = yj,c,i ⊕
b̃ind (c−1)κ2

n
+ (j−1)κ

n
+i

. Compute mj,c,[rκ/n] = dec(m′
j,c,[κ/n]). Output xc =

hc(m1,c,[κ/n], m2,c,[κ/n], . . . mκ,c,[κ/n]) ⊕ rc.

Fig. 5. n-choose-1 bit OT from (α, β)-BSC for 0 < β � α < �(β).

Correctness. It is easy to see that the protocol correctly implements 2-choose-1
oblivious transfer.

Lemma 2. For all 0 < β � α < �(β), for all (x1, x2, . . . xn) ∈ {0, 1}n and
c ∈ [n], the output of R equals xc with probability at least (1 − 2−κ0.4

).

Secure Computation from Elastic Noisy Channels 201

Proof. When the sender and the receiver are both honest, the expected fraction
of receiver outputs in {0λ, 1λ} is αλ + (1 − α)λ − ε. Then, the probability that
the receiver obtains less than 1/n = αλ + (1 − α)λ − ε outputs in {0λ, 1λ} is at

most 2− ε2κ

αλ+(1−α)λ , by the Chernoff bound. Moreover, by Imported Theorem1,
the decoding error when a code of block length κ/n is sent over κ channels at a
rate constant lower than capacity, is at most κ · 2− κ0.49

n .
It is easy to see that, conditioned on the receiver obtaining at least 1/n =

αλ + (1 − α)λ − ε outputs in {0λ, 1λ} and no decoding error, the protocol is
always correct. Thus, the output of R equals xc with probability at least
(1 − 2−κ0.4

).

Receiver Security. The semi-honest simulation strategy SimS is given in Fig. 6.

The simulator SimS does the following.

1. Obtain inputs (x1, x2, . . . xn) from S.

2. Follow honest strategy: pick b[κ2]
$← {0, 1}κ2

. Pass bλ
[κ2] through an honest

emulation of ((α, β)-BSC)⊗λκ2
to generate z[κ2],[λ], b̃[κ2],[λ].

3. Generate I =
{

i : i ∈ [κ2], b̃i,[λ] ∈ {0λ, 1λ}}

. Set b̃i = b̃i,1 for all i ∈ I .
If |I| < κ2/n, then abortSim. Else send a random partition, S1, S2, . . . Sn of
[κ2] to S.

4. For j ∈ [κ] and � ∈ [n], pick mj,�,[rκ/n]
$← {0, 1}rκ/n, compute m′

j,�,[κ/n] =
enc(mj,�,[rκ/n]). For all j ∈ κ, � ∈ [n] and i ∈ [κ/n], compute and send
yj,�,i = m′

j,�,i ⊕ b̃ind (�−1)κ2
n

+ (j−1)κ
n

+i

.

For all � ∈ [n], pick h
$← H, a family of universal hash functions.

Compute r� = h�(m1,�,[κ/n], m2,�,[κ/n], . . . mκ,�,[κ/n]) ⊕ x�.

Fig. 6. Sender simulation strategy for n-choose-1 bit OT.

Lemma 3. The simulation error for the semi-honest sender is at most 1 −
2− ε2κ

αλ+(1−α)λ .

Proof. The view of the sender is, VS := {(x1, x2, . . . xn), b[κ2], S1, S2, . . . Sn}.

First, the probability of abort in the real view is at most 2− ε2κ

αλ+(1−α)λ . Note
that the simulator never aborts. But, conditioned on the receiver not aborting,
we argue that the simulated sender view is identical to the real view.

For all i ∈ [κ2], the probability that b̃i,[λ] ∈ {0λ, 1λ}, is an i.i.d. random
variable, over the randomness of the (α, β)-BSC as well as the receiver. For some
fixed size s such that κ2/n � s � κ2, in the view of the sender, I : |I| = s is a

202 D. Khurana et al.

random subset of [κ] of size s, and Sc is a random partition of I of size κ/2. The
other sets are a random partition of [κ2] \Sc, and thus all the sets are a random
equal partition of [κ2]. Thus, in this case the simulation is perfect.

Thus, the simulation error is exactly equal to the probability of abort, which

is at most 2− ε2κ

αλ+(1−α)λ .

Sender Security. The semi-honest simulation strategy SimR is given in Fig. 7.

The simulator SimR does the following.

1. Obtain input choice bit c and output θ from R.

2. Pick b[κ2]
$← {0, 1}κ2

.

Pass bλ
[κ2] through an honest emulation of ((α, β)-BSC)⊗λ·κ2

and generate

z[κ2],[λ], b̃[κ2],[λ].
3. Generate I =

{

i : i ∈ [κ2], b̃i ∈ {0λ, 1λ}}

. Set b̃i = b̃i,1 for all i ∈ I .

Repeat until |I| � κ2/n. Set Sc
$←

(

I
κ2/n

)

. For all � ∈ [n] \ {c},

set S�
$←

(

[κ2] \ (Sc ∪ S1 ∪ S2 ∪ . . . S�−1)
κ2/n

)

. For all � ∈ [n], let S� =

{ind (�−1)κ2
n +1

, ind (�−1)κ2
n +2

, . . . ind �κ2
n

}.

4. Set xc = θ, and set x�
$← {0, 1} for all � ∈ [n] \ {c}.

For j ∈ [κ] and � ∈ [n], pick mj,�,[rκ/n]
$← {0, 1}rκ/n, compute m′

j,�,[κ/n] =
enc(mj,�,[rκ/n]). For all j ∈ κ, � ∈ [n] and i ∈ [κ/n], compute yj,�,i =
m′

j,�,i ⊕ b̃ind (�−1)κ2
n

+ (j−1)κ
n

+i

.

For all � ∈ [n], pick h
$← H, a family of universal hash functions.

Compute r� = h�(m1,�,[κ/n], m2,�,[κ/n], . . . mκ,�,[κ/n]) ⊕ x�.

Fig. 7. Receiver simulation strategy for n-choose-1 bit OT.

Lemma 4. The simulation error for the semi-honest receiver is at most 2−κδ/4.

Proof. The view of the receiver VR := {c, θ, b̃[κ2],[λ], z[κ2],[λ], r0, r1}. The values
b̃[κ2],[λ], z[κ2],[λ] are generated using honest sender strategy. There is no abort
from the sender side in the (α, β)-BEC hybrid or the simulated view.

Consider channel Sc, composed of κ sub-channels of block-length (κ/n), each
of capacity c̃h. Recall that B → Z → B̃, where B,Z, B̃ are random variables
denoting the sender input, leakage and receiver output respectively. Thus, the
capacity of any sub-channel of Sc, can only increase when the receiver obtains
additional leakage. For a semi-honest receiver, the capacity of each sub-channel
of Sc is at least c̃h = c∗

m(1 + δ) even when the receiver is adversarial and can

Secure Computation from Elastic Noisy Channels 203

change channel characteristic. The channels S� for � ∈ [n] \ {c} are constructed
by sampling sets of κ sub-channels at random, without replacement from the
remaining set. Since, the overall average capacity of the adversarial receiver
(semi-honest, but changes channel characteristic) is at most c∗

m, the average
capacity of any sub-channel in this remaining set is at most c∗

m(n−1−δ)/(n−1).
Then, there are at least a constant fraction (n − 1 − δ)/(n − 1) sub-channels in
this remaining set, each with capacity at most c∗

m < r.
Now, consider the event that there exists a channel S� for � ∈ [n] \ {c},

such that for more than (κ−√
κ) sub-channels in S�, the sub-channel capacity is

greater than c∗
m. This event occurs with probability at most 2−κ/3. We argue that

conditioned on this event not happening, the simulated view is (n−1)2−κ/3-close
to the receiver view in the (α, β)-BSC hybrid.

For a channel with capacity c and a code of rate r > c, a weak con-
verse of Shannon’s channel coding theorem proves the decoding error is at
least 1 − c

r , therefore the min-entropy is at least h2(1 − c
r). Then, an appli-

cation of the Leftover Hash Lemma gives us that for a randomly chosen univer-
sal hash function h, if

√
κ sub-channels have constant min-entropy >δ/2, the

hash value is at least 2−κδ/3 close to uniform. Thus for all channels S� where
� ∈ [n] \ {c}, the output r� is 2−κδ/3 close to uniform. Moreover, rc is com-
puted using honest sender strategy, so the random variable rc is identical in
the (α, β)-BSC hybrid and simulated views. Thus, the total simulation error is
(n − 1)2−κδ/3 + 2−κ/3 = n2−κδ/3 < 2−κδ/4.

3.3 Special-Malicious Completeness of (α, β)-BSC
for 0 < β � α < �(β)

In fact, it is not difficult to prove that the protocol in Fig. 5 yields (n, 1, n−1) OT
in a special-malicious setting. In this setting, the receiver is allowed to behave
maliciously, whereas the sender must (semi-)honestly send a repetition code in
the first step of the protocol, and after this step the sender is allowed to behave
maliciously. Please refer to the full version for a formal proof.

4 Full Malicious Completeness of Binary Symmetric
Channels

4.1 Fcom from (α, β)-BSC for 0 < β � α < 1/2

The protocol is presented in Fig. 8, in terms of a polar code C over the binary
alphabet, with block-length κ, rate 1 − o(1) and minimum distance ω(κ4/5).

Intuitively, the sender sends picks a codeword from the appropriate code
and sends a 2-repetition of the codeword over the BSC, to the receiver. The
commitment is statistically hiding because the capacity of the receiver is less
than the rate of the code, and therefore there is constant prediction error for
each codeword ci for i ∈ [κ]. The commitment is statistically binding because the
sender cannot flip too many bits, or send too many ‘bad’ indices to the receiver.

204 D. Khurana et al.

Inputs: S has input bit b ∈ {0, 1} and R has no input.
Hybrid: (α, β)-BSC for 0 < β � α < 1.
The protocol is parameterized by κ.

1. Commit Phase:
(a) For all i ∈ [κ], S picks codeword ci = (ci,1, ci,2, . . . ci,κ) $← C, and sends

ci,[2] = (ci,1, ci,2, . . . ci,κ, ci,1, ci,2, . . . ci,κ) over the (α, β)-BSC to R. Let
R obtain c̃i,[2].

(b) S picks h
$← H, a universal hash function family mapping {0, 1}κ2 →

{0, 1}, and sends h, y = b ⊕ h(c1, c2, . . . cκ) to R.
2. Reveal Phase:

(a) For all i ∈ [κ], S sends b, ci = (ci,1, ci,2, . . . ci,κ) to R.
(b) R accepts if all the following conditions hold:

For all i ∈ [κ], ci is a valid codeword.
For all i ∈ [κ], set Ii,1 = {j : (c̃i,j , c̃i,κ+j) = (1 − ci,j), (1 − ci,j)}.
Then |Ii,1| � (1 − α)2(κ + κ2/3).
For all i ∈ [κ], set Ii,2 = {j : c̃i,j �= c̃i,κ+j}. Then |Ii,2| � 2α(1 −
α)(κ + κ2/3).
b = y ⊕ h(c1, c2, . . . cκ).

Fig. 8. UC-secure Fcom from (α, β)-BSC for 0 < β � α < 1.

If he does, he will be caught with overwhelming probability. If he sends a few
bad/flipped bits, the minimum distance of the code will still hash them down to
the same value.

Correctness. For honest sender strategy, using a Chernoff bound, it is possible
to show that the size of I1 and I2 is bounded by (1 − α)2(κ + κ2/3) and 2α(1 −
α)(κ+κ2/3) with probability at least 1−2.2−κ/3. Thus, when S and R are both
honest, then R accepts Reveal(Commit(b)) for any b ∈ {0, 1} with probability at
least 1 − 2−κ/4.

Receiver Security (Statistical Binding/Extractability). It suffices to con-
sider a dummy sender S and malicious environment ZS , such that the dummy
sender forwards all messages from ZS to the honest receiver/simulator, and vice-
versa.

Without loss of generality, the semi-honest simulation strategy SimS can be
viewed to interact directly with ZS . SimS is described in Fig. 9.

Lemma 5. The simulation error for the malicious sender is at most 2−κ0.5
.

Proof. First, note that both the real and ideal views reject with probability
1 when c′

i is not a valid codeword, for any i ∈ [κ]. Next, if |Ii,1| > 2κ2/3 or

Secure Computation from Elastic Noisy Channels 205

The simulator SimS does the following.

1. Commit Phase:
(a) For all i ∈ [κ], obtain h, y, ci,[2] from ZS .
(b) For all i ∈ [κ], compute the nearest codeword c̃i to ci =

{ci,1, ci,2 . . . ci,κ}.
(c) Extract bit b′ = y ⊕ h(c̃i, c̃2, . . . c̃κ) and send it to the ideal Fcom

functionality.
2. Reveal Phase:

(a) For all i ∈ [κ], obtain c′
i from ZS .

(b) Allow the ideal functionality to output the extracted bit b′ if all the
following conditions hold (and otherwise reject):

For all i ∈ [κ], c′
i is a valid codeword.

For all i ∈ [κ], set Ii,1 = {j : c′
i,j �= ci,j}. Then |Ii,1| � 2κ2/3.

For all i ∈ [κ], set Ii,2 = {j : ci,j �= ci,κ+j}. Then |Ii,2| � 2κ2/3.

Fig. 9. Sender simulation strategy for Fcom.

|Ii,2| > 2κ2/3, then the real view rejects with probability at least (1 − 2−κ2/3
),

whereas the ideal view always rejects.
Conditioned on the receiver not rejecting, it remains to argue that the bit

b′ extracted by the simulator (and later output to the receiver) is distributed
identically in the hybrid and ideal worlds. Conditioned on not rejecting, for each
i ∈ [κ], the distance between c′

i and ci is at most |Ii,1| + |Ii,2| = 4κ2/3. Then,
because the code has minimum distance ω(κ4/5), the nearest codeword c̃i to ci is
actually c′

i itself. Therefore, the bit b′ = y⊕h(c̃i, c̃2, . . . c̃κ) = y⊕h(c′
1, c

′
2, . . . c

′
κ)

is distributed identically in the hybrid and ideal worlds in this case.
Thus the simulation error is at most 2.2−κ2/3

< 2−κ0.5
.

Sender Security (Statistical Hiding/Equivocability). It suffices to con-
sider a dummy receiver R and malicious environment ZR, such that the dummy
receiver forwards all messages from ZR to the honest receiver/simulator, and
vice-versa.

Without loss of generality, the semi-honest simulation strategy SimR can be
viewed to interact directly with ZR. SimR is described in Fig. 10.

Lemma 6. The simulation error for the malicious receiver is at most 2.2−κ.

Proof. For all i ∈ [κ] and honestly generated ci, the channel c̃i,[2] has a constant
fraction 2β(1 − β) bits of the form 01 or 10, which count as erasures. Thus,
the capacity of each such channel is at most 1 − 2β(1 − β). Since the rate of
the code sent over channel c̃i,[2] is 1 − o(1), the entropy in the received string
is at least 1 − 1−2β(1−β)

1−o(1) ≈ 2β(1 − β). Therefore, via the leftover hash lemma,
h(c1, c2, . . . cκ) is at least 1 − 2−κ close to uniform, and therefore, y is at least
1 − 2−κ close to uniform.

206 D. Khurana et al.

The simulator SimR does the following.

1. Commit Phase:
(a) Wait for the honest sender to send bit b′ to the ideal Fcom functionality.
(b) For all i ∈ [κ], pick codeword ci = (ci,1, ci,2, . . . ci,κ) ← C, and send

ci,[2] = (ci,1, ci,2, . . . ci,κ, ci,1, ci,2, . . . ci,κ) over the (α, β)-BSC to R. Ob-
tain output c̃i,[2] and leakage z̃i,[2] for R.

(c) Pick h←H, a universal hash function family mapping {0, 1}κ2 → {0, 1},
and send y = h(c1, c2, . . . cκ) to R.

2. Reveal Phase:
(a) Allow the ideal functionality to output the extracted bit b′.
(b) If b′ = 0, then output ci, c2, . . . cn to R.
(c) Else for all i ∈ [κ],

Set codeword c′
i = ci.

Set Ii = {j : z̃i,j �= z̃i,κ+j} (these are the erased indices).
Flip c′

i,j at random indices ind ∈ Ii, ensuring that c′
i remains a

valid codeword.
(d) Check if h(c′

1, c
′
2, . . . c

′
κ) �= h(c1, c2, . . . cκ). If not, repeat step (c).

Fig. 10. Receiver simulation strategy for Fcom.

Moreover, with probability at least 1 − 2−κ, it is possible to efficiently find a
different set of codewords c′

i which hash to a different bit, for the same output
c̃i and z̃i of the receiver.

4.2 Malicious Completeness of (α, β)-BSC for 0 < β � α < �(β)

To make the protocol in Sect. 3.3 secure against a general malicious sender
instead of only a special-malicious one, we must ensure correctness of the rep-
etition code sent in Step 1 by the sender. To ensure this, we make use of the
commitment protocol Fcom.

The functionality Fcom can be constructed from any (α, β)-BSC as demon-
strated in Sect. 4.1. The sender and receiver use Fcom to toss random coins,
and then implement a cut-and-choose based protocol to implement Step 1 of
the special-malicious protocol. The protocol is presented in Fig. 11 in the Fcom

and (α, β)-BSC hybrids. The protocol (including commitments) always uses the
(α, β)-BSC from the sender to the receiver. Since OT can be reversed, this demon-
strates fixed-role completeness of (α, β)-BSC for 0 < β � α < �(β). Step 1 of the
protocol in Sect. 3.3 is modified as follows.

Analysis. The sender and receiver use Fcom to toss common random coins.
In step 1, the sender sends λ-repetitions of κ6 bits over the (α, β)-BSC. Addi-

tionally, he sends a commitment to each of these bits. Then, the parties pick a

Secure Computation from Elastic Noisy Channels 207

Inputs: S has inputs (x0, x1) ∈ {0, 1}2 and R has input choice bit c ∈ {0, 1}.
Hybrid: (α, β)-BSC for 0 < β � α < �(β).

1. Correlation Generation:
(a) Sender Message: For all i ∈ [κ6], S picks bit bi ∈ {0, 1} and sends

bi,[λ] = bλ
i over the (α, β)-BSC to R. Let R obtain output b̃i,[λ]. S

sends di = com(bi) to R.
(b) Coin tossing in the well: Parties S and R use Fcom to generate random

coins in the following manner. S picks random rS ←{0, 1}κ6

and sends

com(rS) to R. Then, R picks random rR ←{0, 1}κ6

and sends rR to S.
Then, S decommits to rS , and if accepted, both parties obtain shared
randomness r = rS ⊕ rR.

(c) Cut and Choose: Parties use randomness r to pick S ←
(

[κ6]
κ6/2

)

and

T ←
(

[κ6] \ S
κ2

)

. S reveals bi for all i ∈ S. Let I = {i : b̃i �= αλ}. R
aborts if |I| > (1 − αλ)(κ6/2 + κ3.1).
Else, S and R use this set T , to continue the rest of the protocol
according to Fig. 5 .

Fig. 11. 2-choose-1 bit OT from (α, β)-BSC for 0 < β � α < �(β).

random subset, consisting of half of the values sent in step 1, and the sender is
required to reveal these values.

Next, out of the remaining κ6/2 commitments, both parties pick a random
subset of size κ5. Then, with probability at least (1−1/κ), this subset is such that
at most κ3.1 of the values committed to do not match the repetition code (that
is, the statistical check would have passed passed). If the sender and receiver
pick a random set of κ2 random values out of this set of κ5 values, then with
probability at least (1 − 1/κ1.2), all of them are correct repetition codes.

Therefore, we obtain a statistical OT which fails with probability at most
2/κ1.2, we call such a functionality that fails with vanishing probability, F

˜OT
(δ),

which is formally described in Fig. 12. This functionality F
˜OT

(δ), can then be
compiled using [32,34] to obtain constant-rate OT, following [40]. We provide
the details of this compiler in the full version.

This completes the proof of Theorem 1.

Functionality F
˜OT

(δ). Parameterized by a function δ(κ).

Set b = 1 with probability b = δ(κ), otherwise set b = 0.
Provide the parties access to a 2-choose-1 bit OT functionality. If b = 1,
let the adversary control the functionality.

Fig. 12. F
˜OT

(δ) Functionality

208 D. Khurana et al.

5 Conclusion

It is an interesting open problem to explore whether our completeness results
extend to parameters α > �(β), or if there are impossibility results for this
setting.

Unfair channels [22] give a theoretical model, general enough to capture many
realistic noisy channels. However, in light of strong impossibility results for the
completeness of unfair channels, we weaken the adversarial model resulting in
what we call elastic noisy channels.

We show that this model circumvents the impossibility results in the unfair
channel setting, and show a wide range of parameters for which elastic channels
can be used to securely realize OT. We believe our techniques are of independent
interest and can be leveraged, along with other ideas, to close the gap between
the known feasible and infeasible parameters in the unfair channel setting.

5.1 Sender-Elastic Channels Reduction to (Receiver-) Elastic
Channels

We can reduce sender-elastic BSC to a (receiver-) elastic BSC in the following
manner. Suppose Alice is the sender and sends a bit b through the sender-elastic
BSC. She receives a leakage b⊕E1, where E1 = Ber(β). Bob, the receiver, obtains
C = b ⊕ E1 ⊕ E2, where E2 = Ber(γ) such that Ber(α) ≡ Ber(β) + Ber(γ).

We reverse this channel using the following technique. Bob defines T :=
C ⊕R, where R is a uniform random bit, and sends T to Alice. Alice now defines
S := b⊕T . Now, interpret R as the bit sent and S as the received bit. It is clear
that this is a (α, γ)-BSC channel. And, it can also be formally argued that this
one-to-one transformation is tight.

References

1. Arikan, E.: Channel polarization: a method for constructing capacity-achieving
codes. In: Kschischang, F.R., Yang, E. (eds.) 2008 IEEE International Symposium
on Information Theory, ISIT 2008, Toronto, ON, Canada, 6–11 July 2008, pp.
1173–1177. IEEE (2008). http://dx.doi.org/10.1109/ISIT.2008.4595172

2. Arikan, E.: Channel polarization: a method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theor.
55(7), 3051–3073 (2009). http://dx.doi.org/10.1109/TIT.2009.2021379

3. Beaver, D.: Perfect privacy for two-party protocols. In: Feigenbaum, J., Merritt,
M. (eds.) Proceedings of DIMACS Workshop on Distributed Computing and Cryp-
tography, vol. 2, pp. 65–77. American Mathematical Society (1989)

4. Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure
computation. In: Wiener, M.J. (ed.) Advances in Cryptology - CRYPTO 1999.
LNCS, vol. 1666, pp. 80–97. Springer, Heidelberg (1999)

5. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM 15th Conference
on Computer and Communications Security, CCS 2008, pp. 257–266. ACM Press,
Alexandria (27–31 October 2008)

http://dx.doi.org/10.1109/ISIT.2008.4595172
http://dx.doi.org/10.1109/TIT.2009.2021379

Secure Computation from Elastic Noisy Channels 209

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, Chicago
(2–4 May 1988)

7. Brassard, G., Crépeau, C., Wolf, S.: Oblivious transfers and privacy amplification.
J. Cryptol. 16(4), 219–237 (2003). http://dx.doi.org/10.1007/s00145-002-0146-4

8. Cachin, C.: On the foundations of oblivious transfer. In: Nyberg, K. (ed.) Advances
in Cryptology - EUROCRYPT 1998. LNCS, vol. 1403, pp. 361–374. Springer,
Heidelberg (1998)

9. Calabro, C.: The exponential complexity of satisfiability problems. Ph.D. thesis
(2009). http://www.escholarship.org/uc/item/0pk5w64k

10. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th Annual ACM Symposium on
Theory of Computing, pp. 494–503. ACM Press, Montréal (19–21 May 2002)

11. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using Tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPPT 2008. LNCS,
vol. 4965, pp. 545–562. Springer, Heidelberg (2008)

12. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th Annual ACM Symposium on Theory of Computing,
pp. 11–19. ACM Press, Chicago (2–4 May 1988)

13. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Stat. 23, 493–507 (1952)

14. Chvátal, V.: The tail of the hypergeometric distribution. Discrete Math. 25(3),
285–287 (1979). http://www.sciencedirect.com/science/article/pii/0012365X799
00840

15. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley,
New York (2006)

16. Crépeau, C.: Efficient cryptographic protocols based on noisy channels. In: Fumy,
W. (ed.) Advances in Cryptology - EUROCRYPT 1997. LNCS, vol. 1233, pp.
306–317. Springer, Heidelberg (1997)

17. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security
assumptions (extended abstract). In: 29th Annual Symposium on Foundations
of Computer Science, pp. 42–52. IEEE Computer Society Press, White Plains,
New York (24–26 October 1988)

18. Crépeau, C., Kilian, J., Savvides, G.: Interactive hashing: an information theoretic
tool (invited talk). In: Safavi-Naini, R. (ed.) ICITS 08: 3rd International Con-
ference on Information Theoretic Security. LNCS, vol. 5155, pp. 14–28. Springer,
Heidelberg (2008)

19. Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from
almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 04: 4th Interna-
tional Conference on Security in Communication Networks. LNCS, vol. 3352, pp.
47–59. Springer, Heidelberg (2005)

20. Damg̊ard, I., Fehr, S., Morozov, K., Salvail, L.: Unfair noisy channels and oblivious
transfer. In: Naor, M. (ed.) TCC 2004: 1st Theory of Cryptography Conference.
LNCS, vol. 2951, pp. 355–373. Springer, Heidelberg (2004)

21. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.)
Advances in Cryptology - CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer,
Heidelberg (2006)

http://dx.doi.org/10.1007/s00145-002-0146-4
http://www.escholarship.org/uc/item/0pk5w64k
http://www.sciencedirect.com/science/article/pii/0012365X79900840
http://www.sciencedirect.com/science/article/pii/0012365X79900840

210 D. Khurana et al.

22. Damg̊ard, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. In: Stern, J.
(ed.) Advances in Cryptology - EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73.
Springer, Heidelberg (1999)

23. Damg̊ard, I., Nielsen, J.B., Wichs, D.: Isolated proofs of knowledge and isolated
zero knowledge. In: Smart, N.P. (ed.) Advances in Cryptology - EUROCRYPT
2008. LNCS, vol. 4965, pp. 509–526. Springer, Heidelberg (2008)

24. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008). http://dx.doi.org/10.1137/060651380

25. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology -
CRYPTO 1982, pp. 205–210. Plenum Press, New York (1982)

26. Gallager, R.: Information Theory and Reliable Communication. Wiley, New York
(1968)

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual
ACM Symposium on Theory of Computing, pp. 218–229. City, New York (25–27
May 1987)

28. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010: 7th Theory
of Cryptography Conference. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg
(2010)

29. Guruswami, V., Xia, P.: Polar codes: speed of polarization and polynomial gap to
capacity. In: 54th Annual Symposium on Foundations of Computer Science, pp.
310–319. IEEE Computer Society Press, Berkeley (26–29 October 2013)

30. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963). http://www.jstor.org/stable/2282952

31. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: 30th Annual Symposium on Foundations of
Computer Science, pp. 230–235. IEEE Computer Society Press, Research Triangle
Park (30 October–1 November 1989)

32. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.,
Wullschleger, J.: Constant-rate oblivious transfer from noisy channels. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 667–684. Springer,
Heidelberg (2011)

33. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Extracting correlations. In:
50th Annual Symposium on Foundations of Computer Science, pp. 261–270. IEEE
Computer Society Press, Atlanta (25–27 October 2009)

34. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner, D. (ed.) Advances in Cryptology - CRYPTO 2008. LNCS,
vol. 5157, pp. 572–591. Springer, Heidelberg (2008)

35. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) Advances in Cryptology - EUROCRYPT 2007. LNCS,
vol. 4515, pp. 115–128. Springer, Heidelberg (2007)

36. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th Annual ACM
Symposium on Theory of Computing, pp. 20–31. ACM Press, Chicago (2–4 May
1988)

37. Kilian, J.: A general completeness theorem for two-party games. In: 23rd Annual
ACM Symposium on Theory of Computing, pp. 553–560. ACM Press, New Orleans
(6–8 May 1991)

http://dx.doi.org/10.1137/060651380
http://www.jstor.org/stable/2282952

Secure Computation from Elastic Noisy Channels 211

38. Kilian, J.: More general completeness theorems for secure two-party computation.
In: 32nd Annual ACM Symposium on Theory of Computing, pp. 316–324. ACM
Press, Portland (21–23 May 2000)

39. Korjik, V., Morozov, K.: Generalized oblivious transfer protocols based on
noisy channels. In: Gorodetski, V.I., Skormin, V.A., Popyack, L.J. (eds.)
MMM-ACNS 2001. LNCS, vol. 2052, pp. 219–229. Springer, Heidelberg (2001).
http://dx.doi.org/10.1007/3-540-45116-1 22

40. Kraschewski, D., Maji, H.K., Prabhakaran, M., Sahai, A.: A full characterization
of completeness for two-party randomized function evaluation. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 659–676. Springer,
Heidelberg (2014)

41. Künzler, R., Müller-Quade, J., Raub, D.: Secure computability of functions in
the IT setting with dishonest majority and applications to long-term security. In:
Reingold, O. (ed.) TCC 2009: 6th Theory of Cryptography Conference. LNCS, vol.
5444, pp. 238–255. Springer, Heidelberg (2009)

42. Kushilevitz, E.: Privacy and communication complexity. In: 30th Annual Sympo-
sium on Foundations of Computer Science. pp. 416–421. IEEE Computer Society
Press, Research Triangle Park, North Carolina (30 October–1 November 1989)

43. Maji, H.K., Prabhakaran, M., Rosulek, M.: Complexity of multi-party computation
problems: the case of 2-party symmetric secure function evaluation. In: Reingold,
O. (ed.) TCC 2009: 6th Theory of Cryptography Conference. LNCS, vol. 5444, pp.
256–273. Springer, Heidelberg (2009)

44. Maji, H.K., Prabhakaran, M., Rosulek, M.: A unified characterization of complete-
ness and triviality for secure function evaluation. In: Galbraith, S.D., Nandi, M.
(eds.) Progress in Cryptology INDOCRYPT 2012. LNCS, vol. 7668, pp. 40–59.
Springer, Heidelberg (2012)

45. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computa-
tion system. In: Blaze, M. (ed.) Proceedings of the 13th USENIX Security Sym-
posium, 9–13 August 2004, San Diego, CA, USA, pp. 287–302. USENIX (2004).
http://www.usenix.org/publications/library/proceedings/sec04/tech/malkhi.html

46. Moran, T., Segev, G.: David and Goliath commitments: UC computation
for asymmetric parties using tamper-proof hardware. In: Smart, N.P. (ed.)
Advances in Cryptology - EUROCRYPT 2008, 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Proceedings. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008).
http://dx.doi.org/10.1007/978-3-540-78967-3 30

47. Nascimento, A.C.A., Winter, A.J.: On the oblivious-transfer capacity
of noisy resources. IEEE Trans. Inf. Theor. 54(6), 2572–2581 (2008).
http://dx.doi.org/10.1109/TIT.2008.921856

48. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
Advances in Cryptology - CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer,
Heidelberg (2012)

49. Rabin, M.: How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard Aiken Computation Laboratory (1981)

50. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st Annual ACM Symposium on Theory
of Computing, pp. 73–85. ACM Press, Seattle (15–17 May 1989)

51. Savvides, G.: Interactive Hashing and Reductions Between Oblivious Transfer Vari-
ants. Ph.D. thesis, Montreal, Que., Canada, Canada, aAINR32237 (2007)

http://dx.doi.org/10.1007/3-540-45116-1_22
http://www.usenix.org/publications/library/proceedings/sec04/tech/malkhi.html
http://dx.doi.org/10.1007/978-3-540-78967-3_30
http://dx.doi.org/10.1109/TIT.2008.921856

212 D. Khurana et al.

52. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4),
656–715 (1949)

53. Wiesner, S.: Conjugate coding. SIGACT News 15, 78–88 (1983).
http://doi.acm.org/10.1145/1008908.1008920

54. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)
Advances in Cryptology - EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232.
Springer, Heidelberg (2006)

55. Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) Advances
in Cryptology - EUROCRYPT 2007. LNCS, vol. 4515, pp. 555–572. Springer,
Heidelberg (2007)

56. Wullschleger, J.: Oblivious transfer from weak noisy channels. In: Reingold, O.
(ed.) TCC 2009: 6th Theory of Cryptography Conference. LNCS, vol. 5444, pp.
332–349. Springer, Heidelberg (2009)

57. Yao, A.C.C.: Theory and applications of trapdoor functions (extended abstract).
In: 23rd Annual Symposium on Foundations of Computer Science. pp. 80–91. IEEE
Computer Society Press, Chicago (3–5 November 1982)

http://doi.acm.org/10.1145/1008908.1008920

All Complete Functionalities are Reversible

Dakshita Khurana1(B), Daniel Kraschewski2, Hemanta K. Maji3,
Manoj Prabhakaran4, and Amit Sahai1

1 Department of Computer Science, Center for Encrypted Functionalities,
UCLA, Los Angeles, USA

{dakshita,sahai}@cs.ucla.edu
2 TNG Technology Consulting GmbH, Munich, Germany

daniel.kraschewski@tngtech.com
3 Department of Computer Science, Purdue University, West Lafayette, USA

hmaji@purdue.edu
4 Department of Computer Science, University of Illinois,

Urbana-Champaign, USA
mmp@uiuc.edu

Abstract. Crépeau and Santha, in 1991, posed the question of
reversibility of functionalities, that is, which functionalities when used
in one direction, could securely implement the identical functionality in
the reverse direction. Wolf and Wullschleger, in 2006, showed that obliv-
ious transfer is reversible. We study the problem of reversibility among
2-party SFE functionalities, which also enable general multi-party com-
putation, in the information-theoretic setting.

We show that any functionality that enables general multi-party com-
putation, when used in both directions, is reversible. In fact, we show that
any such functionality can securely realize oblivious transfer when used
in an a priori fixed direction. This result enables secure computation
using physical setups that parties can only use in a particular direction
due to inherent asymmetries in them.

D. Khurana and A. Sahai—Research supported in part from a DARPA/ARL SAFE-
WARE award, NSF Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096,
and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award,
an equipment grant from Intel, and an Okawa Foundation Research Grant. This
material is based upon work supported by the Defense Advanced Research Projects
Agency through the ARL under Contract W911NF-15-C-0205. The views expressed
are those of the author and do not reflect the official policy or position of the Depart-
ment of Defense, the National Science Foundation, or the U.S. Government.
D. Khurana, H.K. Maji, M. Prabhakaran and A. Sahai—Work done in part while
visiting the Simons Institute for Theoretical Computer Science, supported by the
Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography
through NSF grant #CNS-1523467.
D. Kraschewski—Part of the research leading to these results was done while the
author was at KIT and Technion. Supported by the European Union’s Tenth Frame-
work Programme (FP10/2010-2016) under grant agreement no. 259426 – ERC Cryp-
tography and Complexity.
M. Prabhakaran—Research supported by NSF grant 1228856.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 213–242, 2016.
DOI: 10.1007/978-3-662-49896-5 8

214 D. Khurana et al.

Keywords: Secure function evaluation · Information-theoretic secu-
rity · UC-security · Reversibility of functionalities · Fixed-role reduction

1 Introduction

In 1991, Crépeau and Santha [7] posed the following question. Given oblivious
transfers in one direction can we implement oblivious transfer in the opposite
direction? That is, given oblivious transfers where Alice is the sender and Bob is
the receiver, can we securely realize an oblivious transfer where Bob is the sender
and Alice is the receiver? Wolf and Wullschleger [22] resolved this question in
the affirmative. This result inspired several interesting results in cryptography,
like offline generation of correlated private randomness independent of the target
functionality being computed in secure computation [4,12] and (comparatively)
easily introducing adaptive-security to secure computation protocols [18]. The
proof of reversibility for oblivious transfer of [22] appears to be intimately tied to
the specifics of the oblivious transfer functionality. Could reversibility, however,
be a more general phenomenon?

Some functionalities, like simultaneous exchange, are inherently reversible.
But we are most interested in functionalities which provide us general secure [3]
multi-party computation [9,23], i.e. the complete functionalities. Restricted to
the class of complete functionalities, the line of inquiry initiated in 1991 naturally
leads to the following fundamental question.

Which Complete Functionalities can be Reversed?

We study this problem in the two-party setting for secure function evaluation
(SFE) functionalities. Our work provides a full characterization of SFE function-
alities that are reversible as well as sufficient for information-theoretic general
secure multi-party computation. In fact, we show that every complete SFE func-
tionality is reversible. In other words, we show that if using a functionality in
both directions is powerful enough to enable general secure function evaluation,
then in fact using the functionality in just one direction is enough.

Aside from its inherent theoretical appeal, the question of reversibility is also
motivated by asymmetries that may be present in different systems. For example,
if some physical phenomenon between two parties Alice and Bob is being utilized
in order to carry out secure computations, it may be that only a powerful entity
can play the role of Alice, but a weak device can play the role of Bob. In such an
scenario, it would be critical to ensure that the cryptographic advantage offered
by the physical phenomenon is sufficient for secure computation even if roles
cannot be reversed.

We obtain our characterization of reversibility, in fact, by studying the more
general problem of characterizing all 2-party complete functionalities that can be
used in fixed roles to enable secure information-theoretic two-party computation,
i.e. the characterization of fixed-role completeness.

All Complete Functionalities are Reversible 215

1.1 Our Contributions

In this work, we study 2-party secure function evaluation (SFE) functionalities in
the information-theoretic UC-setting [3]. Our first result shows that any complete
2-party SFE functionality is reversible.

Informal Theorem 1 (Reversibility Characterization). Any complete
2-party SFE functionality F is reversible.

Our construction is also constant rate. That is, n instances of the functionality
in one direction is used to implement Θ(n) instances of the functionality in the
reverse direction.

A functionality F is complete if it can be used (in both directions) to securely
realize the oblivious transfer functionality. For the stronger security notion of
fixed-role completeness, we show that any complete functionality, when used in
fixed-role, is also complete.

Informal Theorem 2 (Fixed-Role Completeness Characterization).
Any complete 2-party SFE functionality F is also fixed-role complete.

Similar to the previous result, this result is also constant rate. That is, using n
instances of the F functionality in a fixed direction, we implement Θ(n) instances
of the oblivious transfer functionality.

Additionally, we also show that the commitment functionality can be securely
realized in the F-hybrid if and only if F is complete (see Corollary 1). The proof
is sketched in Sect. 1.4. This rules out the possibility of a functionality F which is
of an intermediate complexity in the following sense: it enables the computation
of the commitment functionality (a non-trivial functionality) but not the (all
powerful) oblivious transfer functionality.

1.2 Prior Works

The problem of reversibility was initially posed by Crépeau and Santha [7] and
the reversibility of oblivious transfer (and oblivious linear function evaluation)
was exhibited by Wolf and Wullschleger [22].

There are several results characterizing completeness of functionalities in dif-
ferent settings. The oblivious transfer functionality was identified by Wiesner and
Rabin [20,21]. Brassard et al. [2] showed the equivalence between various flavors
of OT. In a seminal work, Kilian showed the active-completeness of OT [13].
Prior to this, the passive-completeness of OT was shown in [10,11]. Crépeau
and Kilian showed that noisy channels are active-complete [5].

The first characterization of completeness appeared in the seminal work of
Kilian [14]. In the asymmetric SFE setting, Beimel et al. [1] provided a char-
acterization. Kilian, in another seminal work in 2000, vastly generalized these
results [15]. Subsequent works extended Kilian’s result for active-completeness
in two different directions: [6] considered “channel functions;” [17] considered
deterministic functions.

Recently, the full characterization of 2-party complete functionalities in the
semi-honest [19] and malicious [16] settings were obtained.

216 D. Khurana et al.

1.3 Technical Overview: Reversibility of Functionalities

Let F be a randomized two-party functionality between parties A and B, and
let Fcore denote the redundancy-free core of F (obtained after removing redun-
dancies from F , as described in Sect. 3.2 of our paper). Kraschewski et al. [16]
showed that F is complete ⇐⇒ Fcore is not simple.

To develop intuition for ‘simple’ functions, consider the following example of
a ‘simple’ two-party functionality Fcoin. Fcoin ignores the inputs of both parties
and just outputs a common uniform independent random bit to both parties.
The formal notion of a simple function generalizes this to arbitrary randomized
functions, by ensuring that if the parties start with independent inputs, then
conditioned on the “common information” present after evaluating Fcore, the
views of the two players remain independent of each other. Naturally then, a
non-simple function is one where the views of the two players are not indepen-
dent conditioned on the “common information” present after evaluating Fcore

on independent inputs. For the rest of this exposition, we will assume that F is
redundancy-free, and thus F = Fcore.

Kraschewski et al. [16] also showed how to obtain UC commitments from
either A → B or B → A, but not necessarily in both directions, using any non-
simple F . W.l.o.g. for our case analysis and the examples below, we assume that
F already gives commitments from A → B.

The main technical challenge in our paper, is to obtain commitments from
B → A using any complete (equivalently, non-simple) F . This is done by parti-
tioning all complete functionalities into three exhaustive cases: 1(a), 1(b) and 2.
We will illustrate how we achieve this with the help of representative examples
for each case (Figs. 1, 2 and 3). We define the notion of ‘extreme views’ and
‘intersection’ below, after which we describe our partition and explain the main
ideas that allow us to obtain commitments in each case.

Extreme Views: Consider the example function matrices in Figs. 1, 2 and 3.
For simplicity, these examples have no redundancies, and are therefore equivalent
to their core. Alice views are rows, and each row is a tuple (x,w): where x is her
input and w is the output she received. Bob views are columns and each column
is a tuple (y, z), where y is his input and z is his output. ⊥ denotes no input.
Double-lines separate sets of columns that correspond to the same input of Bob.
The entry in row (x,w) and column (y, z) denotes PrF [(w, z) | (x, y)].

A view of Bob corresponds to a column in the matrix, labelled by the (input,
output) for that view. An extreme view of Bob is a column that cannot be
written as a convex linear combination of other columns in the matrix. Note
that for any non-simple F , both parties will have at least one extreme view.

Warmup: Extreme views guarantee binding. Looking ahead, extreme views will
form an important part of our analysis. Consider the following illustrative sit-
uation: Suppose Alice and Bob invoke the functionality in Fig. 2 many times
on uniformly random inputs (assume they picked their inputs honestly). After
this, Bob is supposed to send Alice the indices of all executions where he received

All Complete Functionalities are Reversible 217

(1, 0). Suppose malicious Bob instead decides to send to Alice some indices where
his view was (0, 1) or (0, 0).

Note that corresponding to Bob’s view (1, 0), Alice always obtains view
(⊥, 1). On the other hand corresponding to Bob’s view (0, 1), Alice obtains view
(⊥, 0) with constant probability. Corresponding to Bob’s view (0, 0), Alice always
obtains view (⊥, 0). Since Bob cannot guess what view Alice obtained, if Bob
tries to cheat by claiming that his view was (1, 0) when actually his view was
(0, 1) or (0, 0), Alice will sometimes end up with a view of (⊥, 0) and thus imme-
diately detect Bob’s cheating with constant probability. This weakly binds Bob
to his views. We use repetition techniques (error-correcting codes) to amplify
this weak binding property.

More generally, since extreme views cannot be expressed as a convex linear
combination of other views, it impossible for any party to obtain other views
and claim that he obtained a specific extreme view without getting caught. In
the example situation above, no convex linear combination of other views (0, 1)
and (0, 0) can be claimed to be the extreme view (1, 0). The same thing is true
for all extreme views in any functionality F .

Intersecting Views: A view of Alice, VA, intersects with a view of Bob, VB, if the
joint view (VA, VB) occurs with non-zero probability on invoking F with uniform
distribution over both inputs.

Case Analysis. Given this terminology, we partition the set of all complete func-
tionalities into three sets, corresponding to Cases 1(a), 1(b) and 2. [16] already
show how to obtain commitments from any functionality in what we call Case
1(a). The major technical contribution of our paper is to obtain commitments
from functionalities that lie in Cases 1(b) and 2.

We will now walk through these cases using example functionalities from
Figs. 1, 2 and 3. We will first define Case 1(a), and then describe how we partition
the remaining possibilities for complete functionalities into Cases 1(b) and 2. At
this level, the fact that they are exhaustive will be trivial to see. For Cases 1(b)
and 2, we will then explain the main ideas behind obtaining commitments from
B → A, with Y with the help of examples.

Fig. 1. Case 1(a). Both columns are
extreme.

Fig. 2. Case 1(b). (0,0) and (1,0) are
extreme. col(0, 1) ≡ 1/3 × col(0, 0) +
2/3 × col(1, 0)

218 D. Khurana et al.

Fig. 3. Case 2. (0,0), (0,1) and (0,2) are extreme. col(1, 0) ≡ 1/4 × col(0, 0) + 3/4 ×
col(1, 0). col(1, 1) ≡ 1/4 × col(0, 2) + 3/4 × col(1, 0).

– Case 1(a): Kraschewski et al. [16] obtained commitments from P1 → P2 using
any functionality between parties P1 and P2 which has the following property:
There exist at least 2 extreme views (V1

P1
,V2

P1
) of P1 which intersect with the

same view VP2 of P2, i.e. both joint views (V1
P1

, VP2) and (V2
P1

, VP2) occur with
non-zero probability. They also show that any complete functionality must
satisfy this property in at least one direction, either P1 → P2 or P2 → P1.

Recall that we require commitments from B → A. We define Case 1(a) as
the set of all F which satisfy the above property in the B → A direction. That
is, Case 1(a) consists of all F for which there exist at least 2 extreme views
(V1

B ,V2
B) of Bob that intersect with the same view VA of Alice, i.e. both joint

views (V1
B , VA) and (V2

B , VA) occur with non-zero probability.
Observe that in the example in Fig. 1, both Bob views (⊥, 0) and (⊥, 1) are

extreme, and they intersect with common Alice view (⊥, 0). Figure 1 satisfies
the above property from B → A and lies in Case 1(a). Thus, [16] give B → A
commitments for this case.

At a very intuitive level, Bob is committed to the views he obtained. He
reveals these views in the decommitment phase. The common intersecting view
of Alice occurs sometimes, and in these instances, she does not know what
view Bob obtained. This property is amplified to obtain hiding. As illustrated
above, Bob cannot equivocate extreme views, and [16] used this property of
the extreme views to obtain binding as illustrated above.

Remaining Cases are Exhaustive. Let VB denote the set of all extreme views
of Bob. Let ̂YB := {y : ∃z, such that (y, z) ∈ VB}, that is ̂YB denotes the
set of Bob inputs, which have at least one corresponding view in VB . Let
̂VB denote the set of all views of Bob that have some y ∈ ̂YB as input,
i.e., ̂VB = {(y, z) : y ∈ ̂YB , (y, z) occurs with non-zero probability}. Note: ̂VB

contains all extreme Bob views, and may also contain some non-extreme Bob
views.

• Case 1, i.e. Case 1(a) ∪ Case 1(b), consists of all complete functionalities
for which two views in ̂VB intersect with a common Alice view.

• Case 2 consists of all complete functionalities for which no two views in
̂VB intersect with a common Alice view.

It is easy to see that Cases 1 and 2 are an exhaustive partition of all complete
F . Next,

• Case 1(a) consists of all functionalities F in Case 1, where there are at
least two extreme views in ̂VB that intersect with a common Alice view.

All Complete Functionalities are Reversible 219

• Case 1(b) consists of all functionalities in Case 1 that are not in Case
1(a). In particular, the fact that F is in Case 1(b) requires that no two
extreme views in ̂VB intersect with a common Alice view. This means
that either an extreme and non-extreme view of Bob in ̂VB intersect with
a common Alice view, or two non-extreme views of Bob in ̂VB intersect
with a common Alice view. Note that if two non-extreme views intersect,
then an extreme and non-extreme view also intersect (by the definition of
extreme views).

– Case 1(b): Recall that this case consists of complete functionalities for which
an extreme and a non-extreme view of Bob in ̂VB intersect with a common
Alice view, for ̂VB defined above. An illustrative example for this case is in
Fig. 2 above. The views (0, 0) and (1, 0) of Bob are extreme, ̂YB = {0, 1}, ̂VB =
{(0, 0), (0, 1), (1, 0)}. Moreover, views (0, 0) and (0, 1) in ̂VB intersect with a
common Alice view. Also, views (1, 0) and (0, 1) in ̂VB intersect with a common
Alice view. But no two extreme Bob views intersect with a common Alice view.

To obtain B → A commitments, Alice and Bob invoke F , with Alice using
a uniform distribution over her inputs and Bob using a uniform distribution
over inputs in ̂YB. Assume for simplicity that Alice and Bob can be forced
to use the correct distribution over their inputs. (This can be ensured using
cut-and-choose techniques and extreme views of Bob.)

Binding. We split Bob’s views into two categories: extreme and non-extreme.
The main idea behind building commitments will be to ensure that he cannot
obtain views in one category and later claim that they belong in another
category. To understand this, consider the following example scenario w.r.t.
the functionality in Fig. 2: Bob obtains view (0, 0), which is an extreme view,
and claims later that he obtained (0, 1), which is a non-extreme view. We
would like to prevent this situation. We would also like to prevent Bob from
obtaining view (0, 1), which is a non-extreme view, and later claiming that he
obtained (0, 0), which is an extreme view. In both these situations, we would
like Alice to catch such a cheating Bob with high probability. Ensuring that
she catches such a cheating Bob will (weakly) bind Bob to the category of
views he obtained. Here is how we ensure this.

• Suppose Bob obtains (0, 1) and later claims it was (0, 0). By a similar
argument as the warmup, Alice will catch him with constant probability:
Note that Alice obtains view (⊥, 1) with constant probability correspond-
ing to Bob’s view (0, 1), but she never obtains view (⊥, 1) corresponding to
Bob’s view (0, 0). Since Bob doesn’t know what view Alice obtained, if he
actually obtained the view (0, 1) and tried to claim that he obtained (0, 0),
Alice will sometimes end up with view (⊥, 1) and detect Bob’s cheating
with constant probability. This can be amplified to full-fledged binding
using error correction.

• Suppose Bob obtains (0, 0) and claims that it was (0, 1). In this case, the
previous argument no longer works since (0, 1) is not an extreme view.
However, because both parties used uniform inputs, Bob will obtain some
‘correct’ distribution over his outputs. Also by the previous item, Bob

220 D. Khurana et al.

cannot have obtained (0, 1) and claim that it is (0, 0). Thus, if he obtains
(0, 0) and claims that he obtained (0, 1), then (0, 1) will appear too often
in his claimed views and Alice will detect this. In general, to equivocate
extreme views to non-extreme views, Bob will have to “steal” probability
mass from the extreme views and add more mass to the non-extreme
views – which Alice will detect.

Hiding. For a uniform distribution over her inputs, with constant probability
Alice obtains a common view that intersects both an extreme and a non-
extreme view of Bob. Thus she cannot tell which category Bob’s view was
in, at the end of the commit stage. This gives a weak form of hiding which
can then be amplified. For example in the functionality in Fig. 2, Alice’s view
(⊥, 0) intersects with the extreme view (0, 0) and non-extreme view (0, 1)
of Bob. Only one such intersection suffices to obtain hiding. For a complete
analysis of this case, please refer to Sect. 5.

– Case 2: Recall that this case consists of complete functionalities for which no
two views of Bob in ̂VB intersect with a common Alice view, for ̂VB defined
above. Nevertheless, note that at least 2 views of Bob must intersect with
a common Alice view, because otherwise F is trivial. Moreover, if two views
outside ̂VB intersect with a common Alice view, then both views must be non-
extreme (by the definition of ̂VB). This means that at least one extreme and
non-extreme view pair intersect with a common Alice view, which means that
in this case necessarily, one Bob view inside ̂VB and one outside ̂VB intersect
with a common Alice view.

In the illustrative example in Fig. 3, since the first three columns can be
convex-linearly combined to obtain the fourth and fifth columns, only the first
three views (0, 0), (0, 1), (0, 2) of Bob are extreme. Moreover, all extreme views
of Bob correspond to input 0, thus ̂YB = {0}, ̂VB = {(0, 0), (0, 1), (0, 2)} and
views in ̂VB do not intersect with any common Alice view. Note also that
Bob’s input 1 is not redundant, because the distribution over Alice’s views
induced by Bob’s input 1 is different from the distribution induced by Bob’s
input 0.

To obtain B → A commitments in this case, Alice and Bob invoke F with
Alice using a uniform distribution over her inputs and Bob using a uniform
distribution over all his inputs.

Binding. We partition Bob’s views into two categories: views inside ̂VB and
views outside ̂VB, then argue that he cannot equivocate between these cat-
egories. Again, here we only argue that a cheating Bob will be caught with
constant probability – this can be amplified using error-correcting codes to
obtain full-fledged binding.

In this case, it is not straightforward to argue that Bob can be forced to
use a uniform (or some requisite) distribution over his inputs – in fact arguing
this forms the crux of our binding argument. Consider the example in Fig. 3.
Here are two representative strategies of a malicious Bob:

All Complete Functionalities are Reversible 221

• Bob actually obtains view (1, 0), and later claims that it was (0, 1). How-
ever, unbeknownst to Bob, Alice may obtain view (⊥, 0) and therefore
detects Bob’s cheating with constant probability. More generally, if Bob
uses input 1 and claims that it is a 0, Alice will catch him with constant
probability.

• Bob actually uses input 0 all the time, and later claims that in some invo-
cations he used input 1. Here, we note that the distributions over Alice’s
views corresponding to Bob’s inputs 0 and 1 in the example functionality
are different. If this were not the case, then Bob’s input 1 would be redun-
dant. This means that Alice, by simply checking her output distribution,
will catch Bob whenever he launches such an attack.

We generalize this argument (refer to Lemma 3) to show that in any
redundancy-free core of a complete functionality, in Case 2, there exists
at least one Bob input outside of ̂YB (this input is 1 in the representative
example) which cannot be mimicked using any input in ̂YB (this input is
0 in this example).

Hiding. We show that there exists a common Alice view which intersects
at least one Bob view in ̂YB (which is 0 in the representative example in
Fig. 3) and one Bob view corresponding to the un-mimickable input out-
side ̂YB (which is a 1 in the example). In the example functionality, Alice’s
view (⊥, 0) intersects with the views (0, 0) in ̂VB and (1, 0) corresponding
to input 1 outside ̂YB . When using a uniform distribution over her inputs
(this can be easily ensured), with constant probability Alice obtains this
intersecting view. This gives a weak form of hiding which can then be
amplified. A complete analysis of this case is in Sect. 6.

1.4 Technical Overview: Commitment Reducible Only to Complete
SFE Functionalities

We have already shown what if f is a 2-party SFE which is malicious-complete
then Fcom fixed-role reduces to it. So, it suffices to show that if F has a simple
core, then Fcom does not reduce to F . Suppose a protocol Π securely realizes
Fcom in the F-hybrid, where F has a simple core. Note that, given a public
transcript, since F has a simple core, a party can always sample joint-views
consistent with it. Therefore, either each transcript can be equivocated or it is
not hiding. Hence, we have the following result:

Corollary 1. For every 2-party SFE F , we have: Fcom 	uc F iff FOT 	uc F .

2 Preliminaries

In this section, we recall some primitives useful in stating unified completeness
results for 2-party SFE in various security notions.

222 D. Khurana et al.

2.1 Secure Function Evaluation

A Functionality. Consider a two-party finite randomized functionality F
between Alice and Bob, where Alice has input x ∈ X and Bob has input y ∈ Y.
They invoke the functionality with their respective inputs and obtain outputs
w ∈ W and z ∈ Z. We recall that such a functionality can be denoted by a
matrix. The rows of this matrix are indexed by Alice views (x,w) ∈ X × W and
columns are indexed by Bob views (y, z) ∈ Y × Z. The entry in the cell in row
(x,w) and column (y, z) equals Pr[w, z|x, y].

This matrix can also be viewed as a collection of stochastic sub-matrices,
where each sub-matrix corresponds to some input x ∈ X of Alice and y ∈ Y
of Bob. Each cell in this sub-matrix, with row indexed by Alice output w and
column indexed by Bob output z equals Pr[w, z|x, y].

Graph of an SFE Functionality. Given a 2-party SFE F(fA, fB) we define a
bipartite graph G(F) as follows.

Definition 1. Graph of a 2-party SFE. Given a SFE functionality F(fA, fB),
its corresponding graph G(F) is a weighted bipartite graph constructed as follows.
Its partite sets are X × ZA and Y × ZB. For every (x, a) ∈ X × ZA and (y, b) ∈
Y × ZB, the edge joining these two vertices is assigned weight

wt ((x, a), (y, b)) :=
Pr

r
$←R

[fA(x, y, r) = a ∧ fB(x, y, r) = b]

|X × Y |
The choice of the normalizing constant 1/|X × Y | is arbitrary. For this par-

ticular choice of constant, we can view the weight of an edge as representing the
joint-distribution probability of input-output pairs seen by the two parties when
(x, y, r) $← X × Y × R.

The kernel of a 2-party function f is a function which outputs to the two
parties only the “common information” that f makes available to them. To
formalize this, we define a weighted bipartite graph G(f) with partite sets X ×
W and Y × Z, and for every (x,w) ∈ X × W and (y, z) ∈ Y × Z, the edge
joining these two vertices is assigned weight pf [w,z|x,y]

|X×Y | . The kernel of F is a
randomized function which takes inputs x ∈ X and y ∈ Y from the parties,
samples (w, z) $← f(x, y), and outputs to both parties the connected component
of G(F) which contains the edge (x,w), (y, z).

2-Party Secure Function Evaluation. A two-party randomized function (also
called a secure function evaluation (SFE) functionality) is specified by a single
randomized function denoted as f : X × Y → W × Z. Despite the notation, the
range of f is, more accurately, the space of probability distributions over W ×Z.
The functionality takes an input x ∈ X from Alice and an input y ∈ Y from
Bob, and samples (w, z) ∈ W × Z according to the distribution f(x, y); then it
delivers w to Alice and z to Bob. Throughout, we shall denote the probability
of outputs being (w, z) when Alice and Bob use inputs x and y respectively is

All Complete Functionalities are Reversible 223

represented by βF [w, z|x, y]. We use the following variables for the sizes of the
sets W,X ,Y,Z: |X | = m, |Y| = n, |W| = q, |Z| = r.

As is conventional in this field, in this paper, we shall restrict to function
evaluations where m,n, q and r are constants, that is, as the security parameter
increases the domains do not expand. (But the efficiency and security of our
reductions are only polynomially dependent on m,n, q, r, so one could let them
grow polynomially with the security parameter. We have made no attempt to
optimize this dependency.) W.l.o.g., we shall assume that X = [m] (that is, the
set of first m positive integers), Y = [n],W = [q] and Z = [r].

We consider standard security notions in the information-theoretic setting:
UC-security, standalone security and passive-security against computationally
unbounded adversaries (and with computationally unbounded simulators). Using
UC-security allows to compose our sub-protocols securely [3]. Error in security
(simulation error) is always required to be negligible in the security parameter
of the protocol, and the communication complexity of all protocols are required
to be polynomial in the same parameter. However, we note that a protocol may
invoke a sub-protocol with a security parameter other than its own (in particular,
with a constant independent of its own security parameter).

Complete Functionalities. A two-party randomized function evaluation F is
standalone-complete (respectively, UC-complete) against information theoretic
adversaries if any functionality G can be standalone securely (respectively, UC
securely) computed in the F hybrid. We shall also consider passive-complete
functions where we consider security against passive (semi-honest) adversaries.

Redundancy-free core of a functionality. The core of a functionality is computed
by removing redundant parts of the functionality f . A redundancy may be of
two forms. It could consist of inputs which are useless for the adversary, that
is, using another input gives the adversary strictly more information about the
view of the (other) honest party, while the honest party cannot distinguish the
cases in which the adversary used the less informative or the more informative
input. In this case, the less informative input is called redundant and is removed
to obtain the core of the functionality.

Another kind of redundancy is an output redundancy, where two or more
outputs can be compressed into a single output if they convey identical informa-
tion to the adversary about the honest party’s view. As an example, consider a
functionality in which when Bob’s input is 0, if Alice’s input is 0 then he receives
0, but if her input is 1, he receives the output symbol α with probability 3/4
and β with probability 1/4. Here, the two outcomes α and β give Bob the same
information about Alice’s input, and could be merged into a single output. We
recall the formal linear algebraic definition of redundancies from Kraschewski
et al. [16] in Sect. 3.2.

Simple core of functionalities. The core of a functionality f is simple if for parties
starting with independent inputs, the views of the parties remain independent of
each other conditioned on the common information after the function evaluation.

224 D. Khurana et al.

Recall that Kraschewski et al. [16] showed that a finite randomized functionality
is complete if and only if the redundancy-free core of F is not simple.

Extreme views and mimicking inputs. Consider the matrix βF obtained after
removing the above-mentioned redundancies from the matrix F . The entry in the
cell in row (x,w) and column (y, z) is denoted by βF

x,w,y,z and equals Pr[w, z|x, y].
Then a view (y, z) of Bob is an extreme view if the column indexed by (y, z)

in βF cannot be written as a convex linear combination of other columns in βF .
Note that there necessarily exist at least two extreme views for each party in
any non-trivial functionality. We say that a view (y, z) of Bob intersects with a
view (x,w) of Alice if the entry βF

x,w,y,z �= 0.
Let Y0 ⊂ Y be a set of Bob inputs. We say that an input y∗ ∈ Y \Y0 of Bob,

is mimicked by Y0, if there exists a probability distribution η over Y0 such that
Alice’s view when Bob is choosing inputs from this distribution is indistinguish-
able from her view when Bob uses y∗.

2.2 Leftover Hash Lemma

The min-entropy of a discrete random variable X is defined to be H∞(X) =
− log maxx∈Supp(X) p

f [X = x]. For a joint distribution (A,B), the average min-
entropy of A w.r.t. B is defined as ˜H∞(A|B) = − log

(

Eb∼B

[

2−H∞(A|B=b)
])

.

Imported Lemma 1 (Generalized Leftover Hash Lemma(LHL) [8]). Let
{Hx : {0, 1}n → {0, 1}�}}x∈X be a family of universal hash functions. Then, for
any joint distribution (W, I):SD ((HX(W),X, I), (U�,X, I)) ≤ 1

2

√

2− ˜H∞(W |I)2�.

3 Technical Tools

This section is mainly based on concepts introduced in [16].

3.1 Notation and Definitions

Consider the matrix βF of the redundancy-free core of F , whose columns are
indexed by Bob views (y, z) ∈ Y × Z and rows are indexed by Alice views
(x,w) ∈ X ×W. The entry in the cell in row (x,w) and column (y, z) is denoted
by βF

x,w,y,z and equals Pr[w, z|x, y].
We will also consider the compressed matrix βF

B whose rows are indexed by
Bob inputs y and rows are indexed by Alice views (x,w) ∈ X ×W. The entry in
the cell in row (x,w) and column y is denoted by βF

x,w,y and equals Pr[w|x, y].

The maps φA and φB . These maps define equivalence classes of views. Roughly,
two rows (or columns) in βF lie in the same equivalence class if they are scalar
multiples of each other. Formally, for each (x,w) ∈ X × W, let the vector
βF |(x,w) ∈ R

nr be the row indexed by (x,w) in the matrix βF . Let φA :
[m]×[q] → [�] (for a sufficiently large � ≤ mq) be such that φA(x,w) = φA(x′, w′)
iff βF |(x,w) = c · βF |(x′,w′) for some positive scalar c. φB is defined similarly for
column vectors indexed by Bob views (y, z).

All Complete Functionalities are Reversible 225

3.2 Characterizing Irredundancy

Redundancy in a function allows at least one party to deviate in its behavior in
the ideal world and not be detected (with significant probability) by an environ-
ment. In our protocols, which are designed to detect deviation, it is important to
use a function in a form in which redundancy has been removed. We use defini-
tions of irredundancy from [16], and give a brief overview here for completeness.
There also exists an efficient algorithm to remove redundancies following [16].

Irredundancy of a 2-Party Secure Function Evaluation Function. Recall that a
2-party SFE function f with input domains, X × Y and output domain W × Z
is defined by probabilities pf [w, z|x, y]. Output redundancies identify if the out-
put can be compressed to remove aspects of the output that are useless for the
adversary’s goal of gaining information about the honest party’s inputs. For
input redundancy, we define left and right redundancy of f as follows. Below,
|X| = m, |Y | = n, |W | = q, |Z| = r. To define left-redundancy, consider repre-
senting f by the matrices {P x}x∈X where each P x is an nr × q matrix with
P x
(y,z),w = pf [w, y, z|x]. Here, pf [w, y, z|x] � 1

np
f [w, z|x, y] (where we pick y

independent of x, with uniform probability pf [y|x] = 1
n).

Definition 2. For an SFE function f : X×Y → W ×Z, represented by matrices
{P x}x∈X , with P x

(y,z),w = Pr[w, y, z|x], we say that an input x̂ ∈ X is left-
redundant if there is a set {(αx,Mx)|x ∈ X}, where 0 ≤ αx ≤ 1 with

∑

x αx = 1,
and each Mx is a q × q stochastic matrix such that if αx̂ = 1 then Mx̂ �= I, and
P x̂ =

∑

x∈X αxP xMx. We say x̂ is strictly left-redundant if it is left-redundant
as above, but αx̂ = 0. We say x̂ is self left-redundant if it is left-redundant as
above, but αx̂ = 1 (and hence Mx̂ �= I). We say that f is left-redundancy free if
there is no x ∈ X that is left-redundant.

Right-redundancy notions for inputs ŷ ∈ Y are defined analogously. f is said
to be redundancy-free if it is left-redundancy free and right-redundancy free.

3.3 Statistically Testable Function Evaluation

Statistical tests [16] help ensure that a cut-and-choose technique can be used to
verify an adversary’s claims about what inputs it sent to a 2-party function and
what outputs it received, when the verifier has access to only the other end of the
function. It is important to note that such statistical tests can only be applied
when an adversary declares (or commits to) his claimed inputs beforehand and is
not allowed to adaptively choose his input claims adaptively based on function
output. Kraschewski et al. [16] show that evaluation of a 2-party function is
statistically testable iff the function is redundancy free. We repeat the statistical
test game and the proof of the above statement in the full version of the paper.

226 D. Khurana et al.

3.4 Weak Converse of the Channel Coding Theorem, Generalization

A converse of the channel coding theorem states that message transmission is
not possible over a noisy channel at a rate above its capacity, except with a
non-vanishing rate of errors. We use a generalization of the (weak) converse of
channel coding theorem due to [16] where the receiver can adaptively choose
the channel based on its current view. Then if in at least a μ fraction of the
transmissions, the receiver chooses channels which are noisy (i.e., has capacity
less than that of a noiseless channel over the same input alphabet), it is possible
to lower bound its probability of error in predicting the input codeword as a
function of μ, an upper bound on the noisy channel capacities, and the rate of
the code. We import the following lemma from [16].

Imported Lemma 2. Let F = {F1, . . . ,FK} be a set of K channels which
take as input alphabets from a set Λ, with |Λ| = 2λ. Let G ⊆ [K] be such that for
all i ∈ G, the capacity of the channel Fi is at most λ − c, for a constant c > 0.

Let C ⊆ ΛN be a rate R ∈ [0, 1] code. Consider the following experiment:
a random codeword c1 . . . cN ≡ c

$← C is drawn and each symbol c1 . . . cN is
transmitted sequentially; the channel used for transmitting each symbol is chosen
(possibly adaptively) from the set F by the receiver.

Conditioned on the receiver choosing a channel in G for μ or more transmis-
sions, the probability of error of the receiver in predicting c is

Pe ≥ 1 − 1
NRλ

− 1 − cμ/λ

R
.

4 Summary and Exhaustive Case Analysis

4.1 Summary

Given a 2-party SFE F , we represent by FA→B the functionality which takes
its first input from Alice and its second input from Bob. Similarly, we define the
functionality FB→A. We say F reduces to G, represented by F 	uc G, if there
exists a information-theoretic UC-secure protocol for F in the G-hybrid. The
functionality F⊗n represents n independent copies of the functionality F .

We observe that Kraschewski et al. [16] obtain oblivious transfer using any
finite randomized functionality F with a non-simple core, in a fixed direction, if
there exist commitments in both directions. Furthermore, they already show that
for any finite randomized functionality F with a non-simple core, commitments
can be obtained from either Alice to Bob or from Bob to Alice.

Our main technical contribution will be to show that, in fact, for any
finite randomized functionality F with a non-simple core, commitments can be
obtained both from Alice to Bob and from Bob to Alice, by using F in a fixed
direction.

Analogous to the above statement, we also have a statement where FA→B is
replaced by FB→A. Next, once we get FOT at constant rate, we can implement
FB→A at constant rate using [12]. This gives our main result.

All Complete Functionalities are Reversible 227

Theorem 1 (Reversible Characterization). For every 2-party SFE F : if
FOT 	uc F in the malicious setting (possibly using F in both directions), then
there exists c > 0 such that F⊗σ

A→B 	uc F⊗κ
B→A in the malicious setting and

σ ≥ cκ.

Again, once we have commitments in both directions, by using the SFE
functionality in only one direction, we can use the compiler of [16] to directly
obtain the following theorem.

Theorem 2 (Fixed-Role Completeness Characterization). For every 2-
party SFE F : FOT 	uc F in the malicious setting (possibly using F in both
directions) if and only if there exists c > 0 such that F⊗σ

OT 	uc F⊗κ
A→B in the

malicious setting and σ ≥ cκ.

4.2 Exhaustive Case Analysis

First, we will classify any functionality F with a non-simple redundancy-free
core, into a set of exhaustive cases. In each case, we demonstrate that it is possible
to obtain commitments using F , from Bob to Alice. Let VB denote the set of
extreme Bob views, and ̂Y be the set of inputs of Bob that admit at least one
extreme view, that is, ̂Y := {y : ∃z, such that (y, z) ∈ VB}. Let ̂VB denote the
set of all Bob views corresponding to inputs in ̂Y , that is ̂VB = {(y, z) : y ∈ ̂Y }.
Our cases are listed in Table 1.

Table 1. Exhaustive summary of cases

1 There exists an Alice view with which ≥ 2 Bob views in V̂B intersect.

(a) There exists an Alice view with which ≥ 2 extreme Bob views in V̂B intersect.
In this case, it is possible to obtain commitments from Bob to Alice [16].

(b) There exists an Alice view with which one extreme and ≥ 1 non-extreme
Bob view in V̂B intersect.

2 No two Bob views in V̂B intersect with the same Alice view.

Claim. In a non-simple functionality F , if no two extreme Bob views intersect
with the same Alice view, then there exists an Alice view which intersects with
one extreme and one non-extreme Bob view.

Proof. In a non-simple functionality F , if no two extreme Bob views intersect
with the same Alice view, then we have the following possibilities:

1. There is an Alice view intersecting an extreme and non-extreme Bob view,
2. Or, there is an Alice view which intersects 2 non-extreme Bob views,
3. Or, no Alice view intersects any two Bob views.

228 D. Khurana et al.

We show that 2 =⇒ 1, and 3 contradicts the fact that F is non-simple.
Let the number of extreme views of Bob be γ. Denote the extreme views

of Bob by (y∗
i , z∗

i), for i ∈ [γ]. Suppose Alice view VA = (x, z) intersects with
two non-extreme Bob views V 1

B = (y1, z1) and V 2
B = (y2, z2). Then, the columns

βF
|(y1,z1)

and βF
|(y2,z2)

of βF have non-zero entries in the row corresponding to
(x, z). Since both views (V 1

B , V 2
B) are non-extreme, the columns βF

|(y1,z1)
and

βF
|(y2,z2)

of βF can be expressed as a linear combination of extreme columns
(y∗

i , z∗
i), for i ∈ [γ]. This means that there necessarily exists at least one extreme

view (y∗, z∗) ∈ {(y∗
1 , z

∗
1), (y∗

2 , z
∗
2), . . . (y∗

γ , z∗
γ)} such that the column βF

|(y∗,z∗) of
βF has a non-zero entry in the row corresponding to (x, z). This proves 2 =⇒ 1.

Suppose that in a non-simple functionality F , no view of Alice intersects
with any two views of Bob. That is, every view of Alice intersects with at most
one view of Bob. In this case, the common information/kernel obtained after
function evaluation is the view of Bob. It is straightforward to see that both
parties can independently sample their views, conditioned on any view of Bob.
This completes the proof of this claim.

In the following sections, we construct commitments Fcom,B→A, for any func-
tionality F depending on which of the two cases it falls in.

We observe that in case there exists an Alice view with which at least two
extreme Bob views in ̂VB intersect, the protocol of [16] can be used to obtain com-
mitments from Bob to Alice. We re-state their result in the following lemma. In
the following lemma, we will recall appropriate notions of confusability from [16].
Any functionality F in which at least two extreme Bob views in ̂VB intersect with
a common Alice view, will be said to have a confusable bF .

Imported Lemma 3. Denote the set of extreme views of Bob by bF . For each
Alice view (x,w) denote by bF |(x,w) all the extreme views of Bob which intersect
with the specific Alice view (x,w). That is, bF |(x,w) is the set of extreme views
(y, z) of Bob such that the row in βF indexed by (y, z) has a positive entry in
the column indexed by (x,w). bF is said to be confusable if there exists (x,w) ∈
X × W and two elements (y1, z1), (y2, z2) ∈ bF |(x,w) such that φB(y1, z1) �=
φB(y2, z2). aF is defined similarly for extreme views of Alice. Then,

1. If the redundancy-free core of F is simple, either aF or bF is confusable.
2. If aF is confusable, it is possible to obtain commitments from Alice to Bob.

If bF is confusable, it is possible to obtain commitments from Bob to Alice.

5 Case 1(b): Commitments

5.1 Construction

Let VB denote the set of all extreme views of Bob and let ̂Y denote the set
of all inputs of Bob that contain at least one extreme view, that is ̂Y :=
{y : ∃z, such that (y, z) ∈ VB}. Further, let ̂VB denote the set of all Bob views
corresponding to inputs in ̂Y , that is ̂VB = {(y, z) : y ∈ ̂Y }.

All Complete Functionalities are Reversible 229

In this section, we demonstrate how to obtain commitments from any func-
tionality F for which the following is true: ̂VB “is confusable”, that is, there exists
an Alice view (x,w) and two distinct Bob views (̂Y1, ẑ1) and (̂Y2, ẑ2) ∈ ̂Vb (where
possibly ̂Y1 = ̂Y2) such that βF

x,̂Y1,w,ẑ1
�= 0 and βF

x,̂Y2,w,ẑ2
�= 0. The protocol is

described in Fig. 4.

5.2 Proof of Security

Receiver Security (Statistical Binding/Extractability). In the UC set-
ting, it suffices to consider a dummy sender S and malicious environment
ZS , such that the dummy sender forwards all messages from ZS to the hon-
est receiver/simulator, and vice-versa. Without loss of generality, the malicious
simulation strategy SimS can be viewed to interact directly with ZS . SimS is
described in Fig. 5.

Lemma 1. There exists a constant c such that the simulation error for the
malicious sender is at most 2−cκ.

Proof. The simulator performs Steps 1(a), (b) and (c) as per the honest receiver
strategy, and also emulates the functionality F honestly for the sender. It remains
to show that the unique bit b′ extracted by the simulator equals the bit b commit-
ted by the sender Bob. The crux of this proof relies on the fact that the protocol
requires the sender to use one extreme view and on the minimum distance of
the code used.

Bob cannot claim non-extreme views to be extreme. In the opening made
by Bob, consider the positions where Bob claimed his view to be extreme,
that is, (yi, zi) = (y∗, z∗) ∈ VB , such that the equivalence class of this view
φB(y∗, z∗) = Φ. Consider the fraction of these positions where the actual view
of Bob (y′, z′) such that φB(y′, z′) �= Φ. In these positions, the expected view
of Alice is given by a linear combination of the columns βF |(y′,z′) (with coordi-
nates scaled appropriately). If this linear combination is not close to the vector
βF |(y∗,z∗) (scaled appropriately) then with all but negligible probability, the
opening will not be accepted by the receiver. On the other hand, if the linear
combination is close to βF |(y∗,z∗), since βF |(y∗,z∗) is outside the linear span of
other βF |(y′,z′) with φB(y′z′) �= φB(y∗, z∗), only at a small number (sub-linear
fraction, say κ2/3) of places can Bob open to (y∗, z∗) but have had an actual
view (y′, z′). This is because, an extreme view can’t be expressed as a linear
combination of other views of Bob, without being detected by Alice with con-
stant probability.

Bob uses close to uniform distribution over inputs in ̂YB . Consider an input
y∗ ∈ ̂YB and let (y∗, z∗) denote its corresponding extreme view. Alice will not
accept the extreme view (y∗, z∗) in the opening of Bob (except with probability
2−cκ2/3

) unless Bob actually obtained the particular view in all but κ2/3 of these

230 D. Khurana et al.

Fig. 4. Fcom in Case 1(b).

All Complete Functionalities are Reversible 231

Fig. 5. Sender simulation strategy in Case 1(b).

indices. In order to obtain the view (y∗, z∗) in 1/ŶB × βF
z∗|y∗ fraction of indices,

Bob should have used the input y∗ to the functionality with probability at least
1/|ŶB |.

Bob cannot equivocate outputs. Since Bob uses all inputs in ̂YB with nearly the
correct probability (except on O(κ2/3) indices, then in the real and simulated
worlds, he also obtains views in ̂VB with nearly the expected probability. Fur-
thermore, he cannot obtain views not in VB and pretend that they were in VB

except for O(κ7/8) indices. Therefore, he cannot obtain views in VB and pretend
that they were not in VB except for O(κ7/8) indices, otherwise he will fail the
frequency tests on the outputs.

To summarize,

232 D. Khurana et al.

Fig. 6. Receiver simulation strategy in Case 1(b).

– For any input y∗ ∈ ŶB, if Alice accepts the decommitment, Bob should have
actually used the input to the functionality F in exactly 1/|ŶB | fraction of
the places, except cheating in at most κ2/3 indices.

– For any (extreme) view (y∗, z∗) ∈ ̂VB, Bob cannot have claimed to obtain
(y∗, z∗) at specific indices unless he obtained the view in (y∗, z∗) at all but
O(κ7/8) of these indices.

– For any non-extreme view (y∗, z∗) ∈ ̂VB , Bob cannot have claimed to obtain
(y∗, z∗) at specific indices unless he actually obtained some non-extreme view
at all but O(κ7/8) of these indices.

By using a code such that the minimum distance of the code (Ω(κ15/16)) is
much larger than the number of positions where the sender can cheat as above
(O(κ7/8), we guarantee that the sender is bound to his committed bit.

Specifically, the simulator computes the nearest codeword to the codeword
extracted from the sender, and uses this to extract his committed bit. The sender
cannot equivocate this codeword without cheating in Ω(κ15/16) views, and if
he does so, his decommitment is not accepted except with probability at least
(1−2−cκ). This completes the proof of this lemma. x;w N2=3 0. If not, it aborts
the protocol.

Sender Security (Statistical Hiding/Equivocability). It suffices to con-
sider a dummy receiver R and malicious environment ZR, such that the dummy
receiver forwards all messages from ZR to the honest sender/simulator, and vice-
versa. Without loss of generality, the malicious simulation strategy SimR can be
viewed to interact directly with ZR. SimR is described in Fig. 6.

All Complete Functionalities are Reversible 233

Lemma 2. There exists a constant c such that the simulation error for the
malicious receiver is at most 2−cκ.

Proof. Consider the use of the function f as a “channel”, which accepts xi,j

from Alice, ci,j from Bob, samples (yi,j , wi,j , zi,j) and outputs zi,j to Bob, and
ai,j ⊕ ci,j to Alice where ai,j = φB(yi,j , zi,j).

The cut-and-choose verification in Step 1(c) ensures that Alice uses (close to)
a uniform distribution over her inputs. This is done by invoking Left-Statistical-
Tests on committed inputs X1, x2 . . . X2κ2 of Alice, and her claimed outputs
W1,W2, . . . W2κ2 .

This test ensures that she obtains the view (x,w) that intersects with an
extreme and a non-extreme view in ̂VB in at least βF

|x,zκ
2 − O(κ) invocations.

At all these invocations, given her view, Alice has confusion about whether the
corresponding view of Bob was extreme or non-extreme. Therefore, the views
obtained by Alice act as a channel transmitting information about the corre-
sponding views of Bob. It is that the capacity of this channel is a constant, that
is less than 1.

Then we appeal to an extension of the weak converse of Shannon’s Channel
Coding Theorem (Imported Lemma 2) to argue that since the code has rate
1−o(1), Alice errs in decoding each codeword with at least a constant probability.
We need this extension of the (weak) converse of the channel coding theorem to
handle that the facts that:

1. The receiver can adaptively choose the channel characteristic, by picking yi,j

adaptively, and
2. Some of the channel characteristics that can be chosen include a noiseless

channel, but the number of times such a characteristic can be used cannot be
large (except with negligible probability). The reason this restriction can be
enforced is because Alice’s view intersects with views of Bob corresponding
to characteristic index 0 and 1.

Then, applying the Leftover Hash Lemma, we get that for a universal hash
function h, if Bob sends κ codewords over such a channel, the output of the hash
function is at least 1 − 2−cκ close to uniform. Thus, the simulation error is at
most 2−cκ.

6 Case 2: Commitments

As before, let VB denote the set of all extreme views of Bob and let ̂Y denote
the set of all inputs of Bob that contain at least one extreme view, that is
̂Y := {y : ∃z, such that (y, z) ∈ VB}. Further, let ̂VB denote the set of all Bob
views corresponding to inputs in ̂Y , that is ̂VB = {(y, z) : y ∈ ̂Y }.

In this section, we demonstrate how to construct commitments from any
function F for which the following is true: ̂VB has no confusion, that is no two
Bob views in ̂VB intersect with the same Alice view. In other words, all views
corresponding to all inputs y ∈ Ŷ are extreme and also disjoint.

234 D. Khurana et al.

First, we make the following basic observation about disjoint extreme views.
Let VB denote the set of extreme views of Bob. If there is no Alice view VA which
intersects two or more Bob views in VB , then each Bob view in VB is in one-
to-one correspondence with the equivalence class φ of Alice views. In particular,
each Bob view (y, z) in VB reveals φ(VA) for any view VA which the Bob view
(y, z) intersects. Then, we note that for all inputs ŷ in Ŷ , each output view (ŷ, ẑ)
completely reveals the equivalence class φ of Alice views. The following lemma
is imported from [16].

Imported Lemma 4 [16]. Suppose Ŷ ⊆ Y is a set of inputs, where each view
(ŷ, z) for each input ŷ ∈ Ŷ is completely revealing about the equivalence class φ
of Alice views. If some input y∗ ∈ Y \Ŷ can be fully-mimicked by Ŷ then y∗ is a
strictly redundant input.

Note that if y �∈ Y0 can be mimicked by Y0, it does not necessarily mean that y∗

is redundant, because for redundancy there must exist a probabilistic mapping
from Y0 × Z to y∗ × Z. However, if Y0 are all completely revealing about the
equivalence class φ of Alice views, it can be shown that y∗ is indeed redundant.
For completeness, we repeat the formal proof from [16] in the full version.

Lemma 3. Suppose Ŷ ⊆ Y is a set of inputs, where each view (ŷ, z) for each
input ŷ ∈ Ŷ is completely revealing about an equivalence class of Alice views. Let
Y ′ = Y \Ŷ . If every input in Y ′ can be mimicked using a probability distribution
over other inputs that assigns constant non-zero weight to Ŷ , then every input
in Y ′ is strictly redundant.

Proof. Our proof follows along the lines of Gaussian elimination, removing one
variable dependency at a time. As is the case with Gaussian elimination, the
invariant we maintain is that the ith variable does not influence anything beyond
the ith constraint. Our proof uses an inductive argument where the above invari-
ant is iteratively maintained in each iteration.

Consider inputs y∗ ∈ Y ′ that can be mimicked using non-zero constant weight
in Ŷ . We prove that if all inputs y∗ ∈ Y ′ can be mimicked using non-zero constant
weight in Ŷ , then they can in fact be fully mimicked only by Ŷ . Once we prove
this, we can invoke Imported Lemma 4 to prove that all such inputs y∗ must be
strictly redundant. We first set up some notation for the proof.

Notation. Let Y ′ = {y∗
1 , y

∗
2 , . . . y

∗
� } and Ŷ = {ŷ1, ŷ2, . . . ŷ|Y|−�}, where � < |Y|.

Let M be an � × (� + 1) matrix whose entries are set such that for all i ∈ [�],
y∗

i =
∑

j∈[�](Mi,j)y∗
j +

∑

j∈[|Y|−�] pi,j ŷj . Then Mi,(�+1) =
∑

j∈[|Y|−�] pi,j .
That is, for (i, j) ∈ [�] × [�], the row Mi denotes the probability distribution

over inputs y∗
j used to mimic the input y∗

i . The entry Mi,�+1 denotes the total
weight of inputs in Ŷ assigned by the probability distribution, for mimicking the
input y∗

i .

Transformation. Assume, contrary to the statement of the lemma, that every
entry Mi,�+1 for all i ∈ [1, �] is a non-zero constant, denote the ith such entry

All Complete Functionalities are Reversible 235

by ci. We give a series of transformations on M , such that the resulting matrix
M ′ has non-zero entries only in the (� + 1)th column. This suffices to prove that
all inputs can be fully mimicked using some distribution over inputs only in Ŷ ,
therefore proving the lemma.

We inductively set Mi,j = 0 for all (i, j) ∈ [1, k] × [1, k].

Base Case. In the base case, if M1,1 = 0, we are done.
Else we can rewrite the first row equations as:

y∗
1 =

∑

j∈[�]

(Mi,j)y∗
j +

∑

j∈[|Y|−�]

pi,j ŷj (1)

= M1,1y
∗
1 +

∑

j∈[2,�]

(Mi,j)y∗
j +

∑

j∈[|Y|−�]

pi,j ŷj (2)

y∗
1 − M1,1y

∗
1 =

∑

j∈[2,�]

(M1,j)y∗
j +

∑

j∈[|Y|−�]

p1,j ŷj (3)

y∗
1(1 − M1,1) =

∑

j∈[2,�]

(M1,j)y∗
j +

∑

j∈[|Y|−�]

p1,j ŷj (4)

If M1,1 �= 0, we rewrite this as:

y∗
1 =

∑

j∈[2,�]

M1,j

(1 − M1,1)
y∗

j +
∑

j∈[|Y|−�]

p1,j

(1 − M1,1)
ŷj (5)

At the end of this manipulation, we have an equivalent system of equations
represented by matrix M ′, such that M ′

1,1 = 0 and for all j ∈ [�],M ′
1,j = M1,j

(1−M1,1)
.

In shorthand, we denote this by M1,1 → 0,M1,j → M1,j
(1−M1,1)

for j ∈ [2, �].

Inductive Hypothesis. Assume that after the kth transformation, all entries
Mi,j = 0 for (i, j) ∈ [1, k]×[1, k]. This gives us, that for i′ ∈ [1, k], the probability
distribution over other inputs for mimicking inputs y∗

i′ are of the form:

y∗
i′ =

∑

j∈[k+1,�]

(Mk+1,j)y∗
j +

∑

j∈[|Y|−�]

pk+1,j ŷj (6)

Induction Step. This consists of the following two transformations:

1. The probability distribution over other inputs for mimicking the input y∗
k+1

can be written as:

y∗
k+1 =

∑

j∈[k]

(Mk+1,j)y∗
j +

∑

j∈[k+1,�]

(Mk+1,j)y∗
j +

∑

j∈[|Y|−�]

pk+1,j ŷj (7)

Then, it is possible to substitute the first k terms in this equation using Eq. 6
to obtain another equation of the form:

y∗
k+1 =

∑

j∈[k+1,�]

(M ′
k+1,j)y

∗
j +

∑

j∈[|Y|−�]

p′
k+1,j ŷj , (8)

236 D. Khurana et al.

for suitably modified values (M ′
k+1,j) and p′

k+1,j .
At the end of this set of transformations, for all j ∈ [k],Mk+1,j → 0 and for
j ∈ [k + 1, �],Mk+1,j → M ′

k+1,j .
2. Now, we can write the (k + 1)th row Eq. 8 as:

y∗
k+1 = (M ′

k+1,k+1)y
∗
k+1 +

∑

j∈[k+2,�]

(M ′
k+1,j)y

∗
j +

∑

j∈[|Y|−�]

p′
k+1,j ŷj (9)

If Mk+1,k+1 �= 0, this can be rewritten as:

y∗
k+1 =

∑

j∈[k+2,�]

M ′
k+1,j

(1 − M ′
k+1,k+1)

y∗
j +

∑

j∈[|Y|−�]

pk+1,j

(1 − M ′
k+1,k+1)

ŷj (10)

At the end of this transformation, the matrix entry M ′
k+1,k+1 → 0.

3. Substituting Eq. 10 into the first k rows, we get that for i′ ∈ [1, κ + 1], the
probability distribution over other inputs for mimicking inputs y∗

i′ are of the
form:

y∗
i′ =

∑

j∈[k+1,�]

(M ′′
k+1,j)y

∗
j +

∑

j∈[|Y|−�]

p′′
k+1,j ŷj (11)

At the end of these transformations, we obtain an matrix M̄ representing an
equivalent system of equations, such that for all (i, j) ∈ [�] × [�], M̄i,j = 0 and
M̄i,�+1 �= 0. This completes the proof of this lemma.

Now, suppose that for all inputs y∗ ∈ Y \Ŷ , Bob can mimic y∗ using non-
zero weight in Ŷ . Then, since Lemma 3 proves that all inputs y∗ ∈ Y \Ŷ can be
written as a convex linear combination of inputs entirely in Ŷ . This contradicts
Imported Lemma 4. Since the functionalities we study only have a constant-sized
domain, it is always easy to find such an input y∗.

6.1 Construction

The protocol is described in Fig. 7. Without loss of generality, we can assume
that there exists a commitment protocol from Alice to Bob. We construct a
commitment protocol with Bob as sender, and Alice as receiver.

6.2 Proof of Security

Receiver Security (Statistical Binding/Extractability). In the UC set-
ting, it suffices to consider a dummy sender S and malicious environment
ZS , such that the dummy sender forwards all messages from ZS to the hon-
est receiver/simulator, and vice-versa. Without loss of generality, the malicious
simulation strategy SimS can be viewed to interact directly with ZS . SimS is
described in Fig. 8.

Lemma 4. There exists a constant c such that the simulation error for the
malicious sender is at most 2−cκ.

All Complete Functionalities are Reversible 237

Fig. 7. Fcom in Case 2.

Proof. The simulator performs Steps 1(a), (b) and (c) as per the honest receiver
strategy, and also emulates the functionality F honestly for the sender. It remains
to show that the unique bit b′ extracted by the simulator equals the bit b com-
mitted by the sender Bob. The crux of this proof relies on the fact that the

238 D. Khurana et al.

Fig. 8. Sender simulation strategy in Case 2.

protocol requires the sender to use all his extreme views, and some non-extreme
views; and on the minimum distance of the code used.

Bob cannot claim non-extreme views to be extreme. Equivalently, Bob cannot
claim an input outside ̂YB to be an input inside ̂YB . In the opening made by Bob,
consider the positions where Bob claimed his view to be (yi, zi) = (y∗, z∗) ∈ VB ,
such that the equivalence class of this view φB(y∗, z∗) = Φ. Consider the fraction
of these positions where the actual view of Bob (x′, w′) such that φB(y′, z′) �= Φ.

In these positions, the expected view of Alice is given by a linear combination
of the columns βF |(y′,z′) (with coordinates scaled appropriately). If this linear
combination is not close to the vector βF |(y∗,z∗) (scaled appropriately) then with
all but negligible probability, the opening will not be accepted by the receiver.
On the other hand, if the linear combination is close to βF |(y∗,z∗), since βF |(y∗,z∗)

All Complete Functionalities are Reversible 239

is outside the linear span of other βF |(y′,z′) with φB(y′z′) �= φB(y∗, z∗), only at
a small number (sub-linear fraction, say κ2/3) of places can Bob open to (y∗, z∗)
but have had an actual view (y′, z′). Thus, extreme views cannot be claimed
to be obtained as a result of using inputs which exclusively yield non-extreme
views.

Bob cannot claim an input inside ̂YB to be outside ̂YB . By Lemma 3, we also
know that y∗ cannot be mimicked with any non-zero weight in Ŷ , without getting
caught by the receiver in the Right-Statistical-Tests. Thus, it is not possible to
use inputs in Ŷ and equivocate them to y∗. This gives that the sender cannot
equivocate at more that O(κ2/3) indices.

Bob cannot equivocate. By using a code such that the minimum distance of the
code (Ω(κ3/4)) is much larger than the number of positions where the sender
can cheat in one of the two situations above (O(κ2/3), we guarantee that the
sender is bound to his committed bit.

Specifically, the simulator computes the nearest codeword to the codeword
extracted from the sender, and uses this to extract his committed bit. The sender
cannot equivocate this codeword without cheating in Ω(κ3/4) views, and if he
does so, his decommitment is not accepted except with probability at least (1 −
2−cκ). This completes the proof of this lemma.

Sender Security (Statistical Hiding/Equivocability). It suffices to con-
sider a dummy receiver R and malicious environment ZR, such that the dummy
receiver forwards all messages from ZR to the honest sender/simulator, and vice-
versa. Without loss of generality, the malicious simulation strategy SimR can be
viewed to interact directly with ZR. SimR is described in Fig. 9.

Lemma 5. There exists a constant c such that the simulation error for the
malicious receiver is at most 2−cκ.

Proof. Consider the use of the function f as a “channel”, which accepts xi,j

from Alice, ci,j from Bob, samples (yi,j , wi,j , zi,j) and outputs zi,j to Bob, and
ai,j ⊕ ci,j to Alice where ai,j = φB(yi,j , zi,j).

The cut-and-choose verification in Step 1(c) ensures that Alice uses (close
to) a uniform distribution over her inputs. Then, she obtains the view (x,w)
that intersects with an extreme and a non-extreme view in ̂VB in at least a
constant fraction of the invocations. At all these invocations, given her view,
Alice has confusion about whether the corresponding view of Bob was extreme
of non-extreme. Formally, we can show that the capacity of the above channel
is a constant, that is less than 1.

Then we appeal to an extension of the weak converse of Shannon’s Channel
Coding Theorem (Imported Lemma 2) to argue that since the code has rate 1,
Alice errs in decoding each codeword with at least a constant probability. We
need this extension of the (weak) converse of the channel coding theorem to
handle that the facts that:

240 D. Khurana et al.

Fig. 9. Receiver simulation strategy in Case 2.

1. The receiver can adaptively choose the channel characteristic, by picking yi,j

adaptively, and
2. Some of the channel characteristics that can be chosen include a noiseless

channel, but the number of times such a characteristic can be used cannot be
large (except with negligible probability). The reason this restriction can be
enforced is because Alice’s view intersects with views of Bob corresponding
to characteristic index 0 and 1.

Then, applying the Leftover Hash Lemma, we get that for a universal hash
function h, if Bob sends κ codewords over such a channel, the output of the hash
function is at least 1 − 2−cκ close to uniform. Thus, the simulation error is at
most 2−cκ.

References

1. Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure
computation. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 80–97.
Springer, Heidelberg (1999)

2. Brassard, G., Crépeau, C., Robert, J.M.: Information theoretic reductions among
disclosure problems. In: 27th Annual Symposium on Foundations of Computer Sci-
ence, Toronto, Ontario, Canada, 27–29 October 1986, pp. 168–173. IEEE Computer
Society Press (1986)

3. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

All Complete Functionalities are Reversible 241

4. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th Annual ACM Symposium on
Theory of Computing, Montréal, Québec, Canada, 19–21 May 2002, pp. 494–503.
ACM Press (2002)

5. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security
assumptions (extended abstract). In: 29th Annual Symposium on Foundations of
Computer Science, White Plains, New York, 24–26 October 1988, pp. 42–52. IEEE
Computer Society Press (1988)

6. Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from
almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol.
3352, pp. 47–59. Springer, Heidelberg (2005)

7. Crépeau, C., Sántha, M.: On the reversibility of oblivious transfer. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 106–113. Springer, Heidelberg
(1991)

8. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008). http://dx.org/10.1137/060651380

9. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual
ACM Symposium on Theory of Computing, New York City, New York, USA, 25–27
May 1987, pp. 218–229 (1987)

10. Goldreich, O., Vainish, R.: How to solve any protocol problem - an efficiency
improvement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–
86. Springer, Heidelberg (1988)

11. Haber, S., Micali, S.: Unpublished manuscript (1986)
12. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer

- efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

13. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th Annual ACM
Symposium on Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988, pp.
20–31. ACM Press (1988)

14. Kilian, J.: A general completeness theorem for two-party games. In: 23rd Annual
ACM Symposium on Theory of Computing, New Orleans, Louisiana, USA, 6–8
May 1991, pp. 553–560. ACM Press (1991)

15. Kilian, J.: More general completeness theorems for secure two-party computation.
In: 32nd Annual ACM Symposium on Theory of Computing, Portland, Oregon,
USA, 21–23 May 2000, pp. 316–324. ACM Press (2000)

16. Kraschewski, D., Maji, H.K., Prabhakaran, M., Sahai, A.: A full characterization
of completeness for two-party randomized function evaluation. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 659–676. Springer,
Heidelberg (2014)

17. Kraschewski, D., Müller-Quade, J.: Completeness theorems with constructive
proofs for finite deterministic 2-party functions. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 364–381. Springer, Heidelberg (2011)

18. Lindell, Y.: Adaptively secure two-party computation with erasures. Cryptology
ePrint Archive, Report 2009/031 (2009). http://eprint.iacr.org/2009/031

19. Maji, H.K., Prabhakaran, M., Rosulek, M.: A unified characterization of complete-
ness and triviality for secure function evaluation. In: Galbraith, S.D., Nandi, M.
(eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 40–59. Springer, Heidelberg (2012)

20. Rabin, M.: How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard Aiken Computation Laboratory (1981)

http://dx.org/10.1137/060651380
http://eprint.iacr.org/2009/031

242 D. Khurana et al.

21. Wiesner, S.: Conjugate coding. SIGACT News 15, 78–88. http://doi.acm.org/10.
1145/1008908.1008920

22. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)

23. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois, 3–5
November 1982, pp. 160–164. IEEE Computer Society Press (1982)

http://doi.acm.org/10.1145/1008908.1008920
http://doi.acm.org/10.1145/1008908.1008920

On the Power of Hierarchical
Identity-Based Encryption

Mohammad Mahmoody(B) and Ameer Mohammed

University of Virginia, Charlottesville, USA
mohammad@cs.virginia.edu, am8zv@virginia.edu

Abstract. We prove that there is no fully black-box construction of
collision-resistant hash functions (CRH) from hierarchical identity-based
encryption (HIBE) with arbitrary polynomial number of identity levels.
To the best of our knowledge this is the first limitation proved for HIBE.
As a corollary, we obtain a series of separations that are not directly
about HIBE or CRH but are interesting on their own right. Namely, we
show that primitives such as IBE and CCA-secure public-key encryp-
tion cannot be used in a black-box way to construct fully homomorphic
encryption or any primitive that implies CRH in a black-box way.

Our proof relies on the reconstruction paradigm of Gennaro and
Trevisan (FOCS 2000) and Haitner et al. (FOCS 2007) and extends
their techniques for one-way and trapdoor permutations to the setting
of HIBE. A main technical challenge in the proof of our separation stems
from the adaptivity of the HIBE adversary who is allowed to obtain keys
for different identities before she selects the attacked identity. Our main
technical contribution is to develop compression/reconstruction tech-
niques that can be achieved relative to such adaptive attackers.

Keywords: Hierarchical identity-based encryption · Collision resistant
hashing · Homomorphic encryption · Black-box separations

1 Introduction

Modern cryptography is based on well-defined hardness assumptions and formal
proofs of security. For example, a sequence [19,21,24,27,31,34,35,41,48] of fun-
damental work has led to constructions of private key encryption, pseudoran-
dom generators, pseudorandom functions and permutations, bit commitment,
and digital signatures solely based on the assumption that one-way function
exists. On the other hand, cryptographic primitives such as public key encryp-
tion, oblivious transfer, and key agreement that are perhaps more “structured”
are not known to be implied by one-way functions alone. The goal of found-
ing cryptography on minimal assumptions has led to an extensive study of the
power and limitation of cryptographic primitives. As a result, for every (newly

M. Mahmoody — Supported by NSF CAREER award CCF-1350939.
A. Mohammed — Supported by University of Kuwait.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 243–272, 2016.
DOI: 10.1007/978-3-662-49896-5 9

244 M. Mahmoody and A. Mohammed

introduced) primitive P, researchers aim to answer two questions: (1) What are
the minimal computational assumptions necessary for constructing P? (2) What
are the power and limitation of P as a computational assumption? In particular,
what other cryptographic primitives could be constructed from P?

Hierarchical Identity-Based Encryption. In this work, we study the limitations
of the power of identity based encryption and its hierarchical variant as strong
forms of encryption. A traditional public-key encryption scheme allows Alice
to send messages to Bob privately over a public channel knowing only Bob’s
public key. An identity-based encryption scheme does not require Alice to know
a specific individual’s public-key and allows Alice to encrypt messages for Bob
by only knowing Bob’s identity and a single master public key that is the same
for all identities. A decryption key for Bob can also be generated using the
(single) master secret key and Bob’s (public) identity. The notion of IBE was
first proposed by Shamir [44]. Later on many papers did try to construct IBE
schemes (e.g., [33] presented an scheme with a rather slightly inefficient key
generation) but the first fully functional IBE was first constructed by Boneh
and Franklin [7] based on assumptions about bilinear maps.

A hierarchical identity based encryption scheme (see Definition 8) takes the
versatility of IBE to the next level: each identity’s decryption key can be con-
sidered as a master secret key on its own to generate decryption keys for “sub-
identities”. So as the name suggests it allows delegating encrypting power in a
hierarchy of identities. HIBE was first defined and constructed in [17,25] where
the security was based on the hardness of the Bilinear Diffie-Hellman problem
in the random oracle model. Later, Boneh and Boyen [4] proposed a more effi-
cient HIBE scheme in the standard (plain) model but only achieved selective-ID
security. This construction was further improved in [5], and in [1] Agrawal et al.
showed how to construct fully-secure efficient HIBE based on the learning with
errors (LWE) assumption [39].

It was shown by [6] that IBE can be used to obtain CCA secure public-
key encryption in a black-box way, and Gentry et al. [16] showed a perhaps
surprising application of IBE to garbling RAM programs. Canetti, Halevi, and
Katz [10] showed how to achieve forward-secure encryption scheme from IBE
and HIBE. More recently, Naor and Ziv [37] used HIBE in their construction of
Primary-Secondary-Resolver Membership Proof Systems. In this work, we study
the following question about HIBE as a cryptographic primitive/assumption:

What are the limitations of the power of IBE/HIBE? Namely, what crypto
primitives can or cannot be constructed from IBE/HIBE?

The Black-Box Framework. We study our main question in the black-box frame-
work of [28]. Impagliazzo and Rudich [28] were the first to develop such frame-
work which enabled the possibility of ruling out the existence of an important and
powerful class of reductions between primitives. The work of Reingold, Trevisan,
and Vadhan [40] formalized this framework further and established a taxonomy
for the field. Intuitively, many cryptographic constructions are black-box in the

On the Power of Hierarchical Identity-Based Encryption 245

sense that (1) the algorithm implementing the construction of Q uses another
cryptographic primitive P (e.g., one-way functions) only as an oracle, and (2)
the security reduction takes any adversary Adv who breaks QP as an oracle and
turns it into an attack against P. Black-box constructions are also considered
important due to their (typical) efficiency advantage over their non-black-box
counterparts. Following the work of [28] a sequence of results known as “black-
box separations” emerged in which limitation of the power of cryptographic
primitives are proved with respect to black-box constructions/reductions. In this
work we study the power of fully black-box reductions as defined in [40] which
is the most common form of black-box constructions used in cryptography.

1.1 Our Results

In this work we prove a black box separation result for hierarchical IBE which,
to the best of our knowledge, is the first such result. Namely, we show that there
is no fully black box construction of collision-resistant hash functions (CRH)
from HIBE schemes.

Theorem 1 (Main Theorem). There is no black-box construction of collision-
resistant hash functions from hierarchical identity-based encryption with an arbi-
trary polynomial number of levels.

Separating Homomorphic Encryption from HIBE. A primary corollary of our
main theorem above is that HIBE does not imply fully homomorphic encryption
(FHE) in a black-box way. This follows from the result of Ishai, Kushilevitz,
and Ostrovsky [29], where they show that FHE implies (private-coin) CRH in
a black-box way. Note that while their result achieves only private-coin CRH,
which does not in general imply public-coin CRH [26], our separating oracle is
oblivious to whether the CRH is public-coin or not so the proof works either way.
Furthermore, Theorem 1 together with the result of [6] implies that CCA secure
public-key encryption does not imply CRH or FHE in a black-box way. Since
CCA-secure public key encryption can be constructed from trapdoor permuta-
tions one might think that this separation follows form the work of Haitner et al.
[23] who ruled out black-box constructions of CRH from trapdoor-permutations.
However the construction of CCA secure encryption from TDP is non-black-box
[30,36,42] due to its use of non-interactive zero knowledge proofs (Fig. 1).1

The work of [29] provides several other primitives (than FHE) whose exis-
tence also implies CRH in a black-box way. These primitives include: one-round
private information retrieval (PIR) protocols as well as homomorphic one-way
commitments. As a direct corollary, our main theorem above extends to all these
1 We shall also note that even the techniques behind the proof of [23] do not seem

to extend to a separation of CCA secure encryption from TDPs, even though CCA
secure encryption could be constructed from TDP and random oracles [3]. The reason
is that the “collision finding oracle” (see Definition 9) of [23,45] prevents the random
TDP oracle from being independent of the other subroutines of the oracle to be used
as a random oracle.

246 M. Mahmoody and A. Mohammed

HIBE

IBE

CCA-PKE

FHE

CRHF

O(n/log(n)) Round
Stat. Hiding
Commitment

Black-Box

Claw-free
Permutations

PIR

Fig. 1. Our works shows that primitives on the left side do not imply any of the
primitives on the right side in a black-box way.

primitives as well. Our separations also holds when the goal of the construction
is to achieve statistically hiding commitment schemes with o(n/ log n) round
complexity (where n is the security parameter).2 However, for simplicity of the
presentation here we focus on the simpler primitive of CRH.

Previous Separations Regarding IBE. In this work we present the first black-box
separation for hierarchical IBE. However previous separations about IBE are
known. The work of Boneh et al. [8] proved that there is no black-box construc-
tion of IBE from trapdoor permutations. Furthermore, Goyal et al. [22] proved
the first limitation for IBE and separated it from fuzzy IBE schemes [43]. Our
techniques are quite different from those of [22]. At a high level, [22] uses a
random IBE oracle and aims at breaking any fuzzy IBE construction relative to
this oracle with only a polynomial number of queries to this oracle, while our
approach uses a random HIBE oracle together with the collision-finding oracle
of [23,45] (see Sect. 2.4). The challenging part of our proof is to show that the
random HIBE oracle remains secure in the presence of the collision-finding oracle
rather than finding a poly-query attack to break CRH of the oracle.

Comparison with [2]. A corollary of our Theorem1 for the case of IBE could be
also derived from the concurrent and independent beautiful work of [2]. Asharov
and Segev [2] showed that there is no black-box construction of CRH from indis-
tinguishability obfuscation (iO) and one-way functions, even if the iO primitive
could be applied to OWF in a non-black-box way. Technically, they prove this
result using an oracle O with OWF and iO subroutines while the iO sub-oracle
could accept circuits with OWF gates in them. On the other hand Waters [47]
showed how to construct general (adaptively secure) functional encryption [9]
from iO and OWFs. Note that IBE (and not HIBE) is a special case of func-

2 Statistically hiding commitment is known to be implied by CRH [12,35] and so
proving separation for statistically hiding commitment is stronger than a similar
result for CRH.

On the Power of Hierarchical Identity-Based Encryption 247

tional encryption. The construction of [47] also uses OWF in a non-black-box
way but only for applying the iO to circuits with OWF gates, therefore it can be
implemented using the separating oracle of [2]. In other words, [2] shows how to
construct an oracle relative to which the functional encryption (and thus IBE)
construction of [47] exists, but relative to the same oracle no CRH is secure.

As we will describe below, our proof is quite different from that of [2] and
our compression techniques do not have a counterpart in [2]. While the result of
[2] handles richer class of functional encryption schemes beyond IBE, our result
extends to arbitrary levels of hierarchies.

1.2 Technical Overview

In this subsection we give an overview of our techniques in the proof of our main
theorem. Here we focus on the case of IBE (i.e., HIBE with one hierarchy) since
some of the main challenges already show up for the (adaptively secure) IBE,
and after resolving them we can scale the proof up easily with the number of
hierarchy levels.

We first need to recall tools and techniques from Haitner et al. [15,23] which
we use as building blocks in our proof. Our starting point for the proof of Theo-
rem 1 is the result of Haitner et al. [23] that separates CRH from trapdoor per-
mutations. In their separation, they employed an oracle O = (T, SamT) where
T is a random trapdoor permutation and SamT is (a variant of) the collision
finding oracle of Simon [45] (see Definition 9) which returns a collision (x, x′)
for any given input circuit C with T gates. It is easy to see that relative to O
there is no secure construction of CRH that only uses T gates. To derive the
separation it is enough to show that relative to O, T remains a secure TDP (see
Lemma 10 for a proof). The main technical argument in [23] was to show that
a random trapdoor permutation T remains secure in the presence of SamT . We
will sketch some components of this proof first, and then we will discuss how to
use these tools in addition to our new compression lemmas to prove our result.

Hardness of Random Permutations in the Presense of Sam. The seminal work of
[14] showed that a random permutation π : {0, 1}n �→ {0, 1}n is hard to invert by
introducing the compresson/reconstruction technique. For any supposed adver-
sary Aπ who inverts an 1/poly(n) fraction of {0, 1}n, [14] showed how to rep-
resent the permutation π with Ω(n) bits fewer than it is takes to represent a
random permutation. That would be sufficient to show that the probability that
π is “easy” for such A is at most exponentially small 2−Ω(n).3

The work of [23] extended the result of [14] by showing that the hardness of
random permutations π holds, even if we allow the adversary access the collision
finding oracle Samπ that takes as input any circuit C with π gates (that shrinks
its input) and returns a collision for it (chosen from a specific distribution). This
immediately implies a (fully) black-box separation for CRH from TDP since
3 In fact [15] achieves exponential compression and doubly exponentially small prob-

ability of success for a fixed A. This lets them do a union bound over all poly-sized
circuits A when π is chosen at random.

248 M. Mahmoody and A. Mohammed

for every black-box construction H it gives an oracle (π,Samπ) relative to which
secure TDP exists (i.e., π) but the implementation H of CRH using π is insecure.
This is indeed sufficient to derive the fully black-box separation [18,40].

Extension to TDPs. [23] extended their result to trapdoor permutations using a
similar argument to that of [13] who also proved the hardness of random trapdoor
permutation as follows. Let T = (G,F, F−1) be a random trapdoor permutation
in which G is a random permutation over {0, 1}n, F [pk](·) is a random permu-
tation for every pk ∈ {0, 1}n and F−1[sk](·) be the inverse of F [pk](·) whenever
G(sk) = pk. Let A(T,SamT) be an adversary who inverts a random y under a ran-
dom public key pk with probability 1/poly(n). Then A is implicitly doing either
of the following. Case 1: A finds sk = G−1(pk) for the given random pk. In this
case A has inverted the random permutation G. Case 2: A succeeds at finding
x = F−1[sk](y) without asking G(sk) = pk. Since A does not ask G(sk) = pk the
permutation F [pk](·) would be a random permutation inverted by A. In both
cases the existence of A leads to an efficient-query algorithm inverting random
permutations in the presence of Sam. However, as we saw this is impossible.

Beyond TDP: The Case of IBE and HIBE. First, let us recall IBE infor-
mally (see Definition 8 for a formal definition). An identity-based encryption
(IBE) scheme for security parameter n and messages {0, 1}n is defined using
PPTs (Setup,KeyGen,Enc, Dec):

– Setup(MSK) = MPK takes as input a random master secret key and generates
the master public key MPK.

– KeyGen[MSK](id) = td generates a trapdoor td for a given identity id.
– Enc[MPK, id](x) = y encrypts x under identity id and outputs ciphertext y.
– Dec[MPK, id, td](y) = x decrypts y using the trapdoor td and gets back x.

Security Variants. The basic CPA security of an IBE requires that no adversary
can distinguish between the encryptions of any two messages of his choice even if
he is allowed to choose the challenge identity id∗ of the encryption after getting
trapdoors for identities id �= id∗ of his choice. Here we first focus on the basic
CPA security for IBE, but our full proof handles the stronger notion of CCA
secure IBE/HIBE. For simplicity in this exposition we assume that the IBE’s
adversary aims at decrypting a randomly selected message x (encrypted under
challenge identity id∗).4

As in the case of TDPs, here our goal is to design an oracle O = (U,SamU)
such that U implements IBE/HIBE in way that it remains secure even in the
presence of the SamU oracle. We first start by a direct generalization of the above
arguments to oracles with more than one level of trapdoor, and then will see what
aspects of the security of IBE will require us to change our oracle and the proof
of hardness accordingly. Our first try is to use hierarchical random trapdoor

4 By the Goldreich Levin lemma [20] these two notions of security are equivalent in a
black-box way.

On the Power of Hierarchical Identity-Based Encryption 249

permutations to implement, but to prove the full fledged adaptive security of
IBE/HIBE we will change this oracle to use injective random functions.

Hierarchical Random Permutations. We first use a direct adaptation from ran-
dom TDPs to implement our IBE oracle. Let U = (S,G, F, F−1) be an oracle
that we call a “random IBE oracle” defined and used as follows. S implements
the setup and is a random permutation over {0, 1}n that maps master secret
key MSK to master public key MPK. G[MSK](·) implements the trapdoor gen-
eration and is a random permutation over {0, 1}n that maps identities to their
trapdoor. Finally F [MPK, id](·) and F−1[MPK, td]) are random permutations
over {0, 1}n that are used for encryption and decryption.

Our goal here would be to show that any adversary A who breaks the IBE
implemented by U by accessing O = (U,SamU) will be forced to invert some
random permutation (to derive the contradiction). Let us list the possible cases
through which an adversary can win the security game:

– Case 1: A finds MSK = S−1(MPK).
– Case 2: A does not find MSK, but it finds the trapdoor td∗ for id∗.
– Case 3: A does not find the trapdoor for identity id∗, but it still manages to

invert the challenge ciphertext y.

Problem with Case 2 : Adaptivity of Adversary. Similarly to the case of random
TDP, Case 1 and Case 3 will imply that A is indeed inverting a random
permutation, which can only happen with negligible probability. However, Case
2 does not imply so for two reasons:

1. While inverting id∗ to find its trapdoor, the adversary A is allowed to obtain
trapdoors td �= td∗ for other identities id �= id∗.

2. The adversary gets to choose id∗ as opposed to being given a random one.

In the following we will show how to resolve the two issues above. First we
will ignore the second issue above by working with a weaker security definition
for IBE in which the adversary does not choose id∗ but rather is given a random
one (but still gets to ask the trapdoor for other identities). And then we will
describe our new oracle to handle both issues above.

Attacks Against Random Challenge Identity. Note that we are focusing on the
scenario in which the adversary AU,SamU

breaks the IBE by causing Case 2 to
occur with non-negligible probability. We are also assuming, for now, that the
adversary does not choose an identity of his choice, bur rather finds the trapdoor
of a random identity. Our goal is to reduce this case to when (a variant of) A
is essentially inverting a random permutation using Sam oracle. Think of the
permutation G−1[MPK](·) as the inverse of G[MSK]. It can be verified that
when A succeeds in Case 2, it is in fact inverting G−1 on a random point while
he is able to ask some “inversion queries” to G−1 before “inverting” the random
challenge id∗ on its own.

To rule out successful attackers against random challenge identity we gener-
alize the results of [14] for hardness of random permutations π to the setting in

250 M. Mahmoody and A. Mohammed

which the adversary is allowed to ask inversion queries to π−1(·) in addition to
direct queries to π(·). Namely, we show that a random permutation, is adaptively
one-way [38] even in the presence of the Sam oracle.

Lemma 2 (Informal: Adaptive/CCA hardness of random permuta-
tions in the presence of Sam). For any permutation π over {0, 1}n, define
O = (π, π−1) to be an oracle giving access to π in both directions. Let A be a
poly(n)-query circuit that accepts a challenge y∗ ∈ {0, 1}n and whose goal is to
find x = π−1(y∗) using O while all queries to O are allowed except for π−1(y∗).
Then, with overwhelming probability over the choice of random permutation π it
holds that: the probability of success for A is negligible, even if it is allowed to
call the SamO oracle.

We show that the argument of [15] for the case of “basic” (i.e., non-CCA)
attackers does indeed extend to the CCA setting described in Lemma 2. We
also show that the Sam(π,π−1) oracle will not help the attacker much, using the
techniques of [23] (see Sect. 3 for a proof of this more general setting and the full
version of this paper [32] for a simpler variant restricted to the setting where
Sam oracle does not exist).

Fully Adaptive Attacks. The most challenging aspect of our proof for handling
general IBE attacks stems from the fact that here the adversary is allowed to
choose the challenge identity. Note that such an adversary does not necessarily
invert a “randomly sampled” identity id∗ to win according to Case 2, and it
has full control over id∗. Unfortunately, we are not able to prove a variant of
Lemma 2 in which the adversary chooses y∗ itself since as soon as we sample
and fix the permutation π, there is always a trivial adversary whose description
depends on π and “knows” a pair π(x) = y (through non-uniformity) and that
proposes y as the challenge and inverts it!

Compression Amplification. The way we can rule out such attacks in the context
of IBE/HIBE (for Case 2) is by relying on the fact that the adversary needs to
succeed for a randomly given master public-key out of his choice. The idea is
that even though one cannot prove a strong hardness of inverting π when the
adversary chooses the inversion point y, we can still compress the description of
π by ≈ Ω(n) bits. Even though the above compression for the oracle achieved
in Case 2 as described above is quite small (i.e., Ω(n) as opposed to the needed
2Ω(n) bits of compression) we show how to amplify this compression for our
random IBE oracle. The key point is that the adversary A who has 1/poly(n)
chance of winning in Case 2 is still winning in Case 2 for 2n/poly(n) number of
the master public keys given to him. As a result, we achieve Ω(n) · 2n/poly(n)
bits of compression on the total representation of the random IBE oracle, which
is sufficient to derive its hardness against poly-size (oracle-aided) circuits.

Using Random Injective Functions for Trapdoor Generation. A seemingly minor
technical obstacle against our compression amplification argument sketched in

On the Power of Hierarchical Identity-Based Encryption 251

the previous paragraph is that we need to represent the key (MPK or MSK) for
each of the sub-oracles G[MSK](·) for which we achieve Ω(n) bits of compres-
sion, so that we can reconstruct the full oracle (S,G, F, F−1). Unfortunately, if
we do so, we will lose all the (little) compression that we could achieve for repre-
sentation of G[MSK](·) (for many MSKs). To resolve this issue, we use random
injective functions with large image length to generate the identity trapdoors.
This enables us to gain compression for representation of each G[MSK](·) over
which the attacker succeeds in finding matching G[MSK](id∗) = td∗ even if we
explicitly represent the corresponding MSK. We formally state and prove this
simple, yet useful building block of our compression argument (when there is
no Sam oracle) in the full version [32], which we will invoke when we switch to
using injective functions for generating identity trapdoors.

Extension to HIBE. Our proof sketched above scales well with the number of
identity hierarchies. We will do so by expanding Case 2 of the analysis into many
more subcases corresponding to each level. However, the fundamental difference
between the first (master key general) and last (encryption/decryption) levels
compared to other levels (generating identity trapdoors) remain different and is
handled as described above using injective functions with long output.

Comparison to [11]. At an abstract level, our compression amplification tech-
nique described above allows us to achieve exponential compression for primi-
tives that are of the “family” form (here we are interpreting the MPK as an index
over which the (sub) primitive and the attack are launched) and can potentially
be applied to more applications. In particular, we conjecture that our technique
could give an alternative approach to that of Chung et al. [11] whose goal was
to show how to achieve hardness against non-uniform attackers (circuits) when
the primitive is of the “family” form. [11] achieved this by employing an infor-
mation theoretic lemma by Unruh [46], while our approach uses the compression
technique of [15].

2 Preliminaries

For any n ∈ N, let Πn be a family of permutations where π ← Πn is a random
permutation mapping {0, 1}n to {0, 1}n. Furthermore, let Fn,m be a family of
injective functions where f ← Fn,m is random injective function mapping {0, 1}n

to {0, 1}m. For a set S by x ← S we refer to the process of sampling x uniformly
at random from S. We use [i..j] for {i, . . . , j} and [N] for [1..N].

2.1 Black-Box Constructions

We use the following definition of black-box constructions due to Reingold et al.
[40]. Unless specified otherwise, in this work we use the terms black-box and
fully black-box equivalently.

Definition 3 [Fully black-box constructions [40]]. A fully black-box construc-
tion of a primitive Q from a primitive P consists of two PPT algorithms (Q,S):

252 M. Mahmoody and A. Mohammed

1. Implementation: For any oracle P that implements P, QP implements Q.
2. For any oracle P implementing P and for any oracle adversary A successfully

breaking the security of QP , it holds that SP,A breaks the security of P .

Even though the notion above was formalized in [40], the original work of
Impagliazzo and Rudich were the first to note that black-box constructions “rel-
ativize”; namely they hold relative to any oracle. Thus to rule out black-box
constructions it is sufficient to rule out relativizing constructions. The following
argument has its roots in the work of Gertner et al. [18] and is a strengthening
of this argument. Informally speaking it asserts that it is enough to choose the
separating oracle after (and based on) a candidate construction. Another inter-
pretation of this technique is known as the two-oracle technique of Hsiao and
Reyzin [26]. Here we describe this lemma and prove it for sake of completeness.
This lemma is implicitly used in the work of Haitner et al. [23]. Here we abstract
out this lemma and use it in our proof of Sect. 3.

Lemma 4. For any primitives P and Q let O = (O1, O2) be a randomized oracle
with two subroutines such that:

1. Primitive P could be implemented using (any sample for) the first part O1.
2. Any fixed (computationally unbounded) poly(n)-query adversary B who could

call both of O1 or O2 could break the implementation of P relative to O1 with
probability negl(n) where n is the security parameter. This probability is over
the selection of O as well as attacker B.

3. For any implementation Q of Q that only calls O1 there is a poly(n)-query
attacker A who breaks QO1 with probability ≥ 1 − 1/n2 where the probability
is over O and the attacker A.

Then there is no fully black-box construction of Q from P.

Breaking a primitive could mean different thing for different primitives, but
in this paper we deal with Q being CRH whose attackers have to find collisions
with non-negligible probability.

Proof. For sake of contradiction, suppose (Q,S) is a fully black-box construction
of Q from P. Sample O = (O1, O2) and use the implementation of P that exists
relative to O1 to get implementation QO1 of Q, and let A be the attacker who
breaks this scheme (whose existence is guaranteed by the property 3 of O). Since
A succeeds with probability 1 − 1/n2 and

∑

n 1/n2 = O(1) by Borel-Cantelli
lemma, with measure one over the choice of O, A succeeds for an infinite set of
security parameters. We call such A a good adversary relative to O.

Now, consider SP,A where P is the implementation of P using O1 and A is
the above adversary. By the definition of fully black-box constructions, for any
sampled O such that A is a good adversary relative to O, SP,A will break PO1

also for an infinite sequence of security parameters. Therefore, with measure one
over the choice of O, SP,A will break PO1 for an infinite sequence of security
parameters. But we will show below that this cannot happen.

On the Power of Hierarchical Identity-Based Encryption 253

Let us “merge” the algorithm A into S and consider BO = (SA)O as a new
poly(n)-query attacker who calls O and tries to break PO1 directly. By property
2 of O, this attacker would have negl(n) chance of doing so. By an averaging
argument, for each fixed security parameter, with probability 1 − negl(n) ≥
1 − 1/n2 over the choice of O it holds that BO breaks PO1 with probability at
most negl(n) = α(n). By another application of Borel-Cantelli lemma, it follows
that with measure one over the choice of O it holds that: the number of security
parameters for which BO = (SA)O breaks PO1 with probability more than α(n)
is finite, which is a contradiction.

2.2 Collision-Resistant Hash Functions

In this work we define collision-resistant hash functions only for those that shrink
their input by a factor of two. It is well known that any CRH with only one bit
of shrinkage could be turned into one defined below. We use this definition as it
simplifies some of the arguments needed for the separation.

Definition 5. For m = poly(n), a collision resistant hash function H = {h |
h : {0, 1}m ×{0, 1}n �→ {0, 1}n/2} is a family of functions such that for any PPT
adversary A there is a negligible function ε(n) such that:

Pr
d←{0,1}m

[A(d) = (x1, x2) ∈ {0, 1}2n ∧ x1 �= x2 ∧ hd(x1) = hd(x2)] ≤ ε(n).

where hd(x) = h(d, x).

2.3 Hierarchical Identity-Based Encryption

Definition 6 (Identity vector). For i ≥ 0, an i-level identity vector IDi =
〈id0, ..., idi〉 is a tuple of i identities, where idj ∈ {0, 1}∗ ∀ j ∈ [0, i]. Furthermore,
the corresponding private-key for identity vector IDi is given as tdIDi

. If i < 0,
we let IDi = ε, the empty vector.

Definition 7 (Prefix vector). We define a prefix vector for identity vector
IDi = 〈id0, ..., idi〉 as any tuple 〈s0, ..., sj〉 such that j ≤ i and sk = idk for
0 ≤ k ≤ j. We denote the set of all prefix vectors of IDi as pre(IDi).

Definition 8 (Hierarchical identity-based encryption [25]). Given secu-
rity parameter n, an l-depth hierarchical identity-based encryption (l-HIBE)
scheme for messages in M and ciphertext space C consists of l + 3 PPT algo-
rithms (Setup, {KeyGeni}l

i=1,Enc,Dec) defined as follows. (For simplicity and
without loss of generality we assume that n is the security parameter as well as
the length of the master secret and public keys.)

– Setup(1n) takes as input security parameter n and outputs a pair of keys
(MSK,MPK) ∈ {0, 1}n × {0, 1}n. We let ID0 = 〈id0〉 = 〈MPK〉 and tdID0 =
〈td0〉 = MSK.

254 M. Mahmoody and A. Mohammed

– For i ∈ [1, l],KeyGeni(IDi−1, tdIDi−1 , idi) takes as input the parent identity
vector IDi−1, the corresponding private-key tdIDi−1 and identity idi then out-
puts the corresponding i-level private key vector tdIDi

.5

– Enc(IDl, x) takes as input the full public identity vector IDl, and a message
x ∈ M, and outputs ciphertext y ∈ C.6

– Dec(IDl, tdIDl
, y) takes as input the identity vector IDl, a corresponding

private-key vector tdIDl
, and ciphertext y ∈ C, and it returns the message

x ∈ M.

Correctness. Given any (MSK,MPK) ← Setup(1n), an HIBE scheme must sat-
isfy Dec(IDl, tdIDl

,Enc(IDl, x)) = x for all x ∈ M and all (IDl, tdIDl
) where

tdIDl
is the corresponding private-key of IDl = 〈MPK, id1, ..., idl〉, the identity

vector obtained through an iterative call to KeyGeni.

Security. An HIBE scheme is said to be CCA secure if for all adaptive PPT
adversaries A:

Pr[CCAHIBE
A (1n) = 1] ≤ 1

2
+ negl(n)

where CCAHIBE
A is shown in Fig. 2. In Step 2, A can adaptively ask key genera-

tion queries for IDi to oracle HMSK which returns tdIDi
, the private-key associ-

ated with this identity vector, by recursively applying the key generation procedure
KeyGeni(IDi−1, tdIDi−1 , idi) = tdIDi

given that tdID0 = MSK. Its chosen identity
IDA

l must not be asked as a query to HMSK. Furthermore, A can adaptively ask
decryption queries DMSK(IDl, c) to decrypt ciphertext c ∈ C with respect to any
identity IDl. In Step 4, A can still issue queries to HMSK but only for identities
IDi that are not in pre(IDA

l), and it can still issue queries to DMSK but not for
inputs (IDA

l , c), where c is the challenge ciphertext.
Note that, for l = 0, this reduces to a standard CCA secure public-key encryp-

tion system, and for l = 1 this reduces to a CCA-secure IBE scheme.

Definitional Variations. The standard CCA security of HIBE as given in the
previous definition can be weakened in multiple ways. We present here some
variations of the security definition that we might refer to later, noting only the
differences from the original definition.

– CPA (resp. CCA1): The adversary’s capabilities are limited to chosen plain-
text (resp. non-adaptive chosen ciphertext) attacks.

– rID-CCA/rID-CPA: Instead of having the adversary choose IDA
l , the target

identity will be chosen uniformly at random by the challenger and provided
to the adversary along with MPK.

5 Note that we define a key generation algorithm for each level (as opposed to a single
algorithm) in order to simplify our HIBE construction using our ideal oracle.

6 Some of the subsequent definitions of HIBE use a more general definition in which
one can encrypt messages under partial identity vectors IDi = 〈id0, ..., idi〉 of depth
i < �. Our impossibility result directly extends to this more general setting as well.
However, for sake of simplicity here we focus on the original definition of [25].

On the Power of Hierarchical Identity-Based Encryption 255

Fig. 2. The CCAHIBE
A experiment

– OW-CCA/OW-CPA: Instead of distinguishing between two ciphertexts, the
goals of the adversary here is to “invert” the given challenge ciphertext and
find the corresponding (randomly selected) message. These notions could be
combined into notions like OW-rID-CPA, OW-CCA, etc.

Black-box Construction of HIBE. The definition of a black-box construction of
CRH from HIBE could be derived from Definitions 3 and 8.

2.4 Collision Finding (Sam) Oracle

In this section, we define the collision finding oracle Sam of [23,45]. Roughly
speaking and in its simplest form, Sam is a (possibly inefficient) algorithm that
accepts some description of a circuit C and outputs (x, x′), both uniformly dis-
tributed, such that C(x) = C(x′). This oracle was originally introduced by Simon
[45] and then was extended into the nested Sam oracle of Haitner et al. [23].7

Definition 9 (Collision-finding oracle [23,45]). For any arbitrary oracle
O, the algorithm SamO

r (C) for C with input length n samples a uniformly random
x ∈ {0, 1}n and then (after sampling x) samples another uniformly random point
x′ conditioned on C(x) = C(x′).8 It then returns (x, x′). Note that this oracle
is randomized but the randomness rC is independent for each circuit C (and is
sampled only once). The randomness of Sam for each query is provided by the
randomized function r(C) = rC that for each circuit query C provides a random
point in the inputs of C as well as a random permutation over the input space of
C. The first is used to sample x and then the random permutation is enumerated
till we get a collision x′.

It is easy to see that using Sam one can efficiently find collisions for any circuit
C whose output length m is smaller than its input length n. Specifically, if n > m

7 In this work we focus on using the simpler collision finding oracle that is not inter-
active. However, all of our separation results hold with respect to the stronger Sam
oracle of “low” (i.e., o(n/ log n)) as well. We refer the proof for the more general case
to the full version [32] of the paper.

8 Note that the returned “collision” (x, x′) is not necessarily distributed like a uni-
formly sampled collision from all possible collisions.

256 M. Mahmoody and A. Mohammed

then one guarantees the existence of some pair (x, x′) such that C(x) = C(x′)
(i.e., a collision), which results in Sam successfully returning such a pair. The
following lemma provides a general tool to use Sam for separating primitives
from CRH.

Lemma 10. Let P be any primitive and Q represent the collision-resistant hash
function primitive. Let U = (O,SamO) be a randomized oracle with two subrou-
tines such that: (1) Primitive P could be implemented using O. (2) Any fixed
(even computationally unbounded) poly(n)-query adversary B who could call both
of O and SamO could break the implementation of P relative to O with proba-
bility negl(n) where n is the security parameter. Then there is no fully black-box
construction of collision-resistant hash functions from P.

Proof. The lemma almost directly follows from Lemma 4; we just have to prove
the third property needed by Lemma4. In fact, for any implementation Q of CRH
that only calls O there is a 1-query attacker A who breaks QO with probability
1 − negl(n). All A does is to take d as the index of hash function, turn hd(·)
into a poly(n)-size circuit C with input length n, and call SamO over C and
outputs the result. It is easy to see that since h is shrinking its input by a factor
of two, with 1 − negl(n) probability over the first sampled point x1, the number
of “siblings” of x1 relative to the function hd(·) are exponentially large, and
therefore the two colliding points (x1, x2) returned by SamO will be different
points with probability 1 − negl(n).

3 Separating Hierarchical IBE from Collision Resistant
Hashing

In this section we will formally prove our main Theorem1. Namely, we will
prove that there exists no fully black-box construction of collision-resistant hash
functions from l-level hierarchical identity-based encryption for any polynomial
l = poly(n).

Theorem 11. For any security parameter n and an arbitrary polynomial num-
ber of levels � = poly(n) there is no fully black-box construction of collision-
resistant hash functions from �-level OW-CCA secure hierarchical identity-based
encryption scheme.

Corollary of Theorem 11. The above theorem, together with the result of Boneh
et al. [6] shows the separation of (standard) CCA-secure HIBE from CRH. In
particular, we apply Theorem11 for � + 1 levels of identity with one-way CCA
security (in fact one-way CPA also suffices). Then using Goldreich-Levin lemma
and bit-by-bit encryption, we can achieve CPA security as a black-box, and the
result of [6] gives us an CCA secure HIBE for � levels of identity relative to the
same oracle.

To Prove Theorem 11, we will state and use the following claim, which shows
the existence of a separating oracle for which a secure implementation of a hier-
archical IBE exists.

On the Power of Hierarchical Identity-Based Encryption 257

Claim 12. There exists a randomized oracle U = (O,SamO) such that the fol-
lowing holds:

1. An implementation P of OW-CCA-secure l-HIBE exists relative to O.
2. Any poly(n)-query adversary A with access to U can break P only with neg-

ligible probability.

Proof (of Theorem11). Using Claim 12, we can assume the existence of oracle
U = (O,SamO) for which OW-CCA-secure l-HIBE exists. Since such an oracle
exists, an immediate application of Lemma 10 yields that there is no black-box
construction of collision-resistant hash functions from OW-CCA-secure l-HIBE.

We now dedicate the rest of this section to proving Claim 12. We first start in
Sect. 3.1 by giving a formal description of the first subroutine O of our separating
oracle, which represents an (idealized) random hierarchical trapdoor injective
function, so that we will later use it to implement HIBE in Sect. 3.2. The proof
proper starts in Sect. 3.3 where we will use the randomized oracle U = (O,SamO)
such that (1) a OW-CCA-secure l-level HIBE implementation exists relative to
O, and (2) the HIBE implementation remains secure against any poly(n)-query
computationally unbounded adversary even after adding SamO.

3.1 Description of Oracle O

In this section, we describe the distribution of our oracle O, which will be used
to show that with overwhelming probability over the choice of this oracle, �-
level OW-CCA HIBE exists relative to it. In the following definition we will
use our notation of identity vectors as defined in Definition 6 but, for simplic-
ity of presentation, all of our identities will be strings of length n. Our proof
can be directly extended to handle the case of unbounded-length identities as
well, but for sake of the simplicity of the presentation we focus on the case of
bounded-length identities; see the full version of this paper [32] for a sketch of
the modifications needed for the case of unbounded identity lengths.

Note About Notation. In definition below, we use several functions as part of the
oracle. The inverse of some of these functions are also involved in the definition
of these functions (in a recursive way). So we will define (injective) functions
like f−1(·) and then subsequently use f(·) for f−1−1

(·). Also, for the sake of
clarity and separating actual inputs from indices, we use the notation of f [x](y)
to denote f(x, y) if we envision x as the index (or key) and y as the actual input.

Definition 13 (Random Hierarchical Trapdoor Injective Functions).
For any security parameter integer n ∈ N and number of hierarchies � = �(n),
let m = 10n · �. Our random hierarchical injective function oracle On consists of
2�+3 subroutines: {h−1

0 , g1, h
−1
1 , . . . , g�+1, h

−1
�+1} distributed as follows. (Although

functions hi(·) are not publicly available as subroutines of O we still use them
to describe the subroutines of O more easily.)

258 M. Mahmoody and A. Mohammed

– The key generation oracle h−1
0 (·) := S(·), the encryption oracle h−1

�+1[ID�](·)
:= F [ID�](·) and the decryption oracle g�+1[ID�−1, td�](·) := F−1[ID�](·) are
random permutations over {0, 1}n.

– For i ∈ [1..�], and index IDi−1 = (MPK, id1, . . . , idi−1) ∈ {0, 1}i·n, let
hi[IDi−1](·) : {0, 1}n �→ {0, 1}m be a random injective function. We define
h−1

i [IDi−1](tdi) = idi if hi[IDi−1](idi) = tdi for some idi ∈ {0, 1}n and we
define h−1

i [IDi−1](tdi) = ⊥ if no such idi exists.
– For i ∈ [1..�] and (IDi−2, tdi−1) ∈ {0, 1}(i−1)n+m function gi[IDi−2, tdi−1](·) :

{0, 1}n �→ {0, 1}m is defined as follow: For given input idi, if we have
h−1

i−1[IDi−2](tdi−1) = idi−1 for some idi−1 �= ⊥, then gi[IDi−2, tdi−1](idi) =
hi[IDi−1](idi). If no such idi−1 exists, then gi[IDi−2, tdi−1](idi) = ⊥.

Our actual oracle (for applying Lemma10) will be (O,SamO) where O is
sampled from the distribution of the oracles of Definition 13, and SamO is the
Sam oracle as defined in Sect. 2.4 where the input circuits to SamO are allowed
to have O-gates.

3.2 Implementing �-level HIBE Using Oracle O

Here we show how to use the oracle O of Definition 13 to implement �-level HIBE.
Then we will turn into proving the security which is the main part of the proof.
Although the security of the sampled O is intuitive, due to the fully random
nature of the permutations used in the implementation, since our actual oracle
also has SamO attached to it, the proof of security becomes nontrivial.

Intuition. We use the subroutine h−1
0 (·) to generate the master public key. We

use gi(·) to generate the ID’s of the i’th layer, and we use h−1
�+1(·) to encrypt and

g�+1(·) to decrypt. Therefore, for sake of clarity of the presentation, we will use
the following alternative names for the subroutines of the first and last layers:
h−1
0 (·) = S(·), h−1

�+1· = F ·, g�+1· = F−1·. We will also treat the
master public key as the identity of level zero, the ciphertexts as identity of the
level � + 1, and the plaintexts as the trapdoors of the level � + 1.

Note that we elected to use random trapdoor injective functions to represent
h−1

i . in O as opposed to using random trapdoor permutations as one would
first naturally assume. This is to prevent the adversary from trivially breaking
the scheme using a call to the h−1

i . subroutines. Specifically, if we used a
trapdoor permutation, since the adversary can choose the challenge identity,
it can first call h−1

i . for any i ∈ [1..l] to find an identity for his own (say
randomly selected) trapdoor of level i and announce that specific identity as the
one he will use in the attack! Therefore, it was crucial that either we remove
the subroutines h−1

i . from O or change the oracle in way that mitigates such
an attack. We thus chose to use random injective functions with a sparse range
to make it hard for an adversary to discover a valid trapdoor tdi such that
h−1

i [IDi−1](tdi) �= ⊥ for any IDi−1.

Construction 14 (Implementing �-level HIBE Using Oracle O). For
any security parameter n, and oracle On sampled according to Definition 13,

On the Power of Hierarchical Identity-Based Encryption 259

we will implement an l-HIBE scheme as follows. Our message space and the
identities of each level are all {0, 1}n. To get unbounded message length, we will
use bit-by-bit encryption after the scheme is turned into an CPA secure scheme.
For larger poly(n) identity lengths, we will change the security parameter n into
poly(n) in the first step of the construction. As described below, for any identity
vector IDi, we will represent its trapdoor tdIDi

as (IDi−1, tdi) for the “correct”
tdi. The algorithms for the constructed scheme work as follows:

– Setup(1n) : Choose MSK ∈ {0, 1}n uniformly at random then get MPK =
S(MSK). We let ID0 = 〈id0〉 = 〈MPK〉 and tdID0 = td0 = MSK. Output
(MSK,MPK).

– For i ∈ [1..l],KeyGeni(ID
∗
i−1, tdIDi−1 , idi) where ID∗

i−1 = 〈id∗
0, ..., id

∗
i−1〉:

Parse tdIDi−1 = (IDi−2, tdi−1). If ID∗
i−2 = IDi−2 then set tdi =

gi[IDi−2, tdi−1](idi) and output tdIDi
= (IDi−1, tdi). Otherwise, output ⊥.

– Enc(IDl,m): Output F (IDl−1, idl,m).
– Dec(ID∗

l , tdIDl
, c): Parse tdIDl

= (IDl−1, tdl). If ID∗
l−1 = IDl−1 then output

F−1(IDl−1, tdl, c). Otherwise, output ⊥.

3.3 Security of Implemented HIBE Relative to O

We prove that the constructed HIBE of Construction 14 (using the oracle O
of Definition 13) is OW-CCA secure relative to (O,SamO). The proof has the
following two steps:

1. Compression and Reconstruction. Assuming the existence of any (deter-
ministic) adversary A who can break the OW-CCA security of the con-
structed HIBE (using O of Definition 13) with probability ε ≥ 1/poly(n)
and q = poly(n) queries, we show how to (1) compress O to represent it
using a “fewer” bits than is necessary to represent a general sampled O, and
(2) show how to reconstruct O. This compression is relative to the fixed adver-
sary A and both compression and reconstruction heavily depend on A. The
number of bits saved in the representation of O will directly imply a bound
on the number of such oracles that A can successfully attack. This would
imply that with overwhelming probability over the choice of O it will not be
a good oracle for A’s attack. As usual with reconstruction-type arguments,
the bound obtained with this argument allows us to even do a union bound
over all possible adversaries that are implemented as circuits of polynomial
size. Thus, with overwhelming probability no efficient attacker would exist.

2. Adding SamO. The second step of the proof shows that adding SamO (and
allowing A to call it) does not interfere with the compression and reconstruc-
tion. The argument of this step is identical to that of [23] but we provide our
sketch of the proof in later in this section.

Formalizing the Adversary A. Without loss of generality, we assume that
A is a deterministic adversary who asks q queries (to O and the challenger
combined) and wins against a fixed oracle O with probability ≥ ε:

Pr
(MPK,y)

[A(MPK, y) = (id∗
1, . . . , id

∗
� , x) | F (MPK, id∗

1, . . . , id
∗
� , x) = y] ≥ ε

260 M. Mahmoody and A. Mohammed

where A is participating in the OW-CCA security game, i.e. no vector of identi-
ties (id∗

1, . . . , id
∗
�) is given to the adversary and he is the one who chooses them,

but A is given a random master public key MPK and a random ciphertext y
and he wants to invert y in a CCA attack. We can assume A is deterministic
since we are working with non-uniform adversaries and we will prove that our
oracle is secure against all circuits, and a non-uniform attacker can always fix
its randomness to the “best” value.

Notation. Throughout this section, we might occasionally use the simplifying
notation in which MPK = id∗

0, y = id∗
�+1, and so the full identity vector of the

attack is simply ID∗
�+1 = (MPK, id∗

1, . . . , id
∗
� , y), but the first and last compo-

nents of this vector are not chosen by the adversary but are selected at random.
In addition we use td∗

i to denote the corresponding trapdoor for id∗
i with respect

to the prefix ID∗
i−1. So we will also have the selected MSK = td∗

0 and x = td∗
�+1

for x the inverse of y.

Putting A in Canonical Form. We will modify A as follows.

1. Whenever A wants to output x as its final answer, it queries the encryption
on x by calling F [ID∗

�](x).
2. Whenever A is about to ask the query gi[IDi−2, tdi−1](idi) (which returns

tdi) A will first ask the query h−1
i−1[IDi−3, idi−2](tdi−1) from O (that returns

idi−1 corresponding to tdi−1 for prefix IDi−2). This modification potentially
increases the number of queries asked by A by a factor of two which we can
safely ignore (and assume that A is in canonical form to start with).

Now we define the following events, which somehow capture the “level” in
which the adversary finds a relevant trapdoor. This “trapdoor” could be finding
the message x itself (which as described before, is interpreted as the “trapdoor”
for its corresponding challenge ciphertext y), or it could be finding the relevant
master secret key MSK (which we interpret as the trapdoor of the “identity”
MPK), or it could be finding a trapdoor somewhere in between for idi for i ∈ [�].
Note that finding trapdoor for smaller i is a “stronger” attack that lets A find
the relevant trapdoors for bigger i and eventually invert y.

Definition 15 (Events Ei). For i ∈ [0..� + 1] we say that the event Ei has
happened during the execution of A in the (OW-CCA) security game, if A calls
the query h−1

i [ID∗
i−1](td

∗
i) and receives an answer other than ⊥. We also let E−1

be an empty event (and so ¬E−1 holds with probability one).

The first canonical modification of A implies that the success probability of
A (and the notation we use to denote x as td∗

�+1 and MPK = id∗
0) simply means

that what we are assuming about A’s success attack is equivalent to saying:

Pr
ID∗

�+1

[E�+1] ≥ ε.

In the following we assume this is the case.

On the Power of Hierarchical Identity-Based Encryption 261

Lemma 16. For events Ei’s defined according to Definition 15, there exists i ∈
[0..� + 1] such that PrID∗

�+1
[Ei ∧ ¬Ei−1] ≥ ε/(� + 2).

Proof. It holds that:

E�+1 ⊆
⋃

i∈[0..�+1]

(Ei ∧ ¬Ei−1 ∧ · · · ∧ ¬E0) ⊆
⋃

i∈[0..�+1]

(Ei ∧ ¬Ei−1) .

Also note that Pr[E�+1] ≥ ε. Therefore, there should exists an index i for which
Pr[Ei ∧ ¬Ei−1] ≥ ε/(� + 2).

Fixing Parameters. In the rest of the proof, we fix i to the value that satisfies
Lemma 16, and we let ε′ = ε/(� + 2). However, we will not always fix the master
public-key MPK nor the challenge ciphertext y using an averaging argument.
Whether or not we fix either of them will depend on i.

The Sub-Oracle h(·) = {h0(·), . . . , h�+1(·)}. So far we only defined h−1(·) with-
out referring to h(·) (which was not a subroutine provided as part of the ora-
cle O). Here we introduce this subroutine module and allow A to call it in a
“restricted” way. To elaborate, note that in the CCA security game, the adver-
sary can call the oracles HMSK(.) and DMSK(., .), which allow him get the trap-
doors for any identity as long as it is not a prefix of the challenge identity,
and get decryption of any message other than challenge ciphertext y. Both of
these queries are special cases of queries that are the inverse of h−1(·). Namely,
for i ∈ [1..� + 1] let hi(IDi) = hi[IDi−1](idi) be defined to be equal to tdi

whenever h−1
i [IDi−2, idi−1](tdi) = h−1

i [IDi−1](tdi) = idi. Then any query of the
adversary A to both of the oracles HMSK(.),DMSK(., .) is a special case of a
query to hi(·) for some i ∈ [1..� + 1]. For simplicity, we will even define h0 even
though the adversary is not calling such queries directly (since the MPK = id∗

0

is given by the challenger and is fixed). The restriction on adversary’s queries to
HMSK(.),DMSK(., .) translates into a natural restriction on how he accesses the
oracle h(·): none of these queries are allowed to be a prefix of ID∗

�+1.

Step 1: Compression and Reconstruction of O Without the Presence
of SamO . We now begin the first step of the proof by showing how we can use
a fixed adversary A (with the behaviour and capabilities that were described
earlier in this section) to compress the description of oracle O.

Full Representation of O With No Compression. To represent a general oracle
O fully (while there is no attacker) without redundant information, it suffices
to represent only the injective oracles hi[IDi−1](·) for all i ∈ [0..� + 1] and all
IDi−1 ∈ {0, 1}in. Note that for i = {0, � + 1} these injective functions happen
to be a permutation as well! Now any query to h−1

i [IDi−1](·) can be answered
using its corresponding explicitly represented inverse function hi[IDi−1](·). To
answer the gi[IDi−2, tdi−1](idi) queries, we employ induction on i. Recall that
the master public key generation S(·) sub-routine of O is the same as h−1

0 (·).
Now, for i ∈ [1..�+1] and a given query gi[IDi−2, tdi−1](idi), we can first find the

262 M. Mahmoody and A. Mohammed

relevant identity of tdi−1 by looking up the value of h−1
i−1[IDi−2](tdi−1), whose

answer is represented in the description of the permutation hi−1[IDi−2](·), and
get idi−1. This will enable us to find hi(IDi) = hi[IDi−1](idi), which is also the
answer to gi[IDi−2, tdi−1](idi).

Intuition Behind the Compression of O Relative to A. Here we describe the high
level idea behind how to compress O relative to A, using the ideas described in
Lemma 2. At a very high level we will compress O as follows.

1. If i = l + 1 (i.e., adversary wins by inverting y = idl+1 without finding any
trapdoor for any of the identities he proposes): In this case, we apply a sim-
ilar idea to Lemma 2 and compress O by representing it using three pieces
of information: the description of the fixed master public key id∗

0 = MPK∗

that maximizes the adversary’s success probability, the full description of
h−1

i [IDi−1](·) for all i ∈ [0..�] and all IDi−1 ∈ {0, 1}i·n, and the “compressed”
description of h−1

l+1[ID
∗
l] = F [ID∗

l] where ID∗
l = 〈id∗

0, id
∗
1, ..., id

∗
l 〉 for some

adversarially chosen identities (id∗
1, ..., id

∗
l).

The idea behind compressing h−1
l+1[ID

∗
l](·) is as follows. Note that the iden-

tity vector ID∗
l (and its corresponding trapdoor) determines a single permu-

tation that is described in different directions by h−1
l+1[ID

∗
l](·), hl+1[ID∗

l](·),
and gl+1[ID∗

l−1, td
∗
l](·). The main difference between these three permuta-

tions is that h−1
l+1[ID

∗
l](·) provides the access from trapdoors to identities,

while the other two provide the access in the opposite direction. The algo-
rithm A is “inverting” a random ciphertext idl+1 with respect to the identity
vector ID∗

l , and it finds its related tdl+1 with probability ε′. Now, if we can
show that A’s access to the three permutations h−1

l+1[ID
∗
l](·), hl+1[ID∗

l](·), and
gl+1[ID∗

l−1, td
∗
l](·) does not let him find tdl+1 “trivially” we can apply the

compression algorithm of Lemma 2. The queries that let A find tdl+1 triv-
ially are the two queries hl+1[ID∗

l](idl+1) and gl+1[ID∗
l−1, td

∗
l](idl+1). How-

ever, we already know that none of these queries are asked by A (before he
asks h−1

l+1[ID
∗
l](tdl+1)). The reason that A is not asking hl+1[ID∗

l](·) is that
h(·) is not a subroutine publicly available as part of oracle O, and is only
provided due to the CCA nature of the attack, yet this particular query
hl+1[ID∗

l](idl+1) is prohibited to be asked by A since it violates the CCA
attack’s requirements (asking this query is akin to allowing the adversary to
query the oracle with the challenge!). In addition, the reason that A is not
asking gl+1[ID∗

l−1, td
∗
l](idl+1) is that if he does so, he would be asking the

query h−1
l [ID∗

l−1](td
∗
l) right before that, which means the event El is happen-

ing (which we already assumed is not happening). Therefore, the behaviour
of A lets us apply the compression algorithm of Lemma 2 to compress the
description of h−1

l+1[ID
∗
l](·).

2. If i = 0 (i.e., adversary wins by finding the master secret key): In this case,
we apply a similar idea to Lemma 2 and compress O by representing it using
three pieces of information: the description of the fixed challenge ciphertext
id∗

l+1 = y∗ that maximizes the adversary’s success probability, the full descrip-
tion of h−1

i [IDi−1](·) for all i ∈ [1..� + 1] and all IDi−1 ∈ {0, 1}i·n, and the

On the Power of Hierarchical Identity-Based Encryption 263

“compressed” description of h−1
0 (which corresponds to S). The same idea

that was described for i = (l + 1) applies here as well except that we need
not care about queries that could be used to trivially find td0.

3. If i ∈ [1..�]: This is the part of the proof for the OW-CCA security game
that differs from the other two cases significantly. First we will fix y to what-
ever that maximizes the winning probability of the adversary. Now, the only
remaining randomness (over which the adversary wins with some probability
≥ ε′) is the randomly selected master public key. We call a MPK good (for
adversary) if the adversary manages to make (Ei ∧ ¬Ei−1) hold given this
MPK (and the fixed challenge ciphertext y).

We compress O as follows. We represent each “subtree” of the oracle O that
correspond to different MPKs differently. For MPKs that are not good, we
will give a full representation. However, for each good MPK, we will represent
the part of O that corresponds to this MPK in a compressed manner using
the basic compression algorithm of Lemma 2 (for the case of inverting ran-
dom injective functions) applied to the single injective function hi[ID∗

i−1](·).
We will also represent (ID∗

i−1) (for this particular MPK) but the number of
bits that we save by compressing hi[ID∗

i−1](·) is more than |ID∗
i−1| because

m � n · �. Finally, since the adversary is succeeding for all good MPK’s
and there are super-polynomially many of them, our compression algorithm
compresses the description of O by a super-polynomial number of bits.

Now we proceed with stating the formal claims that we will focus on from now
on for proving that there exists a secure HIBE with respect to O. In particular,
we will have two claims: one for handling the two identical cases of i = 0 and
i = l + 1 (where an adversary would find the corresponding MSK∗ = td∗

0 or
x∗ = td∗

l+1), and another for treating the case of i ∈ [1..l] (where an adversary
finds an intermediate trapdoor) as mentioned during the intuition.

Claim 17. Let O be an l-level random hierarchical trapdoor injective func-
tion oracle and n be the security parameter. Let A = (A1, A2) be a q-query
circuit that accepts a master public key MPK ∈ {0, 1}n, chooses an identity
vector ID∗

l = 〈MPK, id∗
1, ..., id

∗
l 〉, then receives a challenge ciphertext y∗ ←

F [ID∗
l](x

∗) = h−1
l+1[ID

∗
l](x

∗) for a random x∗ ∈ {0, 1}n. Then for q ≤ 2n/5,
ε′ ≥ 2−n/5, and i ∈ {0, l + 1} (and large enough n) we have:

Pr
O

⎡

⎢
⎣ Pr

MPK←{0,1}n

x∗←{0,1}n

[
AO

1 (MPK) = (ID∗
l , σ), AO

2 (σ, MPK, h−1
l+1[ID

∗
l](x

∗)) = td∗
i

]
≥ ε′

⎤

⎥
⎦

≤ 2−2n/2

Therefore, the oracle O can be represented using α − 2n/2 bits where α is the
number of bits required to represent a random O.

Claim 18. Let O be an l-level random hierarchical trapdoor injective func-
tion oracle and n be the security parameter. Let A be a q-query circuit that
accepts a master public key MPK∗ ∈ {0, 1}n, chooses an identity vector ID∗

l =

264 M. Mahmoody and A. Mohammed

〈MPK∗, id∗
1, ..., id

∗
l 〉, then receives a challenge ciphertext y∗ ← F [ID∗

l](x
∗) =

h−1
l+1[ID

∗
l](x

∗) for a random x∗ ∈ {0, 1}n. Then for q ≤ 2n/5, ε′ ≥ 2−n/5,
m = 10nl, and i ∈ [1, l] (and large enough n) we have:

Pr
O

⎡

⎢

⎣
Pr

MPK←{0,1}n

x∗←{0,1}n

[

ID∗
l ← AO(MPK) : AO(MPK, h−1

l+1[ID
∗
l](x

∗)) = td∗
i

] ≥ ε′

⎤

⎥

⎦

≤ 2−23n/5

Therefore, the oracle O can be represented using α − 23n/5 bits where α is the
number of bits required to represent a random O.

Proof (of Claim17). We show here the compression of the oracle in case i = 0
or i = (l + 1) since these two cases are identical in nature. As described before,
the compressed representation of O will contain the fixed i, the fixed master
public key or challenge ciphertext, as well as full representation of permutations
h−1

j [IDj−1](·) for all j ∈ [0..� + 1] and all IDj−1 �= ID∗
i−1. In the following

we describe how to represent the description of h−1
i [ID∗

i−1](·) by describing the
encoding and decoding algorithms.

Encoder: Fix i and let c = |i− (l +1)|. Fix id∗
c such that Lemma 16 is satisfied.

Note that id∗
c represents the fixed master public key if i = (l+1), and represents

the fixed ciphertext challenge when i = 0. Let N = 2n and let I ⊆ {0, 1}n be
the set of i-level identities id∗

i ∈ {0, 1}n for which A can successfully find their
corresponding trapdoor td∗

i (so |I| ≥ ε′N), and let Y = ∅. The encoder works as
follows:

1. Remove the lexicographically first element ˜id∗
i from I and put it in Y

2. Run AO(id∗
c ,

˜id∗
i). If A asks query:

– h−1
i [ID∗

i−1](td
∗
i) = id∗

i and id∗
i ∈ I then remove id∗

i from I
– hi[ID∗

i−1](id
∗
i) and id∗

i ∈ I then remove id∗
i from I

Note that since event Ei−1 does not happen here, A will not call function
gi[ID∗

i−2, td
∗
i−1](·)

3. If |I| �= ∅, go back to Step 1. Otherwise go to the next step.
4. Output the following:

– Description of i
– Description of id∗

c

– The compressed representation of h−1
i [ID∗

i−1] which consists of:
• Description of Y ⊆ I
• Description of X = hi[ID∗

i−1](Y)
• Description of Z = {(id∗

i , hi[ID∗
i−1](id

∗
i) | id∗

i ∈ {0, 1}n\Y }, which
describes the remaining part of the permutation necessary to recon-
struct it.

– The full representation of all the other permutations H = {h−1
j [IDj−1] |

j ∈ [0, .., l + 1], IDj−1 �= ID∗
i−1}

On the Power of Hierarchical Identity-Based Encryption 265

Decoder: Given A, the descriptions of X,Y ,Z, and H, and the description of
i and id∗

c , the decoder can reconstruct O as follows:

1. Remove first lexicographically ordered id∗
i from Y and call it ˜id∗

i

2. Run AO(id∗
c ,

˜id∗
i). If A asks query:

– h−1
i [ID∗

i−1](td
∗
i) for any td∗

i ∈ {0, 1}n:
• If td∗

i /∈ X: value of h−1
i [ID∗

i−1](td
∗
i) is given by Z.

• If td∗
i ∈ X and h−1

i [ID∗
i−1](td

∗
i) <lex

˜id∗
i : value of h−1

i [ID∗
i−1](td

∗
i)

would have been precomputed before this call.
• If td∗

i ∈ X and h−1
i [ID∗

i−1](td
∗
i) = ˜id∗

i : A has hit ˜id∗
i and found its

corresponding trapdoor, so we set h−1
i [ID∗

i−1](td
∗
i) = ˜id∗

i .
– hi[ID∗

i−1](id
∗
i) = td∗

i for any id∗
i ∈ {0, 1}n\˜id∗

i

• If td∗
i /∈ X: value of hi[ID∗

i−1](id
∗
i) is given by Z.

• If td∗
i ∈ X and id∗

i <lex
˜id∗

i : value of hi[ID∗
i−1](id

∗
i) would have been

precomputed before this call and can be inferred from the description
of h−1

i [ID∗
i−1]

– h−1
j [IDj−1](tdj) for any tdj ∈ {0, 1}n, and either j �= i or IDj−1 �= ID∗

i−1:
the result idj can be obtained using the given full representation of
h−1

j [IDj−1]
– hj [IDj−1](idj) for any idj ∈ {0, 1}n, and either j �= i or IDj−1 �= ID∗

i−1:
the result tdj can be obtained using the given full representation of
h−1

j [IDj−1]
– gj [IDj−2, tdj−1](idj) for any tdj ∈ {0, 1}n, and either j �= i or IDj−1 �=

ID∗
i−1: due to the canonical behaviour of A, h−1

j−1[IDj−2](tdj−1) will be
called first to get idj−1. Then we can find the desired trapdoor tdj using
hj [IDj−1](idj) whose answer is represented in h−1

j [IDj−1].
3. If |Y | = ∅ then stop. Otherwise go to step 1.

Since for each id∗
i that is inserted into Y we remove at most q from I, the

size of Y is at least a := |I|/(q +1) ≥ ε′N/(q +1). Let Enc(O) represent the size
(in bits) of the compressed oracle. The only difference in the description of the
permutations between Enc(O) and O is that in the compressed oracle we are
saving on the representation of h−1

i [ID∗
i−1]. Specifically, while h−1

i [ID∗
i−1] requires

log N ! bits to be fully represented in O, we only need 2 log
(

N
a

)

+log((N −a)!) to
represent the compressed h−1

i [ID∗
i−1], which consists of X,Y and Z. Furthermore,

we need n + log(l + 2) = O(n + l) to represent id∗
c and i. Thus, the amount of

bits we save in our compression is:

log N ! − 2 log
(

N

a

)

− log((N − a)!) − O(n + l)

and since l = poly(n), the overhead we incur due to representing the index i and
identity id∗

c in the compressed oracle is relatively insignificant. In particular, the
fraction of oracles O on which A can do ε′-well is at most:

266 M. Mahmoody and A. Mohammed

2|Enc(O)|

2|O| = 22 log (N
a)+log((N−a)!)+O(n+l)−log N !

=

(

N
a

)2
(N − a)!
N !

· 2O(n+l)

=

(

N
a

)

a!
· 2O(n+l)

≤
(

Ne2

a2

)a

· 2O(n+l)

If we let q ≤ 2n/5 and ε′ ≥ 2−n/5 we get that a ≥ 2−n/52n

2n/5 + 1
≥ 23n/5/2.

So the upper bound reduces to
(

(4)2ne2

26n/5

)a

2O(n+l) =
(

4e2

2n/5

)a

2O(n+l) ≤
2−a+O(n+l) ≤ 2−23n/5−1+O(n+l) ≤ 2−2n/2

for sufficiently large n.

Proof (of Claim18). We show here the compression of the oracle in case i ∈ [1..l].
In the following we describe how to represent the description of the injective
function hi[ID∗

i−1](·) by describing the encoding and decoding algorithms.

Encoder: Fix i and y such that Lemma 16 is satisfied. Let N = 2n,M = 2m and
let I ⊆ {0, 1}n be the set of master public keys MPK ∈ {0, 1}n for which A can
successfully find some ID∗

i such that id∗
i was obtained by calling h−1

i [ID∗
i−1](td

∗
i)

without any prior invocation to hi[ID∗
i−1](id

∗
i). Thus, |I| ≥ ε′N . Initialize the

set Y = ∅. The encoder works as follows:

1. Remove the lexicographically first element M̃PK from I and put it in Y

2. Run AO(M̃PK, y). If A asks query:
– hi[ID∗

i−1](id
∗
i) and id∗

0 ∈ I then remove id∗
0 from I

Note that since event Ei−1 does not happen here, A will not call function
gi[ID∗

i−2, td
∗
i−1](·)

3. If |I| �= ∅, go back to Step 1. Otherwise go to the next step.
4. Output the following:

– Description of i and y
– Description of Y ⊆ I
– For each MPK = id∗

0 ∈ Y :
• Description of ID∗

i−1 on which A was successful
• The compressed representation of hi[ID∗

i−1] which consists of:
∗ Description of point id∗

i

∗ Description of the injective function h′
i[ID

∗
i−1] : [N − 1] → [M] on

all points except id∗

∗ The query index k ∈ [q] during which h−1
i [ID∗

i−1](td
∗
i) = id∗

i is
called

• The full representation of all the other injective functions H =
{hj [IDj−1] | IDj−1 �= ID∗

i−1}
– The full representation of all injective functions for “bad” MPK: R =

{hj [IDj−1] | id0 /∈ Y }

On the Power of Hierarchical Identity-Based Encryption 267

Decoder: Given A, the descriptions of i, y, Y,H,R, and the |Y | compressed
representations of hi[ID∗

i−1] (including ID∗
i−1 the query index k for each repre-

sentation), the decoder can reconstruct O as follows:

1. Remove first lexicographically ordered MPK from Y and call it M̃PK. Let
ID∗

i−1 be the target identity that specifies which function has been com-
pressed.

2. Reconstruct all the answers of hi(ID∗
i−1) using h′

i[ID
∗
i−1] except for the value

of hi(ID∗
i−1)(id

∗
i) which is yet to be determined

3. Run AO(M̃PK, y). If A asks query:
– h−1

i [ID∗
i−1](td

∗
i) for any td∗

i ∈ {0, 1}m:
• If this is the kth query then we have found the corresponding id∗

i so
set hi[ID∗

i−1](id
∗
i) = td∗

i

• Otherwise answer using h′
i[ID

∗
i−1]

– hi[ID∗
i−1](id

∗
i) = td∗

i for any id∗
i ∈ {0, 1}n: answer using h′

i[ID
∗
i−1]

– h−1
j [IDj−1](tdj) for any tdj ∈ {0, 1}m, and id0 ∈ Y and IDj−1 �= ID∗

i−1:
answer using the given full representation from H. The same applies for
hj [IDj−1] queries.

– h−1
j [IDj−1](tdj) for any tdj ∈ {0, 1}m, and id0 /∈ Y : answer using the

given full representation from R. The same applies for hj [IDj−1] queries.
– gj [IDj−2, tdj−1](idj) for any tdj ∈ {0, 1}m: due to the canonical behaviour

of A, h−1
j−1[IDj−2](tdj−1) will be called first to get idj−1. Then we can find

the desired trapdoor tdj using hj [IDj−1](idj) whose answer is represented
in the description of h−1

j [IDj−1].
4. If |Y | = ∅ then stop. Otherwise go to step 1.

Since for each MPK that is inserted into Y we remove at most q from I,
the size of Y is at least a := |I|/(q + 1) ≥ ε′N/(q + 1). Let Enc(O) represent
the size (in bits) of the compressed oracle. The only difference in the description
of the injective functions between Enc(O) and O is that in the compressed
oracle, we are saving on the representation of hi[ID∗

i−1] for the master public
keys represented in Y . Specifically, for each MPK ∈ Y , we are compressing a
single injective function from requiring αN,M = Πi∈[N](M−i−1) bits to αN−1,M

bits whilst incurring an overhead of at most n(l + 1) + log(q) to represent ID∗
i

and the query index k. Thus if q < 2n/5 and m = 10nl and l = poly(n), we have
that, for each good MPK, the net savings (in bits) of:

log(αN,M) − log(αN−1,M) − nl − n − log(q) = log

(
αN,M

αN−1,M

)
− nl − n − log(q)

= log(M − N − 1) − nl − n − log(q)

≥ log(M/2) − nl − n − log(2n/5)

≥ m − 1 − nl − n − (n − 1)

= 10nl − nl − 2n ≥ 6nl

Since we have a ≥ ε′N/(q + 1) “good” master public keys and given that
q < 2n/5 and ε′ > 2−n/5, the total number of savings we get is at least a×6nl ≥
(6nl)23n/5/2 ≥ 23n/5 for sufficiently large n.

268 M. Mahmoody and A. Mohammed

Step 2: Adding the SamO Oracle. The second step of the proof shows that
giving access to the oracle SamO to A does not interfere with the compression and
reconstruction procedures. The argument of this step is identical to that of [23].
However, we sketch the steps of this argument for sake of completeness. Our goal
here is to show that the same compression level of the oracle O (relative to which
the adversary “succeeds” with non-negligible probability) could be obtained even
when we add the SamO oracle (with an arbitrary fixed randomness) and allow
A to call it. This would show that, with high probability over the choice of the
oracle O and the randomness of the oracle SamO the implementation of HIBE
using O remains secure.

Looking ahead, the only change would be that this time we need to use the
augmented query complexity of the attacker instead, and we lose a factor of 3 in
the success probability of A. Therefore, the hardness of the constructed HIBE
using the sampled oracle O would be almost the same as before (as a parameter
of ε and the augmented query complexity q). The augmented query complexity
of an attacker A is equal to its standard query complexity to the oracle O plus
the total number of indirect O queries in the form of O gates that are planted
in circuits that are queried to from SamO by the adversary. The new modified
proof goes through the following two steps.

1. First note that the job of the adversary is essentially to “hit” the preimage
of the challenge ciphertext y or an identity id∗

i , or the master public key.
This event could be either as a result of a direct query to O or as a result of
an indirect query to O through a circuit C asked to Sam. The exact hitting
event that the adversary is looking for depends on which case Ei ∧ ¬Ei−1

we are focusing on, but let us assume we are dealing with a fixed i and the
adversary is able to make the event Ei ∧ ¬Ei−1 happen with a decent chance
by “hitting” the trapdoor td∗

i of id∗
i . An indirect hitting of td∗

i would happen
if and only if the adversary sends a circuit C to SamO(C) with O gates in it
and returns a collision (x, x′) and either of C(x) or C(x′) hits td∗

i .
A crucial argument due to [23] shows that one can always modify the

attacker to ask a few more queries so that it hits its goal td∗
i directly (before

it happens indirectly) with a probability that is at most a factor of 3 less
than the total probability of hitting it (directly or indirectly). The intuition
behind this argument is that the distributions of the two points x and x′

are both uniform over the inputs of C (even though they are distributed in a
correlated way). So, if the adversary chooses a random point x′′ and evaluates
C(x′′) before asking C from the SamO oracle, it keeps the chance of hitting
td∗

i directly at least half of hitting it indirectly!9

In the second part of the argument below we will safely assume that the
event Ei∧¬Ei−1∧¬SamHit is happening with non-negligible probability, while
SamHit refers to an the event that td∗

i is being hit first indirectly through a
Sam query by the adversary.

9 The actual argument is more subtle, but the main idea is the linearity of expectation
over different probabilities.

On the Power of Hierarchical Identity-Based Encryption 269

2. The second part of the proof shows that if we start with the guarantee that
Ei ∧ ¬Ei−1 ∧ ¬SamHit is happening with a noticeable probability, we can
achieve the same compression of the oracle O even if we fix the randomness
of Sam. This argument indeed holds because of the way our compression and
decompression algorithms work. Note that at the heart of our compression
and decompression algorithms we basically run the adversary over different
inputs till it hits a special point. What is crucial in these arguments is that
while we have not hit the final point of interest we can still continue the
execution of the adversary and hope that the answer to the current queries
are already reconstructed. Now if we have the guarantee that no SamO(C)
query by adversary is hitting td∗

i indirectly, and if we have already fixed the
randomness of the Sam oracle, we can still run the encoding and decoding
algorithms with almost no change. Namely, suppose C is a circuit query to
Sam. The first thing Sam does is to run C on a random (but not fixed) input x.
We have the guarantee that the execution of C(x) does not encounter any
query whose answer is not already reconstructed. Moreover, the second point
x′ is the lexicographically first input to C such that C(x) = C(x′) where x′ is
being chosen from a random permutation (that is also fixed!) over the inputs
of C. To find the same x′ while doing the reconstruction, all we have to do is
to run C over all inputs one by one using the same permutation order (that
is now fixed) till we manage to finish an execution C(x′) that happens to
output the same C(x). This means that we can run the same encoding and
decoding algorithms even in the presence of Sam oracle.

Proof (of Claim12). Given the implementation of the HIBE scheme using O in
Construction 14, we prove the first part of the claim, by referring to Claims 17
and 18. In particular, the combined claims show that for any given adversary of
the HIBE scheme whose goal is to invert its challenge ciphertext for an iden-
tity vector of its choice, the probability of doing so is negligible in the security
parameter when it is trying to invert an identity at level i. Thus, a union bound
over all possible i ∈ [l], where l = poly(n) still results in negligible probability
of success. The second part of the claim (that is, that the HIBE is secure even
in the presence of SamO) follows by extension from the discussion in Sect. 3.3,
and in particular from the techniques of [23].

Acknowledgement. We thank Vinod Vaikuntanathan for pointing out to us the
connection between our results and the work of [2].

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. Cryptology ePrint Archive, Report 2015/341 (2015).
http://eprint.iacr.org/

http://eprint.iacr.org/

270 M. Mahmoody and A. Mohammed

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005)

6. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2006)

7. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

8. Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the
impossibility of basing identity based encryption on trapdoor permutations. In:
FOCS, pp. 283–292. IEEE Computer Society (2008)

9. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

10. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

11. Chung, K.-M., Lin, H., Mahmoody, M., Pass, R.: On the power of nonuniformity
in proofs of security. In: Proceedings of the 4th Conference on Innovations in The-
oretical Computer Science, pp. 389–400. ACM (2013)

12. Damg̊ard, I.B., Pedersen, T.P., Pfitzmann, B.: On the existence of statistically
hiding bit commitment schemes and fail-stop signatures. J. Cryptol. 10(3), 163–
194 (1997)

13. Gennaro, G., Katz.: Lower bounds on the efficiency of encryption and digital sig-
nature schemes. In: STOC: ACM Symposium on Theory of Computing (STOC)
(2003)

14. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005)

15. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: FOCS, pp. 305–313 (2000)

16. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Garbled ram revisited, part i.
Cryptology ePrint Archive, Report 2014/082 (2014). http://eprint.iacr.org/

17. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

18. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relation-
ship between public key encryption and oblivious transfer. In: FOCS, pp. 325–335
(2000)

19. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

20. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Proceedings of 21st STOC, pp. 25–32. ACM (1989)

21. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

22. Goyal, V., Kumar, V., Lokam, S., Mahmoody, M.: On black-box reductions between
predicate encryption schemes. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 440–457. Springer, Heidelberg (2012)

http://eprint.iacr.org/

On the Power of Hierarchical Identity-Based Encryption 271

23. Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive
protocols - a tight lower bound on the round complexity of statistically-hiding
commitments. In: 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 20–23 October 2007, Providence, RI, USA, pp. 669–679. IEEE
Computer Society (2007)

24. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

25. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

26. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 92–105. Springer, Heidelberg (2004)

27. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: FOCS, pp. 230–235 (1989)

28. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing (STOC), pp. 44–61. ACM Press (1989)

29. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Sufficient conditions for collision-resistant
hashing. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 445–456. Springer,
Heidelberg (2005)

30. Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under
general assumptions. J. Cryptol. 19(3), 359–377 (2006)

31. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)

32. Mahmoody, M., Mohammed, A.: On the power of hierarchical identity-based
encryption. Cryptology ePrint Archive, Report 2015/815 (2015). http://eprint.
iacr.org/

33. Maurer, U.M., Yacobi, Y.: Non-interactive public-key cryptography. In: Davies,
D.W. (ed.) Advances in Cryptology EUROCRYPT 1991. LNCS, vol. 547, pp. 498–
507. Springer, Heidelberg (1991)

34. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991)

35. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing (STOC), pp. 33–43. ACM Press (1989)

36. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Proceedings of the 22nd STOC, pp. 427–437. ACM Press
(1990)

37. Naor, M., Ziv, A.: Primary-secondary-resolver membership proof systems. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 199–228.
Springer, Heidelberg (2015)

38. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer,
Heidelberg (2008)

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC: ACM Symposium on Theory of Computing (STOC) (2005)

40. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryp-
tographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

http://eprint.iacr.org/
http://eprint.iacr.org/

272 M. Mahmoody and A. Mohammed

41. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: STOC, pp. 387–394 (1990)

42. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: Proceedings of the 40th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 543–553 (1999)

43. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

44. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

45. Simon, D.R.: Findings collisions on a one-way street: can secure hash functions be
based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

46. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007)

47. Brent Waters.: A punctured programming approach to adaptively secure functiona-
lencryption. Cryptology ePrint Archive, Report 2014/588 (2014). http://eprint.
iacr.org/

48. Yao, A.C.: Theory and applications of trapdoor functions. In: Proceedings of the
23rd FOCS, pp. 80–91. IEEE (1982)

http://eprint.iacr.org/
http://eprint.iacr.org/

On the Impossibility of Tight
Cryptographic Reductions

Christoph Bader, Tibor Jager(B), Yong Li, and Sven Schäge(B)

Horst Görtz Institute for IT Security, Ruhr-University Bochum,
Bochum, Germany

sschaege@gmail.com

Abstract. The existence of tight reductions in cryptographic security
proofs is an important question, motivated by the theoretical search
for cryptosystems whose security guarantees are truly independent of
adversarial behavior and the practical necessity of concrete security
bounds for the theoretically-sound selection of cryptographic parame-
ters. At Eurocrypt 2002, Coron described a meta-reduction technique
that allows to prove the impossibility of tight reductions for certain digi-
tal signature schemes. This seminal result has found many further inter-
esting applications. However, due to a technical subtlety in the argu-
ment, the applicability of this technique beyond digital signatures in
the single-user setting has turned out to be rather limited. We describe
a new meta-reduction technique for proving such impossibility results,
which improves on known ones in several ways. It enables interesting
novel applications, including a formal proof that for certain crypto-
graphic primitives (including public-key encryption/key encapsulation
mechanisms and digital signatures), the security loss incurred when the
primitive is transferred from an idealized single-user setting to the more
realistic multi-user setting is impossible to avoid, and a lower tightness
bound for non-interactive key exchange protocols. Moreover, the tech-
nique allows to rule out tight reductions from a very general class of non-
interactive complexity assumptions. Furthermore, the proofs and bounds
are simpler than in Coron’s technique and its extensions.

1 Introduction

Provable Security. In modern cryptography, new cryptosystems are usually con-
structed together with a proof of security. Usually this security proof consists of
a reduction Λ (in a complexity-theoretic sense), which turns an efficient adver-
sary A into a machine ΛA solving a well-studied, assumed-to-be-hard computa-
tional problem. Under the assumption that this computational problem is not
efficiently solvable, this implies that the cryptosystem is secure. This approach
is usually called “provable security”, it is inspired by the analysis of relations
between computational problems in complexity theory, and allows to show that

T. Jager—Supported by DFG grant JA 2445/1-1.
S. Schäge—Supported by UbiCrypt, DFG grant GRK 1817/1.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 273–304, 2016.
DOI: 10.1007/978-3-662-49896-5 10

274 C. Bader et al.

breaking the security of a cryptosystem is at least as hard as solving a certain
well-defined hard computational problem.

The Security Loss in Reduction-Based Security Proofs. The “quality” of a reduc-
tion can be measured by comparing the running time and success probability of
ΛA to the running time and success probability of attacker A. Ideally, ΛA has
about the same running time and success probability as A. However, most secu-
rity proofs describe reductions where ΛA has either a significantly larger running
time or a significantly smaller success probability than A (or both). Thus, the
reduction “loses” efficiency and/or efficacy.

Since provable security is inspired by classical complexity theory, security
proofs have traditionally been formulated asymptotically. The running time and
success probability of Turing machines are modeled as functions in a security
parameter k ∈ N. Let tΛA(k) denote the running time and εΛA(k) denote the
success probability of ΛA. Likewise, let tA(k) and εA(k) denote the running time
and success probability of A. Then it holds that

tΛA(k)/εΛA(k) = �(k) · tA(k)/εA(k)

for some “loss” �(k). A reduction Λ is considered efficient, if its loss �(k) is
bounded by a polynomial. Note that in this approach the concrete size of poly-
nomial � (i.e., its degree and the size of its coefficients) does not matter. As
common in classical complexity theory, it was considered sufficient to show that
� is polynomially-bounded.

Concrete Security Proofs, the Notion of Tightness, and Its Relevance. In order
to deploy a cryptosystem in practice, the size of cryptographic parameters (like
for instance the length of moduli or the size of underlying algebraic groups) has
to be selected. However, the asymptotic approach described above does not allow
to derive concrete recommendations for such parameters, as it only shows that
sufficiently large parameters exist. This is because the size of parameters depends
on the concrete value of �, the loss of the reduction. A larger loss requires larger
parameters.

The more recent approach, termed concrete security, makes the concrete secu-
rity loss of a reduction explicit. This allows to derive concrete recommendations
for parameters in a theoretically sound way (see e.g. [7] for a detailed treatment).
Ideally, �(k) is constant. In this case the reduction is said to be tight.1 The exis-
tence of cryptosystems whose security is independent of deployment parameters
is of course an interesting theoretical question in its own right. Moreover, it has
a strong practical motivation, because the tightness of a reduction directly influ-
ences the selection of the size of cryptographic parameters, and thus has a direct
impact to the efficiency of cryptosystems.
1 When speaking of tight reductions in this paper, we mean tight reductions from

non-interactive computational problems, like integer factorization, the discrete log-
arithm problem, etc., rather than (often trivial) tight reductions from interactive or
contrived non-standard computational problems, which sometimes are very similar
to the assumption that the cryptosystem is secure.

On the Impossibility of Tight Cryptographic Reductions 275

Coron’s Result and Its Refinements. Coron [18] considered the existence of tight
reductions for unique2 signature schemes in the single user setting, and described
a “rewinding argument” (cf. Goldwasser et al. [27]), which allowed to prove lower
tightness bounds for such signature schemes. In particular, Coron considered
“simple”3 reductions, which convert a forger F breaking the security4 of a unique
signature scheme into a machine solving a computationally hard problem Π. He
showed that any such reduction yields an algorithm B solving Π directly with
probability εB, where

εB ≥ εΛ − εF

exp(1) · n
·
(

1 − n

|M|
)−1

. (1)

Here εΛ is the success probability of Λ, εF is the success probability of the sig-
nature forger F used by Λ, n is the number of signatures queried by F in the
EUF-CMA security experiment, and |M| is the size of the message space. Note
that if |M| � n, which is a reasonable for signature schemes, then the bound
in (1) essentially implies that the success probability of εΛ of the reduction
can not substantially exceed εF/(exp(1) · n), unless there exists an algorithm B
solving Π efficiently. The latter, however, contradicts the hardness assumption
on Π. This result was later revisited by Kakvi and Kiltz [31], and generalized
by Hofheinz et al. [30] to (non-unique) signature schemes with efficiently re-
randomizable signatures, see also AppendixA.

Limitations of Known Meta-Reductions. Unfortunately, Coron’s result has found
only limited applications beyond digital signatures in the single-user setting.
Most previous works [18,30,31] consider this setting, the (to our best knowledge)
only exception is due to Lewko and Waters [33], which considers hierarchical
identity-based encryption. Why isn’t it possible to apply it to other primitives?
One reason is that the bound in Eq. (1) ceases to be useful for reasonable values
of εΛ and εF if n ≈ |M|. This can be easily seen by setting n = |M| − 1.
The assumption that |M| � n is a prerequisite for the arguments in [18,30,31]
to work, thus, it is not possible to apply this technique to settings, where the
assumption |M| � n is not reasonable.

Therefore Coron’s technique is not applicable when |M| is polynomially-
bounded. However, such a situation appears often when considering crypto-
graphic primitives beyond digital signatures in the single-user setting. Con-
sider, for instance, a security model where the adversary is provided with

2 For a unique signature scheme there exists exactly one unique valid signature for
each message. For instance, important instantiations of the famous Full-Domain
Hash construction are unique signature schemes, see [31].

3 Intuitively, a “simple” reduction is a reduction which has black-box access to the
adversary, and runs the adversary only sequentially. Most reductions in crypto-
graphic security proofs are of this type. A more precise definition is given in the
body of the paper.

4 In the sense of existential unforgeability under chosen-message attacks (EUF-CMA,
cf. Definition 18).

276 C. Bader et al.

M = {pk1, . . . , pkn}, where pk1, . . . , pkn is a list of public keys. The adver-
sary may learn all but one of the corresponding secret keys, and is considered
successful if it “breaks security” with respect to an uncorrupted key. This is a
quite common setting, which occurs for instance in security models for signa-
tures or public-key encryption in the multi-user setting with corruptions [3,4],
all common security models for authenticated key exchange [4,9,15], and non-
interactive key exchange [25] protocols. How can we analyze the existence of
inherent tightness bounds in these settings?

Our Contributions. We develop a new meta-reduction technique, which is also
applicable in settings where |M| is polynomially bounded. In comparison to
[18,30,31], we achieve the simpler bound

εB ≥ εΛ − 1/n.

which is independent of |M|.
Our new technique allows to rule out tight reductions from any non-

interactive complexity assumption (cf. Definition 5). This includes also “deci-
sional” assumptions (like decisional Diffie-Hellman). It avoids the combinatorial
lemma of Coron [18, Lemma 1], which has a relatively technical proof. Our app-
roach does not require such a combinatorial argument, but is more “direct”.

This simplicity allows us to describe a generalized experiment with an
abstract computable relation that captures the necessary properties for our tight-
ness bounds. Then we explain that the standard security experiments for many
cryptographic primitives are specific instances of this abstract experiment.

Technical Idea. To describe our technical idea, let us consider the example of
digital signatures in the single-user settings, as considered in [18,30,31], for this
introduction. As sketched above, the result will later be generalized and applied
to other settings as well. We consider a weakened signature security definition,
where the security experiment proceeds as follows.

1. The adversary receives as input a verification key vk along with n random
but pairwise distinct messages m1, . . . , mn.

2. The adversary selects an index j∗, and receives in response n − 1 signatures
σi for all messages mi with i �= j∗.

3. Finally, the adversary wins the experiment if it outputs σ∗ that is a valid
signature for mj∗ with respect to j∗.

Note that this is a very weak security definition, because the adversary is only
able to observe signatures of random messages. However, note also that any lower
tightness bound for such a weaker security definition implies a corresponding
bound for any stronger definition. In particular, the above definition is weaker
than the standard security definition existential unforgeability under chosen mes-
sage attacks considered in [18,30,31], where messages may be adaptively chosen
by the adversary.

Essentially, we argue that once a reduction has started the adversary in
Step 1 of the above experiment, and thus has “committed” to a verification key

On the Impossibility of Tight Cryptographic Reductions 277

vk and messages m1, . . . , mn, there can only be a single choice of j∗ for which
this reduction is able to output valid signatures σi for all i �= j∗. Thus, for any
adversary which chooses j∗ uniformly at random the reduction has probability at
most 1/n to succeed. We prove this by contradiction, by showing essentially that
any reduction which is successful for two distinct choices of j∗, say j0, j1, can
be used to construct a machine that breaks the underlying security assumption
directly.

Technically, we proceed in two steps: first we describe an inefficient adversary
against the reduction which chooses j∗ uniformly random, and computes the
signature σ∗ for mj∗ by exhaustive search. Next, we show that this adversary
can efficiently be simulated by our meta-reduction, if the reduction could succeed
for two different choices j0 and j1 after committing to (vk,m1, . . . , mn). The
meta-reduction simulates the inefficient adversary by rewinding the reduction.
Essentially, if the reduction could succeed for two different values j0, j1, then it
must also be able output the signatures for all n messages. Therefore we start
the reduction and let it run until it reaches a “break point” where it outputs
(vk,m1, . . . , mn). Next, we run the reduction n-times, each time starting from
the break point and using a different index j, to search for two values j0, j1 such
that j0 �= j1 such that the reduction outputs valid signatures for all-but-one
messages. If indeed there exist two such indices j0, j1, then we now have learned
signatures for all messages (m1, . . . , mn) which are valid w.r.t. vk. Thus, we can
run the reduction one last time from the break point, this time to the end, using
index j0 (or equivalently j1), and we simulate the inefficient adversary using
the fact that we know a valid signature for mj0 (or mj1). Importantly, in the
last execution of the reduction we are able to simulate the inefficient adversary
perfectly, so the reduction will help us to break the non-interactive complexity
assumption.

We caution that the rigorous proof of the above is more complex than the
intuition provided in this introduction, and we have to put restrictions on the
signature scheme, which depend on the considered application. For instance,
when considering signatures in the single-user setting as above, we have to require
that signatures are efficiently re-randomizable. In the generalized setting we will
consider other applications, which require different but usually simple-to-check
properties, like for instance that for each public key vk there exists a unique
secret key. In this way, our result provides simple criteria to check whether
a cryptographic construction can have a tight proof at all. At the same time it
implicitly provides guidelines for the construction of tightly secure cryptographic
schemes, since all tightly secure constructions must circumvent our result in one
way or the other.

The fact that we consider a weakened security experiment has several nice
features. We think that the approach and its analysis described above are much
simpler than previous works, which enables more involved impossibility results.
We will show that it achieves a simpler bound and yields a qualitatively stronger
result, as it even rules out tight reductions for such weak security experiments.
Like previous works, we only consider reductions that execute the adversary

278 C. Bader et al.

sequentially and in a black-box fashion. We stress that most reductions in cryp-
tography have this property.

We generalize the above idea from signature schemes in a single-user setting
to abstract relations, which capture the relevant properties required for our
impossibility argument to go through. We show that this abstraction allows to
apply the result relatively easily to other cryptographic primitives, by describing
applications to public-key encryption and signatures in the multi-user setting,
and non-interactive key exchange.

Overview of Applications. A first, immediate application of our new technique
are strengthened versions of the results of [18,30,31], but with significantly sim-
pler proofs and tightness bounds even for weaker security notions (which is
a stronger result). In contrast to previous works [18,30,31], the impossibility
results hold also for “decisional” complexity assumptions.

Additionally, the fact that our meta-reduction does not require the com-
binatorial lemma of Coron enables further, novel applications in settings with
polynomially-bounded spaces (where Coron’s result worked only for exponential-
sized spaces). As a first novel application of our generalized theorem, we analyze
the tightness loss that occurs when security proofs in idealized single-user set-
tings are transferred to the more realistic multi-user setting. Classical security
models for standard cryptographic primitives often consider an idealized set-
ting. For instance, the standard IND-CPA and IND-CCA security experiments
for public-key encryption consider a setting with only one challenge public key
and only a single challenge ciphertext. This is of course unrealistic for many
practical applications. Public-key encryption is typically used in settings where
an attacker sees many public keys and ciphertexts, and is (potentially) able to
corrupt secret keys adaptively. Even though there is a reduction from breaking
security in the multi-user setting to breaking security in the idealized setting,
this reduction comes with a security loss which is linear in the number of users
and ciphertexts. We show that under certain conditions (e.g., for schemes where
there exists a unique secret key for each public key) this loss is impossible to
avoid. This gives an insight into which properties a cryptosystem must or must
not meet in order to allow a tight reduction in the multi-user setting.

Another novel application is the analysis of the existence of non-interactive
key exchange (NIKE). In non-interactive key exchange (NIKE) two parties are
able to derive a common shared secret. However, in contrast to traditional key
exchange protocols, they do not need to exchange any messages. Besides the
secret key of one party the key derivation algorithm only requires the availability
of the public key of the communication partner. Security is defined solely by
requiring indistinguishability of the derived shared secret from a random value.
We show how to apply our main result to rule out tight reductions for a large
class of NIKE protocols from a standard assumption in any sufficiently strong
security model (such as the CKS-heavy model from [25]).

On Certified Public Keys and the Results of Kakvi and Kiltz. Several years after
the publication of the paper of Coron [18] it has turned out that this paper

On the Impossibility of Tight Cryptographic Reductions 279

contains a subtle technical flaw. Essentially, it is implicitly assumed that the
value output by the reduction to the adversary is a correct signature public key
(recall that Coron considered only digital signature schemes in the single-user
setting). This misses the fact that a reduction may possibly output incorrect keys
which are computationally indistinguishable from correct ones. Indeed, such keys
lead to the technical problem that a meta-reduction may not be able to simulate
the adversary constructed in the meta-reduction of Coron correctly.

This flaw was identified and corrected by Kakvi and Kiltz [31]. Essentially,
Kakvi and Kiltz enforce that the reduction outputs only public keys which can
be efficiently recognized as correct, by introducing the notion of certified public
keys. A different (but similar in spirit), slightly more general approach is due to
Hofheinz et al. [30], who require that signatures are efficiently re-randomizable
with respect to the public key output by from the reduction (regardless of
whether this key is correct or not). Both these approaches [30,31] essentially
overcome the subtle issue from Coron’s paper by ensuring that the adversaries
simulated by the meta-reductions are always able to output correctly distributed
signatures.

In this paper, we introduce the notion of efficiently re-randomizable relations
to overcome the subtle issue pointed out by Kakvi and Kiltz [31]. This notion
further generalizes the approach of [30] in a way that suits our more general
setting.

Relation to Tightly-Secure Constructions. There exist various constructions of
tightly-secure cryptosystems, which have to avoid our impossibility results in
one way or another. The signature schemes constructed in [1,10,19,29,32,36],
for example, are tightly-secure in a single-user setting. They avoid our impos-
sibility result because they do not have unique signatures or no efficient re-
randomization algorithm is known. The same holds for the signature schemes
derived from the IBE schemes of [11,17]. Bader et al. [4] constructed signa-
ture schemes with tight security even in the multi-user setting with adap-
tive secret-key corruptions. Again, our impossibility results are avoided here
because signatures are not efficiently re-randomizable. The encryption schemes of
Bellare, Boldyreva and Micali [6] are tightly-secure in a multi-user setting, but
only without corruptions. We consider impossibility results for the multi-user
setting with corruptions. The key encapsulation mechanism presented in [4] is
tightly-secure even in a multi-user setting with corruptions. It avoids our impos-
sibility result because it does not have unique secret keys.

More Related Work. Since their introduction by Boneh and Venkatesan in
1998 [12] meta-reductions have proven to be a versatile tool in many areas
of provably security. Previous works have mainly used meta-reductions to
derive impossibility results and efficiency/security bounds on signatures schemes
[5,20–22,24,26,34,37], blind-signature schemes [23] and encryption systems [35].
In particular, among these results there exist several works that consider the exis-
tence of (tight) security proofs for the Schnorr signature scheme [5,24,26,34,37].

280 C. Bader et al.

The results in [13,14] use meta-reductions to derive relationships among cryp-
tographic one-more type problems. Lewko and Waters [33], building on [30],
showed that under certain conditions it is impossible to prove security of hierar-
chical IBE (HIBE) schemes. To this end, Lewko and Waters extend the approach
of [30] from signatures to hierarchical IBE to show that for certain HIBE schemes
an exponential tightness loss is impossible to avoid. Finally, the inexistence of
certain meta-reductions was considered in [22].

Outline. We begin with considering essentially the same setting as Coron and
follow-up works [18,30,31], namely digital signatures in the single-user setting,
as an instructive example. We prove a strengthened variant of the results of
[18,30,31]. This allows us to explain how our new technique works in a known
setting, which may be helpful for readers already familiar with these works.
A generalized, much more abstract version will be presented in Sects. 4 and 5
gives many further interesting applications, which seem not achievable using the
previous approach of [18,30,31].

2 The New Meta-reduction Technique

2.1 Preliminaries

Notation. We write [n] to denote the set [n] := {1, 2, . . . , n}, and for j ∈ [n] we
write [n\j] to denote the set [n]\{j}. If A is a set then a ←$ A denotes the action
of sampling a uniformly from A. Given a set A we denote by UA the uniform
distribution on A. If A is a Turing machine (TM) then a ← A(x; r) denotes that
A outputs a when run with input x and random coins r. By A(x) we denote
the distribution of a ← A(x; r) over the uniform choice of r. If x is a binary
string, then |x| denotes its length. If M is a Turing machine, we denote by ̂M
its description as a bitstring.

If t : N → N and there exists a constant c such that t(k) ≤ kc for all but
finitely many k ∈ N, then we say that t ∈ poly(k). We denote by poly−1(k) the
set poly−1(k) := {δ : 1

δ ∈ poly(k)}. We say that ε : N → [0, 1] is negligible if for
all c ∈ N it holds that ε(k) > k−c is true only for at most finitely many k ∈ N.
We write ε ∈ negl(k) to denote that ε is negligible.

Digital Signatures. A digital signature scheme SIG = (Setup,Gen,Sign,Vfy) is a
four-tuple of PPT-TMs:

Public Parameters. The public parameter generation machine Π ←$

Setup(1k) takes the security parameter k as input and returns public para-
meters Π.

Key Generation. The key generation machine takes as input public parameters
Π and outputs a key pair, (vk, sk) ←$ Gen(Π).

Signing. The signing machine takes as input a secret key sk and a message
m and returns a signature σ ←$ Sign(sk,m).

Verification. The verification machine, on input a public key vk, a signature
σ and a message m, outputs 0 or 1, Vfy(vk,m, σ) ∈ {0, 1}.

On the Impossibility of Tight Cryptographic Reductions 281

Game UF-SMAn,A
SIG 1k

)
Π ←$ SIG.Setup(1k); ρA ←$ {0, 1}k

(vk, sk) ←$ SIG.Gen(Π)
m1, . . . , mn ←$ M s.t. mi �= mj for all i �= j
σi ←$ SIG.Sign(sk, mi) for all i ∈ [n]
(j, st) ← A1(vk, (mi)i∈[n]; ρA)
σj ← A2 st, (σi)i∈[n\j]

)
return SIG.Vfy(vk, mj , σj)

Fig. 1. The UF-SMA-security game with attacker A = (A1, A2).

Unique and Re-Randomizable Signatures. Let Σ(vk,m) := {σ : Vfy(vk,m, σ) =
1} denote the set of all valid signatures σ w.r.t. a given message m and verifica-
tion key vk.

Definition 1 (Unique signatures). We say that SIG is a unique signature
scheme, if |Σ(vk,m)| = 1 for all vk and m.

Definition 2 (Re-randomizable signatures). We say that SIG is tReRand-re-
randomizable, if there exists a TM SIG.ReRand which takes as input (vk,m, σ)
and outputs a signature σ′ ←$ SIG.ReRand(vk,m, σ) with the following
properties.

1. SIG.ReRand runs in time at most tReRand

2. If Vfy(vk,m, σ) = 1, then σ′ is distributed uniformly over Σ(vk,m).

Remark 1. Note that we do not put any bounds on tReRand. Thus, any sig-
nature scheme is tReRand-re-randomizable for sufficiently large tReRand. How-
ever, there are many examples of signature schemes which are efficiently re-
randomizable, like the class of schemes considered in [30]. In particular, all
unique signature schemes are efficiently re-randomizable by the Turing machine
σ ←$ SIG.ReRand(vk,m, σ) which simply outputs its input σ.

Unforgeability Under Static Message Attacks. The UF-SMA security experiment
is depicted in Fig. 1.

Definition 3. Let UF-SMAn,A
SIG

(

1k
)

denote the UF-SMA security experiment
depicted in Fig. 1, executed with signature scheme SIG and attacker A =
(A1,A2). We say that A (tA, n, εA)-breaks the UF-SMA-security of SIG, if it
runs in time tA and

Pr
[

UF-SMAn,A
SIG

(

1k
) ⇒ 1

]

≥ εA.

Remark 2. Observe that the messages in the UF-SMA security experiment from
Fig. 1 are chosen at random (but pairwise distinct). We do this for simplicity,
but stress that for our tightness bound we actually do not have to make any

282 C. Bader et al.

assumption about the distribution of messages, apart from being pairwise dis-
tinct. For instance, the messages could alternatively be the lexicographically first
n messages of the message space, for instance.

Non-interactive Complexity Assumptions. The following very general definition
of non-interactive complexity assumptions is due to Abe et al. [2].

Definition 4. A non-interactive complexity assumption N = (T,V,U) consists
of three TMs. The instance generation machine (c, w) ←$ T(1k) takes the secu-
rity parameter as input, and outputs a problem instance c and a witness w.
U is a probabilistic polynomial-time machine, which takes as input c and outputs
a candidate solution s. The verification TM V takes as input (c, w) and a candi-
date solution s. If V(c, w, s) = 1, then we say that s is a correct solution to the
challenge c.

Intuitively, U is a probabilistic polynomial-time machine which implements a
suitable “trivial” attack strategy for N . This algorithm is used to define what
“breaking” N with non-trivial success probability means, cf. Definition 5 below
and [2].

Consider the following experiment NICAB
N (1k).

1. The experiment runs the instance generator of N to generate a problem
instance (c, w) ←$ T(1k). Then it samples uniformly random coins ρB ←$

{0, 1}k for B.
2. B is executed on input (c, ρB), it outputs a candidate solution s.
3. The experiment returns whatever V(c, w, s) returns.

Definition 5. We say that B (t, ε)-breaks assumption N , if Λ runs in time t(k)
and it holds that

∣

∣

∣Pr
[

NICAB
N

(

1k
) ⇒ 1

]

− Pr
[

NICAU
N

(

1k
) ⇒ 1

]∣

∣

∣ ≥ ε(k)

where the probability is taken over the random coins consumed by T and the
uniformly random choices of ρB and ρN respectively.

Simple Reductions From Non-interactive Complexity Assumptions to Breaking
UF-SMA-Security. A reduction from breaking the UF-SMA-security of a signature
scheme SIG to breaking the security of a non-interactive complexity assumption
N = (T,V,U) is a TM, which turns an attacker A = (A1,A2) according to
Definition 3 into a TM ΛA according to Definition 5.

Following [18,30,31,33], we will consider a specific class of reductions in the
sequel. We consider reductions having black-box access to the attacker, and which
execute the attacker only once and without rewinding. We will generalize this
later to reductions that may execute the attacker several times sequentially.
Following [33], we call such reductions simple. At first sight we heavily constrain
the class of reductions to that our result applies. However, as explained in [33],
we include reductions that perform hybrid steps. Moreover, most reductions in
cryptography are simple.

On the Impossibility of Tight Cryptographic Reductions 283

For preciseness and clarity, we define such a reduction as a triplet of Turing
machines Λ = (Λ1, Λ2, Λ3). From these TMs and an attacker A = (A1,A2), we
construct a Turing machine ΛA for a non-interactive complexity assumption as
follows.

1. Machine ΛA receives as input a challenge c of the considered non-interactive
complexity assumption, as well as random coins ρΛ ←$ {0, 1}k . It first runs
Λ1(c, ρΛ), which returns the input to A1, consisting of a verification key vk,
a sequence of messages (mi)i∈[n], and random coins ρA, as well as some state
stΛ2 .

2. Then ΛA executes the attacker A1 on input (vk, (mi)i∈[n], ρA), which returns
an index j∗ ∈ [n] and some state stA.

3. TM Λ2 receives as input j∗ and state stΛ2 , and returns a list of signatures
(σi)i∈[n\j∗] and an updated state stΛ3 .

4. The attacker A2 is executed on (σi)i∈[n\j∗] and state stA, it returns a signa-
ture σ∗.

5. Finally, ΛA runs Λ3(σ∗, j∗, stΛ3), which produces a candidate solution s, and
outputs s.

Definition 6. We say that a Turing machine Λ = (Λ1, Λ2, Λ3) is a simple
(tΛ, n, εΛ, εA)-reduction from breaking N = (T,V,U) to breaking the UF-SMA-
security of SIG, if for any TM A that (tA, n, εA)-breaks the UF-SMA security of
SIG, TM ΛA (tΛ + tA, εΛ)-breaks N .

Definition 7. Let � : N → N. We say that reduction Λ loses �, if there exists an
adversary A that (tA, n, εA)-breaks the UF-SMA security of SIG, such that ΛA

(tΛ + tA, εΛ)-breaks N with

tΛ(k) + tA(k)
εΛ(k)

≥ �(k) · tA(k)
εA(k)

.

Remark 3. The quotient tA(k)/εA(k) of the running time tA(k) and the success
probability εA(k) of a Turing machine A is called the work factor of A [8]. Thus,
the factor � in Definition 6 relates the work factor of attacker A to the work
factor of TM ΛA, which allows us to measure the tightness of a cryptographic
reduction. The smaller �, the tighter is the reduction.

2.2 Bound for Simple Reductions Without Rewinding

For simplicity, we will consider reductions that have access to a “perfect” adver-
sary A, which (tA, εA)-breaks the signature scheme with εA = 1. We explain in
Sect. 2.4 why the extension to adversaries with εA < 1 is straightforward.

Theorem 1. Let N = (T,V,U) be a non-interactive complexity assumption,
n ∈ poly(k) and let SIG be a signature scheme. For any simple (tΛ, n, εΛ, 1)-
reduction from breaking N to breaking the UF-SMA-security of SIG, there exists
a Turing machine B that (tB, εB)-breaks N where

tB ≤ n · tΛ + n · (n − 1) · tVfy + tReRand and εB ≥ εΛ − 1/n.

284 C. Bader et al.

Here, tReRand is the time required to re-randomize a signature, and tVfy is the
running time of the verification machine of SIG.

Proof. Our proof structure follows the structure of [30] (also used in [33]). That
is, we first describe a hypothetical, inefficient adversary, then we show how to
simulate it efficiently for certain reductions.

The Hypothetical Adversary. The hypothetical adversary A = (A1,A2) consists
of two procedures that work as follows.

A1

(

vk, (mi)i∈[n]; ρA
)

. On input a public key vk and messages m1, . . . , mn,
A1 samples j ←$ [n] uniformly random and outputs (j, st), where st =
(vk, (mi)i∈[n], j).

A2((σi)i∈[n\j], st). A2 checks whether SIG.Vfy(vk,mi, σi) = 1 for all i ∈ [n\j]. If
this holds, then it samples a uniformly random signature σj ←$ Σ(vk,mj)
for mj . Finally, it outputs σj .

Note that A (tA, 1)-breaks the UF-SMA-security of SIG. Note also that the second
step of this adversary may not be efficiently computable, which is why we call
this adversary hypothetical.

Simulating A. Consider the following TM B, which runs reduction Λ = (Λ1, Λ2,
Λ3) as a subroutine and attempts to break N . B receives as input c ←$ T(1k). It
maintains an array A with n entries, which are all initialized to ∅, and proceeds
as follows.

1. B first runs (vk, (mi)i∈[n], ρA, stΛ2) ←$ Λ1(c; ρΛ) for uniformly random
ρΛ ←$ {0, 1}k.

2. Next, B runs Λ2(j, stΛ2) for each j ∈ [n]. Let ((σi,j)i∈[n\j], stΛ3,j) denote the
output of the j-th execution of Λ2. Whenever Λ2 outputs (σi,j)i∈[n\j] such
that

SIG.Vfy(vk,mi, σi,j) = 1 for all i ∈ [n\j]

then it sets A[i] ← σi,j for all i ∈ [n\j].
3. B samples j∗ ←$ [n]. Then it proceeds as follows.

– If there exists an index i ∈ [n\j∗] such that SIG.Vfy(vk,mi, σi,j∗) �= 1,
then B sets σ∗ := ⊥.

– Otherwise, if SIG.Vfy(vk,mi, σi,j∗) = 1 for all i ∈ [n\j∗], then B computes

σ∗ ←$ SIG.ReRand(vk,mj∗ , A[j∗]).

4. Finally, B runs s ← Λ3(σ∗, j∗, stΛ3,j∗) and outputs s. Note that the state
stΛ3,j∗ used to execute Λ3 corresponds to the state returned by Λ2 on its
j∗-th execution.

Running Time of B. B essentially runs each part of Turing machine Λ =
(Λ1, Λ2, Λ3) once, plus n − 1 additional executions of Λ2. Moreover, it executes

On the Impossibility of Tight Cryptographic Reductions 285

SIG.Vfy n(n − 1) times, and the re-randomization TM SIG.ReRand once. Thus,
the total running time of B is at most

tB ≤ n · tΛ + n · (n − 1) · tVfy + tReRand.

Success Probability of B. To analyze the success probability of B, let us define an
event bad. Intuitively, this event occurs, if j∗ is the only (with respect to state
stΛ2) value such that Λ2(stΛ2 , j) outputs signatures which are all valid. More
formally, for both experiments NICAB

N (1k) and NICAΛA
N (1k), let stΛ2 denote the

(in both experiments unique) value computed by Λ1(c; ρΛ), and let j∗ denote
the (in both experiments unique) value given as input to Λ3(σ∗, j∗, stΛ3,j∗). We
say that bad occurs (in either NICAB

N (1k) or NICAΛA
N (1k)), if pred(stΛ2 , j

∗) =
1 ∧ pred(stΛ2 , j) = 0 ∀ j ∈ [n\j∗], where predicate pred is defined as

pred(stΛ2 , j) = 1

⇐⇒
∧

i∈[n\j]

SIG.Vfy(vk,mi, σi) = 1, where ((σi)i∈[n\j], stΛ3) ← Λ2(stΛ2 , j).

Note that pred is well-defined, because Λ2 is a deterministic TM.
Let us write S(F) shorthand for the event NICAF

N (1k) ⇒ 1 to abbreviate our
notation. Then, it holds that

∣

∣ Pr[S(B)] − Pr[S(ΛA)]
∣

∣ ≤ ∣

∣ Pr[S(B) ∩ ¬bad] − Pr[S(ΛA) ∩ ¬bad]∣∣ + Pr[bad].
(2)

Bounding Pr[bad]. Recall that event bad occurs only if

pred(stΛ2 , j
∗) = 1 ∧ pred(stΛ2 , j) = 0 ∀ j ∈ [n\j∗] (3)

where stΛ2 is the value computed by Λ1(c; ρΛ), and j∗ is the value given as input
to Λ3(σ∗, j∗, stΛ3,j∗). Suppose that indeed stΛ2 is such that there exist at least
one j∗ ∈ [n] such that (3) holds. We claim that even then we have

Pr[bad] ≤ 1/n. (4)

To see this, note first that for each stΛ2 there can be at most one value j∗

that satisfies (3). Moreover, both the hypothetical adversary A and the adversary
simulated by B choose j∗ ←$ [n] independently and uniformly random, which
yields (4).

Proving Pr[S(B)∩¬bad] = Pr[S(ΛA)∩¬bad]. Note that B executes in particular

1. (vk, (mi)i∈[n], stΛ2) ←$ Λ1(c; ρΛ)
2. ((σi,j∗)i∈[n\j∗], stΛ3) ←$ Λ2(j∗, stΛ2)
3. s ← Λ3(σ∗, j∗, stΛ3).

We show that if ¬bad occurs, then B simulates the hypothetical adversary A
perfectly. To this end, consider the distribution of σ∗ computed by B in following
two cases.

286 C. Bader et al.

1. Machine Λ2(j∗, stΛ2) outputs ((σi,j∗)i∈[n\j∗], stΛ3,j∗) such that there exists
an index i ∈ [n\j∗] with SIG.Vfy(vk,mi, σi,j∗) �= 1.
In this case, A would compute σ∗ := ⊥. B also sets σ∗ := ⊥ in this case.

2. TM Λ2(j∗, stΛ2) outputs ((σi,j∗)i∈[n\j∗], stΛ3,j∗) such that for all i ∈ [n\j∗] it
holds that

SIG.Vfy(vk,mi, σi,j∗) = 1.

In this case, A would output a uniformly random signature σ∗ ←$

Σ(vk,mj∗). Note that in this case B outputs a re-randomized signature
σ∗ ←$ SIG.ReRand(vk ,mj∗ , A[j∗]), which is a uniformly distributed valid
signature for mj∗ provided that A[j∗] �= ∅. The latter happens whenever bad
does not occur.

Thus, B simulates A perfectly in either case, provided that ¬bad. This implies
S(B) ∩ ¬bad ⇐⇒ S(ΛA) ∩ ¬bad, which yields

Pr[S(B) ∩ ¬bad] = Pr[S(ΛA) ∩ ¬bad]. (5)

Finishing the Proof of Theorem1. By plugging (4) and (5) into Inequality (2),
we obtain

∣

∣ Pr[S(B)] − Pr[S(ΛA)]
∣

∣ ≤ 1/n

which implies

εB = |Pr[S(B)] − Pr[S(U)]| ≥ |Pr[S(Λ)] − Pr[S(U)]| − 1/n = εΛ − 1/n.

2.3 Interpretation

Assuming that no adversary B is able to (tN, εN)-break the security of NICA with
tN = tB = n · tΛ +n · (n−1) · tVfy + tReRand, we must have εB ≤ εN. By Theorem 1,
we thus must have

εΛ ≤ εB + 1/n ≤ εN + 1/n

for all reductions Λ. In particular, the hypothetical adversary A constructed in
the proof of Theorem1 is an example of an adversary such that

tΛ + tA
εΛ

≥ tA
εN + 1/n

= (εN + 1/n)−1 · tA
1

= (εN + 1/n)−1 · tA
εA

.

Thus, any reduction Λ from breaking the security of NICA N to breaking the
UF-SMA-security of signature scheme SIG loses (in the sense of Definition 7) at
least a factor of � ≥ 1/(εN + 1/n). In particular, note that � ≈ n if εN is very
small. This yields the following informal theorem.

Theorem 2 (Informal). Any simple reduction from breaking the security of
NICA N to breaking the UF-SMA-security (or any stronger security notion, like
EUF-CMA-security, cf. Definition 19) of signature scheme SIG that provides effi-
cient signature re-randomization loses a factor that is at least linear in the num-
ber n of sign queries issued by the attacker, or N is easy to solve.

Remark 4. Since a unique signature scheme is trivially efficiently re-
randomizable, Theorem2 applies also to unique signature schemes.

On the Impossibility of Tight Cryptographic Reductions 287

Fig. 2. TM r-ΛA that solves a non-interactive complexity assumption according to

Definition 5, constructed from a r-simple reduction r-Λ =
(
Λ0, (Λl,1, Λl,2, Λl,3)l∈[r] , Λ3

)

and an attacker A = (A1, A2).

2.4 Extension to “Non-perfect” Adversaries

Note that the proof of Theorem 1 trivially generalizes to (tΛ, n, εΛ, εA)-reductions
with εA < 1, that is, reductions that have access to an adversary which has
success probability εA < 1. To this end, we first would have to describe a hypo-
thetical adversary, which has success probability εA. This is simple, because we
can simply let the hypothetical adversary constructed above toss a biased coin
χ with Pr[χ = 1] = εA, such that A outputs σ∗ only if χ = 1. Note that in the
proof of Theorem1 we are even able to simulate a perfect adversary A. Therefore
we would also be able to simulate the non-perfect adversary sketched above, by
tossing a biased coin χ and outputting σ∗ only if χ = 1. This yields the following
theorem.

Theorem 3. Let N = (T,V,U) be a non-interactive complexity assumption,
n ∈ poly(k) and let SIG be a signature scheme. For any simple (tΛ, n, εΛ, εA)-
reduction from breaking the UF-SMA-security of SIG to breaking N , there exists
a Turing machine B that (tB, εB)-breaks N where

tB ≤ n · tΛ + n · (n − 1) · tVfy + tReRand and εB ≥ εΛ − 1/n.

Here, tReRand is the time to re-randomize a given valid signature over a message
and tVfy is the time needed to execute the verification machine of SIG.

3 Bound for Reductions with Sequential Rewinding

Theorem 1 applies only to reductions that run the forger only once. Here we
show that under assumptions similar to that in Theorem1 the work factor of
any reduction that is allowed to run or rewind the adversary r times sequentially
cannot decrease significantly below n

r if N is hard.

288 C. Bader et al.

Let r be an upper bound on the number of times that the adversary can be
rewound by the reduction. We then consider a reduction r-Λ as a 3 ·r+2-tuple of
Turing machines r-Λ =

(

Λ0, (Λl,1, Λl,2, Λl,3)l∈[r] , Λ3

)

. Let now A = (A1,A2) be
an attacker against the UF-SMA-security of SIG. From these TMs we construct
a Turing machine r-ΛA that solves a NICA N as depicted in Fig. 2. We shortly
explain Fig. 2 here.

Λ0. r-Λ inputs a challenge c of the considered non-interactive complexity assump-
tion and random coins ρΛ. It processes these inputs by running Λ0 which
outputs a state stΛ.

Λl = (Λl,1, Λl,2, Λl,3). Now, for each l ∈ [r], we have a triplet of TMs Λl =
(Λl,1, Λl,2, Λl,3) that has black box access to attacker A = (A1,A2). Note
that the state stΛ may be passed over from Λl,3 to Λl+1,1 (and Λ3) while the
state stA of A2 may not be passed over to the next execution of A1.
Λl,1. Λl,1 inputs the current state stΛl,1 and outputs a public key vkl, distinct

messages ml
i, i ∈ [n], a random tape ρA for A1 and a state stΛl,2 . Next,

A1 is run on input
(

vkl, (mi)i∈[n]

)

; ρA) and returns a state stA and an
index jl.

Λl,2. On input index jl and state stΛl,2 , Λl,2 returns signatures
(

σl
i

)

i∈[n\j]

and state stΛl,2 . Now, A2 is run on
(

(

σl
i

)

i∈[n\jl]
, stA

)

and returns σl
jl .

Λl,3. Λl,3 inputs the signature output by Al,2 and the current state stΛl,2 . It
returns the state stΛl+1,1 .

Λ3. Finally, Λ3 inputs the current state of r-Λ and returns s. r-Λ is considered
successful if V(c, w, s) = 1.

Definition 8. We say that a Turing machine r-Λ =
(

Λ0, (Λl,1, Λl,2, Λl,3)l∈[r] ,

Λ3) is an r-simple (tΛ, n, εΛ, εA)-reduction from breaking N = (T,V,U) to breaking
the UF-SMA-security of SIG, if for any TM A that (tA, n, εA)-breaks the UF-SMA
security of SIG, TM r-ΛA (as constructed above) (tΛ + r · tA, εΛ)-breaks N .

Definition 9. Let � : N → N. We say that an r-simple reduction Λ from breaking
a non-interactive complexity assumption N to breaking the UF-SMA security of a
signature scheme SIG loses � if there exists an adversary A that (tA, n, εA)-breaks
such that ΛA (tΛ + r · tA, εΛ)-breaks N where

tΛ(k) + r · tA(k)
εΛ

≥ �(k) · tA(k)
εA(k)

.

Theorem 4. Let N = (T,V,U) be a non-interactive complexity assumption,
n, r ∈ poly(k) and let SIG be a signature scheme. Then for any r-simple
(tΛ, n, εΛ, 1)-reduction Λ from breaking N to breaking the UF-SMA-security of
SIG there exists a TM B that (tB, εB)-breaks N where

tB ≤r · n · tΛ + r · n · (n − 1) · tVfy + r · tReRand

εB ≥εΛ − r

n
.

On the Impossibility of Tight Cryptographic Reductions 289

Here, tReRand is the time to re-randomize a given valid signature over a message
and tVfy is the time needed to run the verification machine of SIG.

The proof of this theorem is structured as the proof of Theorem1. We again
first consider a hypothetical attacker A (cf. Page 11) that breaks the UF-SMA-
security of SIG. Next, when we show how to simulate A, we basically apply the
technique from the proof of Theorem1 r times. A detailed proof can be found
in the full version of this paper.

3.1 Interpretation

Assuming that no adversary B is able to (tN, εN)-break the security of NICA with
tN = tB = r · n · tΛ + r · n · (n − 1) · tVfy + r · tReRand, we must have εB ≤ εN. By
Theorem 4, we thus must have

εΛ ≤ εB + r/n ≤ εN + r/n

for all reductions Λ. In particular, the hypothetical adversary A constructed in
the proof of Theorem 1 is an example of an adversary such that

tΛ + r · tA
εΛ

≥ r · tA
εN + r/n

= (εN + r/n)−1 · r · tA
1

= (εN + r/n)−1 · r · tA
εA

.

Thus, any reduction Λ from breaking the security of NICA N to breaking the
UF-SMA-security of signature scheme SIG loses (in the sense of Definition 7) at
least a factor of � ≥ r/(εN + r/n). In particular, note that � ≈ n if εN is very
small.

4 A Generalized Meta-reduction

In this section we state and prove our main result, which generalizes the results
from Sect. 2. Essentially, we observe that for the proof to work we do not need all
structural elements a signature scheme possesses. In particular we do not require
dedicated parameter generation-, key generation- and sign-algorithms. Instead,
we consider an abstract security experiment with the following properties:

1. The values that are publicly available “induce a relation” R(x, y) that is
efficiently verifiable for the adversary during the security experiment.

2. The adversary is provided with statements y1, . . . , yn at the beginning of the
security experiment and has access to an oracle that when queried yi returns
xi such that R(xi, yi), i ∈ [n].

3. If the adversary is able to output xj such that R(xj , yj) and it did not query
its oracle on yj , this is sufficient to win the security game.

Remark 5. To show the usefulness of such an abstract experiment, we note that
for instance the security experiments for public key encryption or key encap-
sulation mechanisms in the multi-user setting with corruptions [4], or digital

290 C. Bader et al.

signature schemes in the multi-user (MU) setting with corruptions [3,4], natu-
rally satisfy these properties as follows. Essentially, we define a relation R(sk, pk)
over pairs of public keys and secret keys such that R(sk, pk) = 1 whenever sk
“matches” pk. The adversary is provided with public keys at the beginning of
the experiment, and is able to obtain secret keys corresponding to public keys
of its choice. Finally, if the adversary is able to output an uncorrupted secret
key, it is clearly able to compute a signature over a message that was not signed
before (i.e., winning the signature security game) or decrypt the challenge cipher-
text (i.e., winning the PKE/KEM security game). Thus, all three requirements
are satisfied. Details on how to apply the result to, e.g., digital signatures and
PKE/KEMs in the multi user setting with corruptions we refer to Sect. 5.

4.1 Definitions

Re-randomizable Relations. Let R ⊆ X × Y be a relation. For (x, y) with
R(x, y) = 1 we call x the witness and y the statement. We use X(R, y) to
denote the set

X(R, y) := {x : R(x, y) = 1}
of all witnesses x for statement y with respect to R. We denote by L(R) :=
{y : ∃ x s.t.R(x, y) = 1} ⊆ Y the language consisting of statements in R.

In the sequel we will consider computable relations. We will therefore identify
a relation R with a machine ̂R that computes R. We say that a relation R is
tVfy-computable, if there is a deterministic Turing machine ̂R that runs in time
at most tVfy(|x| + |y|) such that ̂R(x, y) = R(x, y).

Definition 10. Let R := {Ri}i∈I be a family of computable relations.
We say that R is tReRand-re-randomizable if there is a probabilistic Turing
machine R.ReRand that inputs (̂Ri, y, x), runs in time at most tReRand, and out-
puts x′ which is uniformly distributed over X(R, yi) whenever Ri(x, y) = 1, with
probability 1.

Example 1. Digital signatures in the single user setting, as considered in Sect. 2,
may be described in terms of families of relations. We set RΠ,vk to the relation
over signatures and messages that is defined by a verification key vk. In this case,
we have that X(R, y) = Σ(vk, y) is the set of all valid signatures over message y
with respect to public key vk. Note that the family of relations (RΠ,vk)Π,vk

is tReRand-re-randomizable, if the signature scheme is tReRand-re-randomizable
(cf. Definition 2).

Witness Unforgeability Under Static Statement Attacks. We will consider a weak
security experiment for computable relations, which is inspired by the UF-SMA-
security experiment considered in Sect. 2, but abstract and general enough to
be applicable in other useful settings. Jumping slightly ahead, we will show
in Sect. 5 that this includes applications to signatures, public-key encryption,
key encapsulation mechanisms in the multi-user setting, and non-interactive key
exchange.

On the Impossibility of Tight Cryptographic Reductions 291

Fig. 3. The UF-SSA-security game with attacker A = (A1, A2).

Fig. 4. TM r-ΓA that solves a non-interactive complexity assumption according to

Definition 5, constructed from a r-simple reduction r-Γ =
(
Γ0, (Γl,1, Γl,2, Γl,3)l∈[r] , Γ3

)

and an attacker A = (A1, A2).

The security experiment is described in Fig. 3. It is parametrized by a family
R of computable relations, R = {Ri}i∈I , and the number n of statements the
adversary A = (A1,A2) is provided with. These statements need to be pairwise
distinct. A may non-adaptively ask for witnesses for all but one statement, and is
considered successful if it manages to output a “valid” witness for the remaining
statement.

Definition 11. Let R = {Ri}i∈I be a family of computable relations. We say
that an adversary A = (A1,A2) (t, n, ε)-breaks the witness unforgeability under
static statement attacks of R if it runs in time t and

Pr [UF-SSAn
R(A) ⇒ 1] ≥ ε

where UF-SSAn
R(A) is the security game depicted in Fig. 3.

Simple Reductions From Non-interactive Complexity Assumptions to Breaking
UF-SSA-Security. Informally, a reduction from breaking the UF-SSA-security of

292 C. Bader et al.

a family of relations R to breaking the security of a non-interactive complexity
assumption N = (T,U,V) is a Turing machine Γ, which turns an attacker A =
(A1,A2) against R according to Definition 11 into a TM ΓA that breaks N
according to Definition 5. As in Sect. 2, we will only consider simple reductions,
i.e., reductions that have black-box access to the attacker and that may run the
attacker at most r times sequentially.

We define a reduction from breaking the security of R to breaking N as
an (3r + 2)-tuple of TMs Γ =

(

Γ0, (Γl,1,Γl,2,Γl,3)l∈[r] ,Γ3

)

, which turn a TM A
breaking the security of R into a TM ΓA breaking N , as described in Fig. 4. Note
that this Turing machine works almost identical to that considered in Sect. 3,
except that we consider a more general class of relations.

Definition 12. We say that a TM r-Γ =
(

Γ0, (Γl,1,Γl,2,Γl,3)l∈[r] ,Γ3

)

is an
r-simple (tΓ, n, εΓ, εA)-reduction from breaking N = (T,V,U) to breaking the
UF-SSA-security of a family of relations R, if for any TM A that (tA, n, εA)-
breaks the UF-SSA security of R, TM r-ΓA (cf. Fig. 4) (tΛ + r · tA, εΛ)-breaks N .

We define the loss of an r-simple reduction r-Γ from breaking N to breaking
the UF-SSA-security of a family of computable relations R similar to Definition 9.

4.2 Main Result

In this Section we establish the following result that generalizes Theorem4.

Theorem 5. Let N = (T,V,U) be a non-interactive complexity assumption,
n, r ∈ poly(k) and let R be a family of computable relations. Then for any
r-simple (tΓ , n, εΓ , 1)-reduction Γ from breaking N to breaking the UF-SSA-
security of R there exists a TM B that (tB, εB)-breaks N where

tB ≤r · n · tΓ + r · n · (n − 1) · tVfy + r · tReRand

εB ≥εΓ − r

n
.

Here, tReRand is the time to re-randomize a given valid witness and tVfy is the
maximum time needed to compute R ∈ R.

The proof of Theorem5 is nearly identical to the proof of Theorem4, and
therefore omitted. Also the interpretation of Theorem5 is nearly identical to the
interpretation described in Sect. 2.3. Assuming that no adversary B is able to
(tN, εN)-break the security of NICA with tN = tB = r · n · tΛ + r · n · (n − 1) ·
tVfy + r · tReRand, we must have εB ≤ εN. Thus, if R is efficiently computable and
re-randomizable, the loss of any simple reduction from breaking N to breaking
the UF-SSA-security of R is at least linear in n.

On the Impossibility of Tight Cryptographic Reductions 293

5 New Applications

5.1 Signatures in the Multi-user Setting

Definitions. The syntax of digital signature schemes is defined in Sect. 2. Here,
we define additional properties of signature schemes that are required to establish
our result. Let SIG = (Setup,Gen,Sign,Vfy) be a signature scheme. In the sequel
we require perfect correctness, i.e., that for all k ∈ N, all Π ←$ Setup(1k), all
(vk, sk) ←$ Gen(Π) and all m it holds that:

Pr
[

SIG.Vfy(vk,m, σ) = 1 : σ ←$ SIG.Sign(sk,m)
]

= 1.

Moreover, let Π ←$ Setup(1k) and let us recall that Π is contained in vk. We
require an additional deterministic TM SKCheckΠ that takes as input strings sk
and pk and outputs 0 or 1 such that:

SKCheckΠ(pk, sk) = 1
⇐⇒

Pr
[

Vfy(pk,m, σ) = 1 : m ←$ |M| ∧ σ ←$ Sign(sk,m)
]

= 1.

That is, SKCheck takes inputs sk and pk and returns 1 if and only if pk is
a valid public key and sk is a corresponding secret key. Since we require per-
fect correctness for signature schemes, we have SKCheck(vk, sk) = 1 whenever
(vk, sk) ←$ Gen(Π).

Definition 13. (Key re-randomization). We say that a signature encryp-
tion scheme SIG is tReRand-key re-randomizable if there exists a Turing machine
SIG.ReRand that runs in time at most tReRand, takes as input Π(vk, sk) and
returns sk uniformly distributed over {sk : SKCheckΠ(vk, sk) = 1} whenever
SKCheckΠ(vk, sk) = 1.

Example 2. If we consider, for example, the Waters signature scheme [38], a
public key consists among others of elements g, g1, g2 ∈ G where g1 = gα. The key
generation algorithm outputs a corresponding secret key as sk = gα

2 . However,
there may be other secret keys that might be accepted by SKCheck.

To investigate this issue we shortly recall the signing and verification algo-
rithms of [38]. The signing algorithm, when given as input a secret key and a
message returns σ = (σ1, σ2) = (gr, sk · (H(m))r) where r is uniformly ran-
dom chosen from Zp. Verification returns e(g1, g2) =? e(g, σ2) · e(σ1,H(m))−1 =
e(g, sk) · e(g,H(m))r · e(g,H(m))−r.

We observe that by definition of SKCheck we must have SKCheck(vk, sk) =
1 ⇔ e(g1, g2) = e(g, sk). Thus there is an efficient SKCheck procedure. Moreover,
since there is only one value that satisfies this equation in prime order groups
we have an efficient secret key re-randomization algorithm, namely, the identity
map. This is all that is to verify before applying our result.

294 C. Bader et al.

Fig. 5. MU-EUF-CMA-C-security game. The attacker has access to a signing oracle
O.Sign and a corrupt oracle O.Corrupt.

Security Definition. The MU-EUF-CMA-C-security game is depicted in Fig. 5.
Here the adversary A is provided with public keys vk1, . . . , vkn of the signature
scheme. It may now adaptively issue sign and corrupt-queries. To issue a sign
query it specifies a message m and a public key vki, i ∈ [n] and obtains a valid
signature σ over m that is valid with respect to vki. In order to issue a corrupt
query, A specifies an index i ∈ [n] and obtains a secret key ski that “matches”
vki. Finally, A outputs a triplet (i,m, σ) and is considered successful if it did
neither issue a corrupt query for i nor a sign query for (m, vki) and at the same
time σ is valid over m with respect to vki.

Definition 14 (MU-EUF-CMA-C-security). We say that an adversary
(t, n, μ, ε)-breaks the MU-EUF-CMA-C-security of a signature scheme SIG if it
runs in time t and

Pr [MU-EUF-CMA-Cn,μ
SIG (A) ⇒ 1] ≥ ε.

Definition 15. We say that a Turing machine r-Γ is an r-simple
(tΛ, n, μ, εΛ, εA)-reduction from breaking N = (T,V,U) to breaking the
MU-EUF-CMA-C-security of SIG, if for any TM A that (tA, n, μ, εA)-breaks the
MU-EUF-CMA-C security of SIG, TM ΛA (tΛ + r · tA, εΛ)-breaks N .

The loss of an r-simple reduction Γ from breaking N to breaking the
MU-EUF-CMA-C-security of SIG is defined similar to Definition 7.

