Towards Stream Ciphers for Efficient FHE
with Low-Noise Ciphertexts

Pierrick Méaux! ™) Anthony Journault?,
Frangois-Xavier Standaert?, and Claude Carlet3

L INRIA, CNRS, ENS and PSL Research University, Paris, France
Pierrick.Meaux@ens.fr

2 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,

Louvain-la-Neuve, Belgium
{anthony. journault,fstandae}@uclouvain.be
3 LAGA, Department of Mathematics,

University of Paris VIII and University of Paris XIII, Paris, France

claude.carlet@gmail.com

Abstract. Symmetric ciphers purposed for Fully Homomorphic
Encryption (FHE) have recently been proposed for two main reasons. First,
minimizing the implementation (time and memory) overheads that are
inherent to current FHE schemes. Second, improving the homomorphic
capacity, i.e. the amount of operations that one can perform on homomor-
phic ciphertexts before bootstrapping, which amounts to limit their level
of noise. Existing solutions for this purpose suggest a gap between block
ciphers and stream ciphers. The first ones typically allow a constant but
small homomorphic capacity, due to the iteration of rounds eventually lead-
ing to complex Boolean functions (hence large noise). The second ones typ-
ically allow a larger homomorphic capacity for the first ciphertext blocks,
that decreases with the number of ciphertext blocks (due to the increasing
Boolean complexity of the stream ciphers’ output). In this paper, we aim
to combine the best of these two worlds, and propose a new stream cipher
construction that allows constant and small(er) noise. Its main idea is to
apply a Boolean (filter) function to a public bit permutation of a constant
key register, so that the Boolean complexity of the stream cipher outputs is
constant. We also propose an instantiation of the filter function designed
to exploit recent (3rd-generation) FHE schemes, where the error growth
is quasi-additive when adequately multiplying ciphertexts with the same
amount of noise. In order to stimulate further investigation, we then specify
afewinstancesofthisstream cipher, for which we provide a preliminary secu-
rity analysis. We finally highlight the good properties of our stream cipher
regarding the other goal of minimizing the time and memory complexity
of calculus delegation (for 2nd-generation FHE schemes). We conclude the
paper with open problems related to the large design space opened by these
new constructions.

1 Introduction

Purpose: Calculus Delegation. Recent years have witnessed massive changes
in communication technologies, that can be summarized as a combination of

© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part I, LNCS 9665, pp. 311-343, 2016.
DOI: 10.1007/978-3-662-49890-3_13

312 P. Méaux et al.

two trends: (1) the proliferation of small embedded devices with limited storage
and computing facilities, and (2) the apparition of cloud services with extensive
storage and computing facilities. In this context, the outsourcing of data and
the delegation of data processing gains more and more interest. Yet, such new
opportunities also raise new security and privacy concerns. Namely, users typi-
cally want to prevent the server from learning about their data and processing.
For this purpose, Gentry’s breakthrough Fully Homomorphic Encryption (FHE)
scheme [30] brought a perfect conceptual answer. Namely, it allows applying
processing on ciphertexts in a homomorphic way so that after decryption, plain-
texts have undergone the same operations as ciphertexts, but the server has not
learned anything about these plaintexts.!

Application Scenario. Cloud services can be exploited in a plethora of applica-
tions, some of them surveyed in [51]. In general, they are always characterized by
the aforementioned asymmetry between the communication parties. For illustra-
tion, we start by providing a simple example where data outsourcing and data
processing delegation require security and privacy. Let us say that a patient,
Alice, has undergone a surgery and is coming back home. The hospital gave her
a monitoring watch (with limited storage) to measure her metabolic data on a
regular basis. And this metabolic data should be made available to the doctor
Bob, to follow the evolution of the post-surgery treatment. Quite naturally, Bob
has numerous patients and no advanced computing facilities to store and process
the data of all his patients. So this is a typical case where sending the data to
a cloud service would be very convenient. That is, Alice’s data could be sent to
and stored on the cloud, and associated to both her and the doctor Bob. And
the cloud would provide Bob with processed information in a number of situa-
tions such as when the metabolic data of Alice is abnormal (in which case an
error message should be sent to Bob), or during an appointment between Alice
and Bob, so that Bob can follow the evolution of Alice’s data (possibly after
some processing). Bob could in fact even be interested by accessing some other
patient’s data, in order to compare the effect of different medications. And of
course, we would like to avoid the cloud to know anything about the (private)
data it is manipulating.

Typical Framework. More technically, the previous exemplary application can
be integrated in a quite general cloud service application framework, that can
be seen as a combination of 5 steps, combining a symmetric encryption scheme
and an asymmetric homomorphic encryption scheme, as summarised in Fig.1
and described next:

1. Initialization. Alice runs the key generation algorithms H.KeyGen and
S.KeyGen of the two schemes, and sends her homomorphic public key pk?
and the homomorphic ciphertext of her symmetric key C* (sk;9).

! In the remaining of the paper, and when not specified otherwise, the term FHE
will also be used for related schemes such as Leveled HE, SomeWhat HE, Scalable
HE, etc..

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 313

2. Storage. Alice encrypts her data m; with the symmetric encryption scheme,
and sends C*(m;) to Claude.

3. FEwaluation. Claude homomorphically evaluates, with the H.Eval algorithm,
the decryption C(m;) of the symmetric scheme on Alice’s data C(m;).

4. Computation. Claude homomorphically executes the treatment f on Alice’s
encrypted data.

5. Result. Claude sends a compressed encrypted result of the data treatment
cf(f(m;)), obtained with the H.Comp algorithm, and Alice decrypts it.

Note that if we assume the existence of a trusted third party active only during
the initialization step, Alice can avoid Step 1, which needs a significant compu-
tational and memory storage effort. Note also that this framework is versatile:
computation can be done in parallel (in a batch setting) or can be turned into a
secret key FHE.

Alice Claude

(sk” pk’) — H.KeyGen())
1: Initialization sk® — S.KeyGen()\)

; ; HakSYy pkH
¥ (sk®) = H Enc(sk®, pk?T) C—(SKD):PK]

CH(sk), pk™

C5(m,)
_

2: Storage C5(m;) = S.Enc(m;, sk®) CS(my)

CH (my)
3: Evaluation =
H.Eval(S.Dec(C5 (m;), CH (sk?), pk™)

#: Computation| f f CH (f(m;)) = H.Eval(f(CH (m;))
, ! (f(ms)) = H.Comp(C* (f(m.)))
5: Result c(f(my)) M

f(m;) = H.Dec(c" (f(m;)),sk™)

Fig. 1. Homomorphic Encryption - Symmetric Encryption framework. H and S respec-
tively refer to homomorphic and symmetric encryption schemes, for algorithms (e.g.
H.KeyGen) or scheme components (e.g. sk®).

FHE Bottlenecks. The main limitation for the deployment of cloud services
based on such FHE frameworks relates to its important overheads, that can be
related to two main concerns: computational and memory costs (especially on
the client side) and limited homomorphic capacity (i.e. noise increase). More
precisely:

314 P. Méaux et al.

— The computational and memory costs for the client depend overwhelmingly
on the homomorphic encryption and decryption algorithms during the steps 1
and 5. The memory cost is mostly influenced by the homomorphic ciphertexts
and public key sizes. Solving these two problems consists in building size-
efficient FHE schemes with low computational cost [35,38]. On the server
side, this computational cost further depends on the symmetric encryption
scheme and function to evaluate.

— The homomorphic capacity relates to the fact that FHE constructions are
built on noise-based cryptography, where the unbounded amount of homo-
morphic operations is guaranteed by an expensive bootstrapping technique.
The homomorphic capacity corresponds to the amount of operations doable
before the noise grows too much forcing to use bootstrapping. Therefore, and
in order to reduce the time and computational cost of the framework, it is
important to manage the error growth during the homomorphic operations
(i.e. steps 3 and 4). Furthermore, since the 4th step is the most important one
from the application point-of-view (since this is where the useful operations
are performed by the cloud), there is strong incentive to minimize the cost of
the homomorphic decryption in the 3rd step.

Previous Works. In order to mitigate these bottlenecks, several works tried to
reduce more and more the homomorphic cost of evaluating a symmetric decryp-
tion algorithm. First attempts in this direction, which were also used as bench-
mark for FHE implementations, used the AES for this purpose [15,31]. Various
alternative schemes were also considered, all with error and sizes depending on
the multiplicative depth of the symmetric encryption scheme, such as BGV [9]
and FV [26]. Additional optimizations exploited batching and bitslicing, leading
to the best results of performing 120 AES decryptions in 4 minutes [31].

Since the multiplicative depth of the AES decryption evaluation was a restric-
tive bound in these works, other symmetric encryption schemes were then con-
sidered. The most representative attempts in this direction are the family of
block ciphers LowMC [1] and the stream cipher Kreyvium [11]. These construc-
tions led to reduced and more suitable multiplicative depths. Yet, and intuitively,
these attempts were still limited by complementary drawbacks. First for LowMC,
the remaining multiplicative depth remains large enough to significantly reduce the
homomorphic capacity (i.e. increase the noise). Such a drawback seems to be inher-
ent in block cipher structures where the iteration of rounds eventually leads to
Boolean functions with large algebraic degree, which inevitably imply a constant
per block but high noise after homomorphic evaluation. For example, ciphers dedi-
cated to efficient masking against side-channel attacks [33,34,52], which share the
goal of minimizing the multiplicative complexity, suffer from similar issues and it
seems hard to break the barrier of one multiplication per round (and therefore
of 12 to 16 multiplications for 128-bit ciphers). Second for Kreyvium, the error
actually grows with the number of evaluated ciphertexts, which implies that at
some point, the output ciphertexts are too noisy, and cannot be decrypted (which
requires either to bootstrap or to re-initialize the stream cipher).

