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Abstract. Leakage detection usually refers to the task of identifying
data-dependent information in side-channel measurements, independent
of whether this information can be exploited. Detecting Points-Of-Interest
(POIs) in leakage traces is a complementary task that is a necessary first
step in most side-channel attacks, where the adversary wants to turn this
information into (e.g.) a key recovery. In this paper, we discuss the dif-
ferences between these tasks, by investigating a popular solution to leak-
age detection based on a t-test, and an alternative method exploiting
Pearson’s correlation coefficient. We first show that the simpler t-test has
better sampling complexity, and that its gain over the correlation-based
test can be predicted by looking at the Signal-to-Noise Ratio (SNR) of
the leakage partitions used in these tests. This implies that the sampling
complexity of both tests relates more to their implicit leakage assump-
tions than to the actual statistics exploited. We also put forward that this
gain comes at the cost of some intuition loss regarding the localization
of the exploitable leakage samples in the traces, and their informative-
ness. Next, and more importantly, we highlight that our reasoning based
on the SNR allows defining an improved t-test with significantly faster
detection speed (with approximately 5 times less measurements in our
experiments), which is therefore highly relevant for evaluation laborato-
ries. We finally conclude that whereas t-tests are the method of choice for
leakage detection only, correlation-based tests exploiting larger partitions
are preferable for detecting POIs. We confirm this intuition by improving
automated tools for the detection of POIs in the leakage measurements of
a masked implementation, in a black box manner and without key knowl-
edge, thanks to a correlation-based leakage detection test.

1 Introduction

Leakage detection tests have recently emerged as a convenient solution to
perform preliminary (black box) evaluations of resistance against side-channel
analysis. Cryptography Research (CRI)’s non specific (fixed vs. random) t-test
is a popular example of this trend [4,10]. It works by comparing the leakages of a
cryptographic (e.g. block cipher) implementation with fixed plaintexts (and key)
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to the leakages of the same implementation with random plaintexts (and fixed
key)1, thanks to Welch’s t-test [38]. Besides their conceptual simplicity, the main
advantage of such tests, that were carefully discussed in [18], is their low sam-
pling complexity. That is, by comparing only two (fixed vs. random) classes of
leakages, one reduces the detection problem to a simpler estimation task. In this
paper, we want to push the understanding of leakage detection one step further,
by underlining more precisely its pros and cons, and clarifying its difference with
the problem of detecting Points-Of-Interest (POIs) in leakage traces. As clear
from [9], those two problems are indeed related, and one can also exploit t-tests
for the detection of POIs in leakage traces. So as for any side-channel analy-
sis, the main factor influencing the intuitions that one can extract from leakage
detection is the implicit assumptions that we make about the partitioning of the
leakages (aka leakage model). Our contributions in this respect are threefold.

First, we notice that CRI’s fixed vs. random t-test is one extreme in this
direction (since it relies on a partitioning in two classes), which is reminiscent of
Kocher’s single-bit Differential Power Analysis (DPA) [14]. For comparison pur-
poses, we therefore start by specifying an alternative leakage detection test based
on the popular Correlation Power Analysis (CPA) distinguisher [3]. The result-
ing ρ-test directly derives from the hypothesis tests for CPA provided in [16], and
relies on a partitioning into 2s classes, where s is the bitsize of the fixed portion of
plaintext in the test. We then compare the t-test and ρ-test approaches, both in
terms of sampling complexity and based on their exploitability.2 That is, does a
positive answer to leakage detection imply exploitable leakage, and does a nega-
tive answer to leakage detection imply no exploitable leakage? Our experimental
analysis based on real and simulated data leads to the following observations:

– First, the sampling complexity of the t-test is (on average) lower than the
one of the ρ-test, as previously hinted [10,18]. Interestingly, we show that
the sampling complexity ratio between the two tests can be simply approxi-
mated as a function of a Signal-to-Noise Ratio (SNR) for the leakage partition
used in these tests. This underlines that the difference between the tests is
mainly due to their different leakage assumptions, i.e. is somewhat indepen-
dent of statistics used (backing up the conclusions of [17] for “standard DPA
attacks”).

– Second, the exploitability of the tests is quite different. On the one hand,
leakages that are informative (and therefore can be detected with the ρ-test)
but cannot be detected with the t-test are easy to produce (resp. can be
observed in practice). Take for example a fixed class of which the mean leakage
is the same as (resp. close to) the mean leakage of the random class. On the

1 The Test Vector Leakage Assessment methodology in [4,10] includes other options,
e.g. non specific semi-fixed vs. random tests and specific tests – we focus on this non
specific fixed vs. random test that is the most popular in the literature [2,18].

2 One could also compare the computational complexity of the tests. Since they are
based on simple statistics, we will assume that both the t-test and ρ-test can be
implemented efficiently. Besides, a minor advantage of the ρ-test is that it can be
implemented in a known-plaintexts scenario (vs. chosen-plaintext for the t-test).
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other hand, the fixed vs. random t-test leads to the detection of many time
samples spread around the complete leakage traces. Hence, not all of these
samples can be exploited in a standard DPA (because of the diffusion within
the cipher).

Concretely, these observations refine the analysis in [18], where it was argued
that leakage detection is a useful preliminary to white box (worst-case) security
evaluations such as advertized in [34]. This is indeed the case. Yet, certain leakage
detection tests are more connected with the actual security level of a leaking
implementation. In this respect, the fixed vs. random t-test is a more efficient
way to perform leakage detection only. And the minor drawback regarding its
unability to detect certain leakages (e.g. our example with identical means) is
easily mitigated in practice, by running the test on large enough traces, or for
a couple of keys (as suggested in [4,10]). By contrast, the main price to pay for
this efficiency is a loss of intuition regarding (i) the localisation of the leakage
samples that are exploitable by standard DPA, and (ii) the complexity of a side-
channel attack taking advantage of the leakage samples for which the detection
test is positive. As a result, the ρ-test can be viewed as a perfect complement,
since it provides these intuitions (at the cost of higher sampling complexity).

