
Improved Masking for Tweakable Blockciphers
with Applications to Authenticated Encryption

Robert Granger1, Philipp Jovanovic2(B), Bart Mennink3, and Samuel Neves4

1 Laboratory for Cryptologic Algorithms,
École polytechnique fédérale de Lausanne, Lausanne, Switzerland

robert.granger@epfl.ch
2 Decentralized and Distributed Systems Lab,

École polytechnique fédérale de Lausanne, Lausanne, Switzerland
philipp.jovanovic@epfl.ch

3 Department of Electrical Engineering, ESAT/COSIC,
KU Leuven, and iMinds, Leuven, Belgium

bart.mennink@esat.kuleuven.be
4 CISUC, Department of Informatics Engineering,

University of Coimbra, Coimbra, Portugal
sneves@dei.uc.pt

Abstract. A popular approach to tweakable blockcipher design is via
masking, where a certain primitive (a blockcipher or a permutation) is
preceded and followed by an easy-to-compute tweak-dependent mask.
In this work, we revisit the principle of masking. We do so alongside
the introduction of the tweakable Even-Mansour construction MEM. Its
masking function combines the advantages of word-oriented LFSR- and
powering-up-based methods. We show in particular how recent advance-
ments in computing discrete logarithms over finite fields of characteris-
tic 2 can be exploited in a constructive way to realize highly efficient,
constant-time masking functions. If the masking satisfies a set of sim-
ple conditions, then MEM is a secure tweakable blockcipher up to the
birthday bound. The strengths of MEM are exhibited by the design
of fully parallelizable authenticated encryption schemes OPP (nonce-
respecting) and MRO (misuse-resistant). If instantiated with a reduced-
round BLAKE2b permutation, OPP and MRO achieve speeds up to 0.55
and 1.06 cycles per byte on the Intel Haswell microarchitecture, and are
able to significantly outperform their closest competitors.

Keywords: Tweakable Even-Mansour · Masking · Optimization ·
Discrete logarithms · Authenticated encryption · BLAKE2

1 Introduction

Authenticated encryption (AE) has faced significant attention in light of the
ongoing CAESAR competition [15]. An AE scheme aims to provide both confi-
dentiality and integrity of processed data. While the classical approach is predom-
inantly blockcipher-based, where an underlying blockcipher is used to encrypt,
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part I, LNCS 9665, pp. 263–293, 2016.
DOI: 10.1007/978-3-662-49890-3 11

264 R. Granger et al.

novel approaches start from a permutation and either rely on Sponge-based princi-
ples or on the fact that the Even-Mansour construction E(K,M) = P (K⊕M)⊕K
is a blockcipher.

Characteristic for the majority of blockcipher-based AE schemes is that they
rely on a tweakable blockcipher where changes in the tweak can be realized effi-
ciently. The most prominent example of this is the OCB2 mode which internally
uses the XEX tweakable blockcipher [71]:

XEX(K, (X, i0, i1, i2),M) = E(K, δ ⊕ M) ⊕ δ,

where δ = 2i03i17i2E(K,X). The idea is that every associated data or message
block is transformed using a different tweak, where increasing i0, i1, or i2 can be
done efficiently. This approach is furthermore used in second-round CAESAR
candidates AEZ, COPA, ELmD, OTR, POET, and SHELL. Other approaches
to masking include Gray code ordering (used in OCB1 and OCB3 [55,72] and
OMD) and the word-oriented LFSR-based approach where δ = ϕi(E(K,X)) for
some LFSR ϕ (suggested by Chakraborty and Sarkar [18]).

The same masking techniques can also be used for permutation-based tweak-
able blockciphers. For instance, Minalpher uses the Tweakable Even-Mansour
(TEM) construction [75] with XEX-like masking, and similar for Prøst. This
TEM construction has faced generalizations by Cogliati et al. [23,24] and
Mennink [62], but none of them considers efficiency improvements of the masking.

1.1 Masked Even-Mansour (MEM) Tweakable Cipher

As a first contribution, we revisit the state of the art in masking with the intro-
duction of the “Masked Even-Mansour” tweakable blockcipher in Sect. 3. At a
high level, MEM is a Tweakable Even-Mansour construction, where the masking
combines ideas from both word-oriented LFSR- and powering-up-based mask-
ing. As such, MEM combines “the best of both” masking approaches, leading to
significant improvements in simplicity, error-proneness, and efficiency.

In more detail, let P be a b-bit permutation. MEM’s encryption function is
defined as

˜E(K,X, ī,M) = P (δ(K,X, ī) ⊕ M) ⊕ δ(K,X, ī),

where ī = (i0, . . . , iu−1) and where the masking function is of the form

δ(K,X, ī) = ϕ
iu−1
u−1 ◦ · · · ◦ ϕi0

0 (P (X ‖ K)),

for a certain set of LFSRs (ϕ0, . . . , ϕu−1). MEM’s decryption function ˜D is spec-
ified analogously but using P−1 instead of P .

The tweak space and the list of LFSRs are clearly required to satisfy some
randomness condition. Indeed, if a distinguisher can choose a list of tweaks ī
such that ϕ

iu−1
u−1 ◦ · · · ◦ ϕi0

0 (L) for a uniformly random L offers no or limited
entropy, it can easily distinguish MEM from a random primitive. A similar case
applies if the distinguisher can make two different maskings collide with high

Improved Masking for Tweakable Blockciphers 265

probability. Denote by ε the minimal amount of entropy offered by the functions
ϕ

iu−1
u−1 ◦ · · · ◦ ϕi0

0 and ϕ
iu−1
u−1 ◦ · · · ◦ ϕi0

0 ⊕ ϕ
i′
u−1

u−1 ◦ · · · ◦ ϕ
i′
0
0 for any two maskings ī, ī′

(see Definition 1 for the formal definition). Then, we prove that MEM is a secure
tweakable blockcipher in the ideal permutation model up to 4.5q2+3qp

2ε + p
2k , where

q is the number of construction queries, p the number of primitive queries, and
k the key length. The security proof follows Patarin’s H-coefficient technique,
which has shown its use to Even-Mansour security proofs before in, among others,
[3,20,21,23,25,63].

To guarantee that the maskings offer enough randomness, it is of pivotal
importance to define a proper domain of the masking. At the least, the functions
ϕ

iu−1
u−1 ◦ · · · ◦ϕi0

0 should be different for all possible choices of ī, or more formally,
such that there do not exist ī, ī′ such that

ϕ
iu−1
u−1 ◦ · · · ◦ ϕi0

0 = ϕ
i′
u−1

u−1 ◦ · · · ◦ ϕ
i′
0
0 .

Guaranteeing this requires the computation of discrete logarithms. For small
cases, such as b = 64 and b = 128, we can inherit the computations from Rogaway
for XEX [71]. For instance, for b = 128, it is known that u = 3, (ϕ0, ϕ1, ϕ2) =
(2,3,7), and (i0, i1, i2) ∈ {−2108, . . . , 2108}×{−27, . . . , 27}×{−27, . . . , 27} does
the job.

We extend the XEX approach to much larger block sizes by taking advan-
tage of the recent breakthroughs in the computation of discrete logs in small
characteristic fields, beginning with [30], followed by [45]. Computation of indi-
vidual discrete logarithms for the 1024-bit block used in our MEM instantiation
takes about 8 h on a single core of a standard desktop computer, after an initial
precomputation, applicable to all logarithms, of 33.3 h. Larger blocks are also
attainable, rendering workarounds such as subgroups [77] or different modes [74]
largely unnecessary.

Peculiarly, there have been uses of XEX for state sizes larger than b = 128
bits, even though it has been unclear what restrictions on the indices are due.
For instance, Prøst [50] defines a COPA and OTR instance for a 256- and 512-bit
blockcipher; both use maskings of the form 2i03i17i2 for i0 ranging between 0
and the maximal message length. For COPA, it has (i1, i2) ∈ {0, . . . , 5} × {0, 1}
and for OTR it has (i1, i2) ∈ {0, 1} × {0}. The security proof of Prøst never
formally computes conditions on the indices, and simply inherits the conditions
for b = 128. By computing the discrete logarithms in the respective fields—
a computationally easy task, demonstrated in Sect. 3.6—we can confirm that
the tweaks are unique for i0 ∈ {0, . . . , 2246 − 1} in the 256-bit block case, and
i0 ∈ {0, . . . , 2505 − 1} in the 512-bit block case.

1.2 Application to Nonce-Based AE

As first application, we present the Offset Public Permutation (OPP) mode in
Sect. 4, a parallelizable nonce-based AE based on MEM. It can be considered
as a permutation-based generalization of OCB3 [55] to arbitrary block sizes
using permutations and using the improved masking from MEM. Particularly,

266 R. Granger et al.

assuming security of MEM, the proof of [55] mostly carries over, and we obtain
that OPP behaves like a random AE up to attack complexity dominated by
min{2b/2, 2k}, where b is the size of the permutation and k is the key length.
OPP also shows similarities with Kurosawa’s adaptation of IAPM and OCB to
the permutation-based setting [56].

Using the masking techniques described later in this paper, OPP has excellent
performance when compared to contemporary permutation-based schemes, such
as first-round CAESAR [15] submissions Artemia, Ascon, CBEAM, ICEPOLE,
Keyak, NORX, π-Cipher, PRIMATEs, and STRIBOB, or SpongeWrap schemes
in general [9,63]. OPP improves upon these by being inherently parallel and
rate-1; the total overhead of the mode reduces to 2 extra permutation calls and
the aforementioned efficient masking.

In particular, when instantiated with a reduced-round BLAKE2b permuta-
tion [5], OPP achieves a peak speed of 0.55 cycles per byte on an Intel Haswell
processor (see Sect. 8). This is faster than any other permutation-based CAE-
SAR submission. In fact, there are only a few CAESAR ciphers, such as Tiaoxin
(0.28 cpb) or AEGIS (0.35 cpb), which are faster than the above instantiation of
OPP. However, both require AES-NI to reach their best performance and neither
of them is arbitrarily parallelizable.

1.3 Application to Nonce-Misuse Resistant AE

We also consider permutation-based authenticated encryption schemes that are
resistant against nonce-reuse. We consider “full” nonce-misuse resistance, where
the output is completely random for different inputs, but we remark that simi-
larly schemes can be designed to achieve “online” nonce-misuse resistance
[26,41], for instance starting from COPA [2]. It is a well-known result that nonce-
misuse resistant schemes are inherently offline, meaning that two passes over the
data must be made in order to perform the authenticated encryption.

