
New Complexity Trade-Offs
for the (Multiple) Number Field Sieve

Algorithm in Non-Prime Fields

Palash Sarkar and Shashank Singh(B)

Applied Statistics Unit, Indian Statistical Institute, Kolkata, India
palash@isical.ac.in, sha2nk.singh@gmail.com

Abstract. The selection of polynomials to represent number fields cru-
cially determines the efficiency of the Number Field Sieve (NFS) algo-
rithm for solving the discrete logarithm in a finite field. An important
recent work due to Barbulescu et al. builds upon existing works to pro-
pose two new methods for polynomial selection when the target field
is a non-prime field. These methods are called the generalised Joux-
Lercier (GJL) and the Conjugation methods. In this work, we propose
a new method (which we denote as A) for polynomial selection for the
NFS algorithm in fields FQ, with Q = pn and n > 1. The new method
both subsumes and generalises the GJL and the Conjugation methods
and provides new trade-offs for both n composite and n prime. Let us
denote the variant of the (multiple) NFS algorithm using the polyno-
mial selection method “X” by (M)NFS-X. Asymptotic analysis is per-
formed for both the NFS-A and the MNFS-A algorithms. In particular,
when p = LQ(2/3, cp), for cp ∈ [3.39, 20.91], the complexity of NFS-
A is better than the complexities of all previous algorithms whether
classical or MNFS. The MNFS-A algorithm provides lower complexity
compared to NFS-A algorithm; for cp ∈ (0, 1.12] ∪ [1.45, 3.15], the com-
plexity of MNFS-A is the same as that of the MNFS-Conjugation and
for cp /∈ (0, 1.12] ∪ [1.45, 3.15], the complexity of MNFS-A is lower than
that of all previous methods.

1 Introduction

Let G = 〈g〉 be a finite cyclic group. The discrete log problem (DLP) in G is
the following. Given (g, h), compute the minimum non-negative integer e such
that h = ge. For appropriately chosen groups G, the DLP in G is believed to
be computationally hard. This forms the basis of security of many important
cryptographic protocols.

Studying the hardness of the DLP on subgroups of the multiplicative group
of a finite field is an important problem. There are two general algorithms for
tackling the DLP on such groups. These are the function field sieve (FFS) [1,2,
16,18] algorithm and the number field sieve (NFS) [11,17,19] algorithm. Both
these algorithms follow the framework of index calculus algorithms which is
currently the standard approach for attacking the DLP in various groups.
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part I, LNCS 9665, pp. 429–458, 2016.
DOI: 10.1007/978-3-662-49890-3 17

430 P. Sarkar and S. Singh

For small characteristic fields, the FFS algorithm leads to a quasi-polynomial
running time [6]. Using the FFS algorithm outlined in [6,15], Granger et al. [12]
reported a record computation of discrete log in the binary extension field F29234 .
FFS also applies to the medium characteristic fields. Some relevant works along
this line are reported in [14,18,25].

For medium to large characteristic finite fields, the NFS algorithm is the
state-of-the-art. In the context of the DLP, the NFS was first proposed by
Gordon [11] for prime order fields. The algorithm proceeded via number fields
and one of the main difficulties in applying the NFS was in the handling of units
in the corresponding ring of algebraic integers. Schirokauer [26,28] proposed
a method to bypass the problems caused by units. Further, Schirokauer [27]
showed the application of the NFS algorithm to composite order fields. Joux
and Lercier [17] presented important improvements to the NFS algorithm as
applicable to prime order fields.

Joux, Lercier, Smart and Vercauteren [19] later showed that the NFS algo-
rithm is applicable to all finite fields. Since then, several works [5,13,20,24] have
gradually improved the NFS in the context of medium to large characteristic
finite fields.

The efficiency of the NFS algorithm is crucially dependent on the properties
of the polynomials used to construct the number fields. Consequently, polyno-
mial selection is an important step in the NFS algorithm and is an active area of
research. The recent work [5] by Barbulescu et al. extends a previous method [17]
for polynomial selection and also presents a new method. The extension of [17]
is called the generalised Joux-Lercier (GJL) method while the new method pro-
posed in [5] is called the Conjugation method. The paper also provides a com-
prehensive comparison of the trade-offs in the complexity of the NFS algorithm
offered by the various polynomial selection methods.

The NFS based algorithm has been extended to multiple number field sieve
algorithm (MNFS). The work [8] showed the application of the MNFS to medium
to high characteristic finite fields. Pierrot [24] proposed MNFS variants of the
GJL and the Conjugation methods. For more recent works on NFS we refer
to [4,7,22].
Our contributions: In this work, we build on the works of [5,17] to propose
a new method of polynomial selection for NFS over Fpn . The new method both
subsumes and generalises the GJL and the Conjugation methods. There are two
parameters to the method, namely a divisor d of the extension degree n and a
parameter r ≥ k where k = n/d.

For d = 1, the new method becomes the same as the GJL method. For d = n
and r = k = 1, the new method becomes the same as the Conjugation method.
For d = n and r > 1; or, for 1 < d < n, the new method provides polynomials
which leads to different trade-offs than what was previously known. Note that
the case 1 < d < n can arise only when n is composite, though the case d = n and
r > 1 arises even when n is prime. So, the new method provides new trade-offs
for both n composite and n prime.

New Complexity Trade-Offs 431

Following the works of [5,24] we carry out an asymptotic analysis of new
method for the classical NFS as well as for MNFS. For the medium and the
large characteristic cases, the results for the new method are exactly the same as
those obtained for existing methods in [5,24]. For the boundary case, however, we
obtain some interesting asymptotic results. Letting Q = pn, the subexponential
expression LQ(a, c) is defined to be the following:

LQ(a, c) = exp
(
(c + o(1))(ln Q)a(ln lnQ)1−a

)
. (1)

Write p = LQ(2/3, cp) and let θ0 and θ1 be such that the complexity of the
MNFS-Conjugation method is LQ(1/3, θ0) and the complexity of the MNFS-GJL
method is LQ(1/3, θ1). As shown in [24], LQ(1/3, θ0) is the minimum complexity
of MNFS1 while for cp > 4.1, complexity of new method (MNFS-A) is lower than
the complexity LQ(1/3, θ1) of MNFS-GJL method.

The classical variant of the new method, (i.e., NFS-A) itself is powerful
enough to provide better complexity than all previously known methods, whether
classical or MNFS, for cp ∈ [3.39, 20.91]. The MNFS variant of the new method
provides lower complexity compared to the classical variant of the new method
for all cp.

Fig. 1. Complexity plot for MNFS boundary case

The complexity of MNFS-A with k = 1 and using linear sieving polynomials
can be written as LQ(1/3,C(cp, r)), where C(cp, r) is a function of cp and a
parameter r. For every integer r ≥ 1, there is an interval [ε0(r), ε1(r)] such that
for cp ∈ [ε0(r), ε1(r)], C(cp, r) < C(cp, r

′) for r �= r′. Further, for a fixed r,
let C(r) be the minimum value of C(cp, r) over all cp. We show that C(r) is
monotone increasing for r ≥ 1; C(1) = θ0; and that C(r) is bounded above by
θ1 which is its limit as r goes to infinity. So, for the new method the minimum
complexity is the same as MNFS-Conjugation method. On the other hand, as r

1 The value of θ0 obtained in [24] is incorrect.

432 P. Sarkar and S. Singh

increases, the complexity of MNFS-A remains lower than the complexities of all
the prior known methods. In particular, the complexity of MNFS-A interpolates
nicely between the complexity of the MNFS-GJL and the minimum possible
complexity of the MNFS-Conjugation method. This is depicted in Fig. 1. In
Fig. 4 of Sect. 8.1, we provide a more detailed plot of the complexity of MNFS-A
in the boundary case.

The complete statement regarding the complexity of MNFS-A in the bound-
ary case is the following. For cp ∈ (0, 1.12]∪[1.45, 3.15], the complexity of MNFS-
A is the same as that of MNFS-Conjugation; for cp /∈ (0, 1.12] ∪ [1.45, 3.15], the
complexity of MNFS-A is lower than that of all previous methods. In particular,
the improvements for cp in the range (1.12, 1.45) is obtained using k = 2 and 3;
while the improvements for cp > 3.15 is obtained using k = 1 and r > 1. In all
cases, the minimum complexity is obtained using linear sieving olynomials.

2 Background on NFS for Non-Prime Fields

We provide a brief sketch of the background on the variant of the NFS algorithm
that is applicable to the extension fields FQ, where Q = pn, p is a prime and
n > 1. More detailed discussions can be found in [5,17].

Following the structure of index calculus algorithms, NFS has three main
phases, namely, relation collection (sieving), linear algebra and descent. Prior to
these, is the set-up phase. In the set-up phase, two number fields are constructed
and the sieving parameters are determined. The two number fields are set up by
choosing two irreducible polynomials f(x) and g(x) over the integers such that
their reductions modulo p have a common irreducible factor ϕ(x) of degree n
over Fp. The field Fpn will be considered to be represented by ϕ(x). Let g be
a generator of G = F

�
pn and let q be the largest prime dividing the order of G.

We are interested in the discrete log of elements of G to the base g modulo this
largest prime q.

The choices of the two polynomials f(x) and g(x) are crucial to the algorithm.
These greatly affect the overall run time of the algorithm. Let α, β ∈ C and
m ∈ Fpn be the roots of the polynomials f(x), g(x) and ϕ(x) respectively. We
further let l(f) and l(g) denote the leading coefficient of the polynomials f(x)
and g(x) respectively. The two number fields and the finite field are given as
follows.

