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Preface

Eurocrypt 2016, the 35th annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Vienna, Austria, during May 8–12,
2016. The conference was sponsored by the International Association for Cryptologic
Research (IACR). Krzysztof Pietrzak (IST Austria), together with Joël Alwen, Georg
Fuchsbauer, Peter Gaži (all IST Austria), and Eike Kiltz (Ruhr-Universität Bochum),
were responsible for the local organization. They were supported by a local organizing
team consisting of Hamza Abusalah, Chethan Kamath, and Michal Rybár (all IST
Austria). We are indebted to them for their support and smooth collaboration.

The conference program followed the now established parallel track system where
the works of the authors were presented in two concurrently running tracks. As in the
previous edition of Eurocrypt, one track was labeled R (for real) and the other one was
labeled I (for ideal). Only the invited talks, the tutorial, the best paper, papers with
honorable mentions, and the final session of the conference spanned over both tracks.

The proceedings of Eurocrypt contain 62 papers selected from 274 submissions,
which corresponds to a record number of submissions in the history of Eurocrypt. Each
submission was anonymized for the reviewing process and was assigned to at least three
of the 55 Program Committee members. Submissions co-authored by committee
members were assigned to at least four members. Committee members were allowed to
submit at most one paper, or two if both were co-authored. The reviewing process
included a first-round notification followed by a rebuttal for papers that made it to the
second round. After extensive deliberations the Program Committee accepted 62 papers.
The revised versions of these papers are included in these two-volume proceedings.

The committee decided to give the Best Paper Award to “Tightly Secure
CCA-Secure Encryption Without Pairings” by Romain Gay, Dennis Hofheinz, Eike
Kiltz, and Hoeteck Wee. The two runners-up to the award, “Indistinguishability
Obfuscation from Constant-Degree Graded Encoding Schemes” by Huijia Lin and
“Essentially Optimal Robust Secret Sharing with Maximal Corruptions” by Allison
Bishop, Valerio Pastro, Rajmohan Rajaraman, Daniel and Wichs, received honorable
mentions. All three papers received invitations for the Journal of Cryptology.

The program also included invited talks by Karthikeyan Bhargavan, entitled “Pro-
tecting Transport Layer Security from Legacy Vulnerabilities”, Bart Preneel, entitled
“The Future of Cryptography” (IACR distinguished lecture), and Christian Collberg,
entitled “Engineering Code Obfuscation.” In addition, Emmanuel Prouff gave a tutorial
about “Securing Cryptography Implementations in Embedded Systems.” All the
speakers were so kind as to also provide a short abstract for the proceedings.

We would like to thank all the authors who submitted papers. We know that the
Program Committee’s decisions, especially rejections of very good papers that did not
find a slot among the sparse number of accepted papers, can be very disappointing. We
sincerely hope that the rejected works eventually get the attention they deserve.



We are also indebted to the Program Committee members and all external reviewers
for their voluntary work, especially since the newly established and unified page limits
and the increasing number of submissions induce quite a workload. It has been an
honor to work with everyone. The committee’s work was tremendously simplified by
Shai Halevi’s submission software and his support, including running the service on
IACR servers.

Finally, we thank everyone else—speakers, session chairs, and rump session chairs
—for their contribution to the program of Eurocrypt 2016.

May 2016 Marc Fischlin
Jean-Sébastien Coron
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Protecting Transport Layer Security
from Legacy Vulnerabilities

Karthikeyan Bhargavan

INRIA

Abstract. The Transport Layer Security protocol (TLS) is the most widely-used
secure channel protocol on the Web. After 20 years of evolution, TLS has grown
to include five protocol versions, dozens of extensions, and hundreds of
ciphersuites. The success of TLS as an open standard is at least partially due its
protocol agility: clients and servers can implement different subsets of protocol
features and still interoperate, as long as they can negotiate a common version
and ciphersuite. Hence, software vendors can seamlessly deploy newer cryp-
tographic mechanisms while still supporting older algorithms for backwards
compatibility.

An undesirable consequence of this agility is that obsolete and broken
ciphers can stay enabled in TLS clients and servers for years after cryptographers
have explicitly warned against their use. Practitioners consider this relatively safe
for two reasons. First, the TLS key exchange protocol incorporates downgrade
protection, so if a client and server both support a strong ciphersuite, then they
should never negotiate a weaker ciphersuite even if it is enabled. Second, even if
a connection uses a cryptographic algorithm with known weaknesses, it is typ-
ically hard to exploit the theoretical vulnerability to attack the protocol.

In this talk, we will see that both these assumptions are false. Leaving legacy
crypto unattended within TLS configurations has serious consequences, as
shown by a recent series of downgrade attacks including Logjam [1] and SLOTH
[3]. We will show how these attacks expose protocol-level weaknesses in TLS
that can be exploited with practical cryptanalysis. We will propose a new notion
of downgrade resilience for key exchange protocols [2] and use this definition to
evaluate the downgrade protections mechanisms built into the upcoming TLS 1.3
protocol.

References

1. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.A., Heninger,
N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow, E., Zanella-Béguelin,
S., Zimmermann, P.: Imperfect forward secrecy: how Diffie-Hellman fails in practice. In:
ACM Conference on Computer and Communications Security (CCS) (2015)

2. Bhargavan, K., Brzuska, C., Fournet, C., Green, M., Kohlweiss, M., Zanella- Béguelin, S.:
Downgrade resilience in key-exchange protocols. In: IEEE Symposium on Security and
Privacy (Oakland) (2016)

3. Bhargavan, K., Leurent, G.: Transcript collision attacks: breaking authentication in TLS, IKE,
and SSH. In: Network and Distributed System Security Symposium (NDSS) (2016)



The Future of Cryptography

Bart Preneel

KU Leuven and iMinds
Department of Electrical Engineering-ESAT/COSIC

Kasteelpark Arenberg 10 Bus 2452, B-3001 Leuven, Belgium
bart.preneel@esat.kuleuven.be

Abstract. We reflect on the historic role of cryptography. We develop the
contrast between its success as an academic discipline and the serious short-
comings of current cryptographic deployments in protecting users against mass
surveillance and overreach by corporations. We discuss how the cryptographic
research community can contribute towards addressing these challenges.

Since its early days, the goal of cryptography is to protect confidentiality of information,
which means that it is used to control who has access to information. A second goal of
cryptography is to protect authenticity of data and entities: this allows to protect pay-
ment information, transaction records but also configuration files and software. Cryp-
tography also plays a central role in the protection of meta data: in many settings it is
important to hide the identities and locations of the communicating parties. In modern
cryptography much more complex goals can be achieved beyond protection commu-
nications and stored data: cryptographic techniques are used to guarantee the correctness
of the execution of a program or to obfuscate programs. Multi-party computation allows
parties to compute on data while each one can keep its input private and all can check the
correctness of the results, even if some of the parties are malicious. Sophisticated
techniques are being developed to compute on encrypted data and to search in the data.
Even in a domain as challenging as e-voting progress is being made.

Until the late 1980s, cryptographic devices were expensive, which means that the
use of cryptography was limited to military, government, and diplomatic applications
as well as a few business contexts such as financial transactions. In the early 1990s the
cost of cryptography dropped quickly as the increased power of CPUs made it feasible
to implement crypto in software. This resulted in the crypto wars, in which government
key escrow schemes were proposed and defeated. One decade later commodity cryp-
tographic hardware started to appear, resulting in a cryptography everywhere. The fast
dropping cost of cryptography combined with a rich cryptographic literature leads to
the conclusion that today cryptography is widespread.

A quick count shows that there are about 30 billion devices with cryptography. The
largest volumes are for mobile communications, the web ecosystem, access cards, bank
cards, DRM for media protection, hard disk encryption, and applications such as
WhatsApp and Skype. It is remarkable that very few of those mass applications offer
end-to-end confidentiality protection; moreover, those that do typically have some key



management or governance issue: the specifications or the source code are not public,
or the ecosystem is brittle as it relies on trust in hundreds of CAs.

The threat models considered in cryptographic papers can be very strong: we
assume powerful opponents who can intercept all communications, corrupt some
parties, and perform expensive computations. Since the mid 1990s we take into account
opponents who use physics to eavesdrop on signals (side channel attacks) or inject
faults in computations. However, the Snowden revelations have shown that our threat
models are not sufficiently strong to model intelligence agencies: they undermine the
standardization process by injecting stealthily schemes with backdoors, they increase
complexity of standards, break supply-chain integrity, undermine end systems using
malware, obtain keys using security letters or via malware, and exploit implementation
weaknesses, to name just a few.

By combining massive interception with sophisticated search techniques, intelli-
gence agencies have developed mass surveillance systems that are a threat to our values
and democracy. In response academic cryptographers have started to publish articles
that consider some of these more advanced threat models. Industry has expanded its
deployment of cryptography and increased the strength of deployments, e.g., by
switching to solutions that offer forward secrecy. However, their efforts are sometimes
limited because of the business models that monetize user data and business plans to
exploit Big Data at an ever larger scale.

In terms of protection of users, progress is still very slow. The cryptographic
literature has plenty of schemes to increase robustness of cryptographic implementa-
tions, but few are implemented. The reasons are cost, the lack of open source imple-
mentations, and the misalignment with business objectives that are driven by the Big
Data gold rush. Moreover, in response to the modest advances made by industry, law
enforcement is reviving the early 1990s crypto wars.

Overall, this complex context brings new opportunities for cryptographers: we have
the responsibility to help restoring the balance of power between citizens on the one
hand, and governments and corporations on the other hand. We can invent new
architectures that give users more control and visibility and that avoid single points of
failure. We can propose new protocols that are more robust against local compromises
by malware, backdoors or security letters. And we can contribute towards developing
or analyzing open implementations of these protocols to facilitate their deployment.
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Engineering Code Obfuscation

Christian Collberg

University of Arizona, Tucson, AZ, USA
collberg@gmail.com

http://cs.arizona.edu/*collberg

In the Man-at-the-end (MATE) security scenario [2] a user (and potential adversary)
has physical access to a device and can gain some advantage by extracting or tampering
with an asset within that device. Assets can be data (cryptographic keys and media
streams) as well as code (security checks and intellectual property). As defenders, our
goal is to protect the confidentiality and integrity of these assets.

MATE scenarios are ubiquitous. Consider, for example, the Advanced Metering
Infrastructure where smart meters are installed at house-holds to allow utility compa-
nies to connect and disconnect users and to monitor usage. A malicious consumer can
tamper with their meter to avoid payment and may even be able to send disconnect
commands to other meters [5]. In the mobile Snapchat application pictures exchanged
between teenagers must be deleted a few seconds after reaching a friend’s device.
A malicious user can tamper with the application code to save the pictures and use them
later for cyber bullying. Finally, in a massive multiplayer online game a malicious player
can tamper with the game client to get an unfair advantage over other players [3].

Adversarial Model. In a realistic MATE scenario we must assume that, since the
adversary has physical control over his device, in time all assets will be compromised,
and, at best, any defenses will be time-limited [4]. Even protection techniques based on
tamper-resistant hardware have shown themselves susceptible to attack [1]. In partic-
ular, in analogy with Kerckhoffs’s principles, we must assume an adversary who has
complete understanding of our system, including its source code, and who can achieve
in-depth understanding of the system through static and dynamic analyses using
advanced reverse engineering tools.

Protection Mechanisms and Strategies. MATE protection mechanisms are typically
based on the application of obfuscating code transformations that add complexity (for
confidentiality) and/or the insertion of tamper-detecting guards (for integrity). Given
that individual mechanisms provide limited protection, strategies have to be put in
place to extend the in-the-wild survival time.

An important such strategy is diversity. Spatial diversity (or defense-in-depth)
means compounding multiple layers of interchangeable primitive protective transfor-
mations. Temporal diversity (or renewability) means to deliver, over time, an infinite
and non-repeating sequence of code variants to the user. The basic principle is that
every program should be protected with a different combination of transformations, that
every user/potential adversary should get a uniquely protected program, and that we



will provide an ever-changing attack target to the adversary. In other words, we hope to
provide long-term security by overwhelming the adversary’s analytical abilities with
randomized, unique, and varying code variants.

Evaluation and Benchmarking. MATE protection systems are evaluated on their
resilience to attack and their performance, i.e. the increase in size and speed of a
protected program over the original. Many real-world applications are interactive (such
as the Snapchat and game examples above), and many are running on highly con-
strained devices (smart meters); performance is thus always of paramount concern.

Finding the combination of primitive transformations and spatial and temporal
diversity strategies that achieve the highest level of protection while staying within
strict performance bounds is an unsolved engineering problem. Part of the problem is a
lack of behavioral models that express the capabilities and limitations of a human
adversary, and part of the problem is a lack of universally accepted benchmarks.

Summary. We present an overview of the engineering challenges in providing
long-term protection of applications that run under complete control of an adversary. In
particular, we discuss the principle of diversity and the need for adversarial modeling
and benchmarking.

Acknowledgments. This work was funded in part by NSF grants CNF-1145913 and
CNS-1525820 and BSF grant 2008362.
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Securing Cryptography Implementations
in Embedded Systems

Emmanuel Prouff1,2

1ANSSI, France
emmanuel.prouff@ssi.gouv.fr

2 POLSYS, UMR 7606, LIP6

Sorbonne Universities, UPMC University Paris VI

Abstract. Side Channel Analysis is a class of attacks which exploit leakages of
information from a cryptographic implementation during execution. To defeat
them, various techniques have been introduced during the two last decades,
among which masking (aka implementation sharing) is a common counter-
measure. The principle is to randomly split every sensitive intermediate variable
occurring in the computation into several shares and the number of shares, called
the order, plays the role of a security parameter. The main issue while applying
masking to protect cryptographic implementations is to specify efficient schemes
to secure the non-linear steps during the processing. Several solutions, appli-
cable for arbitrary orders, have been recently published. Most of them start from
the original concept of Private Circuits originally introduced by Ishaï, Sahai and
Wagner at Crypto 2003. In parallel, and in order to formally prove the security
of the proposed masking schemes, the community has also made important
efforts to define leakage models that accurately capture the leakage complexity
and simultaneously enable to build accurate security arguments. It is worth
noting that there is a tight link between masking/sharing techniques, secure
Multi Party Computation, Coding Theory and also Threshold Implementations.
During a two hours tutorial, the main classes of countermeasures will be pre-
sented, together with models which have been introduced to prove their security.
The link with other areas such as secure multi-party computation, error cor-
recting codes and information theory will also be discussed.
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Abstract. We present the first CCA-secure public-key encryption
scheme based on DDH where the security loss is independent of the num-
ber of challenge ciphertexts and the number of decryption queries. Our
construction extends also to the standard k-Lin assumption in pairing-
free groups, whereas all prior constructions starting with Hofheinz and
Jager (Crypto ’12) rely on the use of pairings. Moreover, our construc-
tion improves upon the concrete efficiency of existing schemes, reducing
the ciphertext overhead by about half (to only 3 group elements under
DDH), in addition to eliminating the use of pairings.

We also show how to use our techniques in the NIZK setting. Specif-
ically, we construct the first tightly simulation-sound designated-verifier
NIZK for linear languages without pairings. Using pairings, we can turn
our construction into a highly optimized publicly verifiable NIZK with
tight simulation-soundness.

1 Introduction

The most basic security guarantee we require of a public key encryption scheme
is that of semantic security against chosen-plaintext attacks (CPA) [14]: it is
infeasible to learn anything about the plaintext from the ciphertext. On the other
hand, there is a general consensus within the cryptographic research community
that in virtually every practical application, we require semantic security against
adaptive chosen-ciphertext attacks (CCA) [12,30], wherein an adversary is given
access to decryptions of ciphertexts of her choice.
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2 R. Gay et al.

In this work, we focus on the issue of security reduction and security loss in
the construction of CPA and CCA-secure public-key encryption from the DDH
assumption. Suppose we have such a scheme along with a security reduction
showing that attacking the scheme in time t with success probability ε implies
breaking the DDH assumption in time roughly t with success probability ε/L;
we refer to L as the security loss. In general, L would depend on the security
parameter λ as well as the number of challenge ciphertexts Qenc and the number
decryption queries Qdec, and we say that we have a tight security reduction if
L depends only on the security parameter and is independent of both Qenc and
Qdec. Note that for typical settings of parameters (e.g., λ = 80 and Qenc, Qdec ≈
220, or even Qenc, Qdec ≈ 230 in truly large settings), λ is much smaller than
Qenc and Qdec.

In the simpler setting of CPA-secure encryption, the ElGamal encryption
scheme already has a tight security reduction to the DDH assumption [6,27],
thanks to random self-reducibility of DDH with a tight security reduction. In
the case of CCA-secure encryption, the best result is still the seminal Cramer-
Shoup encryption scheme [11], which achieves security loss Qenc.1 This raises the
following open problem:

Does there exist a CCA-secure encryption scheme with a tight security
reduction to the DDH assumption?

Hofheinz and Jager [16] gave an affirmative answer to this problem under
stronger (and pairing-related) assumptions, notably the 2-Lin assumptions in
bilinear groups, albeit with large ciphertexts and secret keys; a series of
follow-up works [5,15,22,24] leveraged techniques introduced in the context of
tightly-secure IBE [7,10,18] to reduce the size of ciphertext and secret keys to
a relatively small constant. However, all of these works rely crucially on the use
of pairings, and seem to shed little insight on constructions under the standard
DDH assumption; in fact, a pessimist may interpret the recent works as strong
indication that the use of pairings is likely to be necessary for tightly CCA-secure
encryption.

We may then restate the open problem as eliminating the use of pairings in
these prior CCA-secure encryption schemes while still preserving a tight security
reduction. From a theoretical stand-point, this is important because an affir-
mative answer would yield tightly CCA-secure encryption under qualitatively
weaker assumptions, and in addition, shed insight into the broader question of
whether tight security comes at the cost of qualitative stronger assumptions.

Eliminating the use of pairings is also important in practice as it allows us
to instantiate the underlying assumption over a much larger class of groups that
admit more efficient group operations and more compact representations, and
also avoid the use of expensive pairing operations. Similarly, tight reductions
matter in practice because as L increases, we should increase the size of the
underlying groups in order to compensate for the security loss, which in turn

1 We ignore contributions to the security loss that depend only on a statistical security
parameter.
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increases the running time of the implementation. Note that the impact on
performance is quite substantial, as exponentiation in a r-bit group takes time
roughly O(r3).

1.1 Our Results

We settle the main open problem affirmatively: we construct a tightly CCA-
secure encryption scheme from the DDH assumption without pairings. More-
over, our construction improves upon the concrete efficiency of existing schemes,
reducing the ciphertext overhead by about half, in addition to eliminating the
use of pairings. We refer to Fig. 2 for a comparison with prior works.

Overview of Our Construction. Fix an additively written group G of order q. We
rely on implicit representation notation [13] for group elements: for a fixed gen-
erator P of G and for a matrix M ∈ Z

n×t
q , we define [M] := MP ∈ G

n×t where
multiplication is done component-wise. We rely on the Dk-MDDH Assumption
[13], which stipulates that given [M] drawn from a matrix distribution Dk over
Z
(k+1)×k
q , [Mx] is computationally indistinguishable from a uniform vector in

G
k; this is a generalization of the k-Lin Assumption.

We outline the construction under the k-Lin assumption over G, of which the
DDH assumption is a special case corresponding to k = 1.

In this overview, we will consider a weaker notion of security, namely tag-
based KEM security against plaintext check attacks (PCA) [29]. In the PCA
security experiment, the adversary gets no decryption oracle (as with CCA secu-
rity), but a PCA oracle that takes as input a tag and a ciphertext/plaintext pair
and checks whether the ciphertext decrypts to the plaintext. Furthermore, we
restrict the adversary to only query the PCA oracle on tags different from those
used in the challenge ciphertexts. PCA security is strictly weaker than the CCA
security we actually strive for, but allows us to present our solution in a clean
and simple way. (We show how to obtain full CCA security separately.)

The starting point of our construction is the Cramer-Shoup KEM, in which
EncKEM(pk, τ) outputs the ciphertext/plaintext pair

([y], [z]) = ([x�M�], [x�M�kτ ]), (1)

where kτ = k0 + τk1 and pk := ([M], [M�k0], [M�k1]) for M ←r Z
(k+1)×k
q . The

KEM is PCA-secure under k-Lin, with a security loss that depends on the number
of ciphertexts Q (via a hybrid argument) but independently of the number of
PCA queries [1,11].

Following the “randomized Naor-Reingold” paradigm introduced by Chen
and Wee on tightly secure IBE [10], our starting point is (1), where we replace
kτ = k0 + τk1 with

kτ =
λ∑

j=1

kj,τj
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and pk := ([M], [M�kj,b]j=1,...,λ,b=0,1), where (τ1, . . . , τλ) denotes the binary
representation of the tag τ ∈ {0, 1}λ.

Following [10], we want to analyze this construction by a sequence of games in
which we first replace [y] in the challenge ciphertexts by uniformly random group
elements via random self-reducibility of MDDH (k-Lin), and then incrementally
replace kτ in both the challenge ciphertexts and in the PCA oracle by kτ +
m⊥RF(τ), where RF is a truly random function and m⊥ is a random element
from the kernel of M, i.e., M�m⊥ = 0. Concretely, in Game i, we will replace
kτ with kτ + m⊥RFi(τ) where RFi is a random function on {0, 1}i applied
to the i-bit prefix of τ . We proceed to outline the two main ideas needed to
carry out this transition. Looking ahead, note that once we reach Game λ, we
would have replaced kτ with kτ +m⊥RF(τ), upon which security follows from a
straight-forward information-theoretic argument (and the fact that ciphertexts
and decryption queries carry pairwise different τ).

First Idea. First, we show how to transition from Game i to Game i+1, under the
restriction that the adversary is only allowed to query the encryption oracle on
tags whose i+1-st bit is 0; we show how to remove this unreasonable restriction
later. Here, we rely on an information-theoretic argument similar to that of
Cramer and Shoup to increase the entropy from RFi to RFi+1. This is in contrast
to prior works which rely on a computational argument; note that the latter
requires encoding secret keys as group elements and thus a pairing to carry out
decryption.

More precisely, we pick a random function RF′
i on {0, 1}i, and implicitly

define RFi+1 as follows:

RFi+1(τ) =

{
RFi(τ) if τi+1 = 0
RF′

i(τ) if τi+1 = 1

Observe all of the challenge ciphertexts leak no information about RF′
i or ki+1,1

since they all correspond to tags whose i + 1-st bit is 0. To handle a PCA query
(τ, [y], [z]), we proceed via a case analysis:

– if τi+1 = 0, then kτ +RFi+1(τ) = kτ +RFi(τ) and the PCA oracle returns the
same value in both Games i and i + 1.

– if τi+1 = 1 and y lies in the span of M, we have

y�m⊥ = 0 =⇒ y�(kτ + m⊥RFi(τ)) = y�(kτ + m⊥RFi+1(τ)),

and again the PCA oracle returns the same value in both Games i and i + 1.
– if τi+1 = 1 and y lies outside the span of M, then y�ki+1,1 is uniformly random

given M,M�ki+1,1. (Here, we crucially use that the adversary does not query
encryptions with τi+1 = 1, which ensures that the challenge ciphertexts do not
leak additional information about ki+1,1.) This means that y�kτ is uniformly
random from the adversary’s view-point, and therefore the PCA oracle will
reject with high probability in both Games i and i + 1. (At this point, we
crucially rely on the fact that the PCA oracle only outputs a single check bit
and not all of kτ + RF(τ).)
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Via a hybrid argument, we may deduce that the distinguishing advantage
between Games i and i + 1 is at most Q/q where Q is the number of PCA
queries.

Second Idea. Next, we remove the restriction on the encryption queries using
an idea of Hofheinz et al. [18] for tightly-secure IBE in the multi-ciphertext
setting, and its instantiation in prime-order groups [15]. The idea is to create two
“independent copies” of (m⊥,RFi); we use one to handle encryption queries on
tags whose i+1-st bit is 0, and the other to handle those whose i+1-st bit is 1. We
call these two copies (M∗

0,RF
(0)
i ) and (M∗

1,RF
(1)
i ), where M�M∗

0 = M�M∗
1 = 0.

Concretely, we replace M ←r Z
(k+1)×k
q with M ←r Z

3k×k
q . We decompose

Z
3k
q into the span of the respective matrices M,M0,M1, and we will also decom-

pose the span of M⊥ ∈ Z
3k×2k
q into that of M∗

0,M
∗
1. Similarly, we decompose

M⊥RFi(τ) into M∗
0RF

(0)
i (τ) + M∗

1RF
(1)
i (τ). We then refine the prior transition

from Games i to i + 1 as follows:

– Game i.0 (= Game i): pick y ← Z
3k
q for ciphertexts, and replace kτ with

kτ + M∗
0RF

(0)
i (τ) + M∗

1RF
(1)
i (τ);

– Game i.1: replace y ←r Z
3k
q with y ←r span(M,Mτi+1);

– Game i.2: replace RF
(0)
i (τ) with RF

(0)
i+1(τ);

– Game i.3: replace RF
(1)
i (τ) with RF

(1)
i+1(τ);

– Game i.4 (= Game i + 1): replace y ←r span(M,Mτi+1) with y ←r Z
3k
q .

For the transition from Game i.0 to Game i.1, we rely on the fact that the
uniform distributions over Z

3k
q and span(M,Mτi+1) encoded in the group are

computationally indistinguishable, even given a random basis for span(M⊥) (in
the clear). This extends to the setting with multiple samples, with a tight reduc-
tion to the Dk-MDDH Assumption independent of the number of samples.

basis for Z
3k
q

basis for span(M⊥)

M M0 M1

M∗
0 M∗

1

Fig. 1. Solid lines mean orthogonal, that is: M�M∗
0 = M�

1M
∗
0 = 0 = M�M∗

1 =
M�

0M
∗
1.

For the transition from Game i.1 to i.2, we rely on an information-theoretic
argument like the one we just outlined, replacing span(M) with span(M,M1) and
M⊥ with M∗

0 in the case analysis. In particular, we will exploit the fact that
if y lies outside span(M,M1), then y�ki+1,1 is uniformly random even given
M,Mki+1,1,M1,M1ki+1,1. The transition from Game i.2 to i.3 is completely
analogous.
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From PCA to CCA. Using standard techniques from [4,8,11,19,21], we could
transform our basic tag-based PCA-secure scheme into a “full-fledged” CCA-
secure encryption scheme by adding another hash proof system (or an authenti-
cated symmetric encryption scheme) and a one-time signature scheme. However,
this would incur an additional overhead of several group elements in the cipher-
text. Instead, we show how to directly modify our tag-based PCA-secure scheme
to obtain a more efficient CCA-secure scheme with the minimal additional over-
head of a single symmetric-key authenticated encryption. In particular, the over-
all ciphertext overhead in our tightly CCA-secure encryption scheme is merely
one group element more than that for the best known non-tight schemes [17,21].

To encrypt a message M in the CCA-secure encryption scheme, we will (i)
pick a random y as in the tag-based PCA scheme, (ii) derive a tag τ from y,
(iii) encrypt M using a one-time authenticated encryption under the KEM key
[y�kτ ]. The naive approach is to derive the tag τ by hashing [y] ∈ G

3k, as in
[21]. However, this creates a circularity in Game i.1 where the distribution of
[y] depends on the tag. Instead, we will derive the tag τ by hashing [y] ∈ G

k,
where y ∈ Z

k
q are the top k entries of y ∈ Z

3k
q . We then modify M0,M1 so that

the top k rows of both matrices are zero, which avoids the circularity issue. In
the proof of security, we will also rely on the fact that for any y0,y1 ∈ Z

3k
q , if

y0 = y1 and y0 ∈ span(M), then either y0 = y1 or y1 /∈ span(M). This allows
us to deduce that if the adversary queries the CCA oracle on a ciphertext which
shares the same tag as some challenge ciphertext, then the CCA oracle will reject
with overwhelming probability.

Alternative View-Point. Our construction can also be viewed as applying the
BCHK IBE→PKE transform [8] to the scheme from [18], and then writing the
exponents of the secret keys in the clear, thereby avoiding the pairing. This means
that we can no longer apply a computational assumption and the randomized
Naor-Reingold argument to the secret key space. Indeed, we replace this with
an information-theoretic Cramer-Shoup-like argument as outlined above.

Prior Approaches. Several approaches to construct tightly CCA-secure PKE
schemes exist: first, the schemes of [2,3,16,22–24] construct a tightly secure
NIZK scheme from a tightly secure signature scheme, and then use the tightly
secure NIZK in a CCA-secure PKE scheme following the Naor-Yung double
encryption paradigm [12,28]. Since these approaches build on the public veri-
fiability of the used NIZK scheme (in order to faithfully simulate a decryption
oracle), their reliance on a pairing seems inherent.

Next, the works of [5,7,10,15,18] used a (Naor-Reingold-based) MAC instead
of a signature scheme to design tightly secure IBE schemes. Those IBE schemes
can then be converted (using the BCHK transformation [8]) into tightly CCA-
secure PKE schemes. However, the derived PKE schemes still rely on pairings,
since the original IBE schemes do (and the BCHK does not remove the reliance
on pairings).

In contrast, our approach directly fuses a Naor-Reingold-like randomization
argument with the encryption process. We are able to do so since we substitute
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a computational randomization argument (as used in the latter line of works)
with an information-theoretic one, as described above. Hence, we can apply that
argument to exponents rather than group elements. This enables us to trade
pairing operations for exponentiations in our scheme.

Efficiency Comparison with Non-tightly Secure Schemes. We finally mention
that our DDH-based scheme compares favorably even with the most efficient
(non-tightly) CCA-secure DDH-based encryption schemes [17,21]. To make
things concrete, assume λ = 80 and a setting with Qenc = Qdec = 230. The
best known reductions for the schemes of [17,21] lose a factor of Qenc = 230,
whereas our scheme loses a factor of about 4λ ≤ 29. Hence, the group size for
[17,21] should be at least 22·(80+30) = 2220 compared to 22·(80+9) = 2178 in our
case. Thus, the ciphertext overhead (ignoring the symmetric encryption part) in
our scheme is 3 ·178 = 534 bits, which is close to 2 ·220 = 440 bits with [17,21].2

Perhaps even more interestingly, we can compare computational efficiency
of encryption in this scenario. For simplicitly, we only count exponentiations
and assume a naive square-and-multiply-based exponentiation with no further
multi-exponentiation optimizations.3 Encryption in [17,21] takes about 3.5 expo-
nentiations (where we count an exponentiation with a (λ+log2(Qenc+Qdec))-bit
hash value4 as 0.5 exponentiations). In our scheme, we have about 4.67 expo-
nentiations, where we count the computation of [M�kτ ] – which consists of
2λ multiplications – as 0.67 exponentiations.) Since exponentiation (under our
assumptions) takes time cubic in the bitlength, we get that encryption with our
scheme is actually about 29% less expensive than with [17,21].

However, of course we should also note that public and secret key in our
scheme are significantly larger (e.g., 4λ + 3 = 323 group elements in pk) than
with [17,21] (4 group elements in pk).

Extension: NIZK Arguments. We also obtain tightly simulation-sound non-inter-
active zero-knowledge (NIZK) arguments from our encryption scheme in a semi-
generic way.

Let us start with any designated-verifier quasi-adaptive NIZK (short:
DVQANIZK) argument system Π for a given language. Recall that in a desig-
nated-verifier NIZK, proofs can only be verified with a secret verification key,
and soundness only holds against adversaries who do not know that key. Further-
more, quasi-adaptivity means that the language has to be fixed at setup time of
the scheme. Let ΠPKE be the variant of Π in which proofs are encrypted using

2 In this calculation, we do not consider the symmetric authenticated encryption of the
actual plaintext (and a corresponding MAC value), which is the same with [17,21]
and our scheme.

3 Here, optimizations would improve the schemes of [17,21] and ours similarly, since
the schemes are very similar.

4 It is possible to prove the security of [17,21] using a target-collision-resistant hash
function, such that |τ | = λ. However, in the multi-user setting, a hybrid argument
is required, such that the output size of the hash function will have to be increased
to at least |τ | = λ + log2(Qenc + Qdec).
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Reference |pk| |ct| − |m| security loss assumption pairing

CS98 [11] O(1) 3 O(Q) DDH no
KD04, HK07 [23, 18] O(1) 2 O(Q) DDH no
HJ12 [17] O(1) O(λ) O(1) 2-Lin yes
LPJY15 [24, 26] O(λ) 47 O(λ) 2-Lin yes
AHY15 [5] O(λ) 12 O(λ) 2-Lin yes
GCDCT15 [16] O(λ) 10 (resp. 6k + 4) O(λ) SXDH (resp. k-Lin) yes

Ours §4 O(λ) 3 (resp. 3k) O(λ) DDH (resp. k-Lin) no

Fig. 2. Comparison amongst CCA-secure encryption schemes, where Q is the number
of ciphertexts, |pk| denotes the size (i.e. the number of groups elements, or exponent
of group elements) of the public key, and |ct| − |m| denotes the ciphertext overhead,
ignoring smaller contributions from symmetric-key encryption. We omit [18] from this
table since we only focus on prime-order groups here.

a CCA-secure PKE scheme PKE. Public and secret key of PKE are of course
made part of CRS and verification key, respectively. Observe that ΠPKE enjoys
simulation-soundness, assuming that simulated proofs are simply encryptions of
random plaintexts. Indeed, the CCA security of PKE guarantees that authentic
ΠPKE-proofs can be substituted with simulated ones, while being able to verify
(using a decryption oracle) a purported ΠPKE-proof generated by an adversary.
Furthermore, if PKE is tightly secure, then so is ΠPKE.

When using a hash proof system for Π and our encryption scheme for PKE,
this immediately yields a tightly simulation-sound DVQANIZK for linear lan-
guages (i.e., languages of the form {[Mx] | x ∈ Z

t
q} for some matrix M ∈ Z

n×t
q

with t < n) that does not require pairings. We stress that our DVQANIZK is
tightly secure in a setting with many simulated proofs and many adversarial
verification queries.

Using the semi-generic transformation of [20], we can then derive a tightly
simulation-sound QANIZK proof system (with public verification), that how-
ever relies on pairings. We note that the transformation of [20] only requires a
DVQANIZK that is secure against a single adversarial verification query, since
the pairing enables the public verifiability of proofs. Hence, we can first optimize
and trim down our DVQANIZK (such that only a single adversarial verification
query is supported), and then apply the transformation. This yields a QANIZK
with particularly compact proofs. See Fig. 3 for a comparison with relevant exist-
ing proof systems.

Roadmap. We recall some notation and basic definitions (including those con-
cerning our algebraic setting and for tightly secure encryption) in Sect. 2.
Section 3 presents our basic PCA-secure encryption scheme and represents the
core of our results. In Sect. 4, we present our optimized CCA-secure PKE scheme.
Our NIZK-related applications are presented in the full version of this paper.
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Reference type |crs| |π| sec. loss assumption pairing

CCS09 [9] NIZK O(1) 2n + 6t + 52 O(Qsim) 2-Lin yes
HJ12 [17] NIZK O(1) � 500 O(1) 2-Lin yes
LPJY14 [25] QANIZK O(n + λ) 20 O(Qsim) 2-Lin yes
KW15 [22] QANIZK O(kn) 2k + 2 O(Qsim) k-Lin yes
LPJY15 [27] QANIZK O(n + λ) 42 O(λ) 2-Lin yes

Ours (full version) DVQANIZK O(t + kλ) 3k + 1 O(λ) k-Lin no
Ours (full version) QANIZK O(k2λ + kn) 2k + 1 O(λ) k-Lin yes

Fig. 3. (DV)QANIZK schemes for subspaces of G
n of dimension t < n. |crs| and |π|

denote the size (in group elements) of the CRS and of proofs. Qsim is the number of
simulated proofs in the simulation-soundness experiment. The scheme from [20] (as
well as our own schemes) can also be generalized to matrix assumptions [13], at the
cost of a larger CRS.

2 Preliminaries

2.1 Notations

If x ∈ Bn, then |x| denotes the length n of the vector. Further, x ←r B denotes
the process of sampling an element x from set B uniformly at random. For any bit
string τ ∈ {0, 1}∗, we denote by τi the i’th bit of τ . We denote by λ the security
parameter, and by negl(·) any negligible function of λ. For all matrix A ∈ Z

�×k
q

with � > k, A ∈ Z
k×k
q denotes the upper square matrix of A and A ∈ Z

�−k×k
q

denotes the lower � − k rows of A. With span(A) := {Ar | r ∈ Z
k
q} ⊂ Z

�
q, we

denote the span of A.

2.2 Collision Resistant Hashing

A hash function generator is a PPT algorithm H that, on input 1λ , outputs an
efficiently computable function H : {0, 1}∗ → {0, 1}λ.

Definition 1 (Collision Resistance). We say that a hash function generator
H outputs collision-resistant functions H if for all PPT adversaries A,

Advcr
H(A) := Pr

[
x 	= x′ ∧ H(x) = H(x′)

∣∣∣∣
H ←r H(1λ),
(x, x′) ← A(1λ,H)

]
= negl(λ).

2.3 Prime-Order Groups

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ

returns a description G = (G, q, P ) of an additive cyclic group G of order q for
a λ-bit prime q, whose generator is P .
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We use implicit representation of group elements as introduced in [13]. For
a ∈ Zq, define [a] = aP ∈ G as the implicit representation of a in G. More gener-
ally, for a matrix A = (aij) ∈ Z

n×m
q we define [A] as the implicit representation

of A in G:

[A] :=

⎛

⎝
a11P . . . a1mP

an1P . . . anmP

⎞

⎠ ∈ G
n×m

We will always use this implicit notation of elements in G, i.e., we let [a] ∈ G

be an element in G. Note that from [a] ∈ G it is generally hard to compute the
value a (discrete logarithm problem in G). Obviously, given [a], [b] ∈ G and a
scalar x ∈ Zq, one can efficiently compute [ax] ∈ G and [a + b] ∈ G.

2.4 Matrix Diffie-Hellman Assumption

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) Assump-
tion [13].

Definition 2 (Matrix Distribution). Let k, � ∈ N, with � > k. We call D�,k

a matrix distribution if it outputs matrices in Z
�×k
q of full rank k in polynomial

time. We write Dk := Dk+1,k.

Without loss of generality, we assume the first k rows of A ←r D�,k form an
invertible matrix. The D�,k-Matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A ←r D�,k, w ←r Z

k
q and

u ←r Z
�
q.

Definition 3 (D�,k-Matrix Diffie-Hellman Assumption D�,k-MDDH). Let
D�,k be a matrix distribution. We say that the D�,k-Matrix Diffie-Hellman (D�,k-
MDDH) Assumption holds relative to GGen if for all PPT adversaries A,

Advmddh
D�,k,GGen(A) :=

|Pr[A(G, [A], [Aw]) = 1] − Pr[A(G, [A], [u]) = 1]| = negl(λ),

where the probability is over G ←r GGen(1λ), A ←r D�,k,w ←r Z
k
q ,u ←r Z

�
q.

For each k ≥ 1, [13] specifies distributions Lk, SCk, Ck (and others) over Z(k+1)×k
q

such that the corresponding Dk-MDDH assumptions are generically secure in
bilinear groups and form a hierarchy of increasingly weaker assumptions. Lk-
MDDH is the well known k-Linear Assumption k-Lin with 1-Lin = DDH. In this
work we are mostly interested in the uniform matrix distribution U�,k.

Definition 4 (Uniform Distribution). Let �, k ∈ N, with � > k. We denote
by U�,k the uniform distribution over all full-rank � × k matrices over Zq. Let
Uk := Uk+1,k.

Lemma 1 (Uk-MDDH ⇔ U�,k-MDDH). Let �, k ∈ N, with � > k. For any PPT
adversary A, there exists an adversary B (and vice versa) such that T(B) ≈ T(A)
and Advmddh

U�,k,GGen(A) = Advmddh
Uk,GGen(B) .
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Proof. This follows from the simple fact that a U�,k-MDDH instance ([A], [z]) can
be transformed into an Uk-MDDH instance ([A′] = [TA], [z′] = [Tz]) for a random
(k + 1) × � matrix T. If z = Aw, then z′ = TAw = A′w; if z is uniform, so is z′.
Similarly, a Uk-MDDH instance ([A′], [z′]) can be transformed into an U�,k-MDDH
instance ([A] = [T′A′], [z] = [T′z′]) for a random � × (k + 1) matrix T′. �

Among all possible matrix distributions D�,k, the uniform matrix distribution
Uk is the hardest possible instance, so in particular k-Lin ⇒ Uk-MDDH.

Lemma 2 (D�,k-MDDH ⇒ Uk-MDDH, [13]). Let D�,k be a matrix distribution.
For any PPT adversary A, there exists an adversary B such that T(B) ≈ T(A)
and Advmddh

D�,k,GGen(A) = Advmddh
Uk,GGen(B).

Let Q ≥ 1. For W ←r Z
k×Q
q ,U ←r Z

�×Q
q , we consider the Q-fold D�,k-MDDH

Assumption which consists in distinguishing the distributions ([A], [AW]) from
([A], [U]). That is, a challenge for the Q-fold D�,k-MDDH Assumption consists
of Q independent challenges of the D�,k-MDDH Assumption (with the same
A but different randomness w). In [13] it is shown that the two problems are
equivalent, where (for Q ≥ �−k) the reduction loses a factor �−k. In combination
with Lemma 1 we obtain the following tighter version for the special case of
D�,k = U�,k.

Lemma 3 (Random Self-reducibility of U�,k-MDDH, [13]). Let �, k,Q ∈ N

with � > k. For any PPT adversary A, there exists an adversary B such that
T(B) ≈ T(A) + Q · poly(λ) with poly(λ) independent of T(A), and

AdvQ-mddh
U�,k,GGen(A) ≤ Advmddh

U�,k,GGen(B) +
1

q − 1

where AdvQ-mddh
U�,k,GGen(B) := |Pr[B(G, [A], [AW]) = 1]−Pr[B(G, [A], [U]) = 1]| and

the probability is over G ←r GGen(1λ), A ←r U�,k,W ←r Z
k×Q
q ,U ←r Z

�×Q
q .

2.5 Public-Key Encryption

Definition 5 (PKE). A Public-Key Encryption (PKE) consists of three PPT
algorithms PKE = (ParamPKE,GenPKE,EncPKE,DecPKE):

– The probabilistic key generation algorithm GenPKE(1λ) generates a pair of pub-
lic and secret keys (pk, sk).

– The probabilistic encryption algorithm EncPKE(pk,M) returns a ciphertext ct.
– The deterministic decryption algorithm DecPKE(pk, sk, ct) returns a message

M or ⊥, where ⊥ is a special rejection symbol.

We define the following properties:

Perfect Correctness. For all λ, we have

Pr
[
DecPKE(pk, sk, ct) = M

∣∣∣∣
(pk, sk) ←r GenPKE(1λ);
ct ←r EncPKE(pk,M)

]
= 1.
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Multi-ciphertext CCA Security [6]. For any adversary A, we define

Advind-cca
PKE (A) :=

∣∣∣Pr
[
b = b′

∣∣∣b′ ← ASetup,DecO(·),EncO(·,·)(1λ)
]

− 1/2
∣∣∣

where:
– Setup sets Cenc := ∅, samples (pk, sk) ←r GenKEM(1λ) and b ←r {0, 1}, and

returns pk. Setup must be called once at the beginning of the game.
– DecO(ct) returns DecPKE(pk, sk, ct) if ct /∈ Cenc, ⊥ otherwise.
– If M0 and M1 are two messages of equal length, EncO(M0,M1) returns
EncPKE(pk,Mb) and sets Cenc := Cenc ∪ {ct}.

We say PKE is IND-CCA secure if for all PPT adversaries A, the advantage
Advind-cca

PKE (A) is a negligible function of λ.

2.6 Key-Encapsulation Mechanism

Definition 6 (Tag-based KEM). A tag-based Key-Encapsulation Mechanism
(KEM) consists of three PPT algorithms KEM = (GenKEM,EncKEM,DecKEM):

– The probabilistic key generation algorithm GenKEM(1λ) generates a pair of pub-
lic and secret keys (pk, sk).

– The probabilistic encryption algorithm EncKEM(pk, τ) returns a pair (K, C)
where K is a uniformly distributed symmetric key in K and C is a ciphertext,
with respect to the tag τ ∈ T .

– The deterministic decryption algorithm DecKEM(pk, sk, τ, C) returns a key
K ∈ K.

We define the following properties:

Perfect Correctness. For all λ, for all tags τ ∈ T , we have

Pr
[
DecKEM(pk, sk, τ, C) = K

∣∣∣∣
(pk, sk) ←r GenKEM(1λ);
(K, C) ←r EncKEM(pk, τ)

]
= 1.

Multi-ciphertext PCA Security [29]. For any adversary A, we define

Advind-pca
KEM (A) :=

∣∣∣Pr
[
b = b′

∣∣∣b′ ← ASetup,DecO(·,·,·),EncO(·)(1λ)
]

− 1/2
∣∣∣

where:
– Setup sets Tenc = Tdec := ∅, samples (pk, sk) ←r GenKEM(1λ), picks b ←r {0, 1},

and returns pk. Setup is called once at the beginning of the game.
– The decryption oracle DecO(τ, C, K̂) computes

K := DecKEM(pk, sk, τ, C). It returns 1 if K̂ = K ∧ τ /∈ Tenc, 0 otherwise. Then
it sets Tdec := Tdec ∪ {τ}.

– EncO(τ) computes (K, C) ←r EncKEM(pk, τ), sets K0 := K and K1 ←r K.
If τ /∈ Tdec ∪ Tenc, it returns (C, Kb), and sets Tenc := Tenc ∪ {τ}; otherwise it
returns ⊥.

We say KEM is IND-PCA secure if for all PPT adversaries A, the advantage
Advind-pca

KEM (A) is a negligible function of λ.
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2.7 Authenticated Encryption

Definition 7 (AE [17]). An authenticated symmetric encryption (AE) with
message-space M and key-space K consists of two polynomial-time deterministic
algorithms (EncAE,DecAE):

– The encryption algorithm EncAE(K, M) generates C, encryption of the mes-
sage M with the secret key K.

– The decryption algorithm DecAE(K, C), returns a message M or ⊥.

We require that the algorithms satisfy the following properties:

Perfect Correctness. For all λ, for all K ∈ K and M ∈ M, we have

DecAE(K,EncAE(K, M)) = M.

One-Time Privacy and Authenticity. For any PPT adversary A,

Advae-ot
AE (A)

:=
∣∣∣∣Pr

[
b′ = b

∣∣∣∣
K ←r K; b ←r {0, 1}
b′ ←r Aot-EncO(·,·),ot-DecO(·)(1λ,K)

]
− 1/2

∣∣∣∣

is negligible, where ot-EncO(M0,M1), on input two messages M0 and M1

of the same length, EncAE(K, Mb), and ot-DecO(φ) returns DecAE(K, φ) if
b = 0, ⊥ otherwise. A is allowed at most one call to each oracle ot-EncO
and ot-DecO, and the query to ot-DecO must be different from the output of
ot-EncO. A is also given the description of the key-space K as input.

3 Multi-ciphertext PCA-secure KEM

In this section we describe a tag-based Key Encapsulation Mechanism KEMPCA

that is IND-PCA-secure (see Definition 6).
For simplicity, we use the matrix distribution U3k,k in our scheme in Fig. 4,

and prove it secure under the Uk-MDDH Assumption (⇔ U3k,k-MDDH Assump-
tion, by Lemma 1), which in turn admits a tight reduction to the standard
k-Lin Assumption. However, using a matrix distribution D3k,k with more com-
pact representation yields a more efficient scheme, secure under the D3k,k-MDDH
Assumption (see Remark 1).

3.1 Our Construction

Remark 1 (On the use of the Uk-MDDH Assumption). In our scheme, we use
a matrix distribution U3k,k for the matrix M, therefore proving security under
the U3k,k-MDDH Assumption ⇔ Uk-MDDH Assumption (see Lemma 2). This
is for simplicity of presentation. However, for efficiency, one may want to use
an assumption with a more compact representation, such as the CI3k,k-MDDH
Assumption [26] with representation size 2k instead of 3k2 for U3k,k.
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Fig. 4. KEMPCA, an IND-PCA-secure KEM under the Uk-MDDH Assumption, with
tag-space T = {0, 1}λ. Here, GGen is a prime-order group generator (see Sect. 2.3).

3.2 Security Proof

Theorem 1. The tag-based Key Encapsulation Mechanism KEMPCA defined in
Fig. 4 has perfect correctness. Moreover, if the Uk-MDDH Assumption holds in
G, KEMPCA is IND-PCA secure. Namely, for any adversary A, there exists an
adversary B such that T(B) ≈ T(A) + (Qdec + Qenc) · poly(λ) and

Advind-pca
KEMPCA

(A) ≤ (4λ + 1) · Advmddh
Uk,GGen(B) + (Qdec + Qenc) · 2−Ω(λ),

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively,
and poly(λ) is independent of T(A).

Proof of Theorem 1. Perfect correctness follows readily from the fact that for all
r ∈ Z

k
q and C = r�M�, for all k ∈ Z

3k
q :

r�(M�k) = C · k.

We now prove the IND-PCA security of KEMPCA. We proceed via a series of
games described in Figs. 6 and 7 and we use Advi to denote the advantage of A
in game Gi. We also give a high-level picture of the proof in Fig. 5, summarizing
the sequence of games.

Lemma 4 (G0 to G1). There exists an adversary B0 such that T(B0) ≈ T(A)+
(Qenc + Qdec) · poly(λ) and

|Adv0 − Adv1| ≤ Advmddh
Uk,GGen(B0) +

1
q − 1

,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively,
and poly(λ) is independent of T(A).

Here, we use the MDDH assumption to “tightly” switch the distribution of
all the challenge ciphertexts.
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Fig. 6. Games G0, G1, G2.i (for 1 ≤ i ≤ λ) for the proof of multi-ciphertext PCA
security of KEMPCA in Fig. 4. For all 0 ≤ i ≤ λ, RFi : {0, 1}i → Z

2k
q is a random

function, and for all τ ∈ T , τ|i denotes the i-bit prefix of τ . In each procedure, the
components inside a solid (dotted) frame are only present in the games marked by a
solid (dotted) frame.

Proof of Lemma 4. To go from G0 to G1, we switch the distribution of the vectors
[y] sampled by EncO, using the Qenc-fold U3k,k-MDDH Assumption on [M] (see
Definition 4 and Lemma 3).

We build an adversary B′
0 against the Qenc-fold U3k,k-MDDH Assumption,

such that T(B′
0) ≈ T(A) + (Qenc + Qdec) · poly(λ) with poly(λ) independent of

T(A), and
|Adv0 − Adv1| ≤ AdvQenc-mddh

U3k,k,GGen(B′
0).

This implies the lemma by Lemma 3 (self-reducibility of U3k,k-MDDH), and
Lemma 1 (U3k,k-MDDH ⇔ Uk-MDDH).

Upon receiving a challenge (G, [M] ∈ G
3k×k, [H] := [h1| . . . |hQenc ] ∈

G
3k×Qenc) for the Qenc-fold U3k,k-MDDH Assumption, B′

0 picks b ←r {0, 1},
k1,0, . . . ,kλ,1 ←r Z

3k
q , and simulates Setup, DecO as described in Fig. 6. To

simulate EncO on its j’th query, for j = 1, . . . , Qenc, B′
0 sets [y] := [hj ], and

computes Kb as described in Fig. 6. �

Lemma 5 (G1 to G2.0). |Adv1 − Adv2.0| = 0.

Proof of Lemma 5. We show that the two games are statistically equivalent. To
go from G1 to G2.0, we change the distribution of k1,β ←r Z

3k
q for β = 0, 1, to

k1,β + M⊥RF0(ε), where k1,β ←r Z
3k
q , RF0(ε) ←r Z

2k
q , and M⊥ ←r U3k,2k such

that M�M⊥ = 0. Note that the extra term M⊥RF0(ε) does not appear in pk,
since M�(k1,β + M⊥RF0(ε)) = M�k1,β . �
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Lemma 6 (G2.i to G2.i+1). For all 0 ≤ i ≤ λ − 1, there exists an adversary
B2.i such that T(B2.i) ≈ T(A) + (Qenc + Qdec) · poly(λ) and

|Adv2.i − Adv2.i+1| ≤ 4 · Advmddh
Uk,GGen(B2.i) +

4Qdec + 2k

q
+

4
q − 1

,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively,
and poly(λ) is independent of T(A).

Proof of Lemma 6. To go from G2.i to G2.i+1, we introduce intermediate games
G2.i.1, G2.i.2 and G2.i.3, defined in Fig. 7. We prove that these games are indis-
tinguishable in Lemmas 7, 8, 9, and 10.

Fig. 7. Games G2.i (for 0 ≤ i ≤ λ),G2.i.1, G2.i.2 and G2.i.3 (for 0 ≤ i ≤ λ − 1) for the

proof of Lemma 6. For all 0 ≤ i ≤ λ, RFi : {0, 1}i → Z
2k
q , RF

(0)
i , RF

(1)
i : {0, 1}i → Z

k
q

are random functions, and for all τ ∈ T , we denote by τ|i the i-bit prefix of τ . In each
procedure, the components inside a solid (dotted, gray) frame are only present in the
games marked by a solid (dotted, gray) frame.
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Lemma 7 (G2.i to G2.i.1). For all 0 ≤ i ≤ λ − 1, there exists an adversary
B2.i.0 such that T(B2.i.0) ≈ T(A) + (Qenc + Qdec) · poly(λ) and

|Adv2.i − Adv2.i.1| ≤ 2 · Advmddh
Uk,GGen(B2.i.0) +

2
q − 1

,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively,
and poly(λ) is independent of T(A).

Here, we use the MDDH Assumption to “tightly” switch the distribution of
all the challenge ciphertexts. We proceed in two steps, first, by changing the
distribution of all the ciphertexts with a tag τ such that τi+1 = 0, and then,
for those with a tag τ such that τi+1 = 1. We use the MDDH Assumption with
respect to an independent matrix for each step.

Proof of Lemma 7. To go from G2.i to G2.i.1, we switch the distribution of the
vectors [y] sampled by EncO, using the Qenc-fold U3k,k-MDDH Assumption.

We introduce an intermediate game G2.i.0 where EncO(τ) is computed as
in G2.i.1 if τi+1 = 0, and as in G2.i if τi+1 = 1. Setup, DecO are as in G2.i.1.
We build adversaries B′

2.i.0 and B′′
2.i.0 such that T(B′

2.i.0) ≈ T(B′′
2.i.0) ≈ T(A) +

(Qenc + Qdec) · poly(λ) with poly(λ) independent of T(A), and

Claim 1: |Adv2.i − Adv2.i.0| ≤ AdvQenc-mddh
U3,k,GGen (B′

2.i.0).

Claim 2: |Adv2.i.0 − Adv2.i.1| ≤ AdvQenc-mddh
U3k,k,GGen(B′′

2.i.0).

This implies the lemma by Lemma 3 (self-reducibility of U3k,k-MDDH), and
Lemma 1 (U3k,k-MDDH ⇔ Uk-MDDH).

Let us prove Claim 1. Upon receiving a challenge (G, [M0] ∈ G
3k×k, [H] :=

[h1| . . . |hQenc ] ∈ G
3k×Qenc) for the Qenc-fold U3k,k-MDDH Assumption with

respect to M0 ←r U3k,k, B′
2.i.0 does as follows:

Setup: B′
2.i.0 picks M ←r U3k,k, k1,0, . . . ,kλ,1 ←r Z

3k
q , and computes pk as

described in Fig. 7. For each τ queried to EncO or DecO, it computes on
the fly RFi(τ|i) and k′

τ := kτ + M⊥RFi(τ|i), where kτ :=
∑λ

j=1 kj,τj
, RFi :

{0, 1}i → Z
2k
q is a random function, and τ|i denotes the i-bit prefix of τ (see

Fig. 7). Note that B′
2.i.0 can compute efficiently M⊥ from M.

EncO: To simulate the oracle EncO(τ) on its j’th query, for j = 1, . . . , Qenc, B′
2.i.0

computes [y] as follows:

if τi+1 = 0 : r ←r Z
k
q ; [y] := [Mr + hj ]

if τi+1 = 1 : [y] ←r G
3k

This way, B′
2.i.0 simulates EncO as in G2.i.0 when [hj ] := [M0r0] with r0 ←r

Z
k
q , and as in G2.i when [hj ] ←r G

3k.
DecO: Finally, B′

2.i.0 simulates DecO as described in Fig. 7.

Therefore, |Adv2.i − Adv2.i.0| ≤ AdvQenc-mddh
U3k,k,GGen(B′

2.i.0).
To prove Claim 2, we build an adversary B′′

2.i.0 against the Qenc-fold U3k,k-
MDDH Assumption with respect to a matrix M1 ←r U3k,k, independent from
M0, similarly than B′

2.i.0. �
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Lemma 8 (G2.i.1 to G2.i.2). For all 0 ≤ i ≤ λ − 1,

|Adv2.i.1 − Adv2.i.2| ≤ 2Qdec + 2k

q
,

where Qdec is the number of times A queries DecO.

Here, we use a variant of the Cramer-Shoup information-theoretic argument
to move from RFi to RFi+1, thereby increasing the entropy of k′

τ computed by
Setup. For the sake of readability, we proceed in two steps: in Lemma 8, we move
from RFi to an hybrid between RFi and RFi+1, and in Lemma 9, we move to
RFi+1.

Proof of Lemma 8. In G2.i.2, we decompose span(M⊥) into two subspaces
span(M∗

0) and span(M∗
1), and we increase the entropy of the components of

k′
τ which lie in span(M∗

0). To argue that G2.i.1 and G2.i.2 are statistically close,
we use a Cramer-Shoup argument [11].

Let us first explain how the matrices M∗
0 and M∗

1 are sampled. Note that
with probability at least 1 − 2k

q over the random coins of Setup, (M‖M0‖M1)
forms a basis of Z3k

q . Therefore, we have

span(M⊥) = Ker(M�) = Ker
(
(M‖M1)�

)
⊕ Ker

(
(M‖M0)�

)
.

We pick uniformly M∗
0 and M∗

1 in Z
3k×k
q that generate Ker

(
(M‖M1)�

)
and

Ker
(
(M‖M0)�

)
, respectively (see Fig. 1). This way, for all τ ∈ {0, 1}λ, we can

write
M⊥RFi(τ|i) := M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i),

where RF
(0)
i , RF(1)

i : {0, 1}i → Z
k
q are independent random functions.

We define RF
(0)
i+1 : {0, 1}i+1 → Z

k
q as follows:

RF
(0)
i+1(τ|i+1) :=

{
RF

(0)
i (τ|i) if τi+1 = 0

RF
(0)
i (τ|i) + RF′(0)

i (τ|i) if τi+1 = 1

where RF′(0)
i : {0, 1}i → Z

k
q is a random function independent from RF

(0)
i . This

way, RF(0)
i+1 is a random function.

We show that the outputs of EncO and DecO are statistically close in G2.i.1

and G2.i.2. We decompose the proof in two cases (delimited with �): the queries
with a tag τ ∈ {0, 1}λ such that τi+1 = 0, and the queries with a tag τ such that
τi+1 = 1.

Queries with τi+1 = 0:
The only difference between G2.i.1 and G2.i.2 is that Setup computes k′

τ using
the random function RF

(0)
i in G2.i.1, whereas it uses the random function RF

(0)
i+1

in G2.i.2 (see Fig. 7). Therefore, by definition of RF(0)
i+1, for all τ ∈ {0, 1}λ such

that τi+1 = 0, k′
τ is the same in G2.i.1 and G2.i.2, and the outputs of EncO and

DecO are identically distributed. �
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Queries with τi+1 = 1:
Observe that for all y ∈ span(M,M1) and all τ ∈ {0, 1}λ such that τi+1 = 1,

G2.i.2︷ ︸︸ ︷

y�
(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i) + M∗

0RF
′(0)
i (τ|i)

)

= y�
(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)
+ y�M∗

0RF
′(0)
i (τ|i)

︸ ︷︷ ︸
=0

=

G2.i.1︷ ︸︸ ︷
y� ·

(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)

where the second equality uses the fact that M�M∗
0 = M�

1M
∗
0 = 0 and thus

y�M∗
0 = 0.

This means that:

– the output of EncO on any input τ such that τi+1 = 1 is identically distributed
in G2.i.1 and G2.i.2;

– the output of DecO on any input (τ, [y], K̂) where τi+1 = 1, and y ∈
span(M,M1) is the same in G2.i.1 and G2.i.2.

Henceforth, we focus on the ill-formed queries to DecO, namely those corre-
sponding to τi+1 = 1, and y /∈ span(M,M1). We introduce intermediate games
G2.i.1.j , and G′

2.i.1.j for j = 0, . . . , Qdec, defined as follows:

– G2.i.1.j : DecO is as in G2.i.1 except that for the first j times it is queried, it
outputs 0 to any ill-formed query. EncO is as in G2.i.2.

– G′
2.i.1.j : DecO as in G2.i.2 except that for the first j times it is queried, it

outputs 0 to any ill-formed query. EncO is as in G2.i.2.

We show that:

G2.i.1 ≡ G2.i.1.0 ≈s G2.i.1.1 ≈s . . . ≈s G2.i.1.Qdec
≡ G′

2.i.1.Qdec

G′
2.i.1.Qdec

≈s G′
2.i.1.Qdec−1 ≈s . . . ≈s G′

2.i.1.0 ≡ G2.i.2

where we denote statistical closeness with ≈s and statistical equality with ≡.
It suffices to show that for all j = 0, . . . , Qdec − 1:

Claim 1: in G2.i.1.j , if the j + 1-st query is ill-formed, then DecO outputs 0
with overwhelming probability 1 − 1/q (this implies G2.i.1.j ≈s G2.i.1.j+1,
with statistical difference 1/q);

Claim 2: in G′
2.i.1.j , if the j + 1-st query is ill-formed, then DecO outputs 0

with overwhelming probability 1 − 1/q (this implies G′
2.i.1.j ≈s G′

2.i.1.j+1,
with statistical difference 1/q)

where the probabilities are taken over the random coins of Setup.
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Let us prove Claim 1. Recall that in G2.i.1.j , on its j + 1-st query,
DecO(τ, [y], K̂) computes K := [y�k′

τ ], where k′
τ :=

(
kτ + M∗

0RF
(0)
i (τ|i) +

M∗
1RF

(1)
i (τ|i)

)
(see Fig. 7). We prove that if (τ, [y], K̂) is ill-formed, then K

is completely hidden from A, up to its j + 1-st query to DecO. The reason is
that the vector ki+1,1 in sk contains some entropy that is hidden from A. This
entropy is “released” on the j + 1-st query to DecO if it is ill-formed. More for-
mally, we use the fact that the vector ki+1,1 ←r Z

3k
q is identically distributed

as ki+1,1 + M∗
0w, where ki+1,1 ←r Z

3k
q , and w ←r Z

k
q . We show that w is

completely hidden from A, up to its j + 1-st query to DecO.

– The public key pk does not leak any information about w, since

M�(ki+1,1 + M∗
0w ) = M�ki+1,1.

This is because M�M∗
0 = 0.

– The outputs of EncO also hide w.
• For τ such that τi+1 = 0, k′

τ is independent of ki+1,1, and therefore, so
does EncO(τ).

• For τ such that τi+1 = 1, and for any y ∈ span(M,M1), we have:

y�(k′
τ + M∗

0w ) = y�k′
τ (2)

since M�M∗
0 = M�

1M
∗
0 = 0, which implies y�M∗

0 = 0.
– The first j outputs of DecO also hide w.

• For τ such that τi+1 = 0, k′
τ is independent of ki+1,1, and therefore, so

does DecO([y], τ, K̂).
• For τ such that τi+1 = 1 and y ∈ span(M,M1), the fact that

DecO(τ, [y], K̂) is independent of w follows readily from Equation (2).
• For τ such that τi+1 = 1 and y /∈ span(M,M1), that is, for an ill-formed

query, DecO outputs 0, independently of w, by definition of G2.i.1.j .

This proves that w is uniformly random from A’s viewpoint.
Finally, because the j + 1-st query (τ, [y], K̂) is ill-formed, we have τi+1 = 1,

and y /∈ span(M,M1), which implies that y�M∗
0 	= 0. Therefore, the value

K = [y�(k′
τ + M∗

0w)] = [y�k′
τ + y�M∗

0︸ ︷︷ ︸
�=0

w]

computed by DecO is uniformly random over G from A’s viewpoint. Thus, with
probability 1 − 1/q over K ←r G, we have K̂ 	= K, and DecO(τ, [y], K̂) = 0.

We prove Claim 2 similarly, arguing than in G′
2.i.1.j , the value K := [y�k′

τ ],

where k′
τ :=

(
kτ +M∗

0RF
(0)
i+1(τ|i+1)+M∗

1RF
(1)
i (τ|i)

)
, computed by DecO(τ, [y], K̂)

on its j + 1-st query, is completely hidden from A, up to its j + 1-st query to
DecO, if (τ, [y], K̂) is ill-formed. The argument goes exactly as for Claim 1. �
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Lemma 9 (G2.i.2 to G2.i.3). For all 0 ≤ i ≤ λ − 1,

|Adv2.i.2 − Adv2.i.3| ≤ 2Qdec

q
,

where Qdec is the number of times A queries DecO.

Proof of Lemma 9. In G2.i.3, we use the same decomposition span(M⊥) =
span(M∗

0,M
∗
1) as that in G2.i.2. The entropy of the components of k′

τ that lie in
span(M∗

1) increases from G2.i.2 to G2.i.3. To argue that these two games are sta-
tistically close, we use a Cramer-Shoup argument [11], exactly as for Lemma 8.

We define RF
(1)
i+1{0, 1}i+1 → Z

k
q as follows:

RF
(1)
i+1(τ|i+1) :=

{
RF

(1)
i (τ|i) + RF′(1)

i (τ|i) if τi+1 = 0
RF

(1)
i (τ|i) if τi+1 = 1

where RF′(1)
i : {0, 1}i → Z

k
q is a random function independent from RF

(1)
i . This

way, RF(1)
i+1 is a random function.

We show that the outputs of EncO and DecO are statistically close in G2.i.1

and G2.i.2. We decompose the proof in two cases (delimited with �): the queries
with a tag τ ∈ {0, 1}λ such that τi+1 = 0, and the queries with tag τ such that
τi+1 = 1.

Queries with τi+1 = 1:
The only difference between G2.i.2 and G2.i.3 is that Setup computes k′

τ using
the random function RF

(1)
i in G2.i.2, whereas it uses the random function RF

(1)
i+1

in G2.i.3 (see Fig. 7). Therefore, by definition of RF(1)
i+1, for all τ ∈ {0, 1}λ such

that τi+1 = 1, k′
τ is the same in G2.i.2 and G2.i.3, and the outputs of EncO and

DecO are identically distributed. �
Queries with τi+1 = 0:
Observe that for all y ∈ span(M,M0) and all τ ∈ {0, 1}λ such that τi+1 = 0,

G2.i.3︷ ︸︸ ︷

y�
(
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i) + M∗

1RF
′(1)
i (τ|i)

)

= y�
(
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i)

)
+ y�M∗

1RF
′(1)
i (τ|i)

︸ ︷︷ ︸
=0

=

G2.i.2︷ ︸︸ ︷
y� ·

(
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i)

)

where the second equality uses the fact M�M∗
1 = M�

0M
∗
1 = 0, which implies

y�M∗
1 = 0.
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This means that:

– the output of EncO on any input τ such that τi+1 = 0 is identically distributed
in G2.i.2 and G2.i.3;

– the output of DecO on any input (τ, [y], K̂) where τi+1 = 0, and y ∈
span(M,M0) is the same in G2.i.2 and G2.i.3.

Henceforth, we focus on the ill-formed queries to DecO, namely those corre-
sponding to τi+1 = 0, and y /∈ span(M,M0). The rest of the proof goes similarly
than the proof of Lemma 8. See the latter for further details. �

Lemma 10 (G2.i.3 to G2.i+1). For all 0 ≤ i ≤ λ − 1, there exists an adversary
B2.i.3 such that T(B2.i.3) ≈ T(A) + (Qenc + Qdec) · poly(λ) and

|Adv2.i.3 − Adv2.i+1| ≤ 2 · Advmddh
Uk,GGen(B2.i.3) +

2
q − 1

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively,
and poly(λ) is independent of T(A).

Here, we use the MDDH Assumption to “tightly” switch the distribution of
all the challenge ciphertexts, as for Lemma 7. We proceed in two steps, first, by
changing the distribution of all the ciphertexts with a tag τ such that τi+1 = 0,
and then, the distribution of those with a tag τ such that τi+1 = 1, using the
MDDH Assumption with respect to an independent matrix for each step.

Proof of Lemma 10. To go from G2.i.3 to G2.i+1, we switch the distribution of the
vectors [y] sampled by EncO, using the Qenc-fold U3k,k-MDDH Assumption. This
transition is symmetric to the transition between G2.i and G2.i.1 (see the proof
of Lemma 7 for further details). Finally, we use the fact that for all τ ∈ {0, 1}λ,
M∗

0RF
(0)
i+1(τ|i) + M∗

1RF
(1)
i+1(τ|i+1) is identically distributed to M⊥RFi+1(τ|i+1),

where RFi+1 : {0, 1}i+1 → Z
2k
q is a random function. This is because (M∗

0,M
∗
1)

is a basis of span(M⊥). �
The proof of Lemma 6 follows readily from Lemmas 7, 8, 9, and 10. �

Lemma 11 (G2.λ). Adv2.λ ≤ Qenc

q .

Proof of Lemma 11. We show that the joint distribution of all the values K0

computed by EncO is statistically close to uniform over G
Qenc . Recall that on

input τ , EncO(τ) computes

K0 := [y�(kτ + M⊥RFλ(τ))],

where RFλ : {0, 1}λ → Z
2k
q is a random function, and y ←r Z

3k
q (see Fig. 6).

We make use of the following properties:

Property 1: all the tags τ queried to EncO, such that EncO(τ) 	= ⊥, are distinct.
Property 2: the outputs of DecO are independent of {RF(τ) : τ ∈ Tenc}.

This is because for all queries (τ, [y], K̂) to DecO such that τ ∈ Tenc,
DecO(τ, [y], K̂) = 0, independently of RFλ(τ), by definition of G2.λ.
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Property 3: with probability at least 1 − Qenc

q over the random coins of EncO,
all the vectors y sampled by EncO are such that y�M⊥ 	= 0.

We deduce that the joint distribution of all the values RFλ(τ) computed by
EncO is uniformly random over

(
Z
2k
q

)Qenc (from Property 1), independent of the
outputs of DecO (from Property 2). Finally, from Property 3, we get that the
joint distribution of all the values K0 computed by EncO is statistically close to
uniform over G

Qenc , since:

K0 := [y�(kτ + M⊥RFλ(τ)) = [y�kτ + y�M⊥
︸ ︷︷ ︸

�=0 w.h.p.

RFλ(τ)].

This means that the values K0 and K1 are statistically close, and therefore,
Adv3 ≤ Qenc

q . �
Finally, Theorem 1 follows readily from Lemmas 4, 5, 6, and 11. �

4 Multi-ciphertext CCA-secure Public Key Encryption
Scheme

4.1 Our Construction

We now describe the optimized IND-CCA-secure PKE scheme. Compared to the
PCA-secure KEM from Sect. 3, we add an authenticated (symmetric) encryption
scheme (EncAE,DecAE), and set the KEM tag τ as the hash value of a suitable part
of the KEM ciphertext (as explained in the introduction). A formal definition
with highlighted differences to our PCA-secure KEM appears in Fig. 8.

We prove the security under the Uk-MDDH Assumption, which admits a tight
reduction to the standard k-Lin Assumption.

Theorem 2. The Public Key Encryption scheme PKECCA defined in Fig. 8
has perfect correctness, if the underlying Authenticated Encryption scheme AE
has perfect correctness. Moreover, if the Uk-MDDH Assumption holds in G,
AE has one-time privacy and authenticity, and H generates collision resistant
hash functions, then PKECCA is IND-CCA secure. Namely, for any adversary
A, there exist adversaries B, B′, B′′ such that T(B) ≈ T(B′) ≈ T(B′′) ≈
T(A) + (Qdec + Qenc) · poly(λ) and

Advind-cca
PKECCA

(A) ≤ (4λ + 1) · Advmddh
Uk,GGen(B)

+ ((4λ + 2)Qdec + Qenc + QencQdec) · Advae-ot
AE (B′)

+ Advcr
H(B′′) + Qenc(Qenc + Qdec) · 2−Ω(λ),

(3)

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively,
and poly(λ) is independent of T(A).
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Fig. 8. PKECCA, an IND-CCA-secure PKE. We color in blue the differences with
KEMPCA, the IND-PCA-secure KEM in Fig. 4. Here, GGen is a prime-order group gener-
ator (see Sect. 2.3) , and AE := (EncAE,DecAE) is an Authenticated Encryption scheme
with key-space K := G (see Definition 7).

We note that the Qenc and Qdec factors in (3) are only related to AE. Hence,
when using a statistically secure (one-time) authenticated encryption scheme,
the corresponding terms in (3) become exponentially small.

Remark 2 (Extension to the Multi-user CCA Security). We only provide an
analysis in the multi-ciphertext (but single-user) setting. However, we remark
(without proof) that our analysis generalizes to the multi-user, multi-ciphertext
scenario, similar to [6,16,18]. Indeed, all computational steps (not counting the
steps related to the AE scheme) modify all ciphertexts simultaneously, relying
for this on the re-randomizability of the Uk-MDDH Assumption relative to a
fixed matrix M. The same modifications can be made to many PKECCA simulta-
neously by using that the Uk-MDDH Assumption is also re-randomizable across
many matrices Mi. (A similar property for the DDH, DLIN, and bilinear DDH
assumptions is used in [6], [16], and [18], respectively.)

We defer the proof of Theorem 2 to the full version of this paper.

Acknowledgments. We would like to thank Jie Chen for insightful and inspiring dis-
cussions, and the reviewers for helpful comments. This work was done in part while the
first and last authors were visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and NSF grant CNS-1523467.
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Indistinguishability Obfuscation from
Constant-Degree Graded Encoding Schemes
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Abstract. We construct an indistinguishability obfuscation (IO)
scheme for all polynomial-size circuits from constant-degree graded
encoding schemes, assuming the existence of a subexponentially secure
pseudo-random generator computable by constant-degree arithmetic cir-
cuits, and the subexponential hardness of the Learning With Errors
(LWE) problems. Previously, all candidate general purpose IO schemes
rely on polynomial-degree graded encoding schemes.

1 Introduction

Program obfuscation [13] aims to make computer programs unintelligible while
preserving their functionality. Recently, the first candidate general purpose indis-
tinguishability obfuscation (IO) scheme for all polynomial-size circuits was pro-
posed by Garg et al. [36]. Soon after that, an explosion of follow-up works
showed the impressive power of IO, not only in obtaining classical cryptographic
primitives, from one-way functions [46], trapdoor permutations [15], public-key
encryption [60], to fully homomorphic encryption [26], but also in reaching new
possibilities, from functional encryption [36], 2-round adaptively secure multi-
party computation protocols [24,34,37], succinct garbling in time independent
of the computation time [14,25,47,48], to constant-round concurrent ZK pro-
tocol [28]. It seems that IO is charting a bigger and more desirable map of
cryptography.

However, the Achilles heel of IO research is that it is still unknown whether
general purpose IO can be based on standard hardness assumptions. So far, all
general purpose IO schemes are constructed in two steps [4,7,12,22,40,59,62].
First, an IO scheme for (polynomial size) NC1 circuits is built using some candi-
date graded encoding schemes. The latter is an algebraic structure, introduced
by Garg et al. [35], that enables homomorphically evaluating certain polynomi-
als over encoded ring elements and testing whether the output is zero. Next, a
bootstrapping theorem transforms an IO scheme for NC1 into one for P/poly,
assuming the LWE assumption [36].
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Tremendous efforts have been spent on basing the first step on more solid
foundations. Unfortunately, the state of affairs is that all candidate graded
encoding schemes [31,32,35,38] are susceptible to the so called “zeroizing
attacks” [20,27,30,35,39] to different degrees.

In this work, we approach the problem from a different, more complexity
theoretic, angle.

How much can we strengthen the bootstrapping theorem, and hence, sim-
plify the task of building graded encoding schemes?

We explore answers to this question and obtain the following main result:

Theorem 1 (Informal). Assuming constant-degree PRG and LWE with
subexponential hardness, there is a general purpose IO scheme using only
constant-degree graded encodings.

Though our result does not eliminate the need of graded encoding schemes,
it weakens the requirement on them to only supporting evaluation of constant-
degree polynomials; such a scheme is referred to as constant-degree graded encod-
ing schemes. In comparison, previous IO schemes rely on polynomial degree
graded encodings, polynomial in the size of the obfuscated circuit. This improve-
ment is established exactly via a stronger bootstrapping theorem.

– Bootstrapping IO for Constant-Degree Arithmetic Circuits. We show that
there is a class C of special-purpose constant-degree arithmetic circuits (i.e.,
corresponding to constant-degree polynomials), such that, special-purpose IO
for C can be bootstrapped to general purpose IO for P/poly, assuming the sub-
exponential hardness of LWE, and the existence of a sub-exponentially secure
Pseudo-Random Generator (PRG) computable by constant-degree arithmetic
circuits. An candidate of such a PRG is Goldreich’s PRG in NC0 [41].

– Constant-Degree Graded Encodings Suffice. Then, we show that special pur-
pose IO for C can be constructed from constant-degree graded encoding
schemes.

Relation with Recent Works [16,51,58]. At a first glance, our main the-
orem is surprising in light of the recent results by [17,51,58]. They showed
that any general-purpose IO scheme using ideal constant-degree graded encod-
ings can be transformed into an IO scheme in the plain model. Alternatively,
their results can be interpreted as: Ideal constant-degree graded encodings do
not “help” constructing general-purpose IO schemes. In contrast, our results
says that concrete constant-degree graded encodings imply general-purpose IO
(assuming sub-exponentially secure constant-degree PRG and LWE). The divide
stems from the fact that ideal graded encodings can only be used in a black-
box manner, whereas our IO scheme crucially makes non-black-box use of the
underlying graded encoding scheme. Because of the non-black-box nature of our
construction, we actually do not obtain an IO scheme for P/poly in the ideal
constant-degree graded encoding model, and hence we cannot apply the trans-
formation of [17,51,58] to eliminate the use of graded encodings.
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Moreover, it is interesting to note that our construction of IO for P/poly uses
as a component the transformation from sub-exponentially secure compact func-
tional encryption to general purpose IO by [3,16]. Their transformation makes
non-black-box use to the underlying functional encryption, and is in fact the only
non-black-box component in our construction. Therefore, if there were a black-
box transformation from sub-exponentially secure compact functional encryption
to general purpose IO, we would have obtained a general purpose IO scheme in
the ideal constant-degree graded encoding model, and then by [17,51,58], a gen-
eral purpose IO in the plain model. In summary, the following corollary suggests
another avenue towards realizing IO.

Corollary 1. Assume constant-degree PRG and LWE (with subexponential
hardness). If there is a black-box transformation from any (subexponentially
secure) compact functional encryption to an IO scheme for P/poly, there is an
IO scheme for P/poly in the plain model.

1.1 Overview

Our results contain three parts: First, we establish a stronger bootstrapping
theorem from IO for a class {Cλ} of special-purpose constant-degree arithmetic
circuits to general-purpose IO. Second, we show that thanks to the constant-
degree property and the simple structure of the special-purpose circuits, IO for
{Cλ} can be constructed using only constant-degree graded encodings. The con-
struction of the special-purpose IO scheme makes only black-box use of the
constant-degree graded encodings, and is secure in the ideal model; but, the
bootstrapping requires using the code of the special-purpose IO scheme. There-
fore, to stitch the two first parts together, in the third part, we instantiate the
special-purpose IO scheme using semantically secure graded encodings (c.f. [59]),
and obtain general-purpose IO via bootstrapping. Below, we explain each part
in more detail.

Part 1: Bootstrapping IO for Constant-Degree Arithmetic Circuits. So
far, there are only two bootstrapping techniques in the literature, both starting
from IO for NC1. The first technique, proposed by [36], combines fully homo-
morphic encryption (FHE) and IO for NC1, where the latter is used to obfuscate
a circuit that performs FHE decryption and verifying the correctness of a com-
putation trace, both can be done in logarithmic depth. The second technique
by [26] is based on Applebaum’s idea of bootstrapping VBB for NC0 [5], where
the underlying IO for NC1 is used for obfuscating a circuit that computes for each
input a randomized encoding (w.r.t. that input and the obfuscated circuit), using
independent randomness produced by a Puncturable Pseudo-Random Functions
(PPRF) [61] computable in NC1 [23].

In sum, current bootstrapping techniques require the basic IO scheme to be
able to handle complex cryptographic functions. It is an interesting question
to ask what is the simplest circuit class — referred to as a “seed class” —
such that, IO for it is sufficient for bootstrapping. In this work, we reduce the
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complexity of “seed classes” for NC1 to circuits computable in constant degree.
More specifically,

Proposition 1 (Informal, Bootstrapping Constant-Degree Computa-
tions). Assume constant-degree PRG and LWE with subexponential hardness.
There is a class of special-purpose constant-degree circuits {Cλ} with domains
{Dλ}, where Dλ ⊆ {0, 1}poly(λ), such that, IO for {Cλ} with universal efficiency
(explained below) can be bootstrapped into IO for P/poly.

Let us explain our bootstrapping theorem in more detail.

Model of Constant Degree Computations. Every arithmetic circuit AC naturally
corresponds to a polynomial by associating the ith input wire with a formal
variable xi; the degree of AC is exactly the degree of the polynomial. In this work,
we consider using arithmetic circuit to compute Boolean functions f : {0, 1}n →
{0, 1}m, or logic circuits C. A natural model of computation is the following: Fix
a ring R (say, the integers or the reals); a Boolean function f (or logic circuit C)
is computed by an arithmetic circuit AC, if ∀x ∈ {0, 1}n, C(x) = AC(x) over
R (the 0 and 1 bits are mapped to the additive and multiplicative identities of
R respectively). However, in this work, we consider a even weaker computation
model that requires AC to agree with C over any choice of ring R.

– Constant-Degree Computations: We say that a Boolean function f (or logic
circuit C) is computed by an arithmetic circuit AC, if ∀x ∈ {0, 1}n, C(x) =
AC(x), over any ring R.

This model of constant-degree computations is quite weak, in fact, so weak
that it is equivalent to NC0. Nisan and Szegedy [56] showed that the degree
of the polynomial that computes a Boolean function f over the ring of reals is
polynomially related with the decision tree complexity of f . Therefore, if f has
constant degree in our model, it has constant decision tree complexity, implying
that it is in NC0.

On the other hand, it is well known that IO for NC0 can be trivially con-
structed by searching for canonical representations, which can be done efficiently
as every output bit is computed by a constant-size circuit. Though it would be
ideal to bootstrap IO for NC0, we do not achieve this. Instead, we strengthen the
above model of computation by considering partial Boolean functions (or logic
circuits) defined only over a subset D ∈ {0, 1}n (i.e., we only care about inputs
in D).

– Constant-Degree Computations with Partial Domains: We say that a Boolean
function f (or logic circuit C) with domain D ∈ {0, 1}n is computed by an
arithmetic circuit AC, if ∀x ∈ D, C(x) = AC(x), over any ring R.

A concrete constant-degree partial function that is not computable in NC0 is a
variant of the multiplexer function mux that on input (x, ei), where x, ei ∈ {0, 1}n

and the hamming weight of ei is 1, outputs xi. Clearly, the output bit has to
depend on all bits of ei and cannot be computed in NC0. But, xi can be computed
in degree 2 as the inner product of x and ei over any ring R.
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Nevertheless, our model of constant degree computations (with potentially
partial domains) is still weak. In particular, it is separated from AC0, since we
cannot compute unbounded AND in it. In the body of the paper, we put even
more constraints and say that a class of circuits (as opposed to a single circuit) is
constant degree only if they have universal circuits of constant degrees; we omit
this detail in the introduction. As a further evidence on how weak our model
of constant degree computations are, we show next that even statistical IO is
feasible for such circuits.

Trivial, Statistical IO for Constant Degree Computations. Let C be a logic cir-
cuit computable by a degree-d arithmetic circuit AC, which corresponds to
a degree-d polynomial. At a high-level, because degree-d polynomials can be
learned in poly(nd) time, we can obfuscate C in the same time with statistical
security. More specifically, the degree-d polynomial p(x) can be equivalently rep-
resented as a linear function L(X) over � = nd variables, each associated with
a degree d monomial over x1 · · · xn. To obfuscate C, we simply pick � inputs
x1, · · · , x� ∈ {0, 1}n, such that, their corresponding monomial values X1, · · · ,X�

are linearly independent. Now, the obfuscation C̃ of C is simply the set of input
output pairs (x1, y1), · · · , (x�, y�) where yi = C(xi).

Given C̃, we can to evaluate C on any input x, since C(x) = L(x) over any
ring, and the linear function L can be learned from the set of input output pairs
using Gaussian elimination. Moreover, it is easy to see that obfuscation of any
two functionally equivalent circuits C and C ′ are identically distributed, as C
and C ′ have the same truth table and their obfuscations simply reveal a part of
their truth tables.

The above construction, though achieve statistical security, is however,
trivial: The truth table of a degree-d circuit effectively has only size nd (by
Gaussian elimination), and the above construction simply publishes the effective
truth table. As a result, it is not sufficient for our bootstrapping.

Computational IO for Constant Degree Computations, with Universal Efficiency.
Instead, we require IO for constant degree computations with better, non-trivial,
efficiency. More specifically,

– Universal Efficiency: We say that IO for constant degree circuits has universal
efficiency, if its run-time is independent of the degree of the computation.
That is, there is a universal polynomial p, such that, for every d, obfuscating
a degree-d circuit C takes time p(1λ, |C|) for sufficiently large λ.

In fact, our bootstrapping theorem works even if the efficiency of IO for constant
degree circuits grows with the degree, as long as it is bounded by nh(d) for a
sufficiently small function h, say, h(d) = log log log(d). For simplicity, we consider
the above universal efficiency.

General Connection between Complexity of PRG and Complexity of Seed Class.
Finally, we note that our bootstrapping theorem can be generalized to establish a
connection between the complexity of PRG and the complexity of “seed classes”
sufficient for bootstrapping IO. Consider any PRG scheme PRG (not necessar-
ily computable in constant degree). There is a family {Cλ} of special-purpose
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oracle circuits that have constant degree (such a circuit can be computed by an
arithmetic circuit with oracle gates, and its degree is the degree of the arith-
metic circuit when replacing the oracle gates with additions), such that, IO for
the class of composed circuits in {CPRG

λ }, with again universal efficiency, can be
bootstrapped into IO for P/poly.

Proposition 2 (Informal, General Bootstrapping Theorem). Assume a
PRG scheme PRG and LWE with sub-exponential hardness. There is a class of
special-purpose oracle circuits {Cλ} that have constant degree, such that, special
purpose IO for {CPRG

λ } with universal efficiency can be bootstrapped into IO for
P/poly.

In particular, plugging in a constant-degree PRG yields Proposition 1, and plug-
ging in a PRG in AC0 or TC0 establishes that IO for AC0 or TC0 with universal
efficiency suffices for constructing general purpose IO.

Given the general connection between the complexity of PRG and that of
the seed class, we summarize the state-of-the-art of low depth PRG at the end
of the introduction.

Techniques. Our starting point is two beautiful recent works by Bitansky and
Vaikuntanathan [16] and Ananth and Jain [3] showing that sub-exponentially
secure (sublinearly) compact FE for NC1 implies IO for P/poly. Unfortunately,
so far, the former is only known from IO for NC1; thus, our goal is to construct
compact FE using IO for the simplest circuits.

Technically, the transformation in the first step is similar to that in [3,49].
However, the former [3] requires IO for a class of special-purpose Turing machines
(as opposed circuits). Our transformation uses the same idea as in [49], but
requires a much more refined analysis in order to identify and simplify the cir-
cuits, whose special structure plays a key role later.

The work of Ananth and Jain [3], and another very recent work by the author,
Pass et al. [49] already explored this direction: They show that a compact FE
scheme for NC1 circuits with single output bit (which can be based on LWE [43])
can be transformed into a compact FE for all NC1 circuits with multiple output
bits, using IO for circuits (Turing machines in [3]) with only a logarithmic number
c log λ of input wires; such circuits have λc-sized truth table. [49] further weakens
the efficiency requirement on such IO schemes: As long as the IO scheme outputs
obfuscated circuits whose size is sub-linear in the size of the truth table (matching
the sub-linear compactness of FE), the transformation goes through.

However, the circuits used in [3,49] are complex, in NC1. In this work, we
significantly reduce the complexity of the circuits using more refined analysis and
a number of new techniques. For example, we build a special-purpose PPRF for
polynomial sized domain that is computable in constant degree. Interestingly,
the polynomial-sized domain is not of the form {0, 1}c log λ, rather is embedded
sparsely in a much larger domain D ⊂ {0, 1}poly(λ). This crucially allows us
to circumvent lower bounds on the complexity of normal PPRF. Moreover, we
design ways to perform comparisons, such as, testing =, ≥, ≤ relations, between
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two integers i, i′ ∈ [poly(λ)] in constant degree; here again, we crucially rely on
the fact that we can represent the integers in a different way, embedded sparsely
in a much larger domain.

Part 2: Special Purpose IO in Constant-Degree Ideal Graded Encod-
ing Model. Ideal grade encoding model [7,12,22,35,62] captures generic alge-
braic attacks over graded encodings: In this model, players have black-box access
to a ring, and can only perform certain restricted operations over ring elements,
and determine whether a “legal” polynomial (one satisfying all restrictions) eval-
uates to 0 or not—this is referred to as a “zero-test query”.

An important parameter, called the degree of the graded encodings [51,58],
is the maximum degree of (legal) polynomials that can be “zero-tested”. Clearly,
the lower the degree is, the weaker of the graded encodings are. Consider for
instance, when the degree is one, the ideal graded encoding model is equivalent
to the generic group model, in which operations are restricted to be linear (i.e.,
degree 1 polynomials), and when degree is two, ideal graded encodings capture
idealized groups with bilinear maps. Both special cases have been extensively
studied.

So far, general-purpose IO schemes in ideal models all require high degree
graded encodings (polynomial in the size of the circuit being obfuscated)
[7,12,22,62]. The dilemma is that such models are so powerful that even general
purpose VBB obfuscation is feasible, which is impossible in the plain model [13].
Two recent works [51,58] initiated the study of low-degree ideal graded encod-
ings, showing that when the degree is restricted to a constant, general purpose
VBB obfuscation becomes infeasible. Therefore, constant-degree ideal graded
encoding model is qualitatively weaker than its high-degree counterpart, and is
much closer to the plain model.

Nevertheless, we show that for the simple class of constant-degree computa-
tions, it is sufficient.

Proposition 3 (Informal, Special-Purpose IO in Ideal Model). There is
a universally efficient IO scheme for the class {Cλ} of constant-degree special-
purpose circuits in Proposition 1, in the constant-degree ideal graded encoding
model.

Our special-purpose IO scheme crucially exploits the constant degree property
of our seed class, as well as the simple structure of circuits in the class.

Type-Degree Preserving IO Construction. Our main technique is characterizing
a general type of circuits that admit IO schemes with low degree ideal graded
encodings. More specifically, we define a new measure, called type degree, for
arithmetic circuits, which is a quantity no smaller than the actual degree of
the circuit, and no larger than the maximum degree of circuits with the same
topology (achieved by a circuit with only multiplication gates). We show that
if a class of circuits have type degree td, then there is an IO scheme for this
class using ideal graded encodings of roughly the same degree O(td); we say that
such an IO construction is type-degree preserving. Our type-degree preserving IO
construction is based on the IO scheme of Applebaum and Brakerski [7] in the
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composite order ideal graded encoding model; we believe that our construction
is of independent interests.

Furthermore, thanks to the simplicity of our special purpose circuits in
Proposition 1, we can show that they not only have constant degree, but also
have constant type degree, leading to Proposition 4.

Part 3: Instantiation with Concrete Graded Encoding Schemes. The
final part combine our bootstrapping theorem (Proposition 1) with our special-
purpose IO scheme (Proposition 4) to obtain general-purpose IO, for which we
must first instantiate the ideal graded encodings with concrete ones, for the boot-
strapping theorem makes non-black-box use of the special-purpose IO. Towards
this, the technical question is “under what computational hardness assumption
over graded encodings can we prove the security of our special-purpose IO scheme
in the plain model?”

So far, in the literature, there are two works that answer questions like the
above. Pass et al. [59] proposed the meta-assumption of semantic security over
prime order graded encoding schemes, from which the security of a general pur-
pose IO scheme follows via an explicit security reduction. Subsequently, Gentry
et al. [40] proposed the Multilinear Subgroup Elimination assumption over com-
posite order graded encoding schemes which improves upon semantic security in
terms of simplicity and the number of assumptions in the family (albeit requiring
a sub-exponential security loss).

Following [59], we show that our special purpose IO schemes in Proposition 4
can be instantiated with any composite order graded encoding schemes satisfying
an analogue of semantic security for composite order rings; importantly, the
graded encoding scheme only need to support constant-degree computation.1

Hence, combining with our bootstrapping theorem from Part 1, we obtain a
general purpose IO scheme from constant-degree graded encoding schemes.

Proposition 4 (Informal, Special-Purpose IO in the Plain Model).
There is a universally efficient IO scheme for the class {Cλ} of constant-degree
special-purpose circuits in Proposition 1, assuming semantically-secure constant-
degree graded encodings.

Finally, applying our bootstrapping theorem (Proposition 1) on the special-
purpose IO scheme in the above proposition, gives our main theorem
(Theorem 1).

1.2 Low Depth PRG

We survey constructions of low depth PRGs. Some of the texts below are taken
verbatim from Applebaum’s book [6].

The existence of PRG in TC0 follows from a variety of hardness assump-
tion including intractability of factoring, discrete logarithm, or lattice problems
1 We note that the security of (variants of) our IO scheme could potentially be proven

from the multilinear subgroup elimination assumption of [40]; we leave this as future
work.
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(e.g. [11,53–55]). Literature on PRG in AC0 is limited; more works focus directly
on PRG in NC0. On the negative side, it was shown that there is no PRG in NC0

4

(with output locality 4) achieving super-linear stretch [33,52]. On the positive
side, Applebaum et al. [8] showed that any PRG in NC1 can be efficiently “com-
piled” into a PRG in NC0 using randomized encodings, but with only sub-linear
stretch. The authors further constructed a linear-stretch PRG in NC0 under a
specific intractability assumption related to the hardness of decoding “sparsely
generated” linear codes [9], previously conjectured by Alekhnovich [1]. Unfortu-
nately, to the best of our knowledge, there is no construction of PRG in NC0 (or
even AC0) with polynomial stretch from well-known assumptions. But, candidate
construction exists.

Goldreich’s Candidate PRGs in NC0. Goldreich’s one-way functions f : {0, 1}n

→ {0, 1}m where each bit of output is a fixed predicate P of a constant number
d of input bits, chosen at random or specified by a bipartite expander graph with
the right degree, is also a candidate PRG when m > n. Several works investigated
the (in)security of Goldreich’s OWFs and PRGs: So far, there are no successfully
attacks when the choice of the predicate P avoids certain degenerating cases [10,
18,29,57]. Notably, O’Donnell and Witmer [57] gave evidence for the security
of Goldreich’s PRGs with polynomial stretch, showing security against both
subexponential-time F2-linear attacks, as well as subexponential-time attacks
using SDP hierarchies such as Sherali-Adams+ and Lasserre/Parrilo.

1.3 Organization

We provide more detailed technical overviews at the beginning of Sects. 3, 4,
and 5.

In Sect. 2, we formalize our model of constant-degree computations, IO with
universal efficiency, and provide basic preliminaries. In Sect. 3, we prove a prelude
of our bootstrapping theorem that identifies a class of special purpose circuits,
such that IO for this class with universal efficiency can be bootstrapped to
general purpose IO. In Sect. 4, we show that the class of special purpose circuits
identified in Sect. 3 are computable in constant degree, when the underlying PRG
is. Then, we construct a universally efficient IO scheme for these special purpose
circuits in constant-degree ideal graded encoding model in Sect. 5. Due to the
lack of space, we refer the readers to the full version on how to instantiate our
special-purpose IO with semantically secure graded encodings.

2 Preliminaries

Let Z and N denote the set of integers, and positive integers, [n] the set
{1, 2, . . . , n}, R denote a ring, and 0,1 the additive and multiplicative identities.

Due to the lack of space, we omit definitions of standard cryptographic prim-
itives such as, PRG, PPRF, (compact) functional encryption and randomized
encodings (see [3,8,16]), and only discuss our models of computation and give
definitions of IO and universal efficiency below.
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2.1 Models of Computation

Logic Circuits and Partial Domains. In this work, by circuit, we mean
logic circuits from {0, 1}∗ to {0, 1}∗, consisting of input gates, output gates, and
logical operator gates (AND and OR gates with fan-in 2 and fan-out > 0, and
NEG gate with fan-in 1).

Any circuit with n-bit input wires and m-bit output wires defines a total
Boolean function f mapping {0, 1}n to {0, 1}m. In this work, importantly, we
also consider partial functions f defined only over a (partial) domain D ⊂ {0, 1}n.
Correspondingly, we associate a circuit C with a domain D ⊂ {0, 1}n, meaning
that we only care about evaluating C over inputs in D.

Arithmetic Circuits. We also consider arithmetic circuits AC consisting of
input gates, output gates and operator gates for addition, subtraction, and mul-
tiplication (with fan-in 2 and fan-out > 0). Every arithmetic circuit AC with n
input gates defines a n-variate polynomial P over Z, by associating the ith input
gate with a formal variable xi. We say that AC has degree d if P has degree d.
An arithmetic circuit AC can also be evaluated over any other ring R (different
from Z), corresponding to computing the polynomial P over R.

Boolean Functions Computable by Arithmetic Circuits. In this work,
we, however, do not consider evaluating arithmetic circuits over any specific ring.
Rather, we say that a Boolean function f from domain D ⊆ {0, 1}n to range
{0, 1}m, is computed/implemented by an arithmetic circuit AC if for every input
x ∈ D with output y = C(x), AC evaluated on x equals to y over any ring R,
where x and y are vectors of ring elements derived from x and y respectively,
by mapping 0 to the additive identity 0 and 1 to the multiplicative identity 1 of
R. We omit explicitly mentioning this conversion in the rest of the paper, and
simply write AC(x) = C(x).

We stress again that, in our model, a Boolean function f is computable by
an arithmetic circuit only if it produces the correct outputs for all inputs in D,
no matter what underlying ring is used. This restriction makes this model of
computation very weak.

Similarly, we say that a circuit C with domain D ⊂ {0, 1}n is computable by
an arithmetic circuit AC, if the Boolean function f : D → {0, 1}m defined by C
is computable by AC.

Circuit Classes and Families of Circuit Classes. We use the following
terminologies and notations:

– A family of circuits C with domain D is simply a set of circuits C ∈ C with
common domain D.

– A class of circuits {Cλ}λ∈N
with domains {Dλ}λ∈N

is an ensemble of sets of
circuits, where each Cλ is associated with domain Dλ. We use the shorthands
{Cλ} and {Dλ}.

– A family of circuit classes {{Cx
λ}}x∈X is a set of circuit classes, where each

circuit class {Cx
λ} is indexed by an element x in a (countable) index set X.



38 H. Lin

For convenience, when the index set X is clear in the context, we use short-
hand {{Cx

λ}}. A family of circuit classes can also be associated with domains
{{Dx

λ}}, meaning that each set Cx
λ is associated with domain D

x
λ.

For example, NC1 circuits can be described as a family of circuit classes{{
Cd

λ

}}d∈N, where for every d ∈ N, the circuit class
{
Cd

λ

}
contains all circuits

of depth d log λ.

Universal (Arithmetic) Circuits. Let C be a family of circuits with domain
D, where every C ∈ C is described as an �-bit string, and let U be an (arithmetic)
circuit. We say that U is the universal (arithmetic) circuit of C if every C ∈ C
is computed by U(�,C) over domain D. Moreover, we say that an ensemble of
(arithmetic) circuits {Uλ} is the universal (arithmetic) circuits of a circuit class
{Cλ} with domain {Dλ} if for every λ, U is an (arithmetic) universal circuit of
Cλ with domain Dλ.

Degree of (Logic) Circuits. Degree is naturally defined for arithmetic circuits
as described above, but not so for logic circuits and Boolean functions. In this
work, we define the degrees of logic circuits and Boolean functions through the
degree of the arithmetic circuits that compute them. Moreover, we also define
degrees for families of circuits, circuit classes, and families of circuit classes,
through the degrees of the universal arithmetic circuits that compute them.

Degree of a (Logic) Circuit: We say that a circuit C with domain D has
degree d, if it is computable by an arithmetic circuit of degree d.

Degree of a Family of Circuits: We say that a family of circuits C with
domain D has degree d, if it has a universal arithmetic circuit U of degree d.

Degree of a Class of Circuits: We say that a class of circuits {Cλ} with
domain Dλ has degree d(λ), if it has universal arithmetic circuits {Uλ}, with
degree d(λ). If d(λ) is a constant function, then we say {Cλ} has constant
degree.

Degree of a Family of Circuit Classes: We say that a family of circuit classes
{{Cx

λ}} with domains {{Dx
λ}} has constant degree, if for every x ∈ X, circuit

class {Cx
λ} with domains {Dx

λ} has constant degree.

It is important to note that we define the degree of a class of circuits via
the degree of its universal arithmetic circuit, not the degree of individual cir-
cuits inside. For example, consider the natural class of circuits containing all
(polynomial-sized) circuits with a fixed constant degree d (c.f., the class of poly-
sized NC0 circuits with a fixed constant depth d), under our definition, it is
not clear whether this class itself has constant degree, as it is not clear (to us)
whether there is a constant degree universal arithmetic circuit that computes
all of them. Nevertheless, this more stringent definition only makes our boot-
strapping result that it suffices to construct IO for a family of circuit classes
with constant degree stronger, and makes the task of constructing IO for such a
family easier.
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2.2 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation for a class of circuit
defined by [13], adding the new dimension that the class of circuits may have
restricted domains {Dλ}.

Definition 1 (Indistinguishability Obfuscator (iO) for a Circuit Class).
A uniform PPT machine iO is a indistinguishability obfuscator for a class of
circuits {Cλ}λ∈N

(with potentially restricted domains {Dλ}λ∈N
), if the following

conditions are satisfied:

Correctness: For all security parameters λ ∈ N, for every C ∈ Cλ, and every
input x (in Dλ), we have that

Pr[C ′ ← iO(1λ, C) : C ′(x) = C(x)] = 1

μ-Indistinguishability: For every ensemble of pairs of circuits {C0,λ, C1,λ}λ
satisfying that Cb,λ ∈ Cλ, |C0,λ| = |C1,λ|, and C0,λ(x) = C1,λ(x) for every x
(in Dλ), the following ensembles of distributions are μ-indistinguishable,

{
C1,λ, C2,λ, iO(1λ, C1,λ)

}
λ{

C1,λ, C2,λ, iO(1λ, C2,λ)
}

λ

In the above definition, μ can be either negligible for standard IO, or subexpo-
nentially small for sub-exponentially secure IO.

Definition 2 (IO for P/poly). A uniform PPT machine iOP/poly(�, �) is an
indistinguishability obfuscator for P/poly if it is an indistinguishability obfuscator
for the class {Cλ} of circuits of size at most λ.

2.3 Indistinguishability Obfuscation for Families of Circuit Classes

In this work, we consider families of circuit classes, and the task of building a
family of indistinguishability obfuscators, one for each circuit class.

Definition 3 (IO for Families of Circuit Classes). Let {{Cx
λ}}x∈X be a

family of circuit classes (with potentially restricted domains {Dx
λ}). A family of

uniform machines {iOx}x∈X is a family of indistinguishability obfuscators for
{{Cx

λ}}x∈X , if for every constant x ∈ X, iOx is an indistinguishability obfuscator
for the circuit class {Cx

λ} (with domains {Dx
λ}).

The above definition implicitly requires that for every x ∈ X, iOx runs in some
polynomial time, potentially depending on x. However, depending on how the
run-time of iOx vary for different x, qualitatively different types of efficiency
could be considered.

We consider the following notion of universal efficiency in this work.
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Definition 4 (Universal Efficiency). A family of indistinguishability obfusca-
tors {iOx}x∈X for a family of circuit class {{Cx

λ}}x∈X (with potentially restricted
domains {{Dx

λ}}) has universal efficiency, if there exists a universal polynomial
p, such that, for every x ∈ X, iOx(1λ, C) runs in time p(λ, |C|), for every suf-
ficiently large λ (i.e., greater than a constant cx depending on x), and circuit
C ∈ Cx

λ.

We note that it is without loss of generality to only consider the run-time of iOx

for sufficiently large λ (> cx), because the security of iOx already only holds for
sufficiently large λ.

3 Bootstrapping IO for Special-Purpose Circuits

In this section, we identify a family of special-purpose circuit classes and show
how to bootstrap IO for this family to all polynomial-sized circuits.

Proposition 5. Assume the following primitives:

– a sub-exponentially secure compact FE scheme FE for Boolean NC1 circuits,
– a sub-exponentially secure PPRF scheme PPRF, and
– a sub-exponentially secure RE scheme RE in NC0.

Then, there is a family of special-purpose circuit classes {{PT,n
λ }} indexed by

two polynomials T (�) and n(�) and defined w.r.t. FE, PPRF and RE as in Fig. 1,
such that, the following holds:

– If there exists a family {iOT,n} of IO schemes for {{PT,n
λ }} with universal

efficiency, then there are two sufficiently large polynomials T ∗ and n∗, such
that, iOT ∗,n∗

can be transformed into an IO scheme for P/poly.

We note in Sect. 3.1 that all the underlying primitives of the above Proposi-
tion are implied by the sub-exp hardness of LWE.

Overview. Towards the proposition, recall that recent works [2,3,16] show that
to construct IO for P/poly, it suffices to construct a compact FE scheme for NC1

circuits. Formally,

Theorem 2. [2,3,16] Let n be a sufficiently large polynomial. Assume the exis-
tence of a sub-exponentially secure, and (1 − ε)-weakly-compact (single-query,
public-key) FE scheme for NC1 circuits, and weak PRF in NC1. There exists an
indistinguishability obfuscator for P/poly.

Therefore, the natural direction is constructing compact FE scheme for NC1

circuits using IO for the special-purpose circuits. We proceed in two steps: For
any polynomials T and n, let NC1,T,n be the subclass of NC1 circuits with at
most size T (λ) and at most n(λ) input bits.
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– Our first step (in Sect. 3.2) constructs an FE scheme FET,n for NC1,T,n from
any IO scheme iOT,n for {PT,n

λ } (and the underlying primitives of Propo-
sition 5), for arbitrary T and n. Importantly, the encryption time of the
resulting FE scheme is directly proportional to the obfuscation time of the
underlying IO scheme:

TimeiOT,n(1λ, C) ≤ pT,n(λ, |C|)
TimeFE.Enc(mpk, m) ≤ pT,n(λ, q(λ, n(λ), log T (λ)))

where q is a universal polynomial independent of T and n. Note that, this does
not guarantee that the resulting FE scheme is compact, since the run-time of
the IO scheme may depend on T arbitrarily, in particular, it is possible that
pT,n(λ, |C|) > T (λ), while iOT,n is still a valid polynomial time IO scheme
for {PT,n

λ }.
– To overcome the above issue, our next step (in Sect. 3.3) starts with a stronger

premise: The existence of a family {iOT,n} of IO schemes for the family
{{PT,n

λ }} with universal efficiency. This means for any T, n, the obfuscation
time of iOT,n is bounded by a universal polynomial p, and (for sufficiently
large λ)

TimeiOT,n(1λ, C) ≤ p(λ, |C|)
TimeFE.Enc(mpk, m) ≤ p(λ, q(λ, n(λ), log T (λ)))

This essentially means that the FE schemes are compact — encryption time
is independent of T (λ). In particular, for some sufficiently large polynomials
T ∗ and n∗, encryption time of FET ∗,n∗

is much smaller than the time of
the computation, that is, p(λ, q(λ, n∗(λ), log T ∗(λ))) < T ∗. With a closer
examination, such an FE scheme FET ∗,n∗

is sufficient for the transformation
of [2,3,16] to go through. More specifically, the final IO scheme for P/poly
they construct only need to use the underlying FE scheme for NC1 circuits
with some sufficiently large size T ∗ and sufficiently long input length n∗; the
proof goes through, as long as encryption time is sub-linearly (T ∗)1−ε in T ∗.

Putting the two steps together, we conclude Proposition 5.
Technically, the transformation in the first step is similar to that in [3,49].

However, the former [3] requires IO for a class of special-purpose Turing machines
(as opposed circuits). Our transformation uses the same idea as in [49], but
requires a much more refined analysis in order to identify and simplify the cir-
cuits, whose special structure plays a key role later.

3.1 Instantiating the Underlying Primitives from LWE

The first primitive of Proposition 5—a compact FE for Boolean NC1 circuits—
can be derived from the work of Goldwasser et al. [43]: Assuming sub-exp LWE,
they construct a sub-exp secure FE scheme for the class of polynomial-sized
Boolean circuits

{
Cn,d(n)

}
with n input bits and depth d(n). Furthermore, the
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size of the ciphertexts is poly(λ, n, d) (independent of the size of the circuits);
when restricting to Boolean circuits in NC1 (as needed for Proposition 5), the
ciphertexts are compact. Summarizing,

Theorem 3 (Compact FE scheme for Boolean NC1 Circuits [43]).
Assume sub-exponential hardness of the LWE problem. There exists a sub-
exponentially secure compact (single-query, public-key) FE scheme for the class
of Boolean NC1 circuits.

The second primitive—a sub-exp secure PPRF—can be constructed from the
necessary assumption of sub-exp secure OWFs [19,21,45]; but, the evaluation
algorithms of these PPRF schemes have high depth. Recently, Brakerski and
Vaikuntanathan [23] showed that assuming LWE, the depth of the evaluation
algorithm can be reduced to logarithmic O(log λ).

Finally, the third primitive—a sub-exp secure RE scheme in NC0—can be
constructed from sub-exp secure low-depth PRG [8,44], which is in turn implied
by sub-exp secure LWE.

Circuit P [T, n, mpk, i∗, K, m<, Π̂, m>](i)

Constant: A security parameter λ ∈ N, a time bound T ∈ N, a threshold
i∗ ∈ {0, · · · , T + 1}, a public key mpk ∈ {0, 1} mpk of bFE, a punctured
key K ∈ {0, 1} key of PPRF, strings m<, m> of equal length n, and an
RE encoding Π̂.

Input: An index i ∈ [T ].
Procedure:

1. (Ri||Ri) = F(K, i);
2. If i < i∗, set Π̂i = RE.Enc 1λ, bFE.Enc, (mpk, m<||i ; Ri) ; Ri .

3. If i = i∗, set Π̂i = Π̂.
4. If i > i∗, set Π̂i = RE.Enc 1λ, bFE.Enc, (mpk, m>||i ; Ri) ; Ri .

Output: Encoding Π̂i.
Padding: The hardwired encoding Π̂ is padded to be of length η (λ, n, log T ),

and the circuit is padded to be of size η(λ, n, log T ), for some polynomials
η and η.

Circuit classes {PT,n
λ } contains all circuits of form P [λ, T (λ), n(λ), ∗, ∗, ∗, ∗, ∗],

where all wild-card values satisfy length constraints specified above.

Fig. 1. Special-Purpose circuit P

3.2 FE for NC1,T,n from IO for {PT,n
λ }

Fix arbitrary polynomials T and n. We present an FE scheme FET,n for NC1,T,n

from IO for {PT,n
λ }. Our construction starts with a compact FE scheme for

Boolean NC1 circuits bFE = (bFE.Setup, bFE.Enc, bFE.Dec) (as discussed in
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Sect. 3.1, such a scheme can be constructed from LWE), and transforms it into
FET,n. The transformation makes uses of the following additional building blocks:

– a puncturable PRF PPRF = (PRF.Gen,PRF.Punc,F) for input domain
{0, 1}λ.

– a randomized encoding scheme RE = (RE.Enc,RE.Eval) in NC0, and
– an IO scheme iOT,n for circuit class {PT,n

λ } consisting all circuits of the form
P [λ, T, n,mpk, i∗,K,m1, y,m0] defined in Fig. 1.

Let �mpk(λ) be the maximal length of master public keys of bFE, and �key(λ)
that of punctured keys of PPRF respectively.

Construction of FET,n. For any λ, T = T (λ) and n = n(λ), message m of length
n and circuit C with size at most T and input length at most n. The FE scheme
FET,n = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) proceeds as follow:

Setup FE.Setup(1λ, T ): Samples (mpk, msk) $← bFE.Setup(1λ, T ′), where T ′ is
a time bound for circuits C̄ defined below.

Key Generation FE.KeyGen(msk, C): Let C̄(m, i) be a circuit that on input
m and i ∈ [T ] outputs the ith bit yi of the output y = C(m).
Sample skC̄ ← bFE.KeyGen(msk, C̄); output sk = skC̄ .

Encryption FE.Enc(mpk, m):
1. Sample K

$← PRF.Gen(1λ), and puncture it at input 0, K(−0) =
PRF.Punc(K, 0).

2. Sample P̃
$← iOT,n(1λ, P ), where P = P [λ, T, n,mpk, 0,K(−0), 0λ, 0κ,m]

as defined in Fig. 1.
3. Output ciphertext ξ = P̃ .

Decryption FE.Dec(sk, ξ):
1. Parse ξ as an obfuscated program P̃ ; for i ∈ [T ], compute Π̂i = P̃ (i).
2. For every i ∈ [T ], decode ci = RE.Eval(Π̂i).
3. For i ∈ [T ], evaluate ci with sk to obtain yi = bFE.Dec(sk, ci).
4. Output y = y1|| · · · ||yT .

It is clear that all algorithms above are PPT. Below, we first analyze the encryp-
tion efficiency of FET,n in Lemma 1 and then show its correctness and security
in Lemma 2.

Lemma 1. There exists a universal polynomial q, such that,

if TimeiOT,n(1λ, C) ≤ pT,n(λ, |C|),
then, TimeFE.Enc(mpk, m) ≤ pT,n(λ, q(λ, n(λ), log T (λ)))

Proof. Towards this, we analyze the efficiency of each step of FE.Enc(mpk, m):

– It follows from the efficiency of PPRF that Step 1 of FE.Enc takes a fixed,
universal, polynomial time q1(λ).
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– It follows from the compactness of bFE that the size of the special pur-
pose circuit P is bounded by and padded to a fixed, universal, polynomial
η(λ, n, log T ) (in Fig. 1).

– It follows from the efficiency of iOT,n that the second step of encryption takes
time TimeiOT,n(1λ, P ) = pT,n(λ, η(λ, n, log T )).

Therefore, there exists a sufficiently large universal polynomial q w.r.t. which
the lemma holds.

Lemma 2. Let bFE, PPRF, RE, iOT,n be defined as above. FE is correct and
selectively secure for NC1 circuits with n(λ)-bit inputs. Moreover, if all primitives
are sub-exponentially secure, so is FE.

We omit the of this lemma due to the lack of space.

3.3 Obtaining IO for P/poly

By the construction of FE scheme FET,n for NC1,T,n in Sect. 3.2, we immediately
have the following lemma:

Lemma 3. Assume the same underlying primitives as Proposition 5. Suppose
there is a family of IO schemes {iOT,n} for {{PT,n

λ }} with universal efficiency,
that is,

TimeiOT,n(1λ, C) ≤ p(λ, |C|) , where p is a universal polynomial.

Then, there is a family of FE schemes {FET,n} for {NC1,T,n} with the following
encryption efficiency

TimeFE.EncT,n (mpk, m) ≤ p(λ, q(λ, n(λ), log T (λ))) , where q is a universal polynomial.

Clearly, this family of FE schemes {FET,n} gives a compact FE scheme for
NC1 = {NC1,T,n}, and hence already implies IO for P/poly by Theorem 2 shown
in [2,3,16]. We further examine their results, and observe that for any compact
FE scheme, there exist some sufficiently large polynomials T ∗ and n∗, such that,
the resulting IO for P/poly only uses the FE scheme to generate keys for NC1

circuits with time bound T ∗(λ) and input length bound n∗(λ). More precisely,
we observe the more refined results of [2,3,16].

Theorem 4 (Refined Version of Theorem 2, Implicit in [2,3,16]). Assume
the existence of a sub-exponentially secure weak PRF in NC1, and a (single-query,
public-key) FE scheme for NC1,T,n, with encryption time bounded by T (λ)1−ε, for
sufficiently large polynomials n and T . Then, there exists an indistinguishability
obfuscator for P/poly.

Fix any constant ε. By Lemma 3, for any two sufficiently large polynomials
T ∗, n∗ that satisfy the following condition, the FE scheme FET ∗,n∗

constructed
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from iOT ∗,n∗
satisfy the premise of Theorem 4, in particular, the encryption

time is smaller than T ∗(λ)1−ε.

p(λ, q(λ, n∗(λ), log T ∗(λ))) ≤ T ∗(λ)1−ε

Hence, by Theorem 4, iOT ∗,n∗
suffices for building IO for P/poly. This concludes

Proposition 5.

4 Special-Purpose Circuits in Constant Degree

Assuming a constant-degree PRG, we show how to implement the special-
purpose circuits in Fig. 1 using constant-degree arithmetic circuits.

Proposition 6. Instantiated with a constant-degree PRG, the class of special-
purpose circuits {PT,n

λ } in Fig. 1 has universal arithmetic circuits {Uλ} of con-
stant degree deg and size u(λ, n, log T ) for a universal polynomial u independent
of T, n.

Thus, the family of special-purpose circuit classes {{PT,n
λ }} has constant-

degree.

By Proposition 5, and the fact that all underlying primitives of the Proposition
are implied by the hardness of LWE (see the discussion in Sect. 3.1), we obtain
the following bootstrapping theorem.

Theorem 5 (Bootstrapping IO for Constant Degree Circuits). Assume
sub-exponential hardness of LWE, and the existence of a sub-exponentially secure
constant-degree PRG. There exist a family of circuit classes of constant degree,
such that, IO for that family with universal efficiency can be bootstrapped into
IO for P/poly.

Overview. The class {PT,n
λ } consists of special purpose circuits of the form

P [λ, T, n, �1](�2), where T = T (λ) and n = n(λ), where �1 represents the rest of
the constants (including mpk, i∗,K,m<, Π̂,m>) and �2 represents the input i.
By viewing the rest of the constants as a description of the circuit, U(�2, �1) =
P [λ, T, n, �1](�2) can be viewed as the universal circuit of family PT,n

λ . Hence,
towards the proposition, we only need to argue that P [λ, T, n, �](�) can be imple-
mented by an arithmetic circuit of constant degree and size poly(λ, n, log T ).

The computation of P can be broken down into three parts: (i) Evaluating
the PPRF in Step 1, (ii) performing comparison between i and i∗, and (iii)
depending on the outcome of comparison, potentially compute a RE encoding in
NC0. By definition of RE in NC0, part (iii) has constant degree. The challenges
lie in implementing Part (i) and (ii) in constant degree. More specifically,

Challenge 1: Let bi,<, bi,=, bi,> be decision bits indicating whether the input
i is smaller than, equal to, or greater than the hardwired threshold i∗. Since
i ∈ [T ] and i∗ ∈ {0, · · · , T + 1}, their binary representation has logarithmic
length l = 
log(T +2)�. Under binary representation, the straightforward way
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of computing these decision bits also requires logarithmic O(l) = O(log T )
multiplications. E.g., equality testing can be done as bi,= =

∏
j∈[l](1 − (ij −

i∗j )
2) (over any ring, where ij and i∗j are the jth bit of i and i∗).

Challenge 2: The state-of-the-art PPRF scheme [23] has an evaluation algo-
rithm in NC1 (assuming LWE), far from computable in constant degree. Even
without the puncturing functionality, standard PRFs cannot be computed in
constant degree, or even AC0, since such functions are learnable [50].

Towards overcoming above challenges, we rely on the simple, but powerful,
observation is that in our special-purpose circuits, the input i and threshold i∗

both belong to a polynomial-sized set {0, · · · , T + 1} (T by definition is polyno-
mial in λ). This allows us to switch the representation of i and i∗ from binary
strings of length O(log T ) to strings of constant length over a polynomial-sized
alphabet, presented below.

New Input Representation. Instead of using binary alphabet, we represent
the input i ∈ [T ], as well as the hardwired threshold i∗ ∈ {0, · · · , T + 1}, using
an alphabet Σ consisting of a polynomial number of vectors of length λ,

Σ = {e0, · · · , eλ} , (1)

where ej for j ∈ {0, · · · , λ} contains 1 at position i and 0 everywhere else (in
particular, e0 is the all 0 vector). Since T is polynomial in λ, there is a minimal
constant, c such that, i (as well as i∗) can be divided into c blocks of length
�log(λ + 1), denoted as i = i1||i2|| · · · ||ic. Therefore, using alphabet Σ,

i
Σ= ei1 || · · · ||eic , with length |i|Σ = cλ ,

where a
Σ= b denote that b is the representation of a using alphabet Σ, and |a|Σ

denote the number of bits needed in order to describe the representation over Σ.
We sketch how to resolve the two challenges, using the new representation.

Overcoming the First Challenge: consider the simple task of testing equality of
one block, ik and i∗k—flag bk

i,= is set to 1 iff ik = i∗k. With the new representa-
tion, this equality can be tested by simply computing bk

i,=eik · ei∗k in degree two.
Moreover, after testing equality of all blocks, which can be done in parallel, the
equality between i and i∗ can be computed as bi,= =

∏
k∈[c] b

k
i,= in constant

degree c. Testing other relations, smaller than and greater than, between i and
i∗ can be performed similarly. See Sect. 4.1 for details.

Overcoming the Second Challenge: To circumvent the impossibility results, we
leverage the fact that we only need to construct a PPRF for a special polynomial-
sized domain σc. Assume the existence of a constant-degree PRG with polyno-
mial stretch. The most natural idea is to construct a PPRF using the GGM
PRF tree [42] as done in previous constructions of PPRF [19,21,45]. Clearly, the
degree of the PPRF evaluation grows exponentially with the depth of the tree.
Therefore, we can tolerate at most a constant depth. Fortunately, our domain
is of polynomial size, and if we use a high-degree GGM tree, where each node
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has λ children, the depth is constant O(c). However, an issue arises when using
high-degree tree. Recall that the evaluation of the GGM PRF requires follow-
ing the path leading to the leaf indexed by the input; at a particular node, the
evaluator needs to choose the appropriate child in the next layer. When the tree
has degree λ, choosing a child corresponds to the indexing function called the
multiplexer mux(v , j) = v j , which has at least depth Ω(log |v |) when j is repre-
sented in binary. But, again thanks to our new input presentation j

Σ= ej , mux
can be implemented as v · ej in degree 2. See Sect. 4.2 for details on the PPRF.

Finally, we put all pieces together in Sect. 4.3. Our final implementation of
special purpose circuits had degree of order exp(logλ(Tn)).

4.1 Performing Comparisons in Constant-Degree

We show how to perform various comparison between i and i∗ represented using
the new input representation in constant degree. Towards this, we first show
how to perform comparison over any single block of i and i∗ in degree 2. For any
k ∈ [c], let bk

i,<, bk
i,=, bk

i,> be flags indicating whether the kth block of i, ik, is
smaller than, or equal to, or greater than the corresponding block of i∗k, i∗k; they
can be computed as follows:

– bk
i,= can be computed as the inner product bk

i,= = eik · ei∗k .
– bk

i,< can be computed as the inner product bk
i,< = eik ·e<i∗k , where e<i∗k denote

the vector that contains 1s in the first i∗k − 1 positions, and 0s in the rest.
– bk

i,> can be similarly computed as the inner product bk
i,> = eik · e>i∗k , where

e>i∗k denote the vector that contains 0s in the first i∗k positions, and 1s in the
rest.

Next, performing comparison over entire i and i∗ involves congregating the
results of comparisons over individual blocks, which can be done using only a
constant number O(c) of multiplications as described in Fig. 2.

4.2 PRF Evaluation in Constant-Degree

The special purpose circuits require a PPRF function with input domain
{0, · · · , T}, key domain {0, 1}λ, and range {0, 1}L(λ) for L(λ) long enough to
supply the random coins for bFE and RE; hence L(λ) = poly(λ, n, log T ). The
following lemma provides such a PPRF in constant degree.

Lemma 4. Assume the existence of a degree-d PRG with λ1+ε-stretch for some
constant d ∈ N and ε > 0. For every polynomial D and L, there is a degree
deg′ PPRF scheme with input domain {0, · · · ,D(λ)}, key domain {0, 1}λ, and
range {0, 1}L(λ), where deg′ ∈ N is some constant depending on d, ε, D and L.
Furthermore, if the underlying PRG is subexponentially secure, then so is the
PPRF.
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Performing Comparisons Compare(i)

Constants: a threshold i∗ ∈ {0, · · · , T + 1} represented as i∗ Σ
= (ei∗

k
)k∈[c]

together with vectors (e<i∗
k
, e>i∗

k
)k∈[c].

Input: an input i ∈ [T ] represented as i
Σ
= (ei∗

k
)k∈[c].

Procedure:
1. For every k ∈ [c], compute bk

i,= = eik · ei∗
k
, bk

i,< = eik · e<i∗
k
, and

bk
i,> = eik · e>i∗

k
.

2. Do the following in parallel:

Testing i = i∗ requires checking whether all blocks are equal. There-
fore,

bi,= =
k∈[c]

bk
i,= . (2)

Testing i < i∗ requires checking whether one of the following cases
occur: For some k ∈ [c], the first k − 1 blocks of i and i∗ are equal,
and the kth block of i is smaller than that of i∗. Therefore,

bi,< = 1 −
k∈[c]

1 −
j<k∈[c]

bj
i,= × bk

i,< . (3)

Testing i > i∗ requires checking whether one of the following cases
occur: For some k ∈ [c], the first k − 1 blocks of i and i∗ are equal,
and the kth block of i is larger than that of i∗. Therefore,

bi,> = 1 −
k∈[c]

1 −
j<k∈[c]

bj
i,= × bk

i,> . (4)

Fig. 2. Performing comparisons between i and i∗ in constant degree.

Proof. Let PRG be the PRG in the premise. We first make the observation that
it implies a constant-degree PRG scheme qPRG with quadratic stretch: If the
stretch of PRG is already more than quadratic, (i.e., 1 + ε ≥ 2) simply truncate
the output to length λ2. Otherwise, iteratively evaluate PRG for a sufficient
number I = 
1/ log(1 + ε)� of times to expand the output to length λ2, that is,
qPRG(s) = PRGI(s). The degree of qPRG increases to dI , still a constant, and
the security of qPRG follows from standard argument. Below, we will view the
output of qPRG as a vector v = v[1], · · · ,v[λ] of λ elements, each v[i] is a λ-bit
binary string.

Furthermore, we observe that to get a PPRF with range {0, 1}L(λ), it suffices
to construct one with range {0, 1}λ, since one can always apply PRG iteratively
to expand the output to L(λ) as argued above.

Using qPRG, we now construct a PPRF scheme PPRF=(PRF.Gen,PRF.Punc,
F) with λ-bit outputs. Since D is a polynomial, there is a minimal integer c such
that for all λ ∈ N, D(λ) < λc. Fix any security parameter λ, and D = D(λ).
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Our scheme PPRF with input domain {0, · · · ,D} represents inputs under alpha-
bet Σ (in Eq. (1)), or alternatively, the input domain is Σc.

Key Generation PRF.Gen(1λ) samples a random λ-bit string K
$← {0, 1}λ.

Key Puncturing PRF.Punc(K, i∗) sets K0 = K and computes the following
for every k ∈ [c]:

– vk = qPRG(Kk−1).
– Let vk[�= i∗k] be the vector identical to vk, but with the i∗k

th element
replaced with 0.

Set the punctured key as Note that the size of K(−i∗) is bounded by O(λ2).
PRF Evaluation F(K(−i∗), i) is presented in Fig. 3. It is easy to verify that

the algorithm indeed has constant-degree.

Efficiency and security: The only difference between the above scheme and
the original constructions of PPRF based on GGM tree [19,21,45] is (i) the tree
has degree λ instead of degree 2, and (ii) the inputs i and i∗ are represented
under Σ. For efficiency, the second difference has no impact, since under Σ, the
representation of i and i∗ are still of fixed polynomial size; the only effect the
first difference has is that the punctured key consists of a λ-sized vector per layer
of the tree, as opposed to 1 element per layer, but the size of the punctured key
is still bounded by a fixed polynomial. For security, the same proof of [19,21,45]
goes through even when the tree has higher degree; we omit details here.

PRF Evaluation F(K(−i∗), i)

Input: A punctured key K(−i∗) = (ei∗
k
,vk[= i∗k])k∈[c], and an input i ∈

{0, · · · , D} represented as i
Σ
= (eik )k∈[c]. By definition i∗ = i.

Procedure:
1. For every k ∈ [c], compute bk

i,= = ei∗
k

· ei∗
k
, which indicates whether

the kth blocks i∗k and ik are equal.
2. For every k ∈ [c], compute dk

i indicating whether the following occurs:
The first k − 1 blocks of i and i∗ are equal, but the kth block differs.

dk
i =

j<k∈[c]

bj
i,= × 1 − bk

i,= .

3. For every k ∈ [c], do:
– Select the ithk element in vk[= i∗k], Kk

k = vk[= i∗k] · eik .
– For j = k + 1 to c, compute wj = qPRG(Kk

j−1) , Kk
j = wj · eij .

4. Compute the final output y = Σk∈[c](K
k
c × dk

i ).

In the last two steps, multiplication between a string z and bit b yields 0|z| if
b = 0 and z if b = 1, and addition between two strings is bit-wise addition.
Inner product between a vector of strings and a vector of bits are defined
accordingly.

Fig. 3. Constant-degree PRF evaluation
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Constant Degree Circuit P [λ, T, n, mpk, i∗, K, m<, Π̂, m>]

Constants: λ, T, mpk, m<, Π̂, m> are defined as in Figure 1; i∗ ∈
{0, · · · , T + 1} is represented as i∗ Σ

= (ei∗
k
)k∈[c], together with vectors

(e<i∗
k
, e>i∗

k
)k∈[c]; K is a punctured key of a constant degree PPRF PPRF.

Input: index i ∈ [T ] represented under Σ, that is, (eik )k∈[c].
Procedure:

1. (Ri||Ri) = F(K, (eik )k∈[c]). (See Figure 3.)
2. bi,<, bi,=, bi,> = Compare[i∗]((eik )k∈[c]). (See Figure 2.)
3. For ∈ {<, >}, compute

Π̂ = RE.Enc 1λ, bFE.Enc, (mpk, m ||(eik )k∈[c]); Ri); Ri .

4. Output Π̂i = Π̂i,< × bi,< + Π̂ × bi,= + Π̂i,> × bi,>.
Padding: The hardwired encoding Π̂ is padded to be of length η̄ (λ, n, log T ),

and the circuit is padded to be of size η̄(λ, n, log T ), for some polynomials
η̄ and η̄ set similarly as in Figure 1.

Fig. 4. Special-purpose circuit P in constant degree

4.3 Putting Pieces Together

Given the sub-routine Compare and a constant-degree PPRF scheme PPRF with
domain {0, · · · , T + 1} and appropriate output length L(λ) = poly(λ, n, log T ),
a constant-degree implementation the special-purpose circuits is presented in
Fig. 4, where Step 1 and 2 evaluate the new functions Compare and PPRF respec-
tively. The choice of which randomized encoding to output, depending on the
outcome of comparisons, is made in Step 4 using simple addition and multi-
plication. Moreover, since the index i is now represented under Σ, each of its
appearance in the special purpose circuit (e.g. in Step 3), as well as in the boot-
strapping transformation of Proposition 5 is replaced with (ei1 , · · · , eic). Since
this representation also has a fixed polynomial size (bounded by λ2 for suffi-
ciently large λ), all constructions and proofs remain intact.

It is easy to see that the implementation is correct, and furthermore the
circuit size of this implementation is still u(λ, n, log T ) for some universal poly-
nomial u independent of T, n: In Step 1, the evaluation of the PPRF takes
fixed (universal) polynomial time poly(λ), and so is the evaluation of function
Compare in Step 2. The run-time of Step 3 and 4 is determined by that of RE
and bFE as before, which again is bounded by a fixed (universal) polynomial
poly(λ, n, log T ). Therefore, the worst-case run-time and hence circuit size is
bounded by u(λ, n, log T ), for some universal polynomial u.

5 IO for Special-Purpose Circuits in Ideal Model

In this section, we construct IO for our special-purpose circuits in ideal graded
encoding model. Due to the lack of space, we provide only an overview of our
construction. We refer the reader to the full version for more details.
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Overview. Our goal is to construct IO for {{PT,n
λ }} with universal efficiency

in constant degree ideal graded encoding model. Constructions of IO for NC1

in the literature follow two approaches: Either obfuscate the branching pro-
grams of circuits [12,22,40,59] or directly obfuscate circuits [4,7,62]. The first
approach seems to inherently require high-degree graded encodings, since the
evaluation of a branching program has degree proportional to its length. This
limitation does not hold for the second approach, but known constructions still
require polynomial degree. We base our construction on the construction of IO
for NC1 by Applebaum and Brakerski [7] (shorthand AB-IO) in composite order
ideal graded encoding model, and use new ideas to reduce the degree of graded
encodings.

Review of Applebaum-Brakerski IO Scheme: Let P be a program with universal
arithmetic circuit U(x, P ). Consider the following simple idea of encoding every
bit of P and both values 0 and 1 for each input bit i ∈ [n], that is, P̂ =
{[b]vi,b

}i∈[n],b∈{0,1}, {[Pi]vi+n
}i∈[m]. Then, given an input x, an evaluator can

simply pick the encodings {[xi]vi,xi
}i∈[n], and homomorphically evaluate U on

encodings of (bits of) x and P to obtain an encoding of U(x, P ), which can then
be learned by zero-testing. This simple idea does not go far. We mention several
key issues and their solutions.

1. To prevent an adversary from using inconsistent values for the same input
bit at different steps of the evaluation, AB-IO follows the standard solution
of “straddling sets” [12], and uses a set of special levels, so that, if both
Zi,0 = [0]vi,0 and Zi,1 = [1]vi,1 for some input bit i are used, the resulting
encoding never reaches the zero testing level vzt. To see this, consider a
simplified example: Set vi,0 = (1, 0, 1) and vi,1 = (0, 1, 1), and provide two
additional encodings Ẑi,b of random values under levels v̂i,0 = (0, d, 0) and
vi,1 = (d, 0, 0); the only way to reach level (d, d, d) is to use Zi,b consistently,
followed by multiplication with Ẑi,b. Note that doing this for every input
already requires degree n multiplication.

2. Graded encodings only support addition in the same levels. Since different
input and program bits are encoded under different levels, homomorphic eval-
uation of U cannot be done. To resolve this, AB-IO uses El-Gamal encoding,
under which a value w is represented as (r, rw) $← EG(w) with a random r.
Encodings of El-Gamal encodings of w1 and w2, (R1 = [r1]v1 , Z1 = [r1w1]v1)
and (R2 = [r2]v2 , Z2 = [r2w2]v2) can be “added” using an addition gadget ⊕
that does (R1R2 = [r1r2]v1+v2 , Z1R2 + Z2R1 = [r1r2(w1 + w2)]v1+v2), even
if they are under different levels. Note that the new gadget, however, turns
every addition in U into multiplications (and additions) in the homomorphic
evaluation, which now has much higher degree, up to 2depth, than U .

3. Point 1 ensures that an adversary must use an input x consistently, but,
it can still deviate from evaluating U . AB-IO uses an information theoretic
authentication method to prevent this. It samples a random value yi for each
input wire, and computes ȳ = U(y1, · · · , yn+m). The idea is to use the struc-
ture of the composite order ring to “bind” the program and input bits with
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their corresponding y values, for example, instead of encoding EG(Pi), encode
EG(wn+i) where wn+i = (Pi, yn+i). Therefore, whichever computation the
adversary performs over x and P , the same is performed over y1, · · · , yn+m.
An honest evaluation yields encodings of EG((U(x, P ), ȳ)). By additionally
releasing encodings of EG((1, ȳ)), the output U(x, P ) can be learned by first
subtracting the encodings and zero-test. Moreover, deviating from comput-
ing U leads to encodings of EG(Y (x, P ), Y (y1, · · · , yn+m)) with some Y �= U ,
and the value Y (y1, · · · , yn+m) cannot be eliminated to allow zero-testing
Y (x, P ), which hence remains hidden.

Due to Point 1 and 2, AB-IO requires the graded encodings to support degree-
(n2depth) computations.

Towards Using Constant-Degree Graded Encodings, we modify AB-IO as fol-
lows:

1. We use the same method as AB-IO to prevent an adversary from using incon-
sistent input values, but we cannot afford to do that for every input bit.
Instead, recall that the domain of our special purpose circuits is Σc, where
Σ has size λ. We view each symbol x1, · · · , xc (though described as a λ-bit
string) as a “single input”, and apply the straddling sets of AB-IO for each
input symbol. (Ignore the El-Gamal encoding and the y-values temporar-
ily.) For the ith symbol, release for every possible value s ∈ Σ, encoding
Zi

s = [s]vi
s
, and Ẑi

s of a random value under set v̂i
s. Consider a simplified

example: Set vi
s = (0 · · · 0, 1, 0 · · · 0, 1) with 1 at position s and λ + 1, and

v̂i
s = (d · · · d, 0, d · · · d, 0) correspondingly. (As in Point 1 above,) the only way

to reach (d, · · · , d) is using Zi
s for some s consistently followed by a multi-

plication with Ẑi
s. The actual encoding is more complicated as s is described

as a λ-bit string s1, · · · , sλ, and each bit needs to be encoded separately
Zi

s = {[sj ]vi
s
}j .