The first misuse-resistant AE we consider is the parallelizable Misuse-Resistant
Offset (MRO) mode (Sect. 5). It starts from OPP, but with the absorption
performed on the entire data and with encryption done in counter mode instead1.
As the underlying MEM is used by the absorption and encryption parts for dif-
ferent maskings, we can view the absorption and encryption as two independent
functions and a classical MAC-then-Encrypt security proof shows that MRO is
secure up to complexity dominated by min{2b/2, 2k, 2τ/2}, where b and k are as
before and τ denotes the tag length.

Next, we consider Misuse-Resistant Sponge (MRS) in Sect. 6. It is not directly
based on MEM; it can merely be seen as a cascaded evaluation of the Full-
state Keyed Duplex of Mennink et al. [63], a generalization of the Duplex of
Bertoni et al. [9]: a first evaluation computes the tag on input of all data, the
second evaluation encrypts the message with the tag functioning as the nonce.

1 MRO’s structure is comparable with the independently introduced Synthetic Counter
in Tweak [43,44,70].

Improved Masking for Tweakable Blockciphers 267

MRS is mostly presented to suit the introduction of the Misuse-Resistant Sponge-
Offset hybrid (MRSO) in Sect. 7, which absorbs like MRS and encrypts like MRO.
(It is also possible to consider the complementary Offset-Sponge hybrid, but
we see no potential applications of this construction.) The schemes MRS and
MRSO are proven secure up to complexity of about min{2c/2, 2k/2, 2τ/2} and
min{2(b−τ)/2, 2k, 2τ/2}, respectively, where c denotes the capacity of the Sponge.

While various blockcipher-based fully misuse-resistant AE schemes exist (such
as SIV [73], GCM-SIV [37], HS1-SIV [54], AEZ [40], Deoxys= and Joltik= [43,44]
(using Synthetic Counter in Tweak mode [70]), and DAEAD [19]), the state of
the art for permutation-based schemes is rather scarce. In particular, the only
misuse-resistant AE schemes known in literature are Haddoc and Mr. Monster
Burrito by Bertoni et al. [11]. Haddoc lacks a proper formalization but appears
to be similar to MRSO, and the security and efficiency bounds mostly carry over.
Mr. Monster Burrito is a proof of concept to design a permutation-based robust
AE comparable with AEZ [40], but it is four-pass and thus not very practical2.

When instantiated with a reduced-round BLAKE2b permutation,
MRO achieves a peak speed of 1.06 cycles per byte on the Intel Haswell plat-
form (see Sect. 8). This puts MRO on the same level as AES-GCM-SIV [37]
(1.17 cpb), which, however, requires AES-NI to reach its best performance. We
further remark that MRO is also more efficient than MRSO, and thus the Haddoc
mode.

2 Notation

Denote by F2n the finite field of order 2n with n ≥ 1. A b-bit string X is an
element of {0, 1}b or equivalently of the F2-vector space F

b
2. The length of a bit

string X in bits is denoted by |X| (= b) and in r-bit blocks by |X|r. For example,
the size of X in bytes is |X|8. The bit string of length 0 is identified with ε. The
concatenation of two bit strings X and Y is denoted by X ‖ Y . The encoding
of an integer x as an n-bit string is denoted by 〈x〉n. The symbols ¬, ∨, ∧, ⊕,
�, �, ≪, and ≫, denote bit-wise NOT, OR, AND, XOR, left-shift, right-shift,
left-rotation, and right-rotation, respectively.

Given a b-bit string X = x0 ‖ · · · ‖ xb−1 we define leftl(X) = x0 ‖ · · · ‖ xl−1

to be the l left-most and rightr(X) = xb−r ‖ · · · ‖ xb−1 to be the r right-most
bits of X, respectively, where 1 ≤ l, r ≤ b. In particular, note that X = leftl(X) ‖
rightb−l(X) = leftb−r(X) ‖ rightr(X). We define the following mapping functions
which extend a given input string X to a multiple of the block size b and cut it
into chunks of b bits:

2 We remark that the state of the art on online misuse-resistant permutation-based
AE is a bit more advanced. For instance, APE [1] is online misuse-resistant, and
achieves security against the release of unverified plaintext, but satisfies the undesir-
able property of backwards decryption. Also Minalpher and Prøst-COPA are online
misuse-resistant.

268 R. Granger et al.

pad0b : {0, 1}∗ → ({0, 1}b)+,X �→ X ‖ 0(b−|X|)mod b,

pad10b : {0, 1}∗ → ({0, 1}b)+,X �→ X ‖ 1 ‖ 0(b−|X|−1)mod b.

The set of all permutations of width b ≥ 0 bits is denoted by Perm(b). The
parameters k, n, τ ≥ 0 conventionally define the size of the key, nonce, and tag,
respectively, for which we require that n ≤ b − k − 1. In the context of Sponge
functions r ≥ 0 and c ≥ 0 denote rate and capacity such that b = r + c, and we
require k ≤ c. When writing X

$←− X for some finite set X , we mean that X gets
sampled uniformly at random from X .

2.1 Distinguishers

A distinguisher D is a computationally unbounded probabilistic algorithm. By
DO we denote the setting that D is given query access to an oracle O: it can
make queries to O adaptively, and after this, the distinguisher outputs 0 or 1.
If we consider two different oracles O and P with the same interface, we define
the distinguishing advantage of D by

ΔD(O ; P) =
∣

∣

∣Pr
(

DO = 1
)

− Pr
(

DP = 1
)∣

∣

∣ . (1)

Here, the probabilities are taken over the randomness from O and P. The distin-
guisher is usually bounded by a limited set of resources, e.g., it is allowed to make
at most q queries to its oracle. We will use the definition of Δ for our formal-
ization of the security (tweakable) blockciphers and authenticated encryption.
Later in the paper, Δ is used to measure the security of PRFs, etc.

2.2 Tweakable Blockciphers

Let T be a set of “tweaks.” A tweakable blockcipher ˜E : {0, 1}k ×T ×{0, 1}b →
{0, 1}b is a function such that for every key K ∈ {0, 1}k and tweak T ∈ T ,
˜E(K,T, ·) is a permutation in Perm(b). We denote its inverse by ˜E−1(K,T, ·).
Denote by P̃erm(T , b) the set of families of tweakable permutations π̃ such that
π̃(T, ·) ∈ Perm(b) for every T ∈ T .

The conventional security definitions for tweakable blockciphers are tweak-
able pseudorandom permutation (TPRP) security and strong TPRP (STPRP)
security: in the former, the distinguisher can only make forward construction
queries, while in the latter it is additionally allowed to make inverse construc-
tion queries. We will consider a mixed security notion, where the distinguisher
may only make forward queries for a subset of tweaks. It is inspired by earlier
definitions from Rogaway [71] and Andreeva et al. [2].

Let P
$←− Perm(b) be a b-bit permutation, and consider a tweakable block-

cipher ˜E based on permutation P . Consider a partition T0 ∪ T1 = T of the
tweak space into forward-only tweaks T0 and forward-and-inverse tweaks T1.

Improved Masking for Tweakable Blockciphers 269

We define the mixed tweakable pseudorandom permutation (MTPRP) security
of ˜E against a distinguisher D as

Advm̃prp
˜E,P

(D) = ΔD(˜E±
K , P± ; π̃±, P±), (2)

where the probabilities are taken over the random choices of K, π̃, and P . The
distinguisher is not allowed to query ˜E−1

K for tweaks from T0. By Advm̃prp
˜E,P

(q, p)
we denote the maximum advantage over all distinguishers that make at most q
construction queries and at most p queries to P±.

Note that the definition of MTPRP matches TPRP if (T0, T1) = (T , ∅) and
STPRP if (T0, T1) = (∅, T). It is a straightforward observation that if a tweakable
cipher ˜E is MTPRP for two sets (T0, T1), then it is MTPRP for (T0∪{T}, T1\{T})
for any T ∈ T1. Ultimately, this observation implies that an STPRP is a TPRP.

2.3 Authenticated Encryption

Let Π = (E ,D) be a deterministic authenticated encryption (AE) scheme which
is keyed via a secret key K ∈ {0, 1}k and operates as follows:

EK(N,H,M) = (C, T),
DK(N,H,C, T) = M/⊥.

Here, N is the nonce, H the associated data, M the message, C the ciphertext,
and T the tag. In our analysis, we always have |M | = |C|, and we require that

DK(N,H, EK(N,H,M)) = M

for all N,H,M . By $E we define the idealized version of EK , which returns
(C, T) $←− {0, 1}|M |+τ for every input. Finally, we denote by ⊥ a function that
returns ⊥ upon every query.

Our AE schemes are based on a b-bit permutation P , and we will analyze the
security of them in the setting where P is a random permutation: P

$←− Perm(b).
Following, Rogaway and Shrimpton [73], Namprempre et al. [65], and Gueron
and Lindell [37], we define the AE security of Π against a distinguisher D as

Advae
Π,P (D) = ΔD(EK ,DK , P± ; $E ,⊥, P±), (3)

where the probabilities are taken over the random choices of K, $E , and P . The
distinguisher is not allowed (i) to repeat any query and (ii) to relay the output
of EK to the input of DK . Note that we do not a priori require the distinguisher
to be nonce-respecting: depending on the setting, it may repeat nonces at its
own discretion. We will always mention whether we consider nonce-respecting or
nonce-reusing distinguishers. By Advae

Π,P (qE , qD, σ, p) we denote the maximum
advantage over all (nonce-respecting/reusing) distinguishers that make at most
qE queries to the encryption oracle and at most qD to the decryption oracle, of
total length at most σ padded blocks, and that make at most p queries to P±.

270 R. Granger et al.

3 Tweakable Even-Mansour with General Masking

We present the tweakable Even-Mansour construction MEM. Earlier appearances
of tweakable Even-Mansour constructions include Sasaki et al. [75], Cogliati
et al. [23], and Mennink [62], but these constructions target different settings, do
not easily capture the improved maskings as introduced below, and are therefore
not applicable in this work.

Our specification can be seen as a generalization of both the XE(X) con-
struction of Rogaway [71] and the tweakable blockcipher from Chakraborty and
Sarkar [18] to the permutation-based setting. While Rogaway limited himself to
128-bit fields, we realize our approach to fields well beyond the reach of Pohlig-
Hellman: historically the large block size would have been a severe obstruction,
as observed in works by Yasuda and Sarkar [74,77], and some schemes simply
ignored the issue [50]. The breakthroughs in computing discrete logarithms in
small characteristic fields [7,30,34,45] allow to easily pass the 128-bit barrier.
In particular, for blocks of 2n bits, it is eminently practical to compute discrete
logarithms for n ≤ 13. Further details of our solution of discrete logarithms over
F2512 and F21024 are described in Sect. 3.6.