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 315

Our Contribution. In view of this state-of-the-art, a natural direction would
be to try combining the best of these two previous works. That is, to design a
cipher inheriting from the constant noise property offered by block ciphers, and
the lower noise levels of stream ciphers (due to the lower algebraic degree of their
outputs), leading to the following contributions.

First, we introduce a new stream cipher construction, next denoted as a filter
permutator (by analogy with filter generators). Its main design principle is to
filter a constant key register with a variable (public) bit permutation. More pre-
cisely, at each cycle, the key register is (bit) permuted with a pseudorandomly
generated permutation, and we apply a non-linear filtering function to the out-
put of this permuted key register. The main advantage of this construction is
to always apply the non-linear filtering directly on the key bits, which allows
maintaining the noise level of our outputs constant. Conceptually, this type of
construction seems appealing for any FHE scheme.

Second, and going deeper in the specification of a concrete scheme, we discuss
the optimization of the components in a filter permutator, with a focus on the
filtering function (which determines the output noise after homomorphic evalu-
ation). For this purpose, we first notice that existing FHE schemes can be split
in (roughly) two main categories. On one hand the so-called 2nd-generation
FHE (such as [9,15]) where the metric for the noise growth is essentially the
multiplicative depth of the circuit to homomorphically evaluate. On the other
hand, the so-called 3rd-generation FHE (such as [2,32]) where the error growth
is asymmetric, and in particular quasi-additive when considering a multiplica-
tive chain. From these observations, we formalize a comb structure which can be
represented as a (possibly long) multiplicative chain, in order to take the best
advantage of 3rd-generation FHE schemes. We then design a filtering function
based on this comb structure (combined with other technical ingredients in order
to prevent various classes of possible attacks against stream ciphers) and specify
a family of filter permutators (called FLIP).

Third, and in order to stimulate further investigations, we instantiate a few
version of FLIP designs, for 80-bit and 128-bit security. We then provide a pre-
liminary evaluation of their security against some of the prevailing cryptanalysis
from the open literature — such as (fast) algebraic attacks, (fast) correlation
attacks, BKW-like attacks [6], guess and determine attacks, etc. — based on
state-of-the-art tools. We also analyze the noise brought by their filtering func-
tions in the context of 3rd-generation FHE. In this respect, our main result is
that we can limit the noise after the homomorphic evaluation of a decryption to
a level of the same order of magnitude as for a single homomorphic multiplica-
tion - hence essentially making the impact of the symmetric encryption scheme
as small as possible.

We finally observe that our FLIP designs have a very reduced multiplicative
depth, which makes them suitable for 2nd-generation FHE schemes as well, and
provide preliminary results of prototype implementations using HElib that con-
firm their good behavior compared to state-of-the-art block and stream ciphers
designed for efficient FHE.

316 P. Méaux et al.

Overall, filter permutators in general and FLIP instances in particular open
a large design space of new symmetric constructions to investigate. Hence, we
conclude the paper with a list of open problems regarding these algorithms, their
best cryptanalysis, the Boolean functions used in their filter and their efficient
implementation in concrete applications.

2 Background

2.1 Boolean Functions

In this section, we recall the cryptographic properties of Boolean functions that
we will need in the rest of the paper (mostly taken from [12]).

Definition 1 (Boolean Function). A Boolean function f with n variables is

a function from FY to Fy. The set of all Boolean functions in n variables is
denoted by B,,.

Definition 2 (Walsh Transform). Let f € B,, a Boolean function. Its Walsh
Transform W at a € Fy is defined as:

We(a) = 3 (~1)/)+,

zelFy
where {a,x) denotes the inner product in FY.

Definition 3 (Balancedness). A Boolean function f € B, is said to be bal-
anced if its outputs are uniformly distributed over {0, 1}.

Definition 4 (Non-linearity). The non-linearity NL of a Boolean function
f € By, where n is a positive integer, is the minimum Hamming distance between
f and all the affine functions g:

NL(f) = min{du (/. 9)},

with dg(f,9) = #{x € Fy | f(x) # g(x)} the Hamming distance between f
and g. The non-linearity of a Boolean function can also be defined by its Walsh
Transform:
1
NL(f) = 2" — = max |W¢(a)|.

2 a€Fy
Definition 5 (Resiliency). A Boolean function f € B, is said m-resilient if
any of its restrictions obtained by fixing at most m of its coordinates is balanced.

We will denote by res(f) the resiliency m of f and set res(f) = —1 if f is
unbalanced.

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 317

Definition 6 (Algebraic Immunity). The algebraic immunity of a Boolean
function f € B, denoted as Al(f), is defined as:

Al(f) = gl;g{deg(g) | fg=0o0r (f®1)g =0},

where deg(g) is the degree of g. The function g is called an annihilator of f (or
(f®1))

Definition 7 (Fast Algebraic Immunity). The fast algebraic immunity of a
Boolean function f € B, denoted as FAI(f), is defined as:

FAI(f) = min{2AI(). _ min (maxdeg(s) + deg(fg). 3deg(s)])}

Summarizing, the good balancedness, non-linearity and resiliency properties
have to be ensured to widthstand correlation attacks [56] and fast correlation
attacks [48]. The high algebraic immunity and fast algebraic immunity have to
be ensured to widthstand algebraic attacks [13].

2.2 (Ring) Learning with Errors

In this section, we recall useful notations and definitions needed about the deci-
sional LWE problem and its ring variation. For an integer modulus ¢, we denote
by Z4 the quotient ring of integers modulo q. We denote vectors with bold letters
e and matrices with bold capital letters A. The notation s «g S (resp. s < x)
denotes that s is picked uniformly at random from a finite set S (resp. from a
distribution).

The decisional Learning With Error problem (dLWE) was introduced by
Regev [53].

Definition 8 (dLWE). For an integer ¢ = g(n) > 2, an adversary A and an
error distribution x = x(n) over Z,, we define the following advantage function:

dLWE

Advy = | PrlA(A, zo) = 1] — PrlA(A, z1) = 1],

where
A —g 2y ™" s g Ly, e —g X" 20 :=s'A+e and z —s L.

The dLWE,, 1,.q,x assumption asserts that for all PPT adversaries A, the advan-

dLWE

tage Adv ;"% is a negligible function in n.

The ring variant was introduced by Lyubashevsky, Peikert and Regev in [46].

Definition 9 (dR-LWE). For a polynomial ring R = Z[X]/f(X) with f of
degree m, an integer q > 2, an adversary A and an error distribution x over
R, = R/qR, RY being R dual fractional ideal, we define the following advantage
function:

318 P. Méaux et al.

AdvdARLWER,q,X := | Pr[A(a, 20) = 1] — Pr[A(a, z1) = 1]|,
where

\

a«g Ry, s—g R, e<—gx, 20:=a-s+e and z s R.

With f(X) a cyclotomic polynomial, the dRLWER , \ assumption asserts that for

all PPT adversaries A, the advantage AdvdARLWER’q’X is a negligible function in

n.

For our constructions, we need to take the distribution x as a subgaussian
random variable which we define hereafter. More details about the subgaussian
distribution and the lemmas’ proof can be found in [2,58].

Definition 10 (Subgaussian Random Variables). Let X be a random vari-
able. We say X 1is subgaussian with parameter o if there exists o such that:

vt € R,E[e'¥] < e 2
where EletX] is the moment generating function of X.

Lemma 1 (Subgaussian Random Variables Properties). Let X, X' be
independent subgaussian random variables of parameter o and o' respectively.
Assuming E(X) = E(X’) = 0 we have the following properties:

— Tails: Yt > 0 we have Pr[|X| > t] < 2e— Tt /0%
— Homogeneity: Ve € R, ¢X is subgaussian with parameter |c|o.
— Pythagorean additivity: X + X' is subgaussian with parameter /o2 + o'2.

We extend the notion of subgaussianity to vectors and polynomials. Since the
coefficients of a polynomial are seen as a vector, we call subgaussian vector of
parameter o a vector where each coefficient follows an independent subgaussian
distribution with parameter o.

Lemma 2 (Subgaussian Vector Norm, Adapted from [2], Lemma 2.1).
Let x € R™ be a random vector where each coordinate follows an independent
subgaussian distribution of parameter . Then for some universal constant C' > 0

we have Pr||x||s > Coy/n] <2720 and therefore ||x||s = O(oy/n).

2.3 Fully Homomorphic Encryption

In this section we recall the definition of (Fully) Homomorphic Encryption
and present the Homomorphic Encryption schemes we will use, both based on

GSW [32].

Definition 11 (Homomorphic Encryption Scheme). Let M be the plain-
text space, C the ciphertext space and X\ the security parameter. A homomorphic
encryption scheme consists of four algorithms:

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 319

~ H.KeyGen(1*). Output pk™ and sk™ the public and secret keys of the scheme.

~ H.Enc(m, pk™). From the plaintext m € M and the public key, output a
ciphertext c € C.

— H.Dec(c, skH). From the ciphertext ¢ € C and the secret key, output m' € M.

- H.Eval(f,cq,--- ,ck,pkH). With ¢; = H.Enc(mi,pkH) for 1 <i <k, output a
ciphertext ¢y € C such that H.Dec(cy) = f(mq,--- ,my).

A homomorphic encryption scheme is called a Fully Homomorphic Encryp-
tion (FHE) scheme when f can be any function and |C| is finite. A simpler prim-
itive to consider is the SomeWhat Homomorphic Encryption (SWHE) scheme,
where f is restricted to be any univariate polynomial of finite degree.

Since the breakthrough work of Gentry [30], the only known way to obtain
FHE consists in adding a bootstrapping technique to a SWHE. As bootstrap-
ping computational cost is still expensive in comparison to the other FHE algo-
rithms, in the following part of the article we will only consider SWHE for our
applications.