2. Informally speaking, the addition gadget ⊕ of AB-IO turns addition over
encodings under different levels into multiplication; to reduce the degree of
homomorphic evaluation, we want to have as many additions under the same
levels as possible. In particular, encodings of form (R1 = [r]v, Z1 = [rw1]v)
and (R2 = [r]v, Z2 = [rw2]v) can be directly “added” (R1 = [r]v, Z1 + Z2 =
[r(w1 + w2)]v)—we call this the constrained addition gadget ⊕̃. Fortunately,
thanks to the special domain Σc, encodings for different bits of an input
symbol Zi

s have the same level vi
s. To allow for using ⊕̃, we further let their

El-Gamal encodings share the same randomness ri
s, that is, Ri

s = [ri
s]vi

s
and

Zi
s = {[ri

ssj ]vi
s
}j . Now addition of different bits in the same input symbol

can be performed using only homomorphic addition.
More generally, we assign “types” to input wires—all wires describing P

have one type, and these describing xi for each i has another. Encodings for
input wires of the same type share the same level and El-Gamal randomness,
and can be added using ⊕̃ for “free”, whereas addition across different types is
done using ⊕ as in AB-IO, involving homomorphic multiplication. We further
assign types to all wires in U recursively: When the incoming wires of an
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addition gate in U have the same types, ⊕̃ can be applied and its outgoing
wire keeps the same type; in all other cases, homomorphic multiplication is
required, and the types of the incoming wires add up. Careful examination
reveals that the degree of homomorphic evaluation is proportional to the
1-norm of the output wire type, which we call the type-degree of U .

Combining the above ideas, we obtain a construction of IO for general circuit
class in ideal model where the degree of the graded encodings is O(td + c),
proportional to the type degree td and the number of input type c of the circuit
class; we say such a construction is type degree preserving.

For certain circuits, their type-degrees are much smaller than 2depth. For
example, our special purpose circuits, instantiated with a constant-degree PRG,
have a constant type degree td, and hence constant degree graded encodings
suffice. More generally, when PRG has degree d(λ), the type degree of the special
purpose circuits is polynomial in d(λ).

Our actual IO scheme is more complicated than sketched above due to (1)
it is based on the robust obfuscator in [7] as opposed to the simple obfuscator
described above; like the robust obfuscator of [7], our IO scheme has the property
that a generic attacker can only generate encodings of 0 at the zero-testing level.
Such a construction can work with graded encoding schemes with unique encod-
ings and seems to be more secure in face of zeroizing attacks on graded encodings.
In particular, [30] showed that a simplified version of the simple obfuscator of [7]
can be attacked. (2) Our IO scheme directly obfuscates non-Boolean circuits.
Previous constructions of IO for NC1 considers only Boolean circuits; this is
w.l.o.g. as a NC1 circuit C can be turned into a Boolean one C̄(x, i) = C(x)i,
still in NC1. But, when aiming at type-degree preserving constructions of IO, we
cannot use this trick, as C̄ may have much higher type degree than C.
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Abstract. In a t-out-of-n robust secret sharing scheme, a secret message
is shared among n parties who can reconstruct the message by combining
their shares. An adversary can adaptively corrupt up to t of the parties,
get their shares, and modify them arbitrarily. The scheme should sat-
isfy privacy, meaning that the adversary cannot learn anything about
the shared message, and robustness, meaning that the adversary cannot
cause the reconstruction procedure to output an incorrect message. Such
schemes are only possible in the case of an honest majority, and here we
focus on unconditional security in the maximal corruption setting where
n = 2t + 1.

In this scenario, to share an m-bit message with a reconstruction fail-
ure probability of at most 2−k, a known lower-bound shows that the share
size must be at least m+k bits. On the other hand, all prior constructions
have share size that scales linearly with the number of parties n, and the
prior state-of-the-art scheme due to Cevallos et al. (EUROCRYPT ’12)

achieves m + Õ(k + n).
In this work, we construct the first robust secret sharing scheme in

the maximal corruption setting with n = 2t + 1, that avoids the linear
dependence between share size and the number of parties n. In particular,
we get a share size of only m+ Õ(k) bits. Our scheme is computationally
efficient and relies on approximation algorithms for the minimum graph
bisection problem.

1 Introduction

Secret sharing, originally introduced by Shamir [Sha79] and Blakely [Bla79], is
a central cryptographic primitive at the heart of a wide variety of applications,
including secure multiparty computation, secure storage, secure message trans-
mission, and threshold cryptography. The functionality of secret sharing allows a
dealer to split a secret message into shares that are then distributed to n parties.
Any authorized subset of parties can reconstruct the secret reliably from their
shares, while unauthorized subsets of parties cannot learn anything about the
secret from their joint shares. In particular, a t-out-of-n threshold secret sharing
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scheme requires that any t shares reveal no information about the secret, while
any subset of t + 1 shares can be used to reconstruct the secret.

Many works (e.g. [RB89,CSV93,BS97,CDF01,CFOR12,LP14,CDD+15,
Che15]) consider a stronger notion of secret sharing called robust secret sharing
(RSS). Robustness requires that, even if an adversary can replace shares of cor-
rupted parties by maliciously chosen values, the parties can still reconstruct the
true secret. (with high probability). secure storage and message transmission. In
particular, we consider a computationally unbounded adversary who maliciously
(and adaptively) corrupts t out of n of the parties and learns their shares. After
corrupting the t parties, the adversary can adaptively modify their shares and
replace them with arbitrary values. The reconstruction algorithm is given the
shares of all n parties and we require that it recovers the original secret. Note
that robustness requires the reconstruction to work given all n shares of which
t contain “errors” while threshold reconstruction is given t + 1 correct shares,
meaning that n − t − 1 shares are “erasures”. When n = 2t + 1, robustness is
therefore a strictly stronger requirement than threshold reconstruction (but in
other settings this is not the case).

Known Lower Bounds. It is known that robust secret sharing can only be
achieved with an honest majority, meaning t < n/2. Moreover, for t in the range
n/3 ≤ t < n/2, we cannot achieve perfect robustness, meaning that we must
allow at least a small (negligible) failure probability for reconstruction [Cev11].
Furthermore, in the maximal corruption setting with n = 2t + 1 parties, any
robust secret sharing scheme for m-bit messages with failure probability 2−k

must have a share size that exceeds m + k bits [CSV93,LP14].

Prior Constructions. On the positive side, several prior works show how to
construct robust sharing schemes in the maximal corruption setting with n =
2t + 1 parties. The first such scheme was described in the work of Rabin and
Ben-Or [RB89] with a share size of m + Õ(nk) bits. Cramer, Damg̊ard and Fehr
[CDF01] showed how to improve this to m + Õ(k + n) bits, using what later
became known as algebraic-manipulation detection (AMD) codes [CDF+08],
but at the cost of having an inefficient reconstruction procedure. Cevallos et al.
[CFOR12] then presented an efficient scheme with share size m + Õ(k + n).

Other Related Work. Two recent works [CDD+15,Che15] study robust secret
sharing in the setting where the number of corruptions is below the maximal
threshold by some constant fraction; i.e., t = (1/2−δ)n for some constant δ > 0.
In this setting, robustness does not necessarily imply threshold reconstructability
from t+1 correct shares (but only from (1/2+ δ)n correct shares). This is often
called a ramp setting, where there is a gap between the privacy threshold t
and the reconstructability threshold. The above works show that it is possible
to achieve robustness in this setting with share size of only O(1) bits, when n
is sufficiently large in relation to k,m. The work of [Che15] also considers a
setting that separately requires robustness and threshold reconstruction from
t + 1 correct shares, and gives a scheme with share size m + Õ(k). However,
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we notice that security in this setting could always be achieved with a generic
construction, by adding a standard (non-robust) threshold secret sharing scheme
on top of a robust scheme – when given exactly t + 1 shares, the reconstruction
uses the threshold scheme, and otherwise it uses the robust scheme. This adds
m additional bits to the share size of the robust scheme and, in particular, when
n is sufficiently large, the share size would be m + O(1) bits1.

The main technique used to get robustness in [CDD+15,Che15] is to compose
list-decodable codes with a special privacy property together with AMD codes
from [CDF+08]. Unfortunately, this technique appears to crucially fail in the
setting of n = 2t+1 parties. In this setting, the parameters of the list-decodable
codes either force a large alphabet or an exponential list size. The latter in turn
forces us to use an AMD code with large overhead. In either case the overhead
on the share size appears to be at least O(n) bits.

Another related work of [LP14] considers a relaxation of robustness to a
setting of local adversaries, where each corrupted party’s modified share can only
depend on its own received share, but not on the shares received by the other
corrupted parties. They construct a robust scheme in this setting for n = 2t + 1
parties with share size of m+Õ(k) bits. Unfortunately, the construction is clearly
insecure in the traditional robustness setting where a monolithic adversary gets
to see the shares received by all of the corrupted parties before deciding how to
modify each such share.

Finally, the work of [JS13] proposes a robust secret sharing scheme with t
corruptions out of n ≥ 2t + 2. Unfortunately, we found a flaw in the security
proof and an attack showing that the proposed scheme is insecure (which we
communicated to the authors).

In summary, despite the intense study of robust secret sharing since the late
80 s and early 90 s, in the maximal corruption setting with n = 2t + 1 parties
there is a large gap between the lower bound of m+k bits and the best previously
known upper bound of m+Õ(n+k) bits on the share size. In particular, prior to
this work, it was not known if the linear dependence between the share size and
n is necessary in this setting, or whether there exist (even inefficient) schemes
that beat this bound.

Our Result. We present an efficient robust secret sharing scheme in the max-
imal corruption setting with n = 2t + 1 parties, where the share size of only
m+Õ(k) bits (see Sect. 6 for detailed parameters including poly-logarithmic fac-
tors). This is the first such scheme which removes the linear dependence between
the share size and the number of parties n. A comparison between our work and
previous results is given in Table 1.

1 Yet another intermediate variant is to separately require robustness with t = (1/2−
δ)n corruptions and ramp reconstruction from t+ρn = (1/2− δ +ρ)n correct shares
for some constants δ, ρ > 0. This could always be achieved by adding a good (non-
robust) ramp secret sharing scheme on top of a robust scheme while maintaining the
O(1) share size when n is sufficiently large.
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Table 1. Comparison of robust secret sharing schemes and lower bounds with n parties,
t corruptions, m-bit message, and 2−k reconstruction error. Robust reconstruction is
given n shares with t errors, while threshold reconstruction is given just t + 1 correct
shares (n− t−1 erasures). The Õ(·) notation hides factors that are poly-logarithmic in
k, n and m. This is justified if we think of n, m as some arbitrarily large polynomials in
the security parameter k. The † requires that n is sufficiently large in relation to m, k.

Setting: t = (1/2 − Ω(1))n

Reconstruction Construction Share Size Lower bound

Robust Only [CDD+15,Che15] O(1) †

Robust + Threshold [Che15] (1 + o(1))m + O(k) m

Generic construction m + O(1) †

Setting: n = 2t + 1

Reconstruction Construction Share Size Lower bound

Robust ⇒ Threshold [RB89] m + ˜O(kn) m + k

[CDF01,CDF+08,CFOR12] m + ˜O(k + n)

Our work m + ˜O(k)

1.1 Our Techniques

Using MACs. We begin with the same high-level idea as the schemes of
[RB89,CFOR12], which use information-theoretic message authentication codes
(MACs) to help the reconstruction procedure identify illegitimate shares. The
basic premise is to start with a standard (non-robust) t-out-of-n scheme, such
as Shamir’s scheme, and have parties authenticate each others’ Shamir shares
using MACs. Intuitively, this should make it more difficult for an adversary to
present compelling false shares for corrupted parties as it would have to forge
the MACs under unknown keys held by the honest parties.

The original implementation of this idea by Rabin and Ben-Or [RB89]
required each party to authenticate the share of every other party with a MAC
having unforgeability security 2−k and the reconstruction procedure simply
checked that the majority of the tags verified. Therefore, the keys and tags
added an extra Õ(nk) overhead to the share of each party. The work of Cevallos
et al. [CFOR12] showed that one can also make this idea work using a MAC
with a weaker unforgeability security of only 1

Ω(n) , by relying on a more com-

plex reconstruction procedure. This reduced the overhead to Õ(k + n) bits.

Random Authentication Graph. Our core insight is to have each party only
authenticate a relatively small but randomly chosen subset of other parties’
shares. This will result in a much smaller overhead in the share size, essentially
independent of the number of parties n.
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More precisely, for each party we choose a random subset of d = Õ(k) other
parties whose shares to authenticate. We can think of this as a random “authen-
tication graph” G = ([n], E) with out-degree d, having directed edges (i, j) ∈ E
if party i authenticates party j. This graph is stored in a distributed manner
where each party i is responsible for storing the information about its d outgoing
edges. It is important that this graph is not known to the attacker when choosing
which parties to corrupt. In fact, as the attacker adaptively corrupts parties, he
should not learn anything about the outgoing edges of uncorrupted parties2.

Requirements and Inefficient Reconstruction. As a first step, let’s start by
considering an inefficient reconstruction procedure, as this will already highlight
several challenges. The reconstruction procedure does not get to see the original
graph G but a possibly modified graph G′ = ([n], E′) where the corrupted parties
can modify their set of outgoing edges. However, the edges that originate from
uncorrupted parties are the same in G and G′. The reconstruction procedure
labels each edge e ∈ E′ as either good or bad depending on whether the MAC
corresponding to that edge verifies.

Let’s denote the subset of uncorrupted honest parties by H ⊆ [n]. Let’s also
distinguish between corrupted parties where the adversary does not modify the
share, which we call passive corruptions and denote by P ⊆ [n], and the rest
which we call active corruptions and denote by A ⊆ [n]. Assume that we can
ensure that the following requirements are met:

(I) All edges between honest/passive parties, (i, j) ∈ E′ : i, j ∈ H ∪ P , are
labeled good.

(II) All edges from honest to active parties, (i, j) ∈ E′ : i ∈ H, j ∈ A are
labeled bad.

In this case, the reconstruction procedure can (inefficiently) identify the set
H ∪ P by simply finding the maximum self-consistent set of vertices C ⊆ [n],
i.e. the largest subset of vertices such that all of the tags corresponding to edges
(i, j) ∈ E′ with i, j ∈ C are labeled good. We show that C = H ∪P is the unique
maximum self-consistent set with overwhelming probability (see Sect. 7). Once
we identify the set H ∪P we can simply reconstruct the secret message from the
Shamir shares of the parties in H ∪ P since these have not been modified.

Implementation: Private MAC and Robust Storage of Tags. Let’s now
see how to implement the authentication process to satisfy requirements I and
II defined above. A naive implementation of this idea would be for each party i
to have a MAC key keyi for a d-time MAC (i.e., given the authentication tags

2 If the graph were chosen at random but known to the attacker in advance, then
the attacker could always choose some honest party i and corrupt a set of t parties
none of which are being authenticated by i. Then the t + 1 shares corresponding
to the t corrupted parties along with honest party i would be consistent and the
reconstruction would not be able to distinguish it from the set of t+1 honest parties.
However, with an unknown graph, there is a high probability that every honest party
i authenticates many corrupted parties.
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of d messages one cannot forge the tag of a new message) and, for each edge
(i, j) ∈ E, to create a tag σi→j = MACkeyi

(s̃j) where s̃j is the Shamir share of
party j. The tags σi→j would then be stored with party j. In particular, the full
share of party i would be

si = (s̃i, Ei, keyi, {σj→i}(j,i)∈E)

where Ei = {j ∈ [n] : (i, j) ∈ E} are the outgoing edges for party i.
Unfortunately, there are several problems with this. Firstly, if the adversary

corrupts party i, it might modify the values keyi, Ei in the share of party i
but keep the Shamir share s̃i intact. This will keep the edges going from honest
parties to party i labeled good but some of the edges going from party i to
honest parties might now be labeled bad. Therefore we cannot define such party
as either passive (this would violate requirement I) or active (this would violate
requirement II). Indeed, this would break our reconstruction procedure.

To fix this, when party i authenticates another party j, we compute σi→j =
MACkeyi

((s̃j , Ej , keyj)) where we authenticate the values Ej , keyj along with the
Shamir share s̃j . This prevents party j from being able to modify these compo-
nents without being detected. Therefore we can define a party as active if any
of the components s̃j , Ej , keyj are modified and passive otherwise.

Unfortunately, there is still a problem. An adversary corrupting party j might
keep the components s̃j , Ej , keyj intact but modify some subset of the tags σi→j .
This will make some of edges going from honest parties to party j become bad
while others remain good, which violates the requirements.

To fix this, we don’t store tags σi→j with party j but rather we store all
the tags in a distributed manner among the n parties in a way that guarantees
recoverability even if t parties are corrupted. However, we do not provide any
privacy guarantees for these tags and the adversary may be able to learn all of
them in full. We call this robust distributed storage (without privacy), and show
that we can use it to store the tags without additional asymptotic overhead. The
fact that the tags are not stored privately requires us to use a special type of
private (randomized) MAC where the tags σi→j do not reveal anything about the
authenticated messages even given the secret key keyi. With this implementation,
we can guarantee that requirements I, II are satisfied.

Efficient Reconstruction Using Graph Bisection. To get an efficient recon-
struction procedure, we need to solve the following graph identification problem.
An adversary partitions vertices V = [n] into three sets H,P,A corresponding
to honest, active and passive parties respectively. We know that the out-going
edges from H are chosen randomly and that the edges are labeled as either good
or bad subject to requirements I, II above. The goal is to identify H ∪ P . We
know that, with overwhelming probability, H ∪ P is the unique maximum self-
consistent set having no bad edges between its vertices, but its not clear how to
identify it efficiently.

Let’s consider two cases of the above problem depending on whether the size
of the passive set P is |P | ≥ εn or |P | < εn for some ε = 1/Θ(log n). If P
is larger than εn, then we can distinguish between vertices in A and H ∪ P
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by essentially counting the number of incoming bad edges of each vertex. In
particular, the vertices in H ∪P only have incoming bad edges from the set A of
size |A| = (1/2−ε)n while the vertices in A which have incoming bad edged from
H of size |H| = n/2. Therefore, at least on average, the vertices in A will have
more incoming bad edges than those in H ∪P . This turns out to be sufficient to
then identify all of H ∪ P .

On the other hand, if |P | < εn then the graph has a “bisection” consisting
of H and A ∪ P (whose sizes only differ by 1 vertex) with only approximately
εnd good edges crossing from H to A ∪ P , corresponding to the edges from H
to P . We then rely on the existence of efficient approximation algorithms for
the minimum graph bisection problem. This is a classic NP-hard optimization
problem [GJS76,FK02], and the best known polynomial-time algorithm is an
O(log n)-approximation algorithm due to [Räc08]. In particular, this allows us to
bisect the graph it into two components X0,X1 with only very few edges crossing
from X0 to X1. This must mean that one of X0 or X1 contains the vast majority
of the vertices in H as otherwise, if the H vertices were split more evenly, there
would be many more edges crossing. Having such components X0,X1 turns out
to be sufficient to then identify all of H ∪ P .

There are many details to fill in for the above high-level description, but
one major issue is that we only have efficient approximations for the graph
bisection problem in undirected graphs. However, in the above scenario, we are
only guaranteed that there are few good edges from H to A ∪ P but there may
be many good edges in the reverse direction. To solve this problem, we need
to make sure that our graph problem satisfies one additional requirement (in
addition to requirements I, II above):
(III) All edges from active to honest parties, (i, j) ∈ E′ : i ∈ A, j ∈ H are

labeled bad.

To ensure that this holds, we need to modify the scheme so that, for any edge
(i, j) ∈ E corresponding to party i using its key to authenticate the share of
party j with a tag σi→j , we also add a “reverse-authentication” tag σi←j where
we authenticate the share of party i under the key of party j. This ensures that
edges from active parties to honest parties are labeled bad. Therefore, when P
is small, there are very few good edges between H and A ∪ P in either direction
and we can use an algorithm for the undirected version of the graph bisection
problem.

Parallel Repetition and Parameters. A naive instantiation of the above
scheme would require a share size of m + Õ(k2) since we need O(k) tags per
party and each tag needs to have length O(k). To reduce the share size further,
we first instantiate our scheme with much smaller parameters which only provide
weak security and ensure that the correct message is recovered with probability
3/4. We then use O(k) parallel copies of this scheme to amplify security, where
the reconstruction outputs the majority value. One subtlety is that all of the
copies need to use the same underlying Shamir shares since we don’t want a
multiplicative blowup in the message size m. We show that this does not hurt
security. Altogether, this results in a share size of only m + Õ(k).
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2 Notation and Preliminaries

For n ∈ N, we let [n] := {1, . . . , n}. If X is a distribution or a random variable, we
let x ← X denote the process of sampling a value x according to the distribution
X. If A is a set, we let a ← A denote the process of sampling a uniformly at
random from A. If f is a randomized algorithm, we let f(x; r) denote the output
of f on input x with randomness r. We let f(x) be a random variable for f(x; r)
with random r.

Sub-Vector Notation. For a vector s = (s1, . . . , sn) and a set I ⊆ [n], we let
sI denote the vector consisting only of values in indices i ∈ I; we will represent
this as sI = (s′

1, . . . , s
′
n) with s′

i = si for i ∈ I and s′
i = ⊥ for i 	∈ I.

Graph Notation. For a (directed) graph G = (V,E), and sets X,Y ⊆ V ,
define EX→Y as the set of edges from X to Y ; i.e. EX→Y = {(v1, v2) ∈ E | v1 ∈
X, v2 ∈ Y }.

2.1 Hash Functions, Polynomial Evaluation

Definition 1 (Universal Hashing). Let H = {Hk : U → V}k∈K be family
of hash functions. We say that H is ε-universal if for all x, x′ ∈ U with x 	= x′

we have Prk←K[Hk(x) = Hk(x′)] ≤ ε.

Polynomial Evaluation. Let F be a finite field. Define the polynomial evalu-
ation function PEval : F

d × F → F as PEval(a, x) =
∑d

i=1 aix
i. See the full

version [BPRW15] for the properties of the polynomial evaluation we rely on.

2.2 Graph Bisection

Let G = (V,E) be an undirected graph. Let (V1, V2) be a partition of its edges.
The cross edges of (V1, V2) are the edges in EV1→V2 . Given an undirected graph
G = (V,E) with an even number of vertices |V | = n = 2t a graph bisection for G
is a partition (V1, V2) of V such that |V1| = t = |V2|. We also extend the notion
of a graph bisection to graphs with an odd number of vertices |V | = n = 2t + 1
by defining a bisection to be a partition with |V1| = t, |V2| = t + 1.

Definition 2 (Approximate Graph Bisection Algorithm). Let G = (V,E)
be an undirected graph with n vertices. Assume that G has a graph bisection V1, V2

with |EV1→V2 | = m cross edges. An algorithm Bisect that takes as input G and
outputs a bisection U1, U2 with at most |EU1→U2 | ≤ δm cross edges is called a
δ-approximate graph bisection algorithm.

We remark that standard definitions of graphs bisection only consider the
case where n = 2t is even. However, given any δ-approximate graph bisection
algorithm that works in the even case, we can generically adapt it to also work in
the odd case n = 2t+1. In particular, given a graph G = (V,E) with |V | = 2t+1
vertices, we can construct a graph G′ = (V ∪ {⊥}, E) with an added dummy
vertex ⊥ that has no outgoing or incoming edges. We then run the δ-approximate
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graph bisection algorithm that works for an even number of vertices on G′ to get
a bisection U ′

1, U
′
2 where, without loss of generality, we assume that U ′

1 contains
the vertex ⊥. By simply taking U1 to be U ′

1 with ⊥ removed and U2 = U ′
2 we

get a δ-approximate bisection for the graph G.
The work of [FK02] gave an efficient O(log1.5 n)-approximate graph bisec-

tion algorithm, which was then improved to O(log n) by [Räc08] (Sect. 3, “Min
Bisection”).

3 Definition of Robust Secret Sharing

Throughout the rest of the paper, we use the following notation:

– t denotes the number of players that are arbitrarily corrupt.
– n = 2t + 1 denotes the number of players in the scheme.
– M is the message space.

Definition 3 (Robust Secret Sharing). A t-out-of-n, δ-robust secret sharing
scheme over a message space M and share space S is a tuple (Share,Rec) of
algorithms that run as follows:

Share(msg) → (s1, . . . , sn): This is a randomized algorithm that takes as input
a message msg ∈ M and outputs a sequence of shares s1, . . . , sn ∈ S.

Rec(s1, . . . , sn) → msg′: This is a deterministic algorithm that takes as input n
shares (s1, . . . , sn) with si ∈ S ∪ ⊥ and outputs a message msg′ ∈ M.

We require perfect correctness, meaning that for all msg ∈ M: Pr[Rec(Share
(msg)) = msg] = 1. Moreover, the following properties hold:

Perfect Privacy: Any t out of n shares of a secret give no information on
the secret itself. More formally, for any msg,msg′ ∈ M, any I ⊆ [n] of size
|I| = t, the distributions Share(msg)I and Share(msg′)I are identical.

Perfect Threshold Reconstruction (with Erasures): The original secret
can be reconstructed from any t + 1 correct shares. More formally, for any
msg ∈ M and any I ⊆ [n] with |I| = t + 1 we have Pr[Rec(Share(msg)I) =
msg] = 1.

Adaptive δ-Robustness: An adversary that adaptively modifies up to t shares
can cause the wrong secret to be recovered with probability at most δ. More
formally, we define the experiment Exp(msg,Adv) with some secret msg ∈
M and interactive adversary Adv.
Exp(msg,Adv): is defined as follows:

E.1. Sample s = (s1, . . . , sn) ← Share(msg).
E.2. Set I := ∅. Repeat the following while |I| ≤ t.

– Adv chooses i ∈ [n] \ I.
– Update I := I ∪ {i} and give si to Adv.

E.3. Adv outputs modified shares s′
i : i ∈ I and we define s′

i := si for
i 	∈ I.
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E.4. Compute msg′ = Rec(s′
1, . . . , s

′
n).

E.5. If msg′ 	= msg output 1 else 0.
We require that for any (unbounded) adversary Adv and any msg ∈ M we
have

Pr[Exp(msg,Adv) = 1] ≤ δ.

Remarks. We note that since privacy and threshold reconstruction are required
to hold perfectly (rather than statistically) there is no difference between defining
non-adaptive and adaptive variants. In other words, we could also define adap-
tive privacy where the adversary gets to choose which shares to see adaptively,
but this is already implied by our non-adaptive definition of perfect privacy. We
also note that when n = 2t + 1 then robustness implies a statistically secure
threshold reconstruction with erasures. However, since we can even achieve per-
fect threshold reconstruction, we define it as a separate property.

Definition 4 (Non-Robust Secret Sharing). We will say that a scheme is
a non-robust t-out-of-n secret sharing scheme, if it satisfies the above definition
with δ = 1.

Using Shamir secret sharing, we get a non-robust t-out-of-n secret sharing for
any t < n where the share size is the same as the message size.

4 The Building Blocks

In this section we introduce the building blocks of our robust secret sharing
scheme: Robust Distributed Storage, Private MACs, and the Graph Identification
problem.

4.1 Robust Distributed Storage

A robust distributed storage scheme allows us to store a public value among
n parties, t of which may be corrupted. There is no secrecy requirement on
the shared value. However, we require robustness: if the adversary adaptively
corrupts t of the parties and modifies their shares, the reconstruction procedure
should recover the correct value with overwhelming probability. We can think of
this primitive as a relaxation of an error-correcting code where shares correspond
to codeword symbols. The main difference is that the encoding procedure can be
randomized and the adversary only gets to see a set of t (adaptively) corrupted
positions of the codeword before deciding on the errors in those positions. These
restrictions allow us to achieve better parameters than what is possible with
standard error-correcting codes.

Definition 5. A t-out-of-n, δ-robust distributed storage over a message space
M is a tuple of algorithms (Share,Rec) having the same syntax as robust secret
sharing, and satisfying the δ-robustness property. However, it need not satisfy
the privacy or perfect reconstruction with erasures properties.
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We would like to construct such schemes for n = 2t + 1 and for a message
of size m so that the share of each party is only O(m/n) bits. These parameters
are already beyond the reach of error-correcting codes for worst-case errors. We
construct a simple robust distributed storage scheme by combining list-decoding
and universal hashing.

List Decoding. In list-decoding, the requirement to decode to a unique code-
word is relaxed, and it is only required to obtain a polynomially sized list of
potential candidates that is guaranteed to include the correct codeword. We can
simply use Reed-Solomon codes and the list-decoding algorithm provided by
Sudan [Sud97] (better parameters are known but this suffices for our needs):

Theorem 1 [Sud97]. A Reed-Solomon code formed by evaluating a degree d
polynomial on n points can be efficiently list-decoded to recover from e < n−

√
2dn

errors with a list of size L ≤
√

2n/d.

Setting d = �n/8, we can then therefore recover from t out of n = 2t + 1
errors and obtain a list of size L ≤

√
2n/d = O(1).

Construction of Robust Distributed Storage. Let t be some parameter,
let n = 2t + 1, and let F be a field of size |F| = 2u with |F| > n. Let H =
{Hk : F

d+1 → F}k∈F be an ε-universal hash function. For concreteness, we
can use the polynomial evaluation hash Hk(a) = PEval(a, k), which achieves
ε = (d + 1)/2u (see ‘XOR-universality’ in the full version [BPRW15]). We use
list-decoding for the Reed Solomon code with degree d = �n/8 = Ω(n) which
allows us to recover from t out of n errors with a list size L = O(1). We construct
a δ-robust t-out-of-n distributed storage scheme with message space M = F

d+1,
meaning that the messages have bit-size m = u(d + 1) = Ω(un), share size
3u = O(u), and robustness δ = nLε = O(n2)/2u. The scheme works as follows:

– (s1, . . . , sn) ← Share(msg). Encode msg ∈ F
d+1 using the Reed-Solomon code

by interpreting it as a degree d polynomial and evaluating it on n points
to get the Reed-Solomon codeword (ŝ1, . . . , ŝn) ∈ F

n. Choose random values
k1, . . . , kn ← F and define the shares si = (ŝi, ki,Hki

(msg)) ∈ F
3.

– msg′ ← Rec(s′
1, . . . , s

′
n). Parse s′

i = (ŝ′
i, k

′
i, y

′
i). Use list-decoding on the mod-

ified codeword (ŝ′
1, . . . , ŝ

′
n) ∈ F

n to recover a list of L = O(1) possible candi-
dates msg(1), . . . ,msg(L) ∈ F

d+1 for the message. Output the first value msg(j)

that agrees with the majority of the hashes:

|{i ∈ [n] : Hk′
i
(msg(j)) = y′

i}| ≥ t + 1.

Theorem 2. For any n = 2t+1 and any u ≥ log n, the above scheme is a t-out-
of-n, δ-robust distributed storage scheme for messages of length m = �n/8u =
Ω(nu) with shares of length 3u = O(u) and robustness δ = O(n2)/2u.

The proof is given in the full version [BPRW15].
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4.2 Private Labeled MAC

As a tool in our construction of robust secret sharing schemes, we will use a new
notion of an information-theoretic message-authentication code (MAC) that has
additional privacy guarantees.

The message authentication code σ = MACkey(lab,msg, r) takes as input a
label lab, a message msg, and some additional randomness r. The randomness
is there to ensure privacy for the message msg even given key, σ.

Definition 6 (Private Labeled MAC). An (�, ε) private MAC is a family of
functions {MACkey : L × M × R → T }key∈K with key-space K, message space
M, label space L, randomness space R, and tag space T . It has the following
properties:

Authentication: For any � values (labi,msgi, ri, σi) ∈ L × M × R × T : i =
1, . . . , � such that the labels labi are distinct, and for any (lab′,msg′, r′, σ′) ∈
L × M × R × T such that (lab′,msg′, r′) 	∈ {(labi,msgi, ri)}i∈[�] we have:

Pr
key←K

[MACkey(lab′,msg′, r′) = σ′ | {MACkey(labi,msgi, ri) = σi}i∈[�]] ≤ ε.

This implies that even after seeing the authentication tags σi for � tuples
(labi,msgi, ri) with distinct labels labi, an adversary cannot come up with a
valid tag σ′ for any new tuple (lab′,msg′, r′).

Privacy Over Randomness: For any � distinct labels lab1, . . . , lab�, any keys
key1, . . . , key� ∈ K, and anymsg ∈ M, the � values σ1 = MACkey1(lab1,msg, r),
. . . , σ� = MACkey�

(lab�,msg, r) are uniformly random and independent in T
over the choice of r ← R.
This says that the tags σi do not reveal any information about the mes-
sage msg, or even about the labels labi and the keys keyi, as long as the
randomness r is unknown.

Privacy Over Keys: Let (labi,msgi, ri) ∈ L × M × R : i = 1, . . . , � be �
values such that the labels labi are distinct. Then the � values σ1 =
MACkey(lab1,msg1, r1), . . . , σ� = MACkey(lab�,msg�, r�) are uniformly ran-
dom and independent in T over a random key ← K.
This says that the tags σi do not reveal any information about the values
(labi,msgi, ri) as long as key is unknown.

Construction. Let F and F
′ be finite fields such that |F′| ≥ |L| and |F| ≥

|F′| · |L|. We assume that we can identify the elements of L as either a subset
of F

′ or F and we can also efficiently identify tuples in F
′ × L as a subset of F.

Let M = F
m, R = F

�, K = F
�+1 × (F′)�+1, T = F. Define MACkey(lab,msg, r) as

follows:

– Parse key = (key1, key2) where key1 ∈ (F′)�+1, key2 ∈ F
�+1.

– Compute keylab
1 := PEval(key1, lab), key

lab
2 := PEval(key2, lab) by identifying

lab ∈ L as an element of F
′ and F respectively.
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– Output σ := PEval( (r,msg) , (lab, keylab
1 ) )+keylab

2 . Here we interpret (r,msg)
∈ R×M = F

�+m as a vector of coefficients in F and we identify (lab, key1lab) ∈
L × F

′ as an element of F.

Theorem 3. The above construction is an (�, ε) private MAC, where ε = m+�
|F′| .

The proof is given in the full version [BPRW15].

4.3 Graph Identification

Here, we define an algorithmic problem called the graph identification problem.
This abstracts out the core algorithmic problem that we face in designing our
reconstruction algorithm.

Definition 7 (Graph Identification Challenge). A graph identification
challenge GenAdv(n, t, d) is a randomized process that outputs a directed graph
G = (V = [n], E), where each vertex v ∈ V has out-degree d, along with a label-
ing L : E → {good, bad}. The process is parameterized by an adversary Adv and
proceeds as follows.

Adversarial Components. The adversary Adv(n, t, d) does the following:
1. It partitions V = [n] into three disjoint sets H, A, P (honest, active and

passive) such that V = H ∪ A ∪ P and |A ∪ P | = t.
2. It chooses the set of edges EA∪P→V that originate from A∪P arbitrarily

subject to each v ∈ A ∪ P having out-degree d and no self-loops.
3. It chooses the labels L(e) arbitrarily for each edge e ∈ EA→(A∪P ) ∪

E(A∪P )→A.
Honest Components. The procedure Gen chooses the remaining edges and

labels as follows:
1. It chooses the edges EH→V that originate from H uniformly at random

subject to each vertex having out-degree d and no self-loops. In particu-
lar, for each v ∈ H it randomly selects d outgoing edges (without replace-
ment) to vertices in V \ {v}.

2. It sets L(e) := bad for all e ∈ EH→A ∪ EA→H .
3. It sets L(e) := good for all e ∈ E(H∪P )→(H∪P ).

Output. Output (G = (V,E), L,H,A, P ).

The graph identification challenge is intended to model the authentication
graph in our eventual robust secret sharing scheme where the labels will be
assigned by verifying MAC tags. It allows us to abstract out a problem about
graphs without needing to talk about MACs, secret shares, etc. We will need
to show that any adversary on our full robust secret sharing scheme can be
translated into an adversary in the graph identification challenge game above.

Note that, in the graph challenge game, we allow the adversary to choose the
outgoing edges for both active and passive parties. This might seem unnecessary
since the adversary in our eventual robust secret sharing scheme cannot modify
the outgoing edges from passive parties in the authentication graph. However,
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it can choose which parties are active and which are passive after seeing the
outgoing edges from all corrupted parties and therefore the adversary has some
(limited) control over the outgoing edges of passive parties. In the definition
of the graph challenge game, we therefore simply give the adversary complete
control over all such outgoing edges.

As our main result for this problem, we show that there is an efficient algo-
rithm that identifies the set H ∪ P given only the graph G and the labeling L.
Note that, for our application, we do not crucially need to identify all of H ∪ P ;
any subset of H ∪ P of size t + 1 would be sufficient to reconstruct the message
from the Shamir shares. However, this does not appear to make the task easier.

Theorem 4. There exists a polynomial time algorithm GraphID, called the graph
identification algorithm, that takes as input a directed graph G = (V = [n], E) a
labeling L : V → {good, bad} and outputs a set B ⊆ V , such that for any Adv,
we have:

Pr

[

B = H ∪ P :
(G, L, H, A, P ) ← GenAdv(n = 2t + 1, t, d),

B ← GraphID(G, L)

]

≥ 1 − 2−Ω(d/ log2 n−log n)

In Sect. 7 we give a simple inefficient algorithm for the graph identifica-
tion problem. Then, in Sect. 8, we prove Theorem 4 by providing an efficient
algorithm.

5 Construction of Robust Secret Sharing

In this section we construct our robust secret sharing scheme using the tools
outlined above. We analyze its security by translating an adversary on the scheme
into an adversary in the graph identification game.

5.1 The Construction

Let t, n = 2t + 1 be parameters that are given to us, and let M be a message
space.

Let d be a graph out-degree parameter and let GraphID be the graph identi-
fication algorithm from Theorem4 with success probability 1 − δgi where δgi =
2−Ω(d/ log2 n).

Let (Sharenr,Recnr) be a t-out-of-n non-robust secret sharing (e.g., Shamir
secret sharing) with message space M and share space Snr.

Let {MACkey : L×Mmac ×R → T }key∈K be an (�, εmac) private MAC with
label space L = [n]2 × {0, 1} and message space Mmac = Snr × [n]d × K, where
� = 3d.

Finally, let (Sharerds,Recrds) be a t-out-of-n robust distributed storage (no
privacy) with message space Mrds = T 2dn, share space Srds and with robustness
δrds.

Our robust secret sharing scheme (Share,Rec) is defined as follows.
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Share(msg). On input a message msg ∈ M, the sharing procedure proceeds as
follows:

S.1. Choose (s̃1, . . . , s̃n) ← Sharenr(msg) to be a non-robust secret sharing of
msg.

S.2. Choose a uniformly random directed graph G = ([n], E) with out-degree d,
in-degree at most 2d and no self-loops as follows:

(a) For each i ∈ [n] choose a random set Ei ⊆ [n] \ {i} of size |Ei| = d. Set

E := {(i, j) : i ∈ [n], j ∈ Ei}.

(b) Check if there is any vertex in G with in-degree >2d. If so, go back to
step (a)3.

S.3. For each i ∈ [n], sample a random MAC key keyi ← K and MAC random-
ness ri ← R.

For each j ∈ Ei define

σi→j := MACkeyi
((i, j, 0), (s̃j , Ej , keyj), rj),

σi←j := MACkeyj
((i, j, 1), (s̃i, Ei, keyi), ri).

where we treat (i, j, 0), (i, j, 1) ∈ L as a label, and we treat (s̃j , Ej , keyj) ∈
Mmac as a message.

S.4. For each i ∈ [n] define tagsi = {(σi→j , σi←j)}j∈Ei
∈ T 2d and define tags =

(tags1, . . . , tagsn) ∈ T 2nd. Choose (p1, . . . , pn) ← Sharerds(tags) using the
robust distributed storage scheme.

S.5. For i ∈ [n], define si = (s̃i, Ei, keyi, ri, pi) to be the share of party i. Output
(s1, . . . , sn).

Rec(s′
1, . . . , s

′
n). On input s′

1, . . . , s
′
n with s′

i = (s̃′
i, E

′
i, key

′
i, r

′
i, p

′
i) do the

following.

R.0. If there is a set of exactly t+1 values W = {i ∈ [n] : s′
i 	= ⊥} then output

Recnr((s̃′
i)i∈W ). Else proceed as follows.

R.1. Reconstruct tags′ = (tags′1, . . . , tags
′
n) = Recrds(p′

1, . . . , p
′
n). Parse tags′i =

{(σ′
i→j , σ

′
i←j)}j∈E′

i
.

R.2. Define a graph G′ = ([n], E′) by setting E′ := {(i, j) : i ∈ [n], j ∈ E′
i}.

R.3. Assign a label L(e) ∈ {good, bad} to each edge e = (i, j) ∈ E′ as follows. If
the following holds:

σ′
i→j = MACkey′

i
((i, j, 1), (s̃′

j , E
′
j , key

′
j), r

′
j) and

σ′
i←j = MACkey′

j
((i, j, 1), (s̃′

i, E
′
i, key

′
i), r

′
i)

then set L(e) := good, else set L(e) := bad.
R.4. Call the graph identification algorithm to compute B ← GraphID(G′, L).
R.5. Choose a subset B′ ⊆ B of size |B′| = t + 1 arbitrarily and output

Recnr((s̃′
i)i∈B′).

3 This happens with negligible probability. However, we include it in the description
of the scheme in order to get perfect rather than statistical privacy.
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5.2 Security Analysis

Theorem 5. The above scheme (Share,Rec) is a t-out-of-n δ-robust secret shar-
ing scheme for n = 2t + 1 with robustness δ = δrds + δgi + dnεmac + n2−d/3.

We prove Theorem 5 by separately proving that the scheme satisfies perfect
privacy, perfect threshold reconstruction with erasures and adaptive δ-robustness
in the following three lemmas.

Lemma 1. The scheme (Share,Rec) satisfies perfect privacy.

Proof. Let I ⊆ [n] be of size |I| = t and let msg,msg′ ∈ M be any two values.
We define a sequence of hybrids as follows:

Hybrid 0: This is Share(msg)I = (si)i∈I . Each si = (s̃i, Ei, keyi, ri, pi).
Hybrid 1: In this hybrid, we change the sharing procedure to simply choose all

tags σi→j and σj←i for any j 	∈ I uniformly and independently at random.
This is identically distributed by the “privacy over randomness” property of
the MAC. In particular, we rely on the fact that the adversary does not see
rj and that there are at most � = 3d tags of the form σi→j and σj←i for any
j 	∈ I corresponding to the total degree of vertex j. These are the only tags
that rely on the randomness rj and they are all created with distinct labels.

Hybrid 2: In this hybrid, we choose (s̃1, . . . , s̃n) ← Sharenr(msg′).
This is identically distributed by the perfect privacy of the non-robust secret
sharing scheme. Note that in this hybrid, the shares si : i ∈ I observed by
the adversary do not contain any information about s̃′

j : j 	∈ I.
Hybrid 3:s This is Share(msg′)I = (si)i∈I . Each si = (s̃i, Ei, keyi, ri, pi).

This is identically distributed by the “privacy over randomness” property of
the MAC, using same argument as going from Hybrid 0 to 1.

Lemma 2. The scheme (Share,Rec) satisfies perfect threshold reconstruction
with erasures.

Proof. This follows directly from the fact that the non-robust scheme (Sharenr,
Recnr) satisfies perfect threshold reconstruction with erasures and therefore step
R.0 of reconstruction is guaranteed to output the correct answer when there are
exactly t erasures.

Lemma 3. The scheme (Share,Rec) is δ-robust for δ = δrds + δgi + dnεmac +
n2−d/3.

Proof Overview. Before giving the formal proof of the lemma, we give a sim-
plified proof intuition. To keep it simple, let’s consider non-adaptive robustness
experiment where the adversary has to choose the set I ⊆ [n], |I| = t of parties
to corrupt at the very beginning of the game (in the full proof, we handle adap-
tive security). Let si = (s̃i, Ei, keyi, ri, pi) be the shares created by the sharing
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procedure and let s′
i = (s̃′

i, E
′
i, key

′
i, r

′
i, p

′
i) be the modified shares submitted by

the adversary (for i 	∈ I, we have s′
i = si). Let us define the set of actively

modified shares as:

A = {i ∈ I : (s̃′
i, E

′
i, key

′
i, r

′
i) 	= (s̃i, Ei, keyi, ri)}.

Define H = [n]\I to be the set of honest shares, and P = I \A to be the passive
shares.

To prove robustness, we show that the choice of H, A, P and the labeling L
created by the reconstruction procedure follow the same distribution as in the
graph identification problem GenAdv′

(n, t, d) with some adversary Adv′. There-
fore the graph identification procedure outputs B = H ∪ P which means that
reconstruction outputs the correct message. Intuitively, we rely on the fact that:
(1) by the privacy properties of the MAC the adversary does not learn anything
about outgoing edges from honest parties and therefore we can think of them as
being chosen randomly after the adversarial corruption stage, (2) by the authen-
tication property of the MAC the edges between honest and active parties (in
either direction) are labeled bad.

More concretely, we define a sequence of “hybrid” distributions to capture
the above intuition as follows:

Hybrid 0. This is the non-adaptive version of the robustness game Exp
(msg,Adv) with a message msg and an adversary Adv as in Definition 3.

Hybrid 1. During reconstruction, instead of recovering tags′ = Recrds(p′
1, . . . , p

′
n)

we just set tags′ = tags to be the correct value chosen by the sharing proce-
dure. This is indistinguishable by the security of the robust-distributed storage
scheme.

Hybrid 2. During the sharing procedure, we can change all of the tags σi→j , σj←i

with j ∈ H to uniformly random values. This is identically distributed by the
“privacy over randomness” property of the MAC since the adversary does
not see rj for any such j ∈ H, and there are at most � = 3d such tags cor-
responding to the total degree of the vertex j. In particular, this means that
such tags do not reveal any (additional) information to the adversary about
Ej , keyj for j ∈ H.

Hybrid 3. During the reconstruction process, when the labeling L is created, we
automatically set L(e) = bad for any edge e = (i, j) or e = (j, i) in E′ such
that i ∈ H, j ∈ A (i.e., one end-point honest and the other active). The only
time this introduces a change is if the adversary manages to forge a MAC tag
under some key keyi for i ∈ H. Each such key was used to create at most � =
3d tags with distinct labels and therefore, we can rely on the authentication
security of the MAC to argue that this change is indistinguishable. Note that,
by the definition of the labeling, we are also ensured that L(e) = good for
any edge (i, j) where i, j ∈ H ∪ P .

Hybrid 4. During the sharing procedure, we can change all of the tags σi→j , σj←i

with i ∈ H to uniformly random values. This is identically distributed by the
“privacy over keys” property of the MAC since the adversary does not see
keyi for any such i ∈ H, and there are at most � = 3d such tags corresponding
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to the total degree of the vertex i. In particular, this means that such tags
do not reveal anything about the outgoing edges Ei for i ∈ H and therefore
the adversary gets no information about these edges throughout the game.

Hybrid 5. When we choose the graph G = ([n], E) during the sharing procedure,
we no longer require that every vertex has in-degree ≤ 2d. Instead, we just
choose each set Ei ⊆ [n] \ {i}, |Ei| = d uniformly at random. Since the
expected in-degree of every vertex is d, this change is indistinguishable by a
simple Chernoff bound.

Hybrid 6. During reconstruction, instead of computing B ← GraphID(G′, L)
we set B = H ∪P . We notice that, in the previous hybrid, the distribution of
G′, L,H,A, P is exactly that of the graph reconstruction game GenAdv′

(n, t, d)
with some adversary Adv′. In particular, the out-going edges from the honest
set H are chosen uniformly at random and the adversary does not see any
information about them throughout the game. Furthermore, the labeling
satisfies the properties of the graph identification game. Therefore, the above
modification is indistinguishable by the correctness of the graph identification
algorithm.

In the last hybrid, the last step of the reconstruction procedure runs msg′ =
Recnr((s̃′

i)i∈B′) where B′ ⊆ H ∪ P is of size |B′| = t + 1. Therefore and s̃′
i = s̃i

for i ∈ B′ and, by the Perfect Reconstruction with Erasures property of the
non-robust secret sharing scheme, we have msg′ = msg. For a formal proof, see
the full version [BPRW15].

5.3 Parameters of Construction

Let M = {0, 1}m and t, n = 2t + 1 be parameters. Furthermore, let λ be a
parameter which we will relate to the security parameter k.

We choose the out-degree parameter d = λ log3 n, which then gives δgi =
2−Ω(d/ log2 n−log n) = 2−Ω(λ log n).

We instantiate the non-robust secret scheme (Sharenr,Recnr) using t-out-
of-n Shamir secret sharing where the share space Snr is a binary field of size
2max{m,�log n	+1} = 2m+O(log n).

We instantiate the MAC using the construction from Sect. 4.2. We choose the
field F

′ to be a binary field of size |F′| = 2
5 log n+log m+λ� which is sufficiently
large to encode a label in L = [n]2 × {0, 1}. We choose the field F to be of size
|F| = |F′|22
log n�+1 which is sufficiently large to encode an element of F

′ × L.
We set � = 3d = O(λ log3 n). This means that the keys and randomness have
length log |K|, log |R| = O(d log |F|) = O(λ log3 n(λ + log n + log m)) and the
tags have length log |T | = log |F| = O(λ + log n + log m). We set the message
space of the MAC to be Mmac = F

mmac which needs to be sufficiently large
to encode the Shamir share, edges, and a key and therefore we set mmac =
�(max{m, �log n + 1} + log |K| + d log n)/ log |F|� = O(m + λ log3 n). This gives
security εmac = mmac+�

|F′| ≤ 2log m+log λ+3 log n+O(1)−log |F′| = 2−Ω(λ)−2 log n.
Finally, we instantiate the robust distributed storage scheme using the con-

struction from Sect. 4.1. We need to set the message space Mrds = T 2dn which
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means that the messages are of length mrds = 2dn log |T | = O(nλ log3 n(λ +
log n + log m)). We set u = �8mrds/n� = O(λ log3 n(λ + log n + log m)). This
results in a robust-distributed storage share length 3u = O(λ log3 n(λ + log n +
log m)) and we get security δrds = O(n2)/2u ≤ 2−Ω(λ).

With the above we get security

δ ≤ δrds + δgi + dnεmac + n2−d/3 = 2−Ω(λ) (5.1)

and total share length log |Snr| + d�log n� + log |K| + log |R| + 3u which is

m + O(λ log3 n(λ + log n + log m)) (5.2)

By choosing a sufficiently large λ = O(k) we get security δ ≤ 2−k and share size

m + O(k2polylog(n + m)) = m + Õ(k2).

6 Improved Parameters via Parallel Repetition

In the previous section, we saw how to achieve robust secret sharing with security
δ = 2−k at the cost of having a share size m + Õ(k2). We now show how
to improve this to m + Õ(k). We do so by instantiating the scheme from the
previous section with smaller parameters that only provide weak robustness
δ = 1

4 and share size m + Õ(1). We then use parallel repetition of q = O(k)
independent copies of this weak scheme. The q copies of the recovery procedure
recover q candidate messages, and we simply output the majority vote. A naive
implementation of this idea, using q completely independent copies of the scheme,
would result in share size O(km) + Õ(k) sine the (non-robust) Shamir share of
length m is repeated q times. However, we notice that we can reuse the same
Shamir shares across all q copies. This is because the robustness security held
even for a worst-case choice of such shares, only over the randomness of the other
components. Therefore, we only get a total share size of m + Õ(k).

Construction. In more detail, let (Share,Rec) be our robust secret sharing
scheme construction from above. For some random coins coinsnr of the non-
robust (Shamir) secret sharing scheme, we let (s1, . . . , sn) ← Share(msg; coinsnr)
denote the execution of the sharing procedure Share(msg) where step S.1 uses
the fixed randomness coinsnr to select the non-robust shares (s̃1, . . . , s̃n) ←
Sharenr(msg; coinsnr) but steps S.2 – S.5 use fresh randomness to select the
graph G, the keys keyi and the randomness ri. In particular, Share(msg; coinsnr)
remains a randomized algorithm.

We define the q-wise parallel repetition scheme (Share′,Rec′) as follows:

Share′(msg): The sharing procedure proceeds as follows
– Choose uniformly random coinsnr for the non-robust sharing procedure
Sharenr.
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– For j ∈ [q]: sample (sj
1, . . . , s

j
n) ← Share(msg; coinsnr) where sj

i equals
(s̃i, E

j
i , keyj

i , r
j
i , p

j
i ). Note that the non-robust (Shamir) shares s̃i are the

same in all q iterations but the other components are selected with fresh
randomness in each iteration.

– For i ∈ [n], define the party i share as si = (s̃i, {(Ej
i , keyj

i , r
j
i , p

j
i )}

q
j=1)

and output (s1, . . . , sn).
Rec′(s1, . . . , sn): The reconstruction procedure proceeds as follows

– For i ∈ [n], parse si = (s̃i, {(Ej
i , keyj

i , r
j
i , p

j
i )}

q
j=1).

For j ∈ [q], define sj
i := (s̃i, E

j
i , keyj

i , r
j
i , p

j
i ).

– For j ∈ [q], let msgj := Rec(sj
1, . . . , s

j
n). If there is a majority value msg

such that |{j ∈ [q] : msg = msgj}| > q/2 then output msg, else output
⊥.

Analysis. We prove that the parallel repetition scheme satisfies robustness.
Assume that the parameters of (Share,Rec) are chosen such that the scheme is
δ-robust.

We first claim that the scheme (Share,Rec) remains robust even if we fix
the random coin coinsnr for the non-robust secret sharing scheme (in step S.1
of the Share function) to some worst-case value but use fresh randomness in
all the other steps. The fact that coinsnr are random was essential for privacy
but it does not affect robustness. In particular, let us consider the robust-
ness experiment Exp(msg,Adv) for the scheme (Share,Rec) and let us define
Exp(msg,Adv; coinsnr) to be the experiment when using some fixed choice of
coinsnr but fresh randomness everywhere else. We can strengthen the statement
of Lemma 3 which proves the robustness of (Share,Rec) to show the following.

Lemma 4 (Strengthening of Lemma 3). The scheme (Share,Rec) remains
robust even if coinsnr is fixed to a worst-case value. In particular, for any msg ∈
M, any choice of coinsnr and for all adversaries Adv we have

Pr[Exp(msg,Adv; coinsnr) = 1] ≤ δ.

The proof of the above lemma follows the lines of that of Lemma3. See the full
version [BPRW15] for more details.

Theorem 6. Assume that the parameters of (Share,Rec) are chosen such that
the scheme is δ-robust for δ ≤ 1

4 . Then the q-wise parallel repetition scheme
(Share′,Rec′) is a δ′-robust secret sharing scheme with δ′ = e− 3

128 q.

The proof of the above theorem is given in the full version [BPRW15].

Parameters. We choose the parameters of the underlying scheme (Share,Rec) to
have security δ = 1

4 . This corresponds to choosing a sufficiently large λ = O(1)
and results in a share size of m + O(log4 n + log3 n log m) bits (Eq. 5.2). By
choosing a sufficiently large q = O(k) and setting (Share′,Rec′) to be the q-wise
parallel repetition scheme from above, we get a scheme with robustness δ′ = 2−k

and share size

m + O(k(log4 n + log3 n log m)) = m + Õ(k).
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We note that part of the reason for the large poly-logarithmic factors comes from
the parameters of our efficient graph identification algorithm which requires
us to set the graph degree to d = O(log3 n). If we had instead simply relied
on our inefficient graph identification algorithm (Corollary 1) we could set d =
O(log n) and would get an inefficient robust secret sharing scheme with share size
m + O(k(log2 n + log n log m)). It remains an interesting challenge to optimize
the poly-logarithmic factors.

7 Inefficient Graph Identification
via Self-Consistency

We now return to the graph identification problem defined in Sect. 4.3. We begin
by showing a simple inefficient algorithm for the graph identification problem.
In particular, we show that with overwhelming probability the set H ∪ P is the
unique maximum self-consistent set of vertices, meaning that there are no bad
edges between vertices in the set.

Definition 8 (Self-Consistency). Let G = (V,E) be a directed graph and let
L : V → {good, bad} be a labeling. We say that a subset of vertices S ⊆ V is
self-consistent if for all e ∈ ES→S we have L(e) = good. A subset S ⊆ V is max
self-consistent if |S| ≥ |S′| for every self-consistent S′ ⊆ V .

Note that, in general, there may not be a unique max self-consistent set in
G. However, the next lemma shows that if the components are sampled as in
the graph identification challenge game GenAdv(n, t, d), then with overwhelming
probability there is a unique max self-consistent set in G and it is H ∪ P .

Lemma 5. For any Adv, and for the distribution (G,L,H,A, P ) ← GenAdv

(n, t, d), the set H ∪ P is the unique max self-consistent set in G with proba-
bility at least 1 − 2−Ω(d−log n).

Proof. We know that the set H∪P is self-consistent by the definition of the graph
identification challenge. Assume that it is not the unique max self-consistent set
in G, which we denote by the event BAD. Then there exists some set S 	= H ∪P
of size |S| = |H ∪ P | such that S is self consistent. This means that S must
contain at least q ≥ 1 elements from A and at least t + 1 − q elements from
H. In other words there exists some value q ∈ {1, . . . , t} and some subsets
A′ ⊆ S ∩ A ⊆ A ⊆ A ∪ P of size |A′| = q and H ′ ⊆ S ∩ H ⊆ H of size t + 1 − q
such that EH′→A′ = ∅. This is because, by the definition of the graph challenge
game, every edge in EH′→A′ ⊆ EH→A is labeled bad and so it must be empty if
S is consistent. For any fixed q,A′,H ′ as above, if we take the probability over
the random choice of d outgoing edges for each v ∈ H ′, we get:

Pr[EH′→A′ = ∅] =

((
n−1−q

d

)
(
n−1

d

)
)t+1−q

≤
(

1 − q

n − 1

)d(t+1−q)

≤ e− d(t+1−q)q
n .
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By taking a union bound, we get

Pr[BAD] ≤ Pr

⎡

⎣∃
⎧

⎨

⎩

q ∈ {1, . . . , t}
A′ ⊆ A ∪ P : |A|′ = q

H′ ⊆ H, |H′| = t + 1 − q

⎫

⎬

⎭

: EH′→A′ = ∅

⎤

⎦

≤
t
∑

q=1

( t + 1

t + 1 − q

)

·
(t

q

)

· e− d(t+1−q)q
n ≤

t
∑

q=1

( t + 1

t + 1 − q

)

·
(t + 1

q

)

· e− d(t+1−q)q
n

≤ 2

(t+1)/2
∑

q=1

(t + 1

q

)2

· e− d(t+1−q)q
n (symmetry between q and t + 1 − q)

≤ 2

(t+1)/2
∑

q=1

(t + 1)2q · e− d(t+1−q)q
n

≤ 2

(t+1)/2
∑

q=1

e
q
(
2 loge(t+1)− d(t+1−q)

n

)

≤ 2

(t+1)/2
∑

q=1

e
q
(
2 loge(t+1)− (t+1)d

2n

)
(since q ≤ (t + 1)/2)

≤ 2

(t+1)/2
∑

q=1

eq(2 loge(t+1)−d/4) (since t + 1 > n/2)

≤ (t + 1)e(2 loge(t+1)−d/4) ≤ 2−Ω(d−log n)

As a corollary of the above lemma, we get an inefficient algorithm for the
graph identification problem, that simply tries every subset of vertices S ⊆ V
and outputs the max self-consistent set.

Corollary 1. There exists an inefficient algorithm GraphIDineff such that for any
Adv:

Pr

[

B = H ∪ P :
(G, L, H, A, P ) ← GenAdv(n = 2t + 1, t, d),

B ← GraphIDineff(G, L)

]

≥ 1 − 2−Ω(d−log n)

Remark. Note that for the analysis of the inefficient graph reconstruction pro-
cedure in Lemma 5 and Corollary 1, we did not rely on the fact that edges from
active to honest parties e = (i, j) : i ∈ A, j ∈ H are labeled bad. Therefore,
if we only wanted an inefficient graph identification procedure, we could relax
the requirements in the graph challenge game and allow the adversary to choose
arbitrary labels for such edges e. This would also allow us to simplify our robust
secret sharing scheme and omit the “reverse-authentication” tags σi←j .

8 Efficient Graph Identification

In this section, we prove Theorem 4 and given an efficient graph identifica-
tion algorithm. We begin with an intuitive overview before giving the technical
details.
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8.1 Overview and Intuition

A Simpler Problem. We will reduce the problem of identifying the full set
H ∪ P to the simpler problem of only identifying a small set Y ⊆ H ∪ P such
that Y ∩ H is of size at least εn for some ε = 1/Θ(log n). If we are given such a
Y , we can use it to identify a larger set S defined as all vertices in [n] with no
bad incoming edge originating in Y . We observe that every vertex in H ∪ P is
included in S, as there are no bad edges from H∪P to H∪P . On the other hand,
since Y ∩ H is big enough, it is unlikely that a vertex in A could be included
in S, as every vertex in A likely has an incoming edge from |Y ∩ H| that is
labeled as bad. Therefore, with high probability S = H ∪ P . There is a bit of
subtlety involved in applying this intuition, as it is potentially complicated by
dependencies between the formation of the set Y and the distribution of the
edges from Y to A. We avoid dealing with such dependencies by “splitting” the
graph into multiple independent graphs and building Y from one of these graphs
while constructing S in another.

Now the task becomes obtaining such a set Y in the first place. We consider
two cases depending on whether the set P is small (|P | ≤ εn) or large (|P | > εn).

Small P. In this case, there is only a small number of good edges crossing
between H and A ∪ P (only edges between H and P ). Therefore there exists a
bisection of the graph into sets H and A∪P of size t+1 and t respectively, where
the number of good edges crossing this bisection is approximately εdn. By using
an efficient O(log n)-approximation algorithm for the graph bisection problem
(on the good edges in G) we can get a bisection X0,X1 with very few edges
crossing between X0 and X1. This means that, with overwhelming probability,
one of X0 or X1 contains the vast majority of the honest vertices, say !.9|H|, as
otherwise if the honest vertices were split more evenly, we’d expect more edges
crossing this partition. We can then refine such an X to get a suitable smaller
subset Y which is fully contained in H ∪P , by taking all vertices that don’t have
too many incoming bad edges from X.

Large P. In this case, the intuition is that every vertex in A is likely to have
at least d/2 in-coming bad edges (from the honest vertices), but honest/passive
vertices will only have d(1/2 − ε) in-coming bad edges on average from the
active vertices. So we can differentiate the two cases just by counting. This isn’t
precise since many active vertices can point bad edges at a single honest vertex
to make it “look bad”. However, intuitively, this cannot happen too often.

To make this work, we first start with the full set of vertices [n] and disqualify
any vertices that have more than d/2 out-going bad edges (all honest vertices
remain since they only have d(1/2−ε) outgoing bad edges on expectation). This
potentially eliminates some active vertices. Let’s call the remaining smaller set
of vertices X. We then further refine X into a subset Y of vertices that do not
have too many incoming bad edges (more than d(1/2 − ε/2)) originating in X.
The active vertices are likely to all get kicked out in this step since we expect d/2
incoming bad edges from honest vertices. On the other hand, we claim that not
too many honest vertices get kicked out. The adversary has at most (1/2−ε)dn/2
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out-going bad edges in total under his control in the set X ∩A and has to spend
d(1/2 − ε/2) edges to kick out any honest party. Therefore there is a set of at
least εn/2 of the honest parties that must survive. This means that Y ⊆ H ∪ P
and that Y contains Θ(n/ log n) honest parties as we wanted.

Unknown P. Of course, our reconstruction procedure will not know a priori
whether P is relatively large or small or, in the case that P is small, which one
of the bisection sets X1 or X2 to use. So it simply tries all of these possibilities and
obtains three candidate sets Y0, Y1, Y2, one of which has the properties we need
but we do not know which one. To address this, we construct the corresponding
sets Si for each Yi as described above, and we know that one of these sets Si is
H ∪ P . From the previous section (Lemma 5), we also know that H ∪ P is the
unique max self-consistent set in G. Therefore, we can simply output the largest
one of the sets S0, S1, S2 which is self-consistent in G and we are guaranteed
that this is H ∪ P .

8.2 Tool: Graph Splitting

As mentioned above, we will need to split the graph G into three sub-graphs
G1, G2, G3 such that the outgoing edges from honest parties are distributed
randomly and independently in G1, G2, G3. Different parts of our algorithm will
use different sub-graphs and it will be essential that we maintain independence
between them for our analysis.

In particular, we describe a procedure (G1, G2, G3) ← GraphSplit(G) that
takes as input a directed graph G = (V = [n], E) produced by GenAdv(n, t, d)
and outputs three directed graphs (Gi = (V,Ei))i=1,2,3 such that Ei ⊂ E and
the out-degree of each vertex in each graph is d′ := �d/3. Furthermore, we
require that the three sets Ei

H→V are random and independent subject to each
vertex having out-degree d′ and no self-loops. Note that forming the sets Ei by
simply partitioning the outgoing edges of each vertex into three sets is not a
good solution, since in that case the sets will always be disjoint and therefore
not random and independent. On the other hand, sub-sampling three random
subsets of d′ outgoing edges from the set of d outgoing edges in E is also not a
good solution since in the case the overlap between the sets is likely to be higher
than it would be if we sampled random subsets of d′ outgoing edges from all
possible edges.

Our algorithm proceeds as follows.

(G1, G2, G3) ← GraphSplit(G): On input a directed graph G = (V,E) with
out-degree d.
1. Define d′ = �d/3.
2. For each vertex, for each v ∈ V :

(a) Define Nv := {w ∈ V | (v, w) ∈ E}, the set of neighbors of v in G
(b) Sample three uniform and independent sets {N i

v}i=1,2,3 with N i
v ⊆

V \ {v} and |N i
v| = d′.
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(c) Sample a uniformly random injective function πv :
⋃

i=1,2,3

N i
v → Nv.

(d) Define N̂ i
v = πv(N i

v) ⊆ Nv.
3. Define Ei := {(v, w) ∈ E | w ∈ N̂ i

v} and output Gi = (V,Ei) for
i = 1, 2, 3.

Intuitively, for each vertex v, we first sample the three sets of outgoing neigh-
bors N i

v independently at random from all of V \ {v}, but then we apply an
injective function πv(N i

v) to map them into a the original neighbors Nv. The
last step ensures that Ei ⊆ E.

Lemma 6. Let (G = (V,E), L,H,A, P ) ← GenAdv(n, t, d) for some adversary
Adv. Let (Gi = (V,Ei))i=1,2,3 ← GraphSplit(G). Then the joint distribution of
(Ei

H→V )i=1,2,3 is identical to choosing each set Ei
H→V randomly and indepen-

dently subject to each vertex having out-degree d′ and no self-loops; i.e., for each
i = 1, 2, 3 form the set Ei

H→V by taking each v ∈ H and choosing a set of d′

outgoing edges uniformly at random (without replacement) to vertices in V \{v′}.

Proof. For each v ∈ H, define c{1,2} = |N1
v ∩ N2

v |, c{1,3} = |N1
v ∩ N3

v |, c{2,3} =
|N2

v ∩N3
v | and c{1,2,3} = |N1

v ∩N2
v ∩N3

v |. We call these numbers the intersection
pattern of {N i

v}i=1,2,3 and denote it by C. Analogously, we define the intersection
pattern of {N̂ i

v}i=1,2,3 and denote it by Ĉ.
It’s easy to see that, for any fixed choice of {N i

v}i=1,2,3 with intersection
pattern C, the sets {N̂ i

v}i=1,2,3 are uniformly random and independent subject
to their intersection pattern being Ĉ = C. This follows from the random choice
of Nv and the injective function πv.

Furthermore, since the distribution of the intersection pattern Ĉ = C is
the same for {N i

v}i=1,2,3 and for {N̂ i
v}i=1,2,3, the distribution of {N̂ i

v}i=1,2,3 is
identical to that of {N i

v}i=1,2,3. In other words, for each v ∈ H the three sets of
outgoing neighbors of v in G1, G2, G3 are random and independent as we wanted
to show.

8.3 The Graph Identification Algorithm

We now define the efficient graph identification algorithm B ← GraphID(G,L).

Usage. Our procedure GraphID(G,L) first runs an initialization phase Initial-
ize , and then runs two procedures Small P and Large P sequentially. It
uses the data generated in these two procedures to then run the output phase
Output.

Initialize.
1. Let b be a constant such that there exists a polynomial-time b log n-

approximate graph bisection algorithm Bisect, such as the one provided
in [Räc08]. Let c = 800

9 b, and let ε = 1/(c · log(n)).
2. Run (G1, G2, G3) ← GraphSplit(G) as defined in Sect. 8.2. This produces

three graphs Gi = (V,Ei) such that Ei ⊆ E and the out-degree of each
vertex in Gi is d′ = �d/3.

Small P .
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1. Run (X0,X1) ← Bisect(G∗), where G∗ = (V,E∗) is the undirected graph
induced by the good edges of G1:

E∗ =
{

{i, j} :
(e = (i, j) ∈ E1 and L(e) = good) or
(e = (j, i) ∈ E1 and L(e) = good)

}

2. For i = 0, 1: contract Xi to a set of candidate good vertices Yi that have
fewer than 0.4d′ incoming bad edges in the graph G2.

Yi :=
{

v ∈ Xi :
∣∣∣{e ∈ E2

Xi→{v} : L(e) = bad}
∣∣∣ < 0.4d′

}
.

Large P .
1. Define a set of candidate legal vertices X2 as the set of vertices having

fewer than d′/2 outgoing bad edges in G1.

X2 :=
{

v ∈ V :
∣∣∣{e ∈ E1

{v}→V : L(e) = bad}
∣∣∣ < d′/2

}
.

2. Contract X2 to a set of candidate good vertices Y2, defined as the set of
vertices in X2 having fewer than d′ (1/2 − ε/2) incoming bad edges from
legal vertices in the graph G1.

Y2 :=
{

v ∈ X2 :
∣∣∣{e ∈ E1

X2→{v} : L(e) = bad}
∣∣∣ < d′ (1/2 − ε/2)

}
.

Output. This subprocedure takes as input the sets Y0, Y1 (generated by Small
P ), and Y2 (generated by Large P ) and outputs a single set B, according
to the following algorithm.
1. For i = 0, 1, 2: define Si as the set of vertices that only have incoming

good edges from Yi in G3. Formally,

Si :=
{

v ∈ V : ∀e ∈ E3
Yi→v L(e) = good

}

2. For i = 0, 1, 2: if L(e) = good for all e ∈ ESi→Si
, define Bi := Si;

otherwise, define Bi = ∅. This ensures that each Bi is self-consistent
(Definition 8) in G.

3. Output a set B defined as any of the largest sets among B0, B1, B2.

8.4 Analysis of Correctness – Overview

In this section, we give an intuition for why the algorithm GraphID outlined
above satisfies Theorem 4.

We first fix an arbitrary adversary Adv in the graph challenge game. We
consider the distribution induced by running the randomized processes (G,L,H,
A, P ) ← GenAdv(n = 2t+1, t, d) and B ← GraphID(G,L). Note that without loss
of generality we can assume Adv is deterministic and therefore the sets H, A, P
are fixed. The only randomness in experiment consists of the choice of edges
EH→V in the execution of GenAdv(n = 2t + 1, t, d) and the randomness of the
graph splitting procedure (G1, G2, G3) ← GraphSplit(G) during the execution of
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GraphID(G,L). By the property of graph splitting (Lemma6) we can think of this
as choosing three independent sets (Ei

H→V )i=1,2,3. This induces a distribution on
the sets Xi, Yi, Si, Bi and B defined during the course of the GraphID algorithm
and we analyze the probability of various events over this distribution.

We define a sufficient event :

O := “there exists i ∈ {0, 1, 2} such that |Yi ∩ H| ≥ ε · n/2 and Yi ⊆ H ∪ P”

In the full version [BPRW15], we prove the following technical lemmas that
allow us to prove Theorem4.

Lemma 7. The conditional probability of B = H ∪ P , given the occurrence of
event O, is 1 − 2−Ω(d/ log n).

Lemma 8. If |P | < ε · n, then the probability that O occurs is at least 1 −
2−Ω(d/ log n).

Lemma 9. If |P | ≥ ε · n, then the probability that O occurs is at least 1 −
2−Ω(d/ log2 n−log n).

In Lemma 7, the probability is over the random edges E3
H→V in G3, while

in Lemmas 8 and 9, the probability is over the random edges Ei
H→V in Gi for

i = 1, 2. Therefore, conditioning on the event O in Lemma 7 does not effect the
probability distribution.

|P | ≤ ε · n |P | > ε · n

O

B = H ∪ P

Fig. 1. Structure of our analysis: arrows denote logical implications (happening with
high probability).

Our analysis is summarized in Fig. 1. We now complete the proof of
Theorem 4.

Proof of Theorem 4. By Lemmas 8 and 9, we obtain that the event O occurs
with probability at least 1− 2−Ω(d/ log2 n−log n). Putting together with Lemma 7,
we obtain that the probability that the set B returned by the algorithm equals
H ∪ P is at least 1 − 2−Ω(d/ log2 n−log n) completing the proof of the theorem.
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9 Conclusion

We constructed an efficient robust secret sharing scheme for the maximal corrup-
tion setting with n = 2t+1 parties with nearly optimal share size of m+Õ(k) bits,
where m is the length of the message and 2−k is the failure probability of the
reconstruction procedure with adversarial shares.

One open question would be to optimize the poly-logarithmic terms in our
construction. It appears to be an interesting question to attempt to go all the
way down to m + O(k) or perhaps even just m + k bits for the share size, or
to prove a lower bound that (poly)logarithmic factors in n,m are necessary. We
leave this as a challenge for future work.

Acknowledgments. Daniel Wichs: Research supported by NSF grants CNS-1347350,
CNS-1314722, CNS- 1413964.

Valerio Pastro and Daniel Wichs: This work was done in part while the authors were
visiting the Simons Institute for the Theory of Computing, supported by the Simons
Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF
grant CNS-1523467.

References

[Bla79] Blakley, G.R.: Safeguarding cryptographic keys. In: International Work-
shop on Managing Requirements Knowledge, pp. 313–317. IEEE Computer
Society (1979)

[BPRW15] Bishop, A., Pastro, V., Rajaraman, R., Wichs, D.: Essentially optimal
robust secret sharing with maximal corruptions. IACR Cryptology ePrint
Archive, 2015:1032 (2015)

[BS97] Blundo, C., De Santis, A.: Lower bounds for robust secret sharing schemes.
Inf. Process. Lett. 63(6), 317–321 (1997)
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Abstract. We study the problem of devising provably secure PRNGs
with input based on the sponge paradigm. Such constructions are very
appealing, as efficient software/hardware implementations of SHA-3 can
easily be translated into a PRNG in a nearly black-box way. The only
existing sponge-based construction, proposed by Bertoni et al. (CHES
2010), fails to achieve the security notion of robustness recently consid-
ered by Dodis et al. (CCS 2013), for two reasons: (1) The construction
is deterministic, and thus there are high-entropy input distributions on
which the construction fails to extract random bits, and (2) The construc-
tion is not forward secure, and presented solutions aiming at restoring
forward security have not been rigorously analyzed.

We propose a seeded variant of Bertoni et al.’s PRNG with input
which we prove secure in the sense of robustness, delivering in particular
concrete security bounds. On the way, we make what we believe to be an
important conceptual contribution, developing a variant of the security
framework of Dodis et al. tailored at the ideal permutation model that
captures PRNG security in settings where the weakly random inputs are
provided from a large class of possible adversarial samplers which are
also allowed to query the random permutation.

As a further application of our techniques, we also present an effi-
cient sponge-based key-derivation function (which can be instantiated
from SHA-3 in a black-box fashion), which we also prove secure when
fed with samples from permutation-dependent distributions.

Keywords: PRNGs · Sponges · SHA-3 · Key derivation · Weak
randomness

1 Introduction

Generating pseudorandom bits is of paramount importance in the design of
secure systems – good pseudorandom bits are needed in order for cryptogra-
phy to be possible. Typically, software-based pseudorandom number generators
(PRNGs) collect entropy from system events into a so-called entropy pool, and
then apply cryptographic algorithms (hash functions, block ciphers, PRFs, etc.)
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to extract pseudorandom bits from this pool. These are also often referred to as
PRNGs with input, as opposed to classical seed-stretching cryptographic PRGs.

There have been significant standardization efforts in the area of PRNGs
[1,6,19], and an attack-centric approach [8,18,21,26,30] has mostly driven their
evaluation. Indeed, the development of a comprehensive formal framework to
prove PRNG security has been a slower process, mostly due to the complexity of
the desirable security goals. First models [5,13,21] only gave partial coverage of
the security desiderata. For instance, Barak and Halevi [5] introduced a strong
notion of PRNG robustness, but their model could not capture the ability of a
PRNG to collect randomness at a low rate. Two recent works [15,17] considerably
improved this state of affairs with a comprehensive security framework for PRNG
robustness whose inputs are adversarially generated (under some weak entropy
constraints). The framework of [15] was recently applied to the study of the Intel
on-chip PRNG by Shrimpton and Terashima [29].

This paper continues the investigation of good candidate constructions for
PRNGs with inputs which are both practical and provably secure. In particu-
lar, we revisit the question of building PRNGs from permutations, inspired by
recent sponge-based designs [10,31]. We provide variants of these designs which
are provably robust in the framework of [15]. On the way, we also extend the
framework of [15] to properly deal with security proofs in ideal models (e.g. when
given a random permutation), in particular considering PRNG inputs sampled
by adversaries which can make queries to the permutation.

Overall, this paper contributes to the development of a better understanding
of sponge-based constructs when processing weakly random inputs. As a further
testament of this, we apply our techniques to analyze key-derivation functions
using sponge-based hash functions, like SHA-3.

Sponge-based PRNGs. SHA-3 relies on the elegant sponge paradigm by Ber-
toni, Daemen, Peeters, and van Assche [9]. Beyond hash functions, sponges have
been used to build several cryptographic objects. In particular, in later work [10],
the same authors put forward a sponge-based design of a PRNG with input.
It uses an efficiently computable (and invertible) permutation π, mapping n-
bit strings to n-bit strings, and maintains an n-bit state, which is initially set
to S0 ← 0n. Then, two types of operations can be alternated (for additional
parameters r ≤ n, and c = n − r, the latter being referred to as the capacity):

– State refresh. Weakly random material (e.g., resulting from the measurement
of system events) can be added r-bit at a time. Concretely, given an r-bit
string Ii of weakly random bits, the state is refreshed to

Si ← π(Si−1 ⊕ (Ii ‖ 0c)) .

– Random-bit generation. Given the current state Si, we can extract r bits of ran-
domness by outputting Si[1 . . . r], and updating the state as Si+1 ← π(Si).
This process can be repeated multiple times to obtain as many bits as
necessary.
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This construction is very attractive. First off, it is remarkably simple. Second, it
resembles the structure of the SHA-3/KECCAK hash function, and thus efficient
implementations of this PRNG are possible with the advent of more and more
optimized SHA-3 implementations in both software and hardware. In fact, recent
work by Van Herrewege and Verbauwhede [31] has already empirically validated
the practicality of the design. Also, the permutation π does not need to be the
KECCAK permutation – one could for example use AES on a fixed key.

PRNG security. Of course, we would like the simplicity of this construction
to be also backed by strong security guarantees. The minimum security require-
ment is that whenever a PRNG has accumulated sufficient entropy material, the
output bits are indistinguishable from random. The original security analysis
of [10] proves this (somewhat indirectly) by showing that the above construc-
tion is indifferentiable [23] from a “generalized random oracle” which takes a
sequence of inputs I1, I2, . . . through refresh operations, and when asked to pro-
duce a certain output after k inputs have been processed, it simply applies a
random function to the concatenation of I1, I2, . . . , Ik. This definition departs
substantially from the literature on PRNG robustness, and only provides mini-
mal security – for example, it does not cover any form of state compromise.

In contrast, here we call for a provably-secure sponge-based PRNG construc-
tion which is robust in the sense of [15]. However, there are two reasons why the
construction, as presented above, is not robust.

(1) No forward secrecy. As already recognized in [10], the above PRNG is
not forward secure – in particular, learning the state S just after some pseudo-
random bits have been output allows to distinguish them from random ones by
just computing π−1(S). The authors suggest a countermeasure to this: sim-
ply zeroing the upper r bits of the input to π before computing the final
state, possibly multiple times if r is small. More formally, given the state S′

k

obtained after outputting enough pseudorandom bits, and applying π, we com-
pute Sk, S′

k+1, Sk+1, . . . , S
′
k+t, Sk+t as

S′
i+1 ← π(Si) ,

for i = k, . . . , k + t− 1, where Si is obtained from S′
i by setting the first r bits to

0. This appears to prevent obvious attacks, and to make the construction more
secure as t increases, but no formal validation is provided in [10].

In particular, note that the final state Sk+t is not random, as its first r bits
are all 0. Robustness demands that we obtain random bits from Sk+t even when
no additional entropy is added – unfortunately we cannot just proceed as above,
since this will result in outputting r zero bits. (Also note that applying π also
does not make the state random, since π is efficiently invertible.) This indicates
that a further modification is needed.

(2) Lack of a seed. The above sponge-based PRNG is unseeded: This allows
for high min-entropy distributions (only short of one bit from maximal
entropy) for which the generated bits are not uniform. For example, consider
I = (I1, . . . , Ik), where each Ij is an r-bit string, and such that I is uniformly
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distributed under the sole constraint that the first bit of the state Sk obtained
after injecting all k blocks I1, . . . , Ik into the state is always 0. Then, we can
never expect the construction to provide pseudorandom bits under such inputs.

One could restrict the focus to “special” distributions as done in [5], argu-
ing nothing like the above would arise in practice. As discussed in [15], however,
arguing which sources are possible is difficult, and following the traditional cryp-
tographic spirit, it would be highly desirable to reduce assumptions on the input
distributions, which ideally should be adversarially generated, at the cost of
introducing a (short) random seed which is independent of the distribution.

We note that the above distribution would also invalidate the weak secu-
rity expectation from [10]. However, their treatment bypasses this problem by
employing the random permutation model, where effectively the randomly cho-
sen permutation acts as a seed, independent of the input distribution. We believe
however this approach (which is not unique to [10]) to be problematic – the
random permutation model is only used as a tool in the security proof due to
the lack of standard-model assumptions under which the PRNG can be proved
secure. Yet, in instantiations, the permutation is fixed. In contrast, a PRNG seed
is an actual short string which can and should be actually randomly chosen.

Our results. We propose and analyze a new sponge-based seeded construction
of a PRNG with input (inspired by the one of [10]) which we prove robust. To
this end, we use an extension of the framework of [15] tailored at the ideal-
permutation model, and dealing in particular with inputs that are generated by
adversarial samplers that can query the permutation. The construction (denoted
SPRG) uses a seed seed, consisting of s r-bit strings seed0, . . . , seeds−1 (s is not
meant to be too large here, not more than 2 or 3 in actual deployment). Then,
the construction allows to interleave two operations:

– State refresh. The construction here keeps a state Si ∈ {0, 1}n and a counter
j ∈ {0, 1, . . . , s − 1}. Given a string Ii of r weakly random bits, the state is
refreshed to

Si+1 ← π(Si ⊕ (Ii ⊕ seedj) ‖ 0c) ,

and j is set to j + 1 mod s.
– Random-bit generation. Given the current state Si, we can extract r bits of

randomness by computing Si+1 ← π(Si), and outputting the first r bits of
Si+1. (This process can be repeated multiple times to obtain as many bits
as necessary.) When done, we refresh the state by repetitively zeroing its
first r bits and applying π, as described above. (How many times we do this
is given by a second parameter – t – which ultimately affects the security of
the PRNG.)

For a sketch of SPRG see Fig. 5. Thus, the main difference over the PRNG of [10]
are (1) The use of a seed, (2) The zeroing countermeasure discussed above, and
(3) An additional call to π before outputting random bits. In particular, note that
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SPRG still follows the sponge principle, and in fact (while this may not be the
most efficient implementation), can be realized from a sponge hash function (e.g.,
SHA-3) in an entirely black-box way1.

In our proof of security, the permutation is randomly chosen, and both the
attacker and an adversarial sampler of the PRNG inputs have oracle access to it.
In fact, an important contribution of our work is that of introducing a security
framework for PRNG security based on [15,29] for the ideal permutation model,
and we see this as a step of independent interest towards a proper treatment of
ideal-model security for PRNG constructions. As a word of warning, we stress
that our proofs consider a restricted class of permutation-dependent distribution
samplers, where the restriction is in terms of imposing an unpredictability con-
straint which must hold even under (partial) exposure of some (but not all) of
the sampler’s queries. While our notion is general enough to generalize previous
oracle-free samplers and to encompass non-trivial examples (in particular mak-
ing seedless extraction impossible, which is what we want for the model to be
meaningful), we see potential for future research in relaxing this requirement.

Sponge-based key derivation. Our techniques can be used to immediately
obtain provable security guarantees for sponge-based key-derivation functions
(KDFs). (See Sect. 6.) While the security of sponge-based KDFs already follows
from the original proof of [9], our result will be stronger in that it will also hold
for larger classes of permutation-dependent sources. We elaborate on this point
a bit further down in the last paragraph of the introduction, mentioning further
related work.

Our techniques. Our analysis follows from two main results, of independent
interest, which we briefly outline here. Both results are obtained using Patarin’s
H-coefficient method, as reviewed in Sect. 2.

The first result – which we refer to as the extraction lemma – deals with
the ability of extracting keys from weak sources using sponges. In particular,
we consider the seeded construction Sp which starting from some initial state
S0 = IV, and obtaining r-bit blocks I1, . . . , Ik from a weak random source, and
a seed seed = (seed0, . . . , seeds−1), iteratively computes S1, . . . , Sk as

Si ← π(Si−1 ⊕ (Ii ⊕ seedj) ‖ 0c) ,

where j is incremented modulo s after each iteration. Ideally, we want to prove
that if I1, . . . , Ik has high min-entropy h, then the output Sk is random, as long
as the adversary (who can see the seed and choose the IV) cannot query the
permutation more than (roughly) 2h times2. Note that this cannot be true in

1 Zeroing the upper r bits when refreshing the state after PRNG output can be done
by outputting the top r-bit part to be zeroed, and adding it back in.

2 One may hope to prove a result which is independent of the number of queries,
akin to [14], as after all this structure resembles that of CBC. Yet, we will need to
restrict the number of queries for the overall security to hold, and given this, we can
expect better extraction performance – in particular, the output can be uniform for
h � n, whereas h ≥ n would be necessary if we wanted an unrestricted result.
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general – take e.g. k = 1, and even if I1 is uniformly random, one single inversion
query π−1(S1) is enough to distinguish S1 from a random string, as in the former
case the lower c bits will equal those of the IV. Still, we will be able to prove
that this attack is the only way to distinguish – roughly, we will prove that
Sk is uniform as long as the adversary does not query π−1(Sk) when given a
random Sk, except with negligible probability. This will be good enough for key-
derivation applications, where we will need this result for specific adversaries for
which querying π−1(Sk) will correspond to querying the secret key for an already
secure construction. In fact, we believe the approach of showing good extraction
properties for restricted adversaries to be novel for ideal-model analyses, and
of potential wider appeal. (A moral analogue of this in the standard-model is
the work of Barak et al. on application-specific entropy-loss reduction for the
leftover-hash lemma [4].)

We note that the extraction lemma is even more general – we will consider a
generalized extraction game where an adversary can adaptively select a subset
of samples from an (also adversarial) distribution sampler with the guarantee of
having sufficient min-entropy. We also note that at the technical level this result
is inspired by recent analyses of key absorption stages within sponge-based PRFs
using key-prepending [3,20]. Nonetheless, these works only considered the case
of uniform keys, and not permutation-dependent weakly-random inputs.

Another component of possibly independent interest studies the security of
the step generating the actual random bits, when initialized with a state of
sufficient pseudorandomness. This result will show that security increases with
the number t of zeroing steps applied to the state, i.e., the construction is secure
as long as the adversary makes less than 2rt queries.

Related work on oracle dependence. As shown in [28], indifferentiability
does not have any implications on multi-stage games such as robustness for
permutation-dependent distributions. Indeed, [28] was also the first work (to
the best our knowledge) to explicitly consider primitive-dependent samplers, in
the context of deterministic and hedged encryption. These results were further
extended by a recent notable work of Mittelbach [25], who provided general
conditions under which indifferentiability can be used in multi-stage settings.

We note that Mittelbach’s techniques can be used to prove that some indif-
ferentiable hash constructions are good extractors. However, this does not help
us in proving the extraction lemma, as the construction for which we prove the
lemma is not indifferentiable to start with, and thus the result fails. There is hope
however that Mittlebach’s technique could help us in proving our KDF result
of Sect. 6 via the indifferentiability proof for sponges [9] possibly for an even
larger class of permutation dependent samplers. We are not sure whether this
is the case, and even if possible, what the quantitative implications would be –
Mittelbach results are not formulated in the framework of sponges. In contrast,
here we obtain our result as a direct corollary of our extraction lemma.

We also note that oracle-dependence was further considered in other multi-
stage settings, for instance for related-key security [2]. Also, oracle-dependence
can technically be seen as a form of seed-dependence, as considered e.g. in [16],
but we are not aware of any of their techniques finding applications in our work.
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2 Preliminaries

Basic notation. We denote [n] := {1, . . . , n}. For a finite set S (e.g., S =
{0, 1}), we let Sn and S∗ be the sets of sequences of elements of S of length n and
of arbitrary length, respectively. We denote by S[i] the i-th element of S ∈ Sn

for all i ∈ [n]. Similarly, we denote by S[i . . . j], for every 1 ≤ i ≤ j ≤ n, the sub-
sequence consisting of S[i], S[i+1], . . . , S[j], with the convention that S[i . . . i] =
S[i]. S1 ‖S2 denotes the concatenation of two sequences S1, S2 ∈ S∗, and if S1,S2

are two subsets of S∗, we denote by S1 ‖S2 the set {S1 ‖S2 : S1 ∈ S1, S2 ∈ S2}.
Moreover, for a single-element set S1 = {X} we simplify the notation by writing
X ‖S2 instead of {X} ‖S2. We let Perms(n) be the set of all permutations on

{0, 1}n. We denote by X
$← X the process of sampling the value X uniformly at

random from a set X . For a bitstring X ∈ {0, 1}∗, we denote by X1, . . . , X�
r← X

parsing it into � r-bit blocks, using some fixed padding method. The distance of
two discrete random variables X and Y over a set X is defined as SD(X,Y ) =
1
2

∑
x∈X |Pr[X = x] − Pr[Y = x]|. Finally, recall that the min-entropy H∞(X)

of a random variable X with range X is defined as − log (maxx∈X Pr[X = x]).

Game-based definitions. We use the game-playing formalism in the spirit
of [7]. For a game G, we denote by G(A) ⇒ 1 the event that after an adversary
A plays this game, the game outputs the bit 1. Similarly, G(A) → 1 denotes the
event that the output of the adversary A itself is 1.

Ideal permutation model. We perform our analysis in the ideal permutation
model (IPM), where each party has oracle access to a public, uniformly random
permutation π selected at the beginning of any security experiment. For any
algorithm A, we denote by Aπ (or A[π]) that it has access to an oracle permu-
tation π, which can be queried in both the forward and backward direction. In
the game descriptions below, we sometimes explicitly mention the availability
of π to the adversary as oracles π and π−1 for forward and backward queries,
respectively. We define a natural distinguishing metric for random variables in
the IPM. Given two distributions D0 and D1, possibly dependent on the random
permutation π

$← Perms(n), and an adversary A querying π, we denote

AdvdistA (D0,D1) = Pr
[
X

$← Dπ
0 : Aπ(X) ⇒ 1

]
− Pr

[
X

$← Dπ
1 : Aπ(X) ⇒ 1

]
.

We call A a qπ-adversary if it asks qπ queries to π.

PRNGs with input. We use the framework of [15] where a PRNG with input
is defined as a triple of algorithms G = (setup, refresh, next) parametrized by
integers n, r ∈ N, such that:

– setup is a probabilistic algorithm that outputs a public parameter seed;
– refresh is a deterministic algorithm that takes seed, a state S ∈ {0, 1}n, and an

input I ∈ {0, 1}∗, and outputs a new state S′ ← refresh(seed, S, I) ∈ {0, 1}n;
– next is a deterministic algorithm that takes seed and a state S ∈ {0, 1}n, and

outputs a pair (S′, R) ← next(seed, S) ∈ {0, 1}n × {0, 1}r where S′ is the new
state and R is the PRNG output.
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The parameters n, r denote the state length and output length, respectively.
Note that in contrast to [15], we do not restrict the length of the input I to
refresh. In this paper, we repeatedly use the term “PRNG” to denote a PRNG
with input in the sense of the above definition.

The H-Coefficient Method. We give the basic theorem underlying the
H-Coefficient method [27], as recently revisited by Chen and Steinberger [11].

Let A be a deterministic, computationally unbounded adversary trying to
distinguish two experiments that we call real, respectively ideal, with respective
probability measures Prreal and Prideal. Let Treal (resp. Tideal) denote the ran-
dom variable of the transcript of the real (resp. ideal) experiment that contains
everything that the adversary was able to observe during the experiment. Let
GOOD∪BAD be a partition of all valid transcripts into two sets – we refer to the
elements of these sets as good and bad transcripts, respectively. Then we have:

Theorem 1 (H-Coefficient Method). Let δ, ε ∈ [0, 1] be such that:

(a) Pr [Tideal ∈ BAD] ≤ δ.
(b) For all τ ∈ GOOD, Pr [Treal = τ ]/Pr [Tideal = τ ] ≥ 1 − ε .

Then
∣∣∣Prideal(A ⇒ 1) − Prreal(A ⇒ 1)

∣∣∣ ≤ SD(Treal,Tideal) ≤ ε + δ .

3 PRNG Security in the IPM

In this section, we adapt the notions of robustness, recovering security, and
preserving security for PRNGs [15] to the ideal permutation model and to cover
sponge-based designs3. This will require several extensions.

First, we adjust for the presence of the permutation oracle π available to all
parties. In particular, we need a notion of a legitimate distribution sampler that
can query the permutation. Second, our definitions take into account that the
state of the sponge-based PRNG at some important points (e.g. after extraction)
is not required to be close to a uniformly random string, but rather to a uniform
element of 0r ‖ {0, 1}c instead. Note that this is an instance of a more general
issue raised already in [29], as we discuss below.

We then proceed by proving that these modified notions still maintain the
useful property shown in [15,29], namely that the combination of recovering
security and preserving security still implies the robustness of the PRNG.

3.1 Oracle-Dependent Randomness and Distribution Samplers

This section discusses the issue of generating randomness in a model where a
randomly sampled permutation π

$← Perms(n) is available to all parties. We
give a formal definition of adversarial distribution samplers to be used within
the PRNG security notions formalized further below.
3 It is straightforward to extend our treatment to any ideal primitive, rather than just

a random permutation – we dispense with doing so for ease of notation.
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For our purposes, an (oracle-dependent) source S = Sπ is an input-less ran-
domized oracle algorithm which makes queries to π and outputs a string X.
The range of S, denoted [S], is the set of values x output by Sπ with positive
probability, where the probability is taken over the choice of π and the internal
random coins of S.

Distribution samplers. We extend the paradigm of (adversarial) distribution
samplers considered in [15] to allow for oracle queries to a permutation oracle

π
$← Perms(n)4. Recall that in the original formalization, a distribution sampler

D is a randomized stateful algorithm which, at every round, outputs a triple
(Ii, γi, zi), where zi is auxiliary information, Ii is a string, and γi is an entropy
estimate. In order for such sampler to be legitimate, for every i (up to a certain
bound qD), given Ij for every j �= i, as well as (z1, γ1), . . . , (zqD , γqD ), it must be
hard to predict Ii with probability better than 2−γi , in a worst-case sense over
the choice of Ij for j �= i and (z1, γ1), . . . , (zqD , γqD ).

Extending this worst-case requirement will need some care. To facilitiate
this, we consider a specific class of oracle-dependent distribution samplers, which
explicitly separate the process of sampling the auxiliary information from the
processes of sampling the Ii values. Formally, we achieve this by explicitly requir-
ing that D outputs (the description of) a source Si, rather than a value Ii, and
the actual value Ii is sampled by running this Si once with fresh random coins.

Definition 2 (Distribution Samplers). A Q-distribution sampler is a ran-
domized stateful oracle algorithm D which operates as follows:

– It takes as input a state σi−1 (the initial state is σ0 = ⊥).
– On input σi−1, Dπ(σi−1) outputs a tuple (σi,Si, γi, zi), where σi is a new

state, zi is the auxiliary information, γi is an entropy estimation, and Si is
a source with range [Si] ⊆ {0, 1}�i for some �i ≥ 1. Then, we run Ii

$← Sπ
i to

sample the actual value.
– When run for qD times, the overall number of queries made by D and

S1, . . . ,SqD is at most Q(qD). If Q = 0, then D is called oracle independent.

We often abuse notation, and compactly denote by (σi, Ii, γi, zi)
$← Dπ(σi−1)

the overall process of running D and the generated source Si to jointly produce
(σi, Ii, γi, zi).

Also we will simply refer to D as a distribution sampler, omitting Q, when the
latter is not relevant to the context. Finally, note that in contrast to [15], we
consider a relaxed notion where the outputs Ii can be arbitrarily long strings,
and are not necessarily fixed length. Still, we assume that the lengths �1, �2, . . .
are a-priori fixed parameters of the samplers, and cannot be chosen dynamically.

We note that this definition appears to exhibit some degree of redundancy.
In particular, it seems that without loss of generality one can simply assume
4 We present the notions here for this specialized case, but needless to say, they extend

naturally to other types of randomized oracles, such as random oracles or ideal
ciphers.
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Game GLEGqD,i∗(A, D):

1. Sample π
$← Perms(n)

2. Run Dπ qD rounds, producing outputs (γ1, z1), . . . , (γqD , zqD ), as well as
I1, . . . , IqD . This in particular entails sampling sources S1, . . . , SqD , and
sampling I1, . . . , IqD from them (recall that each Si can query π). Let QD
be the set of all input-output pairs of permutation queries made by D and
by Sj (for j �= i∗) in this process. (The queries made by Si∗ are omitted
from QD.)

3. Run Aπ on input (γj , zj)j∈[qD ] and (Ij)j∈[qD ]\{i∗}, and let VA be A’s final
output.

4. The game then outputs ((I1, γ1, z1), . . . , (IqD , γqD , zqD ), VA, QD)

Fig. 1. Definition of the game GLEGqD,i∗(A, D).

that the generated Si outputs a fixed value. (Note that Si can be chosen itself
from a distribution.) However, this separation will be convenient in defining our
legitimacy notion for such samplers, as we will distinguish between permutation
queries made by Si, and other permutation queries made by D (and Sj for j �= i).

Legitimate distribution samplers. Intuitively, we want to say that once a
source Si is output with entropy estimate γi, then its output has min-entropy γi

conditioned on everything we have seen so far. However, due to the availability of
the oracle π, which is queried by D, by Si, and by a potential observer attempting
to predict the output of Si, this is somewhat tricky to formalize.

To this end, let D be a distribution sampler, A an adversary, and fix
i∗ ∈ [qD], and consider the game GLEGqD,i∗(A,D) given in Fig. 1. Here, the
adversary is given Ij for j �= i∗ and (z1, γ1), . . . , (zqD , γqD ), and can make some
permutation queries. Then, at the end, the game outputs the combination of
(z1, γ1, I1), . . . , (zqD , γqD , IqD ), the adversary’s output, and a transcript of all
permutation queries made by (1) D, and (2) Sj for j �= i∗. We ask that in the
worst case, the value Ii∗ cannot be predicted with advantage better than 2−γi∗

given everything else in the output of the game. Formally:

Definition 3 (Legitimate Distribution Sampler). We say that a distribu-
tion sampler D is (qD, qπ)-legitimate, if for every adversary A making qπ queries
and every i∗ ∈ [qD], and for any possible values (Ij)j �=i∗ , (γ1, z1), . . . , (γqD , zqD ),
VA, QD potentially output by the game GLEGqD,i∗(A,D) with positive probability,

Pr
[
Ii∗ = x

∣∣ (Ij)j �=i∗ , (γ1, z1), . . . , (γqD , zqD ), VA,QD
]

≤ 2−γi∗ (1)

for all x ∈ {0, 1}�i∗ , where the probability is conditioned on these particular
values being output by the game.

Note that the unpredictability of Ii∗ is due to what is not revealed, including
the oracle queries made by Si∗ , and the internal random coins of Si∗ and D. For
instance, for oracle-independent distribution samplers (which we can think of
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as outputting “constant” sources), our notion of legitimacy is equivalent to the
definition of [15]. We show a more interesting example next.

An example: Permutation-based randomness extraction. Consider the
simple construction Hπ : {0, 1}n → {0, 1}n/2 which on input X outputs the first
n/2 bits of π(X). It is not hard to prove that if X is an n-bit random variable
with high min-entropy k, i.e., Pr [X = X] ≤ 2−k for all X ∈ {0, 1}n, and Un/2 is
uniform over the (n/2)-bit strings, then for all adversaries A making qπ queries,

AdvdistA (Hπ(X),Un/2) ≤ O
( qπ

2n/2

)
+

qπ

2k
. (2)

The proof (which we omit) would simply go by saying that as long as the attacker
does not query X to π (on which it has k bit of uncertainty), or queries π(X) to
π−1 (on which it has only n/2 bits of uncertainty), the output looks sufficiently
close to uniform (with a tiny bias due to the gathered information about π via
A’s direct queries).

Now, let us consider a simple distribution sampler D which does the following –
at every round, regardless of this input, it always outputs the following source
S = Sπ, as well as γ = n − 1, and z = ⊥. The source S does the following:
It queries random n-bit strings Xi to π, until the first bit of π(Xi) is 0, and
then outputs Xi. It is not hard to show that for any qD and qπ, this sampler is
(qD, qπ)-legitimate. This is because even if A knows the entire description of π, S
always outputs an independent uniformly distributed n-bit string X conditioned
on π(X) having the first bit equal 0, and the distribution is uniform over 2n−1

possible such X’s. Yet, given X sampled from D (and thus from S), it is very easy
to distinguish Hπ(X) and Un/2 with advantage 1

2 , by having A simply output
the first bit of its input, and thus without even making a query to π!

We stress that this is nothing more than the ideal-model analogue of the
classical textbook proof that seedless extractors cannot exist for the class all k-
sources, even when k is as large as n − 1. Above all, this shows that our class of
legitimate samplers is strong enough to encompass such pathological examples,
thus allowing to eliminate the odd artificiality of ideal models.

A brief discussion. The example above shows that our notion is strong
enough to include (1) non-trivial distributions forcing us to use seeds and (2)
permutation-independent samplers. It is meaningful to ask whether it is possible
to weaken the requirement so that the output of Si∗ is only unpredictable when
the π queries issued by Sj for j �= i∗ and by D are not revealed by the game, and
still get meaningful results. We believe this is possible in general, but without
restrictions, there are non-trivial dependencies arising (thanks to the auxiliary
input) between what the adversary can see and the sampling of Ii∗ which we
cannot handle in our proofs in a generic way.

3.2 Robustness, Recovering and Preserving Security in the IPM

Robustness. The definition of robustness follows the one from [15], with the
aforementioned modifications tailored at our setting.
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Procedure initialize:

π
$← Perms(n)

seed
$← setupπ()

S
$← 0r ‖ {0, 1}c

σ ← ⊥
corrupt ← false

e ← c
b

$← {0, 1}
return seed

Procedure finalize(b∗):
return (b = b∗)

Procedure D-refresh:

(σ, I, γ, z)
$← Dπ(σ)

S ← refreshπ(seed, S, I)
e ← e + γ
if e ≥ γ∗:

corrupt ← false

return (γ, z)

Procedure next-ror:

(S, R0)
$← nextπ(seed, S)

R1
$← {0, 1}�

if corrupt = true:
e ← 0
return R0

return Rb

Procedure get-next:

(S, R)
$← nextπ(seed, S)

if corrupt = true:
e ← 0

return R

Procedure get-state:
e ← 0
corrupt ← true

return S

Procedure set-state(S∗):
e ← 0
corrupt ← true

S ← S∗

Fig. 2. Definition of the game ROBγ∗
G (A, D).

The formal definition of robustness is based on the game ROB given in Fig. 2
and parametrized by a constant γ∗. The game description consists of special
procedures initialize and finalize and 5 additional oracles. It is run as follows:
first the initialize procedure is run, its output is given to the adversary which is
then allowed to query the 5 oracles described, in addition to π and π−1, and once
it outputs a bit b∗, this is then given to the finalize procedure, which generates
the final output of the game.

For an adversary A and a distribution sampler D, the advantage against the
robustness of a PRNG with input G is defined as

Advγ∗-rob
G (A,D) = 2 · Pr

[
ROBγ∗

G (A,D) ⇒ 1
]

− 1 .

An adversary against robustness that asks qπ queries to its π/π−1 oracles, qD
queries to its D-refresh oracle, qR queries to its next-ror/get-next oracles, and qS

queries to its get-state/set-state oracles, is called a (qπ, qD, qR, qS)-adversary.

Recovering security. We follow the definition from [15], again adapted to
our setting. In particular, we only require that the state resulting from the final
next call in the experiment has to be indistinguishable from a c-bit uniformly
random string preceded by r zeroes, instead of a random n-bit string.

Recovering security is defined in terms of the game REC parametrized by
qD, γ∗, given in Fig. 3. For an adversary A and a distribution sampler D, the
advantage against the recovering security of a PRNG with input G is defined as

Adv
(γ∗,qD)-rec
G (A,D) = 2 · Pr

[
RECγ∗,qD

G (A,D) ⇒ 1
]

− 1 .

An adversary against recovering security that asks qπ queries to its π/π−1 oracles
is called a qπ-adversary.
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1. The challenger chooses π
$← Perms(n), seed

$← setupπ(), and b
$←

{0, 1} and sets σ0 ← ⊥. For k = 1, . . . , qD, the challenger computes
(σk, Ik, γk, zk) ← Dπ(σk−1).

2. The attacker A gets seed and γ1, . . . , γqD , z1, . . . , zqD . It also gets access to
oracles π/π−1, and to an oracle get-refresh() which initially sets k ← 0 and
on each invocation increments k ← k + 1 and outputs Ik. At some point,
A outputs a value S0 ∈ {0, 1}n and an integer d such that k + d ≤ qD and

k+d
j=k+1 γj ≥ γ∗.

3. For j = 1, . . . , d the challenger computes Sj ← refreshπ(seed, Sj−1, Ik+j).

If b = 0 it sets (S∗, R) ← nextπ(seed, Sd), otherwise it sets (S∗, R)
$←

(0r ‖ {0, 1}c) × {0, 1}r. The challenger gives Ik+d+1, . . . , IqD and (S∗, R)
to A.

4. The attacker again gets access to π/π−1 and outputs a bit b∗. The output
of the game is 1 iff b = b∗.

Fig. 3. Definition of the game RECγ∗,qD
G .

1. The challenger chooses π
$← Perms(n), seed

$← setupπ() and b
$← {0, 1}

and a state S0
$← 0r ‖ {0, 1}c.

2. The attacker A gets access to oracles π/π−1, and outputs a sequence of
values I1, . . . , Id with Ij ∈ {0, 1}∗ for all j ∈ [d].

3. The challenger computes Sj ← refreshπ(seed, Sj−1, Ij) for all j = 1, . . . , d.

If b = 0 it sets (S∗, R) ← nextπ(seed, Sd), otherwise it sets (S∗, R)
$←

(0r ‖ {0, 1}c) × {0, 1}r. The challenger gives (S∗, R) to A.
4. The attacker A again gets access to π/π−1 and outputs a bit b∗. The

output of the game is 1 iff b = b∗.

Fig. 4. Definition of the game PRESG.

Preserving security. We again follow the definition from [15], with similar
modifications as in the case of recovering security above.

The formal definition of preserving security is based on the game PRES given
in Fig. 4. For an adversary A, the advantage against the preserving security of
a PRNG with input G is defined as

AdvpresG (A) = 2 · Pr [PRESG(A) ⇒ 1] − 1 .

An adversary against preserving security that asks qπ queries to its π/π−1 oracles
is again called a qπ-adversary.

Relationship to [29]. Our need to adapt the notions of [15] confirms that,
as observed in [29], assuming that the internal state of a PRNG is pseudo-
random is overly restrictive. Indeed, our formalization is a special case of the
approach from [29] into the setting of sponge-based constructions, where the so-
called masking function would be defined as sampling a random S ∈ 0r ‖ {0, 1}c

(and preserving the counter j). Our notions would then correspond to the
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“bootstrapped” notions from [29] and moreover, our results on recovering secu-
rity below indicate that a naturally-defined procedure setup (for generating the
initial state as in [29]) would make this masking function satisfy the honest-
initialization property.

Combining preserving and recovering security. This theorem estab-
lishes the very useful property that, roughly speaking, the preserving security
and the recovering security of a PRNG together imply its robustness. We post-
pone its proof (following [15]) to the full version.

Theorem 4. Let G[π] be a PRNG with input that issues qrefπ (resp. qnxtπ ) π-
queries in each invocation of refresh (resp. next); and let qπ = qπ + Q(qD).
For every (qπ, qD, qR, qS)-adversary A against robustness and for every Q-
distribution sampler D, there exists a family of (qπ+qR ·qnxtπ +qD ·qrefπ )-adversaries
A(i)

1 against recovering security and a family of (qπ+qR·qnxtπ +qD ·qrefπ )-adversaries
A(i)

2 against preserving security (for i ∈ {1, . . . , qR}) such that

Advγ∗-rob
G (A,D) ≤

qR∑

i=1

(
Adv

(γ∗,qD)-rec
G (A(i)

1 ,D) + AdvpresG (A(i)
2 )

)
.

4 Robust Sponge-Based PRNG

We consider the following PRNG construction, using a permutation π ∈
Perms(n), and depending on parameters s and t. This construction is a seeded
variant of the general paradigm introduced by Bertoni et al. [10], including coun-
termeasures to prevent attacks against forward secrecy. As we will see in the
proof, the parameters s and t are going to enforce increasing degrees of security.

The construction. Let s, t ≥ 1, and r ≤ n, let c := n − r. We define
SPRGs,t,n,r = (setup, refresh, next), where the three algorithms setup, refresh,
next make calls to some permutation π ∈ Perms(n) and operate as follows:

Proc. setupπ():
for i = 0, . . . , s − 1 do

seedi
$← {0, 1}r

seed ← (seed0, . . . , seeds−1)
j ← 1
return seed

Proc. refreshπ(seed, S, I):

I1, . . . , I�
r← I

S0 ← S
for i = 1, . . . , � do

Si ← π(Si−1⊕
(Ii ⊕ seedj ‖ 0c))

j ← j + 1 mod s
return S�

Proc. nextπ(seed, S):

S0 ← π(S)
R ← S0[1 . . . r]
for i = 1, . . . , t do

Si ← π(Si−1)
Si[1 . . . r] ← 0r

j ← 1
return (St, R)

Note that apart from the entropy pool S, the PRNG also keeps a counter j
internally as a part of its state. This counter increases (modulo s) as blocks are
processed via refresh, and gets resetted whenever next is called. We will often
just write SPRG, omitting the parameters s, t, n, r whenever the latter are clear
from the context. In particular, the parameter s determines the length of the
seed in terms of r-bit blocks. The construction SPRG is depicted in Fig. 5.
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π
⊕

Ii

⊕seed(i mod s)

/

/

r

c

S π

R

π 0r

S′

refresh

applied t times

next

Fig. 5. Procedures refresh (processing a one-block input Ii) and next of the construction
SPRGs,t[π].

We also note that it is not hard to modify our treatment to allow for next
outputting multiple r-bit blocks at once, instead of just one, and this length could
be variable. This could be done by providing an additional input, indicating the
number of desired blocks and this would ensure better efficiency. The bounds
presented here would only be marginally affected by this, but we decided to keep
the presentation simple in this paper.

Insecurity of the unseeded version. We show that seeding is necessary to
achieve robustness. A similar argument implies that the original construction
of [10] cannot be secure if the distribution sampler is allowed to depend on the
public random permutation π.

To this end, we consider the distribution sampler D which on its first call
outputs an �·r-bit string, for a parameter � such that (�−1)r ≥ γ∗. In particular,
on its first call D simply outputs a source S1 which behaves as follows, given the
corresponding entropy estimate (� − 1) · r:

– It internally samples r-bit strings I1, . . . , I�−1 uniformly at random.
– Then, it samples random I1� , I2� , . . . until it finds one such that Rj [1] = 0,

where R are the r-bit returned by running next after running refresh, from the
some initial state S, with inputs I1, . . . , I�−1, I

j
� .

Additionally, consider a robustness adversary A that first calls set-state(S) and
then D-refresh(). Finally, it queries next-ror() obtaining R∗, and checks whether
R∗[1] = 0. Clearly, A achieves advantage 1/2 despite D being legitimate.

5 Security Analysis of SPRG

This section gives a complete security analysis of SPRG given in Sect. 4 above,
under the assumption that the underlying permutation is a random permutation
π ∈ Perms(n). In particular, we prove the following theorem.

Theorem 5 (Security of SPRG). Let SPRG = SPRGs,t,n,r[π] denote the
PRNG given in Sect. 4. Let γ∗ > 0, let A be a (qπ, qD, qR, qS)-adversary against



102 P. Gaži and S. Tessaro

robustness and let D be a (qD, qπ)-legitimate Q-distribution sampler such that
the length of its outputs I1, . . . , IqD padded into r-bit blocks is at most � · r bits
in total. Then we have

Advγ∗-rob
SPRG(A,D) ≤ qR ·

(
2(2� + 2)(qπ + q′ + t + �) + 4�2

2n
+

qπ + q′ + t + 1
2γ∗ +

+
22(qπ + q′ + t + 1)2 + qπ + q′

2c
+

2(qπ + q′)
2(r−1)t

+
Q(qD)

2sr

)
,

where we use the notational shorthands qπ = qπ + Q(qD) and q′ = (t + 1)qR + �.

Note in particular that the construction is secure as long as qR · qπ · � < 2n,
qR · qπ, q2R < 2c, qπ, q2R ≤ 2γ∗

, q2R, qπqR ≤ 2(r−1)t. Note that these are more than
sufficient margins for SHA-3-like parameters, where n = 1600 and c ≥ 1024
always holds. However, one should assess the bound more carefully for a single-
key cipher instantiation, where n = 128. In this case, choosing a very small r
(note that our construction and bound would support r ≥ 2) would significantly
increase the security margins.

The theorem follows from the bounds on recovering security and preserv-
ing security of SPRG proven in Lemmas 11 and 12 below, combined using
Theorem 4. To establish these two bounds, we first give two underlying lemmas
that represent the technical core of our analysis. The first one, Lemma 6, assesses
the ability of a seeded sponge construction to act as a randomness extractor on
inputs that are coming from a permutation-dependent distribution sampler. The
second statement, given in Lemma 10, shows that the procedure next, given a
high min-entropy input, produces an output that is very close to random.

5.1 The Sponge Extraction Lemma

The first part of our analysis addresses how the sponge structure can be used to
extract (or in fact, condense) randomness. To this end, we first give a general
definition of adaptively secure extraction functions.

Let Ex[π] : {0, 1}u × {0, 1}v × {0, 1}∗ → {0, 1}n be an efficiently computable
function taking as parameters a u-bit seed seed, a v-bit initialization value IV,
together with an input string X ∈ {0, 1}∗. It makes queries to a permutation
π ∈ Perms(n) to produce the final n-bit output Exπ(seed, IV,X). Then, for every
γ∗ > 0 and qD, for such an Ex, an adversary A and a distribution sampler D, we
consider the game GEXTγ∗,qD

Ex (A,D) given in Fig. 6. It captures the security of Ex
in producing a random looking output in a setting where an adaptive adversary
A can obtain side information and entropy estimates from a sampler D, together
with samples I1, . . . , Ik, until it commits on running Ex on adaptively chosen
IV, as well as Ik+1 . . . Ik+d for some d such that the guaranteed entropy of these
values is

∑k+d
i=k+1 γi ≥ γ∗. We define the (qD, γ∗)-extraction advantage of A and

D against Ex as

Adv
(γ∗,qD)−ext
Ex (A,D) = 2 · Pr

[
GEXTγ∗,qD

Ex (A,D) ⇒ 1
]

− 1 .
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Game GEXTγ∗,qD
Ex (A, D):

1. The challenger chooses seed
$← {0, 1}u, π

$← Perms(n) and b
$← {0, 1} and

sets σ0 ← ⊥. For k = 1, . . . , qD, the challenger computes (σk, Ik, γk, zk) ←
Dπ(σk−1).

2. The attacker A gets seed and γ1, . . . , γqD , z1, . . . , zqD . It gets access to
oracles π/π−1, and to an oracle get-refresh() which initially sets k ← 0
and on each invocation increments k ← k + 1 and outputs Ik. At some
point, A outputs a value IV and an integer d such that k + d ≤ qD and

k+d
j=k+1 γj ≥ γ∗.

3. If b = 1, we set Y ∗ $← {0, 1}n, and if b = 0, we let Y ∗ ←
Exπ(seed, IV, Ik+1 ‖ · · · ‖ Ik+d). Then, the challenger gives back Y ∗ and
Ik+d+1, . . . , IqD to A.

4. The attacker again gets access to π/π−1 and outputs a bit b∗. The output
of the game is 1 iff b = b∗.

Fig. 6. Definition of the game GEXTγ∗,qD
Ex (A, D).

Also, we denote by Adv(γ
∗,qD)−hit

n (A,D) the probability that A queries
π−1(Y ∗) conditioned on b = 1 in game GEXTγ∗,qD

Ex (A,D) above, i.e., Y ∗ is the
random n-bit challenge. (The quantity really only depends on n, and not on
the actual function Ex, which is dropped from the notation.) Note that in gen-
eral Adv(γ

∗,qD)−hit
n (A,D) can be one, but we will only consider it for specific

adversaries A for which it can be argued to be small, as we discuss below.

Sponge-based extraction. We consider a sponge-based instantiation of Ex.
That is, for parameters r ≤ n (recall that we use the shorthand c = n − r), we
consider the construction Spn,r,s[π] : {0, 1}s·r ×{0, 1}n ×{0, 1}∗ → {0, 1}n using
a permutation π ∈ Perms(n) which, given seed seed = (seed0, . . . , seeds−1) (where
seedi ∈ {0, 1}r for all i), initialization value IV ∈ {0, 1}n, input X ∈ {0, 1}∗, first
encodes X into r-bit blocks X1, . . . , X�, and then outputs Y�, where Y0 ← IV
and for all i ∈ [�],

Yi ← π(Yi−1 ⊕ (Xi ⊕ seedi mod s) ‖ 0c) .

We now turn to the following lemma, which establishes that the above construc-
tion Spn,r,s[π] is indeed a good extractor with respect to the notion defined
above, as long as Adv(γ

∗,qD)−hit
n (A,D) is sufficiently small – a condition that will

hold in applications of this lemma.

Lemma 6 (Extraction Lemma). Let r, s be integers, let qD, qπ be arbitrary,
and let γ∗ > 0. Also, let D be a (qD, qπ)-legitimate Q-distribution sampler,
such that the length of its outputs I1, . . . , IqD padded into r-bit blocks is at most
� · r bits in total. Then, for any adversary A making qπ ≤ 2c−2 queries,
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Adv
(γ∗,qD)−ext
Spn,r,s

(A,D) ≤ qπ

2γ∗ +
Q(qD)

2sr
+

14q2π
2c

+
2qπ� + 2�2

2n
+ Adv(γ

∗,qD)−hit
n (A,D) , (3)

where qπ = qπ + Q(qD).

Discussion. Once again, we note that in (3), we cannot in general expect the
advantage Adv(γ

∗,qD)−hit
n (A,D) to be small – any A sees Y ∗ and thus can query

it, and the bound is hence void for such adversaries. The reason why this is not
an issue in our context is that the extraction lemma will be applied to specific
A’s resulting from reductions in scenarios where Spn,r,s is used to derive a key
for an algorithm which is already secure when used with a proper independent
random key. In this case, it is usually easy to upper bound Adv(γ

∗,qD)−hit
n (A,D)

in terms of the probability of a certain adversary A′ (from which A is derived)
recovering the secret key of a secure construction.

But why is this term necessary? We note that one can expect the output
to be random even without this restriction on querying π−1(Y ), if we have the
guarantee that the weakly random input fed into Spn,r,s is long enough. However,
this only yields a weaker result. In particular, if Spn,r,s is run on r-bit inputs
Ik+1, . . . , Ik+d to produce an output Y ∗ (which may be replaced by a random
one in the case b = 1), it is not hard to see that guessing Ik+2, . . . , Ik+d is
sufficient to distinguish, regardless of Ik+1. This is because an adversary A can
simply “invert” the construction starting from computing Sk+d−1 ← π−1(Y ∗),
Sk+d−2 ← π−1(Sk+d−1⊕(Ik+d ⊕seedk+d mod s) ‖ 0c), . . . until it recovers S0, and
then checks whether S0[r + 1 . . . n] = IV[r + 1 . . . n]. This will always succeed
(given the right guess) in the b = 0 case, but with small probability in the b = 1
case. Above all, the crucial point is that Ik+1 is not necessary to perform this
attack. In particular, this would render the result useless for d = 1, whereas
our statement still makes it useful as long as qπ ≤ 2r, which is realistic for say
r ≥ 80, and Adv(γ

∗,qD)−hit
n (A,D) is small.

An independent observation is that for oracle-independent distribution sam-
plers (i.e., which do not make any permutation queries), we have Q(qD) = 0. In
this case, the bound becomes independent of s, and indeed one can show that
the bound holds even if the seed is contant (i.e., all zero), capturing the common
wisdom that seeding is unnecessary for oracle-independent distributions.

Proof intuition. The proof of Lemma 6, which we give in full detail below, is
inspired by previous analyses of keyed sponges, which can be seen as a special
case where a truly random input is fed into Spn,r,s

5. We will show that the advan-
tage of A and D is bounded roughly by the probability that they jointly succeed
in making all queries necessary to compute Spn,r,s(seed, IV, Ik+1 ‖ . . . ‖ Ik+d).
Indeed, we show that as long as not all necessary queries are made, then the
distinguisher cannot tell apart the case b = 0 from the case b = 1 with substan-
tial advantage. The core of the proof is bounding the above probability that all
queries are issued.
5 We note that none of these analysis tried to capture a general statement.
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To this end, with X1, . . . , X� representing the encoding into r-bit blocks of
Ik+1 ‖ . . . ‖ Ik+d, we consider all possible sequences of � queries to the permuta-
tion, each made by A or D, resulting in (not necessarily all distinct) input-output
pairs (α1, β1), . . . , (α�, β�) with the property that

αi[r + 1 . . . n] = βi−1[r + 1 . . . n]

for every i ∈ [�], where we have set β0 = IV for notational compactness. We call
such sequence of � input-output pairs a potential chain. We are interested in the
probability that for some potential chain we additionally have

αi[1 . . . r] = βi−1[1 . . . r] ⊕ Xi ⊕ seedi mod s (4)

for all i ∈ [�]. Let us see why we can expect the probability that this happens to
be small.

Recall that our structural restriction on D enforces that all of the values
Ik+1, . . . , Ik+d are explicitly sampled by component sources Sk+1, . . . ,Sk+d. One
first convenient observation is that as long as the overall number of permutation
queries by D and A, which is denoted by q̄π, is smaller than roughly 2c/2, then
every potential chain can have only one of the two following formats:

– Type A chains. For k ∈ [0 . . . �], k input-output pairs (α1, β1), . . . , (αk, βk)
resulting from forward queries made by D outside the process of sampling
Ik+1 . . . Ik+d by Sk+1, . . . ,Sk+d, followed by � − k more input-output pairs
(αk+1, βk+1), . . . , (α�, β�) resulting from queries made by A directly.

– Type B chains. The potential chain is made by some input-output pairs
(α1, β1), . . . , (α�, β�) all resulting from forward permutation queries made by
D, in particular also possibly by the component sources Sk+1, . . . ,Sk+d.

One can also show that for qπ < 2c/2, it is likely that the number of such potential
chains (either of Type A or Type B) is at most qπ and Q(qD), respectively. Now,
we can look at the process of creating Type A and Type B chains separately, and
note that in the former, the outputs of Sk+1, . . . , Sk+d have some uncertainty
left (roughly, at least γ∗ bits of entropy), thus the generated X1, . . . , X� end
up satisfying (4) for each of the Type A potential chains with probability at
most 2−γ∗

. Symmetrically, the process of generating Type B chains is totally
independent of the seed, and thus once the seed is chosen (which is made of s · r
random bits), each one of the at most Q(qD) potential Type B chains ends up
satisfying (4) with probability upper bounded by roughly 2−rs.

We stress that making this high-level intuition formal is quite subtle.

Can we achieve a better bound? The extraction lemma requires qπ ≤ 2c/2

for it to be meaningful. One can indeed hope to extend the techniques from [14]
and obtain a result (at least for permutation-independent sources) which holds
even if π is completely known to A, while still being randomly sampled. However,
in this regime one can expect the state output by Spn,r,s to be random only as
long as at least n random bits have been input. In contrast, here we aim at the
heuristic expectation (formalized in the ideal model) that as long as the number
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of queries is small compared to the entropy of the distribution, then the output
looks random.

The restriction qπ ≤ 2c/2 is common for sponges – beyond this, collisions
become easy to find, and parameters are set to prevent this. Nonetheless, recent
analyses of key absorption (which can be seen as a special case where the inputs
are uniform) in sponge-based PRFs [20] trigger hope for security for nearly
all qπ ≤ 2c, as they show that such collisions are by themselves not harmful.
Unfortunately, in such high query regimes the number of potential chains as
described above effectively explodes, and using the techniques of [20] (which are
in turn inspired by [12]) to bound this number results in a fairly weak result.

Proof (of Lemma 6). The proof uses the H-coefficient method, as illustrated in
Sect. 2 – indeed, to upper bound Adv

(γ∗,qD)−ext
Spn,r,s

(A,D), by a standard argument,
one needs to upper bound the difference between the probabilities that A outputs
1 in the b = 1 and in the b = 0 cases, respectively. Throughout this proof, we
assume that A is deterministic, and that D is also deterministic, up to being
initialized with a random input R (of sufficient length) consisting of all random
coins used by D. In particular, R also contains the random coins used to sample
the I1, I2, . . . , IqD values by the sources S1, . . . ,SqD output by D.

To simplify the proof, we enhance the game GEXTγ∗,qD
Spn,r,s

(A,D) so that the
adversary A, when done interacting with π, learns some extra information just
before outputting the decision bit b′. This extra information includes:

– All strings Ik+1, . . . , Ik+d generated by D and hidden to A so far.
– The randomness R and all queries to π made by the distribution sampler D

throughout its qD calls. This includes all queries made by S1, . . . ,SqD . Recall
that there are at most Q(qD) such queries by definition.

While this extra information is substantial, note that A cannot make any further
queries to the random permutation after learning it, and, as we will see, this
information does not hurt indistinguishability. Introducing it will make reasoning
about the proof substantially easier. To start with, note that an execution of
GEXTγ∗,qD

Spn,r,s
(A,D) defines a transcript of the form

τ = ((u1, v1), . . . , (uq′ , vq′), Y ∗, R, seed = (seed1, . . . , seeds),
γ1, . . . , γqD , I1, . . . , IqD , z1 . . . zqD , IV, k, d) , (5)

where (ui, vi) are the input-output pairs resulting from the π-queries by D and
A (that is, either π(ui) = vi or π−1(vi) = ui for each (ui, vi) was queried by at
least one of D and A), removing duplicates, and ordered lexicographically. Note
in particular that q′ ≤ Q(qD) + qπ = qπ, and that the information whether a
pair is the result of a forward or a backward query (or both) is omitted from the
transcript, as it will not be used explicitly in the following.

We say that a transcript τ as in (5) is valid if when running GEXTγ∗,qD
Spn,r,s

(A,D)
with seed value fixed to seed, feeding Y ∗ to A, executing D with randomness
R, and answering permutation queries via a partial permutation π′ such that
π′(ui) = vi for all i ∈ [q′], then
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– The execution terminates, i.e., every permutation query is on a point for which
π′ is defined. Moreover, all queries in (u1, v1), . . . , (uq′ , vq′) are asked by either
D or A at some point.

– D indeed outputs (I1, z1, γ1), . . . , (IqD , zqD , γqD ).
– A indeed outputs IV and d, after k calls to get-refresh().

Now let T0 and T1 be the distributions on valid transcripts resulting from
GEXTγ∗,qD

Spn,r,s
(A,D) in the b = 0 and b = 1 cases, respectively. Then,

Adv
(γ∗,qD)−ext
Spn,r,s

(A,D) ≤ SD(T0,T1) , (6)

since the extra information can only help, and a (possibly non-optimal) distin-
guisher for T0 and T1 can still mimic A’s original decision (i.e., output bit),
ignoring all additional information contained in the transcripts.

We are now ready to present our partitioning of transcripts into good
and bad transcripts. Note first that a transcript explicitly tells us the blocks
Ik+1, . . . , Ik+d processed by Spn,r,s, and concretely let X1 . . . X� be the encod-
ing into r-bit blocks of Ik+1 ‖ · · · ‖ Ik+d when processed by Spn,r,s. In particular
we let � = �(τ) be the length here (in terms of r-bit blocks) of this encoding.

Definition 7 (Bad Transcript). We say that a transcript τ as in (5) is bad
if one of the two following properties is satisfied:

– Hit. There exists an (ui, vi), for i ∈ [q′], with vi = Y . Note that this may
be the result of a forward query π(ui) or a backward query π−1(vi), or both.
Which one is the case does not matter here.

– Chain. There exist � permutation queries

(α1, β1), . . . , (α�, β�) ∈ {(u1, v1), . . . , (uq′ , vq′)}

(not necessarily distinct) that constitute a chain, i.e., such that

αi[1 . . . r] = βi−1[1 . . . r] ⊕ Xi ⊕ seedi mod s

αi[r + 1 . . . n] = βi−1[r + 1 . . . n]
(7)

for every i ∈ [�], where we have set β0 = IV for notational compactness.

Also, we denote by B the set of all bad transcripts.

The proof is then concluded by combining the following two lemmas using
Theorem 1 in Sect. 2. The proofs of these lemmas are postponed to the full
version.

Lemma 8 (Ratio Analysis). For all good transcripts τ ,

Pr [T0 = τ ] ≥
(

1 − 2q′� + 2�2

2n

)
· Pr [T1 = τ ] .
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Lemma 9 (Bad Event Analysis). For B as defined above,

Pr [T1 ∈ B] ≤ Q(qD) + qπ

2γ∗ +
Q(qD)

2rs
+

14(Q(qD) + qπ)2

2c

+
2Q(qD) + qπ

2n
+ Adv(γ

∗,qD)−hit
n (A,D) .

��

5.2 Analysis of next

We now turn our attention to the procedure next. We are going to prove that if
the input state to next has sufficient min-entropy, then the resulting state and
the output bits are indistinguishable from a random element from 0r ‖ {0, 1}c

and {0, 1}r, respectively. The proof of the following lemma is postponed to the
full version of this paper. We give an overview below.

Lemma 10 (Security of next). Let S be a random variable on the n-bit
strings. Then, for any qπ-adversary A nd all t ≥ 1,

AdvdistA (nextπt (S), (0r ‖Uc,Ur)) ≤ qπ

2H∞(S)
+

qπ

2(r−1)t
+

4(qπ + t)2

2c
+

1
2n

, (8)

where Ur and Uc are uniformly and independently distributed over the r- and
c-bit strings, respectively.

Proof outline. Intuitively, given a value (St, R) output by either next(S) or
simply by sampling it uniformly as in 0r ‖Uc,Ur, the naive attacker would pro-
ceed as follows. Starting from St, it would try to guess the t r-bit parts in the
computation of next (call them Z1, . . . , Zt) which have been zeroed out, and
repeatedly apply π−1 to recover the state S0 (in the real case) which was used
to generate the R-part of the output. Our proof will confirm that this attack is
somewhat optimal, but one needs to exercise some care. Indeed, the proof will
consist of two steps, which need to be made in the right order:

(1) We first show that if the attacker cannot succeed in doing the above, then it
cannot distinguish whether it is given, together with R, the actual St value
output by next on input S, or a value S′

t which is sampled independently of
the internal workings of next (while still being given the actual R).

(2) We then show that given S′
t is now sampled independently of next(S), then

the adversary will not notice a substantial difference if the real R-part of
the output of next(S) (which is still given to A) is finally replaced by an
independently random one.

While (2) is fairly straightforward, the core of the proof is in (1). Similar to the
proof of the extraction lemma, we are going to think here in terms of the adver-
sary attempting to build some potential “chains” of values, which are sequences
of queries (αi, βi) for i ∈ [t] where βi−1[r + 1 . . . n] = αi[r + 1 . . . n] for all i ≥ 2,



Provably Robust Sponge-Based PRNGs and KDFs 109

αi[1 . . . r] = 0r for all i ≥ 2, and βt[r + 1 . . . n] = St[r + 1 . . . n]. The adversary’s
hope is that one of these chains is such that βi[1 . . . r] = Zi for all i ∈ [t], and
this would allow to distinguish.

It is not hard to show that as long as qπ ≤ 2c/2, there are at most qπ

potential chains with high probability. However, it is harder to argue that the
probability that one of these potential chains really matchs the Zi values is small
when the adversary is given the real St output by next(S). This is because the
values Z1, . . . , Zt are already fixed during the execution, and arguing about their
conditional distribution is difficult. Rather, our proof (using the H-coefficient
technique) shows that it suffices to analyze the probability that the adversary
builds such a valid chain in the ideal world, where the adversary is given an
independent S′

t. This analysis becomes much easier, as the values Z1, . . . , Zt can
be sampled lazily after the adversary is done with its permutation queries, and
they are essentially random and independent of the potential chains they can
match.

5.3 Recovering Security

We now use the insights obtained in the previous sections to establish the recov-
ering security of our construction SPRG. To slightly simplify the notation, let
εext(qπ, qD) denote the first four terms on the right-hand side of the bound (3)
in Lemma 6 as a function of qπ and qD; and let εnext(qπ) denote the right-hand
side of the bound (8) in Lemma 10 as a function of qπ.

Lemma 11. Let SPRGs,t,n,r be the PRNG given in Sect. 4 and let εext(·, ·)
and εnext(·) be defined as above. Let γ∗ > 0 and qD ≥ 0, let A be a qπ-adversary
against recovering security and D be a (qD, qπ)-legitimate Q-distribution sampler
D such that the length of its outputs I1, . . . , IqD padded into r-bit blocks is at most
� · r bits in total. Then we have

Adv
(γ∗,qD)-rec
SPRG[π] (A,D) ≤ εext(qπ + t + 1, qD) + 2εnext(qπ) +

qπ

2n
,

where qπ = qπ + Q(qD).

Proof. Intuitively, we argue that due to the extractor properties of Spn,r,s shown
in Lemma 6, the state Sd in the experiment RECγ∗,qD

SPRG (after processing the
inputs hidden from the adversary) will be close to random; and due to Lemma 10
the output of next invoked on this state will be close to random as well.

More formally, we start by showing that there exists a (qπ+t+1)-adversary A1

and a qπ-adversary A2 such that

Adv
(γ∗,qD)-rec
SPRG[π] (A,D) ≤ Adv

(γ∗,qD)−ext
Spn,r,s,D (A1) + AdvdistA2

(nextπ(Un), (0r ‖Uc,Ur)) ,

(9)
where U� always denotes an independent random �-bit string. Afterwards, we
apply Lemmas 6 and 10 to upper-bound the two advantages on the right-hand
side of (9).
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Let A be the adversary against recovering security from the statement. Con-
sider an adversary A1 against extraction that works as follows: Upon receiving
seed, γ1, . . . , γqD , z1, . . . , zqD from the challenger, it runs the adversary A and
provides it with these same values. During its run, A issues queries to the ora-
cles π/π−1 and get-refresh, which are forwarded by A1 to the equally-named
oracles available to it. At some point, A outputs a pair (S0, d), A1 responds by
setting IV ← S0 and outputting (IV, d) to the challenger. Upon receiving Y ∗

and Ik+d+1, . . . , IqD from the challenger, A1 computes (S∗, R∗) ← next(Y ∗) and
feeds both (S∗, R∗) and Ik+d+1, . . . , IqD to A. Then it responds to the π-queries
of A as before, and upon receiving the final bit b∗ from A, A1 outputs the same
bit. It is easy to verify the query complexity of A1.

For analysis, note that if the bit chosen by the challenger is b = 0, for A
this is a perfect simulation of the recovering game RECγ∗,qD

SPRG with the challenge
bit being also set to 0. On the other hand, if the challenger sets b = 1, A is
given (S∗, R∗) ← next(Un) for an independent random n-bit string Un, while
the game RECγ∗,qD

SPRG with challenge bit set to 1 would require randomly chosen

(S∗, R∗) $← (0r ‖ {0, 1}c) × {0, 1}r instead. The latter term in the bound (9)
accounts exactly for this discrepancy – to see this, just consider an adversary A2

that simulates both A1 and the game GEXTγ∗,qD
Spn,r,s

(A1,D) with b = 1, and then
uses the dist-challenge instead of the challenge for A.

We conclude by upper bounding the advantages on the right-hand side of (9).
First, Lemma 6 gives us

Adv
(γ∗,qD)−ext
Spn,r,s,D (A1) ≤ εext(qπ + t + 1, qD) + Adv

(γ∗,qD)−hit
D,n (A1) .

It hence remains to bound Adv
(γ∗,qD)−hit
D,n (A1), which is the probability that A1

queries π−1(Y ∗) in the ideal-case b = 1 in GEXTγ∗,qD
Spn,r,s

(A,D). Note that (apart
from forwarding A’s π-queries) the only π-queries that A1 asks “itself” are to
evaluate the call next(Y ∗), and these are only forward queries. Therefore, it
suffices to bound the probability that A queries π−1(Y ∗) and A1 forwards this
query. Since the only information related to Y ∗ that A obtains during this exper-
iment is (S∗, R∗) ← next(Y ∗), if we replace these values by randomly sampled

(S∗, R∗) $← (0r ‖ {0, 1}c) × {0, 1}r, the value Y ∗ will be completely independent
of A’s view. Therefore, again there exists a qπ-adversary A3 (actually, A3 = A2)
such that

Adv
(γ∗,qD)−hit
D,n (A1) ≤ qπ

2n
+ AdvdistA3

(nextπ(Un), (0r ‖Uc,Ur)) .