3.1 Definition

Let b ≥ 0 and P ∈ Perm(b). In the following we specify MEM, a tweakable
Even-Mansour block cipher with general masking (˜E, ˜D) where ˜E and ˜D denote
encryption and decryption functions, respectively. Let u ≥ 1, and let Φ =
{ϕ0, . . . , ϕu−1} be a set of functions ϕj : {0, 1}b → {0, 1}b. Consider a tweak
space T of the form

T ⊆ {0, 1}b−k × N
u (4)

and specify the general masking function δ : {0, 1}k × T → {0, 1}b as

δ : (K,X, i0, . . . , iu−1) �→ ϕ
iu−1
u−1 ◦ · · · ◦ ϕi0

0 (P (X ‖ K)).

By convention, we set ϕ
ij

j = id for ij = 0, for each 0 ≤ j ≤ u − 1. For brevity of
notation we write ī = (i0, . . . , iu−1), and set

Tī = {̄i | ∃X such that (X, ī) ∈ T } .

The encryption function ˜E : {0, 1}k × T × {0, 1}b → {0, 1}b is now defined as

˜E : (K,X, ī,M) �→ P (δ(K,X, ī) ⊕ M) ⊕ δ(K,X, ī),

where M denotes the to be encrypted message. The decryption function ˜D :
{0, 1}k × T × {0, 1}b → {0, 1}b is defined analogously as

˜D : (K,X, ī, C) �→ P−1(δ(K,X, ī) ⊕ C) ⊕ δ(K,X, ī),

where C denotes the to be decrypted ciphertext. Note that the usual block cipher
property ˜D(K,X, ī, ˜E(K,X, ī,M)) = M is obviously satisfied. Throughout the
document, we will often use the following shorthand notation for ˜E ī

K,X(M) =
˜E(K,X, ī,M), ˜Dī

K,X(C) = ˜D(K,X, ī, C), and δī
K,X = δ(K,X, ī).

Improved Masking for Tweakable Blockciphers 271

3.2 Security

Equation (4) already reveals that we require some kind of restriction on T .
Informally, we require the masking functions ϕ

iu−1
u−1 ◦ · · · ◦ ϕi0

0 to generate pair-
wise independent values for different tweaks. More formally, we define proper
tweak spaces in Definition 1. This definition is related to earlier observations in
Rogaway [71] and Chakraborty and Sarkar [18,74].

Definition 1. Let b ≥ 0, u ≥ 1, and Φ = {ϕ0, . . . , ϕu−1} be a set of functions.
The tweak space T is ε-proper relative to the function set Φ if the following two
properties are satisfied.

1. For any y ∈ {0, 1}b, (i0, . . . , iu−1) ∈ Tī, and uniformly random L
$←− {0, 1}b:

Pr
[

ϕ
iu−1
u−1 ◦ · · · ◦ ϕi0

0 (L) = y
]

= 2−ε.

2. For any y ∈ {0, 1}b, distinct (i0, . . . , iu−1), (i′0, . . . , i
′
u−1) ∈ Tī, and uniformly

random L
$←− {0, 1}b:

Pr
[

ϕ
iu−1
u−1 ◦ · · · ◦ ϕi0

0 (L) ⊕ ϕ
i′
u−1

u−1 ◦ · · · ◦ ϕ
i′
0
0 (L) = y

]

= 2−ε.

The definition is reminiscent of the definition of universal hash functions (as also
noted in [18]), but we will stick to the convention. We are now ready to prove
the security of MEM.

Theorem 2. Let b ≥ 0, u ≥ 1, and Φ = {ϕ0, . . . , ϕu−1} be a set of functions.
Let P

$←− Perm(b). Assume that the tweak space T is ε-proper relative to Φ. Let
T0 ∪ T1 = T be a partition such that (0, . . . , 0) /∈ T1 ī. Then,

Advm̃prp
˜E,P

(q, p) ≤ 4.5q2

2ε
+

3qp

2ε
+

p

2k
.

The proof can be found in the full version of this work. It is based on Patarin’s
H-coefficient technique [21,68], and borrows ideas from [18,62,71,74].

3.3 History of Masking

Originally, IAPM [49] proposed the masking to be a subset sum of c encrypted
blocks derived from the nonce, where 2c is the maximum number of blocks a
message can have. In the same document Jutla also suggested masking the jth
block with (j+1)K +IV mod p, for some prime p near the block size. XCBC [27]
used a similar masking function, but replaced arithmetic modulo p by arithmetic
modulo 2b, at the cost of some tightness in security reductions.

OCB [55,71,72] and PMAC [12] used the field F2b for their masking. There
are two different masking functions used in variants of OCB:

– The powering-up method of OCB2 [71] computes ϕi(L) = xi · L, where · is
multiplication in F2b , and x is a generator of the field.

272 R. Granger et al.

– The Gray code masking of OCB1 [72] and OCB3 [55] computes ϕi(L) = γi ·L,
where γi = i ⊕ (i � 1). This method requires one XOR to compute ϕi+1(L)
given ϕi(L), provided a precomputation of log2 |M | multiples of L is carried
out in advance. Otherwise, up to log2 i field doublings are required to obtain
γi ·L. This Gray code trick was also applicable to IAPM’s subset-sum masking.

Another family of masking functions, word-oriented LFSRs, was suggested by
Chakraborty and Sarkar [18]. Instead of working directly with the polynomial
representation F2[x]/f for some primitive polynomial f , word-oriented LFSRs
treat the block as the field F2wn , where w is the native word size. Thus, the
block can be represented as a polynomial of degree n over F2w , which makes the
arithmetic more software-friendly. A further generalized variant of this family of
generators is described (and rejected) in [55, Appendix B], who also attribute
the same technique to [78]. Instead of working with explicitly-constructed field
representations, one starts by trying to find a b × b matrix M ∈ GL(b, F2)
that is very efficient to compute. Then, if this matrix has a primitive minimal
polynomial of degree b, this transformation is in fact isomorphic to F2b and has
desirable masking properties. The masking function is then ϕi(L) = M i · L.

Although the above maximal-period matrix recursions have only recently
been suggested for use in efficient masking, the approach has been long stud-
ied by designers of non-cryptographic pseudorandom generators. For example,
Niederreiter [67, Sect. 4] proposed a pseudorandom generator design based on a
matrix recursion. Later methods, like the Mersenne Twister family [60] and the
Xorshift [59] generator, improved the efficiency significantly by cleverly choosing
the matrix shape to be CPU-friendly.

More recently, Minematsu [64] suggested a different approach to masking
based on data-dependent rotation. In particular,

ϕi(L) =
⊕

0≤j<b

{

(L ≪ j) if �i/2j� mod 2 = 1,

0 otherwise.

where the block size b is prime. With Gray code ordering, one only needs one
rotation and XOR per sequential mask without storing previous masks. That
being said, the prime block size is inconvenient, and data-dependent rotation is
a relatively expensive operation compared to some of the previous techniques.

3.4 Proposed Masking for u = 1

We loosely follow the Xorshift [59] design approach for our masking procedure.
Let b = nw be the block size, interpreted as n words of w bits. We begin with
fast linear operations available in most current CPUs and encode them as w×w
matrices. More precisely, we denote by 0 the all-zero matrix, by I the identity
matrix, by SHLc and SHRc matrices corresponding to left- and right-shift by
c bits, by ROTc the matrix realizing left-rotation by c bits, and by ANDc the
matrix corresponding to bit-wise AND with a constant c. Then, we construct
block matrices using those operations in a way that minimizes computational
effort. To maximize efficiency we consider b × b matrices over F2 of the form

Improved Masking for Tweakable Blockciphers 273

M =

⎛

⎜

⎜

⎜

⎝

0 I · · · 0
...

...
. . .

...
0 0 · · · I

X0 X1 · · · Xn−1

⎞

⎟

⎟

⎟

⎠

(5)

with Xi ∈ {0, I,SHLc, SHRc, ROTc, ANDc} where dim(Xi) = w for 0 ≤ i ≤ n−1.
We favor matrices where only a minimal amount of Xi are nonzero. For a concrete
selection of X0, . . . , Xn−1 we check if the matrix order is maximal, that is, if the
smallest integer t > 0 such that M t = I equals 2b−1; if so, this matrix is suitable
for a masking function that respects the conditions listed above.

Testing candidate masks for maximal order may be efficiently performed
without any explicit matrix operations. Given a candidate linear map corre-
sponding to a matrix M of the form Eq. (5),

(x0, . . . , xn−1) �→ (x1, . . . , xn−1, f(x0, . . . , xn−1)),

one can simply select x0, . . . , xn−1 at random, define xi+n = f(xi, . . . , xi+n−1),
and obtain the connection polynomial p(x) from the sequence of least significant
bits of x0, . . . , x2b using, e.g., Berlekamp-Massey. If p(x) is a primitive polynomial
of degree b, p(x) is also the minimal polynomial of the associated matrix M .

This approach yields a number of simple and efficient masking functions. In
particular, the 3-operation primitives (x0 ≪ r0) ⊕ (xi � r1) and (x0 ≪ r0) ⊕
(xi � r1) are found for several useful block and word sizes, as Table 1 illustrates.
Some block sizes do not yield such small generators so easily; in particular,
128-bit blocks require at least 4 operations, which is consistent—albeit somewhat
better—with the results of [55, Appendix B]. Using an extra basic instruction,
double-word shift, another noteworthy class of maskings appears: (x0 ≪ r0) ⊕
(xi � r1) ⊕ (xj � (w − r1)), or in other words (x0 ≪ r0) ⊕ ((xi ‖ xj) � r1).
This leads to more block sizes with 3-operation masks, e.g., (x1, x2, x3, (x0 ≪
15) ⊕ ((x1 ‖ x0) � 11)) for 128-bit blocks. Lemma3 shows that this approach
yields proper masking functions according to Definition 1.

Lemma 3. Let M be an b × b matrix over F2 of the form shown in Eq. (5).
Furthermore, let M ’s minimal polynomial be primitive and of degree b. Then
given the function ϕi

0(L) = M i · L, any tweak set with Tī ⊆ {0, . . . , 2b − 2} is a
b-proper tweak space by Definition 1.

Proof. [18, Proposition 1] directly applies.