Second, we show that our reasoning based on the SNR not only allows a better
statistical understanding of leakage detection, but can also lead to more efficient
t-tests. Namely, it directly suggests that if the evaluator’s goal is to minimize the
number of samples needed to detect data-dependent information in side-channel
measurements, considering a partitioning based on two fixed plaintexts (rather
than one fixed and one random plaintext) leads to significantly faster detection
speeds. This is both due to an improved signal (since when integrated over large
execution times, samples with large differences between the two fixed classes
will inevitably occur) and a reduced noise (since the random class in CRI’s
t-test implies a larger algorithmic noise that is cancelled in our proposal). We
also confirm these intuitions experimentally, with two representative AES imple-
mentations: an 8-bit software one and a 128-bit hardware one. In both cases, we
exhibit detections with roughly 5 times less measurements than when using the
previous fixed vs. random non specific t-test. We believe these results are highly
relevant to evaluation laboratories since (i) they lead to reductions of the mea-
surement cost of a leakage detection by a large factor (whereas improvements
of a couple of percents are usually considered as significant in the side-channel
literature), and (ii) they imply that a device for which no leakages have been
detected with one million measurements using a fixed vs. random t-test could in
fact have detectable leakages with 200,000 (or even less) measurements.

These observations lead to the last contribution of the paper. That is, when
extending leakage detection towards the detection of POIs, the ρ-test natu-
rally gains additional interest, since it provides more intuitions regarding the
exploitable samples in side-channel traces. More precisely, it allows a better
selection of POIs based on the criteria that these POIs depend on an enumerable
part of the key. It also maximizes the SNR metric that can be easily connected
to the worst-case complexity of standard DPA attacks [5]. Therefore, and more
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concretely, our results directly imply that the automated tools for the detection
of POIs recently proposed in [7] are also applicable in a fully black box setting,
without any key knowledge, by simply adapting the objective function used in
their optimization (i.e. replacing it by the ρ-test in this paper). We finally con-
firm this claim with an experimental evaluation, in the context of first-order
secure masked implementations. Doing so, we put forward that the detection of
a threshold for which an improvement of the objective function is considered
as significative in the optimizations of [7] is made easier when using the ρ-test.
We also improve the latter methods by adapting the objective function to the
multivariate case and taking advantage of cross-validation to evaluating it.

2 Background

2.1 Measurement Setups

Most of our experiments are based on measurements of an AES Furious
implementation (http://point-at-infinity.org/avraes/) run by an 8-bit Atmel
ATMega644P microcontroller, at a 20 MHz clock frequency. We monitored the
voltage variations across a 22 Ω resistor introduced in the supply circuit of our
target chip. Acquisitions were performed using a Lecroy HRO66ZI oscilloscope
running at 200 MHz and providing 8-bit samples. In each of our evaluations,
the 128-bit AES master key remains the same for all the measurements and is
denoted as κ = s0||s1|| . . . ||s15, where the si’s represent the 16 key bytes. When
evaluating the fixed vs. random t-test, we built sets of 2000 traces divided in two
subsets of 1000 traces each, one corresponding to a fixed plaintext and key, the
other corresponding to random plaintexts and a fixed key, next denoted as Lf

and Lr respectively. When evaluating the correlation-based test, we built a single
set of 2000 traces L, corresponding to random plaintexts and a fixed key. In the
following, we denote the encryption traces obtained from a plaintext p including
the target byte x under a key κ including the subkey s as: AESκs

(px) � ly (with
y = x ⊕ s). Whenever accessing the points of these traces, we use the notation
ly(τ) (with τ ∈ [1; 20 000], typically). These different subscripts and indexes will
be omitted when not necessary. In Sect. 5, we additionally consider a hardware
implementation of the AES of which the design is described in [13]. The same
amount of measurement as for the previous Atmel case were taken, based on
a prototype chip embedding an AES core with a 128-bit architecture requiring
11 cycles per encryption, implemented in a 65-nanometer low power technology,
running at 60 MHz and sampled at 2 GHz. Eventually, Sect. 6 considered masked
implementation of the AES in our Atmel microcontroller, based on precomputed
table lookups [25,31]. For every pair of input/output masks (m, q), it-precomutes
an S-box S∗ such that S∗(x⊕s⊕m) = S(x⊕s)⊕q. This pre-computation is part
of the adversary’s measurements, which leads to quite large traces with 30, 000
samples. In this last case, we used an evaluation set with 256×50 traces in total,
i.e. 50 per fixed value of the target key byte.

http://point-at-infinity.org/avraes/
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2.2 CPA Distinguisher

Our correlation-based leakage detection test will be based on the Correlation
Power Analysis (CPA) distinguisher [3], extended to a profiled setting. In this
case, and for each time sample τ , the evaluator starts by estimating a model for
his target intermediate variable Y from Np profiling traces: ˆmodelτ (Y ) ← Lp.
This model corresponds to the mean leakages associated with the different values
of Y . He then estimates the correlation between measured leakages and modeled
leakages. In our AES example, it would lead to ρ̂(LY (τ), ˆmodelτ (Y )). In practice,
this estimation is performed by sampling (i.e. measuring) a set of Nt test traces
from the leakage distribution, that we denote as Lt (with Lp ⊥⊥ Lt).