Finally, by Lemma 10 for both i ∈ {2, 3} we have

AdvdistAi
(nextπ(Un), (0r ‖Uc,Ur)) ≤ εnext(qπ)

≤ qπ

2H∞(Un)
+

qπ

2(r−1)t
+

4(qπ + t)2

2c
+

1
2n

=
qπ + 1

2n
+

qπ

2(r−1)t
+

4(qπ + t)2

2c
,

which concludes the proof. ��



Provably Robust Sponge-Based PRNGs and KDFs 111

5.4 Preserving Security

Here we proceed to establish also the preserving security of SPRG.

Lemma 12. Let SPRG[π] be the PRNG given in Sect. 4, and let εnext(·) be
defined as above. For every qπ-adversary A against preserving security, we have

AdvpresSPRG[π](A) ≤ εnext(qπ) +
qπ

2c
+

(2d′ + 1)(qπ + d′)
2n

≤

≤ (2d′ + 2)(qπ + d′)
2n

+
qπ

2(r−1)t
+

4(qπ + t)2 + qπ

2c
,

where d′ is the number of r-bit blocks resulting from parsing A’s output I1, . . . , Id.

Proof. Intuitively, the proof again consists of two steps: showing that (1) since
the initial state S0 is random and hidden from the adversary, the state Sd will
most likely look random to it as well; and (2) if Sd is random, we can again rely
on Lemma 10 to argue about the pseudorandomness of the outputs of next.

More formally, consider a game PRES′ which is defined exactly as the game
PRES in Fig. 4, except that instead of computing the value Sd iteratively in
Step 3, we sample it freshly at random as Sd

$← {0, 1}n. Moreover, imagine the
permutation π as being lazy-sampled in both games.

Let A be an adversary participating in the game PRESSPRG[π]. Let QR(1)
π

denote the set of query-response pairs that the adversary A asks to π via its
oracles π/π−1 in its first stage (before submitting I1, . . . , Id). More precisely, let
QR(1)

π denote the set of pairs (u, v) ∈ {0, 1}n × {0, 1}n such that A in its first
stage either asked the query π(u) and received the response v, or asked the query
π−1(v) and received the response u. Moreover, let us denote by I ′

1, . . . , I
′
d′ the

r-bit blocks resulting from parsing the inputs I1, . . . , Id in sequence, using the
parsing mechanism from the refresh procedure. Finally, recall that “→” denotes
the output of the adversary, as opposed to the game output.

We first argue that

Pr
[
PRESSPRG[π](A) → 0

∣∣ b = 0
]
− Pr

[
PRES′

SPRG[π](A) → 0
∣∣ b = 0

]

≤ qπ

2c
+

(2d′ + 1)(qπ + d′)
2n

. (10)

To see this, first note that the value S0 is chosen independently at random
from the set 0r ‖ {0, 1}c and hidden from the adversary. Therefore, we have

Pr
[
∃(u, v) ∈ QR(1)

π : S0 ⊕ ((I ′
1 ⊕ seed1) ‖ 0c) = u

]
≤

∣∣∣QR(1)
π

∣∣∣
2c

≤ qπ

2c
.

If this does not happen, the first invocation of π during the sequence of evalua-
tions of refresh on I1, . . . , Id will be on a fresh value and hence its output (call it
S′
1) will be chosen uniformly at random from the 2n −

∣∣∣QR(1)
π

∣∣∣−1 unused values.
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Hence, again the probability that the next π-invocation will be on an already
defined value is at most 2(qπ+1)/2n. This same argument can be used iteratively
up to the final state Sd: with probability at least 1−qπ/2c −2d′(qπ +d′)/2n all of
the π-invocations used during the sequence of refresh-calls will happen on fresh
values, and therefore Sd will be also chosen uniformly at random from the set of
at least 2n − qπ − d′ values. This means that in this case, the statistical distance
of Sd in the game PRESSPRG[π] from Sd in the game PRES′

SPRG[π] where it is
chosen at random will be at most (qπ + d′)/2n. Put together, this proves (10).

Now we observe that there exists a qπ-adversary A′ such that

Pr
[
PRES′

SPRG[π](A) → 0
∣∣ b = 0

]
− Pr

[
PRES′

SPRG[π](A) → 0
∣∣ b = 1

]
≤

≤ AdvdistA′ (nextπt (Un), (0r ‖Uc,Ur)) ≤ εnext(qπ) (11)

where U� denotes a uniformly random �-bit string. Namely, it suffices to consider
A′ that runs the adversary A and simulates the game PRES′ for it (except for the
π-queries; also note that A′ does not need to compute the sequence of refresh-
calls), then replaces the challenge for A by its own challenge, and finally outputs
the complement of the bit A outputs.

The proof is finally concluded by combining the bounds (10) and (11) and
observing that if b = 1, the games PRES and PRES′ are identical. ��

6 Key-Derivation Functions from Sponges

This section applies the sponge extraction lemma (Lemma 6) to key-derivation
functions (KDFs). We follow the formalization of Krawczyk [22]. While the fact
that sponges can be used as KDFs is widely believed thanks to the existing indif-
ferentiability analysis [9], our treatment allows for a stronger result for adver-
sarial and oracle-dependent distributions.

KDFs and their security. A key derivation function is an algorithm KDF :
{0, 1}s × {0, 1}∗ × {0, 1}∗ × N → {0, 1}∗, where the first input is the seed, the
second is the source material, the third is the context variable, and the fourth
is the output length. In particular, for all seed ∈ {0, 1}s, W,C ∈ {0, 1}∗ and
len ∈ N, we have |KDF(seed,W,C, len)| = len, and moreover KDF(seed,W,C, len′)
is a prefix of KDF(seed,W,C, len) for all len′ ≤ len.

We consider KDF constructions making calls to an underlying permuta-
tion π ∈ Perms(n)6. We define security of KDFs in terms of a security game
GKDFγ∗,qD

KDF (A,D) which is slightly more general than the one used in [22], and
described in Fig. 7. In particular, similar to GEXT above, the game considers
an incoming stream of qD weakly random values, coming from a legitimate
and oracle-dependent distribution sampler, and the attacker can choose a sub-
set of these values with sufficient min-entropy adaptively to derive randomness
from, as long as these values are guaranteed to have (jointly) min-entropy at
6 Once again, our treatment easily extends to other ideal models, but we dispense here

with a generalization to keep our treatment sufficiently compact.
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Game GKDFγ∗,qD
KDF (A, D):

1. The challenger chooses seed
$← {0, 1}u, π

$← Perms(n) and b
$← {0, 1} and

sets σ0 ← ⊥. For k = 1, . . . , qD, the challenger computes (σk, Ik, γk, zk) ←
Dπ(σk−1).

2. The attacker A gets seed and γ1, . . . , γqD , z1, . . . , zqD . It gets access to
oracles π/π−1, and to an oracle get-refresh() which initially sets k ← 0
and on each invocation increments k ← k + 1 and outputs Ik. At some
point, A outputs an integer d such that k + d ≤ qD and k+d

j=k+1 γj ≥ γ∗.
3. If b = 1, we let F = RO(·, ·), and if b = 0, F =

KDFπ(seed, Ik+1 ‖ . . . ‖ Ik+d, ·, ·). Then, the challenger gives back
Ik+d+1, . . . , IqD to A.

4. The attacker gets access to π/π−1, and in addition to F , and outputs a
bit b∗. The output of the game is 1 iff b = b∗.

Fig. 7. Definition of the game GKDFγ∗,qD
KDF,D(A). Here, RO is an oracle which associates

with each string x a potentially infinitely long string ρ(x), and on input (x, len), it
returns the first len bits of ρ(x).

least γ∗. The game then requires the attacker A, given seed, to distinguish
KDF(seed, Ik+1 ‖ · · · ‖ Ik+d, ·, ·) from RO(·, ·), where the latter returns for every
X ∈ {0, 1}∗ and len ∈ N, the first len bits of an infinitely long stream ρ(X) of
random bits associated with X.

Then, the kdf advantage of A is

Adv
(γ∗,qD)−kdf
KDF (A,D) = 2 · Pr

[
GKDFγ∗,qD

KDF (A,D) ⇒ 1
]

− 1 .

Sponge-based KDF. We present a sponge based KDF construction – denoted
SpKDFn,r,s – that can easily be implemented on top of SHA-3. It depends on
three parameters n, r, s, and uses a seed of length k = r · s bits, represented as
seed = (seed0, . . . , seeds−1). It uses a permutation π, and given W,C ∈ {0, 1}∗,
and len ∈ N, it operates as follows: It first splits W and C into r-bit blocks
W1 . . . Wd and C1 . . . Cd′ ,7 and then computes, starting with S0 = IV, the states
S1, . . . , Sd, Sd+1, . . . , Sd+d′ , where

Si ← π((Wi ⊕ seedi mod s) ‖ 0c ⊕ Si−1) for all i ∈ [d]
Si ← π((Ci ‖ 0c) ⊕ Si−1) for all i ∈ [d + 1 . . . d + d′]

Then, for t := �len/r�, if t ≥ 2, it computes the values Sd+d′+1, . . . ,
Sd+d′+t−1 as Si ← π(Si−1) for i ∈ [d + d′ + 1 . . . d + d′ +
t − 1]. Finally, SpKDFπ

n,r,s(seed,W,C, len) outputs the first len bits of
Sd+d′ [1 . . . r] ‖ · · · ‖Sd+d′+t−1[1 . . . r].

7 As in the original sponge construction, we need to assume that C is always encoded
so that every block Ci �= 0r.
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Security of sponge-based KDF. The proof of the following theorem (given
in the full version) is an application of the sponge extraction lemma (Lemma 6),
combined with existing analyses of the PRF security of keyed sponges with
variable-output-length [24].

Theorem 13 (Security of SpKDF). Let r, s be integers, let qD, qπ be arbi-
trary, and let γ∗ > 0. Also, let D be a (qD, qπ)-legitimate Q-distribution sampler
D for which the overall output length (when invoked qD times) is at most � · r
bits after padding. Then, for all adversaries A making qπ ≤ 2c−2 queries to π,
and q queries to F , where every query to the latter results in an input C encoded
into at most �′ r-bit blocks, and in an output of at most len bits, we have

Adv
(γ∗,qD)−kdf
SpKDFn,r,s

(A,D) ≤ q̃π

2γ∗ +
Q(qD)

2sr
+

14q̃2π + 6q2�̄ + 3q�̄q̃π

2c
+

+
2q̃π� + 2�2 + 6q2�̄2 + q̃π

2n
,

where q̃π = (qπ + Q(qD))(1 + 2�n
r �) and �̄ = � + �′ + �len/r�.
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1 Introduction

Fuzzy Extractors. Cryptography relies on long-term secrets for key derivation
and authentication. However, many sources with sufficient randomness to form
long-term secrets provide similar but not identical values of the secret at repeated
readings. Prominent examples include biometrics and other human-generated
data [11,19,24,44,45,57], physically unclonable functions (PUFs) [26,47,52,54],
and quantum information [3]. Turning similar readings into identical values is
known as information reconciliation; further converting those values into uni-
formly random secret strings is known as privacy amplification [3]. Both of these
problems have interactive and non-interactive versions. In this paper, we are
interested in the non-interactive case, which is useful for a single user trying
to produce the same key from multiple noisy readings of a secret at different
times. A fuzzy extractor [22] is the primitive that accomplishes both information
reconciliation and privacy amplification non-interactively.

Fuzzy extractors consist of a pair of algorithms: Gen (used once, at “enroll-
ment”) takes a source value w, and produces a key r and a public helper value p.
The second algorithm Rep (used subsequently) takes this helper value p and
a close w′ to reproduce the original key r. The standard correctness guaran-
tee is that r will be correctly reproduced by Rep as long as w′ is no farther
than t from w according to some notion of distance (specifically, we work with
Hamming distance; our primary focus is on binary strings, although we also
consider larger alphabets). The security guarantee is that r produced by Gen is
indistinguishable from uniform, even given p. In this work, we consider compu-
tational indistinguishability [25] rather than the more traditional information-
theoretic notion. (Note that so-called “robust” fuzzy extractors [10,17,21,41,43]
additionally protect against active attackers who modify p; we do not consider
them here, except to point out that our constructions can be easily made robust
by the random-oracle-based transform of [10, Theorem 1].)

Reusability. A fuzzy extractor is reusable (Boyen [9]) if it remains secure even
when a user enrolls the same or correlated values multiple times. For example,
if the source is a biometric reading, the user may enroll the same biometric with
different noncooperating organizations. Reusability is particularly important for
biometrics which, unlike passwords, cannot be changed or created. It is also
useful in other contexts, for example, to permit a user to reuse the same visual
password across many services or to make a single physical token (embodying a
PUF) usable for many applications.

Each enrollment process will get a slightly different enrollment reading wi,
and will run Gen(wi) to get a key ri and a helper value pi. Security for each
ri should hold even when an adversary is given all the values p1, . . . , pρ and
even the keys rj for j �= i (because one organization cannot be sure how other
organizations will use the derived keys).

As pointed out by Dodis et al. [20, Sect. 6], reusable extractors for the non-
fuzzy case (i.e., without p and Rep) can be constructed using leakage-resilient
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cryptography. However, adding error-tolerance makes the problem harder. Most
constructions of fuzzy extractors are not reusable [6,7,9,50]. In fact, the only
known construction of reusable fuzzy extractors [9] requires very particular rela-
tionships between wi values1, which are unlikely to hold for a practical source.

1.1 Our Contribution

A Reusable Fuzzy Extractor. We construct the first reusable fuzzy extractor
whose security holds even if the multiple readings wi used in Gen are arbitrar-
ily correlated, as long as the fuzzy extractor is secure for each wi individually.
This construction is the first to provide reusability for a realistic class of corre-
lated readings. Our construction is based on digital lockers; in the most efficient
instantiation, it requires only evaluation of cryptographic hash functions and is
secure in the random oracle model or under strong computational assumptions
on the hash functions2. The construction can output arbitrarily long r.

Our construction handles a wider class of sources than prior work. It is secure
if the bits of w are partially independent. Namely, we require that, for some
known parameter k, the substring formed by the bits at k randomly chosen
positions in w is unguessable (i.e., has minentropy that is superlogarithmic is
the security parameter). We call sources with this feature “sources with high-
entropy samples.” This requirement is in contrast to most constructions of fuzzy
extractors that require w to have sufficient minentropy.

All sources of sufficient minentropy have high-entropy samples (because sam-
pling preserves the entropy rate [55]). However, as we now explain, the family of
sources with high-entropy samples also includes some low-entropy sources. (Note
that, of course, the entropy of a substring never exceeds the entropy of the entire
string; the terms “high” and “low” are relative to the length.)

Low-entropy sources with high-entropy samples are easy to construct arti-
ficially: for example, we can build a source of length n whose bits are k-wise
independent by multiplying (over GF(2)) a fixed n × k matrix of rank k by a
random k-bit vector. In this source, the entropy rate of any substring of length
k is 1, while the entropy rate of the entire string is just k/n.

Such sources also arise naturally whenever w exhibits a lot of redundancy.
For example, when the binary string w is obtained via signal processing from
some underlying reading (such as an image of an iris or an audio recording of a
voice), the signal itself is likely to have a lot of redundancy (for example, nearby
pixels of an image are highly correlated). By requiring only high-entropy samples
rather than a high entropy rate, we free the signal processing designer from the
need to remove redundancy when converting the underlying reading to a string
w used in the fuzzy extractor. Thus, we enable the use of oversampled signals.

1 Specifically, Boyen’s construction requires that the exclusive or wi ⊕ wj of any two
secrets not leak any information about wi.

2 The term “digital lockers” was introduced by Canetti and Dakdouk [13]; the fact
that such digital lockers can be built easily out cryptographic hash functions was
shown by [38, Sect. 4].
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Our construction can tolerate n lnn
k errors (out of the n bits of w) if we allow

the running time of the construction (the number of hash function evaluations)
to be linear in n. More generally, we can tolerate cn lnn

k errors if we allow running
time linear in nc. Note that, since in principle k needs to be only slightly super-
logarithmic to ensure the high-entropy condition on the samples, our allowable
error rate is only slightly sublinear.

The Advantage of Exploiting the Structure of the Distribution. Follow-
ing the tradition of extractor literature [16,46], much work on fuzzy extractors
has focused on providing constructions that work for any source of a given minen-
tropy m. In contrast, our construction exploits more about the structure of the
distribution than just its entropy. As a result, it supports not only all sources
of a given (sufficiently high) minentropy, but also many sources with an entropy
rate much lower than the error rate. We know of no prior constructions with this
property. We now explain why, in order to achieve this property, exploiting the
structure of the distribution is necessary.

A fuzzy extractor that supports t errors out of a string of n bits and works
for all sources of minentropy m must have the entropy rate m

n at least as big
as the binary entropy3 of the error rate, h2( t

n ) (to be exact, m ≥ nh2( t
n ) −

1
2 log n − 1

2 ). The reason for this requirement is simple: if m too small, then a
single ball of radius t, which contains at least 2nh2(

t
n )− 1

2 log n− 1
2 points [1, Lemma

4.7.2, Eq. 4.7.5, p. 115], may contain the entire distribution of 2m points inside
it. For this distribution, an adversary can run Rep on the center of this ball
and always learn the key r. This argument leads to the following proposition,
which holds regardless of whether the fuzzy extractor is information-theoretic or
computational, and extends even to the interactive setting.

Proposition 1. If the security guarantee of a fuzzy extractor holds for any
source of minentropy m and the correctness guarantees holds for any t errors
and m < log |Bt| (where |Bt| denotes the number of points in a ball of radius
t), the fuzzy extractor must provide no security. In particular, for the binary
Hamming case, m must exceed nh2( t

n ) − 1
2 log n − 1

2 ≈ nh2( t
n ) > t log2

n
t .

Thus, in order to correct t errors regardless of the structure of the distribution, we
would have to assume a high total minentropy m. In contrast, by taking advan-
tage of the specific properties of the distribution, we can handle all distributions
of sufficiently high minentropy, but also some distributions whose minentropy
that is much less than t < nh2( t

n ).
Beating the bound of Proposition 1 is important. For example, the IrisCode

[19], which is the state of the art approach to handling what is believed to be the
best biometric [49], produces a source where m is less than nh2( t

n ) [8, Sect. 5].
PUFs with slightly nonuniform outputs suffer from similar problems [36].

3 Binary entropy h2(α) for 0 < α < 1 is defined as −α log2 α− (1−α) log2(1−α); it is
greater than α log2

1
α

and, in particular, greater than α for interesting range α < 1
2
.
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We emphasize that in applications of fuzzy extractors to physical sources,
any constraint on the source—whether minentropy-based or more structured—
is always, by necessity, an assumption about the physical world. It is no more
possible to verify that a source has high minentropy than it is to verify that
it has high-entropy samples4. Both statements about the source can be derived
only by modeling the source—for example, by modeling the physical processes
that generate irises or PUFs.

Some prior work on key agreement from noisy data also made assumptions
on the structure of the source (often assuming that it consists of independent
identically distributed symbols, e.g. [29,39,40,42,56]). However, we are not aware
of any work that beat the bound of Propostion 1, with the exception of the
work by Holenstein and Renner [30, Theorem 4]. Their construction supports
a uniform length n binary w, with a random selection of (n − m) bits leaked
to the adversary and t random bits flipped in w′. They show that it is possible
to support any m > 4t(1 − t

n ), which is lower than log |Bt| ≈ nh2( t
n ), but still

higher than t.

Constructions Exploiting the Structure of the Distribution for Larger
Alphabets. In addition to the binary alphabet construction that supports reuse
and low entropy rates, as discussed above, we explore how low entropy rates can
be supported when symbols of the string w comes from a large, rather than a
binary, alphabet. We obtain two additional constructions, both of which allow
for distributions whose total minentropy is lower than the volume of the ball of
radius t (in the large-alphabet Hamming space). Unfortunately, neither of them
provides reusability, but both can tolerate a linear error rate (of course, over the
larger alphabet, where errors may be more likely, because each symbol carries
more information).

Our second construction for large alphabets works for sources with sparse
high-entropy marginals: sources for which sufficiently many symbols have high
entropy individually, but no independence among symbols is assumed (thus, the
total entropy may be as low as the entropy of a single symbol).

Our third construction for large alphabets provides information-theoretic,
rather than computational, security. It works for sparse block sources. These are
sources in which a sufficient fraction of the symbols have entropy conditioned on
previous symbols.

Both constructions should be viewed as evidence that assumptions on the
source other than total minentropy may provide new opportunities for increasing
the error tolerance of fuzzy extractors.

Our Approach. Our approach in all three constructions is different from most
known constructions of fuzzy extractors, which put sufficient information in p

4 However, standard heuristics for estimating entropy can also be used to indicate
whether a source has high-entropy samples. For a corpus of noisy signals, repeat the
following a statistically significant number of times: (1) sample k indices (2) run the
heuristic entropy test on the corpus which each sample restricted to the k indices.
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to recover the original w from a nearby w′ during Rep (this procedure is called
a secure sketch). We deliberately do not recover w, because known techniques
for building secure sketches do not work for sources whose entropy rate is lower
than its error rate. (This is because they lose at least log |Bt| bits of entropy
regardless of the source. This loss is necessary when the source is uniform [22,
Lemma C.1] or when reusability against a sufficiently rich class of correlations is
desired [9, Theorem 11]; computational definitions of secure sketches suffer from
similar problems [25, Corollary 1].) Instead, in the computational constructions,
we lock up a freshly generated random r using parts of w in an error-tolerant
way; in the information-theoretic construction, we reduce the alphabet in order
to reduce the ball volume while maintaining entropy.

We note that the idea of locking up a random r has appeared in a prior the-
oretical construction of a computational fuzzy extractor for any source. Namely,
Bitansky et al. [5] show how to obfuscate a proximity point program that tests if
an input w′ is within distance t of the value w hidden inside the obfuscated
program and, if so, outputs the secret r (such a program would be output
by Gen as p and run by Rep). However, such a construction is based on very
strong assumptions (semantically secure graded encodings [48]) and, in contrast
to our construction, is highly impractical in terms of efficiency. Moreover, it is
not known to provide reusability, because known obfuscation of proximity point
programs is not known to be composable.

2 Definitions

For a random variables Xi over some alphabet Z we denote by X = X1, ...,Xn

the tuple (X1, . . . , Xn). For a set of indices J , XJ is the restriction of X to
the indices in J . The set Jc is the complement of J . The minentropy of X is
H∞(X) = − log(maxx Pr[X = x]), and the average (conditional) minentropy of
X given Y is H̃∞(X|Y ) = − log(Ey∈Y maxx Pr[X = x|Y = y]) [22, Sect. 2.4]. For
a random variable W , let H0(W ) be the logarithm of the size of the support of
W , that is H0(W ) = log |{w|Pr[W = w] > 0}|. The statistical distance between
random variables X and Y with the same domain is Δ(X,Y ) = 1

2

∑
x |Pr[X =

x] − Pr[Y = x]|. For a distinguisher D we write the computational distance
between X and Y as δD(X,Y ) = |E[D(X)] − E[D(Y )]| (we extend it to a class
of distinguishers D by taking the maximum over all distinguishers D ∈ D). We
denote by Ds the class of randomized circuits which output a single bit and have
size at most s.

For a metric space (M, dis), the (closed) ball of radius t around x is the set
of all points within radius t, that is, Bt(x) = {y|dis(x, y) ≤ t}. If the size of a
ball in a metric space does not depend on x, we denote by |Bt| the size of a ball
of radius t. We consider the Hamming metric over vectors in Zn, defined via
dis(x, y) = |{i|xi �= yi}|. For this metric, |Bt| =

∑t
i=0

(
n
i

)
(|Z| − 1)i. Un denotes

the uniformly distributed random variable on {0, 1}n. Unless otherwise noted
logarithms are base 2. Usually, we use capitalized letters for random variables
and corresponding lowercase letters for their samples.
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2.1 Fuzzy Extractors

In this section we define computational fuzzy extractors. Similar definitions
for information-theoretic fuzzy extractors can be found in the work of Dodis
et al. [22, Sects. 2.5–4.1]. The definition of computational fuzzy extractors allows
for a small probability of error.

Definition 1 [25, Definition 4]. Let W be a family of probability distributions
over M. A pair of randomized procedures “generate” (Gen) and “reproduce”
(Rep) is an (M,W, κ, t)-computational fuzzy extractor that is (εsec, ssec)-hard
with error δ if Gen and Rep satisfy the following properties:

– The generate procedure Gen on input w ∈ M outputs an extracted string
r ∈ {0, 1}κ and a helper string p ∈ {0, 1}∗.

– The reproduction procedure Rep takes an element w′ ∈ M and a bit string
p ∈ {0, 1}∗ as inputs. The correctness property guarantees that if dis(w,w′) ≤
t and (r, p) ← Gen(w), then Pr[Rep(w′, p) = r] ≥ 1 − δ, where the probability
is over the randomness of (Gen,Rep).

– The security property guarantees that for any distribution W ∈ W, the string
r is pseudorandom conditioned on p, that is δDssec ((R,P ), (Uκ, P )) ≤ εsec.

In the above definition, the errors are chosen before P : if the error pattern
between w and w′ depends on the output of Gen, then there is no guarantee
about the probability of correctness. In Constructions 1 and 2 it is crucial that
w′ is chosen independently of the outcome of Gen.

Information-theoretic fuzzy extractors are obtained by replacing computa-
tional distance by statistical distance. We do make a second definitional modi-
fication. The standard definition of information-theoretic fuzzy extractors con-
siders W consisting of all distributions of a given entropy. As described in the
introduction, we construct fuzzy extractors for parameter regimes where it is
impossible to provide security for all distributions with a particular minentropy.
In both the computational and information-theoretic settings we consider a fam-
ily of distributions W.

2.2 Reusable Fuzzy Extractors

A desirable feature of fuzzy extractors is reusability [9]. Intuitively, it is the
ability to support multiple independent enrollments of the same value, allowing
users to reuse the same biometric or PUF, for example, with multiple noncoop-
erating providers5. More precisely, the algorithm Gen may be run multiple times
on correlated readings w1, ..., wρ of a given source. Each time, Gen will produce
a different pair of values (r1, p1), ..., (rρ, pρ). Security for each extracted string ri

should hold even in the presence of all the helper strings p1, . . . , pρ (the repro-
duction procedure Rep at the ith provider still obtains only a single w′

i close to
5 Reusability and unlinkability are two different properties. Unlinkability prevents an

adversary from telling if two enrollments correspond to the same physical source [15,
35]. We do not consider this property in this work.
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wi and uses a single helper string pi). Because the multiple providers may not
trust each other, a stronger security feature (which we satisfy) ensures that each
ri is secure even when all rj for j �= i are also given to the adversary.

Our ability to construct reusable fuzzy extractors depends on the types of
correlations allowed among w1, . . . , wρ. Boyen [9] showed how to do so when each
wi is a shift of w1 by a value that is oblivious to the value of w1 itself (formally,
wi is a result of a transitive isometry applied to w1). Boyen also showed that even
for this weak class of correlations, any secure sketch must lose at least log |Bt|
entropy [9, Theorem 11].

We modify the definition of Boyen [9, Definition 6] for the computational
setting. We first present our definition and then compare to the definitions of
Boyen.

Definition 2 (Reusable Fuzzy Extractors). Let W be a family of distri-
butions over M. Let (Gen,Rep) be a (M,W, κ, t)-computational fuzzy extrac-
tor that is (εsec, ssec)-hard with error δ. Let (W 1,W 2, . . . , W ρ) be ρ correlated
random variables such that each W j ∈ W. Let D be an adversary. Define the
following game for all j = 1, ..., ρ:

– Sampling The challenger samples wj ← W j and u ← {0, 1}κ.
– Generation The challenger computes (rj , pj) ← Gen(wj).
– Distinguishing The advantage of D is

Adv(D)
def
= Pr[D(r1, ..., rj−1, rj , rj+1, ..., rρ, p1, ..., pρ) = 1]

− Pr[D(r1, ..., rj−1, u, rj+1, ..., rρ, p1, ..., pρ) = 1].

(Gen,Rep) is (ρ, εsec, ssec)-reusable if for all D ∈ Dssec
and for all j = 1, ..., ρ,

the advantage is at most εsec.

Comparison with the Definition of Boyen. Boyen considers two versions
of reusable fuzzy extractors. In the first version (called ”outsider security” [9,
Definition 6]), the adversary sees p1, ..., pρ and tries to learn about the values
w1, ..., wρ or the keys r1, ..., rρ. This version is weaker than our version, because
the adversary is not given any ri values. In the second version (called “insider
security” [9, Definition 7]), the adversary controls some subset of the servers and
can run Rep on arbitrary p̃i. This definition allows the adversary, in particular,
to learn a subset of keys ri (by performing key generation on the valid pi), just
like in our definition. However, it also handles the case when the pi values are
actively compromised. We do not consider such an active compromise attack. As
explained in Sect. 1, protection against such an attack is called “robustness” and
can be handled separately—for example, by techniques from [10, Theorem 1].

In Boyen’s definitions, the adversary creates a perturbation function f i after
seeing p1, ..., pi−1 (and generated keys in case of insider security) and the chal-
lenger generates wi = f i(w1). The definition is parameterized by the class of
allowed perturbation functions. Boyen constructs an outsider reusable fuzzy
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extractor for unbounded ρ when the perturbation family is a family of tran-
sitive isometries; Boyen then adds insider security using random oracles.

In contrast, instead of considering perturbation functions to generate wi, we
simply consider all tuples of distributions as long as each distribution is in W,
because we support arbitrary correlations among them.

3 Tools: Digital Lockers, Point Functions, and Hash
Functions

Our main construction uses digital lockers, which are computationally secure
symmetric encryption schemes that retain security even when used multiple
times with correlated and weak (i.e., nonuniform) keys [14]. In a digital locker,
obtaining any information about the plaintext from the ciphertext is as hard as
guessing the key. They have the additional feature that the wrong key can be
recognized as such (with high probability). We use notation c = lock(key, val) for
the algorithm that performs the locking of the value val using the key key, and
unlock(key, c) for the algorithm that performs the unlocking (which will output
val if key is correct and ⊥ with high probability otherwise).

The following simple and efficient construction of digital lockers was shown
to provide the desired security in the random oracle model of [2] by Lynn,
Prabhakaran, and Sahai [38, Sect. 4]. Let H be a cryptographic hash function,
modeled as a random oracle. The locking algorithm lock(key, val) outputs the pair
nonce,H(nonce, key)⊕(val||0s), where nonce is a nonce, || denotes concatenation,
and s is a security parameter. As long as the entropy of key is superlogarithmic,
the adversary has negligible probability of finding the correct key; and if the
adversary doesn’t find the correct key, then the adversarial knowledge about key
and val is not significantly affected by this locker. Concatenation with 0s is used
to make sure that unlock can tell (with certainty 1−2−s) when the correct value
is unlocked.

It is seems plausible that in the standard model (without random oracles),
specific cryptographic hash functions, if used in this construction, will provide
the necessary security [13, Sect. 3.2], [18, Section 8.2.3]. Moreover, Bitansky and
Canetti [4], building on the work of [13,14], show how to obtain composable digi-
tal lockers based on a strong version of the Decisional Diffie-Hellman assumption
without random oracles.

The security of digital lockers is defined via virtual-grey-box simulatabil-
ity [4], where the simulator is allowed unbounded running time but only a
bounded number of queries to the ideal locker. Intuitively, the definition gives the
primitive we need: if the keys to the ideal locker are hard to guess, the simulator
will not be able to unlock the ideal locker, and so the real adversary will not be
able to, either. Formally, let idealUnlock(key, val) be the oracle that returns val
when given key, and ⊥ otherwise.

Definition 3. The pair of algorithm (lock, unlock) with security parameter λ is
an �-composable secure digital locker with error γ if the following hold:
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– Correctness For all key and val, Pr[unlock(key, lock(key, val)) = val] ≥ 1−γ.
Furthermore, for any key′ �= key, Pr[unlock(key′, lock(key, val)) =⊥] ≥ 1 − γ.

– Security For every PPT adversary A and every positive polynomial p, there
exists a (possibly inefficient) simulator S and a polynomial q(λ) such that for
any sufficiently large s, any polynomially-long sequence of values (vali, keyi)
for i = 1, . . . , �, and any auxiliary input z ∈ {0, 1}∗,

∣∣∣Pr
[
A

(
z, {lock (keyi, vali)}

�
i=1

)
= 1

]
−

Pr
[
S

(
z, {|keyi|, |vali|}

�
i=1

)
= 1

]∣∣∣ ≤ 1
p(s)

where S is allowed q(λ) oracle queries to the oracles

{idealUnlock(keyi, vali)}�
i=1 .

Point Functions. In one of the constructions for large alphabets, we use a
weaker primitive: an obfuscated point function. This primitive can be viewed
as a digital locker without the plaintext: it simply outputs 1 if the key is cor-
rect and 0 otherwise. Such a function can be easily constructed from the digital
locker above with the empty ciphertext, or from a strong version of the Deci-
sional Diffie-Hellman assumption [12]. We use notation c = lockPoint(key) and
unlockPoint(key, c); security is defined the same way as for digital lockers with a
fixed plaintext.

4 Main Result: Reusable Construction for Sources
with High-Entropy Samples

Sources with High-Entropy Samples. Let the source W = W1, . . . , Wn

consist of strings of length n over some arbitrary alphabet Z (the case of greatest
interest is that of the binary alphabet Z = {0, 1}; however, we describe the
construction more generally). For some parameters k, α, we say that the source
W is a source with α-entropy k-samples if

H̃∞(Wj1 , . . . , Wjk
| j1, . . . , jk) ≥ α

for uniformly random 1 ≤ j1, . . . , jk ≤ n. See Sect. 1 for a discussion of how
sources with this property come up naturally.

The Sample-then-Lock Construction. The construction first chooses a ran-
dom r to be used as the output of the fuzzy extractor. It then samples a random
subset of symbols v1 = wj1 , ..., wjk

and creates a digital locker that hides r using
v1

6. This process is repeated to produce some number � of digital lockers all con-
taining r, each unlockable with v1, ..., v�, respectively. The use of the composable
6 We present and analyze the construction with uniformly random subsets; however, if

necessary, it is possible to substantially decrease the required public randomness and
the length of p by using more sophisticated samplers. See [27] for an introduction to
samplers.
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digital lockers allows us to sample multiple times, because we need to argue only
about individual entropy of Vi. Composability also allows reusability7.

Note that the output r can be as long as the digital locker construction
can handle (in particular, the constructions discussed in Sect. 3 allow r to be
arbitrarily long). Also note that it suffices to have r that is as long as a seed for
a pseudorandom generator, because a longer output can be obtained by running
this pseudorandom generator on r.

Construction 1 (Sample-then-Lock). Let Z be an alphabet, and let W =
W1, ...,Wn be a source with α-entropy k-samples, where each Wj is over Z. Let
� be a parameter, to be determined later. Let lock, unlock be an �-composable
secure digital locker with error γ (for κ-bit values and keys over Zk). Define
Gen,Rep as:

Gen

1. Input: w = w1, ..., wn

2. Sample r
$← {0, 1}κ.

3. For i = 1, ..., �:
(i) Choose uniformly random 1 ≤

ji,1, ..., ji,k ≤ n
(ii) Set vi = wji,1 , ..., wji,k

.
(iii) Set ci = lock(vi, r).
(iv) Set pi = ci, (ji,1, ..., ji,k).

4. Output (r, p), where p = p1 . . . p�.

Rep

1. Input: (w′ = w′
1, ..., w

′
n, p =

p1 . . . p�)
2. For i = 1, ..., �:

(i) Parse pi as ci, (ji,1, ..., ji,k).
(ii) Set v′

i = w′
ji,1

, ..., w′
ji,k

.
(iii) Set ri = unlock(v′

i, ci). If
ri �=⊥ output ri.

3. Output ⊥.

How to Set Parameters: Correctness vs. Efficiency Tradeoff. To instan-
tiate Construction 1, we need to choose a value for �. Recall we assume that
dis(w,w′) ≤ t. For any given i, the probability that v′

i = vi is at least (1 − t
n )k.

Therefore, the probability that no v′
i matches during Rep, causing Rep output

to ⊥, is at most (
1 −

(
1 − t

n

)k
)�

.

In addition, Rep may be incorrect due to an error in one of the lockers, which
happens with probability at most �·γ. Thus, to make the overall error probability
less than fuzzy extractor’s allowable error parameter δ we need to set � so that

(
1 −

(
1 − t

n

)k
)�

+ � · γ ≤ δ.

This provides a way to set � to get a desirable δ, given a digital locker with error
γ and source parameters n, t, k.

7 For the construction to be reusable ρ times the digital locker must be composable
� · ρ times.
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To get a bit more insight, we need to simplify the above expression. We can
use the approximation ex ≈ 1 + x to get

(
1 −

(
1 − t

n

)k
)�

≈ (1 − e− tk
n )� ≈ exp(−�e− tk

n ).

The value γ can be made very small very cheaply in known locker constructions,
so let us assume that γ is small enough so that � · γ ≤ δ/2. Then if tk = cn ln n
for some constant c, setting � ≈ nc log 2

δ suffices.
We now provide the formal statement of security for Construction 1; we

consider reusability of this construction below, in Theorem 2.

Theorem 1. Let λ be a security parameter, Let W be a family of sources over
Zn with α-entropy k-samples for α = ω(log λ). Then for any ssec = poly(λ)
there exists some εsec = ngl(λ) such that Construction 1 is a (Zn,W, κ, t)-
computational fuzzy extractor that is (εsec, ssec)-hard with error δ = (1 − (1 −
t
n )k)� + �γ ≈ exp(−�e− tk

n ) + �γ. (See above for an expression of � as a function
the other parameters.)

Proof. Correctness is already argued above. We now argue security.
Our goal is to show that for all ssec = poly(λ) there exists εsec = ngl(λ)

such that δDssec ((R,P ), (U,P )) ≤ εsec. Fix some polynomial ssec and let D be
a distinguisher of size at most ssec. We want to bound

|E[D(R,P )] − E[D(U,P )]|

by a negligible function.
We proceed by contradiction: suppose this difference is not negligible. That

is, suppose that there is some polynomial p(·) such that for all λ0 there exists
some λ > λ0 such that

|E[D(R,P )] − E[D(U,P )]| > 1/p(λ).

We note that λ is a function of λ0 but we omit this notation for the remainder
of the proof for clarity.

By the security of digital lockers (Definition 3), there is a polynomial q and
an unbounded time simulator S (making at most q(λ) queries to the oracles
{idealUnlock(vi, r)}�

i=1) such that
∣∣∣E[D(R,P1, ..., P�)] − E

[
S{idealUnlock(vi,r)}�

i=1
(
R, {ji,1, ..., ji,k}�

i=1, k, κ
)]∣∣∣

≤ 1
3p(λ)

. (1)

The same is true if we replaced R above by an independent uniform random
variable U over {0, 1}κ. We now prove the following lemma, which shows that S
cannot distinguish between R and U .
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Lemma 1. Let U denote the uniform distribution over {0, 1}κ. Then
∣∣∣E

[
S{idealUnlock(vi,r)}�

i=1
(
R, {ji,1, ..., ji,k}�

i=1, k, κ
)]

−E

[
S{idealUnlock(vi,r)}�

i=1
(
U, {ji,1, ..., ji,k}�

i=1, k, κ
)] ∣∣∣

≤ q(q + 1)
2α

≤ 1
3p(λ)

, (2)

where q is the maximum number of queries S can make.

Proof. Fix any u ∈ {0, 1}κ (the lemma will follow by averaging over all u). Let
r be the correct value of R. The only information about whether the value is
r or u can obtained by S through the query responses. First, modify S slightly
to quit immediately if it gets a response not equal to ⊥ (such S is equally
successful at distinguishing between r and u, because the first non-⊥ response
tells S if its input is equal to the locked value r, and subsequent responses
add nothing to this knowledge; formally, it is easy to argue that for any S,
there is an S′ that quits after the first non-⊥ response and is just as success-
ful). There are q + 1 possible values for the view of S on a given input (q of
those views consist of some number of ⊥ responses followed by the first non-⊥
response, and one view has all q responses equal to ⊥). By [22, Lemma 2.2b],
H̃∞(Vi|V iew(S), {jik}) ≥ H̃∞(Vj |{jik})− log(q +1) ≥ α− log(q +1). Therefore,
at each query, the probability that S gets a non-⊥ answer (equivalently, guesses
Vi) is at most (q + 1)2−α. Since there are q queries of S, the overall probability
is at most q(q + 1)/2α. Then since 2α is ngl(λ), there exists some λ0 such that
for all λ > λ0, q(q + 1)/2α ≤ 1/(3p(λ)).

Adding together Eqs. 1, 2, and 1 in which R is replaced with U , we obtain that

δD((R,P ), (U,P )) ≤ 1
p(λ)

.

This is a contradiction and completes the proof of Theorem 1.
Reusability of Construction 1. The reusability of Construction 1 follows from
the security of digital clockers. Consider any ρ number of reuses. For each fixed
i ∈ {1, ..., ρ}, we can treat the keys r1, . . . , ri−1, ri+1, . . . , rρ and the sampled
positions as auxiliary input to the digital locker adversary. The result follows
by simulatability of this adversary, using the same argument as the proof of
Theorem 1 above. Note that this argument now requires the digital locker to be
ρ · �-composable.

Theorem 2. Fix ρ and let all the variables be as in Theorem 1, except that
(lock, unlock) is an � · ρ-composable secure digital locker (for κ-bit values and
keys over Zk). Then for all ssec = poly(n) there exists some εsec = ngl(n) such
that Construction 1 is (ρ, εsec, ssec)-reusable fuzzy extractor.

Comparison with work of [51]. The work of Škorić and Tuyls [51] can be
viewed as a fuzzy extractor that places the entire string into a single digital
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locker (in their paper, they use the language of hash functions). Their Rec pro-
cedure symbol searches for a nearby value that unlocks the digital locker, limiting
Rec to a polynomial number of error patterns. We use a subset of symbols to
lock and take multiple samples, greatly increasing the error tolerance.

5 Additional Constructions for the Case of Large
Alphabets

In this section we provide additional constructions of fuzzy extractors that
exploit the structure of the distribution w (instead of working for all distributions
of a particular min-entropy). As stated in the introduction, both constructions
work for low entropy rates when w comes from a large source alphabet Z.

5.1 Construction for Sources with Sparse High-Entropy Marginals

In this section, we consider an alternative construction that is suited to sources
over large alphabets. Intuitively, we use single symbols of w to lock bits of a secret
that we then transform into r; we use error-correcting codes to handle bits of
the secret that cannot be retrieved due to errors in w′. Our main technical tool
is obfuscated point functions (a weaker primitive than digital lockers; see Sect. 3
for the definition).

This construction requires enough symbols individually to contain sufficient
entropy, but does not require independence of symbols, or even “fresh” entropy
from them. Unlike the previous construction, it tolerates a linear fraction of
errors (but over a larger alphabet, where errors may be more likely.). However,
it cannot work for small alphabets, and is not reusable.

Sources with Sparse High-Entropy Marginals. This construction works
for distributions W = W1, ...,Wn over Zn in which enough symbols Wj are
unpredictable even after adaptive queries to equality oracles for other symbols.
This quality of a distribution is captured in the following definition.

Definition 4. Let idealUnlock(key) be an oracle that returns 1 when given key
and 0 otherwise. A source W = W1, ...,Wn has β-sparse α-entropy q-marginals if
there exists a set J ⊂ {1, ..., n} of size at least n−β such that for any unbounded
adversary S,

∀j ∈ J, H̃∞(Wj |V iew(S(·)))) ≥ α.

where S is allowed q queries to the oracles {idealUnlock(Wi)}n
i=1.

We show some examples of such sources in Appendix A.4. In particular, any
source W where for all j, H∞(Wj) ≥ α = ω(log λ) (but all symbols may arbitrar-
ily correlated) is a source with sparse high-entropy marginals (Proposition 3).
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The Error-Correct-and-Obfuscate Construction. This construction is
inspired by the construction of Canetti and Dakdouk [13]. Instead of having
large parts of the string w unlock r, we have individual symbols unlock bits of
the output.

Before presenting the construction we provide some definitions from error
correcting codes. We use error-correct codes over {0, 1}n which correct up to t
bit flips from 0 to 1 but no bit flips from 1 to 0 (this is the Hamming analog of
the Z-channel [53])8.

Definition 5. Let e, c ∈ {0, 1}n be vectors. Let x = Err(c, e) be defined as follows

xi =

{
1 ci = 1 ∨ ei = 1
0 otherwise.

Definition 6. A set C (over {0, 1}n) is a (t, δcode)-Z code if there exists an
efficient procedure Decode such that

∀e ∈ {0, 1}n|Wgt(e) ≤ t, Pr
c∈C

[Decode(Err(c, e)) �= c] ≤ δcode.

Construction 2 (Lock-and-Error-Correct). Let Z be an alphabet and let
W = W1, ...,Wn be a distribution over Zn. Let C ⊂ {0, 1}n be (t, δcode)-Z code.
Let lockPoint, unlockPoint be an n-composable secure obfuscated point function
with error γ (for keys over Z). Define Gen,Rep as:

Gen

1. Input: w = w1, ..., wn

2. Sample c ← C.
3. For j = 1, ..., n:

(i) If cj = 0:
– Let pj = lockPoint(wj).

(ii) Else: rj
$← Z.

– Let pj = lockPoint(rj).
4. Output (c, p), where p = p1 . . . pn.

Rep

1. Input: (w′, p)
2. For j = 1, ..., n:

(i) If unlockPoint(w′
j , pj) = 1: set

c′
j = 0.

(ii) Else: set c′
j = 1.

3. Set c = Decode(c′).
4. Output c.

As presented, Construction 2 is not yet a computational fuzzy extractor. The
codewords c are not uniformly distributed and it is possible to learn some bits
of c (for the symbols of W without much entropy). However, we can show
that c looks like it has entropy to a computationally bounded adversary who

8 Any code that corrects t Hamming errors also corrects t 0 → 1 errors, but more
efficient codes exist for this type of error [53]. Codes with 2Θ(n) codewords and
t = Θ(n) over the binary alphabet exist for Hamming errors and suffice for our
purposes (first constructed by Justensen [32]). These codes also yield a constant
error tolerance for 0 → 1 bit flips. The class of errors we support in our source (t
Hamming errors over a large alphabet) and the class of errors for which we need
codes (t 0 → 1 errors) are different.
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knows p. Applying a randomness extractor with outputs over {0, 1}κ (techni-
cally, an average-case computational randomness extractor) to c, and adding the
extractor seed to p, will give us the desired fuzzy extractor. See Appendix A.1
for the formal details.

Construction 2 is secure if no distinguisher can tell whether it is working
with rj or wj . By the security of point obfuscation, anything learnable from
the obfuscation is learnable from oracle access to the function. Therefore, our
construction is secure as long as enough symbols are unpredictable even after
adaptive queries to equality oracles for individual symbols, which is exactly the
property satisfied by sources with sparse high-entropy marginals.

The following theorem formalizes this intuition (proof in Appendix B).

Theorem 3. Let λ be a security parameter. Let Z be an alphabet. Let W be a
family of sources with β-sparse α = ω(log λ)-entropy q-marginals over Zn, for
any q = poly(n). Furthermore, let C be a (t, δcode)-Z code over Zn. Then for
any ssec = poly(n) there exists some εsec = ngl(n) such that Construction 2,
followed by a κ-bit randomness extractor (whose required input entropy is ≤
H0(C) − β), is a (Zn,W, κ, t)-computational fuzzy extractor that is (εsec, ssec)-
hard with error δcode + n(1/|Z| + γ).

Entropy vs. Error Rate. The minimum entropy necessary to satisfy
Definition 4 is ω(log λ) (for example, when all symbols are completely depen-
dent but are all individually unguessable). The construction corrects a constant
fraction of errors. When n = λ1/c then the entropy is smaller than the number
of errors m = ω(log λ) < Θ(n) = λ1/c.

Output Length. The extractor that follows Construction 2 can output H0(C)−
β − 2 log(1/εsec) bits using standard information-theoretic techniques (such as
the average-case leftover hash lemma [22, Lemma 2.2b, Lemma 2.4]). To get a
longer output, Construction 2 can be run multiple (say, μ) times with the same
input and independent randomness to get multiple values c, concatenate them,
and extract from the concatenation, to obtain an output of sufficient length
μ(H0(C) − β) − 2 log(1/εsec). The goal is to get an output long enough to use
as a pseudorandom generator seed: once the seed is obtained, it can be used to
generate arbitrary polynomial-length r, just like Construction 1.

Further Improvement. If most codewords have Hamming weight close to 1/2,
we can decrease the error tolerance needed from the code from t to about t/2,
because roughly half of the mismatches between w and w′ occur where cj = 1.

Lack of Reusability. Even though Construction 2 uses composable obfuscated
point functions, it is not reusable. Definition 4 allows sources with some “weak”
symbols that can be completely learned by an adversary observing p. If a source
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is enrolled multiple times this partial information may add up over time to reveal
the original value w1. In contrast, Construction 1, leaks no partial information
for the supported sources, allowing reusability.

5.2 Information-Theoretic Construction for Sparse Block Sources

The construction in this section has information-theoretic security, in contrast
to only computational security of the previous two constructions. It uses symbol-
by-symbol condensers to reduce the alphabet size while preserving most of the
entropy, and then applies a standard fuzzy extractor to the resulting string.

This construction requires less entropy from each symbol than the previous
construction; however, it places more stringent independence requirements on
the symbols. It tolerates a linear number of errors.

Sparse Block Sources. This construction works for sources W = W1, ...,Wn

over Zn in which enough symbols Wj contribute fresh entropy conditioned on
previous symbols. We call this such sources sparse block sources, weakening the
notion of block sources (introduced by Chor and Goldreich [16]), which require
every symbol to contribute fresh entropy.

Definition 7. A distribution W = W1, ...,Wn is an (α, β)-sparse block source
if there exists a set of indices J where |J | ≥ n − β such that the following holds:

∀j ∈ J,∀w1, ..., wj−1 ∈ W1, ...,Wj−1,H∞(Wj |W1 = w1, ...,Wj−1 = wj−1) ≥ α.

The choice of conditioning on the past is arbitrary: a more general sufficient
condition is that there exists some ordering of indices where most items have
entropy conditioned on all previous items in this ordering (for example, is pos-
sible to consider a sparse reverse block source [55]).

The Condense-then-Fuzzy-Extract Construction. The construction first
condenses entropy from each symbol of the source and then applies a fuzzy
extractor to the condensed symbols. We’ll denote the fuzzy extractor on the
smaller alphabet as (Gen′,Rep′). A condenser is like a randomness extractor but
the output is allowed to be slightly entropy deficient. Condensers are known with
smaller entropy loss than possible for randomness extractors (e.g. [23]).

Definition 8. A function cond : Z × {0, 1}d → Y is a (m, m̃, ε)-randomness
condenser if whenever H∞(W ) ≥ m, then there exists a distribution Y with
H∞(Y ) ≥ m̃ and (cond(W, seed), seed) ≈ε (Y, seed).

The main idea of the construction is that errors are “corrected” on the large
alphabet (before condensing) while the entropy loss for the error correction is
incurred on a smaller alphabet (after condensing).

Construction 3. Let Z be an alphabet and let W = W1, ...,Wn be a distribution
over Zn. We describe Gen,Rep as follows:
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Gen

1. Input: w = w1, ..., wn

2. For j = 1, ..., n:
(i) Sample seedi ← {0, 1}d.
(ii) Set vi = cond(wi, seedi).

3. Set (r, p′) ← Gen′(v1, ..., vn).
4. Set p = (p′, seed1, ..., seedn).
5. Output (r, p).

Rep

1. Input: (w′, p = (p′, seed1, ...,
seedn))

2. For j = 1, ..., n:
(i) Set v′

i = cond(w′
i, seedi).

3. Output r = Rep′(v′, p′).

The following theorem shows the security of this construction (proof in
Appendix B).

Theorem 4. Let W be a family of (α = Ω(1), β ≤ n(1 − Θ(1)))-sparse block
sources over Zn and let cond : Z × {0, 1}d → Y be a (α, α̃, εcond)-randomness
conductor. Define V as the family of all distributions with minentropy at least
α̃(n − β) and let (Gen′,Rep′) be (Yn,V, κ, t, εfext)-fuzzy extractor with error δ9.
Then (Gen,Rep) is a (Zn,W, κ, t, nεcond + εfext)-fuzzy extractor with error δ.

Overcoming Proposition 1. Proposition 1 shows that no fuzzy extractor can
be secure for all sources of a given minentropy m < log |Bt|. Construction 3
supports sparse block sources whose overall entropy is less than log |Bt|. The
structure of a sparse block source implies that H∞(W ) ≥ α(n − β) = Θ(n). We
assume that H∞(W ) = Θ(n). Using standard fuzzy extractors (for Gen′,Rep′) it
is possible to correct t = Θ(n) errors, yielding log |Bt| > Θ(n) when |Z| = ω(1).
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A Analysis of Construction 2

A.1 Computational Fuzzy Conductors and Computational
Extractors

In this section we introduce tools necessary to convert Construction 2 to a com-
putation fuzzy extractor. We first define an object weaker than a computa-
tional fuzzy extractor: it outputs a key with computational entropy (instead of
a pseudorandom key). We call this object a computational fuzzy conductor. It
is the computational analogue of a fuzzy conductor (introduced by Kanukurthi
and Reyzin [34]). Before defining this object, we define conditional computa-
tional “HILL” [28] entropy.

Definition 9. [31, Definition 3] Let (W,S) be a pair of random variables. W has
HILL entropy at least m conditioned on S, denoted HHILL

εsec,ssec
(W |S) ≥ m if there

exists a joint distribution (X,S), such that H̃∞(X|S) ≥ m and δDssec ((W,S),
(X,S)) ≤ εsec.

Definition 10. A pair of randomized procedures “generate” (Gen) and “repro-
duce” (Rep) is an (M,W, m̃, t)-computational fuzzy conductor that is (εsec, ssec)-
hard with error δ if Gen and Rep satisfy Definition 1, except the last condition
is replaced with the following weaker condition:

– for any distribution W ∈ W, the string r has high HILL entropy conditioned
on P . That is HHILL

εsec,ssec
(R|P ) ≥ m̃.

Computational fuzzy conductors can be converted to computational fuzzy
extractors (Definition 1) using standard techniques, as follows. The transfor-
mation uses a computational extractor. A computational extractor is the adap-
tion of a randomness extractor to the computational setting. Any information-
theoretic randomness extractor is also a computational extractor; however,
unlike information-theoretic extractors, computational extractors can expand
their output arbitrarily via pseudorandom generators once a long-enough out-
put is obtained. We adapt the definition of Krawczyk [37] to the average case:

Definition 11. A function cext : {0, 1}n × {0, 1}d → {0, 1}κ a (m, εsec, ssec)-
average-case computational extractor if for all pairs of random variables X,Y
(with X over {0, 1}n) such that H̃∞(X|Y ) ≥ m, we have

δDssec ((cext(X;Ud), Ud, Y ), Uκ × Ud × Y ) ≤ εsec.
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Combining a computational fuzzy conductor and a computational extractor
yields a computational fuzzy extractor:

Lemma 2. Let (Gen′, Rep′) be a (M,W, m̃, t)-computational fuzzy conduc-
tor that is (εcond, scond)-hard with error δ and outputs in {0, 1}n. Let cext :
{0, 1}n×{0, 1}d → {0, 1}κ be a (m̃, εext, sext)-average case computational extrac-
tor. Define (Gen,Rep) as:

– Gen(w; seed) (where seed ∈ {0, 1}d): run (r′, p′) = Gen′(w) and output r =
cext(r′; seed), p = (p′, seed).

– Rep(w′, (p′, seed)) : run r′ = Rep′(w′; p′) and output r = cext(r′; seed).

Then (Gen,Rep) is a (M,W, κ, t)-computational fuzzy extractor that is (εcond +
εext, s

′)-hard with error δ where s′ = min{scond − |cext| − d, sext}.

Proof. It suffices to show if there is some distinguisher D′ of size s′ where

δD′
((cext(X;Ud), Ud, P

′), (Uκ, Ud, P
′)) > εcond + εext

then there is an distinguisher D of size scond such that for all Y with H̃∞(Y |P ′) ≥
m̃,

δD((X,P ′), (Y, P ′)) ≥ εcond.

Let D′ be such a distinguisher. That is,

δD′
(cext(X,Ud) × Ud × P ′, Uκ × Ud × P ′) > εext + εcond.

Then define D as follows. On input (y, p′) sample seed ← Ud, compute r ←
cext(y; seed) and output D(r, seed, p′). Note that |D| ≈ s′ + |cext| + d = scond.
Then we have the following:

δD((X,P ′), (Y, P ′)) = δD′
((cext(X,Ud), Ud, P

′), cext(Y,Ud), Ud, P
′)

≥ δD′
((cext(X,Ud), Ud, P

′), (Uκ × Ud × P ′))

− δD′
((Uκ × Ud × P ′), (cext(Y,Ud), Ud, P

′))
> εcond + εext − εext = εcond.

where the last line follows by noting that D′ is of size at most sext. Thus D
distinguishes X from all Y with sufficient conditional minentropy. This is a
contradiction.

A.2 Security of Construction 2

It suffices to prove that Construction 2 is a (Zn,W, m̃ = H0(C) − β, t)-comp.
fuzzy conductor, i.e., that C has HILL entropy H0(C) − β conditioned on P .
The final extraction step will convert it to a computational fuzzy extractor (see
Lemma 2).

The security proof of Construction 2 is similar to the security proof of
Construction 1. However, it is made more complicated by the fact that the
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definition of sources with sparse high-entropy marginals (Definition 4) allows for
certain weak symbols that can easily be guessed. This means we must limit our
indistinguishable distribution to symbols that are difficult to guess. Security is
proved via the following lemma:

Lemma 3. Let all variables be as in Theorem 3. For every ssec = poly(n) there
exists some εsec = ngl(n) such that HHILL

εsec,ssec
(C|P ) ≥ H0(C) − β.

We give a brief outline of the proof, followed by the proof of the new state-
ment. It is sufficient to show that there exists a distribution C ′ with con-
ditional minentropy and δDssec ((C, P ), (C ′, P )) ≤ ngl(n). Let J be the set
of indices that exist according to Definition 4. Define the distribution C ′ as
a uniform codeword conditioned on the values of C and C ′ being equal on
all indices outside of J . We first note that C ′ has sufficient entropy, because
H̃∞(C ′|P ) = H̃∞(C ′|CJc) ≥ H∞(C ′, CJc)−H0(CJc) = H0(C)−|Jc| (the second
step is by [22, Lemma 2.2b]). It is left to show δDssec ((C, P ), (C ′, P )) ≤ ngl(n).
The outline for the rest of the proof is as follows:

– Let D be a distinguisher between (C, P ) and (C ′, P ). By the security of
obfuscated point functions,

∣∣∣E[D(C, P1, ..., Pn)] − E

[
S{idealUnlock(·)}n

i=1 (C, n · |Z|)
]∣∣∣

is small.
– Show that even an unbounded S making a polynomial number of queries to

the stored points cannot distinguish between C and C ′. That is,
∣∣∣E

[
S{idealUnlock(·)}n

i=1 (C, n · |Z|)
]

− E

[
S{idealUnlock(·)}n

i=1 (C ′, n · |Z|)
]∣∣∣

is small.
– By the security of obfuscated point functions,

∣∣∣E
[
S{idealUnlock(·)}n

i=1 (C ′, n · |Z|)
]

− E[D(C ′, P1, ..., Pn)]
∣∣∣

is small.

Proof (Proof of Lemma 3). The overall approach and the proof of the first
and third bullet as in Theorem 1. We only prove the second bullet. Define the
distribution X as follows:

Xj =

{
Wj Cj = 0
Rj Cj = 1.

Lemma 4. Δ
(
S{idealUnlock(Xi)}n

i=1 (C, n · |Z|) , S{idealUnlock(Xi)}n
i=1 (C ′, n · |Z|)

)
≤

(n − β)2−(α+1).

Proof. It suffices to show that for any two codewords that agree on Jc, the
statistical distance is at most (n − β)2−(α+1).
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Lemma 5. Let c∗ be true value encoded in X and let c′ a codeword in C ′. Then,

Δ
(
S{idealUnlock(Xi)}n

i=1 (c∗, n · |Z|) , S{idealUnlock(Xi)}n
i=1 (c′, n · |Z|)

)

≤ (n − β)2−(α+1).

Proof. Recall that for all j ∈ J , H̃∞(Wj |V iew(S)) ≥ α. The only information
about the correct value of c∗

j is contained in the query responses. When all
responses are 0 the view of S is identical when presented with c∗ or c′. We now
show that for any value of c∗ all queries on j ∈ J return 0 with probability
1−2−α+1. Suppose not. That is, suppose the probability of at least one nonzero
response on index j is > 2−(α+1). Since w,w′ are independent of rj , the probabil-
ity of this happening when c∗

j = 1 is at most q/Z or equivalently 2− log |Z|+log q.
Thus, it must occur with probability:

2−α+1 < Pr[non zero response location j] (3)
= Pr[c∗

j = 1]Pr[non zero response location j ∧ c∗
j = 1]

+ Pr[c∗
j = 0]Pr[non zero response location j ∧ c∗

j = 0]

≤ 1 × 2− log |Z|+log q + 1 × Pr[non zero response location j ∧ c∗
j = 0]

We now show that for α ≤ log |Z| − log q:

Claim. If W is a source with β-sparse α-entropy q-marginals over Z, then α ≤
log |Z| − log q.

Proof. Let J ⊂ {1, ..., n} the set of good indices. It suffices to show that there
exists an S making q queries such that for some

j ∈ J, H̃∞(Wj |S{idealUnlock(Xi)}n
i=1) ≤ log |Z| − log q.

Let j ∈ J be some arbitrary element of J and denote by wj,1, ..., wj,q the q
most likely outcomes of Wj (breaking ties arbitrarily). Then

∑q
i=1 Pr[Wj =

wj,i] ≥ q/|Z|. Suppose not. This means that there is some wj,i with probability
Pr[Wj = wj,i] < 1/|Z|. Since there are Z − q remaining possible values of
Wj for their total probability to be at least 1 − q/|Z| at least of these values
has probability at least 1/Z. This contradicts the statement wj,1, ..., wj,q are the
most likely values. Consider S that queries the jth oracle on wj,1, .., wj,q. Denote
by Bad the random variable when Wj ∈ {wj,1, .., wj,q} After these queries the
remaining minentropy is at most:

H̃∞(Wj |SJW (·,·))

= − log
(
Pr[Bad = 1] × 1 + Pr[Bad = 0] × max

w
Pr[Wj = w|Bad = 0]

)

≤ − log (Pr[Bad = 1] × 1)

= − log
(

q

|Z|

)
= log |Z| − log q

This completes the proof of Claim A.2.
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Rearranging terms in Eq. 3, we have:

Pr[non zero response location j ∧ cj = 0] > 2−α+1 − 2−(log |Z|−log q) = 2−α

When there is a 1 response and cj = 0 this means that there is no remaining
minentropy. If this occurs with over 2−α probability this violates the condition on
W (Definition 4). By the union bound over the indices j ∈ J the total probability
of a 1 in J is at most (n−β)2−α+1. Recall that c∗, c′ match on all indices outside
of J . Thus, for all c∗, c′ the statistical distance is at most (n − β)2−α+1. This
concludes the proof of Lemma 5.

Lemma 4 follows by averaging over all points in C ′.

A.3 Correctness of Construction 2

We now argue correctness of Construction 2. We first assume ideal functionality
of the obfuscated point functions. Consider a coordinate j for which cj = 1.
Since w′ is chosen independently of the points rj , and rj is uniform, Pr[rj =
w′

j ] = 1/|Z|. Thus, the probability of at least one 1 → 0 bit flip (the random
choice ri being the same as w′

i) is ≤ n(1//|Z|). Since there are most t locations
for which wj �= w′

j there are at most t 0 → 1 bit flips in c, which the code will
correct with probability 1− δcode, because c was chosen uniformly. Finally, since
each obfuscated point function is correct with probability 1 − γ, Construction 2
is correct with error at most δcode + n(1/|Z| + γ).

A.4 Characterizing Sources with Sparse High-Entropy Marginals

Definition 4 is an inherently adaptive definition and a little unwieldy. In this
section, we partially characterize sources that satisfy Definition 4. The majority
of the difficulty in characterizing Definition 4 is that different symbols may be
dependent, so an equality query on symbol i may reshape the distribution of
symbol j. In the examples that follow we denote the adversary by S as the
simulator in Definition 3. We first show some sources that have sparse high-
entropy marginals and then show sources with high overall entropy that do not
have sparse high-entropy marginals

Positive Examples. We begin with the case of independent symbols.

Proposition 2. Let W = W1, ...,Wn be a source in which all symbols Wj are
mutually independent. Let α be a parameter. Let J ⊂ {1, ..., n} be a set of indices
such that for all j ∈ J , H∞(Wj) ≥ α. Then for any q, W is a source with
(n − |J |)-sparse (α − log(q + 1))-entropy q-marginals. In particular, when α =
ω(log n) and q = poly(n), then W is a source with (n − |J |)-sparse ω(log n)-
entropy q-marginals.

Proof. It suffices to show that for all j ∈ J, H̃∞(Wj |V iew(S(·))) = α− log(q+1)
where S is allowed q queries to the oracles {idealUnlock(Wi)}n

i=1. We can ignore
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queries for all symbols but the jth, as the symbols are independent. Furthermore,
without loss of generality, we can assume that no duplicate queries are asked,
and that the adversary is deterministic (S can calculate the best coins). Let
A1, A2, . . . Aq be the random variables representing the oracle answers for an
adversary S making q queries about the ith symbol. Each Ak is just a bit, and at
most one of them is equal to 1 (because duplicate queries are disallowed). Thus,
the total number of possible responses is q + 1. Thus, we have the following,

H̃∞(Wj |V iew(S(·))) = H̃∞(Wj |A1, . . . , Aq)
= H∞(Wj) − |A1, . . . , Aq|
= α − log(q + 1) ,

where the second line follows from the first by [22, Lemma 2.2].

In their work on computational fuzzy extractors, Fuller, Meng, and Reyzin [25]
show a construction for symbol-fixing sources, where each symbol is either uni-
form or a fixed symbol (symbol-fixing sources were introduced by Kamp and
Zuckerman [33]). Proposition 2 shows that Definition 4 captures, in particular,
this class of distributions. However, Definition 4 captures more distributions. We
now consider more complicated distributions where symbols are not independent.

Proposition 3. Let f : {0, 1}e → Zn be a function. Furthermore, let fj denote
the restriction of f ’s output to its jth coordinate. If for all j, fj is injective then
W = f(Ue) is a source with 0-sparse (e − log(q + 1))-entropy q-marginals.

Proof. f is injective on each symbol, so H̃∞(Wj |V iew(S)) = H̃∞(Ue|V iew(S)).
Consider a query qk on symbol j. There are two possibilities: either qk is not in
the image of fj , or qk can be considered a query on the preimage f−1

j (qk). Then
(by assuming S knows f) we can eliminate queries which correspond to the same
value of Ue. Then the possible responses are strings with Hamming weight at
most 1 (like in the proof of Claim 2), and by [22, Lemma 2.2] we have for all j,
H̃∞(Wj |V iew(S)) ≥ H∞(Wj) − log(q + 1).

Note the total entropy of a source in Proposition 3 is e, so there is a family
of distributions with total entropy ω(log n) for which Construction 2 is secure.
For these distributions, all the coordinates are as dependent as possible: one
determines all others. We can prove a slightly weaker claim when the correlation
between the coordinates Wj is arbitrary:

Proposition 4. Let W = W1, ...,Wn. Suppose that for all j, H∞(Wj) ≥ α, and
that q ≤ 2α/4 (this holds asymptotically, in particular, if q is polynomial and α is
super-logarithmic). Then W is a source with 0-sparse (α−1− log(q+1))-entropy
q-marginals.

Proof. Intuitively, the claim is true because the oracle is not likely to return 1
on any query. Formally, we proceed by induction on oracle queries, using the
same notation as in the proof of Proposition 2. Our inductive hypothesis is that
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Pr[A1 �= 0 ∨ · · · ∨ Ai−1 �= 0] ≤ (i − 1)21−α. If the inductive hypothesis holds,
then, for each j,

H∞(Wj |A1 = · · · = Ai−1 = 0) ≥ α − 1 . (4)

This is true for i = 1 by the condition of the theorem. It is true for i > 1 because,
as a consequence of the definition of H∞, for any random variable X and event
E, H∞(X|E) ≥ H∞(X) + log Pr[E]; and (i − 1)21−α ≤ 2q2−α ≤ 1/2.

We now show that Pr[A1 �= 0∨· · ·∨Ai �= 0] ≤ i21−α, assuming that Pr[A1 �=
0 ∨ · · · ∨ Ai−1 �= 0] ≤ (i − 1)21−α.

Pr[A1 �= 0 ∨ · · · ∨ Ai−1 �= 0 ∨ Ai �= 0]
= Pr[A1 �= 0 ∨ · · · ∨ Ai−1 �= 0] + Pr[A1 = · · · = Ai−1 = 0 ∧ Ai = 1]

≤ (i − 1)21−α + Pr[Ai = 1 |A1 = · · · = Ai−1 = 0]

≤ (i − 1)21−α + max
j

2−H∞(Wj |A1=···=Ai−1=0)

≤ (i − 1)21−α + 21−α

= i21−α

(where the third line follows by considering that to get Ai = 1, the adversary
needs to guess some Wj , and the fourth line follows by (4)). Thus, using i = q+1
in (4), we know H∞(Wj |A1 = · · · = Aq = 0) ≥ α − 1. Finally this means that

H̃∞(Wj |A1, . . . , Aq) ≥ − log(2−H∞(Wj |A1=···=Aq=0) Pr[A1 = · · · = Aq = 0]
+ 1 · Pr[A1 �= 0 ∨ · · · ∨ Aq �= 0])

≥ − log
(
2−H∞(Wj |A1=···=Aq=0) + q21−α

)

≥ − log
(
(q + 1)21−α

)
= α − 1 − log(q + 1) .

Negative Examples. Propositions 2 and 3 rest on there being no easy “entry”
point to the distribution. This is not always the case. Indeed it is possible for
some symbols to have very high entropy but lose all of it after equality queries.

Proposition 5. Let p = (poly(λ)) and let f1, ..., fn be injective functions
where fj : {0, 1}j×log p → Z10. Then define the distribution Un and consider
W1 = f1(U1,...,log p), W2 = f2(U1,...,2 log p), ....,Wn = fn(U). There is an adver-
sary making p × n queries such that H̃∞(W |V iew(S(·))) = 0.

Proof. Let x be the true value for Up×n. We present an adversary S that com-
pletely determines x. S computes y1

1 = f1(x1
1), ..., y

p
1 = f(xp

1). Then S queries
on (y1), ..., (yp) to the first oracle, exactly one answer returns 1. Let this value
be y∗

1 and its preimage x∗
1. Then S computes y1

2 = f2(x∗
1, x

1
2), ..., y

p
2 = f2(x∗

1, x
p
2)

and queries y1
2 , ..., y

p
2 . Again, exactly one of these queries returns 1. This process

is repeated until all of x is recovered (and thus w).
10 Here we assume that |Z| ≥ n × log p, that is the source has a small number of

symbols.
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The previous example relies on an adversary’s ability to determine a symbol
from the previous symbols. We formalize this notion next. We define the entropy
jump of a source as the remaining entropy of a symbol when previous symbols
are known:

Definition 12. Let W = W1, ...,Wn be a source under ordering i1, ..., in. The
jump of a symbol ij is Jump(ij) = maxwi1 ,...,wij−1

H0(Wij
|Wi1 = wi1 , ...,Wij−1 =

wij−1).

An adversary who can learn symbols in succession can eventually recover the
entire secret. In order for a source to have sparse high-entropy marginals, the
adversary must get “stuck” early enough in this recovery process. This translates
to having a super-logarithmic jump early enough.

Proposition 6. Let W be a distribution and let q be a parameter, if there exists
an ordering i1, ..., in such that for all j ≤ n−β +1, Jump(ij) = log q/(n−β +1),
then W is not a source with β-sparse high-entropy q-marginals.

Proof. For convenience relabel the ordering that violates the condition as 1, ..., n.
We describe an unbounded adversary S that determines W1, ...,Wn−β+1. As
before S queries the q/n possible values for W1 and determines W1. Then S
queries the (at most) q/(n − β + 1) possible values for W2|W1. This process is
repeated until Wn−β+1 is learned.

Presenting a sufficient condition for security is more difficult as S may inter-
leave queries to different symbols. It seems like the optimum strategy for S is
to focus on a single symbol at a time, but it is unclear how to formalize this
intuition.

B Analysis of Construction 3

Proof. Let W ∈ W. It suffices to argue correctness and security. We first argue
correctness.

Correctness: When wi = w′
i, then cond(wi, seedi) = cond(w′

i, seedi) and thus
vi = v′

i. Thus, for all w,w′ where dis(w,w′) ≤ t, then dis(v, v′) ≤ t. Then by
correctness of (Gen′,Rep′), Pr[(r, p) ← Gen′(v)∧r′ ← Rep(v′, p)∧r′ = r] ≥ 1−δ.

Security: We now argue security. Denote by seed the random variable consisting
of all n seeds and V the entire string of generated V1, ..., Vn. To show that

R|P, seed ≈nεcond+εfext
U |P, seed,

it suffices to show that H̃∞(V |seed) is nεcond close to a distribution with average
minentropy α̃(n − β). The lemma then follows by the security of (Gen′,Rep′)11.
11 Note, again, that (Gen′,Rep′) must be an average-case fuzzy extractor. Most known

constructions are average-case and we omit this notation.
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We now argue that there exists a distribution Y where H̃∞(Y |seed) ≥ α̃(n−
β) and (V, seed1, ..., seedn) ≈ (Y, seed1, .., seedn). First note since W is (α, β)
sparse block source that there exists a set of indices J where |J | ≥ n − β such
that the following holds:

∀j ∈ J,∀w1, ..., wj−1 ∈ W1, ...,Wj−1,H∞(Wj |W1 = w1, ...,Wj−1 = wj−1) ≥ α.

Then consider the first element of j1 ∈ J , ∀w1, ..., wj1−1 ∈ W1, ...,Wj1−1,

H∞(Wj1 |W1 = w1, ...,Wj1−1 = wj1−1) ≥ α.

Thus, there exists a distribution Yj1 with H̃∞(Yj1 |seedj1) ≥ α̃ such that

(cond(Wj1 , seedj1), seedj1 ,W1, ...,Wj1−1) ≈εcond
(Yj1 , seedj1 ,W1, ...,Wj1−1)

and since (seed1, ..., seedj1) are independent of these values

(cond(Wj1 , seedj1),Wj1−1, ...,W1, seedj1 , ..., seed1) ≈εcond

(Yj1 ,Wnj1−1, ...,W1, seedj1 , , ..., seed1) .

Consider the random variable

Zj1 = (Yj1 , cond(Wj1−1, seedj1−1), ..., cond(W1, seed1))

and note that H̃∞(Zj1 |seed1, ..., seedj1) ≥ α′. Applying a deterministic function
does not increase statistical distance and thus,

(cond(Wj1 , seedj1), cond(Wj1−1, seedj1−1), .., cond(W1, seed1), seedj1 , ..., seed1)
≈nεcond

(Zj1 , seedj1 , ..., seed1)

By a hybrid argument there exists a distribution Z with H̃∞(Z|seed) ≥ α̃(n−β)
where

(cond(Wn, seedn), ..., cond(W1, seed1), seedn, ..., seed1)
≈nεcond

(Z, seedn, ..., seed1).

This completes the proof of Theorem 4.
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Abstract. In CRYPTO 2015, Elias, Lauter, Ozman and Stange
described an attack on the non-dual decision version of the ring learning
with errors problem (RLWE) for two special families of defining polyno-
mials, whose construction depends on the modulus q that is being used.
For particularly chosen error parameters, they managed to solve non-
dual decision RLWE given 20 samples, with a success rate ranging from
10 % to 80%. In this paper we show how to solve the search version
for the same families and error parameters, using only 7 samples with
a success rate of 100 %. Moreover our attack works for every modulus
q′ instead of the q that was used to construct the defining polynomial.
The attack is based on the observation that the RLWE error distribu-
tion for these families of polynomials is very skewed in the directions
of the polynomial basis. For the parameters chosen by Elias et al. the
smallest errors are negligible and simple linear algebra suffices to recover
the secret. But enlarging the error paremeters makes the largest errors
wrap around, thereby turning the RLWE problem unsuitable for crypto-
graphic applications. These observations also apply to dual RLWE, but
do not contradict the seminal work by Lyubashevsky, Peikert and Regev.

1 Introduction

Hard problems on lattices have become popular building blocks for cryptographic
primitives mainly because of two reasons: firstly, lattice based cryptography
appears to remain secure even in the presence of quantum computers, and sec-
ondly, the security of the primitives can be based on worst-case hardness assump-
tions. Although it seems appealing to use classical hard lattice problems such as
the shortest vector problem or closest vector problem for cryptographic applica-
tions, the learning with errors problem (LWE) has proven much more versatile.
This problem was introduced by Regev [12,13] who showed that an efficient algo-
rithm for LWE results in efficient quantum algorithms for approximate lattice
problems. The decision version of LWE can be defined informally as the problem
of distinguishing noisy linear equations from truly random ones. More precisely,
let n ≥ 1 be an integer dimension and q ≥ 2 an integer modulus, then the prob-
lem is to distinguish polynomially many pairs of the form (ai, bi ≈ 〈ai, s〉) from
uniformly random and independent pairs. The vectors ai are chosen uniformly
random in Z

n
q , the vector s is secret and the same for all pairs, and the element

c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part I, LNCS 9665, pp. 147–167, 2016.
DOI: 10.1007/978-3-662-49890-3 6
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bi is computed as bi = 〈ai, s〉 + ei where ei is a random error term drawn from
an error distribution on Zq, such as a discretized Gaussian. The search version
of LWE asks to recover the secret vector s. The hardness of the LWE problem
has been analyzed in [3,8,11–13].

The main downside of LWE is that it is not very practical, basically due to
the fact that each new ai only gives rise to one element bi (and not a vector
of n elements as one could hope). The result is that the public key size and
the computation time of LWE-based cryptosystems are typically quadratic in
the security parameter. Lyubashevsky, Peikert and Regev [9] solved this issue
by introducing the Ring-LWE (RLWE) problem and showing its hardness under
wost-case assumptions on ideal lattices. Its flavour is distantly similar to that
of NTRU [7]. Informally, the secret key space Z

n
q is replaced by Rq = R/qR

where R is the ring of integers in a number field K = Q[x]/(f) with f a monic
irreducible integral polynomial of degree n and q ≥ 2 an integer modulus. The
inner product on Z

n
q is replaced by the ring product in Rq. In its non-dual form

the decision version of RLWE is then roughly defined as follows: distinguish
polynomially many samples of the form (ai,bi ≈ ai · s) from uniformly random
and independent pairs. Here the ai ∈ Rq are uniformly random and independent,
s ∈ Rq is a fixed random secret, and bi is computed as bi = ai ·s+ei where ei ∈
Rq is a short random error term that is drawn from a specific error distribution
ψ on Rq. The search version of the problem is to recover the secret s from the
list of samples. We stress that the actual problem described and analyzed in [9]
is the dual RLWE problem, in which the secret and the error term are taken
from the reduction modulo q of a certain fractional ideal of K, denoted by R∨

q ;
see Sect. 2 for more details.

As explained in [9], the search and decision problems are equivalent when K
is Galois and q is a prime number that splits into prime ideals with small norm
(polynomial in n). In general, no such reduction is known and it is easy to see
that search RLWE is at least as hard as decision RLWE.

The definition of the error distribution ψ on Rq (or on R∨
q ) plays a cru-

cial role in RLWE and is obtained by pulling back a near-spherical Gaussian
distribution under the canonical embedding of the number field. An alternative
problem [5] is called Polynomial-LWE (PLWE) and uses an error distribution on
Rq where each coordinate of the error term with respect to the polynomial basis
1, x, x2, . . . , xn−1 is drawn independently from a fixed one-dimensional Gaussian
distribution. Again we refer to Sect. 2 for more details.

In [5], Eisentraeger, Hallgren and Lauter presented families of defining poly-
nomials f ∈ Z[x] and moduli q such that the decision version of PLWE is weak.
The attack can be described in a nutshell as follows: assume that f(1) ≡ 0mod q,
then evaluation at 1 defines a ring homomorphism φ from Rq to Zq. Applying φ
to the PLWE samples results in equations of the form ai(1) ·s(1)+ei(1) = bi(1).
Therefore, if the images ei(1) of the error terms can be distinguished from uni-
form, one can simply loop through all possibilities for s(1) ∈ Zq and determine
if the corresponding ei(1) are uniform on Zq or not. So as long as q is small
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enough (such that one can exhaustively run through Zq), f(1) ≡ 0mod q, and
the images ei(1) do not wrap around too much modulo q, this attack breaks
decision PLWE.

In [6], Elias, Lauter, Ozman and Stange extended this attack to the decision
version of non-dual RLWE, rather than PLWE, by showing that for defining
polynomials of the form

fn,a,b = xn + ax + b ∈ Z[x]

where n, a, b are specifically chosen parameters such that i.a. fn,a,b(1) ≡ 0mod q,
the distortion introduced by pulling back the Gaussian error terms through
the canonical embedding is small enough such that the attack on PLWE still
applies. This attack was executed for three parameter sets n, a, b, r where given
20 samples, non-dual decision RLWE could be solved with success rates ranging
from 10 % to 80 % depending on the particular family considered [6, Sect. 9].
Here the parameter r determines the width of the Gaussian that is being pulled
back, which Elias et al. chose to be spherical.

Our contributions in this paper are as follows. Firstly, we explain how to
solve the search version of non-dual RLWE, which one might expect to be a
harder problem than the decision version (due to the fact that the correspond-
ing number fields are not Galois), for the same parameter sets, using only 7
samples with a success rate of 100 %. The attack invokes simple linear algebra
to recover the secret element s and does not use that fn,a,b(1) ≡ 0mod q: in fact,
for the same defining polynomial and the same error parameter r our attack
works for every modulus q′. Secondly, we show that if one tries to adjust r in
order to obtain a hard instance of non-dual RLWE, the first few components
of the noise wrap around modulo q and become indistinguishable from uniform,
thereby obstructing certain cryptographic applications. Thirdly, we show that
our observations also apply to the dual RLWE problem when set up for the same
number fields: either the errors wrap around or linear algebra can be used to
reveal the secret. The latter situation only occurs for error widths that are way
too small for the hardness results of Lyubashekvsy, Peikert and Regev [9] to be
applicable. Therefore neither the results from [6] nor our present attack seem to
form a threat on RLWE, at least when set up along the guidelines in [9,10].

Our observations are easiest to explain for a = 0, a case which covers two of
the three parameter sets. From fn,a,b(1) = b + 1 ≡ 0mod q and fn,a,b(1) �= 0 (by
irreducibility) it follows that the roots of fn,a,b lie on a circle with radius

ρ ≥ n
√

q − 1 > 1.

With respect to the polynomial basis 1, x, x2, . . . , xn−1, the canonical embedding
matrix is essentially the Vandermonde matrix generated by these roots, whose
column norms grow geometrically as

√
n,

√
nρ, . . . ,

√
nρn−1.

This simple observation has major implications for the distortion introduced by
the inverse of the canonical embedding: the distribution of the error terms will
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be extremely stretched at the terms of low degree, whereas they will be squashed
at the terms of high degree. For the parameter sets attacked by Elias et al., the
latter are so small that after rounding they simply become zero, thereby resulting
in exact linear equations in the coefficients of the secret element s. Given enough
samples (in the cases considered, between 4 and 7 samples suffice), the secret s
can be recovered using elementary linear algebra. Furthermore, since the ratio
between the maximal and the minimal distortion is roughly ρn ≥ q − 1, it is
impossible to increase the width of the Gaussians used without causing the
errors at the terms of low degree to wrap around modulo q.

The remainder of the paper is organized as follows: in Sect. 2 we recall the
definition of PLWE and of dual and non-dual RLWE, with particular focus on the
error distributions involved. Section 3 reviews the attacks on decision PLWE by
Eisentraeger, Hallgren and Lauter and non-dual decision RLWE by Elias, Lauter,
Ozman and Stange. Section 4 describes our attack on non-dual search RLWE by
analyzing the singular value decomposition of the canonical embedding. We also
report on an implementation of our attack in Magma [2], which shows that we
can indeed easily break the families considered in [6] using less samples, with a
higher success probability, and for every choice of modulus q′ (instead of just the
q that was used to define fn,a,b). We also discuss how switching to dual RLWE
affects these observations. In Sect. 5 we study the effect of increasing the error
parameter as an attempt to counter our attack, and compare with the hardness
results from [9]. Section 6 concludes the paper.

2 Preliminaries

In this section we briefly recall the necessary background on number fields, the
canonical embedding and Gaussian distributions to give proper definitions of
PLWE and dual and non-dual RLWE.

2.1 Number Fields and the Canonical Embedding

Let f ∈ Z[x] be a monic irreducible polynomial of degree n and consider the
number field K = Q[x]/(f) it defines. Let R ⊂ K denote the ring of integers
of K, i.e. the set of all algebraic integers that are contained in K. If f can be
taken such that R = Z[x]/(f), then K is called a monogenic number field and f
a monogenic polynomial.

The field K has exactly n embeddings into C denoted by σi : K → C for
i = 1, . . . , n. These n embeddings correspond precisely to evaluation in each of
the n distinct roots αi of f , i.e. an element a(x) ∈ K is mapped to σi(a(x)) =
a(αi) ∈ C. Assume that f has s1 real roots and n − s1 = 2s2 complex conjugate
roots and order the roots such that αs1+k = αs1+s2+k for k = 1, . . . , s2. The
canonical embedding (also known as the Minkowski embedding) σ : K → C

n is
then defined as:

σ(a) = (σ1(a), . . . , σs1(a), σs1+1(a), . . . , σs1+s2(a), σs1+1(a), . . . , σs1+s2(a)) .
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It is easy to see that the canonical embedding maps into the space H ⊂ R
s1×C

2s2

given by

H = {(x1, . . . , xn) ∈ R
s1 × C

2s2 : xs1+j = xs1+s2+j ,∀j ∈ [1 . . . s2]} .

The space H is isomorphic to R
n as an inner product space by considering the

orthonormal basis for H given by the columns of

B =

⎛

⎜⎝
Is1×s1 0 0

0 1√
2
Is2×s2

i√
2
Is2×s2

0 1√
2
Is2×s2 − i√

2
Is2×s2

⎞

⎟⎠ .

With respect to this basis, the coordinates of σ(a) are given by a real vector

(ã1, . . . , ãn) := (σ1(a), . . . , σs1(a),
√

2Re(σs1+1(a)), . . . ,
√

2Re(σs1+s2(a)),√
2Im(σs1+1(a)), . . . ,

√
2 Im(σs1+s2(a))).

Note that in [6] the authors did not include the factor
√

2, but we choose to keep
it since it makes B unitary.

In summary, an element a(x) ∈ K can be represented in the polynomial basis
as (a0, . . . , an−1) where a(x) =

∑n−1
i=0 aix

i but also by a real vector (ã1, . . . , ãn)
where the canonical embedding of a is given by:

σ(a) = B · (ã1, . . . , ãn)t .

Let Mf denote the Vandermonde matrix (αj−1
i )i,j for i, j = 1, . . . , n, then the

polynomial basis representation is related to the (real) canonical embedding
representation by the following transformation

(a0, . . . , an−1)t = M−1
f · B · (ã1, . . . , ãn)t .

Since M−1
f will play a crucial role in the following, we denote it with Nf . Later

on, to ease notation we will just write Mf instead of Mfn,a,b
, and similarly for Nf .

2.2 Ideals of the Ring of Integers and Their Dual

An integral ideal I ⊆ R is an additive subgroup of R closed under multiplication
by elements of R, i.e. rI ⊂ I for any r ∈ R. A fractional ideal I ⊂ K is a set
such that dI ⊆ R is an integral ideal for some d ∈ R. A principal (fractional
or integral) ideal I is one that is generated by some u ∈ K, i.e. I = uR; we
denote it as I = 〈u〉. The sum I + J of two (fractional or integral) ideals is the
set of all x + y with x ∈ I, y ∈ J and the product I · J is the smallest (fractional
or integral) ideal containing all products x · y with x ∈ I, y ∈ J . The set of
non-zero fractional ideals forms a group under multiplication; this is not true
for integral ideals. The inverse of a non-zero fractional ideal is denoted by I−1.
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Every fractional ideal I is a free Z-module of rank n, and therefore I ⊗ Q = K.
Its image σ(I) under the canonical embedding is a lattice of rank n inside the
space H.

The trace Tr = TrK/Q : K → Q maps an element x to the sum of its
embeddings Tr (x) =

∑n
i=1 σi(x) and defines an additive homomorphism from

R to Z. The norm No = NoK/Q : K → Q takes the product of all embeddings
No(x) =

∏n
i=1 σi(x) and is multiplicative.

For a fractional ideal I, its dual I∨ is defined as

I∨ = {x ∈ K : Tr(xI) ⊆ Z} .

It is easy to see that (I∨)∨ = I and that I∨ is also a fractional ideal. (Under
the canonical embedding, this corresponds to the usual notion of dual lattice,
modulo complex conjugation.) Furthermore, for any fractional ideal I, its dual
is I∨ = I−1R∨. The factor R∨ is a fractional ideal called the codifferent and its
inverse is called the different ideal which is integral. For a monogenic defining
polynomial f , i.e. R = Z[x]/(f) we have that R∨ = 〈1/f ′(α)〉 where α is a root
of f . Applying this fact to the cyclotomic number field of degree n = 2k with
defining polynomial f(x) = xn + 1, we get that f ′(ξ2n) = nξn−1

2n with ξ2n a
primitive 2n-th root of unity. Thus R∨ = 〈n−1〉, since ξn−1

2n is a unit.

2.3 Gaussian Distributions and Discretization

Denote by Γr the normal Gaussian distribution on R with mean 0 and parameter
r given by Γr(x) = r−1 exp(−πx2/r2). Note that we have r =

√
2πρ with ρ the

standard deviation. We can define an elliptical Gaussian distribution Γr on H as
follows: let r = (r1, . . . , rn) ∈ (R+)n be a vector of n positive real numbers, then
a sample of Γr is given by B·(x1, . . . , xn)t where each xi is sampled independently
from Γri

on R. Note that via the inverse of the canonical embedding this also
defines a distribution Ψr on K ⊗ R, in other words

Nf · B · (x1, . . . , xn)t

gives us the coordinates of Γr ← (x1, . . . , xn) with respect to the polynomial
basis 1, x, x2, . . . , xn−1.

In practice we sample from the continuous distribution Γr modulo some finite
but sufficiently high precision (e.g. using the Box-Muller method). In particular
our samples live over Q rather than R, so that an element sampled from Ψr

can be truly seen as an element of the field K. For use in RLWE one even
wants to draw elements from I for some fixed fractional ideal I ⊂ K, where
I = R (non-dual RLWE) and I = R∨ (dual RLWE) are the main examples. In
this case one should discretize the Gaussian distribution Γr to the lattice σ(I).
There are several ways of doing this, e.g. by rounding coordinates with respect
to some given Z-module basis; see [9,10] and the references therein. But for our
conclusions this discretization is not relevant, and because it would needlessly
complicate things we will just omit it.
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2.4 The Polynomial-LWE and Ring-LWE Problem

In this section we provide formal definitions of PLWE [5] and RLWE [4,9], both
in its dual and its non-dual version [6]. We stress that it is the dual version
of RLWE that was introduced in [9] and for which certain hardness results are
available, one of which is recalled in Theorem1 below.

Let f ∈ Z[x] be a monic irreducible polynomial of degree n and let q ≥ 2
be an integer modulus. Consider the quotient ring P = Z[x]/(f) and denote
with Pq the residue ring P/qP . Denote with Γn

r the spherical Gaussian on R
n

with parameter r and interpret this as a distribution on P ⊗ R by mapping the
standard basis of R

n to the polynomial basis 1, x, x2, . . . , xn−1 of P . In particular,
elements e(x) =

∑n−1
i=0 eix

i ← Γn
r have each coefficient ei drawn independently

from Γr. Let U(Pq) denote the uniform distribution on Pq and let U(Pq,R) be the
uniform distribution on the torus Pq,R = (P ⊗ R)/qP .

With these ingredients we can define the decision and search PLWE problems.

Definition 1 (PLWE Distribution). For s(x) ∈ Pq and r ∈ R
+, a sample

from the PLWE distribution As(x),r over Pq × Pq,R is generated by choosing
a(x) ← U(Pq), choosing e(x) ← Γn

r and outputting (a(x),b(x) = a(x) · s(x) +
e(x)mod qP ).

Definition 2 (Decision PLWE). The decision PLWE problem is to distin-
guish, for a random but fixed choice of s(x) ← U(Pq), with non-negligible advan-
tage between arbitrarily many independent samples from As(x),r and the same
number of independent samples from U(Pq) × U(Pq,R).

Definition 3 (Search PLWE). For a random but fixed choice of s(x) ←
U(Pq), the search PLWE problem is to recover s(x) with non-negligible prob-
ability from arbitrarily many independent samples from As(x),r.

To define the dual and non-dual RLWE problems we require a degree n
number field K with ring of integers R. We also fix a fractional ideal I ⊂ K,
for which two choices are available: in the dual RLWE problems we let I = R∨,
while in the non-dual RLWE problems we take I = R. Note that I ⊗R = K ⊗R,
so we can view the distribution Ψr from the previous section as a distribution
on I ⊗ R. We let Iq denote I/qI and write Iq,R for the torus (I ⊗ R)/qI. As
before we let U(Iq) denote the uniform distribution on Iq and let U(Iq,R) be the
uniform distribution on Iq,R.

Definition 4 (RLWE Distribution). For s(x) ∈ Iq and r ∈ (R+)n, a sample
from the RLWE distribution As(x),r over Rq × Iq,R is generated by choosing
a(x) ← U(Rq), choosing e(x) ← Ψr and returning (a(x),b(x) = a(x) · s(x) +
e(x)mod qI).

Definition 5 (Decision RLWE). The decision RLWE problem is to distin-
guish, for a random but fixed choice of s(x) ← U(Iq), with non-negligible advan-
tage between arbitrarily many independent samples from As(x),r and the same
number of independent samples from U(Rq) × U(Iq,R).
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Definition 6 (Search RLWE). For a random but fixed choice of s(x) ←
U(Iq), the search RLWE problem is to recover s(x) with non-negligible probability
from arbitrarily many independent samples from As(x),r.

A hardness statement on the search RLWE problem in its dual form (i.e. with
I = R∨) was provided by Lyubashevsky, Peikert and Regev. For proof-technical
reasons their result actually deals with a slight variant called the search RLWE≤r

problem, where r ∈ R
+. In this variant each sample is taken from As(x),r for a

new choice of r, chosen uniformly at random from {(r1, . . . , rn) ∈ (R+)n | ri ≤
r for all i}. Think of this parameter r and the modulus q ≥ 2 as quantities that
vary with n, and let ω be a superlinear function. Then Lyubashevsky et al.
proved:

Theorem 1 ([9, Theorem 4.1]). If r ≥ 2ω(
√

log n) then for some negligible ε
(depending on n) there is a probabilistic polynomial-time quantum reduction from
KDGSγ to RLWE≤r, where

γ : I �→ max
{

ηε(I) · (
√

2q/r) · ω(
√

log n),
√

2n/λ1(I∨)
}

.

Here ηε(I) is the smoothing parameter of σ(I) with threshold ε, and λ1(I∨) is
the length of a shortest vector of σ(I∨).

In the above statement KDGSγ refers to the discrete Gaussian sampling problem,
which is about producing samples from a spherical Gaussian in H with parameter
r′, discretized to the lattice σ(I), for any given non-zero ideal I ⊂ R and any
r′ ≥ γ(I). As discussed in [9] there are easy reductions from certain standard
lattice problems to the discrete Gaussian sampling problem.

As an intermediate step in their proof Lyubashevsky et al. obtain a classical
(i.e. non-quantum) reduction from an instance of the bounded distance decoding
problem in ideal lattices to RLWE≤r; see [9, Lemma 4.5].

In contrast, Elias, Lauter, Ozman and Stange [6] study RLWE in its non-
dual version, and for the sake of comparison our main focus will also be on that
setting, i.e. we will mostly take I = R. In Sect. 4.3 we will look at the effect of
switching to the dual case where I = R∨, and in Sect. 5 we will include the above
hardness result in the discussion. Moreover, again as in [6], the noise parameter
r = (r1, . . . , rn) will usually be taken fixed and spherical, i.e. r1 = · · · = rn = r.

3 Provably Weak Instances of Non-dual Decision RLWE

In [5], Eisentraeger, Hallgren and Lauter presented families of defining polyno-
mials f ∈ Z[x] such that the decision version of PLWE is weak. This attack
was later extended to non-dual decision RLWE [6] by Elias, Lauter, Ozman
and Stange. In this section we recall the attack, first for PLWE and then how
it transfers to non-dual RLWE. We provide a detailed analysis of the singular
value decomposition of the matrix Nf for these polynomial families, since this
will play an instructive role in our exposition.
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3.1 Attack on Decision PLWE

The simplest form of the attack on decision PLWE requires that the defining
polynomial f of P and the modulus q satisfy the relation f(1) ≡ 0mod q. This
implies that evaluation at 1 induces a ring homomorphism φ : Pq → Zq : a(x) �→
a(1)mod q. By applying φ to the PLWE samples (ai,bi = ai · s + ei) we obtain
tuples in Z

2
q namely (φ(ai), φ(ai) · φ(s) + φ(�ei�)). Here �ei� denotes the poly-

nomial obtained by rounding each coefficient of ei to the nearest integer (with
ties broken upward, say).

Assuming that the images of the error terms ei under the homomorphism φ
can be distinguished from uniform with sufficiently high probability, one obtains
the following straightforward attack: for each guess s ∈ Zq for the value of
φ(s) = s(1)mod q, compute the corresponding image of the (rounded) error term
φ(�ei�) as φ(�bi�)−φ(ai)s, assuming that the guess is correct. If there exists an
s such that the corresponding images φ(�ei�) are more or less distributed like
a discretized Gaussian, rather than uniform, the samples were indeed likely to
be actual PLWE samples and the secret s satisfies s(1) = s. If no such guess is
found, the samples were likely to be uniform samples. The attack succeeds if the
following three conditions are met:

1. f(1) ≡ 0mod q,
2. q is small enough that Zq can be enumerated,
3. φ(�Γn

r �) is distinguishable from uniform U(Zq).

Note that if ei is sampled from Γn
r , then the ei(1) are also Gaussian distributed

but with parameter
√

n · r. Therefore, as long as
√

n · r is sufficiently smaller
than q, it should be possible to distinguish φ(�Γn

r �) from uniform.

3.2 Attack on Non-dual Decision RLWE

The attack of Elias et al. on non-dual decision RLWE basically works by inter-
preting the RLWE samples as PLWE samples and then executing the above
attack. For this approach to work, two requirements need to be fulfilled. Firstly,
the ring of integers R of the number field K should be a quotient ring of the
form R = Z[x]/(f), i.e. the number field should be monogenic.

The second condition deals with the difference between the error distribu-
tions of PLWE and non-dual RLWE. For PLWE one simply uses a spherical
Gaussian Γn

r on R ⊗ R with respect to the polynomial basis 1, x, x2, . . . , xn−1,
whereas the RLWE distribution Ψr is obtained by pulling back a near-spherical
Gaussian distribution on H through the canonical embedding σ. With respect to
the polynomial basis one can view Ψr as a near-spherical Gaussion that got dis-
torted by Nf ·B. Since B is a unitary transformation, the only actual distortion
comes from Nf .

The maximum distortion of Nf is captured by its spectral norm s1(Nf ),
i.e. its largest singular value. The other singular values are denoted by si(Nf )
ordered by size such that sn(Nf ) denotes its smallest singular value. A spher-
ical Gaussian distribution on H of parameter r = (r, r, . . . , r) will therefore be
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transformed into an elliptical Gaussian distribution on R ⊗ R = K ⊗ R where
the maximum parameter will be given by s1(Nf ) · r. The attack on non-dual
decision RLWE then proceeds by considering the samples with errors coming
from Ψr as PLWE samples where the error is bounded by a spherical Gaussian
with deviation s1(Nf ) · r, with r = max(r).

For the attack to succeed we therefore need the following four conditions:

1. K is monogenic,
2. f(1) ≡ 0mod q,
3. q is small enough that Zq can be enumerated,
4. r′ = s1(Nf ) · r is small enough such that φ(�Γn

r′�) can be distinguished from
uniform.

Again note that if ei is bounded by Γn
r then the ei(1) are bounded by a

Gaussian with parameter
√

n ·r′ =
√

n ·s1(Nf ) ·r. So the requirement is that the
latter quantity is sufficiently smaller than q. In fact this is a very rough estimate,
and indeed Elias et al. empirically observe in [6, Sect. 9] that their attack works
more often than this bound predicts. We will explain this observation in Sect. 4.1.

In [6] the authors remark that given a parameter set (n, q, r) for PLWE, one
cannot simply use the same parameter set for non-dual RLWE since the canonical
embedding of the ring R into H might be very sparse, i.e. the covolume (volume
of a fundamental domain) of σ(R) in H might be very large. They therefore
propose to scale up the parameter r by a factor of |det(MfB)|1/n = |det(Mf )|1/n,
which is the n-th root of the covolume. Thus given a PLWE parameter set
(n, q, r), their corresponding RLWE parameter set reads (n, q, r̃) with r̃ = r ·
|det(Mf )|1/n.

3.3 Provably Weak Number Fields for Non-dual Decision RLWE

The first type of polynomials to which the attack of [6] was applied are polyno-
mials of the form fn,a,b with a = 0. More precisely they considered

fn,q := fn,0,q−1 = xn + q − 1 ,

where n ≥ 1 and q is a prime. Note that the roots of these polynomials are simply
the primitive 2n-th roots of unity scaled up by (q − 1)1/n. These polynomials
satisfy fn,q(1) ≡ 0mod q and are irreducible by Eisenstein’s criterion whenever
q − 1 has a prime factor with exponent one. As shown in [6, Proposition 3], the
polynomials fn,q are monogenic whenever q − 1 is squarefree, n is a power of a
prime �, and �2 � ((1−q)n−(1−q)). In particular it is easy to construct examples
for n = 2k.

The final missing ingredient is a bound on the spectral norm s1(Nf ). In [6],
a slightly different matrix Mf is used (it is a real matrix containing the real and
imaginary parts of the roots of f). For use further down, we adapt the proof of
[6, Proposition 4] to derive all singular values si(Nf ). Due to its practical impor-
tance we will only deal with the case where n is even, since we are particularly
interested in the case where n = 2k.
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Proposition 1 (Adapted from [6, Proposition 4]). Assume that fn,q is irre-
ducible and that n is even, then the singular values si(Nf ) are given by

si(Nf ) =
1√

n(q − 1)(i−1)/n
.

Proof: The roots of fn,q are given by a · ξj
2n for 0 < j < 2n and j odd, with

a = (q − 1)1/n ∈ R
+ and ξ2n a primitive 2n-th root of unity. To derive the

singular values of Nf = M−1
f it suffices to derive the singular values of Mf .

Recall that the u-th column of Mf (counting from 0) is given by

au · (ξu
2n, ξ3u

2n, . . . , ξ
(2n−1)u
2n )t .

The (Hermitian) inner product of the u-th and v-th column is therefore given
by

S = au+v ·
n−1∑

k=0

ξ
(2k+1)(u−v)
2n .

Since ξ2n+1
2n = ξ2n, we obtain that ξ

2(u−v)
2n S = S. For u �= v we have that

ξ
2(u−v)
2n �= 1, which implies that S = 0. For u = v we obtain S = na2u. This shows

that the matrix Mf has columns that are orthogonal. The singular values of Mf

can be read off from the diagonal of Mf
t · Mf , in particular si(Mf ) =

√
nan−i

for i = 1, . . . , n. This also shows that si(Nf ) = 1/(
√

nai−1) for i = 1, . . . , n. One
finishes the proof by using that an = q − 1. �

The above proposition gives s1(Nf ) = 1/
√

n which is small enough for the
attack described in Sect. 3.2 to apply. In [6, Sect. 9], two examples of this family
were attacked, giving the following results:

fn,q q r r̃ Samples per run Successful runs Time per run

x192 + 4092 4093 8.87 5440.28 20 1 of 10 25 s

x256 + 8190 8191 8.35 8399.70 20 2 of 10 44 s

Recall that r̃ is simply r scaled up by a factor |det(Mf )|1/n. We remark, as
do Elias et al. [6, Sect. 9], that these two examples unfortunately do not satisfy
that q − 1 is squarefree. As a consequence the RLWE problem is not set up in
the full ring of integers of the number field K = Q[x]/(f). We will nevertheless
keep using these examples for the sake of comparison; it should be clear from
the exposition below that this is not a crucial issue.

As a second instance, the authors of [6] considered polynomials of the form
fn,a,b = xn + ax + b with a ≈ b, again chosen such that fn,a,b(1) ≡ 0 modulo q,
which is assumed to be an odd prime. More precisely, they let a = (q − 1)/2+Δ
and b = (q − 1)/2 − Δ − 1, or a = q + Δ and b = q − Δ − 1, for a small value
of Δ. Heuristically these polynomials also result in weak instances of non-dual



158 W. Castryck et al.

decision RLWE, even though the analysis cannot be made as precise as in the
foregoing case. In particular, no explicit formula is known for the spectral norm
s1(Nf ), but in [6] a heuristic perturbation argument is given that implies that
it is bounded by

√
max(a, b) · det(Nf )1/n infinitely often. They ran their attack

for the particular case where q = 524287, Δ = 1, a = q + Δ and b = q − Δ − 1:

fn,a,b q r r̃ Samples per run Successful runs Time per run

x128 + 524288x+ 524285 524287 8.00 45540 20 8 of 10 24 s

4 A Simple Attack on Search RLWE

We derive a very simple attack on search RLWE for the families and parameter
sets considered by Elias, Lauter, Ozman and Stange in [6]. The attack is based
on two observations.

Firstly, a unit ball in the H-space gets severely deformed when being pulled
back to K ⊗ R along the canonical embedding. With respect to the polynomial
basis 1, x, x2, . . . , xn−1 we end up with an ellipsoid whose axes have lengths
s1(Nf ), . . . , sn(Nf ). For the first family of polynomials (i.e. where a = 0) this is
a geometrically decreasing sequence, while for the second family this statement
remains almost true. In particular a spherical Gaussian distribution Γr with
r = (r, . . . , r) on the H-space will result in a very skew elliptical Gaussian
distribution on K ⊗ R with parameters s1(Nf ) · r, . . . , sn(Nf ) · r. For the choices
of r (or in fact r̃) made by Elias et al., the errors along the shortest axes of the
ellipsoid are so small that after rounding they become zero.

The second observation is that the axes of the error distribution ellipsoid
coincide almost perfectly with the polynomial basis. Again for the first family
this is exactly the case, while for the second family the distribution is consistent
enough, in the sense that the axes do not line up perfectly, but the coordinates
of the error samples with respect to 1, x, x2, . . . , xn−1 still tend to go down geo-
metrically. The result is that the directions that get squashed simply correspond
to the coefficients of the higher powers of x in the error terms e(x).

To make these statements precise we will compute the singular value decom-
position of the whole transformation matrix Nf · B. Recall that the singular
value decomposition of an n × n matrix M is given by

M = UΣV
t
,

where U, V are n×n unitary matrices and Σ is an n×n matrix with non-negative
real numbers on the diagonal, namely the singular values. The image of a unit
sphere under M will therefore result in an ellipsoid where the axes are given by
the columns of U , with lengths equal to the corresponding singular values.
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4.1 Singular Value Decomposition and Error Distribution

For the first family of polynomials fn,q everything can be made totally explicit:

Proposition 2. The singular value decomposition of Nf · B is

In×n · Σ · V
t
, where V = B

t · Mf · Σ

and Σ is the diagonal matrix containing the singular values of Nf .

Proof: Recall from the proof of Proposition 1 that the Vandermonde matrix
Mf has mutually orthogonal columns, where the ith column has norm

√
nai−1.

Thus the normalized matrix

Mf · Σ where Σ = diag
(
1/(

√
nai−1)

)
i
= diag (si(Nf ))i

is unitary. But then so is V = B
t ·Mf ·Σ, and since Σ = Σ2 ·Σ−1 = NfNf

t ·Σ−1,
we see that

Nf · B = In×n · Σ · V
t

is the singular value decomposition of our transformation matrix Nf · B. �
The factor In×n implies that the axes of our ellipsoid match perfectly with the

polynomial basis 1, x, x2, . . . , xn−1. In other words, if we start from a spherical
error distribution Γr on H, r = (r, r, . . . , r), then the induced error distribu-
tion Ψr on K ⊗ R in the ith coordinate (coefficient of xi−1) is a Gaussian with
parameter

si(Nf ) · r =
r√

n · (q − 1)(i−1)/n

by Proposition 1. This indeed decreases geometrically with i.
As a side remark, note that this implies that for e(x) ← Ψr the evaluation

e(1) is sampled from a Gaussian with parameter

(
n∑

i=1

si(Nf )2
)1/2

· r = s1(Nf )

√
(q − 1)2 − 1

(q − 1)2 − (q − 1)2(n−1)/n
· r.

This is considerably smaller than
√

n · s1(Nf ) · r and explains why the attack
from [6] works better than what their theory predicts [6, Sect. 9].

To illustrate the geometric behavior of the coordinates of the errors e(x)
with respect to the polynomial basis, we have plotted the average and standard
deviation of their high order coefficients for the second example x256 + 8190
from [6] in Fig. 1 (the results for the first example are totally similar), using the
error parameter that they used to attack non-dual decision RLWE. The plot
shows that for the given parameter set, the highest �n/7� error coefficients in
the polynomial basis of K ⊗ R are all extremely likely to be smaller than 1/2
(indicated by the dashed line) in absolute value and therefore become zero after
rounding.
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Fig. 1. Distribution of the error terms in the polynomial basis for f = x256 + 8190
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Fig. 2. Zeroes in C of x128 + 524288x + 524285, along with the unit circle (dashed)

For the second family of polynomials fn,a,b with a �= 0, we were not able to
derive the singular value decomposition in such an explicit form. To get a handle
on them, we have computed it explicitly for f = x128 + 524288x + 524285. For
this particular example, the roots of fn,a,b again lie roughly on a circle (except
for the real root close to −1): see Fig. 2. So through the Vandermonde matrix
we again expect geometric growth of the singular values, as is confirmed by the
explicit numerics in Fig. 3, which shows a plot of their logarithms. There is only
one outlier, caused by the real root of f close to −1.

The heat map in Fig. 4 plots the norms of the entries in the U -matrix of
the singular value decomposition of Nf · B and shows that U is close to being
diagonal, implying that the axes of the ellipsoid are indeed lining up almost
perfectly with the polynomial basis. Finally Fig. 5 contains a similar plot as
Fig. 1, namely, the distribution of the errors terms (highest powers only) for the
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Fig. 3. log10 of the singular values of Nf for f = x128 + 524288x + 524285
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Fig. 4. Heat maps of the norms of the entries of U (left) and log10 of the norms of the

entries of UΣ (right), where UΣV
t

is the singular value decomposition of NfB

polynomial f = x128+524288x+524285. Again we conclude that with very high
probability, the last �n/6� coefficients of the error terms in the polynomial basis
will be smaller than 1/2, and therefore they become zero after rounding.

4.2 Linear Algebra Attack on Non-dual Search RLWE

Turning the above observations into an attack on non-dual search RLWE for
these families is straightforward. Recall that the samples are of the form (a,b =
a ·s+emod q) where the errors were sampled from the distribution Ψr on K ⊗R.
Since a is known, we can express multiplication by a as a linear operation, i.e.
we can compute the n × n matrix Ma that corresponds to multiplication by a
with respect to the polynomial basis 1, x, x2, . . . , xn−1. Each RLWE sample can
therefore be written as a linear algebra problem as follows:

Ma · (s0, s1, . . . , sn−1)t = (b0, b1, . . . , bn−1)t − (e0, e1, . . . , en−1)t (1)
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Fig. 5. Distribution of errors of high index for f = x128 + 524288x + 524285

where the si (resp. bi, ei) are the coefficients of s (resp. b and e) with respect
to the polynomial basis. By rounding the coefficients of the right-hand side, we
effectively remove the error terms of high index, which implies that the last
equations in the linear system become exact equations in the unknown coeffi-
cients of s. Assuming that the highest �n/k� error terms round to zero, we only
require k samples to recover the secret s using simple linear algebra with a 100%
success rate.

We have implemented this attack in Magma [2] with the following results.

fn,a,b q r r̃ Samples per run Successful runs Time per run

x192 + 4092 4093 8.87 5440 7 10 of 10 8.37 s

x256 + 8190 8191 8.35 8390 6 10 of 10 17.2 s

x128 + 524288x+ 524285 524287 8.00 45540 4 10 of 10 1.96 s

We note that using less samples per run is also possible, but results in a lower
than 100 % success rate. A more elaborate strategy would construct several linear
systems of equations by discarding some of the equations of lower index (which
are most likely to be off by 1) and running exhaustively through the kernel of the
resulting underdetermined system of equations. However, we did not implement
this strategy since it needlessly complicates the attack.

In fact for errors of the above size one can also use the linearization technique
developed by Arora and Ge [1, Theorem 3.1] to retrieve s(x), but this requires a
lot more samples.



Provably Weak Instances of Ring-LWE Revisited 163

We stress that our attack does not use that f(1) ≡ 0mod q. For the above
defining polynomials our attack works modulo every modulus q′, as long as the
same error parameters are used (or smaller ones).

4.3 Modifications for Dual Search RLWE

In this section we discuss how switching from non-dual RLWE (i.e. from I = R)
to dual RLWE (where one takes I = R∨) affects our observations. Recall that in
the case of a monogenic defining polynomial f , the codifferent R∨ is generated
as a fractional ideal by 1/f ′(α) with α ∈ C a root of f . We will again work with
respect to the polynomial basis 1, x, x2, . . . , xn−1 of K = Q[x]/(f) over Q, which
is also a basis of R over Z, and take α = x. For technical reasons we will only
do the analysis for the first family of polynomials, namely those of the form

fn,q = fn,0,q−1 = xn + q − 1,

where one has f ′
n,q = nxn−1. Since

1 =
1

q − 1
fn,q − x

n(q − 1)
f ′

n,q

we find that
R∨ = R

x

n(q − 1)
.

Proposition 3. The elements

1
n

,
x

n(q − 1)
,

x2

n(q − 1)
,

x3

n(q − 1)
, . . . ,

xn−1

n(q − 1)
(2)

form a Z-basis of R∨.

Proof. It is immediate that

x

n(q − 1)
,

x2

n(q − 1)
,

x3

n(q − 1)
, . . . ,

xn−1

n(q − 1)
,

xn

n(q − 1)

form a Z-basis. But modulo fn,q the last element is just −1/n.

Thus we can think of our secret s(x) ∈ R∨
q as a Z-linear combination of the

elements in (2), where the coefficients are considered modulo q. A corresponding
RLWE-sample is then of the form (a(x),a(x) · s(x)+e(x)mod qR∨) with e(x) ∈
R∨⊗R = K⊗R sampled from Ψr for an appropriate choice of r ∈ (R+)n. To make
a comparison with our attack in the non-dual case, involving the parameters
from [6], we have to make an honest choice of r, which we again take spherical.
Note that the lattice σ(R∨) is much denser than σ(R): the covolume gets scaled
down by a factor ∣∣No(f ′

n,q(α))
∣∣ = nn(q − 1)n−1.



164 W. Castryck et al.

Therefore, in view of the discussion concluding Sect. 3.2, we scale down our
scaled-up error parameter r̃ by a factor

n
√

nn(q − 1)n−1 ≈ n(q − 1).

Let us denote the result by r̃∨.
It follows that the dual setting is essentially just a scaled version of its non-

dual counterpart: both the errors and the basis elements become divided by a
factor of roughly n(q − 1). In particular, for the same choices of r we again find
that with near certainty the highest �n/7� error coefficients are all smaller than

1
2

· 1
n(q − 1)

in absolute value, and therefore become zero after rounding to the nearest mul-
tiple of 1/(n(q−1)). This then again results in exact equations in the coefficients
of the secret s(x) ∈ R∨

q with respect to the basis (2), that can be solved using
linear algebra.

Here too, the attack does not use that f(1) ≡ 0mod q so it works for whatever
choice of modulus q′ instead of q, as long as the same error parameters are used
(or smaller ones).

5 Range of Applicability

One obvious way of countering our attack is by modifying the error parameter. In
principle the skewness of Nf ·B could be addressed by using an equally distorted
elliptical Gaussian rather than a near-spherical one, but that conflicts with the
philosophy of RLWE (as opposed to PLWE), namely that the more natural way
of viewing a number field is through its canonical embedding. So we will not
discuss this option and stick to spherical distributions. Then the only remaining
way out is to enlarge the width of the distribution. Again for technical reasons
we will restrict our discussion to the first family of polynomials, namely those
of the form fn,q = xn + q − 1; the conclusions for the second family should be
similar.

In the non-dual case we see that a version of the attack works as long as a
sample drawn from a univariate Gaussian with parameter sn(Nf ) · r̃ has absolute
value less than 1/2 with non-negligible probability: then by rounding one obtains
at least one exact equation in the unknown secret s(x). For this one needs that

sn(Nf ) · r̃ ≤ C

2

for some absolute constant C > 0 that quantifies what it means to be ‘non-
negligible’.

Remark 1. In order to recover the entire secret, one even wants a non-negligible
probability for n consecutive samples to be less than 1/2, for which one should
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replace sn(Nf )·r̃ by sn(Nf )·r̃·
√

log n (roughly). In fact a slightly better approach
is to find the optimal 1 ≤ k ≤ n for which sn−k+1(Nf ) · r̃ is likely to be less than
1/2, thereby yielding at least k exact equations at once, for �n/k� consecutive
times.

Let us take C = 1 in what follows: for this choice meeting the upper bound
corresponds to a chance of about 98.78% of recovering at least one exact equa-
tion. Using Proposition 1 this can be rewritten as

r̃ ≤ 1
2

·
√

n · (q − 1)1−1/n. (3)

For our two specific polynomials x192 + 4092 and x256 + 8190 the right-hand
side reads 27148.39 and 63253.95 whereas Elias et al. took r̃ to be 5440.28 and
8399.70, respectively.

Note that the bound in (3) does not depend on the modulus q′ that is being
used: the q that appears there is just part of the data defining our number field.
In other words, whenever r̃ satisfies (3) then for every choice of modulus q′ we
are very likely to recover at least one exact equation in the coefficients of the
secret s(x).

Unfortunately the bound (3) does not allow for an immediate comparison
with the hardness result of Lyubashevsky, Peikert and Regev (see Theorem 1),
which was formulated for dual RLWE only. But for dual RLWE one can make a
similar analysis. From Sect. 4.3 it follows that we want error coefficients that are
smaller than 1/(2n(q−1)) with a non-negligible probability. The same discussion
then leads to the bound

r̃∨ ≤ 1
2

· 1
√

n · (q − 1)
1
n

(4)

which is highly incompatible with the condition r̃∨ ≥ 2ω(
√

log n) from
Theorem 1. Thus we conclude that it is impossible to enlarge the error para-
meter up to a range where our attack would form an actual threat to RLWE, as
defined in [9, Sect. 3].

Another issue with modifying the error parameter is decodability. In the non-
dual case, from (3) we see that sn(Nf )· r̃ � 1 is needed to avoid being vulnerable
to our skewness attack. But it automatically follows that s1(Nf ) · r̃ � q. Indeed,
this is implied by the fact that the condition number k(Nf ) := s1(Nf )/sn(Nf )
equals

(q − 1)1−1/n ≈ q

by Proposition 1. This causes the errors at the terms of low degree to wrap around
modulo q. In the dual case the same observation applies, where now the error
terms of low degree tend to wrap around modulo multiples of q · 1/(n(q − 1)).
In both cases the effect is that several of these terms become indistinguishable
from uniform, requiring more samples for the RLWE problem to become infor-
mation theoretically solvable. This obstructs, or at least complicates, certain
cryptographic applications.
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So overall, the conclusion is that the defining polynomials fn,a,b are just not
well-suited for use in RLWE: either the error parameter is too small for the
RLWE problem to be hard, or the error parameter is too large for the problem
to be convenient for use in cryptography. But we stress once more that neither
the attack from [6] nor our attack form a genuine threat to RLWE, as it was
defined in [9, Sect. 3].

6 Conclusions

In this paper we have shown that non-dual search RLWE can be solved effi-
ciently for the families of polynomials and parameter sets from [6] which were
shown to be weak for the decision version of the problem. The central reason
for this weakness lies in the (exponential) skewness of the canonical embedding
transformation. We analyzed the singular value decomposition of this transfor-
mation and showed that the singular values form an (approximate) geometric
series. Furthermore, we also showed that the axes of the error ellipsoid are con-
sistent with the polynomial basis, allowing us to readily identify very small noise
coefficients. The attack applies to wider ranges of moduli, and also applies to the
dual version, but does not contradict any statement in the work of Lyubashevsky,
Peikert and Regev [9].

It is worth remarking that while we used the language of singular value
decomposition, for our skewness attack it merely suffices that Nf · B has a very
short row, so that the corresponding error coefficient ei vanishes after rounding
and (1) provides an exact equation in the coefficients of the secret. For general
number fields this is a strictly weaker condition than having a very small singu-
lar value whose corresponding axis lines up perfectly with one of the polynomial
basis vectors. But for the particular families of [6] the singular value decomposi-
tion turned out to be a convenient tool in proving this, and in visualizing how the
RLWE errors are transformed under pull-back along the canonical embedding.
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Abstract. The LPN problem, lying at the core of many cryptographic
constructions for lightweight and post-quantum cryptography, receives
quite a lot attention recently. The best published algorithm for solving it at
Asiacrypt 2014 improved the classical BKW algorithm by using covering
codes, which claimed to marginally compromise the 80-bit security of HB
variants, LPN-C and Lapin. In this paper, we develop faster algorithms for
solving LPN based on an optimal precise embedding of cascaded concrete
perfect codes, in a similar framework but with many optimizations. Our
algorithm outperforms the previous methods for the proposed parameter
choices and distinctly break the 80-bit security bound of the instances sug-
gested in cryptographic schemes like HB+, HB#, LPN-C and Lapin.

Keywords: LPN · BKW · Perfect code · HB · Lapin

1 Introduction

The Learning Parity with Noise (LPN) problem is a fundamental problem in
modern cryptography, coding theory and machine learning, whose hardness
serves as the security source of many primitives in lightweight and post-quantum
cryptography. It is closely related to the problem of decoding random linear
codes, which is one of the most important problems in coding theory, and has
been extensively studied in the last half century.

In the LPN problem, there is a secret x ∈ {0, 1}k and the adversary is asked
to find x given many noisy inner products 〈x,g〉 + e, where each g ∈ {0, 1}k is
a random vector and the noise e is 1 with some probability η deviating from 1/2.
Thus, the problem is how to efficiently restore the secret vector given some amount
of noisy queries of the inner products between itself and certain random vectors.

The cryptographic schemes based on LPN are appealing both for theoretical
and practical reasons. The earliest proposal dated back to the HB, HB+, HB#

and AUTH authentication protocols [12,18–20]. While HB is a minimalistic pro-
tocol secure in a passive attack model, the modified scheme HB+ with one extra
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part I, LNCS 9665, pp. 168–195, 2016.
DOI: 10.1007/978-3-662-49890-3 7
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round is found to be vulnerable to active attacks, i.e., man-in-the-middle attacks
[14]. HB# was subsequently proposed with a more efficient key representation
using a variant called Toeplitz-LPN. Besides, there is also a message encryp-
tion scheme based on LPN, i.e., the LPN-C scheme in [13] and some message
authentication codes (MACs) using LPN in [10,20], allowing for constructions of
identification schemes provably secure against active attacks. Another notable
scheme, Lapin, was proposed as a two-round identification protocol [16], based
on the LPN variant called Ring-LPN where the samples are elements of a polyno-
mial ring. Recently, an LPN-based encryption scheme called Helen was proposed
with concrete parameters for different security levels [11].

It is of primordial importance to study the best possible algorithms that can
efficiently solve the LPN problem. The seminal work of Blum et al. in [5], known
as the BKW algorithm, employs an iterated collision procedure of the queries to
reduce the dependency on the information bits with a folded noise level. Levieil
and Fouque proposed to exploit the Fast Walsh-Hadamard (FWHT) Transform
in the process of searching for the secret in [22]. They also provided different
security levels achieved by different instances of LPN, which are referenced by
most of the work thereafter. In [21], Kirchner suggested to transform the problem
into a systematic form, where each secret bit appears as an observed symbol
perturbed by noise. Then Bernstein and Lange demonstrated in [4] the utilization
of the ring structure of Ring-LPN in matrix inversion to further reduce the attack
complexity, which can be applied to the common LPN instances by a slight
modification as well. None of the above algorithms manage to break the 80-bit
security of Lapin, nor the parameters suggested in [22] as 80-bit security for
LPN-C [13]. At Asiacrypt 2014, a new algorithm for solving LPN was presented
in [15] by using covering codes. It was claimed that the 80-bit security bound
of the common (512, 1/8)-LPN instance can be broken within a complexity of
279.7, and so do the previously unbroken parameters of HB variants, Lapin and
LPN-C1. It shared the same beginning steps of Gaussian elimination and collision
procedure as that in [4], followed by the covering code technique to further reduce
the dimension of the secret with an increased noise level, also it borrowed the
well known Walsh Transform technique from fast correlation attacks on stream
ciphers [2,7,23], renamed as subspace hypothesis testing.

In this paper, we propose faster algorithms for solving LPN based on an opti-
mal precise embedding of cascaded perfect codes with the parameters found by
integer linear programming to efficiently reduce the dimension of the secret infor-
mation. Our new technique is generic and can be applied to any given (k, η)-LPN
instance, while in [15] the code construction methods for covering are missing
and only several specific parameters for (512, 1/8)-LPN instance were given in
their presentation at Asiacrypt 2014. From the explicit covering, we can derive
the bias introduced by covering in our construction accurately, and derive the
attack complexity precisely. It is shown that following some tradeoff techniques,

1 The authors of [15] redeclared their results in their presentation at Asiacrypt 2014,
for the original results are incorrect due to an insufficient number of samples used
to learn an LPN secret via Walsh-Hadamard Transform.
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appropriate optimization of the algorithm steps in a similar framework as that
in [15] can reduce the overall complexity further. We begin with a theoretical
justification of the experimental results on the current existing BKW algorithms,
and then propose a general form of the BKW algorithm which exploits tuples in
collision procedure with a simulation verification. We also propose a technique
to overcome the data restriction efficiently based on goodness-of-fit test using
χ2-statistic both in theory and experiments. In the process, we theoretically
analyze the number of queries needed for making a reliable choice for the best
candidate and found that the quantity 8lln2/ε2f is much more appropriate when
taking a high success probability into account2, where εf is the bias of the final
approximation and l is the bit length of the remaining secret information. We
also provide the terminal condition of the solving algorithm, correct an error that
may otherwise dominate the complexity of the algorithm in [15] and push the
upper bound up further, which are omitted in [15]. We present the complexity
analysis of the improved algorithm based on three BKW types respectively, and
the results show that our algorithm well outperforms the previous ones. Now it
is the first time to distinctly break the 80-bit security of both the (512, 1/8)-
and (532, 1/8)- LPN instances, and the complexity for the (592, 1/8)-instance
just slightly exceeds the bound. A complexity comparison of our algorithm with
the previous attacks is shown in Table 1. More tradeoff choices are possible and
can be found in Sect. 6.2.

Table 1. Comparison of different algorithms with the instance (512, 1/8)

Algorithm Complexities (log2)

Data Memory Time

Levieil-Fouque [22] 75.7 84.8 87.5

Bernstein-Lange [4] 68.6 77.6 85.8

Corrected [15] 63.6 72.6 79.71

This paper 63.5 68.2 72.8
1 The number of queries we chosen is the

twice as that presented for correction in
the presentation at Asiacrypt 2014 to
assure a success probability of almost 1.
Note that if the same success probability
is achieved, the complexity of the attack
in [15] will exceed the 280 bound.

This paper is organized as follows. We first introduce some preliminaries of
the LPN problem in Sect. 2 with a brief review of the BKW algorithm. In Sect. 3,
a short description of the algorithm using covering codes in [15] is presented. In

2 The authors of [15] have chosen 4lln2/ε2f to correct the original estimate of 1/ε2f as
the number of queries in their presentation at Asiacrypt 2014.
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Sect. 4, we present the main improvements and more precise data complexity
analysis of the algorithm for solving LPN. Then we propose and analyze certain
BKW techniques in Sect. 5. In Sect. 6, we complete the faster algorithm with
more specific accelerated techniques at each step, together with the applications
to the various LPN-based cryptosystems. Finally, some conclusions are provided
in Sect. 7.

2 Preliminaries

In this Section, some basic notations of the LPN problem are introduced with a
review of the BKW algorithm that is relevant to our analysis later.

2.1 The LPN Problem

Definition 1 (LPN Problem). Let Berη be the Bernoulli distribution, i.e., if
e ← Berη then Pr[e = 1] = η and Pr[e = 0] = 1−η. Let 〈x,g〉 denote the scalar
product of the vectors x and g, i.e., x ·gT , where gT denotes the transpose of g.
Then an LPN oracle ΠLPN (k, η) for an unknown random vector x ∈ {0, 1}k

with a noise parameter η ∈ (0, 1
2 ) returns independent samples of

(g $←− {0, 1}k, e ← Berη : 〈x,g〉 + e).

The (k, η)-LPN problem consists of recovering the vector x according to the sam-
ples output by the oracle ΠLPN (k, η). An algorithm S is called (n, t,m, δ)-solver

if Pr[S = x : x $←− {0, 1}k] ≥ δ, and runs in time at most t and memory at most
m with at most n oracle queries.

This problem can be rewritten in a matrix form as z = xG + e, where e =
[e1 e2 · · · en] and z = [z1 z2 · · · zn], each zi = 〈x,gi〉 + ei, i = 1, 2, . . . , n. The
k × n matrix G is formed as G = [gT

1 gT
2 · · · gT

n ]. Note that the cost of solving
the first block of the secret vector x dominates the total cost of recovering x
according to the strategy applied in [1].

Lemma 1 (Piling-up Lemma). Let X1,X2, . . . , Xn be independent binary
random variables where each Pr[Xi = 0] = 1

2 (1 + εi), for 1 ≤ i ≤ n. Then,

Pr[X1 + X2 + · · · + Xn = 0] =
1
2
(1 +

n∏

i=1

εi).

2.2 The BKW Algorithm

The BKW algorithm is proposed in the spirit of the generalized birthday algo-
rithm [25], working on the columns of G as

gi + gj = [∗ ∗ · · · ∗ 0 0 · · · 0︸ ︷︷ ︸
b

], and (zi + zj) = x(gT
i + gT

j ) + (ei + ej),
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which iteratively reduces the effective dimension of the secret vector. Let the bias
ε be defined by Pr[e = 0] = 1

2 (1 + ε), then Pr[ei + ej = 0] = 1
2 (1 + ε2) according

to the pilling-up lemma. Formally, the BKW algorithm works in two phases:
reduction and solving. It applies an iterative sort-and-merge procedure to the
queries and produces new entries with the decreasing dimension and increasing
noise level; finally it solves the secret by exhausting the remaining and test the
presence of the expected bias. The framework is as follows.

There are two approaches, called LF1 and LF2 in [22] to fulfill the merging
procedure, sharing the same sorting approach with different merging strategies,
which is described in the following Algorithms 2 and 3. It is easy to see that
LF1 works on pairs with a representative in each partition, which is discarded
at last; while LF2 works on any pair. For each iteration in the reduction phase,
the noise level is squared, as e

(i)
j = e

(i−1)
j1

+ e
(i−1)
j2

with the superscript (i) being
the iteration step. Assume the noises remain independent at each step, we have
Pr[
∑2t

j=1 ej = 0] = 1
2 (1 + ε2

t

) by the piling-up lemma.

Algorithm 1. Framework of the BKW Algorithm
Input: The k × n matrix G and received z, the parameters b, t.

1: Put the received vector as a first row in the matrix, G0 ←
[
z
G

]

.

Reduction phase:
2: for i = 1 to t do
3: Sorting: Partition the columns of Gi−1 by the last b bits.
4: Merging: Form pairs of columns in each partition to obtain Gi

5: end for
Solving phase:
6: for x ∈ {0, 1}k−bt do
7: return the vector x that [1 x]Gt has minimal weight.
8: end for

Algorithm 2. Reduction of LF1
1: Partition Gi−1 = V0 ∪ V1 ∪ · · · ∪ V2b−1 s.t. the columns in Vj have the same last b

bits.
2: for each Vj do
3: Randomly choose v∗ ∈ Vj as the representative.

For v ∈ Vj ,v �= v∗, Gi = Gi ∪ (v + v∗), ignoring the last b entries of 0.
4: end for

Algorithm 3. Reduction of LF2
1: Partition Gi−1 = V0 ∪V1 ∪ · · ·∪V2b−1 s.t. columns in Vj have the same last b bits.
2: for each Vj do
3: For each pair v,v′ ∈ Vj ,v �= v′, Gi = Gi ∪ (v + v′), ignoring the last b entries

of 0.
4: end for
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3 The Previous Algorithm Using Covering Codes

In this section, we present a brief review of the algorithm using covering codes
in [15], described in the following Algorithm 4.

Algorithm 4 contains five main steps: step 1 transforms the problem into
systematic form by Gaussian elimination (Line 2); step 2 performs several BKW
steps (Line 3–5); jumping to step 4, it uses a covering code to rearrange the
samples (Line 6); step 3 guesses partial secret and Step 5 uses the FWHT to
find the best candidate under the guessing, moreover it performs hypothesis
testing to determine whether to repeat the algorithm (Line 7–13). Now we take
a closer look at each step respectively.

Algorithm 4. The Algorithm using covering codes [15]
Input: n queries (g, z)s of the (k, η)-LPN instance, the parameters b, t, k2, l, w1, w2.
1: repeat
2: Pick random column permutation π and perform Gaussian elimination on π(G),

resulting in [I L0];
3: for i = 1 to t do
4: Perform LF1 reduction phase on Li−1 resulting in Li.
5: end for
6: Pick a [k2, l] linear code and group the columns of Lt by the last k2 bits accord

ing to their nearest codewords.
7: Set k1 = k − tb − k2;
8: for x′

1 ∈ {0, 1}k1 with wt(x′
1) ≤ w1 do

9: Update the observed samples.
10: Use FWHT to compute the numbers of 1 s and 0s

for each y ∈ {0, 1}l, and pick the best candidate.
11: Perform hypothesis testing with a threshold.
12: end for
13: until: Acceptable hypothesis is found.

Step 1. Gaussian Elimination. This step systematizes the problem, i.e.,
change the positions of the secret vector bits without changing the associated
noise level [21]. Precisely, from z = xG + e, apply a column permutation π to
make the first k columns of G linearly independent. Then form the matrix D
such that Ĝ = DG = [I ĝT

k+1 ĝT
k+2 · · · ĝT

n ]. Let ẑ = z + [z1 z2 · · · zk]Ĝ, thus
ẑ = xD−1Ĝ + e + [z1 z2 · · · zk]Ĝ = (xD−1 + [z1 z2 · · · zk])Ĝ + e, where
ẑ = [0 ẑk+1 ẑk+2 · · · ẑn]. Let x̂ = xD−1 + [z1 z2 · · · zk], then ẑ = x̂Ĝ + e.
From the special form of the first k components of Ĝ and ẑ, it is clear that
Pr[x̂i = 1] = Pr[ei = 1] = η. The cost of this step is dominated by the computa-
tion of DG, which was reduced to C1 = (n − k)ka bit operations through table
look-up in [15], where a is some fixed value.

Step 2. Collision Procedure. This is the BKW part with the sort-and-
match technique to reduce the dependency on the information bits [5,22].
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From Ĝ = [I L0], we iteratively process t steps of the BKW reduction on L0,
resulting in a sequence of matrices Li, i = 1, 2, . . . , t. Each Li has n − k − i2b

columns when adopting the LF13 type that discards about 2b samples at each
step. One also needs to update ẑ in the same fashion. Let m = n − k − t2b, this
procedure ends with z′ = x′G′ +e′, where G′ = [I Lt] and z′ = [0 z′

1 z′
2 · · · z′

m].
The secret vector is reduced to a dimension of k′ = k − tb, and also remains
Pr[x′

i = 1] = η for 1 ≤ i ≤ k′. The noise vector e′ = [e1 · · · ek′ e′
1 · · · e′

m],
where e′

i =
∑

j∈τi,|τi|≤2t ej and τi contains the positions added up to form the

(k′ + i)-th column. The bias for e′
i is ε2

t

accordingly, where ε = 1 − 2η. The
complexity of this step is dominated by C2 =

∑t
i=1(k + 1 − ib)(n − k − i2b).

Step 3. Partial Secret Guessing. Divide x′ into [x′
1 x′

2], accordingly divide

G′ =
[
G′

1

G′
2

]
, where x′

1 is of length k1 and x′
2 is of length k2 with k′ = k1 + k2.