Defining a Suitable Relation. Let SIG = (Setup,Gen,Sign,Vfy) be a signa-
ture scheme and let I be the range of Setup. We set RSIG = {RΠ}Π∈I where
RΠ(x, y) := SKCheckΠ(y, x). Now, if SIG is tReRand-key re-randomizable then
RSIG is tReRand re-randomizable.

UF-SSA Security for RSIG is Weaker Than MU-EUF-CMA-C-Security for SIG. Let
now SIG be a perfectly correct signature scheme and let RSIG be derived from
SIG as described in Sect. 5.1.

Claim. If there is an attacker A that (t, n, e)-breaks the UF-SSA-security for RSIG

then there is an attacker B that (t′, n, 0, ε′)-breaks the MU-EUF-CMA-C-security
of SIG with t′ = O(t) and ε′ ≥ ε.

On the Impossibility of Tight Cryptographic Reductions 295

Proof. We construct B that (t′, n, 0, ε′)-breaks the MU-EUF-CMA-C-security of
SIG, given black box access to A as follows:

1. B is called on input a set of public key (vk)i∈[n] and random tape ρ. Recall
that Π are contained in vk. First, B samples and ρA, the random coins of A.
After that, it runs (j, stA) ← A1

(

Π, (vk)i∈[n] , ρA
)

.
2. B will issue a corrupt-query to oracle O.Corrupt for all i ∈ [n\j]. It

will obtain ski such that SKCheckΠ(vki, ski). Next, B runs skj ←$

A2

(

(ski)i∈[n\j] , stA
)

. Note that SKCheckΠ(vkj , skj) = 1 with probability ε.

3. B samples m ←$ M and computes σ ←$ SIG.Sign(skj ,m) and outputs
(j,m, σ). Note that vkj /∈ QCorrupt and m /∈ Qj . Moreover, by the property of
SKCheck we have SIG.Vfy(vkj ,m, σ) = 1.

Tightness Bound

Theorem 6 (informal). Any simple reduction from breaking the security of a
NICA N to breaking the MU-EUF-CMA-C-security of a perfectly correct signature
scheme SIG (cf. Definition 15) that provides efficient key re-randomization and
that supports an efficient SKCheck loses a factor that is linear in the number of
public keys the attacker is provided with and that it may corrupt, or N is easy
to solve.

We prove the Theorem via the following technical Theorem, which follows
immediately from Theorem 5.

Theorem 7. Let N = (T,V,U) be a non-interactive complexity assumption,
n, r ∈ poly(k) and let RSIG be a family of computable relations as described above.
Then for any r-simple (tΓ , n, εΓ, 1)-reduction Γ from breaking N to breaking the
UF-SSA-security of RSIG there exists a TM B that (tB, εB)-breaks N where

tB ≤r · n · tΓ + r · n · (n − 1) · tVfy + r · tReRand

εB ≥εΓ − r

n
.

Here, tReRand is the time to re-randomize a given valid witness and tVfy is the
maximum time needed to compute R ∈ RSIG.

5.2 Public-Key Encryption in the Multi-user Setting

Our main result also applies to public key encryption in the multi-user set-
ting with corruptions (and a similar result for key encapsulation mechanisms is
straightforward). In the following, we only sketch the main steps to establishing
our result. The full version contains a detailed, formal treatment. We start off
by first defining MU-IND-CPA-C-security (Fig. 6), a security definition for public
key encryption schemes PKE = (Setup,Gen,Enc,Dec) in the multi-user setting
with corruptions. To apply our main result, we again have to formally define a

296 C. Bader et al.

Fig. 6. MU-IND-CPA-C-security game. The attacker has access to an encryption oracle
O.Encrypt which may be queried only once and a corrupt oracle O.Corrupt.

family RPKE of suitable computable relations. To this end (and similar to the
case of digital signatures in the multi user setting), we require the existence of
an additional TM SKCheckΠ for Π ←$ Setup(1k) such that

SKCheckΠ(pk, sk) = 1 ⇐⇒ Pr
[

Dec(sk,Enc(pk,m)) = m : m ←$ M
]

= 1.

That is, SKCheck takes inputs sk and pk and returns 1 if and only if pk is a PKE
public key and sk is a secret key corresponding to public key pk. To define our
suitable relation, we set RPKE = {RΠ}Π∈I where RΠ(x, y) := SKCheckΠ(y, x)
and I is the set of all public parameters that can be output by Setup. Finally, we
show that MU-IND-CPA-C-security for PKE is stronger than UF-SSA-security for
RPKE. Via our main result, this immediately proves that any security reduction
must have a security loss that is (at least) linear in the number of public keys
considered in the MU-IND-CPA-C-security experiment.

5.3 Non-interactive Key Exchange

In this section we will show how to apply our main result to non-interactive key
exchange (NIKE) [25]. This case differs from the cases considered before in that
we will have to define a relation R(x, y), which is not efficiently verifiable, given
just x and y. Instead, we will need additional information, which will be available
in the NIKE security experiment. Formally, we consider again UF-SSA-security
for some relation R but model A2 as an oracle machine. The responses of the
oracle may depend on the output of A1. We explain that this makes it possible
to extend the range of covered cryptographic primitives to NIKE.

Definitions. Following [16,25], a NIKE protocol consists of three PPT-TMs with
the following syntax:

Public Parameters. On input 1k , the public parameter generation machine
Π ←$ NIKE.Setup(1k) outputs a set Π of system parameters.

Key Generation. The key generation machine takes as input Π and outputs
a random key pair (ski, pki) for party i, i.e. (ski, pki) ←$ NIKE.Gen(Π). We
assume that pk contains Π and 1k .

On the Impossibility of Tight Cryptographic Reductions 297

Shared Key Generation. The deterministic shared key machine SharedKey
takes as input (ski, pkj) and outputs a shared key Ki,j in time tVfy, where
Ki,j = ⊥ if i = j.

We require perfect correctness, that is,

Pr [SharedKey(ski, pkj) = SharedKey(skj , pki)] = 1

for all Π ←$ NIKE.Setup(1k) and (pki, ski), (pkj , skj) ←$ NIKE.Gen(Π).
We require an additional Turing machine PKCheck that inputs strings Π

and pk and evaluates to true if pk is in the range of NIKE.Gen(Π). Moreover,
whenever two public keys pk and pk′ are accepted by PKCheck, we require that
the respective shared key is uniquely determined, given only pk and pk′. In the
sequel we will denote this key by K(pk, pk′) and call NIKE unique. The pairing-
based NIKE scheme from [25] satisfies uniqueness.

NIKE Security. There exists several different, but polynomial-time equiva-
lent [25] security models for NIKE. Of course the tightness of a reduction depends
on the choice of the security model. Indeed, the weakest security model consid-
ered in [25] is the CKS-light model. However, this model is strongly idealized.
The reduction from breaking security in a stronger and more realistic security
model (called the CKS model in [25]) to breaking security in this idealized model
loses a factor of n2, where n is the number of users. We show that this loss is
inherent for NIKE schemes with the properties defined above.

CKS-Security for NIKE. The CKS-security experiment is depicted in Fig. 7.

Fig. 7. CKS-Security game for NIKE. Oracle O.Test may be queried only once. K1 is
sampled uniform from the range of SharedKey.

Definition 16. We say that an adversary A (t, n, ε)-breaks the CKS-security of
a non-interactive key exchange protocol NIKE if it runs in time at most t and

Pr
[

CKSn,A
NIKE(1k) ⇒ 1

]

≥ ε.

298 C. Bader et al.

Definition 17. We say that a Turing machine r-Γ is an r-simple (tΛ, n, εΛ, εA)-
reduction from breaking N = (T,V,U) to breaking the CKS-security of NIKE, if
for any TM A that (tA, n, εA)-breaks the CKS security of NIKE, TM ΛA (tΛ +
r · tA, εΛ)-breaks N .

The loss of an r-simple reduction Γ from breaking the security of N to break-
ing the CKS-security of NIKE is defined similar to Definition 7.

Defining a Suitable Relation. Let NIKE = (Setup,Gen,SharedKey) be a
unique NIKE scheme and let I be the range of Setup. We set RNIKE = {RΠ}Π∈I

where
RΠ(x, (y1, y2)) = 1 ⇔ x = K(y1, y2).

Let us fix Π for the moment. Note that the attacker is provided with ñ = (n−1)·n
RΠ statements if it is provided with n NIKE-public keys.

Let now A = (A1,A2) denote an attacker against the UF-SSA-security of
RNIKE. Because R may not be efficiently verifiable, we let A2 have oracle access
to Oracle Corrupti∗,j∗ that returns secret key ski when queried on input i ∈
[n\{i∗, j∗}]. Here K(pki∗ , pkj∗) is the shared key that A needs to compute to
break the UF-SSA security of R and n is the number of public keys that A is
provided with (note that this leads to ñ NIKE shared keys).

UF-SSA-Security for RNIKE is Weaker Than CKS-Security for NIKE. Next, we
show that any adversary that breaks the UF-SSA-security of RNIKE then there is
an attacker that breaks the CKS-security of NIKE.

Claim. If there is an attacker A that (t, ñ, ε)-breaks the UF-SSA-security of RNIKE

then there is an attacker B that (t′, n, ε′)-breaks the CKS-security of NIKE with
t′ = O(t) and ε′ ≥ ε.

Proof. We construct B that (t′, n, ε′)-breaks the CKS-security of NIKE, given
black box access to A as follows:

1. B is called on input a set of public keys (pk)i∈[n] and random tape ρ. Recall
that Π is contained in pk. First, B samples and ρA, the random coins of
A. Next, it runs ((i∗, j∗), stA) ← A1

(

Π, (pk)i∈[n] , ρA
)

. Note that n public
keys define n · (n − 1) statements for RΠ . The one that A will compute is
determined by i∗ and j∗.

2. B will issue a reveal-query to oracle O.Reveal for all (i, j) ∈ [n]2\{(i∗, j∗)}, i �=
j. It will obtain Ki,j = SharedKey(ski, pkj). Next, B runs

K∗ ←$ AO.Corrupti∗,j∗ (·)
2

(

(Ki,j)(i,j)∈[n]2\{i∗,j∗},i �=j , stA
)

.

B provides A with oracle Corrupti∗,j∗ by forwarding all queries to oracle
O.Corrupt() and forwarding the response back to A. Note that, using ski,
A may efficiently check whether Ki,j = SharedKey(ski, pkj) for all j ∈ [n].
By assumption it holds that K∗ = SharedKey(ski∗ , pkj∗

) with probability at
least ε.

On the Impossibility of Tight Cryptographic Reductions 299

3. Next, B issues (i∗, j∗) to oracle O.Test() which will respond with K. B returns
0 if K = K∗ and 1 otherwise. Note that by construction of oracle Corrupti∗,j∗

it holds that i∗, j∗ /∈ QCorrupt. Moreover, by the perfect correctness of NIKE
and the uniqueness of shared keys B is successful whenever A is successful.

Tightness Bounds

Theorem 8 (informal). Any simple reduction from breaking the security of a
NICA N to breaking the CKS-security of a perfectly correct, unique NIKE scheme
NIKE (cf. Definition 16) that supports an efficient PKCheck loses a factor that is
quadratic in the number of public keys the attacker is provided with and that it
may corrupt, or N is easy to solve.

We prove the Theorem via the following technical Theorem.

Theorem 9. Let N = (T,V,U) be a non-interactive complexity assumption,
ñ, r ∈ poly(k) and let RNIKE be a family of computable relations as described
above. Then for any r-simple (tΓ , ñ, εΓ, 1)-reduction Γ from breaking N to break-
ing the UF-SSA-security of RNIKE there exists a TM B that (tB, εB)-breaks N
where

tB ≤r · ñ · tΓ + r · ñ · (ñ − 1) · tVfy and εB ≥ εΓ − r

ñ
.

Here, tVfy is the maximum time needed to compute R ∈ RNIKE with access to
Corrupti∗,j∗ .

Interpretation. As mentioned before, if the attacker is provided with ñ state-
ments, it is provided only with ≈ √

ñ public keys. Thus, the loss of any r-simple
reduction is quadratic in the number of public keys if the underlying problem is
assumed to be hard.

Our lower bound for NIKE can easily be generalized to systems where keys
are derived from � = O(log(k)) parties for security parameter k. Syntactically,
the difference is that SharedKey now takes as input �−1 public keys and a single
secret key. Now, the attacker obtains ñ statements and ≈ ñ1/� public keys. Thus,
the loss of any r-simple reduction grows with an exponent of � in the number of
public keys.

Extending the Result to Interactive Key Exchange. On the one hand, our NIKE
bounds do not carry over directly to arbitrary interactive key exchange protocols,
because these do not necessarily meet the properties of NIKE schemes that
we need to put up. In particular, we have to require that any pair of NIKE
public keys uniquely determines the corresponding shared key (which limits the
generality of the result, but appears very reasonable for natural (and possibly all)
NIKE constructions, in particular it holds for the NIKE schemes of [25]). This
requirement does not hold for interactive AKE protocols, where the shared key
may additionally depend on ephemeral random values (nonces or Diffie-Hellman
shares, for example) exchanged between parties.

300 C. Bader et al.

On the other hand, our tightness bounds for signatures and public-key
encryption (with unique/re-randomizable secret keys, in the multi-user setting
with corruptions) directly imply tightness bounds for AKE protocols that use
these primitives, and where the attacker is able to adaptively corrupt the secret
keys of these signature/PKE schemes. Note that this includes the vast majority
of all known AKE constructions. The tightly-secure key exchange protocol of [4]
overcomes this hurdle by using a signature scheme that does not have unique/re-
randomizable secret keys, and this is used in a crucial way (cf. the “Naor-Yung
trick for signatures” in [4]).

A Summary of Coron’s Meta-reduction and Its
Generalizations

EUF-CMA-security is commonly considered the standard security definition for
digital signature schemes [28]. The security game is depicted in Fig. 8.

Fig. 8. EUF-CMA-Security game. When called, the attacker has access to a signing
oracle O.Sign.

Definition 18. (EUF-CMA-security). We say that an attacker (t, n, ε)-breaks
the EUF-CMA-security of a signature scheme SIG if it runs in time t and

Pr
[

EUF-CMAn,A
SIG (1k) ⇒ 1

]

≥ ε.

Definition 19. We say that a Turing machine r-Γ is an r-simple (tΛ, n, εΛ, εA)-
reduction from breaking N = (T,V,U) to breaking the EUF-CMA-security of SIG,
if for any TM A that (tA, n, εA)-breaks the EUF-CMA security of SIG, TM ΛA

(tΛ + r · tA, εΛ)-breaks N .

Definition 20. Let � : N → N. We say that an r-simple reduction Γ from
breaking N to breaking the EUF-CMA-security of SIG loses �, if there exists an
adversary A that (tA, n, εA)-breaks the EUF-CMA security of SIG, such that ΛA

(tΛ + tA, εΛ)-breaks N with

tΛ(k) + tA(k)
εΛ(k)

≥ �(k) · tA(k)
εA(k)

.

On the Impossibility of Tight Cryptographic Reductions 301

The following lemma is due to Hofheinz et al. [30] and generalizes a result
from Coron [18].

Lemma 1 ([18,30]). Let N be a (tN , εN)-secure non-interactive complexity
assumption where εN ∈ negl(k) and let SIG be a unique signature scheme with
message space of size 2l. If Γ is a (tΓ , n, εΓ)-reduction from breaking N to break-
ing the EUF-CMA-security of SIG and tN ≥ 2 · tΓ + tReRand then

εΓ ≤ εA · exp(−1)
n

·
(

1 − n

2l

)−1

+ negl(k). ��
Coron [18] and Hofheinz et al. [30] conclude that we have εΛ = O (

εA
n

)

. The
conclusion builds on the fact that 2l � n. This is reasonable for most digital
signatures schemes.

B UF-SMA-Security Is Strictly Weaker Than
EUF-CMA-Security

We show that any attacker A that breaks the UF-SMA-security of a signature
scheme SIG implies an attacker A′ that breaks the EUF-CMA-security (depicted
in Fig. 8) of SIG in roughly the same running time and with the same probability
of success. Moreover UF-SMA-security and EUF-CMA-security are not polyno-
mially equivalent.

Claim. Let SIG be a signature scheme. If there is an attacker A that (t, n, ε)-
breaks the UF-SMA-security of a signature scheme SIG then there is an attacker
B that (t′, n, ε′)-breaks the EUF-CMA-security of SIG where t′ = O(t) and ε′ ≥ ε.

Proof. We construct B that (t′, n, ε′)-breaks the EUF-CMA-security of SIG, given
black box access to A as follows:

1. B is called on input a public key vk and random tape ρ. First, B samples n
distinct messages m1, . . . , mn from the message space and ρA, the random
coins of A. After that, it runs (j, stA) ← A1

(

vk, (mi)i∈[n] , ρA
)

.
2. B will issue a sign-query to oracle Sign for all messages mi, i ∈ [n\j]. It will

obtain σi ←$ SIG.Sign(sk,mi). Note that σi is a valid signature over mi with
respect to vk. Next, B runs σj ←$ A2

(

(σi)i∈[n\j] , stA
)

which is valid with
probability ε.

3. B outputs (mj , σj). Note that due to the fact that mi �= mj for all i �= j, this
is a valid forgery which is valid with probability at least ε.

Let SIG be a signature scheme with exponential message space M. Let m ←$

M. Then we define a signature scheme SIG′(m) that works exactly like SIG except
the SIG′(m)-verification machine will accept 0 as a valid signature over m.

Claim. Suppose that no adversary (t, n, ε)-breaks the EUF-CMA-security of SIG.
Then the following holds: 1. There is no adversary that (t, n, ε′)-breaks the
UF-SMA-security of SIG′(m) with ε′ ≥ ε + n

|M| . 2. There exists a trivial attack
strategy that (O(1), 0, 1)-breaks the EUF-CMA-security of SIG′(m).

302 C. Bader et al.

Proof. 1. Recall that at the beginning of the UF-SMA security experiment, A
is called on input a verification key and n distinct messages that are sampled
uniformly from M. Now, the probability that mi = m for i ∈ [n] is upper
bounded by n

|M| . However, if for all i ∈ [n] we have mi �= m then we can apply
the previous claim. When called on vk, A simply outputs (m, 0) which is a valid
forgery.

References

1. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012)

2. Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures
from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011)

3. Bader, C.: Efficient signatures with tight real world security in the random-oracle
model. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol.
8813, pp. 370–383. Springer, Heidelberg (2014)

4. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (2015)

5. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature
schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 82–99. Springer, Heidelberg (2013)

6. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

7. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof
and improved concrete security for waters’ IBE scheme. Cryptology ePrint Archive,
Report 2009/084 (2009). http://eprint.iacr.org/2009/084

8. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof
and improved concrete security for waters’ ibe scheme. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009)

9. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

10. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279.
Springer, Heidelberg (2015)

11. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014)

12. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998)

13. Bresson, E., Monnerat, J., Vergnaud, D.: Separation results on the “one-more”
computational problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp.
71–87. Springer, Heidelberg (2008)

http://eprint.iacr.org/2009/084

On the Impossibility of Tight Cryptographic Reductions 303

14. Brown, D.R.L.: Irreducibility to the one-more evaluation problems: more may be
less. Cryptology ePrint Archive, Report 2007/435 (2007). http://eprint.iacr.org/

15. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001)

16. Cash, D.M., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applica-
tions. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145.
Springer, Heidelberg (2008)

17. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
435–460. Springer, Heidelberg (2013)

18. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002)

19. Cramer, R., Damg̊ard, I.B.: New generation of secure and practical RSA-based
signatures. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 173–185.
Springer, Heidelberg (1996)

20. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain
hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

21. Dodis, Y., Reyzin, L.: On the power of claw-free permutations. In: Cimato, S.,
Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 55–73. Springer,
Heidelberg (2003)

22. Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: the
case of Schnorr signatures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 444–460. Springer, Heidelberg (2013)

23. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (2010)

24. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873,
pp. 512–531. Springer, Heidelberg (2014)

25. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013)

26. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 93–107. Springer, Heidelberg (2008)

27. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

28. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

29. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012)

30. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduc-
tion. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 66–83. Springer, Heidelberg (2012)

31. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
537–553. Springer, Heidelberg (2012)

http://eprint.iacr.org/

304 C. Bader et al.

32. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003, pp.
155–164. ACM Press, October 2003

33. Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer,
Heidelberg (2014)

34. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005)

35. Paillier, P., Villar, J.L.: Trading one-wayness against chosen-ciphertext security in
factoring-based encryption. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 252–266. Springer, Heidelberg (2006)

36. Schäge, S.: Tight proofs for signature schemes without random oracles. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 189–206. Springer,
Heidelberg (2011)

37. Seurin, Y.: On the exact security of schnorr-type signatures in the random oracle
model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 554–571. Springer, Heidelberg (2012)

38. Waters, B.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

On the Size of Pairing-Based
Non-interactive Arguments

Jens Groth(B)

University College London, London, UK
j.groth@ucl.ac.uk

Abstract. Non-interactive arguments enable a prover to convince a
verifier that a statement is true. Recently there has been a lot of
progress both in theory and practice on constructing highly efficient
non-interactive arguments with small size and low verification complex-
ity, so-called succinct non-interactive arguments (SNARGs) and succinct
non-interactive arguments of knowledge (SNARKs).

Many constructions of SNARGs rely on pairing-based cryptography.
In these constructions a proof consists of a number of group elements
and the verification consists of checking a number of pairing product
equations. The question we address in this article is how efficient pairing-
based SNARGs can be.

Our first contribution is a pairing-based (preprocessing) SNARK for
arithmetic circuit satisfiability, which is an NP-complete language. In
our SNARK we work with asymmetric pairings for higher efficiency, a
proof is only 3 group elements, and verification consists of checking a
single pairing product equations using 3 pairings in total. Our SNARK
is zero-knowledge and does not reveal anything about the witness the
prover uses to make the proof.

As our second contribution we answer an open question of Bitansky,
Chiesa, Ishai, Ostrovsky and Paneth (TCC 2013) by showing that linear
interactive proofs cannot have a linear decision procedure. It follows from
this that SNARGs where the prover and verifier use generic asymmet-
ric bilinear group operations cannot consist of a single group element.
This gives the first lower bound for pairing-based SNARGs. It remains
an intriguing open problem whether this lower bound can be extended
to rule out 2 group element SNARGs, which would prove optimality of
our 3 element construction.

Keywords: SNARKs · Non-interactive zero-knowledge arguments ·
Linear interactive proofs · Quadratic arithmetic programs · Bilinear
groups

J. Groth—The research leading to these results has received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013)/ERC Grant Agreement n. 307937 and the Engineering and Phys-
ical Sciences Research Council grant EP/J009520/1. This work was done in part
while the author was visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and by the DIMACS/Simons Collaboration in
Cryptography through NSF grant #CNS-1523467.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 305–326, 2016.
DOI: 10.1007/978-3-662-49896-5 11

306 J. Groth

1 Introduction

Goldwasser et al. [GMR89] introduced zero-knowledge proofs that enable a
prover to convince a verifier that a statement is true without revealing anything
else. They have three core properties:

Completeness: Given a statement and a witness, the prover can convince the
verifier.

Soundness: A malicious prover cannot convince the verifier of a false statement.
Zero-knowledge: The proof does not reveal anything but the truth of the

statement, in particular it does not reveal the prover’s witness.

Blum et al. [BFM88] extended the notion to non-interactive zero-knowledge
(NIZK) proofs in the common reference string model. NIZK proofs are useful in
the construction of non-interactive cryptographic schemes, e.g., digital signatures
and CCA-secure public key encryption.

The amount of communication is an important performance parameter for
zero-knowledge proofs. Kilian [Kil92] gave the first sublinear communication
zero-knowledge argument that sends fewer bits than the size of the statement
to be proved. Micali [Mic00] proposed sublinear size NIZK arguments by letting
the prover in a communication efficient zero-knowledge argument compute the
verifier’s challenges using a cryptographic function.

Groth et al. [GOS12,GOS06,Gro06,GS12] introduced pairing-based NIZK
proofs, yielding the first linear size proofs based on standard assumptions. Groth
[Gro10] combined these techniques with ideas from interactive zero-knowledge
arguments [Gro09] to give the first constant size NIZK arguments. Lipmaa
[Lip12] used an alternative construction based on progression-free sets to reduce
the size of the common reference string.

Groth’s constant size NIZK argument is based on constructing a set of poly-
nomial equations and using pairings to efficiently verify these equations. Gennaro
et al. [GGPR13] found an insightful construction of polynomial equations based
on Lagrange interpolation polynomials yielding a pairing-based NIZK argument
with a common reference string size proportional to the size of the statement
and witness. They gave two types of polynomial equations: quadratic span pro-
grams for proving boolean circuit satisfiability and quadratic arithmetic pro-
grams for proving arithmetic circuit satisfiability. Lipmaa [Lip13] suggested more
efficient quadratic span programs using error correcting codes, and Danezis et al.
[DFGK14] refined quadratic span programs to square span programs that give
NIZK arguments consisting of 4 group elements for boolean circuit satisfiability.

Following these theoretical advances there has been exciting work on building
concrete implementations. Most efficient implementations refine the quadratic
arithmetic program approach of Gennaro et al. [GGPR13] and combine it with
a compiler producing a suitable quadratic arithmetic program that is equivalent
to the statement to be proven [PHGR13,BCG+13,BCTV14b,CTV15,CFH+15].

One powerful motivation for building efficient non-interactive arguments is
verifiable computation. A client can outsource a complicated computational task
to a server in the cloud and get back the results. To convince the client that

On the Size of Pairing-Based Non-interactive Arguments 307

the computation is correct the server may include a non-interactive argument
of correctness with the result. However, since the verifier does not have many
computational resources this only makes sense if the argument is compact and
computationally light to verify, i.e., it is a succinct non-interactive argument
(SNARG) or a succinct non-interactive argument of knowledge (SNARK). While
pairing-based SNARGs are efficient for the verifier, the computational overhead
for the prover is still orders of magnitude too high to warrant use in outsourced
computation [Wal15] and further efficiency improvements are needed. In their
current state, SNARKs that are zero-knowledge already have uses when proving
statements about private data though. Zero-knowledge SNARKs are for instance
key ingredients in the virtual currency proposals Pinnocchio coin [DFKP13] and
Zerocash [BCG+14].

In parallel with developments in pairing-based NIZK arguments there has
been interesting work on understanding SNARKs. Gentry and Wichs [GW11]
showed that SNARGs must necessarily rely on non-falsifiable assumptions, and
Bitansky et al. [BCCT12] proved designated verifier SNARKs exist if and only if
extractable collision-resistant hash functions exist. Of particular interest in terms
of efficiency is a series of works studying how SNARKs compose [Val08,BCCT13,
BCTV14a]. They show among other things that a preprocessing SNARK with a
long common reference string can be used to build a fully succinct SNARK with
a short common reference string.

Bitansky et al. [BCI+13] give an abstract model of SNARKs that rely on lin-
ear encodings of field elements. Their information theoretic framework called lin-
ear interactive proofs (LIPs) capture proof systems where the prover is restricted
to using linear operations in computing her messages. Given a LIP it can be
converted to a publicly verifiable SNARK using pairing-based techniques or to
a designated verifier using additively homomorphic encryption techniques.

1.1 Our Contribution

Succinct NIZK. We construct a NIZK argument for arithmetic circuit satisfia-
bility where a proof consists of only 3 group elements. In addition to being small,
the proof is also easy to verify. The verifier just needs to compute a number of
exponentiations proportional to the statement size and check a single pairing
product equation, which only has 3 pairings. Our construction can be instanti-
ated with any type of pairings including Type III pairings, which are the most
efficient pairings.

The argument has perfect completeness and perfect zero-knowledge. For
soundness we take an aggressive stance and rely on a security proof in the generic
bilinear group model in order to get optimal performance. This stance is partly
justified by Gentry and Wichs [GW11] that rule out SNARGs based on standard
falsifiable assumptions. However, following Abe et al. [AGOT14] we do provide a
hedge against cryptanalysis by proving our construction secure in the symmetric
pairing setting. For optimal efficiency it makes sense to use our NIZK argument
in the asymmetric setting, however, by providing a security proof in the sym-
metric setting we get additional security: even if cryptanalytic advances yield a

308 J. Groth

Table 1. Comparison for boolean circuit satisfiability with �-bit statement, m wires
and n fan-in 2 logic gates. Notation: G means group elements, M means multiplications,
E means exponentiations and P means pairings with subscripts indicating the relevant
group. It is possible to get a CRS size of m + 2n elements in G1 and n elements in
G2 but we have chosen to include some precomputed values in the CRS to reduce the
prover’s computation, see Sect. 3.2.

CRS size Proof size Prover comp. Verifier comp. PPE

[DFGK14] 2m + n − 2� G1, m + n − � G2 3 G1, 1 G2 m + n − � E1 � M1, 6 P 3

This work 3m + n G1, m G2 2 G1, 1 G2 n E1 � M1, 3 P 1

Table 2. Comparison for arithmetic circuit satisfiability with �-element statement, m
wires, n multiplication gates. Notation: G means group elements, E means exponen-
tiations and P means pairings. We compare symmetric pairings in the first two rows
and asymmetric pairings in the last two rows.

CRS size Proof size Prover comp. Verifier comp. PPE

[PHGR13] 7m + n − 2� G 8 G 7m + n − 2� E � E, 11 P 5

This work m + 2n G 3 G m + 3n − � E � E, 3 P 1

[SVdV15] 6m + n − 2� G1, m G2 7 G1, 1 G2 6m + n − 6� E1, m − � E2 2� E1, �E2, 12 P 5

This work m + 2n G1, n G2 2 G1, 1 G2 m + 3n − � E1, n E2 � E1, 3 P 1

hitherto unknown efficiently computable isomorphism between the source groups
this does not necessarily lead to a break of our scheme. We therefore have a uni-
fied NIZK argument that can be instantiated with any type of pairing, yielding
both optimal efficiency and optimal generic bilinear group resilience.

We give a performance comparison for boolean circuit satisfiability in Table 1
and for arithmetic circuit satisfiability in Table 2 of the size of the common refer-
ence string (CRS), the size of the proof, the prover’s computation, the verifier’s
computation, and the number of pairing product equations used to verify a proof.
We perform better than the state of the art on all efficiency parameters.

In both comparisons the number of wires exceeds the number of gates, m ≥ n,
since each gate has an output wire. We expect for typical cases that the statement
size � will be small compared to m and n. In both tables, we have excluded
the size of representing the relation for which we give proofs. In the boolean
circuit satisfiability case, we are considering arbitrary fan-in 2 logic gates. In the
arithmetic circuit satisfiability case we work with fan-in 2 multiplication gates
where each input factor can be a weigthed sum of other wires. We assume each
multiplication gate input depends on a constant number of wires; otherwise the
cost of evaluating the relation itself may exceed the cost of the subsequent proof
generation.

We note that [PHGR13] uses symmetric bilinear groups where G1 = G2 and
we are therefore comparing with a symmetric bilinear group instantiation of our
scheme, which saves n elements in the common reference string. However, in
the implementation of their system, called Pinocchio, asymmetric pairings are
used for better efficiency. The switch to asymmetric pairings only requires minor
modifications, see e.g. [SVdV15].

On the Size of Pairing-Based Non-interactive Arguments 309

Size matters. While the reduction in proof size to 3 group elements and the
reduction in verification time is nice in itself, we would like to highlight that it
is particularly important when composing SNARKs. [BCCT13,BCTV14a] show
that preprocessing SNARKs with a long CRS can be composed to yield fully
succinct SNARKs with a short CRS. The transformations split the statement
into smaller pieces, prove each piece is correct by itself, and recursively construct
proofs of knowledge of other proofs that jointly show the pieces are correct and
fit together. In the recursive construction of proofs, it is extra beneficial when
the proofs are small and easy to verify since the resulting statements “there
exists a proof satisfying the verification equation. . . ” become small themselves.
So we gain both from the prover’s lower computation and from the fact that
the statements in the recursive composition are smaller since we have a more
efficient verification procedure for our SNARK. We estimate that in the scalable
and fully succinct zero-knowledge SNARKs by Ben-Sasson et al. [BCTV14a]
that use two related elliptic curves to prove statements about each other, the
prover’s computation will be reduced by up to an order of magnitude.

Technique. All pairing-based SNARKs in the literature follow a common para-
digm where the prover computes a number of group elements using generic group
operations and the verifier checks the proof using a number of pairing product
equations. Bitansky et al. [BCI+13] formalize this paradigm through the defi-
nition of linear interactive proofs (LIPs). A linear interactive proof works over
a finite field and the prover’s and verifier’s messages consist of vectors of field
elements. It furthermore requires that the prover computes her messages using
only linear operations. Once we have the LIP, it can then be compiled into a
SNARK by executing the equations “in the exponent” using pairing-based cryp-
tography. One source of our efficiency gain is that we design a LIP system for
arithmetic circuits where the prover only sends 3 field elements. In comparison,
the quadratic arithmetic programs by [GGPR13,PHGR13] correspond to LIPs
where the prover sends 4 field elements.

A second source of efficiency gain compared to previous work is a more aggres-
sive compilation of the LIP. Bitansky et al. [BCI+13] propose a transformation
in the symmetric bilinear group setting, where each field element gets compiled
into two group elements. They then use a knowledge of exponent assumption
to argue that the prover knows the relevant field elements. A less conserva-
tive choice would be to compile each field element into a single group element.
This improves efficiency but security requires stronger assumptions since we the
scheme may be secure in the generic group model but we can no longer use the
knowledge of exponent assumption. It is also possible to make a choice between
these two extremes, Parno et al. [PHGR13] for instance have a LIP with 4 field
elements, which gets compiled into 7 group elements. In this paper we have opted
for maximal efficiency and compile each field element in the LIP into a single
group element and argue security in the generic group model.

We prefer to work with asymmetric bilinear groups for their higher efficiency
than symmetric bilinear groups. This means that there is more to the story than
the number of field elements the prover sends in the LIP and the choice of how

310 J. Groth

aggressive a compilation we use. When working with asymmetric bilinear groups,
a field element can appear as an exponent in the first source group, the second
source group, or both. Our LIP is carefully designed such that each field element
gets compiled into a single source group element in order to minimize the proof
size to 3 group elements in total.

Lower Bounds. Working towards ever more efficient non-interactive argu-
ments, it is natural to ask what the minimal proof size is. We will show that
pairing-based SNARGs with a single group element proof cannot exist. This
result relates to an open question raised by Bitansky et al. [BCI+13], whether
there are LIPs with a linear decision procedure for the verifier. Such a linear
decision procedure would be quite useful; it could for instance enable the con-
struction of SNARGs based on ElGamal encryption.

We answer this open problem negatively by proving that LIPs with a linear
decision procedure do not exist. A consequence of this is that any pairing-based
SNARG must pair group elements from the proof together to make the decision
procedure quadratic instead of linear. Working over asymmetric bilinear groups
we must therefore have elements in both source groups in order to do such a
pairing. This rules out the existence of 1 group element SNARGs, regardless of
whether it is zero-knowledge or not, and shows our NIZK argument has close to
optimal proof size. It remains an intriguing open problem to completely close the
gap by either constructing a SNARG with exactly one element from each source
group G1 and G2, or alternatively rule out the existence of such a SNARG.

2 Preliminaries

Given two functions f, g : N → [0, 1] we write f(λ) ≈ g(λ) when |f(λ) − g(λ)| =
λ−ω(1). We say that f is negligible when f(λ) ≈ 0 and that f is overwhelming
when f(λ) ≈ 1. We will use λ to denote a security parameter, with the intuition
that as λ grows we would like to have stronger security.

We write y = A(x; r) when algorithm A on input x and randomness r, outputs
y. We write y ← A(x) for the process of picking randomness r at random and
setting y = A(x; r). We also write y ← S for sampling y uniformly at random
from the set S. We will assume it is possible to sample uniformly at random
from sets such as Zp.

Following Abe and Fehr [AF07] we write (y; z) ← (A ‖ XA)(x) when A on
input x outputs y and XA on the same input (including random coins) outputs z.

2.1 Bilinear Groups

We work with bilinear groups (p,G1,G2,GT , e) with the following properties:

– G1,G2,GT are groups of prime order p
– e : G1 × G2 → GT is a bilinear map, i.e., e(Ua, V b) = e(U, V)ab

On the Size of Pairing-Based Non-interactive Arguments 311

– If G is a generator for G1 and H is a generator for G2 then e(G,H) is a
generator for GT

– There are efficient algorithms for computing group operations, evaluating the
bilinear map, deciding membership of the groups, deciding equality of group
elements and sampling generators of the groups. We refer to these as the
generic bilinear group operations.

There are many ways to set up bilinear groups both as symmetric bilinear
groups where G1 = G2 and as asymmetric bilinear groups where G1 �= G2.
Galbraith et al. [GPS08] classify bilinear groups as Type I where G1 = G2,
Type II where there is an efficiently computable non-trivial homomorphism Ψ :
G2 → G1, and Type III where no such efficiently computable homomorphism
exists in either direction between G1 and G2. Type III bilinear groups are the
most efficient type of bilinear groups and hence the most relevant for practical
applications. We give the lower bound for Type III bilinear groups and but our
construction works without change for all 3 types of bilinear groups.

2.2 Non-interactive Zero-Knowledge Arguments of Knowledge

Let R be a relation generator that given a security parameter λ in unary returns
a polynomial time decidable binary relation R. For pairs (φ,w) ∈ R we call
φ the statement and w the witness. We define Rλ to be the set of possible
relation R may output given 1λ. The relation generator may also output some
side information, an auxiliary input z, which will be given to the adversary. An
efficient prover publicly verifiable non-interactive argument for R is a quadruple
of probabilistic polynomial algorithms (Setup,Prove,Vfy,Sim) such that

(σ, τ) ← Setup(R): The setup takes as input a security parameter λ and a relation
R ∈ Rλ and returns a common reference string σ and a simulation trapdoor
τ for the relation R.

π ← Prove(R, σ, φ,w): The prover algorithm takes as input a common reference
string σ and (φ,w) ∈ R and returns an argument π.

0/1 ← Vfy(R, σ, φ, π): The verification algorithm takes as input a common ref-
erence string σ, a statement φ and an argument π and returns 0 (reject) or
1 (accept).

π ← Sim(R, τ, φ): The simulator takes as input a simulation trapdoor and state-
ment φ and returns an argument π.

Definition 1. We say (Setup,Prove,Vfy) is a non-interactive argument for R
if it has perfect completeness and computational soundness as defined below.

Definition 2. We say (Setup,Prove,Vfy,Sim) is a perfect non-interactive zero-
knowledge argument of knowledge for R if it has perfect completeness, perfect
zero-knowledge and computational knowledge soundness as defined below.

Perfect completeness. Completeness says that, given any true statement,
an honest prover should be able to convince an honest verifier. For all λ ∈ N,
R ∈ Rλ, (φ,w) ∈ R

312 J. Groth

Pr
[

(σ, τ) ← Setup(R);π ← Prove(R, σ, φ,w) : Vfy(R, σ, φ, π) = 1
]

= 1.

Perfect zero-knowledge. An argument is zero-knowledge if it does
not leak any information besides the truth of the statement. We say
(Setup,Prove,Vfy,Sim) is perfect zero-knowledge if for all λ ∈ N, (R, z) ←
R(1λ), (φ,w) ∈ R and all adversaries A

Pr
[

(σ, τ) ← Setup(R);π ← Prove(R, σ, φ,w) : A(R, z, σ, τ, π) = 1
]

= Pr
[

(σ, τ) ← Setup(R);π ← Sim(R, τ, φ) : A(R, z, σ, τ, π) = 1
]

.

Computational soundness. We say (Setup,Prove,Vfy,Sim) is sound if it is not
possible to prove a false statement, i.e., convince the verifier if no witness exists.
Let LR be the language consisting of statements for which there exist matching
witnesses in R. Formally, we require that for all non-uniform polynomial time
adversaries A

Pr
[

(R, z) ← R(1λ); (σ, τ) ← Setup(R); (φ, π) ← A(R, z, σ) :
φ /∈ LR and Vfy(R, σ, φ, π) = 1

]

≈ 0.

Computational knowledge soundness. Strengthening the notion of sound-
ness, we call (Setup,Prove,Vfy,Sim) an argument of knowledge if there is an
extractor that can compute a witness whenever the adversary produces a valid
argument. The extractor gets full access to the adversary’s state, including any
random coins. Formally, we require that for all non-uniform polynomial time
adversaries A there exists a non-uniform polynomial time extractor XA such that

Pr
[

(R, z) ← R(1λ); (σ, τ) ← Setup(R); ((φ, π);w) ← (A ‖ XA)(R, z, σ) :
(φ,w) /∈ R and Vfy(R, σ, φ, π) = 1

]

≈ 0.

Public verifiability and designated verifier proofs. We can naturally
generalize the definition of a non-interactive argument by splitting σ into two
parts σP and σV used by the prover and verifier respectively. We say the non-
interactive argument is publicly verifiable when σV can be deduced from σP .
Otherwise we refer to it as a designated verifier argument. For designated verifier
arguments it is possible to relax soundness and knowledge soundness such that
the adversary only sees σP but not σV .

SNARGs and SNARKs. A non-interactive argument where the verifier runs
in polynomial time in λ + |φ| and the proof size is polynomial in λ is called
a preprocessing succinct non-interactive argument (SNARG) if it sound, and a
preprocessing succinct argument of knowledge (SNARK) if it is knowledge sound.
If we also restrict the common reference string to be polynomial in λ we say the
non-interactive argument is a fully succinct SNARG or SNARK. Bitansky et al.
[BCCT13] show that preprocessing SNARKs can be composed to yield fully
succinct SNARKs. The focus of this paper is on preprocessing SNARKs.

Benign relation generators. Bitansky et al. [BCPR14] show that indis-
tinguishability obfuscation implies that for every candidate SNARK there are

On the Size of Pairing-Based Non-interactive Arguments 313

auxiliary output distributions that enable the adversary to create a valid proof
without it being possible to extract the witness. Assuming also public coin dif-
fering input obfuscation and other cryptographic assumptions, Boyle and Pass
[BP15] strengthen this impossibility to show that there is an auxiliary output
distribution that defeats witness extraction for all candidate SNARKs. These
counter examples, however, rely on specific auxiliary input distributions. We
will therefore in the following assume the relationship generator is benign in the
sense that the relation and the auxiliary input are distributed in such a way that
SNARKs can exist.

2.3 Quadratic Arithmetic Programs

Consider an arithmetic circuit consisting of addition and multiplication gates
over a finite field F. We may designate some of the input/output wires as speci-
fying a statement and use the rest of the wires in the circuit to define a witness.
This gives us a binary relation R consisting of statement wires and witness wires
that satisfy the arithmetic circuit, i.e., make it consistent with the designated
input/output wires.

Generalizing arithmetic circuits, we may be interested in relations described
by equations over a set of variables. Some of the variables correspond to the
statement; the remaining variables correspond to the witness. The relation con-
sists of statements and witnesses that satisfy all the equations. The equations
will be over a0 = 1 and variables a1, . . . , am ∈ F and be of the form

∑

aiui,q ·
∑

aivi,q =
∑

aiwi,q,

where ui,q, vi,q, wi,q are constants in F specifying the qth equation.
We observe that addition and multiplication gates are special cases of such

equations so such systems of arithmetic constraints do indeed generalize arith-
metic circuits. A multiplication gate can for instance be described as ai ·aj = ak

(using ui = 1, vj = 1 and wk = 1 and setting the remaining constants for this
gate to 0). Addition gates are handled for free in the sums defining the equations,
i.e., if ai + aj = ak and ak is multiplied by a�, we may simply write (ai + aj) · a�

and skip the calculation of ak.
Following Gennaro et al. [GGPR13] we can reformulate the set of arithmetic

constraints as a quadratic arithmetic program assuming F is large enough. Given
n equations we pick arbitrary distinct r1, . . . , rn ∈ F and define t(x) =

∏n
q=1(x−

rq). Furthermore, let ui(x), vi(x), wi(x) be degree n − 1 polynomials such that

ui(rq) = ui,q vi(rq) = vi,q wi(rq) = wi,q for i = 0, . . . , m, q = 1, . . . , n.

We now have that a0 = 1 and the variables a1, . . . , am ∈ F satisfy the n equations
if and only if in each point r1, . . . , rq

m
∑

i=0

aiui(rq) ·
m

∑

i=0

aivi(rq) =
m

∑

i=0

aiwi(rq).

314 J. Groth

Since t(X) is the lowest degree monomial with t(rq) = 0 in each point, we can
reformulate this condition as

m
∑

i=0

aiui(X) ·
m

∑

i=0

aivi(X) ≡
m

∑

i=0

aiwi(X) mod t(X).

Formally, we will be working with quadratic arithmetic programs R that have
the following description

R = (F, aux, �, {ui(X), vi(X), wi(X)}m
i=0, t(X)) ,

where F describes a finite field, aux is some auxiliary information, 1 ≤ � ≤ m,
ui(X), vi(X), wi(X), t(X) ∈ F[X] and ui(X), vi(X), wi(X) have strictly lower
degree than n, the degree of t(X). A quadratic arithmetic program with such a
description defines the following binary relation, where we define a0 = 1,

R =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(φ,w)

∣

∣

∣

∣

∣

∣

∣

∣

φ = (a1, . . . , a�) ∈ F
�

w = (a�+1, . . . , am) ∈ F
m−�

∑m
i=0 aiui(X) · ∑m

i=0 aivi(X) ≡ ∑m
i=0 aiwi(X) mod t(X)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

We say R is a quadratic arithmetic program generator if it generates relations
of the form given above with fields of size larger than 2λ−1.

Relations can arise in many different ways in practice. It may be that the
relationship generator is deterministic or it may be that it is randomized. It
may be that first the field F is generated and then the rest of the relation is
built on top of the field. Or it may be that the polynomials are specified first
and then a random field is chosen. To get maximal flexibility we have chosen our
definitions to be agnostic with respect to the exact way the field and the relation
is generated, the different options can all be modelled by appropriate choices of
relation generators.

Looking ahead, we will in our pairing-based NIZK arguments let the auxiliary
information aux specify a bilinear group. It may seem a bit surprising to make
the choice of bilinear group part of the relation generator but this provides a
better model of settings where the relation is built on top of an already existing
bilinear group. Again, there is no loss of generality in this choice, one can think of
a traditional setting where the relation is chosen first and then the bilinear group
is chosen at random as the special case where the relation generator works in
two steps, first choosing the relation and then picking a random bilinear group.
Of course letting the relation generator pick the bilinear group is another good
reason that we need to assume it is benign; an appropriate choice of bilinear
group is essential for security.

2.4 Linear Interactive Proofs

Bitansky et al. [BCI+13] give a useful characterization of the information theo-
retic underpinning of recent SNARK constructions. A two-move algebraic linear

On the Size of Pairing-Based Non-interactive Arguments 315

interactive proof (LIP) of degree (dQ, dD) for a relation generator R, where we
assume the relations specify a finite field F, is a non-interactive argument system
where the algorithms work as follows:

(σ, τ) ← Setup(R): It creates an arithmetic circuit of multiplicative depth dQ

that takes as input randomness r ∈ F
μ and returns vectors σ ∈ F

m and
τ ∈ F

n. We will for notational simplicity assume that σ always contains 1 as
an entry such that there is no distinction between affine and linear functions
of σ.

π ← Prove(R,σ, φ, w): The prover operates in two stages:
– First it runs Π ← ProofMatrix(R,φ,w), where ProofMatrix is a proba-

bilistic polynomial time algorithm that generates a matrix Π ∈ F
k×m.

– Then it computes the proof as π = Πσ.
0/1 ← Vfy(R,σ, φ,π): The verifier runs in two stages:

– First it runs a deterministic polynomial time algorithm t ← Test(R,φ) to
get an arithmetic circuit t : Fm+k → F

η of multiplicative depth dD.
– It then accepts the proof if and only if t(σ,π) = 0.

The degrees and dimensions dQ, dD, μ,m, n, k, η may be constants or polynomials
in the security parameter λ.

Definition 3 (Linear Interactive Proof). The tuple (Setup,Prove,Vfy) is
a linear interactive proof for R if it has perfect completeness and statistical
knowledge soundness against affine prover strategies as defined below.

Statistical knowledge soundness against affine prover strategies.
An LIP has knowledge soundness against affine prover strategies if a witness
can be extracted from a successful proof matrix Π. More precisely, there is a
polynomial time extractor X such that for all adversaries A

Pr

[
(R, z) ← R(1λ); (σ, τ) ← Setup(R); (φ, Π) ← A(R, z); w ← X (R, φ, Π) :

Π ∈ F
m×k ∧ Vfy(R, σ, φ, Πσ) = 0 ∧ (φ, w) /∈ R

]
≈ 0.

Non-interactive arguments from linear interactive proofs. LIPs
are useful concepts because they can be compiled into publicly verifiable non-
interactive arguments using pairings and designated verifier non-interactive argu-
ments using Paillier encryption [BCI+13]. If we work in the pairing setting, the
intuition is that an algebraic LIP of degree (dQ, 2) can be executed “in the
exponents”: The common reference string contains exponentiations of the field
elements in σ. The prover computes the proof as multi-exponentiations of group
elements, corresponding to linear operations on the field elements in σ. The
verifier checks the argument by verifying a number of pairing product equa-
tions (equations formed by multiplying together the results of pairings), which
corresponds to checking quadratic equations in the exponents. We will see this
methodology applied in the following section.

316 J. Groth

3 Constructions of Non-interactive Arguments

We will construct a pairing-based NIZK argument for quadratic arithmetic pro-
grams where proofs consist of only 3 group elements. We give the construction in
two steps, first we construct a LIP, and then we convert the LIP into a pairing-
based NIZK argument.

3.1 Linear Interactive Proofs for Quadratic Arithmetic Programs

We will now construct a LIP for quadratic arithmetic program generators that
outputs relations of the form

R = (F, aux, �, {ui(X), vi(X), wi(X)}m
i=0, t(X)) .

The relation defines a language of statements (a1, . . . , a�) ∈ F
� and witnesses

(a�+1, . . . , am) ∈ F
m−� such that with a0 = 1

m
∑

i=0

aiui(X) ·
m

∑

i=0

aivi(X) =
m

∑

i=0

aiwi(X) + h(X)t(X),

for some degree n − 2 quotient polynomial h(X), where n is the degree of t(X).

(σ, τ) ← Setup(R): Pick α, β, γ, δ, x ← F
∗. Set τ = (α, β, γ, δ, x) and

σ =

(

α, β, γ, δ,
{

xi
}n−1

i=0
,

{

βui(x) + αvi(x) + wi(x)
γ

}�

i=0

,

{

βui(x) + αvi(x) + wi(x)
δ

}m

i=�+1

,

{

xit(x)
δ

}n−2

i=0

)

.

π ← Prove(R,σ, a1, . . . , am): Pick r, s ← F and compute a 3 × (m + 2n + 4)
matrix Π such that π = Πσ = (A,B,C) where

A = α +
m

∑

i=0

aiui(x) + rδ B = β +
m

∑

i=0

aivi(x) + sδ

C =
∑m

i=�+1 ai (βui(x) + αvi(x) + wi(x)) + h(x)t(x)
δ

+ As + rB − rsδ.

0/1 ← Vfy(R,σ, a1, . . . , a�): Compute a quadratic multi-variate polynomial t
such that t(σ,π) = 0 corresponds to the test

A · B = α · β +
∑�

i=0 ai (βui(x) + αvi(x) + wi(x))
γ

· γ + C · δ.

Accept the proof if the test passes.

On the Size of Pairing-Based Non-interactive Arguments 317

π ← Sim(R, τ , a1, . . . , a�): Pick A,B ← F and compute

C = AB−αβ−∑�
i=0 ai(βui(x)+αvi(x)+wi(x))

δ . Return π = (A,B,C).

Before formally proving this is a LIP, let us give a little intuition behind the
different components. The role of α and β is to ensure A,B and C are consistent
with each other in the choice of a0, . . . , am. The product α · β in the verification
equation guarantees that A and B involve non-trivial α and β components. This
means the product A · B involves a linear dependence on α and β, and we will
later prove that this linear dependence can only be balanced out by C with a
consistent choice of a0, . . . , am in all three of A,B and C. The role of γ and
δ is to make the two latter products of the verification equation independent
from the first product, by dividing the left factors with γ and δ respectively.
This prevents mixing and matching of elements intended for different products
in the verification equation. Finally, we use r and s to randomize the proof to
get zero-knowledge.

Theorem 1. The construction above yields a LIP with perfect completeness,
perfect zero-knowledge and statistical knowledge soundness against affine prover
strategies.

Proof. Perfect completeness is straightforward to verify. Perfect zero-knowledge
follows from both real proofs and simulated proofs having uniformly random
field elements A,B. These elements uniquely determine C through the verifi-
cation equation, so real proofs and simulated proofs have identical probability
distributions.

What remains is to demonstrate that for any affine prover strategy with non-
negligible success probability we can extract a witness. When using an affine
prover strategy we have

A = Aαα + Aββ + Aγγ + Aδδ + A(x) +
�

∑

i=0

Ai
βui(x) + αvi(x) + wi(x)

γ

+
m

∑

i=�+1

Ai
βui(x) + αvi(x) + wi(x)

δ
+ Ah(x)

t(x)
δ

,

for known field elements Aα, Aβ , Aγ , Aδ, Ai and polynomials A(x), Ah(x) of
degrees n − 1 and n − 2, respectively that correspond to the first row of the
matrix Π. We can write out B and C in a similar fashion from the second and
third rows of Π.

We now view the verification equation as an equality of multi-variate Laurent
polynomials. By the Schwartz-Zippel lemma the prover has negligible success
probability unless the verification equation holds when viewing A,B and C as
formal polynomials in indeterminates α, β, γ, δ, x.

The terms with indeterminate α2 are AαBαα2 = 0, which means Aα = 0 or
Bα = 0. Since AB = BA we can without loss of generality assume Bα = 0. The
terms with indeterminate αβ give us AαBβ + AβBα = AαBβ = 1. This means

318 J. Groth

AB = (ABβ)(AαB) so we can without loss of generality after rescaling assume
Aα = Bβ = 1. The terms with indeterminate β2 now give us AβBβ = Aβ = 0.
We have now simplified A and B constructed by the adversary to be of the form

A = α + Aγγ + Aδδ + A(x) + · · · B = β + Bγγ + Bδδ + B(x) + · · · .

Next, let us consider the terms involving 1
δ2 . We have

(

m
∑

i=�+1

Ai (βui(x) + αvi(x) + wi(x)) + Ah(x)t(x)

)

·
(

m
∑

i=�+1

Bi (βui(x) + αvi(x) + wi(x)) + Bh(x)t(x)

)

= 0,

showing either the left factor is 0 or the right factor is 0. By symmetry, let
us without loss of generality assume

∑m
i=�+1 Ai (βui(x) + αvi(x) + wi(x)) +

t(x)At(x) = 0. The terms in α
∑m

i=�+1 Bi(βui(x)+αvi(x)+wi(x))+Bh(x)t(x)

δ = 0 now
show us that also

∑m
i=�+1 Bi (βui(x) + αvi(x) + wi(x)) + Bh(x)t(x) = 0.

The terms involving 1
γ2 give us

�
∑

i=0

Ai (βui(x) + αvi(x) + wi(x)) ·
�

∑

i=0

Bi (βui(x) + αvi(x) + wi(x)) = 0,

showing either the left factor is 0 or the right factor is 0. By symmetry,
let us without loss of generality assume

∑�
i=0 Ai (βui(x) + αvi(x) + wi(x)) =

0. The terms in α
∑m

i=0 Bi(βui(x)+αvi(x)+wi(x))

γ = 0 now show us
∑�

i=0 Bi (βui(x) + αvi(x) + wi(x)) = 0 as well.
The terms Aγβγ = 0 and Bγαγ = 0 show us that Aγ = 0 and Bγ = 0. We

now have

A = α + A(x) + Aδδ B = β + B(x) + Bδδ.

The remaining terms in the verification equation that involve α give us
αB(x) =

∑�
i=0 aiαvi(x) +

∑m
i=�+1 Ciαvi(x). The terms involving β give us

βA(x) =
∑�

i=0 aiβui(x)+
∑m

i=�+1 Ciβui(x). Defining ai = Ci for i = �+1, . . . , m
we now have

A(x) =
m

∑

i=0

aiui(x) B(x) =
m

∑

i=0

aivi(x).

Finally, we look at the terms involving powers of x to get
m

∑

i=0

aiui(x) ·
m

∑

i=0

aivi(x) =
m

∑

i=0

aiwi(x) + Ch(x)t(x).

This shows that (a�+1, . . . , am) = (C�+1, . . . , Cm) is a witness for the statement
(a1, . . . , a�). ��

On the Size of Pairing-Based Non-interactive Arguments 319

2 field element LIPs. It is natural to ask whether the number of field elements
the prover sends in the LIP can be reduced further. The square span programs
of Danezis et al. [DFGK14] give rise to 2 field element LIPs for boolean circuit
satisfiability. It is also possible to get a 2-element LIP for arithmetic circuit
satisfiability by rewriting the circuit into one that only uses squaring gates, each
multiplication gate a · b = c can be rewritten as a (a+ b)2 − (a− b)2 = 4c. When
an arithmetic circuit only has squaring gates we get ui(x) = vi(x) for all i. By
choosing r = s in the LIP, we now have that B = A + β − α, so the prover only
needs to send two elements A and C to make a convincing proof. Rewriting the
arithmetic circuit to only use squaring gates may double the number of gates
and also requires some additional wires for the subtraction of the squares, so
the reduction of the size of the LIP comes at a significant computational cost
though.

3.2 NIZK Arguments for Quadratic Arithmetic Programs

We will now give a pairing-based NIZK argument for quadratic arithmetic pro-
grams. We consider relation generators R that return relations of the form

R = (p,G1,G2,GT , e, �, {ui(X), vi(X), wi(X)}m
i=0, t(X)) ,

with |p| = λ. The relation defines a field Zp and a language of statements
(a1, . . . , a�) ∈ Z

�
p and witnesses (a�+1, . . . , am) ∈ Z

m−�
p such that with a0 = 1

m
∑

i=0

aiui(X) ·
m

∑

i=0

aivi(X) =
m

∑

i=0

aiwi(X) + h(X)t(X),

for some degree n − 2 quotient polynomial h(X).
We will construct the pairing-based argument by using the LIP from the

previous section “in the exponents”. An important design feature of the LIP is
that the elements A,B and C are only used once in the verification equation
and therefore it is easy to assign them to different source groups such that the
verification equation can be carried out using a pairing product equation. Since
pairing-friendly elliptic curves can be constructed such that the group element
representations are smaller in G1 than in G2 [GPS08] we choose to assign A
and C to the first source group and B to the second source group for maximal
efficiency. This gives us the following NIZK argument.

(σ, τ) ← Setup(R): Pick arbitrary generators G and H for G1 and G2. Pick
α, β, γ, δ, x ← Z

∗
p. Define τ = (α, β, γ, δ, x) and compute

σ =

⎛

⎜
⎝

Gα, Gβ , Hβ , Hγ , Gδ, Hδ,
{

Gxi
}n−1

i=0
,
{

Hxi
}n−1

i=0{
G

βui(x)+αvi(x)+wi(x)
γ

}�

i=0

,
{

G
βui(x)+αvi(x)+wi(x)

δ

}m

i=�+1
,

{
G

xit(x)
δ

}n−2

i=0

⎞

⎟
⎠ .

320 J. Groth

π ← Prove(R, σ, a1, . . . , am): Pick r, s ← Zp and compute π = (A,B,C), where

A = Gα+
∑m

i=0 aiui(x)+rδ B = Hβ+
∑m

i=0 aivi(x)+sδ

C = G

∑m
i=�+1 ai(βui(x)+αvi(x)+wi(x))+h(x)t(x)

δ
+s(α+

∑m
i=0 aiui(x))+r(β+

∑m
i=0 aivi(x))+rsδ.

0/1 ← Vfy(R, σ, a1, . . . , a�, π): Parse π = (A,B,C) ∈ G1 × G2 × G1. Accept the
proof if and only if

e(A,B) = e(Gα,Hβ)e(G
∑�

i=0 ai(βui(x)+αvi(x)+wi(x))
γ ,Hγ)e(C,Hδ).

π ← Sim(R, τ, a1, . . . , a�): Pick r, s ← Zp and compute a simulated proof π =
(A,B,C) as

A = Gr B = Hs C = G
rs−αβ−∑�

i=0 ai(βui(x)+αvi(x)+wi(x))
δ .

Theorem 2. The protocol given above is a non-interactive zero-knowledge argu-
ment with perfect completeness and perfect zero-knowledge. It has statistical
knowledge soundness against adversaries that only use a polynomial number of
generic bilinear group operations.

Proof. Perfect completeness follows by direct verification. Perfect zero-
knowledge follows from the fact that both in real proofs and simulated proofs
A,B are uniformly random group elements and through the verification equation
uniquely determine C.

To see that we have statistical knowledge soundness against generic adver-
saries first note that any test the adversary can do on the common reference
string corresponds to an equality test of Laurent polynomials. Either the poly-
nomials match formally, or by the Schwartz-Zippel lemma there is negligible
probability of them matching up over the random choices of α, β, γ, δ, x. The
adversary therefore has negligible probability of learning anything it did not
already know about the common reference string using only generic group oper-
ations. What remains is the possibility that the adversary computes A,B and C
as exponentiations of group elements to known field elements. This corresponds
exactly to an affine prover strategy on the LIP “in the exponents” and by the
knowledge soundness of the LIP we can extract a witness from these known field
elements. ��

Efficiency. The proof size is 2 elements in G1 and 1 element in G2. The common
reference string contains a description of the relation R, n elements in Zp, m +
2n + 3 elements in G1, and n + 3 elements in G2.

The verifier does not need to know the entire common reference string, it
suffices to know

σV =
(

p,G1,G2,GT , e,Hγ ,Hδ,
{

G
βui(x)+αvi(x)+wi(x)

γ

}�

i=0
, e(Gα,Hβ)

)

.

On the Size of Pairing-Based Non-interactive Arguments 321

The verifier’s reference string only contains a description of the bilinear group,
� + 1 elements in G1, 2 elements in G2, and 1 element in GT .

The verification consists of checking that the proof consists of three appropri-
ate group elements and checking a single pairing product equation. The verifier
computes � exponentiations in G1, a small number of group multiplications, and
3 pairings (assuming e(Gα,Hβ) is precomputed in the verifier’s reference string).

The prover has to compute the polynomial h(X). The prover can compute
the polynomial evaluations

m∑

i=0

aiui(rq) =

m∑

i=0

aiui,q

m∑

i=0

aivi(rq) =

m∑

i=0

aivi,q

m∑

i=0

aiwi(rq) =

m∑

i=0

aiwi,q

for q = 1, . . . , n. It depends on the relation how long time this computation takes;
if it arises from an arithmetic circuit where each multiplication gate connects
to a constant number of wires, the relation will be sparse and the computation
will be linear in n. Since the polynomials have degree n − 1 they are com-
pletely determined by these evaluation points. If r1, . . . , rn are roots of unity for
a suitable prime p she can compute h(X) using standard Fast Fourier Trans-
form techniques in O(n log n) operations in Zp. The prover can also compute the
coefficients of

∑m
i=0 aiui(X) and

∑m
i=0 aivi(X) using FFT techniques. Having

all the coefficients, the prover does m + 3n − � + 3 exponentiations in G1 and
n + 1 exponentiations in G2.

Asymptotically the exponentiations are the dominant cost as the security
parameter grows. However, in practice the multiplications that go into the FFT
computations may be more costly for moderate security parameters and large
statements. In that case, it may be worth to use a larger common reference
string that contains precomputed Gui(x), Gvi(x),Hvi(x) elements for i = 0, . . . , m
such that A and B can be constructed directly instead of the prover having to
compute the coefficients of

∑m
i=0 aiui(X) and

∑m
i=0 aivi(X) and then do the

exponentiations. In the case of boolean circuits we have ai ∈ {0, 1} and the
prover can with such precomputed elements just do m group multiplications for
each when computing A and B. We have for this reason let the CRS be longer
in Table 1 to get a low computational cost for the prover.

4 Lower Bounds for Non-interactive Arguments

It is an intriguing question how efficient non-interactive arguments can be. We
will now give a lower bound showing that pairing-based non-interactive argu-
ments must have proofs with at least 2 group elements if one-way functions exist.
More precisely, we look at pairing-based arguments where the common reference
string contains a description of a bilinear group and a number of group elements,
the proof consists of a number of group elements computed by the prover using
generic group operations, and the verifier checks the proof using generic bilinear
group operations. We will show that for such pairing-based argument systems,
the proof needs to have elements from both G1 and G2 if the language includes
hard decisional problems as defined below.

322 J. Groth

Let us consider sampleable decisional problems for a relation R, where there
are two sampling algorithms Yes and No. Yes samples statements and witnesses
in the relation. No samples statements outside the language LR defined by the
relation. We are interested in relations where it is hard to tell whether a state-
ment φ has been sampled by Yes or No.

Definition 4. We say the relation generator R has hard decisional problems if
there are two efficient algorithms Yes and No such that for (R, z) ← R(1λ) we
have Yes(R) → (φ,w) ∈ R and No(R) → φ /∈ LR with overwhelming probability,
and for all non-uniform polynomial time distinguishers A

Pr
[
(R, z) ← R(1λ); φ0 ← No(R); (φ1, w1) ← Yes(R); b ← {0, 1} : A(R, z, φb) = b

]
≈ 1

2
.

If one-way functions exist, we can construct pseudorandom generators. A
pseudorandom generator can be used to generate a pseudorandom string, a Yes-
instance, with the seed being the witness. To get a No-instance we sample a
uniform random string, which with overwhelming probability is not pseudoran-
dom. If the relation R is NP-complete, or just expressive enough to capture
pseudorandom generators, then it has a hard decisional problem.

4.1 Linear Interactive Proofs Cannot Have Linear Decision
Procedures

We will now prove that LIPs cannot have a linear decision procedure. This
answers an open question raised by Bitansky et al. [BCI+13]. The result holds
even if we consider designated verifier LIPs and instead of knowledge soundness
only consider the weaker notion of soundness that we now define.

Definition 5 (Statistical Soundness Against Affine Prover Strategies).
We say a LIP is (adaptively) sound against affine prover strategies if for all
adversaries A

Pr
[

(R, z) ← R(1λ); (σP ,σV , τ) ← Setup(R); (φ,Π) ← A(R, z)
π = ΠσP ; t ← Test(R,φ) : φ /∈ LR ∧ t(σV ,π) = 0

]

≈ 0.

Theorem 3. There are no 2-move algebraic linear interactive proofs with a lin-
ear decision procedure for relation generators with hard decisional problems.

Proof. When the decision procedure is linear, the test t(σV ,π) = 0 can be
rewritten as TΠσP = T ′σV , where the matrices T ∈ F

η×k and T ′ ∈ F
η×mV can

be efficiently computed from t.
Let us now construct an adversary A that given R and φ has a good chance

of determining whether φ is sampled as a Yes-instance or a No-instance. First,
A repeatedly runs (φi, wi) ← Yes(R) and computes the matching proof and test
matrices Πi and (Ti, T

′
i). Let V be the vector space generated by the tuples

(TiΠi, T
′
i). The adversary keeps sampling tuples until there is more than 50 %

chance that a new tuple (TiΠi, T
′
i) already belongs to V . We will in polynomial

On the Size of Pairing-Based Non-interactive Arguments 323

time with overwhelming probability sample such a vector space V since there
are at most η(mP + mV) linearly independent tuples.

Now the adversary looks at the statement φ that it is trying to classify as
a Yes-instance or a No-instance. It computes the test matrices T and T ′ for φ
and then tries to solve (TΠ, T ′) =

∑

i ri(TiΠi, T
′
i) for Π ∈ F

k×mP and ri ∈ F.
This is a system of linear equations and can therefore be solved efficiently. If a
solution is found it guesses φ ∈ LR and if no solution is found it guesses φ /∈ LR.

Let us first analyze the case where φ ∈ LR. Since this is a Yes-instance there
is more than 50 % chance that there is a solution Π such that (TΠ, T ′) belongs
to the vector space V , so the adversary has 50 % chance of guessing φ ∈ LR.

Next, let us analyze the case where φ /∈ LR. If we run the setup algo-
rithm (σP ,σV , τ) ← Setup(R) and φ /∈ LR we have negligible probability for
TΠσP = T ′σV . However, by completeness we have for all tuples in V that
TiΠiσP = T ′

iσV . If there were a matrix Π such that (TΠ, T ′) =
∑

i ri(TiΠ,T ′
i)

we would have TΠσP =
∑

i riTiΠiσP =
∑

i riT
′
iσV = T ′σV , so soundness

implies this probability is negligible. The adversary guesses φ /∈ LR with over-
whelming probability. ��

4.2 Lower Bound for the Size of Generic Pairing-Based
Non-interactive Arguments

We will now show that a generic pairing-based non-interactive argument over
Type III groups must have elements in both G1 and G2. The intuition behind
this argument is that if we have a unilateral argument with only elements in G1

or only elements in G2, then the verification equations become linear and the
impossibility result for LIPs apply.

Before we get started with the proof, let us define some useful notation.
Define for a vector v = (v1, . . . , vn) that Gv = (Gv1 , . . . , Gvn). Define for a
vector of group elements Gv and a matrix A that (Gv)A = GvA. Also, define for
two vectors of group elements e(Gv,Hw) =

∏n
i=1 e(Gvi ,Hwi).

We will consider pairing-based argument systems (Setup,Prove,Vfy) where
the proofs consist of group elements and where the algorithms only use generic
group operations. Let us be explicit about how such a system operates and the
consequences of using generic group operations.

(σ, τ) ← Setup(R): The relation contains a description of a bilinear group
(p,G1,G2,GT , e) and the common reference string contains group elements
in G1,G2,GT . Let us fix generators G and H for G1 and G2 and write the
vectors of group elements in G1,G2 and GT as Σ1 = Gσ1 , Σ2 = Hσ2 and
ΣT = e(G,H)σT . We want to avoid that the prover can learn non-trivial
information about the discrete logarithms σ1,σ2,σT using generic bilinear
group operations. An example of such a pathological case is a common ref-
erence string with group elements G,Gb, where b is a bit. The prover can
easily recover the bit b by guessing it and verifying the guess with generic
group operations. We say the common reference string is disclosure-free if
for any pairing product equation on the group elements in Σ1,Σ2 and ΣT

324 J. Groth

it is possible with overwhelming probability to predict whether the equation
holds or not, when we know the distribution of the common reference string
but where we do not know the actual group elements.

π ← Prove(R, σ, φ,w): A prover using generic group operations and working on a
disclosure-free common reference string has negligible chance of learning any
non-trivial information about the common reference string group elements.
This means her only viable mode of operation is to pick matrices Π1,Π2 and
ΠT and compute the proof by setting π = (ψ1,ψ2,ψT), where

ψ1 = ΣΠ1
1 ψ2 = ΣΠ2

2 ψT = ΣΠT

T .

0/1 ← Vfy(R, σ, φ, π): A verifier using generic group operations can only verify
a proof by mapping φ to matrices and vectors {Aq, Bq, Cq,Dq,eq,f q}Q

q=1 of
elements in Zp and checking pairing product equations of the form

e(ΣAq

1 ,Σ2)e(ψ
Bq

1 ,Σ2)e(Σ
Cq

1 ,ψ2)e(ψ
Dq

1 ,ψ2) = Σ
eq

T · ψT
fq .

We note that there is no loss of generality in excluding multi-exponentiation
equations in G1 or G2; such equations can be translated to pairing product
equations by pairing them with G or H.

We now get the following corollary to Theorem3.

Corollary 1. A pairing-based non-interactive argument with a disclosure-free
common reference string and algorithms using generic group operations cannot
exist for relation generators with hard decisional problems unless the proofs have
elements both in G1 and G2.

Proof. When the common reference string is disclosure free and the algorithms
use generic operations they must work as outlined above. Taking discrete loga-
rithms we get verification equations of the form

σ1Aqσ2 + π1Bqσ2 + σ1Cqπ2 + π1Dqπ2 = σT eq + πT f q,

where ψ1 = Gπ1 and ψ2 = Hπ2 and ψT = e(G,H)πT . If either π1 or π2 are
empty, there are no π1Dqπ2 parts in the verification equations. Observe also that
without loss of generality we can assume all the entries in the outer product of
σ1 and σ2 are given in σT (this does not affect disclosure-freeness) so we can set
Aq = 0 in every equation. This means all the verification equations are linear.
Since the verification equations correspond to verifying a LIP “in the exponents”
it follows from the impossibility of having LIPs with a linear decision procedure
that the proof must have that both π1 and π2 are non-trivial and therefore that
the proof has elements both in G1 and G2. ��

Acknowledgments. We thank Eran Tromer for interesting discussions about the
performance of SNARK implementations and the anonymous reviewers for their helpful
reviews.

On the Size of Pairing-Based Non-interactive Arguments 325

References

[AF07] Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 118–136. Springer, Heidelberg
(2007)

[AGOT14] Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selec-
tively randomizable structure-preserving signatures. In: Lindell, Y. (ed.)
TCC 2014. LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)

[BCCT12] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable col-
lision resistance to succinct non-interactive arguments of knowledge, and
back again. In: Innovations in Theoretical Computer Science, pp. 326–349
(2012)

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In: STOC, pp.
111–120 (2013)

[BCG+13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs
for C: verifying program executions succinctly and in zero knowledge. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 90–108. Springer, Heidelberg (2013)

[BCG+14] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E.,
Virza, M.: Zerocash: decentralized anonymous payments from bitcoin. In:
IEEE Symposium on Security and Privacy, pp. 459–474 (2014)

[BCI+13] Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct
non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013)

[BCPR14] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of
extractable one-way functions. In: STOC, pp. 505–514 (2014)

[BCTV14a] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge
via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014)

[BCTV14b] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive
zero knowledge for a von Neumann architecture. In: USENIX, pp. 781–796
(2014)

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications. In: STOC, pp. 103–112 (1988)

[BP15] Boyle, E., Pass, R.: Limits of extractability assumptions with distribu-
tional auxiliary input. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9453, pp. 236–261. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48800-3 10

[CFH+15] Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig,
M., Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In:
IEEE Symposium on Security and Privacy, pp. 253–270 (2015)

[CTV15] Chiesa, A., Tromer, E., Virza, M.: Cluster computing in zero knowledge.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057,
pp. 371–403. Springer, Heidelberg (2015)

[DFGK14] Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs
with applications to succinct NIZK arguments. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer,
Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-662-48800-3_10
http://dx.doi.org/10.1007/978-3-662-48800-3_10

326 J. Groth

[DFKP13] Danezis, G., Fournet, C., Kohlweiss, M., Parno, B.: Pinocchio coin: build-
ing zerocoin from a succinct pairing-based proof system. In: PETShopCCS
(2013)

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer,
Heidelberg (2013)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proofs. SIAM J. Comput. 18(1), 186–208 (1989)

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new tech-
niques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 97–111. Springer, Heidelberg (2006)

[GOS12] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive
zero-knowledge. J. ACM 59(3), 11:1–11:35 (2012)

[GPS08] Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers.
Discrete Appl. Math. 156(16), 3113–3121 (2008)

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

[Gro09] Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer,
Heidelberg (2009)

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010)

[GS12] Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear
groups. SIAM J. Comput. 41(5), 1193–1232 (2012)

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: STOC, pp. 99–108 (2011)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In:
STOC, pp. 723–732 (1992)

[Lip12] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012)

[Lip13] Lipmaa, H.: Succinct non-interactive zero knowledge arguments from
span programs and linear error-correcting codes. In: Sako, K., Sarkar, P.
(eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer,
Heidelberg (2013)

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–
1298 (2000)

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical
verifiable computation. In: IEEE Symposium on Security and Privacy, pp.
238–252 (2013)

[SVdV15] Schoenmakers, B., Veeningen, M., de Vreede, N.: Trinocchio: privacy-
friendly outsourcing by distributed verifiable computation. In: Cryptology
ePrint Archive, Report 2015/480 (2015)

[Val08] Valiant, P.: Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 1–18. Springer, Heidelberg (2008)

[Wal15] Walfish, M.: A wishlist for verifiable computation: an applied CS perspec-
tive. Presentation at the Securing Computation Workshop at the Simons
Institute for the Theory of Computing, UC Berkeley (2015)

Efficient Zero-Knowledge Arguments
for Arithmetic Circuits in the Discrete

Log Setting

Jonathan Bootle1(B), Andrea Cerulli1, Pyrros Chaidos1,
Jens Groth1, and Christophe Petit2

1 University College London, London, UK
{jonathan.bootle.14,andrea.cerulli.13,pyrros.chaidos.10,j.groth}@ucl.ac.uk

2 University of Oxford, Oxford, UK
christophe.f.petit@gmail.com

Abstract. We provide a zero-knowledge argument for arithmetic circuit
satisfiability with a communication complexity that grows logarithmi-
cally in the size of the circuit. The round complexity is also logarithmic
and for an arithmetic circuit with fan-in 2 gates the computation of the
prover and verifier is linear in the size of the circuit. The soundness of our
argument relies solely on the well-established discrete logarithm assump-
tion in prime order groups.

At the heart of our new argument system is an efficient zero-
knowledge argument of knowledge of openings of two Pedersen multicom-
mitments satisfying an inner product relation, which is of independent
interest. The inner product argument requires logarithmic communica-
tion, logarithmic interaction and linear computation for both the prover
and the verifier.

We also develop a scheme to commit to a polynomial and later reveal
the evaluation at an arbitrary point, in a verifiable manner. This is used
to build an optimized version of the constant round square root com-
plexity argument of Groth (CRYPTO 2009), which reduces both com-
munication and round complexity.

Keywords: Sigma-protocol · Zero-knowledge argument · Arithmetic
circuit · Discrete logarithm assumption

1 Introduction

Zero-knowledge proofs and arguments are ubiquitous in cryptography today,
with prominent applications in authentication protocols, multi-party computa-

The research leading to these results has received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013) / ERC Grant Agreement n. 307937 and EPSRC grant
EP/J009520/1.
P. Chaidos—Was supported by an EPSRC scholarship (EP/G037264/1 – Security
Science DTC).

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 327–357, 2016.
DOI: 10.1007/978-3-662-49896-5 12

328 J. Bootle et al.

tion, encryption primitives, electronic voting systems and verifiable computation
protocols.

Informally, a zero-knowledge argument involves two parties, the prover and
the verifier, and allows the prover to prove to the verifier that a particular
statement is true, without revealing anything else about the statement itself.
Statements are of the form u ∈ L, where L is a language in NP. We call w a
witness for a statement u if (u,w) ∈ R, where R is a polynomial time decidable
binary relation associated with L. We require the zero-knowledge argument to
be complete, sound and zero-knowledge.

Completeness: A prover with a witness w for u ∈ L can convince the verifier
of this fact.

Soundness: A prover cannot convince a verifier when u /∈ L.
Zero-knowledge: The interaction should not reveal anything to the verifier

except that u ∈ L. In particular, it should not reveal the prover’s witness w.

Our goal is to build an efficient argument system for the satisfiability of an
arithmetic circuit, i.e., a circuit that consists of addition and multiplication gates
over a finite field Zp. Moreover we want to base the security of this argument
solely on the discrete logarithm assumption: this will provide both strong security
guarantees and good efficiency since there exists no known attacks better than
generic ones for well-chosen elliptic curve subgroups.

The most efficient zero-knowledge arguments solely based on the discrete
logarithm assumption are Groth’s protocol based on linear algebra [21] and its
variant by Seo [36]. Both of these protocols have a communication complexity
that is proportional to the square root of the circuit size. This square root com-
plexity has since then appeared as a (perhaps fundamental) barrier for discrete
logarithm-based arguments for circuit satisfiability.

1.1 Our Contributions

We provide an honest verifier zero-knowledge argument for arithmetic circuit
satisfiability based on the discrete logarithm assumption that only requires a
logarithmic communication complexity. Our argument has perfect completeness
and perfect special honest verifier zero-knowledge. Soundness is computational
and based on the discrete logarithm assumption. We require a logarithmic num-
ber of moves, and both the prover and verifier have linear computational com-
plexity. The argument is therefore efficient on all parameters with the biggest
improvement being in the communication complexity.

Improved Square Root Complexity Argument. We start from the circuit satis-
fiability argument of Groth [21], which requires 7 moves and has square root
communication complexity in the total number of gates. In this argument the
prover commits to all the wires using homomorphic multicommitments, verifies
addition gates using the homomorphic properties, and uses a product argument
to show that the multiplication gates are satisfied.

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 329

We first improve Groth’s argument into a 5 moves argument with square
root communication complexity in the number of multiplication gates only.
We achieve fewer moves compared to [21] by avoiding generic reductions to
linear algebra statements. We remove the communication cost of the addition
gates in the argument by providing a technique that can directly handle a set of
Hadamard products and linear relations together. Another efficiency improve-
ment is a subroutine to commit to a polynomial and later reveal its evaluation at
an arbitrary point in a verifiable manner. In Sect. 3 we provide a protocol to per-
form this task, which has a square root communication complexity with respect
to the degree of the polynomial, and which may be of independent interest.

Logarithmic Complexity Argument. In spite of all these improvements, the above
argument still requires a square root communication complexity with respect to
multiplication gates. In the first move the prover commits to all circuit wires
using 3m commitments to n elements each, where mn = N is a bound on the
number of multiplication gates, and in the last move after receiving a challenge
he opens one commitment that can be constructed from the previous ones and
the challenge. By setting m ≈ n we get a minimal communication complexity of
O(

√
N).

Our key idea to break this square root communication complexity barrier is to
replace the last opening step in this protocol by an argument of knowledge of the
opening values. Using specific properties of Pedersen multicommitments, namely
homomorphic properties with respect to the keys, we rewrite this argument
as an argument of knowledge of openings of two homomorphic commitments,
satisfying an inner product relation. In Sect. 4 we provide an argument system
for this problem, which only requires a logarithmic communication with respect
to the vector sizes. The argument is built in a recursive way, reducing the size
and complexity of the statement further in each recursion step. Using this inner
product argument as a subroutine we obtain an arithmetic circuit satisfiability
argument with logarithmic communication.

Implementation. In Sect. 6 we report on an implementation of our arguments. To
show the practicality of our results we compare the efficiency of our implemen-
tation to that of Pinocchio [34]. Pinocchio is a practical verifiable computation
scheme allowing a constrained client to outsource computation of a function to
a powerful worker and to efficiently verify the outcome of the function. It uses
quadratic arithmetic programs, a generalisation of arithmetic circuits, and for
some functions achieves verification that is faster than local computation. While
we do not achieve comparably fast verification, we compare favourably in terms
of prover computation, and do so under simpler assumptions.

1.2 Related Work

Zero-knowledge proofs were invented by Goldwasser et al. [18]. It is useful
to distinguish between zero-knowledge proofs, with statistical soundness, and
zero-knowledge arguments with computational soundness. In general proofs can

330 J. Bootle et al.

only have computational zero-knowledge, while arguments may have perfect
zero-knowledge. Goldreich et al. [16] showed that all languages in NP have
zero-knowledge proofs while Brassard et al. [8] showed that all languages in
NP have zero-knowledge arguments with perfect zero-knowledge.

Gentry et al. [14] used fully homomorphic encryption to construct zero-
knowledge proofs where the communication complexity corresponds to the size
of the witness. However, proofs cannot in general have communication that is
smaller than the witness size unless surprising results about the complexity of
solving SAT instances hold [15,17].

Kilian [27] showed that in contrast to zero-knowledge proofs, zero-knowledge
arguments can have very low communication complexity. His construction relied
on the PCP theorem though, and did not yield a practical scheme.

Schnorr [35] and Guillou and Quisquater [25] gave early examples of practical
zero-knowledge arguments for concrete number theoretic problems. Extending
Schnorr’s protocols, there have been many constructions of zero-knowledge argu-
ments based on the discrete logarithm assumption. Cramer and Damg̊ard [10]
gave a zero-knowledge argument for arithmetic circuit satisfiability, which has
linear communication complexity.

Currently the most efficient discrete logarithm based zero-knowledge argu-
ments for arithmetic circuits are the ones by Groth [21] and Seo [36], which are
constant move arguments with a communication proportional to the square root
of the circuit size. Using pairing-based cryptography instead of just relying on
the discrete logarithm assumption, Groth [20] extended these techniques to give
a zero-knowledge argument with a cubic root communication complexity.

There are recent works giving a logarithmic communication complexity for
specific languages. Bayer and Groth [2] show that one can prove that a polyno-
mial evaluated at a secret committed value gives a certain output with a loga-
rithmic communication complexity and Groth and Kohlweiss [24] show that one
can prove that one out of N commitments contain 0 with logarithmic communi-
cation complexity. These results are for very specific types of statements (with
low circuit depth) and the techniques do not seem to generalize to arbitrary NP
languages.

An exciting line of research [4–7,13,22,24,30,34] has developed many propos-
als for succinct non-interactive arguments (SNARGs) yielding pairing-based con-
structions where the arguments consist of a constant number of group elements.
However, they all rely on a common reference string (with a special structure)
and non-falsifiable knowledge extractor assumptions. In contrast, the arguments
we develop here are based solely on the discrete logarithm assumption, and use
a small common reference string which is independent of the circuit.

Table 1 compares the most efficient previous zero-knowledge arguments based
on the discrete logarithm assumption with our scheme, when allowing for 5 moves
or a logarithmic number of moves. Using 5 moves, our scheme requires signifi-
cantly less computation than [36]. On the other hand when using a logarithmic
number of moves and applying a reduction similar to [1], our scheme dramati-
cally improves the communication costs with respect to all previous work without

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 331

incurring any significant overhead. We note that [1] uses the reduction to reduce
computation whereas we use it to reduce communication.

Table 1. Efficiency comparison between our arguments and the most efficient inter-
active zero-knowledge arguments relying on discrete logarithm. We express communi-
cation in number of group elements G and field elements Zp and computation costs in
number of exponentiations over G and multiplications over Zp. The efficiency displayed
is for a circuit with N multiplication gates.

Reference Moves Communication Prover complexity Verifier complexity

G Zp exp. mult. exp. mult.

[10] 3 6N 5N + 2 6N 6N 6N 0

[21] 7 9
√

N + 4 7
√

N + 6 6N
log N

O (N logN) 39
√

N
log N

O (N)

[21] 2 logN + 5 2
√

N 7
√

N 6N
log N

O(N) 18
√

N
log N

O (N)

[36] 5 30
√

N 7
√

N 6N
log N

O (N logN) 77
√

N
log N

O (N)

This paper 5 2
√

N 2
√

N 6N
log N

3N logN 8
√
3N

log N
O(N)

This paper 2 logN + 1 4 logN + 7 2 logN + 6 12N O(N) 4N O(N)

As part of our construction we give a protocol for committing to a poly-
nomial and later revealing an evaluation of the polynomial in a given point.
Kate et al. [26] have also provided protocols to commit to polynomials and then
evaluate them at a given point in a verifiable way. Their protocols only require
a constant number of commitments but security relies on pairing assumptions.
Our polynomial commitment protocol has square root communication complex-
ity but relies solely on the discrete logarithm assumption.

2 Preliminaries

We write y = A(x; r) when the algorithm A on input x and randomness r,
outputs y. We write y ← A(x) for the process of picking randomness r at random
and setting y = A(x; r). We also write y ← S for sampling y uniformly at random
from the set S. We will assume one can sample uniformly at random from sets
such as Zp and Z

∗
p.

Algorithms in our schemes receive a security parameter λ as input (some-
times implicitly) written in unary. The intuition is that the higher the security
parameter, the lower the risk of the scheme being broken. Given two functions
f, g : N → [0, 1] we write f(λ) ≈ g(λ) when |f(λ) − g(λ)| = λ−ω(1). We say that
f is negligible when f(λ) ≈ 0 and that f is overwhelming when f(λ) ≈ 1.

Throughout the paper we let G be a group of prime order p. Let g =
(g1, . . . , gn) ∈ G

n and f = (f1, . . . , fn) ∈ Z
n
p . We write gf for the multi-

exponentiation gf =
∏n

i=1 gfi

i . A multi-exponentiation of size n can be
computed at a cost of roughly n

log n single group exponentiations using the
multi-exponentiation techniques of [28,31,32].

332 J. Bootle et al.

2.1 The Discrete Logarithm Assumption

Let GGen be an algorithm that on input 1λ returns (G, p, g) such that G is the
description of a finite cyclic group of prime order p, where |p| = λ, and g is a
generator of G.

Definition 1 (Discrete Logarithm Assumption). The discrete logarithm
assumption holds relative to GGen if for all non-uniform polynomial time adver-
saries A

Pr
[

(G, p, g) ← GGen(1λ);h ← G; a ← A(G, p, g, h) : ga = h
]

≈ 0

In this definition, the value a is called the discrete logarithm of h in the basis
g. Note that the discrete logarithm assumption is defined with respect to a
particular group generator algorithm GGen. According to current state-of-the-
art cryptanalytic techniques, to get a security level of 2−λ the group generator
may for example return well-chosen elliptic curve groups where group elements
can be represented with O(λ) bits or multiplicative subgroups of finite fields
with a large characteristic where group elements can be represented with O(λ3)
bits. It is well-known that the discrete logarithm assumption is equivalent to the
following assumption.

Definition 2 (Discrete Logarithm Relation Assumption). For all n ≥ 1
and all non-uniform polynomial time adversaries A

Pr

[

(G, p, g) ← GGen(1λ); g1, . . . , gn ← G;
a0, . . . , an ← A(G, p, g, {gi}i)

: ∃ai 	= 0 and ga0

n
∏

i=1

gai
i = 1

]

≈ 0

We call such a product ga0
∏n

i=1 gai
i = 1 a non-trivial discrete logarithm relation.

2.2 Pedersen Commitments

A non-interactive commitment scheme allows a sender to create a commitment
to a secret value. She may later open the commitment and reveal the value in
a verifiable manner. A commitment should be hiding, i.e., not reveal the secret
value, and binding in the sense that a commitment cannot be opened to two
different values.

Formally, a non-interactive commitment scheme is a pair of probabilistic
polynomial time algorithms (CGen,Com). The setup algorithm ck ← CGen(1λ)
generates a commitment key ck. The commitment key specifies a message
space Mck, a randomness space Rck and a commitment space Cck. The com-
mitment algorithm combined with the commitment key specifies a function
Comck : Mck×Rck → Cck. Given a message m ∈ Mck the sender picks uniformly
at random r ← Rck and computes the commitment c = Comck(m; r).

Definition 3 (Perfectly Hiding). We say a non-interactive commitment
scheme (CGen,Com) is perfectly hiding if a commitment does not reveal the

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 333

committed value. For all non-uniform polynomial time stateful interactive adver-
saries A

Pr
[

ck ← CGen(1λ); (m0,m1) ← A(ck);
b ← {0, 1}; c ← Comck(mb)

: A(c) = b

]

=
1
2

where A outputs m0,m1 ∈ Mck.

Definition 4 (Binding). A non-interactive commitment scheme (CGen,Com)
is computationally binding if a commitment can only be opened to one value. For
all non-uniform polynomial time adversaries A

Pr
[

ck ← CGen(1λ);
(m0, r0,m1, r1) ← A(ck) :

Comck(m0; r0) = Comck(m1; r1)
and m0 	= m1

]

≈ 0

where A outputs m0,m1 ∈ Mck and r0, r1 ∈ Rck.

We say a commitment scheme is homomorphic if for all valid keys ck the
message, randomness and commitment spaces are abelian groups and for all
messages m0,m1 ∈ Mck and randomness r0, r1 ∈ Rck we have

Comck(m0; r0) · Comck(m1; r1) = Comck(m0 + m1; r0 + r1).

The most prominent example of a homomorphic perfectly hiding commitment
scheme is the Pedersen commitment scheme. Pedersen commitments have the
form c = grhm where g, h are group elements specified in the commitment key.
The opening of a Pedersen commitment is (m, r) ∈ Z

2
p, from which anybody

can recompute the commitment c and verify it was a valid commitment. Since
Pedersen commitments are random group elements, they are perfectly hiding.
On the other hand, breaking the binding property of Pedersen commitments
corresponds to breaking the discrete logarithm assumption.

We will be using a variant of Pedersen commitments that allow us to commit
to multiple values at once. The commitment key is ck = (G, p, g, g1, . . . , gn) and a
commitment is of the form c = gr

∏n
i=1 gmi

i . We write c = Comck(m1, . . . , mn; r)
for this operation.

With the Pedersen commitment scheme in mind, we will assume throughout
the paper that the message space is Z

n
p and the randomness space is Zp. The

constructions we have in Sects. 3 and 5.1 require a perfectly hiding, homomorphic
commitment scheme so we are not limited to using the Pedersen commitment
scheme. However, in Sects. 4 and 5.2, we will rely on specific properties of the
Pedersen scheme and work directly on the group elements in the key.

2.3 Zero-Knowledge Arguments of Knowledge

Let R be a polynomial time decidable binary relation, i.e., a relation that defines
a language in NP. We call w a witness for a statement u if (u,w) ∈ R.

In the arguments we consider a prover P and a verifier V, both of which are
probabilistic polynomial time interactive algorithms. The transcript produced

334 J. Bootle et al.

by P and V when interacting on inputs s and t is denoted by tr ← 〈P(s),V(t)〉.
We write 〈P(s),V(t)〉 = b depending on whether the verifier rejects, b = 0, or
accepts, b = 1.

Definition 5 (Argument of Knowledge). The pair (P,V) is called an argu-
ment of knowledge for the relation R if we have perfect completeness and statis-
tical witness-extended emulation as defined below.

Definition 6 (Perfect Completeness). (P,V) has perfect completeness if for
all non-uniform polynomial time adversaries A

Pr
[

(u,w) ← A(1λ) : (u,w) 	∈ R or 〈P(u,w),V(u)〉 = 1
]

= 1

To define an argument of knowledge we follow Groth and Ishai [23] that bor-
rowed the term witness-extended emulation from Lindell [29]. Informally, their
definition says that given an adversary that produces an acceptable argument
with some probability, there exists an emulator that produces a similar argument
with the same probability together with a witness w. Note that the emulator is
allowed to rewind the prover and verifier’s interaction to any previous move.

Definition 7 (Statistical Witness-Extended Emulation). (P,V) has sta-
tistical witness-extended emulation if for all deterministic polynomial time P∗

there exists an expected polynomial time emulator E such that for all interactive
adversaries A

Pr
[

(u, s) ← A(1λ); tr ← 〈P∗(u, s),V(u)〉 : A(tr) = 1
]

≈ Pr
[

(u, s) ← A(1λ); (tr, w) ← E〈P∗(u,s),V(u)〉(u) :
A(tr) = 1 and if tr is accepting then (u,w) ∈ R

]

where the oracle called by E〈P∗(u,s),V(u)〉 permits rewinding to a specific point
and resuming with fresh randomness for the verifier from this point onwards.

In the definition, s can be interpreted as the state of P∗, including the ran-
domness. So, whenever P∗ is able to make a convincing argument when in state
s, E can extract a witness. This is why we call it an argument of knowledge.

Definition 8 (Public Coin). An argument (P,V) is called public coin if the
verifier chooses his messages uniformly at random and independently of the mes-
sages sent by the prover, i.e., the challenges correspond to the verifier’s random-
ness ρ.

An argument is zero-knowledge if it does not leak information about the witness
beyond what can be inferred from the truth of the statement. We will present
arguments that have special honest verifier zero-knowledge in the sense that if
the verifier’s challenges are known in advance, then it is possible to simulate the
entire argument without knowing the witness.

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 335

Definition 9 (Perfect Special Honest Verifier Zero-Knowledge). A pub-
lic coin argument (P,V) is called a perfect special honest verifier zero knowledge
(SHVZK) argument for R if there exists a probabilistic polynomial time simu-
lator S such that for all interactive non-uniform polynomial time adversaries
A

Pr
[

(u,w, ρ) ← A(1λ); tr ← 〈P(u,w),V(u; ρ)〉 : (u,w) ∈ R and A(tr) = 1
]

= Pr
[

(u,w, ρ) ← A(1λ); tr ← S(u, ρ) : (u,w) ∈ R and A(tr) = 1
]

where ρ is the public coin randomness used by the verifier.

Full Zero-Knowledge. In real life applications special honest verifier zero-
knowledge may not suffice since a malicious verifier may give non-random chal-
lenges. However, it is easy to convert an SHVZK argument into a full zero-
knowledge argument secure against arbitrary verifiers in the common reference
string model using standard techniques [12,19]. The conversion can be very effi-
cient and only costs a small additive overhead.

The Fiat-Shamir Heuristic. The Fiat-Shamir transformation takes an inter-
active public coin argument and replaces the challenges with the output of a
cryptographic hash function. The idea is that the hash function will produce
random looking output and therefore be a suitable replacement for the verifier.
The Fiat-Shamir heuristic yields a non-interactive zero-knowledge argument in
the random oracle model [3].

The transformation can be applied to our arguments to make them non-
interactive at the cost of using the random oracle model in the security proofs.
From an efficiency point of view this is especially useful for the arguments in
Sects. 4 and 5.2, reducing a logarithmic number of moves to a single one.

A General Forking Lemma. Suppose that we have a (2μ + 1)-move public-
coin argument with μ challenges, x1, . . . , xμ in sequence. Let ni ≥ 1 for 1 ≤
i ≤ μ. Consider

∏μ
i=1 ni accepting transcripts with challenges in the following

tree format. The tree has depth μ and
∏μ

i=1 ni leaves. The root of the tree is
labelled with the statement. Each node of depth i < μ has exactly ni children,
each labelled with a distinct value for the ith challenge xi.

This can be referred to as an (n1, . . . , nμ)-tree of accepting transcripts. All of
our arguments allow a witness to be extracted efficiently from an appropriate tree
of accepting transcripts. This is a natural generalisation of special-soundness for
Sigma-protocols, where μ = 1 and n = 2. For simplicity in the following lemma,
we assume that the challenges are chosen uniformly from Zp where |p| = λ, but
any sufficiently large challenge space would suffice. We refer to the full version
of the paper for a proof of the forking lemma.

336 J. Bootle et al.

Lemma 1 (Forking Lemma). Let (P,V) be a (2μ+1)-move, public coin inter-
active protocol. Let χ be a witness extraction algorithm that always succeeds in
extracting a witness from an (n1, . . . , nμ)-tree of accepting transcripts in proba-
bilistic polynomial time. Assume that

∏μ
i=1 ni is bounded above by a polynomial

in the security parameter λ. Then (P,V) has witness-extended emulation.

3 Commitments to Polynomials

In this section, we present a protocol to commit to a polynomial t(X) and later
reveal the evaluation of t(X) at any point x ∈ Z

∗
p together with a proof that

enables a verifier to check that the evaluation is correct with respect to the
committed t(X). We will consider Laurent polynomials t(X) ∈ Zp[X,X−1] i.e.
polynomials in which we allow terms of negative degree. This protocol will be
used as a subroutine for the arguments described in Sects. 5.1 and 5.2.

A simple solution for this problem would be to send commitments to coeffi-
cients of t(X) individually, from which the evaluation of t(X) at any particular
point can be verified using the homomorphic properties. This solution requires
d group elements to be sent, where d is the number of non-zero coefficients in
t(X). As we shall show it is possible to reduce the communication costs to O(

√
d)

group elements, where d = d2 + d1 if t(X) =
∑d2

k=−d1
tkXk.

For clarity we first informally describe our protocol for a standard (not Lau-
rent) polynomial t(X) =

∑d
k=0 tkXk. We then extend this informal description

to Laurent polynomials with zero constant term. We finally provide a formal
description of the protocol and analyze its security and efficiency.

Main Idea for Standard Polynomials. Let t(X) =
∑d

k=0 tkXk be a
polynomial with coefficients in Zp and assume d + 1 = mn. We can write
t(X) =

∑m−1
i=0

∑n−1
j=0 ti,j(X)Xin+j and arrange the coefficients in a m×n matrix

⎛

⎜

⎜

⎜

⎝

t0,0 t0,1 · · · t0,n−1

t1,0 t1,1 · · · t1,n−1

...
...

...
tm−1,0 tn−1,1 · · · tm−1,n−1

⎞

⎟

⎟

⎟

⎠

Now, t(X) can be evaluated by multiplying the matrix by row and column
vectors.

t(X) =
(

1 Xn · · · X(m−1)n
)

⎛

⎜

⎜

⎜

⎝

t0,0 t0,1 · · · t0,n−1

t1,0 t1,1 · · · t1,n−1

...
...

...
tm−1,0 tn−1,1 · · · tm−1,n−1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1
X
...

Xn−1

⎞

⎟

⎟

⎟

⎠

The idea behind the protocol is to commit to the rows of this matrix using
commitments T0, . . . , Tm−1. Later, when given an evaluation point x ∈ Zp we

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 337

can use the homomorphic property of the commitment scheme to compute the
commitment

∏m−1
i=0 T xin

i to the vector

t̄ =
(

1 xn · · · x(m−1)n
)

⎛

⎜

⎜

⎜

⎝

t0,0 t0,1 · · · t0,n−1

t1,0 t1,1 · · · t1,n−1

...
...

...
tm−1,0 tm−1,1 · · · tm−1,n−1

⎞

⎟

⎟

⎟

⎠

The prover opens this latter commitment and now it is easy to compute v = t(x)
from t̄ and x.

The problem with this straightforward solution is that it leaks partial infor-
mation about the coefficients of t(X). We remedy this by inserting some blinding
values u1, . . . , un−1 to hide the weighted sum of the coefficients in each column.
However, we make sure that the blinding values cancel each other out so that
we still get the correct evaluation of the polynomial. More precisely, we commit
to the rows of the following (m + 1) × n matrix

T =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

t0,0 t0,1 − u1 · · · t0,n−2 − un−2 t0,n−1 − un−1

t1,0 t1,1 · · · t1,n−2 t1,n−1

...
...

...
tm−1,0 tm−1,1 · · · tm−1,n−2 tm−1,n−1

u1 u2 · · · un−1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

with U being a commitment to the last row. This time

t(X) =
(

1 Xn · · · X(m−1)n X
)

T

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
X
X2

...
Xn−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

We now open Ux
∏m−1

i=0 T xin

i by revealing the vector

t̄ =
(

1 xn · · · x(m−1)n x
)

T

This still allows us to compute t(x), but due to the blinders we no longer leak
information about the coefficients of t(X). In fact, each element of t̄ is uniformly
random, conditional on their weighted sum being equal to t(x), which the prover
intends for the verifier to learn anyway.

Extension to Laurent Polynomials. Let now t(X) be a Laurent polynomial
t(X) =

∑d2
i=−d1

tiX
i with constant term t0 = 0. Let m1,m2, n be positive inte-

gers such that d1 = nm1 and d2 = nm2 and write t(X) = X−m1nt′(X)+Xt′′(X)
for degree d1 − 1 and d2 − 1 polynomials t′(X), t′′(X) ∈ Zp[X]. We can write
t′(X) =

∑m1−1
i=0

∑n−1
j=0 t′i,jX

in+j and t′′(X) =
∑m2−1

i=0

∑n−1
j=0 t′′i,jX

in+j .

338 J. Bootle et al.

We can arrange the coefficients of t′(X) and t′′(X) in a (m1 + m2) × n
matrix T . We commit to both t′(X) and t′′(X) simultaneously by committing
to the rows of the matrix using commitments T ′

i and T ′′
i . As when committing

to polynomials we add blinders u1, . . . , un−1 and make a commitment U to the
additional last row arising from this.

T =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

t′0,0 t′0,1 · · · t′0,n−1

t′1,0 t′1,1 · · · t′1,n−1
...

...
...

t′m1−1,0 t′m1−1,1 · · · t′m1−1,n−1

t′′0,0 t′′0,1 − u1 · · · t′′0,n−1 − un−1

t′′1,0 t′′1,1 · · · t′′1,n−1
...

...
...

t′′m2−1,0 t′′m2−1,1 · · · t′′m2−1,n−1

u1 u2 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

t′
0

t′
1
...

t′
m1−1

t′′
0

t′′
1
...

t′′
m2−1

u

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Define vectors

Z = Z(X) =
(

X−m1n,X−(m1−1)n, . . . , X−n,X,Xn+1, . . . , X(m2−1)n+1,X2
)

X = X(X) =

⎛

⎜

⎜

⎜

⎝

1
X
...

Xn−1

⎞

⎟

⎟

⎟

⎠

and we have t(X) = ZTX.
To evaluate at x ∈ Z

∗
p we open

(

∏m1−1
i=0 (T ′

i)
x(i−m1)n

)(

∏m2−1
i=0 (T ′′

i)xin+1
)

Ux2

to the vector t̄ = Z(x)T . This allows us to compute t(x) as t̄X(x). The blinders
hide the weighted sums of each column as before, and now the verifier is able to
compute t(x) without gaining additional information about its coefficients.

Evaluation Protocol. Our protocol is made of the following three algorithms.

• PolyCommit(ck,m1,m2, n, t(X)) → (pc, st): Take as input a commitment key
ck and a Laurent polynomial t(X) =

∑nm2
i=−m1n tiX

i with constant coefficient
t0 = 0. Pick blinders u1, . . . , un−1 ← Zp and randomness τu, τ ′

0, . . . , τ
′
m1−1,

τ ′′
0 , . . . , τ ′′

m2−1 ← Zp. Set τ =
(

τ ′
0, . . . , τ

′
m1−1, τ

′′
0 , . . . , τ ′′

m2−1, τu

)

. Compute

T ′
i = Comck(t′

i; τ
′
i), T ′′

i = Comck(t′′
i ; τ ′′

i), U = Comck(u; τu)

Return a polynomial commitment pc =
({T ′

i}m1−1
i=0 , {T ′′

i }m2−1
i=0 , U

)

and private
information st = (t(X), τ).

• PolyEval(st, x) → pe: Compute

t̄ = Z(x)T, τ̄ = Z(x) · τ

Return pe = (t̄, τ̄).

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 339

• PolyVerify(ck,m1,m2, n, pc, pe, x) → v: The verifier checks whether

Comck(t̄; τ̄) =

(

m1−1
∏

i=0

(T ′
i)

x(i−m1)n

)(

m2−1
∏

i=0

(T ′′
i)xin+1

)

Ux2

If the check is satisfied the verifier returns v = t(x) = t̄X(x).
Otherwise, the verifier rejects pe as invalid with respect to pc and x and
returns v = ⊥.

Security Properties. We define three security properties for our protocol: com-
pleteness, l-special soundness, and special-honest-verifier zero-knowledge. Later,
the protocol is used as a sub-protocol inside our zero-knowledge arguments-of-
knowledge. These properties will help us to prove the completeness, witness-
extended emulation, and special honest verifier zero knowledge for the zero
knowledge argument.

The definition of completeness simply guarantees that if PolyCommit,
PolyVerify are carried out honestly, then PolyVerify will accept and return a
commitment to the evaluation of the polynomial.

Definition 10 (PerfectCompleteness). (PolyCommit,PolyEval,PolyVerify)
has perfect completeness if for all non-uniform polynomial time adversaries A

Pr

⎡

⎢

⎢

⎣

(ck,m1,m2, n, t(X), x) ← A(1λ)
(pc, st) ← PolyCommit(ck,m1,m2, n, t(X))
pe ← PolyEval(st, x)
v ← PolyVerify(ck,m1,m2, n, pc, pe, x)

: v = t(x)

⎤

⎥

⎥

⎦

= 1

where ck is a key for a homomorphic commitment scheme, t(X) is a Laurent
polynomial of degrees d1 = m1n, d2 = m2n and x ∈ Z

∗
p.

The definition of l-Special Soundness says that given l accepting evaluations
for different evaluation points, but from the same commitment pc, then it is pos-
sible to extract either a valid Laurent polynomial t(X) with zero constant term
that is consistent with the evaluations produced or a breach in the binding prop-
erty of the commitment scheme. Furthermore, any other accepting evaluations
for the same commitment will also be evaluations of t(X).

Definition 11 Statistical l-Special Soundness). (PolyCommit,PolyEval,
PolyVerify) is statistically l-special sound if there exists a probabilistic polynomial
time algorithm χ that, given l accepting transcripts with the same commitment
pc, either extracts the committed polynomial t(X), or extracts a break of the
binding property of the underlying commitment scheme. For all adversaries A
and all L ≥ l

Pr

⎡

⎢
⎢
⎢
⎢
⎣

ck ← CGen(1λ)
(m1, m2, n, pc, x1, pe1, . . . , xL, peL) ← A(ck)
Parse pei = (t̄i, τ̄i)
(T, τ) ← χ(ck, m1, m2, n, pc, x1, pe1, . . . , xl, pel)
vi ← PolyVerify(ck, m1, m2, n, pc, pei, xi)

:

∀i : vi = Z(xi)TX(xi)
or ∃j s.t.

Comck(t̄j ; τ̄j) =
Comck (Z(xj)T ;Z(xj)τ) ,

where t̄j �= Z(xj)T

⎤

⎥
⎥
⎥
⎥
⎦

≈ 1,

340 J. Bootle et al.

where x1, . . . , xl are distinct, xi ∈ Z∗
p , pei ∈ Z

n
p × Zp, T ∈ Z

(m1+m2)×n
p , and

τ ∈ Z
m1+m2
p .

Perfect special honest verifier zero-knowledge means that given any value v
and evaluation point x, it is possible to simulate pc and pe, distributed exactly
as in a real execution of the protocol where v was the evaluation of t(X) at x.

Definition 12 (Perfect Special Honest Verifier Zero Knowledge).
(PolyCommit,PolyEval,PolyVerify) has perfect special honest verifier zero
knowledge (SHVZK) if there exists a probabilistic polynomial time simulator
S such that for all interactive non-uniform polynomial time adversaries A

Pr

⎡

⎣

(ck,m1,m2, n, t(X), x) ← A(1λ)
(pc, st) ← PolyCommit(ck,m1,m2, n, t(X))
pe ← PolyEval(st, x)

: A(pc, pe) = 1

⎤

⎦

= Pr
[

(ck,m1,m2, n, t(X), x) ← A(1λ)
(pc, pe) ← S(ck,m1,m2, n, x, t(x)) : A(pc, pe) = 1

]

where ck is a key for a homomorphic commitment scheme, t(X) is a Laurent
polynomial of degrees d1 = m1n, d2 = m2n and x ∈ Z

∗
p.

Theorem 1. The polynomial commitment protocol has perfect completeness,
perfect special honest verifier zero-knowledge and (m1 + m2)n + 1-special sound-
ness for extracting either a breach of the binding property of the commitment
scheme or openings to the polynomial.

We refer to the full version of the paper for the proof.

Efficiency. We now discuss the efficiency of the above protocol when instan-
tiated with the Pedersen multicommitment scheme. The outputs pc, pe of the
polynomial commitment protocol have sizes of m1 + m2 + 1 group elements and
n+1 field elements respectively. The computational cost of computing pc is dom-
inated by computing commitments T ′

i and T ′′
i , corresponding to m1+m2 n-wide

multi-exponentiations. Using multi-exponentiation techniques as in [28,31,32],
the total cost is roughly (m1+m2)n

log n group exponentiations. The main cost for
computing pe is dominated by the n(m1 + m2) field multiplications required
to compute ZT . The dominant cost in PolyVerify is to check the verification
equation. This costs roughly m1+m2+n

log (m1+m2+n) group exponentiations.

4 Recursive Argument for Inner Product Evaluation

We will now give an inner product argument of knowledge of two vectors a, b ∈
Z

n
p such that A = ga, B = hb and a · b = z, given z ∈ Zp, A, B ∈ G and

g,h ∈ G
n. The argument will be used later as a subroutine where zero-knowledge

is not required, so the prover could in principle just reveal the witness a, b

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 341

to the verifier. In the following we show how to use interaction to reduce the
communication from linear to logarithmic in n, the length of the vectors.

The basic step in our inner product argument is a 2-move reduction to a
smaller statement using techniques similar to [1]. It will suffice for the prover
to reveal the witness for the smaller statement in order to convince the verifier
about the validity of the original statement. In the full argument, prover and
verifier recursively run the reduction to obtain increasingly smaller statements.
The argument is then concluded with the prover revealing a witness for a very
small statement. The outcome of this is a O(log n)-move argument with an
overall communication of O(log n) group and field elements. The inner product
argument will be used in the next section to build a logarithmic size argument
for circuit satisfiability.

Due to the obvious relationship with Pedersen commitments, we will think
of multi-exponentiations ga and hb as commitments with randomness set equal
to zero, and to a, b as openings with respect to commitment keys g,h.

4.1 Main Idea

We now describe the basic step in our argument. Consider the common input for
both prover and verifier to be of the form (G, p, g, A,h, B, z,m) where m divides
n, the length of the vectors. For arbitrary n one can always reduce to the case
where m|n by appending at most m − 1 random group elements to g and h.

We split the bases for the multi-exponentiations into m sets g = (g1, . . . , gm)
and h = (h1, . . . ,hm), where each set has size n

m . We want to prove knowledge
of vectors a = (a1, . . . ,am) and b = (b1, . . . , bm) such that

A = ga =
m
∏

i=1

gai
i B = hb =

m
∏

i=1

hbi
i a · b =

m
∑

i=1

ai · bi = z

The key idea is for the prover to replace A with A′, a commitment to a shorter
vector a′ =

∑m
i=1 aix

i, given a random challenge x ← Z
∗
p provided by the

verifier. In the argument, the prover first computes and sends

Ak =
min(m,m−k)
∏

i=max(1,1−k)

g
ai+k

i for k = 1 − m, . . . , m − 1

corresponding to the products over the diagonals of the following matrix

a1 a2 · · · am

g1

...
gm−1

gm

⎛

⎜

⎜

⎜

⎜

⎝

ga1
1 ga2

1 · · · gam
1

. . . ga2
2

. . .
...

ga1
m−1

. gam
m−1

ga1
m ga2

m · · · gam
m

⎞

⎟

⎟

⎟

⎟

⎠

Am−1

...

Am−2

A1−m A2−m · · · A0 = A

342 J. Bootle et al.

Notice that A0 = A is already known to the verifier since it is part of the
statement. The verifier now sends a random challenge x ← Z

∗
p.

At this point, both the prover and the verifier can compute g′ :=
∏m

i=1 gx−i

i

and A′ :=
∏m−1

k=1−m Axk

k . If the prover is honest then we have A′ = (g′)a′
, namely

A′ is a commitment to a′ under the key g′. Furthermore, even if the prover is
dishonest, we can show that if the prover can open A′ with respect to the key
g′ for 2m − 1 different challenges, then we can extract opening (a1, . . . ,am)
corresponding to A =

∏m
i=1 gai

i .
The same type of argument can be applied in parallel to B with the inverse

challenge x−1 giving us a sum of the form b′ =
∑m

i=1 bix
−i and a new base

h′ =
∏m

i=1 hxi

i .
All that remains is to demonstrate that z is the constant term in the product

a′ · b′ =
∑m

i=1 aix
i ·∑m

j=1 bjx
−j . Similarly to A and B, the prover sends values

zk =
min(m,m−k)
∑

i=max(1,1−k)

ai · bi+k for k = 1 − m, . . . , m − 1

where z0 = z =
∑m

i=1 ai · bi, and shows that z′ := a′ · b′ =
∑m−1

k=1−m zkx−k.
To summarise, after the challenge x has been sent, both parties compute

g′, A′,h′, B′, z′ and then run an argument for the knowledge of a′, b′ of length
n
m . Given n = mμmμ−1 · · · m1, we recursively apply this reduction over the
factors of n to obtain, after μ − 1 iterations, vectors of length m1. The prover
concludes the argument by revealing a short witness associated with the last
statement.

4.2 Formal Description

We now give a formal description of the argument of knowledge introduced
above.

Common input: (G, p, g, A,h, B, z,mμ = m,mμ−1 = m′, . . . , m1) such that
g,h ∈ G

n, A,B ∈ G and n =
∏μ

i=1 mi.
Prover’s witness: (a1, . . . ,am, b1, . . . , bm) satisfying

A =
m
∏

i=1

gai
i B =

m
∏

i=1

hbi
i

m
∑

i=1

ai · bi = z

Argument if μ = 1:
P → V: Send (a1, . . . , am, b1, , . . . , bm).
P ← V: Accept if and only if

A =
m
∏

i=1

gai
i B =

m
∏

i=1

hbi
i

m
∑

i=1

aibi = z

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 343

Reduction if μ 	= 1:
P → V: Send A1−m, B1−m, z1−m, . . . , Am−1, Bm−1, zm−1 where

Ak =

min(m,m−k)∏

i=max(1,1−k)

g
ai+k

i Bk =

min(m,m−k)∏

i=max(1,1−k)

h
bi+k

i zk =

min(m,m−k)∑

i=max(1,1−k)

ai · bi+k

Observe A0 = A,B0 = B, z0 = z so they can be omitted from the message.
P ← V: x ← Z

∗
p.

Both prover and verifier compute a reduced statement of the form

(G, p, g′, A′,h′, B′, z′,mμ−1, . . . , m1)

where

g′ = (g′
1, . . . , g

′
m′) =

m
∏

i=1

gx−i

i A′ =
m−1
∏

k=1−m

Axk

k

h′ = (h′
1, . . . ,h

′
m′) =

m
∏

i=1

hxi

i B′ =
m−1
∏

k=1−m

Bx−k

k z′ =
m−1
∑

k=1−m

zkx−k

The prover computes a new witness as (a′
1, . . . ,a

′
m′) =

∑m
i=1 aix

i and
(b′

1, . . . , b
′
m′) =

∑m
i=1 bix

−i.

Security Analysis.

Theorem 2. The argument has perfect completeness and statistical witness
extended emulation for either extracting a non-trivial discrete logarithm relation
or a valid witness.

Proof. Perfect completeness can be verified directly. To prove witness-extended
emulation we start by giving an extractor that either extracts a witness for the
original statement or a non-trivial discrete logarithm relation.

For μ = 1 we have (perfect) witness-extended emulation since the prover
reveals a witness and the verifier checks it.

Before discussing extraction in the recursive step, note that if we get a non-
trivial discrete logarithm relation for g′

1, . . . , g
′
m′ then we also get a non-trivial

discrete logarithm relation for g1, . . . , gm, since x 	= 0. A similar argument
applies to h′

1, . . . ,h
′
m′ and h1, . . . ,hm.

Now, assume we get witness a′, b′ such that

A
′
=

m−1
∏

k=1−m

A
xk

k =

(

m
∏

i=1

g
x−i

i

)a′

B
′
=

m−1
∏

k=1−m

B
x−k

k =

(

m
∏

i=1

h
xi

i

)b′

a
′ · b

′
=

m−1
∑

k=1−m

zkx
−k

for 2m − 1 different challenges x ∈ Z
∗
p. We will show that they yield either a

witness for the original statement, or a non-trivial discrete logarithm relation
for either g1, . . . , gm or h1, . . . ,hm.

344 J. Bootle et al.

Take 2m − 1 different challenges x ∈ Z
∗
p. They form a shifted Vandermonde

matrix with rows (x1−m, x2−m, . . . , xm−1). By taking appropriate linear combi-
nations of the vectors we can obtain any unit vector (0, . . . , 0, 1, 0, . . . , 0). Taking
the same linear combinations of the 2m − 1 equations

m−1
∏

k=1−m

Axk

k =

(

m
∏

i=1

gx−i

i

)a′

we get vectors ak,i such that Ak =
m
∏

i=1

g
ak,i

i

For each of the 2m − 1 challenges, we now have
∏m−1

k=1−m Axk

k =
(

∏m
i=1 gx−i

i

)a′

, which means that for all i we have

x−ia′ =
m−1
∑

k=1−m

ak,ix
k

unless we encounter a non-trivial discrete logarithm relation for g1, . . . , gm.
This means that a′ =

∑m−1
k=1−m ak,ix

k+i for all i, and in particular
∑m−1

k=1−m ak,ix
k+i =

∑m−1
k=1−m ak,1x

k+1 =
∑m−1

k=1−m ak,mxk+m. Matching terms
of degree outside {1, . . . , m} reveals ak,i = 0 for k + i /∈ {1, . . . , m}. Defining
ai = a0,i, and matching terms of similar degree we get

ak,i =
{

ak+i if k + i ∈ {1, . . . , m}
0 otherwise

This means

a′ =
m−1
∑

k=1−m

ak,1x
k+1 =

m−1
∑

k=0

ak+1x
k+1 =

m
∑

i=1

aix
i

A similar analysis of B1−m, . . . , Bm−1 and openings b′ for 2m − 1 different
challenges x−1 ∈ Z

∗
p gives us either a non-trivial discrete logarithm relation for

h1, . . . ,hm or vectors bi such that b′ =
∑m

i=1 bix
−i and B =

∏m
i=1 hbi

i .
Finally, with

∑m
i=1 aix

i ·∑m
j=1 bjx

−j =
∑m−1

k=1−m zkx−k for 2m − 1 different
challenges we get z = z0 =

∑m
i=1 ai · bi.

We can now apply the forking lemma to a tree of size (2mμ − 1)(2mμ−1 −
1) · · · (2m2 − 1) ≤ n2, which is polynomial in λ, to conclude that the argument
has witness-extended emulation. ��

Efficiency. The recursive argument uses 2μ−1 moves. The communication cost
of all steps sums up to 4

∑μ
i=2(mi −1) group elements and 2

∑μ
i=2(mi −1)+2m1

field elements.
At each iteration, the main cost for the prover is computing the Ak and

Bk values, using less than 4(m2
µmµ−1...m1)

log(mµ...m1)
group exponentiations via multi-

exponentiation techniques, and the zk values using m2
μmμ−1 · · · m1 field mul-

tiplications. The cost of computing the reduced statements is dominated by

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 345

2(mµmµ−1...m1)
log mµ

group exponentiations for both the prover and the verifier. In the
case where mμ = . . . = m1 = m, the verifier complexity is bounded above by
2mµ

log m
m

m−1 group exponentiations. The prover complexity is bounded above by
6mµ+1

log m
m

m−1 group exponentiations and mμ+1 m
m−1 field multiplications.

Zero-Knowledge Version. The above argument can be modified to become
zero-knowledge. We leave the details to the reader as zero-knowledge is not
needed for our use of this argument in the next section.

5 Logarithmic Communication Argument for Arithmetic
Circuit Satisfiability

In this section, we revisit zero knowledge arguments for the satisfiability of an
arithmetic circuit under the discrete logarithm assumption. We will explain how
to build an argument with square root communication complexity, and superior
efficiency to the argument of [21]. We then observe that our new argument
involves computing a large inner product, and can achieve as good as logarithmic
communication complexity by using our recursive inner product argument.

At a high level, we transform an arithmetic circuit into two kinds of equations.
Multiplication gates are directly represented as equations of the form a · b = c,
where a, b, c represent the left, right and output wires. We will arrange these
values in matrix form producing a Hadamard matrix product. This process will
lead to duplicate values, when a wire is the output of one multiplication gate
and the input of another, or when it is used as input multiple times. We keep
track of this by using a series of linear constraints. For example, if the output
of the first multiplication gate is the right input of the second, we would write
c1 − b2 = 0.

We also add linear constraints representing the addition and multiplication by
constant gates of the circuit. We then rewrite those equations so that the only
wires that are referenced in the equations are those linked to (non-constant)
multiplication gates. We describe this process in Appendix A.

Finally, we fold both the Hadamard matrix product and the linear constraints
into a single polynomial equation, where a Laurent polynomial has 0 as its
constant term, and use the construction of Sect. 3 to prove this. We can optionally
integrate the inner product argument of Sect. 4 to reduce communication.

Our technique improves on the efficiency of [21] by making three main
changes, each resulting in efficiency improvements.

1. We do not need commitments to the input and output wires of addition gates.
We handle addition gates with linear consistency equations thus yielding a
significant performance improvement proportional to the number of addition
gates. This parallels [13] who also manage to eliminate addition gates when
constructing Quadratic Arithmetic Programs from circuits.

346 J. Bootle et al.

2. We avoid black-box reductions to zero-knowledge arguments for generic linear
algebra statements and instead design an argument directly for arithmetic
circuit satisfiability. As a result, our square-root argument has only 5 moves,
while the argument from [21] requires 7 moves. We note that [36] reduced
the complexity of [21] to 5 moves as well, but at a significant computational
overhead whereas we also reduce the computational cost.

3. We use our protocol from Sect. 3 to reduce the communication costs of a
polynomial commitment.

These improvements give us a square root communication complexity with
respect to the number of multiplication gates in the circuit. This is because for a
circuit with N = mn multiplication gates, the prover makes 3m commitments to
wire values in his first move, and later provides an opening consisting of n field
elements to a homomorphic combination of these commitments. Optimising the
parameters by choosing m ≈ n ≈ √

N leads to square root complexity.
In our square root complexity argument, the verifier uses the n field elements

to check an inner product relation. Our key idea to reduce communication further
is to use our inner product evaluation argument instead of sending these field
elements. This allows for verification of the inner product, and also provides an
argument of knowledge of the opening of the commitment. We no longer need
to open a large commitment, leading to a drastic reduction in communication
complexity depending on the settings for the inner product argument.

Below we give a first informal exposition of our arguments, and follow with
a formal description.

Reduction of Circuit Satisfiability to a Hadamard Matrix Product and
Linear Constraints. We consider an arithmetic circuit containing N = mn
multiplication gates over a field Zp. Without loss of generality, we assume that
the circuit has been pre-processed (see the full version of the paper for a way
to do this), so that the input and the output wires feed into and go out from
multiplication gates only. We number the multiplication gates from 1 to N and
we arrange the inputs and outputs of these gates into three m×n matrices A,B
and C such that the (i, j) entries of the matrices correspond to the left input,
right input and output of the same multiplication gate.

An arithmetic circuit can be described as a system of equations in the entries
of the above matrices. The multiplication gates define a set of N equations

A ◦ B = C (1)

where ◦ is the Hadamard (entry-wise) product. The circuit description also con-
tains constraints on the wires between multiplication gates. Denoting the rows
of the matrices A,B,C as

ai = (ai,1, . . . , ai,n) bi = (bi,1, . . . , bi,n) ci = (ci,1, . . . , ci,n) for i ∈ {1, . . . , m}

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 347

these constraints can be expressed as Q < 2N linear equations of inputs and
outputs of multiplication gates of the form

m
∑

i=1

ai · wq,a,i +
m
∑

i=1

bi · wq,b,i +
m
∑

i=1

ci · wq,c,i = Kq for q ∈ {1, . . . , Q} (2)

for constant vectors wq,a,i,wq,b,i,wq,c,i and scalars Kq.
For example, suppose that the circuit contains a single addition gate, with

a1,1 and a1,2 as inputs, and b1,1 as output. In this case, Q = 1 and we would set
w1,a,1 = (1, 1, 0, . . . , 0),w1,b,1 = (−1, 0, . . . , 0), and all other w vectors would be
set to 0. Then (2) would simply read

a1,1 + a1,2 − b1,1 = 0

to capture the constraint imposed by the addition gate.
In total, to capture all multiplications and linear constraints, we have N +Q

equations that the wires must satisfy in order for the circuit to be satisfiable.

Reduction to a Single Polynomial Equation. Let Y be a formal indetermi-
nate. We will reduce the N +Q equations above to a single polynomial equation
in Y by embedding each equation into a distinct power of Y . In our argument
we will then require the prover to prove that this single equation holds when
replacing Y by a random challenge received from the verifier.

Let Y ′ denote the vector (Y m, . . . , Y mn) and Y denote (Y, Y 2, . . . , Y m).
Then, we can multiply (1) by Y from the left and Y ′T on the right to obtain
Y (A ◦ B)Y ′T = Y CY ′T , or equivalently

m
∑

i=1

Y i(ai ◦ bi) · Y ′ =
m
∑

i=1

Y i(ci · Y ′)

Since (a ◦ b) · Y ′ = a · (b ◦ Y ′), we obtain the following expression

m
∑

i=1

ai · (bi ◦ Y ′)Y i =

(

m
∑

i=1

ciY
i · Y ′

)

This is easily seen to be equivalent to (1), because ai,jbi,j = ci,j appears in
the coefficients of Y i+jm, and i+jm takes every value from m+1 to M = N +m
exactly once.

Moreover, the Q linear constraints on the wires in Eq. 2 are satisfied if and
only if

Q
∑

q=1

(

m
∑

i=1

ai · wq,a,i +
m
∑

i=1

bi · wq,b,i +
m
∑

i=1

ci · wq,c,i

)

Y q =
Q
∑

q=1

KqY
q

since the qth constraint arises from comparing the coefficients of Y q. Combining
the two polynomial equations by adding them after multiplying the latter by Y M ,

348 J. Bootle et al.

and swapping summations, we see that the circuit is satisfied if and only if
(

m∑

i=1

ai · (bi ◦ Y ′)Y i

)

+

m∑

i=1

ai ·
(

Q∑

q=1

wq,a,iY
M+q

)

+

m∑

i=1

bi ·
(

Q∑

q=1

wq,b,iY
M+q

)

+

m∑

i=1

ci ·
(

−Y iY ′ +

Q∑

q=1

wq,c,iY
M+q

)

=

(
Q∑

q=1

KqY
M+q

)

Let us define

wa,i(Y) =
Q
∑

q=1

wq,a,iY
M+q wb,i(Y) =

Q
∑

q=1

wq,b,iY
M+q

wc,i(Y) = −Y iY ′ +
Q
∑

q=1

wq,c,iY
M+q K(Y) =

Q
∑

q=1

KqY
M+q

Then the circuit is satisfied if and only if
m
∑

i=1

ai ·(bi◦Y ′)Y i+
m
∑

i=1

ai ·wa,i(Y)+
m
∑

i=1

bi ·wb,i(Y)+
m
∑

i=1

ci ·wc,i(Y)−K(Y) = 0

(3)
In the argument, the prover will commit to ai, bi and ci. The verifier will

then issue a random challenge y ← Z
∗
p and the prover will convince the verifier

that the committed values satisfy Eq. 3, evaluated on y. If the committed values
do not satisfy the polynomial equation, the probability the equality holds for
a random y is negligible, so the prover is unlikely to be able to convince the
verifier.

5.1 Square Root Communication Argument

In order to show that (3) is satisfied, we craft a special Laurent polynomial t(X)
in a second formal indeterminate X, whose constant coefficient is exactly twice
the left-hand side of (3). Therefore, this polynomial will have zero constant term
if and only if (3) is satisfied. In our argument this is proved using the polynomial
commitment protocol of Sect. 3. We define

r(X) :=
m
∑

i=1

aiy
iXi +

m
∑

i=1

biX
−i + Xm

m
∑

i=1

ciX
i + dX2m+1

s(X) :=
m
∑

i=1

wa,i(y)y−iX−i +
m
∑

i=1

wb,i(y)Xi + X−m
m
∑

i=1

wc,i(y)X−i

r′(X) := r(X) ◦ y′ + 2s(X)
t(X) := r(X) · r′(X) − 2K(y)

Here y′ is the vector Y ′ evaluated at y, and d is a blinding vector consisting of
random scalars that the prover commits to in the first round. In the square root

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 349

argument the prover will reveal r(x) for a randomly chosen challenge x ∈ Z
∗
p, and

the blinding vector d ensures that we can reveal r(x) without leaking information
about ai, bi and ci. We also observe that s(x) is efficiently computable from
public information about the circuit and the challenges.

We have designed these polynomials such that the constant term of r ·(r◦y′)
is equal to 2

∑m
i=1 ai · (bi ◦ y′)yi and the constant term of r · s is equal to

∑m
i=1 ai · wa,i(y) +

∑m
i=1 bi · wb,i(y) +

∑m
i=1 ci · wc,i(y). We conclude that the

constant term of t(X) is exactly twice the left-hand side of (3), and is therefore
zero if and only if the circuit is satisfied.

We are now in a position to describe an argument with square root commu-
nication complexity.

The prover first commits to vectors ai, bi, ci and d and the verifier replies
with a challenge y ← Z

∗
p. The prover computes t(X) and commits to it by

using the algorithm PolyCommit defined in Sect. 3. Then, the verifier sends a
random challenge x ← Z

∗
p and the prover responds by revealing r(x) and blinded

openings pe of t(X) obtained by running algorithm PolyEval as described in
Sect. 3.

The verifier first checks that r(x) is consistent with the previously sent com-
mitments of ai, bi, ci and d using the homomorphic properties of the commit-
ment scheme. She also computes s(x), r′(x) and K. Then, she computes v = t(x)
using the PolyVerify algorithm of Sect. 3, and checks if v = r(x) · r′(x) − 2K.
The verifier accepts the argument if both checks are satisfied.

As described so far, the argument requires communicating O(m) group ele-
ments and O(n) field elements, so setting m ≈ n leads to square root commu-
nication. The argument improves on [21,36] by requiring only 5 moves without
computational overhead and significantly reduces the computational complex-
ity. However, breaking this ostensible square root communication barrier requires
new ideas that we describe in the next section.

5.2 Breaking the Square Root Barrier

The square root complexity argument described above was designed so that the
verifier uses r = r(x) to check the inner product v = r · r′ − 2K, where v is
the evaluation of a committed polynomial at x. Sending r has a cost of n field
elements. In order to break the square root barrier we try to avoid sending r
directly so that we can then let n be larger and m be smaller and thus globally
lower the communication of the argument.

Rather than sending r to the verifier, the prover could instead send commit-
ments to r and r′, and use our inner product argument to show that v + 2K
was a correctly formed inner product. In fact, the prover does not even need to
send commitments to r and r′! The verifier can compute a commitment to r(x)
directly from Ai, Bi, Ci and D, the commitments to ai, bi, ci and d which were
previously used to check that r is correctly formed

Comck(r; 0) = Comck(0;−ρ)

[

m
∏

i=1

Axiyi

i

][

m
∏

i=1

Bx−i

i

][

m
∏

i=1

Cxm+i

i

]

Dx2m+1
= gr

350 J. Bootle et al.

where ρ is an appropriate randomness value, which is sent by the prover to
the verifier, and the vector g = (g1, . . . , gn) for a given commitment key ck =
(G, p, g, g1, . . . , gn).

As for a commitment to r′, we observe that the Pedersen commitment,
besides its well-known homomorphic properties with respect to the message
and the randomness, also has the useful property that it is homomorphic with
respect to the commitment key. Specifically, let h = (gy−m

1 , . . . , gy−mn

n), so that
gr = hr◦y′

. Multiplying gr by h2s, the verifier obtains Comck′(r′; 0) = hr′
,

with respect to the new commitment key ck′ which uses h instead of g. We note
that h and s = s(x) can be computed by the verifier.

Now the prover and verifier can run the inner product argument with state-
ment

(G, p, g, r,h, r′, v + 2K,mμ,mμ−1, . . . , m1) where

ck = (G, p, g, g) n = mμmμ−1 · · · m1

g = (g1, g2, . . . , gn) h = (gy−m

1 , gy−2m

2 , . . . , gy−mn

n)
R = Comck(0;−ρ)

[

∏m
i=1 Axiyi

i

] [

∏m
i=1 Bx−i

i

] [

∏m
i=1 Cxm+i

i

]

Dx2m+1
= gr

R′ = R · h2s = hr′

and the prover’s witness is r, r′.
The values of mμ, . . . , m1 can be chosen according to the desired efficiency

of the circuit satisfiability argument.

5.3 Formal Description

We now give the formal description of the above arguments of knowledge for the
satisfiability of an arithmetic circuit C. Both prover and verifier take the move
parameter μ as common input. For square root communication complexity, the
inner product argument is not used and we set μ = 0. For μ > 0, the common
input includes the values (mμ, . . . , m1) used in the inner product argument. The
description of the arithmetic circuit C is given as a number N of multiplica-
tion gates and the values wq,a,i,wq,b,i,wq,c,i, which specify linear consistency
constraints between the input and output values of the multiplication gates.

Common Input: (ck, C,N,m, n,m′
1,m

′
2, n

′,mμ, . . . , m1, μ) where ck is a com-
mitment key, C is the description of an arithmetic circuit with N = mn
multiplication gates, μ is the move parameter and n = mμ · · · m1. Parame-
ters (m′

1,m
′
2, n

′) are set to satisfy both 3m ≤ m′
1n

′ and 4m + 2 ≤ m′
2n

′.
Prover’s Witness: Satisfying assignments ai, bi and ci to the wires of C.
Argument:
P → V: Pick randomness α1, β1, γ1, . . . , αm, βm, γm, δ ← Zp and blinding

vector d ← Z
n
p . Compute for i ∈ {1, . . . , m}

Ai = Com(ai;αi) Bi = Com(bi;βi) Ci = Com(ci; γi) D = Com(d; δ).

Send to the verifier A1, B1, C1, . . . , Am, Bm, Cm,D.
P ← V: y ← Z

∗
p.

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 351

As argued before, the circuit determines vectors of polynomials wa,i(Y),
wb,i(Y), wc,i(Y) and K(Y) such that C is satisfiable if and only if

m∑

i=1

ai · (bT
i ◦ Y ′)Y i +

m∑

i=1

ai · wa,i(Y) +

m∑

i=1

bi · wb,i(Y) +

m∑

i=1

ci · wc,i(Y) = K(Y)

where Y ′ = (Y m, . . . , Y mn). Given y, both the prover and verifier can
compute K = K(y), wa,i = wa,i(y), wb,i = wb,i(y) and wc,i = wc,i(y).

P → V: Compute Laurent polynomials r, s, r′, which have vector coefficients,
and Laurent polynomial t, in the indeterminate X

r(X) =
m
∑

i=1

aiy
iXi +

m
∑

i=1

biX
−i + Xm

m
∑

i=1

ciX
i + dX2m+1

s(X) =
m
∑

i=1

wa,iy
−iX−i +

m
∑

i=1

wb,iX
i + X−m

m
∑

i=1

wc,iX
−i

r′(X) = r(X) ◦ y′ + 2s(X)

t(X) = r(X) · r′(X) − 2K =
4m+2
∑

k=−3m

tkXk

When the wires ai, bi, ci correspond to a satisfying assignment, the Laurent
polynomial t(X) will have constant term t0 = 0.
Commit to t(X) by running

(pc, st) ← PolyCommit(ck,m′
1,m

′
2, n

′, t(X))

Send pc to the verifier.
P ← V: x ← Z

∗
p

P → V: Compute PolyEval(st, x) → pe, and

r =
m
∑

i=1

aix
iyi +

m
∑

i=1

bix
−i + xm

m
∑

i=1

cix
i + dx2m+1

ρ =
m
∑

i=1

αix
iyi +

m
∑

i=1

βix
−i + xm

m
∑

i=1

γix
i + δx2m+1

• If μ = 0 : the inner product argument is not used. The prover sends
(pe, r, ρ) to the verifier.

• If μ > 0 : the inner product argument is used. The prover
computes r′ = r′(x) and sends (pe, ρ) to the verifier.

Verification: First, the verifier computes

PolyVerify(ck,m′
1,m

′
2, n

′, pc, pe, x) → v

and rejects the argument if v = ⊥.

352 J. Bootle et al.

• If μ = 0 : the inner product argument is not used. The verifier computes
r′ = r ◦ y′ + 2s(x), and accepts only if

r · r′ − 2K = v

Comck(r; ρ) =
[

∏m
i=1 Axiyi

i

] [

∏m
i=1 Bx−i

i

] [

∏m
i=1 Cxm+i

i

]

Dx2m+1

• If μ> 0 : prover and verifier run the inner product argument with common
input

(G, p, g, R, h, R′, v + 2K, mμ, mμ−1, . . . , m1) where

ck = (G, p, g, g) n = mμmμ−1 · · · m1

g = (g1, g2, . . . , gn) h = (gy−m

1 , gy−2m

2 , . . . , gy−mn

n)

R = Comck(0; −ρ)
[∏m

i=1 Axiyi

i

] [∏m
i=1 Bx−i

i

] [∏m
i=1 Cxm+i

i

]
Dx2m+1

= gr

R′ = R · h2s(x) = hr′

and the prover’s witness is r and r′.
The verifier accepts if the inner product argument is accepting.

Security Analysis. In the full version of the paper, we prove the following.

Theorem 3. The argument for satisfiability of an arithmetic circuit has per-
fect completeness, perfect special honest verifier zero-knowledge and statistical
witness-extended emulation for extracting either a breach of the binding property
of the commitment scheme or a witness for the satisfiability of the circuit.

Efficiency.

Square Root Communication. When we set μ = 0, the argument above has a
communication cost of m′

1 + m′
2 + 2 + 1 + 3m commitments and n + n′ + 2 field

elements. Setting m ≈
√

N
3 , n ≈ √

3N , n′ ≈ √
7m, m′

1 ≈ 3
√

m
7 and m′

2 ≈ 4
√

m
7

we get a total communication complexity where the total number of group and
field elements sent is as low as possible and approximately 2

√
N each. The main

computational cost for the prover is computing the initial commitments, corre-
sponding to 3mn

log n group exponentiations. The prover can compute t(X) using
FFT-based techniques. Assuming that p is of a suitable form [9], the dominant
number of multiplications for this process is 3

2mn log m. The main cost in the
verification is computing s(X) given the description of the circuit which requires
in the worst case Qn multiplications in Zp, considering arbitrary fan-in addition
gates. In case of O(N)-size circuits with fan-in 2 gates, computing s(X) requires
O(N) multiplications. Evaluating s(x) requires 3N multiplications. The last ver-
ification equation costs roughly (n+3m)

log n+3m group exponentiations to the verifier.

(μ+ 1)-Root Communication. We can reduce communication by using μ = O(1)
iterations of the inner product argument. Choosing m = N

1
µ+1 , n = N

µ
µ+1 and

mi = (N
m)

1
µ will give us a communication complexity of 4μN

1
µ+1 group elements

and 2μN
1

µ+1 field elements. The prover’s complexity is dominated by 6μN
log N group

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 353

exponentiations and fewer than 3N
2μ log N field multiplications. The verifier’s cost

is dominated by 2μN
log N group exponentiations and O(N) field multiplications.

Logarithmic Communication. By increasing the number of iteration of the inner
product argument we can further reduce the communication complexity.

To minimize the communication, we set μ = log N − 1, n = N
2 ,

m = mi = 2, m′
1 = 2, m′

2 = 3 and n′ = 4 in the above argument gives us
2 log N + 1 moves. The total communication amounts to 4 log N + 7 group ele-
ments and 2 log N+6 field elements. The prover computational cost is dominated
by 12N group exponentiations, and O(N) multiplications in Zp. The main veri-
fication cost is bounded by 4N group exponentiations and O(N) multiplications
in Zp.

Alternatively, we can optimize the computation while maintaining logarith-
mic communication by setting μ = log N − log log 2N , m = log N , n = N

log N ,

n′ ≈ √
7 log N , m′

1 ≈ 3
√

log N
7 , m′

2 ≈ 4
√

log N
7 , mi = 2 for 1 ≤ i ≤ μ. In this

way we obtain a 2 log N − 2 log log N + 1 moves argument. With respect to the
previous settings, we now save 2 log log N moves by starting the inner prod-
uct argument with a smaller statement. The resulting communication is at most
7 log N +

√
7 log N group elements and at most 2 log N +

√
7 log N field elements.

Thus, the prover computation is dominated by 3N
log N group exponentiations and

11N log log N field multiplications. For the verifier, it is bounded from above by
4N

log N log log N group exponentiations and O (N) field multiplications.

6 Implementation Using Python

To verify the practicality of our construction we produced a proof of concept
implementation in Python using the NumPy [33] package. The more costly oper-
ations are executed natively: we use Petlib [11] to outsource elliptic curve opera-
tions to the OpenSSL library, and also use a small C++ program to calculate the
polynomial multiplication producing t(X) using NTL [37]. Our implementation
is single-threaded, but the operations performed are easily parallelisable.

Our implementation accepts the circuit description format used by
Pinocchio [34], which it preprocesses to remove addition and multiplication by
constant gates, encoding them as a constraint table. Pinocchio also supports
split gates, taking as input a single arithmetic wire and producing a fixed num-
ber of binary wires as outputs, so the binary wires correspond to the binary
representation of the arithmetic wire. We handle split gates by adding appropri-
ate multiplication gates and constraints to ensure binary wires can only carry
zeroes or ones, and that their values scaled by the appropriate powers of 2 sum
up to the gate’s input.

Performance Comparison. We compared the performance of our implemen-
tation to that of Pinocchio [34] for a set of circuits produced by Pinocchio’s
toolchain. The circuits implement multiplication of a vector by a fixed matrix,
multiplication of two matrices, evaluation of a multivariate polynomial, and other

354 J. Bootle et al.

applications for which we refer to [34]. We used an i5-4690K running Pinocchio
under Windows 10 and our software under Ubuntu 14.04 for the tests.

We note here that Pinocchio operates in a pairing-based setting, using knowl-
edge of exponent assumptions, whereas we operate in the discrete log setting.
Even so, we feel the comparison is meaningful, as we are not aware of previous
implementations of circuit-evaluation arguments in our setting.

Table 2. Performance comparison between our implementation and Pinocchio. Pinoc-
chio was set to use public verifiability and zero-knowledge.

Application Mult. gates This work Pinocchio (Constant)

Square root Logarithmic

Key Proof Key Proof Key Proof

Gen Size Prove Verify Size Gen Size Prove Verify Size Gen Size Prove Verify Size

s B s s B s B s s B s B s s B

Vector matrix 600 0.07 1120 0.38 0.25 6K 0.03 3872 0.55 0.31 3552 0.42 0.3M 0.23 .023 288

Product 1000 0.10 1440 0.76 0.61 8K 0.06 6464 1.05 0.67 3744 0.93 0.5M 0.53 .035 288

Matrix 347K 1.1 19K 14.7 3.4 76K 5.3 618K 49.9 22.9 5792 47.3 97.9M 167.4 .201 288

Product 1343K 2.7 37K 60.8 12.7 160K 18.6 2.2M 187.0 81.7 6496 170.4 374.8M 706.8 .503 288

Polynomial 203K 1.0 14K 30.0 2.1 88K 3.3 383K 53.1 14.0 5440 24.4 55.9M 146.8 .007 288

Evaluation 571K 1.7 24K 97.0 5.6 160K 8.3 962K 164.5 36.0 6272 60.2 156.8M 422.1 .007 288

Image 86K 0.7 9K 2.6 1.0 44K 1.5 171K 11.4 6.2 5120 15.2 23.6M 25.1 .007 288

Matching 278K 1.2 17K 7.4 2.9 72K 4.2 490K 34.3 18.1 5920 38.9 75.8M 88.8 .007 288

Shortest 366K 1.5 19K 9.3 3.7 52K 5.6 644K 45.6 23.9 5792 50.4 99.6M 130.7 .015 288

Paths 1400K 2.6 38K 35.1 12.6 72K 19.2 2.2M 169.8 84.0 6496 177.6 381.4M 523.3 .026 288

Gas 144K 0.8 12K 8.8 6.1 64K 2.3 271K 23.7 13.9 5440 22.6 39.6M 47.6 .007 288

Simulation 283K 1.2 17K 26.7 20.7 160K 4.3 503K 54.8 34.5 5920 45.9 77.7M 103.1 .007 288

SHA-1 24K 0.18 5K 3.7 3.3 24K 0.5 54K 6.5 4.3 4992 7.9 6.5M 9.0 .007 288

From the comparison in Table 2, it is clear that our implementation is
extremely competitive in terms of prover computation, with the square root ver-
sion outperforming Pinocchio by a factor larger than 10 for some applications.
There is a significant amount of variance in terms of the speedups achieved. The
worst cases are those where the number of constraints is high in comparison with
the number of multiplication gates: the calculation of s(X) is performed entirely
in Python and thus becomes the dominant term in the computation. We expect
that in a fully compiled implementation, optimisation would prevent this issue.

The logarithmic communication version is slower in comparison but still out-
performs Pinocchio for most applications. The performance also becomes more
even, as the constraints are irrelevant in the recursive part.

Our verification times are much higher than Pinocchio’s, which can often
verify circuit evaluation faster than native execution of an equivalent program.
As with the prover, some speedups can be gained by moving to a compiled
language, but we would still not expect to match Pinocchio’s performance; our
verification cost would still be linear. Our proofs are considerably larger as well,
especially for the square root version.

Our key generation is simply a commitment key generation, and is not
application-specific. Therefore, it can be easily amortised even across different

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 355

circuits. For a circuit with N multiplication gates, the size of our commitment
key is

√
N elements for the square root version and N

log N for the log version. In
comparison, Pinocchio’s key generation is bound to specific circuits and produces
keys of size 8N . Thus, if the keys need to be communicated, our arguments are
competitive in terms of total communication if the number of circuit evaluations
is up to

√
N for the square root version, and up to N

log N for the log version.

A Arithmetic Circuits

Our satisfiability arguments consider arithmetic circuits described as a list of
multiplication gates together with a set of linear consistency equations relating
the inputs and outputs of the gates. In this section, we show how to reduce an
arbitrary arithmetic circuit to this format.

An arithmetic circuit over a field Zp and variables (a1, . . . , am) is a directed
acyclic graph whose vertices are called gates. Gates of in-degree 0 are inputs to
the circuit and labelled with some ai or a constant field element. All other gates
are labelled + or ×. We may consider fan-in 2 circuits, in which case all of the
+ and × gates have in-degree 2, or arbitrary fan-in circuits.

We show how to remove addition and multiplication-by-constant gates from
an arithmetic circuit A, and replace them with bilinear consistency equations
on the inputs and outputs of the remaining gates, such that satisfiability of the
equations is equivalent to satisfiability in the original circuit.

Let B be the sub-circuit of A containing all wires and gates before a multi-
plication gate, with m input wires and n output wires. Label the m inputs of
B with the unit vectors ei = (0, . . . , 1, . . . , 0) of length m. For every addition
gate with inputs labelled as x,y, label the output wire as x + y. For every
multiplication-by-constant gate with inputs x and constant c label the output
with cx. By proceeding inductively, the n outputs of B are now labelled with
vectors of length m representing them as linear combinations of the inputs.

We can now remove the gates of B from A. We also remove any multiplication
gates whose inputs are the inputs of the new circuit. Now we simply repeat
the process of finding consistency equations until we have considered the whole
of A. In Fig. 1 there is an example of a circuit together and the corresponding
consistency equations.

×
a1

b1

×
a2

b2

×
a3

b3

×

×
4

c1 = a4

c2 = b4

c3

•

+

•

×

•

×

c4 a5

b6

b5

a6

c5

c6

c1 = a4

c2 = b4

c4 = a5

4c3 + c4 = b5

4c3 + c4 = a6

4c3 = b6

Fig. 1. A simple arithmetic circuit, and the corresponding consistency equations.

356 J. Bootle et al.

References

1. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (2012)

2. Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with
application to blacklists. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 646–663. Springer, Heidelberg (2013)

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security – CCS 1993, pp. 62–73 (1993)

4. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013)

5. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: USENIX Security Symposium 2014,
pp. 781–796 (2014)

6. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Innovations in Theoretical Computer Science – ITCS 2012, pp. 326–349 (2012)

7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Symposium on Theory of
Computing Conference – TCC 2013, pp. 111–120 (2013)

8. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

9. Cantor, D.G.: On arithmetical algorithms over finite fields. J. Comb. Theor. Ser.
A 50(2), 285–300 (1989)

10. Cramer, R., Damg̊ard, I.B.: Zero-knowledge proofs for finite field arithmetic or:
can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 424–441. Springer, Heidelberg (1998)

11. Danezis, G.: Petlib: a Python library that implements a number of privacy enhanc-
ing technologies (PETs) (2015). https://github.com/gdanezis/petlib

12. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols
using signatures. J. Cryptology 19(2), 169–209 (2006)

13. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

14. Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.: Using fully
homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs.
J. Cryptology 28(4), 820–843 (2015)

15. Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett. 67(4), 205–214 (1998)

16. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991)

17. Goldreich, O., Vadhan, S.P., Wigderson, A.: On interactive proofs with a laconic
prover. Comput. Complex. 11(1–2), 1–53 (2002)

18. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proofs. SIAM J. Comput. 18(1), 186–208 (1989)

https://github.com/gdanezis/petlib

Efficient Zero-Knowledge Arguments for Arithmetic Circuits 357

19. Groth, J.: Honest verifier zero-knowledge arguments applied. Ph.D. thesis, Univer-
sity of Aarhus (2004)

20. Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic com-
mitments. In: Wang, X., Lee, D.H. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
431–448. Springer, Heidelberg (2011)

21. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009)

22. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010)

23. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer,
Heidelberg (2008)

24. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015)

25. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988)

26. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Heidelberg (2010)

27. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Symposium
on Theory of Computing Conference – TCC 1992, pp. 723–732 (1992)

28. Lim, C.H.: Efficient multi-exponentiation and application to batch verification of
digital signatures, manuscript (2000). http://dasan.sejong.ac.kr/chlim/pub/multi
exp.ps

29. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptology 16(3), 143–184 (2003)

30. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012)

31. Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001)

32. Möller, B., Rupp, A.: Faster multi-exponentiation through caching: accelerating
(EC) DSA signature verification. In: Ostrovsky, R., De Prisco, R., Visconti, I.
(eds.) SCN 2008. LNCS, vol. 5229, pp. 39–56. Springer, Heidelberg (2008)

33. Oliphant, T.E.: A guide to NumPy, vol. 1. Trelgol Publishing, USA (2006)
34. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical ver-

ifiable computation. In: IEEE Symposium on Security and Privacy, pp. 238–252
(2013)

35. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

36. Seo, J.H.: Round-efficient sub-linear zero-knowledge arguments for linear algebra.
In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol.
6571, pp. 387–402. Springer, Heidelberg (2011)

37. Shoup, V.: NTL: a library for doing number theory (2001). http://www.shoup.
net/ntl/

http://dasan.sejong.ac.kr/ chlim/pub/multi_exp.ps
http://dasan.sejong.ac.kr/ chlim/pub/multi_exp.ps
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

On the Complexity of Scrypt and Proofs
of Space in the Parallel Random Oracle Model

Joël Alwen1, Binyi Chen2, Chethan Kamath1, Vladimir Kolmogorov1,
Krzysztof Pietrzak1(B), and Stefano Tessaro2

1 IST Austria, Klosterneuburg, Austria
krzpie@gmail.com

2 University of California, Santa Barbara, USA

Abstract. We study the time- and memory-complexities of the prob-
lem of computing labels of (multiple) randomly selected challenge-nodes
in a directed acyclic graph. The w-bit label of a node is the hash of
the labels of its parents, and the hash function is modeled as a random
oracle. Specific instances of this problem underlie both proofs of space
[Dziembowski et al. CRYPTO’15] as well as popular memory-hard func-
tions like scrypt. As our main tool, we introduce the new notion of a
probabilistic parallel entangled pebbling game, a new type of combinato-
rial pebbling game on a graph, which is closely related to the labeling
game on the same graph.

As a first application of our framework, we prove that for scrypt,
when the underlying hash function is invoked n times, the cumulative
memory complexity (CMC) (a notion recently introduced by Alwen and
Serbinenko (STOC’15) to capture amortized memory-hardness for par-
allel adversaries) is at least Ω(w · (n/ log(n))2). This bound holds for
adversaries that can store many natural functions of the labels (e.g., lin-
ear combinations), but still not arbitrary functions thereof.

We then introduce and study a combinatorial quantity, and show how
a sufficiently small upper bound on it (which we conjecture) extends our
CMC bound for scrypt to hold against arbitrary adversaries.

We also show that such an upper bound solves the main open problem
for proofs-of-space protocols: namely, establishing that the time complex-
ity of computing the label of a random node in a graph on n nodes (given
an initial kw-bit state) reduces tightly to the time complexity for black
pebbling on the same graph (given an initial k-node pebbling).

1 Introduction

The common denominator of password hashing (e.g., as in PKCS#5 [13]) and
proofs of work [7,12] is the requirement for a certain computation to be suffi-
ciently expensive, while still remaining feasible. In this context, “expensive” has
traditionally meant high time complexity, but recent hardware advances have
shown this requirement to be too weak, with fairly inexpensive tailored-made
ASIC devices for Bitcoin mining and password cracking gaining increasingly
widespread usage.
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 358–387, 2016.
DOI: 10.1007/978-3-662-49896-5 13

On the Complexity of Scrypt and Proofs of Space in the pROM 359

In view of this, a much better requirement is memory-hardness, i.e., the
product of the memory (a.k.a. space) and the time required to solve the task at
hand (this is known as the space-time (ST) complexity) should be large. The
ST complexity is widely considered to be a good estimate of the product of the
area and the time (AT) complexity of a circuit solving the task [3,5,16], and
thus increasing ST complexity appears to incur a higher dollar cost for build-
ing custom circuits compared to simply increasing the required raw computing
power alone. Motivated by this observation, Percival [16] developed scrypt, a
candidate memory-hard function for password hashing and key derivation which
has been well received in practice (e.g., it underlies the Proof of Work protocols
of LiteCoin [14], one of the currently most prevalent cryptocurrencies in terms
of market capitalization [1]). This has made memory-hardness one of the main
desiderata in candidates for the recent password-hashing competition, including
its winner, Argon2 [4]. Dziembowski et al. [9] introduce the concept of proofs of
space (PoSpace), where the worker (or miner) can either dedicate a large amount
of storage space, and then generate proofs extremely efficiently, or otherwise must
pay a large time cost for every proof generated. The PoSpace protocol has also
found its way into a recent proposal for digital currency [15].

Our contributions, in a nutshell. Cryptanalytic attacks [3,5,6,17] targeting can-
didate memory-hard functions [2,4,11,17] have motivated the need for developing
constructions with provable security guarantees. With the exception of [3], most
candidate memory-hard functions come without security proofs and those that do
(e.g. [11,16,17]) only consider a severely restricted class of algorithms and com-
plexity notions, as we discuss below. A primary goal of this paper is to advance
the foundations of memory-hardness, and we make progress along several fronts.

We develop a new class of probabilistic pebbling games on graphs – called
entangled pebbling games – which are used to prove results on the memory-
hardness of tasks such as computing scrypt for large non-trivial classes of adver-
saries. Moreover, we show how to boost these results to hold against arbitrary
adversaries in the parallel random oracle model (pROM) [3] under the conjecture
that a new combinatorial quantity which we introduce is (sufficiently) bounded.

A second application of the techniques introduced in this paper considers
Proofs of Space. We show that time lower bounds on the pebbling complexity of
a graph imply time lower bounds in the pROM model agains any adversary. The
quantitative bounds we get depend on the combinatorial value we introduce, and
assuming our conjecture, are basically tight. This solves, modulo the conjecture,
the main problem left open in the Proofs of Space paper [9].

Sequentially memory-hard functions. Recall that scrypt1 uses a hash function
h : {0, 1}∗ → {0, 1}w (e.g., SHA-256), and proceeds in two phases, given an
1 In fact, what we describe here is only a subset of the whole scrypt function, called

ROMix. ROMix is the actual core of the scrypt function, and we will use the
generic name “scrypt” for in the following. ROMix (with some minor modifica-
tion and extensions) also underlies one of the two variants of the winner Argon [4]
of the recent password hashing competition https://password-hashing.net/, namely
the data-dependent variant Argon2d.

https://password-hashing.net/

360 J. Alwen et al.

input X. It first computes Xi = hi(X) for all i ∈ [n], and with S0 = Xn, it then
computes S1, . . . , Sn where

Si = h(Si−1 ⊕ Xint(Si−1))

where int(S) reduces an w-bit string S to an integer in [n]. The final output is Sn.
Note that is possible to evaluate scrypt on input X using n · w bits of memory
and in time linear in n, by keeping the values X1, . . . , Xn stored in memory once
they are computed. However, the crucial point is that there is no apparent way
to save memory – for example, to compute Si, we need to know Xint(Si−1), and
under the assumption that int(Si−1) is (roughly) uniformly random in [n], an
evaluator without memory needs to do linear work (in n) to recover this value
before continuing with the execution. This gives a constant-memory, O(n2) time
algorithm to evaluate scrypt. In fact, as stated by Percival [16], the actual
hope is that no matter how much time T (n) and how much memory S(n) an
adversarial evaluator invests, we always have S(n) · T (n) ≥ n2−ε for all ε > 0,
even if the evaluator can parallelize its computation arbitrarily.

Percival’s analysis of scrypt assumes that h is a random oracle. The analy-
sis is limited in two ways: (1) It only considers adversaries which can only store
random oracle outputs in their memory. (2) The bound measures memory com-
plexity in terms of the maximum memory resources S(n). The latter is undesir-
able, since the ultimate goal of an adversary performing a brute-force attack is
to evaluate scrypt on as many inputs as possible, and if the large memory usage
is limited to a small fraction of the computing time, a much higher amortized
complexity can be achieved.

Alwen and Serbinenko (AS) [3] recently addressed these shortcomings, and
delivered provably sequentially memory-hard functions in the so-called parallel
random oracle model (pROM), developing new and better complexity metrics
tailored to capturing amortized hardness. While their work falls short of deliver-
ing guarantees for scrypt-like functions, it serves as an important starting point
for our work, and we give a brief overview.

From sequential memory-hardness to pebbling. AS consider adversaries attempt-
ing to evaluate a function Hh (which makes calls to some underlying hash func-
tion h, modeled as a random oracle). These adversaries proceed in rounds: in
each round i, the adversary can make an unbounded number of parallel queries
to h, and then pass on a state σi to the next round. The complexity of the adver-
sary is captured by its cumulative memory complexity (CMC) given by

∑

i |σi|.
One then denotes as cmcpROM(H) the expected CMC of the best adversary where
the expectation is over the choice of RO h and coins of the adversary. We stress
that CMC exhibits some very important features: First, a lower bound appears
to yield a reasonable lower bound on the AT complexity metric. Second, In con-
trast to the ST complexity the CMC of a task also gives us a lower-bound on the
electricity consumption of performing the task. This is because storing data in
volatile memory for, say, the time it takes to evaluate h consumes a significant
amount of electricity. Thus CMC tells us something not only about the dollar

On the Complexity of Scrypt and Proofs of Space in the pROM 361

cost of building a custom circuit for computing a task but also about the dollar
cost of actually running it. While the former can be amortized over the life of
the device, the later represents a recurring fee.

AS study sequentially memory-hard functions naturally defined by a single-
source and single-sink directed acyclic graph (DAG) G = (V,E). The label of a
vertex i ∈ V with parents {p1, . . . , pd} (i.e., (pj , v) ∈ E for i = 1, . . . , d) is defined
as �i = h(i, �p1 , . . . , �pd

). Note that the labels of all vertices can be recursively
computed starting with the sources. The function label(G, h) is now simply the
label �v of the sink v. There is a natural connection between cmcpROM(label(G, h))
for a randomly chosen h and the cumulative pebbling complexity (CC) of the
graph G.2 CC is defined in a game where one can place pebbles on the vertices
of V , according to the following rules: In every step of the game, new pebbles
can be placed on any vertex for which all parents of v have pebbles on them (in
particular, pebbles can always be placed on sources), and pebbles can always be
removed. The game is won when a pebble has been placed on the sink. The CC
of a strategy for pebbling G is defined as

∑

i |Si|, where Si is the set of vertices
on which a pebble is placed at the end of the ith step, and the CC of G – denoted
cc(G) – is the CC of the best strategy.

Indeed, cc(G) captures the CMC of restricted pROM adversaries computing
label(G, h) for which every state σi only consists of random oracle outputs, i.e., of
vertex labels. A pebble on v is equivalent to the fact that σi contains �v. However,
a full-fledged pROM adversary has no reason to be restricted to such a strategy
– it could for example store as part of its state σi a particular encoding of the
information accumulated so far. Nonetheless, AS show that (up to a negligible
extent) such additional freedom does not help in computing label(G, h). They
complement this with an efficiently constructible class of constant-degree DAGs
Gn on n vertices such that cc(Gn) = Ω(n2/polylog(n)).

Unfortunately however, the framework of [3] does not extend to functions
like scrypt, as they are data dependent, i.e., the values which need to be input
to h are determined at run-time. While this makes the design far more intuitive,
AS’s techniques crucially rely on the relationship between intermediate values
in the computation being laid out a priori in a data-independent fashion.

Our contributions. This paper validates the security of scrypt-like functions
with two types of results – results for restricted adversaries, as well as results
for arbitrary adversaries under a combinatorial conjecture. Our results also have
direct implications on proofs of space, but we postpone this discussion to ease
presentation.

(1) Probabilistic pebbling games. We introduce a generalization pebble
of pebbling games on a DAG G = (V,E) with dynamic challenges uniformly
sampled from a set C ⊆ V . With the same pebbling rules as before, we now
proceed over n rounds, and at every round, a challenge ci is drawn uniformly

2 A similar connection, for a weaker pebbling game, was first exploited to construct
functions for which evaluation requires many cache memory in [8] and more recently
to build one-time computable functions [10] as well as in the security proofs the
memory-hard functions in [11,17].

362 J. Alwen et al.

at random from C. The player’s goal is to place a pebble on ci, before moving
to the next round, and learning the next challenge ci+1. The game terminates
when the last challenge has been covered by a pebble. One can similarly associate
with G a labeling game computeLabel in the pROM, where the goal is instead to
compute the label �ci

of ci, rather than placing a pebble on it. For instance, the
computation of scrypt is tightly connected to the computeLabel played on the
line graph Ln with vertices [n] = {1, 2, . . . , n}, edges {(i, i + 1) : i ∈ [n − 1]},
and challenges C = [n] (as detailed in Sect. 2.5). The labels to be computed in
this game are those needed to advance the computation in the second half of
the scrypt computation, and the challenges (in the actual scrypt function) are
computed from hash-function outputs.

In fact, it is not hard to see that in computeLabel for some graph G a pROM
adversary that only stores random-oracle generated outputs can easily be turned
into a player for the pebble for graph G. This is particular true for G = Ln, and
thus lower bounding the CC of an adversary playing pebble on Ln also yields a
lower bound on the CMC of computing (the second half of) scrypt. Our first
result provides such a lower bound.

Theorem 1. For any constant δ > 0, the CC of an adversary playing
pebble on the line graph Ln with challenges [n] is Ωδ(n2/ log2(n)) with
probability 1 − δ over the choice of all challenges.3

To appreciate this result, it should be noted that it inherently relies on the choice
of the challenges being independent of the adversary playing the game – indeed,
if the challenges are known a priori, techniques from [3] directly give a strategy
with CC O(n1.5) for the above game. Also this result already improves on Per-
cival’s analysis (which, implicitly, places similar restrictions on class of pROM
algorithms considered), as Theorem 1 uses the CC of the (simple) pebbling of
a graph, and thus it actually generalized to a lower bound on the amortized
complexity of computing multiple scrypt instances in the pROM.4

(2) Entangled pebbling. The above result is an important first step – to
the best of our knowledge all known evaluation attacks against memory-hard
functions indeed only store hash labels directly or not at all and thus fit into this
model – but we ask the question whether the model can be strengthened. For
example, an adversary could store the XOR �i ⊕ �j of two labels (which only
takes w bits) and depending on possible futures of the game, recover both labels
given any one of them. As we will see, this can help. As a middle ground between
capturing pROM security for arbitrary adversaries and the above pebbling adver-
saries, we introduce a new class of pebbling games, called entanglement pebbling
games, which constitutes a combinatorial abstraction for such adversaries.

In such games, an adversary can place on a set Y ⊆ V an “entangled pebble”
〈Y〉t for some integer 0 ≤ t ≤ |Y|. The understanding here is that placing an
individual pebble on any t vertices v ∈ Y – which we see as a special case of 〈v〉0
3 The subscript δ in Ωδ denotes that the hidden constant depends on δ.
4 This follows from a special case of the Lemma in [3] showing that CC of a graph is

equal to the sum of the CCs the graphs disconnected components.

On the Complexity of Scrypt and Proofs of Space in the pROM 363

entangled pebble – is equivalent to having individual pebbles on all vertices in
Y. The key point is that keeping an entangled pebble 〈Y〉t costs only |Y|− t, and
depending on challenges, we may take different choices as to which t pebbles we
use to “disentangle” 〈Y〉t. Also, note that in order to create such an entangled
pebble, on all elements of Y there must be either an individual pebble, or such
pebble can easily be obtained by disentangling existing entangled pebbles.

In the pROM labeling game, an entangled pebble 〈Y〉t corresponds to an
encoding of length w · (|Y| − t) of the w-bit labels {�i : i ∈ Y} such that given
any t of those labels, we can recover all the remaining ones. Such an encoding
can be obtained as follows: Fix 2d − t elements x1, . . . , x2d−t in the finite field
F2w . Let Y = {y1, . . . , yd}, and consider the (unique) degree d − 1 polynomial
p(.) over the finite field F2w (whose element are represented as w-bit strings)
such that

∀i ∈ [d] : p(xi) = �yi
.

The encoding now simply contains {p(xd+1), . . . , p(x2d−t)}, i.e., the evaluation
of this polynomial on d− t points. Note that given this encoding and any t labels
�i, i ∈ Y, we have the evaluation of p(.) on d points, and thus can reconstruct
p(.). Once we know p(.), we can compute all the labels �yi

= p(i) in Y.
In general, we prove (in the full version) that entangled pebbling is strictly

more powerful (in terms of minimizing the expected CC) than regular pebbling.
Fortunately, we will also show that for the probabilistic pebbling game on the
line graph Ln entangled pebbling cannot outperform regular ones.

Theorem 2. For any constant δ > 0, the CC of an entangled pebbling
adversary playing pebble on graph Ln is Ωδ(n2/ log2(n)) with probability
1 − δ over the choice of all challenges.

Interestingly, the proof is a simple adaptation of the proof of for the non-
entangled case. This result can again be interpreted as providing a guarantee
in the label game in the pROM for Ln for the class of adversaries that can be
abstracted by entangled pebbling strategies.

(3) Arbitrary Adversaries. So far we have only discussed (entangled) peb-
bling lower bounds, which then imply lower bounds for restricted adversaries
in the pROM model. In Sect. 4 we consider security against arbitrary adver-
saries. Our main results there show that there is a tight connection between the
complexity of playing computeLabel and a combinatorial quantity γn that we
introduce. We show two results. The first lower-bounds the time complexity of
playing computeLabel for any graph G while the second lower-bounds the CMC
of playing computeLabel for Ln (and thus scrypt).

1. For any DAG G = (V,E) with |V | = n, with high probability over the
choice of the random hash function h, the pROM time complexity to play
computeLabel for graph G, for any number of challenges, using h and when
starting with any state of size k · w is (roughly) at least the time complexity
needed to play pebble on G with the same number of challenges and starting
with an initial pebbling of size roughly γn · k.

2. The pROM CMC for pebble for Ln is Ω(n2/ log2(n) · γn).

364 J. Alwen et al.

At this point, we do not have any non-trivial upper bound on γn but we conjec-
ture that γn grows very small (if at all) as a function of n. The best lower bound
we have is γ5 > 3/2. Note that γ does not need to be constant in n – we would
get non-trivial statements even if γn were to grow moderately as a function of
n, i.e. γn = polylog(n) or γn = nε for some small ε > 0.

Therefore, assuming our conjecture on γn, the first result in fact solves the
main open problem from the work of Dziembowski et al. [9] on proofs of space.
The second result yields, in particular, a near-quadratic lower bound on the
CMC of evaluating scrypt for arbitrary pROM adversaries.

2 Pebbling, Entanglement, and the pROM

In this section, we first present both a notion of parallel pebbling of graphs with
probabilistic challenges, and then extend this to our new notion of entangled
pebbling games. Next, we discuss some generic relations between entangled and
regular pebbling, before finally turning to defining the parallel random-oracle
model (pROM), and associated complexity metrics.

Throughout, we use the following notation for common sets N := {0, 1, 2, . . .},
N

+ := N \ {0}, N≤c := {0, 1, . . . , c} and [c] := {1, 2, . . . , c}. For a distribution D
we write x ∈ D to denote sampling x according to D in a random experiment.

2.1 Probabilistic Graph Pebbling

Throughout, let G = (V,E) denote a directed acyclic graph (DAG) with vertex
set V = [n]. For a vertex i ∈ V , we denote by parent(i) = {j ∈ V : (j, i) ∈ E}
the parents of i. The m-round, probabilistic parallel pebbling game between a

pebble(G, C, m, T, Pinit) : The m-round parallel pebbling game for DAG G =
(V, E), challenge set C ⊆ V and initial pebbling configuration Pinit ⊆ V is played
between a challenger and a pebbler T.

1. Initialise cnt := 0, round := 0, Pcnt := Pinit and cost := 0.
2. A challenge c ← C is chosen uniformly from C and passed to T.
3. cost := cost + |Pcnt|.
4. T choses a new pebbling configuration Pcnt+1 which must satisfy

∀i ∈ Pcnt+1 \ Pcnt : parent(i) ∈ Pcnt (1)

5. cnt := cnt + 1.
6. If c ∈ Pcnt go to step 3. c not yet pebbled
7. round := round + 1. If round < m go to step 2, otherwise if round = m the

experiment is over, the output is the final count cnt and the cumulative cost
cost.

Fig. 1. Description of the m-round, probabilistic parallel pebbling game

On the Complexity of Scrypt and Proofs of Space in the pROM 365

player T on a graph G = (V,E) with challenge nodes C ⊆ V is defined in Fig. 1.
The cumulative black pebbling complexity is defined as

cc(G,C,m, T, Pinit) := E
pebble(G,C,m,T,Pinit)

[cost]

cc(G,C,m, k) := min
T,Pinit⊆V
|Pinit|≤k

{cc(G,C,m, T, Pinit)}

Similarly, the time cost is defined as

time(G,C,m, T, Pinit) := E
pebble(G,C,m,T,Pinit)

[cnt]

time(G,C,m, k) := min
T,Pinit⊆V
|Pinit|≤k

{time(G,C,m, T, Pinit)}

The above notions consider the expected cost of a pebbling, thus even if, say
cc(G,C,m, k), is very large, this could be due to the fact that for a tiny fraction
of challenge sequences the complexity is very high, while for all other sequences
it is very low. To get more robust security notions, we will define a more fine-
grained notion which will guarantee that the complexity is high on all but some
ε fraction on the runs.

ccε(G,C,m, T, Pinit) := inf
{

γ

∣

∣

∣

∣

P
pebble(G,C,m,T,Pinit)

[cost ≥ γ] ≥ 1 − ε

}

ccε(G,C,m, k) := min
T,Pinit⊆V
|Pinit|≤k

{ccε(G,C,m, T, Pinit}

timeε(G,C,m, T, Pinit) := inf
{

γ

∣

∣

∣

∣

P
pebble(G,C,m,T,Pinit)

[cnt ≥ γ] ≥ 1 − ε

}

timeε(G,C,m, k) := min
T,Pinit⊆V
|Pinit|≤k

{timeε(G,C,m, T, Pinit}

In general, we cannot upper bound cc in terms of ccε if ε > 0 (same for time in
terms of timeε), but in the other direction it is easy to show that

cc(G,C,m, T, Pinit) ≥ ccε(G,C,m, T, Pinit)(1 − ε)

2.2 Entangled Graph Pebbling

In the above pebbling game, a node is always either pebbled or not and there is
only one type of pebble which we will hence forth refer to as a “black” pebble. We
will now introduce a more general game, where T can put “entangled” pebbles.

A t-entangled pebble, denoted 〈Y〉t, is defined by a subset of nodes Y ⊆ [n]
together with an integer t ∈ N≤|Y|. Having black pebble on all nodes Y now cor-
responds to the special case 〈Y〉0. Entangled pebbles 〈Y〉t now have the following
behaviour. Once any subset of Y of size (at least) t contains black pebbles then
all v ∈ Y immediatly receive a black pebble (regardless of whether their parents

366 J. Alwen et al.

already contained black pebbles or not). We define the weight of an entangled
pebble as:

|〈Y〉t|� := |Y| − t.

More generally, an (entangled) pebbling configuration is defined as a set
P = {〈Y1〉t1 , . . . , 〈Yz〉ts

} of entangled pebbles and its weight is

|P |� :=
∑

i∈[s]

|〈Yi〉ti
|�.

The rule governing how a pebbling configuration Pcnt can be updated to config-
uration Pcnt+1 – which previously was the simple property eq.(1) – are now a bit
more involved. To describe them formally we need the following definition.

Definition 1 (Closure). The closure of an entangled pebbling configuration
P = {〈Y1〉t1 , . . . , 〈Ys〉ts

} – denoted closure(S) – is defined recursively as follows:
initialise Λ = ∅ and then

while ∃j ∈ [s] : (Yj ⊆ Λ) ∧ (Λ ∩ Yj ≥ tj) set Λ := Λ ∪ Yj

once Λ cannot be further extended using the rule above we define closure(S) = Λ.

Note that closure(S) is non-empty iff there’s at least one set of t-entangled peb-
bles 〈Y〉t in P with t = 0. Equipped with this notion we can now specify how a
given pebbling configuration can be updated.

Definition 2 (Valid Update). Let P = {〈Y1〉t1 , . . . , 〈Ym〉ts
} be an entangled

pebbling configuration. Further,

– Let V1 := closure(P).
– Let V2 := {i : parent(i) ⊆ V1}. These are the nodes that can be pebbled using

the black pebbling rules (Eq. 1).

Now P ′ = {〈Y ′
1〉t′

1
, . . . , 〈Y ′

s′〉t′
s′ } is a valid update of P if for every 〈Y ′

j′〉t′
j′ one

of the two conditions is satisfied

1. Y ′
j′ ⊆ (V1 ∪ V2).

2. ∃i with Y ′
j′ = Yi and t′j ≥ ti. That is, 〈Y ′

j′〉t′
j′ is an entangled pebble 〈Yi〉ti

that is already in P , but where we potentially have increased the threshold
from ti to t′j′ .

The entangled pebbling game pebble�(G,C,m, T) is now defined like the game
pebble(G,C,m, T) above, except that T is allowed to choose entangled pebblings.
We give it in Fig. 2. The cumulative entangled pebbling complexity and the entan-
gled time complexity of this game are defined analogously to those of the simple
pebbling game – we just replace cc with cc� and time with time� in our nota-
tion to account for entanglement being considered. In the full version, we show
that entanglement can indeed improve the cumulative complexity with respect
to unentangled pebbling. However, in the next section, we will show that this is
not true with respect to time complexity.

On the Complexity of Scrypt and Proofs of Space in the pROM 367

pebble (G, C, m, T, Pinit) : The m-round parallel, entangled pebbling game for DAG
G = (V, E), challenge set C ⊆ V and initial entagled pebbling configuration Pinit

1. Initialise cnt := 0, round := 0, Pcnt := Pinit and cost := 0.
2. A challenge c ← C is chosen uniformly from C and passed to T.
3. cost := cost + |Pcnt| .
4. T choses a new pebbling configuration Pcnt+1 which must be a valid update

of Pcnt.
5. cnt := cnt + 1.
6. If c ∈ closure(Pcnt) go to step 3. c not yet pebbled
7. round := round + 1. If round < m go to step 2. Otherwise if round = m end

the experiment and output the final count cnt and cumulative cost cost.

Fig. 2. The entangled pebbling game pebble�(G, C, m, T).

2.3 Entanglement Does Not Improve Time Complexity

We show that in terms of time complexity, entangled pebbling are no more
efficient than normal pebbles.

Lemma 3 (Entangled Time = Simple Time). For any G,C,m, T�, Pinit
�

and ε ≥ 0 there exist a T, Pinit such that |Pinit| ≤ |Pinit
�|� and

time(G,C,m, T, Pinit) ≤ time�(G,C,m, T�, Pinit
�) (2)

timeε(G,C,m, T, Pinit) ≤ time�
ε (G,C,m, T�, Pinit

�) (3)

in particular

time�(G,C,m, k) = time(G,C,m, k) time�
ε (G,C,m, k) = timeε(G,C,m, k)

(4)

Proof. The ≥ directions in Eq. (4) follows directly from the fact that a black
pebbling is a special case of an entangled pebbling. The ≤ direction follows
from Eqs. (2) and (3). Below we prove Eq. (2), the proof for Eq. (3) is almost
analogous.

We say that a player Agreedy for a normal or entangled pebbling is “greedy”,
if its strategy is simply to pebble everything possible in every round and never
remove pebbles. Clearly, Agreedy is optimal for time complexity, i.e.,

∀G,C,m,Pinit : min
T

time(G,C,m, T, Pinit) = time(G,C,m, Agreedy, Pinit) (5)

∀G,C,m,Pinit
� : min

T
time�(G,C,m, T, Pinit

�) = time�(G,C,m, Agreedy, Pinit
�)(6)

We next describe how to derive an initial black pebbling Pinit
∗ from an entangled

pebbling Pinit
� of cost |Pinit

∗| ≤ |Pinit
�|� such that

time(G,C,m, Agreedy, Pinit
∗) ≤ time�(G,C,m, Agreedy, Pinit

�) (7)

368 J. Alwen et al.

Note that this then proves Eq. (2) (with Agreedy, Pinit
∗ being T, Pinit in the state-

ment of the lemma) as

time�(G,C,m, T�, Pinit
�) ≥ time�(G,C,m, Agreedy, Pinit

�) (8)
≥ time(G,C,m, Agreedy, Pinit

∗) (9)

It remains to prove Eq. (7). For every share 〈Y〉t ∈ Pinit
� we observe which

|Y| − t pebbles are the last ones to become available5 in the random experiment
pebble�(G,C,m, T�, Pinit

�), and we add these pebbles to Pinit if they’re not already
in there.

Note that then |Pinit| ≤ |Pinit
�|� as required. Moreover Eq. (7) holds as at any

timestep, the nodes available in pebble�(G,C,m, Agreedy, Pinit
�) are nodes already

pebbled in pebble(G,C,m, Agreedy, Pinit
∗) at the same timestep. ��

2.4 The Parallel Random Oracle Model (pROM)

We turn to an analogue of the above pebbling games n the parallel random oracle
model (pROM) [3]. In particular, let G = (V,E) be a DAG with a dedicated
set C ⊆ V of challenge edges, we identify the vertices with V = [n]. A labelling
�1, . . . , �n of G’s verticies using a hash functiotn h : {0, 1}∗ → {0, 1}w is defined
as follows. Let parent(i) = {j ∈ V : (j, i) ∈ E} denote the parents of i, then

�i = h(i, �p1 , . . . , �pd
) where (p1, . . . , pd) = parent(i) (10)

Note that if i is a source, then its label is simply �i = h(i).

computeLabel(G, C, m, A, σinit, h : {0, 1}∗ → {0, 1}w) :

1. Initialise cnt := 0, round := 0, σcnt := σinit and cost := 0.
2. A challenge c ← C is chosen uniformly from C.
3. (q1, . . . , qs) ← A(c, σcnt) A choses parallel h queries and (optionally) a guess

for c

4. cost := cost + |σcnt| + s · w.
5. (σcnt+1) ← A(c, σcnt, h(q1), . . . , h(qs)) A outputs next state
6. cnt := cnt + 1
7. If = ⊥ (no guess in this round) go to step 3.
8. If = c (wrong guess) set cost = ∞ and abort.
9. round := round+1. If round = m end the experiment. Otherwise go to step 2.

10. round := round + 1. If round < m go to step 2. Otherwise if round = m end
the experiment and output the final count cnt and cumulative cost cost.

Fig. 3. The labeling game computeLabel(G, C, m, A, σinit, h).

5 A pebble is available if it’s in the closure of the current entangled pebbling con-
figuration, also note that Agreedy’s strategy is deterministic and independent of the
challenges it gets, so the “last nodes to become available” is well defined.

On the Complexity of Scrypt and Proofs of Space in the pROM 369

We consider a game computeLabel(G,C,m, A, σinit, h) where an algorithm A
must m times consecutively compute the label of a node chosen at random from
C. A gets an initial state σ0 = σinit. The cumulative memory complexity is defined
as follows.

cmcpROM(G, C,m, A, σinit, h) = E
computeLabel(G,C,m,A,σinit,h)

[cost]

cmcpROM(G,C,m, σinit) = min
A

E
h←H

cmcpROM(G,C,m, A, σinit, h)

The time complexity of a given adversary is

timepROM(G,C,m, A, σinit, h) = E
computeLabel(G,C,m,A,σinit,h)

[cnt]

We will also consider this notion against the best adversaries from some restricted
class of adversaries, in this case we put the class as subscript, like

cmcpROMA (G,C,m, σinit) = min
A∈A

E
h←H

cmcpROM(G,C,m, A, σinit, h)

As for pebbling, also here we will consider the more meaningful ε variants of
these notions

cmcpROMε (G, C,m, A, σinit, h) = inf
{

γ

∣

∣

∣

∣

P
computeLabel(G,C,m,A,σinit,h)

[cost ≥ γ] ≥ 1 − ε

}

cmcpROMε (G,C,m, σinit) = min
A

E
h←H

cmcpROMε (G,C,m, A, σinit, h)

timepROMε (G, C,m, A, σinit, h) = inf
{

γ

∣

∣

∣

∣

P
computeLabel(G,C,m,A,σinit,h)

[cnt ≥ γ] ≥ 1 − ε

}

2.5 scrypt and the computeLabel Game

We informally discuss the relation between evaluating scrypt in the pROM and
the computeLabel game for the line graph (described below) and, and explain
why we will focus on the latter. A similar discussion can be made for Argon2d.

First, recall that scrypt uses a hash function h : {0, 1}∗ → {0, 1}w, and
proceeds in two phases, given an input X. In the first phase it computes Xi =
hi(X) for all i ∈ [n],6 and in the second phase, setting S0 = Xn, it computes
S1, . . . , Sn defined recursively to be

Si = h(Si−1 ⊕ Xint(Si−1))

where int(S) reduces a w-bit string S to an integer in [n] such that if S is
uniform random then int(S) is (close to) uniform over [n]. The final output of
scrypth

n(X) = Sn. To show that scrypt is memory-hard, we need to lower-
bound the CMC required to compute it in the pROM.

6 Here hi(X) denotes iteratively applying h i times to the input X.

370 J. Alwen et al.

We argue that to obtain this bound it suffices to restrict our attention to
the minimal final value of cost in cmcpROM(Ln, [n], n) where Ln = (V,E) is the
line graph where V = [n] and E = {(i, i + 1) : i ∈ [n − 1]}. Intuitively this is
rather easy to see. Clearly any algorithm which hopes to evaluate scrypt with
more than negligble probability must, at some point, compute all Xi values and
all Sj values since guessing them is almost impossible. Moreover until Si−1 has
been computed the value of int(Si−1) – i.e. the challenge label needed to com-
pute Si – is uniform random and independent, just like the distribution of ith

challenge c←C in the computeLabel game. In other words once an algorithm has
computed the values X1, . . . , Xn computing the values of S1, . . . , Sn corresponds
exactly to playing the computeLabel game on graph Ln with challenge set [n] for
n rounds. The initial state is exactly the state given to the algorithm as input
in the step where it first computes Xn. It is immediate that, when restricted
to strategies which don’t simply guess relevant outputs of h, then any strat-
egy for computing the values S1, . . . , Sn corresponds to a strategy for playing
computeLabel(Ln, [n], n).

In summary, once A has finished the first phase of evaluating scrypt, the sec-
ond phase essentially corresponds to playing the computeLabel game on the graph
Ln with challenge set [n] for n rounds. The initial state σinit in computeLabel
is the state given to A as input in the first step of round 1 (i.e. in the step
when A first computes Xn). It is now immediate that (when restricted to strate-
gies which don’t simply guess relevant outputs of h) then any strategy A for
computing the second phase of scrypt is essentially a strategy for playing
computeLabel(Ln, [n], n). Clearly the total CMC of A when computing both
phases of scrypt is at least the CMC of computing just the second. Thus our
lowerbound on cmcpROM(Ln, [n], n) in Theorem 15 also gives us a lower bound
on the CMC of scryptn. (The proof is rather tedious, and omitted from this
version of the paper).

Simple Algorithms. Theorem 15 below will make no restrictions on the algorithm
playing computeLabel, at the cost of relying on γn, for which we only conjecture
an upper bound. We do not need such conjectures if we restrict our attention to
simple algorithms from the class ASA: A simple algorithms A ∈ ASA is one which
either stores a value Xi directly in its intermediary states7 or stores nothing
about the value of Xi at all. (They are however permitted to store arbitrary
other information in their states.) For example a simple algorithm may not
store, say, Xi ⊕ Xj or just the first 20 bits of Xi. We note that, to the best
of our knowledge, all algorithms in the literature for computing scrypt (or
any memory-hard function for that matter) are indeed of this form. For simple
algorithms, then we obtain an unconditional lower-bound on the CMC of scrypt
by using Theorem 4 below, which only consider pebbling games.

Much as in the more general case above, for the set of algorithms ASA we
can now draw a parallel between computing phase two of scrypt in the pROM
and playing the game pebble on the graph Ln with challenge set [n] for n rounds.

7 or at least an equivalent encoding of Xi.

On the Complexity of Scrypt and Proofs of Space in the pROM 371

Therefore Theorem 4 immediatly gives us a lower-bound on the CMC of scryptn

for all algorithms in ASA.

Entangled Adversaries. In fact we can even relax our restrictions on algorithms
computing scrypt to the class AEA of entangled algorithms while still obtaining
an unconditional lower-bound on the CMC of scrypt. In addition to what is
permitted for simple algorithms we also allow storing “entangled” information
about the values of X1, . . . , Xn of the following form. For any subset L ⊆ [n] and
integer t ∈ [|L|] an algorithm can store an encoding of XL = {Xi}i∈L such that
if it obtains any t values in L then it can immediatly output all remaining |L|− t
values in L with no further information or queries to h. One such encoding uses
polynomial interpolation as described in the introduction. Indeed, this motivates
our definition of entangled pebbles above.

As shown in the full version, the class AEA is (in general) strictly more
powerful ASA when it comes to minimizing CMC. Thus we obtain a more general
unconditional lower-bound on the CMC of scrypt using Theorem 9 which lower-
bounds cc�(Ln, [n], n, n), the entangled cumulative pebbling complexity of Ln.

3 Pebbling Lower Bounds for the Line Graph

In this section, we prove lower bounds for the cumulative complexity of the
n-round probabilistic pebbling game on the line graph Ln with challenges from
[n]. We will start with the case without entanglement (i.e., dealing only with
black pebbles) which captures the essence of our proof, and then below, extend
our proof approach to the entangled case.

Theorem 4 (Pebbling Complexity of the Line Graph). For all 0 ≤ k ≤
n, and constant δ > 0 ,

cc[δ](Ln, C = [n], n, k) = Ωδ

(

n2

log2(n)

)

.

We note in passing that the above theorem can be extended to handle a
different number of challenges t = n, as it will be clear in the proof. We dispense
with the more general theorem, and stick with the simpler statement for the
common case t = n motivated by scrypt. The notation Ωδ indicates that the
constant hidden in the Ω depends on δ.

In fact, we also note that our proof allows for more concrete statements as
a function of δ, which may be constant. However, not surprisingly, the bound
becomes weaker the smaller δ is, but note that if we are only interested in the
expectation cc(Ln, C = [n], n, k), then applying the result with δ = O(1) (e.g.,
1
2) is sufficient to obtain a lower bound of Ω

(

n2

log2 n

)

.

372 J. Alwen et al.

Proof intuition – the expectation game. Before we turn to the formal proof,
we give some high-level intuition. It turns out that most of the proof is going
to in fact lower bound the cc of a much simpler game, where the goal is far
simpler than covering challenges from [n] with a pebble. In fact, the game will
be completely deterministic.

The key observation is that every time a new challenge ci is drawn, and the
player has reached a certain pebbling configuration P , then there is a well-defined
expected number Φ(P) of steps the adversary needs to take at least in order to
cover the random challenge. We refer to Φ(P) as the potential of P . In particular,
the best strategy is the greedy one, which looks at the largest j = j(ci) ≤ ci on
which a pebble is placed, i.e., j ∈ P , and then needs to output a valid sequence
of at least ci − j further pebbling configurations, such that the last configuration
contains ci. Note if j = ci, we still need to perform one step to output a valid
configuration. Therefore, Φ(P) is the expected value of max(1, ci − j(ci)). We
will consider a new game – called the expectation game – which has the property
that at the beginning of every stage, the challenger just computes Φ(P), and
expects the player T to take Φ(P) legal steps until T can move to the next stage.

Note that these steps can be totally arbitrary – there is no actual challenge
any more to cover. Still, we will be interested in lower bounding the cumulative
complexity of such a strategy for the expectation game, and it is not obvious
how T can keep the cc low. Indeed:

– If the potential is high, say Φ(P) = Ω(n), then this means that linearly many
steps must be taken to move to the next stage, and since every configuration
contains at least one pebble, we pay a cumulative cost of Ω(n) for the present
stage.

– Conversely, if the potential Φ(P) is low (e.g., O(1)), then we can expect to be
faster. However we will show that this implies that there are many pebbles in
P (at least Ω(n/Φ(P))), and thus one can expect high cumulative cost again,
i.e.,, linear Ω(n).

However, there is a catch – the above statements refer to the initial configu-
rations. The fact that we have many pebbles at the beginning of a stage and
at its end, does not mean we have many pebbles throughout the whole stage.
Even though the strategy T is forced to pay Φ(P) steps, the strategy may try
to drop as many pebbles as possible for a while, and then adding them back
again. Excluding that this can happen is the crux of our proof. We will indeed
show that for the expectation game, any strategy incurs cumulative complex-
ity Ω(n2/ log2(n)) roughly. The core of the analysis will be understanding the
behavior of the potential function throughout a stage.

Now, we can expect that a low-cc strategy T for the original parallel pebbling
game on Ln gives us one for the expectation game too – after all, for every
challenge, the strategy T needs to perform roughly Φ(P) steps from the initial
pebbling configuration when learning the challenge. This is almost correct, but
again, there is a small catch. The issue is that Φ(P) is only an expectation, yet
we want to have the guarantee that we go for Φ(P) steps with sufficiently high
probability (this is particularly crucial if we want to prove a statement which

On the Complexity of Scrypt and Proofs of Space in the pROM 373

is parameterized by δ). However, this is fairly simple (if somewhat tedious) to
overcome – the idea is that we partition the n challenges into n/λ groups of λ
challenges. For every such group, we look at the initial configuration P when
learning the first of the next λ challenges, and note that with sufficiently high
probability (roughly e−Ω(λ2) by a Chernoff bound) there will be one challenge
(among these λ ones) which is at least (say) Φ(P)/2 away from the closest pebble.
This allows us to reduce a strategy for the n-challenge pebbling game on Ln to
a strategy for the (n/λ)-round expectation game. The value of λ can be chosen
small enough not to affect the overall analysis.

Proof (Theorem 4). As the first step in the proof, we are going to reduce playing
the game pebble(Ln, C = [n], n, T, Pinit), for an arbitrary player T and initial
pebbling configuration Pinit (|Pinit| ≤ k), to a simpler (and somewhat different)
pebbling game, which we refer to as the expectation game.

To this end, we introduce first the concept of a potential function Φ : 2[n] → N.
The potential of a pebbling configuration P = {�1, �2, . . . , �m} ⊆ [n] is

Φ(P) := m
n + 1

n

m
∑

i=0

(1 + . . . + (li+1 − li − 1))

= m
n + 1

2n

m
∑

i=0

(�i+1 − �i) · (�i+1 − �i − 1) = 1
2n

m
∑

i=0

(�i+1 − �i)2 − n+1−2m
2n

Here m = |P | and we let �0 = 0 and �m+1 = n + 1 as notational placeholders.
Indeed, Φ(P) is the expected number of moves required (by an optimal strategy)
to pebble a random challenge starting from the pebbling configuration P , where
the expectation is over the choice of the random challenge. (Note in particular it
is required to pay at least one move even if a pebble is already on the challenge
node.) In other words, Φ(P) is exactly time(Ln, [n], 1, T∗, P) for the optimal
strategy T∗.

Now we are ready to introduce the expectation game which has no challenge.
At the beginnning of every stage, the challenger only computes Φ(P), and expects
the player T to take Φ(P) steps until he can move to the next stage. The game
expect(n, t, T, Pinit) is played by a pebbler T as depicted in Fig. 4.

In the following, for a (randomized) pebbler T and initial configuration Pinit,
we write expectn,t(T, Pinit) for the output of the expectation game; note the
output only depends on the randomness of pebbler T and configuration Pinit.
We similarly define the cumulative complexity of the expectation game

cc[δ](expectn,t(T, Pinit)) := inf
{

γ

∣

∣

∣

∣

P
expect(n,t,T,Pinit)

[cost ≥ γ] ≥ 1 − ε

}

cc[δ](expectn,t,k) := min
T,Pinit⊆V
|Pinit|≤k

{

cc[δ](expectn,t(T, Pinit))
}

The expectation game expectn,t,k has an important feature: because the random-
ness is only over the pebbler’s coins, these coins can be fixed to their optimal

374 J. Alwen et al.

expect(n, t, T, Pinit): The t-round expectation game of parameter n and an initial
pebbling configuration Pinit ⊆ V is played by challenger and player T as follows.

1. Initialize cnt := 0, round := 0, Pcnt := Pinit and cost := |Pinit|.
2. Player T submits a sequence of non-empty pebbling configurations

(Pround,1, . . . , Pround,tround) ⊂ [n]×tround ,
3. Let Pround,0 := Pcnt. Check if tround ≥ Φ(Pcnt) and ∀i ∈ [tround]

∀v ∈ Pround,i \ Pround,i−1 : parent(v) ∈ Pround,i−1 .

If check fails, output cnt = cost = ∞ and halt.
4. cnt := cnt + tround.
5. cost := cost + tround

j=1 |Pround,j |.
6. Pcnt := Pround,tround .
7. round := round + 1. If round < t go to step 2, otherwise if round = t the

experiment is over, the output is the final count cnt and the cumulative cost
cost.

Fig. 4. The Expectation Game

choice without making the overall cc worse. This implies that ccδ(expectn,t,k) =
cc0(expectn,t,k) for all δ ≥ 0. In particular, we use the shorthand cc(expectn,t,k)
for the latter.

The remainder of the proof consists of the following two lemmas. Below, we
combine these two lemmas in the final statement, before turning to their proofs.
(The proof of Lemma 5 is deferred to the full version for lack of space, and relies
on the intuition given above.)

Lemma 5 (Reduction to the Expectation Game). For all n, t, k, λ, and
any δ > 3μ(t, λ), we have

cc(expectn,t,k) = ccδ−3μ(t,λ)(expectn,t,k) ≤ 2 · ccδ(Ln, C = [n], t · λ, k) ,

where μ(t, λ) = t · e−λ2/8.

To give some intuition about the bound, note that in general, for every δ′ ≤ δ,
we have cc[δ′](expectn,t,k) ≤ cc[δ](expectn,t,k). This is because if a c is such
that for all T and Pinit we have Pr expectn,t(T, Pinit) ≥ c ≥ 1 − δ′, then also
Pr expectn,t(T, Pinit) ≥ c ≥ 1 − δ. Thus the set from which we are taking the
supremum only grows bigger as δ increases. In the specific case of Lemma 5, the
3μ(t, λ) offset captures the loss of our reduction.

Lemma 6 (CC Complexity of the Expectation Game). For all t, 0 ≤
k ≤ n and ε > 0, we have

cc(expectn,t,k) ≥
⌊

εt

2

⌋

· n1−ε

6
.

On the Complexity of Scrypt and Proofs of Space in the pROM 375

To conclude the proof before turning to the proofs of the above two lemmas,
we choose t, λ such that t · λ = n, and μ(t, λ) = t · e−λ2/8 < δ/3. We also
set ε = 0.5 log log(n)/ log(n), and note that in this case n1−ε = n/

√

log(n). In
particular, we can set λ = O(

√
log t), and can choose e.g. t = n/

√
log n. Then,

by Lemma 6,

cc(expectn,t,k) ≥
⌊

εt

2

⌋

· n1−ε

6
= Ω

(

n2

log2(n)

)

.

This concludes the proof of Theorem 4.

Proof (Proof of Lemma 6). First we observe if a pebbling configuration P has
potential Φ, the size |P | of the pebbling configuration (i.e., the number of vertices
on which a pebble is placed) will be at least n

6·Φ . We give a formal proof for
completeness.8

Lemma 7. For every non-empty pebbling configuration P ⊆ [n], we have

Φ(P) · |P | ≥ n

6
.

Proof. Let m = |P | ≥ 1, by definition of potential:

Φ(P) =
1
2n

m
∑

i=0

(�i+1 − �i)2 − n + 1 − 2m

2n
,

where �0 = 0 and �m+1 = n + 1 are notational placeholders. Since Φ(P) ≥ 1 and
m ≥ 1, we have n+1−2m

2n ≤ 1
2 ≤ 1

2 · Φ(P). Therefore

Φ(P) ≥ 2
3

· 1
2n

m
∑

i=0

(�i+1 − �i)2 ,

since m ≥ m+1
2 , multiply the left side by m and the right side by m+1

2 , we have

Φ(P) · m ≥ 2
3

(

1
2n

m
∑

i=0

(�i+1 − �i)2
)

· m + 1
2

=
1
6n

(

m
∑

i=0

(�i+1 − �i)2
)

· (m + 1)

Therefore Φ(P) · m ≥ n
6 follows, since by Cauchy-Schwarz Inequality we have

(

m
∑

i=0

(�i+1 − �i)2
)

· (m + 1) ≥
(

m
∑

i=0

(�i+1 − �i)

)2

≥ n2 .

��
8 Note that the contra-positive is not necessarily true. A simple counter-example is

when pebbles are placed on vertices [0, n/2] of C1=n (that is, |P | = O(n)). The
expected number of moves in this case is still Ω (n).

376 J. Alwen et al.

Also, the following claim provides an important property of the potential
function.

Lemma 8. In one iteration, the potential can decrease by at most one.

Proof. Consider an arbitrary configuration P = {�1, �2, . . . , �m} ⊆ [n]. The best
that a pebbling algorithm can do to decrease the potential is to place new pebbles
next to all the current pebbles – let’s call the new configuration P ′. That is,

P ′ = {�1, �1 + 1, �2, �2 + 1, . . . , �m, �m + 1} ⊆ [n].

The potential of the new configuration is

Φ(P ′) =
1
2n

(

�21 +
m

∑

i=1

1 + (�i+1 − (�i + 1))2
)

− n + 1 − 2|P ′|
2n

(11)

=
1
2n

(

m +
m

∑

i=0

(

(�i+1 − �i)2 − 2(�i+1 − �i) + 1
)

)

− n + 1 − 2|P ′|
2n

(12)

≥ 1
2n

(

m +
m

∑

i=0

(

(�i+1 − �i)2 − 2(�i+1 − �i) + 1
)

)

− n + 1 − 2m

2n
(13)

≥ Φ(P) +
m

n
− 1

n

m
∑

i=0

(�i+1 − �i) ≥ Φ(P) − 1 (14)

where the first inequality holds because |P ′| ≥ m. ��
Assume without loss of generality the pebbler T is legal and deterministic.

Consider a particular round i ∈ [t] of the expectation game. Let P and P ′ denote
the initial and final pebbling configurations in the i-th round, and let us denote
by φi = Φ(P) the potential of the initial configuration in round i. Depending on
the value of Φ(P ′), we classify the pebbling sequence from P to P ′ into three
different categories:

Type 1: Φ(P ′) > φi · nε/2; or
Type 2: Φ(P ′) ≤ φi · nε/2 – we have two sub-cases:

Type 2a: the potential was always less than φi · nε for all the intermediate
pebbling configurations from P to P ′; or

Type 2b: the potential went above φi ·nε for some intermediate configuration.

With each type, we associate a cost that the pebbling algorithm has to pay, which
lower bounds the contribution to the cumulative complexity of the pebbling
configurations generated during this stage. The pebbling algorithm can carry
out pebbling of Type 1 for free9 – however, the latter two have accompanying
costs.

9 The cost might be greater than zero, but setting it to zero doesn’t affect the lower
bound.

On the Complexity of Scrypt and Proofs of Space in the pROM 377

– For pebbling sequences of Type 2a, the corresponding cumulative cost is at
least φi · n

6·φinε = 1
6n1−ε since by Lemma 7, the size of the pebbling configu-

ration is never less than n
6φinε during all intermediate iterations and in stage

i valid pebbler must produce at least φi configurations.
– For sequences of Type 2b, by Lemma 8, it follows that in a Type 2b sequence

it takes at least φi(nε − nε/2) steps to decrease the potential from φ · nε to
φi · nε/2, and the size of the pebbling configuration is at least n

6φinε in every
intermediate step by Lemma 7. Therefore, the cumulative cost is at least

φi(nε − nε/2) · n

6φinε
≥ n

6
− n1−ε/2

6
≥ 1

6
n1−ε ,

where the last inequality follows for sufficiently large n.
To conclude the proof, we partition the t ≥ �2/ε� rounds into groups of

consecutive �2/ε� phases. We observe that any group must contain at least one
pebbling sequence of Type 2: otherwise, with φ being the potential at the begin-
ning of the first of theses 2/ε phases, the potential at the end would be strictly
larger than

φn
ε
2 · 2ε ≥ φ · n > n/2

which cannot be, as the potential can be at most n
2 . By the above, however, the

cumulative complexity of each group of phases is at least n1−ε

6 , and thus we get

cc(expectn,t,k) ≥
⌊

εt

2

⌋

· n1−ε

6
, (15)

which concludes the proof of Lemma 6. ��
As the second result, we show that the above theorem also holds for the

entangled case.

Theorem 9 (Entangled Pebbling Complexity of the Line Graph). For
all 0 ≤ k ≤ n and constant δ > 0,

cc
�
δ(Ln, C = [n], n, k) = Ω

(

n2

log2 n

)

.

Luckily, it will not be necessary to repeat the whole proof. We will give now a
proof sketch showing that in essence, the proof follows by repeating the same
format and arguments as the one for Theorem 4, using Lemma 3 as a tool.

Proof (Sketch). One can prove the theorem following exactly the same framework
of Theorem 4, with a few differences. First off, we define a natural entangled
version of the expectation game where, in addition to allowing entanglement in
a pebbling configuration, we define the potential as

Φ�(P) = time�(Ln, C = [n], 1, T∗,�, P) ,

i.e., the expected time complexity for one challenge of an optimal entangled
strategy T∗,� starting from the (entangled) pebbling configuration P .

378 J. Alwen et al.

First off, a proof similar to the one of Lemma 5, based on a Chernoff bound,
can be used to show that if we separate challenges in t chunks of λ challenges
each, and we look at the configuration P at the beginning of each of the t chunks,
then there exists at least one challenge (out of λ) which requires spending time
Φ�(P) to be covered, except with small probability.

A lower bound on the cumulative complexity of the (entangled) expectaton
game follows exactly the same lines as the proof as Lemma 6. This is because
the following two facts (which correspond to the two lemmas in the proof of
Lemma 6) are true also in the setting with entanglement:

– First off, for every P and T∗,� such that Φ�(P) = time�(Ln, C = [n], 1, T∗,�, P),
Lemma 3 guarantees that there exist a (regular) pebbling strategy T

′
and a

(regular) pebbling configuration P ′ such that |P |� ≥ |P ′| and

Φ�(P) = time�(Ln, C = [n], 1, T∗,�, P)

≥ time(Ln, C = [n], 1, T
′
, P ′) ≥ Φ(P ′) .

Therefore, by Lemma 7,

|P |� · Φ�(P) ≥ |P ′| · Φ(P ′) ≥ n

6
. (16)

– Second, the potential can decrease by at most one when making an arbitrary
step from one configuration P to one configuration P ′. This is by definition
– assume it were not the case, and Φ�(P ′) < Φ�(P) − 1. Then, there exists
a strategy to cover a random challenge starting from P which first moves
to P ′ in one step, and then applies the optimal strategy achieving expected
time Φ�(P ′). The expected number of steps taken by this strategy is smaller
than Φ�(P), contradicting the fact that Φ�(P) is the optimal number of steps
required by any strategy. ��

4 From Pebbling to pROM

4.1 Trancscipts and Traces

Below we define the notion of a trace and transcript, which will allow us to
relate the computeLabel and pebble� experiments. For any possible sequence of
challenges c ∈ Cm, let cntc denote the number of steps (i.e., the variable cnt)
made in the computeLabel(G,C,m, A, σinit, h) experiment conditioned on the m
challenges being c (note that once c is fixed, the entire experiment is deter-
ministic, so cntc is well defined). Let τc = q1|q2| . . . |qcntc be the trace of the
computation: here q1 ⊂ [n] means that the first batch of parallel queries are the
queries required to output the labels {�i, i ∈ q1}, etc.

For example, for the Graph in Fig. 5, τ7 = 2|4, 5|7 corresponds to a first query
�2 = h(2), then two parallel queries �4 = h(4, �1), �5 = h(5, �2), and then the final
query computing the label of the challenge �7 = h(7, �4, �5, �6).

On the Complexity of Scrypt and Proofs of Space in the pROM 379

A trace as a pebbling. We can think of a trace as a parallel pebbling, e.g.,
τ7 = 2|4, 5|7 means we pebble node 2 in the first step, nodes 4, 5 in the second,
and 7 in the last step. We say that an initial (entangled) pebbling configuration
Pinit is consistent with a trace τ , if starting from Pinit, τ is a valid pebbling
sequence. E.g., consider again the traces τ7 = 2|4, 5|7, τ8 = 3|6|8 for the graph
in Fig. 5, then Pinit = {1, 5, 6} is consistent with τ7 and τ8, and it’s the smallest
initial pebbling having this property. In the entangled case, Pinit

� = {〈1〉0, 〈5, 6〉1}
is consistent with τ7, τ8. Note that in the entangled case we only need a pebbling
configuration of weight 2, whereas the smallest pebbling configuration for the
standard pebbling game has weight 3. In fact, there are traces where the gap
between the smallest normal and entangled pebbling configuration consistent
with all the traces can differ by a factor Θ(n).

Turning a trace into a transcript. We define the implications Tc of a trace τc =
q1|q2| . . . |qcntc as follows. For i = 1, . . . , cntc , we add the implication (vi) → (fi),
where vi ⊂ [n] denotes all the vertices whose labels have appeared either as
inputs or outputs in the experiment so far, and fi denotes the labels contained
in the inputs from this round which have never appeared before (if the guess
for the challenge label in this round is non-empty, i.e., � = ⊥, then we include �
in fi).

1

2

3

4

5

6

7

8

Fig. 5. Graph used in Example 10.

Example 10. Consider the graph from Fig. 5 with m = 1 and challenge set
C = {7, 8}, and traces

τ7 = 2|4, 5|7 and τ8 = 3|6|8
We have

T7 = {(2) → 1, (1, 2, 4, 5) → 6} T8 = {(3, 6) → 5} (17)

where e.g. (2) → 1 is in there as the first query is �2 = h(2), and the second
query is �4 = h(4, �1) and in parallel �5 = h(5, �2). At this point we so far only
observed the label v2 = {�2}, so the label f2 = {�1} used as input in this query
is fresh, which means we add the implication (2) → 1.

Above we formalised how to extract a transcript Tc from (G,C,m, A, σinit, h),
with

T (G,C,m, A, σinit, h) = ∪c∈CmTc

we denote the union of all Tc ’s.

380 J. Alwen et al.

4.2 Extractability, Coverability and a Conjecture

In this section we introduce the notion of extractability and coverability of a
transcript. Below we first give some intuition what these notions have to do
with the computeLabel and pebble� experiments.

Extractability intuition. Consider the experiment computeLabel(G,C,m, A,
σinit, h). We can invoke A on some particular challenge sequence c ∈ Cm, and
if at some point A makes a query whose input contains a label �i which has
not appeared before, we can “extract” this value from (A, σinit) without actually
querying h for it. More generally, we can run A on several challenge sequences
scheduling queries in a way that will maximise the number of labels that can be
extracted from (A, σinit). To compute this number, we don’t need to know the
entire input/output behaviour of A for all possible challenge sequences, but the
transcript T = T (G,C,m, A, σinit, h) is sufficient. Recall that T contains impli-
cation like (1, 5, 6) → 3, which means that for some challenge sequence, there’s
some point in the experiment where A has already seen the labels �1, �5, �6, and
at this point makes a query whose input contains a label �3 (that has not been
observed before). Thus, given σinit and �1, �5, �6 we can learn �3.

We denote with ex(T) the maximum number of labels that can be extracted
from T . If the labels are uniformly random values in {0, 1}w, then it follows that
σinit will almost certainly not be much smaller than ex(T) · w, as otherwise we
could compress w · ex(T) uniformly random bits (i.e., the extracted labels) to a
string which is shorter than their length, but uniformly random values are not
compressible.

Coverability intuition. In the following, we say that an entangled pebbling exper-
iment pebble�(G,C,m,P, Pinit

�) mimics the computeLabel(G,C,m, A, σinit, h)
experiment if for every challenge sequence the following is true: whenever A
makes a query to compute some label �i = h(i, �p1 , . . . , �pt

), P puts a (normal)
pebble on i. For this Pinit

� must contain (entangled) pebbles that allow to cover
every implication in T (as defined above), e.g., if (1, 5, 6) → 3 ∈ T , then from the
initial pebbling Pinit

� together with the pebbles 〈1〉0, 〈5〉0, 〈6〉0 seen so far it must
be possible derive 〈3〉0, i.e., 〈3〉0 ∈ closure(Pinit

� ∪ 〈1〉0, 〈5〉0, 〈6〉0}). We say that
such an initial state Pinit

� covers T . We’re interested in the maximum possible
ratio of maxT over [n] minPinit

�,Pinit
� covers T |Pinit

�|�/ex(T), which we’ll denote with
γn, thus, if any T is k extractable, it can be covered by an initial pebbling Pinit

�

of weight γn · k. The best current lower bound we have on γn is 1.5, we conjec-
ture that γn is small, polylog(n) or even constant. We will prove in Sect. 4.3 that
pebbling time complexity implies pROM time complexity for any graph, and in
Sect. 4.4 that CC complexity implies cumulative complexity in the pROM model
for the scrypt graph. The loss in our reductions will depend on γn. Assuming
γn = Θ(1) we get the best bounds one can hope for, but already γn ∈ o(n) would
give the first non-trivial bounds on pROM complexity.

On the Complexity of Scrypt and Proofs of Space in the pROM 381

Definitions. Let n ∈ N. An “implication” (X) → z given by a value z ∈ [n] and
a subset X ⊂ [n] \ z means that “knowing X gives z for free”. We use (X) → Z
as a shortcut for the set of implications {(X) → z : z ∈ Z}.

A transcript is a set of of implications. Consider a transcript T =
{α1, . . . , α	}, each αi being an implication. We say that a transcript T is k
(0 ≤ k ≤ n) extractable if there exists an extractor E that makes at most n − k
queries in the following game:

– At any time E can query for a value in [n].
– Assume E has values L ⊂ [n] and there exists an implication (X) → z ∈ T

where X ⊂ L, then E gets the value z “for free”.
– The game is over when E has received all of [n].

Every (even an empty) transcript T is 0 extractable as E can always simply
ignore T and query for 1, 2, . . . , n. Let

ex(T) = max
k

(T is k-extractable)

Example 11. Let n = 5 and consider the transcript

T = {(1, 2) → 3, (2, 3) → 1, (3, 4) → 2, (1) → 4} (18)

This transcript is 2 but not 3 extractable. To see 2 extractability consider the
E which first asks for 1, then gets 4 for free (due to (1) → 4), next E asks for 2
and gets 3 for free (due to (1, 2) → 3).

A set S of entangled pebbles covers an implication (X) → z if z ∈ closure(S ∪
〈X〉0), with closure as defined in Definition 1.

Definition 12 (k-coverable). We say that a transcript T is k-coverable if there
exists a set of entangled pebbles S of total weight k such that every implication
in T is covered by S. With cw(T) we denote the minimum weight of an S cov-
ering T :

cw(T) = min
S that covers T

|S|�

Note that every transcript is trivially n coverable by using the pebble 〈1, . . . , n〉0
of weight n which covers every possible implication. For the 2 extractable tran-
script from Example 11, a set of pebbles of total weight 2 covering it is

S = {〈1, 2, 3〉2, 〈1, 4〉1} (19)

For example (3, 4) → 2 is covered as 2 ∈ closure(〈1, 2, 3〉2, 〈1, 4〉1, 〈3, 4〉0) =
{1, 2, 3, 4}: we first can set Γ = {3, 4} (using 〈3, 4〉0), then Γ = {1, 3, 4} using
〈1, 4〉1, and then Γ = {1, 2, 3, 4} using 〈1, 2, 3〉2.

We will be interested in the size of the smallest cover for a transcript T .
One could conjecture that every k-extractable transcript is k-coverable. Unfor-
tunately this is not true, consider the transcript

T ∗ = {(2, 5) → 1, (1, 3) → 2, (2, 4) → 3, (3, 5) → 4, (1, 4) → 5} (20)

382 J. Alwen et al.

We have ex(T ∗) = 2 (e.g. via query 2, 4, 5 and extract 1, 3 using (2, 5) →
1, (2, 4) → 3), but it’s not 2-coverable (a cover of weight 3 is e.g.
{〈5, 1〉1}, 〈2, 3, 4〉1}). With γn we denote the highest coverability vs extractability
ration that a transcript over [n] can have:

Conjecture 13. Let

γn = max
T over [n]

min
S that covers T

|S|�
ex(T)

= max
T over [n]

cw(T)
ex(T)

then (weak conjecture) γn ∈ polylog(n), or even (strong conjecture) γn ∈ Θ(1).

By the example Eq. (20) above, γn is at least γn ≥ γ5 ≥ 3/2. We will update
the full version of this paper as we get aware on progress on (dis)proving this
conjecture. In the full version we also introduce another parameter shannon(w),
which can give better lower bounds on the size of a state required to realize a
given transcript in terms of Shannon entropy.

4.3 Bounding pROM Time Using Pebbling Time

We are ultimately interested in proving lower bounds on time and cumulative
complexity in the parallel ROM model. We first show that pebbling time com-
plexity implies time complexity in the pROM model, the reduction is optimal
up to a factor γn. Under conjecture 13, this basically answers the main open
problem left in the Proofs of Space paper [9]. In the theorem below we need the
label length w to in the order of m log(n) to get a lower bound on |σinit|. For the
proofs of space application, where m = 1, this is a very weak requirement, but
for scrypt, where m = n, this means we require rather long labels (the number
of queries q will be ≤ n2, so the log(q) term can be ignored).

Theorem 14. Consider any G = (V,E), C ⊆ V,m ∈ N, ε ≥ 0 and algorithm
A. Let n = |V | and γn be as in Conjecture 13. Let H contain all functions
{0, 1}∗ → {0, 1}w, then with probability 1 − 2−Δ over the choice of h ← H the
following holds for every σinit ∈ {0, 1}∗. Let q be an upper bound on the total
number of h queries made by A and let

k =
|σinit| + Δ

(w − m log(n) − log(q))

(so |σinit| ≈ k · w for sufficiently large w), then

timepROM(G,C,m, A, σinit, h) ≥ time(G,C,m, �k · γn�)

and for every 1 > ε ≥ 0

timepROMε (G,C,m, A, σinit, h) ≥ timeε(G,C,m, �k · γn�)

On the Complexity of Scrypt and Proofs of Space in the pROM 383

In other words, if the initial state is roughly k ·w bits large (i.e., it’s sufficient to
store k labels), then the pROM time complexity is as large as the pebbling time
complexity of pebble(G,C,m) for any initial pebbling of size k · γn. Note that
the above theorem is basically tight up to the factor γn: consider an experiment
time(G,C,m,P, Pinit), then we can come up with a state σinit of size k ·w, namely
σinit = {�i, i ∈ Pinit}, and define A to mimic P, which then implies

timepROMε (G,C,m, A, σinit, h) = timeε(G,C,m,P, Pinit) with |σinit| = k · w

in particular, if we let P, Pinit be the strategy and initial pebbling of size k
minimising time complexity we get

timepROMε (G,C,m, A, σinit, h) ≥ timeε(G,C,m, k) with |σinit| = k · w

Wlog. we will assume that A is deterministic (if A is probabilistic we can always
fix some “optimal” coins). Below we prove two claims which imply Theorem 14.

Claim. With probability 1 − 2−Δ over the choice of h ← H; If the transcript
T (G,C,m, A, σinit, h) is k-extractable, then

|σinit| ≥ k · (w − m log(n) − log(q)) − Δ (21)

where q is an upper bound on the total number of h queries made by A.

Proof. Let L be an upper bound on the length of queries made by A, so we can
assume that the input domain of h is finite, i.e., h : {0, 1}≤L → {0, 1}w. Let
|h| = 2L · w denote the size of h’s function table.

Let �i1 , . . . , �ik
be the indices of the k labels (these must not be unique) that

can be “extracted”, and let h− denote the function table of h, but where the
rows are in a different order (to be defined), and the rows corresponding to the
queries that output the labels to be extracted are missing, so |h| − |h−| = k · w.

Given the state σinit, the function table of h− and some extra information α
discussed below, we can reconstruct the entire function table of h. As this table
is uniform, and a uniform string of length s cannot be compressed below s − Δ
bits except with probability 2−Δ, we get that with probability 1 − 2−Δ Eq. (21)
must hold, i.e.,

|σinit| + |h−| + |α| ≥ |h| − Δ

as |h| − |h−| = k · w we get

|σinit| ≥ k · w − |α| − Δ

It remains to define α and the order in which the values in h− are stored. For
every label to be extracted, we specify on what challenge sequence to run the
adversary A, and where exactly in this execution the label we want to extract
appears (as part of a query made by A). This requires up to m log(n) + log(q)
bits for every label to be extracted, so

|α| ≤ k · (m · log(n) + log(q))

384 J. Alwen et al.

The first part of h− now contains the outputs of h in the order in which they are
requested by the extraction procedure just outlined (if a query is made twice,
then we have to remember it and not simply use the next entry in h−). Let us
stress thaw we only store the w bit long outputs, not the inputs, this is not a
problem as we learn the corresponding inputs during the extraction procedure.
The entries of h which are not used in this process and are not extracted labels,
make up the 2nd part of the h− table. As we know for which inputs we’re still
missing the outputs, also here we just have to store the w bit long outputs such
that the inputs are the still missing inputs in lexicographic order.

Let us mention that if A behaved nice in the sense that all its queries are
on inputs which are actually required to compute the corresponding labels, then
we would only need log(n) bits extra information per label, namely the indices
i1, . . . , ik. But as A can behave arbitrarily, we can’t tell when A actually uses
real labels as inputs or some junk, and thus must exactly specify where the real
labels to be extracted show up.

Claim. If the transcript T = T (G,C,m, A, σinit, h) is k-extractable (i.e., ex(T) =
k), then

timepROM(G,C,m, A, σinit, h) ≥ time(G,C,m, �k · γn�) (22)

and for any 1 > ε ≥ 0

timepROMε (G,C,m, A, σinit, h) ≥ timeε(G,C,m, �k · γn�) (23)

Proof. We will only prove the first statement Eq. (22). As T is k-extractable,
there exist (P, P �) where P � is of weight ≤ �k · γn� such that

time�(G,C,m,P, P �) = timepROM(G,C,m, A, σinit, h)

The claim now follows as

time�(G,C,m,P, P �) ≥ time�(G,C,m, �k · γn�) = time(G,C,m, �k · γn�)

where the first inequality follows by definition (recall that |P �|� ≤ �k · γn�)
and the second by Lemma 3 which states that for time complexity, entangled
pebblings are not better than normal ones.

Theorem 14 follow directly from the two claims above.

4.4 The CMC of the Line Graph

Throughout this section Ln = (V,E), V = [n], E = {(i, i + 1) : i ∈ [n − 1]}
denotes the path of length n, and the set of challenge nodes C = [n] contains
all verticies. In Sect. 3 we showed that – with overwhelming probability over the
choice of a function h : {0, 1}∗ → {0, 1}w – the cumulative parallel entangled
pebbling complexity for pebbling n challenges on a path of length n is

cc�(Ln, C = [n], n, n) = Ω
(

n2/log2(n)
)

On the Complexity of Scrypt and Proofs of Space in the pROM 385

this then implies a lower bound on the cumulative memory complexity in the
pROM against the class A� of adversaries which are only allowed to store “encod-
ing” of labels.

cmcpROMA� (Ln, C = [n], n, n) = Ω
(

w · n2/log2(n)
)

This strengthens previous lower bounds which only proved lower bounds for CC
complexity, which then implied security against pROM adversaries that could
only store plain labels. In the full version, we show that cc� can be strictly lower
than cc, thus, at least for some graphs, the ability to store encodings, not just
plain labels, can decrease the complexity.

In this section we show a lower bound on cmcpROM(G, C,m), i.e., without
making any restrictions on the algorithm. Our bound will again depend on the
parameter γn from Conjecture 13. We only sketch the proof as it basically follows
the proof of Theorem 4.

Theorem 15. For any n ∈ N, let Ln = (V = [n], E = {(i, i + 1) : i ∈
[n−1]}) be the line of length n and γn be as in Conjecture 13, and the label length
w = Ω(n log n), then

cmcpROM(Ln, C = [n], n, σinit) = Ω
(

w · n2/log2(n) · γn

)

and for every ε > 0

cmcpROMε (Ln, C = [n], n, σinit) = Ωε

(

w · n2/log2(n) · γn

)

Proof (sketch). We consider the experiment computeLabel(Ln, C, n, A, σinit, h) for
the A achieving the minimal cmcpROM complexity if h is chosen at random (we can
assume A is deterministic). Let (P, Pinit) be such that pebble�(Ln, C, n,P, Pinit)
mimics (as defined above) this experiment. By Theorem 9, cc�(Ln, C =
[n], n, n) = Ω

(

n2/log2(n)
)

, unfortunately – unlike for time complexity – we
don’t see how this would directly imply a lower bound on cmcpROM.

Fortunately, although Theorems 4 and 9 are about CC complexity, the proof
is based on time complexity: At any timepoint the “potential” of the current
state lower bounds the time required to pebble a random challenge, and if the
potential is small, then the state has to be large (cf. eq.(16)).

For any 0 ≤ i ≤ n and c ∈ Ci let σc denote the state in the experiment
computeLabel(Ln, C, n, A, σinit = ∅, h) right after the i’th label has been computed
by A and conditioned on the first i challenges being c (as A is deterministic and
we fixed the first i challenges, σc is well defined).

At this point, the remaining experiment is computeLabel(Ln, C, n−i, A, σc , h).
Similarly, we let Pc denote the pebbling in the “mimicing” pebble�(Ln, C,
n − i,P, Pc) experiment after P has pebbled the challenge nodes c. Let P ′

c be
the entangled pebbling of the smallest possible weight such that there exists a
P′ such that pebble�(Ln, C, n − i,P, Pc) and pebble�(Ln, C, n − i,P′, P ′

c) make
the same queries on all possible challenges.

The expected time complexity to pebble the i + 1’th challenge in
pebble�(Ln, C, n− i,P′, P ′

c) – and thus also in computeLabel(Ln, C, n− i, A, σc , h)

386 J. Alwen et al.

– is at least n/6|P ′
c |� by Eq. (16). And by Theorem 14, we can lower bound the

size of the state σc as (assuming w is sufficiently large)

|σc | ≥ Ω(w · |P ′
c |�/γn)

The CC cost of computing the next (i + 1)th label in computeLabel(Ln, C, n −
i, A, σc , h) – if we assume that the state remains roughly around its initial size |σc |
until the challenge is pebbled – is roughly (cf. the intuition for the expectation
game given in Sect. 3)

n

2 · |P ′
c |�

· |σc | = Ω

(

n

|P ′
c |�

· w · |P ′
c |�

γn

)

= Ω

(

n · w

γn

)

As there are n challenges, this would give an Ω(w · n2/γn) bound on the over-
all CC complexity. Of course the above assumption that the state size never
decreases is not true in general, an adversary case always chose to drop most of
the pebbles once the challenge is known.

Note that in the above argument we don’t actually use the size |σc | of the
current state, but only argue using the potential of the lightest pebbling P ′

c

necessary to mimic the remaining experiment. Following the same argument as
in Theorem 4 (in particular, using Lemma 8) one can show that for a 1/ log(n)
fraction of the challenges, the potential says within a log(n) factor of its initial
sizes. This argument will lose us a 1/ log2(n) factor in the CC complexity, giving
the claimed Ω

(

w · n2/log2(n) · γn

)

bound.

Acknowledgments. Joël Alwen, Chethan Kamath, and Krzysztof Pietrzak’s research
is partially supported by an ERC starting grant (259668-PSPC). Vladimir Kolmogorov
is partially supported by an ERC consolidator grant (616160-DOICV). Binyi Chen was
partially supported by NSF grants CNS-1423566 and CNS-1514526, and a gift from
the Gareatis Foundation. Stefano Tessaro was partially supported by NSF grants CNS-
1423566, CNS-1528178, a Hellman Fellowship, and the Glen and Susanne Culler Chair.

This work was done in part while the authors were visiting the Simons Insti-
tute for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-1523467.

References

1. Crypto-Currency Market Capitalizations. http://coinmarketcap.com/. Accessed
10 July 2015

2. Almeida, L.C., Andrade, E.R., Barreto, P.S.L. M., Simplicio Jr., M.A.: Lyra:
Password-based key derivation with tunable memory and processing costs. Cryp-
tology ePrint Archive, report 2014/030 (2014). http://eprint.iacr.org/2014/030

3. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: Servedio, R.A., Rubinfeld, R. (eds) 47th ACM STOC, pp. 595–603. ACM
Press, June 2015

4. Biryukov, A., Dinu, D., Khovratovich, D.: Fast and tradeoff-resilient memory-hard
functions for cryptocurrencies and password hashing. Cryptology ePrint Archive,
report 2015/430 (2015). http://eprint.iacr.org/2015/430

http://coinmarketcap.com/
http://eprint.iacr.org/2014/030
http://eprint.iacr.org/2015/430

On the Complexity of Scrypt and Proofs of Space in the pROM 387

5. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: a block cipher for low energy. In: Iwata, T., et al. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48800-3 17

6. Chang, J., Mishra, S., Kumar Sanadhya, S.: Time memory tradeoff analysis of
graphs in password hashing constructions. Preproc. PASSWORDS 14, 256–266
(2014)

7. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer,
Heidelberg (1993)

8. Dwork, C., Naor, M., Wee, H.M.: Pebbling and proofs of work. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005)

9. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015)

10. Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing func-
tions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer,
Heidelberg (2011)

11. Forler, C., Lucks, S., Wenzel, J.: Catena: a memory-consuming password scrambler.
Cryptology ePrint Archive, report 2013/525 (2013). http://eprint.iacr.org/2013/
525

12. Jakobsson, M., Juels, A.: Proofs of work, bread pudding protocols. In: Preneel,
B., (ed.) Secure Information Networks: Observation of strains. Infect Dis. Ther.
3(1), 35–43.: Communications and Multimedia Security, IFIP TC6/TC11 Joint
Working Conference on Communications and Multimedia Security (CMS 1999),
20–21 September 1999, Leuven, Belgium, vol. 152 of IFIP Conference Proceedings,
pp. 258–272. Kluwer, 1999 (2011)

13. Kaliski, B.: PKCS #5: Password-based cryptography specification version 2.0
(2000)

14. Lee, C.: Litecoin (2011). https://litecoin.org/
15. Park, S., Pietrzak, K., Kwon, A., Alwen, J., Fuchsbauer, G., Gaži, P.: Spacemint:

A cryptocurrency based on proofs of space. Cryptology ePrint Archive, report
2015/528 (2015). http://eprint.iacr.org/2015/528

16. Percival, C. :Stronger key derivation via sequential memory-hard functions (2009).
http://www.tarsnap.com/scrypt/scrypt.pdf

17. Corrigan-Gibbs, H., Boneh, D., Schechter, S.: Balloon Hashing: Provably Space-
Hard Hash Functions with Data-Independent Access Patterns. Cryptology ePrint
Archive, Report 2016/027 (2016). http://eprint.iacr.org/

http://dx.doi.org/10.1007/978-3-662-48800-3_17
http://eprint.iacr.org/2013/525
http://eprint.iacr.org/2013/525
https://litecoin.org/
http://eprint.iacr.org/2015/528
http://www.tarsnap.com/scrypt/scrypt.pdf
http://eprint.iacr.org/

Anonymous Traitor Tracing: How to Embed
Arbitrary Information in a Key

Ryo Nishimaki1(B), Daniel Wichs2, and Mark Zhandry3

1 NTT Secure Platform Laboratories, Tokyo, Japan
nishimaki.ryo@lab.ntt.co.jp

2 Northeastern University, Boston, USA
wichs@ccs.neu.edu

3 MIT/Princeton University, Cambridge, USA
mzhandry@princeton.edu

Abstract. In a traitor tracing scheme, each user is given a different
decryption key. A content distributor can encrypt digital content using
a public encryption key and each user in the system can decrypt it using
her decryption key. Even if a coalition of users combines their decryption
keys and constructs some “pirate decoder” that is capable of decrypting
the content, there is a public tracing algorithm that is guaranteed to
recover the identity of at least one of the users in the coalition given
black-box access to such decoder.