GSW Homomorphic Encryption Scheme. In 2013, Gentry, Sahai and
Waters [32] introduced a Homomorphic Encryption scheme based on LWE using
a new technique stemming from the approximate eigenvector problem. This new
technique led to a new family of FHE, called 3rd-generation FHE, consisting in
Homomorphic Encryption schemes such that the multiplicative error growth is
quasi-additive. Hereafter, we present two schemes belonging to this generation,
the first one with security based on dLWE and the second one based on d RLWE.
We first set some useful notations considering the different schemes.

For a matrix E we refer to the i-th row as e} and to the j-th column as e;.
The log g notation refers to the logarithm in base 2 of ¢. The notation [a], is for
a mod g and [[a],]2 € {0,1} is a function in a € Z, giving 1 if 4| <a < %]
mod ¢ and 0 otherwise. We denote by [n] the set of integers {1,--- ,n}. We
finally use |z| and ||x||2 for the standard norms 1 and 2 on vectors x € R"™.

Batched GSW. This scheme is a batched version of GSW presented in [36],
enabling to pack independently r plaintexts in one ciphertext. From the secu-
rity parameter A\ and the considered applications, we can derive the parameters
n,q,r,x of the scheme described below.

H.KeyGen(n, g, r, x). On inputs the lattice dimension n, the modulus ¢, the num-
ber of bits by ciphertext r and the error distribution y do:

— Set £ = [logq], m = O(nf), N = (r + n)¢, M ={0,1}" and C = ZEJH_H)XN.
_ Ple A <_$ Z;r]w(m7 S/ <_$ ern and E <_$ erm.
/
~Set S=[I]-8]¢ ng(r-&-n) and B — m c Z((]r+n)><m.
q
— For all m € {0,1}":
e Pick Ry, <3 {0, 1}m><N.

320 P. Méaux et al.

¢ Set Pm= |[BRm+ |__° |G| ez{tm=N,
my - S,
0 q
with s] the i-th row of S and G = (2°,--- 261 @ T € Z{ TN,
— Output pk” := ({P},B) and sk’ := 8.

H.Enc(pk”, m). On input pk”, and m € {0,1}", do:

~ Pick R« {0,1}™*V and output C = [BR + Pp,], € Z{' ™V

H.Dec(C, skH). On input the secret key sk, and a ciphertext C, do:

— For all i € [r] : m = |[(s], ci)]q]2 where c;; is the column ¢ of C.
— Output mj,---,m. € {0,1}".
my - S{ mi - S-{
Note that SC = SBR+SP,,, = ER+ER,+ ; G=FE+ : G.
my - S;. my - S,

The H.Eval algorithm finally consists in iterating, following a circuit f, the homo-
morphic operations H.Add and H.Mul:

- HAdd(Cl, C2) . C+ - Cl + C2.

— HMul(Cy,C5) : Cx = C; x G71Cy with G™! a function such that VC €
7N GGL(C) = C and the values of G~1(C) follow a subgaussian
distribution with parameter O(1) (see [49] for the existence and proof of G™1).

The correctness and security of this scheme are proven in the extended version
of this paper.

Remark 1. For practical use, we only need to store r + 1 matrices P,,, namely
the » + 1 ones with m of hamming weight equal to 0 or 1 are sufficient to
generate correct encryption of all m € {0,1}" with at most r additions of the
corresponding P, matrices.

Ring-GSW. This scheme is a ring version of GSW presented in [38], transposing
the approzimate eigenvector problem into the ring setting. From A the security
parameter and the considered applications, we can derive the parameters n, g
and M of the scheme described below.

H.KeyGen(n, g, x, M). On inputs the lattice dimension n, which is set to a power
of 2, the modulus g, the error distribution x and the plaintext space M do:

~ Set R =Z[X]/(X" +1), Ry = R/qR, £ = [logq], N = 2¢ and C = R2*N.
— Set ROJ = {P S Rq,pi S {0, 1},0 <1< Tl}
— Pick a «g Ry, s’ < x and e «—g x.

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 321

!
~ Sets=[1| —¢']" € R}** and b = <8 a—l—e) € R2*1.
a

~ Output pk? := b and sk :=s.

H.Enc(pkH7m). On input pk?, and m € M, do:

— Pick E «g x>*V.
~ Pick r g R{’;, and output C = [br" + mG + E], € R2*N.

H.Dec(C, skH). On input the secret key sk, and a ciphertext C, do:

— Compute m’' = |[< s,¢; >]q]2.
— Output m’ € R,.

The H.Eval algorithm finally consists in iterating H.Add and H.Mul:

- HAdd(Cl,CQ) : C+ = C1 + CQ.
- H.MU'(Cl,Cg) :Cy =Cq X G*1C2.

The correctness and security of this scheme are proven in the extended version
of this paper.

Remark 2. The plaintext space M has a major influence on the considered appli-
cation in terms of quantity of information contained in a single ciphertext and
error growth. For our application we choose M as the set of polynomials with
all coefficients of degree greater than 0 being zero, and the constant coefficient
being bounded.

3 New Stream Cipher Constructions

In this section, we introduce our new stream cipher construction. We first
describe the general filter permutator structure. Next we list a number of Boolean
building blocks together with their necessary cryptographic properties. Third,
we specify a family of filter permutators (denoted as FLIP) and analyze its secu-
rity based on state-of-the art cryptanalysis and design tools. Finally, we propose
a couple of parameters to fully instantiate a few examples of FLIP designs.

3.1 Filter Permutators

The general structure of filter permutators is depicted in Fig. 2. It is composed
of three parts: a register where the key is stored, a (bit) permutation gen-
erator parametrised by a Pseudo Random Number Generator (PRNG) [7,37]
(which is initialized with a public IV), and a filtering function which generates a
keystream. The filter permutator can be compared to a filter generator, in which
the LFSR is replaced by a permuted key register. In other words, the register is

322 P. Méaux et al.

PRNG > Key register K’

| J
Permutation
Generator]DL

plaintext ‘é

ciphertext

Fig. 2. Filter permutator construction.

no longer updated by means of the LFSR, but with pseudorandom bit permuta-
tions. More precisely, at each cycle (i.e. each time the filtering function outputs
a bit), a pseudo-random permutation is applied to the register and the permuted
key register is filtered. Eventually, the encryption (resp. decryption) with a filter
permutator simply consists in XORing the bits output by the filtering function
with those of the plaintext (resp. ciphertext).

3.2 Boolean Building Blocks for the Filter Permutator
We will first exploit direct sums of Boolean functions defined as follows:

Definition 12 (Direct Sum). Let fi(zg, - ,Zn,—1) and fo(Tp,, -,
Zny4ny—1) be two Boolean functions in respectively ny and ng variables. The
direct sum of fi1 and fo is defined as f = f1 @ fo, which is a Boolean function
m ny + no variables such that:

f(x()v e 7(En1+n271) = fl(x07 e 727”171) 5% f2(xn17' c ;mn1+n271)~

They inherit from the following set of properties, proven in the extended
version of this paper.

Lemma 3 (Direct Sum Properties). Let f be the direct sum of f1 and fo
with n1 and ny variables respectively. Then f has the following cryptographic
properties:

1. Non Linearity: NL(f) = 2™2NL(f1) + 2™ NL(f2) — 2NL(f1)NL(f2).
2. Resiliency: res(f) = res(f1) + res(fa) + 1.

3. Algebraic Immunity: Al(f1) + Al(f2) > AI(f) > max(Al(f1), Al(f2)).
4. Fast Algebraic Immunity: FAI(f) > max(FAI(f1), FAI(f2)).

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 323

Our direct sums will then be based on three parts: a linear function, a
quadratic function and triangular functions, defined as follows.

Definition 13 (Linear Functions). Let n > 0 be a positive integer, the Ly
linear function is a n-variable Boolean function defined as:

n—1
Ln(l'o,' .. ,.’Enfl) = le
=0

Definition 14 (Quadratic Functions). Let n > 0 be a positive integer, the
Q. linear function is a 2n-variable Boolean function defined as:

n—1

Qn(wo,+ ,Tan—1) = 3 T2i2i11-
i=0

Definition 15 (Triangular Functions). Let k > 0 be a positive integer. The

k(k+1)
2

k-th triangular function Ty is a -variable Boolean function defined as:

_ vk 1—1)
Tk(l‘o’ e ’x@ﬂ) = Eizlnjzozj—o—zz;éé'

For example, the 4th triangular function T} is:
T4 =29 D T1T2 D X3L4T5 © Tgx7L8Xy.
These three types of functions allow us to guarantee the following properties.

Lemma 4 (Linear Functions Properties). Let L, be a linear function in n
variables, then Ly has the following cryptographic properties:

1. Non Linearity: NL(L,) = 0.

2. Resiliency: res(L,) =n — 1.

3. Algebraic Immunity: Al(L,) = 1.

4. Fast Algebraic Immunity: FAI(L,,) = 2.

Lemma 5 (Quadratic Functions Properties). Let @, be a linear function
in 2n variables, then Q,, has the following cryptographic properties:

1. Non Linearity: NL(Q,,) = 227~ —2n—1,

2. Resiliency: res(Qn) = —1.

3. Algebraic Immunity: Al(Q1) =1 and Yn > 1,Al(Q,) = 2.

4. Fast Algebraic Immunity: FAI(Q1) = 2 and Vn > 1, FA(Q,) = 4.

Lemma 6 (Triangular Functions Properties). Let k a positive integer and
let Ty, the k-th triangular function. Then the following properties hold:

1. Non Linearity follows the recursive formula defined as:
(i) NL(T}, = 0),
(ii) NL(Tjq1) = (2FF1 — 2)NL(Ty) + 2F(+1D/2,
2. Resiliency: res(Ty) = 0.
3. Algebraic Immunity: Al(Ty) = k.
4. Fast Algebraic Immunity: FAI(Ty) = k + 1.

The proof of Lemma 6 can be found in the extended version of this paper.