2.3 Fixed vs. Random Leakage Detection Test

CRI’s fixed vs. random t-test essentially works by comparing the leakages cor-
responding to the fixed and random sets of traces defined in Sect. 2.1. For this
purpose, and for each sample, one simply has to estimate and compare two mean
values. The first one, denoted as μ̂f (τ), corresponds to the samples in the fixed
set of traces Lf . The second one, denoted as μ̂r(τ), corresponds to the samples
in the random set of traces Lf . Intuitively, being able to distinguish these two
mean values indicates the presence of data-dependencies in the leakages. For this
purpose, and in order to determine whether some difference observed in practice
is meaningful, Welch’s t-test is applied (which is a variant of Student’s t-test
that considers different variances and sample size for the sets Lf and Lr). The
statistic to be tested is defined as:

Δ(τ) =
μ̂f (τ) − μ̂r(τ)√

σ̂2
f (τ)

Nf
+ σ̂2

r(τ)
Nr

,

where σ̂2
f (τ) (resp. σ̂2

r(τ)) is the estimated variance over the Nf (resp. Nr) sam-
ples of Lf (resp. Lr). Its p-value, i.e. the probability of the null hypothesis which
assumes Δ(τ) = 0, can be computed as follows:

p = 2 × (1 − CDFt(|Δ(τ)|, ν)),

where CDFt is the cumulative function of a Student’s t distribution, and ν is
its number of freedom degrees, which is derived from the previous means and
variances as: ν = (σ̂2

f/Nf +σ̂2
r/Nr)/[(σ̂2

f/Nf )/(Nf −1)+(σ̂2
r/Nr)/(Nr −1)]. Intu-

itively, the value of ν is proportional to the number of samples Nf and Nr. When
increasing, Student’s t distribution gets closer to a normal distribution N (0, 1).

3 A Correlation-Based Leakage Detection Test

We start by describing an alternative leakage detection test based on the CPA
distinguisher, inspired from the hypothesis test described in [16], and further
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taking advantage of the cross-validation techniques recently introduced in [6].
For k-fold cross–validation, the set of acquired traces L is first split into k (non
overlapping) sets L(i) of approximately the same size. We then define the pro-
filing sets L(j)

p =
⋃

i�=j L(i) and the test sets L(j)
t = L \ L(j)

p . Based on these
notations, our ρ-test is defined as follows, for a target plaintext byte variable X.
First, and for each cross-validation set j with 1 ≤ j ≤ k, a model is estimated:

ˆmodel
(j)

τ (X) ← L(j)
p . For s-bit plaintext bytes, this model corresponds to the

sample means of the leakage sample τ corresponding to each value of the plain-
text byte, i.e. μ̂

(j)
x (τ).3 Next, the correlation between this model and the leakage

samples in the test sets L(j)
t is computed as follows:

r̂(j)(τ) = ρ̂(L(j)
X (τ), ˆmodel

(j)

τ (X)).

The k cross-validation results r̂(j)(τ) can then be averaged in order to get a single
(unbiased) result r̂(τ) obtained from the full measurement set L. Following, and
as in [16], Fisher’s z-transformation is applied to obtain:

r̂z(τ) =
1
2

× ln

(
1 + r̂(τ)
1 − r̂(τ)

)
.

By normalizing this value with the standard deviation 1√
N−3

, where N is the
size of the evaluation set L, we obtain a sample that can be (approximately)
interpreted according to a normal distribution N (0, 1). This allows us to compute
the following p-value for a null hypothesis assuming no correlation:

p = 2 × (1 − CDFN (0,1)(|r̂z(τ)|)),
where CDFN (0,1) is the cumulative function of a standard normal distribution.
Besides exploiting cross-validation (which allows us to obtain unbiased estimates
for Pearson’s correlation coefficient), the main difference between this test and
the hypothesis test in [16] is that our model is built based on a plaintext byte
rather than a key-dependent intermediate value. This allows us to implement it
in a black box manner and without key knowledge, just as the previous t-test.

4 Experimental Results

In order to discuss the pros and cons of the two previous leakage detection test,
we now consider various experimental results. We start with a simulated setting
which allows us to control all the parameters of the leakages to detect, in order
to discuss the sampling complexity of both methods. Next, we analyze actual
leakage traces obtained from the measurement setup described in Sect. 2.1, which
allows us to put forward the intuitions provided by the t-test and ρ-test regarding
the time localization of the informative samples in our traces.
3 If there is no available trace for a given value of x, which happens when the evaluation

set is small, the model takes the mean leakage taken over all the traces in L(j)
p .
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4.1 Simulated Experiments

We define a standard simulated setting for the leakages of a block cipher, where
an intermediate computation z = S(y = x ⊕ s) is performed, with S an 8-bit
S-box. It gives rise to a (multivariate) leakage variable of the form:

LX = [HW(X) + R1, HW(Y ) + R2, HW(Z) + R3],

where HW is the Hamming weight function, R1, R2 and R3 are Gaussian dis-
tributed random noises with mean 0 and variance σ2

n, and the index X recalls
that in our detection setup, the evaluator only varies the plaintext. For t-tests,
the set Lf contains leakages corresponding to fixed values of x, y or z, denoted
as xf , yf , zf , while the set Lr corresponds uniformly random x’s, y’s or z’s. For
ρ-tests, the leakages all correspond to uniformly random x’s, y’s or z’s.