In prior solutions, the users are indexed by numbers 1, . . . , N and
the tracing algorithm recovers the index i of a user in a coalition. Such
solutions implicitly require the content distributor to keep a record that
associates each index i with the actual identifying information for the
corresponding user (e.g., name, address, etc.) in order to ensure account-
ability. In this work, we construct traitor tracing schemes where all of
the identifying information about the user can be embedded directly into
the user’s key and recovered by the tracing algorithm. In particular, the
content distributor does not need to separately store any records about
the users of the system, and honest users can even remain anonymous to
the content distributor.

The main technical difficulty comes in designing tracing algorithms
that can handle an exponentially large universe of possible identities,
rather than just a polynomial set of indices i ∈ [N]. We solve this by
abstracting out an interesting algorithmic problem that has surprising
connections with seemingly unrelated areas in cryptography. We also
extend our solution to a full “broadcast-trace-and-revoke” scheme in
which the traced users can subsequently be revoked from the system.
Depending on parameters, some of our schemes can be based only on the
existence of public-key encryption while others rely on indistinguishabil-
ity obfuscation.

R. Nishimaki—This work was done while the author was visiting Northeastern
University.
D. Wichs—Research supported by NSF grants CNS-1347350, CNS-1314722, CNS-
1413964. This work was done in part while the author was visiting the Simons Insti-
tute for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-1523467.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 388–419, 2016.
DOI: 10.1007/978-3-662-49896-5 14

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 389

1 Introduction

The Traitor-Tracing Problem. Traitor-tracing systems, introduced by Chor
et al. [12], are designed to help content distributors identify the origin of pirate
decryption boxes (such as pirate cable-TV set-top decoders) or pirate decryption
software posted on the Internet.

In the traditional problem description, there is a set of legitimate users with
numeric identities [N] = {1, . . . , N} for some (large) polynomial N . Each user
i ∈ [N] is given a different decryption key ski. A content distributor can encrypt
content under the public key pk of the system and each legitimate user i can
decrypt the content with her decryption key ski. For example this could model a
cable-TV network broadcasting encrypted digital content, where each legitimate
customer i is given a set-top decoder with the corresponding decryption key ski

embedded within it.
One of the main worries in this scenario is that a user might make copies of

her key to re-sell or even post in a public forum, therefore allowing illegitimate
parties to decrypt the digital content. While this cannot be prevented, it can
be deterred by ensuring that such “traitors” are held accountable if caught. To
evade accountability, a traitor might modify her secret key before releasing it
in the hope that the modified key cannot be linked to her. More generally, a
coalition of several traitors might come together and pool the knowledge of all
of their secret keys to come up with some “pirate decoder” program capable
of decrypting the digital content. Such a program could be made arbitrarily
complex and possibly even obfuscated in the hopes that it will be difficult to
link it to any individual traitor. A traitor-tracing scheme ensures that no such
strategy can succeed – there is an efficient tracing algorithm which is given black-
box access to any such pirate decoder and is guaranteed to output the numeric
identity i ∈ [N] of at least one of the traitors in the coalition that created the
program.

Who Keeps Track of User Info? The traditional problem definition for traitor
tracing makes an implicit assumption that there is an external mechanism to
keep track of the users in the system and their identifying information in order
to ensure accountability. In particular, either the content distributor or some
third party would need to keep a record that associates the numeric identities
i ∈ [N] of the users with the actual identifying information (e.g., name, address,
etc.). This way, if the tracing algorithm identifies a user with numeric identity i
as a traitor, we can link this to an actual person.

Goal: Embedding Information in Keys. The main goal of our work is to cre-
ate a traitor tracing system where all information about each user is embed-
ded directly into their secret key and there is no need to keep any external
record about the honest users of the system. More concretely, this goal translates
to having a traitor tracing scheme with a flexible, exponential-size universe of

390 R. Nishimaki et al.

identities ID1. A user’s identity id ∈ ID can then be a string containing all rele-
vant identifying information about the user. The content distributor has a master
secret key msk, and for any user with identity id ∈ ID the content provider can
use msk to create a user secret key skid with this information embedded inside
it. The content provider does not need to keep any records about the user after
the secret key is given out. If a coalition of traitors gets together and constructs
a pirate decoder, the tracing algorithm should recover the entire identity id of a
traitor involved in the coalition, which contains all of the information necessary
to hold the traitor accountable.

Moreover, if we have such a traitor tracing scheme with an exponentially large
universe of identities as described above, it is also possible to construct a fully
anonymous traitor tracing system where the content provider never learns who
the honest users are. Instead of a user requesting a secret key for identity id ∈ ID
by sending id to the content provider directly, the user and the content provider
run a multiparty computation (MPC) where the user’s input consists of the string
id containing all of her identifying information (signed by some external identity
verification authority), the content provider’s input is msk, and the computation
gives the user skid as an output (provided that the signature verifies) and the
content provider learns nothing. This can even be combined with an anonymous
payment system such as bit-coin to allow users to anonymously pay for digital
content. Surprisingly, this shows that anonymity and traitor tracing are not
contradictory goals; we can guarantee anonymity for honest users who keep their
decryption keys secret while still maintaining the ability to trace the identities
of traitors.

Unfortunately, it turns out that prior approaches to the traitor tracing prob-
lem cannot handle large identities and crucially rely on the fact that, in the
traditional problem definition, the set of identities [N] is polynomial in size. We
first survey the prior work on traitor tracing and then present our new results
and techniques that allow us to achieve the above goals.

1.1 Prior Work

Traitor Tracing Overview. Traitor tracing was introduced by Chor et al. [12].
There are many variants of the problem depending on whether the encryption
and/or the tracing algorithm are public key or secret key procedures, whether
the tracing algorithm is black-box, and whether the schemes are “fully collusion
resistant” (no bound on the number of colluding traitors), or whether they are
“bounded collusion resistant”. See e.g., the works of [6–9,11,13,17,19,29,31–
34,37,38] and references within for a detailed overview of prior work.

In this work, we will focus on schemes with a public-key encryption and a
public-key and black-box tracing algorithm, and will consider both fully and
1 While schemes with exponential identity spaces are normally referred to as “identity-

based”, identity-based traitor tracing already has a defined meaning [1]. In particu-
lar, the space of identities that are traced in an identity-based traitor tracing scheme
is still polynomial. We use the term “flexible” traitor tracing to refer to schemes
where the space of identities that can be traced is exponential.

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 391

bounded collusion resistance. In all prior systems, the set of legitimate users was
fixed to [N] = {1, . . . , N} for some large polynomial N , and the main differences
between the prior schemes depends on how various parameters (public key size,
secret key size, ciphertext size) scale with the number of users N .

Traitor Tracing via Private Broadcast Encryption (PLBE). Boneh et al. [7] build
the first fully collusion resistant traitor tracing scheme where the ciphertext
size is O(

√
N), private key size is O(1), public key size is O(

√
N) (we ignore

factors that are polynomial in the security parameter but independent of N). The
scheme is based on bilinear groups. This work also presents a general approach for
building traitor tracing schemes, using an intermediate primitive called private
linear broadcast encryption (PLBE). We follow the same approach in this work
and therefore we elaborate on it now.

A PLBE scheme can be used to create a ciphertext that can only be decrypted
by users i ∈ [N] with i ≤ T for some threshold value T ∈ {0, . . . , N} specified
during encryption. Furthermore, the only way to distinguish between a cipher-
text created with the threshold value T vs. T ′ for some T < T ′ is to have a
secret key ski with i ∈ {T, . . . T ′ − 1} that can decrypt in one case but not the
other.

A PLBE scheme can immediately be used as a traitor-tracing scheme. The
encryption algorithm of the tracing scheme creates a ciphertext with the thresh-
old T = N , meaning that all users can decrypt it correctly. The tracing algo-
rithm gets black-box access to a pirate decoder and does the following: it tries
all thresholds T = 1, . . . , N and tests the decoder on ciphertext created with
threshold T until it finds the first such threshold for which there is a “big jump”
in the decryption success probability between T and T − 1. It outputs the index
T as the identity of the traced traitor. The correctness of the above approach
can be analyzed as follows. We know that the decoder’s success probability on
T = 0 is negligible (since such ciphertexts cannot be decrypted even given all
the keys) and on T = N it is large (by the correctness of the pirate decoder
program). Therefore, there must be some threshold T on which there is a big
jump in the success probability, but by the privacy property of the PLBE, a big
jump can only occur if the secret key skT was used in the construction of the
pirate decoder. Note that the run-time of this tracing algorithm is O(N).

State of the Art Traitor Tracing via Obfuscation. Recently, Garg et al. [21]
and Boneh and Zhandry [9] construct new fully collusion resistant traitor trac-
ing scheme with essentially optimal parameters where key/ciphertext sizes only
depend logarithmically on N . The schemes are constructed using the same PLBE
framework as in [7] and the main contributions are the construction of a new
PLBE scheme with the above parameters. These constructions both rely on indis-
tinguishability obfuscation. More recently, Garg et al. [22] construct a PLBE with
polylogarithmic parameters based on simple assumptions on multilinear maps.
We note that in all three schemes, the PLBE can be extended to handle flexible
(exponential) identity spaces by setting N = 2n for polynomial n. In this case,
encryption and key generation, as well as ciphertext and secret key sizes, will

392 R. Nishimaki et al.

grow polynomially in n. However, a flexible PLBE scheme does not directly yield
to a flexible traitor tracing scheme. In particular, the tracing algorithm of [7]
cannot be applied in this setting because it will run in exponential time, namely
O(2n).

Broadcast Encryption, Trace and Revoke. We also mention work on a related
problem called broadcast encryption. Similar to traitor tracing, such schemes
have a collection of users [N]. A sender can create a ciphertext that can be
decrypted by all of the users of the system except for specified set of “revoked
users” (which may be colluding). See e.g., [16–18,20,24,26,32,34,39] and refer-
ences within.

A trace and revoke system is a combination of broadcast encryption and
traitor tracing [32,34]. In other words, once traitors are identified by the tracing
algorithm they can also be revoked from decrypting future ciphertexts. Boneh
and Waters [8] proposed a fully collusion resistant trace and revoke scheme
where the private/public keys and ciphertexts are all of size O(

√
N). It was

previously unknown how to obtain fully collusion resistant trace and revoke
schemes with logarithmic parameter sizes. Separately, though, it is known how
to build both broadcast encryption and traitor tracing with such parameters
using obfuscation [9,21,41], and one could reasonably expect that it is possible
to combine the techniques to obtain a broadcast, trace, and revoke system.

Watermarking. Lastly, we mention related work on watermarking cryptographic
functions [14,15,35]. These works show how to embed arbitrary data into the
secret key of a cryptographic function (e.g., a PRF) in such a way that it is
impossible to create any program that evaluates the function (even approxi-
mately) but in which the mark is removed. This is conceptually related to our
goal of embedding arbitrary data into the secret keys of users in a traitor-tracing
scheme. Indeed, one could think of constructing a traitor tracing scheme where
we take a standard public-key encryption scheme and give each user a water-
marked version of the decryption key containing the user’s identity embedded.
Unfortunately, this solution does not work with current definitions of watermark-
ing security, where we assume that each key can only be marked once with one
piece of embedded data. In the traitor tracing scenario, we would want mark the
same key many times with different data for each user. Conversely, solutions to
the traitor tracing problem do not yield watermarking schemes since they only
require us to embed data in carefully selected secret keys chosen by the scheme
designer rather than in arbitrary secret keys chosen by the user.

1.2 Our Results

Our main result is to give new constructions of traitor-tracing schemes that
supports a flexibly large space of identities ID = [2n] where the parameter n is
an arbitrary polynomial corresponding to the bit-length of the string id ∈ ID
which should be sufficiently large encode all relevant identifying information
about the user. The user’s secret key skid contains the identity id embedded

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 393

within it, so there is no need to keep any external record of users. The tracing
algorithm recovers all of the identifying information id about a traitor directly
from the pirate decoder. We construct such a scheme where the secret key skid
is of length poly(n), which is essentially optimal since it must contain the data
id embedded within it. The first scheme we construct also has ciphertexts of
size poly(n) but we then show how to improve this to ciphertexts of constant
size independent of n (though still dependent on the security parameter). In the
latter scheme, the identity length n need not be specified ahead of time: different
users can potentially have different amounts of identifying information included
in their key, and there is no restriction on the amount of information that can be
included. The schemes are secure against an unbounded number of collusions.

Our schemes are secure assuming the existence of certain types of private
broadcast encryption, which themselves are special cases of functional encryption
(FE). Our work mainly focuses on building traitor tracing from these private
broadcast schemes. We then instantiate the private broadcast schemes using
recent constructions of FE, which in turn are built from indistinguishability
obfuscation (iO) and one-way functions (OWF). An interesting direction for
future work is to build private broadcast encryption from milder assumptions
such as LWE.

We also construct schemes which are only secure against collusions of size
at most q, where the ciphertext size is either of length O(n)poly(q) assuming
only public-key encryption, or of only length poly(q) independent of n assuming
sub-exponential LWE.2 We also extend the above construction to a full trace
and revoke scheme, allowing the content distributor to specify a set of revoked
users during encryption. Assuming iO, we get such a scheme where neither the
ciphertexts nor the secret keys grow with the set of revoked users.

1.3 Our Techniques

Our high level approach follows that of Boneh et al. [7], using PLBE as an inter-
mediate primitive to construct traitor tracing. There are two main challenges:
the first is to construct a PLBE scheme that supports an exponentially large
identity space ID = [2n] for some arbitrary polynomial n. The second, more
interesting challenge, and the main focus of this work, is to construct a tracing
algorithm which runs in time polynomial in n rather than N = 2n.

PLBE with Large Identity Space. The work of Boneh and Zhandry [9] already
constructs a PLBE scheme where the key/ciphertext size is polynomial in n.
Unfortunately, the proof of security relies on a reduction that runs in time
polynomial in N = 2n which is exponential in the security parameter. Thus
going through their construction we would need to assume the sub-exponential
hardness of iO (and OWFs) to get a secure PLBE. We instead take a different
approach, suggested by [21], and construct PLBE directly from (indistinguisha-
bility based) functional encryption (FE). For technical reasons detailed below, we

2 The above parameters ignore fixed polynomial factors in the security parameters.

394 R. Nishimaki et al.

actually need an adaptively secure PLBE scheme, and thus an adaptively secure
FE scheme. In the unbounded collusion setting, these can be constructed from
iO [2,40] or from simple assumptions on multilinear maps [22]. Alternatively, we
get a PLBE scheme which is (adaptively) secure against a bounded number of
collusions by relying on bounded-collusion FE which can be constructed from
any public-key encryption [25] or from sub-exponential LWE if we want succinct
ciphertexts [23].

A New Tracing Algorithm and the Oracle Jump-Finding Problem. The more
interesting difficulty comes in making the tracing algorithm run in time poly-
nomial in n rather than N = 2n. We can think of the pirate decoder as an
oracle that can be tested on PLBE ciphertexts created with various thresholds
T ∈ {0, . . . , N} and for any such threshold T it manages to decrypt correctly
with probability pT . For simplicity, let us think of this as an oracle that on input
T outputs the probability pT directly (since we approximate this value by testing
the decoder on many ciphertexts). We know that p0 is close to 0 and that pN

is the probability that a pirate decoder decrypts correctly, which is large – let’s
say pN = 1 for simplicity. Moreover, we know that for any T, T ′ with T < T ′

the values pT and pT ′ are negligibly close unless there is a traitor with identity
i ∈ {T, . . . T ′ − 1}, since encryptions with thresholds T and T ′ are indistinguish-
able. In particular this means that for any point T at which there is a “jump”
so that |pT − pT−1| is noticeable, corresponds to a traitor. Since we know that
the number of traitors in the coalition is bounded by some polynomial, denoted
by q, we know that there are at most q jumps in total and that there must be
at least one “large jump” with a gap of at least 1/q. The goal is to find at least
one jump. We call this the “oracle jump-finding problem”.

An Algorithm for the Oracle Jump-Finding Problem. The tracing algorithm
of [7] essentially corresponds to a linear search and tests the oracle on every
point T ∈ [N] and thus takes at least O(N) steps in the worst case to find
a jump. When using flexibly large identity universes (that is, taking N to be
exponential), the tracing algorithm will therefore run in exponential time. This
is true even if the underlying PLBE is efficient for such identity spaces, including
the PLBEs discussed above. Our goal is to design a better algorithm that takes
at most poly(n, q) steps.

It is tempting to simply substitute binary search in place of linear search. We
would first call the oracle on the point T/2 and learn pT/2. Depending on whether
the answer is closer to 0 or 1 we recursively search either the left interval or the
right interval. The good news is in each step the size of the interval decreases
by half and therefore there would be at most n steps. The bad news is that the
gap in probabilities between the left and right end points now also decreases by
a half and therefore after i steps we would only be guaranteed that the interval
contains a jump with a gap of 2−i/q which quickly becomes negligible.

Interestingly, we notice that the same oracle jump-finding problem implicitly
appeared in a completely unrelated context in a work of Boyle et al. [10] showing

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 395

the equivalence of indistinguishability obfuscation and a special case of differing-
inputs obfuscation. Using the clever approach developed in the context of that
work, we show how to get a poly(n, q) algorithm for the oracle jump finding
problem and therefore an efficient tracing algorithm.

The main idea is to follow the same approach as binary search, but each
time that the probability at the mid-point is noticeably far from both end-
points we recurse on both the left and the right interval. This guarantees that
there is always a large jump with a gap of at least 1/q within the intervals being
searched. Furthermore, since the number of jumps is at most q we can bound
the number of recursive steps in which both intervals need to be searched by q,
and therefore guarantee that the algorithm runs in poly(n, q) steps.

Interestingly, due to our tracing algorithm choosing which T to test based
on the results of previous tests, we need our PLBE scheme to be adaptively
secure, and hence also the underlying FE scheme must be adaptively secure.
This was not an issue in [7] for two reasons: (1) their tracing algorithm visits
all T ∈ [N], and (2) for polynomial N statically secure and adaptive secure
PLBE are equivalent. Fortunately, as explained above, we know how to construct
PLBE that is adaptively secure against unbounded collusions from iO or simple
multilinear map assumptions. For the bounded collusion setting, we can obtain
adaptively secure PLBE from public key encryption following [25].

We note that in an independent work, Kiayias and Tang [28] give another
method of tracing in large identity spaces; however their analysis applies only
to random user identities, and requires a means to verify that the identity out-
putted by the tracing algorithm actually corresponds to a one of the generated
decryption keys. Our tracing algorithm does not have these limitations.

Tracing More General Decoders. In [7], a pirate decoder is considered “useful” if
it decrypts the encryption of a random message with non-negligible probability,
and their tracing algorithm is shown to work for such decoders. However, restrict-
ing to decoders that work for random messages is unsatisfying, as we would like
to trace, say, decoders that work for very particular messages such as cable-TV
broadcasts. The analysis of [7] appears insufficient for this setting. Kiayias and
Yung [30] consider more general decoders, but their definition inherently places
a lower bound on the min-entropy of the plaintext distribution. In our analysis,
we show that even if a decoder can distinguish between two particular messages
(of the adversary’s choice) with non-negligible advantage, then it can be traced.
To our knowledge, ours is the first traitor tracing system that can trace such
general decoders.

Short Ciphertexts. In the above approach we construct traitor-tracing via a
PLBE scheme where the ciphertext is encrypted with respect to some threshold
T ∈ {0, . . . , N}. The ciphertext must encode the entire information about T and
is therefore of size at least n = log N , which corresponds to the bit-length of
the user’s identifying information id. In some cases, if the size of id is truly large
(e.g., the identifying information might contain a JPEG image of the user) we
would want the ciphertext size to be much smaller than n. One trivial option

396 R. Nishimaki et al.

is to first hash the user’s identifying information, and use our tracing scheme
above on the hashes. However, the tracer would then only learn the hash of the
identifying information, and would need to keep track of the information and
hashes to actually accuse a user. This prevents the scheme from being used in
the anonymous setting.

Instead, we show how to have the tracer learn identifying information in
its entirety by generalizing the PLBE approach in a way that lets us divide the
user’s identity into small blocks. Very roughly, we then trace the value contained
in each block one at a time. The ciphertext now only needs to encode the block
number that is currently being traced, and a single threshold for that block.
This lets us reduce the ciphertext to size to only be proportional to log n rather
than n. To do so we need to generalize the notion of PLBE which also leads to a
generalization of the oracle-jump-finding problem and the algorithm that solves
it. We note that since we can assume n < 2λ, factors logarithmic in n can be
absorbed into terms involving the security parameter. Thus our ciphertext size
can actually be taken to be independent of the bit length of identities.

We implement our PLBE generalization using FE. As above, we need adap-
tive security, which corresponds to an adaptively secure FE scheme. We now
also need the FE to have compact ciphertexts, whose size is independent of the
functions being evaluated. In the unbounded collusion setting, a recent construc-
tion of Ananth and Sahai [4] shows how to build such an FE from iO. Moreover,
in their FE scheme, the function size need not be specified a priori nor known
during encryption time, and different secret keys can correspond to functions of
different sizes. In our traitor tracing scheme, this translates to there being no a
priori bound on the length of identities, and different users can have different
amounts of identifying information embedded in their secret keys.

In the bounded collusion setting, we can obtain such an FE from LWE
using [23], though the scheme is only statically secure; we then use complexity
leveraging to obtain an adaptively secure scheme from sub-exponential LWE.

Trace and Revoke. Finally, we extend our traitor tracing scheme to a trace
and revoke system where users can be revoked. It turns out that this problem
reduces to the problem of constructing “revocable functional encryption” where
the encryption algorithm can specify some revoked users which will be unable
to decrypt. The ciphertext size is independent of the size of the revoke list, but
we assume that the revoke list is known to all parties. We construct such a
scheme from indistinguishability obfuscation using the technique of somewhere
statistically binding (SSB) hashing [27]. However, we omit the details about the
trace and revoke system due to the limited space. See the full version of this
paper [36].

1.4 Outline

In Sect. 2, we give some definitions and notations that we will use in our work. In
Sect. 3, we define the oracle jump-finding problem, and show how to efficiently

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 397

solve it. In Sects. 4 and 5, we use the solution of the jump-finding problem to
give our new traitor tracing schemes.

2 Preliminaries

Throughout this work, we will use the notation [N] to mean the positive integers
from 1 to N : [N] = {1, . . . , N}. We will also use the notation [M,N] to denote the
integers form M to N , inclusive. We will use (M,N] as shorthand for [M +1, N].
We will use [M,N]R to denote the real numbers between M and N , inclusive.

Next, we will define several of the cryptographic primitives we will be dis-
cussing throughout this work. We start with the definition of traitor tracing that
we will be achieving. Then, we will define the primitives we will use to construct
traitor tracing. In all of our definitions, there is an implicit security parame-
ter λ, and “polynomial time” and “negligible” are with respect to this security
parameter.

2.1 Traitor Tracing with Flexible Identities

Here we define traitor tracing. Our definition is similar to that of Boneh, Sahai,
and Waters [7], though ours is at least as strong, and perhaps stronger. In par-
ticular, our definition allows for tracing pirate decoders that can distinguish
between encryptions of any two messages, whereas [7] only allows for tracing
pirate decoders that can decrypt random messages. In Sect. 4, we discuss why
the analysis in [7] appears insufficient for our more general setting, but never-
theless show that tracing is still possible.

Definition 1. Let ID be some collection of identities, and M a message space.
A flexible traitor tracing scheme for M, ID is a tuple of polynomial time algo-
rithms (Setup,KeyGen,Enc,Dec,Trace) where:

– Setup() is a randomized procedure with no input (except the security parame-
ter) that outputs a master secret key msk and a master public key mpk.

– KeyGen(msk, id) takes as input the master secret msk and an identity id ∈ ID,
and outputs a secret key skid for id.

– Enc(mpk,m) takes as input the master public key mpk and a message m ∈ M,
and outputs a ciphertext c.

– Dec(skid, c) takes as input the secret key skid for an identity id and a ciphertext
c, and outputs a message m.

– TraceD(mpk,m0,m1, q, ε) takes as input the master public key mpk, two mes-
sages m0,m1, and parameters q, ε, and has oracle access to a decoder algo-
rithm D. It produces a (possibly empty) list of identities L.

– Correctness. For any message m ∈ M and identity id ∈ ID, we have that

Pr

[

Dec(skid, c) = m :
(msk,mpk) ← Setup(), skid ← KeyGen(msk, id),
c ← Enc(mpk,m)

]

= 1

398 R. Nishimaki et al.

– Semantic security. Informally, we ask that an adversary that does not hold
any secret keys cannot learn the plaintext m. This is formalized by the follow-
ing experiment between an adversary A and challenger:

• The challenger runs (msk,mpk) ← Setup(), and gives mpk to A.
• A makes a challenge query where it submits two messages m∗

0,m
∗
1. The

challenger chooses a random bit b, and responds with the encryption of
m∗

b : c∗ ← Enc(mpk,m∗
b).

• A produces a guess b′ for b. The challenger outputs 1 if b′ = b and 0
otherwise.

We define the semantic security advantage of A as the absolute difference
between 1/2 and the probability the challenger outputs 1. The public key
encryption scheme is semantically secure if, for all PPT adversaries A, the
advantage of A is negligible.

– Traceability. Consider a subset of colluding users that pool their secret keys
and produce a “pirate decoder” that can decrypt ciphertexts. Call a pirate
decoder D “useful” for messages m0,m1 if D can distinguish encryptions of
m0 from m1 with noticeable advantage. Then we require that such a decoder
can be traced using Trace to one of the identities in the collusion. This is
formalized using the following game between an adversary A and challenger,
parameterized by a non-negligible function ε:

• The challenger runs (msk,mpk) ← Setup() and gives mpk to A.
• A is allowed to make arbitrary keygen queries, where it sends an iden-

tity id ∈ ID to the challenger, and the challenger responds with skid ←
KeyGen(msk, id). The challenger also records the identities queries in a
list L.

• A then produces a pirate decoder D, two messages m∗
0,m

∗
1, and a non-

negligible value ε. Let q be the number of keygen queries made (that is,
q = |L|). The challenger computes T ← TraceD(mpk,m∗

0,m
∗
1, q, ε) as the

set of accused users. The challenger says that the adversary “wins” one
of the following holds:

* T contains any identity outside of L. That is, T \ L �= ∅ or
* Both of the following hold:

· D is ε-useful, meaning Pr[D(c) = m∗
b : b ← {0, 1}, c ←

Enc(mpk,m∗
b)] ≥ 1

2 + ε3.
· T does not contain at least one user inside L. That is, T ∩L = ∅.

The challenger then outputs 1 if the adversary wins, and zero other-
wise.

3 Checking the “winning” condition requires computing the probabilities a procedure
outputs a particular value, which is in general an inefficient procedure. Thus our chal-
lenger as described is not an efficient challenger. However, it is possible to efficiently
estimate these probabilities by running the procedure many times, and reporting the
fraction of the time the particular value is produced. We could have instead defined
our challenger to estimate probabilities instead of determine them exactly, in which
case the challenger would be efficient. The resulting security definition would be
equivalent.

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 399

We define the tracing advantage of A as the probability the challenger out-
puts 1. We say the public key encryption scheme is traceable if, for all PPT
adversaries A and all non-negligible ε, the advantage of A is negligible.

2.2 Private Broadcast Encryption

In our traitor tracing constructions, it will be convenient for us to use a primitive
we call private broadcast encryption, which is a generalization of the private
linear broadcast encryption of Boneh et al. [7]. A private broadcast scheme is
a broadcast scheme where the recipient set is hidden. Usually, the collection of
possible recipient subsets is restricted: for example, in private linear broadcast
encryption, the possible recipient sets are simply intervals. It will be useful for
us to consider more general classes of recipient sets, especially for our short-
ciphertext traitor tracing construction in Sect. 5.

Definition 2. Let ID be the set of identities. Let S be a collection of subsets of
ID. Let M be a message space. A Private Broadcast Encryption (PBE) scheme
is a tuple of algorithms (Setup,KeyGen,Enc,Dec) where:

– Setup() is a randomized procedure with no input (except the security parame-
ter) that outputs a master secret key msk and a master public key mpk.

– KeyGen(msk, id) takes as input the master secret msk and a user identity
id ∈ ID. It outputs a secret key skid for id.

– Enc(mpk, S,m) takes as input the master public key mpk, a secret set S ∈ S,
and a message m ∈ M. It outputs a ciphertext c.

– Dec(skid, c) takes as input the secret key skid for a user id, and a ciphertext c.
It outputs a message m ∈ M or a special symbol ⊥.

– Correctness. For a secret set S ∈ S, any identity id ∈ S, any identity
id′ /∈ S, any message m ∈ M, we have that

Pr

[

Dec(skid, c) = m :
(msk,mpk) ← Setup(), skid ← KeyGen(msk, id),
c ← Enc(mpk, S,m)

]

= 1

Pr

[

Dec(skid′ , c) = ⊥ :
(msk,mpk) ← Setup(), skid′ ← KeyGen(msk, id′),
c ← Enc(mpk, S,m)

]

= 1

In other words, a user id is “allowed” to decrypt if id is in the secret set S. We
also require that if id is not “allowed” (that is, if id /∈ S), then Dec outputs
⊥.

– Message and Set Hiding. Intuitively, we ask that for id that are not explic-
itly allowed to decrypt a ciphertext c, that the message is hidden. We also ask
that nothing is learned about the secret set S, except for what can be learned by
attempting decryption with various skid available to the adversary. These two
requirements are formalized by the following experiment between an adversary
A and challenger:

• The challenger runs (msk,mpk) ← Setup(), and gives mpk to A.

400 R. Nishimaki et al.

• A is allowed to make arbitrary keygen queries, where it sends an iden-
tity id ∈ ID to the challenger, and the challenger responds with skid ←
KeyGen(msk, id). The challenger also records id in a list L.

• At some point, A makes a single challenge query, where it submits two
secret sets S∗

0 , S∗
1 ∈ S, and two messages m∗

0,m
∗
1. The challenger flips a

random bit b ∈ {0, 1}, and computes the encryption of m∗
b relative to the

secret set S∗
b : c∗ ← Enc(mpk, S∗

b ,m∗
b). Then, the challenger makes the fol-

lowing checks, which ensure that the adversary cannot trivially determine
b from c∗:

∗ If m∗
0 �= m∗

1, then successful decryption of the challenge ciphertext
would allow determining b. Therefore, the challenger requires that
none of the identities the adversary has the secret key for can decrypt
the ciphertext. In other words, for any id ∈ L, id /∈ S∗

0 and id /∈ S∗
1 .

In other words, the sets L ∩ S∗
0 and L ∩ S∗

1 must be empty.
∗ If S∗

0 �= S∗
1 , then successful decryption for S∗

b but not for S∗
1−b would

allow for determining b (even if m∗
0 = m∗

1). Therefore, the challenger
requires that all of the identities the adversary has secret keys for
can either decrypt in both cases, or can decrypt in neither. In other
words, for any id ∈ L, id /∈ S∗

0ΔS∗
1 , where Δ denotes the symmetric

difference operator. Notice that this check is redundant if m∗
0 �= m∗

1.
If either check fails, the challenger outputs a random bit and aborts the
game. Otherwise, the challenger sends c∗ to A.

• A is allowed to make additional keygen queries for arbitrary identities id∗,
subject to the constraint that id must satisfy the same checks as above: if
m∗

0 �= m∗
1, then id /∈ S∗

0 and id /∈ S∗
1 , and if S∗

0 �= S∗
1 , then id /∈ S∗

0ΔS∗
1 .

If the adversary tries to query in an id that fails the check, the challenger
outputs a random bit and aborts the game.

• A outputs a guess b′ for b. The challenger outputs 1 if b′ = b and 0
otherwise.

We define the advantage of A as the absolute difference between 1/2 and the
probability the challenger outputs 1. We say the private broadcast system is
secure if, for all PPT adversaries A, the advantage of A is negligible.

For a private broadcast scheme, we call the collection S of secret sets the
secret class. We are interested in several metrics for a private broadcast scheme:

– Ciphertext size. Notice that the ciphertext, while hiding the secret set S,
information-theoretically contains enough information to reveal S: given the
secret key for every identity, S can be determined by attempting decryption
with every secret key. It must also contain enough information to entirely
reconstruct the message m. Thus, we must have |c| ≥ log |S| + log |M|. We
will say the ciphertext size is optimal if |c| ≤ poly(λ, log |S|) + log |M|.

– Secret key size. Assuming the public and secret classes P,S are expressive
enough, from the secret key skid for identity id, it is possible to reconstruct
the entire identity id by attempting to decrypt ciphertexts meant for various
subsets. Therefore, |skid| ≥ log |ID|. We will say the user secret key size is
optimal if |skid| ≤ poly(λ, log |ID|).

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 401

– Master key size. The master public and secret keys do not necessarily
encode any information, and therefore could be as short as O(λ). We will say
the master key sizes are optimal if |msk|, |mpk| ≤ poly(λ).

Notice that in the case where S = {ID}, our notion of private broadcast
reduces to the standard notion of (identity-based) broadcast encryption, and
the notions of optimal ciphertext, user secret key, and master key sizes coincide
with the standard notions for broadcast encryption.

2.3 Functional Encryption

Definition 3. Let M be some message space, Y some other space, and F be
a class of functions f : M → Y. A Functional Encryption (FE) scheme for
M,Y,F is a tuple of algorithms (Setup,KeyGen,Enc,Dec) where:

– Setup() is a randomized procedure with no input (except the security parame-
ter) that outputs a master secret key msk and a master public key mpk.

– KeyGen(msk, f) takes as input the master secret msk and a function f ∈ F .
It outputs a secret key skf for f .

– Enc(mpk,m) takes as input the master public key mpk and a message m ∈ M,
and outputs a ciphertext c.

– Dec(skf , c) takes as input the secret key skf for a function f ∈ F and a
ciphertext c, and outputs some y ∈ Y, or ⊥.

– Correctness. For any message m ∈ M and function f ∈ F , we have that

Pr

[

Dec(skf , c) = f(m) :
(msk,mpk) ← Setup(), skf ← KeyGen(msk, f),
c ← Enc(mpk,m)

]

= 1

– Security. Intuitively, we ask that the adversary, given secret keys f1, . . . , fn,
learns fi(m) for each i, but nothing else about m. This is formalized by the
following experiment between an adversary A and challenger:

• The challenger runs (msk,mpk) ← Setup(), and gives mpk to A.
• A is allowed to make arbitrary keygen queries, where it sends a func-

tion f ∈ F to the challenger, and the challenger responds with skf ←
KeyGen(msk, f). The challenger also records f in a list L.

• At some point, A makes a single challenge query, where it submits two
messages m∗

0,m
∗
1. The challenger checks that f(m∗

0) = f(m∗
1) for all

f ∈ L. If the check fails (that is, there is some f ∈ L such that
f(m∗

0) �= f(m∗
1)), then the challenger outputs a random bit and aborts.

Otherwise, the challenger flips a random bit b ∈ {0, 1}, and responds with
the ciphertext c∗ ← Enc(mpk,m∗

b).• A is allowed to make additional keygen queries for functions f ∈ F ,
subject to the constraint that f(m∗

0) = f(m∗
1).

• A outputs a guess b′ for b. The challenger outputs 1 if b′ = b and 0
otherwise.

We define the advantage of A as the absolute difference between 1/2 and the
probability the challenger outputs 1. We say the functional encryption scheme
is secure if, for all PPT adversaries A, the advantage of A is negligible.

402 R. Nishimaki et al.

For a functional encryption scheme, we will be interested in the size of the
various parameters (in addition to the security of the system itself):

– Ciphertext size. At a minimum, the ciphertext must information-
theoretically encode the entire message (assuming the class F is expressive
enough). Therefore |c| ≥ log |M|. We will consider a scheme to have optimal
ciphertext size if |c| ≤ poly(λ, log |M|)4.

– Secret key size. The secret key must information-theoretically encode the
entire function f , so |skf | ≥ log |F|. However, because we are interested in
efficient algorithms, we cannot necessarily represent functions f using log |F|
bits, and may therefore need larger keys. Generally, f will be a circuit of
a certain size, say s. We will say a scheme has optimal secret key size if
|skf | ≤ poly(λ, s).

– Master key size. The master public and secret keys do not necessarily
encode any information, and therefore could be as short as O(λ). We will say
the master key sizes are optimal if |msk|, |mpk| ≤ poly(λ).

Construction. A construction of FE that has above properties is proposed by
Ananth and Sahai [4]. The construction is based on indistinguishability obfus-
cation for circuits and one-way function.

3 An Oracle Problem

Here we define the oracle jump finding problem, which abstracts the algorithmic
problem underlying both the iO/diO (differing-inputs obfuscation) conversion
of [10] as well as the tracing algorithm in this work.

Definition 4. The (N, q, δ, ε) jump finding problem is the following. An adver-
sary chooses a set C ⊆ [1, N] of q unknown points. Then, the adversary provides
an oracle P : [0, N] → [0, 1]R such that:

– |P (N) − P (0)| > ε. That is, over the entire domain, P varies significantly.
– For any x, y ∈ [0, N], x < y in interval (x, y] that does not contain any points

in C (that is, (x, y] ∩ C = ∅), it must be |P (x) − P (y)| < δ. That is, outside
the points in C, P varies very little.

Our goal is to interact with the oracle P and output some element in C.

A pictorial representation of the jump finding problem is given in Fig. 1.
Notice that if ε < qδ, it is possible to have all adjacent values P (x − 1), P (x)

be at less than δ apart, even for x ∈ C. Thus it becomes information-theoretically
impossible to determine an x ∈ C. In contrast, for ε ≥ qδ, if we query the oracle
on all points there must exist some point x such that |P (x)−P (x− 1)| > δ, and
this point must therefore belong to C. Therefore, this problem is inefficiently
solvable ε ≥ qδ. The following shows that for ε somewhat larger that qδ, the
problem can even be solved efficiently:
4 This property has been referred to as “compactness” [3,5].

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 403

Fig. 1. Example of an oracle P when C contains 4 points. The purple curve represents
the outputs of the oracle P on inputs in the interval [0, N]. The red hatch marks on the
number line indicate the positions of the elements in C. The horizontal dashed lines
show that, between the points in C, P is never changes more than δ. At the points in
C, P can make arbitrary jumps in either direction.

Theorem 1. There is a deterministic algorithm PTraceP (N, q, δ) that runs in
time t = poly(log N, q) (and in particular makes at most t queries to P) that will
output at least one element in C, provided ε ≥ δ(2+(�log N�−1)q). Furthermore,
the algorithm never outputs an element outside C, regardless of the relationship
between ε and δ.

Proof. We assume that P (N) − P (0) > ε. The general case can be solved by
running our algorithm once, and then running it a second time with the oracle
P ′(x) = 1 − P (x), and outputting the union of the elements produced. We will
also assume N = 2n is a power of 2, the generalization to arbitrary N being
straightforward.

The starting point is the observation that if C contains only a single element
x, then this problem is easily solved using binary search. Indeed, we can query P
on 0, N/2, N . If x ∈ (0, N/2], then there are no points in C that are in (N/2, N],
and therefore P (N) − P (N/2) < δ. This implies P (N/2) − P (0) > ε − δ > δ.
Similarly, if x ∈ (N/2, N], then P (N/2) − P (0) < δ < ε − δ < P (N) − P (N/2).
Therefore, it is easy to determine which half of (0, N] x lies in. Moreover, on
the half that x lies in, P still varies by ε′ = ε − δ. Therefore, we can recursively
search for x on that half. Each time, we split the interval in which x lies in half,
and decrease the total variation on that interval by only an additive δ. Since
we perform at most log N steps in this binary search, the total variation will
decrease by at most δ log N , and our choice of ε guarantees that the variation
stays greater than δ. Therefore, we can proceed all the way down until we’ve
isolated the point x, which we then output.

The problem arises when C contains more than just a single point. In this
case, there may be points in both halves of the interval. If we recurse on both
halves, the resulting algorithm will run in time that grows with N as opposed to
log N . The other option is to pick a single half-interval arbitrarily, and recurse
only on that half. However, if there are points in C among both half-intervals,
the variation in each half-interval may decrease by a factor of two. Recursing

404 R. Nishimaki et al.

in this way will quickly cut the total variation down to below the threshold δ,
at which point we will not be able to tell which intervals have points in C and
which do not. Therefore, we need to be careful in how we choose which intervals
to recurse on.

First we define a recursive algorithm PTraceP
0 (I, q, δ) which takes as input an

interval I = (a, b], as well as q, δ. For any interval I = (a, b], let |I| = b−a be the
number of points in I and let qI be the number of points of C in I: qI = |I ∩C|.
Define ΔI = P (b) − P (a). PTraceP

0 (I, q, δ) works as follows:

– Let I = (a, b]. Query P on a, b to obtain P (a), P (b). Compute ΔI = P (b) −
P (a)

– If ΔI ≤ δ, abort and output the empty list T = {}
– Otherwise, if |I| = 1, output T = {b}
– Otherwise, partition I into two equal disjoint intervals IL, IR so that IL ∩

IR = ∅, IL ∪ IR = I, and |IL|, |IR| = |I|/2. Run TL = PTraceP
0 (IL, q, δ) and

TR = PTraceP
0 (IR, q, δ). Output T = TL ∪ TR.

We then define PTrace to run PTrace0 on the entire domain (0, N]:
PTraceP (N, q, δ) = PTraceP

0 ((0, N], q, δ). We now make several claims about
PTrace0. The first follows trivially from the definition of PTrace0:

Claim. Any element outputted by PTrace0 on interval I must be in C ∩ I. In
particular, any element outputted by PTrace is in C. Moreover, we have that
any element s outputted must have P (s) − P (s − 1) > δ

Claim. The running time of PTrace is a polynomial in q and in n = log N .

Proof. The running time of PTrace is dominated by the number of calls made
to PTrace0. We observe that the intervals I on which PTrace0 is potentially
called form a binary tree: the root is the entire interval (0, N], the leaves are the
singleton intervals (x − 1, x], and each non-leaf node corresponding to interval I
has two children corresponding to intervals IL and IR that are the left and right
halves of I. This tree has 1+ log N levels, where the intervals in level i have size
2i. Based on the definition of PTrace0, PTrace0 is only called on an interval I if
I’s parent contains at least one point in C, or equivalently that I or its sibling
contain at least one point in C. Since there are only q points in C, PTrace is
called on at most 2q intervals in each level. Thus the total number of calls, and
hence the overall running time, is O(q log N).

Claim. Define α(I) ≡ δ(log |I| + (n − 1)qI − (n − 2)) where n = log N . Any call
to PTrace0 with qI ≥ 1 and ΔI > α(I) will output some element.

Proof. If |I| = 1 and qI = 1, then α(I) = δ((n − 1) − (n − 2)) = δ. We already
know that if ΔI > δ = α(I), PTrace will output an element. Therefore, the claim
holds in the case where |I| = 1.

Now assume the claim holds if |I| ≤ r. We prove the case |I| = r+1. Assume
qI ≥ 1, and running PTrace0 on I does not give any elements in C. Then running

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 405

PTrace0 on IL and IR does not give any elements. For now, suppose qIL and
qIR both positive. By induction this means that ΔIL ≤ α(IL) = δ(log |IL| +
(n − 1)qIL − (n − 2)) and ΔIR ≤ α(IR) = δ(log |IR| + (n − 1)qIR − (n − 2)).
Recall that log |IR| = log |IL| = log |I| − 1. Together this means that ΔI ≤
α(IL)+α(IR) ≤ δ(log |I|+(n−1)qI −(n−2)−(n− log |I|)) = α(I)−(n− log |I|).
Since log |I| ≤ n, we have that ΔI ≤ α(I).

Now suppose qIL = 0, which implies qIR = qI > 0. The case qIR = 0 is
handled similarly. Then ΔIL ≤ δ, and by induction ΔIR ≤ α(IR) = δ(log |I| +
(n − 1)qI − (n − 1)). Thus ΔI ≤ δ(log |I| + (n − 1)qI − (n − 1) + 1) = α(I), as
desired. This completes the proof of the claim. ��

Notice that α((0, N]) = δ(2 + (n − 1)q) ≤ ε. Also notice that by definition
Δ(0,N] > ε. Therefore, the initial call to PTrace0 by PTrace outputs some element,
and that element is necessarily in C. ��

Now we define a related oracle problem, that takes the jump finding problem
above, hides the oracle P inside a noisy oracle Q, and only provides us with the
noisy oracle Q.

Definition 5. The (N, q, δ, ε) noisy jump finding problem is as follows. An
adversary chooses a set C ⊆ [1, N] of q unknown points. The adversary then
builds an oracle P : [0, N] → [0, 1]R as above, but does not provide it directly. As
before, P must satisfy:

– |P (N) − P (0)| > ε
– For any x, y ∈ [0, N], x < y in interval (x, y] that does not contain any points

in C (that is, (x, y] ∩ C = ∅), it must be |P (x) − P (y)| < δ.

Instead of interacting with P , we interact with a randomized oracle Q : [0, N] →
{0, 1} defined as follows: Q(x) chooses and outputs a random bit that is 1 with
probability P (x), and 0 otherwise. A fresh sample is chosen for repeated calls
to Q(x), and is independent of all other samples outputted by Q. Our goal is to
interact with the oracle Q and output some element in C.

Theorem 2. There is a probabilistic algorithm QTraceQ(N, q, δ, λ) that runs in
time t = poly(log N, q, 1/δ, λ) (and in particular makes at most t queries to O)
that will output at least one element in C with probability 1 − negl(λ), provided
ε > δ(5+2(�log N�−1)q). Furthermore, the algorithm never outputs an element
outside C, regardless of the relationship between ε and δ.

The idea is to, given Q, approximate the underlying oracle P , and run PTrace
on the approximated oracle. Similar to the setting above, QTrace works even for
“cheating” oracles P , as long as |P (x) − P (y)| < δ for all queried pairs x, y such
that (x, y] contains no points in C. We still need Q to be honestly constructed
given P .

Proof. Our basic idea is to use O to simulate an approximation P̂ to the oracle
P , and then run PTrace using the oracle P̂ .

QTraceQ(N, q, δ, ε, λ) works as follows. It simulates PTrace(N, q, δ). Whenever
PTrace queries P on input x, QTrace does the following:

406 R. Nishimaki et al.

– For i = 1, . . . , O(λ/δ2), sample zi ← O(x)
– Output p̂x as the mean of the zi.

Then QTrace outputs the output of PTrace.
As PTrace makes O(q log N) oracle calls to P , QTrace will make

O(λq log N/δ2) oracle calls. Moreover, the running time is bounded by this quan-
tity as well. Therefore QTrace has the desired running time.

With probability at least 1−2−λ, we have that |px− p̂x| < δ/2 for each x that
are queried. This means that, with overwhelming probability, for all intervals
(x, y] that do not contain any elements of x, we have that |py − px| < δ, so
|p̂y − p̂x| < 2δ with overwhelming probability. Moreover, |pN − p0| > ε, so
|p̂N − p̂0| > ε − δ. Thus with overwhelming probability the oracle P̂ seen by
PTrace is an instance of the (N, q, δ′ = 2δ, ε′ = ε − δ) noiseless jump finding
problem. Notice that

ε′ = ε − δ > δ(5 + 2(n − 1)q) − δ = (2δ)(2 + (n − 1)q) = δ′(2 + (n − 1)q)

Therefore, P̂ satisfies the conditions of Theorem1, and PTrace outputs at least
one element in C. QTrace outputs the same element, completing the proof.

Remark 1. We note that PTraceP and QTraceQ work even for “cheating” P that
do not satisfy |P (x) − P (y)| < δ for all (x, y] which do not intersect C, as long
as the property holds for all pairs x, y that where queried by PTrace or QTraceQ.
This will be crucial for traitor tracing.

3.1 The Generalized Jump Finding Problem

Here we define a more general version of the jump finding problem that will be
useful for obtaining short-ciphertext traitor tracing. In this version, the domain
of the oracle P is an r × 2N grid that is short but wide (that is, r � N). The
elements in C correspond to non-crossing curves between grid points from the top
of the grid to the bottom, which divide the grid into |C| + 1 contiguous regions.
The probabilities outputted by P are restricted to vary negligibly across each
continuous region, but are allowed to vary arbitrary between different regions.
The goal is to recover the complete description of some curve in C. To help make
the problem tractable, we require that each curve is confined to oscillate about
an odd column of the grid. Such curves can be represented by an integer s ∈ [N]
giving the position 2s−1 of the column, and a bit string b = (b1, . . . , br) ∈ {0, 1}r

specifying which side of the column the curve is on at each row. A pictorial
representation of the generalized jump finding problem is given in Fig. 2, and a
precise definition is given below.

Definition 6. The (N, r, q, δ, ε) generalized jump finding problem is the fol-
lowing. The adversary chooses a set C of q unknown tuples (s, b1, . . . , br) ∈
[N] × {0, 1}r such that the s are distinct. Each tuple (s, b1, . . . , br) describes
a curve between grid points from the top to bottom of the grid [1, r] × [0, 2N],

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 407

which oscillates about the column at position 2s − 1, with b = (b1, . . . , br) speci-
fying which side of the column the curve is on at each row. These curves divide
the grid into |C| + 1 contiguous regions. For each pair (i, x) ∈ [1, r] × [0, 2N] the
adversary chooses a probability pi,x ∈ [0, 1]R such that pi,x varies “minimally”
within each contiguous region. We also require that overall from left to right,
there is “significant” variation of the pi,x. Formally, this means:

– For any pair of pairs of the form (i, 2x), (j, 2x) ∈ [1, r] × [0, 2N], |pi,2x −
pj,2x| < δ. In other words, since curves in C are restricted to oscillate around
odd columns, no curve crosses between points on the same even column, so
each even column lies entirely in a single contiguous region. We therefore
require that the probabilities associated with any two points on the same even
column are close.

– Let Ci be the set of values 2s − bi for tuples in C. Ci is then the set of grid
points in the ith row that are immediately to the right of curves in C. For any
two pairs (i, x), (i, y) ∈ [1, r] × [0, 2N] in the same row such that the interval
(x, y] does not contain any points in Ci then |pi,x − pi,y| < δ. In other words,
if no curves cross between points in the same row, those points must be in the
same contiguous region and therefore have close probabilities.

– We also make the requirement that the probabilities in the 0th column are
identical, and the probabilities in the 2N th column are identical. That is,
pi,0 = pi′,0 for all i, i′ ∈ [r] and pi,2N = pi′,2N for all i, i′ ∈ [r]. Define
p0 = pi,0 and p2N = pi,2N .

– Finally, |p2N −p0| > ε. That is, the 0th and 2N th columns have very different
probabilities.

We are now presented with one of two oracles, depending on the version of the
problem:

– In the noiseless version, we are given an oracle for the pi,x: we are given oracle
access to the function P : [1, r] × [0, 2N] → [0, 1]R such that P (i, x) = pi,x.

– In the noisy version, we are given a randomized oracle Q with domain [1, r]×
[0, 2N] that, on input (i, x), outputs 1 with probability pi,x. Repeated calls to
Q on the same x yield a fresh bit sampled independently.

Our goal is to output some element in C.

Theorem 3. There are algorithms PTrace′P (N, r, q, δ) andQTrace′Q(N, r, q, δ, λ)
for the noiseless and noisy versions of the (N, r, q, δ, ε) generalized jump finding
problem that run in time poly(log N, r, q, 1/δ) and poly(log N, r, q, 1/δ, λ), respec-
tively, and output an element in C with overwhelming probability, provided ε >
δ(4 + 2(�log N� − 1)q) (for the noiseless case), or ε > δ(9 + 4(�log N� − 1)q) (for
the noisy case).

This theorem is proved analogously to Theorems 1 and 2, and appears in
below. Again, PTrace′,QTrace′ work even if the oracle P is “cheating”, as long
as the requirements on P hold for all points queried by PTrace′ or QTrace′.

408 R. Nishimaki et al.

Fig. 2. Example probabilities pi,x when C contains 4 items, r = 7, and N = 15. The
dots represent the various probabilities pi,x, where rows are indexed by i ∈ [r] and
columns are indexed by x ∈ [0, 2N]. The shade of the dot at position (i, x) indicates
the value of pi,x, with darker shade indicating higher pi,x. The elements in C describe
curves from the top of the grid to the bottom, which are indicated in red in the figure.
Notice (1) that the curves in C oscillate around odd columns of dots, and (2) that they
never intersect, and (3) that the values of the pi,x only vary minimally between the
curves in C, and can only have large changes when crossing the curves.

Proof. We prove the noiseless version, extending to the noisy version is a simple
extension of Theorem 2. PTrace′P (N, r, q, δ) works as follows:

– First, we determine some of the s for elements in C. Let P ′ : [0, N] → [0, 1]R
where P ′(x) = P (1, 2x). Notice that |P ′(N) − P ′(0)| = |p2N − p0| > ε.
Moreover, for intervals (x, y] that do not contain any of the s, |P ′(y)−P ′(x)| <
δ ≤ 2δ. Therefore, P ′ is an instance of the (N, q, 2δ, ε) problem for ε > 2δ(2+
(n − 1)q). Therefore, we run PTraceP ′

(N, q, δ′) to obtain a list T of s values,
with the property that |P (1, 2x) − P (1, 2x − 2)| = |P ′(s) − P ′(s − 1)| ≥ 2δ
for each s ∈ T .

– For each s ∈ T , and for each i ∈ [r], let bs,i = 1 if |P (i, 2s−2)−P (i, 2s−1)| >
|P (i, 2s − 1) − P (i, 2s)|, and bs,i = 0 otherwise. Let (s, b1, . . . , br) ∈ C be the
tuple corresponding to s. Then the set Ci contains 2s − bi, but does not
contain 2s−1+ bi, since there is no collision between the s values. Therefore,
|P (2s − 1 + bi) − P (2s − 2 + bi)| < δ, which means that |P (2s − bi) − P (2s −
1 − bi)| > δ. Therefore bs,i = bi

– Output the tuples (s, bs,1, . . . , bs,r).

By the analysis above, since PTrace never outputs a value outside of C,
PTrace′ will never output a tuple corresponding to an identity outside of C.
Moreover, if ε > δ(4 + 2(n − 1)q), then PTrace′ will output at least one tuple in
C. Finally, PTrace′ runs in time only slightly worse than PTrace, and is therefore
still polynomial time.

4 Tracing with Flexible Identities

Let (Setup,KeyGen,Enc,Dec) be a secure private linear broadcast scheme for
identity space ID = [2n]. We now show that such a private broadcast scheme is

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 409

sufficient for flexible traitor tracing. The Setup,KeyGen,Enc, and Dec algorithms
are as follows:

– Setup,KeyGen are inherited from the private broadcast scheme.
– To encrypt a message m, run Enc(mpk, S = ID,m). Call this algorithm
EncTT .

– To decrypt a ciphertext c, run Dec(skid, c). Call this algorithm DecTT

Theorem 4. Let (Setup,KeyGen,Enc,Dec) be a secure private broadcast scheme
for identity space [2n] and private class S = {[u]}u∈[0,2n]. Then there is a poly-
nomial time algorithm Trace such that (Setup,KeyGen,EncTT ,DecTT ,Trace) as
defined above is a flexible traitor tracing algorithm.

Proof. Boneh et al. [7] prove this theorem for the case of logarithmic n and
for the weaker notion of tracing where the pirate decoder is required to decrypt
a random message, as opposed to distinguish between two specific messages of
the adversary’s choice. Their tracing algorithm gets black-box access to a pirate
decoder and does the following: it runs the decoder on encryptions to all sets
[u] for u = 0, . . . , 2n and determines the success probability of the decoder for
each u. It outputs an index u such that there is a “large” gap between the
probabilities for [u − 1] and [u] as the identity of the traced traitor. In the
analysis, [7] shows that, provided the adversary does not control the identity u,
the pirate succeeds with similar probabilities for [u − 1] and [u]. To prove this,
they run the adversary, answering its secret key queries by making secret key
queries to the PLBE challenger. When the adversary outputs a pirate decoder
D, they make a PLBE challenge on a random message m and sets [u] and [u−1].
Then they run the pirate decoder on the resulting ciphertext, and test whether it
decrypts successfully: if yes, then they guess that the ciphertext was encrypted
to [u], and guess [u − 1] otherwise. The advantage of this PLBE adversary is
exactly the difference in probabilities for decrypting [u−1] and [u]. The security
of the PLBE scheme shows that this difference must be negligible.

Now, a useful pirate decoder will succeed with high probability on [2n], and
with negligible probability on [0], so there must be some “gap” in probabilities.
The above analysis shows that (1) the tracer will find a gap, and (2) that the
gap must occur at an identity under the adversary’s control.

There are two problems with generalizing to our setting:

– The running time of the tracing algorithm in [7] grows with 2n as opposed to
n, resulting in an exponential-time tracing algorithm when using flexibly-large
identities. This is because their tracing algorithm checks the pirate decoder
an all identities. We therefore need a tracing algorithm that tests the decoder
on a polynomial number of identities. To accomplish this, show that tracing
amounts to solving the jump-finding problem in Sect. 3, and we can therefore
use our efficient algorithm for the jump-finding problem to trace.

– Since we only ask that the pirate decoder can distinguish two messages,
we need to reason about the decoder’s “advantage” (decryption probability

410 R. Nishimaki et al.

minus 1/2) instead of its decryption probability. In the analysis above, since
probabilities are always positive, any “useful” decoder will contribute posi-
tively to the PLBE advantage, whereas a “useless” decoder will not detract.
However, this crucially relies on the fact that probabilities are positive. In our
setting, the advantage is signed and can be both positive and negative, and
the contribution of decoders to the PLBE adversary’s advantage can cancel
out if they have different sign. Thus there is no guarantee that the obtained
PLBE adversary has any advantage. To get around this issue, we essentially
have our reduction estimate the signed advantage of the pirate decoder, and
reject all decoders with negative advantage. The result is that the advantage
of all non-rejected decoders is non-negative, and so all decoders contribute
positively to the PLBE adversary’s advantage.

We now give our proof. Let A be a potential adversary, let C be the set of
colluding parties for which A obtained secret keys, and q = |C|. A produces a
pirate decoder D and messages m0,m1 such that D can distinguish encryptions
of m0 from encryptions of m1. Define the quantities

pid = Pr[D(c) = b : b ← {0, 1}, c ← Enc(mpk, id,mb)]

for id ∈ S, where Enc is the PLBE encryption algorithm. We first will prove two
lemmas:

Lemma 1. Suppose (Setup,KeyGen,Enc,Dec) is secure. Fix a non-negligible
value δ. Suppose an interval (idL, idR] is chosen adversarially after seeing the
set C, the adversary’s secret keys, the pirate decoder D, and even the internal
state of A, and suppose that C ∩ (idL, idR] = ∅ (that is, there are no colluding
users in (idL, idR]). Then, except with negligible probability, |pidR − pidL | < δ.

Proof. We will prove that pidR − pidL < δ with overwhelming probability, as
proving pidL − pidR < δ is almost identical. Suppose towards contradiction that,
with non-negligible probability ε, pidR −pidL ≥ δ. We then describe an adversary
for (Setup,KeyGen,Enc,Dec) that works as follows:

– Run A on input mpk. Whenever A makes a keygen query on identity id, make
the same keygen query. A outputs a pirate decoder D.

– Compute estimates ˆpidR , ˆpidL for the probabilities pidL and pidR , respectively.
To compute p̂id, do the following. Take O(λ/δ2) samples of D(c) ⊕ b where
b ← {0, 1} and c ← Enc(mpk, id,mb), and then output the fraction of those
samples that result in 0. Notice that with probability 1−2−λ, |p̂id−pid| ≤ δ/4.

– If ˆpidR − ˆpidL < 1
2δ, output a random bit and abort. Notice that, with over-

whelming probability,
∣

∣(ˆpidR − ˆpidL) − (pidR − pidL)
∣

∣ < δ/2. Therefore, with
overwhelming probability, if we do not abort, pidR − pidL > 0. Moreover, if
pidR − pidL > δ, then ˆpidR − ˆpidL ≥ 1

2δ holds and we do not abort with over-
whelming probability.

– Now choose a random bit b, and make a challenge query on S∗
0 = [idL],

S∗
1 = [idR], and messages m∗

0 = m∗
1 = mb.

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 411

– Upon receiving the challenge ciphertext c∗, compute b′ = D(c∗). Output 1 if
b′ = b and 0 otherwise.

Conditioned on no aborts, in the case the challenge ciphertext is encrypted
to idL (resp. idR), our adversary will output 1 with probability pidL (resp. pidR),
so our adversary will “win” with probability 1

2 + (pidR − pidL)/2 in this case.
Otherwise, during an abort, our adversary wins with probability 1/2. Moreover,
with overwhelming probability, if we do not abort pidR − pidL > 0, and with
probability at least ε − negl, we have pidR − pidL > δ/2. Therefore, a simple
computation shows that the adversary “wins” with probability at least 1

2 + (ε −
negl)(δ/4 − negl), which gives a non-negligible advantage.

Lemma 2. Suppose (Setup,KeyGen,Enc,Dec) is secure. Fix a non-negligible
value δ. Then, except with negligible probability, |p0 − 1

2 | < δ.

Proof. The proof is similar to the proof of Lemma1. We will prove that p0− 1
2 <

δ with overwhelming probability, the case p0 − 1
2 > −δ is almost identical.

Suppose towards contradiction that, with non-negligible probability ε, p0− 1
2 ≥ δ.

An adversary for (Setup,KeyGen,Enc,Dec) works as follows:

– Run A on input mpk. Whenever A makes a keygen query on identity id, make
the same keygen query. A outputs a pirate decoder D.

– Compute estimate p̂0 for p0 using the algorithm from Lemma 1, so that except
with probability 2−λ, |p̂0 − p0| < δ/2.

– If p̂0 − 1
2 < 1

2δ, output a random bit and abort. Notice that, with overwhelm-
ing probability,

∣

∣(p̂0 − 1
2) − (p0 − 1

2)
∣

∣ < δ/2. Therefore, with overwhelming
probability, if we do not abort, p0 − 1

2 > 0. Moreover, if p0 − 1
2 > δ, with

overwhelming probability we do not abort.
– Now make a challenge query on S∗

0 = S∗
1 = [0] = {}, and messages m∗

0 =
m0,m

∗
1 = m1.

– Upon receiving the challenge ciphertext c∗, compute b = D(c∗). Output b

Conditioned on no aborts, our adversary will “win” with probability p0 in
this case. Otherwise, during an abort, our adversary wins with probability 1/2.
Moreover, with overwhelming probability, if we abort p0− 1

2 > 0, and with prob-
ability at least ε − negl, we have p0 − 1

2 > δ/2. Therefore, a simple computation
shows that the adversary has non-negligible advantage (ε − negl)(δ/2 − negl).

Now we define our tracing algorithm TraceD(mpk,m0,m1, q, ε). Trace sets
δ = ε/2(5 + 4(n − 2)q), and then runs QTraceQ(2n, q, δ, λ) where QTrace is the
algorithm from Theorem 2. Whenever QTrace makes a query to Q on identity
id, Trace chooses a random bit b, computes the encryption c ← Enc(mpk, id,mb)
of mb to the set [id], runs b′ ← D(c), and responds with 1 if any only if b = b′.
Define pid to be the probability that Q(id) outputs 1. We now would like to show
that Q is an instance of the (N, q, δ, ε) noisy jump finding problem, where the
set of jumps is the set C. For this it suffices to show that P (id) = pid is an
instance of the (N, q, δ, ε) noiseless jump finding problem. By Lemma 2, we have

412 R. Nishimaki et al.

that with overwhelming probability useful D have |p2n − p0| ≥ |ε − δ| > ε/2.
Moreover, we have that (ε/2) = δ(5 + 4(n − 2)q).

Now we would hope that for any (idL, idR] that do not contain one of the
adversary’s points, |pidR − pidL | < δ. This would seem to follow from Lemma 1.
However, we only have this property for idL, idR that can be efficiently computed.
Therefore, P (id) is potentially a cheating oracle. However, since our tracing algo-
rithm is efficient, any query it makes can be efficiently computed, and therefore
|pidR −pidL | < δ holds (with overwhelming probability) for all queried points such
that (idL, idR] does not contain any of the identities in C. Therefore, following
Remark 1, we can still invoke Theorem 2, which shows that the following hold:

– QTrace, and hence Trace, runs in polynomial time.
– QTrace, and hence Trace, will with overwhelming probability not output an

identity outside S.
– If D is ε-useful, then QTrace, and hence Trace, will output some element in

S (w.h.p.).

Construction. As observed by Garg et al. [21], FE immediately gives a PLBE
scheme. Let F be the set of functions fid : S ×M → (M∪{⊥}) where fid(S,m)
outputs m if m ∈ S and ⊥ if m /∈ S. Let (SetupFE ,KeyGenFE ,EncFE ,DecFE)
be a FE scheme for this class of functions. The plaintext space S × M has
size 2λ × |M|, and the function space admits circuits of size O(λ). We then
immediately obtain a PLBE scheme: to encrypt a message to a set S, simply
encrypt the pair (S,m). The secret key for identity id is the secret key for function
fid. We use an adaptively secure scheme [2,21,40].

Parameter Sizes. In the above conversion, the PLBE scheme inherits the para-
meter sizes of the functional encryption scheme. Using functional encryption for
general circuits, the secret size is poly(n) and the ciphertext size will similarly
grow as poly(n, |m|). We can make the ciphertext size |m| + poly(n) by turn-
ing the PLBE into a key encapsulation protocol where we use the PLBE to
encrypt the key for a symmetric cipher, and then encrypt m using the symmet-
ric cipher. We note that it is inherent that the secret keys and ciphertexts of a
PLBE scheme grow with the identity bit length n, as both terms must encode a
complete identity. Therefore we obtain a PLBE scheme with essentially optimal
parameters:

Corollary 1. Assuming the existence of iO and OWF, then there exists an
adaptively secure traitor tracing scheme whose master key is size is O(1), secret
key size is poly(n), and ciphertext size is |m| + poly(n).

Note, however, that the obtained traitor tracing scheme is not optimal, as
there is no reason ciphertexts in a traitor tracing scheme need to grow with the
identity bit-length. The large ciphertexts are inherent to the PLBE approach to
traitor tracing, so obtaining smaller ciphertexts necessarily requires a different
strategy. In Sect. 5, we give an alternate route to obtaining traitor tracing that
does not suffer this limitation, and we are therefore able to obtain an optimal
traitor tracing system.

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 413

On Bounded Collusions. If we relax the security to bounded-collusion security,
then the assumption can be relaxed to PKE using the q-bounded collusion FE
scheme of [25].

Corollary 2. Assume the existence of secure PKE, then there exists a q-bounded
collusion-resistant adaptively secure traitor tracing scheme whose master key and
secret key sizes are O(n)poly(q) and ciphertext size is |m| + O(n)poly(q).

5 Flexible Traitor Tracing with Short Ciphertexts

We now discuss how to achieve traitor tracing with small ciphertexts that do
not grow with the identity size. As noted above, the approach using private
linear broadcast is insufficient due to having ciphertexts that inherently grow
with the identity bit-length. We note that for traitor tracing, secret keys must
encode the identities anyway, so they will always be as long as the identities.
Therefore the focus here is just on obtaining short ciphertexts. To that end,
we introduce a generalization of private linear broadcast that does not suffer
from the limitations of the private linear broadcast approach; in particular, the
information contained in the ciphertext is much shorter than the identities.

Let ID0 = [2t+1] be the set of identity “blocks”, and the total identity
space ID = (ID0)n be the set of n-block tuples. Let (Setup,KeyGen,Enc,Dec)
be a secure private broadcast scheme for ID, and the secret class S defined as
follows: each set Si,u ∈ S is labeled by an index i ∈ [n] and “identity block”
u ∈ ID0 ∪ {0}. Si,u is the set of tuples id = (id1, . . . , idn) where idi ≤ u. We
call such a private broadcast scheme a private block linear broadcast encryption
(PBLBE) scheme.

Ideally, we would like to simply add a tracing algorithm on top of
(Setup,KeyGen,Enc,Dec) as we did in the previous section. The tracing algo-
rithm would run the tracing algorithm from Sect. 4 on each identity block. For
each i ∈ [n], this gives a list of, say, Ti identity blocks idj,i ∈ ID0 for j ∈ [Ti],
where each of the idj,i is the ith block of some identity owned by the adversary.
Repeating this for every i gives a collection of identity blocks for every block
number. However, it is not clear how to use these blocks to construct a complete
identity in ID. There are two problems:

– How do we argue that the blocks obtained for each index i come from the
same set of identities? It may be that, for example when n = 2, that the
adversary has identities (id1,1, id1,2) and (id2,1, id2,2), but tracing for i = 1
yields id1,1 whereas tracing i = 2 yields id2,2. While we have obtained two of
the adversary’s blocks, there may not even be a complete identity among the
blocks.

– Even if we resolve the issue above, and show that tracing each block number
yields blocks from the same set of identities, there is another issue. How to
we match up the partial identity blocks? For example, in the case n = 2, we
may obtain blocks id1,1, id2,1, id1,2, id2,2. However, we have no way of telling
if the adversary’s identities were (id1,1, id1,2) and (id2,1, id2,2), or if they were

414 R. Nishimaki et al.

(id1,1, id2,2) and (id2,1, id1,2). Therefore, while we can obtain the adversary’s
blocks for the adversary’s identities, we cannot actually reconstruct the adver-
sary’s identities themselves.

We will now explain a slightly modified scheme and tracing algorithm to
rectify the issues above. First, by including a fixed tag τ inside every block
of id, we can now identify which blocks belong together simply by matching
tags. This resolves the second point above, but still leaves the first. For this, we
give a modified tracing algorithm that we can prove always outputs a complete
collection of blocks.

We now give the scheme derived from any PBLBE. There will be two identity
spaces. Let ID′ = {0, 1}n be the identity space for the actual traitor tracing
scheme; that is, ID′ is the set of identities that we actually want to recover
by tracing. We wish to grow n arbitrarily large without affecting the ciphertext
size. The second space will be the space ID of the underlying PBLBE, which
consists of n blocks of t+1 bits. In particular, the bit length of the traitor tracing
identity space ID′ will be equal to the number of blocks in the PBLBE space.
Set t = λ, so that the bit-length of each block in the PBLBE grows with the
security parameter, but crucially not in n. Define N = 2t = 2λ.

– Setup is again inherited from the private broadcast scheme.
– To generate the secret key for an identity id′ ∈ ID′, write id′ = (id′

1, . . . , id
′
n)

where id′
i ∈ {0, 1}. Choose a random s ∈ [N], and define the identity

id = (id1, . . . , idn) ∈ ID where idi = 2s − id′
i ∈ ID0. Run the private broad-

cast keygen algorithm on id, and output the resulting secret key. Call this
algorithm KeyGenTT

– Enc,Dec are identical to the basic tracing scheme, except that Dec now
uses the derived user secret key as defined above. Call these algorithms
EncTT ,DecTT .

Theorem 5. Let (Setup,KeyGen,Enc,Dec) be a secure private broadcast
scheme for identity space ID and private class S, where ID,S are
defined as above. Then there is an efficient algorithm Trace such that
(Setup,KeyGen,EncTT ,DecTT ,Trace) as defined above is a flexible traitor tracing
algorithm.

We prove Theorem 5 using similar techniques as in the proof of Theorem4,
except that the jump finding problem in Sect. 3 does not quite capture the func-
tionality we need. Instead, in Sect. 3.1, we define a generalized jump finding
problem, and show how to solve it. We then use the solution for the generalized
jump finding problem to trace our scheme above.

Proof. We will take an approach very similar to the proof of Theorem4. We
will use a pirate decoder D to create an oracle Q as in the generalized jump
finding problem. Then we run the tracing algorithm QTrace′ on this Q, which
will output the identities of some the colluders.

Define Q(i, u) to be the randomized procedure that does the following: sample
a random bit b, computes the encryption c ← Enc(mpk, (i, u),mb) of mb to the

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 415

set Si,u indexed by (i, u) ∈ [n] × [0, 2N], runs b′ ← D(c), and outputs 1 if and
only if b = b′. Define pi,u to be the probability that Q(i, u) outputs 1. We now
need to show that if D is useful, then Q satisfies the conditions of Theorem3.

First, notice that pi,0 = pi′,0 for all i, i′ ∈ [n], since the set indexed by (i, 0)
is just the empty set, independent of i. Define p0 = pi,0. Similarly, pi,2N = p2N ,
independent of i, as the set indexed by (i, 2N) is the complete set.

Next, notice that if D is useful, we have |p2N−p0| > ε/2, similar to Theorem 4.
Now set δ = ε/(9 + 4(t − 1)q) (recall that N = 2t). We have the following:

Lemma 3. Suppose (Setup,KeyGen,Enc,Dec) is secure. Fix a non-negligible
value δ. Suppose two pairs (i, 2x), (j, 2x) ∈ [n]× [0, 2N] are chosen adversarially
after seeing the set C, the adversary’s secret keys, the pirate decoder D, and even
the internal state of A. Then, except with negligible probability |pi,2x − pj,2x| < δ

Proof. Let id′ be an identity the adversary queries on, with associated tag s.
Let id = (id1, . . . , idn) ∈ ID where idi = 2s − id′

i ∈ ID0 as above. It suffices
to show that the set id ∈ Si,2x if and only if id ∈ Sj,2x. This is equivalent to
the requirement that 2s − id′

i ≤ 2x if and only if 2s − id′
j ≤ 2x. Since id′

i, id
′
j

are binary, this is true. The lemma then follows from the security of the private
block linear broadcast scheme.

Next, define Ci to be the set of values 2s − id′
i for identities id′ queried by

the adversary. Equivalently, Ci is the set of ith blocks of the corresponding
identities id. The following also easily follows from the security of private block
linear broadcast:

Lemma 4. Suppose (Setup,KeyGen,Enc,Dec) is secure. Fix a non-negligible
value δ. Suppose two pairs (i, x), (i, y) ∈ [n] × [0, 2N] are chosen adversarially
after seeing the set C, the adversary’s secret keys, the pirate decoder D, and even
the internal state of A, such that the interval (x, y] does not contain any points
in Ci. Then |pi,x − pi,y| < δ.

We now see that the oracle Q corresponds to the (N, r = n, q, δ, ε)-generalized
jump finding problem. Here, the hidden set C contains tuples (s, id1, . . . , idn) =
(s, id) where where id ∈ ID′ is one of the adversary’s identities, and s is the
corresponding tag that was used to generate the secret key for id. Similar to the
basic tracing algorithm, the pirate decoder may cheat, and the lemmas above may
not hold for all possible points. However, they hold for efficiently computable
points, and in particular must hold for the points queried by the efficient QTrace′

of Theorem 3. Thus, following Remark 1, we can invoke Theorem 3, so QTrace′

will produce a non-empty list L of tuples (s, id) from C. This completes the
theorem.

Construction and Parameter sizes. Similar to the case of PLBE, it is straight-
forward to construct private block linear broadcast encryption from functional
encryption, and the PBLBE scheme will inherit the parameter sizes from the FE
scheme. We will use r = λ-bit blocks and n-bit identities. The circuit size needed

416 R. Nishimaki et al.

for the functional encryption scheme is therefore poly(n), and the plaintext size
is |m| + poly(log n) (ignoring the security parameter).

Some functional encryption schemes are non-compact, meaning the cipher-
text size grows with both the plaintext size and the function size, in which case
our ciphertexts will be |m| + poly(n), no better than the basic tracing system.
Instead, we require compact functional encryption, where the ciphertext size is
independent of the function size. The original functional encryption scheme of
Garg et al. [21] has this property. However, they only obtain static security,
and adaptive security is only obtained through complexity leveraging. In a very
recent work, Ananth and Sahai [4] show how to obtain adaptively secure func-
tional encryption for Turing machines, and in particular obtain adaptively secure
functional encryption that meets our requirements for optimal ciphertext and
secret key sizes.

Corollary 3. Assuming the existence of iO and OWF, there exists an adaptively
secure traitor tracing scheme whose master key size is poly(log n), secret key size
is poly(n), and ciphertext size is |m| + poly(log n).

On Bounded Collusions. If we relax security to bounded-collusion security, then
the underlying assumption can be relaxed to the (sub-exponential) LWE assump-
tion using the succinct FE scheme of [23], which can be made adaptively secure
through complexity leveraging.

Corollary 4. Assume the sub-exponential hardness of the LWE problem with
a sub-exponential factor, then there exists a q-bounded collusion-resistant adap-
tively secure traitor tracing scheme whose master key size is poly(log n, q) and
secret key size is poly(n, q) and ciphertext size is |m| + poly(log n, q).

References

1. Abdalla, M., Dent, A.W., Malone-Lee, J., Neven, G., Phan, D.H., Smart, N.P.:
Identity-based traitor tracing. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 361–376. Springer, Heidelberg (2007)

2. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015)

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 308–326. Springer, Heidelberg (2015)

4. Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz,
E., et al. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49096-9 6

5. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th Annual Symposium on Foundations of
Computer Science, pp. 171–190. IEEE Computer Society Press, Berkeley, CA,
USA, 17–20 October 2015

http://dx.doi.org/10.1007/978-3-662-49096-9_6

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 417

6. Boneh, D., Franklin, M.K.: An efficient public key traitor scheme (extended
abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 338. Springer,
Heidelberg (1999)

7. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

8. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 2006: 13th
Conference on Computer and Communications Security, pp. 211–220. ACM Press,
Alexandria, Virginia, USA, 30 October - 3 November 2006

9. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014)

10. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

11. Chabanne, H., Phan, D.H., Pointcheval, D.: Public traceability in traitor tracing
schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–558.
Springer, Heidelberg (2005)

12. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

13. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Trans. Inf. Theor.
46(3), 893–910 (2000)

14. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. Cryptology ePrint Archive, Report 2015/1096
(2015). http://eprint.iacr.org/2015/1096

15. Cohen, A., Holmgren, J., Vaikuntanathan, V.: Publicly verifiable software water-
marking. Cryptology ePrint Archive, Report 2015/373 (2015). http://eprint.iacr.
org/2015/373

16. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

17. Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive
chosen ciphertext attack. In: Desmedt, Y. (ed.) PKC 2003. LNCS, vol. 2567, pp.
100–115. Springer, Heidelberg (2003)

18. Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and revok-
ing. Distrib. Comput. 17(4), 323–347 (2005)

19. Fiat, A., Tassa, T.: Dynamic traitor tracing. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, p. 354. Springer, Heidelberg (1999)

20. Gafni, E., Staddon, J., Yin, Y.L.: Efficient methods for integrating traceability and
broadcast encryption. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
372–387. Springer, Heidelberg (1999)

21. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual Symposium on Foundations of Computer Science, pp. 40–49. IEEE Com-
puter Society Press, Berkeley, CA, USA, 26–29 October 2013

22. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption
without obfuscation. In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol.
9563, pp. 480–511. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 18

http://eprint.iacr.org/2015/1096
http://eprint.iacr.org/2015/373
http://eprint.iacr.org/2015/373
http://dx.doi.org/10.1007/978-3-662-49099-0_18

418 R. Nishimaki et al.

23. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D.,
Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium on Theory
of Computing, pp. 555–564. ACM Press, Palo Alto, CA, USA, 1–4 June 2013

24. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in groups
of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
511–527. Springer, Heidelberg (2004)

25. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

26. Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

27. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Roughgarden, T. (ed.) ITCS 2015: 6th Innovations in
Theoretical Computer Science, pp. 163–172. Association for Computing Machinery,
Rehovot, Israel, 11–13 January 2015

28. Kiayias, A., Tang, Q.: Traitor deterring schemes: using bitcoin as collateral for dig-
ital content. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015: 22nd Conference
on Computer and Communications Security, pp. 231–242. ACM Press, Denver, CO,
USA, 12–16 October 2015

29. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer,
Heidelberg (2002)

30. Kiayias, A., Yung, M.: Copyrighting public-key functions and applications to black-
box traitor tracing. Cryptology ePrint Archive, Report 2006/458 (2006). http://
eprint.iacr.org/2006/458

31. Kurosawa, K., Desmedt, Y.G.: Optimum traitor tracing and asymmetric schemes.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer,
Heidelberg (1998)

32. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

33. Naor, M., Pinkas, B.: Threshold traitor tracing. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 502–517. Springer, Heidelberg (1998)

34. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

35. Nishimaki, R., Wichs, D.: Watermarking cryptographic programs against arbitrary
removal strategies. Cryptology ePrint Archive, Report 2015/344 (2015). http://
eprint.iacr.org/2015/344

36. Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: how to embed
arbitrary information in a key. Cryptology ePrint Archive, Report 2015/750 (2015).
http://eprint.iacr.org/2015/750

37. Safavi-Naini, R., Wang, Y.: Sequential traitor tracing. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 316–332. Springer, Heidelberg (2000)

38. Silverberg, A., Staddon, J., Walker, J.L.: Efficient traitor tracing algorithms using
list decoding. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 175–192.
Springer, Heidelberg (2001)

39. Tzeng, W.G., Tzeng, Z.J.: A public-key traitor tracing scheme with revocation
using dynamic. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 207–224.
Springer, Heidelberg (2001)

http://eprint.iacr.org/2006/458
http://eprint.iacr.org/2006/458
http://eprint.iacr.org/2015/344
http://eprint.iacr.org/2015/344
http://eprint.iacr.org/2015/750

Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key 419

40. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 678–697. Springer, Heidelberg (2015)

41. Zhandry, M.: Adaptively secure broadcast encryption with small system parame-
ters. Cryptology ePrint Archive, Report 2014/757 (2014). http://eprint.iacr.org/
2014/757

http://eprint.iacr.org/2014/757
http://eprint.iacr.org/2014/757

Unconditionally Secure Computation
with Reduced Interaction

Ivan Damg̊ard1(B), Jesper Buus Nielsen1, Rafail Ostrovsky2, and Adi Rosén3

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
ivan@cs.au.dk

2 UCLA, Los Angeles, USA
3 CNRS and Université Paris Diderot, Paris, France

Abstract. We study the question of how much interaction is needed
for unconditionally secure multiparty computation. We first consider the
number of messages that need to be sent to compute a Boolean func-
tion with semi-honest security, where all n parties learn the result. We
consider two classes of functions called t-difficult and t-very difficult func-
tions, where t refers to the number of corrupted players. For instance,
the AND of an input bit from each player is t-very difficult while the
XOR is t-difficult but not t-very difficult. We show lower bounds on the
message complexity of both types of functions, considering two notions of
message complexity called conservative and liberal, where conservative is
the more standard one. In all cases the bounds are Ω(nt). We also show
(almost) matching upper bounds for t = 1 and functions in a rich class
PSMeff including non-deterministic log-space, as well as a stronger upper
bound for the XOR function. In particular, we find that the conservative
message complexity of 1-very difficult functions in PSMeff is 2n, while
the conservative message complexity for XOR (and t = 1) is 2n − 1.
Next, we consider round complexity. It is a long-standing open prob-
lem to determine whether all efficiently computable functions can also
be efficiently computed in constant-round with unconditional security.
Motivated by this, we consider the question of whether we can compute
any function securely, while minimizing the interaction of some of the
players? And if so, how many players can this apply to? Note that we
still want the standard security guarantees (correctness, privacy, termi-
nation) and we consider the standard communication model with secure
point-to-point channels. We answer the questions as follows: for passive
security, with n = 2t + 1 players and t corruptions, up to t players can
have minimal interaction, i.e., they send 1 message in the first round to
each of the t + 1 remaining players and receive one message from each
of them in the last round. Using our result on message complexity, we
show that this is (unconditionally) optimal. For malicious security with
n = 3t + 1 players and t corruptions, up to t players can have minimal
interaction, and we show that this is also optimal.

1 Introduction

In Multiparty Computation n players want to compute an agreed-upon function
on privately held inputs, such that the desired result is correctly computed and
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 420–447, 2016.
DOI: 10.1007/978-3-662-49896-5 15

Unconditionally Secure Computation with Reduced Interaction 421

is the only new information released. This should hold even if t players have
been actively or passively corrupted by an adversary.

If point-to-point secure channels between players are assumed, any function
can be computed with unconditional (perfect) security, against a passive adver-
sary if n ≥ 2t+1 and against an active adversary if n ≥ 3t+1. [BGW88,CCD87]
If we assume a broadcast channel and accept a small error probability, n ≥ 2t+1
is sufficient to get active security [RB89].

The protocols behind these results require a number of communication rounds
that is proportional to the depth of an (arithmetic) circuit computing the func-
tion. One would of course like to compute any function with unconditional secu-
rity, in constant rounds, and efficiently in terms of the circuit size of the function.
This is however a long-standing open problem (note that this is indeed possible
if one makes computational assumptions).

This is not only a theoretical question: the methods we typically use in infor-
mation theoretically secure protocols tend to be computationally much more
efficient than the cryptographic machinery we need for computational security.
So unconditionally secure protocols are very attractive from a practical point of
view, except for the fact that they seem to require a lot of interaction.

It is therefore very natural to ask whether this state of affairs is inherent.
How much interaction do we actually need for unconditional security, and can
we reduce the interaction needed compared to existing protocols? This type of
question was studied in [FKN94,DPP14] in a specific 3-party model where 2
parties have input and a third gets the output. We further detail below some
previous work on secure addition, but in general very little is known on this
question.

In this paper, we make some progress with respect to two related but differ-
ent measures of interaction: message complexity and round complexity, in the
context of synchronous networks.

Message complexity seems like a very simple measure at first sight: simply
count how many messages are sent in the protocol. However, a moment’s thought
will show that things are a bit more tricky. For instance, what if the protocol
varies its communication pattern, so that Pi sometimes (but not always) sends
a message to Pj in a certain round? One way to handle this is to declare that
the absence of a message is also a signal. This leads to what we call conservative
message complexity, i.e., we say that if Pi sometimes sends a message to Pj in a
certain round, then we consider it to be the case that Pi always sends a message
to Pj in this round. This way, we force protocols to have a fixed communication
pattern.

However, considering only this measure is not completely satisfying. After all,
it could be that one could design protocols with a smaller number of messages by
using tricks such as waiting for a certain time before a message is sent, and using
the amount of elapsed time as an implicit signal. In real life such an approach
could be interesting, as there may be some cost involved in physically moving a
message, that is not incurred if one stays silent. Therefore, we also define liberal
message complexity, where the protocol is only charged for messages that are

422 I. Damg̊ard et al.

Liberal Conservative

t-very difficult �n(t+1)−1
2

� + n
2

�n(t+1)−1
2

� + n

t-difficult �n(t+1)−1
2

� + n−1
2

�n(t+1)−1
2

� + n − 1

Fig. 1. Lower bounds.

explicitly sent, and where we consider the expected number of messages as well
the maximum. We discuss these measures in more detail later, when we define
them formally.

Our results are as follows: We consider n players and t semi-honest and static
corruptions. We look at statistically secure computation of Boolean functions,
where all parties learn the output. We assume secure point to point channels that
leak the length of the message sent to the adversary (as any implementation using
crypto would do). The ideal functionality for computing the function leaks the
output to the adversary only if some party is corrupted, so essentially we ask
that the adversary cannot learn anything by doing only traffic analysis.

We consider two classes of functions, called t-very difficult and a larger class
called t-difficult. The AND of an input bit from each player, and more generally
threshold functions are t-very difficult, whereas the XOR is t-difficult but not
t-very difficult.

We show lower bounds for all 4 cases that arise naturally. In all cases the
bounds are Ω(nt). Results are summarized in Fig. 1.

For the case of t = 1 we also show upper bounds using perfectly secure proto-
cols, for all functions in a class we call PSMeff which includes non-deterministic
log-space and more (see Definition 1 below), as well as a stronger upper bound
for the XOR function. Figures 2 and 3 show the lower bounds for t = 1 and
the upper bounds. We see that we have obtained the exact conservative mes-
sage complexity for all 1-very difficult functions in PSMeff . This includes, for
instance, the AND and thresholds functions in general. We have also obtained
the exact conservative and liberal message complexity for XOR (when t = 1).
Finally we have characterised the liberal message complexity of 1-very difficult
functions in PSMeff up to 1/2 message, the exact characterization is left as an
open problem.

Some remarks on alternative models are in order: we insist that the number
of parties is considered to be constant, even if the security parameter grows.
This rules out tricks like secret sharing one’s input among a small subset of
parties, hoping they are not all corrupt [BGT13,GIPR] (which works for static

Liberal Conservative

1-very difficult 3n/2 2n

1-difficult 3n/2 − 1/2 2n − 1

Fig. 2. Lower bounds for t = 1.

Unconditionally Secure Computation with Reduced Interaction 423

Liberal Conservative

PSMeff 3n/2 + 1/2 2n

XOR 3n/2 − 1/2 2n − 1

Fig. 3. Upper bounds for t = 1.

corruptions, but not for adaptive corruptions). If one is happy with statistical,
static, semi-honest security for a large number of parties, then this type of trick
can be used to compute simple operations with a poly-log (in n) number of
messages. If the communication pattern is fixed, than a quadratic number of
messages is required for addition protocols [CK93]. Note that our bounds hold
regardless of the number of parties if adaptive security or perfect security is
required (and our upper bounds yield perfect security). Therefore the only way
to circumvent our lower bounds is to settle for static and statistical security
and let the number of parties grow with the security parameter (for adaptive
adversary with setup assumptions, see further discussion in [CCG+15]).

Next, we consider round complexity: As mentioned, computing any function
with unconditional security, in constant rounds and efficiently in the circuit size
of the function is an open problem1, and providing a positive answer seems to
require completely new ideas for protocol design. Motivated by this, we consider
the question of whether we can minimize the interaction of some of the players?
And if so, how many players can this apply to? Note that we still want the
standard security guarantees (correctness, privacy, termination). We answer this
question as follows: for passive security, with n = 2t+1 players and t corruptions,
up to t players can have minimal interaction, i.e., they send 1 message in the
first round to each of the t + 1 remaining players and receive one message from
each of them in the last round. Using our result on message complexity, we show
that this is (unconditionally) optimal. For malicious security with n = 3t + 1
players and t corruptions, up to t players can have minimal interaction, and we
show that this is also optimal.

For the purpose of proving the positive result for malicious security, we show a
result of independent interest: For the case n = 3t+1 and t malicious corruptions,
we design a broadcast protocol of the following special form: we can select any
subset of t players, who only need to send one message to the other n− t players.
After this point, we can do broadcast among the remaining n − t players. Note
that we are not guaranteed that we have at most a third corruptions among the
n − t players, so we cannot do broadcast from scratch in this set. We find it
slightly surprising that we need so little involvement from the t selected players.
In particular, they might all be corrupt and hence send completely inconsistent
setup values – then, of course, we are saved by the fact that the remaining players
are all honest (but they do not know this yet).

1 Using randomizing polynomials [IK00] one can get unconditional security and con-
stant round efficiently in the branching program size of the function, but this does
not seem to help beyond NC1.

424 I. Damg̊ard et al.

2 Preliminaries

We use N to denote the non-negative integers. For n ∈ N we let [n] = {1, . . . , n}.
We prove security in the model from [Can00] with unconditional security

and a static adversary. We consider a synchronous model with point-to-point
perfectly secure channels between each pair of parties, where the length of each
message sent is leaked to the adversary. In one round, all parties may send mes-
sages to each other. We consider function evaluation between n parties P1, . . . ,Pn

with inputs x1, . . . , xn and common output y = f(x1, . . . , xn) for a poly-time
n-party function f . In the ideal model, we assume that nothing is leaked to the
adversary in case no one is corrupted. We refer to [Can00] for the details of the
model.

We say that a protocol has perfect correctness if it always computes the
correct result when all parties follow the protocol. We say that a protocol has
perfect privacy against t semi-honest corruptions if the ideal world and the real
world models have the same distributions even when t parties are passively
corrupted, i.e., they follow the protocol but might pool their views of the protocol
to learn more than they should. We say that a protocol has statistical privacy
against t semi-honest corruptions if the view of the corrupted parties in the ideal
world and the real world models have distributions that are statistically close
in some security parameter s even if t parties are passively corrupted. We say
that a protocol has perfect privacy against t malicious corruptions if the view
of the corrupted parties in the ideal world and the real world models have the
same distributions even when t parties might deviated from the protocol in a
coordinated manner. If the distributions are only statistically close we talk about
statistical security against t malicious corruptions.

As is well known, it is possible to implement secure function evaluation of any
poly-time n-party function with perfect correctness and perfect privacy against
t semi-honest corruptions when n ≥ 2t + 1. It is possible to implement secure
function evaluation of any poly-time n-party function with perfect correctness
and perfect privacy against t malicious corruptions when n ≥ 3t+1, see [BGW88,
CCD87].

We will use secure function evaluation protocols for the so-called preprocess-
ing model as tools. In these protocols an incorruptible trusted third party will
sample a distribution D to get an n-tuple (d1, . . . , dn) ← D. Then it privately
gives di to Pi. After the setup phase, the n parties engage in a protocol where
they communicate over secure channels. In such pre-processing models there
exist appropriate distributions D which will allow to get perfect correctness and
perfect privacy against t passive corruptions out of n = t + 1 parties. See, e.g.,
[DZ13] and the references therein.

We also use protocols for the private simultaneous message (PSM) model.
For this model an n-party protocol for an n-party function f is given by

(R,M1, . . . , Mn, g)

where R is a distribution with finite support, each Mi is a function, called the
message function of party i, and g is function called the reconstruction function.

Unconditionally Secure Computation with Reduced Interaction 425

By perfect correctness of a PSM protocol for an n-party function f we mean
that for all r in the support of R and all inputs (x1, . . . , xn) for f it holds that
f(x1, . . . , xn) = g(M1(x1, r), . . . , Mn(xn, r)).

By ε-privacy of a PSM we mean that there exists a poly-time simula-
tor S such that for all inputs (x1, . . . , xn) for f , y = f(x1, . . . , xn) and a
random sample r ← R it holds that (M1(x1, r), . . . , Mn(xn, r)) and S(y)
have statistical distance at most ε. If ε = 0, then we talk about perfect
privacy. If ε is negligible we talk about statistical security. Privacy ensures
that a party seeing (M1(x1, r), . . . , Mn(xn, r)) learns nothing extra to y =
g(M1(x1, r), . . . ,Mn(xn, r)).

The PSM model is a generalization of [FKN94] and is defined in [IK97], where
they also gave perfectly secure and efficient (poly-time) PSM protocols for a large
class of functions including non-deterministic log-space, modp L and �L. In [IK97]
privacy is not formulated via poly-time simulation: the notion only asks that
(M1(x1, d1), . . . , Mn(xn, dn)) depends only on f(x1, . . . , xn). We need the simula-
tion based notion here, as we prove security in [Can00], which is phrased via effi-
cient simulation. We note that if for a given function f it is possible to compute
in poly-time, from an output y = f(x1, . . . , xn), an input (x′

1, . . . , x
′
n) such that

y = f(x′
1, . . . , x

′
n) then the notions are equivalent for f . The simulator will sim-

ply compute (x′
1, . . . , x

′
n), sample r ← R and output (M1(x1, r), . . . , Mn(xn, r)).

Of course, if inputs are single bits and the number of parties is considered to be
constant, such inversion can be done in constant time by trying all possibilities.

In the following, when using PSM protocols, we will consider such efficiently
invertible functions f that also have an efficient PSM protocol:

Definition 1. We will use PSMeff to denote the class of functions that are
efficiently invertible as described above and can be computed by a polynomial
time PSM protocol.

We also use additive secret sharing of bits strings x ∈ {0, 1}m. An additive
secret sharings of x between P1, . . . ,Pn consists of sampling shares s1, . . . , sn ∈
({0, 1}m)n uniformly at random under the only restriction that x = ⊕n

i=1si,
where ⊕ denote bit-wise exclusive or. It is easy to show that the distribution of
any n−1 of the shares is the uniform one on ({0, 1}m)n−1 and hence independent
of x.

3 Message Complexity

Defining the message complexity of a protocol for the synchronous model with
secure channels appropriately is slightly more tricky than one might expect at
first, so we address this issue in its own section.

We will first of all need to allow parties to not send a message to some party
in a given round. Since all parties send messages to all parties in all rounds in
[Can00], we need to hack the model a bit for this. We will say that if a party
sends the empty string then this counts as not having sent a message. Think of

426 I. Damg̊ard et al.

receiving the empty string from Pi as meaning “no message was received from
Pi in this round”.

This builds up to a subtler point that we demonstrate by an example. Con-
sider the problem where a dealer D is to deal an additive secret sharing of a bit
d between n parties P1, . . . ,Pn. What is the average message complexity of this
problem? It turns out that if we ignore security for a second, then it is at most
n/2 if one is not careful. The dealer samples a secret sharing d = d1 ⊕ · · · ⊕ dn.
Then for i = 1, . . . , n, if di = 0 he does not send a message to Pi. If di = 1,
then he sends 1 to Pi. Since di is uniformly random it follows from linearity of
expectation that he sends an expected n/2 messages.

If we consider security, the bound changes. It is the case in [Can00] that
the adversary can see the length of a message sent securely. This in particular
means that in our setting here, the adversary can see if a message was sent or
not between any two parties—it can see the communication pattern. This is a
reasonable model, as hiding the presence of a communication is not practical, in
particular when we actually do not want to transmit anything when there is no
message to be sent.

Of course seeing the communication pattern of the above protocol renders
it insecure, but this kind of contrived example shows that in some cases, if we
want a very precise measure of message complexity we need to consider protocols
with fixed communication patterns, i.e., if P1 sometimes sends a message to P2

in round 1, then we consider it the case that P1 always sends a message to P2

in round 1, as the absence of the message is a signal.
On the other hand, considering only this measure seems to be not entirely

satisfying. We should be intrigued whether or not using tricks as above will allow
more efficient protocols, so it makes sense to also consider a notion where we
only count messages that are explicitly sent.

This will mean that the number of messages may not be the same in all runs
of the protocol. When we prove lower bounds it will therefore not be meaningful
to consider conservative message complexity. For example, if we can prove that
all protocols must with some probability 2−s, where s is the security parameter,
send 240n message but that they in all other cases might have to send only 2n
messages, then we would not consider 240n a very meaningful lower bound for
the number of messages. When we prove lower bounds we would like to consider
expected message complexity, which would turn the lower bound in the just given
example into 2n, as 2−s240n is vanishing in s. We call this liberal communication
complexity. Another way to relax the conservative notion is to still only count
messages explicitly sent but look at the worst case number over the randomness
of the parties. We call this worst case communication complexity. It is obviously
in between the conservative and liberal notions and we will at some point only
be able to prove an upper bound for the worst case notion (as opposed to the
conservative one).

We therefore define three measures of message complexity, a conservative
one, a liberal one and a worst case one:

Unconditionally Secure Computation with Reduced Interaction 427

Definition 2 (Conservative Message Complexity). Let π be an n-party
protocol for a synchronous network. Let R be random tapes of all players. By
Msgcon(π) we denote the conservative message complexity of π. For all r ∈ N

and all i ∈ [n] and all j ∈ [n] \ {i} we define cr,i,j to be 1 if there exists an
input x for π and randomness R such that when π is run with that input and
that randomness, Pi will send a message to Pj in round r. We let cr,i,j = 0
otherwise. We let

Msgcon(π) =
∑

r,i,j

cr,i,j .

Note that in the conservative message complexity, even if some player flips
a fair coin and sends a message that is independent of it’s input, say “hello” to
player one if the coin is zero and “hello” to player two, three and four if the
coin is one, the conservative message complexity counts this as four messages.
A more liberal way to count messages in any specific protocol run and then
take expectation or worst case over the random tapes of the parties. We call
this liberal message complexity respectively worst case complexity. In the above
example, the liberal message complexity of the “hello” messages is two messages
and the worst case complexity is three message.

Definition 3 (Liberal Average/Worst-Case Message Complexity). Let
π be an n-party protocol for a synchronous network. For a given run of π on
input x and some fixed random tapes R of the parties we define cr,i,j to be 1 if
Pi sent a message to Pj in round r. We let cr,i,j = 0 otherwise. We let

Msg(π,x, R) =
∑

r,i,j

cr,i,j

and
Msglib(π) = max

x
ER[Msg(π,x,R)].

Msgwor(π) = max
x,R

[Msg(π,x,R)].

It is easy to see that it is always the case that Msglib(π) ≤ Msgwor(π) ≤
Msgcon(π).

We extend the above notions to the statistical setting by defining them as
above for each fixed value of σ and then taking lim sup when this limit is defined.
If this limit is not defined, we define the message complexity to be ∞.

4 Lower Bounds

We now proceed to present and prove our lower bounds. We first prove a lower
bound on the message complexity of secure function evaluation in the face of
semi-honest corruptions. Then we give a lower bound on the individual round
complexity in the face of t semi-honest corruptions and then a lower bound on
the individual round complexity in the face of t malicious corruptions.

428 I. Damg̊ard et al.

4.1 Message Complexity

We first prove a lower bound on the message complexity of secure function
evaluation secure against t semi-honest corruptions. We will prove the bound for
a large class of function that we will call t-difficult, and a slightly larger bound
for a smaller class called t-very difficult.

First some clarifications: even though we have defined two different ways
to count messages, where an empty message counts in one notion and not in
the other, in the following, when we say that a message is sent or received, or
messages are exchanged, we always refer to non-empty messages.

Very roughly, the intuition we will formalize is as follows: A player whose
input matters to the result must somehow communicate his input to the rest of
players, in order to enable correct computation of the result by all players. The
input cannot be encoded in the communication pattern which is public, so it must
follow from the content of messages this player exchanges with other players. On
the other hand, a player whose inputs matters has to exchange messages with at
least t + 1 parties before his input becomes determined. Otherwise he may have
talked to only corrupted parties and the protocol would not be private. This
already indicates a lower bound of n(t + 1)/2 messages (we need to divide by
2 since a message counts as communication for both sender and receiver). But
we can do more: we show that after the inputs have been fixed, all players must
receive information allowing them to determine the result of the computation.
Under the liberal message complexity notion, this does not necessarily mean that
all players must receive another message, but we can show that in expectation
most players must receive a message half the time. So this indicates a lower
bound of n(t + 2)/2 messages, which is (approximately) what we obtain.

We start with some notation: For an input vector x = (x1, . . . , xn) and a
subset D ⊆ {1, . . . , n} and inputs xD = {(j, x′

j)}j∈D for the parties in D we use
x [xD] to denote the vector x with xj replaced by x′

j for j ∈ D.

Definition 4. We say that a function f is t-difficult for Pi if the following holds:

Influence. There exists two inputs xi,0 and xi,1 such that xi,0
j = xi,1

j for all
Pj 	= Pi and such that f(xi,0) 	= f(xi,1).

Uncertainty. There exists an input x?
i such that for all subsets C ⊂

{P1, . . . ,Pn} \ {Pi} with |C| = t and D = {P1, . . . ,Pn} \ ({Pi} ∪ C) and all
inputs x for f there exists xD = {x′

j}j∈D such that f(x[(i, x?
i)]) = f(x[xD]).

We say that f is t-difficult if f is t-difficult for all Pi.

Intuitively, if a party has influence, then the function – at least sometimes
– depends on the input of that party. If a party Pi has uncertainty, it means
that for some input, called x?

i , of Pi, if subset C is corrupt, they will not be
able to figure out which input Pi has, no matter what the other inputs were: we
can switch Pi’s input to anything else and compensate for this by changing the
inputs of the other honest parties such that the output is the same. One may
think, for instance of the AND function: if Pi has input 0, the output is 0, but
the adversary cannot know if this is because Pi or another honest party has a 0.

Unconditionally Secure Computation with Reduced Interaction 429

As examples of t-difficult functions consider the functions where each party
has as input a bit and where the output is the AND or the XOR of these n bits.
Other examples are general threshold functions, which output 1 iff at least some
0 < t′ < n parties have input 1.

For a run of a protocol π and a given party Pi and a given point in the
protocol we keep track of a set Ni which can be thought of as the parties that
Pi has exchanged messages with, but it is defined with a slight twist. From the
beginning we set all Ni = ∅. Whenever Pi sends a message, we update Ni to be
the set of parties Pi has sent a message to or received a message from so far in
the protocol. The definition is important so let us elaborate:

1. The set Ni is not updated at the time a message is received.
2. The set Ni is updated at the time a message is sent.
3. When Ni is updated we add all the messages that were received since the last

time is was updated and we also add the outgoing message that triggered the
update.

We say that a protocol has t-floating input for Pi if at each point in the
protocol where |Ni| ≤ t it holds that Pi still did not read its input xi. More
formally, if we model Pi as an interactive Turing machine, it means that Pi did
not access its input tape. We say that π has t-floating input if it has t-floating
input for all parties.

For any run of a protocol we define a revelation message to be the message
(if it exists) where before the message is sent it holds for at least one Pi that
|Ni| ≤ t and after the message is received it holds for all Pi that |Ni| ≥ t + 1.
Notice that this implies that it is the size of the set Ni of the sender of the
revelation message that crosses the threshold t, as Ni is not updated in response
to receiving a message.

The communication pattern of an execution π(x ;R) with input vector x and
random tape vector R is the transcript seen by the adversary when no parties
are corrupted, i.e., who sent a message to whom at which time and the length of
those messages, but no contents of the messages and no input or output of any
party. We assume that a communication pattern is encoded as a bit string. Let
Q : {0, 1}∗ → {0, 1}∗ be a function on communication patterns. We use Q(π(x))
to denote the random variable obtained by running π on the input distribution x
and uniformly random R and applying Q to the resulting communication pattern
and then outputting the output of Q.

Our proof strategy can be summarized as follows: we will first show that a
protocol with floating inputs must have a revelation message, and that further-
more, n − 1 players must receive a message after the revelation message was
sent, with probability at least 1/2. This is quite straightforward and implies
that floating input protocols must satisfy our lower bound. The second step is
to show that any secure protocol for a difficult function f can be converted to
a floating input protocol with the same message complexity. This is the most
complicated part and uses in an essential way that the function is difficult and
the assumption in our model that the number of parties does not grow with the
security parameter.

430 I. Damg̊ard et al.

Lemma 1 (Input-Independent Communication Pattern). If π securely
implements f with statistical security for t semi-honest corruptions for some
t ≥ 0, then it holds for any two input distributions x0 and x1 and all func-
tions Q on communication patterns that Q(π(x0)) and Q(π(x1)) are statistically
indistinguishable.

Proof. This follows from the fact that when no parties are corrupted, the adver-
sary still sees the communication pattern of π(x 0) and π(x 1) and hence can
compute and output Q(π(x 0)) respectively Q(π(x 1)). However, when no parties
are corrupted the simulator has the same view when x 0 or x 1 is used. The claim
then follows from security against 0 semi-honest corruptions. ��
Corollary 1 (Input-Independent Communication Complexity). If π
securely implements f with statistical security for t semi-honest corruptions for
some t ≥ 0, then it holds for any two input distributions x0 and x1 that Msg(x0)
and Msg(x1) are statistically indistinguishable. Here, Msg(x) is the random vari-
able that selects an input according to x, runs the protocol and outputs the number
of non-empty messages sent.

Proof. Consider the function on communication patterns outputting the number
of non-empty messages sent and then apply Lemma 1. ��
Lemma 2 (Revelation Message). If π has t-floating input and securely
implements f with statistical security for t semi-honest corruptions and f is
t-difficult, then it holds for all input distributions x that π has a t-revelation
message except with negligible probability.

Proof. If π does not have a t-revelation message for input distribution x , then
there exist a party Pi such that with non-negligible probability Pi exchanges
messages with at most t parties in π(x). From Lemma 1 it then follows that
it holds for the input distributions x i,0 and x i,1 from the definition of f being
t-difficult that with non-negligible probability Pi exchanges messages with at
most t parties in π(x i,0) and also in π(x i,1). But since π has t-floating inputs,
this implies that with non-negligible probability π(x i,0) = π(x i,1) as the output
cannot depend on the input of Pi when Pi did not read its input, and all other
parties have the same inputs in x i,0 and x i,1. However, by assumption f(x i,0) 	=
f(x i,1) and we have a contradiction with correctness of π. ��
Lemma 3 (Another Message After Revelation Message). If π has t-
floating input and securely implements f with statistical security for t semi-
honest corruptions and f is t-difficult, then it holds for all input distributions
and all pairs of distinct parties Pj and Pk that in a random run of π(x) it holds
except with negligible probability that when Pk is the sender of the revelation
message, then the probability that Pj receives another message after Pk sent the
revelation message is at least 1

2 .

Proof. Assume for the sake of contradiction that there exist x and Pk and
Pj 	= Pk such that it happens with non-negligible probability that Pk is the

Unconditionally Secure Computation with Reduced Interaction 431

sender of the revelation message and that when this happens Pj will receive
another message after the revelation message is sent (but not received) with
probability at most 1

2 − c, where c is non-negligible. It is a predicate of the
communication pattern whether Pk sends the revelation message. It is also a
predicate of the communication pattern whether Pj receives another message
after the revelation message. Therefore it follows from Lemma 1 that it holds for
any input distribution x with non-negligible probability that Pk is the sender of
the revelation message and that when this happens then Pj will receive another
message after the revelation message is sent (but not received) with probability
at most 1

2 − c′, where c′ = c − negl is non-negligible as c is non-negligible.
Consider now the particular input distribution which is xk,b for a uniformly

random bit b, where xk,0,xk,1 are the input vectors guaranteed by the definition
of f being t-difficult (Pk has influence). In this case the output of all parties allow
to determine the bit b, except with negligible probability. Assume without loss
of generality that f(x i,b) = b. Let y be the distribution of the output of Pj in a
random run on x i,b conditioned on Pj not receiving another message after the
revelation message. Notice that y can be sampled by Pj at the time right before
the revelation message is sent, by simply assuming that no more messages will be
received by Pj . However, at the point before the revelation message is sent Pk did
not read its input xk yet in the protocol, so y is perfectly independent of b. From
this it follows that Pr[y = 0 | b = 0] = Pr[y = 0 | b = 1] = 1 − Pr[y = 1 | b = 1], so
either Pr[y = 0 | b = 0] ≤ 1

2 or Pr[y = 1 | b = 1] ≤ 1
2 . Assume that Pr[y = 0 | b =

0] ≤ 1
2 . Since b = 0 with probability 1

2 and Pj receives another message with
probability 1

2 − c it happens with non-negligible probability that b = 0 and at
the same time Pj does not receive another message and hence outputs according
to distribution y, which implies that it happens with non-negligible probability
that Pj does not output b, contradicting the correctness of the protocol. If we
assume that Pr[y = 1 | b = 1] ≤ 1

2 , then a violation of correctness is reached
using a symmetric argument. This concludes the proof. ��
Lemma 4 (Floating Input). Let f be a t-difficult n-party function and assume
that π is an n-party protocol securely implementing f with statistical correctness
and statistical privacy against t semi-honest corruptions. Then there exists a
protocol π′ with t-floating input which has the same security and is such that
for any input distribution, the resulting communication patterns of π and π′ are
identically distributed.

Proof. We prove the lemma by constructing π′ from π. We prove the lemma for
the weaker case where we construct π′ where only P1 has t-floating input. We
can then obtain the general case by symmetry and hybrid arguments.

All parties in π′ run as in π except P1 who runs as follows. Initially, run as
in π but with input β1 = x?

1 and a uniformly random tape ρ1. Here, x?
1 is the

input value that a exists since f is t-difficult (the uncertainty condition for P1).
If about to send a message which would result in |N1| ≥ t + 1, then first apply
the following input patching procedure: Read the input x1 and replace ρ1 with
a new random tape r1 consistent with input x1 and the communication so far.

432 I. Damg̊ard et al.

Specifically, sample r1 using rejection sample as follows. Sample r1 uniformly at
random. Let T be the list of messages sent and received by P1 so far, including
who the message was exchanged with and in which round. Run the code of P1

from π with input x1 and random tape r1 and feed P1 the incoming message
from T in the round in which they occurred. If this makes P1 send the same
messages as in T to the same parties and in the same rounds, then accept r1,
otherwise try again. Use r1 = ⊥ to denote that no acceptable r1 exists. We now
prove that if π is secure, then π′ is secure.

We will actually prove something stronger, which implies that the correctness
and the distribution of the communication pattern is also maintained. Namely
we will prove that for all input distributions x it holds that the following distrib-
utions D0 and D1 are statistically indistinguishable: D0 is obtained by sampling
a random run of π on a random input sampled from x and then outputting
((x1, r1), (x2, r2), . . . , (xn, rn)), where xi is the input of Pi and ri is the random
tape used by Pi. D1 is obtained by sampling a random run of π′ on a random
input sampled from x and then outputting ((x1, r1), (x2, r2), . . . , (xn, rn)), where
for i = 2, . . . , n the value xi is the input of Pi and ri is the random tape used
by Pi and where x1 is the input of P1 and r1 is the random tape sampled in the
input patching procedure. From this it clearly follows that if π is correct, then
π′ is correct and it follows for all t′ ≤ n that if π is secure against t′ corruptions
then π′ is also secure against t′ corruptions. Notice that to prove the claim for
all distributions on x it is sufficient to prove that it holds for all fixed input
vectors x , so in the following we assume that x is a fixed value.

Let x = (x1, x2, . . . , xn). If x1 = x?
i , then the input patching procedure

simply resamples r1 with the same distribution as β1 and hence D0 and D1 are
identical. So, assume that x1 	= x?

1 and that D0 and D1 are not statistically close.
We show how to use this to break the t-security of π. Let x 0 = (x?

1, x2, . . . , xn)
and x 1 = (x1, x2, . . . , xn) = x . We break the analysis into two cases. In case I we
assume that f(x1?, x2, . . . , xn) = f(x1, x2, . . . , xn). To avoid confusion, note that
the proof of case II in fact implies the result for case I. However, it is instructive
to first see the proof of case I as a mental warm-up.

In case I we will run π on x 0 or x 1 and show how to distinguish with non-
negligible advantage by corrupting just t parties which do not include P1. This
clearly demonstrates that π is not t-secure, as these t parties have the same
inputs and outputs in f(x 0) and f(x 1) as only the input of P1 differs and
because f(x 0) = f(x 1). So, assume that we attack a run of x b for uniformly
random b. The adversary will observe the communication pattern of the protocol.
Consider the point where P1 sends a message that would make |N1| > t for the
first time, and note that P1 has communicated with at most t parties up to now,
call this set of parties C. At this point the adversary corrupts the players in C2.
Note that all messages sent by P1 so far was sent to one of these parties. Use D
to denote the set of parties which is not in {P1}∪C. Now use rejection sampling
to sample a random tape r1 consistent with the communication between P1 and

2 when we get to the actual proof in case II, we will construct a static adversary that
always corrupts the same set.

Unconditionally Secure Computation with Reduced Interaction 433

the parties in C and input xi to P1. Note that if b = 1, this samples a string
having the same distribution as the random tape used by P1 in the protocol
π(x). If b = 0, then it samples a string having the same distribution as the
random tape r1 sampled by the input fixing procedure in π′(x). Note that the
parties in D have not communicated with P1, so all the communication leaving
the group D is with C. This means that the adversary knows all message going
in or out of the group D. It can therefore use rejection sampling to sample a
set of uniformly random tapes {(j, rj)}j∈D for the parties in D consistent with
the communication between C sand D and Pj for j ∈ D having input xj (where
xj is taken from x). This perfectly reconstructs the distribution of the state of
the parties in D. Then output ((x1, r1), (x2, r2), . . . , (xn, rn)). If b = 0, this is
exactly D0 and if b = 1 it is exactly D1. But we assumed that D0 and D1 are not
statistically close so we arrive at a contradiction with t-security of π: since the
output is the same in the two cases, a simulator would see no difference between
b = 0 and b = 1.

That brings us to case II. In this case, we can prove as above that if D0 and
D1 can be distinguished, then we can also distinguish between π(x 0) and π(x 1)
by just corrupting t parties at a point where |N1| ≤ t. The challenge is that
f(x 0) 	= f(x 1), so it does not follow easily from the definition of security that
an adversary should not be able to distinguish with just this information. We
now argue this in a more indirect way.

Consider the following experiment, which is parameterized by an (infinitely
powerful) adversary A that outputs one bit:

1. Sample b uniformly at random.
2. Run π(x b) until the point where it is about to happen that |N1| > t. If this

point does not occur, then perform the following at the end of the execution
of the protocol.

3. Let C be the set of at most t parties defined as in case I above. A corrupts
the parties in C. Let V be the joint view of these parties (their inputs, ran-
dom tapes and messages received). Output A(C, V) (here we abuse notation
slightly by using A to denote both the adversary and the (arbitrary) function
it calculates on the views).

We now claim that for any A, Pr[A(C, V) = b] − 1
2 is negligible. This will

imply what we want: Note that one possible choice of A is as follows: use rejection
sampling to produce a sample of Db, exactly as we described in case I above.
Then output the best guess at whether the sample came from D0 or from D1.
Since the claim holds for this particular A, D0 and D1 are statistically close.

So assume for the sake of contradiction that there exists A such that
Pr[A(C, V) = b] − 1

2 is non-negligible.
Note that C may not be the same set in all runs of the protocol. Considering

C as a random variable, we have that

434 I. Damg̊ard et al.

Pr[A(C, V) = b] − 1
2

=
∑

C′
Pr[C = C ′]Pr[A(C, V) = b|C = C ′] −

(

∑

C′
Pr[C = C ′]

)

1
2

=
∑

C′
Pr[C = C ′]

(

Pr[A(C, V) = b|C = C ′] − 1
2

)

.

Since the number of subsets of the parties is constant as a function of the security
parameter, it now follows that we can find a fixed set C ′ of size at most t such
that Pr[C = C ′] is non-negligible and such that Pr[A(C ′, V) = b |C = C ′] − 1

2 is
non-negligible.

We can then construct a new adversary A′ which always corrupts C ′ and still
guesses b with non-negligible advantage: If the set C actually occurring in the
protocol equals C ′, it outputs A(C ′, V), otherwise it outputs a uniformly random
bit. Note that A′ makes its guess at a point in time where N1 ⊆ C. A′’s advan-
tage is non-negligible because Pr[A′(C ′, V) = b |C 	= C ′] − 1

2 is negligible — we
can only claim negligible here and not 0 as there might be a difference between
Pr[C 	= C ′ | b = 0] and Pr[C 	= C ′ | b = 1]. This difference, however, is negligible
by Lemma 1.

We now want to show that such A′ does not exist. To avoid ugly notation in
the following, we will now use C to denote the set that A′ always corrupts.

We start with some notation. Let D be the set of parties not in C ∪ {P1}.
Let x0

1 = x?
1 and x1

1 = x1 let x1
D be the inputs of the parties in D in x . Let

x0
D be the inputs xD for the parties in D given by the definition of P1 having

uncertainty. We therefore have by definition that f(x0
1, xC , x1

D) = f(x1
1, xC , x0

D).
In this notation we have that x 0 = (x0

1, xC , x1
D) and x 1 = x = (x1

1, xC , x1
D).

Therefore our job is to prove that A′ cannot distinguish π(x1
1, xC , x1

D) from
π(x0

1, xC , x1
D). In the following, for a subset S of the parties, we use [b, d]S to

denote the view of the parties S in an execution of π(xb
1, xC , xd

D). To complete
the proof we have to show that at any point in the protocol where N1 ⊆ C it
holds that [0, 1]C ≈ [1, 1]C .

For a subset S of the parties, let [b, d]cS denote the distribution of their views,
conditioned on the parties in S having received at most c messages.

Obviously [0, 1]0C ≈ [1, 1]0C , since before C communicated with any party the
view of players in C is just their own inputs and random tapes. We now prove
by induction that [0, 1]cC ≈ [1, 1]cC for all constants c, as long as N1 ⊆ C. The
latter condition is extremely important because it implies that in all cases we
consider, there is no communication between P1 and D.

We assume that [0, 1]cC ≈ [1, 1]cC and prove that [0, 1]c+1
C ≈ [1, 1]c+1

C . From
the communication pattern being known by the adversary and being indistin-
guishable in [0, 1]cC and [1, 1]cC by Lemma 1 we can assume that we know which
party Pj sends a message to C in round c + 1.

Assume first that Pj 	= P1. Let RD be the procedure which gets input [b, 1]cC ,
and then from the view of the communication between C and D in [b, 1]C samples a
joint state of all parties inD consistentwith inputsx1

D and that communication and

Unconditionally Secure Computation with Reduced Interaction 435

appends this state to [b, 1]C . We have that RD([b, 1]cC) = [b, 1]cC,D by construction
and it follows from the induction hypothesis [0, 1]cC ≈ [1, 1]cC that RD([0, 1]cC) ≈
RD([1, 1]cC). So we conclude that in this case (where Pj ∈ D) [0, 1]cC,D ≈ [1, 1]cC,D.
Put another way, given the state of C one can perfectly simulate the state of the
parties in D since one knows their inputs and all communication going in and out of
D. From the state of the parties in D in [b, 1]cC,D one can then sample a random run
consistentwithPj beingthenextparty to sendamessage toaparty inC.Thisgivesa
sample from [b, 1]c+1

C,D. Since computation (in this case of the nextmessage function)
maintains statistical indistinguishability it follows from [0, 1]cC,D ≈ [1, 1]cC,D that
[0, 1]c+1

C,D ≈ [1, 1]c+1
C,D. It clearly follows from [0, 1]c+1

C,D ≈ [1, 1]c+1
C,D that [0, 1]c+1

C ≈
[1, 1]c+1

C .
Assume then that Pj = P1. Again, by induction hypothesis we have [0, 1]cC ≈

[1, 1]cC . It follows from the security of the protocol that [0, 1]C ≈ [1, 0]C as
the inputs and outputs of the parties in C are the same in the two executions
considered and |C| ≤ t. So in particular we have [0, 1]cC ≈ [1, 0]cC . So we conclude
by transitivity that [1, 0]cC ≈ [1, 1]cC .

Since the next message comes from P1 we can argue [1, 0]c+1
C ≈ [1, 1]c+1

C as
we did for the above case, by sampling the state of P1 from its known input and
communication. As we noticed above we have [0, 1]C ≈ [1, 0]C and therefore in
particular [0, 1]c+1

C ≈ [1, 0]c+1
C . Combining these two we get [0, 1]c+1

C ≈ [1, 1]c+1
C

as desired. ��
Theorem 1. Let π be the n-party function which securely implements a function
f which is t-difficult, with statistical correctness and statistical privacy against t
semi-honest corruptions. Then

Msglib(π) ≥ �(n(t + 1) − 1)/2� + n/2 − 1
2

and
Msgcon(π) ≥ �(n(t + 1) − 1)/2� + n − 1.

Proof. We start by proving the bound for liberal communication complexity.
By Lemma 4 we can assume that π has t-floating inputs. From Lemma2 we
then get that π has a revelation message for all input distributions, except with
negligible probability. We now want to count the number of send and receive
operations that have been executed just before the revelation message is sent.
Since |Nj | ≥ t + 1 for all Pj after the revelation message is sent, it follows that
after it is sent

n
∑

i=1

|Ni| ≥ n(t + 1).

Notice that in this sum the revelation message is counted only once, but all other
messages might be counted twice. Hence at least (n(t + 1) − 1)/2 + 1 messages
were sent after the revelation message was sent. Therefore at least (n(t+1)−1)/2
messages were sent before the revelation message was sent. Since the number of
messages sent is an integer, it follows that at least �(n(t + 1) − 1)/2� messages

436 I. Damg̊ard et al.

were sent. By Lemma 3, after the point where the revelation message is sent by
some Pk each other party receives at least one more message with probability
at least 1

2 − negl. By linearity of expectation, this gives at least an expected
(n − 1)(12 − negl(s)) more messages. Since n is a constant in s we have that
n negl(s) = negl(s), so lims→∞(n − 1)(12 − negl(s)) = (n − 1)12 = n/2 − 1

2 . It is
easy to see that for conservative message complexity we get to add n−1 instead
of (n − 1)/2: when we consider conservative message complexity, receiving a
message with probability 1

2 counts as 1 towards the message complexity. ��
We say that a function f is t-very difficult if it is t-difficult and in addition for
Pi there exists Pj such that Pi and Pj has an embedded AND in the following
sense: There exists an input vector x and inputs x1

i and x0
i for Pi and inputs

x1
j and x0

j for Pj such that if we set yb,c = f(x [(i, xb
i), (j, x

c
j)] for b, c ∈ {0, 1},

then y0,0 	= y1,1 and y0,0 = y0,1 = y1,0. We note that the notion of an embedded
AND (or, equivalently, an embedded OR) has been extensively studied in other
settings, see [KKMO00] and references therein.) If f is t-very difficult we can
improve the lower bound by 1

2 message.

Theorem 2. Let π be the n-party function which securely implements a func-
tion f which is t-very difficult, with statistical correctness and statistical privacy
against t semi-honest corruptions. Then

Msglib(π) ≥ �(n(t + 1) − 1)/2� + n/2

and
Msgcon(π) ≥ �(n(t + 1) − 1)/2� + n.

Proof (Sketch). We start by proving the bound for liberal communication com-
plexity. The proof follows the lines of the proof of Theorem1, so we will only give
a sketch. The extra 1

2 message comes from the fact that we can now argue that
even the sender of the revelation message must receive another bit of information
after sending the revelation message and therefore must receive another message
with probability at least 1

2 . To see this, note that if this was not the case, then
it holds for all input distributions, by Lemma1. Let Pk be the sender of the rev-
elation message and let Pj be the party with which Pk has an embedded AND.
Denote an execution of π(x [(j, xb

j), (j, x
c
k)]) by [b, c]. Assume that Pk receives a

message after sending the revelation message with probability less than 1
2 .

In [b, 0] it holds that the view of Pk is independent of b even at the end of the
execution as the output and input of Pk are the same in the two executions. That
implies that until Pk sends the revelation message it also holds in [b, 1] that the
view of Pk is independent of b, as [b, 0] and [b, 1] are perfectly indistinguishable
to Pk until Pk actually reads its input. From this it follows that it also holds
in [b, 1] that the view of Pk is independent of b after sending the revelation
message, as reading the input xc

j = 1 cannot change that dependence on b as
1 is a constant and in particular independent of b and the view of Pk so far.
But in [b, 1] the output of Pk must be b by the correctness of π. Going from a
situation where the view of Pk is independent of b to learning b requires that Pk

Unconditionally Secure Computation with Reduced Interaction 437

receives a message with probability at least 1
2 . When we consider conservative

message complexity, receiving a message with probability 1
2 counts as 1 towards

the message complexity. ��

Lower Bounds for Perfect Security and Adaptive Corruption. Our model assume
that the number of parties is constant as a function of the security parameter.
The only place in our lower bound proofs where we used this assumption is in
the proof of Lemma 4. If we consider perfect security, the proof simplifies greatly,
and we can easily prove the lemma for any number of parties. Alternatively, if
we consider adaptive security, note that the proof first constructs an adaptive
adversary that breaks the protocol if our result is false and then converts it
to an static adversary using the assumption on a constant number of parties.
Therefore it is immediate that the lemma also holds for any number of parties
and adaptive security. We conclude that all our lower bounds for this section
hold for any number of parties, if we consider perfect or adaptive security.

4.2 Individual Round Complexity

Consider now an n-player protocol π that is executed on a synchronous network.
We can define a (possibly empty) set Mπ of players with minimal interaction, con-
sisting of players whose only communication is to each send a message to a subset
of the parties not in Mπ and then later, after all parties in Mπ have sent all their
messages, each receive a message from a subset of the parties not in Mπ.

Theorem 3. Assume n = 2t+1 parties, where each party Pi holds input bit bi.
A protocol π that computes b1 ∧ · · · ∧ bn with perfect correctness and statistical
privacy against t semi-honest corruptions must have |Mπ| ≤ t.

Proof. Assume for contradiction that Mπ has size t + 1. Then we can construct
from π a 3-party protocol for players A, B and C, where player A emulates the
t players not in Mπ, B emulates t of the players in Mπ, and C emulates the last
player in Mπ. Each party will have a single bit as input and will use that bit
as input to each of the parties it is emulating. If π is secure, then clearly the
3-party protocol securely computes the AND of the inputs from the 3 players,
provided at most 1 is passively corrupt, as corrupting any of A, B and C will
corrupt at most t emulated parties. Moreover, the 3 party protocol will have
only 4 messages. Namely, the one party from Mπ emulated by C will send one
message to A and later receive exactly one message from A, as A emulated
exactly the parties not in Mπ. The same is true for all the emulated players in
B, they will all send exactly one message to a player in A and receive back one
message from a player in A. Furthermore, since they all send their messages to
the players in A before they received any messages from A, we can let B send
all the messages as one message. In the same way we can let A return all the
messages as one message. Since there is no communication between parties in
Mπ, there is no communication between B and C. Hence all other communication

438 I. Damg̊ard et al.

takes place inside A. However, communicating just 4 message is in contradiction
to Theorem 2, which says that 6 messages are required. ��
Theorem 4. Assume n = 3t+1 parties, where each party Pi holds input bit bi.
A protocol π that computes b1 ∧· · ·∧bn with statistical correctness and statistical
privacy against t malicious corruptions must have |Mπ| ≤ t.

Proof. If we assume a contradiction we can as above reduce it to the case with
n = 4 and t = 1. We let A simulate t parties with optimal communication
complexity. We let B simulate the last party with optimal communication com-
plexity. We let C and D each simulate t of the remaining parties. We set the
input of D to be 1 and we denote the inputs of A, B and C by a, b and c. The
communication pattern is as follows. First A sends two messages to C and D.
Denote the message sent to C by g. At the same time B sends two messages to
C and D. Denote the message sent to C by h. By privacy against a semi-honest
corruption of C we know that g is independent of a. Clearly the message h is
independent of a. Furthermore, since g and h were computed by two different
parties which did not communicate before sending these messages, and the par-
ties do not have a source of correlated randomness, g and h are independent.
It follows that (g, h) is independent of a. However, by security of one malicious
corruption the protocol should still terminate with the correct result if at this
point D stops participating in which case C receives no further information.
Clearly C cannot always compute the correct result with good probability when
its view is independent of a. ��

5 Upper Bounds

In this section we give four constructive upper bounds, one for individual round
complexity of secure function evaluation in the face of semi-honest corruptions,
then one for individual round complexity of broadcast in the face of malicious
corruptions, one for individual round complexity of secure functional evaluation
in the face of malicious corruptions, and finally one for message complexity in
the face of semi-honest corruptions.

5.1 Individual Round Complexity, Semi-honest Security

We first give a construction with minimal individual round complexity for a
group of t < n/2 parties in the face of semi-honest corruption.

Theorem 5. For every poly-time n-party function f , there exists a poly-time
function evaluation protocol computing f between n = 2t + 1 parties with perfect
correctness and perfect privacy against t semi-honest corruptions, where t parties
have round complexity two. Specifically, these t parties first in parallel each send
one message to the n − t other parties and then later each receives one message
from the same n − t parties.

Unconditionally Secure Computation with Reduced Interaction 439

Proof. We design a protocol where it is the parties I = {Pn−t+1, . . . ,Pn} which
have round complexity two. We denote each of the t parties in I generically by
Pi and we denote the parties in J = {P1, . . . ,Pn−t} generically by Pj .

Use D to denote the pre-processing distribution of a secure function evalu-
ation protocol for the pre-processing model with n′ = t + 1 parties and up to
t semi-honest corruptions. Let (D,πpre−pro) be a protocol for this model with
perfect correctness and perfect privacy for t semi-honest corruptions.

Let πhon−maj be a secure function evaluation protocol for the function f for
a model with n = 2t + 1 parties and assume that it has perfect correctness
and perfect privacy against t semi-honest corruptions. Assume that πhon−maj has
round complexity 	. We can assume that πhon−maj runs as follows in round r:
first each party sends one message to each other party which adds this message
to its state. Then it applies a round function Ri,r which computes the new state
of party Pi. The initial state of a party is just its input xi.

Our protocol π proceeds as follows. First each Pi will additively secret share
its input xi among the parties Pj , i.e., it samples uniformly random shares xi,j

for which xi = xi,1 ⊕· · ·⊕xi,n−t and securely sends xi,j to Pj . At the same time
it will for r = 1, . . . , 	 sample (di,r

1 , . . . , di,r
n−t) ← D and send di,r

j to Pj . Notice
that at this point the initial state of each Pi is secret shared among the parties
in J . We will keep the invariant that at each round in the protocol πhon−maj the
state of Pi in πhon−maj is secret shared among the parties in J . Each round in
πhon−maj is emulated as follows.

1. If Pj ∈ J is to send a message m to Pk ∈ J , then it sends m over the secure
channel to Pk.

2. If Pj ∈ J is to send a message m to Pi ∈ I, then it additively secret shares
m among the parties J and this secret sharing is added to the secret shared
state of Pi.

3. If Pi ∈ I is to send a message m to Pk ∈ I, then m is by the invariant already
additively secret shared among the parties J . The parties in J can therefore
just add this secret sharing to the secret shared state of Pk.

4. If Pi ∈ I is to send a message m to Pj ∈ J , then m is additively secret shared
among the parties J as part of the secret shared state of Pi. The parties in J
can therefore reconstruct this message towards Pj .

5. If Pj ∈ J is to apply the round function Rj,r, then it simply applies it to its
state.

6. If Pi ∈ I is to apply the round function Ri,r, then the parties in J uses the
preprocessed values (di,r

1 , . . . , di,r
n−t) to do secure function evaluation of the

augmented round function R̄i,r which reconstructs the state of Pi from the
secret sharing of the state held by the parties in J , then applies Ri,r and
outputs an additive secret sharing of the new state.

After all 	 rounds of πhon−maj have been emulated, the secret-shared state of Pi

contains its output yi. The parties in J reconstructs this yi towards Pi. At this
point all n parties received their outputs.

It should be clear that this protocol has perfect correctness, as πpre−pro and
πhon−maj both have perfect correctness.

440 I. Damg̊ard et al.

As for perfect privacy, note that if at most t parties are corrupted, then the
additive secret sharings among the t parties in J leaks no information, and can
indeed be efficiently simulated by just giving all corrupted parties uniformly
random shares.

Furthermore, if Pi ∈ I is honest, then the emulation of Pi in πhon−maj is
perfectly private, as Pi is perfectly acting as the trusted third party of the
preprocessing model. We can in particular replace the emulation of Pi by an
ideal function evaluation of the augmented round function.

Since the additive secret sharing of the inputs and outputs of the augmented
round function can be efficiently simulated towards the t corrupted parties with-
out knowing the inputs or outputs, we can replace the ideal evaluation of the
augmented round function by an ideal evaluation of the actual round function
on the actual state of Pi and then just simulate the secret sharing of the inputs
and outputs using uniformly random shares. But having an ideal evaluation of
the round function of an honest Pi is exactly the same as just having Pi partic-
ipate in the protocol. So at this point we have arrived at the protocol πhon−maj.
Since there are at most t corrupted parties we can then appeal to the security
of πhon−maj.

Constructing an explicit simulator of π from the simulators of πpre−pro and
πhon−maj along the lines of the above sketch is straight forward and we skip the
technical details. ��

5.2 Individual Round Complexity, Broadcast

We now turn our attention to the individual round complexity of secure broad-
cast. Secure broadcast from Pi to the parties P1, . . . ,Pn is defined to be the
secure function evaluation of the function xi = f(x1, . . . , xn) in the face of mali-
cious corruptions, i.e., Pi communicates xi to all parties and it is guaranteed
that all parties receive the same xi even if Pi and/or some of the other parties
are malicious. By secure broadcast we mean a protocol which allows any of the
n parties to broadcast to all the other parties.

It is possible to implement broadcast securely against t < n/3 maliciously
corrupted parties in a synchronous network with authenticated channels (note
that secure channels are not needed for broadcast). It is furthermore possible
to do so using a protocol where the honest parties are deterministic. See for
instance [BDGK91].

The above protocol is for the setting with t < n/3 maliciously corrupted
parties. We later need to do broadcast in a setting with t < n/2 maliciously
corrupted parties. It is actually known that broadcast is impossible in such a
setting. We can, however, implement broadcast if we assume t < n/3 for just
the first round. To show this we need the following lemma.

Lemma 5. Consider any protocol π for n parties which is perfectly correct
and has statistical privacy against t maliciously corrupted parties computing a
function f . Assume that Pn−t+1, . . . ,Pn have no inputs, i.e., f(x1, . . . , xn) =
g(x1, . . . , xn−t). Assume also that these parties are not to receive outputs.

Unconditionally Secure Computation with Reduced Interaction 441

Assume furthermore that the protocol remains secure even if all messages sent
and received by Pn−t+1, . . . ,Pn are given to the adversary and assume that these
parties are deterministic. Then there also exists a protocol π′ which is statisti-
cally correct and has statistical privacy against t maliciously corrupted parties
computing the function f in which Pn−t+1, . . . ,Pn each sends a message to each
of the parties P1, . . . ,Pn−t in the first round and then sends or receives no further
messages.

Proof. The parties I = {P1, . . . ,Pn−t} will simply emulate the parties J =
{Pn−t+1, . . . ,Pn}. Each Pi ∈ I will run a copy of each Pj ∈ J . Since Pj has no
input, the parties Pi will agree on the initial states of all Pj . Whenever Pj wants
to send a message, all Pi will know this message and the appropriate receiver
will just take that message as if having been sent by Pj . If the receiver is a party
Pj ∈ J all Pi ∈ I will input the message to their local copy of Pj . In each round
all parties Pi ∈ I apply the deterministic round function of each Pj to their own
local copy. This maintains agreement on the state of all the emulated Pj .

The only problematic case is when some Pi ∈ I wants to send a message m
to some Pj ∈ J . In that case Pi must send m to all parties in I such that they
can input m to Pj . We have to ensure that Pi sends the same m to all parties
in I, or they might end up with inconsistent versions of Pj . We ensure this by
letting Pi broadcast the message m. The only problem is that we do not have a
broadcast channel. We will therefore let Pj create one using pre-processing. This
will be done using the one round of messages that Pj sends in the first round,
as detailed now.

It is shown in [PW92] that there exists a protocol (P, π) for the pre-processing
model which implements broadcast between n′ parties secure against t mali-
cious corruptions for any t < n′. We can therefore let each Pj ∈ J sample
(pj,1, . . . , pj,n′) ← P and send pj,i securely to Pi. Whenever Pi ∈ I is to send m
to all parties in I, the parties run π on the pre-processed values (pj,1, . . . , pj,n′)
and with Pi having input m. Note that each Pj ∈ J preprocessed his own broad-
cast channel. This is the broadcast channel that is to be used when message
are sent to Pj in the emulated protocol. If Pj is honest, the pre-processing is
computed as it should, and thus the broadcast protocol will indeed ensure that
m is delivered consistently, and hence the emulated Pj will be run correctly and
consistently by all honest parties in I. If Pj is corrupted, it might deliver incor-
rect pre-processed values. In that case the broadcast might not work correctly. In
that case the parties in I might get inconsistent views of Pj and might therefore
later see inconsistent values of what Pj is sending. This, however, is no worse
than the emulated Pj being corrupted and this case only happens when the
actual Pj is maliciously corrupted, so the emulated protocol can tolerate this. ��
If we plug the protocol from [BDGK91] into the above lemma we get this corol-
lary.

Corollary 2. There exists a protocol πbroad for n parties which is statistically
correct and which allows any party Pi (with i ≤ n− t) to broadcast to the parties
P1, . . . ,Pn−t. It is secure against t malicious corruptions for t < n/3. The parties

442 I. Damg̊ard et al.

Pn−t+1, . . . ,Pn each sends one message to each of the parties P1, . . . ,Pn−t in the
first round and otherwise has no communication.

5.3 Individual Round Complexity, Secure Function Evaluation

We now turn our attention to secure function evaluation in the face of malicious
corruptions.

Theorem 6. For every poly-time n-party function f , there exists a poly-time
function evaluation protocol computing f between n = 3t + 1 parties with statis-
tical correctness and statistical privacy against t maliciously corrupted parties,
where t parties have round complexity two. Specifically, these t parties first each
sends one message to the n − t other parties in parallel and then later each
receives one message from the same n − t parties.

Proof. As usual, I = {P1, . . . ,Pn−t} and J = {Pn−t+1, . . . ,Pn}. In [RB89] a
statistically correct and statistically private protocol for secure function evalua-
tion of any function g is given for the setting with n′ parties of which at most
t < n′/2 parties are maliciously corrupted. The protocol is for the setting with
secure point-to-point channels plus a broadcast channel allowing any party to
broadcast to the other n′ parties. Denote this protocol by πRB. Set n′ = n−t. We
are going to let the parties I run πRB to compute a particular function g derived
from f . In doing that they will implement the broadcast channel using πbroad

from Corollary 2 with the parties in J providing the pre-processing.
We will use a robust secret sharing scheme (sha, rec) for n′ parties and t < n/2

corruptions to let the parties in J provide inputs. Such a scheme is trivial to
derive from, e.g., the verifiable secret sharing scheme constructed in [RB89], and
has the following properties:

Privacy. The joined distribution of any t positions from a random sample
(v1, . . . , vn′) ← sha(v) does not depend on the value v.

Robustness. Sample (v1, . . . , vn′) ← sha(v) for a value v chosen by the adver-
sary. Now give t of the positions vi to the adversary and let it replace them
by v′

i. The positions are chosen by the adversary. For the remaining n′ − t
positions, let v′

i = vi. Then rec(v′
1, . . . , v

′
n′) = v, except with probability 2−s,

where s is the statistical security parameter.

The function g takes n− t inputs, g(X1, . . . , Xn−t), where each Xi is of the form
(xi, xn−t+1,i, . . . , xn,i). It outputs

f(x1, . . . , xn−t, rec(xn−t+1,1, . . . , xn−t+1,n−t), . . . , rec(xn,1, . . . , xn,n−t)).

The overall protocol then runs as follows.

1. Each Pj ∈ J sends the pre-processing needed for πbroad to the parties in I
and at the same time samples (xj,1, . . . , xj,n−t) ← sha(xj) and sends xj,i to
Pi ∈ I.

2. Each Pi ∈ I computes Xi = (xi, xn−t+1,i, . . . , xn,i).

Unconditionally Secure Computation with Reduced Interaction 443

3. The parties in I use the pre-processing provided in Step 1 to run πbroad and
use the emulated broadcast channel to run πRB(X1, . . . , Xn−t).

4. When Pi ∈ I learns the output y = πRB(X1, . . . , Xn−t) it sends y to all parties
in J .

5. Each party Pj ∈ J receives an output yi from each Pi ∈ I and outputs the
value y which occurs most often in the list (y1, . . . , yn−t).

It follows directly from the security of (sha, rec), πbroad and πRB that the protocol
is private and that the honest parties in I learn the correct output y, except
with negligible probability. Since there are n′ ≥ 2t + 1 parties in I and at most
t corrupted parties in I, it follows that there is a majority of honest parties in
I. Hence, the honest parties in J will also learn the correct output y. ��

5.4 Message Complexity, Semi-honest Security

We now turn our attention to the message complexity of secure function evalu-
ation in the presence of semi-honest corruptions. We consider protocols with n
parties which are perfectly secure against t semi-honest corruptions. We present
an optimal construction for t = 1 for computing functions in PSMeff as defined
in Definition 1.

Theorem 7. For every poly-time n-party function f in PSMeff , there exists
a poly-time function evaluation protocol π computing f between n parties with
perfect correctness and perfect privacy against t = 1 semi-honest corruptions, for
which Msglib(π) = (3n + 1)/2, Msgwor(π) ≤ �(3n + 1)/2�, and Msgcon(π) = 2n.

Proof. We first look at the restricted setting where Pn has no input and is
the only player to learn the output, i.e., we look at secure function evaluation of
(ε, . . . , ε, y) = f(x1, . . . , xn), where ε is the empty string and y = h(x1, . . . , xn−1)
for an (n − 1)-party function h.

Let (R,M1, . . . , Mn−1) be a PSM protocol for h and consider the following
protocol π1.

1. P1 samples r ← R.
2. P1 sends r to Pi for i = 2, . . . , n − 1.
3. For i = 1, . . . , n − 1, party Pi sends mi = Mi(xi, r) to Pn.
4. Pn outputs y = g(m1, . . . , mn−1).

Assume that Pn is corrupted. The view of Pn in the real world is

(M1(x1, r), . . . , Mn−1(xn−1, r))

for a random sample r ← R. The view of Pn in the ideal model is

y = f(x1, . . . , xn) = h(x1, . . . , xn−1) = g(M1(x1, r), . . . ,Mn−1(xn−1, r)).

Privacy then follows from the security of the PSM protocol.

444 I. Damg̊ard et al.

Assume that Pi 	= Pn is corrupted. The view of Pi in the real world is (xi, r).
The view of Pi in the ideal model is xi. We can simulate the real world view
from the ideal view simply by sampling r ← R and then outputting (xi, r).

We now extend the above protocol to a protocol π2 which allows Pn to have
an input and where all parties get the output, i.e., we look at secure function
evaluation of y = f(x1, . . . , xn). We first present and analyze a simple solution
and then later modify it slightly to reduce the number of messages sent. The
simple solution is to let Pn additively secret share xn as xn = s1 ⊕ s2 and send
s1 to P1 and send s2 to P2. Then apply protocol π1 to the function

h′((x1, s1), (x2, s2), x3, . . . , xn−1) = f(x1, . . . , xn−1, s1 ⊕ s2)

and let Pn send the output to all the other parties. We can do this as h′ clearly
is in non-deterministic log-space if f is in non-deterministic log-space. Note that
this simple protocol adds n+1 more message. Sending the output y to all parties
is obviously secure as this value is also in the view of all parties in the ideal model.
Only P1, P2 and Pn have any further extra values in the view. The extra values
of Pn are s1 and s2 such that xn = s1 ⊕ s2. These are easy to simulate from
the view of Pn in the ideal model which includes xn: simply sample an additive
secret sharing of xn. The extra value of P1 is s1. This value is uniformly random
and independent of xn, so it can be simulated by just sampling it uniformly at
random. Similarly for P2.

Since s1 is uniformly random and independent of xn, we can save one message
in the protocol by letting P1 pick s1 uniformly at random and send it to Pn along
with the message that it already sends to Pn. The view of all parties will be the
same in the modified protocol. The only difference is that the direction of one
message was flipped. This gives the following secure protocol.

Let (R,M1, . . . , Mn−1) be a PSM protocol for the function h′ described
above.

1. P1 samples r ← R.
2. P1 sends m1 = M1(x1, r) to Pn along with a uniformly random share s1.
3. Pn sends s2 = xn ⊕ s1 to P2.
4. P1 sends r to Pi for i = 2, . . . , n − 1.
5. For i = 2, . . . , n − 1, party Pi sends mi = Mi(xi, r) to Pn.
6. Pn sends y = g(m1, . . . , mn−1) to P1, . . . ,Pn−1.

To further reduce the message complexity, we will now apply two additional
message-reduction tricks. Using the first one we reduce the 2(n − 2) messages in
Steps 4 and 5 to just n − 1 messages: Instead of having all parties send to Pn,
we will let P1 send his “PSM-contribution” to P2, who appends his contribution
and sends a message to P3, etc. until Pn receives everything. In order to make
sure that only Pn learns all the contributions, P1 will send n − 1 one-time pads
to Pn and also pass them on to the other players who can use them to one-time
pad encrypt their contributions.

With the second trick we reduce the number of messages in Step 6 from
n − 1 to �(n − 1)/2�. We let P1 choose a random bit w which will be sent to

Unconditionally Secure Computation with Reduced Interaction 445

all other players appended to the “PSM-contributions”, thus not requiring addi-
tional message(s). Now, Pn can communicate the result, y, to the other players in
the following way: if y⊕w = 0 then Pn sends a bit 0 to players P1, . . . , P�(n−1)/2	
and does not send any message to the players P�(n−1)/2	+1, . . . Pn−1; otherwise
(if y ⊕ w = 1) then Pn sends a message 0 to the players P�(n−1)/2	+1, . . . Pn−1

and does not send any message to the players P1, . . . , P�(n−1)/2	. Observe that
all players can retrieve the computed value y, and that the number of messages
sent during that stage is at most �(n − 1)/2�. Both tricks can be implemented
as follows. We replace steps 4, 5 and 6 by the following procedure:

1. P1 samples uniformly random bit strings p2, . . . , pn−1 where pi has the same
length as mi. He also samples a uniformly distributed bit w. Then P1 sends
(p2, . . . , pn−1), w to Pn. This can be done in Step 2 above and therefore does
not add another message.

2. P1 sends (r, p2, . . . , pn−1), w to P2.
3. Then for i = 2, . . . , n−1 party Pi receives (r, c2, . . . , ci−1, pi, pi+1, . . . , pn−1), w

from Pi−1 and then sends (r, c2, . . . , ci−1, ci, pi+1, . . . , pn−1), w to Pi+1, where
ci = Mi(xi, r) ⊕ pi, except that Pn−1 does not send r to Pn.

4. Then Pn receives (c2, . . . , cn−1) from Pr−1 and for i = 2, . . . , n − 1 computes
mi = ci ⊕ pi.

5. Pn computes the result y using the PSM protocol. Now, if y ⊕ w = 0 then it
sends 0 to all of players P1, . . . , P�(n−1)/2	 (and no message to the other play-
ers). Otherwise (if f ⊕w = 1) it sends 0 to all of players P�(n−1)/2	+1, . . . Pn−1

(and no message to the other players). Each Pi will observes if a message was
received from Pn, and, using its index and w, computes y.

It is easy to see that this is perfectly correct. As for perfect security against
one semi-honest corruption, consider the values ci seen by Pj for i < j < n. Since
Pj does not know pi, ci is a one-time pad encryption of mi. All other values seen
by a single party clearly leak no information on the input other than what is
implied by y. For a given input, the average number of messages sent by Pn in
Stage 5 is (1/2)(�(n − 1)/2� + �(n − 1)/2�) = n/2 − 1/2. (Whatever the value of
w is, at most �(n−1)/2� ≤ n/2 messages are sent by Pn at Step 5). The average
number of messages sent by the protocol is therefore n+1+n/2−1/2 = 3n/2+1/2
(and in the worst case the number of message sent is n+1+�(n−1)/2� ≤ 3n/2+1,
if n is even.) However, since all parties except Pn may potentially receive a
message in the last step, the conservative message complexity is 2n. ��
If we set t = 1 in our previous lower bound for liberal message complexity, we
get 3n/2, matching the upper bound of Theorem7 except for 1/2 a message. The
conservative message complexity of the protocol in Theorem 7 is clearly 2n which
matches the lower bound for conservative message complexity of 1-very difficult
functions. So we have matching upper and lower bounds for the conservative
message complexities of 1-very difficult functions in non-deterministic log space.
We leave it as an open problem to find matching bounds for any t > 1.

Finally, we consider computing the XOR of one input bit from each player.
This is the primary example of a function that is t-difficult but not t-very dif-
ficult. We can construct a protocol for this function, secure for t = 1 from the

446 I. Damg̊ard et al.

proof of Theorem7: We observe that there is no need for Pn to secret share his
input, instead we use the PSM protocol to let Pn learn b1 ⊕ · · · ⊕ bn−1. This is
secure because this value would anyway follow from the output and Pn’s own
input. Pn computes the output b1 ⊕ · · · ⊕ bn and sends it to the other players in
the randomised fashion described in the protocol. The liberal and conservative
complexities of this protocol are 3n/2 − 1/2 and 2n − 1, matching the lower
bounds we showed for 1-difficult functions.

Acknowledgements. Work done in part while some of the authors visited Simons
Institute. First and second author acknowledge support from the Danish National
Research Foundation and The National Science Foundation of China (under the grant
61061130540) for the Sino-Danish Center for the Theory of Interactive Computation,
within which part of this work was performed; and also from the CFEM research cen-
ter (supported by the Danish Strategic Research Council) within which part of this
work was performed. The second author was partially supported by the European
Research Council Starting Grant 279447, the second partially supported by the Euro-
pean Research Council Advanced Grant MPCPRO. The third author acknowledges
partial support by NSF grants 09165174, 1065276, 1118126 and 1136174, US-Israel BSF
grant 2008411, OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research
Award, and Lockheed-Martin Corporation Research Award. This material is also based
upon work supported in part by DARPA Safeware program. The views expressed are
those of the author and do not reflect the official policy or position of the Department
of Defense or the U.S. Government. Research by the fourth author partially supported
by ANR project RDAM.

References

[BDGK91] Bar-Noy, A., Deng, X., Garay, J.A., Kameda, T.: Optimal amortized
distributed consensus (extended abstract). In: Toueg, S., Spirakis, P.G.,
Kirousis, L.M. (eds.) WDAG 1991. LNCS, vol. 579, pp. 95–107. Springer,
Heidelberg (1991)

[BGT13] Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure
multi-party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785,
pp. 356–376. Springer, Heidelberg (2013)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM Sym-
posium on Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988,
pp. 1–10. ACM (1988)

[Can00] Canetti, R.: Security and composition of multiparty cryptographic proto-
cols. J. Cryptology 13(1), 143–202 (2000)

[CCD87] Chaum, D., Crépeau, C., Damg̊ard, I.B.: Multiparty unconditionally secure
protocols (abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol.
293, p. 462. Springer, Heidelberg (1988)

Unconditionally Secure Computation with Reduced Interaction 447

[CCG+15] Chandran, N., Chongchitmate, W., Garay, J.A., Goldwasser, S.,
Ostrovsky, R., Zikas, V.: The hidden graph model: communication locality
and optimal resiliency with adaptive faults. In: Proceedings of the Con-
ference on Innovations in Theoretical Computer Science, ITCS, Rehovot,
Israel, 11–13 January 2015, pp. 153–162 (2015)

[CK93] Chor, B., Kushilevitz, E.: A communication-privacy tradeoff for modular
addition. Inf. Process. Lett. 45(1), 205–210 (1993)

[DPP14] Data, D., Prabhakaran, M.M., Prabhakaran, V.M.: On the communi-
cation complexity of secure computation. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 199–216. Springer,
Heidelberg (2014)

[DZ13] Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of
Boolean circuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 621–641. Springer, Heidelberg (2013)

[FKN94] Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation
(extended abstract). In: Proceedings of the Twenty-Sixth Annual ACM
Symposium on Theory of Computing, Montréal, Québec, Canada, 23–25
May 1994, pp. 554–563 (1994)

[GIPR] Gonen, M., Ishai, Y., Prabhabkahan, M., Rosulek, M.: Private communi-
cation (unpublished work)

[IK97] Ishai,Y., Kushilevitz, E.: Private simultaneous messages protocols with
applications. In: ISTCS, pp. 174–184 (1997)

[IK00] Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation
with applications to round-efficient secure computation. In: Proceedings
of the 41st Annual Symposium on Foundations of Computer Science, pp.
294–304. IEEE (2000)

[KKMO00] Kilian, J., Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and com-
pleteness in private computations. SIAM J. Comput. 29(4), 1189–1208
(2000)

[PW92] Pfitzmann, B., Waidner, M.: Unconditional byzantine agreement for any
number of faulty processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992.
LNCS, vol. 577, pp. 339–350. Springer, Heidelberg (1992)

[RB89] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In: Johnson, D.S. (ed.) Pro-
ceedings of the 21st Annual ACM Symposium on Theory of Computing,
Seattle, Washigton, USA, 14–17 May 1989, pp. 73–85. ACM (1989)

The Exact Round Complexity
of Secure Computation

Sanjam Garg1(B), Pratyay Mukherjee1, Omkant Pandey2,
and Antigoni Polychroniadou3

1 University of California, Berkeley, USA
{sanjamg,pratyay85}@berkeley.edu

2 Drexel University, Philadelphia, USA
omkant@drexel.edu

3 Aarhus University, Aarhus, Denmark
antigoni@cs.au.dk

Abstract. We revisit the exact round complexity of secure computa-
tion in the multi-party and two-party settings. For the special case of
two-parties without a simultaneous message exchange channel, this ques-
tion has been extensively studied and resolved. In particular, Katz and
Ostrovsky (CRYPTO ’04) proved that 5 rounds are necessary and suf-
ficient for securely realizing every two-party functionality where both
parties receive the output. However, the exact round complexity of gen-
eral multi-party computation, as well as two-party computation with a
simultaneous message exchange channel, is not very well understood.

These questions are intimately connected to the round complexity
of non-malleable commitments. Indeed, the exact relationship between
the round complexities of non-malleable commitments and secure multi-
party computation has also not been explored.

In this work, we revisit these questions and obtain several new results.
First, we establish the following main results. Suppose that there exists a
k-round non-malleable commitment scheme, and let k′ = max(4, k + 1);
then,

– (Two-party setting with simultaneous message transmis-
sion): there exists a k′-round protocol for securely realizing every
two-party functionality;

– (Multi-party setting): there exists a k′-round protocol for securely
realizing the multi-party coin-flipping functionality.

As a corollary of the above results, by instantiating them with existing
non-malleable commitment protocols (from the literature), we establish

Research supported in part from a DARPA/ARL SAFEWARE award, AFOSR
Award FA9550-15-1-0274, and NSF CRII Award 1464397. The views expressed are
those of the author and do not reflect the official policy or position of the Depart-
ment of Defense, the National Science Foundation, or the U.S. Government. Also,
Antigoni Polychroniadou received funding from CTIC under the grant 61061130540
and from CFEM supported by the Danish Strategic Research Council. This work
was done in part while the authors were visiting the Simons Institute for the Theory
of Computing, supported by the Simons Foundation and by the DIMACS/Simons
Collaboration in Cryptography through NSF grant #CNS-1523467.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 448–476, 2016.
DOI: 10.1007/978-3-662-49896-5 16

The Exact Round Complexity of Secure Computation 449

that four rounds are both necessary and sufficient for both the results
above. Furthermore, we establish that, for every multi-party functional-
ity five rounds are sufficient.

We actually obtain a variety of results offering trade-offs between
rounds and the cryptographic assumptions used, depending upon the
particular instantiations of underlying protocols.

1 Introduction

The round complexity of secure computation is a fundamental question in the
area of secure computation [20,39,40]. In the past few years, we have seen
tremendous progress on this question, culminating into constant round protocols
for securely computing any multi-party functionality [5,9,10,21,22,27,28,36,38].
These works essentially settle the question of asymptotic round complexity of this
problem.

The exact round complexity of secure computation, however, is still not very
well understood1. For the special case of two-party computation, Katz and Ostro-
vsky [26] proved that 5 rounds are necessary and sufficient. In particular, they
proved that two-party coin-flipping cannot be achieved in 4 rounds, and pre-
sented a 5-round protocol for computing every functionality. To the best of our
knowledge, the exact round complexity of multi-party computation has never
been addressed before.

The standard model for multi-party computation assumes that parties are
connected via authenticated point-to-point channels as well as simultaneous mes-
sage exchange channels where everyone can send messages at the same time.
Therefore, in each round, all parties can simultaneously exchange messages.

This is in sharp contrast to the “standard” model for two-party computa-
tion where, usually, a simultaneous message exchange framework is not consid-
ered. Due to this difference in the communication model, the negative result of
Katz-Ostrovsky [26] for 4 rounds, does not apply to the multi-party setting. In
particular, a 4 round multi-party coin-flipping protocol might still exist!

In other words, the results of Katz-Ostrovsky only hold for the special case
of two parties without a simultaneous message exchange channel. The setting
of two-party computation with a simultaneous message exchange channel has
not been addressed before. Therefore, in this work we address the following two
questions:

What is the exact round complexity of secure multi-party computation?
In the presence of a simultaneous message exchange channel, what is the
exact round complexity of secure two-party computation?

These questions are intimately connected to the round complexity of non-
malleable commitments [12]. Indeed, new results for non-malleable commitments
1 Our rough estimate for the exact round complexity of aforementioned multi-party

results in the computational setting is 20–30 rounds depending upon the underlying
components and assumptions.

450 S. Garg et al.

have almost immediately translated to new results for secure computation. For
example, the round complexity of coin-flipping was improved by Barak [3], and of
every multi-party functionality by Katz et al. [27] based on techniques from non-
malleable commitments. Likewise, black-box constructions for constant-round
non-malleable commitments resulted in constant-round black-box constructions
for secure computation [21,38]. However, all of these results only focus on asymp-
totic improvements and do not try to resolve the exact round complexity, thereby
leaving the following fundamental question unresolved:

What is the relationship between the exact round complexities of non-
malleable commitments and secure computation?

This question is at the heart of understanding the exact round complexity of
secure computation in both multi-party, and two-party with simultaneous mes-
sage transmission.

1.1 Our Contributions

In this work we try to resolve the questions mentioned above. We start by focus-
ing on the simpler case of two-party computation with a simultaneous message
exchange channel, since it is a direct special case of the multi-party setting. We
then translate our results to the multi-party setting.

Lower bounds for Coin-Flipping. We start by focusing on the following
question.

How many simultaneous message exchange rounds are necessary for secure
two-party computation?

We show that four simultaneous message exchange rounds are necessary. More
specifically, we show that:

Theorem (Informal): Let κ be the security parameter. Even in the simultaneous
message model, there does not exist a three-round protocol for the two-party
coin-flipping functionality for ω(log κ) coins which can be proven secure via
black-box simulation.

In fact, as a corollary all of the rounds must be “strictly simultaneous message
transmissions”, that is, both parties must simultaneously send messages in each
of the 4 rounds. This is because in the simultaneous message exchange setting,
the security is proven against the so called “rushing adversaries” who, in each
round, can decide their message after seeing the messages of all honest parties
in that round. Consequently, if only one party sends a message for example in
the fourth round, this message can be “absorbed” within the third message of
this party2, resulting in a three round protocol.

2 Note that, such absorption is only possible when it maintains the mutual dependency
among the messages, in particular does not affect the next-message functions.

The Exact Round Complexity of Secure Computation 451

Results in the Two-Party Setting with a Simultaneous Message
Exchange Channel. Next, we consider the task of constructing a protocol
for coin-flipping (or any general functionality) in four simultaneous message
exchange rounds and obtain a positive result. In fact, we obtain our results
by directly exploring the exact relationship between the round complexities of
non-malleable commitments and secure computation. Specifically, we first prove
the following result:

Theorem (Informal): If there exists a k-round protocol for (parallel) non-
malleable commitment,3 then there exists a k′-round protocol for securely
computing every two-party functionality with black-box simulation in the pres-
ence of a malicious adversary in the simultaneous message model, where
k′ = max(4, k + 1).

Instantiating this protocol with non-malleable commitments from [36], we get
a four round protocol for every two-party functionality in the presence of a
simultaneous message exchange channel, albeit under a non-standard assump-
tion (adaptive one-way function). However, a recent result by Goyal et al. [23]
constructs a non-malleable commitment protocol in three rounds from injec-
tive one-way functions, although their protocol does not immediately extend to
the parallel setting. Instantiating our protocol with such a three-round parallel
non-malleable commitment would yield a four round protocol under standard
assumptions.

Results in the Multi-party Setting. Next, we focus on the case of the multi-
party coin flipping functionality. We show that a simpler version of our two-party
protocol gives a result for multi-party coin-flipping:

Theorem (Informal): If there exists a k-round protocol for (parallel) non-
malleable commitments, then there exists a k′-round protocol for securely com-
puting the multi-party coin-flipping functionality with black-box simulation in
the presence of a malicious adversary for polynomially many coins where
k′ = max(4, k + 1).

Combining this result with the two-round multi-party protocol of Mukherjee
and Wichs [34] (based on the LWE [37]), we obtain a k′ + 2 round protocol
for computing every multi-party functionality. Instantiating these protocols with
non-malleable commitments from [36], we obtain a four round protocol for
coin-flipping and a six round protocol for every functionality.

Finally, we show that the coin-flipping protocol for the multi-party setting
can be extended to compute what we call the “coin-flipping with committed
inputs” functionality. Using this protocol with the two-round protocol of [16]
based on indistinguishability obfuscation [17], we obtain a five round MPC
protocol.

3 Parallel simply means that the man-in-the-middle receives κ non-malleable commit-
ments in parallel from the left interaction and makes κ commitments on the right.
Almost all known non-malleable commitment protocols satisfy this property.

452 S. Garg et al.

1.2 Related Work

The round complexity of secure computation has a rich and long history. We
only mention the results that are most relevant to this work in the compu-
tational setting. Note that, unconditionally secure protocols such as [6,8] are
inherently non-constant round. More specifically, the impossibility result of [11]
implies that a fundamental new approach must be found in order to construct
protocols, that are efficient in the circuit size of the evaluated function, with
reduced communication complexity that beat the complexities of BGW, CCD,
GMW etc.

For the computational setting and the special case of two party computation,
the semi-honest secure protocol of Yao [33,39,40] consists of only three rounds
(see Sect. 2). For malicious security4, a constant round protocol based on GMW
was presented by Lindell [31]. Ishai et al. [25] presented a different approach
which also results in a constant round protocol.

The problem of exact round complexity of two party computation was stud-
ied in the beautiful work of Katz and Ostrovsky [26] who provided a 5 round
protocol for computing any two-party functionality. They also ruled out the pos-
sibility of a four round protocol for coin-flipping, thus completely resolving the
case of two party (albeit without simultaneous message exchange, as discussed
earlier). Recently Ostrovsky et al. [35] constructed a different 5-round protocol
for the general two-party computation by only relying on black-box usage of the
underlying trapdoor one-way permutation.

As discussed earlier, the standard setting for two-party computation does
not consider simultaneous message exchange channels, and hence the negative
results for the two-party setting do not apply to the multi-party setting where
simultaneous message exchange channels are standard. To the best of our knowl-
edge, prior to our work, the case of the two-party setting in the presence of a
simultaneous message exchange channel was not explored in the context of the
exact round complexity of secure computation.

For the multi-party setting, the exact round complexity has remained open
for a long time. The work of [5] gave the first constant-round non black-box pro-
tocol for honest majority (improved by the black-box protocols of [9,10]). Katz
et al. [27], adapted techniques from [3,5,7,12] to construct the first asymptoti-
cally round-optimal protocols for any multi-party functionality for the dishonest
majority case. The constant-round protocol of [27] relied on non-black-box use
of the adversary’s algorithm [2]. Constant-round protocols making black-box use
of the adversary were constructed by [21,28,36], and making black-box use of
one-way functions by Wee in ω(1) rounds [38] and by Goyal in constant rounds
[21]. Furtheremore, based on the non-malleable commitment scheme of [21,22]
construct a constant-round multi-party coin-tossing protocol. Lin et al. [30] pre-
sented a unified approach to construct UC-secure protocols from non-malleable
commitments. However, as mentioned earlier, none of the aforementioned works

4 From here on, unless specified otherwise, we are always in the malicious setting by
default.

The Exact Round Complexity of Secure Computation 453

focused on the exact round complexity of secure computation based on the round-
complexity of non-malleable commitments. For a detailed survey of round com-
plexity of secure computation in the preprocessing model or in the CRS model
we refer to [1].

1.3 An Overview of Our Approach

We now provide an overview of our approach. As discussed earlier, we first focus
on the two-party setting with a simultaneous message exchange channel.

The starting point of our construction is the Katz-Ostrovsky (KO) protocol
[26] which is a four round protocol for one-sided functionalities, i.e., in that only
one party gets the output. Recall that, this protocol does not assume the presence
of a simultaneous message exchange channel. At the cost of an extra round, the
KO two-party protocol can be converted to a complete (i.e. both-sided) protocol
where both parties get their corresponding outputs via a standard trick [18] as
follows: parties compute a modified functionality in which the first party P1

learns its output as well as the output of the second party P2 in an “encrypted
and authenticated”5 form. It then sends the encrypted value to P2 who can
decrypt and verify its output.

A natural first attempt is to adapt this simple and elegant approach
to the setting of simultaneous message exchange channel, so that the
“encrypted/authenticated output” can somehow be communicated to P2 simul-
taneously at the same time when P2 sends its last message, thereby removing
the additional round.

It is not hard to see that any such approach would not work. Indeed, in
the presence of malicious adversaries while dealing with a simultaneous mes-
sage exchange channel, the protocol must be proven secure against “rush-
ing adversaries” who can send their messages after looking at the messages
sent by the other party. This implies that, if P1 could indeed send the
“encrypted/authenticated output” message simultaneously with last message
from P2, it could have sent it earlier as well. Now, applying this argument repeat-
edly, one can conclude that any protocol which does not use the simultaneous
message exchange channel necessarily in all of the four rounds, is bound to fail
(see Sect. 3). In particular, any such protocol can be transformed, by simple
rescheduling, into a 3-round protocol contradicting our lower bound.6

This means that we must think of an approach which must use the simulta-
neous message exchange channel in each round. In light of this, a natural second
attempt is to run two executions of a 4-round protocol (in which only one party
learns the output) in “opposite” directions. This would allow both parties to
learn the output. Unfortunately, such approaches do not work in general since
there is no guarantee that an adversarial party would use the same input in both

5 In particular, the encryption prevents P1 to know P2’s output ensuring output pri-
vacy whereas the authentication does not allow P1 to send P2 a wrong output.

6 Recall that we show that (see Theorem 2 for a formal statement) 4 rounds are
necessary even with simultaneous message exchange channels.

454 S. Garg et al.

protocol executions. Furthermore, another problem with this approach is that of
“non-malleability” where a cheating party can make its input dependent on the
honest party’s input: for example, it can simply “replay” back the messages it
receives. A natural approach to prevent such attacks is to deploy non-malleable
commitments, as we discuss below.

Simultaneous Executions + Non-malleable Commitments. Following the
approach discussed above we observe that:

1. A natural direction is to use two simultaneous executions of the KO proto-
col (or any other similar 4-round protocol) over the simultaneous message
exchange channel in opposite directions. Since we have only 4 rounds, a dif-
ferent protocol (such as some form of 2-round semi-honest protocol based on
Yao) is not a choice.

2. We must use non-malleable commitments to prevent replay/mauling attacks.

We remark that, the fact that non-malleable commitments come up as a
natural tool is not a coincidence. As noted earlier, the multi-party case is well
known to be inherently connected to non-malleable commitments. Even though
our current focus is solely on the two-party case, this setting is essentially
(a special case of) the multi-party setting due to the use of the simultaneous
message exchange channel. Prior to our work, non-malleable commitments have
been used extensively to design multi-party protocols [21,22,29,33]. However,
all of these works result in rather poor round complexity because of their focus
on asymptotic, as opposed to exact, number of rounds.

To obtain our protocol, we put the above two ideas together, modifying sev-
eral components of KO7 to use non-malleable commitments. These components
are then put together in a way such that, even though there are essentially two
simultaneous executions of the protocol in opposite directions, messages of one
protocol cannot be maliciously used to affect the other messages. In the follow-
ing, we highlight the main ideas of our construction:

1. The first change we make is to the proof systems used by KO. Recall that KO
uses the Fiege-Shamir (FS) protocol as a mechanism to “force the output” in
the simulation. Our first crucial modification is to consider a variant of the FS
protocol in which the verifier gives two non-malleable commitments (nmcom)
to two strings σ1, σ2 and gives a witness indistinguishable proof-of-knowledge
(WIPOK) that it knows one of them. These are essentially the simulation
trapdoors, but implemented through nmcom instead of a one-way function.
This change is actually crucial, and as such, brings in an effect similar to
“simulation sound” zero-knowledge.

7 The KO protocol uses a clever combination of garble circuits, semi-honest oblivious
transfer, coin-tossing, and WIPOK to ensure that the protocol is executed with a
fixed input (allowing at the same time simulation extractability of the input), and
relies on the zero-knowledge property of a modified Fiege-Shamir proof to achieve
output simulation.

The Exact Round Complexity of Secure Computation 455

2. The oblivious transfer protocol based on trapdoor permutations and coin-
tossing now performs coin-tossing with the help of nmcom instead of simple
commitments. This is a crucial change since this allows us to slowly get rid of
the honest party’s input in the simulation and still argue that the distribution
of the adversary’s input does not change as a result of this.

We note that there are many parallel executions on nmcom that take place
at this stage, and therefore, we require that nmcom should be non-malleable
under many parallel executions. This is indeed true for most nmcom.

3. Finally, we introduce a mechanism to ensure that the two parties use the exact
same input in both executions. Roughly speaking, this is done by requiring
the parties to prove consistency of messages “across” protocols.

4. To keep the number of rounds to k + 1 (or 4 if k < 3), many of the messages
discussed above are “absorbed” with other rounds by running in parallel.

Multi-party Setting. The above protocol does not directly extend to the multi-
party settings. Nevertheless, for the special case of coin flipping, we show that a
(simplified) version of the above protocol works for the multi-party case. This is
because the coin-tossing functionality does not really require any computation,
and therefore, we can get rid of components such as oblivious transfer. In fact,
this can be extended “slightly more” to also realize the “coin-flipping with com-
mitted inputs” since committing the input does not depend on inputs of other
parties.

Next, to obtain our result for general functionalities, we simply invoke known
results: using [34] with coin-flipping gives us a six round protocol, and using [26]
gives a five round result.

2 Preliminaries

Notation. We denote the security parameter by κ. We say that a function
μ : N → N is negligible if for every positive polynomial p(·) and all sufficiently
large κ’s it holds that μ(κ) < 1

p(κ) . We use the abbreviation PPT to denote prob-
abilistic polynomial-time. We often use [n] to denote the set {1, ..., n}. Moreover,
we use d ← D to denote the process of sampling d from the distribution D or,
if D is a set, a uniform choice from it. If D1 and D2 are two distributions, then
we denote that they are statistically close by D1 ≈s D2; we denote that they are
computationally indistinguishable by D1 ≈c D2; and we denote that they are
identical by D1 ≡ D2. Let V be a random variable corresponding to the distrib-
ution D. Sometimes we abuse notation by using V to denote the corresponding
distribution D.

We assume familiarity with several standard cryptographic primitives. For
notational purposes, we recall here the basic working definitions for some of
them. We skip the well-known formal definitions for secure two-party and multi-
party computations (see full version for a formal description). It will be sufficient
to have notation for the two-party setting. We denote a two party functionality

456 S. Garg et al.

by F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ where F = (F1, F2). For every pair
of inputs (x, y), the output-pair is a random variable (F1(x, y), F2(x, y)) ranging
over pairs of strings. The first party (with input x) should obtain F1(x, y) and the
second party (with input y) should obtain F2(x, y). Without loss of generality,
we assume that F is deterministic. The security is defined through the ideal/real
world paradigm where for adversary A participating in the real world protocol,
there exists an ideal world simulator S such that for every (x, y), the output
of S is indistinguishable from that of A. See the full version for an extended
discussion.

We now recall the definitions for non-malleable commitments as well as some
components from the work of Katz-Ostrovsky [26].

2.1 Tag Based Non-malleable Commitments

Let nmcom = 〈C,R〉 be a k round commitment protocol where C and R repre-
sent (randomized) committer and receiver algorithms, respectively. Denote the
messages exchanged by (nm1, . . . , nmk) where nmi denotes the message in the
i-th round.

For some string u ∈ {0, 1}κ, tag id ∈ {0, 1}t, non-uniform PPT algorithm M
with “advice” string z ∈ {0, 1}∗, and security parameter κ, define (v, view) to be
the output of the following experiment: M on input (1κ, z), interacts with C who
commits to u with tag id; simultaneously, M interacts with R(1κ, ˜id) where ˜id is
arbitrarily chosen by M (M ’s interaction with C is called the left interaction, and
its interaction with R is called the right interaction); M controls the scheduling
of messages; the output of the experiment is (v, view) where v denotes the value
M commits to R in the right execution unless ˜id = id in which case v = ⊥, and
view denotes the view of M in both interactions.

Definition 1 (Tag based non-malleable commitments). A commitment
scheme nmcom = 〈C,R〉 is said to be non-malleable with respect to commitments
if for every non-uniform PPT algorithm M (man-in-the-middle), for every pair
of strings (u0, u1) ∈ {0, 1}κ×{0, 1}κ, every tag-string id ∈ {0, 1}t, every (advice)
string z ∈ {0, 1}∗, the following two distributions are computationally indistin-
guishable,

(v0, view0)
c≈ (v1, view1).

Parallel Non-malleable Commitments. We consider a strengthening of
nmcom in which M can receive commitments to m strings on the “left”, say
(u1, . . . , um), with tags (id1, . . . , idm) and makes m commitments on the “right”
with tags (˜id1, . . . , ˜idm). We assume that m is a fixed, possibly a-priori bounded,
polynomial in the security parameter κ. In the following let i ∈ [m], b ∈ {0, 1}:
We say that a nmcom is m-bounded parallel non-malleable commitment if for
every pair of sequences {ub

i} the random variables ({v0
i }, view0) and ({v1

i }, view1)
are computationally indistinguishable where {vb

i } denote the values committed
by M in m sessions on right with tags {˜idi} while receiving parallel commitments
to {ub

i} on left with tags {idi}, and viewb denotes M ’s view.

The Exact Round Complexity of Secure Computation 457

First Message Binding Property. It will be convenient in the notation to
assume that the first message nm1 of the non-malleable commitment scheme
nmcom statistically determines the message being committed. This can be
relaxed to only require that the message is fixed before the last round if k ≥ 3.

2.2 Components of Our Protocol

In this section, we recall some components from the KO protocol [26]. These are
mostly standard and recalled here for a better exposition. The only (minor but
crucial) change needed in our protocol is to the FLS proof system [13–15] where
a non-malleable commitment protocol is used by the verifier. For concreteness,
let us discuss how to fix these proof systems first.

Modified Feige-Shamir Proof Systems. We use two proof systems: ΠWIPOK

and ΠFS. Protocol ΠWIPOK is the 3-round, public-coin, witness-indistinguishable
proof-of-knowledge based on the work of Feige et al. [14] for proving graph
Hamiltonicity. This proof system proves statements of the form st1 ∧ st2 where
st1 is fixed at the first round of the protocol, but st2 is determined only in the
last round of the protocol.8 For concreteness, this proof system is given in the
full version.

Protocol ΠFS is the 4-round zero-knowledge argument-of-knowledge proto-
col of Feige and Shamir [15], which allows the prover to prove statement thm,
with the modification that the protocol from verifier’s side is implemented using
nmcom. More specifically,

– Recall that the Feige-Shamir protocol consists of two executions of ΠWIPOK in
reverse directions. In the first execution, the verifier selects a one-way function
f and sets x1 = f(w1), x2 = f(w2) and proves the knowledge of a witness for
x1 ∨ x2. In the second execution, prover proves the knowledge of a witness to
the statement thm ∨ (x1 ∨ x2) where thm is the statement to be proven. The
rounds of these systems can be somewhat parallelized to obtain a 4-round
protocol.

– Our modified system, simply replaces the function f and x1, x2 with two
executions of nmcom. For convenience, suppose that nmcom has only 3 rounds.
Then, our protocol creates the first message of two independent executions
of nmcom to strings σ1, σ2, denoted by nm1

1, nm
2
1 respectively, and sets x1 =

nm1
1, x2 = nm2

1. The second and third messages of nmcom are sent with the
second and third messages of the original FS protocol.

If nmcom has more than 3 rounds, simply complete the first k − 3 rounds
of the two executions before the 4 messages of the proof system above are
exchanged.

– As before, although ΠFS proves statement thm, as noted in [26], it actually
proves statements of the form thm ∧ thm′ where thm can be fixed in the
second round, and thm′ in the fourth round. Usually thm is empty and not

8 Typically, st1 is a empty statement and not usually mentioned; but KO [26] uses a
specific, non-empty, statement and so does this work.

458 S. Garg et al.

mentioned. Indeed, this is compatible with the second ΠWIPOK which proves
statement of the form st1 ∧ st2, just set st1 = thm, st2 = thm′.

For completeness, we describe the full ΠFS protocol in the full version.

Components of Katz-Ostrovsky Protocol

The remainder of this section is largely taken from [26] where we provide basic
notations and ideas for semi-honest secure two-party computation based on Yao’s
garbled circuits and semi-honest oblivious transfer (based on trapdoor one-way
permutations). Readers familiar with [26] can skip this part without loss in read-
ability.

Semi-honest Secure Two-Party Computation. We view Yao’s garbled cir-
cuit scheme [32,39] as a tuple of PPT algorithms (GenGC,EvalGC), where GenGC
is the “generation procedure” which generates a garbled circuit for a circuit C
along with “labels,” and EvalGC is the “evaluation procedure” which evaluates
the circuit on the “correct” labels. Each individual wire i of the circuit is assigned
two labels, namely Zi,0, Zi,1. More specifically, the two algorithms have the fol-
lowing format (here i ∈ [κ], b ∈ {0, 1}):

– ({Zi,b},GCy) ← GenGC(1κ, F, y): GenGC takes as input a security parameter
κ, a circuit F and a string y ∈ {0, 1}κ. It outputs a garbled circuit GCy along
with the set of all input-wire labels {Zi,b}. The garbled circuit may be viewed
as representing the function F (·, y).

– v = EvalGC(GCy, {Zi,xi
}): Given a garbled circuit GCy and a set of input-wire

labels {Zi,xi
} where x ∈ {0, 1}κ, EvalGC outputs either an invalid symbol ⊥,

or a value v = F (x, y).

The following properties are required:

Correctness. Pr [F (x, y) = EvalGC(GCy, {Zi,xi
})] = 1 for all F, x, y, taken over

the correct generation of GCy, {Zi,b} by GenGC.
Security. There exists a PPT simulator SimGC such that for any (F, x) and

uniformly random labels {Zi,b}, we have that:

(GCy, {Zi,xi
})

c≈ SimGC (1κ, F, v)

where ({Zi,b},GCy) ← GenGC (1κ, F, y) and v = F (x, y).

In the semi-honest setting, two parties can compute a function F of their
inputs, in which only one party, say P1, learns the output, as follows. Let
x, y be the inputs of P1, P2, respectively. First, P2 computes ({Zi,b},GCy) ←
GenGC(1κ, F, y) and sends GCy to P1. Then, the two parties engage in κ paral-
lel instances of OT. In particular, in the i-th instance, P1 inputs xi, P2 inputs
(Zi,0, Zi,1) to the OT protocol, and P1 learns the “output” Zi,xi

. Then, P1 com-
putes v = EvalGC(GCy, {Zi,xi

}) and outputs v = F (x, y).
A 3-round, semi-honest, OT protocol can be constructed from enhanced trap-
door permutations (TDP). For notational purposes, define TDP as follows:

The Exact Round Complexity of Secure Computation 459

Definition 2 (Trapdoor permutations). Let F be a triple of PPT algo-
rithms (Gen,Eval, Invert) such that if Gen(1κ) outputs a pair (f, td), then
Eval(f, ·) is a permutation over {0, 1}κ and Invert(f, td, ·) is its inverse. F is a
trapdoor permutation such that for all PPT adversaries A:

Pr[(f, td) ← Gen(1κ); y ← {0, 1}κ;x ← A(f, y) : Eval(f, x) = y] ≤ μ(κ).

For convenience, we drop (f, td) from the notation, and write f(·), f−1(·) to
denote algorithms Eval(f, ·), Invert(f, td, ·) respectively, when f, td are clear
from the context. We assume that F satisfies (a weak variant of) “certifia-
bility”: namely, given some f it is possible to decide in polynomial time whether
Eval(f, ·) is a permutation over {0, 1}κ.

Let H be the hardcore bit function for κ bits for the family F ; κ hard-
core bits are obtained from a single-bit hardcore function h and f ∈ F as
follows: H(z) = h(z)‖h(f(z))‖ . . . ‖h(fκ−1(z)). Informally, H(z) looks pseudo-
random given fκ(z).

The semi-honest OT protocol based on TDP is constructed as follows. Let
P2 hold two strings Z0, Z1 ∈ {0, 1}κ and P1 hold a bit b. In the first round,
P2 chooses trapdoor permutation (f, f−1) ← Gen(1κ) and sends f to P1.
Then P1 chooses two random string z′

0, z
′
1 ← {0, 1}κ, computes zb = fκ(z′

b)
and z1−b = z′

1−b and sends (z0, z1) to P2. In the last round P2 computes
Wa = Za ⊕ H(f−κ(za)) where a ∈ {0, 1}, H is the hardcore bit function and
sends (W0,W1) to P1. Finally, P2 can recover Zb by computing Zb = Wb ⊕H(zb).

Putting it altogether, we obtain the following 3-round, semi-honest secure
two-party protocol for the single-output functionality F (here only P1 receives
the output):

Protocol ΠSH. P1 holds input x ∈ {0, 1}κ and P2 holds inputs y ∈ {0, 1}κ. Let
F be a family of trapdoor permutations and let H be a hardcore bit function.
For all i ∈ [κ] and b ∈ {0, 1} the following steps are executed:

Round-1: P2 computes ({Zi,b},GCy) ← GenGC(1κ, F, y) and chooses trapdoor
permutation (fi,b, f

−1
i,b) ← Gen(1κ) and sends (GCy, {fi,b}) to P2.

Round-2: P1 chooses random strings {z′
i,b}, computes zi,b = fκ(z′

i,b) and
zi,1−b = z′

i,1−b and sends {zi,b} to P2.
Round-3: P2 computes Wi,b = Zi,b ⊕ H(f−κ

i,b (zi,b)) and sends {Wi,b} to P2.
Output: P1 recovers the labels Zi,xi

= Wi,xi
⊕ H(zi,xi

) and computes v =
EvalGC(GCy, {Zi,xi

}) where v = F (x, y)

460 S. Garg et al.

Equivocal Commitment Scheme Eqcom. We assume familiarity with equiv-
ocal commitments, and use the following equivocal commitment scheme Eqcom
based on any (standard) non-interactive, perfectly binding, commitment scheme
com: to commit to a bit x, the sender chooses coins ζ1, ζ2 and computes
Eqcom(x; ζ1, ζ2)

def= com(x; ζ1)||com(x; ζ2). It sends Cx = Eqcom(x; ζ1, ζ2) to the
receiver along with a zero-knowledge proof that Cx was constructed correctly
(i.e., that there exist x, ζ1, ζ2 such that Cx = Eqcom(x; ζ1, ζ2)).

To decommit, the sender chooses a bit b at random and reveals x, ζb.
Note that a simulator can “equivocate” the commitment by setting C =
com(x; ζ1)||com(x; ζ2) for a random bit x, simulating the zero-knowledge proof
and then revealing ζ1 or ζ2 depending on x and the bit to be revealed. This
extends to strings by committing bitwise.

Sketch of the Two-Party KO Protocol. The main component of the two-
party KO protocol is Yao’s 3-round protocol ΠSH, described above, secure against
semi-honest adversaries. In order to achieve security against a malicious adver-
sary their protocol proceeds as follows. Both parties commit to their inputs; run
(modified) coin-tossing protocols to guarantee that each party obtains random
coins which are committed to the other party (note that coin flipping for the
side of the garbler P2 is not needed since a malicious garbler P2 gains nothing
by using non-uniform coins. To force P1 to use random coins the authors use a
3-round sub-protocol which is based on the work of [4]); and run the ΠSH pro-
tocol together with ZK arguments to avoid adversarial inconsistencies in each
round. Then, simulation extractability is guaranteed by the use of WI proof of
knowledge and output simulation by the Feige-Shamir ZK argument of knowl-
edge.

However, since even a ZK argument for the first round of the protocol alone
will already require 4 rounds, the authors use specific proof systems to achieve
in total a 4-round protocol. In particular, the KO protocol uses a specific WI
proof of knowledge system with the property that the statement to be proven
need not be known until the last round of the protocol, yet soundness, complete-
ness, and witness-indistinguishability still hold. Also, this proof system has the
property that the first message from the prover is computed independently of
the statement being proved. Note that their 4-round ZK argument of knowledge
enjoys the same properties. Furthermore, their protocol uses an equivocal com-
mitment scheme to commit to the garble circuit for the following reason. Party
P1 may send his round-two message before the proof of correctness for round
one given by P2 is complete. Therefore, the protocol has to be constructed in a
way that the proof of correctness for round one completes in round three and
that party P2 reveals the garbled circuit in the third round. But since the proof
of security requires P2 to commit to a garble circuit at the end of the first round,
P2 does so using an equivocal commitment scheme.

The Exact Round Complexity of Secure Computation 461

3 The Exact Round Complexity of Coin Tossing

In this section we first show that it is impossible to construct two-party (simu-
latable) coin-flipping for a super-logarithmic number of coins in 3 simultaneous
message exchange rounds. We first recall the definition of a simulatable coin
flipping protocol using the real/ideal paradigm from [27].

Definition 3 ([27]). An n-party protocol Π is a simulatable coin-flipping proto-
col if it is an (n−1)-secure protocol realizing the coin-flipping functionality. That
is, for every PPT adversary A corrupting at most n − 1 parties there exists an
expected PPT simulator S such that the (output of the) following experiments are
indistinguishable. Here we parse the result of running protocol Π with adversary
A (denoted by REALΠ,A(1κ, 1λ)) as a pair (c, viewA) where c ∈ {0, 1}λ ∪ {⊥}
is the outcome and viewA is the view of the adversary A.

REAL(1κ, 1λ) IDEAL(1κ, 1λ)

c, viewA ← REALΠ,A(1κ, 1λ) c′ ← {0, 1}λ

c̃, viewS ← SA(c′, 1κ, 1λ)

Output (c, viewA) If c̃ = {c′, ⊥} then Output (c̃, viewS)
Else output fail

We restrict ourselves to the case of two parties (n = 2), which can be extended
to any n > 2. Below we denote messages in protocol Π which are sent by party
Pi to party Pj in the ρ-th round by m

Π[ρ]
i,j .

As mentioned earlier, Katz and Ostrovsky [26] showed that simulatable
coin-flipping protocol is impossible in 4 rounds without simultaneous message
exchange. Since we will use the result for our proofs in this section, we state
their result below without giving their proof.

Lemma 1. [26, Theorem 1] Let p(κ) = ω(log κ), where κ is the security parame-
ter. Then there does not exist a 4-round protocol without simultaneous message
transmission for tossing p(κ) coins which can be proven secure via black-box
simulation.

In the following, we state our impossibility result for coin-fliping in 3 rounds
of simultaneous message exchange.

Lemma 2. Let p(κ) = ω(logκ), where κ is the security parameter. Then there
does not exist a 3-round protocol with simultaneous message transmission for
tossing p(κ) coins which can be proven secure via black-box simulation.

Proof: We prove the above statement by showing that a 3-round simultaneous
message exchange protocol can be “rescheduled” to a 4-round non-simultaneous
protocol which contradicts the impossibility of [26]. Here by rescheduling we

462 S. Garg et al.

mean rearrangement of the messages without violating mutual dependencies
among them, in particular without altering the next-message functions.

For the sake of contradiction, assume that there exists a protocol Π⇔
flip which

realizes simulatable coin-flipping in 3 simultaneous message exchange rounds,
then we can reschedule it in order to construct a protocol Π

←→
flip which realizes

simulatable coin-flipping in 4 rounds9 without simultaneous message exchange
as follows:

Protocol Π
←→
flip

Round-1: P1 sends the first message m
Π

←→
flip [1]

1,2 := m
Π⇔

flip [1]

1,2 to P2.
Round-2: Party P2 sends to P1 the second message

m
Π

←→
flip [2]

2,1 := (m
Π⇔

flip [1]

2,1 ,m
Π⇔

flip [2]

2,1).
Round-3: Party P1 sends to P2 the third message

m
Π

←→
flip [3]

1,2 := (m
Π⇔

flip [2]

1,2 ,m
Π⇔

flip [3]

1,2).
Round-4: Finally P2 sends to P1 the last message

m
Π

←→
flip [4]

2,1 := m
Π⇔

flip [3]

2,1 .

We provide a pictorial presentation of the above rescheduling in Fig. 1 for
better illustration.

Now, without loss of generality assume that P1 is corrupted. Then we need
to build an expected PPT simulator SP1 (or simply S) meeting the adequate
requirements (according to Definition 1). First note that, since by assumption
the protocol Π⇔

flip is secure (i.e. achieves Definition 1) the following holds: for any
corrupt P⇔

1 executing the simultaneous message exchange protocol Π⇔
flip there

exists an expected PPT simulator S⇔ (let us call it the “inner” simulator and
S the “outer” simulator) in the ideal world. So, S can be constructed using S⇔

for a corrupted party P⇔
1 which can be emulated by S based on P1. Finally, S

just outputs whatever S⇔ returns. S emulates the interaction between S⇔ and
P⇔
1 as follows:

1. On receiving a value c′ ∈ {0, 1}λ from the ideal functionality, S runs the
inner simulator S⇔(c′, 1κ, 1λ) to get the first message m

Π⇔
flip [1]

2,1 . Notice that in
protocol Π⇔

flip the first message from (honest) party P⇔
2 does not depend on

the first message of the corrupted party P⇔
1 . So, the inner simulator must

be able to produce the first message even before seeing the first message of
party P1 (or the emulated party P⇔

1)10. Then it runs P1 to receive the first
message m

Π⇔
flip [1]

1,2 .

9 The superscript ⇔ stands for the simultaneous message exchange setting and
←→ for

the setting without simultaneous message exchange.
10 In particular, for so-called “rushing” adversaries, who can wait until receiving the

first message and then send its own, the inner simulator must simulate the first
message to get the first message from the adversary.

The Exact Round Complexity of Secure Computation 463

2. Then S forwards m
Π⇔

flip [1]

1,2 to the inner simulator which then returns the sec-

ond simulated message m
Π⇔

flip [2]

2,1 . Now S can construct the simulated message

m
Π

←→
flip [2]

2,1 by combining m
Π⇔

flip [2]

2,1 and m
Π⇔

flip [1]

2,1 received earlier (see above) which
S then forwards to P1.

3. In the next step, S gets back messages m
Π

←→
flip [3]

1,2 = (m
Π⇔

flip [2]

1,2 ,m
Π⇔

flip [3]

1,2) from P1.

It then forwards the second message m
Π⇔

flip [2]

1,2 to S⇔, which then returns the

third simulated message m
Π⇔

flip [3]

2,1 . Finally it forwards the third message m
Π⇔

flip [3]

1,2

to S⇔.
4. S outputs whatever transcript S⇔ outputs in the end.
5. Note that, whenever the inner simulator S⇔ asks to rewind the emulated

P⇔
1 , S rewinds P1.

It is not hard to see that the simulator S emulates correctly the party P⇔
1

and hence by the security of Π⇔
flip, the inner simulator S⇔ returns an indistin-

guishable (with the real world) view. The key-point is that the re-scheduling
of the messages from protocol Π⇔

flip does not affect the dependency (hence the
corresponding next message functions) and hence the correctness and security
remains intact in Π

←→
flip.

We stress that the proof for the case where P2 is corrupted is straightforward
given the above. However, in that case, since P2’s first message depends on the
first message of honest P1, it is mandatory for the inner simulator S⇔ to output
the first message before seeing anything even in order to run the corrupted P2

which is not necessary in the above case. As we stated earlier this is possible as
the inner simulator S⇔ should be able to handle rushing adversaries.

Hence we prove that if the underlying protocol Π⇔
flip securely realizes sim-

ulatable coin-flipping in 3 simultaneous rounds then Π
←→
flip securely realizes

coin-flipping in 4 non-simultaneous rounds which contradicts the KO lower
bound (Lemma 1). This concludes the proof. ��

Going a step further we show that any four-round simultaneous message
exchange protocol realizing simulatable coin-flipping must satisfy a necessary
property, that is each round must be a strictly simultaneous message exchange
round, in other words, both parties must send some “non-redundant” message
in each round. By “non-redundant” we mean that the next message from the
other party must depend on the current message. Below we show the above,
otherwise the messages can be again subject to a “rescheduling” mechanism
similar to the one in Lemma 2, to yield a four-round non-simultaneous protocol;
thus contradicting Lemma 1. More specifically,

Lemma 3. Let p(κ) = ω(logκ), where κ is the security parameter. Then there
does not exist a 4-round protocol with at least one unidirectional round (i.e. a
round without simultaneous message exchange) for tossing p(κ) coins which can
be proven secure via black-box simulation.

464 S. Garg et al.

P1 P2

Rescheduled
=⇒

P1 P2P1 P2

Fig. 1. A 3-round simultaneous protocol rescheduled to a 4-round non-simultaneous
protocol.

P1 P2

Rescheduled
=⇒

P1 P2P1 P2

Fig. 2. Rescheduling when P2 does not send the first message.

Proof: [Proof (Sketch)] We provide a sketch for any protocol with exactly one
unidirectional round where only one party, say P1 sends a message to P2. Clearly,
there can be four such cases where P2’s message is omitted in one of the four
rounds. In Fig. 2 we show the case where P2 does not send the message in the
first round, and any such protocol can be re-scheduled (similar to the proof of
Lemma 2) to a non-simultaneous 4-round protocol without altering any possible
message dependency. This observation can be formalized in a straightforward
manner following the proof of Lemma2 and hence we omit the details. Therefore,
again combining with the impossibility from Lemma 1 by [26] such simultaneous
protocol can not realize simulatable coin-flipping. The other cases can be easily
observed by similar rescheduling trick and therefore we omit the details for those
cases. ��

The Exact Round Complexity of Secure Computation 465

4 Two-Party Computation in the Simultaneous
Message Exchange Model

In this section, we present our two party protocol for computing any function-
ality in the presence of a static, malicious and rushing adversary. As discussed
earlier, we are in the simultaneous message exchange channel setting where both
parties can simultaneously exchange messages in each round. The structure of
this protocol will provide a basis for our later protocols as well.

An overview of the protocol appears in the introduction (Sect. 1). In a high
level, the protocol consists of two simultaneous executions of a one-sided (single-
output) protocol to guarantee that both parties learn the output. The overall
skeleton of the one-sided protocol resembles the KO protocol [26] which uses a
clever combination of OT, coin-tossing, and ΠWIPOK to ensure that the protocol
is executed with a fixed input (allowing at the same time simulation extractabil-
ity of the input), and relies on the zero-knowledge property of ΠFS to “force the
output”. A sketch of the KO protocol is given in Sect. 2.2. In order to ensure
“independence of inputs” our protocol relies heavily on non-malleable commit-
ments. To this end, we change the one-sided protocol to further incorporate non-
malleable commitments so that similar guarantees can be obtained even in the
presence of the “opposite side” protocol, and we further rely on zero-knowledge
proofs to ensure that parties use the same input in both executions.

4.1 Our Protocol

To formally define our protocol, let:

– (GenGC,EvalGC) be the garbled-circuit mechanism with simulator SimGC;
F = (Gen,Eval, Invert) be a family of TDPs with domain {0, 1}κ; H be the
hardcore bit function for κ bits; com be a perfectly binding non-interactive
commitment scheme; Eqcom be the equivocal scheme based on com, as
described in Sect. 2;

– nmcom be a tag based, parallel11 non-malleable commitment scheme for
strings, supporting tags/identities of length κ;

– ΠWIPOK be the witness-indistinguishable proof-of-knowledge for NP as
described in Sect. 2;

– ΠFS be the proof system for NP, based on nmcom and ΠWIPOK, as described
in Sect. 2;

– Simplifying assumption: for notational convenience only, we assume for
now that nmcom consists of exactly three rounds, denoted by (nm1, nm2, nm3).
This assumption is removed later (see Remark 1).

We also assume that the first round, nm1, is from the committer and
statistically determines the message to be committed. We use the notation
nm1 = nmcom1(id, r;ω) to denote the committer’s first message when execut-
ing nmcom with identity id to commit to string r with randomness ω.

11 We actually need security against an a-priori bounded number of polynomial execu-
tions. Almost all known protocols for nmcom have this additional property.

466 S. Garg et al.

We are now ready to describe our protocol.

Protocol Π2PC. We denote the two parties by P1 and P2; P1 holds input x ∈
{0, 1}κ and P2 holds input y ∈ {0, 1}κ. Furthermore, the identities of P1, P2 are
id1, id2 respectively where id1 �= id2. Let F := (F1, F2) : {0, 1}κ × {0, 1}κ →
{0, 1}κ × {0, 1}κ be the functions to be computed.

The protocol consists of four (strictly) simultaneous message exchange
rounds, i.e., both parties send messages in each round. The protocol essentially
consists of two simultaneous executions of a protocol in which only one party
learns the output. In the first protocol, P1 learns the output and the messages
of this protocol are denoted by (m1,m2,m3,m4) where (m1,m3) are sent by
P1 and (m2,m4) are sent by P2. Likewise, in the second protocol P2 learns
the output and the messages of this protocol are denoted by (m̃1, m̃2, m̃3, m̃4)
where (m̃1, m̃3) are sent by P2 and (m̃2, m̃4) are sent by P1. Therefore, messages
(mj , m̃j) are exchanged simultaneously in the j-th round, j ∈ {1, . . . , 4} (see
Fig. 3).

We now describe how these messages are constructed in each round below.
In the following i always ranges from 1 to κ and b from 0 to 1.

P1 P2

m1

m2

m3

m4

m1

m2

m3

m4

Fig. 3. 2-PC in the simultaneous message exchange model.

Round 1. In this round P1 sends a message m1 and P2 sends a symmetrically
constructed message m̃1. We first describe how P1 constructs m1.
Actions of P1 :
1. P1 starts by committing to 2κ random strings {(r1,0, r1,1), . . . , (rκ,0, rκ,1)}

using 2κ parallel and independent executions of nmcom with identity
id1. I.e., it uniformly chooses strings ri,b, randomness ωi,b, and gener-
ates nmi,b

1 which is the first message corresponding to the execution of
nmcom(id1, ri,b;ωi,b).

The Exact Round Complexity of Secure Computation 467

2. P1 prepares the first message p1 of ΠWIPOK, as well as the first message
fs1 of ΠFS.
For later reference, define st1 to be the following: ∃{(ri, ωi)}i∈[κ] s.t.:

∀i :
(

nmi,0
1 = nmcom1(id1, ri;ωi) ∨ nmi,1

1 = nmcom1(id1, ri;ωi)
)

Informally, st1 represents that P1 “knows” one of the decommitment val-
ues for every i.

3. Message m1 is defined to be the tuple
(

{nmi,b
1 }, p1, fs1

)

.
Actions of P2 :

Performs the same actions as P1 to sample the values
{(

r̃i,b, ω̃i,b

)}

and

constructs m̃1 :=
(

{ñmi,b
1 }, p̃1, ˜fs1

)

where all ñmi,b
1 are generated with id2.

Define the statement ˜st1 analogously for these values.
Round 2. In this round P2 sends a message m2 and P1 sends a symmetrically

constructed message m̃2. We first describe how P2 constructs m2.
Actions of P2 :
1. P2 generates the second messages {nmi,b

2 } corresponding to all executions
of nmcom initiated by P1 (with id1).

2. P2 prepares the second message p2 of the ΠWIPOK protocol initiated by
P1.

3. P2 samples random strings {r′
i,b} and

(

fi,b, f
−1
i,b

) ← Gen(1κ) for the obliv-
ious transfer executions.

4. P2 obtains the garbled labels and the circuit for F1:
({Zi,b}, GCy

)

=
GenGC

(

1κ, F1, y ; Ω
)

.
5. P2 generates standard commitments to the labels, and an equivocal com-

mitment to the garbled circuit: i.e., Ci,b
lab ← com(Zi,b;ω′

i,b) and Cgc ←
Eqcom(GCy; ζ).

6. P2 prepares the second message fs2 of the ΠFS protocol initiated by P1.
For later reference, define st2 to be the following:
∃ (

y,Ω,GCy, {Zi,b, ω
′
i,b}, ζ

)

s.t.:
(a)

({Zi,b}, GCy

)

= GenGC
(

1κ, F1, y ; Ω
)

(b) ∀(i, b) : Ci,b
lab = com(Zi,b;ω′

i,b)
(c) Cgc = Eqcom(GCy; ζ)

(Informally, st2 is the statement that P2 performed this step cor-
rectly.)

7. Define message m2 :=
(

{nmi,b
2 , r′

i,b, fi,b,C
i,b
lab},Cgc, p2, fs2

)

.
Actions of P1 :

Performs the same actions as P2 in the previous step to construct the mes-
sage m̃2 :=

(

{ñmi,b
2 , r̃′

i,b,
˜fi,b, ˜C

i,b
lab}, ˜Cgc, p̃2, ˜fs2

)

w.r.t. identity id2, function

F2, and input x. Define the (remaining) values ˜f ′−1
i,b , ˜Zi,b, ω̃

′
i,b,GCx, ˜Ω, ˜ζ

and statement ˜st2 analogously.
Round 3. In this round P1 sends a message m3 and P2 sends a symmetrically

constructed message m̃3. We first describe how P1 constructs m3.
Actions of P1 :

468 S. Garg et al.

1. P1 prepares the third message {nmi,b
3 } of nmcom (with id1).

2. If any of {fi,b} are invalid, P1 aborts. Otherwise, it invokes κ parallel exe-
cutions of oblivious transfer to obtain the input-wire labels corresponding
to its input x. More specifically, P1 proceeds as follows:
– If xi = 0, sample z′

i,0 ← {0, 1}κ, set zi,0 = fκ
i,0(z

′
i,0), and zi,1 =

ri,1 ⊕ r′
i,1.

– If xi = 1, sample z′
i,1 ← {0, 1}κ, set zi,1 = fκ

i,1(z
′
i,1), and zi,0 =

ri,0 ⊕ r′
i,0.

3. Define st3 to be the following: ∃{(ri, ωi)}i∈[κ] s.t. ∀i:
(a) (nmi,0

1 = nmcom1(id1, ri;ωi) ∧ zi,0 = ri ⊕ r′
i,0), or

(b) (nmi,1
1 = nmcom1(id1, ri;ωi) ∧ zi,1 = ri ⊕ r′

i,1)
Informally, st3 says that P1 correctly constructed {zi,b}.

4. P1 prepares the final message p3 of ΠWIPOK proving the statement: st1 ∧
st3.12 P1 also prepares the third message fs3 of ΠFS.

5. Define m3 :=
(

{nmi,b
3 , zi,b}, p3, fs3

)

to P2.
Actions of P2 :

Performs the same actions as P1 in the previous step to construct the
message m̃3 :=

(

{ñmi,b
3 , z̃i,b}, p̃3, ˜fs3

)

w.r.t. identity id2 and input y. The

(remaining) values {z̃i,b, z̃
′
i,b} and statement ˜st3 are defined analogously.

Round 4. In this round P2 sends a message m4 and P1 sends a symmetrically
constructed message m̃4. We first describe how P2 constructs m4.
Actions of P2 :
1. If p3, fs3 are not accepting, P2 aborts. Otherwise, P2 completes the

execution of the oblivious transfers for every (i, b). I.e., it computes
Wi,b = Zi,b ⊕ H(f−κ(zi,b)).

2. Define st4 to be the following: ∃ (y,Ω,GCy, {Zi,b}, ω′
i,b, z

′
i,b, z̃

′
i}

i∈[κ],b∈{0,1}) s.t.
(a) ∀(i, b):

(

Ci,b
lab = com(Zi,b;ω

′
i,b)
)

∧

(

fκ
i,b(z

′
i,b) = zi,b

)

∧

(

Wi,b = Zi,b ⊕ H((z′
i,b))

)

(b)
(({Zi,b}, GCy

)

= GenGC
(

1κ, F1, y ; Ω
))

∧

(Cgc = Eqcom(GCy; ζ))
(c) ∀i: z̃i,yi

= ˜fκ
i,yi

(z̃′
i)

Informally, this means that P2 performed both oblivious transfers cor-
rectly.

3. P2 prepares the final message fs4 of ΠFS proving the statement st2 ∧ st4.13

4. Define m4 :=
(

{Wi,b}, fs4,GCy, ζ
)

.
Actions of P1 :

Performs the same actions as P2 in the previous step to construct the mes-
sage m̃4 :=

(

{˜Wi,b}, ˜fs4,GCx, ˜ζ
)

and analogously defined statement ˜st4.

12 Honest P1 knows multiple witnesses for st1. For concreteness, we have to use one of
them randomly in the proof.

13 Recall that ΠFS is a modified version of FS protocol: it uses two executions of nmcom
to construct its first message, namely, the first message consists of (nm1

1, nm
2
1)) cor-

responding to two executions of nmcom committing to strings σ1, σ2 (see Sect. 2).

The Exact Round Complexity of Secure Computation 469

Output Computation.
P1’s output: If any of (fs4,GCy, ζ) or the openings of {Wi,b} are invalid,
P1 aborts. Otherwise, P1 recovers the garbled labels {Zi := Zi,xi

}
from the completion of the oblivious transfer, and computes F1(x, y) =
EvalGC(GCy, {Zi}).
P2’s output: If any of (˜fs4,GCx, ˜ζ) or the openings of {˜Wi,b} are invalid,
P2 aborts. Otherwise, P2 recovers the garbled labels { ˜Zi := ˜Zi,yi

}
from the completion of the oblivious transfer, and computes F2(x, y) =
EvalGC(GCx, { ˜Zi}).

Remark 1: If nmcom has k > 3 rounds, the first k − 3 rounds can be performed
before the 4 rounds of Π2PC start; this results in a protocol with k + 1 rounds.
If k < 3, then the protocol has only 4 rounds. Also, for large k, it suffices if the
first k−2 rounds of nmcom statistically determine the message to be committed;
the notation is adjusted to simply use the transcript up to k−2 rounds to define
the statements for the proof systems.

Finally, the construction is described for a deterministic F . Known trans-
formations (see [19, Sect. 7.3]) yield a protocol for randomized functionalities,
without increasing the rounds.

4.2 Proof of Security

We prove the security of our protocol according to the ideal/real paradigm.
We design a sequence of hybrids where we start with the real world execution
and gradually modify it until the input of the honest party is not needed. The
resulting final hybrid represents the simulator for the ideal world.

Theorem 1. Assuming the existence of a trapdoor permutation family and a
k-round parallel non-malleable commitment schemes, protocol Π2PC securely
computes every two-party functionality F = (F1, F2) with black-box simula-
tion in the presence of a malicious adversary. The round complexity of Π2PC

is k′ = max(4, k + 1).

Proof: Due to the symmetric nature of our protocol, it is sufficient to prove
security against the malicious behavior of any party, say P1. We show that for
every adversary A who participates as P1 in the “real” world execution of Π2PC,
there exists an “ideal” world adversary (simulator) S such that for all inputs
x, y of equal length and security parameter κ ∈ N:

{IDEALF,S(κ, x, y)}κ,x,y

c≈ {REALΠ,A(κ, x, y)}κ,x,y

We prove this claim by considering hybrid experiments H0,H1, . . . as described
below. We start with H0 which has access to both inputs x and y, and gradually
get rid of the honest party’s input y to reach the final hybrid.

H0: Identical to the real execution. More specifically, H0 starts the execution of
A providing it fresh randomness and input x, and interacts with it honestly

470 S. Garg et al.

by performing all actions of P2 with uniform randomness and input y. The
output consists of A’s view.

By construction, H0 and the output of A in the real execution are identi-
cally distributed.

H1: Identical to H0 except that this hybrid also performs extraction of A’s
implicit input x∗ from ΠWIPOK; in addition, it also extracts the “simulation
trapdoor” σ from the first three rounds (fs1, fs2, fs3) of ΠFS.14 More specifi-
cally, H1 proceeds as follows:
1. It completes the first three broadcast rounds exactly as in H0, and waits

until A either aborts or successfully completes the third round.
2. At this point, H1 proceeds to extract the witness corresponding to each

proof-of-knowledge completed in the first three rounds.
Specifically, H1 defines a cheating prover P ∗ which acts identically to

H0, simulating all messages for A, except those corresponding to (each
execution of) ΠWIPOK which are forwarded outside. It then applies the
extractor of ΠWIPOK to obtain the “witnesses” which consists of the fol-
lowing: values {(ri, ωi)}i∈[κ] which is the witness for st1 ∧ st3, and a value
(σ, ωσ) which is the simulation trapdoor for ΠFS.

If extraction fails, H1 outputs fail. Otherwise, let bi ∈ {0, 1} be such
that nmi,bi

1 = nmcom1(id1, ri;ωi). H1 defines a string x∗ = (x∗
1, . . . , x

∗
κ)

as follows:

If zi,bi
= ri ⊕ r′

i,bi
then x∗

i = 1 − bi; otherwise x∗
i = bi

3. H1 completes the final round and prepares the output exactly as H0.

Claim 1. H1 is expected polynomial time, and H0,H1 are statistically close.

Proof sketch: This is a (completely) standard proof which we sketch here.
Let p be the probability with which A completes ΠWIPOK in the third round,
and let trans be the transcript. The extractor for ΠWIPOK takes expected
time poly(κ)/p and succeeds with probability 1 − μ(κ). It follows that the
expected running time of H1 is poly(κ) + p · poly(κ)

p = poly(κ), and its output
is statistically close to that of H0.15 �

H2: Identical to H1 except that this hybrid uses the simulation trapdoor (σ, ωσ)
as the witness to compute fs4 in the last round. (Recall that fs4 is the last
round of an execution of ΠWIPOK).

It is easy to see that H2 and H3 are computationally indistinguishable due
the WI property of ΠWIPOK.

H3: In this hybrid, we get rid of P2’s input y that is implicitly present in values
{z̃i,b} and {ri,b} in nmcom (but keep it everywhere else for the time being).

14 Recall that (fs1, fs2, fs3) contains two non-malleable commitments (to values σ1, σ2)
along with proof-of-knowledge of one of the committed values using ΠWIPOK; this
execution of ΠWIPOK runs in parallel and therefore, it is possible to extract from it
at the same time as x∗.

15 See “witness extended emulation” in [31] for full exposition.

The Exact Round Complexity of Secure Computation 471

Formally, H3 is identical to H2 except that in round 3 it sets z̃i,b = r̃i,b ⊕ r̃′
i,b

for all (i, b).
Claim 2. The outputs of H2 and H3 are computationally indistinguishable.
Proof. We rely on the non-malleability of nmcom to prove this claim. Let D

be a distinguisher for H2 and H3.
The high level idea is as follows: first we define two string sequences {u1

i,b}
and {u2

i,b} and a man-in-the-middle M (which incorporates A) and receives
non-malleable commitments to one of these sequences in parallel. Then we
define a distinguisher Dnm which incorporates both M and D, takes as input
the value committed by M and its view, and can distinguish which sequence
was committed to M . This violates non-malleability of nmcom.

Formally, define a man-in-middle M who receives 2κ nmcom commitments
on left and makes 2κ commitments on right as follows:
1. M incorporates A internally, and proceeds exactly as H1 by sampling all

messages internally except for the messages of nmcom corresponding to
P2. These messages are received from an outside committer as follows. M
samples uniformly random values {z̃i,b} and {r̃′

i,b} and defines {u0
i,b} and

{u1
i,b} as:

u0
i,yi

= z̃i,yi
⊕ r̃′

i,yi
, u0

i,yi
← {0, 1}κ, u1

i,b = z̃i,b ⊕ r̃′
i,b∀(i, b)

It forwards {u0
i,b} and {u1

i,b} to the outside committer who commits to
one of these sequences in parallel. M forwards these messages to A, and
forwards the message given by A corresponding to nmcom to the outside
receiver.

2. After the first three rounds are finished, M halts by outputting its view.
In particular, M does not continue further like H1, it does not extract
any values, and does not complete the fourth round. (In fact, M cannot
complete the fourth round, since it does not have the witness).

Let {v0
i,b} (resp., {v1

i,b}) be the sequence of values committed by M with id2
when it receives a commitment to {u0

i,b} (resp., {u1
i,b}) with id1.

Define the distinguisher Dnm as follows: Dnm incorporates both M and D.
It receives as input a pair ({vi,b}, view) and proceeds as follows:
1. Dnm parses vi,b to obtain a string σ corresponding to the “trapdoor wit-

ness.”16
2. Dnm starts M and feeds him the view view and continues the execution

just like H1. It, however, does not rewind A (internal to M), instead it
uses σ (which is part of its input) and values in view to complete the last
round of the protocol.

3. When A halts, Dnm feeds the view of A to D and outputs whatever D
outputs.

It is straightforward to verify that if M receives commitments corresponding
to {u0

i,b} (resp., {u1
i,b}) then the output of Dnm is identical to that of H2

(resp., H3). The claim follows. �
16 Note that, by construction, such a value is guaranteed in both sequences and w.l.o.g.

can be the value in the first nmcom.

472 S. Garg et al.

H4: Identical to H3 except that H4 changes the “inputs of the oblivious trans-
fer” from (Zi,0, Zi,1) to (Zi,x∗

i
, Zi,x∗

i
). Formally, in the last round, H4 sets

Wi,b = Zi,x∗
i

⊕ H((z′
i,b)) for every (i, b), but does everything else as H3.

H3 and H4 are computationally indistinguishable due to the (indistin-
guishable) security of oblivious transfer w.r.t. a malicious receiver. This part
is identical to the proof in [26], and relies on the fact that one of the two
strings for oblivious transfer are obtained by “coin tossing;” and therefore its
inverse is hidden, which implies that the hardcore bits look pseudorandom.

H5: Identical to H4 except that now we simulate the garbled circuit and its
labels for values x∗ and F1(x∗, y). Formally, H5 starts by proceeding exactly
as H4 up to round 3 except that instead of committing to correct garbled
circuit and labels in round 2, it simply commits to random values. After
completing round 3, H5 extracts x∗ exactly as in H4. If extraction succeeds,
it sends x∗ to the trusted party, receives back v1 = F1(x∗, y), and computes
({Zi,b},GC∗) ← SimGC(1κ, F1, x

∗, v1). It uses labels {Zi,x∗
i
} to define the

values {Wi,b} as in H3, and equivocates Cgc to obtain openings corresponding
to the simulated circuit GC∗. It then computes fs4 as before (by using the
trapdoor witness (σ, ωσ)), and constructs m4 := ({Wi,b}, fs4,GC

∗, ζ). It feeds
m4 to A and finally outputs A’s view and halts.

We claim that H4 and H5 are computationally indistinguishable. First
observe that the joint distribution of values ({Ci,b

lab},Cgc) and GCy (along with
real openings) in H4 is indistinguishable from the joint distribution of the
values ({Ci,b

lab},Cgc) and GC∗ (along with equivocal openings) in H5. The two
hybrids are identical except for sampling of these values, and can be simulated
perfectly given these values from outside. The claim follows.17

Observe that H5 is now independent of the input y. Our simulator S is H5.
This completes the proof. ��

5 Multi-party Coin Flipping Protocol

In this section, we show a protocol for the multi-party coin-flipping functionality.
Since we need neither OT nor garbled circuits for coin-flipping, this protocol is
simpler than the the two-party protocol.

At a high level, the multi-party coin flipping protocol ΠMCF simply consists
of each party “committing” to a random string r, which is opened in the last
round along with a simulatable proof of correct opening given to all parties
independently. The output consists of the ⊕ of all strings. This actually does
not work directly as stated, but with a few more components, such as equivocal
commitment to r for the proof to go through. In particular, we prove the following
theorem.

17 Let us note that changing the commitment in second round (from correct garbled
labels/circuit to random strings) is performed from the beginning—i.e., in the “main
thread” of simulation—therefore the running time stays expected polynomial time
as in claim 1.

The Exact Round Complexity of Secure Computation 473

Theorem 2. Assuming the existence of a trapdoor permutation family and a
k-round protocol for (parallel) non-malleable commitments, then the multi-party
protocol ΠMCF securely computing the multi-party coin-flipping functionality with
black-box simulation in the presence of a malicious adversary for polynomially
many coins. The round complexity of ΠMCF is k′ = max(4, k + 1).

The multi-party coin flipping protocol ΠMCF and its security proof can be
found in the full version.

5.1 Coin Flipping with Committed Inputs

We now discuss an extension of the coin-flipping functionality which will be use-
ful in the next section. The extension considers a functionality which, in addition
to providing a random string to the parties, also “attests” to a commitment to
their input.

More specifically, we consider the following setting. Each party Pi has an
input string xi and randomness ρi. Let com be a non-interactive perfectly-
binding commitment scheme. The Coin Flipping with Committed Inputs func-
tionality FCF-CI acts as follows:

1. Each party sends (xi, ρi, ci) to the functionality where ci = com(xi; ρi).
2. Functionality samples a random string r.
3. Functionality tests that for every i, ci = com(xi; ρi). If the test succeeds, it

sets yi = (r, ci, true); otherwise, yi = (r, ci, false).
4. Functionality sends (y1, . . . , yn) to all parties.

We claim that a minor modification of our coin-flipping protocol can actually
implement FCF-CI. More details on the new protocol ΠCF-CI which implements
FCF-CI can be found in the full version.

5.2 Results for General Multi-party Functionalities

We now discuss how to obtain protocols for general, as opposed to coin-flipping,
functionalities in the multiparty case.

Mukherjee and Wichs [34] construct a 2-round protocol for general multiparty
functionalities under the Learning With Errors (LWE) assumption in the CRS
model. Combining their protocol with ΠMCF (to obtain the CRS), we obtain a
protocol for general functionalities with k′+2 rounds under the LWE assumption.

Likewise, Garg et al. [16] also construct a 2-round protocol for the same task
in the CRS model, under the assumption that general purpose indistinguishabil-
ity obfuscation exists. Their protocol actually has a special structure: it can be
computed in just one round given access to the FCF-CI functionality that we have
defined above. Consequently, using their protocol with protocol ΠCF-CI actually
gives a k′ + 1 round protocol.

We thus get the following theorem.

474 S. Garg et al.

Theorem 3. Assuming the existence of a trapdoor permutation family and
k-round parallel non-malleable commitment schemes, there exists a protocol for
securely computing every multiparty functionality in the presence of a malicious
adversary such that: (a) the protocol has k′ + 1 rounds assuming general pur-
pose indistinguishability obfuscation, and (b) k′ + 2 rounds assuming the LWE
assumption where k′ = max(4, k + 1).

As a corollary of the above theorem, an instantiation of the above protocols
with the nmcom scheme in [36] gives a five round protocol (assuming indistin-
guishability obfuscation), and a six round protocol (assuming LWE) for general
multiparty functionalities.

We note that we can also use the four round protocol of [24] for nmcom; this
will result in one extra round and gives seven rounds under LWE, and six under
indistinguishability obfuscation.

References

1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)

2. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual
Symposium on Foundations of Computer Science, pp. 106–115. IEEE Computer
Society Press, October 2001

3. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing
the shared random string model. In: 43rd Annual Symposium on Foundations of
Computer Science, pp. 345–355. IEEE Computer Society Press, November 2002

4. Barak, B., Lindell, Y.: Strict polynomial-time in simulation and extraction. In: 34th
Annual ACM Symposium on Theory of Computing, pp. 484–493. ACM Press, May
2002

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd Annual ACM Symposium on Theory of Computing,
pp. 503–513. ACM Press, May 1990

6. Or Ben, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, May
1988

7. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th Annual ACM Symposium on
Theory of Computing, pp. 494–503. ACM Press, May 2002

8. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th Annual ACM Symposium on Theory of Computing,
pp. 11–19. ACM Press, May 1988

9. Damg̊ard, I.B., Ishai, Y.: Constant-round multiparty computation using a black-
box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 378–394. Springer, Heidelberg (2005)

10. Damg̊ard, I.B., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

The Exact Round Complexity of Secure Computation 475

11. Damg̊ard, I., Nielsen, J.B., Polychroniadou, A.: On the communication required
for unconditionally secure multiplication (2015)

12. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd Annual ACM Symposium on Theory of Computing, pp. 542–552. ACM
Press, May 1991

13. Feige, U.: Alternative models for zero knowledge interactive proofs. Ph.D thesis
(1990)

14. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

15. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
22nd Annual ACM Symposium on Theory of Computing, pp. 416–426. ACM Press,
May 1990

16. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014)

17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual Symposium on Foundations of Computer Science, pp. 40–49. IEEE Com-
puter Society Press, October 2013

18. Goldreich, O.: Draft of a chapter on cryptographic protocols. http://www.wisdom.
weizmann.ac.il/oded/foc-vol2.html. Accessed June 2003

19. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

21. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
Fortnow, L., Vadhan, S.P. (eds) 43rd Annual ACM Symposium on Theory of Com-
puting, pp. 695–704. ACM Press, June 2011

22. Goyal, V., Lee, C.-K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: a black-box approach. In: 53rd Annual Symposium on Foundations of
Computer Science, pp. 51–60. IEEE Computer Society Press, October 2012

23. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. Man-
uscript, November 2015

24. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: 55th Annual Symposium on Foundations of Computer Science,
pp. 41–50. IEEE Computer Society Press, October 2014

25. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

26. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004)

27. Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation
with a dishonest majority. In: Advances in Cryptology - EUROCRYPT, Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Warsaw, Poland, Proceedings, pp. 578–595, 4–8 May 2003

28. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd Annual ACM Symposium on
Theory of Computing, pp. 705–714. ACM Press, June 2011

http://www.wisdom.weizmann.ac.il/oded/foc-vol2.html
http://www.wisdom.weizmann.ac.il/oded/foc-vol2.html

476 S. Garg et al.

29. Lin, H., Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Concurrent non-
malleable zero knowledge proofs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 429–446. Springer, Heidelberg (2010)

30. Lin, H., Pass, R., Venkitasubramaniam, M.: A. unified framework for concurrent
security: universal composability from stand-alone non-malleability. In: Mitzen-
macher, M. (ed.) 41st Annual ACM Symposium on Theory of Computing, pp.
179–188. ACM Press, May/June 2009

31. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computa-
tion. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 171–189. Springer,
Heidelberg (2001)

32. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

33. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011)

34. Mukherjee, P., Wichs, D.: Two round MPC from LWE via multi-key FHE. IACR
Cryptology ePrint Archive 2015:345 (2015)

35. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party com-
putation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 339–358. Springer, Heidelberg (2015)

36. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer,
Heidelberg (2008)

37. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory
of Computing, pp. 84–93. ACM Press, May 2005

38. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: 51st Annual Symposium on Foundations of Computer Science, pp.
531–540. IEEE Computer Society Press, October 2010

39. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE Com-
puter Society Press, November 1982

40. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

On the Composition of Two-Prover
Commitments, and Applications to Multi-round

Relativistic Commitments

Serge Fehr(B) and Max Fillinger(B)

Centrum Wiskunde and Informatica (CWI), Amsterdam, The Netherlands
{serge.fehr,max.fillinger}@cwi.nl

Abstract. We consider the related notions of two-prover and of rela-
tivistic commitment schemes. In recent work, Lunghi et al. proposed a
new relativistic commitment scheme with a multi-round sustain phase
that keeps the binding property alive as long as the sustain phase is
running. They prove security of their scheme against classical attacks;
however, the proven bound on the error parameter is very weak: it blows
up double exponentially in the number of rounds.

In this work, we give a new analysis of the multi-round scheme of
Lunghi et al., and we show a linear growth of the error parameter instead
(also considering classical attacks only). Our analysis is based on a new
composition theorem for two-prover commitment schemes. The proof of
our composition theorem is based on a better understanding of the bind-
ing property of two-prover commitments that we provide in the form of
new definitions and relations among them. As an additional consequence
of these new insights, our analysis is actually with respect to a strictly
stronger notion of security than considered by Lunghi et al.

1 Introduction

Two-Prover Commitment Schemes. We consider the notion of 2-prover
commitment schemes, as originally introduced by Ben-Or, Goldwasser, Kilian
and Wigderson in their seminal paper [2]. In a 2-prover commitment scheme,
the prover (i.e., the entity that is responsible for preparing and opening the
commitment) consists of two agents, P and Q, and it is assumed that these
two agents cannot communicate with each other during the execution of the
protocol. With this approach, the classical and quantum impossibility results
[9,11] for unconditionally secure commitment schemes can be circumvented.

A simple 2-prover bit commitment scheme is the scheme proposed by Crépeau
et al. [5], which works as follows. The verifier V chooses a uniformly random

M. Fillinger—Supported by the NWO Free Competition grant 617.001.203.
c©IACR 2016. This article is the final version submitted by the author(s) to the
IACR and to Springer-Verlag on February 11th, 2016. The version published by
Springer-Verlag is available at An extended version is available at http://arxiv.
org/abs/1507.00240.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 477–496, 2016.
DOI: 10.1007/978-3-662-49896-5 17

http://arxiv.org/abs/1507.00240
http://arxiv.org/abs/1507.00240

478 S. Fehr and M. Fillinger

a ∈ {0, 1}n and sends it to P , who replies with x := y +a · b ∈ {0, 1}n, where b is
the bit to commit to, and y ∈ {0, 1}n is a uniformly random string known (only)
to P and Q. Furthermore, “+” is bit-wise XOR, and “·” is scalar multiplication
(of the scalar b with the vector a). To open the commitment (to b), Q sends y to
V , and V checks if x + y = a · b. This scheme is clearly hiding: the commitment
x = y + a · b is uniformly random and independent of a no matter what b is.
On the other hand, the binding property follows from the observation that in
order to open the commitment to b = 0, Q needs to announce y = x, and in
order to open to b = 1, he needs to announce y = x + a. Thus, in order to open
to both, he must know x and x + a, and thus a, which is a contradiction to the
no-communication assumption, because a was sent to P only.

Relativistic Commitment Schemes. The idea of relativistic commitment
schemes, as introduced by Kent [7], is to take a 2-prover commitment scheme
as above and enforce the no-communication assumption by means of relativistic
effects: place P and Q spatially far apart, and execute the scheme fast enough, so
that there is not enough time for them to communicate. The obvious downside
of such a relativistic commitment scheme is that the binding property stays alive
only for a very short time: the opening has to take place almost immediately
after the committing, before the provers have the chance to exchange informa-
tion. This limitation can be circumvented by considering multi-round schemes,
where after the actual commit phase there is a sustain phase, during which the
provers and the verifier keep exchanging messages, and as long as this sustain
phase is running, the commitment stays binding (and hiding), until the commit-
ment is finally opened. Such schemes were proposed in [7,8], but they are rather
inefficient, and the security analyses are informal (e.g., with no formal security
definitions) and of asymptotic nature.