324 P. Méaux et al.

3.3 The FLIP Family of Stream Ciphers

Based on the previous definitions, we specify the FLIP family of stream ciphers
as a filter permutator using a forward secure PRNG [5] based on the AES-128
(e.g. as instantiated in the context of leakage-resilient cryptography [57]), the
Knuth shuffle (see below) as bit permutation generator and such that the filter
F' is the N-variable Boolean function defined by the direct sum of three Boolean
functions f1, fo and f3 of respectively ni, no and ng variables, such that:

- fl(x()?' o)xnl_l) = Ln1 9
- fQ(xnlv e ,$n1+n271) = Qn2/27
— f3(Tny4ngy s Tnytnatns—1) 1S the direct sum of nb triangular functions T},

i.e. such that each T} acts on different and independent variables, that we
denote as " AF.

That is, we have F : F3* 2" _ [y the Boolean function such that:

nb
F(xo, s Tnytngtns—1) = Ly © Qnyj2 @ @Tk-
i=1

In the following section, we provide a preliminary security analysis of the
FLIP filter permutators against a couple of standard attacks against stream
ciphers, based on state-of-the-art tools. For this purpose, we will assume that no
additional weaknesses arise from its PRNG and bit permutation generator. In
this respect, we note that our forward secure PRNG does not allow malleability,
so it should be hard to obtain a collision in the chosen IV model better than with
birthday probability. This should prevent collisions on the generated permuta-
tions. Besides, the Knuth shuffle [41] (or Fisher-Yates shuffle) is an algorithm
allowing to generate a random permutation on a finite set. This algorithm has
the interesting property of giving the same probability to all permutations if
used with a random number generator. As a result, we expect that any devia-
tion between a bit permutation based on a Knuth shuffle fed with the PRNG
will be hard to exploit by an adversary. Our motivation for this assumption is
twofold. First, it allows us to focus on whether the filter permutator construc-
tion is theoretically sound. Second, if such a choice was leading to an exploitable
weakness, it remains possible to build a pseudorandom permutation based on
standard cryptographic constructions [45].

Remark 3. Since the permutation generation part of FLIP has only birthday
security (with respect to the size of the PRNG), it implies that it is only secure
up to 2% PRNG outputs when implemented with the AES-128. Generating
more keystream using larger block ciphers should be feasible. However, in view
of the novelty of the FLIP instances, our claims are only made for this limited
(birthday) data complexity so far, which should not be limiting for the intended
FHE applications. We leave the investigation of their security against attacks
using larger data complexities as a scope for further research. Besides, we note
that using a PRNG based on a tweakable block cipher [44] (where a part of
the larger IV would be used as tweak) could be an interesting track to reduce the
impact of a collision on the PRNG output in the known IV model, which we
also leave as an open research direction.

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 325

3.4 Security Analysis

Since the filter permutator shares similarities with a filter generator, it is nat-
ural to start our investigations with the typical attacks considered against such
types of stream ciphers. For this purpose, we next study the applicability of
algebraic attacks and correlation attacks, together with more specialized crypt-
analyses that have been considered against stream ciphers. Note that the attacks
considered in the rest of this section frequently require to solve systems of equa-
tions and to implement a Gaussian reduction. Our complexity estimations will
consider Strassen’s algorithm for this purpose and assume w = log7 to be the
exponent in a Gaussian reduction. Admittedly, approaches based on Grobner
bases [27] or taking advantage of the sparsity of the matrices [59] could lead
to even faster algorithms. We ignore them for simplicity in these preliminary
investigations. Note also that we only claim security in the single-key setting.

Algebraic Attacks were first introduced by Courtois and Meier in [18] and
applied to the stream cipher Toyocrypt. Their main idea is to build an over-
defined system of equations with the initial state of the LFSR as unknown,
and to solve this system with Gaussian elimination. More precisely, by using a
nonzero function g such that both g and h = gF have low algebraic degree, an
adversary is able to obtain T equations with monomials of degree at most AI(f).
It is easily shown that g can be taken equal to the annihilator of F or of FF &1,
i.e. such that gF = 0 or g(F @ 1) = 0. After a linearisation step, the adversary
obtains a system of T equations in D = ZAI(F (l) variables. Therefore, the
time complexity of the algebraic attack is O(D*), that is, O(N«AI(1)),

Fast Algebraic Attacks are a variation of the previous algebraic attacks intro-
duced by Courtois at Crypto 2003 [17]. Considering the relation gF' = h, their
goal is to find and use functions g of low algebraic degree e, possibly smaller
than AI(f), and h of low but possibly larger degree d, and to lower the degree
of the resulting equations by an off-line elimination of the monomials of degrees
larger than e (several equations being needed to obtain each one with degree at
most e). Following [4], this attack can be decomposed into four steps:

1. The search of the polynomials g and h generating a system of D+ E equations
in D+ E unknowns, where D = Zl 0 (Jand E =37 (). This step has
a time complexity in O(Zizo (M) + > (1)~

2. The search of linear relations which allow the suppression of the monomials
of degree more than e. This step has a time complexity in O(D log?(D)).

3. The elimination of monomials of degree larger than e using the Berlekamp-
Massey algorithm. This step has a time complexity in O(ED log(D)).

4. The resolution of the system. This step has a time complexity in O(E“).

Given the FAl of F', the time complexity of this attack is in O(NA), or more
precisely O(D log® D +E?D+ E¥) (ignoring Step 1 which is trivial for our choice
of F).

326 P. Méaux et al.

Correlation Attacks. In their basic versions, correlation attacks try to distin-
guish the output sequence of a stream cipher from a random one, by exploiting
the bias ¢ of the filtering function. We can easily rule out such attacks by consid-
ering a (much) simplified version of filter permutator where the bit permutations
P;’s would be made on two independent permutations P} and Pf’?’ (respectively
acting on the n; + 1 bits of the linear part and the no + nz — 1 bits of the
non-linear part of F). Suppose for simplicity that P! is kept constant ¢ times,
then the output distribution of F' has a bias § and it can be distinguished for
the right choice of the ny +1 = res+ 1 bits of the linear part. In this case, a cor-

relation attack would have a data complexity of O(6=2) and a time complexity
of O(2rst+15-2) with § = %— N;EVF)
conservative estimation in our following selection of security parameters. Yet, we
note that since the permutation P; of a filter permutator is acting on all the NV
bits of the filter F', the probability that the linear part of F' is kept invariant by
the permutations ¢ times is in fact considerably smaller than what is predicted
by the resilience.

. For simplicity, we will consider this

BKW-like Attack. The BKW algorithm was introduced in [6] as a solution
to solve the LPN problem using smart combinations of well chosen vectors and
their associated bias. Intuitively, our stream cipher construction simplified as
just explained (with two independent permutations P} and Pfs rather than a
single one P;) also shares similarities with this problem. Indeed, we could see the
linear part as the parity of an LPN problem and the non-linear one (with a small
bias) as a (large) noise. Adapting the BKW algorithm to our setting amounts to
XOR some linear parts of F' in order to obtain vectors of low Hamming weight,
and then to consider a distinguishing attack with the associated bias. Denoting
h the target Hamming weight, x the log of the number of XORs and ¢ the
bias, the resulting attack (which can be viewed as an extension of the previous
correlation attack) has data complexity O(2"6~2(=*+1)) (more details are given
in the extended version of this paper).

Higher-Order Correlation Attacks were introduced by Courtois [16] and
exploit the so-called XL algorithm. They look for good correlations between F
and an approximation g of degree d > 1, in order to solve a linearised system
based on the values of this approximation. The value ¢ is defined such that g is
equal to F' with probability greater than 1—e. Such attacks have a (conservative)
time complexity estimate:

)

o (<g) (1- 5)m> , where D > d and m >

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 327

Guess and Determine Attacks. Note that this section has been motivated
by a private communication from Sébastien Duval, Virginie Lallemand and Yann
Rotella, of which the details will be available in an upcoming ePrint report [25].
Guess and determine attacks are generic attacks which consist in guessing ¢
bits of the key in order to cancel some monomials. In our context, it allows
an adversary to focus on a filtering function restricted to a subset of variables.
This weaker function can then be cryptanalyzed, e.g. analyzed with the four
aforementioned attacks, i.e. the algebraic attack, the fast algebraic attack, the
correlation/BKW-like attacks and the higher-order correlation attack. The com-
plexity of a guess and determine attack against a function F' of N variables is
min {2¢C(F[¢])} where F[{] is a function of N[{] variables obtained by fixing
¢ variables of F, C(F) is the complexity of the best of the four attacks con-
sidered on the filtering function F' and the minimum is taken over all £’s. The
case ¢ = 0 corresponds to attacking the scheme without guess and determine.
We next bound the minimal complexity over these four attacks considering the
weakest functions obtained by guessing. To do so, we introduce some notations
and criteria allowing us to specify the cryptographic properties of Boolean func-
tions obtained by guessing ¢ variables of Boolean functions being direct sums of
monomials. As the impact of guessing is most relevant for fast algebraic attacks
and CA/BKW-like attacks, we defer the other part of the analysis and extra
lemmas to the extended version of this paper.

Definition 16 (Direct Sum Vector). For a boolean function F of N variables
obtained as a direct sum of monomials we associate its direct sum vector : mp
of length k = deg(F): [m1, ma, -+ ,mg] such that m; is the number of monomials
of degree i of F' and N = Zle im;. We define two quantities related to this
vector:

— mjp, is the number of nonzero values of mp.
1 _ NL(F)

76mF:2 9N

These notations will be useful to quantify the impact of guessing some bits
on the cryptographic properties of a Boolean function obtained by direct sums.
mpg, mj, and 0y, are easily computable from the description of F', the latter
can be computed recursively using Lemma 3.

Lemma 7 (Guessing and Direct Sum Vector). For all guessing of 0 <
£ < N wariables of a Boolean function F in N variables obtained by direct sums
associated with mp, we obtain a function F[{] in N[¢] variables associated with
mp such that:

£ S i) > (S ma) —
2. my, >mF [1.

ming <;<deg(F) Mi
3. Smpyy < Om

Hereafter we describe the bounds we have used in order to assess the security of
our instances.