Concretely, we analyzed the t-test based on the third sample of LX (which
corresponds to the target intermediate value z), and for different fixed values
of this intermediate value. This choice is naturally motivated by the counter-
example given in introduction. That is, since the average leakage of the random
class equals 4 in our simulation setting, a fixed class such that HW(zf ) = 4
should not lead to any detection. And extending this example, the bigger the
difference between HW(zf ) and 4, the easier the detection should be.

In parallel, we investigated the ρ-test for the same sample in two cases.
First the realistic case, where the model estimation using k-fold cross-validation
described in Sect. 3 is applied (using a standard k = 10). Second, a theoretical
simplification where we assume that the evaluator knows the perfect (Hamming
weight) model, which implies that all the samples in the set L are directly used
to compute a single estimate for the correlation r̂(τ) = ρ̂(LX(τ),modelτ (X)).

The results of our experiments are given in Fig. 1, where the upper part
corresponds to a noise variance σ2

n = 50 and the lower part to a noise variance
σ2

n = 100. In both cases, we set the detection threshold to 5, which is the value
suggested in [2]. They allow the following relevant observations.

(1) On the impact of the noise. As doubling the noise variance generally doubles
the measurement complexity of a side-channel attack, it has the same impact
on the sample complexity of a leakage detection test. For example, detecting
a difference between a fixed class such that HW(zf ) = 2 and a random class
with the t-test requires ≈ 1300 traces in the upper part of the figure and
≈ 2600 traces in its lower part. Similar observations hold for all the tests.

(2) On the impact of the fixed value for the t-test. As expected, for both σ2
n, a fixed

class such that HW(zf ) = 4 cannot be distinguished at all from the random
class (since they have the same mean). By contrast, a fixed class such that
HW(zf ) = 0 is extremely fast to distinguish from the random class.

(3) The ρ-test can have (much) larger sampling complexity. This naturally
depends on the fixed value for the t-test. But assuming that several samples
from a trace are used in a the leakage detection (which is usually the case,
as will be shown in our following measured experiments), there should be
some of them that lead to faster leakage detection with the t-test than with
the ρ-test.
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Fig. 1. Leakage detection on simulated traces, Hamming weight leakage function.

(4) It’s all in the SNR. Most importantly, and just as in standard DPA, the
sampling complexity of a detection test essentially depends on the SNR of
its leakage partitioning. For the ρ-test, we can directly exploit Mangard’s
definition from CT-RSA 2004 for this purpose [15]. That is, the signal corre-
sponds to the variance of the random variable HW(Z) with Z uniform, which
equals 2 for 8-bit values, and the noise variance equals to σ2

n. As for the
t-test, we need to define an binary random variable B that is worth HW(zf )
with probability 1/2 and HW = 4 with probability 1/2. For each value of
the fixed zf , the signal then corresponds to the variance of B, and the noise
variance equals to σ2

n for the fixed class, and σ2
n + 2 for the random class

(since in this case, the noise comes both from the variable Z and from the
noise R). For example, this means a signal 0 for the fixed class HW(zf ) = 4,
a signal 0.25 for the fixed class HW(zf ) = 3, a signal 1 for the fixed class
HW(zf ) = 2, a signal 2.25 for the fixed class HW(zf ) = 1, and a signal 4



248 F. Durvaux and F.-X. Standaert

for the fixed class HW(zf ) = 0. Ignoring the small noise differences between
the tests, it means that the sampling complexity for detecting leakages with
the t-test and a fixed class HW(zf ) = 1 should be close to (and slightly
smaller than) the sampling complexity for detecting leakages with the ρ-
test. And this is exactly what we observe on the figure, for the ρ-test with
a perfect model. The same reasoning can be used to explain the sampling
complexities of the t-test for different fixed values. For example, the case
HW(zf ) = 3 requires four times more traces than the case HW(zf ) = 2 on
the figure.

A consequence of this observation is that, as for standard DPA attacks,
the choice of statistic (here the t-test or ρ-test) has limited impact on the
sampling complexity of the detection. For example, one could totally design
a ρ-test based on a partition in two (fixed and random) classes, that would
then lead to very similar results as the t-test (up to statistical artifacts, as
discussed in [17]).

(5) Estimating a model can only make it worse. Besides the potentially lower
signal, another drawback of the 256-class ρ-test from the sampling complex-
ity point-of-view is that it requires the estimation of a model made of 256
mean values. This further increases its overheads compared to the t-test, as
illustrated in Fig. 1 (see the r̂z curve with k = 10-fold cross-validation). In
this respect, we first note that considering larger k’s only leads to very mar-
ginal improvements of the detection (at the cost of significant computational
overheads). Besides, we insist that this estimation is unavoidable. For exam-
ple, ignoring the cross-validation and testing a model with the same set as
its profiling set would lead to overfitting and poor detection performances.
In other words, it is the size of the partition used in the ρ-test that fixes its
SNR (as previously discussed) and estimation cost, and both determine the
final sampling complexity of the test.

Note that the above conclusions are independent of the leakage function
considered (we repeated experiments with identity rather than Hamming
weight leakages, and reached the same conclusions). Therefore, these simu-
lated results confirm our introduction claim that for leakage detection only,
a non specific t-test is the method of choice, and that its gains over a ρ-test
can be easily predicted from a leakage function/partition and its resulting
SNR metric.