This step guesses all vectors x′
1 ∈ {0, 1}k1 that wt(x′

1) ≤ w1, where wt( ) is the
Hamming weight of vectors. The complexity of this step is determined by updat-
ing z′ with z′ + x′

1G
′
1, denoted by C3 = m

∑w1
i=0

(
k1
i

)
i. The problem becomes

z′ = x′
2G

′
2 + e′.

Step 4. Covering-Code. A linear covering code is used in this step to further
decrease the dimension of the secret vector. Use a [k2, l] linear code C with cov-
ering radius dC to rewrite any g′

i ∈ G′
2 as g′

i = ci + ẽi, where ci is the nearest
codeword in C and wt(ẽi) ≤ dC . Let the systematic generator matrix and its
parity-check matrix of C be F and H, respectively. Then the syndrome decoding
technique is applied to select the nearest codeword. The complexity is cost in
calculating syndromes Hg′T

i , i = 1, 2, . . . ,m, which was recursively computed in
[15], as C4 = (k2 − l)(2m+2l). Thus, z′

i = x′
2c

T
i +x′

2ẽ
T
i + e′

i, i = 1, 2, . . . ,m. But
if we use a specific concatenated code, the complexity formula of the syndrome
decoding step will differ, as we stated later.

In [15], ε′ = (1−2 d
k2

)w2 is used to determine the bias introduced by covering,
where d is the expected distance bounded by the sphere-covering bound, i.e., d
is the smallest integer that

∑d
i=0

(
k2
i

)
> 2k2−l, and w2 is an integer that bounds

wt(x′
2). But, we find that it is not proper to consider the components of error

vector ẽi as independent variables, which is also pointed out in [6]. Then Bogos
et. al. update the bias estimation as follows: when the code has the optimal
covering radius, the bias of 〈x′

2, ẽi〉 = 1 assuming that x′
2 has weight w2 can be

found according to

Pr[〈x′
2, ẽi〉 = 1|wt(x′

2) = w2] =
1

S(k2, d)

∑

i≤d, i odd

(
c

i

)
S(k2 − w2, d − i)

where S(k2, d) is the number of k2-bit strings with weight at most d. Then
the bias is computed as δ = 1 − 2Pr[〈x′

2, ẽi〉 = 1|wt(x′
2) = w2], and the final

3 With the corrected number of queries, the algorithm in [15] exceeds the security
bound of 80-bit. In order to obtain a complexity smaller than 280, the LF2 reduction
step is actually applied.
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complexity is derived by dividing a factor of the sum of covering chunks.4 Later
based on the calculation of the bias in [6], the authors of [15] further require that
the Hamming weight bound w2 is the largest weight of x′

2 that the bias ε̃(w2) is
not smaller than εset, where εset is a preset bias. Still this holds with probability.

Step 5. Subspace Hypothesis Testing. It is to count the number of equal-
ity z′

i = x′
2c

T
i in this step. Since ci = uiF, one can count the number of

equality z′
i = yuT

i equivalently, for y = x′
2F

T . Group the samples (g′
i, z

′
i) in

sets L(ci) according to the nearest codewords and define the function f(ci) =∑
(g′

i,z
′
i)∈L(ci)

(−1)z′
i on the domain of C. Due to the bijection between F

l
2 and

C, define the function g(u) = f(ci) on the domain of F
l
2, where u represents

the first l bits of ci for the systematic feature of F. The Walsh transform of
g is defined as {G(y)}y∈Fl

2
, where G(y) =

∑
u∈Fl

2
g(u)(−1)〈y,u〉. The authors

considered the best candidate as y0 = arg maxy∈Fl
2
|G(y)|. This step calls for

the complexity C5 = l2l
∑w1

i=0

(
k1
i

)
, which runs for every guess of x′

1 using the
FWHT [7]. Note that if some column can be decoded into several codewords,
one needs to run this step more times.
Analysis. In [15], it is claimed that it calls for approximately m ≈ 1/(ε2

t+1
ε′2)

samples to distinguish the correct guess from the others, and estimated n ≈
m + k + t2b as the initial queries needed when adopting LF1 in the process. We
find that this is highly underestimated. Then they correct it as 4lln2/ε2f in the
presentation at Asiacrypt 2014, and adopt LF2 reduction steps with about 3 · 2b

initial queries.
Recall that two assumptions are made regarding to the Hamming weight

of secret vector, and it holds with probability Pr(w1, k1)· Pr(w2, k2), where
Pr(w, k) =

∑w
i=0(1 − η)k−iηi

(
k
i

)
since Pr[x′

i = 1] = η. If any assumption is
invalid, one needs to choose another permutation to run the algorithm again.
The authors showed the number of bit operations required for a success run of
the algorithm using covering codes as

C =
C1 + C2 + C3 + C4 + C5

Pr(w1, k1)Pr(w2, k2)
.

4 We feel that there are some problems in the bias estimation in Bogos et. al. paper.
In their work, the bias is computed as 1 − 2Pr[(x, e) = 1 | wt(x) = c] with the
conditional probability other than the normal probability Pr[(x,e)=1]. Note that
the latter can be derived from the total probability formula by traversing all the
conditions. Further, the weights of several secret chunks are assumed in a way that
facilitates the analysis, which need to be divided at last to assure its occurrence.
Here instead of summing up these partial conditional probabilities, they should be
multiplied together. The Asiacrypt’14 paper has the similar problem in their analysis.
Our theoretical derivation is different and new. We compute Pr[(x, e) = 1] according
to the total probability formula strictly and thus the resultant bias precisely without
any assumption, traversing all the conditional probabilities Pr[(x, e) = 1 | wt(e) = i].
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4 Our Improvements and Analysis

In this section, we present the core improvement and optimizations of our new
algorithm with complexity analysis.

4.1 Embedding Cascaded Perfect Codes

First note that in [15], the explicit code constructions for solving those LPN
instances to support the claimed attacks5 are not provided. Second, it is suspi-
cious whether there will be a good estimation of the bias, with the assumption
of Hamming weight restriction, which is crucial for the exact estimate of the
complexity. Instead, here we provide a generic method to construct the covering
codes explicitly and compute the bias accurately.

Covering code is a set of codewords in a space with the property that every
element of the space is within a fixed distance to some codeword, while in par-
ticular, perfect code is a covering code of minimal size. Let us first look at the
perfect codes.

Definition 2 (Perfect code [24]). A code C ⊂ Qn with a minimum distance
2e + 1 is called a perfect code if every x ∈ Qn has distance ≤ e to exactly one
codeword, where Qn is the n-dimensional space.

From this definition, there exists one and only one decoding codeword in the
perfect code for each vector in the space6. It is well known that there exists only
a limited kinds of the binary perfect codes, shown in Table 2. Here e is indeed
the covering radius dC .

Table 2. Types of all binary perfect codes

e n l Type

0 n n {0, 1}n

1 2r − 1 2r − r − 1 Hamming code

3 23 12 Golay code

e 2e + 1 1 Repetition code

e e 0 {0}

Confined to finite types of binary perfect codes and given fixed parameters
of [k2, l], now the challenge is to efficiently find the configuration of some per-
fect codes that maximize the bias. To solve this problem, we first divide the
5 There is just a group of particular parameters for (512, 1/8)-LPN instance given in

their presentation at Asiacrypt 2014, but the other LPN instances are missing.
6 There exists exactly one decodable code word for each vector in the space, which

facilitates the definition of the basic function in the Walsh transform. For other codes,
the covering sphere may be overlapped, which may complicate the bias/complexity
analysis in an unexpected way. It is our future work to study this problem further.
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G′
2 matrix into several chunks by rows partition, and then cover each chunk by

a certain perfect code. Thereby each g′
i ∈ G′

2 can be uniquely decoded as ci

chunk by chunk. Precisely, divide G′
2 into h sub-matrices as

G′
2 =

⎡

⎢⎢⎢⎣

G′
2,1

G′
2,2
...

G′
2,h

⎤

⎥⎥⎥⎦ .

For each sub-matrix G′
2,j , select a [k2,j , lj ] perfect code Cj with the covering

radius dCj
to regroup its columns, where j = 1, 2, . . . , h. That is, g′

i,j = ci,j +
ẽi,j , wt(ẽi,j) ≤ dCj

for g′
i,j ∈ G′

2,j , where ci,j is the only decoded codeword in
Cj . Then we have

z′
i = x′

2g
′T
i + e′

i =
h∑

j=1

x′
2,jg

′T
i,j + e′

i

=
h∑

j=1

x′
2,j(ci,j + ẽi,j)T + e′

i =
h∑

j=1

x′
2,jc

T
i,j +

h∑

j=1

x′
2,j ẽ

T
i,j + e′

i,

where x′
2 = [x′

2,1,x
′
2,2, . . . ,x

′
2,h] is partitioned in the same fashion as that of G′

2.
Denote the systematic generator matrix of Cj by Fj . Since ci,j = ui,jFj , we have

z′
i =

h∑

j=1

x′
2,jF

T
j uT

i,j +
h∑

j=1

x′
2,j ẽ

T
i,j + e′

i

= [x′
2,1F

T
1 ,x′

2,2F
T
2 , . . . ,x′

2,hF
T
h ] ·

⎡

⎢⎢⎢⎣

uT
i,1

uT
i,2
...

uT
i,h

⎤

⎥⎥⎥⎦+
h∑

j=1

x′
2,j ẽ

T
i,j + e′

i.

Let y = [x′
2,1F

T
1 ,x′

2,2F
T
2 , . . . ,x′

2,hF
T
h ], ui = [ui,1,ui,1, . . . ,ui,h], and ẽi =

∑h
j=1

ẽi,j =
∑h

j=1 x′
2,j ẽ

T
i,j . Then z′

i = yuT
i + ẽi + e′

i, which conforms to the procedure
of Step 5. Actually, we can directly group (g′

i, z
′
i) in the sets L(u) and define

the function g(u) =
∑

(g′
i,z

′
i)∈L(u)(−1)z′

i , for each ui still can be read from ci

directly without other redundant bits due to the systematic feature of those
generator matrices. According to this grouping method, each (g′

i, z
′
i) belongs to

only one set. Then we examine all the y ∈ F
l
2 by the Walsh transform G(y) =∑

u∈Fl
2
g(u)(−1)〈y,u〉 and choose the best candidate.

Next, we consider the bias introduced by such a covering fashion. We find
that it is reasonable to treat the error bits ẽ·,j coming from different perfect
codes as independent variables, while the error components of ẽ·,j within one
perfect code will have correlations to each other (here we elide the first subscript
i for simplicity). Thus, we need an algorithm to estimate the bias introduced by a
single [k, l] perfect code with the covering radius dC , denoted by bias(k, l, dC , η).
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Equivalently, it has to compute the probability Pr[xeT = 1] at first, where
Pr[xi = 1] = η. In order to ensure xeT = 1, within the components equal to 1
in e, there must be an odd number of corresponding components equal to 1 in
x , i.e., |supp(x) ∩ supp(e)| is odd. Thereby for wt(e) = i, 0 ≤ i ≤ dC , we have

Pr[xeT = 1|wt(e) = i] =
∑

1≤j≤i
j is odd

ηj(1 − η)i−j

(
i

j

)
.

Moreover, Pr[wt(e) = i] = 2l
(
k
i

)
/2k, as the covering spheres are disjoint for

perfect codes. We have

Pr[xeT = 1] =
dC∑

i=0

2l
(
k
i

)

2k

⎛

⎜⎜⎝
∑

1≤j≤i
j is odd

ηj(1 − η)i−j

(
i

j

)
⎞

⎟⎟⎠ .

Additionally,

∑

1≤j≤i
j is even

ηj(1 − η)i−j

(
i

j

)
+
∑

1≤j≤i
j is odd

ηj(1 − η)i−j

(
i

j

)
= (η + 1 − η)i,

∑

1≤j≤i
j is even

ηj(1 − η)i−j

(
i

j

)
−
∑

1≤j≤i
j is odd

ηj(1 − η)i−j

(
i

j

)
= (1 − η − η)i,

we can simplify
∑

1≤j≤i, j is odd ηj(1 − η)i−j
(

i
j

)
as [1 − (1 − 2η)i]/2. Then we

derive the bias introduced by embedding the cascading as ε̃ =
∏h

j=1 εj according
to the pilling-up lemma, where εj = bias(k2,j , lj , dCj

, η) = 1 − 2Pr[x2,j ẽT
·,j = 1]

for Cj . Note that this is an accurate estimation without any assumption on the
hamming weights.

Now we turn to the task to search for the optimal cascaded perfect codes C1,
C2, . . . , Ch that will maximize the final bias, given a fixed [k2, l] pair according
to the LPN instances.

Denote this process by an algorithm, called construction(k2, l, η). First, we
calculate the bias introduced by each type of perfect code exploiting the above
algorithm bias(k, l, dC , η). In particular, for Hamming code, we compute bias
(2r−1, 2r−r−1, 1, η) for r : 2r−1 ≤ k2 and 2r−r−1 ≤ l. For repetition code, we
compute bias(2r + 1, 1, r, η) for r : 2r + 1 ≤ k2. We compute bias(23, 12, 3, η) for
the [23, 12] Golay code, and always have bias(n, n, 0, η) equal to 1 for {0, 1}n, n =
1, 2, . . .. Also it can be proved that bias(r, 0, r, η) = [bias(1, 0, 1, η)]r for any r.
Second, we transform the searching problem into an integer linear programming
problem. Let the number of [2r − 1, 2r − r − 1] Hamming code be xr and the
number of [2r +1, 1] repetition code be yr in the cascading. Also let the number
of [23, 12] Golay code, [1, 0] code {0} and [1, 1] code {0, 1} in the cascading be
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z, v and w respectively. Then the searching problem converts into the following
form.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
r:2r−1≤k2
2r−r−1≤l

(2r − 1)xr +
∑

r:2r+1≤k2

(2r + 1)yr + 23z + v + w = k2,

∑
r:2r−1≤k2
2r−r−1≤l

(2r − r − 1)xr +
∑

r:2r+1≤k2

yr + 12z + w = l,

max

⎛

⎜⎜⎝
∏

r:2r−1≤k2
2r−r−1≤l

bias(2r − 1, 2r − r − 1, 1, η)xr

⎞

⎟⎟⎠ ·

·

⎛

⎝
∏

r:2r+1≤k2

bias(2r + 1, 1, r, η)yr

⎞

⎠ bias(23, 12, 3, η)zbias(1, 0, 1, η)v.

We perform the logarithm operations on the target function and make it
linear as

max
∑

r:2r−1≤k2
2r−r−1≤l

xrlog[bias(2r − 1, 2r − r − 1, 1, η)] + vlog[bias(1, 0, 1, η)]+

+
∑

r:2r+1≤k2

yrlog[bias(2r + 1, 1, r, η)] + zlog[bias(23, 12, 3, η)].

Given the concrete value of η, we can provide the optimal cascaded perfect
codes with fixed parameters by Maple. We present in Table 3 the optimal cas-
caded perfect codes with the parameters chosen in Sect. 6.4 for our improved
algorithm when adopting various BKW algorithms for different LPN instances.
From this table, we can find that the optimal cascaded perfect codes usually
select the [23, 12] Golay code and the repetition codes with r at most 4.

It is worth noting that the above mentioned process is a generic method that
can be applied to any (k, η)-LPN instance, and finds the optimal perfect codes

Table 3. Optimal cascaded perfect codes employed in Sect. 6.4

LPN instances (k, η) Parameters [k2, l] Cascaded perfect codes h log2ε̃

LF1 (512, 1/8) [172, 62] y2 = 9 , y3 = 5 , z = 4 18 −15.1360

(532, 1/8) [182, 64] y2 = 11, y3 = 5 , z = 4 20 −16.3859

(592, 1/8) [207, 72] y3 = 8 , y4 = 4 , z = 5 17 −18.8117

LF2 (512, 1/8) [170, 62] y2 = 10, y3 = 4 , z = 4 18 −14.7978

(532, 1/8) [178, 64] y2 = 13, y3 = 3 , z = 4 20 −15.7096

(592, 1/8) [209, 72] y3 = 7 , y4 = 5 , z = 5 17 −19.1578

LF(4) (512, 1/8) [174, 60] y2 = 1 , y3 = 11, z = 4 16 −15.9152

(532, 1/8) [180, 61] y2 = 2 , y3 = 11, z = 4, v = 1 18 −16.7328

(592, 1/8) [204, 68] y2 = 14, y3 = 6 , z = 4 24 −19.2240
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combination to be embedded. In the current framework, the results are optimal
in the sense that the concrete code construction/the bias is optimally derived
from the integer linear programming.

4.2 Data Complexity Analysis

In this section, we present an analysis of the accurate number of queries needed
for choosing the best candidate in details. We first point out the distinguisher
statistic S between the two distributions corresponding to the correct guess and
the others. It is obvious to see that S obeys Ber 1

2 (1−εf )
if y is correct, thus we

deduce Pr[Si = 1] = 1
2 (1 − εf ) = Pr[z′

i �= yuT
i ], where εf = ε2

t

ε′ indicates the
bias of the final noise for simplicity. Since G(y) calculates the difference between
the number of equalities and inequalities, we have S =

∑m
i=1 Si = 1

2 (m − G(y)).
It is clear that the number of inequalities should be minimum if y is correct.
Thus the best candidate is y0 = arg miny∈Fl

2
S = arg maxy∈Fl

2
G(y), rather than

arg maxy∈Fl
2
|G(y)| claimed in [15]. Then, let XA=B be the indicator function of

equality. Rewrite Si = Xz′
i=yuT

i
as usual. Then Si is drawn from Ber 1

2 (1+εf )
if y

is correct and Ber 1
2

if y is wrong, which is considered to be random. Take S =∑m
i=1 Si, we consider the ranking procedure for each possible y ∈ F

l
2 according

to the decreasing order of the grade Sy.
Let yr denote the correct guess, and yw otherwise. Given the independency

assumption and the central limit theorem, we have

Syr
− 1

2 (1 + εf )m
√

1
2 (1 − εf ) 12 (1 + εf )m

∼ N (0, 1), and
Syw

− 1
2m

1
2

√
m

∼ N (0, 1),

where N (μ, σ2) is the normal distribution with the expectation μ and variance
σ2. Thus we can derive Syr

∼ N (12 (1 + εf )m, 1
4 (1 − ε2f )m) and Syw

∼ N (m
2 , m

4 ).
According to the additivity property of normal distributions, Syr

− Syw
∼

N ( 12εfm, 1
4 (2 − ε2f )m). Therefore, we obtain the probability that a wrong

yw has a better rank than the right yr, i.e., Syr
< Syw

is approximately

Φ
(
−
√

ε2fm/(2 − ε2f )
)
, where Φ(·) is the distribution function of the standard

normal distribution. Let ρ = ε2fm/(2 − ε2f ) ≈ 1
2ε2fm, and this probability

becomes Φ(−√
ρ) ≈ e−ρ/2/

√
2π. Since we just select the best candidate, i.e., Syr

should rank the highest to be chosen. Thus Syr
gets the highest grade with prob-

ability approximatively equal to (1−Pr[Syr
< Syw

])2
l−1 ≈ exp(−2le−ρ/2/

√
2π).

It is necessary to have 2l ≤ eρ/2, i.e., at least m ≥ 4lln2/ε2f to make the proba-
bility high. So far, we have derived the number of queries used by the authors
of [15] in their presentation at Asiacrypt 2014.

Furthermore, we have made extensive experiments to check the real suc-
cess probability according to different multiples of the queries. The simulations
show that m = 4lln2/ε2f provides a success probability of about 70%, while for
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m = 8lln2/ε2f the success rate is closed to 17. To be consistent with the practical
experiments, we finally estimate m as 8lln2/ε2f hereafter. Updating the complex-
ities for solving different LPN instances in [15] with the m = 8lln2/ε2f number
of queries, the results reveal that the algorithm in [15] is not so valid to break
the 80-bit security bound.

Fig. 1. Distributions according to yw and yr

In addition, in [15] there is a regrettable missing of the concrete terminal
condition. It was said that a false alarm can be recognized by hypothesis testing,
without the derivation of the specific threshold. To ensure the completeness of
our improved algorithm, we solve this problem as follows. Denote the threshold
by T , and adopt the selected best candidate y as correct if Sy ≥ T . The density
functions of the corresponding distributions according to yw and yr are depicted
in Fig. 1, respectively. Then it is clear to see that the probability for a false
alarm is Pf = Pr[Sy ≥ T |y is wrong]. It is easy to estimate Pf as 1 − Φ(λ),
where λ = (T − m

2 )/
√

m
4 . Following our improvements described in Sect. 4.1,

there is no assumption on the weight of x′
2 now. The restricted condition is that

the expected number of false alarms over all the (2l
∑w1

i=0

(
k1
i

)
)/Pr(w1, k1) basic

tests is lower than 1. Thus we derive λ = −Φ−1

(
Pr(w1,k1)

2l
∑w1

i=0 (k1
i )

)
and the algorithm

terminal condition is Sy ≥ T , i.e., G(y) ≥ λ
√

m, for Sy = 1
2 (m+G(y)) according

to the definition above.

4.3 An Vital Flaw in [15] that May Affect the Ultimate Results

As stated in [15], it took an optimized approach to calculate DgT for each
column in G. Concretely, for a fixed value s, divide the matrix D into a =
�k/s� parts, i.e., D = [D1,D2, . . . ,Da], each sub-matrix containing s columns

7 It is also analyzed that it calls for a number of 8lln2/ε2f to bound the failure proba-
bility in [6]. However, it uses the Hoeffding inequality, which is the different analysis
method from ours.
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(possibly except the last one). Then store all the possible values of DixT for
x ∈ F

s
2 in tables indexed by i = 1, 2, . . . , a. For a vector g = [g1,g2, . . . ,ga]

partitioned according to D, we have DgT = D1gT
1 +D2gT

2 + · · ·+DagT
a , where

DigT
i can be read directly from the stored tables. The complexity of this step

is to add those intermediate results together to derive the final result, shown
as C1 in Sect. 3. It was stated that the cost of constructing the tables is about
O(2s), which can be negligible. Since the matrix D can only be obtained from
the online querying and then refreshed for each iteration, this procedure should
be reprocessed for each iteration and cannot be pre-computed in advance in the
offline phase. Thus it is reasonable to include PC1/ (Pr(w1, k1)Pr(w2, k2)) in the
overall complexity.

5 Variants of the BKW Algorithm

In this section, we first present a theoretical analysis of the previous BKW
algorithms with an emphasis on the differences in the reduction phase. Then we
extend the heuristic algorithm LF2 into a series of variant algorithms denoted
by LF(κ), as a basis of the improved algorithm proposed in Sect. 6. Furthermore,
we verify the performance of these BKW algorithms in experiments

5.1 LF1

LF1 works as follows. Choose a representative in each partition, add it to the
rest of samples in the same partition and at last discard the representative,
shown in the Algorithm 2 in Sect. 2.2. It is commonly believed that LF1 has no
heuristics, and follows a rigorous analysis of its correctness and performance in
theory. However, having checked the proof in [22], we find that the authors have
overlooked the fact that the noise bits are no more independent after performing
the xor operations among the pairs of queries, which can be easily examined
in the small instances. Thus there is no reason in theory to apply the pilling-up
lemma for calculating the bias as shown in the proof. Thereby there is no need
to treat it superior to other heuristic algorithms for the claimed strict proof.

Fortunately, by implementing LF1 algorithm, we find that the dependency
does not affect the performance of the algorithm, shown in the Table 4. That is,
the number of queries in theory with the independency assumption supports the
corresponding success rate in practice. Thus we keep the independence assump-
tion for the noise bits hereafter.

5.2 LF2

LF2 computes the sum of pairs from the same partition, shown in Algorithm 3
in Sect. 2.2. LF2 is more efficient and allows fewer queries compared to LF1. Let
n[i], i = 1, 2, . . . , t be the excepted number of samples via the i-th BKW step,
and n[0] = n. We impose a restriction that n[i] is not larger than n for any i to
LF2 with the following considerations. One is to control the dependence within
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certain limits, another is to preserve the number of samples not overgrowing,
which will also stress on the complexity otherwise. The simulations done with
the parameters under the restriction confirm the performance of LF2 shown in
Table 4, and encounter with the statement that the operations of every pair have
no visible effect on the success rate of the algorithm in [22].

5.3 Variants: LF(κ)

Here we propose a series of variants of the BKW algorithm, called LF(κ), which
not only consider pairs of columns, but also consider κ-tuples that add to 0 in
the last b entries. We describe the algorithm as follows. It is easy to see that
the number of tuples satisfying the condition has an expectation of E =

(
n
κ

)
2−b,

given the birthday paradox. Similarly, define the excepted number of samples
via the i-th BKW step as n[i], i = 1, 2, . . . , t. We have n[i] =

(
n[i−1]

κ

)
2−b, which

also applies to LF2 when κ = 2. We still impose the restriction that n[i] is not
larger than n for any i. The bias introduced by the variant decreases as εκt

. We
have implemented and run the variant algorithm for κ = 3, 4 under the data
restriction, and verified the validity of these algorithms, shown in Table 4.

Algorithm 5. Reduction of LF(κ)
1: Find sufficient κ-tuples from Gi−1 that add to 0 in the last b entries.
2: for each κ-tuple do
3: Calculate the sum of κ-tuple, joint it into Gi after discarding its last b bits of 0.
4: end for

The extra cost of these variant BKW algorithms is to find a number of
n[i] such κ-tuples at each step. It is fortunate that this is the same as the
κ-sum problem investigated in [25], which stated that the κ-sum problem for a
single solution can be solved in κ2b/(1+�log2κ	) time and space [25]; moreover, one
can find n[i] solutions to the κ-sum problem with n[i]1/(1+�log2κ	) times of the
work for a single solution, as long as n[i] ≤ 2b/�log2κ	 [25]. Thus this procedure
of the variant BKW algorithms adds a complexity of κ(2bn[i])1/(1+�log2κ	) in
time at each step, and κ2b/(1+�log2κ	) in space. Additionally, it stated that the
lower bound of the computational complexity of κ-sum problem is 2b/κ. Thus
it is possible to remove the limitation of the extra cost from the variant BKW
algorithms if a better algorithm for κ-sum problem is proposed.

In Sect. 6, we present the results of the improved algorithms by embedding
optimal cascaded perfect codes, which adopt LF1, LF2 and LF(4) at Step 2
respectively. We choose κ = 4 when adopting the variant BKW algorithm for the
following reasons. If κ increases, the bias εκt

introduced by LF(κ) falls sharply,
and then we cannot find effective attack parameters. Since particularly stressed
in [25] it takes a complexity of 2b/3 in time and space for a single solution
when κ = 4, it calls for an extra cost of (2bn[i])1/3 in time at each step and
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2b/3 in space when adopting the variant LF(4)8. Additionally, since the birthday
paradox that n[i] = (

(
n[i−1]

4

)
) · 2−b, we derive that n[i] = n[i−1]4

4! · 2−b, then

n[i − 1] =
(
4! · 2b · n[i]

)1/4.

5.4 Simulations

We have checked the performance as well as the correctness of the heuristic
assumption by extensive simulations shown below. The experimental data adopt
the numbers of queries estimated in theory, and obtain the corresponding success
rate. In general, the simulations confirmed the validity of our theoretical analysis
and the heuristic assumption, though the simulations are just conducted on some
small versions of (k, η) for the limitation of computing power.

Table 4. Simulation data

8 Can LF(4) be equivalent to two consecutive LF2 steps? The answer is no. We can
illustrate this in the aspect of the number of vectors remained. If we adopt LF(4)

one step, then the number of vectors remained is about s =
(
n
4

)
· 2−b = n4

4!
· 2−b.

While if we first to reduce the last b1 positions with LF2, then the number of vectors

remained is t1 =
(
n
2

)
· 2−b1 = n2

2
· 2−b1 . Then, we do the second LF2 step regarding

to the next b − b1 positions and the number of vectors remained changes into t2 =
(
t1
2

)
· 2−(b−b1) = (n2/2·2−b1 )2

2
· 2−(b−b1) = n4

8
· 2−b−b1 . We can see that s is obviously

not equal to t2, so they are not equivalent. Indeed, LF(k) is algorithmically converted
into several LF2, the point here is that we need to run the process a suitable number
of times to find a sufficient number of samples.
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5.5 A Technique to Reduce the Data Complexity

We briefly present a technique that applies to the last reduction step in LF2,
aiming to reduce the number of queries. For simplicity, we still denote the sam-
ples at last step by (gt−1, z), which accords with z = xgT

t−1 + e and consists
of k dimensions. Let the number of samples remained before running the last
reduction step be nt−1 and the aim is to further reduce b dimensions at this
step, i.e., l = k − b for solving. This step runs as: (1) Sort the samples according
to the last a bits of gt−1 (a ≤ b), and merge pairs from the same partition to
generate the new samples (g′

t−1, z
′). (2) Sort (g′

t−1, z
′) into about B = 2b−a

groups according to the middle b − a bits of g′
t−1 with each group containing

about m =
(
n
2

)
2−b new samples. In each group, the value of x[l+1,l+a]g′T

[l+1,l+a]

is constant given an assumed value of x[l+1,l+a], denoted by α. Here x[a,b] means
the interval of components within the vector x. Thus in each group, the bias
(denoted by ε) for the approximation of z′ = x[1,l]g′T

[1,l] contains the same sign,
which may be different from the real one, for z′ = x[1,l]g′T

[1,l] + α + e′ according
to the assumed value of x[l+1,l+a].

To eliminate the influence of the different signs among the different groups,
i.e., no matter what value of x[l+1,l+a] is assumed, we take χ2-test to distinguish
the correct x[1,l]. For each group, let the number of equalities be m0. Then
we have Si = (m0 − m

2 )2/(m
2 ) + (m − m0 − m

2 )2/(m
2 ) = W 2/m, to estimate

the distance between the distributions according to the correct x[1,l] and wrong
candidates considered as random, where W is the value of the Walsh transform
for each x[1,l]. If x[1,l] is correct, then Si ∼ χ2

1(mε2); otherwise, Si ∼ χ2
1, referred

to [9]. Here, χ2
M denotes the χ2-distribution with M degrees of freedom, whose

mean is M and the variance is 2M ; and χ2
M (ξ) is the non-central χ2-distribution

with the mean of ξ + M and variance of 2(2ξ + M). Moreover, If M > 30, we
have the approximation χ2

M (ξ) ∼ N (ξ + M, 2(2ξ + M)) [8]. We assume that the
Sis are independent, and have the statistic S =

∑B
j=1 Si. If x[1,l] is correct, then

S ∼ χ2
B(Bmε2) ∼ N (B(1+ε2m), 2B(1+2ε2m); otherwise, S ∼ χ2

B ∼ N (B, 2B),
when B > 30, according to the additivity property of χ2-distribution. Hereto,
we exploit a similar analysis as Sect. 4.1 to estimate the queries needed to make
the correct x[1,l] rank highest according to the grade S, and result in m ≥
4lln2
Bε2

(
1 +
√

1 + B
2lln2

)
by solving a quadratic equation in m. Further amplify

the result as m > 4lln2√
Bε2

and we find that this number decreases to a
√

B-th
of the original one with the success rate close to 1. We have simulated this
procedure for the independence assumption, and the experimental data verified
the pprocess. This technique allows us to overcome the lack of the data queries,
while at the expense of some increase of the time complexity, thus we do not
adopt it in the following Sect. 6.

6 Faster Algorithm with the Embedded Perfect Codes

In this section, we develop the improved algorithm for solving LPN with the key
ideas introduced in the above Sects. 4 and 5. Our improved algorithm for solving
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LPN has a similar framework as that in [15], but exploits a precise embedding of
cascaded concrete perfect codes at Step 4 and optimizes each step with a series
of techniques. The notations here follow those in Sect. 3.

We first formalize our improved algorithm in high level according to the
framework, shown in Algorithm 6. We start by including an additional step to
select the favorable queries.

Algorithm 6. Improved Algorithm with the embedding cascaded perfect codes
Input: (k, η)-LPN instance of N queries, algorithm parameters c, s, u, t, b, f, l, k2, w1.
1: Select n samples that the last c bits of g all equal 0 from the initial queries, and

store those selected z and g without the last c bits of 0.
2: Run the algorithm construction(k2, l, η) to generate the optimal cascaded perfect

codes and deduce the bias ε̃ introduced by this embedding.
3: repeat
4: Pick a random column permutation π and perform Gaussian elimination on

π(G) to derive [I L0];
5: for i = 1 to t do
6: Perform the BKW reduction step (LF1, LF2, LF(4)) on Li−1 resulting in Li.

7: end for
8: Based on the cascading, group the columns of Lt by the last k2 bits according

to their nearest codewords chunk by chunk.
9: Set k1 = k − c − tb − k2;

10: for x′
1 ∈ {0, 1}k1 with wt(x′

1) ≤ w1 do
11: Update the observed samples.
12: Use FWHT to compute the numbers of 1 s and 0s

for each y ∈ {0, 1}l, and pick the best candidate.
13: Perform hypothesis testing with a threshold.
14: end for
15: until: Acceptable hypothesis is found.

Step 0. Sample Selection. We select the data queries in order to transfer
the (k, η)-LPN problem into a (k − c, η)-LPN problem compulsively. It works
as follows. Just take the samples that the last c entries of g all equal 0 from
the initial queries. Thus we reduce the dimension of the secret vector x by c-bit
accordingly, while the number of initial queries needed may increase by a factor
of 2c. We only store these selected z and g without the last c bits of 0 to form
the new queries of the reduced (k − c, η)-LPN instance, and for simplicity still
denoted by (g, z). Note that the parameter k used hereafter is actually k − c,
and we do not substitute it for a clear comparison with [15].

As just stated, the number of initial queries is N = 2cn. To search for the
desirable samples that the last c entries of g being 0, we can just search for the
samples that the Hamming weight of its last c entries equals to 0 with a com-
plexity of log2 c [17]. But, this can be sped up by pre-computing a small table
of Hamming weight, and look up the table within a unit constant time O(1).
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The pre-computation time and space can be ignored compared to those of the
other procedures, for usually c is quite small. Thus, the complexity of this step
is about C0 = N .

Step 1. Gaussian Elimination. This step is still to change the position dis-
tribution of the coordinates of the secret vector and is similar as that described
in Sect. 3. Here we present several improvements of the dominant calculation of
the matrix multiplication DG.

In [15], this multiplication is optimized by table look-up as DgT = D1gT
1 +

D2gT
2 + · · ·+DagT

a , now we further improve the procedure of constructing each
table DixT for x ∈ F

s
2 by computing the products in a certain order. It is easy

to see that the product DixT is a linear combination of some columns in Di. We
partition x ∈ F

s
2 according to its weight. For x with wt(x) = 0, DixT = 0. For all

x with wt(x) = 1, we can directly read the corresponding column. Then for any
x with wt(x) = 2, there must be a x′ with wt(x) = 1 such that wt(x + x′) = 1.
Namely, we just need to add one column to the already obtained product Dix′T ,
which is within k bit operations. Inductively, for any x with wt(x) = w, there
must be a x′ with wt(x′) = w − 1 such that wt(x + x′) = 1. Thus, the cost of
constructing one table DixT ,x ∈ F

s
2 can be reduced to k

∑s
i=2

(
s
i

)
= (2s−s−1)k.

The total complexity is PC11 = (2s − s − 1)ka for a tables, which is much lower
than the original k22s. We also analyze the memory needed for storing the tables
[x,DixT ]x∈Fs

2
, i = 1, 2, . . . , a, which is M11 = 2s(s + k)a.

Next, we present an optimization of the second table look-up to sum up the
a columns, each of which has k dimensions. Based on the direct reading from the
above tables, i.e., D1gT

1 +D2gT
2 + · · ·+DagT

a , this addition can be divided into
�k/u� additions of a u-dimensional columns, depicted in the following schematic
(Fig. 2).

Fig. 2. Schematic of addition

We store a table of all the possible additions of a u-dimensional vectors and
read it �k/u� times to compose the sum of a k-dimensional vectors required.
Thus the complexity of Step 1 can be reduced to C1 = (n − k)(a + �k/u�) from
(n − k)ak.

Now we consider the cost for constructing the tables of all the possible addi-
tions of a u-dimensional vectors. It will cost 2uau(a − 1) bit operations by the
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simple exhaustive enumeration. We optimize this procedure as follows. It is
true that any addition of a u-dimensional repeatable vectors can be reduced
to the addition of less than or equal to a u-dimensional distinct nonzero vec-
tors, for the sum of even number of same vectors equals 0. Thus, the problem
transforms into the one that enumerates all the additions of i distinct nonzero
u-dimensional vectors, where i = 2, . . . , a. We find that every nonzero vector
appears

(
2u−1−1

i−1

)
times in the enumeration of all the additions of the i dis-

tinct nonzero vectors. Then the total number of nonzero components of the
vectors in the enumeration for i can be the upper bound of the bit opera-
tions for the addition, i.e., ≤

(
2u−2
i−1

)
·
∑u

j=1

(
u
j

)
j bit operations. Moreover, each

nonzero vector appears the same number of times in the sums of the enu-
meration, which can be bounded by

(
2u−1

i

)
/(2u − 1). We store the vectors as

storing sparse matrix expertly and the memory required for this table is con-
fined to

[(
2u−2
i−1

)
+
(
2u−1

i

)
/(2u − 1)

]
·
[∑u

j=1

(
u
j

)
j
]
. We can simply

∑u
j=1

(
u
j

)
j as

∑u−1
j=0

(
u−1
j−1

)
u = u2u−1. Thus the total complexity for constructing this table is

PC12 =
∑a

i=2 u2u−1
(
2u−2
i−1

)
in time and M12 =

∑a
i=2

i+1
i u2u−1

(
2u−2
i−1

)
in mem-

ory. For each addition of a u-dimensional columns derived from the original a
k-dimensional columns, we discard all the even number of reduplicative columns
and read the sum from the table. Moreover, this table can be pre-computed in
the off-line phase and applied to each iteration. Since the table here is in the
similar size to that used at Step 1 in [15], we still consider the complexity of
the first table look-up as O(1), which is the same as that in [15]. This step has
another improved method in [3]

Step 2. Collision Procedure. This step still exploits the BKW reduction
to make the length of the secret vector shorter. As stated in Sect. 5, we adopt
the reduction mode of LF1, LF2 and LF(4) to this step, respectively. Similarly,
denote the expected number of samples remained via the i-th BKW step by
n[i], i = 0, 1, . . . , t, where n[0] = n, n[t] = m and m is the number of queries
required for the final solving phase. First for LF1, n[i] = n − k − i2b, as it
discards about 2b samples at each BKW step. We store a table of all the possi-
ble additions of two f -dimensional vectors similarly as that in Step 1. For the
merging procedure at the i-th BKW step, we divide each pair of (k + 1 − ib)-
dimensional columns into �k+1−ib

f � parts, and read the sum of each part directly
from the table. The cost for constructing the table is PC2 = f2f−1(2f − 2)
and the memory to store the table is M2 = 3

2f2f−1(2f − 2). Then the cost of
this step is C2 =

∑t
i=1�k+1−ib

f �(n − k − i2b) for LF1, for the samples remained
indicated the pairs found.

Second for LF2, we have n[i] =
(
n[i−1]

2

)
2−b following the birthday para-

dox. We still do the merging as LF1 above and it calls for a cost of C2 =∑t
i=1�k+1−ib

f �n[i], and also a pre-computation of PC2 = f2f−1(2f − 2) in time
and M2 = 3

2f2f−1(2f − 2) in memory.
Third for LF(4), we similarly have n[i] =

(
n[i−1]

4

)
2−b. We need to store

a table of all the possible additions of four f -dimensional vectors. For the
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merging procedure at the i-th BKW step, we divide each 4-tuple of (k + 1 − ib)-
dimensional columns into �k+1−ib

f � parts, and read the sum of each part directly

from the table. The cost of constructing the table is PC2 =
∑4

i=2 f2f−1
(
2f−2
i−1

)

and the memory to store the table is
∑4

i=2
i+1

i f2f−1
(
2f−2
i−1

)
. Additionally, there

is still one more cost for finding the 4-tuples that add to 0 in the last b entries.
This procedure has a cost of (2bn[i])1/3 as stated in Sect. 5.3. Hence, Step 2
has the complexity of C2 =

∑t
i=1

(
�k+1−ib

f �n[i] + (2bn[i])1/3
)

for LF(4). More-

over, it needs another memory of 2b/3 to search for the tuples, i.e., M2 =∑4
i=2

i+1
i f2f−1

(
2f−2
i−1

)
+ 2b/3 for LF(4).

Step 3. Partial Secret Guessing. It still guesses all the vectors x′
1 ∈ {0, 1}k1

that wt(x′
1) ≤ w1 and updates z′ with z′ + x′

1G
′
1 at this step. We can optimize

this step by the same technique used at Step 1 for multiplication. Concretely, the
product x′

1G
′
1 is a linear combination of some rows in G′

1. We calculate these
linear combinations in the increasing order of wt(x′

1). For wt(x′
1) = 0, x′

1G
′
1 = 0

and z′ does not change. For all the x′
1 with wt(x′

1) = 1, we calculate the sum
of z′ and the corresponding row in G′

1, which costs a complexity of m. Induc-
tively, for any x′

1 with wt(x′
1) = w, there must be another x′

1 of weight w − 1
such that the weight of their sum equals 1, and the cost for calculating this sum
based on the former result is m. Thus the cost of this step can be reduced from
m
∑w1

i=0

(
k1
i

)
i to C3 = m

∑w1
i=1

(
k1
i

)
.

Step 4. Covering-Coding. This step still works as covering each g′
i ∈ G′

2 with
some fixed code to reduce the dimension of the secret vector. The difference is
that we propose the explicit code constructions of the optimal cascaded perfect
codes. According to the analysis in Sect. 6.1, we have already known the specific
constructing method, the exact bias introduced by this constructing method and
covering fashion, thus we do not repeat it here. One point to illustrate is how
to optimize the process of selecting the codeword for each g′

i ∈ G′
2 online. From

Table 3, we find that the perfect code of the longest length chosen for those LPN
instances is the [23, 12] Golay code. Thus we can pre-compute and store the
nearest codewords for all the vectors in the space corresponding to each perfect
code with a small complexity, and read it for each part of g′

i online directly.
Here we take the [23, 12] Golay code as an example, and the complexity for the
other cascaded perfect codes can be ignored by taking into consideration their
small scale of code length. Let H be the parity-check matrix of the [23, 12] Golay
code corresponding to its systematic generator matrix. We calculate all the syn-
dromes HgT for g ∈ F

23
2 in a complexity of PC4 = 11 · 23 · 223. Similarly, it can

be further reduced by calculating them in an order of the increasing weight and
also for the reason that the last 11 columns of H construct an identity matrix.
Based on the syndrome decoding table of the [23, 12] Golay code, we find the
corresponding error vector e to HgT since HgT = H(cT + eT ) = HeT , and
derive the codeword c = g + e. We also obtain u, which is the first 12 bits of c.
We store the pairs of (g,u) in the table and it has a cost of M4 = (23+12)·223 in
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space. For the online phase, we just need to read from the pre-computed tables
chunk by chunk, and the complexity of this step is reduced to C4 = mh.

Step 5. Subspace Hypothesis Testing. At this step, it still follows the solving
phase but with a little difference according to the analysis in Sect. 6.1. The
complexity for this step is still C5 = l2l

∑w1
i=0

(
k1
i

)
. Here we have to point that the

best candidate chosen is y0 = arg maxy∈Fl
2
G(y), rather than arg maxy∈Fl

2
|G(y)|.

According to concrete data shown in the following tables, we estimate the success
probability as 1 − Pr[Sy < T |y is correct] considering the missing events, and
the results will be close to 1.

6.1 Complexity Analysis

First, we consider the final bias of the approximation z′
i = yuT

i in our improved
algorithm. As the analysis in Sect. 4.1, we derive the bias introduced by embed-
ding optimal cascaded perfect codes, denoted by ε̃. The bias introduced by the
reduction of the BKW steps is ε2

t

for adopting LF1 or LF2 at Step 2, while ε4
t

for adopting LF(4). Thus the final bias is εf = ε2
t

ε̃ for adopting LF1 or LF2,
and εf = ε4

t

ε̃ for adopting LF(4).
Second, we estimate the number of queries needed. As stated in Sect. 4.1, it

needs m = 8lln2/ε2f queries to distinguish the correct guess from the others in
the final solving phase. Then the number of queries for adopting LF1 at Step
2 is n = m + k + t2b. For adopting LF2, the number of queries is computed as
follows, n[i] ≈ �(2b+1n[i + 1])1/2�, i = t − 1, t − 2, . . . , 0, where n[t] = m and
n = n[0]. Similarly for adopting LF(4), the number of queries is computed as
n[i] ≈ �(4!2bn[i + 1])1/4�. Note that the number of initial queries needed in our
improved algorithm should be N = n2c for the selection at Step 0, whatever the
reduction mode is adopted at Step 2.

Finally, we present the complexity of our improved algorithm. The tables
for vector additions at Step 1 and Step 2 can be constructed offline, as there
is no need of the online querying data. The table for decoding at Step 4 can
be calculated offline as well. Then the complexity of pre-computation is Pre =
PC12 + PC2 + PC4. The memory complexity is about M = nk + M11 + M12 +
M2 + M4 for storing those tables and the queries data selected. There remains
one assumption regarding to the Hamming weight of the secret vector x′

1, and
it holds with the probability Pr(w1, k1), where Pr(w, k) =

∑w
i=0(1 − η)k−iηi

(
k
i

)

for Pr[x′
i = 1] = η. Similarly, we need to choose another permutation to run

the algorithm again if the assumption is invalid. Thus we are expected to meet
this assumption within 1/Pr(w1, k1) times iterations. The complexity of each
iteration is PC11 + C1 + C2 + C3 + C4 + C5. Hence, the overall time complexity
of our improved algorithm online is

C = C0 +
PC11 + C1 + C2 + C3 + C4 + C5

Pr(w1, k1)
.
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6.2 Complexity Results

Now we present the complexity results for solving the three core LPN instances
by our improved algorithm when adopting LF1, LF2 and LF(4) at Step 2,
respectively.

Note that all of the three LPN instances aim to achieve a security level of
80-bit, and this is indeed the first time to distinctly break the first two instances.
Although we do not break the third instance, the complexity of our algorithm is
quite close to the security level and the remained security margin is quite thin.
More significantly, our improved algorithm can provide security evaluations to
any LPN instances with the proposed parameters, which may be a basis of some
cryptosystems (Table 5).

Table 5. The complexity for solving the three LPN instances by our improved algo-
rithm when adopting LF1

We briefly illustrate the following tables. Here for each algorithm adopting
a different BKW reduction type, we provide a corresponding table respectively;
each contains a sheet of parameters chosen in the order of appearance and a
sheet of overall complexity of our improved algorithm (may a sheet of queries
numbers via each BKW step as well). There can be several choices when choos-
ing the parameters, and we make a tradeoff in the aspects of time, data and
memory. From Tables 6 and 7, we can see the parameters chosen strictly follow
the restriction that n[i] ≤ n for i = 1, 2, . . . , t for LF2 and LF(4), as stated in
Sect. 5. We also present an attack adopting LF(4) to (592, 1/8)-instance without
the covering method but directly solving. The parameters are c = 15, s = 59,
u = 8, t = 3, b = 178, f = 17, l = k2 = 35, w1 = 1, and the queries data via each
BKW step is n = 260.859, n[1] = 260.853, n[2] = 260.827, n[3] = 260.725. The overall
complexity is C = 281.655 in time, N = 275.859 for initial data, M = 272.196 in
memory and Pre = 268.540 for the pre-computation.

Remark 1. All the results above strictly obey that m = 8lln2/ε2f , which is
much more appropriate for evaluating the success probability, rather than the
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Table 6. The complexity for solving three LPN instances by our improved algorithm
when adopting LF2

Table 7. The complexity for solving three LPN instances by our improved algorithm
when adopting LF(4)

m = 4lln2/ε2f which is chosen by the authors of [15] in their presentation at
Asiacrypt 2014. If we choose the data as theirs for comparison, our complexity
can be reduced to around 271, which is about 28 time lower than that in [15].

6.3 Concrete Attacks

Now we briefly introduce these three key LPN instances and the protocols based
on them. The first one with parameter of (512, 1/8) is widely accepted in
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various LPN-based cryptosystems, e.g., HB+ [19], HB# [12] and LPN-C [13]. The
80-bit security of HB+ is directly based on that of (512, 1/8)-LPN instance. Thus
we can yield an active attack to break HB+ authentication protocol straight
forwardly. HB# and LPN-C are two cryptosystems with the similar structures
for authentication and encryption. There exist an active attack on HB# and a
chosen-plaintext attack on LPN-C. The typical parameter settings of the columns
number are 441 for HB#, and 80 (or 160) for LPN-C. These two cryptosystems
both consist of two version: secure version as Random- HB# and LPN-C, effi-
cient version as Toeplitz- HB# and LPN-C. For the particularity of Toeplitz
Matrices, if we attack its first column successively, then the cost for determining
the remaining vectors can be bounded by 240. Thus we break the 80-bit security
of these efficient versions employing Toeplitz matrices, i.e., Toeplitz-HB# and
LPN-C. For the random matrix case, the most common method is to attack it
column by column. Then the complexity becomes a columns number multiple
of the complexity attacking one (512, 1/8)-LPN instance9. That is, it has a cost
of 441 × 272.177 ≈ 280.962 to attack Random-HB#, which slightly exceeds the
security level, and may be improved by some advanced method when conduct-
ing different columns. Similarly, the 80-bit security of Random- LPN-C can be
broke with a complexity of at most 160 × 272.177 ≈ 279.499.

The second LPN instance with the increased length (532, 1/8) is adopted as
the parameter of an irreducible Ring-LPN instance employed in Lapin to achieve
80-bit security [16]. Since the Ring-LPN problem is believed to be not harder
than the standard LPN problem, the security level can be break easily. It is
urgent and necessary to increase the size of the employed irreducible polynomial
in Lapin for 80-bit security. The last LPN instance with (592, 1/8) is a new design
parameter recommended to use in the future. However, we do not suggest to use
it, for the security margin between our attack complexity and the security level
is too small.

7 Conclusions

In this paper, we have proposed faster algorithms for solving the LPN problem
based on an optimal precise embedding of cascaded concrete perfect codes, in the
similar framework to that in [15], but with more careful analysis and optimized
procedures. We have also proposed variants of BKW algorithms using tuples
for collision and a technique to reduce the requirement of queries. The results
beat all the previous approaches, and present efficient attacks against the LPN
instances suggested in various cryptographic primitives. Our new approach is
generic and is the best known algorithm for solving the LPN problem so far,
which is practical to provide concrete security evaluations to the LPN instances
with any parameters in the future designs. It is our further work to study the
problem how to cut down the limitation of candidates, and meanwhile employ
other type of good codes, such as nearly perfect codes.
9 Here, we adjust the parameter of (512, 1/8)-LPN instance in Table 6 that c changes

into 16. Then the complexity of time, initial data, memory and pre-computation are
respectively C = 272.177, N = 269.526, M = 268.196 and Pre = 268.020.
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differential can be reduced from O(22m) to O(m2). Thirdly, we associate
a primitive index with the linear layers of SPN structures. Based on the
matrices theory over integer rings, we prove that the length of impossible
differentials of an SPN structure is upper bounded by the primitive index
of the linear layers. As a result we show that, unless the details of the S-
boxes are considered, there do not exist 5-round impossible differentials
for the AES and ARIA. Lastly, based on the links between impossible
differential and zero correlation linear hull, we projected these results on
impossible differentials to zero correlation linear hulls. It is interesting to
note some of our results also apply to the Feistel structures with SP-type
round functions.

Keywords: Impossible differential · Zero correlation linear · SPN struc-
ture · Feistel structure · AES · Camellia · ARIA

1 Introduction

Block ciphers are the vital elements in constructing many symmetric crypto-
graphic schemes and the core security of these schemes depends on the resistance
of the underlying block ciphers to known cryptanalytic techniques. Differential
cryptanalysis [4] and linear cryptanalysis [20] are among the most famous crypt-
analytic tools. Nowadays, most block ciphers are designed to be resilient to these
two attacks. To prove the security of a block cipher against differential/linear
attack, a common way is to give an upper bound on the rounds of the differential
characteristics/linear trails that can distinguish a round-reduced cipher from a
random permutation. Or equivalently, one can show when the number of the
rounds of a block cipher is more than a certain r, there do not exist any useful
differential characteristics or linear trails. However, the security margin of the
ciphers against extended differential and linear cryptanalysis, such as impossi-
ble differential [3,13] and zero correlation linear cryptanalysis [6], may not be
yet well studied and formulated. To some extend, the success of such attacks
relies mainly on the attackers’ intensive analysis of the structures used in each
individual designs.

In differential cryptanalysis, one usually finds differential characteristics with
high probability and then uses statistical methods to sieve the right keys. How-
ever, the main idea of impossible differential cryptanalysis, which was indepen-
dently proposed by Knudsen [13] and Biham et al. [3], is to use differentials
that hold with probability zero to discard the wrong keys. So far, impossible
differential cryptanalysis has received lots of attention and been used to attack
a variety of well-known block ciphers [5,7,16,22].

The first step in impossible differential cryptanalysis is to construct some
impossible differentials that cover as many rounds as possible. For any function
F : F2b → F2b , we can always find some α and β such that α → β is an impos-
sible differential of F . However, when b is large and we know little about the
algebraic structure of F , it is hard to determine whether α → β is a possible
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differential or an impossible one. A block cipher E(·, k) may exhibit a differential
α → β that is a possible differential for some key k while it is impossible for
the rest. In practice, such differentials are difficult to determine in most of the
cases. Generally, in a search for impossible differentials it is difficult to guar-
antee completeness. Therefore, from the practical point of view, we are more
interested in the impossible differentials that are independent of the secret keys.
Since in most cases the non-linear transformations applied to x can be writ-
ten as S(x ⊕ k), we always employ impossible differentials that are independent
of the S-boxes, which are called truncated impossible differentials, i.e., we only
detect whether there are differences on some bytes and we do not care about
the values of the differences. Usually, an impossible differential is constructed
by the miss-in-the-middle technique, i.e., trace the properties of input and out-
put differences from the encryption and decryption directions, respectively, if
there are some contradictions in the middle, an impossible differential is then
found. Several automatic approaches have been proposed to derive truncated
impossible differentials of a block cipher effectively such as the U-method [12],
UID-method [18] and the extended tool of the former two methods generalized
by Wu and Wang [24] (WW-method). It has been proved in [21] that the WW-
method can find all impossible differentials of a structure, or equivalently, it can
find all impossible differentials of a block cipher which are independent of the
choices of the non-linear components. Similar ideas have found applications in
cryptanalysis against hash functions BMW [10] and BLAKE [2].

In linear cryptanalysis, one uses linear characteristics with high correlations.
Zero correlation cryptanalysis is a novel technique for cryptanalysis of block
ciphers [6]. The distinguishing property used in zero correlation cryptanalysis is
the zero correlation linear approximations, i.e., those linear approximations that
hold with a probability p = 1/2, that is, strictly unbiased approximations having
a correlation c = 2p − 1 equal to 0. As in impossible differential cryptanalysis,
we are more interested in the zero correlation linear hulls that are independent
of the choices of the non-linear layers.

In CRYPTO 2015, Sun et al. proposed the concept of structure to character-
ize what “being independent of the choices of the S-boxes” means, and proposed
dual structure to study the link between impossible differentials and zero corre-
lation linear hulls [21]. One of the basic statements in [21] is that constructing
impossible differentials of a structure is equivalent to constructing zero corre-
lation linear hulls of the dual structure. Therefore, all the known methods to
construct impossible differentials of structures can also be used to construct
zero correlation linear hulls.

Despite the known 4-/4-/8-round impossible differentials for the AES, ARIA
and Camellia without FL/FL−1 layers [1,9,14,17,19,25], effort to find new
impossible differentials of these ciphers that cover more rounds has never stopped.
On the other hand, we already have some novel techniques such as the wide trail
strategy [8] and the decorrelation theory [23] to prove that a cipher is resilient
to differential and linear attacks. However, the provable security of block ciphers
against impossible differential and zero correlation linear cryptanalysis is still
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missing. Noting that for a dedicated iterated block cipher, there always exist
impossible differentials for any rounds with some keys, we wonder that if we
consider the impossible differentials that are independent of the choices of the
S-boxes, there may exist an integer R such that there does not exist any impos-
sible differentials that cover more than R rounds, which can give some insights
on provable security of block ciphers against impossible differential and zero
correlation linear cryptanalysis, i.e., R is the upper bound of such attacks. Fur-
thermore, since the WW-method can only determine whether a given differen-
tial/mask is an impossible differential/zero correlation linear hull or not, though
it can theoretically find all impossible differentials/zero correlation linear hulls of
a structure, it is impractical to exhaust all the differentials/masks to determine
whether there exist r-round impossible differentials/zero correlation linear hulls
or not. Therefore, finding new techniques to solve these problems in a practical
way remains as an open problem.

Our Contributions. Inspired by the provable security of differential and linear
cryptanalysis, this paper mainly concentrates on the provable security of block
ciphers against impossible differential/zero correlation linear cryptanalysis and
we aim at determining an upper bound for the longest rounds of impossible
differentials/zero correlation linear hulls of SPN structures and Feistel structures
with SPN round functions. The main results of this paper are as follows:

(1) For SPN structures, we prove that if α1 → β1 and α2 → β2 are possible
differentials, then α1|α2 → β1|β2 is also a possible differential, based on
which we conclude that there exists an r-round impossible differential if and
only if there exists an impossible differential α → β where the Hamming
weight of both α and β is 1. Therefore, for an SPN structure with m bytes,
the complexity of testing whether there exist r-round impossible differentials
is reduced significantly from O(22m) to O(m2).

(2) For Feistel structures with SP-type round functions, we prove that if α1 → β1

and α2 → β2 are independent possible differentials (we will define it later),
then α1|α2 → β1|β2 is also an independent possible differential, then similar
result as in (1) applies.

(3) For any matrix over finite fields, we can always define two polynomials to
calculate an upper bound on the highest possible rounds of impossible differ-
entials of SPN structures and independent impossible differentials of Feistel
structures with SP-type round functions. Our results show that, unless we
take the details of the S-boxes into consideration, there do not exist 5-round
impossible differentials of the AES and ARIA, and 9-round independent
impossible differentials of Camellia without FL/FL−1 layers.

(4) Since the zero correlation linear hull of a structure is equivalent to the impos-
sible differential of its dual structure, our results on impossible differentials
cryptanalysis also apply to zero correlation linear cryptanalysis.

From the theoretical point of view, our results demonstrate some direct
insight to the longest possible rounds of truncated impossible differentials and
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zero correlation linear hulls. And from the practical point of view, our results
could reduce the work effort to find impossible differentials and zero correlation
linear hulls of a structure.

Organization. The rest of this paper is organized as follows. Section 2 will intro-
duce some definitions that will be used throughout this paper. In Sect. 3, we give
some new features of the structures. We investigate on the SPN structures and
Feistel structures with SP-type round functions in Sects. 4 and 5, respectively.
Section 6 concludes the paper.

Fig. 1. Feistel structure with SP-type round functions

2 Preliminaries

2.1 Block Ciphers

SPN Ciphers. The SPN structure is widely used in constructing cryptographic
primitives. It iterates some SP-type round functions to achieve confusion and
diffusion. Specifically, the SP-type function f : Fm

2b → F
m
2b used in this paper is

defined as follows where F2b is the finite field with 2b elements.
Assume the input x is divided into m pieces x = (x0, . . . , xm−1), where xi is

a b-bit byte. First, apply the non-linear transformation si to xi,

y = S(x) � (s0(x0), . . . , sm−1(xm−1)) ∈ F
m
2b .

Then, apply a linear transformation P : Fm
2b → F

m
2b to y, and Py is the output

of f . Notice that the linear transformation in the last round of an r-round SPN
structure is omitted, i.e., an r-round SPN cipher is simply denoted as (SP )r−1S.

Feistel Ciphers. An r-round Feistel cipher E is defined as follows: Let (L0, R0)
∈ F

2m
2 be the input of E. Iterate the following transformation r times:

{
Li+1 = Fi(Li) ⊕ Ri

Ri+1 = Li

0 ≤ i ≤ r − 1,

where Li, Ri ∈ F
m
2 , see Fig. 1. The output of E is defined as the output of the

r-th iteration. In this paper, we will focus on the case that Fi’s are defined as
SP-type functions.
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2.2 Vectors and Matrices

Assume α, β ∈ F
m
2b , where F

m
2b is the vector space over F2b with dimension m.

Then α|β is defined as the bit-wise OR operation of α and β. Let θ : F2b → F2

be defined as

θ(x) =

{
0 x = 0,

1 x �= 0.

Then, for X = (x0, . . . , xm−1) ∈ F
m
2b , the truncated characteristic of X is defined

as
χ(X) � (θ(x0), . . . , θ(xm−1)) ∈ F

m
2 .

The Hamming weight of X is defined as the number of non-zero elements of the
vector, i.e. H(X) = #{i|xi �= 0, i = 0, 1, . . . ,m − 1}.

For P = (pij) ∈ F
m×m
2b

, denote by Z the integer ring, the characteristic
matrix of P is defined as P ∗ = (p∗

ij) ∈ Z
m×m, where p∗

ij = 0 if pij = 0 and
p∗
ij = 1 otherwise. A matrix M ∈ Z

m×m is non-negative if all elements of M
are non-negative, and positive if all elements of M are positive. Therefore, the
characteristic matrix is always non-negative.

Definition 1. Let P ∈ F
m×m
2b

, P ∗ be the characteristic matrix of P , and

ft(x) = xt,

gt(x) =

{∑h
i=0 x2i t = 2h,∑h
i=1 x2i−1 t = 2h − 1.

Then the minimal integer t such that ft(P ∗) is a positive matrix is called type
1 primitive index of P , and the minimal integer t such that gt(P ∗) is positive is
called type 2 primitive index of P .

If the input X to the linear layer P is viewed as a column vector, then
the output Y can also be viewed as a column vector which is computed as
Y = PX. According to the definition of characteristic matrix, p∗

ij = 0 means
the i-th output byte of the first round is independent of the j-th input byte.
Generally, let ft(P ∗) = (P ∗)t = (qij), then qij = 0 means the i-th output byte
of the t-round SPN cipher is independent of the j-th input byte. Furthermore,
let (P ∗)t1 +(P ∗)t2 = (uij), then uij = 0 means the i-th output bytes of both the
t1-round and t2-round SPN cipher are independent of j-th input byte. Similarly,
let gt(P ∗) = (wij), then wij = 0 means the i-th output byte of the t-round
Feistel cipher is independent of the j-th input byte.

2.3 Impossible Differentials and Zero Correlation Linear Hulls

Given a function G : Fn
2 → F2, the correlation c of G is defined by

c(G(x)) �
1
2n

∑

x∈Fn
2

(−1)G(x).
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Given a function G : Fn
2 → F

k
2 , the correlation c of the linear approximation for

a k-bit output mask b and an n-bit input mask a is defined by

c(ax ⊕ bG(x)) =
1
2n

∑

x∈Fn
2

(−1)ax⊕bG(x).

If c(ax ⊕ bG(x)) = 0, then (a → b) is called a zero correlation linear hull of G.
This definition can be extended as follows: let A ⊆ F

n
2 , B ⊆ F

k
2 , if for all a ∈ A

and b ∈ B, c(ax ⊕ bG(x)) = 0, then (A → B) is also called a zero correlation
linear hull of G.

Let δ ∈ F
n
2 and Δ ∈ F

k
2 . The differential probability of δ → Δ is defined as

p(δ → Δ) �
#{x ∈ F

n
2 |G(x) ⊕ G(x ⊕ δ) = Δ}

2n
.

If p(δ → Δ) = 0, then δ → Δ is called an impossible differential of G, this
definition follows that in [3,13]. Let A ⊆ F

n
2 , B ⊆ F

k
2 . If for all a ∈ A and b ∈ B,

p(a → b) = 0, A → B is called an impossible differential of G.

3 Differential Properties of Structures

In many cases, when constructing impossible differentials and zero correlation
linear hulls, we are only interested in detecting whether there is a difference
(mask) in an S-box or not, regardless of the actual value of the difference (mask)
which leads to the following definition:

Definition 2 [21]. Let E : Fn
2 → F

n
2 be a block cipher with bijective S-boxes as

the basic non-linear components.

(1) A structure EE on F
n
2 is defined as a set of block ciphers E′ which is exactly

the same as E except that the S-boxes can take all possible bijective trans-
formations on the corresponding domains.

(2) Let α, β ∈ F
n
2 . If for any E′ ∈ EE, α �→ β is an impossible differential (zero

correlation linear hull) of E′, α �→ β is called an impossible differential (zero
correlation linear hull) of EE.

Thus the structure deduced by a single S layer can be written as ES ; the
structure deduced by a single S layer followed by a P layer can be written as
ESP . If α → β is not an impossible differential of EE , i.e., there exist some x
and E′ ∈ EE such that E′(x) ⊕ E′(x ⊕ α) = β, we call it a possible differential
of EE .

Definition 3. Let E be a structure and α �→ β an impossible differential of E.
If for all α∗ and β∗ satisfying χ(α∗) = χ(α) and χ(β∗) = χ(β), α∗ �→ β∗ are
impossible differentials, we call α �→ β an independent impossible differential
of E. Otherwise, we call it a dependent impossible differential of E.
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As shown in [25], for any α �= 0 and β �= 0,

(0|0|0|0|0|0|0|0, α|0|0|0|0|0|0|0) �→ (β|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0)

is an 8-round impossible differential of Camellia without FL/FL−1 layers. Accord-
ing to the definition, such an impossible differential is an independent impossible
differential of Camellia without FL/FL−1 layers.

A dependent impossible differential means that there are some constraints on
actual differences of both the input and output bytes. For example, for any given
α, (0, α) �→ (0, α) is a 5-round impossible differential of Feistel structures with
bijective round functions. However, we cannot determine that (0, α) �→ (0, β) is
an impossible differential for any α �= β. Thus, (0, α) �→ (0, α) is a dependent
impossible differential of 5-round Feistel structure with bijective round functions.

Usually, we have many different ways to define a linear transformation, which
means we have many different ways to express the matrix of the linear trans-
formation. However, no matter which one we use, the transformation is always
linear over F2, thus the bit-wise matrix representation of a linear transformation
is call the primitive representation. The definition of dual structure is proposed
to study the link between impossible differential and zero correlation linear hulls:

Definition 4 [21]. Let FSP be a Feistel structure with SP -type round function,
and let the primitive representation of the linear transformation be P . Let σ be
the operation that exchanges the left and right halves of a state. Then the dual
structure F⊥

SP of FSP is defined as σ ◦ FPTS ◦ σ.
Let ESP be an SPN structure with primitive representation of the linear trans-

formation being P . Then the dual structure E⊥
SP of ESP is defined as ES(P−1)T .

Next, we are going to give some statements on the differential properties of
structures while they may not hold for dedicated block ciphers.

Let E(r) be an r-round iterated structure. If α → β is a possible differential of
E(r1), then for any x, there always exists E1 ∈ E(r1) such that E1(x)⊕E1(x⊕α) =
β. If β → γ is a possible differential of E(r2), for y = E2(x), there always
exists E2 ∈ E(r2) such that E2(y) ⊕ E2(y ⊕ β) = γ. Let E = E2 ◦ E1, we have
E(x)⊕E(x⊕α) = γ which means α → γ is a possible differential E(r1+r2). See (1)
for the procedures. Accordingly, for a structure E , if there do not exist r-round
impossible differentials, there do not exist R-round impossible differentials for
any R ≥ r.

x
E1−→ y

E2−→ z
E : | | |

x ⊕ α
E1−→ y ⊕ β

E2−→ z ⊕ γ

(1)

Next we show that α → β is a possible differential of a single S layer
ES if and only if χ(α) = χ(β). Firstly, we cannot construct a bijective S-
box such that a zero difference causes a non-zero difference. Secondly, let α =
(α0, . . . , αm−1), β = (β0, . . . , βm−1) ∈ F

m
2b . If χ(α) = χ(β), for any

x = (x0, . . . , xm−1) ∈ F
m
2b , we can always construct an S = (s0, . . . , sm−1) where

si : F2b → F2b , such that S(x) ⊕ S(x ⊕ α) = β, i.e., si(xi) ⊕ si(xi ⊕ αi) = βi,
i = 0, . . . , m − 1.
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4 Cryptanalysis of SPN Structures

In this section, we will simply use E(r)
SP to denote an r-round SPN structure.

4.1 How to Check Whether a Differential is Impossible or Not

Assume α → β is a possible differential of E(r)
SP . Then, there always exist some

α′ and β′ such that

α
ES

−→ α′ EPS···SP

−→ β′ ES

−→ β

is a possible differential of E(r)
SP . Thus for any α∗ and β∗ such that χ(α∗) = χ(α),

χ(β∗) = χ(β),

α∗ ES

−→ α′ EPS···SP

−→ β′ ES

−→ β∗

is still a possible differential. In other words, impossible differentials of SPN
structures are independent impossible differentials.

Therefore, for an SPN structure, to check whether there exists an r-round
impossible differential or not, one needs to test (2m − 1) × (2m − 1) ≈ 22m

candidates. However, this complexity could be further reduced as illustrated in
the following.

Lemma 1. Assume m ≤ 2b−1 − 1. If α1 → β1 and α2 → β2 are possible differ-
entials of ESP , then there always exist α and β such that

{
χ(α) = χ(α1)|χ(α2),
χ(β) = χ(β1)|χ(β2),

and α → β is a possible differential of ESP .

The proof of this lemma is shown in Appendix A. In the following, we always
assume m ≤ 2b−1 − 1 which fits well with most cases. Furthermore, since the
last round only has the S layer, we have:

Corollary 1. If α1 → β1 and α2 → β2 are possible differentials of E(r)
SP , α1|α2 →

β1|β2 is also a possible differential of E(r)
SP .

Assume (x0, 0, . . . , 0) → (y0, 0, . . . , 0) and (0, x1, 0, . . . , 0) → (0, y1, 0, . . . , 0)
are possible differentials of ESP , where x0, x1, y0, y1 are non-zero. Then according
to Corollary 1, (x0, x1, 0, . . . , 0) → (y0, y1, 0, . . . , 0) is a possible differential. In
other words, if (x0, x1, 0, . . . , 0) → (y0, y1, 0, . . . , 0) is an impossible differential
of ESP , either (x0, 0, . . . , 0) → (y0, 0, . . . , 0) or (0, x1, 0, . . . , 0) → (0, y1, 0, . . . , 0)
is an impossible differential. Generally, we have the following theorem:

Theorem 1. There exists an impossible differential of E(r)
SP if and only if there

exists an impossible differential α �→ β of E(r)
SP , where H(α) = H(β) = 1, with

H(x) denoting the Hamming weight of x.
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Thus with the help of Theorem 1, for every SPN structure, and any (α, β)
where H(α) = H(β) = 1, we can use the WW-method to check whether α → β
is a possible differential or not. Therefore, we could reduce the complexities of
checking whether there exists an impossible differential of an SPN structure from
O(22m) to O(m2).

Since the zero correlation linear hull of ESP is the impossible differential of
ES(P−1)T which is also an SPN structure, we have the following:

Corollary 2. There exists a zero correlation linear hull of E(r)
SP if and only if

there exists a zero correlation linear hull α �→ β of E(r)
SP where H(α) = H(β) = 1.

4.2 An Upper Bound for the Rounds of Impossible Differentials

As discussed above, we can use the WW-method to determine the maximal
length of impossible differentials for an SPN structure. In the following, we are
going to show an upper bound for the length of impossible differentials for an
SPN structure, which only uses the property of the P layer. To characterize the
longest impossible differential of an SPN cipher, we first recall that if β = Pα,
then there always exist α0 and β0 such that χ(α0) = χ(α), χ(β0) = χ(β) and
α0 → β0 is a possible differential of a single round of SPN structure. Then
according to Corollary 1, the following theorem holds.

Theorem 2. Let R1(P ) and R−1(P ) be the type 1 primitive indexes of P and
P−1 respectively. Then there does not exist any impossible differential or zero
correlation linear hull of E(r)

SP for r ≥ R1(P ) + R−1(P ) + 1.

Fig. 2. Constructing (R1(P ) + R−1(P ) + 1)-round differential for ESP

Proof. See Fig. 2. Firstly, for any α1 �= 0, H(α1) = 1, according to Lemma 1,
there always exist some β1 where H(β1) = m such that α1 → β1 is a possible
differential of R1(P )-round ESP . Secondly, for any α2 �= 0, H(α2) = 1, according
to Lemma 1, there always exist some β2 where H(β2) = m such that α2 → β2

is a possible differential of R−1(P )-round decryption of ESP .
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Since χ(β1) = χ(β2), β1 → β2 is a possible differential of the single S layer
ES , we conclude that α1 → α2 is a possible differential of (R1(P )+R−1(P )+1)-
round ESP . By Theorem 1, there does not exist any impossible differential or
zero correlation linear hull of E(r)

SP for r ≥ R1(P ) + R−1(P ) + 1. �

4.3 Applications

The Advanced Encryption Standard (AES) is one of the most popular SPN
ciphers up to date. Firstly, if we consider the 4 × 4 state as a vector in F

16
28 , the

composition of the ShiftRows and MixColumns can be written as the following
16 × 16 matrix over F28 :

P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 3 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3
3 0 0 0 0 1 0 0 0 0 1 0 0 0 0 2
0 0 0 1 2 0 0 0 0 3 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 2 0 0 0 0 3 0
0 0 0 3 1 0 0 0 0 1 0 0 0 0 2 0
0 0 0 2 3 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 2 0 0 0 0 3 0 0
0 0 3 0 0 0 0 1 1 0 0 0 0 2 0 0
0 0 2 0 0 0 0 3 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 2 3 0 0 0 0 1 0 0
0 3 0 0 0 0 1 0 0 0 0 1 2 0 0 0
0 2 0 0 0 0 3 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 2 0 0 0 0 3 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 2 3 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, the characteristic matrix of P is

P ∗ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Since

(P ∗)2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we get R1(P ) = 2. Similarly, we can get R−1(P ) = 2. Therefore, we have

Proposition 1. There does not exist any impossible differential or zero corre-
lation linear hull of EAES which covers r ≥ 5 rounds. Or equivalently, there does
not exist any 5-round impossible differential or zero correlation linear hull of the
AES unless the details of the S-boxes are considered.

ARIA is another famous SPN cipher which uses a linear transformation P
such that P = P−1. Since

(P ∗)2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 2 2 2 2 4 2 4 2 2 4 4 2 4 4 2
2 7 2 2 4 2 4 2 2 2 4 4 4 2 2 4
2 2 7 2 2 4 2 4 4 4 2 2 4 2 2 4
2 2 2 7 4 2 4 2 4 4 2 2 2 4 4 2
2 4 2 4 7 2 2 2 2 4 4 2 2 2 4 4
4 2 4 2 2 7 2 2 4 2 2 4 2 2 4 4
2 4 2 4 2 2 7 2 4 2 2 4 4 4 2 2
4 2 4 2 2 2 2 7 2 4 4 2 4 4 2 2
2 2 4 4 2 4 4 2 7 2 2 2 2 4 2 4
2 2 4 4 4 2 2 4 2 7 2 2 4 2 4 2
4 4 2 2 4 2 2 4 2 2 7 2 2 4 2 4
4 4 2 2 2 4 4 2 2 2 2 7 4 2 4 2
2 4 4 2 2 2 4 4 2 4 2 4 7 2 2 2
4 2 2 4 2 2 4 4 4 2 4 2 2 7 2 2
4 2 2 4 4 4 2 2 2 4 2 4 2 2 7 2
2 4 4 2 4 4 2 2 4 2 4 2 2 2 2 7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

we have R1(P ) = R−1(P ) = 2. Therefore, we have
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Proposition 2. There does not exist any impossible differential or zero correla-
tion linear hull of EARIA which covers r ≥ 5 rounds. Or equivalently, there does
not exist any 5-round impossible differential or zero correlation linear hull of the
ARIA unless the details of the S-boxes are considered.

Since we already have 4-round impossible differential and 4-round zero cor-
relation linear hull of EAES and EARIA, unless we investigate on the details of
the S-boxes, with respect to the rounds, we cannot find neither better impossible
differentials nor zero correlation linear hulls for the AES and ARIA.

5 Cryptanalysis of Feistel Structures with SP-Type
Round Functions

In the following, we simply use F (r)
SP to denote an r-round Feistel structure with

SP-type round functions. Since the techniques to study the Feistel structure with
SPN round functions are almost the same, we only give the results as follows.

Lemma 2. Assume m ≤ 2b−1−1. If (α1, β1) → (γ1, α1) and (α2, β2) → (γ2, α2)
are possible differentials of F (1)

SP . Then, there always exist α, β and γ, such that
χ(α) = χ(α1)|χ(α2), χ(β) = χ(β1)|χ(β2), χ(γ) = χ(γ1)|χ(γ2), and (α, β) →
(γ, α) is a possible differential of F (1)

SP .

We have shown that all impossible differentials of an SPN structure are inde-
pendent impossible differentials. However, this does not hold for the Feistel struc-
ture. In the following, we only consider the independent impossible differentials
of a Feistel structure which fits well with most of the practical cases.

Lemma 3. If α1 → β1 and α2 → β2 are independent possible differentials of
F (r)

SP , (α1|α2) → (β1|β2) is also an independent possible differential.

Theorem 3. There exists an independent impossible differential of F (r)
SP if and

only if there exists an impossible differential α �→ β of F (r)
SP where H(α) =

H(β) = 1.

Therefore, checking whether there exists an r-round independent impossible
differential of a Feistel structure with SP-type round functions can also be reduced
to checking whether there exists an r-round independent impossible differential
with the Hamming weights of both the input and output difference being 1. Since
the dual structure of FSP is σ ◦ FPTS ◦ σ, the results on impossible differentials
cannot be applied to zero correlation linear hulls directly. However, in case P is
invertible, we always have

FPTS =
(
(PT )−1, (PT )−1

)
◦ FSPT ◦

(
PT , PT

)
� Pin ◦ FSPT ◦ Pout,

which indicates that despite some linear transformations applied to the input and
output masks, respectively, both FSP and F⊥

SP are Feistel structures with SPN
round functions. We use the following definition of independent zero correlation
linear hulls for FSP .
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Definition 5. Let α �→ β be a zero correlation linear hull of FSP . If for all
α∗ and β∗ satisfying χ(Pinα

∗) = χ(Pinα) and χ(Poutβ
∗) = χ(Poutβ), α∗ �→ β∗

are zero correlation linear hulls, we call α �→ β an independent zero correlation
linear hull of FSP . Otherwise, we call it a dependent zero correlation linear hull
of FSP .

Then based on the links between impossible differentials and zero correlation
linear hulls, we have:

Corollary 3. There exists an independent zero correlation linear hull of F (r)
SP

if and only if there exists an independent zero correlation linear hull α �→ β of
F (r)

SP where H(Pinα) = H(Poutβ) = 1.

Theorem 4. Let R2(P ) be the type 2 primitive indexes of P . Then, there does
not exist any independent impossible differential or zero correlation linear hull
of F (r)

SP for r ≥ 2R2(P ) + 5.

The proof is similar with the SPN structures. The key point is that, as in
the proof of Lemma 1, we can always choose β1, β2, γ1, γ2 and ϕ, where H(β1) =
H(β2) = H(ϕ) = m such that the differential shown in Fig. 3 is a possible one.

To avoid some potential attack, an FL/FL−1 layer is inserted to the Feistel
structure every 6 rounds in Camellia. Denote by ECamellia∗ the structure deduced
by Camellia without the FL/FL−1 layer. Since

(P ∗)2 + I =

⎛

⎜⎜⎜⎜⎝

4 3 5 4 5 5 4 4
4 4 3 5 4 5 5 4
5 4 4 3 4 4 5 5
3 5 4 4 5 4 4 5
3 2 3 4 5 3 4 4
4 3 2 3 4 5 3 4
3 4 3 2 4 4 5 3
2 3 4 3 3 4 4 5

⎞

⎟⎟⎟⎟⎠
,

where I is the identity matrix, we have R2(P ) = 2. Therefore, we obtain the
following proposition:

Fig. 3. Constructing (2R2(P ) + 5)-round differential for FSP
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Proposition 3. There does not exist any independent impossible differential of
ECamellia* which covers r ≥ 9 rounds. Or equivalently, there does not exist any 9-
round independent impossible differential of Camellia without FL/FL−1 unless
the details of the S-boxes are considered.

In other words, unless we investigate the details of the S-boxes, the known
independent impossible differentials of Camellia without FL/FL−1 cannot be
improved with respect to the rounds.

Zodiac is another Feistel cipher with SP-type round function. Please refer to
[11,15] for more details of Zodiac. Since we have R2(P ) = 6, if we do not exploit
the details of the S-boxes, there does not exist any 2 × 6 + 5 = 17 indepen-
dent impossible differential of Zodiac, while the longest impossible differential of
Zodiac is 16 rounds [22].

Although there may exist some dependent impossible differentials of Feistel
structures with SP-type round functions, we believe that the bound given above
is also applicable to all impossible differentials.

6 Conclusion

In this paper, we mainly investigated the security of structures against impossible
differential and zero correlation linear cryptanalysis. Our approach is to deter-
mine an upper bound for the longest impossible differentials for a structure. We
first reduced the problem whether there exists an r-round impossible differential
to the problem whether there exists an r-round impossible differential where
the Hamming weights of the input and output differentials are 1. Therefore,
we reduced the time complexity of checking whether there exists an impossible
differential of an SPN structure or an independent impossible differential of a
Feistel structure with SP-type round functions from O(22m) to O(m2). Then, by
using the structures and dual structures, as well as the matrices theory, we have
given an upper bound for the rounds of impossible differentials and zero corre-
lation linear hulls for both SPN structures and Feistel structures with SP-type
round functions.

As in the provable security of differential and linear cryptanalysis, we gave
an upper bound on the longest rounds of the impossible differentials that are
independent of the choice of the non-linear components. Although we are only
interested in the truncated impossible differentials, we believe that this kind of

Table 1. Known results for some block ciphers

Bound Known rounds References

AES 4 4 [19]

ARIA 4 4 [25]

Camellia 8 8 [25] Independent ID

Zodiac 16 16 [22] Independent ID
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impossible differentials cover most of the known cases. Therefore, they not only
have theoretical significance, but also have practical significance. As a result, see
Table 1, we show that unless the details of the non-linear layer are considered,
there does not exist any 5-round impossible differentials of the AES or ARIA,
and there does not exist any 9-round independent impossible differentials of the
Camellia without FL/FL−1 layer.

Acknowledgment. The authors would like to thank the anonymous reviewers for
their useful comments, and Shaojing Fu, Lei Cheng and Xuan Shen for fruitful
discussions.
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A Proof of Lemma 1

Firstly, α1 → β1 and α2 → β2 are possible differentials of ESP implies that
there exist some α∗

1, α
∗
2, χ(α∗

1) = χ(α1), χ(α∗
2) = χ(α2), such that the following

differentials hold:
{

α1
S→ α∗

1
P→ β1,

α2
S→ α∗

2
P→ β2.

For any λ ∈ F
∗
2b , since χ(λα∗

2) = χ(α2), α2
S→ λα∗

2
P→ λβ2 is also a possible

differential of ESP .
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Without loss of generality, let
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α∗
1 = (x(1)

w1 , x
(1)
r1 , 0m−r1−w1)

α∗
2 = (x(2)

w1 , 0r1 , x
(2)
m−r1−w1

)
β1 = (y(1)

w2 , y
(1)
r2 , 0m−r2−w2)

β2 = (y(2)
w2 , 0r2 , y

(2)
m−r2−w2

)

where 0t = 0 · · · 0︸ ︷︷ ︸
t

, x
(i)
r , y

(i)
r ∈ (F∗

2b)
r. Let

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x
(1)
w1 = (a(1)

0 , . . . , a
(1)
w1−1)

x
(2)
w1 = (a(2)

0 , . . . , a
(2)
w1−1)

y
(1)
w2 = (b(1)0 , . . . , b

(1)
w2−1)

y
(2)
w2 = (b(2)0 , . . . , b

(2)
w2−1)

and let

Λ =

{
a
(1)
0

a
(2)
0

, . . . ,
a
(1)
w1−1

a
(2)
w1−1

,
b
(1)
0

b
(2)
0

, . . . ,
b
(1)
w2−1

b
(2)
w2−1

}
.

Since #Λ ≤ w1 + w2 ≤ m + m = 2m ≤ 2 × (2b−1 − 1) = 2b − 2, F∗
2b \ Λ is a

non-empty set. Therefore, for λ ∈ F
∗
2b \ Λ, we always have

{
χ(α∗

1 ⊕ λα∗
2) = χ(α∗

1|α∗
2)

χ(β1 ⊕ λβ2) = χ(β1|β2),

which implies that
α1|α2

S→ α∗
1 ⊕ λα∗

2
P→ β1 ⊕ λβ2

is a possible differential of ESP .
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Abstract. Standard differential cryptanalysis uses statistical dependen-
cies between the difference of two plaintexts and the difference of the
respective two ciphertexts to attack a cipher. Here we introduce poly-
topic cryptanalysis which considers interdependencies between larger sets
of texts as they traverse through the cipher. We prove that the methodol-
ogy of standard differential cryptanalysis can unambiguously be extended
and transferred to the polytopic case including impossible differentials.
We show that impossible polytopic transitions have generic advantages
over impossible differentials. To demonstrate the practical relevance of
the generalization, we present new low-data attacks on round-reduced
DES and AES using impossible polytopic transitions that are able to
compete with existing attacks, partially outperforming these.

1 Introduction

Without doubt is differential cryptanalysis one of the most important tools that
the cryptanalyst has at hand when trying to evaluate the security of a block
cipher. Since its conception by Biham and Shamir [2] in their effort to break the
Data Encryption Standard [26], it has been successfully applied to many block
ciphers such that any modern block cipher is expected to have strong security
arguments against this attack.

The methodology of differential cryptanalysis has been extended several
times with a number of attack vectors, most importantly truncated differen-
tials [19], impossible differentials [1,20], and higher-order differentials [19,22].
Further attacks include the boomerang attack [29], which bears some resem-
blance of second-order differential attacks, and differential-linear attacks [24].

Nonetheless many open problems remain in the field of differential crypt-
analysis. Although the concept of higher-order differentials is almost 20 years
old, it has not seen many good use cases. One reason has been the difficulty
of determining the probability of higher-order differentials accurately without
evaluating Boolean functions with prohibitively many terms. Thus the common
use case remains probability 1 higher-order differentials where we know that a
derivative of a certain order has to evaluate to zero because of a limit in the
degree of the function.

c© IACR 2016. This article is the final version submitted by the author(s) to the
IACR and to Springer-Verlag on 18-02-2016.
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Another open problem is the exact determination of the success probability
of boomerang attacks and their extensions. It has correctly been observed that
the correlation between differentials must be taken into account to accurately
determine the success probability [25]. The true probability can otherwise deviate
arbitrarily from the estimated one.

Starting with Chabaud and Vaudenay [12], considerable effort has gone into
shedding light on the relation and interdependencies of various cryptographic
attacks (see for example [5,6,30]). With this paper, we offer a generalized view
on the various types of differential attacks that might help to understand both
the interrelation between the attacks as well as the probabilities of the attacks
better.

Our Contribution

In this paper we introduce polytopic cryptanalysis. It can be viewed as a gener-
alization of standard differential cryptanalysis which it embeds as a special case.
We prove that the definitions and methodology of differential cryptanalysis can
unambiguously be extended to polytopic cryptanalysis, including the concept of
impossible differentials. Polytopic cryptanalysis is general enough to even encom-
pass attacks such as higher-order differentials and might thus be valuable as a
reference framework.

For impossible polytopic transitions, we show that they exhibit properties
that allow them to be very effective in scenarios where ordinary impossible dif-
ferentials fail. This is mostly due to a generic limit in the diffusion of any block
cipher that guarantees that only a negligible number of all polytopic transitions
is possible for a sufficiently high choice of dimension. This also makes impossi-
ble polytopic transitions ideal for low-data attacks where standard impossible
differentials usually have a high data complexity.

Finally we prove that polytopic cryptanalysis is not only theoretically intrigu-
ing but indeed relevant for practical cryptanalysis by demonstrating competitive
impossible polytopic attacks on round-reduced DES and AES that partly out-
perform existing low-data attacks and offer different trade-offs between time and
data complexity.

In the appendix, we further prove that higher-order differentials can be
expressed as truncated polytopic transitions and are hence a special case of
these. Thus higher-order differentials can be expressed in terms of a collection of
polytopic trails just as differentials can be expressed as a collection of differential
trails. A consequence of this is that it is principally possible to determine lower
bounds for the probability of a higher-order differential by summing over the
probabilities of a subset of the polytopic trails which it contains.

Related Work

To our knowledge, the concept of polytopic transitions is new and has not been
used in cryptanalysis before. Nonetheless there is other work that shares some
similarities with polytopic cryptanalysis.
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Higher-order differentials [22] can in some sense also be seen as a higher-
dimensional version of a differential. However, most concepts of ordinary differ-
entials do not seem to extend to higher-order differentials, such as characteristics
or iterated differentials.

The idea of using several differentials simultaneously in an attack is not
new (see for example [4]). However as opposed to assuming independence of the
differentials, which does not hold in general (see [25]), we explicitly take their
correlation into account and use it in our framework.

Another type of cryptanalysis that uses a larger set of texts instead of a
single pair is integral cryptanalysis (see for example [3,14]), in which structural
properties of the cipher are used to elegantly determine a higher-order deriva-
tive to be zero without relying on bounds in the degree. These attacks can be
considered a particular form of higher-order differentials.

Finally decorrelation theory [28] also considers relations between multiple
plaintext-ciphertext pairs but takes a different direction by considering security
proofs based on a lack of correlation between the texts.

Organization of the Paper

In Sect. 2, notation and concepts necessary for polytopic cryptanalysis are intro-
duced. It is demonstrated how the concepts of differential cryptanalysis naturally
extend to polytopic cryptanalysis. We also take a closer look at the probability
of polytopic transitions and applicability of simple polytopic cryptanalysis.

In Sect. 3, we introduce impossible polytopic transitions. We show that
impossible polytopic transitions offer some inherent advantages over impossible
differentials and are particularly interesting for low-data attacks. We show that,
given an efficient method to determine the possibility of a polytopic transition,
generic impossible polytopic attack always exist.

In Sect. 4, we demonstrate the practicability of impossible polytopic transi-
tion attacks. We present some attacks on DES and AES that are able to compete
with existing attacks with low-data complexity, partially outperforming these.

Furthermore, in AppendixB truncated polytopic transitions are introduced.
We then give a proof that higher-order differentials are a special case of these.
The cryptanalytic ramifications of the fact that higher-order differentials consist
of polytopic trails are then discussed.

Notation

We use F
n
2 to denote the n-dimensional binary vector space. To identify numbers

in hexadecimal notation we use a typewriter font as in 3af179. Random variables
are denoted with bold capital letters (X). We will denote d-difference (introduced
later) by bold Greek letters (α) and standard differences by Roman (i.e., non-
bold) Greek letters (α).
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2 Polytopes and Polytopic Transitions

Classical differential cryptanalysis utilizes the statistical interdependency of two
texts as they traverse through the cipher. When we are not interested in the
absolute position of the two texts in the state space, the difference between the
two texts completely determines their relative positioning.

But there is no inherent reason that forces us to be restricted to only using
a pair of texts. Let us instead consider an ordered set of texts as they traverse
through the cipher.

Definition 1 (s-polytope). An s-polytope in F
n
2 is an s-tuple of values in F

n
2 .

Similar to differential cryptanalysis, we are not so much interested in the absolute
position of these texts but the relations between the texts. If we choose one of the
texts as the point of reference, the relations between all texts are already uniquely
determined by only considering their differences with respect to the reference
text. If we thus have d + 1 texts, we can describe their relative positioning by a
tuple of d differences (see also Fig. 1).

Definition 2 (d-difference). A d-difference over F
n
2 is a d-tuple of values in

F
n
2 describing the relative position of the texts of a (d + 1)-polytope from one

point of reference.

When we reduce a (d + 1)-polytope to a corresponding d-difference, we loose
the information of the absolute position of the polytope. A d-difference thus
corresponds to an equivalence class of (d + 1)-polytopes where polytopes are
equivalent if and only if they can be transformed into each other by simple
shifting in state space. We will mostly be dealing with these equivalence classes.

Fig. 1. Depiction of three views of a polytope with four vertices

In principal there are many d-differences that correspond to one (d + 1)-
polytope depending on the choice of reference text and the order of the differ-
ences. As a convention we will construct a d-difference from a (d + 1)-polytope
as follows:

Convention. For a (d + 1)-polytope (m0,m1, . . . , md), the corresponding
d-difference is created as (m0 ⊕ m1,m0 ⊕ m2, . . . , m0 ⊕ md).
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This means, we use the first text of the polytope as the reference text and write
the differences in the same order as the remaining texts of the polytope. We will
call the reference text the anchor of the d-difference. Hence if we are given a
d-difference and the value of the anchor, we can reconstruct the corresponding
(d + 1)-polytope uniquely.

Example. Let (m0,m1,m2,m3) be a 4-polytope in F
n
2 . Then (m0 ⊕ m1,m0 ⊕

m2,m0 ⊕ m3) is the corresponding 3-difference with m0 as the anchor.

In the following, we will now show that we can build a theory of polytopic
cryptanalysis in which the same methodology as in standard differential crypt-
analysis applies. Standard differential cryptanalysis is contained in this frame-
work as a special case.

A short note regarding possible definitions of difference: in this paper we
restrict ourselves to XOR-differences as the most common choice. Most, if not
all, statements in this paper naturally extend to other definitions of difference,
e.g., in modular arithmetic.

The equivalent of a differential in polytopic cryptanalysis is the polytopic
transition. We use d-differences for the definition.

Definition 3 (Polytopic Transition with Fixed Anchor). Let f : Fn
2 →

F
q
2. Let α be a d-difference (α1, α2, . . . , αd) over F

n
2 and let β be the d-difference

(β1, β2, . . . , βd) over F
q
2. By the (d+1)-polytopic transition α

f−→
x

β we denote that
f maps the polytope corresponding to α with anchor x to a polytope corresponding
to β. More precisely, we have α

f−→
x

β if and only if

f(x ⊕ α1) ⊕ f(x) = β1

and f(x ⊕ α2) ⊕ f(x) = β2

. . .

and f(x ⊕ αd) ⊕ f(x) = βd.

Building up on this definition, we can now define the probability of a poly-
topic transition under a random anchor.

Definition 4 (Polytopic Transition). Let f , α, and β again be as in

Definition 3. The probability of the (d + 1)-polytopic transition α
f−→ β is then

defined as:
Pr

(
α

f−→ β
)

:= Pr
X

(
α

f−→
X

β
)

(1)

where X is a random variable, uniformly distributed on F
n
2 . We will at times

also write α −→ β if the function is clear from the context or not important.

Note that this definition coincides with the definition of the differential proba-
bility when differences between only two texts (2-polytopes) are considered.

Let f : Fn
2 → F

n
2 now be a function that is the repeated composition of round

functions fi : Fn
2 → F

n
2 :

f := fr ◦ · · · ◦ f2 ◦ f1. (2)
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Similarly to differential cryptanalysis, we can now define trails of polytopes:

Definition 5 (Polytopic Trail). Let f be as in Eq. (2). A polytopic trail on
f is an (r + 1)-tuple of d-differences (α0,α1, . . . ,αr) written as

α0
f1−→ α1

f2−→ · · · fr−→ αr. (3)

The probability of such a polytopic trail is defined as

Pr
X

(
α0

f1−→
X

α1 and α1
f2−−−−→

f1(X)
α2 and · · · and αr−1

fr−−−−−−−−−→
fr−1◦···◦f1(X)

αr

)
(4)

where X is a random variable, distributed uniformly on F
n
2 .

Similarly to differentials, it is possible to partition a polytopic transition over
a composed function into all polytopic trails that feature the same input and
output differences as the polytopic transition.

Proposition 1. The probability of a polytopic transition α0
f−→ αr over a func-

tion f : F
n
2 → F

n
2 , f = fr ◦ · · · ◦ f2 ◦ f1 is the sum of the probabilities of all

polytopic trails (α0,α1, . . . ,αr) which it contains:

Pr
(
α0

f−→ αr

)
=

∑

α1,...,αr−1

Pr
(
α0

f1−→ α1
f2−→ · · · fr−1−−−→ αr−1

fr−→ αr

)
(5)

where α0, . . . ,αr are d-differences and as such lie in F
dn
2 .

Proof. If we fix the initial value of the anchor, we also fix the trail that the
polytope has to take. The set of polytopic trails gives us thus a partition of the
possible anchor values and in particular a partition of the anchors for which the
output polytope is of type αr. Using the above definitions we thus get:

Pr
(
α0

f−→ αr

)
= Pr

X

(
α0

f−→
X

αr

)

= 2−n ·
∣∣∣
{

x ∈ F
n
2

∣∣∣ α0
f−→
x

αr

}∣∣∣

= 2−n ·
∑

α1,...,αr−1

∣∣∣∣

{
x ∈ F

n
2

∣∣∣∣ α0
f1−→
x

α1, α1
f2−−−→

f1(x)
α2, . . .

. . . , αr−1
fr−−−−−−−−−→

fr−1◦···◦f1(x)
αr

}∣∣∣∣

=
∑

α1,...,αr−1

Pr
X

(
α0

f1−→
X

α1 and α1
f2−−−−→

f1(X)
α2 and . . .

. . . and αr−1
fr−−−−−−−−−→

fr−1◦···◦f1(X)
αr

)

=
∑

α1,...,αr−1

Pr
(
α0

f1−→ α1
f2−→ · · · fr−1−−−→ αr−1

fr−→ αr

)

which proves the proposition. ��
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To be able to calculate the probability of a differential trail, it is common in dif-
ferential cryptanalysis to make an assumption on the independence of the round
transitions. This is usually justified by showing that the cipher is a Markov
cipher and by assuming the stochastic equivalence hypothesis (see [23]). As we
will mostly be working with impossible trails where these assumptions are not
needed, we will assume for now that this independence holds and refer the inter-
ested reader to Appendix A where the Markov model is adapted to polytopic
cryptanalysis.

Under the assumption that the single round transitions are independent, we
can work with polytopic transitions just as with differentials:

1. The probability of a polytopic transition is the sum of the probabilities of all
polytopic trails with the same input and output d-difference.

2. The probability of a polytopic trail is the product of the probabilities of the
1-round polytopic transitions that constitute the trail.

We are thus principally able to calculate the probability of a polytopic transition
over many rounds by knowing how to calculate the polytopic transition over
single rounds.

Now to calculate the probability of a 1-round polytopic transition, we can
use the following observations:

3. A linear function maps a d-difference with probability 1 to the d-difference
that is the result of applying the linear function to each single difference in
the d-difference.

4. Addition of a constant to the anchor leaves the d-difference unchanged.
5. The probability of a polytopic transition over an S-box layer is the product

of the polytopic transitions for each S-box.

We are thus able to determine probabilities of polytopic transitions and polytopic
trails just as we are used to from standard differential cryptanalysis.

A Note on Correlation, Diffusion and the Difference
Distribution Table

When estimating the probability of a polytopic transition a first guess might
be that it is just the product of the individual 1-dimensional differentials. For a
3-polytopic transition we might for example expect:

Pr
(
(α0, α1) −→ (β0, β1)

) ?= Pr
(
α0 −→ β0

)
· Pr

(
α1 −→ β1

)
.

That this is generally not the case is a consequence of the following lemma.

Lemma 1. Let f : Fn
2 → F

n
2 . For a given input d-difference α the number of

output d-differences to which α is mapped with non-zero probability is upper
bounded by 2n.
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Proof. This is just a result of the fact that the number of anchors for the tran-
sition is limited to 2n:

∣∣∣
{

β ∈ F
dn
2

∣∣∣ Pr
(
α

f−→ β
)

> 0
}∣∣∣ =

∣∣∣
{

β ∈ F
dn
2

∣∣∣ ∃x ∈ F
n
2 : α

f−→
x

β
}∣∣∣ ≤ 2n

��

One implication of this limitation of possible output d-differences is a correlation
between differentials: the closer the distribution of differences of a function is to
a uniform distribution, the stronger is the correlation of differentials over that
function.

Example. Let us take the AES 8-bit S-box (denoted by S here) which is differ-
entially 4-uniform. Consider the three differentials, 7 S−→ 166, 25 S−→ 183, and
25

S−→ 1 which have probabilities 2−6, 2−6, and 2−7 respectively. The probabil-
ities of the polytopic transitions of the combined differentials deviate strongly
from the product of the single probabilities:

Pr
(
(7, 25) S−→ (166, 183)

)
= 2−6 > Pr

(
7

S−→ 166
)

· Pr
(
25

S−→ 183
)

= 2−12

Pr
(
(7, 25) S−→ (166, 1)

)
= 0 < Pr

(
7

S−→ 166
)

· Pr
(
25

S−→ 1
)

= 2−13.

Another consequence of Lemma 1 is that it sets an inherent limit to the
maximal diffusion possible over one round. A one d-difference can at most be
mapped to 2n possible d-differences over one round, the number of possible
d-differences reachable can only increase by a factor of 2n over each round. Thus
when starting from one d-difference, after one round at most 2n d-differences are
possible, after two rounds at most 22n differences are possible, after three rounds
at most 23n are possible and generally after round r at most 2rn d-differences
are possible.

In standard differential cryptanalysis, the number of possible output differ-
ences for a given input difference is limited by the state size of the function.
This is no longer true for d-differences: if the state space is F

n
2 , the space of d-

differences is F
dn
2 . The number of possible d-differences thus increases exponen-

tially with the dimension d. This has a consequence for the size of the difference
distribution table (DDT). For an 8-bit S-box, a classical DDT has a size of 216

entries, i.e., 64 kilobytes. But already the DDT for 3-differences has a size of 248,
i.e., 256 terabytes. Fortunately though, a third consequence of Lemma 1 is that
the DDT table is sparse for d > 1. As a matter of fact, we can calculate any row
of the DDT with a time complexity of 2n by trying out all possible values for
the anchor.

Relation to Decorrelation Theory. Decorrelation theory [28] is a framework
that can be used to design ciphers which are provably secure against a range of
attacks including differential and linear cryptanalysis. A cipher is called perfectly
decorrelated of order d when the image of any d-tuple of distinct plaintexts
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is uniformly distributed on all d-tuples of ciphertexts with distinct values under
a uniformly distributed random key. It can for example be proved that a cipher
which is perfectly decorrelated of order 2 is secure against standard differential
and linear cryptanalysis.

When we consider (d + 1)-polytopes in polytopic cryptanalysis, we can nat-
urally circumvent security proofs for order-d perfectly decorrelated ciphers. The
boomerang attack [29] for example – invented to break an order-2 perfectly
decorrelated cipher – can be described as a 4-polytopic attack.

Limitations of Simple Polytopic Cryptanalysis

Can simple polytopic cryptanalysis, i.e., using a single polytopic transition, out-
perform standard differential cryptanalysis? Unfortunately this is generally not
the case as is shown in the following.

Definition 6. Let α −→ β be a (d + 1)-polytopic transition with d-differences
α and β. Let α′ −→ β′ be a d′-difference with d′ ≤ d. We then write (α′,β′) 

(α,β) if and only if for each i ∈ [1, d′] there exists j ∈ [1, d] such that the ith
differences in α′ and β′ correspond to the jth differences in α and β.

Using this notation, we have the following lemma:

Lemma 2. Let α −→ β be a (d + 1)-polytopic transition and let α′ −→ β′ be a
(d′ + 1)-polytopic transition with d′ ≤ d and (α′,β′) 
 (α,β). Then

Pr (α −→ β) ≤ Pr (α′ −→ β′) . (6)

Proof. This follows directly from the fact that α
f−→
x

β implies α′ f−→
x

β′. ��

In words, the probability of a polytopic transition is always at most as high as
the probability of any lower dimensional polytopic transition that it contains. In
particular, it can never have a higher probability than any standard differential
that it contains.

It can in some instances still be profitable to use a single polytopic transi-
tion instead of a standard differential that it contains. This is the case when the
probability of the polytopic transition is the same as (or close to) the probability
of the best standard differential it contains. Due to the fact that the space of
d-differences is much larger than that of standard differentials (2dn vs. 2n), one
set of texts that follows the polytopic transition is usually enough to distinguish
the biased distribution from a uniform distribution as opposed to standard differ-
entials where at least two are needed. Nonetheless the cryptanalytic advantages
of polytopic cryptanalysis lie elsewhere as we will see in the next sections.

3 Impossible Polytopic Cryptanalysis

Impossible differential cryptanalysis makes use of differentials with probability
zero to distinguish a cipher from an ideal cipher. In this section, we extend the
definition to encompass polytopic transitions.
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Impossible polytopic cryptanalysis offers distinct advantages over standard
impossible differential cryptanalysis that are a result of the exponential increase
in the size of the space of d-differences with increasing dimension d. This not
only allows impossible (d + 1)-polytopic attacks using just a single set of d + 1
chosen plaintexts, it also allows generic distinguishing attacks on (d − 1)-round
block ciphers whenever it is computationally easy to determine whether a (d+1)-
polytopic transition is possible or not. We elaborate this in more detail later in
this section.

Definition 7. An impossible (d + 1)-polytopic transition is a (d + 1)-polytopic
transition that occurs with probability zero.

In impossible differential attacks, we use knowledge of an impossible differ-
ential over r − 1 rounds to filter out wrong round key guesses for the last round:
any round key that decrypts a text pair such that their difference adheres to the
impossible differential has to be wrong. The large disadvantage of this attack
is that it always requires a large number of text pairs to sufficiently reduce the
number of possible keys. This is due to the fact that the filtering probability
corresponds to the fraction of the impossible differentials among all differen-
tials. Unfortunately for the attacker, most ciphers are designed to provide good
diffusion, such that this ratio is usually low after a few rounds.

This is exactly where the advantage of impossible polytopic transitions lies.
Due to the exponential increase in the size of the space of d-differences (from
F

n
2 to F

dn
2 ) and the limitation of the diffusion to maximally a factor of 2n (see

Lemma 1), the ratio of possible (d+1)-polytopic transitions to impossible (d+1)-
polytopic transitions will be low for many more rounds than possible for standard
differentials. In fact, by increasing the dimension d of the polytopic transition,
it can be assured that the ratio of possible to impossible polytopic transitions is
close to zero for an almost arbitrary number of rounds.

An impossible (d+1)-polytopic attack could then proceed as follows. Let n be
the block size of the cipher and let l be the number of bits in the last round key.

1. Choose a d and a d-difference such that the ratio of possible to impossible
(d + 1)-polytopic transitions is lower than 2−l−1.

2. Get the r-round encryption of d + 1 plaintexts chosen such that they adhere
to the input d-difference.

3. For each guess of the round key kr decrypt the last round. If the obtained
d-difference after the (r − 1)th round is possible, keep the key as a candidate.
Otherwise discard it.

Clearly this should leave us on average with one round key candidate which
is bound to be the correct one. In practice, an attack would likely be more
complex, e.g., with only partially guessed round keys and tradeoffs in the filtering
probability and the data/time complexities.

While the data complexity is limited to d+1 chosen plaintexts (and thus very
low), the time complexity is harder to determine and depends on the difficulty
of determining whether an obtained (r − 1)-round (d + 1)-polytopic transition
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is possible or not. The straightforward approach is to precompute a list of pos-
sible d-differences after round r − 1. Both the exponentially increasing memory
requirements and the time of the precomputation limit this approach though. In
spite of this, attacks using this approach are competitive with existing low-data
attacks as we show in Sect. 4.

One possibility to reduce the memory complexity is to use a meet-in-the-
middle approach where one searches for a collision in the possible d-differences
reachable from the input d-difference and the calculated d-difference after round
(r − 1) at a round somewhere in the middle of the cipher. This however requires
to repeat the computation for every newly calculated d-difference and thus limits
its use in the scenario where we calculated a new d-difference after round (r −1)
for each key guess (not in a distinguishing attack though).

Clearly any method that could efficiently determine the impossibility of most
impossible polytopic transitions would prove extremely useful in an attack. Intu-
itively it might seem that it is generally a hard problem to determine the possi-
bility of a polytopic transition. As a matter of fact though, there already exists
a cryptographic technique that provides a very efficient distinguisher for certain
types of polytopic transitions, namely higher-order differentials which are shown
in AppendixB to correspond to truncated polytopic transitions. This raises the
hope that better distinguishing techniques could still be discovered.

There is one important further effect of the increase in the size of the differ-
ence space: it allows us to restrict ourselves to impossible d-differences on only a
part of the state. It is even possible to restrict the d-difference to a d-difference
in one bit and still use it for efficient filtering1. In Sect. 4 we will use these tech-
niques in impossible polytopic attacks to demonstrate the validity of the attacks
and provide a usage scenario.

Wrong Keys and Random Permutations

Note that while impossible polytopic attacks – just like impossible differen-
tial attacks – do not require the stochastic equivalence hypothesis, practical
attacks require another hypothesis: the wrong-key randomization hypothesis.
This hypothesis states that when decrypting one or several rounds with a wrong
key guess creates a function that behaves like a random function. For our setting,
we formulate it is as following:

Wrong-Key Randomization Hypothesis. When decrypting one or multi-
ple rounds of a block cipher with a wrong key guess, the resulting polytopic
transition probability will be close to the transition probability over a random
permutation for almost all key guesses.

Let us therefore take a look at the polytopic transition probabilities over
random functions and random permutation. To simplify the treatment, we make
the following definition:

1 In standard differential cryptanalysis, this would require a probability 1 truncated
differential.
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Definition 8 (Degenerate d-difference). Let α be a d-difference over F
n
2 :

α = (α1, . . . , αd). We call α degenerate if there exists an i with 1 ≤ i ≤ d with
αi = 0 or if there exists a pair i, j with 1 ≤ i < j ≤ d and αi = αj. Otherwise
we call α non-degenerate.

Clearly if and only if a d-difference α is degenerate, there exist two texts in
the underlying (d + 1)-polytope that are identical. To understand the transi-
tion probability of a degenerate d-difference it is thus sufficient to evaluate the
transition probability of a non-degenerate d′-difference (d′ < d) that contains
the same set of texts. For the following two propositions, we will thus restrict
ourselves to non-degenerate d-differences.

Proposition 2 (Distribution over Random Function). Let α be a non-
degenerate d-difference over F

n
2 . Let F be a uniformly distributed random func-

tion from F
n
2 to F

m
2 . The image of α is then uniformly distributed over all

d-difference over F
m
2 . In particular Pr

(
α

F−→ β
)

= 2−md for any d-difference

β ∈ (Fm
2 )d.

Proof. Let (m0,m1, . . . , md) be a (d + 1)-polytope that adheres to α. Then the
polytope (F(m0),F(m1), . . . ,F(md)) is clearly uniformly randomly distributed
on (Fm

2 )d+1 and accordingly β with α
F−→ β is distributed uniformly randomly

on (Fm
2 )d. ��

For the image of a d-difference over a random permutation, we have a similar
result:

Proposition 3 (Distribution over Random Permutation). Let α be a
non-degenerate d-difference over F

n
2 . Let F be a uniformly distributed random

permutation on F
n
2 . The image of α is then uniformly distributed over all non-

degenerate d-difference over F
n
2 .

Proof. Let (m0,m1, . . . , md) be a (d+1)-polytope that adheres to α. As α is non-
degenerate, all mi are distinct. Thus the polytope (F(m0),F(m1), . . . ,F(md)) is
clearly uniformly randomly distributed on all (d+1)-polytopes in (Fm

2 )d+1 with
distinct values. Accordingly β with α

F−→ β is distributed uniformly randomly
on all non-degenerate d-differences over F

n
2 . ��

As long as d � 2n, we can thus well approximate the probability Pr
(
α

F−→ β
)

by 2−dn when β is non-degenerate.
In the following, these proposition will be useful when we try to estimate

the probability that a partial decryption with a wrong key guess will still give
us a possible intermediate d-difference. We will then always assume that the
wrong-key randomization hypothesis holds and that the probability of getting
a particular d-difference on m bits is the same as if we had used a random
permutation, i.e., it is 2−dm (as our d is always small).
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4 Impossible Polytopic Attacks on DES and AES

Without much doubt are the Data Encryption Standard (DES) [26] and the
Advanced Encryption Standard (AES) [15] the most studied and best cryptana-
lyzed block ciphers. Any cryptanalytic improvement on these ciphers should thus
be a good indicator of the novelty and quality of a new cryptanalytic attack.
We believe that these ciphers thus pose ideal candidates to demonstrate that
the generalization of differential cryptanalysis to polytopic cryptanalysis is not
a mere intellectual exercise but useful for practical cryptanalysis.

In the following, we demonstrate several impossible polytopic attacks on
reduced-round versions of DES and AES that make only use of a very small
set of chosen plaintexts. The natural reference frame for these attacks are hence
low-data attacks. In Tables 1 and 2 we compare our attacks to other low-data
attacks on round-reduced versions of DES and AES respectively. We should
mention here that [11] only states attacks on 7 and 8 rounds of DES. It is not
clear whether the techniques therein could also be used to improve complexities
of meet-in-the-middle attacks for 5- and 6-round versions of that cipher.

We stress here that in contrast to at least some of the other low-data attacks,
our attacks make no assumption on the key schedule and work equally well with
independent round keys. In fact, all of our attacks are straight-forward applica-
tions of the ideas developed in this paper. There is likely still room for improve-
ment of these attacks using details of the ciphers and more finely controlled
trade-offs.

In all of the following attacks, we determine the possibility or impossibility
of a polytopic transition by deterministically generating a list of all d-differences
that are reachable from the starting d-difference, i.e., we generate and keep a list
of all possible d-differences. The determination of these lists is straightforward
using the rules described in Sect. 2. The sizes of these lists are the limiting factors
of the attacks both for the time and the memory complexities.

4.1 Attacks on the DES

For a good reference for the DES, we refer to [21]. A summary of the results for
DES can be found in Table 1.

A 5-Round Attack. Let us start with an impossible 4-polytopic attack on
5-round DES. We split our input 3-difference into two parts, one for the left 32
state bits and one for the right 32 state bits. Let us denote the left 3-difference
as (α, β, γ). For the right half we choose the 3-difference (0, 0, 0). This allows us
to pass the first round for free (as can be seen in Fig. 2).

The number of possible 3-differences after the second round depends now on
our choice of α, β, and γ. To keep this number low, clearly it is good to choose
the differences to activate as few S-boxes as possible. We experimentally tried
out different natural choices and chose the values

(α, β, γ) = (02000000, 04000000, 06000000).
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Table 1. Comparison table of low-data attacks on round-reduced DES. Data com-
plexity is measured in number of required known plaintexts (KP) or chosen plaintexts
(CP). Time complexity is measured in round-reduced DES encryption equivalents.
Memory complexity is measured in plaintexts (8 bytes). For the other attacks no mem-
ory requirements were explicitly specified in the publications. They should be low
though. The attacks of this paper are in bold.

Rounds Attack type Time Data Memory Source

5 Differential > 211.7 64 CP - As in [18]

Linear > 213.8 72 CP - As in [18]

MitM 245.5 1 KP - From [13]

MitM 237.9 28 KP - From [18]

MitM 230 8 CP - From [18]

Imp. polytopic 213.2 4 CP 29 This paper

6 Differential 213.7 256 CP - As in [18]

Linear 213.9 >104 KP - As in [18]

MitM 251.8 1 KP - From [18]

Truncated diff 248 7 CP - From [19]

Truncated diff 211.8 46 CP - From [19]

Imp. polytopic 232.2 4 CP 210 This paper

Imp. polytopic 218.4 48 CP 29 This paper

7 MitM Sieve 253 1 KP - From [11]

Imp. polytopic 243 16 CP 243 This paper

Imp. polytopic 237.8 48 CP 210 This paper

8 MitM Sieve 253 16 KP - From [11]

All of these three differences only activate S-box 2 in round 2. With this choice
we get 35 possible 3-differences after round 2. Note that the left 3-difference is
still (α, β, γ) after round 2 while the 35 variations only appear in the right half.

As discussed earlier, the maximal number of output d-differences for a fixed
input d-difference is inherently limited by the size of the domain of the function.
A consequence of this is that for any of the 35 3-differences after round 2 the
possible number of output 3-differences of any S-box in round 3 is limited to 26

as shown in Fig. 2. But by guessing the 6 bits of round key 5 that go into the
corresponding S-box in round 5, we can determine the 3-difference in the same
four output bits of round 3 now coming from the ciphertexts. For the right guess
of the 6 key bits, the determined 3-difference will be possible. For a wrong key
guess though, we expect the 3-difference to take a random value in the set of all
3-differences on 4 bits.

But the size of the space of 3-differences in these four output bits is now
24·3 = 212. Thus when fixing one of the 35 possible 3-differences after round 2,
we expect on average to get one suggestion for the 6 key bits in that S-box.
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Fig. 2. Outline of the 5-round attack on DES.

Repeating this for every S-box, we get on average one suggestion for the last
round key for each of the 35 possible 3-differences after round 2, leaving us with
an average of 35 key candidates for the last round key.

What are the complexities of the attack? Clearly we only need 4 chosen
plaintexts. For the time complexity we get the following: For each of the 35
possible 3-differences after round 2, we have to determine the 26 possible output
3-differences and for each of these, we have to see in the list of possible 3-
differences obtained from the key guesses whether there is a guess of the 6 key
bits that gives us exactly that 3-difference. Thus we have a total of 35·8·26 = 214.2

steps each of which should be easier than one round of DES encryption. This
leaves us with a time complexity of ≈ 212 5-round DES encryptions equivalents.
But to completely determine the DES key we need 8 additional bits that are
not present in the last round key. As we expect on average maximally 35 round
keys, we are left with trying out the 35 · 28 = 213.2 full key candidates, setting
the time complexity of this attack to that value.

The only memory requirement in this attack is storing the list of possible
3-differences for each key guess in each S-box. This should roughly be no more
than 212 bytes.

A 6-Round Attack. The 6-round attack proceeds exactly as the 5-round
attack, with the only difference being that instead of determining the possi-
ble 3-difference output of each S-box in round 3, we do the same in round 4 and
thus have to repeat the attack for every possible 3-difference after round 3.
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Experimental testing revealed that it is beneficial for this attack to choose a
different choice of α, β, and γ, namely

(α, β, γ) = (20000000, 40000000, 60000000),

which now activates S-box 1 instead of S-box 2 as it gives us the lowest number
of 3-differences after round 3. For this choice, we get a number of 48 possible
3-differences after round 2 and 224.12 possible 3-differences after round 3. Now
substituting 35 with this number in the previous attack, gives us the time com-
plexity for this 6-round attack.

A note regarding the memory requirement of this attack: As we loop over
the 224.12 possible 3-differences after round 3, we are not required to store all of
them at any time. By doing the attack while creating these possible 3-differences
we can keep the memory complexity nearly as low as before, namely to roughly
213 bytes.

A 7-Round Attack. Unfortunately extending from 6 to 7 rounds as done when
going from 5 to 6 rounds is not possible, due to the prohibitively large number
of possible 3-differences after round 4. Instead we use a different angle.

It is well known that when attacking r-round DES, guessing the appropriate
36 round key bits of the last round key and the appropriate 6 bits of the round
key in round r−1 allows us to determine the output state bits of an S-box of our
choice after round r −3. We will thus restrict ourselves to looking for impossible
d-differences in only one S-box. We choose S-box 1 here.

In order to have a sufficiently high success rate, we need to increase the
dimension of our polytopic transitions to increase the size of the d-difference
space of the four output bits of the S-box of our choice. For this attack we
choose d = 15 giving us a 15-difference space size of 260 in four bits.

For our choice of input 15-difference, we again leave all differences in the
right side to 0, while choosing for the 15-difference on the left side:

(
00000002, 00000004, 00000006, 02000000, 02000002, 02000004,

02000006, 04000000, 04000002, 04000004, 04000006, 06000000,

06000002, 06000004, 06000006
)

which only activates S-boxes 2 and 8. For this choice of input 15-difference we
get 1470 possible 15-differences after round 2 and 236.43 possible 15-differences
after round 3.

For each of these 236.43 possible 15-differences after round 3, we calculate the
26 possible output 15-differences of S-box 1 after round 4. Now having precom-
puted a list of possible 15-differences in the output bits of S-box 1 after round 4
for each of the 242 guessed key bits of round 7 and 6, we can easily test whether
we get a collision. What is the probability of this? The 15-difference space size
in the four bits is 260 and, we get maximally 242 possible 15-differences from the
key guesses. This leaves us with a chance of 2−18 that we find a 15-difference
in that list. Thus for each of the 236.43 possible 15-differences after round 3,
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we expect on average at most 2−12 suggestions for the guessed 42 key bits, a
total of 224.43 suggestions.

What are the complexities for this attack? Clearly again, the data complexity
is 16 chosen plaintexts. For the time complexity, for each of the 242.42 possible
4-bit 15-differences obtained after round 4, we have to see whether it is contained
in the list of 242 3-differences which we obtained from the key guesses. To do
this efficiently, we first have to sort the list which should take 242 · 42 = 247.4

elementary steps. Assuming that a 7-round DES encryption takes at least 42
elementary steps, we can upperbound this complexity with 242 DES encryption
equivalents. As finding an entry in a list of 242 entries also takes approximately
42 elementary steps, this leaves us with a total time complexity of at most 243

7-round DES encryption equivalents. As each suggestion gives us 42 DES key
bits and as the list of suggestions has a size of 224.23, we can find the correct
full key with 238.23 7-round DES trial encryptions which is lower than then the
previously mentioned time complexity and can thus be disregarded.

The data complexity is determined by the size of the list of 4-bit 15-differences
generated from the key guesses. This gives us a memory requirement of 242(15 ·
4 + 42) bits ≈ 246 bytes.

Extension of the Attacks Using More Plaintexts. The attacks for 5 and
6 rounds can be extended by one round at the cost of a higher data complexity.
The extension can be made at the beginning of the cipher in the following way.

Let us suppose we start with a 3-difference (δ1, δ2, δ3) in the left half and
the 3-difference (α, β, γ) in the right half. If we knew the output 3-difference of
the round function in the first round, we could choose (δ1, δ2, δ3) accordingly to
make sure that we end up at the starting position of the original attack. Thus
by guessing this value and repeating the attack for each guessed value of this
3-difference we can make sure we still retrieve the key.

Fortunately the values of (α, β, γ) are already chosen to give a minimal num-
ber of possible 3-difference in the round function. Thus the time complexity only
increases by this value, i.e., 35 and 48. The data complexity increases even less.
As it turns out, 12 different values for the left half of the input text are enough
to generate all of the 35 resp. 48 3-differences. Thus the data complexity only
increases to 48 chosen plaintexts.

We should mention that the same technique can be used to extend the 7-
round attack to an 8-round attack. But this leaves us with the same time com-
plexity as the 8-round attack in [11], albeit at a much higher data cost.

Experimental Results. To verify the correctness of the above attacks and
their complexities, we implemented the 5-round and 6-round attacks that use 4
chosen plaintexts. We ran the attacks on a single core of an Intel Core i5-4300U
processor. We ran the 5-round attack 100000 times which took about 140 s. The
average number of suggested round keys was 47 which is slightly higher than
the expected number of 35. The suggested number of round keys was below 35
though in 84 percent of the cases and below 100 in 95 percent of the cases. In fact,
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the raised average is created by a few outliers in the distribution: taking the
average on all but the 0.02 percent worst cases, we get 33.1 round key suggestions
per case. While this shows that the estimated probability is generally good, it also
demonstrates that the wrong-key randomization hypothesis has to be handled
with care.

Running the six-round attack 10 times, an attack ran an average time of
10 min and produced an average of 222.3 candidates for the last round key. As
expected, the correct round key was always in the list of candidate round keys
for both the 5-round and 6-round attacks.

4.2 Attacks on the AES.

For a good reference for the AES, we refer to [15]. A summary of the results for
AES can be found in Table 2.

Table 2. Comparison table of low-data attacks on round-reduced AES. Data com-
plexity is measured in number of required chosen plaintexts (CP). Time complexity is
measured in round-reduced AES encryption equivalents. Memory complexity is mea-
sured in plaintexts (16 bytes). The column ‘keyschedule’ denotes whether the attacks
use the AES key schedule. All attacks that rely on the keyschedule are attacks on
AES-128. The attacks of this paper are in bold.

Rounds Attack type Time Data Memory Keyschedule Source

4 Guess & Det. 2120 1 KP 2120 Yes As in [10]

Diff. MitM 2104 3 CP 1 Yes As in [8,9]

Guess & Det. 280 2 CP 280 Yes As in [10]

Guess & Det. 232 4 CP 224 Yes As in [10]

Imp. polytopic 238 8 CP 215 No This paper

5 MitM 264 8 CP 256 Yes As in [17], Sec. 7.5.1

Imp. polytopic 270 15 CP 241 No This paper

A 4-Round Attack. We first present here an impossible 8-polytopic attack on
4-round AES. For the input 7-difference, we choose a 7-difference that activates
only the first byte, i.e., that is all-zero in all other bytes. Such a 7-difference
can be mapped after round 1 to at most 28 different 7-differences. If we restrict
ourselves to the 7-differences in the first column after round 2, we can then at
most have 216 different 7-differences in this column. In particular, we can have
at most have 216 different 7-differences in the first byte. For a depiction of this,
see Fig. 3.

If we now request the encryptions of 8 plaintexts that adhere to our chosen
start 7-difference, we can now determine the corresponding 7-difference after
round 2 in the first byte by guessing 40 round key bits of round keys 3 and 4. If
this 7-difference does not belong to the set of 216 possible ones, we can discard
the key guess as wrong.
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Fig. 3. Diffusion of the starting 7-difference for the 4-round attack on AES. The letter
A shows a byte position in which a possible 7-difference is non-zero and known. A dot
indicates a byte position where the 7-difference is known to be zero. A question mark
indicates a byte position where arbitrary values for the 7-differences are allowed. In
total there are 216 different 7-differences possible in the first column after the second
round.

How many guesses of the 40 key bits, do we expect to survive the filtering?
There are 256 possible 7-difference on a byte and only 216 possible ones coming
from our chosen input 7-difference. This leaves a chance of 2−40 for a wrong key
guess to produce a correct 7-difference. We thus expect on average 2 suggestions
for the 40 key bits, among them the right one. To determine the remaining
round key bits, we can use the same texts, only restricting ourselves to different
columns.

The data complexity of the attack is limited to 8 chosen plaintexts. The time
complexity is dominated by determining the 7-difference in the first byte after
round 2 for each guess of the 40 key bits and checking whether it is among the 216

possible ones. This can be done in less than 16 table lookups on average for each
key guess. Thus the time complexity corresponds to 240 ·2−2 = 238 4-round AES
encryption equivalents, assuming one 4-round encryption corresponds to 4 · 16
table lookups. The memory complexity is limited to a table of the 216 allowed
7-difference in one byte, corresponding to 219 bytes or 215 plaintext equivalents.

A 5-Round Attack. In this attack, we are working with 15-polytopes and
trace the possible 14-differences one round further than in the 4-round attack.
Again we choose our starting 14-difference such that it only activates the first
byte. After two rounds we then have maximally 240 different 14-differences on
the whole state. If we restrict ourselves to only the first column of the state after
round 3, we then get an additional 232 possible 14-differences in this column
for each of the 240 possible 14-differences after round 2, resulting in a total of
272 possible 14-differences in the first column after round 3. This is depicted in
Fig. 4. In particular again, we can have at most have 272 different 14-differences
in the first byte.

Let us suppose now we have the encrypted values of a 15-polytope that
adheres to our starting 14-difference. We can then again find the respective 14-
difference in the first byte after the third round by guessing 40 key bits in round
keys 4 and 5. There are in total 2112 different 14-differences in one byte. The
chance of a wrong key guess to produce one of the possible 272 14-differences is
thus 2−40. We thus expect on average 2 suggestions for the 40 key bits, among
them the right one. To determine the remaining round key bits, we can again
use the same texts but restricting ourselves to a different column.
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Fig. 4. Diffusion of the starting 14-difference for the 5-round attack on AES. The letter
A shows a byte position in which a possible 14-difference is non-zero and known. A dot
indicates a byte position where the 14-difference is known to be zero. A question mark
indicates a byte position where arbitrary values for the 14-differences are allowed. In
total there are 272 different 14-differences possible in the first column after the third
round.

To lower the memory complexity of this attack it is advantageous to not
store the 272 possible 14-differences but store for each of the 240 key guesses
the obtained 14-difference. This gives a memory complexity of 240 · (14 + 5)
bytes corresponding to 241 plaintext equivalents. The time complexity is then
dominated by constructing the 272 possible 14-differences and testing whether
they correspond to one of the key guesses. This should not take more than the
equivalent of 272 · 16 table lookups resulting in a time complexity of 270 5-round
AES encryption equivalents. The data complexity is restricted to the 15 chosen
plaintexts needed to construct one 15-polytope corresponding to the starting
14-difference.

5 Conclusion

In this paper, we developed and studied polytopic cryptanalysis. We were able
to show that the methodology and notation of standard cryptanalysis can be
unambiguously extended to polytopic cryptanalysis, including the concept of
impossible differentials. Standard differential cryptanalysis remains as a special
case of polytopic cryptanalysis.

For impossible polytopic transitions, we demonstrated that both the increase
in the size of the space of d-differences and the inherent limit in the diffusion of
d-differences in a cipher allow them to be very effective in settings where ordinary
impossible differentials fail. This is the case when the number of rounds is so
high that impossible differentials do no longer exist or when the allowed data
complexity is too low.

Finally we showed the practical relevance of this framework by demonstrating
novel low-data attacks on DES and AES that are able to compete with existing
attacks.
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A Markov Model in Polytopic Cryptanalysis

To develop the Markov model, we first need to introduce keys in the function over
which the transitions take place. We will thus restrict our discussion to product
ciphers i.e., block ciphers that are constructed through repeated composition of
round functions. In contrast to Eq. (2), each round function f i is now keyed with
its own round key ki which itself is derived from the key k of the cipher via a
key schedule2. We can then write the block cipher fk as:

fk := fr
kr

◦ · · · ◦ f2
k2

◦ f1
k1

. (7)

2 For a clearer notation, we moved the index from subscript to superscript.
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The first assumption that we now need to make, is that the round keys are
independent. The second assumption is that the product cipher is a Markov
cipher. Here we adopt the notion of a Markov cipher from [23] to polytopic
cryptanalysis:

Definition 9. A product cipher is a (d+1)-polytopic Markov cipher if and only
if for all round functions f i, for any (d+1)-polytopic transition α −→ β for that
round function and any fixed inputs x, y ∈ F

n
2 , we have

Pr
K

(
α

fi
K−−→
x

β

)
= Pr

K

(
α

fi
K−−→
y

β

)
(8)

where K is a random variable distributed uniformly over the spaces of round
keys.

In words, a cipher is a (d + 1)-polytopic Markov cipher if and only if the prob-
abilities of 1-round (d + 1)-polytopic transitions do not depend on the specific
anchor as long as the round key is distributed uniformly at random. For d = 1,
the definition coincides with the classical definition.

Just as with the standard definition of Markov ciphers, most block ciphers are
(d + 1)-polytopic Markov ciphers for any d as the round keys are usually added
to any part of the state that enters the non-linear part of the round function
(for a counterexample, see [16]). Examples of (d + 1)-polytopic Markov ciphers
are SPN ciphers such as AES [15] or PRESENT [7], and Feistel ciphers such as
DES [26] or CLEFIA [27]. We are not aware of any cipher that is Markov in the
classical definition but not (d + 1)-polytopic Markov.

In the following, we extend the central theorem from [23] (Theorem 2) to the
case of (d + 1)-polytopes.

Theorem 1. Let fk = fr
kr

◦ · · · ◦ f1
k1

be a (d + 1)-polytopic Markov cipher with
independent round keys, chosen uniformly at random and let δ0, δ1, . . . , δr be a
series of d-differences such that δ0 is the input d-difference of round 1 and δi

is the output d-difference of round i of some fixed input (d + 1)-polytope. The
series δ0, δ1, . . . , δr then forms a Markov chain.

The following proof follows the lines of the original proof from [23].

Proof. We limit ourselves here to showing that

Pr
K1,K2

(
δ1

f2
K2−−−−→

f1
K1

(x)
δ2

∣∣∣∣∣ δ0

f1
K1−−→
x

δ1

)
= Pr

K2

(
δ1

f2
K2−−→
z

δ2

)
(9)

where x and z are any elements from F
n
2 and K1 and K2 are distributed

uniformly at random over their respective round key spaces and the conditioned
event has positive probability. The theorem then follows easily by induction and
application of the same arguments to the other rounds.
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For any x, z ∈ F
n
2 , we now have

Pr
K1,K2

(
δ1

f2
K2−−−−→

f1
K1

(x)
δ2 and δ0

f1
K1−−→
x

δ1

)

=
∑

y∈Fn
2

Pr
K1,K2

(
δ1

f2
K2−−→
y

δ2 and δ0

f1
K1−−→
x

δ1 and f1
K1

(x) = y

)

=
∑

y∈Fn
2

Pr
K2

(
δ1

f2
K2−−→
y

δ2

)
· Pr
K1

(
δ0

f1
K1−−→
x

δ1 and f1
K1

(x) = y

)

= Pr
K2

(
δ1

f2
K2−−→
z

δ2

)
·

∑

y∈Fn
2

Pr
K1

(
δ0

f1
K1−−→
x

δ1 and f1
K1

(x) = y

)

= Pr
K2

(
δ1

f2
K2−−→
z

δ2

)
· Pr
K1

(
δ0

f1
K1−−→
x

δ1

)

where the second equality comes from the independence of keys K1 and K2 and
the third equality comes from the Markov property of the cipher. From this,
Eq. (9) follows directly. ��
The important consequence of the fact that the sequence of d-differences forms a
Markov chain is that, just as in standard differential cryptanalysis, the average
probability of a particular polytopic trail with respect to independent random
round keys is the product of the single polytopic 1-round transitions of which it
consists. We then have the following result:

Corollary 1. Let fk, f i
ki

, 1 ≤ i ≤ r be as before. Let α0
f1−→ α1

f2−→ · · · fr−→ αr

be an r-round (d + 1)-polytopic trail. Then

Pr
(

α0

f1
K1−−→ α1

f2
K2−−→ · · ·

fr
Kr−−→ αr

)
=

r∏

i=1

Pr
(

αi−1

fi
Ki−−→ αi

)
(10)

where x ∈ F
n
2 and the Ki are uniformly randomly distributed on their respective

spaces.

Proof. This is a direct consequence of the fact that d-differences form a Markov
chain. ��
In most attacks though, we are attacking one fixed key and can not average the
attack over all keys. Thus the following assumption is necessary:

Hypothesis of Stochastic Equivalence. Let f be as above. The hypothesis

of stochastic equivalence then refers to the assumption that the probability of
any polytopic trail α0

f1−→ α1
f2−→ · · · fr−→ αr is roughly the same for the large

majority of keys:

Pr
(

α0

f1
K1−−→ α1

f2
K2−−→ · · ·

fr
Kr−−→ αr

)
≈ Pr

(
α0

f1
k1−−→ α1

f2
k2−−→ · · ·

fr
kr−−→ αr

)
(11)

for almost all tuples of round keys (k1, k2, . . . , kr).
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B Truncated Polytopic Transitions and Higher-Order
Differentials

In this section, we extend the definition of truncated differentials to polytopic
transitions and prove that higher-order differentials are a special case of these.
We then gauge the cryptographic ramifications of this.

In accordance with usual definitions for standard truncated differentials (see
for example [6], we define:

Definition 10. A truncated d-difference is an affine subspace of the space of d-
differences. A truncated (d+1)-polytopic transition is a pair (A,B) of truncated

d-differences, mostly denoted as A
f−→ B. The probability of a truncated (d + 1)-

polytopic transition (A,B) is defined as the probability that an input d-difference
chosen uniformly randomly from A maps to a d-difference in B:

Pr
(
A

f−→ B
)

:= |A|−1
∑

α∈A
β∈B

Pr
(
α

f−→ β
)

(12)

As the truncated input d-difference is usually just a single d-difference, the prob-
ability of a truncated differential is then just the probability that this input
d-difference maps to any of the output d-differences in the output truncated
d-difference. With a slight abuse of notation, we will denote the truncated poly-
topic transition then also as α

f−→ B where α is the single d-difference of the
input truncated d-difference.

A particular case of a truncated d-difference is the case where the individual
differences of the d-differences always add up to the same value. This is in fact
just the kind of d-differences one is interested in when working with higher-order
derivatives. We refer here to Lai’s original paper on higher-order derivatives [22]
and Knudsen’s paper on higher-order differentials [19] for reference and notation.

Theorem 2. A differential of order t is a special case of a truncated 2t-polytopic
transition. In particular, its probability is the sum of the probabilities of all 2t-
polytopic trails that adhere to the truncated 2t-polytopic transition.

Proof. Let f : F
n
2 → F

n
2 . Let (α1, . . . , αt) be the set of linearly independent

differences that are used as the base for our derivative. Let L(α1, . . . , αt) denote
the linear space spanned by these differences. Let furthermore β be the output
difference we are interested in. The probability of the t-th order differential
Δα1,...,αt

f(X) = β is then defined as the probability that
∑

γ∈L(α1,...,αt)

f(X ⊕ γ) = β (13)

holds with X being a random variable, uniformly distributed on F
n
2 .
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Let B now be the truncated (2t − 1)-difference defined as

B :=

⎧
⎨

⎩(δ1, . . . , δ2t−1)

∣∣∣∣∣∣

2t−1∑

i=1

δi = β

⎫
⎬

⎭ . (14)

Let γ1, γ2, . . . , γ2t−1 be an arbitrary ordering of the non-zero elements of the
linear space L(α1, . . . , αt) and let α = (γ1, . . . , γ2t−1) be the (2t − 1)-difference
consisting of these. We will then show that the probability of the t-th order differ-
ential (α1, . . . , αt, β) is equal to the the probability of the truncated 2t-polytopic

transition α
f−→ B. With X being a random variable, uniformly distributed on

F
n
2 , we have

Pr
(
α

f−→ B
)

= Pr
X

⎛

⎝
2t−1∑

i=1

(
f(X ⊕ γi) ⊕ f(X)

)
= β

⎞

⎠

= Pr
X

⎛

⎝
2t−1∑

i=1

(
f(X ⊕ γi)

)
⊕ f(X) = β

⎞

⎠

= Pr
X

⎛

⎝
∑

γ∈L(α1,...,αt)

(
f(X ⊕ γ)

)
= β

⎞

⎠

which proves the theorem. ��
Example. Let α1 and α2 be two differences with respect to which we want to
take the second order derivative and let β be the output value we are interested
in. The probability that Δα1,α2f(X) = β for uniformly randomly chosen X is
then nothing else than the probability that the 3-difference (α1, α2, α1 ⊕ α2) is
mapped to a 3-difference (β1, β2, β3) with β1 ⊕ β2 ⊕ β3 = β.