K1 = Q(α) =
Q[x]

〈f(x)〉 , K2 = Q(β) =
Q[x]

〈g(x)〉 and Fpn = Fp(m) =
Fp[x]
〈ϕ(x)〉 .

Thus, we have the following commutative diagram shown in Fig. 2, where we
represent the image of ξ ∈ Z(α) or ξ ∈ Z(β) in the finite field Fpn by ξ. Actual
computations are carried out over these number fields and are then transformed
to the finite field via these homomorphisms. In fact, instead of doing the com-
putations over the whole number field Ki, one works over its ring of algebraic
integers Oi. These integer rings provide a nice way of constructing a factor basis
and moreover, unique factorisation of ideals holds over these rings.

New Complexity Trade-Offs 433

The factor basis F = F1 ∪ F2 is chosen as follows.

F1 =
{

prime ideals q1,j in O1, either having norm less than B
or lying above the prime factors of l(f)

}

F2 =
{

prime ideals q2,j in O2, either having norm less than B
or lying above the prime factors of l(g)

}

where B is the smoothness bound and is to be chosen appropriately. An algebraic
integer is said to be B-smooth if the principal ideal generated by it factors
into the prime ideals of norms less than B. As mentioned in the paper [5],
independently of choice of f and g, the size of the factor basis is B1+o(1). For
asymptotic computations, this is simply taken to be B. The work flow of NFS
can be understood by the diagram in Fig. 2.

Z[x]

Z(α) Z(β)

Fp(m)

α
→x x →

β

α →
m

m

→β

Fig. 2. A work-flow of NFS.

A polynomial φ(x) ∈ Z[x] of degree at most t−1 (i.e. having t coefficients) is
chosen and the principal ideals generated by its images in the two number fields
are checked for smoothness. If both of them are smooth, then

φ(α)O1 =
∏

j

q1,j
ej and φ(β)O2 =

∏

j

q2,j
e′
j (2)

where q1,j and q2,j are prime ideals in F1 and F2 respectively. For i = 1, 2, let hi

denote the class number of Oi and ri denote the torsion-free rank of O�
i . Then,

for some εi,j ∈ qi,j and units ui,j ∈ O�
i , we have

logg φ (α) ≡
r1∑

j=1

λ1,j (φ (α)) Λ1,j +
∑

j

ejX1,j (mod q), (3)

logg φ (β) ≡
r2∑

j=1

λ2,j (φ (β)) Λ2,j +
∑

j

e′
jX2,j (mod q), (4)

where for i = 1, 2 and j = 1 . . . ri, Λi,j = logq ui,j is an unknown virtual log-
arithm of the unit ui,j , Xi,j = h−1

i logg εi,j is an unknown virtual logarithm

434 P. Sarkar and S. Singh

of prime ideal qi,j and λi,j : Oi 	→ Z/qZ is Schirokauer map [19,26,28]. We skip
the details of virtual logarithms and Schirokauer maps, as these details will not
affect the polynomial selection problem considered in this work.

Since φ (α) = φ (β), we have

∑r1
j=1 λ1,j (φ (α)) Λ1,j +

∑
j ejX1,j ≡ ∑r2

j=1 λ2,j (φ (β)) Λ2,j +
∑

j e′
jX2,j(mod q) (5)

The relation given by (5) is a linear equation modulo q in the unknown virtual
logs. More than (#F1 + #F2 + r1 + r2) such relations are collected by sieving
over suitable φ(x). The linear algebra step solves the resulting system of linear
equations using either the Lanczos or the block Wiedemann algorithms to obtain
the virtual logs of factor basis elements.

After the linear algebra phase is over, the descent phase is used to compute
the discrete logs of the given elements of the field Fpn . For a given element y
of Fpn , one looks for an element of the form yigj , for some i, j ∈ N, such that
the principal ideal generated by preimage of

(
yigj

)
in O1, factors into prime

ideals of norms bounded by some bound B1 and of degree at most t − 1. Then
the special-q descent technique [19] is used to write the ideal generated by the
preimage as a product of prime ideals in F1, which is then converted into a linear
equation involving virtual logs. Putting the value of virtual logs, obtained after
linear algebra phase, the value of logg(y) is obtained. For more details and recent
work on the descent phase, we refer to [13,19].

3 Polynomial Selection and Sizes of Norms

It is evident from the description of NFS that the relation collection phase
requires polynomials φ(x) ∈ Z[x] whose images in the two number fields are
simultaneously smooth. For ensuring the smoothness of φ(α) and φ(β), it is
enough to ensure that their norms viz, Res(f, φ) and Res(g, φ) are B-smooth.
We refer to [5] for further explanations.

Using the Corollary 2 of Kalkbrener’s work [21], we have the following upper
bound for the absolute value of the norm.

|Res(f, φ)| ≤ κ (deg f,deg φ) ‖f‖deg φ
∞ ‖φ‖deg f

∞ (6)

where κ(a, b) =
(
a+b

a

)(
a+b−1

a

)
and ‖f‖∞ is maximum of the absolute values of

the coefficients of f .
Following [5], let E be such that the coefficients of φ are in

[− 1
2E2/t, 1

2E2/t
]
.

So, ‖φ‖∞ ≈ E2/t and the number of polynomials φ(x) that is considered for the
sieving is E2. Whenever p = LQ(a, cp) with a > 1

3 , we have the following bound
on the Res(f, φ) × Res(g, φ) (for details we refer to [5]).

|Res(f, φ) × Res(g, φ)| ≈ (‖f‖∞‖g‖∞
)t−1

E(deg f+deg g)2/t. (7)

For small values of n, the sieving polynomial φ(x) is taken to be linear, i.e., t = 2
and then the norm bound becomes approximately ‖f‖∞‖g‖∞E(deg f+deg g).

New Complexity Trade-Offs 435

The methods for choosing f and g result in the coefficients of one or both of
these polynomials to depend on Q. So, the right hand side of (7) is determined
by Q and E. All polynomial selection algorithms try to minimize the RHS of (7).
From the bound in (7), it is evident that during polynomial selection, the goal
should be to try and keep the degrees and the coefficients of both f and g to be
small. Ensuring both degrees and coefficients to be small is a nontrivial task and
leads to a trade-off. Previous methods for polynomial selections provide different
trade-offs between the degrees and the coefficients. Estimates of Q-E trade-off
values have been provided in [5] and is based on the CADO factoring software [3].
Table 1 reproduces these values where Q(dd) represents the number of decimal
digits in Q.

Table 1. Estimate of Q-E values [5].

Q(dd) 100 120 140 160 180 200 220 240 260 280 300

Q(bits) 333 399 466 532 598 665 731 798 864 931 997

E(bits) 20.9 22.7 24.3 25.8 27.2 28.5 29.7 30.9 31.9 33.0 34.0

As mentioned in [5,13], presently the following three polynomial selection
methods provide competitive trade-offs.

1. JLSV1: Joux, Lercier, Smart, Vercauteren method [19].
2. GJL: Generalised Joux Lercier method [5,23].
3. Conjugation method [5].

Brief descriptions of these methods are given below.

JLSV1. Repeat the following steps until f and g are obtained to be irreducible
over Z and ϕ is irreducible over Fp.

1. Randomly choose polynomials f0(x) and f1(x) having small coefficients with
deg(f1) < deg(f0) = n.

2. Randomly choose an integer � to be slightly greater than �√p�.
3. Let (u, v) be the rational reconstruction of � in Fp, i.e., � ≡ u/v mod p.
4. Define f(x) = f0(x) + �f1(x) and g(x) = vf0(x) + uf1(x) and ϕ(x) = f(x)

mod p.

Note that deg(f) = deg(g) = n and both ‖f‖∞ and ‖g‖∞ are O
(
p1/2

)
=

O
(
Q1/(2n)

)
and so (7) becomes E4n/tQ(t−1)/n which is E2nQ1/n for t = 2.

GJL. The basic Joux-Lercier method [17] works for prime fields. The gener-
alised Joux-Lercier method extends the basic Joux-Lercier method to work over
composite fields Fpn .

The heart of the GJL method is the following idea. Let ϕ(x) be a monic
polynomial ϕ(x) = xn + ϕn−1x

n−1 + · · · + ϕ1x + ϕ0 and r ≥ deg(ϕ) be an

436 P. Sarkar and S. Singh

integer. Let n = deg(ϕ). Given ϕ(x) and r, define an (r + 1) × (r + 1) matrix
Mϕ,r in the following manner.

Mϕ,r =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p
. . .

. . .
p

ϕ0 ϕ1 · · · ϕn−1 1
.

ϕ0 ϕ1 · · · ϕn−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)

The first n × n principal sub-matrix of Mϕ,r is diag[p, p, . . . , p] corresponding
to the polynomials p, px, . . . , pxn−1. The last r − n + 1 rows correspond to the
polynomials ϕ(x), xϕ(x), . . . , xr−nϕ(x).

Apply the LLL algorithm to Mϕ,r and let the first row of the resulting LLL-
reduced matrix be [g0, g1, . . . , gr−1, gr]. Define

g(x) = g0 + g1x + · · · + gr−1x
r−1 + grx

r. (9)

The notation

g = LLL (Mϕ,r) (10)

will be used to denote the polynomial g(x) given by (9). By construction, ϕ(x)
is a factor of g(x) modulo p.