One may wonder whether there is any significant advantage of the above tech-
nique over, say, the Gray code sequence with the standard polynomial represen-
tation. We argue that our approach improves on it in several ways:

Simplicity. OCB (especially OCB2) requires implementers to be aware of Galois
field arithmetic. Our approach requires no user knowledge—even implicitly—
of field or polynomial arithmetic, but only unconditional shifts and XOR
operations. Even Sarkar’s word-based LFSRs [74] do not hide the finite field
structure from implementers, thus making it easier to make mistakes.

274 R. Granger et al.

Table 1. Sample masking functions for various state sizes b and respective decompo-
sitions into n words of w bits

b w n ϕ

128 8 16 (x1, . . . , x15, (x0 ≪ 1) ⊕ (x9 � 1) ⊕ (x10 � 1))

128 32 4 (x1, . . . , x3, (x0 ≪ 1) ⊕ (x1 ∧ 31) ⊕ (x2 ∧ 127))

128 32 4 (x1, . . . , x3, (x0 ≪ 5) ⊕ x1 ⊕ (x1 � 13))

128 64 2 (x1, (x0 ≪ 11) ⊕ x1 ⊕ (x1 � 13))

256 32 8 (x1, . . . , x7, (x0 ≪ 17) ⊕ x5 ⊕ (x5 � 13))

256 64 4 (x1, . . . , x3, (x0 ≪ 3) ⊕ (x3 � 5))

512 32 16 (x1, . . . , x15, (x0 ≪ 5) ⊕ (x3 � 7))

512 64 8 (x1, . . . , x7, (x0 ≪ 29) ⊕ (x1 � 9))

800 32 25 (x1, . . . , x15, (x0 ≪ 25) ⊕ x21 ⊕ (x21 � 13))

1024 8 128 (x1, . . . , x127, (x0 ≪ 1) ⊕ x125 ⊕ (x125 � 5))

1024 64 16 (x1, . . . , x15, (x0 ≪ 53) ⊕ (x5 � 13))

1600 32 50 (x1, . . . , x49, (x0 ≪ 3) ⊕ (x23 � 3))

1600 64 25 (x1, . . . , x24, (x0 ≪ 55) ⊕ x21 ⊕ (x21 � 21))

1600 64 25 (x1, . . . , x24, (x0 ≪ 15) ⊕ x23 ⊕ (x23 � 23))

Constant-Time. Both OCB masking schemes require potentially variable-time
operations to compute each mask—be it conditional XOR, number of trailing
zeroes, or memory accesses indexed by ntz(i + 1). This is easily avoidable by
clever implementers, but it is also a pitfall avoidable by our design choice.
Even in specifications aimed at developers [53], double(S) is defined as a
variable-time operation.

Efficiency. Word-based masking has the best space-time efficiency tradeoff of
all considered masking schemes. It requires only minimal space usage—one
block—while also involving a very small number of operations beyond the
XOR with the block (as low as 3, cf. Table 1). It is also SIMD-friendly, allow-
ing the generation of several consecutive masks with a single short SIMD
instruction sequence.

In particular, for permutations that can take advantage of a CPU’s vector units
via “word-slicing”—which is the case for Salsa20, ChaCha, Threefish, and many
other ARX designs—it is possible to compute a few consecutive masks at virtu-
ally the same cost as computing a single mask transition. It is also efficient to
add the mask to the plaintext both in transposed order (word-sliced) and regular
order.

For concreteness, consider the mask sequence (x1, . . . , x15, (x0 ≪ 5)⊕
(x3 � 7)) and a permutation using 512-bit blocks of 32-bit words.
Suppose further that we are working with a CPU with 8-wide vectors, e.g., AVX2.
Given 8 additional words of storage, it is possible to compute L = (x1, . . . , x15,
(x0 ≪ 5) ⊕ (x3 � 7), . . . , (x7 ≪ 5) ⊕ (x10 � 7)) entirely in parallel.

Improved Masking for Tweakable Blockciphers 275

Consider now the transposed set of 8 blocks m0, . . . , m7; adding the mask con-
sists of m0 ⊕ L0−15,m1 ⊕ L1−16, On the other hand, when the blocks are
word-sliced—with m′

0 being the first 32-bit word of mi, m′
1 being the second,

and so on—adding the mask is still efficient, as m′
0 ⊕ L0−7,m

′
1 ⊕ L1−8, This

would be impossible with the standard masking schemes used in, e.g., OCB.
There is also an advantage at the low-end—ϕ can easily be implemented

as a circular array, which implies that only an index increment and the logical
operations must be executed for each mask update. This improves on both the
typical Gray code and powering-up approach, in that shifting by one requires
moving every word of the mask, instead of only one of them. Additionally, storage
is often a precious resource in low-end systems, and the Gray code method
requires significantly more than one block to achieve its best performance.

3.5 Proposed Masking for u = 2 and u = 3

Modes often require the tweak space to have multiple dimensions. In particular,
the modes of Sects. 4 and 5 require the tweak space to have 2 and 3 “coordinates.”
To extend the masking function from Sect. 3.4 to a tweak space divided into
disjunct sets, we have several options. We can simply split the range [0, 2b − 1]
into equivalence classes, e.g., i0 = 4k + 0, i1 = 4k + 1, . . . for at most 4 different
tweak indexes. Some constructions instead store a few fixed tweak values that
are used later as “extra” finalization tweaks.

The approach we follow takes a cue from XEX [71]. Before introducing the
scheme itself, we need a deeper understanding of the masking function ϕ intro-
duced in Sect. 3.4. At its core, ϕ is a linear map representable by a matrix
M with primitive minimal polynomial p(x). In fact, ϕ can be interpreted as
the matrix representation [58, § 2.52] of F2b , where M is, up to a change of
basis, the companion matrix of p(x). This property may be exploited to quickly
jump ahead to an arbitrary state ϕi(L): since ϕi(L) = M i · L and additionally
p(M) = 0, then (xi mod p(x))(M) = (xi)(M)+(p(x)q(x))(M) = (xi)(M) = M i.
Therefore we can implement arbitrarily large “jumps” in the tweak space by
evaluating the right polynomials over M . This property—like fast word-oriented
shift registers—has had its first uses in the pseudorandom number generation
literature [39].

Since we may control the polynomials here, we choose the very same poly-
nomials as Rogaway for the best performance: x + 1, and x2 + x + 1, denoted in
[71] as 3 and 7. Putting everything together, our masking for u = 3 becomes

δ(K,X, i0, i1, i2) = ((x)(M))i0((x + 1)(M))i1((x2 + x + 1)(M))i2 · P (K ‖ X)

= M i0(M + I)i1(M2 + M + I)i2 · P (K ‖ X).

To ensure that the tweak space is b-proper we need one extra detail: we
need to ensure that the logarithms logx(x + 1) and logx(x2 + x + 1) are suf-
ficiently apart. While for F2128 Rogaway already computed the corresponding
discrete logarithms [71] using generic methods, larger blocks make it nontrivial
to show b-properness. The following lemma shows that one particular function
satisfies Definition 1. The lemma uses the discrete logarithms whose computation
is described in Sect. 3.6.

276 R. Granger et al.

Lemma 4. Let ϕ(x) : {0, 1}1024 �→ {0, 1}1024 be the linear map (x0, . . . , x15) �→
(x1, . . . , x15, (x0 ≪ 53) ⊕ (x5 � 13)). Further, let M be the 1024 × 1024 matrix
associated with ϕ such that ϕ(L) = M · L. Let Φ = {ϕi0

0 , ϕi1
1 , ϕi2

2 } be the set of
functions used in the masking, with ϕi0

0 (L) = M i0 · L, ϕi1
1 (L) = (M + I)i1 · L,

and ϕi2
2 (L) = (M2 + M + I)i2 · L. The tweak space

T = T0 × T1 × T2 = {0, 1, . . . , 21020 − 1} × {0, 1, 2, 3} × {0, 1}

is b-proper relative to the function set Φ.

Proof. The proof closely follows [71, Proposition 5]. Let i0 ∈ T0, i1 ∈ T1, and
i2 ∈ T2. We first show that ϕi0

0 ◦ϕi1
1 ◦ϕi2

2 is unique for any distinct set of tweaks.
An easy computation shows that p(x) = x1024 + x901 + x695 + x572 + x409 +

x366 + x203 + x163 + 1 is the minimal polynomial of M . This polynomial is both
irreducible and primitive, which implies that the order of M is 21024−1. We begin
by determining the logarithms of M + I and M2 + M + I relatively to M . This
may be accomplished by computing l1 = logx(x + 1) and l2 = logx(x2 + x + 1)
in the field F2[x]/p(x), see Sect. 3.6.

The values l1 and l2 let us represent M i0M i1M i2 as M i0M l1i1M l2i2 . Given
a second distinct pair (i′0, i

′
1, i

′
2), we have that M i0M l1i1M l2i2 = M i′

0M l1i′
1M l2i′

2

iff i0 + l1i1 + l2i2 = i′0 + l1i
′
1 + l2i

′
2 (mod 21024 − 1). Equivalently, i0 − i′0 =

(i1−i′1)l1+(i2−i′2)l2 (mod 21024−1). By a simple exhaustive search through the
valid ranges of i1 and i2 we are able to see that the smallest absolute difference
(i1 − i′1)l1 + (i2 − i′2)l2 occurs when i1 − i′1 = −1 and i2 − i′2 = −1, and is
≈ 21020.58. Since i0 − i′0 is at most ±(21020 − 1), collisions cannot happen. Since
each mask is unique, the fact that T is b-proper follows from Lemma 3. ��

Remark. Nontrivial bounds for T , such as in the case where one desires T0, T1,
and T2 to be balanced, cannot be easily found by exhaustive search. Such bounds
can be found, however, with lattice reduction. Consider the lattice spanned by
the rows

⎛

⎜

⎜

⎝

K · 1 w0 0 0
K · l1 0 w1 0
K · l2 0 0 w2

K · m 0 0 0

⎞

⎟

⎟

⎠

,

for a suitable integer K, m = 2b − 1, and weights wi. A shortest vector for
low-dimensional lattices such as this can be computed exactly in polynomial
time [66]. A shortest vector for this lattice has the form (Δi0 + Δi1l1 + Δi2l2 +
km,Δi0w0,Δi1w1,Δi2w2), and will be shortest when Δi0 + Δi1l1 + Δi2l2 ≡ 0
(mod 2n − 1). This yields concrete bounds on i0, i1, and i2. The constant K
needs to be large enough to avoid trivial shortest vectors such as (K, 1, 0, 0).
The weights wi can be used to manipulate the relative size of each domain;
for example, using the weights 1, 21019, and 21022 results in a similar bound as
Lemma 4, with T0 dominating the tweak space.