328 P. Méaux et al.

Lemma 8 (Guess And Determine & Fast Algebraic Attacks). Let F' be
a boolean function in N wvariables and Copraa(F) be the minimum complexity
of the Guess And Determine with Fast Algebraic Attacks on F, then:

m

CGDFAA(F) > min |:2Z(min*N[l]) 10g2 (xnin*N[l])+(minN[e])z(min*N[Z])+(minN[e])u:| ,

T 0<¢<N MR e Fle]
* * £
m = My — | .
where F[4] F I‘mlnie[deg(F)] miJ

Lemma 9 (Guess and Determine & CA/BKW-like Attacks). Let F' be
a boolean function in N wvariables and Copca/prw (F) be the minimum com-
plezity of the Guess And Determine with Correlation/BKW Attacks on F, then:

> 3 —45—2)
Cepca/prw (F) > Og}ISnN{Q o,

Other Attacks. Besides the previous attacks that will be taken into account
quantitatively when selecting our concrete instances of FLIP designs, we also
investigated the following other cryptanalyses. First, fast correlation attacks were
introduced by Meier and Staffelbach at Eurocrypt 1988 [48]. A recent survey can
be found in [47]. The attack is divided into two phases. The first one aims at
looking for relations between the output bits a; of the LFSR to generate a system
of parity-check equations. The second one uses a fast decoding algorithm (e.g. the
belief propagation algorithm) in order to decode the words of the code z; = F(a;)
satisfying the previous relations, where the channel has an error probability p =
NL(F)
N
previously mentioned correlation attacks and BKW-like attacks. So we assume
that the previous (conservative) complexity estimates rule out this variation as
well. Besides, note that intuitively, the belief propagation algorithm is best suited
to the decoding of low-density parities, which is what our construction (and the
LPN problem) typically avoids.

Second, weak keys (i.e. keys of low or high hamming weights) can produce
a keystream sufficiently biased to determine this hamming weight, and then to
recover the key among the small amount of possible ones. The complexity of
such attacks can be computed from the resiliency of F. However, since our NV
parameter will typically be significantly larger than the bit-security of our filter
permutator instances, we suggest to restrict the key space to keys of Hamming
weight N/2 to rule out this concern. For this purpose, master keys can simply be
generated by applying a first (secret) random permutation to any stream with
Hamming weight N/2.

Third, augmented function attacks are attacks focusing on multiple outputs
of the function rather than one. The goal is to find coefficients ji,-- -, j, such
that a relation between the key and the outputs s;1,,- - , Si1;,. can be exploited.
This relation can be a correlation (as explained in [3]) or simply algebraic [28].
In both cases, a prerequisite is that the relation holds on a sufficient number of
i. As each bit output by FLIP depends on a different permutation, we believe
that there is no exploitable relation between different outputs.

. The working principles of this attack are quite similar to the ones of the

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 329

Eventually, cube attacks were introduced by Dinur and Shamir at Eurocrypt
2009 [20] as a variant of algebraic attacks taking advantage of the public para-
meters of a cryptographic protocol (plaintext in block ciphers, IV in stream
cipher) in order to generate a system of equations of low degree. However in
filter permutator constructions, the only such public parameter is the seed of
the PRNG allowing to generate the pseudo-random bit permutations P;. Since
controlling this seed hardly allows any control of the F' function’s inputs, such
attacks do not seem applicable. A similar observation holds for conditional dif-
ferential cryptanalysis [39] and for integral/zero-sum distinguishers [8,40].

3.5 Cautionary Note and Design Tweaks

As already mentioned, all the previous analyzes are based on standard crypt-
analysis and design tools. In particular, the security of our FLIP designs is based
on properties of Boolean functions that are generally computed assuming a uni-
form input distribution. Yet, for filter permutators this condition is not strictly
respected since the Hamming weight of the key register is fixed (we decided to
set it to N/2 in order to avoid weak keys, but even without this condition, it
would be fixed to an unknown value). This means the input distribution of our
linear, quadratic and triangle functions is not uniform. We verified experimen-
tally that the output of FLIP is sufficiently balanced despite this non-uniformity.
More precisely, we could not detect biases larger than 2% when generating 27
bits of keystream (based on small-scale experiments with ¢ = 32). But we did
not study the impact of this non-uniformity for other attacks, which we leave
as an important research scope, both from the cryptanalysis and the Boolean
functions points-of-view.

Note that in case the filter permutator of Sect. 3.1 turns out to have weak-
nesses specifically due to the imbalanced F function’s inputs, there are tweaks
that could be used to mitigate their impact. The simplest one is to apply a
public whitening to the input bits of the non-linear parts of F' (using additional
public PRNG outputs), which has no impact on the homomorphic capacity. The
adversary could then bias the F' function’s inputs based on his knowledge of
the whitening bits, but to a lower extent than with our fixed Hamming weight
keys. Alternatively, one could add a (more or less complex) linear layer before
the non-linear part of F', which would then make the filter permutator conceptu-
ally more similar to filter generators, and (at least for certain layers) only imply
moderate cost from the FHE point-of-view.

3.6 80- & 128-bit Security Instances

We selected a few instances aiming at 80- and 128-bit security based on the
previous bounds, leading to the attack complexities listed in Table 1, where
FLIP(n1,ng, " AF) denotes the instantiation of FLIP with linear part of n; bits,
quadratic part of no bits and nb triangular functions of degree k. These instances
are naturally contrasted. On the one hand, the bounds taken are conservative
with respect to the attacks considered: if these attacks were the best ones, more

330 P. Méaux et al.

aggressive instances could be proposed (e.g. in order to reduce the key size). On
the other hand, filter permutators are based on non-standard design principles,
and our security analysis is only preliminary, which naturally suggests the need
of security margins. Overall, we believe the proposed instances are a reasonable
trade-off between efficiency and security based on our current understanding of
filter permutators, and therefore are a good target for further investigations.

Table 1. Attack complexities in function of n1, np and " A*. AA stands for algebraic
attacks, FAA stands for fast algebraic attacks, CA/BKW stands for correlation or
BKW-like attacks, HOC stands for higher-order correlation attacks and ¢ stands for
the number of bits guessed leading to the best complexity for guess and determine
attacks. For the CA/BKW column, we reported the minimum complexity between the
correlation and BKW-like attack. Eventually, A stands for the security parameter of F'
and is simply taken as the minimum between AA, FAA,CA/BKW and HOC.

Instance N |AA|¢ |FAA | CA/BKW ¢ |HOC ¢ A

FLIP(42,128,84%) | 530| 95| 56| 81 0| 86 72| 94 | 55| 81
FLIP(46,136,*A) | 662| 91| 52| 81 | 52| 80 72| 90 | 48 80
FLIP(82,224,8A") | 1394|156 | 112|140 | 40134 120|155 | 109|134
FLIP(86,238,5A%) | 1704|149 105|137 | 105|133 124128 | 74128

3.7 Indirect Sums

Before analyzing the FHE properties of filter permutators, we finally suggest
FLIP designs based on indirect sums as another interesting topic for evaluation,
since they lead to quite different challenges. Namely, the main motivation to use
direct sums in the previous sections was the possibility to assess their crypto-
graphic properties based on existing tools. By contrast, filter permutator designs
based on indirect sums seem harder to analyze (both for designers and cryptan-
alysts). This is mainly because in this case, not only the inputs of the Boolean
functions vary, but also the Boolean functions themselves. For illustration, we
can specify “multi-FLIP” designs, next denoted as b-FLIP designs, such that we
compute b instances of FLIP in parallel, each with the same filtering function
but with different permutations, and then to XOR the b computed bits in order
to produce a keystream bit. We conjecture that such b-FLIP designs could lead
to secure stream ciphers with smaller states, and suggest 10-FLIP(10, 20, }A20)
and 15-FLIP(15,30,1A3°) as exemplary instances for 80- and 128-bit security.

4 Application to FHE

4.1 80- & 128-bit Security Parameters

For the security parameters choices, we follow the analysis of Lindner and Peikert
[43] for the hardness of LWE and RLWE, considering distinguishing and decoding

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 331

attacks using BKZ [14,55]. We assume that the distribution x in the considered
LWE instances is the discrete Gaussian distribution with mean 0 and standard
deviation o. First we compute the best root Hermite factor ¢ of a basis (see [29])
computable with complexity 2* from the conservative lower bound of [43]:

log(6) = 1.8/(110 + A). (1)

The distinguishing attack described in [43,50,54] is successful with advantage
¢ by finding vectors of length a4 with @ = /In(1/¢)/m. The length of the

shortest vector that can be computed is 22V" 10841989 Jeading to the inequality:
ad o 92vnTogqlogs (2)

o
Given o > 24/n from Regev’s reduction [53], we can choose parameters for n

and ¢ matching Eq. (2) for the considered security parameter A\. The parameters
we select for our application are summarized in Table 2.

Table 2. (R)LWE parameters used in our applications.

Security A |n |loggq
80 256 | 80
128 512|120

4.2 Noise Analysis

Considering our framework of Fig. 1, Claude has at its disposal the homomor-
phic encryption of the symmetric key C# (skf), the homomorphic public key
pk and the symmetric encrypted messages C¥(m;). He has to perform the
homomorphic evaluation of the symmetric decryption circuit, i.e. to perform
homomorphic operations on the ciphertexts C (sk?) in order to get C(m;),
the homomorphic encryption of m;. In this section, we study the error growth
in these ciphertexts after the application of the homomorphic operations. As
we are considering SWHE, we need to control the magnitude of the error and
keep it below a critical level to ensure the correctness of a final ciphertext. This
noise management is crucial for the applications, it is directly linked with the
quantity of computation that the server can do for the client. We now study the
error growth stemming from the homomorphic evaluation of FLIP. In this case,
all the ciphertexts used by the server in the computation step will have a same
starting error. The knowledge of this starting error (defined by some parameter)
and its growth for additions and multiplications (in a chosen order) is enough to
determine the amount of computation that can be performed correctly by the
server.