The GJL procedure for polynomial selection is the following. Choose an r ≥ n
and repeat the following steps until f and g are irreducible over Z and ϕ is
irreducible over Fp.

1. Randomly choose a degree (r + 1)-polynomial f(x) which is irreducible over
Z and having coefficients of size O(ln(p)) such that f(x) has a factor ϕ(x) of
degree n modulo p which is both monic and irreducible.

2. Let ϕ(x) = xn +ϕn−1x
n−1 + · · ·+ϕ1x+ϕ0 and Mϕ,r be the (r +1)× (r +1)

matrix given by (8).
3. Let g(x) = LLL (Mϕ,r).

The polynomial f(x) has degree r + 1 and g(x) has degree r. The procedure is
parameterised by the integer r.

The determinant of M is pn and so from the properties of the LLL-reduced
basis, the coefficients of g(x) are of the order O

(
pn/(r+1)

)
= O

(
Q1/(r+1)

)
. The

coefficients of f(x) are O(ln p).
The bound on the norm given by (7) in this case is E2(2r+1)/tQ(t−1)/(r+1)

which becomes E2r+1Q1/(r+1) for t = 2. Increasing r reduces the size of the
coefficients of g(x) at the cost of increasing the degrees of f and g. In the
concrete example considered in [5] and also in [24], r has been taken to be n and
so M is an (n + 1) × (n + 1) matrix.

Conjugation. Repeat the following steps until f and g are irreducible over Z

and ϕ is irreducible over Fp.

New Complexity Trade-Offs 437

1. Choose a quadratic monic polynomial μ(x), having coefficients of size O(ln p),
which is irreducible over Z and has a root t in Fp.

2. Choose two polynomials g0(x) and g1(x) with small coefficients such that
deg g1 < deg g0 = n.

3. Let (u, v) be a rational reconstruction of t modulo p, i.e., t ≡ u/v mod p.
4. Define g(x) = vg0(x) + ug1(x) and f(x) = Resy

(
μ(y), g0(x) + y g1(x)

)
.

Note that deg(f) = 2n, deg(g) = n, ‖f‖∞ = O(ln p) and ‖g‖∞ = O(p1/2) =
O(Q1/(2n)). In this case, the bound on the norm given by (7) is E6n/tQ(t−1)/(2n)

which becomes E3nQ1/(2n) for t = 2.

4 A Simple Observation

For the GJL method, while constructing the matrix M , the coefficients of the
polynomial ϕ(x) are used. If, however, some of these coefficients are zero, then
these may be ignored. The idea is given by the following result.

Proposition 1. Let n be an integer, d a divisor of n and k = n/d. Suppose
A(x) is a monic polynomial of degree k. Let r ≥ k be an integer and set ψ(x) =
LLL(MA,r). Define g(x) = ψ(xd) and ϕ(x) = A(xd). Then

1. deg(ϕ) = n and deg(g) = rd;
2. ϕ(x) is a factor of g(x) modulo p;
3. ‖g‖∞ = pn/(d(r+1)).

Proof. The first point is straightforward. Note that by construction A(x) is a
factor of ψ(x) modulo p. So, A(xd) is a factor of ψ(xd) = g(x) modulo p. This
shows the second point. The coefficients of g(x) are the coefficients of ψ(x).
Following the GJL method, ‖ψ‖∞ = pk/(r+1) = pn/(d(r+1)) and so the same
holds for ‖g‖∞. This shows the third point. ��
Note that if we had defined g(x) = LLL(Mϕ,rd), then ‖g‖∞ would have been
pn/(rd+1). For d > 1, the value of ‖g‖∞ given by Proposition 1 is smaller.

A Variant. The above idea shows how to avoid the zero coefficients of ϕ(x).
A similar idea can be used to avoid the coefficients of ϕ(x) which are small.
Suppose that the polynomial ϕ(x) can be written in the following form.

ϕ(x) = ϕi1x
i1 + · · · + ϕikxik + xn +

∑

j /∈{i1,...,ik}
ϕjx

j (11)

where i1, . . . , ik are from the set {0, . . . , n − 1} and for j ∈ {0, . . . , n − 1} \
{i1, . . . , ik}, the coefficients ϕj are all O(1). Some or even all of these ϕj ’s could
be zero. A (k + 1) × (k + 1) matrix M is constructed in the following manner.

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

p
. . .

. . .
p

ϕi1 ϕi2 · · · ϕik 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)

438 P. Sarkar and S. Singh

The matrix M has only one row obtained from ϕ(x) and it is difficult to use
more than one row. Apply the LLL algorithm to M and write the first row of
the resulting LLL-reduced matrix as [gi1 , . . . , gik , gn]. Define

g(x) = (gi1x
i1 + · · · + gikxik + gnxn) +

∑

j /∈{i1,...,ik,n}
ϕjx

j . (13)

The degree of g(x) is n and the bound on the coefficients of g(x) is determined
as follows. The determinant of M is pk and by the LLL-reduced property, each
of the coefficients gi1 , . . . , gik , gn is O(pk/(k+1)) = O(Qk/(n(k+1))). Since ϕj for
j /∈ {i1, . . . , ik} are all O(1), it follows from (13) that all the coefficients of g(x)
are O(Qk/(n(k+1))) and so ‖g‖∞ = O(Qk/(n(k+1))).

5 A New Polynomial Selection Method

In the simple observation made in the earlier section, the non-zero terms of the
polynomial g(x) are powers of xd. This creates a restriction and does not turn
out to be necessary to apply the main idea of the previous section. Once the
polynomial ψ(x) is obtained using the LLL method, it is possible to substitute
any degree d polynomial with small coefficients for x and still the norm bound
will hold. In fact, the idea can be expressed more generally in terms of resultants.
Algorithm A describes the new general method for polynomial selection.

The following result states the basic properties of Algorithm A.

Algorithm. A: A new method of polynomial selection.
Input: p, n, d (a factor of n) and r ≥ n/d.

Output: f(x), g(x) and ϕ(x).

Let k = n/d;

repeat
Randomly choose a monic irreducible polynomial A1(x) having the

following properties: deg A1(x) = r + 1; A1(x) is irreducible over the

integers; A1(x) has coefficients of size O(ln(p)); modulo p, A1(x) has an

irreducible factor A2(x) of degree k.

Randomly choose monic polynomials C0(x) and C1(x) with small

coefficients such that deg C0(x) = d and deg C1(x) < d.

Define

f(x) = Resy (A1(y), C0(x) + y C1(x)) ;

ϕ(x) = Resy (A2(y), C0(x) + y C1(x)) mod p;

ψ(x) = LLL(MA2,r);

g(x) = Resy (ψ(y), C0(x) + y C1(x)) .

until f(x) and g(x) are irreducible over Z and ϕ(x) is irreducible over Fp.

return f(x), g(x) and ϕ(x).

New Complexity Trade-Offs 439

Proposition 2. The outputs f(x), g(x) and ϕ(x) of Algorithm A satisfy the
following.

1. deg(f) = d(r + 1); deg(g) = rd and deg(ϕ) = n;
2. both f(x) and g(x) have ϕ(x) as a factor modulo p;
3. ‖f‖∞ = O(ln(p)) and ‖g‖∞ = O(Q1/(d(r+1))).

Consequently,

|Res(f, φ) × Res(g, φ)| ≈ (‖f‖∞‖g‖∞)t−1 × E2(deg f+deg g)/t

= O
(
E2d(2r+1)/t × Q(t−1)/(d(r+1))

)
. (14)

Proof. By definition f(x) = Resy (A1(y), C0(x) + y C1(x)) where A1(x) has
degree r + 1, C0(x) has degree d and C1(x) has degree d − 1, so the degree
of f(x) is d(r + 1). Similarly, one obtains the degree of ϕ(x) to be n. Since ψ(x)
is obtained from A2(x) as LLL(MA2,r) it follows that the degree of ψ(x) is r and
so the degree of g(x) is rd.

Since A2(x) divides A1(x) modulo p, it follows from the definition of f(x)
and ϕ(x) that modulo p, ϕ(x) divides f(x). Since ψ(x) is a linear combi-
nation of the rows of MA2,r, it follows that modulo p, ψ(x) is a multiple
of A2(x). So, g(x) = Resy (ψ(y), C0(x) + y C1(x)) is a multiple of ϕ(x) =
Resy (A2(y), C0(x) + y C1(x)) modulo p.

Since the coefficients of C0(x) and C1(x) are O(1) and the coefficients of
A1(x) are O(ln p), it follows that ‖f‖∞ = O(ln p). The coefficients of g(x) are
O(1) multiples of the coefficients of ψ(x). By third point of Proposition 1, the
coefficients of ψ(x) are O(pn/(d(r+1))) = Q1/(d(r+1)) which shows that ‖g‖∞ =
O(Q1/(d(r+1))). ��

Proposition 2 provides the relevant bound on the product of the norms of a
sieving polynomial φ(x) in the two number fields defined by f(x) and g(x). We
note the following points.

1. If d = 1, then the norm bound is E2(2r+1)/tQ(t−1)/(r+1) which is the same as
that obtained using the GJL method.

2. If d = n, then the norm bound is E2n(2r+1)/tQ(t−1)/(n(r+1)). Further, if
r = k = 1, then the norm bound is the same as that obtained using the
Conjugation method. So, for d = n, Algorithm A is a generalisation of the
Conjugation method. Later, we show that choosing r > 1 provides asymptotic
improvements.