Improved Masking for Tweakable Blockciphers 277

3.6 Computing Discrete Logarithms in F2512 and F21024

While the classical incarnation of the Function Field Sieve (FFS) with F2 as
the base field could no doubt solve logarithms in F2512 with relatively modest
computational resources—see for example [46,76]—the larger field would require
a significant amount of work [6]. One could instead use subfields other than F2

and apply the medium-base-field method of Joux and Lercier [47], which would
be relatively quick for F2512 , but not so easy for F21024 .

However, with the advent of the more sophisticated modern incarnation of
the FFS, development of which began in early 2013 [7,30–34,45,48], the target
fields are now regarded as small, even tiny, at least relative to the largest such
example computation where a DLP in F29234 was solved [35]. Since these devel-
opments have effectively rendered small characteristic DLPs useless for public
key cryptography, (despite perhaps some potential doubters [17, Appendix D])
it is edifying that there is a constructive application in cryptography3 for what
is generally regarded as a purely cryptanalytic pursuit.

Due to the many subfields present in the fields in question, there is a large
parameter space to explore with regard to the application of the modern tech-
niques, and it becomes an interesting optimization exercise to find the most
efficient approach. Moreover, such is the size of these fields that coding time
rather than computing time is the dominant term in the overall cost. We there-
fore solved the relevant DLPs using MAGMA V2.19-1 [14], which allowed us to
develop rapidly. All computations were executed on a standard desktop computer
with a 2.0 GHz AMD Opteron processor.

3.6.1 Fields Setup. For reasons of both efficiency and convenience we use
F216 as base field for both target fields, given by the following extensions:

F24 = F2[U]/(U4 + U + 1) = F2(u),
F216 = F24 [V]/(V 4 + V 3 + V + u) = F24(v).

We represent F2512 as F216 [X]/(I32(X)) = F216(x), where I32 is the degree 32
irreducible factor of H32(X) = h1(X16)X + h0(X16), where h1 = (X + u9 +
u5v + u13v2 + u3v3)3 and h0 = X3 + u2 + u9v2 + u13v3. The other irreducible
factors of H32(X) have degrees 6 and 11.

We represent F21024 as F216 [X]/(I64(X)) = F216(x), where I64 is the degree 64
irreducible factor of H64(X) = h1(X16)X +h0(X16), where h1 = (X +u+u7v+
u4v2+u7c3)5 and h0 = X5+u9+u4v+u6v2+v3. The other irreducible factors of
H64(X) have degrees 7 and 10. Transforming from the original representations
of Sect. 3.6.3 to these is a simple matter [57].

Note that ideally one would only have to use hi’s of degree 2 and 4 to obtain
degree 32 and 64 irreducibles, respectively. However, no such hi’s exist and so we

3 Beyond cryptography, examples abound in computational mathematics: in finite
geometry; representation theory; matrix problems; group theory; and Lie algebras
in the modular case; to name but a few.

278 R. Granger et al.

are forced to use hi’s of degree 3 and 5. The penalty for doing so incurs during
the relation generation, see Sect. 3.6.2, and during the descent, in particular for
degree 2 elimination, see Sect. 3.6.3.

Remark. The degrees of the irreducible cofactors of I32 in H32 and of I64 in
H64 is an essential consideration in the set up of the two fields. In particu-
lar, if the degree df of a cofactor f has a non-trivial GCD with the degree of
the main irreducible, then it should be considered as a ‘trap’ for the computa-
tion of the logarithms of the factor base elements, modulo all primes divid-
ing 216·gcd(df ,32i) − 1 for i = 1, 2, for F2512 and F21024 , respectively [22,42].
This is because F216 [X]/(H32i(X)) will contain another copy of F

216·gcd(df ,32i)

which arises from f , and hence the solution space modulo primes dividing
216·gcd(df ,32i) − 1 has rank >1. Our choice of h0 and h1 in each case limits the
effect of this problem to prime factors of 232 −1, namely subgroups of tiny order
within which we solve the DLPs using a linear search. The irreducible cofactors
are also traps for the descent phase [32], but are easily avoided.

3.6.2 Relation Generation and Logarithms of Linear Elements. The
factor base is defined to be F = {x+d | d ∈ F216}. To generate relations over F ,
we use the technique from [30], described most simply in [32]. In particular, for
both target fields let y = x16; by the definitions of I32 and I64 it follows in both
cases that x = h0(y)/h1(y). Using these field isomorphisms, for any a, b, c ∈ F216

we have the field equality

x17 + ax16 + bx + c =
1

h1(y)
(yh0(y) + ayh1(y) + bh0(y) + ch1(y) (6)

One can easily generate (a, b, c) triples such that the left hand side of Eq. (6)
always splits completely over F . Indeed, one first computes the set B of 16 values
B ∈ F216 such that the polynomial fB(X) = X17 + BX + B splits completely
over F216 [13]. Assuming c �= ab and b �= a16, the left hand side of Eq. (6) can
be transformed (up to a scalar factor) into fB , where B = (b+a16)17

(c+ab)16 . Hence if
this B is in B then the left hand side also splits. In order to generate relations,
one repeatedly chooses random B ∈ B and random a, b �= a16 ∈ F216 , computes
c = ((b + a16)17)1/16 + ab, and tests whether the right hand side of Eq. (6) also
splits over F216 . If it does then one has a relation, since (y + d) = (x + d1/16)16,
and each h1 is a power of a factor base element.

The probability that the right hand side of Eq. (6) splits completely is heuris-
tically 1/4! and 1/6! for F2512 and F21024 respectively. In both cases we obtain
216+200 relations, which took about 0.3 h and 8.8 h, respectively. To compute the
logarithms of the factor base elements, we used MAGMA’s ModularSolution
function, with its Lanczos option set, modulo the 9th to 13th largest prime
factors of 2512 − 1 for the smaller field and modulo the 10th to 16th largest
prime factors of 21024 −1 for the larger field. These took about 13.5 h and 24.5 h,
respectively.

Improved Masking for Tweakable Blockciphers 279

3.6.3 Individual Logarithms. The original representations of the target
fields are:

F2512 = F2[T]/(T 512 + T 335 + T 201 + T 67 + 1) = F2(t),

F21024 = F2[T]/(T 1024 + T 901 + T 695 + T 572 + T 409 + T 366 + T 203 + T 163 + 1)
= F2(t).

In order to solve the two relevant DLPs in each original field, we need to com-
pute three logarithms in each of our preferred field representations, namely the
logarithms of the images of t, t+1 and t2 + t+1—which we denote by t0, t1 and
t2—relative to some generator. We use the generator x in both cases.

For F2512 , we multiply the targets ti by random powers of x and apply a
continued fraction initial split so that xkti ≡ n/d (mod I32), with n of degree
16 and d of degree 15, until both n and d are 4-smooth. One then just needs to
eliminate irreducible elements of degree 2, 3, 4 into elements of smaller degree.
For degree 4 elements, we apply the building block for the quasi-polynomial
algorithm due to Granger, Kleinjung, and Zumbrägel [33,34], which is just degree
2 elimination but over a degree 2 extended base field. This results in each degree
4 element being expressed as a product of powers of at most 19 degree 2 elements,
and possibly some linear elements. For degree 3 elimination we use Joux’s bilinear
quadratic system approach [45], which expresses each degree 3 element as a
product of powers of again at most 19 degree 2 elements and at least one linear
element. For degree 2 elimination, we use the on-the-fly technique from [30],
but with the quadratic system approach from [31], which works for an expected
proportion 1 − (1 − 1/2!)16 = 255/256 of degree 2’s, since the cofactor in each
case has degree 2. On average each descent takes about 10 s, and if it fails due to
a degree 2 being ineliminable, we simply rerun it with a different random seed.
Computing logarithms modulo the remaining primes only takes a few seconds
with a linear search, which completes the following results:

logt(t + 1) = 5016323028665706705636609709550289619036901979668873
4872643788516514405882411611155920582686309266723854
51223577928705426532802261055149398490181820929802,

logt(t
2 + t + 1) = 7789795054597035122960933502653082209865724780784381

2166626513019333878034142500477941950081303675633401
11859664658120077665654853201902548299365773789462.

The total computation time for these logarithms is less than 14 h.
For F21024 , we use the same continued fraction initial split, but now with n

and d of degree 32 and 31, until each is 4-smooth, but also allowing a number
of degree 8 elements. Finding such an expression takes on average 7 h, which,
while not optimal, means that the classical special-Q elimination method could
be obviated, i.e., not coded. For degree 8 elimination, we again use the building
block for the quasi-polynomial algorithm of Granger et al., which expresses such
a degree 8 element as a product of powers of at most 21 degree 4 elements,

280 R. Granger et al.

and possibly some degree 2 and 1 elements. Degree 4 and 3 elimination proceed
as before, but with a larger cofactor of the element to be eliminated on the
r.h.s. due to the larger degrees of h0 and h1. Degree 2 elimination is significantly
harder in this case, since the larger degrees of the hi’s mean that the elimination
probability for a random degree 2 element was only 1 − (1 − 1/4!)16 ≈ 0.494.
However, using the recursive method from the DLP computation in F24404 [32]
allows this to be performed with near certainty. If any of the eliminations fails,
then as before we simply rerun the eliminations with a different random seed. In
total, after the initial rewrite of the target elements into a product of degree 1,
2, 3, 4, and 8 elements, each descent takes just under an hour. Again, computing
logarithms modulo the remaining primes takes less than a minute with a linear
search resulting in:

logt(t + 1) = 3560313810702380168941895068061768846768652879916524
2796753456565509842707655755413753100620979021885720
1966785351480307697311709456831372018598499174441196
1470332602216161583378362583657570756631024935927984
2498272238699528576230685242805763938951155448126495
512475014867387149681903876406067502645471152193,

logt(t
2 + t + 1) = 1610056439189028793452144461315558447020117376432642

5524859486238161374654279717800300706136749607630601
4967362673777547140089938700144112424081388711871290
7973319251629628361398267351880948069161459793052257
1907117948291164323355528169854354396482029507781947
2534171313076937775797909159788879361876099888834.

The total computation time for these logarithms is about 57 h.
Note that it is possible to avoid the computations in F2512 altogether by

embedding the relevant DLPs into F21024 . However, the descent time would take
longer than the total time, at least with the non-optimal descent that we used.
We considered the possibility of using “jokers” [32], which permit one to halve
the degree of even degree irreducibles when they are elements of a subfield of
index 2. However, it seems to only be possible when one uses compositums, which
is not possible in the context of the fields F22n . In any case, such optimizations
are academic when the total computation time is as modest as those recorded
here, and our approach has the bonus of demonstrating the easiness of computing
logarithms in F2512 , as well as in F21024 .