4.2 Measured Experiments

We now extend the previous simulated analysis to the practically-relevant case
of actual AES measurements, obtained from the setup described in Sect. 2.1. We
will divide our investigations in two parts. First, a global analysis will consider
the leakage traces of the full AES executions, in order to discuss the sampling
complexity and intuitions regarding the POIs for our two detection tests. Next,
a local analysis will be used in order to discuss possible false negatives in the
t-test, and intuitions regarding the informativeness of the detected samples.
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Global Analysis. The results of a fixed vs. random t-test and a ρ-test for
leakage traces corresponding to an entire AES Furious execution are provided in
Fig. 2, from which two main observations can be extracted.

(1) The t-test has lower sampling complexity on average. This is essentially the
concrete counterpart of observation (3) in the previous section. That is, we
already know that for some fixed values of the plaintext, the t-test should
have a lower sampling complexity. Figure 2 confirms that when looking at
complete AES traces, those “easy-to-detect” fixed values are indeed observed
(which is natural since the AES Furious implementation accounts for a bit
more than 3000 clock cycles, and the intermediate values within such a block
cipher execution should be uniformly distributed after a couple of rounds).
Concretely, this means that the sampling complexity for detecting leakages
with a similar confidence increases from ≈ 200 traces for the t-test to ≈ 2000
traces for the ρ-test, i.e. a factor ≈ 10 which is consistent with the previous
simulations. Note that even in the context of a hardware implementation
with a reduced cycle count (e.g. 11 cycles per AES execution), finding fixed
values that are easy-to-detect for the t-test is feasible by trying a couple of
fixed plaintexts and keys.

(2) The ρ-test (resp. t-test) does (resp. not) provide intuitions regarding
exploitable leakage samples. This is easily seen from the figure as well.
Whereas the t-test detects information leakage everywhere in the trace, the
ρ-test is much more localized, and points towards the samples that depend
on the single plaintext byte of which the leakage is considered as signal (here
corresponding to the first round and first S-box). Since the key is fixed in
leakage detection, it implies that peaks are observed whenever this (useless)

Fig. 2. Leakage detection on real traces, entire AES execution.



250 F. Durvaux and F.-X. Standaert

plaintext byte and the (useful) intermediate values that bijectively depend
on it are manipulated, e.g. the key addition and S-box outputs in Fig. 2.
In other words, the ρ-test is mostly relevant for the detection of POIs that
are exploitable in a standard DPA attack (i.e. excluding the false positives
corresponding to plaintext manipulations).

Local Analysis. The results of a fixed vs. random t-test and a ρ-test for leak-
age traces corresponding to the beginning of the first AES round execution are
provided in Fig. 3, from which two main observations can be extracted.4

Fig. 3. Leakage detection on real traces, first-round AES key addition and S-box.

(1) Hard-to-detect leakage samples for the t-test can be observed. More precisely,
the lower part of Fig. 3 exhibits three peaks which exactly correspond to
the manipulation of a plaintext byte (first peak), the key addition (second
peak) and the S-box execution (third peak), just as the three samples of our
simulated setting in Sect. 4.1. Knowing that our Atmel implementation of the
AES has leakages that can be efficiently exploited with a Hamming weight
model (as in our simulations) [33], we selected the fixed plaintext byte of the
t-test such that HW(zf ) = 4. As illustrated in the upper part of the figure,
the leakages of this fixed intermediate value are indeed difficult to tell apart
from the one of its random counterpart. More precisely, the ρ-test clearly
exhibits a peak for this intermediate value after 2000 traces, which does not
exist in the t-test experiment using a similar sampling complexity. Whereas
we cannot exclude that such a peak would appear for a larger number of

4 Exceptionally for this experiment, we considered a single varying byte for the t-test,
in order to better exhibit intuitions regarding the detected samples for a single S-box.
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Fig. 4. Fixed vs. random and fixed vs. fixed leakage detection signal.

traces (since the chip does not exactly follow the Hamming weight leakage
model), this confirms that not all leakage samples are easier to detect with
the t-test than with the ρ-test.

(2) The ρ-test does provide intuitions regarding the informativeness of the leak-
age samples. Eventually, a straightforward advantage of the ρ-test is that the
value of its correlation coefficient estimates brings some intuition regarding
the complexity of a side-channel attack exploiting this sample, which is only
provided up to a limited extent by the t-test. Indeed, a side-channel attack
exploiting an s-bit intermediate value is most efficient if it relies on an s-bit
model, as considered by the ρ-test (otherwise s−1 bits out of s will produce
“algorithmic noise”). In this context, we can take advantage of the connec-
tion between Pearson’s correlation coefficient and the information theoretic
metrics in [34] (see [17]), themselves related to the worst-case complexity of
standard DPA attacks [5].

5 Improved Leakage Detection Test

One central conclusion of the previous section is that the sampling complexity
of leakage detection tests highly depends on the SNR of the leakage partition on
which they are based. Interestingly, this observation directly suggests a natural
improvement of CRI’s non specific (fixed vs. random) t-test. Namely, rather than
performing the test based on a fixed and a random class, a more efficient solution
is to perform a similar test based on two fixed classes (i.e. two fixed plaintexts).
On the one hand, this directly reduces the detection noise from 2σ2

n + σ2
alg to

2σ2
n, since it cancels the algorithmic noise due to the variations of the random

class. Taking the example of Hamming weight leakages, this algorithmic noise
corresponds to σ2

alg = 2 for 8-bit values, but it increases for larger parallel imple-
mentations (e.g. it is worth σ2

alg = 32 for 128-bit implementations). On the
other hand, and when applied to large traces, such a partitioning also increases
the signal with high probability, for the same argument as used to avoid false
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positives in CRI’s t-test (i.e. by applying the detection to large enough traces,
large differences between the two fixed classes will inevitably occur). Taking the
example of Hamming weight leakages again, we can easily compute the proba-
bility (over random inputs) that a certain leakage difference is obtained for both
types of partitions (i.e. fixed vs. random and fixed vs. fixed), and the resulting
signal variance, as illustrated in Fig. 4. We conclude from this figure that (i) the
fixed vs. fixed partitioning allows reaching larger differences (so larger signals)
and (ii) the fixed vs. fixed partitioning allows doubling the average signal (i.e.
the dot product of the probabilities and variances in the figure). So both from
the noise variance and the (best-case and average case) signal points-of-views, it
should improve the sampling complexity of the detection test.5 In other words, a
leakage detection based on a fixed vs. fixed leakage partition should theoretically
have better sampling complexity than with a fixed vs. random one.