3. If n is a prime, then the only values of d are either 1 or n. The norm bounds
in these two cases are covered by the above two points.

4. If n is composite, then there are non-trivial values for d and it is possible to
obtain new trade-offs in the norm bound. For concrete situations, this can be
of interest. Further, for composite n, as value of d increases from d = 1 to
d = n, the norm bound nicely interpolates between the norm bounds of the
GJL method and the Conjugation method.

440 P. Sarkar and S. Singh

Existence of Q-automorphisms: The existence of Q-automorphism in the
number fields speeds up the NFS algorithm in the non-asymptotic sense [19].
Similar to the existence of Q-automorphism in GJL method, as discussed in [5],
the first polynomial generated by the new method, can have a Q-automorphism.
In general, it is difficult to get an automorphism for the second polynomial as
it is generated by the LLL algorithm. On the other hand, we can have a Q-
automorphism for the second polynomial also in the specific cases. Some of the
examples are reported in [10].

6 Non-asymptotic Comparisons and Examples

We compare the norm bounds for t = 2, i.e., when the sieving polynomial is
linear. In this case, Table 2 lists the degrees and norm bounds of polynomials
for various methods. Table 3 compares the new method with the JLSV1 and the
GJL method for concrete values of n, r and d. This shows that the new method
provides different trade-offs which were not known earlier.

As an example, we can see from Table 3 that the new method compares well
with GJL and JLSV1 methods for n = 4 and Q of 300 dd (refer to Table 1).
As mentioned in [5], when the differences between the methods are small, it is
not possible to decide by looking only at the size of the norm product. Keeping
this in view, we see that the new method is competitive for n = 6 as well.
These observations are clearly visible in the plots given in the Fig. 3. From the
Q-E pairs given in Table 1, it is clear that the increase of E is slower than that
of Q. This suggests that the new method will become competitive when Q is
sufficiently large.

(a) Polynomials for Fp4 (b) Polynomials for Fp6

Fig. 3. Product of norms for various polynomial selection methods

Next we provide some concrete examples of polynomials f(x), g(x) and ϕ(x)
obtained using the new method. The examples are for n = 6 and n = 4. For
n = 6, we have taken d = 1, 2, 3 and 6 and in each case r was chosen to be
r = k = n/d. For n = 4, we consider d = 2 with r = k = n/d and r = k + 1; and
d = 4 with r = k. These examples are to illustrate that the method works as

New Complexity Trade-Offs 441

Table 2. Parameterised efficiency estimates for NFS obtained from the different poly-
nomial selection methods.

Methods deg f deg g ‖f‖∞ ‖g‖∞ ‖f‖∞‖g‖∞E(deg f+deg g)

JLSV1 n n Q
1
2n Q

1
2n E2nQ

1
n

GJL (r ≥ n) r + 1 r O(ln p) Q
1

r+1 E2r+1Q
1

r+1

Conjugation 2n n O(ln p) Q
1
2n E3nQ

1
2n

A (d|n, r ≥ n/d) d(r + 1) dr O(ln p) Q
1

d(r+1) Ed(2r+1)Q1/(d(r+1))

Table 3. Comparison of efficiency estimates for composite n with d = 2 and r = n/2.

FQ method (deg f, deg g) ‖f‖∞ ‖g‖∞ ‖f‖∞‖g‖∞E(deg f+deg g)

Fp4 GJL (5, 4) O(ln p) Q
1
5 E9Q

1
5

JLSV1 (4, 4) Q
1
8 Q

1
8 E8Q

1
4

A (6, 4) O(ln p) Q
1
6 E10Q

1
6

Fp6 GJL (7, 6) O(ln p) Q
1
7 E13Q

1
7

JLSV1 (6, 6) Q
1
12 Q

1
12 E12Q

1
6

A (8, 6) O(ln p) Q
1
8 E14Q

1
8

Fp8 GJL (9, 8) O(ln p) Q
1
9 E17Q

1
9

JLSV1 (8, 8) Q
1
16 Q

1
16 E16Q

1
8

A (10, 8) O(ln p) Q
1
10 E18Q

1
10

Fp9 GJL (10, 9) O(ln p) Q
1
10 E19Q

1
10

JLSV1 (9, 9) Q
1
18 Q

1
18 E18Q

1
9

A (12, 9) O(ln p) Q
1
12 E21Q

1
12

predicted and returns the desired polynomials very fast. We have used Sage [29]
and MAGMA computer algebra system [9] for all the computations done in this
work.

Example 1. Let n = 6, and p is a 201-bit prime given below.

p = 1606938044258990275541962092341162602522202993782792835361211

Taking d = 1 and r = n/d, we get

f(x) = x7 + 18x6 + 99x5 − 107x4 − 3470x3 − 15630x2 − 30664x − 23239

g(x) = 712965136783466122384156554261504665235609243446869 x6 + 16048203858903

260691766216702652575435281807544247712 x5 + 14867720774814154920358989

0852868028274077107624860184 x4 + 7240853845391439257955648357229262561

71920852986660372 x3 + 194693204195493982969795038496468458378024972218

5345772x2 + 2718971797270235171234259793142851416923331519178675874 x

+1517248296800681060244076172658712224507653769252953211

442 P. Sarkar and S. Singh

ϕ(x) = x6 + 671560075936012275401828950369729286806144005939695349290760 x5 +
774705834624554066737199160555511502088270323481268337340514 x4 + 1100

646447552671580437963861085020431145126151057937318479717 x3 + 27131646

3864123658232870095113273120009266491174096472632727 x2 + 4101717389506

73951225351009256251353058695601874372080573092 x + 1326632804961027767

272334662693578855845363854398231524390607

Note that ‖g‖∞ ≈ 2180. Taking d = 2 and r = n/d, we get

f(x) = x8 − x7 − 5x6 − 50x5 − 181x4 − 442x3 − 801x2 − 633x − 787

g(x) = 833480932500516492505935839185008193696457787 x6 + 2092593616641287655

065740032896986343580698615 x5 + 1298540899568952261791537743468335194

3188533320 x4 + 21869741590966357897620167461539967141532970622 x3 + 6

4403097224634262677273803471992671747860968564 x2 + 558647116952815842

83909455665521092749502793807 x + 921778354059077827252784356704871327

10722661831

ϕ(x) = x6 + 225577566898041285405539226183221508226286589225546142714057 x5 +
726156673723889082895351451739733545328394720523246272955173 x4 + 10214

78132054694721578888994001730764934454660630543688348056 x3 + 674978102

55620874288201802771995130845407860934811815878391 x2 + 632426210761786

622105494194314937817927439372918029042718843 x + 104093530686601670252

6455143725415379604742339065421793844038

Note that ‖g‖∞ ≈ 2156. Taking d = 3 and r = n/d, we get

f(x) = x9 − 4x8 − 54x7 − 174x6 − 252x5 − 174x4 − 76x3 − 86x2 − 96x − 42

g(x) = 2889742364508381557593312392497801006712 x6 + 83633695370646306085610

87765146274738509 x5 + 10828078806524085705506412783408772941877 x4 +
41812824889730400169000397417267197701179 x3 + 1497421347777532476213

31508897969482387354 x2 + 240946716989443210293442965552611305592194 x

+151696455655104744403073743333940426598833

ϕ(x) = x6 + 265074577705978624915342871970538348132010154368109244143774 x5

+21159801273629654486978970226092134077566675973129512551886 x4 + 10

63445611445684266941289540827947199397416276334188055837892 x3 + 1459

587283058054365639950761731919998074021438242745336103973 x2 + 145654

3437800571643325638648207188371117923539168263210522995 x + 378129170

960510211491600303623674471468414144797178846977007

New Complexity Trade-Offs 443

Note that ‖g‖∞ ≈ 2137. Taking d = 6 and r = n/d, we get

f(x) = x12 + 3x10 + 10x9 + 53x8 + 112x7 + 163x6

+184x5 + 177x4 + 166x3 + 103x2 + 72x + 48

g(x) = −666878138402353195498832669848 x6 − 1867253271074924746011849188889 x5

−5601759813224774238035547566667 x4 − 6668753801765210948063915265053 x3

−4268003536420067847037882226971 x2 − 6935516090029480629033212906363 x

−7469013084299698984047396755556

ϕ(x) = x6 + 356485336847074091920944597187811284411849047991334266185684 x5 +
1069456010541222275762833791563433853235547143974002798557052 x4 + 175

488639976380184062760893597893819537042246173878495567205 x3 + 1069456

010541222275762833791563433853235547143974002798557050 x2 + 1069456010

541222275762833791563433853235547143974002798557054 x + 14259413473882

96367683778388751245137647396191965337064742736

In this case we get ‖g‖∞ ≈ 2102.