In the remainder of this section we proceed in three steps. First we recall the
error growth implied by the H.Add and H.Mul operations: for GSW-like HE it has
already been done in [2,10,24,32,36]. As our homomorphic encryption schemes

332 P. Méaux et al.

are slightly differently written to fit our applications (batched version to perform
in parallel the same computations, generic notations for various frameworks), we
give these error growth with our notations for completeness and consistency of
the paper. Then we analyse the error for a sub-case of homomorphic product,
namely H.Comb, which gives a practical tool to study the error growth in FLIP.
As the asymmetric property of GSW multiplication and plaintext norm have
been pointed out relatively to the error growth, we consider important to focus on
both when analysing this error metric. Considering H.Comb types of operations
is therefore suited to be consistent with this metric and is very important for
practical purpose (in term of real life applications). Finally we analyse the error
in a ciphertext output by FLIP and study some optimizations to reduce the noise
growth further.

Error Growth in H.Add and H.Mul. We first need to evaluate the error
growth of the basic homomorphic operations, the addition and the multiplication
of ciphertexts. We use the analysis of [2] based on subgaussian distributions to
study the error growth in these homomorphic operations. From a coefficient
or a vector following a subgaussian distribution of parameter o, we can bound
its norm with overwhelming probability and then study the evolution of this
parameter while performing the homomorphic operations. Hence we can bound
the final error to ensure correctness.

For simplicity we use two notations arising from the error growth depending
on the arithmetic of the underlying ring of the two schemes, v the expansion
factor (see [9]) and Norm(m;) such that:

— Batched GSW: v =1 and Norm(m;) = |m;| (arithmetic in Z).
— Ring GSW: v =n and Norm(m;) = ||m;||2 (arithmetic in R).

Lemma 10 (H.Add Error Growth). Suppose C; for 1 < i < k are ciphertexts
of a GSW based Homomorphic Encryption scheme with error components e; of
coefficients following a distribution of parameter o;. Let Cy = H.Add(C;, for
1<i<k) and es the related error with subgaussian parameter o’ such that:

or o =oVkif o;=0,Vie€ k]

Lemma 11 (H.Mul Error Growth). Suppose C; for 1 <1i < k are ciphertexts
of a GSW based Homomorphic Encryption scheme with error components e;, of
coefficients following a subgaussian distribution of parameter o;, and plaintext
m;. C¢ is the result of a multiplicative homomorphic chain such that:

C; = H.Mul(Cy, H.Mul(Cy, HMul(- - - , HMul(Cy, G)))),

and ey the corresponding error with subgaussian parameter o’ such that:

k
o =0 | VNvy,|o}+ Z (Jiﬂj;%Norm(mj))Q
i=2

Lemmas 10 and 11 are proven in the extended version of this paper.

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 333

Error Growth in H.Comb. For the sake of clarity, we formalize hereafter the
comb homomorphic product H.Comb and the quantity o.omp which stands for
the subgaussian parameter. We study the error growth of H.Comb as we will use
it as a tool for the error growth analysis of FLIP.

Definition 17 (Homomorphic Comb H.Comb). Let Cy,--- ,Cy be k cipher-
texts of a GSW based Homomorphic Encryption scheme with error coefficients

from independent distributions with same subgaussian parameter o. We define
H.Comb(y,o,c, k) = HMul(Cyq,---,Cy, G) where:

-y =+/N~ is a constant depending on the ring,
- ¢ = maxi<;<k(Norm(m;)) is a constant which depends on the plaintexts,

and Ceomp = H.Comb(y,o,c, k) as error components following a subgaussian
distribution of parameter O(0comp)-

Lemma 12 (0.omp Quantity). Let Cy,---,Cy be k ciphertexts of a GSW
based Homomorphic Encryption scheme with same error parameter o and
Ceiomb = H.Comb(y,0,c, k). Then we have:

Ocomb(Y, 0, ¢, k) = yocp, wherec, =

Proof. Thanks to Lemma 11 we obtain:

Ocomb = VNyy/ 02 + Zfzz(aﬂ;:;}Norm(mj))?,
Ocomb = y\/0'2 + Zf:2 (aciil)za

k)
Ocomb = YO Ei:l(cz_1)27
Ocomb = YO Ck. d

The compatibility of this comb structure with the asymmetric multiplicative
error growth property of GSW enables us to easily quantify the error in our
construction, with a better accuracy than computing the multiplicative depth.
In order to minimize the quantity o.oms, we choose the plaintext space such that
¢ = 1 for freshly generated ciphertexts. The resulting ocoms(y, 0, 1, k) quantity is
therefore yov/k, growing less than linearly in the number of ciphertexts. Fixing
the constant ¢ to be 1 is usual with FHE. As we mostly consider Boolean circuits,
it is usual to use plaintexts in {—1,0,1} to encrypt bits, leading to ¢ = 1 and
therefore ¢, = Vk.

Error Growth in FLIP. In the previous paragraphs, we have evaluated the
error growth in the basic homomorphic operations H.Add, H.Mul and H.Comb.
We will use them as building blocks in order to evaluate the error growth in the
homomorphic evaluation of FLIP. Coming back to the framework of Fig.1, the

334 P. Méaux et al.

error in the ciphertexts C(m;) is of major importance as it will determine the
possible number of homomorphic computations f that Claude is able to perform.

The main feature of the filter permutator model, considering FHE settings,
is that it allows to handle ciphertexts having the same error level, whatever the
number of output bits. Consequently all ciphertexts obtained by FLIP evaluation
will have the same constant and small amount of noise and will be considered
as fresh start for more computation.

Evaluating homomorphically the FLIP decryption (resp. encryption) algo-
rithm consists in applying three steps of homomorphic operations on the cipher-
texts CH (skf) in our application framework, each one encoding one bit of the
key register. For each ciphertext bit, these steps are: a (bit) permutation, the
application of the filtering function F' and a XOR with the ciphertext (resp.
plaintext). The (bit) permutation consists only in a public rearrangement of the
key ciphertexts, leading to a noise-free operation. The last XOR is done with a
freshly encrypted bit. Hence the error growth depends mostly on the homomor-
phic evaluation of F.

As H.Dec outputs quantities modulus 2, we can evaluate the XORs of F' by
H.Add and the ANDs by H.Mul. We then determine the subgaussian parameter
of the error of a ciphertext from the homomorphic evaluation of F'. For a given
encrypted key, this parameter will be the same for every homomorphic evaluation
of FLIP and is computed from ocomp.

Lemma 13 (Error Growth Evaluating F'). Let F be the FLIP filtering func-
tion in N wvariables defined in Sect. 3.3. Assume that C; for 0 < i< N —1 are
ciphertexts of a GSW HE scheme with same subgaussian parameter o and ¢ = 1.
We define Cr = H.Eval(F, C;) the output of the homomorphic evaluation of the
ciphertexts C;’s along the circuit F. Then the error parameter o’ is:

o =0 (0\/711 +y2(n2 + n3)> ~ O (Jg/\/ﬁ) .

Proof. We first evaluate the noise brought by F for each of its components
Ly, Qn,, "PAF defining the respective ciphertexts Cr,,,Cq.,,Crn (the last one
standing for one triangle only) and the subgaussian parameter of the respective
error distributions (of the components of the error vectors) o, ,0q,,, 07

- Lnll CLnl = H.EVQ'(Lnl,Co, s 7Cn1—1) = HAdd(Co, s 7Cn1—1) then

=oy/n1.

- Qn22 CQn2 = H.Add(H.MUl(Cnl+2j, Cn1+2j+1,G)) for 0 S] S no.
H.Mul(C,,, 425, Chp, 42541, G) = H.Comb(y, 0, 1, 2) has subgaussian parameter
O(0comp(y,0,1,2)) = (yof) for 0 < j < mnas.

Then oq,,, = O(yaxf\/W O(yo/nz).

- Ty: Cp, = HAdd(H Mul(Coy, iyt (i—1)(i—2)/2; 1 < J <d);1 <i < k).
Cr, = H.Add(H.Comb(y,0,1,4),1 <i <k)
then o7, = O(\/ 301, (yoV/i)2) = Oy /654,

As " AF is obtained by adding nb independent triangles, we get:
Cuvpr = HAdA(Cr, 4,1 < i < nb),

and ons pr = O(yovnby/ k(kH) O(yo\/n3).

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 335

By Pythagorean additivity the subgaussian parameter of Cp is finally:

o' = (9(\/(0\/771)2 + (yov/n2)? + (yo/n3)?) = O(o/n1 +y*(n2 +n3)). O

Optimizations. The particular error growth in GSW Homomorphic Encryption
enables to use more optimizations to reduce the error norm and perform more
operations without increasing the parameter’s size. The error growth in H.Comb
depends on the quantity ¢, derived from bounds on norms of the plaintexts;
these quantities can be reduced using negative numbers. A typical example is in
the LWE-based scheme to use m € {—1,0, 1} rather than {0, 1}; the ¢; quantity
is the same and in average the sums in Z are smaller. Then the norm | m;|
is smaller which is important when multiplying. Conserving this norm as low as
possible gives better bounds and ¢ coefficients, leading to smaller noise when
performing distinct levels of operations. An equivalent way of minimizing the
error growth is to still use M = {0, 1} but with H.Add(C, Cz) = C; +C,. This
homomorphic addition is still correct because:

T T
mg’l . Sl —mg’l . Sl
/ . " .
S—CQZ—EQ— : G:E2+ :)

=
mar S,

e
—Mmar - S,
where the coefficients in EJ rows follow distribution of same subgaussian para-

meter as the one in E}, by homogeneity and —m = m mod 2.