Fig. 5. Improved leakage detection on real traces (Atmel implementation).

Quite naturally, the exact gains of this new detection test depend on the
actual leakages. So as in the previous section, we confirmed our expectations with
two case studies. First, we compared the fixed vs. random and fixed vs. fixed t-
tests based on our software AES implementation. The results of this experiment
are in Fig. 5 where we observe that data-dependent leakages are detected with
similar confidence with approximately 5 times less traces thanks to our new par-
titioning. Next, we investigated the context of the hardware implementation of
the AES described in Sect. 2.1. As illustrated in Fig. 6, similar gains are obtained.

5 A similar conclusion can be obtained for other leakage functions, though the binomial
distribution of the Hamming weight leakages naturally make computations easier.
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Fig. 6. Improved leakage detection on real traces (ASIC implementation).

Note however that despite we gain an approximate factor 5 in both cases, the
reasons of this gain are different. Indeed, the software implementation case is
dominated by an increase of signal (due to its large cycle count) and has limited
algorithmic noise. By contrast, the hardware implementation has larger algo-
rithmic noise (corresponding to 128-bit random values) but less improvements
of the signal (because its traces are only 11-cycle long). Even larger gains could
be obtained by combining both the signal and noise effects (e.g. by considering
multiple keys for the hardware implementation). Based on these theoretical argu-
ments and experimental confirmation, we expect our fixed vs. fixed partitioning
to lead to faster leakage detections in most practical scenarios.

Remark. The fixed vs. fixed test can only be successful if the vectors used in
the test exhibit significant differences for the target algorithm’s intermediate
computations (which is the counterpart of having fixed leakages different from
average leakages in CRI’s fixed vs. random test). This is easily obtained with
block cipher implementations for which these intermediates are pseudorandom.

6 From Leakage Detection to POI Detection

The previous sections lead to the natural conclusion that non specific tests are
a method of choice for leakage detection. In particular, their application to full
leakage traces (or multiple keys) allows overcoming the issue of false positives
mentioned in Sect. 4.1. By contrast, the correlation-based test is better suited
to the detection of POIs because it provides useful intuitions regarding the
exploitable samples in side-channel traces and their informativeness. As a result,
it is a good candidate for the more specific task of detecting POIs for mount-
ing an attack. In this section, we conclude the paper by putting forward that a
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ρ-test is in fact perfectly suited for integration in (an improvement of) a recent
POI detection tool proposed by Durvaux et al. at COSADE 2015 [7]. For this
purpose, we first briefly recall how this tool works, then describe our improve-
ments based on our proposed ρ-test, and provide experimental confirmation of
our claims.

Note that in general, the problem of detecting POIs is relatively easy in
the context of unprotected implementations. Indeed, exhaustive analysis is usu-
ally feasible in this case, and it is even possible to look for optimal transforms
that project the samples towards small (hence easier-to-evaluate) subspaces such
that most of their informativeness is preserved, e.g. using Principal Component
Analysis (PCA) [1], which maximizes the side-channel signal, or Linear Discrim-
inant Analysis (LDA) [32], which maximizes the side-channel SNR. In fact, in
this context, any criteria can be easily optimized using local search [7,22], and
most criteria are essentially equivalent anyway (i.e. correlation, SNR, mutual
information and success rate [5,17]). Therefore, our focus will be on the more
challenging case of masked implementation, which requires a specialized local
search.

6.1 The COSADE 2015 POI Detection Tool

The COSADE 2015 POI detection aims at finding a projection vector α that
converts the Ns samples ly(τ) of a leakage trace into a single projected sample λy:

λy =
Ns∑
τ=1

α(τ) · ly(τ).

In the case of unprotected implementations, and as previously mentioned, it is
possible to find projections α that optimize the informativeness of the projected
sample (where the α(τ) coefficients are real numbers, typically). By contrast, in
the context of masking, the task is arguably more difficult since (i) single samples
may not contain information (e.g. in the context of software implementations
where the different shares are manipulated at different time samples), and (ii) the
information about the target intermediate variables lies in higher-order moments
of the leakage distribution. Therefore, Durvaux et al. focused on the simplified
problem of finding a projection such that α(τ) = 1 if the time sample ly(τ)
contains some information about a share, and α(τ) = 0 otherwise.

In this context, a naive solution would be to consider each possible combina-
tion of time samples, but this scales badly (i.e. exponentially) with the number
of shares to detect, and is rapidly prohibitive in practice, even for two shares
(since masked implementations generally imply traces with many samples). In
order to avoid this drawback, the algorithm proposed in [7] works by considering
d non-overlapping windows of length Wlen that set the covered weights to 1 (and
leaves to others stuck at 0). Algorithm 1 provides a succinct description of this
method. Besides the previously mentioned window length, it mainly requires
defining an objective function fobj and a detection threshold Tdet, and works in
two steps. First, the find solution phase places the windows randomly at different
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Algorithm 1. Local search algorithm for finding POIs in masked traces.