Example 2. Let n = 4, and p is a 301-bit prime given below.

p = 203703597633448608626844568840937816105146839366593625063614044935438

1299763336706183493607

Taking d = 2 and r = n/d, we get

f(x) = x6 + 2x5 + 10x4 + 11x3 + 8x2 + 3x + 5

g(x) = 1108486244023576208689360410176300373132220654590976786482134 x4 + 20

50762938144982289360096083705563965935573667103554994528044 x3 + 5523

467580377021934753091786207648479867036209679151793015319 x2 + 456222

7246514756745388645848004531501269616133890841445574058 x + 441498133

6353445726063731376031348106734815555088175006533185

ϕ(x) = x4 + 1305623360698284685175599277707343457576279146188242586245210199

344777856138293049165536292 x3 + 1630663764713242722426772175575945319

640665655794962932653634545690570677252853972689997048 x2 + 1955704168

7282007596779450734445471817050521654016832790620588920363634983674148

96214457800 x + 163066376471324272242677217557594531964066565579496293

2653634545690570677252853972689997047

444 P. Sarkar and S. Singh

In this case we have ‖g‖∞ ≈ 2201. If we take r = n/d + 1, we get

f(x) = x8 + 16x7 + 108x6 + 398x5 + 865x4 + 1106x3 + 820x2 + 328x + 55

g(x) = 348482147842083865380881347784399925335728557 x6 + 5536103979982210590

186016445459289773029045618 x5 + 3381254505070666477453052572333514580

1290667783 x4 + 96062171957261124763428590648958745188735445330 x3 + 1

24085795781307363759935898131887563792535489069 x2 + 73090839973729169

966964061428402316131911130808 x + 16093810783274309055350481972028841

649178007790

ϕ(x) = x4 + 5128690964597943246501962358998676237033930846168967447990334244

55696319185673262765599428 x3 + 1802408796932749487444974790576022081

708344659229207911271845827650035713383268427662416444 x2 + 1553341208

0263216762891646375525736686031169799908288433475579574772861500238438

04262435184 x + 263801507553366513494386082876419210598165405378517676

874745554282946755826248639365618168

In this case we have ‖g‖∞ ≈ 2156. If we take d = 4 and r = d/n, we have

f(x) = x8 − 3x7 − 33x6 − 97x5 − 101x4 + 3x3 + 73x2 − 35x − 8

g(x) = 684862886024125973911391867198415841436877278 x4 + 1925808392957060519

248933705295588974774910731 x3 + 1668247862726425714278449912696271875

703468525 x2 + 40961560447538961485182385700123093758271763 x + 124094

5506932934545337541838097173133338033453

ϕ(x) = x4 + 3001292991290566658187708046113162326822746963576576248059013380

7217067092452460559896554 x3 + 900387897387169997456312413833948698046

82408907297287441770401421651201277357381679689656 x2 + 15006464956452

8332909385402305658116341137348178828812402950669036085335462262302799

482756x + 30012929912905666581877080461131623268227469635765762480590

133807217067092452460559896553

In this case also we have ‖g‖∞ ≈ 2150.

7 Asymptotic Complexity Analysis

The goal of the asymptotic complexity analysis is to express the runtime of the
NFS algorithm using the L-notation and at the same time obtain bounds on p
for which the analysis is valid. Our description of the analysis is based on prior
works predominantly those in [5,17,19,24].

New Complexity Trade-Offs 445

For 0 < a < 1, write

p = LQ(a, cp), where cp =
1
n

(
ln Q

ln lnQ

)1−a

and so n =
1
cp

(
ln Q

ln lnQ

)1−a

.

(15)

The value of a will be determined later. Also, for each cp, the runtime of the
NFS algorithm is the same for the family of finite fields Fpn where p is given
by (15).

From Sect. 3, we recall the following.

1. The number of polynomials to be considered for sieving is E2.
2. The factor base is of size B.

Sparse linear algebra using the Lanczos or the block Wiedemann algorithm takes
time O(B2). For some 0 < b < 1, let

B = LQ(b, cb). (16)

The value of b will be determined later. Set

E = B (17)

so that asymptotically, the number of sieving polynomials is equal to the time
for the linear algebra step.

Let π = Ψ(Γ, B) be the probability that a random positive integer which is at
most Γ is B-smooth. Let Γ = LQ(z, ζ) and B = LQ(b, cb). Using the L-notation
version of the Canfield-Erdös-Pomerance theorem,

(Ψ(Γ, B))−1 = LQ

(
z − b, (z − b)

ζ

cb

)
. (18)

The bound on the product of the norms given by Proposition 2 is

Γ = E
2
t d(2r+1) × Q

t−1
d(r+1) . (19)

Note that in (19), t − 1 is the degree of the sieving polynomial. Following the
usual convention, we assume that the same smoothness probability π holds for
the event that a random sieving polynomial φ(x) is smooth over the factor base.

The expected number of polynomials to consider for obtaining one relation is
π−1. Since B relations are required, obtaining this number of relations requires
trying Bπ−1 trials. Balancing the cost of sieving and the linear algebra steps
requires Bπ−1 = B2 and so

π−1 = B. (20)

Obtaining π−1 from (18) and setting it to be equal to B allows solving for cb.
Balancing the costs of the sieving and the linear algebra phases leads to the
runtime of the NFS algorithm to be B2 = LQ(b, 2cb). So, to determine the
runtime, we need to determine b and cb. The value of b will turn out to be 1/3
and the only real issue is the value of cb.

446 P. Sarkar and S. Singh

Lemma 1. Let n = kd for positive integers k and d. Using the expressions for
p and E(= B) given by (15) and (16), we obtain the following.

E
2
t d(2r+1) = LQ

(
1 − a + b, 2cb(2r+1)

cpkt

)
;

Q
t−1

d(r+1) = LQ

(
a,

kcp(t−1)
(r+1)

)
.

⎫
⎬

⎭
(21)

Proof. The second expression follows directly from Q = pn, p = LQ(a, cp) and
n = kd. The computation for obtaining the first expression is the following.

E
2
t d(2r+1) = LQ

(
b, cb

2
t
d(2r + 1)

)

= exp
(

cb
2
t
(2r + 1)

n

k
(ln Q)b(ln lnQ)1−b

)

= exp

(

cb
2

cpkt
(2r + 1)

(
ln Q

ln lnQ

)1−a

(ln Q)b(ln lnQ)1−b

)

= LQ

(
1 − a + b,

2cb(2r + 1)
cpkt

)
.

��
Theorem 1 (Boundary Case). Let k divide n, r ≥ k, t ≥ 2 and p =
LQ(2/3, cp) for some 0 < cp < 1. It is possible to ensure that the runtime of the
NFS algorithm with polynomials chosen by Algorithm A is LQ(1/3, 2cb) where

cb =
2r + 1
3cpkt

+

√(
2r + 1
3cpkt

)2

+
kcp(t − 1)
3(r + 1)

. (22)

Proof. Setting 2a = 1 + b, the two L-expressions given by (21) have the same
first component and so the product of the norms is

Γ = LQ

(
a,

2cb(2r + 1)
cpkt

+
kcp(t − 1)

(r + 1)

)
.

Then π−1 given by (18) is

LQ

(
a − b, (a − b)

(
2(2r + 1)

cpkt
+

kcp(t − 1)
cb(r + 1)

))
.

From the condition π−1 = B, we get b = a − b and

cb = (a − b)
(

2(2r + 1)
cpkt

+
kcp(t − 1)
cb(r + 1)

)
.

The conditions a − b = b and 2a = 1 + b show that b = 1/3 and a = 2/3. The
second equation then becomes

cb =
1
3

(
2(2r + 1)

cpkt
+

kcp(t − 1)
cb(r + 1)

)
. (23)

New Complexity Trade-Offs 447

Solving the quadratic for cb and choosing the positive root gives

cb =
2r + 1
3cpkt

+

√(
2r + 1
3cpkt

)2

+
kcp(t − 1)
3(r + 1)

.

��
Corollary 1 (Boundary Case of the Conjugation Method [5]). Let
r = k = 1. Then for p = LQ(2/3, cp), the runtime of the NFS algorithm is
LQ(1/3, 2cb) with

cb =
1

cpt
+

√(
1

cpt

)2

+
cp(t − 1)

6
.

Allowing r to be greater than k leads to improved asymptotic complexity.
We do not perform this analysis. Instead, we perform the analysis in the similar
situation which arises for the multiple number field sieve algorithm.

Theorem 2 (Medium Characteristic Case). Let p = LQ(a, cp) with a >
1/3. It is possible to ensure that the runtime of the NFS algorithm with the
polynomials produced by Algorithm A is LQ(1/3, (32/3)1/3).

Proof. Since a > 1/3, the bound Γ on the product of the norms can be taken
to be the expression given by (7). The parameter t is chosen as follows [5]. For
0 < c < 1, let t = ctn((ln Q)/(ln lnQ))−c. For the asymptotic analysis, t − 1
is also assumed to be given by the same expression for t. Then the expressions
given by (21) become the following.

E
2
t d(2r+1) = LQ

(
b + c, 2cb(2r+1)

kct

)
; Q

t−1
d(r+1) = LQ

(
1 − c, kct

r+1

)
. (24)

This can be seen by substituting the expression for t in (21) and further by using
the expression for n given in (15).

Setting 2c = 1−b, the first components of the two expressions in (24) become
equal and so

Γ = LQ

(
b + c,

2cb(2r + 1)
kct

+
kct

r + 1

)
.

Using this Γ, the expression for π−1 is

π−1 = LQ

(
c, c

(
2(2r + 1)

kct
+

kct

cb(r + 1)

))
.

We wish to choose ct so as to maximise the probability π and hence to minimise
π−1. This is done by setting 2(2r + 1)/(kct) = (kct)/(cb(r + 1)) whence kct =√

2cb(r + 1)(2r + 1). With this value of kct,

π−1 = LQ

(

c,
2c

√
2cb(r + 1)(2r + 1)

cb(r + 1)

)

.

448 P. Sarkar and S. Singh

Setting π−1 to be equal to B = LQ(b, cb) yields b = c and

cb =

(
2c

√
2cb(r + 1)(2r + 1)

cb(r + 1)

)

.