This theoretical connection between truncated and higher-order differentials
has an interesting consequence: a higher-order differentials can be regarded as the
union of polytopic trails. This principally allows us to determine lower bounds
for the probability of higher-order differentials by summing over the probabilities
of a subset of all polytopic trails that it contains – just as we are used to from
standard differentials.

As shown in Lemma 2, the probability of a (d + 1)-polytopic trail is always
at most as high as the probability of the worst standard differential trail that
it contains. A situation in which the probability of a higher-order differential
at the same time is dominated by a single polytopic trail and has a higher
probability than any ordinary differential can thus never occur. To find a higher-
order differential with a higher probability than any ordinary differential for
a given cipher, we are thus always forced to sum over many polytopic trails.
Whether this number can remain manageable for a large number of rounds will
require further research and is beyond the scope of this paper.
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Abstract. Leakage detection usually refers to the task of identifying
data-dependent information in side-channel measurements, independent
of whether this information can be exploited. Detecting Points-Of-Interest
(POIs) in leakage traces is a complementary task that is a necessary first
step in most side-channel attacks, where the adversary wants to turn this
information into (e.g.) a key recovery. In this paper, we discuss the dif-
ferences between these tasks, by investigating a popular solution to leak-
age detection based on a t-test, and an alternative method exploiting
Pearson’s correlation coefficient. We first show that the simpler t-test has
better sampling complexity, and that its gain over the correlation-based
test can be predicted by looking at the Signal-to-Noise Ratio (SNR) of
the leakage partitions used in these tests. This implies that the sampling
complexity of both tests relates more to their implicit leakage assump-
tions than to the actual statistics exploited. We also put forward that this
gain comes at the cost of some intuition loss regarding the localization
of the exploitable leakage samples in the traces, and their informative-
ness. Next, and more importantly, we highlight that our reasoning based
on the SNR allows defining an improved t-test with significantly faster
detection speed (with approximately 5 times less measurements in our
experiments), which is therefore highly relevant for evaluation laborato-
ries. We finally conclude that whereas t-tests are the method of choice for
leakage detection only, correlation-based tests exploiting larger partitions
are preferable for detecting POIs. We confirm this intuition by improving
automated tools for the detection of POIs in the leakage measurements of
a masked implementation, in a black box manner and without key knowl-
edge, thanks to a correlation-based leakage detection test.

1 Introduction

Leakage detection tests have recently emerged as a convenient solution to
perform preliminary (black box) evaluations of resistance against side-channel
analysis. Cryptography Research (CRI)’s non specific (fixed vs. random) t-test
is a popular example of this trend [4,10]. It works by comparing the leakages of a
cryptographic (e.g. block cipher) implementation with fixed plaintexts (and key)
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to the leakages of the same implementation with random plaintexts (and fixed
key)1, thanks to Welch’s t-test [38]. Besides their conceptual simplicity, the main
advantage of such tests, that were carefully discussed in [18], is their low sam-
pling complexity. That is, by comparing only two (fixed vs. random) classes of
leakages, one reduces the detection problem to a simpler estimation task. In this
paper, we want to push the understanding of leakage detection one step further,
by underlining more precisely its pros and cons, and clarifying its difference with
the problem of detecting Points-Of-Interest (POIs) in leakage traces. As clear
from [9], those two problems are indeed related, and one can also exploit t-tests
for the detection of POIs in leakage traces. So as for any side-channel analy-
sis, the main factor influencing the intuitions that one can extract from leakage
detection is the implicit assumptions that we make about the partitioning of the
leakages (aka leakage model). Our contributions in this respect are threefold.

First, we notice that CRI’s fixed vs. random t-test is one extreme in this
direction (since it relies on a partitioning in two classes), which is reminiscent of
Kocher’s single-bit Differential Power Analysis (DPA) [14]. For comparison pur-
poses, we therefore start by specifying an alternative leakage detection test based
on the popular Correlation Power Analysis (CPA) distinguisher [3]. The result-
ing ρ-test directly derives from the hypothesis tests for CPA provided in [16], and
relies on a partitioning into 2s classes, where s is the bitsize of the fixed portion of
plaintext in the test. We then compare the t-test and ρ-test approaches, both in
terms of sampling complexity and based on their exploitability.2 That is, does a
positive answer to leakage detection imply exploitable leakage, and does a nega-
tive answer to leakage detection imply no exploitable leakage? Our experimental
analysis based on real and simulated data leads to the following observations:

– First, the sampling complexity of the t-test is (on average) lower than the
one of the ρ-test, as previously hinted [10,18]. Interestingly, we show that
the sampling complexity ratio between the two tests can be simply approxi-
mated as a function of a Signal-to-Noise Ratio (SNR) for the leakage partition
used in these tests. This underlines that the difference between the tests is
mainly due to their different leakage assumptions, i.e. is somewhat indepen-
dent of statistics used (backing up the conclusions of [17] for “standard DPA
attacks”).

– Second, the exploitability of the tests is quite different. On the one hand,
leakages that are informative (and therefore can be detected with the ρ-test)
but cannot be detected with the t-test are easy to produce (resp. can be
observed in practice). Take for example a fixed class of which the mean leakage
is the same as (resp. close to) the mean leakage of the random class. On the

1 The Test Vector Leakage Assessment methodology in [4,10] includes other options,
e.g. non specific semi-fixed vs. random tests and specific tests – we focus on this non
specific fixed vs. random test that is the most popular in the literature [2,18].

2 One could also compare the computational complexity of the tests. Since they are
based on simple statistics, we will assume that both the t-test and ρ-test can be
implemented efficiently. Besides, a minor advantage of the ρ-test is that it can be
implemented in a known-plaintexts scenario (vs. chosen-plaintext for the t-test).
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other hand, the fixed vs. random t-test leads to the detection of many time
samples spread around the complete leakage traces. Hence, not all of these
samples can be exploited in a standard DPA (because of the diffusion within
the cipher).

Concretely, these observations refine the analysis in [18], where it was argued
that leakage detection is a useful preliminary to white box (worst-case) security
evaluations such as advertized in [34]. This is indeed the case. Yet, certain leakage
detection tests are more connected with the actual security level of a leaking
implementation. In this respect, the fixed vs. random t-test is a more efficient
way to perform leakage detection only. And the minor drawback regarding its
unability to detect certain leakages (e.g. our example with identical means) is
easily mitigated in practice, by running the test on large enough traces, or for
a couple of keys (as suggested in [4,10]). By contrast, the main price to pay for
this efficiency is a loss of intuition regarding (i) the localisation of the leakage
samples that are exploitable by standard DPA, and (ii) the complexity of a side-
channel attack taking advantage of the leakage samples for which the detection
test is positive. As a result, the ρ-test can be viewed as a perfect complement,
since it provides these intuitions (at the cost of higher sampling complexity).

Second, we show that our reasoning based on the SNR not only allows a better
statistical understanding of leakage detection, but can also lead to more efficient
t-tests. Namely, it directly suggests that if the evaluator’s goal is to minimize the
number of samples needed to detect data-dependent information in side-channel
measurements, considering a partitioning based on two fixed plaintexts (rather
than one fixed and one random plaintext) leads to significantly faster detection
speeds. This is both due to an improved signal (since when integrated over large
execution times, samples with large differences between the two fixed classes
will inevitably occur) and a reduced noise (since the random class in CRI’s
t-test implies a larger algorithmic noise that is cancelled in our proposal). We
also confirm these intuitions experimentally, with two representative AES imple-
mentations: an 8-bit software one and a 128-bit hardware one. In both cases, we
exhibit detections with roughly 5 times less measurements than when using the
previous fixed vs. random non specific t-test. We believe these results are highly
relevant to evaluation laboratories since (i) they lead to reductions of the mea-
surement cost of a leakage detection by a large factor (whereas improvements
of a couple of percents are usually considered as significant in the side-channel
literature), and (ii) they imply that a device for which no leakages have been
detected with one million measurements using a fixed vs. random t-test could in
fact have detectable leakages with 200,000 (or even less) measurements.

These observations lead to the last contribution of the paper. That is, when
extending leakage detection towards the detection of POIs, the ρ-test natu-
rally gains additional interest, since it provides more intuitions regarding the
exploitable samples in side-channel traces. More precisely, it allows a better
selection of POIs based on the criteria that these POIs depend on an enumerable
part of the key. It also maximizes the SNR metric that can be easily connected
to the worst-case complexity of standard DPA attacks [5]. Therefore, and more
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concretely, our results directly imply that the automated tools for the detection
of POIs recently proposed in [7] are also applicable in a fully black box setting,
without any key knowledge, by simply adapting the objective function used in
their optimization (i.e. replacing it by the ρ-test in this paper). We finally con-
firm this claim with an experimental evaluation, in the context of first-order
secure masked implementations. Doing so, we put forward that the detection of
a threshold for which an improvement of the objective function is considered
as significative in the optimizations of [7] is made easier when using the ρ-test.
We also improve the latter methods by adapting the objective function to the
multivariate case and taking advantage of cross-validation to evaluating it.

2 Background

2.1 Measurement Setups

Most of our experiments are based on measurements of an AES Furious
implementation (http://point-at-infinity.org/avraes/) run by an 8-bit Atmel
ATMega644P microcontroller, at a 20 MHz clock frequency. We monitored the
voltage variations across a 22 Ω resistor introduced in the supply circuit of our
target chip. Acquisitions were performed using a Lecroy HRO66ZI oscilloscope
running at 200 MHz and providing 8-bit samples. In each of our evaluations,
the 128-bit AES master key remains the same for all the measurements and is
denoted as κ = s0||s1|| . . . ||s15, where the si’s represent the 16 key bytes. When
evaluating the fixed vs. random t-test, we built sets of 2000 traces divided in two
subsets of 1000 traces each, one corresponding to a fixed plaintext and key, the
other corresponding to random plaintexts and a fixed key, next denoted as Lf

and Lr respectively. When evaluating the correlation-based test, we built a single
set of 2000 traces L, corresponding to random plaintexts and a fixed key. In the
following, we denote the encryption traces obtained from a plaintext p including
the target byte x under a key κ including the subkey s as: AESκs

(px) � ly (with
y = x ⊕ s). Whenever accessing the points of these traces, we use the notation
ly(τ) (with τ ∈ [1; 20 000], typically). These different subscripts and indexes will
be omitted when not necessary. In Sect. 5, we additionally consider a hardware
implementation of the AES of which the design is described in [13]. The same
amount of measurement as for the previous Atmel case were taken, based on
a prototype chip embedding an AES core with a 128-bit architecture requiring
11 cycles per encryption, implemented in a 65-nanometer low power technology,
running at 60 MHz and sampled at 2 GHz. Eventually, Sect. 6 considered masked
implementation of the AES in our Atmel microcontroller, based on precomputed
table lookups [25,31]. For every pair of input/output masks (m, q), it-precomutes
an S-box S∗ such that S∗(x⊕s⊕m) = S(x⊕s)⊕q. This pre-computation is part
of the adversary’s measurements, which leads to quite large traces with 30, 000
samples. In this last case, we used an evaluation set with 256×50 traces in total,
i.e. 50 per fixed value of the target key byte.

http://point-at-infinity.org/avraes/
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2.2 CPA Distinguisher

Our correlation-based leakage detection test will be based on the Correlation
Power Analysis (CPA) distinguisher [3], extended to a profiled setting. In this
case, and for each time sample τ , the evaluator starts by estimating a model for
his target intermediate variable Y from Np profiling traces: ˆmodelτ (Y ) ← Lp.
This model corresponds to the mean leakages associated with the different values
of Y . He then estimates the correlation between measured leakages and modeled
leakages. In our AES example, it would lead to ρ̂(LY (τ), ˆmodelτ (Y )). In practice,
this estimation is performed by sampling (i.e. measuring) a set of Nt test traces
from the leakage distribution, that we denote as Lt (with Lp ⊥⊥ Lt).

2.3 Fixed vs. Random Leakage Detection Test

CRI’s fixed vs. random t-test essentially works by comparing the leakages cor-
responding to the fixed and random sets of traces defined in Sect. 2.1. For this
purpose, and for each sample, one simply has to estimate and compare two mean
values. The first one, denoted as μ̂f (τ), corresponds to the samples in the fixed
set of traces Lf . The second one, denoted as μ̂r(τ), corresponds to the samples
in the random set of traces Lf . Intuitively, being able to distinguish these two
mean values indicates the presence of data-dependencies in the leakages. For this
purpose, and in order to determine whether some difference observed in practice
is meaningful, Welch’s t-test is applied (which is a variant of Student’s t-test
that considers different variances and sample size for the sets Lf and Lr). The
statistic to be tested is defined as:

Δ(τ) =
μ̂f (τ) − μ̂r(τ)√

σ̂2
f (τ)

Nf
+ σ̂2

r(τ)
Nr

,

where σ̂2
f (τ) (resp. σ̂2

r(τ)) is the estimated variance over the Nf (resp. Nr) sam-
ples of Lf (resp. Lr). Its p-value, i.e. the probability of the null hypothesis which
assumes Δ(τ) = 0, can be computed as follows:

p = 2 × (1 − CDFt(|Δ(τ)|, ν)),

where CDFt is the cumulative function of a Student’s t distribution, and ν is
its number of freedom degrees, which is derived from the previous means and
variances as: ν = (σ̂2

f/Nf +σ̂2
r/Nr)/[(σ̂2

f/Nf )/(Nf −1)+(σ̂2
r/Nr)/(Nr −1)]. Intu-

itively, the value of ν is proportional to the number of samples Nf and Nr. When
increasing, Student’s t distribution gets closer to a normal distribution N (0, 1).

3 A Correlation-Based Leakage Detection Test

We start by describing an alternative leakage detection test based on the CPA
distinguisher, inspired from the hypothesis test described in [16], and further
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taking advantage of the cross-validation techniques recently introduced in [6].
For k-fold cross–validation, the set of acquired traces L is first split into k (non
overlapping) sets L(i) of approximately the same size. We then define the pro-
filing sets L(j)

p =
⋃

i�=j L(i) and the test sets L(j)
t = L \ L(j)

p . Based on these
notations, our ρ-test is defined as follows, for a target plaintext byte variable X.
First, and for each cross-validation set j with 1 ≤ j ≤ k, a model is estimated:

ˆmodel
(j)

τ (X) ← L(j)
p . For s-bit plaintext bytes, this model corresponds to the

sample means of the leakage sample τ corresponding to each value of the plain-
text byte, i.e. μ̂

(j)
x (τ).3 Next, the correlation between this model and the leakage

samples in the test sets L(j)
t is computed as follows:

r̂(j)(τ) = ρ̂(L(j)
X (τ), ˆmodel

(j)

τ (X)).

The k cross-validation results r̂(j)(τ) can then be averaged in order to get a single
(unbiased) result r̂(τ) obtained from the full measurement set L. Following, and
as in [16], Fisher’s z-transformation is applied to obtain:

r̂z(τ) =
1
2

× ln

(
1 + r̂(τ)
1 − r̂(τ)

)
.

By normalizing this value with the standard deviation 1√
N−3

, where N is the
size of the evaluation set L, we obtain a sample that can be (approximately)
interpreted according to a normal distribution N (0, 1). This allows us to compute
the following p-value for a null hypothesis assuming no correlation:

p = 2 × (1 − CDFN (0,1)(|r̂z(τ)|)),

where CDFN (0,1) is the cumulative function of a standard normal distribution.
Besides exploiting cross-validation (which allows us to obtain unbiased estimates
for Pearson’s correlation coefficient), the main difference between this test and
the hypothesis test in [16] is that our model is built based on a plaintext byte
rather than a key-dependent intermediate value. This allows us to implement it
in a black box manner and without key knowledge, just as the previous t-test.

4 Experimental Results

In order to discuss the pros and cons of the two previous leakage detection test,
we now consider various experimental results. We start with a simulated setting
which allows us to control all the parameters of the leakages to detect, in order
to discuss the sampling complexity of both methods. Next, we analyze actual
leakage traces obtained from the measurement setup described in Sect. 2.1, which
allows us to put forward the intuitions provided by the t-test and ρ-test regarding
the time localization of the informative samples in our traces.
3 If there is no available trace for a given value of x, which happens when the evaluation

set is small, the model takes the mean leakage taken over all the traces in L(j)
p .
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4.1 Simulated Experiments

We define a standard simulated setting for the leakages of a block cipher, where
an intermediate computation z = S(y = x ⊕ s) is performed, with S an 8-bit
S-box. It gives rise to a (multivariate) leakage variable of the form:

LX = [HW(X) + R1, HW(Y ) + R2, HW(Z) + R3],

where HW is the Hamming weight function, R1, R2 and R3 are Gaussian dis-
tributed random noises with mean 0 and variance σ2

n, and the index X recalls
that in our detection setup, the evaluator only varies the plaintext. For t-tests,
the set Lf contains leakages corresponding to fixed values of x, y or z, denoted
as xf , yf , zf , while the set Lr corresponds uniformly random x’s, y’s or z’s. For
ρ-tests, the leakages all correspond to uniformly random x’s, y’s or z’s.

Concretely, we analyzed the t-test based on the third sample of LX (which
corresponds to the target intermediate value z), and for different fixed values
of this intermediate value. This choice is naturally motivated by the counter-
example given in introduction. That is, since the average leakage of the random
class equals 4 in our simulation setting, a fixed class such that HW(zf ) = 4
should not lead to any detection. And extending this example, the bigger the
difference between HW(zf ) and 4, the easier the detection should be.

In parallel, we investigated the ρ-test for the same sample in two cases.
First the realistic case, where the model estimation using k-fold cross-validation
described in Sect. 3 is applied (using a standard k = 10). Second, a theoretical
simplification where we assume that the evaluator knows the perfect (Hamming
weight) model, which implies that all the samples in the set L are directly used
to compute a single estimate for the correlation r̂(τ) = ρ̂(LX(τ),modelτ (X)).

The results of our experiments are given in Fig. 1, where the upper part
corresponds to a noise variance σ2

n = 50 and the lower part to a noise variance
σ2

n = 100. In both cases, we set the detection threshold to 5, which is the value
suggested in [2]. They allow the following relevant observations.

(1) On the impact of the noise. As doubling the noise variance generally doubles
the measurement complexity of a side-channel attack, it has the same impact
on the sample complexity of a leakage detection test. For example, detecting
a difference between a fixed class such that HW(zf ) = 2 and a random class
with the t-test requires ≈ 1300 traces in the upper part of the figure and
≈ 2600 traces in its lower part. Similar observations hold for all the tests.

(2) On the impact of the fixed value for the t-test. As expected, for both σ2
n, a fixed

class such that HW(zf ) = 4 cannot be distinguished at all from the random
class (since they have the same mean). By contrast, a fixed class such that
HW(zf ) = 0 is extremely fast to distinguish from the random class.

(3) The ρ-test can have (much) larger sampling complexity. This naturally
depends on the fixed value for the t-test. But assuming that several samples
from a trace are used in a the leakage detection (which is usually the case,
as will be shown in our following measured experiments), there should be
some of them that lead to faster leakage detection with the t-test than with
the ρ-test.
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Fig. 1. Leakage detection on simulated traces, Hamming weight leakage function.

(4) It’s all in the SNR. Most importantly, and just as in standard DPA, the
sampling complexity of a detection test essentially depends on the SNR of
its leakage partitioning. For the ρ-test, we can directly exploit Mangard’s
definition from CT-RSA 2004 for this purpose [15]. That is, the signal corre-
sponds to the variance of the random variable HW(Z) with Z uniform, which
equals 2 for 8-bit values, and the noise variance equals to σ2

n. As for the
t-test, we need to define an binary random variable B that is worth HW(zf )
with probability 1/2 and HW = 4 with probability 1/2. For each value of
the fixed zf , the signal then corresponds to the variance of B, and the noise
variance equals to σ2

n for the fixed class, and σ2
n + 2 for the random class

(since in this case, the noise comes both from the variable Z and from the
noise R). For example, this means a signal 0 for the fixed class HW(zf ) = 4,
a signal 0.25 for the fixed class HW(zf ) = 3, a signal 1 for the fixed class
HW(zf ) = 2, a signal 2.25 for the fixed class HW(zf ) = 1, and a signal 4
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for the fixed class HW(zf ) = 0. Ignoring the small noise differences between
the tests, it means that the sampling complexity for detecting leakages with
the t-test and a fixed class HW(zf ) = 1 should be close to (and slightly
smaller than) the sampling complexity for detecting leakages with the ρ-
test. And this is exactly what we observe on the figure, for the ρ-test with
a perfect model. The same reasoning can be used to explain the sampling
complexities of the t-test for different fixed values. For example, the case
HW(zf ) = 3 requires four times more traces than the case HW(zf ) = 2 on
the figure.

A consequence of this observation is that, as for standard DPA attacks,
the choice of statistic (here the t-test or ρ-test) has limited impact on the
sampling complexity of the detection. For example, one could totally design
a ρ-test based on a partition in two (fixed and random) classes, that would
then lead to very similar results as the t-test (up to statistical artifacts, as
discussed in [17]).

(5) Estimating a model can only make it worse. Besides the potentially lower
signal, another drawback of the 256-class ρ-test from the sampling complex-
ity point-of-view is that it requires the estimation of a model made of 256
mean values. This further increases its overheads compared to the t-test, as
illustrated in Fig. 1 (see the r̂z curve with k = 10-fold cross-validation). In
this respect, we first note that considering larger k’s only leads to very mar-
ginal improvements of the detection (at the cost of significant computational
overheads). Besides, we insist that this estimation is unavoidable. For exam-
ple, ignoring the cross-validation and testing a model with the same set as
its profiling set would lead to overfitting and poor detection performances.
In other words, it is the size of the partition used in the ρ-test that fixes its
SNR (as previously discussed) and estimation cost, and both determine the
final sampling complexity of the test.

Note that the above conclusions are independent of the leakage function
considered (we repeated experiments with identity rather than Hamming
weight leakages, and reached the same conclusions). Therefore, these simu-
lated results confirm our introduction claim that for leakage detection only,
a non specific t-test is the method of choice, and that its gains over a ρ-test
can be easily predicted from a leakage function/partition and its resulting
SNR metric.

4.2 Measured Experiments

We now extend the previous simulated analysis to the practically-relevant case
of actual AES measurements, obtained from the setup described in Sect. 2.1. We
will divide our investigations in two parts. First, a global analysis will consider
the leakage traces of the full AES executions, in order to discuss the sampling
complexity and intuitions regarding the POIs for our two detection tests. Next,
a local analysis will be used in order to discuss possible false negatives in the
t-test, and intuitions regarding the informativeness of the detected samples.
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Global Analysis. The results of a fixed vs. random t-test and a ρ-test for
leakage traces corresponding to an entire AES Furious execution are provided in
Fig. 2, from which two main observations can be extracted.

(1) The t-test has lower sampling complexity on average. This is essentially the
concrete counterpart of observation (3) in the previous section. That is, we
already know that for some fixed values of the plaintext, the t-test should
have a lower sampling complexity. Figure 2 confirms that when looking at
complete AES traces, those “easy-to-detect” fixed values are indeed observed
(which is natural since the AES Furious implementation accounts for a bit
more than 3000 clock cycles, and the intermediate values within such a block
cipher execution should be uniformly distributed after a couple of rounds).
Concretely, this means that the sampling complexity for detecting leakages
with a similar confidence increases from ≈ 200 traces for the t-test to ≈ 2000
traces for the ρ-test, i.e. a factor ≈ 10 which is consistent with the previous
simulations. Note that even in the context of a hardware implementation
with a reduced cycle count (e.g. 11 cycles per AES execution), finding fixed
values that are easy-to-detect for the t-test is feasible by trying a couple of
fixed plaintexts and keys.

(2) The ρ-test (resp. t-test) does (resp. not) provide intuitions regarding
exploitable leakage samples. This is easily seen from the figure as well.
Whereas the t-test detects information leakage everywhere in the trace, the
ρ-test is much more localized, and points towards the samples that depend
on the single plaintext byte of which the leakage is considered as signal (here
corresponding to the first round and first S-box). Since the key is fixed in
leakage detection, it implies that peaks are observed whenever this (useless)

Fig. 2. Leakage detection on real traces, entire AES execution.



250 F. Durvaux and F.-X. Standaert

plaintext byte and the (useful) intermediate values that bijectively depend
on it are manipulated, e.g. the key addition and S-box outputs in Fig. 2.
In other words, the ρ-test is mostly relevant for the detection of POIs that
are exploitable in a standard DPA attack (i.e. excluding the false positives
corresponding to plaintext manipulations).

Local Analysis. The results of a fixed vs. random t-test and a ρ-test for leak-
age traces corresponding to the beginning of the first AES round execution are
provided in Fig. 3, from which two main observations can be extracted.4

Fig. 3. Leakage detection on real traces, first-round AES key addition and S-box.

(1) Hard-to-detect leakage samples for the t-test can be observed. More precisely,
the lower part of Fig. 3 exhibits three peaks which exactly correspond to
the manipulation of a plaintext byte (first peak), the key addition (second
peak) and the S-box execution (third peak), just as the three samples of our
simulated setting in Sect. 4.1. Knowing that our Atmel implementation of the
AES has leakages that can be efficiently exploited with a Hamming weight
model (as in our simulations) [33], we selected the fixed plaintext byte of the
t-test such that HW(zf ) = 4. As illustrated in the upper part of the figure,
the leakages of this fixed intermediate value are indeed difficult to tell apart
from the one of its random counterpart. More precisely, the ρ-test clearly
exhibits a peak for this intermediate value after 2000 traces, which does not
exist in the t-test experiment using a similar sampling complexity. Whereas
we cannot exclude that such a peak would appear for a larger number of

4 Exceptionally for this experiment, we considered a single varying byte for the t-test,
in order to better exhibit intuitions regarding the detected samples for a single S-box.
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Fig. 4. Fixed vs. random and fixed vs. fixed leakage detection signal.

traces (since the chip does not exactly follow the Hamming weight leakage
model), this confirms that not all leakage samples are easier to detect with
the t-test than with the ρ-test.

(2) The ρ-test does provide intuitions regarding the informativeness of the leak-
age samples. Eventually, a straightforward advantage of the ρ-test is that the
value of its correlation coefficient estimates brings some intuition regarding
the complexity of a side-channel attack exploiting this sample, which is only
provided up to a limited extent by the t-test. Indeed, a side-channel attack
exploiting an s-bit intermediate value is most efficient if it relies on an s-bit
model, as considered by the ρ-test (otherwise s−1 bits out of s will produce
“algorithmic noise”). In this context, we can take advantage of the connec-
tion between Pearson’s correlation coefficient and the information theoretic
metrics in [34] (see [17]), themselves related to the worst-case complexity of
standard DPA attacks [5].

5 Improved Leakage Detection Test

One central conclusion of the previous section is that the sampling complexity
of leakage detection tests highly depends on the SNR of the leakage partition on
which they are based. Interestingly, this observation directly suggests a natural
improvement of CRI’s non specific (fixed vs. random) t-test. Namely, rather than
performing the test based on a fixed and a random class, a more efficient solution
is to perform a similar test based on two fixed classes (i.e. two fixed plaintexts).
On the one hand, this directly reduces the detection noise from 2σ2

n + σ2
alg to

2σ2
n, since it cancels the algorithmic noise due to the variations of the random

class. Taking the example of Hamming weight leakages, this algorithmic noise
corresponds to σ2

alg = 2 for 8-bit values, but it increases for larger parallel imple-
mentations (e.g. it is worth σ2

alg = 32 for 128-bit implementations). On the
other hand, and when applied to large traces, such a partitioning also increases
the signal with high probability, for the same argument as used to avoid false
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positives in CRI’s t-test (i.e. by applying the detection to large enough traces,
large differences between the two fixed classes will inevitably occur). Taking the
example of Hamming weight leakages again, we can easily compute the proba-
bility (over random inputs) that a certain leakage difference is obtained for both
types of partitions (i.e. fixed vs. random and fixed vs. fixed), and the resulting
signal variance, as illustrated in Fig. 4. We conclude from this figure that (i) the
fixed vs. fixed partitioning allows reaching larger differences (so larger signals)
and (ii) the fixed vs. fixed partitioning allows doubling the average signal (i.e.
the dot product of the probabilities and variances in the figure). So both from
the noise variance and the (best-case and average case) signal points-of-views, it
should improve the sampling complexity of the detection test.5 In other words, a
leakage detection based on a fixed vs. fixed leakage partition should theoretically
have better sampling complexity than with a fixed vs. random one.

Fig. 5. Improved leakage detection on real traces (Atmel implementation).

Quite naturally, the exact gains of this new detection test depend on the
actual leakages. So as in the previous section, we confirmed our expectations with
two case studies. First, we compared the fixed vs. random and fixed vs. fixed t-
tests based on our software AES implementation. The results of this experiment
are in Fig. 5 where we observe that data-dependent leakages are detected with
similar confidence with approximately 5 times less traces thanks to our new par-
titioning. Next, we investigated the context of the hardware implementation of
the AES described in Sect. 2.1. As illustrated in Fig. 6, similar gains are obtained.

5 A similar conclusion can be obtained for other leakage functions, though the binomial
distribution of the Hamming weight leakages naturally make computations easier.



From Improved Leakage Detection to the Detection 253

Fig. 6. Improved leakage detection on real traces (ASIC implementation).

Note however that despite we gain an approximate factor 5 in both cases, the
reasons of this gain are different. Indeed, the software implementation case is
dominated by an increase of signal (due to its large cycle count) and has limited
algorithmic noise. By contrast, the hardware implementation has larger algo-
rithmic noise (corresponding to 128-bit random values) but less improvements
of the signal (because its traces are only 11-cycle long). Even larger gains could
be obtained by combining both the signal and noise effects (e.g. by considering
multiple keys for the hardware implementation). Based on these theoretical argu-
ments and experimental confirmation, we expect our fixed vs. fixed partitioning
to lead to faster leakage detections in most practical scenarios.

Remark. The fixed vs. fixed test can only be successful if the vectors used in
the test exhibit significant differences for the target algorithm’s intermediate
computations (which is the counterpart of having fixed leakages different from
average leakages in CRI’s fixed vs. random test). This is easily obtained with
block cipher implementations for which these intermediates are pseudorandom.

6 From Leakage Detection to POI Detection

The previous sections lead to the natural conclusion that non specific tests are
a method of choice for leakage detection. In particular, their application to full
leakage traces (or multiple keys) allows overcoming the issue of false positives
mentioned in Sect. 4.1. By contrast, the correlation-based test is better suited
to the detection of POIs because it provides useful intuitions regarding the
exploitable samples in side-channel traces and their informativeness. As a result,
it is a good candidate for the more specific task of detecting POIs for mount-
ing an attack. In this section, we conclude the paper by putting forward that a



254 F. Durvaux and F.-X. Standaert

ρ-test is in fact perfectly suited for integration in (an improvement of) a recent
POI detection tool proposed by Durvaux et al. at COSADE 2015 [7]. For this
purpose, we first briefly recall how this tool works, then describe our improve-
ments based on our proposed ρ-test, and provide experimental confirmation of
our claims.

Note that in general, the problem of detecting POIs is relatively easy in
the context of unprotected implementations. Indeed, exhaustive analysis is usu-
ally feasible in this case, and it is even possible to look for optimal transforms
that project the samples towards small (hence easier-to-evaluate) subspaces such
that most of their informativeness is preserved, e.g. using Principal Component
Analysis (PCA) [1], which maximizes the side-channel signal, or Linear Discrim-
inant Analysis (LDA) [32], which maximizes the side-channel SNR. In fact, in
this context, any criteria can be easily optimized using local search [7,22], and
most criteria are essentially equivalent anyway (i.e. correlation, SNR, mutual
information and success rate [5,17]). Therefore, our focus will be on the more
challenging case of masked implementation, which requires a specialized local
search.

6.1 The COSADE 2015 POI Detection Tool

The COSADE 2015 POI detection aims at finding a projection vector α that
converts the Ns samples ly(τ) of a leakage trace into a single projected sample λy:

λy =
Ns∑

τ=1

α(τ) · ly(τ).

In the case of unprotected implementations, and as previously mentioned, it is
possible to find projections α that optimize the informativeness of the projected
sample (where the α(τ) coefficients are real numbers, typically). By contrast, in
the context of masking, the task is arguably more difficult since (i) single samples
may not contain information (e.g. in the context of software implementations
where the different shares are manipulated at different time samples), and (ii) the
information about the target intermediate variables lies in higher-order moments
of the leakage distribution. Therefore, Durvaux et al. focused on the simplified
problem of finding a projection such that α(τ) = 1 if the time sample ly(τ)
contains some information about a share, and α(τ) = 0 otherwise.

In this context, a naive solution would be to consider each possible combina-
tion of time samples, but this scales badly (i.e. exponentially) with the number
of shares to detect, and is rapidly prohibitive in practice, even for two shares
(since masked implementations generally imply traces with many samples). In
order to avoid this drawback, the algorithm proposed in [7] works by considering
d non-overlapping windows of length Wlen that set the covered weights to 1 (and
leaves to others stuck at 0). Algorithm 1 provides a succinct description of this
method. Besides the previously mentioned window length, it mainly requires
defining an objective function fobj and a detection threshold Tdet, and works in
two steps. First, the find solution phase places the windows randomly at different
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Algorithm 1. Local search algorithm for finding POIs in masked traces.

Local Search(d, Wlen, Tdet,@fobj)
α = find solution(d, Wlen, Tdet,@fobj);
if(α �= null)

return improve solution(α,@fobj);
end

end

locations of the trace, until the returned value of the objective function crosses
the threshold. Then, the improve solution modifies the windows’ size in order to
best fit the informative time samples. As a result, we obtain the position and the
size of each window that maximizes fobj . By changing the number of windows
and objective function, this approach can easily be extended to masking schemes
of any order and number of shares. Intuitively, the Wlen parameter leads to a
natural tradeoff between the time complexity and sampling complexity of the
algorithm. Namely, small window lengths are more time intensive6, and large
ones more rapidly cover POIs, but imply an estimation of the objective func-
tion for samples projected according to larger windows, which are potentially
more noisy. Eventually, the objective function proposed in the COSADE paper
is the Moments-Correlating Profiled DPA (MCP-DPA) introduced in [21], which
can be viewed as a classical higher-order DPA based on the CPA distinguisher
given in Sect. 2.2, where one correlates the leakages samples raised to a power d
with a model corresponding to the dth-order statistical moment of the leakage
distribution. We refer to the previous papers for the details on these tools.

6.2 Our Contribution

We first recall that the COSADE 2015 POI detection tool is black box in the sense
that it does not require any knowledge of the target implementation. By contrast,
it does require key profiling, since the MCP-DPA distinguisher is a profiled one.
In this respect, our first contribution is the simple but useful observation that
one can easiliy apply such a black box POI detection without key profiling, by
simply profiling the MCP-DPA objective function based on plaintext knowledge,
just as the ρ-test in this paper. Indeed, when detecting POIs, it is sufficient to
know the leakage model up to a permutation corresponding to key knowledge (a
quite similar idea has been exploited in [28] for similar purposes). As previously
discussed, this solution will suffer from the (minor) risk of detecting plaintext
samples, but as will be detailed next, this can be easily mitigated in practice.

Based on these premises, our second contribution starts from the equally
simple observation that the ρ-test of this paper can be used identically with the
MCP-DPA distinguisher. So it is theoretically eligible for detecting leakages and
POIs of any order. Therefore, by replacing the MCP-DPA objective function
in [7] by the ρ-test in this paper (based on CPA or MCP-DPA), we obtain
6 For example, Wlen = 1 is equivalent to testing all combinations of time samples.



256 F. Durvaux and F.-X. Standaert

a very simple and rigorous way to set the detection threshold in Algorithm1.
That is, one just has to use the same “five sigma rule” as used in the leakage
detections of Figs. 2 and 3. Note by changing the objective function and selection
of a detection threshold in this way, we benefit from the additional advantage of
(more efficiently) estimating the objective function with cross-validation, which
is another improvement over the method described at COSADE 2015.

Third and maybe most importantly, we notice that the COSADE 2015 objec-
tive function is based on the estimation of central (second-order) statistical
moments. That is, given the (average) leakage of the two windows, it first sums
them and then computes a variance. But looking at the discussion in [35], Sect. 4,
it is clear that whenever the leakages are relatively noisy – which will always hap-
pen in our context of which the goal is to exploit the largest possible windows in
order to reduce the time needed to detect POIs – considering mixed statistical
moments is a better choice. In other words, by exploiting the multivariate MCP-
DPA mentioned at the end of [21], we should be able to detect POIs with larger
windows. In our following experiments based on a first-order (2-shares) masking
scheme, this just means using the normalized product between the (average)
leakage of the two windows as objective function, which has been shown optimal
in the context of Hamming weight leakages in [26].

6.3 Experimental Validation

In order to confirm the previous claims, we tested Algorithm1 using exactly
the previously described modifications, based on a target implementation and
measurement setup very similar to the one in [7]. That is, we first analyzed the
leakages of the masked implementation described in Sect. 2.1 which leads to large
traces with Ns = 30, 000 samples (for which an exhaustive analysis of all the
pairs of samples is out of reach). As in the COSADE 2015 paper, we verified
that our implementation does not lead to any first-order leakages (this time with
the ρ-based test from Sect. 3). We further set the window length to 25 samples,
which corresponds to a bit more than two clock cycles at our clock frequency and
sampling rate. With these parameters, the local search was able to return a solu-
tion within the same number of objective function calls as [7], namely ≈ 12 000
on average. An example of leakage trace together with windows obtained thanks
to Algorithm 1 is given in Fig. 7. As clear from the zoomed plots at the bottom
of the figure (where we represent the sum of the projection vectors obtained
after 100 experiments), the selection of POIs corresponds to leakage samples
that combine the precomputation and masked S-box computation. Interestingly,
we could expect some false positives due to the detection of plaintext bytes that
is possible in our non-profiled scenario. However, the improve solution of Algo-
rithm 1 (where the window size is adapted to be most informative) combined with
the fact that the most informative leakage samples in our traces correspond to
memory accesses (i.e. the S-box computations) prevented these to happen. Note
that even if the leakage of the plaintext manipulations was more informative, we
could easily “mark” the cycles that correspond to plaintext knowledge only, and
exclude them from our optimization. Since the number of POIs corresponding
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Fig. 7. Non-profiled detection of POIs based on our ρ-test.

to a single plaintext byte is usually limited, this would lead to the detection of
a valid pair of POIs after a couple of iterations of Algorithm1. Besides, we note
that Simple Power Analysis, or DPA against the plaintext (before it is XORed
with the masks) are other simple ways to gain the minimum intuition about the
time localization of the POIs, in order to avoid false positives when running a
non-profiled local search.

Next, we analyzed the impact of our modified objective function on the
largest window lengths for which we could detect POIs. As illustrated in Fig. 8,
we can clearly observe a (significant) gain of an approximate factor > 3 when
using a normalized product combining as objective function rather than the pre-
viously used square of sum (for which the figure also suggests that the window
of length 25 was close to optimal). It means that for exactly the same amount of
traces in an evaluation set, we are able to detect POIs with > 3 times larger win-
dows with our improved objective function and detection threshold. Concretely,
this corresponds to a reduction of the time complexity by a factor > 3 compared
to the COSADE 2015 results (and by a factor ≈ 90 compared to a naive com-
binatorial search). Interestingly, we also see that increasing the window length
is not always detrimental, which corresponds to the fact that larger windows do
not only contain more noise, but also more informative samples.

To conclude, we believe the connections made in this section are important
to raise awareness that up to the selection of POIs in the leakage traces, side-
channel security evaluations can essentially be performed in a black box way, and
without any key profiling. In this respect, leakage detection and the detection
of POIs are indeed related tasks, with the significant difference that the latter
has to take the exploitability of the detected samples into account. And this
is exactly the difference between simple t-tests and more measurement-intensive
ρ-tests based on larger leakage partitions. Note that the non-profiled detection in
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Fig. 8. Estimation of objective functions (with cross-validation) based on central and
mixed statistical moments, in front of a detection threshold of five sigma.

this section only applies to the first/last block cipher rounds (i.e. before diffusion
is complete), which captures many relevant practical scenarios but could be an
issue, e.g. in contexts where these extreme rounds are better protected than the
central ones. Besides, and more generally, we recall that as soon as the POIs are
detected and the evaluator has to build a model for these samples, key profiling
becomes strictly necessary to evaluate a worst-case security level [39].

7 Summary and Open Problems

The discussion in this paper highlights that there are significant differences
between current approaches to side-channel security evaluation. On the one
hand, CRI’s Test Vector Assessment Methodology (TVLA) aims at minimizing
the evaluator’s efforts. Very concretely, non specific t-tests as proposed in [4,10]
are indeed good to detect univariate and first-order leakages. As we observed in
Sect. 5, slightly tweaking the selection of the classes (from fixed vs. random to
fixed vs. fixed) allows significantly improving the detection speed in this case.
We can expect these gains to be even more significant in the context of masked
implementations (for which the impact of noise is exponentially amplified). The
fixed vs. fixed test also has good potential for evaluating the implementations of
asymmetric cryptographic primitives. So despite minor theoretical caveats (i.e.
the possibility of false positives and negatives), the application of such 2-class
t-tests turns out to be extremely efficient. On the other side of the spectrum,
complete (ideally worst-case) security evaluations such as discussed in [34] rather
aim at a precise rating of the security level, possibly considering the adversary’s
computing power [36], which is an arguably more expensive task. In this case,
the selection of POIs is a usually a necessary first step. As also discussed in
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this paper, and when restriced to univariate and first-order leakages, the main
reason for the additional cost of this approach (including the selection of POIs)
is the larger number of classes for which the leakage distribution has to be well
estimated. In this context as well, our investigations focused on non-profiled POI
detection (which can be performed efficiently for the first/last cipher rounds).
But similar conclusions hold in the profiled evaluation setting, which allows find-
ing POIs in all the cipher rounds, and is necessary for worst-case analysis.

These different methodologies naturally raise the question of which one to use
in which context, and whether they can be connected to some extent, leading to
the following open problems. First, how to generalize (simple) detection tests
to capture more types of leakages? Moving from univariate first-order leakages
to univariate higher-order leakages is already reachable with existing tools. One
option, already described in Sect. 6, is to work “by moments”. This implied to
implement a Moments-Correlating DPA in our multi-class context, but could
naturally be specialized to simpler t-tests, F-tests,. . . , if only 2 classes were con-
sidered: see [30] for a recent discussion that is complementary to our results.
Another option is to exploit more general statistical tests, e.g. Mutual Infor-
mation Analysis [8], as already applied in the context of leakage detection by
Mather et al. [18]. Moving to multivariate leakage detection appears much more
difficult. At least, testing all pairs/triples/. . . of samples in a trace rapidly turns
out to be unfeasible as the size of the traces increase, which usually leads current
evaluations to be based on heuristics (e.g. the ones discussed in Sect. 6). Note
that the gap between univariate and multivariate attacks is probably among the
most important remaining challenge in side-channel security evaluations, where
significant risks of false negatives remain. A typical example is the case of sta-
tic leakages that may only be revealed in the context of (highly) multivariate
analyses [20,24]. More generally, limiting an evaluation to univariate leakages
typically ignores the significant gains that can be obtained with dimensionality
reductions techniques (aka projections), and multi-target attacks [12,19,37].

Second, can we extrapolate or bound the worst-case security level of an imple-
mentation based on simple statistical tests? For example, the recent work in [5]
shows that one can (in certain well-defined conditions) bound the security level of
an implementation, measured with a success rate and in function of the number
of measurements and computing power of the adversary, based on information
theoretic metrics (such as the mutual information in general, and the SNR if
we only consider univariate attacks). But as discussed in this paper, evaluating
an SNR is still significantly more expensive than detecting leakages with non
specific tests. So of course, it would be interesting to investigate whether it is
possible to bound the security level based on simpler leakage detection tests.
In case of negative answer, it anyway remains that such leakage detection tests
can always be used as a prelimininary to more expensive approaches (detecting
POIs, security evaluations), e.g. to reduce the dimensionality of the traces.
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Abstract. A popular approach to tweakable blockcipher design is via
masking, where a certain primitive (a blockcipher or a permutation) is
preceded and followed by an easy-to-compute tweak-dependent mask.
In this work, we revisit the principle of masking. We do so alongside
the introduction of the tweakable Even-Mansour construction MEM. Its
masking function combines the advantages of word-oriented LFSR- and
powering-up-based methods. We show in particular how recent advance-
ments in computing discrete logarithms over finite fields of characteris-
tic 2 can be exploited in a constructive way to realize highly efficient,
constant-time masking functions. If the masking satisfies a set of sim-
ple conditions, then MEM is a secure tweakable blockcipher up to the
birthday bound. The strengths of MEM are exhibited by the design
of fully parallelizable authenticated encryption schemes OPP (nonce-
respecting) and MRO (misuse-resistant). If instantiated with a reduced-
round BLAKE2b permutation, OPP and MRO achieve speeds up to 0.55
and 1.06 cycles per byte on the Intel Haswell microarchitecture, and are
able to significantly outperform their closest competitors.

Keywords: Tweakable Even-Mansour · Masking · Optimization ·
Discrete logarithms · Authenticated encryption · BLAKE2

1 Introduction

Authenticated encryption (AE) has faced significant attention in light of the
ongoing CAESAR competition [15]. An AE scheme aims to provide both confi-
dentiality and integrity of processed data. While the classical approach is predom-
inantly blockcipher-based, where an underlying blockcipher is used to encrypt,
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part I, LNCS 9665, pp. 263–293, 2016.
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novel approaches start from a permutation and either rely on Sponge-based princi-
ples or on the fact that the Even-Mansour construction E(K, M) = P (K⊕M)⊕K
is a blockcipher.

Characteristic for the majority of blockcipher-based AE schemes is that they
rely on a tweakable blockcipher where changes in the tweak can be realized effi-
ciently. The most prominent example of this is the OCB2 mode which internally
uses the XEX tweakable blockcipher [71]:

XEX(K, (X, i0, i1, i2),M) = E(K, δ ⊕ M) ⊕ δ,

where δ = 2i03i17i2E(K, X). The idea is that every associated data or message
block is transformed using a different tweak, where increasing i0, i1, or i2 can be
done efficiently. This approach is furthermore used in second-round CAESAR
candidates AEZ, COPA, ELmD, OTR, POET, and SHELL. Other approaches
to masking include Gray code ordering (used in OCB1 and OCB3 [55,72] and
OMD) and the word-oriented LFSR-based approach where δ = ϕi(E(K, X)) for
some LFSR ϕ (suggested by Chakraborty and Sarkar [18]).

The same masking techniques can also be used for permutation-based tweak-
able blockciphers. For instance, Minalpher uses the Tweakable Even-Mansour
(TEM) construction [75] with XEX-like masking, and similar for Prøst. This
TEM construction has faced generalizations by Cogliati et al. [23,24] and
Mennink [62], but none of them considers efficiency improvements of the masking.

1.1 Masked Even-Mansour (MEM) Tweakable Cipher

As a first contribution, we revisit the state of the art in masking with the intro-
duction of the “Masked Even-Mansour” tweakable blockcipher in Sect. 3. At a
high level, MEM is a Tweakable Even-Mansour construction, where the masking
combines ideas from both word-oriented LFSR- and powering-up-based mask-
ing. As such, MEM combines “the best of both” masking approaches, leading to
significant improvements in simplicity, error-proneness, and efficiency.

In more detail, let P be a b-bit permutation. MEM’s encryption function is
defined as

Ẽ(K, X, ī,M) = P (δ(K, X, ī) ⊕ M) ⊕ δ(K, X, ī),

where ī = (i0, . . . , iu−1) and where the masking function is of the form

δ(K, X, ī) = ϕ
iu−1
u−1 ◦ · · · ◦ ϕi0

0 (P (X ‖ K)),

for a certain set of LFSRs (ϕ0, . . . , ϕu−1). MEM’s decryption function D̃ is spec-
ified analogously but using P−1 instead of P .

The tweak space and the list of LFSRs are clearly required to satisfy some
randomness condition. Indeed, if a distinguisher can choose a list of tweaks ī
such that ϕ

iu−1
u−1 ◦ · · · ◦ ϕi0

0 (L) for a uniformly random L offers no or limited
entropy, it can easily distinguish MEM from a random primitive. A similar case
applies if the distinguisher can make two different maskings collide with high
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probability. Denote by ε the minimal amount of entropy offered by the functions
ϕ

iu−1
u−1 ◦ · · · ◦ ϕi0

0 and ϕ
iu−1
u−1 ◦ · · · ◦ ϕi0

0 ⊕ ϕ
i′
u−1

u−1 ◦ · · · ◦ ϕ
i′
0
0 for any two maskings ī, ī′

(see Definition 1 for the formal definition). Then, we prove that MEM is a secure
tweakable blockcipher in the ideal permutation model up to 4.5q2+3qp

2ε + p
2k , where

q is the number of construction queries, p the number of primitive queries, and
k the key length. The security proof follows Patarin’s H-coefficient technique,
which has shown its use to Even-Mansour security proofs before in, among others,
[3,20,21,23,25,63].

To guarantee that the maskings offer enough randomness, it is of pivotal
importance to define a proper domain of the masking. At the least, the functions
ϕ

iu−1
u−1 ◦ · · · ◦ϕi0

0 should be different for all possible choices of ī, or more formally,
such that there do not exist ī, ī′ such that

ϕ
iu−1
u−1 ◦ · · · ◦ ϕi0

0 = ϕ
i′
u−1

u−1 ◦ · · · ◦ ϕ
i′
0
0 .

Guaranteeing this requires the computation of discrete logarithms. For small
cases, such as b = 64 and b = 128, we can inherit the computations from Rogaway
for XEX [71]. For instance, for b = 128, it is known that u = 3, (ϕ0, ϕ1, ϕ2) =
(2,3,7), and (i0, i1, i2) ∈ {−2108, . . . , 2108}×{−27, . . . , 27}×{−27, . . . , 27} does
the job.

We extend the XEX approach to much larger block sizes by taking advan-
tage of the recent breakthroughs in the computation of discrete logs in small
characteristic fields, beginning with [30], followed by [45]. Computation of indi-
vidual discrete logarithms for the 1024-bit block used in our MEM instantiation
takes about 8 h on a single core of a standard desktop computer, after an initial
precomputation, applicable to all logarithms, of 33.3 h. Larger blocks are also
attainable, rendering workarounds such as subgroups [77] or different modes [74]
largely unnecessary.

Peculiarly, there have been uses of XEX for state sizes larger than b = 128
bits, even though it has been unclear what restrictions on the indices are due.
For instance, Prøst [50] defines a COPA and OTR instance for a 256- and 512-bit
blockcipher; both use maskings of the form 2i03i17i2 for i0 ranging between 0
and the maximal message length. For COPA, it has (i1, i2) ∈ {0, . . . , 5} × {0, 1}
and for OTR it has (i1, i2) ∈ {0, 1} × {0}. The security proof of Prøst never
formally computes conditions on the indices, and simply inherits the conditions
for b = 128. By computing the discrete logarithms in the respective fields—
a computationally easy task, demonstrated in Sect. 3.6—we can confirm that
the tweaks are unique for i0 ∈ {0, . . . , 2246 − 1} in the 256-bit block case, and
i0 ∈ {0, . . . , 2505 − 1} in the 512-bit block case.

1.2 Application to Nonce-Based AE

As first application, we present the Offset Public Permutation (OPP) mode in
Sect. 4, a parallelizable nonce-based AE based on MEM. It can be considered
as a permutation-based generalization of OCB3 [55] to arbitrary block sizes
using permutations and using the improved masking from MEM. Particularly,
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assuming security of MEM, the proof of [55] mostly carries over, and we obtain
that OPP behaves like a random AE up to attack complexity dominated by
min{2b/2, 2k}, where b is the size of the permutation and k is the key length.
OPP also shows similarities with Kurosawa’s adaptation of IAPM and OCB to
the permutation-based setting [56].

Using the masking techniques described later in this paper, OPP has excellent
performance when compared to contemporary permutation-based schemes, such
as first-round CAESAR [15] submissions Artemia, Ascon, CBEAM, ICEPOLE,
Keyak, NORX, π-Cipher, PRIMATEs, and STRIBOB, or SpongeWrap schemes
in general [9,63]. OPP improves upon these by being inherently parallel and
rate-1; the total overhead of the mode reduces to 2 extra permutation calls and
the aforementioned efficient masking.

In particular, when instantiated with a reduced-round BLAKE2b permuta-
tion [5], OPP achieves a peak speed of 0.55 cycles per byte on an Intel Haswell
processor (see Sect. 8). This is faster than any other permutation-based CAE-
SAR submission. In fact, there are only a few CAESAR ciphers, such as Tiaoxin
(0.28 cpb) or AEGIS (0.35 cpb), which are faster than the above instantiation of
OPP. However, both require AES-NI to reach their best performance and neither
of them is arbitrarily parallelizable.

1.3 Application to Nonce-Misuse Resistant AE

We also consider permutation-based authenticated encryption schemes that are
resistant against nonce-reuse. We consider “full” nonce-misuse resistance, where
the output is completely random for different inputs, but we remark that simi-
larly schemes can be designed to achieve “online” nonce-misuse resistance
[26,41], for instance starting from COPA [2]. It is a well-known result that nonce-
misuse resistant schemes are inherently offline, meaning that two passes over the
data must be made in order to perform the authenticated encryption.

The first misuse-resistant AE we consider is the parallelizable Misuse-Resistant
Offset (MRO) mode (Sect. 5). It starts from OPP, but with the absorption
performed on the entire data and with encryption done in counter mode instead1.
As the underlying MEM is used by the absorption and encryption parts for dif-
ferent maskings, we can view the absorption and encryption as two independent
functions and a classical MAC-then-Encrypt security proof shows that MRO is
secure up to complexity dominated by min{2b/2, 2k, 2τ/2}, where b and k are as
before and τ denotes the tag length.

Next, we consider Misuse-Resistant Sponge (MRS) in Sect. 6. It is not directly
based on MEM; it can merely be seen as a cascaded evaluation of the Full-
state Keyed Duplex of Mennink et al. [63], a generalization of the Duplex of
Bertoni et al. [9]: a first evaluation computes the tag on input of all data, the
second evaluation encrypts the message with the tag functioning as the nonce.

1 MRO’s structure is comparable with the independently introduced Synthetic Counter
in Tweak [43,44,70].
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MRS is mostly presented to suit the introduction of the Misuse-Resistant Sponge-
Offset hybrid (MRSO) in Sect. 7, which absorbs like MRS and encrypts like MRO.
(It is also possible to consider the complementary Offset-Sponge hybrid, but
we see no potential applications of this construction.) The schemes MRS and
MRSO are proven secure up to complexity of about min{2c/2, 2k/2, 2τ/2} and
min{2(b−τ)/2, 2k, 2τ/2}, respectively, where c denotes the capacity of the Sponge.

While various blockcipher-based fully misuse-resistant AE schemes exist (such
as SIV [73], GCM-SIV [37], HS1-SIV [54], AEZ [40], Deoxys= and Joltik= [43,44]
(using Synthetic Counter in Tweak mode [70]), and DAEAD [19]), the state of
the art for permutation-based schemes is rather scarce. In particular, the only
misuse-resistant AE schemes known in literature are Haddoc and Mr. Monster
Burrito by Bertoni et al. [11]. Haddoc lacks a proper formalization but appears
to be similar to MRSO, and the security and efficiency bounds mostly carry over.
Mr. Monster Burrito is a proof of concept to design a permutation-based robust
AE comparable with AEZ [40], but it is four-pass and thus not very practical2.

When instantiated with a reduced-round BLAKE2b permutation,
MRO achieves a peak speed of 1.06 cycles per byte on the Intel Haswell plat-
form (see Sect. 8). This puts MRO on the same level as AES-GCM-SIV [37]
(1.17 cpb), which, however, requires AES-NI to reach its best performance. We
further remark that MRO is also more efficient than MRSO, and thus the Haddoc
mode.

2 Notation

Denote by F2n the finite field of order 2n with n ≥ 1. A b-bit string X is an
element of {0, 1}b or equivalently of the F2-vector space F

b
2. The length of a bit

string X in bits is denoted by |X| (= b) and in r-bit blocks by |X|r. For example,
the size of X in bytes is |X|8. The bit string of length 0 is identified with ε. The
concatenation of two bit strings X and Y is denoted by X ‖ Y . The encoding
of an integer x as an n-bit string is denoted by 〈x〉n. The symbols ¬, ∨, ∧, ⊕,
�, �, ≪, and ≫, denote bit-wise NOT, OR, AND, XOR, left-shift, right-shift,
left-rotation, and right-rotation, respectively.

Given a b-bit string X = x0 ‖ · · · ‖ xb−1 we define leftl(X) = x0 ‖ · · · ‖ xl−1

to be the l left-most and rightr(X) = xb−r ‖ · · · ‖ xb−1 to be the r right-most
bits of X, respectively, where 1 ≤ l, r ≤ b. In particular, note that X = leftl(X) ‖
rightb−l(X) = leftb−r(X) ‖ rightr(X). We define the following mapping functions
which extend a given input string X to a multiple of the block size b and cut it
into chunks of b bits:

2 We remark that the state of the art on online misuse-resistant permutation-based
AE is a bit more advanced. For instance, APE [1] is online misuse-resistant, and
achieves security against the release of unverified plaintext, but satisfies the undesir-
able property of backwards decryption. Also Minalpher and Prøst-COPA are online
misuse-resistant.
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pad0b : {0, 1}∗ → ({0, 1}b)+,X �→ X ‖ 0(b−|X|)mod b,

pad10b : {0, 1}∗ → ({0, 1}b)+,X �→ X ‖ 1 ‖ 0(b−|X|−1)mod b.

The set of all permutations of width b ≥ 0 bits is denoted by Perm(b). The
parameters k, n, τ ≥ 0 conventionally define the size of the key, nonce, and tag,
respectively, for which we require that n ≤ b − k − 1. In the context of Sponge
functions r ≥ 0 and c ≥ 0 denote rate and capacity such that b = r + c, and we
require k ≤ c. When writing X

$←− X for some finite set X , we mean that X gets
sampled uniformly at random from X .

2.1 Distinguishers

A distinguisher D is a computationally unbounded probabilistic algorithm. By
DO we denote the setting that D is given query access to an oracle O: it can
make queries to O adaptively, and after this, the distinguisher outputs 0 or 1.
If we consider two different oracles O and P with the same interface, we define
the distinguishing advantage of D by

ΔD(O ; P) =
∣∣∣Pr

(
DO = 1

)
− Pr

(
DP = 1

)∣∣∣ . (1)

Here, the probabilities are taken over the randomness from O and P. The distin-
guisher is usually bounded by a limited set of resources, e.g., it is allowed to make
at most q queries to its oracle. We will use the definition of Δ for our formal-
ization of the security (tweakable) blockciphers and authenticated encryption.
Later in the paper, Δ is used to measure the security of PRFs, etc.

2.2 Tweakable Blockciphers

Let T be a set of “tweaks.” A tweakable blockcipher Ẽ : {0, 1}k ×T ×{0, 1}b →
{0, 1}b is a function such that for every key K ∈ {0, 1}k and tweak T ∈ T ,
Ẽ(K, T, ·) is a permutation in Perm(b). We denote its inverse by Ẽ−1(K, T, ·).
Denote by P̃erm(T , b) the set of families of tweakable permutations π̃ such that
π̃(T, ·) ∈ Perm(b) for every T ∈ T .

The conventional security definitions for tweakable blockciphers are tweak-
able pseudorandom permutation (TPRP) security and strong TPRP (STPRP)
security: in the former, the distinguisher can only make forward construction
queries, while in the latter it is additionally allowed to make inverse construc-
tion queries. We will consider a mixed security notion, where the distinguisher
may only make forward queries for a subset of tweaks. It is inspired by earlier
definitions from Rogaway [71] and Andreeva et al. [2].

Let P
$←− Perm(b) be a b-bit permutation, and consider a tweakable block-

cipher Ẽ based on permutation P . Consider a partition T0 ∪ T1 = T of the
tweak space into forward-only tweaks T0 and forward-and-inverse tweaks T1.
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We define the mixed tweakable pseudorandom permutation (MTPRP) security
of Ẽ against a distinguisher D as

Advm̃prp

Ẽ,P
(D) = ΔD(Ẽ±

K , P± ; π̃±, P±), (2)

where the probabilities are taken over the random choices of K, π̃, and P . The
distinguisher is not allowed to query Ẽ−1

K for tweaks from T0. By Advm̃prp

Ẽ,P
(q, p)

we denote the maximum advantage over all distinguishers that make at most q
construction queries and at most p queries to P±.

Note that the definition of MTPRP matches TPRP if (T0, T1) = (T , ∅) and
STPRP if (T0, T1) = (∅, T ). It is a straightforward observation that if a tweakable
cipher Ẽ is MTPRP for two sets (T0, T1), then it is MTPRP for (T0∪{T}, T1\{T})
for any T ∈ T1. Ultimately, this observation implies that an STPRP is a TPRP.

2.3 Authenticated Encryption

Let Π = (E ,D) be a deterministic authenticated encryption (AE) scheme which
is keyed via a secret key K ∈ {0, 1}k and operates as follows:

EK(N,H,M) = (C, T ),
DK(N,H,C, T ) = M/⊥.

Here, N is the nonce, H the associated data, M the message, C the ciphertext,
and T the tag. In our analysis, we always have |M | = |C|, and we require that

DK(N,H, EK(N,H,M)) = M

for all N,H,M . By $E we define the idealized version of EK , which returns
(C, T ) $←− {0, 1}|M |+τ for every input. Finally, we denote by ⊥ a function that
returns ⊥ upon every query.

Our AE schemes are based on a b-bit permutation P , and we will analyze the
security of them in the setting where P is a random permutation: P

$←− Perm(b).
Following, Rogaway and Shrimpton [73], Namprempre et al. [65], and Gueron
and Lindell [37], we define the AE security of Π against a distinguisher D as

Advae
Π,P (D) = ΔD(EK ,DK , P± ; $E ,⊥, P±), (3)

where the probabilities are taken over the random choices of K, $E , and P . The
distinguisher is not allowed (i) to repeat any query and (ii) to relay the output
of EK to the input of DK . Note that we do not a priori require the distinguisher
to be nonce-respecting: depending on the setting, it may repeat nonces at its
own discretion. We will always mention whether we consider nonce-respecting or
nonce-reusing distinguishers. By Advae

Π,P (qE , qD, σ, p) we denote the maximum
advantage over all (nonce-respecting/reusing) distinguishers that make at most
qE queries to the encryption oracle and at most qD to the decryption oracle, of
total length at most σ padded blocks, and that make at most p queries to P±.
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3 Tweakable Even-Mansour with General Masking

We present the tweakable Even-Mansour construction MEM. Earlier appearances
of tweakable Even-Mansour constructions include Sasaki et al. [75], Cogliati
et al. [23], and Mennink [62], but these constructions target different settings, do
not easily capture the improved maskings as introduced below, and are therefore
not applicable in this work.

Our specification can be seen as a generalization of both the XE(X) con-
struction of Rogaway [71] and the tweakable blockcipher from Chakraborty and
Sarkar [18] to the permutation-based setting. While Rogaway limited himself to
128-bit fields, we realize our approach to fields well beyond the reach of Pohlig-
Hellman: historically the large block size would have been a severe obstruction,
as observed in works by Yasuda and Sarkar [74,77], and some schemes simply
ignored the issue [50]. The breakthroughs in computing discrete logarithms in
small characteristic fields [7,30,34,45] allow to easily pass the 128-bit barrier.
In particular, for blocks of 2n bits, it is eminently practical to compute discrete
logarithms for n ≤ 13. Further details of our solution of discrete logarithms over
F2512 and F21024 are described in Sect. 3.6.

3.1 Definition

Let b ≥ 0 and P ∈ Perm(b). In the following we specify MEM, a tweakable
Even-Mansour block cipher with general masking (Ẽ, D̃) where Ẽ and D̃ denote
encryption and decryption functions, respectively. Let u ≥ 1, and let Φ =
{ϕ0, . . . , ϕu−1} be a set of functions ϕj : {0, 1}b → {0, 1}b. Consider a tweak
space T of the form

T ⊆ {0, 1}b−k × N
u (4)

and specify the general masking function δ : {0, 1}k × T → {0, 1}b as

δ : (K, X, i0, . . . , iu−1) �→ ϕ
iu−1
u−1 ◦ · · · ◦ ϕi0

0 (P (X ‖ K)).

By convention, we set ϕ
ij

j = id for ij = 0, for each 0 ≤ j ≤ u − 1. For brevity of
notation we write ī = (i0, . . . , iu−1), and set

Tī = {̄i | ∃X such that (X, ī) ∈ T } .

The encryption function Ẽ : {0, 1}k × T × {0, 1}b → {0, 1}b is now defined as

Ẽ : (K, X, ī,M) �→ P (δ(K, X, ī) ⊕ M) ⊕ δ(K, X, ī),

where M denotes the to be encrypted message. The decryption function D̃ :
{0, 1}k × T × {0, 1}b → {0, 1}b is defined analogously as

D̃ : (K, X, ī, C) �→ P−1(δ(K, X, ī) ⊕ C) ⊕ δ(K, X, ī),

where C denotes the to be decrypted ciphertext. Note that the usual block cipher
property D̃(K, X, ī, Ẽ(K, X, ī,M)) = M is obviously satisfied. Throughout the
document, we will often use the following shorthand notation for Ẽ ī

K,X(M) =
Ẽ(K, X, ī,M), D̃ī

K,X(C) = D̃(K, X, ī, C), and δī
K,X = δ(K, X, ī).
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3.2 Security

Equation (4) already reveals that we require some kind of restriction on T .
Informally, we require the masking functions ϕ

iu−1
u−1 ◦ · · · ◦ ϕi0

0 to generate pair-
wise independent values for different tweaks. More formally, we define proper
tweak spaces in Definition 1. This definition is related to earlier observations in
Rogaway [71] and Chakraborty and Sarkar [18,74].

Definition 1. Let b ≥ 0, u ≥ 1, and Φ = {ϕ0, . . . , ϕu−1} be a set of functions.
The tweak space T is ε-proper relative to the function set Φ if the following two
properties are satisfied.

1. For any y ∈ {0, 1}b, (i0, . . . , iu−1) ∈ Tī, and uniformly random L
$←− {0, 1}b:

Pr
[
ϕ

iu−1
u−1 ◦ · · · ◦ ϕi0

0 (L) = y
]

= 2−ε.

2. For any y ∈ {0, 1}b, distinct (i0, . . . , iu−1), (i′0, . . . , i
′
u−1) ∈ Tī, and uniformly

random L
$←− {0, 1}b:

Pr
[
ϕ

iu−1
u−1 ◦ · · · ◦ ϕi0

0 (L) ⊕ ϕ
i′
u−1

u−1 ◦ · · · ◦ ϕ
i′
0
0 (L) = y

]
= 2−ε.

The definition is reminiscent of the definition of universal hash functions (as also
noted in [18]), but we will stick to the convention. We are now ready to prove
the security of MEM.

Theorem 2. Let b ≥ 0, u ≥ 1, and Φ = {ϕ0, . . . , ϕu−1} be a set of functions.
Let P

$←− Perm(b). Assume that the tweak space T is ε-proper relative to Φ. Let
T0 ∪ T1 = T be a partition such that (0, . . . , 0) /∈ T1 ī. Then,

Advm̃prp

Ẽ,P
(q, p) ≤ 4.5q2

2ε
+

3qp

2ε
+

p

2k
.

The proof can be found in the full version of this work. It is based on Patarin’s
H-coefficient technique [21,68], and borrows ideas from [18,62,71,74].

3.3 History of Masking

Originally, IAPM [49] proposed the masking to be a subset sum of c encrypted
blocks derived from the nonce, where 2c is the maximum number of blocks a
message can have. In the same document Jutla also suggested masking the jth
block with (j+1)K +IV mod p, for some prime p near the block size. XCBC [27]
used a similar masking function, but replaced arithmetic modulo p by arithmetic
modulo 2b, at the cost of some tightness in security reductions.

OCB [55,71,72] and PMAC [12] used the field F2b for their masking. There
are two different masking functions used in variants of OCB:

– The powering-up method of OCB2 [71] computes ϕi(L) = xi · L, where · is
multiplication in F2b , and x is a generator of the field.
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– The Gray code masking of OCB1 [72] and OCB3 [55] computes ϕi(L) = γi ·L,
where γi = i ⊕ (i � 1). This method requires one XOR to compute ϕi+1(L)
given ϕi(L), provided a precomputation of log2 |M | multiples of L is carried
out in advance. Otherwise, up to log2 i field doublings are required to obtain
γi ·L. This Gray code trick was also applicable to IAPM’s subset-sum masking.

Another family of masking functions, word-oriented LFSRs, was suggested by
Chakraborty and Sarkar [18]. Instead of working directly with the polynomial
representation F2[x]/f for some primitive polynomial f , word-oriented LFSRs
treat the block as the field F2wn , where w is the native word size. Thus, the
block can be represented as a polynomial of degree n over F2w , which makes the
arithmetic more software-friendly. A further generalized variant of this family of
generators is described (and rejected) in [55, Appendix B], who also attribute
the same technique to [78]. Instead of working with explicitly-constructed field
representations, one starts by trying to find a b × b matrix M ∈ GL(b, F2)
that is very efficient to compute. Then, if this matrix has a primitive minimal
polynomial of degree b, this transformation is in fact isomorphic to F2b and has
desirable masking properties. The masking function is then ϕi(L) = M i · L.

Although the above maximal-period matrix recursions have only recently
been suggested for use in efficient masking, the approach has been long stud-
ied by designers of non-cryptographic pseudorandom generators. For example,
Niederreiter [67, Sect. 4] proposed a pseudorandom generator design based on a
matrix recursion. Later methods, like the Mersenne Twister family [60] and the
Xorshift [59] generator, improved the efficiency significantly by cleverly choosing
the matrix shape to be CPU-friendly.

More recently, Minematsu [64] suggested a different approach to masking
based on data-dependent rotation. In particular,

ϕi(L) =
⊕

0≤j<b

{
(L ≪ j) if �i/2j� mod 2 = 1,

0 otherwise.

where the block size b is prime. With Gray code ordering, one only needs one
rotation and XOR per sequential mask without storing previous masks. That
being said, the prime block size is inconvenient, and data-dependent rotation is
a relatively expensive operation compared to some of the previous techniques.

3.4 Proposed Masking for u = 1

We loosely follow the Xorshift [59] design approach for our masking procedure.
Let b = nw be the block size, interpreted as n words of w bits. We begin with
fast linear operations available in most current CPUs and encode them as w×w
matrices. More precisely, we denote by 0 the all-zero matrix, by I the identity
matrix, by SHLc and SHRc matrices corresponding to left- and right-shift by
c bits, by ROTc the matrix realizing left-rotation by c bits, and by ANDc the
matrix corresponding to bit-wise AND with a constant c. Then, we construct
block matrices using those operations in a way that minimizes computational
effort. To maximize efficiency we consider b × b matrices over F2 of the form



Improved Masking for Tweakable Blockciphers 273

M =

⎛

⎜⎜⎜⎝

0 I · · · 0
...

...
. . .

...
0 0 · · · I

X0 X1 · · · Xn−1

⎞

⎟⎟⎟⎠ (5)

with Xi ∈ {0, I,SHLc, SHRc, ROTc, ANDc} where dim(Xi) = w for 0 ≤ i ≤ n−1.
We favor matrices where only a minimal amount of Xi are nonzero. For a concrete
selection of X0, . . . , Xn−1 we check if the matrix order is maximal, that is, if the
smallest integer t > 0 such that M t = I equals 2b−1; if so, this matrix is suitable
for a masking function that respects the conditions listed above.

Testing candidate masks for maximal order may be efficiently performed
without any explicit matrix operations. Given a candidate linear map corre-
sponding to a matrix M of the form Eq. (5),

(x0, . . . , xn−1) �→ (x1, . . . , xn−1, f(x0, . . . , xn−1)),

one can simply select x0, . . . , xn−1 at random, define xi+n = f(xi, . . . , xi+n−1),
and obtain the connection polynomial p(x) from the sequence of least significant
bits of x0, . . . , x2b using, e.g., Berlekamp-Massey. If p(x) is a primitive polynomial
of degree b, p(x) is also the minimal polynomial of the associated matrix M .

This approach yields a number of simple and efficient masking functions. In
particular, the 3-operation primitives (x0 ≪ r0) ⊕ (xi � r1) and (x0 ≪ r0) ⊕
(xi � r1) are found for several useful block and word sizes, as Table 1 illustrates.
Some block sizes do not yield such small generators so easily; in particular,
128-bit blocks require at least 4 operations, which is consistent—albeit somewhat
better—with the results of [55, Appendix B]. Using an extra basic instruction,
double-word shift, another noteworthy class of maskings appears: (x0 ≪ r0) ⊕
(xi � r1) ⊕ (xj � (w − r1)), or in other words (x0 ≪ r0) ⊕ ((xi ‖ xj) � r1).
This leads to more block sizes with 3-operation masks, e.g., (x1, x2, x3, (x0 ≪
15) ⊕ ((x1 ‖ x0) � 11)) for 128-bit blocks. Lemma3 shows that this approach
yields proper masking functions according to Definition 1.

Lemma 3. Let M be an b × b matrix over F2 of the form shown in Eq. (5).
Furthermore, let M ’s minimal polynomial be primitive and of degree b. Then
given the function ϕi

0(L) = M i · L, any tweak set with Tī ⊆ {0, . . . , 2b − 2} is a
b-proper tweak space by Definition 1.

Proof. [18, Proposition 1] directly applies.

One may wonder whether there is any significant advantage of the above tech-
nique over, say, the Gray code sequence with the standard polynomial represen-
tation. We argue that our approach improves on it in several ways:

Simplicity. OCB (especially OCB2) requires implementers to be aware of Galois
field arithmetic. Our approach requires no user knowledge—even implicitly—
of field or polynomial arithmetic, but only unconditional shifts and XOR
operations. Even Sarkar’s word-based LFSRs [74] do not hide the finite field
structure from implementers, thus making it easier to make mistakes.
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Table 1. Sample masking functions for various state sizes b and respective decompo-
sitions into n words of w bits

b w n ϕ

128 8 16 (x1, . . . , x15, (x0 ≪ 1) ⊕ (x9 � 1) ⊕ (x10 � 1))

128 32 4 (x1, . . . , x3, (x0 ≪ 1) ⊕ (x1 ∧ 31) ⊕ (x2 ∧ 127))

128 32 4 (x1, . . . , x3, (x0 ≪ 5) ⊕ x1 ⊕ (x1 � 13))

128 64 2 (x1, (x0 ≪ 11) ⊕ x1 ⊕ (x1 � 13))

256 32 8 (x1, . . . , x7, (x0 ≪ 17) ⊕ x5 ⊕ (x5 � 13))

256 64 4 (x1, . . . , x3, (x0 ≪ 3) ⊕ (x3 � 5))

512 32 16 (x1, . . . , x15, (x0 ≪ 5) ⊕ (x3 � 7))

512 64 8 (x1, . . . , x7, (x0 ≪ 29) ⊕ (x1 � 9))

800 32 25 (x1, . . . , x15, (x0 ≪ 25) ⊕ x21 ⊕ (x21 � 13))

1024 8 128 (x1, . . . , x127, (x0 ≪ 1) ⊕ x125 ⊕ (x125 � 5))

1024 64 16 (x1, . . . , x15, (x0 ≪ 53) ⊕ (x5 � 13))

1600 32 50 (x1, . . . , x49, (x0 ≪ 3) ⊕ (x23 � 3))

1600 64 25 (x1, . . . , x24, (x0 ≪ 55) ⊕ x21 ⊕ (x21 � 21))

1600 64 25 (x1, . . . , x24, (x0 ≪ 15) ⊕ x23 ⊕ (x23 � 23))

Constant-Time. Both OCB masking schemes require potentially variable-time
operations to compute each mask—be it conditional XOR, number of trailing
zeroes, or memory accesses indexed by ntz(i + 1). This is easily avoidable by
clever implementers, but it is also a pitfall avoidable by our design choice.
Even in specifications aimed at developers [53], double(S) is defined as a
variable-time operation.

Efficiency. Word-based masking has the best space-time efficiency tradeoff of
all considered masking schemes. It requires only minimal space usage—one
block—while also involving a very small number of operations beyond the
XOR with the block (as low as 3, cf. Table 1). It is also SIMD-friendly, allow-
ing the generation of several consecutive masks with a single short SIMD
instruction sequence.

In particular, for permutations that can take advantage of a CPU’s vector units
via “word-slicing”—which is the case for Salsa20, ChaCha, Threefish, and many
other ARX designs—it is possible to compute a few consecutive masks at virtu-
ally the same cost as computing a single mask transition. It is also efficient to
add the mask to the plaintext both in transposed order (word-sliced) and regular
order.

For concreteness, consider the mask sequence (x1, . . . , x15, (x0 ≪ 5)⊕
(x3 � 7)) and a permutation using 512-bit blocks of 32-bit words.
Suppose further that we are working with a CPU with 8-wide vectors, e.g., AVX2.
Given 8 additional words of storage, it is possible to compute L = (x1, . . . , x15,
(x0 ≪ 5) ⊕ (x3 � 7), . . . , (x7 ≪ 5) ⊕ (x10 � 7)) entirely in parallel.
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Consider now the transposed set of 8 blocks m0, . . . , m7; adding the mask con-
sists of m0 ⊕ L0−15,m1 ⊕ L1−16, . . . . On the other hand, when the blocks are
word-sliced—with m′

0 being the first 32-bit word of mi, m′
1 being the second,

and so on—adding the mask is still efficient, as m′
0 ⊕ L0−7,m

′
1 ⊕ L1−8, . . . . This

would be impossible with the standard masking schemes used in, e.g., OCB.
There is also an advantage at the low-end—ϕ can easily be implemented

as a circular array, which implies that only an index increment and the logical
operations must be executed for each mask update. This improves on both the
typical Gray code and powering-up approach, in that shifting by one requires
moving every word of the mask, instead of only one of them. Additionally, storage
is often a precious resource in low-end systems, and the Gray code method
requires significantly more than one block to achieve its best performance.

3.5 Proposed Masking for u = 2 and u = 3

Modes often require the tweak space to have multiple dimensions. In particular,
the modes of Sects. 4 and 5 require the tweak space to have 2 and 3 “coordinates.”
To extend the masking function from Sect. 3.4 to a tweak space divided into
disjunct sets, we have several options. We can simply split the range [0, 2b − 1]
into equivalence classes, e.g., i0 = 4k + 0, i1 = 4k + 1, . . . for at most 4 different
tweak indexes. Some constructions instead store a few fixed tweak values that
are used later as “extra” finalization tweaks.

The approach we follow takes a cue from XEX [71]. Before introducing the
scheme itself, we need a deeper understanding of the masking function ϕ intro-
duced in Sect. 3.4. At its core, ϕ is a linear map representable by a matrix
M with primitive minimal polynomial p(x). In fact, ϕ can be interpreted as
the matrix representation [58, § 2.52] of F2b , where M is, up to a change of
basis, the companion matrix of p(x). This property may be exploited to quickly
jump ahead to an arbitrary state ϕi(L): since ϕi(L) = M i · L and additionally
p(M) = 0, then (xi mod p(x))(M) = (xi)(M)+(p(x)q(x))(M) = (xi)(M) = M i.
Therefore we can implement arbitrarily large “jumps” in the tweak space by
evaluating the right polynomials over M . This property—like fast word-oriented
shift registers—has had its first uses in the pseudorandom number generation
literature [39].

Since we may control the polynomials here, we choose the very same poly-
nomials as Rogaway for the best performance: x + 1, and x2 + x + 1, denoted in
[71] as 3 and 7. Putting everything together, our masking for u = 3 becomes

δ(K, X, i0, i1, i2) = ((x)(M))i0((x + 1)(M))i1((x2 + x + 1)(M))i2 · P (K ‖ X)

= M i0(M + I)i1(M2 + M + I)i2 · P (K ‖ X).

To ensure that the tweak space is b-proper we need one extra detail: we
need to ensure that the logarithms logx(x + 1) and logx(x2 + x + 1) are suf-
ficiently apart. While for F2128 Rogaway already computed the corresponding
discrete logarithms [71] using generic methods, larger blocks make it nontrivial
to show b-properness. The following lemma shows that one particular function
satisfies Definition 1. The lemma uses the discrete logarithms whose computation
is described in Sect. 3.6.
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Lemma 4. Let ϕ(x) : {0, 1}1024 �→ {0, 1}1024 be the linear map (x0, . . . , x15) �→
(x1, . . . , x15, (x0 ≪ 53) ⊕ (x5 � 13)). Further, let M be the 1024 × 1024 matrix
associated with ϕ such that ϕ(L) = M · L. Let Φ = {ϕi0

0 , ϕi1
1 , ϕi2

2 } be the set of
functions used in the masking, with ϕi0

0 (L) = M i0 · L, ϕi1
1 (L) = (M + I)i1 · L,

and ϕi2
2 (L) = (M2 + M + I)i2 · L. The tweak space

T = T0 × T1 × T2 = {0, 1, . . . , 21020 − 1} × {0, 1, 2, 3} × {0, 1}

is b-proper relative to the function set Φ.

Proof. The proof closely follows [71, Proposition 5]. Let i0 ∈ T0, i1 ∈ T1, and
i2 ∈ T2. We first show that ϕi0

0 ◦ϕi1
1 ◦ϕi2

2 is unique for any distinct set of tweaks.
An easy computation shows that p(x) = x1024 + x901 + x695 + x572 + x409 +

x366 + x203 + x163 + 1 is the minimal polynomial of M . This polynomial is both
irreducible and primitive, which implies that the order of M is 21024−1. We begin
by determining the logarithms of M + I and M2 + M + I relatively to M . This
may be accomplished by computing l1 = logx(x + 1) and l2 = logx(x2 + x + 1)
in the field F2[x]/p(x), see Sect. 3.6.

The values l1 and l2 let us represent M i0M i1M i2 as M i0M l1i1M l2i2 . Given
a second distinct pair (i′0, i

′
1, i

′
2), we have that M i0M l1i1M l2i2 = M i′

0M l1i′
1M l2i′

2

iff i0 + l1i1 + l2i2 = i′0 + l1i
′
1 + l2i

′
2 (mod 21024 − 1). Equivalently, i0 − i′0 =

(i1−i′1)l1+(i2−i′2)l2 (mod 21024−1). By a simple exhaustive search through the
valid ranges of i1 and i2 we are able to see that the smallest absolute difference
(i1 − i′1)l1 + (i2 − i′2)l2 occurs when i1 − i′1 = −1 and i2 − i′2 = −1, and is
≈ 21020.58. Since i0 − i′0 is at most ±(21020 − 1), collisions cannot happen. Since
each mask is unique, the fact that T is b-proper follows from Lemma 3. ��

Remark. Nontrivial bounds for T , such as in the case where one desires T0, T1,
and T2 to be balanced, cannot be easily found by exhaustive search. Such bounds
can be found, however, with lattice reduction. Consider the lattice spanned by
the rows ⎛

⎜⎜⎝

K · 1 w0 0 0
K · l1 0 w1 0
K · l2 0 0 w2

K · m 0 0 0

⎞

⎟⎟⎠ ,

for a suitable integer K, m = 2b − 1, and weights wi. A shortest vector for
low-dimensional lattices such as this can be computed exactly in polynomial
time [66]. A shortest vector for this lattice has the form (Δi0 + Δi1l1 + Δi2l2 +
km,Δi0w0,Δi1w1,Δi2w2), and will be shortest when Δi0 + Δi1l1 + Δi2l2 ≡ 0
(mod 2n − 1). This yields concrete bounds on i0, i1, and i2. The constant K
needs to be large enough to avoid trivial shortest vectors such as (K, 1, 0, 0).
The weights wi can be used to manipulate the relative size of each domain;
for example, using the weights 1, 21019, and 21022 results in a similar bound as
Lemma 4, with T0 dominating the tweak space.
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3.6 Computing Discrete Logarithms in F2512 and F21024

While the classical incarnation of the Function Field Sieve (FFS) with F2 as
the base field could no doubt solve logarithms in F2512 with relatively modest
computational resources—see for example [46,76]—the larger field would require
a significant amount of work [6]. One could instead use subfields other than F2

and apply the medium-base-field method of Joux and Lercier [47], which would
be relatively quick for F2512 , but not so easy for F21024 .

However, with the advent of the more sophisticated modern incarnation of
the FFS, development of which began in early 2013 [7,30–34,45,48], the target
fields are now regarded as small, even tiny, at least relative to the largest such
example computation where a DLP in F29234 was solved [35]. Since these devel-
opments have effectively rendered small characteristic DLPs useless for public
key cryptography, (despite perhaps some potential doubters [17, Appendix D])
it is edifying that there is a constructive application in cryptography3 for what
is generally regarded as a purely cryptanalytic pursuit.

Due to the many subfields present in the fields in question, there is a large
parameter space to explore with regard to the application of the modern tech-
niques, and it becomes an interesting optimization exercise to find the most
efficient approach. Moreover, such is the size of these fields that coding time
rather than computing time is the dominant term in the overall cost. We there-
fore solved the relevant DLPs using MAGMA V2.19-1 [14], which allowed us to
develop rapidly. All computations were executed on a standard desktop computer
with a 2.0 GHz AMD Opteron processor.

3.6.1 Fields Setup. For reasons of both efficiency and convenience we use
F216 as base field for both target fields, given by the following extensions:

F24 = F2[U ]/(U4 + U + 1) = F2(u),
F216 = F24 [V ]/(V 4 + V 3 + V + u) = F24(v).

We represent F2512 as F216 [X]/(I32(X)) = F216(x), where I32 is the degree 32
irreducible factor of H32(X) = h1(X16)X + h0(X16), where h1 = (X + u9 +
u5v + u13v2 + u3v3)3 and h0 = X3 + u2 + u9v2 + u13v3. The other irreducible
factors of H32(X) have degrees 6 and 11.

We represent F21024 as F216 [X]/(I64(X)) = F216(x), where I64 is the degree 64
irreducible factor of H64(X) = h1(X16)X +h0(X16), where h1 = (X +u+u7v+
u4v2+u7c3)5 and h0 = X5+u9+u4v+u6v2+v3. The other irreducible factors of
H64(X) have degrees 7 and 10. Transforming from the original representations
of Sect. 3.6.3 to these is a simple matter [57].

Note that ideally one would only have to use hi’s of degree 2 and 4 to obtain
degree 32 and 64 irreducibles, respectively. However, no such hi’s exist and so we

3 Beyond cryptography, examples abound in computational mathematics: in finite
geometry; representation theory; matrix problems; group theory; and Lie algebras
in the modular case; to name but a few.
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are forced to use hi’s of degree 3 and 5. The penalty for doing so incurs during
the relation generation, see Sect. 3.6.2, and during the descent, in particular for
degree 2 elimination, see Sect. 3.6.3.

Remark. The degrees of the irreducible cofactors of I32 in H32 and of I64 in
H64 is an essential consideration in the set up of the two fields. In particu-
lar, if the degree df of a cofactor f has a non-trivial GCD with the degree of
the main irreducible, then it should be considered as a ‘trap’ for the computa-
tion of the logarithms of the factor base elements, modulo all primes divid-
ing 216·gcd(df ,32i) − 1 for i = 1, 2, for F2512 and F21024 , respectively [22,42].
This is because F216 [X]/(H32i(X)) will contain another copy of F

216·gcd(df ,32i)

which arises from f , and hence the solution space modulo primes dividing
216·gcd(df ,32i) − 1 has rank >1. Our choice of h0 and h1 in each case limits the
effect of this problem to prime factors of 232 −1, namely subgroups of tiny order
within which we solve the DLPs using a linear search. The irreducible cofactors
are also traps for the descent phase [32], but are easily avoided.

3.6.2 Relation Generation and Logarithms of Linear Elements. The
factor base is defined to be F = {x+d | d ∈ F216}. To generate relations over F ,
we use the technique from [30], described most simply in [32]. In particular, for
both target fields let y = x16; by the definitions of I32 and I64 it follows in both
cases that x = h0(y)/h1(y). Using these field isomorphisms, for any a, b, c ∈ F216

we have the field equality

x17 + ax16 + bx + c =
1

h1(y)
(yh0(y) + ayh1(y) + bh0(y) + ch1(y) (6)

One can easily generate (a, b, c) triples such that the left hand side of Eq. (6)
always splits completely over F . Indeed, one first computes the set B of 16 values
B ∈ F216 such that the polynomial fB(X) = X17 + BX + B splits completely
over F216 [13]. Assuming c �= ab and b �= a16, the left hand side of Eq. (6) can
be transformed (up to a scalar factor) into fB , where B = (b+a16)17

(c+ab)16 . Hence if
this B is in B then the left hand side also splits. In order to generate relations,
one repeatedly chooses random B ∈ B and random a, b �= a16 ∈ F216 , computes
c = ((b + a16)17)1/16 + ab, and tests whether the right hand side of Eq. (6) also
splits over F216 . If it does then one has a relation, since (y + d) = (x + d1/16)16,
and each h1 is a power of a factor base element.

The probability that the right hand side of Eq. (6) splits completely is heuris-
tically 1/4! and 1/6! for F2512 and F21024 respectively. In both cases we obtain
216+200 relations, which took about 0.3 h and 8.8 h, respectively. To compute the
logarithms of the factor base elements, we used MAGMA’s ModularSolution
function, with its Lanczos option set, modulo the 9th to 13th largest prime
factors of 2512 − 1 for the smaller field and modulo the 10th to 16th largest
prime factors of 21024 −1 for the larger field. These took about 13.5 h and 24.5 h,
respectively.
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3.6.3 Individual Logarithms. The original representations of the target
fields are:

F2512 = F2[T ]/(T 512 + T 335 + T 201 + T 67 + 1) = F2(t),

F21024 = F2[T ]/(T 1024 + T 901 + T 695 + T 572 + T 409 + T 366 + T 203 + T 163 + 1)
= F2(t).

In order to solve the two relevant DLPs in each original field, we need to com-
pute three logarithms in each of our preferred field representations, namely the
logarithms of the images of t, t+1 and t2 + t+1—which we denote by t0, t1 and
t2—relative to some generator. We use the generator x in both cases.

For F2512 , we multiply the targets ti by random powers of x and apply a
continued fraction initial split so that xkti ≡ n/d (mod I32), with n of degree
16 and d of degree 15, until both n and d are 4-smooth. One then just needs to
eliminate irreducible elements of degree 2, 3, 4 into elements of smaller degree.
For degree 4 elements, we apply the building block for the quasi-polynomial
algorithm due to Granger, Kleinjung, and Zumbrägel [33,34], which is just degree
2 elimination but over a degree 2 extended base field. This results in each degree
4 element being expressed as a product of powers of at most 19 degree 2 elements,
and possibly some linear elements. For degree 3 elimination we use Joux’s bilinear
quadratic system approach [45], which expresses each degree 3 element as a
product of powers of again at most 19 degree 2 elements and at least one linear
element. For degree 2 elimination, we use the on-the-fly technique from [30],
but with the quadratic system approach from [31], which works for an expected
proportion 1 − (1 − 1/2!)16 = 255/256 of degree 2’s, since the cofactor in each
case has degree 2. On average each descent takes about 10 s, and if it fails due to
a degree 2 being ineliminable, we simply rerun it with a different random seed.
Computing logarithms modulo the remaining primes only takes a few seconds
with a linear search, which completes the following results:

logt(t + 1) = 5016323028665706705636609709550289619036901979668873
4872643788516514405882411611155920582686309266723854
51223577928705426532802261055149398490181820929802,

logt(t
2 + t + 1) = 7789795054597035122960933502653082209865724780784381

2166626513019333878034142500477941950081303675633401
11859664658120077665654853201902548299365773789462.

The total computation time for these logarithms is less than 14 h.
For F21024 , we use the same continued fraction initial split, but now with n

and d of degree 32 and 31, until each is 4-smooth, but also allowing a number
of degree 8 elements. Finding such an expression takes on average 7 h, which,
while not optimal, means that the classical special-Q elimination method could
be obviated, i.e., not coded. For degree 8 elimination, we again use the building
block for the quasi-polynomial algorithm of Granger et al., which expresses such
a degree 8 element as a product of powers of at most 21 degree 4 elements,
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and possibly some degree 2 and 1 elements. Degree 4 and 3 elimination proceed
as before, but with a larger cofactor of the element to be eliminated on the
r.h.s. due to the larger degrees of h0 and h1. Degree 2 elimination is significantly
harder in this case, since the larger degrees of the hi’s mean that the elimination
probability for a random degree 2 element was only 1 − (1 − 1/4!)16 ≈ 0.494.
However, using the recursive method from the DLP computation in F24404 [32]
allows this to be performed with near certainty. If any of the eliminations fails,
then as before we simply rerun the eliminations with a different random seed. In
total, after the initial rewrite of the target elements into a product of degree 1,
2, 3, 4, and 8 elements, each descent takes just under an hour. Again, computing
logarithms modulo the remaining primes takes less than a minute with a linear
search resulting in:

logt(t + 1) = 3560313810702380168941895068061768846768652879916524
2796753456565509842707655755413753100620979021885720
1966785351480307697311709456831372018598499174441196
1470332602216161583378362583657570756631024935927984
2498272238699528576230685242805763938951155448126495
512475014867387149681903876406067502645471152193,

logt(t
2 + t + 1) = 1610056439189028793452144461315558447020117376432642

5524859486238161374654279717800300706136749607630601
4967362673777547140089938700144112424081388711871290
7973319251629628361398267351880948069161459793052257
1907117948291164323355528169854354396482029507781947
2534171313076937775797909159788879361876099888834.

The total computation time for these logarithms is about 57 h.
Note that it is possible to avoid the computations in F2512 altogether by

embedding the relevant DLPs into F21024 . However, the descent time would take
longer than the total time, at least with the non-optimal descent that we used.
We considered the possibility of using “jokers” [32], which permit one to halve
the degree of even degree irreducibles when they are elements of a subfield of
index 2. However, it seems to only be possible when one uses compositums, which
is not possible in the context of the fields F22n . In any case, such optimizations
are academic when the total computation time is as modest as those recorded
here, and our approach has the bonus of demonstrating the easiness of computing
logarithms in F2512 , as well as in F21024 .

With regard to larger n, it would certainly be possible to extend the approach
of Kleinjung [52] to solve logarithms in the fields F22n for n = 11, 12 and 13,
should this be needed for applications, without too much additional effort.
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4 Offset Public Permutation Mode (OPP)

We present the Offset Public Permutation Mode (OPP), a nonce-respecting
authenticated encryption mode with support for associated data which uses the
techniques presented in Sect. 3. It can be seen as a generalization of OCB3 [55] to
arbitrary block sizes using permutations and using improved masking techniques
from Sect. 3.

4.1 Specification of OPP

Let b, k, n, τ as outlined in Sect. 2. OPP uses MEM of Sect. 3.1 for u = 3 and
Φ = {α, β, γ} with α(x) = ϕ(x), β(x) = ϕ(x) ⊕ x and γ(x) = ϕ(x)2 ⊕ ϕ(x) ⊕
x, employing ϕ as introduced in Sect. 3.4. Furthermore, the general masking
function is specified as

δ : (K, X, i0, i1, i2) �→ γi2 ◦ βi1 ◦ αi0(P (X ‖ K)).

We require that the tweak space of MEM used in OPP is b-proper with respect
to Φ as introduced in Definition 1 and proven in Lemma 4.

The formal specification of OPP is given in Fig. 1. We refer to the authen-
tication part of OPP as OPPAbs and to the encryption part as OPPEnc. The
OPPAbs mode requires only the encryption function Ẽ, while the OPPEnc mode
uses both Ẽ and D̃ of MEM.

Let Hi and Mj denote b-bit header and message blocks with 0 ≤ i ≤ h − 1
and 0 ≤ j ≤ m − 1 where h = |H|b and m = |M |b. Note that the size of the
last blocks Hh−1 and Mm−1 is potentially smaller than b bits. To realize proper
domain separation between full and partial data blocks, and different data types,
OPP uses the following setup:

OPPAbs OPPEnc

Data block Condition (i0, i1, i2) Data block Condition (i0, i1, i2)

Hi 0 ≤ i < h − 1 (i , 0, 0) Mj 0 ≤ j < m − 1 (j , 0, 1)

Hh−1 |H| mod b = 0 (h − 1, 0, 0) Mm−1 |M | mod b = 0 (m − 1, 0, 1)

Hh−1 |H| mod b �= 0 (h − 1, 1, 0) Mm−1 |M | mod b �= 0 (m − 1, 1, 1)
⊕m−1

j=0 Mj |M | mod b = 0 (h − 1, 2, 0)
⊕m−1

j=0 Mj |M | mod b �= 0 (h − 1, 3, 0)

4.2 Security of OPP

Theorem 5. Let b, k, n, τ as outlined in Sect. 2. Let P
$←− Perm(b). Then, in the

nonce-respecting setting,

Advae
OPP,P (qE , qD, σ, p) ≤ 4.5σ2

2b
+

3σp

2b
+

p

2k
+

2n−τ

2n − 1
.
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Fig. 1. Offset Public Permutation Mode (OPP)

The proof is given in the full version of this work. Note that OPP shares its struc-
ture with OCB3 of Krovetz and Rogaway [55]. In more detail, we will show that
once MEM gets replaced by a random tweakable permutation π̃, OPP becomes
exactly the ΘCB3 construction [55]. The proof follows by combining the security
of MEM and the security of ΘCB3. The first three terms of Theorem5 come from
the security of MEM and the b-properness of the masking.

5 Misuse-Resistant Offset Mode (MRO)

We present the Misuse-Resistant Offset Mode (MRO), a MAC-then-Encrypt AE
mode with support for associated data which fully tolerates nonce re-usage.
In some sense, MRO is the misuse-resistant variant of OPP and also uses the
techniques presented in Sect. 3. It can be seen as a permutation-based variation
of PMAC [12] followed by a permutation-based variation of CTR mode, and
shares ideas with the Synthetic Counter in Tweak (SCT) mode [70] used in
Deoxys v1.3 and Joltik v1.3 [43,44], though MRO is permutation-based and
employs the improved masking schedule of Sect. 3.

5.1 Specification of MRO

Let b, k, n, τ as outlined in Sect. 2. The formal specification of MRO is given in
Fig. 2. Similar to OPP, we refer to the authentication part of MRO as MROAbs
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and to the encryption part as MROEnc. In contrast to OPP, MRO only requires
the encryption function Ẽ of MEM. Using notation as in the OPP mode, MRO
uses the following setup for masking:

MROAbs MROEnc

Data block Condition (i0, i1, i2) Data block Condition (i0, i1, i2)

Hi 0 ≤ i ≤ h − 1 (i, 0, 0) Mj 0 ≤ j ≤ m − 1 (0, 0, 1)

Mj 0 ≤ j ≤ m − 1 (j, 1, 0)

|H| ‖ |M | n.a (0, 2, 0)

Fig. 2. Misuse-Resistant Offset Mode (MRO)

5.2 Security of MRO

Theorem 6. Let b, k, n, τ as outlined in Sect. 2. Let P
$←− Perm(b). Then, in the

nonce-reuse setting,

Advae
MRO,P (qE , qD, σ, p) ≤ 6.5σ2

2b
+

3σp

2b
+

p

2k
+

q2E/2 + qD
2τ

.

The proof is given in the full version of this work. The proof is in fact a standard-
model proof where the scheme is considered to be based on MEM. It is a modular
proof that, at a high level, consists of the following steps:
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(i) The first step in the analysis is to replace MEM with a random secret tweak-
able permutation. It costs the MTPRP security of MEM, 4.5σ2

2b + 3σp
2b + p

2k ,
using that the masking is b-proper.

(ii) The absorption function and encryption function call the tweakable cipher
for distinct tweaks. Hence, using an adaption of the MAC-then-Encrypt
paradigm to misuse resistance [37,65] allows us to analyze the MAC parts
and the encryption parts separately.

6 Misuse-Resistant Sponge (MRS)

We introduce the Misuse-Resistant Sponge Mode (MRS), a MAC-then-Encrypt
Sponge-based AE mode with support for associated data which fully toler-
ates nonce re-usage. The absorption function is a full-state keyed Sponge MAC
[3,10,63]. The encryption function follows the SpongeWrap approach [9,63].

6.1 Specification of MRS

Let b, k, n, τ, r, c as outlined in Sect. 2. The formal specification of MRS is given in
Fig. 3. It consists of an absorption function MRSAbs and an encryption function
MRSEnc, in a MAC-then-Encrypt mode, but using the same primitive and same
key in both functions. We remark that MRS as given in Fig. 3 only does one
round of squeezing in order to obtain the tag. This can be easily generalized to
multiple rounds, without affecting the security proofs.

We briefly discuss the differences of MRS with Haddoc, the misuse-resistant
AE scheme presented by Bertoni et al. [11] at the 2014 SHA-3 workshop. Haddoc
follows the MAC-then-Encrypt paradigm as well, where the MAC function is
identical to MRSAbs. For encryption, however, Haddoc uses the Sponge in CTR
mode. At a high level, and in our terminology, this boils down to Ci = Mi ⊕
leftr(P (T ‖ 〈i〉 ‖ 1 ‖ K)), for 0 ≤ i ≤ m − 1. In other words, MRS and Haddoc
structurally differ in the way encryption is performed, and in fact, Haddoc more
closely matches the ideas of the MRSO hybrid of Sect. 7.

6.2 Security of MRS

Theorem 7. Let b, k, n, τ, r, c as outlined in Sect. 2. Let P
$←− Perm(b). Then, in

the nonce-reuse setting,

Advae
MRS,P (qE , qD, σ, p) ≤ 4σ2

2b
+

4σ2

2c
+

2σp

2k
+

q2E/2 + qDqE + qD
2τ

.

The proof is given in the full version of this work. It is different from the
proofs for OPP and MRO, although it is also effectively a standard-model proof.
It relies on the observation that both the absorption and the encryption phase
are in fact evaluations of the Full-state Keyed Duplex [9,63]. This construction
has been proven to behave like a random functionality, with the property that
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Fig. 3. Misuse-Resistant Sponge (MRS)

it always outputs uniformly random data, up to common prefix in the input.
Assuming that the distinguisher never makes duplicate queries, MRSAbs never
has common prefixes; assuming tags never collide, MRSEnc never has common
prefixes; and finally, the initial inputs to MRSAbs versus MRSEnc are always
different due to the 0/1 domain separation. The proof then easily follows.

7 Misuse-Resistant Sponge-Offset (MRSO)

The constructions of Sects. 5 and 6 can be combined in a straightforward way to
obtain two hybrids: the Misuse-Resistant Sponge-then-Offset Mode (MRSO) and
the Misuse-Resistant Offset-then-Sponge Mode (MROS). While we cannot think
of any practical use-case for MROS, we do think MRSO is useful. As suggested
in Sect. 6, MRSO is comparable with—and in fact improves over—Haddoc.

7.1 Specification of MRSO

Let b, k, n, τ as outlined in Sect. 2. The formal specification of the MRSO AE
scheme is formalized in Fig. 4. It MACs the data using MRSAbs and encrypts
using MROEnc. MRSO uses MEM as specified for OPP but requires only a very
limited selection of tweaks and has i1 = i2 = 0 fixed. Thus, the general masking
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function can be simplified to

δ : (K, X, i0) �→ αi0(P (X ‖ K)).

For the encryption part MROEnc this is clear (cf. Sect. 5). For the absorption
part MRSAbs, this is less clear: informally, it is based on the idea of setting
L = P (N ‖ 0∗ ‖ K), and of XORing this value everywhere in-between two
consecutive evaluations of P . Because at the end of MRSAbs, a part of the rate
is extracted, this “trick” only works if performed with the rightmost b − τ bits
of L. Therefore, MRSO is based on a slight adjustment of MEM with b − τ -bit
maskings only. Let h = |H|b and m = |M |b denote the number of b-bit header
and message blocks, respectively. We use the following setup for masking:

MRSAbs MROEnc

Data block Condition i0 Data block Condition i0

Hi 0 ≤ i ≤ h − 1 0 Mj 0 ≤ j ≤ m − 1 1

Mj 0 ≤ j ≤ m − 1 0

|H| ‖ |M | n.a 0

Fig. 4. Sponge-Offset mode MRSO. Refer to Figs. 2 and 3 for the sub-algorithms

7.2 Security of MRSO

Theorem 8. Let b, k, n, τ as outlined in Sect. 2. Let P
$←− Perm(b). Then, in the

nonce-reuse setting,

Advae
MRSO,P (qE , qD, σ, p) ≤ 2σ2

2b
+

5.5σ2

2b−τ
+

3σp

2b−τ
+

p

2k
+

q2E/2 + qD
2τ

.

The proof is similar to the proof of MRO, with the difference that now we use
(b − τ)-properness of the masking. It is given in the full version of the work.

8 Implementation

In this section we discuss our results on the implementations of concrete instan-
tiations of OPP, MRO, and MRS. For all three schemes we use state, key, tag,
and nonce sizes of b = 1024, k = τ = 256, and n = 128 bits. For P we employ
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the BLAKE2b [5] permutation with l ∈ {4, 6} rounds. For OPP and MRO we
use ϕ(x0, . . . , x15) = (x1, ..., x15, (x0 ≪ 53) ⊕ (x5 � 13)) and for MRSEnc we
set rate and capacity to r = 768 and c = 256 bits. To remain self-contained, we
now recall the BLAKE2b permutation. It operates on a state S = (s0, . . . , s15)
with 64-bit words si. A single round F (S) consists of the sequence of operations

G(s0, s4, s8, s12); G(s1, s5, s9, s13); G(s2, s6, s10, s14); G(s3, s7, s11, s15);
G(s0, s5, s10, s15); G(s1, s6, s11, s12); G(s2, s7, s8, s13); G(s3, s4, s9, s14);

where

G(a, b, c, d) =

{
a = a + b; d = (d ⊕ a) ≫ 32; c = c + d; b = (b ⊕ c) ≫ 24;
a = a + b; d = (d ⊕ a) ≫ 16; c = c + d; b = (b ⊕ c) ≫ 63;

BLAKE2 and its predecessors have been heavily analyzed, e.g., [38,51]. These
results are mostly of theoretical interest though since the complexity of the
attacks vastly outweigh our targeted security level. Nevertheless, the BLAKE2
permutation family has some evident and well-known non-random characteris-
tics [4]: for any l > 0, it holds that F l(0) = 0 and F l(a, a, a, a, b, b, b, b, c, c, c,
c, d, d, d, d) = (w,w,w,w, x, x, x, x, y, y, y, y, z, z, z, z) for arbitrary values a, b, c,
and d. These symmetric states can be easily avoided with a careful design, so
that they cannot be exploited as a distinguisher. Thus, we use slightly modified
variants of the schemes from Sects. 4, 5, 6 and 7. Instead of initializing the masks
with P (N ‖ 0640 ‖ K) in OPP and MRO, we encode the round number l and tag
size τ as 64-bit strings and use P (N ‖ 0512 ‖ 〈l〉64 ‖ 〈τ〉64 ‖ K). Analogously,
MRSAbs and MRSEnc are initialized with N ‖ 0448 ‖ 〈l〉64 ‖ 〈τ〉64 ‖ 〈0〉64 ‖ K
and T ‖ 0320 ‖ 〈l〉64 ‖ 〈τ〉64 ‖ 〈1〉64 ‖ K, respectively.

We wrote reference implementations of all schemes in plain C and optimized
variants using the AVX, AVX2, and NEON instruction sets4. Performance was
measured on the Intel Sandy Bridge and Haswell and on the ARM Cortex-A8
and compared to some reference AEAD schemes, see Tables 2 and 3. All values
are given for “long messages” (≥ 4 KiB) with cycles per byte (cpb) as unit.

In the nonce-respecting scenario our fastest proposal is OPP with 4 BLAKE2b
rounds. Our 4-fold word-sliced AVX2-implementation achieves 0.55 cpb on

Table 2. Performance of OPP, MRO, and MRS instantiated with the BLAKE2b per-
mutation

l = 4 l = 6

Platform Impl. OPP MRO MRS OPP MRO MRS

Cortex-A8 NEON 4.26 8.07 8.50 5.91 11.32 12.21

Sandy Bridge AVX 1.24 2.41 2.55 1.91 3.58 3.87

Haswell AVX2 0.55 1.06 2.40 0.75 1.39 3.58

4 The source code of our schemes is freely available at [61] under a CC0 license.
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Table 3. Performance of some reference AEAD modes

Nonce-respecting Misuse-resistant

Platform AES-GCM OCB3 ChaCha20-

Poly1305

Salsa20-

Poly1305

Deoxys �=-

128-128

GCM-SIV Deoxys= −
128 − 128

Cortex-A8 38.6 28.9 - 5.60+2.60 - - -

Sandy Bridge 2.55 0.98 - - 1.29 - ≈ 2.58

Haswell 1.03 0.69 1.43+0.66 - 0.96 1.17 ≈ 1.92

References [16,36] [36,55] [28,29] [8] [43,69] [37] [43,69]

Haswell, amounting to a throughput of 6.36 GiBps and assuming a CPU fre-
quency of 3.5 GHz. Compared to its competitors AES-GCM, OCB3, ChaCha20-
Poly1305 and Deoxys�= (v1.3)5, this instantiation of OPP is faster by factors of
about 1.87, 1.25, 3.80, and 1.74 respectively. Even the 6-round variant of OPP is
able to maintain high speeds at 0.75 cpb (4.67 GiBps) reducing the distance to
the above competitors to factors of 1.37, 0.92, 2.78, and 1.28. On ARM platforms,
without AES-NI, OPP’s advantage is even more significant. The NEON-variant
outperforms the AES-based ciphers OCB3 and AES-GCM by factors of about
6.78 and 9.06. The highly optimized Salsa20-Poly1305 implementation of [8] is
slower by a factor of around 1.92.

In the misuse-resistant scenario our fastest proposal is MRO with 4 BLAKE2b
rounds. Our 4-fold word-sliced AVX2-implementation achieves 1.06 cpb on
Haswell which is equivalent to a throughput of 3.30 GiBps at a frequency of
3.5 GHz. In comparison to schemes such as AES-GCM-SIV and Deoxys= (v.1.3),
the above instantiation of MRO is faster by factors of about 1.10 and 1.81. For
the 6-round version with 1.39 cpb these factors are reduced to 0.79 and 1.38,
respectively. Unfortunately, there is not enough published data on performance
of misuse-resistant AE schemes on ARM. As for OPP in the nonce-respecting
scenario, one can expect similar performance gaps between the misuse-resistant
AES-based schemes and MRO.

Due to the inherently sequential Sponge-construction used in MRS, advanced
implementation techniques like 4-fold word-slicing are not possible. In general,
MRS performs therefore worse than MRO. On Haswell MRS achieves 2.40 cpb
(l = 4) and 3.58 cpb (l = 6) which translate to throughputs of 1.45 GiBps and
0.97 GiBps, respectively. Thus, MRS is still competitive to other misuse-resistant
AE schemes on Intel platforms. On ARM it shows good performance as well,
almost on the level of MRO. We have not written any implementations for MRSO
but it is to be expected that its performance lies between MRO and MRS.
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Abstract. By definition, fully homomorphic encryption (FHE) schemes
support homomorphic decryption, and all known FHE constructions are
bootstrapped from a Somewhat Homomorphic Encryption (SHE) scheme
via this technique. Additionally, when a public key is provided, cipher-
texts are also re-randomizable, e.g., by adding to them fresh encryptions
of 0. From those two operations we devise an algorithm to sanitize a
ciphertext, by making its distribution canonical. In particular, the dis-
tribution of the ciphertext does not depend on the circuit that led to it
via homomorphic evaluation, thus providing circuit privacy in the honest-
but-curious model. Unlike the previous approach based on noise flooding,
our approach does not degrade much the security/efficiency trade-off of
the underlying FHE. The technique can be applied to all lattice-based
FHE proposed so far, without substantially affecting their concrete para-
meters.

1 Introduction

A fully homomorphic encryption (FHE) scheme enables the efficient and com-
pact public transformation of ciphertexts decrypting to plaintexts μ1, . . . , μk,
into a ciphertext decrypting to C(μ1, . . . , μk), for any circuit C with any
number k of input wires. Since Gentry’s first proposal of a candidate FHE
scheme [Gen09a,Gen09b], plenty of FHE schemes have been proposed (see [SV10,
DGHV10,BV11a,BV11b,Bra12,GHS12,GSW13], to name just a few).

A typical application of FHE is to offshore heavy computations on privacy-
sensitive data: a computationally limited user encrypts its data, sends it to
a distant powerful server, tells the server which operations to perform on the
encrypted data, retrieves the result and decrypts. For this mainstream applica-
tion, confidentiality, malleability and compactness seem sufficient. However, for
other invaluable applications of FHE, another property, which we will call cipher-
text sanitizability, has proved central. Statistical (resp. computational) ciphertext
sanitizability requires that there exists a probabilistic polynomial time algorithm
Sanitize taking as inputs a public key pk and a ciphertext c decrypting to a
plaintext μ under the secret key sk associated to pk, such that the distribu-
tions Sanitize(pk, c) and Sanitize(pk,Enc(pk, μ)) are statistically (resp. computa-
tionally) indistinguishable, given pk and sk (here Enc refers to the encryption
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part I, LNCS 9665, pp. 294–310, 2016.
DOI: 10.1007/978-3-662-49890-3 12
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algorithm). For all applications we are aware of, computational ciphertext san-
itizability suffices. Nevertheless, all known approaches (including ours) provide
statistical ciphertext sanitizability.

Importance of ciphertext sanitizability. The ciphertext sanitizability
property is closely related to the concept of (honest-but-curious) circuit pri-
vacy. The latter was introduced in the context of FHE by Gentry (see [Gen09a,
Chapter 2]). Ciphertext sanitizability implies that if C0 and C1 are respectively
obtained by the homomorphic evaluation of circuits C0 and C1 on honestly formed
public key and ciphertexts, and if they decrypt to the same plaintext, then their
distributions should be indistinguishable. This property is convenient in the fol-
lowing context: a first user wants a second user to apply a circuit on its plaintexts,
but the first user wants to retain privacy of its plaintexts, while the second user
wants to retain privacy of its circuit. A circuit private FHE with compact cipher-
texts leads to a 2-flow protocol with communication cost bounded independently
of the circuit size (this is not the case when directly using Yao’s garbled circuit).
The communication cost is proportional to the ciphertext bit-size and the num-
ber of data bits owned by the first user.

Two other potential applications of ciphertext sanitizability are mentioned
in Sect. 5.

Flooding-based ciphertext sanitizability. The only known approach to
realize ciphertext sanitizability, already described in [Gen09a, Chapter 21], is via
the noise flooding technique (also called noise smudging and noise drowning).
The ciphertexts of existing FHE schemes all contain a noise component, which
grows (with respect to the Euclidean norm) and whose distribution gets skewed
with homomorphic evaluations. Assume that at the end of the computation, its
norm is below some bound B. The noise flooding technique consists in adding a
statistically independant noise with much larger standard deviation. This may
be done publicly by adding an encryption of plaintext 0 with large noise. The
mathematical property that is used to prove ciphertext sanitizability is that
the statistical distance between the uniform distribution over [−B′, B′] and the
uniform distribution over [−B′ + c,B′ + c] for c such that |c| ≤ B is ≤ B/B′

(see [AJL+12]). In the context of noise flooding, the parameter B′ is taken of the
order of B · 2λ, where λ refers to the security parameter, so that the statistical
distance is exponentially small1.

The noise flooding technique results in impractical schemes. To enable cor-
rect decryption, the scheme must tolerate much larger noise components: up to
magnitude B · 2λ instead of B, where B can be as small as λO(1). In the case
of schemes based on the Learning With Errors problem (LWE) [Reg09], the
encryption noise rate α must be set exponentially small as a function of λ, to
guarantee decryption correctness. Then, to ensure IND-CPA security against all
known attacks costing 2o(λ) operations, the LWE dimension n and modulus q

1 Note that in some works, it is only required that σ ≥ B ·λω(1). These works consider
resistance only against polynomial-time attackers. Here we consider the more realistic
setting where attackers can have up to sub-exponential run-time 2o(λ).
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must satisfy the condition n log q ≥ λ3 up to poly-logarithmic factors in λ (lattice
reduction algorithms [Sch87] may be used to solve LWE with parameters n, q

and α in time 2n log q/ log2 α up to polylogarithmic factors in the exponent). This
impacts key sizes, ciphertext expansion, and efficiency of encryption, decryption
and homomorphic evaluation. For example, a ciphertext from the Brakerski-
Vaikuntanathan FHE [BV11a] would have bit-size O(n log q) = Õ(λ) if there is
no need to support noise flooding, and O(n log q) = Õ(λ3) if it is to support
noise flooding. A related impact is that the weakest hardness assumption on
lattice problems allowing to get ciphertext sanitizability via noise flooding is the
quantum hardness of standard worst case lattice problems such as SVP with
approximation factors of the order of 2

√
n in dimension n (this is obtained via

the quantum reduction of [Reg09]).

Contribution. We propose a novel approach to realize the ciphertext saniti-
zability property, based on successive iterations of bootstrapping. In short, we
replace the flooding strategy by a soak-spin-repeat strategy. It allows to take
much smaller parameters (both in practice and in theory) and to rely on less
aggressive hardness assumptions. In the case of LWE-based FHE schemes such
as [BV11a,BV11b,Bra12,GSW13], the proposed scheme modification to realize
ciphertext sanitizability allows to keep the same underlying hardness assump-
tion (up to a small constant factor in the lattice approximation parameter) as
for basic FHE without ciphertext sanitizability, and the same parameters (up to
a small constant factor). On the downside, sanitizing a ciphertext requires suc-
cessive iterations of bootstrapping. Note that the cost of bootstrapping has been
recently decreased [AP14,DM15].

FHE bootstrapping consists in encrypting an FHE ciphertext under a second
encryption layer, and removing the inner encryption layer by homomorphically
evaluating the decryption circuit. If a ciphertext c decrypts to a plaintext μ, boot-
strapping produces a ciphertext c′ that also decrypts to μ, as if c was decrypted
to μ and then μ re-encrypted to c′. The latter simplification is misleading, as
one may think that c′ is a fresh encryption of μ and hence that its distribution
is canonical. This is incorrect. Homomorphic evaluation results in a ciphertext
whose distribution may depend on the plaintexts underlying the input cipher-
texts. In the context of bootstrapping, the input plaintexts are the bits of the
decryption key and the bits of c. The distribution of ciphertext c′ output by
bootstrapping depends on the distribution of c.

Rather, we propose to bootstrap several times and inject some entropy in the
ciphertext between each bootstrapping step. Suppose we start with two cipher-
texts c0 and c1 decrypting to the same plaintext μ. We randomize them by
adding a fresh encryption of 0. After a bootstrapping step, we obtain cipher-
texts c

(1)
0 and c

(1)
1 decrypting to μ. By the data processing inequality, the sta-

tistical distance between them is no greater than before the bootstrapping. We
then inject entropy in c

(1)
0 and c

(1)
1 to decrease their statistical distance by a con-

stant factor, e.g., by a factor 2: this is achieved by adding a fresh encryption of 0.
This process is iterated λ times, resulting in a pair of ciphertexts decrypting to μ
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and whose statistical distance is ≤ 2−λ. The process is akin to a dynamical
system, approaching to a fixed point, canonical, distribution. This technique
almost provides a solution to a problem suggested by Gentry in [Gen09a,
page 30], stating that bootstrapping could imply circuit privacy.

It remains to explain how to realize the entropy injection step, whose aim
is to decrease the statistical distance between the two ciphertexts by a constant
factor. In the case of FHEs with a noise component, we use a tiny flooding. We
add a fresh independent noise to the noise component, by publicly adding a fresh
encryption of plaintext 0 to the ciphertext. As opposed to traditional flooding,
this noise term is not required to be huge, as we do not aim at statistical closeness
in one go. Both noise terms (the polluted one and the fresh one) may be of the
same orders of magnitude.

Comparison with other approaches. We have already mentioned that
in the case of FHE schemes based on LWE, the flooding based approach
requires assuming that LWE with noise rate α = 2−λ is hard, and hence set-
ting n log q ≥ λ3 (up to poly-logarithmic factors in λ). The inefficacy impact
can be mitigated by performing the homomorphic evaluation of the circuit
using small LWE parameters, bootstrapping the resulting ciphertext to large
LWE parameters, flooding with noise and then bootstrapping to small parame-
ters (or, when it is feasible, switching modulus) before transmitting the result.
This still involves one bootstrapping with resulting LWE parameters satisfying
n log q ≥ λ3. Our approach compares favorably in terms of sanitization efficiency,
as it involves λ bootstrapping with parameters satisfying n log q ≥ λ (still up to
polylogarithmic factors).

In the context of (honest-but-curious) circuit privacy with communication
bounded independently of the circuit size, van Dijk et al. [DGHV10, Appen-
dix C] suggested using an FHE scheme and, instead of sending back the result-
ing ciphertext c, sending a garbling of a circuit taking as input the secret key
and decrypting c. Using Yao’s garbled circuit results in a communication cost
that is at least λ times larger than the decryption circuit, which is itself at least
linear in the ciphertext bit-length. Therefore, our approach compares favorably
in terms of communication.

Related works. In [OPP14], Ostrovsky et al. study circuit privacy in the
malicious setting: circuit privacy (or ciphertext sanitizability) must hold even
if the public key and ciphertexts are not properly generated. This is a stronger
property than the one we study in the present work. Ostrovsky et al. combine
a compact FHE and a (possibly non-compact) homomorphic encryption scheme
that enjoys circuit privacy in the malicious setting, to obtain a compact FHE
which is maliciously circuit private. Their construction proceeds in two steps,
and our work can be used as an alternative to the first step.

Noise flooding is a powerful technique to obtain new functionalities and
security properties in lattice-based cryptography. As explained above, how-
ever, it leads to impractical schemes. It is hence desirable to find alternatives
that allow for more efficient realizations of the same functionalities. For exam-
ple, Lyubashesvky [Lyu09] used rejection sampling in the context of signatures
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(see also [Lyu12,DDLL13]). Alwen et al. [AKPW13] used the lossy mode of LWE
to prove hardness of the Learning With Rounding problem (LWR) for smaller
parameters than [BPR12]. LWR is for example used to designing pseudo-random
functions [BPR12,BLMR13,BP14]. Langlois et al. [LSS14] used the Rényi diver-
gence as an alternative to the statistical distance to circumvent noise flood-
ing in encoding re-randomization for the Garg et al. cryptographic multi-linear
map candidate [GGH13].2 Further, in [BLP+13], Brakerski et al. introduced the
first-is-errorless LWE problem to prove hardness of the Extended LWE prob-
lem without noise flooding, hence improving over a result from [OPW11]. They
also gave a flooding-free hardness proof for binary LWE based on the hard-
ness of Extended LWE, hence improving a hardness result from [GKPV10].
LWE with binary secrets was introduced to construct a leakage resilient encryp-
tion scheme [GKPV10]. Extended LWE was introduced to design a bi-deniable
encryption scheme [OPW11], and was also used in the context of encryption
with key-dependent message security [AP12]. The tools developed to circumvent
noise flooding seem quite diverse, and it is unclear whether a general approach
could be used.

Roadmap. In Sect. 2, we provide some necessary reminders. In Sect. 3, we
describe our ciphertext sanitation procedure. We instantiate our approach to
LWE-based FHE schemes in Sect. 4.

2 Preliminaries

We give some background definitions and properties on Fully Homomorphic
Encryption and probability distributions.

2.1 Fully Homomorphic Encryption

We let S denote the set of secret keys, P the set of public keys (which, in our
convention includes what is usually referred to as the evaluation key), C the
ciphertext space and M the message space. For simplicity, we set M = {0, 1}.
Additionally, we let Cμ denote the set of all ciphertexts that decrypt to μ ∈
M (under an implicitly fixed secret key sk ∈ S). We also assume that every
ciphertext decrypts to a message: C =

⋃
μ∈M Cμ (i.e., decryption never fails).

All those sets implicitly depend on a security parameter λ.
An FHE scheme (for S, P,M,C) is given by four polynomial time algorithms:

• a (randomized) key generation algorithm KeyGen : {1λ} → P × S,
• a (randomized) encryption algorithm Enc : P × M → C,
• a (deterministic) decryption algorithm Dec : S × C → M ,
• a (deterministic) homomorphic evaluation function Eval : ∀k, P × (Mk →

M) × Ck → C.

2 Note that the Garg et al. and hence its Langlois et al. improvement have recently
been cryptanalysed [HJ15].
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Correctness requires that for any input circuit C with any number of input
wires k, and for any μ1, . . . , μk ∈ {0, 1}, we have (with overwhelming probability
1 − λ−ω(1) over the random coins used by the algorithms):

Dec (sk,Eval(pk, C, (c1, . . . , ck))) = C(μ1, . . . , μk),

where (pk, sk) = KeyGen(1λ) and ci = Enc(pk, μi) for all i ≤ k.
Compactness requires that elements in C can be stored on λO(1) bits.
Indistinguishability under chosen plaintext attacks (IND-CPA) requires that

given pk (where (pk, sk) = KeyGen(1λ)), the distributions of Enc(pk, 0) and
Enc(pk, 1) are computationally indistinguishable.

In addition to the above four algorithms, we define the function

Refresh(pk, c) = Eval (pk, CDec, (bk1, . . . , bkk, c′
1, . . . , c

′
�)) ,

where CDec refers to a polynomial-size circuit implementing Dec, bki =
Enc(pk, ski) for all k bits ski of secret key sk, and c′

i = Enc(pk, ci) for all �
bits ci of ciphertext c. Note that Refresh is the typical bootstrapping step of
current FHE constructions.

We assume that the bki’s are given as part of pk, and do not impact IND-CPA
security of the FHE scheme. This circular security assumption is standard in the
context of FHE. We may circumvent it by using a sequence of key pairs (pkj , skj)
and encrypting the bits of skj under pkj+1 for all j. This drastically increases
the bit-size of pk and does not provide FHE per say, but only homomorphic
encryption for circuits of size bounded by any a priori known polynomial.

2.2 Properties of the Statistical Distance

For a probability distribution D over a countable set S, we let D(x) denote the
weight of D at x, i.e., D(x) = Pr[x̃ = x|x̃ ← D].

Let X and X ′ be two random variables taking values in a countable set S. Let
D and D′ be the probability distributions of X and X ′. The statistical distance
Δ(X,X ′) is defined by

Δ(X,X ′) =
1
2

∑

x∈S
|D(x) − D′(x)|.

By abuse of notation, we aso write Δ(D,D′). Note that 0 ≤ Δ(X,X ′) ≤ 1 always
holds.

Assuming that δ = Δ(X,X ′) < 1, the intersection distribution C = D ∩ D′

is defined over S by C(x) = 1
1−δ min(D(x),D′(x)). It may be checked that C

is indeed a distribution (i.e.,
∑

x∈S C(x) = 1), by using the following identity,
holding for any reals a and b: 2min(a, b) = a + b − |a − b|. We also define
the mixture of two distributions B = α · D + (1 − α) · D′ for 0 ≤ α ≤ 1 by
B(x) = α · D(x) + (1 − α) · D′(x). If X and X ′ are random variables with
distributions D and D′ respectively, then B is the density function of the random
variable obtained with the following experiment: sample a bit from the Bernoulli
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distribution giving probability α to 0; if the bit is 0, then return a sample from
X; if the bit is 1, then return a sample from X ′.

We will use the following two lemmas.

Lemma 2.1. For any δ ∈ [0, 1) and any distributions B,B′ such that δ ≥
Δ(B,B′), there exist two distributions D and D′ such that:

B = (1 − δ) · B ∩ B′ + δ · D and B′ = (1 − δ) · B ∩ B′ + δ · D′.

Proof. Let C = B ∩ B′. One builds D as the renormalization to sum 1 of the
non-negative function B(x) − (1 − δ) · C(x), and proceeds similarly for D′. 	


Lemma 2.2. For any α ∈ [0, 1] and any distributions C,D,D′, we have

Δ ((1 − α) · C + α · D, (1 − α) · C + α · D′) = α · Δ(D,D′).

Proof. Let B = (1 − α)C + αD and B′ = (1 − α)C + αD′. We derive

2 · Δ(B,B′) =
∑

|((1 − α)C(x) + αD(x)) − ((1 − α)C(x) + αD′(x))|

=
∑

|αD(x) − αD′(x)|
= 2α · Δ(D,D′).

This completes the proof. 	


The following lemma is at the core of our main result. It states that if applying
a randomized function f to any two inputs a, b ∈ S leads to two somewhat
close-by distributions, then iterating f several times provides extremely close
distributions.

Lemma 2.3. Let δ ∈ [0, 1] and f : S → S be a randomized function such
that Δ(f(a), f(b)) ≤ δ holds for all a, b ∈ S. Then:

∀k ≥ 0,∀a, b ∈ S, Δ(fk(a), fk(b)) ≤ δk.

Proof. We prove the result by induction on k ≥ 0. It trivially holds for k = 0.
We now assume that Δ(fk(a), fk(b)) ≤ δk holds for all a, b ∈ S and some k ≥ 0,
and aim at showing that Δ(fk+1(a), fk+1(b)) ≤ δk+1.

By Lemma 2.1, there exist two distributions D and D′ such that:

fk(a) = (1 − δk) · fk(a) ∩ fk(b) + δk · D,

fk(b) = (1 − δk) · fk(a) ∩ fk(b) + δk · D′.

By composing with f , we obtain that:

fk+1(a) = (1 − δk) · f(fk(a) ∩ fk(b)) + δk · f(D),
fk+1(b) = (1 − δk) · f(fk(a) ∩ fk(b)) + δk · f(D′).



Sanitization of FHE Ciphertexts 301

Now, Lemma 2.2 implies that

Δ(fk+1(a), fk+1(b)) = δk · Δ (f(D), f(D′)) .

To complete the proof, note that

Δ (f(D), f(D′)) =
∑

x∈S

∣∣ ∑

a′∈S
D(a′) Pr

f
[f(a′) = x] −

∑

b′∈S
D′(b′) Pr

f
[f(b′) = x]

∣∣

=
∑

x∈S

∣∣
∑

a′,b′∈S
D(a′)D′(b′)

[
Pr
f

[f(a′) = x] − Pr
f

[f(b′) = x]
]∣∣

≤
∑

a′,b′∈S
D(a′)D′(b′)

∣∣ ∑

x∈S

[
Pr
f

[f(a′) = x] − Pr
f

[f(b′) = x]
]∣∣.

The latter quantity is ≤ δ, by assumption. 	


3 Sanitization of Ciphertexts

We first formally state the correctness and security requirements of a sanitization
algorithm for an encryption scheme (KeyGen,Enc,Dec) with secret key space S,
public key space P , message space M and ciphertext space C.

Definition 3.1 (Sanitization Algorithm). A polynomial-time (randomized)
algorithm Sanitize : P × C → C is said to be message-preserving if the following
holds with probability ≥ 1 − λ−ω(1) over the choice of (pk, sk) = KeyGen(1λ):

∀c ∈ C : Dec(sk,Sanitize(pk, c)) = Dec(sk, c).

It is said (statistically) sanitizing if the following holds with probability ≥ 1−2−λ

over the choice of (pk, sk) = KeyGen(1λ): for all c, c′ ∈ C such that Dec(sk, c) =
Dec(sk, c′), we have

Δ
(
Sanitize(pk, c)|(pk, sk),Sanitize(pk, c′)|(pk, sk)

)
≤ 2−λ.

In what follows, we fix the key pair (pk, sk) = KeyGen(1λ) and assume it
is given. To simplify notations, we will omit the conditioning of distributions
Sanitize(pk, c) and Sanitize(pk, c′) by (pk, sk).

3.1 Generic Algorithm

For each μ ∈ M , we let C∗
μ denote Refresh(pk, Cμ).3 We assume that one may

build an efficient randomized algorithm Rerand : P × C �→ C such that

c ∈ C∗
μ ⇒ Rerand(pk, c) ∈ Cμ. (1)

3 To give intuition, note that in our LWE instantiation, the set C∗
μ will correspond to

low-noise ciphertexts decrypting to μ.
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We choose a cycle parameter κ > 0 as an implicit function of λ. We now
define

Wash : (pk, c) �→ Rerand(pk,Refresh(pk, c)),

and Sanitize(pk, c) as the κ-th iteration of (pk, c) �→ Wash(pk, c). The following
statement follows from the definitions.

Lemma 3.2 (Sanitize is Message-Preserving). Under assumption (1), algo-
rithms Wash and Sanitize are message-preserving.

In practical FHEs, implication (1) would typically only hold with overwhelm-
ing probability 1 − λ−ω(1) over the random coins used during key generation,
encryption and execution of Rerand: guaranteeing that those bounds always hold
requires larger parameters, leading to slightly worse practical performance. If so,
the membership Sanitize(pk, c) ∈ Cμ of Lemma 3.2 holds only with overwhelm-
ing probability. This impacts our main result, Theorem3.3 below, as follows: the
statistical distance bound becomes

Δ (Sanitize(pk, c),Sanitize(pk, c′)) ≤ δκ + κ · λ−ω(1).

Such a bound does not allow to prove that all sub-exponential attacks can be
prevented. To obtain this, one can increase the scheme parameters a little to
enable correct decryption with probability ≥ 1 − 2−Ω(λ). Then the statistical
distance bound of Theorem 3.3 becomes

Δ (Sanitize(pk, c),Sanitize(pk, c′)) ≤ δκ + κ · 2−Ω(λ),

hence providing security against all sub-exponential attackers.

3.2 Security

Note that the trivial case Cμ = C∗
μ and Rerand(pk, ·) = Id with Refresh replaced

by the identity map fits our assumptions, but is exactly the possibly non-
sanitized initial scheme. For security, we require that Rerand(pk, c) does intro-
duce some ambiguity about c, but unlike the previous flooding-based techniques,
we do not require that it completely updates the distribution of c. More precisely:

Theorem 3.3 (Sanitization Security). Assume that (1) holds, and that

∀μ ∈ M,∀c, c′ ∈ C∗
μ, Δ (Rerand(pk, c),Rerand(pk, c′)) ≤ δ

for some constant δ ∈ [0, 1]. Then

Δ (Sanitize(pk, c),Sanitize(pk, c′)) ≤ δκ.

In particular if δκ ≤ 2−λ, then Sanitize is statistically sanitizing.

Proof. The result is obtained by applying Lemma2.3, with S = C∗
μ, k = κ and f

set to c �→ Rerand(pk, c). 	
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4 Application to Some FHE Schemes

We now apply our technique to LWE-based schemes built upon Regev’s encryp-
tion scheme [Reg09]. These include the schemes following the designs of [BV11a]
and [GSW13]. We comment practical aspects for HElib [HS] and FHEW [DM].

Our technique can also be applied to Gentry’s original scheme and its vari-
ants [Gen09a,Gen09b,Gen10,SV10,SS10]. It may also be applied to the FHE
scheme “based on the integers” of van Dijk et al. [DGHV10] and its improve-
ments (see [CS15] and references therein).

4.1 Rerandomizing a Regev Ciphertext

We let LWEq
s(μ, η) denote the set of LWE-encryptions of μ ∈ M under key

sk = s ∈ Z
n
q with modulus q and error rate less than η, i.e., the set

LWEq
s(μ, η) =

{
(a , 〈a , s〉 + μ · �q/2� + e) ∈ Z

n+1
q such that |e| < ηq

}
.

One may recover μ from an element (c1, c2) from LWEq
s(μ, η) by looking at the

most significant bit of c2 − 〈c1, s〉 mod q. Correctness of decryption is ensured
up to η < 1/4.

We assume that the public key pk contains � = O(n log q) encryptions of 0,
called rerandomizers:

∀i ≤ �, ri = (a i, bi = 〈a , s〉 + ei) ∈ LWEq
s(0, η).

We also assume that the a i’s are uniform and independent (they have been
freshly sampled).

For a ciphertext c ∈ LWEq
s(μ, η), we may now define

Rerand(pk, c) = c +
∑

i

εiri + (0 , f),

where the εi’s are uniformly and independently sampled from {0,±1}, and f is
sampled uniformly in an interval [−B,B] for some B to be chosen below. By
an appropriate version of the leftover hash lemma (see, e.g., [Reg09, Section 5]),
writing

c′ = c +
∑

i

εiri = (a ′, 〈a ′, s〉 + μ�q/2� + e′),

we know that a ′ is (within exponentially small distance from) uniform in Z
n
q ,

independently of c. That is, the only information about c contained in c′ is
carried by e′ (and plaintext μ). Additionally, we have that |e′| < (� + 1) · η · q.

To conclude, it remains to remark that for any x, y ∈ [−(� + 1)ηq, (� + 1)ηq],
we have:

Δ
(
x + U([−B,B]), y + U([−B,B])

)
≤ (� + 1)ηq

B
=: δ.
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Therefore, for any c0, c1 ∈ LWEq
s(μ, η), it holds that

Δ
(
Rerand(pk, c0),Rerand(pk, c1)

)
≤ δ,

and that

Rerand(pk, c0),Rerand(pk, c1) ∈ LWEq
s

(
μ,

(δ + 1)B
q

)
.

To ensure the correctness of decryption after rerandomization, we may set the
parameters so that (δ + 1)B/q < 1/4.