More recently, Lunghi et al. [10] proposed a new and simple multi-round
relativistic commitment scheme, and provided a rigorous security analysis. Their
scheme works as follows (see also Fig. 1). The actual commit protocol is the
commit protocol from the Crépeau et al. scheme: V sends a uniformly random
string a0 ∈ {0, 1}n to P , who returns x0 := y0 + a0 · b. Then, to sustain the
commitment, before P has the chance to tell a0 to Q, V sends a new uniformly
random string a1 ∈ {0, 1}n to Q who replies with x1 := y1 + a1 · y0, where y1 ∈
{0, 1}n is another random string shared between P and Q, and the multiplication
a1 · y0 is in a suitable finite field. Then, to further sustain the commitment, V
sends a new uniformly random string a2 ∈ {0, 1}n to P who replies with x2 :=
y2 +a2 ·y1, etc. Finally, after the last sustain round where xm := ym +am ·ym−1

has been sent to V , in order to finally open the commitment, ym is sent to V by
the other prover. In order to verify the opening, V computes ym−1, ym−2, . . . , y0
inductively in the obvious way, and checks if x0 + y0 = a0 · b.

What is crucial is that in round i (say for odd i), when preparing xi, the
prover Q must not know ai−1, but he is allowed to know a1, . . . , ai−2. Thus,
execution must be timed in such a way that between subsequent rounds there
is not enough time for the provers to communicate, but they may communicate
over multiple rounds.

On the Composition of Two-Prover Commitments, and Applications 479

P V Q

commit: ←− a0

x0 := y0 + a0 · b −→

sustain: a1 −→
←− x1 := y1 + a1 · y0

←− a2

x2 := y2 + a2 · y1 −→

a3 −→
←− x3 := y3 + a3 · y2

open: y3 −→

Fig. 1. The Lunghi et al. multi-round scheme (for m = 3).

As for the security of this scheme, it is obvious that the hiding property
stays satisfied up to the open phase: every single message V receives is one-
time-pad encrypted. As for the binding property, Lunghi et al. prove that the
scheme with a m-round sustain phase is εm-binding against classical attacks,
where εm satisfies ε0 = 2−n (this is just the standard Crépeau et al. scheme)
and εm ≤ 2−n−1 + √

εm−1 for m ≥ 1. Thus, even when reading this recursive
formula liberally by ignoring the 2−n−1 term, we obtain

εm � 2m
√

ε0 = 2− n
2m ,

i.e., the error parameter blows up double exponentially in m.1 In other words, in
order to have a non-trivial εm we need that n, the size of the strings that are
communicated, is exponential in m. This means that Lunghi et al. can only afford
a very small number of rounds. For instance, in their implementation where they
can manage n = 512 (beyond that, the local computation takes too long), asking
for an error parameter εm of approximately 2−32, they can do m = 4 rounds.2

This allows them to keep a commitment alive for 2 ms.

Our Results. Our main goal is to improve the bound on the binding parameter
of the above multi-round scheme. Indeed, our results show that the binding para-
meter blows up only linearly in m, rather than double exponentially. Explicitly,
our results show that (for classical attacks)

εm ≤ (m + 1) · 2−n
2 +2 .

1 Lunghi et al. also provide a more complicated recursive formula for εm that is slightly
better, but the resulting blow-up is still double exponential.

2 Note that [10] mentions εm ≈ 10−5 ≈ 2−16, but this is an error, as communicated to
us by the authors, and as can easily be verified. Also, [10] mentions m = 5 rounds,
but this is because they include the commit round in their counting, and we do not.

480 S. Fehr and M. Fillinger

Using the same n and error parameter as in the implementation of Lunghi et al.,
we can now afford approximately m = 2222 rounds. Scaling up the 2ms from the
Lunghi et al. experiment for 4 rounds gives us a time that is in the order of 1056

years. On top of having a hugely improved error parameter, our analysis is with
respect to a strictly stronger definition of the binding property.

We use the following strategy to obtain our improved bound on εm. We
observe that the first sustain round can be understood as committing on the
opening information y0 of the actual commitment, using an extended version
of the Crépeau et al. scheme that commits to a string rather than to a bit.
Similarly, the second sustain round can be understood as committing on the
opening information y1 of that commitment from the first sustain round, etc.
Thus, thinking of the m = 1 version of the scheme, what we have to prove is that
if we have two commitment schemes S and S ′, and we modify the opening phase
of S in that we first commit to the opening information (using S ′) and then open
that commitment, then the resulting commitment scheme is still binding; note
that, intuitively, this is what one would indeed expect. Given such a composition
theorem, we can then apply it inductively and conclude security (i.e. the binding
property) of the Lunghi et al. multi-round scheme.

Our main result is such a general composition theorem, which shows that if
S and S ′ are respectively ε- and δ-binding (against classical attacks) then the
composed scheme is (ε + δ)-binding (against classical attacks), under some mild
assumptions on S and S ′. Hence, the error parameters simply add up; this is what
gives us the linear growth. The proof of our composition theorem crucially relies
on a new definition of the binding property of 2-prover commitment schemes,
which seems to be handier to work with than the p0 + p1 ≤ 1 + ε definition
as for instance used by Lunghi et al. Our definition formalizes the intuitive
requirement that after the commit phase, no matter how the provers behaved,
there should exist a bit b̂ (or a string in case of a string commitment scheme)
such that opening the commitment to b �= b̂ fails (with high probability). This
new definition is strictly stronger than the p0+p1 definition, and thus we improve
the Lunghi et al. result also in that direction.

One subtle issue is that the extended version of the Crépeau et al. scheme to
strings, as it is used in the sustain phase, is not a fully secure string commitment
scheme. The reason is that for any y that may be announced in the opening
phase, there exists a string s such that x + y = a · s; as such, the provers
can commit to some fixed string, and then can still decide to either open the
commitment to that string (by running the opening phase honestly), or to open
it to a random string that is out of their control (by announcing a random y). We
deal with this by also introducing a relaxed version of the binding property (which
we call fairly-binding), which captures this limited freedom for the provers, and
we show that it is satisfied by the (extended version of the) Crépeau et al.
scheme and that our composition theorem holds for this relaxed version; finally,
we observe that the composed fairly-binding string commitment scheme is a
binding bit commitment scheme when restricting the domain to a bit.

On the Composition of Two-Prover Commitments, and Applications 481

As such, we feel that our techniques and insights not only give rise to an
improved analysis of the Lunghi et al. multi-round scheme, but they significantly
improve our understanding of the security of 2-prover commitment schemes, and
as such are likely to find further applications.

Open Problems. Our work gives rise to a list of interesting and challenging
open problems. For instance, our composition theorem only applies to pairs
S,S ′ of commitment schemes of a certain restricted form, e.g., only one prover
should be involved in the commit phase (as it is the case in the Crépeau et al.
scheme). Our proof crucially relies on this, but there seems to be no fundamental
reason for such a restriction. Thus, we wonder if it is possible to generalize our
composition theorem to a larger class of pairs of schemes, or, ultimately, to all
pairs of schemes (that “fit together”).

Also, generalizing our composition theorem to the quantum setting is an
interesting open problem. This seems particularly non-trivial because our defin-
ition for the binding property does not generalize (immediately) to the quantum
setting. Furthermore, in order to obtain security of the Lunghi et al. multi-round
scheme against quantum attacks, beyond a quantum version of the composition
theorem, one also needs to prove security (of the string-commitment version) of
the Crépeau et al. scheme with respect to a suitable definition of the binding
property against quantum attacks.

Concurrent Work. In independent and concurrent work, Chakraborty et al.
[3] showed (almost) the same linear bound for the Lunghi et al. scheme, but with
respect to the original — and thus weaker — notion of security. Their approach
is more direct and tailored to the specific scheme; our approach is more abstract
and provides more insight, and our result applies much more generally.

2 Preliminaries

2.1 Basic Notation

Probability Distributions. For the purpose of this work, a (probability) dis-
tribution is a function p : X → [0, 1], x �→ p(x), where X is a finite non-empty
set, with the property that

∑

x∈X p(x) = 1. For specific choices x◦ ∈ X , we tend
to write p(x=x◦) instead of p(x◦). For any subset Λ ⊂ X , called an event, the
probability p(Λ) is naturally defined as p(Λ) =

∑

x∈Λ p(x), and it holds that

p(Λ) + p(Γ) = p(Λ ∪ Γ) + p(Λ ∩ Γ) ≤ 1 + p(Λ ∩ Γ) (1)

for all Λ, Γ ⊂ X . For a distribution p : X × Y → R on two (or more) variables,
probabilities like p(x=y), p(x=f(y)), p(x �=y) etc. are naturally understood as

p(x = y) = p
({(x, y) ∈ X × Y |x = y}) =

∑

x∈X ,y∈Y
s.t. x=y

p(x, y)

etc., and the marginals p(x) and p(y) are given by p(x) =
∑

y p(x, y) and by
p(y) =

∑

x p(x, y), respectively. Finally, given that p(y) > 0, we write p(x|y) for
the conditional distribution p(x|y) := p(x, y)/p(y).

482 S. Fehr and M. Fillinger

Protocols. In this work, we will consider 3-party (interactive) protocols, where
the parties are named P , Q and V (the two “provers” and the “verifier”). Such
a protocol protPQV consists of a triple (protP , protQ, protV) of L-round inter-
active algorithms for some L ∈ N. Each interactive algorithm takes an input,
and for every round � ≤ L computes the messages to be sent to the other
algorithms/parties in that round as deterministic functions of its input, the mes-
sages received in the previous rounds, and the local randomness. In the same
way, the algorithms produce their respective outputs after the last round. We
write

(outP ‖outQ‖outV) ← (

protP (inP)‖protQ(inQ)‖protV (inV)
)

to denote the execution of the protocol protPQV on the respective inputs inP , inQ

and inV , and that the respective outputs outP , outQ and outV are produced.
Clearly, for any protocol protPQV and any input inP , inQ, inV , the probability
distribution p(outP , outQ, outV) of the output is naturally well defined.

If we want to make the local randomness explicit, we write protP [ξP](inP)
etc., and understand that ξP is correctly sampled. We write protP [ξPQ](inP)
and protQ[ξPQ](inQ) to express that protP and protQ use the same randomness,
in which case we speak of joint randomness.

We can compose two interactive algorithms protP and prot′P in the obvious
way, by applying prot′P to the output of protP . The resulting interactive algorithm
is denoted as prot′P ◦protP . Composing the respective algorithms of two protocols
protPQV = (protP , protQ, protV) and prot′PQV = (prot′P , prot′Q, prot′V) results in
the composed protocol prot′PQV ◦ protPQV .

2.2 2-Prover Commitment Schemes

We formally introduce the notion of 2-prover commitment schemes and discuss
the security properties. Defining the binding property is non-trivial; this will be
further discussed in Sect. 3.

Definition 2.1. A 2-prover (string) commitment scheme S consists of two
interactive protocols, the commit protocol comPQV = (comP , comQ, comV) and
the opening protocol openPQV = (openP , openQ, openV) between the two provers
P and Q and the verifier V , with the following syntactics. The commit protocol
comPQV uses joint randomness ξPQ for P and Q and takes a string s ∈ {0, 1}n

as input for P and Q (and independent randomness and no input for V), and it
outputs a commitment c to V and some state information to P and Q:

(stateP ‖stateQ‖c) ← (

comP [ξPQ](s)‖comQ[ξPQ](s)‖comV

)

.

The opening protocol openPQV uses joint randomness ηPQ for P and Q, and
outputs a string or a rejection symbol to V , and nothing to P and Q:

(∅‖∅‖s) ← (

openP [ηPQ](stateP)‖openQ[ηPQ](stateQ)‖openV (c)
)

with s ∈ {0, 1}n ∪ {⊥}. The set {0, 1}n is called the domain of S; if n = 1 then
we refer to S as a bit commitment scheme instead, and we tend to use b rather
than s to denote the committed bit.

On the Composition of Two-Prover Commitments, and Applications 483

Remark 2.2. By convention, we assume throughout the paper that the commit-
ment c output by V equals the communication that takes place between V and
the provers during the commit phase. This is without loss of generality since, in
general, c is computed as a (possibly randomized) function of the communica-
tion, which V just as well can apply in the opening phase.

Remark 2.3. Note that we specify that P and Q use fresh joint randomness ηPQ

in the opening phase, and, if necessary, the randomness ξPQ from the commit
phase can be “handed over” to the opening phase via stateP and stateQ; this
will be convenient later on. Alternatively, one could declare that P and Q re-use
the joint randomness from the commit phase.

Whenever we refer to such a 2-prover commitment scheme, we take it as under-
stood that the scheme is complete and hiding, as defined below, for “small”
values of η and δ. Since our focus will be on the binding property, we typically
do not make the parameters η and δ explicit.

Definition 2.4. A 2-prover commitment scheme is η-complete if in an honest
execution V ’s output s of openPQV equals P and Q’s input s to comPQV except
with probability η, for any choice of P and Q’s input s ∈ {0, 1}n.

The standard definition for the hiding property is as follows:

Definition 2.5. A 2-prover commitment scheme is δ-hiding if for any commit
strategy comV and any two strings s0 and s1, the respective distributions of the
commitments c0 and c1, produced as

(stateP ‖stateQ‖cb) ← (

comP [ξPQ](sb)‖comQ[ξPQc](sb)‖comV

)

for b ∈ {0, 1}, have statistical distance at most δ. A 0-hiding scheme is also
called perfectly hiding.

Defining the binding property is more subtle. First, note that an attack
against the binding property consists of an “allowed” commit strategy comPQ =
(comP , comQ) and an “allowed” opening strategy openPQ = (openP , openQ) for
P and Q. Any such attack fixes p(s), the distribution of s ∈ {0, 1}n ∪ {⊥} that
is output by V after the opening phase, in the obvious way.

What exactly “allowed” means may depend on the scheme and needs to be
specified. Typically, in the 2-prover setting, we only allow strategies comPQ and
openPQ with no communication at all between the two provers during the course
of the scheme, but we may also be more liberal and allow some well-controlled
communication, as in the Lunghi et al. multi-round scheme. Furthermore, in this
work, we focus on classical attacks, where comP , comQ, openP and openQ are
classical interactive algorithms as specified in the previous section, with access
to joint randomness, but one could also consider quantum attacks, where the
provers can perform measurements on an entangled quantum state.

A somewhat accepted definition for the binding property of a 2-prover bit
commitment scheme, as it is for instance used in [5,6] or [10] (up to the factor 2

484 S. Fehr and M. Fillinger

in the error parameter), is as follows. Here, we assume it has been specified which
attacks are allowed, e.g., those where P and Q do not communicate during the
course of the scheme.

Definition 2.6. A 2-prover bit commitment scheme is ε-binding in the sense of
p0 + p1 ≤ 1 + 2ε if for every allowed commit strategy comPQ, and for every pair
of allowed opening strategies open0PQ and open1PQ, which fix distributions p(b0)
and p(b1) for V ’s respective outputs, it holds that

p(b0=0) + p(b1=1) ≤ 1 + 2ε .

In the literature (see e.g. [5] or [10]), the two probabilities p(b0=0) and p(b1=1)
above are usually referred to as p0 and p1, respectively.

2.3 The CHSHn Scheme

Our main example is the bit commitment scheme by Crépeau et al. [5] we
mentioned in the introduction, and which works as follows. The commit phase
comPQV instructs V to sample and send to P a uniformly random a ∈ {0, 1}n,
and it instructs P to return x := r + a · b to V , where r is the joint randomness,
uniformly distributed in {0, 1}n, b is the bit to commit to, and the opening phase
openPQV instructs Q to send y := r to V , and V outputs the (smaller) bit b that
satisfies x + y = a · b, or b := ⊥ in case no such bit exists.

It is easy to see that this scheme is 2−n-complete and perfectly hiding (com-
pleteness fails in case a = 0). For classical provers that do not communicate
during the course of the scheme, the scheme is 2−n−1-binding in the sense of
p0 + p1 ≤ 1 + 2−n, i.e. according to Definition 2.6. As for quantum provers,
Crépeau et al. showed that the scheme is 2−n/2-binding; this was recently minorly
improved to 2−(n+1)/2 by Sikora et al. [12].

We also want to consider an extended version of the scheme, where the bit b
is replaced by a string s ∈ {0, 1}n in the obvious way (where the multiplication
a · s is then understood in a suitable finite field), and we want to appreciate this
version as a 2-prover string commitment scheme. However, it is a priori not clear
what is a suitable definition for the binding property, especially because for this
particular scheme, the dishonest provers can always honestly commit to a string
s, and can then decide to correctly open the commitment to s by announcing
y := r, or open to a random string by announcing a randomly chosen y — any y
satisfies x + y = a · s for some s (unless a = 0, which almost never happens).3

Due to its close relation to the CHSH game [4], in particular to the arbitrary-
finite-field version considered in [1], we will refer to this string commitment
scheme as CHSHn.

3 This could easily be prevented by asking Q to also announce s (rather than letting
V compute it), but we want the information announced during the opening phase
to fit into the domain of the commitment scheme.

On the Composition of Two-Prover Commitments, and Applications 485

3 On the Binding Property of 2-Prover Commitments

We introduce a new definition for the binding property of 2-prover commitment
schemes. In the case of bit commitment schemes, it implies Definition 2.6, as we
will show. Our new definition is not only stronger, but we also feel that it is
closer to the intuition of what is expected from a commitment scheme, and as
such it is easier to work with. Indeed, the proof of our composition result is
heavily based on our new definition. Also, our new notion is more flexible in
terms of tweaking it; for instance, we modify it to obtain a relaxed notion for
the binding property, which captures the binding property that is satisfied by
the string commitment scheme CHSHn.

Throughout this section, when quantifying over attacks against (the binding
property of) a scheme, it is always understood that there is a notion of allowed
attacks for that scheme (e.g., all attacks for which P and Q do not communicate),
and that the quantification is over all such allowed attacks.

3.1 Defining the Binding Property

Intuitively, we say that a scheme is binding if after the commit phase there
exists a string ŝ so that no matter what the provers do in the opening phase,
the verifier will output either s = ŝ or s = ⊥ (except with small probability).
Formally, we require that for every possible commit strategy, such a string ŝ is
uniquely determined by the commitment c and the provers’ joint randomness.

Definition 3.1 (Binding property). A 2-prover commitment scheme S is
ε-binding if for every commit strategy comPQ[ξ̄PQ] there exists a function
ŝ(ξ̄PQ, c) of the joint randomness ξ̄PQ and the commitment c such that for every
opening strategy openPQ it holds that p(s �= ŝ(ξ̄PQ, c) ∧ s �= ⊥) ≤ ε. In short:

∀ comPQ ∃ ŝ(ξ̄PQ, c) ∀ openPQ : p(s �= ŝ ∧ s �= ⊥) ≤ ε . (2)

The string commitment scheme CHSHn does not satisfy this definition (the bit
commitment version does, as we will show): after the commit phase, the provers
can still decide to open the commitment to a fixed string, chosen before the
commit phase, or to a random string that is out of their control. We capture this
by the following relaxed version of the binding property. In this relaxed version,
we allow V ’s output s to be different from ŝ and ⊥, but in this case the provers
should have little control over s: for any target string s◦ (computed as a function
of the provers’ randomness), it should be unlikely that s = s◦. Formally, this is
captured as follows; we will show in Sect. 3.3 that CHSHn is fairly-binding in
this sense.

Definition 3.2 (Fairly binding property). A 2-prover commitment scheme
S is ε-fairly-binding if for every commit strategy comPQ[ξ̄PQ] there exists a func-
tion ŝ(ξ̄PQ, c) such that for every opening strategy openPQ[η̄PQ] and all functions
s◦(ξ̄PQ, η̄PQ) it holds that p(s �= ŝ(ξ̄PQ, c) ∧ s = s◦(ξ̄PQ, η̄PQ)) ≤ ε. In short:

∀ comPQ ∃ ŝ(ξ̄PQ, c) ∀ openPQ ∀ s◦(ξ̄PQ, η̄PQ) : p(s �= ŝ ∧ s = s◦) ≤ ε . (3)

486 S. Fehr and M. Fillinger

Remark 3.3. By means of standard techniques, one can easily show that it is
sufficient for the (fairly) binding property to consider deterministic provers. In
this case, ŝ is a function of c only, and, in the case of fairly-binding, s◦ runs over
all fixed strings.

Remark 3.4. Clearly, the ordinary binding property (i.e., as in Definition 3.1)
implies the fairly-binding property. Also, in the case of bit commitment schemes
it obviously holds that p(b �= b̂ ∧ b �= ⊥) = p(b �= b̂ ∧ b = 0) + p(b �= b̂ ∧ b = 1),
and thus the fairly-binding property implies the ordinary one, up to a factor-2
loss. Furthermore, every fairly-binding string commitment scheme gives rise to
an ordinary-binding bit commitment scheme in a natural way, as shown by the
following proposition.

Proposition 3.5. Let S be an ε-fairly-binding string commitment scheme. Fix
any two distinct strings s0, s1 ∈ {0, 1}n and consider the bit-commitment scheme
S ′ obtained as follows. To commit to b ∈ {0, 1}, the provers commit to sb using S,
and in the opening phase V checks if s = sb for some b ∈ {0, 1} and outputs this
bit if it exists and else outputs b = ⊥. Then, S ′ is 2ε-binding.

Proof. Fix some commit strategy comPQ for S ′ and note that it can also be
used to attack S. Thus, there exists a function ŝ(ξ̄PQ, c) as in Definition 3.2. We
define

b̂(ξ̄PQ, c) =

{

0 if ŝ(ξ̄PQ, c) = s0

1 otherwise

Now fix an opening strategy openPQ for S ′, which again is also a strategy
against S. Thus, we have p(ŝ �= s = s◦) ≤ ε for any s◦ (and in particular
s◦ = s0 or s1). This gives us

p(b̂ �= b �= ⊥) = p(b̂ = 1 ∧ b = 0) + p(b̂ = 0 ∧ b = 1)
= p(ŝ �= s0 ∧ s = s0) + p(ŝ = s0 ∧ s = s1)
≤ p(ŝ �= s0 ∧ s = s0) + p(ŝ �= s1 ∧ s = s1) ,

≤ 2ε

and thus S ′ is a 2ε-binding bit-commitment scheme. ��
Remark 3.6. The proof of Proposition 3.5 generalizes in a straightforward way
to k-bit string commitment schemes: given an ε-fairly-binding n-bit string com-
mitment scheme S, for k < n, we define a k-bit string commitment scheme Sk

as follows: to commit to a k-bit string, the provers pad the string with n − k
zeros and then commit to the padded string using S. In the opening phase, the
verifier outputs the first k bits of s if the remaining bits in s are all zeros, and
⊥ otherwise. Then, S ′ is 2kε-binding.

3.2 Relation to the Standard Definition

For bit commitment schemes, our binding property implies the (p0 + p1)-
definition.

On the Composition of Two-Prover Commitments, and Applications 487

Theorem 3.7. A 2-prover bit-commitment scheme that is ε-binding (in the
sense of Definition 3.1) is ε-binding in the sense of p0 + p1 ≤ 1 + 2ε.

Proof. Consider a scheme that is ε-binding. Fix comPQ and let b̂(ξ̄PQ, c) be a
function as promised by Definition 3.1, i.e., such that for every opening strategy
openPQ we have p(b �= b̂ ∧ b �= ⊥) ≤ ε. Now, fix two opening strategies open0PQ

and open1PQ, and consider the two respective output bits b0 and b1. It holds that
p(b̂ �= bi �= ⊥) ≤ ε for i ∈ {0, 1}, and thus

p(b0 = 0) + p(b1 = 1) = p(b0 = 0 ∧ b̂ = 0) + p(b0 = 0 ∧ b̂ = 1)

+ p(b1 = 1 ∧ b̂ = 0) + p(b1 = 1 ∧ b̂ = 1)

≤ p(b̂ = 0) + p(b̂ �= b0 �= ⊥) + p(b̂ �= b1 �= ⊥) + p(b̂ = 1)
≤ 1 + 2ε

which proves our claim. ��
On the other hand, our Definition 3.1 is strictly stronger than the p0 + p1 based
Definition 2.6. Consider the following (artificial and very non-complete) scheme:
in the commit phase, V chooses a uniformly random bit and sends it to the
provers, and then accepts everything or rejects everything during the opening
phase, depending on that bit. Then, p0 + p1 = 1, yet a commitment can be
opened to 1 − b̂ (no matter how b̂ is defined) with probability 1

2 .
Since a non-complete separation example may not be fully satisfying, we

note that it can be converted into a complete (but even more artificial) scheme.
Fix a “good” (i.e., complete, hiding and binding with low parameters) scheme
and call our example scheme above the “bad” scheme. We define a combined
scheme as follows: at the start, the first prover can request either the “good”
or “bad” scheme to be used. The honest prover is instructed to choose the
former, guaranteeing completeness. The dishonest prover may choose the latter,
so the combined scheme inherits the binding properties of the “bad” scheme: it is
binding according to the (p0+p1)-definition, but not according to Definition 3.1.

3.3 Security of CHSHn

In this section, we show that CHSHn is a fairly-binding string commitment
scheme.4 To this end, we introduce yet another version of the binding property
and show that CHSHn satisfies this property. Then we show that this version
of the binding property implies the fairly-binding property (up to some loss in
the parameter, and under some mild restriction on the scheme).

This new binding property is based on the intuition that it should not be
possible to open a commitment to two different values simultaneously (except
with small probability). For this, we observe that, when considering a commit
strategy comPQ, as well as two opening strategies openPQ and open′

PQ, we can

4 It is understood that the allowed attacks against CHSHn are those where the provers
do not communicate during the course of the scheme.

488 S. Fehr and M. Fillinger

run both opening strategies simultaneously on the produced commitment with
two (independent) copies of openV , by applying openPQ and open′

PQ to two
copies of the respective internal states of P and Q. This gives rise to a joint
distribution p(s, s′) of the respective outputs s and s′ of the two copies of openV .

Definition 3.8 (Simultaneous opening). A 2-prover commitment scheme S
is ε-fairly-binding in the sense of simultaneous opening5 if for all comPQ, all
pairs of opening strategies openPQ and open′

PQ, and all pairs s◦, s′
◦ of distinct

strings, we have p(s = s◦ ∧ s′ = s′
◦) ≤ ε.

Remark 3.9. Also for this notion of fairly-binding, it is sufficient to consider
deterministic strategies, as can easily be seen.

Proposition 3.10. The commitment scheme CHSHn is 2−n-fairly-binding in
the sense of simultaneous opening.

Proof. By Remark 3.9, it suffices to consider deterministic attack strategies. Fix
a deterministic strategy comPQ and two deterministic opening strategies openPQ

and open′
PQ. The strategy comPQ specifies P ’s output x as a function f(a) of

the verifier’s message a. The opening strategies are described by constants y and
y′. By definition of CHSHn, s = s◦ implies f(a)+y = a ·s◦ and likewise, s′ = s′

◦
implies f(a)+y′ = a·s′

◦. Therefore, s = s◦∧s′ = s′
◦ implies a = (y−y′)/(s◦−s′

◦).
It thus holds that p(s = s◦ ∧ s′ = s′

◦) ≤ p
(

a = (y − y′)/(s◦ − s′
◦)

) ≤ 1
2n , which

proves our claim. ��
Remark 3.11. It follows directly from (1) that every bit commitment scheme that
is ε-fairly-binding in the sense of simultaneous opening is ε-binding in the sense
of p0 + p1 ≤ 1 + 2ε. The converse is not true though: the schemes described at
the end of Sect. 3.2 again serve as counterexamples.

Theorem 3.12. Let S = (comPQV , openPQV) be a 2-prover commitment
scheme. If S is ε-fairly-binding in the sense of simultaneous opening and openV

is deterministic, then S is 2
√

ε-fairly-binding.

Proof. By Remark 3.3, it suffices to consider deterministic strategies for the
provers. We fix some deterministic commit strategy comPQ and an enumera-
tion {openi

PQ}N
i=1 of all deterministic opening strategies. Since we assume that

openV is deterministic, for any fixed opening strategy for the provers, the veri-
fier’s output s is a function of the commitment c. Thus, for each opening strategy
openi

PQ there is a function fi such that the verifier’s output is s = fi(c). We
will now define the function ŝ(c) that satisfies the properties required by the
fairly-binding property. Our definition depends on a parameter α > 0 which we
fix later. In order to define ŝ, we partition the set C of all possible commitments

5 We use “fairly” here to distinguish the notion from a possible “non-fairly” version
with p(⊥ �= s �= s′ �= ⊥) ≤ ε; however, we do not consider this latter version any
further here.

On the Composition of Two-Prover Commitments, and Applications 489

into disjoint sets C = R∪⋃

s,i Cs,i that satisfy the following three properties for
every i and every s:

Cs,i ⊆ f−1
i ({s}) , p(c ∈ Cs,i) ≥ α or Cs,i = ∅ , and p(c ∈ R ∧ fi(c) = s) < α .

The second property implies that there are at most α−1 non-empty sets Cs,i. It
is easy to see that such a partitioning exists: start with R = C and while there
exist s and i with p(c ∈ R ∧ fi(c) = s) ≥ α, let Cs,i = {c ∈ R | fi(c) = s}
and remove the elements of Cs,i from R. For any c ∈ C, we now define ŝ(c) as
follows. We set ŝ(c) = s for c ∈ Cs,i and ŝ(c) = 0 for c ∈ R.

Now fix some opening strategy openi
PQ and a string s◦, and write si for the

verifier’s output. Using C�=s◦ as a shorthand for
⋃

s �=s◦

⋃

j Cs,j , we note that if
ŝ(c) �= s◦ then c ∈ R ∪ C�=s◦ . Thus, it follows that

p(si �= ŝ(c) ∧ si = s◦) = p(ŝ(c) �= s◦ ∧ si = s◦)

≤ p
(

c ∈ (R ∪ C�=s◦) ∧ fi(c) = s◦
)

= p(c ∈ R ∧ fi(c) = s◦) +
∑

s �=s◦,j

p(c ∈ Cs,j ∧ fi(c) = s◦)

≤ p(c ∈ R ∧ fi(c) = s◦) +
∑

s �=s◦,j
s.t. Cs,j �=∅

p(fj(c) = s ∧ fi(c) = s◦)

< α + α−1 · ε

where the final inequality holds because p(c ∈ R ∧ fi(c) = s◦) < α by the choice
of R, because p(fj(c) = s ∧ fi(c) = s◦) ≤ ε by the assumed binding property,
and because the number of non-empty Cs,j ’s is at most 1/α. It is easy to see
that the upper bound α + α−1 · ε is minimized by setting α =

√
ε. We conclude

that p(si �= ŝ(c) ∧ si = s◦) < 2
√

ε. ��
By combining Theorem 3.7 with Theorem 3.12, we obtain the following statement
for the (fairly-)binding property of CHSHn.

Corollary 3.13. CHSHn is 2−n
2 +1-fairly-binding.

4 Composing Commitment Schemes

4.1 The Composition Operation

We consider two 2-prover commitment schemes S and S ′ of a restricted form,
and we compose them to a new 2-prover commitment scheme S ′′ = S
 S ′ in
a well-defined way; our composition theorem then shows that S ′′ is secure if S
and S ′ are. We start by specifying the restriction to S and S ′ that we impose.

Definition 4.1. Let S and S ′ be two 2-prover string commitment schemes. We
call the pair (S,S ′) eligible if the following three properties hold, or they hold
with the roles of P and Q exchanged.

490 S. Fehr and M. Fillinger

1. The commit phase of S is a protocol comPV = (comP , comV) between P and
V only, and the opening phase of S is a protocol openQV = (openQ, openV)
between Q and V only. In other words, comQ and openP are both trivial and
do nothing.6 Similarly, the commit phase of S ′ is a protocol com′

QV between
Q and V only (but both provers may be active in the opening phase).

2. The opening phase openQV of S is of the following simple form: Q sends a bit
string y ∈ {0, 1}m to V , and V computes s deterministically as s = Extr(y, c),
where c is the commitment.7

3. The domain of S ′ contains (or equals) {0, 1}m.

Furthermore, we specify that the allowed attacks on S are so that P and Q do
not communicate during the course of the entire scheme, and the allowed attacks
on S ′ are so that P and Q do not communicate during the course of the commit
phase but there may be limited communication during the opening phase.

An example of an eligible pair of 2-prover commitments is (CHSHn,
XCHSHn), where XCHSHn coincides with scheme CHSHn except that the
roles of P and Q are exchanged.

Remark 4.2. For an eligible pair (S,S ′), it will be convenient to understand
openQ and openV as non-interactive algorithms, where openQ produces y as its
output, and openV takes y as additional input (rather than viewing the pair as
a protocol with a single one-way communication round).

We now define the composition operation. Informally, committing is done by
means of committing using S, and to open the commitment, Q uses openQ to
locally compute the opening information y and he commits to y with respect to
the scheme S ′, and then this commitment is opened (to y), and V computes and
outputs s = Extr(y, c). Formally, this is captured as follows (see also Fig. 2).

Definition 4.3. Let S = (comPV , openQV) and S ′ = (com′
QV , open′

PQV) be an
eligible pair of 2-prover commitment schemes. Then, their composition S
 S ′ is
defined as the scheme consisting of comPV = (comP , comV) and

open′′
PQV = (open′

P , open′
Q ◦ com′

Q ◦ openQ, openV ◦ open′
V ◦ com′

V).

If in this composition the output in open′
V is y = ⊥, we define the output of

openV to be s = ⊥ as well.
When considering attacks against the binding property of the composed

scheme S
 S ′, we declare that the allowed deterministic attacks8 are those of
the form (comP , open′

PQ ◦ ptoqPQ ◦ com′
Q), where comP is an allowed determin-

istic commit strategy for S, com′
Q and open′

PQ are allowed deterministic commit

6 Except that comQ may output the shared randomness in order to hand it over to
the opening protocol openQ.

7 Our composition theorem also works for a randomized Extr, but for simplicity, we
restrict to the deterministic case.

8 The allowed randomized attacks are then naturally given as those that pick one of
the deterministic attacks according to some distribution.

On the Composition of Two-Prover Commitments, and Applications 491

and opening strategies for S ′, and ptoqPQ is the one-way communication protocol
that communicates P ’s input to Q (see also Fig. 3).9

Fig. 2. The composition of S = (comPV , openQV) and S ′ = (com′
QV , open′

PQV). The
dotted arrows indicate communication allowed to the dishonest provers.

Remark 4.4. It is immediate that S
S ′ is a commitment scheme in the sense of
Definition 2.1, and that it is complete if S and S ′ are, with the error parameters
adding up. Also, the hiding property is obviously inherited from S; however,
the point of the composition is to keep the hiding property alive for longer,
namely up to before the last round of the opening phase — recall that, using
the terminology used in context of relativistic commitments, these rounds of the
opening phase up to before the last would then be referred to as the sustain
phase. We show in Appendix A that S
S ′ is hiding up to before the last round,
with the error parameters adding up.

It is intuitively clear that S
 S ′ should be binding if S and S ′ are: com-
mitting to the opening information y and then opening the commitment allows
the provers to delay the announcement of y (which is the whole point of the
exercise), but it does not allow them to change y, by the binding property of S ′;
thus, S
 S ′ should be (almost) as binding as S. This intuition is confirmed by
our composition theorem below.
9 This one-way communication models that in the relativistic setting, sufficient time

has passed at this point for P to inform Q about what happened during comP .

492 S. Fehr and M. Fillinger

Remark 4.5. We point out that the composition S
 S ′ can be naturally defined
for a larger class of pairs of schemes (e.g. where both provers are active in the
commit phase of both schemes), and the above intuition still holds. However,
our proof only works for this restricted class of (pairs of) schemes. Extending
the composition result in that direction is an open problem.

Remark 4.6. We observe that if (S,XS) is an eligible pair, where XS coincides
with S except that the roles of P and Q are exchanged, then so is (XS,S
XS).
As such, we can then compose XS with S
 XS, and obtain yet another eligible
pair (S,XS
 S
 XS), etc. Applying this to the schemes S = CHSHn, we
obtain the multi-round scheme from Lunghi et al. [10]. As such, our composition
theorem below implies security of their scheme — with a linear blow-up of the
error term (instead of double exponential).

We point out that formally we obtain security of the Lunghi et al. scheme
as a 2-prover commitment scheme under an abstract restriction on the provers’
communication: in every round, the active prover cannot access the message that
the other prover received in the previous round. As such, when the rounds of
the protocol are executed fast enough so that it is ensured that there is no time
for the provers to communicate between subsequent rounds, then security as a
relativistic commitment scheme follows immediately.

Before stating and proving the composition theorem, we need to single out one
more relevant parameter.

Definition 4.7. Let (S,S ′) be an eligible pair, which in particular means that
V ’s action in the opening phase of S is determined by a function Extr. We define
k(S) := maxc,s |{y |Extr(y, c) = s}|.
i.e., k(S) counts the number of ys that are consistent with a given string s (in
the worst case). Note that k(CHSHn) = 1: for every a, x, s ∈ {0, 1}n there is
exactly one y ∈ {0, 1}n such that x + y = a · s.

4.2 The Composition Theorem

In the following composition theorem, we take it as understood that the assumed
respective binding properties of S and S ′ hold with respect to a well-defined
respective classes of allowed attacks.

Theorem 4.8. Let (S,S ′) be an eligible pair of 2-prover commitment schemes,
and assume that S and S ′ are respectively ε-fairly-binding and δ-fairly-binding.
Then, their composition S ′′ = S
 S ′ is (ε + k(S) · δ)-fairly-binding.

Proof. We first consider the case k(S) = 1. We fix an attack (comP , open′′
PQ)

against S ′′. Without loss of generality, the attack is deterministic, so open′′
PQ is

of the form open′′
PQ = open′

PQ ◦ ptoqPQ ◦ com′
Q.

Note that comP is also a commit strategy for S. As such, by the fairly-
binding property of S, there exists a function ŝ(c), only depending on comP , so

On the Composition of Two-Prover Commitments, and Applications 493

that the property specified in Definition 3.2 is satisfied for every opening strategy
openQ for S. We will show that it is also satisfied for the (arbitrary) opening
strategy open′′

PQ for S ′′, except for a small increase in ε: we will show that
p(ŝ(c) �= s ∧ s = s◦) ≤ ε + δ for every fixed target string s◦. This then proves
the claim.

In order to show this property on ŝ(c), we “decompose and reassemble” the
attack strategy (comP , open′

PQ ◦ ptoqPQ ◦ com′
Q) for S ′′ into an attack strategy

(com′
Q, newopen′

PQ) for S ′ with newopen′
PQ formally defined as

newopen′
PQ[c](state

′
Q) := open′

PQ

(

stateP (c)‖(stateP (c), state
′
Q)

)

where
(stateP (c)‖c) ← (

comP ||comV

)

.

Informally, this means that ahead of time, P and Q simulate an execution of
(comP ||comV) and take the resulting communication/commitment10 c as shared
randomness, and then newopen′

PQ computes stateP from c as in comP , and runs
open′

PQ (see Fig. 3).11 It follows from the fairly-binding property that there is
a function ŷ(c′) of the commitment c′ so that p(ŷ(c′) �= y ∧ y = y◦(c)) ≤ δ for
every function y◦(c).

Fig. 3. Constructing the opening strategy newopen′
PQ against S ′.

The existence of ŷ now gives rise to an opening strategy openQ for S; namely,
simulate the commit phase of S ′ to obtain the commitment c′, and output ŷ(c′).
By Definition 3.2, for s̃ := Extr(ŷ(c′), c) and every s◦, p(ŝ(c) �= s̃ ∧ s̃ = s◦) ≤ ε.
10 Recall that by convention (Remark 2.2), the commitment c equals the communication

between V and, here, P .
11 We are using here that Q is inactive during comPQ and P during com′

PQ, and thus
the two“commute”.

494 S. Fehr and M. Fillinger

We are now ready to put things together. Fix an arbitrary target string s◦.
For any c we let y◦(c) be the unique string such that Extr(y◦(c), c) = s◦ (and
some default string if no such string exists); recall, we assume for the moment
that k(S) = 1. Omitting the arguments in ŝ(c), ŷ(c′) and y◦(c), it follows that

p(ŝ �= s ∧ s = s◦) ≤ p(ŝ �= s ∧ s = s◦ ∧ s = s̃) + p(s = s◦ ∧ s �= s̃)

≤ p(ŝ �= s̃ ∧ s̃ = s◦) + p
(
Extr(y, c) �= Extr(ŷ, c) ∧ Extr(y, c) = s◦

)

≤ p(ŝ �= s̃ ∧ s̃ = s◦) + p(y �= ŷ ∧ y = y◦)

≤ ε + δ.

Thus, ŝ is as required.
For the general case where k(S) > 1, we can reason similarly, except that we

then list the k ≤ k(S) possibilities y1
◦(c), . . . , yk

◦ (c) for y◦(c), and conclude that
p(s �= s̃ ∧ s = s◦) ≤ ∑

i p
(

y �= ŷ ∧ y = yi
◦
) ≤ k(S) · δ, which then results in the

claimed bound. ��
Remark 4.9. Putting things together, we can now conclude the security (i.e.,
the binding property) of the Lunghi et al. multi-round commitment scheme.
Corollary 3.13 ensures the fairly-binding property of CHSHn, i.e., the Crépeau
et al. scheme as a string commitment scheme, with parameter 2−n/2+1. The
composition theorem (Theorem 4.8) then guarantees the fairly-binding prop-
erty of the m-fold composition as a string commitment scheme, with parameter
(m+1) ·2−n/2+1. Finally, Proposition 3.5 implies that the m-fold composition of
CHSHn with itself is a εm-binding bit commitment scheme with error parameter
εm = (m + 1) · 2−n/2+2 as claimed in the introduction, or, more generally, and
by taking Remark 3.6 into account, a (m + 1) · 2−n/2+k+1-binding k-bit-string
commitment scheme.

Finally, for completeness, we point out that the composition theorem also
holds for regularly (i.e., “non-fairly”) binding schemes.

Theorem 4.10. Let (S,S ′) be an eligible pair of 2-prover commitment schemes,
and assume that S and S ′ are respectively ε-binding and δ-binding against clas-
sical attacks. Then, their composition S ′′ = S
 S ′ is a (ε + δ)-binding 2-prover
commitment scheme against classical attacks.

Proof. The proof is almost the same as that of Theorem 4.8, except that now
there are no s◦ and y◦, and in the end we simply conclude that

p(s �= ŝ ∧ s �= ⊥) ≤ p(s �= ŝ ∧ s �= ⊥ ∧ s = s̃) + p(s �= s̃ ∧ s �= ⊥)
≤ p(s̃ �= ŝ ∧ s̃ �= ⊥) + p(y �= ŷ ∧ y �= ⊥)
≤ ε + δ ,

where the second inequality holds since y = ⊥ implies s = ⊥. ��

Acknowledgments. We would like to thank J ↪edrzej Kaniewski for helpful discussions
regarding [10], and for commenting on an earlier version of our work.

On the Composition of Two-Prover Commitments, and Applications 495

A The Hiding Property of Composed Schemes

We already mentioned that the standard hiding property is not good enough
for multi-round relativistic bit commitment schemes, where we want the hiding
property to hold until the last round of communication. In this appendix, we
define a variation of the hiding property that captures this requirement, and we
prove that a composed scheme S ′′ = S
 S ′ is hiding “up to the last round” if
both S and S ′ are (with the error parameters adding up).

Definition A.1. Let S = (comPQV , openPQV) be a 2-prover commitment
scheme. We say that S is ε-hiding until the last round if for any dishon-
est verifier V and any two inputs s0 and s1 to the honest provers, we have
d(p(v|s0), p(v|s1)) ≤ ε, where v is the verifier’s view immediately before the last
round of communication in (openPQ‖openV) ◦ (comPQ‖comV)(sb‖sb‖∅).

Theorem A.2. Let S be an ε-hiding commitment scheme and S ′ a scheme that
is δ-hiding until the last round. If (S,S ′) is eligible, then the composed scheme
S ′′ = S
 S ′ is (ε + δ)-hiding until the last round.

Proof. Fix some strategy against the hiding-until-the-last-round property of S ′′.
We consider the distribution p(v, y, v′|s) where s is the string that the provers
commit to, v the verifier’s view after comPQV has been executed, y the opening
information to which Q commits using the scheme S ′, and v′ the verifier’s view
immediately before the last round of communication. We need to show that
d(p(v′|s0), p(v′|s1)) ≤ ε + δ for any s0 and s1.

First, note that p(v′|v, y, sb) = p(v′|v, y) since v′ is produced by P , Q and V
acting on y and v only. From any strategy against S ′′, we can obtain a strategy
against S ′ by fixing v. Thus, by the hiding property of S ′, for any y0 and y1, we
have d(p(v′|v, y = y0), p(v′|v, y = y1)) ≤ δ and it follows by the convexity of the
statistical distance in both arguments that

p(v′|v, s0) =
∑

y

p(y|v, s0)p(v′|v, y) ≈δ

∑

y

p(y|v, s1)p(v′|v, y) = p(v′|v, s1)

where we use ≈δ to indicate that the two distributions have statistical distance
at most δ. Since we have d(p(v|s0), p(v|s1)) ≤ ε by the hiding property of S, it
follows that

p(v′|s0) = p(v, v′|s0) = p(v|s0)p(v′|v, s0) ≈δ p(v|s0)p(v′|v, s1)
≈ε p(v|s1)p(v′|v, s1) = p(v, v′|s1) = p(v′|s1)

where the first and last equalities hold because v′ contains v since v′ is the view
of V at a later point in time. ��

496 S. Fehr and M. Fillinger

References

1. Bavarian, M., Shor, P.W.: Information Causality, Szemerédi-Trotter and Algebraic
Variants of CHSH. In: Roughgarden, T. (ed.) ITCS 2015, pp. 123–132. ACM (2015)

2. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-Prover Interactive
Proofs: How to Remove Intractability Assumptions. In: Simon, J. (ed.) STOC
1988, pp. 113–131. ACM (1988)

3. Chakraborty, K., Chailloux, A., Leverrier, A : Arbitrarily Long Relativistic Bit
Commitment. ArXiv e-prints (2015). http://arxiv.org/abs/1507.00239

4. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed Experiment to Test
Local Hidden-Variable Theories. Phys. Rev. Lett. 23, 880–884 (1969)

5. Crépeau, C., Salvail, L., Simard, J.-R., Tapp, A.: Two Provers in Isolation. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 407–430. Springer,
Heidelberg (2011)

6. Fehr, S., Fillinger, M.: Multi-Prover Commitments Against Non-Signaling Attacks.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 403–421.
Springer, Heidelberg (2015)

7. Kent, A.: Unconditionally Secure Bit Commitment. Phys. Rev. Lett. 83(7), 1447–
1450 (1999)

8. Kent, A.: Secure Classical Bit Commitment Using Fixed Capacity Communication
Channels. J. Cryptology 18(4), 313–335 (2005)

9. Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev.
Lett. 78, 3410–3413 (1997)

10. Lunghi, T., Kaniewski, J., Bussières, F., Houlmann, R., Tomamichel, M., Wehner,
S., Zbinden, H.: Practical Relativistic Bit Commitment. Phys. Rev. Lett. 115,
30502–30506 (2015)

11. Mayers, D.: Unconditionally Secure Quantum Bit Commitment is Impossible.
Phys. Rev. Lett. 18, 3414–3417 (1997)

12. Sikora, J., Chailloux, A., Kerenidis, I.: Strong Connections Between Quantum
Encodings, Non-Locality and Quantum Cryptography. Phys. Rev. A 89, 22334–
22341 (2014)

http://arxiv.org/abs/1507.00239

Computationally Binding Quantum
Commitments

Dominique Unruh(B)

University of Tartu, Tartu, Estonia
unruh@ut.ee

Abstract. We present a new definition of computationally binding
commitment schemes in the quantum setting, which we call “collapse-
binding”. The definition applies to string commitments, composes in
parallel, and works well with rewinding-based proofs. We give simple con-
structions of collapse-binding commitments in the random oracle model,
giving evidence that they can be realized from hash functions like SHA-3.
We evidence the usefulness of our definition by constructing three-round
statistical zero-knowledge quantum arguments of knowledge for all NP
languages.

1 Introduction

We study the definition and construction of computationally binding string com-
mitment schemes in the quantum setting. A commitment scheme is a two-party
protocol consisting of two phases, the commit and the open phase. The goal of
the commitment is to allow the sender to transmit information related to a mes-
sage m during the commit phase in such a way that the recipient learns nothing
about the message (hiding property). But at the same time, the sender cannot
change his mind later about the message (binding property). Later, in the open
phase, the sender reveals the message m and proves that this was indeed the
message that he had in mind earlier. We will focus on non-interactive classical
commitments, that is, the commit and open phase consists of a single classical
message. However, the adversary who tries to break the binding or hiding prop-
erty will be a quantum-polynomial-time algorithm. At the first glance, it seems
that the definition of the binding property in this setting is straightforward; we
just take the classical definition but consider quantum adversaries instead of
classical ones:

Definition 1 (Classical-Style Binding – Informal). No quantum-
polynomial-time algorithm A can output, except with negligible probability, a
commitment c (i.e., the message sent during the commit phase) as well as two
openings u, u′ that open c to two different messages m,m′.

(Formal definition in Sect. 2). Unfortunately, this definition turns out to be inad-
equate in the quantum setting. Ambainis et al. [1] show the existence of a com-
mitment scheme (relative to a special oracle) such that: The commitment is
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 497–527, 2016.
DOI: 10.1007/978-3-662-49896-5 18

498 D. Unruh

classical-style binding. Yet there exists a quantum-polynomial-time adversary A
that outputs a commitment c, then expects a message m as input, and then
provides valid opening information for c and m. That is, the adversary can open
the commitment c to any message of his choosing, even if he learns that message
only after committing. This is in clear contradiction to the intuition of the bind-
ing property. How is this possible, as Definition 1 says that the adversary cannot
produce two different openings for the same commitment? In the construction
from [1], the adversary has a quantum state |Ψ〉 that allows him to compute one
opening for a message of his choosing, however, this computation will destroy
the state |Ψ〉. Thus, the adversary cannot compute two openings simultaneously,
hence the commitment is classically-binding. But he can open the commitment
to an arbitrary message once, which shows that the commitment scheme is basi-
cally useless despite being classically-binding.1

1.1 Prior Definitions

We now discuss various definitions that appeared in the literature and that
circumvent the above limitation of the classical-binding property. (We do not
discuss the hiding property here, because that one does not have any comparable
problems. See Definition 10 below for the definition of hiding.) In each case,
we discuss some limitations of the definitions to motivate the need for a new
definition for computationally binding commitments. The reader only interested
in our results can safely skip this section.

Sum-Binding. The most obvious solution is to simply require that the adver-
sary cannot open successfully to each of two messages: That is:

Definition 2 (Sum-Binding – Informal). Consider a bit commitment
scheme. (I.e., one can only commit to m = 0 or m = 1.)

Given an adversary A, let pb be the probability that the recipient accepts in
the following execution: A commits, then A is given b, and then A provides
opening information for message b. A commitment is sum-binding iff for any
quantum-polynomial-time adversary A, p0 + p1 ≤ 1 + negligible.

Note that even with an ideal commitment, p0 +p1 = 1 is possible (the adversary
just picks b := 0 in the commit phase with probability p0, and b := 1 else). So
p0 + p1 ≤ 1 + negligible is the best we can expect if we allow for a negligible
probability of an attack. The sum-binding definition has occurred implicitly and
explicitly in different variants in [4,6,8,13,15]. We use the name sum-binding
here to distinguish it from the other definitions of binding discussed here since
it does not have an established name.

Although it avoids the attack described above, the sum-binding definition
has a number of disadvantages:
1 Note that for classical adversaries, the classical-binding property gives useful guaran-

tees: If an adversary can produce an opening for any message m using some classical
algorithm, he can also produce two openings for different messages m, m′ by running
that algorithm twice.

Computationally Binding Quantum Commitments 499

– It is specific to the bit commitment case. There is no straightforward gener-
alization to the string commitment case (i.e., where the message m does not
have to be a single bit). See [6] for discussion why obvious approaches fail.

– It is unclear how the definition behaves when we use the commitment several
times. (I.e., it is not clear how it behaves under composition.) For example,
given bits m1, . . . , mn, what are the security guarantees if we commit to each
of the mi? (Be it in parallel, or sequentially.) Basically, we would expect
that all commitments together form a binding commitment on the string
m = m1 . . . mn, but this is something we cannot even express using the sum-
binding definition.

– It is not clear how useful sum-binding commitments are as subprotocols in
larger protocols. That is, is the sum-binding property strong enough to allow
to prove the security of complex protocols using commitments? While there
are constructions of sum-binding in the literature (e.g., [13]), we are not
aware of research where (computational) sum-binding commitments are used
as subprotocols.

CDMS-Binding. Crépeau et al. [6] suggest a generalization of the sum-binding
property to string commitments. The basic idea is: Instead of bounding p0+p1 ≤
1+negligible where pm is the probability that the adversary open his commitment
as m ∈ {0, 1}, we could bound

∑

m pm ≤ 1 + negligible where m ranges over all
bitstrings. However, as discussed in [6], this would be too strong a requirement.
(Basically, this is because the sum

∑

m pm has exponentially many summands,
so even negligible attack probabilities can add up to large probabilities.) Instead,
they proposed the following definition:

Definition 3 (CDMS-Binding – Informal). Let F be a family of functions.
Fix a string commitment scheme. For f ∈ F , let p̃f

y be the probability that the
recipient accepts in the following execution: A commits. A gets y. A tries to open
the commitment to some m with f(m) = y.

We call the commitment scheme F -CDMS-binding iff for all adversaries A
and all f ∈ F , we have

∑

y p̃f
y ≤ 1 + negligible.

Now if all f ∈ F have a polynomial-size range, the sum
∑

y p̃f
y will have poly-

nomially many summands. The intuition behind this definition is that every
function f ∈ F represents some property of the committed message m (e.g.,
f(m) is the parity of m). Then, if a commitment scheme is F -CDMS-binding,
this intuitively means that the although the adversary might be able to change
his mind about the message m, he cannot change his mind about f(m). (E.g., if
the parity function is in F , this means that the adversary will be committed to
the parity of the message m). [6] successfully used this definition (for a specific
class F) to show that using quantum communication and a commitment, we
can construct an oblivious transfer protocol. (Note however that their protocol
is different and more complex than the original OT protocol from [2]).

Although the CDMS-binding definition generalizes the sum-binding defini-
tion to the case of string commitments, it comes with its own challenges:

500 D. Unruh

– The definition is parametrized by a specific family F of functions that specifies
in which way the commitment should be binding. This function family has
to be chosen dependent on the particular use case. This makes the definition
less universal and canonical.

– To the best of our knowledge, no construction of CDMS-binding commitments
is known. Crépeau et al. [6] conjecture that the protocol from [7] can be
extended to a CDMS-binding one for functions F with small range, but no
proof or construction is given.

– It is not known whether the definition is composable. If we commit to mes-
sages m1, . . . , mn individually using F -CDMS-binding commitments, does
this constitute an F ′-CDMS-binding commitment on m := m1‖ . . . ‖mn? If
so, for which F ′?

– While CDMS-binding commitments have successfully been used in a larger
protocol (namely, the OT protocol from [6]), we believe that in many contexts,
the definition is still not very easy to use. At least in classical cryptography,
one often uses the fact that it is possible to extract the committed message
by rewinding (basically, one runs the open phase, saves the opened message,
and rewinds to before the opening phase). It is not clear how to do that with
CDMS-binding commitments. For example, it is not clear how one could
use CDMS-binding commitments in the construction of sigma-protocols that
are quantum arguments of knowledge (as done in Sect. 7 below using our
definition of binding commitments).

Perfectly-Binding Commitments. One possibility to solve all the problems
mentioned so far is simply to use perfectly-binding commitments.

Definition 4 (Perfectly-Binding – Informal). A commitment scheme is
perfectly-binding if there exists no tuple (c,m, u,m′, u′) with m �= m′ such that
u is a valid opening for c with message m, and u′ is a valid opening for c with
message m′.

However, if we restrict ourselves to perfectly-binding commitments, we get the
following disadvantages:

– A perfectly-binding commitment cannot be statistically hiding [15]. That is,
the hiding property cannot hold against computationally unlimited adver-
saries. That means that we give up on information-theoretical security
for one party just because we do not have a suitable definition for the
computationally-binding property. For example, the constructions in [19] are
only computational zero-knowledge (not statistical zero-knowledge) because
perfectly-binding commitments are used.

– Perfectly-binding commitments cannot be short. That is, the length of the
commitment must be as long as the length of the committed message. So by
using only perfectly-binding commitments, we may lose efficiency.

UC Commitments. One further possibility is to use commitments that are
UC-secure [18]. Since the security of a protocol using a UC-secure commitment

Computationally Binding Quantum Commitments 501

can be reduced to the security of the same protocol using an ideal (in particular
perfectly-binding) commitment, UC-secure commitments are easy to use. Yet,
this solution again comes with disadvantages:

– UC-commitments do not exist without the use of additional setup such as,
e.g., a common reference strings (CRS). It is possible to chose the CRS in
a pre-computation phase using a coin-toss protocol [12]. But that increases
the round complexity of the resulting protocol (and, incidentally, loses the
UC security and possibly even the concurrent composability of the resulting
protocol).

– In the construction of UC-secure commitment schemes, trapdoors are used
that allow the simulator to extract the committed message. This implies that
constructions of UC-secure commitment are usually more complex, less effi-
cient, and use stronger computational assumptions.

– At least when using a CRS, UC commitments cannot be short.

Damg̊ard et al. [9] use so-called dual-mode commitments, these are somewhat
weaker than UC commitments. Yet, they also use extraction using a trapdoor
in the CRS. Hence the disadvantages of UC commitments apply to dual-mode
commitments as well.

Q-Binding. Damg̊ard et al. [11] give another definition for computationally
binding string commitments. Intuitively, the definition says that an adversary
who uses the commitment has negligible advantage in a “betting game” over
an adversary that has to use perfect commitments. Here, a betting game is
represented as an arbitrary predicate on the opened values in the commitments,
and on some random input that the adversary learns only after committing.
(E.g., a bet could be: the sum of all opened values equals the random value u
that the adversary learns just before opening.) Somewhat more formally:

Definition 5 (Q-Binding – Informal). For an adversary A and an predicate
Q, consider the following game: A outputs commitments C1, . . . , CN . Then A
gets a random bitstring u. Then A opens a subset A of the commitments, let
(si)i∈A be the contents. A wins if Q(A, (si)i∈A, u) = 1.

A commitment scheme is Q-binding iff for any quantum-polynomial-time A
and any predicate Q, the adversary A wins with probability at most pIDEAL+negl ,
where pIDEAL is the maximum winning probability when using a perfectly binding
commitment.

The definition overcomes some of the problems of the CDMS-binding definition.
In particular, there is no need to parametrize the definition with a class F of
functions, specifically chosen to fit the use case at hand. Also, the Q-binding
definition composes in parallel: if a commitment scheme is Q-binding, then the
commitment scheme resulting from committing to each of m1, . . . , mn individ-
ually is Q-binding, too. (This should come as no surprise, since the Q-binding
definition itself explicitly refers to a polynomial number of parallel copies of the

502 D. Unruh

commitment scheme). The definition seems particularly well-suited for commit-
and-choose constructions (i.e., where one party commits to a set of values, and
the other party selects which of them should be opened), since security when
opening a specific subset is built into the definition. [11] give a generic con-
struction for unconditionally hiding Q-binding equivocal trapdoor commitments
from a certain class of sigma-protocols. They show that using such commitments,
sigma-protocols can be converted into statistical quantum zero-knowledge argu-
ments in the CRS model.

However, their definition also comes with a number of challenges:

– The only construction of unconditionally hiding Q-binding commitments
known is actually an equivocal trapdoor commitment. Trapdoor commit-
ments usually need stronger assumptions. Note also that no protocols using
non-equivocal Q-binding commitments are known (the zero-knowledge pro-
tocols in [11] need the trapdoor because they are constructed following the
“no quantum rewinding paradigm”). And, due to the absence of rewinding,
the zero-knowledge protocols only work in the CRS model.

– The possibility for parallel composition might be limited: It follows directly
from the definition that Q-binding commitments on m1, . . . , mn are a Q-
binding commitment on m = m1 . . . mn. However, it is not clear what happens
if we commit to m1, . . . , mn using different Q-binding commitments. (Or the
same Q-binding commitment, but using different public keys.)

– The definition is specialized for the commit-and-choose paradigm. It is unclear
how it can be used in rewinding-based proofs. (On the other hand, in commit-
and-choose situations, Q-binding commitments might be more suitable than
those we propose; whether this is the case constitutes future work.)

Summarizing, Q-binding commitments seem to be well suited for commit-and-
choose constructions, but for proofs involving rewinding, we need another defi-
nition.

DFRSS-Binding. Damg̊ard et al. [10] presented a definition for the uncon-
ditional binding property, targeted mainly for the bounded quantum storage
model; the following is a direct adaptation of their definition to the computa-
tional setting:

Definition 6 (DFRSS-Binding – Adapted). In a commitment, let V denote
the recipient’s classical state, and Z the sender’s classical state.

A bit commitment is DFRSS-binding iff for any quantum-polynomial-time
sender C̃, there exists a randomized function B′ such that the following holds:

Let C̃ and the honest recipient execute the commit phase. Compute b′ :=
B′(V,Z). Let C̃(b′) and the honest recipient execute the open phase. Let b denote
the opened bit (or ⊥ if the recipient does not accept). Then Pr[b′ �= b] is negligible.

In other words, given the classical part of the state of the recipient and the
sender, it is possible to extract what bit the sender will open to. (The extraction

Computationally Binding Quantum Commitments 503

does not have to be efficiently feasible.) The definition can be extended to string
commitments by letting B′ range over bitstrings.

We have changed the original definition from [10] to refer to quantum-
polynomial-time adversaries. (We also reformulated it for easier readability,
changing a number of technical details in the process. However, the current
definition is in the spirit of the original. And our discussion also applies to the
original formulation.)

The definition was originally intended for protocols in the bounded quantum
storage model. What happens if we use it in the standard model, i.e., with no
limit on the quantum memory of the sender? In this case, it is always possible
for the malicious sender to perform all his operations in superposition, and only
the recipient will perform measurements. Then, in Definition 6, the register Z
will be empty. Hence the definition requires that the committed bit b′ can be
computed from the recipient’s state V alone. This immediately implies that
the scheme cannot be statistically hiding, and that the commitments cannot be
shorter than the message.

Hence the DFRSS-binding definition shares the drawbacks of the perfectly
binding definition, unless we are in the bounded quantum storage model. (We
stress that [10] never claimed that the definition should be used outside the
bounded quantum storage model.)

1.2 Our Contribution

We give a new definition for the computational-binding property for commit-
ment schemes, called “collapse-binding” (Sect. 2). This definition is composable
(several collapse-binding commitments are also collapse-binding together), works
well with quantum rewinding (see below), does not conflict with statistical hid-
ing (as perfectly-binding commitments would), allows for short commitments
(i.e., the commitment can be shorter than the committed message, in contrast
to perfectly-binding commitments, and to extractable commitments in the CRS
model). Basically, collapse-binding commitments seem to be in the quantum
setting what computationally-binding commitments are in the classical setting.

We show that collision-resistant hash functions are not sufficient for getting
collapse-binding or even just sum-binding commitments (Sect. 3), at least when
using standard constructions, and relative to an oracle. We present a strength-
ening of collision-resistant hash functions, “collapsing hash functions” that can
serve as a drop-in replacement for collision-resistant hash functions (Sect. 4).
Using collapsing hash functions, we show several standard constructions of com-
mitments to be collapse-binding (Sect. 5).

We conjecture that standard cryptographic hash functions such as SHA-3
[17] are collapsing (and thus lead to collapse-binding commitments). We give
evidence for this conjecture by proving that the random oracle is a collapsing
hash function.

We show that the definition of collapse-binding commitments is usable by
extending the construction of quantum proofs of knowledge from [19] (Sect. 7).
Their construction uses perfectly-binding commitments (actually, strict-binding,

504 D. Unruh

which is slightly stronger) to get proofs of knowledge. We show that when replac-
ing the perfectly-binding commitments with collapse-binding ones, we get statis-
tical zero-knowledge quantum arguments of knowledge. In particular, this shows
that collapse-binding commitments work well together with rewinding.

1.3 Our Techniques

Collapse-Binding Commitments. To explain the definition of collapse-
binding commitments, first consider a perfectly-binding commitment. That is,
when an adversary A outputs a commitment c, there is only one possible mes-
sage mc that A can open c to. Hence, if the adversary A outputs a superposition
of messages that he can open c to, that superposition will necessarily be in the
state |mc〉. Hence, we can characterize perfectly-binding commitments by requir-
ing: when an adversary outputs a superposition of messages that he can open the
commitment c to, that superposition will necessarily be a single computational
basis vector (i.e., no non-trivial superposition).

(a)

A B

A Vc B

A Vc B

A B
Vc

c ok

b/
M

/
S

/
U

(b)

A B

A Vc B

A Vc Mok B

A B
Vc

c ok

b/
M

/
S

/
U

Fig. 1. Games from the definition of
collapse-binding commitments.

To express this more formally,
consider the circuit in Fig. 1(a). Here
the adversary A outputs a commit-
ment c (classical message). Further-
more, he outputs three quantum reg-
isters S, U , M . S contains his state.
M is supposed to contain a super-
position of messages, U a superposi-
tion of corresponding opening infor-
mations. Then we apply the mea-
surement Vc. This measurement mea-
sures whether U,M contain matching
opening information/message. More
formally, Vc measures whether U,M
is a superposition of states |u,m〉
such that u is valid opening informa-
tion for message m and commitment
c. Let ok = 1 if the measurement succeeds. Then we feed the registers S,U,M
back to the second part B of the adversary. B outputs a classical bit b. As dis-
cussed before, a commitment is perfectly-binding iff for all adversaries A, the
state of M after measuring ok = 1 is a computational basis vector.

The state of a register is a computational basis vector (or, synonymously:
is in a collapsed state) iff measuring that register in the computational basis
does not change that state. Consider the circuit in Fig. 1(b). Here we added
a measurement Mok on M after Vc. Mok is a complete measurement in the
computational basis, but is executed only if ok = 1. Since Mok disturbs the
state of M iff that state is not a computational basis vector, we can rephrase
the definition of perfectly-binding commitments:

Computationally Binding Quantum Commitments 505

A commitment is perfectly-binding iff, for all computationally unlimited
adversaries A,B, Pr[b = 1] is equal in Fig. 1(a) and (b) where b is the output
(i.e., guess) of B.2

Now we are ready to weaken this characterization to get a computational
binding property. Basically, we require that the same holds for quantum-
polynomial-time adversaries:

Definition 7 (Collapse-Binding – Informal). A commitment is collapse-
binding iff, for all quantum-polynomial-time adversaries A,B, Pr[b = 1] in
Fig. 1(a) is negligibly close to Pr[b = 1] in Fig. 1(b).

In other words, with a perfectly-binding commitment, the adversary cannot pro-
duce a superposition of different messages that are contained in the commitment.
But with a collapse-binding commitment, the adversary is forced to produce a
state that looks like it is not a superposition of different messages. For the pur-
pose of computational security, this will often be as good.

We quickly explain why collapse-binding commitments work well with quan-
tum rewinding. In the case of quantum rewinding (e.g., in the analysis of proofs
of knowledge [19]), one problem is that we might need to run an adversary until
he opens a commitment c, then to measure the opened message, and then to go
back to an earlier state by applying the inverse of the adversary. The problem
is that measuring the opened message will disturb the state of the adversary,
and thus make rewinding impossible. Except: if the opened message cannot be
distinguished from being already in a collapsed state (as guaranteed by collapse-
binding), then measuring the opened message does not disturb the state in a
noticeable way and we can rewind. (See the discussion on arguments of knowl-
edge below.)

Constructing Collapse-Binding Commitments. Collapse-binding commit-
ments are useful only if they exist. Perfectly-binding commitments are easily seen
to be collapse-binding, but then we cannot have statistically hiding or short
commitments. In the classical setting, we get practical computationally-binding
commitments from a collision-resistant hash function H. The most obvious con-
struction is to send c := H(m‖u) for uniformly random u of suitable length.
We call this the “canonical commitment”. The canonical commitment is easily
seen to be classical-style binding if H is collision-resistant, and it is statistically
hiding if H is a random oracle. To get rid of the random-oracle requirement,
we can use a somewhat more complex constructions by Halevi and Micali [14]
instead. Unfortunately, both the canonical commitment and the Halevi-Micali
commitments are not collapse-binding if H is merely collision-resistant. In fact,
relative to a specific oracle and using a specific collision-resistant hash function,
there is a total break where the adversary can unveil the commitment to any
message of his chosing. To show this, we tweak the technique from [1] to con-
struct a hash function H such that the adversary can sample an image c of H

2 Our exposition above was not very rigorous, but it is easy to see that this is indeed
an “if and only if”.

506 D. Unruh

together with a quantum state |Ψ〉 such that: Given the state |Ψ〉, for any m, the
adversary can find a random u with H(m‖u) = c. But this process destroys |Ψ〉,
so the adversary cannot find two preimages of c; the hash function is collision-
resistant. But the canonical commitment, based on this H, is trivially broken.
Similar constructions break the Halevi-Micali commitments.

Since collision-resistance seems too weak a property in the quantum setting
(at least for our purposes), we give a strengthening of collision-resistance: col-
lapsing hash functions:

Definition 8 (Collapsing Hash Function – Informal). An adversary is
valid if he outputs a classical value c, and a register M containing a superposition
of messages m with H(m) = c. We call H collapsing iff no quantum-polynomial-
time adversary can distinguish whether we measure M in the computational basis
or not, before giving the register M back to the adversary. (This is formalized
with games similar to those in Fig. 1.)

We can show that collapsing hash functions are collision-resistant, and they share
a number of structural properties with collision-resistant functions. E.g., injective
functions are collapsing, and the composition H ◦ H ′ of collapsing functions is
collapsing.

Due to the similarity between the definition of collapsing hash functions and
collapse-binding commitments, we can show that the canonical commitment and
the Halevi-Micali commitments are collapse-binding if H is collapsing.

However, this leaves the question: do collapsing functions exist in the first
place? We conjecture that common industrial hash function like SHA3 [17] are
actually collapsing (not only collision-resistant). In fact, we argue that the col-
lapsing property should be a requirement for the design of future hash functions
(in the sense that a hash function where the collapsing property is in doubt
should not be selected for industry standards), since collision-resistance is not
sufficient if we wish to achieve post-quantum secure cryptography. We support
our conjecture that sufficiently unstructured functions are collapsing by proving
that the random oracle is collapsing:

Random Oracles Are Collapsing. We now sketch on a high level our proof
that random oracles are collapsing, or, equivalently, that a random function is
collapsing with high probability. In our analysis, we assume that the adversary
can query the random oracle on the superposition of different inputs; this is
necessary for having a realistic modeling of hash functions [3]. As a first step,
we identify a new property, “half-collision resistance”:

Definition 9 (Half-Collision Resistance – Informal). A half-collision of H
is a string x such that there exists an x′ �= x with H(x′) = H(x). A hash function
H is half-collision resistant if no adversary does the following: He outputs a
half-collision with non-negligible probability. And he never outputs a non-half-
collision. (The adversary may output ⊥ though.)

Computationally Binding Quantum Commitments 507

That is, half-collision resistance says that the adversary cannot find non-injective
inputs to H without sometimes accidentally outputting injective inputs. We
show: if H is half-collision resistant, it is collapsing.

The proof idea is: if H is not collapsing, the adversary can produce a superpo-
sition M of messages m with H(m) = c and notice whether M is being measured.
The latter implies that M must be a superposition of at least two messages m
with H(m) = c. Hence by measuring M , the adversary gets a half-collision. Much
additional work is needed to make sure that the adversary does not accidentally
measure the register M when it is not a nontrivial superposition.

(The half-collision resistance property might be useful independent of the
proof that the random oracle is collapsing. When trying to construct collapsing
hash functions based on other assumptions, half-collision resistance might be
easier to verify since its definition consists of purely classical games.)

Next we construct a random function H∗ : X → Y with |Y | = 2
3 |X|. That

is, H∗ is slightly compressing. The domain of H∗ is partitioned into two sets
X1,X2 with |X1| = 2|X2|. H∗ is injective on X2, and 2-to-1 on X1. Besides
those constraints, H∗ is uniformly random. We can then show that H∗ is half-
collision resistant. (Basically, this means that the adversary cannot identify the
subset X1.) Furthermore, we can show that H∗ is indistinguishable from a ran-
dom function H : X → Y . Since H∗ is half-collision resistant, it is collapsing.
And since H is indistinguishable from H∗, H is collapsing.

We now know that random functions H : X → Y are collapsing if |Y | = 2
3 |X|

(i.e., if they are slightly compressing). However, we want that H is collapsing
for arbitrary X and Y , as long as Y has superpolynomial size. For |X| ≤ |Y |,
H is indistinguishable from a random injection, which in turn is collapsing. The
interesting case is |X| > |Y | (namely, when H is compressing). In this case, we
show (following an idea from [24]) that H can be written as H = fn ◦ · · · ◦ f1
where all fi are slightly compressing. Since all fi are collapsing, so is H. This
shows that a random function H is collapsing, in other words, that the random
oracle is collapsing (if its range has superpolynomial size).

Quantum Arguments of Knowledge. We illustrate the use of collapse-
binding commitments by revisiting the construction of proofs of knowledge from
Unruh [19]. Unruh showed that a sigma-protocol (i.e., a particular kind of three
round proof system) is a quantum proof of knowledge if it has two properties:
special soundness (from two interactions with the same first and different second
messages one can efficiently compute a witness) and strict soundness (the first
and second message of a valid interaction determine the third). In the classical
setting, only special soundness is needed. In the quantum setting, strict sound-
ness is additionally required to allow for quantum rewinding: In the proof from
[19], we run the malicious prover to get his response (the third message). Then
we measure the response. Then we rewind the prover (by applying the inverse
of the unitary transformation representing the prover). Then we run the prover
again to get a second answer. Special soundness then implies that from the two
responses, we get a witness. However, we need to make sure that measuring the

508 D. Unruh

prover’s response before rewinding does not disturb the state (too much). In [19],
this follows from strict soundness: strict soundness guarantees that the response
is uniquely determined, and thus measuring the response does not disturb the
state. To achieve strict soundness, [19] lets the prover commit to all possible
responses in the first message using perfectly-binding commitments.3 The draw-
back of this solution is that the commitments cannot be statistically hiding, so
we cannot get statistical zero-knowledge proofs using the method from [19].

What happens if we replace the perfectly-binding commitments by collapse-
binding commitments containing the response? In that case, the response will
not necessarily be information-theoretically determined by the first two mes-
sages. However, the definition of collapse-binding commitments guarantees that
measuring that response will be indistinguishable from not measuring it. Thus,
if we measure the response, the state might be disturbed, but it will be com-
putationally indistinguishable from not being disturbed. This is enough for the
proof technique from [19] to go through, assuming the prover is computation-
ally limited. The resulting protocol will not be a quantum proof of knowledge,
but a quantum argument of knowledge (i.e., secure only against computation-
ally limited provers). But in contrast to [19], the proof system will be statistical
zero-knowledge.

To summarize: from collapse-binding commitments (or from collapsing hash
functions), we get three-round statistical zero-knowledge quantum arguments of
knowledge for all languages in NP (with inverse polynomial knowledge error).
To the best of our knowledge, not even three-round statistical zero-knowledge
quantum arguments were known before.

1.4 Related Work

Commitments. Brassard et al. [4] presented an information-theoretically hid-
ing and binding commitment scheme using quantum communication. However,
the protocol was flawed, Mayers [15] showed that information-theoretically hid-
ing and binding commitments are impossible. (This is no contradiction to our
results, because our commitments are not information-theoretically binding.)
Dumais et al. [13] and Crépeau et al. [7] constructed statistically hiding com-
mitments from quantum one-way permutations/functions, respectively. Their
protocols use quantum communication, and are sum-binding. Crépeau et al. [6]
generalized the sum-binding definition to string commitments and constructed
an OT protocol based on that definition. (However, it is not known whether the
protocol composes even sequentially.) Damg̊ard et al. [9] and Unruh [18] showed
a much simpler OT protocol to be secure, assuming much stronger commitment
definitions in the CRS model, but achieving stronger security notions (sequential
composability/UC). Ambainis et al. [1] show that classical-style binding commit-
ments are not necessarily even sum-binding.

3 Actually, “strict-binding commitments” but this distinction is not relevant for this
exposition.

Computationally Binding Quantum Commitments 509

Quantum Random Oracles. Random oracles were first explicitly considered
in a quantum cryptographic context by Boneh et al. [3] who stressed that the
adversary should have superposition access to the random oracle. Zhandry [24]
showed that the random oracle is collision-resistant. In contrast, we show (based
on his result) that the random oracle is collapsing (a stronger property).

Quantum Rewinding and Proof Systems. Watrous [23] showed how quan-
tum rewinding can be used to prove the security of quantum zero-knowledge
protocols. Unruh [19] showed how a different flavor of quantum rewinding can
be used for proving the security of quantum proofs of knowledge; we extend their
technique to quantum arguments of knowledge.

2 Definitions and Basic Properties

Preliminaries. For the necessary background in quantum computing, see, e.g.,
[16]. By |i〉 with i ∈ I we denote the vectors of the computational basis of the
Hilbert space with dimension |I|. We also use the symbol |·〉 to refer to other
(non-basis) vectors (e.g., |Ψ〉). And 〈Ψ | is the conjugate transpose of |Ψ〉. ‖x‖
refers to the Euclidean or �2-norm. We only consider finite dimensional Hilbert
spaces. We denote |+〉 := 1√

2
|0〉 + 1√

2
|1〉 and |−〉 := 1√

2
|0〉 − 1√

2
|1〉. For a linear

operator A on a Hilbert space, we denote by A† its conjugate transpose. We
denote by I the identity. We call an operator A on a Hilbert space a projector
iff it is an orthogonal projector, i.e., a linear map with P 2 = P and P = P †.
By TD(ρ, ρ′) we denote the trace distance between ρ and ρ′, and by F (ρ, ρ′) the
fidelity.

Given an algorithm A, let x ← A(y) denote the result of running A with
inputs y, and assigning the output to x. Let x

$←M denote assigning a uniformly
random element of M to x. We will use η to denote the security parameter, that
is a positive integer that will be passed to all algorithms and adversaries and
that indicates the required security level. By a‖b we denote the concatenation
of bitstrings a and b.

We call an algorithm quantum-polynomial-time if it is a quantum algorithm
and its runtime is bounded by a polynomial in its input length with probabil-
ity 1. We call an algorithm classical-polynomial-time if it performs only classical
operations and its runtime is bounded by a polynomial in its input length with
probability 1. We write 1η for a bitstring (of 1’s) of length η. (The latter is use-
ful for making algorithms run in polynomial-time in the length of the security
parameter, e.g., A(1η) will run polynomial-time in η.)

Commitments. A commitment scheme (com, verify) consists of a quantum-
polynomial-time algorithm com and a deterministic quantum-polynomial-time
algorithm verify .4 (c, u) ← com(1η,m) returns a commitment c and the opening
4 To be practical, those algorithms should of course be classical. We allow quantum-

polynomial-time algorithms here to state our results in greater generality.

510 D. Unruh

information u for the message m and security parameter η. c alone is supposed
not to reveal anything about m (hiding). To open, we send (m,u) to the recipient
who checks whether verify(1η, c,m, u) = 1. Both com and verify have classical
input and output. com has a well-defined message space MSPη that also depends
on the security parameter η (e.g., {0, 1}η). Furthermore, for technical reasons,
we assume that it is possible to find triples (c,m, u) with verify(1η, c,m, u) = 1
with probability 1 in quantum-polynomial-time in η.

We first state some standard properties of commitments.

Definition 10. Let (com, verify) be a commitment scheme. We define:

– Perfect completeness: (com, verify) has perfect completeness iff for all
m ∈ MSPη, Pr[verify(1η, c,m, u) = 1 : (c, u) ← com(1η,m)] = 1.

– Computational hiding: (com, verify) is computationally hiding iff for any
quantum-polynomial-time A and any polynomial �, there is a negligible μ
such that for any η, any m0,m1 ∈ MSPη with |m0|, |m1| ≤ �(η), and any
|Ψ〉,5 ∣

∣P0 − P1

∣

∣ ≤ μ(η) where Pi := Pr[b = 1 : (c, u) ← com(1η,mi), b ←
A(1η, |Ψ〉, c)].

– Statistical hiding: Like computational hiding, except that we quantify over
all A (not just quantum-polynomial-time A).

Definition 11 (Classical-Style Binding). A commitment scheme is
classical-style binding iff for any quantum-polynomial-time algorithm A, the fol-
lowing is negligible in η: Pr[verify(1η, c,m, u) = 1∧verify(1η, c,m′, u′) = 1∧m �=
m′ : (c,m, u,m′, u′) ← A(1η)].

Definition 12 (Collapse-Binding). For algorithms A, B, consider the fol-
lowing games:

Game1 : (S, M, U, c) ← A(1η), ok ← Vc(M, U), m ← Mok (M), b ← B(1η, S, M, U)

Game2 : (S, M, U, c) ← A(1η), ok ← Vc(M, U), b ← B(1η, S, M, U)

Here S,M,U are quantum registers. Vc is a measurement whether M,U
contains a valid opening, formally Vc is defined through the projector
∑

m,u
verify(1η,c,m,u)=1

|m〉〈m| ⊗ |u〉〈u|. Mok is a measurement of M in the com-

putational basis if ok = 1, and does nothing if ok = 0 (i.e., it sets m := ⊥ and
does not touch the register M).

A commitment scheme is collapse-binding iff for any quantum-polynomial-
time algorithms A,B, the difference

∣

∣Pr[b = 1 : Game1] − Pr[b = 1 : Game2]
∣

∣ is
negligible.

Instead of measuring using Vc whether the adversary outputs a correct opening
information, we can quantify only over adversaries that always output correct
opening information. This leads to the following equivalent definition of collapse-
binding commitments. This definition is often easier to handle when proving that
a given scheme is collapse-binding.
5 |Ψ〉 is the auxiliary input of A that represents knowledge of A acquired, e.g., in prior

protocol runs. One could use a mixed state instead, this would lead to an equivalent
definition.

Computationally Binding Quantum Commitments 511

Definition 13 (Collapse-Binding – Variant). For algorithms A, B, consider
the following games:

Game1 : (S,M,U, c) ← A(1η), m ← Mcomp(M), b ← B(1η, S,M,U)
Game2 : (S,M,U, c) ← A(1η), b ← B(1η, S,M,U)

Here S,M,U are quantum registers. Mcomp(M) is a measurement of M in the
computational basis.

We call an adversary (A,B) valid if Pr[verify(c,m, u) = 1] = 1 when running
(S,M,U, c) ← A(1η) and measuring M,U in the computational basis to obtain
m,u.

A commitment scheme is collapse-binding iff for any quantum-polynomial-
time valid adversary (A,B), the difference

∣

∣Pr[b = 1 : Game1] − Pr[b = 1 :
Game2]

∣

∣ is negligible.

In [20], we show Definitions 12 and 13 equivalent, and that the collapse-binding
property is preserved under parallel composition of commitments.

3 Commitments from Collision-Resistant Hash Functions

In the following, we will often refer to hash functions. We will always assume
that a hash function depends implicitly on the security parameter (in particular,
the size of the range can depend on the security parameter). We also assume
that the hash function is quantum-polynomial-time computable (in η and the
input length).6 Besides that, we do not assume any further properties such as
collision-resistance unless explicitly mentioned.

Definition 14 (Canonical Commitment Scheme). Given a hash function
H and a parameter �u = �u(η), the canonical commitment scheme for H is:

– Message space MSPη := {0, 1}∗.
– comcan(m): Pick u

$←{0, 1}�u . Compute c := H(m‖u). Return (c, u).
– verifycan(c,m, u): Return 1 iff H(m‖u) = c.

It is immediate to see that this scheme is classical-style binding if H is collision-
resistant. However, in general it will not be hiding; for example, H(m‖u) could
leak the first bit of m. However, it is hiding if H is a random oracle:

Lemma 15. Fix �u ≥ 0 and assume that |Y | ≤ 2�u/8. For a random oracle
H : X → Y , the canonical commitment is statistically hiding.

When using a hash function in the standard model, we can use the following
commitment scheme instead:

6 When working in the random oracle model: Quantum-polynomial-time computable
given access to the random oracle.

512 D. Unruh

Definition 16 (Bounded-Length Halevi-Micali Commitment [14]). Fix
integers � = �(η), n = n(η). Let L := 4� + 2n + 4. Let H : {0, 1}L → {0, 1}�

be a hash function. Let F = F (η) be a family of universal hash functions f :
{0, 1}L → {0, 1}n. We define the bounded-length Halevi-Micali commitment
(comHMb , code = verifyHMb) with MSPη = {0, 1}n as:

– comHMb(m): Pick f ∈ F and u ∈ {0, 1}L uniformly at random, conditioned
on f(u) = m. Compute h := H(u). Let c := (h, f). Return (c, u).

– verifyHMu(c,m, u) with c = (h, f): Check whether f(u) = m and h = H(u).
If so, return 1.

Definition 17 (Unbounded Halevi-Micali Commitment [14]). Fix an
integer � = �(η). Let H : {0, 1}∗ → {0, 1}� be a hash function. Let L := 6� + 4.
Let F be a family of universal hash functions f : {0, 1}L → {0, 1}�. We define
the unbounded Halevi-Micali commitment (comHMu , verifyHMu) as:

– comHMu(m): Pick f ∈ F and u ∈ {0, 1}L uniformly at random, conditioned
on f(u) = H(m). Compute h := H(u). Let c := (h, f). Return (c, u).

– verifyHMu(c,m, u) with c = (h, f): Check whether f(u) = H(m) and h =
H(u). If so, return 1.

Theorem 18 (Security of Halevi-Micali [14]). If � is superlogarithmic, then
the Halevi-Micali commitment and the bounded-length Halevi-Micali commitment
are statistically hiding. If H is collision-resistant, then the Halevi-Micali com-
mitment and the bounded-length Halevi-Micali commitment are classical-style
binding.

Note that [14] did not prove the classical-style binding property against quantum
adversaries. But the (very simple) proof of binding carries over unchanged to the
quantum setting (if H is collision-resistant against quantum adversaries). The
statistical hiding property holds against unlimited adversaries anyway, thus also
against quantum adversaries.

The following theorem shows that collision-resistance does not seem to be
enough to make the above constructions secure in the quantum setting, i.e.,
classical-style binding is all we get.

Theorem 19. There is an oracle O relative to which there exists a collision-
resistant7 hash function H such that the canonical commitment scheme and both
Halevi-Micali commitment schemes using H admit the following attack:

There is a quantum-polynomial-time adversary AO that outputs a commit-
ment c, then expects a bit b, and then outputs with overwhelming probability a
pair (m,u) such that verify(c,m, u) = 1 and the first bit of m is b.

Clearly, a commitment with that property should not be considered secure.
This shows that collision-resistance is too weak a property for constructing com-
mitments in the quantum setting, at least when using standard constructions.
7 H is collision-resistant iff for any quantum-polynomial-time A, Pr[x �= x′ ∧ H(x) =

H(x′) : (x, x′) ← A(1η)] is negligible.

Computationally Binding Quantum Commitments 513

The proof [20] uses the oracles constructed in [1]. In a nutshell, those oracles
give the adversary access to sets Sy, such that the adversary can perform one
single search in Sy for an element with a specific property, but cannot get two
elements from the same Sy. Using a suitably constructed hash function H, finding
m,u that open c corresponds to a search in Sy. Thus the adversary can use that
search to break the binding property. But finding a collision in H corresponds
to finding two elements from the same Sy, hence H is collision-resistant.

4 Collapsing Hash Functions

As seen in the previous section, for many protocols collision-resistance is not a
sufficiently strong property in the quantum setting. In the following, we propose
a strengthening of the collision-resistance property that seems more useful in the
quantum setting, namely “collapsing” hash functions. We believe that collaps-
ing hash functions are a natural assumption for real-life hash functions such as
SHA-3 etc. This belief is supported by the fact that the random oracle is col-
lapsing (see Sect. 6).

The definition of collapsing hash functions is similar to that of collapsing
commitments (Definition 13).

Definition 20 (Collapsing). For a function H and algorithms A, B, consider
the following games:

Game1 : (S,M, c) ← A(1η), m ← Mcomp(M), b ← B(1η, S,M)
Game2 : (S,M, c) ← A(1η), b ← B(1η, S,M)

Here S,M are quantum registers. Mcomp(M) is a measurement of M in the
computational basis.

We call an adversary (A,B) valid if Pr[H(m) = c] = 1 when we run
(S,M, c) ← A(1η) and measure M in the computational basis as m.

A function H is collapsing iff for any quantum-polynomial-time valid adver-
sary (A,B), the difference adv :=

∣

∣Pr[b = 1 : Game1] − Pr[b = 1 : Game2]
∣

∣ is
negligible. (We call adv the advantage).

Notice that the definition of collapsing hash functions is inherently quantum,
even though the object we consider (the hash function H) is classical. We know
of no classical analogue to collapsing hash functions. However, a collapsing hash
function will necessarily be collision-resistant, see Lemma 22 below.

We proceed to give a number of useful properties of collapsing hash functions.

Lemma 21. An injective function H is collapsing with advantage 0.

Lemma 22. A collapsing hash function is collision resistant.

Theorem 23. If f and g are collapsing, so is g ◦ f .

514 D. Unruh

5 Commitments from Collapsing Hash Functions

In Sect. 3 we saw that collision-resistant hash functions are not sufficient for
several standard constructions of commitment schemes. We will now show that
those same constructions are secure in the quantum setting when using collapsing
hash functions instead.

The following theorem allows us to extend the message space of a collapsing
commitment by hashing the message with a collapsing hash function. Besides
being useful in its own right, we need it in the analysis of the unbounded Halevi-
Micali commitment.

Theorem 24. Let f be a collapsing function. Let (com, verify) be a col-
lapse binding commitment scheme. Let comf (1η,m) := com(1η, f(m)) and
verifyf (1η, c,m, u) = verify(1η, c, f(m), u). Then (comf , verifyf) is a collapse-
binding commitment scheme.

Lemma 25. If H is collapsing, then the canonical commitment scheme
(comcan , verifycan), and the bounded-length Halevi-Micali commitment
(comHMb , code = verifyHMb), and the unbounded Halevi-Micali commitment
(comHMu , verifyHMu) are collapse-binding. (For any choice of the parameters
�u, �, n.)

We give the proof idea, the full proof is given in [20]. To show that the canonical
commitment comcan is collapse-binding, we use the characterization of collapse-
binding from Definition 13. We need to show that the adversary cannot distin-
guish between a measurement on register M and no measurement on register
M , assuming the adversary outputs M,U containing a superposition of m,u
with verifycan(c,m, u) = 1. The condition verifycan(c,m, u) = 1 is equivalent to
H(m‖u) = c. Hence the adversary outputs in M,U a superposition of preimages
of c under H. Since H is collapsing, this implies that the adversary cannot dis-
tinguish between a measurement on M,U and no measurement on M,U . This
also implies (using some additional work) that the adversary cannot distinguish
between a measurement on M and no measurement on M . Hence comcan is
collapse-binding. The Halevi-Micali commitments are handled similarly.

6 Random Oracles Are Collapsing

In Sect. 5 we saw that collapsing hash functions imply collapse-binding com-
mitments. In this section, we explore the existence of collapsing hash functions.
Specifically, we show that the random oracle is collapsing. This implies that there
are simple collapse-binding commitments in the random oracle model. Further-
more, it supports the assumption that real-life hash functions such as SHA-3
etc. could be collapse-binding. Alternatively, we could also directly start with
the assumption that SHA-3 is collapsing, in that setting the constructions from
Sect. 5 would not need the random oracle. (In fact, we advocate that a hash

Computationally Binding Quantum Commitments 515

function that is not collapsing should not be considered a secure practical hash
function, and not recommended for future use.)

For the remainder of this section, X and Y are sets, and H : X → Y is a
random oracle. Furthermore Y is finite, and X ⊆ {0, 1}∗ (finite or infinite). And
q ≥ 1 always refers to an upper bound on the number of oracle queries performed
by the adversary. The full proofs are given in [20].

We start by defining a seemingly unrelated property (half-collision resistance)
that will turn out to imply the collapsing property. We will need half-collision
resistance in our proof that the random oracle is collapsing. However, the concept
of half-collision resistance might be of use for constructions in the standard
model, too: since half-collision resistance is defined by a classical game, it might
be easier to construct hash functions that are half-collision resistant.8

Definition 26. A half-collision of a hash function f : X → Y is a value x such
that ∃x′ �= x.f(x) = f(x′).

An adversary A has advantage ε against half-collision resistance iff

– with probability 1, the output of A is a half-collision or ⊥, and
– with probability at ε, A outputs a half-collision.

Lemma 27. If (A,B) is valid and has advantage μ against the collapsing prop-
erty of a hash function f , then there is an adversary D with advantage ≥ μ2/4
against the half-collision resistance of f . The time-complexity of D is linear in
that of (A,B). (If f is given as an oracle, D makes 4q + 4 queries to f when
(A,B) makes q queries.)

Proof Sketch: By definition, a valid adversary A will always output in register M
a superposition of messages m with H(m) = c (all with the same c). So we have
two cases: M contains a superposition of a single message m, or M contains a
superposition of several messages that have the same image c, i.e., a superpo-
sition of half-collisions. Thus, in the second case, we can find a half-collisions
by measuring M . But, an adversary against half-collision resistance must never
output a non-half-collision (no false positives). Thus, we need a possibility to
test whether M contains only a single message. (In this case, we abort.)

Note that when M contains only a single message, then the adversary B
cannot distinguish between a measurement on M and no measurement on M .
To exploit this, we run an execution where M is measured and an execution
where M is not measured in superposition (roughly speaking), and we make
it depend on a control qubit in state |+〉 which execution is used. Then, in the

8 However, half-collision resistance is strictly stronger than collapsing, at least relative
to an oracle, as we show next. Consider an oracle O picked according to the following
distribution: Let P0, P1 : {0, 1}n → {0, 1}n be random permutations. Let O(b‖x) :=
Pb(x) for b ∈ {0, 1}, x ∈ {0, 1}n. Then every input to O is a half-collision, thus
O cannot be half-collision resistant. However P0 and P1 are indistinguishable from
a random function [24], hence O is indistinguishable from O′(b‖x) := Hb(x) for
random functions H0, H1. Note that O′ is a random function, hence O′ is collapsing
by Theorem 31. Since O and O′ are indistinguishable, O is collapsing as well.

516 D. Unruh

case where M contains only a single message, the control qubit stays unentangled
with the rest of the circuit. By measuring whether the qubit is still in state |+〉,
the half-collision resistance adversary can detect whether M contains one or
several messages. (It may err and incorrectly assume that M contains only one
message, but an error in that direction is permitted.) Thus we have constructed
an adversary against half-collision resistance.

Lemma 28. Assume |X| ≤ |Y |. Then H is collapsing with advantage
O(q3/|Y |).
Proof Sketch. Zhandry [24] shows that for |X| ≤ |Y |, H can be distinguished from
a random injection with probability at most O(q3/|Y |). An injection is collapsing
with advantage 0 (Lemma 21).

For the next lemma, we fix some notation first: [N] := {1, . . . , N}. For func-
tions f : [M] → [N] and g : [M ′] → [N], let f + g : [M + M ′] → [N] be
defined via (f + g)(x) := f(x) for x = 1, . . . , M and (f + g)(x) = g(x − M) for
x = M + 1, . . . , M + M ′. For functions f : [M] → [N] and g : [M ′] → [N ′], let
f |g : [M +M ′] → [N +N ′] be defined via (f |g)(x) := f(x) for x = 1, . . . , M and
(f |g)(x) := g(x − M) + N for x = M + 1, . . . , M + M ′.

Lemma 29. Assume that M ≥ N . Let f̂ , ĝ : [N] → [N] and ĥ : [M] → [M] and
ϕ̂ : [N +M] → [N +M] be uniformly distributed permutations (all independent),
and let H : [2N + M] → [N + M] be a uniformly distributed function.

Then for any q-query adversary A,

∣

∣Pr[AH = 1] − Pr[Aϕ̂◦((f̂+ĝ)|ĥ) = 1]
∣

∣ ∈ O(q3/N).

Proof Sketch: We show this by rewriting ϕ̂ ◦ (

(f̂ + ĝ)|ĥ)

step by step, till it
becomes H. In each step, the adversary distinguishes with probability O(q3/N)
(denoted ≈ below) or 0 (denoted ≡ below). For this we introduce additional func-
tions ϕ, v, w, v̂, â, b̂, ĉ of suitable domains/ranges, all independent and uniformly
random. The functions with a hat are injections. We compute:

ϕ̂ ◦ ((f̂ + ĝ)|ĥ) ≈ ϕ ◦ ((f̂ + ĝ)|ĥ) ≡ (v ◦ (f̂ + ĝ)) + (w ◦ ĥ) ≡ (v ◦ (f̂ + ĝ)) + w

≈ (v̂ ◦ (f̂ + ĝ)) + w ≡ (ĉ ◦ â ◦ (f̂ + ĝ)) + w ≈ (ĉ ◦ b̂) + w

≡ ĉ + w ≈ c + w ≡ H.

Most of these equivalences either have elementary proofs, or are reduced to the
fact that a random function and a random injection are indistinguishable. We
get H ≈ ϕ̂ ◦ (

(f̂ + ĝ)|ĥ)

which is the claim of the lemma.

Lemma 30. Assume that |Y | =
⌈

2
3 |X|⌉. Then H is collapsing with advantage

O(
√

q3/|X|).
Proof Sketch: For simplicity, we consider the case |Y | = 2N , |X| = 3N . Then,
by Lemma 29 with M := N , H is indistinguishable from H∗ := ϕ̂ ◦ (

(f̂ + ĝ)|ĥ)

.

Computationally Binding Quantum Commitments 517

Furthermore, for a random permutation π, H and H ◦ π are identically distrib-
uted, and H ◦π is indistinguishable from H∗ ◦π. Thus it is sufficient to show that
H∗ ◦ π is collapsing. In turn, by Lemma 27, it is sufficient to show that H∗ ◦ π
is half-collision resistant. To show that, observe that the half-collisions of H∗ are
the inputs 1, . . . , 2N , but not 2N + 1, . . . , 3N . Thus the half-collisions of H∗ ◦ π
are P := π−1({1, . . . , 2N}). So, the half-collision resistance adversary has to find
elements of P , without false positives, while given oracle access to H∗ ◦ π. But
H∗ ◦ π is indistinguishable from H ◦ π, so the adversary would also be able to
find elements in P given H ◦ π. Since H ◦ π is a random function, independent of
P , the adversary cannot do that without getting false positives. Hence H∗ ◦ π is
half-collision resistant and thus collapsing. Hence H is collapsing.

Theorem 31. Let Y be finite, and X ⊆ {0, 1}∗ (finite or infinite). Then H :
X → Y is collapsing with advantage O(

√

q3/|Y |).
Proof Sketch: H is indistinguishable from a composition fn ◦ · · · ◦ f1 of random
functions fn : Xn → Yn with |Xn+1| = |Yn| = 2

3 |Xn|. By Lemma 30, each fn

is collapsing. Thus, by Theorem23, fn ◦ · · · ◦ f1 is collapsing and hence H is
collapsing.

7 Zero-Knowledge Arguments of Knowledge

In this section, we study the security of sigma-protocols. A sigma-protocol is a
specific kind three-round proof system in which the verifier’s message consists
only of random bits. Sigma-protocols play an important role in classical construc-
tions of zero-knowledge proof systems for two reasons: For a number of simple
but important languages, sigma-protocols exist. And given sigma-protocols for
simple languages, there are efficient constructions for more complex languages.
(There are constructions for conjunctions and disjunctions of sigma-protocols,
as well as more complex threshold constructions [5].)

In the classical setting, it is relatively simple to give conditions under which
sigma-protocols are zero-knowledge proofs of knowledge. In the quantum set-
ting, however, analyzing the security of sigma-protocols turns out to be much
harder. Watrous [23] presented a rewinding technique for proving the zero-
knowledge property of sigma-protocols (see also Theorem34 below). Unruh [19]
showed that sigma-protocols are quantum proofs of knowledge under a spe-
cific additional condition called “strict soundness”. This condition requires that
the third message (“response”) in a valid interaction is uniquely determined by
the first two. However, strict soundness is a strong additional assumption. [19]
showed how to achieve strict soundness by committing to the response already
in the first message. However, the commitment scheme used for this needed to
be perfectly-binding (actually, it needed to satisfy a somewhat stronger prop-
erty, called “strict binding”). In particular, this implies that the commitment
scheme cannot be information-theoretically hiding (hence the resulting protocol
cannot be statistical zero-knowledge), and we cannot have short commitments

518 D. Unruh

(a perfectly-binding commitment will always be at least as long as the message
inside).

Furthermore, Ambainis et al. [1] showed that the condition of strict soundness
is necessary, at least relative to an oracle. They also showed that even if we
assume that strict soundness holds, but only against computationally limited
adversaries,9 the resulting sigma-protocol will, in general, not be a quantum
argument of knowledge.10 Even more, it might not even be a quantum argument.
That is, a computationally limited adversary can successfully prove a wrong
statement.

In this section we show how we can use collapse-binding commitments
as a drop-in replacement for the perfectly-binding commitments in the con-
struction from [19]. One particular consequence is that given collapse-binding
hash functions we can construct three-round statistical zero-knowledge quan-
tum arguments of knowledge from sigma-protocols (without using a common-
reference string). This assumes the sigma-protocol is statistical honest-verifier
zero-knowledge and has special soundness. And that the challenge space (the
set from which the verifier picks his random message) is polynomially-bounded.
These properties, however, are also needed in the classical setting.

7.1 Interactive Proof Systems

An interactive proof system (P,V) for some relation R consists of two interactive
quantum machines P and V that get classical inputs (x,w) ∈ R and x, respec-
tively. Afterwards, V outputs a bit. For formal definitions see [19]. (In general,
P and V can exchange quantum messages, but our concrete constructions below
will be classical.)

We consider two important properties of interactive proof systems: First, we
want them to be arguments of knowledge. Informally, they should convince the
verifier that the prover knows a witness w for the statement x (i.e., (x,w) ∈ R).
Second, we want them to be zero-knowledge. Informally, the proof should not
leaks anything about the witness besides its existence.

Quantum Arguments of Knowledge. The following definition of quantum
arguments of knowledge follows the definition from [22], with one difference:
we have formulated security against uniform malicious provers. That is, while
in [22] the statement x and the auxiliary input |Ψ〉 are all-quantified, in our
setting they are chosen by an quantum-polynomial-time algorithm Z. The reason
we consider only uniform malicious provers here is: A non-uniform adversary
can break any non-interactive commitment (with classical messages) that is not
already perfectly-binding. (Namely, the auxiliary input can simply contain one

9 I.e., it is hard to find two different valid interactions where the first two messages
are equal but the response is different.

10 Argument and argument of knowledge are the variants of proof and proof of knowl-
edge that consider a computationally limited malicious prover.

Computationally Binding Quantum Commitments 519

commitment and two different openings.) Thus, since we consider only non-
interactive commitments in this paper, we need a uniform definition of quantum
arguments of knowledge. For a motivation of the remaining definitional choices,
see [22].

Definition 32 (Quantum Arguments of Knowledge). We call an interac-
tive proof system (P,V) for a relation R (uniformly) quantum-computationally
extractable with knowledge error κ if there exists a constant d > 0, a
polynomially-bounded function p > 0, and a quantum-polynomial-time oracle
algorithm K such that for any unitary quantum-polynomial-time algorithm P∗,
for any polynomial �, and for any quantum-polynomial-time algorithm Z (input
generator), there exists a negligible μ such that for any security parameter η ∈ N,
we have that

Pr[〈P∗(1η, x, Z),V(1η, x)〉 = 1 : (x,Z) ← Z(1η)] ≥ κ(η) =⇒
Pr[(x,w) ∈ R : (x,Z) ← Z(1η), w ← KP∗(1η,x,Z)(1η, x)]

≥ 1
p(η)

(

Pr
[〈P∗(1η, x, Z),V(1η, x)〉 = 1 : (x,Z) ← Z(1η)

] − κ(η)
)d

− μ(η).

Here 〈P∗(1η, x, Z),V(1η, x)〉 is the output of V after an interaction between P∗

and V on the respective inputs x and Z. Z is a quantum register, x is classical,
both initialized using the algorithm Z. And KP∗(1η,x,Z) refers to an execution of K
with black-box access to P∗(1η, x, Z). That is, K can apply the unitary Ux describ-
ing the prover P∗ and its inverse U†

x. (See [19] for a more detailed description
of that black-box execution model.)

Quantum Zero-Knowledge. Roughly speaking, (P,V) is quantum-
computationally zero-knowledge iff for any quantum-polynomial-time malicious
verifier V∗, there exists a quantum-polynomial-time simulator S such that for any
(x,w) ∈ R, the output state of S is quantum computationally indistinguishable
from the from the output state of V∗ in an interaction with P(1η, x, w).

Similarly, quantum statistical zero-knowledge is defined in the same way,
except that V∗ is not required to be quantum-polynomial-time.

We will not use the definition of quantum zero-knowledge directly, only the
imported Theorem 34 from [22] will refer to it. We therefore omit the formal
definition and refer to [22].

7.2 Sigma-Protocols

We now introduce sigma-protocols (following [21] with modifications as men-
tioned in the footnotes). The notions are like the standard classical definitions,
all that was done to adopt them to the quantum setting was to make the adver-
sary quantum-polynomial-time.

A sigma-protocol for a relation R is a three-message proof system. It is
described by its challenge space Nz (where |Nz| ≥ 2), a classical-polynomial-
time prover (P1, P2) and a deterministic classical-polynomial-time verifier V . The

520 D. Unruh

first message from the prover is a ← P1(1η, x, w) and is called the commitment,
the uniformly random reply from the verifier is z $←Nz (called challenge), and
the prover answers with r ← P2(1η, x, w, z) (the response). We assume P1, P2 to
share state. Finally V (1η, x, a, z , r) outputs whether the verifier accepts.

Definition 33 (Computational Special Soundness). There is a quantum-
polynomial-time algorithm EΣ (the extractor)11 such that for any quantum-
polynomial-time A, we have that

Pr[(x,w) /∈ R ∧ z �= z ′ ∧ ok = ok ′ = 1 : (x, a, z , r , z ′, r ′) ← A(1η),
ok ← V (1η, x, a, z , r), ok ′ ← V (1η, x, a, z ′, r ′), w ← EΣ(1η, x, a, z , r , z ′, r ′)]

is negligible.

Note that the above is a standard condition expected from sigma-protocols in
the classical setting. In contrast, for a sigma-protocol to be a quantum proof of
knowledge, a much more restrictive condition is required, strict soundness [1,19].
We show below how to circumvent this necessity by adding collapse-binding
commitments to the sigma-protocol (at least when we only need a quantum
argument of knowledge).

We also use the standard properties of honest verifier zero-knowledge (HVZK)
and statistical honest-verifier zero-knowledge (SHVZK). They are of secondary
importance for the proofs shown in this section, we defer them to [20].

Remark 1. Any sigma-protocol (Nz, P1, P2, V) can be seen as an interactive
proof (P,V) in a natural way: P sends the output a of P1 to V. V picks z $←Nz

and sends it to P. P sends the resulting output r of P2 to V. V checks the triple
(a, z , r) using V .

The following theorem is shown in [22]:

Theorem 34 (HVZK Implies Zero-Knowledge [22]). Let Σ =
(Nz, P1, P2, V) be a sigma-protocol. We consider Σ as an interactive proof (P,V),
see Remark 1.

If |Nz| is polynomially-bounded and is SHVZK, then Σ is quantum statisti-
cal zero-knowledge. If |Nz| is polynomially-bounded and Σ is HVZK, then Σ is
quantum computational zero-knowledge.

Due to this theorem, it will be sufficient to verify that the sigma-protocols
we construct are HVZK/SHVZK. We will hence not need to use the definition
of quantum zero-knowledge explicitly in the following.

11 [21] requires a classical EΣ here. By allowing EΣ to be quantum here, we weaken the
notion of computational special soundness slightly, and thus strengthen our results
below.

Computationally Binding Quantum Commitments 521

7.3 Constructing Zero-Knowledge Arguments of Knowledge

In [19], the following idea was used to construct quantum proofs of knowledge:
We assume a sigma-protocol with special soundness and with polynomial-size
|Nz|. We convert it into a sigma-protocol with strict soundness as follows: When
the prover sends his commitment a ← P1(x,w), he additionally sends com(rz)
for all z ∈ Nz where rz is the response to the challenge z. When the prover
receives the challenge z , he opens com(rz) instead of sending rz . If the commit-
ment has the “strict binding” property, the resulting sigma-protocol has strict
soundness (without losing the special soundness or HVZK property).12 Strict
binding is a strengthening of perfect binding, it means that not only the mes-
sage in the commitment is information-theoretically determined, but also the
opening information.

Given a sigma-protocol with strict and special soundness, we can show that it
is a proof of knowledge. Basically, [19] runs the protocol twice (using the inverse
of the unitary malicious prover to rewind) to get two responses r , r ′ for different
challenges z �= z ′. The difficulty here is that measuring r can disturb the state
of the malicious prover, leading to a corrupt value r ′. The trick here is that
due to the strict soundness, the value r is essentially uniquely determined, and
therefore the measurement does not introduce too much disturbance.13

Unfortunately, that technique needs commitments with the strict binding
property. First, it is easy to see that strict binding commitments must be longer
than the messages they contain. Short strict binding commitments are not pos-
sible. Furthermore, the only known construction of strict binding commitments
[19] uses quantum 1-1 one-way functions. No candidates for those are known.

We show below that the same technique of committing to the responses works
with collapse-binding commitments. The crucial point in the analysis from [19]
was that measuring the committed response does not change the state. The
collapse-binding property guarantees something slightly weaker: when measur-
ing the committed response, the state may change, but this cannot be noticed
by a computationally limited adversary. So with collapse-binding commitments,
an analog reasoning as in [19] can be used, except that we get security only
against quantum-polynomial-time adversaries. I.e., we get a quantum argument
of knowledge. We will now describe this in more detail.

First, we formalize the sigma-protocol in which we commit to the responses:

Definition 35 (Sigma-Protocol with Committed Responses). Let
(Nz, P1, P2, V) be a sigma-protocol with polynomially-bounded |Nz|. Let
(com, verify) be a commitment scheme (with the responses of (Nz, P1, P2, V)
as message space). We construct a sigma-protocol (Nz, P

′
1, P

′
2, V

′) as follows:

12 This part was done only implicitly in [19], in the analysis of the Hamiltonian cycle
proof system.

13 There is some disturbance due to the fact that it is not determined whether r is a
valid response or an invalid one.

522 D. Unruh

– P ′
1(1

η, x, w) runs: a ← P1(1η, x, w). For each z ∈ Nz: rz ← P2(1η, x, w, z) 14

and (cz , uz) ← com(1η, rz). Let a ′ := (a, (cz)z∈Nz
) and return a ′.

– P ′
2(1

η, x, w, z) returns r ′ := (rz , uz).
– V ′(1η, x, a ′, z , r ′) with a ′ = (a, (cz)z∈Nz

) and r ′ = (r , u): Check whether
verify(1η, cz , r , u) = 1 and V (1η, a, z , r) = 1. Iff so, return 1.

We show that the above construction is a quantum argument of knowledge:

Theorem 36 (Quantum Argument of Knowledge). If (Nz, P1, P2, V) is
a sigma-protocol with computational special soundness for a relation R, and
(com, verify) is collapse-binding, then (Nz, P

′
1, P

′
2, V

′) from Definition 35 is com-
putationally quantum extractable for R with knowledge error 1/

√|Nz|.
The proof of this theorem will rely on the following lemma from [19]. (That

lemma is the core lemma of the rewinding technique from [19]).

Lemma 37 (Extraction via Quantum Rewinding [19]). Let C be a set
with |C| = c. Let (Pi)i∈C be projectors. Let |Φ〉 be a unit vector. Let V :=
∑

i∈C
1
c‖Pi|Φ〉‖2 and E :=

∑

i,j∈C,i �=j
1
c2 ‖PiPj |Φ〉‖2. Then, if V ≥ 1√

c
, E ≥

V (V 2 − 1
c).

Proof of Theorem 36. Recall that any sigma-protocol can be seen as an interac-
tive proof system by Remark 1. Let (P,V) denote the interactive proof system
resulting from the sigma-protocol (Nz, P

′
1, P

′
2, V

′). (In particular, the verifier V
sends a random z ∈ Nz, and in the end checks whether verify(1η, cz , r , u) = 1
and V (1η, a, z , r) = 1.)

Let P∗ denote a malicious prover, i.e., a unitary quantum-polynomial-time
algorithm. Since P∗ attacks a sigma-protocol, it sends two messages. We can
thus assume that P∗ is of the following form:

– It operates on quantum registers Z,C,R,U . Here Z contains the internal
state of P∗ (initialized by algorithm Z). C is the register that will contain the
first message a ′ = (a, (cz)z) sent by P∗. R,U contains the second message
r ′ = (r , u) sent by P∗. And C,R,U are initialized with |0〉.

– The unitary Ux describes the unitary operation of P∗ on Z,C during the
first invocation of P∗. Ux is parametrized by the classical input x of P∗. The
message a ′ = (a, (cz)z) is obtained by measuring C in the computational
basis.

– The unitary Uz describes the unitary operation of P∗ on Z,R,U during
the second invocation of P∗. Uz is parametrized by the challenge z that P∗

receives. The message r′ = (r, u) is obtained by measuring R and U in the
computational basis.

We fix some additional notation for this proof:

– Vz : The projector on R,U onto the span of all |r , u〉 with verify(1η, cz , r , u) =
1. (That is, Vz measures whether measuring R,U would yield a valid opening
of cz .)

14 We can run P2 several times using the final state of P1 because P1 is classical.

Computationally Binding Quantum Commitments 523

– Wz : The projector on R onto the span of all |r〉 with V (1η, a, z , r) = 1. (That
is, Wz measures whether measuring R yields a valid response r for challenge
z .)

– Pz := U†
z WzVzUz . Since Vz and Wz are projectors and diagonal in the com-

putational basis, they commute and their product is a projector. And since
Uz is a unitary, Pz is a projector (acting on registers Z,R,U).

– x ← M(X) denotes that x is assigned the result of measuring the register X
in the computational basis.

– ok ← P (X) means that ok is assigned 1 iff measuring the register X with
projector P succeeds. (With P being, e.g., one of Vz ,Wz , Pz .)

– We write U(X) or U(X) to mean that the unitary U is applied to the register
X. (With U being, e.g., one of Ux, Uz).

With that notation, we can rewrite the success probability of the malicious prover
as follows:

PrV := Pr[P∗(1η, x, Z),V(1η, x)〉 = 1 : (x,Z) ← Z(1η)]
= Pr[ok c = okv = 1 : (x,Z) ← Z(1η), Ux(ZC), (a, (cz)z) ← M(C),

z $←Nz, Uz (ZRU), r ← M(R), u ← M(U),
ok c = verify(1η, cz , r , u), okv = V (1η, a, z , r)]

= Pr[ok = 1 : (x,Z) ← Z(1η), Ux(ZC), (a, (cz)z) ← M(C), z $←Nz,

ok ← Pz (ZRU)].

We now construct the extractor KP∗(1η,x,Z)(1η, x) required by Definition 32.
It operates on quantum registers S,C,R,U as follows:

(x,Z) ← Z(1η), Ux(ZC), (a, (cz)z) ← M(C), z , z ′ $←Nz, Uz (ZRU),

ok c ← Vz (RU), r ← M(R), U†
z (ZRU), Uz ′(ZRU), r′ ← M(R),

w ← EΣ(1η, x, a, z , r , z ′, r ′), return w.

Here EΣ is the extractor of the sigma-protocol (Nz, P1, P2, V). This extrac-
tor exists because the sigma-protocol has computational special soundness (see
Definition 33). Note that K only uses black-box access to P (via the unitaries
Ux, Uz , Uz ′ and their inverses).

We will now bound the success probability of the extractor

PrE := Pr[(x, w) ∈ R : w ← KP∗(1η,x,Z)(1η, x)]

= Pr[(x, w) ∈ R : (x, Z) ← Z(1η), Ux(ZC), (a, (cz)z) ← M(C), z , z ′ $←Nz,

Uz (ZRU), okc ← Vz (RU), r ← M(R), U†
z (ZRU), Uz ′(ZRU),

r ′ ← M(R), w ← EΣ(1η, x, a, z , r , z ′, r ′)]

= Pr[(x, w) ∈ R : (x, Z) ← Z(1η), Ux(ZC), (a, (cz)z) ← M(C), z , z ′ $←Nz,

Uz (ZRU), okc ← Vz (RU), r ← M(R), okv ← V (1η, x, a, z , r),

U†
z (ZRU), Uz ′(ZRU), r ′ ← M(R), ok ′

v ← V (1η, x, a, z ′, r ′),

w ← EΣ(1η, x, a, z , r , z ′, r ′)].

524 D. Unruh

Due to the computational special soundness of (Nz, P1, P2, V), in the previous
game, with overwhelming probability, z �= z ′ and okv = 1 and okv′ = 1 implies
(x,w) ∈ R. Thus there exists a negligible μ1 such that

PrE ≥ Pr[z �= z ′ ∧ okv = ok ′
v = 1 : (x, Z) ← Z(1η), Ux(ZC), (a, (cz)z) ← M(C),

z , z ′ $←Nz, Uz (ZRU), okc ← Vz (RU), r ← M(R),

okv ← V (1η, x, a, z , r), U†
z (ZRU), Uz ′(ZRU), r ′ ← M(R),

ok ′
v ← V (1η, x, a, z ′, r ′)] − μ1 =: Pr′

E −μ1.

Instead of computing okv ← V (1η, x, a, z , r) using the just measured r , we can
instead measure whether the register R contains a value r that would make
V (1η, x, a, z , r) = 1 true. I.e., we can replace okv ← V (1η, x, a, z , r) by a mea-
surement using the projector Wz . Since at that point, R was just measured in
the computational basis, the measurement using Wz does not disturb the state of
the system. Similarly, we can replace ok ′

v ← V (1η, x, a, z ′, r ′) by a measurement
using Wz ′ . We get:

Pr′
E = Pr[z �= z ′ ∧ okv = ok ′

v = 1 : (x, Z) ← Z(1η), Ux(ZC), (a, (cz)z) ← M(C),

z , z ′ $←Nz, Uz (ZRU), okc ← Vz (RU), r ← M(R), okv ← Wz (R),

U†
z (ZRU), Uz ′(ZRU), r′ ← M(R), ok ′

v ← Wz ′(R)]

= Pr[z �= z ′ ∧ okv = ok ′
v = 1 : (x, Z) ← Z(1η), Ux(ZC), (a, (cz)z) ← M(C),

z , z ′ $←Nz, Uz (ZRU), okc ← Vz (RU), r ← Mokc(R), okv ← Wz (R),

U†
z (ZRU), Uz ′(ZRU), r′ ← M(R), ok ′

v ← Wz ′(R)].

In the last probability, r ← Mokc
(R) refers to a measurement on R that is

only executed if ok c = 1. (And r := ⊥ otherwise.) The last two probabilities
are equal because M(R) and Mokc(R) only differ if okc = 0, in which case
“z �= z ′ ∧ okv = ok ′

v = 1” is false anyway.
Since Vz measures whether R,U contains |r , u〉 with verify(1η, cz , r , u) = 1,

and since (com, verify) is collapse-binding, and since the outcome r is never used,
we have that no quantum-polynomial-time adversary can distinguish between
“ok c ← Vz (RU), r ← M(R)” and “okc ← Vz (RU)”, except with negligible
probability. (Cf. Definition 12.) Thus there is a negligible μ2 such that

Pr′
E ≥ Pr[z �= z ′ ∧ okv = ok ′

v = 1 : (x, Z) ← Z(1η), Ux(ZC), (a, (cz)z) ← M(C),

z , z ′ $←Nz, Uz (ZRU), okc ← Vz (RU), okv ← Wz (R), U†
z (ZRU),

Uz ′(ZRU), r′ ← M(R), ok ′
v ← Wz ′(R)] − μ2 =: Pr′′

E −μ2.

Since M(R) and Wz ′(R) and Vz ′(RU) commute, and since adding addi-
tional/removing operations after all values z , z ′, okv, ok ′

v are fixed does not
change the distribution of those values, we have that “r ′ ← M(R), ok ′

v ←
Wz ′(R)” and “ok ′

c ← Vz ′(RU), ok ′
v ← Wz (R), U†

z ′(ZRU)” lead to the same
distribution of z, z′, okv, ok ′

v. This justifies (∗) in the following calculation:

Pr′′
E

(∗)
= Pr[z �= z ′ ∧ okv = ok ′

v = 1 : (x, Z) ← Z(1η), Ux(ZC), (a, (cz)z) ← M(C),

z , z ′ $←Nz, Uz (ZRU), okc ← Vz (RU), okv ← Wz (R), U†
z (ZRU),

Uz ′(ZRU), ok ′
c ← Vz ′(RU), ok ′

v ← Wz ′(R), U†
z ′(ZRU)]

Computationally Binding Quantum Commitments 525

≥ Pr[z �= z ′ ∧ okc = okv = 1 ∧ ok ′
c = ok ′

v = 1 : (x, Z) ← Z(1η), Ux(ZC),

(a, (cz)z) ← M(C), z , z ′ $←Nz, Uz (ZRU), okc ← Vz (RU), okv ← Wz (R),

U†
z (ZRU), Uz ′(ZRU), ok ′

c ← Vz ′(RU), ok ′
v ← Wz ′(R), U†

z ′(ZRU)]

= Pr[z �= z ′ ∧ ok = 1 ∧ ok = 1 : (x, Z) ← Z(1η), Ux(ZC), (a, (cz)z) ← M(C),

z , z ′ $←Nz, ok ← Pz (ZRU), ok ← Pz ′(ZRU)].

Let αa′ := Pr[a′ = (a, (cz)z)] in the previous game, and let |ψa′〉 denote the
post-measurement-state of registers Z,R,U after the measurement (a, (cz)z) ←
M(C). Then

Pr′′
E =

∑

a′
αa′

∑

z ,z ′

z �=z ′

1
|Nz|2

∥

∥

∥Pz ′Pz |ψa′〉
∥

∥

∥

2

︸ ︷︷ ︸

=:Ea′

.

Furthermore, note that

PrV =
∑

a′
αa′

∑

z

1
|Nz|

∥

∥

∥Pz |ψa′〉
∥

∥

∥

2

︸ ︷︷ ︸

=:Va′

.

Lemma 37 implies that if Va′ ≥ 1/
√|Nz|, then Ea′ ≥ Va′(V 2

a′ − 1/|Nz|). Or
stated differently: Ea′ ≥ ϕ(Va′) where ϕ(x) := 0 for x < 1/

√|Nz| and ϕ(x) :=
x(x2−1/|Nz|) for x ≥ 1/

√|Nz|. Since ϕ is convex on [0, 1], by Jensen’s inequality
we get Pr′′

E ≥ ϕ(PrV). In other words Pr′′
E ≥ PrV (Pr2V −1/|Nz|) whenever PrV ≥

1/
√|Nz|. Furthermore, the inequalities derived above give PrE ≥ Pr′′

E −μ for
μ := μ1 + μ2. And μ is negligible. It follows that:

PrV ≥ 1√
Nz

=⇒ PrE ≥ PrV

(
Pr2V − 1

|Nz|
)

− μ ≥
(
PrV − 1

√|Nz|
)3

− μ.

Thus (P,V) is quantum-computationally extractable for R with knowledge error
κ := 1/

√|Nz|. ��
In [20], we additionally show that the resulting protocol is also zero-

knowledge. (This only uses the hiding property, and is hence independent of
our new definitions).

Theorem 38 (Zero-Knowledge). If |Nz| is polynomially-bounded, and
(Nz, P1, P2, V) is HVZK and (com, verify) is computationally hiding, and com
is a polynomial-time algorithm, then (Nz, P

′
1, P

′
2, V

′) is computational zero-
knowledge.

If |Nz| is polynomially-bounded, and (Nz, P1, P2, V) is SHVZK and
(com, verify) is statistically hiding, and com is a polynomial-time algorithm,
then (Nz, P

′
1, P

′
2, V

′) is statistical zero-knowledge.

526 D. Unruh

8 Open Problems

We list some questions for future research:

– We have constructed quantum arguments of knowledge from sigma-protocols
by using collapse-binding commitments. However, our construction requires
the challenge space Nz of the sigma-protocol to be of polynomially-bounded
size. As a consequence, the resulting argument of knowledge will have a
noticeable knowledge error; for a negligible knowledge error we need to use
sequential repetition, resulting in a proof system with non-constant round
complexity. Are there general constructions of arguments of knowledge from
sigma-protocols that do not require the challenge space to be polynomially-
bounded?

– Can we use collapse-binding commitments to construct a quantum OT pro-
tocol? For example, using the construction from [2] or a variation thereof?

– How are the various definitions of computationally binding commitments
related? That is, which implications and separations exist between sum-
binding, CDMS-binding, collapse-binding, and UC-secure commitments?

Acknowledgements. We thank Ansis Rosmanis for discussions on insecure commit-
ments based on collision-resistant hash functions, and Serge Fehr for discussions on
the DFRSS-binding definition. This research by the European Social Fund’s Doctoral
Studies and Internationalisation Programme DoRa, by the European Regional Devel-
opment Fund through the Estonian Center of Excellence in Computer Science, EXCS,
by European Social Fund through the Estonian Doctoral School in Information and
Communication Technology, and by the Estonian ICT program 2011–2015 (3.2.1201.13-
0022).

References

1. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems (the hardness of quantum rewinding). In: FOCS 2014, pp. 474–483. IEEE
(2014)

2. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical quantum
oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
351–366. Springer, Heidelberg (1992)

3. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011)

4. Brassard, G., Crépeau, C., Jozsa, R., Langlois, D.: A quantum bit commitment
scheme provably unbreakable by both parties. In: FOCS 1993, pp. 362–371. IEEE
(1993)

5. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

6. Crépeau, C., Dumais, P., Mayers, D., Salvail, L.: Computational collapse of quan-
tum state with application to oblivious transfer. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 374–393. Springer, Heidelberg (2004)

Computationally Binding Quantum Commitments 527

7. Crépeau, C., Légaré, F., Salvail, L.: How to convert the flavor of a quantum bit
commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp.
60–77. Springer, Heidelberg (2001)

8. Crépeau, C., Salvail, L., Simard, J.-R., Tapp, A.: Two provers in isolation. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 407–430. Springer,
Heidelberg (2011)

9. Damg̊ard, I., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving the
security of quantum protocols via commit-and-open. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 408–427. Springer, Heidelberg (2009)

10. Damg̊ard, I.B., Fehr, S., Renner, R.S., Salvail, L., Schaffner, C.: A tight high-order
entropic quantum uncertainty relation with applications. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 360–378. Springer, Heidelberg (2007)

11. Damg̊ard, I.B., Fehr, S., Salvail, L.: Zero-knowledge proofs and string commitments
withstanding quantum attacks. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 254–272. Springer, Heidelberg (2004)

12. Damg̊ard, I., Lunemann, C.: Quantum-secure coin-flipping and applications. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 52–69. Springer,
Heidelberg (2009)

13. Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment
from any quantum one-way permutation. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 300–315. Springer, Heidelberg (2000)

14. Halevi, S., Micali, S.: Practical and provably-secure commitment schemes from
collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
201–215. Springer, Heidelberg (1996)

15. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. PRL
78(17), 3414–3417 (1997)

16. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 10th
Anniv. edn. Cambridge University Press, Cambridge (2010)

17. NIST: SHA-3 standard: Permutation-based hash and extendable-output functions.
Draft FIpPS 202 (2014)

18. Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg
(2010)

19. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012)

20. Unruh, D.: Computationally binding quantum commitments. IACR ePrint
2015/361 (2015). (full version of this paper)

21. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057,
pp. 755–784. Springer, Heidelberg (2015)

22. Unruh, D.: Quantum proofs of knowledge. IACR ePrint 2010/212/20150211:174234
(2015). updated full version of [19]

23. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1),
25–58 (2009)

24. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Information & Computation 15(7&8), 557–567 (2015)

Structural Lattice Reduction: Generalized
Worst-Case to Average-Case Reductions

and Homomorphic Cryptosystems

Nicolas Gama1,2(B), Malika Izabachène3, Phong Q. Nguyen4,5, and Xiang Xie6

1 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS,
Université Paris-Saclay, 78035 Versailles, France

nicolas.gama@uvsq.fr
2 Inpher, Lausanne, Switzerland

3 CEA, LIST, 91191 Gif-sur-Yvette Cedex, France
4 Inria, Paris, France

Phong.Nguyen@inria.fr
5 CNRS/JFLI and the University of Tokyo, Tokyo, Japan

6 Huawei Technologies, Shenzhen, China

Abstract. In lattice cryptography, worst-case to average-case reduc-
tions rely on two problems: Ajtai’s SIS and Regev’s LWE, which both
refer to a very small class of random lattices related to the group G = Z

n
q .

We generalize worst-case to average-case reductions to all integer lattices
of sufficiently large determinant, by allowing G to be any (sufficiently
large) finite abelian group. Our main tool is a novel generalization of lat-
tice reduction, which we call structural lattice reduction: given a finite
abelian group G and a lattice L, it finds a short basis of some lattice
L̄ such that L ⊆ L̄ and L̄/L � G. Our group generalizations of SIS
and LWE allow us to abstract lattice cryptography, yet preserve worst-
case assumptions: as an illustration, we provide a somewhat conceptu-
ally simpler generalization of the Alperin-Sheriff-Peikert variant of the
Gentry-Sahai-Waters homomorphic scheme. We introduce homomorphic
mux gates, which allows us to homomorphically evaluate any boolean
function with a noise overhead proportional to the square root of its
number of variables, and bootstrap the full scheme using only a linear
noise overhead.

1 Introduction

A lattice is a discrete subgroup of R
m. Nearly two decades after its introduc-

tion, lattice-based cryptography has emerged as a credible alternative to classical
public-key cryptography based on factoring or discrete logarithm. It offers new
properties (such as security based on worst-case assumptions) and new func-
tionalities, such as noisy multilinear maps and fully-homomorphic encryption.
The worst-case guarantees of lattice-based cryptography come from two prob-
lems: Ajtai’s short integer solution (SIS) [1] and Regev’s learning with errors
(LWE) [37]. These average-case problems are provably as hard as solving certain
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 528–558, 2016.
DOI: 10.1007/978-3-662-49896-5 19

Structural Lattice Reduction 529

lattice problems in the worst case, such as GapSVP (the decision version of the
shortest vector problem) and SIVP (finding short lattice vectors).

As noted by Micciancio [25], the SIS problem can be defined as finding short
vectors in a random lattice from a class An,m,q of m-dimensional integer lattices
related to the finite abelian group G = Z

n
q , where n is the dimension of the worst-

case lattice problem and q needs to be sufficiently large: any g = (g1, . . . , gm) ∈
Gm chosen uniformly at random defines a lattice Lg ∈ An,m,q formed by all
x = (x1, . . . , xm) ∈ Z

m s.t.
∑m

i=1 xigi = 0 in G; and SIS asks, given g, to find a
short (nonzero) x ∈ Lg. The class An,m,q has an algebraic meaning: for suitable
parameters, the distribution of Lg is statistically close to the uniform distribution
over the finite set LG,m of all full-rank lattices L ⊆ Z

m such that Z
m/L � G.

This suggests that Ajtai’s lattices are very rare among all integer lattices: in
fact, Nguyen and Shparlinski [31] recently showed that the set ∪G cyclicLG,m

of all full-rank integer lattices L ⊆ Z
m such that Z

m/L is cyclic (unlike Z
n
q)

has natural density 1/[ζ(6)
∏m

k=4 ζ(k)] ≈ 85% (for large m), which implies that
Ajtai’s classes An,m,q form a minority among all integer lattices.

This motivates the natural question of whether other classes of random lat-
tices enjoy similar worst-case to average-case reductions: if we call GSIS the
SIS generalization (introduced by Micciancio [25, Definition 5.2]) to any finite
abelian group G, does GSIS have similar properties as SIS for other groups than
G = Z

n
q ? This would imply that the random lattices of LG,m are also hard. Ajtai

(in the proceedings version of [1]) and later Regev [36] noticed that the choice
G =

∏n
i=1 Zqi

where the qi’s are distinct prime numbers of similar bit-length also
worked. Micciancio [25] gave another choice of G, to obtain a better worst-case
to average-case connection (at that time): his G is actually constructed by an
algorithm [25, Lemma 2.11] given as input a very special lattice (for which solv-
ing the closest vector problem is easy); if the input lattice is Zn, then G = (Zq)n.
However, all these choices of G are very special, and it was unknown if the hard-
ness properties held outside a small family of finite abelian groups.

A similar question can be asked for LWE, which is known as a dual prob-
lem of SIS, and has been used extensively in lattice-based encryption. However,
in order to define GLWE by analogy with GSIS, we need to change the usual
definition of LWE based on linear algebra. Any finite abelian group G is iso-
morphic to its dual group Ĝ formed by its characters, i.e. homomorphisms from
G to the torus T = R/Z. We define search-GLWE as the problem of learning
a character ŝ ∈ Ĝ chosen uniformly at random, given noisy evaluations of ŝ at
(public) random points g1, . . . , gm ∈ G, namely one is given gi and a “Gaussian”
perturbation of ŝ(gi) for all 1 ≤ i ≤ m. Decisional-GLWE is defined as the
problem of distinguishing the previous “Gaussian” perturbations of ŝ(gi) from
random elements in T. If G = (Zq)n, it can be checked that GLWE is LWE. If
G = Zp for some large prime p, search-GLWE is a randomized version of Boneh-
Venkatesan’s Hidden Number Problem (HNP) [8] (introduced to study the bit-
security of Diffie-Hellman key exchange, but also used in side-channel attacks
on discrete-log based signatures [30]), which asks to recover a secret number
s ∈ Zp, given random t1, . . . , tm chosen uniformly from Zp and approximations

530 N. Gama et al.

of each sti mod p. Here, randomized means that the approximations given are
“Gaussian” perturbations of sti mod p. Thus, GLWE captures LWE and the
HNP as a single problem, instantiated with different groups. Alternatively,
GLWE can be viewed as a lattice problem: solving a randomized version of
bounded distance decoding (with “Gaussian” errors) for the dual lattice of Lg.

Our results. We show that the worst-case to average-case reductions for
SIS and LWE (search and decisional) can be generalized to GSIS and GLWE,
provided that G is any sufficiently large finite abelian group, e.g. of order
nΩ(max(n,rank(G))) if n is the dimension of the worst-case lattice problem and
rank (G) denotes the minimal size of a generating set for G: note that the order
of G is the determinant of the average-case lattice. For GSIS and search-GLWE,
our reductions are direct from worst-case problems. We transfer decisional-LWE
hardness results to decisional-GLWE by generalizing the modulus-dimension
switching technique of Brakerski et al. [11].

We believe that our results offer a cleaner high-level picture of worst-case
to average-case reductions: previous work tend to focus on quantitative aspects
(such as decreasing the worst-case approximation factor, or the parameter q,
etc.), including work on the ring setting, where one introduces a trade-off between
security and efficiency. The ring setting offers more efficient primitives but
requires (much) stronger worst-case assumptions: in the ring variants of SIS
and LWE, the worst-case lattices are restricted to classes of very special lattices
known as ideal lattices.

Our reductions are based on a new tool, which we call structural lattice
reduction, and which is of independent interest: Becker et al. [5] recently used
it to design new exponential-space algorithms for lattice problems. In lattice
reduction, one is given a full-rank lattice L ⊆ Z

n and wants to find a short basis
of L. In our structural lattice reduction, one is further given a finite abelian
group G of rank ≤ n, and wants to find a short basis of some overlattice L̄
of L such that L̄/L � G effectively, i.e. there exists an efficiently computable
surjective map ϕ from L̄ to G with ker ϕ = L. Our key point is that previous
worst-case to average-case reductions (e.g. [11,20]) implicitly used a trivial case1

of structural lattice reduction: if B is a short basis of a full-rank lattice L ⊆ Z
n

and q is an integer, then q−1B is a short basis of the lattice L̄ = q−1L such that
L̄/L � Z

n
q , which summarizes the importance of Zn

q in SIS and LWE.
Our GSIS reduction shows that in some sense all integer lattices are hard.

Indeed, the set of full-rank lattices L ⊆ Z
m (of sufficiently large co-volume

≥ nΩ(m)) can be partitioned based on the finite abelian group Z
m/L, and the

reduction implies that each partition cell LG,m has this worst-case to average-
case property: finding short vectors in a lattice chosen uniformly at random from
LG,m is as hard as finding short vectors in any integer lattice of dimension n.

Consider the special case G = Zp for a large prime p. Then our GSIS reduc-
tion provides the first hardness results for the random lattices in LZp,m used in
many experiments [14,18] to benchmark lattice reduction algorithms, as well as
1 There is a more technical reduction implicitly proposed in [25], but unfortunately

too restrictive on the choice of G.

Structural Lattice Reduction 531

in Darmstadt’s SVP internet challenges. And our GLWE reduction provides a
general hardness result for the HNP: previously, [11, Corollary 3.4] established
the hardness for HNP when the large prime p is replaced by qn where q is smooth.

Finally, our generalizations of SIS and LWE allow us to abstract (the many)
lattice-based schemes based on SIS and/or LWE, where the role of G = (Zq)n

was not very explicit in most descriptions (typically based on linear algebra).
We believe such an abstraction can have several benefits. First, it can clarify
analyses and designs: the El Gamal cryptosystem is arguably better described
with an arbitrary group G, rather than by focusing on the historical choice
G = Z

∗
p; comparisons and analogies with “traditional” public-key cryptogra-

phy based on factoring or discrete logarithm will be easier. We illustrate this
point by providing a somewhat conceptually simpler GLWE-based generalization
of the Alperin-Sheriff-Peikert variant [2] of the Gentry-Sahai-Waters homomor-
phic scheme [21]: this generalization becomes essentially as simple as trapdoor-
based fully-homormophic encryption proposals such as [38]. It is based on a
GLWE variant of El Gamal encryption, which naturally generalizes Regev’s LWE
encryption [37]. We also provide a new decryption circuit based on Mux gates,
which can bootstrap the system with a polynomial noise overhead, and is
arguably simpler than [2]. Second, it opens up the possibility of obtaining more
efficient schemes using different choices of G than G = (Zq)n. We do not claim
that there are better choices than (Zq)n, but such a topic is worth investigating,
which we leave to future work. Many factors influence efficiency: trapdoor gen-
eration, hashing, efficiency of the security reduction, etc. For instance, hashing
onto Zp can sometimes be more efficient than onto (Zq)n for large n, which could
be useful in certain settings, like digital signatures.

Furthermore, our abstraction may also be helpful to better understand
attacks on GSIS and GLWE. For instance, there are similarities between
Bleichenbacher’s algorithm [6] for HNP and the BKW algorithm [7] for LWE: by
viewing LWE and HNP as two different instances of the same problem GLWE,
one can focus on the main ideas. And we note that among several classes of
random lattices having a worst-case to average-case reduction, it could be that
some are weaker than others, when it comes to the best attack known.

Related work. Baumslag et al. also introduced in [4] group generalizations
of LWE for non-commutative groups, but did not obtain hardness result. [16]
showed a self-reducibility property for some special non-commutative groups.

Open problems. Similarly to [11], our strongest hardness result for decisional-
GLWE bypasses search-GLWE: a direct search-to-decision equivalence for all
sufficiently large G is open. Adapting structural lattice reduction to the ring
setting is open: current ring results only address the average-case hardness of
very few classes of lattices, and it would be interesting to tackle more classes.
Our reductions require the order of G to be large compared to the worst-case
lattice dimension, and we would like to minimize this constraint: the GLWE case
G = Z

n
2 is essentially LPN, whose hardness is open; here, the order 2n does not

grow quickly enough with respect to the rank n for our reduction. On the other
hand, Micciancio and Peikert [27] recently decreased q for SIS.

532 N. Gama et al.

Roadmap. Section 2 gives background. Section 3 presents our group gener-
alizations of SIS and LWE. Section 4 presents structural lattice reduction.
Sections 5 and 6 show hardness of GSIS and decisional-GLWE. In Sect. 7, we
give an example of abstracting lattice cryptography: El Gamal-like encryption
and fully-homomorphic encryption from GLWE. Detailed missing proofs can be
found in the full version of the paper [17]. In particular, we compare structural
reduction with previous work of Ajtai [1] and Micciancio [25]: and show that all
previous SIS reductions can be captured by our overlattice framework.

2 Background and Notation

Zq denotes Z/qZ. We use row notation for vectors and matrices. In is the n × n
id. matrix. A function negl(n) is negligible if it vanishes faster than any inverse
polynomial. ‖B‖ = max1≤i≤n ‖bi‖ is the maximal row norm of a matrix B.

Lattices. A lattice L is of the form L(B) = {∑n
i=1 αibi, αi ∈ Z} for some basis

B = (b1, . . . ,bn) of linearly independent vectors in R
m. If L ⊆ Z

m, L is an
integer lattice. The dimension n of span(L) is the dimension dim(L) of L. The
(co)-volume vol(L) is

√

det(BBt) for any basis B of L. For 1 ≤ i ≤ dim(L),
λi(L) is the i-th minimum of L, (smallest radius of the 0-ball containing at least
i linearly indep. lattice vectors). The dual lattice L× is the set of all u ∈ span(L)
s.t. 〈u,v〉 ∈ Z for all v ∈ L. If B is a basis of L, its dual basis B× = (BBt)−1B is
a basis of L×. For a factor γ = γ(n) ≥ 1, GapSVPγ asks, given d ≥ 0 and a basis
B of an n-dim lattice L, to decide if λ1(L) ≤ d or λ1(L) > γd. ApproxSIVPγ

asks a full-rank family of lattice vectors of norm ≤ γλn(L).

Gram-Schmidt Orthogonalization (GSO). The GSO of a lattice basis B =
(b1, ...,bn) is the unique decomposition B = μ · D · Q, where μ is a lower
triangular matrix with unit diagonal, D is a positive diagonal matrix, and Q
has orthonormal rows. We let B∗ = DQ whose i-th row b∗

i is πi(bi), where πi

denotes the orthogonal projection of bi over span{b1, . . . ,bi−1}⊥. We use the
notation B[i,j] for the block [πi(bi), . . . , πi(bj)]. If B× is the dual basis of B and
(B×)∗ denotes its GSO matrix, then ‖(b×

i)∗‖ · ‖b∗
n−i+1‖ = 1 for 1 ≤ i ≤ n.

(Explicit) Finite Abelian Groups. Any finite abelian group G is isomorphic to
a product

∏k
i=1 Zqi

of cyclic groups. We call rank of G the minimal number
of cyclic groups in such decompositions: this should not be confused with the
rank of an abelian group. We say that G is explicit if one knows q1, . . . , qk ∈ N

and an isomorphism
∏k

i=1 Zqi
→ G computable in poly-time: wlog k is the

rank and qi+1|qi. The isomorphism induces k generators e1, . . . , ek ∈ G s.t.
G = 〈e1〉 ⊕ · · · ⊕ 〈ek〉 and each ei has order qi. If the inverse of the isomorphism
is also computable in polynomial time, we say that G is fully-explicit.

Overlattices. When a lattice L̄ contains a sublattice L of the same dimension
n, L̄ is an overlattice of L. Then L̄/L is a finite abelian group of rank ≤ n and
order vol(L)/ vol(L̄). Then we note L̄/L

ϕ� G for some ϕ, i.e. ϕ : L̄ → G is a
surjective morphism s.t ker ϕ = L.

Structural Lattice Reduction 533

Lattice Reduction. Cai [13] introduced the basis length of a lattice L as bl(L) =
minbasis B ‖B∗‖. Then: λn(L) ≥ bl(L) ≥ λn(L)/

√
n, bl(L) ≥ λ1(L), and bl(L) ≥

vol(L)1/n. Lattice reduction can find bases B with small ‖B∗‖. A basis B is
LLL-reduced [23] with factor ε

LLL
≥ 0 if its GSO satisfies |μi,j | ≤ 1

2 for all
1 ≤ j < i and ‖b∗

i ‖2 ≤ (1+ε
LLL

)(
∥

∥b∗
i+1

∥

∥

2+μi+1,i ‖b∗
i ‖2). Then it is folklore that:

‖B∗‖ ≤
(

(1 + ε
LLL

)
√

4/3
)(n−1)/2

bl(L). Given ε
LLL

> 0 and a basis B of a lattice
L ⊆ Z

n, LLL [23] outputs an LLL-reduced basis of factor ε
LLL

in time polynomial
in 1/ε

LLL
and size(B). Usually, (1 + ε

LLL
)
√

4/3 =
√

2 or ε
LLL

= 1/poly(n).

2.1 Gaussian Measures

The statistical distance between two distributions P and Q over a domain X is
Δ(P,Q) = 1

2

´
a∈X

|P(a)−Q(a)|da or 1
2

∑

a∈X |P(a)−Q(a)| when X is discrete.
P and Q are (statistically) ε-indistinguishable if Δ(P,Q) < ε. We write y ←
P (resp. ←ε P) for a sample y from the distrib. P (resp. a distribution ε-
indistinguishable from P). And ←≈ means ←ε for some negligible function ε.

Gaussian Distributions. The Gaussian Distribution (over R
n) DRn,σ,c centered

at c ∈ R
n of parameter σ ∈ R≥0 has a density function proportional to

ρ
Rn,σ,c(x) = exp

(−π‖x − c‖2/σ2
)

. If c is omitted, then c = 0. For any count-
able subset C ⊆ R

n (a lattice L or a coset x+L), ρ
Rn,σ,c(C) is

∑

u∈C
ρ
Rn,σ,c(u).

The discrete Gaussian distribution DC,σ,c over a lattice or coset C ⊂ R
n is

DC,σ,c(x) = ρ
Rn,σ,c(x)/ρ

Rn,σ,c(C) where x ∈ C. One can sample efficiently the
discrete Gaussian distribution within negligible distance [20,35] or exactly [11]:

Lemma 1. There is a poly-time algorithm which, given c ∈ Q
n, a basis B of a

lattice L ⊆ Q
n and σ ≥ ‖B∗‖ · √

ln(2n + 4)/π, samples the dist. DL,σ,c.

Reciprocally, a short lattice basis is derived from short discrete Gaussian samples:

Proposition 1. (Corollary of [36, Lemma 14]) Let ε > 0 and L(B) be an n-dim
lattice. Given m = O(n) indep. samples yi ←ε DL,si

s.t.
√

2ηε(L) ≤ si ≤ σ, 1 ≤
i ≤ m, one can compute in poly-time a basis C of L s.t. ‖C∗‖ ≤ √

n/2π ·maxi si.

Modular Distributions and Smoothing Parameter. The distributions DRn,σ,c and
DL̄,σ,c over an overlattice L̄ ⊇ L can be projected modulo L: DRn/L,σ,c (resp.
DL̄/L,σ,c) has density DRn,σ,c(x+L) for x ∈ R

n/L (resp. L̄/L). Both DRn/L,σ and
DL̄/L,σ converge (uniformly) to the uniform distribution when σ increases. This
is quantified by the smoothing parameter ηε(L) [28], i.e. the minimal σ > 0 for
ε > 0 s.t. ρ

Rn, 1
σ
(L×\ {0}) ≤ ε, i.e.

∥

∥

∥DRn/L,σ(x + L) − 1
vol(L)

∥

∥

∥

∞
≤ ε

vol(L) :

Lemma 2. (see Corollary 2.8 of [20]). If L̄ is an overlattice of L, ε ∈
(0, 1/2), σ ≥ ηε(L) and c ∈ R

n, then DL̄/L,σ,c+L is within stat. distance ≤ 2ε

from the uniform distribution over L̄/L.

534 N. Gama et al.

For any n-dim basis B, ηε(L(B)) ≤ ηε(L(B∗)) ≤ ηε(Zn) · ‖B∗‖ where ηε(Zn) ≤
√

log
(

2n · (1 + 1
ε)

)

/π. In particular, ηε(L) ≤ ηε(Zn) · bl(L). Finally, we give a
technical lemma (proved in App. A.2 of the full version [17]), analogous to [35,37].

Lemma 3. Let K = R or T. Let c ∈ R, u ∈ R
n, α, σ ∈ R≥0, ε ∈ (0, 1/2) and

z + L be a coset of an n-dim lattice L ⊆ R
n. Assume that

(

1
σ2 + ‖u‖2

α2

)−1/2

≥
ηε(L). Then DK,α,c+〈u,v〉 where v ← Dz+L,σ is within statistical distance ≤ 4ε

from D
K,

√
α2+σ2‖u‖2,c

. This still holds when K = 1
N Z or 1

N Z/Z if α ≥ ηε(1
N Z).

3 Lattice Factor Groups and Generalizations of SIS/LWE

3.1 Lattice Factor Groups

If L is a full-rank lattice ⊆ Z
m, its factor group Z

m/L is a finite abelian group
of order vol(L). For any finite abelian group G, denote by LG,m the (finite) set
of full-rank lattices L ⊆ Z

m such that Z
m/L � G. The following elementary

characterization of LG,m is a consequence of [33]:

Theorem 1. Let G be a finite abelian group and L be a full-rank lattice
in Z

m. Then L ∈ LG,m if and only if G has rank ≤ m and there exists
g = (g1, . . . , gm) ∈ Gm s.t. the gi’s generate G and L = Lg where Lg =
{(x1, . . . , xm) ∈ Z

m s.t.
∑m

i=1 xigi = 0 in G}.
Given G, Algorithm 5 (AppendixA) samples efficiently lattices from the uniform
distribution over LG,m, and its correctness follows from Lemma 4. Previously,
efficient sampling was only known for G = Zp for large prime p [22].

Lemma 4. Let G be a finite abelian group. Let g = (g1, . . . , gm) ∈ Gm be such
that the gi’s generate G. Let h = (h1, . . . , hm) ∈ Gm. Then Lg = Lh if and only
if there is an automorphism ψ of G such that hi = ψ(gi) for all 1 ≤ i ≤ m. In
such a case, ψ is uniquely determined.

We note that several implementations of lattice-based cryptography (such
as [19]) implicitly used lattices in LG,m for some large cyclic group G. Recently,
Nguyen and Shparlinski [31] showed that such lattices are dominant: the set
∪G cyclicLG,m of all full-rank integer lattices L ⊆ Z

m such that Z
m/L is cyclic

has natural density 1/[ζ(6)
∏m

k=4 ζ(k)] ≈ 85% (for large m).

3.2 The Group-SIS Problem (GSIS)

Micciancio [25] introduced the Homogeneous SIS problem which is a natural
generalization of SIS to an arbitrary finite abelian group G. In this paper, we
call it Group-SIS problem (GSIS). The parameters are m ≥ 1 and a bound
β > 0. One picks g = (g1, . . . , gm) ∈ Gm uniformly at random. GSIS(G,m, β)

Structural Lattice Reduction 535

asks to find a non-zero vector x ∈ Z
m s.t.

∑m
i=1 xigi = 0 and ‖x‖ ≤ β. In other

words, GSIS asks to find short vectors in random relation lattices Lg = {x ∈
Z

ms.t.
∑m

i=1 xigi = 0}. For instance, GSIS(Zn
q ,m, β) is SIS, and GSIS(Zq,m, β)

is finding short vectors in random m-dimensional co-cyclic lattices of volume q.
If #G denotes the order of G, the existence of a GSIS-solution is guaranteed if
β ≥ √

m(#G)1/m.
GSIS is connected to LG,m as follows. As soon as m ≥ n + 2 log log #G + 5

(resp. m > 2 log #G + 2), g1, . . . , gm generate G with probability ≥ 1/e [24,32]
(resp. ≥ 1−1/#G), in which case Zm/Lg � G. In particular, if m > 2 log #G+2,
the distribution of GSIS lattices Lg is statistically close to the distribution of
Algorithm 5, and therefore the uniform distribution over LG,m, in which case
GSIS is equivalent to finding short vectors in random lattices from LG,m.

Finally, we note that to establish hardness of GSIS, it suffices to focus on
low-rank groups G. Indeed, if G′ = G×H for some groups G,H, then GSIS over
G can trivially be reduced to GSIS over G′, by “projecting” G′ to G.

3.3 The Group-LWE Problem (GLWE)

We introduce the Group-LWE problem (GLWE), using the torus T = R/Z and
a finite abelian group G. Let Ĝ be the dual group of homomorphisms G → T: it
is isomorphic to G but not canonically. If G is explicit, G = ⊕k

i=1 〈ei〉 where ei

has order qi, and Ĝ is generated by ê1, . . . , êk defined as êi(
∑k

j=1 αjej) = αi/qi

mod 1 where 0 ≤ αj < qj .
Let S be a known distribution over Ĝ. Search-GLWE is the problem of learn-

ing a character ŝ ∈ Ĝ picked from S, given noisy evaluations of ŝ at (public) ran-
dom points a1, . . . , am ∈ G, namely one is given (for all i’s) ai and a “Gaussian”
perturbation of ŝ(ai). Like LWE, several noise distributions are possible. As
in [37], we focus on the continuous distribution where ŝ(a) is shifted by an error
e ← DR,α. These distributions need to be discretized in order to have a finite
representation. In App. B.4 of the full version, we present discrete versions and
show that they are at least as hard as the continuous version for suitable para-
meters, which explains why we only consider the continuous GLWE problem in
the rest:

Definition 1. G = ⊕k
i=1 〈ei〉 is an expl. finite abelian group, α > 0 and ŝ ∈ Ĝ.

– AG,α(ŝ) is the distribution over G ×T defined by choosing a ∈ G uniformly at
random, setting b ← DT,α,ŝ(a), and outputting (a, b) ∈ G × T.

– Search-GLWEG,α(S) asks to find ŝ from AG,α(ŝ) for a fixed ŝ ← S given
arbitrarily many independent samples. By finding ŝ, we mean finding si ∈ Z

s.t. ŝ =
∑k

i=1 siêi.
– Decisional-GLWEG,α(S) asks to distinguish AG,α(ŝ) from the uniform dis-

tribution over G × T for a fixed ŝ sampled from S given arbitrarily many
independent samples.

536 N. Gama et al.

– For 0 < α < 1, (Search) Decisional-GLWEG,≤α(S) is the problem of solving
(Search) Decisional-GLWEG,β(S) for any β ≤ α respectively, i.e. when the
noise parameter is unknown yet ≤ α, by analogy with LWE.

Search-GLWEG,m,α(S) and Decisional-GLWEG,m,α(S) denote the variants
where the algorithms have a bounded number m of samples. If S is omitted,
it is the uniform distribution over Ĝ.

If G = Z
n
q , the canonical representation of G and Ĝ shows that GLWE is equiva-

lent to the fractional version of Regev’s original LWE. If G = Zp for some prime
p, then Ĝ can be defined by multiplications: ŝ is the homomorphism mapping any
t ∈ Zp to ts/p mod 1. Thus, GLWE can be viewed as a randomized version of
Boneh-Venkatesan’s Hidden Number Problem [8]: recover a secret number s mod
p, given approximations of sti mod p for many random integers ti’s. By analogy
with LWE (see [11,37]), there is a folklore reduction from (Search) Decisional-
GLWEG,≤α(S) to (Search) Decisional-GLWEG,α(S), respectively.

Lemma 5. (Adapted from [11, Lemma 2.13]) Let A be an algorithm for
Decisional-GLWEG,m,α(S) (resp. Search) with advantage at least ε > 0. Then
there exists an algorithm B for Decisional-GLWEG,m′,≤α(S) (resp. Search) using
oracle access to A and with advantage ≥ 1/3, where both m′ and its running time
are poly(m, 1/ε, log #G).

Proof. (Sketch, see Appendix B.3 of the full version [17] for a detailed proof).
Like in LWE, the basic idea is to add noises in small increments to the distribu-
tion obtained from the challenger, and feed it to the oracle solving the Decisional-
GLWEG,α(S) (resp. Search) and estimate the behavior of the oracle. ��

4 Structural Lattice Reduction

4.1 Overview

A basic result (following from structure theorems of finitely-generated modules
over principal ideal domains) states that for any full-rank sublattice L of a
full-rank lattice L̄ ⊆ R

n, there is a basis B̄ = (b̄1, . . . , b̄n) of L̄ and integers
q1 ≥ q2 ≥ · · · ≥ qn ≥ 1 s.t. B = (q1b̄1, . . . , qnb̄n) is a basis of L. The qi’s can be
made unique by selecting powers of prime numbers, or by requiring each qi+1 to
divide qi, in which case q1, . . . , qn are the elementary divisors of the pair (L̄, L).

In this section, we introduce a lattice reduction converse, which we call struc-
tural lattice reduction. Lattice reduction asks to find a short basis of a given full-
rank lattice L ⊆ Z

n. In structural lattice reduction, one is further given a finite
abelian group G of rank ≤ n, and wants to find a short basis of some overlattice
L̄ of L such that L̄/L � G effectively. More precisely, given a basis B of a full-
rank lattice L ⊆ Z

n, a suitable bound σ > 0 and integers q1 ≥ · · · ≥ qk defining
G = Zq1 × · · · × Zqk

, one asks to compute a basis B̄ of an overlattice L̄ ⊇ L such
that ‖B̄∗‖ ≤ σ and B = (q1b̄1, . . . , qkb̄k, b̄k+1, . . . , b̄n) is a basis of L. Interest-
ingly, we do not require the input basis B to have integer or rational coefficients,
as long as its Gram-Schmidt coefficients are known with enough precision. Indeed,

Structural Lattice Reduction 537

our structural reduction algorithm can simply focus on finding the rational trans-
formation matrix between B̄ and B.

Previous worst-case to average-case reductions implicitly used the group
G = Z

n
q , thus L̄ = L/q. Here, finding a basis B̄ of L̄ with small ‖B̄∗‖ is the

same as finding a basis B = qB̄ of L with small ‖B∗‖, which is just lattice reduc-
tion. However, we obtain new problems and applications by considering different
choices of G. In the trivial case G = Z

n
q , B̄ = q−1B implies that ‖B̄∗‖ = ‖B∗‖/q

where the factor q is exactly #G1/n: this suggests that in general, we might hope
to reduce ‖B̄∗‖ by a factor close to #G1/n, compared to ‖B∗‖.

Another trivial case of structural lattice reduction is G = Zq1×· · ·×Zqn
where

the qi’s are distinct positive integers of similar bit-length. If B = (b1, . . . ,bn)
is a basis of L ⊆ Z

n, then B̄ = (q−1
1 b1, . . . , q

−1
n bn) generates an overlattice L̄

such that B̄∗ = (q−1
1 b∗

1, . . . , q
−1
n b∗

n), and therefore ‖B̄∗‖ ≤ ‖B∗‖/minn
i=1 qi. The

factor minn
i=1 qi is close to #G1/n if the qi’s have similar bit-length. But if the

qi’s are unbalanced, such as when minn
i=1 qi = 1, then the bound is much weaker.

In particular, the case G = Zp for some large prime p looks challenging, as the
trivial choice B̄ = (p−1b1,b2, . . . ,bn) looks useless: L̄/L � G but ‖B̄∗‖ is likely
to be essentially as big as ‖B∗‖, because for a typical reduced basis, the first
‖b∗

i ‖’s have the same size.

4.2 Co-cyclic Lattice Reduction

As a warm-up, we solve structural lattice reduction when the target group G is
cyclic of order q, which we call co-cyclic lattice reduction. Let B̄ be a solution
of structural reduction on (L(B), G, σ): C = (qb̄1, b̄2, . . . , b̄n) is a basis of L s.t.
‖c1‖ ≤ qσ and ‖c∗

i ‖ ≤ σ for all i ≥ 2.

Algorithm 1. Unbalanced Reduction
Input: an n × m basis B of an integer lattice L ⊆ Z

m and a target length σ ∈ Q
+. More generally, B can

be any n-dimensional projected block B = B′
[i,i+n−1] of some basis B′ of L ⊆ Z

m.
Output: an n×n unimodular matrix U such that C = UB satisfies ‖c∗

i ‖ ≤ σ for i ≥ 2 and ‖c1‖ ≤ nσδσ(B).
1: C ← B, U ← In and compute the Gram-Schmidt matrices μ and C∗

2: If ‖c∗
i ‖ ≤ σ for all i, return U

3: for i = k − 1 downto 1 where k is the largest index such that ‖c∗
k‖ > σ do

4: if ‖c∗
i ‖ ≤ σ then

5: α ← 	−μi+1,i

6: else

7: α ←
⌈
−μi+1,i +

‖c∗
i+1‖

‖c∗
i ‖
√

(‖c∗
i ‖ /σ)2 − 1

⌉

8: end if
9: (ci, ci+1) ← (ci+1 + α · ci, ci), (ui,ui+1) ← (ui+1 + α · ui, ui) and update the GS matrices μ and

C∗.
10: end for
11: return U

To find such a basis B̄, we first show how to transform B to ensure ‖b∗
i ‖ ≤ σ

for all i ≥ 2, using a poly-time algorithm which we call unbalanced reduction
(see Algorithm 1). This algorithm can be explained as follows: in dimension two,

538 N. Gama et al.

it is easy to make b∗
2 arbitrarily short by lengthening b1 (adding a suitable

multiple of b2), since ‖b1‖ × ‖b∗
2‖ = vol(L) is invariant. Unbalanced reduction

works by iterating this process on two-dimensional projected lattices, similarly
to the classical size-reduction process. However, one would like to make sure that
the resulting first basis vector c1 does not become too large, as follows:

Theorem 2 (Unbalanced Reduction). Given an n-dim projected block B =
B′

[i,i+n−1] of a lattice L ⊆ Z
m and a target σ ∈ Q

+, Algorithm6 outputs in
polynomial time an n × n unimodular matrix U such that C = UB satisfies
‖c1‖ ≤ nσδσ(B) and ‖c∗

i ‖ ≤ σ for i ≥ 2, and:

δν(B) ≤ δν(C) ≤ ‖c1‖
σδσ (B)

× δν (B) for all ν ≤ σ (1)

where δσ(B) =
def

n
∏

j=1

max
(

1,
∥

∥b∗
j

∥

∥ /σ
)

. (2)

We call δσ(B) the cubicity-defect of B relatively to σ: it basically measures
by which amount the hypercube of side σ should be scaled up to cover the paral-
lelepiped spanned by b∗

1, . . . ,b
∗
n. The proofs of Theorem 2 and Algorithm 1 can

be found in Appendix C.2 of the full version of the paper [17]. Theorem 2 shows
that Algorithm 1 solves co-cyclic lattice reduction for q ≥ nδσ(B). However, this
may not be suitable for our applications, since this lower bound depends on B
and might be unbounded. To address this issue, we now show that LLL can
bound δσ(B) depending only on n for appropriate σ:

Theorem 3 (LLL’s Cubicity-Defect). Let L be a full-rank lattice in R
n and

σ ≥ ((1 + ε
LLL

)
√

4/3)r · bl(L) for some r ≥ 0. If B is an LLL-reduced basis of L

with factor ε
LLL

, then δσ(B) ≤ ((1 + ε
LLL

)
√

4/3)
(n−2r)2

8 +
(n−2r)

4 .

By combining Theorems 2 and 3, we obtain:

Theorem 4 (Co-cyclic Reduction). Given an n × m basis of a lattice L ⊆
Z

m, ε > 0 and a rational σ ≥ ((1 + ε
LLL

)
√

4/3)r · bl(L) for some r ≥ 0, and an

integer q ≥ n((1 + ε
LLL

)
√

4/3)
(n−2r)2

8 +
(n−2r)

4 , Algorithm2 computes a basis B̄ of
an overlattice L̄ ⊇ L in time polynomial in the basis size, σ and 1/ε, such that
∥

∥B̄∗∥
∥ ≤ σ and (qb̄1, b̄2, . . . , b̄n) is a basis of L. In particular, L̄/L � Zq.

For instance, Theorem 4 with r = n implies that given a lattice L and any cyclic
group G of sufficiently large order 2Ω(n2), one can efficiently obtain a basis B̄ of
some overlattice L̄ of L such that L̄/L � G and ‖B̄∗‖ ≤ bl(L): by comparison,
an LLL-reduced basis only approximates bl(L) to some exponential factor.

4.3 Arbitrary Groups

Using unbalanced reduction, we prove that for an arbitrary sufficiently large
finite abelian group G of rank ≤ n, given any basis B of the lattice L ⊆ Z

n,

Structural Lattice Reduction 539

Algorithm 2. Co-cyclic Reduction
Input: a basis of a full-rank integer lattice L ⊆ Z

n, a factor ε > 0, and a rational σ ≥ ((1+εLLL)
√

4/3)r ·bl(L)

for some r ≥ 0, and an integer q ≥ n((1 + εLLL)
√

4/3)
(n−2r)2

8 +
(n−2r)

4

Output: a basis B̄ of an overlattice L̄ such that ‖B̄∗‖ ≤ σ and L̄/L � Zq.
1: Apply Alg. 6 on an LLL-reduced basis with factor εLLL output by the LLL algorithm.
2: return B̄ = (c1

q
, c2, . . . , cn) where C is the basis of L returned by Alg. 6.

one can compute a basis B̄ of some overlattice L̄ of L s.t. L̄/L � G effectively and
‖B̄∗‖ is essentially lower than ‖B∗‖/#G1/n. In particular, bl(L̄) is essentially
#G1/n smaller than bl(L). Although this is slightly weaker than the result we
obtained (in the previous subsection) for cyclic groups G, it is sufficient for our
worst-case to average-case reductions.

Algorithm 3. Structural Lattice Reduction
Input: σ, an n×m basis B of an integer lattice L, and (q1, . . . , qk) s.t. G =

∏k
i=1 Zqi satisfies the conditions

of Th. 5
Output: an n × m basis B̄ of an overlattice L̄ of L such that ‖B̄∗‖ ≤ σ and L̄/L � G.
1: C ← B
2: for i = 1 to k do
3: if

∥
∥C∗

[i,n]

∥
∥ ≤ σ return B̄ = (c1

q1
, . . . , ck

qk
, ck+1, . . . , cn)

4: Compute the smallest � ≥ σ such that � · δ�(C[i,n]) = qiσ/(n − i + 1).
5: V ← UnbalancedReduction(C[i,n], σ) using Alg. 6.
6: Apply V on (ci, . . . , cn)
7: end for
8: return B̄ = (c1

q1
, . . . , ck

qk
, ck+1, . . . , cn)

Theorem 5 (Structural Lattice Reduction). Given an n × m basis B of a
lattice L ⊆ Z

n, and k ≤ n integers q1 ≥ · · · ≥ qk defining the group G =
∏k

i=1 Zqi

s.t. nk(‖B∗‖ /σ)n ≤ #G or:
#G ≥ n!

(n−k)!δσ(B) and for all i ≤ k, ‖B∗‖ /σ ≤ qi/(n + 1 − i)
Algorithm3 outputs in polynomial time in n,m, ‖B‖ , log(qi), a basis B̄ of an

overlattice L̄ ⊇ L such that
∥

∥B̄∗∥
∥ ≤ σ and (q1b̄1, . . . , qnb̄n) is a basis of L where

qi = 1 for i > k. In particular, L̄/L � G.

For instance, the condition nk(‖B∗‖ /σ)n ≤ #G in Theorem 5 means that σ
(and therefore ‖B̄∗‖) can be chosen as low as nk/n‖B∗‖/(#G)1/n. The proof
of Theorem 5 can be found in Appendix C.3 of the full version [17]. Intuitively,
Algorithm 3 simply applies unbalanced reduction iteratively, cycle by cycle of G.

4.4 Application

Structural reduction finds a short overlattice basis, which can be used to sample
short (overlattice) vectors, and provides effective isomorphisms:

540 N. Gama et al.

Proposition 2. Let L and L̄ be two full-rank lattices such that L̄ ⊇ L and
L̄/L � G where G is an explicit finite abelian group. Given bases B and B̄ of
resp. L and L̄, one can compute in polynomial time a surjective morphism ϕ from
L̄ to G s.t. ker ϕ = L (i.e. L̄/L

ϕ� G), and a “dual” morphism ϕ× : L× → Ĝ s.t.

[ϕ×(u)](ϕ(v)) = 〈u,v〉 mod 1 for all u ∈ L× and all v ∈ L̄ (3)

Furthermore, preimages of ϕ× can be computed in polynomial time.

5 Hardness of Group-SIS

Our result requires that the finite abelian group G is explicit (see Sect. 2).

5.1 Overview

The main idea behind the SIS reduction can be traced back to Mordell’s arrith-
metical proof [29] of Minkowski’s theorem. To prove the existence of short vectors
in a full-rank lattice L ⊆ R

n, Mordell implicitly presented an algorithm to find
short vectors from (exponentially many) long vectors, as follows. Let q ≥ 1 be
an integer and w1, . . . ,wm ∈ L be distinct of norm ≤ R where m > qn: for large
R, m can be as large as the volume of the R-radius ball divided by the volume
of L. Let vi = q−1wi ∈ q−1L. Since m > qn = [(q−1L) : L], there are i �= j such
that vi ≡ vj mod L, i.e. vi − vj = q−1(wi − wj) ∈ L whose (nonzero) norm is
≤ 2R/q, which is short for appropriate choices of q and R.

This algorithm is not efficient since m is exponential in q, but it can be made
polynomial by reducing m to poly(n), using a SIS(m,n, q) oracle. Indeed, let L
be a full-rank integer lattice in Z

n. The lattice L̄ = q−1L is an overgroup of L
such that L̄/L � Z

n
q = G explicitly: there is an efficiently computable surjective

morphism ϕ : L̄ → G s.t. L = ker ϕ, e.g. for any basis (b̄1, . . . , b̄n) of L̄, let
ϕ(

∑n
i=1 xib̄i) = (x1 mod q, . . . , xn mod q) ∈ G.

Furthermore, if B̄ is short enough compared to the minima of L, it is possible
to sample short vectors v1, . . . ,vm ∈ L̄ with Gaussian distribution of parameter
as small as ηε(L). Fourier analysis guarantees that for such Gaussian distribu-
tions, each projection gi = ϕ(vi) is uniformly distributed over G. This allows us
to call an SIS oracle on (g1, . . . , gm), which outputs a short x ∈ Z

m such that
∑m

i=1 xigi = 0, i.e.
∑m

i=1 xiϕ(vi) = 0 which implies that v =
∑m

i=1 xivi ∈ L.
This v is provably non-zero with overwhelming probability, and is short because
the vi’s and x are, which concludes the reduction from worst-case SIVP to SIS.

With this formalization, we can replace the SIS oracle by a GSIS oracle if
we are able to sample short vectors v1, . . . ,vm ∈ L̄ with Gaussian distribution,
where L̄/L � G. And this is exactly what structural lattice reduction ensures.
Previous SIS reductions used special choices of L̄ and sampled differently short
vectors in the overlattice: see Appendix H. of the full version [17] for a compar-
ision with previous works.

Structural Lattice Reduction 541

5.2 Reducing Worst-Case ApproxSIVP to GSIS

Our main result formalizes the previous sketch and states that for appropriate
choices of (G,m, β), if one can solve GSIS(G,m, β) on average, then one can
approximate SIVP in the worst case, i.e. one can efficiently find short vectors in
every n-dimensional lattice:

Algorithm 4. Reducing ApproxSIVP to GSIS
Input: a basis B of a full-rank integer lattice L ∈ Z

n, a parameter σ ≥ √
2 bl(L), a negl. ε > 0, an explicit

finite abelian group G satisfying the condition of Th. 6, and an oracle O solving GSIS(G, m, β) with
probability ≥ 1/ poly(n).

Output: A set S of n linearly independent vectors of L of norm ≤ σηε(Z
n)
√

n/2πβ.
1: S ← ∅.
2: Call structural reduction (Alg. 3) on (B, G, σ) to get B̄ s.t. ‖B̄∗‖ ≤ σ and ϕ : L̄ → G (Prop. 2) where

L̄ = L(B̄).
3: repeat
4: Sample v1, · · · ,vm ∈ L̄ with distribution DL̄,σηε(Zn),0 using B̄.
5: gi = ϕ(vi) for 1 ≤ i ≤ m, forming a sequence g = (g1, . . . , gm) ∈ Gm.
6: Call the GSIS-oracle O on g, which returns x = (x1, . . . , xm) ∈ Z

m s.t.
∑m

i=1 xigi = 0.
7: v ←∑m

i=1 xivi ∈ L
8: if ‖v‖ ≤ σηε(Z

n)
√

nπβ and v /∈ span(S) then S ← S ∪ {v}
9: until dim(S) = n

10: Return S

Theorem 6. Let n ∈ N and ε = negl(n). Given as input a basis B of a full-
rank integer lattice L ⊆ Z

n and σ ≥ √
2 bl(L), and an explicit finite abelian group

G of rank k ≤ n such that #G ≥ nk(‖B∗‖ /σ)n, Algorithm4 outputs (in ran-
dom poly-time) n linearly independent vectors of L with norm ≤ σηε(Zn)

√
nπβ,

using polynomially many calls to an oracle solving GSIS(G,m, β) with prob.
≥ 1/poly(n).

In particular, letting σ = ‖B‖∗

2ηε(Zn)
√

n/πβ
gives an incremental version of the

reduction, where the output basis is twice as short as the input. This generalizes
[28,Theorem 5.9] and [20,Theorem 9.2]with aGSIS oracle instead of SIS. Iterating
Theorem 6 until σ =

√
2 bl(L) connects GSIS to worst-case ApproxSIVP.

Corollary 1. Let n ∈ N and ε = negl(n). Let (Gn)n∈N be a sequence of explicit
finite abelian groups of rank kn s.t. #Gn ≤ (βn/

√
mn)mn for mn ∈ N. If #Gn ≥

nkn

(

ηε(Zn)
√

2n/πβn

)max(n,kn)

, then using polynomially many calls to an oracle
solving GSIS(Gn,mn, βn) with prob. ≥ 1/poly(n), one can solve worst-case n-
dimensional ApproxSIVP

ηε(Zn)
√

n/πβn
in (randomized) poly-time.

Consider the set of all full-rank integer lattices ⊆ Z
m of volume ≥ ωn =

nm
(

ηε(Zn)
√

2n/πβn

)m

. This set can be partitioned as ∪GLG,m where G runs
over all finite abelian groups of order ≥ ωn and rank ≤ m. Each such G satisfies
the conditions of Corollary 1, and therefore GSIS over G is as hard as worst-case
lattice problems: for any partition cell LG,m, finding short vectors in a random
lattice from this cell is as hard as finding short vectors in any n-dim lattice.

542 N. Gama et al.

6 Hardness of Decisional-Group-LWE

We transfer the following Decisional-LWE hardness results to Decisional-GLWE:

Theorem 7 [34,37]. Let n ∈ N, qn ≥ 1 be a sequence of integers, and αn ∈ (0, 1)
be a real sequence s.t. αnqn ≥ 2

√
n. There exists a quantum reduction from worst-

case n-dimensional GapSVPÕ(n/αn) to Decisional-GLWEZn
qn

,αn
. If qn ≥ 2n/2 is

smooth then there is a classical reduction between them.

Theorem 8 [11]. Let n ∈ N and qn ≥ 1 be a sequence of integers, and let
αn ∈ (0, 1) be a real sequence such that αn ≥ 2n1/4/2

√
n/2. There exists a classi-

cal reduction from worst-case
√

n-dimensional GapSVPÕ(
√

n/αn) to Decisional-
GLWEZn

qn
,βn

, where β2
n = 10nα2

n + n
q2

n
· ω(log n)

To do so, we reduce Decisional-LWE to Decisional-GLWE using a technique
we call group switching. This technique transforms GLWE samples over a group
G to another group G′, generalizing the modulus-dimension switching technique
in [11], which is the special case G = Z

n
q and G′ = Z

n′
q′ . We believe that the group

switching technique proposed below is useful to better understand the core idea
of the modulus-dimension switching technique.

Before presenting group switching, we note that the modulus-dimension
switching technique from [11] implicitly uses a special case of structural lat-
tice reduction. More precisely, Brakerski et al. [11] defined a special lattice Λ
(see Theorem 3.1 of [11]) to transform LWE samples over G = Z

n
q to LWE sam-

ples over G′ = Z
n′
q′ , but the meaning of Λ may look a bit mysterious. The lattice

Λ is defined as Λ = 1
q′ Z

n′ · H + Z
n where H is some n′ × n integer matrix: this

matrix is actually denoted by G in [11], but this would collide with our notation
G for finite abelian groups. And [11] provided a good basis of Λ in special cases.
We note that the exact definition of Λ is not important: the quotient Λ/Zn turns
out to be isomorphic to the group G′ = Z

n′
q′ , as shown by the transformation

mapping 1
q′ x · H + y ∈ Λ to x mod q′ ∈ G′. Thus, finding a good basis of Λ

is actually a special case of structural lattice reduction for the lattice Z
n and

the group G′. Therefore, it is natural to use structural lattice reduction directly
(instead of an ad-hoc process) to obtain a more general statement than the
modulus-dimension switching technique of [11].

Since we have two groups G and G′ and two overlattices L̄ and L̄′ of Zn, we
have two morphisms ϕ : L̄ → G and ϕ′ : L̄′ → G′ with ker(ϕ) = ker(ϕ′) = Z

n.
Both morphisms are associated to their dual morphism as in Proposition 2, i.e.
ϕ× : Zn → Ĝ and ϕ′× : Zn → Ĝ′, satisfying [ϕ′×(u)](ϕ′(v)) = 〈u,v〉 mod 1 for
all u ∈ Z

n and all v ∈ L̄′ (resp. without primes).
We say that a distribution S over Z

n is K-bounded if Prs←S [‖s‖ > K] ≤
negl(n). By extension, given a (public) morphism f : Zn → Ĝ, we say that a
distribution S over Ĝ is K-bounded (for f) if it is the image of a K-bounded
distribution2 by f . In the following, we choose ϕ× = f and ϕ its dual morphism
2 Ideally, f should be collision resistant among samples from S. In the classical LWE

(G = Z
n
q), f maps s ∈ Z

n to the secret character ŝ : y → 1/q〈s,y〉 mod 1 in Ĝ.

Structural Lattice Reduction 543

accordingly. Thus, any secret ŝ ← S has with overwhelming probability a preim-
age s ∈ Z

n of norm ≤ K. Note that the small s ∈ Z
n may be hard to compute

from ŝ, however what matters is its existence. During group switching, the new
secret in Ĝ′ will be ϕ′×(s), and the new K-bounded distribution S ′ = ϕ′×(S).

Lemma 6 (Group Switching). Let G and G′ be two finite abelian groups
of rank ≤ n s.t. G is fully-explicit and G′ is explicit. Let L̄ be an overlattice
of Z

n such that L̄/Zn � G. Let B̄′ be a basis of an overlattice L̄′ of Z
n such

that L̄′/Zn � G′. Let ϕ,ϕ′ and ϕ′× be defined as in Proposition 2. Let r ≥
max

(√
2ηε(L̄), ‖B̄′∗‖ · ηε(Zn)

)

, where ε is some negligible function. Then, there
is an efficient randomized algorithm which, given as input a sample from G×T,
outputs a sample from G′ × T, with the following properties:

– If the input sample has uniform distribution in G ×T, then the output sample
has uniform distribution in G′ × T (except with negligible distance).

– If the input is distributed according to AG,α(ŝ) for some ŝ = ϕ×(s) s.t. s ∈ Z
n

and ‖s‖ ≤ K, then the output distribution is statistically close to AG′,β(ŝ′),
where ŝ′ = ϕ′×(s) ∈ Ĝ′ and β2 = α2 + r2(‖s‖2 + K2) ≤ α2 + 2(rK)2.

By combining Group Switching (Lemma6) with structural reduction
(Theorem 5), one derives a reduction between Decisional-GLWE of two groups
G and G′:

Corollary 2 (GLWE to GLWE). Let n ∈ N and 0 < σn < 1 be a real
sequence. Let (Gn)n∈N and (G′

n)n∈N be two sequences of finite abelian groups with
respective rank kn ≤ n and k′

n ≤ n s.t. #Gn ≥ nkn(
√

2/σn)n (or if Gn = Z
n
qn

where qn ≥ √
2/σn) and #G′

n ≥ nk′
n(1/σn)n. Assume that Gn is fully-explicit

and G′
n is explicit. Let S be an arbitrary Kn-bounded distribution over Z

n and
S = ϕ×(S) its image by some morphism ϕ× : Z

n → Ĝn, αn, βn > 0 be two
real sequences and ε = negl(n) satisfying β2

n ≥ α2
n + 2(σnKn · ηε(Zn))2. Then

there is an efficient reduction from Decisional-GLWEGn,≤αn
(S) to Decisional-

GLWEG′
n,≤βn

(S ′), where S ′ = ϕ′×(S) for some morphism ϕ′× : Zn → Ĝ′
n

Proof. Given the canonical basis of Z
n and Gn, structural reduction finds an

overlattice L̄ together with a basis C̄ s.t.
∥

∥C̄∗∥
∥ ≤ σn/

√
2. Therefore

√
2ηε(L̄) ≤

σnηε(Zn). And structural reduction on G′
n and σn gives a short basis B̄′ of length

≤ σn and defines L̄′. The rest follows immediately from Lemma 6. ��
Using the normal form [3] of LWE, namely, if S is the image of the αnqn

√
n-

bounded distribution DZn,αnqn
, through the canonical embedding which maps

s ∈ Z
n to the character ŝ = y → 1/qn〈s,y〉 mod 1, we obtain the quan-

tum/classical hardness of Decisional-GLWE problem for any sufficiently large
finite abelian group, together with Theorems 7 and 8:

Corollary 3 (Quantum Hardness of GLWE). Let n ∈ N and qn ≥ 1 be a
sequence of integers and (G′

n)n∈N be a sequence of any finite abelian explicit groups
such that #G′

n ≥ nkn(qn/
√

2)n where kn = rank (G′
n) ≤ n. Let αn, βn ∈ (0, 1)

be two real sequences such that αnqn ≥ 2
√

n and βn = αn
√

n · ω(
√

log n).

544 N. Gama et al.

Then there exists a quantum reduction from worst-case n-dimensional
GapSVPÕ(n/αn) to Decisional-GLWEG′

n,βn
.

The lower bound on #G′
n is better than the lower bound on #Gn in Corollary 1

and for solving Approx-SIVP using a Search-GLWE oracle (see Appendix E.2 of
the full version [17]), because group switching relies on structural reduction over
Z

n rather than an arbitrary lattice: the canonical basis of Z
n is orthonormal,

which simplifies the bound of Sect. 4.

Corollary 4 (Classical Hardness of GLWE). Let n ∈ N and qn ≥ 1
be a sequence of integers and (G′

n)n∈N be a sequence of any finite abelian
explicit groups such that #G′

n ≥ nkn(qn/
√

2)n where kn = rank (G′
n) ≤ n.

Let αn, βn ∈ (0, 1) be two real sequences such that αn ≥ 2n1/4/2
√

n/2 and
β2

n = n2α2
n · ω(log n) + n2

q2
n

· ω(log2 n). There exists a classical reduction from
worst-case

√
n-dimensional GapSVPÕ(

√
n/αn) to Decisional-GLWEG′

n,βn
.

7 Abstracting Lattice Cryptography: Fully-Homomorphic
Encryption from GLWE

We showed that GSIS/GLWE are hard under the same worst-case assumptions
as SIS/LWE. This suggests to abstract lattice schemes based on SIS/LWE using
an arbitrary finite abelian group G, and check that the security proof carries
through. This may lead to a better understanding of the scheme and a clearer
presentation: lattice schemes are typically described using matrices and vectors,
which our abstraction avoids.

We illustrate this approach with fully-homomorphic encryption. First, we
introduce a GLWE-based El Gamal-like encryption scheme, which generalizes
Regev’s LWE-based encryption [37] and its dual version [20]. Next, we extend
this GLWE generalization of Regev’s encryption into a somewhat-homomorphic
encryption, by carefully abstracting the Alperin-Sheriff-Peikert variant [2] of the
Gentry-Sahai-Waters homomorphic scheme [21]. In particular, we show how to
evaluate any boolean function with a noise overhead proportional to the square
root of its number of variables, how to recognize any regular language with a noise
overhead proportional to the length of the tested word, and how to bootstrap
the whole system with only a linear noise overhead instead of quadratic in [2].

7.1 A GLWE Variant of El Gamal Encryption

El Gamal encryption combines the one-time pad with Diffie-Hellman. By anal-
ogy, we first present a GLWE variant of DH. We consider a (sufficiently large)
finite abelian group G and g = (g1, ..., gm) ∈ Gm chosen uniformly at random.
This defines two one-way functions:

Structural Lattice Reduction 545

– Let fg : Zm → G be the morphism defined by fg(x) =
∑m

i=1 xi.gi, where xi.gi

is defined by the Z-module structure of G. For suitable input distributions
D, such as the uniform distribution over {0, 1}m or some well-chosen discrete
Gaussian distribution, the distribution of fg(x) becomes statistically close to
uniform (e.g. see the left-over-hash lemma), and fg becomes one-way under
GSIS.

– Let f×
g : Ĝ × T

m → T
m defined by f×

g (ŝ, e) = (ŝ(g1) + e1, . . . , ŝ(gm) + em):
if ŝ ∈R Ĝ and e is sampled from a suitable distribution such as Dm

α , then
inverting f×

g (ŝ, e) is search-GLWE, and distinguishing f×
g (ŝ, e) from random

is decisional-GLWE.

Consider the bilinear map θ : Ĝ × Z
m → T defined by θ(ŝ,x) = ŝ(fg(x)). Then

θ(ŝ,x) can be efficiently computed from (ŝ,x). But it can be computed knowing
only (ŝ, fg(x)), or approximately knowing only (f×

g (ŝ, e),x) by
∑m

i=1 cixi (where
c = f×

g (ŝ, e)), provided that e and x are sampled from suitable distributions.
This motivates a GLWE noisy key exchange where Alice and Bob compute their
own approximation of θ(ŝ,x): Alice picks x ∈ Z

m from some suitable distribution
D, and discloses y = fg(x); Bob picks ŝ ∈R Ĝ and e from the distribution
Dm

α , and discloses c = f×
g (ŝ, e). Alice computes her key as

∑m
i=1 cixi, and Bob

computes his key as ŝ(y)+ e where e is sampled from Dα. Both keys are close to
θ(ŝ,x). But, as opposed to Diffie-Hellman, Alice and Bob do not have symmetric
roles, which leads to two El Gamal cryptosystems by swapping Alice and Bob
roles: this is why Regev encryption has a so-called dual variant [20]. We now give
a detailed description of the main cryptosystem, which generalizes Regev’s [37],
and which we use in our fully-homomorphic encryption.

Define the group H = G × Tk where k ∈ N
+ and Tk = 1

2k Z/Z ⊆ T is a
discretized torus.

GLWE.Gen(1n): Takes as input a security parameter n, it chooses a Gaussian
parameter 0 < α < 1, a (sufficiently large) finite abelian group G and m ∈ N.
Choose g = (g1, ..., gm) ∈R Gm, ŝ ∈R Ĝ and m Gaussian samples e1, ..., em ←
Dα. Set the public key pk = (g,y) ∈ Gm × T

m
k , where yi = ŝ(gi) + ei ∈ T,

and the secret key sk = ŝ, i.e. y = f×
g (ŝ, e).

GLWE.Enc(pk, μ): Takes as input the public key pk = (g,y) ∈ Gm × T
m
k and

a message μ ∈ {0, 1}. It selects x = (x1, ..., xm) ∈R {0, 1}m, and returns
(d, c) ∈ H, where d = fg(x) =

∑m
i=1 xigi ∈ G and c =

∑m
i=1 xiyi +μ/2 ∈ Tk.

Here,
∑m

i=1 xiyi is Alice’s key in the GLWE key exchange. Both d and c use
the Z-module structure of G and Tk.

GLWE.Dec(sk, (d, c)): Returns μ = �2 · (c− ŝ(d))� mod 2 where sk = ŝ and (d, c) ∈
H is the ciphertext.

One obtains a dual scheme by swapping the two one-way functions fg and f×
g .

Lemma 7 (Correctness). If 0 < α < 1/(4 ·√m ·ω(
√

log n)), the main GLWE
public-key encryption scheme decrypts correctly with probability 1 − negl(n).

546 N. Gama et al.

Proof. We have: c − ŝ(d) =
∑m

i=1 xi(ŝ(gi) + ei) + μ/2 − ŝ(
∑m

i=1 xigi) = μ/2 +
∑m

i=1 xiei. It is sufficient to show |∑m
i=1 xiei| < 1/4. Let w ≤ m be the Hamming

weight of x, we know that
∑m

i=1 xiei is distributed as D√
wα. Therefore, it implies

that |∑m
i=1 xiei| <

√
wα ·ω(

√
log n) with probability 1−exp(−π ·ω(log n)) = 1−

negl(n). We obtain that |∑m
i=1 xi.ei| <

√
wα · ω(

√
log n) ≤ 1/4 with probability

1 − negl(n), as desired. ��
Lemma 8 (Security). If m ≥ 2(log #G + k) + ω(log n) and the GLWEG,m,α

assumption holds, then the main GLWE public-key encryption scheme is IND-
CPA secure.

Proof. g ∈ Gm is uniformly distributed. By the GLWEG,m,α assumption, y ∈
T

m
k is computationally indistinguishable from uniform, hence (g,y) too. Since

m ≥ 2 · log #H + ω(log n) and x ∈R {0, 1}m, the left-over-hash lemma ensures
that

∑m
i=1 xi(gi, yi) is computationally indistinguishable from uniform over H,

and hence (d, c) too. This proves IND-CPA security. ��

7.2 A GLWE Variant of GSW Homomorphic Encryption

We now show how to generalize the AP variant [2] of GSW [21] Homomor-
phic encryption. Let GLWE(G,α) be a black-box instance of GLWE El Gamal
encryption over the GLWE group G. All noises are discretized in the torus
Tk = 1

2k Z/Z ⊆ T where 2kα ≈ ηε(Z). The group H = G × Tk is of special
interest.

First, recall that El Gamal encryption is homomorphic with respect to the
group operation. Because GLWE(G,α) is a noisy variant of El Gamal encryption,
it is also homomorphic for a bounded number of XOR. More precisely, any
GLWE ciphertext of a message μ ∈ {0, 1} can be written as c1 +μh1 ∈ H, where
c1 =

∑m
i=1 xi(gi, yi) ∈ H is a random ciphertext of 0, and h1 = (0, 1/2) ∈ H.

Here, we use the Z-module structure of H. The GLWE secret key ŝ induces a
homomorphism Phase : H → T defined as Phase((a, b)) = b− ŝ(a). By definition
of GLWE, we have Phase((gi, yi)) ≈ 0 for all 1 ≤ i ≤ m, but Phase(h1) =
1/2. It follows that the phase of a GLWE ciphertext of a message μ is ≈ μ/2,
which explains the GLWE decryption procedure: a ciphertext of 0 is close to
the kernel of the phase, while a ciphertext of 1 is far away. Because Phase is
a homomorphism and h1 has order 2 in H, if n messages μ1, . . . , μn ∈ {0, 1}
are GLWE-encrypted, then the sum of these n ciphertexts will de decrypted as
μ1 ⊕ · · · ⊕ μn, provided that n is not too large.

To achieve more homomorphic operations, one exploits a special property of
lattice problems which is not shared by discrete logarithm problems: with special
choices of generators, the SIS one-way function can be inverted. To do so, one first
extends h1 into a generating set of the Z-module H: let h2, . . . , h� ∈ H be such
that h = (h1, . . . , h�) is a generating set of H. Recall that the GSIS function
fg from Sect. 7.1 can be defined over any group: here, we use H, so fh(x) =
∑�

i=1 xihi ∈ H for (x1, . . . , x�) ∈ Z
�. Since h generates H, fh is surjective, and

thus, admits a pseudo-inverse f−1
h from H to Z

�, such that fh(f−1
h (b)) = b for

Structural Lattice Reduction 547

any b ∈ H. We also define Fh : Z�×� → H� by Fh(X) = (fh(x1), ..., fh(x�)),
where xi is the i-th row of X. Accordingly, we define F−1

h : H� → Z
�×�.

Given a target in H, finding a short fh()-preimage corresponds to the GSIS
problem, which is in general hard, but it becomes easy for special choices of
h, like super-increasing knapsacks: following [26], we call gadget such a h. We
say that f−1

h () is β-bounded for h, if
∥

∥f−1
h (b)

∥

∥

∞ ≤ β ∈ R
+ for any b ∈ H.

For instance, if the group G is ZN where 2p < N < 2p+1, a suitable gad-
get is h = ((0, 1

2), (0, 1
4), . . . , (0, 1

2k), (1, 0), (2, 0), . . . , (2p, 0)), f−1
h () ∈ {0, 1}� can

be computed by binary decomposition and is 1-bounded for h. This construc-
tion can easily be generalized to any fully-explicit G, using component-wise
binary decomposition: if G = Z

n
q , this corresponds to the Flatten/BitDecomp

algorithms proposed in [2,21]. However, other algorithms are possible, such as
ternary decompositions with preimages in {0,±1}�.

Given the GLWE encryption scheme (GLWE.Gen, GLWE.Enc, GLWE.Dec)
described in Sect. 7.1 as a “black box”, we build homomorphic encryption using
a gadget h ∈ H� whose first element is (0, 1

2):

GSW.Gen(1n): Takes as input a security parameter n, it runs the key generation
algorithm (pk, sk) ← Gen(1n), where pk = (g,y) ∈ Gm×T

m
k and sk = ŝ ∈ Ĝ.

GSW.Enc(pk, μ): Takes as input the public key pk ∈ Gm × T
m
k and a message

μ ∈ {0, 1}, it first generates � ciphertexts c1 = GLWE.Enc(pk, 0), ..., c� =
GLWE.Enc(pk, 0) of zero, and returns c = (c1, ..., c�) + μ · h ∈ H�.
This is reminiscent of the GLWE scheme, where a GLWE-ciphertext of a
message μ is of the form c1+μh1 ∈ H where c1 is a random GLWE-ciphertext
of 0. Because the first entry of h is (0, 1

2), the first entry of c is a GLWE
encryption of μ.

GSW.Dec(sk, c): Returns GLWE.Dec(ŝ, c1) where sk = ŝ and c1 ∈ H is the first
entry of c.

The security of the scheme and the correctness of decryption follow from that
of the GLWE cryptosystem:

Lemma 9. Suppose (Gen, Enc, Dec) uses samples from GLWEG,m,α. If m ≥
2(log #G + k) + ω(log n) and 0 < α < 1/(4 · √

m · ω(
√

log n)),
(GSW.Gen, GSW.Enc, GSW.Dec) is IND-CPA secure under the GLWEG,m,α assump-
tion, and GSW.Dec decrypts correctly with probability 1 − negl(λ).

Proof. The proof of IND-CPA security is similar to Lemma 8. Since the first
entry of c is a ciphertext of μ under ŝ of the scheme (Gen, Enc, Dec), correctness
follows from Lemma 7. ��

We now describe our homomorphic operations on ciphertexts, namely how to
encode Not, And, and Mux gates. First, we note that the GSW-GLWE scheme
inherits the ⊕-homomorphic properties of the GLWE scheme. Any circuit can
be built using only Not and And elementary gates. We chose to add the Mux
ternary gate, which encodes the conditional operator Mux(a, b, c) = a?b:c, because
resulting circuits are smaller than NAND-only circuits, all binary gates can be
encoded by a single Mux (and a few Not), and it is trivial to batch-convert any
truth-table to its corresponding Mux-based binary decision diagram.

548 N. Gama et al.

Definition 2 (Homomorphic Operations). For all ciphertexts c1, c2, c3 ∈
H�, we define:

GSW.Not(c1) = h − c1, GSW.And(c1, c2) = Fc1

(

F−1
h (c2)

)

,

GSW.Mux(c1, c2, c3) = Fc1

(

F−1
h (c2)

)

+ Fh−c1

(

F−1
h (c3)

)

We express Xor(a, b) as Mux(a, Not(b), b). We naturally extend the Phase
homomorphism to H� as Phase : H� → T

� defined as Phase(z) = (b1 −
ŝ(a1), . . . , b� − ŝ(a�)) ∈ T

� where z = ((a1, b1), . . . , (a�, b�)) ∈ H�. Note that
a valid ciphertext of a bit μ is of the form c = z + μh where its homogeneous
part z has a small phase. This small Phase(z) = Phase(c − GSW.Dec(c).h) ∈ T

�

will be denoted by Noise(c).
By definition, the decryption function will successfully decrypt any ciphertext

c ∈ H� such that ‖Noise(c)‖∞ < 1
4 , where the max-norm in T

� is taken over all
coordinates centered in the interval (− 1

2 , 1
2]. This is of course the case of fresh

GSW.GLWE ciphertexts, whose Gaussian noise has small parameter α.
We now show that the GSW.Not, GSW.And and GSW.Mux gates amplify the noise

only by a small factor if f−1
h () is β-bounded.

Lemma 10 (Worst-Case Noise of Primitive Gates). Suppose f−1
h () is β-

bounded for some β ∈ R
+. Let c1, c2, c3 ∈ H� be three ciphertexts such that

c1 = z1 + μ1 ·h, c2 = z2 + μ2 ·h and c3 = z3 + μ3 ·h, where ‖Phase(z1)‖∞ ≤ B
and ‖Phase(z2)‖∞ , ‖Phase(z3)‖∞ < B′ for some B,B′ ∈ R

+. Then:

GSW.Not(c1) = z + NOT(μ1) · h with ‖Phase(z)‖∞ = B (4)
GSW.And(c1, c2) = z′ + (μ1 AND μ2) · h with ‖Phase(z′)‖∞ ≤ �βB + B′ (5)

GSW.Mux(c1, c2, c3) = z′′+(μ1?μ2:μ3) · h with ‖Phase(z′′)‖∞ ≤ 2�βB + B′ (6)

Proof. By definition of GSW, we have GSW.Not(c1) = −z1+NOT(μ1), so z = −z1,
which proves (4). Then,

GSW.And(c1, c2) = Fz1+μ1·h
(

F−1
h (c2)

)

= Fz1(F
−1
h (c2)) + μ1Fh(F−1

h (c2))

= Fz1(F
−1
h (c2)) + μ1 · c2 = Fz1(F

−1
h (c2)) + μ1z2

︸ ︷︷ ︸

z′

+ μ1μ2 · h

Letting z′ = Fz1(F
−1
h (c2))+μ1z2, we have Phase(z′) = Phase(z1) ·(F−1

h (c2))t +
μ1Phase(z2), and therefore ‖Phase(z′)‖∞ ≤ �

∥

∥F−1
h (c2)

∥

∥

∞ ‖Phase(z1)‖∞ +
‖Phase(z2)‖∞ ≤ �βB + B′, which proves (5). Finally, GSW.Mux(c1, c2, c3) is
expressed as GSW.And(c1, c2) plus GSW.And(GSW.Not(c1), c3). By expanding, the
expression takes the form z′′ +(μ2μ1+μ3(1−μ1)) ·h where z′′ = Fz1(F

−1
h (c2))+

Fz1(F
−1
h (c3)) + μ1z2 + (1 − μ1)z3. Thus, Phase(z′′) = Phase(z1) · (F−1

h (c2) +
F−1
h (c3)) + μ1Phase(z2) + (1 − μ1)Phase(z3). The norm of the first term is

bounded by 2�βB and among the last two terms, only one is non-zero, and
its norm is bounded by B′. Finally, the encoded message μ2μ1 + μ3(1 − μ1) is
precisely μ1?μ2:μ3. ��

Structural Lattice Reduction 549

As in [2, Lemma 3.5], we can ensure that the noise of all the entries of a
ciphertext have independent Gaussian or Sub-Gaussian distributions. Namely,
we say that f−1

h is β-subgaussian if for each y ∈ H, f−1
h (y) returns a short Sub-

Gaussian vector of parameter β ≥ ηε(Lh). The noise propagation analysis of
[2, Lemma 3.5] can be extended as follows:

Lemma 11 (All Noises are Sub-gaussian). Assume that f−1
h is β-

subgaussian for β ≥ ηε(Lh). In a circuit containing solely GSW.Not, GSW.And
and GSW.Mux gates, and whose inputs are either fresh GLWE ciphertexts or the
noiseless ciphertexts 0 and h, the output ciphertext of each individual gate has
the form z + μh where μ is the encoded bit and the �-coordinates of Phase(z)
are statistically indistinguishable from independent Gaussian samples of Tk. We
define the noise parameter σ(Phase(z)) as the maximum of these � Gaussian
parameters.

Thus, we may work directly with the square subgaussian parameter of the
noise, which follows pythagorean summation.

Lemma 12 (Average Noise of Primitive Gates). Assume that f−1
h () is√

β-subgaussian for some β > 0. Let c1 = z1 + μ1 · h, c2 = z2 + μ2 · h,
c3 = z3 + μ3 · h ∈ H� be three ciphertexts of a circuit satisfying the constraints
of Lemma 11, and whose Gaussian parameters satisfy σ(Phase(z1))2 ≤ B and
σ(Phase(z2))2, σ(Phase(z3))2 < B′ for some B,B′ ∈ R

+. Then:

GSW.Not(c1) = z + NOT(μ1) · h with σ(Phase(z))2 = B (7)

GSW.And(c1, c2) = z′ + (μ1 AND μ2) · h with σ(Phase(z′))2 ≤ �βB + B′ (8)

GSW.Mux(c1, c2, c3) = z′′ + (μ1?μ2:μ3) · h with σ(Phase(z′′))2 ≤ 2�βB + B′ (9)

Since (4), (5) and (6) define the same recurrence as (7), (8) and (9), we will
express the end of the paper only in terms of Lemma 10, but all the bounds we
obtain on the ‖Noise‖ also apply to the σ(Noise)2 under Lemma 12.

7.3 Homomorphically Evaluating Arbitrary Functions

The result of the following corollary was already obtained in [2]; it states that in
a long chain of And gates where one of the bits is a fresh GLWE-GSW ciphertext,
the noise increases in fact linearly instead of exponentially. Here, we invert the
operands of the And gates, so that the overall noise in the resulting ciphertext
is smaller if one associates long conjunctions on the right.

Corollary 5 (Noise of Conjunctions). Suppose f−1
h () is β-bounded for some

β ∈ R
+. Let c1, . . . , ck ∈ H� be k ciphertexts such that each ci = zi + μi · h

where ‖Phase(zi)‖∞ < B for some B ∈ R
+. Then:

GSW.And(c1, GSW.And(c2, . . . GSW.And(ck−1, ck))) = z + (μ1μ2 . . . μk) · h

where ‖Phase(z‖∞ ≤ k�βB.

550 N. Gama et al.

Proof. Apply (5) by induction on k. ��
Note that any boolean function with k inputs can always be put into dis-

junctive normal form, i.e. a disjoint union of conjunctive terms. One way to
homomorphically evaluate the result is to add the ciphertexts of all the terms,
which indeed preserves the {0, 1} message space. However, with this method, the
resulting noise will be proportional to the number of terms in the disjunctive
normal form, which may still be exponential in the number of inputs.

By using Mux-gates, we obtain the following corollary, which says that any
function can be homomorphically evaluated in a trivial way, where the noise
grows proportionally to only the square root of the number of inputs. We recall
that the truth table of a boolean function φ with k variables is a vector T
of length 2k such that each Tj = φ(e0, . . . , ek−1) where j =

∑

ei2k−1−i. The
full binary decision diagram (BDD) of φ is a circuit representing a binary
tree of Mux-gates, of depth k. The bottom level k consists in 2k leaves
Xk,j , each one is set to Tj . At each intermediate level i, we have 2i nodes
Xk,j = Mux(μi,Xi+1,2j+1,Xi+1,2j). By definition, the root X0,0 thus contains
φ(μ0, . . . , μk−1). See Fig. 1 for an example of truth table and its associated BDD
circuit.

Corollary 6 (Evaluating Arbitrary Functions). Assume that f−1
h () is β-

bounded for some β ∈ R
+. Let φ be any boolean function with k inputs, and let

c1, . . . , ck ∈ H� be k ciphertexts such that each ci = zi +μi ·h where σ(zi)2 < B
for some B ∈ R

+. Then, the Mux-based Binary Decision Diagram of φ computes
a ciphertext c = z + φ(μ1, . . . , μk).h where ‖z‖∞ ≤ 2k�βB.

Proof. To evaluate the full BDD of φ homomorphically, we just replace each leaf
Xk,j by noiseless ciphertexts Tj .h, each bit μi by their encryption ci, and each
Mux gate by GSW.Mux. Apply (6) by induction on the depth, then all nodes Xi,j

at depth i have a noise bounded by 2(k − i)βB. ��
In the previous corollary, the full BDD tree of the function φ contains a

number of nodes which is exponential in the number of inputs. If the output
noise is indeed really small, the time complexity to evaluate all the gates remains
large when the simulated function has many variables. For some useful functions,
like the bootstrapping function in the next section, many of the subtrees turn
out to be equal. By merging them, the complexity to evaluate the circuit can be
significantly reduced.

Corollary 7 (Faster Evaluation of Arbitrary Functions). Assume that
f−1
h () is β-bounded for some β ∈ R

+. Let φ be any boolean function with k inputs,
and let c1, . . . , ck ∈ H� be k ciphertexts such that each ci = zi + μi · h where
‖Phase(zi)‖∞ < B for some B ∈ R

+. We call N (φ) the number of disctinct
subtrees in the full Binary Decision Diagram of φ. Then we can compute a
ciphertext c = z + φ(μ1, . . . , μk).h where ‖Phase(z)‖∞ ≤ 2k�βB by evaluating
N (φ) homomorphic GSW.Mux-gates.

Structural Lattice Reduction 551

0

1

1

0

1

1

0

0

0

1
?

0

1
?

0

1
?

0

1
?

0

1
?

0

1
?

0

1
?

α

α

α

α

β

β

β

β

γ

δ

γ

δ

ε

ζ

η

0

1

?

?

?

?

?

α

β

γ

δ

ε

ζ

η

0

1

0

1

0

1

0

1

0

1

a0?a1?a2?

a0?a1?a2?

0

1

1

0

1

1

0

0

0

1

0

1

0

1

0

1

0

0

1

1

0

1

1

0

0

0

0

0

1

1

1

1

a0 a1 a2 φ

Truth table of φ Full BDD of φ (Corollary 7.7)

Reduced BDD of φ (Corollary 7.8)

Fig. 1. Homomorphic evaluation of an arbitrary boolean function

Proof. It suffices to evaluate the ciphertext value in the root of the N (φ) subtrees
by increasing depth. There are at most two different leaves, whose ciphertext val-
ues 0 and h are given. Whenever we need to evaluate a subtree of non zero depth
i, the left and right subtrees have by definition already been fully evaluated, since
their depth i − 1 is strictly smaller. The root of the current tree is the GSW.Mux
of ci and the two subtrees roots. The last ciphertext to be evaluated is the root
of the full tree, which contains the encrypted result. ��

In the above corollary, Nerode’s partitioning algorithm for reducing determin-
istic automata can efficiently list the N (φ) identical subtrees. Indeed, a binary
decision diagram is just the mirror graph of a deterministic accessible automata.
More generally, the GSW.Mux gate allows to homomorphically evaluate the tran-
sitions of a deterministic automata, which leads to the following lemma.

552 N. Gama et al.

Lemma 13 (Recognizing Arbitrary Rational Langages). Let L be an
arbitrary rational language of {0, 1}∗ and N (L̃) be the number of residuals of
the mirror language of L. Given k ciphertexts c1, . . . , ck of a message w =
w1, . . . , wk, one can compute a ciphertext c = z + L(w).h where L(w) = 1 iff
w ∈ L and ‖Phase(z)‖∞ ≤ 2kβB by evaluating kN (L̃) GSW.Mux-gates.

Proof. Let A = (Q, i, T0, T1, F) be a minimal deterministic automata of the
mirror language L̃ where Q is the set of states, i ∈ Q is the initial state, T0, T1

are the two transitions functions from Q to Q and F is the set of final states. Note
that #Q = N (L̃). We initialize #Q noiseless ciphertexts Xq,0 for q ∈ Q with
Xq,0 = h if q ∈ F and Xq,0 = 0 otherwise. Then for each letter we compute the
transition as follow: Xq,j = GSW.Mux(cj ,XT1(q),j−1,XT0(q),j−1). And we output
Xi,k. We write a ≡ b when two ciphertexts a and b ∈ H� encrypt the same
bit. Then we have Xi,k ≡ XTwk

(i),k−1 ≡ . . . ≡ XTw1 (Tw2 ...(Twk
(i))...),0, which

encrypts 1 iff Tw1(Tw2 . . . (Twk
(i)) . . .) ∈ F , i.e. iff wk . . . w1 is accepted by A iff

w1 . . . wk ∈ L. This proves correctness.
For the complexity, each Xq,j is computed with a single GSW.Mux gate and

the noise increases as in the previous corollary since the fresh-GSW.Mux depth of
the circuit is k. (see Fig. 2) ��

Many arithmetic functions, including addition, multiplication and compar-
ison correspond to polynomial-size deterministic automata, and in the next
section, we prove that a direct application of Corollary 7 suffices to bootstrap
the whole system, turning it into a fully homomorphic one.

7.4 Simple Bootstrapping Circuit with Polynomial Noise

Bootstrapping refers to Gentry’s homomorphic decryption, which allows to
turn suitable somewhat-homomorphic schemes into fully-homomorphic schemes.
Here, the decryption procedure is simply the GLWE decryption of the first entry.

The GLWE decryption of (d, c) ∈ G×T consists in computing c−ŝ(d) ∈ T and
deciding whether it is closer to 1

2 or 0. If the secret ŝ has n−1 bits (s1, . . . , sn−1),
this sum can be linearized as c−∑n−1

i=1 sidi where c, d1, . . . , dn−1 ∈ T are publicly
computable. Necessarily n is always ≤ �. Furthermore, if the noise of (d, c) is 1

8 -
bounded, these n values can be rounded to their nearest multiple of 1

4n without
affecting the result of the decryption. Thus, bootstrapping a ciphertext (d, c) ∈ H
is equivalent to homomorphically evaluate on (s1, . . . , sn−1), its bootstrapping
boolean function φ(x1, . . . , xn−1) which returns the most significant bit of c′ −
∑n−1

i=1 sid
′
i where c′ = �4n(c + 1

4)�, d′
i = �di� are known integers modulo 4n.

Lemma 14 (Simple Bootstrapping). Given a GSW ciphertext c = z + μh ∈
H�, s.t. ‖Phase(z)‖∞ < 1

8 , whose first entry is (d, c) ∈ H, its bootstrap-
ping function φ satisfies N (φ) ≤ 4n2. Therefore, if f−1

h is 1-bounded, given
the bootstrapping key (BKi)i∈[1,n−1] where BKi encrypts the i-th bit of ŝ with
‖Noise(BKi)‖∞ ≤ B, one can compute a ciphertext c′ = z′ + μh of the same
message where ‖Phase(z′)‖∞ < 2n�B by evaluating at most 4n2 GSW.Mux gates.

Structural Lattice Reduction 553

0

a b

01 1

dc

0

0
0

0
1

1 1

0,

1 0 1 0 1 0 1

1

? ? ? ?

0 1 0 1 0 1 0 1

? ? ? ?

0 1 0 1 0 1 0 1

? ? ? ?

0 1 0 1 0 1 0 1

? ? ? ?

w1?

w2?

wk−1

wk?

[...]

Output

Deterministic automata of the mirror language

Homomorphic recognition of the language

Fig. 2. A Mux-based circuit recognizing a regular language L and the corresponding
deterministic automata of the mirror L̃.

Proof. The expression of φ as a sum proves that for all (x1, . . . , xk) and
(y1, . . . , yk) and (zk+1, . . . , zn) such that

∑k
i=1 xid

′i =
∑k

i=1 yid
′i mod 4n, then

φ(x1, . . . , xk, zk+1, . . . , zn) = φ(y1, . . . , yk, zk+1, . . . , zn). This proves that for
each index k ∈ [0, n − 1], there are at most 4n distinct partial functions of
φ by fixing the first k coordinates. And thus, N (φ) ≤ 4n2. The rest follows from
Corollary 7. ��

Recall that under the hypothesis of Lemma 11, the max-norm of the noise can
be replaced by its square Gaussian parameter. It follows that the GLWE-GSW
scheme is fully homomorphic according to Gentry’s blueprint by design, as soon
as the initial GLWE Gaussian parameter is 1/Õ(�1.5), which represents a time
vs noise trade-off compared to the [2] proposal, and shows that the construction

554 N. Gama et al.

of a homomorphic circuit amounts to analyzing a few intrinsic parameters of the
computed function.

We can obtain a [2]-like variant of the decryption circuit with Õ(n) gates,
and with noise overhead Õ(n) by composing homomorphic functions, as in the
following lemma.

Lemma 15 (CRT Variant). Given a GLWE ciphertext c ∈ H, the gadget h
and its 1-bounded function f−1

h , let q =
∏t

i=1 pi be an integer larger than 4n
where pi are t = O(log(n)) distinct primes where pi = O(log(n)). We suppose
that the encryption of each individual bit BKi of ŝ are provided as bootstrapping
key with ‖Noise(BKi)‖∞ ≤ B. Then given as input a ciphertext of a bit μ, one
can compute a ciphertext c = z+ μh of the same bit with noise ‖Phase(z)‖∞ =
Õ(�3) by evaluating Õ(�) homomorphic Mux-gates.

Proof. It suffices to evaluate φ′(y1, . . . , yt) where each yj = fj(s1, . . . , sn−1) for
the following functions:

– fj for j ∈ [1, t], takes n− 1 bits and returns the O(log(pj)) bits of c′ −∑

sid
′
i

modulo pj . (fj can be viewed as O(log(pj)) boolean functions with a single
bit output).

– φ′ takes t numbers modulo p1, . . . , pt, and hence O(log(n) log log(n)) input
bits, and returns the most significant bit of their CRT lift modulo q.

As before, the expression of each fj as a sum proves that N (fj) ≤ (n − 1)pj

and that N (φ′) ≤ q.
∑t

k=1 log(pk). By Lemma 7, the homomorphic ciphertext of
each bit of yj has noise norm Õ(�n). Thus the output noise norm of y is Õ(�2n).
The total number of GSW.Mux gates is

∑t
j=1 log2(pj)N (fj) + N (φ′) = Õ(n) ��

Interestingly, the noise overhead obtained from this lemma is smaller than
the one from [2]. We compare our FHE scheme to previous ones in Table 1. In
that table, the GLWE group is taken as Z

n
q , which makes our scheme based on

the standard LWE assumption. In this case, we could take � = O(n log q).

Table 1. Comparisons of LWE-based FHE schemes

Schemes Primitive gates #Gates in boots. Boots. noise overhead

BGV12 [10] And, Xor, Const. Õ(n2) nO(log n)

Bra12 [9] And, Xor, Const. Õ(n2) nO(log n)

GSW13 [21] And, Xor, Nand, Const. Õ(n2) nO(log n)

BV14 [12] And, Xor, Const. Õ(n6/ε) Õ(nε)

AP14 [2] And, Not, Const. Õ(n) Õ(n2)

DM15 [15] Nand, Const. Õ(n) Õ(n1.5)

Ours Mux, Not, Const. Õ(n2) Õ(n)

Ours (with CRT) Mux, Not, Const. Õ(n) Õ(n1.5)

Structural Lattice Reduction 555

Acknowledgements. Part of this work has been supported by Fonds Unique Inter-
ministériel (FUI) through the CRYPTOCOMP project and the EIT Digital project
HC@WORKS, China’s 973 Program (Grant 2013CB834205), and NSFC’s Key Project
(Grant 61133013).

A Missing Algorithms

All missing algorithms were sketched in the main body. Here, we provide explicit
descriptions of these algorithms.

A.1 Algorithm5: Sampling Lattices of Given Factor Group

Algorithm 5. Sampling lattices of given factor group
Input: Integer m ≥ 1 and a finite abelian group G = Zq1 × · · · × Zqk such that 1 ≤ k ≤ m.
Output: A random lattice from the uniform distribution over LG,m.
1: Generate elements g1, . . . , gm uniformly at random from G until the gi’s generate G.
2: Return the lattice Lg where g = (g1, . . . , gm) ∈ Gm.

A.2 Algorithm1: Unbalanced Reduction

Algorithm 6. Unbalanced Reduction
Input: an n × m basis B of an integer lattice L ⊆ Z

m and a target length σ ∈ Q
+. More generally, B can

be any n-dimensional projected block B = B′
[i,i+n−1] of some basis B′ of L ⊆ Z

m.
Output: an n×n unimodular matrix U such that C = UB satisfies ‖c∗

i ‖ ≤ σ for i ≥ 2 and ‖c1‖ ≤ nσδσ(B).
1: C ← B, U ← In and compute the Gram-Schmidt matrices μ and C∗

2: If ‖c∗
i ‖ ≤ σ for all i, return U

3: for i = k − 1 downto 1 where k is the largest index such that ‖c∗
k‖ > σ do

4: if ‖c∗
i ‖ ≤ σ then

5: α ← 	−μi+1,i

6: else

7: α ←
⌈
−μi+1,i +

‖c∗
i+1‖

‖c∗
i ‖
√

(‖c∗
i ‖ /σ)2 − 1

⌉

8: end if
9: (ci, ci+1) ← (ci+1 + α · ci, ci), (ui,ui+1) ← (ui+1 + α · ui, ui) and update the GS matrices μ and

C∗.
10: end for
11: return U

556 N. Gama et al.

A.3 Algorithm7: Bootstrapping

Algorithm 7. Bootstrapping algorithm
Input: A GLWE ciphertext c ∈ H, the gadget h and its functions f−1

h , and the
bootstrapping key (BKi,j)i∈[1,�],j∈[1,n] where BKi,1, . . . , BKi,n are encryptions of
the n = log2(�) + 3 most significant bits of Phase(hi).

Output: A GLWE-GSW ciphertext c′ ∈ H� encoding the same bit as c with polyno-
mial noise.

1: x ← f−1
h (c) ∈ {0, 1}�

2: p ← 0
3: Set the initial state (X0,0, ..., X0,8�−1) where Xi,j = 1 iff j ∈ [2�, 6�]
4: for each i ∈ [1, �] s.t. xi = 1 do
5: for j = 1 to n do � This loop adds Phase(hi) to the state
6: p ← p + 1
7: for k = 0 to 8� − 1 do � This loop adds 2n−j to the state iff BKi,j = 1
8: Xp,k ← GSW.Mux(BKi,j , Xp−1,k−2n−j mod 8�, Xp−1,k)
9: end for

10: end for
11: end for
12: return c′ = Xp,0 � This is the final rounding.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: STOC, pp. 99–108
(1996)

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–
314. Springer, Heidelberg (2014)

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

4. Baumslag, G., Fazio, N., Nicolosi, A.R., Shpilrain, V., Skeith III, W.E.: Gener-
alized learning problems and applications to non-commutative cryptography. In:
Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 324–339. Springer,
Heidelberg (2011)

5. Becker, A., Gama, N., Joux, A.: A sieve algorithm based on overlattices. LMS J.
Comput. Math. 17(A), 49–70 (2014). Cryptology ePrint Archive, report 2013/685

6. Bleichenbacher, D.: On the generation of DSA one-time keys. Draft of 13 September
2004. Short Presentation at the Rump Session of CRYPTO 2005 (2005)

7. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

8. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996)

9. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Canetti, R., Safavi-Naini, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012)

Structural Lattice Reduction 557

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)

11. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Proceedings of 45th STOC, pp. 575–584. ACM (2013)

12. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS,
pp. 1–12 (2014)

13. Cai, J.-Y., Theory, A.N.: The complexity of some lattice problems. In: Bosma, W.
(ed.) ANTS-IV. LNCS, vol. 1838, pp. 1–32. Springer, Heidelberg (2000)

14. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Wang, X.,
Lee, D.H. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011)

15. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 617–640. Springer, Heidelberg (2015)

16. Fazio, N., Iga, K., Nicolosi, A.R., Perret, L., Skeith, W.E.: Hardness of learning
problems over burnside groups of exponent 3. Des. Codes Crypt. 75(1), 59–70
(2015)

17. Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction:
generalized worst-case to average-case reductions and homomorphic cryptosystems.
To appear soon on IACR Cryptology ePrint Archive (2016)

18. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

19. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC (2008)

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

22. Goldstein, D., Mayer, A.: On the equidistribution of Hecke points. Forum Math.
15(2), 165–189 (2003)

23. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 513–534 (1982)

24. Lubotzky, A.: The expected number of random elements to generate a finite group.
J. Algebra 257(2), 452–459 (2002)

25. Micciancio, D.: Almost perfect lattices, the covering radius problem, and applica-
tions to Ajtai’s connection factor. SIAM J. Comput. 34(1), 118–169 (2004)

26. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

27. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013)

28. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

29. Mordell, L.J.: On some arithmetical results in the geometry of numbers. Compos.
Math. 1, 248–253 (1935)

30. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the digital signature algorithm
with partially known nonces. J. Cryptology 15(3), 151–176 (2002)

558 N. Gama et al.

31. Nguyen, P.Q., Shparlinski, I.E.: Counting co-cyclic lattices. CoRR, abs/1505.06429
(2015, preprint)

32. Pak, I.: On probability of generating a finite group (1999, preprint)
33. Paz, A., Schnorr, C.-P.: Approximating integer lattices by lattices with cyclic factor

groups. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 386–393. Springer,
Heidelberg (1987)

34. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC, pp. 333–342. ACM (2009)

35. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010)

36. Regev, O.: Lattices in computer science #12: average-case hardness. Regev’s Web-
page (2004)

37. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93 (2005)

38. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

Recovering Short Generators of Principal Ideals
in Cyclotomic Rings

Ronald Cramer1,2(B), Léo Ducas1, Chris Peikert3, and Oded Regev4

1 Cryptology Group, CWI, Amsterdam, The Netherlands
{Ronald.Cramer,Leo.Ducas}@cwi.nl

2 Mathematical Institute, Leiden University, Leiden, The Netherlands
3 Department of Computer Science and Engineering, University of Michigan,

Michigan, USA
4 Courant Institute of Mathematical Sciences, New York University, New York, USA

Abstract. A handful of recent cryptographic proposals rely on the con-
jectured hardness of the following problem in the ring of integers of
a cyclotomic number field: given a basis of a principal ideal that is
guaranteed to have a “rather short” generator, find such a generator.
Recently, Bernstein and Campbell-Groves-Shepherd sketched potential
attacks against this problem; most notably, the latter authors claimed a
polynomial-time quantum algorithm. (Alternatively, replacing the quan-
tum component with an algorithm of Biasse and Fieker would yield a
classical subexponential-time algorithm.) A key claim of Campbell et al.
is that one step of their algorithm—namely, decoding the log-unit lattice
of the ring to recover a short generator from an arbitrary one—is classi-
cally efficient (whereas the standard approach on general lattices takes
exponential time). However, very few convincing details were provided
to substantiate this claim.

In this work, we clarify the situation by giving a rigorous proof that
the log-unit lattice is indeed efficiently decodable, for any cyclotomic of
prime-power index. Combining this with the quantum algorithm from
a recent work of Biasse and Song confirms the main claim of Campbell
et al. Our proof consists of two main technical contributions: the first is
a geometrical analysis, using tools from analytic number theory, of the
standard generators of the group of cyclotomic units. The second shows

L. Ducas—Supported by an NWO Free Competition Grant.
C. Peikert—Much of this work was done while the author was at the Georgia Insti-
tute of Technology. This material is based upon work supported by the National
Science Foundation under CAREER Award CCF-1054495, by DARPA under agree-
ment number FA8750-11-C-0096, and by the Alfred P. Sloan Foundation. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science
Foundation, DARPA or the U.S. Government, or the Sloan Foundation. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.
O. Regev—Supported by the Simons Collaboration on Algorithms and Geometry
and by the National Science Foundation (NSF) under Grant No. CCF-1320188.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 559–585, 2016.
DOI: 10.1007/978-3-662-49896-5 20

560 R. Cramer et al.

that for a wide class of typical distributions of the short generator, a
standard lattice-decoding algorithm can recover it, given any generator.

By extending our geometrical analysis, as a second main contribution
we obtain an efficient algorithm that, given any generator of a principal

ideal (in a prime-power cyclotomic), finds a 2Õ(
√
n)-approximate shortest

vector in the ideal. Combining this with the result of Biasse and Song

yields a quantum polynomial-time algorithm for the 2Õ(
√
n)-approximate

Shortest Vector Problem on principal ideal lattices.

1 Introduction

Over the past several years, lattices have emerged as an attractive foundation
for cryptography. The most efficient (and potentially practical) lattice-based
cryptosystems are related to ideal lattices, which correspond to ideals in certain
families of rings, e.g., Z[X]/(X2k

+ 1). Representative works include [HPS98,
Mic02,LMPR08,Gen09,LPR10].

More recently, a handful of cryptographic constructions have relied directly
on principal ideals that have “relatively short” generators, which serve as secret
keys.1 These include a simplified variant of Gentry’s original fully homomorphic
encryption scheme [Gen09] due to Smart and Vercauteren [SV10], the closely
related Soliloquy encryption scheme [CGS14], and candidate cryptographic mul-
tilinear maps [GGH13,LSS14]. Breaking these systems is no harder than solving
the following problem, which we call the Short Generator of a Principal Ideal
Problem (SG-PIP): given some Z-basis of an ideal that is guaranteed to have a
“short” generator g, find a sufficiently short generator (not necessarily g itself).

Potential attacks on SG-PIP in certain rings were sketched by
Bernstein [Ber14b] and Campbell et al. [CGS14]. The basic structure of the
attacks, which appears to be folklore in computational number theory, consists
of two main parts:

– First, given a Z-basis of the principal ideal, find some arbitrary (not nec-
essarily short) generator of the ideal. For this task, which is known as the
Principal Ideal Problem (PIP), the state of the art is an algorithm of Biasse
and Fieker [BF14,Bia14], whose running time has only a subexponential
2n2/3+ε

dependence on n, the degree of the ring (over Z). In addition, building
on the recent work of Eisenträger et al. [EHKS14], polynomial-time quan-
tum algorithms for PIP have recently been described in two independent
works [CGS14,BS15], the latter of which provides a fully rigorous treatment.

– Second, transform the generator found in the previous phase into a short
generator, thereby recovering the secret key, or its functional equivalent. The
standard approach casts this task as a closest vector problem (CVP) on the
Dirichlet “log-unit” lattice.

1 A principal ideal in a commutative ring R is of the form gR = {g · r : r ∈ R} for
some g ∈ R, called a generator of the ideal.

Recovering Short Generators of Principal Ideals in Cyclotomic Rings 561

In this work, we focus entirely on the second phase, i.e., on recovering a
short generator from any generator. At first, one might suspect that this is a
hard problem: in general, the fastest known algorithms for CVP (even allowing
quantum) run in exponential 2Ω(n) time [MV10,ADS15], or in less time but with
much weaker guarantees on the solution quality (e.g., [LLL82,Bab85,Sch87]). In
addition, Bernstein [Ber14b] suggested an algebraic approach that may yield
slightly subexponential running times in number fields having many subfields,
but it remains to be seen if this proposal can be carried through. Regardless of
the method used, it is not obvious a priori whether solving CVP on the log-unit
lattice yields a sufficiently short generator; much depends on the geometry of
the lattice (in the relevant norm) and the quality of the solution.

A promising observation made by several researchers [CGS14,Ber14a] is that
the CVP instances arising in the second phase have some implicit structure:
the existence of a “rather short” generator (by choice of the secret key) implies
that the target point is “somewhat close” to the log-unit lattice; CVP with
such a distance guarantee is more commonly known as bounded-distance decod-
ing (BDD) and is sometimes easier than the general case of CVP. Indeed,
Garg et al. [GGH13] gave an improved variant of the Gentry-Szydlo algo-
rithm [GS02] which shows that in cyclotomic rings having power-of-two index,
BDD on the log-unit lattice is efficiently solvable to within sub-polynomial
n− log log n distance. However, this threshold is much too small to handle the
BDD instances arising in cryptosystems.

Campbell et al. [CGS14] were the first to claim an efficient solution to the
second phase above. In more detail, they asserted that in cyclotomic rings hav-
ing power-of-two index, the second phase can be accomplished simply by decod-
ing the log-unit lattice using a standard algorithm such as LLL [LLL82]. How-
ever, this claim was not accompanied by a proof.2 Nevertheless, experiments
in cryptographically relevant choices of dimension have shown that decoding is
indeed practically efficient [She14,Sch15], giving strong evidence that the app-
roach of [CGS14] does indeed work.

Contributions. Our first main contribution is a rigorous proof showing that the
second phase above can be solved in polynomial time, in any cyclotomic of
prime-power index. Our proof is based on classical ideas and results from ana-
lytical number theory, along with some techniques from probability theory, and
consists of two main technical contributions. First, in Sect. 3 we use standard
tools from analytical number theory, such as bounds on Dirichlet L-series, to
elucidate the geometry of a standard set of generators for the group of cyclo-
tomic units. (The cyclotomic units correspond either to the log-unit lattice itself,
or to a sublattice whose index is conjectured to be quite small.) Using this
geometry, in Sects. 4 and 5 we show that for a wide class of typical distributions

2 The explanation given in [CGS14] is that the secret generator corresponds to a vector
that is short relative to the determinant of the log-unit lattice. As far as we can tell,
this by itself is not enough to substantiate the claim, as it ignores the geometry of
the log-unit lattice and the quality of the output produced by the LLL algorithm.

562 R. Cramer et al.

of the secret generator—e.g., Gaussian-like distributions—the näıve “round-off”
lattice-decoding algorithm [Len82,Bab85] (using the standard generators of the
cyclotomic units) can be used to efficiently recover the secret short generator,
given any generator of the ideal.3 To complement these results, in Appendix B
we give concrete numerical data demonstrating that the second phase succeeds
for all practical choices of dimension.

Our second main contribution concerns the questions: in an arbitrary prin-
cipal ideal (of a prime-power cyclotomic), how long can a shortest generator
be? And how short of a generator can we find efficiently? In Sect. 6, we show
that for an overwhelming majority of principal ideals, the shortest generator
is a 2Θ̃(

√
n) factor longer than the shortest nonzero vector in the ideal. More-

over, one can efficiently find a generator satisfying this bound, given an arbi-
trary generator. The first of these facts means that the principal ideals used in
the aforementioned cryptographic applications are highly atypical, because their
shortest generators are also nearly shortest vectors. The second fact implies that
the 2Õ(

√
n)-approximate Shortest Vector Problem (SVP) on arbitrary principal

ideals reduces to the Principal Ideal Problem.

Implications and Discussion. Combining our main contributions with known
algorithms for PIP [BF14,Bia14,CGS14,BS15] (which are the computational
bottleneck) yields the following two main implications:

– First, there is a quantum polynomial-time, or classical 2n2/3+ε

-time, algorithm
for SG-PIP, implying a key-recovery attack for the cryptographic constructions
of [SV10,GGH13,LSS14,CGS14].