From b = c and 2c = 1 − b we obtain c = b = 1/3. Using this value of c in the
equation for cb, we obtain cb = (2/3)2/3 × ((2(2r + 1))/(r + 1))1/3. The value of
cb is the minimum for r = 1 and this value is cb = (4/3)1/3. ��
Note that the parameter a which determines the size of p is not involved in any of
the computation. The assumption a > 1/3 is required to ensure that the bound
on the product of the norms can be taken to be the expression given by (7).

Theorem 3 (Large Characteristic). It is possible to ensure that the run-
time of the NFS algorithm with the polynomials produced by Algorithm A is
LQ(1/3, (64/9)1/3) for p ≥ LQ(2/3, (8/3)1/3).

Proof. Following [5], for 0 < e < 1, let r = cr/2((ln Q)/(ln lnQ))e. For the
asymptotic analysis, the expression for 2r + 1 is taken to be two times this
expression. Substituting this expression for r in (21), we obtain

E
2
t d(2r+1) = LQ

(
1 − a + b + e, 2cbcr

cpkt

)
;

Q
t−1

d(r+1) = LQ

(
a − e,

2kcp(t−1)
cr

)
.

⎫
⎬

⎭
(25)

Setting 1 + b = 2(a − e), we obtain Γ = LQ

(
1 + b

2
,
2cbcr

cpkt
+

2kcp(t − 1)
cr

)
and

so the probability π−1 is given by

LQ

(
1 − b

2
,
1 − b

2
×

(
2cr

cpkt
+

2kcp(t − 1)
crcb

))
.

The choice of cr for which the probability π is maximised (and hence π−1 is
minimised) is obtained by setting cr/(cpk) =

√
(t(t − 1))/cb and the minimum

value of π−1 is

LQ

(
1 − b

2
,
1 − b

2
×

(
4
√

t − 1
tcb

))
.

Setting this value of π−1 to be equal to B, we obtain

b = (1 − b)/2; cb =
1 − b

2
×

(
4
√

t − 1
tcb

)
.

The first equation shows b = 1/3 and using this in the second equation, we obtain
cb = (4/3)2/3((t − 1)/t)1/3. This value of cb is minimised for the minimum value
of t which is t = 2. This gives cb = (8/9)1/3.

Using 2(a − e) = 1 + b and b = 1/3 we get a − e = 2/3. Note that r ≥ k and
so p ≥ pk/r = LQ(a, (cpk)/r) = LQ(a − e, (2cpk)/cr). With t = 2, the value of
(cpk)/cr is equal to (1/3)1/3 and so p ≥ LQ(2/3, (8/3)1/3). ��

New Complexity Trade-Offs 449

Theorems 2 and 3 show that the generality introduced by k and r do not
affect the overall asymptotic complexity for the medium and large prime case
and the attained complexities in these cases are the same as those obtained for
previous methods in [5].

8 Multiple Number Field Sieve Variant

As the name indicates, the multiple number field sieve variant uses several num-
ber fields. The discussion and the analysis will follow the works [8,24].

There are two variants of multiple number field sieve algorithm. In the first
variant, the image of φ(x) needs to be smooth in at least any two of the number
fields. In the second variant, the image of φ(x) needs to be smooth in the first
number field and at least one of the other number fields.

We have analysed both the variants of multiple number field sieve algorithm
and found that the second variant turns out to be better than the first one. So
we discuss the second variant of MNFS only. In contrast to the number field
sieve algorithm, the right number field is replaced by a collection of V number
fields in the second variant of MNFS. The sieving polynomial φ(x) has to satisfy
the smoothness condition on the left number field as before. On the right side,
it is sufficient for φ(x) to satisfy a smoothness condition on at least one of the
V number fields.

Recall that Algorithm A produces two polynomials f(x) and g(x) of degrees
d(r+1) and dr respectively. The polynomial g(x) is defined as Resy(ψ(y), C0(x)+
yC1(x)) where ψ(x) = LLL(MA2,r), i.e., ψ(x) is defined from the first row of the
matrix obtained after applying the LLL-algorithm to MA2,r.

Methods for obtaining the collection of number fields on the right have been
mentioned in [24]. We adapt one of these methods to our setting. Consider
Algorithm A. Let ψ1(x) be ψ(x) as above and let ψ2(x) be the polynomial defined
from the second row of the matrix MA2,r. Define g1(x) = Resy(ψ1(y), C0(x) +
yC1(x)) and g2(x) = Resy(ψ2(y), C0(x) + yC1(x)). Then choose V − 2 linear
combinations gi(x) = sig1(x)+tig2(x), for i = 3, . . . , V . Note that the coefficients
si and ti are of the size of

√
V . All the gi’s have degree dr. Asymptotically,

‖ψ2‖∞ = ‖ψ1‖∞ = Q1/(d(r+1)). Since we take V = LQ(1/3), all the gi’s have
their infinity norms to be the same as that of g(x) given by Proposition 2.

For the left number field, as before, let B be the bound on the norms of the
ideals which are in the factor basis defined by f . For each of the right number
fields, let B′ be the bound on the norms of the ideals which are in the factor
basis defined by each of the gi’s. So, the size of the entire factor basis is B+V B′.
The following condition balances the left portion and the right portion of the
factor basis.

B = V B′. (26)

450 P. Sarkar and S. Singh

With this condition, the size of the factor basis is B1+o(1) as in the classical
NFS and so asymptotically, the linear algebra step takes time B2. As before, the
number of sieving polynomials is E2 = B2 and the coefficients of φ(x) can take
E2/t distinct values.

Let π be the probability that a random sieving polynomial φ(x) gives rise
to a relation. Let π1 be the probability that φ(x) is smooth over the left factor
basis and π2 be the probability that φ(x) is smooth over at least one of the
right factor bases. Further, let Γ1 = Resx(f(x), φ(x)) be the bound on the norm
corresponding to the left number field and Γ2 = Resx(gi(x), φ(x)) be the bound
on the norm for any of the right number fields. Note that Γ2 is determined only
by the degree and the L∞-norm of gi(x) and hence is the same for all gi(x)’s.
Heuristically, we have

π1 = Ψ(Γ1, B);
π2 = V Ψ(Γ2, B

′);
π = π1 × π2.

(27)

As before, one relation is obtained in about π−1 trials and so B relations are
obtained in about Bπ−1 trials. Balancing the cost of linear algebra and sieving,
we have as before B = π−1.

The following choices of B and V are made.

E = B = LQ

(
1
3 , cb

)
;

V = LQ

(
1
3 , cv

)
; and so

B′ = B/V = LQ

(
1
3 , cb − cv

)
.

(28)

With these choices of B and V , it is possible to analyse the MNFS variant for
Algorithm A for three cases, namely, the medium prime case, the boundary case
and the large characteristic case. Below we present the details of the boundary
case. This presents a new asymptotic result.

Theorem 4 (MNFS-Boundary Case). Let k divide n, r ≥ k, t ≥ 2 and

p = LQ

(
2
3
, cp

)
where cp =

1
n

(
ln Q

ln lnQ

)1/3

.

It is possible to ensure that the runtime of the MNFS algorithm is LQ(1/3, 2cb)
where

cb =
4r + 2
6ktcp

+

√
r(3r + 2)
(3ktcp)2

+
cpk(t − 1)
3(r + 1)

. (29)

New Complexity Trade-Offs 451

Proof. Note the following computations.

Γ1 = ‖φ‖deg(f)∞ = E2deg(f)/t = E(2d(r+1))/t = E(2n(r+1))/(kt)

= LQ

(
2
3
,
2(r + 1)cb

ktcp

)
;

π−1
1 = LQ

(
1
3
,
2(r + 1)
3ktcp

)
;

Γ2 = ‖φ‖deg(g)∞ × ‖g‖deg(φ)∞ = E2deg(g)/t × Q(t−1)/(d(r+1))

= E(2rd)/t × Q(t−1)/(d(r+1)) = E(2rn)/(kt) × Qk(t−1)/(n(r+1))

= LQ

(
2
3
,
2rcb

cpkt
+

kcp(t − 1)
r + 1

)
;

π−1
2 = LQ

(
1
3
,−cv +

1
3(cb − cv)

(
2rcb

cpkt
+

kcp(t − 1)
r + 1

))
;

π−1 = LQ

(
1
3
,
2(r + 1)
3ktcp

− cv +
1

3(cb − cv)

(
2rcb

cpkt
+

kcp(t − 1)
r + 1

))
;

From the condition π−1 = B, we obtain the following equation.

cb =
2(r + 1)
3ktcp

− cv +
1

3(cb − cv)

(
2rcb

cpkt
+

kcp(t − 1)
r + 1

)
. (30)

We wish to find cv such that cb is minimised subject to the constraint (30). Using
the method of Lagrange multipliers, the partial derivative of (30) with respect
to cv gives

cv =
r + 1
3ktcp

.

Using this value of cv in (30) provides the following quadratic in cb.

(3ktcp)c2b − (4r + 2)cb +
(r + 1)2

3ktcp
− (cpk)2t(t − 1)

r + 1
= 0.