4.2 Application to FHE à la [BV11a]

For simplicity, we only present the case of the (non-ring) LWE-based FHE scheme
of [BV11a].

Let us first recall how an FHE scheme is bootstrapped from a given SHE
scheme. Assume the SHE scheme supports the homomorphic evaluation of any
(binary) circuit of multiplicative depth f , and that the decryption operation can
be implemented by a circuit of multiplicative depth g < f . The SHE scheme
is bootstrapped to an FHE scheme using the Refresh function, and evaluates
sub-circuit of depth f − g ≥ 1 between each refreshing procedure.

The construction of the SHE from [BV11a] is made more efficient by the use
of modulus switching. This induces a leveled ciphertext-space: for each i ≤ f ,
the ciphertext space Ci is LWEqi

s (·, η) for a sequence of q0 > q1 > · · · > qf and
a fixed η < 1/4.

The modulus switching technique allows, without any key material, to map
LWEq

s(μ, η) to LWEq′
s (μ, η′) where η′ = η + n · (log n)O(1)/q′ (or even η +

√
n ·

(log n)O(1)/q′ allowing up to negligible probability of incorrect computation).
By sequentially applying so-called ciphertext tensoring, key switching and

modulus switching steps, one may compute—given appropriate key material—
a ciphertext c′′ ∈ LWEqi+1

s (μμ′, η) from two ciphertexts c ∈ LWEqi
s (μ, η) and

c′ ∈ LWEqi
s (μ′, η), on the condition that qi+1/qi ≥ n · (log n)O(1).

Technically, the Refresh function may only be applied to ciphertext c ∈ Cf ,
as the naive decryption of ciphertexts with a large modulus qi > qf could require
larger multiplicative depth. To extend Refresh over the whole ciphertext space,
one can switch the modulus to the last level beforehand, which, for appropriate
parameters qi’s does not affect the error bound.

Instantiating Rerand. Let Cg
μ = LWEqg

s (μ, η). Then, according to the descrip-
tion above, we have C∗

μ = Refresh(pk, Cμ) ⊆ Cg
μ. We use the Rerand function

described in Sect. 4.1, with q = qg.
To ensure the correctness of the whole scheme, it suffices that

(η(� + 1) + B/qg) + n(log n)O(1)/qf < 1/4.

Setting B ≥ 2η(� + 1)qg, η < 1/(8(� + 1)) and qf ≥ 8n1+o(1) allows to fulfill the
conditions of Theorem3.3 for some δ ≤ 1/2.
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A larger gap qf/qg > nf−g is beneficial to our sanitizing technique, as it
allows one to choose δ ≈ 1/nf−g−1, and therefore decrease the length κ of the
washing program: soaking in a large bucket makes the soak-spin-repeat program
shorter. A striking example is given below.

Application to HElib. It turns out that the parameters given in the boot-
strappable version of HElib [HS15] lead to κ = 1 or 2, which means that, in
this setting, the flooding strategy is, or almost is, already applicable. Indeed,
choosing for example the set of parameters corresponding to n = φ(m) = 16384,
we have f = 22 and f − g = 10. The parameters qf and qg are not given, yet it
is typical to have qi+1/qi =

√
n · (log n)O(1) (guaranteeing correctness only with

probability 1−n−ω(1)). We can therefore assume that a single soaking step may
achieve δ ≤ n/

√
n

f−g ≈ 2−14·10/2+14 = 2−56. This gives, according to [HS15]
a batch sanitization procedure of 720 ciphertexts in 500 to 1000 s with the cur-
rent software [HS15,HS] (on an IntelX5570 processor at 2.93 GHz, with a single
thread).

4.3 Application to FHEW

Because the constructions à la [BV11a] rely on the hardness of LWE with
inverse noise rate 2(log n)c for some c > 1 in theory (and necessarily larger
than

√
n

f ≈ 214·22/2 = 2154 in practice), it is not so surprising that the imple-
mentations allow to straightforwardly apply the flooding strategy in practice
(which theoretically requires assuming the hardness of LWE with inverse noise
rate 2

√
n). It is therefore more interesting to study our sanitization strategy

for FHE schemes based on the hardness of LWE with inverse polynomial noise
rates [GSW13,BV14,AP14], in particular the concrete instantiation FHEW pro-
posed in [DM15]. For comparison, the security of this scheme is based on a
(Ring)-LWE problem [LPR10] with inverse noise rate ≈ 232.

Warning. The following analysis is only given as an attempt to estimate the
practical cost of our technique, yet the application with the original parame-
ters of FHEW is not to be considered secure. Indeed, for efficiency purposes, the
authors [DM15] have chosen to guarentee correctness only heuristically, and with
a rather large failure probability ≈ 2−45. Because decryption correctness is essen-
tial in our argument (see remark at the end of Sect. 3.1), a serious implementation
should first revise the parameters to provably ensure decryption correctness with
higher probability.

Sanitizing FHEW. We proceed to modify the original scheme recalled in Fig. 1
to implement the sanitizing strategy, as described in Fig. 2. This scheme uses two
plaintext moduli t = 2, 4, and this extends the definition of LWE ciphertexts as
follows.

LWEt:q
s (μ, η) =

{
(a , 〈a , s〉 + μ · �q/t� + e) ∈ Z

n+1
q such that|e| < ηq

}
.

Correct decryption now requires η < q/(2t). The scheme uses two LWE dimen-
sions: dimension n = 500 for a first secret vector s, and dimension N = 1024
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for a second secret vector z . It also switches between two ciphertext moduli
q = 29 and Q = 232. According to the analysis from [DM15], the parameters
allow to securely encrypt in dimension N and modulus Q, with a (discrete)
Gaussian error of standard deviation ς = 1.4.

Fig. 1. Original cycle of FHEW

Fig. 2. Washing cycle for FHEW. The only internal modification required is setting
u = Q/4 + 1 instead of Q/8 + 1. See [DM15] for more details.

Following the heuristic central-limit estimate of [DM15], the first step of
Fig. 2 (i.e., the homomorphic accumulator operations) returns a ciphertext with
a Gaussian-like error of standard deviation ≈ 218, so that error is of magnitude
less than Qη = 221 (with probability ≥ 1−2−45). Also, the choice ς = 1.4 makes
the error introduced by the key switch negligible. Similarly, the re-randomization
of the a part of the ciphertext c = (a , b) using fresh encryption of 0 with error
parameter ς given in the public-key ensure that (with notation similar than in
the previous section) b = Qη + Qε where ε is small compared to η.

Not having to compute any NAND also improves the error tolerance from
1/16 to 1/4. We may, in return, introduce a soaking noise of parameter B such
that Bq/Q ≈ 3q/16, that is B ≈ 229. This results in δ = b/B ≈ 2−8.

In conclusion, setting κ between 8 and 16 (depending on the desired security
level) should suffice to achieve appropriate statistical sanitation. This gives san-
itization of a single ciphertext in 5 to 10 s with the current software [DM] (on
an unspecified Intel processor at 3 Ghz, with a single thread).
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5 Conclusion and Open Problems

We have shown that both in theory and in practice, the sanitization of FHE
ciphertexts can be performed at a reasonable cost and without substantial mod-
ification of current schemes. It remains that FHE is too slow for many real world
scenarios and SHE is often much preferable. In a credible scenario where the cir-
cuit to evaluate is shallow, with potentially many inputs but few outputs, the
best strategy may be to use HElib in SHE mode for the main computation, and
sanitizing the final result using FHEW.

When applied to circuit privacy, our approach only provides passive (honest-
but-curious) security. Standard (interactive or not) zero-knowledge proofs help
prevent malicious attackers using fake public keys and/or fake ciphertexts. Yet
ad-hoc techniques surely need to be developed: with public key size of several
gigabytes, the statement to be proved is gigantic.

A worthy remark toward this goal, is that malicious ciphertexts are easily
tackled once the honest generation of the public key has been established. Indeed,
a single Refresh operation on each input ciphertexts will ensure that they are in
the subset of valid ciphertexts (formally proving such statement using, e.g., the
circuit privacy definition of [OPP14] is rather direct). This strategy may effec-
tively reduce interactivity in secure multi-party computation (MPC) protocols
based on FHE, and offer amortization of an initial zero-knowledge proof on the
public key.

Ciphertext sanitizability may have further applications in MPC based on
FHE, or, more precisely, based on Threshold FHE. Threshold FHE is a variant of
FHE in which 1- several parties can execute a key generation protocol to generate
a common public key and secret key shares, and 2- to decrypt, the parties execute
a decryption protocol using their secret key shares. It is theoretically possible to
generically convert any FHE into a Threshold FHE, but this is too cumbersome
for practical use: in particular, it results in a significant number of communi-
cation rounds. Instead, Threshold FHE schemes have been designed directly
by modifying existing FHE schemes [AJL+12,LTV12,CLO+13,CM15,MW15],
eventually allowing for MPC in two communication rounds [MW15]. A crucial
security property of Threshold FHE, called simulatability of partial decryptions,
is that the partial decryptions obtained by individual users do not reveal any-
thing about the confidential data of the other users. Ciphertext sanitization may
help enforce this property without resorting to noise flooding.

Acknowledgments. The authors thank Lisa Kohl, Ron Steinfeld and Daniel Wichs
for helpful discussions. This work has been supported by an NWO Free Competition
Grant and by ERC Starting Grant ERC-2013-StG-335086-LATTAC.



308 L. Ducas and D. Stehlé
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Abstract. Symmetric ciphers purposed for Fully Homomorphic
Encryption (FHE)have recentlybeenproposed for twomain reasons.First,
minimizing the implementation (time and memory) overheads that are
inherent to current FHE schemes. Second, improving the homomorphic
capacity, i.e. the amount of operations that one can perform on homomor-
phic ciphertexts before bootstrapping, which amounts to limit their level
of noise. Existing solutions for this purpose suggest a gap between block
ciphers and stream ciphers. The first ones typically allow a constant but
small homomorphic capacity, due to the iterationof rounds eventually lead-
ing to complex Boolean functions (hence large noise). The second ones typ-
ically allow a larger homomorphic capacity for the first ciphertext blocks,
that decreases with the number of ciphertext blocks (due to the increasing
Boolean complexity of the stream ciphers’ output). In this paper, we aim
to combine the best of these two worlds, and propose a new stream cipher
construction that allows constant and small(er) noise. Its main idea is to
apply a Boolean (filter) function to a public bit permutation of a constant
key register, so that the Boolean complexity of the stream cipher outputs is
constant. We also propose an instantiation of the filter function designed
to exploit recent (3rd-generation) FHE schemes, where the error growth
is quasi-additive when adequately multiplying ciphertexts with the same
amount of noise. In order to stimulate further investigation,we then specify
afewinstancesofthisstreamcipher, forwhichweprovideapreliminarysecu-
rity analysis. We finally highlight the good properties of our stream cipher
regarding the other goal of minimizing the time and memory complexity
of calculus delegation (for 2nd-generation FHE schemes). We conclude the
paper with open problems related to the large design space opened by these
new constructions.

1 Introduction

Purpose: Calculus Delegation. Recent years have witnessed massive changes
in communication technologies, that can be summarized as a combination of
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part I, LNCS 9665, pp. 311–343, 2016.
DOI: 10.1007/978-3-662-49890-3 13
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two trends: (1) the proliferation of small embedded devices with limited storage
and computing facilities, and (2) the apparition of cloud services with extensive
storage and computing facilities. In this context, the outsourcing of data and
the delegation of data processing gains more and more interest. Yet, such new
opportunities also raise new security and privacy concerns. Namely, users typi-
cally want to prevent the server from learning about their data and processing.
For this purpose, Gentry’s breakthrough Fully Homomorphic Encryption (FHE)
scheme [30] brought a perfect conceptual answer. Namely, it allows applying
processing on ciphertexts in a homomorphic way so that after decryption, plain-
texts have undergone the same operations as ciphertexts, but the server has not
learned anything about these plaintexts.1

Application Scenario. Cloud services can be exploited in a plethora of applica-
tions, some of them surveyed in [51]. In general, they are always characterized by
the aforementioned asymmetry between the communication parties. For illustra-
tion, we start by providing a simple example where data outsourcing and data
processing delegation require security and privacy. Let us say that a patient,
Alice, has undergone a surgery and is coming back home. The hospital gave her
a monitoring watch (with limited storage) to measure her metabolic data on a
regular basis. And this metabolic data should be made available to the doctor
Bob, to follow the evolution of the post-surgery treatment. Quite naturally, Bob
has numerous patients and no advanced computing facilities to store and process
the data of all his patients. So this is a typical case where sending the data to
a cloud service would be very convenient. That is, Alice’s data could be sent to
and stored on the cloud, and associated to both her and the doctor Bob. And
the cloud would provide Bob with processed information in a number of situa-
tions such as when the metabolic data of Alice is abnormal (in which case an
error message should be sent to Bob), or during an appointment between Alice
and Bob, so that Bob can follow the evolution of Alice’s data (possibly after
some processing). Bob could in fact even be interested by accessing some other
patient’s data, in order to compare the effect of different medications. And of
course, we would like to avoid the cloud to know anything about the (private)
data it is manipulating.

Typical Framework. More technically, the previous exemplary application can
be integrated in a quite general cloud service application framework, that can
be seen as a combination of 5 steps, combining a symmetric encryption scheme
and an asymmetric homomorphic encryption scheme, as summarised in Fig. 1
and described next:

1. Initialization. Alice runs the key generation algorithms H.KeyGen and
S.KeyGen of the two schemes, and sends her homomorphic public key pkH

and the homomorphic ciphertext of her symmetric key CH(skS
i ).

1 In the remaining of the paper, and when not specified otherwise, the term FHE
will also be used for related schemes such as Leveled HE, SomeWhat HE, Scalable
HE, etc..
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2. Storage. Alice encrypts her data mi with the symmetric encryption scheme,
and sends CS(mi) to Claude.

3. Evaluation. Claude homomorphically evaluates, with the H.Eval algorithm,
the decryption CH(mi) of the symmetric scheme on Alice’s data CS(mi).

4. Computation. Claude homomorphically executes the treatment f on Alice’s
encrypted data.

5. Result. Claude sends a compressed encrypted result of the data treatment
cH(f(mi)), obtained with the H.Comp algorithm, and Alice decrypts it.

Note that if we assume the existence of a trusted third party active only during
the initialization step, Alice can avoid Step 1, which needs a significant compu-
tational and memory storage effort. Note also that this framework is versatile:
computation can be done in parallel (in a batch setting) or can be turned into a
secret key FHE.

Fig. 1. Homomorphic Encryption - Symmetric Encryption framework. H and S respec-
tively refer to homomorphic and symmetric encryption schemes, for algorithms (e.g.
H.KeyGen) or scheme components (e.g. skS).

FHE Bottlenecks. The main limitation for the deployment of cloud services
based on such FHE frameworks relates to its important overheads, that can be
related to two main concerns: computational and memory costs (especially on
the client side) and limited homomorphic capacity (i.e. noise increase). More
precisely:
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– The computational and memory costs for the client depend overwhelmingly
on the homomorphic encryption and decryption algorithms during the steps 1
and 5. The memory cost is mostly influenced by the homomorphic ciphertexts
and public key sizes. Solving these two problems consists in building size-
efficient FHE schemes with low computational cost [35,38]. On the server
side, this computational cost further depends on the symmetric encryption
scheme and function to evaluate.

– The homomorphic capacity relates to the fact that FHE constructions are
built on noise-based cryptography, where the unbounded amount of homo-
morphic operations is guaranteed by an expensive bootstrapping technique.
The homomorphic capacity corresponds to the amount of operations doable
before the noise grows too much forcing to use bootstrapping. Therefore, and
in order to reduce the time and computational cost of the framework, it is
important to manage the error growth during the homomorphic operations
(i.e. steps 3 and 4). Furthermore, since the 4th step is the most important one
from the application point-of-view (since this is where the useful operations
are performed by the cloud), there is strong incentive to minimize the cost of
the homomorphic decryption in the 3rd step.

Previous Works. In order to mitigate these bottlenecks, several works tried to
reduce more and more the homomorphic cost of evaluating a symmetric decryp-
tion algorithm. First attempts in this direction, which were also used as bench-
mark for FHE implementations, used the AES for this purpose [15,31]. Various
alternative schemes were also considered, all with error and sizes depending on
the multiplicative depth of the symmetric encryption scheme, such as BGV [9]
and FV [26]. Additional optimizations exploited batching and bitslicing, leading
to the best results of performing 120 AES decryptions in 4 minutes [31].

Since the multiplicative depth of the AES decryption evaluation was a restric-
tive bound in these works, other symmetric encryption schemes were then con-
sidered. The most representative attempts in this direction are the family of
block ciphers LowMC [1] and the stream cipher Kreyvium [11]. These construc-
tions led to reduced and more suitable multiplicative depths. Yet, and intuitively,
these attempts were still limited by complementary drawbacks. First for LowMC,
the remainingmultiplicative depth remains large enough to significantly reduce the
homomorphic capacity (i.e. increase the noise). Such a drawback seems to be inher-
ent in block cipher structures where the iteration of rounds eventually leads to
Boolean functions with large algebraic degree, which inevitably imply a constant
per block but high noise after homomorphic evaluation. For example, ciphers dedi-
cated to efficient masking against side-channel attacks [33,34,52], which share the
goal of minimizing the multiplicative complexity, suffer from similar issues and it
seems hard to break the barrier of one multiplication per round (and therefore
of 12 to 16 multiplications for 128-bit ciphers). Second for Kreyvium, the error
actually grows with the number of evaluated ciphertexts, which implies that at
some point, the output ciphertexts are too noisy, and cannot be decrypted (which
requires either to bootstrap or to re-initialize the stream cipher).
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Our Contribution. In view of this state-of-the-art, a natural direction would
be to try combining the best of these two previous works. That is, to design a
cipher inheriting from the constant noise property offered by block ciphers, and
the lower noise levels of stream ciphers (due to the lower algebraic degree of their
outputs), leading to the following contributions.

First, we introduce a new stream cipher construction, next denoted as a filter
permutator (by analogy with filter generators). Its main design principle is to
filter a constant key register with a variable (public) bit permutation. More pre-
cisely, at each cycle, the key register is (bit) permuted with a pseudorandomly
generated permutation, and we apply a non-linear filtering function to the out-
put of this permuted key register. The main advantage of this construction is
to always apply the non-linear filtering directly on the key bits, which allows
maintaining the noise level of our outputs constant. Conceptually, this type of
construction seems appealing for any FHE scheme.

Second, and going deeper in the specification of a concrete scheme, we discuss
the optimization of the components in a filter permutator, with a focus on the
filtering function (which determines the output noise after homomorphic evalu-
ation). For this purpose, we first notice that existing FHE schemes can be split
in (roughly) two main categories. On one hand the so-called 2nd-generation
FHE (such as [9,15]) where the metric for the noise growth is essentially the
multiplicative depth of the circuit to homomorphically evaluate. On the other
hand, the so-called 3rd-generation FHE (such as [2,32]) where the error growth
is asymmetric, and in particular quasi-additive when considering a multiplica-
tive chain. From these observations, we formalize a comb structure which can be
represented as a (possibly long) multiplicative chain, in order to take the best
advantage of 3rd-generation FHE schemes. We then design a filtering function
based on this comb structure (combined with other technical ingredients in order
to prevent various classes of possible attacks against stream ciphers) and specify
a family of filter permutators (called FLIP).

Third, and in order to stimulate further investigations, we instantiate a few
version of FLIP designs, for 80-bit and 128-bit security. We then provide a pre-
liminary evaluation of their security against some of the prevailing cryptanalysis
from the open literature – such as (fast) algebraic attacks, (fast) correlation
attacks, BKW-like attacks [6], guess and determine attacks, etc. – based on
state-of-the-art tools. We also analyze the noise brought by their filtering func-
tions in the context of 3rd-generation FHE. In this respect, our main result is
that we can limit the noise after the homomorphic evaluation of a decryption to
a level of the same order of magnitude as for a single homomorphic multiplica-
tion - hence essentially making the impact of the symmetric encryption scheme
as small as possible.

We finally observe that our FLIP designs have a very reduced multiplicative
depth, which makes them suitable for 2nd-generation FHE schemes as well, and
provide preliminary results of prototype implementations using HElib that con-
firm their good behavior compared to state-of-the-art block and stream ciphers
designed for efficient FHE.
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Overall, filter permutators in general and FLIP instances in particular open
a large design space of new symmetric constructions to investigate. Hence, we
conclude the paper with a list of open problems regarding these algorithms, their
best cryptanalysis, the Boolean functions used in their filter and their efficient
implementation in concrete applications.

2 Background

2.1 Boolean Functions

In this section, we recall the cryptographic properties of Boolean functions that
we will need in the rest of the paper (mostly taken from [12]).

Definition 1 (Boolean Function). A Boolean function f with n variables is
a function from F

n
2 to F2. The set of all Boolean functions in n variables is

denoted by Bn.

Definition 2 (Walsh Transform). Let f ∈ Bn a Boolean function. Its Walsh
Transform Wf at a ∈ F

n
2 is defined as:

Wf(a) =
∑

x∈Fn
2

(−1)f(x)+〈a,x〉,

where 〈a, x〉 denotes the inner product in F
n
2 .

Definition 3 (Balancedness). A Boolean function f ∈ Bn is said to be bal-
anced if its outputs are uniformly distributed over {0, 1}.

Definition 4 (Non-linearity). The non-linearity NL of a Boolean function
f ∈ Bn, where n is a positive integer, is the minimum Hamming distance between
f and all the affine functions g:

NL(f) = min
g

{dH(f, g)},

with dH(f, g) = #{x ∈ F
n
2 | f(x) �= g(x)} the Hamming distance between f

and g. The non-linearity of a Boolean function can also be defined by its Walsh
Transform:

NL(f) = 2n−1 −
1
2

max
a∈Fn

2

|Wf(a)|.

Definition 5 (Resiliency). A Boolean function f ∈ Bn is said m-resilient if
any of its restrictions obtained by fixing at most m of its coordinates is balanced.
We will denote by res(f) the resiliency m of f and set res(f) = −1 if f is
unbalanced.



Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 317

Definition 6 (Algebraic Immunity). The algebraic immunity of a Boolean
function f ∈ Bn, denoted as AI(f), is defined as:

AI(f) = min
g �=0

{deg(g) | fg = 0 or (f ⊕ 1)g = 0},

where deg(g) is the degree of g. The function g is called an annihilator of f (or
(f ⊕ 1)).

Definition 7 (Fast Algebraic Immunity). The fast algebraic immunity of a
Boolean function f ∈ Bn, denoted as FAI(f), is defined as:

FAI(f) = min{2AI(f), min
1≤deg(g)<AI(f)

(max[deg(g) + deg(fg), 3deg(g)])}.

Summarizing, the good balancedness, non-linearity and resiliency properties
have to be ensured to widthstand correlation attacks [56] and fast correlation
attacks [48]. The high algebraic immunity and fast algebraic immunity have to
be ensured to widthstand algebraic attacks [13].

2.2 (Ring) Learning with Errors

In this section, we recall useful notations and definitions needed about the deci-
sional LWE problem and its ring variation. For an integer modulus q, we denote
by Zq the quotient ring of integers modulo q. We denote vectors with bold letters
e and matrices with bold capital letters A. The notation s ←$ S (resp. s ←$ χ)
denotes that s is picked uniformly at random from a finite set S (resp. from a
distribution χ).

The decisional Learning With Error problem (dLWE) was introduced by
Regev [53].

Definition 8 (dLWE). For an integer q = q(n) ≥ 2, an adversary A and an
error distribution χ = χ(n) over Zq, we define the following advantage function:

Adv
dLWEn,m,q,χ

A := |Pr[A(A, z0) = 1] − Pr[A(A, z1) = 1]|,
where

A ←$ Z
n×m
q , s ←$ Z

n
q , e ←$ χm, z0 := s�A + e� and z1 ←$ Z

m
q .

The dLWEn,m,q,χ assumption asserts that for all PPT adversaries A, the advan-
tage Adv

dLWEn,m,q,χ

A is a negligible function in n.

The ring variant was introduced by Lyubashevsky, Peikert and Regev in [46].

Definition 9 (dR-LWE). For a polynomial ring R = Z[X]/f(X) with f of
degree n, an integer q ≥ 2, an adversary A and an error distribution χ over
Rq = R/qR, R∨ being R dual fractional ideal, we define the following advantage
function:
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Adv
dRLWER,q,χ

A := |Pr[A(a, z0) = 1] − Pr[A(a, z1) = 1]|,
where

a ←$ Rq, s ←$ R∨
q , e ←$ χ, z0 := a · s + e and z1 ←$ R.

With f(X) a cyclotomic polynomial, the dRLWER,q,χ assumption asserts that for
all PPT adversaries A, the advantage Adv

dRLWER,q,χ

A is a negligible function in
n.

For our constructions, we need to take the distribution χ as a subgaussian
random variable which we define hereafter. More details about the subgaussian
distribution and the lemmas’ proof can be found in [2,58].

Definition 10 (Subgaussian Random Variables). Let X be a random vari-
able. We say X is subgaussian with parameter σ if there exists σ such that:

∀t ∈ R,E[etX ] ≤ eσ2t2/2,

where E[etX ] is the moment generating function of X.

Lemma 1 (Subgaussian Random Variables Properties). Let X, X ′ be
independent subgaussian random variables of parameter σ and σ′ respectively.
Assuming E(X) = E(X ′) = 0 we have the following properties:

– Tails: ∀t ≥ 0 we have Pr[|X| ≥ t] ≤ 2e−πt2/σ2
.

– Homogeneity: ∀c ∈ R, cX is subgaussian with parameter |c|σ.
– Pythagorean additivity: X + X ′ is subgaussian with parameter

√
σ2 + σ′2.

We extend the notion of subgaussianity to vectors and polynomials. Since the
coefficients of a polynomial are seen as a vector, we call subgaussian vector of
parameter σ a vector where each coefficient follows an independent subgaussian
distribution with parameter σ.

Lemma 2 (Subgaussian Vector Norm, Adapted from [2], Lemma 2.1).
Let x ∈ R

n be a random vector where each coordinate follows an independent
subgaussian distribution of parameter σ. Then for some universal constant C > 0
we have Pr [||x||2 > Cσ

√
n] ≤ 2−Ω(n) and therefore ||x||2 = O(σ

√
n).

2.3 Fully Homomorphic Encryption

In this section we recall the definition of (Fully) Homomorphic Encryption
and present the Homomorphic Encryption schemes we will use, both based on
GSW [32].

Definition 11 (Homomorphic Encryption Scheme). Let M be the plain-
text space, C the ciphertext space and λ the security parameter. A homomorphic
encryption scheme consists of four algorithms:
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– H.KeyGen(1λ). Output pkH and skH the public and secret keys of the scheme.
– H.Enc(m, pkH). From the plaintext m ∈ M and the public key, output a

ciphertext c ∈ C.
– H.Dec(c, skH). From the ciphertext c ∈ C and the secret key, output m′ ∈ M.
– H.Eval(f, c1, · · · , ck, pkH). With ci = H.Enc(mi, pk

H) for 1 ≤ i ≤ k, output a
ciphertext cf ∈ C such that H.Dec(cf ) = f(m1, · · · ,mk).

A homomorphic encryption scheme is called a Fully Homomorphic Encryp-
tion (FHE) scheme when f can be any function and |C| is finite. A simpler prim-
itive to consider is the SomeWhat Homomorphic Encryption (SWHE) scheme,
where f is restricted to be any univariate polynomial of finite degree.

Since the breakthrough work of Gentry [30], the only known way to obtain
FHE consists in adding a bootstrapping technique to a SWHE. As bootstrap-
ping computational cost is still expensive in comparison to the other FHE algo-
rithms, in the following part of the article we will only consider SWHE for our
applications.

GSW Homomorphic Encryption Scheme. In 2013, Gentry, Sahai and
Waters [32] introduced a Homomorphic Encryption scheme based on LWE using
a new technique stemming from the approximate eigenvector problem. This new
technique led to a new family of FHE, called 3rd-generation FHE, consisting in
Homomorphic Encryption schemes such that the multiplicative error growth is
quasi-additive. Hereafter, we present two schemes belonging to this generation,
the first one with security based on dLWE and the second one based on dRLWE.
We first set some useful notations considering the different schemes.

For a matrix E we refer to the i-th row as e�
i and to the j-th column as ej .

The log q notation refers to the logarithm in base 2 of q. The notation [a]q is for
a mod q and �[a]q2 ∈ {0, 1} is a function in a ∈ Zq giving 1 if � q

4� ≤ a ≤ � 3q
4 �

mod q and 0 otherwise. We denote by [n] the set of integers {1, · · · , n}. We
finally use |x| and ||x||2 for the standard norms 1 and 2 on vectors x ∈ R

n.

Batched GSW. This scheme is a batched version of GSW presented in [36],
enabling to pack independently r plaintexts in one ciphertext. From the secu-
rity parameter λ and the considered applications, we can derive the parameters
n, q, r, χ of the scheme described below.

H.KeyGen(n, q, r, χ). On inputs the lattice dimension n, the modulus q, the num-
ber of bits by ciphertext r and the error distribution χ do:

– Set � = �log q, m = O(n�), N = (r + n)�, M = {0, 1}r and C = Z
(r+n)×N
q .

– Pick A ←$ Z
n×m
q , S′ ←$ χr×n and E ←$ χr×m.

– Set S = [I| − S′] ∈ Z
r×(r+n)
q and B =

[
S′A + E

A

]

q

∈ Z
(r+n)×m
q .

– For all m ∈ {0, 1}r:
• Pick Rm ←$ {0, 1}m×N .
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• Set Pm =

⎡

⎢⎢⎢⎣BRm +

⎛

⎜⎜⎜⎝

m1 · s�1
...

mr · s�r
0

⎞

⎟⎟⎟⎠G

⎤

⎥⎥⎥⎦

q

∈ Z
(r+n)×N
q .

with s�i the i-th row of S and G = (20, · · · , 2�−1)� ⊗ I ∈ Z
(r+n)×N
q .

– Output pkH := ({Pm},B) and skH := S.

H.Enc(pkH ,m). On input pkH , and m ∈ {0, 1}r, do:

– Pick R ←$ {0, 1}m×N , and output C = [BR + Pm]q ∈ Z
(r+n)×N
q .

H.Dec(C, skH). On input the secret key skH , and a ciphertext C, do:

– For all i ∈ [r] : m′
i = �[〈s�i , ci�〉]q2 where cil is the column i� of C.

– Output m′
1, · · · ,m′

r ∈ {0, 1}r.

Note that SC = SBR+SPm = ER+ERm+

⎛

⎜⎝
m1 · s�1

...
mr · s�r

⎞

⎟⎠G = E′+

⎛

⎜⎝
m1 · s�1

...
mr · s�r

⎞

⎟⎠G.

The H.Eval algorithm finally consists in iterating, following a circuit f , the homo-
morphic operations H.Add and H.Mul:

– H.Add(C1,C2) : C+ = C1 + C2.
– H.Mul(C1,C2) : C× = C1 × G−1C2 with G−1 a function such that ∀C ∈

Z
(r+n)×N
q ,GG−1(C) = C and the values of G−1(C) follow a subgaussian

distribution with parameter O(1) (see [49] for the existence and proof of G−1).

The correctness and security of this scheme are proven in the extended version
of this paper.

Remark 1. For practical use, we only need to store r + 1 matrices Pm, namely
the r + 1 ones with m of hamming weight equal to 0 or 1 are sufficient to
generate correct encryption of all m ∈ {0, 1}r with at most r additions of the
corresponding Pm matrices.

Ring-GSW. This scheme is a ring version of GSW presented in [38], transposing
the approximate eigenvector problem into the ring setting. From λ the security
parameter and the considered applications, we can derive the parameters n, q
and M of the scheme described below.

H.KeyGen(n, q, χ,M). On inputs the lattice dimension n, which is set to a power
of 2, the modulus q, the error distribution χ and the plaintext space M do:

– Set R = Z[X]/(Xn + 1), Rq = R/qR, � = �log q, N = 2� and C = R2×N
q .

– Set R0,1 = {P ∈ Rq, pi ∈ {0, 1}, 0 ≤ i < n}.
– Pick a ←$ Rq, s′ ←$ χ and e ←$ χ.
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– Set s = [1| − s′]� ∈ R1×2
q and b =

(
s′a + e

a

)
∈ R2×1

q .

– Output pkH := b and skH := s.

H.Enc(pkH ,m). On input pkH , and m ∈ M, do:

– Pick E ←$ χ2×N .
– Pick r ←$ RN

0,1, and output C = [br� + mG + E]q ∈ R2×N
q .

H.Dec(C, skH). On input the secret key skH , and a ciphertext C, do:

– Compute m′ = �[< s, cl >]q2.
– Output m′ ∈ Rq.

The H.Eval algorithm finally consists in iterating H.Add and H.Mul:

– H.Add(C1,C2) : C+ = C1 + C2.
– H.Mul(C1,C2) : C× = C1 × G−1C2.

The correctness and security of this scheme are proven in the extended version
of this paper.

Remark 2. The plaintext space M has a major influence on the considered appli-
cation in terms of quantity of information contained in a single ciphertext and
error growth. For our application we choose M as the set of polynomials with
all coefficients of degree greater than 0 being zero, and the constant coefficient
being bounded.

3 New Stream Cipher Constructions

In this section, we introduce our new stream cipher construction. We first
describe the general filter permutator structure. Next we list a number of Boolean
building blocks together with their necessary cryptographic properties. Third,
we specify a family of filter permutators (denoted as FLIP) and analyze its secu-
rity based on state-of-the art cryptanalysis and design tools. Finally, we propose
a couple of parameters to fully instantiate a few examples of FLIP designs.

3.1 Filter Permutators

The general structure of filter permutators is depicted in Fig. 2. It is composed
of three parts: a register where the key is stored, a (bit) permutation gen-
erator parametrised by a Pseudo Random Number Generator (PRNG) [7,37]
(which is initialized with a public IV), and a filtering function which generates a
keystream. The filter permutator can be compared to a filter generator, in which
the LFSR is replaced by a permuted key register. In other words, the register is
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� Key register K

Pi

F

plaintext

ciphertext

PRNG

Permutation
Generator

Fig. 2. Filter permutator construction.

no longer updated by means of the LFSR, but with pseudorandom bit permuta-
tions. More precisely, at each cycle (i.e. each time the filtering function outputs
a bit), a pseudo-random permutation is applied to the register and the permuted
key register is filtered. Eventually, the encryption (resp. decryption) with a filter
permutator simply consists in XORing the bits output by the filtering function
with those of the plaintext (resp. ciphertext).

3.2 Boolean Building Blocks for the Filter Permutator

We will first exploit direct sums of Boolean functions defined as follows:

Definition 12 (Direct Sum). Let f1(x0, · · · , xn1−1) and f2(xn1 , · · · ,
xn1+n2−1) be two Boolean functions in respectively n1 and n2 variables. The
direct sum of f1 and f2 is defined as f = f1 ⊕ f2, which is a Boolean function
in n1 + n2 variables such that:

f(x0, · · · , xn1+n2−1) = f1(x0, · · · , xn1−1) ⊕ f2(xn1 , · · · , xn1+n2−1).

They inherit from the following set of properties, proven in the extended
version of this paper.

Lemma 3 (Direct Sum Properties). Let f be the direct sum of f1 and f2
with n1 and n2 variables respectively. Then f has the following cryptographic
properties:

1. Non Linearity: NL(f) = 2n2NL(f1) + 2n1NL(f2) − 2NL(f1)NL(f2).
2. Resiliency: res(f) = res(f1) + res(f2) + 1.
3. Algebraic Immunity: AI(f1) + AI(f2) ≥ AI(f) ≥ max(AI(f1),AI(f2)).
4. Fast Algebraic Immunity: FAI(f) ≥ max(FAI(f1),FAI(f2)).
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Our direct sums will then be based on three parts: a linear function, a
quadratic function and triangular functions, defined as follows.

Definition 13 (Linear Functions). Let n > 0 be a positive integer, the Ln

linear function is a n-variable Boolean function defined as:

Ln(x0, · · · , xn−1) =
n−1∑

i=0

xi.

Definition 14 (Quadratic Functions). Let n > 0 be a positive integer, the
Qn linear function is a 2n-variable Boolean function defined as:

Qn(x0, · · · , x2n−1) =
n−1∑

i=0

x2ix2i+1.

Definition 15 (Triangular Functions). Let k > 0 be a positive integer. The
k-th triangular function Tk is a k(k+1)

2 -variable Boolean function defined as:

Tk(x0, · · · , x k(k+1)
2 −1

) = Σk
i=1Π

i−1
j=0xj+Σi−1

�=0�.

For example, the 4th triangular function T4 is:

T4 = x0 ⊕ x1x2 ⊕ x3x4x5 ⊕ x6x7x8x9.

These three types of functions allow us to guarantee the following properties.

Lemma 4 (Linear Functions Properties). Let Ln be a linear function in n
variables, then Ln has the following cryptographic properties:

1. Non Linearity: NL(Ln) = 0.
2. Resiliency: res(Ln) = n − 1.
3. Algebraic Immunity: AI(Ln) = 1.
4. Fast Algebraic Immunity: FAI(Ln) = 2.

Lemma 5 (Quadratic Functions Properties). Let Qn be a linear function
in 2n variables, then Qn has the following cryptographic properties:

1. Non Linearity: NL(Qn) = 22n−1 − 2n−1.
2. Resiliency: res(Qn) = −1.
3. Algebraic Immunity: AI(Q1) = 1 and ∀n > 1,AI(Qn) = 2.
4. Fast Algebraic Immunity: FAI(Q1) = 2 and ∀n > 1, FAI(Qn) = 4.

Lemma 6 (Triangular Functions Properties). Let k a positive integer and
let Tk the k-th triangular function. Then the following properties hold:

1. Non Linearity follows the recursive formula defined as:
(i) NL(T1 = 0),
(ii) NL(Tk+1) = (2k+1 − 2)NL(Tk) + 2k(k+1)/2.

2. Resiliency: res(Tk) = 0.
3. Algebraic Immunity: AI(Tk) = k.
4. Fast Algebraic Immunity: FAI(Tk) = k + 1.

The proof of Lemma 6 can be found in the extended version of this paper.
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3.3 The FLIP Family of Stream Ciphers

Based on the previous definitions, we specify the FLIP family of stream ciphers
as a filter permutator using a forward secure PRNG [5] based on the AES-128
(e.g. as instantiated in the context of leakage-resilient cryptography [57]), the
Knuth shuffle (see below) as bit permutation generator and such that the filter
F is the N -variable Boolean function defined by the direct sum of three Boolean
functions f1, f2 and f3 of respectively n1, n2 and n3 variables, such that:

– f1(x0, · · · , xn1−1) = Ln1 ,
– f2(xn1 , · · · , xn1+n2−1) = Qn2/2,
– f3(xn1+n2 , · · · , xn1+n2+n3−1) is the direct sum of nb triangular functions Tk,

i.e. such that each Tk acts on different and independent variables, that we
denote as nbΔk.

That is, we have F : Fn1+n2+n3
2 → F2 the Boolean function such that:

F (x0, · · · , xn1+n2+n3−1) = Ln1 ⊕ Qn2/2 ⊕
nb⊕

i=1

Tk.

In the following section, we provide a preliminary security analysis of the
FLIP filter permutators against a couple of standard attacks against stream
ciphers, based on state-of-the-art tools. For this purpose, we will assume that no
additional weaknesses arise from its PRNG and bit permutation generator. In
this respect, we note that our forward secure PRNG does not allow malleability,
so it should be hard to obtain a collision in the chosen IV model better than with
birthday probability. This should prevent collisions on the generated permuta-
tions. Besides, the Knuth shuffle [41] (or Fisher-Yates shuffle) is an algorithm
allowing to generate a random permutation on a finite set. This algorithm has
the interesting property of giving the same probability to all permutations if
used with a random number generator. As a result, we expect that any devia-
tion between a bit permutation based on a Knuth shuffle fed with the PRNG
will be hard to exploit by an adversary. Our motivation for this assumption is
twofold. First, it allows us to focus on whether the filter permutator construc-
tion is theoretically sound. Second, if such a choice was leading to an exploitable
weakness, it remains possible to build a pseudorandom permutation based on
standard cryptographic constructions [45].

Remark 3. Since the permutation generation part of FLIP has only birthday
security (with respect to the size of the PRNG), it implies that it is only secure
up to 264 PRNG outputs when implemented with the AES-128. Generating
more keystream using larger block ciphers should be feasible. However, in view
of the novelty of the FLIP instances, our claims are only made for this limited
(birthday) data complexity so far, which should not be limiting for the intended
FHE applications. We leave the investigation of their security against attacks
using larger data complexities as a scope for further research. Besides, we note
that using a PRNG based on a tweakable block cipher [44] (where a part of
the larger IV would be used as tweak) could be an interesting track to reduce the
impact of a collision on the PRNG output in the known IV model, which we
also leave as an open research direction.
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3.4 Security Analysis

Since the filter permutator shares similarities with a filter generator, it is nat-
ural to start our investigations with the typical attacks considered against such
types of stream ciphers. For this purpose, we next study the applicability of
algebraic attacks and correlation attacks, together with more specialized crypt-
analyses that have been considered against stream ciphers. Note that the attacks
considered in the rest of this section frequently require to solve systems of equa-
tions and to implement a Gaussian reduction. Our complexity estimations will
consider Strassen’s algorithm for this purpose and assume ω = log 7 to be the
exponent in a Gaussian reduction. Admittedly, approaches based on Gröbner
bases [27] or taking advantage of the sparsity of the matrices [59] could lead
to even faster algorithms. We ignore them for simplicity in these preliminary
investigations. Note also that we only claim security in the single-key setting.

Algebraic Attacks were first introduced by Courtois and Meier in [18] and
applied to the stream cipher Toyocrypt. Their main idea is to build an over-
defined system of equations with the initial state of the LFSR as unknown,
and to solve this system with Gaussian elimination. More precisely, by using a
nonzero function g such that both g and h = gF have low algebraic degree, an
adversary is able to obtain T equations with monomials of degree at most AI(f).
It is easily shown that g can be taken equal to the annihilator of F or of F ⊕ 1,
i.e. such that gF = 0 or g(F ⊕ 1) = 0. After a linearisation step, the adversary
obtains a system of T equations in D =

∑AI(F )
i=0

(
N
i

)
variables. Therefore, the

time complexity of the algebraic attack is O(Dω), that is, O(NωAI(f)).

Fast Algebraic Attacks are a variation of the previous algebraic attacks intro-
duced by Courtois at Crypto 2003 [17]. Considering the relation gF = h, their
goal is to find and use functions g of low algebraic degree e, possibly smaller
than AI(f), and h of low but possibly larger degree d, and to lower the degree
of the resulting equations by an off-line elimination of the monomials of degrees
larger than e (several equations being needed to obtain each one with degree at
most e). Following [4], this attack can be decomposed into four steps:

1. The search of the polynomials g and h generating a system of D+E equations
in D + E unknowns, where D =

∑d
i=0

(
N
i

)
and E =

∑e
i=0

(
N
i

)
. This step has

a time complexity in O(
∑d

i=0

(
n
i

)
+

∑e
i=0

(
n
i

)
)ω.

2. The search of linear relations which allow the suppression of the monomials
of degree more than e. This step has a time complexity in O(D log2(D)).

3. The elimination of monomials of degree larger than e using the Berlekamp-
Massey algorithm. This step has a time complexity in O(ED log(D)).

4. The resolution of the system. This step has a time complexity in O(Eω).

Given the FAI of F , the time complexity of this attack is in O(NFAI), or more
precisely O(D log2 D+E2D+Eω) (ignoring Step 1 which is trivial for our choice
of F ).
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Correlation Attacks. In their basic versions, correlation attacks try to distin-
guish the output sequence of a stream cipher from a random one, by exploiting
the bias δ of the filtering function. We can easily rule out such attacks by consid-
ering a (much) simplified version of filter permutator where the bit permutations
Pi’s would be made on two independent permutations P 1

i and P 2,3
i (respectively

acting on the n1 + 1 bits of the linear part and the n2 + n3 − 1 bits of the
non-linear part of F ). Suppose for simplicity that P 1

i is kept constant t times,
then the output distribution of F has a bias δ and it can be distinguished for
the right choice of the n1 +1 = res+1 bits of the linear part. In this case, a cor-
relation attack would have a data complexity of O(δ−2) and a time complexity

of O(2res(F )+1δ−2), with δ =
1
2

−
(
NL(F )

2N

)
. For simplicity, we will consider this

conservative estimation in our following selection of security parameters. Yet, we
note that since the permutation Pi of a filter permutator is acting on all the N
bits of the filter F , the probability that the linear part of F is kept invariant by
the permutations t times is in fact considerably smaller than what is predicted
by the resilience.

BKW-like Attack. The BKW algorithm was introduced in [6] as a solution
to solve the LPN problem using smart combinations of well chosen vectors and
their associated bias. Intuitively, our stream cipher construction simplified as
just explained (with two independent permutations P 1

i and P 2,3
i rather than a

single one Pi) also shares similarities with this problem. Indeed, we could see the
linear part as the parity of an LPN problem and the non-linear one (with a small
bias) as a (large) noise. Adapting the BKW algorithm to our setting amounts to
XOR some linear parts of F in order to obtain vectors of low Hamming weight,
and then to consider a distinguishing attack with the associated bias. Denoting
h the target Hamming weight, x the log of the number of XORs and δ the
bias, the resulting attack (which can be viewed as an extension of the previous
correlation attack) has data complexity O(2hδ−2(x+1)) (more details are given
in the extended version of this paper).

Higher-Order Correlation Attacks were introduced by Courtois [16] and
exploit the so-called XL algorithm. They look for good correlations between F
and an approximation g of degree d > 1, in order to solve a linearised system
based on the values of this approximation. The value ε is defined such that g is
equal to F with probability greater than 1−ε. Such attacks have a (conservative)
time complexity estimate:

O
((

N

D

)ω

(1 − ε)−m

)
, where D ≥ d and m ≥

(
N
D

)
(

N
D−d

).
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Guess and Determine Attacks. Note that this section has been motivated
by a private communication from Sébastien Duval, Virginie Lallemand and Yann
Rotella, of which the details will be available in an upcoming ePrint report [25].
Guess and determine attacks are generic attacks which consist in guessing �
bits of the key in order to cancel some monomials. In our context, it allows
an adversary to focus on a filtering function restricted to a subset of variables.
This weaker function can then be cryptanalyzed, e.g. analyzed with the four
aforementioned attacks, i.e. the algebraic attack, the fast algebraic attack, the
correlation/BKW-like attacks and the higher-order correlation attack. The com-
plexity of a guess and determine attack against a function F of N variables is
min�{2�C(F [�])} where F [�] is a function of N [�] variables obtained by fixing
� variables of F , C(F ) is the complexity of the best of the four attacks con-
sidered on the filtering function F and the minimum is taken over all �’s. The
case � = 0 corresponds to attacking the scheme without guess and determine.
We next bound the minimal complexity over these four attacks considering the
weakest functions obtained by guessing. To do so, we introduce some notations
and criteria allowing us to specify the cryptographic properties of Boolean func-
tions obtained by guessing � variables of Boolean functions being direct sums of
monomials. As the impact of guessing is most relevant for fast algebraic attacks
and CA/BKW-like attacks, we defer the other part of the analysis and extra
lemmas to the extended version of this paper.

Definition 16 (Direct Sum Vector). For a boolean function F of N variables
obtained as a direct sum of monomials we associate its direct sum vector : mF

of length k = deg(F ): [m1,m2, · · · ,mk] such that mi is the number of monomials
of degree i of F and N =

∑k
i=1 imi. We define two quantities related to this

vector:

– m∗
F is the number of nonzero values of mF .

– δmF
= 1

2 − NL(F )
2N .

These notations will be useful to quantify the impact of guessing some bits
on the cryptographic properties of a Boolean function obtained by direct sums.
mF , m∗

F and δmF
are easily computable from the description of F , the latter

can be computed recursively using Lemma 3.

Lemma 7 (Guessing and Direct Sum Vector). For all guessing of 0 ≤
� ≤ N variables of a Boolean function F in N variables obtained by direct sums
associated with mF , we obtain a function F [�] in N [�] variables associated with
mF [�] such that:

1.
∑deg(F [�])

i=1 mi[�] ≥ (
∑deg(F )

i=1 mi) − �.
2. m∗

F [�] ≥ m∗
F − � �

min1≤i≤deg(F ) mi
�.

3. δmF [�] ≤ δmF
2�.

Hereafter we describe the bounds we have used in order to assess the security of
our instances.
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Lemma 8 (Guess And Determine & Fast Algebraic Attacks). Let F be
a boolean function in N variables and CGDFAA(F ) be the minimum complexity
of the Guess And Determine with Fast Algebraic Attacks on F , then:

CGDFAA(F ) ≥ min
0≤�≤N

[
2�(min N[�]

m∗
F [�]

) log2 (min N[�]
m∗

F [�]
)+(minN [�])2(min N[�]

m∗
F [�]

)+(minN [�])ω

]
,

where m∗
F [�] = m∗

F − � �
mini∈[deg(F )] mi

�.

Lemma 9 (Guess and Determine & CA/BKW-like Attacks). Let F be
a boolean function in N variables and CGDCA/BKW (F ) be the minimum com-
plexity of the Guess And Determine with Correlation/BKW Attacks on F , then:

CGDCA/BKW (F ) ≥ min
0≤�≤N

{2−�δ−2
mF

}.

Other Attacks. Besides the previous attacks that will be taken into account
quantitatively when selecting our concrete instances of FLIP designs, we also
investigated the following other cryptanalyses. First, fast correlation attacks were
introduced by Meier and Staffelbach at Eurocrypt 1988 [48]. A recent survey can
be found in [47]. The attack is divided into two phases. The first one aims at
looking for relations between the output bits ai of the LFSR to generate a system
of parity-check equations. The second one uses a fast decoding algorithm (e.g. the
belief propagation algorithm) in order to decode the words of the code zi = F (ai)
satisfying the previous relations, where the channel has an error probability p =
NL(F )

2N
. The working principles of this attack are quite similar to the ones of the

previously mentioned correlation attacks and BKW-like attacks. So we assume
that the previous (conservative) complexity estimates rule out this variation as
well. Besides, note that intuitively, the belief propagation algorithm is best suited
to the decoding of low-density parities, which is what our construction (and the
LPN problem) typically avoids.

Second, weak keys (i.e. keys of low or high hamming weights) can produce
a keystream sufficiently biased to determine this hamming weight, and then to
recover the key among the small amount of possible ones. The complexity of
such attacks can be computed from the resiliency of F . However, since our N
parameter will typically be significantly larger than the bit-security of our filter
permutator instances, we suggest to restrict the key space to keys of Hamming
weight N/2 to rule out this concern. For this purpose, master keys can simply be
generated by applying a first (secret) random permutation to any stream with
Hamming weight N/2.

Third, augmented function attacks are attacks focusing on multiple outputs
of the function rather than one. The goal is to find coefficients j1, · · · , jr such
that a relation between the key and the outputs si+j1 , · · · , si+jr

can be exploited.
This relation can be a correlation (as explained in [3]) or simply algebraic [28].
In both cases, a prerequisite is that the relation holds on a sufficient number of
i. As each bit output by FLIP depends on a different permutation, we believe
that there is no exploitable relation between different outputs.
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Eventually, cube attacks were introduced by Dinur and Shamir at Eurocrypt
2009 [20] as a variant of algebraic attacks taking advantage of the public para-
meters of a cryptographic protocol (plaintext in block ciphers, IV in stream
cipher) in order to generate a system of equations of low degree. However in
filter permutator constructions, the only such public parameter is the seed of
the PRNG allowing to generate the pseudo-random bit permutations Pi. Since
controlling this seed hardly allows any control of the F function’s inputs, such
attacks do not seem applicable. A similar observation holds for conditional dif-
ferential cryptanalysis [39] and for integral/zero-sum distinguishers [8,40].

3.5 Cautionary Note and Design Tweaks

As already mentioned, all the previous analyzes are based on standard crypt-
analysis and design tools. In particular, the security of our FLIP designs is based
on properties of Boolean functions that are generally computed assuming a uni-
form input distribution. Yet, for filter permutators this condition is not strictly
respected since the Hamming weight of the key register is fixed (we decided to
set it to N/2 in order to avoid weak keys, but even without this condition, it
would be fixed to an unknown value). This means the input distribution of our
linear, quadratic and triangle functions is not uniform. We verified experimen-
tally that the output of FLIP is sufficiently balanced despite this non-uniformity.
More precisely, we could not detect biases larger than 2

q
2 when generating 2q

bits of keystream (based on small-scale experiments with q = 32). But we did
not study the impact of this non-uniformity for other attacks, which we leave
as an important research scope, both from the cryptanalysis and the Boolean
functions points-of-view.

Note that in case the filter permutator of Sect. 3.1 turns out to have weak-
nesses specifically due to the imbalanced F function’s inputs, there are tweaks
that could be used to mitigate their impact. The simplest one is to apply a
public whitening to the input bits of the non-linear parts of F (using additional
public PRNG outputs), which has no impact on the homomorphic capacity. The
adversary could then bias the F function’s inputs based on his knowledge of
the whitening bits, but to a lower extent than with our fixed Hamming weight
keys. Alternatively, one could add a (more or less complex) linear layer before
the non-linear part of F , which would then make the filter permutator conceptu-
ally more similar to filter generators, and (at least for certain layers) only imply
moderate cost from the FHE point-of-view.

3.6 80- & 128-bit Security Instances

We selected a few instances aiming at 80- and 128-bit security based on the
previous bounds, leading to the attack complexities listed in Table 1, where
FLIP(n1, n2,

nbΔk) denotes the instantiation of FLIP with linear part of n1 bits,
quadratic part of n2 bits and nb triangular functions of degree k. These instances
are naturally contrasted. On the one hand, the bounds taken are conservative
with respect to the attacks considered: if these attacks were the best ones, more
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aggressive instances could be proposed (e.g. in order to reduce the key size). On
the other hand, filter permutators are based on non-standard design principles,
and our security analysis is only preliminary, which naturally suggests the need
of security margins. Overall, we believe the proposed instances are a reasonable
trade-off between efficiency and security based on our current understanding of
filter permutators, and therefore are a good target for further investigations.

Table 1. Attack complexities in function of n1, n2 and nbΔk. AA stands for algebraic
attacks, FAA stands for fast algebraic attacks, CA/BKW stands for correlation or
BKW-like attacks, HOC stands for higher-order correlation attacks and � stands for
the number of bits guessed leading to the best complexity for guess and determine
attacks. For the CA/BKW column, we reported the minimum complexity between the
correlation and BKW-like attack. Eventually, λ stands for the security parameter of F
and is simply taken as the minimum between AA, FAA,CA/BKW and HOC.

Instance N AA � FAA l CA/BKW � HOC � λ

FLIP(42, 128, 8Δ9) 530 95 56 81 0 86 72 94 55 81

FLIP(46, 136, 4Δ15) 662 91 52 81 52 80 72 90 48 80

FLIP(82, 224, 8Δ16) 1394 156 112 140 40 134 120 155 109 134

FLIP(86, 238, 5Δ23) 1704 149 105 137 105 133 124 128 74 128

3.7 Indirect Sums

Before analyzing the FHE properties of filter permutators, we finally suggest
FLIP designs based on indirect sums as another interesting topic for evaluation,
since they lead to quite different challenges. Namely, the main motivation to use
direct sums in the previous sections was the possibility to assess their crypto-
graphic properties based on existing tools. By contrast, filter permutator designs
based on indirect sums seem harder to analyze (both for designers and cryptan-
alysts). This is mainly because in this case, not only the inputs of the Boolean
functions vary, but also the Boolean functions themselves. For illustration, we
can specify “multi-FLIP” designs, next denoted as b-FLIP designs, such that we
compute b instances of FLIP in parallel, each with the same filtering function
but with different permutations, and then to XOR the b computed bits in order
to produce a keystream bit. We conjecture that such b-FLIP designs could lead
to secure stream ciphers with smaller states, and suggest 10-FLIP(10, 20, 1Δ20)
and 15-FLIP(15, 30, 1Δ30) as exemplary instances for 80- and 128-bit security.

4 Application to FHE

4.1 80- & 128-bit Security Parameters

For the security parameters choices, we follow the analysis of Lindner and Peikert
[43] for the hardness of LWE and RLWE, considering distinguishing and decoding
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attacks using BKZ [14,55]. We assume that the distribution χ in the considered
LWE instances is the discrete Gaussian distribution with mean 0 and standard
deviation σ. First we compute the best root Hermite factor δ of a basis (see [29])
computable with complexity 2λ from the conservative lower bound of [43]:

log(δ) = 1.8/(110 + λ). (1)

The distinguishing attack described in [43,50,54] is successful with advantage
ε by finding vectors of length α q

σ with α =
√

ln(1/ε)/π. The length of the
shortest vector that can be computed is 22

√
n log q log δ, leading to the inequality:

α
q

σ
< 22

√
n log q log δ. (2)

Given σ ≥ 2
√

n from Regev’s reduction [53], we can choose parameters for n
and q matching Eq. (2) for the considered security parameter λ. The parameters
we select for our application are summarized in Table 2.

Table 2. (R)LWE parameters used in our applications.

Security λ n log q

80 256 80

128 512 120

4.2 Noise Analysis

Considering our framework of Fig. 1, Claude has at its disposal the homomor-
phic encryption of the symmetric key CH(skS

i ), the homomorphic public key
pkH and the symmetric encrypted messages CS(mi). He has to perform the
homomorphic evaluation of the symmetric decryption circuit, i.e. to perform
homomorphic operations on the ciphertexts CH(skS

i ) in order to get CH(mi),
the homomorphic encryption of mi. In this section, we study the error growth
in these ciphertexts after the application of the homomorphic operations. As
we are considering SWHE, we need to control the magnitude of the error and
keep it below a critical level to ensure the correctness of a final ciphertext. This
noise management is crucial for the applications, it is directly linked with the
quantity of computation that the server can do for the client. We now study the
error growth stemming from the homomorphic evaluation of FLIP. In this case,
all the ciphertexts used by the server in the computation step will have a same
starting error. The knowledge of this starting error (defined by some parameter)
and its growth for additions and multiplications (in a chosen order) is enough to
determine the amount of computation that can be performed correctly by the
server.

In the remainder of this section we proceed in three steps. First we recall the
error growth implied by the H.Add and H.Mul operations: for GSW-like HE it has
already been done in [2,10,24,32,36]. As our homomorphic encryption schemes
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are slightly differently written to fit our applications (batched version to perform
in parallel the same computations, generic notations for various frameworks), we
give these error growth with our notations for completeness and consistency of
the paper. Then we analyse the error for a sub-case of homomorphic product,
namely H.Comb, which gives a practical tool to study the error growth in FLIP.
As the asymmetric property of GSW multiplication and plaintext norm have
been pointed out relatively to the error growth, we consider important to focus on
both when analysing this error metric. Considering H.Comb types of operations
is therefore suited to be consistent with this metric and is very important for
practical purpose (in term of real life applications). Finally we analyse the error
in a ciphertext output by FLIP and study some optimizations to reduce the noise
growth further.

Error Growth in H.Add and H.Mul. We first need to evaluate the error
growth of the basic homomorphic operations, the addition and the multiplication
of ciphertexts. We use the analysis of [2] based on subgaussian distributions to
study the error growth in these homomorphic operations. From a coefficient
or a vector following a subgaussian distribution of parameter σ, we can bound
its norm with overwhelming probability and then study the evolution of this
parameter while performing the homomorphic operations. Hence we can bound
the final error to ensure correctness.

For simplicity we use two notations arising from the error growth depending
on the arithmetic of the underlying ring of the two schemes, γ the expansion
factor (see [9]) and Norm(mj) such that:

– Batched GSW: γ = 1 and Norm(mj) = |mj | (arithmetic in Z).
– Ring GSW: γ = n and Norm(mj) = ||mj ||2 (arithmetic in R).

Lemma 10 (H.Add Error Growth). Suppose Ci for 1 ≤ i ≤ k are ciphertexts
of a GSW based Homomorphic Encryption scheme with error components ei of
coefficients following a distribution of parameter σi. Let Cf = H.Add(Ci, for
1 ≤ i ≤ k) and ef the related error with subgaussian parameter σ′ such that:

σ′ =

√√√√
k∑

i=1

σ2
i or σ′ = σ

√
k if σi = σ, ∀i ∈ [k].

Lemma 11 (H.Mul Error Growth). Suppose Ci for 1 ≤ i ≤ k are ciphertexts
of a GSW based Homomorphic Encryption scheme with error components ei, of
coefficients following a subgaussian distribution of parameter σi, and plaintext
mi. Cf is the result of a multiplicative homomorphic chain such that:

Cf = H.Mul(C1,H.Mul(C2,H.Mul(· · · ,H.Mul(Ck,G)))),

and ef the corresponding error with subgaussian parameter σ′ such that:

σ′ = O

⎛

⎝√
Nγ

√√√√σ2
1 +

k∑

i=2

(
σiΠ

i−1
j=1Norm(mj)

)2
⎞

⎠ .

Lemmas 10 and 11 are proven in the extended version of this paper.
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Error Growth in H.Comb. For the sake of clarity, we formalize hereafter the
comb homomorphic product H.Comb and the quantity σcomb which stands for
the subgaussian parameter. We study the error growth of H.Comb as we will use
it as a tool for the error growth analysis of FLIP.

Definition 17 (Homomorphic Comb H.Comb). Let C1, · · · ,Ck be k cipher-
texts of a GSW based Homomorphic Encryption scheme with error coefficients
from independent distributions with same subgaussian parameter σ. We define
H.Comb(y, σ, c, k) = H.Mul(C1, · · · ,Ck,G) where:

– y =
√

Nγ is a constant depending on the ring,
– c = max1≤i≤k(Norm(mi)) is a constant which depends on the plaintexts,

and Ccomb = H.Comb(y, σ, c, k) as error components following a subgaussian
distribution of parameter O(σcomb).

Lemma 12 (σcomb Quantity). Let C1, · · · ,Ck be k ciphertexts of a GSW
based Homomorphic Encryption scheme with same error parameter σ and
Ccomb = H.Comb(y, σ, c, k). Then we have:

σcomb(y, σ, c, k) = yσck, where ck =

√√√√
k−1∑

i=0

c2i.

Proof. Thanks to Lemma 11 we obtain:

σcomb =
√

Nγ
√

σ2 +
∑k

i=2(σΠi−1
j=1Norm(mj))2,

σcomb = y
√

σ2 +
∑k

i=2(σci−1)2,

σcomb = yσ
√∑k

i=1(ci−1)2,
σcomb = yσck. ��

The compatibility of this comb structure with the asymmetric multiplicative
error growth property of GSW enables us to easily quantify the error in our
construction, with a better accuracy than computing the multiplicative depth.
In order to minimize the quantity σcomb, we choose the plaintext space such that
c = 1 for freshly generated ciphertexts. The resulting σcomb(y, σ, 1, k) quantity is
therefore yσ

√
k, growing less than linearly in the number of ciphertexts. Fixing

the constant c to be 1 is usual with FHE. As we mostly consider Boolean circuits,
it is usual to use plaintexts in {−1, 0, 1} to encrypt bits, leading to c = 1 and
therefore ck =

√
k.

Error Growth in FLIP. In the previous paragraphs, we have evaluated the
error growth in the basic homomorphic operations H.Add, H.Mul and H.Comb.
We will use them as building blocks in order to evaluate the error growth in the
homomorphic evaluation of FLIP. Coming back to the framework of Fig. 1, the
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error in the ciphertexts CH(mi) is of major importance as it will determine the
possible number of homomorphic computations f that Claude is able to perform.

The main feature of the filter permutator model, considering FHE settings,
is that it allows to handle ciphertexts having the same error level, whatever the
number of output bits. Consequently all ciphertexts obtained by FLIP evaluation
will have the same constant and small amount of noise and will be considered
as fresh start for more computation.

Evaluating homomorphically the FLIP decryption (resp. encryption) algo-
rithm consists in applying three steps of homomorphic operations on the cipher-
texts CH(skS

i ) in our application framework, each one encoding one bit of the
key register. For each ciphertext bit, these steps are: a (bit) permutation, the
application of the filtering function F and a XOR with the ciphertext (resp.
plaintext). The (bit) permutation consists only in a public rearrangement of the
key ciphertexts, leading to a noise-free operation. The last XOR is done with a
freshly encrypted bit. Hence the error growth depends mostly on the homomor-
phic evaluation of F .

As H.Dec outputs quantities modulus 2, we can evaluate the XORs of F by
H.Add and the ANDs by H.Mul. We then determine the subgaussian parameter
of the error of a ciphertext from the homomorphic evaluation of F . For a given
encrypted key, this parameter will be the same for every homomorphic evaluation
of FLIP and is computed from σcomb.

Lemma 13 (Error Growth Evaluating F ). Let F be the FLIP filtering func-
tion in N variables defined in Sect. 3.3. Assume that Ci for 0 ≤ i ≤ N − 1 are
ciphertexts of a GSW HE scheme with same subgaussian parameter σ and c = 1.
We define CF = H.Eval(F,Ci) the output of the homomorphic evaluation of the
ciphertexts Ci’s along the circuit F . Then the error parameter σ′ is:

σ′ = O
(
σ
√

n1 + y2(n2 + n3)
)

≈ O
(
σy

√
N

)
.

Proof. We first evaluate the noise brought by F for each of its components
Ln1 , Qn2 ,

nbΔk, defining the respective ciphertexts CLn1
,CQn2

,CTk
(the last one

standing for one triangle only) and the subgaussian parameter of the respective
error distributions (of the components of the error vectors) σLn1

, σQn2
, σTk

:

– Ln1 : CLn1
= H.Eval(Ln1 ,C0, · · · ,Cn1−1) = H.Add(C0, · · · ,Cn1−1) then

σLn1
= σ

√
n1.

– Qn2 : CQn2
= H.Add(H.Mul(Cn1+2j ,Cn1+2j+1,G)) for 0 ≤ j ≤ n2.

H.Mul(Cn1+2j ,Cn1+2j+1,G) = H.Comb(y, σ, 1, 2) has subgaussian parameter
O(σcomb(y, σ, 1, 2)) = O(yσ

√
2) for 0 ≤ j ≤ n2.

Then σQn2
= O(yσ

√
2
√

n2
2 ) = O(yσ

√
n2).

– Tk: CTk
= H.Add(H.Mul(Cn1+n2+j+(i−1)(i−2)/2; 1 ≤ j ≤ i); 1 ≤ i ≤ k).

CTk
= H.Add(H.Comb(y, σ, 1, i), 1 ≤ i ≤ k).

then σTk
= O(

√∑k
i=1(yσ

√
i)2) = O(yσ

√
k(k+1)

2 ).
As nbΔk is obtained by adding nb independent triangles, we get:
CnbΔk = H.Add(CTk,i, 1 ≤ i ≤ nb),

and σnbΔk = O(yσ
√

nb
√

k(k+1)
2 ) = O(yσ

√
n3).
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By Pythagorean additivity the subgaussian parameter of CF is finally:

σ′ = O(
√

(σ
√

n1)2 + (yσ
√

n2)2 + (yσ
√

n3)2) = O(σ
√

n1 + y2(n2 + n3)). ��

Optimizations. The particular error growth in GSW Homomorphic Encryption
enables to use more optimizations to reduce the error norm and perform more
operations without increasing the parameter’s size. The error growth in H.Comb
depends on the quantity ck derived from bounds on norms of the plaintexts;
these quantities can be reduced using negative numbers. A typical example is in
the LWE-based scheme to use m ∈ {−1, 0, 1} rather than {0, 1}; the ck quantity
is the same and in average the sums in Z are smaller. Then the norm |

∑
mi|

is smaller which is important when multiplying. Conserving this norm as low as
possible gives better bounds and ck coefficients, leading to smaller noise when
performing distinct levels of operations. An equivalent way of minimizing the
error growth is to still use M = {0, 1} but with H.Add(C1,C2) = C1±C2. This
homomorphic addition is still correct because:

S − C2 = −E′
2 −

⎛

⎜⎝
m2,1 · s�1

...
m2,r · s�r

⎞

⎟⎠G = E′′
2 +

⎛

⎜⎝
−m2,1 · s�1

...
−m2,r · s�r

⎞

⎟⎠ ,

where the coefficients in E′′
2 rows follow distribution of same subgaussian para-

meter as the one in E′
2 by homogeneity and −m = m mod 2.

4.3 Concrete Results

Contrary to other works published in the context of symmetric encryption
schemes for efficient FHE [1,11,31], our primary focus is not on the perfor-
mances (see SHIELD [38] for efficient implementation of Ring-GSW) but rather
on the error growth. As pointed out in [11], in most of these previous works, after
the decryption process the noise inside the ciphertexts was too high to perform
any other operation on them, whereas it is the main motivation for a practical
use of FHE.

In this section, we consequently provide experimental results about this error
growth in the ciphertexts after different operations evaluated on the Ring GSW
scheme. As the link between subgaussian parameter, ciphertext error and homo-
morphic computation is not direct, we make some choices for representing these
results focusing on giving intuition on how the error behaves.

The choice of the Ring GSW setting rather than Batched GSW is for conve-
nience. It allows to deal with smaller matrices and faster evaluations, providing
the same confirmation on the heuristic error growth. We give the parameters n
and � defining the polynomial ring and fix σ = 2�√n for the error distribution.

An efficient way of measuring the error growth within the ciphertexts is to
compute the difference by applying the rounding �·2 in H.Dec between various
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ciphertexts with known plaintext. This difference (for each polynomial coeffi-
cient or vector component) corresponds to the amount of noise contained in this
ciphertext. The correctness requires this quantity to be inferior to 2�−2. Then,
considering its logarithm in base 2, it enables to have an intuitive and practi-
cal measure of the ciphertext noise: this quantity grows with the homomorphic
operations until this log equals � − 2. Concretely, in our experiments we encrypt
polynomials being m = 0 or m = 1, compute on the constant coefficient the
quantity e = |(〈s, c�〉−m2�−1) mod q|, and give its logarithm. We give another
quantity in order to provide intuition about the homomorphic computation pos-
sibilities over the ciphertexts, by simply computing a percentage of the actual
level of noise relatively to the maximal level � − 2.

Remark 4. The quantity exhibited by our measures is roughly the subgaussian
parameter of the distribution of the error contained in the ciphertexts. Consid-
ering the simpler case of a real Gaussian distribution N (0, σ2), the difference
that we compute then follows a half normal distribution with mean σ

√
2√
π
.

We based our prototype implementation on the NTL library combined with
GMP and the discrete gaussian sampler of BLISS [23]. We report in Table 3
experimental results on the error growth for different RLWE and FLIP parame-
ters, based on an average over a hundred of samples.

The results confirm the quasi-additive error growth when considering the
specific metric of GSW given by the asymptotic bounds. The main conclusion
of these results is that the error inside the ciphertexts after a homomorphic
evaluation of FLIP is of the same order of magnitude as the one after a multipli-
cation. The only difference between these noise increases is a term provided by
the root of the symmetric key register size, that is linear in λ. Therefore, with
the FLIP construction the error growth is roughly the basic multiplicative error
growth of two ciphertexts. Hence, we conclude that filter permutators as FLIP
release the bottleneck of evaluating symmetric decryption, and lead the further
improvement of the calculus delegation framework to depend overwhelmingly on
improvements of the homomorphic operations.

Table 3. Experimental error growth of Ring-GSW. Fresh, H.Add, H.Mul and
H.Eval(FLIP) respectively stands for the noise e measure after a fresh homomorphic
encryption, the homomorphic addition of two fresh ciphertexts, the homomorphic mul-
tiplication of two fresh ciphertexts and the homomorphic evaluation of FLIP on fresh
ciphertexts. The first value is the log of the error e inside the corresponding ciphertexts
and the percentage represents the proportion of the noise with respect to the capacity
of decryption (i.e. � − 2).

Ring (n, �) FLIP Fresh H.Add H.Mul H.Eval(FLIP)

log e % log e % log e % log e %

256 80 (42, 128, 8Δ9) 13, 07 17 % 13, 96 18 % 19, 82 25 % 24, 71 31%

512 120 (82, 224, 8Δ16) 14, 68 12 % 15, 14 13 % 23, 27 20 % 28, 77 24%



Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts 337

4.4 Performances for 2nd-Generation Schemes

Despite our new constructions are primarily designed for 3rd-generation FHE,
a look at Table 4 suggests that also from the multiplicative depth point of view,
FLIP instances bring good results compared to their natural competitors such as
LowMC [1] and Trivium/Kreyvium [11]. In Trivium/Kreyvium, the multiplica-
tive depth of the decryption circuit is at most 13, while the LowMC family has a
record multiplicative depth of 11 which is still larger than our FLIP instances. For
completeness, we finally investigated the performances of some instances of FLIP
for 2nd-generation FHE schemes using HElib, as reported in Table 5, where the
latency is the amount of time (in seconds) needed to homomorphically decrypt
(Nb * Number of Slots) bits, and the throughput is calculated as (Nb * Number
of Slots * 60)/latency. As in [11], we have considered two noise levels: a first
one that does not allow any other operations on the ciphertexts, and a second
one where we allow operations of multiplicative depth up to 7. Note that the
(max) parenthesis in the Nb column recalls that for Trivium/Kreyvium, the
homomorphic capacity decreases with the number of keystream bits generated,
which therefore bounds the number of such bits before re-keying. We observe
that for 80-bit security, our instances outperform the ones based on Trivium.
As for 128-bit security, the gap between our instances and Kreyvium is limited
(despite the larger state of FLIP), and LowMC has better throughput in this con-
text. Note also that our results correspond to the evaluation of the F function of
FLIP (we verified that the time needed to generate the permutations only mar-
ginally affects the overall performances of homomorphic FLIP evaluations). We
finally mention that these results should certainly not be viewed as strict com-
parisons, since obtained on different computers and for relatively new ciphers
for which we have limited understanding of the security margins (especially

Table 4. Multiplicative depth of different symmetric ciphers.

Algorithm Reference Multiplicative depth Security

SIMON-32/64 [42] 32 64

Trivium-12 [11] 12 80

Trivium-13 [11] 13 80

LowMc-80 [1] 11 80

FLIP(42, 128, 8Δ9) This work �log 9� = 4 80

AES-128 [15,31] 40 128

SIMON-64/128 [42] 44 128

Prince [22] 24 128

Kreyvium-12 [11] 12 128

Kreyvium-13 [11] 13 128

LowMc-128 [1] 12 128

FLIP(82, 224, 8Δ16) This work �log 16� = 4 128
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Table 5. Timings of the homomorphic evaluation of several instances of the Boolean
function of FLIP using HElib on an Intel Core i7-3770. The other results are taken
from [11]. L and Number of Slots are HElib parameters which stand respectively for
the level of noise and the number of bits packed in one ciphertext. (Nb * Number of
Slots) corresponds to the number of decrypted bits.

Algorithm Security Nb L Number Latency (sec) Throughput

of Slots (bits/min)

Trivium-12 80 45 (max) 12 600 1417.4 1143.0

80 45 (max) 19 720 4420.3 439.8

Trivium-13 80 136 (max) 13 600 3650.3 1341.3

80 136 (max) 20 720 11379.7 516.3

Kreyvium-12 128 42 (max) 12 504 1715.0 740.5

128 42 (max) 19 756 4956.0 384.4

Kreyvium-13 128 124 (max) 13 682 3987.2 1272.6

128 124 (max) 20 420 12450.8 286.8

LowMC-128 ? ≤ 128 256 13 682 3368.8 3109.6

? ≤ 128 256 20 480 9977.1 739.0

FLIP(42, 128, 8Δ9) 80 1 5 378 4.72 4805.08

80 1 12 600 17.39 2070.16

FLIP(82, 224, 8Δ16) 128 1 6 630 14.53 2601.51

128 1 13 720 102.51 421.42

for LowMC [19,21] and FLIP). So they should mainly be seen as an indication
that besides their excellent features from the FHE capacity point-of-view, filter
permutators inherently have good properties for efficient 2nd-generation FHE
implementations as well.

5 Conclusions and Open Problems

In the context of our Homomorphic Encryption - Symmetric Encryption frame-
work, where most of the computations are delegated to a server, we have designed
a symmetric encryption scheme which fits the FHE settings, with as main goal
to get the homomorphic evaluation of the symmetric decryption circuit as cheap
as possible, with respect to the error growth. In particular the error growth
obtained by our construction, only one level of multiplication considering the
metric of third generation FHE, achieves the lowest bound we can get with a
secure symmetric encryption scheme. The use of zero-noise operations as permu-
tations enables us to combine the advantages of block ciphers and stream ciphers
evaluation, namely constant noise on the one hand and starting low noise on the
other hand. As a result, the homomorphic evaluation of filter permutators can
be made insignificant relatively to a complete FHE framework.
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The general construction of our encryption scheme – i.e. the filter
permutator – and its FLIP instances are admittedly provocative. As a result, we
believe an important contribution of this paper is to open a wide design space of
symmetric constructions to investigate, ranging from the very efficient solutions
we suggest to more classical stream ciphers such as filter generators. Such a
design space leads to various interesting directions for further research. Overall,
the main question raised by filter permutators is whether it is possible to build a
secure symmetric encryption scheme with aggressively reduced algebraic degree.
Such a question naturally relates to several more concrete problems. First, and
probably most importantly, additional cryptanalysis is needed in view of the non-
standard design principles exploited in filter permutators. It typically includes
algebraic attack taking advantage of the sparsity of their systems of equations,
attacks exploiting the imbalances at the input of the filter, and the possibility
to exploit chosen IVs to improve those attacks. Second, our analyses also raise
interesting problems in the field of Boolean functions, e.g. the analysis of such
functions with non-uniform input distributions and the investigation of the best
fixed degree approximations of a Boolean function (which is needed in our study
of higher-order correlation attacks). More directly related to the FLIP instances,
it would also be interesting to refine our security analyses, with a stronger focus
on the attacks data complexity, and to evaluate whether instances with smaller
key register could be sufficiently secure. In case of new cryptanalysis results, the
design tweaks we suggest in the paper are yet another interesting research path.
Eventually, and from the FHE application point-of-view, optimizing the imple-
mentations of filter permutators, e.g. by taking advantage of parallel computing
clusters that we did not exploit so far, would be useful in order to evaluate their
applicability to real-world scenarii.
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of 7-Round Chaskey with Partitioning
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Abstract. In this work we study the security of Chaskey, a recent light-
weight MAC designed by Mouha et al., currently being considered for
standardization by ISO/IEC and ITU-T. Chaskey uses an ARX structure
very similar to SipHash. We present the first cryptanalysis of Chaskey
in the single user setting, with a differential-linear attack against 6 and
7 rounds, hinting that the full version of Chaskey with 8 rounds has a
rather small security margin. In response to these attacks, a 12-round
version has been proposed by the designers.

To improve the complexity of the differential-linear cryptanalysis, we
refine a partitioning technique recently proposed by Biham and Carmeli
to improve the linear cryptanalysis of addition operations. We also pro-
pose an analogue improvement of differential cryptanalysis of addition
operations. Roughly speaking, these techniques reduce the data complex-
ity of linear and differential attacks, at the cost of more processing time
per data. It can be seen as the analogue for ARX ciphers of partial key
guess and partial decryption for SBox-based ciphers.

When applied to the differential-linear attack against Chaskey, this
partitioning technique greatly reduces the data complexity, and this also
results in a reduced time complexity. While a basic differential-linear
attack on 7 round takes 278 data and time (respectively 235 for 6 rounds),
the improved attack requires only 248 data and 267 time (respectively 225

data and 229 time for 6 rounds). We also show an application of the par-
titioning technique to FEAL-8X, and we hope that this technique will
lead to a better understanding of the security of ARX designs.

Keywords: Differential cryptanalysis · Linear cryptanalysis · ARX ·
Addition · Partitioning · Chaskey · FEAL

1 Introduction

Linear cryptanalysis and differential cryptanalysis are the two major cryptanaly-
sis techniques in symmetric cryptography. Differential cryptanalysis was intro-
duced by Biham and Shamir in 1990 [6], by studying the propagation of differ-
ences in a cipher. Linear cryptanalysis was discovered in 1992 by Matsui [25,26],
using a linear approximation of the non-linear round function.

In order to apply differential cryptanalysis (respectively, linear cryptanaly-
sis), the cryptanalyst has to build differentials (resp. linear approximations)
c© International Association for Cryptologic Research 2016
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for each round of a cipher, such the output difference of a round matches the
input difference of the next round (resp. linear masks). The probability of the
full differential or the imbalance of the full linear approximation is computed
by multiplying the probabilities (respectively imbalances) of each round. This
yields a statistical distinguisher for several rounds:

– A differential distinguisher is given by a plaintext difference δP and a cipher-
text difference δC , so that the corresponding probability p is non-negligible:

p = Pr
[
E(P ⊕ δP ) = E(P ) ⊕ δC

]
� 2−n.

The attacker collects D = O(1/p) pairs of plaintexts (Pi, P
′
i ) with P ′

i =
Pi ⊕ δP , and checks whether a pair of corresponding ciphertexts satisfies
C ′

i = Ci ⊕ δC . This happens with high probability for the cipher, but with
low probability for a random permutation.

– A linear distinguisher is given by a plaintext mask χP and a ciphertext mask
χC , so that the corresponding imbalance1 ε is non-negligible:

ε =
∣∣2 · Pr

[
P [χP ] = C[χC ]

]
− 1

∣∣ � 2−n/2.

The attacker collects D = O(1/ε2) known plaintexts Pi and the corresponding
ciphertexts Ci, and computes the observed imbalance ε̂:

ε̂ = |2 · # {i : Pi[χP ] = Ci[χC ]} /D − 1| .

The observed imbalance is close to ε for the attacked cipher, and smaller than
1/

√
D (with high probability) for a random function.

Last Round Attacks. The distinguishers are usually extended to a key-
recovery attack on a few more rounds using partial decryption. The main idea
is to guess the subkeys of the last rounds, and to compute an intermediate
state value from the ciphertext and the subkeys. This allows to apply the dis-
tinguisher on the intermediate value: if the subkey guess was correct the dis-
tinguisher should succeed, but it is expected to fail for wrong key guesses. In a
Feistel cipher, the subkey for one round is usually much shorter than the master
key, so that this attack recovers a partial key without considering the remaining
bits. This allows a divide and conquer strategy were the remaining key bits are
recovered by exhaustive search. For an SBox-based cipher, this technique can be
applied if the difference δC or the linear mask χC only affect a small number
of SBoxes, because guessing the key bits affecting those SBoxes is sufficient to
invert the last round.

ARX Ciphers. In this paper we study the application of differential and linear
cryptanalysis to ARX ciphers. ARX ciphers are a popular category of ciphers
built using only additions (x � y), bit rotations (x ≪ n), and bitwise xors
(x ⊕ y). These simple operations are very efficient in software and in hardware,
1 The imbalance is also called correlation.
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but they interact in complex ways that make analysis difficult and is expected to
provide security. ARX constructions have been used for block ciphers (e.g. TEA,
XTEA, FEAL, Speck), stream ciphers (e.g. Salsa20, ChaCha), hash functions
(e.g. Skein, BLAKE), and for MAC algorithms (e.g. SipHash, Chaskey).

The only non-linear operation in ARX ciphers is the modular addition. Its
linear and differential properties are well understood [14,24,29,32,33,37,39], and
differential and linear cryptanalysis have been use to analyze many ARX designs
(see for instance the following papers: [4,8,16,21,22,26,40,41]).

However, there is no simple way to extend differential or linear distinguishers
to last-round attack for ARX ciphers. The problem is that they typically have
32-bit or 64-bit words, but differential and linear characteristics have a few active
bits in each word2. Therefore a large portion of the key has to be guessed in order
to perform partial decryption, and this doesn’t give efficient attacks.

Besides, differential and linear cryptanalysis usually reach a limited number
of rounds in ARX designs because the trails diverge quickly and we don’t have
good techniques to keep a low number of active bits. This should be contrasted
with SBox-based designs where it is sometimes possible to build iterative trails,
or trails with only a few active SBoxes per round. For instance, this is case for
differential characteristics in DES [7] and linear trails in PRESENT [13].

Because of this, cryptanalysis methods that allow to divide a cipher E into
two sub-ciphers E = E⊥ ◦ E� are particularly interesting for the analysis of
ARX designs. In particular this is the case with boomerang attacks [38] and
differential-linear cryptanalysis [5,20]. A boomerang attack uses differentials
with probabilities p� and p⊥ in E� and E⊥, to build a distinguisher with com-
plexity O(1/p2

�p2
⊥). A differential-linear attack uses a differential with proba-

bility p for E� and a linear approximation with imbalance ε for E⊥ to build a
distinguisher with complexity about O(1/p2ε4) (using a heuristic analysis).

Our Results. In this paper, we consider improved techniques to attack ARX
ciphers, with application to Chaskey. Since Chaskey has a strong diffusion, we
start with differential-linear cryptanalysis, and we study in detail how to build a
good differential-linear distinguisher, and how to improve the attack with partial
key guesses.

Our main technique follows a recent paper by Biham and Carmeli [3], by par-
titioning the available data according to some plaintext and ciphertext bits. In
each subset, some data bits have a fixed value and we can combine this informa-
tion with key bit guesses to deduce bits after the key addition. These known bits
result in improved probabilities for differential and linear cryptanalysis. While
Biham and Carmeli considered partitioning with a single control bit (i.e. two
partitions), and only for linear cryptanalysis, we extend this analysis to multiple
control bits, and also apply it to differential cryptanalysis.

When applied to differential and linear cryptanalysis, this results in a signif-
icant reduction of the data complexity. Alternatively, we can extend the attack
to a larger number of rounds with the same data complexity. Those results are

2 A notable counterexample is FEAL, which uses only 8-bit additions.



Improved Differential-Linear Cryptanalysis of 7-Round Chaskey 347

Table 1. Key-recovery attacks on Chaskey

Rounds Data Time Gain

6 235 235 1 bit Differential-Linear

6 225 228.6 6 bits Differential-Linear with partitioning

7 278 278 1 bit Differential-Linear

7 248 267 6 bits Differential-Linear with partitioning

very similar to the effect of partial key guess and partial decryption in a last-
round attack: we turn a distinguisher into a key recovery attack, and we can add
some rounds to the distinguisher. While this can increase the time complexity in
some cases, we show that the reduced data complexity usually leads to a reduced
time complexity. In particular, we adapt a convolution technique used for linear
cryptanalysis with partial key guesses [15] in the context of partitioning.

These techniques result in significant improvements over the basic
differential-linear technique: for 7 rounds of Chaskey (respectively 6 rounds),
the differential-linear distinguisher requires 278 data and time (respectively 235),
but this can be reduced to 248 data and 267 time (respectively 225 data and 229

time) (see Table 1). The full version of Chaskey has 8 rounds, and is claimed to
be secure against attacks with 248 data and 280 time.

The paper is organized as follows: we first explain the partitioning technique
for linear cryptanalysis in Sect. 2 and for differential cryptanalysis in Sect. 3. We
discuss the time complexity of the attacks in Sect. 4. Then we demonstrate the
application of this technique to the differential-linear cryptanalysis of Chaskey
in Sect. 5. Finally, we show how to apply the partitioning technique to reduce
the data complexity of linear cryptanalysis against FEAL-8X in Appendix A.

2 Linear Analysis of Addition

We first discuss linear cryptanalysis applied to addition operations, and the
improvement using partitioning. We describe the linear approximations using lin-
ear masks; for instance an approximation for E is written as Pr

[
E(x)[χ′] =

x[χ]
]

= 1/2 ± ε/2 where χ and χ′ are the input and output linear masks (x[χ]
denotes x[χ1] ⊕ x[χ2] ⊕ · · · x[χ�], where χ = (χ1, . . . χ�) and x[χi] is bit χi of x),
and ε ≥ 0 is the imbalance. We also denote the imbalance of a random variable x as
I(x) = 2·Pr[x = 0]−1, and ε(x) = |I(x)|. We will sometimes identify a mask with
the integer with the same binary representation, and use an hexadecimal notation.

We first study linear properties of the addition operation, and use an ARX
cipher E as example. We denote the word size as w. We assume that the cipher
starts with an xor key addition, and a modular addition of two state variables3.
3 This setting is quite general, because any operation before a key addition can be

removed, as well as any linear operation after the key addition. Ciphers where the
key addition is made with a modular addition do not fit this model, but the technique
can easily be adapted.
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We denote the remaining operations as E′, and we assume that we know a

linear approximation (α, β, γ) E′
−→ (α′, β′, γ′) with imbalance ε for E′. We further

assume that the masks are sparse, and don’t have adjacent active bits. Following
previous works, the easier way to extend the linear approximation is to use the
following masks for the addition:

(α ⊕ α � 1, α) �−→ α. (1)

As shown in Fig. 1, this gives the following linear approximation for E:

(α ⊕ α � 1, β ⊕ α, γ) E−→ (α′, β′, γ′). (2)

In order to explain our technique, we initially assume that α has a single active
bit, i.e. α = 2i. We explain how to deal with several active bits in Sect. 2.3. If
i = 0, the approximation of the linear addition has imbalance 1, but for other
values of i, it is only 1/2 [39]. In the following we study the case i > 0, where
the linear approximation (2) for E has imbalance ε/2.

2.1 Improved Analysis with Partitioning

We now explain the improved analysis of Biham and Carmeli [3]. A simple
way to understand their idea is to look at the carry bits in the addition. More
precisely, we study an addition operation s = a � b, and we are interested in
the value s[α]. We assume that α = 2i, i > 0, and that we have some amount
of input/output pairs. We denote individual bits of a as a0, a1, . . . an−1, where
a0 is the LSB (respectively, bi for b and si for s). In addition, we consider the

Fig. 1. Linear attack against the first addition
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carry bits ci, defined as c0 = 0, ci+1 = MAJ(ai, bi, ci) (where MAJ(a, b, c) =
(a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a)). Therefore, we have si = ai ⊕ bi ⊕ ci.

Note that the classical approximation si = ai ⊕ ai−1 ⊕ bi holds with prob-
ability 3/4 because ci = ai−1 with probability 3/4. In order to improve this
approximation, Biham and Carmeli partition the data according to the value of
bits ai−1 and bi−1. This gives four subsets:

00 If (ai−1, bi−1) = (0, 0), then ci = 0 and si = ai ⊕ bi.
01 If (ai−1, bi−1) = (0, 1), then ε(ci) = 0 and ε(si ⊕ ai ⊕ ai−1) = 0.
10 If (ai−1, bi−1) = (1, 0), then ε(ci) = 0 and ε(si ⊕ ai ⊕ ai−1) = 0.
11 If (ai−1, bi−1) = (1, 1), then ci = 1 and si = ai ⊕ bi ⊕ 1.

If bits of a and b are known, filtering the data in subsets 00 and 11 gives a trail
for the addition with imbalance 1 over one half of the data, rather than imbalance
1/2 over the full data-set. This can be further simplified to the following:

si = ai ⊕ bi ⊕ ai−1 if ai−1 = bi−1 (3)

In order to apply this analysis to the setting of Fig. 1, we guess the key bits
kx

i−1 and ky
i−1, so that we can compute the values of x1

i−1 and y1
i−1 from x0 and

y0. More precisely, an attack on E can be performed with a single (logical) key
bit guess, using Eq. (3):

x2
i = x1

i ⊕ y1
i ⊕ x1

i−1 if x1
i−1 = y1

i−1

x2
i = x0

i ⊕ y0
i ⊕ x0

i−1 ⊕ kx
i ⊕ ky

i ⊕ kx
i−1 if x0

i−1 ⊕ y0
i−1 = kx

i−1 ⊕ ky
i−1

If we guess the key bit kx
i−1 ⊕ky

i−1, we can filter the data satisfying x0
i−1 ⊕y0

i−1 =
kx

i−1 ⊕ ky
i−1, and we have ε(x2

i ⊕ x0
i ⊕ y0

i ⊕ x0
i−1) = 1. Therefore the linear

approximation (2) has imbalance ε. We need 1/ε2 data after the filtering for the
attack to succeed, i.e. 2/ε2 in total. The time complexity is also 2/ε2 because
we run the analysis with 1/ε2 data for each key guess. This is an improvement
over a simple linear attack using (2) with imbalance ε/2, with 4/ε2 data.

Complexity. In general this partitioning technique multiply the data and time
complexity by the following ratio:

RD
lin =

μ−1/ε̃2

1/ε2
= ε2/με̃2 RT

lin =
2κ/ε̃2

1/ε2
= 2κε2/ε̃2 (4)

where μ is the fraction of data used in the attack, κ is the number of guessed key
bits, ε is the initial imbalance, and ε̃ is the improved imbalance for the selected
subset. For Biham and Carmeli’s attack, we have μ = 1/2, κ = 1 and ε̃ = 2ε,
hence RD

lin = 1/2 and RT
lin = 1/2.

2.2 Generalized Partitioning

We now refine the technique of Biham and Carmeli using several control bits.
In particular, we analyze cases 01 and 10 with extra control bits ai−2 and bi−2

(some of the cases of shown in Fig. 2):
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Fig. 2. Some cases of partitioning for linear cryptanalysis of an addition

01.00 If (ai−1, bi−1, ai−2, bi−2) = (0, 1, 0, 0),
then ci−1 = 0, ci = 0 and si = ai ⊕ bi.

01.01 If (ai−1, bi−1, ai−2, bi−2) = (0, 1, 0, 1),
then ε(ci−1) = 0, ε(ci) = 0, and ε(si ⊕ ai ⊕ ai−1) = 0.

01.10 If (ai−1, bi−1, ai−2, bi−2) = (0, 1, 1, 0),
then ε(ci−1) = 0, ε(ci) = 0, and ε(si ⊕ ai ⊕ ai−1) = 0.

01.11 If (ai−1, bi−1, ai−2, bi−2) = (0, 1, 1, 1),
then ci−1 = 1, ci = 1 and si = ai ⊕ bi ⊕ 1.

10.00 If (ai−1, bi−1, ai−2, bi−2) = (1, 0, 0, 0),
then ci−1 = 0, ci = 0 and si = ai ⊕ bi.

10.01 If (ai−1, bi−1, ai−2, bi−2) = (1, 0, 0, 1),
then ε(ci−1) = 0, ε(ci) = 0, and ε(si ⊕ ai ⊕ ai−1) = 0.

10.10 If (ai−1, bi−1, ai−2, bi−2) = (1, 0, 1, 0),
then ε(ci−1) = 0, ε(ci) = 0, and ε(si ⊕ ai ⊕ ai−1) = 0.

10.11 If (ai−1, bi−1, ai−2, bi−2) = (1, 0, 1, 1),
then ci−1 = 1, ci = 1 and si = ai ⊕ bi ⊕ 1.

This yields an improved partitioning because we now have a trail for the addition
with imbalance 1 in 12 out of 16 subsets: 00.00, 00.01, 00.10, 00.11, 01.00,
01.11, 10.00, 10.11, 11.00, 11.01, 11.10, 11.11. We can also simplify this
case analysis:

si =
{

ai ⊕ bi ⊕ ai−1

ai ⊕ bi ⊕ ai−2

if ai−1 = bi−1

if ai−1 
= bi−1 and ai−2 = bi−2
(5)

This gives an improved analysis of E by guessing more key bits. More precisely
we need kx

i−1 ⊕ ky
i−1 and kx

i−2 ⊕ ky
i−2, as shown below:

x2
i =

{
x1

i ⊕ y1
i ⊕ x1

i−1

x1
i ⊕ y1

i ⊕ x1
i−2

if x1
i−1 = y1

i−1

if x1
i−1 
= y1

i−1 and x1
i−2 = y1

i−2

x2
i =

{
x0

i ⊕ y0
i ⊕ x0

i−1 ⊕ kx
i ⊕ ky

i ⊕ kx
i−1

x0
i ⊕ y0

i ⊕ x0
i−2 ⊕ kx

i ⊕ ky
i ⊕ kx

i−2

if x0
i−1 ⊕ y0

i−1 = kx
i−1 ⊕ ky

i−1

if x0
i−1 ⊕ y0

i−1 
= kx
i−1 ⊕ ky

i−1

and x0
i−2 ⊕ y0

i−2 = kx
i−2 ⊕ ky

i−2

ε(x2
i ⊕ x0

i ⊕ y0
i ⊕ x0

i−1) = 1 if x0
i−1 ⊕ y0

i−1 = kx
i−1 ⊕ ky

i−1

ε(x2
i ⊕ x0

i ⊕ y0
i ⊕ x0

i−2) = 1
if x0

i−1 ⊕ y0
i−1 
= kx

i−1 ⊕ ky
i−1

and x0
i−2 ⊕ y0

i−2 = kx
i−2 ⊕ ky

i−2

Since this analysis yields different input masks for different subsets of the data,
we use an analysis following multiple linear cryptanalysis [9]. We first divide the
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data into four subsets, depending on the value of x0
i−1⊕y0

i−1 and x0
i−2⊕y0

i−2, and
we compute the measured (signed) imbalance Î[s] of each subset. Then, for each
guess of the key bits kx

i−1 ⊕ky
i−1, and kx

i−2 ⊕ky
i−2, we deduce the expected imbal-

ance Ik[s] of each subset, and we compute the distance to the observed imbalance
as

∑
s(Î[s] − Ik[s])2. According to the analysis of Biryukov, De Cannière and

Quisquater, the correct key is ranked first (with minimal distance) with high
probability when using O(1/c2) samples, where c2 =

∑
i I2

i =
∑

i ε2
i is the

capacity of the system of linear approximations. Since we use three approxi-
mations with imbalance ε, the capacity of the full system is 3ε2, and we need
1/3 · 1/ε2 data in each subset after partitioning, i.e. 4/3 · 1/ε2 in total.

Again, the complexity ratio of this analysis can be computed as RD
lin = ε2/με̃2

RT
lin = 2κε2/ε̃2 With μ = 3/4 and ε̃ = 2ε, we find:

RD
lin = 1/3 RT

lin = 1.

The same technique can be used to refine the partitioning further, and give
a complexity ratio of RD

lin = 1/4 × 2κ/(2κ − 1) when guessing κ bits.

Time complexity. In general, the time complexity of this improved partitioning
technique is the same as the time complexity as the basic attack (RT

lin = 1),
because we have to repeat the analysis 4 times (for each key of the key bits)
with one fourth of the amount of data. We describe some techniques to reduce
the time complexity in Sect. 4.

2.3 Combining Partitions

Finally, we can combine several partitions to analyze an addition with several
active bits. If we use k1 partitions for the first bit, and k2 for the second bit,
this yields a combined partition with k1 · k2 cases. If the bits are not close to
each other, the gains of each bit are multiplied. This can lead to significant
improvements even though Rlin is small for a single active bit.

For more complex scenarios, we select the filtering bits assuming that the
active bits don’t interact, and we evaluate experimentally the probability in each
subset. We can further study the matrix of probabilities to detect (logical) bits
with no or little effect on the total capacity in order to improve the complexity
of the attack. This will be used for our applications in Sect. 5 and Appendix A.

3 Differential Analysis of Addition

We now study differential properties of the addition. We perform our analysis
in the same way as the analysis of Sect. 2, following Fig. 3. We consider the
first addition operation separately, and we assume that we know a differential
(α, β, γ) → (α′, β′, γ′) with probability p for the remaining of the cipher. Fol-
lowing previous works, a simple way to extend the differential is to linearize the
first addition, yielding the following differences for the addition:

α ⊕ β, β
�−→ α.
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Fig. 3. Differential attack against the first addition

Similarly to our analysis of linear cryptanalysis, we consider a single addi-
tion s = a � b, and we first assume that a single bit is active through the
addition. However, we have to consider several cases, depending on how many
input/output bits are active. The cases are mostly symmetric, but there are
important differences in the partitioning.

3.1 Analysis of (α = 0, β = 2i)

With i < w − 1, the probability for the addition is Pr[(2i, 2i) �−→ 0] = 1/2.

Improved Analysis with Structures. We first discuss a technique using mul-
tiple differentials and structures. More precisely, we use the following differentials
for the addition:4

D1 : (2i, 2i) �−→ 0 Pr
[
(2i, 2i) �−→ 0

]
= 1/2

D2 : (2i ⊕ 2i+1, 2i) �−→ 0 Pr
[
(2i ⊕ 2i+1, 2i) �−→ 0

]
= 1/4

We can improve the probability of D2 using a partitioning according to (ai, ai+1):

00 If (ai, ai+1) = (0, 0), then a′ = a � 2i � 2i+1 and s 
= s′.
01 If (ai, ai+1) = (0, 1), then a′ = a � 2i and Pr[s = s′] = 1/2.
10 If (ai, ai+1) = (1, 0), then a′ = a � 2i and Pr[s = s′] = 1/2.
11 If (ai, ai+1) = (1, 1), then a′ = a � 2i � 2i+1 and s 
= s′.

4 Note that in the application to E, we can modify the difference in x1 but not in y1.
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This can be written as:

Pr
[
(2i, 2i) �−→ 0

]
= 1/2

Pr
[
(2i ⊕ 2i+1, 2i) �−→ 0

]
= 1/2 ifai 
= ai+1

The use of structures allows to build pairs of data for both differentials from
the same data set. More precisely, we consider the following inputs:

p = (x0, y0, z0) q = (x0 ⊕ 2i, y0 ⊕ 2i, z0)

r = (x0 ⊕ 2i+1, y0, z0) s = (x0 ⊕ 2i+1 ⊕ 2i, y0 ⊕ 2i, z0)

We see that (p, q) and (r, s) follow the input difference of D1, while (p, s) and
(r, q) follow the input difference of D2. Moreover, we have from the partitioning:

Pr[E(p) ⊕ E(q) = (α′, β′, γ′)] = 1/2 · p

Pr[E(r) ⊕ E(s) = (α′, β′, γ′)] = 1/2 · p

Pr[E(p) ⊕ E(s) = (α′, β′, γ′)] = 1/2 · p if x0
i ⊕ x0

i+1 
= kx
i ⊕ kx

i+1

Pr[E(r) ⊕ E(q) = (α′, β′, γ′)] = 1/2 · p if x0
i ⊕ x0

i+1 = kx
i ⊕ kx

i+1

For each key guess, we select three candidate pair out of a structure of four plain-
texts, and every pair follows a differential for E with probability p/2. Therefore
we need 2/p pairs, with a data complexity of 8/3 · 1/p rather than 4 · 1/p.

In general this partitioning technique multiply the data and time complexity
by the following ratio:

RD
diff =

p̃−1T/(μT 2/4)
p−1T/(T/2)

=
2p

μT p̃
RT

diff = 2κμRD
diff =

2κ+1p

T p̃
, (6)

where μ is the fraction of data used in the attack, κ is the number of guessed key
bits, T is the number of plaintexts in a structure (we consider T 2/4 pairs rather
than T/2 without structures) p is the initial probability, and p̃ is the improved
probability for the selected subset. Here we have μ = 3/4, κ = 1, T = 4, and
p̃ = p, hence

RD
diff = 2/3 RT

diff = 1

Moreover, if the differential trail is used in a boomerang attack, or in a
differential-linear attack, it impacts the complexity twice, but the involved key
bits are the same, and we only need to use the structure once. Therefore, the
complexity ratio should be evaluated as:

RD
diff-2 =

p̃−2T/(μT 2/4)
p−2T/(T/2)

=
2p2

μT p̃2
RT

diff-2 = 2κμRD
diff-2 =

2κ+1p2

T p̃2
, (7)

In this scenario, we have the same ratios:

RD
diff-2 = 2/3 RT

diff-2 = 1
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Generalized Partitioning. We can refine the analysis of the addition by par-
titioning according to (bi). This gives the following:

Pr
[
(2i, 2i) → 0

]
= 1 if ai 
= bi

Pr
[
(2i ⊕ 2i+1, 2i) → 0

]
= 1 if ai = bi and ai 
= ai+1

This gives an attack with T = 4, μ = 3/8, κ = 2 and p̃ = 2p, which yield the
same ratio in a simple differential setting, but a better ratio for a boomerang or
differential-linear attack:

RD
diff = 2/3 RT

diff = 1

RD
diff-2 = 1/3 RT

diff-2 = 1/2

In addition, this analysis allows to recover an extra key bit, which can be useful
for further steps of an attack.

Larger Structure. Alternatively, we can use a larger structure to reduce the
complexity: with a structure of size 2t, we have an attack with a ratio RD

diff =
1/2 × 2κ/(2κ − 1), by guessing κ − 1 key bits.

3.2 Analysis of (α = 2i, β = 0)

With i < w − 1, the probability for the addition is Pr[(2i, 0) �−→ 2i] = 1/2.

Improved Analysis with Structures. As in the previous section, we consider
multiple differentials, and use partitioning to improve the probability:

D1 : Pr
[
(2i, 0) �−→ 2i

]
= 1/2

D2 : Pr
[
(2i ⊕ 2i+1, 0) �−→ 2i

]
= 1/2 if ai 
= ai+1

We also use structures in order to build pairs of data for both differentials
from the same data set. More precisely, we consider the following inputs:

p = (x0, y0, z0) q = (x0 ⊕ 2i, y0, z0)

r = (x0 ⊕ 2i+1, y0, z0) s = (x0 ⊕ 2i+1 ⊕ 2i, y0, z0)

We see that (p, q) and (r, s) follow the input difference of D1, while (p, s) and
(r, q) follow the input difference of D2. Moreover, we have from the partitioning:

Pr[E(p) ⊕ E(q) = (α′, β′, γ′)] = 1/2 · p

Pr[E(r) ⊕ E(s) = (α′, β′, γ′)] = 1/2 · p

Pr[E(p) ⊕ E(s) = (α′, β′, γ′)] = 1/2 · p if x0
i ⊕ x0

i+1 
= kx
i ⊕ kx

i+1

Pr[E(r) ⊕ E(q) = (α′, β′, γ′)] = 1/2 · p if x0
i ⊕ x0

i+1 = kx
i ⊕ kx

i+1
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In this case, we also have μ = 3/4, T = 4, and p̃ = p, hence

RD
diff = 2/3 RT

diff = 1

RD
diff-2 = 2/3 RT

diff-2 = 1

Generalized Partitioning. Again, we can refine the analysis of the addition
by partitioning according to (si). This gives the following:

Pr
[
(2i, 0) → 2i

]
= 1 if ai = si

Pr
[
(2i ⊕ 2i+1, 0) → 2i

]
= 1 if ai 
= si and ai 
= ai+1

Since we can not readily filter according to bits of s, we use the results of Sect. 2:

ai ⊕ bi ⊕ ai−1 = si if ai−1 = bi−1

This gives:

Pr
[
(2i, 0) → 2i

]
= 1 if bi = ai−1 and ai−1 = bi−1

Pr
[
(2i ⊕ 2i+1, 0) → 2i

]
= 1 if bi 
= ai−1 and ai−1 = bi−1 and ai 
= ai+1

Unfortunately, we can only use a small fraction of the pairs μ = 3/16. With
T = 4 and p̃ = 2p, this yields, an increase of the data complexity for a simple
differential attack:

RD
diff = 4/3 RT

diff = 1/2

RD
diff-2 = 2/3 RT

diff-2 = 1/4

3.3 Analysis of (α = 2i, β = 2i)

With i < w − 1, the probability for the addition is Pr[(0, 2i) �−→ 2i] = 1/2.
The results in this section will be the same as in the previous section, but

we have to use a different structure. Indeed when this analysis is applied to E,
we can freely modify the difference in x0 but not in y0, because it would affect
the differential in E′.

More precisely, we use the following differentials:

D1 : Pr
[
(0, 2i) �−→ 2i

]
= 1/2

D2 : Pr
[
(2i+1, 2i) �−→ 2i

]
= 1/2 if ai+1 
= bi

and the following structure:

p = (x0, y0, z0) q = (x0, y0 ⊕ 2i, z0)

r = (x0 ⊕ 2i+1, y0, z0) s = (x0 ⊕ 2i+1, y0 ⊕ 2i, z0)
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This yields:

Pr[E(p) ⊕ E(q) = (α′, β′, γ′)] = 1/2 · p

Pr[E(r) ⊕ E(s) = (α′, β′, γ′)] = 1/2 · p

Pr[E(p) ⊕ E(s) = (α′, β′, γ′)] = 1/2 · p if x1
i ⊕ x0

i+1 
= ky
i ⊕ kx

i+1

Pr[E(r) ⊕ E(q) = (α′, β′, γ′)] = 1/2 · p if x1
i ⊕ x0

i+1 = ky
i ⊕ kx

i+1

4 Improving the Time Complexity

The analysis of the previous sections assume that we repeat the distinguisher
for each key guess, so that the data complexity is reduced in a very generic
way. When this is applied to differential or linear cryptanalysis, it usually result
in an increased time complexity (RT > 1). However, when the distinguisher
is a simple linear of differential distinguisher, we can perform the analysis in
a more efficient way, using the same techniques that are used in attacks with
partial key guess against SBox-based ciphers. For linear cryptanalysis, we use
a variant of Matsui’s Algorithm 2 [25], and the improvement using convolution
algorithm [15]; for differential cryptanalysis we filter out pairs that can not be a
right pair for any key. In the best cases, the time complexity of the attacks can
be reduced to essentially the data complexity.

4.1 Linear Analysis

We follow the analysis of Matsui’s Algorithm 2, with a distillation phase using
counters to keep track of the important features of the data, and an analysis
phase for every key that requires only the counters rather than the full dataset.

More precisely, let us explain this idea within the setting of Sect. 2.2 and
Fig. 1. For each key guess, the attacker computes the observed imbalance over
a subset Sk corresponding to the data with x0

i−1 ⊕ y0
i−1 = kx

i−1 ⊕ ky
i−1, or(

x0
i−1 ⊕ y0

i−1 
= kx
i−1 ⊕ ky

i−1 and x0
i−2 ⊕ y0

i−2 = kx
i−2 ⊕ ky

i−2

)
:

Î = ISk(P [χP ] ⊕ C[χC ])

= 1/ |Sk| ×
∑

Sk

(−1)P [χP ]⊕C[χC ]

where (using α = 2i)

P [χP ] ⊕ C[χC ] = x2
i ⊕ y2[β] ⊕ z2[γ] ⊕ x3[α′] ⊕ y3[β′] ⊕ z3[γ′]

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0
i ⊕ y0

i ⊕ x0
i−1 ⊕ y0[β] ⊕ z0[γ] ⊕ x3[α′] ⊕ y3[β′] ⊕ z3[γ′]

if x0
i−1 ⊕ y0

i−1 = kx
i−1 ⊕ ky

i−1

x0
i ⊕ y0

i ⊕ x0
i−2 ⊕ y0[β] ⊕ z0[γ] ⊕ x3[α′] ⊕ y3[β′] ⊕ z3[γ′]

if x0
i−1 ⊕ y0

i−1 �= kx
i−1 ⊕ ky

i−1

and x0
i−2 ⊕ y0

i−2 = kx
i−2 ⊕ ky

i−2
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Therefore, the imbalance can be efficiently reconstructed from a series of 24

counters keeping track of the amount of data satisfying every possible value of
the following bits:

x0
i ⊕ y0

i ⊕ x0
i−1 ⊕ y0[β] ⊕ z0[γ] ⊕ x3[α′] ⊕ y3[β′] ⊕ z3[γ′],

x0
i−1 ⊕ x0

i−2, x0
i−1 ⊕ y0

i−1, x0
i−2 ⊕ y0

i−2

This results in an attack where the time complexity is equal to the data complex-
ity, plus a small cost to compute the imbalance. The analysis phase require only
about 26 operations in this case (adding 24 counters for 22 key guesses). When
the amount of data required is larger than 26, the analysis step is negligible.

When several partitions are combined (with several active bits in the first
additions), the number of counters increases to 2b, where b is the number of
control bits. To reduce the complexity of the analysis phase, we can use a con-
volution algorithm (following [15]), so that the cost of the distillation is only
O(b · 2b) rather than O(2κ · 2b). This will be explained in more details with the
application to Chaskey in Sect. 5.

In general, there is a trade-off between the number of partitioning bits, and
the complexity. A more precise partitioning allows to reduce the data complexity,
but this implies a larger set of counters, hence a larger memory complexity. When
the number of partitioning bits reaches the data complexity, the analysis phase
becomes the dominant phase, and the time complexity is larger than the data
complexity.

4.2 Differential Analysis

For a differential attack with partitioning, we can also reduce the time com-
plexity, by filtering pairs before the analysis phase. In the following, we assume
that we use a simple differential distinguisher with output difference δ′, following
Sect. 3 (where δ′ = (α′, β′, γ′))

We first define a linear function L with rank n−1 (where n is the block size),
so that L(δ′) = 0. In particular, any pair x, x′ = x ⊕ δ′ satisfies L(x) = L(x′).
This allows to detect collisions by looking at all values in a structure, rather
than all pairs in a structure. We just compute L(E(x)) for all x’s in a structure,
and we look for collisions.

5 Application to Chaskey

Chaskey is a recent MAC proposal designed jointly by researchers from COSIC
and Hitachi [31]. The mode of operation of Chaskey is based on CBC-MAC with
an Even-Mansour cipher; but it can also be described as a permutation-based
design as seen in Fig. 4. Chaskey is designed to be extremely fast on 32-bit micro-
controllers, and the internal permutation follows an ARX construction with 4
32-bit words based on SipHash; it is depicted in Fig. 5. Since the security of
Chaskey is based on an Even-Mansour cipher, the security bound has a birthday
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Fig. 4. Chaskey mode of operation (full block message)

Fig. 5. One round of the Chaskey permutation. The full permutation has 8 rounds.

term O(TD · 2−128). More precisely, the designers claim that it should be secure
up to 248 queries, and 280 computations.

So far, the only external cryptanalysis results on Chaskey are generic attacks
in the multi-user setting [27]. The only analysis of the permutation is in the
submission document; the best result is a 4 round bias, that can probably be
extended into a 5 round attack following the method of attacks against the
Salsa family [1]. It is important to try more advanced techniques in order to
understand the security of Chaskey, in particular because it is being considered
for standardization.

Table 2. Probabilities of the best differential characteristics of Chaskey reported by
the designers [31]

Rounds: 1 2 3 4 5 6 7 8

Probability: 1 2−4 2−16 2−37 2−73.1 2−132.8 2−205.6 2−289.9

5.1 Differential-Linear Cryptanalysis

The best differential characteristics found by the designers of Chaskey quickly
become unusable when the number of rounds increase (See Table 2). The design-
ers also report that those characteristics have an “hourglass structure”: there is
a position in the middle where a single bit is active, and this small difference
is expanded by the avalanche effect when propagating in both direction. This is
typical of ARX designs: short characteristics have a high probability, but after
a few rounds the differences cannot be controlled and the probability decrease
very fast. The same observation typically holds also for linear trails.
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Because of these properties, attacks that can divide the cipher E in two
parts E = E⊥ ◦ E� and build characteristics or trail for both half indepen-
dently – such as the boomerang attack or differential-linear cryptanalysis – are
particularly interesting. In particular, many attacks on ARX designs are based
on the boomerang attack [10,19,23,28,35,42] or differential-linear cryptanaly-
sis [18]. Since Chaskey never uses the inverse permutation, we cannot apply a
boomerang attack, and we focus on differential-linear cryptanalysis.

Fig. 6. Differential-linear cryptanalysis

Differential-linear cryptanalysis uses a differential δi
E�−→ δo with probability

p for E�, and a linear approximation χi
E⊥−→ χo with imbalance ε for E⊥ (see

Fig. 6). The attacker uses pairs of plaintexts (Pi, P
′
i ) with P ′

i = Pi ⊕δi, and com-
putes the observed imbalance ε̂ = |2 · # {i : Ci[χo] = C ′

i[χo]} /D − 1|. Following
the heuristic analysis of [5], the expected imbalance is about pε2, which gives an
attack complexity of O(2/p2ε4):

– A pair of plaintext satisfies E�(P ) ⊕ E�(P ′) = δo with probability p. In this
case, we have E�(P )[χi]⊕E�(P ′)[χi] = δo[χi]. Without loss of generality, we
assume that δo[χi] = 0.

– Otherwise, we expect that E�(P )[χi] ⊕ E�(P ′)[χi] is not biased. This gives
the following:

Pr
[
E�(P )[χi] ⊕ E�(P ′)[χi] = 0

]
= p + (1 − p) · 1/2 = 1/2 + p/2 (8)

ε(E�(P )[χi] ⊕ E�(P ′)[χi]) = p (9)

– We also have ε(E�(P )[χi] ⊕ C[χo]) = ε(E�(P ′)[χi] ⊕ C ′[χo]) = ε from the
linear approximations. Combining with (9), we get ε(C[χo] ⊕ C ′[χo]) = pε2.

A more rigorous analysis has been recently provided by Blondeau et al. [12], but
since we use experimental values to evaluate the complexity of our attacks, this
heuristic explanation will be sufficient.
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5.2 Using Partitioning

A differential-linear distinguisher can easily be improved using the results of
Sects. 2 and 3. We can improve the differential and linear part separately, and
combine the improvements on the differential-linear attack. More precisely, we
have to consider structures of plaintexts, and to guess some key bits in the
differential and linear parts. We partition all the potential pairs in the structures
according to the input difference, and to the filtering bits in the differential and
linear part; then we evaluate the observed imbalance Î[s] in every subset s.
Finally, for each key guess k, we compute the expected imbalance Ik[s] for each
subset s, and then we evaluate the distance between the observed and expected
imbalances as L(k) =

∑
s(Î[s]−Ik[s])2 (following the analysis of multiple linear

cryptanalysis [9]).
While we follow the analysis of multiple linear cryptanalysis to evaluate the

complexity of our attack, we use each linear approximation on a different subset
of the data, partitioned according to the filtering bits. In particular, we don’t
have to worry about the independence of the linear approximations.

If we use structures of size T , and select a fraction μdiff of the input pairs
with an improved differential probability p̃, and a fraction μlin of the output
pairs with an improved linear imbalance ε̃, the data complexity of the attack is
O(μlinμ2

diffT/2 × 2/p̃2ε̃4). This corresponds to a complexity ratio of RD
diff-2R

D
lin

2.
More precisely, using differential filtering bits pdiff and linear filtering bits

clin, the subsets are defined by the input difference Δ, the plaintext bits P [pdiff]
and the cipher text bits C[clin] and C ′[clin], with C = E(P ) and C ′ = E(P ⊕
Δ). In practice, for every P,P ′ in a structure, we update the value of Î[P ⊕
P ′, P [plin], C[cdiff], C ′[cdiff]].

We also take advantage of the Even-Mansour construction of Chaskey,
without keys inside the permutation. Indeed, the filtering bits used to define
the subsets s correspond to the key bits used in the attack. Therefore, we
only need to compute the expected imbalance for the zero key, and we can
deduce the expected imbalance for an arbitrary key as Ikdiff,klin [Δ, p, c, c′] =
I0[Δ, p ⊕ klin, c ⊕ kdiff, c′ ⊕ kdiff].

Time Complexity. This description lead to an attack with low time complexity
using an FFT algorithm, as described previously for linear cryptanalysis [15] and
multiple linear cryptanalysis [17]. Indeed, the distance between the observed and
expected imbalance can be written as:

L(k) =
∑

s

(Î[s] − Ik[s])2

=
∑

s

(Î[s] − I0[s ⊕ φ(k)])2, where φ(kdiff, klin) = (0, klin, kdiff, kdiff)

=
∑

s

Î[s]2 +
∑

s

I0[s ⊕ φ(k)]2 − 2
∑

s

Î[s]I0[s ⊕ φ(k)],
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where only the last term depend on the key. Moreover, this term can be seem as
the φ(k)-th component of the convolution I0 ∗Î. Using the convolution theorem,
we can compute the convolution efficiently with an FFT algorithm.

This gives the following fast analysis:

1. Compute the expected imbalance I0[s] of the differential-linear distinguisher
for the zero key, for every subset s.

2. Collect D plaintext-ciphertext pairs, and compute the observed imbalance
Î[s] of each subset.

3. Compute the convolution I ∗ Î, and find k that maximizes coefficient φ(k).

5.3 Differential-Linear Cryptanalysis of Chaskey

In order to find good differential-linear distinguishers for Chaskey, we use a
heuristic approach. We know that most good differential characteristics and
good linear trails have an “hourglass structure”, with a single active bit in the
middle. If a good differential-linear characteristics is given with this “hourglass
structure”, we can divide E in three parts E = E⊥ ◦ E⊥� ◦ E�, so that the single
active bit in the differential characteristic falls between E� and E⊥�, and the
single active bit in the linear trail falls between E⊥� and E⊥. We use this decom-
position to look for good differential-linear characteristics: we first divide E in
three parts, and we look for a differential characteristic δi

E�−→ δo in E� (with
probability p), a differential-linear characteristic δo

E⊥�−→ χi in E⊥� (with imbal-
ance b), and a linear characteristic χi

E⊥−→ χo in E⊥ (with imbalance ε), where
δo and χi have a single active bit. This gives a differential-linear distinguisher
with imbalance close to bpε2:

– We consider a pair of plaintext (P,P ′) with P ′ = P ⊕ δi, and we denote
X = E�(P ), Y = E⊥�(X), C = E⊥(Y ).

– We have X ⊕ X ′ = δo with probability p. In this case, ε(Y [χi] ⊕ Y ′[χi]) = b
– Otherwise, we expect that Y [χi]⊕Y ′[χi] is not biased. This gives the following:

Pr
[
Y [χi] ⊕ Y ′[χi] = 0

]
= (1 − p) · 1/2 + p · (1/2 + b/2) = 1/2 + bp/2 (10)

ε(Y [χi] ⊕ Y ′[χi]) = bp (11)

– We also have ε(Y [χi] ⊕ C[χo]) = ε(Y ′[χi] ⊕ C ′[χo]) = ε from the linear
approximations. Combining with (11), we get ε(C[χo] ⊕ C ′[χo]) = bpε2.

In the E⊥� section, we can see the characteristic as a small differential-linear
characteristic with a single active input bit and a single active output bit, or as
a truncated differential where the input difference has a single active bit and the
output value is truncated to a single bit. In other words, we use pairs of values
with a single bit difference, and we look for a biased output bit difference.

We ran an exhaustive search over all possible decompositions E = E⊥ ◦E⊥� ◦
E� (varying the number of rounds), and all possible positions for the active
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bits i at the input of E⊥� and the biased bit5 j at the output of E⊥�. For each
candidate, we evaluate experimentally the imbalance ε(E⊥�(x)[j]⊕E⊥�(x⊕2i)[j]),
and we study the best differential and linear trails to build the full differential-
linear distinguisher. This method is similar to the analysis of the Salsa family
by Aumasson et al. [1]: they decompose the cipher in two parts E = E⊥ ◦ E⊥�,
in order to combine a biased bit in E⊥� with an approximation of E⊥.

This approach allows to identify good differential-linear distinguisher more
easily than by building full differential and linear trails. In particular, we avoid
most of the heuristic problems in the analysis of differential-linear distinguishers
(such as the presence of multiple good trails in the middle) by evaluating exper-
imentally ε(E⊥�(x)[j] ⊕ E⊥�(x ⊕ 2i)[j]) without looking for explicit trails in the
middle. In particular, the transition between E� and E⊥� is a transition between
two differential characteristics, while the transition between E⊥� and E⊥ is a
transition between two linear characteristics.

5.4 Attack Against 6-Round Chaskey

The best distinguisher we identified for an attack against 6-round Chaskey uses
1 round in E�, 4 rounds in E⊥�, and 1 round in E⊥. The optimal differences and
masks are:

– Differential for E� with probability p� ≈ 2−5:

v0[26], v1[26], v2[6, 23, 30], v3[23, 30] E�−→ v2[22]

– Biased bit for E⊥� with imbalance ε⊥� = 2−6.05:

v2[22] E⊥�−→ v2[16]

– Linear approximations for E⊥ with imbalance ε⊥ = 2−2.6:

v2[16] E⊥−→ v0[5], v1[23, 31], v2[0, 8, 15], v3[5]

The differential and linear trails are shown in Fig. 7. The expected imbalance
is p�·ε⊥�·ε2

⊥ = 2−16.25. This gives a differential-linear distinguisher with expected
complexity in the order of D = 2/p2

�ε2
⊥�ε4

⊥ ≈ 233.5.
We can estimate the data complexity more accurately using [11, Eq. (11)]:

we need about 234.1 pairs of samples in order to reach a false positive rate of
2−4. Experimentally, with 234 pairs of samples (i.e. 235 data), the measured
imbalance is larger than 2−16.25 with probability 0.5; with random data, it is
larger than 2−16.25 with probability 0.1. This matches the predictions of [11],
and confirms the validity of our differential-linear analysis.

This simple differential-linear attack is more efficient than generic attacks
against the Even-Mansour construction of Chaskey. It follows the usage limit of
Chaskey, and reaches more rounds than the analysis of the designers. Moreover,
it we can be improved significantly using the results of Sects. 2 and 3.
5 We also consider pairs of adjacent bits, following the analysis of [14].
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Fig. 7. 6-round attack: differential characteristic, and linear trail.

Analysis of Linear Approximations with Partitioning. To make the
description easier, we remove the linear operations at the end, so that the linear
trail becomes:

v2[16] E⊥−→ v1[16, 24], v2[16, 23, 24], v3[24]

We select control bits to improve the probability of the addition between v1

and v2 on active bits 16 and 24. Following the analysis of Sect. 2.2, we need
v1[14]⊕v2[14] and v1[15]⊕v2[15] as control bits for active bit 16. To identify more
complex control bits, we consider v1[14, 15, 22, 23], v2[14, 15, 22, 23] as potential
control bits, as well as v3[23] because it can affect the addition on the previous
half-round. Then, we evaluate the bias experimentally (using the round function
as a black box) in order to remove redundant bits. This leads to the following 8
control bits:

v1[14] ⊕ v2[14] v1[14] ⊕ v1[15] v1[22] v1[23]
v1[15] ⊕ v2[15] v1[15] ⊕ v3[23] v2[22] v2[23]

This defines 28 partitions of the ciphertexts, after guessing 8 key bits. We eval-
uated the bias in each partition, and we found that the combined capacity is
c2 = 26.84. This means that we have the following complexity ratio

RD
lin = 2−2·2.6/2−826.84 ≈ 2−4 (12)
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Analysis of Differential with Partitioning. There are four active bits in
the first additions:

– Bit 23 in v2 � v3: (223, 223) �−→ 0

– Bit 30 in v2 � v3: (230, 230) �−→ 231

– Bit 6 in v2 � v3: (26, 0) �−→ 26

– Bit 26 in v0 � v1: (226, 226) �−→ 0

Following the analysis of Sect. 3, we can use additional input differences for each
of them. However, we reach a better trade-off by selected only three of them.
More precisely, we consider 23 input differences, defined by δi and the following
extra active bits:

v2[24] v2[31] v0[27]

As explained in Sect. 2, we build structures of 24 plaintexts, where each structure
provides 23 pairs for every input difference, i.e. 26 pairs in total.

Following the analysis of Sect. 3, we use the following control bits to improve
the probability of the differential:

v2[23] ⊕ v2[24] v2[30] ⊕ v3[30] v0[26] ⊕ v0[27]
v2[24] ⊕ v3[23] v0[27] ⊕ v1[26]

This divides each set of pairs into 25 subsets, after guessing 5 key bits. In total
we have 28 subsets to analyze, according to the control bits and the multiple
differentials. We found that, for 18 of those subsets, there is a probability 2−2

to reach δo (the probability is 0 for the remaining subsets). This leads to a
complexity ratio:

RD
diff =

2 · 2−5

18/28 × 24 × 2−2
= 2/9

RD
diff-2 =

2 · 22×−5

18/28 × 24 × 22×−2
= 1/36

This corresponds to the analysis of Sect. 3: we have a ratio of 2/3 for bits
v2[23] and v0[27] (Sect. 3.1), and a ratio of 1/2 for v2[31] in the simple linear
case. In the differential-linear case, we have respectively ratios of 1/3 and 1/4.

Finally, the improved attack requires a data complexity in the order of:

RD
lin

2
RD

diff-2D ≈ 220.3.

We can estimate the data complexity more accurately using the analysis of
Biryukov et al. [9]. First, we give an alternate description of the attack similar the
multiple linear attack framework. Starting from D chosen plaintexts, we build
22D pairs using structures, and we keep N = 18 · 2−8 · 2−14 · 22D samples per
approximation after partitioning the differential and linear parts. The imbalance



Improved Differential-Linear Cryptanalysis of 7-Round Chaskey 365

of the distinguisher is 2−2 · 2−6.05 · 26.84 = 2−1.21. Following [9, Corollary 1], the
gain of the attack with D = 224 is estimated as 6.6 bits, i.e. the average key
rank should be about 42 (for the 13-bit subkey).

Using the FFT method of Sect. 5.2, we perform the attack with 224 counters
Î[s]. Each structure of 24 plaintexts provides 26 pairs, so that we need 22D
operations to update the counters. Finally, the FFT computation require 24 ×
224 ≈ 228.6 operations.

We have implemented this analysis, and it runs in about 10 s on a single core
of a desktop PC6. Experimentally, we have a gain of about 6 bits (average key
rank of 64 with 128 experiments); this validates our theoretical analysis. We also
notice some key bits don’t affect the distinguisher and cannot be recovered. On
the other hand, the gain of the attack can be improved using more data, and
further trade-offs are possible using larger or smaller partitions.

5.5 Attack Against 7-Round Chaskey

The best distinguisher we identified for an attack against 7-round Chaskey uses
1.5 round in E�, 4 rounds in E⊥�, and 1.5 round in E⊥. The optimal differences
and masks are:

– Differential for E� with probability p� = 2−17:
v0[8, 18, 21, 30], v1[8, 13, 21, 26, 30], v2[3, 21, 26], v3[21, 26, 27] E�−→ v0[31]

– Biased bit for E⊥� with imbalance ε⊥� = 2−6.1:
v0[31] E⊥�−→ v2[20]

– Linear approximations for E⊥ with imbalance ε⊥ = 2−7.6:
v2[20] E⊥−→ v0[0, 15, 16, 25, 29], v1[7, 11, 19, 26], v2[2, 10, 19, 20, 23, 28], v3[0,
25, 29]

This gives a differential-linear distinguisher with expected complexity in the
order of D = 2/p2

�ε2
⊥�ε4

⊥ ≈ 277.6. This attack is more expensive than generic
attacks against on the Even-Mansour cipher, but we now improve it using the
results of Sects. 2 and 3.

Analysis of Linear Approximations with Partitioning. We use an auto-
matic search to identify good control bits, starting from the bits suggested by
the result of Sect. 2. We identified the following control bits:

v1[3] ⊕ v1[11] ⊕ v3[10] v1[3] ⊕ v1[11] ⊕ v3[11] v0[15] ⊕ v3[14]
v0[15] ⊕ v3[15] v1[11] ⊕ v1[18] ⊕ v3[17] v1[11] ⊕ v1[18] ⊕ v3[18]
v1[3] ⊕ v2[2] v1[3] ⊕ v2[3] v1[11] ⊕ v2[9]

v1[11] ⊕ v2[10] v1[11] ⊕ v2[11] v1[18] ⊕ v2[17]
v1[18] ⊕ v2[18] v1[2] ⊕ v1[3] v1[9] ⊕ v1[11]
v1[10] ⊕ v1[11] v1[17] ⊕ v1[18] v0[14] ⊕ v0[15]
v0[15] ⊕ v1[3] ⊕ v1[11] ⊕ v1[18]
6 Haswell microarchitecture running at 3.4 GHz.
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Note that the control bits identified in Sect. 2 appear as linear combinations of
those control bits.

This defines 219 partitions of the ciphertexts, after guessing 19 key bits. We
evaluated the bias in each partition, and we found that the combined capacity
is c2 = 214.38. This means that we gain the following factor:

RD
lin = 2−2·7.6/2−19214.38 ≈ 2−10.5 (13)

This example clearly shows the power of the partitioning technique: using a few
key guesses, we essentially avoid the cost of the last layer of additions.

Analysis of Differential with Partitioning. We consider 29 input differ-
ences, defined by δi and the following extra active bits:

v0[9] v0[22] v0[31] v0[19]
v0[14] v0[27] v2[22] v2[27] v2[4]

As explained in Sect. 2, we build structures of 210 plaintexts, where each structure
provides 29 pairs for every input difference, i.e. 218 pairs in total.

Again, we use an automatic search to identify good control bits, starting
from the bits suggested in Sect. 3. We use the following control bits to improve
the probability of the differential:

v0[4] ⊕ v2[3] v2[22] ⊕ v3[21] v2[27] ⊕ v3[26] v2[27] ⊕ v3[27]
v2[3] ⊕ v2[4] v2[21] ⊕ v2[22] v2[26] ⊕ v2[27] v0[9] ⊕ v1[8]

v0[14] ⊕ v1[13] v0[27] ⊕ v1[26] v0[30] ⊕ v1[30] v0[8] ⊕ v0[9]
v0[18] ⊕ v0[19] v0[21] ⊕ v0[22]

This divides each set of pairs into 214 subsets, after guessing 14 key bits. In total
we have 223 subsets to analyze, according to the control bits and the multiple
differentials. We found that, for 17496 of those subsets, there is a probability
2−11 to reach δo (the probability is 0 for the remaining subsets). This leads to a
ratio:

RD
diff-2 =

2 · 2−2·17

17496/223 × 210 × 2−2·11 = 1/4374 ≈ 2−12.1

Finally, the improved attack requires a data complexity of:

RD
lin

2
RD

diff-2D ≈ 244.5.

Again, we can estimate the data complexity more accurately using [9]. In this
attack, starting from N0 chosen plaintexts, we build 28N0 pairs using structures,
and we keep N = 17496 · 2−23 · 2−38 · 28N0 samples per approximation after
partitioning the differential and linear parts. The imbalance of the distinguisher
is 2−11 · 2−6.1 · 214.38 = 2−2.72. Following [9, Corollary 1], the gain of the attack
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with N0 = 248 is estimated as 6.3 bits, i.e. the average rank of the 33-bit subkey
should be about 225.7. Following the experimental results of Sect. 5.4, we expect
this to estimation to be close to the real gain (the gain can also be increased if
more than 248 data is available).

Using the FFT method of Sect. 5.2, we perform the attack with 261 counters
Î[s]. Each structure of 210 plaintexts provides 218 pairs, so that we need 28D
operations to update the counters. Finally, the FFT computation require 61 ×
261 ≈ 267 operations.

This attack recovers only a few bits of a 33-bit subkey, but an attacker can
run the attack again with a different differential-linear distinguisher to recover
other key bits. For instance, a rotated version of the distinguisher will have a
complexity close to the optimal one, and the already known key bits can help
reduce the complexity.

Conclusion

In this paper, we have described a partitioning technique inspired by Biham and
Carmeli’s work. While Biham and Carmeli consider only two partitions and a
linear approximation for a single subset, we use a large number of partitions,
and linear approximations for every subset to take advantage of all the data.
We also introduce a technique combining multiple differentials, structures, and
partitioning for differential cryptanalysis. This allows a significant reduction of
the data complexity of attacks against ARX ciphers, and is particularly efficient
with boomerang and differential-linear attacks.

Our main application is a differential-linear attack against Chaskey, that
reaches 7 rounds out of 8. In this application, the partitioning technique allows
to go through the first and last additions almost for free. This is very similar
to the use of partial key guess and partial decryption for SBox-based ciphers.
This is an important result because standard bodies (ISO/IEC JTC1 SC27 and
ITU-T SG17) are currently considering Chaskey for standardization, but little
external cryptanalysis has been published so far. After the first publications
of these results, the designers of Chaskey have proposed to standardize a new
version with 12 rounds [30].
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presentation of the paper.
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A Appendix: Application to FEAL-8X

We now present application of our techniques to reduce the data complexity of
differential and linear attacks.
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FEAL is an early block cipher proposed by Shimizu and Miyaguchi in
1987 [36]. FEAL uses only addition, rotation and xor operations, which makes it
much more efficient than DES in software. FEAL has inspired the development
of many cryptanalytic techniques, in particular linear cryptanalysis.

At the rump session of CRYPTO 2012, Matsui announced a challenge for
low data complexity attacks on FEAL-8X using only known plaintexts. At the
time, the best practical attack required 224 known plaintexts [2] (Matsui and
Yamagishi had non-practical attacks with as little as 214 known plaintext [26]),
but Biham and Carmeli won the challenge with a new linear attack using 215

known plaintexts, and introduced the partitioning technique to reduce the data
complexity to 214 [3]. Later Sakikoyama et al. improved this result using multiple
linear cryptanalysis, with a data complexity of only 212 [34].

We now explain how to apply the generalized partitioning to attack FEAL-
8X. Our attack follows the attack of Biham and Carmeli [3], and uses the gener-
alized partitioning technique to reduce the data complexity further. The attack
by Biham and Carmeli requires 214 data and about 245 time, while our attack
needs only 212 data, and 245 time. While the attack of Sakikoyama et al. is
more efficient with the same data complexity, this shows a simple example of
application of the generalized partitioning technique.

The attacks are based on a 6-round linear approximation with imbalance
2−5, using partial encryption for the first round (with a 15 bit key guess), and
partial decryption for the last round (with a 22 bit key guess). This allows to
compute enough bits of the state after the first round and before the last round,
respectively, to compute the linear approximation. For more details of the attack,
we refer the reader to the description of Biham and Carmeli [3].

In order to improve the attack, we focus on the round function of the
second-to-last round. The corresponding linear approximation is x[10115554] →
y[04031004] with imbalance of approximately 2−3.