Local Search(d, Wlen, Tdet,@fobj)
α = find solution(d, Wlen, Tdet,@fobj);
if(α �= null)

return improve solution(α,@fobj);
end

end

locations of the trace, until the returned value of the objective function crosses
the threshold. Then, the improve solution modifies the windows’ size in order to
best fit the informative time samples. As a result, we obtain the position and the
size of each window that maximizes fobj . By changing the number of windows
and objective function, this approach can easily be extended to masking schemes
of any order and number of shares. Intuitively, the Wlen parameter leads to a
natural tradeoff between the time complexity and sampling complexity of the
algorithm. Namely, small window lengths are more time intensive6, and large
ones more rapidly cover POIs, but imply an estimation of the objective func-
tion for samples projected according to larger windows, which are potentially
more noisy. Eventually, the objective function proposed in the COSADE paper
is the Moments-Correlating Profiled DPA (MCP-DPA) introduced in [21], which
can be viewed as a classical higher-order DPA based on the CPA distinguisher
given in Sect. 2.2, where one correlates the leakages samples raised to a power d
with a model corresponding to the dth-order statistical moment of the leakage
distribution. We refer to the previous papers for the details on these tools.

6.2 Our Contribution

We first recall that the COSADE 2015 POI detection tool is black box in the sense
that it does not require any knowledge of the target implementation. By contrast,
it does require key profiling, since the MCP-DPA distinguisher is a profiled one.
In this respect, our first contribution is the simple but useful observation that
one can easiliy apply such a black box POI detection without key profiling, by
simply profiling the MCP-DPA objective function based on plaintext knowledge,
just as the ρ-test in this paper. Indeed, when detecting POIs, it is sufficient to
know the leakage model up to a permutation corresponding to key knowledge (a
quite similar idea has been exploited in [28] for similar purposes). As previously
discussed, this solution will suffer from the (minor) risk of detecting plaintext
samples, but as will be detailed next, this can be easily mitigated in practice.

Based on these premises, our second contribution starts from the equally
simple observation that the ρ-test of this paper can be used identically with the
MCP-DPA distinguisher. So it is theoretically eligible for detecting leakages and
POIs of any order. Therefore, by replacing the MCP-DPA objective function
in [7] by the ρ-test in this paper (based on CPA or MCP-DPA), we obtain

6 For example, Wlen = 1 is equivalent to testing all combinations of time samples.
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a very simple and rigorous way to set the detection threshold in Algorithm1.
That is, one just has to use the same “five sigma rule” as used in the leakage
detections of Figs. 2 and 3. Note by changing the objective function and selection
of a detection threshold in this way, we benefit from the additional advantage of
(more efficiently) estimating the objective function with cross-validation, which
is another improvement over the method described at COSADE 2015.

Third and maybe most importantly, we notice that the COSADE 2015 objec-
tive function is based on the estimation of central (second-order) statistical
moments. That is, given the (average) leakage of the two windows, it first sums
them and then computes a variance. But looking at the discussion in [35], Sect. 4,
it is clear that whenever the leakages are relatively noisy – which will always hap-
pen in our context of which the goal is to exploit the largest possible windows in
order to reduce the time needed to detect POIs – considering mixed statistical
moments is a better choice. In other words, by exploiting the multivariate MCP-
DPA mentioned at the end of [21], we should be able to detect POIs with larger
windows. In our following experiments based on a first-order (2-shares) masking
scheme, this just means using the normalized product between the (average)
leakage of the two windows as objective function, which has been shown optimal
in the context of Hamming weight leakages in [26].

6.3 Experimental Validation

In order to confirm the previous claims, we tested Algorithm 1 using exactly
the previously described modifications, based on a target implementation and
measurement setup very similar to the one in [7]. That is, we first analyzed the
leakages of the masked implementation described in Sect. 2.1 which leads to large
traces with Ns = 30, 000 samples (for which an exhaustive analysis of all the
pairs of samples is out of reach). As in the COSADE 2015 paper, we verified
that our implementation does not lead to any first-order leakages (this time with
the ρ-based test from Sect. 3). We further set the window length to 25 samples,
which corresponds to a bit more than two clock cycles at our clock frequency and
sampling rate. With these parameters, the local search was able to return a solu-
tion within the same number of objective function calls as [7], namely ≈ 12 000
on average. An example of leakage trace together with windows obtained thanks
to Algorithm 1 is given in Fig. 7. As clear from the zoomed plots at the bottom
of the figure (where we represent the sum of the projection vectors obtained
after 100 experiments), the selection of POIs corresponds to leakage samples
that combine the precomputation and masked S-box computation. Interestingly,
we could expect some false positives due to the detection of plaintext bytes that
is possible in our non-profiled scenario. However, the improve solution of Algo-
rithm1 (where the window size is adapted to be most informative) combined with
the fact that the most informative leakage samples in our traces correspond to
memory accesses (i.e. the S-box computations) prevented these to happen. Note
that even if the leakage of the plaintext manipulations was more informative, we
could easily “mark” the cycles that correspond to plaintext knowledge only, and
exclude them from our optimization. Since the number of POIs corresponding
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Fig. 7. Non-profiled detection of POIs based on our ρ-test.

to a single plaintext byte is usually limited, this would lead to the detection of
a valid pair of POIs after a couple of iterations of Algorithm1. Besides, we note
that Simple Power Analysis, or DPA against the plaintext (before it is XORed
with the masks) are other simple ways to gain the minimum intuition about the
time localization of the POIs, in order to avoid false positives when running a
non-profiled local search.