– Second, there is a quantum polynomial-time algorithm for 2Õ(
√

n)-approximate
SVP on principal ideals in any prime-power cyclotomic. (Note that we do not
obtain any improvement over classical SVP algorithms, because 2n2/3

time is
sufficient to solve 2Õ(n1/3)-approximate SVP on arbitrary lattices [Sch87].)

In light of these, an important open problem is to obtain faster classical PIP
algorithms, perhaps also using the guarantee that a short generator exists.

A natural question is what effect, if any, these attacks have on other ring-
based problems, such as NTRU [HPS98] and ring-LWE [LPR10], which are the
heart of many cryptosystems. Specifically, the theoretical foundation of the ring-
LWE problem is the conjectured quantum hardness of approximate-SVP on arbi-
trary ideals, usually in a cyclotomic ring and for (near-)polynomial approxima-
tion factors. As far as we can tell, the above-described algorithms do not appear
to affect this foundation: the first crucially relies on the existence of an “unusu-
ally short” generator, the second is inherently limited to relatively large SVP
approximation factors, and both apply only to principal ideals. An important
question is whether these barriers can be overcome, and if so, whether this leads
to attacks on ring-LWE or NTRU themselves.
3 Strictly speaking, the polynomial running time of this algorithm depends on a

number-theoretic conjecture regarding the class numbers h+(m); see Sect. 2.4 for
details.

Recovering Short Generators of Principal Ideals in Cyclotomic Rings 563

In a complementary direction, another interesting question is whether the
above attacks can be extended to other families of non-cyclotomic rings, such as
those suggested in [Ber14b]. For this it may suffice to find (by analysis, compu-
tation, or both) a suitably good basis of the log-unit lattice, or of a sublattice
of not too large index.

2 Preliminaries

We denote column vectors by lower-case bold letters (e.g., x) and matrices by
upper-case bold letters (e.g., X). We often adopt the nonstandard, but very
useful, convention of indexing rows and columns by particular finite sets (not
necessarily {1, . . . , n}), and identify a matrix with its indexed set of column
vectors. The canonical scalar product over R

n and over C
n is denoted 〈·, ·〉, and

‖·‖ denotes the Euclidean norm. For a complex number z ∈ C, z denotes its
complex conjugate, and |z| =

√
z · z denotes its magnitude.

2.1 Lattices and BDD

A lattice L is a discrete additive subgroup of R
n for some positive integer n.

The minimum distance of L is λ1(L) := minv∈L\{0} ‖v‖, the length of a
shortest nonzero lattice vector. Every lattice is generated as the integer lin-
ear combinations of some (non-unique) R-linearly independent basis vectors
B = {b1, . . . ,bk}, as L = L(B) := {∑k

j=1 Z · bj}, where k ≤ n is called the
rank of the lattice.

Letting span denote the R-linear span of a set, the dual basis B∨ =
{b∨

1 , . . . ,b∨
k } ⊂ span(B) and dual lattice L = L(B∨) are defined to satisfy

〈b∨
j ,bj′〉 = δj,j′ for all j, j′, where the Kronecker delta δj,j′ = 1 if j = j′, and is

0 otherwise. In other words, Bt · B∨ = (B∨)t · B is the identity matrix.
In this work we deal with a computational problem on lattices called bounded-

distance decoding (BDD): given a lattice basis B ⊂ R
n of L = L(B) and a target

point t ∈ span(L) with the guarantee that minv∈L ‖v − t‖ ≤ r for some known
r < λ1(L)/2, find the unique v ∈ L closest to t (i.e., such that ‖v − t‖ ≤ r).
In fact, in our context B and r will be fixed in advance, and t is the only input
that may vary.

A standard approach to solve BDD (and related problems) is the “round-off”
algorithm of [Bab85], which simply returns B · 	(B∨)t · t
, where the rounding
function 	c
 := 	c + 1

2� ∈ Z is applied to each coordinate independently. (Notice
that (B∨)t · t is the coefficient vector of t with respect to basis B.) We recall
the following standard fact about this algorithm, and include a brief proof for
completeness.

Claim. Let L ⊂ R
n be a lattice with basis B, and let t = v + e ∈ R

n for some
v ∈ L, e ∈ R

n. If 〈b∨
j , e〉 ∈ [− 1

2 , 1
2) for all j, then on input t and basis B, the

round-off algorithm outputs v.

Proof. Because v = Bz for some integer vector z, we have (B∨)t ·t = z+(B∨)t ·e,
so by hypothesis on the 〈bj , e〉, we have 	(B∨)t · t
 = z. The claim follows.

564 R. Cramer et al.

2.2 Circulant Matrices

We recall some standard facts about circulant matrices for a finite abelian group
(G, ·), and their relationship with the characters of the group. See e.g., [Lan02]
for further details and proofs.

Definition 1 (Circulant Matrix). For a vector a = (ag)g∈G indexed by G,
the G-circulant matrix associated with a is the G-by-G matrix whose (i, j)th
entry is aij−1 .

Note that the transpose of any G-circulant matrix (associated with (ag)g∈G)
is also a G-circulant matrix (associated with (ag−1)g∈G).

Definition 2 (Character Group). A character is a group morphism χ : G →
{u ∈ C : |u| = 1}, i.e., χ(g · h) = χ(g) · χ(h) for all g, h ∈ G. The character
group (Ĝ, ·) is the set of characters of G, with the group operation being the
usual multiplication of functions, i.e., (χ · ψ)(g) = χ(g) · ψ(g).

A basic fact is that |Ĝ| = |G|. Notice that for a character χ ∈ Ĝ, we have
χ(g) = χ(g)−1 = χ(g−1). We identify χ with the vector (χ(g))g∈G. Then all
characters χ have Euclidean norm ‖χ‖ =

√|G|, because

〈χ, χ〉 =
∑

g∈G

χ(g) · χ(g) =
∑

g∈G

1 = |G|.

Moreover, distinct characters χ, ψ are orthogonal:

〈χ, ψ〉 =
∑

g∈G

χ(g) · ψ(g) =
∑

g∈G

(χ · ψ−1)(g) = 0.

Therefore, the complex G-by-Ĝ matrix

PG := |G|−1/2 · (χ(g))g∈G,χ∈Ĝ

is unitary, i.e., P−1
G = P∗

G, the conjugate transpose of PG.

Lemma 1. A complex matrix A is G-circulant if and only if the Ĝ-by-Ĝ matrix
P−1

G · A · PG is diagonal; equivalently, the columns of PG are the eigenvectors
of A. If A is the G-circulant matrix associated with a = (ag)g∈G, its eigenvalue
corresponding to χ ∈ Ĝ is λχ = 〈a, χ〉 =

∑

g∈G ag · χ(g).

It follows that every row and column of A has squared Euclidean norm

‖a‖2 = ‖P∗
G · a‖2 = |G|−1 ·

∑

χ∈Ĝ

|λχ|2.

It also follows that A−1 (when defined) is G-circulant, with eigenvalue λ−1
χ for

eigenvector χ.

Recovering Short Generators of Principal Ideals in Cyclotomic Rings 565

Proof. Suppose that A is G-circulant, and let χ ∈ Ĝ be a character of G. Then

(A · χ)g =
∑

h∈G

agh−1 · χ(h) =

(

∑

k∈G

ak · χ(k)

)

· χ(g),

where in the final equality we have substituted k = gh−1 and used χ(h) =
χ(k) · χ(g). So A · χ = λχ · χ.

For the other direction, it suffices by linearity to show that Aχ = PG·Dχ·P−1
G

is G-circulant for every χ ∈ Ĝ, where Dχ is the diagonal Ĝ-by-Ĝ matrix with 1
in its (χ, χ)th entry and zeros elsewhere. Indeed, by definition of PG and because
P−1

G = P∗
G, the (i, j)th entry of Aχ is simply |G|−1 ·χ(i) ·χ(j) = |G|−1 ·χ(ij−1),

which depends only on ij−1 as required.

2.3 Dirichlet Characters and L-Series

A Dirichlet character χ is a character of Z∗
k for some positive integer k. Note that

if k|� then χ induces a character of Z∗
� via the natural morphism Z

∗
� → Z

∗
k, so

we can equivalently view χ as being defined modulo either k or �. The conductor
fχ of χ is the smallest positive f such that χ is induced by a Dirichlet character
modulo f . The character is said to be even if χ(−1) = 1; note that the even
Dirichlet characters correspond with the characters of Z∗

k/{±1}. The character is
said to be quadratic if all its values are real (i.e., ±1), and it is not the constant 1
character (which is known as the principal character). Following the convention
used in [Was97], we often implicitly extend χ to a completely multiplicative
function from Z to C, by considering it as modulo its conductor k (i.e., as a
primitive character) and letting χ(a) = 0 if gcd(a, k) > 1.

Definition 3 (Dirichlet L-Series). For a Dirichlet character χ, the Dirichlet
L-function L(·, χ) is defined as the formal series

L(s, χ) =
∑

k≥1

χ(k)
ks

.

For any Dirichlet character χ, the series L(s, χ) is absolutely convergent for all
s ∈ C with (s) > 1. It is also known that L(1, χ) converges and is nonzero
for any non-principal Dirichlet character (i.e., χ �= 1). We have the following
asymptotic bounds on its value; we will only use the lower bounds.

Theorem 1. There exists a C > 0 such that, for any non-quadratic character χ
of conductor f > 1,

1
�(f)

≤ |L(1, χ)| ≤ �(f) where �(f) = C ln f. (1)

Moreover, for any quadratic character χ,

|L(1, χ)| ≥ 1
C

√
f

. (2)

566 R. Cramer et al.

Equation (1) can be traced back to Landau [Lan27], and improving the con-
stant C is an active field of research [Lou15]. Equation (2) is also classical and
follows from Dirichlet’s class number formula (see, e.g., [MV06, Sect. 4.4]). We
note that under the Generalized Riemann Hypothesis, the bound in Eq. (1) can
be improved to �(f) = C ln ln f , and holds for both quadratic and non-quadratic
characters (see, e.g., [LLS15]).

2.4 Cyclotomic Number Fields and the Log-Unit Lattice

Cyclotomic Number Fields. Let L be a field. An element ζ ∈ L is a root of unity
if ζm = 1 for some positive integer m. The order of a root of unity ζ ∈ L is
the order of the finite multiplicative subgroup of L∗ generated by ζ. A primitive
mth root of unity in L is a root of unity ζ ∈ L of order m. Note that if ζ ∈ L
is a primitive mth root of unity, then the polynomial Xm − 1 ∈ L[X] factors
as

∏m−1
i=0 (X − ζi) over L[X]. Also note that the complete set of primitive mth

roots in L consists of the powers ζj for j ∈ Z
∗
m.

An algebraic number field K is an extension field of the rationals Q such that
its dimension [K : Q] as a Q-vector space (i.e., its degree) is finite. If Ω ⊃ K
is an extension field such that Ω is algebraically closed over Q, then there are
exactly [K : Q] field embeddings of K into Ω.4 An algebraic number field is
Galois if the order of its automorphism group equals its degree.5 A number
field K is cyclotomic if K = Q(ζ) for some root of unity ζ ∈ K. Its degree
is ϕ(m), where ϕ(·) is the Euler totient function and m is the order of ζ, and
its ring of integers R is monogenic, i.e., R = Z[ζ]. We let U denote the cyclic
(multiplicative) subgroup of mth roots of unity, which is generated by ζ.

A cyclotomic number field is Galois. If K = Q(ζ) is a cyclotomic number
field with ζ ∈ K an mth primitive root of unity then each automorphism is
characterized by the assignment ζ �→ ζj for some j ∈ Z

∗
m. As a consequence, if

L is an extension field of a cyclotomic field K, then K is situated uniquely in L.
For concreteness, we situate cyclotomic number fields in the complex numbers
C. Let m be a positive integer and define ω = ωm = exp(2πı/m) ∈ C. Then ω
is a primitive mth root of unity and K = Q(ω) is the mth cyclotomic number
field. The embeddings of K into the complex numbers (i.e., the automorphisms
of K) are denoted σj for j ∈ Z

∗
m, where σj sends ω to ωj . The concatenation

σ(a) = (σj(a))j∈Z∗
m

of these embeddings is known as the canonical embedding,
and is used to endow K with a geometry, e.g., ‖a‖ := ‖σ(a)‖ for any a ∈ K.

Logarithmic Embedding. The embeddings σi of K, being complex, come in con-
jugate pairs, i.e., σj(x) = σ−j(x). We will mainly be concerned with their mag-
nitudes, so we identify the pairs by indexing over the multiplicative quotient

4 These embeddings are merely ring morphisms ψ : K → Ω. Each such ψ is automat-
ically injective because K is a field. Also note that any such ψ fixes Q pointwise.

5 An automorphism of a field L is a ring isomorphism ψ : L → L. The automorphisms
of L form a group with functional composition as the group operation.

Recovering Short Generators of Principal Ideals in Cyclotomic Rings 567

group G := Z
∗
m/{±1}. We then have the logarithmic embedding, defined as

Log : K → R
ϕ(m)/2

a �→ (log |σi(a)|)i∈G .

The logarithmic embedding defines a group morphism, mapping the multiplica-
tive group K∗ to an additive subgroup of Rϕ(m)/2. The kernel of Log restricted to
R∗ is {±1}·U . The Dirichlet Unit Theorem (see [Sam70, Chap. 4.4, Theorem 1])
implies that Λ = Log(R∗), the image of the multiplicative unit group of R under
the logarithmic embedding, is a full-rank lattice in the linear subspace of Rϕ(m)/2

orthogonal to the all-1s vector 1. We refer to Λ as the log-unit lattice.

Cyclotomic Units. Let A be the multiplicative subgroup of K∗ generated by ±ζ
and

zj := ζj − 1, j ∈ Zm \ {0}.

Notice that zj = −ζj ·z−j , so zj and z−j are equivalent modulo ±U ; in particular,
Log(zj) = Log(z−j). The group of cyclotomic units, denoted C, is defined by

C = A ∩ R∗.

The zj given above are not necessarily units in R, and thus do not generate C.
However, a closely related generating set, which we call the canonical generators,
is given by the following lemma. Recall that G = Z

∗
m/{±1}, and identify it with

some canonical set of representatives in Z
∗
m.

Lemma 2 (Lemma 8.1 of [Was97]). Let m be a prime power, and define
bj := zj/z1 = (ζj − 1)/(ζ − 1). The group C of cyclotomic units is generated by
±ζ and bj for j ∈ G \ {1}.

Notice that Log C is a sublattice of Λ. As shown below, the index of Λ
over Log C is finite. In fact, it is h+(m), the class number of the real subfield
K+ = Q(ζ + ζ̄), defined as the index of the subgroup of principal fractional
ideals in the multiplicative group of all fractional ideals (in K+). The proof of
this theorem is left as Exercise 8.5 in [Was97]. For completeness, we sketch the
solution in Appendix A.

Theorem 2. For a prime power m > 2, the index of the log-unit lattice Λ over
Log C is

[Λ : Log C] = h+(m).

Some Facts and Conjectures Concerning h+. For our purposes, we need h+(m)
not to be very big. For all power-of-two m up to m = 256, and also for m = 512
under GRH, it is known that h+(m) = 1 (see [Mil14]). Whether h+(m) = 1 for
all power-of-two m is known as Weber’s class number problem, and is presented
in the literature as a reasonable conjecture.

In the case of odd primes, it also appears that h+ is quite small. Computations
of Schoof [Sch03] and Miller [Mil15] show that h+(p) ≤ 11 for all primes p ≤ 241.

568 R. Cramer et al.

For powers of odd primes it has been conjectured (with support of the Cohen-
Lenstra heuristic) that, for all but finitely many pairs (p, �) where p is a prime,
h+(p�+1) = h+(p�) [BPR04]. A direct consequence is that h+(p�) is bounded for
a fixed p and increasing �.

3 Geometry of the Canonical Generators

Throughout this section, let the cyclotomic index m be a prime power. Our
goal here is to show that the canonical generators of the cyclotomic units, under
the logarithmic embedding, are geometrically well-suited for bounded-distance
decoding.

Recalling that G = Z
∗
m/{±1} is identified with some set of canonical repre-

sentatives in Z
∗
m and that Log(bj) = Log(b−j), define

bj = Log(bj), j ∈ G \ {1},

to be the log-embeddings of the canonical generators bj = (ζj −1)/(ζ−1) defined
in Lemma 2. By Lemma 2, these bj form a basis of the sublattice Log C, which
by Theorem 2 has index h+(m) in Λ.

In order to apply the round-off algorithm and Claim 2.1 with this basis, we
bound the norms ‖b∨

j ‖ of the dual basis vectors. The remainder of this section
is dedicated to proving the following theorem.

Theorem 3. Let m = pk for a prime p, and let {b∨
j }j∈G\{1} denote the basis

dual to {bj}j∈G\{1}. Then all ‖b∨
j ‖ are equal, and

‖b∨
j ‖2 ≤ 2k|G|−1 · (�(m)2 + O(1)) = O(m−1 · log3 m).

To prove the theorem we start by relating the basis vectors bj to a certain
G-circulant matrix. Recalling that zj = ζj − 1 is the numerator of bj , define

zj := Log(zj) = bj + z1. (3)

Collect these vectors into a square G-by-G matrix Z whose jth column is zj−1 ,
and notice that its (i, j)th entry log |ωi·j−1 − 1| is determined by ij−1 ∈ G alone,
so Z is the G-circulant matrix associated with z1. For each eigenvector χ ∈ Ĝ of
Z, let λχ := 〈z1, χ〉 denote the corresponding eigenvalue.

Lemma 3. For all j ∈ G \ {1} we have

‖b∨
j ‖2 = |G|−1 ·

∑

χ∈ ̂G\{1}
|λχ|−2

. (4)

Recovering Short Generators of Principal Ideals in Cyclotomic Rings 569

Proof. Let z∨
j denote the vectors dual to the zj , i.e., the columns of Z−t.

(As shown below in the proof of Theorem 3, Z−1 is indeed well defined because
all eigenvalues λχ of Z are nonzero.)

We first claim that b∨
j is simply the projection of z∨

j orthogonal to 1, i.e.,
b∨

j = z∨
j − |G|−1 · 〈z∨

j ,1〉 · 1. Indeed, these vectors are all in span(bj′)j′ , the
space orthogonal to 1, and moreover, for all j, j′ ∈ G \ {1} they satisfy

〈z∨
j − |G|−1 · 〈z∨

j ,1〉 · 1,bj′〉 = 〈z∨
j ,bj′〉 = 〈z∨

j , zj′ − z1〉 = δj,j′ − 0.

Now,
‖b∨

j ‖2 = ‖z∨
j ‖2 − |G|−1 · 〈z∨

j ,1〉2.
Recall by Lemma 1 that Z−t is the G-circulant matrix associated with z∨

1 , which
has eigenvalue λ−1

χ = 〈z∨
1 , χ〉 for eigenvector χ ∈ Ĝ. By the remarks following

Lemma 1, ‖z∨
j ‖2 = |G|−1 · ∑

χ∈Ĝ |λχ|−2. The lemma follows by noting that
〈z∨

j ,1〉 = 〈z∨
1 ,1〉 = λ−1

1 .

We now provide an upper bound on the right-hand side of Eq. (4). Our proof
is similar to the proof that the cyclotomic units have finite index in the full
group of units [Was97, Theorem 8.2].

Theorem 4 [Was97, Lemma 4.8 and Theorem 4.9]. Let χ be an even
Dirichlet character of conductor f > 1, and let ωf = exp(2πı/f) ∈ C. Then

∣

∣

∣

∣

∣

∣

∑

a∈Z
∗
f

χ(a) · log |1 − ωa
f |

∣

∣

∣

∣

∣

∣

=
√

f · |L(1, χ)|.

For completeness, we briefly explain how the finite sum on the left hand side
gives rise to an L-series, and refer to [Was97] for the details. Using the Taylor
expansion

log |1 − x| = −
∑

k≥1

xk/k,

one gets a sum over finitely many a and infinitely many k of terms χ(a) · ωak
f /k.

For a fixed k, the sum over a can easily be rewritten as τ(χ) ·χ(k)/k, where τ(χ)
is a Gauss sum (see [Was97, Lemma 4.7]), which makes the Dirichlet L-function
apparent.

Corollary 1. Suppose f > 1 divides a prime power m. For any even Dirichlet
character χ of conductor f ,

∣

∣

∣

∣

∣

∣

∑

a∈Z∗
m

χ(a) · log |1 − ωa
m|

∣

∣

∣

∣

∣

∣

=
√

f · |L(1, χ)|.

570 R. Cramer et al.

Proof. Let φ : Z∗
m → Z

∗
f be the map given by reduction modulo f . We have

∑

a∈Z∗
m

χ(a) · log |1 − ωa
m| =

∑

a∈Z
∗
f

χ(a)
∑

b∈Z
∗
m

φ(b)=a

log |1 − ωb
m|

=
∑

a∈Z
∗
f

χ(a) · log

∣

∣

∣

∣

∣

∣

∣

∣

∏

b∈Z
∗
m

φ(b)=a

(1 − ωb
m)

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

a∈Z
∗
f

χ(a) · log
∣

∣1 − ωa
f

∣

∣ ,

where in the last equality we have used the identity
∏

i∈Zn
(1 − ωi

nY) = 1 − Y n

and ωn
m = ωf with n = m/f . The claim follows by applying Theorem 4.

We are now ready to complete the proof of the main theorem.

Proof (Proof of Theorem 3). Recall that the characters χ ∈ Ĝ correspond to the
even characters of Z

∗
m, because χ(±1) = 1. Also recall that by Lemma 1, the

eigenvalues are

λχ = 〈z1, χ〉 =
∑

a∈G

χ(a) · log |1 − ωa
m| =

1
2

∑

a∈Z∗
m

χ(±a) · log |1 − ωa
m|,

where the second equality holds because |1 − ω−a
m | = |1 − ωa

m|. Therefore, using
Corollary 1 we have

|λχ| =
1
2

√

fχ · |L(1, χ)|, (5)

and so by Lemma 3,

‖b∨
j ‖2 = |G|−1 ·

∑

χ∈ ̂G\{1}
|λχ|−2 = 4|G|−1 ·

∑

χ∈ ̂G\{1}
f−1

χ · |L(1, χ)|−2.

We first consider the contribution to the sum coming from quadratic characters.
When p is an odd prime, there is exactly one quadratic character (see [MV06,
Sect. 9.3]), and it is of conductor p, hence by Eq. (2) in Theorem 1, the contribu-
tion to the sum is O(1) (assuming it is even; otherwise it does not participate in
the sum). In the case p = 2 the contribution is also O(1) since there are at most
three quadratic characters (see again [MV06, Sect. 9.3]) and their conductor is
bounded from above by an absolute constant. Finally, the contribution coming
from non-quadratic characters is at most

�(m)2
∑

χ∈Ĝ\{1}
f−1

χ ≤ k

2
· �(m)2,

where we used Eq. (1) in Theorem 1 and Claim 3 below.

Recovering Short Generators of Principal Ideals in Cyclotomic Rings 571

Claim. Let m = pk for a prime p. Then, for G = Z
∗
m/{±1},

∑

χ∈Ĝ\{1}
f−1

χ ≤ k

2
.

Proof. Notice that there are at most f Dirichlet characters of conductor f , at
most half of which are even (when f > 1), so

∑

χ∈Ĝ\{1}
f−1

χ ≤
k

∑

�=1

p�

2
· 1
p�

=
k

2
.

4 Algorithmic Implications

The following is our main result about the decoding algorithm, showing that
under mild restrictions on the distribution of the short generator, one can recover
it from any generator that differs from it by a unit in C. Roughly speaking,
the requirement from the distribution is that the ratios between its complex
embeddings are not too large. We note that since the vi below are assumed to
be orthogonal to the all-1 vector, the scale of the distribution (or variance in the
case of Gaussians) is irrelevant: this should not come as a surprise, since, e.g.,
one can normalize the input generator g′ to have algebraic norm 1.

Theorem 5. Let D be a distribution over Q(ζ) with the property that for any
tuple of vectors v1, . . . ,vϕ(m)/2−1 ∈ R

ϕ(m)/2 of Euclidean norm 1 that are orthog-
onal to the all-1 vector 1, the probability that |〈Log(g),vi〉| < c

√
m · (log m)−3/2

holds for all i is at least some α > 0, where g is chosen from D and c is a
universal constant. Then there is an efficient algorithm that given g′ = g · u,
where g is chosen from D and u ∈ C is a cyclotomic unit, outputs an element
of the form ±ζjg with probability at least α.

Proof. The algorithm applies the round-off algorithm from Claim 2.1 to
Log(g′) = Log(g)+Log(u), using the vectors bj (defined and analyzed in Sect. 3)
as the basis. By the assumption on D and Theorem 3, with probability at least
α the output is Log(u) ∈ Log(C). We next find integer coefficients aj such that
Log(u) =

∑

ajbj , and compute u′ =
∏

b
aj

j . Since Log(u′) = Log(u) it follows
that u′ must be of the form ±ζju for some sign and some j. Therefore, g′/u′ is
the desired element.

In the next section we show that the condition on D in the theorem is satisfied
by several natural distributions.

One possible concern with the above algorithm is that it expects as input
g ·u for a cyclotomic unit u ∈ C, whereas the first phase of the attack described
in the introduction, i.e., a PIP algorithm, is only guaranteed to output g · u
for an arbitrary unit u ∈ R∗. There are several reasons why this should not
be an issue. First, as mentioned in Sect. 2, in some cases, e.g., for power-of-
2 cyclotomic, it is conjectured that C = R∗. More generally, the index of C

572 R. Cramer et al.

in R∗, which we recall is h+, the class number of the totally real subfield, is
often small. In such a case, if we have a list of coset representatives of C in R∗,
we can enumerate over all of them and use the algorithm above to recover g,
increasing the running time only by a factor of h+. In order to obtain such a
list of representatives, we can use an algorithm for computing the unit group,
either classical [BF14] or quantum [EHKS14]. These algorithms are no slower
than the known PIP algorithms and moreover, need only be applied once for a
given cyclotomic field (as opposed to once for each public key). Alternatively,
by running the PIP algorithm multiple times on a basis of a principal ideal with
a known short generator chosen using the secret key generation algorithm, we
can recover a list of representatives for all the cosets that show up as output of
the PIP algorithm with non-negligible probability; we can then enumerate over
that list.

In the above statement and proof we glossed over issues of precision and
assumed for simplicity, as one often does, that the input g′ is given exactly.
To be fully rigorous, one needs to verify that the algorithm can deal with inputs
that are specified with finite precision, and still runs in time polynomial in its
input size. Typically, by finite precision one means that the input is given in
fixed-point representation, providing additive approximation to the true num-
bers. Here, however, it is more natural to assume that the input is given in
(the strictly more general) floating-point representation, providing multiplica-
tive approximation to the true numbers. Not only is this more natural, but also
the known PIP algorithms [BF14,Bia14,BS15] generate an output in this for-
mat, or an output that can be easily converted to this format.6 Luckily, dealing
with floating-point inputs is straightforward. First notice that Log(g′) can be
written in standard fixed-point representation, and so can Log(u). The integer
coefficients aj can be stored exactly since they are at most exponential in the
input size. Finally, by using a sufficiently good multiplicative approximation of
bj (with the multiplicative error being much less than 1/aj), we can obtain an
arbitrarily good multiplicative approximation of u′. As a result we get a multi-
plicative approximation of the desired output g′/u′ that can be made essentially
as good as the multiplicative approximation of the input g′.

5 Tail Bounds

In this section we show that the condition on D in Theorem 5 is satisfied by
two natural distributions: the continuous Gaussian and a wide enough discrete
Gaussian (over any lattice). This section is independent of the other sections
in this paper, and we avoid the use of notation from algebraic number theory.
Instead, we identify elements of K with vectors in R

ϕ(m) by taking the real and
the imaginary part of their ϕ(m)/2 complex embeddings, i.e., a is mapped to

6 In general number fields (in fact already in quadratic number fields), the use of
floating point is necessary, since generators are typically doubly exponentially large
and so would require exponential time to write down in fixed-point notation.

Recovering Short Generators of Principal Ideals in Cyclotomic Rings 573

((σj(a)),�(σj(a)))j∈G. As a result, all random variables appearing here are
real. The results in this section should be easy to extend to other distributions.

We start with Lemma 4, a tail bound on the sum of subexponential random
variables. The proof is based on a standard Bernstein argument, and follows the
proof in [Ver12] apart from some minor modifications for convenience.

Definition 4. For α, β > 0, a random variable X is (α, β)-subexponential if

E[cosh(αX)] ≤ β,

where recall that cosh(x) := (ex + e−x)/2.

Lemma 4 (Tail bound). Let X1, . . . , Xn be independent centered (i.e., expec-
tation zero) (α, β)-subexponential random variables. Then, for any a =
(a1, . . . , an) ∈ R

n and every t ≥ 0,

Pr
[∣

∣

∣

∑

aiXi

∣

∣

∣ ≥ t
]

≤ 2 exp
(

−min
(

α2t2

8β‖a‖22
,

αt

2‖a‖∞

))

.

Proof. By scaling, we can assume without loss of generality that α = 1. Next,
we use the inequality

eδx−δx−1 ≤ (eδx−δx−1)+(e−δx+δx−1) = 2(cosh(δx)−1) ≤ 2δ2(cosh(x)−1)

which holds for all −1 ≤ δ ≤ 1 and all x ∈ R, where the second inequality follows
from the Taylor expansion. By applying this inequality to a (1, β)-subexponential
centered random variable X, and taking expectations we see that for all −1 ≤
δ ≤ 1,

E[exp(δX)] ≤ 1 + 2δ2E[cosh(X) − 1]

≤ 1 + 2δ2(β − 1) ≤ exp(2δ2β). (6)

Using Markov’s inequality, we can bound the upper tail probability for any λ > 0
as

Pr
[

∑

aiXi ≥ t
]

= Pr
[

exp
(

λ
∑

aiXi

)

≥ exp(λt)
]

≤ exp(−λt) · E
[

exp
(

λ
∑

aiXi

)]

= exp(−λt) ·
∏

E [exp (λaiXi)]

≤ exp(−λt + 2βλ2‖a‖22),
where in the second inequality we used (6) and assumed that λ‖a‖∞ ≤ 1. Taking
λ = min(t/(4β‖a‖22), 1/‖a‖∞) this bound becomes at most

exp
(

−min
(

t2

8β‖a‖22
,

t

2‖a‖∞

))

.

We complete the proof by applying the same argument with −a.

574 R. Cramer et al.

The next claim follows immediately from Definition 4.

Claim. If Y is a non-negative random variable such that both E[Y] and E[Y −1]
are finite, then log Y is a (1, β)-subexponential random variable for some β > 0.

The following is an immediate corollary of the tail bound. It shows that the
condition in Theorem 5 holds with overwhelming probability for a continuous
Gaussian distribution of any radius that is spherical in the embedding basis.
Notice that the parameter r plays no role in the conclusion of the statement.

Lemma 5. Let X1, . . . , Xn,X ′
1, . . . , X

′
n be i.i.d. N(0, r) variables for some r >

0, and let X̂i = (X2
i + X ′2

i)1/2. Then, for any vectors a(1), . . . ,a(�) ∈ R
n of

Euclidean norm 1 that are orthogonal to the all-1 vector, and every t ≥ C for
some universal constant C,

Pr

[

∃j,

∣

∣

∣

∣

∣

∑

i

a
(j)
i log(X̂i)

∣

∣

∣

∣

∣

≥ t

]

≤ 2� exp(−t/2).

Proof. By union bound, it suffices to prove the lemma for the case � = 1, and we
let a = a(1). Since

∑

ai = 0, we can assume without loss of generality that r = 1.
Notice that X̂i has a chi distribution with 2 degrees of freedom (also known as a
Rayleigh distribution) whose density function is given by xe−x2/2 for x > 0 and
zero otherwise. In particular, it is easy to see that both E[X̂i] and E[X̂−1

i] are
finite (both are

√

π/2). Therefore, by Claim 5, log X̂i is (1, β) subexponential
for some constant β > 0. From this it follows that X̂i = log X̂i − E[log X̂i]
are centered (1, β′) subexponential random variables for some constant β′ > 0.
The result now follows by applying Lemma 4 to X̂1, . . . , X̂n, using the bound
‖a‖∞ ≤ 1, and the observation that

∑

i aiE[log X̂i] = 0.

In the next lemma we show that small perturbations of the continuous
Gaussian distribution still satisfy the condition in Theorem 5.

Lemma 6. Let X = (X1, . . . , Xn,X ′
1, . . . , X

′
n) be i.i.d. N(0, r) variables for

some r > 0, and let Y = (Y1, . . . , Yn, Y ′
1 , . . . , Y ′

n) be a (not necessarily inde-
pendent) random vector satisfying ‖Y ‖2 ≤ u with probability 1 for some u ≤
r/(20

√
n). Let Z = X +Y and define X̂i, Ŷi, Ẑi as before. Then for any vectors

a(1), . . . ,a(�) ∈ R
n of Euclidean norm 1 that are orthogonal to the all-1 vector,

it holds with constant probability that for all j,
∣

∣

∣

∣

∣

∑

i

a
(j)
i log(Ẑi)

∣

∣

∣

∣

∣

≤ 1 + 10 log � .

Proof. By Lemma 5 we have that with some constant probability close to 1,

∀j,

∣

∣

∣

∣

∣

∑

i

a
(j)
i log(X̂i)

∣

∣

∣

∣

∣

< 10 log �. (7)

Recovering Short Generators of Principal Ideals in Cyclotomic Rings 575

Moreover, since X̂i < r/(10
√

n) implies that both |Xi| and |X ′
i| are smaller than

r/(10
√

n), we see that by independence of Xi,X
′
i, the probability of the former

event is at most c/n for some small constant c. As a result we have that with
constant probability close to 1,

∀i, X̂i > r/(10
√

n).

In the following we assume that these two conditions hold (which happens with
constant probability close to 1 by union bound), and bound the effect of Y . Now
let a be one of the vectors in the statement of the lemma. Then,

∣

∣

∣

∣

∣

∑

i

ai log(Ẑi)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑

i

ai log(X̂i)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

i

ai log(Ẑi/X̂i)

∣

∣

∣

∣

∣

≤ 10 log � +

∣

∣

∣

∣

∣

∑

i

ai log(Ẑi/X̂i)

∣

∣

∣

∣

∣

,

where we used Eq. (7). Notice that by the triangle inequality (for two-
dimensional Euclidean space),

X̂i − Ŷi ≤ Ẑi ≤ X̂i + Ŷi .

Since Ŷi ≤ ‖Y ‖2 ≤ u ≤ r/(20
√

n) ≤ X̂i/2, and using the inequality | log(1+δ)| ≤
2|δ| valid for all δ ∈ [−1/2, 1/2],

∣

∣

∣

∣

∣

∑

i

ai log(Ẑi/X̂i)

∣

∣

∣

∣

∣

≤
(

∑

i

(log(Ẑi/X̂i))2
)1/2

≤
(

∑

i

(2Ŷi/X̂i)2
)1/2

≤ 20
√

n/r ·
(

∑

i

Ŷ 2
i

)1/2

≤ 20
√

nu/r ≤ 1,

where the first inequality follows from Cauchy-Schwarz.

Finally, we consider the spherical (in the embedding basis) discrete Gaussian
distribution over an arbitrary lattice L ⊆ R

2n. Such distributions show up often
in cryptographic constructions (see, e.g., [LPR13]), and often that lattice is the
(embedding of the) ring of integers R. For background on the discrete Gaussian
distribution and the smoothing parameter, see, e.g., [MR04]. In order to apply
Lemma 6 to this distribution, take X to be the continuous Gaussian Dr for
some r ≥ 100nηε(L), and Y the discrete Gaussian DL−X,s over the coset L − X
of parameter s = ηε(L) for some negligible parameter ε. Using Banaszczyk’s
result [Ban93] we have that with all but exponentially small probability in n,

576 R. Cramer et al.

‖Y ‖2 ≤ √
2nηε(L) ≤ r/(60

√
n). Moreover, by the lemma below, the distribution

of Z = X + Y is within negligible statistical distance of the discrete Gaussian
distribution DL,r′ for r′ = (r2 + ηε(L)2)1/2. We therefore see that the condition
in Theorem 5 holds for the discrete Gaussian distribution DL,r′ for any lattice
L and any r′ > 200nηε(L).

Lemma 7 (Special Case of [Pei10, Theorem 3.1]). Let L be a lattice and
r, s > 0 be such that s ≥ ηε(L) for some ε ≤ 1/2. Then if we choose x from the
continuous Gaussian Dr and then choose y from the discrete Gaussian DL−x,s

then x+y is within statistical distance 8ε of the discrete Gaussian DL,(r2+s2)1/2 .

6 Shortest Generators of Principal Ideals and an SVP
Algorithm

In a principal ideal I, how long (in the Euclidean norm) can the shortest gen-
erator be, relative to its algebraic norm? In this section we provide lower and
upper bounds showing that for a cyclotomic ring R of prime-power index m,
the answer is exp(Θ̃(

√
m)) · S(I), where S(I) = N(I)1/ϕ(m) is the dimension-

normalized algebraic norm of I, and Θ̃ hides polylogarithmic factors. (To be
precise, the lower bound is under the mild conjecture that h+(m) = 2O(m); see
the end of Sect. 2.4.) By contrast, it is well known (see, e.g., [PR07, Lemmas 6.1
and 6.2]) that the minimum distance (i.e., the length of a shortest nonzero vector)
of any ideal is bounded by Ω(

√
m) · S(I) and O(m) · S(I), by the arithmetic-

mean/geometric-mean inequality and Minkowski’s theorem, respectively. There-
fore, any algorithm that always outputs a generator when given a principal ideal
(e.g., the algorithm analyzed in the previous sections) obtains no better than
a exp(Ω̃(

√
m)) approximation factor for the Shortest Vector Problem, in the

worst case.
We first show in Sect. 6.1 that upper and lower bounds on shortest generators

follow directly from an analysis of the covering radius of the log-unit lattice Λ
(and its sublattice Log C), in the �∞ and �1 norms (respectively). Sections 6.2
and 6.3 then prove upper and lower bounds on these covering radii. In fact, the
proofs demonstrate more: the lower bound holds for “almost all” principal ideals,
and the upper bound is algorithmic in the following sense: given an arbitrary gen-
erator (which can be found using the quantum PIP algorithm of [BS15,BS16]),
we can efficiently find a generator satisfying the bound, which in particular is a
exp(Õ(

√
m))-approximate shortest vector in the ideal.

Throughout this section we let m > 2 be a prime power, and let n := |G| =
ϕ(m)/2 = Θ(m). Let H be the subspace of R

n spanned by Λ = Log R∗ (and
by Log C, the log embedding of the cyclotomic units), which is the subspace
orthogonal to 1, the all-1s vector. Define the covering radius of a lattice L with
respect to the �p norm as

μ(p)(L) = max
x∈span(L)

min
v∈L

‖x − v‖p = max
x∈span(L)

min
v∈x+L

‖v‖p.

Recovering Short Generators of Principal Ideals in Cyclotomic Rings 577

6.1 Relation to Covering Radius

For any g ∈ R, let I = gR. Also let g = Log(g) and write it as g = s1 + gH

where gH ∈ H. Observe that s = log S(I), because

N(I) = N(g) =
∏

i∈Z∗
m

σi(g) =
∏

i∈G

|σi(g)|2 = exp(2〈g,1〉) = exp(s · ϕ(m)).

Lemma 8. Let g, I, s, and gH be as above. There exists an efficient algorithm
that, given g and any hH ∈ gH + Log C, outputs a generator h of I such that

‖h‖ ≤
√

ϕ(m) · exp(‖hH‖∞) · S(I).

In particular, there exists a generator of Euclidean norm at most
√

ϕ(m) ·
exp(μ(∞)(Log C)) · S(I).

Proof. As in the proof of Theorem 5, for simplicity we ignore issues of precision;
see the discussion at the end of Sect. 4. The algorithm lets u = hH −gH ∈ Log C,
computes the coefficients aj ∈ Z such that u =

∑

ajbj , and outputs h = g·∏ b
aj

j .
Because h := Log(h) = Log(g) + u = s1 + hH , we have

‖h‖2 =
∑

i∈Z∗
m

|σi(h)|2 ≤ ϕ(m) · exp(‖h‖∞)2 = ϕ(m) · exp(‖hH‖∞)2 · S(I)2.

Lemma 9. There exists a principal ideal I ⊆ R for which every generator has
Euclidean norm at least exp(Ω(μ(1)(Λ)/m)) · S(I).

In fact, the proof shows that a “random principal ideal,” i.e., one whose gen-
erators correspond to a uniformly random coset of the log-unit lattice, satisfies
the above bound with overwhelming probability. (Formalizing this requires a bit
more effort; we omit the details.)

Proof. Let x + Λ ⊂ H be a “deep hole” coset of Λ in the �1 norm, i.e., one for
which ‖v‖1 ≥ μ(1)(Λ) for every v ∈ x + Λ ⊂ H. Because the n coordinates of
any such v sum to zero, the sum of the positive coordinates must be exactly
‖v‖1/2, and therefore there must be a coordinate that is at least μ(1)(Λ)/(2n) =
Ω(μ(1)(Λ)/m).

Next, assume for a moment that there exists g ∈ R for which gH = x, where
as before we write g = Log(g) = s1 + gH . Then any generator h of the ideal
I = gR satisfies Log(h) ∈ Log(g)+Λ = s1+x+Λ, so by the observation above,
it must have the claimed Euclidean norm.

To complete the proof, notice that even if there does not exist a g as above,
one can find g so as to make gH arbitrarily close to x, which suffices for the above
analysis. To see this, consider x = M · Exp(x), where M is a sufficiently large
integer and Exp(x) ∈ Log−1(x) denotes an arbitrary preimage in KR := K ⊗QR

of x under the log embedding (extended to KR). Then rounding x to a nearest
g ∈ R yields the claim.

578 R. Cramer et al.

6.2 Covering Radius Upper Bound and an SVP Algorithm

Theorem 6. There is an efficient randomized algorithm that given any vector
x ∈ H outputs a vector v ∈ Log C such that ‖x − v‖∞ = O(

√
m log m) with

high probability.

Before giving the proof, we mention some implications of the theorem. First,
using the fact that Log C is a sublattice of Λ, we immediately get the following
corollary regarding the covering radii of these lattices.

Corollary 2. For a prime power m, we have μ(∞)(Λ) ≤ μ(∞)(Log C) ≤
O(

√
m log m).

We remark that this corollary can also be obtained directly from Lemma 11
below and the non-trivial result of Banaszczyk and Szarek [BS97] (see
also [Ban98]). We also note that if the Komlós conjecture is true, then the√

log m factor in the corollary can be removed.
It follows immediately from the corollary and Lemma 8 that any principal

ideal I has a generator whose Euclidean norm is at most exp(O(
√

m log m)) ·
S(I). This also leads to an efficient quantum algorithm providing a non-trivial
approximation to SVP in principal ideals, as described in the following theorem.

Theorem 7. There is an efficient quantum algorithm that approximates SVP on
principal ideal lattices in cyclotomics of prime-power index m to within approx-
imation factor 2O(

√
m log m).

Proof. Given a principal ideal I, first use the efficient quantum algorithm of
Biasse and Song [BS15] to recover a generator g of I, and as above, write
Log(g) = s1+gH for gH ∈ H. Next, apply Theorem 6 to gH and let v ∈ Log C be
the output. Finally, apply the algorithm from Lemma 8 with g and hH := gH −v
to find a generator h whose Euclidean norm is at most exp(O(

√
m log m)) ·S(I),

and output h. It is sufficiently short since, as mentioned at the start of the section,
λ1(I) = Ω(

√
m) · S(I) by the arithmetic mean-geometric mean inequality.

For the proof of Theorem 6, we need a simple probabilistic lemma, as well
as a bound on the norm of the bj . For α ∈ [0, 1], define S(α) as the unique
probability distribution on support {α, α−1} with expectation 0 (i.e., it assigns
probability 1 − α to α and probability α to α − 1).

Lemma 10. Let A be an n×n matrix all of whose rows have Euclidean norm at
most T > 0, and let α1, . . . , αn ∈ [0, 1] be arbitrary. Let x1, . . . , xn be independent
with xi distributed as S(αi), and let x = (x1, . . . , xn). Then with probability
Ω(1/

√
n), both

‖Ax‖∞ ≤ O(T
√

log n) and
∣

∣

∣

∑

xi

∣

∣

∣ ≤ O(1).

Recovering Short Generators of Principal Ideals in Cyclotomic Rings 579

Proof. Since S(α) is bounded, it is a subgaussian random variable of constant
subgaussian norm. (See [Ver12, Sect. 5.2.3] for the definition and properties of
subgaussian random variables.) Because the sum of independent subgaussian
random variables is also subgaussian (see [Ver12, Lemma 5.9]), (Ax)i has sub-
gaussian norm O(T) for every i = 1, . . . , n. Therefore, for a large enough univer-
sal constant C > 0,

Pr
[

|(Ax)i| > CT
√

log n
]

= O(1/n2),

and by a union bound we get

Pr
[

‖Ax‖∞ > CT
√

log n
]

= O(1/n). (8)

Next, by the Berry-Esseen theorem (see, e.g., [O’D14, Sect. 5.2]), since the xi

have expectation 0 and bounded second and third moments, the probability
that |∑ xi| = O(1) is Ω(1/

√
n). Together with Eq. (8) and the union bound,

this completes the proof.

Lemma 11. Let m be a prime power. Then for all j ∈ G, ‖zj‖ = O(
√

m),
where zj are the vectors defined in Eq. (3).

Proof. Notice that

‖zj‖2 =
∑

i∈G

log2 |ωij − 1| =
∑

i∈G

log2 |ωi − 1|

=
∑

i∈G

log2 |2 sin(πi/m)| ≤

m/2�
∑

i=1

log2(2 sin(πi/m))

=

m/2�
∑

i=1

f(i/m), (9)

where f : [0, 1/2] → R is given by f(x) = log2(2 sin(πx)). Since f(x) ≤ log 2
for 1/6 ≤ x ≤ 1/2 (recall that sin(π/6) = 1/2), the contribution to the sum
in Eq. (9) coming from i > 	m/6� is at most O(m). It therefore suffices to
consider the contribution coming from i ∈ {1, . . . , 	m/6�}. Since sin(πx) ≥ 2x for
0 ≤ x ≤ 1/2 (as follows from the concavity of sine on [0, π/2]), that contribution
satisfies

m/6�
∑

i=1

f(i/m) ≤

m/6�
∑

i=1

log2(4i/m) ≤ m

∫ 1/6

0

log2(4x)dx = O(m) ,

the last equality following from
∫ y

0

log2(x)dx = y(log2 y − 2 log y + 2).

580 R. Cramer et al.

Proof (Proof of Theorem 6). Given any y ∈ H, find real coefficients (aj)j∈G\{1}
such that y =

∑

ajbj . For j ∈ G \ {1}, let αj = (aj mod 1) ∈ [0, 1) be the
fractional part of aj , and let xj be independent random variables distributed
like S(αj). The algorithm outputs u =

∑

(aj − xj)bj . Notice that u ∈ Log C
as desired. To analyze the distance of u from y, for convenience let x1 be an
independent random variable distributed like S(0) (so x1 = 0 always). Recalling
that bj = zj − z1, write

y − u =
∑

j∈G

xj(zj − z1) =
∑

j∈G

xjzj −
⎛

⎝

∑

j∈G

xj

⎞

⎠ z1,

and so by the triangle inequality

‖y − u‖∞ ≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈G

xjzj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

+

∣

∣

∣

∣

∣

∣

∑

j∈G

xj

∣

∣

∣

∣

∣

∣

· ‖z1‖∞

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈G

xjzj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

+

∣

∣

∣

∣

∣

∣

∑

j∈G

xj

∣

∣

∣

∣

∣

∣

· O(
√

m),

where we used the trivial bound ‖z1‖∞ ≤ ‖z1‖2 and applied Lemma 11.7 We
now apply Lemma 10 to the matrix Z whose columns are the zj . Since Z is
G-circulant, the Euclidean norms of all its rows and columns are the same, and
by Lemma 11 are O(

√
m). We therefore obtain that with probability Ω(1/

√
n),

‖y − u‖∞ ≤ O(
√

m log n) + O(
√

m) = O(
√

m log m),

as desired. The success probability can be amplified by repetition.

6.3 Covering Radius Lower Bound

Let h′ := (h+)1/(n−1), which we recall is conjectured to be constant. Combined
with Lemma 9, the theorem below shows that there exists a principal ideal I ⊆ R
for which every generator has Euclidean norm at least exp(Ω(

√
m/(h′ log m))) ·

S(I).

Theorem 8. For a prime power m, the log-unit lattice satisfies

μ(1)(Λ) ≥ Ω
(

m3/2/(h′ log m)
)

.

Proof. Using Lemma 12 below,

(det(Log C))1/(n−1) = Ω(m1/2/ log m).

7 In fact, ‖z1‖∞ = O(log m), but we do not need this.

Recovering Short Generators of Principal Ideals in Cyclotomic Rings 581

Since det(Λ) = det(Log C)/h+,8

(det(Λ))1/(n−1) = Ω(m1/2/(h′ log m)) .

The theorem now follows from the fact that

vol(Bn
1 ∩ H) ≤ √

n · 2n−1/(n − 1)! = O(1/n)n−1,

where Bn
1 := {x ∈ R

n : ‖x‖1 ≤ 1}. To prove this inequality, notice that (1) the
volume of Bn−1

1 is 2n−1/(n − 1)!, (2) the projection of Bn
1 ∩ H on the first n − 1

coordinates is contained in Bn−1
1 , and (3) this projection shrinks volumes by√

n, as can be seen by computing its Jacobian.

Lemma 12. The determinant of Log C satisfies

det(Log C)1/(n−1) = Ω(
√

m/ log m).

Proof. Recall from the proof of Lemma 3 that b∨
j is the projection of z∨

j orthog-
onal to 1. The |G|-dimensional full-rank lattice generated by {z∨

j }j∈G has deter-
minant

|det(Z−t)| =
∏

χ∈ ̂G
|λ−1

χ |.

Next, notice that the shortest vector in the intersection of this lattice with the
span of 1 is Z−t1 = λ−1

1 1, whose Euclidean norm is λ−1
1

√|G|. Therefore, the
dual of Log C, which is the projection of this lattice orthogonally to 1, has
determinant

|G|−1/2
∏

χ∈ ̂G\{1}
|λ−1

χ |,

and therefore

det(Log C) = |G|1/2
∏

χ∈ ̂G\{1}
|λχ|

= |G|1/2
∏

χ∈ ̂G\{1}

∣

∣

∣

∣

1
2

√

fχ · L(1, χ)
∣

∣

∣

∣

, (10)

where we used Eq. (5). Letting m = pk for a prime p, and using Theorem 1, we
get that

L :=
∏

χ∈ ̂G\{1}
|L(1, χ)| = Ω((log m)−(n−1−q) · p−q/2)

where q denotes the number of even quadratic characters modulo m, which is at
most 3 (see [MV06, Sect. 9.3]). We conclude that

L1/(n−1) = Ω(1/ log m). (11)

8 We note that 2n−1 det(Λ)/
√

n is known as the regulator, and a bound similar to
what we obtain here can be derived from the Brauer-Siegel theorem [Was97, p. 43].
This leads to a bound that is both somewhat weaker and ineffective.

582 R. Cramer et al.

Next, consider F =
∏

χ∈Ĝ\{1} fχ. For each 0 < j ≤ k, there are exactly
ϕ(pj)−ϕ(pj−1) characters of conductor fχ = pj . Exactly half are these are even
when p is odd and j > 1, and also when p = 2 and j > 2. When p is odd and
j = 1 there are ϕ(p)/2− 1 even characters of conductor p, and when p = 2 there
are no even characters of conductor 2 or 4. Assuming p is odd (the case p = 2
being very similar), this leads to

logp F =
k

∑

j=1

j · ϕ(pj) − ϕ(pj−1)
2

− 1
2

=
k

2
· ϕ(pk) − 1

2

k−1
∑

j=0

ϕ(pj) − 1
2

= kn − p − 1
2

k−2
∑

j=0

pj − 1 = kn − pk−1

2
− 1

2
,

and we conclude that

F = mn(1− 1
2k(p−1)− 1

2kn) = Ω(m)n. (12)

Plugging (11) and (12) into (10) completes the proof.

Acknowledgments. We thank Dan Bernstein, Jean-François Biasse, Sean Hallgren,
Sorina Ionica, Dimitar Jetchev, Paul Kirchner, Shinya Okumara, René Schoof, Alice
Silverberg, and Harold M. Stark for comments and many insightful conversations on
topics related to this work. We also especially thank Dan Shepherd [She14] for explain-
ing many additional details about the claims made in [CGS14], and for sharing other
helpful observations.

A Proof of Theorem 2

Proof. First, Corollary 4.13 of [Was97] gives that Z[ζ]∗ is generated by Z[ζ + ζ]∗

and ζ, so it follows that

Λ = LogZ[ζ]∗ = LogZ[ζ + ζ]∗,

since the kernel of Log is the group {±1} · U .
Next, recall that the group of cyclotomic units is defined as C = A∩R∗. We

define the group of real cyclotomic units as C+ = A∩Z[ζ + ζ̄]∗. The analogue of
Lemma 2 for the real cyclotomic units, also included in Lemma 8.1 of [Was97],
says that the group C+ of real cyclotomic units is generated by −1 and ζ(1−j)/2 ·
bj . So as above, we obtain that

Log C = Log C+.

The theorem then follows from the sequence of equalities

[Λ : Log C] =
[

LogZ
[

ζ + ζ
]∗

: Log C+
]

=
[

Z
[

ζ + ζ
]∗

: C+
]

= h+ ,

Recovering Short Generators of Principal Ideals in Cyclotomic Rings 583

where the second equality follows from ker(Log) ∩ C+ = ker(Log) ∩ Z[ζ + ζ]∗

(= {±1}), and the third equality is Theorem 8.2 of [Was97].

B Numeric Data

The previous sections established asymptotic bounds related to the log-
embeddings of the cyclotomic units. Figure 1 gives concrete numeric data for
several practical (and even impractical) choices of cyclotomic fields. This data
confirms that the method works in practice.

k (m = 2k) 6 7 8 9 ≥ 10

‖b∨
j ‖−2 5.04 8.56 14.69 25.71 ≥ 45.85

k (m = 3k) 4 5 ≥ 6

‖b∨
j ‖−2 5.72 13.65 ≥ 34.04

k (m = 5k) 3 4 ≥ 5

‖b∨
j ‖−2 10.04 36.43 ≥ 143

Fig. 1. Lower bounds on the inverse lengths of the dual vectors b∨
j defined in Sect. 3, for

various cyclotomics of prime-power index. Larger values correspond to larger decoding
distances for the log-embedding of the cyclotomic units.

References

[ADS15] Aggarwal, D., Dadush, D., Stephens-Davidowitz, N.: Solving the closest
vector problem in 2n time - the discrete Gaussian strikes again! In: FOCS,
pp. 563–582 (2015)

[Bab85] Babai, L.: On Lovász’ lattice reduction, the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986). Preliminary version in STACS 1985

[Ban93] Banaszczyk, W.: New bounds in some transference theorems in the geom-
etry of numbers. Math. Ann. 296(4), 625–635 (1993)

[Ban98] Banaszczyk, W.: Balancing vectors and gaussian measures of n-dimensional
convex bodies. Random Struct. Algorithms 12(4), 351–360 (1998)

[Ber14a] Bernstein, D.: Personal Communication. June 2014
[Ber14b] Bernstein, D.: A subfield-logarithm attack against ideal lattices. http://

blog.cr.yp.to/20140213-ideal.html, Febuary 2014
[BF14] Biasse, J.-F., Fieker, C.: Subexponential class group, unit group computa-

tion in large degree number fields. LMS J. Comput. Math. 17(suppl. A),
385–403 (2014)

http://blog.cr.yp.to/20140213-ideal.html
http://blog.cr.yp.to/20140213-ideal.html

584 R. Cramer et al.

[Bia14] Biasse, J.-F.: Subexponential time relations in the class group of large
degree number fields. Adv. Math. Commun. 8(4), 407–425 (2014)

[BPR04] Buhler, J., Pomerance, C., Robertson, L.: Heuristics for class numbers of
prime-power real cyclotomic fields. Fields Inst. Commun 41, 149–157 (2004)

[BS97] Banaszczyk, W., Szarek, S.J.: Lattice coverings and Gaussian measures
of n-dimensional convex bodies. Discrete Comput. Geom. 17(3), 283–286
(1997)

[BS15] Biasse, J.-F., Song, F.: A note on the quantum attacks against schemes
relying on the hardness of finding a short generator of an ideal in Q(ζ2n).
In: Technical report –12, The University of Waterloo, Revision of September
28th 2015

[BS16] Biasse, J.-F., Song, F.: A polynomial time quantum algorithm for comput-
ing class groups and solving the principal ideal problem in arbitrary degree
number fields. In: SODA (2016)

[CGS14] Campbell, P., Groves, M., Shepherd, D.: Soliloquy: a caution-
ary tale. In: ETSI 2nd Quantum-Safe Crypto Workshop, 2014.
Available at http://docbox.etsi.org/Workshop/2014/201410 CRYPTO/
S07 Systems and Attacks/S07 Groves Annex.pdf

[EHKS14] Eisenträger, K., Hallgren, S., Kitaev, A., Song, F.: A quantum algorithm for
computing the unit group of an arbitrary degree number field. In: STOC,
pp. 293–302. ACM (2014)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

[GGH13] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GS02] Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature
scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
p. 299. Springer, Heidelberg (2002)

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–
288. Springer, Heidelberg (1998)

[Lan27] Landau, E.: Über Dirichletsche Reihen mit komplexen Charakteren. Jour-
nal für die reine und angewandte Mathematik 157, 26–32 (1927)

[Lan02] Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn.
Springer, New York (2002)

[Len82] Lenstra, A.K.: Lattices and factorization of polynomials over algebraic num-
ber fields. In: Calmet, J. (ed.) EUROCAM ’1982. LNCS, vol. 144, pp. 32–39.
Springer, Heidelberg (1982)

[LLL82] Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with
rational coefficients. Math. Ann. 261(4), 515–534 (1982)

[LLS15] Lamzouri, Y., Li, X., Soundararajan, K.: Conditional bounds for the least
quadratic non-residue and related problems. Math. Comp. 84(295), 2391–
2412 (2015)

[LMPR08] Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a mod-
est proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol.
5086, pp. 54–72. Springer, Heidelberg (2008)

[Lou15] Louboutin, S.: An explicit lower bound on moduli of Dirichlet L-functions
at s = 1. J. Ramanujan Math. Soc. 30(1), 101–113 (2015)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices, learning with
errors over rings. J. ACM 60(6), 43:1–43:35 (2013)

http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf

Recovering Short Generators of Principal Ideals in Cyclotomic Rings 585

[LPR13] Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptog-
raphy. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 35–54. Springer, Heidelberg (2013)

[LSS14] Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear
maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014)

[Mic02] Micciancio, D.: Generalized compact knapsacks, cyclic lattices, efficient one-
way functions. Comput. Complex. 16(4), 365–411 (2007). Preliminary ver-
sion in FOCS 2002

[Mil14] Miller, J.C.: Class numbers of totally real fields and applications to the
weber class number problem. Acta Arith. 164(4), 381–398 (2014)

[Mil15] Miller, J.C.: Real cyclotomic fields of prime conductor and their class num-
bers. Math. Comp. 84(295), 2459–2469 (2015)

[MR04] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007). Preliminary
version in FOCS 2004

[MV06] Montgomery, H.L., Vaughan, R.C.: Multiplicative Number Theory I. Cam-
bridge University Press, Cambridge (2006)

[MV10] Micciancio, D., Voulgaris, P.: A deterministic single exponential time algo-
rithm for most lattice problems based on Voronoi cell computations. In:
STOC, pp. 351–358 (2010)

[O’D14] O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press,
Cambridge (2014)

[Pei10] Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg
(2010)

[PR07] Peikert, C., Rosen, A.: Lattices that admit logarithmic worst-case to
average-case connection factors. In: STOC, pp. 478–487 (2007)

[Sam70] Samuel, P.: Algebraic Theory of Numbers. Hermann, Paris (1970)
[Sch87] Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algo-

rithms. Theor. Comput. Sci. 53, 201–224 (1987)
[Sch03] Schoof, R.: Class numbers of real cyclotomic fields of prime conductor.

Math. Comput. 72(242), 913–937 (2003)
[Sch15] Schank, J.: LogCvp, Pari implementation of CVP in LogZ[ζ2n]∗, March

2015. https://github.com/jschanck-si/logcvp
[She14] Shepherd, D.: Personal communication, December 2014
[SV10] Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with rela-

tively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D.
(eds.) Public Key Cryptography. LNCS, vol. 6056, pp. 420–443. Springer,
Heidelberg (2010)

[Ver12] Vershynin, R.: Introduction to the non-asymptotic analysis of ran-
dom matrices. In: Compressed sensing, pp. 210–268. Cambridge Univer-
sity Press, Cambridge (2012). http://www-personal.umich.edu/∼romanv/
papers/non-asymptotic-rmt-plain.pdf

[Was97] Washington, L.: Introduction to Cyclotomic Fields. Graduate Texts in
Mathematics. Springer, New York (1997)

https://github.com/jschanck-si/logcvp
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf

Circuit Compilers with O(1/ log(n))
Leakage Rate

Marcin Andrychowicz1(B), Stefan Dziembowski1, and Sebastian Faust2

1 University of Warsaw, Warsaw, Poland
marcin.andrychowicz@gmail.com

2 Ruhr University Bochum, Bochum, Germany

Abstract. The goal of leakage-resilient cryptography is to construct
cryptographic algorithms that are secure even if the devices on which
they are implemented leak information to the adversary. One of the main
parameters for designing leakage resilient constructions is the leakage
rate, i.e., a proportion between the amount of leaked information and
the complexity of the computation carried out by the construction. We
focus on the so-called circuit compilers, which is an important tool for
transforming any cryptographic algorithm (represented as a circuit) into
one that is secure against the leakage attack. Our model is the “probing
attack” where the adversary learns the values on some (chosen by him)
wires of the circuit.

Our results can be summarized as follows. First, we construct circuit
compilers with perfect security and leakage rate O(1/ log(n)), where n
denotes the security parameter (previously known constructions achieved
rate O(1/n)). Moreover, for the circuits that have only affine gates we
obtain a construction with a constant leakage rate. In particular, our
techniques can be used to obtain constant-rate leakage-resilient schemes
for refreshing an encoded secret (previously known schemes could toler-
ate leakage rates O(1/n)).

We also show that our main construction is secure against constant-
rate leakage in the random probing leakage model, where the leaking
wires are chosen randomly.

1 Introduction

Side-channel attacks are an omnipresent threat for the security of cryptographic
implementations. In contrast to traditional cryptanalytical attacks that attempt
to break the mathematical properties of the cryptographic algorithm, a side-
channel adversary targets the implementation by, e.g., observing the running
time of a device [29] or measuring its power consumption [30]. An important

M. Andrychowicz and S. Dziembowski—Supported by the WELCOME/2010-4/2
grant founded within the framework of the EU Innovative Economy (National Cohe-
sion Strategy) Operational Programme.
S. Faust—In part supported by the Emmy Noether Program FA 1320/1-1 of the
German Research Foundation (DFG).

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 586–615, 2016.
DOI: 10.1007/978-3-662-49896-5 21

Circuit Compilers with O(1/ log(n)) Leakage Rate 587

countermeasure against side-channel attacks – in particular against power analy-
sis attacks – is the so-called masking countermeasure. A masking scheme ran-
domizes the intermediate values of the computation in order to conceal sensitive
information.

Circuit Compilers and the Probing Model. A formalization of the mask-
ing countermeasure has been introduced in the seminal work of Ishai et al. [26]
with the concept of leakage resilient circuit compilers. At a high-level, a circuit
compiler takes as input a description of a circuit Γ and compiles it into a pro-
tected circuit ̂Γ that has the same functionality as Γ but additionally is secure
in a well-defined leakage model. One of the most prominent leakage models is
the so-called t-threshold probing model of Ishai et al., where the adversary is
allowed to observe up to t intermediate values computed by ̂Γ . The threshold
probing model is widely used in practice to analyze the soundness of a masking
scheme against higher order attacks [3–5,8,9,22,28,32].

On the Importance of the Leakage Rate. An important parameter to eval-
uate the security of a masking scheme in the probing model is the value of t. At
first sight it may seem that a higher value for t automatically implies a higher
level of security as the adversary obtains more knowledge about the internals.
To see why such an approach may not always lead to better security imagine two
compilers that on an input circuit Γ output the following: the first one produces
a circuit Γ1 that has 1 thousand gates and tolerates leakage of 10 wires, while
the second one produces a circuit Γ2 of size 1 million gates that tolerates leakage
of 100 wires. Which construction provides a higher level of security (even dis-
carding the production costs)? The first one has to be implemented on hardware
that leaks at most 1 % of its wires, while the second one requires hardware that
leaks at most 0.01 % of the wires! Therefore, the second construction is actually
weaker (although it “tolerates more leakage” in absolute terms). The above sim-
ple example illustrates that in many case it may be more natural to look at the
leakage rate of a given construction (i.e.: the “amount of leakage” divided by the
circuit size), than at the “total amount of leakage” itself.1

Despite the practical importance of the threshold probing model it is not well-
understood how close we can get to the optimal leakage rate of O(1). Indeed,
the best known construction is still the circuit compiler of Ishai et al., which
remains secure if the adversary learns a O(1/n)-fraction of the wires in the
transformed circuit ̂Γ (for security parameter n). The main contribution of our
work is to significantly improve this rate and build new leakage resilient circuit
1 We note that this model still ignores many aspects of the side channel attacks, for

example the fact that some operations (like writing bits to the memory) leak more
information than some other ones (like the arithmetic operations). We stress that a
certain level of abstraction is inevitable in every formal model. Moreover, the fact
that a wire w leaks more information than the wires can be reflected by having
several copies of w in Γ (where Γ is an input for the circuit compiler, see Sect. 1.1
for more on the circuit compilers).

588 M. Andrychowicz et al.

compilers that achieve O(1/ log(n)) leakage rate, and if the circuit Γ is only
affine computation we achieve the optimal leakage rate of O(1).

At this point, we want to briefly comment about what we mean by “optimal-
ity” of leakage rate and the efficiency of our constructions. First, it shall be clear
that we cannot leak everything and, hence, a leakage rate of O(1) is asymptot-
ically optimal. Of course, concretely there can be big differences depending on
the hidden constants. Some of our constructions are asymptotically optimal (for
affine circuits), but their constants are far from the optimal 1. We believe it is an
important question for future work to optimize these constants. We sometimes
also talk about optimality in terms of efficiency. In this case, we mean optimality
for circuit compilers that compute with encodings and offer information theo-
retic security. One may get asymptotically better efficiency by using solutions
based on FHE.2

1.1 The Work of Ishai, Sahai and Wagner

The Threshold Probing Model. Ishai et al. consider two different types
of probing adversaries: the first type of adversary is allowed to probe up to t
intermediate values in the entire transformed circuit ̂Γ . Notice that this implies
that for a growing number of gates in the circuit ̂Γ the number of corrupted wires
stays the same, and hence the fraction of wires of the circuit that are corrupted
decreases. To improve the leakage rate, [26] also considers a significantly stronger
adversary where the transformed circuit is structured into so-called regions and
the adversary can probe up to t wires in each such region. In the following we
call the later model the t-region probing model, which will be the focus of our
work. Notice that in the following a region will correspond to a sub-circuit of the
transformed circuit, and we will describe below how we structure the transformed
circuit into such regions.

The Circuit Compiler of Ishai, Sahai and Wagner (ISW). Ishai et al. con-
sider Boolean circuits Γ with internal state m, which can, e.g., store the secret
key of an AES. The basic ingredient of the compiler of Ishai et al. is a leakage
resilient encoding scheme Enc(.) that encodes the computation in ̂Γ . For a fixed
number of probes t define the security parameter n = O(t).3 In the transformed
circuit each intermediate wire (including the state m) which carries a bit x in
the original circuit Γ is represented by n wires Enc(x) = (X1, . . . , Xn) that
are chosen uniformly at random such that

∑

i Xi = x (the sum here represents
Boolean XOR, but the encoding scheme can be defined over an arbitrary finite
field). Since the above encoding scheme is a perfect (n−1) out of n secret sharing

2 Notice that even for such solutions our construction offers asymptotic improvements
over earlier works since the decryption circuit of the FHE scheme has to be protected
with an encoding-based circuit compiler.

3 In the rest of the work we will mostly give a concrete relation between the num-
ber of probes t and the security parameter n, which determine the blow-up of the
transformed circuit.

Circuit Compilers with O(1/ log(n)) Leakage Rate 589

scheme, it is easy to see that an adversary that learns up to t = n − 1 values of
the codeword X obtains no information about the secret x.

The main difficulty in developing a secure circuit compiler is the transfor-
mation of the gates, i.e., the transformation of the AND and XOR gate in the
case of ISW. In ̂Γ gates are represented by so-called gadgets. A gadget, e.g.,
an AND gadget, takes as input two encodings Enc(a) and Enc(b) and outputs
Enc(c) such that c = ab. Of course, besides correctness, the gadgets have to be
specifically tailored such that they withstand t-region probing attacks, where for
the ISW construction each gadget corresponds to a region.

Security against t-region probing attacks is formalized by a simulation-based
argument. That is, any information that can be learnt by an adversary with
t-region probing access to ̂Γ , can also be obtained by an adversary that has only
black-box access to Γ . More formally, Ishai et al. show that for any t-region
probing adversary A against ̂Γ there exists a simulator Sim that can simulate
answers to all probes with just black-box access to Γ . Notice that the simulation
is assumed to be perfect, i.e., the distribution that an adversary obtains by
applying a t-probing attack against ̂Γ is identical to the distribution that the
simulator produces. The ISW compiler achieves security against a probing rate
of at least Ω(1/n) of the wires. In fact, it is easy to see that this bound is tight
for the construction of ISW due to the way in which transformed AND gadgets
are computed.4 Hence, to further improve the leakage rate, we need to develop
a new circuit transformation.

1.2 Our Contributions

Protecting Affine Circuits. We first consider the seemingly simpler problem
of how to protect only affine operations against t-region probing adversaries. We
use the simple encoding function described above, i.e., a secret x ∈ F is encoded
by a random vector X := (X1, . . . , Xn) such that

∑

i Xi = x. It is easy to see
that the addition of two encoded values and multiplication by a constant can
be done efficiently requiring only O(n) operations. Hence, if we consider only a
single affine operation, then the adversary may learn up to t = O(n) wires from
such an operation without violating security. Unfortunately, the above does not
easily scale for larger circuits. If we allow the adversary to probe in each gadget
t wires then the adversary may eventually reveal secret information.

To avoid this problem, the construction of Ishai et al. (and essentially any
leakage resilient circuit compiler) uses a so-called refresh algorithm that refreshes
the encoding by introducing new randomness into X, thereby rendering previ-
ous leakage on X useless. The basic idea of the algorithm Y ← refresh(X) is to
sample Z ← Enc(0) and compute Y = X + Z. Of course, the main difficulty
is to generate Z in a way that is secure against t-region probing adversaries.

4 For readers familiar with the construction of [26] the transformation for the AND
gate computes on input A = (A1, . . . , An) and B = (B1, . . . , Bn) the values Ai · Bj

for all i, j ∈ [n]. Hence, each share Ai appears at least n times and hence it is
impossible to obtain leakage rate better than O(n−1).

590 M. Andrychowicz et al.

Ishai et al. propose an implementation of the refresh algorithm that requires
O(n2) operations leading to a leakage rate of O(n−1). Surprisingly, it is non-
trivial to improve the complexity of refresh to O(n) – in fact, we are not aware
of any secure refresh algorithm that has the optimal complexity of O(n). The
first contribution of our work is to propose the first refreshing algorithm that
is perfectly secure against O(n) adversarial chosen probes and has (asymptoti-
cally) optimal complexity and randomness usage of O(n). Inspired by the work
of Ajtai [1] who studies security against the weaker model of random probing
attacks (we will compare our work with the work of Ajtai below), we build our
refreshing scheme from expander graphs with constant degree. We emphasize
that while our refreshing scheme is similar to the one used by Ajtai, the security
proofs differ significantly as we show security in the much stronger model of
adaptive probing attacks.

Using the above expander-based scheme for refreshing and combining it with
the fact that transformed gadgets for affine operations have complexity O(n),
we obtain the first compiler for affine circuits that asymptotically achieves both
the optimal complexity of O(n) and remains secure against t-region probing
adversaries for t = O(n), where each region is of size O(n).

Protecting Any Circuit Against Probing Attacks. To extend our result
to work for arbitrary circuits, we need to develop a secure transformation for
the multiplication operation. Notice that the transformed multiplication gadget
of ISW can be broken when the adversary can probe Ω(n) wires.5 Our construc-
tion borrows techniques from perfectly secure multiparty computation [14] and
combines them in a novel way with our transformation for affine circuits from
the previous paragraph. We give some more details below.

Instead of using the simple additive encoding scheme that can be used to
protect affine computation, we use a linear secret sharing scheme that has the
multiplicative property [11]. Informally speaking, a linear secret sharing scheme
is multiplicative if from two encodings X,Y , we can compute the product xy
just by computing a linear combination of all the values Zi = Xi · Yi and then
taking a linear combination of Zi to compute xy. An example of a secret sharing
scheme that satisfies the above property is Shamir’s scheme. In Shamir’s scheme
a secret x from some field F is encoded into n = 2t + 1 shares such that any
(t+1) shares can be used to reconstruct the secret x but any subset of at most t
shares reveals no information about x. In the following we denote a multiplicative
sharing of a secret x with threshold t by [x]t. Notice that since the above encoding
scheme is linear, we can easily implement t-region probing resistant addition and
multiplication by a constant. We now turn to the description of the protected
multiplication operation.

To simplify exposition, let us first assume that the transformed multiplication
has access to a leak-free source of randomness that outputs for a random field

5 One may object that by structuring the computation of the ISW AND transforma-
tion into regions of size O(n) one can achieve an improved probing rate. However, it
is easy to see by a counting argument that such structuring is impossible.

Circuit Compilers with O(1/ log(n)) Leakage Rate 591

element r ∈ F random encodings [r]t and [r]2t for Shamir’s scheme. In this
setting, we can use ideas from [14] to carry out the multiplication. On input two
vectors A = [a]t and B = [b]t, first compute Zi = Xi · Yi. It is easy to see that
Zi defines shares that lie on a polynomial of degree 2t with the shared secret
being xy, i.e., we have Z = [xy]2t. The good news is that the vector Z already
yields an encoding of the desired value xy, however, the threshold for Z has
increased by a factor 2. To solve this problem we use the encodings [r]t and [r]2t

output by the leak-free component, which enables us to decrease the degree of
the encoding [xy]t. Similar techniques have been used in the context of circuit
compilers by [2,23], but it is easy to see that their constructions are not secure
when ω(1/n) of the wires are corrupted.

Assuming that [r]t and [r]2t are produced by the leak-free gates, we can prove
that the above construction remains secure in the presence of an adversary that
learns up to t wires where n = 2t + 1. Of course, for our final transformation
we do not want to assume that the computation of [r]t and [r]2t is done in a
leak-free way. Instead, we seek for a t-region probing resistant implementation
of it. The crucial observation to achieve this goal is the fact that the encodings
[r]t and [r]2t can be produced by a circuit solely consisting of affine operations
(for Shamir’s scheme Lagrange polynomial interpolation – but this can be eas-
ily generalized). Hence, the problem of protecting arbitrary computation, can be
reduced to protecting the affine computation against t-region probing attacks! As
the later can be solved by the expander-based transformation described above,
we obtain a circuit transformation that works for arbitrary circuits Γ and pro-
duces protected circuits ̂Γ that remain perfectly secure even if in each region of
size O(n) the adversary can learn O(n/ log(n)) wires.

The above description omits several technical challenges – in particular, when
combining the protected computation operating with the multiplicative secret
sharing with our expander-based transformation for affine computation. One
problem that we need to address is how to do a secure “conversion” between
different types of encodings. More precisely, when we apply our transformation
for affine computation in a naive way, then the resulting circuit outputs “encod-
ings of encodings” (so-called “double-encodings”). That is, each share of [r]t
and [r]2t is again encoded using the simple additive sharing used by our affine
compiler. Hence, we need to design a t-probing resistant way to “peal-off” the
outer layer of the “double-encoding” without revealing the secret value r. To this
end, we propose special sub-circuits – so-called tree decoders – that can do the
decoding without breaking security in the presence of an adversary that probes
a O(n/ log(n))-fraction of the wires.6

On the Relation to the Noisy Leakage Model. An important leakage model
that has recently been considered in several works is the noisy leakage model
[6,17,20,31]. The noisy leakage model matches with the engineering perspective
as it is closely related to what happens in real-world side-channel attacks based
6 Notice that the tree-decoding is also the technical reason why we do not achieve the

optimal rate of O(1).

592 M. Andrychowicz et al.

on the power consumption [31]. Recently, it was shown by Duc et al. [16] that
security in the probing model can be translated into security in the noisy leakage
model. In particular, using a Chernoff bound and the reduction of [16] security
in the t-region probing model implies security in the noisy leakage model of [31].
As the noise parameter is directly related to the leakage rate, by improving the
leakage rate, we also get quantitatively better bounds for the Prouff-Rivain noise
parameter. More precisely, by applying [16] we directly achieve security when we
set the PR noise parameter to O(1/ log(n)|F|) (compared to O(1/n|F|)). We also
show in Sect. 6 that by a more careful analysis our construction actually achieves
security for O(1/|F|) noise level. This is done by showing that our construction
is actually secure in the p-random probing model when p is a constant. Using the
reduction in [16] and instantiating the multiplicative secret sharing with codes
based on algebraic geometry [7], we obtain circuit compilers that are secure for
the optimal noise rate of O(1).

On Perfect Security and Adaptive Probing Attacks. We notice that all
our result in the t-region probing model achieve perfect security, i.e., there is no
statistical error in the theorem statements. This is important, as from a practical
point of view such a statistical error term often matters as for small values of
the security parameter the error term can be significant.

Another advantage that perfect security has (over statistical security, say)
is that one can show that security against adaptive and non-adaptive probing
attacks is equivalent. Indeed, in our security analysis we typically consider an
adversary that chooses together with the input to the circuit a set of probes P
that specifies for which wires the adversary will learn the corresponding value
when the circuit is evaluated. While the adversary can choose a different set
of probes P before each execution of the circuit, most of our analysis does not
explicitly allow the adversary to adaptively choose the position of the probes
within one execution (i.e., the adversary cannot observe the value of some wire
and then depending on the value on that wire decide which wire to probe next).
Since all our constructions achieve perfect security, we can apply results from [10]
to get security even against fully adaptive probing adversaries.

On the Efficiency of Our Construction. Our basic construction blows up
the size of the circuit by a factor of O(n3). In contrast the construction of
Ishai et al. achieves better efficiency and only increases the size of the circuit
by a factor of O(n2). We note that the efficiency of our construction can most
likely be improved by a linear factor by using packed secret sharing as the mul-
tiplicative encoding scheme (in a similar way as recently done in [2,23]), hence
asymptotically achieving the same efficiency as the construction of Ishai et al.
We omit the details in this extended abstract.

1.3 Comparison to Other Related Work

Due to space limitations we only compare with the most relevant literature
on circuit compilers. Notice also that our focus is not on protecting against

Circuit Compilers with O(1/ log(n)) Leakage Rate 593

active attacks – so-called fault attacks [12,19,25], and hence, we omit a detailed
comparison.

The Work of Ishai et al. [26]. Besides the main construction that was
already outlined above, Ishai et al. propose a second transformation that achieves
improved leakage rate with statistical security (i.e., with a small error proba-
bility a probing adversary will break security). In particular, from Theorem 3
of [26] one gets statistical security against t := O(n) probes with a circuit of
size s · O(n log(n)) · poly(k), where k is the statistical security parameter and
s the size of the initial circuit Γ . The above result can be transformed to the
t-region probing model considered in our work. In this case, one obtains gadgets
of size n(log n)poly(k). Since each region is represented by a gadget this yields
asymptotically a leakage rate of O(1/ log n), which is as in our paper. There are,
however, several important differences:

1. While [26] achieve statistical security, we obtain perfect security. Perfect secu-
rity is important as it gives full adaptivity for free.

2. The “constant” in O(1/ log n) depends on the statistical security parameter,
i.e., it is poly(k).

3. The results from [26] do not easily generalize to the noisy leakage model. The
reason for this comes from the statistical security loss poly(k) that is hidden
in the O(.) notation.

4. Compared to our main construction that has complexity blow-up O(n3) per
multiplication, [26] obtains asymptotically better efficiency of O(n log(n)). We
notice, however, that we can trivially improve efficiency of our construction
to O(n2 log(n)), and further efficiency improvements are probably possible
using the packed secret sharing.

The Work of Ajtai [1]. At STOC’11 Ajtai proposed a construction that achieves
constant rate in the so-called p-random probing model. Ajtai’s construction
achieves statistical security for “sufficiently” large n and “sufficiently” small
constant p, and hence in total a constant fraction of the wires is corrupted.
While similar to Ajtai, we use expander graphs to refresh additive encodings,
our construction for the transformed multiplication follows a different path. In
particular, it is not clear if Ajtai’s involved construction for the multiplication
operation can be proven secure in the much stronger t-region probing model.
Besides the fact that we prove security in the strictly stronger adversarial model,
where the adversary can control which wires he wants to corrupt, our construc-
tion also improves the efficiency of Ajtai’s construction by a factor O(n log(n))
and our security proof is significantly simpler. Hence, one contribution of our
work is to simplify and generalize the important work of Ajtai [1].

The Use of Shamir’s Secret Sharing in Context of Leakage-Resilient Compliers.
Shamir’s secret sharing was used in this context before [9,22], however what is
achieved there is the leakage rate of O(1/n). Let us stress that the combination

594 M. Andrychowicz et al.

of Shamir secret sharing and the expander-based circuit compiler for affine com-
putation was not known before and can be interesting on its own (before it was
not known how to get the O(n) overhead and constant fraction rate even for
affine computation).

Circuit Compilers in Other Leakage Models. Various other works [13,18,21,27]
build circuit compilers in leakage models that are different from the threshold
probing model. We notice that all these works achieve security with leakage rate
O(1/n) or worse. The work of [13] also gives a nice overview of compilers for the
bounded independent leakage model (which is more general than the probing
model).

2 Definitions

For two field elements a, b ∈ F, addition and multiplication in F are denoted by
a + b and ab. For two vectors A,B ∈ F

n, A + B is the vector-wise addition in F.
For a constant c ∈ F, we denote by cA = (cA1, . . . , cAn), i.e., component-wise
multiplication with the constant c. Let [n] = {1, . . . , n} and [a, b] = {a, . . . , b}.
If S ⊆ [n] and X ∈ F

n then XS = {Xi}i∈S . We write M ∈ F
r×c for a matrix

{mi,j}j∈[c]
i∈[r] with r rows and c columns. For distinct elements z1, . . . , zr ∈ F we

use Vanr×c(z1, . . . , zr) to denote the Vandermonde matrix {zj
i }j∈[c]

i∈[r] .

2.1 Leakage Resilient Encoding Schemes

An important building block to construct a circuit with resilience to leakage is
a leakage resilient encoding scheme [15]. An encoding scheme Π = (Enc,Dec)
consists of two algorithms. The probabilistic Enc algorithm takes as input some
secret x ∈ F for a field F and produces a codeword X = (X1, . . . , Xn) ∈ F

n, where
Xi are called the shares of the encoding. The deterministic decoding function Dec
takes as input a codeword and outputs the encoded message. A coding scheme
satisfies the correctness property if for any x ∈ F we have Pr[Dec(Enc(x))) =
x] = 1. Moreover, we want that the encoding scheme is secure against t-probing
attacks. An encoding scheme is t-probing secure if for any x, x′ ∈ F the adversary
cannot distinguish t shares of Enc(x), from t shares of Enc(x′). In this paper we
will be interested in two different probing resilient encoding schemes.

Additive Encoding Schemes. The most simple encoding scheme is to encode
a secret element x ∈ F by a vector X sampled uniformly at random from F

n

such that
∑

i Xi = x. Formally, we define the additive encoding scheme ΠAE
n,F =

(EncAE,DecAE) as:

– EncAE : F → F
n: On input x ∈ F choose X1, . . . , Xn−1 uniformly at random

and compute Xn = x − X1 − . . . − Xn−1. Output X = (X1, . . . , Xn).
– DecAE : F

n → F works as follows: On input a vector X ∈ F
n output

x =
∑

i Xi.

Circuit Compilers with O(1/ log(n)) Leakage Rate 595

It is easy to see that any adversary that learns up to n − 1 shares of X has no
knowledge about the secret x.

Encoding Based on Multiplicative Secret Sharing. Additionally to ΠAE
n,F

which will mainly be used in Sect. 4 to protect affine computation against t-region
probing attacks, we need an additional code for protecting arbitrary circuits. In
particular, we need a linear secret sharing scheme that additionally satisfies the
multiplicative property [11]. Informally speaking, a linear secret sharing scheme
is multiplicative if from two encodings X,Y , we can compute the product xy
just by computing a linear combination of all the values Zi = XiYi. We formally
define the encoding scheme ΠMSS

n,t,F,M = (EncMSS,DecMSS) with n = 2t + 1 and
M being the generator matrix of the linear code (representing the secret sharing
scheme) as follows:

– EncMSS : F → F
n: On input x ∈ F choose uniformly at random (a1, . . . , at) ←

F
t and compute X = (x1, . . . , xn) = M · (x, a1, . . . , at). We will often denote

encodings of x ∈ F using ΠMSS with [x]t.
– DecMSS : Fn → F: On input X ∈ F

n compute X · M−1 ∈ F
t+1, where the

first element represents the recovered secret.

We require that ΠMSS
n,t,F,M is multiplicative meaning that there exists a n-elements

vector R ∈ F
n such that

∑

i RiXiYi, where all operations are in F.7 If two
encodings [x]t and [y]t are multiplied then we obtain [xy]2t, where the decoding
now requires a slightly adjusted generator matrix M̃ .

To simplify exposition, for most of this paper the reader may think of the
code as the standard code representing Shamir’s secret sharing and as M of
the Vandermonde matrix Vann×(t+1)(z1, . . . , zn) for distinct elements zi. Using
alternative codes, e.g., packed secret sharing schemes or codes based on algebraic
geometry, we can improve the efficiency and the tolerated leakage rate of our
construction in the case of random probing from Boolean circuits (we discuss
this briefly in Sect. 7). It is easy to see that the encoding scheme ΠMSS

n,t,F,M based
on Shamir’s scheme is secure against any t-probing adversary, when n = 2t + 1.
To simplify notation we omit the parameters F and M and simply denote this
scheme ΠMSS

n,t .

2.2 Circuit Transformations

We recall the formalization of circuit transformation of [20,26]. A circuit trans-
formation TR takes as input a security parameter n, a circuit Γ , and an initial
state m0 and produces a new circuit ̂Γ and a new initial state ̂M0.

The Original Circuit Γ . We assume that the original circuit Γ carries values
from an (arbitrary) finite field F on its wires and is composed of the following
gates (in addition to the memory gates which will be discussed later):

7 The above can be generalized but we stick to this simple requirement for simplicity.

596 M. Andrychowicz et al.

– +,−, and ∗, which compute, respectively, the sum, difference, and product in
F, of their two inputs; moreover, for every α ∈ F, the constant gate Constα,
which has no inputs and simply outputs α.

– the “coin flip” gate Rand, which has no inputs and produces a uniformly
random independently chosen element of F.

Fan-out in Γ is handled by a special Copy gate that takes as input a single value
and outputs two copies. Circuits that only contain the above types of gates are
called stateless.

Stateful Circuits. In addition to the gates described above, stateful circuits also
contain memory gates, each of which has a single incoming and a single outgoing
edge. Memory gates maintain state between the consecutive executions of the
circuit. At any execution of the circuit (called a round or a cycle), a memory
gate sends its current state down its outgoing edge and updates it according to
the value of its incoming edge. Let mi be the state of all memory gates of the
circuit after the i-th round and m0 be the initial state of the circuit. During the
i-th round the circuit is run in the state mi−1 on the input xi and the execution
results in the output yi and the new state mi. The above execution will be
denoted as (yi,mi) ← Γ [mi−1](xi) for the circuit Γ . For instance, the state m0

of an AES circuit may be its secret key.

The Transformed Circuit ̂Γ . Our circuit transformation TR is encoding-based,
i.e., it uses as a main building block an encoding scheme that is resilient to
t-probing adversaries. TR takes as input (C,m0) and outputs a protected state
̂M0 and the description of the protected circuit ̂Γ . As in earlier work the transfor-
mation of the initial state m0 is easy: instead of storing m0 we store an encoding
of m0 using a leakage resilient encoding described in the previous section. We
denote the transformed state by ̂M0. The transformation of the gates in Γ works
gate-by-gate: each gate in the original circuit Γ is represented by a sub-circuit –
a so-called gadget – that carries out the same computation as the corresponding
gate in Γ in encoded form. Notice that the transformed circuit also uses special
sub-circuits to encode the input xi and decode the output of the circuit. As
in previous works [20] we deal with this situation with so-called Decoder and
Encoder gates. These gadgets are simple and just execute the underlying decod-
ing, respectively, encoding function of the underlying leakage resilient encoding
scheme.

2.3 Probing Attacks Against Circuits

As discussed in the introduction, we are interested in security against so-called
t-region probing adversaries, i.e., adversaries that learn up to t wires in a region
of a transformed circuit ̂Γ . Typically, a region is a sub-circuit of size O(n) (this
is the same in the case of the work of [26]) of the transformed circuit, where in
most cases in our transformation a region corresponds naturally to a transformed
gadget. We will call a set of probes P t-region admissible if P contains at most t
probes for each region of the transformed circuit.

Circuit Compilers with O(1/ log(n)) Leakage Rate 597

Security against a t-region probing adversary is formalized by a simulation-
based argument and given in Definition 1. To this end, we first define a real and
ideal security game shown in Fig. 1. In the following, we use W

̂Γ (X|Y) to denote
the wire assignment of ̂Γ when run on inputs X = (xi, ̂Mi−1) conditioned that
the output is Y = (yi, ̂Mi). The set Pi denotes the set of wires that the adversary
wants to probe in the i-th clock cycle and Pi(ŴΓ (X|Y)) the leakage during the
i-th clock cycle.

Game RealTR(A, n, Γ, m0)

(Γ , M0) ← TR(Γ, m0)

(x1, P1) ← A(Γ , 1n). Set i = 1.
Repeat until the adversary A holds:

(yi, Mi) ← Γ [Mi−1](xi);

Set X = (xi, Mi−1) and Y = (yi, Mi);
(xi+1, Pi+1) ← A(yi, Pi(WΓ (X|Y)))
i = i + 1

Output {Pi(WΓ ((xi, Mi−1)|(yi, Mi)))}i and {(xi, yi)}i.

Game IdealTR(Sim, A, n, Γ, m0)

(Γ , M0) ← TR(Γ, m0)

(x1, P1) ← A(Γ , 1n). Set i = 1.
Repeat until the adversary A holds:

(yi, mi) ← Γ [mi−1](xi)
Leaki ← Sim(xi, yi, Pi)
(xi+1, Pi+1) ← A(yi, Leaki)
i = i + 1

Output {Leaki}i and the set {(xi, yi)}i.

Fig. 1. The real world with the adversary A observing the computation of the trans-
formed circuit Γ̂ [M̂i] is shown on the left side. On the right side we describe the
simulation.

Definition 1 (Security of Circuit Transformation). Recall that n is the
security parameter. A circuit transformation TR is (perfectly) t-region probing
secure if for any t-region probing adversary A there exists a PPT simulator
Sim such that for any (stateful) circuit Γ with initial state m0 the distributions
RealTR(A, n, Γ,m0) and IdealTR(Sim,A, n, Γ,m0) are identical, where the proba-
bilities are taken over all the coin tosses.

Leakage from Stateless Circuits. In spirit of earlier works on leakage resilient
circuit compilers [20,26] the main difficulty for proving that a compiler satisfies
Definition 1 is to show that leakage from stateless transformed circuits can be
simulated with probing access to just its encoded inputs and outputs. In the
following we will focus on proving such a simulation property for stateless circuits
and only provide a high-level discussion how this property can be extended to
prove that the circuit transformation is secure according to Definition 1.

We adapt the notion of reconstructability from Faust et al. [20] to the
probing setting with perfect security. To this end we define a leakage oracle
Ω(X(1),X(2), . . .) for some sequence of encodings (X(1),X(2), . . .). The oracle
can be queried on (i, j), and returns the value X

(i)
j , i.e., the j-th position of the

i-th encoding. We will use the notation SimΩ(X(1),X(2),...) to denote the run of
the simulator Sim with the access to the oracle Ω(X(1),X(2), . . .). We call the
simulator q-bounded if for each of the input encodings given to the oracle he
queries at most for q different elements of the encoding.

598 M. Andrychowicz et al.

Definition 2 ((t, q)-region reconstructible). Let ̂Γ be a (transformed) state-
less circuit with ς input encodings and producing τ output encodings. We say that
a pair of strings (X,Y) is plausible for ̂Γ if ̂Γ might output Y = (Y (1), . . . , Y (τ))
on input X = (X(1), . . . , X(ς)), i.e., if Pr[̂Γ (X) = Y] > 0. We say that ̂Γ is
(t, q)-region reconstructible, if for any t-region admissible set of probes P, there
exists q-bounded simulator Sim

̂Γ such that for any plausible (X,Y), the following
two distributions are identical: P(W

̂Γ (X|Y)) and Sim
Ω(X,Y)
̂Γ

(P).

To better understand the above definition, consider the transformed multipli-
cation gadget. The multiplication gadget takes as input two encoded inputs
A,B and produces an encoding C such that Dec(C) = Dec(A) · Dec(B). If the
multiplication gadget is (t, q)-region reconstructible, then we need to show that
for any t-region admissible set of probes P and any plausible inputs/outputs
((A,B), C) there exists a q-bounded simulator Sim such that the following holds:
P(W

̂Γ ((A,B)|C)) ≡ Sim
Ω(A,B,C)
̂Γ

(P).
In addition to the region-reconstructible property we need that gadgets are

re-randomizing [20]. Informally, this means that the output encoding of a gadget
is independent from the input encodings, except that it encodes the correct
result. Before we describe our new circuit compiler we present in the next section
our new refreshing scheme that achieves optimal parameters both in terms of
complexity and leakage rate.

3 Leakage Resilient Refreshing from Expander Graphs

A fundamental building block of any leakage resilient circuit compiler is a leakage
resilient refreshing scheme. Informally, a refreshing scheme updates the encoding
of a secret value such that continuous/repeated leakage from the execution of
the refresh procedure does not reveal the encoded secret. More precisely, for a
secret x ∈ F let X ← Enc(x) be an encoding of x. A refreshing scheme refresh
is a randomized algorithm that takes as input X and outputs Y ← refresh(X)
such that Y is a fresh encoding of x. Informally, a refreshing scheme refresh is
said to be secure if even given continuous probing leakage from the refreshing
procedure the adversary cannot distinguish the leakage from an encoding of any
two secrets x, x′ ∈ F.

The refreshing procedure of [26] is described by a circuit of size Θ(n2) which
uses Θ(n2) fresh random values per refresh execution and achieves security
against a t-probing adversary when n = 2t + 1. While it is easy to construct
refreshing schemes that achieve security against a O(1/n) fraction of probes per
execution, it appears to be much harder to construct a refreshing scheme that
achieves the optimal size of Θ(n) and requires only Θ(n) random field elements
while tolerating t = Ω(n) probes. This is quite surprising as various candidate
schemes look secure at first sight.

As outlined in the introduction the main ingredient of our refreshing scheme
(and essentially of most leakage resilient refreshing schemes) is a method to sam-
ple form EncAE(0). Given a “leakage resilient way” to sample R ← EncAE(0)

Circuit Compilers with O(1/ log(n)) Leakage Rate 599

we can implement a refreshing algorithm in a simple way: to refresh X(i−1)

we compute X(i) = X(i−1) + R, where R is sampled from EncAE(0). Our con-
struction to sample from EncAE(0) uses a undirected expander graph G = (V,E),
with V = {1, . . . , n} (see, e.g., [24] for an excellent exposition). Informally speak-
ing expander graphs are sparse graphs with strong connectivity properties. Let
G = (V,E) be an undirected graph with V being the set of vertices and E being
a set of edges (hence E is a multiset). Assume G can have self-loops and paral-
lel edges. We define the edge expansion of the graph as: minS⊂V :|S|≤|V |/2

|∂(S)|
|S| ,

where ∂(S) denotes the edge boundary of S in G, i.e., the set of edges with
exactly one endpoint in S. We say that an undirected d-regular graph G is an
(d, h)-expander if d > 0 and its edge expansion is at least h.

To describe our construction we will write the edges of G as ordered pairs
(i, j) where always i ≤ j. Given such a G one can construct an arithmetic cir-
cuit RefSampG(1n) (over some additive field F) that produces random additive
encodings (X1, . . . , Xn) of zero. This is done as follows. The circuit RefSampG(1n)
consists of |E| coin flip gates Rand — to each e ∈ E we associate one of them.
Let re denote the output of each Rande. To compute the encoding (X1, . . . , Xn)
we start with each Xi := 0 and for every edge (i, j) ∈ E we add re to it, and for
every edge (j, i) ∈ E we subtract re from it. In other words each Xi is defined
as follows:

Xi :=
∑

(i,j)∈E

r(i,j) −
∑

(j,i)∈E

r(j,i). (1)

The gate-level implementation of the sum computations in (1) is pretty straight-
forward: we attach a Copy gate to each Rande gate. Let ve and we be the output
wires of this gate. Then we sum and subtract the appropriate ve’s and we’s in
order to compute the sums in (1). It is easy to see that every r(i,j) is counted
twice in the sum X1 + . . . + Xn: once with a “plus” sign (for the vertex i),
and once with a “minus” sign (for the vertex j). Therefore (X1, . . . , Xn) is an
additive encoding of zero.

3.1 Reconstructibility of RefSampG

In this section we show that the circuit RefSampG is (t, q)-region reconstructible
for an appropriate choice of t and q. To this end, we start by giving some useful
properties about the connectivity of expander graphs and the circuit RefSampG .
Recall that a connected component of a graph is a subgraph in which any two
vertices are connected to each other by a path, and which is connected to no
additional vertices. It will be useful to analyze the properties of expanders and
their connected components when some number T of their edges is removed (for
some parameter T). Call a set of vertices S ⊂ V small if |S| ≤ T/h, call it
medium if T/h < |S| < n − T/h, and call it large otherwise. We can then show
the following simple lemma about the sizes of connected components when T
vertices are removed from the expander graph. We can then show the following
simple lemma about the sizes of connected components when T vertices are
removed from the expander graph.

600 M. Andrychowicz et al.

Lemma 1. Suppose T < nh/3 and G is an (d, h)-expander. Let G′ be an arbi-
trary graph that resulted from removing up to T edges from G. Then G′ contains
exactly one large connected component.

Proof. We first prove that G′ contains no medium components. We actually show
something slightly stronger, namely, that for every medium subset of vertices S
there exists an edge in G′ between S and V \ S. Take such a medium S and
consider two cases. First, assume that S ≤ n/2. From the definition of edge
expansion we get that the number x of edges between S and V \S in the original
graph G is equal at least h · |S|. Since we assumed that S is medium, thus
|S| > T/h, and hence x > T . It is also easy to see that if |S| > n/2, then we can
use a symmetric reasoning, as |S| < n − T/h implies that |V \ S| > T/h. Hence,
also in this case we get that x ≥ h · |V \ S| > T . In other words: that there are
more than T edges between S and V \ S in G. Thus, even if we remove at most
T edges from G there is still one edge remaining. Hence there must be an edge
between S and V \ S in G′.

Therefore G′ cannot have medium connected components, and hence each
connected component has to be either small or large. Recall that we defined
a large subgraph to have more than n − T/h vertices. Since we assumed that
T < nh/3, which implies that T/h < n/3, thus a large connected component
must have more than 2n/3 vertices, which means that there can be at most one
such a component (as obviously two connected components cannot overlap). To
finish the proof we need to show that there is at least one large component. For
the sake of contradiction suppose there is no large connected component. Hence,
all the connected components need to be small. Let V1, . . . , Vm ⊂ V be these
small components. Obviously |V1 ∪ · · · ∪ Vm| = n. Since each Vi is such that
|Vi| ≤ T/h < n/3, thus there has to exists j such that n/3 < |V1 ∪ · · · ∪ Vj | <
2n/3. Hence V1 ∪ · · · ∪ Vj is a medium set. Therefore, from what we have shown
at the beginning of this proof, there has to exist an edge in G′ connecting this
union with a vertex outside of it. Hence at least one of the sets V1, . . . , Vj cannot
be a connected component. This yields a contradiction. �

We next give a lemma that states that after removing edges from the
expander graph, the circuit induced by the remaining connected component
results into a random additive encoding of a fixed constant value. More techni-
cally, we have:

Lemma 2. Suppose G∗ = (V ∗, E∗) is a connected subgraph of G, where G is as
in Lemma 1. Let (X1, . . . , Xn) ← RefSampG(1n) and let v1 ≤ · · · ≤ vm be the
elements of V ∗. Consider an adversary A that learns all re’s corresponding to G’s
edges that are not in G∗. Note that in particular he knows Xv for every v �∈ V ∗

and can compute C =
∑

v �∈V ∗ Xv. Then, from A’s point of view (Xv1 , . . . , Xvm
) is

distributed uniformly over the set U−C
m := {(xv1 , . . . , xvm

) : xv1+· · ·+xvm
= −C}.

Before we give a proof of Lemma 2 let us first show that the expander based-
construction indeed outputs random encodings of 0. To this end, we need the
following auxiliary lemma.

Circuit Compilers with O(1/ log(n)) Leakage Rate 601

Lemma 3. Let G∗ = (V ∗, E∗) be a graph as above except that the set of vertices
is a subset of {1, . . . , n}. Let v1 ≤ · · · ≤ vm be the elements of V ∗. Suppose G∗

is connected. Then the variable (Yv1 , . . . , Yvm
) ← RefSampG∗(1n) is distributed

uniformly over the set U0
m := {(yv1 , . . . , yvm

) ∈ F
m : yv1 + . . . + yvm

= 0}.
This fact will be useful, since if G′ results from removing some edges from an
expander, then (by Lemma1) it is guaranteed to contain a large connected com-
ponent G∗, and hence the variables Yv1 , . . . , Yvm

obtained by “summing” the re’s
from G∗ will have a uniform distribution over U0

m.

Proof (of Lemma 3). Induction over m. Consider the base case m = 1 first. In
this case G∗ contains one node v and no edges. Then clearly Yv = 0 what is
distributed uniformly over the set U0

m = {0}.
Now suppose we know that the lemma holds for some m, and let us prove it

for m + 1. Let v be an arbitrary leaf in an arbitrary spanning tree of G∗. Notice
that the graph G∗ with the vertex v (and all edges adjacent to it) removed is con-
nected. To simplify the notation we will assume that v = vm+1. Let R1, . . . , Rb

be all the values produced by the Rand gates corresponding to the edges in
G∗ with one endpoint being vm+1. Clearly Yvm+1 = −∑

i=1 Ri, and hence it is
uniform. On the other hand, by the induction hypothesis (Yv1 , . . . , Yvm

) is uni-
formly distributed over U0

m if one does not consider the edges going to vm+1, i.e.,
if one does not count the values R1, . . . , Rb in the sums. Therefore, if we consider
also these values then (Yv1 , . . . , Yvm

) will be uniformly distributed over the set
{(yv1 , . . . , yvm

) : yv1 + · · · + yvm
=

∑

i=1 Ri}. Hence, altogether (Yv1 , . . . , Yvm+1)
is uniformly distributed over U0

m+1. This concludes the proof. �
The Lemma 2 is a consequence on Lemma 3. The proof is given below.

Proof (of Lemma 2). Look at the graph G∗∗ := (V,E \ E∗). Each Xvi
can

be expressed as X∗
vi

+ X∗∗
vi

, where X∗
vi

and X∗∗
vi

denote the sum of re’s from
respectively G∗ and G∗∗. Since all re’s that correspond to the edges of G∗∗ are
known to A, thus for each vi he can compute X∗∗

vi
. Clearly X∗∗

v1
+· · ·+X∗∗

vm
= −C.

Moreover, by Lemma 3 the distribution of (X∗
v1

, . . . , X∗
vm

) is uniform over U0
m.

Hence the distribution of (Xv1 , . . . , Xvm
) is uniform over U−C

m . �

Finally, we need the following simple fact, where we denote by PrX|Y the
conditional distribution of X conditioned on Y .

Lemma 4. Consider an execution of (X1, . . . , Xn) ← RefSampG(1n). Let
{Re}e∈E denote the random variables corresponding to the re values in the cir-
cuit computing RefSampG(1n). Take some W ⊆ {1, . . . , n}. Then there exists
an efficient procedure that for every input {xi}i∈W produces as output {r′

e}e∈E

distributed according to the conditional distribution Pr{Re}e∈E |∀i∈W Xi=xi
.

Proof. Clearly every Xi is a linear combination o the re’s. Hence the condition
∀i∈W Xi = xi can be understood as a system of linear equations (with re’s being
the unknowns), and the set of its solutions is a linear subspace L whose base
can be efficiently computed. To sample a random value of Pr{Re}e∈E |∀i∈W Xi=xi

one can simply output a uniform vector from L. �

602 M. Andrychowicz et al.

We are now ready to prove our first technical theorem.

Theorem 1. Let n ∈ N be the security parameter, G = (V,E) be a d-regular
graph with edge expansion h > 0. Then for any t < nh

3d the gadget RefSampG
treated as one region is (t, q)-region reconstructible for q = �td/h�.

The simulator SimRefSamp
Ω(X)
G (P)

1. Compute the set of compromised edges L ⊂ E. This set consists of all edges e ∈ E
for which:
(a) at least one of the input or output wires of the corresponding Copy gate leaks

(i.e. is included in the set P), or
(b) at least one output wires of a + or − gate corresponding to a node incident

to e leaks.
2. Compute the graph consisting of uncompromised edges G = (V, E \ L).
3. Compute the largest (in terms of a number of nodes) connected component in G

and denote it G∗ = (V ∗, E∗).
4. Obtain the values Xi for each i ∈ V \V ∗ by querying the oracle Ω(X). Denote the

leaked value of Xi as xi.
5. Using the procedure from Lemma 4 draw a sequece {re}e∈E from a conditional

distribution Pr{Re}e∈E |∀i∈V \V ∗ Xi=xi
.

6. Simulate the execution of RefSampG(1n) assuming that Rand gates has outputted
the sequence {re}e∈E . Let W be the obtained wire assignment.

7. Output P(W).

Fig. 2. The SimRefSampG simulator for RefSampG(1n).

Proof. Let X be a plausible output of RefSampG(1n), i.e.,
∑

i Xi = 0. The sim-
ulator SimRefSamp

Ω(X)
G has to simulate the leakage from a t-admissible set of

probes P from the execution of X ← RefSampG(1n) with only q-bounded access
to its oracle Ω(X) where q = �td/h�. We will sketch it now informally, the full
description is presented on Fig. 2. The simulator SimRefSampG computes the set
of edges L ⊂ E s.t. the values of the random gates associated with the edges from
L are sufficient to compute the values on all leaking wires. Then, it computes
the large connected subgraph G∗ = (V ∗, E∗) such that the output variables with
indices in V ∗ are independent of the leakage, he then probes the output variables
with Xi for i ∈ V \ V ∗ from its oracle Ω(X), and simulates a random execution
consistent with the probed values Xi.

We start by proving that SimRefSampG is indeed �td/h�-bounded. To this
end we analyse the possible sizes of connected components in the graph G′. It
is easy to see that each wire that is revealed according to the set of probes P
increases the set L by at most d elements, and therefore |L| ≤ td. Since we
assumed that t < nh/(3d), thus |L| < nh/3. We can therefore apply Lemma 1 to
G′ with T = |L|. In this way we obtain that the number of vertices in the largest

Circuit Compilers with O(1/ log(n)) Leakage Rate 603

component G∗ in G′ is at least n − |L|/h, which is clearly at least n − td/h.
Therefore the number of vertices in V \ V ∗ is smaller than td/h. Since these
are exactly the indexes probed by the simulator SimRefSampG , thus it is �td/h�-
bounded.

The definition of reconstructability states that for each fixed X1, . . . , Xn

s.t. X1 + . . . + Xn = 0 the distribution of the leakage in the execution of the
real circuit RefSampG(1n) assuming that it outputted the sequence X1, . . . , Xn

is identical to the distribution produced by the simulator SimRefSampG(P) that
uses q-probing leakage from X1, . . . , Xn. This is equivalent to saying that the
joint distribution of the output (X1, . . . , Xn) and the leakage is the same in the
real and simulated case (this follows from the definition of conditional proba-
bility). Let us define the two joint distributions more formally by considering
two experiments. In the first one the values (XREAL

1 , . . . , XREAL
n) are sampled

using XREAL ← RefSampG(1n) and the leakage obtained from this execution is
denoted by P(WRefSampG (XREAL)), where P are a set of probes that is t-region
admissible. In the simulated case the values (XSIM

1 , . . . , XSIM
n) are drawn using

XSIM ← EncAE(0) and the leakage is computed by the simulator leaking from
XSIM and denoted SimRefSamp

Ω(XSIM)
G (P). Hence, we need to show that

(

XSIM,SimRefSamp
Ω(XSIM)
G (P)

)

≡ (

XREAL,P(WRefSampG (XREAL))
)

.

First observe that
(

XSIM
V \V ∗ ,SimRefSamp

Ω(XSIM)
G (P)

)

(2)

and
(

XREAL
V \V ∗ ,P(WRefSampG (XREAL))

)

(3)

are identically distributed. This is because SimRefSamp
Ω(XSIM)
G (P) is computed

based on the perfect simulation given in Lemma 4 using the values XSIM
V ∗\V , which

are leaked and hence distributed appropriately. Let U−C
m be as in Lemma 2.

Clearly, given (2) the remaining values XSIM
V ∗ have a uniform distribution over

the set U−C
|V ∗|, where C =

∑

i∈V \V ∗ XSIM
i , because they have not been leaked.

By Lemma 2 also XREAL
V ∗ have a uniform distribution over the set U−C

|V ∗|, where
C =

∑

i∈V \V ∗ XREAL
i given XREAL

V \V ∗ and all the re values corresponding to the
edges in the set E \E∗. Since these values fully determine P(WRefSampG (XREAL))
thus XREAL

V ∗ have a uniform distribution over the set U−C
|V ∗| given (3). This finishes

the proof. �

4 Circuits for Affine Computation

In this section we build a circuit transformation TRAff that allows to transform
arbitrary circuits implementing affine computation into protected circuits that
are resilient to t-region probing adversaries. In the transformed circuit ̂Γ that are

604 M. Andrychowicz et al.

produced by TRAff each region is represented by a gadget. Hence, if the original
circuit Γ has size s then ̂Γ ← TRAff(1n, Γ) has s regions. Notice that we assume
that the input and output encoding of each gadget are part of two consecutive
regions, and consequently the adversary may leak twice from them.

4.1 The Transformation TRAff

Our transformation TRAff is an encoding-based transformation as described
in Sect. 2.2. The transformation uses as building blocks the additive encoding
scheme ΠAE. The initial state m0 of the original circuit Γ will be stored in
encoded form using the code ΠAE, i.e., ̂M0 ← EncAE(1n,m0). One can view the
encoded state as an initial encoded input that is given as input to the trans-
formed circuit, and hence security of stateful circuits is just a special case of
security of stateless circuits.

We need to define transformations for the basic operations of affine compu-
tation. Let Γ be a circuit that takes ς inputs x1, . . . , xς and produces τ outputs
y1, . . . , yτ . The outputs are computed from the inputs using solely the following
types of operations:

1. Addition in F and multiplication by a (known) constant x ∈ F.
2. The randomness gate Rand that outputs a random element r ∈ F.
3. The constant gate Constx that for a constant x ∈ F outputs x.
4. The copy gate Copy that for input x outputs two wires carrying the value x.

Notice that the Copy gate in Γ is needed for fan-out.

Our transformation TRAff is very simple. Each gate of the above form is replaced
by a gadget from Fig. 3. The wires connecting the gadgets are called wire bundles
and carry the corresponding encoding of the values using the code ΠAE. The
gadgets presented in Fig. 3 use as a sub-circuit X ← RefSampG(1n) for some
expander graph G. In the following, we will omit to mention explicitly the graph
G and assume that G is d-regular with edge expansion h. We will assume that it
is fixed once and for all.

4.2 (t, q)-reconstructability of Gadgets in TRAff

In this section, we show that the operations of TRAff from Fig. 3 are (t, q)-region
reconstructible and re-randomizing. The proofs are given in the full version.

Lemma 5. Recall that n ∈ N is the security parameter and let d and h be
constants defining the underlying expander graph on n vertices. For any t < nh

3d
we set q = �td/h�. The gadget PlusAE is (t, q)-region reconstructible and re-
randomizing, where the region is defined by the gadget itself.

We can also show that the remaining gates are region reconstructible.

Lemma 6. The gadgets MultAEx, ConstAEx, CoinAE and CopyAE are (t, q)-
region reconstructible and re-randomizing, where the region is defined by each
gadget itself.

Circuit Compilers with O(1/ log(n)) Leakage Rate 605

The gadgets of the transformation TRAff

1. Transformation for addition in F, i.e., a + b = c: An addition operation in the
circuit Γ is handled by the gadget C ← PlusAE(A, B). On input encodings A, B it
computes Z = A+B and samples Y ← RefSamp(1n). Then, it outputs C = Z +Y .

2. Transformation for multiplication with a constant x ∈ F, i.e., xa = c: Multiplica-
tion with a constant x ∈ F is handled by the gadget C ← MultAEx(A). For the
fixed constant x and on input encoding A, it computes Z = xA (by component-wise
multiplication) and samples Y ← RefSamp(1n). Then, it outputs C = Z + Y .

3. Transformation of Rand gate x ← F: The transformation for sampling a random
element in F is denoted by C ← CoinAE(1n) in Γ . The circuit uses n coin gates
Ci ← Rand and outputs C = (C1, . . . , Cn).

4. Transformation of Constx gate for some x ∈ F: For some x the gadget C ←
ConstAEx computes X = (Constx, Const0, . . . , Const0). Then, it samples Y ←
RefSamp(1n) and outputs C = X + Y .

5. Transformation of Copy gate: The fan-out in Γ is handled using the gadget
(B, C) ← CopyAE(A). On input encoding A, it samples Y ← RefSamp(1n) and
Z ← RefSamp(1n). Then, it outputs B = A + Y and C = A + Z.

Fig. 3. The transformation TRAff has gadget transformations for each of the elementary
operations. RefSamp(1n) samples EncAE(0) using an expander graph.

4.3 Security of Composed Circuits

In this section we discuss briefly that arbitrary composed circuits build from the
transformed gadgets defined in Sect. 4.2 are (t, q)-region reconstructible, where
in the composed transformed circuit ̂Γ each gadget corresponds to a region. We
state the lemma in a slightly more general form (similar to Lemma 13 from [20]).
This will allow us to later apply it when we consider circuits that are made out
of arbitrary transformed gadgets.

Lemma 7. Recall that n is the security parameter and q and t are functions in
n. Let Γ be a stateless circuit over some finite field F with ς inputs, τ outputs and
s gates. Assume that the gates in Γ all have fan-in and fan-out at most 2 elements
in F. Let Π = (Enc,Dec) be a 2q-probing resilient code. Let ̂Γ ← TR(1n, Γ) be
the transformation of Γ based on Π = (Enc,Dec) and let ̂Γ be composed from
(t, q)-probing reconstructible and re-randomizing gadgets, then ̂Γ is (t, q)-probing
reconstructible and re-randomizing.

The proof uses a hybrid argument and is provided in the full version. The above
lemma together with Lemmas 5 and 6 immediately implies that any stateless
circuit ̂Γ ← TRAff(1n, Γ) is (t, q)-reconstructible for choices of t and q that are
given in the lemma below.

Lemma 8. Recall that n is the security parameter and let d and h be con-
stants defining the underlying expander graph on n vertices. Let Γ be a stateless
circuit over field F using only affine operations. Then, the transformed circuit
̂Γ ← TRAff(1n, Γ) is re-randomizable and (t, q)-reconstructible for t < nh

3d and
q = �td/h� and regions that correspond to gadgets in ̂Γ .

606 M. Andrychowicz et al.

It is easy to see that all transformed gadgets have size O(n) which together
with t < nh

3d for constants h and d asymptotically shows that a constant fraction
of all wires in ̂Γ can be learnt by the adversary.

5 Circuits for Arbitrary Computation

To protect non-affine computation, we also need a transformation for multipli-
cation in the underlying field. Before we present our transformation TR, we first
discuss a special protected circuit called RandSamp(1n) that is mostly produced
by TRAff and will be used in the transformed multiplication operation as an
important building block. In the following, for some τ ∈ N we let n = 2τ + 1
be the security parameter and require that |F| > n such that we can use the
coding scheme ΠMSS

n,τ = (EncMSSn,τ ,DecMSSn,τ) based on Shamir secret sharing
as described in Sect. 2.1 (as we mentioned we can use other encoding schemes to
improve the asymptotic complexity of our construction).

5.1 The Circuit RandSamp

The goal of the circuit RandSamp(1n) is to sample correlated randomness that
can be used in the transformed multiplication operation even in the presence of a
t-region probing adversary. More precisely, the randomized circuit RandSamp(1n)
takes no inputs and outputs two random encodings [r]τ ← EncMSSn,τ (r) and
[r]2τ ← EncMSSn,2τ (r)8, where r ← F is a uniformly and independently chosen
field element. The main difficulty is to ensure that the computation of [r]τ and
[r]2τ do not reveal anything about r even in the presence of a t-region probing
adversary. Hence, the goal is to design a circuit that samples these two encodings
in an oblivious way. Our main observation that enables us to achieve this goal
is the fact that [r]τ and [r]2τ can be computed (in a natural way) by an affine
circuit Γ ′ that can be protected using TRAff .

A technical difficulty is that the sub-circuit RandSamp′(1n) ← TRAff(1n, Γ ′)
outputs additive encodings of ([r]τ , [r]2τ), i.e., (EncAE([r]τ),EncAE([r]2τ)). The
protected multiplication operation, however, requires access to ([r]τ , [r]2τ). To
decode one level of the “double-encoding” and obtain the final circuit RandSamp,
we append two MultiDecoder sub-circuits to the output of RandSamp′ to decode
EncAE([r]τ) and EncAE([r]2τ), respectively. A MultiDecoder sub-circuit takes as
input a double encoding EncAE([r]τ) and outputs [r]τ by “peeling off” one layer
of the code. More precisely, we let (U1, . . . , Un) := [r]τ and (X(1), . . . , X(n)) :=
(EncAE(U1), . . . ,EncAE(Un)). The deterministic MultiDecoder circuit takes as
input (X(1), . . . , X(n)) and outputs (U1, . . . , Un). To this end, it runs n Decoder
sub-circuits (corresponding to the decoding function of the code ΠAE

n,F), where
each such sub-circuit takes as input an encoding X(i) and outputs Ui. For the
security of our construction it will be important that each such Decoder circuit

8 We present here the parameters n, t to indicate that the value [r]2τ comes from the
encoding ΠMSS

n,2τ (and not ΠMSS
n,τ).

Circuit Compilers with O(1/ log(n)) Leakage Rate 607

computes the sum of the shares in a natural way by representing the summation
as a binary tree. More precisely, the shares of X(i) represent the leaves of the
tree, the internal nodes of the tree correspond to the sum of the values assigned
to its children and the root is the corresponding result of the decoding procedure.
The high-level structure of the RandSamp circuit is given in Fig. 4.

Fig. 4. The architecture of the RandSamp and MultiDecoder circuit. The RandSamp
circuit consists of the RandSamp′ sub-circuit and two MultiDecoder sub-circuits. Each
MultiDecoder circuit consists of n Decoder sub-circuits. Notice that regions in the
MultiDecoder circuit does not correspond to the Decoder sub-circuits. More precisely,
each region in the MultiDecoder circuit consists of n wires — one in each of the Decoder
sub-circuits, such that each of them correspond to the same edge in the summing tree.
For example, both dotted wires on the figure belong to the same region.

It remains to discuss how RandSamp is structured into regions. First notice
that for RandSamp′ the structure of the regions is inherited from the compiler
TRAff . Hence, the regions in RandSamp′ correspond to a transformed gadget in
RandSamp′. Next, notice that each of the decoder sub-circuits MultiDecoder has
size Θ(n2), and we need an appropriate way to structure its computation into
regions of size Ω(n). To illustrate, why for the MultiDecoder we cannot use a
natural representation where each region corresponds to a computation of one
output value Ui, consider the following example. Let the decoding process of the
n encodings be structured into n regions, where each region corresponds to a
Decoder gadgets that decodes X(i) into Ui. Unfortunately, however, it is easy to
see that already a single probe in each such region allows the adversary to learn
the entire output of the MultiDecoder circuit, i.e., the adversary may learn Ui

in the i-th region, which allows to recover the secret value r. To prevent this
attack, we instead structure the computation of the MultiDecoder in regions of
size O(n), where each region corresponds to one node (or one edge) in each of
the n Decoder trees.9 Recall that the MultiDecoder consists of n Decoder trees.
The i-th region in MultiDecoder contains the wires associated with the output
of the i-th gate in each of the n Decoder trees. Given the above structuring into
regions, we can show the following property about the RandSamp circuit.

9 Notice that in reality regions constitute a partition of wires, not gates. Whenever,
we say that a particular gate is in a particular region, it simply means that gate’s
output is in that region.

608 M. Andrychowicz et al.

Lemma 9. Recall that n ∈ N is the security parameter and let d and h be
constants defining the underlying expander graph on n vertices. For any t < nh

3d
the circuit RandSamp(1n) is (t, q)-region reconstructible for q = 3

2 t(�log(n)�+1),
where the regions are defined as described above in the description of RandSamp′

and the MultiDecoder sub-circuit. Moreover, RandSamp has circuit size O(n3).

A consequence of the above lemma is that in order to guarantee that
the encoded random values r produced (in encoded form) by ([r]τ , [r]2τ) ←
RandSamp(1n) are hidden for a t-probing adversary, we need to set: t <

n
3(
log(n)�+1) . Notice that we need an additional factor of 1/2 since the code
ΠMSS is only resilient against τ < n/2 probes.

5.2 Protecting Arbitrary Computation Against Probing

Our final transformation follows the general paradigm of encoding-based circuit
transformations from Sect. 2, where we use as the underlying code the scheme
ΠMSS

n,τ with n = 2τ + 1. The initial state m0 of the circuit is transformed into
̂M0 ← EncMSS(m0), and the wires in Γ are represented in ̂Γ by wire bundles
carrying an encoding of the value carried on the wire in Γ . The transformation for
the individual operations is presented in Figs. 5, 6 and 7. In Fig. 5, we present
the main ingredient of our new transformation – the transformation for the
multiplication operation, which we describe in further detail below.

The C ← MultSS(A, B) gadget of TR

On input (A, B) = ([a]τ , [b]τ) proceed as follows:
1. Sample (U, V) = ([r]τ , [r]2τ) ← RandSamp(1n) for some random r ∈ F as described

in Section 5.1. Notice that in a real circuit RandSamp can be implemented by a
single sub-circuit that is queried by all MultSS gadgets.

2. For each i ∈ [n] compute the products Ti = AiBi (using n field operations).
3. Compute W = T + V and compute w = DecMSS2τ (W) (the decoding uses the

constant coefficients of a particular instance of the code ΠMSS, cf. Section 2.1).
4. Set Z := (Z1, . . . , Zn) where Zi = w and compute as output C = Z − U .

Fig. 5. The transformation for the multiplication operation in F. RandSamp(1n) sam-
ples ([r]τ , [r]2τ) as described in Sect. 5.1.

The transformation for the multiplication uses ideas from secure multiparty
computation – in particular, the use of [r]τ , [r]2τ that allows to decode W = T+V
without revealing sensitive information follows the approach from [14]. There are
two important differences to the protocol of [14] – most notably, for our purposes
we need to sample ([r]τ , [r]2τ) in a way that is secure against t-region probing
adversaries. Second, in Step 4 of Fig. 5 we use a trivial encoding of the value
w with the code ΠMSS. In particular, instead of using EncMSS(w) to sample
Z, we just use the trivial encoding of w as n-elements vector Z := (w, . . . , w).

Circuit Compilers with O(1/ log(n)) Leakage Rate 609

Fig. 6. The architecture of the MultSS circuit. The whole MultSS circuit consists of
one region except the RandSamp sub-circuit, which is divided into smaller regions
accordingly to the TRAff compiler.

While clearly this encoding procedure does not offer any security, it guarantees
that we can encode w in complexity O(n). This will be relevant when we structure
the computation of MultSS into region, which will be explained next.

We structure MultSS into the following regions. The first set of regions cor-
responds to Step 1 when MultSS queries the external source RandSamp(1k) for
(U, V) and corresponds to the set of regions defined in the previous section.
Besides the regions that are naturally inherited from RandSamp, we introduce
one additional region that includes all operations of MultSS from Step 2–4.
Clearly, this region has size of O(n), which will be important for our security
argument.

To complete the description of the transformation it remains to propose con-
structions for the addition operation, the Rand operation and how to implement
fan-out. The transformation is rather straightforward and details are given in
Fig. 7. Notice that the transformations from Fig. 7 use the multiplication gadget
as a sub-routine to implement a refreshing scheme for the ΠMSS encoding scheme.
The refreshing algorithm for ΠMSS works as follows. We first sample once and
for all a fixed encoding D ← EncMSS(1), where 1 denotes the multiplicative
identity in F. To refresh X, we compute Z ← MultSS(X,D).10

Finally, notice that each gadget of Fig. 7 represents a single region, where
the execution of MultSS(.,D) to refresh the output of the gadgets is struc-
tured into regions as explained above (and not part of the region of the gadgets
itself). This completes the description of the transformation TR and the struc-
turing of computation into regions. We can show the following about the above
construction.

Theorem 2. Let n be the security parameter and d, h be constants defining the
underlying expander graph on n vertices. The transformation TR described above
is perfectly t-region probing secure for t < n

12(
log(n)�+1) . Moreover, for a circuit

Γ of size s, the transformed circuit ̂Γ ← TR(Γ, 1n) has size O(sn3).

10 We note that the expander-based refreshing from Sect. 3 unfortunately does not
easily transfer to a refreshing scheme for the code ΠMSS.

610 M. Andrychowicz et al.

The PlusSS, CoinSS and CopySS gadget of TR

1. Transformation for addition in F, i.e., a + b = c: An addition operation in the
circuit Γ is denoted by C ← PlusSS(A, B). On input two encodings A, B compute
Z = A + B and output C ← MultSS(Z, D), where D is a fixed encoding of 1, i.e.,

D ← EncMSS(1) and Di is hard-wired into the description of Γ .
2. Transformation of Rand gate x ← F: The gadget CoinSS computes (U, V) ←

RandSamp(1n) and outputs U .
3. Fan-out in Γ : Fan-out in the circuit Γ is handled by the sub-circuit (B, C) ←

CopySS(A) in the transformed circuit Γ . On input an encoding A, output B ←
MultSS(A, D) and C ← MultSS(A, D).

Fig. 7. The transformation of the remaining operations used by TR. RandSamp(1n)
samples ([r]τ , [r]2τ) as described in Sect. 5.1 and MultSS is the transformed multiplica-
tion operation from Fig. 5.

We notice that it is straightforward to improve the complexity of the con-
struction to O(sn2 log n) using FFT. Moreover, as mentioned in the introduction,
further improvements of the efficiency are possible using packed secret sharing.

6 Application to the Noisy Leakage Model

As shown by Duc et al. [16] security in the so-called p-random probing model
implies security in the noisy leakage model. In the random probing model the
adversary has no control over the choice of the probes and instead corrupts each
wire of the circuit independently with a probability p. By applying Chernoff,
it is straightforward that security in the threshold probing model with rate r
implies security in the random probing model with p = cr for some constant
c < 1. Hence, applying Theorem 2, we straightforwardly get security in the
p-random probing model for p = O(log−1(n)). As argued in the introduction
we can further improve p to a constant when we directly prove security in the
p-random probing model instead of taking the detour via the much stronger
threshold probing model. In particular, we can get the following result.

Theorem 3. The transformation TR described in Sect. 5 is p-random probing
secure for a sufficiently small constant p < 1/12. For a circuit Γ of size s, the
transformed circuit ̂Γ ← TR(Γ, 1n) has complexity O(sn3).

Proof. To distinguish the random probing model from the t-region probing model
that we discussed in the last section, we will call the later in the following the
t-threshold probing model. To show security against a p-random probing adver-
sary observe that clearly security against a t-region probing adversary for regions
of size O(n) and t = Ω(n) probes implies security in the random probing model
for a constant p. This worst-case to average case reduction is a straightforward
application of the Chernoff bound. Recall that in our transformation TR from
Sect. 5 all parts of the transformed circuit tolerate a constant corruption rate in

Circuit Compilers with O(1/ log(n)) Leakage Rate 611

the threshold probing model11 except for the MultiDecoder sub-circuits, which
are the reason that we only can allow O(n/ log(n)) probes (cf. Sect. 5.1). There-
fore, to show that our construction achieves security in the random probing
model for constant p we only need to show that the MultiDecoder sub-circuits
remain secure in the p-random probing model for a constant p. To this end, we
need the following fact:

Lemma 10. Let MultiDecoder be a deterministic circuit as described in Sect. 5.1
that takes as input n encodings X := (X(1), . . . , X(n)) and outputs their decod-
ings U := (U1, . . . , Un). Let P be a set of probes for MultiDecoder drawn by a
p-random probing adversary. There exists a simulator SimMultiDecoder such that
for any plausible inputs X := (X(1), . . . , X(n)) and corresponding output vector
U := (U1, . . . , Un), we have:

P(WMultiDecoder(X|U)) ≡ Sim
Ω(X)
MultiDecoder(P).

Moreover, for each i ∈ [n] (independently) we have the following: the proba-
bility (over sampling of the set P) that the value X(i) is fully leaked by the
Sim

Ω(X)
Decoder(P) (i.e., the value X

(i)
j is leaked for every j ∈ [n]) is equal at most

p
1−p .

The proof is given in the full version.
We now continue the proof of Theorem 3. Note the only requirement we have

in Lemma 10 is that for each i (independently) it holds that with probability
at least 1 − p/(1 − p) the t-th Decoder is not fully covered. Hence, we also
need to prove (as in was done in Lemma 9) that not too many of the input
encodings to the Decoder are fully leaked by the simulator for the composed
circuit RandSamp′. Fix one input encodings X(i) to one of the Decoder sub-
circuits. Recall that there are two simulator, which leak from the encoding X(i):
Sim

Ω(X)
Decoder(P) and the simulator for the gadget, which outputs X(i) in RandSamp′,

which will be denoted Sim′.
Recall that all gadgets except the MultiDecoder sub-circuit are (t, q)-

reconstructible for t = cn and q = c′n for an appropriate choice of constants
c, c′ < 1/6. Since all regions are of size O(n) (where the O-notation only hides
small constants), there exists a constant p < p/(1−p) < 1/6 such that with over-
whelming probability a set of probes P when sampled by a p-random probing
adversary is t-region admissible. Therefore, with overwhelming probability (over
the choice of P) at most q positions are leaked from X(i) by the simulator Sim′

in order to simulate answers to the probes in the part of RandSamp′ producing
X(i). To simplify the description, we assume that P produced by the p-random
probing adversary is indeed t-admissible, and we do not explicitly mention the
bad event when it is not (as this event is negligible anyway).

From Lemma 10 we know that with probability at least 1 − p
1−p ≥ 5

6

there exists a random j, s.t. the value X
(i)
j is not queried by the simulator

11 This is true for all gadgets of the transformation TR as well as for RandSamp′.

612 M. Andrychowicz et al.

Sim
Ω(X)
MultiDecoder(P). Notice, that the index j of the share, which is not leaked by

the Sim
Ω(X)
MultiDecoder(P) is uniformly random over [n] due to the symmetry of the

MultiDecoder sub-circuit with respect to the input shares indexes12. Hence, the
probability that the particular value X

(i)
j (recall that j was drawn at random)

is queried by the Sim′ is equal at most q
n < c′ < 1

6 . Therefore, the probabil-
ity that the encoding X(i) is fully leaked by both simulators is not greater than
1
6 + 5

6 · 16 < 1
3 , where the first term in the sum comes from Lemma 10 and the fact

that with probability 1/6 the simulator SimMultiDecoder reveals the entire encod-
ing, and the second term comes from the analysis above (i.e., with probability
5/6 we have at least one random share X

(i)
j that is not queried by SimMultiDecoder

and Sim′ only asks for a 1/6 fraction to its leakage oracle. Given this bound,
we can now use again Chernoff to prove that with overwhelming probability (in
n) less than 1

2 of all the input encodings to the MultiDecoder circuit are fully
leaked. The rest of the security proof is analogous to the case of the threshold
probing adversary. Putting the above together we obtain Theorem 3. �
We emphasize that the above is mainly a feasibility result and the constant is
rather small due to the properties of the expander graph.

7 Extensions

7.1 Security of Boolean Circuits

As outlined in the introduction our transformation TR presented in the last
section requires that the computation is carried out over a field F of size O(n).
This implies that the values carried on the wires are from F and the basic
gates used in ̂Γ represent the operations from the underlying field F. Notice
that the later also means that we require leak-free operations that are of size
O(log(n) log log(n)), which is required to carry out, e.g., the multiplication in
the field F. While we emphasize that this assumption is used by most works that
consider leakage resilient circuit transformations, we observe that for our par-
ticular construction we can eliminate this assumption by getting slightly weaker
parameters (weaker by a constant factor only). The basic idea to achieve this is
as follows: instead of using Shamir’s secret sharing as underlying code, we can
use codes based on algebraic geometry that exhibit the multiplicative property.
Such codes are for instance constructed in the work of Chen and Cramer [7].
These codes operate over fields of constant size and hence there basic operations
can be implemented by constant size Boolean circuits.

The above is in particular useful for Theorem 3 where we obtain security
against constant random probing rate. Using algebraic geometric codes the cor-
ruption probability p stays constant even if ̂Γ is implemented with Boolean gates
– which is optimal.
12 Recall that we assume that n is a power of two and T is then a full binary tree.

Moreover, the simulator Sim
Ω(X)
MultiDecoder(P) is also symmetric with respect to the input

share indexes. Furthermore, if there is more than one index j, s.t. the value X
(i)
j is

not leaked by the Sim
Ω(X)
MultiDecoder(P) we pick one of them uniformly at random.

Circuit Compilers with O(1/ log(n)) Leakage Rate 613

7.2 From Non-adaptive to Adaptive Security

In our analysis we assumed that for each clock cycle the adversary chooses a
set of Pi that defines what wires leak. This implies that within a clock cycle
the adversary is non-adaptive and cannot change the position of his probes,
e.g., he cannot learn the first share of an encoding and upon the value of this
share decide what wire he wants to probe next. Fortunately, we can easily get
fully adaptive security since our construction achieves perfect security against
a threshold probing adversary [10]. We stress that the same does not hold for
construction that are only statistical secure [10].

References

1. Ajtai, M.: Secure computation with information leaking to an adversary. In:
Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC 2011, San Jose, CA, USA, 6–8 June 2011, pp. 715–
724. ACM (2011)

2. Andrychowicz, M., Damg̊ard, I., Dziembowski, S., Faust, S., Polychroniadou, A.:
Efficient leakage resilient circuit compilers. In: Nyberg, K. (ed.) CT-RSA 2015.
LNCS, vol. 9048, pp. 311–329. Springer, Heidelberg (2015)

3. Balasch, J., Faust, S., Gierlichs, B.: Inner product masking revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 486–510. Springer,
Heidelberg (2015)

4. Barthe, G., Crespo, J.M., Lakhnech, Y., Schmidt, B.: Mind the gap: modular
machine-checked proofs of one-round key exchange protocols. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 689–718.
Springer, Heidelberg (2015)

5. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order mask-
ing schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549,
pp. 366–384. Springer, Heidelberg (2012)

6. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to
counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

7. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-
party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 521–536. Springer, Heidelberg (2006)

8. Coron, J.-S., Großschädl, J., Vadnala, P.K.: Secure conversion between boolean
and arithmetic masking of any order. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 188–205. Springer, Heidelberg (2014)

9. Coron, J.-S., Prouff, E., Roche, T.: On the use of Shamir’s secret sharing against
side-channel analysis. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771,
pp. 77–90. Springer, Heidelberg (2013)

10. Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-
party computations secure against an adaptive adversary. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)

11. Cramer, R., Damg̊ard, I., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, p. 316. Springer, Heidelberg (2000)

614 M. Andrychowicz et al.

12. Dachman-Soled, D., Kalai, Y.T.: Securing circuits against constant-rate tamper-
ing. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 533–551. Springer, Heidelberg (2012)

13. Dachman-Soled, D., Liu, F.-H., Zhou, H.-S.: Leakage-resilient circuits revisited –
optimal number of computing components without leak-free hardware. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 131–158. Springer,
Heidelberg (2015)

14. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)

15. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010)

16. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

17. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete -
or how to evaluate the security of any leaking device. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429. Springer, Heidelberg
(2015)

18. Dziembowski, S., Faust, S.: Leakage-resilient circuits without computational
assumptions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 230–247.
Springer, Heidelberg (2012)

19. Faust, S., Pietrzak, K., Venturi, D.: Tamper-proof circuits: how to trade leakage
for tamper-resilience. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part I. LNCS, vol. 6755, pp. 391–402. Springer, Heidelberg (2011)

20. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

21. Goldwasser, S., Rothblum, G.N.: How to compute in the presence of leakage. In:
53rd FOCS, pp. 31–40, New Brunswick, NJ, USA, 20–23 October 2012. IEEE
Computer Society Press (2012)

22. Goubin, L., Martinelli, A.: Protecting AES with Shamir’s secret sharing scheme.
In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 79–94. Springer,
Heidelberg (2011)

23. Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. multiparty computation: how
large is the gap for AES? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS,
vol. 8086, pp. 400–416. Springer, Heidelberg (2013)

24. Hoory, S., Linial, N., Wigderson, A., Overview, A.: Expander graphs, their appli-
cations. Bull. Am. Math. Soc. (N.S) 43, 439–561 (2006)

25. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (2006)

26. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

27. Juma, A., Vahlis, Y.: Protecting cryptographic keys against continual leakage. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 41–58. Springer, Heidelberg
(2010)

Circuit Compilers with O(1/ log(n)) Leakage Rate 615

28. Kim, H., Hong, S., Lim, J.: A fast and provably secure higher-order masking
of AES S-box. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 95–107. Springer, Heidelberg (2011)

29. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 104–113. Springer, Heidelberg (1996)

30. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

31. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal secu-
rity proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 142–159. Springer, Heidelberg (2013)

32. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

Randomness Complexity of Private Circuits
for Multiplication

Sonia Beläıd1,2(B), Fabrice Benhamouda1(B), Alain Passelègue1(B),
Emmanuel Prouff3,4(B), Adrian Thillard1,3(B), and Damien Vergnaud1(B)

1 ENS, CNRS, INRIA, and PSL, Paris, France
{sonia.belaid,fabrice.benhamouda,alain.passelegue,

adrian.thillard,damien.vergnaud}@ens.fr
2 Thales Communications and Security, Gennevilliers, France

3 ANSSI, Paris, France
4 UPMC, POLSYS, LIP6, Paris, France

emmanuel.prouff@ssi.gouv.fr

Abstract. Many cryptographic algorithms are vulnerable to side chan-
nel analysis and several leakage models have been introduced to bet-
ter understand these flaws. In 2003, Ishai, Sahai and Wagner intro-
duced the d-probing security model, in which an attacker can observe
at most d intermediate values during a processing. They also proposed
an algorithm that securely performs the multiplication of 2 bits in this
model, using only d(d+1)/2 random bits to protect the computation. We
study the randomness complexity of multiplication algorithms secure in
the d-probing model. We propose several contributions: we provide new
theoretical characterizations and constructions, new practical construc-
tions and a new efficient algorithmic tool to analyze the security of such
schemes.

We start with a theoretical treatment of the subject: we propose an
algebraic model for multiplication algorithms and exhibit an algebraic
characterization of the security in the d-probing model. Using this char-
acterization, we prove a linear (in d) lower bound and a quasi-linear
(non-constructive) upper bound for this randomness cost. Then, we con-
struct a new generic algorithm to perform secure multiplication in the
d-probing model that only uses d + d2/4 random bits.

From a practical point of view, we consider the important cases d ≤ 4
that are actually used in current real-life implementations and we build
algorithms with a randomness complexity matching our theoretical lower
bound for these small-order cases. Finally, still using our algebraic char-
acterization, we provide a new dedicated verification tool, based on infor-
mation set decoding, which aims at finding attacks on algorithms for fixed
order d at a very low computational cost.

Keywords: Side-channel analysis · Probing model · Randomness
complexity · Constructions · Lower bounds · Probabilistic method ·
Information set decoding · Algorithmic tool

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 616–648, 2016.
DOI: 10.1007/978-3-662-49896-5 22

Randomness Complexity of Private Circuits for Multiplication 617

1 Introduction

Most commonly used cryptographic algorithms are now considered secure
against classical black-box attacks, when the adversary has only knowledge of
their inputs or outputs. Today, it is however well known that their implemen-
tations are vulnerable to side-channel attacks, as revealed in the academic com-
munity by Kocher in 1996 [16]. These attacks exploit the physical emanations
of the underlying device such as the execution time, the device temperature, or
the power consumption during the algorithm execution.

To thwart side-channel attacks, many countermeasures have been proposed
by the community. Among them, the most widely deployed one is probably
masking (a.k.a. secret/processing sharing) [8,13], which has strong links with
techniques usually applied in secure multi-party computation (see e.g., [5,28])
or private circuits theory [15]. For many kinds of real-life implementations, this
countermeasure indeed demonstrated its effectiveness when combined with noise
and processing jittering. The idea of the masking approach is to split every single
sensitive variable/processing, which depends on the secret and on known vari-
ables, into several shares. Each share is generated uniformly at random except
the last one which ensures that the combination of all the shares is equal to the
initial sensitive value. This technique aims at making the physical leakage of one
variable independent of the secret and thus useless for the attacker. The tuple
of shares still brings information about the shared data but, in practice, the
leakages are noisy and the complexity of extracting useful information increases
exponentially with the number of shares, the basis of the exponent being related
to the amount of noise [8].

In order to formally prove the security of masking schemes, the community
has made important efforts to define leakage models that accurately capture
the leakage complexity and simultaneously enable to build security arguments.
In 2003, Ishai, Sahai, and Wagner introduced the d-probing model in which the
attacker can observe at most d exact intermediate values [15]. This model is
very convenient to make security proofs but does not fit the reality of embedded
devices which leak noisy functions of all their intermediate variables. In 2013,
Prouff and Rivain extended the noisy leakage model [23], initially introduced
by Chari et al. [8], to propose a new one more accurate than [15] but not very
convenient for security proofs. The two models [15,23] were later unified by Duc,
Dziembowski, and Faust [10] and Duc, Faust, and Standaert [11] who showed
that a security proof in the noisy leakage model can be deduced from security
proofs in the d-probing model. This sequence of works shows that proving the
security of implementations in the d-probing model makes sense both from a the-
oretical and practical point of view. An implementation secure in the d-probing
model is said to satisfy the d-privacy property or equivalently to be d-private [15]
(or secure at order d).

It is worth noting that there is a tight link between sharing techniques,
Multi Party Computation (MPC) and also threshold implementations [6,7,21].
In particular, the study in the classical d-probing security model can be seen
as a particular case of MPC with honest players. Furthermore, the threshold

618 S. Beläıd et al.

implementations manipulate sharing techniques with additional restrictions to
thwart further hardware attacks resulting from the leakage of electronic glitches.
This problem can itself be similarly seen as a particular case of MPC, with
Byzantine players [17].

1.1 Our Problem

Since most symmetric cryptographic algorithms manipulate Boolean values, the
most practical way to protect them is generally to implement Boolean sharing
(a.k.a. high-order masking): namely, each sensitive intermediate result x is shared
into several pieces, say d+1, which are manipulated by the algorithm and whose
parity is equal to x. To secure the processing of a function f on a shared data,
one must design a so-called masking scheme (or formally a private circuit) that
describes how to build a sharing of f(x) from that of x while maintaining the
d-probing security.

In the context of Boolean sharing, we usually separate the protection of
linear functions from that of non-linear ones. In particular, at the hardware
level, any circuit can be implemented using only two gates: the linear XOR gate
and the non-linear AND gate. While the protection of linear operations (e.g.,
XOR) is straightforward since the initial function f can be applied to each share
separately, it becomes more difficult for non-linear operations (e.g., AND). In
these cases, the shares cannot be manipulated separately and must generally be
processed all together to compute the correct result. These values must then be
further protected using additional random bits which results in an important
timing overhead.

State-of-the-art solutions to implement Boolean sharing on non-linear func-
tions [9,25] have focused on optimizing the computation complexity. Surprisingly,
the amount of necessary random bits has only been in the scope of the semi-
nal paper of Ishai, Sahai and Wagner [15]. In this work, the authors proposed
and proved a clever construction (further referred to as ISW multiplication)
allowing to compute the multiplication of two shared bits by using d(d + 1)/2
random bits, that is, half as many random bits as the straightforward solu-
tion uses. Their construction has since become a cornerstone of secure imple-
mentations [10,12,24,25]. Even if this result is very important, the quantity
of randomness remains very expensive to generate in embedded cryptographic
implementations. Indeed, such a generation is usually performed using a physical
generator followed by a deterministic random bit generator (DRBG). In addition
of being a theoretical “chicken-and-egg” problem for this DRBG protection, in
practice the physical generator has often a low throughput and the DRBG is also
time-consuming. In general, for a DRBG based on a 128-bit block cipher, one
call to this block cipher enables to generate 128 pseudorandom bits1 (see [2]).
However, one invocation of the standard AES-128 block cipher with the ISW

1 Actually, the generation of pseudorandom bits roughly corresponds to the execution
of a block cipher but we should also consider the regular internal state update.

Randomness Complexity of Private Circuits for Multiplication 619

multiplication requires as much as 30,720 random bits (6 random bytes per mul-
tiplication, 4 multiplications per S-box [25]) to protect the multiplications when
masked at the low order d = 3, which corresponds to 240 preliminary calls to
the DRBG.

1.2 Our Contributions

We analyze the quantity of randomness required to define a d-private multipli-
cation algorithm at any order d. Given the sharings a = (ai)0≤i≤d, b = (bi)0≤i≤d

of two bits a and b, the problem we tackle out is to find the minimal number of
random bits necessary to securely compute a sharing (ci)0≤i≤d of the bit c = ab
with a d-private algorithm. We limit our scope to the construction of a multipli-
cation based on the sum of shares’ products. That is, as in [15], we start with
the pairwise products of a’s and b’s shares and we work on optimizing their sum
into d+1 shares with as few random bits as possible. We show that this reduces
to studying the randomness complexity of some particular d-private compression
algorithm that securely transforms the (d+1)2 shares’ products into d+1 shares
of c. In our study we make extensive use of the following theorem that gives an
alternative characterization of the d-privacy:

Theorem 7 (informal). A compression algorithm is d-private if and only if
there does not exist a set of � intermediate results {p1, . . . , p�} such that � ≤ d

and
∑�

i=1 pi can be written as aᵀ · M · b with M being some matrix such that
the all-ones vector is in the row space or in the column space of M .

From this theorem, we deduce the following lower bound on the randomness
complexity:

Theorems 13–14 (informal). If d ≥ 3 (resp. d = 2), then a d-private com-
pression algorithm for multiplication must involve at least d + 1 random bits
(resp. 2).

This theorem shows that the randomness complexity is in Ω(d). Following
the probabilistic method, we additionally prove the following theorem which
claims that there exists a d-private multiplication algorithm with randomness
complexity O(d · log d). This provides a quasi-linear upper bound O(d · log d) for
the randomness complexity, when d → ∞.

Theorem 16 (informal). There exists a d-private multiplication algorithm
with randomness complexity O(d · log d), when d → ∞.

This upper bound is non-constructive: we show that a randomly chosen mul-
tiplication algorithm (in some carefully designed family of multiplication algo-
rithms using O(d·log d) random bits) is d-private with non-zero probability. This
means that there exists one algorithm in this family which is d-private.

In order to explicitly construct private algorithms with low randomness, we
analyze the ISW multiplication to bring out necessary and sufficient conditions
on the use of the random bits. In particular, we identify necessary chainings and
we notice that some random bits may be used several times at several locations to
protect more shares’ products, while in the ISW multiplication, each random bit

620 S. Beläıd et al.

Fig. 1. Randomness complexity of d-private multiplication algorithms

is only used twice. From this analysis, we deduce a new d-private multiplication
algorithm requiring �d2/4� + d random bits instead of d(d + 1)/2. As a positive
side-effect, our new construction also reduces the algorithmic complexity of ISW
multiplication (i.e., its number of operations).

Based on this generic construction, we then try to optimize some widely used
small order instances. In particular, we bring out new multiplication algorithms,
for the orders d = 2, 3 and 4, which exactly achieve our proven linear lower bound
while maintaining the d-privacy. Namely, we present the optimal multiplication
algorithms for orders 2, 3 and 4 when summing the shares’ products into d + 1
shares. We formally verify their security using the tool provided in [4]. Figure 1
illustrates the randomness complexity of our constructions (for general orders
d and small orders) and our lower bound. Note that while the ISW algorithm
was initially given for multiplications of bits, it was later extended by Rivain
and Prouff in [25] for any multiplication in F2n . In the following, for the sake of
simplicity, we refer to binary multiplications (n = 1) for our constructions, but
note that all of them can also be adapted to multiplication in F2n .

Contrary to the ISW algorithm, our new constructions are not directly com-
posable — in the sense of Strong Non-Interferent (SNI) in [3] — at any order.
Fortunately, they can still be used in compositions instead of the ISW algorithms
at carefully chosen locations. In this paper, we thus recall the different security
properties related to compositions and we show that in the AES example, our
new constructions can replace half the ISW ones while preserving the d-privacy
of the whole algorithm.

Randomness Complexity of Private Circuits for Multiplication 621

Finally, while the tool provided in [4] — which is based on Easycrypt —
is able to reveal potential attack paths and formally prove security in the
d-probing model with full confidence, it is limited to the verification of small
orders (d = 6 in our case). Therefore, we propose a new dedicated probabilistic
verification tool, which aims at finding attacks in fixed order private circuits (or
equivalently masking schemes) at a very low cost. The tool [1] is developed in
Sage (Python) [27] and though less generic than [4] it is order of magnitudes
faster. It relies on some heuristic assumption (i.e. it cannot be used to actually
prove the security) but it usually finds attacks very swiftly for any practical
order d. It makes use of information set decoding (a technique from coding the-
ory introduced to the cryptographic community for the security analysis of the
McEliece cryptosystem in [20,22]).

2 Preliminaries

This section defines the notations and basic notions that we use in this paper,
but also some elementary constructions we refer to. In particular, we introduce
the notion of d-private compression algorithm for multiplication and we present
its only concrete instance which was proposed by Ishai, Sahai, and Wagner [15].

2.1 Notation

For a set S, we denote by |S| its cardinality, and by s
$← S the operation of

picking up an element s of S uniformly at random. We denote by Fq the finite
field with q elements. Vectors are denoted by lower case bold font letters, and
matrices are denoted by upper case bold font letters. All vectors are column
vectors unless otherwise specified. The kernel (resp. the image) of the linear
map associated to a matrix M is denoted by ker(M) (resp. im(M)). For a
vector x, we denote by xi its i-th coordinate and by hw(x) its Hamming weight
(i.e., the number of its coordinates that are different from 0).

For any fixed n ≥ 1, let U n ∈ F
n×n
2 denote the matrix whose coefficients ui,j

equal 1 for all 1 ≤ i, j ≤ n. Let 0n,� ∈ F
n×�
2 denote the matrix whose coefficients

are all 0. Let un ∈ F
n
2 denote the vector (1, . . . , 1)ᵀ and 0n ∈ F

n
2 denote the

vector (0, . . . , 0)ᵀ. For vectors x1, . . . ,xt in F
n
2 we denote 〈x1, . . . ,xt〉 the vector

space generated by the set {x1, . . . ,xt}.
We say that an expression f(x1, . . . , xn, r) functionally depends on the vari-

able r if there exists a1, . . . , an such that the function r �→ f(a1, . . . , an, r) is not
constant.

For an algorithm A, we denote by y ← A(x1, x2, . . .) the operation of running
A on inputs (x1, x2, . . .) and letting y denote the output. Moreover, if A is
randomized, we denote by y

$← A(x1, x2, . . . ; r) the operation of running A on
inputs (x1, x2, . . .) and with uniform randomness r (or with fresh randomness
if r is not specified) and letting y denote the output. The probability density
function associated to a discrete random variable X defined over S (e.g., F2) is
the function which maps x ∈ S to Pr [X = x]. It is denoted by {X} or by {X}r

622 S. Beläıd et al.

if there is a need to precise the randomness source r over which the distribution
is considered.

2.2 Private Circuits

We examine the privacy property in the setting of Boolean circuits and start
with the definition of circuit and randomized circuit given in [15]. A deterministic
circuit C is a directed acyclic graph whose vertices are Boolean gates and whose
edges are wires. A randomized circuit is a circuit augmented with random-bit
gates. A random-bit gate is a gate with fan-in 0 that produces a random bit and
sends it along its output wire; the bit is selected uniformly and independently of
everything else afresh for each invocation of the circuit. From the two previous
notions, we may deduce the following definition of a private circuit inspired
from [14].

Definition 1 [14]. A private circuit for f : F
n
2 → F

m
2 is defined by a triple

(I, C,O), where

– I: F
n
2 → F

n′
2 is a randomized circuit with uniform randomness ρ and called

input encoder;
– C is a randomized boolean circuit with input in F

n′
2 , output in F

m′
2 , and uni-

form randomness r ∈ F
t
2;

– O: F
m′
2 → F

m
2 is a circuit, called output decoder.

We say that C is a d-private implementation of f with encoder I and decoder O
if the following requirements hold:

– Correctness: for any input w ∈ F
n
2 , Pr [O(C(I(w; ρ); r)) = f(w)] = 1, where

the probability is over the randomness ρ and r;
– Privacy: for any w,w′ ∈ F

n
2 and any set P of d wires in C, the distributions

{CP (I(w; ρ); r)}ρ,r and {CP (I(w′; ρ); r)}ρ,r are identical, where CP (I(w; ρ); r)
denotes the list of the d values on the wires from P .

Remark 2. It may be noticed that the notions of d-privacy and of security in the
d-probing model used, e.g., in [4] are perfectly equivalent.

Unless noted otherwise, we assume I and O to be the following canonical
encoder and decoder: I encodes each bit-coordinate b of its input w by a block
(bj)0≤j≤d of d + 1 random bits with parity b, and O takes the parity of each
block of d + 1 bits. Each block (bj)0≤j≤d is called a sharing of b and each bj is
called a share of b.

From now on, the wires in a set P used to attack an implementation are
referred as the probes and the corresponding values in CP (I(w; ρ); r) as the
intermediate results. To simplify the descriptions, a probe p is sometimes used
to directly denote the corresponding result. A set of probes P such that the
distributions {CP (I(w; ρ); r)}ρ,r and {CP (I(w′; ρ); r)}ρ,r are not identical for
some inputs w,w′ ∈ F

n
2 shall be called an attack. When the inputs w are clear

from the context, the distribution {CP (I(w; ρ); r)}ρ,r is simplified to {(p)p∈P }.

Randomness Complexity of Private Circuits for Multiplication 623

We now introduce the notions of multiplication algorithm and of
d-compression algorithm for multiplication. In this paper, we deeply study d-
private multiplication algorithms and d-private compression algorithms for mul-
tiplication.

Definition 3. A multiplication algorithm is a circuit for the multiplication of
2 bits (i.e., with f being the function f : (a, b) ∈ F

2
2 �→ a · b ∈ F2), using the

canonical encoder and decoder.

Before moving on to the next notion, let us first introduce a new particular
encoder, called multiplicative, which has been used in all the previous attempts
to build a d-private multiplication algorithm. This encoder takes as input two
bits (a, b) ∈ F

2
2, runs the canonical encoder on these two bits to get d+1 random

bits (a0, . . . , ad) and (b0, . . . , bd) with parity a and b respectively, and outputs
the (d + 1)2 bits (αi,j)0≤i,j≤d with αi,j = ai · bj . Please note that, in particular,

we have a · b = (
∑d

i=0 ai) · (
∑d

i=0 bi) =
∑

0≤i,j≤d αi,j .

Definition 4. A d-compression algorithm for multiplication is a circuit for the
multiplication of 2 bits (i.e., with f being the function f : (a, b) ∈ F

2
2 �→ a·b ∈ F2),

using the canonical decoder and the multiplicative encoder. Moreover, we restrict
the circuit C to only perform additions in F2.

When clear from the context, we often omit the parameter d and simply say
“a compression algorithm for multiplication”.

Remark 5. Any d-compression algorithm for multiplication yields a multiplica-
tion algorithm, as the algorithm can start by computing αi,j given its inputs
(a0, . . . , ad, b0, . . . , bd).

Proposition 6. A multiplication algorithm B constructed from a d-compression
algorithm for multiplication A (as in Remark 5) is d-private if and only if the
compression algorithm A is d-private.

Clearly if B is d-private, so is A. However, the converse is not straightforward,
as an adversary can also probe the input shares ai and bi in B, while it cannot in
A. The full proof is given in the full version of this paper and is surprisingly hard:
we actually use a stronger version of our algebraic characterization (Theorem 7).
In the remaining of the paper, we focus on compression algorithms and we do
not need to consider probes of the input shares ai and bi, which makes notation
much simpler.

In the sequel, a d-compression algorithm for multiplication is denoted by
A(a, b; r) with r denoting the tuple of uniform random bits used by the algo-
rithm and with a (resp. b) denoting the vector of d+1 shares of the multiplication
operand a (resp. b).

The purpose of the rest of this paper is to investigate how much randomness
is needed for such an algorithm to satisfy the d-privacy and to propose efficient
or optimal constructions with respect to the consumption of this resource. The
number of bits involved in an algorithm A(a, b; r) (i.e., the size of r) is called
its randomness complexity or randomness cost.

624 S. Beläıd et al.

Algorithm 1. ISW algorithm
Require: sharing (αi,j)0≤i,j≤d

Ensure: sharing (ci)0≤i≤d

for i = 0 to d do
for j = i + 1 to d do

ri,j
$← F2; ti,j ← ri,j ; tj,i ← ri,j + αi,j + αj,i

ci ← αi,i

for i = 0 to d do
for j = 0 to d do

if i �= j then
ci ← ci + ti,j

2.3 ISW Algorithm

The first occurrence of a d-private compression circuit for multiplication in the
literature is the ISW algorithm, introduced by Ishai, Sahai, and Wagner in [15].
It is described in Algorithm 1. Its randomness cost is d(d + 1)/2.

To better understand this algorithm, let us first write it explicitly for d = 3:

c0 ← α0,0 + r0,1 + r0,2 + r0,3

c1 ← α1,1 + (r0,1 + α0,1 + α1,0) + r1,2 + r1,3

c2 ← α2,2 + (r0,2 + α0,2 + α2,0) + (r1,2 + α1,2 + α2,1) + r2,3

c3 ← α3,3 + (r0,3 + α0,3 + α3,0) + (r1,3 + α1,3 + α3,1) + (r2,3 + α2,3 + α3,2)

where, for the security to hold, the terms are added from left to right and where
the brackets indicate the order in which the operations must be performed (from
d-privacy point of view, the addition is not commutative). In particular, when
the brackets gather three terms (e.g., (r0,1 +α0,1 +α1,0)), the attacker is allowed
to probe two values from left to right (e.g., r0,1 + α0,1 and (r0,1 + α0,1 + α1,0)).

Let us now simplify the description by removing all the + symbols, the
assignments ci ←, and defining α̂i,j as αi,j + αj,i if i = j and αi,i if i = j. The
ISW algorithm for d = 3 can then be rewritten as:

α̂0,0 r0,1 r0,2 r0,3

α̂1,1 (r0,1 α̂0,1) r1,2 r1,3

α̂2,2 (r0,2 α̂0,2) (r1,2 α̂1,2) r2,3

α̂3,3 (r0,3 α̂0,3) (r1,3 α̂1,3) (r2,3 α̂2,3).

Please note that the expression of α̂i,j with i = j (i.e. αi,j + αj,i) is expanded
before the actual evaluation, i.e., as in the previous representation, the sum
αi,j + αj,i is not evaluated beforehand but evaluated during the processing of
ri,j + α̂i,j = ri,j + αi,j + αj,i.

3 Algebraic Characterization

In order to reason about the required quantity of randomness in d-private com-
pression algorithms for multiplication, we define an algebraic condition on the

Randomness Complexity of Private Circuits for Multiplication 625

security and we prove that an algorithm is d-private if and only if there is no set
of probes which satisfies it.

3.1 Matrix Notation

As our condition is algebraic, it is practical to introduce some matrix notation
for our probes. We write a = (a0, . . . , ad)ᵀ and b = (b0, . . . , bd)ᵀ the vectors
corresponding to the shares of the inputs a and b respectively. We also denote
by r = (r1, . . . , rR)ᵀ the vector of the random bits.

We remark that, for any probe p on a compression algorithm for multipli-
cation, p is always an expression that can be written as a sum of αi,j ’s (with
αi,j = ai · bj) and rk’s, and possibly a constant cp ∈ F2. In other word, we can
write p as

p = aᵀ · Mp · b + sp
t · r + cp,

with Mp being a matrix in F
(d+1)×(d+1)
2 and sp being a vector in F

R
2 . This

matrix Mp and this vector sp are uniquely defined. In addition, any sum of
probes can also be written that way.

Furthermore, if cp = 1, we can always sum the probe with 1 and consider
p+1 instead of p. This does not change anything on the probability distribution
we consider. Therefore, for the sake of simplicity, we always assume cp = 0 in all
the paper.

3.2 Algebraic Condition

We now introduce our algebraic condition:

Condition 1. A set of probes P = {p1, . . . , p�} on a d-compression algorithm
for multiplication satisfies Condition 1 if and only if the expression f =

∑�
i=1 pi

can be written as f = aᵀ ·M · b with M being some matrix such that ud+1 is in
the row space or the column space of M.

As seen previously, the expression f can always be written as

f = aᵀ · M · b + sᵀ · r,

for some matrix M and some vector s. Therefore, what the condition enforces is
that s = 0R (or in other words, f does not functionally depend on any random
bit) and the column space or the row space of M contains the vector ud+1.

A Weaker Condition. To better understand Condition 1, let us introduce a
weaker condition which is often easier to deal with:

Condition 2 (Weak Condition). A set of probes P = {p1, . . . , p�} on a d-
compression algorithm for multiplication satisfies Condition 2 if and only if the
expression f =

∑�
i=1 pi does not functionally depend on any rk and there exists

a map γ: {0, . . . , d} → {0, . . . , d} such that f does functionally depend on every
(αi,γ(i))0≤i≤d

or on every (αγ(i),i)0≤i≤d
.

626 S. Beläıd et al.

This condition could be reformulated as f =
∑�

i=1 pi functionally depends on
either all the ai’s or all the bi’s and does not functionally depend on any rk. It
is easy to see that any set P verifying Condition 1 also verifies Condition 2.

3.3 Algebraic Characterization

Theorem 7. Let A be a d-compression algorithm for multiplication. Then, A
is d-private if and only if there does not exist a set P = {p1, . . . , p�} of � ≤ d
probes that satisfies Condition 1. Furthermore any set P = {p1, . . . , p�} satisfying
Condition 1 is an attack.

Please note that Theorem 7 would not be valid with Condition 2 (instead of
Condition 1). A counterexample is given in the full version of this paper.

Proof (Theorem 7).

Direction 1: Left to right. We prove hereafter that if A is d-private, then there
does not exist a set P = {p1, . . . , p�} of � ≤ d probes that satisfies Condition 1.

By contrapositive, let us assume that there exists a set P = {p1, . . . , p�} of
at most d probes that satisfies Condition 1. Let M be the matrix such that
f =

∑�
i=1 pi = aᵀ ·M ·b and let us assume, without loss of generality, that ud+1

is in the vector subspace generated by the columns of M . We remark that, for
any v ∈ F

d+1
2 :

Pr [aᵀ · v = a] =

{

1 when v = ud+1

1
2 when v = ud+1

by definition of the sharing a of a (probability is taken over a). Thus we have,
when a = 0 (assuming that b is uniformly random)

Pr [f = 0 | a = 0]
= Pr [aᵀ · M · b = 0 | aᵀ · ud+1 = 0]
= Pr [aᵀ · ud+1 = 0 | a = 0 and M · b = ud+1] · Pr [M · b = ud+1]

+
∑

v∈F
d+1
2 \{ud+1} Pr [aᵀ · v = 0 | a = 0 and M · b = v] · Pr [M · b = v]

= 1 · Pr [M · b = ud+1] +
∑

v∈F
d+1
2 \{ud+1}

1
2 · Pr [M · b = v]

= 1 · Pr [M · b = ud+1] + 1
2 (1 − Pr [M · b = ud+1])

= 1
2 + 1

2Pr [M · b = ud+1].

Similarly, when a = 1, we have

Pr [f = 0 | a = 1] = 1
2 − 1

2Pr [M · b = ud+1].

As ud+1 is in the column space of M , the distribution of {f} is not the same
when a = 0 and when a = 1. This implies that the distribution {(p1, . . . , p�)} is
also different when a = 0 and a = 1. Hence A is not d-private.

This concludes the proof of the first implication and the fact that any set
P = {p1, . . . , p�} satisfying Condition 1 is an attack.

Randomness Complexity of Private Circuits for Multiplication 627

Direction 2: Right to left. Let us now prove by contradiction that if there
does not exist a set P = {p1, . . . , p�} of � ≤ d probes that satisfies Condition 1,
then A is d-private.

Let us assume that A is not d-private. Then there exists an attack using a set
of probes P = {p1, . . . , p�} with � ≤ d. This is equivalent to say that there exists
two inputs (a(0), b(0)) = (a(1), b(1)) such that the distribution {(p1, . . . , p�)} is
not the same whether (a, b) = (a(0), b(0)) or (a, b) = (a(1), b(1)).

We first remark that we can consider 0 = a(0) = a(1) = 1, without loss of
generality as the a(i)’s and the b(i)’s play a symmetric role (and (a(0), b(0)) =
(a(1), b(1))). Furthermore, we can always choose b(0) = b(1), as if the distribution
{(p1, . . . , p�)} is not the same whether (a, b) = (0, b(0)) or (a, b) = (1, b(1)), with
b(0) = b(1), then:

– it is not the same whether (a, b) = (0, b(0)) or (a, b) = (1, b(0)) (in which case,
we could have taken b(1) = b(0)), or

– it is not the same whether (a, b) = (1, b(0)) or (a, b) = (1, b(1)) (in which case,
we can just exchange the a’s and the b’s roles).

To summarize, there exists b(0) such that the distribution {(p1, . . . , p�)} is not
the same whether (a, b) = (0, b(0)) or (a, b) = (1, b(0)).

In the sequel b(0) is fixed and we call a tuple (p1, . . . , p�) satisfying the pre-
vious property an attack tuple.

We now remark that if � = 1 or if even the distribution {(
∑�

i=1 pi)} is not
the same whether (a, b) = (0, b(0)) or (a, b) = (1, b(0)) (i.e., (

∑�
i=1 pi) is an attack

tuple), then it follows easily from the probability analysis of the previous proof
for the other direction of the theorem, that the set P satisfies Condition 1. The
main difficulty is that it is not necessarily the case that � = 1 or (

∑�
i=1 pi) is an

attack tuple. To overcome it, we use linear algebra.
But first, let us introduce some useful notations and lemmas. We write p

the vector (p1, . . . , p�)ᵀ and we say that p is an attack vector if and only if
(p1, . . . , p�) is an attack tuple. Elements of p are polynomials in the ai’s, the bj ’s
and the rk’s.

Lemma 8. If p is an attack vector and N is an invertible matrix in F
�×�
2 , then

N · p is an attack vector.

Proof. This is immediate from the fact that N is invertible. Indeed, as a matrix
over F2, N−1 is also a matrix over F2. Hence, multiplying the set of probes
{N · p} by N−1 (which leads to the first set of probes {p}) can be done by
simply computing sums of elements in {N · p}. Hence, as the distribution of
{p} differs when (a, b) = (0, b(0)) and (a, b) = (1, b(0)), the same is true for the
distribution {N · p}. ��
We also use the following straightforward lemma.

Lemma 9. If (p1, . . . , p�) is an attack tuple such that the � − t + 1 random
variables (p1, . . . , pt), pt+1, . . . , and p� are mutually independent, and the dis-
tributions of (pt+1, . . . , p�) is the same for all the values of the inputs (a, b), then
(p1, . . . , pt) is an attack tuple.

628 S. Beläıd et al.

Let us consider the matrix S ∈ F
�×R
2 whose coefficients si,j are defined as

si,j = 1 if and only if the expression pi functionally depends on rj . In other
words, if we write pi = aᵀ ·Mpi

· b + spi
ᵀ · r, the i-th row of S is spi

ᵀ. We can
permute the random bits (i.e., the columns of S and the rows of r) such that a
row reduction on the matrix S yields a matrix of the form:

S ′ =
(

0t,t 0t,�−t

I t S ′′

)

.

Let N be the invertible matrix in F
�×�
2 such that N · S = S ′. And we write

p′ = (p′
1, . . . , p

′
�)

ᵀ = N · p. Then, p′ is also an attack vector according to
Lemma 8. In addition, for t < i ≤ �, p′

i does functionally depend on ri and no
other p′

j does functionally depend on rj (due to the shape of S ′). Therefore,
according to Lemma 9, (p′

1, . . . , p
′
t) is an attack tuple.

We remark that (p′
1, . . . , p

′
t) does not functionally depend on any random bit,

due to the shape of S ′. Therefore, for each 1 ≤ i ≤ t, we can write:

p′
i = aᵀ · M ′

i · b,

for some matrix M ′
i .

We now need a final lemma to be able to conclude.

Lemma 10. If (p′
1, . . . , p

′
t) is an attack tuple, then there exists a vector b∗ ∈

F
d+1
2 such that ud+1 is in the vector space 〈M′

1 · b∗, . . . ,M′
t · b∗〉.

Proof. This lemma can be seen as a generalization of the probability analysis in
the proof of the first direction of the theorem.

We suppose by contradiction that (p′
1, . . . , p

′
t) is an attack vector but there

does not exist a vector b∗ ∈ F
d+1
2 such that ud+1 is in the vector space 〈M ′

1 ·
b∗, . . . ,M ′

t ·b∗〉. Then, for any value a(0), any vector b(0) ∈ F
d+1
2 , and any vector

x = (x1, . . . , xt)ᵀ ∈ F
t
2:

Pr
[

(p′
1, . . . , p

′
t) = (x1, . . . , xt) | a = a(0) and b = b(0)

]

= Pr
[

(aᵀ · M ′
1 · b(0), . . . ,aᵀ · M ′

t · b(0)) = (x1, . . . , xt) | aᵀ · ud+1 = a(0)
]

= Pr
[

aᵀ · B = xᵀ | aᵀ · ud+1 = a(0)
]

,

where B is the matrix whose i-th column is the vector M ′
i · b(0). To conclude,

we just need to remark that

Pr [aᵀ · B = xᵀ | aᵀ · ud+1 = 0] = Pr [aᵀ · B = xᵀ | aᵀ · ud+1 = 1],

which implies that the probability distribution of (p′
1, . . . , p

′
t) is independent of

the value of a, which contradicts the fact the (p′
1, . . . , p

′
t) is an attack tuple.

To prove the previous equality, we use the fact that ud+1 is not in the column
space of B and therefore the value of aᵀ · ud+1 is uniform and independent of
the value of aᵀ · B (when a is a uniform vector in F

d+1
2). ��

Randomness Complexity of Private Circuits for Multiplication 629

Thanks to Lemma 10, there exists a vector σ = (σ1, . . . , σt)ᵀ ∈ F
t
2 and a vector

b∗ ∈ F
d+1
2 such that

(

t
∑

i=1

σi · M ′
i

)

· b∗ = ud+1. (1)

Let σ′ be the vector in F
�
2 defined by σ′ᵀ =

(

σᵀ 0ᵀ
�−t

) · N . We have:

σ′ᵀ · p =
t

∑

i=1

σi · p′
i =

t
∑

i=1

σi · aᵀ · M ′
i · b = aᵀ ·

(

t
∑

i=1

σi · M ′
i

)

· b. (2)

Therefore, we can define the set P ′ = {pi | σi = 1}. This set satisfies Condition 1,
according to Eqs. (1) and (2).

This concludes the proof. ��

4 Theoretical Lower and Upper Bounds

In this section, we exhibit lower and upper bounds for the randomness com-
plexity of a d-private compression algorithm for multiplication. We first prove
an algebraic result and an intermediate lemma that we then use to show that
at least d + 1 random bits are required to construct a d-private compression
algorithm for multiplication, for any d ≥ 3 (and 2 random bits are required for
d = 2). Finally, we provide a (non-constructive) proof that for large enough d,
there exists a d-private multiplication algorithm with a randomness complexity
O(d · log d).

4.1 A Splitting Lemma

We first prove an algebraic result, stated in the lemma below, that we further
use to prove Lemma 12. The latter allows us to easily exhibit attacks in order
to prove our lower bounds.

Lemma 11. Let n ≥ 1. Let M0,M1 ∈ F
n×n
2 such that M0 + M1 = Un. Then,

there exists a vector v ∈ F
n
2 such that:

M0 · v = un or M1 · v = un or Mᵀ
0 · v = un or Mᵀ

1 · v = un.

Proof (Lemma 11). We show the above lemma by induction on n.

Base Case: for n = 1, M 0,M 1,U ∈ F2, so M 0 + M 1 = 1, which implies
M 0 = 1 or M 1 = 1 and the claim immediately follows.

Inductive Case: let us assume that the claim holds for a fixed n ≥ 1. Let us
consider two matrices M 0,M 1 ∈ F

(n+1)×(n+1)
2 such that M 0 + M 1 = U n+1.

Clearly, if M 0 (or M 1) is invertible, then the claim is true (as un+1 is in
its range). Then, let us assume that M 0 is not invertible. Then, there exists a
non-zero vector x ∈ ker(M 0). Now, as im(U n+1) = {0n+1,un+1}, if U n+1 ·x =

630 S. Beläıd et al.

un+1, then M 1 · x = un+1 and the claim is true. Hence, clearly, the claim is
true if ker(M 0) = ker(M 1) (with the symmetric remark). The same remarks
hold when considering matrices M ᵀ

0 and M ᵀ
1 .

Hence, the only remaining case to consider is when ker(M 0) = {0n+1},
ker(M ᵀ

0) = {0n+1} and when ker(M 0) = ker(M 1) and ker(M ᵀ
0) = ker(M ᵀ

1).
In particular, we have ker(M 0) ⊆ ker(U n+1) and ker(M ᵀ

0) ⊆ ker(U n+1).
Let x ∈ ker(M 0) (and then x ∈ ker(M 1) as well) be a non-zero vector.

Up to some rearrangement of the columns of M 0 and M 1 (by permuting some
columns), we can assume without loss of generality that x = (1, . . . , 1, 0, . . . , 0)ᵀ.
Let X denote the matrix (x,e2, . . . ,en+1) where ei = (0, . . . , 0, 1, 0, . . . , 0)ᵀ is
the i-th canonical vector of length n + 1, so that it has a 1 in the i-th position
and 0’s everywhere else.

Now, let y ∈ ker(M ᵀ
0) (and then y ∈ ker(M ᵀ

1) as well) be a non-zero vector,
so yᵀ · M ᵀ

0 = 0ᵀ
n+1. Moreover, up to some rearrangement of the rows of M 0

and M 1, we can assume that y = (1, . . . , 1, 0, . . . , 0)ᵀ. Let Y denote the matrix
(y,e2, . . . ,en+1).

Please note that rearrangements apply to the columns in the first case and
to the rows in the second case, so we can assume without loss of generality that
there exists both x ∈ ker(M 0) and y ∈ ker(M ᵀ

0) with the above form and
matrices X and Y are well defined.

We now define the matrices M ′
0 = Y ᵀ · M 0 · X and M ′

1 = Y ᵀ · M 1 · X .
We have:

M ′
0 =

(

yᵀ

0n I n

)

· M 0 ·
(

x
0ᵀ

n

I n

)

=
(

yᵀ

0n I n

)

·
(

0n+1 M
(1)
0

)

where M
(1)
0 is the matrix extracted from M 0 by removing its first column.

Hence:

M ′
0 =

(

0 0ᵀ
n

0n M
(1,1)
0

)

where M
(1,1)
0 is the matrix extracted from M 0 by removing its first column and

its first row. Similar equation holds for M ′
1 as well. Thus, it is clear that:

M ′
0 + M ′

1 =
(

0 0ᵀ
n

0n U n

)

.

Let us consider the matrices M ′′
0 and M ′′

1 in F
n×n
2 that are extracted from

matrices M ′
0 and M ′

1 by removing their first row and their first column (i.e.,
M ′′

i = M
′(1,1)
i with the previous notation). Then, it is clear that M ′′

0 + M ′′
1 =

U n. As matrices in F
n×n
2 , by induction hypothesis, there exists v′′ ∈ F

n
2 such

that at least one of the 4 propositions from Lemma 11 holds. We can assume
without loss of generality that M ′′

0 · v′′ = un.

Let v′ =
(

0
v′′

)

∈ F
n+1
2 . Then, we have:

M ′
0 · v′ =

(

0 0ᵀ
n

0n M ′′
0

)

·
(

0
v′′

)

=
(

0n · v′′

M ′′
0 · v′′

)

=
(

0
un

)

.

Randomness Complexity of Private Circuits for Multiplication 631

Now, let v = X · v′ and w = M 0 · w, so Y ᵀ · w = Y ᵀ · M 0X · v′ =

M ′
0 ·v′ =

(

0
un

)

. Moreover, as Y is invertible, w is the unique vector such that

Y ᵀ · w =
(

0
un

)

. Finally, as the vector un+1 satisfies Y ᵀ · un+1 =
(

0
un

)

, then

w = un+1, and the claim follows for n+1, since v satisfies M 0 ·v = w = un+1.

Conclusion: The claim follows for any n ≥ 1, and so does Lemma 11. ��
We can now easily prove the following statement that is our main tool for proving
our lower bounds, as explained after its proof.

Lemma 12. Let A be a d-compression algorithm for multiplication. If there
exists two sets S1 and S2 of at most d probes such that si =

∑

p∈Si
p does not

functionally depend on any of the random bits, for i ∈ {0, 1}, and such that
s0 + s1 = a · b, then A is not d-private.

Proof (Lemma 12). Let A, S0, S1, s0 and s1 defined in the above statement.
Then, there exists M i ∈ F

(d+1)×(d+1)
2 such that si = aᵀ · M i · b, for i ∈ {0, 1}.

Furthermore, as s0+s1 = a·b = aᵀ ·U d+1 ·b, we have M 0+M 1 = U d+1. Hence,
via Lemma 11, there exists v ∈ F

d+1
2 and i ∈ {0, 1} such that M i · v = ud+1 or

M ᵀ
i · v = ud+1. This means that ud+1 is in the row subspace or in the column

subspace of M i, and therefore, Mi satisfies Condition 1. Therefore, as |Si| ≤ d,
applying Theorem 7, A is not d-private. Lemma 12 follows. ��

We use the above lemma to prove our lower bounds as follows: for proving
that at least R(d) random bits are required in order to achieve d-privacy for a
compression algorithm for multiplication, we prove that any algorithm with a
lower randomness complexity is not d-private by exhibiting two sets of probes
S0 and S1 that satisfy the requirements of Lemma 12.

4.2 Simple Linear Lower Bound

As a warm-up, we show that at least d random bits are required, for d ≥ 2.

Theorem 13. Let d ≥ 2. Let us consider a d-compression algorithm for multi-
plication A. If A uses only d − 1 random bits, then A is not d-private.

Proof (Theorem 13). Let r1, . . . , rd−1 denote the random bits used by A. Let
c0, . . . , cd denote the outputs of A. Let us define N ∈ F

(d−1)×d
2 as the matrix

whose coefficients ni,j are equal to 1 if and only if cj functionally depends on
ri, for 1 ≤ i ≤ d − 1 and 1 ≤ j ≤ d. Please note in particular that N does not
depend on c0.

As a matrix over F2 with d columns and d − 1 rows, there is necessarily a
vector w ∈ F

d
2 with w = 0d such that N · w = 0d−1.

The latter implies that the expression s0 =
∑d

i=1 wi · ci does not function-
ally depend on any of the rk’s. Furthermore, by correctness, we also have that

632 S. Beläıd et al.

s1 = c0 +
∑d

i=1(1 − wi) · ci does not functionally depend on any of the rk’s,
and s0 + s1 =

∑d
i=0 ci = a · b. Then, the sets of probes S0 = {ci | wi = 1}

and S1 = {c0} ∪ {ci | wi = 0} (whose cardinalities are at most d) satisfy the
requirements of Lemma 12, and then, A is not d-private. Theorem 13 follows. ��

4.3 Better Linear Lower Bound

We now show that at least d + 1 random bits are actually required if d ≥ 3.

Theorem 14. Let d ≥ 3. Let us consider a d-compression algorithm for multi-
plication A. If A uses only d random bits, then A is not d-private.

The proof is given in the full version of this paper.

4.4 (Non-constructive) Quasi-Linear Upper Bound

We now construct a d-private compression algorithm for multiplication which
requires a quasi-linear number of random bits. More precisely, we show that
with non-zero probability, a random algorithm in some family of algorithms
(using a quasi-linear number of random bits) is secure, which directly implies
the existence of such an algorithm. Note that it is an interesting open problem
(though probably difficult) to derandomize this construction.

Concretely, let d be some masking order and R be some number of ran-
dom bits (used in the algorithm), to be fixed later. For i = 0, . . . , d − 1 and
j = i + 1, . . . , d, let us define ρ(i, j) as:

ρ(i, j) =
∑R

k=1 Xi,j,k · rk

with Xi,j,k
$← {0, 1} for i = 0, . . . , d−1, j = i+1, . . . , d and k = 1, . . . , R, so that

ρ(i, j) is a random sum of all the random bits r1, . . . , rR where each bit appears
in ρ(i, j) with probability 1/2. We also define Xd,d,k =

∑d−1
i=0

∑d
j=i+1 Xi,j,k and

ρ(d, d) as:
ρ(d, d) =

∑R
k=1 Xd,d,k · rk.

We generate a (random) algorithm as in Algorithm 2. This algorithm is correct
because the sum of all ρ(i, j) is equal to 0.

We point out that we use two kinds of random which should not be confused:
the R fresh random bits r1, . . . , rR used in the algorithm to ensure its d-privacy
(R is what we really want to be as low as possible), and the random variables
Xi,j,k used to define a random family of such algorithms (which are “meta”-
random bits). In a concrete implementation or algorithm, these latter values are
fixed.

Lemma 15. Algorithm 2 is d-private with probability at least

1 −
(

(R + 3) · d · (d + 1)/2
d

)

· 2−R

over the values of the Xi,j,k’s.

Randomness Complexity of Private Circuits for Multiplication 633

Algorithm 2. Random algorithm
Require: sharing (αi,j)0≤i,j≤d

Ensure: sharing (ci)0≤i≤d

for i = 1 to R do
ri

$← F2

for i = 0 to d do
ci ← αi,i

for j = i + 1 to d do
ci ← ci + ρ(i, j) + αi,j + αj,i � ρ(i, j) is not computed first

cd ← cd + ρ(d, d)

Proof (Lemma 15). In order to simplify the proof, we are going to show that, with
non-zero probability, there is no set of probes P = {p1, . . . , p�} with � ≤ d that
satisfies Condition 2. In particular, this implies that, with non-zero probability,
there is no set of probes P = {p1, . . . , p�} with � ≤ d that satisfies Condition 1,
which, via Theorem 7, is equivalent to the algorithm being d-private.

One can only consider sets of exactly d probes as if there is a set of � < d
probes P ′ that satisfies Condition 2, one can always complete P ′ into a set P
with exactly d probes by adding d − � times the same probe on some input αi,j

such that P ′ initially does not depend on αi,j . That is, if M ′ denotes the matrix
such that

∑

p′∈P ′ p′ = a ·M ′ · b, one could complete P ′ with any αi,j such that
m′

i,j = 0, so that P , with
∑

p∈P p = a · M · b still satisfies Condition 2 if P ′

initially satisfied the condition.
Thus, let us consider an arbitrary set of d probes P = {p1, . . . , pd} and let

us bound the probability that P satisfies Condition 2. Let f =
∑d

i=1 pi. Let us
first show that f has to contain at least one ρ(i, j) (meaning that it appears an
odd number of times in the sum). Let us assume the contrary, so f does not
contain any ρ(i, j). Every ρ(i, j) appears only once in the shares (in the share ci

precisely). Then, one can assume that every probe is made on the same share. Let
us assume (without loss of generality) that every probe is made on c0. If no probe
contains any ρ(0, j), then clearly P cannot satisfy Condition 2 as this means that
each probe contain at most one α0,j , to P cannot contain more than d different
α0,j . Hence, at least one (so at least two) probe contains at least one ρ(0, j). We
note that every probe has one of the following form: either it is exactly a random
rk, a share α0,j , a certain ρ(0, j), a certain ρ(0, j) + α0,j or ρ(0, j) + α0,j + αj,0,
or a subsum (starting from α0,0) of c0. Every form gives at most one α0,j with a
new index j except probes on subsums. However, in any subsum, there is always
a random ρ(i, j) between α0,j and α0,j+1 and one needs to get all the d+1 indices
to get a set satisfying Condition 2. Then, it is clear that one cannot achieve this
unless there is a ρ(i, j) that does not cancel out in the sum, which is exactly what
we wanted to show. Now, let 1 ≤ k ≤ R be an integer and let us compute the
probability (over the Xi,j,k’s) that f contains rk. There exists some set S of pairs
(i, j), such that f is the sum of

∑

(i,j)∈S Xi,j,k ·rk and some other expression not
containing any Xi,j,k ·rk. From the previous point, S is not empty. Furthermore,

634 S. Beläıd et al.

as there are d + 1 outputs c0, . . . , cd and as there are only d probes, S cannot
contain all the possible pairs (i, j), and therefore, all the random variables Xi,j,k

for (i, j) ∈ S are mutually independent. Therefore,
∑

(i,j)∈S Xi,j,k is 1 with
probability 1/2 and f functionally depends on the random rk with probability
1/2. As there are R possible randoms, f does not functionally depend on any rk

(and then P satisfies Condition 2) with probability (1/2)R.
There are N possibles probes with

N ≤ d · (d + 1)
2

+ R + (R + 2) · d · (d − 1)
2

≤ (R + 3) · d · (d + 1)
2

,

as every ρ contains at most R random bits rk. Also, there are
(

N
d

)

possible sets
P = {p1, . . . , pd}. Therefore, by union bound, the above algorithm is not secure
(so there is an attack) with probability at most

(

N

d

)

/2R ≤
(

(R + 3) · d · (d + 1)/2
d

)

· 2−R

which concludes the proof of Lemma 15. ��
Theorem 16. For some R = O(d · log d), there exists a choice of ρ(i, j) such
that Algorithm 2 is a d-private d-compression algorithm for multiplication, when
d → ∞.

We just need to remark that for some R = O(d · log d), the probability that
Algorithm 2 is d-private, according to Lemma 15 is non-zero.

The full proof is given in the full version of this paper.

5 New Construction

The goal of this section is to propose a new d-private multiplication algorithm.
Compared to the construction in [15], our construction halves the number of
required random bits. It is therefore the most efficient existing construction of a
d-private multiplication.

Some rationales behind our new construction may be found in the two fol-
lowing necessary conditions deduced from a careful study of the original work of
Ishai, Sahai and Wagner [15].

Lemma 17. Let A(a, b; r) be a d-compression algorithm for multiplication. Let
f be an intermediate result taking the form f = aᵀ · M · b + sᵀ · r. Let t denote
the greatest Hamming weight of an element in the vector subspace generated by
the rows of M or by the columns of M. If hw(s) < t − 1, then A(a, b; r) is not
d-private.

Proof. By definition of s, the value aᵀ ·M ·b can be recovered by probing f and
then each of the hw(s) < t − 1 random bits on which sᵀ · r functionally depends
and by summing all these probes. Let P1 = {f, p1, . . . , pj} with j < t − 1 denote

Randomness Complexity of Private Circuits for Multiplication 635

the set of these at most t − 1 probes. Then, we just showed that f +
∑j

i=1 pi =
aᵀ · M · b.

To conclude the proof, we want to argue that there is a set of at most d−(t−1)
probes P2 = {p′

1, . . . , p
′
k} such that f +

∑j
i=1 pi +

∑k
�=1 p′

� = aᵀ · M ′ · b, where
M ′ is a matrix such that ud+1 is in its row space or in its column space. If such
a set P2 exists, then the set of probes P1 ∪ P2 (whose cardinality is at most d)
satisfies Condition 1, and then A is not d-private, via Theorem 7.

We now use the fact that there is a vector of Hamming weight t in the row
space or in the column space of M . We can assume (without loss of generality)
that there exists a vector w ∈ F

d+1
2 of Hamming weight t in the column subspace

of M , so that w =
∑

j∈J mj , with J ⊆ {0, . . . , d} and mj the j-th column vector
of M . Let i1, . . . , id+1−t denote the indices i of w such that wi = 0. Then, let
j ∈ J , we claim that P2 = {αi1,j , . . . , αid+1−t,j} allows us to conclude the proof.
Please note that all these values are probes of intermediate values of A.

Indeed, we have f +
∑j

i=1 pi +
∑d+1−t

k=1 αik,j = aᵀ ·MM ′ · b where all coeffi-
cients of M ′ are the same as coefficients of M except for coefficients in positions
(i1, j), . . . , (id+1−t, j) which are the opposite, and now

∑

j∈J m′
j = ud+1, where

m′
j is the j-th column vector of M ′. Lemma 17 easily follows. ��
In our construction, we satisfy the necessary condition in Lemma 17 by ensur-

ing that any intermediate result that functionally depends on t shares of a (resp.
of b) also functionally depends on at least t − 1 random bits.

The multiplication algorithm of Ishai, Sahai and Wagner is the starting point
of our construction. Before exhibiting it, we hence start by giving the basic ideas
thanks to an illustration in the particular case d = 6. In Fig. 2 we recall the
description of ISW already introduced in Sect. 2.3.

Fig. 2. ISW construction for d = 6, with α̂i,j = αi,j + αj,i

The first step of our construction is to order the expressions α̂i,j differ-
ently. Precisely, to compute the output share ci (which corresponds, in ISW,
to the sum ri,i,+

∑

j<i(rj,i + α̂j,i) +
∑

j>i ri,j from left to right), we process
ri,i,+

∑

j<d−i(ri,d−j + α̂i,j)+
∑

1≤j≤i rd−j,i from left to right. Of course, we also
put particular care to satisfy the necessary condition highlighted by Lemma 17.
This leads to the construction illustrated in Fig. 3.

Then, the core idea is to decrease the randomness cost by reusing some well
chosen random bit to protect different steps of the processing. Specifically, for

636 S. Beläıd et al.

Fig. 3. First step of our new construction for d = 6, with α̂i,j = αi,j + αj,i

any even positive number k, we show that replacing all the random bits ri,j

such that k = j − i with a fixed random bit rk preserves the d-privacy of ISW
algorithm. Note, however, that the computations then have to be performed
with a slightly different bracketing in order to protect the intermediate variables
which involve the same random bits. The obtained construction is illustrated in
Fig. 4.

Fig. 4. Second step of our new construction for d = 6, with α̂i,j = αi,j + αj,i

Finally, we suppress from our construction the useless repetitions of random
bits that appear at the end of certain computations. Hence, we obtain our new
construction, illustrated in Fig. 5.

Fig. 5. Application of our new construction for d = 6, with α̂i,j = αi,j + αj,i

Before proving that this scheme is indeed d-private, we propose a formal
description in Algorithm 3. As can be seen, this new scheme involves 3d2/2 +
d(d + 2)/4 + 2d sums if d is even and 3(d2 − 1)/2 + (d + 1)2/4 + 3(d + 1)/2

Randomness Complexity of Private Circuits for Multiplication 637

Algorithm 3. New construction for d-secure multiplication
Require: sharing (αi,j)0≤i,j≤d

Ensure: sharing (ci)0≤i≤d

1: for i = 0 to d do � Random Bits Generation
2: for j = 0 to d − i − 1 by 2 do

3: ri,d−j
$← F2

4: for j = d − 1 downto 1 by 2 do

5: rj
$← F2

6: for i = 0 to d do � Multiplication
7: ci ← αi,i

8: for j = d downto i + 2 by 2 do
9: ti,j ← ri,j + αi,j + αj,i + rj−1 + αi,j−1 + αj−1,i; ci ← ci + ti,j

10: if i �≡ d (mod 2) then
11: ti,i+1 ← ri,i+1 + αi,i+1 + αi+1,i; ci ← ci + ti,i+1

12: if i ≡ 1 (mod 2) then � Correction ri

13: ci ← ci + ri

14: else
15: for j = i − 1 downto 0 do � Correction ri,j

16: ci ← ci + rj,i

Algorithm 4. Second-Order
Compression Algorithm
Require: sharing (αi,j)0≤i,j≤2

Ensure: sharing (ci)0≤i≤2

r0
$← F2; r1 ← F2

c0 ← α0,0 + r0 + α0,2 + α2,0

c1 ← α1,1 + r1 + α0,1 + α1,0

c2 ← α2,2 + r0 + r1 + α1,2 + α2,1

Algorithm 5. Third-Order Compression
Algorithm
Require: sharing (αi,j)0≤i,j≤3

Ensure: sharing (ci)0≤i≤3

r0
$← F2; r1

$← F2; r2
$← F2; r3

$← F2

c0 ← α0,0 + r0 +α0,3 +α3,0 + r1 +α0,2 +α2,0

c1 ← α1,1 + r2 +α1,3 +α3,1 + r1 +α1,2 +α2,1

c2 ← α2,2 + r3 + α2,3 + α3,2

c3 ← α3,3 + r3 + r2 + r0 + α0,1 + α1,0

if d is odd. In every case, it also involves (d + 1)2 multiplications and requires
the generation of d2/4 + d random values in F2 if d is even and (d2 − 1)/4 + d
otherwise (see Table 1 for values at several orders and comparison with ISW).

Proposition 18. Algorithm 3 is d-private.

Algorithm 3 was proven to be d-private with the verifier built by Barthe et al. [4]
up to order d = 6. Furthermore, a pen-and-paper proof for any order d is given
in the full version of this paper.

6 Optimal Small Cases

We propose three secure compression algorithms using less random bits than the
generic solution given by ISW and than our new solution for the specific small

638 S. Beläıd et al.

Table 1. Complexities of ISW, our new d-private compression algorithm for multipli-
cation and our specific algorithms at several orders

Complexities Algorithm ISW Algorithm 3 Algorithms 4, 5 and 6

Second-Order Masking

Sums 12 12 10

Products 9 9 9

Random bits 3 3 2

Third-Order Masking

Sums 24 22 20

Products 16 16 16

Random bits 6 5 4

Fourth-Order Masking

Sums 40 38 30

Products 25 25 25

Random bits 10 8 5

dth-Order Masking

Sums 2d(d + 1)

{
d(7d + 10)/4 (d even)

(7d + 1)(d + 1)/4 (d odd)
-

Products (d + 1)2 (d + 1)2 -

Random bits d(d + 1)/2

{
d2/4 + d (d even)

(d2 − 1)/4 + d (d odd)
-

orders d = 2, 3 and 4. These algorithms actually use only the optimal numbers of
random bits for these small quantity of probes, as proven in Sect. 4. Furthermore,
since they all are dedicated to a specific order d (among 2, 3, and 4), we got use
of the verifier proposed by Barthe et al. in [4] to formally prove their correctness
and their d-privacy.

Proposition 19. Algorithms 4, 5, and 6 are correct and respectively 2, 3 and
4-private.

Table 1 (Sect. 5) compares the amount of randomness used by the new con-
struction proposed in Sect. 5 and by our optimal small algorithms. We recall that
each of them attains the lower bound proved in Sect. 4.

7 Composition

Our new algorithms are all d-private, when applied on the outputs of a multi-
plicative encoder parameterized at order d. We now aim to show how they can
be involved in the design of larger functions (e.g., block ciphers) to achieve a
global d-privacy. In [3], Barthe et al. introduce and formally prove a method to

Randomness Complexity of Private Circuits for Multiplication 639

Algorithm 6. Fourth-Order Compression Algorithm
Require: sharing (αi,j)0≤i,j≤4

Ensure: sharing (ci)0≤i≤4

r0
$← F2; r1

$← F2; r2
$← F2; r3

$← F2; r4
$← F2

c0 ← α0,0 + r0 + α0,1 + α1,0 + r1 + α0,2 + α2,0

c1 ← α1,1 + r1 + α1,2 + α2,1 + r2 + α1,3 + α3,1

c2 ← α2,2 + r2 + α2,3 + α3,2 + r3 + α2,4 + α4,2

c3 ← α3,3 + r3 + α3,4 + α4,3 + r4 + α3,0 + α0,3

c4 ← α4,4 + r4 + α4,0 + α0,4 + r0 + α4,1 + α1,4

compose small d-private algorithms (a.k.a., gadgets) into d-private larger func-
tions. The idea is to carefully refresh the sharings when necessary, according to
the security properties of the gadgets. Before going further into the details of
this composition, we recall some security properties used in [3].

7.1 Compositional Security Notions

Before stating the new security definitions, we first need to introduce the notion
of simulatability. For the sake of simplicity, we only state this notion for multi-
plication algorithm, but this can easily be extended to more general algorithms.

Definition 20. A set P = {p1, . . . , p�} of � probes of a multiplication algorithm
can be simulated with at most t shares of each input, if there exists two sets
I = {i1, . . . , it} and J = {j1, . . . , jt} of t indices from {0, . . . , d} and a ran-
dom function f taking as input 2t bits and outputting � bits such that for any
fixed bits (ai)0≤i≤d and (bj)0≤j≤d, the distributions {p1, . . . , p�} (which implicitly
depends on (ai)0≤i≤d, (bj)0≤j≤d, and the random coins used in the multiplication
algorithm) and {f(ai1 , . . . , ait

, bj1 , . . . , bjt
)} are identical.

We write f(ai1 , . . . , ait
, bj1 , . . . , bjt

) = f(aI , bJ).

Definition 21. An algorithm is d-non-interferent (or d-NI) if and only if every
set of at most d probes can be simulated with at most d shares of each input.

While this notion might be stronger than the notion of security we used, all
our concrete constructions in Sects. 5 and 6 satisfy it. The proof of Algorithm 3
is indeed a proof by simulation, while the small cases in Sect. 6 are proven using
the verifier by Barthe et al. in [4], which directly proves NI.

Definition 22. An algorithm is d-tight non-interferent (or d-TNI) if and only
if every set of t ≤ d probes can be simulated with at most t shares of each input.

While this notion of d-tight non-interference was assumed to be stronger than
the notion of d-non-interference in [3], we show hereafter that these two security
notions are actually equivalent. In particular, this means that all our concrete
constructions are also TNI.

640 S. Beläıd et al.

Proposition 23 (d-NI ⇔ d-TNI). An algorithm is d-non-interferent if and
only if it is d-tight non-interferent.

Proof. The right-to-left implication is straightforward from the definitions. Let
us thus consider the left-to-right direction.

For that purpose, we first need to introduce a technical lemma. Again, for
the sake of simplicity, we only consider multiplication algorithm, with only two
inputs, but the proof can easily be generalized to any algorithm. ��
Lemma 24. Let P = {p1, . . . , p�} be a set of � probes which can be simulated
by the sets (I, J) and also by the sets (I ′, J ′). Then it can also be simulated by
(I ∩ I ′, J ∩ J ′).

Proof. Let f the function corresponding to I, J and f ′ the function correspond-
ing to I ′, J ′. We have that for any bits (ai)0≤i≤d and (bj)0≤j≤d, the distributions
{p1, . . . , p�}, {f(aI , bJ)}, and {f ′(aI′ , bJ ′)} are identical. Therefore, f does not
depend on ai nor bj for i ∈ I \ I ′ and j ∈ J \ J ′, since f ′ does not depend
on them. Thus, P can be simulated by only shares from I ∩ I ′, J ∩ J ′ (using
the function f where the inputs corresponding to ai and bj for i ∈ I \ I ′ and
j ∈ J \ J ′ are just set to zero, for example). ��

We now assume that an algorithm A is d-NI, that is, every set of at most d
probes can be simulated with at most d shares of each input. Now, by contradic-
tion, let us consider a set P with minimal cardinality t < d of probes on A, such
that it cannot be simulated by at most t shares of each input. Let us consider
the sets I, J corresponding to the intersection of all sets I ′, J ′ (respectively) such
that the set P can be simulated by I ′, J ′. The sets I, J also simulate P thanks
to Lemma 24. Furthermore, by hypothesis, t < |I| ≤ d or t < |J | ≤ d. Without
loss of generality, let us suppose that |I| > t.

Let i∗ be an arbitrary element of {0, . . . , d} \ I (which is not an empty set as
|I| ≤ d). Let us now consider the set of probes P ′ = P ∪ {ai∗}. By hypothesis,
P ′ can be simulated by at most |P ′| = t + 1 shares of each input. Let I ′, J ′ two
sets of size at most t + 1 simulating P ′. These two sets also simulate P ⊆ P ′,
therefore, I ∩ I ′, J ∩ J ′ also simulate P . Furthermore, i∗ ∈ I, as all the shares ai

are independent. Since i∗ /∈ I, |I ∩ I ′| ≤ t and I ∩ I ′
� I, which contradicts the

fact that I and J were the intersection of all sets I ′′, J ′′ simulating P . ��
Definition 25. An algorithm A is d-strong non-interferent (or d-SNI) if and
only if for every set I of t1 probes on intermediate variables (i.e., no output wires
or shares) and every set O of t2 probes on output shares such that t1 + t2 ≤ d,
the set I ∪ O of probes can be simulated by only t1 shares of each input.

The composition of two d-SNI algorithms is itself d-SNI, while that of d-TNI
algorithms is not necessarily d-TNI. This implies that d-SNI gadgets can be
directly composed while maintaining the d-privacy property, whereas a so-called
refreshing gadget must sometimes be involved before the composition of d-TNI
algorithms. Since the latter refreshing gadgets consume the same quantity of
random values as ISW, limiting their use is crucial if the goal is to reduce the
global amount of randomness.

Randomness Complexity of Private Circuits for Multiplication 641

7.2 Building Compositions with Our New Algorithms

In [3], the authors show that the ISW multiplication is d-SNI and use it to build
secure compositions. Unfortunately, our new multiplication algorithms are d-TNI
but not d-SNI. Therefore, as discussed in the previous section, they can replace
only some of the ISW multiplications in secure compositions. Let us take the
example of the AES inversion that is depicted in [3]. We can prove that replacing
the first (A7) and the third (A2) ISW multiplications by d-TNI multiplications
(e.g., our new constructions) and moving the refreshing algorithm R in different
locations preserves the strong non-interference of the inversion, while benefiting
from our reduction of the randomness consumption.

The tweaked inversion is given in Fig. 6. ⊗ denotes the d-SNI ISW multi-
plication, ·α denotes the exponentiation to the power α, Ai refers to the i-th
algorithm or gadget (indexed from left to right), R denotes the d-SNI refreshing
gadget, Ii denotes the set of internal probes in the i-th algorithm, Si

j denotes
the set of shares from the j inputs of algorithm Ai used to simulate all further
probes. Finally, x denotes the inversion input and O denotes the set of probes at
the output of the inversion. The global constraint for the inversion to be d-SNI
(and thus itself composable) is that: |S8∪S9| ≤ ∑

1≤i≤9 |Ii|, i.e., all the internal
probes can be perfectly simulated with at most

∑

1≤i≤9 |Ii| shares of x.

Fig. 6. AES ·254

Proposition 26. The AES inversion given in Fig. 6 with A1 and A4 being
d-SNI multiplications and A2 and A7 being d-TNI multiplications is d-SNI.

Proof. From the d-probing model, we assume that the total number of probes
used to attack the inversion is limited to d, that is

∑

1≤i≤9 |Ii| + |O| ≤ d.
As in [3], we build the proof from right to left by simulating each algorithm.
Algorithm A1 is d-SNI, thus |S1

1 |, |S1
2 | ≤ |I1|. Algorithm A2 is d-TNI, thus

|S2
1 |, |S2

2 | ≤ |I1 + I2|. As explained in [3], since Algorithm A3 is affine, then
|S3| ≤ |S2

1 + I3| ≤ |I1 + I2 + I3|. Algorithm A4 is d-SNI, thus |S4
1 |, |S4

2 | ≤ |I4|.
Algorithm A5 is d-SNI, thus |S5| ≤ |I5|. Algorithm A6 is affine, thus |S6| ≤
|S5 + I6| ≤ |I5 + I6|. Algorithm A7 is d-TNI, thus |S7

1 |, |S7
2 | ≤ |S6 + S4

1 + I7| ≤

642 S. Beläıd et al.

|I4 + I5 + I6 + I7|. Algorithm A8 is d-SNI, thus |S8| ≤ |I8|. Algorithm A9 is
affine, thus |S9| ≤ |I9 + S8| ≤ |I8 + I9|. Finally, all the probes of this inversion
can be perfectly simulated from |S9 ∪S7

1 | ≤ |I4 + I5 + I6 + I7 + I8 + I9| shares
of x, which proves that the inversion is still d-SNI. ��

From Proposition 26, our new constructions can be used to build d-SNI algo-
rithms. In the case of the AES block cipher, half of the d-SNI ISW multiplications
can be replaced by ours while preserving the whole d-SNI security.

8 New Automatic Tool for Finding Attacks

In this section, we describe a new automatic tool for finding attacks on com-
pression algorithms for multiplication which is developed in Sage (Python) [27].
Compared to the verifier developed by Barthe et al. [4] and based on Easycrypt,
to find attacks in practice, our tool is not as generic as it focuses on compression
algorithms for multiplication and its soundness is not perfect (and relies on some
heuristic assumption). Nevertheless, it is order of magnitudes faster.

A non-perfect soundness means that the algorithm may not find an attack
and can only guarantee that there does not exist an attack except with probabil-
ity ε. We believe that, in practice, this limitation is not a big issue as if ε is small
enough (e.g., 2−20), a software bug is much more likely than an attack on the
scheme. Furthermore, the running time of the algorithm depends only linearly
on log(1/ε). Concretely, for all the schemes we manually tested for d = 3, 4, 5
and 6, attacks on invalid schemes were found almost immediately. If not used to
formally prove schemes, our tool can at least be used to quickly eliminate (most)
incorrect schemes, and enables to focus efforts on trying to prove “non-trivially-
broken” schemes.

8.1 Algorithm of the Tool

From Theorem 7, in order to find an attack P = {p1, . . . , p�} with � ≤ d, we
just need to find a set P = {p1, . . . , p�} satisfying Condition 1. If no such set P
exists, the compression algorithm for multiplication is d-private.

A naive way to check the existence of such a set P is to enumerate all the
sets of d probes. However, there are

(

N
d

)

such sets, with N being the number of
intermediate variables of the algorithm. For instance, to achieve 4-privacy, our
construction (see Sect. 6) uses N = 81 intermediate variables, which makes more
than 220 sets of four variables to test. In [4], the authors proposed a faster way of
enumerating these sets by considering larger sets which are still independent from
the secret. However, their method falls short for the compression algorithms in
our paper as soon as d > 6, as shown in Sect. 8.4. Furthermore even for d = 3, 4, 5,
their tool takes several minutes to prove security (around 5 min to check security
of Algorithm 3 with d = 5) or to find an attack for incorrect schemes, which
prevent people from quickly checking the validity of a newly designed scheme.

To counteract this issue, we design a new tool which is completely differ-
ent and which borrows ideas from coding theory to enumerate the sets of d or

Randomness Complexity of Private Circuits for Multiplication 643

less intermediate variables. Let γ1, . . . , γν be all the intermediate results whose
expression functionally depends on at least one random and γ′

1, . . . , γ
′
ν′ be the

other intermediate results that we refer to as deterministic intermediate results
(ν + ν′ = N). We remark that all the αi,j = aibj are intermediate results and
that no intermediate result can functionally depend on more than one shares’
product αi,j = aibj without also depending on a random bit. Otherwise, the
compression algorithm would not be d-private, according to Lemma 17. As this
condition can be easily tested, we now assume that the only deterministic inter-
mediate results are the αi,j = aibj that we refer to as γ′

k in the following. As an
example, intermediate results of Algorithm 4 are depicted in Table 2.

Table 2. Intermediate results of Algorithm 4

Non-deterministic (ν = 12) Deterministic (ν′ = 9)

γ1 = a0b0 + r0 γ7 = c1 γ′
1 = a0b0 γ′

6 = a1b0

γ2 = a0b0 + r0 + a0b2 γ8 = r1 γ′
2 = a0b2 γ′

7 = a2b2

γ3 = c0 γ9 = a2b2 + r1 γ′
3 = a2b0 γ′

8 = a1b2

γ4 = r0 γ10 = a2b2 + r1 + r0 γ′
4 = a1b1 γ′

9 = a2b1

γ5 = a1b1 + r1 γ11 = a2b2 + r1 + r0 + a1b2 γ′
5 = a0b1

γ6 = a1b1 + r1 + a0b1 γ12 = c2

An attack set P = {p1, . . . , p�} can then be separated into two sets Q =
{γi1 , . . . , γiδ

} and Q′ = {γi′
1
, . . . , γi′

δ′ }, with � = δ + δ′ ≤ d. We remark that
necessarily

∑

p∈Q p does not functionally depend on any random value. Actually,
we even have the following lemma:

Lemma 27. Let A(a, b; r) be a compression algorithm for multiplication. Then
A is d-private if and only if there does not exist a set of non-deterministic probes
Q = {γi1 , . . . , γiδ

} with δ ≤ d such that
∑

p∈Q p = aᵀ · M · b where the column
space or the row space of M contains a vector of Hamming weight at least δ +1.

Furthermore, if such a set Q exists, there exists a set {γi′
1
, . . . , γi′

δ′ }, with
δ + δ′ ≤ d, such that P = Q ∪ Q′ is an attack.

Moreover, the lemma is still true when we restrict ourselves to sets Q such
that there exists no proper subset Q̂ � Q such that

∑

p∈Q̂ p does not functionally
depend on any random.

Proof. The two first paragraphs of the lemma can be proven similarly to
Lemma 17. Thus, we only need to prove its last part.

By contradiction, let us suppose that there exists a set Q of non-deterministic
probes Q = {γi1 , . . . , γiδ

} such that
∑

p∈Q p = aᵀ · M · b and the column space
(without loss of generality, by symmetry of the ai’s and bi’s) of M contains a
vector of Hamming weight at least δ +1, but such that any subset Q̂ � Q where
∑

p∈Q̂ p that does not functionally depend on any random. Consequently, the

644 S. Beläıd et al.

sum
∑

p∈Q̂ p = aᵀ · M̂ · b, is such that the column space (still without loss of
generality) of M̂ does not contain any vector of Hamming weight at least |Q̂|+1.

First, let us set M̄ = M̂ + M (over F2), so
∑

p∈Q\Q̂ p = aᵀ · M̄ · b, as
∑

p∈Q̂ p+
∑

p∈Q\Q̂ =
∑

p∈Q p = aᵀ ·M ·b and let δ̂ = |Q̂| and δ̄ = |Q\Q̂| = δ− δ̂.
Let also ω, ω̂, and ω̄ be the maximum Hamming weights of the vectors in the
column space of M , M̂ , and M̄ , respectively. Since M = M̂+M̄ , then ω ≤ ω̂+ω̄
and since ω > δ +1, and δ = δ̂ + δ̄, then ω̂ > δ̂ or ω̄ > δ̄. We set Q̃ = Q̂ if ω̂ > δ̂,
and Q̃ = Q \ Q̂ otherwise. According to the definitions of δ̂ and ω̄, we have that
Q̃ � Q is such that

∑

p∈Q p = aᵀ · M̃ · b where the column space of M̃ contains
a vector of Hamming weight at least |Q̃| + 1. This contradicts the definition of
Q and concludes the proof of the lemma. ��
To quickly enumerate all the possible attacks, we first enumerate the sets Q =
{γi1 , . . . , γiδ

} of size δ ≤ d such that
∑

p∈Q p does not functionally depend on
any random bit (and no proper subset of Q̂ � Q is such that

∑

p∈Q̂ p does not
functionally depend on any random bit), using information set decoding, recalled
in the next section. Then, for each possible set Q, we check if the column space
or the row space of M (as defined in the previous lemma) contains a vector of
Hamming weight at least δ + 1. A naive approach would consist in enumerating
all the vectors in the row space and the column space of M . Our tool however
uses the two following facts to perform this test very quickly in most cases:

– when M contains at most δ non-zero rows and at most δ non-zero columns,
Q does not yield an attack;

– when M contains exactly δ+1 non-zero rows (resp. columns), that we assume
to be the first δ +1 (without loss of generality), Q yields an attack if and only
if the vector (uᵀ

δ+1,0
ᵀ
d−δ) is in the row space (resp. (uδ+1,0d−δ) is in the

column space) of M (this condition can be checked in polynomial time in d).

8.2 Information Set Decoding and Error Probability

We now explain how to perform the enumeration step of our algorithm using
information set decoding. Information set decoding was introduced in the original
security analysis of the McEliece cryptosystem in [20,22] as a way to break the
McEliece cryptosystem by finding small code words in a random linear code.
It was further explored by Lee and Brickell in [18]. We should point out that
since then, many improvements were proposed, e.g., in [19,26]. However, for
the sake of simplicity and because it already gives very good results, we use the
original information set decoding algorithm. Furthermore, it is not clear that the
aforementioned improvements also apply in our case, as the codes we consider
are far from the Singleton bound.

We assume that random bits are denoted r1, . . . , rR. For each intermediate
γk containing some random bit, we associate the vector τ ∈ Z

R
2 , where τi = 1

if and only if γk functionally depends on the random bit ri. We then consider

Randomness Complexity of Private Circuits for Multiplication 645

the matrix Γ ∈ Z
R×ν
2 whose k-th column is τ . For instance, for Algorithm 4, we

have:

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12

Γ =
(

1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 1 1 1

)

r0
r1

.

For every δ ≤ d, enumerating the sets Q = {γi1 , . . . , γiδ
}, such that

∑

p∈Q p does
not functionally depend on any random, consists in enumerating the vectors x
of Hamming weight δ such that Γ · x = 0 (specifically, {i1, . . . , iδ} are the
coordinates of the non-zero components of x). Furthermore, we can restrict
ourselves to vector x such that no vector x̂ < x satisfies Γ · x̂ = 0 (where
x̂ < x means that x̂ = x and for any 1 ≤ i ≤ ν, if xi = 0 then x̂i = 0), since we
can restrict ourselves to sets Q such that no proper subset Q̂ � Q is such that
∑

p∈Q̂ p does not functionally depend on any random bit. This is close to the
problem of finding code words x of small Hamming weight for the linear code of
parity matrix Γ and we show this can be solved using information set decoding.

The basic idea is the following one. We first apply a row-reduction to Γ . Let
us call the resulting matrix Γ ′. We remark that, for any vector x, Γ ·x = 0 if and
only if Γ ′ ·x = 0 and thus we can use Γ ′ instead of Γ in our problem. We assume
in a first time that the first R columns of Γ are linearly independent (recall that
the number ν of columns of Γ is much larger than its number R of rows), so
that the R first columns of Γ ′ forms an identity matrix. Then, for any k∗ > R, if
the k∗-th column of Γ ′ has Hamming weight at most d − 1, we can consider the
vector x defined as xk∗ = 1, xk = 1 when Γ ′

k,k∗ = 1, and xk = 0 otherwise; and
this vector satisfies the conditions we were looking for: its Hamming weight is
at most d and Γ ′ · x = 0. That way, we have quickly enumerated all the vectors
x of Hamming weight at most d such that Γ ′ · x = 0 and with the additional
property that xk = 0 for all k > R except for at most2 one index k∗. Without
the condition Γ ′ · x = 0, there are (ν − R + 1) · ∑d−1

i=0

(

R
i

)

+
(

R
d

)

such vectors, as
there are

∑d
i=0

(

R
i

)

vectors x such that HW(x) ≤ d and xk = 0 for every k > R,
and there are (ν −R) ·∑d−1

i=0

(

R
i

)

vectors x such that HW(x) ≤ d and xk = 1, for
a single k > R. In other words, using row-reduction, we have been able to check
(ν −R +1) ·∑d−1

i=0

(

R
i

)

+
(

R
d

)

possible vectors x among at most
∑d

i=1

(

ν
i

)

vectors
which could be used to mount an attack, by testing at most ν − R vectors.3

Then, we can randomly permute the columns of Γ and repeat this algorithm.
Each iteration would find an attack (if there was one attack) with probability
at least

(

(ν − R + 1) · ∑d−1
i=0

(

R
i

)

+
(

R
d

)

)

∑d
i=1

(

ν
i

)

. Therefore, after K iterations,

2 We have seen that for one index k∗, but it is easy to see that, as the first R columns
of Γ ′ form an identity matrix, there does not exist such vector x so that xk = 0 for
all k > R anyway.

3 There are exactly
∑d

i=1

(
ν
i

)
vectors of Hamming weight at most d, but here we recall

that we only consider vectors x satisfying the following additional condition: there
is no vector x̂ < x such that Γ · x̂ = 0. We also remark that the vectors x generated
by the described algorithm all satisfy this additional condition.

646 S. Beläıd et al.

the error probability is only

ε ≤
(

1 − (ν − R + 1) · ∑d−1
i=0

(

R
i

)

+
(

R
d

)

∑d
i=1

(

ν
i

)

)K

,

and the required number of iterations is linear with log(1/ε), which is what we
wanted.

Now, we just need to handle the case when the first R columns of Γ are
not linearly independent, for some permuted matrix Γ at some iteration. We
can simply redraw the permutation or taking the pivots in the row-reduction
instead of taking the first R columns of Γ . In both cases, this may slightly bias
the probability. We make the heuristic assumption that the bias is negligible.
To support this heuristic assumption, we remark that if we iterate the algorithm
for all the permutations for which the first R columns of Γ are not linearly
independent, then we would enumerate all the vectors x we are interested in,
thanks to the additional condition that there is no vector x̂ < x such that
Γ · x̂ = 0.

8.3 The Tool

The tool takes as input a description of a compression algorithm for multiplica-
tion similar to the ones we used in this paper (see Fig. 2 for instance) and the
maximum error probability ε we allow, and tries to find an attack. If no attack
is found, then the scheme is secure with probability 1 − ε. The tool can also
output a description of the scheme which can be fed off into the tool in [4].

The source code of the tool and its documentation are provided in [1].

8.4 Complexity Comparison

It is difficult to compare the complexity of our new tool to the complexity of
the tool proposed in [4] since it strongly depends on the tested algorithm. Nev-
ertheless, we try to give some values for the verification time of both tools when
we intentionally modify our constructions to yield an attack. From order 2 to 4,

Table 3. Complexities of exhibiting an attack at several orders

Time to find an attack

Order Target algorithm Verifier [4] New tool

d = 2 Tweaked Algorithm 4 less than 1 ms less than 10 ms

d = 3 Tweaked Algorithm 5 36 ms less than 10 ms

d = 4 Tweaked Algorithm 6 108 ms less than 10 ms

d = 5 Tweaked Algorithm 3 6.264 s less than 100 ms

d = 6 Tweaked Algorithm 3 26 min less than 300 ms

Randomness Complexity of Private Circuits for Multiplication 647

we start with our optimal constructions and we just invert two random bits in
an output share ci. Similarly, for orders 5 and 6, we use our generic construction
and apply the same small modification. The computations were performed on
a Intel(R) Core(TM) i5-2467M CPU @ 1.60 GHz and the results are given in
Table 3. We can see that in all the considered cases, our new tool reveals the
attack in less than 300 ms while the generic verifier of Barthe et al. needs up to
26 min for order d = 6.

Acknowledgments. The authors thank the anonymous reviewers for their construc-
tive comments. This work was supported in part by the French ANR Project ANR-
12-JS02-0004 ROMAnTIC, the Direction Générale de l’Armement (DGA), the CFM
Foundation.

References

1. https://github.com/fabrice102/private multiplication
2. Barker, E.B., Kelsey, J.M.: Sp 800–90a. recommendation for random number gen-

eration using deterministic random bit generators. Technical report, Gaithersburg,
MD, USA (2012)

3. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.A., Grégoire, B.: Compositional
verification of higher-order masking: Application to a verifying masking compiler.
Cryptology ePrint Archive, Report 2015/506 (2015). http://eprint.iacr.org/2015/
506

4. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015)

5. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive
proofs: How to remove intractability assumptions. In: 20th ACM STOC, pp. 113–
131. ACM Press, May 1988

6. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326–343. Springer, Heidelberg (2014)

7. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014)

8. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999)

9. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014)

10. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

11. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015)

https://github.com/fabrice102/private_multiplication
http://eprint.iacr.org/2015/506
http://eprint.iacr.org/2015/506

648 S. Beläıd et al.

12. Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 159–188.
Springer, Heidelberg (2015)

13. Goubin, L., Patarin, J.: DES and differential power analysis the “duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

14. Ishai, Y., Kushilevitz, E., Li, X., Ostrovsky, R., Prabhakaran, M., Sahai, A.,
Zuckerman, D.: Robust pseudorandom generators. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 576–
588. Springer, Heidelberg (2013)

15. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

17. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

18. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp.
275–280. Springer, Heidelberg (1988)

19. Leon, J.S.: A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Trans. Inf. Theor. 34(5), 1354–1359 (1988)

20. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Prog. Rep. 42(44), 114–116 (1978)

21. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)

22. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theor. 8(5), 5–9 (1962)

23. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013)

24. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part
I. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015)

25. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

26. Stern, J.: A method for finding codewords of small weight. In: Cohen, G.D., Wolf-
mann, J. (eds.) Coding Theory and Applications. LNCS, vol. 388, pp. 106–113.
Springer, Heidelberg (1988)

27. The Sage Developers: Sage Mathematics Software (Version 6.8) (2015). http://
www.sagemath.org

28. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

http://www.sagemath.org
http://www.sagemath.org

10-Round Feistel is Indifferentiable
from an Ideal Cipher

Dana Dachman-Soled, Jonathan Katz, and Aishwarya Thiruvengadam(B)

University of Maryland, College Park, USA
danadach@ece.umd.edu, {jkatz,aish}@cs.umd.edu

Abstract. We revisit the question of constructing an ideal cipher from a
random oracle. Coron et al. (Journal of Cryptology, 2014) proved that a
14-round Feistel network using random, independent, keyed round func-
tions is indifferentiable from an ideal cipher, thus demonstrating the
feasibility of such a transformation. Left unresolved is the number of
rounds of a Feistel network that are needed in order for indifferentiabil-
ity to hold. We improve upon the result of Coron et al. and show that
10 rounds suffice.

1 Introduction

The security of practical block ciphers—i.e., pseudorandom permutations—is
not currently known to reduce to well-studied, easily formulated, computational
problems. Nevertheless, modern block-cipher constructions are far from ad-hoc,
and a strong theory for their construction has been developed. An important
area of research is to understand the provable security guarantees offered by
these classical paradigms.

One of the well-known approaches for building practical block ciphers is to
use a Feistel network [9], an iterated structure in which key-dependent, “random-
looking” round functions on {0, 1}n are applied in a sequence of rounds to yield
a permutation on {0, 1}2n. In analyzing the security that Feistel networks pro-
vide, it is useful to consider an information-theoretic setting in which the round
functions are instantiated by truly random and independent (keyed) functions.
The purpose of such an analysis is to validate the structural robustness of the
approach. Luby and Rackoff [12] proved that when independent, random round
functions are used, a three-round Feistel network is indistinguishable from a
random permutation under chosen-plaintext attacks, and a four-round Feistel
network is indistinguishable from a random permutation under chosen plain-
text/ciphertext attacks.

This work was performed under financial assistance award 70NANB15H328 from the
U.S. Department of Commerce, National Institute of Standards and Technology.
D. Dachman-Soled—Work supported in part by NSF CAREER award #1453045.
This work was done in part while the author was visiting the Simons Institute
for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant #1523467.
J. Katz and A. Thiruvengadam—Work supported in part by NSF award #1223623.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 649–678, 2016.
DOI: 10.1007/978-3-662-49896-5 23

650 D. Dachman-Soled et al.

In the Luby-Rackoff result, the round functions are secretly keyed and the
adversary does not have direct access to them; the security notion considered—
namely, indistinguishability—is one in which the key of the overall Feistel net-
work is also unknown to the adversary. A stronger notion of security, called
indifferentiability [14], applies even when the round functions are public, and
aims to show that a block cipher behaves like an ideal cipher, i.e., an oracle for
which each key defines an independent, random permutation. Proving indiffer-
entiability is more complex than proving indistinguishability: to prove indiffer-
entiability of a block-cipher construction BC (that relies on an ideal primitive
O) from an ideal cipher IC, one must exhibit a simulator S such that the view
of any distinguisher interacting with (BCO,O) is indistinguishable from its view
when interacting with (IC,SIC). For Feistel networks, it is known (see [1,11])
that one can simplify the problem, and focus on indifferentiability of the Feistel
network when using random and independent unkeyed round functions from a
public random permutation; an ideal cipher is then obtained by keying the round
functions.

In a recent result building on [2,11,16], Coron et al. [1] proved that when
using independent, random round functions, a 14-round Feistel network is indif-
ferentiable from a public random permutation. The main question left open by
the work of Coron et al. is: precisely how many rounds of a Feistel network are
needed for indifferentiability to hold? It is known from prior work [1] that 5
rounds are not sufficient, while (as we have just noted) 14 rounds are. In this
work, we narrow the gap and show that 10 rounds suffice.1

We provide an overview of our proof, and the differences from that of
Coron et al., in Sect. 2.

Concurrent Work. In concurrent and independent work, Dai and Steinberger
[4] have also shown indifferentiability of a 10-round Feistel network from an ideal
cipher. We provide a brief comparison between our work and theirs in Sect. 2.3.

Subsequent Work. Dai and Steinberger [5] have more recently improved their
analysis and shown that an 8-round Feistel network is indifferentiable from an
ideal cipher. The true number of rounds needed remains open.

1.1 Other Related Work

Coron et al. [2] claimed that a 6-round Feistel network is indifferentiable from
an ideal cipher. Their proof of indifferentiability introduced the partial chain
detection technique that we also rely on here. Seurin [16] gave a simpler proof
of indifferentiability for a 10-round Feistel network, and introduced a clever
technique for bounding the simulator complexity. Holenstein et al. [11] later
showed that there was a distinguishing attack against the simulator of Coron
et al. [2], and a gap in the proof of the 10-round simulator by Seurin [16]; however,

1 Seurin previously claimed that a 10-round Feistel network is indifferentiable from a
random permutation [16], but this claim was later retracted by the author [17].

10-Round Feistel is Indifferentiable from an Ideal Cipher 651

they prove that a 14-round Feistel network is indifferentiable from an ideal cipher
by building on prior work as well as incorporating several new techniques.

Ramzan and Reyzin [15] proved that a 4-round Feistel network remains indis-
tinguishable from a random permutation even if the adversary is given access
to the middle two round functions. Gentry and Ramzan [10] showed that a
4-round Feistel network can be used to instantiate the random permutation in
the Even-Mansour cipher [8], and proved that such a construction is a pseudoran-
dom permutation even if the round functions of the Feistel network are publicly
accessible. Dodis and Puniya [7] studied security of the Feistel network in a
scenario where the adversary learns intermediate values when the Feistel net-
work is evaluated, and/or when the round functions are unpredictable but not
(pseudo)random.

Various relaxations of indifferentiability, such as public indifferentiabil-
ity [7,18] or honest-but-curious indifferentiability [6], have also been considered.
Dodis and Puniya [6] proved that a Feistel network with super-logarithmic num-
ber of rounds is indifferentiable from an ideal cipher in the honest-but-curious
setting. Mandal et al. [13] proved that the 6-round Feistel network is publicly
indifferentiable from an ideal cipher.

1.2 Organization of the Paper

In Sect. 2 we provide a high-level overview of our proof, and how it differs from
the proof of indifferentiability of the 14-round Feistel network [1,11]. After some
brief background in Sect. 3, we jump into the technical details, describing our
simulator in Sect. 4 and giving the proof of indifferentiability in Sect. 5. Addi-
tional discussion and proofs that have been omitted here are available in the full
version of this work [3].

2 Overview of Our Proof

We first describe the proof structure used for the proof of indifferentiability of
the 14-round Feistel network from an ideal cipher [1,11], and then describe how
our proof differs.

2.1 Techniques for the 14-Round Simulator

Consider a naive simulator for an r-round Feistel construction, which responds
to distinguisher queries to each of the round functions F1, . . . ,Fr, by always
returning a uniform value. Unfortunately, there is a simple distinguisher who
can distinguish oracle access to (FeistelFr ,F) from oracle access to (P,SP): The
distinguisher queries (x0, x1) to the first oracle, receiving (xr, xr+1) in return,
and uses oracle access to the second oracle to evaluate the r-round Feistel and
compute (x′

r, x
′
r+1) on its own, creating a chain of queries (x1, . . . , x

′
r). Note that

in the first case (xr, xr+1) = (x′
r, x

′
r+1) with probability 1, while in the second

case the probability that (xr, xr+1) = (x′
r, x

′
r+1) is negligible.

652 D. Dachman-Soled et al.

An approach to addressing the above attack, which essentially gives the high-
level intuition for how a successful simulator works, is as follows: If the simulator
learns the value of P(x0, x1) = (xr, xr+1) before the distinguisher queries the
entire chain, then the simulator assigns values for the remaining queries Fi(xi),
conditioned on the restriction FeistelFr (x0, x1) = (xr, xr+1). More specifically, if
there are two consecutive rounds (i, i + 1), where i ∈ {1, . . . , r − 1}, which have
not yet been queried, the simulator adapts its assignments to Fi(xi), Fi+1(xi+1)
to be consistent with P(x0, x1) = (xr, xr+1). When the simulator adapts the
assignment of Fi(xi) to be consistent with a constraint P(x0, x1) = (xr, xr+1),
we say that this value of Fi(xi) has been assigned via a ForceVal assignment.
Further details of the 14-round simulator are discussed below.