We partition the data according to the following 4 bits7 (note that all those
bits can be computed in the input of round 6 with the 22-bit key guess of DK7):

b0 = f0,3 ⊕ f1,3 ⊕ f2,2 ⊕ f3,2 b1 = f0,3 ⊕ f1,3 ⊕ f2,3 ⊕ f3,3

b2 = f0,3 ⊕ f1,3 ⊕ f2,5 ⊕ f3,5 b3 = f0,2 ⊕ f1,2 ⊕ f0,3 ⊕ f1,3

The probability of the linear approximation in each subset is as follows (indexed
by the value of b3, b2, b1, b0):

p0000 = 0.250 p0001 = 0.270 p0010 = 0.531 p0011 = 0.746
p0100 = 0.406 p0101 = 0.699 p0110 = 0.750 p0111 = 0.652
p1000 = 0.254 p1001 = 0.469 p1010 = 0.730 p1011 = 0.750
p1100 = 0.652 p1101 = 0.750 p1110 = 0.699 p1111 = 0.406

7 We use Biham and Carmeli’s notation fi,j for bit j of input word i.
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This gives a total capacity c2 =
∑

i(2 · pi − 1)2 = 2.49, using subsets of 1/16
of the data. For reference, a linear attack without partitioning has a capacity
(2−3)2, therefore the complexity ratio can be computed as:

RD
lin = 2−6/(1/16 × 2.49) ≈ 1/10

This can be compared to Biham and Carmeli’s partitioning, where they use a
single linear approximation with capacity 0.1 for 1/2 of the data, this gives a
ratio of only:

RD
lin = 2−6/(1/2 × 0.1) ≈ 1/3.2

With a naive implementation of this attack, we have to repeat the analysis
16 times, for each guess of 4 key bits. Since the data is reduced by a factor 4, the
total time complexity increases by a factor 4 compared to the attack on Biham
and Carmeli. This result in an attack with 212 data and 247 time.

However, the time complexity can also be reduced using counters, because
the 4 extra key bits only affect the choice of the partitions. This leads to an
attack with 212 data and 243 time.
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Abstract. The Russian Federation’s standardization agency has
recently published a hash function called Streebog and a 128-bit block
cipher called Kuznyechik. Both of these algorithms use the same 8-bit
S-Box but its design rationale was never made public.

In this paper, we reverse-engineer this S-Box and reveal its hid-
den structure. It is based on a sort of 2-round Feistel Network where
exclusive-or is replaced by a finite field multiplication. This structure is
hidden by two different linear layers applied before and after. In total,
five different 4-bit S-Boxes, a multiplexer, two 8-bit linear permutations
and two finite field multiplications in a field of size 24 are needed to
compute the S-Box.

The knowledge of this decomposition allows a much more efficient
hardware implementation by dividing the area and the delay by 2.5 and
8 respectively. However, the small 4-bit S-Boxes do not have very good
cryptographic properties. In fact, one of them has a probability 1 differ-
ential.

We then generalize the method we used to partially recover the lin-
ear layers used to whiten the core of this S-Box and illustrate it with a
generic decomposition attack against 4-round Feistel Networks whitened
with unknown linear layers. Our attack exploits a particular pattern aris-
ing in the Linear Approximations Table of such functions.

Keywords: Reverse-Engineering · S-Box · Streebog · Kuznyechik ·
STRIBOBr1 · White-Box · Linear Approximation Table · Feistel
Network

1 Introduction

S-Boxes are key components of many symmetric cryptographic primitives includ-
ing block ciphers and hash functions. Their use allows elegant security arguments
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based on the so-called wide-trail strategy [1] to justify that the primitive is secure
against some of the best known attacks, e.g. differential [2] and linear [3,4] crypt-
analysis.

Given the importance of their role, S-Boxes are carefully chosen and the crite-
ria or algorithm used to build them are explained and justified by the designers of
new algorithms. For example, since the seminal work of Nyberg on this topic [5],
the inverse function in the finite field of size 2n is often used (see the Advanced
Encryption Standard [1], TWINE [6]...).

However, some algorithms are designed secretly and, thus, do not justify their
design choices. Notable such instances are the primitives designed by the Amer-
ican National Security Agency (NSA) or standardized by the Russian Federal
Agency on Technical Regulation and Metrology (FATRM). While the NSA even-
tually released some information about the design of the S-Boxes of the Data
Encryption Standard [7,8], the criteria they used to pick the S-Box of Skip-
jack [9] remain mostly unknown despite some recent advances on the topic [10].
Similarly, recent algorithms standardized by FATRM share the same function π,
an unexplained 8-bit S-Box. These algorithms are:

Streebog (officially called “GOST R 34.11-2012”, sometimes spelled Stribog)
is the new standard hash function for the Russian Federation [11]. Several
cryptanalyses against this algorithm have been published. A second pre-
image attack requiring 2266 calls to the compression function instead of the
expected 2512 has been found by Guo et al. [12]. Another attack [13] tar-
gets a modified version of the algorithm where only the round constants are
modified: for some new round constants, it is actually possible to find colli-
sions for the hash function. To show that the constants were not chosen with
malicious intentions, the designers published a note [14] describing how they
were derived from a modified version of the hash function. While puzzling
at a first glance, the seeds actually correspond to Russian names written
backward (see the full version of this paper [15]).

Kuznyechik (officially called “GOST R 34.12-2015”; sometimes the spelling
“Kuznechik” is used instead) is the new standard block cipher for the Russian
Federation. It was first mentioned in [16] and is now available at [17]. It
is a 128-bit block cipher with a 256-bit key consisting of 9 rounds of a
Substitution-Permutation Network where the linear layer is a matrix mul-
tiplication in (F28)16 and the S-Box layer consists in the parallel application
of an 8-bit S-Box. The best attack so far is a Meet-in-the-Middle attack cov-
ering 5 rounds [18]. It should not be mistaken with GOST 28147-89 [19], a
64-bit block cipher standardized in 1989 and which is sometimes referred to
as “the GOST cipher” in the literature and “Magma” in the latest Russian
documents.
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STRIBOB [20] is a CAESAR candidate which made it to the second round of
the competition. The designer of this algorithm is not related to the Russian
agencies. Still, the submission for the first round (stribobr1) is based on
Streebog.1

The Russian agency acting among other things as a counterpart of the Amer-
ican NSA is the Federal Security Service (FSB). It was officially involved in the
design of Streebog. Interestingly, in a presentation given at RusCrypto’13 [24] by
Shishkin on behalf of the FSB, some information about the design process of the
S-Box is given: it is supposed not to have an analytic structure — even if that
means not having optimal cryptographic properties unlike e.g. the S-Box of the
AES [1] — and to minimize the number of operations necessary to compute it
so as to optimize hardware and vectorized software implementations. However,
the designers did not publish any more details about the rationale behind their
choice for π and, as a consequence, very little is known about it apart from its
look-up table, which we give in Table 1. In [21], Saarinen et al. summarize a
discussion they had with some of the designers of the GOST algorithms at a
conference in Moscow:

We had brief informal discussions with some members of the Streebog
and Kuznyechik design team at the CTCrypt’14 workshop (05-06 June
2014, Moscow RU). Their recollection was that the aim was to choose a
“randomized” S-Box that meets the basic differential, linear, and algebraic
requirements. Randomization using various building blocks was simply
iterated until a “good enough” permutation was found. This was seen
as an effective countermeasure against yet-unknown attacks [as well as
algebraic attacks].

Since we know little to nothing about the design of this S-Box, it is natural
to try and gather as much information as we can from its look-up table. In fact,
the reverse-engineering of algorithms with unknown design criteria is not a new
research area. We can mention for example the work of the community on the
American National Security Agency’s block cipher Skipjack [9] both before and
after its release [25–27]. More recently, Biryukov et al. proved that its S-Box was
not selected from a collection of random S-Boxes and was actually the product
of an algorithm that optimized its linear properties [10].

Another recent example of reverse-engineering actually deals with Streebog.
The linear layer of the permutation used to build its compression function was
originally given as a binary matrix. However, it was shown in [28] that it corre-
sponds to a matrix multiplication in (F28)8.

More generally, the task of reverse-engineering S-Boxes is related to finding
generic attacks against high-level constructions. For instance, the cryptanalysis

1 The version submitted to the next round, referred to as “stribobr2” and
“whirlbob” [21], uses the S-Box of the Whirlpool hash function [22] whose design
criteria and structure are public. In fact, the secrecy surrounding the S-Box of Stree-
bog was part of the motivation behind this change [23].
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Table 1. The S-Box π in hexadecimal. For example, π(0x7a) = 0xc6.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. fc ee dd 11 cf 6e 31 16 fb c4 fa da 23 c5 04 4d

1. e9 77 f0 db 93 2e 99 ba 17 36 f1 bb 14 cd 5f c1

2. f9 18 65 5a e2 5c ef 21 81 1c 3c 42 8b 01 8e 4f

3. 05 84 02 ae e3 6a 8f a0 06 0b ed 98 7f d4 d3 1f

4. eb 34 2c 51 ea c8 48 ab f2 2a 68 a2 fd 3a ce cc

5. b5 70 0e 56 08 0c 76 12 bf 72 13 47 9c b7 5d 87

6. 15 a1 96 29 10 7b 9a c7 f3 91 78 6f 9d 9e b2 b1

7. 32 75 19 3d ff 35 8a 7e 6d 54 c6 80 c3 bd 0d 57

8. df f5 24 a9 3e a8 43 c9 d7 79 d6 f6 7c 22 b9 03

9. e0 0f ec de 7a 94 b0 bc dc e8 28 50 4e 33 0a 4a

a. a7 97 60 73 1e 00 62 44 1a b8 38 82 64 9f 26 41

b. ad 45 46 92 27 5e 55 2f 8c a3 a5 7d 69 d5 95 3b

c. 07 58 b3 40 86 ac 1d f7 30 37 6b e4 88 d9 e7 89

d. e1 1b 83 49 4c 3f f8 fe 8d 53 aa 90 ca d8 85 61

e. 20 71 67 a4 2d 2b 09 5b cb 9b 25 d0 be e5 6c 52

f. 59 a6 74 d2 e6 f4 b4 c0 d1 66 af c2 39 4b 63 b6

of SASAS [29], the recent attacks against the ASASA scheme [30,31] and the
recovery of the secret Feistel functions for 5-, 6- and 7-round Feistel proposed
in [32] can also be interpreted as methods to reverse-engineer S-Boxes built using
such structures.

Our Contribution. We managed to reverse-engineer the hidden structure of this
S-Box. A simplified high level view is given in Fig. 1. It relies on two rounds
reminiscent of a Feistel or Misty-like structure where the output of the Feistel
function is combined with the other branch using a finite field multiplication. In
each round, a different heuristic is used to prevent issues caused by multiplication
by 0. This structure is hidden by two different whitening linear layers applied
before and after it.

With the exception of the inverse function which is used once, none of the
components of this decomposition exhibits particularly good cryptographic prop-
erties. In fact, one of the non-linear 4-bit permutations used has a probability 1
differential.

Our recovery of the structure of π relies on spotting visual patterns in its LAT
and exploiting those. We generalize this method and show how visual patterns in
the LAT of 4-round Feistel Networks can be exploited to decompose a so-called
AF4A structure consisting in a 4-round Feistel Network whitened with affine
layers.
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L
N

N
N

N
L

Fig. 1. A simplified view of our decomposition of π. Linear (resp. non linear) functions
are denoted L (resp. N ) and � is a finite field multiplication.

Outline. Section 2 introduces the definitions we need and describes how a statis-
tical analysis of π rules out its randomness. Then, Sect. 3 explains the steps we
used to reverse-engineer the S-Box starting from a picture derived from its linear
properties and ending with a full specification of its secret structure. Section 4
is our analysis of the components used by GOST to build this S-Box. Finally,
Sect. 5 describes a generic recovery attack against permutations affine-equivalent
to 4-round Feistel Networks with secret components.

2 Boolean Functions and Randomness

2.1 Definitions and Notations

Definition 1. We denote as Fp the finite field of size p. A vectorial Boolean
function is a function mapping F

n
2 to F

m
2 . We call Boolean permutation a per-

mutation of Fn
2 .

In what follows, we shall use the following operations and notations:

– exclusive-OR (or XOR) is denoted ⊕,
– logical AND is denoted ∧,
– the scalar product of two elements x = (xn−1, ..., x0) and y = (yn−1, ..., y0)

of Fn
2 is denoted “·” and is equal to to x · y =

⊕n−1
i=0 xi ∧ yi, and

– finite field multiplication is denoted �.

The following tables are key tools to predict the resilience of an S-Box against
linear and differential attacks.

DDT the Difference Distribution Table of a function f mapping n bits to m is
a 2n × 2m matrix T where T [δ,Δ] = #{x ∈ F

n
2 , f(x ⊕ δ) ⊕ f(x) = Δ},

LAT the Linear Approximation Table of a function f mapping n bits to m is a
2n × 2m matrix L where L[a, b] = #{x ∈ F

n
2 , a ·x = b · f(x)}− 2n−1. We note

that coefficient L[a, b] can equivalently be expressed as follows:

L[a, b] =
−1
2

∑

x∈Fn
2

(−1)a·x⊕b·f(x),

where the sum corresponds to the so-called Walsh transform of x �→
(−1)b·f(x).
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Furthermore, the coefficient T [δ,Δ] of a DDT T is called cardinal of the
differential (δ � Δ) and the coefficient L[a, b] of a LAT L is called bias of the
approximation (a � b).

From a designer’s perspective, it is better to keep both the differential cardi-
nals and the approximation biases low. For instance, the maximum cardinal of
a differential is called the differential uniformity [5] and is chosen to be small in
many primitives including the AES [1]. Such a strategy decreases the individual
probability of all differential and linear trails.

Our analysis also requires some specific notations regarding linear functions
mapping F

n
2 to F

m
2 . Any such linear function can be represented by a matrix

of elements in F2. For the sake of simplicity, we denote M t the transpose of a
matrix M and f t the linear function obtained from the transpose of the matrix
representation of the linear function f .

Finally, we recall the following definition.

Definition 2 (Affine-Equivalence). Two vectorial Boolean functions f and
g are affine-equivalent if there exist two affine mappings μ and η such that f =
η ◦ g ◦ μ.

2.2 Quantifying Non-Randomness

In [10], Biryukov et al. proposed a general approach to try to reverse-engineer
an S-Box suspected of having a hidden structure or of being built using secret
design criteria. Part of their method allows a cryptanalyst to find out whether
or not the S-Box could have been generated at random. It consists in checking
if the distributions of the coefficients in both the DDT and the LAT are as it
would be expected in the case of a random permutation.

The probability that all coefficients in the DDT of a random 8-bit permuta-
tion are at most equal to 8 and that this value occurs at most 25 times (as is
the case for Streebog) is given by:

P [max(d) = 8 and N(8) ≤ 25] =
25∑

�=0

(
2552

�

)
·
[ 3∑

d=0

D(2d)
]2552−�

· D(8)�,

where D(d) is the probability that a coefficient of the DDT of a random permu-
tation of F8

2 is equal to d. It is given in [33] and is equal to

D(d) =
e−1/2

2d/2(d/2)!
.

We find that P [max(d) = 8 and N(8) ≤ 25] ≈ 2−82.69. Therefore, we claim
for π what Biryukov and Perrin claimed for the “F-Table” of Skipjack, namely
that:
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1. this S-Box was not picked uniformly at random from the set of the permuta-
tions of F8

2,
2. this S-Box was not generated by first picking many S-Boxes uniformly at

random and then keeping the best according to some criteria, and
3. whatever algorithm was used to build it optimized the differential properties

of the result.

3 Reverse-Engineering π

We used the algorithm described in [10] to try and recover possible structures
for the S-Box. It has an even signature, meaning that it could be a Substitution-
Permutation Network with simple bit permutations or a Feistel Network. How-
ever, the SASAS [29] attack and the SAT-based recovery attack against 3- ,4-
and 5-round Feistel (both using exclusive-or and modular addition) from [10]
failed. We also discarded the idea that π is affine-equivalent to a monomial of
F28 using the following remark.

Remark 1. If f is affine-equivalent to a monomial, then every line of its DDT cor-
responding to a non-zero input difference contains the same coefficients (although
usually in a different order).

This observation is an immediate consequence of the definition of the differential
spectrum of monomials in [34]. For example, every line of the DDT of the S-Box
of the AES, which is affine-equivalent to x �→ x−1, contains exactly 129 zeroes,
126 twos and 1 four.

3.1 From a Vague Pattern to a Highly Structured
Affine-Equivalent S-Box

It is also suggested in [10] to look at the so-called “Jackson Pollock represen-
tation” of the DDT and LAT of an unknown S-Box. These are obtained by
assigning a color to each possible coefficient and drawing the table using one
pixel per coefficient. The result for the absolute value of the coefficients of the
LAT of π is given in Fig. 2. While it may be hard to see on paper, blurry vertical
lines appear when looking at a large enough version of this picture. In order
to better see this pattern, we introduce the so-called ⊕-texture. It is a kind of
auto-correlation.

Definition 3. We call ⊕-texture of the LAT L of an S-Box the matrix T ⊕ with
coefficients T ⊕[i, j] defined as:

T ⊕[i, j] = #
{
(x, y), |L[x ⊕ i, y ⊕ j]| = |L[x, y]|

}
.

The Jackson Pollock representation of the ⊕-texture of the LAT Lπ of π
is given in Fig. 3. The lines are now much more obvious and, furthermore,
we observe dark dots in the very first column. The indices of both the rows
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containing the black dots and the columns containing the lines are the same and
correspond to a binary vector space V defined, using hexadecimal notations, as:

V = {00, 1a, 20, 3a, 44, 5e, 64, 7e, 8a, 90, aa, b0, ce, d4, ee, f4}.

In order to cluster the columns together to the left of the picture and the
dark dots to the top of it, we can apply a linear mapping L to obtain a new
table L′

π where L′
π[i, j] = Lπ[L(i), L(j)]. We define L so that it maps i ∈ F

4
2 to

the i-th element of V and then complete it in a natural way to obtain a linear
permutation of F8

2. It maps each bit as described below in hexadecimal notations:

L(01) = 1a, L(02) = 20, L(04) = 44, L(08) = 8a,

L(10) = 01, L(20) = 02, L(40) = 04, L(80) = 08.

Fig. 2. The Jackson Pollock representation of the LAT of π (absolute value)

The Jackson Pollock representation of L′
π is given in Fig. 4. As we can see, it

is highly structured: there is a 16× 16 square containing2 only coefficients equal
to 0 in the top left corner. Furthermore, the left-most 15 bits to the right of
column 0, exhibit a strange pattern: each of the coefficients in it has an absolute
value in [4, 12] although the maximum coefficient in the table is equal to 28.
This forms a sort of low-contrast “stripe”. The low number of different values
it contains implies a low number of colour in the corresponding columns in Lπ,
which in turn correspond to the lines we were able to distinguish in Fig. 2.

2 Except of course in position (0, 0) where the bias is equal to the maximum of 128.
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Fig. 3. The ⊕-texture of the LAT Lπ of π.

It is natural to try and build another S-Box from π such that its LAT is equal
to L′

π. The remainder of this section describes how we achieved this. First, we
describe a particular case3 of Proposition 8.3 of [35] in the following lemma.

Lemma 1 (Proposition 8.3 of [35]). Let f be a permutation mapping n bits
to n and let L be its LAT. Let L′ be a table defined by L′[u, v] = L[μ(u), v] for
some linear permutation μ. Then the function f ′ has LAT L′, where

f ′ = f ◦ (μ−1)t.

We also note that for a permutation f , the change of variable y = f(x) implies:
∑

x∈Fn
2

(−1)a·x⊕b·f(x) =
∑

y∈Fn
2

(−1)a·f−1(y)⊕b·y,

which in turn implies the following observation regarding the LAT of a per-
mutation and its inverse.

Remark 2. Let f be a permutation mapping n bits to n and let L be its LAT.
Then the LAT of its inverse f−1 is Lt.

We can prove the following theorem using this remark and Lemma 1.

Theorem 1. Let f be a permutation mapping n bits to n and let L be its LAT.
Let L′ be a table defined by L′[u, v] = L[μ(u), η(v)] for some linear permutations
μ and η. Then the function f ′ has LAT L′, where

f ′ = ηt ◦ f ◦ (μ−1)t.

3 It is obtained by setting b = b0 = a = 0 in the statement of the original proposition
and renaming the functions used.
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Fig. 4. The Jackson Pollock representation of L′
π, where L′

π[i, j] = Lπ[L(i), L(j)].

Proof. Let f be a permutation of n bits and let L be its LAT. We first build
fμ = f ◦ (μ−1)t using Lemma 1 so that the LAT of fμ is Lμ with Lμ[u, v] =
L[μ(u), v]. We then use Remark 2 to note that the inverse of fμ has LAT Linv

μ

with Linv
μ [u, v] = Lμ[v, u] = L[v, μ(u)]. Thus, fη = f−1

μ ◦ (η−1)t has LAT Lη

with Lη[u, v] = L[η(v), μ(u)]. Using again Remark 2, we obtain that f−1
η =

ηt ◦ f ◦ (μ−1)t has LAT L′. ��

As a consequence of Theorem 1, the S-Box Lt ◦ π ◦ (Lt)−1 has L′
π as its LAT.

The mapping Lt consists in a linear Feistel round followed by a permutation of
the left and right 4-bit nibbles (which we denote swapNibbles). To simplify the
modifications we make, we remove the nibble permutation and define

π′ = L∗ ◦ π ◦ L∗

where L∗ is the Feistel round in Lt and is described in Fig. 5.

x7 x6 x5 x4 x3 x2 x1 x0

⊕
⊕

⊕
⊕
⊕

Fig. 5. A circuit computing L∗ where its input is given in binary.
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3.2 The First Decomposition

This affine-equivalent S-Box π′ is highly structured. First of all, the LAT of(
swapNibbles ◦ π′ ◦ swapNibbles

)
is L′

π, with its white square in the top left and
strange left side. It also has interesting multiset properties. We use notations
similar to those in [29], i.e.:

C denotes a 4-bit nibble which is constant,
? denotes a set with no particular structure, and
P denotes a 4-bit nibble taking all 16 values.

Table 2 summarizes the multiset properties of π′ and π′−1. As we can see,
these are similar to those of a 3-rounds Feistel. However, using the SAT-based
algorithm from [10], we ruled out this possibility.

Table 2. The multiset properties of π′ and its inverse.

π′ input output

(P, C) (?, ?)

(C, P ) (P, ?)

π′−1 input output

(P, C) (?, ?)

(C, P ) (P, ?)

When looking at the inverse of π′, we notice that the multiset property is
actually even stronger. Indeed, for any constant �, the set S� = {π′−1(�||r),∀r ∈
[0, 15]} is almost a vector space. If we replace the unique element of S� of the
form (?||0) by (0||0), the set obtained is a vector space V� where the right nibble
is a linear function of the left nibble. As stated before, the left nibble takes all
possible values. If we put aside the outputs of the form (?||0) then π′−1 can be
seen as

π′−1(�||r) = T�(r)||V�

(
T�(r)

)
,

In this decomposition, T is a 4-bit block cipher with a 4-bit key where the left
input of π′−1 acts as a key. On the other hand, V is a keyed linear function: for
all �, V� is a linear function mapping 4 bits to 4 bits.

We then complete this alternative representation by replacing V�(0), which
should be equal to 0, by the left side of π′−1(�||T−1

� (0)). This allows to find a
high level decomposition of π′−1.

Finally, we define a new keyed function Ur(�) = V�(r) and notice that, for all
r, Ur is a permutation. A decomposition of π′−1 is thus:

π′−1(�||r) = T�(r)||UT�(r)(�),

where the full codebooks of both mini-block ciphers T and U are given in Table 3a
and b respectively. This structure is summarized in Fig. 6.

We decompose the mini-block ciphers T and U themselves in Sects. 3.3 and
3.4 respectively.
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T

U

Fig. 6. The high level structure of π′−1.

3.3 Reverse-Engineering T

We note that the mini-block cipher T ′ defined as T ′
k : x �→ Tk

(
x ⊕ tin(k) ⊕ 0xC

)

for tin(k) = 0||k2||k3||0 (see Table 4) is such that T ′
k(0) = 0 for all k.

Furthermore, T ′ is such that all lines of T ′
k can be obtained through a linear

combination of T ′
6, T

′
7, T

′
8 and T ′

9 as follows:

T ′
0 = T ′

7 ⊕ T ′
9 T ′

1 = T ′
8 ⊕ T ′

9 T ′
2 = T ′

7 ⊕ T ′
9

T ′
3 = T ′

6 ⊕ T ′
7 T ′

4 = T ′
7 T ′

5 = T ′
7 ⊕ T ′

8

T ′
a = T ′

6 ⊕ T ′
7 ⊕ T ′

8 ⊕ T ′
9 T ′

b = T ′
6 ⊕ T ′

7 T ′
c = T ′

6 ⊕ T ′
7 ⊕ T ′

8

T ′
d = T ′

9 T ′
e = T ′

8 T ′
f = T ′

7 ⊕ T ′
9.

(1)

We also notice that T ′
6, T

′
7, T

′
8 and T ′

9 are all affine equivalent. Indeed, the linear
mapping A defined by A : 1 �→ 4, 2 �→ 1, 4 �→ 8, 8 �→ a (see Fig. 7a) is such that:

T ′
7 = A ◦ T ′

6

T ′
8 = A2 ◦ T ′

6

T ′
9 = A3 ◦ T ′

6.

Table 3. The mini-block ciphers used to decompose π′−1.

0 1 2 3 4 5 6 7 8 9 a b c d e f
T0 e f 2 5 7 b 8 1 3 c d a 0 9 4 6
T1 2 9 a 4 e 6 7 b 1 8 3 d 0 c f 5
T2 e f 2 5 7 b 8 1 3 c d a 0 9 4 6
T3 5 d 4 2 6 7 b 8 c 1 9 f 0 3 a e
T4 5 e 6 7 4 3 f a 0 1 d 2 8 b c 9
T5 9 d f a c 6 8 1 0 5 b 3 2 4 e 7
T6 3 9 d f 1 e b 8 0 2 7 c 4 a 5 6
T7 5 e 6 7 4 3 f a 0 1 d 2 8 b c 9
T8 7 b 8 5 9 d c 3 2 e a f 6 1 0 4
T9 d f a c e 6 2 5 1 3 b 7 9 4 0 8
Ta e 6 7 4 c 3 8 1 a 2 d 9 5 b 0 f
Tb 4 2 5 d b 8 6 7 9 f c 1 a e 0 3
Tc 2 5 a 4 3 9 d 8 c f 0 7 b 1 6 e
Td e 6 2 5 d f a c 9 4 0 8 1 3 b 7
Te 9 d c 3 7 b 8 5 6 1 0 4 2 e a f
Tf 8 1 7 b 2 5 e f 4 6 0 9 d a 3 c

(a) T .

0 1 2 3 4 5 6 7 8 9 a b c d e f
U0 8 f 0 2 d 5 6 9 e 3 1 7 c b 4 a
U1 8 c 7 3 d f 2 0 e 4 1 b 6 5 9 a
U2 3 4 e 9 d 8 0 5 1 2 c f 7 b a 6
U3 b 8 9 a 0 7 2 5 f 6 d 4 1 e 3 c
U4 c 2 5 b e 8 7 1 4 f d 6 9 3 0 a
U5 4 e 2 8 3 7 5 1 a b c d f 6 9 0
U6 f 6 b 2 3 0 7 4 5 d 1 9 e 8 a c
U7 7 a c 1 e f 5 4 b 9 0 2 8 d 3 6
U8 a f b e c 4 d 5 7 0 6 1 8 3 9 2
U9 2 3 c d 1 b f 5 9 4 7 a e 6 0 8
Ua 9 b 5 7 1 c d 0 6 2 a e f 8 3 4
Ub 1 7 2 4 c 3 f 0 8 6 b 5 9 d a e
Uc 6 d e 5 2 c a 4 3 f b 7 1 0 9 8
Ud e 1 9 6 f 3 8 4 d b a c 7 5 0 2
Ue 5 9 0 c f 4 a 1 2 d 7 8 6 b 3 e
Uf d 5 7 f 2 b 8 1 c 9 6 3 0 e a 4

(b) U .
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Table 4. A modified version T ′ of the mini-block cipher T .

0 1 2 3 4 5 6 7 8 9 a b c d e f

6 0 2 7 c 4 a 5 6 3 9 d f 1 e b 8

7 0 1 d 2 8 b c 9 5 e 6 7 4 3 f a

8 0 4 6 1 a f 2 e c 3 9 d 8 5 7 b

9 0 8 9 4 b 7 1 3 2 5 e 6 a c d f

0 0 9 4 6 3 c d a 7 b 8 1 e f 2 5

1 0 c f 5 1 8 3 d e 6 7 b 2 9 a 4

2 0 9 4 6 3 c d a 7 b 8 1 e f 2 5

3 0 3 a e c 1 9 f 6 7 b 8 5 d 4 2

4 0 1 d 2 8 b c 9 5 e 6 7 4 3 f a

5 0 5 b 3 2 4 e 7 9 d f a c 6 8 1

a 0 f 5 b d 9 a 2 8 1 c 3 7 4 e 6

b 0 3 a e c 1 9 f 6 7 b 8 5 d 4 2

c 0 7 c f 6 e b 1 a 4 2 5 d 8 3 9

d 0 8 9 4 b 7 1 3 2 5 e 6 a c d f

e 0 4 6 1 a f 2 e c 3 9 d 8 5 7 b

f 0 9 4 6 3 c d a 7 b 8 1 e f 2 5

If we swap the two least significant bits (an operation we denote swap2lsb)
before and after applying A we see a clear LFSR structure (see Fig. 7b).

⊕

(a) Definition of A.

⊕

(b) Swapping the least significant bits.

Fig. 7. The mapping used to generate T ′
7, T

′
8 and T ′

9 from T ′
6.

We deduce the LFSR polynomial to be X4 + X3 + 1. This points towards
finite field multiplication and, indeed, the mapping Â = swap2lsb ◦ A ◦ swap2lsb
can be viewed as a multiplication by X in F24 = F2[X]/(X4 +X3+1). To fit the
swap into the original scheme we modify T ′

6 and the bottom linear layer. Indeed,
note that

Ai = (swap2lsb ◦ Â ◦ swap2lsb)i = swap2lsb ◦ Âi ◦ swap2lsb for i = 0, 1, . . . ,

so that we can merge one swap2lsb into T ′
6 and move the other swap2lsb through

XOR’s outside T ′. Let t = swap2lsb ◦ T ′
6. Then swap2lsb ◦ T ′

k(x) is a linear
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k3 k2 k1 k0 x3 x2 x1 x0

⊕
⊕

t

f

Fig. 8. The mini-block cipher T .

Table 5. Mappings f and t.

0 1 2 3 4 5 6 7 8 9 a b c d e f

f a c a 3 2 6 1 2 4 8 f 3 7 8 4 a

t 2 d b 8 3 a e f 4 9 6 5 0 1 7 c

combination of Xi � t(x), where i ∈ {0, 1, 2, 3} and � is multiplication in the
specified field. Thus, T can be computed as follows:

Tk(x) = swap2lsb
(
f(k) � t

(
x ⊕ tin(k) ⊕ 0xC

))
,

where f captures the linear relations from Eq. (1). Both f and t are given in
Table 5 and a picture representing the structure of T is given in Fig. 8.

Note that f(x) is never equal to 0: if it were the case then the function would
not be invertible. On the other hand, the inverse of Tk is easy to compute: f
must be replaced by 1/f where the inversion is done in the finite field F24 , t by
its inverse t−1 and the order of the operations must be reversed.

3.4 Reverse-Engineering U

Since Uk(x) = Vx(k) and Vx is a linear function when x �= 0, we have

Uk(x) =
(
k3 × U8(x)

)
⊕

(
k2 × U4(x)

)
⊕

(
k1 × U2(x)

)
⊕

(
k0 × U1(x)

)

where k =
∑

i≤3 ki2i and k �= 0. We furthermore notice that the permutations
U2, U4 and U8 can all be derived from U1 using some affine functions Bk so that
Uk = Bk ◦ U1. The values of Bk(x) are given in Table 6.

Table 6. Affine functions such that Uk = Bk ◦ U1.

0 1 2 3 4 5 6 7 8 9 a b c d e f

B2 5 c 0 9 2 b 7 e 3 a 6 f 4 d 1 8

B4 1 d 7 b f 3 9 5 c 0 a 6 2 e 4 8

B8 5 6 d e 0 3 8 b a 9 2 1 f c 7 4
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If we let B(x) = B4(x)⊕1 then B2(x) = B−1(x)⊕5 and B8(x) = B2(x)⊕5.
Thus, we can define a linear function uout such that

U1(x) = B0 ◦ U1(x) ⊕ uout(1)
U2(x) = B−1 ◦ U1(x) ⊕ uout(2)
U4(x) = B1 ◦ U1(x) ⊕ uout(4)
U8(x) = B2 ◦ U1(x) ⊕ uout(8).

(2)

Let M2 be the matrix representation of multiplication by X in the finite field we
used to decompose T , namely F24 = F2[X]/(X4 + X3 + 1). The linear mapping
uf defined by uf : 1 �→ 5, 2 �→ 2, 4 �→ 6, 8 �→ 8 is such that B = uf ◦ M2 ◦ u−1

f is
so that Eq. (2) can be re-written as

U1(x) = uf ◦ M0
2 ◦ u−1

f ◦ U1(x) ⊕ uout(1)
U2(x) = uf ◦ M−1

2 ◦ u−1
f ◦ U1(x) ⊕ uout(2)

U4(x) = uf ◦ M1
2 ◦ u−1

f ◦ U1(x) ⊕ uout(4)
U8(x) = uf ◦ M2

2 ◦ u−1
f ◦ U1(x) ⊕ uout(8).

(3)

If we swap the two least significant bits of k, then the exponents of matrix M2

will go in ascending order: (−1, 0, 1, 2). Let u1 = M−1
2 ◦ u−1

f ◦ U1(x). Since M2

is multiplication by X in the finite field, we can write the following expression
for Uk (when k �= 0):

Uk(x) = uf

(
u1(x) � swap2lsb(k)

)
⊕ uout(k). (4)

The complete decomposition of U is presented in Fig. 9. It uses the 4-bit per-
mutations u0 and u1 specified in Table 7. We could not find a relation between
u1 and u0 = u−1

f ◦ U0(x) so there has to be a conditional branching: U selects
the result of Eq. (4) if k �= 0 and the result of u0(x) otherwise before apply-
ing uf . This is achieved using a multiplexer which returns the output of u0 if
k3 = k2 = k1 = k0 = 0, and returns the output of u1 if it is not the case. In
other words, U can be computed as follows:

Uk(x) =

{
uf

(
u1(x) � swap2lsb(k)

)
⊕ uout(k), if k �= 0

uf

(
u0(x)

)
if k = 0.

3.5 The Structure of π

In Sects. 3.3 and 3.4, we decomposed the two mini-block ciphers T and U which
can be used to build π′−1, the inverse of L∗ ◦π◦L∗. These mini-block ciphers are
based on the non-linear 4-bit functions f, t, u0, u1, two finite field multiplications,
a “trick” to bypass the non-invertibility of multiplication by 0 and simple linear
functions. Let us now use the expressions we identified to express π itself.

First, we associate the linear functions and L∗ into α and ω, two linear per-
mutations applied respectively at the beginning and the end of the computation.
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k3 k2 k1 k0 x3 x2 x1 x0

u1 u0

Multiplexer

⊕⊕
⊕⊕
⊕
⊕⊕

uf

⊕uout

Fig. 9. The mini-block cipher U .

Table 7. Permutations u0 and u1.

0 1 2 3 4 5 6 7 8 9 a b c d e f

u0 8 b 0 2 9 1 4 f c 5 7 3 e d 6 a

u1 4 7 d e 8 9 1 0 6 3 f a 2 c b 5

α First of all, we need to apply L∗ as well as the the swap of the left and right
branches (swapNibbles) present in the high level decomposition of π′−1 (see
Fig. 6). Then, we note that the key in U needs a swap of its 2 bits of lowest
weight (swap2lsb) and that the ciphertext of T needs the same swap. Thus,
we simply apply swap2lsb. Then, we apply the addition of uout and the inverse
of uf .

ω This function is simpler: it is the composition of the addition of tin and of L∗.

The matrix representations of these layers are

α =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1
1 1 1 0 1 1 1 1
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ω =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 1 1 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In order to invert U , we define ν0 = u−1
0 and ν1 = u−1

1 . If � = 0, then the
output of the inverse of U is ν0(r), otherwise it is ν1

(
r�I(�)

)
, where I : x �→ x14

is the multiplicative inverse in F24 . To invert T , we define σ = t−1 and φ = I ◦f
and compute σ

(
φ(�) � r

)
.

Figure 10 summarizes how to compute π using these components. The non-
linear functions are all given in Table 8. A Sage [36] script performing those
computations can be downloaded on Github.4 The evaluation of π(�||r) can be
done as follows:

4 https://github.com/picarresursix/GOST-pi

https://github.com/picarresursix/GOST-pi
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ω

σ

φ

ν1ν0

I

α

Fig. 10. Our decomposition
of π.

Table 8. The non-linear functions needed
to compute π.

0 1 2 3 4 5 6 7 8 9 a b c d e f

I 0 1 c 8 6 f 4 e 3 d b a 2 9 7 5

ν0 2 5 3 b 6 9 e a 0 4 f 1 8 d c 7

ν1 7 6 c 9 0 f 8 1 4 5 b e d 2 3 a

φ b 2 b 8 c 4 1 c 6 3 5 8 e 3 6 b

σ c d 0 4 8 b a e 3 9 5 2 f 1 6 7

1. (�||r) := α(�||r)
2. if r = 0 then � := ν0(�), else � := ν1

(
� � I(r)

)

3. r := σ
(
r � φ(l)

)

4. return ω(�||r).

4 Studying the Decomposition of π

4.1 Analyzing the Components

Table 9 summarizes the properties of the non-linear components of our decom-
position. While it is not hard to find 4-bit permutations with a differential uni-
formity of 4, we see that none of the components chosen do except for the inverse
function. We can thus discard the idea that the strength of π against differential
and linear attacks relies on the individual resilience of each of its components.

As can be seen in Table 9, there is a probability 1 differential in ν1: 9 � 2.
Furthermore, a difference equal to 2 on the left branch corresponds to a 1 bit
difference on bit 5 of the input of ω, a bit which is left unchanged by ω.

Table 9. Linear and differential properties of the components of π.

1-to-1 Best differentials and their
probabilities

Best linear approximations and
their probabilities

φ No 1 � d (8/16) 3 � 8 (2/16), 7 � d (2/16)

σ Yes f � b (6/16) 1 � f (14/16)

ν0 Yes 6 � c (6/16), e � e (6/16) 30 approximations (8 ± 4)/16

ν1 Yes 9 � 2 (16/16) 8 approximations (8 ± 6)/16
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The structure itself also implies the existence of a truncated differential with
high probability. Indeed, if the value on the left branch is equal to 0 for two
different inputs, then the output difference on the left branch will remain equal
to 0 with probability 1. This explains why the probability that a difference in
Δin = {α−1(�||0), � ∈ F

4
2, x �= 0} is mapped to a difference in Δout = {ω(�||0), � ∈

F
4
2, x �= 0} is higher than the expected 2−4:

1
24 − 1

∑

δ∈Δin

P [π(x ⊕ δ) ⊕ π(x) ∈ Δout] =
450

(24 − 1) × 28
≈ 2−3.

4.2 Comments on the Structure Used

We define π̂ as ω−1 ◦ π ◦ α−1, i.e. π minus its whitening linear layers.
The structure of π̂ is similar to a 2-round combination of a Misty-like and

Feistel structure where the XORs have been replaced by finite field multipli-
cations. To the best of our knowledge, this is the first time such a structure
has been used in cryptography. Sophisticated lightweight decompositions of the
S-Box of the AES rely on finite field multiplication in F24 , for instance in [37].
However, the high level structure used in this case is quite different. If π corre-
sponds to such a decomposition then we could not find what it corresponds to.
Recall in particular that π cannot be affine-equivalent to a monomial.

The use of finite field multiplication in such a structure yields a problem:
if the output of the “Feistel function” is equal to 0 then the structure is not
invertible. This issue is solved in a different way in each round. During the first
round, a different data-path is used in the case which should correspond to a
multiplication by zero. In the second round, the “Feistel function” is not bijective
and, in particular, has no pre-image for 0.

Our decomposition also explains the pattern in the LAT5 of π and π′ that
we used in Sect. 3.1 to partially recover the linear layers permutations α and ω.
This pattern is made of two parts: the white square appearing at the top-left of
L′

π and the “stripe” covering the 16 left-most columns of this table (see Fig. 4).
In what follows, we explain why the white square and the stripe are present in
L′

π. We also present an alternative representation of π̂ which highlights the role
of the multiplexer.

On the White Square. We first define a balanced function and the concept
of integral distinguishers. Using those, we can rephrase a result from [38] as
Lemma 2.

Definition 4 (Balanced Function). Let f : Fn
2 → F

m
2 be a Boolean function.

We say that f is balanced if the size of the preimage {x ∈ F
n
2 , f(x) = y} of y is

the same for all y in F
m
2 .

5 Note that the LAT of π̂ is not exactly the same as L′
π which is given in Fig. 4 because

e.g. of a nibble swap.
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Definition 5 (Integral Distinguisher). Let f be a Boolean function mapping
n bits to m. An integral distinguisher consists in two subsets Cin ⊆ [0, n− 1] and
Bout ⊆ [0,m − 1] of input and output bit indices with the following property: for
all c, the sum

⊕
x∈X f(x) restricted to the bits with indices in Bout is balanced;

where X is the set containing all x such that the bits with indices in Cin are fixed
to the corresponding value in the binary expansion of c (so that |X | = 2n−|Cin|).

Lemma 2 ([38]). Let f be a Boolean function mapping n bits to m and with
LAT Lf for which there exists an integral distinguisher (Cin,Bout). Then, for all
(a, b) such that the 1 in the binary expansion of a all have indices in Cin and the
1 in the binary expansion of b have indices in Bout, it holds that Lf [a, b] = 0.

This theorem explains the presence of the white square in L′
π. Indeed, fixing the

input of the right branch of π̂ leads to a permutation of the left branch in the
plaintext becoming a permutation of the left branch in the ciphertext; hence
the existence of an integral distinguisher for π̂ which in turn explains the white
square.

On the Stripe. Biases in the stripe correspond to approximations (aL||aR �
bL||0) in π̂, where bL > 0. The computation of the corresponding biases can be
found in the full version of this paper [15]. It turns out that the expression of
L[aL||aR, bL||0] is

L[aL||aR, bL||0] = L0[aL, bL] + 8 ×
(
(−1)bL·y0 − δ̂(bL)

)
,

where L0 is the LAT of ν0, y0 depends on aR, aL and the LAT of ν1, and δ̂(bL)
is equal to 1 if bL = 0 and to 0 otherwise. Very roughly, ν1 is responsible for the
sign of the biases in the stripe and ν0 for their values.

Since the minimum and maximum biases in L0 are −4 and +4, the absolute
value of L[aL||aR, bL||0] is indeed in [4, 12]. As we deduce from our computation
of these biases, the stripe is caused by the conjunction of three elements:

– the use of a multiplexer,
– the use of finite field inversion, and
– the fact that ν0 has good non-linearity.

Ironically, the only “unsurprising” sub-component of π, namely the inverse func-
tion, is one of the reasons why we were able to reverse-engineer this S-Box in
the first place. Had I been replaced by a different (and possibly weaker!) S-Box,
there would not have been any of the lines in the LAT which got our reverse-
engineering started. Note however that the algorithm based on identifying linear
subspaces of zeroes in the LAT of a permutation described in Sect. 5 would still
work because of the white-square.

Alternative Representation. Because of the multiplexer, we can deduce an
alternative representation of π̂. If the right nibble of the input is not equal to
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0 then π̂ can be represented as shown in Fig. 11b using a Feistel-like structure.
Otherwise, it is essentially equivalent to one call to the 4-bit S-Box ν0, as shown
in Fig. 11a. We also have some freedom in the placement of the branch bearing
φ. Indeed, as shown in Fig. 11c, we can move it before the call to ν1 provided we
replace φ by ψ = φ ◦ ν1.

Note also that the decomposition we found is not unique. In fact, we can
create many equivalent decompositions by e.g. adding multiplication and division
by constants around the two finite field multiplications. We can also change
the finite field in which the operations are made at the cost of appropriate
linear isomorphisms modifying the 4-bit S-Boxes and the whitening linear layers.
However the presented decomposition is the most structured that we have found.

⊕ 0xCν0

(a) π̂ when r = 0.

σ

φ

ν1

I

(b) π̂ when r = 0.

I

ψ

ν1 σ

(c) π̂ when r = 0.

Fig. 11. Alternative representations of π̂ where π = ω ◦ π̂ ◦ α.

4.3 Hardware Implementation

It is not uncommon for cryptographers to build an S-Box from smaller ones,
typically an 8-bit S-Box from several 4-bit S-Boxes. For example, S-Boxes used
in Whirlpool [22], Zorro [39], Iceberg [40], Khazad [41], CLEFIA [42], and Robin
and Fantomas [43] are permutations of 8 bits based on smaller S-Boxes. In many
cases, such a structure is used to allow an efficient implementation of the S-Box
in hardware or using a bit-sliced approach. In fact, a recent work by Canteaut
et al. [44] focused on how to build efficient 8-bit S-Boxes from 3-round Feistel
and Misty-like structures. Another possible reason behind such a choice is given
by the designers e.g. of CLEFIA: it is to prevent attacks based on the algebraic
properties of the S-Box, especially if it is based on the inverse in F28 like in the
AES. Finally, a special structure can help achieve special properties. For instance,
the S-Box of Iceberg is an involution obtained using smaller 4-bit involutions and
a Substitution-Permutation Network.

As stated in the introduction, hardware optimization was supposed to be
one of the design criteria used by the designers of π. Thus, it is reasonable to
assume that one of the aims of the decomposition we found was to decrease the
hardware footprint of the S-Box.
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To test this hypothesis, we simulated the implementation of π in hardware.6

We used four different definitions of π: the look up table given by the designers,
our decomposition, a tweaked decomposition where the multiplexer is moved
lower7 and, finally, the alternative decomposition presented in Fig. 11c. Table 10
contains both the area taken by our implementations and the delay, i.e. the time
taken to compute the output of the S-Box. For both quantities, the lower is
the better. As we can see, the area is divided by up to 2.5 and the delay by
8, meaning that an implementer knowing the decomposition has a significant
advantage over one that does not.

Table 10. Results on the hardware implementation of π.

Structure Area (μm2) Delay (ns)

Naive implementation 3889.6 362.52

Feistel-like (similar to Fig. 11b) 1534.7 61.53

Multiplications-first (similar to Fig. 11c) 1530.3 54.01

Feistel-like (with tweaked MUX) 1530.1 46.11

5 Another LAT-Based Attack Against Linear Whitening

Our attack against π worked by identifying patterns in a visual representation
of its LAT and exploiting them to recover parts of the whitening linear layers
surrounding the core of the permutation.

It is possible to exploit other sophisticated patterns in the LAT of a permu-
tation. In the remainder of this section, we describe a specific pattern in the LAT
of a 4-round Feistel Network using bijective Feistel functions. We then use this
pattern in conjunction with Theorem 1 to attack the AF4A structure correspond-
ing to a 4-round Feistel Network with whitening linear layers. Note that more
generic patterns such as white rectangles caused by integral distinguishers (see
Sect. 4.2) could be used in a similar fashion to attack other generic constructions,
as we illustrate in Sect. 5.3. The attack principle is always the same:

1. identify patterns in the LAT,
2. deduce partial whitening linear layers,
3. recover the core of the permutation with an ad hoc attack.

We also remark that Feistel Networks with affine masking exist in the lit-
erature. Indeed, the so-called FL-layers of MISTY [45] can be interpreted as
such affine masks. Furthermore, one of the S-Box of the stream cipher ZUC is a
3-round Feistel Network composed with a bit rotation [46] — an affine operation.
6 We used Synopsys design compiler (version J-2014.09-SP2) along with digital

library SAED EDK90 CORE (version 1.11).
7 More precisely, the multiplexer is moved after the left side is input to φ. This does

not change the output: when the output of ν0 is selected, the right branch is equal
to 0 and the input of σ is thus 0 regardless of the left side.
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5.1 Patterns in the LAT of a 4-Round Feistel Network

Let F0, ..., F3 be four n-bit Boolean permutations. Figure 12a represents the 4-
round Feistel Network f built using Fi as its i-th Feistel function. Figure 12b is
the Pollock representation of the LAT of a 8-bit Feistel Network fexp built using
four 4-bit permutations picked uniformly at random.

F0

F1

F2

F3

⊕

⊕

⊕

⊕

(a) Definition of f . (b) The LAT (Pollock repr.) of fexp.

Fig. 12. A 4-round Feistel Network and its LAT.

In Fig. 12b, we note that the LAT Lexp of fexp contains both vertical and
horizontal segments of length 16 which are made only of zeroes. These segments
form two lines starting at (0,0), one ending at (15,255) and another one ending in
(255,15), where (0,0) is the top left corner. The vertical segments are in columns
0 to 15 and correspond to entries Lexp[aL||aR, 0||aL] for any (aL, aR). The hori-
zontal ones are in lines 0 to 15 and correspond to entries Lexp[0||aR, aR||bL] for
any (aL, aR).

Let us compute the coefficients which correspond to such vertical segments
for any 4-round Feistel Network f with LAT L. These are equal to

L[aL||aR, 0||aL] =
∑

x∈F2n
2

(−1)(aL||aR)·x⊕aL·f(x)

=
∑

r∈Fn
2

(−1)aR·r ∑

�∈Fn
2

(−1)aL·
(
�⊕fR(�||r)

)
,

where fR(x) is the right word of f(x). This quantity is equal to � ⊕ F0(r) ⊕
F2

(
r ⊕ F1(� ⊕ F0(r))

)
, so that L[aL||aR, 0||aL] can be re-written as:

L[aL||aR, 0||aL] =
∑

r∈Fn
2

(−1)aR·r ∑

�∈Fn
2

(−1)aL·
(
F0(r)⊕F2

(
r⊕F1(�⊕F0(r))

))
.
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Since � �→ F2

(
r⊕F1(�⊕F0(r))

)
is balanced for all r, the sum over � is equal to 0

for all r (unless aL = 0). This explains8 the existence of the vertical “white seg-
ments”. The existence of the horizontal ones is a simple consequence of Remark 2:
as the inverse of f is also a 4-round Feistel, its LAT must contain white vertical
segments. Since the LAT of f is the transpose of the LAT of f−1, these vertical
white segments become the horizontal ones.

5.2 A Recovery Attack Against AF4A

These patterns can be used to attack a 4-round Feistel Network whitened using
affine layers, a structure we call AF4A. Applying the affine layers before and
after a 4-round Feistel Network scrambles the white segments in the LAT in a
linear fashion - each such segment becomes an affine subspace. The core idea of
our attack is to compute the LAT of the target and then try to rebuild both
the horizontal and vertical segments. In the process, we will recover parts of
the linear permutations applied to the rows and columns of the LAT of the
inner Feistel Network and, using Theorem 1, recover parts of the actual linear
layers. Then the resulting 4-round Feistel Network can be attacked using results
presented in [32]. By parts of a linear layer we understand the four (n × n)-bit
submatrices of the corresponding matrix.

First Step: Using the LAT. Let f : F2n
2 → F

2n
2 be a 4-round Feistel Network

and let g = η ◦ f ◦ μ be its composition with some whitening linear layers η
and μ. The structure of g is presented in Fig. 13a using (n × n)-bit matrices
μ�,�, μr,�, μ�,r, μr,r for μ and η�,�, ηr,�, η�,r, ηr,r for η.

Assume that we have the full codebook of g and therefore that we can com-
pute the LAT Lg of g. By Theorem 1, it holds that Lg[u, v] = Lf [(μ−1)t(u), ηt(v)]
and, equivalently, that Lg[μt(u), (η−1)t(v)] = Lf [u, v].

We use Algorithm 1 (see next section) to find a linear subspace S of F2n
2 such

that |S| = 2n and such that it has the following property: there exists 2n distinct
values c and some c dependent uc such that Lg[uc ⊕ s, c] = 0 for all s in S. Such
a vector space exists because the row indices (�||r) for r in R = {(0||r) | r ∈ F

n
2}

and a fixed � of each vertical segment in the LAT of f becomes an affine space
μt(�||0) ⊕ μt(R) in the LAT of g, so that the image of the row indices of each
of the 2n vertical segments has an identical linear part. We thus assume that
S = μt(R).

Then, we choose an arbitrary bijective linear mapping9 μt such that
μt(S) = R. Let at, bt, ct, dt be n × n-bit matrices such that

μ′t = μt ◦ μt =
(

at ct

bt dt

)
.

Note that μ′t(R) = μt(μt(R)) = μt(S) = R, which implies ct = 0.
8 Note that our proof actually only requires F1 and F2 to be permutations. The pattern

would still be present if the first and/or last Feistel functions had inner-collisions.
9 We make some definitions with transpose to simplify later notations.
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F0

F1

F2

F3

⊕

⊕

⊕

⊕

μ μ μ μr,r

⊕ ⊕

η η η ηr,r

⊕ ⊕

μ
f

η

(a) g = η ◦ f ◦ μ.

F0

F1

F2

F3

⊕

⊕

⊕

⊕

a b d

⊕

a b d

⊕

μ
◦

μ
f

η
◦

η

(b) g = η ◦ g ◦ μ.

a−1◦F0◦a 1

a ◦F1◦a

a−1◦F2◦a 1

a ◦F3◦a

a−1◦b◦A−1

b ◦a

⊕

⊕

⊕

⊕

⊕

⊕

A = a ◦d

B = d ◦a

F

(c) g (alt. representation).

Fig. 13. The effect of μ and η on g. Linear layers are in red and inner Feistel Networks
in blue (Color figure online).

We then apply μt to columns of Lg to obtain a new LAT L′
g such that

L′
g[μ

t(u), v] = Lg[u, v]. Using Theorem 1, we define g′ = g ◦ μ so that the LAT
of g′ is L′

g. Note that g′ can also be expressed using f and μ′:

g′ = η ◦ f ◦ μ ◦ μ = η ◦ f ◦ μ′, with μ′ =
(

a b
0 d

)
.

The function g′ we obtained is such that there is no branch from the left side
to the right side in the input linear layer as the corresponding element of the μ′

matrix is equal to zero. We can apply the same method to the inverse of g (thus
working with the transpose of the LAT) and find a linear mapping η allowing us
to define a new permutation g′′ such that:

g′′ = η ◦ g ◦ μ where η ◦ η =
(

a′ b′

0 d′

)
.

The resulting affine-equivalent structure is shown in Fig. 13b. Note that the LAT
of g′′ exhibits the patterns described in Sect. 5.1. This can be explained using
an alternative representation of g′′ where the Feistel functions are replaced by
some other affine equivalent functions as shown in Fig. 13c. It also implies that
we can decompose g′′, as described in the next sections.

The dominating step in terms of complexity is Algorithm 1, meaning that
building g′′ from g takes time O(26n) (see next section).
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Subroutine: Recovering Linear Subpaces. Suppose we are given the LAT
L of a 2n-bit permutation. Our attack requires us to recover efficiently a linear
space S of size 2n such that L[s ⊕ L(u), u] = 0 for all s in S, where u is in a
linear space of size 2n and where L is some linear permutation. Algorithm 1 is
our answer to this problem.

For each column index c, we extract all s such that |{a,L[a, c] = 0} ∩
{a,L[a, c ⊕ s] = 0}| ≥ 2n. If s is indeed in S and c is a valid column index,
then this intersection must contain L(c) ⊕ S, which is of size 2n. If it is not the
case, we discard s. Furthermore, if c is a valid column index, then there must
be at least 2n such s as all s in S have this property: this allows us to filter out
columns not yielding enough possible s. For each valid column, the set of offsets
s extracted must contain S. Thus, taking the intersection of all these sets yields
S itself.

To increase filtering, we use a simple heuristic function refine(Z, n) which
returns the subset Z of Z such that, for all z in Z, |(z ⊕ Z) ∩ Z| ≥ 2n. The
key observation is that if Z contains a linear space of size at least 2n then Z
contains it too. This subroutine runs in time O(|Z|2).

The dominating step in the time complexity of this algorithm is the com-
putation of |(s ⊕ Z) ∩ Z| for every c and s. The complexity of this step is
O(22n × 22n × |Z|). A (loose) upper bound on the time complexity of this algo-
rithm is thus O(26n) where n is the branch size of the inner Feistel Network, i.e.
half of the block size.

Second Step: Using a Yoyo Game. The decomposition of AF4A has now
been reduced to attacking g′′, a 2n-bit 4-round Feistel Network composed with
two n-bit linear permutations A and B. The next step is to recover these linear
permutations. To achieve this, we use a simple observation inspired by the so-
called yoyo game used in [32] to attack a 5-round FN.

Consider the differential trail parametrized by γ �= 0 described in Fig. 14. If
the pair of plaintexts (xL||xR, x′

L||x′
R) follows the trail (i.e. is connected in γ),

then so does (xL ⊕γ||xR, x′
L ⊕γ||x′

R). Furthermore, if (yL||yR) = g′′(xL||xR) and
(y′

L||y′
R) = g′′(x′

L||x′
R), then swapping the right output words and decrypting

the results leads to a pair of plaintexts
(
g′′−1(yL||y′

R), g′′−1(y′
L||yR)

)
that still

follows the trail. It is thus possible to iterate the addition of γ and the swapping
of the right output word to generate many right pairs. More importantly, if x and
x′ do follow the trail, iterating these transformation must lead to the difference
on the right output word being constant and equal to B(γ): if it is not the case,
we can abort and start again from another pair x, x′.

We can thus recover B fully by trying to iterate the game described above
for random pairs (x, x′) and different values of γ. Once a good pair has been
found, we deduce that B(γ) is the difference in the right output words of the
ciphertext pairs obtained. We thus perform this step for γ = 1, 2, 4, 8, etc., until
the image by B of all bits has been found. Wrong starting pairs are identified
quickly so this step takes time O(n22n). Indeed, we need to recover n linearly
independent n-bit vectors; for each vector we try all 2n candidates and for each
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Algorithm 1. Linear subspace extraction
Inputs LAT L, branch size n — Output Linear space S

C := ∅
for all c ∈ [1, 22n − 1] do

Z := {i ∈ [1, 22n − 1], L[i, c] = 0}
if Z ≥ 2n then

Sc := ∅ 	 Sc is the candidate for S for c.
for all s ∈ [1, 22n − 1] do

if |(s ⊕ Z) ∩ Z| ≥ 2n then
Sc := Sc ∪ {s}

end if
end for
Sc := refine(Sc, 2

n)
if |Sc| ≥ 2n then

Store Sc ; C := C ∪ {c}
end if

end if
end for
C := refine(C, 2n) ; S := [0, 22n − 1]
for all c ∈ C do

S := S ∩ Sc

end for
return S

guess we run a Yoyo game in time 2n to check the guess. The other linear part,
A, is recovered identically by running the same attack while swapping the roles
of encryption and decryption.

Final Step: A Full Decomposition. As stated before, we can recover all 4
Feistel functions in g′′ minus its linear layers in time O(23n/2) using the guess and
determine approach described in [32]. This gives us a 4-round FN, denoted F ,
which we can use to decompose g like so (where I denotes the identity matrix):

g = η−1 ◦
(

I 0
0 B

)
◦ F ◦

(
I 0
0 A

)
◦ μ−1.

5.3 Outline of an Attack Against AF3A

A structure having one less Feistel round could be attacked in a similar fashion.
The main modifications would be as follows.

1. The pattern in the LAT we try to rebuild would not be the one described
in Sect. 5.1 but a white square similar to the one observed in the LAT of π′.
Indeed, an integral distinguisher similar to the one existing in π′ exists for
any 3-round FN when the second Feistel function is a bijection.
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F0

F1

F2

F3

⊕

⊕

⊕

⊕

A

B

xL ⊕ xL xR ⊕ xR

yL ⊕ yL yR ⊕ yR = B(γ)

γ

0

Fig. 14. The differential trail used to recover B.

2. Recovering the remaining (n×n) mappings with a yoyo game would be much
more efficient since there would not be any need to guess that a pair follows
the trail.

The complexity of such an attack would be dominated as before by the recovery
of the linear subspace embedded in the LAT so that it would take time O(26n).

5.4 Comments on Affine-Whitened Feistel Networks

Table 11 contains a comparison of the complexities of the attack recovering the
Feistel functions of Feistel Networks along with, possibly, the linear layers used
to whiten it.

Table 11. Complexity of recovery attacks against (possibly linearly whitened) Feistel
Networks with n-bit branches and secret bijective Feistel functions.

Target Type Time complexity Ref.

AF3A LAT-based 26n Sect. 5.3

F4 Guess &Det. 23n/2 [32]

AF4A LAT-based 26n Sect. 5.2

F5 Yoyo cryptanalysis 22n [32]

The complexities of our attacks against AFkA are dominated by the lin-
ear subspace recovery which is much slower than an attack against as much
as 5 Feistel Network rounds. It seems like using affine whitening rather than a
simpler XOR-based whitening increases the complexity of a cryptanalysis sig-
nificantly. This observation can be linked with the recent attacks against the
ASASA scheme [31]: while attacking SAS is trivial, the cryptanalysis of ASASA
requires sophisticated algorithms.
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We note that a better algorithm for linear subspace extraction will straight-
forwardly lead to a lower attack complexity. However, the complexity is lower
bounded by LAT computation which is O(n24n) in our case.

For the sake of completeness, we tried this attack against the “F-Table” of
Skipjack [9]. It failed, meaning that it has neither an AF3A nor an AF4A structure.
Note also that, due to the presence of the white square in the LAT of π̂, running
the linear subspace recovery described in Algorithm 1 on π returns the vector
space V which allowed to start our decomposition of this S-Box.

We implemented the first step of our attack (including Algorithm 1) using
SAGE [36] and ran it on a computer with 16 Intel Xeon CPU (E5-2637) v3
clocked at 3.50 GHz. It recovers correct linear layers η and μ in about 3 seconds
for n = 4, 14 seconds for n = 5, 4 min for n = 6 and 1 hour for n = 7. Since the
first step is the costliest, we expect a complete attack to take a similar time.

6 Conclusion

The S-Box used by the standard hash function Streebog, the standard block
cipher Kuznyechik and the CAESAR first round candidate stribobr1 has a
hidden structure. Using the three non-linear 4-bit permutations ν0, ν1 and σ,
the non-linear 4-bit function φ and the 8-bit linear permutations α and ω, the
computation of π(�||r) can be made as follows:

1. (�||r) := α(�||r)
2. If r = 0 then � := ν0(�), else � := ν1(� � r14)
3. r := σ

(
r � φ(l)

)

4. Return ω(�||r)

How and why those components were chosen remains an open question.
Indeed, their individual cryptographic properties are at best not impressive and,
at worst, downright bad. However, knowing this decomposition allows a much
more efficient hardware implementation of the S-Box.

We also described a decomposition attack against AF4A which uses the same
high level principles as our attack against π: first spot patterns in the LAT, then
deduce the whitening linear layers and finally break the core.
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Abstract. An elliptic curve addition law is said to be complete if it cor-
rectly computes the sum of any two points in the elliptic curve group.
One of the main reasons for the increased popularity of Edwards curves
in the ECC community is that they can allow a complete group law that
is also relatively efficient (e.g., when compared to all known addition laws
on Edwards curves). Such complete addition formulas can simplify the
task of an ECC implementer and, at the same time, can greatly reduce
the potential vulnerabilities of a cryptosystem. Unfortunately, until now,
complete addition laws that are relatively efficient have only been pro-
posed on curves of composite order and have thus been incompatible
with all of the currently standardized prime order curves.

In this paper we present optimized addition formulas that are com-
plete on every prime order short Weierstrass curve defined over a field
k with char(k) �= 2, 3. Compared to their incomplete counterparts, these
formulas require a larger number of field additions, but interestingly
require fewer field multiplications. We discuss how these formulas can
be used to achieve secure, exception-free implementations on all of the
prime order curves in the NIST (and many other) standards.

1 Introduction

Extending the works of Lange–Ruppert [48] and Bosma–Lenstra [19], Arène,
Kohel and Ritzenthaler [4] showed that, under any projective embedding of
an elliptic curve E/k, every addition law has pairs of exceptional points in
(E × E)(k̄). That is, over the algebraic closure of k, there are always pairs of
points for which a given elliptic curve addition law does not work.

Fortunately, in elliptic curve cryptography (ECC), we are most often only
concerned with the k-rational points on E. In this case it is possible to have a
single addition law that is well-defined on all pairs of k-rational points, because
its exceptional pairs are found in (E×E)(k̄), but not in (E×E)(k). A celebrated
example of this is the Edwards model [31]; when suitably chosen [12], an Edwards
curve has a simple addition law that works for all pairs of k-rational points.
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This phenomenon was characterized more generally over elliptic curves by
Kohel [47], and further generalized to arbitrary abelian varieties in [4]. For our
purposes it suffices to state a special case of the more general results in [4,47]:
namely, that every elliptic curve E over a finite field Fq (with q ≥ 5) has an Fq-
complete addition law corresponding to the short Weierstrass model in P

2(Fq).
Addition laws that are Fq-complete are highly desirable in ECC. They can

significantly simplify the task of an implementer and greatly reduce the potential
vulnerabilities of a cryptosystem. We elaborate on this below.

Our Contributions. In Algorithm 1 we present optimized point addition for-
mulas that correctly compute the sum of any two points on any odd order
elliptic curve E/Fq : y2 = x3 + ax + b with q ≥ 5. We do not claim credit for
the complete formulas themselves, as these are exactly the formulas given by
Bosma and Lenstra two decades ago [19]. What is novel in this paper is optimiz-
ing the explicit computation of these formulas for cryptographic application. In
particular, Table 1 shows that the computation of the Bosma–Lenstra complete
additions can be performed using fewer general field multiplications than the
best known (incomplete!) addition formulas on short Weierstrass curves: exclud-
ing multiplications by curve constants and field additions, the explicit formulas
in this paper compute additions in 12 field multiplications (12M), while the
fastest known addition formulas in homogeneous coordinates require 14 field
multiplications (12M+2S) and the fastest known addition formulas in Jacobian
coordinates require 16 field multiplications (11M + 5S). We immediately note,
however, that our explicit formulas incur a much larger number of field additions
than their incomplete counterparts. Thus, as is discussed at length below, the
relative performance of the complete additions will be highly dependent on the
platform and/or scenario. However, we stress that outperforming the incomplete
addition formulas is not the point of this paper: our aim is to provide the fastest
possible complete formulas for prime order curves.

Wide Applicability. While the existence of an Fq-complete addition law for prime
order Weierstrass curves is not news to mathematicians (or to anyone that has
read, e.g., [4,19]), we hope it might be a pleasant surprise to ECC practitioners.
In particular, the benefits of completeness are now accessible to anyone whose
task it is to securely implement the prime order curves in the standards. These
include:

– The example curves originally specified in the working drafts of the American
National Standards Institute (ANSI), versions X9.62 and X9.63 [1,2].

– The five NIST prime curves specified in the current USA digital signature
standard (DSS), i.e., FIPS 186-4 – see [55,56]. This includes Curve P-384,
which is the National Security Agency (NSA) recommended curve in the most
recent Suite B fact sheet for both key exchange and digital signatures [28,
60]; Curve P-256, which is the most widely supported curve in the Secure
Shell (SSH) and Transport Layer Security (TLS) protocol [17, Sect. 3.2-3.3];
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Table 1. Summary of explicit formulas for the addition law on prime order short
Weierstrass elliptic curves E/k : y2 = x3 + ax + b in either homogeneous (homog.)
coordinates or Jacobian coordinates, and the corresponding exceptions (excep.) in both
points doublings (DBL) and point additions (ADD). Here the operation counts include
multiplications (M), squarings (S), multiplications by a (ma), multiplications by (small
multiples of) b (mb), and additions (a), all in the ground field k. We note that various
trade-offs exist with several of the above formulas, in particular for point doublings in
Jacobian coordinates – see [15].

addition a excep. Q ADD(P ,Q) excep. DBL(P ) ref

formulas in ADD(P,Q) in DBL(P )

M S ma mb a M S ma mb a

complete

homog.

any none 12 0 3 2 23 none 8 3 3 2 15 this work

−3 12 0 0 2 29 8 3 0 2 21

0 12 0 0 2 19 6 2 0 1 9

incomplete

homog.

any ±P , O 12 2 0 0 7 O 5 6 1 0 12 [15,27]

−3 12 2 0 0 7 7 3 0 0 11 [15,27]

0 - - -

incomplete

Jacobian

any ±P , O 12 4 0 0 7 none 3 6 1 0 13 [27]

−3 12 4 0 0 7 4 4 0 0 8 [27,51]

0 12 4 0 0 7 3 4 0 0 7 [27,42]

and Curve P-192, which is the most common elliptic curve used in Austria’s
national e-ID cards [17, Sect. 3.4].

– The seven curves specified in the German brainpool standard [30], i.e.,
brainpoolPXXXr1, where XXX ∈ {160, 192, 224, 256, 320, 384, 512}.

– The eight curves specified by the UK-based company Certivox [23], i.e.,
ssc-XXX, where XXX ∈ {160, 192, 224, 256, 288, 320, 384, 512}.

– The curve FRP256v1 recommended by the French Agence nationale de la
sécurité des systèmes d’information (ANSSI) [3].

– The three curves specified (in addition to the above NIST prime curves) in
the Certicom SEC 2 standard [22]. This includes secp256k1, which is the
curve used in the Bitcoin protocol.

– The recommended curve in the Chinese SM2 digital signature algorithm [25].
– The example curve in the Russian GOST R 34.10 standard [35].

In particular, implementers can now write secure, exception-free code that
supports all of the above curves without ever having to look further than
Algorithm 1 for curve arithmetic. Moreover, in Sect. 5.2 we show how Algo-
rithm 1 can easily be used to securely implement the two composite order curves,
Curve25519 [7] and Ed448-Goldilocks [39], recently recommended for inclusion
in future versions of TLS by the Internet Research Task Force Crypto Forum
Research Group (IRTF CFRG).

Side-Channel Protection. Real-world implementations of ECC have a number
of potential side-channel vulnerabilities that can fall victim to simple timing
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attacks [46] or exceptional point attacks [32,43]. One of the main reasons these
attacks pose a threat is the branching that is inherent in the schoolbook short
Weierstrass elliptic curve addition operation. For example, among the dozens of
if statements in OpenSSL’s1 standard addition function “ec GFp simple add”,
the initial three that check whether the input points are equal, opposite, or at
infinity can cause timing variability (and therefore leak secret data) in ECDH or
ECDSA. The complete formulas in this paper remove these vulnerabilities and
significantly decrease the attack surface of a cryptosystem. As Bernstein and
Lange point out [13], completeness “eases implementations” and “avoids simple
side-channel attacks”.

Although it is possible to use incomplete formulas safely, e.g., by carefully
deriving uniform scalar multiplication algorithms that avoid exceptional pairs of
inputs, implementing these routines in constant-time and in a provably correct
way can be a cumbersome and painstaking process [16, Sect. 4]. Constant-time
ECC implementations typically recode scalars from their binary encoding to
some other form that allows a uniform execution path (cf. Okeya-Tagaki [57] and
Joye-Tunstall [44]), and these recodings can complicate the analysis of excep-
tional inputs to the point addition functions. For example, it can be difficult to
prove that the running value in a scalar multiplication is never equal to (or the
inverse of) elements in the lookup table; if this equality occurs before an addi-
tion, the incomplete addition function is likely to fail. Furthermore, guaranteeing
exception-free, constant-time implementations of more exotic scalar multiplica-
tion routines, e.g., multiscalar multiplication for ECDSA verification, fixed-base
scalar multiplications [49], scalar multiplications exploiting endomorphisms [34],
or scalar multiplications using common power analysis countermeasures [29,33],
is even more difficult; that is, unless the routine can call complete addition
formulas.

Performance Considerations. While the wide applicability and correctness of
Algorithm 1 is at the heart of this paper, we have also aimed to cater to imple-
menters that do not want to sacrifice free performance gains, particularly those
concerned with supporting a special curve or special family of curves. To that
end, Algorithms 2–9 give faster complete addition formulas in the special (and
standardized) cases that the Weierstrass curve constant a is a = −3 or a = 0,
and in the special cases of point doublings; Table 1 summarizes the operation
counts for all of these scenarios.

As we mentioned above, outperforming the (previously deployed) incomplete
addition formulas is not the point of this paper. Indeed, the high number of field
additions present in our complete addition algorithms are likely to introduce an
overall slowdown in many scenarios. To give an idea of this performance hit in
a common software scenario, we plugged our complete addition algorithms into
OpenSSL’s implementation of the five NIST prime curves. Using the openssl
speed function to benchmark the performance of the existing incomplete for-
mulas and the new complete formulas shows that the latter incurs between a

1 See ec smpl.c in crypto/ec/ in the latest release at http://openssl.org/source/.

http://openssl.org/source/
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1.34x and 1.44x slowdown in an average run of the elliptic curve Diffie-Hellman
(ECDH) protocol (see Table 2 for the full details). As we discuss below, and in
detail in Sect. 5.3, this factor slowdown should be considered an upper bound
on the difference in performance between the fastest incomplete algorithms and
our complete ones.

On the contrary, there are example scenarios where plugging in the com-
plete formulas will result in an unnoticeable performance difference, or possibly
even a speedup. For example, compared to the incomplete addition function
secp256k1 gej add var used in the Bitcoin code2, our complete addition func-
tion in Algorithm 7 saves 4S at the cost of 8a+1mul int3; compared to Bitcoin’s
incomplete mixed addition function secp256k1 gej add ge var, our complete
mixed addition saves 3S at the cost of 3M + 2a + 1mul int; and, compared
to Bitcoin’s doubling function secp256k1 gej double var, our formulas save
2S+ 5mul int at the cost of 3M+ 3a. In this case it is unclear which set of for-
mulas would perform faster, but it is likely to be relatively close and to depend on
the underlying field arithmetic and/or target platform. Furthermore, the overall
speed is not just dependent on the formulas: the if statements present in the
Bitcoin code also hamper performance. On the contrary, the complete algorithms
in this paper have no if statements.

There are a number of additional real-world scenarios where the performance
gap between the incomplete and the complete formulas will not be as drastic as
the OpenSSL example above. The operation counts in Tables 1 and 3 suggest
that this will occur when the cost of field multiplications and squarings heavily
outweighs the cost of field additions. The benchmarks above were obtained on a
64-bit processor, where the M/a ratio tends to be much lower than that of low-
end (e.g., 8-, 16-, and 32-bit) architectures. For example, field multiplications
on wireless sensor nodes commonly require over 10 times more clock cycles than
a field addition (e.g., see [50, Table 1] and [59, Table 1]), and in those cases the
complete formulas in this paper are likely to be very competitive in terms of raw
performance.

In any case, we believe that many practitioners will agree that a small perfor-
mance difference is a worthwhile cost to pay for branch-free point addition for-
mulas that culminate in much simpler and more compact code, which guarantees
correctness of the outputs and eliminates several side-channel vulnerabilities. We
also note that the Bitcoin curve is not an isolated example of the more favor-
able formula comparison above: all of the most popular pairing-friendly curves,
including Barreto-Naehrig (BN) curves [5] which have appeared in recent IETF
drafts4, also have a = 0. In those cases, our specialized, exception-free formulas
give implementers an easy way to correctly implement curve arithmetic in both
G1 and G2 in the setting of cryptographic pairings. On a related note, we point
that the word “prime” in our title can be relaxed to “odd”; the completeness

2 See https://github.com/bitcoin/bitcoin/tree/master/src/secp256k1.
3 mul int denotes the cost of Bitcoin’s specialized function that multiplies field ele-

ments by small integers.
4 See http://datatracker.ietf.org/doc/draft-kasamatsu-bncurves-01.

https://github.com/bitcoin/bitcoin/tree/master/src/secp256k1
http://datatracker.ietf.org/doc/draft-kasamatsu-bncurves-01
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of the Bosma–Lenstra formulas only requires the non-existence of rational two-
torsion points (see Sects. 2 and 3), i.e., that the group order #E(Fq) is not even.
BN curves define G2 as (being isomorphic to) a proper subgroup of a curve
E′/Fp2 , whose group order #E′(Fp2) is the product of a large prime with odd
integers [5, Sect. 3], meaning that our explicit formulas are not only complete in
G2 ⊂ E′(Fp2), but also in E′(Fp2).

Related Work. Complete addition laws have been found and studied on non-
Weierstrass models of elliptic curves, e.g., on the (twisted) Edwards [8,12] and
(twisted) Hessian models [9]. Unfortunately, in all of those scenarios, the models
are not compatible with prime order curves and therefore all of the standardized
curves mentioned above.

In terms of obtaining a complete and computationally efficient addition algo-
rithm for prime order curves, there has been little success to date. Bernstein and
Lange [13] found complete formulas on a non-Weierstrass model that would
be compatible with, e.g., the NIST curves, reporting explicit formulas that
(ignoring additions and multiplications by curve constants) cost 26M+ 8S. Bos
et al. [16] considered applying the set of two Bosma–Lenstra addition laws to cer-
tain prime order Weierstrass curves, missing the observation (cf. [4, Remark 4.4])
that one of the addition laws is enough, and abandoning the high cost of comput-
ing both addition laws for an alternative but more complicated approach towards
side-channel protection [16, Appendix C]. Brier and Joye [20] developed unified
formulas5 for general Weierstrass curves, but these formulas still have exceptions
and (again, ignoring additions and multiplications by curve constants) require
11M + 6S, which is significantly slower than our complete algorithms.

Prime Order Curves Can Be Safe. Several of the standardized prime order
curves mentioned above have recently been critiqued in [14], where they were
deemed not to meet (some or all of) the four “ECC security” requirements:
(i) Ladder, (ii) Twists, (iii) Completeness, and (iv) Indistinguishability.

On the contrary, this paper shows that prime order curves have complete
formulas that are comparably efficient. In addition, Brier and Joye [20, Sect. 4]
extended the Montgomery ladder to all short Weierstrass curves. In particular,
when E/Fq : y2 = x3 + ax + b is a prime order curve, their formulas give rise
to a function ladder that computes x([m]P ) = ladder(x(P ),m, a, b) for the
points P ∈ E(Fq2) with (x, y) ∈ Fq × Fq2 , that is, a function that works for all
x ∈ Fq and that does not distinguish whether x corresponds to a point on the
curve E, or to a point on its quadratic twist E′ : dy2 = x3 + ax + b, where d
is non-square in Fq. If E is chosen to be twist-secure (this presents no problem
in the prime order setting), then for all x ∈ Fq, the function ladder(x, m, a, b)
returns an instance of the discrete logarithm problem (whose solution is m)

5 These are addition formulas that also work for point doublings.
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on a cryptographically strong curve, just like the analogous function on twist-
secure Montgomery curves [7]. Finally, we note that Tibouchi [61] presented a
prime-order analogue of the encoding given for certain composite-order curves
in [11], showing that the indistinguishability property can also be achieved on
prime order curves.

As is discussed in [14], adopting the Brier-Joye ladder (or, in our case, the
complete formulas) in place of the fastest formulas presents implementers with
a trade-off between “simplicity, security and speed”. However, these same trade-
offs also exist on certain choices of Edwards curves, where, for example, the
fastest explicit formulas are also not complete: the Curve41417 implementation
chooses to sacrifice the fastest coordinate system for the sake of completeness
[10, Section 3.1], while the Goldilocks implementation goes to more complicated
lengths to use the fastest formulas [37–39]. Furthermore, there is an additional
category that is not considered in [14], i.e., the non-trivial security issues related
to having a cofactor h greater than 1 [38, Sect. 1.1].

Given the complete explicit formulas in this paper, it is our opinion that
well-chosen prime order curves can be considered safe choices for elliptic curve
cryptography. It is well-known that curves with cofactors offer efficiency benefits
in certain scenarios, but to our knowledge, efficiency and/or bandwidth issues
are the only valid justifications for choosing a curve with a cofactor h > 1.

Organization. Section 2 briefly gives some preliminaries and notation. Section 3
presents the complete addition algorithms. In Sect. 4 we give intuition as to why
these explicit formulas are optimal, or close to optimal, for prime order curves in
short Weierstrass form. In Sect. 5 we discuss how these formulas can be used in
practice. For Magma [18] scripts that can be used to verify our explicit algorithms
and operation counts, we point the reader to the full version of this paper [58].

2 Preliminaries

Let k be a field of characteristic not two or three, and P
2(k) be the homogeneous

projective plane of dimension two. Two points (X1 : Y1 : Z1) and (X2 : Y2 : Z2)
in P

2(k) are equal if and only if there exist λ ∈ k× such that (X1, Y1, Z1) =
(λX2, λY2, λZ2).

Let E/k be an elliptic curve embedded in P
2(k) as a Weierstrass model

E/k : Y 2Z = X3 + aXZ2 + bZ3. The points on E form an abelian group with
identity O = (0 : 1 : 0). An addition law on E is a triple of polynomials
(X3, Y3, Z3) such that the map

P,Q �→ (X3(P,Q) : Y3(P,Q) : Z3(P,Q))

determines the group law + on an open subset of (E × E)(k̄), where k̄ is the
algebraic closure of k. For an extension K of k, a set of such addition laws is said
to be K-complete if, for any pair of K-rational pair of points (P,Q), at least one
addition law in the set is defined at (P,Q).
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Lange and Ruppert [48] proved that the space of all addition laws on E has
dimension 3, and Bosma and Lenstra [19] proved that a k̄-complete set must
contain (at least) two addition laws. In other words, Bosma and Lenstra proved
that every addition law on E has at least one exceptional pair of inputs over
the algebraic closure. More recent work by Arène, Kohel and Ritzenthaler [4]
showed that this is true without assuming a Weierstrass embedding of E. That
is, they showed that every elliptic curve addition law has exceptional pairs over
the algebraic closure, irrespective of the projective embedding.

Following [19], for positive integers μ and ν, we define an addition law of
bidegree (μ, ν) to be a triple of polynomials

X3, Y3, Z3 ∈ k[X1, Y1, Z1,X2, Y2, Z2]

that satisfy the following two properties:

1. The polynomials X3, Y3 and Z3 are homogeneous of degree μ in X1, Y1 and
Z1, and are homogeneous of degree ν in X2 Y2 and Z2;

2. Let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be in E(K), where K is an
extension of k. Then either X3, Y3 and Z3 are all zero at P and Q, or else
(X3 : Y3 : Z3) is an element of E(K) and is equal to P + Q. If the first holds,
we say that the pair (P,Q) is exceptional for the addition law. If there are no
exceptional pairs of points, we say that the addition law is K-complete (note
that this is in line with the definition of a K-complete set of addition laws).

Hereafter, if a single addition law is k-complete, we simply call it complete.

3 Complete Addition Formulas

Let E/k : Y 2Z = X3 + aXZ2 + bZ3 ⊂ P
2 with char(k) �= 2, 3. The complete

addition formulas optimized in this section follow from the theorem of Bosma
and Lenstra [19, Theorem 2], which states that, for any extension field K/k,
there exists a 1-to-1 correspondence between lines in P

2(K) and addition laws of
bidegree (2, 2) on E(K). Two points P and Q in E(K) are then exceptional for
an addition law if and only if P −Q lies on the corresponding line. When K = k̄,
the algebraic closure of k, every line intersects E(K); thus, one consequence of
this theorem is that every addition law of bidegree (2, 2) has an exceptional pair
over the algebraic closure.

The addition law considered in this paper is the addition law corresponding
to the line Y = 0 in P

2 in [19], specialized to the short Weierstrass embedding
of E above. For two points P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) on E, the
sum (X3 : Y3 : Z3) = P + Q is given by



Complete Addition Formulas for Prime Order Elliptic Curves 411

X3 = Y1Y2(X1Y2 + X2Y1) − aX1X2(Y1Z2 + Y2Z1)
− a(X1Y2 + X2Y1)(X1Z2 + X2Z1) − 3b(X1Y2 + X2Y1)Z1Z2

− 3b(X1Z2 + X2Z1)(Y1Z2 + Y2Z1) + a2(Y1Z2 + Y2Z1)Z1Z2,

Y3 = Y 2
1 Y 2

2 + 3aX2
1X2

2 + 9bX1X2(X1Z2 + X2Z1)

− 2a2X1Z2(X1Z2 + 2X2Z1) + a2(X1Z2 + X2Z1)(X1Z2 − X2Z1)

− 3abX1Z1Z
2
2 − 3abX2Z

2
1Z2 − (a3 + 9b2)Z2

1Z2
2 ,

Z3 = 3X1X2(X1Y2 + X2Y1) + Y1Y2(Y1Z2 + Y2Z1)
+ a(X1Y2 + X2Y1)Z1Z2 + a(X1Z2 + X2Z1)(Y1Z2 + Y2Z1)
+ 3b(Y1Z2 + Y2Z1)Z1Z2.

Bosma and Lenstra prove that a pair of points (P,Q) is exceptional for this
addition law if and only if P − Q is a point of order two.

Exceptions. Throughout this paper, we fix q ≥ 5 and assume throughout
that E(Fq) has prime order to exclude Fq-rational points of order two, so that
the above formulas are complete. However, we note that the explicit algorithms
that are derived in Sect. 3 will, firstly, be complete for any short Weierstrass
curves of odd order, and secondly, also be exception-free for all pairs of points
inside odd order subgroups on any short Weierstrass curve. In particular, this
means that they can also be used to compute exception-free additions and scalar
multiplications on certain curves with an even order. We come back to this
in Sect. 5.2.

3.1 The General Case

Despite the attractive properties that come with completeness, this addition law
seems to have been overlooked due to its apparent inefficiency. We now begin to
show that these formulas are not as inefficient as they seem, to the point where
the performance will be competitive with the fastest, incomplete addition laws
in current implementations of prime order curves.

We start by rewriting the above formulas as

X3 = (X1Y2 + X2Y1)(Y1Y2 − a(X1Z2 + X2Z1) − 3bZ1Z2)

− (Y1Z2 + Y2Z1)(aX1X2 + 3b(X1Z2 + X2Z1) − a2Z1Z2),

Y3 = (3X1X2 + aZ1Z2)(aX1X2 + 3b(X1Z2 + X2Z1) − a2Z1Z2)+
(Y1Y2 + a(X1Z2 + X2Z1) + 3bZ1Z2)(Y1Y2 − a(X1Z2 + X2Z1) − 3bZ1Z2),
Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + a(X1Z2 + X2Z1) + 3bZ1Z2)

+ (X1Y2 + X2Y1)(3X1X2 + aZ1Z2). (1)
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Algorithm 1. Complete, projective point addition for arbitrary prime
order short Weierstrass curves E/Fq : y2 = x3 + ax + b.

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3,
and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P + Q.

1. t0 ← X1 · X2 2. t1 ← Y1 · Y2 3. t2 ← Z1 · Z2

4. t3 ← X1 + Y1 5. t4 ← X2 + Y2 6. t3 ← t3 · t4
7. t4 ← t0 + t1 8. t3 ← t3 − t4 9. t4 ← X1 + Z1

10. t5 ← X2 + Z2 11. t4 ← t4 · t5 12. t5 ← t0 + t2
13. t4 ← t4 − t5 14. t5 ← Y1 + Z1 15. X3 ← Y2 + Z2

16. t5 ← t5 · X3 17. X3 ← t1 + t2 18. t5 ← t5 − X3

19. Z3 ← a · t4 20. X3 ← b3 · t2 21. Z3 ← X3 + Z3

22. X3 ← t1 − Z3 23. Z3 ← t1 + Z3 24. Y3 ← X3 · Z3

25. t1 ← t0 + t0 26. t1 ← t1 + t0 27. t2 ← a · t2
28. t4 ← b3 · t4 29. t1 ← t1 + t2 30. t2 ← t0 − t2
31. t2 ← a · t2 32. t4 ← t4 + t2 33. t0 ← t1 · t4
34. Y3 ← Y3 + t0 35. t0 ← t5 · t4 36. X3 ← t3 · X3

37. X3 ← X3 − t0 38. t0 ← t3 · t1 39. Z3 ← t5 · Z3

40. Z3 ← Z3 + t0

Algorithm 2. Complete, mixed point addition for arbitrary prime order
short Weierstrass curves E/Fq : y2 = x3 + ax + b.

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : 1), E : Y 2Z = X3 + aXZ2 + bZ3,
and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P + Q.

1. t0 ← X1 · X2 2. t1 ← Y1 · Y2 3. t3 ← X2 + Y2

4. t4 ← X1 + Y1 5. t3 ← t3 · t4 6. t4 ← t0 + t1
7. t3 ← t3 − t4 8. t4 ← X2 · Z1 9. t4 ← t4 + X1

10. t5 ← Y2 · Z1 11. t5 ← t5 + Y1 12. Z3 ← a · t4
13. X3 ← b3 · Z1 14. Z3 ← X3 + Z3 15. X3 ← t1 − Z3

16. Z3 ← t1 + Z3 17. Y3 ← X3 · Z3 18. t1 ← t0 + t0
19. t1 ← t1 + t0 20. t2 ← a · Z1 21. t4 ← b3 · t4
22. t1 ← t1 + t2 23. t2 ← t0 − t2 24. t2 ← a · t2
25. t4 ← t4 + t2 26. t0 ← t1 · t4 27. Y3 ← Y3 + t0
28. t0 ← t5 · t4 29. X3 ← t3 · X3 30. X3 ← X3 − t0
31. t0 ← t3 · t1 32. Z3 ← t5 · Z3 33. Z3 ← Z3 + t0

The rewritten formulas still appear somewhat cumbersome, but a closer inspec-
tion of (1) reveals that several terms are repeated. In Algorithm 1, we show that
this can in fact be computed6 using 12M + 3ma + 2m3b + 23a7.
6 Notation here is the same as in Table 1, except for m3b which denotes multiplication

by the curve constant 3b.
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Although Algorithm 1 is sufficient for cryptographic implementations, per-
formance gains can be obtained by specializing the point additions to the useful
scenarios of mixed additions8 (i.e., where Z2 = 1) and/or point doublings (i.e.,
where P = Q). The mixed addition follows the same formulas as for point addi-
tion; Algorithm 2 shows this can be done in 11M + 3ma + 2m3b + 17a.

For a point P = (X : Y : Z), doubling is computed as

X3 = 2XY (Y 2 − 2aXZ − 3bZ2)

− 2Y Z(aX2 + 6bXZ − a2Z2),

Y3 = (Y 2 + 2aXZ + 3bZ2)(Y 2 − 2aXZ − 3bZ2)

+ (3X2 + aZ2)(aX2 + 6bXZ − a2Z2),

Z3 = 8Y 3Z.

Algorithm 3 shows that this can be computed in 8M+ 3S+ 3ma + 2m3b + 15a.

Algorithm 3. Exception-free point doubling for arbitrary prime order
short Weierstrass curves E/Fq : y2 = x3 + ax + b.

Require: P = (X : Y : Z) on E : Y 2Z = X3 + aXZ2 + bZ3, and b3 = 3 · b.
Ensure: (X3 : Y3 : Z3) = 2P .

1. t0 ← X · X 2. t1 ← Y · Y 3. t2 ← Z · Z
4. t3 ← X · Y 5. t3 ← t3 + t3 6. Z3 ← X · Z
7. Z3 ← Z3 + Z3 8. X3 ← a · Z3 9. Y3 ← b3 · t2

10. Y3 ← X3 + Y3 11. X3 ← t1 − Y3 12. Y3 ← t1 + Y3

13. Y3 ← X3 · Y3 14. X3 ← t3 · X3 15. Z3 ← b3 · Z3

16. t2 ← a · t2 17. t3 ← t0 − t2 18. t3 ← a · t3
19. t3 ← t3 + Z3 20. Z3 ← t0 + t0 21. t0 ← Z3 + t0
22. t0 ← t0 + t2 23. t0 ← t0 · t3 24. Y3 ← Y3 + t0
25. t2 ← Y · Z 26. t2 ← t2 + t2 27. t0 ← t2 · t3
28. X3 ← X3 − t0 29. Z3 ← t2 · t1 30. Z3 ← Z3 + Z3

31. Z3 ← Z3 + Z3

3.2 Special Cases of Interest

a = −3. Several standards (e.g., [3,22,23,30,56,60]) adopt short Weierstrass
curves with the constant a being a = −3, which gives rise to faster explicit
formulas for point doubling9.
7 We thank Emmanuel Thomé whose careful read-through resulted in a 1ma saving

in all three of the explicit formulas for the general case.
8 We note that it is not technically correct to call “mixed” additions complete, since
Z2 = 1 precludes the second point being the point at infinity. However, this is not
a problem in practice as the second point is typically taken from a precomputed
lookup table consisting of small multiples of the input point P �= O. For prime order
curves, these small multiples can never be at infinity.

9 When Fq is a large prime field, a = −3 covers 1/2 (resp. 1/4) of the isomorphism
classes for q ≡ 3 mod 4 (resp. q ≡ 1 mod 4) – see [21, Sect. 3].



414 J. Renes et al.

In this case, the complete formulas in (1) specialize to

X3 = (X1Y2 + X2Y1)(Y1Y2 + 3(X1Z2 + X2Z1 − bZ1Z2))
− 3(Y1Z2 + Y2Z1)(b(X1Z2 + X2Z1) − X1X2 − 3Z1Z2),

Y3 = 3(3X1X2 − 3Z1Z2)(b(X1Z2 + X2Z1) − X1X2 − 3Z1Z2)+
(Y1Y2 − 3(X1Z2 + X2Z1 − bZ1Z2))(Y1Y2 + 3(X1Z2 + X2Z1 − bZ1Z2)),
Z3 = (Y1Z2 + Y2Z1)(Y1Y2 − 3(X1Z2 + X2Z1 − bZ1Z2))

+ (X1Y2 + X2Y1)(3X1X2 − 3Z1Z2).

These can be computed at a cost of 12M + 2mb + 29a using Algorithm 4. The
mixed addition can be done at a cost of 11M + 2mb + 23a, as shown in Algo-
rithm 5.

Algorithm 4. Complete, projective point addition for prime order short
Weierstrass curves E/Fq : y2 = x3 + ax + b with a = −3.

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 − 3XZ2 + bZ3

Ensure: (X3 : Y3 : Z3) = P + Q;

1. t0 ← X1 · X2 2. t1 ← Y1 · Y2 3. t2 ← Z1 · Z2

4. t3 ← X1 + Y1 5. t4 ← X2 + Y2 6. t3 ← t3 · t4
7. t4 ← t0 + t1 8. t3 ← t3 − t4 9. t4 ← Y1 + Z1

10. X3 ← Y2 + Z2 11. t4 ← t4 · X3 12. X3 ← t1 + t2
13. t4 ← t4 − X3 14. X3 ← X1 + Z1 15. Y3 ← X2 + Z2

16. X3 ← X3 · Y3 17. Y3 ← t0 + t2 18. Y3 ← X3 − Y3

19. Z3 ← b · t2 20. X3 ← Y3 − Z3 21. Z3 ← X3 + X3

22. X3 ← X3 + Z3 23. Z3 ← t1 − X3 24. X3 ← t1 + X3

25. Y3 ← b · Y3 26. t1 ← t2 + t2 27. t2 ← t1 + t2
28. Y3 ← Y3 − t2 29. Y3 ← Y3 − t0 30. t1 ← Y3 + Y3

31. Y3 ← t1 + Y3 32. t1 ← t0 + t0 33. t0 ← t1 + t0
34. t0 ← t0 − t2 35. t1 ← t4 · Y3 36. t2 ← t0 · Y3

37. Y3 ← X3 · Z3 38. Y3 ← Y3 + t2 39. X3 ← t3 · X3

40. X3 ← X3 − t1 41. Z3 ← t4 · Z3 42. t1 ← t3 · t0
43. Z3 ← Z3 + t1

In this case, the doubling formulas become

X3 = 2XY (Y 2 + 3(2XZ − bZ2))

− 6Y Z(2bXZ − X2 − 3Z2),

Y3 = (Y 2 − 3(2XZ − bZ2))(Y 2 + 3(2XZ − bZ2))

+ 3(3X2 − 3Z2)(2bXZ − X2 − 3Z2),

Z3 = 8Y 3Z,

which can be computed at a cost of 8M + 3S + 2mb + 21a using Algorithm 6.
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Algorithm 5. Complete, mixed point addition for prime order short Weier-
strass curves E/Fq : y2 = x3 + ax + b with a = −3.

Require: P =(X1 : Y1 : Z1), Q=(X2 : Y2 : 1), E : Y 2Z =X3 − 3XZ2 + bZ3

Ensure: (X3 : Y3 : Z3) = P + Q;

1. t0 ← X1 · X2 2. t1 ← Y1 · Y2 3. t3 ← X2 + Y2

4. t4 ← X1 + Y1 5. t3 ← t3 · t4 6. t4 ← t0 + t1
7. t3 ← t3 − t4 8. t4 ← Y2 · Z1 9. t4 ← t4 + Y1

10. Y3 ← X2 · Z1 11. Y3 ← Y3 + X1 12. Z3 ← b · Z1

13. X3 ← Y3 − Z3 14. Z3 ← X3 + X3 15. X3 ← X3 + Z3

16. Z3 ← t1 − X3 17. X3 ← t1 + X3 18. Y3 ← b · Y3

19. t1 ← Z1 + Z1 20. t2 ← t1 + Z1 21. Y3 ← Y3 − t2
22. Y3 ← Y3 − t0 23. t1 ← Y3 + Y3 24. Y3 ← t1 + Y3

25. t1 ← t0 + t0 26. t0 ← t1 + t0 27. t0 ← t0 − t2
28. t1 ← t4 · Y3 29. t2 ← t0 · Y3 30. Y3 ← X3 · Z3

31. Y3 ← Y3 + t2 32. X3 ← t3 · X3 33. X3 ← X3 − t1
34. Z3 ← t4 · Z3 35. t1 ← t3 · t0 36. Z3 ← Z3 + t1

Algorithm 6. Exception-free point doubling for prime order short Weier-
strass curves E/Fq : y2 = x3 + ax + b with a = −3.

Require: P = (X : Y : Z) on E : Y 2Z = X3 − 3XZ2 + bZ3.
Ensure: (X3 : Y3 : Z3) = 2P .

1. t0 ← X · X 2. t1 ← Y · Y 3. t2 ← Z · Z
4. t3 ← X · Y 5. t3 ← t3 + t3 6. Z3 ← X · Z
7. Z3 ← Z3 + Z3 8. Y3 ← b · t2 9. Y3 ← Y3 − Z3

10. X3 ← Y3 + Y3 11. Y3 ← X3 + Y3 12. X3 ← t1 − Y3

13. Y3 ← t1 + Y3 14. Y3 ← X3 · Y3 15. X3 ← X3 · t3
16. t3 ← t2 + t2 17. t2 ← t2 + t3 18. Z3 ← b · Z3

19. Z3 ← Z3 − t2 20. Z3 ← Z3 − t0 21. t3 ← Z3 + Z3

22. Z3 ← Z3 + t3 23. t3 ← t0 + t0 24. t0 ← t3 + t0
25. t0 ← t0 − t2 26. t0 ← t0 · Z3 27. Y3 ← Y3 + t0
28. t0 ← Y · Z 29. t0 ← t0 + t0 30. Z3 ← t0 · Z3

31. X3 ← X3 − Z3 32. Z3 ← t0 · t1 33. Z3 ← Z3 + Z3

34. Z3 ← Z3 + Z3

a = 0. Short Weierstrass curves with a = 0, i.e., with j-invariant 0, have also
appeared in the standards. For example, Certicom’s SEC-2 standard [22] specifies
three such curves; one of these is secp256k1, which is the curve used in the Bit-
coin protocol. In addition, in the case that pairing-based cryptography becomes
standardized, it is most likely that the curve choices will be short Weierstrass
curves with a = 0, e.g., BN curves [5].
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Algorithm 7. Complete, projective point addition for prime order j-
invariant 0 short Weierstrass curves E/Fq : y2 = x3 + b.

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) on E : Y 2Z = X3 + bZ3

and b3 = 3 · b.
Ensure: (X3 : Y3 : Z3) = P + Q;

1. t0 ← X1 · X2 2. t1 ← Y1 · Y2 3. t2 ← Z1 · Z2

4. t3 ← X1 + Y1 5. t4 ← X2 + Y2 6. t3 ← t3 · t4
7. t4 ← t0 + t1 8. t3 ← t3 − t4 9. t4 ← Y1 + Z1

10. X3 ← Y2 + Z2 11. t4 ← t4 · X3 12. X3 ← t1 + t2
13. t4 ← t4 − X3 14. X3 ← X1 + Z1 15. Y3 ← X2 + Z2

16. X3 ← X3 · Y3 17. Y3 ← t0 + t2 18. Y3 ← X3 − Y3

19. X3 ← t0 + t0 20. t0 ← X3 + t0 21. t2 ← b3 · t2
22. Z3 ← t1 + t2 23. t1 ← t1 − t2 24. Y3 ← b3 · Y3

25. X3 ← t4 · Y3 26. t2 ← t3 · t1 27. X3 ← t2 − X3

28. Y3 ← Y3 · t0 29. t1 ← t1 · Z3 30. Y3 ← t1 + Y3

31. t0 ← t0 · t3 32. Z3 ← Z3 · t4 33. Z3 ← Z3 + t0

Algorithm 8. Complete, mixed point addition for prime order j-invariant
0 short Weierstrass curves E/Fq : y2 = x3 + b.

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : 1) on E : Y 2Z = X3 + bZ3

and b3 = 3 · b.
Ensure: (X3 : Y3 : Z3) = P + Q;

1. t0 ← X1 · X2 2. t1 ← Y1 · Y2 3. t3 ← X2 + Y2

4. t4 ← X1 + Y1 5. t3 ← t3 · t4 6. t4 ← t0 + t1
7. t3 ← t3 − t4 8. t4 ← Y2 · Z1 9. t4 ← t4 + Y1

10. Y3 ← X2 · Z1 11. Y3 ← Y3 + X1 12. X3 ← t0 + t0
13. t0 ← X3 + t0 14. t2 ← b3 · Z1 15. Z3 ← t1 + t2
16. t1 ← t1 − t2 17. Y3 ← b3 · Y3 18. X3 ← t4 · Y3

19. t2 ← t3 · t1 20. X3 ← t2 − X3 21. Y3 ← Y3 · t0
22. t1 ← t1 · Z3 23. Y3 ← t1 + Y3 24. t0 ← t0 · t3
25. Z3 ← Z3 · t4 26. Z3 ← Z3 + t0

In this case, the complete additions simplify to

X3 = (X1Y2 + X2Y1)(Y1Y2 − 3bZ1Z2)
− 3b(Y1Z2 + Y2Z1)(X1Z2 + X2Z1),

Y3 = (Y1Y2 + 3bZ1Z2)(Y1Y2 − 3bZ1Z2) + 9bX1X2(X1Z2 + X2Z1),
Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + 3bZ1Z2) + 3X1X2(X1Y2 + X2Y1),

which can be computed in 12M + 2m3b + 19a via Algorithm 7. The mixed
addition is computed in 11M + 2m3b + 13a via Algorithm 8.
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The doubling formulas in this case are

X3 = 2XY (Y 2 − 9bZ2),

Y3 = (Y 2 − 9bZ2)(Y 2 + 3bZ2) + 24bY 2Z2,

Z3 = 8Y 3Z.

These can be computed in 6M + 2S + 1m3b + 9a via Algorithm 9.

Algorithm 9. Exception-free point doubling for prime order j-invariant 0
short Weierstrass curves E/Fq : y2 = x3 + b.

Require: P = (X : Y : Z) on E : Y 2Z = X3 + bZ3 and b3 = 3 · b.
Ensure: (X3 : Y3 : Z3) = 2P .

1. t0 ← Y · Y 2. Z3 ← t0 + t0 3. Z3 ← Z3 + Z3

4. Z3 ← Z3 + Z3 5. t1 ← Y · Z 6. t2 ← Z · Z
7. t2 ← b3 · t2 8. X3 ← t2 · Z3 9. Y3 ← t0 + t2

10. Z3 ← t1 · Z3 11. t1 ← t2 + t2 12. t2 ← t1 + t2
13. t0 ← t0 − t2 14. Y3 ← t0 · Y3 15. Y3 ← X3 + Y3

16. t1 ← X · Y 17. X3 ← t0 · t1 18. X3 ← X3 + X3

4 Some Intuition Towards Optimality

In this section we motivate the choice of the complete formulas in (1) that were
taken from Bosma and Lenstra [19], by providing reasoning as to why, among the
many possible complete addition laws on prime order curves, we chose the set
corresponding to the line Y = 0 in P

2(k) under the straightforward homogeneous
projection.

We do not claim that this choice is truly optimal, since proving that a certain
choice of projective embedding and/or complete addition law for any particular
prime order curve is faster than all of the other choices for that curve seems
extremely difficult, if not impossible. We merely explain why, when aiming to
write down explicit algorithms that will simultaneously be complete on all prime
order short Weierstrass curves, choosing the Bosma–Lenstra formulas makes
sense.

Furthermore, we also do not claim that our explicit algorithms to compute
the addition law in (1) are computationally optimal. It is likely that trade-offs
can be advantageously exploited on some platforms (cf. [41, Sect. 3.6]) or that
alternative operation scheduling could reduce the number of field additions10.

10 Our experimentation did suggest that computing (1) in any reasonable way with
fewer than 12 generic multiplications appears to be difficult.
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4.1 Choice of the Line Y = 0 for Bidegree (2, 2) Addition Laws

Let L(α,β,γ) denote the line given by αX+βY +γZ = 0 inside P2(Fq), and, under
the necessary assumption that L(α,β,γ) does not intersect the curve E : Y 2Z =
X3 + aXZ2 + bZ3 ⊂ P

2(Fq), let A(α,β,γ) denote the complete addition law of
bidegree (2, 2) corresponding to L(α,β,γ) given by [19, Theorem 2]. So far we have
given optimizations for A(0,1,0), but the question remains as to whether there
are other lines L(α,β,γ) which give rise to even faster addition laws A(α,β,γ).

We first point out that L(0,1,0) is the only line that does not intersect E
independently of a, b and q. It is easy to show that any other line in P

2(Fq) that
does not intersect E will have a dependency on at least one of a, b and q, and
the resulting addition law will therefore only be complete on a subset of prime
order curves.

Nevertheless, it is possible that there is a better choice than A(0,1,0) for a
given short Weierstrass curve, or that there are special choices of prime order
curves that give rise to more efficient complete group laws. We now sketch some
intuition as to why this is unlikely. For A(α,β,γ) to be complete, it is necessary
that, in particular, L(α,β,γ) does not intersect E at the point at infinity (0 : 1 : 0).
This implies that β �= 0. From [19,48], we know that the space of all addition
laws has dimension 3 and that

A(α,β,γ) = αA(1,0,0) + βA(0,1,0) + γA(0,0,1),

where A(1,0,0), A(0,1,0) and A(0,0,1) are the three addition laws given in
[19, pp. 236–239], specialized to short Weierstrass curves. Given that β �= 0,
our only hope of finding a more simple addition law than A(0,1,0) is by choosing
α and/or γ in a way that causes an advantageous cross-cancellation of terms.
Close inspection of the formulas in [19] strongly suggests that no such cancella-
tion exists.

Remark 1. Interestingly, both A(1,0,0) and A(0,0,1) vanish to zero when special-
ized to doubling. This means that any doubling formula in bidegree (2, 2) that
is not exceptional at the point at infinity is a scalar multiple of A(0,1,0), i.e., the
formulas used in this paper.

Remark 2. Although a more efficient addition law might exist for larger bide-
grees, it is worth reporting that our experiments to find higher bidegree analogues
of the Bosma and Lenstra formulas suggest that this, too, is unlikely. The com-
plexity (and computational cost) of the explicit formulas grows rapidly as the
bidegree increases, which is most commonly the case across all models of elliptic
curves and projective embeddings (cf. [41]). We could hope for an addition law
of bidegree lower than (2, 2), but in [19, Sect. 3] Bosma and Lenstra prove that
this is not possible under the short Weierstrass embedding11 of E.

11 Lower bidegree addition laws are possible for other embeddings (i.e., models) of E
in the case where E has a k-rational torsion structure – see [47].
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4.2 Jacobian Coordinates

Since first suggested for short Weierstrass curves by Miller in his seminal
paper [52, p. 424], Jacobian coordinates have proven to offer significant perfor-
mance advantages over other coordinate systems. Given their ubiquity in real-
world ECC code, and the fact that their most commonly used sets of efficient
point doubling formulas turn out to be exception-free on prime order curves (see
Table 1), it is highly desirable to go searching for a Jacobian coordinate analogue
of the Bosma–Lenstra (homogeneous coordinates) addition law. Unfortunately,
we now show that such addition formulas in Jacobian coordinates must have a
higher bidegree, intuitively making them slower to compute.

For the remainder of this section only, let E ⊂ P(2, 3, 1)(k) have odd order.
If an addition law f = (fX , fY , fZ) has fZ of bidegree (μ, ν), then the bidegrees
of fX and fY are (2μ, 2ν) and (3μ, 3ν), respectively. Below we show that any
complete formulas must have μ, ν ≥ 3.

Consider the addition of two points P = (X1 : Y1 : Z1) and Q = (X2 : Y2 :
Z2), using the addition law

f(P,Q) = (fX(P,Q) : fY (P,Q) : fZ(P,Q)),

with fZ of bidegree (μ, ν). Suppose that f is complete, and that μ < 3. Then fZ ,
viewed as a polynomial in X1, Y1, Z1, has degree μ < 3, and in particular cannot
contain Y1. Now, since −P = (X1 : −Y1 : Z1) on E, it follows that fZ(P,Q) =
fZ(−P,Q) for all possible Q, and in particular when Q = P . But in this case,
and given that P cannot have order 2, we have fZ(P,Q) �= 0 and fZ(−P,Q) = 0,
a contradiction. We conclude that μ ≥ 3, and (by symmetry) that ν ≥ 3.
It follows that fX and fY have bidegrees at least (6, 6) and (9, 9), respec-
tively, which destroys any hope of comparable efficiency to the homogeneous
Bosma–Lenstra formulas.

5 Using These Formulas in Practice

In this section we discuss the practical application of the complete algorithms
in this paper. We discuss how they can be used for both the prime order curves
(Sect. 5.1) and composite order curves (Sect. 5.2) in the standards. In Sect. 5.3,
we give performance numbers that shed light on the expected cost of complete-
ness in certain software scenarios, before discussing why this cost is likely to be
significantly reduced in many other scenarios, e.g., in hardware.

5.1 Application to Prime Order Curves (or, Secure ECC for Noobs)

Using Algorithm 1 as a black-box point addition routine, non-experts now have a
straightforward way to implement the standardized prime order elliptic curves.
So long as scalars are recoded correctly, the subsequent scalar multiplication
routine will always compute the correct result.
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Given the vulnerabilities exposed in already-deployed ECC implementations
(see Sect. 1), we now provide some implementation recommendations, e.g., for
an implementer whose task it is to (re)write a simple and timing-resistant scalar
multiplication routine for prime order curves from scratch. The main point is
that branches (e.g., if statements) inside the elliptic curve point addition algo-
rithms can now be avoided entirely. Our main recommendation is that more
streamlined versions of Algorithm1 should only be introduced to an implemen-
tation if they are guaranteed to be exception-free; subsequently, we stress that
branching should never be introduced into any point addition algorithms.

Assuming access to branch-free, constant-time field arithmetic in Fq, a first
step is to implement Algorithm 1 to be used for all point (doubling and addition)
operations, working entirely in homogeneous projective space. The natural next
step is to implement a basic scalar recoding (e.g., [44,57]) that gives rise to
a fixed, uniform, scalar-independent main loop. This typically means that the
main loop repeats the same pattern of a fixed number of doublings followed by
a single table lookup/extraction and, subsequently, an addition. The important
points are that this table lookup must be done in a cache-timing resistant manner
(cf. [45, Sect. 3.4]), and that the basic scalar recoding must itself be performed
in a uniform manner.

Once the above routine is running correctly, an implementer that is seek-
ing further performance gains can start by viewing stages of the routine where
Algorithm 1 can safely be replaced by its specialized, more efficient variants. If
the code is intended to support only short Weierstrass curves with either a = −3
or a = 0, then Algorithm 1 should be replaced by (the faster and more compact)
Algorithm 4 or Algorithm 7, respectively. If the performance gains warrant the
additional code, then at all stages where the addition function is called to add
a point to itself (i.e., the point doubling stages), the respective exception-free
point doubling routine(s) in Algorithms 3, 6 and 9 should be implemented and
called there instead.

Incomplete short Weierstrass addition routines (e.g., the prior works summa-
rized in Table 1) should only be introduced for further performance gains if the
implementer can guarantee that exceptional pairs of points can never be input
into the algorithms, and subsequently can implement them without introduc-
ing any branches. For example, Bos et al. [16, Sect. 4.1] proved that, under their
particular choice of scalar multiplication algorithm, all-but-one of the point addi-
tions in a variable-base scalar multiplication can be performed without exception
using an incomplete addition algorithm. The high-level argument used there was
that such additions almost always took place between elements of the lookup
table and a running value that had just been output from a point doubling, the
former being small odd multiples of the input point (e.g., P , [3]P , [5]P , etc.) and
the latter being some even multiple. Subsequently, they showed that the only
possible time when the input points to the addition algorithm could coincide with
(or be inverses of) each other is in the final addition, ruling out the exceptional
points in all prior additions. On the other hand, as we mentioned in Sect. 1 and
as was encountered in [16, Sect. 4.1], it can be significantly more complicated to
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rule out exceptional input points in more exotic scalar multiplication scenarios
like fixed-base scalar multiplications, multiscalar multiplications, or those that
exploit endomorphisms. In those cases, it could be that the only option to rule
out any exceptional points is to always call complete addition algorithms.

Remark 3 (The best of both worlds?). We conclude this subsection by mentioning
one more option that may be of interest to implementers who want to combine
the fastest complete point addition algorithms with the fastest exception-free
point doubling algorithms. Recall from Table 1 that the fastest doubling algo-
rithms for short Weierstrass curves work in Jacobian coordinates and happen
to be exception-free in the prime order setting, but recall from Sect. 4.2 that
there is little hope of obtaining relatively efficient complete addition algorithms
in Jacobian coordinates. This prompts the question as to whether the doubling
algorithms that take place in P(2, 3, 1)(k) can be combined with our complete
addition algorithms that take place in P

2(k). Generically, we can map the elliptic
curve point (X : Y : Z) ∈ P(2, 3, 1)(k) to (XZ : Y : Z3) ∈ P

2(k), and conversely,
we can map the point (X : Y : Z) ∈ P

2(k) to (XZ : Y Z2 : Z) ∈ P(2, 3, 1)(k);
both maps cost 2M+ 1S. We note that in the first direction there are no excep-
tions: in particular, the point at infinity (1 : 1 : 0) ∈ P(2, 3, 1)(k) correctly maps
to (0 : 1 : 0) ∈ P

2(k). However, in the other direction, the point at infinity
(0 : 1 : 0) ∈ P

2(k) does not correctly map to (1 : 1 : 0) ∈ P(2, 3, 1)(k), but rather
to the point (0 : 0 : 0) �∈ P(2, 3, 1)(k).

For a variable-base scalar multiplication using a fixed window of width w, one
option would be to store the precomputed lookup table in P

2(k) (or in A
2(k)

if normalizing for the sake of complete mixed additions is preferred), and to
compute the main loop as follows. After computing each of the w consecutive
doublings in P(2, 3, 1)(k), the running value is converted to P

2(k) at a cost of
2M+1S, then the result of a complete addition (between the running value and
a lookup table element) is converted back to P(2, 3, 1)(k) at a cost of 2M + 1S.
Even for small window sizes that result in additions (and thus the back-and-forth
conversions) occurring relatively often, the operation counts in Table 1 suggest
that this trade-off will be favorable; and, for larger window sizes, the resulting
scalar multiplication will be significantly faster than one that works entirely in
P
2(k).

The only possible exception that could occur in the above routine is when
the result of an addition is the point at infinity (0 : 1 : 0) ∈ P

2(k), since the
conversion back to P(2, 3, 1)(k) fails here. Thus, this strategy should only be
used if the scalar multiplication routine is such that the running value is never
the inverse of any element in the lookup table, or if the conversion from P

2(k)
to P(2, 3, 1)(k) is written to handle this possible exception in a constant-time
fashion. In the former case, if (as in [16, Sect. 4.1]) this can only happen in the
final addition, then the workaround is easy: either guarantee that the scalars
cannot be a multiple of the group order (which rules out this possibility), or else
do not apply the conversion back to P(2, 3, 1)(k) after the final addition.
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5.2 Interoperability with Composite Order Curves

The IRTF CFRG recently selected two composite order curves as a recom-
mendation to the TLS working group for inclusion in upcoming versions of
TLS: Bernstein’s Curve25519 [7] and Hamburg’s Goldilocks [39]. The current
IETF internet draft12 specifies the wire format for these curves to be the u-
coordinate corresponding to a point (u, v) on the Montgomery model of these
curves EM/Fq : v2 = u3+Au2+u. Curve25519 has q = 2255−19 with A = 486662
and Goldilocks has q = 2448 − 2224 − 1 with A = 156326.

Since our complete formulas are likely to be of interest to practitioners con-
cerned with global interoperability, e.g., those investing a significant budget into
one implementation that may be intended to support as many standardized
curves as possible, we now show that Algorithm 1 can be adapted to interoper-
ate with the composite order curves in upcoming TLS ciphersuites. We make no
attempt to disguise the fact that this will come with a significant performance
penalty over the Montgomery ladder, but in this case we are assuming that top
performance is not the priority.

A trivial map from the Montgomery curve to a short Weierstrass curve is
κ : EM → E, (u, v) �→ (x, y) = (u − A/3, v); here the short Weierstrass curve is
E : y2 = x3 + ax + b, with a = 1 − A2/3 and b = A(2A2 − 9)/27.

Thus, a dedicated short Weierstrass implementation can interoperate with
Curve25519 (resp. Goldilocks) as follows. After receiving the u-coordinate on the
wire, set x = u−A/3 (i.e., add a fixed, global constant), and decompress to com-
pute the corresponding y-coordinate on E via the square root y =

√
x3 + ax + b

as usual; the choice of square root here does not matter. Setting P = (x, y) and
validating that P ∈ E, we can then call Algorithm 1 to compute 3 (resp. 2) suc-
cessive doublings to get Q. This is in accordance with the scalars being defined
with 3 (resp. 2) fixed zero bits to clear the cofactor [7]. The point Q is then
multiplied by the secret part of the scalar (using, e.g., the methods we just
described in Sect. 5.1), then normalized to give Q = (x′, y′), and the Mont-
gomery u-coordinate of the result is output as u′ = x′ + A/3.

Note that the above routine is exception free: Algorithm 1 only fails to add
the points P1 and P2 when P1 − P2 is a point of exact order 2. Thus, it can
be used for point doublings on all short Weierstrass curves (including those of
even order). Furthermore, the point Q is in the prime order subgroup, so the
subsequent scalar multiplication (which only encounters multiples of Q) cannot
find a pair of points that are exceptional to Algorithm1.

Finally, we note that although neither Curve25519 or Goldilocks are isomor-
phic to a Weierstrass curve with a = −3, both curves have simple isomorphisms
to Weierstrass curves with small a values, e.g., a = 2 and a = 1, respectively.
Making use of this would noticeably decrease the overhead of our complete
formulas.

12 See https://datatracker.ietf.org/doc/draft-irtf-cfrg-curves/.

https://datatracker.ietf.org/doc/draft-irtf-cfrg-curves/
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5.3 The Cost of Completeness

In Table 2 we report the factor slowdown obtained when substituting the
complete formulas in Algorithms 4–6 for OpenSSL’s “ec GFp simple add” and
“ec GFp simple dbl” functions inside the OpenSSL scalar multiplication rou-
tine for the five NIST prime curves (which all have a = −3).

Table 2. Number of ECDH operations in 10 s for the OpenSSL implementation of the
five NIST prime curves, using complete and incomplete addition formulas. Timings
were obtained by running the “openssl speed ecdhpXXX” command on an Intel Core
i5-5300 CPU @ 2.30 GHz, averaged over 100 trials of 10 s each.

NIST no. of ECDH operations (per 10 s) factor

curve complete incomplete slowdown

P-192 35274 47431 1.34x

P-224 24810 34313 1.38x

P-256 21853 30158 1.38x

P-384 10109 14252 1.41x

P-521 4580 6634 1.44x

We intentionally left OpenSSL’s scalar multiplication routines unaltered in
order to provide an unbiased upper bound on the performance penalty that
our complete algorithms will introduce. For the remainder of this subsection,
we discuss why the performance difference is unlikely to be this large in many
practical scenarios.

Referring to Table 3 (which, as well as the counts given in Table 1, includes
the operation counts for mixed additions), we see that the mixed addition for-
mulas in Jacobian coordinates are 4M + 1S faster than full additions, while
for our complete formulas the difference is only 1M + 6a. Thus, in Jacobian
coordinates, it is often advantageous to normalize the lookup table (using one
shared inversion [54]) in order to save 4M+1S per addition. On the other hand,
in the case of the complete formulas, this will not be a favorable trade-off and
(assuming there is ample cache space) it is likely to be better to leave all of the
lookup elements in P

2. The numbers reported in Table 2 use OpenSSL’s scalar
multiplication which does normalize the lookup table to use mixed additions,
putting the complete formulas at a disadvantage.

As we mentioned in Sect. 1, the slowdowns reported in Table 2 (which were
obtained on a 64-bit machine) are likely to be significantly less on low-end archi-
tectures where the relative cost of field additions drops. Furthermore, in embed-
ded scenarios where implementations must be protected against more than just
timing attacks, a common countermeasure is to randomize the projective coor-
dinates of intermediate points [29]. In these cases, normalized lookup table ele-
ments could also give rise to side-channel vulnerabilities [33, Sect. 3.4–3.6], which
would take mixed additions out of the equation. As Table 3 suggests, when full
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Table 3. Operation counts for the prior incomplete addition algorithms and our com-
plete ones, with the inclusion of mixed addition formulas. Credits for the incomplete
formulas are the same as in Table 1, except for the additional mixed formulas which
are, in homogeneous coordinates, due to Cohen, Miyaji and Ono [27], and in Jacobian
coordinates, due to Hankerson, Menezes and Vanstone [40, p. 91].

addition formulas a ADD(P ,Q) mADD(P ,Q) DBL(P )

M S ma mb a M S ma mb a M S ma mb a

complete homogeneous any 12 0 3 2 23 11 0 3 2 17 8 3 3 2 15

−3 12 0 0 2 29 11 0 0 2 23 8 3 0 2 21

0 12 0 0 2 19 11 0 0 2 13 6 2 0 1 9

incomplete homogeneous any 12 2 0 0 7 9 2 0 0 7 5 6 1 0 12

−3 12 2 0 0 7 9 2 0 0 7 7 3 0 0 11

0 - - -

incomplete Jacobian any 12 4 0 0 7 8 3 0 0 7 3 6 1 0 13

−3 12 4 0 0 7 8 3 0 0 7 4 4 0 0 8

0 12 4 0 0 7 8 3 0 0 7 3 4 0 0 7

additions are used throughout, our complete algorithms will give much better
performance relative to their incomplete counterparts.

Hardware implementations of ECC typically rely on using general field hard-
ware multipliers that are often based on the algorithm of Montgomery [53]. These
types of hardware modules use a multiplier for both multiplications and squar-
ings [24,36], meaning that the squarings our addition algorithms save (over the
prior formulas) are full multiplications. Moreover, hardware architectures that
are based on Montgomery multiplication can benefit from modular addition-
s/subtractions computed as non-modular operations. The concept is explained
in [6], which is a typical ECC hardware architecture using the “relaxed” Mont-
gomery parameter such that the conditional subtraction (from the original algo-
rithm of Montgomery) can be omitted. In this way, the modular addition/sub-
traction is implemented not just very efficiently, but also as a time-constant
operation. Using this approach implies the only cost to be taken into account
is the one of modular multiplication, i.e., modular additions come almost for
free. Similar conclusions apply for multiplications with a constant as they can
be implemented very efficiently in hardware, assuming a constant is predefined
and hence “hardwired”. Again, viewing the operation counts in Table 3 suggests
that such scenarios are, relatively speaking, likely to give a greater benefit to
our complete algorithms.

Finally, we remark that runtime is not the only metric of concern to ECC
practitioners; in fact, there was wide consensus (among both speakers and pan-
elists) at the recent NIST workshop13 that security and simplicity are far more
important in real-world ECC than raw performance. While our complete algo-
rithms are likely to be slower in some scenarios, we reiterate that complete
formulas reign supreme in all other aspects, including total code size, ease of
implementation, and issues relating to side-channel resistance.

13 See http://www.nist.gov/itl/csd/ct/ecc-workshop.cfm.

http://www.nist.gov/itl/csd/ct/ecc-workshop.cfm
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Abstract. The selection of polynomials to represent number fields cru-
cially determines the efficiency of the Number Field Sieve (NFS) algo-
rithm for solving the discrete logarithm in a finite field. An important
recent work due to Barbulescu et al. builds upon existing works to pro-
pose two new methods for polynomial selection when the target field
is a non-prime field. These methods are called the generalised Joux-
Lercier (GJL) and the Conjugation methods. In this work, we propose
a new method (which we denote as A) for polynomial selection for the
NFS algorithm in fields FQ, with Q = pn and n > 1. The new method
both subsumes and generalises the GJL and the Conjugation methods
and provides new trade-offs for both n composite and n prime. Let us
denote the variant of the (multiple) NFS algorithm using the polyno-
mial selection method “X” by (M)NFS-X. Asymptotic analysis is per-
formed for both the NFS-A and the MNFS-A algorithms. In particular,
when p = LQ(2/3, cp), for cp ∈ [3.39, 20.91], the complexity of NFS-
A is better than the complexities of all previous algorithms whether
classical or MNFS. The MNFS-A algorithm provides lower complexity
compared to NFS-A algorithm; for cp ∈ (0, 1.12] ∪ [1.45, 3.15], the com-
plexity of MNFS-A is the same as that of the MNFS-Conjugation and
for cp /∈ (0, 1.12] ∪ [1.45, 3.15], the complexity of MNFS-A is lower than
that of all previous methods.

1 Introduction

Let G = 〈g〉 be a finite cyclic group. The discrete log problem (DLP) in G is
the following. Given (g, h), compute the minimum non-negative integer e such
that h = ge. For appropriately chosen groups G, the DLP in G is believed to
be computationally hard. This forms the basis of security of many important
cryptographic protocols.

Studying the hardness of the DLP on subgroups of the multiplicative group
of a finite field is an important problem. There are two general algorithms for
tackling the DLP on such groups. These are the function field sieve (FFS) [1,2,
16,18] algorithm and the number field sieve (NFS) [11,17,19] algorithm. Both
these algorithms follow the framework of index calculus algorithms which is
currently the standard approach for attacking the DLP in various groups.
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part I, LNCS 9665, pp. 429–458, 2016.
DOI: 10.1007/978-3-662-49890-3 17
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For small characteristic fields, the FFS algorithm leads to a quasi-polynomial
running time [6]. Using the FFS algorithm outlined in [6,15], Granger et al. [12]
reported a record computation of discrete log in the binary extension field F29234 .
FFS also applies to the medium characteristic fields. Some relevant works along
this line are reported in [14,18,25].

For medium to large characteristic finite fields, the NFS algorithm is the
state-of-the-art. In the context of the DLP, the NFS was first proposed by
Gordon [11] for prime order fields. The algorithm proceeded via number fields
and one of the main difficulties in applying the NFS was in the handling of units
in the corresponding ring of algebraic integers. Schirokauer [26,28] proposed
a method to bypass the problems caused by units. Further, Schirokauer [27]
showed the application of the NFS algorithm to composite order fields. Joux
and Lercier [17] presented important improvements to the NFS algorithm as
applicable to prime order fields.

Joux, Lercier, Smart and Vercauteren [19] later showed that the NFS algo-
rithm is applicable to all finite fields. Since then, several works [5,13,20,24] have
gradually improved the NFS in the context of medium to large characteristic
finite fields.

The efficiency of the NFS algorithm is crucially dependent on the properties
of the polynomials used to construct the number fields. Consequently, polyno-
mial selection is an important step in the NFS algorithm and is an active area of
research. The recent work [5] by Barbulescu et al. extends a previous method [17]
for polynomial selection and also presents a new method. The extension of [17]
is called the generalised Joux-Lercier (GJL) method while the new method pro-
posed in [5] is called the Conjugation method. The paper also provides a com-
prehensive comparison of the trade-offs in the complexity of the NFS algorithm
offered by the various polynomial selection methods.

The NFS based algorithm has been extended to multiple number field sieve
algorithm (MNFS). The work [8] showed the application of the MNFS to medium
to high characteristic finite fields. Pierrot [24] proposed MNFS variants of the
GJL and the Conjugation methods. For more recent works on NFS we refer
to [4,7,22].
Our contributions: In this work, we build on the works of [5,17] to propose
a new method of polynomial selection for NFS over Fpn . The new method both
subsumes and generalises the GJL and the Conjugation methods. There are two
parameters to the method, namely a divisor d of the extension degree n and a
parameter r ≥ k where k = n/d.

For d = 1, the new method becomes the same as the GJL method. For d = n
and r = k = 1, the new method becomes the same as the Conjugation method.
For d = n and r > 1; or, for 1 < d < n, the new method provides polynomials
which leads to different trade-offs than what was previously known. Note that
the case 1 < d < n can arise only when n is composite, though the case d = n and
r > 1 arises even when n is prime. So, the new method provides new trade-offs
for both n composite and n prime.
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Following the works of [5,24] we carry out an asymptotic analysis of new
method for the classical NFS as well as for MNFS. For the medium and the
large characteristic cases, the results for the new method are exactly the same as
those obtained for existing methods in [5,24]. For the boundary case, however, we
obtain some interesting asymptotic results. Letting Q = pn, the subexponential
expression LQ(a, c) is defined to be the following:

LQ(a, c) = exp
(
(c + o(1))(ln Q)a(ln lnQ)1−a

)
. (1)

Write p = LQ(2/3, cp) and let θ0 and θ1 be such that the complexity of the
MNFS-Conjugation method is LQ(1/3, θ0) and the complexity of the MNFS-GJL
method is LQ(1/3, θ1). As shown in [24], LQ(1/3, θ0) is the minimum complexity
of MNFS1 while for cp > 4.1, complexity of new method (MNFS-A) is lower than
the complexity LQ(1/3, θ1) of MNFS-GJL method.

The classical variant of the new method, (i.e., NFS-A) itself is powerful
enough to provide better complexity than all previously known methods, whether
classical or MNFS, for cp ∈ [3.39, 20.91]. The MNFS variant of the new method
provides lower complexity compared to the classical variant of the new method
for all cp.

Fig. 1. Complexity plot for MNFS boundary case

The complexity of MNFS-A with k = 1 and using linear sieving polynomials
can be written as LQ(1/3,C(cp, r)), where C(cp, r) is a function of cp and a
parameter r. For every integer r ≥ 1, there is an interval [ε0(r), ε1(r)] such that
for cp ∈ [ε0(r), ε1(r)], C(cp, r) < C(cp, r

′) for r �= r′. Further, for a fixed r,
let C(r) be the minimum value of C(cp, r) over all cp. We show that C(r) is
monotone increasing for r ≥ 1; C(1) = θ0; and that C(r) is bounded above by
θ1 which is its limit as r goes to infinity. So, for the new method the minimum
complexity is the same as MNFS-Conjugation method. On the other hand, as r

1 The value of θ0 obtained in [24] is incorrect.
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increases, the complexity of MNFS-A remains lower than the complexities of all
the prior known methods. In particular, the complexity of MNFS-A interpolates
nicely between the complexity of the MNFS-GJL and the minimum possible
complexity of the MNFS-Conjugation method. This is depicted in Fig. 1. In
Fig. 4 of Sect. 8.1, we provide a more detailed plot of the complexity of MNFS-A
in the boundary case.

The complete statement regarding the complexity of MNFS-A in the bound-
ary case is the following. For cp ∈ (0, 1.12]∪[1.45, 3.15], the complexity of MNFS-
A is the same as that of MNFS-Conjugation; for cp /∈ (0, 1.12] ∪ [1.45, 3.15], the
complexity of MNFS-A is lower than that of all previous methods. In particular,
the improvements for cp in the range (1.12, 1.45) is obtained using k = 2 and 3;
while the improvements for cp > 3.15 is obtained using k = 1 and r > 1. In all
cases, the minimum complexity is obtained using linear sieving olynomials.

2 Background on NFS for Non-Prime Fields

We provide a brief sketch of the background on the variant of the NFS algorithm
that is applicable to the extension fields FQ, where Q = pn, p is a prime and
n > 1. More detailed discussions can be found in [5,17].

Following the structure of index calculus algorithms, NFS has three main
phases, namely, relation collection (sieving), linear algebra and descent. Prior to
these, is the set-up phase. In the set-up phase, two number fields are constructed
and the sieving parameters are determined. The two number fields are set up by
choosing two irreducible polynomials f(x) and g(x) over the integers such that
their reductions modulo p have a common irreducible factor ϕ(x) of degree n
over Fp. The field Fpn will be considered to be represented by ϕ(x). Let g be
a generator of G = F

�
pn and let q be the largest prime dividing the order of G.

We are interested in the discrete log of elements of G to the base g modulo this
largest prime q.

The choices of the two polynomials f(x) and g(x) are crucial to the algorithm.
These greatly affect the overall run time of the algorithm. Let α, β ∈ C and
m ∈ Fpn be the roots of the polynomials f(x), g(x) and ϕ(x) respectively. We
further let l(f) and l(g) denote the leading coefficient of the polynomials f(x)
and g(x) respectively. The two number fields and the finite field are given as
follows.

K1 = Q(α) =
Q[x]

〈f(x)〉 , K2 = Q(β) =
Q[x]

〈g(x)〉 and Fpn = Fp(m) =
Fp[x]
〈ϕ(x)〉 .

Thus, we have the following commutative diagram shown in Fig. 2, where we
represent the image of ξ ∈ Z(α) or ξ ∈ Z(β) in the finite field Fpn by ξ. Actual
computations are carried out over these number fields and are then transformed
to the finite field via these homomorphisms. In fact, instead of doing the com-
putations over the whole number field Ki, one works over its ring of algebraic
integers Oi. These integer rings provide a nice way of constructing a factor basis
and moreover, unique factorisation of ideals holds over these rings.
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The factor basis F = F1 ∪ F2 is chosen as follows.

F1 =
{

prime ideals q1,j in O1, either having norm less than B
or lying above the prime factors of l(f)

}

F2 =
{

prime ideals q2,j in O2, either having norm less than B
or lying above the prime factors of l(g)

}

where B is the smoothness bound and is to be chosen appropriately. An algebraic
integer is said to be B-smooth if the principal ideal generated by it factors
into the prime ideals of norms less than B. As mentioned in the paper [5],
independently of choice of f and g, the size of the factor basis is B1+o(1). For
asymptotic computations, this is simply taken to be B. The work flow of NFS
can be understood by the diagram in Fig. 2.

Z[x]

Z(α) Z(β)

Fp(m)

α
→x x →

β

α →
m

m

→β

Fig. 2. A work-flow of NFS.

A polynomial φ(x) ∈ Z[x] of degree at most t−1 (i.e. having t coefficients) is
chosen and the principal ideals generated by its images in the two number fields
are checked for smoothness. If both of them are smooth, then

φ(α)O1 =
∏

j

q1,j
ej and φ(β)O2 =

∏

j

q2,j
e′
j (2)

where q1,j and q2,j are prime ideals in F1 and F2 respectively. For i = 1, 2, let hi

denote the class number of Oi and ri denote the torsion-free rank of O�
i . Then,

for some εi,j ∈ qi,j and units ui,j ∈ O�
i , we have

logg φ (α) ≡
r1∑

j=1

λ1,j ( φ (α) ) Λ1,j +
∑

j

ejX1,j (mod q), (3)

logg φ (β) ≡
r2∑

j=1

λ2,j ( φ (β) ) Λ2,j +
∑

j

e′
jX2,j (mod q), (4)

where for i = 1, 2 and j = 1 . . . ri, Λi,j = logq ui,j is an unknown virtual log-
arithm of the unit ui,j , Xi,j = h−1

i logg εi,j is an unknown virtual logarithm
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of prime ideal qi,j and λi,j : Oi 	→ Z/qZ is Schirokauer map [19,26,28]. We skip
the details of virtual logarithms and Schirokauer maps, as these details will not
affect the polynomial selection problem considered in this work.

Since φ (α) = φ (β), we have

∑r1
j=1 λ1,j ( φ (α) ) Λ1,j +

∑
j ejX1,j ≡

∑r2
j=1 λ2,j ( φ (β) ) Λ2,j +

∑
j e′

jX2,j(mod q) (5)

The relation given by (5) is a linear equation modulo q in the unknown virtual
logs. More than (#F1 + #F2 + r1 + r2) such relations are collected by sieving
over suitable φ(x). The linear algebra step solves the resulting system of linear
equations using either the Lanczos or the block Wiedemann algorithms to obtain
the virtual logs of factor basis elements.

After the linear algebra phase is over, the descent phase is used to compute
the discrete logs of the given elements of the field Fpn . For a given element y
of Fpn , one looks for an element of the form yigj , for some i, j ∈ N, such that
the principal ideal generated by preimage of

(
yigj

)
in O1, factors into prime

ideals of norms bounded by some bound B1 and of degree at most t − 1. Then
the special-q descent technique [19] is used to write the ideal generated by the
preimage as a product of prime ideals in F1, which is then converted into a linear
equation involving virtual logs. Putting the value of virtual logs, obtained after
linear algebra phase, the value of logg(y) is obtained. For more details and recent
work on the descent phase, we refer to [13,19].

3 Polynomial Selection and Sizes of Norms

It is evident from the description of NFS that the relation collection phase
requires polynomials φ(x) ∈ Z[x] whose images in the two number fields are
simultaneously smooth. For ensuring the smoothness of φ(α) and φ(β), it is
enough to ensure that their norms viz, Res(f, φ) and Res(g, φ) are B-smooth.
We refer to [5] for further explanations.

Using the Corollary 2 of Kalkbrener’s work [21], we have the following upper
bound for the absolute value of the norm.

|Res(f, φ)| ≤ κ (deg f,deg φ) ‖f‖deg φ
∞ ‖φ‖deg f

∞ (6)

where κ(a, b) =
(
a+b

a

)(
a+b−1

a

)
and ‖f‖∞ is maximum of the absolute values of

the coefficients of f .
Following [5], let E be such that the coefficients of φ are in

[
− 1

2E2/t, 1
2E2/t

]
.