With regard to larger n, it would certainly be possible to extend the approach
of Kleinjung [52] to solve logarithms in the fields F22n for n = 11, 12 and 13,
should this be needed for applications, without too much additional effort.

Improved Masking for Tweakable Blockciphers 281

4 Offset Public Permutation Mode (OPP)

We present the Offset Public Permutation Mode (OPP), a nonce-respecting
authenticated encryption mode with support for associated data which uses the
techniques presented in Sect. 3. It can be seen as a generalization of OCB3 [55] to
arbitrary block sizes using permutations and using improved masking techniques
from Sect. 3.

4.1 Specification of OPP

Let b, k, n, τ as outlined in Sect. 2. OPP uses MEM of Sect. 3.1 for u = 3 and
Φ = {α, β, γ} with α(x) = ϕ(x), β(x) = ϕ(x) ⊕ x and γ(x) = ϕ(x)2 ⊕ ϕ(x) ⊕
x, employing ϕ as introduced in Sect. 3.4. Furthermore, the general masking
function is specified as

δ : (K,X, i0, i1, i2) �→ γi2 ◦ βi1 ◦ αi0(P (X ‖ K)).

We require that the tweak space of MEM used in OPP is b-proper with respect
to Φ as introduced in Definition 1 and proven in Lemma4.

The formal specification of OPP is given in Fig. 1. We refer to the authen-
tication part of OPP as OPPAbs and to the encryption part as OPPEnc. The
OPPAbs mode requires only the encryption function ˜E, while the OPPEnc mode
uses both ˜E and ˜D of MEM.

Let Hi and Mj denote b-bit header and message blocks with 0 ≤ i ≤ h − 1
and 0 ≤ j ≤ m − 1 where h = |H|b and m = |M |b. Note that the size of the
last blocks Hh−1 and Mm−1 is potentially smaller than b bits. To realize proper
domain separation between full and partial data blocks, and different data types,
OPP uses the following setup:

OPPAbs OPPEnc

Data block Condition (i0, i1, i2) Data block Condition (i0, i1, i2)

Hi 0 ≤ i < h − 1 (i , 0, 0) Mj 0 ≤ j < m − 1 (j , 0, 1)

Hh−1 |H| mod b = 0 (h − 1, 0, 0) Mm−1 |M | mod b = 0 (m − 1, 0, 1)

Hh−1 |H| mod b �= 0 (h − 1, 1, 0) Mm−1 |M | mod b �= 0 (m − 1, 1, 1)
⊕m−1

j=0 Mj |M | mod b = 0 (h − 1, 2, 0)
⊕m−1

j=0 Mj |M | mod b �= 0 (h − 1, 3, 0)

4.2 Security of OPP

Theorem 5. Let b, k, n, τ as outlined in Sect. 2. Let P
$←− Perm(b). Then, in the

nonce-respecting setting,

Advae
OPP,P (qE , qD, σ, p) ≤ 4.5σ2

2b
+

3σp

2b
+

p

2k
+

2n−τ

2n − 1
.

282 R. Granger et al.

Fig. 1. Offset Public Permutation Mode (OPP)

The proof is given in the full version of this work. Note that OPP shares its struc-
ture with OCB3 of Krovetz and Rogaway [55]. In more detail, we will show that
once MEM gets replaced by a random tweakable permutation π̃, OPP becomes
exactly the ΘCB3 construction [55]. The proof follows by combining the security
of MEM and the security of ΘCB3. The first three terms of Theorem 5 come from
the security of MEM and the b-properness of the masking.

5 Misuse-Resistant Offset Mode (MRO)

We present the Misuse-Resistant Offset Mode (MRO), a MAC-then-Encrypt AE
mode with support for associated data which fully tolerates nonce re-usage.
In some sense, MRO is the misuse-resistant variant of OPP and also uses the
techniques presented in Sect. 3. It can be seen as a permutation-based variation
of PMAC [12] followed by a permutation-based variation of CTR mode, and
shares ideas with the Synthetic Counter in Tweak (SCT) mode [70] used in
Deoxys v1.3 and Joltik v1.3 [43,44], though MRO is permutation-based and
employs the improved masking schedule of Sect. 3.

5.1 Specification of MRO

Let b, k, n, τ as outlined in Sect. 2. The formal specification of MRO is given in
Fig. 2. Similar to OPP, we refer to the authentication part of MRO as MROAbs

Improved Masking for Tweakable Blockciphers 283

and to the encryption part as MROEnc. In contrast to OPP, MRO only requires
the encryption function ˜E of MEM. Using notation as in the OPP mode, MRO
uses the following setup for masking:

MROAbs MROEnc

Data block Condition (i0, i1, i2) Data block Condition (i0, i1, i2)

Hi 0 ≤ i ≤ h − 1 (i, 0, 0) Mj 0 ≤ j ≤ m − 1 (0, 0, 1)

Mj 0 ≤ j ≤ m − 1 (j, 1, 0)

|H| ‖ |M | n.a (0, 2, 0)

Fig. 2. Misuse-Resistant Offset Mode (MRO)

5.2 Security of MRO

Theorem 6. Let b, k, n, τ as outlined in Sect. 2. Let P
$←− Perm(b). Then, in the

nonce-reuse setting,

Advae
MRO,P (qE , qD, σ, p) ≤ 6.5σ2

2b
+

3σp

2b
+

p

2k
+

q2E/2 + qD
2τ

.

The proof is given in the full version of this work. The proof is in fact a standard-
model proof where the scheme is considered to be based on MEM. It is a modular
proof that, at a high level, consists of the following steps:

284 R. Granger et al.

(i) The first step in the analysis is to replace MEM with a random secret tweak-
able permutation. It costs the MTPRP security of MEM, 4.5σ2

2b + 3σp
2b + p

2k ,
using that the masking is b-proper.

(ii) The absorption function and encryption function call the tweakable cipher
for distinct tweaks. Hence, using an adaption of the MAC-then-Encrypt
paradigm to misuse resistance [37,65] allows us to analyze the MAC parts
and the encryption parts separately.

6 Misuse-Resistant Sponge (MRS)

We introduce the Misuse-Resistant Sponge Mode (MRS), a MAC-then-Encrypt
Sponge-based AE mode with support for associated data which fully toler-
ates nonce re-usage. The absorption function is a full-state keyed Sponge MAC
[3,10,63]. The encryption function follows the SpongeWrap approach [9,63].

6.1 Specification of MRS

Let b, k, n, τ, r, c as outlined in Sect. 2. The formal specification of MRS is given in
Fig. 3. It consists of an absorption function MRSAbs and an encryption function
MRSEnc, in a MAC-then-Encrypt mode, but using the same primitive and same
key in both functions. We remark that MRS as given in Fig. 3 only does one
round of squeezing in order to obtain the tag. This can be easily generalized to
multiple rounds, without affecting the security proofs.

We briefly discuss the differences of MRS with Haddoc, the misuse-resistant
AE scheme presented by Bertoni et al. [11] at the 2014 SHA-3 workshop. Haddoc
follows the MAC-then-Encrypt paradigm as well, where the MAC function is
identical to MRSAbs. For encryption, however, Haddoc uses the Sponge in CTR
mode. At a high level, and in our terminology, this boils down to Ci = Mi ⊕
leftr(P (T ‖ 〈i〉 ‖ 1 ‖ K)), for 0 ≤ i ≤ m − 1. In other words, MRS and Haddoc
structurally differ in the way encryption is performed, and in fact, Haddoc more
closely matches the ideas of the MRSO hybrid of Sect. 7.

6.2 Security of MRS

Theorem 7. Let b, k, n, τ, r, c as outlined in Sect. 2. Let P
$←− Perm(b). Then, in

the nonce-reuse setting,

Advae
MRS,P (qE , qD, σ, p) ≤ 4σ2

2b
+

4σ2

2c
+

2σp

2k
+

q2E/2 + qDqE + qD
2τ

.

The proof is given in the full version of this work. It is different from the
proofs for OPP and MRO, although it is also effectively a standard-model proof.
It relies on the observation that both the absorption and the encryption phase
are in fact evaluations of the Full-state Keyed Duplex [9,63]. This construction
has been proven to behave like a random functionality, with the property that

Improved Masking for Tweakable Blockciphers 285

Fig. 3. Misuse-Resistant Sponge (MRS)

it always outputs uniformly random data, up to common prefix in the input.
Assuming that the distinguisher never makes duplicate queries, MRSAbs never
has common prefixes; assuming tags never collide, MRSEnc never has common
prefixes; and finally, the initial inputs to MRSAbs versus MRSEnc are always
different due to the 0/1 domain separation. The proof then easily follows.

7 Misuse-Resistant Sponge-Offset (MRSO)

The constructions of Sects. 5 and 6 can be combined in a straightforward way to
obtain two hybrids: the Misuse-Resistant Sponge-then-Offset Mode (MRSO) and
the Misuse-Resistant Offset-then-Sponge Mode (MROS). While we cannot think
of any practical use-case for MROS, we do think MRSO is useful. As suggested
in Sect. 6, MRSO is comparable with—and in fact improves over—Haddoc.

7.1 Specification of MRSO

Let b, k, n, τ as outlined in Sect. 2. The formal specification of the MRSO AE
scheme is formalized in Fig. 4. It MACs the data using MRSAbs and encrypts
using MROEnc. MRSO uses MEM as specified for OPP but requires only a very
limited selection of tweaks and has i1 = i2 = 0 fixed. Thus, the general masking

286 R. Granger et al.

function can be simplified to

δ : (K,X, i0) �→ αi0(P (X ‖ K)).