4.3 Concrete Results

Contrary to other works published in the context of symmetric encryption
schemes for efficient FHE [1,11,31], our primary focus is not on the perfor-
mances (see SHIELD [38] for efficient implementation of Ring-GSW) but rather
on the error growth. As pointed out in [11], in most of these previous works, after
the decryption process the noise inside the ciphertexts was too high to perform
any other operation on them, whereas it is the main motivation for a practical
use of FHE.

In this section, we consequently provide experimental results about this error
growth in the ciphertexts after different operations evaluated on the Ring GSW
scheme. As the link between subgaussian parameter, ciphertext error and homo-
morphic computation is not direct, we make some choices for representing these
results focusing on giving intuition on how the error behaves.

The choice of the Ring GSW setting rather than Batched GSW is for conve-
nience. It allows to deal with smaller matrices and faster evaluations, providing
the same confirmation on the heuristic error growth. We give the parameters n
and ¢ defining the polynomial ring and fix o = 2[y/n] for the error distribution.

An efficient way of measuring the error growth within the ciphertexts is to
compute the difference by applying the rounding |-]2 in H.Dec between various

336 P. Méaux et al.

ciphertexts with known plaintext. This difference (for each polynomial coeffi-
cient or vector component) corresponds to the amount of noise contained in this
ciphertext. The correctness requires this quantity to be inferior to 2¢=2. Then,
considering its logarithm in base 2, it enables to have an intuitive and practi-
cal measure of the ciphertext noise: this quantity grows with the homomorphic
operations until this log equals £ — 2. Concretely, in our experiments we encrypt
polynomials being m = 0 or m = 1, compute on the constant coeflicient the
quantity e = |({s,c¢) —m2°~1) mod q|, and give its logarithm. We give another
quantity in order to provide intuition about the homomorphic computation pos-
sibilities over the ciphertexts, by simply computing a percentage of the actual
level of noise relatively to the maximal level ¢ — 2.

Remark 4. The quantity exhibited by our measures is roughly the subgaussian
parameter of the distribution of the error contained in the ciphertexts. Consid-
ering the simpler case of a real Gaussian distribution N(0,0?), the difference
that we compute then follows a half normal distribution with mean a%.

We based our prototype implementation on the NTL library combined with
GMP and the discrete gaussian sampler of BLISS [23]. We report in Table 3
experimental results on the error growth for different RLWE and FLIP parame-
ters, based on an average over a hundred of samples.

The results confirm the quasi-additive error growth when considering the
specific metric of GSW given by the asymptotic bounds. The main conclusion
of these results is that the error inside the ciphertexts after a homomorphic
evaluation of FLIP is of the same order of magnitude as the one after a multipli-
cation. The only difference between these noise increases is a term provided by
the root of the symmetric key register size, that is linear in . Therefore, with
the FLIP construction the error growth is roughly the basic multiplicative error
growth of two ciphertexts. Hence, we conclude that filter permutators as FLIP
release the bottleneck of evaluating symmetric decryption, and lead the further
improvement of the calculus delegation framework to depend overwhelmingly on
improvements of the homomorphic operations.

Table 3. Experimental error growth of Ring-GSW. Fresh, H.Add, H.Mul and
H.Eval(FLIP) respectively stands for the noise e measure after a fresh homomorphic
encryption, the homomorphic addition of two fresh ciphertexts, the homomorphic mul-
tiplication of two fresh ciphertexts and the homomorphic evaluation of FLIP on fresh
ciphertexts. The first value is the log of the error e inside the corresponding ciphertexts
and the percentage represents the proportion of the noise with respect to the capacity
of decryption (i.e. £ — 2).

Ring (n,£) | FLIP Fresh H.Add H.Mul H.Eval(FLIP)
loge | % loge | % loge | % loge | %

256 | 80 (42,128,8A%) 13,07 |17%| 13,96 |18 % 19,82 | 25% 24,71 |31 %
512120 | (82,224,8A') 14,68 |12% | 15,14 | 13% | 23,27 |20% | 28,77 | 24%

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 337

4.4 Performances for 2nd-Generation Schemes

Despite our new constructions are primarily designed for 3rd-generation FHE,
a look at Table4 suggests that also from the multiplicative depth point of view,
FLIP instances bring good results compared to their natural competitors such as
LowMC [1] and Trivium/Kreyvium [11]. In Trivium/Kreyvium, the multiplica-
tive depth of the decryption circuit is at most 13, while the LowMC family has a
record multiplicative depth of 11 which is still larger than our FLIP instances. For
completeness, we finally investigated the performances of some instances of FLIP
for 2nd-generation FHE schemes using HElib, as reported in Table 5, where the
latency is the amount of time (in seconds) needed to homomorphically decrypt
(NDb * Number of Slots) bits, and the throughput is calculated as (Nb * Number
of Slots * 60)/latency. As in [11], we have considered two noise levels: a first
one that does not allow any other operations on the ciphertexts, and a second
one where we allow operations of multiplicative depth up to 7. Note that the
(max) parenthesis in the Nb column recalls that for Trivium/Kreyvium, the
homomorphic capacity decreases with the number of keystream bits generated,
which therefore bounds the number of such bits before re-keying. We observe
that for 80-bit security, our instances outperform the ones based on Trivium.
As for 128-bit security, the gap between our instances and Kreyvium is limited
(despite the larger state of FLIP), and LowMC has better throughput in this con-
text. Note also that our results correspond to the evaluation of the F' function of
FLIP (we verified that the time needed to generate the permutations only mar-
ginally affects the overall performances of homomorphic FLIP evaluations). We
finally mention that these results should certainly not be viewed as strict com-
parisons, since obtained on different computers and for relatively new ciphers
for which we have limited understanding of the security margins (especially

Table 4. Multiplicative depth of different symmetric ciphers.

Algorithm Reference | Multiplicative depth | Security
SIMON-32/64 42] 32 64
Trivium-12 [11) 12 80
Trivium-13 [11] 13 80
LowMc-80 1] 11 80
FLIP(42,128,8A®%) | This work | [log 9] = 4 80
AES-128 [15,31] 40 128
SIMON-64/128 | [42] 44 128
Prince [22] 24 128
Kreyvium-12 [11] 12 128
Kreyvium-13 [11] 13 128
LowMc-128 1] 12 128
FLIP(82,224,%A'®) | This work | [log 16] = 4 128

338 P. Méaux et al.

Table 5. Timings of the homomorphic evaluation of several instances of the Boolean
function of FLIP using HEIlib on an Intel Core i7-3770. The other results are taken
from [11]. L and Number of Slots are HElib parameters which stand respectively for
the level of noise and the number of bits packed in one ciphertext. (Nb * Number of
Slots) corresponds to the number of decrypted bits.

Algorithm Security | Nb L |Number | Latency (sec) | Throughput
of Slots (bits/min)
Trivium-12 80 45 (max) |12600 1417.4 1143.0
80 45 (max) |19720 4420.3 439.8
Trivium-13 80 136 (max) | 13 | 600 3650.3 1341.3
80 136 (max) |20 | 720 11379.7 516.3
Kreyvium-12 128 42 (max) |12504 1715.0 740.5
128 42 (max) |19 756 4956.0 384.4
Kreyvium-13 128 124 (max) | 13 | 682 3987.2 1272.6
128 124 (max) | 20 | 420 12450.8 286.8
LowMC-128 ? <128 | 256 13 | 682 3368.8 3109.6
? <128 | 256 20 | 480 9977.1 739.0
FLIP(42,128,8A%) | 80 1 5378 4.72 4805.08
80 1 12 600 17.39 2070.16
FLIP(82,224,3A%%) | 128 1 6 | 630 14.53 2601.51
128 1 13| 720 102.51 421.42

for LowMC [19,21] and FLIP). So they should mainly be seen as an indication
that besides their excellent features from the FHE capacity point-of-view, filter
permutators inherently have good properties for efficient 2nd-generation FHE
implementations as well.

5 Conclusions and Open Problems

In the context of our Homomorphic Encryption - Symmetric Encryption frame-
work, where most of the computations are delegated to a server, we have designed
a symmetric encryption scheme which fits the FHE settings, with as main goal
to get the homomorphic evaluation of the symmetric decryption circuit as cheap
as possible, with respect to the error growth. In particular the error growth
obtained by our construction, only one level of multiplication considering the
metric of third generation FHE, achieves the lowest bound we can get with a
secure symmetric encryption scheme. The use of zero-noise operations as permu-
tations enables us to combine the advantages of block ciphers and stream ciphers
evaluation, namely constant noise on the one hand and starting low noise on the
other hand. As a result, the homomorphic evaluation of filter permutators can
be made insignificant relatively to a complete FHE framework.

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 339

The general construction of our encryption scheme — i.e. the filter
permutator — and its FLIP instances are admittedly provocative. As a result, we
believe an important contribution of this paper is to open a wide design space of
symmetric constructions to investigate, ranging from the very efficient solutions
we suggest to more classical stream ciphers such as filter generators. Such a
design space leads to various interesting directions for further research. Overall,
the main question raised by filter permutators is whether it is possible to build a
secure symmetric encryption scheme with aggressively reduced algebraic degree.
Such a question naturally relates to several more concrete problems. First, and
probably most importantly, additional cryptanalysis is needed in view of the non-
standard design principles exploited in filter permutators. It typically includes
algebraic attack taking advantage of the sparsity of their systems of equations,
attacks exploiting the imbalances at the input of the filter, and the possibility
to exploit chosen IVs to improve those attacks. Second, our analyses also raise
interesting problems in the field of Boolean functions, e.g. the analysis of such
functions with non-uniform input distributions and the investigation of the best
fixed degree approximations of a Boolean function (which is needed in our study
of higher-order correlation attacks). More directly related to the FLIP instances,
it would also be interesting to refine our security analyses, with a stronger focus
on the attacks data complexity, and to evaluate whether instances with smaller
key register could be sufficiently secure. In case of new cryptanalysis results, the
design tweaks we suggest in the paper are yet another interesting research path.
Eventually, and from the FHE application point-of-view, optimizing the imple-
mentations of filter permutators, e.g. by taking advantage of parallel computing
clusters that we did not exploit so far, would be useful in order to evaluate their
applicability to real-world scenarii.