Next, we analyzed the impact of our modified objective function on the
largest window lengths for which we could detect POIs. As illustrated in Fig. 8,
we can clearly observe a (significant) gain of an approximate factor > 3 when
using a normalized product combining as objective function rather than the pre-
viously used square of sum (for which the figure also suggests that the window
of length 25 was close to optimal). It means that for exactly the same amount of
traces in an evaluation set, we are able to detect POIs with > 3 times larger win-
dows with our improved objective function and detection threshold. Concretely,
this corresponds to a reduction of the time complexity by a factor > 3 compared
to the COSADE 2015 results (and by a factor ≈ 90 compared to a naive com-
binatorial search). Interestingly, we also see that increasing the window length
is not always detrimental, which corresponds to the fact that larger windows do
not only contain more noise, but also more informative samples.

To conclude, we believe the connections made in this section are important
to raise awareness that up to the selection of POIs in the leakage traces, side-
channel security evaluations can essentially be performed in a black box way, and
without any key profiling. In this respect, leakage detection and the detection
of POIs are indeed related tasks, with the significant difference that the latter
has to take the exploitability of the detected samples into account. And this
is exactly the difference between simple t-tests and more measurement-intensive
ρ-tests based on larger leakage partitions. Note that the non-profiled detection in
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Fig. 8. Estimation of objective functions (with cross-validation) based on central and
mixed statistical moments, in front of a detection threshold of five sigma.

this section only applies to the first/last block cipher rounds (i.e. before diffusion
is complete), which captures many relevant practical scenarios but could be an
issue, e.g. in contexts where these extreme rounds are better protected than the
central ones. Besides, and more generally, we recall that as soon as the POIs are
detected and the evaluator has to build a model for these samples, key profiling
becomes strictly necessary to evaluate a worst-case security level [39].

7 Summary and Open Problems

The discussion in this paper highlights that there are significant differences
between current approaches to side-channel security evaluation. On the one
hand, CRI’s Test Vector Assessment Methodology (TVLA) aims at minimizing
the evaluator’s efforts. Very concretely, non specific t-tests as proposed in [4,10]
are indeed good to detect univariate and first-order leakages. As we observed in
Sect. 5, slightly tweaking the selection of the classes (from fixed vs. random to
fixed vs. fixed) allows significantly improving the detection speed in this case.
We can expect these gains to be even more significant in the context of masked
implementations (for which the impact of noise is exponentially amplified). The
fixed vs. fixed test also has good potential for evaluating the implementations of
asymmetric cryptographic primitives. So despite minor theoretical caveats (i.e.
the possibility of false positives and negatives), the application of such 2-class
t-tests turns out to be extremely efficient. On the other side of the spectrum,
complete (ideally worst-case) security evaluations such as discussed in [34] rather
aim at a precise rating of the security level, possibly considering the adversary’s
computing power [36], which is an arguably more expensive task. In this case,
the selection of POIs is a usually a necessary first step. As also discussed in
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this paper, and when restriced to univariate and first-order leakages, the main
reason for the additional cost of this approach (including the selection of POIs)
is the larger number of classes for which the leakage distribution has to be well
estimated. In this context as well, our investigations focused on non-profiled POI
detection (which can be performed efficiently for the first/last cipher rounds).
But similar conclusions hold in the profiled evaluation setting, which allows find-
ing POIs in all the cipher rounds, and is necessary for worst-case analysis.

These different methodologies naturally raise the question of which one to use
in which context, and whether they can be connected to some extent, leading to
the following open problems. First, how to generalize (simple) detection tests
to capture more types of leakages? Moving from univariate first-order leakages
to univariate higher-order leakages is already reachable with existing tools. One
option, already described in Sect. 6, is to work “by moments”. This implied to
implement a Moments-Correlating DPA in our multi-class context, but could
naturally be specialized to simpler t-tests, F-tests,. . . , if only 2 classes were con-
sidered: see [30] for a recent discussion that is complementary to our results.
Another option is to exploit more general statistical tests, e.g. Mutual Infor-
mation Analysis [8], as already applied in the context of leakage detection by
Mather et al. [18]. Moving to multivariate leakage detection appears much more
difficult. At least, testing all pairs/triples/. . . of samples in a trace rapidly turns
out to be unfeasible as the size of the traces increase, which usually leads current
evaluations to be based on heuristics (e.g. the ones discussed in Sect. 6). Note
that the gap between univariate and multivariate attacks is probably among the
most important remaining challenge in side-channel security evaluations, where
significant risks of false negatives remain. A typical example is the case of sta-
tic leakages that may only be revealed in the context of (highly) multivariate
analyses [20,24]. More generally, limiting an evaluation to univariate leakages
typically ignores the significant gains that can be obtained with dimensionality
reductions techniques (aka projections), and multi-target attacks [12,19,37].

Second, can we extrapolate or bound the worst-case security level of an imple-
mentation based on simple statistical tests? For example, the recent work in [5]
shows that one can (in certain well-defined conditions) bound the security level of
an implementation, measured with a success rate and in function of the number
of measurements and computing power of the adversary, based on information
theoretic metrics (such as the mutual information in general, and the SNR if
we only consider univariate attacks). But as discussed in this paper, evaluating
an SNR is still significantly more expensive than detecting leakages with non
specific tests. So of course, it would be interesting to investigate whether it is
possible to bound the security level based on simpler leakage detection tests.
In case of negative answer, it anyway remains that such leakage detection tests
can always be used as a prelimininary to more expensive approaches (detecting
POIs, security evaluations), e.g. to reduce the dimensionality of the traces.
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