Solving this and taking the positive square root, we obtain

cb =
4r + 2
6ktcp

+

√
r(3r + 2)
(3ktcp)2

+
cpk(t − 1)
3(r + 1)

. (31)

Hence the overall complexity of MNFS for the boundary case is LQ

(
1
3 , 2cb

)
. ��

8.1 Further Analysis of the Boundary Case

Theorem 4 expresses 2cb as a function of cp, t, k and r. Let us write this as
2cb = C(cp, t, k, r). It turns out that fixing the values of (t, k, r) gives a set
S(t, k, r) such that for cp ∈ S(t, k, r), C(cp, t, k, r) ≤ C(cp, t

′, k′, r′) for any

452 P. Sarkar and S. Singh

(t′, k′, r′) �= (t, k, r). In other words, for a choice of (t, k, r), there is a set of
values for cp where the minimum complexity of MNFS-A is attained. The set
S(t, k, r) could be empty implying that the particular choice of (t, k, r) is sub-
optimal.

For 1.12 ≤ cp ≤ 4.5, the appropriate intervals are given in Table 4. Fur-
ther, the interval (0, 1.12] is the union of S(t, 1, 1) for t ≥ 3. Note that the
choice (t, k, r) = (t, 1, 1) specialises MNFS-A to MNFS-Conjugation. So, for
cp ∈ (0, 1.12] ∪ [1.45, 3.15] the complexity of MNFS-A is the same as that of
MNFS-Conjugation.

Table 4. Choices of (t, k, r) and the corresponding S(t, k, r).

(t, k, r) S(t, k, r)

(t, 1, 1), t ≥ 3
⋃

t≥3 S(t, 1, 1) ≈ (0, 1.12]

(2, 3, 3) [(1/3)(4
√

21 + 20)1/3, (
√

78/9 + 29/36)1/3] ≈ [1.12, 1.21]

(2, 2, 2) [(
√

78/9 + 29/36)1/3, (1/2)(4
√

11 + 11)1/3] ≈ [1.21, 1.45]

(2, 1, 1) [(1/2)(4
√

11 + 11)1/3, (2
√

62 + 31/2)1/3] ≈ [1.45, 3.15]

(2, 1, 2) [(2
√

62 + 31/2)1/3, (8
√

33 + 45)1/3] ≈ [3.15, 4.5]

In Fig. 4, we have plotted 2cb given by Theorem 4 against cp for some values
of t, k and r where the minimum complexity of MNFS-A is attained. The plot
is labelled MNFS-A. The sets S(t, k, r) are clearly identifiable from the plot.
The figure also shows a similar plot for NFS-A which shows the complexity in
the boundary case given by Theorem 1. For comparison, we have plotted the
complexities of the GJL and the Conjugation methods from [5] and the MNFS-
GJL and the MNFS-Conjugation methods from [24].

Based on the plots given in Fig. 4, we have the following observations.

1. Complexities of NFS-A are never worse than the complexities of NFS-GJL
and NFS-Conjugation. Similarly, complexities of MNFS-A are never worse
than the complexities of MNFS-GJL and MNFS-Conjugation.

2. For both the NFS-A and the MNFS-A methods, increasing the value of r
provides new complexity trade-offs.

3. There is a value of cp for which the minimum complexity is achieved. This
corresponds to the MNFS-Conjugation. Let LQ(1/3, θ0) be this complexity.
The value of θ0 is determined later.

4. Let the complexity of the MNFS-GJL be LQ(1/3, θ1). The value of θ1 was
determined in [24]. The plot for MNFS-A approaches the plot for MNFS-GJL
from below.

5. For smaller values of cp, it is advantageous to choose t > 2 or k > 1. On the
other hand, for larger values of cp, the minimum complexity is attained for
t = 2 and k = 1.

New Complexity Trade-Offs 453

Fig. 4. Complexity plot for boundary case

From the plot, it can be seen that for larger values of cp, the minimum value
of cb is attained for t = 2 and k = 1. So, we decided to perform further analysis
using these values of t and k.

8.2 Analysis for t = 2 and k = 1

Fix t = 2 and k = 1 and let us denote C(cp, 2, 1, r) as simply C(cp, r). Then from
Theorem 4 the complexity of MNFS-A for p = LQ(2/3, cp) is LQ(1/3,C(cp, r))
where

C(cp, r) = 2cb = 2

√
cp

3 (r + 1)
+

(3 r + 2)r
36 c2p

+
2 r + 1
3 cp

. (32)

Figure 4 shows that for each r ≥ 1, there is an interval [ε0(r), ε1(r)] such that
for cp ∈ [ε0(r), ε1(r)], C(cp, r) < C(cp, r

′) for r �= r′. For r = 1, we have

ε0(1) =
1
2

(
4
√

11 + 11
) 1

3 ≈ 1.45; ε1(1) =
(

2
√

62 +
31
2

) 1
3

≈ 3.15.

For p = LQ(2/3, cp), the complexity of MNFS-A is same as the complexity
of MNFS-Conj. for cp in [1.45, 3.15]; for cp > 3.15, the complexity of MNFS-A is
lower than the complexity of all prior methods. The following result shows that
the minimum complexity attainable by MNFS-A approaches the complexity of
MNFS-GJL from below.

Theorem 5. For r ≥ 1, let C(r) = mincp>0 C(cp, r). Then

1. C(1) = θ0 =
(
146
261

√
22 + 208

87

)1/3
.

2. For r ≥ 1, C(r) is monotone increasing and bounded above.

454 P. Sarkar and S. Singh

3. The limiting upper bound of C(r) is θ1 =
(

2×(13
√
13+46)

27

)1/3

.

Proof. Differentiating C(cp, r) with respect to cp and equating to 0 gives

6
r+1 − (3 r+2)r

c3p

18
√

cp
3 (r+1) + (3 r+2)r

36 c2p

− 2 r + 1
3 c2p

= 0 (33)

On simplifying we get,

6c3p − (3r + 2)r(r + 1)
√(

12c3p + (r + 1)(3r + 2)r
)
(r + 1)

− 2 r + 1
1

= 0 (34)

Equation (34) is quadratic in c3p. On solving we get the following value of cp.

cp =
(

7
6

r3 + 2 r2 +
1
6

√
13 r2 + 8 r + 1

(
2 r2 + 3 r + 1

)
+ r +

1
6

)1/3

= ρ(r) (say) . (35)

Putting the value of cp back in (32), we get the minimum value of C (in terms
of r) as

C(r) = 2

√
ρ(r)

3 (r + 1)
+

(3 r + 2)r
36 ρ(r)2

+
2 r + 1
3 ρ(r)

. (36)

All the three sequences in the expression for C(r), viz, ρ(r)
3 (r+1) ,

(3 r+2)r
36 ρ(r)2 and

2 r+1
3 ρ(r) are monotonic increasing. This can be verified through computation (with
a symbolic algebra package) as follows. Let sr be any one of these sequences.
Then computing sr+1/sr gives a ratio of polynomial expressions from which it
is possible to directly argue that sr+1/sr is greater than one. We have done
these computations but, do not present the details since they are uninteresting
and quite messy. Since all the three sequences ρ(r)

3 (r+1) ,
(3 r+2)r
36 ρ(r)2 and 2 r+1

3 ρ(r) are
monotonic increasing so is C(r).

Note that for r ≥ 1, ρ(r) > (7/6)1/3r > 1.05r. So, for r > 1,

(3r + 2)r
ρ(r)2

= 3
(

r

ρ(r)

)2

+ 2
r

ρ(r)2
< 3 ×

(
1

1.05

)2

+ 2 × 1
1.05

.

(2r + 1)
ρ(r)

= 2
r

ρ(r)
+

1
ρ(r)

< 2 × 1
1.05

+
1

1.05
.

This shows that the sequences (3r+2)r
ρ(r)2 and (2r+1)

ρ(r) are bounded above. For r > 8,
we have (3r+1) < (8r+1) < r2 and (2r2+r+1/6) < r3/3 which implies that for
r > 8, ρ(r) < (7/6+1/6×√

14×3+1/3)1/3r < 1.5 r. Using ρ(r) < 1.5r for r > 8,

New Complexity Trade-Offs 455

it can be shown that the sequence
(

ρ(r)
r+1

)

r>8
is bounded above by 1.5. Since

the three constituent sequences ρ(r)
(r+1) ,

(3 r+2)r
ρ(r)2 and 2 r+1

ρ(r) are bounded above, it
follows that C(r) is also bounded above. Being monotone increasing and bounded
above C(r) is convergent. We claim that

lim
r→∞ C(r) =

(
2 × (13

√
13 + 46)

27

)1/3

.

The proof of the claim is the following. Using the expression for ρ(r) from (35)

we have lim
r→∞

ρ(r)
r

=
(

2
6

√
13 +

7
6

) 1
3

. Now,

C(r) = 2

√
ρ(r)/r

3 (1 + 1/r)
+

(3 + 2/r)
36 ρ(r)2/r2

+
2 + 1/r

3 ρ(r)/r
. (37)

Hence,

lim
r→∞ C(r) = 2

√
(2

√
13 + 7)1/3

3 × 61/3
+

3 × 62/3

36 (2
√

13 + 7)2/3
+

2 × 61/3

3 (2
√

13 + 7)1/3

After further simplification, we get

lim
r→∞ C(r) =

(
2 × (13

√
13 + 46)

27

)1/3

.

The limit of C(r) as r goes to infinity is the value of θ1 where LQ(1/3, θ1) is the
complexity of MNFS-GJL as determined in [24]. This shows that as r goes to
infinity, the complexity of MNFS-A approaches the complexity of MNFS-GJL
from below.