Partial Chain Detection and Preemptive Completion. To allow the simu-
lator to preemptively discover P(x0, x1) = (xr, xr+1), the authors fix two “detect
zones” which are sets of consecutive rounds {1, 2, 13, 14}, {7, 8}. Each time the
simulator assigns a value to Fi(xi), it also checks whether there exists a tuple of
the form (x1, x2, x13, x14) such that (1) F1(x1), F2(x2), F13(x13), and F14(x14)
have all been assigned and (2) P(F1(x1) ⊕ x2, x1) = (x14,F13(x13) ⊕ x14); or
whether there exists a tuple of the form (x7, x8) such that F7(x7) and F8(x8)
have both been assigned. A pair of consecutive round values (xk, xk+1) is referred
to as a “partial chain,” and when a new partial chain is detected in the detect
zones described above, it is “enqueued for completion” and will later be dequeued
and preemptively completed. When a partial chain is detected due to a detect
zone that includes both x1 and xr, we say it is a “wraparound” chain. Note that
preemptive completion of a chain can cause new chains to be detected and these
will then be enqueued for completion. This means that in order to prove indif-
ferentiability, it is necessary to argue that for xi that fall on multiple completed
chains, all restrictions on the assignment of Fi(xi) can be simultaneously satis-
fied. In particular the “bad case” will be when some assignment Fi(xi) must be
adapted via a ForceVal assignment, but an assignment to Fi(xi) has previously
been made. If such a case occurs, we say the value at an adapt position has
been “overwritten.” It turns out that to prove indifferentiability, it is sufficient
to prove that this occurs with negligible probability.

4-Round Buffer Zone. In order to ensure that overwrites do not occur, the
notion of a 4-round buffer zone is introduced in [1,11]. Their simulator has
two 4-round buffer zones, corresponding to rounds {3, 4, 5, 6} or {9, 10, 11, 12}.
Within the buffer zones, positions {3, 6} (respectively, {9, 12}) are known as the
set uniform positions, and positions {4, 5} (respectively, {10, 11}) are known as
the adapt positions. They prove the following property (which we call hence-
forth the strong set uniform property): At the moment a chain is about to
be completed, the set uniform positions of the buffer zone are always unas-
signed. This means that the simulator will always assign uniform values to
F3(x3) and F6(x6) (respectively, F9(x9) and F12(x12)) immediately before
assigning values to F4(x4) and F5(x5) (respectively, F10(x10) and F11(x11))
using ForceVal. This ensures that ForceVal overwrites with negligible proba-
bility, because x4 = x2 ⊕ F3(x3) is only determined at the moment F3(x3) is

10-Round Feistel is Indifferentiable from an Ideal Cipher 653

assigned and so the probability that F4(x4) has already been assigned is negli-
gible (a similar argument holds for the other adapt positions).

Rigid Structure. The rigid structure of [1,11] helps their proof in two ways:
First, since all assignments across all completed chains are uniform except in the
fixed adapt positions {4, 5} and {10, 11}, it is easier to argue about “bad events”
occurring. In particular, since the 4-round buffer of one chain ({3, 4, 5, 6} or
{9, 10, 11, 12}) cannot overlap with the detect zone of another chain ({1, 2, 13, 14}
or {7, 8}), they are able to argue that if a “bad event” occurs while detecting a
chain C, then either an equivalent chain was already enqueued or it must have
been caused by a uniform setting of Fi(xi).

Bounding the Simulator’s Runtime. The approach of [1,11] (originally
introduced in [2]) is to bound the total number of partial chains that get
completed by the simulator. In order to create a partial chain of the form
(x1, x2, x13, x14), it must be the case that P(F1(x1) ⊕ x2, x1) = (x14,F13(x13) ⊕
x14) and so, intuitively, the distinguisher had to query either P or P−1 in order
to achieve this. Thus, the number of partial chains of the form (x1, x2, x13, x14)
(i.e. wraparound chains) that get detected and completed by the simulator is at
most the total number of queries made by the distinguisher. Since there is only
a single middle detect zone {7, 8}, once we have a bound on the number of wrap-
around chains that are completed, we can also bound the number of completed
partial chains of the form (x7, x8).

2.2 Our Techniques

We next briefly discuss how our techniques differ from those of the 14-round
simulator [1,11], focusing on the four areas discussed above.

Separating Detection from Completion for Wrap-Around Chains.
When the distinguisher makes a query Fi(xi) to the simulator, our simulator pro-
ceeds in two phases: In the first phase, the simulator does not make any queries,
but enqueues for completion all partial chains which it predicts will require com-
pletion. In the second phase, the simulator actually completes the chains and
detects and enqueues only on the middle detect zone (which in our construction
corresponds to rounds {5, 6}). This simplifies our proof since it means that after
the set of chains has been detected in the first phase, the simulator can com-
plete the chains in a manner that minimizes “bad interactions” between partial
chains. In particular, in the second phase, the simulator first completes chains
C with the property that one of the set uniform positions is “known” and hence
could already have been assigned (in the completion of another chain D) before
the chain C gets dequeued for completion. (Although this violates the strong set
uniform property of [1,11], in our proof we are able to avoid this requirement.
See the discussion of the weak set uniform property below for further details).
The simulator then proceeds to complete (and detect and enqueue) other chains.
This allows us to reduce the complexity of our analysis.

654 D. Dachman-Soled et al.

Relaxed Properties for the 4-Round Buffer Zone. When a partial chain
C is about to be completed, we allow one of the set uniform positions, say x�−1,
to already be assigned, as long as the adapt position x� adjacent to this set
uniform position has not yet been assigned. Chains that exhibit the property
where one of the set uniform positions is already assigned before the completion
of the chain are said to exhibit the weak set uniform property. In Lemma 36,
we prove that for chains exhibiting the weak set uniform property, the adapt
position is not assigned till the chain is dequeued for completion.

Relaxed Structure. Requiring only the weak set uniform property allows us
to consider a more relaxed structure for detect zones and 4-round buffer zones.
Instead of requiring that for every chain that gets completed the 4 round buffer
positions (i.e., {3, 4, 5, 6} or {9, 10, 11, 12} in [1,11] are always unassigned, we
allow more flexibility in the position of the 4-round buffer. For example, depend-
ing on whether the detected chain is of the form (x1, x2, x10), (x1, x9, x10), or
(x5, x6), our 4-round buffer will be one of: {3, 4, 5, 6} or {6, 7, 8, 9}, {2, 3, 4, 5}
or {5, 6, 7, 8}, {1, 2, 3, 4} or {7, 8, 9, 10}, respectively. This flexibility allows us to
reduce the number of rounds. Now, however, the adapt zone of one chain may
coincide with the detect zone of another chain. Since there are no dedicated
roles for fixed positions, and since partial chains in the middle detect zone are
detected during the completion of other chains, we define additional bad events
BadlyHitFV and BadlyCollideFV and argue that they occur with low probabil-
ity. Intuitively, BadlyHitFV captures the event where a ForceVal assignment
occurs at x� such that it forms a valid Feistel sub-sequence x�−1, x� and x�+1

where x�−1 and x�+1 refer to adjacent positions to x� that they have already
been assigned. This is analogous to the bad event BadlyHit defined in [1,11] with
the difference being that BadlyHit refers to a uniform assignment and Badly-
HitFV refers to a ForceVal assignment. Similarly, BadlyCollideFV captures the
event where a ForceVal assignment occurs at x� such that it causes two chains
to “collide” at some position. This is analogous to the bad event BadlyCollide
defined in [1,11] with the difference being that BadlyCollide refers to a uniform
assignment and BadlyCollideFV refers to a ForceVal assignment. Furthermore,
in order to prove that a new wraparound chain does not get created during the
completion of other chains we introduce and bound the probability of a new
bad event BadlyCollideP. Intuitively, BadlyCollideP captures the event where a
query to the random permutation returns a value (x0, x1) such that two chains
“collide” on x1 or returns a value (x10, x11) such that two chains collide on x10.

Balancing Detection with the Simulator’s Runtime. There is a clear
trade-off between the achieved security bound and the running time of the sim-
ulator. If the simulator is too “aggressive” and detects too many chains too
early, then we may perhaps achieve better security at the cost of extremely high
simulator complexity. In comparison to the construction of [1,11], our construc-
tion has more detect zones and, moreover, for wraparound chains, we detect on
partial chains consisting of three consecutive queries instead of four consecutive
queries. Nevertheless, at a high-level, our proof that the simulator runtime is
polynomial follows very similarly to the proof in [1,11]. As there, we first bound

10-Round Feistel is Indifferentiable from an Ideal Cipher 655

the number of completed partial chains of the form (x1, x2, x10) and (x1, x9, x10)
(such chains are wraparound chains since they contain both x1 and x10). Once
we have done this, we again have only a single non-wraparound detect zone and
so we can follow the argument of [1,11] to bound the number of completed partial
chains of the form (x5, x6). Once we have a bound on the number of completed
partial chains, it is fairly straightforward to bound the simulator complexity.

2.3 Comparison with Concurrent Work

As noted previously, Dai and Steinberger [4] have independently announced the
same result we claim here. The starting point of their work is the 10-round sim-
ulator proposed by Seurin [16]. They use only two adapt zones (namely, {3, 4}
and {7, 8}) and allow the distinguisher to learn the values at both positions sur-
rounding the adapt zones. In contrast, our simulator allows the distinguisher to
learn the value at only one of the two positions2 surrounding the adapt zones;
due to our flexible 4-round buffer zone, our adapt zones can be any pair of con-
secutive rounds except {1, 2}, {5, 6}, and {9, 10}. Additionally, our proof follows
the same high-level structure as in [1], whereas Dai and Steinberger present a
new proof inspired by changes made to Seurin’s simulator [16]. (Their subsequent
improvement [5] showing indifferentiability of an 8-round Feistel network from
an ideal cipher relies on the observation that detection on wrap-around chains
can span only three rounds, rather than four.)

With regard to concrete security, our results are incomparable. Say q is the
number of queries made by the distinguisher, and let n be the input/output
length of the round functions. Dai and Steinberger [4] show indifferentiability
ε = O(q8/2n) using a simulator running in time T = O(q10); we show indif-
ferentiability ε = O(q12/2n) using a simulator that runs in time T = O(q6).
It is interesting to observe that both works achieve the same tradeoff for the
product ε · T .

3 Background

We use the definition of indifferentiability used by the work on 14-round Feistel
network [1,11], based on the definition of Maurer, Renner, and Holenstein [14].

Definition 1. Let C be a construction that, for any n, accesses functions
F = (F1, . . . ,Fr) over {0, 1}n and implements an invertible permutation
over {0, 1}2n. (We stress that C allows evaluation of both the forward and inverse
directions of the permutation.) We say that C is indifferentiable from a random
permutation if there exists a simulator S and a polynomial t such that for all
distinguishers D making at most q = poly(n) queries, S runs in time t(q) and

|Pr[DCF,F(1n) = 1] − Pr[DP,SP

(1n) = 1]|

2 We refer to that position as the “bad” set uniform position.

656 D. Dachman-Soled et al.

is negligible, where F are random, independent functions over {0, 1}n and P is
a random permutation over {0, 1}2n. (We stress that P can be evaluated in both
the forward and inverse directions).

The r-round Feistel construction, given access to F = (F1, . . . ,Fr), is defined
as follows. Let (Li−1, Ri−1) be the input to the i-th round, with (L0, R0) denoting
the initial input. Then, the output (Li, Ri) of the i-th round of the construction
is given by Li := Ri−1 and Ri := Li−1 ⊕ Fi(Ri−1). So, for a r-round Feistel, if
the 2n-bit input is (L0, R0), then the output is given by (Lr, Rr).

4 Our Simulator

4.1 Informal Description of the Simulator

The queries to F1, . . . ,F10 are answered by the simulator through the public
procedure S.F(i, x) for i = 1, . . . , 10. When the distinguisher asks a query F(i, x),
the simulator checks to see if the query has already been set. The queries that
are already set are held in tables G1, . . . , G10 as pairs (x, y) such that if F(i, x)
is queried, and if x ∈ Gi, then y is returned as the answer to query F(i, x).
If the query has not already been set, then the simulator adds x to the set
Aj

i where j indicates the jth query of the distinguisher. The simulator then
checks if i ∈ {1, 2, 5, 6, 9, 10} (where these positions mark the endpoints of the
detect zones) and, if so, checks to see if any new partial chains of the form
(x9, x10, 9), (x1, x2, 1), or (x5, x6, 5) need to be enqueued. If no new partial chains
are detected, the simulator just sets the value of Gi(x) uniformly and returns
that value. If new partial chains are detected and enqueued in Qenq, then the
simulator evaluates these partial chains “forward” and “backward” as much as
possible (without setting any new values of Gm(·)) for all m ∈ {1, . . . , 10}. Say
the evaluation stopped with xm /∈ Gm. Then, the simulator adds xm to Aj

m and
checks if m ∈ {1, 2, 5, 6, 9, 10} and if so, detects any additional partial chains that
form with (xm,m) and enqueues them for completion if necessary and repeats
the process again until no more partial chains are detected.

The chains enqueued for completion during this process are enqueued in
queues Q1,Q5,Q6,Q10 and Qall. Any chain that has been enqueued in Qenq is also
enqueued in Qall. Chains enqueued in Qb for b ∈ {1, 5, 6, 10} are those that may
exhibit the weak set uniform property. Specifically, say C = (xk, xk+1, k, �, g, b)
is a chain that is enqueued to be adapted at position � i.e. the “adapt” positions
for C are at �, � + 1 and the “set uniform” positions are at � − 1, � + 2 with
the “set uniform” position that is adjacent to the query that caused C to be
enqueued being at “good” set uniform position g and the other “set uniform”
position at b. If, at the time of enqueueing, the chain C can be evaluated up to
the “bad” set uniform position b and the value of chain C at b, say xb, is such
that xb /∈ Gb, then C is enqueued in Qb. (Note that there are chains that exhibit
this property but are not enqueued for completion. These are the chains that
belong to the set SimPChains. This is only to simplify the analysis for the bound
of the complexity of the simulator. We will later show that ignoring these chains

10-Round Feistel is Indifferentiable from an Ideal Cipher 657

does not affect the simulation and in fact, these chains belong to CompChains at
the end of the simulator’s run while answering D’s jth query).

The completion of enqueued chains starts with the completion of the chains
enqueued in Qb for b ∈ {1, 5, 6, 10}. A chain C is dequeued from Qb and if
C /∈ CompChains, the simulator “completes” the chain. This process proceeds
similarly to the completion process in [1]. The simulator evaluates the chain
forward/backward upto the 4-round buffer setting Gi(xi) values uniformly for
any xi /∈ Gi that comes up while evaluating forward/backward. In the 4-round
buffer consisting of the “set uniform” positions and the “adapt” positions, the
simulator sets the values of C at the set uniform positions uniformly (if they
have not already been set) and forces the values at the adapt positions such
that evaluation of the Feistel is consistent with the random permutation. (Note
that this could possibly lead to a value in Gi(·) getting overwritten. A major
technical part of the proof is to show that this happens with negligible proba-
bility.) After this process, the simulator places C in the set CompChains along
with “equivalent” chains obtained by evaluating C on the detect zone positions
i.e. chains of the form (xk, xk+1, k) for k = 1, 5, 9.

Once the simulator completes the chains enqueued in Qb for all b ∈
{1, 5, 6, 10}, the simulator completes the remaining chains enqueued in Qall. The
completion process for the remaining chains enqueued in Qall is the same as the
completion process described above except that the simulator detects additional
partial chains of the form (x5, x6, 5) during the completion and enqueues them
in the queue Qmid i.e. during the completion of a chain C in Qall, if an assign-
ment occurs such that xk ∈ Gk for some k ∈ {5, 6} due to the assignment and
xk /∈ Gk before the assignment, then the simulator enqueues the partial chain
(x5, x6, 5) in Qmid for all xk′ ∈ Gk′ such that k′ ∈ {5, 6} and k �= k′. (Note that
the assignment could be a ForceVal assignment as well.) Finally, the simulator
completes all the chains in Qmid that are not already in CompChains. The com-
pletion process again is the same as the process described for chains enqueued
in Qb. The simulator then returns the answer Gi(x) to the query F(i, x).

4.2 Formal Description of the Simulator

The simulator S internally uses hashtables G1, . . . , G10 to store the function
values. Additionally, it uses sets Aj

1, . . . , A
j
10 for the jth distinguisher query to

detect partial chains that need to be completed; these sets store values that
would be added to Gi in the future. A queue Qenq to detect partial chains that
need to be completed and stores a copy of Qenq in a queue Qall that is used
during completion. Queues Q1,Q5,Q6,Q10 are used to store the chains in Qenq

whose “bad” set uniform position is known at the time of detection. Queue Qmid

is used to store new chains of the form (x5, x6, 5) that are enqueued during the
completion of chains from Qall. A set CompChains is used to remember the chains
that have been completed already. Finally, a set SimPChains is used to hold chains
of the form (x1, x2, 1) and (x9, x10, 9) that are detected due to P/P−1 queries
made by the simulator. This set is needed only for the purpose of analyzing the
complexity of the simulator.

658 D. Dachman-Soled et al.

The variables used below are: Queues Qenq, Qall, Q1, Q5, Q6, Q10, Qmid;
Hashtables G1, . . . , G10; Sets Aj

i := ∅ for i = 1, . . . , 10 and j = 1, . . . , q
where q is the maximum number of queries made by the distinguisher, Sets
CompChains := ∅ and SimPChains := ∅. Initialize j := 0. The procedure F(i, x)
provides the interface to a distinguisher.

1 procedure F(i, x):
2 j := j + 1
3 for i ∈ {1, . . . , 10} do
4 Aj

i := ∅
5 FENQ(i, x)
6 while ¬Qenq.Empty() do
7 (xk, xk+1, k, �, g, b) := Qenq.Dequeue()
8 if (xk, xk+1, k) /∈ CompChains then
9 (xr, xr+1, r) := EvFwdEnq(xk, xk+1, k, � − 2)

10 if r + 1 = b ∧ xr+1 /∈ Gr+1 then
11 Qb.Enqueue(xk, xk+1, k, �, g, b)

12 (xr, xr+1, r) := EvBwdEnq(xk, xk+1, k, � + 2)
13 if r = b ∧ xr /∈ Gr then
14 Qb.Enqueue(xk, xk+1, k, �, g, b)

15 for each Q ∈ 〈Q1, Q5, Q6, Q10, Qall, Qmid〉 do � processed in that order
16 while ¬Q.Empty() do
17 (xk, xk+1, k, �, g, b) := Q.Dequeue()
18 if (xk, xk+1, k) /∈ CompChains then
19 (x�−2, x�−1) := EvFwdComp(Q, xk, xk+1, k, � − 2)
20 (x�+2, x�+3) := EvBwdComp(Q, xk, xk+1, k, � + 2)
21 Adapt(Q, x�−2, x�−1, x�+2, x�+3, �, g, b)
22 (x1, x2) := EvBwdComp(⊥, xk, xk+1, k, 1)
23 (x5, x6) := EvFwdComp(⊥, x1, x2, 1, 5)
24 (x9, x10) := EvFwdComp(⊥, x1, x2, 1, 9)
25 CompChains := CompChains ∪ {(x1, x2, 1), (x5, x6, 5), (x9, x10, 9)}
26 FCOMP(⊥, i, x)
27 return Gi(x)

28 procedure EvFwdEnq(xk, xk+1, k, m):
29 if k = 5 then
30 flagMid:= 1

31 while (k 	= m) ∧ ((k = 10) ∨
FENQ(k+1, xk+1) 	=⊥)
do

32 if k = 10 then
33 (x0, x1) := P−1(x10, x11)
34 k := 0
35 else
36 if k = 9 ∧ flagMid = 1 then
37 SimPChains :=

SimPChains∪ {(xk, xk+1, k)}
38 xk+2 := xk ⊕G(k +1, xk+1)

39 k := k + 1

40 flagMid:= 0
41 return (xk, xk+1, k)

42 procedure EvBwdEnq(xk, xk+1, k,m):

43 if k = 5 then
44 flagMid:= 1

45 while (k �= m) ∧ ((k = 0) ∨
FENQ(k, xk) �=⊥)
do

46 if k = 0 then
47 (x10, x11) := P(x0, x1)

48 k := 10

49 else

10-Round Feistel is Indifferentiable from an Ideal Cipher 659

50 if k = 1 ∧ flagMid = 1 then
51 SimPChains :=

SimPChains∪ {(xk, xk+1, k)}
52 xk−1 := xk+1 ⊕ G(k, xk)

53 k := k − 1

54 flagMid:= 0

55 return (xk, xk+1, k)

56 procedure FENQ(i, x):
57 if x ∈ Gi then
58 return Gi(x)
59 else if x ∈ Aj

i then
60 return ⊥
61 else
62 Aj

i := {x} ∪ Aj
i

63 if i ∈ {1, 2, 5, 6, 9, 10} then
64 EnqNewChains(i, x)

65 return ⊥

66 procedure ChkFwd(x0, x1, x10):
67 (x′

10, x
′
11) := P(x0, x1)

68 return x′
10

?
= x10

69 procedure ChkBwd(x10, x11, x1):
70 (x′

0, x
′
1) := P−1(x10, x11)

71 return x′
1

?
= x1

72 procedure ForceVal(x, y, �):
73 G�(x) := y

74 procedure EvFwdComp(
Q, xk, xk+1, k, m):

75 while k 	= m do
76 if k = 10 then
77 (x0, x1) := P−1(x10, x11)
78 k := 0
79 else
80 xk+2 := xk⊕

FCOMP(Q, k + 1, xk+1)
81 k := k + 1

82 return (xm, xm+1)

83 procedure EvBwdComp(
Q, xk, xk+1, k, m):

84 while k 	= m do
85 if k = 0 then
86 (x10, x11) := P(x0, x1)
87 k := 10
88 else
89 xk−1 := xk+1⊕

FCOMP(Q, k, xk)
90 k := k − 1

91 return (xm, xm+1)

92 procedure FCOMP(Q, i, x):
93 if x /∈ Gi then
94 Gi(x) ← {0, 1}n

95 if Q 	=⊥ ∧Q = Qall ∧ i ∈ {5, 6}
then

96 EnqNewMidChains(i, x)

97 return Gi(x)

98 procedure EnqNewMidChains(i, x):

99 if i = 5 then

100 for all (x5, x6) ∈ {x} × G6 do

101 Qmid.Enqueue(x5, x6, 5, 2, 4, 1)

102 if i = 6 then

103 for all (x5, x6) ∈ G5 × {x} do

104 Qmid.Enqueue(x5, x6, 5, 8, 7, 10)

105 procedure EnqNewChains(i, x):
106 if i = 1 then
107 for all (x9, x10, x1) ∈ (G9 ∪ Aj

9) × G10 × {x} do
108 if ChkBwd(x10, G10(x10) ⊕ x9, x1) then
109 if (x9, x10, 9) /∈ SimPChains then
110 Qenq.Enqueue(x9, x10, 9, 3, 2, 5)
111 Qall.Enqueue(x9, x10, 9, 3, 2, 5)

112 if i = 2 then
113 for all (x10, x1, x2) ∈ (G10 ∪ Aj

10) × G1 × {x} do
114 if ChkFwd(x2 ⊕ G1(x1), x1, x10) then

660 D. Dachman-Soled et al.

115 if (x1, x2, 1) /∈ SimPChains then
116 Qenq.Enqueue(x1, x2, 1, 4, 3, 6)
117 Qall.Enqueue(x1, x2, 1, 4, 3, 6)

118 if i = 5 then
119 for all (x5, x6) ∈ {x} × (G6 ∪ Aj

6) do
120 Qenq.Enqueue(x5, x6, 5, 2, 4, 1)
121 Qall.Enqueue(x5, x6, 5, 2, 4, 1)

122 if i = 6 then
123 for all (x5, x6) ∈ (G5 ∪ Aj

5) × {x} do
124 Qenq.Enqueue(x5, x6, 5, 8, 7, 10)
125 Qall.Enqueue(x5, x6, 5, 8, 7, 10)

126 if i = 9 then
127 for all (x9, x10, x1) ∈ {x} × G10 × (G1 ∪ Aj

1) do
128 if ChkBwd(x10, G10(x10) ⊕ x9, x1) then
129 if (x9, x10, 9) /∈ SimPChains then
130 Qenq.Enqueue(x9, x10, 9, 6, 8, 5)
131 Qall.Enqueue(x9, x10, 9, 6, 8, 5)

132 if i = 10 then
133 for all (x10, x1, x2) ∈ {x} × G1 × (G2 ∪ Aj

2) do
134 if ChkFwd(x2 ⊕ G1(x1), x1, x10) then
135 if (x1, x2, 1) /∈ SimPChains then
136 Qenq.Enqueue(x1, x2, 1, 7, 9, 6)
137 Qall.Enqueue(x1, x2, 1, 7, 9, 6)

138 procedure Adapt(Q, x�−2, x�−1, x�+2, x�+3, �, g, b):
139 flagMidAdapt0 := 0
140 flagMidAdapt1 := 0
141 FCOMP(Q, � − 1, x�−1)
142 x� := x�−2 ⊕ G�−1(x�−1)
143 if (Q = Qall) ∧ (� = 5 ∨ � = 6) ∧ (x� /∈ G�) then
144 flagMidAdapt0 := 1

145 FCOMP(Q, � + 2, x�+2)
146 x�+1 := x�+3 ⊕ G�+2(x�+2)
147 if (Q = Qall) ∧ (� + 1 = 5 ∨ � + 1 = 6) ∧ (x�+1 /∈ G�+1) then
148 flagMidAdapt1 := 1

149 ForceVal(x�, x�+1 ⊕ x�−1, �)
150 if flagMidAdapt0 = 1 then
151 EnqNewMidChains(�, x�)

152 ForceVal(x�+1, x� ⊕ x�+2, � + 1)
153 if flagMidAdapt1 = 1 then
154 EnqNewMidChains(� + 1, x�+1)

5 Proof of Indifferentiability

Let Feistel denote the 10-round Feistel construction, let F be 10 independent
random functions with domain and range {0, 1}n, and let P denote a random
permutation on {0, 1}2n. Let S denote the simulator from the previous section.
We prove:

10-Round Feistel is Indifferentiable from an Ideal Cipher 661

Theorem 2. The probability that a distinguisher D making at most q queries
outputs 1 in an interaction with (P,SP) and the probability that it outputs 1 in
an interaction with (FeistelF,F) differ by at most O(q12/2n). Moreover, S runs
in time O(q6) except with probability O(q12/2n).

For the rest of the paper, fix a distinguisher D making at most q queries.

5.1 Proof Overview

Our proof structure utilizes four hybrid experiments H1, . . . , H4 as in the proof
of indifferentiability of the 14-round Feistel network [1,11]. Hybrid H1 denotes
the scenario in which D interacts with (P,SP), and H4 denotes the scenario in
which D interacts with (FeistelF,F). To prove indifferentiability, we show that
the difference between the probability D outputs 1 in H1 and the probability D
outputs 1 in H4 is at most poly(q)/2n.

In H2, the random permutation P is replaced with a two-sided random func-
tion R. Following [1,11], we first bound the simulator complexity in hybrid H2

and use that to bound the simulator’s complexity in H1.
Next, we define certain “bad events” that can occur in an execution of H2, and

show that these events occur with low probability. We then show that as long as
these events do not occur in an execution of H2, then certain “good” properties
hold; in particular, we can prove that for every call to ForceVal(x, ·, j) that
occurs in the execution, we have x /∈ Gj before the call. If this is true, we say
that “ForceVal does not overwrite.” This is the main technical part of the
proof and can be found in Sect. 5.3.2.

In H3, the two-sided random function R is replaced with the 10-round Feistel
construction. The distinguisher interacts with (Feistel, ŜFeistel+) where Feistel+ is
the Feistel construction with additional procedures ChkFwd and ChkBwd.
Given the “good” properties that were proven in Sect. 5.3.2, we prove that H2

and H3 are indistinguishable. The proof follows exactly along the lines of the
proof in [1,11].

Finally, in H4, the distinguisher interacts with (FeistelF,F) and hence
accesses the random functions F directly instead of through the simulator. We
prove that H3 and H4 are indistinguishable similar to the proof of [1,11].

Due to space constraints, we omit some of the proofs in the following sections.
The omitted proofs can be found in the full version [3].

5.2 Indistinguishability of the First and Second Experiments

In H2, we replace the random permutation with the two-sided random func-
tion R, and D interacts with (R, ŜR). The simulator Ŝ in H2 is exactly the
same as the simulator S described in Sect. 4.2 except that it implements proce-
dures Ŝ.ChkFwd and Ŝ.ChkBwd by calling the procedures R.ChkFwd and
R.ChkBwd that are provided by R (described below).

The two-sided function R maintains a hashtable P containing elements of
the form (↓, x0, x1) and (↑, x10, x11). Whenever R.P(x0, x1) is queried, R checks

662 D. Dachman-Soled et al.

1 procedure P(x0, x1):
2 if (↓, x0, x1) /∈ P then

3 (x10, x11)
$← {0, 1}2n

4 P (↓, x0, x1) := (x10, x11)
5 P (↑, x10, x11) := (x0, x1)

6 return P (↓, x0, x1)

7 procedure ChkFwd(x0, x1, x10):
8 if (↓, x0, x1) ∈ P then
9 (x′

10, x
′
11) := P (↓, x0, x1)

10 return x′
10

?
= x10

11 return false

12 procedure P−1(x10, x11):
13 if (↑, x10, x11) /∈ P then

14 (x0, x1)
$← {0, 1}2n

15 P (↑, x10, x11) := (x0, x1)
16 P (↓, x0, x1) := (x10, x11)

17 return P (↑, x10, x11)

18 procedure ChkBwd(x10, x11, x1):
19 if (↑, x10, x11) ∈ P then
20 (x′

0, x
′
1) := P (↑, x10, x11)

21 return x′
1

?
= x1

22 return false

Fig. 1. Random two-sided function R.

if (↓, x0, x1) ∈ P and if so, answers accordingly. Otherwise, an independent uni-
form output (x10, x11) is picked and (↓, x0, x1) as well as (↑, x10, x11) are added
to P , mapping to each other. In addition to P and P−1, R contains the proce-
dures ChkFwd(x0, x1, x10) and ChkBwd(x10, x11, x1).3 ChkFwd(x0, x1, x10)
works as follows: If (↓, x0, x1) ∈ P , it returns true if (↓, x0, x1) maps to
(x10, x11) for some value of x11 ∈ {0, 1}n and false otherwise. Procedure
ChkBwd(x10, x11, x1) works as follows: If (↑, x10, x11) ∈ P , it returns true if
(↑, x10, x11) maps to (x0, x1) for some value of x0 ∈ {0, 1}n and false otherwise.
The pseudocode for the two-sided random function R, using hashtable P , is as
follows:

The proof of indistinguishability of H1 and H2 can be found in the full
version [3]. In particular, we prove the following statements regarding the the
indistinguishability of H1 and H2 and the simulator complexity.

Lemma 3. The probability that D outputs 1 in H1 differs from the probability
that it outputs 1 in H2 by at most 2·1015q12

2n ·
Lemma 4. In H1, the simulator runs for at most O(q6) steps and makes at
most 3.2 × (10q)6 queries except with probability at most 1015q12

2n ·
We will prove some properties of H2 in the following section that will be

useful to prove the indistinguishability of the second and third experiments.

5.3 Properties of H2

We introduce some definitions and establish some properties of executions in H2.
The definitions here follow closely along the lines of the definitions in [1,11].

3 This is similar to the check procedure in [1,11].

10-Round Feistel is Indifferentiable from an Ideal Cipher 663

A partial chain is a triple (xk, xk+1, k) ∈ {0, 1}n × {0, 1}n × {0, . . . , 10}. If C =
(xk, xk+1, k) is a partial chain, we let C[1] = xk, C[2] = xk+1, and C[3] = k.

Definition 5. Fix tables G = Ŝ.G and P = R.P in an execution of H2, and let
C = (xk, xk+1, k) be a partial chain. We define functions next, prev, val+, val−,
and val as follows:

1 procedure next(xk, xk+1, k):
2 if k < 10 then
3 if xk+1 /∈ Gk+1 then
4 return ⊥
5 xk+2 := xk ⊕ Gk+1(xk+1)
6 return (xk+1, xk+2, k + 1)
7 else if k = 10 then
8 if (↑, x10, x11) /∈ P then
9 return ⊥

10 (x0, x1) := P (↑, x10, x11)
11 return (x0, x1, 0)

12 procedure prev(xk, xk+1, k):
13 if k > 0 then
14 if xk /∈ Gk then
15 return ⊥
16 xk−1 := xk+1 ⊕ Gk(xk)
17 return (xk−1, xk, k − 1)
18 else if k = 0 then
19 if (↓, x0, x1) /∈ P then
20 return ⊥
21 (x10, x11) := P (↓, x0, x1)
22 return (x10, x11, 10)

1 procedure val+i (C):
2 while (C �=⊥) ∧ (C[3] /∈ {i −

1, i}) do
3 C := next(C)
4 if C =⊥ then return ⊥
5 if C[3] = i then return C[1]
6 else return C[2]

7 procedure val−i (C):
8 while (C �=⊥) ∧ (C[3] /∈ {i −

1, i}) do
9 C := prev(C)

10 if C =⊥ then return ⊥
11 if C[3] = i then return C[1]
12 else return C[2]

1 procedure vali(C):
2 if val+i (C) �=⊥ then return val+i (C)
3 else return val−i (C)

We say that ⊥/∈ Gi for i ∈ {1, . . . , 10}. So, if vali(C) /∈ Gi, then either vali(C) =⊥
or vali(C) �=⊥ and vali(C) /∈ Gi.

Definition 6. For a given set of tables G,P , two partial chains C,D are equiv-
alent (denoted C ≡ D) if they are in the reflexive, transitive closure of the
relations given by next and prev.

So, two chains C and D are equivalent if C = D, or if D can be obtained by
applying next and prev finitely many times to C.

Definition 7. The set of table-defined chains contains all chains C for which
next(C) �=⊥ and prev(C) �=⊥.

Definition 8. A chain C = (xk, xk+1, k, �, g, b) is called an enqueued chain if
C is enqueued for completion. For such an enqueued chain, we define next(C)

664 D. Dachman-Soled et al.

as the procedure next applied to the partial chain (xk, xk+1, k) i.e. next(C) :=
next(xk, xk+1, k). The procedures prev, val+, val− and val on an enqueued chain
C are defined in a similar manner.

Definition 9. The set Q∗
all contains chains that are enqueued in Qall but not in

Q1, Q5, Q6, Q10.

Definition 10. We say a uniform assignment to Gk(xk) occurs when the simu-
lator sets Gk(xk) through an assignment Gk(xk) ← {0, 1}n, i.e., a uniform value
is chosen from the set of n-bit strings and Gk(xk) is assigned that value.

A uniform assignment to Gk(xk) occurs in line 94 of the simulator’s execution.
In particular, if Gk(xk) is set through a ForceVal(xk, ·, k) call, then it is not
a uniform assignment.

Definition 11. We say a uniform assignment to P occurs in a call to R.P(x0, x1)
if (↓, x0, x1) /∈ P when the call is made and P (↓, x0, x1) is set through the assign-
ment P (↓, x0, x1) := (x10, x11) where (x10, x11) is chosen uniformly from the set
of 2n-bit strings.

Similarly, it occurs in a call to R.P−1(x10, x11) if (↑, x10, x11) /∈ P when the
call is made and P (↑, x10, x11) is set through the assignment P (↑, x10, x11) :=
(x0, x1) where (x0, x1) is chosen uniformly from the set of 2n-bit strings.

A uniform assignment to P (↓, x0, x1) occurs in line 4 of R in Fig. 1 and a
uniform assignment to P (↑, x10, x11) occurs in line 15 of R in Fig. 1.

In the following section, we define a set of “bad” events, and show that these
occur with negligible probability. Following that, we analyze execution of the
experiment assuming that none of these bad events occur.

In the remainder of the section, we let T = O(q2) be an upper bound on the
sizes of Gi and P as well as the upper bound on the number of enqueued chains
and hence, the number of calls to the Adapt procedure in an execution of H2.
The derivation of the bound on T and the proof of the lemmas below can be
found in the full version [3].

5.3.1 Bad Executions

Definition 12. We say that event BadP occurs in H2 if either:

– Immediately after choosing (x10, x11) in a call to R.P(·, ·), either (↑, x10, x11)
∈ P or x10 ∈ G10.

– Immediately after choosing (x0, x1) in a call to R.P−1(·, ·), either (↓, x0, x1) ∈
P or x1 ∈ G1.

Lemma 13. The probability of event BadP in H2 is at most 2T 2/2n.

A partial chain C = (xk, xk+1, k) that has been enqueued by our simulator may
not get table-defined till it is completed since it is possible that xk ∈ Gk while
xk+1 ∈ Aj

k+1 for some j but not in Gk+1. Hence, we augment the definitions of
BadlyHit and BadlyCollide given in [1,11] to refer to interactions with enqueued
chains and refer to the augmented definitions as BadlyHit+ and BadlyCollide+.

10-Round Feistel is Indifferentiable from an Ideal Cipher 665

Definition 14. We say that event BadlyHit+ occurs in H2 if either:

– Immediately after a uniform assignment to Gk(xk), there is a partial chain
(xk, xk+1, k) such that prev(prev(xk, xk+1, k)) �=⊥.

– Immediately after a uniform assignment to Gk(xk), there is a partial chain
(xk−1, xk, k − 1) such that next(next(xk−1, xk, k − 1)) �=⊥.

and the relevant partial chain is either table-defined or an enqueued chain in
Qall.

Lemma 15. The probability of event BadlyHit+ in H2 is at most 40T 3/2n.

Definition 16. We say that event BadlyCollide+ occurs in H2 if a uniform
assignment to Gi(xi) is such that there exist two partial chains C and D such
that for some � ∈ {0, . . . , 11} and σ, ρ ∈ {+,−} all of the following are true:

– Immediately before the assignment, C and D are not equivalent.
– Immediately before the assignment, valσ� (C) =⊥ or valρ� (D) =⊥.
– Immediately after the assignment, valσ� (C) = valρ� (D) �=⊥.

and one of the following is true:

– Immediately after the assignment, C and D are table-defined.
– Immediately after the assignment, C is table-defined and D is a chain

enqueued in Qall.
– C and D are chains enqueued in Qall.

Lemma 17. The probability of event (BadlyCollide+ ∧ ¬BadlyHit+ ∧ ¬BadP) in
H2 is at most 21160T 5/2n.

Definition 18. We say that event BadlyCollideP occurs in H2 if either:

– A uniform assignment P (↓, x0, x1) := (x10, x11) is such that there exist partial
chains C,D such that for some σ, ρ ∈ {+,−} the following are all true:
• Immediately before the assignment, C and D are not equivalent.
• Immediately before the assignment, valσ10(C) =⊥ or valρ10(D) =⊥.
• Immediately after the assignment, valσ10(C) = valρ10(D) = x10 �=⊥.
and one of the following conditions hold:
• Before the assignment, C and D are chains in Q∗

all.
• Immediately after the assignment, C and D are table-defined.
• Before the assignment, C is a chain enqueued in Qall and immediately after

the assignment, D is table-defined.
– A uniform assignment P (↑, x10, x11) := (x0, x1) is such that there exist partial

chains C,D such that for some σ, ρ ∈ {+,−} the following are all true:
• Immediately before the assignment, C and D are not equivalent.
• Immediately before the assignment, valσ1 (C) =⊥ or valρ1(D) =⊥.
• Immediately after the assignment, valσ1 (C) = valρ1(D) = x1 �=⊥.
and one of the following conditions hold:
• Before the assignment, C and D are chains in Q∗

all.

666 D. Dachman-Soled et al.

• Immediately after the assignment, C and D are table-defined.
• Before the assignment, C is a chain enqueued in Qall and immediately after

the assignment, D is table-defined.

Lemma 19. The probability of event BadlyCollideP in H2 is at most 314T 5/2n.

Proof. Consider the case that after a uniform choice of (x0, x1) leading to an
assignment P (↑, x10, x11) := (x0, x1), event BadlyCollideP occurs. The value
val−1 (C) for a chain C does not change due to the assignment since it is a
P (↑, x10, x11) assignment and val−1 (C) can change only due to a P (↓, x0, x1)
assignment by definition of val−(·).

Suppose that val+1 (C) =⊥ and val−1 (D) �=⊥ before the assignment and after
the assignment val+1 (C) = val−1 (D) = x1. The value val−1 (D) does not change
due to the assignment as mentioned above. So, the probability that val+1 (C) =
val−1 (D) = x1 is 2−n.

Suppose that val+1 (C) = val+1 (D) =⊥ before the assignment and after the
assignment val+1 (C) = val+1 (D) = x1. For this to happen, val10(C) = val10(D) =
x10 and val11(C) = val11(D) = x11 implying that C and D are equivalent chains.
So, the probability of this event is 0.

Suppose that val+1 (C) =⊥ and val+1 (D) �=⊥ before the assignment and after
the assignment val+1 (C) = val+1 (D) = x1. Now, the value of val+1 (D) stays
the same after the assignment (even if BadP occurs). So, the probability that
val+1 (C) = val+1 (D) = x1 is 2−n.

The analysis for the other case follows similarly. There are at most T assign-
ments of the form P (↑, x10, x11) or P (↓, x0, x1). There are at most 11T 2 possi-
bilities for a chain to be table-defined before the assignment and T possibilities
for a chain to be table-defined after the assignment but not before. There are
at most T chains enqueued for completion in Qall. So, the probability of event
BadlyCollideP is at most

(

T · ((11T 2 + T)2 + T 2 + T · (11T 2 + T)) · 2
)

· 2−n.

Definition 20. We say event BadlyHitFV occurs in H2 if a uniform assignment
to Gs(xs) that occurs in a call Adapt(Q,x�−2, x�−1, x�+2, x�+3, �, g, b), for some
s ∈ {g, b} one of the following happens (where we let C = (x�−2, x�−1, � − 2)):

– s = � + 2 and the following holds:
• Immediately before the assignment, val−�+1(C) =⊥.
• Immediately after the assignment, val−�+1(C) �=⊥.
• Immediately after the assignment, y := val�−1(C)⊕val−�+1(C) is such that

x′
�+1 ⊕ x′

�−1 = y for some x′
�+1 ∈ G�+1 and x′

�−1 ∈ G�−1.
– s = � − 1 and the following holds:

• Immediately before the assignment, val+� (C) =⊥.
• Immediately after the assignment, val+� (C) �=⊥.
• Immediately after the assignment, y := val�+2(C) ⊕ val+� (C) is such that

x′
�+2 ⊕ x′

� = y for some x′
�+2 ∈ G�+2 and x′

� ∈ G�.

Lemma 21. The probability of event BadlyHitFV in H2 is at most 2T 3/2n.

10-Round Feistel is Indifferentiable from an Ideal Cipher 667

Proof. Consider the first case where s = � + 2. Note that for a chain C with
s = �+2 the “value” at the adapt position �+1 is set as val�+1(C) := val�+3(C)⊕
Gs(vals(C)) where val�+3(C) �=⊥ is one of the arguments to Adapt. Since the
assignment to Gs(xs) happens inside the Adapt call, val−�+1(C) =⊥ until the
assignment and val−�+1(C) �=⊥ immediately after the assignment.

Now, y := val�−1(C) ⊕ val−�+1(C). Note that val�−1(C) �=⊥ since val�−1(C) =
x�−1 is one of the arguments of the Adapt procedure. So, for y := val�−1(C) ⊕
val�+3(C)⊕Gs(vals(C)) to be such that y = x′

�−1 ⊕x′
�+1 where x′

�−1 ∈ G�−1 and
x′

�+1 ∈ G�+1, y needs to take one of T 2/2n values. Note that there are at most
T such calls to Adapt by assumption. So, the probability of the first case is at
most T 3/2n. The analysis for the second case is analogous.

Definition 22. We say that event BadlyCollideFV occurs in H2 if a uni-
form assignment to Gs(xs) that occurs in a call to Adapt(Q,x�−2, x�−1, x�+2,
x�+3, �, g, b), for some s ∈ {g, b} the following happens (where we let C =
(x�−2, x�−1, � − 2) and D is a chain in Q∗

all):

– s = � + 2, and for some (k, k′) ∈ {(� − 1, � + 1), (� + 1, � − 1)} the following
holds:
• Immediately before the assignment, val−�+1(C) =⊥ and valk(D) �=⊥.
• Immediately after the assignment, val−�+1(C) �=⊥.
• Immediately after the assignment, y := val�−1(C) ⊕ val−�+1(C) is such that

x ⊕ y = valk(D) for some x ∈ Gk′ .
– s = � − 1, and for some (k, k′) ∈ {(�, � + 2), (� + 2, �)} the following holds:

• Immediately before the assignment, val+� (C) =⊥ and valk(D) �=⊥.
• Immediately after the assignment, val+� (C) �=⊥.
• Immediately after the assignment, y := val�+2(C) ⊕ val+� (C) is such that

x ⊕ y = valk(D) for some x ∈ Gk′ .

Lemma 23. The probability of event BadlyCollideFV in H2 is at most 4T 3/2n.

Proof. Consider the first case where s = � + 2. Note that during the Adapt
call the “value” at the adapt position � + 1 is set as val�+1(C) := val�+3(C) ⊕
Gs(vals(C)) where val�+3(C) �=⊥ is one of the arguments to Adapt. Since the
assignment to Gs(xs) happens inside the Adapt call, val−�+1(C) =⊥ until the
assignment and val−�+1(C) �=⊥ immediately after the assignment.

Now, y := val�−1(C) ⊕ val−�+1(C). Note that val�−1(C) �=⊥ since it is one of
the arguments of Adapt. Also note that if valk(D) �=⊥ before the assignment,
then valk(D) does not change due to the assignment. Say k = �−1 and k′ = �+1.
So, for y := val�−1(C) ⊕ val�+3(C) ⊕ Gs(xs) to be such that y = x ⊕ val�−1(D)
where x ∈ G�+1, the value y would have to take one of T 2/2n values. (This
is because T is the upper bound on the number of chains enqueued in Qall by
assumption and on the size of G�+1.) Similarly for the case where k = � + 1 and
k′ = � − 1. So, for a single call to Adapt where s = � + 2, we have that the
probability that the event occurs is 2T 2/2n. There are at most T calls to Adapt
by assumption and hence, the probability of the first case is at most 2T 3/2n.

The analysis for the second case is analogous.

668 D. Dachman-Soled et al.

We say an execution of H2 is good if none of BadP, BadlyHit+, BadlyCollide+,
BadlyCollideP, BadlyHitFV, or BadlyCollideFV occur. Lemmas 13–23 imply:

Lemma 24. The probability that an execution of H2 is good is 1 − O(T 5)/2n.

5.3.2 Properties of Good Executions

Notation. For a chain C = (xk, xk+1, k, �, g, b) that is enqueued for completion,
the “adapt positions” are at �, �+1. These positions are those where the simulator
uses ForceVal(·, ·, �) and ForceVal(·, ·, �+1) to force the values at G�(·) and
G�+1(·). Also, for the chain C, the “set uniform” positions are at � − 1, � + 2.
(These are the buffer zones that surround the adapt positions.) One of these “set
uniform” positions is adjacent to the query that caused the chain to be enqueued
and this position is denoted by g and referred to as the “good” set uniform
position. The other “set uniform” position is referred to as the “bad” set uniform
position. Note that g, b ∈ {� − 1, � + 2} and g �= b; Let a be the adapt position
that is adjacent to “bad” set uniform position. So, if b = � − 1, then a = �; Else,
if b = � + 2, a = � + 1. Consider a call Adapt(x�−2, x�−1, x�+2, x�+3, �, g, b), if
b = � − 1 define xa = x� as x� := x�−2 ⊕ G�−1(x�−1) if x�−1 ∈ G�−1, and x� =⊥
otherwise. Analogously, if b = � + 2, define xa = x�+1 := x�+3 ⊕ G�+2(x�+2) if
x�+2 /∈ G�+2 and x�+1 =⊥ otherwise.

Also, for a chain C enqueued in Qb we say adapting is safe if just before
the call to Adapt for C, we have xg /∈ Gg and xa /∈ Ga. Analogously, for
a chain C in Q∗

all or Qmid we say adapting is safe if just before the call to
Adapt for C, we have x�−1 /∈ G�−1 and x�+2 /∈ G�+2. Also, we loosely use
the statement C ∈ CompChains where C = (xk, xk+1, k, �, g, b) to mean that
(xk, xk+1, k) ∈ CompChains.

High-level Overview. The aim of this section is to prove that during a good
execution of H2, every call to ForceVal(x, ·, a) is such that x /∈ Ga, i.e., to
prove that a ForceVal call does not “overwrite.”

To prove that ForceVal does not “overwrite,” we prove that for every call
to Adapt that occurs during the completion of a chain C = (xk, xk+1, k, �, g, b),
we have valg(C) /∈ Gg before the call and if C is enqueued in Qb, vala(C) /∈ Ga

before the call; else, valb(C) /∈ Gb before the call i.e. every call to Adapt is “safe”.
In order to prove the above statements, we will prove that at the time a chain
C is enqueued in Qall, valg(C) =⊥ and if C is a chain enqueued in Qb for some
b ∈ {1, 5, 6, 10}, then valb(C) /∈ Gb; else, valb(C) =⊥ when C was enqueued.
Similarly, if a chain C is enqueued in Qmid, then just before the assignment
that precedes C being enqueued occurs, we will prove that valg(C) =⊥ and
valb(C) =⊥. We also need to prove properties of equivalent chains in order to
prove that if a chain equivalent to C has been completed before C, then C ∈
CompChains when it is dequeued. All of this put together will help us prove that
ForceVal does not “overwrite” (Theorem 39). While the structure explained
above is similar to the structure of the proof in [1,11], the major difference is

10-Round Feistel is Indifferentiable from an Ideal Cipher 669

in how we prove the properties of chains at the time they are enqueued. This is
due to the fact that we separate enqueueing from completion in our simulation.

Due to space constraints, we state some lemmas without proofs, and refer to
the full version of our work for details [3].

Properties of Equivalent Chains

Lemma 25. Consider a good execution of H2. Suppose that at some point in
the execution, two partial chains C and D are equivalent. Then there exists a
sequence of partial chains C1, . . . , Cr such that

– C = C1 and D = Cr, or else D = C1 and C = Cr,
– for r ≥ 2, Ci = next(Ci−1) and Ci−1 = prev(Ci) for all i ∈ {2, . . . , r},
– for r ≥ 3, C2, . . . , Cr−1 is table-defined,
– D = (valρj (C), valρj+1(C), j) where valρj (C) �=⊥ and valρj+1(C) �=⊥ for some

ρ ∈ {+,−},
– C = (valσk(D), valσk+1(D), k) where valσk(D) �=⊥ and valσk+1(D) �=⊥ for some

σ ∈ {+,−}.

Lemma 26. Consider some point in a good execution of H2 and assume that
x �∈ Gj before every call to ForceVal(x, ·, j) prior to this point in the exe-
cution. Then, if the partial chains C = (xk, xk+1, k) with k ∈ {1, 5, 9} and
D = (x′

m, x′
m+1,m) with m ∈ {1, 5, 9} are equivalent at this point in the execu-

tion, then C ∈ CompChains if and only if D ∈ CompChains.

Properties of Enqueued Chains

Recall that {1, 5, 6, 10} are “bad” set uniform positions.

Lemma 27. Say a chain C = (xk, xk+1, k, �, g, b) is enqueued to be completed
in Qb. Then at the time C is enqueued, valg(C) =⊥ and valb(C) /∈ Gb.

Effects of a Call to ForceVal

For the following lemmas, note that g, b ∈ {� − 1, � + 2} and g �= b.

Lemma 28. In a good execution of H2, let x�−1 /∈ G�−1 (respectively x�+2 /∈
G�+2) immediately before a call Adapt(Q,x�−2, x�−1, x�+2, x�+3, �, g, b). Then,
before the call to ForceVal(x�, ·, �) (respectively ForceVal(x�+1, ·, � + 1)) in
that Adapt call, we have x� /∈ G� (respectively x�+1 /∈ G�+1).

The lemma above immediately gives us the following corollary.

Corollary 29. Consider a call Adapt(Q,x�−2, x�−1, x�+2, x�+3, �, g, b) in
a good execution of H2 and assume that adapting was safe for all
chains C that were dequeued before this Adapt call. Then, before the
call to ForceVal(x�, ·, �) and ForceVal(x�+1, ·, � + 1) that occurs in
Adapt(Q,x�−2, x�−1, x�+2, x�+3, �, g, b), we have x� /∈ G� and x�+1 /∈ G�+1

respectively.

670 D. Dachman-Soled et al.

Lemma 30. Suppose that x�−1 /∈ G�−1 (respectively x�+2 /∈ G�+2) immedi-
ately before a call Adapt(Q,x�−2, x�−1, x�+2, x�+3, �, g, b) in a good execution
of H2. Then, if C is a table-defined chain before the call to Adapt, vali(C) for
i ∈ {1, . . . , 10} stays constant during the call to ForceVal(x�, ·, �) (respectively
ForceVal(x�+1, ·, � + 1)).

Lemma 31. Suppose that x�−1 /∈ G�−1 (respectively x�+2 /∈ G�+2) immediately
before a call Adapt(Q,x�−2, x�−1, x�+2, x�+3, �, g, b) in a good execution of H2.
Then, if C is a chain enqueued in Qall, vali(C) for i ∈ {1, . . . , 10} stays constant
during the call to ForceVal(x�, ·, �) (respectively ForceVal(x�+1, ·, �+1)) that
occurs in the Adapt call.

Lemma 32. Consider a call to Adapt(Q,x�−2, x�−1, x�+2, x�+3, �, g, b) in a
good execution of H2 for some Q ∈ {Q1, Q5, Q6, Q10}. Assume that adapting
was safe for all chains C that were dequeued from Q1,Q5,Q6,Q10 before this
Adapt call. If xa /∈ Ga and xg /∈ Gg (where a is the adapt position adjacent
to the “bad” set uniform position) before the Adapt call, then if C is a chain
enqueued in Qall, vali(C) for i ∈ {1, . . . , 10} stays constant during the call to
ForceVal(xa, ·, a) that occurs in the Adapt call.

Additional Properties of Enqueued Chains
For the following lemma, if a chain C = (xk, xk+1, k, �, g, b) is enqueued in Qmid,
then the assignment Gi(xi) that precedes C being enqueued happens either in
lines 19, 149 or 152 of the simulator’s execution.

Lemma 33. Suppose that a chain C = (xk, xk+1, k, �, g, b) is enqueued in Qmid

during a good execution of H2 such that no chain equivalent to C has been
enqueued for completion so far. Suppose also that adapting has been safe for
every chain dequeued from Q1,Q5,Q6,Q10 or Q∗

all so far. Then valg(C) =⊥ and
valb(C) =⊥ just before the assignment Gi(xi) that precedes C being enqueued.
Also, val9(C) = val2(C) =⊥ just before the assignment Gi(xi) that precedes C
being enqueued.

Proof. Say a chain C = (x5, x6, 5, 2, 4, 1) is enqueued in Qmid with g = 4 and
b = 1. Then, the assignment G5(x5) that precedes the enqueueing of C is such
that x5 /∈ G5 before the assignment, by construction of the simulator. Otherwise,
EnqNewMidChains(5, x5) is not called. Hence, val−4 (C) =⊥ just before the
assignment G5(x5) that precedes C being enqueued. Also, since val−4 (C) =⊥, we
have val−1 (C) =⊥.

Before we prove val+4 (C) =⊥ and val+1 (C) =⊥ (and hence, val4(C) =⊥ and
val1(C) =⊥), we make the following observation. If a partial chain (x5, x6, 5) is
enqueued in Qmid such that no equivalent chain has been enqueued previously, by
construction of the simulator, either (1) val5(D) = x5 for a chain D belonging to
Q∗

all where val5(D) =⊥ when D was enqueued or (2) val6(E) = x6 for a chain E
enqueued in Q∗

all where val6(E) =⊥ when E was enqueued or (3) both. In other
words, either x5 /∈ G5 ∪ At

5 or x6 /∈ G6 ∪ At
6 or both when Qenq.Empty() = true

in line 6 of the simulator’s execution after D’s tth query.

10-Round Feistel is Indifferentiable from an Ideal Cipher 671

Consider a chain C = (x5, x6, 5, 2, 4, 1) which was enqueued in Qmid such that
no chain equivalent to C was enqueued previously. Such a chain C is enqueued
in Qmid, when x6 ∈ G6, val5(C) = val5(D) = x5 and x5 ∈ G5 right before C was
enqueued (and not earlier) where D is a chain belonging to Q∗

all and x5 ∈ G5

due to the completion of D.
For val1(C) �=⊥ at the time of the assignment that precedes the enqueueing

of C, we need val+1 (C) �=⊥. Then, in particular, we have that x7 := val7(C) ∈ G7

and x8 := val8(C) ∈ G8 (otherwise, val+9 (C) =⊥ implying that val+1 (C) =⊥).
Consider the partial chains C = (x5, x6, 5), C1 = (x6, x7, 6) and C2 =

(x7, x8, 7). For val+9 (C) �=⊥ just before the assignment that precedes the enqueue-
ing of C, we need (1) C1 = next(C), C2 = next(C1) (and hence, x6 ∈ G6 and
x7 ∈ G7) and (2) x5 = val5(D) for a chain D in Q∗

all and (3) x8 ∈ G8 or
x8 = val8(E) of a chain E enqueued in Qall. Note that this condition is not true
at the time the simulator finished enqueueing chains in Qall since we have either
x5 /∈ G5 ∪ At

5 or x6 /∈ G6 ∪ At
6 or both. Hence, the conditions must have been

met during the completion of chains in Qall. Consider the last assignment that
was made before all the above conditions were met.

Consider the case that when the last assignment (such that all the conditions
listed above were met immediately after this assignment) happened, the chain
C1 was already table-defined. Now, if the assignment was a P/P−1 assignment,
then BadP occurred. It cannot be a ForceVal assignment since ForceVal
does not change the value of a chain enqueued in Qall by Lemmas 31 and 32. If
it were a uniform assignment to Gi(xi), then, BadlyCollide+ occurred.

Consider the case that when the last assignment (such that all the conditions
listed above were met immediately after this assignment) happened, the chain
C1 was not table-defined before the assignment but table-defined immediately
after. Recall that if C1 = (x6, x7, 6) is table-defined then x6 ∈ G6 and x7 ∈ G7.
So, the assignment was either to G6(x6) or G7(x7).

Consider the case that it set G7(x7). If this were a uniform assignment to
G7(x7), then BadlyCollide+ occurred since C1(≡ C) and E are not equivalent as
no chain equivalent to C has been enqueued previously. If this were a ForceVal
assignment, then BadlyCollideFV occurred. This is because 7 is an adapt position
only for partial chains that are either of the form (a) X = (x9, x10, 9) such that
(x9, x10, 9, 6, 8, 5) belongs to Q∗

all. By assumption for chains in Q∗
all, we have

val5(X) /∈ G5 before the Adapt call for such a chain or, (b) Y = (x1, x2, 1) such
that (x1, x2, 1, 7, 9, 6) is enqueued in Q6. In this case, the adapt position 7 is
adjacent to the “bad” set uniform position 6. By assumption for chains enqueued
in Q6, we have val9(Y) /∈ G9 before the Adapt call for such a chain. Hence,
BadlyCollideFV occurred due to the assignment G5(val5(X)) or G9(val9(Y)) that
occurs in the Adapt call. The analysis for the case when G6(x6) is set is similar.
So, the above conditions are not met for a chain C to be enqueued in Qmid. Hence,
for such a chain C = (x5, x6, 5, 2, 4, 1), val+9 (C) =⊥ just before the assignment
that caused C to be enqueued. Since val+9 (C) =⊥ and val−4 (C) =⊥ before the
assignment, we have val4(C) =⊥, val9(C) =⊥ and val1(C) =⊥ just before the
assignment that precedes C being enqueued. The analysis for the case where
C = (x5, x6, 5, 8, 7, 10) is analogous.

672 D. Dachman-Soled et al.

Lemma 34. Consider a good execution of H2. Just before the execution of
line 27 during the simulator’s execution, if adapting was safe for every chain
dequeued from Q1,Q5,Q6,Q10, Q∗

all or Qmid so far, then it holds that:

i. if x9 ∈ G9, x10 ∈ G10, x1 ∈ G1 such that R.ChkBwd(x10, x9 ⊕
G10(x10), x1) = true, then (x9, x10, 9) ∈ CompChains.

ii. if x1 ∈ G1, x2 ∈ G2, x10 ∈ G10 such that R.ChkFwd(x2⊕G1(x1), x1, x10) =
true, then (x1, x2, 1) ∈ CompChains.

iii. if x5 ∈ G5, x6 ∈ G6, then (x5, x6, 5) ∈ CompChains.

Proof. We start by proving (i). For a triple (x9, x10, x1), we say that “condi-
tion holds” if (x9, x10, x1) is such that x9 ∈ G9, x10 ∈ G10, x1 ∈ G1 and
R.ChkBwd(x10, x9 ⊕ G10(x10), x1) = true. Also, we refer to the partial chain
(x9, x10, 9) as the partial chain associated with the triple (x9, x10, x1). So, our
aim is to prove that for every triple (x9, x10, x1) such that condition holds, the
associated partial chain (x9, x10, 9) ∈ CompChains. Assume that the lemma has
held right before (and hence immediately after) line 27 of the simulator’s exe-
cution while answering the distinguisher’s (t − 1)th query to F(·, ·). Let the
distinguisher ask its tth query F(k, x). The aim is to prove that at line 27 of the
simulator’s execution while answering the distinguisher’s tth query to F(·, ·), if
a triple T ∗ = (x9, x10, x1) is such that condition holds, then the partial chain
C∗ = (x9, x10, 9) associated with the triple is such that C∗ ∈ CompChains. Note
that the distinguisher could have made queries to P/P−1 between the (t − 1)th

and tth queries to F(·, ·); but if those queries resulted in condition being true,
then BadP occurred.

Suppose that there exists a triple T ∗ such that condition holds at line 27
of the simulator’s execution while answering the distinguisher’s tth query. If
condition held at the end of simulator’s execution while answering the previous
distinguisher query, then by assumption that the lemma has held so far, the
partial chain C∗ associated with the triple T ∗ is such that C∗ ∈ CompChains.
If condition held at the end of the simulator’s execution of the current query
t (and not at the end of the previous query), we differentiate cases where the
associated partial chain C∗ was enqueued for completion during the simulator’s
execution while answering the tth query and when it’s not.

Consider the case where a chain equivalent to C∗ was enqueued in Qall

during the simulator’s execution while answering the distinguisher’s cur-
rent query. If C∗ = (x9, x10, 9) was enqueued during the tth query, then
(x9, x10, 9) ∈ CompChains by construction of the simulator. Note also that chains
in SimPChains are not enqueued for completion by the simulator. By defini-
tion of the set SimPChains, these chains are such that they are equivalent to a
chain of the form (x5, x6, 5) that has been enqueued for completion. Since BadP
does not occur and ForceVal does not overwrite, the equivalence holds when
(x5, x6, 5) ∈ CompChains and hence, by Lemma 26, such a chain in SimPChains
is placed in CompChains as well. By the same argument, if a chain equivalent to
C∗ has been enqueued for completion, then too C∗ ∈ CompChains by the end
of the simulator’s execution of the current query. So, if a chain equivalent to

10-Round Feistel is Indifferentiable from an Ideal Cipher 673

C∗ was enqueued for completion or was in SimPChains during the simulator’s
execution while answering the current query t, then C∗ ∈ CompChains.

Consider the case where no chain equivalent to C∗ was enqueued in Qall

and C∗ /∈ SimPChains during the simulator’s execution while answering the
distinguisher’s current query. We differentiate between the cases where (1) C =
next(C∗) �=⊥, next(C) �=⊥ when Qenq.Empty() = true in line 6 of the simulator’s
execution when answering the distinguisher’s tth query and (2) when it’s not.

Consider the case when C = next(C∗) �=⊥ and next(C) �=⊥ at the time the
simulator stops enqueueing chains in Qall i.e. when Qenq.Empty() = true in
line 6 of the simulator’s execution when answering the distinguisher’s tth query.
This implies that x10 ∈ G10 and (↑, x10, x11) ∈ P where x11 := x9⊕G10(x10) and
hence, C = (x10, x11, 10) is table-defined at the time the simulator stops enqueue-
ing chains in Qall. Since the triple T ∗ is such that the associated partial chain
C∗ = (x9, x10, 9) was not enqueued for completion and not in SimPChains, we
have that either (a) x9 /∈ G9∪At

9 or (b) x1 /∈ G1∪At
1 when Qenq.Empty() = true

in line 6. For the condition to be true, we need x1 ∈ G1 and x9 ∈ G9 and hence,
we have that condition does not hold for the triple T ∗ when Qenq.Empty() = true
in line 6. Consider the case where x1 /∈ G1 ∪ At

1. For x1 ∈ G1 to be true by the
end of the simulator’s execution while answering the distinguisher’s tth query,
it must be the case that val1(D) = val1(C) = x1 at some point for a chain
D that has been enqueued in Qall or Qmid. Before analyzing the case that
val1(D) = val1(C) = x1 occurs, we make the following observations. Firstly,
C and D are not equivalent as C ≡ C∗ and no chain equivalent to C∗ (including
itself) has been enqueued. Secondly, for all chains D that have been enqueued in
Qall, val1(D) �= x1 when enqueued since x1 /∈ G1 ∪At

1. Now, if val1(D) �= x1 and
val1(D) �=⊥, it cannot be that val1(D) = x1 at a later point since ForceVal
does not overwrite and BadP does not occur. Hence, if val1(D) = x1 at a later
point, then val1(D) =⊥ when enqueued. Similarly, for all chains D that have
been enqueued in Qmid val1(D) =⊥ just before the assignment that precedes the
enqueueing of D by Lemma 33. Since BadlyHit+ and BadlyHitFV do not occur,
val1(D) =⊥ at the time D is enqueued. Now, if val1(D) = val1(C) = x1, then
this is during the completion of some chain E during the simulator’s execu-
tion while answering the distinguisher’s tth query. Consider the last assignment
before val1(D) = val1(C) = x1 was true. This cannot be a uniform assignment
to Gi(xi) since then BadlyCollide+ occurred. This cannot be due to a uniform
assignment to P since then BadP or BadlyCollideP occurred. This cannot be a
ForceVal assignment since that would contradict Lemmas 30, 31 or 32. The
analysis for the case where x9 /∈ G9 ∪ At

9 when the simulator stops enqueueing
chains in Qall is analogous. So, if C was table-defined when the simulator stops
enqueueing chains in Qall, then condition does not hold for the triple T ∗ at the
end of the simulator’s execution of the current query.

Consider the case when either next(C∗) =⊥ or C = next(C∗) �=⊥ and
next(C) =⊥ at the time the simulator stops enqueueing chains in Qall i.e. when
Qenq.Empty() = true in line 6 of the simulator’s execution when answering
the distinguisher’s tth query. Now if the triple T ∗ = (x9, x10, x1) is such that

674 D. Dachman-Soled et al.

condition holds by the end of the simulator’s execution of the current query,
then it must be the case that next(C∗) �=⊥ and next(next(C∗)) �=⊥ by the
end of the simulator’s execution. In particular, it means that the partial chain
next(C∗) = C = (x10, x11, 10) where x11 := x9 ⊕ G10(x10) is table-defined (with
val1(C) = x1) by the end of the simulator’s execution. Note that at the moment
that C becomes table-defined either x1 /∈ G1 or x9 /∈ G9 as otherwise either
BadP or BadlyHit+ occurred. Furthermore, immediately before the assignment
that causes C to be table-defined we have either val1(C) =⊥ or val9(C) =⊥
and immediately after the assignment, we have val9(C) �=⊥ and val1(C) �=⊥ by
definition. Say val1(C) =⊥ immediately before the assignment that caused C to
be table-defined and val1(C)(= x1) �=⊥ immediately after. For x1 ∈ G1 to be
true by the end of the simulator’s execution while answering the distinguisher’s
tth query, it must be the case that val1(D) = val1(C) = x1 at some point for a
chain D that has been enqueued in Qall or Qmid. Consider the last assignment
before val1(D) = val1(C) = x1 was true. The rest of the analysis proceeds simi-
larly to the analysis above. The case when val9(C) =⊥ immediately before the
assignment that caused C to be table-defined and val9(C)(= x9) �=⊥ immedi-
ately after follows in a similar fashion. So, if next(C∗) =⊥ or if next(C∗) �=⊥
and next(next(C∗)) =⊥ when the simulator stops enqueueing chains in Qall, then
too the condition does not hold for the triple T ∗ at the end of the simulator’s
execution of the current query. Summarizing, if a chain equivalent to C∗ was not
enqueued in Qall and C∗ /∈ SimPChains during the simulator’s execution while
answering the distinguisher’s current query, then condition does not hold for the
triple T ∗ at the end of the simulator’s execution of the current query.

The proof of (ii) follows exactly along the lines of the proof of (i) given above.
The proof of (iii) is as follows. Let D ask its tth query F(k, x). Just before

the simulator returns Gk(x) in line 27, let the lemma be false and let this be
the first time that the lemma does not hold implying that there exists x5 ∈ G5,
x6 ∈ G6 such that (x5, x6, 5) /∈ CompChains.

If the lemma has held so far, in particular it has held right before (and
immediately after) line 27 of the simulator’s execution while answering D’s
(t− 1)th query to F(·, ·). Note that the distinguisher could have made queries to
P/P−1 between the (t − 1)th and tth queries to F(·, ·); but those queries cannot
result in x5 ∈ G5 or x6 ∈ G6.

So, x5 ∈ G5, x6 ∈ G6 such that (x5, x6, 5) /∈ CompChains happened during
the simulator’s execution while answering D’s tth query. Now, if (x5, x6, 5) were
enqueued for completion during the tth query then (x5, x6, 5) ∈ CompChains. If a
chain equivalent to (x5, x6, 5) were enqueued for completion during the tth query,
then (x5, x6, 5) ∈ CompChains. This is because equivalent chains are placed in
CompChains simultaneously since BadP does not occur and ForceVal does not
overwrite. So, for x5 ∈ G5, x6 ∈ G6 such that (x5, x6, 5) /∈ CompChains to be
true, the simulator did not enqueue this partial chain. (Note that chains of the
type (x5, x6, 5) are not added to SimPChains).

Let x6 ∈ G6, and say an assignment occurs such that before the assignment
x5 /∈ G5, but after the assignment x5 ∈ G5 leading to the creation of a partial

10-Round Feistel is Indifferentiable from an Ideal Cipher 675

chain of the form (x5, x6, 5) with x5 ∈ G5, x6 ∈ G6. (The analysis for the other
case is analogous.) Such an assignment can happen only by completion of a chain
in Q1, Q5, Q6, Q10 or completion of a chain in Q∗

all. We analyze these next.

Case 1: An assignment happens to G5(x5) during the completion of a chain C
enqueued in Qb where b ∈ {1, 5, 6, 10} and x6 ∈ G6 before this assignment. Now,
if x6 ∈ G6 before assignment causing x5 ∈ G5, then either x6 ∈ G6 before D’s t-
th query or x6 ∈ G6 due to the completion of a chain D enqueued in Q1, Q5, Q6,
Q10 and dequeued before C. Again, by construction of the simulator, chains C
that are enqueued in Qb are such that either val5(C) ∈ At

5 or val5(C) ∈ G5 at the
time C was enqueued and similarly, chains D that are enqueued in Qb are such
that either val6(D) ∈ At

6 or val6(D) ∈ G6 at the time D was enqueued. Since
BadP does not occur and ForceVal does not overwrite, val5(C) = x5 ∈ At

5

(since x5 /∈ G5 before this assignment) and val6(D) = x6 ∈ G6 ∪ At
6. And so,

(x5, x6, 5) is enqueued for completion by construction of simulator.

Case 2: An assignment happens to G5(x5) during the completion of a chain C in
Q∗

all and x6 ∈ G6 before this assignment. If x6 ∈ G6 ∪ At
6 and x5 ∈ At

5 when the
simulator enqueues chains in Qall, then (x5, x6, 5) is enqueued for completion in
Qall. Else, (x5, x6, 5) is enqueued for completion in Qmid.

This completes the proof.

Lemma 35. Consider a good execution of H2. If a chain C = (xk, xk+1,
k, �, g, b) belongs to Q∗

all such that at the time C is enqueued, adapting was
safe for every chain dequeued from Q1,Q5,Q6,Q10, Q∗

all or Qmid so far, then
valb(C) =⊥ and valg(C) =⊥ at the time C is enqueued.

Proof. Say C = (x9, x10, 9, 3, 2, 5) is enqueued where the query preceding the
chain’s enqueueing is G1(x1) where val1(C) = x1. Then, by definition of simula-
tor, x1 /∈ G1 as otherwise, EnqNewChains(1, x1) is not called. So, val+2 (C) =⊥.
Now, we claim that val−5 (C) /∈ G5. This is because if val−5 (C) ∈ G5, then
val−6 (C) ∈ G6 since otherwise, val−5 (C) =⊥. This implies that the partial chain
(x5, x6, 5) where x5 = val−5 (C) and x6 = val−6 (C) is such that x5 ∈ G5 and
x6 ∈ G6. Hence, by Lemma 34, we have that (x5, x6, 5) ∈ CompChains since
no new Gi assignments have been issued between the moment the simulator
returned the answer (line 27 of its execution) and the moment when a chain
C is enqueued in Qall. However, since BadP does not occur, this means that
x1 ∈ G1 contradicting the first statement. Thus, we have that val−5 (C) /∈ G5.
Now, val+5 (C) =⊥ since val+2 (C) =⊥. So, val5(C) /∈ G5.

Since C is not enqueued in Q1,Q5,Q6,Q10, we have val5(C) =⊥ when C is
enqueued. So val2(C) =⊥ and val5(C) =⊥, where g = 2 and b = 5. The other
cases are analogous.

ForceVal(x, ·, j) does not Overwrite Gj(x)

Lemma 36. Let C = (xk, xk+1, k, �, g, b) be a partial chain enqueued in Q1,Q5,
Q6 or Q10 during a good execution of H2. At the moment C = (xk, xk+1, k, �, g, b)
is dequeued, assume that adapting was safe for every chain C ′ in Q∗

all or Qmid

dequeued so far. Then,

676 D. Dachman-Soled et al.

– At the moment C = (xk, xk+1, k, �, g, b) is dequeued, C ∈ CompChains, or
– Just before the call to Adapt for C, valg(C) /∈ Gg and vala(C) /∈ Ga (where

a is the adapt position adjacent to the “bad” set uniform position b).

Proof. Assume that the lemma has held until the moment that a chain C =
(xk, xk+1, k, �, g, b) is dequeued. Note that if the lemma has held until now we
have that for every call to ForceVal(x, ·, j) so far, x /∈ Gj by Corollary 29.

Consider the case that at the moment C was dequeued there is a chain D
equivalent to C that was dequeued before C. Now, if D was dequeued before C,
then D ∈ CompChains by construction of the simulator. If C and D are equivalent
chains such that D ∈ CompChains, then C ∈ CompChains by Lemma 26.

Let us consider the case where no chain equivalent to C was dequeued before
C was dequeued. Say C /∈ CompChains when dequeued. Note that if we prove
valg(C) /∈ Gg and vala(C) /∈ Ga at the time C was dequeued, we have that
valg(C) /∈ Gg and vala(C) /∈ Ga just before the call to Adapt for C since
otherwise BadP or BadlyHit+ occurred.

By Lemma 27, we have that valg(C) =⊥ at the time C was enqueued. If
valg(C) ∈ Gg at the time C was dequeued, then this was due to the completion
of a chain D which was enqueued in Qb′ where b′ ∈ {1, 5, 6, 10} due to the
same distinguisher query as C and dequeued(and completed) before C such that
valg(C) = valg(D) �=⊥.

Consider the last assignment that was made before valg(C) = valg(D) �=⊥
was true. This cannot have been a uniform assignment to Gi(xi) since that
implies that BadlyCollide+ occurred. This is because C and D are not equiva-
lent(by assumption) and C and D are both enqueued for completion in Qall and
either valg(C) =⊥ or valg(D) =⊥ before the assignment(otherwise this is not
the last assignment before valg(C) = valg(D) �=⊥) and valg(C) = valg(D) �=⊥
after the assignment.

The assignment cannot have been of the form P (↓, x0, x1) = (x10, x11) or
P (↑, x10, x11) = (x0, x1) since then BadP occurred. The assignment cannot
have been a ForceVal query. This is because from Lemmas 32 and 31 we
have that ForceVal does not change vali(C) for a chain C enqueued in Qall

(including those enqueued in Q1, Q5, Q6, Q10) during completion of chains in
Q1, Q5, Q6, Q10.

Now, consider the argument for vala(C) /∈ Ga when C is dequeued. By
Lemma 27, we have that valb(C) /∈ Gb and valg(C) =⊥ at the time C was
enqueued, implying that vala(C) =⊥ when C was enqueued (where a is the
adapt position adjacent to “bad” set uniform position). The argument for this
case follows similar to the one above for valg(C).

Lemma 37. Consider a good execution of H2. Let C = (xk, xk+1, k, �, g, b) be a
partial chain in Q∗

all. At the moment C = (xk, xk+1, k, �, g, b) is dequeued, assume
that adapting was safe for every chain C ′ in Qmid dequeued so far. Then,

– At the moment C is dequeued, C ∈ CompChains or,
– Just before the call to Adapt for C, val�−1(C) /∈ G�−1 and val�+2(C) /∈ G�+2.

10-Round Feistel is Indifferentiable from an Ideal Cipher 677

Lemma 38. Consider a good execution of H2. Let C = (xk, xk+1, k, �, g, b) be a
partial chain enqueued in Qmid. Then,

– At the moment C is dequeued, C ∈ CompChains, or
– Just before the call to Adapt for C, val�−1(C) /∈ G�−1 and val�+2(C) /∈ G�+2.

Theorem 39 (No Overwrites). In a good execution of H2, for any call to
ForceVal(x, ·, j) we have x /∈ Gj before the call.

Proof. Combining the result of Lemmas 36, 37 and 38 with Corollary 29, we
have that for every call to ForceVal(x, ·, j), x /∈ Gj before the call.

5.4 Indistinguishability of H2 and H4

Relying on the properties of good executions of H2 from the previous section,
we prove that H2 and H4 are indistinguishable.

Lemma 40. The probability that a distinguisher D outputs 1 in H2 differs at
most by O(q10)/2n from the probability that it outputs 1 in H3.

Lemma 41. The probability that a distinguisher outputs 1 in H3 differs by at
most by O(q10)/2n from the probability that it outputs 1 in H4.

This concludes the proof.

Acknowledgments. We thank Vanishree Rao for collaboration during the early
stages of this work.

References

1. Coron, J.S., Holenstein, T., Künzler, R., Patarin, J., Seurin, Y., Tessaro, S.: How to
build an ideal cipher: the indifferentiability of the feistel construction. J. Cryptology
29(1), 61–114 (2014)

2. Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
1–20. Springer, Heidelberg (2008)

3. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round Feistel is indifferen-
tiable from an ideal cipher (2015). http://eprint.iacr.org/2015/876

4. Dai, Y., Steinberger, J.P.: Indifferentiability of 10-round Feistel networks (2015).
http://eprint.iacr.org/2015/874

5. Dai, Y., Steinberger, J.P.: Indifferentiability of 8-round Feistel networks (2015).
http://eprint.iacr.org/2015/1069

6. Dodis, Y., Puniya, P.: On the relation between the ideal cipher and the random
oracle models. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
184–206. Springer, Heidelberg (2006)

7. Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534–554. Springer, Heidelberg
(2007)

http://eprint.iacr.org/2015/876
http://eprint.iacr.org/2015/874
http://eprint.iacr.org/2015/1069

678 D. Dachman-Soled et al.

8. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991.
LNCS, pp. 210–224. Springer, Heidelberg (1993)

9. Feistel, H.: Cryptography and computer privacy. Sci. Am. 228(5), 15–23 (1973)
10. Gentry, C., Ramzan, Z.: Eliminating random permutation oracles in the even-

mansour cipher. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 32–47.
Springer, Heidelberg (2004)

11. Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle
model and the ideal cipher model, revisited. In: Fortnow, L., Vadhan, S.P. (eds.)
43rd ACM STOC. pp. 89–98. ACM Press, June 2011

12. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)

13. Mandal, A., Patarin, J., Seurin, Y.: On the public indifferentiability and correlation
intractability of the 6-round feistel construction. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 285–302. Springer, Heidelberg (2012)

14. Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

15. Ramzan, Z., Reyzin, L.: On the round security of symmetric-key cryptographic
primitives. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 376–393.
Springer, Heidelberg (2000)

16. Seurin, Y.: Primitives et Protocoles Cryptographiques à Sécurité Prouvée. PH.D.
thesis, Versailles University (2009)

17. Seurin, Y.: A note on the indifferentiability of the 10-round Feistel construction
(2011). http://eprint.iacr.org/2015/903

18. Yoneyama, K., Miyagawa, S., Ohta, K.: Leaky random oracle (extended abstract).
In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp.
226–240. Springer, Heidelberg (2008)

http://eprint.iacr.org/2015/903

Indifferentiability of Confusion-Diffusion
Networks

Yevgeniy Dodis1(B), Martijn Stam2, John Steinberger3, and Tianren Liu4

1 Courant Institute, New York University, New York, USA
dodis@cs.nyu.edu

2 Department of Computer Science, University of Bristol, Bristol, UK
csxms@bristol.ac.uk

3 Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, China

jpsteinb@gmail.com
4 MIT, Cambridge, USA
liutianren@gmail.com

Abstract. We show the first positive results for the indifferentiability
security of the confusion-diffusion networks (which are extensively used
in the design of block ciphers and hash functions). In particular, our
result shows that a constant number of confusion-diffusion rounds is
sufficient to extend the domain of a public random permutation.

1 Introduction

In this work we simultaneously address the following two questions:

– Question 1: secure domain extension of a public random permutation.
– Question 2: theoretical soundness of Shannon’s (or Feistel’s) confusion-

diffusion paradigm.

Domain Extension of RPs. The question of domain extension of various
cryptographic primitives, such as encryption, signatures, message authentication
codes, pseudorandom functions (PRFs), pseudorandom permutations (PRPs),
etc., is one of the fundamental questions in cryptography.

In this paper we address a similar question for a public random permuta-
tion. Namely, given one (or a constant number of) n-bit random permutation(s)
P : {0, 1}n → {0, 1}n, and a number w ≥ 2, build a wn-bit random permutation
Z : {0, 1}wn → {0, 1}wn. This question is clearly natural and interesting it is
own right, but also seems extremely relevant in practice. Indeed, the random

Y. Dodis—Partially supported by gifts from VMware Labs and Google, and NSF
grants 1319051, 1314568, 1065288, 1017471.
J. Steinberger—Supported by National Basic Research Program of China Grant
2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China
Grant 61033001, 61361136003, and by the China Ministry of Education grant number
20121088050.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 679–704, 2016.
DOI: 10.1007/978-3-662-49896-5 24

680 Y. Dodis et al.

permutation model (RPM) has recently received a lot of attention [2,13,26,29],
starting to “compete with” and perhaps even “overtake” the more well known
random oracle model (ROM) and the ideal cipher model (ICM). Aside from ele-
gance, one of the reasons for this renewed attention comes from the fact that
one can abstract the design of both the block-cipher standard AES and the
new SHA-3 standard Keccak as being in the RPM. Namely, AES can be viewed
as a 10-round key-alternating cipher applied to a concrete (“random-looking”)
permutation, while SHA-3 can be viewed as applying a “sponge” mode of opera-
tion [2] to a similarly “random-looking” permutation. In fact, in his invited talk
at Eurocrypt’13, the designer of both AES and SHA-3 Joan Daemen claimed
that the RPM is much closer to the existing practice of designing hash functions
and block ciphers than either the ROM or ICM, challenging the cryptographic
community to switch to the RPM.

Of course, one must now build those “random looking permutations” Z on
relatively large domains (perhaps from 128 bits, like AES-128, to 1600 bits,
like Keccak, or even longer). In practice, we have two well-known methods for
accomplishing such a goal. The first method is based on applying several rounds
of the Feistel network to some (not necessarily invertible) round functions. In
our (public) setting, this method was theoretically analyzed only recently by
Holenstein et al. [18] (building on an earlier work of [11]), who showed that a
14-round Feistel network is indeed sufficient for building a random permutation
(RP), provided the round functions are modeled as (easily made) independent
random oracles (ROs). Although very important in theory (i.e., showing the
equivalence between ROM and RPM), this method does not seem to be used
in practice, as it appears almost as hard,—if not harder,—to design “random-
looking” non-invertible round functions on large domains as it is to design the
desired random-looking permutation Z.

Confusion-Diffusion Paradigm. Instead, practitioners use the second
method,—the confusion-diffusion (CD) paradigm,1—which directly connects our
motivating Questions 1 and 2. The idea of CD goes back to the seminal paper
of Feistel [15] and even2 back to Shannon [28]. Abstractly, one splits the input
x to Z into several shorter blocks x1 . . . xw, and then alternates the following
two steps for several rounds: (a) Confusion, which consists of applying some

1 This is closely related to the substitution-permutation network (SPN) paradigm.
Historically, though, the term SPN usually refers to the design of block ciphers as
opposed to a single permutation, where one also XORs some key material in between
successive CD rounds. To avoid confusion, we will stick with the term CD and not
use the term SPN.

2 Shannon [28] introduces “confusion” and “diffusion” into the cryptographic lexicon
while Feistel [15] articulates the modern notion of a confusion-diffusion network,
crediting Shannon with inspiration. There are some notable gaps between Shannon
and the modern viewpoint. In particular Shannon does not seem to view confusion as
a local operation, nor does he advocate repeatedly alternating steps of “confusion”
and “diffusion”. Instead, Shannon seems to view confusion and diffusion as globally
desirable attributes of a cryptographic mixing operation.

Indifferentiability of Confusion-Diffusion Networks 681

fixed short permutations P1 . . . Pw (called S-boxes) to x1, . . . xw; and (b) Diffu-
sion, which consists of applying some “mixing” non-cryptographic permutation
π(y1 . . . yw) (typically, carefully chosen linear function, sometimes also called
D-box) to the results y1 . . . yw of step (a).

Despite its extensive use in practice, the CD paradigm received extremely
little attention from the theoretical cryptographic community.3 A notable excep-
tion is a beautiful work of Miles and Viola [23], who only looked at the secret-key
setting—where the permutations P1, . . . , Pw are secret— and also primarily con-
sidered the “weaker-than-indistinguishability” properties which can be proven
about CD (and, more generally, SPN networks). In contrast, we are interested
in the public setting, where the permutations Pi are modeled as RPs, and seek
to examine the indifferentiability properties [9,21] of the CD paradigm. This
leads us to the following more precise reformulation of our motivating Questions
1 and 2:

– Main Question: Analyze indifferentiability of the confusion-diffusion par-
adigm as a way to extend the domain of a (constant number of) random
permutation(s). More precisely, for how many rounds r, and under what con-
ditions on the D-boxes π1 . . . πr, is the r-round CD paradigm indifferentiable
from an nw-bit random permutation Z?

Before presenting our results, we make a few remarks. First, we will model the
“small permutations” Pi as both random and independent. The independence
assumption is crucially used in our current proofs, but does not appear necessary.
Unfortunately, the proofs we have are already extremely involved, so we feel this
initial simplification is justified. We notice similar abstractions are made by most
other papers in the area (including the seminal Luby-Rackoff paper [20] and the
indifferentiability results of [11,18]), though one hopes it might be lifted in future
work.

As for modeling Pi as random, it seems inherent if we want to build a random
permutation Z; e.g., we cannot build it from “nothing” (as this implies P �= NP
and more), and it seems unlikely that any weaker assumption on the Pi will
work. However, it does come with an important caveat: the best security bound
ε we can naturally get with this approach will certainly be ε � 2−n, where n is
the domain of the S-boxes Pi. In practice, however, the S-boxes use a very small
value of n (e.g., n = 8 for the AES), partly so that S-boxes can be easily and effi-
ciently implemented as lookup tables. With such a small value of n, however, our
bounds appear “practically meaningless”, irrespective of the number of queries
q made by the attacker. This means that none of our results would be directly
applicable to any of the “practical” permutations Z used in the existing hash
functions and block ciphers. Still, we believe establishing “structural soundness”
of the CD paradigm is an important conceptual contribution—and an overdue
sanity check—even with this serious (and inherent) limitation.

3 Of course, there is a lot of cryptanalytic work in the area whose survey is beyond
the scope of this work.

682 Y. Dodis et al.

1.1 Overview of Our Results

We give a sequence of results establishing the soundness of the CD paradigm as
a method for domain-extension of random permutations. Our indifferentiability
results include CD networks of 5, 6, 7, 9, 10 and 11 rounds. These networks
achieve different security levels, different query complexities, and place different
combinatorial requirements on the D-boxes as well, even within the same net-
work. Figure 1 summarizes the main bounds achieved for each network length,
up to lower-order (e.g., logarithmic) factors, and subject to various caveats to
be shortly explained.

rounds (flags) D-boxes ε (w = 2) qS (w = 2) ε (w > 2) qS (w > 2)

5 (000) arbitrary q4/2n q4 q2w/2n qw
2

6 (100) arbitrary q2/2n q2 q2/2n qw

7 (110) arbitrary q2/2n q q2/2n q

5 (000) GF(2n)-linear q4/2n q4 1 −
6 (100) GF(2n)-linear [q10/3/2n] [q10/3] 1 −
7 (110) GF(2n)-linear [q5/2n] [q25/9] 1 −
9 (001) GF(2n)-linear q4/2n q4 q2w/2n qw

2

10 (101) GF(2n)-linear [q10/3/2n] [q10/3] [q4/2n] [q2w−1/2]

11 (111) GF(2n)-linear [q5/2n] [q25/9] [q6/2n] [q4]

Fig. 1. Summary of security ε and simulator query complexity qS (as functions of block
length n, width w, and the number of distinguisher queries q) across our six main
simulators with arbitrary or GF(2n)-linear permutations. Entries in square brackets
are not known, with the value inside the brackets being conjectured based on current
best-known bounds. Constants and logarithmic factors are elided for simplicity. The
meaning of the bit sequence next to each round number is explained in Sect. 5.

To read Fig. 1, recall that n is the block length of the S-boxes and that w is
the width of the network. Moreover, q is the number of distinguisher queries, ε
is the simulator’s security (i.e., the indistinguishability of the real and simulated
worlds), and lastly qS is the simulator’s query complexity (see Sect. 2 for defini-
tions). The meaning of the 3-bit sequence next to each round number in the left
column will be explained in Sect. 5.

The first three rows of Fig. 1 present our best bounds (i.e., assuming a
“smart” choice of the D-boxes) when the D-boxes are not restricted to be
GF(2n)-linear. One can observe that in this part of the table the bounds for
w = 2 are simply obtained by plugging in w = 2 to the general bounds. The
best simulator here, at 7 rounds, achieves “birthday” security of q2/2n and an
essentially optimal query complexity of q.

Indifferentiability of Confusion-Diffusion Networks 683

Concerning the first three rows of Fig. 1 there is only one caveat: for some
networks (specifically those of 6 and 7 rounds, and for both w = 2 and w >
2) the bounds presume that certain D-boxes have low “conductance”—a new
critical property that we introduce and elaborate on below. Such permutations
are known to exist on probabilistic grounds, but so far we do not know any
explicit constructions, and building explicit permutations with low conductance
is indeed one of the more interesting open problems raised by our work.

The last six rows of Fig. 1 concern the case when all D-boxes in the network
are required to be GF(2n)-linear, which is a case of interest because it aligns with
most practical constructions. In this case, the simulators at width w > 2 and at
5, 6 and 7 rounds are not secure at all: ε = 1. In this regime, indeed, our simulator
places certain combinatorial requirements on some of the D-boxes that are not
satisfied by any GF(2n)-linear permutation. Fortunately, these requirements can
be relaxed by using four more (i.e., 9, 10 or 11) rounds, so that GF(2n)-linear
D-boxes become possible again for those round numbers at w > 2.

Unfortunately, except for the bounds at 5 rounds for w = 2 and the (rather
poor) bounds at 9 rounds for w > 2, remaining bounds in the GF(2n)-linear
section of the table are speculative, this being again related to “conductance”—
specifically, the issue is that the lowest possible conductance of a GF(2n)-linear
permutations is not currently known. We show some nontrivial lower bounds on
the conductance of generic GF(2n)-linear permutations in the full version [8], but
we have no similar nontrivial upper bounds! The conjectured bounds contained
in Fig. 1 are obtained by using our lower bounds as a guess for the actual lowest
possible conductance, and by rounding up some inconvenient exponents.4 The
“true” values in the lower part of the table may well turn out to be lower
than our conjectured values (if non-generic GF(2n)-linear permutations with
low conductance turn out to exist) or higher (if even better lower bounds on the
conductance of all GF(2n)-linear permutations are proved).

Still in the same part of the table, one can also note that going from 6 to 7
rounds or from 10 to 11 rounds entails a decrease in security. In our simulator,
indeed, the actual purpose of adding the extra round (from 6 to 7 or from 10 to
11) is to improve the query complexity!

Combinatorial Properties of D-boxes. We note that our general theorem
statement (found in Sect. 4) makes no distinction between linear and nonlinear
cases; it simply expresses the security, query complexity and runtime of the
simulator as a function of various combinatorial metrics (such as conductance
mentioned above) of the diffusion permutations that are present in the network.
Different metrics matter for different D-boxes, depending on their position in the
networks, leading to a subtle (but also modular and fine-grained) result. In our
opinion, the identification of precise (and distinct!) combinatorial requirements
for each D-box of the network is one of the interesting contributions of this work,

4 If trivial upper bounds on conductance are applied instead, the rows for the 6- and
7-round networks with w = 2 in the second part of the table become the same as the
row for the 5-round network in that half, while the rows for the 10- and 11-round
networks become the same as the row for the 9-round network.

684 Y. Dodis et al.

as it potentially allows future constructions to optimize the design of D-boxes
layer by layer, with respect to the specific metrics targeted by each layer.

Moreover, some of our metrics entirely disappear when more rounds are
added (specifically, by going from 5, 6, 7 rounds to 9, 10, 11 rounds respectively),
leading to a relaxation of the conditions on the D-boxes at a larger number of
rounds. For example, as already mentioned, security cannot be achieved at 5, 6
or 7 rounds with w > 2 and with GF(2n)-linear D-boxes, but can (uncondition-
ally) be achieved by adding 4 more rounds to each of these networks, because
a certain metric that no GF(2n)-linear permutation satisfies at w > 2 is no
longer needed after the addition of the extra four rounds. In fact, although our
table for general D-boxes (first 3 rows) in Fig. 1 does not include networks of
9, 10 and 11 rounds (since these networks would have the same security and
simulator efficiency as the included networks for 5, 6 and 7 rounds, respectively)
such networks are nonetheless considered by our main result, and might indeed
be interesting from the point of view of increased efficiency. Namely, the weak-
ened requirements on the D-boxes could potentially make these networks more
cheap/fast/space efficient than their shorter, more combinatorially demanding
counterparts! (Further such options, at even more rounds than considered by
our main result, are explored in the paper’s full version [8]).

In all we identify four combinatorial metrics on D-boxes that are useful for
our purposes, these being (and for lack of better terminology) “entry-wise ran-
domized preimage resistance” (RPR), “entry-wise randomized collision resis-
tance” (RCR), “conductance” and its cousin “all-but-one conductance”. The
full definitions for these metrics can be found in Sect. 4. The first two metrics—
RPR and RCR—are relatively unsurprising for our type of proof. (Briefly, they
concern experiments in which all but one of the w input wires are fixed, and
the final D-box input wire is drawn at random; the probability of a certain
event occuring on the output wires should be low). Moreover, there is not much
“mystery” in RPR and RCR, since it happens that one can construct explicit
permutations that achieve essentially optimal bounds for these metrics.5

Indeed, we consider conductance to be a more novel and interesting met-
ric. (All-but-one conductance is, conceptually at least, very closely related to
conductance). We expand on this key metric now.

Conductance. Briefly, conductance is a function of the number of queries q;
the conductance of a permutation π : {0, 1}wn → {0, 1}wn at q queries is the
maximum over all possible pairs of cartesian products (U1×· · ·×Uw, V1×· · ·×Vw),
where Ui, Vi ⊆ {0, 1}n and |Ui| = |Vi| = q for each 1 ≤ i ≤ w, of the numbers of
pairs (x,y) ∈ {0, 1}wn × {0, 1}wn such that

π(x) = y and (x,y) ∈ (U1 × · · · × Uw, V1 × · · · × Vw)

5 On the other hand, an interesting research direction might be to find explicit con-
structions of RPR and RCR permutations that achieve higher speeds than our own
näıve constructions!.

Indifferentiability of Confusion-Diffusion Networks 685

In other words, one can choose q different values on each input and on each out-
put wire, and one counts the number of intput-output pairs (x,y) that “entirely
fit” inside the induced cartesian products.

Now if one imagines the D-box π to be sandwiched between two rounds of S-
boxes—as it will be in the network—the relevance of conductance to our setting
can easily be guessed: Ui corresponds to the set of values that are queried outputs
of the i-th S-box in the round before π, Vi corresponds to the set of values that
are queried inputs of the i-th S-box in the round after π, and the conductance
is an upper bound on the number of “all consistent input-output pairs that can
be assembled” from these S-box queries under π’s mapping. Intuitively, if the
number of such pairs is low, the job of the indifferentiability simulator is easier,
as it has to worry about fewer “consistent chains” that the distinguisher is trying
to assemble.

It is easy to see from the definition that conductance for any permutation
π : {0, 1}wn → {0, 1}wn lies between q and qw. In [8] we show that a random
permutation has conductance close to wqn ≈ q and that the conductance of a
generic GF(2n)-linear permutation is at least q2−1/(2w−1), which is always super-
linear in q. An already-mentioned corollary is that, and at least with respect
to our current simulator, having linear D-boxes seems to cause strictly worse
security than what is achievable by arbitrary (albeit currently non-constructive!)
D-boxes. Since it may well turn out that low conductance is instantiable by D-
boxes that are no slower than the current GF(2n)-linear D-boxes, our work
raises, among others, the question of whether GF(2n)-linearity is really the right
choice for D-boxes in the CD paradigm.

Summary. Overall, we show the first positive results for the indifferentiability
security of the confusion-diffusion paradigm which is extensively used in the
design of block ciphers and hash functions. Our result shows that a constant
number of confusion-diffusion rounds is sufficient to extend the domain of a
public random permutation. In the process, we reduced the indifferentiability
properties of the CD network (for a variety of rounds between 5 and 11) to
natural and novel combinatorial properties of the D-boxes (such as conductance),
which we hope will lead to a better understanding of the confusion-diffusion
networks, and will be useful and the future design and analysis of block ciphers
and hash functions.

1.2 Other Related Work

The question of domain extension ideal primitives was considered by [9,22] for
the setting of public random functions (ROM), and by [10] for the setting of
block ciphers (ICM). While none if these domain extensions directly apply to
the RPM (e.g., the result of [10] crucially relies of the existence of a key for the
“small ideal cipher”), they can be composed with the series of results showing
the equivalence between RPM, ICM and ROM [1,9,11–14,18] to achieve various
theoretical domain extension methods in the RPM. For example, one can get a
“small RO” from “small RP” [12,13], extend domain of RO [9], and apply the

686 Y. Dodis et al.

14-round Feistel construction to get a large-domain RP [18] (many other com-
binations of prior results will suffice as well). However, all such combinations of
prior work will be much less efficient (and elegant) than our natural construc-
tion, and, more importantly, such results will not correspond to the way random
permutations are built in real life.

The domain extension of secret-key random permutations is well studied:
examples include PEP [4], XCB [16], HCTR [32], HCH [5] and TET [17] (and
even the original Feistel constructions [20,24] could be viewed as domain dou-
bling techniques in this setting). However, it is easy to see that none of those
constructions provide the indifferentiability property in the public permutation
setting.

Finally, the design of public permutations is related in spirit to the area of
white-box cryptography [6,7], with the idea to “obfuscate” key-dependent parts
of the cipher and publish them as lookup tables, making the entire construction
public. We refer to [3] for an excellent discussion of this big area of research,
as well as a survey of many cryptanalytic efforts attacking various SPN designs
with linear diffusion layers.

2 Definitions

Basic Notations. We write [w] for the set of integers {1, . . . , w}. Elements
of {0, 1}wn are written with bold letters such as x, y; the i-th n-bit block of
x ∈ {0, 1}wn, 1 ≤ i ≤ w, is written x[i].

Confusion-Diffusion Networks. Fix integers w, n, r ∈ N. Let

P = {Pi,j : (i, j) ∈ [r] × [w]}
be an array of rw permutations from {0, 1}n to {0, 1}n, i.e., Pi,j is a permutation
from {0, 1}n to {0, 1}n for each i ∈ [r] and each j ∈ [w]. Also let

π = (π1, . . . , πr−1)

be an arbitrary sequence of r − 1 permutations, each from {0, 1}wn to {0, 1}wn.
Given P and x ∈ {0, 1}wn we let

Pi(x)

denote the value in {0, 1}wn obtained by applying the permutations Pi,1, . . . , Pi,w

blockwise to x. In other words, Pi : {0, 1}wn → {0, 1}wn is defined by setting

Pi(x)[j] = Pi,j(x[j])

for all j ∈ [w]. It is obvious that Pi is a permutation of {0, 1}wn.
Given P and π, we define the permutation P = P [P, π] from {0, 1}wn to

{0, 1}wn as the composition

P [P, π] = Pr ◦ πr−1 ◦ . . . ◦ P2 ◦ π1 ◦ P1.

Indifferentiability of Confusion-Diffusion Networks 687

I.e.,
P [P, π](x) = Pr(πr−1(. . . P2(π1(P1(x))) . . .))

for x ∈ {0, 1}wn. We call P [P, π] the confusion-diffusion network built from P
and π. The permutations in P are variously called the confusion permutations or
S-boxes. The permutations in π are variously called the diffusion permutations
or D-boxes.

The values n, w and r will be called the wire length, the width and the number
of rounds respectively.

In practice, the S-boxes are implemented by “convoluted” or “random-like”
permutations while the D-boxes are implemented by “easy” (typically linear)
permutations that are cryptographically weak. In our indifferentiability model,
described next, the S-boxes are modeled as random permutations while the D-
boxes are publically fixed parameters of the network.

Indifferentiability. Let C be a construction making calls to an ideal set of
primitives P, which we notate as CP . Let Z be an ideal primitive with the
same interface as CP (e.g., Z is a random permutation if CP implements a
permutation). Indifferentiability is meant to capture the intuitive notion that
the construction CP is “just as good” as Z, in some precise sense. The definition
involves a simulator:

Definition 1. An (oracle) circuit C with access to a set of ideal primitives P
is (tS , qS , ε)-indifferentiable from an ideal primitive Z if there exists a simulator
S such that

Pr
[

DCP ,P = 1
]

− Pr
[

DZ,SZ]

≤ ε

for every distinguisher D making at most q0 queries to its oracles, and such that
S runs in total time tS and makes at most qS queries to Z. Here tS, qS and ε
are functions of q0.

We note that in the “real world” D has oracle access to the construction CP

as well as to the primitives P; in the “ideal world” CP is replaced by the ideal
primitive Z and the ideal primitives P are replaced by the simulator S. Thus,
S’s job is to make Z look like CP by inventing “answers that fit” for D’s queries
to the primitives in P. For this, S requires query access to Z (notated as SZ);
on the other hand, S does not get to see which queries D is making to Z.

Informally, CP is indifferentiable from Z if it is (tS , qS , ε)-indifferentiable for
“reasonable” values of (tS , qS , ε). An essential composition theorem [9,21] states
that any cryptosystem that is secure when implemented with Z remains secure
if Z is replaced with CP , if CP is indifferentiable from Z. However, the class
of adversaries with respect to which the cryptosystem’s security is defined must
be a class that is large enough to accomodate the simulator S from Definition 1.
See, e.g., [25] for a dramatic example in which indifferentiability fails completely.

In our setting “P will be P” (i.e., the set of ideal primitives P will be the set
of wr independent random permutations discussed in the previous subsection),
while CP will be P [P, π]. (As explained, the diffusion permutations π are a fixed,
publically known parameter of the construction). Consequently, Z (matching

688 Y. Dodis et al.

CP ’s syntax) will be a random permutation from {0, 1}wn to {0, 1}wn. Like all
permutation oracles, Z can be queried in both forward and backward directions.

3 Attack on Two-Round Confusion-Diffusion Networks

In this section we outline a simple distinguishing attack that shows confusion-
diffusion networks of two rounds or less cannot be indifferentiable from a random
permutation. Unfortunately we could not find a similarly general attack for net-
works with three rounds, which leaves open the possibility that 3- or 4-round
confusion-diffusion network might already be indifferentiable.

The attack on 2-round networks requires w ≥ 2, which is indeed a trivial
requirement since if w = 1 then a 1-round network is already indifferentiable
from a random permutation.

For concreteness we sketch the attack with w = 2. The confusion-diffusion
network then has four S-boxes labeled Pi,j for (i, j) ∈ [2] × [2] and one diffusion
permutation π : {0, 1}2n → {0, 1}2n. The S-boxes in the first round are P1,j ,
j ∈ [2], the S-boxes in the second round are P2,j , j ∈ [2].

We will say the distinguisher “rejects” if it believes that it is in the simulated
world; “accepts” if it believes it is in the real world.

The distinguishing attack is as follows:

1. The distinguisher randomly chooses x ∈ {0, 1}2n and queries Z(x), where
Z : {0, 1}2n → {0, 1}2n is the random permutation, obtaining y ∈ {0, 1}2n as
answer.

2. The distinguisher make the two S-box queries P1,1(x[1]) and P−1
2,1 (y[1]) receiv-

ing answers a ∈ {0, 1}n and b ∈ {0, 1}n respectively.
3. If there exists no pair of values (c, d) such that π(a‖c) = (b‖d), the distin-

guisher rejects.
4. If there exists a pair of values (c, d) such that π(a‖c) = (b‖d), the distinguisher

chooses any such pair, queries P−1
1,2 (c) obtaining answer t, and accepts if and

only if Z(x[1]‖t)[1] = y[1].

It is clear that the distinguisher always accepts in the real world. We now argue
that the simulator has negligible chance of making the distinguisher accept.

It is helpful to picture the simulator as knowing the distinguisher’s attack.
Moreover, we can be generous to the simulator and give both x[1] and y[1] to
the simulator before requesting the answers a and b from the simulator.

By choosing a and b, the simulator knows which of options 3 and 4 the
distinguisher will execute, so the simulator is essentially choosing between these
options when it chooses a and b.

Obviously, case 3 is no good for the simulator; moreover, the simulator has
no further information on x and y besides x[1] and y[1], from which it is com-
putationally infeasible, if Z is a random permutation, to locate a value t such
that Z(x[1]‖t)[1] = y[1], and which rules out case 4. The simulator is therefore
doomed.

Indifferentiability of Confusion-Diffusion Networks 689

4 Combinatorial Definitions

In this section (re-)define the four combinatorial metrics on diffusion permuta-
tions mentioned in the introduction, these being entry-wise randomized preimage
resistance (RPR), entry-wise randomized collision resistance (RCR), conduc-
tance and all-but-one-conductance.

Properties are defined unidirectionally: π might satisfy a property while π−1

does not.
Given π : {0, 1}wn → {0, 1}wn, a vector x ∈ {0, 1}wn and indices j, j′ ∈ [w],

we let
πx

j,j′ : {0, 1}n → {0, 1}n

be the function from {0, 1}n to {0, 1}n obtained by restricting the i-th block
of input of π, i �= j, to x[i], by replacing x[j] with the input x ∈ {0, 1}n,
and by considering only the j′-th block of output. (The value x[j] being, thus,
immaterial to πx

j,j′ , since it is replaced by the input).

Entry-Wise Randomized Preimage Resistance and Entry-Wise Ran-
domized Collision Resistance. The entry-wise randomized preimage resis-
tance (RPR) of π is denoted MaxPreim(π), and defined as

MaxPreim(π) = max
x,j,h,y

|{x ∈ {0, 1}n : πx
j,h(x) = y}|

while the entry-wise randomized collision resistance (RCR) of π is denoted
MaxColl(π), and defined as

MaxColl(π) = max
x,x′,j,h

|{x ∈ {0, 1}n : πx
j,h(x) = πx′

j,h(x)}|

where the latter maximum is taken over all tuples x, x′, j, h such that x[j′] �=
x′[j′] for some j′ �= j. Then by definition

Pr
x

[πx
j,h(x) = y] ≤ MaxPreim(π)

2n

for all x ∈ {0, 1}wn, y ∈ {0, 1}n, and j, h ∈ [w], where the probability is computed
over a uniform choice of x ∈ {0, 1}n, and

Pr
x

[πx
j,h(x) = πx′

j,h(x)] ≤ MaxColl(π)
2n

for all x, x′ ∈ {0, 1}wn, j, h ∈ [w], such that x[j′] �= x′[j′] for at least one j′ �= j.
Small values of MaxPreim(π) and of MaxColl(π) are better. It is easy to con-

struct permutations with MaxPreim(π) = 1 (which is optimal): simply use a
linear permutation π : GF(2n)w → GF(2n)w whose associated matrix (a w × w
matrix with entries in GF(2n)) has all nonzero entries. Constructing permuta-
tions with small values of MaxColl(π) is a bit more involved; this is done in the
full version [8].

690 Y. Dodis et al.

An interesting research direction would be to devise faster-than-linear RPR
permutations and faster-than-polynomial RCR permutations. (Our construction
of RCR permutations [8] uses finite field operations).

Conductance and All-But-One Conductance. The conductance
Condπ(q) of a permutation π was defined in Sect. 1.1. The notion all-but-one
conductance is essentially the same as conductance, except that one coordinate
position in either the input or output is ignored. The all-but-one conductance of
a permutation π at q queries is denoted aboCondπ(q).

Formally, given a permutation π : ({0, 1}n)w → ({0, 1}n)w, we define the
all-but-one conductance of π by

Condh,+
π (q) = max

U1,...,Uw,V1,...,Vw⊆{0,1}n

|U1|=···=|Vw|=q

|{(x, y) : y = π(x), x[j] ∈ Uj ∀j ∈ [w], y[j] ∈ Vj ∀j ∈ [w]\h}|,

Condh,−
π (q) = max

U1,...,Uw,V1,...,Vw⊆{0,1}n

|U1|=···=|Vw|=q

|{(x, y) : y = π(x), x[j] ∈ Uj ∀j ∈ [w]\h, y[j] ∈ Vj ∀j ∈ [w]}|

aboCondπ(q) = max
(

max
h∈[w]

(Condh,+
(π, q)), max

h∈[w]
(Condh,−

(π, q))
)

(Here the first two definitions are for all h ∈ [w], and we use ∀ in postfix
notation). Thus the set Vh is immaterial in the definition of Condh,+, while the
set Uh is immaterial in the definition of Condh,−.

In [8] we show that the conductance and all-but-one conductance of a random
permutation π are both roughly qwn, which is essentially q log(q) since q is
exponential in n. Constructing explicit permutations with low conductance and
low all-but-one conductance remains a nice open problem.

5 Network Nomenclature and Main Result

In this section we start with a syntax-oriented description of the confusion-
diffusion networks for which our results are obtained. We follow with the formal
statement of our main theorem.

While we mentioned six different networks in the introduction (cf. Fig. 1),
our full results actually encompass two extra networks, of 6 and 10 rounds (but
structurally different from the “other” 6 and 10 round networks); these two extra
networks are not mentioned in Fig. 1 because they offer no structural, security
or query complexity advantages over other networks. However we include them
what follows since they come anyway “for free”, so that our result will subsume
eight different networks. (Moreover the proof is easier to write this way, since the
eight different networks happen to arise as the result of setting three independent
boolean flags).

Network Nomenclature. A round of a confusion-diffusion network refers to
a round of S-boxes. More precisely, all S-box permutations Pi,j with the same
value of i lie in the same round of the network.

Since, say, the middle round of our 5-round confusion-diffusion network plays
the same structural role (with respect to our simulator) as the middle round in
our 9-round network, it makes more sense to designate rounds according to their

Indifferentiability of Confusion-Diffusion Networks 691

structural role instead of by their round number (as the latter will keep changing
from network to network, even while the structural purpose of the round stays
the same).

For this purpose, we replace the array P = {Pi,j} of r × w random permu-
tations with an array Q of 12 × w random permutations where each “round”
(value of the index i) is designated by a different alphabet letter. Specifically,
we let

Q = {Fj , Gj , Ij ,Dj , Jj , Bj , Aj , Cj ,Kj , Ej , Lj ,Hj : j ∈ [w]} (1)

be a set of 12 w random permutations, where each permutation is thus indexed
by an alphabet letter from the set {A, . . . , L} as well as by an index j ∈ [w].

Having traded the set of indices {i : i ∈ [r]} (the possible round numbers)
for the set of letters {A, . . . , L}, a “round” will henceforth mean a member of
the latter set, i.e., a “round” means one of the letters A, . . . , L.

Not all rounds will be used for all confusion-diffusion networks, and we
describe which rounds appear in which networks below. (See also Fig. 2 below
as an aid). However two rounds always appear in the same order as they appear
listed in Q above (cf. (1)), when they both appear in a network.

In more detail, our eight different confusion-diffusion networks correspond
to the eight different possible settings of three independent boolean flags called
XtraMiddleRnd, XtraOuterRnd and XtraUntglRnds. The rounds that appear in
each network, as a function of these boolean flags, are as follows:

{

A if XtraMiddleRnd is off
B,C if XtraMiddleRnd is on

{

G,H if XtraOuterRnd is off
F,G,H if XtraOuterRnd is on

{

D,E if XtraUntglRnds is off
I,D, J,K,E,L if XtraUntglRnds is on

As can be seen, toggling either of XtraMiddleRnd or XtraOuterRnd “costs” one
extra round, whereas toggling XtraUntglRnds costs four extra rounds. Hence, and
because the network has 5 rounds when all flags are off, the number of rounds
in the network will be

5 + XtraMiddleRnd + XtraOuterRnd + 4 · XtraUntglRnds

which spans the integers 5, 6, 6, 7, 9, 10, 10, 11. In Fig. 1 the flag bits appear
in the order XtraMiddleRnd, XtraOuterRnd, XtraUntglRnds, hence the two “miss-
ing” combinations are those where XtraMiddleRnd/XtraOuterRnd are off/on. In
addition, the top half of the table is missing all rows with XtraUntglRnds = true
since toggling this flag does not (significantly) improve security or query com-
plexity when the D-boxes can be arbitrary and, in particular, when the D-boxes
can be RCR.

692 Y. Dodis et al.

For example, our 11-round network consists of the rounds

F,G, I,D, J,B,C,K,E,L,H

in this order. (We refer to Fig. 2 further down). The 10-round network with
XtraMiddleRnd = false consists of the rounds

F,G, I,D, J,A,K,E,L,H

in this order as well. All other networks can be obtained by removing rounds
from one of these two sequences. In more detail, round F is removed to un-toggle
XtraOuterRnd and rounds I, J , K, L are removed to un-toggle XtraUntglRnds.

We will also rename the generic diffusion permutations π = (π1, . . . , πr)
according to their structural roles in the diffusion network. Specifically, we let

π = (ν, πG, πI , πJ , πB , τ, πC , πK , πL, πH)

where each element in the sequence π is a permutation from {0, 1}wn to {0, 1}wn.
(Thus, we redefine π to a specific sequence of diffusion permutations). In the
11-round confusion-diffusion network, diffusion permutations appear interleaved
with the S-box rounds in the order

F–ν–G–πG–I–πI–D–πJ–J–πB–B–τ–C–πC–K–πK–E–πL–L–πH–H

(i.e., the S-box round consisting of the parallel application of the permutations
Fj is followed by the diffusion permutation ν, and so on), whereas in the 10-
round network with XtraMiddleRnd= false the diffusion permutations appear in
the order

F–ν–G–πG–I–πI–D–πJ–J–πB–A–πC–K–πK–E–πL–L–πH–H

with τ dropped. From either of these configurations one can un-toggle XtraOuter-
Rnd by dropping F–ν– and one can un-toggle XtraUntglRnds by dropping I–πI–,
–πJ–J , K–πK– and –πL–L. For example, our 9-round confusion-diffusion net-
work has the order

G–πG–I–πI–D–πJ–J–πB–A–πC–K–πK–E–πL–L–πH–H

whereas the 5-round and 6-round network with XtraMiddleRnd toggled respec-
tively have order

G–πG–D–πB–A–πC–E–πH–H

G–πG–D–πB–B–τ–C–πC–E–πH–H

and so on.
In summary, the confusion-diffusion network under consideration is a function

of the confusion permutations Q, of the diffusion permutation vector π and of

Indifferentiability of Confusion-Diffusion Networks 693

F3

F2

F1

G3

G2

G1

I3

I2

I1

D3

D2

D1

J3

J2

J1

B3

B2

B1

C3

C2

C1

K3

K2

K1

E3

E2

E1

L3

L2

L1

H3

H2

H1

ν π
G π
I

π
J

π
B τ π
C

π
K

π
L

π
H

O

A

M

U

G3

G2

G1

D3

D2

D1

A3

A2

A1

E3

E2

E1

H3

H2

H1

π
G

π
B

π
C

π
H

O

A

M

U

Fig. 2. Emplacement of the outer detect (O), adapt (A), middle detect (M) and untan-
gle (U) zones for the 11- and 5-round simulators. The adapt zones always consist of
rounds D and E.

the three boolean flags XtraMiddleRnd, XtraOuterRnd and XtraUntglRnds. For
brevity we write this network as

P [Q, π]

keeping the three boolean flags implicit. Depending on the value of the flags some
permutations in Q and/or π are of course unused. In particular, we assume that
unused permutations in Q are simply ignored for the purpose of the indifferentia-
bility experiment (i.e., these unused permutations are not accessible as oracles).

Semantically, moreover, our simulator divides the confusion rounds and dif-
fusion permutations into nine “zones” of four different types, to wit, one middle
detect zone (M), left and right outer detect zones (O), four untangle zones (U)
and two adapt zones (A). Each zone consists of one or more contiguous rounds
and/or diffusion permutations, with every round and every diffusion permuta-
tion belonging to exactly one zone. Figure 2 shows how the zones appear in the
11- and 5-round networks, while the zoning of other networks can be interpo-
lated from these, given that each of our zones either appears the same as in
the 11-round network or the same as in the 5-round network. (For example, if
XtraMiddleRnd is off, then round A exists and rounds B and C do not, so the
middle detect zone consists of round A only, as in the 5-round simulator; etc).

694 Y. Dodis et al.

In particular,
XtraMiddleRnd

determines the aspect of the middle detect zone (and nothing else), while

XtraOuterRnd

determines the aspect of the left outer detect zone (and nothing else), and

XtraUntglRnds

determines the aspect of the untangle zones (and nothing else).
In particular, the D-box τ appears in the middle detect zone if it appears

at all, the D-box ν appears in the left outer detect zone if it appears at all,
and remaining D-boxes (of the form π...) appear in the untangle zones. Further
simulator details, including the purpose of the zones, are given in Sect. 6.

Main Result: Takeaway Points. Before giving our full technical result
(which can be difficult to parse the first time around), we summarize its key
implications for security, query complexity, and D-box properties at a high level:

Security. The security of our simulator is essentially a function of the middle
detect zone and of the conductance of τ . If XtraMiddleRnd is off, more precisely,
so that the middle detect zone consists only of round A, then security is approx-
imately q2w/N where N = 2n, whereas if XtraMiddleRnd is on, the security
improves (essentially) to q2/N, assuming that τ has conductance ∼ q.

Query Complexity. The simulator’s query complexity is determined by the left
outer detect zone and by the middle detect zone. The query complexity is approx-
imately qw2

if neither of XtraMiddleRnd or XtraOuterRnd is toggled, is approx-
imately qw if exactly one of these two flags is toggled, and is approximately q
if both flags are toggled, where the bounds quoted in the last two cases assume
that τ and/or ν both have conductance ∼ q.

Combinatorial Requirements on the Diffusion Permutations. The diffusion per-
mutations τ and ν must have low conductance and low all-but-one-conductance.
(Near q in order to have bounds approaching those of Fig. 1). The combinato-
rial requirements on the permutations π... are different depending on whether
XtraUntglRnds is toggled or not:

– if XtraUntglRnds is off the permutations in the untangle zones must be both
RPR- and RCR-resistant (or else the above-quoted security bounds are not
achieved); in particular, if w > 2 then these permutations cannot be GF(2n)-
linear, because, as mentioned above, GF(2n)-linear permutations are not
RCR-resistant for w > 2;

– if XtraUntglRnds is on then the permutations in the untangle zones need only
be RPR-resistant; in particular, these permutations can now be GF(2n)-linear
even for w > 2.

One can also summarize the situation orthogonally, according to which boolean
flags have which effect. Namely:

Indifferentiability of Confusion-Diffusion Networks 695

– toggling XtraMiddleRnd impacts security and query complexity
– toggling XtraOuterRnd impacts query complexity
– toggling XtraUntglRnds reduces the cryptographic requirements on the per-

mutations π...

It is natural to wonder whether even further extension of the middle, outer left,
or untangle zones can be beneficial. The short answer to this question, that we
consider in detail in [8], is yes; namely, by adding more rounds to these zones one
can further reduce the combinatorial requirements on the diffusion permutations,
leading, e.g., to networks in which the permutations in the untangle zones are
not even RPR-resistant.

As a final high-level comment, a potentially striking feature of our simulator is
the left-right asymmetry that arises when XtraOuterRnd is toggled. As explained
in Sect. 6, adding an extra round to the right-hand outer detect zone (assuming
XtraOuterRnd is already set) does not further decrease the simulator’s query
complexity, nor improve security. Nonetheless, such an extra zone can be used
to reduce the simulator’s space complexity while maintaining essentially the same
security and query complexity. (See the discussion after Lemma 52 in the full
version). Hence, while the benefit of adding an additional round to the right outer
detect zone is somewhat technical, such an extra round does have a potential
justification in terms of simulator design.

Main Result. We recall that π = (ν, πG, πI , πJ , πB , τ, πC , πK , πL, πH) is the
vector of diffusion permutations, not necessarily all of which are used. In order
to more succinctly state the main result, we define

MaxColl(π) = max(MaxColl(πG),MaxColl(π−1
B),MaxColl(πC),MaxColl(π−1

H))

MaxPreim(π) = max(MaxPreim(πG),MaxPreim(π−1
B),MaxPreim(πC),MaxPreim(π−1

H),

MaxPreim(πI),MaxPreim(π−1
J),MaxPreim(πK),MaxPreim(π−1

L))

MaxCoPr(π) = max(MaxColl(π),MaxPreim(π))

where π−1 denotes the inverse of π.
Moreover we define

α(q) =

{

(2q)w if XtraMiddleRnd is off,

Condτ (2q) if XtraMiddleRnd is on,

β(q) =

{

(q + α(q))w if XtraOuterRnd is off,

Condν(q + α(q)) if XtraOuterRnd is on.

The definitions of α(q) and β(q) might seem annoyingly technical right now. In
Sect. 6 we provide more digestible semantic explanations for α(q) and β(q).

Theorem 1. Let N = 2n. The confusion-diffusion network P [Q, π] achieves
(tS , qS , ε)-indifferentiability from a random permutation Z : {0, 1}wn → {0, 1}wn

696 Y. Dodis et al.

for ε equal to

β(q)(q + α(q))w

Nw − q − α(q)
+

1
Nw

+
4w(q + α(q))2

N − q − α(q)

+
4wq aboCondτ (2q)

N − 2q
if XtraMiddleRnd is on

+
2w(q + α(q)) aboCondν(q + α(q))

N − q − α(q)
if XtraOuterRnd is on

+
4wα(q)(q + α(q))MaxCoPr(π)

N − q − α(q)
if XtraUntglRnds is off

+
6w(q + α(q))2 MaxPreim(π)

N − q − α(q)
if XtraUntglRnds is on

and for qS = β(q), tS = O(w(q + α(q))w). Here q = q0(1 + rw) where q0 is
the number of distinguisher queries and r ∈ {5, 6, 7, 9, 10, 11} is the number of
rounds in the confusion-diffusion network.

The proof of this result is in the full version [8].

Parsing the Security Bound. In order to get a rough feel for the security bound
of Theorem 1 it is helpful to make the order-of-magnitude approximations

MaxPreim(π) = MaxColl(π) ≈ O(1)
Condτ (2q) = aboCondτ (2q) ≈ q

Condν(q + α(q)) = aboCondν(q + α(q)) ≈ α(q).

With these approximations in place, and given q � N (in fact we can assume
q ≤ N1/2, since the security bound is void otherwise) it easy to verify that the
largest terms in Theorem 1 are of the order

α(q)2

N

and which is, therefore, a first approximation to the security ε that we achieve.
Since

α(q) =

{

(2q)w if XtraMiddleRnd is off,

q if XtraMiddleRnd is on,

under the order-of-magnitude approximations given above, we find

ε ≈
{

(2q)2w/N if XtraMiddleRnd is off,

q2/N if XtraMiddleRnd is on

for the security, to a first approximation. On the other hand we find

qS = β(q) ≈

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(2q)w2
if XtraMiddleRnd/XtraOuterRnd are off/off

(2q)w if XtraMiddleRnd/XtraOuterRnd are off/on
(2q)w if XtraMiddleRnd/XtraOuterRnd are on/off
q if XtraMiddleRnd/XtraOuterRnd are on/on

Indifferentiability of Confusion-Diffusion Networks 697

for the query complexity, again to a first approximation.
On the other hand, it is relatively easy to see that MaxColl(π) = 2n = N

for any linear permutation π : GF(2n)w → GF(2n)w as long as w > 2. In this
case MaxCoPr(π) = N , and Theorem 1 becomes void if XtraUntglRnds is off.
Thus one of the main reasons for toggling XtraUntglRnds might be to enable the
use of linear diffusion permutations, or any other (fast) family of permutations
that have small entry-wise randomized preimage resistance (but potentially large
entry-wise randomized collision resistance).

6 Simulator Overview

Context. We start with some very high-level description and reminder-of-
purpose of our simulator. For this discussion it will be more convenient if we
momentarily revert to indexing the S-boxes by coordinate pairs (i, j) where
i ∈ [r] the round number and j ∈ [w] the layer number, with r being the number
of rounds and w being the width. The diffusion permutation between the i-th
and (i + 1)-th rounds will again be denoted πi as well.

The simulator is responsible for answering queries to the S-boxes, and has
access to a random permutation oracle Z : {0, 1}wn → {0, 1}wn that is being
independently accessed by the distinguisher. The simulator’s job is to keep the
S-box answers compatible with Z in the sense that it looks to the distinguisher
as if Z is implemented by the confusion-diffusion network.

For each pair (i, j) ∈ [r] × [w] the simulator maintains a pair of tables Pi,j

and P−1
i,j , each containing 2n entries of n bits each, in which the simulator keeps

a record of “what it has already decided” about the (i, j)-th S-box. Initially the
tables are blank, meaning that Pi,j(x) = P−1

i,j (y) = ⊥ for all x, y ∈ {0, 1}n. The
simulator sets Pi,j(x) = y, P−1

i,j (y) = x to indicate that the (i, j)-th S-box maps
x to y. The simulator never overwrites values in Pi,j or in P−1

i,j and always keeps
these two tables consistent. Hence Pi,j encodes a partial matching (or “partial
permutation”) from {0, 1}n to {0, 1}n from which edges are never subtracted.
We also note that the edges in Pi,j are a superset of those queries that the
distinguisher has made to the (i, j)-th S-box or to its inverse (i.e., Pi,j contains
the answers to those queries, and possibly more).

By analogy with the notation of Sect. 2 we write

Pi(x) = y (2)

if x,y ∈ {0, 1}wn are vectors such that Pi,j(x[j]) = y[j] for all j ∈ [w]. Note
that (2) is a time-dependent statement, in the sense that the tables Pi,j keep
accruing entries as the distinguishing experiment proceeds. For example, (2) is
initially false for all i and all vectors x, y. Moreover Pi is not an actual table
maintained by the simulator—i.e., (2) is “just notation”.

698 Y. Dodis et al.

A sequence of vectors (x1,y1, . . . ,xr,yr) is called a completed path6 if
Pi(xi) = yi for i = 1, . . . , r and if πi(yi) = xi+1 for i = 1, . . . , r − 1. The
set of completed paths is also time-dependent. The vectors x1 and yr are called
the endpoints of the path.

We informally say that the distinguisher completes a path if it makes queries
to the simulator that form a completed path. (There are many different possible
ways to order such a set of queries, obviously). One can picture the distinguisher
as trying to complete paths in various devious ways (typically, reusing the same
queries as part of different paths), and checking that the path endpoints are each
time compatible with Z.

The simulator’s job, in response, is to run ahead of the distinguisher and pre-
emptively complete paths that it thinks the distinguisher is interested in, such
as to make these paths are compatible with Z. The simulator’s dilemna is that
it must choose under which conditions to complete a path; if it waits too long,
or completes paths in only highly specialized cases, it may find itself trapped
in a contradiction (typically, while trying to complete several paths at once);
but if it is too trigger-happy, having a very large number of conditions under
which it will choose to complete a path, the simulator runs the risk creating7 an
out-of-control chain reaction of path completions.

Essentially the simulator must be safe, but in a smart enough way that it
avoids (out-of-control) chain reactions. We will informally refer to the problem of
showing that no out-of-control chain reactions occur as the problem of simulator
termination.

Simulator Zones. As already mentioned our simulator divides the confusion
rounds and diffusion permutations into nine zones of four different types, shown
in Fig. 2 for the 11- and 5-round networks.

Specifically, the “middle zone” is
{

A if XtraMiddleRnd is off
B–τ–C if XtraMiddleRnd is on

depending only on XtraMiddleRnd; the left and right outer detect zones are
{

G,H if XtraOuterRnd is off
F–ν–G,H if XtraOuterRnd is on

6 This definition, made for the sake of expository convenience, is superceded further
down, where we redefine “completed path” by adding the requirement that the
endpoints be compatible with Z, i.e., that Z(x1) = yr.

7 Indeed, the simulator makes no distinction between those entries in its tables Pi,j

that are the direct result of an distinguisher query, and those which it created on
its own while pre-emptively completing paths. It seems very hard to leverage such a
distinction. Note for example that the distinguisher may know values in Pi,j without
having made the relevant queries, simply by virtue of knowing how the simulator
works.

Indifferentiability of Confusion-Diffusion Networks 699

depending only on XtraOuterRnd; the four “untangle zones” are
{

πG, πB , πC , πH if XtraUntglRnds is off
πG–I–πI , πJ–J–πB , πC–K–πK , πL–L–πH if XtraUntglRnds is on

depending only on XtraUntglRnds; the two “adapt” zones, finally, are rounds D
and E in all networks.

We observe that zones (specifically, untangle zones with XtraUntglRnds =
false) might consist solely of diffusion permutations. This contrasts with seman-
tically similar zoning systems for Feistel network simulators and key-alternating
simulators [18,19,27] for which the zones always contain at least one ideal com-
ponent. We also observe that in the minimalist 5-round simulator, each round
and each diffusion permutation corresponds to an individual zone.
Table Notation, Columns and Matching Query Sets. We revert to
identifying rounds with letters in {A, . . . , L}. Under this notation tables Pi,j ,
P−1

i,j described above become, e.g., tables Aj and A−1
j . Thus for each round

T ∈ {A, . . . , L} that is “operational” (as will depend on the flag settings) the
simulator maintains tables Tj , T

−1
j for 1 ≤ j ≤ w, as already described above

under the notation Pi,j , P
−1
i,j .

We write T (x) = y if Tj(x[j]) = y[j] for each j ∈ [w], and for all T ∈
{A, . . . , L}. We also write T (x) = ⊥ if Tj(x[j]) = ⊥ for at least one value
of j. The notation T−1(y) is analogous, with T−1 being the inverse of T . As
emphasized above this notation is really “notation only” in the sense that the
simulator does not maintain such things as tables T or T−1.

A non-null entry in table Tj will be called an (S-box) query. More formally,
an S-box query is a quadruple (T, j, x, y) where T ∈ {A, . . . , L}, j ∈ [w], x, y ∈
{0, 1}n, such that Tj(x) = y.

A set of w queries with the same value of T but with different values of j
will be called a column or a T -column when we wish to emphasize the round.
The (unique) vectors x, y such that (T, j,x[j],y[j]) is a query in the column for
each j ∈ [w] are called the input and output of the column respectively. We note
that a column is uniquely determined by either its input or output.

Two columns are adjacent if their rounds are adjacent. (E.g., a B-column
and a C-column are adjacent). Two adjacent columns are matching if π(y) = x,
where y is the output of the first column, where x the input of the second
column, and where π is the diffusion permutation between the two rounds.

A pair of columns from the first and last round of the confusion-diffusion
network are likewise matching if Z(x) = y, where x is the input to the first-
round column (either an F - or G-column) and y is the output of the last-round
column (the H-column).

The notion of matching columns naturally extends to sequences of columns
from consecutive rounds of length greater than two. (The first and last round of
the network are always considered adjacent). If a set of matching columns encom-
passes all rounds we call the set a completed path. Thus, since the first and last
column of a network are considered adjacent, completed paths are compatible
with Z by definition.

700 Y. Dodis et al.

The set of queries in a matching sequence of columns of any length is called
a matching set of queries. We will also refer to the queries of a single column as
a matching set, considering that column as a matching sequence of columns of
length 1.

One can also observe that two different completed paths cannot contain the
same column. Indeed, each D-box is a permutation and each round implements
a partial permutation as well.

Simulator Operation and Termination Argument. Our simulator applies
a design paradigm pioneered by Seurin [27] that has also been used in other
simulators for Feistel networks or key-alternating ciphers [18,19]. As for all such
simulators, our simulator completes two types of paths, where one type of path
is triggered by a “middle detect zone” and the other is triggered by an “outer
detect zone”.

In more detail, our simulator pre-emptively completes a path8 for every
matching set of queries in the middle detect zone (such a matching set will
consist of either one or two columns, depending on whether XtraMiddleRnd is
toggled) and also for every matching set of queries in the two outer detect zones,
considered as a single consecutive set of columns (the latter kind of match-
ing set will thus consist of either two or three columns, depending on whether
XtraOuterRnd is toggled).

Crucially, one can show that, unless some bad event of negligible probabil-
ity occurs, each outer-triggered path completion is associated to a unique pre-
existing query made by the distinguisher to Z. Since the distinguisher makes
only q queries in total, this means that at most q outer-triggered path comple-
tions occur, with high probability. In fact our simulator aborts if it counts9 more
than q outer-triggered path completions, so in our case at most q outer-triggered
path completions occur with probability 1.

Moreover, a middle-triggered path completion does not add any new queries
to the middle detect zone. This means that all queries in the middle detect
zone can be chalked up to one of two causes: (1) queries directly made by the
distinguisher, (2) queries made by the simulator during outer-triggered path
completions.

Cause (1) accounts for at most q queries to each S-box and, as just seen,
cause (2) accounts for at most q queries as well. Hence a middle detect zone S-
box is never queried at more then 2q points, i.e., the table Tj for T ∈ {A,B,C}
never has more than 2q non-⊥ entries.

8 The phrase “completes a path” is informal at this point, as there are generally
many different ways to complete a path. (E.g., where to “adapt” a path to make it
compatible with Z, etc). More details follow below.

9 This means the simulator knows the value of q beforehand, which introduces a
small amount of non-uniformity into the simulator. One could remove this non-
uniformity—i.e., not tell the simulator the value of q beforehand—at the cost of
a more complicated theorem statement and proof. But the fact that essentially all
security games allow adversaries that know the value of q for which they want to
carry out an attack makes the issue a bit moot.

Indifferentiability of Confusion-Diffusion Networks 701

In particular, if XtraMiddleRnd is off, the latter implies that no more than
(2q)w middle-triggered path completions occur, or one for every possible combi-
nation of an entry from each of the tables A1, . . . , Aw. If XtraMiddleRnd is on,
on the other hand, than at most Condτ (2q) middle-triggered path completions
occur, as is easy to see per the definition10 of conductance. In other words, α(q)
(cf. Sect. 5) is an upper bound on the number of middle-triggered path comple-
tions. In fact, α(q) is an upper bound for the total number of path completions
performed (including also outer path completions), since each completed path is
also associated to a unique set of matching queries from the middle detect zone.

As for all S-boxes outside the middle detect zone, their queries can also be
chalked up to one of two sources, namely direct distinguisher queries and path
completions. There are at most q direct distinguisher queries, and each completed
path contributes at most 1 query to each S-box, so each S-box outside the middle
detect zone ends up with at most q + α(q) queries.

The simulator, moreover, only queries Z in order to either complete paths or
else in order to detect outer-triggered path completions. This implies the number
of distinct simulator queries to Z is upper bounded by the number of matching
sets of queries in the left-hand outer detect zone. Indeed each completed path is
obviously associated to a matching set of queries in the left-hand outer detect
zone; and for the purpose of outer-triggered path detection, it is easy to see that
the simulator only needs to query Z at most once for each such matching set
as well by maintaining a table11 of queries already made to Z. If XtraOuterRnd
is off, thus, the number of simulator queries to Z will be at most (q + α(q))w;
whereas if XtraOuterRnd is on, the same number will be at most Condν(q+α(q)).
The simulator query complexity is thus at most β(q) (cf. Sect. 5).

7 Extensions

In [8] we discuss the extension of our main result to even longer networks. In
particular, we show that each of our four combinatorial properties are specialized
(extreme) cases of more general adversarial games involving entire segments of
CD networks. We give a more general theorem (albeit without proof) in terms
of these properties defined on network segments. The use of more rounds, then,
enables the D-boxes to become even weaker (provably so in the case of the
untangle rounds, conjecturally so for the detect zones), and thus even faster.
This leaves many exciting possibilities/questions for future work.
10 More precisely, let Uj = {y ∈ {0, 1}n : B−1

j (y) �= ⊥, let Vj = {x ∈ {0, 1}n : Cj(x) �=
⊥} at the end of the distinguishing experiment. Then |Uj |, |Vj | ≤ 2q for each j, and
the number of middle-triggered path completions that have occurred is at most

{(x,y) : τ(x) = y,x ∈
∏

j

Uj ,y ∈
∏

j

Vj} ≤ Condτ (2q).

11 Thus, in particular, adding an extra round to the right-hand detect zone would not
further reduce the query complexity, since the query complexity is only proportional
to the number of matching query sets for the left-hand outer detect zone.

702 Y. Dodis et al.

Another possible improvement is to reduce the number of independent S-
boxes. In a private note (unpublished), we have proved an analogous result where
the same S-box is used at each round. To make this variant indifferentiable from
a random permutation over {0, 1}wn, the D-boxes need to satisfy stronger com-
binatorial properties. For example, the current construction needs a D-box with
entry-wise randomized preimage resistance (RPR): roughly, if one of the input
blocks is uniform random and the other input blocks are fixed, then each out-
put block is fairly random. In the variant construction with identical S-boxes,
the D-boxes must satisfy a generalization of RPR: roughly, if some of the input
blocks contain the same uniform random value and the other input blocks are
fixed, then each output block is fairly random. We also found that a minor mod-
ification to our D-boxes would satisfy these generalized properties. Additionally,
in this variant construction the security (distinguisher’s advantage) ε and sim-
ulator query complexity qS are worse than the current construction. The query
complexity is increased by a factor of ww2

, ww or w (depending on the flags),
while the security deteriorates by a factor of w.

References

1. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of
the sponge construction. In: Smart [31] pp. 181–197

3. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: black-box, white-box, and public-key (Extended Abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84.
Springer, Heidelberg (2014)

4. Chakraborty, D., Sarkar, P.: A new mode of encryption providing a tweakable
strong pseudo-random permutation. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol.
4047, pp. 293–309. Springer, Heidelberg (2006)

5. Chakraborty, D., Sarkar, P.: HCH: a new tweakable enciphering scheme using the
hash-encrypt-hash approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg (2006)

6. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003)

7. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003)

8. Dodis, Y., Tianren, L., Stam, M., Steinberger, J.: Indifferentiability of Confusion-
Diffusion Networks, IACR eprint archive 2015/680. (Full version of this paper.)

9. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

10. Coron, J.-S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal
cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273–289. Springer,
Heidelberg (2010)

Indifferentiability of Confusion-Diffusion Networks 703

11. Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner [32], pp. 1–20

12. Dodis, Y., Pietrzak, K., Puniya, P.: A new mode of operation for block ciphers and
length-preserving macs. In: Smart [31], pp. 198–219

13. Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indifferentiability of permutation-
based compression functions and tree-based modes of operation, with applica-
tions to MD6. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 104–121.
Springer, Heidelberg (2009)

14. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging merkle-damg̊ard for practical
applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388.
Springer, Heidelberg (2009)

15. Feistel, H.: Cryptographic coding for data-bank privacy. IBM Technical report
RC-2827, 18 March 1970

16. Fluhrer, S.R., McGrew, D.A.: The extended codebook (XCB) mode of operation.
Technical report 2004/078, IACR eprint archive (2004)

17. Halevi, S.: Invertible universal hashing and the TET encryption mode. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 412–429. Springer, Heidelberg (2007)

18. Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle
model and the ideal cipher model, revisited. In: Fortnow, L., Vadhan, S.P. (eds.),
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011,
San Jose, CA, USA, pp. 89–98. ACM, 6–8 June 2011

19. Lampe, R., Seurin, Y.: How to construct an ideal cipher from a small set of public
permutations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS,
vol. 8269, pp. 444–463. Springer, Heidelberg (2013)

20. Luby, M., Rackoff, C.: How to construct pseudorandom permutations and pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)

21. Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

22. Maurer, U.M., Tessaro, S.: Domain extension of public random functions: beyond
the birthday barrier. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
187–204. Springer, Heidelberg (2007)

23. Miles, E., Viola, E.: Substitution-permutation networks, pseudorandom functions,
and natural proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 68–85. Springer, Heidelberg (2012)

24. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-
Rackoff revisited. J. Cryptology 12(1), 29–66 (1999). Preliminary Version: STOC

25. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

26. Rogaway, P., Steinberger, J.P.: Constructing cryptographic hash functions from
fixed-key blockciphers. In: Wagner [32], pp. 433–450

27. Seurin, Y.: Primitives et protocoles cryptographiques à sécurité prouvée. Ph.D.
thesis, Université de Versailles Saint-Quentin-en-Yvelines, France (2009)

28. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Technical
J. 28(4), 656–715 (1949). www.cs.ucla.edu/jkong/research/security/shannon.html,
www3.edgenet.net/dcowley/docs.html

29. Shrimpton, T., Stam, M.: Building a collision-resistant compression function
from non-compressing primitives. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 643–654. Springer, Heidelberg (2008)

http://www.cs.ucla.edu/jkong/research/security/shannon.html
http://www3.edgenet.net/dcowley/docs.html

704 Y. Dodis et al.

30. Smart, N.P. (ed.): EUROCRYPT 2008. LNCS, vol. 4965. Springer, Heidelberg
(2008)

31. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008)

32. Wang, P., Feng, D., Wu, W.: HCTR: a variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005)

Fair and Robust Multi-party Computation
Using a Global Transaction Ledger

Aggelos Kiayias1, Hong-Sheng Zhou2(B), and Vassilis Zikas3

1 National and Kapodistrian University of Athens, Athens, Greece
aggelos@di.uoa.gr

2 Virginia Commonwealth University, Richmond, USA
hszhou@vcu.edu

3 Rensselaer Polytechnic Institute, Troy, USA
vzikas@cs.rpi.edu

Abstract. Classical results on secure multi-party computation (MPC)
imply that fully secure computation, including fairness (either all parties
get output or none) and robustness (output delivery is guaranteed), is
impossible unless a majority of the parties is honest. Recently, cryptocur-
rencies like Bitcoin where utilized to leverage the fairness loss in MPC
against a dishonest majority. The idea is that when the protocol aborts
in an unfair manner (i.e., after the adversary receives output) then hon-
est parties get compensated by the adversarially controlled parties.

Our contribution is three-fold. First, we put forth a new formal model
of secure MPC with compensation and show how the introduction of
suitable ledger and synchronization functionalities makes it possible
to describe such protocols using standard interactive Turing machines
(ITM) circumventing the need for the use of extra features that are out-
side the standard model as in previous works. Second, our model, is
expressed in the universal composition setting with global setup and is
equipped with a composition theorem that enables the design of proto-
cols that compose safely with each other and within larger environments
where other protocols with compensation take place; a composition theo-
rem for MPC protocols with compensation was not known before. Third,
we introduce the first robust MPC protocol with compensation, i.e., an
MPC protocol where not only fairness is guaranteed (via compensation)
but additionally the protocol is guaranteed to deliver output to the par-
ties that get engaged and therefore the adversary, after an initial round of
deposits, is not even able to mount a denial of service attack without hav-
ing to suffer a monetary penalty. Importantly, our robust MPC protocol
requires only a constant number of (coin-transfer and communication)
rounds.

1 Introduction

Secure multiparty computation (MPC) enables a set of parties to evaluate the
output of a known function f(·) on inputs they privately contribute to the pro-
tocol execution. The design of secure MPC protocols, initiated with the seminal
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 705–734, 2016.
DOI: 10.1007/978-3-662-49896-5 25

706 A. Kiayias et al.

works of Yao [31] and Goldreich et al. [21] has evolved to a major effort in
computer security engineering. Beyond privacy, a secure MPC protocol is highly
desirable to be fair (either all parties learn the output or none) and robust (the
delivery of the output is guaranteed and the adversary cannot mount a “denial
of service” against the protocol). Achieving fairness and robustness in a set-
ting where there is an arbitrary number of corruptions, as desirable as it may
appear, is prohibited by strong impossibility results stemming from the work of
Cleve [16] who showed that coin-flipping is infeasible in any setting where there
is no honest majority among parties that execute the protocol. These impossi-
bility results, combined with the importance of the properties that they prevent,
strongly motivate the exploration of alternate – yet still realistic – models that
would enable fair and robust MPC protocols.

With the advent of Bitcoin [28] and other decentralized cryptocurrencies, the
works of [1,2,7,27] showed a new direction for circumvention of the impossibil-
ity results regarding the fairness property: enforcing fairness could be achieved
through imposing monetary penalties. In this setting a breach of fairness by the
adversary is still possible but it results in the honest parties collecting a com-
pensation in a way that is determined by the protocol execution. At the same
time, in case fairness is not breached, it is guaranteed that no party loses any
money (despite the fact that currency transfers may have taken place between
the parties). The rationale here is that a suitable monetary penalty suffices in
most practical scenarios to force the adversary to operate in the protocol fairly.

While the main idea of fairness with penalties sounds simple enough, its
implementation proves to be quite challenging. The main reason is that the way
a crypto-currency operates does not readily provide a trusted party that will
collect money from all participants and then either return it or redistribute it
according to the pre-agreed penalty structure. This is because crypto-currencies
are decentralized and hence no single party is ever in control of a money transfer
beyond the owner of a set of coins. The mechanism used in [1,2,7,27] to cir-
cumvent the above problem is the capability1 of the Bitcoin network to issue
transactions that are “time-locked”, i.e., become valid only after a specific time
and prior to that time may be superseded by other transactions that are posted
in the public ledger. Superseded time-locked transactions become invalid and
remain in the ledger without ever being redeemed.

While the above works are an important step for the design of MPC protocols
with properties that circumvent the classical impossibility results, several critical
open questions remain to be tackled; those we address herein are as follows.

Our Results. Our contribution is three-fold. First, we put forth a new formal
model of secure MPC with compensation and we show how the introduction of
suitable ledger and synchronization functionalities makes it possible to express
completely such protocols using standard interactive Turing machines (ITM) cir-
cumventing the need for the use of extra features that are outside the standard
model (in comparison, the only previous model [7] resorted to specialized ITM’s

1 Note that this feature is currently not fully supported.

Fair and Robust Multi-party Computation 707

that utilize resources outside the computational model2). Second, our model is
equipped with a composition theorem that enables the design of protocols that
compose safely with each other and within larger environments where other pro-
tocols with compensation take place; a composition theorem for this class of pro-
tocols was not known before and requires a new framework for synchronization
in the global UC setting that can be of independent interest. Third, we introduce
the first robust MPC protocol with compensation, i.e., an MPC protocol where
not only fairness is guaranteed (via compensation) but additionally the protocol
is guaranteed to deliver output to the parties that get engaged and therefore the
adversary is not even able to mount a denial of service attack without having to
suffer a monetary penalty. In more details we have the following.

– We put forth a new model that utilizes two ideal functionalities and expresses
the ledger of transactions and a clock in the sense of [24] that is connected
to the ledger and enables parties to synchronize their protocol interactions.
Our ledger functionality enable us to abstract all the necessary features of
the underlying cryptocurrency. Contrary to the only previous formalization
approach [7,27], our modeling allows the entities that participate in an MPC
execution to be regular interactive Turing machines (ITM) and there is no
need to equip them with additional physical features such as “safes” and
“locks.” Furthermore the explicit inclusion of the clock functionality (which
is only alluded to in [7,27]) and a synchronous framework for protocol design
given such clock reveal the exact dependencies between the ledger and the
clock functionality that are necessary in order for MPC with compensation
protocols to be properly described. We express our model within a general
framework that we call Q-fairness and robustness and may be of independent
interest as it can express meaningful relaxations of fairness and robustness in
the presence of a global ideal functionality.

– We prove a composition theorem that establishes that protocols in our frame-
work are secure in a universally composable fashion. Our composition proof
treats the clock and ledger functionalities as global setups in the sense of
[11,13]. We emphasize that this is a critical design choice: the fact that the
ledger is a global functionality ensures that any penalties that are incurred to
the adversary that result to credits towards the honest parties will be glob-
ally recognized. This should be contrasted to an approach that utilizes regular
ideal functionalities which may be only accessible within the scope of a sin-
gle protocol instance and hence any penalty bookkeeping they account may
vanish with the completion of the protocol. Providing a composition theorem
for MPC protocols with compensation was left as an open question in [7].

– We finally present a new protocol for fair and robust secure MPC with com-
pensation. Our robustness property guarantees that once the protocol passes

2 An ITM with the special features of “wallet” and “safe” was introduced in [7] to
express the ability of ITM’s to store and transfer “coins.” Such coins were treated
as physical quantities that were moved between players but also locked in safes in a
way that parties were then prevented to use them in certain ways (in other words
such safes were not local but were affected from external events).

708 A. Kiayias et al.

an initial round of deposits, parties are guaranteed to obtain output or be
compensated. This is in contrast to fair MPC with compensation [1,2,7,27]
where the guarantee is that compensation takes place only in case the adver-
sary obtains output while an honest party does not. To put it differently,
it is feasible for the adversary to lead the protocol to a deadlock where no
party receives output however the honest parties have wasted resources by
introducing transactions in the ledger. We remark that it is in principle pos-
sible to upgrade the protocols of [1,2,7,27] to the robust MPC setting by
having them perform an MPC with identifiable abort, cf. [21,23], (in such
protocol the party that causes the abort can be identified and excluded from
future executions). However even using such protocol the resulting robust
MPC with compensation will need in the worst case a linear number of
deposit/communication rounds in the number of malicious parties. Contrary
to that, our robust protocol can be instantiated so that it requires a con-
stant number of deposit/communication rounds independently of the number
of parties that are running the protocol. Our construction uses time-locked
transactions in a novel way to ensure that parties do progress in the MPC
protocol or otherwise transactions are suitably revertible to a compensation
for the remaining parties. The structure of our transactions is quite more
complex than what can be presently supported by bitcoin; we describe in
high-level how our protocol can be implemented via Ethereum3 contracts.

Related Work. In addition to the previous works [1,2,7,27] in fair MPC with
compensation, very recently, Ruffing et al. [30] address equivocation issues via
penalty mechanism, and design decentralized “non-equivocation” contracts.

There are a number of other works that attempted to circumvent the impos-
sibility results for fairness in the setting of dishonest majority by considering
alternate models. Contrary to the approach based on cryptocurrencies these
works give an advantage to the protocol designer with respect to the adversarial
strategy for corruption. For instance, in [18] a rational adversary is proposed
and the protocol designer is privy to the utility function of the adversary. In [3]
a reputation system is used and the protocol designer has the availability of the
reputation information of the parties that will be engaged in the protocol. Finally
in [17] a two tiered model is proposed where the protocol designer is capable of
distinguishing two distinct sets of servers at the onset of the computation that
differ in terms of their corruptibility.

Global setups were first put forth in [11] motivated by notion of deniabil-
ity in cryptographic protocols. In our work we utilize global functionalities for
universal composition (without the deniability aspect) as in [13] where a similar
approach was taken for the case of the use of the random oracle as a global setup
functionality for MPC.

Fairness was considered from the resource perspective, cf. [8,19,29], where
it is guaranteed due to the investment of proportional resources between the
parties running the protocol, and the optimistic perspective, cf. [4,5,9], where

3 http://www.ethereum.org.

http://www.ethereum.org

Fair and Robust Multi-party Computation 709

a trusted mediator can be invoked in the case of an abort. We finally note that
without any additional assumptions, due to the impossibility results mentioned
above, one can provide fairness only with certain high probability that will be
affecting the complexity of the resulting protocol, see, e.g., [22] and references
therein.

In concurrent and independent work, Kosba et al. [26] propose a framework
for composable protocols based on a ledger. and explore a notion of fairness
with compensation. Our work goes beyond fairness and provides a treatment
of robustness. Furthermore we provide a synchronous framework with a global
clock (of independent interest) that uses the ledger as a global setup to achieve
fairness and robustness and we prove a composition theorem for our framework.

Organization. We start with preliminaries in Sect. 2. Then in Sects. 3 and 4, we
lay down a formal framework for designing composable fair protocols in the pres-
ence of globally available trusted resources. In Sect. 3, we introduce two shared
functionalities Ḡclock and Ḡledger respectively to formulate the trust resources
that are provided by Bitcoin-like systems. Subsequently, in Sect. 4, we put forth
a new formal framework for secure MPC with compensation: we introduce the
notions of Q-fairness, and Q-robustness via wrapper functionalities; we then
consider the realization of such wrapper functionalities, and further provide a
composition theorem. In Sect. 5, we present a protocol in our new framework to
achieve our new notions of fairness and robustness. We refer the reader to the
full version of our work [25] for a discussion about implementing our protocol
within Ethereum, supplementary material for Sects. 2 and 3, and for the formal
proofs of our theorems.

2 Preliminaries

Throughout the paper we assume an (often implicit) security parameter denoted
as κ. For a number n ∈ N we denote by [n] the set [n] = {1, . . . , n} and denote
by 0n (resp. 1n) the all-zero (resp. all-ones) string of length n. For a random-
ized algorithm Alg we denote by Alg(x; r) the output of Alg on input x and
random coins r. To avoid always explicitly writing the coins r, we shall denote
by y

$← Alg(x) the operation of running Alg on input x (and uniformly random

coins) and storing the output on variable y. We write f : X
$→ Y to denote a

probabilistic function with domain X and range Y . We use the standard defini-
tion of negligible and overwhelming (e.g., see [20]).

For a multiparty function f : ({0, 1}∗ ∪ {λ})n → ({0, 1}∗ ∪ {⊥})n for parties
in P = {p1, . . . , pn} and for a set P ⊆ P, we denote by f ||P′| the restriction of
f to the parties in P ′, namely, if each pi ∈ P ′ has input xi, then the output of
f ||P′| is the output of f evaluated on inputs xi for each pi ∈ P ′ and xj = λ for
each pj ∈ P\P ′.

We describe our results in the extension of Canetti’s UC framework [10]
to allow for global setups, known as GUC [11]. As argued above, this is the
natural model to consider execution in the present of a globally synchronized

710 A. Kiayias et al.

clock and a ledger/bulletin board. Consistently with the (G)UC notation, we
denote local (UC) functionalities by calligraphic letters, as in F , and add a
bar to denote global functionalities, as in Ḡ. Furthermore, we denote by φ, the
dummy protocol. Note that in GUC φ might receive inputs for its (UC) hybrids
and/or for the global setup, where an implicit mechanism is assumed to allow
the environment to define the intended recipient of each submitted input to φ.
For a protocol π, a (local) UC functionality F and a global setup Ḡ we denote by
ExecḠ,F

π,A,Z the output of the environment Z in an execution of π having hybrid
access to Ḡ and F in the presence of adversary A. We assume some familiarity
with the UC and/or the GUC framework.

Correlated Randomness as a Sampling Functionality. Our protocols are in the
correlated randomness model, i.e., they assume that the parties initially, before
receiving their inputs, receive appropriately correlated random strings. In par-
ticular, the parties jointly hold a vector R = (R1, . . . , Rn) ∈ ({0, 1}∗)n, where
Pi holds Ri, drawn from a given efficiently samplable distribution D. This is,
as usual, captured by giving the parties initial access to an ideal functionality
FD

corr, known as a sampling functionality, which, upon receiving a default input
from any party, samples R from D and distributes it to the parties (see [25] for
details). Hence, a protocol in the correlated randomness model is formally an
FD

corr-hybrid protocol. Formally, a sampling functionality FD
corr is parameter-

ized by an efficiently computable sampling distribution D and the (ID’s of the
parties in) the player set P.

3 Model

In this section and next section, we lay down a formal framework for designing
composable fair protocols in the presence of globally available trusted resources.
We introduce in the current section, shared (in the sense of the GUC model [11])
functionalities Ḡclock and Ḡledger respectively to formulate the trust resources
that are provided by Bitcoin-like systems. We stress that these two functionalities
can be thought of as a single global functionality and in our description are
allowed to communicate. Nonetheless, we choose to describe then as two separate
functionalities, because as we argue, the clock Ḡclock can also be used alone
(without Ḡledger) to naturally model synchronous computation with a global
notion of time.

3.1 Global Clock Functionality and Synchronous Protocol
Executions

In this section we describe how to model execution of synchronous protocols
that can access a global-clock setup. This is an adaptation of the original idea
by Katz et al. [24], where a clock was modelled as UC functionality that is local
to the calling protocol, and is of independent interest as a model for the design of
synchronous protocols. In addition to being a more realistic model for capturing

Fair and Robust Multi-party Computation 711

time in UC, the notion of the global clock allows for synchronous execution of
any protocols that choose to use it.

Before defining our clock, we recall the reader the clock and model of syn-
chronous execution from [24] and then highlight the main differences. The clock
in [24] is a UC functionality that keeps an indicator bit b originally set to 0. The
parties can send to the clock special “update” messages, and once the clock sees
that all honest parties agree to update the state it sets b := b⊕1. The clock then
continues to receive “update” messages, and again, once it sees that all honest
parties have requested to update after the last switch of the bit b it switches it
again. To make sure that the adversary is given enough activations, whenever
the clock receives an “update” message from the honest party it notifies the
adversary. In addition to “update” messages, the parties can send the clock a
“read” message which the clock replies with the current value of b.

The use of such a clock to keep a round structure is as follows: Whenever a
party observes a switch of the bit b, it interprets it as a round advance. Thus, a
synchronous protocol with access to such a clock is executed as follows. In each
round, every party performs all its protocol instructions for the current round,
and at the end sends an “update” message to the clock; from the point where the
party updates (its round has finished) it queries (“reads”) the clock with each
following activation to detect when all parties have also finished their rounds
(i.e., when the value of b switches). Once this happens, the party starts its next
protocol round.

An issue with the above clock is that in order to execute two protocols using
the same clock we need to make use of the joint-state UC theorem [15]. Instead,
in this work we take an alternative modelling approach and define a shared clock
functionality Ḡclock. This functionality can be viewed as a shared version of the
clock functionality which was defined by Katz et al. [24]. The main intuition
behind our clock functionality is that all honest parties can use it to ensure
that they proceed with their rounds at the same pace. On a high level, the
clock operates as follows: any party that wishes to be synchronised with the
global clock can send (register, sid) to the clock and subsequently it can send
it (clock-update, sid) commands, where sid is Ḡclock’s identifier. The clock
stores a global-time counter τ (initially set to 0), and as soon it is instructed by
all currently honest parties and by associated shared functionalities4 to advance
the time (i.e., receives (clock-update, sid) it increases its state-counter τ by 1.

The main difference between our formulation and that by Katz et al. [24] is
that in [24] the clock is a UC functionality which is local to a single protocol
and waits for an “update” message by every honest party to advance its state;
however, here we intend to have the clock to be accessed globally and used by
arbitrary protocols. Therefore we give the power to the environment to define
the clock’s speed. Indeed, if there are no associated shared functionalities, the
environment can instruct dummy parties to send inputs (clock-update, sid)
to Ḡclock and advance the clock whenever it wishes. An additional difference is

4 Certain global functionalities, such as the ledger defined in the following section,
might depend on time and, therefore, need to be synchronized with the clock.

712 A. Kiayias et al.

that in [24], the clock state is binary while here, in our formulation, the state
τ is a positive integer which indicates the time that has passed from point zero
(i.e., from the beginning of time).

Next, we elaborate and explain how to use the global clock to design syn-
chronous protocols. We remark that the model of synchronous protocol execu-
tion of [24] cannot be used in our setting as the environment can make the clock
advance before honest parties have time to take actions in any round. Indeed, in
the ideal setting the environment can keep sending (clock-update, sid) to the
dummy parties, which will forward it to the clock making its state to advance; to
make sure that the protocol is indistinguishable, honest parties would have to do
the same, thereby giving away the activations that they need for executing their
protocol instructions such as send and receive operations.5 This might, at first,
seem like a bug but it is in fact a feature. It captures the fact that since time is
a quantity that should be in the control of the environment, if the environment
chooses to advance time too fast then some protocol might not have enough time
to perform their operations for each round, and might therefore need to give up.

To make sure that the environment cannot exploit such fast-forwarding of
the clock we use the following idea: We allow the clock to receive from honest
parties or (non-shared) ideal functionalities a special (Clock-Fast) message,
which makes it set an internal indicator from 0 to 1. This indicator will be
added onto the response of the clock to clock-read queries, and will make any
synchronous protocol or corresponding functionality that reads the clock and
observes this indicator being set to one to immediately terminate with a default
value. This way we ensure that an environment that tries such a fast-forward
distinguishing attack will be forced to make any synchronous protocol behave in
a default way, a behavior which, as we see, is easily imitated in the ideal world.
The detailed description of the clock functionality can be found in Fig. 1.

We stress that having a global Ḡclock-hybrid model makes the mode of
execution of synchronous protocols more intuitive compared to [24]. Here is
how synchronous protocols are executed in this setting. First, as is the case in
real-life synchronous protocols, we assume that the protocol participants have
agreed on the starting time τ0 of their protocol and also on the duration of
each round.6 We abstract this knowledge by assuming the parties know a func-
tion Round2Time : Z → Z which maps protocol rounds to time (according to the
global clock) in which the round should be completed. For ρ ∈ Z, Round2Time(ρ)
is the time in which the ρth round of the protocol should be completed. To make
sure that no party proceeds to round ρ+1 of the protocol before all honest par-
ties have completed round ρ, we require that any two protocol rounds are at
least two clock-ticks apart (see [24] for a discussion); formally, for all ρ ≥ 0, it
holds that Round2Time(ρ + 1) ≥ Round2Time(ρ) + 2.

5 The communication channels we are using are fetch-type bounded delivery channels
as in [24]. In such channels, the receiver needs to issue “fetch”-requests which are
answered only if a message is ready for delivery. We refer to [24] for details.

6 Different protocols might proceed at a different pace.

Fair and Robust Multi-party Computation 713

Functionality Ḡclock

Shared functionality Ḡclock is globally available to all participants. The shared
functionality is parameterized with variables τ , a bit dḠledger

a set P ′ and a bit
fast and is associated with a ledger shared functionality Ḡledger.

Initially, τ := 0, dḠledger
:= 0, fast := 0 and P ′ := ∅.

– Upon receiving (register, sid) from some party P , set P ′ := P ′∪{P} and if P
was not registered before, set dP := 0; subsequently, forward (register, sid, P)
to A.

– Upon receiving (clock-update, sid) from Ḡledger set dḠledger
:= 1 and forward

(clock-update, sid, Ḡledger) to A
– Upon receiving (clock-update, sid) from some honest party P ∈ P ′ set di :=

1; then if dḠledger
:= 1 and dP = 1 for all honest parties in P ′, then set

τ := τ + 1 and reset dḠledger
:= 0 and dP := 0 for all parties in P ′. Forward

(clock-update, sid, P) to A.
– Upon receiving (clock-read, sid) from any participant (including the envi-

ronment, the adversary, or any ideal—shared or local—functionality) return
(clock-read, sid, τ, fast) to the requestor.

– Upon receiving (Clock-Fast) from any honest party or ideal functionality,
set fast := 1.

Fig. 1. The clock functionality

A synchronous protocol in the above setting proceeds as follows where the
parties keep locally track of the current round ρ in the protocol they are in:

– Upon receiving a (clock-update, sid) input (from its environment) where
sid is the ID of Ḡclock, party Pi forwards it to Ḡclock.

– Upon receiving a (clock-read, sid) input (from its environment), party Pi

forwards it to Ḡclock and outputs the response to the environment.
– Upon receiving a (Clock-Fast) input (from its environment), party Pi for-

wards it to Ḡclock.
– Upon receiving any message (Input, sid′) where sid′ is the session ID of a

protocol Pi is involved in, do the following: Send (clock-read, sid) to Ḡclock

and denote the response by (clock-read, sid, τ, fast); if fast = 1 then
output Clock-Fast to the environment. Otherwise do:

• if τ ≤ Round2Time(ρ − 1) halt;
• else, if Round2Time(ρ−1) < τ ≤ Round2Time(ρ) execute the next pending

round−ρ instruction (if all the instructions for round ρ are finished halt.)
• else, if τ > Round2Time(ρ) and there are still pending instructions for the

current round, send (Clock-Fast) to Ḡclock.
• else, i.e., if τ > Round2Time(ρ) and Pi has completed all round-ρ instruc-

tion, then set ρ := ρ + 1 and halt.

It is easy to verify that the above mode of operation will guarantee that the
parties are never out-of-sync, since as soon as the first party issues a Clock-Fast

714 A. Kiayias et al.

message for the clock, all synchronous protocols will enter the mode of out-
putting Clock-Fast for every input that the environment hands them (that
is not intended for the clock). However, there is one more thing that needs
to be taken care of. Since in the real-world the parties go to a default mode
(where they output Clock-Fast to every query) when the environment does
not give them sufficient time, this should also be the case in the ideal world. To
achieve this we use another idea inspired by the guaranteed termination func-
tionality from [24]: Let π be a synchronous protocol with round-to-time function
Round2Time : Z → Z, where in each round, each party needs exactly m acti-
vations to perform its instructions7. We introduce a wrapper W̃ which, at a
high level, forwards messages to and from its wrapped functionality but stores
a round-index and checks, as the protocol would, that every party issues to the
wrapped functionality, at least m activations for each round ρ in the intended
interval. If this is not the case the wrapper sends (Clock-Fast) to Ḡclock and
responds with Clock-Fast form that point on. The detailed description can be
found in the full version [25].

3.2 Global Ledger Functionality

Functionality Ḡledger provides the abstraction of a public ledger in Bitcoin-like
systems (e.g., Bitcoin, Litecoin, Namecoin, Ethereum, etc.). Intuitively, the pub-
lic ledger could be accessed globally by protocol parties or other entities including
the environment Z. Protocol parties or the environment can generate transac-
tions; and these valid transactions will be gathered by a set of ledger maintainers
(e.g., miners in Bitcoin-like systems) in a certain order as the state of the ledger.
More concretely, whenever the ledger maintainers receive a vector of transac-
tions tx, they first add the transactions in a buffer, assuming they are valid with
respect to the existing transactions and the state of the ledger; thus, in this way
a vector of transactions is formed in the buffer. After a certain amount of time,
denoted by T, which will be also referred to as a ledger round, all transactions
in the buffer will be “glued” into the ledger state in the form of a block. The
adversary is allowed to permute the buffer prior to its addition to the ledger. In
Bitcoin, T is 10 min (approximately); thus in about every 10 min, a new block of
transactions will be included into the ledger, and the ledger state will be updated
correspondingly.

To enable the ledger to be aware of time, the ledger maintainers are allowed to
“read” the state of another publicly available functionality Ḡclock defined above.
Furthermore, to ensure that the ledger is activated at least once in each time-
tick8 (i.e., each advance of the Ḡclock state) we have the ledger, with every mes-
sage it gets from a party other than the adversary, send a (clock-update, sid)
message to Ḡclock. (Recall that, as defined, Ḡclock always waits for at least one
such message from the ledger before advancing its time counter.)

7 One can make any synchronous protocol have this form by introducing dummy
instructions.

8 This is essential to ensure that updates are done in a time-consistent manner.

Fair and Robust Multi-party Computation 715

Functionality Ḡledger

Shared functionality Ḡledger is globally available to all participants. The shared
functionality is parameterized with a predicate Validate, a constant T, and variables
state, buffer and counter.

Initially, state := ε, buffer := ε, and counter := 0.

– Upon receiving (submit, sid, tx) from some participant, If
Validate(state, (buffer, tx)) = 1, then set buffer := buffer||tx. Go to State
Extend.

– Upon receiving (read, sid) from a party P or A, if P is honest set b = state
else set b = (state, buffer).
1. Execute State Extend.
2. Return (read, sid, b) to the requestor.

– Upon receiving (permute, sid, π) from A apply permutation π on the elements
of buffer.

State Extend: Send (clock-read, sid) to Ḡclock and receive (clock-read, sid, τ)
from Ḡclock. If |τ − T · counter| > T, then set state := state||Blockify(τ, buffer) and
buffer := ε and counter := counter + 1. Subsequently, send (clock-update, sid) to
Ḡclock where sid is the ID of Ḡclock.

Fig. 2. The public ledger functionality.

We remark that all gathered transactions should be “valid” which is defined
by a predicate Validate. In different systems, predicate Validate will take different
forms. For example, in the Bitcoin system, the predicate Validate should make
sure that for each newly received transaction that transfers v coins from the
original wallet address addresso to the destination wallet address addressd,
the original wallet address addresso should have v or more than v coins, and
the transaction should be generated by the original wallet holder (as shown
by the issuance of a digital signature). Furthermore, prior to each vector of
transactions becoming block, the vector is passed through a function Blockify(·)
that homogenizes the sequence of transactions in the form of a block. Moreover,
in some systems like Bitcoin, it may add a special transaction called a “coinbase”
transaction that implements a reward mechanism for the ledger maintainers.

In Fig. 2 we provide the details of the ledger functionality.

4 Q-Fairness and Q-Robustness

In this section, we provide a formal framework for secure computation with fair
and robust compensation. In the spirit of [19], our main tool is a wrapper func-
tionality. Our wrapper functionality is equipped with a predicate QḠ which is
used to make sure that the outcome of the protocol execution is consistent with
appropriate conditions on the state of the global setup Ḡ. Intuitively, the predi-
cate QḠ works as a filter, such that if certain “bad” event occurs (e.g., an abort),

716 A. Kiayias et al.

then the wrapped functionality will restrict the simulators influence. More con-
cretely, the predicate QḠ has three modes QInit

Ḡ , QDlv
Ḡ and, QAbt

Ḡ , where QInit
Ḡ

specifies under which condition (on the global setup’s state) the protocol should
start executing; QDlv

Ḡ specifies under which condition parties should receive their
output; and QAbt

Ḡ specifies under which condition the simulator is allowed to force
parties to abort. With foresight QInit

Ḡ will ensure that the protocol is executed
only if all honest participants have enough coins; QDlv

Ḡ will ensure that honest
parties do not lose coins if they execute the protocol; and QAbt

Ḡ will ensure that
honest parties might be forced to an “unfair” abort (i.e., where the adversary
has received his output) only if they are compensated by earning coins (from
the corrupted parties). We will call an implementation of a wrapped version of
F a Q-fair implementation of F.9

Our definition of QḠ-fairness can be instantiated with respect to any global
setup that upon receiving a read symbol (from any protocol participant or func-
tionality) it returns its public state trans. Concretely, let Ḡ be global ideal func-
tionality and let QḠ a predicate, as above, with respect to such Ḡ. Let also F be
a non-reactive functionality10 which allows for fair evaluation of a given function
(SFE) in the sense of [19], i.e., it has two modes of delivering output: (i) delayed
delivery: (deliver, sid,m, P) signifying delayed output delivery11 of m to party
P , (ii) fair delivery: (fair-deliver, sid, (m,Pi1), . . . , (m,Pik

), (mS ,S)) that
results in simultaneous delivery of outputs mi1 , . . . mik

to parties Pi1 , . . . , Pik

and output mS to S. We note that (G)UC does not have an explicit mechanism
for simultaneous delivery of outputs. Thus, when we refer to simultaneous deliv-
ery of a vector (mi1 , . . . , mik

) to parties Pi1 , . . . , Pik
, respectively, we imply that

the functionality prepares all the output to be delivered in a “fetch mode” as
defined in [24]; that is:

– The functionality registers the pairs (mi1 , Pi1), . . . , (m,Pik
) as “ready to

fetch” and sends the set {(mij
, Pij

)|Pij
is corrupted} to S.

– Upon receiving an input (fetch-output, Pi) from party Pi, if a message
(mi, Pi) has been registered as “ready to fetch” then remove it from the
“ready to fetch” set and output it to Pi (if more than one such messages are
registered, deliver and remove from the “ready to fetch” set the first, chrono-
logically, registered such pair); otherwise send (fetch-output, Pi) to S.

4.1 QḠ-Fairness

The wrapper functionality W that will be used in the definition of Q-fair (secure)
computation is given in Fig. 3. The intuition is as follows: Prior to handing

9 We note that whenever it is clear from the context we may drop the subscript Ḡ in
QḠ ,Q

Init
Ḡ ,QDlv

Ḡ ,QAbt
Ḡ .

10 A non-reactive functionality does not accept any input from honest parties after
generating output.

11 Delayed output delivery is a standard (G)UC mechanism where the adversary is
allowed to schedule the output at a time of its choosing.

Fair and Robust Multi-party Computation 717

inputs to the (wrapped) functionality F, the parties can request the wrapper to
generate on their behalf a resource-setup (by executing an associated resource-
setup generation algorithm Gen) which allows them to update the global setup
Ḡ; this resource setup consists of a public component RS

pub
P,sid and a private

component RS
priv
P,sid.

12 Both these values are given to the simulator, and the
public component is handed to the party.

From the point when parties receive their inputs the Q predicate is used as
a filter to specify the wrapper’s behavior and add the fairness guarantees. More
concretely, upon receiving an input from a party, the wrapper checks on the
global setup to ensure that QInit is true, and if it is not true it aborts (i.e., sets
all honest parties’ outputs to ⊥ and blocks any communication between F and
the adversary). This means that if the environment has not set up the experiment
properly,13 then the experiment will not be executed and the wrapped function-
ality will become useless. This formally resolves the question “What happens
if some party does not have sufficient coins to play the protocol?” which leads
to some ambiguity in existing bitcoin-based definitions of computation with fair
compensation [7].

The predicates QDlv and QAbt are used to filter out attempts of the simulator
to deliver outputs or abort when QDlv and QAbt are violated.14 Concretely, any
such attempt will be ignored if the corresponding predicate is not satisfied.

Intuitively, by requiring the protocol to implement such a wrapped version of
a functionality, we will ensure that the parties might only abort if QAbt is true,
and might output a valid (non-⊥) value if QDlv. As we shall see in Sect. 4.2,
by a trivial modification of the fairness wrapper, we can capture a stronger
property which we will call Q-robustness; the latter, roughly, guarantees that
honest parties which start the protocol will either receive their output (and
QDlv being true) or will abort and increase their revenue. (I.e., there is no way
for the adversary to make the protocol abort after the first honest party has sent
its first input-dependent message).

Definition 1. We say protocol π realizes functionality F with QḠ-fairness with
respect to global functionality Ḡ, provided the following statement is true. For all
adversaries A, there is a simulator S so that for all environments Z it holds:

ExecḠ
π,A,Z ≈ Exec

Ḡ,WQ,Ḡ(F)

S,Z

More generally, the protocol σ realizes H with Q′̄
G fairness using a function-

ality F with fairness QḠ provided that for all adversaries A, there is a simulator

12 In the case of bitcoin-like ledgers these will correspond to a wallet (public-key) and
a corresponding secret key.

13 In the case of a bitcoin-ledger this corresponds to the environment not transferring
to some protocol-related wallet sufficient funds to execute the protocol.

14 As we will see, in bitcoin-like instantiations, QDlv will be satisfied when no honest
party has a negative balance, and QAbt will be satisfied when every honest party has
a (strictly) positive balance.

718 A. Kiayias et al.

Wrapper Functionality WQ,Ḡ(F)

The wrapper WQ,Ḡ(F) interacts with a set of parties P = {P1, . . . , Pn}, the adver-
sary S and the environment Z, as well as shared functionality Ḡ. It is parameterized
with a predicate Q = (QInit, QDlv, QAbt) and a resource-setup generating algorithm

Gen : 1∗ $→ ({0, 1}∗)2 and wraps any given non-reactive n-party functionality F
with the two output-delivery modes (delayed and fair) described in Section 4.1.
The functionality also keeps an indicator bit b, initially set to 0, indicating whether
or not S is blocked from sending messages to F.

– Allocating Resources. Upon receiving (alocate, sid) from a party P , if a
message (alocate, sid) has already been received for P then ignore it;
else send (Coins, sid, P) to S and upon receiving (Coins, sid, P, r) from
S compute (RSpub

P,sid, RSpriv

P,sid) ← Gen(1κ; r) and sends a delayed output

(deliver, sid, RSpub

P,sid, P) to P .
– Upon receiving any message M from F to be delivered to its simulator, if b = 0

forward M to S.
– Upon receiving a message (Forward, M) from S, if b = 0 then forward M to

F as a message coming from its simulator.
– Receiving input for F. Upon receiving (input, sid, x) from a party P , send

read to Ḡ, denote the response by trans and if ¬QInit(RSpub

P,sid, trans) then
set b := 1 and issue a message (fair-deliver, sid, (⊥, P1), . . . , (⊥, Pn), (⊥, S))
(i.e., simultaneously deliver ⊥ to all parties and ignore all future messages
except (fetch-output, ·) messages. Otherwise, forward (input, sid, x) to F
as input for P .

– Generating delayed output. Upon receiving a message from F marked
(deliver, sid, m, P) forwards m to party P via delayed output.

– Registering fair output. Upon receiving a message from F that is marked for
fair delivery (fair-deliver, sid, mid, (m1, Pi1), . . . , (mk, Pik), (mS , S)), it for-
wards (mid, Pi1 , . . . , Pik , mS) to S.

– Q-fair delivery. Upon receiving (Q-deliver, sid, mid) from S then pro-
vided that a message (mid, . . .) has been delivered to S operate as fol-
lows. For each pair of the form (m, P) associated with mid: Let L =
{(m, P)| P is uncorrupted}. Send {(m, P)|P is corrupted} to S. (If some cur-
rently honest P becomes corrupted later on, remove (m, P) from sending and
send (m, P) to S.) Subsequently perform the following.

• On input a message (deliver, sid, mid, P) from S, provided that the record
mid contains the pair (m, P) ∈ L, send read to Ḡ, denote the response
by trans and if ¬QDlv(sid, P, RSpub

P,sid, trans) then ignore the message. Else,
remove (m, P) from L and register (m, P) as “ready to fetch”.

• On input a message (abort, sid, mid, P) from S, provided that the record
mid contains the pair (m, P) ∈ L, send read to Ḡ, denote the response
by trans and if ¬QAbt(sid, P, RSpub

P,sid, trans) then ignore the message. Else,
remove (m, P) from L and register (⊥, P) as “ready to fetch”.

– Upon receiving an input (fetch-output, P) from party P , if a message (m, P)
has been registered as “ready to fetch” then remove it from the “ready to fetch”
set and output it to Pi (if more than one such messages are registered, deliver
and remove from the “ready to fetch” set the first, chronologically, registered
such pair); otherwise send (fetch-output, Pi) to S.

Fig. 3. The Q-Fairness wrapper functionality.

Fair and Robust Multi-party Computation 719

S so that for all environments Z, it holds:

Exec
Ḡ,WQ,Ḡ(F)

π,A,Z ≈ Exec
Ḡ,WQ′,Ḡ(H)

S,Z

We note that, both protocol π and the functionality (WQ,Ḡ(F), Ḡ) are with
respect to the global functionality15 Ḡ. By following the very similar proof idea
in [11], we can prove the following lemma and theorem:

Lemma 1. Let QḠ be a predicate with respect to global functionality Ḡ. Let π be
a protocol that realizes the functionality F with QḠ-fairness. Let σ be a protocol
in (WQ,Ḡ(F), Ḡ)-hybrid world. Then for all adversaries A, there is a simulator
S so that for all environments Z, it holds

ExecḠ
σπ,A,Z ≈ Exec

Ḡ,WQ,Ḡ(F)

σ,S,Z

Theorem 1. Let QḠ and Q′̄
G be predicates with respect to global functionality

Ḡ. Let π be a protocol that realizes the functionality F with QḠ-fairness. Let σ
be a protocol in (WQ,Ḡ(F), Ḡ)-hybrid world that realizes the functionality H with
Q′̄

G-fairness. Then for all adversaries A, there is a simulator S so that for all
environments Z it holds:

ExecḠ
σπ,A,Z ≈ Exec

Ḡ,WQ′,Ḡ(H)

S,Z

Is the Ledger Functionality Sufficient for Q Fairness? We will construct secure
computation protocols based on the ledger functionality Ḡledger together with
other trusted setups. We may wonder if we can construct secure computation
protocol from Ḡledger only. The answer if negative. Indeed, we prove the following
statement.

Theorem 2. Let QḠ be a predicate with respect to global functionality Ḡ =
Ḡledger. There exists no protocol in the Ḡledger hybrid world which realizes the
commitment functionality Fcom with QḠ fairness.

The proof idea is very similar to the well-known Canetti-Fischlin [12] impos-
sibility proof and can be found in [25].

4.2 QḠ-Robustness

The above wrapper W allows the simulator to delay delivery of messages arbitrar-
ily. Thus, although the predicates do guarantee the promised notion of fairness,
the resulting functionality lacks the other relevant property that we discussed
in the introduction, namely robustness. In the following we define Q-robustness
which will ensure that if any party starts executing the protocol on its input
(i.e., the protocol does not abort due to lack of resources for some party), then
every honest party is guaranteed to either receive its output without loosing

15 In GUC framework [11], this is also called, Ḡ-subroutine respecting.

720 A. Kiayias et al.

revenue, or receive bottom and a compensation. This property can be obtained
by modifying the wrapper W using an idea from [24] so that in addition to
the global-setup-related guarantees induced by predicate Q, it also preserves the
guaranteed termination property of the wrapped functionality.16

More concretely, in [24], a functionality was augmented to have guaran-
teed termination, by ensuring that given appropriately many activations (i.e.,
dummy inputs), from its honest interface, it computes its output.17 In the same
spirit, a wrapper which ensures Q-robustness is derived from W via the follow-
ing modification: As soon as a fair-output is registered (i.e., upon the wrap-
per receiving (fair-deliver, sid,mid, (m1, Pi1), . . . , (mk, Pik

), (mS ,S)) from its
inner functionality) it initiates a counter λ = 0 and an indicator variable
λij

:= 0 for each Pij
∈ {Pi1 , . . . , Pik

}; whenever a message is received from some
Pij

∈ {Pi1 , . . . , Pik
}, the wrapper sets λij

:= 1 and does the following check: if
λij

= 1 for all Pij
∈ {Pi1 , . . . , Pik

} then increase λ := λ + 1 and reset λij
= 0

for all Pij
∈ {Pi1 , . . . , Pik

}. As soon as λ reaches a set threshold T , the wrapper
simultaneously delivers each ((m1, Pik

), . . . , (mk, Pik
) (i.e., prepares them to be

fetched) without waiting for the simulator and does not accept any inputs other
than (fetch-output, ·) from that point on. When this happens, we will say
that the wrapper reached its termination limit. We denote by ŴT the wrapper
from Fig. 3 modified as described above. Note that the wrapper is parameterized
by the termination threshold T .

The intuition why this modification ensures guaranteed termination is the
same as in [24]: if the environment wishes the experiment to terminate, the it
can make it terminate irrespective of the simulator’s strategy. Thus a protocol
which realizes such a wrapper should also have such a guaranteed termination
(the adversary cannot stall the computation indefinitely.)

Definition 2. We say protocol π realizes functionality F with QḠ-robustness
with respect to global functionality Ḡ, provided the following statement is true.
There exists a threshold T such that for all adversaries A, there is a simulator
S so that for all environments Z it holds:

ExecḠ
π,A,Z ≈ Exec

Ḡ,ŴT
Q,Ḡ(F)

S,Z .

Moreover, whenever the wrapper reaches its termination limit, then for
the state trans of the global setup Ḡ upon termination it holds that
QDlv

Ḡ (sid, P,RS
pub
P,sid, trans) for every party P ∈ P.

The composition theorems for Q-fairness from Sect. 4.1 can be adapted in a
straight-forward manner to Q-robustness. The statements and proofs are as in
the previous section and are omitted. We note in passing that since the wrapper
Ŵ is in fact a wrapper which restricts the behavior of S on top of the restrictions

16 That is, we want to ensure that if the functionality F has guaranteed termination
then the wrapped functionality will also have guaranteed termination.

17 Of course, the simulator needs to be given sufficiently many activation so that he
can provide its own inputs and perform the simulation (please see [24] for details).

Fair and Robust Multi-party Computation 721

which are applied by the Q-fairness wrapper W, a protocol which is Q-robustness
is also Q-fair with respect to the same predicate Q.

4.3 Computation with Fair/Robust Compensation

We are now ready to instantiate the notion of Q-fairness with a compensation
mechanism. For the case when Ḡ corresponds to a Bitcoin-like ledger, e.g., Ḡ =
Ḡledger, and QḠ provides compensation of c coins, where c > 0, in the case of
an abort, the resource-setup generation algorithm Gen a pair of (address, sk)
where address is a bitcoin address and sk is the corresponding secret-key and
the predicate Qcoin

Ḡ = (QC-Init
Ḡ ,QC-Dlv

Ḡ ,QC-Abt
Ḡ) operates as follows. On input a

session ID sid, a party id P , a wallet address RS
pub
P,sid, and a string trans which is

parsed as a bitcoin ledger that contains transactions:18

– QC-Init
Ḡ outputs true if and only if the balance of all transactions (both incom-

ing and outgoing) that concern RSpub
P,sid in trans and carry the meta-data sid

is higher than a fixed pre-agreed initialization amount.19

– QC-Dlv
Ḡ outputs true if and only if the balance of all transactions (both incom-

ing and outgoing) that concern RSpub
P,sid in trans and carry the meta-data sid

is greater or equal to 0.
– QC-Abt

Ḡ outputs true if and only if the balance of all transactions (both incom-
ing and outgoing) that concern RSpub

P,sid in trans and carry the meta-data sid
is greater or equal to a fixed pre-agreed compensation amount.

If a protocol π realizes a functionality F with Qcoin
Ḡ -fairness (resp. Qcoin

Ḡ -
robustness), i.e., with respect to the global functionality Ḡledger, we say that
π realizes F with fair compensation (resp. with robust compensation). Because
our results are proved for Qcoin

Ḡ , to keep the notation simple in the remainder
of the paper we might drop the superscript from Qcoin

Ḡ , i.e., we write Q or QḠ
instead of Qcoin

Ḡ .

5 Our QCoin
Ḡ -Robust Protocol Compiler

In this section we present our fair and robust protocol compiler. Our compiler
compiles a synchronous protocol πSH which is secure (i.e., private) against a
corrupted majority in the semi-honest correlated randomness model (e.g., an
OT-hybrid protocol where the OT’s have been pre-computed) into a protocol π
which is secure with fair-compensation in the malicious correlated randomness
model. The high-level idea is the following: We first compile πSH into a protocol in

18 Transactions in trans can also be marked with metadata.
19 In our construction QC-Init

Ḡ will check additional properties for the initial set of

transactions that concern RSpub

P,sid; specifically, not only that a fixed amount µ is
present but also that it is distributed in a special way.

722 A. Kiayias et al.

the malicious correlated randomness model, which is executed over a broadcast
channel and is secure with publicly identifiable abort. (Roughly, this means that
someone observing the protocol execution can decide, upon abort, which party
is not executing its code.) This protocol is then transformed into a protocol
with fair compensation as follows: Every party (after receiving his correlated
randomness setup) posts to the ledger transactions that the other parties can
claim only if they, later, post transactions that prove that they follow their
protocol. Transactions that are not claimed this way are returned to the source
address; thus, if some party does not post such a proof it will not be able to
claim the corresponding transaction, and will therefore leave the honest parties
with a positive balance as their transactions will be refunded. Observe that these
are not standard Bitcoin transactions, but they have a special format which is
described in the following.

Importantly, the protocol we describe is guaranteed to either produce output
in as many (Bitcoin) rounds as the rounds of the original malicious protocol, or
to compensate all honest parties. This robustness property is achieved by a novel
technique which ensures that once the honest parties make their initial transac-
tion, the adversary has no way of preventing them from either computing their
output or being compensated. Informally, our technique consists of splitting the
parties into “islands” depending on the transactions they post (so that all honest
parties are on the same island) and then allowing them to either compute the
function within their island, or if they abort to get compensated. (The adversary
has the option of being included or not in the honest parties’ island.)

5.1 MPC with Publicly Identifiable Abort

As a first step in our compiler we invoke the semi-honest to malicious with iden-
tifiable abort compiler of Ishai, Ostrovsky, and Zikas [23] (hereafter referred to
as the IOZ compiler). This compiler takes a semi-honest protocol πSH in the
correlated randomness model and transforms it to a protocol in the malicious
correlated randomness model (for an appropriate setup) which is secure with
identifiable abort, i.e., when it aborts, every party learns the identity of a cor-
rupted party. The compiler in [23] follows the so called GMW paradigm [21],
which in a nutshell has every party commit to its input and randomness for
executing the semi-honest protocol πSH and then has every party run πSH over
a broadcast channel, where in each round ρ every party broadcasts his round ρ
messages and proves in zero-knowledge that the broadcasted message is correct,
i.e., that he knows the input and randomness that are consistent with the initial
commitments and the (public) view of the protocol so far. The main difference
of the IOZ compiler and the GMW compiler is that the parties are not only
committed to their randomness, but they are also committed to their entire
setup string, i.e., their private component of the correlated randomness. In the
following, for the sake of completeness, we enumerate some key properties of
the resulting maliciously secure protocol πMal (which is based on the compiler
in [23]) that will be important for our construction:

Fair and Robust Multi-party Computation 723

– Every party is committed to his setup, i.e., the part of the correlated random-
ness it holds. That is, every party Pi receives from the setup his randomness
(which we refer to as Pi’s private component of the setup) along with one-to-
many commitments20 on the private components of all parties. Without loss
of generality, we also assume that a common-reference string (CRS) and a
public-key infrastructure (PKI) are included in every party’s setup. We refer
to the distribution of this correlated randomness as DMal.

– The protocol πMal uses only the broadcast channel for communication.
– Given the correlated randomness setup, the protocol πMal is completely deter-

ministic. This is achieved in [23] by ensuring that all the randomness used in
the protocol, even the one needed for the zero-knowledge proofs, is part of
the private components that are distributed by the sampling functionality.21

– πMal starts off by having every party broadcast a one-time pad encryption
of its input with its (committed) randomness and a NIZK that it knows the
input and randomness corresponding to the broadcasted message.

– By convention, the next-message function of πMal is such that if in any round
the transcript seen by a party is an aborting transcript, i.e., is not consistent
with an accepting run of the semi-honest protocol, then the party outputs
⊥. Recall that the identifiable abort property ensures that in this case every
party will also output the identity of a malicious party (the same for all
parties).

– There is a (known) upper bound on the number ρc of rounds of πMal.

We remark that, given appropriate setup, the IOZ-compiler achieves
information-theoretic security, and needs therefore to build information-theoretic
commitments and zero-knowledge proofs. As in this work we are only after com-
putational security, we modify the IOZ compiler so that we use (computationally)
UC secure one-to-many commitments [14] and computationally UC secure non-
interactive zero-knowledge proofs (NIZKs) instead if their information-theoretic
instantiation suggested in [23]. Both the UC commitment and the NIZKs can
be built in the CRS model. Moreover, the use of UC secure instantiations of
zero-knowledge and commitments ensures that the resulting protocol will be
(computationally) secure.
Using the Setup Within a Subset of Parties. A standard property of many
protocols in the correlated-randomness model is that once the parties in P have
received the setup, any subset P ′ ⊂ P is able to use it to perform a computation
of a |P ′|-party function amongst them while ignoring parties in P \ P ′. More
concretely, assume the parties in P have been handed a setup allowing them
to execute some protocol π for computing any |P|-party function f ; then for
any P ′ ⊆ P, the parties in P ′ can use their setup within a protocol π|P′ to
compute any |P ′|-party function f ||P′|. This property which will prove very useful
for obtaining computation with robustness or compensation, is also satisfied
20 These are commitments that can be opened so that every party agrees on whether

or not the opening succeeded.
21 As an example, the challenge for the zero-knowledge proofs is generated by the

parties opening appropriate parts of their committed random strings.

724 A. Kiayias et al.

by the IOZ protocol, as the parties in P ′ can simply ignore the commitments
(public setup component) corresponding to parties in P\P ′. It should be noted
that this is not an inherent property of the correlated randomness model: e.g.,
protocols based on threshold encryption do not immediately satisfy this property
(as players would have to readjust the threshold).

Making Identifiability Public. The general idea of our protocol is to have
every party issue transactions by which he commits to transferring a certain
amount of coins per party for each protocol round. All these transactions are
issued at the beginning of the protocol execution. Every party can claim the
“committed” coins transferred to him associated to some protocol round ρ only
under the following conditions: (1) the claim is posted in the time-interval corre-
sponding to round ρ; (2) the party has claimed all his transferred coins associated
to the previous rounds; and (3) the party has posted a transaction which includes
his valid protocol message for round ρ.

In order to ensure that a party cannot claim his coins unless he follows the
protocol, the ledger (more concretely the validation predicate) should be able to
check that the party is indeed posting its valid next message. In other words, in
each round ρ, Pi’s round-ρ message acts as a witness for Pi claiming all the coins
committed to him associated with this round ρ. To this direction we make the
following modification to the protocol: Let f(x1, . . . , xn) = (y1, . . . , yn) denote
the n-party function we wish to compute, and let f+1 be the (n + 1)-party
function which takes input xi from each Pi, i ∈ [n], and no input from Pn+1

and outputs yi to each Pi and a special symbol (e.g., 0) to Pn+1. Clearly, if
πSH is a semi-honest n-party protocol for computing f over broadcast, then the
n+1 protocol π+1

SH (in which every Pi with i ∈ [n] executes πSH and Pn+1 simply
listens to the broadcast channel and outputs 0) is a semi-honest secure protocol
for f+1.

Now if π+1
Mal denotes the (n + 1)-party malicious protocol which results by

applying the above modified IOZ compiler on the (n + 1)-party semi-honest
protocol π+1

SH for computing the function f+1, then, by construction this protocol
computes function f+1 with identifiable abort and has the following additional
properties:

– Party Pn+1 does not make any use of his private randomness whatsoever; this
is true because he broadcasts no messages and simply verifies the broadcasted
NIZKs.

– If some party Pi, i ∈ [n] deviates from running πSH with the correlated (com-
mitted) randomness as distributed from the sampling functionality, then this
is detected by all parties, including Pn+1 (and protocol π+1

Mal aborts identify-
ing Pi as the offender). This follows by the soundness of the NIZK which Pi

needs to provide proving that he is executing πSH in every round.

Due to Pn+1’s role as an observer who gets to decide if the protocol is successful
(Pn+1 outputs 0) or some party deviated (Pn+1 observes that the corresponding
NIZK verification failed) in the following we will refer to Pn+1 in the above
protocol as the judge. The code of the judge can be used by anyone who has the

Fair and Robust Multi-party Computation 725

public setup and wants to follow the protocol execution and decide whether it
should abort or not given the parties’ messages. Looking ahead, the judge’s code
in the protocol will be used by the ledger to decide whether or not a transaction
that claims some committed coins is valid.

5.2 Special Transactions Supported by Our Ledger

In this section we specify the Validate and the Blockify predicates that are used
for achieving our protocol’s properties. More specifically, our protocol uses the
following type of transactions which transfer v coins from wallet addressi to
wallet addressj conditioned on a statement Σ:

Bv,addressi,addressj ,Σ,aux,σi,τ (1)

where σi is a signature of the transaction, which can be verified under wallet
addressi; τ is the time-stamp, i.e., the current value of the clock when this
transaction is added to the state by the ledger—note that this timestamp is
added by the ledger and not by the users,—aux ∈ {0, 1}∗ is an arbitrary string22;
and the statement Σ consists of three arguments, i.e., Σ = (arg1, arg2, arg3),
which are processed by the Validate predicate in order to decide if the transaction
is valid (i.e., if it will be included in the ledger’s next block).

The Validate Predicate. The validation happens by processing the arguments of Σ
in a sequential order, where if while processing of some argument the validation
rejects, algorithm Validate stops processing at that point and this transaction is
dropped. The arguments are defined/processed as follows:

Time-Restrictions: The first argument is a pair arg1 = (τ−, τ+) ∈ Z× (Z+ ∪
{∞}) of points in time. If τ− > τ+ then the transaction is invalid (i.e., it will
be dropped by the ledger). Otherwise, before time τ− the coins in the transac-
tion “remain” blocked, i.e., no party can spend them; from time τ− until time
τ+, the money can be spent by the owner of wallet addressj provided that
the spending statement satisfies also the rest of the requirements/arguments
in statement Σ (listed below). After time τ+ the money can be spent by the
owner of wallet addressi without any additional restrictions (i.e., the rest
of the arguments in Σ are not parsed). As a special case, if τ+ = ∞ then
the transferred coins can be spent from addressj at any point (provided the
spending statement is satisfied); we say then that the transaction is time-
unrestricted,23 otherwise we say that the transaction is time restricted.

Spending Link: Provided that the processing of the first argument, as above,
was not rejecting, the Validate predicate proceeds to the second argument,
which is a unique “anchor”, arg2 = α ∈ {0, 1}∗. Informally, this serves as
a unique identifier for linked transactions24; that is, when α �=⊥, then the

22 This string will be included to the Ledger’s state as soon as the transaction is posted
and can be, therefore, referred to by other spending statements.

23 This is the case with standard Bitcoin transactions.
24 Looking ahead arg2 will be used to point to specific transactions of a protocol

instance. The mechanism may be simulated by generating multiple addresses however
it is more convenient for the protocol description and for this reason we adopt it.

726 A. Kiayias et al.

Validate algorithm of the ledger looks in the ledger’s state and buffer to con-
firm that the balance of transactions to/from the wallet address addressi

with this anchor arg2 is at least v′ ≥ v coins. That is, the sum of coins in the
state or in the buffer with receiver address addressi and anchor arg2 minus
the sum of coins in the state or in the buffer with sender address addressi

and anchor arg2 is greater equal to v. If this is not the case then the trans-
action is rendered invalid; otherwise the validation of this argument succeeds
and the algorithm proceeds to the next argument.

State-Dependent Condition: The last argument to be validated is arg3,
which is a relation R : S × B × T → {0, 1}, where S, B, and T are the
domains of possible ledger-states, ledger-buffers, and transactions, respec-
tively (in a given encoding). This argument defines which type of transactions
can spend the coins transferred in the current transaction. That is, in order
to spend the coins, the receiver needs to submit a transaction tx ∈ T such
that R(state, buffer, tx) = 1 at the moment when tx is to be validated and
inserted in the buffer. In our construction this is the part of the transaction
that we will take advantage to detect cheating (and thus R will encode a
NIZK verifier etc.).

We point out that as with standard Bitcoin transactions, the validation predi-
cate will always also check validity of the signature σi with respect to the wal-
let addressi. Moreover, the standard Bitcoin-like transactions can be trivially
casted as transactions of the above type by setting α =⊥ and Σ = ((0,∞),⊥
,R∅), where R∅ denotes the relation which is always true.

To simplify the structure of our special transactions and ease their imple-
mentation, we impose the following additional constraints: whenever a time-
restriction is given, i.e., arg1 = (τ−, τ+) then it must be that α �= ⊥. Further-
more, if a time-restricted transaction is present with anchor α from address1 to
address2, the only transactions that are permitted with anchor α in the ledger
would be time-unrestricted transactions originating from either address2 within
the specified time-window, or address1 after the specified time window.
The BlockifyAlgorithm. This algorithm simply groups transactions in the current
buffer and adds a timestamp from the current round. We choose to ignore any
additional functionality (e.g., such as a reward mechanism for mining that is
present in typical cryptocurrencies — however such mechanism can be easily
added independently of our results).

5.3 The Protocol

Let π+1
Mal denote the protocol described in Sect. 5.1. Let Round2Time(1) denote the

time in which the parties have agreed to start the protocol execution. Without
loss of generality we assume that Round2Time(1) > T+ 1 where T is the number
clock ticks for each block generation cf. Fig. 2.25 Furthermore, for simplicity, we

25 That is we assume that at least one ledger rounds plus one extra clock-ticks have
passed from the beginning of the time.

Fair and Robust Multi-party Computation 727

assume that each party Pi receives its input xi with its first activation from
the environment at time Round2Time(1) (if some honest party does not have an
input by that time it will execute the protocol with a default input, e.g., 0).

Informally, the protocol proceeds as follows: In a pre-processing step, before
the parties receive input, the parties invoke the sampling functionality for π+1

Mal

to receive their correlated randomness.26 The public component of this ran-
domness includes their protocol-associated wallet addressi which they output
(to the environment). This corresponds to the resources allocation step in the
Q-robustness wrapper Ŵ. The environment is then expected to submit ρc
special (as above) transactions for each pair of parties Pi ∈ P and Pj ∈ P;
the source wallet-address for each such transaction is Pi’s, i.e., addressi and the
target wallet-address for is Pj ’s, i.e., addressj , and the corresponding anchors
are as follows: αi,j,ρ = (pid, i, j, ρ), for (i, j, ρ) ∈ [n]2 × [ρc], where27 pid is the
(G)UC protocol ID for π+1

Mal. Since by assumption, Round2Time(1) > T + 1,
the environment has sufficient time to submit these transaction so that by the
time the protocol starts they have been posted on the ledger.

At time Round2Time(1) the parties receive their inputs and initiate the proto-
col execution by first checking that sufficient funds are allocated to their wallets
linked to the protocol executions by appropriate anchors, as above. If some party
does not have sufficient funds then it broadcasts an aborting message and all
parties abort.28 This aborting in case of insufficient funds is consistent with the
behavior of the wrapper Ŵ when QC-Init

Ḡ is false. Otherwise, parties make the
special transactions that commit them (see below) into executing the protocol,
and then proceed into claiming them one-by-one by executing their protocol in
a round-by-round fashion.

Note that each protocol round lasts one ledger round so that the parties
have enough time to claim their transactions. This means that Round2Time(i +
1) − Round2Time(i) ≥ T, which guarantees that any transaction submitted for
round ρ, ρ = 1, . . . , ρc − 1, of the protocol, has been posted on the ledger by
the beginning of round ρ + 1. Observe that by using a constant round protocol
π+1
Mal (e.g., the modified compiled protocol from [23] instantiated with a constant

round semi-honest protocol) we can ensure that our protocol will terminate in a
constant number of ledger rounds and every honest party will either receive its
input, or will have a positive balance in its wallet.

Remark 1 (On availability of funds). Unlike existing works, we choose to explic-
itly treat the issue of how funds become available to the protocol by making
the off-line transfers external to the protocol itself (i.e., the environment takes
care of them). However, the fact that the environment is in charge of “pouring”
money into the wallets that are used for the protocol does not exclude that the

26 In an actual application, the parties will use an unfair protocol for computing the
correlated randomness. As this protocol has no inputs, an abort will not be unfair
(i.e., the simulator can always simulate the view of the adversary in an aborting
execution.).

27 Recall that we assume |P| = n.
28 Note that this is a fair abort, i.e., no party has spent time into making transactions.

728 A. Kiayias et al.

parties might be actually the ones having done so. Indeed, the environment’s
goal is to capture everything that is done on the side of, before, or after the
protocol, including other protocols that the parties might have participated in.
By giving the environment enough time to ensure these transactions are posted
we ensure that some honest party not having enough funds corresponds to an
environment that makes the computation abort (in a fair way and only in the
pre-processing phase, before the parties have invested time into posting protocol
transactions).

Here is how we exploit the power of our special transactions in order to
arrange that the balance of honest parties is positive in case of an abort. We
require that the auxiliary string of a transaction of a party Pj which claims a
committed transaction for some round ρ includes his ρ-round protocol message.
We then have the relation of this transaction be such that it evaluates to 1 if
only if this is indeed Pj ’s next message. Thus, effectively the validate predicate
implements the judge in π+1

Mal and can, therefore, decide if some party aborted:
if some party broadcasts a message that would make the judge abort, then
the validate predicate drops the corresponding transaction and all claims for
committed transactions corresponding to future rounds, thus, all other parties
are allowed to reclaim their committed coins starting from the next round.

Before we give the protocol description there is a last question: how is the
ledger able to know which parties should participate in the protocol? Here is the
problem: The adversary might post in the first round (as part of the committing
transaction for the first round) a fake, maliciously generated setup. Since the
ledger is not part of the correlated randomness sampling, it would be impossible
to decide which is the good setup. We solve this issue by the following technique
that is inspired by [6]: The ledger29 groups together parties that post the same
setup; these parties form “islands”, i.e., subsets of P. For each such subset P ′ ⊆
P ∪{Pn+1} which includes the judge Pn+1, the ledger acts as if the parties in P ′

are executing the protocol π+1
Mal|P′ (which, recall, is the restriction of π+1

Mal to the
parties in P ′) for computing the |P ′|-party function f+1|P′(x) defined as follows:
let the function to be computed be f(x), where x = (x1, . . . , xn), and f+1 be
as above, then f+1|P′(x) = f+1(xP′) where xP′ = (x′

1, . . . , x
′
n) with x′

i = xi for
Pi ∈ P ′ and x′

i being a default value for every Pi �∈ P ′. This solves the problem
as all honest parties will be in the same island P ′ ⊂ P (as they will all post the
same value for public randomness); thus if the adversary chooses not to post this
value on behalf of some corrupted party, he is effectively setting this party’s input
to a default value, a strategy which is easily simulatable. (Of course, the above
solution will allow the adversary to also have “islands” of only corrupted parties
that might execute the protocol, but this is also a fully simulatable strategy
and has no effect on fair-compensation whatsoever—corrupted parties are not
required to have a positive balance upon abort).

29 Throughout the following description, we say that the ledger does some check to
refer to the process of checking a corresponding relation, as part of validating a
special transaction.

Fair and Robust Multi-party Computation 729

The final protocol πB

Mal is detailed in the following. The protocol ID is sid.
The function to be computed is f(x1, . . . , xn). The protocol parties are P =
{P1, . . . , Pn}. We assume all parties have registered with the clock functionality
in advance and are therefore synchronized once the following steps start.

Phase 1: Setup Generation
Time τ−2 = Round2Time(1) − T − 2:

The parties invoke the sampling functionality for DMal, i.e., every party Pi ∈ P
starts off by sending the sampling functionality a message (request, sid);
the sampling functionality returns (Rpriv

i , Rpub) to Pi where R
priv
i is Pi’s

private component (including all random coins he needs to run the protocol,
along with his signing key ski) of the setup and Rpub is the public component
(the same for every party Pj) which includes the vector of UC commitments
(Com1, . . . ,Comn), where for j ∈ [n], Comj is a commitment to Rpriv

j , along
with a vector of public (verification) keys (vk1, . . . , vkn) corresponding to
the signing keys (sk1, . . . , skn) and a common reference string CRS. Every
party outputs its own public key, as its wallet address for the protocol, i.e.,
addressi = vki.

Phase 2: Inputs and Protocol Execution
Time τ−1 = Round2Time(1) − 1:
Every party Pi ∈ P receives its input xi (xi = 0 if no input is received in
the first activation of Pi for time Round2Time(1)) and does the following to
check that it has sufficient fund available: Pi reads the current state from the
ledger. If the state does not include for each (i, j, ρ) ∈ [n]2 × [ρc] a transac-
tion Bc,address,addressi,Σ0

i,j,ρ,aux0i,j,ρ,σ,τ , for some arbitrary address and where
Σ0

i,j,ρ = ((0,∞), (sid, i, j, ρ),R∅) then Pi broadcasts ⊥ and every party aborts
the protocol execution with output ⊥ (i.e., no party does anything from that
point on. Recall that ρc is the upper bound on the number of rounds of π+1

Mal,
cf. Sect. 5.1.

Time τ0 = Round2Time(1):
Every Pi submits to the ledger the following “commitment” transactions:30

1. For each Pj ∈ P : Bc,addressi,addressj ,Σi,j,1,auxi,j,1,σ,τ , where auxi,j,1 = Rpub

and Σi,j,1 = (arg1i,j,1, arg2i,j,1, arg3i,j,1) with
– arg1i,j,1 = (Round2Time(1) + T, Round2Time(1) + 2T − 1)
– arg2i,j,1 = (sid, i, j, 1)
– arg3i,j,1 = Ri,j,1 defined as follows: Let P+1 = P ∪ {Pn+1}, where

Pn+1 denotes the judge, be the player set implicit in Rpub,31 and let
P+1

i ⊆ P+1 denote the island of party i including the judge, i.e., the
set of parties (wallets), such that in the first block posted after time

30 Recall that, by definition of the clock, every party has as much time as it needs to
complete all the steps below before the clock advances time.

31 Recall that Rpub includes commitments to all parties’ private randomness (including
the judge’s Pd) used for running the protocol, which is an implicit representation of
the player set.

730 A. Kiayias et al.

Round2Time(1) all parties Pk ∈ P+1
i have exactly one transaction for

every Pj ∈ P with arg1k,j,1 = (Round2Time(1) + T, Round2Time(1) +
2T − 1), arg2k,j,1 = (sid, k, j, 1), and aux1k,j,1 = Rpub. Furthermore,
let π+1

Mal|P+1
i

be the protocol with public identifiability for computing
f+1|P+1

i
, described above and denote by Rpub|P+1

i
the restriction of the

public setup to the parties in P+1
i . Then Ri,j,1(state, buffer, tx) = 1

if and only if the protocol of the judge with public setup Rpub|P+1
i

accepts the auxiliary string auxtx in tx as Pi’s first message in
π+1
Mal|P+1

i
(i.e., it does not abort in the first round).

2. For each protocol round ρ = 2, . . . , ρc and each Pj ∈ P: each party posts
the transaction: Bc,addressi,addressj ,Σi,j,ρ,aux1i,j,ρ,σ,τ , where aux1i,j,ρ = Rpub

and Σi,j,ρ = (arg1, arg2, arg3) with
– arg1 = (Round2Time(ρ) + T, Round2Time(ρ + 1) + 2T − 1)
– arg2 = (sid, i, j, ρ).
– arg3 = Ri,j,ρ defined as follows: Let P+1

i , π+1
Mal|P+1

i
be defined as above

(and assume P+1
i = {Pi1 , . . . , Pim

}. Then Ri,j,ρ(state, buffer, tx) = 1
if and only if, for each r = 1, . . . , ρ − 1 and each party Pik

∈ P+1
i ,

the state state includes transactions in which the auxiliary input is
auxik,r and the protocol of the judge with public setup Rpub|P+1

i
,

and transcript (auxi1,1, . . . , auxim,1), . . . , (auxi1,ρ−1, . . . , auxim,ρ−1),
accepts the auxiliary string aux in tx as Pi’s next (ρ-round) mes-
sage in π+1

Mal|P+1
i

(i.e., it does not abort in the ρ-th round).

Phase 3: Claiming Committed Transactions/Executing the Protocol
Time τ ≥ Round2Time(1):
For each ρ = 1, . . . , ρc+1, every Pi does the following at time Round2Time(ρ):
1. If τ = Round2Time(ρc + 1) then go to Step 4; otherwise do the following:
2. Read the ledger’s state, and compute P+1

i , π+1
Mal|P+1

i
as above.

3. If the state state is not aborting for P+1
i = {Pi1 , . . . , Pim

}, i.e., it
includes for each r = 1, . . . , ρ − 1 and each party Pik

∈ P+1
i a trans-

action in which the auxiliary input is auxik,r such that Pi executing
π+1
Mal|P+1

i
with public setup Rpub|P+1

i
, private setup R

priv
i , and transcript

(auxi1,1, . . . , auxim,1), . . . , (auxi1,ρ−1, . . . , auxim,ρ−1) for the first r − 1
rounds does not abort, then compute Pi’s message for round ρ, denoted
as msgρ, and submit to the ledger for each Pk ∈ P+1

i a transaction
Bc,addressi,address,Σ′

k,i,ρ,auxρ
k,i,ρ,σ,τ , where auxρ

k,i,ρ = msgρ, address is the
address that was the input of the first transaction with link (sid, i, k, ρ)
and Σ′

k,i,ρ = (arg1, arg2, arg3) instantiated as follows: arg1 = (0,∞);
arg2 = (sid, k, i, ρ); arg3 = R∅. For each such transaction posted enter
(sid, k, i, ρ) in a set of “claimed” transactions CLAIMi.

4. Otherwise, i.e., if the state state is aborting, then prepare for each
round r = 1, . . . , ρ − 1, and each Pk ∈ P a transaction by which the
committed transaction towards Pk corresponding to round r is claimed
back to addressi, i.e., Bc,addressk,addressi,Σ,aux,σ,τ , where aux =⊥ and

Fair and Robust Multi-party Computation 731

Σ = (arg1, arg2, arg3) instantiated as follows: arg1 = (0,∞); arg2 =
(sid, i, k, r); arg3 = R∅. The above transaction is posted as long as it is
not claimed already, i.e., (sid, i, k, r) ∈ CLAIMi in a previous step.

This completes the description of the protocol. The protocol terminates in O(ρc)
ledger rounds. A depiction of the transactions that are associated with a protocol
round is given in Fig. 4.

Fig. 4. The transactions associated with the first round r of our protocol compiler. Ri(·)
is a relation which is true given the r-th round message of Pi (for the given correlated
randomness and previous messages); mi is the message of player Pi for round r. Player
3 aborts in the r-th round of the protocol and players 1,2 collect their reward.

Observe that by using a constant-round protocol πMal [23], we obtain a pro-
tocol with constantly many ledger rounds. Furthermore, as soon as an honest
party posts a protocol-related transaction, he is guaranteed to either receive his
output or have a positive balance (of at least c coins) after O(ρc) ledger rounds.
The following theorem states the achieved security. We assume the protocol is
executed in the synchronous model of Sect. 3.1.

Theorem 3. Let Ḡ = (Ḡledger, Ḡclock), The above protocol in the (Ḡ,FDMal
corr)-

hybrid world realizes W̃(F) with robust compensation.

Proof (sketch). We first prove that the above protocol is simulatable, by sketch-
ing the corresponding simulator S. If the protocol aborts already before the
parties make their transactions, then the simulator can trivially simulate such
an abort, as he needs to just receive the state of the ledger and see if all wallets
corresponding to honest parties have sufficient funds to play the protocol. In the

732 A. Kiayias et al.

following we show that the rest of the protocol (including the ledger’s contents)
can be simulated so that if there is an abort, honest parties’ wallets have a posi-
tive balance as required by Q fairness. First we observe that the simulator S can
easily decide the islands in which the parties are split, as he internally simulates
the sampling functionality. Any island other than the one of honest parties (all
honest parties will be in the same island because they will post transactions
including the same public setup-component) is trivially simulatable as it only
consists of adversarial parties and no guarantee is given about their wallets by
Q-fairness. Therefore, it suffices to provide a simulator for the honest parties’
island. To this direction, the simulator uses the simulator Sπ+1

Mal
which is guaran-

teed to exist from the security of π+1
Mal to decide which messages to embed in the

transactions of honest parties (the messages corresponding to corrupted parties
are provided by the adversary). If Sπ+1

Mal
would abort, then S interacts the ideal

functionality to abort and continues by claiming back all the committed trans-
actions to the honest parties’ wallets, as the protocol would. The soundness of
the simulation of Sπ+1

Mal
ensure that the output of the parties and the contents of

the ledger in the real and the ideal world are indistinguishable.
The fact that the protocol will eventual terminate given sufficient rounds of

activating every party (i.e., in the terminology of Definition 2, given a sufficiently
high threshold T) follows by inspection of the protocol: in each round every party
needs at most a (fixed) polynomial number of activations to post the transactions
corresponding to his current-round message-vector. (In fact, the polynomial is
only needed in the initial committing-transactions round and from that point on
it is linear). To complete the proof, we argue that (1) when the protocol does not
abort, every honest party has a non-negative balance, and (2) when the protocol
aborts, then honest parties have a positive balance of at least c coins as required
by predicate Q for the simulator to be able to complete its simulation and deliver
the (possibly aborting) outputs. These properties are argued as follows:

Property (1): The parties that are not in the honest parties’ islands cannot claim
any transaction that honest parties make towards them as the ledger will see
they as not in the island and reject them. Thus by the last round every honest
party will have re-claimed all transactions towards parties not in his island. As
far as parties in the honest island are concerned, if no abort occurs then every
party will claim all the transactions from parties in his island, and therefore his
balance will be 0.

Property (2): Assume that the protocol aborts because some (corrupted) Pi

broadcasts an inconsistent message in some round ρ. By inspection of the pro-
tocol one can verify that honest parties will be able to claim all transaction-
commitments done to them up to round ρ (as they honestly execute their pro-
tocol) plus all committed transactions that they made for rounds ρ + 1 . . . , ρc.
Additionally, because Pi broadcasts an inconsistent message in round ρ, he will
be unable to claim transactions of honest parties done from round ρ and on;
these bitcoins will be reclaimed by the honest parties, thus giving their wallets
a positive balance of at least c coins.

Fair and Robust Multi-party Computation 733

Acknowledgements. The first author was supported by ERC project CODAMODA
259152, and the third author was supported partly by the Swiss National Science
Foundation (SNF) Ambizione grant PZ00P2-142549. This work was done (in part)
while the authors were visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and by the DIMACS/Simons Collaboration in
Cryptography through NSF grant #CNS-1523467 and (in part) when visiting the
National Kapodistrian University of Athens. The authors thank Andrew Miller for
helpful discussions.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party
computations via the bitcoin deposits. In: 1st Workshop on Bitcoin Research 2014.
Assocation with Financial Crypto (2014). http://eprint.iacr.org/2013/837

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
pp. 443–458. IEEE Computer Society Press, May 2014

3. Asharov, G., Lindell, Y., Zarosim, H.: Fair and efficient secure multiparty compu-
tation with reputation systems. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part II. LNCS, vol. 8270, pp. 201–220. Springer, Heidelberg (2013)

4. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
ACM CCS 1997, pp. 7–17. ACM Press, April 1997

5. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer,
Heidelberg (1998)

6. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005)

7. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439.
Springer, Heidelberg (2014)

8. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)

9. Cachin, C., Camenisch, J.L.: Optimistic fair secure computation. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

11. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007)

12. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

13. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 597–608. ACM
Press, November 2014

14. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002

http://eprint.iacr.org/2013/837

734 A. Kiayias et al.

15. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

16. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: Hartmanis, J. (ed.) STOC, pp. 364–369. ACM (1986)

17. Garay, J.A., Gelles, R., Johnson, D.S., Kiayias, A., Yung, M.: A little honesty goes
a long way. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014,
pp. 134–158. Springer, Heidelberg (2015)

18. Garay, J.A., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol
design: cryptography against incentive-driven adversaries. In: 54th FOCS, pp. 648–
657. IEEE Computer Society Press, October 2013

19. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

20. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge (2001)

21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

22. Gordon, S.D., Katz, J.: Complete fairness in multi-party computation without an
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 19–35.
Springer, Heidelberg (2009)

23. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617,
pp. 369–386. Springer, Heidelberg (2014)

24. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchro-
nous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013)

25. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. Cryptology ePrint Archive, Report 2015/574 (2015).
http://eprint.iacr.org/2015/574

26. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. Cryptology ePrint
Archive, Report 2015/675, (2015). http://eprint.iacr.org/2015/675

27. Kumaresan, R., Bentov, I.: How to use bitcoin to incentivize correct computations.
In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 30–41. ACM Press,
November 2014

28. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). http://
bitcoin.org/bitcoin.pdf

29. Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003)

30. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: penalizing equivocation
by loss of bitcoins. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 219–
230. ACM Press, October 2015

31. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

http://eprint.iacr.org/2015/574
http://eprint.iacr.org/2015/675
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

Two Round Multiparty Computation
via Multi-key FHE

Pratyay Mukherjee1(B) and Daniel Wichs2

1 University of California, Berkeley, USA
pratyay85@berkeley.edu

2 Northeastern University, Boston, USA
wichs@ccs.neu.edu

Abstract. We construct a general multiparty computation (MPC) pro-
tocol with only two rounds of interaction in the common random string
model, which is known to be optimal. In the honest-but-curious set-
ting we only rely on the learning with errors (LWE) assumption, and
in the fully malicious setting we additionally assume the existence of
non-interactive zero knowledge arguments (NIZKs). Previously, Asharov
et al. (EUROCRYPT ’12) showed how to achieve three rounds based on
LWE and NIZKs, while Garg et al. (TCC ’14) showed how to achieve
the optimal two rounds based on indistinguishability obfuscation, but it
was unknown if two rounds were possible under standard assumptions
without obfuscation.

Our approach relies on multi-key fully homomorphic encryption
(MFHE), introduced by Lopez-Alt et al. (STOC ’12), which enables
homomorphic computation over data encrypted under different keys. We
present a construction of MFHE based on LWE that significantly simpli-
fies a recent scheme of Clear and McGoldrick (CRYPTO ’15). We then
extend this construction to allow for a one-round distributed decryp-
tion of a multi-key ciphertext. Our entire MPC protocol consists of the
following two rounds:
1. Each party individually encrypts its input under its own key and

broadcasts the ciphertext. All parties can then homomorphically com-
pute a multi-key encryption of the output.

2. Each party broadcasts a partial decryption of the output using its
secret key. The partial decryptions can be combined to recover the
output in plaintext.

P. Mukherjee—Research supported in part from DARPA Safeware Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274 and NSF CRII Award 1464397.
The views expressed are those of the author and do not reflect the official policy or
position of the Department of Defense, the National Science Foundation, or the U.S.
Government. Part of the work was done when this author was a PhD Fellow at
Aarhus University supported by ERC starting grant 279447.
D. Wichs—Research supported by NSF grants CNS-1347350, CNS-1314722, CNS-
1413964.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 735–763, 2016.
DOI: 10.1007/978-3-662-49896-5 26

736 P. Mukherjee and D. Wichs

1 Introduction

Multiparty Computation. Secure multiparty computation (MPC) allows
multiple parties to evaluate an arbitrary function over their inputs privately,
without revealing anything about their inputs to each other beyond the func-
tion’s output. This problem was initially studied by Yao [34,35], in the case
of two honest-but-curious parties (who follow the protocol honestly but hope to
learn information from its execution) and later by Goldreich, Micali and Wigder-
son [19] in the case of an arbitrary number of fully malicious parties (who can
deviate arbitrarily from the specified protocol execution). By now, MPC is a
fundamental part of cryptography and a subject of intense study.

One of the main challenges is to optimize the efficiency of MPC protocols.
In this work, our main focus will be on constructing MPC protocols with the
optimal round complexity.1

Round Complexity of MPC. We refer the reader to [3] for a comprehensive
overview of prior work on round complexity of MPC. In the honest-but-curious
setting, it was known how to achieve a constant number of rounds assuming the
existence of oblivious transfer [2,5,22,25,27]. However, the concrete constants
were not explicitly stated and they seem to require at least 4 rounds. These
protocols can also be compiled into secure constructions in the fully malicious
setting with only a constant number of additional rounds by using coin-flipping
and concurrent zero-knowledge proofs [20,25–27]. In the plain model and the
fully malicious setting, there is a known lower bounds of 5 rounds for two party
computation2, albeit in non-simultaneous message model where no broadcast
channel is available [24]. A very recent work [15] shows a similar lower bound of
4 rounds assuming broadcast channel. However, in the honest-but-curious setting
or even in the fully malicious setting with a common random string (CRS) the
above lower bound does not hold and there is only a simple lower bound of 2
rounds [21]. In this work, we will assume the CRS model.

Recently, a result of Asharov et al. [3] showed how to achieve a 3 round MPC
protocol in the CRS model, by relying on techniques from fully homomorphic
encryption (FHE). Their construction achieves semi-honest security under the
learning with errors (LWE) assumption, and fully malicious security (in the
universal composability (UC) framework) by further assuming the existence of
non-interactive zero knowledge arguments (NIZKs). The construction also yields
a 2 round protocol in the public-key infrastructure (PKI) model, but it was left
as an open problem to achieve 2 rounds in the CRS model.
1 We assume a broadcast communication channel and in each round of a protocol all

parties broadcast a message to all other parties. Each honest party must broadcast
their round i message right away prior to receiving the round i messages of other
parties. On the other hand, we assume a “rushing” adversary that can wait to collect
the round i messages of all honest parties prior to selecting the round i messages of
the corrupted parties.

2 In their non-simultaneous model no broadcast channel is present, that is in a round
only one party sends message to another.

Two Round Multiparty Computation via Multi-key FHE 737

Even more recently, the results of Garg et al. [14,16] achieve a 2 round MPC
protocol in the CRS model by relying on indistinguishability obfuscation (iO) and
statistically sound NIZKs. On a high level, the main idea of that work is to have
each party obfuscates its “next-message” function, after an initial round where
the parties commit to their input. Making this work under the iO assumption is
non-trivial and requires much care. However, this approach appears to crucially
rely on obfuscation and does not easily lend itself to instantiations under simpler
assumptions.

The main open question left by these works is whether 2 round MPC is
achievable under more “standard” cryptographic assumptions, without relying
on obfuscation.

Our Result. In this work, we construct a 2 round MPC protocol in the CRS
model. We achieve honest-but-curious security under only the LWE assumption,
and fully malicious security (in the UC framework) by additionally assuming the
existence of NIZKs. As our main technical result, which may be of independent
interest, we show how to construct a multi-key fully homomorphic encryption
scheme with a one-round threshold decryption protocol.

2 Overview of Our Techniques

We now give an overview of our techniques by first describing how to construct
MPC from multi-key FHE with threshold decryption, and then how to construct
the latter from LWE.

2.1 MPC via Threshold (Multi-key) FHE

MPC via Threshold FHE. We begin with the approach of Asharov et al.
[3] (variants of which were used in many preceding works [6,7,11–13,23,31]) for
constructing MPC based on fully homomorphic encryption (FHE). At a high
level, this approach is based on the following simple template:

1. The parties first run a secure distributed protocol for the “threshold key-
generation” of an FHE scheme to agree on a common public key pk and a
secret sharing of the corresponding secret key sk so that each party holds one
share, and all shares are needed to recover sk.

2. Each party i then broadcasts an encryption of its input xi under the com-
mon public key pk. Note that no individual party or incomplete set of parties
can decrypt this ciphertext and so the privacy of the input is maintained.
At the end of this round, each party can homomorphically compute the
desired function f on the received ciphertexts and derive a common output
ciphertext which encrypts y = f(x1, . . . , xN).

738 P. Mukherjee and D. Wichs

3. The parties run a secure distributed protocol for “threshold decryption” using
their shares of the secret key sk to decrypt the output ciphertext and recover
the output y in plaintext.3

Secure protocols for threshold key-generation and decryption can be imple-
mented generically for any FHE scheme by using general MPC techniques, but
this would require many rounds. Instead [3] show that specific FHE schemes
by Brakerski, Gentry and Vaikuntanathan [8,9] based on the LWE assumption
have a “key homomorphic” property which can be leveraged to get distributed
key-generation and decryption protocols consisting of one round each. Therefore,
when instantiated with these schemes, the above template results in a 3 round
MPC protocol.4

MPC via Threshold Multi-key FHE. One could hope to shave off an addi-
tional round from the above template by using multi-key fully homomorphic
encryption (MFHE), recently introduced by Lopez-Alt, Tromer and Vaikun-
tanathan [28]. An MFHE schemes allows parties to independently encrypt their
data under different individually chosen keys, while still allowing homomorphic
computations over such ciphertexts. The output of such homomorphic computa-
tion is a “multi-key ciphertext” which cannot be decrypted by any single party
individually (as this would violate semantic security of the other parties) but
can be decrypted by the parties jointly using the combination of all their secret
keys. The work of [28] constructed such an MFHE scheme based on (a variant
of) the NTRU assumption.

Using MFHE, we naturally get the following simplified template for MPC:

1. Each party individually chooses its own MFHE key pair (pki, ski), encrypts
its input xi under pki, and broadcasts the resulting ciphertext. At the end of
this round, each party can homomorphically compute the desired function f
on the received ciphertexts and derive a common multi-key ciphertext which
encrypts the output y = f(x1, . . . , xN).

2. The parties run a secure distributed protocol for “threshold decryption” using
their secret keys ski to decrypt the multi-key ciphertext and recover the
output y in plaintext.

As before, a distributed threshold decryption can be implemented generically
using general MPC techniques, but this would require many rounds. Unfortu-
nately, the MFHE scheme of [28] does not appear to admit any simpler threshold
3 Throughout this work, we use the term “threshold” to denote distributed schemes

where all parties are needed to perform an operation and security is maintained
from any incomplete subset of parties.

4 We note that one the main challenges in the work of [3] is to implement the threshold
generation of the FHE “evaluation key” which has a complex structure in the FHE
schemes of [8,9]. This could be vastly simplified using a more recent FHE scheme of
Gentry-Sahai-Waters [18] which does not require an evaluation key. However, this
would still not improve the final round complexity of the MPC construction below
3 rounds.

Two Round Multiparty Computation via Multi-key FHE 739

decryption protocol and therefore it is not known how to use this scheme to get
a 2 round MPC.

A recent work of Clear and McGoldrick [10] gives an alternate construc-
tion of MFHE based on the LWE assumption, by cleverly adapting an FHE
scheme of Gentry, Sahai and Waters [18]. We first present a significantly sim-
plified construction of MFHE from LWE and give a stand-alone presentation of
this scheme. We then show that this scheme admits a simple 1-round threshold
decryption protocol. This threshold decryption protocol only satisfies a weak
notion of security which doesn’t allow us to directly plug it into the above tem-
plate for MPC. However, we show that we can make this approach work with
only minor additional modifications.

As in [3], we show that our basic scheme (based on LWE) achieves security in
semi-malicious setting, which is a strengthening of the honest-but-curious set-
ting, where parties follow the protocol specification but can choose their random
coins adversarially. By using NIZKs, we can then compile such a scheme into one
which is secure in the fully malicious setting (and even universally composable)
without additional rounds.