Acknowledgements. We are highly grateful to Sébastien Duval, Virginie Lallemand
and Yann Rotella for sharing their ideas about guess and determine attacks before the
publication of this paper, which allowed us to modify the instances of FLIP accordingly.
We are also indebted to Anne Canteaut for numerous useful suggestions about the
design of filter permutators, and for putting forward some important open problems
they raise. Finally, we would like to thank Thierry Berger, Sergiu Carpov, Rafaél
Delpino, Malika Izabachene, Nicky Mouha, Thomas Prest and Renaud Sirdey for their
feedback about early (and less early) versions of this paper. This work was funded in
parts by the H2020 ICT COST CryptoAction, by the H2020 ICT Project SAFECrypto,
by the H2020 ERC Staring Grant CRASH and by the INNOVIRIS SCAUT project.
Francois-Xavier Standaert is a research associate of the Belgian Fund for Scientific
Research (F.R.S.-FNRS).

340 P. Méaux et al.
References
1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for

10.

11.

12.

13.

14.

15.

16.

MPC and FHE. In: Advances in Cryptology - EUROCRYPT 2015-34th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part 1. pp. 430-454 (2015)

. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:

Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pp. 297-314
(2014)

Anderson, R.J.: Searching for the optimum correlation attack. In: Fast Software
Encryption: Second International Workshop. Leuven, Belgium, 14-16 December
1994, Proceedings, pp. 137-143 (1994)

Armknecht, F., Carlet, C., Gaborit, P., Kiinzli, S., Meier, W., Ruatta, O.: Efficient
computation of algebraic immunity for algebraic and fast algebraic attacks. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 147-164. Springer,
Heidelberg (2006)

Bellare, M., Yee, B.S.: Forward-security in private-key cryptography. IACR, Cryp-
tology ePrint Archive 2001, 35 (2001)

Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506-519 (2003)

Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo
random bits. STAM J. Comput. 13(4), 850-864 (1984)

Boura, C., Canteaut, A.: Zero-sum distinguishers for iterated permutations and
application to keccak-f and hamsi-256. In: Biryukov, A., Gong, G., Stinson, D.R.
(eds.) Selected Areas in Cryptography. LNCS, vol. 6544, pp. 1-17. Springer,
Heidelberg (2011)

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: Innovations in Theoretical Computer Science 2012,
Cambridge, MA, USA, January 8-10, 2012, pp. 309-325 (2012)

Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Inno-
vations in Theoretical Computer Science, ITCS 2014, Princeton, NJ, USA, January
12-14, 2014, pp. 1-12 (2014)

Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M.,
Paillier, P., Sirdey, R.: Stream ciphers: A practical solution for efficient
homomorphic-ciphertext. IACR Cryptology ePrint Archive 2015, 113 (2015)
Carlet, C.: Boolean Models and Methods in Mathematics, Computer Science,
and Engineering, chap. Boolean Functions for Cryptography and Error Correcting
Codes, pp. 257-397 (2010)

Carlet, C., Tang, D.: Enhanced Boolean functions suitable for the filter model of
pseudo-random generator. Des. Codes Crypt. 76(3), 571-587 (2015)

Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Wang,
X., Lee, D.H. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1-20. Springer,
Heidelberg (2011)

Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
311-328. Springer, Heidelberg (2014)

Courtois, N.T.: Higher order correlation attacks, XL algorithm and cryptanalysis
of toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
182-199. Springer, Heidelberg (2003)

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 341

Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176-194. Springer,
Heidelberg (2003)

Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) Advances in Cryptology — EUROCRYPT 2003. LNCS,
vol. 2656, pp. 345-359. Springer, Heidelberg (2003)

Dinur, 1., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks on lowmc.
TIACR Cryptology ePrint Archive 2015, 418 (2015)

Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In:
Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278-299. Springer,
Heidelberg (2009)

Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-order cryptanalysis of lowmc.
TACR Cryptology ePrint Archive 2015, 407 (2015)

Dordz, Y., Shahverdi, A., Eisenbarth, T., Sunar, B.: Toward practical homomorphic
evaluation of block ciphers using prince. In: Béhme, R., Brenner, M., Moore, T.,
Smith, M. (eds.) FC 2014 Workshops. LNCS, vol. 8438, pp. 208-220. Springer,
Heidelberg (2014)

Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.. Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I
LNCS, vol. 8042, pp. 40-56. Springer, Heidelberg (2013)

Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology — EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 617-640. Springer, Heidelberg (2015)

Duval, S., Lallemand, V., Rotella, Y.: Cryptanalysis of the FLIP family of stream
ciphers. Cryptology ePrint Archive, Report 2016/271 (2016). http://eprint.iacr.
org/

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012, 144 (2012)

Faugere, J.C.: A new efficient algorithm for computing grobner bases (f4). J. Pure
Appl. Algebra 139(13), 61-88 (1999)

Fischer, S.: Algebraic immunity of S-boxes and augmented functions. In: Fischer,
S., Meier, W. (eds.) Fast Software Encryption. LNCS, vol. 4593, pp. 366-381.
Springer, Heidelberg (2007)

Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) Advances
in Cryptology — EUROCRYPT 2008. LNCS, vol. 4965, pp. 31-51. Springer,
Heidelberg (2008)

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009, pp. 169-178 (2009)

Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology — CRYPTO 2012.
LNCS, vol. 7417, pp. 850-867. Springer, Heidelberg (2012)

Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) Advances in Cryptology — CRYPTO 2013. LNCS, vol. 8042,
pp. 75-92. Springer, Heidelberg (2013)

Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: How far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383-399. Springer, Heidelberg (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/

342

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.

P. Méaux et al.

Grosso, V., Leurent, G., Standaert, F.-X., Varici, K.: LS-Designs: Bitslice encryp-
tion for efficient masked software implementations. In: Cid, C., Rechberger, C.
(eds.) FSE 2014. LNCS, vol. 8540, pp. 18-37. Springer, Heidelberg (2015)

Halevi, S., Shoup, V.: Algorithms in HEIlib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 554-571. Springer, Heidelberg (2014)
Hiromasa, R., Abe, M., Okamoto, T.: Packing messages and optimizing bootstrap-
ping in GSW-FHE. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 699-715.
Springer, Heidelberg (2015)

Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC Press, Boca Raton (2007)

Khedr, A., Gulak, P.G., Vaikuntanathan, V.: SHIELD: Scalable homomorphic
implementation of encrypted data-classifiers. IJACR Cryptology ePrint Archive
2014, 838 (2014)

Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanaly-
sis of NLFSR-based cryptosystems. In: Abe, M. (ed.) Advances in Cryptology -
ASTACRYPT 2010. LNCS, vol. 6477, pp. 130-145. Springer, Heidelberg (2010)
Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112-127. Springer, Heidelberg (2002)
Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms.
Addison-Wesley, Boston (1969)

Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes
FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014.
LNCS, vol. 8469, pp. 318-335. Springer, Heidelberg (2014)

Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based encryption.
In: Kiayias, A. (ed.) Topics in Cryptology — CT-RSA 2011. LNCS, vol. 6558, pp.
319-339. Springer, Heidelberg (2011)

Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptology
24(3), 588-613 (2011)

Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput. 17(2), 373-386 (1988)

Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1-23.
Springer, Heidelberg (2010)

Meier, W.: Fast correlation attacks: Methods and countermeasures. In: Joux, A.
(ed.) Fast Software Encryption. LNCS, vol. 6733, pp. 55-67. Springer, Heidelberg
(2011)

Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers. In:
Ginther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 301-314. Springer,
Heidelberg (1988)

Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700-718. Springer, Heidelberg (2012)

Micciancio, D., Regev, O.: Lattice-based cryptography. Springer, Heidelberg (2009)
Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Cloud Computing Security Workshop,
CCSW 2011, Chicago, IL, USA, October 21, 2011, pp. 113-124 (2011)

Piret, G., Roche, T., Carlet, C.: PICARO - A block cipher allowing efficient higher-
order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) Applied
Cryptography and Network Security. LNCS, vol. 7341, pp. 311-328. Springer,
Heidelberg (2012)

53.

54.

55.

56.

57.

58.

59.

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 343

Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, Baltimore, MD, USA, May 22-24, 2005, pp. 84-93 (2005)

Riickert, M., Schneider, M.: Estimating the security of lattice-based cryptosystems.
TIACR Cryptology ePrint Archive 2010, 137 (2010)

Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181-199 (1994)
Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE
Trans. Comput. 34(1), 81-85 (1985)

Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptogra-
phy under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 335-352. Springer, Heidelberg (2013)
Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices.
CoRR abs/1011.3027 (2010)

Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans.
Inf. Theor. 32(1), 54-62 (1986)

http://www.abs/1011.3027

	Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts
	1 Introduction
	2 Background
	2.1 Boolean Functions
	2.2 (Ring) Learning with Errors
	2.3 Fully Homomorphic Encryption

	3 New Stream Cipher Constructions
	3.1 Filter Permutators
	3.2 Boolean Building Blocks for the Filter Permutator
	3.3 The FLIP Family of Stream Ciphers
	3.4 Security Analysis
	3.5 Cautionary Note and Design Tweaks
	3.6 80- & 128-bit Security Instances
	3.7 Indirect Sums

	4 Application to FHE
	4.1 80- & 128-bit Security Parameters
	4.2 Noise Analysis
	4.3 Concrete Results
	4.4 Performances for 2nd-Generation Schemes

	5 Conclusions and Open Problems
	References