For the encryption part MROEnc this is clear (cf. Sect. 5). For the absorption
part MRSAbs, this is less clear: informally, it is based on the idea of setting
L = P (N ‖ 0∗ ‖ K), and of XORing this value everywhere in-between two
consecutive evaluations of P . Because at the end of MRSAbs, a part of the rate
is extracted, this “trick” only works if performed with the rightmost b − τ bits
of L. Therefore, MRSO is based on a slight adjustment of MEM with b − τ -bit
maskings only. Let h = |H|b and m = |M |b denote the number of b-bit header
and message blocks, respectively. We use the following setup for masking:

MRSAbs MROEnc

Data block Condition i0 Data block Condition i0

Hi 0 ≤ i ≤ h − 1 0 Mj 0 ≤ j ≤ m − 1 1

Mj 0 ≤ j ≤ m − 1 0

|H| ‖ |M | n.a 0

Fig. 4. Sponge-Offset mode MRSO. Refer to Figs. 2 and 3 for the sub-algorithms

7.2 Security of MRSO

Theorem 8. Let b, k, n, τ as outlined in Sect. 2. Let P
$←− Perm(b). Then, in the

nonce-reuse setting,

Advae
MRSO,P (qE , qD, σ, p) ≤ 2σ2

2b
+

5.5σ2

2b−τ
+

3σp

2b−τ
+

p

2k
+

q2E/2 + qD
2τ

.

The proof is similar to the proof of MRO, with the difference that now we use
(b − τ)-properness of the masking. It is given in the full version of the work.

8 Implementation

In this section we discuss our results on the implementations of concrete instan-
tiations of OPP, MRO, and MRS. For all three schemes we use state, key, tag,
and nonce sizes of b = 1024, k = τ = 256, and n = 128 bits. For P we employ

Improved Masking for Tweakable Blockciphers 287

the BLAKE2b [5] permutation with l ∈ {4, 6} rounds. For OPP and MRO we
use ϕ(x0, . . . , x15) = (x1, ..., x15, (x0 ≪ 53) ⊕ (x5 � 13)) and for MRSEnc we
set rate and capacity to r = 768 and c = 256 bits. To remain self-contained, we
now recall the BLAKE2b permutation. It operates on a state S = (s0, . . . , s15)
with 64-bit words si. A single round F (S) consists of the sequence of operations

G(s0, s4, s8, s12); G(s1, s5, s9, s13); G(s2, s6, s10, s14); G(s3, s7, s11, s15);
G(s0, s5, s10, s15); G(s1, s6, s11, s12); G(s2, s7, s8, s13); G(s3, s4, s9, s14);

where

G(a, b, c, d) =

{

a = a + b; d = (d ⊕ a) ≫ 32; c = c + d; b = (b ⊕ c) ≫ 24;
a = a + b; d = (d ⊕ a) ≫ 16; c = c + d; b = (b ⊕ c) ≫ 63;

BLAKE2 and its predecessors have been heavily analyzed, e.g., [38,51]. These
results are mostly of theoretical interest though since the complexity of the
attacks vastly outweigh our targeted security level. Nevertheless, the BLAKE2
permutation family has some evident and well-known non-random characteris-
tics [4]: for any l > 0, it holds that F l(0) = 0 and F l(a, a, a, a, b, b, b, b, c, c, c,
c, d, d, d, d) = (w,w,w,w, x, x, x, x, y, y, y, y, z, z, z, z) for arbitrary values a, b, c,
and d. These symmetric states can be easily avoided with a careful design, so
that they cannot be exploited as a distinguisher. Thus, we use slightly modified
variants of the schemes from Sects. 4, 5, 6 and 7. Instead of initializing the masks
with P (N ‖ 0640 ‖ K) in OPP and MRO, we encode the round number l and tag
size τ as 64-bit strings and use P (N ‖ 0512 ‖ 〈l〉64 ‖ 〈τ〉64 ‖ K). Analogously,
MRSAbs and MRSEnc are initialized with N ‖ 0448 ‖ 〈l〉64 ‖ 〈τ〉64 ‖ 〈0〉64 ‖ K
and T ‖ 0320 ‖ 〈l〉64 ‖ 〈τ〉64 ‖ 〈1〉64 ‖ K, respectively.

We wrote reference implementations of all schemes in plain C and optimized
variants using the AVX, AVX2, and NEON instruction sets4. Performance was
measured on the Intel Sandy Bridge and Haswell and on the ARM Cortex-A8
and compared to some reference AEAD schemes, see Tables 2 and 3. All values
are given for “long messages” (≥ 4 KiB) with cycles per byte (cpb) as unit.

In the nonce-respecting scenario our fastest proposal is OPP with 4 BLAKE2b
rounds. Our 4-fold word-sliced AVX2-implementation achieves 0.55 cpb on

Table 2. Performance of OPP, MRO, and MRS instantiated with the BLAKE2b per-
mutation

l = 4 l = 6

Platform Impl. OPP MRO MRS OPP MRO MRS

Cortex-A8 NEON 4.26 8.07 8.50 5.91 11.32 12.21

Sandy Bridge AVX 1.24 2.41 2.55 1.91 3.58 3.87

Haswell AVX2 0.55 1.06 2.40 0.75 1.39 3.58

4 The source code of our schemes is freely available at [61] under a CC0 license.

288 R. Granger et al.

Table 3. Performance of some reference AEAD modes

Nonce-respecting Misuse-resistant

Platform AES-GCM OCB3 ChaCha20-

Poly1305

Salsa20-

Poly1305

Deoxys �=-

128-128

GCM-SIV Deoxys= −
128 − 128

Cortex-A8 38.6 28.9 - 5.60+2.60 - - -

Sandy Bridge 2.55 0.98 - - 1.29 - ≈ 2.58

Haswell 1.03 0.69 1.43+0.66 - 0.96 1.17 ≈ 1.92

References [16,36] [36,55] [28,29] [8] [43,69] [37] [43,69]

Haswell, amounting to a throughput of 6.36 GiBps and assuming a CPU fre-
quency of 3.5 GHz. Compared to its competitors AES-GCM, OCB3, ChaCha20-
Poly1305 and Deoxys�= (v1.3)5, this instantiation of OPP is faster by factors of
about 1.87, 1.25, 3.80, and 1.74 respectively. Even the 6-round variant of OPP is
able to maintain high speeds at 0.75 cpb (4.67 GiBps) reducing the distance to
the above competitors to factors of 1.37, 0.92, 2.78, and 1.28. On ARM platforms,
without AES-NI, OPP’s advantage is even more significant. The NEON-variant
outperforms the AES-based ciphers OCB3 and AES-GCM by factors of about
6.78 and 9.06. The highly optimized Salsa20-Poly1305 implementation of [8] is
slower by a factor of around 1.92.

In the misuse-resistant scenario our fastest proposal is MRO with 4 BLAKE2b
rounds. Our 4-fold word-sliced AVX2-implementation achieves 1.06 cpb on
Haswell which is equivalent to a throughput of 3.30 GiBps at a frequency of
3.5 GHz. In comparison to schemes such as AES-GCM-SIV and Deoxys= (v.1.3),
the above instantiation of MRO is faster by factors of about 1.10 and 1.81. For
the 6-round version with 1.39 cpb these factors are reduced to 0.79 and 1.38,
respectively. Unfortunately, there is not enough published data on performance
of misuse-resistant AE schemes on ARM. As for OPP in the nonce-respecting
scenario, one can expect similar performance gaps between the misuse-resistant
AES-based schemes and MRO.

Due to the inherently sequential Sponge-construction used in MRS, advanced
implementation techniques like 4-fold word-slicing are not possible. In general,
MRS performs therefore worse than MRO. On Haswell MRS achieves 2.40 cpb
(l = 4) and 3.58 cpb (l = 6) which translate to throughputs of 1.45 GiBps and
0.97 GiBps, respectively. Thus, MRS is still competitive to other misuse-resistant
AE schemes on Intel platforms. On ARM it shows good performance as well,
almost on the level of MRO. We have not written any implementations for MRSO
but it is to be expected that its performance lies between MRO and MRS.

Acknowledgements. Robert Granger is supported by the Swiss National Science
Foundation via grant number 200021-156420. Bart Mennink is a Postdoctoral Fellow
of the Research Foundation – Flanders (FWO). He is supported in part by the Research
Council KU Leuven: GOA TENSE (GOA/11/007).

5 We point out that Deoxys �=, unlike the other considered modes, aims for security
beyond the birthday bound up to the full block size.

Improved Masking for Tweakable Blockciphers 289

We kindly thank Thorsten Kleinjung for the observations on irreducible cofactors
presented in the remark at the end of Sect. 3.6.1 and for further helpful discussions
during our work. We also thank Antoine Joux for interesting discussions on using
lattice reduction to compute different separations of the masking domains (as discussed
in the remark at the end of Sect. 3.5). We also thank the anonymous reviewers of
EUROCRYPT 2016 for their useful comments and suggestions.

References

1. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N.,
Yasuda, K.: APE: authenticated permutation-based encryption for lightweight
cryptography. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
168–186. Springer, Heidelberg (2015)

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg
(2013)

3. Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of keyed sponge
constructions using a modular proof approach. In: Leander, G. (ed.) FSE 2015.
LNCS, vol. 9054, pp. 364–384. Springer, Heidelberg (2015)

4. Aumasson, J.P., Jovanovic, P., Neves, S.: Analysis of NORX: investigating differen-
tial and rotational properties. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT
2014. LNCS, vol. 8895, pp. 306–324. Springer, Heidelberg (2015)

5. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler,
smaller, fast as MD5. In: Jacobson Jr., M.J., Locasto, M.E., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 13. LNCS, vol. 7954, pp. 119–135. Springer, Heidelberg
(2013)

6. Barbulescu, R., Bouvier, C., Detrey, J., Gaudry, P., Jeljeli, H., Thomé, E., Videau,
M., Zimmermann, P.: Discrete logarithm in GF(2809) with FFS. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 221–238. Springer, Heidelberg (2014)

7. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014)

8. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012)

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-
pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S.
(eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2011)

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the security of the keyed
sponge construction. In: SKEW 2011 (2011)

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Using Keccak
technology for AE: Ketje, Keyak and more. In: SHA-3 2014 Workshop (2014)

12. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (2002)

13. Bluher, A.W.: On xq+1 + ax + b. Finite Fields Appl. 10(3), 285–305 (2004)
14. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user

language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational algebra
and number theory (London, 1993)

290 R. Granger et al.

15. CAESAR – Competition for Authenticated Encryption: Security, Applicability,
and Robustness (2014)

16. Câmara, D.F., Gouvêa, C.P.L., López, J., Dahab, R.: Fast software polynomial mul-
tiplication on ARM processors using the NEON engine. In: Cuzzocrea, A., Kittl,
C., Simos, D.E., Weippl, E.R., Xu, L. (eds.) Security Engineering and Intelligence
Informatics. LNCS, vol. 8128, pp. 137–154. Springer, Heidelberg (2013)

17. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Pail-
lier, P., Sirdey, R.: Stream ciphers: a practical solution for efficient homomorphic-
ciphertext compression. In: FSE 2016. LNCS. Springer, Heidelberg, March 2016
(to appear)