2.2 Constructing Threshold Multi-key FHE

We now give a high-level description of the MFHE construction and the thresh-
old decryption protocol. We begin by describing a recent FHE construction by
Gentry, Sahai and Waters (GSW) [18] using the notation and exposition of [1].
Then describe how to convert it into a MFHE scheme. Finally, we discuss how
to perform threshold decryption.

Public Short Preimage Matrix. Before we describe the GSW encryption,
we state a useful fact from [29] which we heavily rely on in the construction.

Lemma 1 ([29]). For any m ≥ n�log q� there exists a fixed efficiently com-
putable matrix G ∈ Z

n×m
q and an efficiently computable deterministic “short

preimage” function G−1(·) satisfying the following. On input a matrix M ∈
Z

n×m′
q for any m′, the function G−1(M) outputs a bit-matrix G−1(M) ∈

{0, 1}m×m′
such that GG−1(M) = M.

We can think of G as a special matrix with a “public trapdoor” that allows us
to solve the short integer solution (SIS) problem. For those familiar with GSW
encryption, multiplication by G is the BitDecomp−1 operation and the function
G−1(·) is called BitDecomp, but we can ignore the low-level detail of how this
is implemented. Note that G−1(·) is not itself a matrix but rather an efficiently
computable function.

Gentry-Sahai-Waters (GSW) FHE. Firstly, choose a random public matrix
B ∈ Z

(n−1)×m
q where m = O(n log q). We can think of this as a common public

parameter used by all parties. A public/secret key pair is chosen by selecting a

740 P. Mukherjee and D. Wichs

random vector s ∈ Z
n−1
q and setting b = sB + e where e is some short “error

vector”. We set the secret key to t = (−s, 1) ∈ Z
n
q and the public key to the

matrix

A :=
[

B
b

]

∈ Z
n×m
q

which ensures that tA = e ≈ 0 (throughout the introduction, we use ≈ to hide
“short” values).

A valid GSW ciphertext of a bit μ ∈ {0, 1} with respect to a secret key t is a
matrix C ∈ Z

n×m
q such that tC ≈ μtG. To encrypt a bit μ using the public key

A we set C = AR+μG where R ∈ {0, 1}m×m is chosen as a random bit-matrix.
This ensures that the result is a valid encryption of μ under the secret key t since
tC = tAR + μtG ≈ μtG.

Given two valid GSW ciphertexts C1,C2 encrypting the bits μ1, μ2 with
respect to a secret key t we can perform homomorphic addition by setting
C+ = C1 + C2 and multiplication by setting C× = C1G−1(C2). It is a simple
exercise to check that tC+ ≈ (μ1 +μ2)tG and tC× ≈ (μ1μ2)tG. This allows us
to homomorphically evaluate any circuit, subject to the error not getting “too
large”.

Finally, to decrypt a ciphertext C we set w := (0, . . . , 0, �q/2�) and compute
v = tCG−1(wT). If C is a valid encryption of μ under t then v ≈ μ�q/2�. We
recover μ by checking whether v is closer to 0 or to q/2.

Multi-key Variant of GSW. We now describe how to convert the above GSW
FHE into a multi-key FHE. For simplicity, let’s assume that we only have N = 2
parties, but everything extends naturally to any polynomial number of parties
N . We assume that the matrix B of the GSW encryption scheme is a common
public parameter which is used by all parties.

The two parties choose independent GSW secret keys t1 = (−s1, 1), t2 =
(−s2, 1) and compute the corresponding public key components b1 = s1B + e1
and b2 = s2B + e2 using the common (and random) B. We let

A1 :=
[

B
b1

]

, A2 :=
[

B
b2

]

be the two GSW public keys for parties 1 and 2 respectively.
Now assume that the two parties independently encrypt some data under

their respective keys. Unfortunately, we will not get anything meaningful by
naively attempting to perform the GSW homomorphic operations on these
ciphertexts under different keys. Instead, our goal will be to first convert both
ciphertexts into a “common format” that will allow us to perform homomorphic
operations over them.

In particular, we define a “combined secret key” ̂t = (t1, t2) ∈ Z
2n
q as the con-

catenation of the two individual secret keys. Our goal will be to take a ciphertext
C ∈ Z

n×m
q which encrypts a bit μ with respect to the secret key of a single party

(along with some helper information specified later) and expand it into multi-key

Two Round Multiparty Computation via Multi-key FHE 741

ciphertext ̂C ∈ Z
2n×2m
q which encrypts μ with respect to the combined secret

key ̂t. In particular, a multi-key encryption of a bit μ satisfies ̂t̂C ≈ μ̂t ̂G where
̂G =

[

G 0
0 G

]

∈ Z
2n×2m
q is an expanded public matrix with a corresponding short

preimage function ̂G−1(·). Once we do this, we can expand all ciphertexts under
individual keys into multi-key ciphertexts under the key ̂t and then perform
homomorphic operations on the multi-key ciphertexts just like in basic GSW
scheme (just with larger parameters n′ = 2n,m′ = 2m). Therefore, the only
challenge is how to perform the above “ciphertext expansion step”.

Ciphertext Expansion. To perform ciphertext expansion, we use a new prim-
itive called “masking scheme” introduced by Clear and McGoldrick in [10]. Let
C be a GSW encryption of some bit μ. A masking scheme allows party 1 to
create some additional helper information U about the ciphertext C at encryp-
tion time and release the tuple (U ,C) while keeping the semantic security of the
message intact. This information is completely independent of party 2 whose
identity is unknown at encryption time. Later, if we are given the public key
A2 for party 2, we can use the information U to create a matrix X such that
t1X + t2C ≈ μt2G where t2 is the secret key of party 2. This allows us to
perform ciphertext expansion by creating the expanded ciphertext:

̂C =
[

C X
0 C

]

so that,

̂t̂C = [t1C , t1X + t2C] ≈ [μt1G, μt2G] = μ̂t ̂G.

We can similarly expand the individually created ciphertexts of party 2 and
then perform GSW style homomorphic operations on the expanded ciphertexts.5

Therefore, the only thing left to do is to construct such a “masking scheme”
which we briefly describe below.

A Masking Scheme for GSW. The masking scheme consists of party 1
creating tuple (U ,C) where C is a GSW encryption of the message μ under its
own public key pk1 = A1 so that

C := A1R + μG =
[

BR
b1R

]

+ μG

for some random matrix R ∈ {0, 1}m×m. The additional helper information U
consists of m2 GSW encryptions of each of the scalars {R[a, b]}a∈[m],b∈[m] under

5 In the actual scheme involving N parties we first expand the single-key ciphertext of
each party into a multi-key ciphertext (under the concatenated keys of all the parties)
and subsequently perform homomorphic operations on the expanded ciphertexts.

742 P. Mukherjee and D. Wichs

the public key pk1. It is easy to show that the pair (U ,C) computationally hides
μ by relying on semantic security of the GSW scheme.

Later, assume we are given the public key A2 :=
[

B
b2

]

for party 2, corre-

sponding to a secret key t2 = (−s2, 1). Then

t2C = −s2BR + b1R + μt2G ≈ (b1 − b2)R + μt2G

since b2 ≈ s2B. The value t2C corresponds to decrypting the GSW ciphertext
C with the “incorrect” secret key t2 and it yields the correct value μt2G except
that it is “masked” by the additional term (b1 − b2)R.

Our goal is to come up with a matrix X for which t1X ≈ (b2 − b1)R and
therefore adding t1X + t2C ≈ μt2G as desired. One can do this by homo-
morphically combining the m2 ciphertexts contained in U , which encrypt each
of the scalars R[a, b] of the matrix R under t1, to get a “pseudo ciphertext”
X which acts like an encryption of the vector (b2 − b1)R in the sense that
t1X ≈ (b2 − b1)R. This is not a standard homomorphic operation yielding a
standard ciphertext – for example, the output is a vector rather than a scalar –
but the idea for how to do this is very similar to the way we do standard GSW
homomorphic operations. We skip the details of this step in the introduction,
and refer the reader to Sect. 5.1 for details.

Threshold Decryption of Multi-key GSW. A multi-key GSW ciphertext
encrypting a bit μ with respect to the expanded secret key ̂t = (t1, . . . , tN)
corresponding to N parties, is a matrix ̂C ∈ Z

nN×mN
q such that ̂t̂C ≈ μ̂t ̂G.

If we were given all of the secret keys ̂t = (t1, . . . , tN) simultaneously,
we could decrypt this ciphertext using the GSW decryption procedure, scaled
up to the larger dimension: let ŵ = (0, . . . , 0, �q/2�) ∈ Z

nN
q and compute

v = ̂t̂C ̂G−1(ŵT) ≈ μ�q/2�.
However, our goal is to design a distributed decryption protocol, where the

parties collaboratively decrypt μ without revealing their secret keys to each
other. We do this as follows. Let’s think of ̂C as consisting of N matrices
i ∈ Z

n×mN
q stacked on top of each other. Then each party i uses its secret

key ti to output a “partial decryption” pi = ti
̂C(i)

̂G−1(ŵT) + ei where ei is
some “medium-sized smudging error”. This error is needed to smudge out any
information about the error contained in the ciphertext ̂C, which might contain
sensitive information beyond just the plaintext bit. These partial decryptions
can be combined to compute

∑

i pi ≈ v ≈ μ�q/2� and therefore recover the
plaintext bit μ.

The above process satisfies the following security notion: given the ciphertext
̂C, the bit μ that it encrypts, and the secret keys {ti : i �= j} of all-but-one of
the parties, we can simulate the partial decryption pj of party j without knowing
its secret key tj . Intuitively, this property says that the partial decryption pj

cannot reveal too much information about tj .

Two Round Multiparty Computation via Multi-key FHE 743

The above security property of partial decryption is tricky to use since it
allows us to simulate the partial decryption of only one party at a time. Never-
theless, we show that this security property of threshold decryption is sufficient
in the context of implementing MPC.

2.3 Road-Map Through the Paper

We begin by giving a definition of multi-key FHE (MFHE) first and then MFHE
with threshold decryption in Sect. 4. Then in Sect. 5 we construct such a scheme
from the LWE and in Sect. 6 we show how to construct MPC from such a scheme.
These two sections are independent of each other and can be read in any order.

3 Preliminaries

Throughout, we let λ denote the security parameter and negl(λ) denote a negli-
gible function. We represent elements in Zq as integers in the range (−q/2, q/2].
Let x = (x1, . . . , xn) ∈ Z

n be a vector. We use the notation x[i] to denote the ith
component scalar. Similarly for a matrix M ∈ Z

n×m we use M[i, j] to denote the
scalar element located in the i-th row and the j-th column. In general, vectors
are represented as single row matrices. The infinity norm (often called simply
norm) of a vector x is defined as ‖x‖∞ = maxi(|x[i]|). The norm of matrices is
defined similarly. An n-dimensional all-zero vector is usually denoted by 0n and
similarly 0n×m denotes an all-zero matrix.

For two distributions X,Y , over a finite domain Ω, the statistical distance
between X and Y is defined by Δ(X,Y) def= 1

2

∑

ω∈Ω |X(ω) − Y (ω)|. If X,Y
are distribution ensembles parameterized by the security parameter, we write
X

stat≈ Y if the quantity Δ(X,Y) is negligible. Similarly, we write X
comp≈ Y if

they are computationally indistinguishable. We write ω ← X to denote that ω is
sampled at random according to distribution X. We write ω ← Ω to denote that
it is sampled uniformly at random from the set Ω. For a distribution ensemble
χ = χ(λ) over the integers, and integers bounds B = B(λ), we say that χ is
B-bounded if Prx←χ(λ)[|x| ≤ B(λ)] = 1.

We rely on the following lemma, which says that adding large noise “smudges
out” any small values (see e.g., [4] for proof).

Lemma 2 (Smudging Lemma). Let B1 = B1(λ), and B2 = B2(λ) be positive
integers and let e1 ∈ [−B1, B1] be a fixed integer. Let e2 ← [−B2, B2] be chosen
uniformly at random. Then the distribution of e2 is statistically indistinguishable
from that of e2 + e1 as long as B1/B2 = negl(λ).

Learning with Errors. The decisional learning with errors (LWE) problem,
introduced by Regev [33], is defined as follows.

744 P. Mukherjee and D. Wichs

Definition 1 (LWE [33]). Let λ be the security parameter, n = n(λ), q = q(λ)
be integers and let χ = χ(λ), be distributions over Z. The LWEn,q,χ assumption
says that for any polynomial m = m(λ) we have

(A, sA + e)
comp≈ (A, z)

where A ← Z
n×m
q , s ← Z

n
q , e ← χm and z ← Z

m
q .

The works of [32,33] show that the LWE problem is as hard as approximating
the shortest vector problem in lattices (for appropriate parameters). The version
of the LWE assumption that we need here is that for any polynomial p = p(λ)
there is a polynomial n = n(λ), a modulus q = q(λ) of singly-exponential size,
and a distribution χ = χ(λ) such that χ is Bχ-bounded and q ≥ 2pBχ such
that LWEn,q,χ holds. This is as hard as approximating the shortest vector with
sub-exponential approximation factors.

4 Defining Threshold Multi-key FHE

4.1 Multi-key FHE (MFHE)

We start with our definition of (leveled) multi-key FHE which is adapted from the
definition given by Lopez-Alt, Tromer and Vaikuntanathan [28] with some minor
differences which reflect differences in the properties achieved by the schemes of
[28] and [10]. On the positive side, in the scheme of [10] the number of parties N
need not be known ahead of time during key generation or encryption. On the
negative side, the scheme of [10] requires some common public parameters that
are available to the parties during key generation.

Below we call any ciphertext which is associated with multiple keys an
“expanded” ciphertext. Also, the ciphertexts that are generated by the encryp-
tion procedure (and thus corresponds to a single key) are called “fresh” cipher-
texts, and the expanded ciphertexts that are output by the homomorphic eval-
uations are called “evaluated” ciphertexts.

Definition 2 (Multi-key (Leveled) FHE). A multi-key (leveled) FHE is
a tuple of algorithms MFHE = (Setup,Keygen,Encrypt,Expand,Eval,Decrypt)
described as follows:

– params ← Setup(1λ, 1d): Setup takes as input the security parameter λ and the
circuit depth d and outputs the system parameters params. We assume that all
the other algorithms take params as an input implicitly.

– (sk, pk) ← Keygen(params): Output secret key sk and public key pk.
– c ← Encrypt(pk, μ): On input pk and some message μ output a ciphertext c.
– ĉ ← Expand((pk1, . . . , pkN), i, c): Given a sequence of N public-keys and a fresh

ciphertext c under the i-th key pki, it outputs an “expanded” ciphertext ĉ.
– ĉ := Eval(params, C, (ĉ1, . . . , ĉ�)): Given a (description of) boolean circuit C of

depth ≤ d along with � expanded ciphertexts (ĉ1, . . . , ĉ�), outputs an evaluated
ciphertext ĉ.

Two Round Multiparty Computation via Multi-key FHE 745

– μ := Decrypt(params, (sk1, . . . , skN), c): On input some ciphertext ĉ and a
sequence of N secret keys output a message μ.

We require the following properties:

Semantic security of encryption: For any polynomial d = d(λ) and any
two messages μ0, μ1 the following distributions are computationally indistin-
guishable:

(params, pk,Encrypt(pk, μ0))
comp≈ (params, pk,Encrypt(pk, μ1))

where params ← Setup(1λ, 1d), (sk, pk) ← Keygen(params).
Correctness and compactness: Let params ← Setup(1λ, 1d). Con-

sider any sequences of N correctly generated key pairs {(pki, ski) ←
Keygen(params)}i∈[N] and any �-tuple of messages (μ1, . . . , μ�). For any
sequence of indices (I1, . . . , I�) where each Ii ∈ [N] let {ci ←
Encrypt(pkIi

, μi)}i∈[�] be encryptions of the messages μi under the Ii-th pub-
lic key and let ĉi ← Expand((pk1, . . . , pkN), Ii, ci)}i∈[�] be the corresponding
expanded ciphertexts. Let C be any (boolean) circuit of depth ≤ d and let
ĉ := Eval(C, (ĉ1, . . . , ĉ�) be the evaluated ciphertext. Then the following holds:

Correctness of Expansion: ∀ i ∈ [�] , Decrypt((sk1, . . . , skN), ĉi) = μi.
Correctness of Evaluation: Decrypt((sk1, . . . , skN), ĉ) = C(μ1, . . . , μ�).
Compactness: There exists a polynomial p(· · ·) such that |ĉ| ≤ p(λ, d,N).
In other words the size of ĉ should be independent of C and �, but can depend
on λ, d and N .

Public-Coin Parameter Generation. By default, we will consider schemes
where the Setup algorithm is “public-coin” meaning that its randomness is
included in its output. For such algorithms, we can derive params from a common
random string.

4.2 Threshold Decryption for MFHE

We now define a multi-key FHE which supports a one-round threshold distrib-
uted decryption protocol. Such a protocol consists of two components: (1) given
an expanded ciphertext (possibly evaluated) ĉ each party can compute a partial
decryption using its secret key ski, (2) there is a way to combine the partial
decryptions computed by each party to recover the plaintext.

Definition 3. A Threshold multi-key FHE scheme (TMFHE) is a multi-key FHE
scheme with two additional algorithms MFHE.PartDec,MFHE.FinDec described
as follows:

– pi ← MFHE.PartDec(ĉ, (pk1, . . . , pkN), i, ski): On input an expanded cipher-
text under a sequence of N keys and the i-th secret key output a partial decryp-
tion pi.

746 P. Mukherjee and D. Wichs

– μ ← MFHE.FinDec(p1, . . . , pN): On input N partial decryption output the
plaintext μ.

Along with the properties of multi-key FHE we require the scheme to satisfy the
following properties.

Correctness and Simulation: Let params ← Setup(1λ, 1d). Con-
sider any sequences of N correctly generated key pairs {(pki, ski) ←
Keygen(params)}i∈[N] and any �-tuple of messages (μ1, . . . , μ�). For any
sequence of indices (I1, . . . , I�) where each Ii ∈ [N] let {ci ←
Encrypt(pkIi

, μi)}i∈[�] be encryptions of the messages μi under the Ii-th pub-
lic key and let ĉi ← Expand((pk1, . . . , pkN), Ii, ci)}i∈[�] be the corresponding
expanded ciphertexts. Let C be any (boolean) circuit of depth ≤ d and let
ĉ := Eval(C, (ĉ1, . . . , ĉ�) be the evaluated ciphertext.

Correctness of Decryption: The following holds with probability 1:

MFHE.FinDec(ĉ, (p1, . . . , pN)) = C(μ1, . . . , μ�)

where {pi ← MFHE.PartDec(ĉ, (pk1, . . . , pkN), i, ski)}i∈[N] are the partial
decryptions.

Simulatability of partial decryption: There exists a PPT simula-
tor Sthr which, on input and index i ∈ [N] and all but the i-th keys
{skj}j∈[N]\{i} the evaluated ciphertext ĉ and the output message μ :=
C(μ1, . . . , μ�) produces a simulated partial decryption
p′

i ← Sthr(μ, ĉ, i, {skj}j∈[N]\{i}) such that

pi
stat≈ p′

i

where pi ← MFHE.PartDec(ĉ, (pk1, . . . , pkN), i, ski). Note that the ran-
domness is only over the random coins of the simulator and the
MFHE.PartDec procedure and all other values are assumed to be fixed (and
known).

The simulatability of partial decryptions property says that we can simulate
the partial decryption pi produced by a single party i given the plaintext value
μ and the secret keys of all other parties. Ideally, we would have a stronger
definition that allows us to simulate the partial decryptions {pi}i∈S of any subset
of the parties S given the secret keys of all other parties (rather than just a single
values), but unfortunately we do not know how to achieve this type of security.
It turns out that, with a little additional work, the given definition suffices in
our MPC construction.

5 Constructing Threshold Multi-key FHE from LWE

We now show how to construct threshold multi-key FHE from LWE. The con-
struction proceeds in four parts. First, we present the GSW encryption scheme

Two Round Multiparty Computation via Multi-key FHE 747

along with a non-standard but useful homomorphic property that it satisfies.
Secondly, we define the notion of a masking scheme for GSW and show how to
construct it. Thirdly, we use GSW and the masking scheme to construct multi-
key FHE. Finally, we show to perform threshold decryption for this scheme.

5.1 GSW Fully Homomorphic Encryption

We now describe the GSW fully homomorphic encryption scheme.

– params ← GSW.SetUp(1λ, 1d): Choose a lattice dimension parameters n =
n(λ, d) and Bχ-bounded error distribution χ = χ(λ, d) and a modulus q of
size q = Bχ2ω(dλ log λ) such that LWEn−1,q,χ,Bχ

holds.6 Choose m = n log(q)+
ω(log λ). Finally choose a random matrix B ∈ Z

n−1×m
q . Output params :=

(q, n,m, χ,Bχ,B). We stress that all the other algorithms implicitly get params
as input even if we usually do not write this explicitly.

– GSW.Keygen(params): We separately describe two sub-algorithms to generate
secret-key and pubic-key respectively:
• GSW.SKGen(params): Sample s $← Z

n−1
q . Output sk = t = (−s, 1) ∈ Z

n
q .

• GSW.PKGen(params, sk): Sample e ← χm. Set b := sB + e ∈ Z
m
q . Output

pk = A where, A ∈ Z
n×m
q is defined as A :=

[

B
b

]

– GSW.Encrypt(pk, μ): Choose a short random matrix as the randomness R $←
{0, 1}m×m. Then output the encryption of message μ ∈ {0, 1} as C ∈ Z

n×m
q

where,
C := AR + μG

– GSW.Decrypt(sk,C): Let t := sk. Define a vector w ∈ Z
n
q as follows:

w = [0, . . . , 0, �q/2�]

Then compute v = tCG−1(wT) ∈ Z
m
q . Finally output μ′ =

∣

∣

∣

⌊

v
q/2

⌉∣

∣

∣ as the
decrypted message.

– On input two ciphertexts C1,C2 ∈ Z
n×m
q we can define homomorphic addi-

tion, multiplication:
• GSW.Add(C1,C2): Output C1 + C2 ∈ Z

n×m
q .

• GSW.Mult(C1,C2): Output the matrix product C1G−1(C2) ∈ Z
n×m
q .

This also allows us to compute a homomorphic NAND gate by outputting
G − C1G−1(C2).

We sketch the proof of the following theorem for completeness.

Theorem 1. ([18]). The scheme described above is a secure FHE under the
LWEn−1,q,χ,Bχ

assumption.

6 The size of q here is bigger than needed for GSW encryption alone in order to support
our extensions.

748 P. Mukherjee and D. Wichs

Security. The proof of semantic security consists of two steps. First, we can
use the LWE assumption to replace the public key pk = A with a uniformly
random matrix in Z

n×m
q . Then we can use the leftover hash lemma to replace

the ciphertext C := AR + μG with a uniformly random value C′. We refer the
reader to [18] for details.

Correctness. To analyze correctness, it is helpful to define the following notion
of a “noisy ciphertext”.

Definition 4 (β-noisy ciphertext). A β-noisy ciphertext of some message μ
under secret-key sk = t ∈ Z

n
q is a matrix C ∈ Z

n×m
q such that: tC = μtG + e

for some e with ‖e‖∞ ≤ β.

Encryption: Consider a fresh ciphertext C = AR + μG which is generated
by encrypting some message μ with some public key A with corresponding
secret key t. First recall that tA = e such that ‖e‖∞ ≤ Bχ. Therefore
tC = e′ + μtG where e′ = eR which implies ‖e′‖∞ ≤ mBχ. Hence C is
mBχ-noisy encryption of μ under t. Let us call this value initial noise or
βinit = mBχ.

Evaluation: Let C1 and C2 be two ciphertexts which are β1 and β2 noisy
encryption of μ1, μ2 ∈ {0, 1} under the key t respectively, so that: tC1 =
e1 + μ1tG and tC2 = e2 + μ2tG with ‖e1‖∞ ≤ β1, ‖e2‖∞ ≤ β2.

– Addition: Then their addition will result in a ciphertext C(+) = C1 + C2

such that, tC(+) = e′ + (μ1 + μ2)tG where e′ = e1 + e2. Clearly this is
β1 + β2-noisy.

– Multiplication: On the other hand the multiplication would produce a cipher-
text C(×) = C1G−1(C2) such that tC(×) = e′′ + μ1μ2G where e′′ =
eG−1(C2) + μ1e2. Clearly ‖e′′‖∞ ≤ (mβ1 + β2) and the ciphertext C(×)

is (mβ1 + β2)-noisy. The same calculation holds for NAND gates.

Decryption: Let C be a β-noisy encryption of μ so that: tC = e + μtG
where ‖e‖∞ = β. Then v = tCG−1(wT) = e′ + μ(q/2) such that e′ =
〈e , G−1(wT)〉. Clearly, ‖e′‖∞ ≤ mβ. Now one can observe that decryption
works correctly as long as ‖e′‖∞ < q/4. Therefore correctness holds as long
as β < q/(4m). We call this value βmax := q/(4m).

Consider evaluating a (boolean) circuit of depth d consisting of NAND gates. It
takes input fresh ciphertexts (βinit-noisy) and each level multiplies the noise by
a factor of at most (m + 1). Therefore, the final output is βfinal-noisy cipher-
texts where βfinal = (m + 1)dβinit. To ensure correctness of decryption we need
βfinal ≤ βmax meaning Bχ4m2(m + 1)d < q which is satisfied by our choice of
parameters. This concludes the proof.

Homomorphic Linear Combinations and Pseudo Encryption. We now
define an additional homomorphic operation. This operation takes as input GSW

Two Round Multiparty Computation via Multi-key FHE 749

ciphertexts Ci,j encrypting the individual entries M[i, j] of some matrix M ∈
Z

m×m
q under a secret key t. It also takes a plaintext vector v ∈ Z

m
q which specifies

the homomorphic function to be computed. The operations outputs a “pseudo
ciphertext” Clc which we can think of as a pseudo encryption of the vector
vM, meaning that tClc ≈ vM. Note that the “pseudo ciphertext” Clc cannot
be correctly decrypted (we can only recover something close to vM but not the
exact value) nor can we further perform any of the standard GSW homomorphic
operations on it.
Property 1 (Linear combination). Let M ∈ {0, 1}m×m be a matrix and for
i ∈ [m], j ∈ [m] let Ci,j ∈ Z

n×m
q be a β-noisy GSW encryption of M[i, j] under

a secret key t ∈ Z
n
q . Let v ∈ Z

m
q be some vector (not necessarily short). Then

there is a polynomial-time deterministic algorithm

Clc = GSW.LComb((C1,1, . . . ,Cm,m),v)

which outputs Clc ∈ Z
n×m
q such that tClc = vM + e where ‖e‖∞ ≤ m3β.

Implementation. The algorithm GSW.LComb((C1,1, . . . ,Cm,m),v) is imple-
mented as follows:
1. For each i ∈ [m], j ∈ [m] define a matrix Zi,j ∈ Z

n×m
q as follows:

Zi,j [a, b] :=
{

v[i] when a = n and b = j
0 otherwise

In other words Zi,j will have 0 everywhere except the n-th (final) row and
j-th column where it has the value v[i].

2. Now output Clc ∈ Z
n×m
q where: Clc =

m,m
∑

i=1,j=1

Ci,jG−1(Zi,j)

Correctness. Correctness follows because,

tClc = t
∑

i,j

Ci,jG−1(Zi,j)

=
∑

i,j

(M[i, j]tG + ei,j)G−1(Zi,j)

=
∑

i,j

(M[i, j]tZi,j + e′
i,j)

= t
∑

i,j

M[i, j]Zi,j +
∑

i,j

e′
i,j

= (−s, 1)
[

0n−1

vM

]

+ e′′ = vM + e′′

where ei,j is the noise contained in Ci,j which is of magnitude ‖ei,j‖∞ ≤ β,
e′

i,j = ei,jG−1(Zi,j) has magnitude ‖ei,j‖∞ ≤ mβ, and finally e′′ =
∑

i,j

e′
i,j has

magnitude ‖e′′‖∞ ≤ m3β.

750 P. Mukherjee and D. Wichs

5.2 A Masking Scheme for GSW

We now define and show how to construct a “masking scheme” for GSW, which
serves as the main component of the multi-key FHE scheme. Intuitively, a mask-
ing scheme allows us to take a GSW public key pk = A (having a corresponding
secret key t) and a bit μ and output a pair of values (U ,C) such that C is a
GSW encryption of μ with pk and U is an auxiliary value such that (1) the pair
(U ,C) computationally hide μ (just like C alone) and (2) later, given another
GSW public key pk = A′ (having a corresponding secret key t′) we can compute
a matrix X such that tX + t′C = μt′G.

Property 2 (GSW Masking Scheme). There exists a pair of algorithms
(UniEnc,Extend):

– UniEnc(μ, pk): On input a message μ ∈ {0, 1} and a GSW public key pk it
generates a pair (U ,C) where C ∈ Z

n×m
q and U ∈ {0, 1}∗.

– Extend(U , pk, pk′): On input U and GSW public keys pk, pk′ it outputs X ∈
Z

n×m
q .

for which the following properties holds:

–Semantic Security: For any polynomial d = d(λ) security of GSW encryp-
tion implies that:

(params, pk,UniEnc(0, pk))
comp≈ (params, pk,UniEnc(1, pk))

where params ← GSW.SetUp(1λ, 1d), (sk, pk) ← GSW.Keygen(params).
–Correctness: Let params ← GSW.SetUp(1λ, 1d) and let (sk = t, pk), (sk′ =
t′, pk′) be two independent key pairs generated with GSW.Keygen(params).
For any μ ∈ {0, 1} let (U ,C) ← UniEnc(μ, pk) and X ← Extend(U , pk, pk′).
Then

μ := GSW.Decrypt(sk,C) and tX + t′C = μt′G + e

where ‖e‖∞ ≤ βmask for βmask := (m4 + m)Bχ.

Instantiation. We now show how to implement such masking scheme.

– UniEnc(pk, μ): On input a message μ and a public key pk the algorithm outputs
U , which is a m2-tuple of matrices in Z

n×m
q , and C ∈ Z

n×m
q as follows.

1. Let A = pk. Set C ← GSW.Encrypt(pk, μ) ∈ Z
n×m
q so that C = AR+μG

where R ∈ {0, 1}m×m is the encryption randomness.
2. Encrypt each element of the random matrix R (chosen in Step 1)

to get m2 ciphertexts: V(a,b) ← GSW.Encrypt(pk,R[a, b]). Set U :=
(

V(1,1), . . . ,V(m,m)
) ∈ (

Z
n×m
q

)(m2).

– Extend(U , pk, pk′): On input a U ∈ (

Z
n×m
q

)(m2) and public keys pk, pk′ the
algorithm computes X ∈ Z

n×m
q as follows:

1. Parse pk = A =
[

B
b

]

, pk′ = A′ =
[

B
b′

]

and, U =
({V(a,b)}a,b∈[m]

)

.

Two Round Multiparty Computation via Multi-key FHE 751

2. Set X = GSW.LComb
(

(V(1,1), . . . ,V(m,m)),b′ − b
)

.

Semantic Security. The view of the attacker is the following distribution:
(

params,A,C,U =
(

V(11), . . . ,V(m,m)
)

)

generated via params ← GSW.SetUp(1λ, 1d), (sk, pk = A) ←
GSW.Keygen(params) and (C,U) ← UniEnc(pk, μ), where either μ = 0 or μ = 1.
We prove semantic security of the masking scheme by relying on the semantic secu-
rity of the underlying GSW scheme. The proof consists of the following hybrids:

– Firstly, we modify each of the ciphertexts V(a,b) so that instead of being GSW
encryptions of R[a, b], we just choose them as GSW encryptions of 0. This
just relies on semantic security of GSW encryption.

– Secondly, we also choose C as a GSW encryption of 0. This also just follows
from the semantic security of GSW encryption, since after the first step no
information about the randomness R is given out.

Finally, this distribution is completely independent of the bit μ which concludes
the proof of semantic security.

Correctness. Let ((sk = t, pk = A), (sk′ = t′, pk′ = A′)) be two correctly gen-
erated GSW key-pairs. Now recall that, sk = t = (−s, 1) ∈ Z

n
q , and sk′ =

t′ = (−s′, 1) ∈ Z
n
q ; pk = A =

[

B
b

]

∈ Z
n×m
q , pk′ = A′ =

[

B
b′

]

∈ Z
n×m
q where

b = sB + e, b′ = s′B + e′ with ‖e‖∞, ‖e′‖∞ ≤ βχ.
Furthermore, for any message μ let (U ,C) ← UniEnc(pk, μ) and X ←

Extend(U , pk, pk′) where U =
(

V(1,1), . . . ,V(nm)
)

. Then it is easy to see that

μ := GSW.Decrypt(sk,C) which implies that C = AR+ μG =
[

B
b

]

R+ μG for

some R ∈ {0, 1}m×m and hence

t′C = (−s′, 1)
[

B
b

]

R + μt′G

= −s′BR + bR + μt′G
= −(b′ − e′)R + bR + μt′G
= (b − b′)R + μt′G + eC

where eC = e′R has norm ‖eC‖∞ = mBχ.
On the other hand, by the correctness of linear combinations, we have:

tX = (b′ − b)R + eX

where ‖eX‖∞ = m4Bχ.
Combining these equations, we get tX + t′C = μt′G + e∗ where ‖e∗‖∞ ≤

(m4 + m)Bχ as claimed.

752 P. Mukherjee and D. Wichs

5.3 Construction of Multi-key FHE

First recall the fixed matrix G ∈ Z
n×m
q that played an important role for the

earlier construction and analysis. In this section we define an “expanded matrix”
̂GN ∈ Z

nN×mN
q as:

̂GN =

⎡

⎢

⎢

⎢

⎢

⎣

G · · · · · · 0

0 G · · · ...
... · · · G 0
0 · · · · · · G

⎤

⎥

⎥

⎥

⎥

⎦

We note that there exists a corresponding efficiently computable function ̂G−1
N (·)

such that for any m′ ∈ N any matrix M ∈ Z
nN×m′
q , ̂G−1

N (M′) ∈ {0, 1}mN×mN

is “short” and ̂GN
̂G−1

N (M) = M. Such ̂G−1
N (·) can be computed using G−1(·)

in the natural way.

Construction. Now we describe our multi-key FHE construction.

– MFHE.SetUp(1λ, 1d): Run the set-up algorithm of GSW to generate the para-
meters:

params := (q, n,m, χ,Bχ,B) ← GSW.SetUp(1λ, 1d).

– MFHE.Keygen(params): Run the key-generation algorithm of GSW to
generate:

sk := t ← GSW.SKGen(params) pk := A ← GSW.PKGen(params, sk)

– MFHE.Encrypt(pk, μ): Execute the following steps:
• Just use the masking scheme: (U ,C) ← UniEnc(μ, pk).
• Output the pair c := (U ,C) as the ciphertext for μ.

– MFHE.Expand((pk1, . . . , pkN), i, c): On receiving a sequence of public-keys
(pk1, . . . , pkN) and a fresh ciphertext c = (U ,C) under the public key pki

run the Extend algorithm for all pkj where i �= j.
• For j ∈ {pk1, . . . , pkN} \ {i}, compute Xj ← Extend(U , pki, pkj).
• Then define a matrix ̂C ∈ Z

nN×mN
q as a concatenation of N2 sub-matrices

where each sub-matrix Ca,b ∈ Z
n×m
q for a, b ∈ [N] is defined as:

Ca,b :=

⎧

⎨

⎩

C when a = b
Xj when a = i �= j and b = j

0n×m otherwise

For reader’s convenience we provide a pictorial representation of ̂C in
Fig. 1:

Finally output ĉ := ̂C as the expanded ciphertext.
– MFHE.Eval(params, C, (ĉ1, . . . , ĉ�)) On input � expanded ciphertexts simply

use the GSW homomorphic evaluation algorithms namely GSW.Add and
GSW.Mult, albeit with expanded dimensions n′ = nN and m′ = mN and
the expanded ̂GN , ̂G−1

N (in place of n,m and G,G−1).

Two Round Multiparty Computation via Multi-key FHE 753

Row i

Column i

C 0 · · · 0 0

0
. . . · · · · · ·

...
... 0 0 · · · 0

X1 · · · C · · · XN

0 · · · 0 0
...

... · · · · · · . . . 0
0 0 · · · 0 C

Fig. 1. Structure of the expanded ciphertext Ĉ

– MFHE.Decrypt(params, (sk1, . . . , skN), c): On input a ciphertext c = ̂C and
the sequence of secret keys (sk1, . . . , skN) parse each ti := ski and then con-
struct the joint secret key by horizontally appending all the secret-keys in
sequence ̂t =

[

̂t1 ̂t2 · · · ̂tN

] ∈ Z
nN
q . Then run the GSW decryption algorithm

albeit with expanded dimensions n′ = nN and m′ = mN and the expanded
̂GN , ̂G−1

N (in place of n,m and G,G−1).

Correctness and Security of MFHE Construction

Theorem 2. The scheme described above is a secure MFHE under the
LWEn−1,q,χ,Bχ

assumption (with the same parameters as we defined for GSW
encryption).

Semantic Security. The semantic security of the above multi-key FHE follows
directly from that of the GSW masking scheme.

Correctness of Expansion. Consider a sequences of N key pairs ((sk1 =
t1, pk1), . . . , (skN = tN , pkN)) correctly generated by running the key-generation
as {(pki, ski) ← MFHE.Keygen(params)}i∈[N]. Now suppose for any mes-
sage μ and any i ∈ [N] we have a ciphertext c ← MFHE.Encrypt(pki, μ)
under the i-th key and the corresponding expanded ciphertext ̂C ←
MFHE.Expand((pk1, . . . , pkN), i, c) as shown in Fig. 1. Let ̂t = [t1, . . . , tN]. Then

̂t̂C = [tiX1 + t1C, . . . , tiC, . . . , tiXN + tNC]
= [μt1G + e1, . . . , μtiG + ei, . . . , μtNG + eN]

= μ̂t ̂G + [e1, . . . , eN]

where ‖ei‖∞ ≤ mBχ by the correctness of GSW encryption and for j �= i,
‖ej‖∞ ≤ (m4+m)Bχ by the correctness of the GSW masking scheme. Therefore,

754 P. Mukherjee and D. Wichs

̂t̂C = μ̂t ̂G + e where ‖e‖∞ ≤ (m4 + m)Bχ. Let’s call this value β′
init = (m4 +

m)Bχ = 2O(log λ)Bχ. The correctness of GSW encryption is guaranteed as long
as β′

init ≤ q/(4m′) which holds with the choice of q we defined.

Correctness of Evaluation. Let ̂C1, . . . , ̂C� be expanded ciphertexts corre-
sponding to bit μ1, . . . , μ� so that, by the above correctness property, ̂t̂Ci =
μi

̂t ̂G + ei where ‖ei‖∞ ≤ β′
init. If ̂C is the output of a homomorphic

evaluation of a circuit C of depth d over the above ciphertexts such that
μ = C(μ1, . . . , μ�) then by the correctness of GSW homomorphic evaluation
with scaled up parameters n′ = nN,m′ = mN we have ̂t̂C = μ̂t ̂G + e
where ‖e‖∞ ≤ β′

init(m
′ + 1)d = (m4 + m)Bχ(mN + 1)d. Let’s call this value

β′
final = Bχ(m4+m)(mN +1)d = 2O(d log λ)Bχ. The correctness of GSW encryp-

tion is guaranteed as long as β′
final ≤ q/(4m′) which holds with the choice of q

we defined.

5.4 Threshold Decryption for Multi-key FHE

We now show how to implement threshold decryption for the MFHE construction
outlined in the previous section.

MFHE.PartDec(ĉ, (pk1, . . . , pkN), i, ski): On input an expanded ciphertext ĉ =
̂C ∈ Z

nN×mN
q under a sequence of keys (pk1, . . . , pkN) and the i-th secret

key ski = ti ∈ Z
n
q do the following:

– Parse ̂C as consisting of N sub-matrices ̂C(i) ∈ Z
n×mN
q such that

̂C =

⎡

⎢

⎣

̂C(1)

...
̂C(N)

⎤

⎥

⎦
.

– Define ŵ ∈ Z
nN
q as ŵ = [0, . . . , 0, �q/2�].

– Then compute γi = ti
̂C(i)

̂G−1(ŵT) ∈ Zq and output pi = γi + esm
i ∈ Zq

where esm
i

$← [−Bdec
smdg,−Bdec

smdg] is some random “smudging noise” where
Bdec

smdg = 2dλ log λBχ.

MFHE.FinDec(p1, . . . , pN): Given p1, . . . , pN , compute the sum p :=
∑N

i=1 pi.

Output μ :=
∣

∣

∣

⌈

p
q/2

⌋∣

∣

∣.

Correctness and Simulation Security

Theorem 3. The above threshold decryption procedures for MFHE satisfy cor-
rectness and (statistical) simulation security.

Two Round Multiparty Computation via Multi-key FHE 755

Correctness. Here the entire scheme is same as MFHE except the decryption.
So if ̂C is an evaluated ciphertext encrypting a bit μ and the secret keys are
̂t = [̂t1, . . . ,̂tN] then, by the analysis used for non-threshold correctness, we
have

̂t̂C =
∑

i∈[N]

ti
̂C(i) = μ̂t ̂G + e

where ‖e‖∞ ≤ β′
final = (m4 + m)Bχ(mN + 1)d. Therefore if the partial decryp-

tions pi are computed as specified we have:
∑

i∈[N]

pi =
∑

i∈[N]

γi +
∑

i∈[N]

esm
i =

∑

i∈[N]

ti
̂C(i)

̂G−1(ŵT) + esm

= (μ̂t ̂G + e) ̂G−1(ŵT) + esm

= μ�q/2� + e′ + esm

where esm =
∑

i∈[N] e
sm
i has norm |esm| ≤ NBdec

smdg = 2O(dλ log λ)Bχ and e′ =

e ̂G−1(ŵT) has norm |e′| ≤ β′
finalmN = 2O(d log λ)Bχ. Since q = 2ω(dλ log λ)Bχ

we have |e′ + esm| < q/4 and correctness holds.

Simulatability: The simulator Sthr(μ, ̂C, i, {tj}j∈[N]\{i}), on input the secrets
keys {tj}j �=i the evaluated ciphertext ̂C ∈ Z

nN×mN
q and the output value μ =

C(μ1, . . . , μ�) encrypted in ̂C outputs the simulated partial decryption:

p′
i = μ�q/2� + esm

i −
∑

i�=j

γj (1)

for esm
i

$← [−Bdec
smdg, B

dec
smdg] where γj = tj

̂C(j)
̂G−1(ŵT).

To see the indistinguishability note that, by the same calculation as used
to argue correctness, we know that

∑

j∈[N] γj = μ�q/2� + e′ where |e′| ≤
β′

finalmN = 2O(d log λ)Bχ. Therefore if pi = γi+esm
i is the real partial decryption

then
pi = μ�q/2� + e′ + esm

i −
∑

i�=j

γj

The difference between the real value pi and the simulated value p′
i is the noise

e′ of norm |e′| = 2O(d log λ)Bχ. But by the smudging Lemma 2, the distributions
of esm

i and esm
i + e′ are statistically close since esm

i
$← [−Bdec

smdg,−Bdec
smdg] where

Bdec
smdg = 2dλ log λBχ so that Bdec

smdg/|e′| ≥ 2λ. Therefore the simulated partial
decryption and the real one are statistically indistinguishable.

5.5 Bootstrapping

Note that the above MFHE scheme is leveled i.e., it depends on the multiplicative
depth of the circuit to be computed. However, this dependency can be avoided

756 P. Mukherjee and D. Wichs

easily by boot-strapping and assuming circular security. We briefly describe the
straightforward procedure and omit the details.

During key generation, each party i chooses a key pair (ski, pki) and uses the
MFHE scheme to encrypt the secret key ski under pki bit-by-bit.7 It appends
these encryptions to the public key. Later, given a sequence of public keys
{pk1, . . . , pkN} anyone can create an expanded multi-key encryption of each ski

using the MFHE expansion procedure. This allows us to use Gentry’s boot-
strapping technique [17] to “refresh” a highly noisy multi-key ciphertext by
homomorphically computing the MFHE decryption procedure. Therefore, to
compute a circuit of arbitrary depth, we only need to set the parameters of
the MFHE scheme so as to be evaluate circuits of some fixed depth d + 1 where
d is the depth of the MFHE decryption procedure.

Note that, by circular security it is assured that an encryption of a secret
key under itself is semantically secure which implies that the semantic security
of the above modified MFHE scheme remains intact.

6 Secure MPC via Threshold MFHE

Basic Template. We now present a protocol for general MPC, using any thresh-
old multi-key fully homomorphic scheme. The protocol is based on the template
discussed in the introduction which we recall below:

1. Each party individually chooses its own MFHE key pair (pki, ski), encrypts
its input xi under pki, and broadcasts the resulting ciphertext. At the end of
this round, each party can homomorphically compute the desired function f
on the received ciphertexts and derive a common multi-key ciphertext which
encrypts the output y = f(x1, . . . , xN).

2. The parties run a distributed protocol for “threshold decryption” using their
secret keys ski to decrypt the multi-key ciphertext and recover the output
y in plaintext. In particular each party first generates partial decryptions pi

from the common (evaluated) ciphertext ĉ and then broadcasts them. Finally
each party, on receiving all those partial decryptions can compute the final
decryption y.

Our goal is to prove the security of this protocol (as least in the honest-but-
curious setting, as a start). The natural attempt to construct a MPC simulator
S would be to first use the simulator of threshold decryption, Sthr to replace
the correct partial decryptions pi with simulated ones p′

i and then use semantic
security of the encryption to replace each ciphertext (broadcast in the first round)
by encryptions of 0.

The Problem. Unfortunately, we notice that the simulatability of the threshold
decryption does not suffice when there is more than one honest party. Essentially,

7 We ignore the algebraic structure of the secret key here and assume each element in
Zq can be represented as a �log(q)� + 1 binary string.

Two Round Multiparty Computation via Multi-key FHE 757

our definition of simulation security for threshold decryption only allows us to
simulate the partial decryption of a single party at a time while knowing the
secret keys of all other parties. We cannot, however, simultaneously simulate the
partial decryptions of (even) two honest parties without knowing either of their
secret keys.

Solution. Essentially we solve the above problem by two steps. We first show that
the “basic” protocol as described above is already secure when there is exactly
one honest party. Then, later in Sect. 6.2 we extend the basic protocol to another
protocol which can handle any arbitrary number of corruption. The extended pro-
tocol additionally requires only pseudorandom functions (PRFs) and thus no new
assumptions are used. Combining, we get a protocol which securely realizes any
functionality against any arbitrary number of corruptions. Below we provide the
basic protocol from any MFHE scheme and prove security against exactly N − 1
corruptions. Later in Sect. 6.2 we present the extension in detail.

Semi-Malicious Security. Following [3], we will actually prove that the above
protocol satisfies something called “semi-malicious” security which is stronger
than honest-but-curious. Intuitively, it means that adversarial parties need to
follow the protocol specification, but can use arbitrary values for their random
coins. In fact, the adversary only needs to decide on the input and the random
coins to use for each party in each round at the time that the party sends the first
message8. We will then rely on a theorem of [3] showing that one can compile
any such protocol which is secure in the semi-malicious setting into one that
is secure in the fully malicious setting, without adding any rounds, by using
non-interactive zero-knowledge proofs (NIZKs).

6.1 Protocol Secure Against Exactly N − 1 Corruptions

The protocol, given in Fig. 2, realizes general multiparty computation for any
polynomial-time deterministic functions f which produces a common output for
all parties. It does so with respect to a static semi-malicious attackers corrupting
exactly N − 1 parties. Formally we prove the following theorem.

Theorem 4. Let f be a poly-time computable deterministic functionwithN inputs
and 1 output. LetMFHE = (Setup,Keygen,Encrypt,Expand,Eval,PartDec,FinDec)
beamulti-keyFHEschemewith threshold decryption.Then theprotocolπf described
in Fig. 2 UC-realizes the function f against any static semi-malicious adversary
corrupting exactly N − 1 parties.

Proof: The correctness of the protocol follows in a straightforward way from
the correctness of the underlying threshold MFHE scheme.

To prove security basically we need to construct an efficient (PPT) simulator
S for any adversary corrupting exactly N − 1 parties. Let A be a static semi-
malicious adversary and Ph be the only honest party. The simulator simulates
the protocol execution on behalf of the honest party Ph as follows.
8 See the full version [30] for a formal definition.

758 P. Mukherjee and D. Wichs

Let f : ({0, 1}�in)N → {0, 1}�out be the function to compute. Let d be the depth of
the circuit for f .

Preprocessing. Run setup ← MFHE.Setup(1λ, 1d). All the parties share the com-
mon setup.

Input: Each party Pk has input xk ∈ {0, 1}�in .

The Protocol:

Round I. Each party Pk executes the following steps.
– Generate a key-pair (skk, pkk) ← MFHE.Keygen(setup).
– Encrypt the message bit-by-bit:

{ck,j ← MFHE.Encrypt(pkk,xk[j])}j∈[�in].

– Broadcast the public-key and the ciphertexts (pkk, {ck,j}j∈[�in]).
Round II. Each party Pk on receiving values {pki, ci,j}i∈[N]\{k},j∈[�in] executes the

following steps:
– First expand each ci,j :

{ĉi,j ← MFHE.Expand((pk1, . . . , pkN) , i, ci,j)}i∈[N],j∈[�in]

– Run the evaluation algorithm to generate the evaluated ciphertext:

{ĉj ← MFHE.Eval(fj , (ĉ1,1, . . . , ĉN,�in))}j∈[�out]
.

where fj is the boolean function for j-th bit of the output of f .
– Finally all the parties concurrently take part in one-round threshold decryption

to obtain the output message bit-by-bit as follows:

• Each Pk computes the partial decryption for all j ∈ [�out]:

p
(j)
k ← MFHE.PartDec(ĉj , (pk1, . . . , pkN), k, skk)

• Pk broadcasts all the values {p
(j)
k }j∈�out .

Output. On receiving all the values {p
(j)
i }i∈[N],j∈[�out] run the final decryption to

obtain the j-th output bit: {yj ← MFHE.FinDec(p
(j)
1 , . . . , p

(j)
N)}j∈[�out]. Output

y = y1 . . . y�out .

Fig. 2. πf : A basic MPC protocol for f secure against N − 1 corruptions

The Simulator. In round-I, the simulator encrypts 0s instead of the real input
bits of the honest party Ph. After round-I it gets the inputs and the secret keys
of the N −1 corrupt parties from the “witness tape”. It gives these inputs to the
ideal functionality and receives the output bits yj for each j ∈ [�out]. At this point
it can also compute the evaluated ciphertexts ĉj . Then it computes the simulated
partial decryptions for the honest party˜

(j)
h ← Sthr(yj , ĉj , h, {ski}i∈[N]\{h}) and

broadcast those in round-II instead of correctly computed partial decryptions
p
(j)
h generated via MFHE.PartDec(· · ·).

Two Round Multiparty Computation via Multi-key FHE 759

Hybrid Games. We now define a series of hybrid games that will be used to
prove the indistinguishability of the real and ideal worlds:

IDEALF,S,Z
comp≈ REALπ,A,Z (2)

The output of each game is always just the output of the environment.

The game REALπ,A,Z : This is exactly an execution of the protocol π in the
real world with environment Z and semi-malicious adversary A.

The game HY B1
π,A,Z : In this game, we modify the real world experiment as

follows. Assume (as a mental experiment) that Ph is given the all the secret
keys {ski}i∈[N]\{h} (as written on the “witness tape” of the adversary) after
round I. In the second round, instead of broadcasting a correctly generated
partial decryptions p

(j)
h generated via MFHE.PartDec(· · ·), it broadcasts sim-

ulated ones {̃(j)h ← Sthr(yj , ĉj , h1, {ski}i�=h)}j∈[�out].
The game IDEALF,S,Z : This is similar to the game HY B1

π,A,Z except instead
of encrypting its real input, Ph now broadcasts encryption of 0s in the first
round.

Claim 1. REALπ,A,Z
stat≈ HYB1

π,A,Z

Proof: Notice that, the only change between those experiments are that, the
partial decryption of party Ph is generated through simulator Sthr instead of cor-
rectly using MFHE.PartDec. By simulatability of threshold decryption the partial
decryptions are statistically indistinguishable hence so are the experiments. �

Claim 2. HYB1
π,A,Z

comp≈ IDEALF,S,Z

Proof: The only change between those experiments are in generating encryp-
tions of party Ph . By semantic security of the underlying MFHE the encryptions
are computationally indistinguishable. Hence the experiments are also compu-
tationally indistinguishable. Note that here it is possible to use the semantic
security as the partial decryptions of Ph in both the experiments are simulated
and hence independent of the secret key skh. �

This concludes the proof of the theorem. �

6.2 An Extended Protocol for Arbitrary Many Corruptions

In this section we construct an “extended” MPC protocol π̂f which securely
computes any function f against any semi-malicious adversary that can corrupt
any t ∈ [N] parties. We do so by relying on the “basic” MPC protocol πf from
the previous section, which is secure against a semi-malicious adversary that
corrupts exactly N − 1 parties. To compute a function f , our extedned protocol
simply runs the basic protocol π

̂f on an extended function ̂f defined as follows.

760 P. Mukherjee and D. Wichs

Definition 5 (Extended function). For any polynomial �in, �out, N ∈ N let
f : {{0, 1}�in}N → {0, 1}�out be a poly-time computable function and PRF :
{0, 1}λ × [N] → {0, 1}�in be a PRF. Then we define an extended func-
tion ̂f : {{0, 1}�in × {1, 2, 3} × {0, 1}λ}N → {0, 1}�out which takes as input
((x1, mode1, z1), . . . , (xN , modeN , zN)) and does the following:

– If ∀ i ∈ [N], modei = 1 then output f(x1, . . . ,xN).
– If ∃ unique i ∈ [N] such that modei = 2 then let K := zi. For all j ∈ [N]:

• If modej = 3 then set x′
j := PRF(K, j) ⊕ xj.

• Else set x′
j := xj.

Output f(x′
1, . . . ,x

′
N).

– Otherwise output 0�out .

Roughly speaking, the extended function does the same thing as the original
function if all the inputs have modei = 1. However, if there is one special party
with modei = 2 then the function uses a PRF key K = zi provided by that party
to “decrypt” the inputs of all the parties with modej = 3.

We define an “extended protocol” π̂f in Fig. 3. It essentially just runs the orig-
inal basic protocol π

̂f with an extended function ̂f and appropriately extended
inputs.

Let f : {{0, 1}�in}N → �out be the function we wish to compute and let and PRF :

{0, 1}λ×[N] → {0, 1}�in be a PRF. Let f̂ : {{0, 1}�in×{1, 2, 3}×{0, 1}λ}N → {0, 1}�out

be the corresponding extended function (Definition 5). Let π
̂f be the protocol from

Figure 2 applied to the extended function f̂ . The extended protocol π̂f is defined as
follows:

Setup: The setup is the same as the that of the protocol π
̂f .

Input: Each party Pk has input xk ∈ {0, 1}�in . Additionally each party sets modek :=

1, zk := 0, and defines its extended input as x̂k := (xk, modek, zk) ∈ {0, 1}̂�in where

�̂in = �in + λ + 2. a

Protocol: The parties run the protocol π
̂f using the extended inputs {x̂k}k∈[N]. They

output whatever π
̂f outputs.

a Here any 0 denotes a string of 0s of appropriate size. We abuse notation for simpli-
fication.

Fig. 3. π̂f : Extended protocol secure against any number of semi-malicious corruptions.

The following theorem states that the extended protocol π̂f is secure against
any arbitrary number of semi-malicious corruptions. The proof is deferred to the
full version [30].

Theorem 5. Let f be a function with N inputs and 1 output. Let PRF : {0, 1}λ×
[N] → {0, 1}�out be a PRF. Then, under the LWE assumption, the protocol π̂f

shown in Fig. 3 UC-realizes f against a static semi-malicious adversary that can
corrupt any number of parties.

Two Round Multiparty Computation via Multi-key FHE 761

6.3 Extensions and Applications

Generalized Functionalities. Our protocol (Fig. 2) considers deterministic
functionalities where all the parties receive the same output. One can extend that
to handle randomized functionalities and individual output in a straightforward
manner using known standard techniques just like [4]. We refer to [4] for more
details.

Fully Malicious Adversary. Our protocol protects only against semi-malicious
adversaries. However, since we are in the CRS model such protocol can be
generically converted to one secure against fully-malicious adversary using non-
interactive zero-knowledge (NIZK) arguments. For more detail on this again we
refer to [4].

Communication Complexity. Although our main focus was on round com-
plexity, we mention that our scheme also achieves essentially optimal communi-
cation complexity which is only proportional to the total input size, output size
and circuit depth. We can get rid of the reliance on circuit depth by using boot-
strapping and relying on circular security: each party would simply send a GSW
encryption of its secret key under its public key and then we would perform a
boostrapping step after each homomorphic operation to reduce the noise in the
ciphertext.

Computation on the Web. Our results also relate to the idea of “compu-
tation on the web” [21] where parties can’t interact with each other but can
only interact with some central website without further coordination. Using our
scheme (or any 2 round protocol) each party needs to log in twice: once to give
its ciphertext to the sever and once to give a partial decryption of the output.

7 Conclusions

We have shown how to implement MPC with only two rounds of interaction
by relying on the LWE assumption (and NIZKs for malicious security). Several
interesting open problems remain. Firstly, is possible to get a 2 round MPC
protocol under general assumptions such as the existence of oblivious transfer?
Secondly, is it possible to get a protocol that achieves adaptive security? A
recent work of [16] does this using indistinguishability obfuscation (iO) but it
remains an open problem to do this using more standard assumptions such as
LWE. Lastly, it would be interesting to get a 2 round protocol in the honest-
but-curious model without a CRS. One way to achieve this would be to a build
a threshold multi-key FHE without any common public parameters.

References

1. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–
314. Springer, Heidelberg (2014)

762 P. Mukherjee and D. Wichs

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. In: IEEE Conference on Computational Com-
plexity, pp. 260–274 (2005)

3. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, pp. 483–501. Springer, Heidelberg (2012)

4. Asharov, G., Jain, A., Wichs, D.: Multiparty computation with low communica-
tion, computation and interaction via threshold fhe. Cryptology ePrint Archive,
Report 2011/613 2011. http://eprint.iacr.org/

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC, pp. 503–513 (1990)

6. Bendlin, R., Damg̊ard, I.: Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 201–218. Springer, Heidelberg (2010)

7. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. In: ITCS (2012)

9. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. In: FOCS (2011)

10. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 630–656. Springer, Heidelberg (2015)

11. Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001)

12. Damg̊ard, I.B., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

13. Matthew, K.: Franklin and stuart haber: joint encryption and message-efficient
secure computation. J. Cryptology 9(4), 217–232 (1996)

14. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014)

15. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. Manuscript, October 2015

16. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015)

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

18. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

http://eprint.iacr.org/

Two Round Multiparty Computation via Multi-key FHE 763

20. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
STOC, pp. 695–704 (2011)

21. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011)

22. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In: FOCS, pp. 294–304 (2000)

23. Jakobsson, M., Juels, A.: Mix and match: secure function evaluation via cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177.
Springer, Heidelberg (2000)

24. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004)

25. Katz, J., Ostrovsky, R., Smith, A.: Round Efficiency of Multi-party Computation
with a Dishonest Majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, pp.
578–595. Springer, Heidelberg (2003)

26. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: STOC, pp. 705–714 (2011)

27. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computa-
tion. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 171–189. Springer,
Heidelberg (2001)

28. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi,
T. (eds.) Proceedings of the 44th Symposium on Theory of Computing Conference,
STOC, New York, NY, USA, 19–22 May 2012, pp. 1219–1234. ACM (2012)

29. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

30. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
Cryptology ePrint Archive, Report 2015/345 (2015). http://eprint.iacr.org/

31. Myers, S., Sergi, M., Shelat, A.: Threshold fully homomorphic encryption and
secure computation. In: eprint /454 (2011)

32. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: STOC, pp. 333–342 (2009)

33. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93 (2005)

34. Andrew Chi-Chih Yao: Protocols for secure computations (extended abstract). In:
FOCS, pp. 160–164 (1982)

35. Andrew Chi-Chih Yao: How to generate and exchange secrets (extended abstract).
In: FOCS, pp. 162–167 (1986)

http://eprint.iacr.org/

Post-zeroizing Obfuscation: New Mathematical
Tools, and the Case of Evasive Circuits

Saikrishna Badrinarayanan1(B), Eric Miles1, Amit Sahai1,
and Mark Zhandry2,3

1 Center for Encrypted Functionalities, UCLA, Los Angeles, USA
{saikrishna,enmiles,sahai}@cs.ucla.edu

2 MIT, Cambridge, USA
3 Princeton University, Princeton, USA

mzhandry@princeton.edu

Abstract. Recent devastating attacks by Cheon et al. [Eurocrypt’15]
and others have highlighted significant gaps in our intuition about secu-
rity in candidate multilinear map schemes, and in candidate obfuscators
that use them. The new attacks, and some that were previously known,
are typically called “zeroizing” attacks because they all crucially rely on
the ability of the adversary to create encodings of 0.

In this work, we initiate the study of post-zeroizing obfuscation, and
we obtain a key new mathematical tool to analyze security in a post-
zeroizing world. Our new mathematical tool allows for analyzing polyno-
mials constructed by the adversary when given encodings of randomized
matrices arising from a general matrix branching program. This tech-
nique shows that the types of encodings an adversary can create are
much more restricted than was previously known, and is a crucial step
toward achieving post-zeroizing security. We also believe the technique is
of independent interest, as it yields efficiency improvements for existing
schemes – efficiency improvements that have already found application
in other settings.

Finally, we show how to apply our new mathematical tool to the
special case of evasive functions. We show that our obfuscator survives
all known attacks on the underlying multilinear maps, by proving that
no top-level encodings of 0 can be created by a generic-model adversary.
Previous obfuscators (for both evasive and general functions) were either
analyzed in a less-conservative “pre-zeroizing” model that does not cap-
ture recent attacks, or were proved secure relative to assumptions that
no longer have any plausible instantiation due to zeroizing attacks.

This paper subsumes a previous work of Sahai and Zhandry [35].
A. Sahai—Supported in part by a DARPA/ONR PROCEED award, NSF grants
1228984, 1136174, 1118096, 1065276,0916574 and 0830803, a Xerox Faculty Research
Award, a Google Faculty Research Award, an equipment grant from Intel, and an
Okawa Foundation Research Grant. This material is based upon work supported by
the Defense Advanced Research Projects Agency through the U.S. Office of Naval
Research under Contract N00014-11-1-0389. The views expressed are those of the
author and do not reflect the official policy or position of the Department of Defense,
the National Science Foundation, or the U.S. Government.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 764–791, 2016.
DOI: 10.1007/978-3-662-49896-5 27

Post-zeroizing Obfuscation 765

1 Introduction

Over the past three years, all candidate constructions [16–18,22,27] of multilin-
ear maps, also called graded encoding schemes, have been shown to suffer from
“zeroizing” attacks [9,11,13–15,18,27,28,32] — and these attacks have in many
cases been devastating.

Given this state of affairs, one would expect that the most-studied appli-
cation of graded encodings schemes – indistinguishability obfuscation [7,20]
– would be similarly devastated. However, quite surprisingly, until our work,
none of the zeroizing attacks placed current obfuscation schemes over prime-
order1 graded encodings in jeopardy. In this paper, we ask: Why is this the
case? Given the profound level of interest in obfuscation over the past two
years [1,4,6,10,12,19,20,24,25,30,33,34,37], and given that so far all proposed
obfuscation schemes rely on graded encoding schemes, we believe this question
is of paramount importance. And indeed, before our work, no security analysis
for obfuscation used a model or assumption that took into account the impact
of zeroizing attacks.

Long-Term Vision. This paper seeks to initiate a research program whose aim
is to build fully secure obfuscation schemes out of weakened graded encodings
schemes – graded encoding schemes that are subject to zeroizing attacks. As the
research cycle of construct-and-attack over the past 3 years has shown, building
fully secure graded encoding schemes is a challenging task. Thus, our approach
is to take a pessimistic view and see if, in fact, even weakened forms of graded
encoding schemes suffice for constructing fully secure obfuscation. We note that
even if future constructions of graded encoding schemes are successful in avoiding
zeroizing attacks, the research program initiated by our work would still be
valuable, because it will help to identify the minimal security properties actually
needed by graded encoding schemes to achieve secure obfuscation. This could
lead to greater efficiency.

The central contribution of our work is a new mathematical tool that charac-
terizes when an adversary can set up the most basic requirement for a zeroizing
attack, namely a top-level encoding of zero. Furthermore, we present this math-
ematical tool in a very general form, which even has consequences for efficiency
of prime-order obfuscation constructions. We believe that our characterization
lemma will prove valuable in the long-term study of both guiding research into
new attacks on graded encodings as well as building secure obfuscation from
weak graded encodings. We demonstrate this by applying our lemma to the case
1 We note that certain simplified versions of obfuscation schemes over composite-order

graded encoding schemes [37] have been broken by zeroizing attacks [15]. There
are no published methods for converting the composite-order obfuscation schemes
of [4,37] to the prime-order setting. Furthermore, zeroizing attacks over prime-order
graded encoding schemes discovered prior to our work typically applied when the
multiplicity of zero achieved at the top level is greater than zero, and if a prime-order
conversion was attempted, care would need to be taken to ensure that such higher
multiplicities do not occur.

766 S. Badrinarayanan et al.

of evasive circuits, for which we can show security even using only extremely
weak graded encodings whose security completely breaks down when a top-level
encoding of zero is found.

Background - Obfuscation. Obfuscation is a cryptographic tool that offers a
powerful capability: software that can keep a secret. That is, consider a piece
of software that makes use of a secret to perform its computation. Obfuscation
allows us to transform this software so that it can be run publicly : anyone can
obtain the full code of the program, run it, and see its outputs, but no one
can learn anything about the embedded secret, beyond what can be learned by
examining the outputs of the program.

The first candidate construction for a general-purpose obfuscator was given
by Garg, Gentry, Halevi, Raykova, Sahai, and Waters [20]. This construction, and
all subsequent works constructing candidate obfuscators [1,4,6,12,24,30,33,37],
are built on top of another cryptographic primitive called a graded encoding
scheme. In a graded encoding scheme, plaintext elements are encoded at various
levels, and can be added and multiplied subject to algebraic restrictions relating
to these levels. Further, there is a “top” level at which one can test whether an
element encodes 0.

Background - Zeroizing Attacks. The many zeroizing attacks differ somewhat
in their details, but each attack obeys the algebraic restrictions imposed by the
graded encodings schemes, and critically they all share the need to create top-
level 0-encodings. Indeed, many such encodings are needed for each attack, and
the attacks require that these encodings have further structure.

Several of the works constructing candidate obfuscators prove security in an
idealized “generic multilinear model” that seeks to capture the algebraic restric-
tions imposed by the graded encoding scheme candidates. However, the known
zeroizing attacks use extra information that is provided by the zero-testing pro-
cedure, which is not captured in the standard generic model. Thus, a proof of
security in the generic multilinear model by itself is no longer a persuasive argu-
ment of security. In particular, it is now crucial to gain a better understanding
of exactly what types of top-level 0-encodings can be constructed in prime-order
graded encoding schemes.

Our Contribution. We introduce a new mathematical tool for analyzing how an
adversary can create 0-encodings given a set of randomized matrices. This tool
both shows that the types of 0-encodings an adversary can create are much more
restricted than was previously known, and that the adversary’s behavior can be
so controlled in a much richer set of circumstances than was previously known.
We stress that this new tool, Theorem 4, was not present in any previous work,
and allows for a much more fine-grained analysis of the adversary’s behavior in
prime-order settings than was previously available.

Briefly, we first consider an obfuscator O that can use much wider class of
matrix branching programs than was previously known, most notably this class
includes matrix branching programs that involve low-rank matrices. Theorem 4

Post-zeroizing Obfuscation 767

shows that any polynomial p over (the encodings in) the obfuscation O(f) can
be efficiently mapped to a poly-size set of inputs X such that p evaluates to an
encoding of 0 if and only if every x ∈ X satisfies f(x) = 0. For context, previous
works both could not handle the case of low-rank matrices, and only gave a map
that allowed the evaluation of p to be simulated given the set {f(x) | x ∈ X},
but did not show the stronger precise characterization of 0-encodings that we
obtain. We stress that we do not know of any simpler way of obtaining such a
characterization.

We now elaborate on Theorem 4, how it is proved, and how previous works
that did not consider zeroizing attacks did not need and did not achieve such
a theorem. Following that, we mention two applications of this new theorem,
namely improving the efficiency of obfuscation, and obfuscating evasive functions
in a model that captures all known attacks on graded encoding schemes.

1.1 Our Techniques

As stated above, the main technical challenge in our paper is to show that any
polynomial p over the obfuscation O(f) can be efficiently mapped to a set of
inputs X such that p evaluates to an encoding of 0 if and only if every x ∈ X
satisfies f(x) = 0.

One ingredient in our paper is the notion of strong straddling sets from [30],
as this tool allows us to show that low-level encodings of 0 can be efficiently
transformed into top-level encodings of 0. Thus, the only obstacle that remains
is to prove Theorem 4 for top-level encodings.

The Technical Barrier – Kilian’s Statistical Simulation. Before we proceed to
provide intuition about our proof, let us consider the technical roots of how
security was shown in previous works. In every paper constructing secure obfus-
cation for matrix branching programs so far [1,6,12,20,24,30,33] and in every
different model that has been considered, one theorem has played a starring role
in all security analyses: Kilian’s statistical simulation theorem [29]. As relevant
here, Kilian’s theorem considers the setting where we randomize each matrix in
a sequence of matrices as follows:

̂Bi = R−1
i−1BiRi

where Ri are random invertible matrices for i ∈ [� − 1], and identity otherwise.
Note that this randomization does not affect the iterated product. Then, for any
particular input x, if the iterated product is M , Kilian’s theorem states that we
can statistically simulate the collection of matrices {̂Bi}i∈[�] knowing only M
but with no knowledge of the original matrices {Bi}.

Kilian’s statistical simulation theorem has been a keystone in all previous
analyses of obfuscation: in one way or another, all previous security analyses
for obfuscation methods have found some way to isolate the adversary’s view of
the obfuscation to a single input. Once this isolation was accomplished, Kilian’s
theorem provided the assurance that the adversary’s view of the obfuscation, as

768 S. Badrinarayanan et al.

it related to this single input, only encoded information about the output of the
computation within M , and nothing more.

However, Kilian’s statistical simulation theorem only allows for simulation. It
does not rule out the possibility that an encoding of 0 may result no matter what
the function outputs on the input in question. Indeed, it is not hard to construct
an obfuscator that is secure in the generic model but allows for encodings of 0
even when the function being obfuscated always outputs 1. Moreover, Kilian’s
theorem only applies when the branching program matrices are full-rank. Indeed,
if the matrices are allowed to be arbitrary rank, then it is impossible to simulate
each of the matrices just given the product M , as there is no way to determine
what the rank of each matrix should be, nor the ranks of various subproducts of
matrices. (In the next subsection, we discuss the efficiency benefits of allowing
low-rank matrices.) Because of this impossibility, we know of no way to generalize
Kilian’s theorem or its proof to obtain our theorem.

Our Approach. To obtain our result, we directly analyze what kinds of poly-
nomials an adversary can generate using multilinear operations. We model the
multilinear setting as follows. There is a universe set [�], and for every subset
S ⊆ [�], we have a copy of Zq that we name GS . Then, the adversary has access
to the following operations:

– Add: GS × GS → GS , for every subset S ⊆ [�].
– Mult: GS × GT → GS∪T , for every pair S, T ⊆ [�] : S ∩ T = ∅.
– ZeroTest: G[�] → {True,False}.

This is sometimes called the “asymmetric” multilinear setting, is natively sup-
ported by known instantiations of prime-order graded encoding schemes [18],
and was used in previous works. Observe that in this setting, if the adversary
is given a matrix entirely encoded in G{1}, then for example it is not possible
for it to compute the rank of this matrix. This is because no two entries within
this matrix can be multiplied together, since they both reside in the same group
G{1}, and multiplication is only possible across elements of groups corresponding
to disjoint index sets.

Even though we do not rely on Kilian’s simulation theorem, our obfuscator
uses a matrix randomization scheme that is essentially2 identical to the one used
when applying Kilian’s randomization. Our analysis then proceeds by consider-
ing the most general polynomial that the adversary can construct in G[�]. More
precisely, we consider every possible monomial m that can exist over the matrix
entries that are given to the adversary, and we associate each such monomial
m with a coefficient αm that the adversary could potentially choose arbitrarily.
Thus, the adversary’s polynomial is a giant sum p = Σmαmm over all these
potential monomials.

2 Because we consider rectangular matrices in general, we do need to modify this
slightly. Also, for technical simplification, we consider the adjugate matrix rather
than the inverse. However, for the purposes of this technical overview, these varia-
tions can be ignored.

Post-zeroizing Obfuscation 769

Observe that the adversary can only extract useful information from this
polynomial by passing it to ZeroTest, thereby determining if it is zero or not.
However, recall that the randomizing matrices {Ri} are chosen uniformly during
obfuscation. Therefore, by the Schwartz-Zippel lemma, we know that unless the
adversary’s polynomial p is the zero polynomial over the entries of the Ri matri-
ces, ZeroTest will declare the polynomial to be nonzero with overwhelming
probability. So, we restrict ourselves to analyzing adversarial polynomials that
are identically zero over the entries of the Ri matrices.

Our new analysis differs at a fundamental level from Kilian’s analysis. At the
heart of the analysis is an argument based on the structure of random square
matrices R and their inverses R−1 that allows us to argue about how terms that
arise in R−1 can be cancelled using terms from R. In particular, we use the fact
that:

R−1
i,� =

1
det(R)

∑

σ:σ(i)=�

sign(σ)

⎛

⎝

∏

t�=i

Rσ(t),t

⎞

⎠

Our analysis is obtained by carefully considering different types of permutations
σ that arise in the expression above, and how different permutations interfere
with each other. (This exemplifies our conceptual departure from the proof of
Kilian’s theorem.) Our analysis shows that multilinear polynomials that allow
for cancellation of R and R−1 terms are extremely constrained.

From this analysis, we conclude that any adversarial polynomial that is iden-
tically zero over the entries of the {Ri} matrices must in fact be the result of
an honest iterated matrix multiplication (or a constant multiple thereof), which
corresponds to evaluating f(x) for some input x. In other words, such an adver-
sarial polynomial will result in an encoding of 0 if and only if f(x) = 0, as
desired. Even though the analysis as presented here is not efficient, we are still
able to use it to yield an efficient simulator in our generic model. At a high level,
this is done by using the Schwartz-Zippel lemma to “weed out” most adversarial
polynomials without needing to examine their structure at all.

1.2 Applications

We now discuss two applications of our new analysis tool.

Efficiency of Obfuscation. Current techniques, while being asymptotically
polynomial-time, lead to incredibly inefficient implementations of obfuscation.
For example, the recent implementation of Apon et al. [2] for obfuscating (only)
16-bit point functions resulted in a 31 GB obfuscated program, which took over
6 h to generate and about 11 min to run on each input.

A major source of inefficiency is that the direct application of current obfusca-
tors to circuits requires overhead that grows exponentially with the depth. This
occurs because the level of multilinearity required grows exponentially with the
depth, while current multilinear map candidates have complexity that grows
polynomially with the level of multilinearity.

770 S. Badrinarayanan et al.

The work of Garg et al. [20] shows that, nevertheless, such a “core” obfus-
cator can be used to obfuscate general (high depth) circuits with a polynomial
overhead through a “bootstrapping” procedure (see also [3,12,26]). However,
bootstrapping based on existing core obfuscators entails overheads that are
asymptotically polynomial but easily reach above 2100. Such large overheads
primarily arise due to the depth of the circuit processed by the core obfuscator
(though, asymptotically, this circuit has depth logarithmic in the security para-
meter). Indeed, similarly large overheads arise when attempting to apply the core
obfuscator to other programs represented in circuit form, since few interesting
and non-learnable families of circuits have depth below, say, 50.

This suggests that practical implementations of obfuscation will only be able
to handle functionalities that require a polynomial level of multilinearity, and
not exponential. One such class of functionalities are those computable by small
matrix branching programs, where evaluation corresponds to evaluating an iter-
ated matrix product. This class of functionalities includes, among others, finite
automata.

Unfortunately, natural representations of finite automata and other simple
programs as branching programs require low-rank matrices. Though these rep-
resentations can be made full rank by using much larger matrices, this results
in substantial efficiency loss. The reason for this, intuitively, is that branching
programs with invertible matrices model reversible computation, whereas gen-
eral computation allows for previous states to be forgotten. While it is possible
to convert an irreversible computation into a reversible one, the cost is a signif-
icant loss in efficiency. The ability to handle low-rank matrices is thus crucial
to obtaining efficient obfuscators even for simple functionalities. As detailed in
the preceding subsection, all previous constructions critically relied on full-rank
matrices.

Armed with our new tool (Theorem 4), our construction no longer requires
full-rank matrices, and even non-square matrices are allowed.3 That is, we show
for the first time how to obfuscate matrix branching programs that are repre-
sented with low-rank, rectangular matrices. This leads to more efficient obfus-
cators, even beyond previous works that lack a post-zeroizing proof of security;
for details, see the full version of this paper. Our analysis also extends to other
settings besides obfuscation: for example, Boneh et al. [8] rely on our analysis
to obtain implementable constructions of order-revealing encryption.

Obfuscating Evasive Circuits in a Post-zeroizing Model. We view Theorem 4 as
the first step on a path towards achieving obfuscation in a post-zeroizing world.
As a “proof of concept” for this goal, we construct an obfuscator for a natural
class of functions that, for the first time, is provably secure in a model that
captures all known attacks on graded encoding schemes.

3 We do require a mild natural technical condition, called non-shortcutting, on the
branching program. Non-shortcutting can be achieved generically on any branching
program with minimal overhead.

Post-zeroizing Obfuscation 771

In previous works that prove security in a generic model, the graded encoding
scheme’s zero-test procedure is modeled as a Boolean function (i.e. one that
returns a yes/no answer). In candidate constructions however, a successful zero-
test actually returns an algebraic element in the ring of encodings, and this
fact is crucially exploited in the zeroizing attacks. By contrast, our new model
considers any encoding of 0 to be a complete break, thereby capturing these
attacks.

We show how to obfuscate evasive functions [5] in this model, namely func-
tions for which it is hard to find an input that evaluates to 0. (Typically one
defines evasive functions as having hidden 1-outputs, but in terms of their func-
tionality this is only a semantic difference.) A natural example of an evasive
function is the “password check” function (typically called a point function),
which evaluates to 0 on only a single, secret input. Obfuscating general evasive
functions has many applications, including most notably obfuscating important
classes of software patches that check for rare inputs on which the unpatched
software is known to misbehave (see [5] for further discussion).

Prior to our work, except as a special case of general obfuscation, the only
work that considered obfuscating general classes of evasive functions is that of [5].
However, the positive results in [5] were based on assumptions over approximate
multilinear maps that are now known to be false when instantiated with cur-
rent multilinear map candidates. Furthermore, the positive results in [5] did not
consider completely arbitrary distributions of evasive circuits, as we do here.

Using our new analysis techniques, we prove the following.

Theorem 1 (informal). There exists a PPT obfuscator O such that, for any
evasive function family C on n-bit inputs and any efficient generic-model adver-
sary A,

Pr [A(O(C)) constructs an encoding of 0] < negl(n)

where the probability is over the choice of C ← C and the coins of A and O.

Theorem 1 in particular implies the first witness encryption scheme [21] with
a generic model proof that captures zeroizing attacks4. Indeed, in the original
witness encryption protocol of [21] the attacker can produce top-level encodings
of zero, and therefore the protocol is not secure in the post-zeroizing model.
Subsequent witness encryption protocols [23,36] also allow top-level encodings
of zero to be constructed.

In proving Theorem 1, we show that the “bootstrapping” theorem of [20]
extends to the setting of evasive functions. (As mentioned above, this theorem
transforms a core obfuscator for a “small” class of functions into an obfuscator
for all efficient functions.) We observe that the proof of this theorem only uses the
core obfuscator on evasive functions, and we show that it holds only assuming
the core obfuscator’s security on such functions. In particular, we show that

4 When building witness encryption from obfuscation, witness encryption security only
requires the obfuscator to be secure when obfuscating functions that always evaluate
to 0, which are in particular evasive.

772 S. Badrinarayanan et al.

Theorem 1 applies to all evasive functions and not only those on which the core
obfuscator operates. Interestingly, the more recent bootstrapping technique of
Applebaum [3] cannot be used for our purposes, because it inherently produces
encodings of 0 regardless of the function being obfuscated.

Directions for Future Work. The obvious next step is to consider obfuscating
non-evasive functions. To do so, we will need to look precisely at the kinds of
post-zero-test information that can be obtained using zeroizing attacks during
zero testing for general (non-evasive) functions. We note that our paper answers
a critical first question toward this goal: we show that in our scheme, the only
way that the adversary can create top-level encodings of zero are the prescribed
ways of evaluating the function at a particular input. This is a necessary first
step in understanding what kinds of information can arise in the general case,
and whether this information can lead to more sophisticated attacks.

Subsequent work by a subset of the authors [31] has shown how to attack
candidate iO schemes (including the one here), when implemented with the [18]
multilinear map candidate, by further analyzing the polynomials that correspond
to honest evaluations of the obfuscated function. However, we remark that this
attack still crucially relies on encodings of 0 (corresponding to 0-outputs of
the function), and as a result it cannot be mounted when the function being
obfuscated is evasive.

Organization. In Sect. 2 we give some preliminary definitions and background
information. In Sect. 3 we define our obfuscator for matrix branching pro-
grams. In Sect. 4 we prove the key technical theorem that analyzes adversarially-
constructed polynomials over the obfuscation. The proof of VBB security is out-
lined in Sect. 5 (due to space limitations, the complete proof is deferred to the
full version of this paper). In Sect. 6 we prove that, when obfuscating evasive
functions, no encodings of zero can be created.

2 Preliminaries

2.1 Evasive Circuits

We define evasive circuit collections as in Barak et al. [5], except that in our
definition it is hard to find a 0-output (typically one says that it is hard to find
a 1-output).

Definition 1. A function family {C�}�∈N
is evasive if for every oracle-aided

adversary A(·) that makes at most poly(�) queries on input 1�, and every � ∈ N:

Pr
C←C�

[

C
(AC
(

1�
))

= 0
]

= negl(�).

{C�}�∈N
is evasive with auxiliary input Aux for a (possibly randomized) function

Aux : C� → {0, 1}∗ if A additionally receives Aux(C) when its oracle is C.

Post-zeroizing Obfuscation 773

2.2 Obfuscation

We now give the definition of virtual black-box obfuscation in an idealized model,
identical to the model studied in Barak et al. [6] and Ananth et al. [1], with one
exception: we also consider giving both the adversary and simulator an auxiliary
input determined by the program.

Definition 2 (Virtual Black-Box Obfuscation in an M-idealized
model). For a (possibly randomized) oracle M, a circuit class

{C�

}

�∈N
, and

an efficiently computable deterministic function Aux� : C� → {0, 1}t� , we say
that a uniform PPT oracle machine O is a “Virtual Black-Box” Obfuscator for
{C�

}

�∈N
in the M-idealized model with respect to auxiliary information Aux�, if

the following conditions are satisfied:

– Functionality: For every � ∈ N, every C ∈ C�, every input x to C, and for
every possible coins for M:

Pr[(OM(C))(x) �= C(x)] ≤ negl(|C|) ,

where the probability is over the coins of C.
– Polynomial Slowdown: there exist a polynomial p such that for every � ∈ N

and every C ∈ C�, we have that |OM(C)| ≤ p(|C|).
– Virtual Black-Box: for every PPT adversary A there exist a PPT simulator

Sim, and a negligible function μ such that for all PPT distinguishers D, for
every � ∈ N and every C ∈ C�:
∣

∣

∣Pr
[

D
(

AM (

OM
(C),Aux�(C)

))

= 1,
]

− Pr
[

D
(

SimC
(

1
|C|

,Aux�(C)
))

= 1
]∣

∣

∣ ≤ μ(|C|) ,

where the probabilities are over the coins of D, A, Sim, O and M.

Note that in this model, both the obfuscator and the evaluator have access to
the oracle M but the function family that is being obfuscated does not have
access to M.

We also define the average-case version of VBB obfuscation, which is the
correct security notion when obfuscating evasive circuit collections.

Definition 3 (Average-case Virtual Black-Box Obfuscation in an M-
idealized model). Let M,

{C�

}

�∈N
, and Aux� be as in Definition 2. We say

that a uniform PPT oracle machine O is an average-case Virtual Black-Box
Obfuscator for

{C�

}

�∈N
in the M-idealized model with respect to auxiliary infor-

mation Aux�, if it satisfies all properties in Definition 2 except that in the Virtual
Black-Box property the probabilities are over a uniform choice of C ← C� (as
opposed to ∀C ∈ C�).

Definition 4 (Average-case Indistinguishability Obfuscation in an M-
idealized model). For a (possibly randomized) oracle M, a circuit class
{C�

}

�∈N
, we say that a uniform PPT oracle machine O is an Average-case Indis-

tinguishability Obfuscator for
{C�

}

�∈N
in the M-idealized model if the following

conditions are satisfied:

774 S. Badrinarayanan et al.

– Functionality: Same as in the definition of VBB.
– Polynomial Slowdown: Same as in the definition of VBB.
– Indistinguishability: For every PPT Distinguisher D, there exists a negligible

function μ such that the following holds: for every � ∈ N, for a uniform choice
of circuit C ∈ C� and for every pair of circuits C0, C1 ∈ C� that compute the
same function as C, we have:

∣

∣Pr
[

D(OM(C0)) = 1
]− Pr
[

D(OM(C1)) = 1
]∣

∣ ≤ μ(|C|) ,

where the probabilities are over the coins of D, O, M and the choice of C.

Note that in this model, both the obfuscator and the evaluator have access to
the oracle M but the function family that is being obfuscated does not have
access to M.

2.3 Branching Programs

Here we define the main type of branching program we consider. A detailed
description of other types of branching programs, and how to build these branch-
ing programs from other computational models, can be found in the full version
of this paper.

Definition 5. A dual-input generalized matrix branching program of length �
and shape (d0, d1, . . . , d�) ∈ (Z+)�+1 for n-bit inputs is given by a sequence

BP =
(

inp0, inp1, {Bi,b0,b1}i∈[�],b0,b1∈{0,1}
)

where Bi,b0,b1 ∈ Z
di−1×di are di−1 × di matrices, and inp : [�] → [n] is the

evaluation function of BP . BP defines the following three functions:

– BParith : {0, 1}n → Z
d0×d� computed as BParith(x) =

n
∏

i=1

Bi,xinp0(i),xinp1(i)

– BPbool : {0, 1}n → {0, 1}d0×d� computed as

BPbool(x)j,k =

{

0 if BParith(x)j,k = 0
1 if BParith(x)j,k �= 0

– BPbool(q) : {0, 1}n → {0, 1}d0×d� computed as BPbool(q)(x)j,k =
{

0 if BParith(x)j,k = 0 mod q

1 if BParith(x)j,k �= 0 mod q

A matrix branching program is t-bounded if |BParith(x)j,k| ≤ t for all x, j, k.

Next, we define a notion of non-shortcuttingfor matrix branching programs,
which roughly states that it is not possible to determine any of the output com-
ponents of BParith/bool without carrying out the entire matrix product. In the

Post-zeroizing Obfuscation 775

case d0 = d� = 1 (so that the branching program outputs just a single element),
this translates to requiring that no strict sub-product

∏i1
i=i0

Bi,xinp0(i),xinp1(i) for
(i0, i1) �= (1, n) of the overall matrix product evaluates to an all-zero matrix.
Clearly, if some sub-product evaluates to zero, the entire product would evaluate
to zero, and so the evaluation could stop after computing just the sub-product.
We call this a short-cut, and non-shortcuttingis the requirement that there are
no shortcuts for any inputs. In the more general case of arbitrary d0, d�, the
condition becomes slightly more technical, and is given below:

Definition 6. A dual-input generalized matrix branching program is non-
shortcutting if, for any input x, and any j ∈ [d0] and any k ∈ [d�], the following
holds:

eT
j ·
(

�−1
∏

i=1

Bi,xinp0(i),xinp1(i)

)

�= 0d�−1 and

(

�
∏

i=2

Bi,xinp0(i),xinp1(i)

)

· ek �= 0d1

where ej and ek are the jth and kth standard basis vectors of the correct dimen-
sion. Equivalently, each row of the product

∏�−1
i=1 Bi,xinp0(i),xinp1(i) and each column

of the product
∏�

i=2 Bi,xinp0(i),xinp1(i) has at least one non-zero entry.

Matrix Branching Program Samplers. We now define a matrix branching pro-
gram sampler (MBPS). Roughly, an MBPS is a procedure that takes as input a
modulus q, and outputs a matrix branching program BP . However, we will be
interested mainly in the function BPbool(q).

Definition 7. A matrix branching program sampler (MBPS) is a possibly ran-
domized procedure BPS that takes as input a modulus q satisfying q > t for some
bound t. It outputs a matrix branching program.

Fact 2. Any matrix branching program BP with bound t can trivially be con-
verted into a matrix branching program sampler BPS with the same bound t,
such that if BP ′ ← BPS(q), then BP ′

bool(q)(x) = BPbool(x).

2.4 The Ideal Graded Encoding Model

In this section, we describe the ideal graded encoding model. This section has
been taken almost verbatim from [1,6]. All parties have access to an oracle M,
implementing an ideal graded encoding. The oracle M implements an idealized
and simplified version of the graded encoding schemes from [18]. The parties are
provided with encodings of various elements at different levels. They are allowed
to perform arithmetic operations of addition/multiplication and testing equality
to zero as long as they respect the constraints of the multilinear setting. We
start by defining an algebra over the elements.

Definition 8. Given a ring R and a universe set U, an element is a pair (α, S)
where α ∈ R is the value of the element and S ⊆ U is the index of the element.
Given an element e we denote by α(e) the value of the element, and we denote
by S(e) the index of the element. We also define the following binary operations
over elements:

776 S. Badrinarayanan et al.

– For two elements e1, e2 such that S(e1) = S(e2), we define e1 + e2 to be
the element (α(e1) + α(e2), S(e1)), and e1 − e2 to be the element (α(e1) −
α(e2), S(e1)).

– For two elements e1, e2 such that S(e1)∩S(e2) = ∅, we define e1 · e2 to be the
element (α(e1) · α(e2), S(e1) ∪ S(e2)).

We will often use the notation [α]S to denote the element (α, S). Next, we
describe the oracle M. M is a stateful oracle mapping elements to “generic”
representations called handles. Given handles to elements, M allows the user to
perform operations on the elements. M will implement the following interfaces:

Initialization. M will be initialized with a ring R, a universe set U, and a list L
of initial elements. For every element e ∈ L, M generates a handle. We do not
specify how the handles are generated, but only require that the value of the
handles are independent of the elements being encoded, and that the handles are
distinct (even if L contains the same element twice). M maintains a handle table
where it saves the mapping from elements to handles. M outputs the handles
generated for all the elements in L. After M has been initialized, all subsequent
calls to the initialization interface fail.

Algebraic Operations. Given two input handles h1, h2 and an operation ◦ ∈
{+,−, ·}, M first locates the relevant elements e1, e2 in the handle table. If any
of the input handles does not appear in the handle table (that is, if the handle
was not previously generated by M) the call to M fails. If the expression e1 ◦ e2
is undefined (i.e., S(e1) �= S(e2) for ◦ ∈ {+,−}, or S(e1)∩S(e2) �= ∅ for ◦ ∈ {·})
the call fails. Otherwise, M generates a new handle for e1 ◦e2, saves this element
and the new handle in the handle table, and returns the new handle.

Zero Testing. Given an input handle h, M first locates the relevant element e
in the handle table. If h does not appear in the handle table (that is, if h was
not previously generated by M) the call to M fails. If S(e) �= U, the call fails.
Otherwise, M returns 1 if α(e) = 0, and returns 0 if α(e) �= 0.

2.5 Straddling Set Systems

We use the strong straddling set system of [30], which modifies the straddling
set system of [6] to obtain a denser intersection graph between the subsets. This
extra power is used in Sect. 6 when showing that the adversary cannot create
low-level encodings of 0.

Definition 9 (Strong straddling set system). A strong straddling set sys-
tem with n entries is a collection of sets S = {Si,b : i ∈ [n] , b ∈ {0, 1}} over a
universe U, such that ∪i∈[n]Si,0 = U = ∪i∈[n]Si,1, and the following holds.

– (Collision at universe.) If C,D ⊆ S are distinct non-empty collections of
disjoint sets such that

⋃

S∈C S =
⋃

S∈D S, then ∃b ∈ {0, 1} such that C =
{Si,b}i∈[n] and D = {Si,1−b}i∈[n].

Post-zeroizing Obfuscation 777

– (Strong intersection.) For every i, j ∈ [n], Si,0 ∩ Sj,1 �= ∅.
We will need the following simple lemma.

Lemma 1. Let S = {Si,b : i ∈ [n] , b ∈ {0, 1}} be a strong straddling set system
over a universe U. Then for any T � U that can be written as a disjoint union
of sets from S, there is a unique b ∈ {0, 1} such that T =

⋃

i∈I Sb,i for some
I ⊆ [n].

Proof. By the second property of Definition 9, any pairwise disjoint collection
of sets from S must be either all of the form Si,0 or all of the form Si,1. If there
are two sets I0, I1 ⊆ [n] such that

⋃

i∈I0
Si,0 = T =

⋃

i∈I1
Si,1, then by the first

property of Definition 9 we must have T = U which contradicts our assumption.

We use the following construction from [30].

Construction 3 (Strong straddling set system). Define S = {Si,b :
i ∈ [n] , b ∈ {0, 1}} over a universe U =

{

1, 2, ..., n2
}

as follows for all 1 ≤ i ≤ n.

Si,0 = {n(i−1)+1, n(i−1)+2, . . . , ni} Si,1 = {i, n+i, 2n+i, . . . , n(n−1)+i}

3 Obfuscator for Low-Rank Branching Programs

We now describe our obfuscator for generalized matrix branching programs.
Our obfuscator is essentially the same as the obfuscator of Ananth et al. [1]. The
differences are as follows:

– We view branching programs as including the bookends. While the bookends
of previous works did not depend on the input, they can in our obfuscator.
However, for [1], this distinction is superficial: the bookends of [1] can be
“absorbed” into the branching program by merging them with the left-most
and right-most matrices of the branching program. This does not change func-
tionality, since this merging always happens during evaluation, and it does not
change security, since the adversary can perform the merging himself.

– We allow our branching program to have singular and rectangular matrices.
We do, however, require the branching program to be non-shortcutting. Note
that a branching program with square invertible internal matrices and non-
zero bookend vectors, such as in [1], necessarily is non-shortcutting.

– We allow branching programs to output multiple bits — that is, the func-
tion computed by our obfuscated program will be BPbool, which is a matrix
of 0/1 entries. In order to prove security, we will have to perform additional
randomization. However, in the case of single-bit outputs, this additional ran-
domization is redundant.

778 S. Badrinarayanan et al.

Input. The input to our obfuscator is a dual-input matrix branching program
sampler BPS of length �, shape (d0, d1, . . . , d�), and bound t. The first step is to
choose a large prime q for the graded encodings. Then sample BP ← BPS(q).
Write

BP = (inp0, inp1, {Bi,b0,b1})

We require BPS to output BP satisfying the following properties:

– BP is non-shortcutting.
– For each i, inp0(i) �= inp1(i)
– For each pair (j, k) ∈ [n]2, there exists an i ∈ [�] such that (inp0(i), inp1(i)) =

(j, k) or (inp1(i), inp0(i)) = (j, k)

For ease of notation in our security proof, we will also assume that each input
bit is used exactly m times, for some integer m. In other words, for each i ∈ [n],
the sets ind(i) = {j : inpb(j) = i for some b ∈ {0, 1}} have the same size. This
requirement, however, is not necessary for security.

Step 1: Randomize BP . First, similar to previous works, we use Kilian [29] to
randomize BP , obtaining a randomized branching program BP ′. This is done
as follows.

– Let q be a sufficiently large prime of Ω(λ) bits.
– For each i ∈ [� − 1], choose a random matrix Ri ∈ Z

di×di
q . Set R0,R� to be

identity matrices of the appropriate size. Define

B̂i,b0,b1 = Radj
i−1 · Bi,b0,b1 · Ri

– For each s ∈ [d0], choose a random βs and set S to be the d0 × d0 diagonal
matrix with the βs along the diagonal. For each t ∈ [d�], choose a random γt
and set T to be the d� × d� diagonal matrix with γt along the diagonal. Set

C1,b0,b1 = S · B̂1,b0,b1 C�,b0,b1 = B̂1,b0,b1 · T Ci,b0,b1 = B̂i,b0,b1 for each i ∈ [2, � − 1]

We note that this additional randomization step is not present in previous
works, but is required to handle multi-bit outputs

– For each i ∈ [�], b0, b1 ∈ {0, 1}, choose a random αi,b0,b1 ∈ Zp, and define

Di,b0,b1 = αi,b0,b1Ci,b0,b1

Then define BP ′ = (inp0, inp1, {Di,b0,b1}). Observe that BP ′
bool(q)(x) =

BPbool(q)(x) for all x.

Step 2: Create Set Systems. Consider a universe U, and a partition U1, . . . ,U�

of U into equal sized disjoint sets: |Ui| = 2m − 1. Let S
j be a straddling set

system over the elements of Uj . Note that S
j will have m entries, corresponding

to the number of times each input bit is used. We now associate the elements of
Sj to the indicies of BP that depend on xj :

S
j = {Sj

k,b : k ∈ ind(j), b ∈ {0, 1}}

Post-zeroizing Obfuscation 779

Next, we associate a set to each element output by the randomization step.
Recall that in a dual-input relaxed matrix branching program, each step depends
on two fixed bits in the input defined by the evaluation functions inp0 and inp1.
For each step i ∈ [n], b0, b1 ∈ {0, 1}, we define the set S(i, b0, b1) using the
straddling sets for input bits inp1(i) and inp2(i) as follows:

Si,b0,b1 = S
inp0(i)
i,b0

∪ S
inp1(i)
i,b1

Step 3: Initialization. O initializes the oracle M with the ring Zp and the uni-
verse U. Then it asks for the encodings of the following elements:

{(Di,b0,b1 [j, k], Si,b0,b1)}i∈[�],b0,b1∈{0,1},j∈[di−1],k∈[di]

O receives a list of handles back from M. Let [β]S denote the handle for
(β, S), and for a matrix M , let [M]S denote the matrix of handles ([M]S)[j, k] =
[M [j, k]]S . Thus, O receives the handles:

{

[Di,b0,b1]Si,b0,b1

}

i∈[�],b0,b1∈{0,1}

Output. O(BPS) outputs these handles, along with the length �, shape
d0, . . . , d�, and input functions inp0, inp1, as the obfuscated program. Denote
the resulting obfuscated branching program as BPO

Evaluation. To evaluate BPO on input x, use the oracle M to add and multiply
encodings in order to compute the product

h =

⎡

⎣

∏

i∈[�]

Di,xinp0(i),xinp1(i)

⎤

⎦

U

=
∏

i∈[�]

[

Di,xinp0(i),xinp1(i)

]

Si,xinp0(i),xinp1(i)

h is a d0 × d� matrix of encodings relative to U. Next, use M to test each of the
components of h for zero, obtaining a matrix hbool ∈ {0, 1}d0×d� . That is, if the
zero test on returns a 1 on h[s, t], hbool[s, t] is 0, and if the zero test returns a 0,
hbool[s, t] is 1.

Correctness of Evaluation. The following shows that all calls to the oracle M
succeed:

Lemma 2 (Adapted from [1]). All calls made to the oracle M during obfus-
cation and evaluation succeed.

It remains to show that the obfuscated program computes the correct func-
tion. Fix an input x, and define bi

c = xinpc(i)
for i ∈ [�], c ∈ {0, 1}. From the

description above, BPO outputs 0 at position [s, t] if and only if

0 =

⎛

⎝
∏

i∈[�]

Di,bi
0,bi

1

⎞

⎠ [s, t] = βsγt

⎛

⎝
∏

i∈[�]

αi,bi
0,bi

1
Radj

i−1 · Bi,bi
0,bi

1
· Ri

⎞

⎠ [s, t]

= βsγt

⎛

⎝

⎛

⎝
∏

i∈[�]

αi,bi
0,bi

1

⎞

⎠

⎛

⎝
∏

i∈[�]

Bi,bi
0,bi

1

⎞

⎠

⎞

⎠ [s, t] =

⎛

⎝βsγt

∏

i∈[�]

αi,bi
0,bi

1

⎞

⎠ (BParith(x)[s, t])

780 S. Badrinarayanan et al.

With high probability βs, γt, αi,b0,b1 �= 0, meaning BParith(x)[s, t] = 0 mod q if
and only if the zero test procedure on position [s, t] gives 0. Therefore, BPO(x) =
BPbool(q)(x) for the branching program BP sampled from BPS .

4 Polynomials on Kilian-Randomized Matrices

In this section, we prove a theorem about polynomials on the Kilian-randomized
matrices from the previous section. Our high level goal is to show polynomials
the adversary tries to construct other than the correct matrix products will be
useless to the adversary. In this section, we focus on a simpler case where the
polynomial is only over matrices corresponding to a single input. In the following
section, we use the results of this section to prove the general case.

Previous works showed the single-input case using Kilian simulation [6,12],
or a variant of it [1,33]. Namely, these works queried the function oracle to
determine what the result of the matrix product P (x) should be. Then, they
tested the polynomial on random matrices, subject to the requirement that the
product equaled P (x), to see what the result was. Unfortunately, this step of the
analysis does indicate what the outputs of the polynomial may be, only that they
can be simulated. If the polynomial were to output zero, this would correspond
to the adversary obtaining a zero encoding, which would violate security in our
post-zeroizing model.

Moreover, previous works crucially relied on the fact that the matrices the
polynomial is tested on come from the same distribution as the matrices would
in the branching program. This requires the branching program to consist of
square invertible matrices. However, we need to be able to handle generalized
matrix branching programs with rectangular and low-rank matrices.

In light of the two issues above, we need to replace the Kilian randomization
theorem with a new theorem suitable in our setting.

Let d1, . . . , dn−1 be positive integers and d0 = dn = 1. Let ̂Ak for k ∈ [n] be
dk−1 × dk matrices of variables.

Definition 10. Let dk, ̂Ak be as above. Consider a multilinear polynomial p on
the variables in {̂Ak}k∈[n]. We call p allowable if each monomial in the expansion
of p contains at most one variable from each of the ̂Ak.

As an example of an allowable polynomial, consider the matrix product poly-
nomial ̂A1 · ̂A2 · · · · · ̂An.

Now fix a field F, and let Ak ∈ F
dk−1×dk for k = 1, . . . , n be a collection of

matrices over F. Let Rk be dk ×dk matrices of variables for k ∈ [n], and let Radj
k

be the adjugate matrix of Rk. Let R0 = Rn+1 = 1. Now suppose we set

̂Ak = Radj
k−1 · Ak · Rk

Theorem 4. Let F, dk,Ak,Rk, ̂Ak be as above. Consider an allowable polyno-
mial p in the ̂Ak, and suppose p, after making the substitution ̂Ak = Radj

k−1 ·Ak ·
Rk, is identically 0 as a polynomial over the Rk. Then the following is true:

Post-zeroizing Obfuscation 781

– If A1 · A2 · · · · · An �= 0, then p is identically zero as a polynomial over its
formal variables, namely the ̂Ak.

– If A1 · A2 · · · · · An = 0 but

A1 · A2 · · · · · An−1 �= 01×dn

A2 · · · · · An−1 · An �= 0d2×1

then p, as a polynomial over the ̂Ak, is a constant multiple of the matrix
product polynomial ̂A1 · ̂A2 · · · · · ̂An.

Proof. If n = 1, there are no Rk matrices, a single A1 matrix of dimension
1 × 1, with entry a. Then p = p(a) = ca for some constant c. As a polynomial
over the (non-existent) Ri matrices, p is just a constant polynomial, so p = 0
means ca = 0. In the first case above, a �= 0, so c = 0, meaning p is identically 0.
The second case above is trivially satisfied since the matrix product polynomial
is also a constant.

We will assume that A1 is non-zero in every coordinate. At the end of the
proof, we will show this is without loss of generality.

Now we proceed by induction on n. Assume Theorem 4 is proved for n − 1.
Consider an arbitrary allowable polynomial p. We can write p as

p =
∑

j1,i2,j2,...,jn,in+1

αj1,i2,...,jn−1,in
̂A1,1,j1
̂A2,i2,j2 . . . ̂An−1,in−1,jn−1

̂An,in,1

where ik+1, jk ∈ [dk], and ̂Ak,i,j is the (i, j) entry of the matrix ̂Ak. From this
point forward, for convenience, we will no longer explicitly refer to the bounds
dk on the ik+1, jk.

Now we can expand p in terms of the R1 matrix:

p =
∑

j1,i2,j2,...,jn,in+1,m,�

αj1,i2,...,jn−1,in A1,1,mR1,m,j1R
adj
1,i2,� (A2 · R2)�,j2

̂A3,i3,j3 . . . ̂An,in,1

=
∑

j,i,�,m

α
′
j,i,�A1,1,mR1,m,jR

adj
1,i,�

where

α′
j,i,� =

∑

j2,...,jn,in+1

αj,i,...,jn−1,in
(A2 · R2)�,j2

̂A3,i3,j3 . . . ̂An,in,1

Recall that

Radj
1,i,� =

∑

σ:σ(i)=�

sign(σ)

⎛

⎝

∏

t�=i

R1,σ(t),t

⎞

⎠

where the sum is over all permutations satisfying σ(i) = �. Thus we can write p
as

p =
∑

j,i,σ,m

sign(σ)α′
j,i,σ(i)A1,1,mR1,m,j

⎛

⎝

∏

t�=i

R1,σ(t),t

⎞

⎠

782 S. Badrinarayanan et al.

Now, since p is identically zero as a polynomial over the Rk matrices, it must
be that for each product R1,m,j

(

∏

t�=i R1,σ(t),t

)

, the coefficient of the product
(which is a polynomial over the Rk : k ≥ 2 matrices) must be identically 0. We
now determine the coefficients.

First, we examine the types of products of entries in R1 that are possible.
Products can be thought of as arising from the following process. Choose a
permutation σ, which corresponds to selecting d1 entries of R1 such that each
row and column of R1 contain exactly one selected entry. Then, for some i, un-
select the selected entry from column i and instead select any entry from R1

(possibly selecting the same entry twice). We observe that the following products
are possible:

–
∏

t R1,σ(t),t for a permutation σ. This corresponds to re-selecting the un-
selected entry from column i. The resulting list of entries determines the
permutation σ used to select the original entries (since it is identical to the
original list), but allows the column i of the un-selected/re-selected entry to
vary. Thus in the summation above, this fixes σ, j = i and m = σ(i), but
allows i to vary over all values, corresponding to the fact that if we remove
any entry and replace it with itself, the result is independent of which entry
we removed. Call such products well-formed. Well-formed products give the
following equation:

∑

i

α′
i,i,σ(i)A1,1,σ(i) = 0 for all σ (1)

– R1,m,j

∏

t�=i R1,σ(t),t where j �= i and m �= σ(i). This corresponds to, after
un-selecting the entry in column i, selecting a another entry that is in both
a different row and a different column. Note that, given final list of selected
entries, it is possible to determine the newly selected entry as the unique
selected entry that shares both a column with another selected entry and
a row with another selected entry. It is also possible to determine the un-
selected entry as the only entry that shares no column nor row with another
entry. Therefore, the original entry selection is determined as well. Thus, in
the summation above, the selected entries fix σ, i, j, and m. In other words,
there is no other selection process that gives the same list of entries from R1.
We call such products malformed type 1. Malformed type 1 products have the
coefficient

α′
j,i,σ(i)A1,1,m

Given any i, j �= i,m, � �= m, pick σ so that σ(i) = �. Since A1,1,m �= 0 for all
m, this gives

α′
j,i,� = 0 for all i, j �= i, � (2)

– R1,m,i

∏

t�=i R1,σ(t),t where m �= σ(i). This corresponds to, after un-selecting
the entry R1,σ(i),i, selecting a different entry R1,m,i in the same column. Let
i′,m′, σ′ be some other selection process that leads to the same product.

Post-zeroizing Obfuscation 783

Given the final selection of entries, it is possible to determine m′ = m as the
only row with two selected entries. It is also possible to determine σ′(i′) = σ(i)
as the only row with no selected entries (though i′ has not been determined
yet). Moreover, i′ must be one of the two columns selected in row m, call the
other i′′. All entries outside of these two rows must have come from the origi-
nal selection of entries, so this determines σ′(t) = σ(t) on all inputs outside of
i, i′′. Notice that if i = i′, then σ′ agrees with σ on d1−1 entries, and since they
are both permutations, this sets σ′ = σ. In this case, (i′,m′, σ′) = (i,m, σ).

Otherwise i′ �= i, so i′′ = i, which leaves σ′(i) = σ(i′) = m. At this point, σ′

is fully determined as σ ◦ (i i′) where (i i′) is the transposition swapping
i and i′. Therefore, there are two possibilities leading to this product, one
corresponding to i and the other corresponding to i′.

We call these products malformed type 2. Notice that σ′ and σ only differ by
a transposition swapping i and i′, and so they have opposite parity, meaning
the corresponding terms in p have the opposite sign. Given i, i′ �= i,m, � �= m,
choose σ so that σ(i) = �. This gives us (α′

i,i,� − α′
i′,i′,�)A1,1,m = 0. Since

A1,1,m �= 0 for all m, we therefore have that α′
i,i,� = α′

i′,i′,� for all i, i′. We can
thus choose β� such that:

α′
i,i,� = β� for all i, � (3)

– R1,σ(i),j

∏

t�=i R1,σ(t),t where j �= i. We call such products malformed type 3.
The coefficients of these products are linear combinations of the α′

i,j,� for i �= j,
which we already know to be 0. Therefore, these equations are redundant, and
we will not need to consider them.

Setting σ(i) = i in Eq. 1 and combining with Eq. 3, we have that
∑

�

β�A1,1,� = 0 (4)

Now we can expand α′
j,i,� and βi in Eqs. 2 and 4, obtaining:

0 = α
′
i,j,� =

∑

j2,i3,...,jn−1,in

αj,i,j2,i3,...,jn−1,in
(A2 · R2)�,j2

̂A3,i3,j3
. . . ̂An,in,1 for all �, i, j �= i

(5)
0 =

∑

�

β�A1,1,� =
∑

�,j2,i3,...,jn−1,in

αi,i,j2,i3,...,jn−1,in
A1,1,� (A2 · R2)�,j2

̂A3,i3,j3
. . . ̂An,in,1

=
∑

j2,i3,...,jn−1,in

αi,i,j2,i3,...,jn−1,in
(A1 · A2 · R2)1,j2

̂A3,i3,j3
. . . ̂An,in,1 for all i

(6)

Now we invoke the inductive step multiple times. Let A2,� be the �th row
of A2, and let ̂A2,� = A2,� · R2. Since A2 · A3 . . .An �= 0, there is some � such
that A2,� · A3 . . .An �= 0. Then the matrices A2,�,A3, . . . ,An satisfy the first
set of requirements of Theorem 4 for n − 1. Moreover, the right side of Eq. 5

784 S. Badrinarayanan et al.

gives an allowable polynomial that is identically zero as a polynomial over the
Rk, k ≥ 2, and therefore, by induction, it is identically 0 as a polynomial over
̂A2,�, ̂A3, . . . , ̂An. This shows us that

αj,i,j2,i3,...,jn−1,in
= 0 for all j �= i (7)

Next, Let A′
2 = A1 · A2, and let ̂A′

2 = A′
2 · R2. There are two cases:

– A1 · A2 · · ·An �= 0. Then A′
2 · A3 · · ·An �= 0. Therefore, A′

2,A3, . . . ,An

satisfy the first set of requirements in Theorem 4. Moreover, for each i, Eq. 6
gives an allowable polynomial that is identically zero as a polynomial over the
Rk, k ≥ 2. Therefore, by induction, the polymomial is identically zero as a
polynomial over ̂A′

2,
̂A3, . . . , ̂An. This means

αi,i,j2,i3,...,jn−1,in
= 0 for all i

Combining with Eq. 7, we have that all the α values are 0. Therefore p is
identically zero as a polynomial over the ̂A1, ̂A2, . . . , ̂An.

– A1 ·A2 · · ·An = 0. Then A′
2 ·A3 · · ·An = 0. However, A′

2 ·A3 · · ·An−1 = A1 ·
A2 · · ·An−1 �= 0 and A3 . . .A4 · · ·An �= 0 (since otherwise A2 · · ·A3 · · ·An =
0, contradicting the assumptions of Theorem 4). Therefore, A′

2,A3, . . . ,An

satisfy the second set of requirements in Theorem 4. By induction, for each i,
the polynomial in Eq. 6 must therefore be a multiple γi

̂A′
2 · ̂A3 · · · ̂An of the

matrix product polynomial. This is equivalent to

αi,i,j2,i3,...,jn−1,in
= 0 if jk �= ik+1 for any k

αi,i,i3,i3,...,in,in
= γi

This means we can write

α′
j,i,� = 0 for all j �= i (by Eq. 7 and the definition of α′

i,j,�)

α′
i,i,� = γi

∑

i3,...,in

(A2 · R2)�,i3
̂A3,i3,i4 . . . ̂An,in,1 = γi (A2 · A3 · · ·An)�,1

Since α′
i,i,� = β� for all i and the product A2 · A3 · · ·An is non-zero, we have

that γi = γ is the same for all i. Therefore,

αi,i,i3,i3,...,in,in
= γ for all i, i3, . . . , in

meaning p is a multiple of the matrix product polynomial, as desired.

It remains to show the case where A1 has zero entries. Since A is non-zero (as
a consequence of our assumptions), and A is a single row vector, it is straight-
forward to build an invertible matrix B such that A′

1 = A1 · B is non-zero in
every coordinate.

Let A′
2 = B−1A2. Let R′

1 = B−1 · R1, ̂A′
1 = A′

1 · R′
1 = ̂A1, and ̂A′

2 =
(R′

1)
adj · A′

2 · R2 = ̂A2. Now A′
1,A

′
2,A3, . . . ,An satisfy the same conditions

Post-zeroizing Obfuscation 785

of Theorem 4 as the original Ak. Moreover, p is still allowable as a polynomial
over ̂A′

1,
̂A′

2,
̂A3, . . . ̂An. Moreover, we can relate p as a polynomial over Rk to

p as a polynomial over R′
1,R2, . . . ,Rn−1 by a linear transformation on the R1

variables. Therefore, p is identically zero as a polynomial over the Rk if and only
if it is identically zero as a polynomial over R′

1,R2, . . . ,Rn. Thus we can invoke
Theorem 4 on A′

1,A
′
2, . . . ,An using the same polynomial p, and arrive at the

desired conclusion. This completes the proof.

5 Sketch of VBB Security Proof

We now explain how to use Theorem 4 to prove the VBB security of our obfus-
cator. Due to space constraints, the complete proof is deferred to the full version
of this paper. In this sketch, we pay special attention to the steps in our proof
that deviate from previous works [1,6]. We also state a definition and lemma
that will be used in Sect. 6 to prove that encodings of zero cannot be created
when the function being obfuscated is evasive.

The adversary is given an obfuscation of a branching program BP , which
consists of a list of handles corresponding to elements in the graded encoding.
The adversary can operate on these handles using the graded encoding interface,
which allows performing algebraic operations and zero testing. Our goal is to
build a simulator that has oracle access only to the output of BP , and is yet
able to simulate all of the handles and interfaces seen by the adversary. Formally,
we prove the following theorem.

Theorem 5. If BPS outputs non-shortcutting branching programs, then for any
PPT adversary A, there is a PPT simulator Sim such that
∣
∣∣
∣Pr[AM(OM(BP S)) = 1] − Pr

BP←BP S
[SimBP (�, d0, . . . , d�, inp0, inp1) = 1]

∣
∣∣
∣ < negl.

The simulator will choose random handles for all of the encodings in the
obfuscation, leaving the actual entries of the Di,b0,b1 as formal variables5. Simu-
lating the algebraic operations is straightforward; the bulk of the security analy-
sis goes in to answering zero-test queries. Any handle the adversary queries the
zero test oracle on corresponds to some polynomial p on the variables Di,b0,b1 ,
which the adversary can determine by inspecting the queries made by the adver-
sary so far.

The simulator’s goal is to decide if p evaluates to zero, when the formal
variables in the Di,b0,b1 are set to the values in the randomized matrix branching
program BP ′. However, the simulator does not know BP ′, and must instead
determine if p gives zero knowing only the outputs of BP .

The analysis of [1,6] first simplifies the problem of determining if p evaluates
to zero, using Lemma 3 below.

5 The simulator does not know the branching program, and so it has no way of actually
sampling the Di,b0,b1 .

786 S. Badrinarayanan et al.

Definition 11. A single-input element for an input x is a polynomial px whose
variables are the Ci,xinp0(i),xinp1(i) matrices, and px is allowable in the sense of
Definition 10: each monomial in the expansion of px contains exactly one variable
from each of the Ci,xinp0(i),xinp1(i) matrices.

Lemma 3 (Adapted from [1,6]). Any polynomial p over the obfuscation
OM(BPS) can be efficiently decomposed into a sum p =

∑

x∈D αxpx, where
αx =
∏

i∈[�] αi,xinp0(i),xinp1(i) , each px is a single-input element for input x, and
|D| is polynomial in the circuit size of p.

Due to the independence of the αx variables, it can be shown that p evaluates
to zero iff each of the polynomials px do. Thus Lemma 3, along with some extra
analysis of our own to handle multi-bit outputs, reduces the general problem
to the following simpler problem. There is an unknown sequence of matrices
Ai ∈ Z

di−1×di
q for i ∈ [�], where d0 = d� = 1 (the shapes of the Ai ensure that the

product
∏

i∈[�] Ai is valid and results in a scalar). We are also given an allowable

polynomial p′ on matrices of random variables ̂Ai. Our goal is to determine, if
the ̂Ai are set to the Kilian-randomized matrices ̂Ai = Ri−1 ·A·Radj

i , whether or
not p′ evaluates to zero. We note that by applying the Schwartz-Zippel lemma,
it suffices to decide if p′ is identically zero, when considered a polynomial over
the formal variables Ri.

It is not hard to see that this simpler problem is impossible in general: p′

could be the polynomial computing the iterated matrix product
∏

k∈[�]
̂Ai, which

is equal to
∏

i∈[�] Ai. Therefore, to decide if p′ is identically zero in this case, we
at a minimum need to know if

∏

i∈[�] Ai evaluates to 0.
The analysis shows that the Ai are actually equal to Bi,xinp0(i),xinp1(i) for some

(known) input x, where Bi,b0,b1 are the matrices in the branching program BP .
Therefore, we can determine if

∏

i∈[�] Ai = 0 by querying the BP oracle on x.
In the case where p′ is the iterated matrix product, this allows us to determine
if p′ is identically 0. What about other, more general, polynomials p′?

In previous works, A1 and A� are bookend vectors, and the Ai for k ∈ [2, �−1]
are square invertible matrices. In this setting, Kilian’s statistical simulation the-
orem allows us to sample from the distribution of ̂Ai knowing only the product
of the Ai, but not the individual values. Then we can apply p′ to the sample, and
the Schwartz-Zippel lemma shows that p′ will evaluate to zero, with high prob-
ability, if and only if it is identically zero. This allows deciding if p′ is identically
zero.

In our case, we cannot sample from the correct distribution of ̂Ai. Instead,
we observe that our branching program is non-shortcutting, which means the
Ai and p′ satisfy the requirements of Theorem 4. Theorem 4 implies something
remarkably strong: if p′ is not (a multiple of) the iterated matrix product, it
cannot possibly be identically zero as a polynomial over the formal variables Rk.
Thus, we first decide if p′ is a multiple of the iterated matrix product, which
is possible using the Schwartz-Zippel lemma. If p′ is a multiple, then we know
it is identically zero if and only if the product

∏

i∈[�] Ai is zero, and we know
whether this product is zero by using our BP oracle.

Post-zeroizing Obfuscation 787

6 Obfuscating Evasive Functions with No Zero Encodings

In this section we show that when the obfuscator of Sect. 3 is applied to an
evasive function, any poly-time adversary will have only negligible probability
in constructing an encoding of 0.

Definition 12. We say that an adversary A constructs an encoding of 0 if it
ever receives a handle h from M such that (a) h maps to an encoding of 0 in
M’s table, and (b) the polynomial that produced the encoding is not identically
zero as a polynomial over its formal variables.

Theorem 6. Let O be the obfuscator from Sect. 3, and let BPS sample an eva-
sive function family. Then for any PPT adversary A:

Pr
[AM(OM(BPS)) constructs an encoding of 0

]

< negl(�).

One can never prevent an adversary from constructing a trivial encoding of
0 by computing e − e for some encoding e that it has. (More generally, any
identically zero polynomial will produce a trivial encoding of 0.) However in all
candidate constructions of graded encoding schemes, such an operation always
produces the integer 0, which contains no information. Indeed, it seems unlikely
that a plausible candidate would not have this property.

To prove Theorem 6, we first show that any element that is not at the top
level U can be “completed” to the top level by multiplying with other basic
elements output by the obfuscator. This is a consequence of our use of strong
straddling sets.

Definition 13. For i ∈ [�] and b ∈ {0, 1}, an element encoded at level Sj,b0,b1

implies xi = b if either inp0(j) = i and b0 = b or inp1(j) = i and b1 = b.

Lemma 4. Let R := {[Di,b0,b1]Si,b0,b1
} be the basic elements output by the obfus-

cator O, and let [r]S be any valid element created by a polynomial p over R.
Then there exists a set of elements R′ ⊆ R such that [r]S ×∏z∈R′ z is a valid

element at level U, and further R′ can be efficiently found.

Proof. We say that p touches layer j ∈ [n] if any leaf of p is a basic element
from layer j (cf. [30, Definition 4.2]). S uniquely determines the layers touched
by p and vice versa (though not necessarily the specific matrices touched in each
layer); in particular, p touches every layer iff S = U. Thus we construct R′ to
contain one basic element from each layer that is not touched by p. If S = U

then the lemma holds trivially with R′ := ∅, so assume S �= U and let J ⊆ [n]
be the set of layers not touched by p. Let I := {inp0(j), inp1(j) | j ∈ J} ⊆ [�] be
the set of all indices that are read in some untouched layer.

We claim that there is a sequence (bi)i∈I ∈ {0, 1}|I| such that for every i ∈ I,
p’s leaves do not contain any basic element that implies xi = 1 − bi. Fix any
i ∈ I. Recall that Ui ⊂ U is the universe set for index i, and note that we must
have Ui �⊆ S because some layer that reads index i is untouched. If Ui ∩ S = ∅,

788 S. Badrinarayanan et al.

then p’s leaves do not contain a basic element that implies xi = 0 nor one that
implies xi = 1; in this case we can take bi = 0. If instead Ui ∩ S �∈ {∅, Ui}, then
by Lemma 1 there is a unique bi ∈ {0, 1} for which there exists J ′ ⊂ [n] such
that

Ui ∩ S =
⋃

j′∈J ′
Si

j′,bi
.

(Recall that each Si
j′,bi

comes from the strong straddling set system over Ui.)
Thus p’s leaves do not contain any basic element that implies xi = 1 − bi.

Finally let R′ contain, for each j ∈ J , an arbitrary entry from the
(binp0(j), binp1(j))th matrix in layer j. Formally, R′ := {Dj,binp0(j),binp1(j) [0, 0] | j ∈
J} which can be efficiently computed given e. Then [r]S ×∏z∈R′ z is valid by
construction, and it is at level U because it touches every layer.

We now prove the main theorem of this section. The proof uses the simulator
Sim of Theorem 5 in a non-black-box way, and specifically relies on properties
of the decomposition p =

∑

x αxpx given by Lemma 3.

Proof (Proof of Theorem 6). For any PPT adversary A, denote

P ′(A) := Pr
[AM(OM(BPS)) constructs a level-U encoding of 0

]

.

We first show that if P ′(A) is a noticeable function of � for some PPT A,
then BPS cannot be evasive, in contradiction to our assumption. Next we use
Lemma 4 to remove the assumption that A’s encoding of 0 is at level U.

Let f ← BPS denote the function being obfuscated. Let A be any PPT, and
let Sim denote the corresponding simulator given by Theorem 5. We construct
a new adversary B, with oracle access to f , that finds an input x such that
f(x) = 0.
Bf
(

1�
)

:

1. Run Simf , which itself is running A, up until the point where A constructs a
level-U encoding.

2. Decompose p =
∑

x∈D αxpx as in Lemma 3. Check if f(x) = 0 for any x ∈ D.
If so, stop and output x; otherwise, continue running Sim until A’s next level-
U encoding, and repeat.

3. If Sim halts, then output a random x ∈ {0, 1}�.

Note that B’s simulation of A’s view is correct up to statistical distance negl(�),
because Sim’s is. The proof of Theorem 5 establishes that for any level-U p
constructed by A,

Pr[p is an encoding of 0 but some px is not] < negl(�).

Further, Theorem 4 establishes that if px is not identically zero (and some px

must not be since p is not), then px is a multiple of the honest matrix product
polynomial corresponding to input x. Thus px is an encoding of 0 iff f(x) = 0,
and we have established ∀ PPT A ∃ PPT B:

Pr
[

f
(Bf (1�)

)

= 0
] ≥ P ′(A) − negl(�). (8)

Post-zeroizing Obfuscation 789

Finally, let

P(A) := Pr
[AM(OM(BPS)) constructs an encoding of 0

]

be the probability that we want to bound. We claim that ∀ PPT A ∃ PPT
A′: P ′(A′) ≥ P(A). Namely A′ runs A, and for every encoding [r]S with S �=
U created by A, A′ also creates the level-U encoding [r′]U := [r]S × ∏z∈R′ z
guaranteed by Lemma 4. Note that if [r]S encodes 0 then [r′]U must encode 0
as well, so we have P ′(A′) ≥ P(A). Combining this with (8), we complete the
proof: if ∃ PPT A such that P(A) is a noticeable function of �, then BPS does
not sample an evasive function family.

In the full version of this paper, we show that, via the bootstrapping tech-
nique of [12,20], an obfuscator for log-depth evasive circuits implies an obfuscator
for all poly-size evasive circuits.

References

1. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
Barrington’s theorem. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 646–658 (2014)

2. Apon, D., Huang, Y., Katz, J., Malozemoff, A.J.: Implementing cryptographic
program obfuscation. Cryptology ePrint Archive, Report 2014/779 (2014). http://
eprint.iacr.org/

3. Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 162–
172. Springer, Heidelberg (2014)

4. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015,
pp. 528–556. Springer, Heidelberg (2015)

5. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfus-
cation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
26–51. Springer, Heidelberg (2014)

6. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

7. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

8. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 563–594. Springer, Heidelberg (2015)

9. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroiz-
ing attacks. Cryptology ePrint Archive, Report 2014/930 (2014). http://eprint.
iacr.org/

10. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

790 S. Badrinarayanan et al.

11. Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.: Crypt-
analysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report
2015/845 (2015). http://eprint.iacr.org/

12. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

13. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015)

14. Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new clt multilinear maps.
Cryptology ePrint Archive, Report 2015/934 (2015). http://eprint.iacr.org/

15. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 247–266. Springer, Heidelberg (2015)

16. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

17. Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 267–286.
Springer, Heidelberg (2015)

18. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

19. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014)

20. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49 (2013)

21. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: STOC (2013)

22. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015)

23. Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance independent
assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 426–443. Springer, Heidelberg (2014)

24. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In: IEEE Symposium on
Foundations of Computer Science FOCS, pp. 151–170 (2015)

25. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014)

26. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010)

27. Halevi, S.: Graded encoding, variations on a scheme. IACR Cryptology ePrint
Archive 2015, 866 (2015)

28. Hu, Y., Jia, H.: Cryptanalysis of GGH map. IACR Cryptology ePrint Archive
2015, 301 (2015)

http://eprint.iacr.org/
http://eprint.iacr.org/

Post-zeroizing Obfuscation 791

29. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31
(1988)

30. Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic attacks.
IACR Cryptology ePrint Archive 2014, 878 (2014)

31. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: Crypt-
analysis of indistinguishability obfuscation over ggh13. Cryptology ePrint Archive,
Report 2016/147 (2016). http://eprint.iacr.org/

32. Minaud, B., Fouque, P.A.: Cryptanalysis of the new multilinear map over the
integers. Cryptology ePrint Archive, Report 2015/941 (2015). http://eprint.iacr.
org/

33. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

34. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Symposium on Theory of Computing (STOC), pp. 475–484
(2014)

35. Sahai, A., Zhandry, M.: Obfuscating low-rank matrix branching programs. IACR
Cryptology ePrint Archive 2014, 773 (2014). http://eprint.iacr.org/2014/773

36. Zhandry, M.: How to avoid obfuscation using witness PRFs. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9563, pp. 421–448. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49099-0 16

37. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2014/773
http://dx.doi.org/10.1007/978-3-662-49099-0_16

New Negative Results on Differing-Inputs
Obfuscation

Mihir Bellare1(B), Igors Stepanovs1, and Brent Waters2

1 Department of Computer Science and Engineering,
University of California San Diego, San Diego, USA

{mihir,istepano}@eng.ucsd.edu
2 Department of Computer Science, University of Texas at Austin, Austin, USA

bwaters@cs.utexas.edu

https://cseweb.ucsd.edu/∼mihir/

https://cseweb.ucsd.edu/∼istepano/

https://www.cs.ucsb.edu/∼bwaters/

Abstract. We provide the following negative results for differing-inputs
obfuscation (diO): (1) If sub-exponentially secure one-way functions exist
then sub-exponentially secure diO for TMs does not exist (2) If in addi-
tion sub-exponentially secure iO exists then polynomially secure diO for
TMs does not exist.

1 Introduction

Differing-inputs obfuscation (diO) is a natural extension of indistinguishability
obfuscation (iO). It has been conjectured that candidate constructions of iO also
met diO. Based on this, diO has been exploited in applications. Garg, Gentry,
Halevi and Wichs (GGHW) [28] showed that if something they called “special pur-
pose” obfuscation exists, then diO does not. This has put diO in an ambiguous and
contentious position, some people arguing that GGHW is evidence diO does not
exist, others saying that perhaps it does and it is special-purpose obfuscation that
does not exist. This paper uses a new approach to give powerful evidence that the
first camp is right, meaning it is indeed diO that does not exist, by showing this to
be true under weaker and more standard assumptions than special-purpose obfus-
cation. We show (1) If sub-exponentially secure one-way functions exist then sub-
exponentially secure diO forTMsdoes not exist (2) If in addition sub-exponentially
secure iO exists then polynomially secure diO for TMs does not exist.

1.1 Background

The notion of program obfuscation that is most intuitive and appealing is that
an obfuscated program should be no more useful than an oracle for the pro-
gram itself. Formalized as VBB obfuscation (vbbO), it was shown impossible
in the sense that there is no obfuscator that will successfully VBB obfuscate
all programs [7,36]. Further negative results about vbbO were given in [17,33].

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 792–821, 2016.
DOI: 10.1007/978-3-662-49896-5 28

New Negative Results on Differing-Inputs Obfuscation 793

In the face of this, Barak et al. [7] suggested other, weaker notions of obfuscation
that appeared not to succumb to their counter-examples and might therefore be
achievable. The most prominent were indistinguishability obfuscation (iO) and
its extension, differing-input obfuscation (diO). The first asks that obfuscations
of functionally equivalent programs are indistinguishable. The second is a natural
computational relaxation: even if the programs are not functionally equivalent,
as long as it is hard, given the programs, to find an input on which they dif-
fer, then the obfuscations of the programs are indistinguishable. The underlying
intuition is that if one can find a differing input for the programs, one can clearly
distinguish their obfuscations. In iO this is excluded information theoretically,
by saying there does not exist such an input, while in diO it is excluded com-
putationally, by saying such an input might exist but is hard to find. On the
surface both might appear equally reasonable, since the vbbO negative results
do not apply to either. But this turns out not to be true.

These intriguing notions lay dormant for many years, for two reasons. First,
that one could not prove these notions unachievable did not mean they were
achievable. Second, they seemed quite weak; even if they were achievable, what
could one do with them? An answer to the first question came with candidate
constructions of iO [6,27,30,43]. An answer to the second came when Sahai and
Waters showed how to use iO towards many ends [45]. Since then, applications
of iO and diO have ballooned.

In these applications, a crucial role is played by auxiliary information. The
modern definitions of iO and diO used in these applications [1,12,20,27,45] con-
sider a program sampler S that spits out a pair P0,P1 of programs together with
associated auxiliary information aux . The sampler is said to produce function-
ally equivalent programs if P0 and P1 agree on all inputs. The sampler is said to
be difference-secure if an adversary given P0,P1, aux cannot find an input x such
that P0(x) �= P1(x) except with small probability. The obfuscation game picks
a challenge bit b and gives you (the adversary) an obfuscation P of Pb under the
obfuscator Obf, together with aux . Your task (as the adversary) is to guess b.
Obf is called iO-secure if you have small advantage for all samplers producing
functionally equivalent programs, and diO-secure if you have small advantage
for all difference-secure samplers. Adversaries are always polynomial time, but
probabilities referred to as “small” may be sub-exponentially so or negligible.
Programs may be TMs or circuits. This leads to a collection of variant notions.

1.2 The GGHW Result

Let Obf be an obfuscator. GGHW [28] provide a program sampler S for which
they show, under certain assumptions, that diO-security of Obf fails, which
means that (1) the sampler is difference secure under these assumptions, but
(2) there is a way to distinguish the obfuscations under Obf of the two programs
returned by the sampler given the auxiliary information. Their approach is to
have the sampler first generate a signing and verification key pair (sk, vk) for a
signature scheme meeting the standard notion of unforgeability [34]. The pro-
gram P1 takes a message m and candidate signature σ and accepts iff σ is a valid
signature on m under vk. The program P0 will take in the same inputs, but it

794 M. Bellare et al.

will always reject. Clearly the programs P0 and P1 differ exactly on the input
pairs (m,σ) where σ is a valid signature of m under vk. Next, the sampler creates
a third program P2 that has hardwired the secret signing key sk and takes as
input a (smaller) program P. It hashes P using a CRHF to get a message m, and
uses sk to get a signature σ on m. It then runs the P on (m,σ) and outputs 1 if
P accepts on these inputs. Finally, S creates auxiliary information aux consisting
of an obfuscation P∗

2 of P2. This obfuscation is not under the given obfuscator
Obf, but under some other assumed “special purpose” obfuscator Obf∗ whose
role and properties will emerge in the following.

To serve as a counterexample it should both (1) be possible, using the auxiliary
information P∗

2, to distinguish between obfuscations under Obf of P0 and P1, and
(2) be difficult, given P0,P1,P∗

2, to find an input on which P0 and P1 differ. The
first property follows trivially from the design. An adversary given the auxiliary
information P∗

2 and a challenge program P that is either an obfuscation of P0 or P1

can distinguish these cases by simply feeding the program P as an input to P∗
2. If

P is an obfuscation of P1 then, when P∗
2 runs P on the message and valid signature

that P∗
2 creates, P will accept. But if P is an obfuscation of P0, then P∗

2 will reject.
In contrast it is much more difficult to establish the second property, namely

that it is hard to find an input on which P0,P1 differ even in the presence of the
auxiliary information P∗

2. The difficulty stems from the latter. In the absence
of aux the property follows straightforwardly from the security of the signature
scheme, as a differing input is exactly a valid message-signature pair, and would
amount to a signature forgery. However, since the obfuscated differentiating pro-
gram P∗

2 has embedded in it the secret signing key sk it is not clear how to prove
that it is hard to find signatures in the presence of P∗

2.
Recall that P∗

2 was an obfuscation, under some un-specified obfuscator Obf∗,
of P2. GGHW [28] simply conjecture that there exists some obfuscator Obf∗ that
will hide the secret key sk sufficiently well that it is hard to find a differing input
for P0,P1, meaning to find a valid message-signature pair, even given P∗

2. While
they were unable to prove this conjecture under any standard obfuscation defini-
tions such as iO or even vbbO, they were able to partially justify their conjecture
with a heuristic analysis. Their analysis replaces the adversary’s access to the
obfuscated program P∗

2 with an oracle that performs the same functionality. In
this world the adversary no longer has direct access to an object containing sk
and GGHW are able to demonstrate differing inputs security of S by a fairly
straightforward reduction to the underlying security of the signature scheme.

The GGHW result certainly creates significant questions regarding the use of
diO. Arguably, the primary reason for using the diO security definition over vbbO
is that no impossibility results like those of [7,17,33,36] are known for diO. How-
ever, if the GGHW conjecture holds, then this is no longer true and the perceived
benefit of diO versus vbbO is significantly reduced (The benefit is not eliminated,
since even if there exist functionalities that cannot be diO obfuscated, it is still
possible that there are functionalities that can be diO obfuscated but not VBB
obfuscated.). At the same time, the heuristic used to justify the GGHW counterex-
ample is itself much stronger than assuming diO — namely their analysis relies on
modeling the differentiating obfuscated program as an oracle.

New Negative Results on Differing-Inputs Obfuscation 795

1.3 Our Approach

We introduce a new approach to proving the impossibility of diO. In contrast to
the prior work, we analyze our sampler under concrete assumptions that replace
the GGHW conjecture. We now explain the intuition behind our approach as
well as the obstacles we had to overcome.

Let Obf be an obfuscator that we assume, towards a contradiction, is
diO-secure. At the highest level our approach is similar to GGHW. We build
a program sampler S that produces programs P0,P1 and auxiliary information
P∗

2 consisting of an obfuscation of a program P2 under an obfuscator Obf∗. As
in GGHW, the sampler generates a signing and verification key pair (sk, vk) for
an underlying signature scheme DS, and program P0 always rejects. Likewise,
P1 takes as input a candidate message-signature pair (m,σ) and checks its valid-
ity under the signature verification program DS.Ver with key vk. The auxiliary
information continues to be the obfuscation P∗

2, under an obfuscator Obf∗, of a
program P2, where P2 hardwires the secret signing key sk. P2 takes as input
a program P of a certain maximum length, and uses m = P as the message it
signs, and runs P on m and the signature, accepting if this accepts. The impor-
tant difference now however is that Obf∗ is not some new type of obfuscator as
in GGHW. Rather Obf∗ is assumed to be only an iO-secure obfuscator.

It continues to be easy, using the auxiliary information P∗
2, to distinguish

between obfuscations under Obf of P0 and P1. The main issue is to prove that
it is difficult, given P0,P1,P∗

2, to find an input on which P0 and P1 differ. The
hurdle here continues to be the same, namely that the auxiliary information
program P∗

2 embeds the secret signing key sk. This precludes reducing to the
security of the signature scheme in an obvious way. To prove security we will
show that it is computationally difficult to generate a signature on any message.
We do this via a hybrid argument that steps through every possible message one
by one. Since our hybrid steps through the entire message space we base our
security on assumptions of sub-exponential hardness.

To execute our strategy we will replace the generic signature scheme of
GGHW with a special type of puncturable signature scheme that we call a con-
sistent puncturable signature scheme. Given a “master” secret key sk, it should
be possible to create a punctured version skm∗ of the key, for a given mes-
sage m∗, that can be used to sign any message m �= m∗ but even given which
it is hard to produce a signature on m∗. So far this is a special type of policy-
based [9], functional [21] or delegatable [5] signatures, these themselves analogues
of the notions of puncturable, constrained and functional PRFs [19,21,40]. The
additional consistency requirement is that the signatures of m �= m∗ produced
under the master key and the punctured key should be the same. Note that only
deterministic puncturable signature schemes can be consistent, but the former
is not a sufficient condition. We show in Sect. 3 that such signature schemes can
be built from iO and one-way functions. While making a standard signature
scheme deterministic is trivial via the use of PRFs, our challenge is making the
punctured and master versions of the key produce consistent signatures.

796 M. Bellare et al.

Our hybrid now proceeds as follows. We step through each program (message)
P∗ and show that it is computationally difficult to produce a signature onP∗.Wedo
this by first replacing the obfuscation of P2 with an obfuscation of a program P2,P∗

that works as follows. On all inputs P �= P∗ the program P2,P∗ behaves as P2 with
the exception that it uses a punctured version of the signing key skP∗ . On input
P∗ its output is hardwired to be whatever the output of P2(P∗) was. We observe
that if indistinguishability obfuscation holds, then no poly-time attacker can dis-
tinguish between obfuscations of programs P2 and P2,P∗ . This follows since the two
programs share the same output on every input. On every P �= P∗ the master and
punctured keys will produce the same signature that they feed into P, and on input
P∗ program P2,P∗ is hardwired to behave the same as P2. Since it is hard to distin-
guish between obfuscations of these two programs, it should be no easier to output
a signature on message P∗ when P2 is obfuscated to get the auxiliary information
aux than it is when P2,P∗ is obfuscated. However, in the latter case the security of
the puncturable signature scheme guarantees this is hard.

Note that since we assumed a diO-secure obfuscator Obf to start our proof
by contradiction, an iO-secure obfuscator, which we use both directly and to
build consistent punctured signatures, is provided for free and is not an extra
assumption. This means the only assumption we need is a sub-exponentially
hard one-way function. More precisely, this is the case for sub-exponential diO,
while for polynomial diO the iO assumption will be an extra one.

While the text above outlines our main approach, there are several important
factors that still must be taken into account. First, we notice that P1 should be
capable of verifying a signature on a message that is an obfuscation of P1 and
thus longer than P1 itself. For this reason we need to view P0 and P1 as Turning
Machines (TMs) that can process inputs longer than their own descriptions.

Next, our complexity leveraging argument requires that the advantage ε of
any PT attacker on the signature scheme multiplied by the message space be
negligible. To satisfy this using sub-exponential hardness assumptions we must
use a verification key vk that is larger than the programs P0,P1. However, this
creates a circularity problem under the obvious strategy of having P1 actually
contain vk to verify the messages! We circumvent this issue by the use of a
UOWHF [42], also called a target collision-resistant (TCR) hash function [10],
that hashes a separate verification program as follows. We construct a program
Pver that takes as input a candidate message-signature pair (m,σ) and uses an
embedded verification key vk to either accept or reject it. Now P1 takes P′

ver as
an additional input and uses it to check the candidate message-signature pairs,
rather than storing vk and performing the verification itself. P1 hardwires the
hash h of Pver under a TCR hash function, and rejects unless the hash h′ of P′

ver

matches its hardwired hash h. This ensures that only Pver can be used to verify
the signatures. We analyze security by adding a hybrid step at the beginning
using the UOWHF security. We emphasize that the argument using our UOWHF
is outside of the complexity leveraging part of our hybrid.

The above is a very high-level description, and the devil is in the details that
the body of the paper sorts out. The circularity issues, summarized via Fig. 6,

New Negative Results on Differing-Inputs Obfuscation 797

have to be dealt with very carefully. A critical element of dealing with them is
that different primitives are run with different values of the security parameter.
Thus, while the convention is that the security parameter in a proof remains
λ throughout, our constructions will feature n(λ) as the security parameter in
certain places, with n a polynomial that is carefully defined based on other
parameters. Another subtlety is that the success of this program depends on the
details of how sub-exponential security is defined. Specifically (cf. Sect. 2) we use
“uniform” rather than “pointwise” definitions in the language of [8]. The latter
showed them equivalent in the usual setting of negligible functions but they are
not known to be equivalent in the sub-exponential setting.

1.4 Discussion and Related Work

Sub-exponential Security. Our assumptions and conclusions both involve sub-
exponential hardness and one might ask about the validity of such assump-
tions and the value of such conclusions. Empirical evidence, at least, says that
when problems are hard, they are sub-exponentially hard. Natural problems do
not appear to be polynomially but not sub-exponentially hard except in rare
cases [3]. Indeed sub-exponential hardness is frequently assumed in cryptogra-
phy, especially recently [24,31,35]. In particular it is unlikely that polynomially-
secure diO exists but sub-exponentially secure diO does not, so ruling out the
latter is significant in terms of evidence against diO. Similarly it is unlikely that
polynomially secure OWFs exist but sub-exponentially secure ones do not, so
assuming the latter is reasonable.

Bounded Versus Unbounded Inputs. In this work we provide negative results
about the existence of differing-inputs obfuscators for TMs that can take arbi-
trarily long inputs. Our results do not rule out the possibility of constructing
diO for TMs with a-priori bounded input-lengths.

Implications. Note that [1,20] build diO for TMs with unbounded inputs from
circuit diO and SNARKs [14,15]. This means that if SNARKs exist then our neg-
ative results for TM diO extend to circuit diO. Also [38] build diO for TMs with
unbounded inputs from public-coin diO for NC1, fully homomorphic encryption
with decryption in NC1 and public-coin SNARKs. Our results would imply that
(if the assumptions we make hold) one of these three primitives does not exist.

Constructions and Applications of diO. Differing-inputs obfuscation has proven to
be a powerful tool using which we have built new primitives. In some cases it
has later been possible to reduce the assumption to iO or other diO variants,
but sometimes at the cost of weakening the conclusion and usually at the cost
of increased complexity and difficulty. All this motivates understanding whether
or not diO is achievable.

diO for circuits is used in [1,20] to achieve adaptively-secure FE (Functional
Encryption) and extractable witness encryption. It was later shown in [16,23,41]
how to build TM iO from circuit iO but the conclusion was weaker. Adaptively-
secure FE from iO did emerge but the solutions were more complex than the
ones from diO [2,47].

798 M. Bellare et al.

Boyle et al. [20] show that iO implies diO for samplers outputting circuits that
differ on only polynomially-many inputs. Our counter-examples and results do not
apply to this type of diO. Differing input obfuscation is used as a tool in [12], via
the result of [20], to give hardcore functions with polynomially-many output bits
from any injective one-way function and iO, and is used as an assumption to extend
this result to arbitrary one-way functions. It is used similarly as a tool in [22].

Ishai et al. [38] define public-coin diO, by relaxing the notion of diO to
require that only public random coins can be used to build challenge programs
and the corresponding auxiliary information. Our negative results do not apply
to public-coin diO. Public-coin diO is a valuable notion but it doesnt take away
from the interest in proving impossibility of diO because diO precedes public-coin
diO and there are works that still rely on it, and there could be interesting new
applications from diO but not from public-coin diO. Furthermore, our techniques
might help understand the possibility of public-coin diO.

A variant of diO was also used as an assumption in a result in [29].

Consistent Signature Schemes. Some of the prior work focuses on constructing
digital signature schemes with properties that are similar to the ones we require
from consistent signature schemes. The known primitives include: functional
signatures [21], policy-based signatures [9] and operational signatures [4], the
latter subsuming the preliminary work on delegatable signatures [5]. However,
none of the proposed constructions of these primitives satisfy the consistency
requirement which requires that the master and punctured signing keys produce
the same signatures for all messages except for the punctured message, and which
is crucial for our impossibility result.

We get consistent puncturable signatures from OWFs and iO, which in our
context effectively means from OWFs since our proof assumes diO towards a
contradiction and thus gets iO for free. Our definition of consistent puncturable
signatures is novel, but our construction follows Sahai-Waters signatures [45].
Consistent puncturable signatures are also implied by splittable signatures [41],
which are built based on an injective PRG and iO. Injective PRGs are not
known to be implied by OWFs so the assumption is stronger than ours. However,
[18] build injective OWFs from OWFs and iO, and also say that, due to an
observation of Boyle et al. [20], the injective PRG of [41] can be replaced with
an injective OWF. By this route one can get consistent puncturable signatures
from OWFs and iO. However our construction is direct, substantially simpler and
self contained. Consistent puncturable signatures can also be constructed from
constrained verifiable PRFs [25,26]. The latter are achievable from κ-Multilinear
DDH assumption. In our context, this would be an additional assumption since
it is not known to be implied by diO.

2 Preliminaries

Notation. Let N = {0, 1, 2, . . .} be the set of non-negative integers. We denote
by λ ∈ N the security parameter and by 1λ its unary representation. If x ∈
{0, 1}∗ is a string then |x| denotes its length. If x ∈ {0, 1}∗ is a string and

New Negative Results on Differing-Inputs Obfuscation 799

� ∈ N such that |x| ≤ � then 〈x〉� denotes the string of length � that is built by
padding x with leading zeros. If X is a finite set, we let x ←$ X denote picking
an element of X uniformly at random and assigning it to x. Algorithms may be
randomized unless otherwise indicated. Running time is worst case. “PT” stands
for “polynomial-time,” whether for randomized algorithms or deterministic ones.
If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random
coins r on inputs x1, . . . and assigning the output to y. We let y ←$ A(x1, . . .) be
the result of picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)]
denote the set of all possible outputs of A when invoked with inputs x1, We
say that f : N → R is negligible if for every positive polynomial p, there exists
λp ∈ N such that f(λ) < 1/p(λ) for all λ ≥ λp. We use the code based game
playing framework of [11] (See Fig. 1 for an example.). By GA(λ) we denote the
event that the execution of game G with adversary A and security parameter λ
results in the game returning true.

Uniform and Pointwise Security Definitions. There are two common ways to for-
malize security definitions – by using different order of quantification. Let GAME
be a security game, and let Advgame

A (λ) be the advantage of a PT adversary A
winning in this game with security parameter λ. Consider the following two
alternative definitions of sub-exponential security. A uniform definition requires
that there is a constant 0 < ε < 1 such that for every PT adversary A there
exists λA ∈ N such that Advgame

A (λ) ≤ 2−λε

for all λ ≥ λA. A pointwise definition
requires that for every PT adversary A there exist 0 < ε < 1 and λA ∈ N such
that Advgame

A (λ) ≤ 2−λε

for all λ ≥ λA. These definitions differ in the order of
quantification between ε and A. In this work, we use uniform security defini-
tions. For the case of polynomial security, Bellare [8] proved that uniform and
pointwise definitions are equivalent. It is not known whether the equivalence also
holds for the above definitions of sub-exponential security.

Circuits and Turing Machines. We say that P is a program if it is either a circuit
or a Turing Machine (TM), and we denote the size of its binary representation
by |P|. We assume that any program P takes a single input string x; if P is
defined to take multiple inputs x1, . . . then running P on an input x is implicitly
assumed to parse (x1, . . .) ← x and run P(x1, . . .).

Game OWF
F (λ)

fk ←$ F.Kg(1λ)

x ←$ F.In(λ)

y ← F.Ev(1λ, fk, x)

x ←$ F(1λ, fk, y)

y ← F.Ev(1λ, fk, x)

Return (y = y)

Game TCRH
H (λ)

(x0, st) ←$ H1(1
λ)

hk ←$ H.Kg(1λ)

x1 ←$ H2(1
λ, st , hk)

h0 ← H.Ev(1λ, hk, x0)

h1 ← H.Ev(1λ, hk, x1)

win0 ← (x0 = x1)

win1 ← (h0 = h1)

Return (win0 ∧ win1)

Game PPRFG
G(λ)

b ←$ {0, 1} ; gk ←$ G.Kg(1λ)

b ←$ GCH(1λ) ; Return (b = b)

CH(x∗)

gk∗ ←$ G.PKg(1λ, gk, x∗)
If b = 1 then r∗ ← G.Ev(1λ, gk, x∗)
else r∗ ←$ G.Out(λ)

Return (gk∗, r∗)

Fig. 1. Games defining one-wayness of function family F, target collision-resistance of
function family H and puncturable-PRF security of function family G.

800 M. Bellare et al.

We say that circuits C0,C1 are functionally equivalent, written C0 ≡ C1,
if they have the same number of inputs � ∈ N and if C0(x) = C1(x) holds
for all x ∈ {0, 1}�. We say that TMs M0,M1 are functionally equivalent, and
denote it by M0 ≡ M1, if both M0(x) and M1(x) halt on all x ∈ {0, 1}∗ and if
M0(x) = M1(x) for all x ∈ {0, 1}∗.

If M is a TM and t ∈ N then y ← UTMt
M(x1, . . .) denotes running M on

inputs x1, . . . and assigning the output to y; if M(x1, . . .) does not halt within t
steps, then UTMt

M(x1, . . .) returns 0. If M is a TM and x ∈ {0, 1}∗ is a string
such that M halts on input x, we use time(M, x) to denote the number of steps
that are required for it to halt.

Let P be any circuit or any TM that halts on all inputs. For any s ∈ N such
that |P| ≤ s let Pads(P) denote P padded to have size s, meaning that Pads(P)
and P are of the same type (i.e. both are circuits or TMs) and Pads(P) ≡ P. We
assume that P can be padded to any size larger or equal to |P|.
Function Families. A family of functions F specifies PT algorithms F.Kg and F.Ev,
where F.Ev is deterministic. Associated to F is a collection if input sets F.In
and a collection of output sets F.Out, defining all valid inputs and outputs for
each of security parameters. Key generation algorithm F.Kg takes 1λ to return
a key fk. Evaluation algorithm F.Ev takes 1λ, fk and an input x ∈ F.In(λ) to
return F.Ev(1λ, fk, x) ∈ F.Out(λ). We say that F is injective if the function
F.Ev(1λ, fk, ·): F.In(λ) → F.Out(λ) is injective for all λ ∈ N and fk ∈ [F.Kg(1λ)].

Puncturable Function Families. A puncturable function family G specifies (beyond
the usual algorithms) additional PT algorithms G.PKg and G.PEv, where G.PEv
is deterministic. Punctured key generation algorithm G.PKg takes 1λ, a key
gk ∈ [G.Kg(1λ)] and a target input x∗ ∈ G.In(λ) to return a “punctured” key gk∗.
Punctured evaluation algorithm G.PEv takes 1λ, gk∗ and an input x ∈ G.In(λ)
to return G.PEv(1λ, gk∗, x) ∈ G.Out(λ). The correctness condition requires that
G.PEv(1λ, gk∗, x) = G.Ev(1λ, gk, x) for all λ ∈ N, gk ∈ [G.Kg(1λ)], x∗ ∈ G.In(λ),
gk∗ ∈ [G.PKg(1λ, gk, x∗)] and x ∈ G.In(λ)\{x∗}.

One-Way Functions. Consider game OW of Fig. 1 associated to a function family
F and an adversary F , where F.In(λ) is required to be finite for all λ ∈ N. For
λ ∈ N let Advow

F,F (λ) = Pr[OWF
F (λ)]. Let δ : N → R be any function. We say that

F is δ-OW-secure if for every PT adversary F there exists λδ,F ∈ N such that
Advow

F,F (λ) ≤ δ(λ) for all λ ≥ λδ,F . We say that F is sub-exponentially OW-secure
if it is 2−(·)ε

-OW-secure for some 0 < ε < 1.

Target Collision-Resistant Functions. Consider game TCR of Fig. 1 associated to a
function family H and an adversary H. For λ ∈ N let Advtcr

H,H(λ) = Pr[TCRH
H (λ)].

Let δ : N → R be any function. We say that H is δ-TCR-secure if for every PT
adversary H there exists λδ,H ∈ N such that Advtcr

H,H(λ) ≤ δ(λ) for all λ ≥
λδ,H. We say that H is sub-exponentially TCR-secure if it is 2−(·)ε

-TCR-secure
for some 0 < ε < 1. Target collision-resistant hash functions were introduced
by Naor and Yung [42] under the name of Universal One-Way Hash Functions
(UOWHF). [10] redefined the corresponding security notion under the name of
target collision-resistance.

New Negative Results on Differing-Inputs Obfuscation 801

TCR-secure function families can be built from one-way functions, by com-
bining the following results. First, [37,44] (see also [39]) proposed construc-
tions of TCR-secure compression function families with fixed input and output
lengths. More formally, they show how to build a function family H′ such that
H′.In(·) = {0, 1}pin(·) and H′.Out(·) = {0, 1}pout(·), where pin, pout are some poly-
nomials such that pin(λ) ≥ pout(λ) for all λ ∈ N. Next, [10,46] showed how to
use any TCR-secure compression function H′ with fixed input length in order
to build another TCR-secure function family H for arbitrary, bounded variable-
length inputs, meaning that H.In(λ) =

⋃

i≤p(λ){0, 1}i and H.Out(λ) = H′.Out(λ)
for some function p : N → N all λ ∈ N.

Puncturable PRFs. Consider game PPRF of Fig. 1 associated to a puncturable
function family G and an adversary G, where G.Out(λ) is required to be finite
for all λ ∈ N and G is required to make exactly one oracle query to CH.
For λ ∈ N let Advpprf

G,G(λ) = 2Pr[PPRFG
G(λ)] − 1. Let δ : N → R be any

function. We say that G is a δ-PPRF-secure if for every PT adversary G
there exists λδ,G ∈ N such that Advpprf

G,G(λ) ≤ δ(λ) for all λ ≥ λδ,G . We say
that G is sub-exponentially PPRF-secure if it is 2−(·)ε

-PPRF-secure for some
0 < ε < 1. Puncturable PRFs were concurrently and independently introduced in
[19,21,40]. They can be built by extending the standard PRF construction of
Goldreich, Goldwasser and Micali [32].

Digital Signature Schemes. A digital signature scheme DS defines PT algorithms
DS.Kg, DS.Sig, DS.Ver, where DS.Ver is deterministic. Associated to DS is a
collection of input sets DS.In and a collection of output sets DS.Out, defining all
valid messages and signatures for each of security parameters. Key generation
algorithm DS.Kg takes 1λ to return a signing key sk and a verification key vk.
Signing algorithm DS.Sig takes 1λ, sk and a message m ∈ DS.In(λ) to return
a signature σ ∈ DS.Out(λ). Verification algorithm DS.Ver takes 1λ, vk,m, σ to
return a decision d ∈ {1, 0} regarding whether σ is a valid signature of m under
vk, where 1 is returned if σ is a valid and 0 otherwise. The correctness condition
requires that DS.Ver(1λ, vk,m, σ) = 1 for all λ ∈ N, (sk, vk) ∈ [DS.Kg(1λ)],
m ∈ DS.In(λ) and σ ∈ [DS.Sig(1λ, sk,m)]. We say that a digital signature scheme
DS is deterministic if its signing algorithm DS.Sig is deterministic.

Obfuscators. An obfuscator is a PT algorithm Obf that on input 1λ and a program
P returns a program P of the same type as P such that P ≡ P. We say that

Game DIFFD
S (λ)

(P0, P1, aux) ←$ S(1λ)

x ←$ D(1λ, P0, P1, aux)

Return (P0(x) = P1(x))

Game IOO
Obf,S(λ)

b ←$ {0, 1} ; (P0, P1, aux) ←$ S(1λ)

P ←$ Obf(1λ, Pb)

b ←$ O(1λ, P, aux); Return (b = b)

Fig. 2. Games defining difference-security of program sampler S and iO-security of
program obfuscator Obf relative to program sampler S.

802 M. Bellare et al.

Obf is a circuit obfuscator if it obfuscates circuits, and we say that Obf is a
TM obfuscator if it obfuscates TMs. Note that according to our definition of
functionally equivalent programs, obfuscation is not defined for TMs that do
not halt on some inputs. The polynomial slowdown condition requires that for
every TM obfuscator Obf there is a polynomial p : N × N → N such that for
every TM M that halts on all inputs and for every input x ∈ {0, 1}∗, we have
time(M, x) ≤ p(λ, time(M, x)) for all λ ∈ N and M ∈ [Obf(1λ,M)]. An analogous
slowdown condition trivially holds for any PT circuit obfuscator.

In this work, we discuss indistinguishabilty obfuscation (iO) and differing-
inputs obfuscation (diO). The study of these obfuscation notions was initiated
in [7]. Later [27,45] showed how to build and use the former, whereas [1,20]
provided results on the latter. We extend the definitional framework of [12] that
uses classes of program samplers to capture different variants of security notions
for iO and diO. Specifically, our definitions allow for a unified treatment of
polynomial and sub-exponential security of both circuit and TM obfuscation.

Program Samplers. A circuit sampler is a PT algorithm Scirc that on input 1λ

returns a triple (C0,C1, aux), where C0,C1 are circuits of the same size, number
of inputs and number of outputs, and aux is a string. A TM sampler is a PT
algorithm Stm that on input 1λ returns a triple (M0,M1, aux), where M0,M1 are
TMs of the same size, and aux is a string. We require that M0(x) and M1(x)
halt for all λ ∈ N, (M0,M1, aux) ∈ [Stm(1λ)] and x ∈ {0, 1}∗. We say that S is a
program sampler if it is either a circuit sampler or a TM sampler.

Classes of Program Samplers. We say that a program sampler S produces func-
tionally equivalent programs if Pr

[

P0 ≡ P1 : (P0,P1, aux) ←$ S(1λ)
]

= 1 for
all λ ∈ N. Let Scirc

eq be the class of all circuit samplers that produce functionally
equivalent circuits, and let Stm

eq be the class of all TM samplers that produce
functionally equivalent TMs. Consider game DIFF of Fig. 2 associated to a pro-
gram sampler S and an adversary D. For λ ∈ N let Advdiff

S,D(λ) = Pr[DIFFD
S (λ)].

Let δ : N → R be any function. We say that S is δ-DIFF-secure if for every PT
adversary D there exists λδ,D ∈ N such that Advdiff

S,D(λ) ≤ δ(λ) for all λ ≥ λδ,D.
We say that S is sub-exponentially DIFF-secure if it is 2−(·)ε

-DIFF-secure for
some 0 < ε < 1. Let Scirc

δ-diff be the class of all δ-DIFF-secure circuit samplers, and
let Stm

δ-diff be the class of all δ-DIFF-secure TM samplers. Informally, difference-
security of a program sampler S means that given its output (P0,P1, aux), it is
hard to find an input on which the programs P0 and P1 differ.

Indistinguishability Obfuscation and Differing-Inputs Obfuscation. Consider game
IO of Fig. 2 associated to an obfuscator Obf, a program sampler S and an adver-
sary O. For λ ∈ N let Advio

Obf,S,O(λ) = 2Pr[IOO
Obf,S(λ)]− 1. Let δ : N → R be any

function. Let S be a class of program samplers. We say that Obf is δ-S -secure
if for every program sampler S ∈ S and for every PT adversary O there exists
λδ,S,O ∈ N such that Advio

Obf,S,O(λ) ≤ δ(λ) for all λ ≥ λδ,S,O. We say that Obf is
sub-exponentially S -secure if it is 2−(·)ε

-S -secure for some 0 < ε < 1.
We say that Obf is a sub-exponentially secure indistinguishability obfuscator

for TMs (resp. circuits) if there exists 0 < ε < 1 such that Obf is 2−(·)ε

–Stm
eq -

New Negative Results on Differing-Inputs Obfuscation 803

secure (resp. 2−(·)ε

–Scirc
eq -secure). We say that Obf is a differing-inputs obfuscator

for TMs (resp. circuits) if for every negligible function γ : N → R there exists a
negligible function ν : N → R such that Obf is ν-Stm

γ-diff -secure (resp. ν-Scirc
γ-diff -

secure). Note that ν-Stm
γ-diff -security may be unachievable if there exists an infinite

number of security parameters λ ∈ N such that γ(λ) > ν(λ). We say that Obf
is a sub-exponentially secure differing-inputs obfuscator for TMs (resp. circuits)
if for every 0 < ε0 < 1 and γ = 2−(·)ε0 there exists 0 < ε1 < 1 such that Obf is
2−(·)ε1 -Stm

γ-diff -secure (resp. 2−(·)ε1 -Scirc
γ-diff -secure).

Note that according to our definitions, a sub-exponentially secure differing-
inputs obfuscator is not necessarily a polynomially-secure differing-inputs obfus-
cator. Namely, the former guarantees no security with respect to δ-DIFF-secure
program samplers when δ is negligible but not sub-exponentially small. This
observation can be used to strengthen our definition of sub-exponentially secure
diO. We chose to use the weaker definition, which is simpler to define and which
makes our impossibility results stronger.

3 Consistent Puncturable Digital Signature Schemes

We start by defining consistent puncturable digital signature schemes that will
be used for our impossibility results in Sect. 4. Our construction follows Sahai-
Waters signatures [45], and we prove its security assuming OWF and iO.

Informally, a puncturable digital signature scheme allows to ‘puncture’ its
signing key sk at an arbitrary message m∗. The resulting punctured secret key
sk∗, punctured at m∗, allows to produce signatures for all messages except for
m∗. The puncturability property is similar to the one of puncturable PRFs. We
say that a puncturable digital signature scheme is consistent if its secret signing
key sk and every possible punctured signing key sk∗, that can be derived from
sk, deterministically produce the same signatures for all messages except for the
punctured message.

We now define a security notion, informally, requiring that no PT adversary
should be able to forge a valid signature for the punctured message. The natural
formalization of this security notion requires selective unforgeability, meaning
that an adversary has to choose a message m∗ at which the original signing key
sk should be punctured. Having received the corresponding pair of punctured
signing key sk∗ and verification key vk, the goal of the adversary is to produce
a valid signature for m∗ with respect to the verification key.

Puncturable Digital Signature Schemes. A puncturable digital signature scheme
DS specifies (beyond the algorithms associated to digital signatures schemes)
additional PT algorithms DS.PKg, DS.PSig, where DS.PSig is deterministic.
Punctured key generation algorithm DS.PKg takes 1λ, a signing key sk ∈
[DS.Kg(1λ)] and a message m∗ ∈ DS.In(λ) to return a “punctured” signing
key sk∗. Punctured signing algorithm DS.PSig takes 1λ, sk∗ and a message
m ∈ DS.In(λ) to return a signature σ ∈ DS.Out(λ). We say that puncturable dig-
ital signature scheme DS is consistent if DS.Sig(1λ, sk,m) = DS.PSig(1λ, sk∗,m)
for all λ ∈ N, (sk, vk) ∈ [DS.Kg(1λ)], m∗ ∈ DS.In(λ), sk∗ ∈ [DS.PKg(1λ, sk,m∗)]

804 M. Bellare et al.

Game PSUFCMAU
DS(λ)

(m∗, st) ←$ U1(1
λ) ; (sk, vk) ←$ DS.Kg(1λ)

sk∗ ←$ DS.PKg(1λ, sk, m∗) ; σ∗ ←$ U2(1
λ, st , vk, sk∗)

d ← DS.Ver(1λ, vk, m∗, σ∗) ; Return (d = 1)

Fig. 3. Game defining selective unforgeability of puncturable digital signature scheme
DS under chosen message attack.

and m ∈ DS.In(λ)\{m∗}. Note that DS can be consistent only if it is determinis-
tic. More precisely, both DS.Sig and DS.PSig should be deterministic. However,
determinism is a necessary but not a sufficient condition.

Punctured Selective Unforgeability Under Chosen Message Attack. Consider game
PSUFCMA of Fig. 3 associated to a puncturable digital signature scheme DS
and an adversary U . For λ ∈ N let Advpsufcma

DS,U (λ) = Pr[PSUFCMAU
DS(λ)]. Let

δ : N → R be any function. We say that DS is δ-PSUFCMA-secure if for every
PT adversary U there exists λδ,U ∈ N such that Advpsufcma

DS,U (λ) ≤ δ(λ) for all
λ ≥ λδ,U . We say that DS is sub-exponentially PSUFCMA-secure if it is 2−(·)ε

-
PSUFCMA-secure for some 0 < ε < 1.

Our Construction. We build a consistent puncturable digital signature scheme DS
from a PPRF G, an indistinguishability obfuscator Obf and a OWF F. Our main
observation is that a PPRF key gk can be used as a secret key for DS. In order
to obtain a punctured key for DS, we puncture gk accordingly. The correctness
condition of puncturable PRFs guarantees that DS is consistent. We build a
verification key by obfuscating a circuit that embeds the PPRF key gk and a
OWF key fk. The circuit takes a message-signature pair (m,σ) and returns 1 if
F.Ev(1λ, fk, σ) = F.Ev(1λ, fk,G.Ev(1λ, gk,m)); it returns 0 otherwise.

Puncturable Digital Signature Scheme PUNC-DS. Let s : N → N be a polynomial.
Let G be a puncturable function family. Let F be a function family such that
F.In = G.Out. Let Obf be a circuit obfuscator. We build a consistent puncturable
digital signature scheme DS = PUNC-DS[G,F,Obf, s] as follows. Let DS.In(λ) =
G.In(λ) and DS.Out(λ) = G.Out(λ) for all λ ∈ N, and let Fig. 4 define the
puncturable digital signature scheme DS. We say that DS is well-defined if s(λ) ≥
|C1λ,gk,fk | for all λ ∈ N, gk ∈ [G.Kg(1λ)] and fk ∈ [F.Kg(1λ)].

The following says that a PSUFCMA-secure, consistent punctured digital
signature scheme can be built assuming OWF and iO.

Theorem 1. Let G be a sub-exponentially PPRF-secure function family such
that G.In(λ),G.Out(λ) ⊆ ⋃

i≤p0(λ){0, 1}i for some polynomial p0 and all λ ∈ N.
Let F be a sub-exponentially OW-secure function family such that F.In = G.Out
and F.Out(λ) ⊆ ⋃

i≤p1(λ){0, 1}i for some polynomial p1 and all λ ∈ N. Let Obf

be a sub-exponentially Scirc
eq -secure circuit obfuscator. Then there is a polynomial

New Negative Results on Differing-Inputs Obfuscation 805

Algorithm DS.Kg(1λ)

gk ←$ G.Kg(1λ) ; fk ←$ F.Kg(1λ)

C ←$ Obf(1λ,Pads(λ)(C1λ,gk,fk))

Return (gk, C)

Circuit C1λ,gk,fk(m, σ)

σ ← G.Ev(1λ, gk, m)

y ← F.Ev(1λ, fk, σ)

If (y = F.Ev(1λ, fk, σ)) then return 1
Else return 0

Algorithm DS.PKg(1λ, gk, m∗)

Return G.PKg(1λ, gk, m∗)

Algorithm DS.Ver(1λ, C, m, σ)

Return C(m, σ)

Algorithm DS.Sig(1λ, gk, m)

Return G.Ev(1λ, gk, m)

Algorithm DS.PSig(1λ, gk∗, m)

Return G.PEv(1λ, gk∗, m)

Fig. 4. Puncturable digital signature scheme DS = PUNC-DS[G,F,Obf, s].

s : N → N such that the following is true. Let DS = PUNC-DS[G,F,Obf, s]. Then
(1) DS is well-defined, and (2) DS is sub-exponentially PSUFCMA-secure.

In order to prove that DS is PSUFCMA-secure, we show that an adversary
can not find the value of G.Ev(1λ, gk,m∗) for a challenge message m∗, even
given the obfuscated verification-key circuit that contains gk. In the proof, we
puncture gk at m∗ to get a punctured key gk∗, and construct a functionally
equivalent verification-key circuit that embeds gk∗ along with y∗ = F.Ev(1λ, fk,
G.Ev(1λ, gk,m∗)). The new verification key accepts σ as a valid signature for
m∗ if and only if y∗ = F.Ev(1λ, fk, σ), whereas the verification of signatures for
all other messages m �= m∗ remains the same. First, we use the iO-security of
Obf to switch the verification circuits. Then we use the PPRF-security of G,
followed by the OWF-security of F to show that no adversary can find the value
of G.Ev(1λ, gk,m∗) from gk∗ and y∗. The proof is given in [13].

4 Impossibility of Differing-Inputs Obfuscation for TMs

In this section we show that differing-inputs obfuscation for Turing Machines is
impossible. In order to disprove sub-exponentially secure diO for TMs, we assume
only the existence of sub-exponentially secure one-way functions. Furthermore,
we show that polynomially secure diO for TMs is also impossible, additionally
assuming sub-exponentially secure iO.

We construct a sub-exponentially difference-secure TM sampler, meaning
that given a pair of TMs produced by this sampler it is hard to find an input on
which these TMs produce different outputs. The proof of difference-security is the
core part of our work. It requires to carefully specify how to choose parameters for
our sampler in a way that does not introduce any circular dependencies. Besides
proving difference-security, we also show that there exists an adversary that
can distinguish between obfuscations of TMs that are produced by the sampler
regardless of the used obfuscator. Together these claims imply the impossibility
of diO for TMs.

806 M. Bellare et al.

The Blueprint for Impossibility Results. The first attack on differing-inputs obfus-
cation was presented by Garg, Gentry, Halevi and Wichs (GGHW) [28]. They
introduced a novel special-purpose obfuscation assumption and showed that it
contradicts diO. Our impossibility result follows the high-level idea from their
work, but we achieve it using concrete assumptions. We now explain the core
ideas of our impossibility result, which closely follow those of GGHW.

We construct a TM sampler Stm that returns TMs M0,M1 along with an
auxiliary information string aux . The sampler generates a key pair (sk, vk) for
a digital signature scheme DS, and its output depends on these keys. TM M0

returns 0 on every input. TM M1 returns 1 if and only if it gets a valid message-
signature pair as input, corresponding to the verification key vk; it returns
0 otherwise. The auxiliary information string aux is an iO-obfuscation of a
TM Maux. The latter embeds the signing key sk and takes a TM M as input,
which for our purpose will normally be a diO-obfuscation of M0 or M1. Maux

returns the result of running M on a message-signature pair that is produced
using its embedded signing key sk.

In order to determine whether a TM M is an obfuscation of M0 or M1, one can
run Maux with M as input. According to the construction of Maux, it will return
b ∈ {0, 1} if and only if M is an obfuscation of Mb. To prove difference-security
of Stm, we will show that it is hard to find a valid message-signature pair given
(M0,M1, aux). The main technical challenge of the proof is to show that aux
(the obfuscation of Maux) properly hides the embedded signing key sk, which
does not naturally follow from the security of indistinguishability obfuscation.

Turing Machine Sampler TM-SAMP. Let s0, �, n, t0, t1, s1 : N → N be polynomi-
als. Let Obftmeq ,Obftmdiff be TM obfuscators. Let H be a function family such that
H.In(λ) = {0, 1}∗ and H.Out(λ) ⊆ ⋃

i≤p0(λ){0, 1}i for some polynomial p0 and all
λ ∈ N. Let DS be a deterministic digital signature scheme such that DS.In(λ) =

TM Sampler Stm(1λ)

(sk, vk) ←$ DS.Kg(1n(λ))

hk ←$ H.Kg(1λ)

h ← H.Ev(1λ, hk, Mver
1λ,vk)

M0 ← Pads0(λ)(M
0)

M1 ← Pads0(λ)(M
1
1λ,hk,h)

Maux ← Pads1(λ)(M
aux
1λ,sk,vk)

aux ←$ Obftmeq(1n(λ), Maux)
Return (M0, M1, aux)

TM Mver
1λ,vk(m, σ)

If (|m| = (λ)) then return 0

Return DS.Ver(1n(λ), vk, m (n(λ)), σ)

TM M0(M, 1t, m, σ)

Return 0

TM M1
1λ,hk,h(M, 1t, m, σ)

h ← H.Ev(1λ, hk, M)
If (h = h) then return 0
Return UTMt

M(m, σ)

TM Maux
1λ,sk,vk(M)

If (|M| = (λ)) then return 0

σ ← DS.Sig(1n(λ), sk, M (n(λ)))

d ← UTM
t1(λ)

M
(Mver

1λ,vk, 1t0(λ), M, σ)

Return d

t t t

Fig. 5. TM sampler Stm = TM-SAMP[Obftmdiff ,H,DS,Obftmeq, s0, �, n, t0, t1, s1].

New Negative Results on Differing-Inputs Obfuscation 807

{0, 1}�(λ) and DS.Out(λ) ⊆ ⋃

i≤p1(λ){0, 1}i for some polynomial p1 and all λ ∈ N.
We build a TM sampler Stm = TM-SAMP[Obftmdiff ,H,DS,Obftmeq , s0, �, n, t0, t1, s1]
as defined in Fig. 5. We say that Stm is well-defined if s0(λ) ≥ |M0|, s0(λ) ≥
|M1

1λ,hk,h|, �(n(λ)) ≥ �(λ), t0(λ) ≥ time(Mver
1λ,vk, (m,σ)), t1(λ) ≥ time(M,

(Mver
1λ,vk, 1t0(λ),M, σ)) and s1(λ) ≥ |Maux

1λ,sk,vk| for all λ ∈ N, hk ∈ [H.Kg(1λ)],
h ∈ H.Out(λ), M ∈ {M0,M1

1λ,hk,h}, M ∈ [Obftmdiff(1λ,Pads0(λ)(M))], (sk, vk) ∈
[DS.Kg(1n(λ))], m ∈ {0, 1}�(λ) and σ ∈ DS.Out(n(λ)).

Core Design Ideas Behind TM-SAMP. Note that TM Maux
1λ,sk,vk takes as input an

obfuscated TM M and computes the signature σ for message 〈M〉�(n(λ)), where
the latter denotes M padded to size �(n(λ)). It then uses a Universal Turing
Machine UTM to simulate M on input x for the duration of t1(λ) steps, where
x = (Mver

1λ,vk, 1t0(λ),M, σ). The idea of computing a signature on a message that
depends on M was already proposed in GGHW [28], with the goal of avoiding
a trivial attack against the difference-security of the sampler. Specifically, if a
fixed message-signature pair (mch, σch) was used for all inputs of Maux

1λ,sk,vk, then
a difference-security adversary could construct a sequence of TMs that each
reveals a single bit of (mch, σch) when used as an input M to Maux

1λ,sk,vk. This
would allow adversary to recover the message-signature pair bit-by-bit.

Turing Machine M1
1λ,hk,h takes an input x = (M, 1t,m, σ), where M is a TM,

1t is the unary representation of some integer t ∈ N, and (m,σ) is a message-
signature pair. We use a target collision-resistant function family H in order
to ensure that M1

1λ,hk,h can return 1 only if M = Mver
1λ,vk. This is achieved by

embedding a key hk for H and the value h = H.Ev(1λ,hk,Mver
1λ,vk) into M1

1λ,hk,h,
and by returning 0 whenever h �= H.Ev(1λ,hk,M). If M = Mver

1λ,vk is satisfied,
then M1

1λ,hk,h uses a Universal Turing Machine UTM to simulate M on input
(m,σ) for the duration of t steps. TM Mver

1λ,vk is designed to return 1 if and
only if its input x = (m,σ) is a valid message-signature pair with respect to a
verification key vk for the digital signature scheme DS. Our impossibility results
require the choice of DS to depend on the construction of M1

1λ,hk,h, so embedding
vk directly into the latter would have introduced a circular dependency between
the two. Instead we have to resort to the above approach of embedding vk into
a separate TM.

According to our definitions, two TMs can be functionally equivalent only if
both of them halt on all inputs. The notion of functional equivalence is further
used for the definitions of program samplers and obfuscation. This means that
whenever a TM needs to simulate the code of another TM, it is required to
use a Universal Turing Machine UTM and specify the number of steps for the
simulation. Otherwise, the simulated TMs would not be guaranteed to halt.

Parameters of TM-SAMP. Figure 6 shows the dependencies between all schemes
and parameters that will be used to instantiate the construction of TM-SAMP
in Theorem 2. Let us introduce the notation that is used in this picture. For any
two entities A and B, an arrow from A to B means that the construction, or the
choice, of B depends on A. The relations are transitive, meaning that we do not

808 M. Bellare et al.

Fig. 6. Parameter dependencies in TM-SAMP for the proof of Theorem 2.

draw a direct arrow from A to B in the case if B is already reachable from A.
TM Maux-punc will be used only for the proof of security and is defined in Fig. 7.

The construction of TM-SAMP is parameterized by polynomials s0, s1, t0, t1, �
and n. Polynomials s0, s1 denote the size to which some of our TMs must be
padded prior to obfuscating them. This stems from our definition of program
samplers that are required to return programs of the same size. Polynomials
t0, t1 are used to indicate the number of steps that must be done when simulating
various TMs using a Universal Turing Machine UTM. Our definition of a well-
defined instantiation of TM-SAMP specifies lower bounds for t0, t1 that ensure
the correctness of the attack that we will design against the sub-exponential
(d)iO-security of Obftmdiff with respect to Stm. Polynomial � will be defined to
upper-bound the size of any obfuscation M of programs M0 and M1

1λ,hk,h, when
obfuscator Obftmdiff is used. Note that Maux

1λ,sk,vk rejects all inputs M of size different
than �(λ); our attack will pad all obfuscations of M0 and M1

1λ,hk,h to size �(λ),
using the padding operator Pad�(λ)(·) that is assumed to produce functionally
equivalent TMs as per Sect. 2. Polynomial n is used to set security parameters
for schemes DS and Obftmeq . Specifically, if the TM sampler Stm is instantiated
with a security parameter λ ∈ N, then its construction uses these two schemes,
each with the security parameter n(λ).

In order for our proof of difference-security to work, if a 2−(·)ε

-security is
assumed for either of DS or Obftmeq , then the choice of polynomial n will depend
on ε. This leads to an inconvenient dependency: DS uses n(λ) as its security
parameter, but the choice of polynomial n depends on the choice of DS. Ide-
ally, we would have liked to choose a digital signature scheme DS such that
DS.Out(n(λ)) = {0, 1}�(λ), because DS is used to sign messages that are TMs
of size �(λ). However, since we do not know n ahead of choosing DS, we require
that for all λ ∈ N we have DS.Out(λ) = {0, 1}�(λ) and �(n(λ)) ≥ �(λ), result-
ing in DS.Out(n(λ)) = {0, 1}�(n(λ)). We then use an injective string padding to
map TMs (i.e. their string representations) of length �(λ) into strings of length
�(n(λ)). The injectivity of padding is necessary for the proof of difference-security

New Negative Results on Differing-Inputs Obfuscation 809

of Stm. In order to ensure that the requirement �(n(λ)) ≥ �(λ) is satisfied, we
will choose polynomials �, n such that �(λ+1) ≥ �(λ) and n(λ) ≥ λ for all λ ∈ N.

Limitations and Extensions. Our definition of TM samplers in Sect. 2 requires
them to return TMs that halt on all inputs. One could argue that this defi-
nition is still insufficient for the purpose of obfuscation. Namely, a sampler can
produce TMs that have significantly different running times, and it might not be
reasonable to expect an obfuscator to properly hide the difference in the running
times. We note that this does not hinder our results because we can artificially
alter our TMs M0 and M1

1λ,hk,h to have the same running times, by adding void
instructions to the definition of M0.

The construction of TM-SAMP uses a TM obfuscator Obftmeq that in our theo-
rem statements will be assumed to be sub-exponentially Stm

eq -secure. It is used to
produce auxiliary information by obfuscating TMs Maux

1λ,sk,vk and Maux-punc
1λ,sk∗,vk,m′,b.

We use a TM obfuscator for readability, but we note that a sub-exponentially
Scirc

eq -secure circuit obfuscator could be used instead. There are no circular depen-
dencies preventing us from redefining these two TMs as circuits.

According to Fig. 6, the size of Maux depends on the maximum size of TMs
M0 and M1

1λ,hk,h, and in particular it might be larger than these TMs. This
means that our impossibility result might not hold if we restrict our attention to
TM samplers whose auxiliary information strings aux are required to be shorter
than the size of the corresponding TMs M0 and M1. GGHW [28] circumvent
this limitation in their impossibility result by using a CRHF to compute and
then sign a hash of the TM that is passed inside their auxiliary-information
program, rather than signing the TM itself. Our proof techniques do not seem
to be compatible with such approach.

Impossibility Results. We now formally state our results. Theorem2 shows how
to choose parameters for TM-SAMP such that the resulting TM sampler is
simultaneously well-defined and difference-secure. Theorem 3 shows that any
well-defined instantiation of TM-SAMP produces TMs that can not be securely
obfuscated.

Theorem 2. Let Obftmdiff be a TM obfuscator. Let H be a sub-exponentially
TCR-secure function family such that H.In(λ) = {0, 1}∗ and H.Out(λ) ⊆
⋃

i≤p0(λ){0, 1}i for some polynomial p0 and all λ ∈ N. Then there are polynomi-
als s0, � : N → N such that the following is true. Let DS be a sub-exponentially
PSUFCMA-secure, consistent puncturable digital signature scheme such that
DS.In(λ) = {0, 1}�(λ) and DS.Out(λ) ⊆ ⋃

i≤p1(λ){0, 1}i for some polynomial p1

and all λ ∈ N. Let Obftmeq be a sub-exponentially Stm
eq -secure TM obfuscator.

Then there are polynomials n, t0, t1, s1 : N → N such that the following is true.
Let Stm = TM-SAMP [Obftmdiff , H, DS, Obftmeq , s0, �, n, t0, t1, s1]. Then (1) Stm is
well-defined, and (2) Stm is sub-exponentially DIFF-secure.

We defer the proof of Theorem 2 until after we show how to use this theorem
to state and prove our main claims regarding the impossibility of differing-inputs
obfuscation for TMs.

810 M. Bellare et al.

Theorem 3. Let s0, �, n, t0, t1, s1 : N → N be polynomials. Let Obftmeq ,Obftmdiff

be TM obfuscators. Let H be a function family with H.In(λ) = {0, 1}∗ and
H.Out(λ) ⊆ ⋃

i≤p0(λ){0, 1}i for some polynomial p0 and all λ ∈ N. Let DS be
a deterministic digital signature scheme such that DS.In(λ) = {0, 1}�(λ) and
DS.Out(λ) ⊆ ⋃

i≤p1(λ){0, 1}i for some polynomial p1 and all λ ∈ N. Let Stm =
TM-SAMP [Obftmdiff ,H,DS,Obftmeq , s0, �, n, t0, t1, s1]. Assume that Stm is well-
defined. Then there exists a PT adversary O such that Advio

Obftmdiff ,S
tm,O(λ) = 1.

Proof (Theorem3). We build a PT adversary O against the (d)iO-security of
Obftmdiff relative to Stm as follows:

Adversary O(1λ,M, aux)
Maux ← aux ; b′ ← Maux(Pad�(λ)(M)); Return b′

Adversary O takes 1λ,M, aux as input, where M is an obfuscation of either
TM M0 or TM M1

1λ,hk,h that was produced by the obfuscator Obftmdiff in game
IOO

Obftmdiff ,S
tm(λ), and aux is an auxiliary information string. The goal of O is to

guess which of M0 and M1
1λ,hk,h was obfuscated. It should return 0 if M is an

obfuscation of M0, and it should return 1 otherwise.

Adversary O parses auxiliary information string aux into a TM Maux. The latter
is an obfuscation of TM Maux

1λ,sk,vk, which was computed in Stm using obfuscator
Obftmeq . Next, O pads M to construct a functionally equivalent TM of size �(λ)
and passes it as input to Maux. According to the construction of Maux

1λ,sk,vk, the
latter returns 1 if and only if M is an obfuscation of TM M1

1λ,hk,h. Adversary O
returns the same value to win the game. This concludes the proof of Theorem3.

Next, Theorem 4 shows the impossibility of a polynomially secure diO, and
Theorem 5 shows the impossibility of a sub-exponentially secure diO.

Theorem 4. Let Obf be a Turing Machine obfuscator. Assume the existence of
sub-exponentially secure one-way functions and sub-exponentially secure indis-
tinguishability obfuscation for Turing Machines. Then Obf is not a differing-
inputs obfuscator.

We now prove Theorem 4. Let Obftmeq be a sub-exponentially Stm
eq -secure TM

obfuscator. Theorem 1 shows how to build a sub-exponentially PSUFCMA-
secure, consistent puncturable digital signature scheme DS assuming only sub-
exponentially secure OWF and sub-exponentially secure iO. For a moment,
assume that we can build a TCR-secure function family H with H.In(λ) = {0, 1}∗

for all λ ∈ N just from sub-exponentially secure OWFs (which is not known to be
true, and we address this below). Then according to Theorem 2, we can build a
TM sampler Stm that is (1) well-defined and (2) sub-exponentially DIFF-secure.
But Theorem 3 shows that there exists an efficient adversary that breaks the
IO-security of Obf with respect to Stm. Therefore, Obf is not a differing-inputs
obfuscator.

New Negative Results on Differing-Inputs Obfuscation 811

In order to build a TCR-secure function family H from a sub-exponentially
secure OWF, the statements of Theorems 2 and 3 can be relaxed to require
H.In(λ) = {0, 1}2λ

for all λ ∈ N. This change will still ensure the correctness
of Stm, which requires that H can process inputs of length |Mver

1λ,vk|. The size of
Mver

1λ,vk in our construction is bounded polynomially in the security parameter.
But the reason we have to use a hash function that can process inputs of arbi-
trary, super-polynomially bounded lengths is because the size of Mver

1λ,vk is not
known prior to fixing H (as shown in Fig. 6).

As noted in Sect. 2, Shoup [46] shows how to build a TCR-secure function
family H for arbitrary, bounded variable-length inputs from any TCR-secure
compression function family with fixed input size. The latter is shown to be
achievable from OWFs by Rompel [44]. We note that the key size of Shoup’s
construction grows logarithmically with the maximum input length of the con-
structed function family, which is still polynomially bounded in the case of H that
was proposed above. Furthermore, the super-polynomial bound on the message
lengths does not introduce any difficulties for the security reduction of Shoup’s
construction. This is because the loss of security during the reduction depends
on the length of the messages that are chosen by a PT adversary, rather than
by the (super-polynomial) bound on the messages supported by the scheme.

This concludes the proof of Theorem4. Note that we ruled out the existence
of polynomially-secure differing-inputs obfuscation even with respect to sub-
exponentially secure TM samplers, which is a stronger version of difference-
security than the one required by our definition of polynomially-secure differing-
inputs obfuscation.

Theorem 5. Let Obf be a Turing Machine obfuscator. Assume the existence of
sub-exponentially secure one-way functions. Then Obf is not a sub-exponentially
secure differing-inputs obfuscator.

To prove Theorem 5, assume for a contradiction that Obf is a sub-exponentially
secure differing-inputs obfuscator. According to our definitions, it implies the
existence of sub-exponentially secure indistinguishability obfuscation. The rest
of the proof is identical to the proof of Theorem4. It results in constructing a
sub-exponentially difference-secure TM sampler Stm that can not be securely
obfuscated by Obf. Thus, we get a contradiction.

Finally, we now prove Theorem2.

Proof (Theorem2). We start by proving part (1) of the theorem. Specifically, we
choose polynomials s0, �, n, t0, t1, s1 : N → N such that Stm is well-defined.

We now specify polynomials s0, � : N → N. For any λ ∈ N let s0(λ) be a poly-
nomial upper bound on max(|M0|, |M1

1λ,hk,h|) where the maximum is over all
hk ∈ [H.Kg(1λ)] and h ∈ H.Out(λ). For any λ ∈ N let �(λ) be a polyno-
mial upper bound on max(|M|) such that �(λ) ≤ �(λ + 1), where the max-
imum is over all hk ∈ [H.Kg(1λ)], h ∈ H.Out(λ), M ∈ {M0,M1

1λ,hk,h} and
M ∈ [Obftmdiff(1λ,Pads0(λ)(M))]. Note that the requirement that �(λ) ≤ �(λ+1) for

812 M. Bellare et al.

all λ ∈ N is trivially achievable by removing all terms with negative coefficients
from the polynomial.

We now specify a constant 0 < ε < 1 for which we will prove that Stm is
2−(·)ε

-DIFF-secure. Let 0 < εtcr < 1 be a constant such that H is 2−(·)εtcr -TCR-
secure. Let 0 < εpsuf < 1 be a constant such that DS is 2−(·)εpsuf -PSUFCMA-
secure. Let 0 < εio < 1 be a constant such that Obftmeq is 2−(·)εio -Stm

eq -secure. Let
ε = min(1

2εtcr, εpsuf , εio).
We now specify polynomial n : N → N. For any λ ∈ N let n(λ) = (2λ+�(λ)+

3)�1/ε�. Note that for any λ ∈ N we have n(λ) ≥ λ, and earlier we required that
�(λ + 1) ≥ �(λ) for all λ ∈ N. It follows that �(n(λ)) ≥ �(λ) for all λ ∈ N, as
required for Stm to be well-defined. Let Invn be a deterministic, PT algorithm
that takes 1λ′

to return the smallest λ ∈ N such that n(λ) ≥ λ′. We note that n
is injective, implying that Invn(1n(λ)) = λ for all λ ∈ N.

We now specify polynomials t0, t1, s1 : N → N. For any λ ∈ N let t0(λ)
be a polynomial upper bound on the maximum running time of Mver

1λ,vk(m,σ)
where the maximum is over all (sk, vk) ∈ [DS.Kg(1n(λ))], m ∈ {0, 1}�(λ) and σ ∈
DS.Out(n(λ)). For any λ ∈ N let t1(λ) be a polynomial upper bound on the maxi-
mum running time of M(Mver

1λ,vk, 1t0(λ),M, σ) where the maximum is over all hk ∈
[H.Kg(1λ)], h ∈ H.Out(λ), M ∈ {M0,M1

1λ,hk,h}, M ∈ [Obftmdiff(1λ,Pads0(λ)(M))],
(sk, vk) ∈ [DS.Kg(1n(λ))] and σ ∈ DS.Out(n(λ)). For any λ ∈ N let s1(λ)
be a polynomial upper bound on max(|Maux

1λ,sk,vk|, |Maux-punc
1λ,sk∗,vk,m′,b|) where the

TM Maux-punc
1λ,sk∗,vk,m′,b is defined in Fig. 7 and where the maximum is over all

(sk, vk) ∈ [DS.Kg(1n(λ))], m′ ∈ {0, 1}�(λ), sk∗ ∈ [DS.PKg(1n(λ), sk, 〈m′〉�(n(λ)))]
and b ∈ {0, 1}.

We proceed to prove part (2) of Theorem 2, namely that Stm is 2−(·)ε

-DIFF-
secure. The main challenge of the proof is to show that the signing key sk of DS
can not be extracted from an obfuscation of TM Maux

1λ,sk,vk, meaning that the
Stm

eq -secure obfuscator Obftmeq is sufficient to hide sk. In our proof this is implicit.
The core idea of the proof is to consider the exponential number of messages
from DS.In(n(λ)) and for each of them we argue that a PT adversary is unlikely
to produce a signature for this message. This implies that it is hard to find an
input on which TMs M0 and M1

1λ,hk,h return different outputs.
Let D be a PT adversary. Consider the games and associated TMs of Fig. 7.

Lines not annotated with comments are common to all games. Game G0(λ) is
equivalent to DIFFD

Stm(λ), so for all λ ∈ N we have

Advdiff
Stm,D(λ) = Pr[G0(λ)]. (1)

Let us discuss the transitions between hybrid games that will be used in our
proof. Let λ ∈ N. In order to transition from game G0(λ) to game G1,0(λ)
we claim that if adversary D wins in game DIFFD

Stm(λ) then it must return a
differing-input x = (M, 1t,m, σ) such that M = Mver

1λ,vk. Otherwise, one could use
this adversary to break the TCR-security of H. Next, we consider an exponential
number of games, going from game G1,0(λ) to game G1,2�(λ)(λ). Each game
corresponds to a unique value of message m that can be taken as input by TM

New Negative Results on Differing-Inputs Obfuscation 813

Games G0(λ)–G1,2 (λ)(λ)

(sk, vk) ←$ DS.Kg(1n(λ))

hk ←$ H.Kg(1λ)

h ← H.Ev(1λ, hk, Mver
1λ,vk)

M0 ← Pads0(λ)(M
0)

M1 ← Pads0(λ)(M
1
1λ,hk,h)

Maux ← Pads1(λ)(M
aux
1λ,sk,vk)

aux ←$ Obftmeq(1n(λ), Maux)

x ←$ D(1λ, M0, M1, aux)
(M, 1t, m, σ) ← x
d0 ← (M0(x) = M1(x))
d1 ← (M = Mver

1λ,vk)

res ← d0 // G0

res ← (d0 ∧ d1 ∧ m ≥ 0) // G1,0

. . .

res ← (d0 ∧ d1 ∧ m ≥ 2 (λ)) // G1,2 (λ)

Return res

Games G1,i(λ)–G1,i+1(λ)

(sk, vk) ←$ DS.Kg(1n(λ))

hk ←$ H.Kg(1λ)

h ← H.Ev(1λ, hk, Mver
1λ,vk)

M0 ← Pads0(λ)(M
0)

M1 ← Pads0(λ)(M
1
1λ,hk,h)

m i (λ) ; b ← Maux
1λ,sk,vk(m)

m∗ m (n(λ))

sk∗ ←$ DS.PKg(1n(λ), sk, m∗)
Mtmp ← Maux

1λ,sk,vk ; z ← i // G1,i

Mtmp ← Maux-punc

1λ,sk∗,vk,m ,b
; z ← i // G1,i,A

Mtmp ← Maux-punc

1λ,sk∗,vk,m ,b
; z ← i + 1 // G1,i,B

Mtmp ← Maux
1λ,sk,vk ; z ← i + 1 // G1,i+1

aux ←$ Obftmeq(1n(λ),Pads1(λ)(Mtmp))

x ←$ D(1λ, M0, M1, aux)
(M, 1t, m, σ) ← x
d0 ← (M0(x) = M1(x))
d1 ← (M = Mver

1λ,vk)

Return (d0 ∧ d1 ∧ m ≥ z)

TM M0(M, 1t, m, σ)

Return 0

TM M1
1λ,hk,h(M, 1t, m, σ)

h ← H.Ev(1λ, hk, M)
If (h = h) then return 0
Return UTMt

M(m, σ)

TM Maux
1λ,sk,vk(M)

If (|M| = (λ)) then return 0

σ ← DS.Sig(1n(λ), sk, M (n(λ)))

Return UTM
t1(λ)

M
(Mver

1λ,vk, 1t0(λ), M, σ)

TM Mver
1λ,vk(m, σ)

If (|m| = (λ)) then return 0

d ← DS.Ver(1n(λ), vk, m (n(λ)), σ)
Return d

TM Maux-punc

1λ,sk∗,vk,m ,b
(M)

If (|M| = (λ)) then return 0

If (M = m) then return b

σ ← DS.PSig(1n(λ), sk∗, M (n(λ)))

d ← UTM
t1(λ)

M
(Mver

1λ,vk, 1t0(λ), M, σ)

Return d

Fig. 7. Games for proof of Theorem 2.

Mver
1λ,vk. For any i ∈ {0, 1, . . . , 2�(λ)}, adversary D wins in game G1,i(λ) if and only

if it returns x = (M, 1t,m, σ) such that M = Mver
1λ,vk, m ≥ i and M0(x) �= M1(x).

According to this definition, it is impossible to win game G1,2�(λ)(λ) because
TM Mver

1λ,vk rejects whenever it takes a message m as input such that |m| �= �(λ)
(whereas the length of m in this game is required to be at least �(λ) + 1). We
now need to show that for each i ∈ {0, 1, . . . , 2�(λ) − 1} the success probabilities
of adversary D in games G1,i(λ) and G1,i+1(λ) are sub-exponentially close.

Let i ∈ {0, 1, . . . , 2�(λ)−1}. We split the transition from game G1,i(λ) to game
G1,i+1(λ) into three steps. Specifically, we consider a sequence of games G1,i(λ),
G1,i,A(λ), G1,i,B(λ) and G1,i+1(λ). Games G1,i,A(λ) and G1,i,B(λ) generate

814 M. Bellare et al.

aux as an obfuscation of TM Maux-punc
1λ,sk∗,vk,m′,b instead of an obfuscation of TM

Maux
1λ,sk,vk, where m′ = i and the used obfuscator is Obftmeq . As opposed to TM

Maux
1λ,sk,vk, note that TM Maux-punc

1λ,sk∗,vk,m′,b contains a punctured signing key sk∗

for DS that is punctured at message m∗ = 〈m′〉�(n(λ)). Both TMs are defined to
produce the same outputs on all inputs such that M �= m′, which is achieved
because the punctured digital signature scheme DS is assumed to be consistent
(Recall that the latter requires that sk and sk∗ return the same signatures for all
messages except m∗.). Furthermore, TM Maux-punc

1λ,sk∗,vk,m′,b is hardwired to return
b = Maux

1λ,sk,vk(m′) on input M = m′, meaning that the TMs are functionally
equivalent. We use it to claim that the success probabilities of adversary D in
games G1,i(λ) and G1,i,A(λ)— and in games G1,i,B(λ) and G1,i+1(λ) —are sub-
exponentially close. Namely, if D can distinguish between any pair of these games
with a better than sub-exponentially small probability, then one can use D to
break the iO-security of obfuscator Obftmeq .

It remains to discuss the transition from game G1,i,A(λ) to game G1,i,B(λ).
The difference between these games is that the former requires m ≥ i as a
part of its winning condition, whereas the later requires m ≥ i + 1. Both of
these games set aux to be an obfuscation of TM Maux-punc

1λ,sk∗,vk,m′,b, where sk∗ is
punctured at m∗ = 〈m′〉�(n(λ)) and m′ = i. Note that adversary D can only
have a different success probability in both games if it is capable of forging a
signature on message m∗ given any information it might be able to extract from
TM Maux-punc

1λ,sk∗,vk,m′,b. However, Maux-punc
1λ,sk∗,vk,m′,b does not contain any information

that could help to forge the signature for message m∗ (only bit b depends on
the challenge signature, but D can attempt to guess it). Therefore, we can use
the PSUFCMA-security of DS to bound the difference in adversary’s success
probability when transitioning between games G1,i,A(λ) and G1,i,B(λ).

Below we will prove the following claims:

Claim 1. There exists a PT adversary H against the TCR-security of H such that
for all λ ∈ N we have

Pr[G0(λ)] − Pr[G1,0(λ)] ≤ Advtcr
H,H(λ). (2)

Claim 2. There exist TM samplers Stm
0 ,Stm

1 and a PT adversary O against the
iO-security of Obftmeq relative to Stm

0 and Stm
1 , such that for all λ ∈ N we have

2�(λ)−1
∑

i=0

(Pr[G1,i(λ)] − Pr[G1,i,A(λ)]) ≤ 2�(λ) · Advio
Obftmeq,Stm

0 ,O(n(λ)), (3)

2�(λ)−1
∑

i=0

(Pr[G1,i,B(λ)] − Pr[G1,i+1(λ)]) ≤ 2�(λ) · Advio
Obftmeq,Stm

1 ,O(n(λ)). (4)

New Negative Results on Differing-Inputs Obfuscation 815

Claim 3. There exists a PT adversary U against the PSUFCMA-security of DS
such that for all λ ∈ N we have

2�(λ)−1
∑

i=0

(Pr [G1,i,A(λ)] − Pr [G1,i,B(λ)]) ≤ 2�(λ)+1 · Advpsufcma
DS,U (n(λ)). (5)

Finally, we claim that no adversary can win against G1,2�(λ)(λ). Let
x = (M, 1t,m, σ) be the output of adversary D in game G1,2�(λ)(λ). Adver-
sary D wins the game if the following three conditions are simultaneously true:
M0(x) �= M1

1λ,hk,h(x), M = Mver
1λ,vk and |m| > �(λ). The first condition requires

M1
1λ,hk,h(x) to return 1. The second condition means that M1

1λ,hk,h(x) will return
the output of Mver

1λ,vk(m,σ). However, according to the third condition, the latter
returns 0. Therefore, for any λ ∈ N we have

Pr[G1,2�(λ)(λ)] = 0. (6)

We now show that there exists λD ∈ N such that for all λ ≥ λD we have
Advdiff

Stm,D(λ) ≤ 2−λε

. By definition, this means that Stm is 2−(·)ε

-DIFF-secure.

Advdiff
Stm,D(λ) = (Pr[G0(λ)] − Pr[G1,0(λ)])

+
2�(λ)−1
∑

i=0

(Pr[G1,i(λ)] − Pr[G1,i+1(λ)]) + Pr[G1,2�(λ)(λ)] (7)

≤ Advtcr
H,H(λ) + 2�(λ) · Advio

Obftmeq,Stm
0 ,O(n(λ))

+ 2�(λ)+1 · Advpsufcma
DS,U (n(λ)) + 2�(λ) · Advio

Obftmeq,Stm
1 ,O(n(λ)) (8)

≤ 2−λεtcr + 2�(λ) ·
(

2−n(λ)εio + 2 · 2−n(λ)εpsuf + 2−n(λ)εio
)

(9)

≤ 2−λεtcr + 2�(λ)+1 ·
(

2−n(λ)εio + 2−n(λ)εpsuf + 2−n(λ)εio
)

(10)

≤ 2−λ2ε

+ 2�(λ)+1 · 3 · 2−n(λ)ε

(11)

= 2−λ2ε

+ 2�(λ)+1+log2 3−(2λ+�(λ)+3)�1/ε�·ε
(12)

≤ 2−λ2ε

+ 2−(2λ)ε

(13)

≤ 2−(2λ)ε

+ 2−(2λ)ε

= 21−(2λ)ε

(14)

≤ 2−λε

. (15)

Let λH ∈ N such that Advtcr
H,H(λ) ≤ 2−λεtcr for all λ ≥ λH. Let λU ∈ N such

that Advpsufcma
DS,U (λ) ≤ 2−λεpsuf for all λ ≥ λU . For b ∈ {0, 1} let λStm

b ,O ∈ N be such
that Advio

Obftmeq,Stm
b ,O(λ) ≤ 2−λεio for all λ ≥ λStm

b ,O.
Equation (7) follows from Eq. (1) for all λ ∈ N. Equation (8) follows from

Eqs. (2)–(6) for all λ ∈ N. Equation (9) holds for all λ ∈ N such that λ ≥ λH and

816 M. Bellare et al.

n(λ) ≥ max(λStm
0 ,O, λU , λStm

1 ,O). Equation (10) holds for all λ ∈ N. Equation (11)
is obtained by expanding ε according to its definition, namely by using the
following relations: 2ε ≤ εtcr, ε ≤ εpsuf and ε ≤ εio. Equation (12) is obtained by
expanding n(λ) according to its definition. Equation (13) holds for all λ ∈ N,
because for any polynomial � : N → N, any constant 0 < ε < 1 and all λ ∈ N we
have

�(λ) + 1 + log2 3 − (2λ + �(λ) + 3)�1/ε�·ε

≤ �(λ) + 1 + log2 3 − (2λ + �(λ) + 3)
< − 2λ ≤ −(2λ)ε.

Equation (14) holds for all λ ∈ N such that λ2ε ≥ (2λ)ε, requiring that λ ≥ 2.
Equation (15) holds for all λ ∈ N such that 1 − 2ελε ≤ −λε, requiring that

λ ≥
(

1
2ε−1

)1/ε

. Therefore, it suffices to set

λD = max
(

λH, Invn(1λStm0 ,O), Invn(1λU), Invn(1λStm1 ,O), 2,
⌈

(2ε − 1)−1/ε
⌉)

.

This completes the proof. We now prove Claims 1–3.

Proof of Claim 1. We build a PT adversary H against the TCR-security of H
such that for all λ ∈ N we have Pr[G0(λ)] − Pr[G1,0(λ)] ≤ Advtcr

H,H(λ).

Adversary H1(1λ)

(sk, vk) ←$ DS.Kg(1n(λ))
st ← (sk, vk)
Return (Mver

1λ,vk, st)

Adversary H2(1λ, st ,hk)
(sk, vk) ← st ; h ← H.Ev(1λ,hk,Mver

1λ,vk)
M0 ← Pads0(λ)(M0) ; M1 ← Pads0(λ)(M1

1λ,hk,h)
aux ←$ Obftmeq (1n(λ),Pads1(λ)(Maux

1λ,sk,vk))
(M, 1t,m, σ) ←$ D(1λ,M0,M1, aux) ; Return M

Let x = (M, 1t,m, σ) be an output of adversary D in games G0(λ) and G1,0(λ)
(note that the input distribution of D is the same in both games). If these games
produce different outcomes for the same x, it means that M0(x) �= M1

1λ,hk,h(x)
and M �= Mver

1λ,vk. According to the construction of M0 and M1
1λ,hk,h it follows

that H.Ev(1λ,hk,Mver
1λ,vk) = H.Ev(1λ,hk,M). Whenever this happens, adversary

H wins in game TCRH
H (λ) by returning x0 = Mver

1λ,vk and x1 = M. This proves
the claim.

Proof of Claim 2. We build TM samplers Stm
0 ,Stm

1 and a PT adversary O against
the iO-security of Obftmeq relative to Stm

0 and Stm
1 , such that for all λ ∈ N we

have
∑2�(λ)−1

i=0 (Pr[G1,i(λ)] − Pr[G1,i,A(λ)]) ≤ 2�(λ) · Advio
Obftmeq,Stm

0 ,O(n(λ)) and
∑2�(λ)−1

i=0 (Pr[G1,i,B(λ)] − Pr[G1,i+1(λ)]) ≤ 2�(λ) · Advio
Obftmeq,Stm

1 ,O(n(λ)).
Below, on the left we (simultaneously) define the TM samplers Stm

0 and Stm
1

that differ at the commented lines and have the uncommented lines in common.
On the right, we define the PT adversary O.

New Negative Results on Differing-Inputs Obfuscation 817

TM Samplers Stm
0 (1λ′

), Stm
1 (1λ′

)

λ ← Invn(1λ′
) ; i ←$ {0, 1}�(λ)

(sk, vk) ←$ DS.Kg(1n(λ))
hk ←$ H.Kg(1λ) ; h ← H.Ev(1λ,hk,Mver

1λ,vk)
M̃0 ← Pads0(λ)(M0) ; M̃1 ← Pads0(λ)(M1

1λ,hk,h)
m′ ← 〈i〉�(λ) ; b ← Maux

1λ,sk,vk(m′)
m∗ ← 〈m′〉�(n(λ)) ; sk∗ ←$ DS.PKg(1n(λ), sk,m∗)
Maux ← Pads1(λ)(Maux

1λ,sk,vk)
Maux-punc ← Pads1(λ)(M

aux-punc
1λ,sk∗,vk,m′,b)

M1 ← Maux ; M0 ← Maux-punc ; z ← i // Stm
0

M0 ← Maux ; M1 ← Maux-punc ; z ← i + 1 // Stm
1

aux ← (M̃0, M̃1, vk, z) ; return (M0,M1, aux)

Adversary O(1λ′
,M, aux)

λ ← Invn(1λ′
)

˜aux ← M
(M̃0, M̃1, vk, z) ← aux
x ←$ D(1λ, M̃0, M̃1, ˜aux)
(M, 1t,m, σ) ← x

d0 ← (M̃0(x) �= M̃1(x))
d1 ← (M = Mver

1λ,vk)
If (d0 ∧ d1 ∧ m ≥ z)
Then return 1
Else return 0

We now show that Stm
0 ,Stm

1 ∈ Stm
eq , meaning that these samplers produce func-

tionally equivalent TMs. Both samplers return TMs Maux
1λ,sk,vk and Maux-punc

1λ,sk∗,vk,m′,b
that are padded to size s1(λ). First, observe that Maux

1λ,sk,vk contains a signing key
sk for DS, whereas Maux-punc

1λ,sk∗,vk,m′,b contains the corresponding punctured signing
key sk∗, punctured at m∗ = 〈m′〉�(n(λ)), and a bit b that is equal to Maux

1λ,sk,vk(m′).
According to the definition of a consistent puncturable digital signature scheme,
keys sk and sk∗ produce the same signatures for all m ∈ DS.In(n(λ))\{m∗}. Note
that both Maux

1λ,sk,vk and Maux-punc
1λ,sk∗,vk,m′,b compute a signature for an �(n(λ))-bit

string 〈M〉�(n(λ)) that is built from the �(λ)-bit input string M by padding it
with leading zeros, which is an injective padding. Since m∗ can only be built
by padding m′, these TMs are equivalent for all inputs in M ∈ {0, 1}�(λ)\{m′}.
Furthermore, notice that Maux-punc

1λ,sk∗,vk,m′,b returns b = Maux
1λ,sk,vk(m′) on input m′,

so these TMs are equivalent for all inputs.
Let λ ∈ N. For any b ∈ {0, 1} consider game IOO

Obftmeq,Stm
b

(n(λ)). Let ib denote

the value of i sampled by TM sampler Stm
b . For any i ∈ {0, 1, . . . , 2�(λ) − 1} we

have Pr[ib = i] = 2−�(λ), and hence

Advio
Obftmeq,Stm

b ,O(n(λ)) = 2 · Pr[IOO
Obftmeq,Stm

b
(n(λ))] − 1

= 2 ·
2�(λ)−1
∑

i=0

(

Pr[ib = i] · Pr[IOO
Obftmeq,Stm

b
(n(λ)) | ib = i]

)

− 1

= 2 · 2−�(λ) ·
2�(λ)−1
∑

i=0

Pr[IOO
Obftmeq,Stm

b
(n(λ)) | ib = i] − 1.

(16)

Finally, observe that for any i ∈ {0, 1, . . . , 2�(λ) − 1} we have the following by
construction:

2 · Pr[IOO
Obftmeq,Stm

0
(n(λ)) | i0 = i] − 1 = Pr[G1,i(λ)] − Pr[G1,i,A(λ)],

2 · Pr[IOO
Obftmeq,Stm

1
(n(λ)) | i1 = i] − 1 = Pr[G1,i,B(λ)] − Pr[G1,i+1(λ)].

818 M. Bellare et al.

Claim 2 follows from (16) together with the two equations above.

Proof of Claim 3. We build a PT adversary U against the PSUFCMA-security of
DS such that for all λ ∈ N we have

∑2�(λ)−1
i=0 (Pr [G1,i,A(λ)] − Pr [G1,i,B(λ)]) ≤

2�(λ)+1 · Advpsufcma
DS,U (n(λ)).

Adversary U1(1λ′
)

λ ← Invn(1λ′
)

m′ ←$ {0, 1}�(λ)

m∗ ← 〈m′〉�(n(λ))

st ← m′

Return (m∗, st)

Adversary U2(1λ′
, st , vk, sk∗)

λ ← Invn(1λ′
) ; m′ ← st ; b ←$ {0, 1}

hk ←$ H.Kg(1λ) ; h ← H.Ev(1λ,hk,Mver
1λ,vk)

M0 ← Pads0(λ)(M0) ; M1 ← Pads0(λ)(M1
1λ,hk,h)

aux ←$ Obftmeq (1n(λ),Pads1(λ)(M
aux-punc
1λ,sk∗,vk,m′,b))

x ←$ D(1λ,M0,M1, aux) ; (M, 1t,m, σ) ← x
d0 ← (M0(x) �= M1(x)) ; d1 ← (M = Mver

1λ,vk)
If (d0 ∧ d1 ∧ m = m′) then return σ else return ⊥

Let λ ∈ N. Consider the value of m′ sampled by U1 in game PSUFCMAU
DS(n(λ)).

For any i ∈ {0, 1, . . . , 2�(λ) − 1} it holds that Pr[m′ = i] = 2−�(λ). Hence,

Advpsufcma
DS,U (n(λ)) =

2�(λ)−1
∑

i=0

(

Pr[m′ = i] · Pr[PSUFCMAU
DS(n(λ)) | m′ = i]

)

= 2−�(λ) ·
2�(λ)−1
∑

i=0

Pr[PSUFCMAU
DS(n(λ)) | m′ = i]. (17)

Now observe that for any i ∈ {0, 1, . . . , 2�(λ) − 1} we also have

Pr[PSUFCMAU
DS(n(λ)) | m′ = i] ≥ 1

2
· (Pr [G1,i,A(λ)] − Pr [G1,i,B(λ)]) . (18)

Let x = (M, 1t,m, σ) be an output of adversary D in games G1,i,A(λ) and
G1,i,B(λ) (note that the input distribution of D is the same in both games).
If these games produce different outcomes for the same x, it means that
M0(x) �= M1

1λ,hk,h(x), M = Mver
1λ,vk and m = i. According to the construction of

M0 and M1
1λ,hk,h it follows that (〈m〉�(n(λ)), σ) is a valid message-signature pair

for the digital signature scheme DS with verification key vk.
Whenever the above happens, adversary U wins in game PSUFCMAU

DS(n(λ))
by forging a valid signature σ for message m∗, given that the following two
conditions are satisfied. First, it is only true if adversary U sampled m′ = i.
Second, in order to build TM Maux-punc

1λ,sk∗,vk,m′,b, adversary U has to compute b =
Maux

1λ,sk,vk(m′). Since U does not know sk, instead it has to guess the value of
b ∈ {0, 1}. Hence, U can perfectly simulate the games with probability 1

2 .
Claim 3 follows from (17) and (18).

Acknowledgments. Bellare and Stepanovs were supported in part by NSF grants
CNS-1526801 and CNS-1228890, ERC Project ERCC FP7/615074 and a gift from

New Negative Results on Differing-Inputs Obfuscation 819

Microsoft. Waters was supported in part by NSF grants CNS-1228599 and CNS-
1414082, DARPA SafeWare, a Google Faculty Research award, the Alfred P. Sloan
Fellowship, a Microsoft Faculty Fellowship and a Packard Foundation Fellowship. We
thank the Eurocrypt 2016 reviewers for their comments.

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. Cryptology ePrint Archive, Report 2013/689 (2013). http://
eprint.iacr.org/2013/689

2. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015)

3. Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from different
assumptions. In: Schulman, L.J. (ed.) 42nd ACM STOC, pp. 171–180. ACM Press,
June 2010

4. Backes, M., Dagdelen, O., Fischlin, M., Gajek, S., Meiser, S., Schröder, D.: Oper-
ational signature schemes. Cryptology ePrint Archive, Report 2014/820 (2014).
http://eprint.iacr.org/2014/820

5. Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. Cryptology
ePrint Archive, Report 2013/408 (2013). http://eprint.iacr.org/2013/408

6. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

7. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

8. Bellare, M.: A note on negligible functions. J. Cryptol. 15(4), 271–284 (2002)
9. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC

2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014)
10. Bellare, M., Rogaway, P.: Collision-resistant hashing: towards making UOWHFs

practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997)

11. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

12. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 102–121. Springer,
Heidelberg (2014)

13. Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs
obfuscation. Cryptology ePrint Archive, Report 2016/162 (2016). http://eprint.
iacr.org/2016/162

14. Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A.,
Tromer, E.: The hunting of the SNARK. Cryptology ePrint Archive, Report
2014/580 (2014). http://eprint.iacr.org/2014/580

15. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Goldwasser, S. (ed.) ITCS 2012, pp. 326–349. ACM, January 2012

http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2014/820
http://eprint.iacr.org/2013/408
http://eprint.iacr.org/2016/162
http://eprint.iacr.org/2016/162
http://eprint.iacr.org/2014/580

820 M. Bellare et al.

16. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC,
pp. 439–448. ACM Press, June 2015

17. Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation
and applications to resettable cryptography. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) 45th ACM STOC, pp. 241–250. ACM Press, June 2013

18. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 474–502.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 20

19. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

20. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

21. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

22. Brzuska, C., Mittelbach, A.: Using indistinguishability obfuscation via UCEs. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 122–
141. Springer, Heidelberg (2014)

23. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and
indistinguishability obfuscation for RAM programs. In: Servedio, R.A., Rubinfeld,
R. (eds.) 47th ACM STOC, pp. 429–437. ACM Press, June 2015

24. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015)

25. Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom
functions: Verifiable and delegatable. Cryptology ePrint Archive, Report 2014/522
(2014). http://eprint.iacr.org/2014/522

26. Fuchsbauer, G.: Constrained verifiable random functions. In: Abdalla, M.,
De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 95–114. Springer, Heidelberg
(2014)

27. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

28. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014)

29. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM com-
putation. In: 55th FOCS, pp. 404–413. IEEE Computer Society Press, October
2014

30. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In: Guruswami, V. (ed.)
56th FOCS, pp. 151–170. IEEE Computer Society Press, October 2015

31. Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance independent
assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 426–443. Springer, Heidelberg (2014)

32. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

http://dx.doi.org/10.1007/978-3-662-49096-9_20
http://eprint.iacr.org/2014/522

New Negative Results on Differing-Inputs Obfuscation 821

33. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: 46th FOCS, pp. 553–562. IEEE Computer Society Press, October 2005

34. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

35. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 545–554. ACM Press, June 2013

36. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000)

37. Haitner, I., Holenstein, T., Reingold, O., Vadhan, S., Wee, H.: Universal one-way
hash functions via inaccessible entropy. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 616–637. Springer, Heidelberg (2010)

38. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol.
9015, pp. 668–697. Springer, Heidelberg (2015)

39. Katz, J., Koo, C.-Y.: On constructing universal one-way hash functions from
arbitrary one-way functions. Cryptology ePrint Archive, Report 2005/328 (2005).
http://eprint.iacr.org/2005/328

40. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 2013, pp. 669–684. ACM Press, November 2013

41. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th
ACM STOC, pp. 419–428. ACM Press, June 2015

42. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: 21st ACM STOC, pp. 33–43. ACM Press, May 1989

43. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

44. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, pp. 387–394. ACM Press, May 1990

45. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June 2014

46. Shoup, V.: A composition theorem for universal one-way hash functions. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer,
Heidelberg (2000)

47. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 678–697. Springer, Heidelberg (2015)

http://eprint.iacr.org/2005/328

Automated Unbounded Analysis
of Cryptographic Constructions
in the Generic Group Model

Miguel Ambrona(B), Gilles Barthe, and Benedikt Schmidt

IMDEA Software Institute, Madrid, Spain
{miguel.ambrona,gilles.barthe,benedikt.schmidt}@imdea.org

Abstract. We develop a new method to automatically prove security
statements in the Generic Group Model as they occur in actual papers.
We start by defining (i) a general language to describe security defini-
tions, (ii) a class of logical formulas that characterize how an adversary
can win, and (iii) a translation from security definitions to such formulas.
We prove a Master Theorem that relates the security of the construction
to the existence of a solution for the associated logical formulas. More-
over, we define a constraint solving algorithm that proves the security of
a construction by proving the absence of solutions.

We implement our approach in a fully automated tool, the gga∞ tool,
and use it to verify different examples from the literature. The results
improve on the tool by Barthe et al. (CRYPTO’14, PKC’15): for many
constructions, gga∞ succeeds in proving standard (unbounded) security,
whereas Barthe’s tool is only able to prove security for a small number
of oracle queries.

1 Introduction

The gold standard in provable security is to demonstrate security in the standard
model. However, proofs in the standard model sometimes rely on non-standard
hardness assumptions. In such situations, it is essential to prove that the hard-
ness assumptions used in the security proofs meet some minimal requirements,
for instance the absence of algebraic attacks. The accepted method for vali-
dating new DDH-like assumptions is to show absence of generic attacks, i.e.
attacks that solely exploit the underlying algebraic structure, using the Generic
Group Model [32,33,35,38] or its bilinear and multilinear variants [11,17]. The
Generic Group Model provides an algebraic setting for describing a wide class
of DDH-like assumptions, and is supported by so-called Master Theorems that
give a purely algebraic condition that ensures the security of an assumption in
the Generic Group Model (or its variants). Very roughly, the proof of the Mas-
ter Theorems uses the Schwartz-Zippel Lemma to prove a security reduction
between the Generic Group Model and a Symbolic Generic Group Model, in
which the security experiment is purely deterministic. Security in the Symbolic
Generic Group Model is trivially equivalent to a purely algebraic condition. For

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 822–851, 2016.
DOI: 10.1007/978-3-662-49896-5 29

Automated Unbounded Analysis of Cryptographic Constructions 823

instance, the algebraic condition for a decisional assumption requires to prove
that the two sets of polynomials extracted from the left and right games have the
same linear dependencies. Therefore, and unavoidably, the difficulty of checking
the algebraic condition increases as the assumption becomes more complex, as
witnessed by unfortunate failures [24,28,39]. For some recent hypotheses, several
pages of error-prone calculations are required for proving that the algebraic con-
dition holds, and several authors have used computer algebra systems to carry
part of the verifications. These examples suggest the importance of building gen-
eral tools to assist proofs of security assumptions in the Generic Group Model.
One such tool is the Generic Group Analyzer [11], which uses SMT solvers and
computer algebra systems to analyze DDH-like assumptions. The tool takes as
input a description of an assumption and either returns an algebraic attack or
a concrete probability bound if the assumption is secure. The Generic Group
Analyzer primarily works for non-interactive assumptions, in which the adver-
sary can only call the oracles which perform the algebraic operations.

The Generic Group Model can also be used for proving the security of cryp-
tographic constructions, such as signature schemes and algebraic MACs, against
algebraic attacks. In this context, the adversary has access to oracles for per-
forming signatures, verification, etc. The Generic Group Analyzer also provides
support for such problems, but is inherently limited to oracles which do not
take handles to group elements as inputs. This support can be used for analyz-
ing simple interactive assumptions. Subsequent extensions of the Generic Group
Analyzer overcome this limitation by providing support for oracles that take
handles as inputs, and by allowing adversaries to make a bounded number of
oracle queries [12]. Using this extension, Barthe et al. [12] synthesize (in the
Type II-setting) structure-preserving signatures that are secure against adver-
saries that can make a bounded number of signing queries. Their approach is
based on an algebraic characterization of security, using a vector space whose
dimension increases by one for each query. Therefore, their approach is limited to
a small number of queries, and an alternative approach must be used for proving
security notions which do not impose a bound on the number of queries.

The first main contribution of this paper is to extend the Master Theorem to
a general setting where adversaries can make arbitrarily many queries to oracles
with group inputs, and where the winning conditions can be described using
a rich language. As for simpler Master Theorems, our Master Theorem yields
a sufficient condition for the security of cryptographic constructions. However,
this simpler condition cannot be expressed in finite-dimensional linear algebra:
informally, each adversarial query to an oracle taking group elements as inputs
increases the dimension of the system to be analyzed, and therefore allowing
arbitrarily many queries leads to a system that is not finite-dimensional. As a
consequence, the algebraic approach of the Generic Group Analyzer cannot be
used to analyze automatically sufficient conditions given by the Master Theorem.

The second main contribution of this paper is an automated method for
proving the validity of these conditions, using a combination of methods from
constraint solving, computer algebra, and symbolic cryptography. Building on

824 M. Ambrona et al.

these two contributions, we implement an analyzer which subsumes the Generic
Group Analyzer for interactive assumptions and is able to analyze many cryp-
tographic constructions, including signatures and message authentication codes.

Technical Overview. In more detail, our contributions are as follows.
First, we define a language to express security experiments in the Generic

Group Model where the adversary can make an unbounded number of queries
to oracles; moreover, our model allows oracles to take group values as inputs.
In addition, we define a rich language of winning conditions. We then establish
a Master Theorem, which states that a generic algorithm is secure with respect
to a security goal expressed using our language of winning conditions, if the
constraint system extracted from the security experiment, given by the algo-
rithm and the winning condition, has no computable solution. Informally, the
notion of computable solution provides an algebraic counterpart to the notion of
deducibility used in the symbolic (a.k.a. Dolev-Yao) approach to cryptography;
more technically, this notion is based on an inductive definition of the adversary’s
knowledge throughout execution of the algorithm. From a broader perspective,
our Master Theorem provides a novel light on the relationship between different
cryptographic models, by showing a general relationship between the Generic
Group Model and the symbolic model. Note that, for the sake of simplicity, we
focus on group settings with bilinear pairings; however, we believe that our model
and Master Theorem can naturally extend to the case of multilinear maps.

Second, we define an automated method for proving the absence of com-
putable solutions of constraint systems. Our language of constraints supports
algebraic expressions that are generally not considered by prior work on the
symbolic model. Therefore, we cannot use previous constraint-solving methods
developed for reasoning about cryptographic protocols in the symbolic model.
Rather, we define a specialized method which combines general purpose alge-
braic computations and specialized steps. The algebraic computations are per-
formed using Gröbner bases, whereas the specialized steps include simplifications
related to big operators and case distinctions. The latter can be used to add new
equations to constraint systems and thus to trigger new simplifications. Case
distinctions are an essential ingredient for the success of our method: they yield
compact proofs that follow the structure of pen-and-paper arguments found in
the literature. Of course, the use of case distinctions is not new in automated
deduction; it is at the core of Staalmarck’s method, an empirically successful
method for propositional logic. However, its use in our setting appears to be
new.

Third, we implement our method and evaluate its effectiveness on a sizable
set of case studies. Our tool uses off-the-shelf computer algebra systems to per-
form Gröbner bases computations. However, it draws its efficiency from a finely
tuned heuristics for carrying case distinctions. We evaluate our tool on structure-
preserving signatures, in all settings (Type I, Type II and Type III). Our tool is
able to prove unbounded security of many structure-preserving signatures from
the literature, as well as of the algebraic MACs from Chase, Meiklejohn and

Automated Unbounded Analysis of Cryptographic Constructions 825

Zaverucha [18], and of the short randomizable signatures from Pointcheval and
Sanders [34]. Furthermore, it also proves unbounded security for most of the
examples proved 2-time secure in [12] (these examples were generated automat-
ically using synthesis techniques). Moreover, we also adapt the synthesis tool
from [12] to generate structure-preserving signatures in the Type III setting and
use our tool to prove security for more than a 100 such schemes.

Related Work. The Generic Group Model was introduced by Nechaev [33],
Shoup [38] and Maurer [32], following distinct but equivalent approaches [29].
The original approach by Nechaev and Shoup lets the adversary access a ran-
domly selected representation of group elements; in contrast, Maurer’s approach
requires the adversary to perform all algebraic operations via oracles, and uses
handles as symbolic representations of group elements known to the adversary.
We opt for the second approach, for its distinctively symbolic flavour. These
works establish lower complexity bounds for the generic discrete logarithms and
the generic hardness of Diffie-Hellman like assumptions. As for us, they use the
Schwartz-Zippel Lemma for transforming their original problem into an alge-
braic one. This approach was extended by Boneh, Boyen and Goh [17]. First,
their Generic Group Model focuses on bilinear groups. Second, they consider a
general class of assumptions, and provide the first Master Theorem, which pro-
vides a systematic method for extracting algebraic conditions of security from
assumptions. Their Master Theorem was subsequently extended in many direc-
tions. The most relevant works are those that involve the use of computer tools
for verifying algebraic conditions. Notably, Freeman [23] verifies the hardness of
two assumptions using Magma.

Shoup [38] and Schnorr and Jakobsson [36,37] were among the first to use
the Generic Group Model for proving the security of crytographic constructions.
Specifically, Shoup proves (generic) security of an identification scheme, whereas
Schnorr and Jakobsson consider signed ElGamal encryption and blind discrete
log signatures. More recently, the Generic Group Model has also become an
important tool for analyzing the security of pairing-based cryptographic con-
structions. Chase, Meiklejohn and Zaverucha [18] propose a class of algebraic
MACs and prove their generic security. Several authors use the Generic Group
Model for proving the generic security of structure-preserving signatures [1].
Groth [26] proposes new fully-structure-preserving signatures [6] and proves
their generic security. Similarly, Fuchsbauer, Hanser and Slamanig [25] define
a structure-preserving signature on equivalence classes and prove its generic
security. Furthermore, the Generic Group Model gives a convenient setting
for establishing lower bounds on the complexity of structure-preserving signa-
tures [2,4,5,12]. In a similar spirit, the Generic Group Model has been used
for proving the correctness of translations of signature schemes from Type I to
Type III [3,5,7].