We have already seen that C(r) is monotone increasing for r ≥ 1. So, the
minimum value of C(r) is obtained for r = 1. After simplifying C(1), we get the
minimum complexity of MNFS-A to be

LQ

(

1/3,

(
146
261

√
22 +

208
87

)1/3
)

= L (1/3, 1.7116) . (38)

This minimum complexity is obtained at cp = ρ(1) =
(√

22 + 13
3

)1/3
=

2.0819. ��
Note 1. As mentioned earlier, for r = k = 1, the new method of polynomial selec-
tion becomes the Conjugation method. So, the minimum complexity of MNFS-A
is the same as the minimum complexity for MNFS-Conjugation. Here we note

456 P. Sarkar and S. Singh

that the value of the minimum complexity given by (38), is not same as the one
reported by Pierrot in [24]. This is due to an error in the calculation in [24]2.

Complexity of NFS-A: From Fig. 4, it can be seen that there is an interval for
cp for which the complexity of NFS-A is better than both MNFS-Conjugation
and MNFS-GJL. An analysis along the lines as done above can be carried out to
formally show this. We skip the details since these are very similar to (actually
a bit simpler than) the analysis done for MNFS-A. Here we simply mention the
following two results:

1. For cp ≥ (
2
√

89 + 20
) 1

3 ≈ 3.39, the complexity of NFS-A is better than that
of MNFS-Conjugation.

2. For cp ≤ 1
8

√
390

√(
5
√

13 − 18
)(

26
27

√
13 + 92

27

) 1
3 + 45

8

(
26
27

√
13 + 92

27

) 2
3 ≈ 20.91,

the complexity of NFS-A is better than that of MNFS-GJL.
3. So, for cp ∈ [3.39, 20.91], the complexity of NFS-A is better than the com-

plexity of all previous method including the MNFS variants.

Current state-of-the-art: The complexity of MNFS-A is lower than that of
NFS-A. As mentioned earlier (before Table 4) the interval (0, 1.12] is the union
of ∪t≥3S(t, 1, 1). This fact combined with Theorem 5 and Table 4 show the fol-
lowing. For p = LQ(2/3, cp), when cp ∈ (0, 1.12] ∪ [1.45, 3.15], the complexity of
MNFS-A is the same as that of MNFS-Conjugation; for cp /∈ (0, 1.12]∪[1.45, 3.15]
and cp > 0, the complexity of MNFS-A is smaller than all previous methods.
Hence, MNFS-A should be considered to provide the current state-of-the-art
asymptotic complexity in the boundary case.

8.3 Medium and Large Characteristic Cases

In a manner similar to that used to prove Theorem 4, it is possible to work
out the complexities for the medium and large characteristic cases of the MNFS
corresponding to the new polynomial selection method. To tackle the medium
prime case, the value of t is taken to be t = ctn ((ln Q)(ln lnQ))−1/3 and to tackle
the large prime case, the value of r is taken to be r = cr/2 ((lnQ)(ln lnQ))1/3.
This will provide a relation between cb, cv and r (for the medium prime case) or
t (for the large prime case). The method of Lagrange multipliers is then used to
find the minimum value of cb. We have carried out these computations and the
complexities turn out to be the same as those obtained in [24] for the MNFS-GJL
(for large characteristic) and the MNFS-Conjugation (for medium characteristic)
methods. Hence, we do not present these details.

2 The error is the following. The solution for cb to the quadratic (18t2c2p)c
2
b −

(36tcp)cb + 8 − 3t2(t − 1)c3p = 0 is cb = 1/(tcp) +
√

5/(9(cpt)2) + (cp(t − 1))/6
with the positive sign of the radical. In [24], the solution is erroneously taken to
be 1/(tcp) +

√
5/((9cpt)2) + (cp(t − 1))/6.

New Complexity Trade-Offs 457

9 Conclusion

In this work, we have proposed a new method for polynomial selection for the
NFS algorithm for fields Fpn with n > 1. Asymptotic analysis of the complexity
has been carried out both for the classical NFS and the MNFS algorithms for
polynomials obtained using the new method. For the boundary case with p =
LQ(2/3, cp) for cp outside a small set, the new method provides complexity which
is lower than all previously known methods.

References

1. Adleman, L.M.: The function field sieve. In: Adleman, L.M., Huang, M.-D. (eds.)
ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994)

2. Adleman, L.M., Huang, M.-D.A.: Function field sieve method for discrete loga-
rithms over finite fields. Inf. Comput. 151(1–2), 5–16 (1999)

3. Bai, S., Bouvier, C., Filbois, A., Gaudry, P., Imbert, L., Kruppa, A., Morain, F.,
Thomé, E., Zimmermann, P.: CADO-NFS, an implementation of the number field
sieve algorithm. CADO-NFS, Release 2.1.1 (2014). http://cado-nfs.gforge.inria.fr/

4. Barbulescu, R.: An appendix for a recent paper of Kim. IACR Cryptology ePrint
Archive 2015:1076 (2015)

5. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improving NFS for the dis-
crete logarithm problem in non-prime finite fields. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 129–155. Springer, Heidelberg
(2015)

6. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014)

7. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve. In:
Iwata, T., et al. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 31–55. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48800-3 2

8. Barbulescu, R., Pierrot, C.: The multiple number field sieve for medium and high
characteristic finite fields. LMS J. Comput. Math. 17, 230–246 (2014)

9. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational algebra
and number theory (London, 1993)

10. Gaudry, P., Grmy, L., Videau, M.: Collecting relations for the number field sieve
in GF(p6). Cryptology ePrint Archive, Report 2016/124 (2016). http://eprint.iacr.
org/

11. Gordon, D.M.: Discrete logarithms in GF(p) using the number field sieve. SIAM
J. Discrete Math. 6, 124–138 (1993)

12. Granger, R., Kleinjung, T., Zumbrägel, J.: Discrete logarithms in GF(29234).
NMBRTHRY list, January 2014

13. Guillevic, A.: Computing individual discrete logarithms faster in GF(pn). Cryptol-
ogy ePrint Archive, Report 2015/513, (2015). http://eprint.iacr.org/

14. Joux, A.: Faster index calculus for the medium prime case application to 1175-bit
and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 177–193. Springer, Heidelberg (2013)

http://cado-nfs.gforge.inria.fr/
http://dx.doi.org/10.1007/978-3-662-48800-3_2
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

458 P. Sarkar and S. Singh

15. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in small
characteristic. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS,
vol. 8282, pp. 355–379. Springer, Heidelberg (2014)

16. Joux, A., Lercier, R.: The function field sieve is quite special. In: Fieker, C.,
Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 431–445. Springer, Heidelberg
(2002)

17. Joux, A., Lercier, R.: Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the gaussian integer method. Math.
Comput. 72(242), 953–967 (2003)

18. Joux, A., Lercier, R.: The function field sieve in the medium prime case. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer,
Heidelberg (2006)

19. Joux, A., Lercier, R., Smart, N.P., Vercauteren, F.: The number field sieve in
the medium prime case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 326–344. Springer, Heidelberg (2006)

20. Joux, A., Pierrot, C.: The special number field sieve in Fpn . In: Cao, Z., Zhang, F.
(eds.) Pairing 2013. LNCS, vol. 8365, pp. 45–61. Springer, Heidelberg (2014)

21. Kalkbrener, M.: An upper bound on the number of monomials in determinants of
sparse matrices with symbolic entries. Math. Pannonica 8(1), 73–82 (1997)

22. Kim, T.: Extended tower number field sieve: a new complexity for medium prime
case. IACR Cryptology ePrint Archive, 2015:1027 (2015)

23. Matyukhin, D.: Effective version of the number field sieve for discrete loga-
rithm in a field GF(pk). Trudy po Discretnoi Matematike 9, 121–151 (2006).
(in Russian), 2006. http://m.mathnet.ru/php/archive.phtml?wshow=paper&
jrnid=tdm&paperid=144&option lang=eng

24. Pierrot, C.: The multiple number field sieve with conjugation and generalized joux-
lercier methods. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 156–170. Springer, Heidelberg (2015)

25. Sarkar, P., Singh, S.: Fine tuning the function field sieve algorithm for the medium
prime case. IEEE Transactions on Information Theory, 99: 1–1 (2016)

26. Schirokauer, O.: Discrete logarithms and local units. Philosophical Transactions:
Physical Sciences and Engineering 345, 409–423 (1993)

27. Schirokauer, O.: Using number fields to compute logarithms in finite fields. Math.
Comp. 69(231), 1267–1283 (2000)

28. Schirokauer, O.: Virtual logarithms. J. Algorithms 57(2), 140–147 (2005)
29. Stein, W.A., et al.: Sage Mathematics Software. The Sage Development Team

(2013). http://www.sagemath.org

http://m.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tdm&paperid=144&option_lang=eng
http://m.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tdm&paperid=144&option_lang=eng
http://www.sagemath.org

	New Complexity Trade-Offs for the (Multiple) Number Field Sieve Algorithm in Non-Prime Fields
	1 Introduction
	2 Background on NFS for Non-Prime Fields
	3 Polynomial Selection and Sizes of Norms
	4 A Simple Observation
	5 A New Polynomial Selection Method
	6 Non-asymptotic Comparisons and Examples
	7 Asymptotic Complexity Analysis
	8 Multiple Number Field Sieve Variant
	8.1 Further Analysis of the Boundary Case
	8.2 Analysis for t=2 and k=1
	8.3 Medium and Large Characteristic Cases

	9 Conclusion
	References