18. Chakraborty, D., Sarkar, P.: A general construction of tweakable block ciphers and
different modes of operations. IEEE Trans. Inf. Theory 54(5), 1991–2006 (2008)

19. Chakraborty, D., Sarkar, P.: On modes of operations of a block cipher for authenti-
cation and authenticated encryption. Cryptology ePrint Archive, Report 2014/627
(2014)

20. Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.P.: Minimizing the two-
round Even-Mansour cipher. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 39–56. Springer, Heidelberg (2014)

21. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014)

22. Cheng, Q., Wan, D., Zhuang, J.: Traps to the BGJT-algorithm for discrete loga-
rithms. LMS J. Comput. Math. 17, 218–229 (2014)

23. Cogliati, B., Lampe, R., Seurin, Y.: Tweaking Even-Mansour ciphers. In: Gennaro,
R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 189–208.
Springer, Heidelberg (2015)

24. Cogliati, B., Seurin, Y.: Beyond-birthday-bound security for tweakable Even-
Mansour ciphers with linear tweak and key mixing. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 134–158. Springer, Hei-
delberg (2015)

25. Cogliati, B., Seurin, Y.: On the provable security of the iterated Even-Mansour
cipher against related-key and chosen-key attacks. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 584–613. Springer, Hei-
delberg (2015)

26. Fleischmann, E., Forler, C., Lucks, S.: McOE: a family of almost foolproof on-line
authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 196–215. Springer, Heidelberg (2012)

27. Gligor, V.D., Donescu, P.: Fast encryption and authentication: XCBC encryption
and XECB authentication modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 92–108. Springer, Heidelberg (2002)

28. Goll, M., Gueron, S.: Vectorization on ChaCha stream cipher. In: Latifi, S. (ed.)
ITNG 2014, pp. 612–615. IEEE Computer Society (2014)

29. Goll, M., Gueron, S.: Vectorization of Poly1305 message authentication code. In:
Latifi, S. (ed.) ITNG 2015, pp. 612–615. IEEE Computer Society (2015)

30. Göloglu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function field sieve
and the impact of higher splitting probabilities – application to discrete logarithms
in F21971 and F23164 . In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 109–128. Springer, Heidelberg (2013)

31. Göloglu, F., Granger, R., McGuire, G., Zumbrägel, J.: Solving a 6120-bit DLP on
a desktop computer. In: Lange, T., Lauter, K., Lisonek, P. (eds.) SAC 2013. LNCS,
vol. 8282, pp. 136–152. Springer, Heidelberg (2014)

Improved Masking for Tweakable Blockciphers 291

32. Granger, R., Kleinjung, T., Zumbrägel, J.: Breaking ‘128-bit secure’ supersingular
binary curves – (or how to solve discrete logarithms in F24·1223 and F212·367). In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp.
126–145. Springer, Heidelberg (2014)

33. Granger, R., Kleinjung, T., Zumbrägel, J.: On the powers of 2. Cryptology ePrint
Archive, Report 2014/300 (2014)

34. Granger, R., Kleinjung, T., Zumbrägel, J.: On the discrete logarithm problem in
finite fields of fixed characteristic. Cryptology ePrint Archive, Report 2015/685
(2015)

35. Granger, R., Kleinjung, T., Zumbrägel, J.: Discrete Logarithms in GF (29234).
NMBRTHRY list, 31 January 2014

36. Gueron, S.: AES-GCM software performance on the current high end CPUs as a
performance baseline for CAESAR competition. In: DIAC 2013 (2013)

37. Gueron, S., Lindell, Y.: GCM-SIV: full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In: Ray, I., Li, N., Kruegel: C. (eds.)
ACM CCS 2015, pp. 109–119. ACM Press, October 2015

38. Guo, J., Karpman, P., Nikolic, I., Wang, L., Wu, S.: Analysis of BLAKE2. In:
Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 402–423. Springer, Heidel-
berg (2014)

39. Haramoto, H., Matsumoto, M., Nishimura, T., Panneton, F., L’Ecuyer, P.: Efficient
jump ahead for F2-linear random number generators. INFORMS J. Comput. 20(3),
385–390 (2008)

40. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part I. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015)

41. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-
encryption and its nonce-reuse misuse-resistance. In: Gennaro, R., Robshaw,
M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 493–517. Springer,
Heidelberg (2015)

42. Huang, M., Narayanan, A.K.: On the relation generation method of Joux for com-
puting discrete logarithms. CoRR abs/1312.1674 (2013)

43. Jean, J., Nikolić, I., Peyrin, T.: Deoxys v1.3. CAESAR Round 2 submission (2015)
44. Jean, J., Nikolić, I., Peyrin, T.: Joltik v1.3. CAESAR Round 2 submission (2015)
45. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in small

characteristic. In: Lange, T., Lauter, K., Lisonek, P. (eds.) SAC 2013. LNCS, vol.
8282, pp. 355–379. Springer, Heidelberg (2014)

46. Joux, A., Lercier, R.: The function field sieve is quite special. In: Fieker, C., Kohel,
D.R. (eds.) Algorithmic Number Theory. LNCS, vol. 2369, pp. 431–445. Springer,
Heidelberg (2002)

47. Joux, A., Lercier, R.: The function field sieve in the medium prime case. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer, Hei-
delberg (2006)

48. Joux, A., Pierrot, C.: Improving the polynomial time precomputation of Frobenius
representation discrete logarithm algorithms – simplified setting for small char-
acteristic finite fields. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I.
LNCS, vol. 8873, pp. 378–397. Springer, Heidelberg (2014)

49. Jutla, C.S.: Encryption modes with almost free message integrity. J. Cryptology
21(4), 547–578 (2008)

50. Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalçın,
T.: Prøst v1. CAESAR Round 1 submission (2014)

292 R. Granger et al.

51. Khovratovich, D., Nikolic, I., Pieprzyk, J., Sokolowski, P., Steinfeld, R.: Rotational
cryptanalysis of ARX revisited. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054,
pp. 519–536. Springer, Heidelberg (2015)

52. Kleinjung, T.: Discrete logarithms in GF(21279). NMBRTHRY list, 17 October
2014

53. Krovetz, T., Rogaway, P.: The OCB authenticated-encryption algorithm. RFC 7253
(Informational) (2014)

54. Krovetz, T.: HS1-SIV v1. CAESAR Round 1 submission (2014)
55. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption

modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

56. Kurosawa, K.: Power of a public random permutation and its application to authen-
ticated encryption. IEEE Trans. Inf. Theory 56(10), 5366–5374 (2010)

57. Lenstra Jr., H.W.: Finding isomorphisms between finite fields. Math. Comput.
56(193), 329–347 (1991)

58. Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics and its Appli-
cations, vol. 20, 2nd edn. Cambridge University Press, Cambridge, United Kingdom
(1997)

59. Marsaglia, G.: Xorshift RNGs. J. Stat. Softw. 8(14), 1–6 (2003)
60. Matsumoto, M., Nishimura, T.: Mersenne Twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1), 3–30 (1998)

61. MEM Family of AEAD Schemes (2015). https://github.com/MEM-AEAD
62. Mennink, B.: XPX: Generalized Tweakable Even-Mansour with Improved Security

Guarantees. Cryptology ePrint Archive, Report 2015/476 (2015)
63. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of full-state keyed sponge and

duplex: applications to authenticated encryption. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 465–489. Springer, Heidelberg
(2015)

64. Minematsu, K.: A short universal hash function from bit rotation, and applications
to blockcipher modes. In: Susilo, W., Reyhanitabar, R. (eds.) ProvSec 2013. LNCS,
vol. 8209, pp. 221–238. Springer, Heidelberg (2013)

65. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014)

66. Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited. ACM
Trans. Algorithms 5(4), 46 (2009)

67. Niederreiter, H.: Factorization of polynomials and some linear-algebra problems
over finite fields. Linear Algebra Appl. 192, 301–328 (1993)

68. Patarin, J.: The “coefficients H” technique (invited talk). In: Avanzi, R.M., Keliher,
L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg
(2009)

69. Peyrin, T.: Personal communication, February 2016
70. Peyrin, T., Seurin, Y.: Counter-in-tweak: authenticated encryption modes for

tweakable block ciphers. Cryptology ePrint Archive, Report 2015/1049 (2015)
71. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to

modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

72. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM CCS 2001, pp. 196–205.
ACM Press (2001)

https://github.com/MEM-AEAD

Improved Masking for Tweakable Blockciphers 293

73. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

74. Sarkar, P.: Pseudo-random functions and parallelizable modes of operations of a
block cipher. IEEE Trans. Inf. Theory 56(8), 4025–4037 (2010)

75. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui,
M., Hirose, S.: Minalpher v1. CAESAR Round 1 submission (2014)

76. Thomé, E.: Computation of discrete logarithms in F2607 . In: Boyd, C. (ed.) ASI-
ACRYPT 2001. LNCS, vol. 2248, pp. 107–124. Springer, Heidelberg (2001)

77. Yasuda, K.: A one-pass mode of operation for deterministic message
authentication- security beyond the birthday barrier. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 316–333. Springer, Heidelberg (2008)

78. Zeng, G., Han, W., He, K.: High efficiency feedback shift register: σ−LFSR. Cryp-
tology ePrint Archive, Report 2007/114 (2007)

	Improved Masking for Tweakable Blockciphers with Applications to Authenticated Encryption
	1 Introduction
	1.1 Masked Even-Mansour (MEM) Tweakable Cipher
	1.2 Application to Nonce-Based AE
	1.3 Application to Nonce-Misuse Resistant AE

	2 Notation
	2.1 Distinguishers
	2.2 Tweakable Blockciphers
	2.3 Authenticated Encryption

	3 Tweakable Even-Mansour with General Masking
	3.1 Definition
	3.2 Security
	3.3 History of Masking
	3.4 Proposed Masking for u=1
	3.5 Proposed Masking for u=2 and u=3
	3.6 Computing Discrete Logarithms in F2512 and F21024

	4 Offset Public Permutation Mode (OPP)
	4.1 Specification of OPP
	4.2 Security of OPP

	5 Misuse-Resistant Offset Mode (MRO)
	5.1 Specification of MRO
	5.2 Security of MRO

	6 Misuse-Resistant Sponge (MRS)
	6.1 Specification of MRS
	6.2 Security of MRS

	7 Misuse-Resistant Sponge-Offset (MRSO)
	7.1 Specification of MRSO
	7.2 Security of MRSO

	8 Implementation
	References