It is also worth pointing to a recent examination of the efficiency of pairing-
based implementations. Based on a practical evaluation of the efficiency of state-
of-the-art implementations of pairings, Chatterjee and Menezes [19] argue that

826 M. Ambrona et al.

Type III pairings are more efficient than their Type II counterparts, and should
be favoured in implementations. Their observation justifies the need to transpose
existing results and tools for the Type II setting to the Type III setting, and has
motivated the application of our methods to the latter.

Several works have developed or used tools for reasoning about the Generic
Group Model. As already mentioned, the Generic Group Analyzer [11] imple-
ments an automated method for analyzing assumptions. Moreover, a subsequent
extension of the analyzer [12] supports the automated analysis of security of
structure-preserving security against adversaries that make a bounded number
of queries. In practice, the tool only terminates for small bounds on the number
of queries. While these works are the most closely related to ours, there have
been previous works that apply computer tools to the Generic Group Model.
Barthe, Cederquist and Tarento [9,15] were the first to use formal verification
tools for analyzing the security of hardness assumptions and cryptographic con-
structions in the Generic Group Model. Their work uses the Coq proof assistant,
and provides no support for automation. Freeman [23] reports on using computer
algebra systems to prove the validity of new hardness assumptions in the Generic
Group Model. Beyond the Generic Group Model, there exist several tools for
synthesizing constructions, such as encryption schemes, modes of operations,
tweakable blockciphers, and structure-preserving signatures in the Type II set-
ting [10,12,27,31], automated transformation of existing constructions, includ-
ing signature schemes [3,7,8], and verification of security proofs [13,14,16]. In
particular, [14] introduce AutoG&P, a highly automated framework for prov-
ing the security of pairing-based cryptographic primitives; the focus of [14] is
on encryption schemes, but their methods are also applicable to signatures and
MACs. AutoG&P and gga∞ are complementary in two different ways. First,
gga∞ focuses on full automation in the Generic Group Model while AutoGP
provides partial automation in the Standard model. Second, and more interest-
ingly, some of our techniques for equational reasoning could be used to achieve
more automation in AutoG&P, whereas it could be possible to use techniques
from AutoG&P as a fallback solution when full automation fails in gga∞.

2 Preliminaries

In this section, we give some background on bilinear groups and define the nota-
tion used throughout the paper.

2.1 Bilinear Groups

We consider bilinear groups G = (G1,G2,Gt, e : G1 × G2 → Gt). For Type I,
G1 = G2 and for Type II, there is an additional isomorphism Ψ : G2 → G1.
We use additive notation for all three groups and use P1, P2, Pt to denote their
generators. For a ∈ Fp, we use �a�i to denote the implicit representation aPi of
a in Gi following [21].

Automated Unbounded Analysis of Cryptographic Constructions 827

2.2 Notation

We define aS = {as | s ∈ S} and SS′ = {ss′ | s ∈ S ∧ s′ ∈ S′}. For a set S, we
write S∗ to denote vectors of elements in S. We define [n] as the range {1, . . . , n}
for an arbitrary n ∈ N. We use v to denote a vector and v (i) to denote the
i-th element. We assume given a set of uniform variables UVar, a set of handle
variables HVar = HVar1 � HVar2 � HVart, a set of parameter variables PVar, and
a set of index variables IVar. We use ty(h) ∈ {1, 2, t} to denote the type of a
handle variable, i.e., ty(h) = i iff h ∈ HVari.

We use R[X±1] to denote the set of Laurent polynomials over the ring R
with variables in X . We also use the shorthand R[Y ,X±1] for (R[Y])[X±1]
to denote nested polynomial rings. We use a similar notation Mon[X±1,Y] for
Laurent monomials. We write degV (M) to denote the degree of V in the Lau-
rent monomial M . We write coeff M (F) to denote the coefficient of the Laurent
monomial M in the Laurent polynomial F .

For a term t possibly containing variables, we write t[x �→ t′] to denote the
result of substituting all occurrences of the variable x in t with t′. A context C
is a term with a distinguished variable � which denotes a hole that can be filled
in by an arbitrary term. We assume the hole occurs exactly once in a context.
We use C[t] to denote the term obtained by plugging t into C ′s hole.

3 Translating Security Experiments into Constraints

In this section, we first present a language to define security experiments in
the Generic Group Model. Next, we define the language of winning constraints.
Winning constraints are formulas that characterize if an adversary can win a
security experiment. Finally, we present a translation procedure from security
experiments to winning constraints.

3.1 Security Experiment Definition

We first present the language that we use to define security experiments. After-
wards, we define the corresponding games in the Generic Group Model and the
symbolic group model (see [11]). We will exploit that the generic and symbolic
games are indistinguishable and use the symbolic game to perform our analysis.

Definition 1 (Security experiment). A security experiment is defined by a tuple
SE = (t, ainp, odef ,wcond) where

– the group type is defined by t ∈ {I,II,III},
– the adversary input is defined by ainp = (X, (F1,F2,Ft)) for

• global uniform variables X ∈ UVar∗ and
• input polynomials Fi ∈ Z[X±1]∗,

– the oracle is defined by odef = (a,h,R, (H1,H2,Ht)) for
• arguments a ∈ PVar∗ and oracle handles h ∈ HVar∗,1

1 Handle variables are typed, i.e., for all j ∈ [|h |], it holds that ty(h(j)) ∈ {1, 2, t}.

828 M. Ambrona et al.

• oracle uniform variables R ∈ UVar∗, and
• oracle polynomials Hi ∈ Z[X±1,R±1,a,h]∗, and

– the winning condition is defined by wcond = (â, Ĥ,W=,W �=) for
• winning arguments â ∈ PVar∗ and winning handles ĥ ∈ HVar∗, and
• winning (in)equalities W=,W �= ∈ Z[X±1,R±1,a,h, â, ĥ]∗.

Intuitively, the adversary input represents the values given initially to the adver-
sary. This usually includes the public parameters and the public keys. The ora-
cle is defined by arguments and oracle handles that represent the oracle input;
uniform variables that denote randomness sampled by the oracle; and oracle
polynomials that denote the oracle response. Finally, the winning condition is
defined by winning arguments that represent the forgery that the adversary must
produce; and winning (in)equalities that characterize valid forgeries.

We define the corresponding generic group game Ggen(SE) as follows:

1. Sample the vector x ∈ (F×
p)|X |, compute the adversary inputs �Fi(x)�i ∈

G
|Fi|
i (for i ∈ {1, 2, t}), and call the adversary A with the corresponding

handles.
2. The adversary A can perform qg queries to perform group operations (for

group type t), an unbounded number of equality queries, and q queries to
an oracle that implements odef . The oracle for odef takes scalars v ∈ F

|a|
p

for a and a vector of handles to group elements U for h . We use u to
denote the discrete logarithms of U , i.e., for all j ∈ [|h |], �u(j)�i = U (j)

where i = ty(h (j)). Then it samples r ∈ (F×
p)|R| and returns handles to

�Hi(x , v ,u , r)�i ∈ G
|Hi|
i . We use v (j), u(j), r (j) to denote the corresponding

values used in the j-th query.
3. The adversary A returns scalars v̂ ∈ F

|â|
p for â and handles to group ele-

ments Û for ĥ . Again, we denote the discrete logarithms of Û with û . The
adversary wins if for �� ∈ {=, �=}, w ∈ W ��, and j ∈ [q], it holds that
w(x , r (j), v (j),u (j), v̂ , û) �� 0.

Note that additional care must be taken to ensure that the oracles and win-
ning conditions are efficiently computable using scalar multiplication, addition,
application of isomorphisms, and application of bilinear maps. For example, it
is possible to specify an oracle that takes a handle to an element �v�t ∈ Gt and
returns �v�1 ∈ G1, which cannot be efficiently computed in most bilinear groups
of interest.

The symbolic game Gsym(SE) is defined similarly, but internally uses Laurent
polynomials f(X) instead of group elements �f(x)�i. It is completely determin-
istic since it uses formal variables X to represent the initially sampled values
and indexed formal variables R(j) to represent the values sampled in the oracle.

Formally, we define Gsym(SE) as follows:

1. Store the polynomials Fi(X) ∈ Z[X±1]|Fi| in the list for the group Gi (for
i ∈ {1, 2, t}) and call the adversary A with the corresponding handles.

Automated Unbounded Analysis of Cryptographic Constructions 829

2. The oracles for group operations and equality checks provide the same inter-
face as in the generic model, but perform all computations in the ring of
Laurent polynomials. The oracle for odef takes (in the j-th query) scalars
v ∈ F

|a|
p for a and handles to polynomials

u ∈ Z[X±1, (R(1))±1, . . . , (R(j−1))±1]|hi|

for h . It returns handles to polynomials

Hi(X , v ,u ,R(j)) ∈ Z[X±1, (R(1))±1, . . . , (R(j))±1]|Hi|.

3. The adversary A returns scalars v̂ ∈ F
|â|
p for â and handles to polynomials

û ∈ Z[X±1, (R(1))±1, . . . , (R(q))±1]|ĥi|

for ĥ . He wins if for �� ∈ {=, �=}, w ∈ W ��, and j ∈ [q], it holds that
w(X ,R(j), v (j),u (j), v̂ , û) �� 0.

Setup P(1λ): Return PP = (p,G1,G2,Gt, e) ← G(1λ) where G is a polynomial time
algorithm that on input 1λ returns a description of a bilinear map in the Type III
setting with groups of order p for a λ-bit prime p.

Key generation K(PP):
Choose v, w ← F

×
p and compute VK = (PP , V, W) and SK = (PP , v, w) as

V ← v 1 and W ← w 1 .

Signing SSK (M):
For M = m 2 ∈ G2 choose r ← F

×
p and compute the signature (T1, T2, S) as

T1 ← r 1 , T2 = r 2 , and S ← m v + w + r2
2
.

Verification VVK (M, S):
Accept if and only if T1 ∈ G1, M, T2, S ∈ G2,

e(1 1 , S) = e(V, M) + e(W, 1 2) + e(T1, T2), and e(T1, 1 2) = e(1 1 , T2).

Fig. 1. SPS-scheme from [19] in Type III setting.

Example 1. We can formalize the EUF-CMA security of the scheme in Fig. 1
using the security experiment SE = (t, ainp, odef ,wcond) defined as follows:

– the group type is t = III
– the adversary input is ainp = (X , (F1,F2,Ft)) where

• X = (v, w) (for v, w ∈ UVar), F1 = (1, v, w), F2 = (1), Ft = (1)
– the oracle is odef = (a ,h ,R, (H1,H2,Ht)) where

830 M. Ambrona et al.

• a = (), h = (m) (for m ∈ HVar2),
• R = (r) (for r ∈ UVar)
• H1 = (r), H2 = (r, mv + w + r2), Ht = ()

– the winning condition is wcond = (â , ĥ ,W =,W �=) where
• â = (), ĥ = (m̂, t̂1, t̂2, ŝ) and (for t̂1 ∈ HVar1 m̂, t̂2, ŝ ∈ HVar2),
• W = = (ŝ − m̂v − w − t̂1t̂2, t̂1 − t̂2), W �= = (m̂ − m(j)) �

3.2 Winning Constraints

We first define the language of winning constraints, a class of formulas that can
be used to characterize if an adversary can win the symbolic game Gsym(SE).
Then we define the set of solutions of a winning constraint and present a set of
simplication rules that preserve the set of solutions.

C ::= ∃i /∈ K. C | C constraint

C ::= C ∧ C | ∀ k /∈ K. C | E = 0 | E = 0 non-existential constraint

E ::= E + E | E ∗ E | −E | CoeffM(E) expression

|
k/∈K

E | R | R−1 | P | V | 1 | 0

M ::= M ∗ M | R | R−1 | 1 monomial over uniform variables

R ::= R[k] | R (indexed) uniform variable (R ∈ UVar)

P ::= ρ[k] | ρ (indexed) parameter (ρ ∈ PVar)

V ::= Y[k] indexed handle variable (Y ∈ HVar)

Fig. 2. Grammar for winning constraints (for k ∈ IVar, K ⊂ IVar). For every Coeff(E),
E does not contain the symbol Coeff.

Definition 2 (Winning constraints). The language of winning constraints is
defined by the grammar given in Fig. 2. We distinguish between bound index
variables and free index variables depending on whether they are bound by ∀/Σ.
We write ivars(C) to denote the free index variables in the constraint C.

Intuitively, atomic constraints E = 0 represent polynomial equalities. In the
quantifications ∀k /∈ K and

∑

k/∈K , the index variable k ranges over all elements
in [q] except for the valuations of the index variables in K. Uniform variables
R/R[k] are treated like formal variables, parameters ρ/ρ[k] can be instantiated
with integers, handle variables Y[k] can be instantiated with Laurent polynomials
over uniform variables, and the arithmetic operations are interpreted in the ring

Automated Unbounded Analysis of Cryptographic Constructions 831

Fig. 3. Definition of the evaluation function evals for s = (p, q, σ, δ, χ, ξ), where
R ∈ UVar, ⊗ ∈ {=,
=, ∧, ∗, +} are interpreted as the corresponding boolean oper-
ations/arithmetic operations in the ring of Laurent polynomials over Fp and sk,K,i

defined as follows. Let {v1, . . . vq−|K|} = [q]\σ(K), then sk,K,i = (p, q, σ′, δ, χ, ξ) where
σ′ = σ[k �→ vi] for i ∈ {1, . . . , q − |K|}.

of Laurent polynomials over Fp for a prime p. An expression CoeffM(E) repre-
sents the coefficient of the monomial M in the expression E after the parameters
and handle variables in E are instantiated. The resulting Laurent polynomial
after instantiation contains only (indexed) uniform variables. Formally, the set
of solutions of a winning constraint is defined as follows.

Definition 3 (Solutions of winning constraints). A structure s = (p, q, σ, δ, χ, ξ)
for a prime number p, a natural number q, a valuation σ : IVar → [q] for (free)
index variables, valuations δ : PVar → Fp and χ : PVar × [q] → Fp for the
parameters, and a valuation ξ : HVar×[q] → Fp[UVar±1,UVar±1

[1] , . . . ,UVar±1
[q]] for

the handle variables is a solution for a winning constraint C if evals(C) = true
for the function eval defined in Fig. 3.

3.3 Translation from Security Experiments to Winning Constraints

We define the translation function to convert a security experiment definition
into winning constraints. The translation is sound and complete with respect
to a certain class of solutions. Roughly, this means that there is an efficient
attacker2 on the security experiment in the Generic Group Model with non-
negligible winning probability iff there is a solution for the translated winning
constraints where handle variables are instantiated with “computable” Laurent
polynomials.

To simplify the presentation, we assume that for all security experiments in
Type II, it holds that F2 ⊆ F1 and H2 ⊆ H1 which allows us to ignore the
2 More precisely, an attacker that performs a polynomial number of queries qg and q.

832 M. Ambrona et al.

isomorphism Ψ . Similarly, we assume for Type I that F1 = F2 and H1 = H2

which allows us to ignore that G1 = G2.
First, note that W �� ⊂ Z[X±1,R±1,a ,h , â , ĥ] where X ,R ∈ UVar∗, a , â ∈

PVar∗, and h , ĥ ∈ HVar∗. For an index variable j ∈ IVar, we write R[j] to denote
the vector (R(1)[j], . . . ,R(|R|)[j]) of indexed uniform variables. Similarly, we write
a[j] and h [j]. For our translation, we instantiante each winning handle variable
ĥ (u) ∈ HVar1 ∪ HVar2 with a linear combination of polynomials in the adversary
input and in the oracle output. Formally, we define the vector E of expressions
as follows. For u ∈ [|ĥ |] such that ĥ (u) ∈ HVar1 and l = |H1|, we define

E(u) = ρ(1,u,1)F1(1)(X) + . . . + ρ(1,u,|F1|)F1(|F1|)(X) +
∑

k

τ
(1,u,1)
[k] H1(1)(X ,R[k],a [k],h [k]) + . . . +

∑

k

τ
(1,u,l)
[k] H1(l)(X ,R[k],a [k],h [k])

where ρ(1,u,n) and τ (1,u,n) are distinct fresh parameter variables. For u ∈ [|ĥ |]
such that ĥ (u) ∈ HVar2, we define E (u) analogously. For u ∈ [|ĥ |] such that ĥ (u) ∈
HVart, we define E (u) analogously additionally taking products of polynomials
from G1 and G2 into account. We define the winning constraint derived from SE
as

toConstr(SE) =
∧

w∈W ��

∀j.
(

w(X ,R[j],a [j],h [j], â ,E) �� 0
)

.

A priori, the notion of solution for winning constraints does not restrict the
set of Laurent polynomials that can be used to instantiate the handle variables
in h[j]. Since we are only interested in solutions where the instantiations of handle
variables are computable, we now define the notion of constrained solution.

Definition 4 (Constrained solutions of winning constraints). A solution is con-
strained by sequences of sets {K

(i)
j }j∈N of Laurent polynomials (for i ∈ {1, 2, t})

if for all i ∈ {1, 2, t}, Y ∈ HVari, and j ∈ [q], it holds that ξ(Y, j) ∈ K
(i)
j .

Since we are interested in solutions constrained by computable Laurent poly-
nomials, we next define the sequences of computable polynomials. We use 〈S〉
to denote the vector space over Fp generated by S.

Definition 5 (Computable polynomials). The sequences of computable polyno-
mials for a security experiment

SE = (t,X, (F1,F2,Ft)), (a,h,R, (H1,H2,Ht)),wcond)

are defined as follows:

KSE ,(i)
0 = 〈toSet(Fi)〉 for i ∈ {1, 2}

KSE ,(t)
0 = 〈toSet(Ft) ∪ (KSE ,(1)

0 ∗ KSE ,(2)
0)〉

Automated Unbounded Analysis of Cryptographic Constructions 833

KSE ,(i)
j+1 = 〈KSE ,(i)

j ∪ for j ≥ 0, i ∈ {1, 2}
{H(X, v,E,R(j+1)) | H ∈ Hi ∧

v ∈ F
|a|
p ∧ |E| = |h| ∧ E(u) ∈ KSE ,(ty(h(u)))

j }〉
KSE ,(t)

j+1 = 〈KSE ,(t)
j ∪ (KSE ,(1)

j+1 ∗ KSE ,(2)
j+1) ∪ for j ≥ 0

{H(X, v,E,R(j+1)) | H ∈ Ht ∧
v ∈ F

|a|
p ∧ |E| = |h| ∧ E(u) ∈ KSE ,(ty(h(u)))

j }〉

The definition is always valid for Type III. For Types I and II, it is valid under
the previously stated assumptions on Fi and Hi. We say a solution s is an
SE-computable solution if it is constrained by (KSE ,(i)

j)j,i.

Theorem 1 (Soundness and Completeness of Translation). Let p ≈ 2λ and
qg, q polynomial in λ. Then the winning probability in the generic group game
Ggen(SE) with a group of order p is negligible in λ for all adversaries that per-
form at most qg (resp. q) queries iff there is no SE-computable solution for
toConstr(SE).

Proof (Sketch). For all concrete values of qg, q, and SE we can use the master
theorem for interactive assumptions from [11] (more precisely, the extended ver-
sion for handles from [22]) to obtain an algebraic criterion that is equivalent to
the security of the construction. By unfolding the definitions of toConstr and
eval , we can verify that the criterion is true for all bounds on the number of
oracle-queries iff there is no SE -computable solution for toConstr(SE). ��
Example 2. The translation of the security experiment for the example in Fig. 1
to winning constraints is

Ŝ − M̂ ∗ V − W − T̂1 ∗ T̂2 = 0 ∧ T̂1 − T̂2 = 0 ∧ ∀k. M̂ − M[k] �= 0

where V,W,R ∈ UVar and M ∈ HVar2, μ, μ′, μ′′, ρ, ρ′, ρ′′, ρ′′′, τ, τ ′, τ ′′, γ, γ′, γ′′ ∈
PVar, and M̂, Ŝ1, Ŝ2, Ŝ3 are defined as

M̂ = μ +
∑

k

μ′
[k] ∗ R[k] +

∑

k

μ′′
[k] ∗ (M[k] ∗ V + W + R2

[k]),

T̂1 = ρ +
∑

k

ρ′
[k] ∗ R[k] + ρ′′ ∗ V + ρ′′′ ∗ W,

T̂2 = τ +
∑

k

τ ′
[k] ∗ R[k] +

∑

k

τ ′′
[k] ∗ (M[k] ∗ V + W + R2

[k]), and

Ŝ = γ +
∑

k

γ′
[k] ∗ R[k] +

∑

k

γ′′
[k] ∗ (M[k] ∗ V + W + R2

[k]).

834 M. Ambrona et al.

We first outline the sequence of computable monomials for G1:

KSE ,(2)
0 = 〈1, V,W 〉

KSE ,(2)
1 = 〈KSE ,(2)

0 ∪ {R[1]}〉
KSE ,(2)

2 = 〈KSE ,(2)
1 ∪ {R[2]}〉

. . .

For G2, the sequence looks as follows:

KSE ,(2)
0 = 〈1〉

KSE ,(2)
1 = 〈KSE ,(2)

0 ∪ {1, R[1],

:=f1
︷ ︸︸ ︷

V + W + R2
[1]}〉

KSE ,(2)
2 = 〈KSE ,(2)

1 ∪ {R[2], R[1] ∗ V + W + R2
[2], f1 ∗ V + W + R2

[2]}〉
. . .

For Gt, only the first line of the definition (computable earlier or product of
computable in G1 and computable in G2) is non-empty. �

4 Constraint Solving

In this section, we define an algorithm that takes a winning constraint and
tries to derive a contradiction thereby showing that the winning constraint has
no solution. Our algorithm uses constraint solving rules to perform a complete
search for solutions using simplification rules and case distinctions. We first give
the rules and then describe a strategy to apply the rules in Sect. 5. We begin
by describing a set of simplification rules for constraints that exploit logical
equivalences to bring a constraint into a simplified form. Next, we describe a
set of rules for introducing and simplifying Coeff constraints. Then, we describe
our rules for performing case distinctions followed by describing a procedure for
equational simplification based on Gröbner Basis techniques. We conclude by
giving a worked out example.

4.1 Constraint Solving Rules and Soundness

We use the notation C �SE C1 ∨ . . . ∨ Ck to denote the constraint solving rule
that “simplifies” the constraint C into the disjunction of constraints C1, . . . , Ck.
The constraint solving rule might depend on the security experiment SE . Our
rules are sound in the following sense: If there exists an SE -solution s for C,
then there is an i ∈ {1, . . . , k} such that there exists an SE -solution s′ for Ci.
The solution s′ is usually very similar to s, but might, for example, perform an
additional query with trivial parameters. We use C �SE ⊥ to denote that C can
be simplified to the empty disjunction, which is equivalent to false.

We say a constraint C is contradictory if there is either a rule C �SE ⊥ or
there is a rule C �SE C1 ∨ . . .∨Ck such that for all i ∈ {1, . . . , k}, the constraint
Ci is contradictory. Since all rules are sound, we obtain that if C is contradictory,
then C has no solution.

Automated Unbounded Analysis of Cryptographic Constructions 835

4.2 Simplification Rules

To exploit the equivalence e = e′ given in Fig. 5, we define a corresponding
constraint solving rule C[e] �SE C[e′] for each of them. The rules up to and
including the equivalences for Coeff can be used to bring every winning constraint
into simplified form (see Fig. 4). Additionally, we assume given rules for the
axioms of commutative rings with respect to 0, 1, ∗ and +.

The remaining rules are useful to enable the application of other rules. The
first remaining set of rules allows to swap binders, which might be required
before applying rules that expect a certain binder to be in outermost position.
To preserve the well-formedness of constraints, we adapt the index exception sets
K as shown below. The second remaining set of rules allows us to add exceptions
to binders. This might also benefit the applicability of other rules.

4.3 Introducing and Simplifying Coeff Constraints

In this section, we describe how to introduce and simplify constraints that involve
Coeff expressions. To define our constraint solving rules, we define three functions
that filter variables in monomials.

The functions

– umon : Mon[UVar±1,HVar,PVar] → Mon[UVar±1],
– hmon : Mon[UVar±1,HVar,PVar] → Mon[HVar], and
– pmon : Mon[UVar±1,HVar,PVar] → Mon[PVar].

keep the exponents for the desired type of variables and set the exponents of all
other variables to zero.

Csimp ::= ∃k /∈ K. Csimp | C∧ existential quantification

C∧ ::= C∀ ∧ . . . ∧ C∀ conjunction

C∀ ::= ∀ k /∈ K. C∀ | Ceq universal quantification

Ceq ::= E+ = 0 | E+ = 0 (in)equality

E+ ::= E + . . . + E | 0 sum

E ::=
k/∈K

E | −E∗ | E∗ | CoeffM(E∗) symbolic sum

M ::= M ∗ M | R±1 | R±1
[k] | 1 monomial over uniform variables

E∗ ::= Epv ∗ . . . ∗ Epv | 1 monomials

Epv ::= ρ[k] | ρ | R±1 | R±1
[k] | Y[k] parameter/variable

Fig. 4. Grammar for simplified winning constraints where ρ ∈ PVar, R ∈ UVar, Y ∈
HVar, k ∈ IVar. Conjunctions, sums, and products cannot by empty, but they can have
a single argument. All bound variables must occur in the body. A monomial never
contains a uniform variable and its inverse and never contains 1 unless it is equal to 1.

836 M. Ambrona et al.

(∀k /∈ K. C1 ∧ C2) = (∀k /∈ K. C1) ∧ (∀k /∈ K. C2 () equiv-1)

(∀k /∈ K. C1) = C1 if k /∈ ivars(C1) (equiv-2)

E1 ∗ E2 = E2 ∗ E1 (equiv-3)

−(E1 + E2) = (−E1) + (−E2 () equiv-4)

k/∈K

(E1 + E2) = (
k/∈K

E1) + (
k/∈K

E2 () equiv-5)

(
k/∈K

E1) ∗ E2 = (
k/∈K

E1 ∗ E2 () equiv-6)

−(
k/∈K

E) = (
k/∈K

−E () equiv-7)

((−E1) ∗ E2) = −(E1 ∗ E2 () equiv-8)

−(−E) = E (equiv-9)

R ∗ R−1 (1= equiv-10)

CoeffM(E1 + E2) = CoeffM(E1) + CoeffM(E2 () equiv-11)

CoeffM(
k/∈K

E) =
k/∈K

CoeffM(E) if ivars(M) ⊆ K (equiv-12)

CoeffM(−E) = −CoeffM(E () equiv-13)

∃k1 /∈ K1. ∃k2 /∈ K2. C = ∃k2 /∈ K2. ∃k1 /∈ K1. C (swap-1)

∀k1 /∈ K1. ∀k2 /∈ K2. C = ∀k2 /∈ K2. ∀k1 /∈ K1. C (swap-2)

k1 /∈K1 k2 /∈K2

E =

k2 /∈K2. k1 /∈K1

E (swap-3)

∀k /∈ K. C = (∀k /∈ K ∪ {k∗}. C) ∧ C[k → k∗] if k∗ /∈ K (split-1)

C[
k/∈K

E] = C[(
k/∈K∪{k∗}

E) + E [k → k∗]] where C (split-2)
defines k∗ = k
forall k ∈ K

Fig. 5. Equivalences for simplifying constraints where K′
2 is defined as K2 \ {k1} and

K′
1 is defined as K1 ∪ {k2} if k1 ∈ K2 and K1 otherwise.

Automated Unbounded Analysis of Cryptographic Constructions 837

C[E = 0] SE C[E = 0 ∧ (∀i1 /∈ K1, . . . , il /∈ Kl. CoeffM(E) = 0)] (coeff-1)

if {i1, . . . , il} ∩ ivars(E) = ∅ and E does not contain Coeff

C[CoeffM(E)] SE C[pmon(E)] if hmon(E) = 1 and M = umon(E) (coeff-2)

C[CoeffM(E)] SE C[0] if contMonM/umon(E)(hmon(E)) SE ⊥ (coeff-3)

and C assures ivars(M) ∩ ivars(E) = ∅

Fig. 6. Rules for introducing and simplifying Coeff expressions

The constraint solving rules are given in Fig. 6. The first rule exploits that if a
polynomial is equal to zero, then when interpreting the polynomial as a polyno-
mial over uniform variables, the coefficients for all monomials must be zero. The
remaining two rules allow to simplify Coeff expressions. The first rule deals with
the case where E does not contain any handle variables and M is equal to the
monomial over uniform variables contained in E . The second rule deals with the
case where it is possible to prove that there is no (SE -computable) instantiation
of the handle variables in E such that the resulting Laurent polynomial contains
the monomial M. The rule makes uses the contMon constraint. We will present
the rules for showing that such a constraint is contradictory in the next section.

Example 3. Consider the constraint Γ such that

Γ = (
∑

j

ρ[j]R[j] = 0) ∧ Γ ′

We can simplify the constraint as follows:

Γ �SE Γ ∧ ∀i.CoeffR[i](
∑

j

ρ[j]R[j]) = 0 [coeff-1]

�SE Γ ∧ ∀i.CoeffR[i]((
∑

j /∈{i}
ρ[j]R[j]) + ρ[i]R[i]) = 0 [split-2]

�SE Γ ∧ ∀i.CoeffR[i](
∑

j /∈{i}
ρ[j]R[j]) + CoeffR[i](ρ[i]R[i]) = 0 [equiv-11]

�SE Γ ∧ ∀i.CoeffR[i](
∑

j /∈{i}
ρ[j]R[j]) + ρ[i] = 0 [coeff-2]

�SE Γ ∧ ∀i. (
∑

j /∈{i}
CoeffR[i](ρ[j]R[j])) + ρ[i] = 0 [equiv-12]

�SE Γ ∧ ∀i. (
∑

j /∈{i}
0) + ρ[i] = 0 [coeff-3]

�SE Γ ∧ ∀i. ρ[i] = 0 [equiv-ring]

838 M. Ambrona et al.

For the step using [coeff-3], we exploit that contMonR[i]/R[j]
(1) �SE ⊥ and that

j /∈ {i} ensures that these index variables will never be instantiated with the
same value in the given context. We will give the required rules in the next
section. Then, our Gröbner-Basis based simplification algorithm will replace ρ[j]
by 0 in Γ for arbitrary index variables j. �

Proving Coeff to be zero for all SE solutions. In this section, we describe a
method to check if CoeffM(E) can be simplified to 0, i.e., for all SE-computable
solutions s = (p, q, σ, δ, χ, ξ), it holds that coeff σ(M)(evals(E)) = 0. As in pre-
vious sections, we describe our approach for Type III, but stress that it can be
adapted to Type I and Type II, e.g., by transforming the security experiment
to make the isomorphisms redundant. We assume that the oracle definitions are
efficiently computable and only return handles to elements of G1 and G2. Fur-
thermore, we assume that the winning condition only uses handles to elements
of G1 and G2. This covers most cryptographic constructions of interest (includ-
ing all SPS schemes). In this case, we never have to deal with handle variables
from HVart and for i ∈ {1, 2}, the polynomials H i defining the oracle return
values contain only handle variables from HVari. We distinguish three cases for
contMonM(E): (i) deg(E) = 0, (ii) deg(E) = 1, and (iii) deg(E) > 1.

Case (i): We use the rule

contMonM(1) �SE ⊥ if M �= 1.

Here, we require that distinct index variables must be instantiated with distinct
values, which is ensured by the side condition of the Coeff-(3) rule.

Case (ii): We have E = Y[j] for Y ∈ HVari, j ∈ IVar, and i ∈ {1, 2}.
We must prove that the monomial M is not computable in i before query j,
i.e., it is impossible (in the symbolic group model) to obtain a handle h for
Gi that points to a polynomial F with m ∈ mons(F) before the j-th oracle
query. We perform a proof by contradiction that covers all cases on how a given
monomial M can be computed. We write canMulti,{j1,...,jn}(m) if it is possible to
perform the multiplication of a given monomial with m using oracle queries with
query-indices distinct from {j1, . . . , jn}. For example, if we have an oracle that
returns a handle to Y ∗ R[j] + W in G1 (where Y ∈ HVar1, R,W ∈ UVar), then
canMult1,{j1}(R[j2]∗R[j3]) is true since we can call the oracle for indices j2 and j3
to perform a multiplication with R[j2] and R[j3]. In contrast, canMult1,{j1}(R[j1]∗
R[j2] ∗R[j3]) is false because we cannot multiply with R[j1] if using the oracle for
query index j1 is forbidden. To formalize this reasoning, we define a set of rules to
reduce a constraint contMonm(Y[j]) to a disjunction of constraints canMulti,J(m)
such that ivars(m) = ∅.

We define the set SMSE
i of start monomials for a security experiment SE

and group index i as mons(F i) ∪ (mons(H i) ∩ Mon[UVar±1]) where the H i are
considered as polynomials over handle and uniform variables. We define the set
T MSE

i of transformation monomials for a security experiment SE and a group
index i as {m | Y ∗m ∈ mons(H i)∧Y ∈ HVari} ⊆ Mon[UVar±1]. For both sets,
we partition the previously defined sets into SMSE

i = SMSE
i,glob � SMSE

i,orcl and

Automated Unbounded Analysis of Cryptographic Constructions 839

T MSE
i = T MSE

i,glob � T MSE
i,orcl where the glob-sets contain all monomials that

contain only global uniform variables and the orcl-sets contain all monomials
that contain at least one oracle uniform variable. For monomials m, we write m[j]
to denote the monomial where all oracle uniform variables Y are replaced with
their indexed versions Y[j]. We also use the same notation for sets of monomials.

contMonm̃(Y[j]) SE [contMon-1]

canMulti,{j}(m̃/m1) ∨ . . . ∨ canMulti,{j}(m̃/ml) ∨
canMulti,{j,j1}(m̃/m̂1[j1]) ∨ . . . ∨ canMulti,{j,j1}(m̃/m̂l̂[j1]) ∨
. . . ∨
canMulti,{j,jn}(m̃/m̂1[jn]) ∨ . . . ∨ canMulti,{j,jn}(m̃/m̂l̂[jn])

if Y ∈ HVari, {m1, . . . , ml} = SMSE
i,glob,

{m̂1, . . . , m̂l̂} = SMSE
i,orcl, and {j1, . . . , jn} = ivars(m̃) \ {j}.

canMulti,J(m̃) SE [contMon-2]

canMulti,J∪{j}(m̃/m1[j]) ∨ . . . ∨ canMulti,J∪{j}(m̃/ml[j])

if {m1, . . . , ml} = T MSE
i,orcl and j ∈ ivars(m̃) \ J .

canMulti,J(m̃) SE ⊥ [contMon-3]

if J ∩ ivars(m̃) = ∅

Fig. 7. Rules for dealing with contMon. We use m/m′ to denote the corresponding
reduced Laurent monomial

We can now define the rules given in Fig. 7. The first rule captures that to
compute the monomial m̃ in i before query j, the adversary must start with a
monomial m′ (in m1, . . . , ml, m̂1[j1], . . .) and then use oracle queries to achieve
an indirect multiplication of m′ by m̃/m′. Here, the monomials mi are either
monomials included in the adversary input or monomials included in the oracle
return values that do not depend on handles and do not contain oracle uniform
variables. The monomials m̂i[ju] are monomials included in the oracle return
values that do not depend on handles and that contain oracle uniform variables.
The set of forbidden query indices for the indirect multiplication takes into
account that j can never be used and that ju cannot be used if a monomial with
index ju is used as the start monomial.

The second rule is applicable whenever m̃ contains an indexed uniform vari-
able R[j] such that j /∈ J . In this case, the j-th query must be used to perform
an indirect multiplication that cancels out R[j] and we perform a case distinction
on all monomial multiplications containing oracle uniform variables that can be
performed by the oracle. For all cases where this step does not cancel out all

840 M. Ambrona et al.

variables indexed with j, we can use the third rule that formalizes the follow-
ing fact: If the j-th query is forbidden, there is no way to cancel out a uniform
variable with index j.

It is not hard to see that we can reduce all constraints to canMulti,J(m̃) such
that ivars(m̃) = ∅: If ivars(m̃) non-empty, then either there is a j ∈ ivars(m̃)∩J
and we can conclude with the last rule or we can apply the second rule and
add an index j ∈ ivars(m̃) to J . To check if a constraint canMulti,J (m̃) with
ivars(m̃) = ∅ is unsatisfiable, we translate the constraint into a system of linear
equations that formalizes the following idea. Let {m1, . . . , ml} = T MSE

i,glob, then
all indirect multiplications that do not introduce indexed uniform variables are
of the form

mδ1
1 ∗ . . . ∗ mδl

l

for δi ∈ N. This corresponds to using the i-th transformation δi times to achieve
a multiplication with mδi

i . To check if there exist δ1, . . . , δl ∈ N such that

m̃ = mδ1
1 ∗ . . . ∗ mδl

l

we check if the linear system of equations

degV1
(m̃) = degV1

(m1) ∗ δ1 + . . . + degV1
(ml) ∗ δl

. . .

degVn
(m̃) = degVn

(m1) ∗ δ1 + . . . + degVn
(ml) ∗ δl

has a solution over N where {V1, . . . , Vn} is the set of uniform variables that
occur in m̃,m1, . . . , ml.

Case (iii): The last case can be handled by generalizing the previous case.
We sketch how to achieve this, the full description will be included in the full
version of this paper. We have E = (Y1)[j1] ∗ . . . ∗ (Yn)[jn] for Yu ∈ HVariu

,
ju ∈ IVar, and iu ∈ {1, 2}. To extend the method from Case (ii), we use adapted
set of start monomials and transformation monomials that take cancellations
between these values for the different handles into account. For example, the set
of transformation monomials is the product of transformation monomial sets for
j1, . . . , jn also allowing any set to be replaced by {1}.

Example 4. We will show that contMonR[i]/V (M[k]) is contradictory for the secu-
rity experiment SE defined in Example 1. Note that M[k] ∈ HVar2 and the
monomial sets for this group are:

SMSE
2,glob = {1,W} SMSE

2,orcl = {R,R2}
T MSE

2,glob = {V } T MSE
2,orcl = ∅

By applying the first rule in Fig. 7 we have:

contMonR[i]/V
(M[k]) �SE

canMult2,{k}(R[i]V
−1) ∨ canMult2,{k}(R[i]V

−1W −1) ∨ (div. by 1 and W)

canMult2,{k,i}(V
−1) ∨ canMult2,{k,i}(V

−1R−1
[i]) (div. by R[i] and R2

[i])

Automated Unbounded Analysis of Cryptographic Constructions 841

Now, since T MSE
2,orcl = ∅, the second rule in Fig. 7 gives us:

canMult2,{k}(R[i]V
−1) �SE ⊥

canMult2,{k}(R[i]V
−1W−1) �SE ⊥

Additionally,
canMult2,{k,i}(V −1R−1

[i]) �SE ⊥
because {k, i}∩ ivars(V −1R−1

[i]) �= ∅. Our problem has been reduced to compute

canMult2,{k,i}(V −1)

so we define the system of equations:

degV (V −1) = degV (V) ∗ δ1

where δ1 ∈ N. The equation is −1 = 1 ∗ δ1 and it reduces to ⊥. This analysis
proves that contMonR[i]/V (M[k]) �SE ⊥, i.e., the handle variable M[k] cannot
contain the monomial R[i]/V .

4.4 Case Distinctions and Contradictions

The rules for case distinctions and contradictions are given in Fig. 8. The first
rule is applicable whenever we can express the left-hand-side of an equality with 0
as a product of the two factors E1 and E2. Since we reason about elements of an
integral domain, we can conclude that at least one of the factors must be equal
to 0. The second rule formalizes that if C′ is true for some i, then it is either
true for some i �= j or it is true for i = j. The third rule formalizes that for
all expressions E , the expression is either equal to 0 or not. We only apply this
rule with an E that already occurs as a subterm of C. In most cases E = ρ for
ρ ∈ PVar. The final case distinction rule deals with indexed parameter variables
ρ[i]. Either ρ[i] is equal to zero for all indices not in K or there is an index j not
in K such that ρ[j] is not zero. The rule uses Δ to denote all existential bindings
in the constraint.

The two contradiction rules are straightforward. The first rule states that a
non-zero constant c is not equal to zero. We keep track of applications of this
rule to obtain a lower bound on the prime p for which our proof is valid. The
second rule just formalizes that zero is always equal to itself.

4.5 Gröbner Basis Simplification

Before applying the Gröbner Basis simplification, we ensure that all ∀-quantifiers
use the same binders Δ and that all index exception sets are maximal for Δ.
This might require renaming of variables, extending the index exception sets,
and introducing unused variables. For the

∑

-binders Δ̂u, we assume for all u, v
that (i) Δ̂u = Δ̂v, (ii) Δ̂u is a prefix of Δ̂v, or (iii) vice versa.

842 M. Ambrona et al.

C[E1 ∗ E2 = 0] SE C[E1 = 0] ∨ C[E2 []0= dist-1]

C[∃i /∈ K. C] SE
C[∃i /∈ K ∪ {j}. C]

∨ C[C [i → j]]
if j /∈ K [dist-2]

C[C] SE
C[C ∧ E = 0]

∨ C[C ∧ E = 0]
where E arbitrary [dist-3]

∃Δ. C SE
∃Δ. (∀i /∈ K. ρ[i] = 0) ∧ C

∨ ∃Δ, j /∈ K. ρ[j] = 0 ∧ C
where K arbitrary
and j /∈ ivars(Δ)
∪ivars(C)

[dist-4]

C[c = 0] SE ⊥ if c ∈ Z \ {0} [false-1]

C[0 = 0] SE ⊥ [false-2]

Fig. 8. Rules for performing case distinctions and contradictions.

The resulting constraint system can be rearranged to have the following form

∃∇. (∀Δ. E1 = 0) ∧ . . . ∧ (∀Δ. El = 0) ∧
(∀Δ. Ê1 ��1 0) ∧ . . . ∧ (∀Δ. Êl̂ ��l̂ 0)

where the Eu are expressions that do not contain handle variables, uniform
variables, or Coeff expressions, which we call parameter equality polynomials.
The Êu denote the remaining expressions. We want to move all the Eu under
a single quantifier for simplification. To take renamings of the bound variables
into account, we ensure beforehand that for all Eu and all permutations of the
∀-bound variables, the resulting expression is already included. For example,
given

∀j1, j2 /∈ {j1}. ρ[j1] ∗ ρ′
[j2]

= 0 ∧ ∀j1, j2 /∈ {j1}. ρ[j2] ∗ ρ′
[j1]

− α = 0

it is usually useful to add at least the permutation

∀j1, j2 /∈ {j1}. ρ[j1] ∗ ρ′
[j2]

− α = 0

before moving everything under a common quantifier since this yields the shared
monomial ρ[j1] ∗ ρ′

[j2]
. After moving the parameter equality polynomials under

the same quantifier, we get:

∃∇. (∀Δ. E1 = 0 ∧ . . . ∧ El = 0) ∧
(∀Δ. Ê1 ��1 0) ∧ . . . ∧ (∀Δ. Êl̂ ��l̂ 0)

Now, we move non-indexed parameters in monomials out of the
∑

-binder
and consistently replace non-bound parameters and

∑

-expressions with vari-
ables Xv. We call the corresponding mapping σ and use gu to denote polyno-
mial resulting from Eu. We can revert this abstraction process by applying σ, i.e.,

Automated Unbounded Analysis of Cryptographic Constructions 843

σ(gu) = Eu. Next, we compute the Gröbner Basis (over Z) of the ideal 〈g1, . . . , gl〉
which we denote with I = 〈g′

1, . . . , g
′
l′〉. By the properties of the Gröbner Basis,

we know that

(g1 = 0 ∧ . . . ∧ gl = 0) ⇔ (g′
1 = 0 ∧ . . . ∧ g′

l′ = 0)

and hence
(E1 = 0 ∧ . . . ∧ El = 0) ⇔ (E ′

1 = 0 ∧ . . . ∧ E ′
l′ = 0)

for E ′
u = σ(gu) which we exploit to simplify the parameter equality polynomials.

For computing the Gröbner Basis, we use a monomial order that prefers to
eliminate abstracted

∑

expressions. Next, we use the Gröbner Basis to simplify
the expressions ∀Δ. Êu ��u 0. If Êu uses all variables in Δ, we use an extension σ′

of σ to abstract Êu to the polynomial f and define f ′ as the result of reducing
f modulo the Gröbner Basis I. As before, we define the simplified Ê ′

u as σ′(f ′).
Often, it is very useful to also simplify below

∑

-binders. We use an example to
illustrate how this works.

Example 5. Assume ∇ = j1, Δ = j2 /∈ {j1}, I = 〈X1 ∗ X2〉, σ = {X1 �→
ρ[j1],X1 �→ ρ′

[j2]
}, and

E1 = (
∑

j3 /∈{j1}
ρ[j1] ∗ ρ′

[j3]
= 0).

Then we use ∀j2 /∈ {j1}. ρ[j1] ∗ρ′
[j2]

= 0 to rewrite ρ[j1] ∗ρ′
[j3]

to 0 below
∑

j3 /∈{j1}
by instantiating j2 with j3 (both have the same exception j1). �

4.6 Example: Proof of EUF-CMA for SPS

In this section show how our constraint solving rules can be used to prove
(unbounded) EUF-CMA security of the signature scheme in Fig. 1. The win-
ning constraints for the associated security experiment SE are already given in
Example 2. To prove EUF-CMA security in the Generic Group Model, we must
show that the following constraint has no SE -computable solution

γ +
∑

k

γ′
[k] ∗ R[k] +

∑

k

γ′′
[k] ∗ (M[k] ∗ V + W + R2

[k])

− ((τ +
∑

k

τ ′
[k] ∗ R[k] +

∑

k

τ ′′
[k] ∗ (M[k] ∗ V + W + R2

[k]))

∗ (ρ +
∑

k

ρ′
[k] ∗ R[k] + ρ′′ ∗ V + ρ′′′ ∗ W) + M̂ ∗ V + W) = 0 (1)

∧ ρ +
∑

k

ρ′
[k] ∗ R[k] + ρ′′ ∗ V + ρ′′′ ∗ W

− (τ +
∑

k

τ ′
[k] ∗ R[k] +

∑

k

τ ′′
[k] ∗ (M[k] ∗ V + W + R2

[k])) = 0 (2)

∧ ∀k. M̂ − M[k] �= 0 (3)

844 M. Ambrona et al.

where M̂ is defined as

M̂ = μ +
∑

k

μ′
[k] ∗ R[k] +

∑

k

μ′′
[k] ∗ (M[k] ∗ V + W + R2

[k]).

Instead of immediately simplifying everything using the equivalences in Fig. 5,
we first apply the rule [coeff-1] where M = R2

[i] and E is the Eq. (2). After
simplifying the resulting Coeff expressions (see Example 4), we get the new
equation ∀i.−τ ′′

[i] = 0. Our Gröbner Basis simplification replaces every occurrence
of τ ′′

i by 0. This results in the following new constraint:

γ +
∑

k

γ′
[k] ∗ R[k] +

∑

k

γ′′
[k] ∗ (M[k] ∗ V + W + R2

[k])

− ((τ +
∑

k

τ ′
[k] ∗ R[k]) ∗ (ρ +

∑

k

ρ′
[k] ∗ R[k] + ρ′′ ∗ V + ρ′′′ ∗ W)

+ M̂ ∗ V + W) = 0 (1)

∧ ρ +
∑

k

ρ′
[k] ∗ R[k] + ρ′′ ∗ V + ρ′′′ ∗ W − (τ +

∑

k

τ ′
[k] ∗ R[k]) = 0 (2)

∧ ∀k. M̂ − M[k] �= 0 (3)

Now, we can apply the rule [coeff-1] where E is the left hand side of Eq. (2) and
for different monomials M, we obtain the following new equations:

ρ − τ = 0 for M = 1
∀k. ρ′

[k] − τ ′
[k] = 0 for M = R[k]

ρ′′ = 0 for M = V

ρ′′′ = 0 for M = W

After this, we basically got rid of Eq. (2) and our Gröbner Basis simplification
yields:

γ +
∑

k

γ′
[k] ∗ R[k] +

∑

k

γ′′
[k] ∗ (M[k] ∗ V + R2

[k] + W)

− (τ2 + (2
∑

k

τ ∗ τ ′
[k] ∗ R[k]) +

∑

k,k′ /∈{k}
τ ′
[k] ∗ τ ′

[k′] ∗ R[k] ∗ R[k′]

+
∑

k

τ ′2
[k] ∗ R2

[k] + M̂ ∗ V + W) = 0 (1)

∧ ∀k. M̂ − M[k] �= 0 (2)

We now apply the rule [coeff-1] where E is expression in Eq. (1) obtaining the
following new equations:

∧
∑

k

γ′′
[k] − 1 = 0 for M = W (3)

∧ ∀k. γ′′
[k] − τ ′2

[k] = 0 for M = R2
[k] (4)

∧ ∀k.∀k′ /∈ {k}. 2 ∗ τ ′
[k] ∗ τ ′

[k′] = 0 for M = R[k]R[k′] (5)

Automated Unbounded Analysis of Cryptographic Constructions 845

Then, we apply the rule [dist-4] with K = ∅ to perform a case distinction on the
parameter τ ′:

∀k. τ ′
[k] = 0 ∧ Γ (case 1)

∨ ∃k∗. τ ′
[k∗] �= 0 ∧ Γ (case 2)

Here, Γ represents the conjunction of our previous five equations. In case 1, the
Gröbner Basis simplification results in the system

γ +
∑

k

γ′
[k] ∗ R[k] − τ2 − M̂ ∗ V − W = 0 (1)

∧ ∀k. M̂ − M[k] �= 0 (2)
∧ − 1 = 0 (3)

which simplifies to ⊥ after applying rule [false-1] to Eq. (3).
In case 2, Gröbner Basis simplification yields:

∃k∗.

γ +
∑

k

γ′
[k] ∗ R[k] + M[k∗] ∗ V − τ2 − 2τR[k∗] − M̂ ∗ V (1)

∧ ∀k. M̂ − M[k] �= 0 (2)

We apply the rule [coeff-1] where E is the left hand side of Eq. (1) for different
monomials as M, obtaining:

γ − τ2 = 0 for M = 1
∀k �∈ {k∗}. γ′

[k] = 0 for M = R[k]

γ′
[k∗] − 2τ = 0 for M = R[k∗]

After simplifying the system, we obtain:

M[k∗] ∗ V − M̂ ∗ V = 0 (1)

∧ ∀k. M̂ − M[k] �= 0 (2)

Applying the rule [dist-1] to Eq. (1) we obtain two cases:

∃k∗.
V = 0

∧ ∀k. M̂ − M[k] �= 0

∨

∃k∗.
M[k∗] − M̂ = 0

∧ ∀k. M̂ − M[k] �= 0

(case 2.1) (case 2.2)

In case 2.1, after applying [coeff-1] for M = V to the first equation and simpli-
fying, we obtain the equation 1 = 0 that reduces to ⊥ according to rule [false-1].

846 M. Ambrona et al.

Finally, in case 2.2 we apply the rule [split-2] and we get the system:

M[k∗] − M̂ = 0

∧ ∀k �∈ {k∗}. M̂ − M[k] �= 0

∧ M̂ − M[k∗] �= 0

Our Gröbner Basis simplification will reduce it to,

0 �= 0 ∧ (∀k �∈ {k∗}. M̂ − M[k] �= 0)

which reduces to ⊥ according to rule [false-2].

5 Implementation and Case Studies

We have implemented the described algorithm in the gga∞ tool3 and have eval-
uated its effectiveness and performance on cryptographic constructions from the
literature (presented in Table 1) and automatically synthesized schemes (pre-
sented in Table 2). The source code is written in OCaml and uses the computer
algebra system SAGE [40] for Gröbner Basis computations and the SMT solver
Z3 [20] for checking the satisfiability of linear equations over the natural num-
bers. Although the code reproduces the algorithm as it is described in this paper,
it also implements some optimizations and additional rules to derive contradic-
tions, that will be further explained in the full version of this paper.

The tool takes an input file such as the one shown in Fig. 9 and performs
a proof search using our constraint solving rules guided by a heuristic. If the
search is successful, the tool returns a representation of the proof tree. To ensure
termination, we establish a timeout of 1000 s.

group_setting 3.

sample V,W.

input [V,W] in G1.

oracle o1(M:G2) =

sample R;

return [R] in G1,

[R, M*V + R^2 + W] in G2.

win (wM:G2, wT1:G1, wT2:G2, wS:G2) =

((forall i: wM <> M_i) /\ wT1 = wT2 /\ wS = V*wM + wT1*wT2 + W).

Fig. 9. Input file for the Type III re-randomizable SPS scheme from Fig. 1

3 Source code and case studies at http://generic-group-analyzer.github.io/.

http://generic-group-analyzer.github.io/

Automated Unbounded Analysis of Cryptographic Constructions 847

5.1 Case Studies

We analyze the security of cryptographic constructions from the literature and
collect the results in Table 1. The first five entries do not require support for
oracles that take handles and are therefore also in the scope of the tool pre-
sented in [11]. For the first four entries, both the tool from [11] and gga∞ prove
unbounded security. For the fifth example, gga∞ succeeds, whereas the tool
from [11] fails to find a proof.

The remaining examples are all outside the scope of the tool from [11]. First,
we analyze the Message Authentication Codes proposed in [18]. They propose
two MACs (instead of public key signatures) as the basis for their anonymous
credential system. One of them is proven secure in the Generic Group Model
and the other under the decisional Diffie-Hellman (DDH) assumption. Our tool
confirms the first proof and finds a proof in the Generic Group Model for the
second construction4.

We also prove security for a number of structure-preserving signature schemes.
First, we analyze the scheme proposed in [2] for bilinear groups of Type III.

Then, we analyze the re-randomizable scheme from [4] for Type II and
Type III. Next, we prove sEUF-CMAsecurity of the unified SPS signature scheme
proposed in [5], which is secure in all three settings. We also prove EUF-CMA
security of its re-randomizable version (randomization tokens are given to the
adversary). Later, we analyze the translation of the scheme for Type III proposed
in [19]. We also consider the Type II scheme from [12].

Finally, we analyze two instances of fully structure-preserving signature
schemes proposed in [26].

Table 1. Case studies (last column denotes time for fully automated proof).

Reference Scheme Property Time

Lysyanskaya et al. ’99 [30] LRSW assumption Valid 2s

Abe et al. ’11 [5] One-time SPS in Type I OT-EUF-CMA 1s

Pointcheval et al. ’15 [34] Assumption 1 Valid 1s

” Assumption 2 Valid 1s

” Multi-message sign. scheme (r = 3) EUF-CMA 1s

Chase et al. ’13 [18] MACGGM (messages length ≤ 3) UF-CMVA 1s

” MACDDH (messages length ≤ 3) UF-CMVA 3s

Abe et al. ’11 [2] SPS scheme, messages in G1 × G2 sEUF-CMA 22s

Abe et al. ’14 [4] Re-random. SPS for msg. in G2 EUF-CMA 6s

Abe et al. ’14 [5] Unified SPS scheme sEUF-CMA 5s

” Unified SPS scheme (with tokens) EUF-CMA 11s

Chatterjee et al. ’15 [19] Type III randomizable SPS EUF-CMA 3s

Barthe et al. ’15 [12] Re-randomizable SPS in Type III EUF-CMA 6s

Groth ’15 [26] Fully comb. SPSb=0 (m, n = 1) EUF-CMA 8s

” Fully comb. SPSb=1 (m, n = 1) sEUF-CMA 8s

4 This is of course implied by the pen-and-paper proof under the DDH assumption.

848 M. Ambrona et al.

Table 2. Synthesis results for SPS schemes in Type II and Type III with r, v, w
$← Zp,

verification keys V = gv
1 , W = gw

1 ∈ G1, message M = gm
2 ∈ G2 and signatures

S1 = gs1
1 ∈ G1, S2 = gs2

2 , S3 = gs3
2 ∈ G2.

Search Space Results

Verification equations First signature elements 2-secure ∞-secure

II s3 = f(r, v, w, m) S2 = �r�2, 1 1

s3s2 = f(r, v, w, m) S2 = �r�2, 12 9

s3(s2 − w) = f(r, v, w, m) S2 = �r + w�2, 14 8

III s1 = s2 ∧ s3 = f(r, v, w, m) S1 = �r�1, S2 = �r�2 2 2

s1 = s2 ∧ s1s3 = f(r, v, w, m) S1 = �r�1, S2 = �r�2 117 75

s1s2 = 1 ∧ s1s3 = f(r, v, w, m) S1 = �r�1, S2 = �r−1�2 39 22

185 117

To evaluate our tool on a wider range of examples, we also make use of
the synthesis tool for structure-preserving signature schemes presented in [12].
We take the existing results for Type II from [12] and use our tool to analyze
(unbounded) EUF-CMA-security for all schemes where the tool from [12] succeeds
to prove 2-EUF-CMA security. We also extend the synthesis tool to generate new
schemes in Type III and apply our tool to those schemes that can be proven
2-EUF-CMA secure with the tool from [12]. The results for both Type II and
Type III are summarized in Table 2. We classify the schemes in different groups,
depending on the shape of the verification equations (first column). The column
2-secure represents the number of schemes of each group that are proven 2-EUF-
CMA secure using the tool from [12], while the column ∞-secure represents the
number of schemes of each group that are proven EUF-CMA secure using our
tool (for all bounds that are polynomial in the security parameter).

Acknowledgements. This work is supported in part by ONR grant N00014-12-1-
0914, Madrid regional project S2009TIC-1465 PROMETIDOS, and Spanish national
projects TIN2009-14599 DESAFIOS 10, and TIN2012-39391-C04-01 Strongsoft. The
research of Schmidt has received funds from the European Commissions Seventh Frame-
work Programme Marie Curie Cofund Action AMAROUT II (grant no. 291803).

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

Automated Unbounded Analysis of Cryptographic Constructions 849

3. Abe, M., Groth, J., Ohkubo, M., Tango, T.: Converting cryptographic schemes
from symmetric to asymmetric bilinear groups. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 241–260. Springer, Heidelberg (2014)

4. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures
from type II pairings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 390–407. Springer, Heidelberg (2014)

5. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively
randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)

6. Abe, M., Kohlweiss, M., Ohkubo, M., Tibouchi, M.: Fully structure-preserving
signatures and shrinking commitments. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 35–65. Springer, Heidelberg (2015)

7. Akinyele, J.A., Garman, C., Hohenberger, S.: Automating fast and secure trans-
lations from type-I to type-III pairing schemes. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, CCS 2015, pp.
1370–1381. ACM, New York (2015)

8. Akinyele, J.A., Green, M., Hohenberger, S.: Using SMT solvers to automate design
tasks for encryption, signature schemes. In: Sadeghi, A.-R., Gligor, V.D., Yung,
M. (eds.) 20th Conference on Computer and Communications Security, ACM CCS
2013, 4–8 November 2013, Berlin, Germany, pp. 399–410. ACM Press (2011)

9. Barthe, G., Cederquist, J., Tarento, S.: A machine-checked formalization of the
generic model and the random oracle model. In: Basin, D., Rusinowitch, M. (eds.)
IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 385–399. Springer, Heidelberg (2004)

10. Barthe, G., Crespo, J.M., Grégoire, B., Kunz, C., Lakhnech, Y., Schmidt, B.,
Zanella Béguelin, S.: Fully automated analysis of padding-based encryption in the
computational model. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) 20th Con-
ference on Computer and Communications Security, ACM CCS 2013, 4–8 Novem-
ber 2013, Berlin, Germany, pp. 1247–1260. ACM Press (2011)

11. Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J., Scedrov, A., Schmidt, B.: Auto-
mated analysis of cryptographic assumptions in generic group models. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 95–112.
Springer, Heidelberg (2014)

12. Barthe, G., Fagerholm, E., Fiore, D., Scedrov, A., Schmidt, B., Tibouchi, M.:
Strongly-optimal structure preserving signatures from type II pairings: synthesis
and lower bounds. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 355–376.
Springer, Heidelberg (2015)

13. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

14. Barthe, G., Grégoire, B., Schmidt, B.: Automated proofs of pairing-based cryptog-
raphy. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 12–16 October 2015, Denver, CO, USA, pp. 1156–1168
(2015)

15. Barthe, G., Tarento, S.: A machine-checked formalization of the random oracle
model. In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004.
LNCS, vol. 3839, pp. 33–49. Springer, Heidelberg (2006)

16. Blanchet, B.: A computationally sound mechanized prover for security protocols.
In: IEEE Symposium on Security and Privacy, 21–24 May 2006, Berkeley, Califor-
nia, USA, pp. 140–154. IEEE Computer Society Press (2006)

850 M. Ambrona et al.

17. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005)

18. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs, keyed-verification
anonymous credentials. In: Ahn, G.-J., Yung, M., Li, N. (eds.) 21st Conference
on Computer and Communications Security, ACM CCS 2014, 3–7 November 2014,
Scottsdale, AZ, USA, pp. 1205–1216. ACM Press (2011)

19. Chatterjee, S., Menezes, A.: Type 2 structure-preserving signature schemes revis-
ited. In: Iwata, T., et al. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 286–310.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 13

20. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

21. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

22. Fagerholm, E.: Automated analysis in generic groups. Ph.D. thesis, University of
Pennsylvania (2015)

23. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

24. Fuchsbauer, G.: Breaking existential unforgeability of a signature scheme from
asiacrypt 2014. Cryptology ePrint Archive, Report 2014/892 (2014). http://eprint.
iacr.org/2014/892

25. Fuchsbauer, G., Hanser, C., Slamanig, D.: EUF-CMA-secure structure-preserving
signatures on equivalence classes. Cryptology ePrint Archive, Report 2014/944
(2014). http://eprint.iacr.org/2014/944

26. Groth, J.: Efficient fully structure-preserving signatures for large messages. In:
Iwata, T., et al. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 239–259. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48797-6 11

27. Hoang, V.T., Katz, J., Malozemoff, A.J.: Automated analysis and synthesis of
authenticated encryption schemes. In: Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, 12–16 October 2015, Denver,
CO, USA, pp. 84–95 (2015)

28. Hwang, J.Y., Lee, D.H., Yung, M.: Universal forgery of the identity-based sequen-
tial aggregate signature scheme. In: Li, W., Susilo, W., Tupakula, U.K., Safavi-
Naini, R., Varadharajan, V. (eds.) 4th ACM Symposium on Information, Com-
puter and Communications Security, ASIACCS 2009, 10–12 March 2009, Sydney,
Australia, pp. 157–160. ACM Press (2011)

29. Jager, T., Schwenk, J.: On the equivalence of generic group models. In: Baek, J.,
Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 200–209.
Springer, Heidelberg (2008)

30. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg
(2000)

31. Malozemoff, A.J., Katz, J., Green, M.D.: Automated analysis and synthesis of
block-cipher modes of operation. In: IEEE 27th Computer Security Foundations
Symposium, CSF 2014, 19–22 July 2014, Vienna, Austria, pp. 140–152 (2014)

32. Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P.
(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer,
Heidelberg (2005)

http://dx.doi.org/10.1007/978-3-662-48797-6_13
http://eprint.iacr.org/2014/892
http://eprint.iacr.org/2014/892
http://eprint.iacr.org/2014/944
http://dx.doi.org/10.1007/978-3-662-48797-6_11

Automated Unbounded Analysis of Cryptographic Constructions 851

33. Nechaev, V.: Complexity of a determinate algorithm for the discrete logarithm.
Math. Notes 55(2), 165–172 (1994)

34. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Heidelberg (2016)

35. Rupp, A., Leander, G., Bangerter, E., Dent, A.W., Sadeghi, A.-R.: Sufficient condi-
tions for intractability over black-box groups: generic lower bounds for generalized
DL and DH problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 489–505. Springer, Heidelberg (2008)

36. Schnorr, C.-P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12.
Springer, Heidelberg (2001)

37. Schnorr, C.-P., Jakobsson, M.: Security of signed ElGamal encryption. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 73–89. Springer,
Heidelberg (2000)

38. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

39. Szydlo, M.: A note on chosen-basis decisional Diffie-Hellman assumptions. In: Di
Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 166–170. Springer,
Heidelberg (2006)

40. The Sage Developers. Sage Mathematics Software (Version 6.8) (2015). http://
www.sagemath.org

http://www.sagemath.org
http://www.sagemath.org

Multi-input Functional Encryption
in the Private-Key Setting: Stronger
Security from Weaker Assumptions

Zvika Brakerski1, Ilan Komargodski1(B), and Gil Segev2

1 Weizmann Institute of Science, 76100 Rehovot, Israel
{zvika.brakerski,ilan.komargodski}@weizmann.ac.il

2 Hebrew University of Jerusalem, 91904 Jerusalem, Israel
segev@cs.huji.ac.il

Abstract. We construct a general-purpose multi-input functional
encryption scheme in the private-key setting. Namely, we construct a
scheme where a functional key corresponding to a function f enables a
user holding encryptions of x1, . . . , xt to compute f(x1, . . . , xt) but noth-
ing else. This is achieved starting from any general-purpose private-key
single-input scheme (without any additional assumptions), and is proven
to be adaptively secure for any constant number of inputs t. Moreover,
it can be extended to a super-constant number of inputs assuming that
the underlying single-input scheme is sub-exponentially secure.

Instantiating our construction with existing single-input schemes, we
obtain multi-input schemes that are based on a variety of assumptions
(such as indistinguishability obfuscation, multilinear maps, learning with
errors, and even one-way functions), offering various trade-offs between
security and efficiency.

Previous and concurrent constructions of multi-input functional
encryption schemes either rely on stronger assumptions and provided
weaker security guarantees (Goldwasser et al. [EUROCRYPT ’14], and
Ananth and Jain [CRYPTO ’15]), or relied on multilinear maps and
could be proven secure only in an idealized generic model (Boneh et al.
[EUROCRYPT ’15]). In comparison, we present a general transforma-
tion that simultaneously relies on weaker assumptions and guarantees
stronger security.

Z. Brakerski—Supported by the Israel Science Foundation (Grant No. 468/14) and
by the Alon Young Faculty Fellowship.
I. Komargodski—Research supported in part by a grant from the Israel Science
Foundation, the I-CORE Program of the Planning and Budgeting Committee, BSF
and the Israeli Ministry of Science and Technology.
G. Segev—Supported by the European Union’s 7th Framework Program (FP7) via a
Marie Curie Career Integration Grant, by the Israel Science Foundation (Grant No.
483/13), by the Israeli Centers of Research Excellence (I-CORE) Program (Center
No. 4/11), by the US-Israel Binational Science Foundation (Grant No. 2014632), and
by a Google Faculty Research Award.

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 852–880, 2016.
DOI: 10.1007/978-3-662-49896-5 30

Multi-input Functional Encryption in the Private-Key Setting 853

1 Introduction

The emerging vision of functional encryption [14,31,32] extends the traditional
“all-or-nothing” view of encryption schemes. Specifically, functional encryption
schemes offer additional flexibility by supporting restricted decryption keys.
These keys allow users to learn specific functions of the encrypted data, without
learning any additional information. Building upon the early examples of func-
tional encryption schemes for restricted function families (such as identity-based
encryption [11,20,34]), extensive research is currently devoted to the construc-
tion of functional encryption schemes offering a variety of expressive families of
functions (see, for example, [2,4,5,9,10,14,16,19,21,22,25,26,30–32,36]).

Until very recently, research on functional encryption has focused on the case
of single-input functions. In a single-input functional encryption scheme, a func-
tional key skf corresponding to a function f enables a user holding an encryption
of a value x to compute f(x), while not revealing any additional information on
x. In many scenarios, however, dealing only with single-input functions is insuf-
ficient, and a more general framework allowing multi-input functions is required.

Goldwasser et al. [24] recently introduced the notion of a multi-input func-
tional encryption scheme. In such a scheme, a functional key corresponding to
a t-input function f enables a user holding encryptions of x1, . . . , xt to com-
pute f(x1, . . . , xt) without learning any additional information on the xi’s. The
work of Goldwasser et al. and their new notion are very well-motivated by a
wide range of applications based on mining aggregate information from sev-
eral different data sources. These include, for example, running SQL queries on
encrypted databases, computing over encrypted data streams, non-interactive
differentially-private data release, and order-revealing encryption (all of which
are relevant in both the public-key setting and the private-key one [12]).

Goldwasser et al. presented a rigorous framework for capturing the security of
multi-input schemes in the public-key setting and in the private-key one. In addi-
tion, relying on indistinguishability obfuscation and one-way functions [8,21,29],
they constructed the first multi schemes. In terms of functionality, their schemes
are extremely expressive, supporting all multi-input functions that are com-
putable by bounded-size circuits. In terms of security, however, their private-key
scheme satisfies a weak selective notion, which does not allow the adversary
to access an encryption oracle (which is quite crippling in the private-key set-
ting), and requires an a-priori bound on the number of challenge ciphertexts (the
ciphertext length in their scheme depends on the number of challenge cipher-
texts).

Following the work of Goldwasser et al. [24], a private-key multi-input func-
tional encryption scheme that satisfies a more standard notion of security (one
that allows access to an encryption oracle) was constructed by Boneh et al. [12].
Their scheme is based on multilinear maps, and is proven secure in the ideal-
ized generic multilinear map model. In addition, in an independent and con-
current work, Ananth and Jain [5] constructed a selectively-secure multi-input
private-key functional encryption scheme based on any general-purpose public-
key functional encryption scheme (as an intermediate step in constructing an
indistinguishability obfuscator).

854 Z. Brakerski et al.

Thus, constructions of multi-input functional encryption schemes in the priv-
ate-key setting have so far either relied on stronger assumptions and provided
weaker security guarantees [5,24]1, or could be proven secure only in an idealized
generic model [12].

1.1 Our Contributions

In this paper we present a construction of private-key multi-input functional
encryption from any general-purpose private-key single-input functional encryp-
tion scheme (without introducing any additional assumptions). The resulting
scheme supports any set of efficiently-computable functions, and provides adap-
tive security in the standard model for any constant number of inputs. We prove
the following theorem:

Theorem 1.1. Assuming the existence of any private-key single-input selective-
ly-secure functional encryption scheme, for any constant t ≥ 2 there exists a
private-key t-input adaptively-secure functional encryption scheme.

Moreover, assuming that the underlying private-key single-input scheme is
sub-exponentially secure, our resulting scheme provides adaptive security for
a super-constant number of inputs (we refer the reader to Sect. 1.3 for more
details). Following [1,19], our scheme provides not only message privacy, but in
fact a unified notion that captures both message privacy and function privacy
(this notion is known as full security – see Sect. 2.3 for more details).

Instantiations. Instantiating our construction with existing private-key single-
input schemes, we obtain new multi-input schemes based on a variety of assump-
tions in the standard model. Specifically, we obtain schemes that are secure for
an unbounded number of encryption and key-generation queries based on indis-
tinguishability obfuscation or multilinear maps. In addition, if the number of
encryption and key-generation queries is a-priori bounded, we can rely on much
milder assumptions such as learning with errors [25] or even the existence of
one-way functions or low-depth pseudorandom generators [26]. See Sect. 2.2 for
further discussion.

Comparison with Previous and Concurrent Work. Compared to the pre-
vious work of Goldwasser et al. [24] and Boneh et al. [12], our work yields stronger
security guarantees and at the same time relies solely on a necessary assumption.
Specifically, whereas Goldwasser et al. and Boneh et al. rely on indistinguisha-
bility obfuscation and multilinear maps, respectively, we rely on the existence
of any general-purpose private-key single-input scheme, which is obviously nec-
essary. Moreover, whereas the scheme of Goldwasser et al. provides a selective
notion of security which, in addition, does not allow adversaries to access an
1 In terms of assumptions, the recent work of Asharov and Segev [7] shows that indis-

tinguishability obfuscation and public-key functional encryption are significantly
stronger primitives than private-key functional encryption. We refer the reader to
Sect. 1.1 for a more elaborate discussion.

Multi-input Functional Encryption in the Private-Key Setting 855

encryption oracle and requires an a-priori bound on the number of challenge
ciphertexts, and the scheme of Boneh et al. is proved secure only in an idealized
generic model that does not properly capture real-world adversaries, our scheme
provides adaptive security in the standard model for any number of challenge
ciphertexts.

Compared to the concurrent work of Ananth and Jain [5], our work again
yields stronger security guarantees while relying on a weaker assumption. Specifi-
cally, whereas the construction of Ananth and Jain relies on public-key functional
encryption and guarantees selective security (where, in addition, the adversary is
not allow to access an encryption oracle), our construction relies on private-key
functional encryption and guarantees full security. From the technical point of
view, the scheme of Ananth and Jain is essentially “Step 1” of our approach (see
Sect. 1.3), which was sufficient (together with additional techniques and assump-
tions) for constructing their obfuscator. The vast majority of our efforts in this
paper are devoted for providing better security while simultaneously relying on
weaker assumptions, as mentioned above.

In terms of assumptions, the recent work of Asharov and Segev [7] shows that
private-key functional encryption is much weaker than any public-key primi-
tive (in particular, it is much weaker than public-key functional encryption).
Specifically, they show that using the currently-known techniques it is impos-
sible to use a private-key functional encryption scheme for constructing even a
key-agreement protocol (and therefore, in particular, it is impossible to construct
a public-key encryption scheme or a public-key functional encryption scheme).

Finally, we note that in addition to introducing the notion of a multi-input
functional encryption scheme, Goldwasser et al. [24] introduced the more general
notion of a multi-client multi-input functional encryption scheme. In such a
scheme, each input coordinate is associated with its own encryption key, and
security should be satisfied for all coordinates whose encryption keys are not
known to the adversary. In this paper we do not consider this more general
notion, and an interesting open problem is to extend our approach to the multi-
client setting.

1.2 Additional Related Work

Extensive research has been devoted to the study of functional encryption, and
for concreteness we focus here only on those previous efforts that are directly
relevant to the techniques used in this paper.

Function-Private Functional Encryption. The security guarantees of func-
tional encryption typically focus on message privacy. Intuitively, message privacy
asks that a functional key skf does not help in distinguishing encryptions of two
messages, m0 and m1, as long as f(m0) = f(m1). In various cases, however, it is
also useful to consider function privacy [1,13,19,35], asking that a functional key
skf does not reveal any unnecessary information on the function f . Specifically,
in the private-key setting, function privacy asks that an encryption of a message
m does not help in distinguishing two functional keys, skf0 and skf1 , as long as

856 Z. Brakerski et al.

f0(m) = f1(m). Brakerski and Segev [19] recently showed that any private-key
functional encryption scheme can be generically transformed into one that satis-
fies a unified notion of security, referred to as full security, which considers both
message privacy and function privacy.

Other than being a useful notion for various applications, function pri-
vacy was found useful as a building block in the construction of several func-
tional encryption schemes [4,30]. One of the key insights that we utilize in this
work is that function-private functional encryption allows to successfully apply
proof techniques “borrowed” from the indistinguishability obfuscation literature
(including, for example, a variant of the punctured programming approach of
Sahai and Waters [33]).

Key-Encapsulation Techniques in Functional Encryption. Key encapsu-
lation (also known as “hybrid encryption”) is an extremely useful approach in
the design of encryption schemes, both for improved efficiency and for improved
security. Specifically, key encapsulation typically means that instead of encrypt-
ing a message m under a fixed key sk, one can instead sample a random key k,
encrypt m under k and then encrypt k under sk. Recently, Ananth et al. [4] showed
that key encapsulation is useful also in the setting of functional encryption. They
showed that it can be used to transform any selectively-secure functional encryp-
tion scheme into an adaptively-secure one (in both the public-key setting and the
private-key one). Their construction and proof technique hint that key encap-
sulation techniques may in fact be a general tool that is useful in the design of
functional encryption schemes. Our constructions incorporate key encapsulation
techniques, and exhibit additional strengths of this technique in the context of
functional encryption schemes. Specifically, as discussed in Sect. 1.3, we use key
encapsulation techniques to create “sufficient independence” between combina-
tions of different ciphertexts, a crucial ingredient in our constructions (see Sect. 1.3
for a detailed comparison between our technique and that of Ananth et al.).

Multi-input Functional Encryption Schemes and Obfuscation. An
important aspect in studying multi-input functional encryption schemes is
its tight connection to indistinguishability obfuscation. Goldwasser et al. [24]
showed that the following three primitives are equivalent: (1) selectively-secure
private-key multi-input functional encryption scheme with polynomially many
inputs, (2) selectively-secure public-key two-input functional encryption scheme,
and (3) indistinguishability obfuscation. The works of Ananth and Jain [5] and
Ananth, Jain and Sahai [6] show how to construct a selectively-secure private-key
multi-input functional encryption scheme with polynomially many inputs (and
thereby an indistinguishability obfuscator) from any sub-exponentially-secure
public-key single-input functional encryption scheme.2

2 Bitansky and Vaikuntanathan [10] achieved the same result (an indistinguishability
obfuscator) as [5] using a similar construction (at least conceptually) while relying
essentially on the same assumptions. However, they construct an indistinguishability
obfuscator directly without going through the equivalence to multi-input functional
encryption schemes.

Multi-input Functional Encryption in the Private-Key Setting 857

1.3 Overview of Our Constructions and Techniques

In this section we provide a high-level overview of our constructions. For con-
creteness, we focus here mainly on two-input schemes, and then briefly discuss
the generalization of our approach to more than two inputs (we refer the reader
to Appendix A for the generalization to t-input schemes for t ≥ 2). In what
follows, we start by briefly describing the functionality and security properties
of two-input schemes in the private-key setting. Then, we explain the main ideas
underlying our constructions. We emphasize that the forthcoming overview is
very high-level and ignores many technical details. For the full details we refer
to Sects. 3 and 4.

Functionality and Security. In a private-key two-input functional encryption
scheme, the master secret key msk of the scheme is used for encrypting any
messages x and y (separately) to the first and second coordinates, respectively,
and for generating functional keys for two-input functions. A functional key
skf corresponding to a function f enables to compute f(x, y) given Enc(x) and
Enc(y). Building upon the previous notions of security for private-key multi-
input functional encryption schemes [12,24], we consider a strengthened notion of
security that combines both message privacy and function privacy (as in [1,19] for
single-input schemes), to which we refer as full security.3 Specifically, we consider
adaptive adversaries that are given access to “left-or-right” key-generation and
encryption oracles. These oracles operate in one out of two modes corresponding
to a randomly-chosen bit b. The key-generation oracle receives as input pairs
of the form (f0, f1) and outputs a functional key for fb. The encryption oracle
receives as input pairs of the form (x0, x1) for the first coordinate, or (y0, y1) for
the second coordinate, and outputs an encryption of xb or yb. We require that
no efficient adversary can guess the bit b with probability noticeably higher than
1/2, as long as for each such three queries (f0, f1), (x0, x1) and (y0, y1) it holds
that f0(x0, y0) = f1(x1, y1).

Intuition: Input Aggregation. Given a two-input function f(·, ·), one can
view f as a single-input function, f∗, that takes a tuple (x, y), which we denote
by x‖y to avoid confusion, and computes f∗(x‖y) = f(x, y). Using a single-
input scheme, we can generate a functional key for the function f∗. We thus
remain with the problem of aggregating the input. That is, we need to be able
to encrypt inputs x and y, such that given Enc(x) and Enc(y) it is possible to
compute Enc(x‖y). At a very high-level, this is achieved by having the encryption
of x be an “aggregator”: To encrypt x, we will generate a functional key for the

3 We consider a unified notion capturing both message privacy and function privacy
not only as a useful feature for various applications. In fact, the function privacy
of the resulting two-input scheme plays a crucial role when extending our results to
more than two inputs.

858 Z. Brakerski et al.

function AGGx(·), that on input y outputs an encryption of x‖y.4 There are many
technical difficulties in realizing this intuition, as we explain in the remainder of
this section.

Step 1: Functional Keys as Ciphertexts. Given any private-key single-input
functional encryption scheme, 1FE, the first step in our transformation is to use
both its ciphertexts and its functional keys as ciphertexts for a two-input scheme
2FE: An encryption of a message x to the first coordinate is a functional key skx

corresponding to a certain functionality that depends on x, and an encryption
of a message y to the second coordinate is simply an encryption of y. Intuitively,
the hope is that the function privacy of 1FE will hide x, and that the message
privacy of 1FE will hide y. More specifically, a first attempt towards realizing
this intuition is as follows:

1. The master secret key consists of two keys, mskin and mskout, for the single-
input scheme 1FE. The key mskin is used for encryption, and the key mskout
is used to decryption.

2. An encryption of a message x to the first coordinate is a functional key
skx,mskout that is generated using mskin and corresponds to the following func-
tionality: Given an input y, it outputs an encryption Encmskout(x||y) of x con-
catenated with y under mskout. An encryption of a message y to the second
coordinate is simply an encryption Encmskin(y) of y under mskin.

3. A functional key for a two-input function f is a functional key that is gener-
ated using mskout for the function f when viewed as a single-input function.

4. Given a functional key for a function f , and two encryptions skx,mskout and
Encmskin(y), we first apply skx,mskout on Encmskin(y) to obtain Encmskout(x||y),
and then apply the functional key for f on Encmskout(x||y).

It is straightforward to verify that the above scheme indeed provides the required
functionality of a two-input scheme. Proving its security, however, does not seem
to go through: When “attacking” the key mskout, we clearly cannot embed it in
the encryptions skx,mskout generated to the first coordinate. A typical approach
for dealing with such a difficulty (e.g., [4,19,30]) is to embed all possibly-needed
encryptions under mskout inside the ciphertexts of the two-input scheme (so
that the key mskout will not be explicitly needed). Note, however, that when an
adversary makes T encryption queries there may be roughly T 2 different pairs of
the form (x, y), and these T 2 pairs cannot be embedded into T ciphertexts (we
note that T = T (λ) may be any polynomial and it is not known in advance).

An additional approach is to use a public-key functional encryption scheme
for the role played by mskout (i.e., replacing skx,mskout with skx,pkout). Although

4 A somewhat related functionality was recently considered by Iovino and
Zebrowski [27] who introduced the notion of mergeable functional encryption, where
one can publicly transform encryptions, Enc(x) and Enc(y), of two values into an
encryption Enc(x‖y) of their concatenation. They show how to construct such a
scheme for two inputs building on the specific construction of [21] and assuming
strong notions of obfuscation. In comparison, our approach applies to many inputs
(as discussed below), and is based on minimal assumptions.

Multi-input Functional Encryption in the Private-Key Setting 859

this solution allows to prove security, we view it as a “warm-up solution” as we
would like to avoid relying on a stronger primitive than necessary. Specifically,
we would like to rely on private-key functional encryption and not on public-key
function encryption (as recently shown by Asharov and Segev [7], private-key
functional encryption is significantly weaker than any public-key primitive).

Step 2: Selective Security via “One-Sided” Key Encapsulation. Our
approach for resolving the difficulty described uses key-encapsulation techniques
in functional encryption. Our main idea here is that when encrypting a message
x, we sample a fresh key msk� for the single-input scheme, and output two
components: Encmskout(msk�) and skx,msk� . Given an encryption Encmskin(y) of a
message y, the component skx,msk� enables to compute Encmsk�(x||y). In addition,
a functional key for a function f is now generated using mskout for the following
functionality: Given an input msk�, it outputs a functional key for f (viewed
as a single-input function) using msk�. This enables to compute f(x, y) given
Encmsk�(x||y) and provides the required functionality.

This “one-sided” key encapsulation enables us to prove a selectively-secure
variant of our notion of security.5 In this variant we require adversaries to spec-
ify their encryption queries in advance, and they are then given adaptive access
to the left-or-right key-generation oracle. The main idea underlying the proof
of security is that our one-sided key encapsulation approach yields sufficient
independence and allows attacking the x’s one by one, by attacking their cor-
responding encapsulated keys. Focusing on one message x and its encapsulated
key msk∗, an adversary that make T encryption queries y1, . . . , yT to the sec-
ond coordinate induces only T pairs {(x, yi)}i∈[T] (instead of T 2 pairs as above).
Moreover, given that the encryption queries are chosen in advance, we can embed
an encryption of x||yi under msk� inside the encryption of each yi. This way the
key msk� is not explicitly needed, and thus can be attacked (while not affecting
any of the other x’s).

As discussed in Sect. 1.2, key-encapsulation techniques have been introduced
into the setting of functional encryption by Ananth et al. [4]. Our approach
builds upon and significantly extends their initial observations, and enables us to
create “sufficient independence” between combinations of different ciphertexts,
a crucial ingredient in our constructions.

This enables us to construct a selectively-secure two-input scheme from any
selectively-secure single-input one (we refer the reader to Sect. 3 for the scheme
and its proof of security). Note, however, that this approach is limited to selective
adversaries: embedding an encryption of x||yi inside the encryption of yi requires
knowing x before the adversary queries for the encryption of yi.

Step 3: Adaptive Security via “Two-Sided” Key Encapsulation. Next,
we present a general transformation from selective security to adaptive security
(in fact, to our stronger notion of full security). Specifically, we rely on two build-
ing blocks: (1) any private-key selectively-secure two-input scheme, and (2) any

5 “One-sided” here refers to the fact that the encapsulated key msk� is generated only
from the side of the x’s.

860 Z. Brakerski et al.

private-key adaptively-secure single-input scheme (recall that in the single-input
setting, selective security implies adaptive security [4]). For this transformation
we introduce a new technique which we call “two-sided” key encapsulation, where
each pair of messages x and y has its own encapsulated key msk�. This, more
subtle approach, enables us to “attack” a specific pair of messages each time,
since each such pair uses a different encapsulated key: If x is known before y
then we embed x||y inside the encryption of y, and if x is known after y then we
embed x||y inside the encryption of x. This leaves the problem of how to realize
this idea of two-sided key encapsulation. Our two-sided key encapsulation works
as follows.

1. The master secret key consists of two keys: A master secret key mskout for
a selectively-secure two-input scheme, and a master secret key mskin for an
adaptively-secure single-input scheme.

2. An encryption of a message y consists of two components: Encmskout(t) and
Encmskin(y, t), where t is a fresh random tag.

3. An encryption of a message x consists of two components: Encmskout(s) and
skx,s, where s is a fresh random tag. The functional key skx,s is generated
using mskin and corresponds to the following functionality: Given an input
(y, t), derive msk� = PRF(s, t),6 and output Encmsk�(x||y).

4. A functional key for a function f is generated using mskout for the following
functionality: Given two inputs, s and t, derive msk� = PRF(s, t), and output
a functional key for f (viewed as a single-input function) using msk�.

The crucial observation is that the master secret key mskout of the two-input
selectively-secure scheme is used for encrypting random tags, whereas the plain-
text itself is always encrypted using the master secret key mskin of the adaptively-
secure single-input scheme. This enables us to prove the full security of the
resulting scheme (we refer the reader to Sect. 4 for the scheme and its proof of
security).

Comparison to the Selective-to-Adaptive Transformation of Ananth
et al. [4]. Our two-sided key encapsulation technique shows that the usability
of key-encapsulation in the context of functional encryption, demonstrated by
Ananth et al. [4], can be significantly extended. Whereas their generic transfor-
mation from selective security to adaptive security for single-input scheme uses
a rather direct form of key encapsulation, our approach requires a significantly
more structured one in which the encapsulated key is not determined at the time
of encryption, but rather generated “freshly” (in a pseudorandom manner) for
any two messages x and y as above.

Specifically, Ananth et al. encrypted a message m under a selectively-secure
key msk, by sampling a fresh master secret key msk� for a “one-time” adaptively-
secure scheme, encrypted m under msk� and then encrypted msk� under msk.
This direct encapsulation does not seem to extend to the two-input setting,

6 More accurately, the key msk� is computed by applying the setup algorithm of 1FE
with randomness PRF(s, t).

Multi-input Functional Encryption in the Private-Key Setting 861

as applying it independently in each coordinate seems to hurt both the secu-
rity and the functionality of the scheme. By introducing our two-sided key-
encapsulation idea we are able to balance between the need for using key encap-
sulation in each coordinate and the need for generating sufficient independence
between different pairs of messages.

Step 4: Generalization to t-input Schemes. The generalization of our result
to t-input schemes, for t ≥ 2, consists of two components. The first component is
a construction that uses any (t−1)-input scheme for building a selectively-secure
t-input scheme, for any t ≥ 2. The second component is a construction that uses
any selectively-secure t-input scheme and a fully-secure (t − 1)-input scheme for
building a fully-secure t-input scheme. Thus, for obtaining a fully-secure t-input
scheme from any single-input scheme, one can iteratively apply both components
alternately t times. This is illustrated in Fig. 1 for the case t = 3 (and the same
illustration generalizes to any t > 3 in a straightforward manner).

This iterative application of our components places a restriction on the num-
ber of supported inputs. In general, each such application may result in a poly-
nomial blow-up in the parameters of the scheme. Therefore, t − 1 applications
may result in a blow-up of λ2O(t)

which must be kept polynomial. Without any
additional assumptions, this implies that t can be any fixed constant. Assuming,
in addition, that the underlying single-input scheme is sub-exponentially secure,
the number of inputs can be made super-constant. Specifically, for any constant
0 < ε < 1, when instantiating the underlying single-input scheme with secu-
rity parameter λ̃ = 2(log λ)ε

, the first component can be iteratively applied to
reach t = Θ(log log λ) inputs. Obtaining a generic transformation that supports
a super-constant number of inputs without assuming sub-exponential security
(or an alternative form of “succinctness”) is left as an open problem.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2 we provide an
overview of the notation, definitions, and tools underlying our constructions.
In Sect. 3 we present a construction of a selectively-secure two-input functional
encryption scheme from any single-input scheme. In Sect. 4 we present a con-
struction of a fully-secure two-input functional encryption scheme from any
selectively-secure one. In Appendix A we generalize our approach to t-input
schemes for t ≥ 2. In the full version [18] we provide the formal proofs of our
theorems from Sects. 3 and 4, and from Appendix A.

2 Preliminaries

In this section we present the notation and basic definitions that are used in
this work. For a distribution X we denote by x ← X the process of sam-
pling a value x from the distribution X. Similarly, for a set X we denote by
x ← X the process of sampling a value x from the uniform distribution over X .

862 Z. Brakerski et al.

Selectively-
secure 1-FE

Adaptively-
secure 1-FE

Selectively-
secure 2-FE

Adaptively-
secure 2-FE

Selectively-
secure 3-FE

Adaptively-
secure 3-FE

[4]
Thm 3.1

Thm 4.1 Thm A.6

Thm A.5

Fig. 1. An illustration of the required iterative applications of our two transformations
for obtaining an adaptively-secure three-input scheme based on any selectively-secure
single-input scheme.

For a randomized function f and an input x ∈ X , we denote by y ← f(x)
the process of sampling a value y from the distribution f(x). For an inte-
ger n ∈ N we denote by [n] the set {1, . . . , n}. A function neg : N → R

is negligible if for every constant c > 0 there exists an integer Nc such that
neg(λ) < λ−c for all λ > Nc. Two sequences of random variables X = {Xλ}λ∈N

and Y = {Yλ}λ∈N are computationally indistinguishable if for any probabilistic
polynomial-time algorithm A there exists a negligible function neg(·) such that
∣

∣Pr[A(1λ,Xλ) = 1] − Pr[A(1λ, Yλ) = 1]
∣

∣ ≤ neg(λ) for all sufficiently large λ ∈ N.
Throughout the paper, we denote by λ the security parameter.

2.1 Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets and let PRF = (PRF.Gen,PRF.Eval)
be a function family with the following syntax:

– PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the
unary representation of the security parameter λ, and outputs a key K ∈ Kλ.

– PRF.Eval is a deterministic polynomial-time algorithm that takes as input a
key K ∈ Kλ and a value x ∈ Xλ, and outputs a value y ∈ Yλ.

The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range
of the function family, respectively. For easy of notation we may denote by
PRF.EvalK(·) or PRFK(·) the function PRF.Eval(K, ·) for K ∈ Kλ. The following
is the standard definition of a pseudorandom function family.

Definition 2.1 (Pseudorandomness). A function family PRF = (PRF.Gen,
PRF.Eval) is pseudorandom if for every probabilistic polynomial-time algorithm

Multi-input Functional Encryption in the Private-Key Setting 863

A there exits a negligible function neg(·) such that

AdvPRF,A(λ) def=
∣

∣

∣

∣

Pr
K←PRF.Gen(1λ)

[

APRF.EvalK(·)(1λ) = 1
]

− Pr
f←Fλ

[

Af(·)(1λ) = 1
]

∣

∣

∣

∣

≤ neg(λ),

for all sufficiently large λ ∈ N, where Fλ is the set of all functions that map Xλ

into Yλ.

In addition to the standard notion of a pseudorandom function family, we rely
on the seemingly stronger (yet existentially equivalent) notion of a puncturable
pseudorandom function family [15,17,28,33]. In terms of syntax, this notion asks
for an additional probabilistic polynomial-time algorithm, PRF.Punc, that takes
as input a key K ∈ Kλ and a set S ⊆ Xλ and outputs a “punctured” key KS .
The properties required by such a puncturing algorithm are captured by the
following definition.

Definition 2.2 (Puncturable PRF). A pseudorandom function family PRF =
(PRF.Gen,PRF.Eval,PRF.Punc) is puncturable if the following properties are sat-
isfied:

1. Functionality: For all sufficiently large λ ∈ N, for every set S ⊆ Xλ, and
for every x ∈ Xλ \ S it holds that

Pr
K←PRF.Gen(1λ);

KS←PRF.Punc(K,S)

[PRF.EvalK(x) = PRF.EvalKS
(x)] = 1.

2. Pseudorandomness at punctured points: Let A = (A1,A2) be any prob-
abilistic polynomial-time algorithm such that A1(1λ) outputs a set S ⊆ Xλ, a
value x ∈ S, and state information state. Then, for any such A there exists
a negligible function neg(·) such that

AdvPRF,A(λ) def= |Pr [A2(KS ,PRF.EvalK(x), state) = 1]
−Pr [A2(KS , y, state) = 1]|

≤ neg(λ)

for all sufficiently large λ ∈ N, where (S, x, state) ← A1(1λ),
K ← PRF.Gen(1λ), KS = PRF.Punc(K,S), and y ← Yλ.

For our constructions we rely on pseudorandom functions that need to be
punctured only at one point (i.e., in both parts of Definition 2.2 it holds that
S = {x} for some x ∈ Xλ). As observed by [15,17,28,33] the GGM construction
[23] of PRFs from any one-way function can be easily altered to yield such a
puncturable pseudorandom function family.

864 Z. Brakerski et al.

2.2 Private-Key Single-Input Functional Encryption

A private-key single-input functional encryption scheme over a message space
X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N is a quadruple (FE.S,FE.KG,
FE.E,FE.D) of probabilistic polynomial-time algorithms. The setup algorithm
FE.S takes as input the unary representation 1λ of the security parameter λ ∈ N

and outputs a master-secret key msk. The key-generation algorithm FE.KG takes
as input a master-secret key msk and a single-input function f ∈ Fλ, and outputs
a functional key skf . The encryption algorithm FE.E takes as input a master-
secret key msk and a message x ∈ Xλ, and outputs a ciphertext ct. In terms
of correctness we require that for all sufficiently large λ ∈ N, for every function
f ∈ Fλ and message x ∈ Xλ it holds that FE.D(FE.KG(msk, f),FE.E(msk, x)) =
f(x) with all but a negligible probability over the internal randomness of the
algorithms FE.S, FE.KG, and FE.E.

In terms of security, we rely on the private-key variant of the existing indist-
inguishability-based notions for message privacy and function privacy. In fact,
following [1,19], our notion of security combines both message privacy and func-
tion privacy. When formalizing this notion it would be convenient to use the
following standard notion of a left-or-right oracle.

Definition 2.3 (Left-or-right oracle). Let O(·, ·) be a probabilistic two-input
functionality. For each b ∈ {0, 1} we denote by Ob the probabilistic three-input
functionality Ob(k, z0, z1)

def= O(k, zb).

Intuitively, a private-key functional-encryption scheme is secure if encryp-
tions of messages x1, . . . , xT together with functional keys corresponding to func-
tions f1, . . . , fT reveal essentially no information other than the values
{fi(xj)}i,j∈[T]. We consider an adaptive notion of security, to which we refer to
as full security, in which adversaries are given adaptive access to left-or-right
encryption and key-generation oracles.

Definition 2.4 (Full security [1,19]). A private-key single-input functional
encryption scheme FE = (FE.S,FE.KG,FE.E,FE.D) over a message space X =
{Xλ}λ∈N and a function space F = {Fλ}λ∈N is fully secure if for any probabilistic
polynomial-time adversary A there exists a negligible function neg(·) such that

Advfull1FEFE,A,F (λ) def=
∣

∣

∣Pr
[

AKG0(msk,·,·),Enc0(msk,·,·)(1λ) = 1
]

−Pr
[

AKG1(msk,·,·),Enc1(msk,·,·)(1λ) = 1
]∣

∣

∣

≤ neg(λ)

(f0, f1) ∈ Fλ × Fλ and (x0, x1) ∈ Xλ × Xλ with which A queries the left-or-right
key-generation and encryption oracles, respectively, it holds that f0(x0) = f1(x1).
Moreover, the probability is taken over the choice of msk ← FE.S(1λ) and the
internal randomness of A.

Multi-input Functional Encryption in the Private-Key Setting 865

Known Constructions. Private-key single-input functional encryption
schemes that satisfy the above notion of full security and support circuits of
any a-priori bounded polynomial size are known to exist based on a variety of
assumptions.

Ananth et al. [4] gave a generic transformation from selective-message (or
selective-function) security to full security. Moreover, Brakerski and Segev [19]
showed how to transform any message-private functional encryption scheme
into a functional encryption scheme which is fully secure, and the resulting
scheme inherits the security guarantees of the original one. Therefore, based on
[4,19], given any selective-message (or selective-function) message-private func-
tional encryption scheme we can generically obtain a fully-secure scheme. This
implies that schemes that are fully secure for any number of encryption and
key-generation queries can be based on indistinguishability obfuscation [21,36],
differing-input obfuscation [3,16], and multilinear maps [22]. In addition, schemes
that are fully secure for a bounded number T = T (λ) of encryption and key-
generation queries can be based on the Learning with Errors (LWE) assumption
(where the length of ciphertexts grows with T and with a bound on the depth
of allowed functions) [25], based on pseudorandom generators computable by
small-depth circuits (where the length of ciphertexts grows with T and with an
upper bound on the circuit size of the functions) [26], and even based on one-way
functions (for T = 1) [26].

2.3 Private-Key Two-Input Functional Encryption

In this section we define the functionality and security of private-key two-input
functional encryption scheme (we refer the reader to Appendix A for the general-
ization to t-input schemes for any t ≥ 2). Let X = {Xλ}λ∈N, Y = {Yλ}λ∈N, and
Z = {Zλ}λ∈N be ensembles of finite sets, and let F = {Fλ}λ∈N be an ensemble
of finite two-ary function families. For each λ ∈ N, each function f ∈ Fλ takes
as input two strings, x ∈ Xλ and y ∈ Yλ, and outputs a value f(x, y) ∈ Zλ.
A private-key two-input functional encryption scheme Π for F consists of four
probabilistic polynomial time algorithm Setup, Enc, KG and Dec, described as
follows.

– Setup(1λ) – The setup algorithm takes as input the security parameter λ, and
outputs a master secret key msk.

– Enc(msk,m, i) – The encryption algorithm takes as input a master secret key
msk, message input m, and an index i ∈ [2], where m ∈ Xλ if i = 1 and m ∈ Yλ

if i = 2. It outputs a ciphertext cti.
– KG(msk, f) – The key-generation algorithm takes as input a master secret key
msk and a function f ∈ Fλ, and outputs a functional key skf .

– Dec(skf , ct1, ct2) – The (deterministic) decryption algorithm takes as input
a functional key skf and two ciphertexts ct1 and ct2, and outputs a string
z ∈ Zλ ∪ {⊥}.

Definition 2.5 (Correctness). A private-key two-input functional encryption
scheme Π = (Setup,Enc,KG,Dec) for F is correct if there exists a negligible

866 Z. Brakerski et al.

function neg(·) such that for every λ ∈ N, for every f ∈ Fλ, and for every
(x, y) ∈ Xλ × Yλ, it holds that

Pr
[

Dec(skf ,Enc(msk, x, 1),Enc(msk, y, 2)) = f(x, y)
] ≥ 1 − neg(λ),

where msk ← Setup(1λ), skf ← KG(msk, f), and the probability is taken over the
internal randomness of Setup,Enc and KG.

Intuitively, we say that a two-input scheme is secure if for any two pairs of
messages (x0, x1) and (y0, y1) that are encrypted with respect to indices i = 1
and i = 2, respectively, and for every pair of functions (f0, f1), the triplets
(skf0 ,Enc(msk, x0, 1),Enc(msk, y0, 2)) and (skf1 ,Enc(msk, x1, 1),Enc(msk, y1, 2))
are computationally indistinguishable as long as f0(x0, y0) = f1(x1, y1) (note
that this considers both message privacy and function privacy). The formal
notions of security build upon this intuition and capture the fact that an adver-
sary may in fact hold many functional keys and ciphertexts, and may combine
them in an arbitrary manner. As in the case of single-input schemes, we for-
malize our notions of security using left-or-right key-generation and encryption
oracles. Specifically, for each b ∈ {0, 1} and i ∈ {1, 2} we let KGb(msk, f0, f1)

def=
KG(msk, fb) and Encb(msk, (m0,m1), i)

def= Enc(msk,mb, i). Before formalizing our
notions of security we define the notion of a valid two-input adversary.

Definition 2.6 (Valid two-input adversary). A probabilistic polynomial-
time algorithm A is a valid two-input adversary if for all private-key two-input
functional encryption schemes Π = (Setup,KG,Enc,Dec) over a message space
X × Y = {Xλ}λ∈N × {Yλ}λ∈N and a function space F = {Fλ}λ∈N, for all λ ∈ N

and b ∈ {0, 1}, and for all (f0, f1) ∈ Fλ, ((x0, x1), 1) ∈ Xλ × Xλ × {1} and
((y0, y1), 1) ∈ Yλ ×Yλ ×{2} with which A queries the left-or-right key-generation
and encryption oracles, respectively, it holds that f0(x0, y0) = f1(x1, y1).

We consider two notions of security for two-input schemes, both of which
combine message privacy and function privacy. The first notion, full security,
considers adversaries that have adaptive access to both the encryption oracle and
the key-generation oracle. The second notion, selective-message security, consid-
ers adversaries that must specify all of their encryption queries in advance, but
can then have adaptive access to the key-generation oracle. Full security clearly
implies selective-message security, and our work shows that the two notions are
in fact equivalent for multi-input schemes.

Definition 2.7 (Full security). A private-key two-input functional encryption
scheme Π = (Setup,KG,Enc,Dec) over a message space X × Y = {Xλ}λ∈N ×
{Yλ}λ∈N and a function space F = {Fλ}λ∈N is fully secure if for any valid
two-input adversary A there exists a negligible function neg(·) such that

Advfull2FEΠ,F,A
def=

∣

∣

∣

∣

Pr
[

Expfull2FEΠ,F,A(λ) = 1
]

− 1
2

∣

∣

∣

∣

≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable Expfull2FEΠ,F,A(λ) is defined
via the following experiment:

Multi-input Functional Encryption in the Private-Key Setting 867

1. msk ← Setup(1λ), b ← {0, 1}.
2. b′ ← AKGb(msk,·,·),Encb(msk,(·,·),·) (

1λ,
)

.
3. If b′ = b then output 1, and otherwise output 0.

Definition 2.8 (Selective-message security). A private-key two-input func-
tional encryption scheme Π = (Setup,KG,Enc,Dec) over a message space
X × Y = {Xλ}λ∈N × {Yλ}λ∈N and a function space F = {Fλ}λ∈N is selective-
message secure if for any valid two-input adversary A = (A1,A2) there exists a
negligible function neg(λ) such that

Advsel2FEΠ,F,A
def=

∣

∣

∣

∣

Pr
[

Expsel2FEΠ,F,A(λ) = 1
]

− 1
2

∣

∣

∣

∣

≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable Expsel2FEΠ,F,A(λ) is defined
via the following experiment:

1. (�x, �y, state) ← A1

(

1λ
)

, where �x = ((x0
1, x

1
1), . . . , (x

0
T , x1

T)) and �y = ((y0
1 , y

1
1),

. . . , (y0
T , y1

T)).
2. msk ← Setup(1λ), b ← {0, 1}.
3. ct1,i ← Enc(msk, xb

i , 1) and ct2,i ← Enc(msk, yb
i , 2) for i ∈ [T].

4. b′ ← AKGb(msk,·,·)
2 (1λ, ct1,1, . . . , ct1,T , ct2,1 . . . , ct2,T , state).

5. If b′ = b then output 1, and otherwise output 0.

Our definitions of a two-input functional encryption scheme is inspired by
the definition of [12]. It is a natural generalization of the single-input case and
gives rise to an order-revealing encryption. Moreover, as a concrete motivation,
a t-input scheme according to the above definition is enough to construct indis-
tinguishability obfuscation for circuits with t input bits [24].7

Additional natural ways to define two-input functional encryptions schemes
exist. Specifically, Goldwasser et al. [24] considered two such definitions. The
first allows to encrypt a message m independently of an index i ∈ [2]. Thus,
given a key for a two-input function f and encryptions of two messages x and
of y, one can compute both f(x, y) and f(y, x). Hence, this definition requires a
stronger “validity requirement” (see Definition 2.6), which means it can support
less functionalities. A construction which satisfies our (indexed) definition can
be easily transformed into one which satisfies the above (non-indexed) definition
by encrypting each message with respect to both indices.

The second, referred to as “multi-client”, considers each index as a different
“client” and gives each of them his own secret key. In this setting, their security
game is quite different, and in particular, an adversary is allowed to obtain the
secret keys of a subset of the clients of his choice. The approach underlying our
schemes does not seem to directly extend to the multi-client setting, and we
leave it as an interesting path for future exploration.

7 Indeed, [5] get a construction of a t-input scheme for any t ≥ 1 which implies an
indistinguishability obfuscator. Our construction falls short from being generalized
to such extent (however, it relies on weaker assumptions).

868 Z. Brakerski et al.

3 A Selectively-Secure Two-Input Scheme from Any
Single-Input Scheme

In this section we construct a private-key two-input functional encryption scheme
that is selectively secure. Let F = {Fλ}λ∈N be a family of two-ary functionalities,
where for every λ ∈ N the set Fλ consists of functions of the form f : Xλ ×Yλ →
Zλ. Our construction relies on the following building blocks:

1. A private-key single-input functional encryption scheme 1FE = (1FE.S,
1FE.KG, 1FE.E, 1FE.D).

2. A pseudorandom function family PRF = (PRF.Gen,PRF.Eval).

As discussed in Sect. 1.1, we assume that the scheme 1FE is sufficiently expres-
sive in the sense that 1FE supports the function family F (when viewed as a
family of single-input functions), the evaluation procedure of the pseudoran-
dom function family PRF, the encryption and key-generation procedures of the
private-key functional encryption scheme 1FE, and a few additional basic oper-
ations. Our scheme 2FEsel = (2FEsel.S, 2FEsel.KG, 2FEsel.E, 2FEsel.D) is defined as
follows.

– The setup algorithm. On input the security parameter 1λ the setup
algorithm 2FEsel.S samples mskout,mskin ← 1FE.S(1λ) and outputs msk =
(mskout,mskin).

– The key-generation algorithm. On input the master secret key msk and
a function f ∈ Fλ, the key-generation algorithm 2FEsel.KG samples a ran-
dom string z ← {0, 1}λ and outputs skf ← 1FE.KG(mskout,Df,⊥,z,⊥), where
Df,⊥,z,⊥ is a single-input function that is defined in Fig. 2.

– The encryption algorithm. On input the master secret key msk, a message
m and an index i ∈ [2], the encryption algorithm 2FEsel.E has two cases:

• If (m, i) = (x, 1), it samples a master secret key msk� ← 1FE.S(1λ), a
PRF key K ← PRF.Gen(1λ), and a random string s ∈ {0, 1}λ, and then
outputs a pair (ct1, sk1) defined as follows:

ct1 ← 1FE.E(mskout, (msk�,K, 0))
sk1 ← 1FE.KG(mskin,AGGx,⊥,0,s,msk�,K),

where AGGx,⊥,0,s,msk�,K is a single-input function that is defined in Fig. 3.
• If (m, i) = (y, 2), it samples a random string t ∈ {0, 1}λ, and outputs

ct2 ← 1FE.E(mskin, (y,⊥, t,⊥,⊥)).

– The decryption algorithm. On input a functional key skf and two cipher-
texts, (ct1, sk1) and ct2, the decryption algorithm 2FEsel.D computes ct′ =
1FE.D(sk1, ct2), sk′ = 1FE.D(skf , ct1) and outputs 1FE.D(sk′, ct′).

The correctness of the above scheme with respect to any family of two-ary
functionalities follows in a straightforward manner from the correctness of the
underlying functional encryption scheme 1FE. Specifically, consider any pair of

Multi-input Functional Encryption in the Private-Key Setting 869

Fig. 2. The single-input functions Df0,f1,z,u and Cf .

Fig. 3. The single-input function AGGx0,x1,a,s,msk�,K .

messages x and y and any function f . The encryption of x with respect to the
index i =1 and the encryption of y with respect to the index i = 2 result in
ciphertexts (ct1, sk1) and ct2, respectively. Using the correctness of the scheme
1FE, by executing 1FE.D(sk1, ct2) we obtain an encryption ct′ of the message
(x, y) under the key msk�. In addition, by executing 1FE.D(skf , ct1) we obtain a
functional key sk′ for Cf under the key msk�. Therefore, executing 1FE.D(sk′, ct′)
outputs the value Cf ((x, y)) = f(x, y) as required.

The following theorem captures the security of the scheme, stating that under
suitable assumptions on the underlying building blocks, the two-input scheme
2FEsel is selective-message secure (see Definition 2.8). We refer the reader to the
full version [18] for the complete proof.

Theorem 3.1. Assuming that (1) 1FE is fully secure, and (2) PRF is a pseudo-
random function family, then 2FEsel is selective-message secure.

We note that for proving that 2FEsel is selective-message secure it suffices to
require selective-message security from 1FE. However, given the generic transfor-
mations of Ananth et al. [4] (from selective security to adaptive security) and of
Brakerski and Segev [19] (from message security to full security), for simplifying
the proof of Theorem 3.1 we assume that 1FE is fully secure. In addition, when
assuming that 1FE is fully secure, the scheme 2FEsel can be shown to satisfy a
notion of security that seems in between selective-message security and full secu-
rity. Specifically, this notion considers adversaries that first have adaptive access
to encryptions only for the first coordinate, and then have adaptive access to
encryptions only for the second coordinate (while having adaptive access to the
key-generation oracle throughout the experiment). However, given our generic
transformation from selective-message security to full security for multi-input
schemes (see Sect. 4), for simplifying the proof of Theorem 3.1 we focus on prov-
ing selective-message security.

870 Z. Brakerski et al.

In addition, for concreteness we focus on the unbounded case where the
underlying scheme supports an unbounded (i.e., not fixed in advance) num-
ber of key-generation queries and encryption queries. More generally, the proof
of Theorem 3.1 shows that if the scheme corresponding to mskout supports T1

encryption queries and T2 key-generation queries, the scheme corresponding to
mskin supports T3 encryption queries and T4 key-generation queries, and the
scheme corresponding to each msk� supports T5 encryption queries and T6 key-
generation queries, then the resulting scheme 2FEsel supports min{T1, T4, T5}
encryption queries with respect to index i = 1, min{T3, T5} encryption queries
with respect to index i = 2 and min{T2, T6} key-generation queries. When the
polynomials T1, . . . , T6 are known in advance (i.e., do not depend on the adver-
sary), such schemes are known to exist based on the LWE assumption or even
only one-way functions (see Sect. 2.2 for a more elaborated discussion of the
existing schemes).

4 From Selective to Adaptive Security for Two-Input
Schemes

In this section we show how to transform any private-key selective-message secure
two-input functional encryption scheme (see Definition 2.8) into a fully secure
one (see Definition 2.7). Our construction relies on the following building blocks:

1. A private-key single-input functional encryption scheme 1FE = (1FE.S,
1FE.KG, 1FE.E, 1FE.D).

2. A private-key two-input functional encryption scheme 2FEsel = (2FEsel.S,
2FEsel.KG, 2FEsel.E, 2FEsel.D).

3. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval,
PRF.Punc).

We assume that the schemes 1FE and 2FEsel are sufficiently expressive in
the sense that they support the function family F (when viewed as a family
of single-input functions), the evaluation procedure of the pseudorandom func-
tion family PRF, the setup, encryption and key-generation procedures of the
scheme 1FE, and a few additional basic operations. The scheme 2FE = (2FE.S,
2FE.KG, 2FE.E, 2FE.D) is defined as follows.

– The setup algorithm. On input the security parameter 1λ the setup algo-
rithm 2FE.S samples msk1 ← 1FE.S(1λ) and msk2 ← 2FEsel.S(1λ) and then
outputs msk = (msk1,msk2).

– The key-generation algorithm. On input the master secret key msk and
a function f ∈ Fλ, the key-generation algorithm 2FE.KG outputs skf ←
2FEsel.KG(msk2,Df,⊥,1,⊥,⊥,⊥), where Df,⊥,1,⊥,⊥,⊥ is a two-input function that
is defined in Fig. 4.

– The encryption algorithm. On input the master secret key msk, a message
m and an index i ∈ [2], the encryption algorithm 2FE.E has two cases:

Multi-input Functional Encryption in the Private-Key Setting 871

• If (m, i) = (x, 1), it samples s ← {0, 1}λ uniformly at random, three PRF
keys Kenc,Kkey,Kmsk ← PRF.Gen(1λ) and outputs a pair (ct1, sk1) defined
as follows:

ct1 ← 2FEsel.E(msk2, (Kmsk,Kkey, s, 0), 1)
sk1 ← 1FE.KG(msk1,AGGx,⊥,0,s,Kmsk,Kenc,⊥,⊥)

where the single-input function AGGx,⊥,0,s,Kmsk,Kenc,⊥,⊥ is defined in Fig. 5.
• If (m, i) = (y, 2), it samples t ← {0, 1}λ uniformly at random and outputs

a pair (ct2, ct3) defined as follows:

ct2 ← 2FEsel.E(msk2, (1, t), 2)
ct3 ← 1FE.E(msk1, (y,⊥, 1, t,⊥,⊥)).

– The decryption algorithm. On input a functional key skf and two cipher-
texts (ct1, sk1) and (ct2, ct3), the decryption algorithm 2FE.D first com-
putes the value sk′ = 2FEsel.D(skf , ct1, ct2), then it computes the value
ct′ = 1FE.D(sk1, ct3), and finally it outputs 1FE.D(sk′, ct′).

Fig. 4. The two-input function Df0,f1,c,s′,t′,u and the single-input function Cf .

The correctness of the above scheme with respect to any family of two-ary
functionalities follows in a straightforward manner from the correctness of the
underlying functional encryption schemes 1FE and 2FEsel. Specifically, consider
any pair of messages x and y and any function f . The encryption of x with
respect to the index i =1 and the encryption of y with respect to the index i = 2
result in ciphertexts (ct1, sk1) and (ct2, ct3), respectively. Using the correctness
of the scheme 2FEsel, by executing 2FEsel.D(skf , ct1, ct2) we obtain a functional
key sk′ for Cf under the key msks,t. In addition, by executing 1FE.D(sk1, ct3) we
obtain a an encryption ct′ of (x, y) under the key msks,t. Therefore, executing
1FE.D(sk′, ct′) outputs the value Cf ((x, y)) = f(x, y) as required.

872 Z. Brakerski et al.

Fig. 5. The single-input function AGGx0,x1,thr,s,Kmsk,Kenc,t′,v′ .

The following theorem captures the security of the scheme. This theorem
states that under suitable assumptions on the underlying building blocks, the
two-input scheme 2FE is fully secure (see Definition 2.7). We refer the reader to
the full version [18] for the complete proof.

Theorem 4.1. Assuming that (1) 1FE is fully secure, (2) 2FEsel is selective-
message secure, and (3) PRF is a puncturable pseudorandom function family,
then 2FE is fully secure.

As in Sect. 3, for concreteness we focus on the unbounded case where the
underlying schemes, 1FE and 2FEsel, support an unbounded (i.e., not fixed in
advance) number of key-generation queries and encryption queries. More gener-
ally, the proof of Theorem 4.1 shows that if the scheme corresponding to msk1
supports T1 encryption queries and T2 key-generation queries, the scheme cor-
responding to msk2 supports T

(1)
3 encryption queries with respect to index i = 1

and T
(2)
3 encryption queries with respect to index i = 2, and T4 key-generation

queries, and the scheme corresponding to each msks,t supports a single encryp-
tion query and T5 key-generation queries, then the resulting scheme 2FE sup-
ports min{T2, T

(1)
3 } encryption queries with respect to index i = 1, min{T1, T

(2)
3 }

encryption queries with respect to index i = 2 and min{T4, T5} key-generation
queries. When the polynomials T1, T2, T

(1)
3 , T

(2)
3 , T4 and T5 are known in advance

(i.e., do not depend on the adversary), such schemes are known to exist based
on the LWE assumption or even only one-way functions (see Sect. 2.2 for a more
elaborated discussion of the existing schemes).

Acknowledgments. We thank Eylon Yogev for various insightful discussions and the
EUROCRYPT ’16 reviewers for their useful comments.

A Generalization to t ≥ 2 Inputs

In this section we generalize our results to more than two inputs. In AppendixA.1
we generalize the definitions introduced in Sect. 2.3, and in AppendicesA.2

Multi-input Functional Encryption in the Private-Key Setting 873

and A.3 we generalize the constructions from Sects. 3 and 4, respectively. More
precisely, in AppendixA.2 we show how to obtain a selectively-secure t-input
scheme assuming any fully secure (t − 1)-input scheme. Then, in AppendixA.3
we show how to obtain a fully-secure t-input scheme assuming any fully-secure
(t − 1)-input scheme and a selectively-secure t-input scheme.

A.1 Private-Key t-Input Functional Encryption

In this section we generalize the framework introduced in Sect. 2.3 to the general
case of t-input schemes (Sect. 2.3 dealt with the case t = 2).

For i ∈ [t] let Xi = {(Xi)λ}λ∈N be an ensemble of finite sets, and let
F = {Fλ}λ∈N be an ensemble of finite t-ary function families. For each λ ∈ N,
each function f ∈ Fλ takes as input t strings, x1 ∈ (X1)λ, . . . , xt ∈ (Xt)λ, and
outputs a value f(x1, . . . , xt) ∈ Zλ. A private-key t-input functional encryption
scheme Π for F consists of four probabilistic polynomial time algorithm Setup,
Enc, KG and Dec, described as follows. The setup algorithm Setup(1λ) takes
as input the security parameter λ, and outputs a master secret key msk. The
encryption algorithm Enc(msk,m, i) takes as input a master secret key msk, a
message m, and an index i ∈ [t], where m ∈ (Xi)λ, and outputs a ciphertext cti.
The key-generation algorithm KG(msk, f) takes as input a master secret key msk
and a function f ∈ Fλ, and outputs a functional key skf . The (deterministic)
decryption algorithm Dec takes as input a functional key skf and t ciphertexts,
ct1, . . . , ctt, and outputs a string z ∈ Zλ ∪ {⊥}.

Definition A.1 (Correctness). A private-key t-input functional encryption
scheme Π = (Setup,Enc,KG,Dec) for F is correct if there exists a negligible
function neg(·) such that for every λ ∈ N, for every f ∈ Fλ, and for every
(x1, . . . , xt) ∈ (X1)λ × · · · × (Xt)λ, it holds that

Pr
[

Dec(skf ,Enc(msk, x1, 1), . . . ,Enc(msk, xt, t)) = f(x1, . . . , xt)
] ≥ 1 − neg(λ),

where msk ← Setup(1λ), skf ← KG(msk, f), and the probability is taken over the
internal randomness of Setup,Enc and KG.

Next, we generalize the security definitions from Sect. 2.3 to the t-input case.
As in Sect. 2.3, we start by defining the notion of a valid t-input adversary. Then,
we define full security and selective-message security.

Definition A.2 (Valid t-input adversary). A probabilistic polynomial-time
algorithm A is a valid t-input adversary if for all private-key t-input functional
encryption schemes Π = (Setup,KG,Enc,Dec) over a message space X1 × · · · ×
Xt = {(X1)λ}λ∈N × · · · × {(Xt)λ}λ∈N and a function space F = {Fλ}λ∈N, for
all λ ∈ N and b ∈ {0, 1}, and for all (f0, f1) ∈ Fλ and ((x0

i , x
1
i), i) ∈ Xi ×

Xi ×{i} (where i ∈ [t]) with which A queries the left-or-right key-generation and
encryption oracles, respectively, it holds that f0(x0

1, . . . , x
0
t) = f1(x1

1, . . . , x
1
t).

874 Z. Brakerski et al.

Definition A.3 (Full security). A private-key t-input functional encryption
scheme Π = (Setup,KG,Enc,Dec) over a message space X1 × · · · × Xt =
{(X1)λ}λ∈N×· · ·×{(Xt)λ}λ∈N and a function space F = {Fλ}λ∈N is fully secure
if for any valid t-input adversary A there exists a negligible function neg(·) such
that

AdvfullFEt

Π,F,A
def=

∣

∣

∣

∣

Pr
[

ExpfullFEt

Π,F,A(λ) = 1
]

− 1
2

∣

∣

∣

∣

≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExpfullFEt

Π,F,A(λ) is defined
via the following experiment:

1. msk ← Setup(1λ), b ← {0, 1}.
2. b′ ← AKGb(msk,·,·),Encb(msk,(·,·),·) (

1λ
)

.
3. If b′ = b then output 1, and otherwise output 0.

Definition A.4 (Selective-message security). A private-key t-input func-
tional encryption scheme Π = (Setup,KG,Enc,Dec) over a message space
X1×· · ·×Xt = {(X1)λ}λ∈N×· · ·×{(Xt)λ}λ∈N and a function space F = {Fλ}λ∈N

is selective-message secure if for any valid t-input adversary A = (A1,A2) there
exists a negligible function neg(λ) such that

AdvselFEt

Π,F,A
def=

∣

∣

∣

∣

Pr
[

ExpselFEt

Π,F,A(λ) = 1
]

− 1
2

∣

∣

∣

∣

≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExpselFEt

Π,F,A(λ) is defined
via the following experiment:

1. (�x1, . . . , �xt, state) ← A1

(

1λ
)

, where �xi = ((x0
i,1, x

1
i,1), . . . , (x

0
i,T , x1

i,T)) for i ∈
[t].

2. msk ← Setup(1λ), b ← {0, 1}.
3. cti,j ← Enc(msk, xb

i,j , 1) for i ∈ [t] and j ∈ [T].

4. b′ ← AKGb(msk,·,·)
2 (1λ, {cti,j}i∈[t],j∈[T], state).

5. If b′ = b then output 1, and otherwise output 0.

A.2 A Selectively-Secure t-Input Scheme from any (t − 1)-Input
Scheme

In this section we generalize the construction from Sect. 3 by presenting a
construction of a selectively-secure t-input scheme assuming any fully-secure
(t − 1)-input scheme. Let F = {Fλ}λ∈N be a family of t-input functional-
ities, where for every λ ∈ N the set Fλ consists of functions of the form
f : (X1)λ × · · · × (Xt)λ → Zλ. Our construction relies on the following building
blocks:

1. A private-key single-input functional encryption scheme FE1 = (FE1.S,
FE1.KG,FE1.E,FE1.D).

Multi-input Functional Encryption in the Private-Key Setting 875

2. A private-key (t − 1)-input functional encryption scheme FEsel
t−1 = (FEsel

t−1.S,

FEsel
t−1.KG,FEsel

t−1.E,FEsel
t−1.D).

3. A pseudorandom function family PRF = (PRF.Gen,PRF.Eval).

Our scheme FEsel
t = (FEsel

t .S,FEsel
t .KG,FEsel

t .E,FEsel
t .D) is defined as follows.

– The setup algorithm. On input the security parameter 1λ the setup algo-
rithm FEsel

t .S samples mskout ← FE1.S(1λ),mskin ← FEsel
t−1.S(1λ) and outputs

msk = (mskout,mskin).
– The key-generation algorithm. On input the master secret key msk and

a function f ∈ Fλ, the key-generation algorithm FEsel
t .KG samples a ran-

dom string z ← {0, 1}λ and outputs skf ← FE1.KG(mskout,Df,⊥,z,⊥), where
Df,⊥,z,⊥ is a single-input function that is defined in Fig. 6.

– The encryption algorithm. On input the master secret key msk, a message
m and an index i ∈ [t], the encryption algorithm FEsel

t .E has two cases:
• If (m, i) = (x1, 1), it samples a master secret key msk� ← FEsel

t−1.S(1λ), a
PRF key K ← PRF.Gen(1λ), and a random string s ∈ {0, 1}λ, and then
outputs a pair (ct1, sk1) defined as follows:

ct1 ← FE1.E(mskout, (msk�,K, 0))
sk1 ← FEsel

t−1.KG(mskin,AGGx1,⊥,0,s,msk�,K),

where AGGx,⊥,0,msk�,K is a (t − 1)-input function that is defined in Fig. 7.
• If (m, i) = (xi, i) where i ∈ {2, . . . , t}, it samples a random string τi ∈

{0, 1}λ, and outputs

cti ← FEsel
t−1.E(mskin, (xi,⊥, τi,⊥,⊥), i − 1).

– The decryption algorithm. On input a functional key skf and ciphertexts
(ct1, sk1), ct2, . . . , ctt, the decryption algorithm FEsel

t .D computes (ct′2, . . . ,
ct′t) = FEsel

t−1.D(sk1, (ct2, . . . , ctt)), sk′ = FE1.D(skf , ct1) and outputs
FEsel

t−1.D(sk′, (ct′2, . . . , ct
′
t)).

Fig. 6. The single-input function Df0,f1,z,u and the (t − 1)-input function Cf .

876 Z. Brakerski et al.

Fig. 7. The (t − 1)-input function AGGx0
1,x1

1,a,s,msk�,K .

Theorem A.5. Assuming that (1) FE1 is fully secure, (2) FEsel
t−1 is selective-

message secure, and (3) PRF is a pseudorandom function family, then FEsel
t is

selective-message secure.

As in Theorem 3.1, we note that for proving that FEsel
t is selective-message

secure it suffices to require selective-message security from FE1. However, given
the generic transformation for single-input schemes [4,19] (from selective security
to adaptive security and from message security to full security, respectively), for
simplifying the proof of Theorem A.5 we assume that FE1 is fully secure. We
refer the reader to the full version [18] for the complete proof.

A.3 From Selective to Adaptive Security for t-Input Schemes

In this section we generalize the construction from Sect. 4 to get a fully-secure
t-input functional encryption scheme assuming any fully-secure (t−1)-input func-
tional encryption scheme and any selectively-secure t-input functional encryption
scheme. Our construction relies on the following building blocks:

1. A private-key single-input functional encryption scheme FE1 = (FE1.S,
FE1.KG,FE1.E,FE1.D).

2. A private-key (t − 1)-input functional encryption scheme FEt−1 = (FEt−1.S,
FEt−1.KG,FEt−1.E,FEt−1.D).

3. A private-key t-input functional encryption scheme FEsel
t = (FEsel

t .S,FEsel
t .KG,

FEsel
t .E,FEsel

t .D).
4. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval,

PRF.Punc).

The scheme FEt = (FEt.S,FEt.KG,FEt.E,FEt.D) is defined as follows.

– The setup algorithm. On input the security parameter 1λ the setup algo-
rithm FEt.S samples mskt−1 ← FEt−1.S(1λ) and mskt ← FEsel

t .S(1λ) and then
outputs msk = (mskt−1,mskt).

– The key-generation algorithm. On input the master secret key msk and
a function f ∈ Fλ, the key-generation algorithm FEt.KG outputs skf ←
FEsel

t .KG(mskt,Df,⊥,1,⊥, . . . ,⊥
︸ ︷︷ ︸

t times

,⊥), where Df,⊥,1,⊥, . . . ,⊥
︸ ︷︷ ︸

t times

,⊥ is a t-input func-

tion that is defined in Fig. 8.

Multi-input Functional Encryption in the Private-Key Setting 877

– The encryption algorithm. On input the master secret key msk, a message
m and an index i ∈ [2], the encryption algorithm FEt−1.E has two cases:

• If (m, i) = (x1, 1), it samples τ1 ← {0, 1}λ uniformly at random, three
PRF keys Kenc,Kkey,Kmsk ← PRF.Gen(1λ) and outputs a pair (ct1, sk1)
defined as follows:

ct1 ← FEsel
t .E(mskt, (Kmsk,Kkey, τ1, 0, . . . , 0

︸ ︷︷ ︸

t−1 times

), 1)

sk1 ← FEt−1.KG(mskt−1,AGGx1,⊥,0, . . . , 0
︸ ︷︷ ︸

t−1 times

,τ1,Kmsk,Kenc,⊥, . . . ,⊥
︸ ︷︷ ︸

t−1 times

,⊥)

where the single-input function AGGx1,⊥,0, . . . , 0
︸ ︷︷ ︸

t−1 times

,τ1,Kmsk,Kenc,⊥, . . . ,⊥
︸ ︷︷ ︸

t−1 times

,⊥ is

defined in Fig. 9.
• If (m, i) = (xi, i) and i > 1, it samples τi ← {0, 1}λ uniformly at random

and outputs a pair (cti, ct′i) defined as follows:

cti ← FEsel
t .E(mskt, (1, τi), i)

ct′i ← FEt−1.E(mskt−1, (xi,⊥, 1, τi,⊥, . . . ,⊥
︸ ︷︷ ︸

t−1 times

,⊥), i − 1).

– The decryption algorithm. On input a functional key skf and t cipher-
texts (ct1, sk1) and (ct2, ct′2), . . . , (ctt, ct

′
t), the decryption algorithm FEt.D first

computes the value sk′ = FEsel
t .D(skf , ct1, . . . , ctt), then it computes the value

ct′ = FEt−1.D(sk1, ct′2, . . . , ct
′
t), and finally it outputs FE1.D(sk′, ct′).

Fig. 8. The t-input function Df0,f1,c,τ ′
1,...,τ ′

t,u and the single-input function Cf .

878 Z. Brakerski et al.

Fig. 9. The t-input function AGGx0
1,x1

1,thr2,...,thrt,τ1,Kmsk,Kenc,τ ′
1,2,...,τ ′

1,t,u1
.

The following theorem captures the security of the scheme. This theorem
states that under suitable assumptions on the underlying building blocks, the
t-input scheme FEt is fully private (see Definition 2.7). We refer the reader to
the full version [18] for the complete proof.

Theorem A.6. Let t > 1 be any fixed integer. Assuming that (1) FE1 is fully
secure, (2) FEt−1 is fully secure, (3) FEsel

t is selective-message secure, and (4)
PRF is a puncturable pseudorandom function family, then FEt is fully secure.

We note that the proof of Theorem A.6 assumes that t is a fixed constant. The
reason for this limitation is that the number of hybrids in the proof of security is
λO(t), where λ is the security parameter, which is polynomial for any constant t.
If we assume that the underlying building blocks are sub-exponentially secure,
then the proof of Theorem A.6 can be used for a super-constant number of
inputs.

References

1. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prab-
hakaran, M., Sahai, A.: Function private functional encryption and property
preserving encryption: New definitions and positive results. Cryptology ePrint
Archive, Report 2013/744 (2013)

2. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013)

3. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. Cryptology ePrint Archive, Report 2013/689 (2013)

Multi-input Functional Encryption in the Private-Key Setting 879

4. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015)

5. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 308–326. Springer, Heidelberg (2015)

6. Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: Indistinguisha-
bility obfuscation from non-compact functional encryption. Cryptology ePrint
Archive, Report 2015/730 (2015)

7. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. In: Proceedings of the 56th Annual IEEE Symposium
on Foundations of Computer Science, pp. 191–209 (2015)

8. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

9. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility
results, impossibility results and the quest for a general definition. In: Abdalla,
M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234.
Springer, Heidelberg (2013)

10. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Proceedings of the 56th Annual IEEE Symposium on Foundations
of Computer Science, pp. 171–190 (2015)

11. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

12. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 563–594. Springer, Heidelberg (2015)

13. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg
(2013)

14. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

15. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

16. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

17. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

18. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: Stronger security from weaker assumptions. Cryptology ePrint
Archive, Report 2015/158 (2015)

19. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp.
306–324. Springer, Heidelberg (2015)

20. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

880 Z. Brakerski et al.

21. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of the 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, pp. 40–49 (2013)

22. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9563, pp.
480–511. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 18

23. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

24. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014)

25. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Proceedings of the 45th
Annual ACM Symposium on Theory of Computing, pp. 555–564 (2013)

26. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

27. Iovino, V., Zebrowski, K.: Mergeable functional encryption. Cryptology ePrint
Archive, Report 2015/103 (2015)

28. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: Proceedings of the 20th Annual
ACM Conference on Computer and Communications Security, pp. 669–684 (2013)

29. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: Proceedings of the 55th Annual IEEE
Symposium on Foundations of Computer Science, pp. 374–383 (2014)

30. Komargodski, I., Segev, G., Yogev, E.: Functional encryption for randomized func-
tionalities in the private-key setting from minimal assumptions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 352–377. Springer,
Heidelberg (2015)

31. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010)

32. Sahai, A., Waters, B.: Slides on functional encryption (2008). http://www.cs.
utexas.edu/∼bwaters/presentations/files/functional.ppt

33. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, pp. 475–484 (2014)

34. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

35. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

36. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 678–697. Springer, Heidelberg (2015)

http://dx.doi.org/10.1007/978-3-662-49099-0_18
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

Non-malleable Codes for Bounded Depth,
Bounded Fan-In Circuits

Marshall Ball1(B), Dana Dachman-Soled2, Mukul Kulkarni2, and Tal Malkin1

1 Columbia University, New York, NY, USA
marshall@cs.columbia.edu

2 University of Maryland, College Park, MD, USA

Abstract. We show how to construct efficient, unconditionally secure
non-malleable codes for bounded output locality. In particular, our
scheme is resilient against functions such that any output bit is depen-
dent on at most nδ bits, where n is the total number of bits in a codeword
and 0 ≤ δ < 1 a constant. Notably, this tampering class includes NC0.

1 Introduction

Non-malleable codes were first introduced by Dziembowski, Pietrzak and
Wichs [24] as an extension of error-correcting codes. Whereas error-correcting
codes provide the guarantee that (if not too many errors occur) the receiver can
recover the original message from a corrupted codeword, non-malleable codes
are essentially concerned with security. In other words, correct decoding of cor-
rupted codewords is not guaranteed (nor required), but it is instead guaranteed
that adversarial corruptions cannot influence the output of the decoding in a
way that depends on the original message: the decoding is either correct or
independent of the original message.

Themain application of non-malleable codes is in the setting of tamper-resilient
computation. Indeed, as suggested in the initial work of Dziembowski et al. [24],
non-malleable codes can be used to encode a secret state in the memory of a
device such that a tampering adversary interacting with the device does not learn
anything more than the input-output behavior. Unfortunately, it is impossible to
construct non-malleable codes secure against arbitrary tampering, since the adver-
sary can always apply the tampering function that decodes the entire codeword
to recover the message m and then re-encodes a related message m′. Thus, non-
malleable codes are typically constructed against limited classes of tampering func-
tions F . Indeed, given this perspective, error correcting codes can be viewed as
a special case of non-malleable codes, where the class of tampering functions, F ,
consists of functions which can only modify some fraction of the input symbols.
Since non-malleable codes have a weaker guarantee than error correcting codes,
there is potential to achieve non-malleable codes against much broader classes of
tampering functions F .

Indeed, there has been a large body of work on constructing non-malleable
codes against classes of tampering functions which can potentially change every
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part II, LNCS 9666, pp. 881–908, 2016.
DOI: 10.1007/978-3-662-49896-5 31

882 M. Ball et al.

bit of the codeword, and for which no error correcting is possible. In particular,
much attention has been given in the literature to the bit-wise tampering class
(cf. [9,17,24]), where each bit of the codeword can be tampered individually, and
its generalization, the split state tampering class (cf. [1–3,13,14,23,31]), where
the codeword is split into two or more parts, each of which can be tampered
individually (and independently of other blocks). One goal in this line of papers
is to bring down the number of states, preferably to just two split states. Another
goal is to increase the rate of the code, defined as the ratio k/n where k is the
length of the original message and n is the length of the codeword outputted by
the encoding algorithm. A constant-rate code is preferred, with the best possible
rate being 1.

However, beyond some non-explicit (randomized) or inefficient constructions
for more general classes (cf. [13,24,26]), almost all known results are only for
function classes that are split state or “compartmentalized”. There are a few
exceptions, providing explicit and efficient non-malleable codes against non-
compartmentalized classes of functions, including Chabanne et al. [10]—who
address certain types of linear tampering functions—and Agrawal et al. [5,6]—
who address the class of functions that can permute the bits of a codeword, flip
individual bits, or set them to 0 or 1.

Other than the above results, achieving (explicit and efficient) non-malleable
codes against natural tampering classes that are not split-state is a fundamental
open question in this area, and is the focus of our paper.

1.1 Our Results

In this work, we devise explicit, efficient, and unconditionally secure non-
malleable codes against a powerful tampering class which includes all bounded-
depth circuits with bounded fan-in and unbounded fan-out. Specifically, we con-
sider the class Local�o , consisting of all functions f : {0, 1}n → {0, 1}n that can
be computed with output locality �o(n), where each output bit depends on at
most �o(n) input bits. Note that this class includes all fan-in-b circuits of depth
at most logb �o.

The class of bounded depth circuits is natural both as a complexity class
and in the context of practical tampering attacks, where it seems to realistically
capture the capabilities of a tampering adversary who has limited time to tamper
with memory before the memory gets overwritten and/or refreshed. Moreover,
the class of bounded output locality functions is a natural class in its own right,
and is in fact much broader, including arbitrarily complex functions (even those
outside of P), as long as the output locality constraint is maintained; we do not
impose any constraints on the number or type of gates in the circuit. Finally, as
we discuss below, our constructions actually hold for an even broader class, that
also includes all split state functions, and beyond. We prove the following.

Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits 883

Main Theorem (informal): For any �o = o(n
log n), there is an explicit,

unconditionally secure non-malleable code for Local�o , which encodes a
2k bit string into a string of length n = Θ(k�o) bits. The encoding and
decoding run in time polynomial in n, namely poly(k, �o).

This construction can be instantiated for any �o = o(n/ log n), and the resulting
code has rate Θ(1/�o). In general, since the output length is n = Θ(k�o) bits,
this may result in super-polynomial length encoding. However, using sublinear
locality nδ yields an efficient code. We highlight this, as well as the special cases
of constant depth circuits (a subset of LocalO(1)), in the following.

Corollaries: There are efficient, explicit, and unconditionally secure non-
malleable codes for the following classes:

– Localn
δ

for any constant 0 ≤ δ < 1, with inverse-polynomial rate.
– NC0with rate Θ(1/�o) for any �o = ω(1).
– NC0

c for any constant c, with constant rate.

The first corollary follows by instantiating the main theorem with �o = nδ, the
second by using any �o that is super constant (e.g., log∗(n)), and the third by
using �o = 2c (a constant).

While our result for NC0 correspond to constant depth circuits, the first
corollary above implies as a special case that the code is also non-malleable
against any δ log n depth NC circuit, for any constant 0 ≤ δ < 1. Note that, since
separations between P and NC1 are not known, constructing (unconditional) non-
malleable codes against NC1 is unlikely, since an attacker in P can always decode
and re-encode a related message, thus immediately breaking non-malleability.

Intermediate Results for (Input-and-Output) Local Functions. To prove
our results, we use the concept of non-malleable reduction, introduced by
Aggarwal et al. [2]. Informally, a class of functions F reduces to the class G,
if there is an encoding and decoding algorithms satisfying the following: apply-
ing the encoding to the input, then applying any f ∈ F , and then applying
the decoding, can be simulated by directly applying some function g ∈ G to
the input. [2] prove that in this case a non-malleable code for G can be used
to construct one for F , and further prove a composition theorem, providing an
elegant and powerful way to construct non-malleable codes.

Following this technique, we start by proving two separate results, and com-
pose them (together with known results for the class of split state functions), to
obtain a restricted variant of the main theorem above. We then use the same
ideas to show a single construction allowing for a better combined analysis that
achieves the full main theorem (via reduction to the class of split state functions).
We believe our techniques are more comprehensible presented in this modular
fashion, and the intermediate results are of independent interest.

First, we consider the class Local�o

�i
of local functions, with output locality

�o as well as input locality �i (namely each input bit influences at most �i out-
put bits). This class includes bounded-depth circuits with bounded fan-in and

884 M. Ball et al.

bounded fan-out. Our first intermediate result shows that the class LocalÕ(
√

n)

Õ(
√

n)

(and in fact a larger, leaky version of it) can be non-malleably reduced to the class
of split state functions. Plugging in known results for non-malleable split state
codes, we obtain a non-malleable code for this class. Our second result shows
a non-malleable reduction of the class LocalÕ(

√
n) to the above class (thus giv-

ing a non-malleable code for functions with output locality Õ(
√

n)). Finally, we
combine the encoding schemes presented previously to a single encoding scheme
(via a reduction to split state class), and improve the analysis to show resilience
against o(n/ log n) output locality.

We remark that our first technical result for (input and output) local func-
tions is of independent interest, and although as stated it is strictly weaker
than our output-local results, the construction can have advantages in terms
of complexity and concrete parameters, and has stronger resilience to tamper-
ing functions that are both local and split-state, as we discuss next. We believe
that both Local�o

�i
and Local�o are interesting classes, capturing natural types of

tampering adversaries.

Extended Classes: Combining with Split State and Beyond. Our results
are in fact broader than presented so far. First, every one of our results works
not only for the class of functions claimed, but also for any split state function.
This is because for all of our schemes, encoding is applied independently on each
half of the input, and thus can handle a split-state tampering function trivially.

Furthermore, our intermediate result for (input-output) local functions can
handle any function that applies arbitrary changes within each part and has
bounded input and output locality between the two parts (this class is much
broader than all functions that are either split state or local). More precisely,
we can handle functions where any bit on the left affects at most Õ(

√
n) bits on

the right (and vice-versa), and any bit on the left is affected by at most Õ(
√

n)
bits on the right (and vice-versa).

Finally, our constructions can also handle some leakage to the tampering
function, capturing an adversary that first leaks some bits, and can then select a
tampering function. For our input-output local tampering result, the leakage can
be a constant fraction of the bits, while for our output-local tampering result,
the leakage is more limited.

Relation of Our Class to Previous Work. As mentioned above, almost all
previous results presenting explicit and efficient non-malleable codes, do so for a
split state tampering class (with two or more states). These classes are a special
case of ours, as we explained, which is not surprising given that we use results for
split state functions as a starting point to prove our result. As for the exceptions
that go beyond split state, we note that the class of functions that permute
the bits or apply bitwise manipulations, introduced by [5], is also a special case
of our class, as it is a subset of Local1 (in fact, even a subset of Local11). The
restricted linear tampering class considered by [10], on the other hand, seems
incomparable to our class of output-local functions.

Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits 885

Thus, in terms of the tampering class captured, our results simultaneously
encompass (and significantly extend) almost all previously known explicit, effi-
cient constructions of non-malleable codes (we are aware of only one exception).
This is not the case in terms of the rate, where several previous works focus on
optimizing the rate for smaller classes of functions (e.g., [14] achieve rate 1−o(1)
non-malleable codes for bit-wise tampering functions), while we only achieve a
constant rate for these classes.

We also mention that the original work of Dziembowski et al. [24] already
considered the question of constructing non-malleable codes against the class
Localδ·n, where n is the length of the codeword and δ < 1 is a constant. We
emphasize, however, that in [24] (and an improvement in [13]), they showed a
construction of non-malleable codes against Localδ·n in a non-standard, random
oracle model where the encoding and decoding functions make queries to a ran-
dom oracle, but the adversarial tampering function does not query the random
oracle. Our work shows that it is possible to construct non-malleable codes for
Localδ·n for δ = o(1/ log n) in the standard model, with no random oracle.

On Randomized Decoding. Our constructions require the decoding function
of the non-malleable code to be randomized. We note that, unlike the case of
error correcting codes and encryption schemes, deterministic decoding for non-
malleable codes does not seem to be without loss of generality, even in the case
where the encoding scheme enjoys perfect correctness. To see why, note that
while perfect correctness guarantees that all possible coins of the decoding algo-
rithm produce the same output on a valid codeword, correctness provides no
guarantees in the case when the codeword is corrupted and so it is not possible
to derandomize by simply fixing an arbitrary sequence of coins for the decoder.
Moreover, since the decoder holds no secret key in the non-malleable codes set-
ting, it is also not possible to derandomize the decoding process by including
the key of a pseudorandom function in the secret key. Since the encoding pro-
cedure must be randomized, and since non-malleable codes are only secure in
the one-time setting—each time the codeword is decoded it must immediately
be refreshed by re-encoding the original message—we believe that allowing ran-
domized decoding is the natural and “correct” definition for non-malleable codes
(although the original definition required deterministic decoding).

Interestingly, we can combine our technical building blocks into a construc-
tion of non-malleable codes against Local�o for any �o ≤ n1/4, using deterministic
decoding. Unfortunately, when compared to our construction utilizing random-
ized decoding, this construction has a lower rate of O(1/�o

2) (instead of O(1/�o)),
and due to that also lower output locality that can be supported (Localn

1/4

instead of Localn
δ

or Localo(n/ log n) without efficiency).
We therefore leave as an interesting open question to resolve whether ram-

domized decoding is necessary for achieving security against certain tampering
classes, F , or whether there is a generic way to derandomize decoding algorithms
for non-malleable codes.

886 M. Ball et al.

1.2 Technical Overview

We give a high level technical overview of our constructions. We use as an under-
lying tool a so called “reconstructable probabilistic encoding scheme”, a code
that can correct a constant fraction of errors (denoted cerr), and enjoys some
additional secret-sharing like properties: given a (smaller) constant fraction csec

of the codeword gives no information on the encoded message, and can in fact be
completed to a (correctly distributed) encoding of any message. This or similar
tools were used in previous works either implicitly or explicitly, e.g., the construc-
tion based on Reed Solomon codes and Shamir secret sharing with Berlekamp-
Welch correction, as used already in [8] is a RPE (any small enough subset of
shares is distributed uniformly at random, and any such collection of shares can
be extended to be the sharing of any message of our choice). Other RPE schemes
with possibly improved parameters can be constructed from, e.g., [15,16,19,21].

Handling Local Functions. Local functions are functions that have both
small input and small output locality (i.e. each input bit affects a small number
of output bits and each output bit depends on a small number of input bits).
Our goal is to show a non-malleable reduction from a class of local functions with
appropriate parameters, to the class of split-state functions. Loosely speaking,
a non-malleable reduction from a class F to a class G, is a pair (E,D) of encod-
ing/decoding functions along with a reduction that transforms every f ∈ F into
a distribution Gf over functions g ∈ G, such that for every x, the distributions
D(f(E(x))) and Gf (x) are statistically close. In the case of reductions to split-
state, we let x = (L,R) where L,R ∈ {0, 1}k. We want to construct (E,D) such
that, informally, given any local f , the effect of applying f to the encoding E(x)
and then decoding D(f(E(x))), can be simulated by applying some split state
function g = (gL, gR) directly to x = (L,R).

We will use an encoding that works on each half of the input separately,
and outputs E(L,R) = (EL(L), ER(R)) = (sL, sR), where |sL| = nL, |sR| = nR

(we will refer to these as “left” and “right” sides, though as we will see they
will not be of equal lengths, and we will have appropriately designed decod-
ing algorithms for each part separately). Now for any given local f , consider
f(sL, sR) = (fL(sL, sR), fR(sL, sR)). Clearly, if fL only depended on sL and fR

only depended on sR, we would be done (as this would naturally correspond to
a distribution of split state functions on the original x = (L,R)). However, this
is generally not the case, and we need to take care of “cross-effects” of sR on fL

and sL on fR.
Let’s start with fL, and notice that if its output locality is at most �o, then

at most nL�o bits from sR could possibly influence the output of fL. Thus, we
will use ER that is an RPE with nL�o ≤ csecnR. This means that we can just
fix the relevant nL�o bits from sR = ER(R) randomly (and independently of R),
and now fL will only depend on sL, while sR can still be completed to a correctly
distributed encoding of R. Note that this requires making the right side larger
than the left side (nR ≥ nL�o

csec).

Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits 887

Now let’s consider fR. Clearly we cannot directly do the same thing we did for
fL, since that technique required nR to be much longer than nL, while applying
it here would require the opposite. Instead, we will take advantage of the smaller
size on the left, and its limited input locality. Specifically, if the input locality of
fL is �i, then at most nL�i bits on the right side can be influenced by sL.

A first (failed) attempt would be to just make sure that the encoding on
the right can correct up to nL�i errors, and hope that we can therefore set sL

arbitrarily when computing fR and the resulting encoding would still be decoded
to the same initial value R. While this argument works if the only changes made
to sR (a valid codeword) are caused by the “crossing bits” from sL, it fails to
take into account that fR can in fact apply other changes inside sR, and so it
could be that sR is malformed in such a way that applying fR will cause it to
decode differently in a way that crucially depends on sL. The issue here seems
to be that there is an exact threshold for when the decoding algorithm succeeds
or not, and thus the function can be designed so that fR is just over or under
the threshold depending on the left side.

To overcome this problem, we use randomized decoding and a “consistency
check” technique introduced in [15], and a forthcoming version by the same
authors [16], in a different context. Roughly speaking, we make the right side
encoding redundant, so that any large enough subset of bits is enough to recover
R. An RPE has this property due its error correction capabilities. The decoding
algorithm will decode via the first such subset, but will check a random subset of
bits were consistent with a particular corrected codeword. This will yield similar
behavior, regardless of which subset is used to decode. This construction has
various subtleties, but they are all inherited from previous work, so we do not
explain them here. The main point is that, like in [15,16], while the real decoding
algorithm uses the first subset large enough, it can be simulated by using any
other large enough subset.

Now, using the fact that “large enough” is not too large, and that at most
nL�i bits on the right side can be influenced by sL, we can show that with high
probability, there is a large enough “clean” subset of sR that has no influence
from sL. The real decoding algorithm could be simulated by a decoding that
uses this clean subset, which in turn means that the output of the decoding on
fR(sL, sR) is in fact independent of sL, as needed.

Putting the above together provides us the first result, namely a non-
malleable reduction from local to split state functions. We note that the proof
above in fact works for a more general class of functions (a fact we will use in
our second construction). In particular, the first part requires a limit on the
output locality of fL, and the second part requires a limit on the output locality
of fR and the input locality of fL, where all of these only refer to “cross-over”
influences (within each part separately f can be arbitrary). Moreover, due to our
use of encoding, security is maintained even with leakage, as long as the leakage
is a constant fraction of bits on the left and a constant fraction on the right,
independently. Similarly, security is maintained even when a constant fraction
of bits on the left do not adhere to the input locality bound.

888 M. Ball et al.

Removing Input Locality. We next present a non-malleable reduction from
output local functions (which have no restriction on input locality) to local
functions. Now let f be an output local tampering function. Since the input and
output to f are the same size, note that the average input locality of f can be
bounded by its output locality, �o. Our local construction above requires low
input locality for the left side, but also requires the left side to be much shorter
than the right side. Unfortunately, what this means is that the input locality of
all bits on the left side of the local encoding described above can be far higher
than average. So, in order to bound the average input locality of the left side,
we must increase the length of the left side, but this destroys our analysis from
the first construction.

In order to achieve the best of both worlds, our idea is to construct a non-
malleable reduction which increases the size of the left side of the underlying local
encoding by adding dummy inputs. The “relevant” inputs, which correspond
to bits of the left side of the underlying local encoding, are placed randomly
throughout the left side of the new encoding. The idea is that since the adversary
does not know which bit positions on the left side are “relevant,” it cannot
succeed in causing too many “relevant” positions to have input locality that is
too much above average.

But now, in order to decode properly, the decoding algorithm must be able
to recover these “relevant” locations, without sharing a secret state with the
encoding algorithm (which is disallowed in the standard non-malleable codes
setting). In order to do this, the first idea is to encode the relevant positions on
the left side of the new encoding in an additional string, which is then appended
to the left side during the new encoding procedure. Unfortunately, it is not clear
how to make this work: Since this additional string is long, it can depend on
a large number of input bits from both the left and right sides; on the other
hand, in order to obtain a reduction from output local to local functions, the
reduction must be able to recover this (possibly tampered) additional string so
that it “knows” which output bits of ˜XL are relevant.

The solution is to use a PRG with a short seed. The seed of the PRG is now
the additional string that is appended to the left side and the output of the PRG
yields an indicator string which specifies the “relevant” locations for decoding.
Note that now since the PRG seed of length r is short, we can, using the leakage
resilient properties of the underlying local code, leak all r ·�o ≤ csec ·nL ≤ csec ·nR

number of bits affecting these output locations from both the left and right sides.
Moreover, because the tampering attacker is very limited, in the sense that it

must choose the tampering function before learning any information about the
output of the PRG, we are able to show that Nisan’s PRG (see Definition 12),
an unconditional PRG is sufficient for our construction. Thus, our construction
does not rely on any computational assumption.

Improving the Parameters. Ultimately the technique sketched above and
presented in the body of the paper imposes two restrictions on output local-
ity (modulo smaller terms): (1) nL�o ≤ nR (2) �o ≈ �i ≤ nL. Together these

Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits 889

restrictions imply tolerance against output locality of approximately
√

n. The
first restriction follows from the asymmetric encoding to handle bits on the left
dependent on the right. The second restriction results from handling bits on the
left of affecting the right side’s consistency check.

To bypass this
√

n barrier, we consider the two encoding schemes as a single
scheme. Then in analysis, we can use the pseudorandom hiding of the left side
encoding to relax the second bound. Namely, with high probability only a small
portion of the left side RPE affects the consistency check, even if the consistency
check and/or output locality is large with respect to nL. This simple change in
analysis gives resilience against o(n/ log n) output locality.

1.3 Other Related Work

The concept of non-malleability was introduced by Dolev, Dwork and Naor [22]
and has been applied widely in cryptography since. Although it was defined in
computational setting, most recent work on non-malleability has been in the
information-theoretic setting. The study of non-malleable codes was inspired by
error-correcting codes and early works on tamper resilience [27–29].

Dziembowski, Pietrzak and Wichs [24] motivated and formalized the notion of
non-malleable codes. They showed the existence of such codes for the class of all
bit-wise independent functions (which can be viewed as split state with n parts).
Later work on split state classes improved this by reducing the number of states,
increasing the rate, or adding desirable features to the scheme. For example, [23]
presented an information theoretic non-malleable code for 1-bit messages against
2 state split state functions, followed by [3], who gave an information-theoretic
construction for k-bit messages using results from additive combinatorics.
A constant rate construction for a constant (>2) number of states was pro-
vided in [3,12]. This line of research culminated with the result of [2], who used
their reduction-based framework to achieve constant rate codes for two state
split-state functions (using several intermediate constructions against various
classes of functions). [1] improve this to (optimal) rate 1 non-malleable codes for
two states, in the computational setting.

Beyond the above and other results constructing explicit efficient codes, there
are several inefficient, existential or randomized constructions for much more
general classes of functions (sometimes presented as efficient construction in a
random-oracle model). In particular, Dziembowski et al. [24] gave an existential
proof for the existence non-malleable codes secure against any ‘small-enough’
tampering family (<22n

). [13,26] give randomized construction of non-malleable
codes against bounded poly-size circuits (where the bound on the circuit size is
selected prior to the code).

Several other variants and enhanced models were considered. For example,
[17], in the context of designing UC secure protocols via tamperable hardware
tokens, consider a variant of non-malleable codes which has deterministic encryp-
tion and decryption. It is interesting to note the contrast between their restric-
tion to deterministic encoding (and decoding) and our relaxation to randomized

890 M. Ball et al.

decoding (and encoding). They provide inefficient general constructions and effi-
cient constructions for bit-wise functions and generalizations. [31], in the con-
text of securing cryptographic protocols against continual split-state leakage and
tampering, provide a (computational) non-malleable code for split state func-
tions, in the CRS model. This was one of the first works using the split state
model for tampering. [11,20] consider a variant of non-malleable codes that is
also locally decodable and updatable. [25] allow continual tampering, and [4]
allow for bounded leakage model. As discussed previously, [10] considers a sub-
class of linear tampering functions. We guide the interested reader to [30,31] for
illustrative discussion of various models.

2 Preliminaries

2.1 Notation

Firstly, we present some standard notations that will be used in what follows.
For any positive integer n, [n] := {1, . . . , n}. If x = (x1, . . . , xn) ∈ Σn (for
some set Σ), then xi:j := (xi, xi+1, . . . , xj−1, xj) for i ≤ j. If Σ is a set, then
ΣΣ := {f : Σ → Σ}, the set of all functions from Σ to Σ. We say two vectors
x, y ∈ Σn are ε-far if they disagree on at least ε · n indices, |{i : xi �= yi}| ≥ εn.
Conversely, we say two vectors x, y ∈ Σn are (1−ε)-close if they agree on at least
(1−ε)·n indices, |{i : xi = yi}| ≥ (1−ε)n. Alternatively, for x, y ∈ GF(2)n define
their distance to be d(x, y) := ‖x+y‖0

n . (I.e. x and y are ε-far if d(x, y) ≥ ε.) We
take the statistical distance between two distributions, A and B, over a domain
X to be Δ(A,B) := 1/2

∑

x∈X |A(x) − B(x)|. We say A and B are statistically

indistinguishable, A
s≈ B, if Δ(A,B) is negligible, in some parameter appropriate

to the domain.

2.2 Non-malleable Codes and Reductions

Definition 1 (Coding Scheme). [24] A Coding scheme, (E,D), consists of a
randomized encoding function E : {0, 1}k 	→ {0, 1}n and a randomized decoding
function D : {0, 1}n 	→ {0, 1}k ∪{⊥} such that ∀x ∈ {0, 1}k,Pr[D(E(x)) = x] = 1
(over randomness of E and D).

We note that this definition differs from the original one given in [24], in
that we allow the decoding to be randomized, while they required determin-
istic decoding. While this technically weakens our definition (and a code with
deterministic decoding would be preferable), we feel that allowing randomized
decoding fits the spirit and motivation of non-malleable codes, and possibly is
“the right” definition (which was simply not used before because it was not
needed by previous constructions). More importantly, it may allow for a wider
classes of functions.

This difference (allowing randomized decoding) also applies to the rest of
the section, but all the previous results (in particular, Theorem1) go through in

Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits 891

exactly the same way, as long as we have independent randomness in all encoding
and decoding.

Originally, non-malleable codes were defined in the following manner:

Definition 2 (Non-Malleable Code). [2] Let F denote a family of tampering
functions. Let E : B → A, D : A → B be a coding scheme. For all f ∈ F and all
x ∈ B define:

Tamperf
x := {c ← E(x); c̃ ← f(c); x̃ ← D(c̃); output: x̃}.

Then, (E,D) is an ε-non-malleable code with respect to F , if there exists a dis-
tribution Df over {0, 1}k ∪ {⊥, same} such that ∀x ∈ B, the statistical distance
between

Simf
x := {x̃ ← Df ; output: x if x̃ = same & x̃, otherwise},

and Tamperf
x is at most ε.

The above of definition has its origins in [24]. Dziembowski, Pietrzak, and
Wichs required the simulator to be efficient. Aggarwal et al. demonstrated that
the above relaxation is, in fact, equivalent for deterministic decoding. Allowing
decoding to be randomized does not affect their proof. For this reason, we will not
concern ourselves with the efficiency of a simulator (or, equivalently, sampling
relevant distributions) for the remainder of this paper.

Aggarwal et al. provide a simpler alternative to the above simulation-based
definition, which they prove equivalent. [2] Their definition is based on the notion
of non-malleable reduction, which we will use.

Definition 3 (Non-Malleable Reduction). [2] Let F ⊂ AA and G ⊂ BB

be some classes of functions. We say F reduces to G, (F ⇒ G, ε), if there
exists an efficient (randomized) encoding function E : B → A, and an efficient
(randomized) decoding function D : A → B, such that

(a) ∀x ∈ B,Pr[D(E(x)) = x] = 1 (over the randomness of E,D).
(b) ∀f ∈ F ,∃G : ∀x ∈ B, Δ(D(f(E(x)));G(x)) ≤ ε, where G is a distribution
over G and G(x) denotes the distribution g(x), where g ← G.

If the above holds, then (E,D) is an (F ,G, ε)-non-malleable reduction.

Definition 4 (Non-Malleable Code). [2] Let NMk denote the set of triv-
ial manipulation functions on k-bit strings, consisting of the identity function
id(x) = x and all constant functions fc(x) = c, where c ∈ {0, 1}k.

A coding scheme (E,D) defines an (F , k, ε)-non-malleable code, if it defines
an (F ,NMk, ε)-non-malleable reduction.

Aggarwal et al. also prove the following useful theorem for composing non-
malleable reductions.

Theorem 1 (Composition). [2] If (F ⇒ G, ε1) and (G ⇒ H, ε2), then (F ⇒
H, ε1 + ε2).

We note that the proof given in [2] goes through unchanged with randomized
decoding.

892 M. Ball et al.

2.3 Tampering Families

Definition 5 (Split-State Model). [24] The split-state model, SSk, denotes
the set of all functions:

{f = (f1, f2) : f(x) = (f1(x1:k) ∈ {0, 1}k, f2(xk+1:2k) ∈ {0, 1}k) for x ∈ {0, 1}2k}.

Theorem 2 (Split-State Non-malleable Codes with Constant Rate).
[2] There exists an efficient, explicit (SSO(k), k, 2−Ω(k)) non-malleable code,
(ESS,DSS).

We next define a class of local functions, where the number of input bits
that can affect any output bit (input locality) and the number of output bits
that depend on an input bit (output locality) are restricted. Loosely speaking,
an input bit xi affects the output bit yj if for any boolean circuit computing f ,
there is a path in the underlying DAG from xi to yj . The formal definitions are
below, and our notation follows that of [7].

Definition 6. We say that a bit xi affects the boolean function f ,
if ∃ {x1, x2, · · · xi−1, xi+1, · · · xn} ∈ {0, 1}n−1 such that,
f(x1, x2, · · · xi−1, 0, xi+1, · · · xn) �= f(x1, x2, · · · xi−1, 1, xi+1, · · · xn).

Given a function f = (f1, . . . , fn) (where each fj is a boolean function), we
say that input bit xi affects output bit yj, or that output bit yj depends on input
bit xi, if xi affects fj.

Definition 7 (Output Locality). A function f : {0, 1}n → {0, 1}n is said to
have output locality m if every output bit fi is dependent on at most m input
bits.

Definition 8 (Input Locality). A function f : {0, 1}n → {0, 1}n is said to
have input locality � if every input bit fi is affects at most � output bits.

Definition 9 (Local Functions). [7] A function f : {0, 1}n → {0, 1}n is said
to be (m, �)-local, f ∈ Localm� , if it has input locality � and output locality m. We
denote the class Localmn (namely no restriction on the input locality) by Localm.

The above notions can be generalized to function ensembles {fn : {0, 1}n →
{0, 1}n}n∈Z with the following corresponding locality bound generalizations:
�(n),m(n).

Recall that NC0 is the class of functions where each output bit can be com-
puted by a boolean circuit with constant depth and fan-in 2 (namely in constant
parallel time). It is easy to see that NC0⊆ LocalO(1).

2.4 Reconstructable Probabilistic Encoding Scheme

Reconstructable Probabilistic Encoding (RPE) schemes were defined by Choi
et al. (in an in-submission journal version of [15], as well as in [16]), extending a
definition given by Decatur, Goldreich and Ron [21]. Informally, this is an error

Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits 893

correcting code, which has an additional secrecy property and reconstruction
property. The secrecy property allows a portion of the output to be revealed
without leaking any information about the encoded message. The reconstruction
property allows, given a message and a partial codeword for it, to reconstruct
a complete consistent codeword. Thus, this is a combination of error correcting
code and secret sharing, similar to what has been used in the literature already
starting with Ben-Or, Goldwasser, and Wigderson [8].

Definition 10 (BinaryReconstructable Probabilistic Encoding). [15,16]
We say a triple (E,D,Rec) is a binary reconstructable probabilistic encoding scheme
with parameters (k, n, cerr, csec), where k, n ∈ N, 0 < cerr, csec < 1, if it satisfies the
following properties:

1. Error correction. E : {0, 1}k → {0, 1}n is an efficient probabilistic proce-
dure, which maps a message m ∈ {0, 1}k to a distribution over {0, 1}n. If we
let W denote the support of E, any two strings in W are 2cerr-far. Moreover,
D is an efficient procedure that given any w′ ∈ {0, 1}n that is (1 − ε)-close to
some string w in W for any ε ≤ cerr, outputs w along with a consistent m.

2. Secrecy of partial views. For all m ∈ {0, 1}k and all sets S ⊂ [n] of size
≤�csec · n�, the projection of E(m) onto the coordinates in S, as denoted by
E(m)|S, is identically distributed to the uniform distribution over {0, 1}�csecn	.

3. Reconstruction from partial views. Rec is an efficient procedure that
given any set S ⊂ [n] of size ≤�csec ·n�, any I ∈ {0, 1}n, and any m ∈ {0, 1}k,
samples from the distribution E(m) with the constraint ∀i ∈ S,E(m)i = Ii.

Choi et al. show that a construction of Decatur, Goldreich, and Ron [21]
meets the above requirements.

Lemma 1. [15,16] For any k ∈ N, there exists constants 0 < crate, cerr, csec < 1
such that there is a binary RPE scheme with parameters (k, cratek, cerr, csec).

Remark 1. To achieve longer encoding lengths ck, with the same cerr and csec

parameters, one can simply pad the message to an appropriate length.

Specifically, Decatur, Goldreich and Ron [21] construct a probabilistic encod-
ing scheme that possesses the first two properties listed above. Moreover, since
the construction they present, instantiates E with a linear error-correcting code,
we have that property (3) holds. (Any linear error-correcting code has efficient
reconstruction.)

These are the parameters we use here, but we believe it may be possible to
achieve a better rate if we use parameters based on the recent result of Coretti
et al. [18] (see also [14]).

2.5 Boolean Function Restrictions

The following two definitions are special cases of Boolean function restrictions. It
will be convenient to have explicit notation for restrictions of Boolean functions
f where the input/output of the function f has a particular form.

894 M. Ball et al.

Definition 11 (Restriction). For a vector v ∈ {0, 1, ∗}n and a Boolean func-
tion f : {0, 1}n → {0, 1}n the restriction of f to v, f̃ |v is defined as f̃ |v(x) = f(z)
where,

zi =

{

xi vi = ∗
vi vi ∈ {0, 1}

Let f : D → {0, 1}r be a function. Then, we denote by fi the function which
outputs the i-th output bit of f . Let f : D → {0, 1}r be a function and let
v ∈ {0, 1}r be a vector. Then, we denote by fv the function which outputs all fi

such that vi = 1.

2.6 Pseudorandom Generators of Space-Bounded Computation

Definition 12. [32] A generator prg : {0, 1}m → ({0, 1}n)k is a pseudorandom
generator for space(w) and block size n with parameter ε if for every finite state
machine, Q, of size 2w over alphabet {0, 1}n we have that

|Pr
y

[Q accepts y] − Pr
x

[Q accepts prg(x)]| ≤ ε

where y is chosen uniformly at random in ({0, 1}n)k and x in {0, 1}m.

Theorem 3. [32] There exists a fixed constant c > 0 such that for any w, k ≤ cn

there exists an (explicit) pseudorandom generator prg : {0, 1}O(k)+n → {0, 1}n2k

for space(w) with parameter 2−cn. Moreover, prg can be computed in polynomial
time (in n, 2k).

3 Non-malleable Codes for Local
�o(n)
�i(n)

Theorem 4. (E,D) is a (Local�o(k)
�i(k) ⇒ SSk, negl(k))-non-malleable reduction

given the following parameters for Local�o(k)
�i(k) (where crate, cerr, csec are taken from

Lemma 1):

– �o ≤ cratecseck
log2(k)

.
– �i ≤ 12�o/csec.
– n := crate k2

log2(k)
+ cratek = O

(

k2

log2(k)

)

.

Putting together Theorem4 with Theorems 1 and 2, we obtain the following.

Corollary 1. (E ◦ESS,DSS ◦D) is a (Local��, k, negl(k))-non-malleable code with
rate Θ(1/�), where � = Õ(

√
n).

Remark 2. The reduction presented below is, in fact, a (XLocal�� ⇒
SSk, negl(k))-non-malleable reduction, where � = Õ(

√
n) and XLocal�� is the

following class of functions f : {0, 1}nL+nR → {0, 1}nL+nR :

Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits 895

– For i = 1, . . . , nL, there are at most � indices j ∈ {nL + 1, . . . , nL + nR} such
that the i-th input bit affects fj . And, for i = nL + 1, . . . , nL + nR, there are
at most � indices j ∈ {1, . . . , nL} such that the i-th input bit affects fj .

– For i = 1, . . . , nL, there are at most � indices j ∈ {nL + 1, . . . , nL + nR} such
that the fi-th is affected by the j-th input bit. And, for i = nL+1, . . . , nL+nR,
there are at most � indices j ∈ {1, . . . , nL} such that the fi-th is affected by
the j-th input bit.

In other words, the reduction holds for a generalized variant of split state tam-
pering where we only restrict locality with respect to the opposite side, and allow
arbitrary locality within each side. nL and nR are the lengths of the left and
right side codewords, respectively.

We construct an encoding scheme (E,D) summarized in Fig. 1 and parame-
trized below. We then show that the pair (E,D) is an (Local�o(k)

�i(k) ,SSk, negl(k))-
non-malleable reduction. This immediately implies that given a non-malleable
encoding scheme (Ess,Dss) for class SSk (where SS is the class of split-state func-
tions), the encoding scheme Π = (Ebd,Dbd), where Ebd(m) := E(Ess(m)) and
Dbd(s) := Dss(D(s)) yields a non-malleable code against Local�o(k)

�i(k) .

We parametrize our construction for Local�o(k)
�i(k) ⇒ SSk with the following:

– (EL,DL) parametrized by (k, nL, cerrL , csecL) := (k, cratek, cerr, csec) where
cerr, csec, crate are taken from Lemma 1.

– ncheck := log2(k).
– �sec :=

√

cnL

ncheck
= Θ(

√
k

log(k)).

– (ER,DR) parametrized by (k, nR, cerrR , csecR) := (k, �ocratek
csec , cerr, csec).

– n := �oc
ratek + cratek = O(k2

log2(k))
.

Note that this setting of parameters is taken with our forthcoming reduc-
tion in mind. (See Corollary 2 and Theorem 5.) One may take any parametriza-
tion for which (a) such RPEs exist, (b) (1 − cerr/4)ncheck is negligible in k, and
(c) Observation 1 (below) is satisfied. For certain applications, parametrization
other than ours may be advantageous.

Let f(sL, sR) = (fL(sL, sR), fR(sL, sR)), where (sL, sR) ∈ {0, 1}nL × {0, 1}nR

and fL(sL, sR) ∈ {0, 1}nL and fR(sL, sR) ∈ {0, 1}nR .

– Let SR→L denote the set of positions j such that input bit sR
j affects the output

of fL.
– Let SL→R denote the set of positions i such that input bit sL

i affects the output
of fR.

– For J ⊂ [nR], let SJ
L→R denote the set of positions i such that input bit sL

i

affects the output of fR
j for some j ∈ J .

– For a set Rcheck ⊆ nR of size ncheck, let Scheck denote the set of positions i such
that input bit sL

i affects the output of fR
� for some � ∈ Rcheck.

The sets defined above are illustrated in Fig. 2. We observe the following
immediate facts about their sizes:

896 M. Ball et al.

Fig. 1. The (Local
�o(k)

�i(k)
, SS, negl(k))-non-malleable reduction (E,D)

Observation 1. For f ∈ Local�o

�i
, we have the following:

1. There is some set J∗ ⊂ [nR] such that |J∗| = t and |SJ∗
L→R| = 0 (from now

on, J∗ denotes the lexicographically first such set). (Since |SL→R| ≤ �i · nL ≤
nR − t.)

2. By choice of parameters nL, ncheck, c
sec
L , we have that |Scheck| ≤ nL ·csecL . (Since

Scheck ≤ �o · ncheck.)
3. By choice of parameters nL, nR, csecR , we have that |SR→L| ≤ �o ·nL ≤ nR ·csecR .

Now, for every f ∈ Local�o

�i
, we define the distribution Gf over SSk. A draw from

Gf is defined as follows:

– Choose a random subset Rcheck ⊆ [nR] of size ncheck.
– Choose vectors IL ∈ {0, 1}nL × {∗}nL , IR ∈ {∗}nL × {0, 1}nR uniformly at

random.
– Let J∗ be the subset of [nR] as described in Observation 1.
– The split-state tampering function g := (gL, gR) ∈ SSk has IL, IR hardcoded

into it and is specified as follows:

Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits 897

sL and sR is the split state representation of the output of the encoded message.

sL1 sL2 sL3 · · · sLnL

σR
1 σR

2 σR
3 · · · σR

i−1 σR
i σR

i+1 · · · σR
nR−2 σR

nR−1 σR
nR

σL and σR is the split state representation of the output of the tampering function.

σL
1 σL

2 σL
3 · · · σL

nL

sR1 sR2 sR3 · · · sRi−1 sRi sRi+1 · · · sRnR−2 sRnR−1 sRnR

Fig. 2. The adversary chooses tampering function f = (fL, fR) ∈ Local
�o(k)

�i(k)
which takes

inputs (sL, sR) and produces outputs (σL, σR). The highlighted bits of sL and sR are the
“bad” bits. E.g. note that bits sR2 and sRi affect the output bits σL

2 and σL
1 respectively

after fL is applied to (sL, sR). Thus we add 2 and i to the set SR→L. Similarly, the bits
sL1 and sL3 affect the bits {σR

1 , σR
i } and the bits {σR

2 , σR
i+1, σ

R
nR,} respectively after the

tampering function fR is applied to (sL, sR). We therefore add 1 to the sets S1
L→R and

Si
L→R, while we add 3 to the sets S2

L→R, Si+1
L→R and SnR

L→R. We also add both 1 and 3 to
the set SL→R.

gL(L):

1. (apply tampering and plain decode on left) Let sL := Rec(Scheck,

IL, L). Let (σL
1 , . . . , σL

nL
) := fL|IR(sL). Compute ((wL

1 , . . . , wL
nL

),˜L) ←
DL(σL

1 , . . . , σL
nL

). If the decoding fails, set ˜L :=⊥.
2. (output) Output ˜L.

gR(R):

1. (apply tampering and decoding-check on right) Let sR = (sR1 ,
. . . , sRnR

) := Rec(SR→L, I
R,R). Let (σR

1 , . . . , σR
nR

) := fR|IL(sR). Define
σ′R := σ′R

1 , . . . , σ′R
nR

as follows: Set σ′R
� := σR

� for � ∈ [J∗]. Set σ′R
� := 0 for

� /∈ [J∗]. Compute ((wR
1 , . . . , wR

nR
), ˜R) ← DR(σ′R

1 , . . . , σ′R
t). If the decod-

ing fails or (wR
1 , . . . , wR

nR
) is not cerrR /4-close to (σR

1 , . . . , σR
nR

), then set
˜R :=⊥.

2. (codeword-check on right) For all � ∈ Rcheck, check that σR
� = wR

� . If
the check fails, set ˜R :=⊥.

3. (output) Output ˜R.

– Output g = (gL, gR).

Whenever Rec is run above, we assume that enough positions are set by S
such that there is only a single consistent codeword. If this is not the case, then
additional positions are added to S from IL, IR, respectively.

898 M. Ball et al.

By the definition of a non-malleable reduction (Definition 3), in order to
complete the proof of Theorem 4, we must show that (E,D) have the following
properties:

1. For all x ∈ {0, 1}k, we have D(E(x)) = x with probability 1.
2. For all f ∈ Local�o

�i
,

Δ(D(f(E(x)));Gf (x)) ≤ negl(k),

where Gf is the distribution defined above.

Item (1) above is trivial and can be immediately verified. In the following, we
prove Item (2) above by considering the following sequence of hybrid arguments
for each function f ∈ Local�o

�i
(for the intermediate hybrids, we highlight the

step in which they are different from the desired end distributions).

Hybrid H0. This is the original distribution D(f(E(x)))
Hybrid H1. H1 corresponds to the distribution D′(f(E(x))), where D′ is defined
as follows:

D(σ := (σL,σR)):

1. (plain decode on left) Let (σL,σR) := ([σL
i]i∈[nL], [σR

�]�∈[nR]). Compute
((wL

1 , . . . , wL
nL

), L) ← DL(σL
1 , . . . , σL

nL
). If the decoding fails, set L :=⊥.

2. (decoding-check on right) Define σ′R := σ′R
1 , . . . , σ′R

nR
as follows: Set

σ′R
� := σR

� for � ∈ J∗ and σ′R
� := 0 for � /∈ J∗, where J∗ ⊆ [nR]

is the lexicographically first set such that |J∗| = t and |SJ∗
L→R| = 0.

Compute ((wR
1 , . . . , wR

nR
),R) ← DR(σ′R

1 , . . . , σ′R
tR). If the decoding fails or

(wR
1 , . . . , wR

nR
) is not cerrR /4-close to (σR

1 , . . . , σR
tR), set R :=⊥.

3. (codeword-check on right) For all � ∈ Rcheck, check that σR
� = wR

� . If the
check fails, set R :=⊥.

4. (output) Output x := (L,R).

Note that the only difference between D and D′ is that in decoding-check
on right, σR is decoded from J∗, instead of the first ncheck positions.

Claim.
H0

s≈ H1.

Proof. Let δ := cerrR

4 . Additionally, define

ρ(nR, δ, ncheck) :=

(

(1−δ)nR

ncheck

)

(

nR

ncheck

) .

Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits 899

Notice that our parametrization of ncheck, δ yields ρ(nR, δ, ncheck) = negl(k).
(

(1−δ)nR

ncheck

)

(

nR

ncheck

) = ((1−δ)nR)!ncheck!(nR−ncheck)!
ncheck!((1−δ)nR−ncheck)!nR!

=
(

(1−δ)nR

nR

) (

(1−δ)nR−1
nR−1

)

· · ·
(

(1−δ)nR−ncheck+1
nR−ncheck+1

)

≤ (1 − δ)ncheck ,

where the last inequality follows due to the fact that for i ∈ {0, . . . , ncheck − 1},
(1−δ)nR−i

nR−i ≤ (1−δ). Since (1−δ) < 1 is a constant, we can set ncheck = ω(log(k)).
Note that correctness still holds for D′ with probability 1.
We want to show that for every σ = (σL,σR) ← f(E(x)), D(σ) = D′(σ) with

high probability, over the coins of D,D′.
Let D := (DL,DR) (respectively, D′ := (D′L,D′R)), where DR (respectively,

D′R) correspond to the right output of the decoding algorithm. Notice that only
decoding on the right changes. So, it suffices to show that for each (σL,σR) in
the support of the distribution f(E(x)),

Pr[D|σL(σR) = D′|σL(σR)] ≥ 1 − negl(n), (3.1)

where the probabilities are taken over the coins of D,D′.
Let W denote the set of all valid codewords for the given reconstructable

probabilistic encoding scheme with parameters k, nR, cerrR , csecR ,GF(2)). For x ∈
GF(2)nR , define its distance from W to be d(x,W) := minw∈W d(x,w).

To analyze (3.1), we define the following set of instances (which intuitively
corresponds to the set of instances on which both D|σL and D′|σL are likely to
output ⊥).

Π⊥ := {σR ∈ {0, 1}nR d(σ,W) ≥ δ}.

So, now consider the two cases:

– Suppose σR ∈ Π⊥. Then, both D(σR) and D′(σR) will fail the codeword-check
with probability ≥ 1 − ρ(nR, δ, ncheck).

– Suppose σR /∈ Π⊥. Then, ∃w ∈ W such that d(σR, w) ≤ δ. Moreover, in
both D and D′ it must be the case that σ′R is cerr/2-close to w. (Because
δ + (nR − t)/nR ≤ cerr/2). So both D and D′ must decode to the same w. Fix
a set of coins for D and D′. Therefore, when D and D′ are run with the same
coins, all comparisons made during the codeword-check are identical, and thus
the probability (over the coins of D,D′) that the codeword-check fails in D and
D′ is identical.

So for any σ = (σL,σR), Δ({D(σ)}, {D′(σ)}) = Δ({DR|σL(σR)}, {D′R|σL

(σR)}) ≤ ρ(nR, δ, ncheck). Therefore, Δ({D(f(E(x)))}, {D′(f(E(x)))} ≤
ρ(nR, δ, ncheck).

Hybrid H2. H2 corresponds to the distribution G′(x), where G′
f is a distribution

over functions g′ = (g′
L, g′

R) defined as follows:

900 M. Ball et al.

– Choose a random subset Rcheck ⊆ [nR] of size ncheck.

– Choose vectors IL ∈ {0, 1}nL , IR ∈ {0, 1}nR in the following way: IL ←
EL(L), IR ← ER(R).

– Let J∗ be the subset of [nR] as described in Observation 1.
– The split-state tampering function g := (gL, gR) ∈ SSk has IL, IR hardcoded

into it and is specified as follows:

gL(L):

1. (apply tampering and plain decode on left) Let
sL := Rec(S := Scheck, I

L, L). Let (σL
1 , . . . , σL

nL
) := fL|IR(sL). Compute

((wL
1 , . . . , wL

nL
),˜L) ← DL(σL

1 , . . . , σL
nL

). If the decoding fails, set ˜L :=⊥.
2. (output) Output ˜L.

gR(R):

1. (apply tampering and decoding-check on right) Let sR = (sR1 , . . . ,

sRnR
) := Rec(SR→L, I

R,R). Let (σR
1 , . . . , σR

nR
) := fR|IL(sR). Define σ′R :=

σ′R
1 , . . . , σ′R

nR
as follows: Set σ′R

� := σR
� for � ∈ [J∗]. Set σ′R

� := 0 for � /∈ [J∗].
Compute ((wR

1 , . . . , wR
nR

), ˜R) ← DR(σ′R
1 , . . . , σ′R

t). If the decoding fails or
(wR

1 , . . . , wR
nR

) is not cerrR /4-close to (σR
1 , . . . , σR

nR
), then set ˜R :=⊥.

2. (codeword-check on right) For all � ∈ Rcheck, check that σR
� = wR

� . If
the check fails, set ˜R :=⊥.

3. (output) Output ˜R.

– Output g = (gL, gR).

Note that the only difference between Gf and G′
f is that IL ← EL(L), IR ←

ER(R) are chosen honestly, instead of being chosen uniformly at random. Fur-
thermore, note that g′ = (g′

L, g′
R) are not split-state, since g′

L depends on IR and
g′

R depends on IL.

Claim.
H1 ≡ H2.

The claim can be verified by inspection.

Hybrid H3. Hybrid H3 is simply the distribution Gf (x), defined previously.

Claim.
H2 ≡ H3.

Note that the result of fR only depends on the bits in J∗ and Rcheck. More-
over, fR

χJ∗∪Rcheck
only depends on sR, [sLi]i∈Scheck

. Moreover, note that fL depends
only on sL, [sRi]i∈SR→L

. Since by Observation 1, we have that |Scheck| ≤ nL · csecL

and |SR→L| ≤ nR · csecR , the claim follows from the secrecy property of the recon-
structable probabilistic encoding scheme.

Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits 901

3.1 Extending to Leaky Local

The construction from Sect. 3 is actually secure against a slightly larger class
of tampering functions beyond Local�o

�i
functions, which we call LL, or “Leaky

Local.” Notice that the parameters given above (as in Observation 1) in fact
yield:

1. |SJ∗
L→R| + |Scheck| = |Scheck| ≤ nL · csecL

3 .
2. |S+

R→L| ≤ �o · nL ≤ nR · 2csecR

3 .

It is not too hard to see that we can leak 1/3 of the security threshold, on both
the left and right, to a tampering adversary. Given this leakage, the adversary
can then select a tampering function from the subset of Local�o where all but a
fraction of the first nL bits have input locality �i. Note that the input locality
restrictions are only needed on the left portions of codewords in the above proof.
We formalize this new class of tampering functions as follows.

Definition 13. Let LL ⊆ {{0, 1}nL × {0, 1}nR → {0, 1}nL × {0, 1}nR}, Leaky
Local, be the set of functions {ψf,h1,h2}, parametrized by functions (f, h1, h2),
where ψf,h1,h2(s

L, sR) := Cuniv(f(h1(sL), h2(sR)), sL, sR), f outputs a circuit C
and Cuniv is a universal circuit that computes the output of the circuit C on
input (sL, sR). Moreover, we require that f, h1, h2 have the following form:

– On input sL ∈ {0, 1}nL , h1 outputs a subset of cerrL /3 of its input bits.
– On input sR ∈ {0, 1}nR , h2 outputs a subset of cerrR /3 of its input bits.
– On input h1(sL), h2(sL) ∈ {0, 1}cerrL /3 × {0, 1}cerrR /3, f outputs a circuit C :

{0, 1}nL × {0, 1}nR → {0, 1}nL × {0, 1}nR , where C has output-locality �o. Of
the first nL input bits, all but at most cerrL /3-fraction have input-locality at
most �i.

The following corollary can be easily verified.

Corollary 2. (E◦ESS,DSS◦D) is an (LL,SSk, negl(k))-non-malleable reduction.

4 Extending to Localm(n)

We now state our theorem for Localm(n) tampering functions, or bounded fan-in
bounded-depth circuits.

Theorem 5. (E′,D′) is a (Local�o
′ ⇒ LL, negl(n))-non-malleable reduction

given the following parameters for Local�o
′
:

– �o
′ := csec/12 · �i, where �i is the input locality of LL,

– E′ : {0, 1}n → {0, 1}N , where N = nin + 2n − nL, and r = log4(k), where n
is the output length of LL and nL is the length of the left output of LL.

902 M. Ball et al.

We construct an encoding scheme (E′,D′) summarized in Fig. 3 and parame-
trized below. In brief, our encoding simply distributes the bits of the left input
pseudorandomly in a string comparable in length to the right input. We then
append a short description of where the encoding is hiding, a seed to pseudo-
random generator.

We then show that the pair (E′,D′) is an (Local�o
′
,LL, negl(n))-non-malleable

reduction. Combined with our previous construction, this immediately implies
that given a non-malleable encoding scheme (Ess,Dss) for SSk, the encod-
ing scheme ̂Π = (̂Ebd, ̂Dbd), where ̂Ebd(m) := E′(E(Ess(m))) and ̂Dbd(s) :=
Dss(D(D′(s))) yields the following corollary, a non-malleable code against
Local�o

′
.

Corollary 3. (E′,D′) yields, with previous results, a (LocalÕ(
√

n), k, negl(k))-
non-malleable reduction with sublinear rate, where n = Θ(k2

log2(k)
).

Remark 3. As before, the encoding scheme presented below is independent on
the left and right. Therefore, our reduction holds for not just for Local�o

′
but

additionally any split-state function, independent on each side, trivially.
We parametrize our construction for Local�o

′ ⇒ LL with the following:

– r := log4(k)
– τ := 2(n−nL), where n is the length of the output of LL and nL is the length

of the left output of LL.

Now, for every μ ∈ Local�o
′

where μ(ζ,XL, xR) := (μζ(ζ,XL, xR),
μL(ζ,XL, xR), μR(ζ,XL, xR)) we define the distribution Gμ over LL. A draw from
Gμ is defined as follows:

– Choose ζ ← {0, 1}r uniformly at random. Compute y := prg(ζ), where y =
y1, . . . , yτ . For i ∈ [τ], compute Compute ρi := φ(yi).

– If ρ has less than nL number of ones, then set h1, h2, f all to the constant
function 0.

– Otherwise, choose vector IL ∈ {0, 1}+nR such that ∀ i such that 1 ≤ i ≤ if
ρi = 1 then ILi = ∗ and otherwise, ILi is chosen uniformly at random.

– The function h1 is defined as follows: h1 outputs the bits in input xL that
affect the output bits of μζ (at most r · �o

′ ≤ csecL /3 · nL).
– The function h2 is defined as follows: h2 outputs the bits in xR that affect the

output bits of μζ (at most r · �o
′ ≤ csecR /3 · nR).

– The function f is defined as follows:
• f computes ˜ζ, given ζ and the output of h1, h2.
• f computes ỹ := prg(˜ζ), where ỹ = ỹ1, . . . , ỹτ .
• For i ∈ [τ], f computes ρ̃i := φ(ỹi).
• Let ρ̃∗ ∈ {0, 1}τ be defined as follows: For i ∈ [pos∗], ρ̃∗ = ρ̃; for pos∗ <

i ≤ τ, ρ̃∗ = 0, where pos∗ is the index of the nL-th one in ρ̃ (and is set to
τ if no such index exists).

• Let μL,ζ (resp. μR,ζ) correspond to the function μL(ζ,XL, xR) (resp.
μR(ζ,XL, xR))), which has ζ hardcoded in it.

Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits 903

Let prg be a pseudorandom generator for space bounded computations (see
Definition 12), with inputs of length r and outputs of length log(τ) · τ .
Let G(ζ) be defined as follows:

1. Compute y := prg(ζ).
2. Divide pseudorandom tape y into blocks of bit strings y1, . . . , yτ . Let φ be

the randomized function that chooses a bit b ∈ {0, 1} with bias p := 3nL/2τ .
For i ∈ [τ], let ρi = φ(yi), where yi is the explicit randomness of φ. Let
ρ = ρ1, . . . , ρτ . Let num denote the number of positions of ρ that are set to 1.

3. If num < nL, set ρ := 1n
L0τ−nL .

4. Otherwise, flip all but the first nL 1’s in ρ to 0.
5. Output ρ.

Let E : {0, 1}n → {0, 1}N and D : {0, 1}N → {0, 1}n.

E (xL := xL
1, . . . , x

L
nL

, xR):

1. Choose ζ ← {0, 1}r uniformly at random. Choose ζ ← {0, 1}r uniformly at
random. Compute ρ := G(ζ).

2. For j ∈ [num], let posj denote the j-th position i such that ρi = 1.

3. Let XL ∈ {0, 1}τ be defined in the following way: For j ∈ [nL], XL
posj

:= xL
j . In

all other locations, XL
i is set uniformly at random.

4. Output the encoding (ζ, XL, xR).

D (Z := (ζ, XL, xR)):

1. (Recover ρ) Let ρ := G(ζ). Let num ≥ nL denote the number of ones in
ρ := ρ1, . . . , ρτ .

2. (Recover x) For j ∈ [num], let posj denote the j-th position i such that ρi = 1.

3. Let xL
j ∈ {0, 1}nL be defined in the following way: For j ∈ [min(num, nL)],

xL
j := XL

posj
.

4. (output) Output (xL, xR).

Fig. 3. The (Local�o
′
, LL, negl(n))-non-malleable reduction (E′,D′)

• Let C be the circuit corresponding to the following restriction:
((μL,ζ |IL)ρ̃∗ , μR,ζ |IL).

• If C is in LL, then f outputs C. Otherwise, f outputs the constant func-
tion 0.

By the definition of a non-malleable reduction (Definition 3), in order to
complete the proof of Theorem 5, we must show that (E′,D′) has the following
properties:

1. For all x ∈ {0, 1}n, we have D′(E′(x)) = x with probability 1.

904 M. Ball et al.

2. For all μ ∈ Local�o
′
,

Δ(D′(μ(E′(x)));Gμ(x)) ≤ negl(n),

where Gμ is the distribution defined above.
Item (1) above is trivial and can be immediately verified.
In the following, we prove Item (2), above, by noting that the statistical

distance Δ(D′(μ(E′(x)));Gμ(x)) is upper bounded by the probability that either
ρ does not contain at least nL number of ones or C is not in LL.

We first argue that if ρ is chosen uniformly at random, then the probability
that either of these events occurs is negligible and then show that the same must
be true when ρ is chosen via a PRG with appropriate security guarantees.

Clearly, by multiplicative Chernoff bounds, if ρ is chosen uniformly at ran-
dom, then the probability that ρ contains less than nL ones is negligible. We now
show that the probability that C /∈ LL is negligible. If C /∈ LL, it means that
more than csecL /3 number of positions i in XL are such that (1) XL

i has “high
input locality” (i.e. input locality greater than 12/csecL · �o

′ = �i) (2) ρi = 1.
Since the adversary first specifies the tampering function μ, all positions in

XL with “high input locality” are determined. Note that, by choice of parameters
(since τ ≥ N/2), there can be at most csecL · τ/6 number of positions in XL with
“high input locality”. Since p = 3nL/2τ , we expect csecL ·nL/4 number of positions
i in XL where (1) XL

i has “high input locality” and (2) ρi = 1. Therefore, by
multiplicative Chernoff bounds, the probability that more than csecL ·nL/3 number
of positions i in XL are such that (1) XL

i has “high input locality” and (2) ρi = 1
is negligible.

We now argue that these events must also occur with negligible probability
when ρ is pseudorandom. Assume the contrary, then the following is a distin-
guisher T that can distinguish truly random strings y from strings y := prg(ζ)
with non-negligible probability.

T is a circuit that has a string w ∈ {0, 1}τ hardwired into it (non-uniform
advice). w corresponds to the high input locality positions determined by the
tampering function μ that was chosen by the adversary A. Intuitively, w is the
string that causes A to succeed in breaking security of the non-malleable code
with highest probability.

On input y = y1, . . . , y (where either y := prg(ζ) or y is chosen uniformly at
random), T (y) does the following:

1. Set count1 = 0, count2 = 0.
2. For i = 1 to :

(a) Run φ(yi) to obtain ρi.
(b) If ρi = 1, set count2 := count2 + 1
(c) If ρi = 1 and wi = 1, set count1 := count1 + 1.

3. If count1 > csecL · nL/3 or count2 < nL, output 0. Otherwise, output 1.

T can clearly be implemented by a read-once, Finite State Machine (FSM)
with 2O(log2(τ)) number of states. However, note that by Theorem3, prg is a

Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits 905

pseudorandom generator for space log3(k) with parameter 2− log3(k). Thus, exis-
tence of distinguisher T as above, leads to contradiction to the security of the
Nisan PRG.

5 Achieving Resilience Against o(n/ logn) Output
Locality

Here we sketch how to improve parameters. We refer readers to the full paper
for the complete proof.

Theorem 6. There exists an explicit (Local�o ⇒ SS, negl(n))-non-malleable
reduction, (E : {0, 1}2k → {0, 1}n,D : {0, 1}n → {0, 1}2k), for any �o =
o(n/ log n) where n = O(�ok).

Roughly, the reduction (E,D) is simply a composition of the reductions pre-
sented previously. Recall that the encoding scheme is independent on the left
and right, E(L,R) = (EL(L),ER(R)). The left side, EL(L), is comprised of a seed
for a PRG that describes where to pseudorandomly embedded a (small) RPE of
L and that very embedding. The right side, ER(R), is simply a (longer) RPE of
R. Decoding is the same as before as well. The parameters are slightly different,
but we will gloss over that here.

To prove the theorem, we analyze the composed encoding schemes as a single
reduction. As mentioned in the introduction, the idea is to use the PRG to “free
up” the restrictions relating the size of the left RPE (previously denoted by nL)
and �o that is an artifact of the piecewise analysis.

Recall that our encoding scheme is comprised of three blocks: (1) the PRG
seed, (2) the “hidden” left side encoding, and (3) the right side encoding. First,
(as in the previous section) we claim that a number of good things happen if
the left side is “hidden” in a large block in a truly random way. Namely, we
have that, with respect to the tampering function, only a small fraction of bits
in the hidden left-side RPE is either (1) of high input locality, (2) effects bits in
the right-side’s consistency check or (3) effects the PRG seed used in decoding.
(1) Implies that there exists a “safe” subset to simulate decoding from (as
before), and (2) and (3) allow us to relax the bounds on locality. Next, we
use a hybrid argument to essentially disconnect influence between the 3 blocks
of our encoding (that is dependent on the underlying message, (L,R)).

We will present the “good” event described above and sketch the hybrid
argument.

Definition 14 (informal). The event Goodf occurs if for tampering function
f ∈ Local�o all of the following hold:

1. ρ contains at least nL ones, where nL is the length of the left side RPE.
2. |S| is below the security threshold of the left-side RPE, where S is the set of

bits in the “hidden” RPE of L that have (1) “high” input locality, (2) effect
the consistency check on the right (consider this chosen secretly and randomly
at the time of encoding), or (3) effect the PRG seed used in decoding.

906 M. Ball et al.

3. There is some (large enough) set, J∗, of bits that is not effected by any bit in
the RPE of L which does not have “high” input locality.

4. The bits on the right that effect the output of decoding on the left is below the
security threshold of the RPE.

Claim. Suppose ρ is chosen truly at random (ones occurring with bias p =
3nL/2τ). Then for every f ∈ Local�o , Pr[Goodf] ≥ 1 − negl(n).

The first two items follow from Chernoff bounds. The main difference in the new
analysis is that the hidden RPE of L is now very small size. Whereas previously
the events (2), (3) described in the second item held simply because the total
number of bits on the left affecting the consistency check and PRG seed was
below the security threshold of the left RPE, now, since the left RPE is now
very small, we must rely on Chernoff bounds and the fact that the relevant bits
are hidden to argue that (2) and (3) hold. The second two items are similar to
Observation 1, given item (2).

Next as in the previous section, we argue that with high probability, the
pseudorandomness of the PRG is sufficient to obtain that the event Goodf holds
even when ρ is chosen via the PRG (instead of being truly random). This gives
us the bounds on the “bad” bits in the output of the encoding of the left input,
L, mentioned previously.

Now we are in essentially a similar situation to the proof of Theorem4 and
we can apply a very similar sequence of hybrids.

First, we use hybrids to effectively sample the bits on the left and the right
that effect some other block, or are in the “bad” set S. By our claim above,
all of these sets together will be below the security properties of the respective
RPEs. So, the distribution over the randomness of the encoding procedure will
be identical, for any message.

Second, we use hybrids to effectively simulate decoding on the right from the
set J∗ that is not effected by the RPE on the left. This completes the proof.

Acknowledgments. We thank Seung Geol Choi and Hoeteck Wee for sharing with
us an in-submission journal version of [15], as well as the manuscript [16]. We also
thank Yevgeniy Dodis for helpful discussions and clarifications regarding [2] and other
previous work. Finally, we thank Eran Tromer for enlightening discussions on practical
tampering attacks, which inspired the class of attacks considered in this work.

This work was done in part while all authors were visiting the Simons Insti-
tute for the Theory of Computing, supported by the Simons Foundation and by
the DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-
1523467. The first and fourth authors are supported in part by the Defense Advanced
Research Project Agency (DARPA) and Army Research Office (ARO) under Con-
tract #W911NF-15-C-0236, and NSF grants #CNS-1445424 and #CCF-1423306. The
second and third authors are supported by an NSF CAREER award #CNS-1453045
and by a Ralph E. Powe Junior Faculty Enhancement Award. Any opinions, findings
and conclusions or recommendations expressed are those of the authors and do not
necessarily reflect the views of the Defense Advanced Research Projects Agency, Army
Research Office, the National Science Foundation, or the U.S. Government.

Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits 907

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran,
M.: Optimal computational split-state non-malleable codes. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9563, pp. 393–417. Springer, Heidel-
berg (2016). doi:10.1007/978-3-662-49099-0 15

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, Portland,
OR, USA, 14–17 June 2015, pp. 459–468. ACM Press (2015)

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: Shmoys, D.B. (ed.) 46th ACM STOC, NY, USA, May 31–June 3, 2014,
pp. 774–783 (2014)

4. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. Cryptology ePrint Archive, Report 2014/807 (2014). http://
eprint.iacr.org/2014/807

5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 538–557. Springer, Hei-
delberg (2015). doi:10.1007/978-3-662-47989-6 26

6. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014,
pp. 375–397. Springer, Heidelberg (2015)

7. Applebaum, B.: Cryptography in Constant Parallel Time. Infor-
mation Security and Cryptography. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-642-17367-7

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, Chicago, Illinois, USA, 2–4 May 1988, pp. 1–10. ACM Press (1998)

9. Chabanne, H., Cohen, G.D., Flori, J., Patey, A.: Non-malleable codes from the
wire-tap channel. CoRR abs/1105.3879 (2011). http://arxiv.org/abs/1105.3879

10. Chabanne, H., Cohen, G.D., Patey, A.: Secure network coding and non-malleable
codes: protection against linear tampering. In: Proceedings of the 2012 IEEE Inter-
national Symposium on Information Theory, ISIT 2012, Cambridge, MA, USA,
1–6 July 2012, pp. 2546–2550. IEEE (2012). http://dx.doi.org/10.1109/ISIT.2012.
6283976

11. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-
malleable codes and their applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016-A. LNCS, vol. 9563, pp. 367–392. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49099-0 14

12. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: 55th FOCS, Philadelphia, PA, USA, 18–21 October 2014, pp.
306–315. IEEE Computer Society Press (2014)

13. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Naor, M.
(ed.) ITCS, Princeton, NJ, USA, 12–14 January 2014, pp. 155–168. ACM (2014)

14. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014)

15. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.M.: Black-box construc-
tion of a non-malleable encryption scheme from any semantically secure one. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg
(2008)

http://dx.doi.org/10.1007/978-3-662-49099-0_15
http://eprint.iacr.org/2014/807
http://eprint.iacr.org/2014/807
http://dx.doi.org/10.1007/978-3-662-47989-6_26
http://dx.doi.org/10.1007/978-3-642-17367-7
http://arxiv.org/abs/1105.3879
http://dx.doi.org/10.1109/ISIT.2012.6283976
http://dx.doi.org/10.1109/ISIT.2012.6283976
http://dx.doi.org/10.1007/978-3-662-49099-0_14
http://dx.doi.org/10.1007/978-3-662-49099-0_14

908 M. Ball et al.

16. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: A note on improved, black-
box constructions of non-malleable encryption from semantically-secure encryp-
tion. Manuscript (2015)

17. Choi, S.G., Kiayias, A., Malkin, T.: BiTR: built-in tamper resilience. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 740–758. Springer,
Heidelberg (2011)

18. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: Sim-
pler, shorter, stronger. Cryptology ePrint Archive, Report 2015/772 (2015). http://
eprint.iacr.org/2015/772

19. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: sim-
pler, shorter, stronger. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol.
9562, pp. 306–335. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 13

20. Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updat-
able non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part I. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015)

21. Decatur, S.E., Goldreich, O., Ron, D.: Computational sample complexity. SIAM
J. Comput. 29(3), 854–879 (2000)

22. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
30(2), 391–437 (2000)

23. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 239–257. Springer, Heidelberg (2013)

24. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.C.
(ed.) ICS, 5–7 January 2010, pp. 434–452. Tsinghua University Press, Tsinghua
University, Beijing, China (2010)

25. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014)

26. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014)

27. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004)

28. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (2006)

29. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

30. Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky
memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390.
Springer, Heidelberg (2011)

31. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012)

32. Nisan, N.: Pseudorandom generators for space-bounded computation. Combina-
torica 12(4), 449–461 (1992)

http://eprint.iacr.org/2015/772
http://eprint.iacr.org/2015/772
http://dx.doi.org/10.1007/978-3-662-49096-9_13

Author Index

Albrecht, Martin R. I-622
Alwen, Joël II-358
Ambrona, Miguel II-822
Andrychowicz, Marcin II-586
Aono, Yoshinori I-789

Bader, Christoph II-273
Badrinarayanan, Saikrishna II-764
Ball, Marshall II-881
Barthe, Gilles II-822
Batina, Lejla I-403
Belaïd, Sonia II-616
Bellare, Mihir I-566, I-729, II-792
Benhamouda, Fabrice II-616
Bernstein, Daniel J. I-566
Biryukov, Alex I-372
Bishop, Allison I-58
Bootle, Jonathan II-327
Brakerski, Zvika II-852
Brzuska, Christina I-670

Canetti, Ran I-117
Carlet, Claude I-311
Castryck, Wouter I-147
Cerulli, Andrea II-327
Chaidos, Pyrros II-327
Chen, Binyi II-358
Cheon, Jung Hee I-509
Ciampi, Michele II-63
Costello, Craig I-403
Cramer, Ronald II-559
Dachman-Soled, Dana II-649, II-881

Damgård, Ivan II-420
Deshpande, Apoorvaa II-124
Dinur, Itai I-484
Dodis, Yevgeniy II-679
Ducas, Léo I-294, II-559
Durvaux, François I-240
Dziembowski, Stefan II-586

Faust, Sebastian II-586
Fehr, Serge II-477

Fillinger, Max II-477
Fouque, Pierre-Alain I-509
Fuller, Benjamin I-117

Gama, Nicolas II-528
Garg, Sanjam II-448
Gay, Romain I-1
Gaži, Peter I-87
Granger, Robert I-263
Groth, Jens II-305, II-327
Guo, Jian I-196

Hayashi, Takuya I-789
Hofheinz, Dennis I-1
Hu, Yupu I-537

Iliashenko, Ilia I-147
Izabachène, Malika II-528

Jacobsen, Håkon I-670
Jaeger, Joseph I-758
Jager, Tibor II-273
Jia, Huiwen I-537
Jiao, Lin I-168
Journault, Anthony I-311
Jovanovic, Philipp I-263

Kamath, Chethan II-358
Karpman, Pierre I-459
Katz, Jonathan II-649
Khurana, Dakshita II-184, II-213
Kiayias, Aggelos II-705
Kiltz, Eike I-1
Kiss, Ágnes I-699
Kiyoshima, Susumu II-93
Kolmogorov, Vladimir II-358
Komargodski, Ilan II-852
Koppula, Venkata II-124
Kraschewski, Daniel II-213
Kulkarni, Mukul II-881

Lee, Changmin I-509
Leurent, Gaëtan I-344

Li, Ruilin I-196
Li, Yong II-273
Libert, Benoît II-1
Lin, Huijia I-28
Ling, San II-1
Liu, Meicheng I-196
Liu, Tianren II-679
Luykx, Atul I-596

Mahmoody, Mohammad II-243
Maji, Hemanta K. II-184, II-213
Malkin, Tal II-881
Méaux, Pierrick I-311
Mennink, Bart I-263
Micciancio, Daniele I-820
Miles, Eric II-764
Minaud, Brice I-509
Mohammed, Ameer II-243
Mukherjee, Pratyay II-448, II-735

Neves, Samuel I-263
Nguyen, Khoa II-1
Nguyen, Phong Q. II-528
Nielsen, Jesper Buus II-420
Nishimaki, Ryo II-388

Ostrovsky, Rafail II-420

Pandey, Omkant II-448
Paneth, Omer I-117
Passelègue, Alain II-616
Pastro, Valerio I-58
Paterson, Kenneth G. I-622
Peikert, Chris II-559
Perrin, Léo I-372
Persiano, Giuseppe II-63
Petit, Christophe II-327
Peyrin, Thomas I-459
Pietrzak, Krzysztof II-358
Polychroniadou, Antigoni II-448
Prabhakaran, Manoj II-213
Preneel, Bart I-596
Prouff, Emmanuel II-616

Rajaraman, Rajmohan I-58
Regev, Oded II-559
Renes, Joost I-403
Reyzin, Leonid I-117

Rijmen, Vincent I-196
Ristenpart, Thomas I-758
Rosén, Adi II-420
Ryu, Hansol I-509

Sahai, Amit II-184, II-213, II-764
Sarkar, Palash I-429
Scafuro, Alessandra II-63
Schäge, Sven II-273
Schmidt, Benedikt II-822
Schneider, Thomas I-699
Segev, Gil II-852
Singh, Shashank I-429
Siniscalchi, Luisa II-63
Smith, Adam I-117
Stam, Martijn II-679
Standaert, François-Xavier I-240, I-311
Stebila, Douglas I-670
Stehlé, Damien I-294
Steinberger, John II-154, II-679
Stepanovs, Igors II-792
Stevens, Marc I-459
Strenzke, Falko I-644
Sun, Bing I-196
Szepieniec, Alan I-596

Tackmann, Björn I-729
Takagi, Tsuyoshi I-789
Tang, Qiang I-758
Tessaro, Stefano I-87, I-566, II-358
Thillard, Adrian II-616
Thiruvengadam, Aishwarya II-649
Tiessen, Tyge I-214

Udovenko, Aleksei I-372
Unruh, Dominique II-497

Vercauteren, Frederik I-147
Vergnaud, Damien II-616
Visconti, Ivan II-63

Walter, Michael I-820
Wang, Huaxiong II-1
Wang, Mingsheng I-168
Wang, Yuntao I-789
Waters, Brent II-124, II-792
Wee, Hoeteck I-1
Wichs, Daniel I-58, II-388, II-735

910 Author Index

Xie, Xiang II-528

Yamada, Shota II-32
Yasuda, Kan I-596
Yu, Yu II-154

Zhandry, Mark II-388, II-764

Zhang, Bin I-168

Zhou, Hong-Sheng II-705

Zikas, Vassilis II-705

Author Index 911

	Preface
	Eurocrypt 2016 The 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques
	Contents – Part II
	Contents – Part I
	Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-Size Ring Signatures and Group Signatures Without Trapdoors
	1 Introduction
	2 Preliminaries
	2.1 Average-Case Lattice Problems
	2.2 Zero-Knowledge Arguments of Knowledge

	3 A Lattice-Based Accumulator with Supporting Zero-Knowledge Argument of Knowledge
	3.1 Cryptographic Accumulators
	3.2 A Family of Lattice-Based Collision-Resistant Hash Functions
	3.3 Our Merkle-Tree Accumulator
	3.4 Zero-Knowledge AoK of an Accumulated Value
	3.5 Analysis of the Interactive Protocol

	4 A Logarithmic-Size Ring Signature from Lattices
	4.1 Definitions
	4.2 The Underlying Zero-Knowledge Protocol
	4.3 Description of the Ring Signature Scheme
	4.4 Analysis of the Ring Signature Scheme

	5 A Lattice-Based Group Signature Without Trapdoors
	5.1 Definitions
	5.2 The Underlying Zero-Knowledge Protocol
	5.3 Our Construction

	References

	Adaptively Secure Identity-Based Encryption from Lattices with Asymptotically Shorter Public Parameters
	1 Introduction
	2 Overview of Our Technique
	2.1 Overview of the Construction
	2.2 Overview of the Security Proof
	2.3 An Additional Idea

	3 Preliminaries
	3.1 Identity-Based Encryption
	3.2 Lattice Preliminaries
	3.3 Basic Facts

	4 Parametrized IBE
	4.1 Definition of Parametrized IBE
	4.2 IBE from PIBE

	5 Our Construction of PIBE from Lattices
	5.1 Homomorphic Computation
	5.2 Our Construction
	5.3 Correctness and Parameter Selection
	5.4 Security Proof
	5.5 Multi-bit Encryption

	6 Comparisons and Discussions
	References

	Online/Offline OR Composition of Sigma Protocols
	1 Introduction
	1.1 Our Results
	1.2 Our Technique
	1.3 Comparison with the State of the Art
	1.4 Online/Offline Computations

	2 Preliminaries
	2.1 Adaptive-Input Special Soundness and Proof of Knowledge
	2.2 Adaptive-Input Witness Indistinguishability
	2.3 A -Protocol for Partial Knowledge of DH/Non-DH Tuples
	2.4 Commitments from -protocols

	3 Adaptive-Input (k,n)-Proof of Partial Knowledge
	3.1 (Adaptive-Input) Proof of Knowledge
	3.2 Adaptive-Input Witness Indistinguishability

	4 On Adaptive-Input Special-Soundness of -Protocols
	4.1 Soundness Issues in Delayed-Input -Protocols
	4.2 A Compiler for Adaptive-Input Special Soundness

	5 On the Adaptive-Input Soundness of 's Transform
	5.1 Overview of the Construction of
	5.2 Adaptive-Input Security of OR

	6 Extension to Multiple Relations
	References

	Constant-Round Leakage-Resilient Zero-Knowledge from Collision Resistance
	1 Introduction
	1.1 Our Results
	1.2 Related Works

	2 Overview of Our Techniques
	2.1 Previous Techniques
	2.2 Our Techniques

	3 Preliminaries
	3.1 Notations
	3.2 Leakage-Resilient Zero-Knowledge
	3.3 Commitment Scheme
	3.4 Naor's Commitment
	3.5 Hamiltonicity Commitment
	3.6 Adaptive Hamiltonicity Commitment
	3.7 Barak's Non-black-box Zero-Knowledge Protocols
	3.8 Somewhat Extractable Commitment Scheme

	4 Building Blocks
	4.1 Special-Purpose Encrypted Barak's Preamble
	4.2 Special-Purpose Instance-Dependent Commitment

	5 Our Leakage-Resilient Zero-Knowledge Argument
	References

	Constrained Pseudorandom Functions for Unconstrained Inputs
	1 Introduction
	1.1 Overview of Our Constrained PRF Construction
	1.2 Attribute Based Encryption for Turing Machines with Unbounded Inputs
	1.3 Paper Organization

	2 Preliminaries
	2.1 Notations
	2.2 Obfuscation
	2.3 iO-Compatible Primitives
	2.4 Attribute Based Encryption
	2.5 Selective Security

	3 Constrained Pseudorandom Functions for Turing Machines
	3.1 Security of Constrained Pseudorandom Functions
	3.2 Puncturable Pseudorandom Functions

	4 Construction
	4.1 Proof of Selective Security

	5 Attribute Based Encryption for Turing Machines
	5.1 Proof of Security

	A Proof Outline of Lemma1
	References

	Pseudorandom Functions in Almost Constant Depth from Low-Noise LPN
	1 Introduction
	2 Preliminaries
	3 Bernoulli Randomness Extraction in AC0(MOD2)
	4 Parallelizable PRFs on Weak Keys
	4.1 A Succinct Formulation of LPN
	4.2 A Direct Construction in Almost Constant Depth
	4.3 Going Beyond the Birthday Barrier

	5 An Alternative PRF with a Short Uniform Key
	5.1 Main Results and Roadmap
	5.2 Distribution m and the n+q-LPN,n Problem
	5.3 Computational Bern+q-LPN,n Computational n+q-LPN,n
	5.4 C- n+q-LPN,n D- n+q-LPN,n (1)-Depth PRFs

	A Well-Known Facts, Lemmas and Inequalities
	B Lemmas and Proofs Omitted
	References

	Secure Computation from Elastic Noisy Channels
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Prior Work

	2 Preliminaries
	2.1 Elastic Functionalities
	2.2 Basic Information Theory
	2.3 Chernoff-Hoeffding Bound for Hypergeometric Distribution
	2.4 Constant Rate OT Generation

	3 Binary Symmetric Channels
	3.1 Channel Decomposition
	3.2 Semi-honest Completeness of (,)-BSC for 0 < < ()
	3.3 Special-Malicious Completeness of (,)-BSC for 0 < < ()

	4 Full Malicious Completeness of Binary Symmetric Channels
	4.1 Fcom from (,)-BSC for 0 < < 1/2
	4.2 Malicious Completeness of (,)-BSC for 0 < < ()

	5 Conclusion
	5.1 Sender-Elastic Channels Reduction to (Receiver-) Elastic Channels

	References

	All Complete Functionalities are Reversible
	1 Introduction
	1.1 Our Contributions
	1.2 Prior Works
	1.3 Technical Overview: Reversibility of Functionalities
	1.4 Technical Overview: Commitment Reducible Only to Complete SFE Functionalities

	2 Preliminaries
	2.1 Secure Function Evaluation
	2.2 Leftover Hash Lemma

	3 Technical Tools
	3.1 Notation and Definitions
	3.2 Characterizing Irredundancy
	3.3 Statistically Testable Function Evaluation
	3.4 Weak Converse of the Channel Coding Theorem, Generalization

	4 Summary and Exhaustive Case Analysis
	4.1 Summary
	4.2 Exhaustive Case Analysis

	5 Case 1(b): Commitments
	5.1 Construction
	5.2 Proof of Security

	6 Case 2: Commitments
	6.1 Construction
	6.2 Proof of Security

	References

	On the Power of Hierarchical Identity-Based Encryption
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Preliminaries
	2.1 Black-Box Constructions
	2.2 Collision-Resistant Hash Functions
	2.3 Hierarchical Identity-Based Encryption
	2.4 Collision Finding (Sam) Oracle

	3 Separating Hierarchical IBE from Collision Resistant Hashing
	3.1 Description of Oracle O
	3.2 Implementing -level HIBE Using Oracle O
	3.3 Security of Implemented HIBE Relative to O

	References

	On the Impossibility of Tight Cryptographic Reductions
	1 Introduction
	2 The New Meta-reduction Technique
	2.1 Preliminaries
	2.2 Bound for Simple Reductions Without Rewinding
	2.3 Interpretation
	2.4 Extension to ``Non-perfect'' Adversaries

	3 Bound for Reductions with Sequential Rewinding
	3.1 Interpretation

	4 A Generalized Meta-reduction
	4.1 Definitions
	4.2 Main Result

	5 New Applications
	5.1 Signatures in the Multi-user Setting
	5.2 Public-Key Encryption in the Multi-user Setting
	5.3 Non-interactive Key Exchange

	A Summary of Coron's Meta-reduction and Its Generalizations
	B UF-SMA-Security Is Strictly Weaker Than EUF-CMA-Security
	References

	On the Size of Pairing-Based Non-interactive Arguments
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Non-interactive Zero-Knowledge Arguments of Knowledge
	2.3 Quadratic Arithmetic Programs
	2.4 Linear Interactive Proofs

	3 Constructions of Non-interactive Arguments
	3.1 Linear Interactive Proofs for Quadratic Arithmetic Programs
	3.2 NIZK Arguments for Quadratic Arithmetic Programs

	4 Lower Bounds for Non-interactive Arguments
	4.1 Linear Interactive Proofs Cannot Have Linear Decision Procedures
	4.2 Lower Bound for the Size of Generic Pairing-Based Non-interactive Arguments

	References

	Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 The Discrete Logarithm Assumption
	2.2 Pedersen Commitments
	2.3 Zero-Knowledge Arguments of Knowledge

	3 Commitments to Polynomials
	4 Recursive Argument for Inner Product Evaluation
	4.1 Main Idea
	4.2 Formal Description

	5 Logarithmic Communication Argument for Arithmetic Circuit Satisfiability
	5.1 Square Root Communication Argument
	5.2 Breaking the Square Root Barrier
	5.3 Formal Description

	6 Implementation Using Python
	A Arithmetic Circuits
	References

	On the Complexity of Scrypt and Proofs of Space in the Parallel Random Oracle Model
	1 Introduction
	2 Pebbling, Entanglement, and the pROM
	2.1 Probabilistic Graph Pebbling
	2.2 Entangled Graph Pebbling
	2.3 Entanglement Does Not Improve Time Complexity
	2.4 The Parallel Random Oracle Model (pROM)
	2.5 scrypt and the computeLabel Game

	3 Pebbling Lower Bounds for the Line Graph
	4 From Pebbling to pROM
	4.1 Trancscipts and Traces
	4.2 Extractability, Coverability and a Conjecture
	4.3 Bounding pROM Time Using Pebbling Time
	4.4 The CMC of the Line Graph

	References

	Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key
	1 Introduction
	1.1 Prior Work
	1.2 Our Results
	1.3 Our Techniques
	1.4 Outline

	2 Preliminaries
	2.1 Traitor Tracing with Flexible Identities
	2.2 Private Broadcast Encryption
	2.3 Functional Encryption

	3 An Oracle Problem
	3.1 The Generalized Jump Finding Problem

	4 Tracing with Flexible Identities
	5 Flexible Traitor Tracing with Short Ciphertexts
	References

	Unconditionally Secure Computation with Reduced Interaction
	1 Introduction
	2 Preliminaries
	3 Message Complexity
	4 Lower Bounds
	4.1 Message Complexity
	4.2 Individual Round Complexity

	5 Upper Bounds
	5.1 Individual Round Complexity, Semi-honest Security
	5.2 Individual Round Complexity, Broadcast
	5.3 Individual Round Complexity, Secure Function Evaluation
	5.4 Message Complexity, Semi-honest Security

	References

	The Exact Round Complexity of Secure Computation
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 An Overview of Our Approach

	2 Preliminaries
	2.1 Tag Based Non-malleable Commitments
	2.2 Components of Our Protocol

	3 The Exact Round Complexity of Coin Tossing
	4 Two-Party Computation in the Simultaneous Message Exchange Model
	4.1 Our Protocol
	4.2 Proof of Security

	5 Multi-party Coin Flipping Protocol
	5.1 Coin Flipping with Committed Inputs
	5.2 Results for General Multi-party Functionalities

	References

	On the Composition of Two-Prover Commitments, and Applications to Multi-round Relativistic Commitments
	1 Introduction
	2 Preliminaries
	2.1 Basic Notation
	2.2 2-Prover Commitment Schemes
	2.3 The CHSHn Scheme

	3 On the Binding Property of 2-Prover Commitments
	3.1 Defining the Binding Property
	3.2 Relation to the Standard Definition
	3.3 Security of CHSHn

	4 Composing Commitment Schemes
	4.1 The Composition Operation
	4.2 The Composition Theorem

	A The Hiding Property of Composed Schemes
	References

	Computationally Binding Quantum Commitments
	1 Introduction
	1.1 Prior Definitions
	1.2 Our Contribution
	1.3 Our Techniques
	1.4 Related Work

	2 Definitions and Basic Properties
	3 Commitments from Collision-Resistant Hash Functions
	4 Collapsing Hash Functions
	5 Commitments from Collapsing Hash Functions
	6 Random Oracles Are Collapsing
	7 Zero-Knowledge Arguments of Knowledge
	7.1 Interactive Proof Systems
	7.2 Sigma-Protocols
	7.3 Constructing Zero-Knowledge Arguments of Knowledge

	8 Open Problems
	References

	Structural Lattice Reduction: Generalized Worst-Case to Average-Case Reductions and Homomorphic Cryptosystems
	1 Introduction
	2 Background and Notation
	2.1 Gaussian Measures

	3 Lattice Factor Groups and Generalizations of SIS/LWE
	3.1 Lattice Factor Groups
	3.2 The Group-SIS Problem (GSIS)
	3.3 The Group-LWE Problem (GLWE)

	4 Structural Lattice Reduction
	4.1 Overview
	4.2 Co-cyclic Lattice Reduction
	4.3 Arbitrary Groups
	4.4 Application

	5 Hardness of Group-SIS
	5.1 Overview
	5.2 Reducing Worst-Case ApproxSIVP to GSIS

	6 Hardness of Decisional-Group-LWE
	7 Abstracting Lattice Cryptography: Fully-Homomorphic Encryption from GLWE
	7.1 A GLWE Variant of El Gamal Encryption
	7.2 A GLWE Variant of GSW Homomorphic Encryption
	7.3 Homomorphically Evaluating Arbitrary Functions
	7.4 Simple Bootstrapping Circuit with Polynomial Noise

	A Missing Algorithms
	A.1 Algorithm5: Sampling Lattices of Given Factor Group
	A.2 Algorithm1: Unbalanced Reduction
	A.3 Algorithm7: Bootstrapping

	References

	Recovering Short Generators of Principal Ideals in Cyclotomic Rings
	1 Introduction
	2 Preliminaries
	2.1 Lattices and BDD
	2.2 Circulant Matrices
	2.3 Dirichlet Characters and L-Series
	2.4 Cyclotomic Number Fields and the Log-Unit Lattice

	3 Geometry of the Canonical Generators
	4 Algorithmic Implications
	5 Tail Bounds
	6 Shortest Generators of Principal Ideals and an SVP Algorithm
	6.1 Relation to Covering Radius
	6.2 Covering Radius Upper Bound and an SVP Algorithm
	6.3 Covering Radius Lower Bound

	A Proof of Theorem 2
	B Numeric Data
	References

	Circuit Compilers with O(1/log(n)) Leakage Rate
	1 Introduction
	1.1 The Work of Ishai, Sahai and Wagner
	1.2 Our Contributions
	1.3 Comparison to Other Related Work

	2 Definitions
	2.1 Leakage Resilient Encoding Schemes
	2.2 Circuit Transformations
	2.3 Probing Attacks Against Circuits

	3 Leakage Resilient Refreshing from Expander Graphs
	3.1 Reconstructibility of RefSampG

	4 Circuits for Affine Computation
	4.1 The Transformation TRAff
	4.2 (t,q)-reconstructability of Gadgets in TRAff
	4.3 Security of Composed Circuits

	5 Circuits for Arbitrary Computation
	5.1 The Circuit RandSamp
	5.2 Protecting Arbitrary Computation Against Probing

	6 Application to the Noisy Leakage Model
	7 Extensions
	7.1 Security of Boolean Circuits
	7.2 From Non-adaptive to Adaptive Security

	References

	Randomness Complexity of Private Circuits for Multiplication
	1 Introduction
	1.1 Our Problem
	1.2 Our Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Private Circuits
	2.3 ISW Algorithm

	3 Algebraic Characterization
	3.1 Matrix Notation
	3.2 Algebraic Condition
	3.3 Algebraic Characterization

	4 Theoretical Lower and Upper Bounds
	4.1 A Splitting Lemma
	4.2 Simple Linear Lower Bound
	4.3 Better Linear Lower Bound
	4.4 (Non-constructive) Quasi-Linear Upper Bound

	5 New Construction
	6 Optimal Small Cases
	7 Composition
	7.1 Compositional Security Notions
	7.2 Building Compositions with Our New Algorithms

	8 New Automatic Tool for Finding Attacks
	8.1 Algorithm of the Tool
	8.2 Information Set Decoding and Error Probability
	8.3 The Tool
	8.4 Complexity Comparison

	References

	10-Round Feistel is Indifferentiable from an Ideal Cipher
	1 Introduction
	1.1 Other Related Work
	1.2 Organization of the Paper

	2 Overview of Our Proof
	2.1 Techniques for the 14-Round Simulator
	2.2 Our Techniques
	2.3 Comparison with Concurrent Work

	3 Background
	4 Our Simulator
	4.1 Informal Description of the Simulator
	4.2 Formal Description of the Simulator

	5 Proof of Indifferentiability
	5.1 Proof Overview
	5.2 Indistinguishability of the First and Second Experiments
	5.3 Properties of H2
	5.4 Indistinguishability of H2 and H4

	References

	Indifferentiability of Confusion-Diffusion Networks
	1 Introduction
	1.1 Overview of Our Results
	1.2 Other Related Work

	2 Definitions
	3 Attack on Two-Round Confusion-Diffusion Networks
	4 Combinatorial Definitions
	5 Network Nomenclature and Main Result
	6 Simulator Overview
	7 Extensions
	References

	Fair and Robust Multi-party Computation Using a Global Transaction Ledger
	1 Introduction
	2 Preliminaries
	3 Model
	3.1 Global Clock Functionality and Synchronous Protocol Executions
	3.2 Global Ledger Functionality

	4 Q-Fairness and Q-Robustness
	4.1 Q-Fairness
	4.2 Q-Robustness
	4.3 Computation with Fair/Robust Compensation

	5 Our QCoin-Robust Protocol Compiler
	5.1 MPC with Publicly Identifiable Abort
	5.2 Special Transactions Supported by Our Ledger
	5.3 The Protocol

	References

	Two Round Multiparty Computation via Multi-key FHE
	1 Introduction
	2 Overview of Our Techniques
	2.1 MPC via Threshold (Multi-key) FHE
	2.2 Constructing Threshold Multi-key FHE
	2.3 Road-Map Through the Paper

	3 Preliminaries
	4 Defining Threshold Multi-key FHE
	4.1 Multi-key FHE (MFHE)
	4.2 Threshold Decryption for MFHE

	5 Constructing Threshold Multi-key FHE from LWE
	5.1 GSW Fully Homomorphic Encryption
	5.2 A Masking Scheme for GSW
	5.3 Construction of Multi-key FHE
	5.4 Threshold Decryption for Multi-key FHE
	5.5 Bootstrapping

	6 Secure MPC via Threshold MFHE
	6.1 Protocol Secure Against Exactly N-1 Corruptions
	6.2 An Extended Protocol for Arbitrary Many Corruptions
	6.3 Extensions and Applications

	7 Conclusions
	References

	Post-zeroizing Obfuscation: New Mathematical Tools, and the Case of Evasive Circuits
	1 Introduction
	1.1 Our Techniques
	1.2 Applications

	2 Preliminaries
	2.1 Evasive Circuits
	2.2 Obfuscation
	2.3 Branching Programs
	2.4 The Ideal Graded Encoding Model
	2.5 Straddling Set Systems

	3 Obfuscator for Low-Rank Branching Programs
	4 Polynomials on Kilian-Randomized Matrices
	5 Sketch of VBB Security Proof
	6 Obfuscating Evasive Functions with No Zero Encodings
	References

	New Negative Results on Differing-Inputs Obfuscation
	1 Introduction
	1.1 Background
	1.2 The GGHW Result
	1.3 Our Approach
	1.4 Discussion and Related Work

	2 Preliminaries
	3 Consistent Puncturable Digital Signature Schemes
	4 Impossibility of Differing-Inputs Obfuscation for TMs
	References

	Automated Unbounded Analysis of Cryptographic Constructions in the Generic Group Model
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Notation

	3 Translating Security Experiments into Constraints
	3.1 Security Experiment Definition
	3.2 Winning Constraints
	3.3 Translation from Security Experiments to Winning Constraints

	4 Constraint Solving
	4.1 Constraint Solving Rules and Soundness
	4.2 Simplification Rules
	4.3 Introducing and Simplifying Coeff Constraints
	4.4 Case Distinctions and Contradictions
	4.5 Gröbner Basis Simplification
	4.6 Example: Proof of EUF-CMA for SPS

	5 Implementation and Case Studies
	5.1 Case Studies

	References

	Multi-input Functional Encryption in the Private-Key Setting: Stronger Security from Weaker Assumptions
	1 Introduction
	1.1 Our Contributions
	1.2 Additional Related Work
	1.3 Overview of Our Constructions and Techniques
	1.4 Paper Organization

	2 Preliminaries
	2.1 Pseudorandom Functions
	2.2 Private-Key Single-Input Functional Encryption
	2.3 Private-Key Two-Input Functional Encryption

	3 A Selectively-Secure Two-Input Scheme from Any Single-Input Scheme
	4 From Selective to Adaptive Security for Two-Input Schemes
	A Generalization to Inputs
	A.1 Private-Key -Input Functional Encryption
	A.2 A Selectively-Secure -Input Scheme from any -Input Scheme
	A.3 From Selective to Adaptive Security for t-Input Schemes

	References

	Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Other Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Non-malleable Codes and Reductions
	2.3 Tampering Families
	2.4 Reconstructable Probabilistic Encoding Scheme
	2.5 Boolean Function Restrictions
	2.6 Pseudorandom Generators of Space-Bounded Computation

	3 Non-malleable Codes for Localo(n)i(n)
	3.1 Extending to Leaky Local

	4 Extending to Localm(n)
	5 Achieving Resilience Against o(n/logn) Output Locality
	References

	Author Index