So, ‖φ‖∞ ≈ E2/t and the number of polynomials φ(x) that is considered for the
sieving is E2. Whenever p = LQ(a, cp) with a > 1

3 , we have the following bound
on the Res(f, φ) × Res(g, φ) (for details we refer to [5]).

|Res(f, φ) × Res(g, φ)| ≈
(
‖f‖∞‖g‖∞

)t−1
E(deg f+deg g)2/t. (7)

For small values of n, the sieving polynomial φ(x) is taken to be linear, i.e., t = 2
and then the norm bound becomes approximately ‖f‖∞‖g‖∞E(deg f+deg g).
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The methods for choosing f and g result in the coefficients of one or both of
these polynomials to depend on Q. So, the right hand side of (7) is determined
by Q and E. All polynomial selection algorithms try to minimize the RHS of (7).
From the bound in (7), it is evident that during polynomial selection, the goal
should be to try and keep the degrees and the coefficients of both f and g to be
small. Ensuring both degrees and coefficients to be small is a nontrivial task and
leads to a trade-off. Previous methods for polynomial selections provide different
trade-offs between the degrees and the coefficients. Estimates of Q-E trade-off
values have been provided in [5] and is based on the CADO factoring software [3].
Table 1 reproduces these values where Q(dd) represents the number of decimal
digits in Q.

Table 1. Estimate of Q-E values [5].

Q(dd) 100 120 140 160 180 200 220 240 260 280 300

Q(bits) 333 399 466 532 598 665 731 798 864 931 997

E(bits) 20.9 22.7 24.3 25.8 27.2 28.5 29.7 30.9 31.9 33.0 34.0

As mentioned in [5,13], presently the following three polynomial selection
methods provide competitive trade-offs.

1. JLSV1: Joux, Lercier, Smart, Vercauteren method [19].
2. GJL: Generalised Joux Lercier method [5,23].
3. Conjugation method [5].

Brief descriptions of these methods are given below.

JLSV1. Repeat the following steps until f and g are obtained to be irreducible
over Z and ϕ is irreducible over Fp.

1. Randomly choose polynomials f0(x) and f1(x) having small coefficients with
deg(f1) < deg(f0) = n.

2. Randomly choose an integer � to be slightly greater than �√p�.
3. Let (u, v) be the rational reconstruction of � in Fp, i.e., � ≡ u/v mod p.
4. Define f(x) = f0(x) + �f1(x) and g(x) = vf0(x) + uf1(x) and ϕ(x) = f(x)

mod p.

Note that deg(f) = deg(g) = n and both ‖f‖∞ and ‖g‖∞ are O
(
p1/2

)
=

O
(
Q1/(2n)

)
and so (7) becomes E4n/tQ(t−1)/n which is E2nQ1/n for t = 2.

GJL. The basic Joux-Lercier method [17] works for prime fields. The gener-
alised Joux-Lercier method extends the basic Joux-Lercier method to work over
composite fields Fpn .

The heart of the GJL method is the following idea. Let ϕ(x) be a monic
polynomial ϕ(x) = xn + ϕn−1x

n−1 + · · · + ϕ1x + ϕ0 and r ≥ deg(ϕ) be an
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integer. Let n = deg(ϕ). Given ϕ(x) and r, define an (r + 1) × (r + 1) matrix
Mϕ,r in the following manner.

Mϕ,r =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p
. . .

. . .
p

ϕ0 ϕ1 · · · ϕn−1 1
. . . . . . . . .

ϕ0 ϕ1 · · · ϕn−1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

The first n × n principal sub-matrix of Mϕ,r is diag[p, p, . . . , p] corresponding
to the polynomials p, px, . . . , pxn−1. The last r − n + 1 rows correspond to the
polynomials ϕ(x), xϕ(x), . . . , xr−nϕ(x).

Apply the LLL algorithm to Mϕ,r and let the first row of the resulting LLL-
reduced matrix be [g0, g1, . . . , gr−1, gr]. Define

g(x) = g0 + g1x + · · · + gr−1x
r−1 + grx

r. (9)

The notation

g = LLL (Mϕ,r) (10)

will be used to denote the polynomial g(x) given by (9). By construction, ϕ(x)
is a factor of g(x) modulo p.

The GJL procedure for polynomial selection is the following. Choose an r ≥ n
and repeat the following steps until f and g are irreducible over Z and ϕ is
irreducible over Fp.

1. Randomly choose a degree (r + 1)-polynomial f(x) which is irreducible over
Z and having coefficients of size O(ln(p)) such that f(x) has a factor ϕ(x) of
degree n modulo p which is both monic and irreducible.

2. Let ϕ(x) = xn +ϕn−1x
n−1 + · · ·+ϕ1x+ϕ0 and Mϕ,r be the (r +1)× (r +1)

matrix given by (8).
3. Let g(x) = LLL (Mϕ,r).

The polynomial f(x) has degree r + 1 and g(x) has degree r. The procedure is
parameterised by the integer r.

The determinant of M is pn and so from the properties of the LLL-reduced
basis, the coefficients of g(x) are of the order O

(
pn/(r+1)

)
= O

(
Q1/(r+1)

)
. The

coefficients of f(x) are O(ln p).
The bound on the norm given by (7) in this case is E2(2r+1)/tQ(t−1)/(r+1)

which becomes E2r+1Q1/(r+1) for t = 2. Increasing r reduces the size of the
coefficients of g(x) at the cost of increasing the degrees of f and g. In the
concrete example considered in [5] and also in [24], r has been taken to be n and
so M is an (n + 1) × (n + 1) matrix.

Conjugation. Repeat the following steps until f and g are irreducible over Z

and ϕ is irreducible over Fp.
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1. Choose a quadratic monic polynomial μ(x), having coefficients of size O(ln p),
which is irreducible over Z and has a root t in Fp.

2. Choose two polynomials g0(x) and g1(x) with small coefficients such that
deg g1 < deg g0 = n.

3. Let (u, v) be a rational reconstruction of t modulo p, i.e., t ≡ u/v mod p.
4. Define g(x) = vg0(x) + ug1(x) and f(x) = Resy

(
μ(y), g0(x) + y g1(x)

)
.

Note that deg(f) = 2n, deg(g) = n, ‖f‖∞ = O(ln p) and ‖g‖∞ = O(p1/2) =
O(Q1/(2n)). In this case, the bound on the norm given by (7) is E6n/tQ(t−1)/(2n)

which becomes E3nQ1/(2n) for t = 2.

4 A Simple Observation

For the GJL method, while constructing the matrix M , the coefficients of the
polynomial ϕ(x) are used. If, however, some of these coefficients are zero, then
these may be ignored. The idea is given by the following result.

Proposition 1. Let n be an integer, d a divisor of n and k = n/d. Suppose
A(x) is a monic polynomial of degree k. Let r ≥ k be an integer and set ψ(x) =
LLL(MA,r). Define g(x) = ψ(xd) and ϕ(x) = A(xd). Then

1. deg(ϕ) = n and deg(g) = rd;
2. ϕ(x) is a factor of g(x) modulo p;
3. ‖g‖∞ = pn/(d(r+1)).

Proof. The first point is straightforward. Note that by construction A(x) is a
factor of ψ(x) modulo p. So, A(xd) is a factor of ψ(xd) = g(x) modulo p. This
shows the second point. The coefficients of g(x) are the coefficients of ψ(x).
Following the GJL method, ‖ψ‖∞ = pk/(r+1) = pn/(d(r+1)) and so the same
holds for ‖g‖∞. This shows the third point. ��
Note that if we had defined g(x) = LLL(Mϕ,rd), then ‖g‖∞ would have been
pn/(rd+1). For d > 1, the value of ‖g‖∞ given by Proposition 1 is smaller.

A Variant. The above idea shows how to avoid the zero coefficients of ϕ(x).
A similar idea can be used to avoid the coefficients of ϕ(x) which are small.
Suppose that the polynomial ϕ(x) can be written in the following form.

ϕ(x) = ϕi1x
i1 + · · · + ϕikxik + xn +

∑

j /∈{i1,...,ik}
ϕjx

j (11)

where i1, . . . , ik are from the set {0, . . . , n − 1} and for j ∈ {0, . . . , n − 1} \
{i1, . . . , ik}, the coefficients ϕj are all O(1). Some or even all of these ϕj ’s could
be zero. A (k + 1) × (k + 1) matrix M is constructed in the following manner.

M =

⎡

⎢⎢⎢⎢⎢⎢⎣

p
. . .

. . .
p

ϕi1 ϕi2 · · · ϕik 1

⎤

⎥⎥⎥⎥⎥⎥⎦
(12)
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The matrix M has only one row obtained from ϕ(x) and it is difficult to use
more than one row. Apply the LLL algorithm to M and write the first row of
the resulting LLL-reduced matrix as [gi1 , . . . , gik , gn]. Define

g(x) = (gi1x
i1 + · · · + gikxik + gnxn) +

∑

j /∈{i1,...,ik,n}
ϕjx

j . (13)

The degree of g(x) is n and the bound on the coefficients of g(x) is determined
as follows. The determinant of M is pk and by the LLL-reduced property, each
of the coefficients gi1 , . . . , gik , gn is O(pk/(k+1)) = O(Qk/(n(k+1))). Since ϕj for
j /∈ {i1, . . . , ik} are all O(1), it follows from (13) that all the coefficients of g(x)
are O(Qk/(n(k+1))) and so ‖g‖∞ = O(Qk/(n(k+1))).

5 A New Polynomial Selection Method

In the simple observation made in the earlier section, the non-zero terms of the
polynomial g(x) are powers of xd. This creates a restriction and does not turn
out to be necessary to apply the main idea of the previous section. Once the
polynomial ψ(x) is obtained using the LLL method, it is possible to substitute
any degree d polynomial with small coefficients for x and still the norm bound
will hold. In fact, the idea can be expressed more generally in terms of resultants.
Algorithm A describes the new general method for polynomial selection.

The following result states the basic properties of Algorithm A.

Algorithm. A: A new method of polynomial selection.
Input: p, n, d (a factor of n) and r ≥ n/d.

Output: f(x), g(x) and ϕ(x).

Let k = n/d;

repeat
Randomly choose a monic irreducible polynomial A1(x) having the

following properties: deg A1(x) = r + 1; A1(x) is irreducible over the

integers; A1(x) has coefficients of size O(ln(p)); modulo p, A1(x) has an

irreducible factor A2(x) of degree k.

Randomly choose monic polynomials C0(x) and C1(x) with small

coefficients such that deg C0(x) = d and deg C1(x) < d.

Define

f(x) = Resy (A1(y), C0(x) + y C1(x)) ;

ϕ(x) = Resy (A2(y), C0(x) + y C1(x)) mod p;

ψ(x) = LLL(MA2,r);

g(x) = Resy (ψ(y), C0(x) + y C1(x)) .

until f(x) and g(x) are irreducible over Z and ϕ(x) is irreducible over Fp.

return f(x), g(x) and ϕ(x).
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Proposition 2. The outputs f(x), g(x) and ϕ(x) of Algorithm A satisfy the
following.

1. deg(f) = d(r + 1); deg(g) = rd and deg(ϕ) = n;
2. both f(x) and g(x) have ϕ(x) as a factor modulo p;
3. ‖f‖∞ = O(ln(p)) and ‖g‖∞ = O(Q1/(d(r+1))).

Consequently,

|Res(f, φ) × Res(g, φ)| ≈ (‖f‖∞‖g‖∞)t−1 × E2(deg f+deg g)/t

= O
(
E2d(2r+1)/t × Q(t−1)/(d(r+1))

)
. (14)

Proof. By definition f(x) = Resy (A1(y), C0(x) + y C1(x)) where A1(x) has
degree r + 1, C0(x) has degree d and C1(x) has degree d − 1, so the degree
of f(x) is d(r + 1). Similarly, one obtains the degree of ϕ(x) to be n. Since ψ(x)
is obtained from A2(x) as LLL(MA2,r) it follows that the degree of ψ(x) is r and
so the degree of g(x) is rd.

Since A2(x) divides A1(x) modulo p, it follows from the definition of f(x)
and ϕ(x) that modulo p, ϕ(x) divides f(x). Since ψ(x) is a linear combi-
nation of the rows of MA2,r, it follows that modulo p, ψ(x) is a multiple
of A2(x). So, g(x) = Resy (ψ(y), C0(x) + y C1(x)) is a multiple of ϕ(x) =
Resy (A2(y), C0(x) + y C1(x)) modulo p.

Since the coefficients of C0(x) and C1(x) are O(1) and the coefficients of
A1(x) are O(ln p), it follows that ‖f‖∞ = O(ln p). The coefficients of g(x) are
O(1) multiples of the coefficients of ψ(x). By third point of Proposition 1, the
coefficients of ψ(x) are O(pn/(d(r+1))) = Q1/(d(r+1)) which shows that ‖g‖∞ =
O(Q1/(d(r+1))). ��

Proposition 2 provides the relevant bound on the product of the norms of a
sieving polynomial φ(x) in the two number fields defined by f(x) and g(x). We
note the following points.

1. If d = 1, then the norm bound is E2(2r+1)/tQ(t−1)/(r+1) which is the same as
that obtained using the GJL method.

2. If d = n, then the norm bound is E2n(2r+1)/tQ(t−1)/(n(r+1)). Further, if
r = k = 1, then the norm bound is the same as that obtained using the
Conjugation method. So, for d = n, Algorithm A is a generalisation of the
Conjugation method. Later, we show that choosing r > 1 provides asymptotic
improvements.

3. If n is a prime, then the only values of d are either 1 or n. The norm bounds
in these two cases are covered by the above two points.

4. If n is composite, then there are non-trivial values for d and it is possible to
obtain new trade-offs in the norm bound. For concrete situations, this can be
of interest. Further, for composite n, as value of d increases from d = 1 to
d = n, the norm bound nicely interpolates between the norm bounds of the
GJL method and the Conjugation method.



440 P. Sarkar and S. Singh

Existence of Q-automorphisms: The existence of Q-automorphism in the
number fields speeds up the NFS algorithm in the non-asymptotic sense [19].
Similar to the existence of Q-automorphism in GJL method, as discussed in [5],
the first polynomial generated by the new method, can have a Q-automorphism.
In general, it is difficult to get an automorphism for the second polynomial as
it is generated by the LLL algorithm. On the other hand, we can have a Q-
automorphism for the second polynomial also in the specific cases. Some of the
examples are reported in [10].

6 Non-asymptotic Comparisons and Examples

We compare the norm bounds for t = 2, i.e., when the sieving polynomial is
linear. In this case, Table 2 lists the degrees and norm bounds of polynomials
for various methods. Table 3 compares the new method with the JLSV1 and the
GJL method for concrete values of n, r and d. This shows that the new method
provides different trade-offs which were not known earlier.

As an example, we can see from Table 3 that the new method compares well
with GJL and JLSV1 methods for n = 4 and Q of 300 dd (refer to Table 1).
As mentioned in [5], when the differences between the methods are small, it is
not possible to decide by looking only at the size of the norm product. Keeping
this in view, we see that the new method is competitive for n = 6 as well.
These observations are clearly visible in the plots given in the Fig. 3. From the
Q-E pairs given in Table 1, it is clear that the increase of E is slower than that
of Q. This suggests that the new method will become competitive when Q is
sufficiently large.

(a) Polynomials for Fp4 (b) Polynomials for Fp6

Fig. 3. Product of norms for various polynomial selection methods

Next we provide some concrete examples of polynomials f(x), g(x) and ϕ(x)
obtained using the new method. The examples are for n = 6 and n = 4. For
n = 6, we have taken d = 1, 2, 3 and 6 and in each case r was chosen to be
r = k = n/d. For n = 4, we consider d = 2 with r = k = n/d and r = k + 1; and
d = 4 with r = k. These examples are to illustrate that the method works as



New Complexity Trade-Offs 441

Table 2. Parameterised efficiency estimates for NFS obtained from the different poly-
nomial selection methods.

Methods deg f deg g ‖f‖∞ ‖g‖∞ ‖f‖∞‖g‖∞E(deg f+deg g)

JLSV1 n n Q
1
2n Q

1
2n E2nQ

1
n

GJL (r ≥ n) r + 1 r O(ln p) Q
1

r+1 E2r+1Q
1

r+1

Conjugation 2n n O(ln p) Q
1
2n E3nQ

1
2n

A (d|n, r ≥ n/d) d(r + 1) dr O(ln p) Q
1

d(r+1) Ed(2r+1)Q1/(d(r+1))

Table 3. Comparison of efficiency estimates for composite n with d = 2 and r = n/2.

FQ method (deg f, deg g) ‖f‖∞ ‖g‖∞ ‖f‖∞‖g‖∞E(deg f+deg g)

Fp4 GJL (5, 4) O(ln p) Q
1
5 E9Q

1
5

JLSV1 (4, 4) Q
1
8 Q

1
8 E8Q

1
4

A (6, 4) O(ln p) Q
1
6 E10Q

1
6

Fp6 GJL (7, 6) O(ln p) Q
1
7 E13Q

1
7

JLSV1 (6, 6) Q
1
12 Q

1
12 E12Q

1
6

A (8, 6) O(ln p) Q
1
8 E14Q

1
8

Fp8 GJL (9, 8) O(ln p) Q
1
9 E17Q

1
9

JLSV1 (8, 8) Q
1
16 Q

1
16 E16Q

1
8

A (10, 8) O(ln p) Q
1
10 E18Q

1
10

Fp9 GJL (10, 9) O(ln p) Q
1
10 E19Q

1
10

JLSV1 (9, 9) Q
1
18 Q

1
18 E18Q

1
9

A (12, 9) O(ln p) Q
1
12 E21Q

1
12

predicted and returns the desired polynomials very fast. We have used Sage [29]
and MAGMA computer algebra system [9] for all the computations done in this
work.

Example 1. Let n = 6, and p is a 201-bit prime given below.

p = 1606938044258990275541962092341162602522202993782792835361211

Taking d = 1 and r = n/d, we get

f(x) = x7 + 18x6 + 99x5 − 107x4 − 3470x3 − 15630x2 − 30664x − 23239

g(x) = 712965136783466122384156554261504665235609243446869 x6 + 16048203858903

260691766216702652575435281807544247712 x5 + 14867720774814154920358989

0852868028274077107624860184 x4 + 7240853845391439257955648357229262561

71920852986660372 x3 + 194693204195493982969795038496468458378024972218

5345772x2 + 2718971797270235171234259793142851416923331519178675874 x

+1517248296800681060244076172658712224507653769252953211
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ϕ(x) = x6 + 671560075936012275401828950369729286806144005939695349290760 x5 +
774705834624554066737199160555511502088270323481268337340514 x4 + 1100

646447552671580437963861085020431145126151057937318479717 x3 + 27131646

3864123658232870095113273120009266491174096472632727 x2 + 4101717389506

73951225351009256251353058695601874372080573092 x + 1326632804961027767

272334662693578855845363854398231524390607

Note that ‖g‖∞ ≈ 2180. Taking d = 2 and r = n/d, we get

f(x) = x8 − x7 − 5x6 − 50x5 − 181x4 − 442x3 − 801x2 − 633x − 787

g(x) = 833480932500516492505935839185008193696457787 x6 + 2092593616641287655

065740032896986343580698615 x5 + 1298540899568952261791537743468335194

3188533320 x4 + 21869741590966357897620167461539967141532970622 x3 + 6

4403097224634262677273803471992671747860968564 x2 + 558647116952815842

83909455665521092749502793807 x + 921778354059077827252784356704871327

10722661831

ϕ(x) = x6 + 225577566898041285405539226183221508226286589225546142714057 x5 +
726156673723889082895351451739733545328394720523246272955173 x4 + 10214

78132054694721578888994001730764934454660630543688348056 x3 + 674978102

55620874288201802771995130845407860934811815878391 x2 + 632426210761786

622105494194314937817927439372918029042718843 x + 104093530686601670252

6455143725415379604742339065421793844038

Note that ‖g‖∞ ≈ 2156. Taking d = 3 and r = n/d, we get

f(x) = x9 − 4x8 − 54x7 − 174x6 − 252x5 − 174x4 − 76x3 − 86x2 − 96x − 42

g(x) = 2889742364508381557593312392497801006712 x6 + 83633695370646306085610

87765146274738509 x5 + 10828078806524085705506412783408772941877 x4 +
41812824889730400169000397417267197701179 x3 + 1497421347777532476213

31508897969482387354 x2 + 240946716989443210293442965552611305592194 x

+151696455655104744403073743333940426598833

ϕ(x) = x6 + 265074577705978624915342871970538348132010154368109244143774 x5

+21159801273629654486978970226092134077566675973129512551886 x4 + 10

63445611445684266941289540827947199397416276334188055837892 x3 + 1459

587283058054365639950761731919998074021438242745336103973 x2 + 145654

3437800571643325638648207188371117923539168263210522995 x + 378129170

960510211491600303623674471468414144797178846977007
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Note that ‖g‖∞ ≈ 2137. Taking d = 6 and r = n/d, we get

f(x) = x12 + 3x10 + 10x9 + 53x8 + 112x7 + 163x6

+184x5 + 177x4 + 166x3 + 103x2 + 72x + 48

g(x) = −666878138402353195498832669848 x6 − 1867253271074924746011849188889 x5

−5601759813224774238035547566667 x4 − 6668753801765210948063915265053 x3

−4268003536420067847037882226971 x2 − 6935516090029480629033212906363 x

−7469013084299698984047396755556

ϕ(x) = x6 + 356485336847074091920944597187811284411849047991334266185684 x5 +
1069456010541222275762833791563433853235547143974002798557052 x4 + 175

488639976380184062760893597893819537042246173878495567205 x3 + 1069456

010541222275762833791563433853235547143974002798557050 x2 + 1069456010

541222275762833791563433853235547143974002798557054 x + 14259413473882

96367683778388751245137647396191965337064742736

In this case we get ‖g‖∞ ≈ 2102.

Example 2. Let n = 4, and p is a 301-bit prime given below.

p = 203703597633448608626844568840937816105146839366593625063614044935438

1299763336706183493607

Taking d = 2 and r = n/d, we get

f(x) = x6 + 2x5 + 10x4 + 11x3 + 8x2 + 3x + 5

g(x) = 1108486244023576208689360410176300373132220654590976786482134 x4 + 20

50762938144982289360096083705563965935573667103554994528044 x3 + 5523

467580377021934753091786207648479867036209679151793015319 x2 + 456222

7246514756745388645848004531501269616133890841445574058 x + 441498133

6353445726063731376031348106734815555088175006533185

ϕ(x) = x4 + 1305623360698284685175599277707343457576279146188242586245210199

344777856138293049165536292 x3 + 1630663764713242722426772175575945319

640665655794962932653634545690570677252853972689997048 x2 + 1955704168

7282007596779450734445471817050521654016832790620588920363634983674148

96214457800 x + 163066376471324272242677217557594531964066565579496293

2653634545690570677252853972689997047
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In this case we have ‖g‖∞ ≈ 2201. If we take r = n/d + 1, we get

f(x) = x8 + 16x7 + 108x6 + 398x5 + 865x4 + 1106x3 + 820x2 + 328x + 55

g(x) = 348482147842083865380881347784399925335728557 x6 + 5536103979982210590

186016445459289773029045618 x5 + 3381254505070666477453052572333514580

1290667783 x4 + 96062171957261124763428590648958745188735445330 x3 + 1

24085795781307363759935898131887563792535489069 x2 + 73090839973729169

966964061428402316131911130808 x + 16093810783274309055350481972028841

649178007790

ϕ(x) = x4 + 5128690964597943246501962358998676237033930846168967447990334244

55696319185673262765599428 x3 + 1802408796932749487444974790576022081

708344659229207911271845827650035713383268427662416444 x2 + 1553341208

0263216762891646375525736686031169799908288433475579574772861500238438

04262435184 x + 263801507553366513494386082876419210598165405378517676

874745554282946755826248639365618168

In this case we have ‖g‖∞ ≈ 2156. If we take d = 4 and r = d/n, we have

f(x) = x8 − 3x7 − 33x6 − 97x5 − 101x4 + 3x3 + 73x2 − 35x − 8

g(x) = 684862886024125973911391867198415841436877278 x4 + 1925808392957060519

248933705295588974774910731 x3 + 1668247862726425714278449912696271875

703468525 x2 + 40961560447538961485182385700123093758271763 x + 124094

5506932934545337541838097173133338033453

ϕ(x) = x4 + 3001292991290566658187708046113162326822746963576576248059013380

7217067092452460559896554 x3 + 900387897387169997456312413833948698046

82408907297287441770401421651201277357381679689656 x2 + 15006464956452

8332909385402305658116341137348178828812402950669036085335462262302799

482756x + 30012929912905666581877080461131623268227469635765762480590

133807217067092452460559896553

In this case also we have ‖g‖∞ ≈ 2150.

7 Asymptotic Complexity Analysis

The goal of the asymptotic complexity analysis is to express the runtime of the
NFS algorithm using the L-notation and at the same time obtain bounds on p
for which the analysis is valid. Our description of the analysis is based on prior
works predominantly those in [5,17,19,24].
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For 0 < a < 1, write

p = LQ(a, cp), where cp =
1
n

(
ln Q

ln lnQ

)1−a

and so n =
1
cp

(
ln Q

ln ln Q

)1−a

.

(15)

The value of a will be determined later. Also, for each cp, the runtime of the
NFS algorithm is the same for the family of finite fields Fpn where p is given
by (15).

From Sect. 3, we recall the following.

1. The number of polynomials to be considered for sieving is E2.
2. The factor base is of size B.

Sparse linear algebra using the Lanczos or the block Wiedemann algorithm takes
time O(B2). For some 0 < b < 1, let

B = LQ(b, cb). (16)

The value of b will be determined later. Set

E = B (17)

so that asymptotically, the number of sieving polynomials is equal to the time
for the linear algebra step.

Let π = Ψ(Γ, B) be the probability that a random positive integer which is at
most Γ is B-smooth. Let Γ = LQ(z, ζ) and B = LQ(b, cb). Using the L-notation
version of the Canfield-Erdös-Pomerance theorem,

(Ψ(Γ, B))−1 = LQ

(
z − b, (z − b)

ζ

cb

)
. (18)

The bound on the product of the norms given by Proposition 2 is

Γ = E
2
t d(2r+1) × Q

t−1
d(r+1) . (19)

Note that in (19), t − 1 is the degree of the sieving polynomial. Following the
usual convention, we assume that the same smoothness probability π holds for
the event that a random sieving polynomial φ(x) is smooth over the factor base.

The expected number of polynomials to consider for obtaining one relation is
π−1. Since B relations are required, obtaining this number of relations requires
trying Bπ−1 trials. Balancing the cost of sieving and the linear algebra steps
requires Bπ−1 = B2 and so

π−1 = B. (20)

Obtaining π−1 from (18) and setting it to be equal to B allows solving for cb.
Balancing the costs of the sieving and the linear algebra phases leads to the
runtime of the NFS algorithm to be B2 = LQ(b, 2cb). So, to determine the
runtime, we need to determine b and cb. The value of b will turn out to be 1/3
and the only real issue is the value of cb.
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Lemma 1. Let n = kd for positive integers k and d. Using the expressions for
p and E(= B) given by (15) and (16), we obtain the following.

E
2
t d(2r+1) = LQ

(
1 − a + b, 2cb(2r+1)

cpkt

)
;

Q
t−1

d(r+1) = LQ

(
a,

kcp(t−1)
(r+1)

)
.

⎫
⎬

⎭ (21)

Proof. The second expression follows directly from Q = pn, p = LQ(a, cp) and
n = kd. The computation for obtaining the first expression is the following.

E
2
t d(2r+1) = LQ

(
b, cb

2
t
d(2r + 1)

)

= exp
(

cb
2
t
(2r + 1)

n

k
(ln Q)b(ln ln Q)1−b

)

= exp

(
cb

2
cpkt

(2r + 1)
(

ln Q

ln lnQ

)1−a

(ln Q)b(ln lnQ)1−b

)

= LQ

(
1 − a + b,

2cb(2r + 1)
cpkt

)
.

��

Theorem 1 (Boundary Case). Let k divide n, r ≥ k, t ≥ 2 and p =
LQ(2/3, cp) for some 0 < cp < 1. It is possible to ensure that the runtime of the
NFS algorithm with polynomials chosen by Algorithm A is LQ(1/3, 2cb) where

cb =
2r + 1
3cpkt

+

√(
2r + 1
3cpkt

)2

+
kcp(t − 1)
3(r + 1)

. (22)

Proof. Setting 2a = 1 + b, the two L-expressions given by (21) have the same
first component and so the product of the norms is

Γ = LQ

(
a,

2cb(2r + 1)
cpkt

+
kcp(t − 1)

(r + 1)

)
.

Then π−1 given by (18) is

LQ

(
a − b, (a − b)

(
2(2r + 1)

cpkt
+

kcp(t − 1)
cb(r + 1)

))
.

From the condition π−1 = B, we get b = a − b and

cb = (a − b)
(

2(2r + 1)
cpkt

+
kcp(t − 1)
cb(r + 1)

)
.

The conditions a − b = b and 2a = 1 + b show that b = 1/3 and a = 2/3. The
second equation then becomes

cb =
1
3

(
2(2r + 1)

cpkt
+

kcp(t − 1)
cb(r + 1)

)
. (23)
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Solving the quadratic for cb and choosing the positive root gives

cb =
2r + 1
3cpkt

+

√(
2r + 1
3cpkt

)2

+
kcp(t − 1)
3(r + 1)

.

��

Corollary 1 (Boundary Case of the Conjugation Method [5]). Let
r = k = 1. Then for p = LQ(2/3, cp), the runtime of the NFS algorithm is
LQ(1/3, 2cb) with

cb =
1

cpt
+

√(
1

cpt

)2

+
cp(t − 1)

6
.

Allowing r to be greater than k leads to improved asymptotic complexity.
We do not perform this analysis. Instead, we perform the analysis in the similar
situation which arises for the multiple number field sieve algorithm.

Theorem 2 (Medium Characteristic Case). Let p = LQ(a, cp) with a >
1/3. It is possible to ensure that the runtime of the NFS algorithm with the
polynomials produced by Algorithm A is LQ(1/3, (32/3)1/3).

Proof. Since a > 1/3, the bound Γ on the product of the norms can be taken
to be the expression given by (7). The parameter t is chosen as follows [5]. For
0 < c < 1, let t = ctn((ln Q)/(ln lnQ))−c. For the asymptotic analysis, t − 1
is also assumed to be given by the same expression for t. Then the expressions
given by (21) become the following.

E
2
t d(2r+1) = LQ

(
b + c, 2cb(2r+1)

kct

)
; Q

t−1
d(r+1) = LQ

(
1 − c, kct

r+1

)
. (24)

This can be seen by substituting the expression for t in (21) and further by using
the expression for n given in (15).

Setting 2c = 1−b, the first components of the two expressions in (24) become
equal and so

Γ = LQ

(
b + c,

2cb(2r + 1)
kct

+
kct

r + 1

)
.

Using this Γ, the expression for π−1 is

π−1 = LQ

(
c, c

(
2(2r + 1)

kct
+

kct

cb(r + 1)

))
.

We wish to choose ct so as to maximise the probability π and hence to minimise
π−1. This is done by setting 2(2r + 1)/(kct) = (kct)/(cb(r + 1)) whence kct =√

2cb(r + 1)(2r + 1). With this value of kct,

π−1 = LQ

(
c,

2c
√

2cb(r + 1)(2r + 1)
cb(r + 1)

)
.
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Setting π−1 to be equal to B = LQ(b, cb) yields b = c and

cb =

(
2c

√
2cb(r + 1)(2r + 1)

cb(r + 1)

)
.

From b = c and 2c = 1 − b we obtain c = b = 1/3. Using this value of c in the
equation for cb, we obtain cb = (2/3)2/3 × ((2(2r + 1))/(r + 1))1/3. The value of
cb is the minimum for r = 1 and this value is cb = (4/3)1/3. ��

Note that the parameter a which determines the size of p is not involved in any of
the computation. The assumption a > 1/3 is required to ensure that the bound
on the product of the norms can be taken to be the expression given by (7).

Theorem 3 (Large Characteristic). It is possible to ensure that the run-
time of the NFS algorithm with the polynomials produced by Algorithm A is
LQ(1/3, (64/9)1/3) for p ≥ LQ(2/3, (8/3)1/3).

Proof. Following [5], for 0 < e < 1, let r = cr/2((ln Q)/(ln lnQ))e. For the
asymptotic analysis, the expression for 2r + 1 is taken to be two times this
expression. Substituting this expression for r in (21), we obtain

E
2
t d(2r+1) = LQ

(
1 − a + b + e, 2cbcr

cpkt

)
;

Q
t−1

d(r+1) = LQ

(
a − e,

2kcp(t−1)
cr

)
.

⎫
⎬

⎭ (25)

Setting 1 + b = 2(a − e), we obtain Γ = LQ

(
1 + b

2
,
2cbcr

cpkt
+

2kcp(t − 1)
cr

)
and

so the probability π−1 is given by

LQ

(
1 − b

2
,
1 − b

2
×

(
2cr

cpkt
+

2kcp(t − 1)
crcb

))
.

The choice of cr for which the probability π is maximised (and hence π−1 is
minimised) is obtained by setting cr/(cpk) =

√
(t(t − 1))/cb and the minimum

value of π−1 is

LQ

(
1 − b

2
,
1 − b

2
×

(
4
√

t − 1
tcb

))
.

Setting this value of π−1 to be equal to B, we obtain

b = (1 − b)/2; cb =
1 − b

2
×

(
4
√

t − 1
tcb

)
.

The first equation shows b = 1/3 and using this in the second equation, we obtain
cb = (4/3)2/3((t − 1)/t)1/3. This value of cb is minimised for the minimum value
of t which is t = 2. This gives cb = (8/9)1/3.

Using 2(a − e) = 1 + b and b = 1/3 we get a − e = 2/3. Note that r ≥ k and
so p ≥ pk/r = LQ(a, (cpk)/r) = LQ(a − e, (2cpk)/cr). With t = 2, the value of
(cpk)/cr is equal to (1/3)1/3 and so p ≥ LQ(2/3, (8/3)1/3). ��
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Theorems 2 and 3 show that the generality introduced by k and r do not
affect the overall asymptotic complexity for the medium and large prime case
and the attained complexities in these cases are the same as those obtained for
previous methods in [5].

8 Multiple Number Field Sieve Variant

As the name indicates, the multiple number field sieve variant uses several num-
ber fields. The discussion and the analysis will follow the works [8,24].

There are two variants of multiple number field sieve algorithm. In the first
variant, the image of φ(x) needs to be smooth in at least any two of the number
fields. In the second variant, the image of φ(x) needs to be smooth in the first
number field and at least one of the other number fields.

We have analysed both the variants of multiple number field sieve algorithm
and found that the second variant turns out to be better than the first one. So
we discuss the second variant of MNFS only. In contrast to the number field
sieve algorithm, the right number field is replaced by a collection of V number
fields in the second variant of MNFS. The sieving polynomial φ(x) has to satisfy
the smoothness condition on the left number field as before. On the right side,
it is sufficient for φ(x) to satisfy a smoothness condition on at least one of the
V number fields.

Recall that Algorithm A produces two polynomials f(x) and g(x) of degrees
d(r+1) and dr respectively. The polynomial g(x) is defined as Resy(ψ(y), C0(x)+
yC1(x)) where ψ(x) = LLL(MA2,r), i.e., ψ(x) is defined from the first row of the
matrix obtained after applying the LLL-algorithm to MA2,r.

Methods for obtaining the collection of number fields on the right have been
mentioned in [24]. We adapt one of these methods to our setting. Consider
Algorithm A. Let ψ1(x) be ψ(x) as above and let ψ2(x) be the polynomial defined
from the second row of the matrix MA2,r. Define g1(x) = Resy(ψ1(y), C0(x) +
yC1(x)) and g2(x) = Resy(ψ2(y), C0(x) + yC1(x)). Then choose V − 2 linear
combinations gi(x) = sig1(x)+tig2(x), for i = 3, . . . , V . Note that the coefficients
si and ti are of the size of

√
V . All the gi’s have degree dr. Asymptotically,

‖ψ2‖∞ = ‖ψ1‖∞ = Q1/(d(r+1)). Since we take V = LQ(1/3), all the gi’s have
their infinity norms to be the same as that of g(x) given by Proposition 2.

For the left number field, as before, let B be the bound on the norms of the
ideals which are in the factor basis defined by f . For each of the right number
fields, let B′ be the bound on the norms of the ideals which are in the factor
basis defined by each of the gi’s. So, the size of the entire factor basis is B+V B′.
The following condition balances the left portion and the right portion of the
factor basis.

B = V B′. (26)
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With this condition, the size of the factor basis is B1+o(1) as in the classical
NFS and so asymptotically, the linear algebra step takes time B2. As before, the
number of sieving polynomials is E2 = B2 and the coefficients of φ(x) can take
E2/t distinct values.

Let π be the probability that a random sieving polynomial φ(x) gives rise
to a relation. Let π1 be the probability that φ(x) is smooth over the left factor
basis and π2 be the probability that φ(x) is smooth over at least one of the
right factor bases. Further, let Γ1 = Resx(f(x), φ(x)) be the bound on the norm
corresponding to the left number field and Γ2 = Resx(gi(x), φ(x)) be the bound
on the norm for any of the right number fields. Note that Γ2 is determined only
by the degree and the L∞-norm of gi(x) and hence is the same for all gi(x)’s.
Heuristically, we have

π1 = Ψ(Γ1, B);
π2 = V Ψ(Γ2, B

′);
π = π1 × π2.

(27)

As before, one relation is obtained in about π−1 trials and so B relations are
obtained in about Bπ−1 trials. Balancing the cost of linear algebra and sieving,
we have as before B = π−1.

The following choices of B and V are made.

E = B = LQ

(
1
3 , cb

)
;

V = LQ

(
1
3 , cv

)
; and so

B′ = B/V = LQ

(
1
3 , cb − cv

)
.

(28)

With these choices of B and V , it is possible to analyse the MNFS variant for
Algorithm A for three cases, namely, the medium prime case, the boundary case
and the large characteristic case. Below we present the details of the boundary
case. This presents a new asymptotic result.

Theorem 4 (MNFS-Boundary Case). Let k divide n, r ≥ k, t ≥ 2 and

p = LQ

(
2
3
, cp

)
where cp =

1
n

(
ln Q

ln lnQ

)1/3

.

It is possible to ensure that the runtime of the MNFS algorithm is LQ(1/3, 2cb)
where

cb =
4r + 2
6ktcp

+

√
r(3r + 2)
(3ktcp)2

+
cpk(t − 1)
3(r + 1)

. (29)
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Proof. Note the following computations.

Γ1 = ‖φ‖deg(f)∞ = E2deg(f)/t = E(2d(r+1))/t = E(2n(r+1))/(kt)

= LQ

(
2
3
,
2(r + 1)cb

ktcp

)
;

π−1
1 = LQ

(
1
3
,
2(r + 1)
3ktcp

)
;

Γ2 = ‖φ‖deg(g)∞ × ‖g‖deg(φ)∞ = E2deg(g)/t × Q(t−1)/(d(r+1))

= E(2rd)/t × Q(t−1)/(d(r+1)) = E(2rn)/(kt) × Qk(t−1)/(n(r+1))

= LQ

(
2
3
,
2rcb

cpkt
+

kcp(t − 1)
r + 1

)
;

π−1
2 = LQ

(
1
3
,−cv +

1
3(cb − cv)

(
2rcb

cpkt
+

kcp(t − 1)
r + 1

))
;

π−1 = LQ

(
1
3
,
2(r + 1)
3ktcp

− cv +
1

3(cb − cv)

(
2rcb

cpkt
+

kcp(t − 1)
r + 1

))
;

From the condition π−1 = B, we obtain the following equation.

cb =
2(r + 1)
3ktcp

− cv +
1

3(cb − cv)

(
2rcb

cpkt
+

kcp(t − 1)
r + 1

)
. (30)

We wish to find cv such that cb is minimised subject to the constraint (30). Using
the method of Lagrange multipliers, the partial derivative of (30) with respect
to cv gives

cv =
r + 1
3ktcp

.

Using this value of cv in (30) provides the following quadratic in cb.

(3ktcp)c2b − (4r + 2)cb +
(r + 1)2

3ktcp
− (cpk)2t(t − 1)

r + 1
= 0.

Solving this and taking the positive square root, we obtain

cb =
4r + 2
6ktcp

+

√
r(3r + 2)
(3ktcp)2

+
cpk(t − 1)
3(r + 1)

. (31)

Hence the overall complexity of MNFS for the boundary case is LQ

(
1
3 , 2cb

)
. ��

8.1 Further Analysis of the Boundary Case

Theorem 4 expresses 2cb as a function of cp, t, k and r. Let us write this as
2cb = C(cp, t, k, r). It turns out that fixing the values of (t, k, r) gives a set
S(t, k, r) such that for cp ∈ S(t, k, r), C(cp, t, k, r) ≤ C(cp, t

′, k′, r′) for any
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(t′, k′, r′) �= (t, k, r). In other words, for a choice of (t, k, r), there is a set of
values for cp where the minimum complexity of MNFS-A is attained. The set
S(t, k, r) could be empty implying that the particular choice of (t, k, r) is sub-
optimal.

For 1.12 ≤ cp ≤ 4.5, the appropriate intervals are given in Table 4. Fur-
ther, the interval (0, 1.12] is the union of S(t, 1, 1) for t ≥ 3. Note that the
choice (t, k, r) = (t, 1, 1) specialises MNFS-A to MNFS-Conjugation. So, for
cp ∈ (0, 1.12] ∪ [1.45, 3.15] the complexity of MNFS-A is the same as that of
MNFS-Conjugation.

Table 4. Choices of (t, k, r) and the corresponding S(t, k, r).

(t, k, r) S(t, k, r)

(t, 1, 1), t ≥ 3
⋃

t≥3 S(t, 1, 1) ≈ (0, 1.12]

(2, 3, 3) [(1/3)(4
√

21 + 20)1/3, (
√

78/9 + 29/36)1/3] ≈ [1.12, 1.21]

(2, 2, 2) [(
√

78/9 + 29/36)1/3, (1/2)(4
√

11 + 11)1/3] ≈ [1.21, 1.45]

(2, 1, 1) [(1/2)(4
√

11 + 11)1/3, (2
√

62 + 31/2)1/3] ≈ [1.45, 3.15]

(2, 1, 2) [(2
√

62 + 31/2)1/3, (8
√

33 + 45)1/3] ≈ [3.15, 4.5]

In Fig. 4, we have plotted 2cb given by Theorem 4 against cp for some values
of t, k and r where the minimum complexity of MNFS-A is attained. The plot
is labelled MNFS-A. The sets S(t, k, r) are clearly identifiable from the plot.
The figure also shows a similar plot for NFS-A which shows the complexity in
the boundary case given by Theorem 1. For comparison, we have plotted the
complexities of the GJL and the Conjugation methods from [5] and the MNFS-
GJL and the MNFS-Conjugation methods from [24].

Based on the plots given in Fig. 4, we have the following observations.

1. Complexities of NFS-A are never worse than the complexities of NFS-GJL
and NFS-Conjugation. Similarly, complexities of MNFS-A are never worse
than the complexities of MNFS-GJL and MNFS-Conjugation.

2. For both the NFS-A and the MNFS-A methods, increasing the value of r
provides new complexity trade-offs.

3. There is a value of cp for which the minimum complexity is achieved. This
corresponds to the MNFS-Conjugation. Let LQ(1/3, θ0) be this complexity.
The value of θ0 is determined later.

4. Let the complexity of the MNFS-GJL be LQ(1/3, θ1). The value of θ1 was
determined in [24]. The plot for MNFS-A approaches the plot for MNFS-GJL
from below.

5. For smaller values of cp, it is advantageous to choose t > 2 or k > 1. On the
other hand, for larger values of cp, the minimum complexity is attained for
t = 2 and k = 1.
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Fig. 4. Complexity plot for boundary case

From the plot, it can be seen that for larger values of cp, the minimum value
of cb is attained for t = 2 and k = 1. So, we decided to perform further analysis
using these values of t and k.

8.2 Analysis for t = 2 and k = 1

Fix t = 2 and k = 1 and let us denote C(cp, 2, 1, r) as simply C(cp, r). Then from
Theorem 4 the complexity of MNFS-A for p = LQ(2/3, cp) is LQ(1/3,C(cp, r))
where

C(cp, r) = 2cb = 2

√
cp

3 (r + 1)
+

(3 r + 2)r
36 c2p

+
2 r + 1
3 cp

. (32)

Figure 4 shows that for each r ≥ 1, there is an interval [ε0(r), ε1(r)] such that
for cp ∈ [ε0(r), ε1(r)], C(cp, r) < C(cp, r

′) for r �= r′. For r = 1, we have

ε0(1) =
1
2

(
4

√
11 + 11

) 1
3 ≈ 1.45; ε1(1) =

(
2

√
62 +

31
2

) 1
3

≈ 3.15.

For p = LQ(2/3, cp), the complexity of MNFS-A is same as the complexity
of MNFS-Conj. for cp in [1.45, 3.15]; for cp > 3.15, the complexity of MNFS-A is
lower than the complexity of all prior methods. The following result shows that
the minimum complexity attainable by MNFS-A approaches the complexity of
MNFS-GJL from below.

Theorem 5. For r ≥ 1, let C(r) = mincp>0 C(cp, r). Then

1. C(1) = θ0 =
(
146
261

√
22 + 208

87

)1/3
.

2. For r ≥ 1, C(r) is monotone increasing and bounded above.
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3. The limiting upper bound of C(r) is θ1 =
(

2×(13
√
13+46)

27

)1/3

.

Proof. Differentiating C(cp, r) with respect to cp and equating to 0 gives

6
r+1 − (3 r+2)r

c3p

18
√

cp
3 (r+1) + (3 r+2)r

36 c2p

− 2 r + 1
3 c2p

= 0 (33)

On simplifying we get,

6c3p − (3r + 2)r(r + 1)
√(

12c3p + (r + 1)(3r + 2)r
)
(r + 1)

− 2 r + 1
1

= 0 (34)

Equation (34) is quadratic in c3p. On solving we get the following value of cp.

cp =
(

7
6

r3 + 2 r2 +
1
6

√
13 r2 + 8 r + 1

(
2 r2 + 3 r + 1

)
+ r +

1
6

)1/3

= ρ(r) (say) . (35)

Putting the value of cp back in (32), we get the minimum value of C (in terms
of r) as

C(r) = 2

√
ρ(r)

3 (r + 1)
+

(3 r + 2)r
36 ρ(r)2

+
2 r + 1
3 ρ(r)

. (36)

All the three sequences in the expression for C(r), viz, ρ(r)
3 (r+1) ,

(3 r+2)r
36 ρ(r)2 and

2 r+1
3 ρ(r) are monotonic increasing. This can be verified through computation (with
a symbolic algebra package) as follows. Let sr be any one of these sequences.
Then computing sr+1/sr gives a ratio of polynomial expressions from which it
is possible to directly argue that sr+1/sr is greater than one. We have done
these computations but, do not present the details since they are uninteresting
and quite messy. Since all the three sequences ρ(r)

3 (r+1) ,
(3 r+2)r
36 ρ(r)2 and 2 r+1

3 ρ(r) are
monotonic increasing so is C(r).

Note that for r ≥ 1, ρ(r) > (7/6)1/3r > 1.05r. So, for r > 1,

(3r + 2)r
ρ(r)2

= 3
(

r

ρ(r)

)2

+ 2
r

ρ(r)2
< 3 ×

(
1

1.05

)2

+ 2 × 1
1.05

.

(2r + 1)
ρ(r)

= 2
r

ρ(r)
+

1
ρ(r)

< 2 × 1
1.05

+
1

1.05
.

This shows that the sequences (3r+2)r
ρ(r)2 and (2r+1)

ρ(r) are bounded above. For r > 8,
we have (3r+1) < (8r+1) < r2 and (2r2+r+1/6) < r3/3 which implies that for
r > 8, ρ(r) < (7/6+1/6×

√
14×3+1/3)1/3r < 1.5 r. Using ρ(r) < 1.5r for r > 8,
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it can be shown that the sequence
(

ρ(r)
r+1

)

r>8
is bounded above by 1.5. Since

the three constituent sequences ρ(r)
(r+1) ,

(3 r+2)r
ρ(r)2 and 2 r+1

ρ(r) are bounded above, it
follows that C(r) is also bounded above. Being monotone increasing and bounded
above C(r) is convergent. We claim that

lim
r→∞ C(r) =

(
2 × (13

√
13 + 46)

27

)1/3

.

The proof of the claim is the following. Using the expression for ρ(r) from (35)

we have lim
r→∞

ρ(r)
r

=
(

2
6

√
13 +

7
6

) 1
3

. Now,

C(r) = 2

√
ρ(r)/r

3 (1 + 1/r)
+

(3 + 2/r)
36 ρ(r)2/r2

+
2 + 1/r

3 ρ(r)/r
. (37)

Hence,

lim
r→∞ C(r) = 2

√
(2

√
13 + 7)1/3

3 × 61/3
+

3 × 62/3

36 (2
√

13 + 7)2/3
+

2 × 61/3

3 (2
√

13 + 7)1/3

After further simplification, we get

lim
r→∞ C(r) =

(
2 × (13

√
13 + 46)

27

)1/3

.

The limit of C(r) as r goes to infinity is the value of θ1 where LQ(1/3, θ1) is the
complexity of MNFS-GJL as determined in [24]. This shows that as r goes to
infinity, the complexity of MNFS-A approaches the complexity of MNFS-GJL
from below.

We have already seen that C(r) is monotone increasing for r ≥ 1. So, the
minimum value of C(r) is obtained for r = 1. After simplifying C(1), we get the
minimum complexity of MNFS-A to be

LQ

(
1/3,

(
146
261

√
22 +

208
87

)1/3
)

= L (1/3, 1.7116) . (38)

This minimum complexity is obtained at cp = ρ(1) =
(√

22 + 13
3

)1/3
=

2.0819. ��

Note 1. As mentioned earlier, for r = k = 1, the new method of polynomial selec-
tion becomes the Conjugation method. So, the minimum complexity of MNFS-A
is the same as the minimum complexity for MNFS-Conjugation. Here we note
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that the value of the minimum complexity given by (38), is not same as the one
reported by Pierrot in [24]. This is due to an error in the calculation in [24]2.

Complexity of NFS-A: From Fig. 4, it can be seen that there is an interval for
cp for which the complexity of NFS-A is better than both MNFS-Conjugation
and MNFS-GJL. An analysis along the lines as done above can be carried out to
formally show this. We skip the details since these are very similar to (actually
a bit simpler than) the analysis done for MNFS-A. Here we simply mention the
following two results:

1. For cp ≥
(
2

√
89 + 20

) 1
3 ≈ 3.39, the complexity of NFS-A is better than that

of MNFS-Conjugation.

2. For cp ≤ 1
8

√
390

√(
5

√
13 − 18

)(
26
27

√
13 + 92

27

) 1
3 + 45

8

(
26
27

√
13 + 92

27

) 2
3 ≈ 20.91,

the complexity of NFS-A is better than that of MNFS-GJL.
3. So, for cp ∈ [3.39, 20.91], the complexity of NFS-A is better than the com-

plexity of all previous method including the MNFS variants.

Current state-of-the-art: The complexity of MNFS-A is lower than that of
NFS-A. As mentioned earlier (before Table 4) the interval (0, 1.12] is the union
of ∪t≥3S(t, 1, 1). This fact combined with Theorem 5 and Table 4 show the fol-
lowing. For p = LQ(2/3, cp), when cp ∈ (0, 1.12] ∪ [1.45, 3.15], the complexity of
MNFS-A is the same as that of MNFS-Conjugation; for cp /∈ (0, 1.12]∪[1.45, 3.15]
and cp > 0, the complexity of MNFS-A is smaller than all previous methods.
Hence, MNFS-A should be considered to provide the current state-of-the-art
asymptotic complexity in the boundary case.

8.3 Medium and Large Characteristic Cases

In a manner similar to that used to prove Theorem 4, it is possible to work
out the complexities for the medium and large characteristic cases of the MNFS
corresponding to the new polynomial selection method. To tackle the medium
prime case, the value of t is taken to be t = ctn ((ln Q)(ln ln Q))−1/3 and to tackle
the large prime case, the value of r is taken to be r = cr/2 ((lnQ)(ln ln Q))1/3.
This will provide a relation between cb, cv and r (for the medium prime case) or
t (for the large prime case). The method of Lagrange multipliers is then used to
find the minimum value of cb. We have carried out these computations and the
complexities turn out to be the same as those obtained in [24] for the MNFS-GJL
(for large characteristic) and the MNFS-Conjugation (for medium characteristic)
methods. Hence, we do not present these details.

2 The error is the following. The solution for cb to the quadratic (18t2c2p)c
2
b −

(36tcp)cb + 8 − 3t2(t − 1)c3p = 0 is cb = 1/(tcp) +
√

5/(9(cpt)2) + (cp(t − 1))/6
with the positive sign of the radical. In [24], the solution is erroneously taken to
be 1/(tcp) +

√
5/((9cpt)2) + (cp(t − 1))/6.
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9 Conclusion

In this work, we have proposed a new method for polynomial selection for the
NFS algorithm for fields Fpn with n > 1. Asymptotic analysis of the complexity
has been carried out both for the classical NFS and the MNFS algorithms for
polynomials obtained using the new method. For the boundary case with p =
LQ(2/3, cp) for cp outside a small set, the new method provides complexity which
is lower than all previously known methods.
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3 École Polytechnique, Palaiseau, France

4 Nanyang Technological University, Singapore, Singapore
thomas.peyrin@ntu.edu.sg

Abstract. This article presents an explicit freestart colliding pair for
SHA-1, i.e. a collision for its internal compression function. This is the
first practical break of the full SHA-1, reaching all 80 out of 80 steps. Only
10 days of computation on a 64-GPU cluster were necessary to perform
this attack, for a runtime cost equivalent to approximately 257.5 calls to
the compression function of SHA-1 on GPU. This work builds on a contin-
uous series of cryptanalytic advancements on SHA-1 since the theoretical
collision attack breakthrough of 2005. In particular, we reuse the recent
work on 76-step SHA-1 of Karpman et al. from CRYPTO 2015 that intro-
duced an efficient framework to implement (freestart) collisions on GPUs;
we extend it by incorporating more sophisticated accelerating techniques
such as boomerangs. We also rely on the results of Stevens from EURO-
CRYPT 2013 to obtain optimal attack conditions; using these techniques
required further refinements for this work.

Freestart collisions do not directly imply a collision for the full hash
function. However, this work is an important milestone towards an actual
SHA-1 collision and it further shows how GPUs can be used very effi-
ciently for this kind of attack. Based on the state-of-the-art collision
attack on SHA-1 by Stevens from EUROCRYPT 2013, we are able to
present new projections on the computational and financial cost required
for a SHA-1 collision computation. These projections are significantly
lower than what was previously anticipated by the industry, due to the
use of the more cost efficient GPUs compared to regular CPUs.

We therefore recommend the industry, in particular Internet browser
vendors and Certification Authorities, to retract SHA-1 quickly. We hope
the industry has learned from the events surrounding the cryptanalytic
breaks of MD5 and will retract SHA-1 before concrete attacks such as
signature forgeries appear in the near future.
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1 Introduction

A cryptographic hash function H is a function that takes an arbitrarily long
message M as input and outputs a fixed-length hash value of size n bits. It is a
versatile primitive useful in many applications, such as building digital signature
schemes, message authentication codes or password hashing functions. One key
security feature expected from a cryptographic hash function is collision resis-
tance: it should not be feasible for an adversary to find two distinct messages
M , M̂ that hash to the same value H(M) = H(M̂) faster than with a generic
algorithm, i.e. with significantly less than 2

n
2 calls to the hash function.

A widely used hash function construction is the Merkle-Damg̊ard para-
digm [6,24]: H is built by iterating a compression function h that updates a fixed-
size internal state (also called chaining value) with fixed-size message blocks; the
initial chaining value (IV) is a fixed constant of the hash function. This construc-
tion is useful in particular for the simple security reduction it allows to make:
if the compression function is collision-resistant, then so is the corresponding
hash function. This leads to defining variants of collision attacks which allow the
attacker to choose the IV: a freestart collision is a pair of different message and
IV (C,M), (Ĉ, M̂) such that HC(M) = HĈ(M̂); semi-freestart collisions are
similar but impose C = Ĉ. It is noteworthy that the Merkle-Damg̊ard security
reduction assumes that any type of collision (freestart or semi-freestart) must
be intractable by the adversary. Thus, a collision attack on the compression
function should be taken very seriously as it invalidates the security reduction
coming from the operating mode of the hash function.

The most famous hash function family, basis for most hash function industry
standards, is undoubtedly the MD-SHA family, which includes notable functions
such as MD4, MD5, SHA-1 and SHA-2. This family first originated with MD4 [35]
and continued with MD5 [36] (due to serious security weaknesses [9,11] found on
MD4 soon after its publication). Even though collision attacks on the compression
function were quickly identified [10], the industry widely deployed MD5 in appli-
cations where hash functions were required. Yet, in 2005, a team of researchers
led by Wang [47] completely broke the collision resistance of MD5, which allowed
to efficiently compute colliding messages for the full hash function. This ground-
breaking work inspired much further research on the topic; in a major devel-
opment, Stevens et al. [44] showed that a more powerful type of attack (the
so-called chosen-prefix collision attack) could be performed against MD5. This
eventually led to the forgery of a Rogue Certification Authority that in principle
completely undermined HTTPS security [45]. This past history of cryptanaly-
sis on MD5 is yet another argument for a very careful treatment of collision
cryptanalysis progress: the industry should move away from weak cryptographic
hash functions or hash functions built on weak inner components (compression
functions that are not collision resistant) before the seemingly theoretic attacks
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prove to be a direct threat to security (counter-cryptanalysis [42] could be used
to mitigate some of the risks during the migration).

While lessons should be learned from the case of MD5, it is interesting to
observe that the industry is again facing a similar challenge. SHA-1 [28], designed
by the NSA and a NIST standard, is one of the main hash functions of today,
and it is facing important attacks since 2005. Based on previous successful
cryptanalysis works [1,2,4] on SHA-0 [27] (SHA-1’s predecessor, that only dif-
fers by a single rotation in the message expansion function), a team led again
by Wang et al. [46] showed in 2005 the very first theoretical collision attack on
SHA-1. Unlike the case of MD5, this attack, while groundbreaking, remains mostly
theoretical as its expected cost was evaluated to be equivalent to 269 calls to the
SHA-1 compression function.

Therefore, as a proof of concept, many teams considered generating real
collisions for reduced versions of SHA-1: 64 steps [8] (with a cost of 235 SHA-1
calls), 70 steps [7] (cost 244 SHA-1), 73 steps [14] (cost 250.7 SHA-1) and the
latest advances for the hash function reached 75 steps [15] (cost 257.7 SHA-1)
using extensive GPU computation power.

In 2013, building on these advances and a novel rigorous framework for ana-
lyzing SHA-1, the current best collision attack on full SHA-1 was presented by
Stevens [43] with an estimated cost of 261 calls to the SHA-1 compression func-
tion. Nevertheless, a publicly known collision still remains out of reach.

Very recently, collisions on the compression function of SHA-1 reduced to 76
steps (out of 80) were obtained by using a start-from-the-middle approach and a
highly efficient GPU framework [19]. This required only a reasonable amount of
GPU computation power (less than a week on a single card, equivalent to about
250.3 calls to SHA-1 on GPU, whereas the runtime cost equivalent on regular
CPUs is about 249.1 SHA-1).

Because of these worrisome cryptanalysis advances on SHA-1, one is advised
to use e.g. SHA-2 [29] or the new hash functions standard SHA-3 [31] when
secure hashing is needed. While NIST recommended that SHA-1-based certifi-
cates should not be trusted beyond 2014 [30] (by 2010 for governmental use), the
industry actors only recently started to move away from SHA-1, about a decade
after the first theoretical collision attacks. For example, Microsoft, Google and
Mozilla have all announced that their respective browsers will stop accepting
SHA-1 SSL certificates by 2017 (and that SHA-1-based certificates should not be
issued after 2015). These deadlines are motivated by a simple evaluation of the
computational and financial cost required to generate a collision for SHA-1: in
2012, Bruce Schneier (using calculations by Jesse Walker based on a 261 attack
cost [43], Amazon EC2 spotprices and Moore’s Law) estimated the cost of run-
ning one SHA-1 collision attack to be around 700,000 US$ in 2015, down to
about 173,000 US$ in 2018, which he deemed to be within the resources of crim-
inals [37]. We observe that while a majority of industry actors already chose
to migrate to more secure hashing algorithms, surveys show that in Septem-
ber 2015 SHA-1 remained the hashing primitive for about 28.2 % of certificate
signatures [40].
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Table 1. A freestart collision for SHA-1. A test program for this colliding pair is
available at https://sites.google.com/site/itstheshappening/tester.cpp

Message 1

IV1 50 6b 01 78 ff 6d 18 90 20 22 91 fd 3a de 38 71 b2 c6 65 ea

M1 9d 44 38 28 a5 ea 3d f0 86 ea a0 fa 77 83 a7 36

33 24 48 4d af 70 2a aa a3 da b6 79 d8 a6 9e 2d

54 38 20 ed a7 ff fb 52 d3 ff 49 3f c3 ff 55 1e

fb ff d9 7f 55 fe ee f2 08 5a f3 12 08 86 88 a9

Compr(IV1,M1) f0 20 48 6f 07 1b f1 10 53 54 7a 86 f4 a7 15 3b 3c 95 0f 4b

Message 2

IV2 50 6b 01 78 ff 6d 18 91 a0 22 91 fd 3a de 38 71 b2 c6 65 ea

M2 3f 44 38 38 81 ea 3d ec a0 ea a0 ee 51 83 a7 2c

33 24 48 5d ab 70 2a b6 6f da b6 6d d4 a6 9e 2f

94 38 20 fd 13 ff fb 4e ef ff 49 3b 7f ff 55 04

db ff d9 6f 71 fe ee ee e4 5a f3 06 04 86 88 ab

Compr(IV2,M2) f0 20 48 6f 07 1b f1 10 53 54 7a 86 f4 a7 15 3b 3c 95 0f 4b

1.1 Our Contributions

In this article, we give the first colliding pair for the full SHA-1 compression
function (see Table 1), which amounts to a freestart collision for the full hash
function. This was obtained at a GPU runtime cost approximately equivalent to
257.5 evaluations of SHA-1.1

The starting point for this attack is the start-from-the-middle approach and
the GPU framework of CRYPTO 2015, which was used to compute freestart col-
lisions on the 76-step reduced SHA-1 [19]. We improve this by incorporating the
auxiliary paths (or boomerangs) speed-up technique from Joux and Peyrin [17].
We also rely on the cryptanalytic techniques by Stevens [43] to obtain optimal
attack conditions, which required further refinements for this work.

As was mentioned above, previous recommendations on retracting SHA-1
were based on estimations of the resources needed to find SHA-1 collisions. These
consist both in the time necessary to mount an attack, for a given computational
power, as well as the cost of building and maintaining this capability, or of renting
the equipment directly on a platform such as Amazon EC2 [38]. In that respect,
our freestart collision attack can be run in about 9 to 10 days on average on a
cluster with 64 GeForce GTX970 GPUs, or by renting GPU time on Amazon

1 Which from previous experience is about a factor 2 higher than the runtime cost in
equivalent number of SHA-1 evaluations on regular CPUs.

https://sites.google.com/site/itstheshappening/tester.cpp
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EC2 for about 2K US$.2 Based on this experimental data and the 2013 state-
of-the-art collision attack, we can project that a complete SHA-1 collision would
take between 49 and 78 days on a 512 GPU cluster, and renting the equivalent
GPU time on EC2 would cost between 75K US$ and 120K US$ and would
plausibly take at most a few months.

Although freestart collisions do not directly translate to collisions for the hash
function, they directly invalidate the security reduction of the hash function to
the one of the compression function. Hence, obtaining a concrete example of such
a collision further highlights the weaknesses of SHA-1 and existing users should
quickly stop using this hash function. In particular, we believe that our work
shows that the industry’s plan to move away from SHA-1 in 2017 might not be
soon enough.

Outline. In Sect. 2, we provide our analysis and recommendations regarding
the timeline of migration from SHA-1 to a secure hash function. In Sect. 3 we
give a short description of the SHA-1 hash function and our notations. In Sect. 4,
we explain the structure of our cryptanalysis and the various techniques used
from a high level point of view, and we later provide in Sect. 5 all the details of
our attack for the interested readers.

2 Recommendations for the Swift Removal of SHA-1

Our work allowed to generate a freestart collision for the full SHA-1, but a col-
lision for the entire hash algorithm is still unknown. There is no known generic
and efficient algorithm that can turn a freestart collision into a plain collision for
the hash function. However, the advances we have made do allow us to precisely
estimate and update the computational and financial cost to generate such a col-
lision with latest cryptanalysis advances [43] (the computational cost required
to generate such a collision was actually a recurrent debate in the academic
community since the first theoretical attack from Wang et al. [46]).

Schneier’s projections [37] on the cost of SHA-1 collisions in 2012 (on EC2:
≈700K US$ by 2015, ≈173K US$ by 2018 and ≈43K US$ by 2021) were based
on (an early announcement of) [43]. As mentioned earlier, these projections
have been used to establish the timeline of migrating away from SHA-1-based
signatures for secure Internet websites, resulting in a migration by January 2017
— one year before Schneier estimated that a SHA-1 collision would be within
the resources of criminal syndicates.

However, as remarked in [19] and now further improved in this article thanks
to the use of boomerang speed-up techniques [17], GPUs are much faster for this

2 This is based on the spot price for Amazon EC2 GPU Instance Type ‘g2.8xlarge’,
featuring 4 GPUs, which is about 0.50 US$ per hour as of October 2015. These four
GPU cards are comparable to NVidia Tesla cards and actually contain 2 physical
GPU chips each. But due to their lower clock speed and slightly lower performance
we estimate that each card is comparable to about one GTX970s.
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type of attacks (compared to CPUs) and we now precisely estimate that a full
SHA-1 collision should not cost more than between 75 K and 120K US$ by renting
Amazon EC2 cloud over a few months at the time of writing, in early autumn
2015. Our new GPU-based projections are now more accurate and they are
significantly below Schneier’s estimations. More worrying, they are theoretically
already within Schneier’s estimated resources of criminal syndicates as of today,
almost two years earlier than previously expected, and one year before SHA-1
being marked as unsafe in modern Internet browsers. Therefore, we believe that
migration from SHA-1 to the secure SHA-2 or SHA-3 hash algorithms should be
done sooner than previously planned.

Note that it has previously been shown that a more advanced so-called
chosen-prefix collision attack on MD5 allowed the creation of a rogue Certifi-
cation Authority undermining the security of all secure websites [45]. Collisions
on SHA-1 can result in e.g. signature forgeries, but do not directly undermine
the security of the Internet at large. More advanced so-called chosen-prefix col-
lisions [45] are significantly more threatening, but currently much costlier to
mount. Yet, given the lessons learned with the MD5 full collision break, it is not
advisable to wait until these become practically possible.

At the time of the submission of this article in October 2015, we learned that
in an ironic turn of events the CA/Browser Forum3 was planning to hold a ballot
to decide whether to extend issuance of SHA-1 certificates through the year 2016
[12]. With our new cost projections in mind, we strongly recommended against
this extension and the ballot was subsequently withdrawn [13]. Further action
is also being considered by major browser providers such as Microsoft [25] and
Mozilla [26] in speeding up the removal of SHA-1 certificates.

3 Preliminaries

3.1 Description of SHA-1

We start this section with a brief description of the SHA-1 hash function. We
refer to the NIST specification document [28] for a more thorough presentation.
SHA-1 is a hash function from the MD-SHA family which produces digests of 160
bits. It is based on the popular Merkle-Damg̊ard paradigm [6,24], where the
(padded) message input to the function is divided into k blocks of a fixed size
(512 bits in the case of SHA-1). Each block is fed to a compression function h
which then updates a 160-bit chaining value cvi using the message block mi+1,
i.e. cvi+1 = h(cvi,mi+1). The initial value cv0 = IV is a predefined constant
and cvk is the output of the hash function.

Similarly to other members of the MD-SHA family, the compression function
h is built around an ad hoc block cipher E used in a Davies-Meyer construction:
cvi+1 = E(mi+1, cvi)+cvi, where E(x, y) is the encryption of the plaintext y with
the key x and “+” denotes word-wise addition in Z/232 Z. The block cipher itself

3 The CA/Browser Forum is the main association of industries regulating the use of
digital certificates on the Internet.
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is an 80-step (4 rounds of 20 steps each) five-branch generalized Feistel network
using an Add-Rotate-Xor “ARX” step function. The internal state consists in
five 32-bit registers (Ai, Bi, Ci,Di, Ei); at each step, a 32-bit extended message
word Wi is used to update the five registers:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ai+1 = (Ai ≪ 5) + fi(Bi, Ci,Di) + Ei + Ki + Wi

Bi+1 = Ai

Ci+1 = Bi ≫ 2
Di+1 = Ci

Ei+1 = Di

where Ki are predetermined constants and fi are Boolean functions (see Table 2
for their specifications). As all updated registers but Ai+1 are just rotated copies
of another, it is possible to equivalently express the step function in a recursive
way using only the register A:

Ai+1 = (Ai ≪ 5) + fi(Ai−1, Ai−2 ≫ 2, Ai−3 ≫ 2) + (Ai−4 ≫ 2) + Ki + Wi.

Table 2. Boolean functions and constants of SHA-1

round step i fi(B, C, D) Ki

1 0 ≤ i < 20 fIF = (B ∧ C) ⊕ (B ∧ D) 0x5a827999

2 20 ≤ i < 40 fXOR = B ⊕ C ⊕ D 0x6ed6eba1

3 40 ≤ i < 60 fMAJ = (B ∧ C) ⊕ (B ∧ D) ⊕ (C ∧ D) 0x8fabbcdc

4 60 ≤ i < 80 fXOR = B ⊕ C ⊕ D 0xca62c1d6

Finally, the extended message words Wi are computed from the 512-bit message
block, which is split into sixteen 32-bit words M0, . . . ,M15. These sixteen words
are then expanded linearly into the eighty 32-bit words Wi as follows:

Wi =
{
Mi, for 0 ≤ i ≤ 15
(Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) ≪ 1, for 16 ≤ i ≤ 79

The step function and the message expansion can both easily be inverted.

3.2 Differential Collision Attacks on SHA-1

We now introduce the main notions used in a collision attack on SHA-1 (and
more generally on members of the MD-SHA family).

Background. In a differential collision attack on a (Merkle-Damg̊ard) hash
function, the goal of the attacker is to find a high-probability differential path
(the differences being on the message, and also on the IV in the case of a
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freestart attack) which entails a zero difference on the final state of the function
(i.e. the hash value). A pair of messages (and optionally IVs) following such a
path indeed leads to a collision.

In the case of SHA-1 (and more generally ARX primitives), the way of express-
ing differences between messages is less obvious than for e.g. bit or byte-oriented
primitives. It is indeed natural to consider both “XOR differences” (over Fn

2 )
and “modular differences” (over Z/2nZ) as both operations are used in the
function. In practice, the literature on SHA-1 uses several hybrid representations
of differences based on signed XOR differences. In its most basic form, such a
difference is similar to an XOR difference with the additional information of
the value of the differing bits for each message (and also of some bits equal
in the two messages), which is a “sign” for the difference. This is an impor-
tant information when one works with modular addition as the sign impacts the
(absence of) propagation of carries in the addition of two differences. Let us for
instance consider the two pairs of words a = 11011000001b, â = 11011000000b
and b = 10100111000b, b̂ = 10100111001b; the XOR differences (a ⊕ â) and
(b ⊕ b̂) are both 00000000001b (which may be written ..........x), meaning
that (a ⊕ b) = (â ⊕ b̂). On the other hand, the signed XOR difference between
a and â may be written ..........- to convey the fact that they are different
on their lowest bit and that the value of this bit is 1 for a (and thence 0 for â);
similarly, the signed difference between b and b̂ may be written ..........+,
which is a difference in the same position but of a different sign. From these
differences, we can deduce that (a + b) = (â + b̂) because differences of differ-
ent signs cancel; if we were to swap the values b and b̂, both differences on a
and b would have the same sign and indeed we would have (a + b) �= (â + b̂)
(though (a⊕ b) and (â⊕ b̂) would still be equal). It is possible to extend signed
differences to account for more generic combinations of possible values for each
message bit; this was for instance done by De Cannière and Rechberger to aid
in the automatic search of differential paths [8]. Another possible extension is
to consider relations between various bits of the (possibly rotated) state words;
this allows to efficiently keep track of the propagation of differences through the
step function. Such differences are for instance used by Stevens [43], and also in
this work (see Fig. 2).

The structure of differential attacks on SHA-1 evolved to become quite spe-
cific. At a high level, they consist of: 1. a non-linear differential path of low
probability; 2. a linear differential path of high probability; 3. accelerating
techniques.

The terms non-linear and linear refer to how the paths were obtained: the
latter is derived from a linear (over F32

2 ) modelling of the step function. This
kind of path is used in the probabilistic phase of the attack, where one simply
tries many message pairs in order to find one that indeed “behaves” linearly.
Computing the exact probability of this event is however not easy, although it
is not too hard to find reasonable estimates. This probability is the main factor
determining the final complexity of the attack.
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The role of a non-linear path is to bootstrap the attack by bridging a state
with no differences (the IV) with the start of the linear differential path4. In a
nutshell, this is necessary because these paths do not typically lie in the kernel
of the linearized SHA-1; hence it is impossible to obtain a collision between two
messages following a fully linear path. This remains true in the present case
of a freestart attack, even if the non-linear path now connects the start of the
linear path with an IV containing some differences. Unlike the linear path, the
non-linear one has a very low probability of being followed by random messages.
However, the attacker can fully choose the messages to guarantee that they do
follow the path, as he is free to set the 512 bits of the message. Hence finding
conforming message pairs for this path effectively costs nothing in the attack.

Finally, the role of accelerating techniques is to find efficient ways of using
the freedom degrees remaining after a pair following the non-linear path has
been found, in order to delay the effective moment where the probabilistic phase
of the attack starts.

We conclude this section with a short discussion of how to construct these
three main parts of a (freestart) collision attack on SHA-1.

Linear Path; Local Collisions. The linear differential paths used in collision
attacks are built around the concept of local collision, introduced by Chabaud
and Joux in 1998 to attack SHA-0. The idea underlying a local collision is first to
introduce a difference in one of the intermediate state words of the function, say
Ai, through a difference in the message word Wi−1. For an internal state made of
j words (j = 5 in the case of SHA-0 or SHA-1), the attacker then uses subsequent
differences in (possibly only some of) the message words Wi...i+(j−1) in order
to cancel any contribution of the difference in Ai in the computation of a new
internal state Ai+1...i+j , which will therefore have no differences. The positions
of these “correcting” differences are dictated by the step function, and there may
be different options depending on the used Boolean function, though originally
(and in most subsequent cases) these were chosen according to a linearized model
(over F32

2 ) of the step functions.
Local collisions are a fit basis to generate differential paths of good probabil-

ity. The main obstacle to do this is that the attacker does not control all of the
message words, as some are generated by the message expansion. Chabaud and
Joux showed how this could be solved by chaining local collisions along a dis-
turbance vector (DV) in such a way that the final state of the function contains
no difference and that the pattern of the local collisions is compatible with the
message expansion. The disturbance vector just consists of a sparse message (of
4 For the sake of simplicity, we ignore here the fact that a collision attack on SHA-1

usually uses two blocks, with the second one having differences in its chaining value.
The general picture is actually the following: once a pair of messages following the
linear path P+ is found, the first block ends with a signed difference +Δ; the sign
of the linear path is then switched for the second block to become P− and following
this path results in a difference −Δ; the feedforward then cancels both differences
and yields a collision.
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sixteen 32-bit words) that has been expanded with the linear message expansion
of SHA-1. Every “one” bit of this expanded message then marks the start of a
local collision (and expanding all the local collisions thus produces a complete
linear path).

Each local collision in the probabilistic phase of the attack (roughly corre-
sponding to the last three rounds) increases the overall complexity of the attack,
hence one should use disturbance vectors that are sparse over these rounds. Ini-
tially, the evaluation of the probability of disturbance vector candidates was done
mostly heuristically, using e.g. the Hamming weight of the vector [1,18,22,33,34],
the sum of bit conditions for each local collision independently (not allowing car-
ries) [48,49], and the product of independent local collision probabilities (allow-
ing carries) [21,23]. Manuel [20,21] noticed that all disturbance vectors used in
the literature belong to two classes I(K, b) and II(K, b). Within each class all
disturbance vectors are forward or backward shifts in the step index (controlled
by K) and/or bitwise cyclic rotations (controlled by b) of the same expanded
message. We will use this notation through the remainder of this article.

Manuel also showed that success probabilities of local collisions are not always
independent, causing biases in the above mentioned heuristic cost functions. This
was later resolved by Stevens using a technique called joint local-collision analysis
(JLCA) [41,43], which allows to analyze entire sets of differential paths over the
last three rounds that conform to the (linear path entailed by the) disturbance
vector. This is essentially an exhaustive analysis taking into account all local
collisions together, using which one can determine the highest possible success
probability. This analysis also produces a minimal set of sufficient conditions
which, when all fulfilled, ensure that a pair of messages follows the linear path;
the conditions are minimal in the sense that meeting all of them happens with
this highest probability that was computed by the analysis. Although a direct
approach is clearly unfeasible (as it would require dealing with an exponentially
growing amount of possible differential paths), JLCA can be done practically by
exploiting the large amount of redundancy between all the differential paths to
a very large extent.

Non-linear Differential Path. The construction of non-linear differential
paths was initially done by hand by Wang, Yin and Yu in their first attack on the
full SHA-1 [46]. Efficient algorithmic construction of such differential paths was
later proposed in 2006 by De Cannière and Rechberger, who introduced a guess-
and-determine approach [8]. A different approach based on a meet-in-the-middle
method was also proposed by Stevens et al. [16,41].

Accelerating Techniques. For a given differential path, one can derive explicit
conditions on state and message bits which are sufficient to ensure that a pair
of messages follows the path. This lets the collision search to be entirely defined
over a single compression function computation. Furthermore, they also allow
detection of “bad” message pairs a few steps earlier compared to computing the
state and verifying differences, allowing to abort computations earlier in this
case.
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An important contribution of Wang, Yin and Yu was the introduction of pow-
erful message modification techniques, which followed an earlier work of Biham
and Chen who introduced neutral bits to produce better attacks on SHA-0 [1].
The goal of both techniques is for the attacker to make a better use of the avail-
able freedom in the message words in order to decrease the complexity of the
attack. Message modifications try to correct bad message pairs that only slightly
deviate from the differential path, and neutral bits try to generate several good
message pairs out of a single one (by changing the value of a bit which does not
invalidate nearby sufficient conditions with good probability). In essence, both
techniques allow to amortize part of the computations, which effectively delays
the beginning of the purely probabilistic phase of the attack.

Finally, Joux and Peyrin showed how to construct powerful neutral bits and
message modifications by using auxiliary differential paths akin to boomerangs
[17], which allow more efficient attacks. In a nutshell, a boomerang (in collision
attacks) is a small set of bits that together form a local collision. Hence flip-
ping these bits together ensures that the difference introduced by the first bit
of the local collision does not propagate to the rest of the state; if the initial
difference does not invalidate a sufficient condition, this local collision is indeed
a neutral bit. Yet, because the boomerang uses a single (or sometimes a few)
local collision, more differences will actually be introduced when it goes through
the message expansion. The essence of boomerangs is thus to properly choose
where to locate the local collisions so that no differences are introduced for the
most steps possible.

4 Attack Overview

In this section we provide an overview of how our attack was constructed. At a
high level, it consists of the following steps:

1. Disturbance Vector Selection: We need to select the best disturbance vector
for our attack. This choice is based on results provided by joint local collision
analysis (JLCA), taking into account constraints on the number and position
of sufficient conditions on the IV implied by the disturbance vector. We
explain this in Sect. 4.1.

2. Finding Optimal Attack Conditions: Having selected a disturbance vector,
we need to determine a set of attack conditions over all steps consisting of
sufficient conditions for state bits up to some step, augmented by message
bit relations. We use non-linear differential path construction methods to
determine conditions within the first round. Using JLCA we derive an opti-
mal complete set of attack conditions that given the first round path leads
to the highest possible success probability over all steps, yet minimizes the
number of conditions within this model. We detail this in Sect. 4.2.

3. Finding and Analyzing Boomerangs and Neutral Bits : To speed up the
freestart collision attack, we exploit advanced message modification tech-
niques such as (multiple) neutral bits and boomerangs. In order to find
suitable candidates, we sample partial solutions fulfilling the above attack
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conditions up to an early step. The samples are used to test many poten-
tial boomerangs and neutral bits, and only ones of good quality and that
do not introduce contradictions will be used. In particular, no boomerang
or neutral bit may invalidate the attack conditions of the so-called base
solution (see below, includes all message bit relations) with non-negligible
probability. We also use sampling to estimate the probability of interaction
between boomerang and neutral bits with particular sufficient conditions, in
the forward and backward direction. Although we do not allow significant
interaction in the backward direction, we use these probabilities to deter-
mine at which step the boomerang or neutral bit are used. This is explained
in Sect. 4.3.

4. Base Solution Generation: Before we can apply neutral bits and boomerangs,
we first need to compute a partial solution over 16 consecutive steps. Only
this partial solution can then be extended to cover more steps by using
neutral bits and boomerangs. We call such a solution a base solution; it
consists of state words A−3, . . . , A17 and message words W1, . . . ,W16. The
cost for generating base solutions is relatively low compared to the overall
attack cost, therefore it is not heavily optimized and the search is run on
regular CPUs. This is further explained in Sect. 4.4.

5. Application of Neutral Bits and Boomerangs on GPU : We extend each base
solution into solutions over a larger number of steps by successively apply-
ing neutral bits and boomerangs and verifying sufficient conditions. Once all
neutral bits and boomerangs have been exploited, the remainder of the steps
have to be fulfilled probabilistically.

This is computationally the most intensive part, and it is therefore imple-
mented on GPUs that are significantly more cost-efficient than CPUs, using
the highly efficient framework introduced by Karpman, Peyrin and Stevens
[19]. More details are provided in Sect. 4.5.

All these steps strongly build upon the continuous series of papers that have
advanced the state-of-the-art in SHA-1 cryptanalysis, yet there are still small
adaptions and improvements used for this work. We now describe all these points
in more details.

4.1 Disturbance Vector Selection

It is possible to compute exactly the highest success probability over the linear
part by using joint-local collision analysis [43]. By further using the improve-
ments described in [19], one can restrict carries for the steps where sufficient con-
ditions are used and obtain the sufficient conditions for those steps immediately.

The number of sufficient conditions at the beginning of round 2 and the
associated highest success probability for the remaining steps provide insight
into the attack complexity under different circumstances. In Table 3 we give
our analysis results for various DVs, listing the negative log2 of the success
probability over steps [24, 80) assuming that all sufficient conditions up to A24

have been satisfied; we also include the number of conditions on A24 and A23. The
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Table 3. Disturbance vector analysis. For each DV, under c[24,80), we list the negative
log2 of the success probability over steps [24, 80) assuming that all sufficient conditions
up to A24 have been satisfied. The columns c23 and c22 list the number of conditions
on A24 (in step 23) and A23 (in step 22), respectively. The final column represents an
estimated runtime in days on a cluster consisting of 64 GTX970s based on c[24,80).

DV Cost c[24,80) Cost c23 Cost c22 Days on 64 GPUs

I(48,0) 61.6 1 3 39.1

I(49,0) 60.5 3 2 18.3

I(50,0) 61.7 2 1 41.8

I(51,0) 62.1 1 2 55.7

I(48,2) 64.4 1 2 281.9

I(49,2) 62.8 2 3 90.4

II(46,0) 64.8 1 0 369.5

II(50,0) 59.6 1 2 9.9

II(51,0) 57.5 3 3 2.2

II(52,0) 58.3 3 3 4.1

II(53,0) 59.9 3 2 11.8

II(54,0) 61.3 2 1 31.4

II(55,0) 60.7 1 3 21.0

II(56,0) 58.9 3 2 6.3

II(57,0) 59.3 2 3 7.9

II(58,0) 59.7 3 2 10.5

II(59,0) 61.0 3 2 26.2

II(49,2) 61.0 2 3 26.1

II(50,2) 59.4 3 2 8.7

II(51,2) 59.4 2 3 8.5

final column represents an estimated runtime in days on a cluster consisting of 64
GTX970s based on c[24,80), by multiplying the runtime of the 76-step freestart
GPU attack [19] with the difference between the costs c[24,80) for the 76-step
attack and the DVs in the table.

Considering Table 3, the obvious choice of DV to mount a full collision attack
on SHA-1 would be II(51,0). However in the present case of a freestart attack
additional constraints need to be taken into account. In particular the, choice of
the DV determines the possible differences in the IV, as these have to cancel the
differences of the final state (A80, B80, C80,D80, E80). This impacts the estimated
runtime as follows: if there are sufficient conditions present on A0 then the
estimated runtime in the last column should be multiplied by 2c23 . Indeed, the
76-step freestart attack did not have any sufficient conditions on A0 and could
thus ignore step 0, leading to an offset of one in the probabilistic phase. Moreover,
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if the IV differences are denser or ill-located (compared to the 76-step attack),
then more neutral bits and boomerangs are likely to interact badly with the
sufficient conditions on the IV, when propagated backwards. If only few neutral
bits and boomerangs can be used for a given DV, the cost of the attack would rise
significantly. The number of conditions c23 and c22 for each DV allow to estimate
how much more expensive a vector will be in the case where the probabilistic
phase effectively starts sooner than in step A25 as for the 76-step attack.

Taking the freestart setting into account, and with a preliminary analysis of
available neutral bits and boomerangs, the best option eventually seemed to be
II(59,0). This DV is actually a downward shift by four of II(55,0), which was used
in the 76-step attack. Consequently, this choice leads to the same IV sufficient
conditions as in the latter.

4.2 Finding Optimal Attack Conditions

Using joint local collision analysis, we could obtain sufficient conditions for the
beginning of the second round and IV differences that are optimal (i.e., with the
highest probability of cancelling differences in the final state). What remains to
do is to construct a non-linear differential path for the first round. For this, we
used the meet-in-the-middle method using the public HashClash implementation
[16]. Although we tried both non-linear differential path construction methods,
i.e. guess-and-determine, using our own implementation, and the meet-in-the-
middle method, we have found that the meet-in-the-middle approach generally
resulted in fewer conditions. Furthermore, the control on the position of these
conditions was greater with the meet-in-the-middle approach.

This differential path for the first round was then used as input for another
run of joint local collision analysis. In this case the run was over all 80 steps,
also replacing the differences assumed from the disturbance vector with the
differences in the state words coming from the non-linear path of the first round;
switching the sign of a difference was also allowed when it resulted in a sparser
overall difference. In this manner joint local collision analysis is able to provide
a complete set of attack conditions (i.e., sufficient conditions for the state words
and linear relations on message bits) that is optimized for the highest success
probability over the last three rounds, all the while minimizing the amount of
conditions needed.

In fact, JLCA outputs many complete sets that only vary slightly in the
signing of the differences. For our selected disturbance vector II(59,0) it turned
out that this direct approach is far too costly and far too memory-consuming,
as the amount of complete sets grows exponentially with the number of steps
for which we desired sufficient conditions sets. We were able to improve this
by introducing attack condition classes, where two sets of sufficient conditions
belong to the same class if their sufficient conditions over the last five state
words are identical. By expressing the attack condition classes over steps [0, i]
as extensions of attack conditions classes over steps [0, i − 1], we only have to
work with a very small number of class representatives at each step, making it
very practical.
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Note that we do not exploit this to obtain additional freedom for the attack
yet, However, it allows us to automatically circumvent random unpredictable
contradictions between the attack conditions in the densest part, by randomly
sampling complete sets until a usable one is found. We previously used the
guess-and-determine approach to resolve such contradictions by changing signs,
however this still required some manual interaction.

The resulting sufficient conditions on the state are given in the form of the
differential path in Fig. 1 (using the symbols of Fig. 2) and the message bit
relations are given in Fig. 3 through Fig. 5.

4.3 Finding and Analyzing Neutral Bits and Boomerangs

Generating and analyzing the boomerangs and neutral bits used in the attack
was done entirely automatically as described below. This process depends on
a parameter called the main block offset (specific to a freestart attack) that
determines the offset of the message freedom window used during the attack.
We have selected a main block offset of 5 as this led to the best distribution of
usable neutral bits and boomerangs. This means that all the neutral bits and
boomerangs directly lead to changes in the state from steps 5 up to 20, and that
these changes propagate to steps 4 down to 0 backwards and steps 21 up to 79
forwards.

Because the dense area of the attack conditions may implicitly force certain
other bits to specific values (resulting in hidden conditions), we use more than
4000 sampled solutions for the given attack conditions (over steps 1 up to 16) in
the analysis. The 16 steps fully determine the message block, and also verify the
sufficient conditions in the IV and in the dense non-linear differential path of
the first round. It should be noted that for this step it is important to generate
every sample independently. Indeed using e.g. message modification techniques
to generate many samples from a single one would result in a biased distribution
where many samples would only differ in the last few steps.

Boomerang Analysis. We analyze potential boomerangs that flip a single
state bit together with 3 or more message bits. Each boomerang should be
orthogonal to the attack conditions, i.e., the state bit should be free of suffi-
cient conditions, while flipping the message bits should not break any of the
message bit relations (either directly or through the message propagation). Let
t ∈ [6, 16], b ∈ [0, 31] be such that the state bit At[b] has no sufficient condition.

First, we determine the best usable boomerang on At[b] as follows. For every
sampled solution, we flip that state bit and compute the signed bit differences
between the resulting and the unaltered message words W5, . . . ,W20. We ver-
ify that the boomerang is usable by checking that flipping its constituting bits
breaks none of the message bit relations. We normalize these signed bit differ-
ences by negating them all when the state bit is flipped from 1 to 0. In this
manner we obtain a set of usable boomerangs for At[b]. We determine the aux-
iliary conditions on message bits and state bits and only keep the best usable
boomerang that has the fewest auxiliary conditions.
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Secondly, we analyze the behaviour of the boomerang over the backwards
steps. For every sampled solution, we simulate the application of the boomerang
by flipping the bits of the boomerang. We then recompute steps 4 to 0 backwards
and verify if any sufficient condition on these steps is broken. Any boomerang
that breaks any sufficient conditions on the early steps with probability higher
than 0.1 is dismissed.

Thirdly, we analyze the behaviour of the boomerang over the forward steps.
For every sampled solution, we simulate the application of the boomerang by
flipping its constituting bits. We then recompute steps 21 up to 79 forwards
and keep track of any sufficient condition for the differential path that becomes
violated. A boomerang will be used at step i in our attack if it does not break
any sufficient condition up to step i − 1 with probability more than 0.1.

Neutral Bits Analysis. The neutral bit analysis uses the same overall app-
roach as the boomerangs, with the following changes. After boomerangs are
determined, their conditions are added to the previous attack conditions and
used to generate a new set of solution samples. Usable neutral bits consist of a
set of one or more message bits that are flipped simultaneously. However, unlike
for boomerangs, the reason for flipping more than one bit is to preserve mes-
sage bit relations, and not to control the propagation of a state difference. Let
t ∈ [5, 20], b ∈ [0, 31] be a candidate neutral bit; flipping Wt[b] may possibly
break certain message bit relations. We express each message bit relation over
W5, . . . ,W20 using linear algebra, and use Gaussian elimination to ensure that
each of them has a unique last message bit Wi[j] (i.e. where i∗32+j is maximal).
For each relation involving Wt[b], let Wi[j] be its last message bit. If (i, j) equals
(t, b) then this neutral bit is not usable (indeed, it would mean that its value
is fully determined by earlier message bits). Otherwise we add bit Wi[j] to be
flipped together with Wt[b] as part of the neutral bit. Similarly to boomerangs,
we dismiss any neutral bit that breaks sufficient conditions backwards with prob-
ability higher than 0.1. The step i in which the neutral bit is used is determined
in the same way as for the boomerangs.

The boomerangs we have selected are given in Fig. 7 and the neutral bits are
listed in Fig. 6. In the case of the latter, only the first neutral bit is given and
not the potential corrections for the message bit relations.

4.4 Base Solution Generation on CPU

We are now equipped with a set of attack conditions, including some that were
added by the selected boomerangs and neutral bits. However, before these can
be applied, we first need to compute partial solutions over 16 consecutive steps.
Since the selected neutral bits and boomerangs cannot be used to correct the suf-
ficient conditions on the IV, these have to be pre-satisfied as well. Therefore, we
compute what we call base solutions over steps 1, . . . , 16 that fulfill all state con-
ditions on A−4, . . . , A17 and all message bit relations. A base solution itself con-
sists of state words A−3, . . . , A17 and message words W1, . . . ,W16 (although the
implementation of the GPU step implies that the message words are translated
to the equivalent message words W5, . . . ,W20 with the main block offset of 5).
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The C++ code generating base solutions is directly compiled from the attack
and auxiliary conditions. In this manner, all intermediate steps and condition
tables can be hard-coded, and we can apply some static local optimizations elim-
inating unnecessary computations where possible. However, we do not exploit
more advanced message modification techniques within these first 16 steps yet.

Generating the base solutions only represents a small part of the cost of the
overall attack, and it is run entirely on CPU. Although theoretically we need only
a few thousand base solutions to be successful given the total success probability
over the remaining steps and the remaining freedom degrees yet to be used, in
practice we need to generate a small factor more to ensure that all GPUs have
enough work.

4.5 Applying Neutral Bits and Boomerangs on GPU

We now describe the final phase of the attack, which is also the most computa-
tionally intensive; as such, it was entirely implemented on GPUs. In particular,
we used 65 recent Nvidia GTX970 [32] GPUs that feature 1664 small cores oper-
ating at a clock speed of about 1.2GHz; each card cost about 350 US$ in 2015.5

In [19], the authors evaluate a single GTX970 to be worth 322 CPU cores6 for
raw SHA-1 operations, and about 140 cores for their SHA-1 attack.

We make use of the same efficient framework for Nvidia GPUs [19]. This
makes use of the CUDA toolkit that provides programming extensions to C
and C++ for convenient programming. For each step of SHA-1 wherein we use
neutral bits and boomerangs, there will be a separate GPU-specific C++ function.
Each function will load solutions up to that step from a global cyclic buffer;
extend those solutions using the freedom for that step by triggering the available
neutral bits or boomerangs; verify the sufficient conditions; and finally save the
resulting partial solution extended by one step in the next global cyclic buffer.
The smallest unit that can act independently on Nvidia GPUs is the warp, which
consists of 32 threads that can operate on different data, but should execute the
same instruction for best performance. When threads within a warp diverge
onto different execution paths, these paths are executed serially, not in parallel.
In the framework, the threads within each warp will agree on which function
(thus which step) to execute together, resulting in reads, computations, and
conditional writes that are coherent between all threads of the warp. We refer
the reader to the original paper introducing this framework for a more detailed
description [19].

The exact details of which neutral bits and which boomerangs are used for
each step are given in Sect. 5.

In the probabilistic phase, after all freedom degrees have been exhausted,
we can verify internal state collisions that should happen after steps 39 and 59
(for a message pair that follows the differential path), as these are steps with no
active differences in the disturbance vector. These checks are still done on the
GPU. Solutions up to A60 are passed back to the CPU for further verification
to determine if a complete freestart collision has been found.
5 With the right motherboard one can place up to 4 such GPUs on a single machine.
6 Intel Haswell Core-i5 3.2GHz CPU.
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We would like to note that in comparison with the attack on 76 steps, this
work introduces boomerangs and has a slightly bigger count of neutral bits (60
v. 51). As a result, this required to use more intermediate buffers, and conse-
quently a slightly more careful management of the memory. Additionally, in this
work there is a relatively high proportion of the neutral bits that need additional
message bits to be flipped to ensure no message bit relation is broken, whereas
this only happens twice in the 76-step attack. These two factors result in an
attack that is slightly more complex to implement, although neither point is a
serious issue.

5 Attack Details

5.1 Sufficient Conditions

We give a graphical representation of the differential path used in our attack
up to step 28 in Fig. 1, consisting of sufficient conditions for the state, and
the associated message signed bit differences. The meaning of the bit condition

A-4: ........ ........ ........ ........
A-3: ........ ........ ........ ........
A-2: ........ ........ ........ .....^-.
A-1: 1...1... ........ ........ .0.....+
A0 : 01..0... ........ ........ .1...... W0 : x.+...+. ........ ........ ...+....
A1 : 11+^..+. ........ ....^... ...+.... W1 : ..-..-.. ........ ........ ...-++..
A2 : ..-11-1. 1......^ .....1+1 10.1.0.. W2 : ..+..--. ........ ........ ...-.+..
A3 : .0.0-001 1.^.10.. .+01.011 11^0.1.1 W3 : ..-..--. ........ ........ ...-+.-.
A4 : .1.11+-1 +^^^+1^^ ^011^^.- +++++-.+ W4 : ........ ........ ........ ...+....
A5 : .+.+.-++ ++++++++ ++++++++ .+0-1111 W5 : .....-.. ........ ........ ...+++..
A6 : .0.0.1.0 11.111.1 1110-010 0-1.10-+ W6 : x+..++.. ........ ........ ...-.+..
A7 : 1-.+.1.0 10100010 00000011 1+.-.0.+ W7 : ....-+.. ........ ........ ......+.
A8 : 0+.0.0.. ........ ......0. .+.-.0.1 W8 : x-...... ........ ........ ...+....
A9 : .+.0.0.. ........ ........ .0.+...^ W9 : x.-+.-.. ........ ........ ...-++..
A10: .+...... ........ ........ ...+.0.. W10: ..-+++.. ........ ........ .....-..
A11: ...-.... ........ ........ ........ W11: x.++++.. ........ ........ ...-+.+.
A12: ...0.1.. ........ ........ .....1.. W12: ..-..... ........ ........ ...-....
A13: .1...0.. ........ ........ ......!^ W13: ..+..+.. ........ ........ ...-++..
A14: +-...... ........ ........ ........ W14: x++.+-.. ........ ........ ...-.+..
A15: 1.1-.... ........ ........ ......!. W15: ....+-.. ........ ........ ......+.
A16: +.10.1.. ........ ........ ........ W16: x+...... ........ ........ ...-....
A17: 1.-..0.. ........ ........ .......^ W17: x.++.+.. ........ ........ ...+--..
A18: .+-.0... ........ ........ .......! W18: ..+.--.. ........ ........ .....-..
A19: .+.s.... ........ ........ ........ W19: x.+---.. ........ ........ ...-+...
A20: -...R... ........ ........ ........ W20: x.++.... ........ ........ ...+....
A21: -.+R.... ........ ........ ........ W21: ........ ........ ........ ....++..
A22: -...S... ........ ........ .......^ W22: x.---... ........ ........ ...+....
A23: .-..R... ........ ........ ........ W23: ....-... ........ ........ ...+-...
A24: -.rs.... ........ ........ ........ W24: .-+--... ........ ........ ...+....
A25: -.-r.... ........ ........ ........ W25: ....+... ........ ........ ...+.+..
A26: -...s... ........ ........ ........ W26: .+--.... ........ ........ ...+....
A27: -.-.r... ........ ........ ........ W27: x.+-+... ........ ........ ...++-..
A28: ........ ........ ........ ........ W28: x+-.-... ........ ........ ........
A29: ..-..... ........ ........ ........

Fig. 1. The differential path used in the attack up to step 28. The meaning of the
different symbols is given in Fig. 2
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Symbol Condition on (At[i],A
′
t[i])

. At[i] = A′
t[i]

x At[i] �= A′
t[i]

+ At[i] = 0, A′
t[i] = 1

- At[i] = 1, A′
t[i] = 0

0 At[i] = A′
t[i] = 0

1 At[i] = A′
t[i] = 1

^ At[i] = A′
t[i] = At−1[i]

! At[i] = A′
t[i] �= At−1[i]

r At[i] = A′
t[i] = (At−1 ≫ 2)[i]

R At[i] = A′
t[i] �= (At−1 ≫ 2)[i]

s At[i] = A′
t[i] = (At−2 ≫ 2)[i]

S At[i] = A′
t[i] �= (At−2 ≫ 2)[i]

Fig. 2. Bit conditions

symbols are defined in Fig. 2. Note that the signs of message bit differences are
enforced through message bit relations. All message bit relations used in our
attack are given in Fig. 3 through Fig. 5. The remainder of the path can easily
be determined by linearization of the step function given the differences in the
message.

5.2 The Neutral Bits

We give here the list of the neutral bits used in our attack. There are 60 of them
over the 7 message words W14 to W20, distributed as follows:

– W14: 6 neutral bits at bit positions (starting with the least significant bit
(LSB) at zero) 5,7,8,9,10,11

– W15: 11 neutral bits at positions 4,7,8,9,10,11,12,13,14,15,16
– W16: 9 neutral bits at positions 8,9,10,11,12,13,14,15,16
– W17: 10 neutral bits at positions 10,11,12,13,14,15,16,17,18,19
– W18: 11 neutral bits at positions 4,6,7,8,9,10,11,12,13,14,15
– W19: 8 neutral bits at positions 6,7,8,9,10,11,12,14
– W20: 5 neutral bits at positions 6,11,12,13,15

We give a graphical representation of the position of these neutral bits in Fig. 6.
Not all of the neutral bits of the same word (say W14) are used at the same

step during the attack. Their repartition in that respect is as follows

– Bits neutral up to step 18 (excluded): W14[8,9,10,11], W15[13,14,15,16]
– Bits neutral up to step 19 (excluded): W14[5,7], W15[8,9,10,11,12],

W16[12,13,14,15,16]
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- W0[4] = 0 - W9[29] = 1 - W18[27] = 1 - W29[28] = 0
- W0[25] = 0 - W10[2] = 1 - W18[29] = 0 - W29[29] = 0
- W0[29] = 0 - W10[26] = 0 - W19[3] = 0 - W30[27] ^ W30[28] = 1
- W1[2] = 0 - W10[27] = 0 - W19[4] = 1 - W30[30] = 1
- W1[3] = 0 - W10[28] = 0 - W19[26] = 1 - W31[2] = 0
- W1[4] = 1 - W10[29] = 1 - W19[27] = 1 - W31[3] = 0
- W1[26] = 1 - W11[1] = 0 - W19[28] = 1 - W31[28] = 0
- W1[29] = 1 - W11[3] = 0 - W19[29] = 0 - W31[29] = 0
- W2[2] = 0 - W11[4] = 1 - W20[4] = 0 - W33[28] ^ W33[29] = 1
- W2[4] = 1 - W11[26] = 0 - W20[28] = 0 - W30[4] ^ W34[29] = 0
- W2[25] = 1 - W11[27] = 0 - W20[29] = 0 - W35[27] = 0
- W2[26] = 1 - W11[28] = 0 - W21[2] = 0 - W35[28] = 0
- W2[29] = 0 - W11[29] = 0 - W21[3] = 0 - W35[4] ^ W39[29] = 0
- W3[1] = 1 - W12[4] = 1 - W22[4] = 0 - W58[29] ^ W59[29] = 0
- W3[3] = 0 - W12[29] = 1 - W22[27] = 1 - W57[29] ^ W59[29] = 0
- W3[4] = 1 - W13[2] = 0 - W22[28] = 1 - W55[4] ^ W59[29] = 0
- W3[25] = 1 - W13[3] = 0 - W22[29] = 1 - W53[29] ^ W54[29] = 0
- W3[26] = 1 - W13[4] = 1 - W23[3] = 1 - W52[29] ^ W54[29] = 0
- W3[29] = 1 - W13[26] = 0 - W23[4] = 0 - W51[28] ^ W51[29] = 1
- W4[4] = 0 - W13[29] = 0 - W23[27] = 1 - W50[4] ^ W54[29] = 0
- W5[2] = 0 - W14[2] = 0 - W24[4] = 0 - W50[28] ^ W51[28] = 0
- W5[3] = 0 - W14[4] = 1 - W24[27] = 1 - W50[29] ^ W51[28] = 1
- W5[4] = 0 - W14[26] = 1 - W24[28] = 1 - W49[28] ^ W51[28] = 0
- W5[26] = 1 - W14[27] = 0 - W24[29] = 0 - W48[29] ^ W48[30] = 0
- W6[2] = 0 - W14[29] = 0 - W24[30] = 1 - W47[3] ^ W51[28] = 0
- W6[4] = 1 - W14[30] = 0 - W26[4] = 0 - W47[4] ^ W51[28] = 1
- W6[26] = 0 - W15[1] = 0 - W26[28] = 1 - W46[29] ^ W51[28] = 1
- W6[27] = 0 - W15[26] = 1 - W26[29] = 1 - W45[4] ^ W51[28] = 0
- W6[30] = 0 - W15[27] = 0 - W26[30] = 0 - W44[29] ^ W51[28] = 0
- W7[1] = 0 - W16[4] = 1 - W27[2] = 1 - W43[4] ^ W51[28] = 1
- W7[26] = 0 - W16[30] = 0 - W27[3] = 0 - W43[29] ^ W51[28] = 0
- W7[27] = 1 - W17[2] = 1 - W27[4] = 0 - W41[4] ^ W51[28] = 0
- W8[4] = 0 - W17[3] = 1 - W27[27] = 0 - W63[4] ^ W67[29] = 0
- W8[30] = 1 - W17[4] = 0 - W27[28] = 1 - W79[5] = 0
- W9[2] = 0 - W17[26] = 0 - W27[29] = 0 - W78[0] = 1
- W9[3] = 0 - W17[28] = 0 - W28[27] = 0 - W77[1] ^ W78[6] = 1
- W9[4] = 1 - W17[29] = 0 - W28[29] = 1 - W75[5] ^ W79[30] = 0
- W9[26] = 1 - W18[2] = 1 - W28[30] = 0 - W74[0] ^ W79[30] = 1
- W9[28] = 0 - W18[26] = 1 - W29[2] = 0

Fig. 3. The message bit-relations used in the attack.

– Bits neutral up to step 20 (excluded): W15[4,7,8,9], W16[8,9,10,11,12],
W17[12,13,14,15,16]

– Bits neutral up to step 21 (excluded): W17[10,11,12,13], W18[15]
– Bits neutral up to step 22 (excluded): W18[9,10,11,12,13,14], W19[10,14]
– Bits neutral up to step 23 (excluded): W18[4,6,7,8], W19[9,11,12],

W20[15]
– Bits neutral up to step 24 (excluded): W19[6,7,8], W20[11,12,13]
– Bit neutral up to step 25 (excluded): W20[7]

One should note that this list only includes a single bit per neutral bit group.
As we mentioned in the previous section, some additional flips may be needed
in order to preserve message bit relations.
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W0 : . . 0 . . . 0 . . . . . . . . . . . . . . . . . . . . 0 . . . .
W1 : . . 1 . . 1 . . . . . . . . . . . . . . . . . . . . . 1 0 0 . .
W2 : . . 0 . . 1 1 . . . . . . . . . . . . . . . . . . . . 1 . 0 . .
W3 : . . 1 . . 1 1 . . . . . . . . . . . . . . . . . . . . 1 0 . 1 .
W4 : . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . .
W5 : . . . . . 1 . . . . . . . . . . . . . . . . . . . . . 0 0 0 . .
W6 : . 0 . . 0 0 . . . . . . . . . . . . . . . . . . . . . 1 . 0 . .
W7 : . . . . 1 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 .
W8 : . 1 . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . .
W9 : . . 1 0 . 1 . . . . . . . . . . . . . . . . . . . . . 1 0 0 . .
W10: . . 1 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . 1 . .
W11: . . 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . 1 0 . 0 .
W12: . . 1 . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . .
W13: . . 0 . . 0 . . . . . . . . . . . . . . . . . . . . . 1 0 0 . .
W14: . 0 0 . 0 1 . . . . . . . . . . . . . . . . . . . . . 1 . 0 . .
W15: . . . . 0 1 . . . . . . . . . . . . . . . . . . . . . . . . 0 .
W16: . 0 . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . .
W17: . . 0 0 . 0 . . . . . . . . . . . . . . . . . . . . . 0 1 1 . .
W18: . . 0 . 1 1 . . . . . . . . . . . . . . . . . . . . . . . 1 . .
W19: . . 0 1 1 1 . . . . . . . . . . . . . . . . . . . . . 1 0 . . .
W20: . . 0 0 . . . . . . . . . . . . . . . . . . . . . . . 0 . . . .
W21: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 . .
W22: . . 1 1 1 . . . . . . . . . . . . . . . . . . . . . . 0 . . . .
W23: . . . . 1 . . . . . . . . . . . . . . . . . . . . . . 0 1 . . .
W24: . 1 0 1 1 . . . . . . . . . . . . . . . . . . . . . . 0 . . . .
W25: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W26: . 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . 0 . . . .
W27: . . 0 1 0 . . . . . . . . . . . . . . . . . . . . . . 0 0 1 . .
W28: . 0 1 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . .
W29: . . 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . 0 . .
W30: . 1 . A a . . . . . . . . . . . . . . . . . . . . . . c . . . .
W31: . . 0 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 . .
W32: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W33: . . B b . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W34: . . c . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W35: . . . 0 0 . . . . . . . . . . . . . . . . . . . . . . d . . . .
W36: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W37: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W38: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W39: . . d . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 4. The message bit-relations used in the attack for words W0 to W39 (graphical
representation). A “0” or “1” character represents a bit unconditionally set to 0 or 1.
A pair of two letters x means that the two bits have the same value. A pair of two
letters x and X means that the two bits have different values.

5.3 The Boomerangs

We finally give the boomerangs used in the attack, which are regrouped in two
sets of two. The first one first introduces a difference in the message on word
W10; as it does not significantly impact conditions up to step 27, it is used to
increase the number of partial solutions A28 that are generated. The second
set first introduces a difference on word W11, and is used to generate partial
solutions at A30. More precisely, the four boomerangs have their first differences
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W40: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W41: . . . . . . . . . . . . . . . . . . . . . . . . . . . w . . . .
W42: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W43: . . v . . . . . . . . . . . . . . . . . . . . . . . . u . . . .
W44: . . t . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W45: . . . . . . . . . . . . . . . . . . . . . . . . . . . s . . . .
W46: . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W47: . . . . . . . . . . . . . . . . . . . . . . . . . . . q p . . .
W48: . o o . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W49: . . . n . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W50: . . m l . . . . . . . . . . . . . . . . . . . . . . . k . . . .
W51: . . J @ . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W52: . . i . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W53: . . h . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W54: . . * . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W55: . . . . . . . . . . . . . . . . . . . . . . . . . . . g . . . .
W56: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W57: . . f . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W58: . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W59: . . $ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W60: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W61: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W62: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W63: . . . . . . . . . . . . . . . . . . . . . . . . . . . x . . . .
W64: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W65: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W66: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W67: . . x . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W68: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W69: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W70: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W71: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W72: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W73: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W74: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a
W75: . . . . . . . . . . . . . . . . . . . . . . . . . . z . . . . .
W76: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W77: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y .
W78: . . . . . . . . . . . . . . . . . . . . . . . . . Y . . . . . 1
W79: . % . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . .
@ = jlMnpQRstUvw
* = hik
$ = efg
% = zA

Fig. 5. The message bit-relations used in the attack for words W40 to W79 (graphical
representation, continued). Non-alphanumeric symbols are used as shorthand for bit
positions with more than one relation.

at bits 7,8 of W10 and 8,9 of W11. In Fig. 7, we give a graphical representation
of the complete set of message bits to be flipped for each boomerang. One can
see that these indeed follow the pattern of a local collisions.

Software Disclosure Policy. To allow verification and improve understanding
of our new results, we intend to release our engineered freestart attack code for
graphic cards at https://sites.google.com/site/itstheshappening/.

https://sites.google.com/site/itstheshappening/
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W14: ........ ........ ....xxxx x.x.....
W15: ........ .......x xxxxxxxx x..x....
W16: ........ .......x xxxxxxxx ........
W17: ........ ....xxxx xxxxxx.. ........
W18: ........ ........ xxxxxxxx xx.x....
W19: ........ ........ .x.xxxxx xx......
W20: ........ ........ x.xxx... .x......

Fig. 6. The 60 neutral bits. An “x” represents the presence of a neutral bit, and a “.”
the absence thereof. The LSB position is the rightmost one.

W10: ........ ........ ......BA ........
W11: ........ ........ .ba....D C.......
W12: ........ ........ ..dc.... ........
W13: ........ ........ ........ ........
W14: ........ ........ ........ .a......
W15: ........ ........ ........ ba......
W16: ........ ........ ........ .dc.....

Fig. 7. The local collision patterns for each of the four boomerangs. The position of
the first difference to be introduced is highlighted with a capital letter; the correcting
differences must then have a sign different from this one. Note that boomerang “A”
uses one more difference than the others.

However, this source code does not directly enable the engineering of a
SHA-1 collision attack. Any cryptanalytic tools needed for engineering a full
SHA-1 collision attack will be released independently in a responsible manner.

Acknowledgements. We would like to express our gratitude to Orr Dunkelman for
the use of his cluster with NVidia Tesla K10 cards. We also thank the anonymous
reviewers for their helpful comments.
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Abstract. We study the security of the concatenation combiner
H1(M)‖H2(M) for two independent iterated hash functions with n-bit
outputs that are built using the Merkle-Damg̊ard construction. In 2004
Joux showed that the concatenation combiner of hash functions with an
n-bit internal state does not offer better collision and preimage resis-
tance compared to a single strong n-bit hash function. On the other
hand, the problem of devising second preimage attacks faster than 2n

against this combiner has remained open since 2005 when Kelsey and
Schneier showed that a single Merkle-Damg̊ard hash function does not
offer optimal second preimage resistance for long messages.

In this paper, we develop new algorithms for cryptanalysis of hash
combiners and use them to devise the first second preimage attack on
the concatenation combiner. The attack finds second preimages faster
than 2n for messages longer than 22n/7 and has optimal complexity of
23n/4. This shows that the concatenation of two Merkle-Damg̊ard hash
functions is not as strong a single ideal hash function.

Our methods are also applicable to other well-studied combiners, and
we use them to devise a new preimage attack with complexity of 22n/3 on
the XOR combiner H1(M) ⊕ H2(M) of two Merkle-Damg̊ard hash func-
tions. This improves upon the attack by Leurent and Wang (presented
at Eurocrypt 2015) whose complexity is 25n/6 (but unlike our attack is
also applicable to HAIFA hash functions).

Our algorithms exploit properties of random mappings generated by
fixing the message block input to the compression functions of H1 and
H2. Such random mappings have been widely used in cryptanalysis, but
we exploit them in new ways to attack hash function combiners.

Keywords: Hash function · Cryptanalysis · Concatenation combiner ·
XOR combiner

1 Introduction

Hash functions are among the main building blocks of many cryptographic pro-
tocols used today. A hash function H takes as an input a message M of an
arbitrary length, and maps it to an output H(M) of a fixed length n. The main
security properties expected from a hash function are:
c© International Association for Cryptologic Research 2016
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DOI: 10.1007/978-3-662-49890-3 19
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1. Collision Resistance: It should be difficult to find a pair of different mes-
sages M and M ′ such that H(M) = H(M ′).

2. Preimage Resistance: Given an arbitrary n-bit value V , it should be dif-
ficult to find any message M such that H(M) = V .

3. Second Preimage Resistance: Given a target message M , it should be
difficult to find any different message M ′ such that H(M) = H(M ′).

When the hash is function viewed as a “random oracle”, it offers collision
resistance up to a security level of 2n/2 due to the birthday paradox. The
expected security level against preimage and second preimage attacks is 2n.

In practice, widely deployed standards (such as MD5 and SHA-1) have failed
to provide the expected security level [37,38]. As a result, researchers have pro-
posed to combine the outputs of two hash functions to provide better secu-
rity in case one (of even both) hash functions are weak. In fact, hash function
combiners were also used in practice in previous versions of the SSL and TLS
protocols [10,15].

The most well-known hash function combiner is the concatenation combiner
that concatenates the outputs of two hash functions H1(M)‖H2(M). This com-
biner was described already in 1993 [34] and has been subject to extensive
analysis in various settings (e.g., [20,26]). From the theoretical side, researchers
have studied the notion of a robust combiner, which is secure in case at least
one of the combined hash functions is secure. Clearly, the concatenation com-
biner is secure with respect to the main security properties defined above, e.g.,
a collision H1(M)‖H2(M) = H1(M ′)‖H2(M ′) implies H1(M) = H1(M ′) and
H2(M) = H2(M ′). Lines of research regarding robust combiners include the
study of advanced combiners in [13,14] and study of the minimal output length
of robust combiners [5,33,35] (more recently works include [27,29]).

We are interested in this paper in the security of combiners of iterated hash
functions that break the message M into blocks m1‖m2‖ . . . ‖mL of fixed length
and processes them by iterative applications of a compression function h (or
several compression functions) that updates an internal state xi using the pre-
vious state and the current message block xi = h(xi−1,mi). Hash functions
whose internal state size is n-bits are known as “narrow-pipe” constructions and
typically output the final state xL. A very common way to build iterated hash
functions is the Merkle-Damg̊ard construction [8,28] which applies the same com-
pression function h in all iterations, and adds a padding of the message length
to final message block (known as Merkle-Damg̊ard strengthening). Iterated hash
function constructions (and in particular, the Merkle-Damg̊ard construction) are
very efficient and widely used in practice.

In a breakthrough paper published in 2004 [22], Joux showed that the collision
and preimage resistance of the concatenation combiner of iterated narrow-pipe
hash functions1 is not much greater than that of a single n-bit hash function. The
result of Joux was highly influential and resulted in numerous followup works in
hash function analysis. The main technique introduced in [22] (known as Joux

1 In fact, only one of the hash functions has to be iterated.
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multi-collisions) generates a large multi-collision (many message that map to the
same value) in a narrow-pipe hash function in time which is not much greater
than 2n/2 (the time required to generate a single collision).

Joux’s multi-collisions were used shortly afterwards by Kelsey and Schneier
in order to show that the second preimage resistance of the Merkle-Damg̊ard
construction is less than the optimal 2n for a long input target message M [23].
The idea is to compute the specific sequence of n-bit states a1, . . . , aL that is
generated during the application of the compression function h on the message
M . We then try to “connect” to some internal state ai in this sequence with a
different message prefix, and reuse the message suffix mi+1‖ . . . ‖mL to obtain the
second preimage M ′. However, this approach is foiled by the Merkle-Damg̊ard
strengthening if M and M ′ are not of the same length. The main idea of Kelsey
and Schneier was use Joux’s multi-collisions to construct an expandable message
which essentially allows to expand the connected message prefix of M ′ to the
desired length i, and overcome the length restriction.

Following the results of Joux (which showed that the concatenation com-
biner does not increase collision and preimage resistance), and the later results
of Kelsey and Schneier (which showed that the second preimage resistance of
the Merkle-Damg̊ard construction is less than 2n), a natural question is whether
there exists a second preimage attack on the concatenation combiner of Merkle-
Damg̊ard hash functions that is faster than 2n. Interestingly, the problem of
devising such an attack remained open for a long time despite being explicitly
mentioned in several papers including [12], and much more recently in [25]. In
fact, although the works of [22,23] have attracted a significant amount of fol-
lowup research on countermeasures against second preimage attacks (such as
“hash twice” or “dithered hash”) and attacks that break them [1–3], there has
been no progress with respect to second preimage attacks on the basic concate-
nation combiner.

In this paper, we devise the first second preimage attack on the concatena-
tion combiner of Merkle-Damg̊ard hash functions which is faster than 2n. As in
related attacks (and in particular, [23]) we obtain a tradeoff between the com-
plexity of the attack and the length of the target message. In particular, our
second preimage attack is faster than 2n only for input messages of length at
least2 22n/7. The optimal complexity3 of our attack is 23n/4, and is obtained
for (very) long messages of length 23n/4. Due to these constraints, the practical
impact of our second preimage attack is limited and its main significance is the-
oretical. Namely, it shows that the concatenation of two Merkle-Damg̊ard hash
functions is not as strong a single ideal hash function.

The general framework of our attack is similar to the one of the long message
second preimage attack of Kelsey and Schneier. Namely, we first compute the

2 For example, for n = 160 and message block of length 512 bits (as in SHA-1), the
attack is faster than 2160 only for messages containing at least 246 blocks, or 252

bytes.
3 The complexity formulas do not take into account (small) constant factors, which

are generally ignored throughout this paper.
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sequences of internal states a1, . . . , aL and b1, . . . , bL by applying the compression
functions h1 and h2 on the target message M = m1‖ . . . ‖mL. Our goal is then
to “connect” to one of the state pairs (ai, bi) using a different message prefix of
the same size. Once we manage to achieve this, we can reuse the same message
suffix as in M and obtain a second preimage.

There are two main challenges in this approach, where the main challenge
is connect to some state pair (ai, bi) generated by M from a different message.
The secondary challenge is to ensure that the connected message prefixes are
of the same length. We overcome the later challenge by building a (simulta-
neous) expandable message for two Merkle-Damg̊ard hash functions with com-
plexity that is not much larger than the complexity of building it for a single
hash function [23]. The expandable message is built by using a cascaded form
of Joux’s multi-collisions, a technique which was used in previous works starting
from Joux’s original paper [22] and up to subsequent works such as [19,30]. A sim-
ilar construction of an expandable message over two hash functions was proposed
in the independent paper [21] by Jha and Nandi, which analyzes the zipper hash.

A much more difficult challenge is to actually connect to the target message on
a state pair (ai, bi) from a different message of arbitrary (smaller) length. Indeed,
the obvious approach of attempting to reach an arbitrary 2n-bit state pair by try-
ing random messages requires more than 2n time, since the number of target state
pairs is equal to the message length which is smaller than 2n. A more promising
approach is to use the interchange structure, which was recently introduced at
Eurocrypt 2015 by Leurent and Wang [25]. Indeed, this structure is very useful in
analysis of hash combiners as it breaks the dependency between the sequences of
states computed during the computation of h1 and h2 on a common message. More
specifically, the structure consists of an initial state pair (as, bs) and two sets of
internal states A for H1 and B for H2 such that: for any value a ∈ A and any value
b ∈ B, it is possible to efficiently construct a message Ma,b that sends (as, bs) to
(a, b). Assume that there exists an index i ∈ {1, 2, . . . , L} such that ai ∈ A and
bi ∈ B, then we can connect to (ai, bi) using Mai,bi as required. Unfortunately,
this does not result in an efficient attack, essentially because the complexity of
building an interchange structure for sufficiently large sets A and B is too high.

In this paper we use a different approach whose first step is to fix an arbitrary
message block m, giving rise to functional graphs generated by the random n to
n-bit mappings f1(x) = h1(x,m) and f2(y) = h2(y,m). Such random mappings
have many interesting properties and have been extensively studied and used
in cryptography in the classical works of Hellman [18] and van Oorschot and
Wiener [36], and much more recently in [11,17,24,31,32]. However, in our case,
the use of random mappings may seem quite artificial and unrelated to our goal
of connecting to the arbitrary target message. Nevertheless, we will show how
to exploit random mappings to search for a “special” state pair (ap, bp) whose
states can be reached relatively easily from an arbitrary starting state pair (using
the fixed message block m), thus connecting to the target message.

More specifically, we are particularly interested in “special” states of
a1, . . . , aL and b1, . . . , bL that are located deep in the functional graphs defined
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by f1 and f2, i.e., these states can be reached after iterating f1 and f2 many
times. Such special states (called deep iterates) are relatively easy to reach from
arbitrary starting states. Our goal is to find a state pair (ap, bp) composed of
two deep iterates in f1(x) and f2(y), respectively.4 Once we find such a “special”
state pair, we show how to simultaneously reach both of its states in an efficient
manner from an arbitrary state pair. Combined with the expandable message,
this gives the desired second preimage.

Interestingly, our algorithms for cryptanalysis of hash combiners are related
to recent attacks on hash-based MACs [11,17,24,32], as in both settings the
notion of distance of a node in the functional graph from a deep iterate plays an
important role in the attack.

Our techniques are quite generic and can be applied to attack other Merkle-
Damg̊ard hash function combiners. In particular, they are applicable to another
well-known combiner defined asH1(M)⊕H2(M) andknownas theXORcombiner.
AtEurocrypt2015 [25],Leurent andWangdevised thefirstpreimageattackagainst
the XOR combiner (using the aforementioned interchange structure) with optimal
complexity of 25n/6. Here, we improve this attack for Merkle-Damg̊ard hash func-
tions and obtain an optimal complexity of 22n/3. In practice, many concrete hash
functions limit the maximal allowed message length L, and our attack on the XOR
combiner gives a trade-off of 2n · L−2/3 (between L and the time complexity of
attack). This improves the tradeoff of 2n · L−1/2, obtained by Leurent and Wang’s
attack. For a particular example mentioned in [25], we improve the complexity of
finding a preimage of the XOR of two well-known Merkle-Damg̊ard hash functions
SHA-512 ⊕ WHIRLPOOL by a factor of about 221 (from 2461 to 2440). On the
other hand, we stress that our techniques only apply in case that both hash func-
tions combined use the Merkle-Damg̊ard construction. In particular, our attacks
are not applicable in case at least one combined hash function in built using the
HAIFA mode [4] (that uses a block counter in every compression function call). In
this case, the attack of Leurent and Wang remains the only published preimage
attack on the XOR combiner that is faster than exhaustive search.

Finally, we point out that we can use the interchange structure [25] in order
to optimize the complexity of our attacks on both the concatenation and XOR
combiners. Although this does not lead to a very big improvement, it further
demonstrates the wide applicability of this structure in cryptanalysis of hash
function combiners.

The rest of the paper is organized as follows. In Sect. 2 we describe some
preliminaries. In Sect. 3 we describe our second preimage attack on the concate-
nation combiner, while our preimage attack on the XOR combiner is described
is Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Preliminaries

In this section, we describe preliminaries that are used in the rest of the paper.
4 The actual attack is slightly different, as it searches for deep iterates from which

(ap, bp) can be reached with a common message block.
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2.1 The Merkle-Damg̊ard Construction [8,28]

The Merkle-Damg̊ard construction [8,28] is a common way to build a hash func-
tion from a compression function h : {0, 1}n×{0, 1}k → {0, 1}n, where n denotes
the size of the chaining value5 and k denotes the block size.

The input message M is padded with its length (after additional padding
which ensures that the final message length is a multiple of the block size k).
The message is then divided into k-bit blocks m1‖m2‖ . . . ‖mL. The initial state
of the hash function is an n-bit initial chaining value x0 = IV . The compression
function is then applied L times

xi = h(xi−1,mi).

The hash value is set as H(M) = xL. We extend the definition of h
recursively to process an arbitrary number of k-bit message blocks, namely
h(x,m1‖m2‖ . . . ‖mL) = h(h(x,m1),m2‖ . . . ‖mL). Moreover, we denote by |M |
the length of M in blocks.

Given a state x and a message m such that x′ = h(x,m), we say that m maps
the state x to the state x′ (the compression function h used for this mapping will
be clear from the context) and denote this by x

m−→ x′. Throughout this paper
we assume that the compression function is chosen uniformly at random from
all n+ k to n-bit functions, which implies that our analysis applies to most (but
not all) compression functions.

2.2 Hash Function Combiners

Given two hash functions H1 and H2, the concatenation combiner is defined
as H1(M)‖H2(M) while the XOR combiner is defined as H1(M) ⊕ H2(M). In
this paper we are interested in the security of these combiners in the case that
both H1 and H2 are based on the Merkle-Damg̊ard construction with inde-
pendent compression functions. We denote the IVs of H1 and H2 by IV1 and
IV2 (respectively), their compression functions by h1 and h2, (respectively), and
assume that both the chaining values and outputs are of size n (our techniques
can also be extended to other cases). An additional technicality has to do with
the message block sizes of H1 and H2, and we assume that both are equal to
k. Once again, our techniques also apply in the case that the block sizes are
different. A generic (although not always to most efficient) way to deal with this
case is to align the block sizes by defining a “superblock” whose size is the least
common multiple of the two block sizes.

We pair the (extended) compression functions h1 and h2 using the notation
of h1,2. Given two states x, y and a message m such that x′ = h1(x,m) and
y′ = h2(y,m), we write (x′, y′) = h1,2((x, y),m). In this case, we say that m

5 In this paper, we mainly consider “narrow-pipe” constructions in which the sizes of
the chaining value and the hash function output are the same, but our techniques
and analysis extend naturally (with additional cost) to “wide-pipe” constructions in
which the chaining value size is larger.
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maps (or sends) the state pair (x, y) to the state pair (x′, y′) (the compression
functions h1, h2 are clear from the context) and denote this by (x, y) m−→ (x′, y′).

2.3 Joux’s Multi-collisions [22]

In a well-known result [22], Joux observed that finding a large multi-collision in
an iterated hash function H is not much more expensive than finding a single
collision. The algorithm starts from a state x0 and evaluates the compression
function for arbitrary message blocks until a collision is found. According to the
birthday paradox, 2n/2 compression function evaluations are sufficient to find a
collision h(x0,m1) = h(x0,m

′
1) for some m1 and m′

1. Next, we set x1 = h(x0,m1)
and continue the process iteratively t times. This gives 2t t-block messages that
reach xt from x0, as in the i’th block we can select either mi or m′

i. Altogether,
2t collisions are found with about t · 2n/2 compression function evaluations.

Joux’s multi-collisions have numerous applications in cryptanalysis of hash
functions. Next, we focus on one of the most relevant applications for this paper.

2.4 The Long Message Second Preimage Attack [23]

In [9], Dean devised a second preimage attack for long messages on specific
Merkle-Damg̊ard hash functions for which it is easy to find fixed points in
their compression function. Given a target message M = m1‖m2‖ . . . ‖mL, the
attacker computes the sequence of internal states IV = a0, a1, . . . , aL generated
during the invocation of the compression function on M . A simplified attack
would now start from the state IV = x0 and evaluate the compression function
with arbitrary message blocks until a collision h(x0,m) = ai is found for some
message block m and index i. The attacker can now append the message suffix
mi+1‖ . . . ‖mL to m, hoping to obtain the target hash value H(M). However, this
approach does not work due to the final padding of the message length which
would be different if the message prefixes are of different lengths.

The solution of Dean was to compute an expandable message which consists
of the initial state x0 and another state x̂ such that for each length κ (in some
range) there is a message Mκ of κ blocks that maps x0 to x̂. Thus, the algorithm
first finds a collision h(x̂,m) = ai, and the second preimage is computed as
Mi−1‖m‖mi+1‖ . . . ‖mL.

The assumption that it is easy to find fixed points in the compression function
is used in [9] in efficient construction of the expandable message. In [23], Kelsey
and Schneier described a more generic attack that uses multi-collisions of a
special form to construct an expandable message, removing the restriction of
Dean regarding fixed points. As in Joux’s original algorithm, the multi-collisions
are constructed iteratively in t steps. In the i′th step, we find a collision between
some mi and m′

i such that |mi| = 1 (it is a single block) and |m′
i| = 2i−1 + 1,

namely h(xi−1,mi) = h(xi−1,m
′
i). This is done by picking an arbitrary prefix of

size 2i−1 of m′
i denoted by m′, computing h(xi−1,m

′) = x′ and then looking for a
collision h(xi−1,mi) = h(x′,m′′) using a final block m′′ (namely, m′

i = m′‖m′′).
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The construction of Kelsey and Schneier gives an expandable message that
can be used to generate messages starting from x0 and reaching x̂ = xt whose
(integral) sizes range in the interval [t, 2t + t−1] (it is denoted as a (t, 2t + t−1)-
expandable message). A message of length t ≤ κ ≤ 2t + t − 1 is generated by
looking at the t-bit binary representation of κ−t. In iteration i ∈ {1, 2, . . . , t}, we
select the long message fragment m′

i if the i′th LSB of κ−t is set to 1 (otherwise,
we select the single block mi).

Given that the target message M is of length L ≤ 2n/2 blocks, the con-
struction of the expandable message in the first phase of the attack requires less
than n · 2n computation, while obtaining the collision with one of the states
computed during the computation of M requires about 1/L · 2n compression
function evaluations according to the birthday paradox.

2.5 Functional Graph

In various phases of our attacks, we evaluate a compression function h with a
fixed message input block m (e.g., the zero block), and simplify our notation by
defining f(x) = h(x,m). The mapping f gives rise a directed functional graph
in which nodes are the n-bit states and an edge from node x to y is defined if
and only if f(x) = y.

In this paper, we are particularly interested in nodes of f which are located deep
in the functional graph. More specifically, x′ is an iterate of depth i if there exists
some ancestor node x′ such that x′ = f i(x). Deep iterates can be reached using
chains evaluated from an arbitrary starting point x0 by computing a sequence of
nodes using the relation xi+1 = f(xi). We denote this sequence by −→x .

A useful algorithm for expanding the functional graph of f is given below.
This algorithm is not new and has been previously used (for example, in [17,32]).
It takes an input parameter g ≥ n/2 which determines the number of expanded
nodes (and the running time of the algorithm).

1. Initialize G = ∅ as a data structure of evaluated nodes.
2. Until G contains 2g nodes:

(a) Pick an arbitrary starting point x0 and evaluate the chain xi+1 =
f(xi) until it cycles (there exists xi = xj for i 	= j) or it hits a point
in G. Add the points of the chain to G.

A simple but important observation that we exploit is that after we have
executed the algorithm and developed 2g nodes, then another chain from an
arbitrary starting point is expected to collide with the evaluated graph at depth
of roughly 2n−g. This is a direct consequence of the birthday paradox. In par-
ticular, this observation implies that most chains developed by the algorithm
will be extended to depth Ω(2n−g) (without colliding with G of cycling), and
therefore a constant fraction of the developed nodes are iterates of depth 2n−g.
In total, the algorithm develops Θ(2g) iterates of f of depth 2n−g in 2g time.
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In this paper we will be interested in the probability of encountering a specific
deep iterate at each stage of the evaluation of a chain from an arbitrary starting
point.

Lemma 1. Let f be an n-bit random mapping, and x′
0 an arbitrary point. Let

D ≤ 2n/2 and define the chain x′
i = f(x′

i−1) for i ∈ {1, . . . , D} (namely, x′
D is an

iterate of depth D). Let x0 be a randomly chosen point, and define xd = f(xd−1).
Then, for any d ∈ {1, . . . , D}, Pr[xd = x′

D] = Θ(d · 2−n).

Proof (Sketch). We can assume that the chains do not cycle (i.e., each chain
contains distinct nodes), as D ≤ 2n/2. In order for xd = x′

D to occur then xd−i

should collide with x′
D−i for6 some 0 ≤ i ≤ d. For a fixed i, the probability for

this collision is roughly7 2−n, and summing over all 0 ≤ i ≤ d (are events are
disjoint), we get that the probability is about d · 2−n.

Distinguished Points. The memory complexity of many algorithms that are
based on functional graphs (e.g., parallel collision search [36]) can be reduced by
utilizing the distinguished points method (which is attributed to Ron Rivest).
Assume that our goal is to detect a collision of a chain (starting from an arbitrary
node) with the nodes of G computed above, but without storing all the 2g nodes
in memory. The idea is to define a set of 2g distinguished points (nodes) using a
simple predicate (e.g. the n−g LSBs of a node are zero). The nodes of G contain
approximately 2g · 2g−n = 22g−n distinguished points, and only they are stored
in memory. A collision of an arbitrary chain with G is expected to occur at
depth of about 2n−g, and will be detected at the next distinguished point which
is located (approximately) after traversing additional 2n−g nodes. Consequently,
we can detect the collision with a small overhead in time complexity, but a
significant saving factor of 2n−g in memory.

Interestingly, in the specific attack of Sect. 4, the distinguished points method
is essential for reducing the time complexity of the algorithm.

3 A New Long Message Second Preimage Attack
on the Concatenation Combiner

In this attack we are given a target message M = m1‖m2‖ . . . ‖mL and our goal
is to find another message M ′ such that H1(M ′)‖H2(M ′) = H1(M)‖H2(M) (or
equivalently H1(M ′) = H1(M) and H2(M ′) = H2(M)). We denote the sequence
of internal states computed during the invocation of h1 (respectively, h2) on M
by a0, a1, . . . , aL (respectively, b0, b1, . . . , bL). We start with a high-level overview
of the attack and then give the technical details.

The attack is composed of three main phases. In the first phase, we build (a
special form of) an expandable message, similarly to the second preimage attack
6 A collision between xd−i and x′

D−i occurs if xd−i = x′
D−i but xd−i−1 �= x′

D−i−1.
7 A more accurate analysis would take into account the event that the chains collide

before xd−i, but the probability for this is negligible.
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on a single hash function [23]. This expandable message essentially consists of
the initial state pair (IV1, IV2) and final state pair (x̂, ŷ) such that for each
length κ in some appropriate range (which is roughly [n2, L]) there is a message
Mκ of κ blocks that maps (IV1, IV2) to (x̂, ŷ).

In the second phase our goal is to find a pair of states (x̄, ȳ), a message block
m̄ and an index p such that (x̄, ȳ) m̄−→ (ap, bp) (note that the state pair (ap, bp)
is computed during the evaluation of the target message). Moreover, the state
pair (x̄, ȳ) should have a special property which is formally defined in the full
description of the second phase.

In the third and final phase, we start from (x̂, ŷ) and compute a message

fragment M̂ of length q (shorter than p − 1) such that (x̂, ŷ) M̂−→ (x̄, ȳ). This
phase can be performed efficiently due to the special property of (x̄, ȳ).

In order to compute the second preimage, we pick Mp−q−1 using the expand-

able message, giving (IV0, IV1)
Mp−q−1−−−−−→ (x̂, ŷ), and concatenate Mp−q−1‖M̂‖m̄

in order to reach the state pair (ap, bp) from (IV1, IV2) with a message of appro-
priate length p. Indeed, we have

(IV0, IV1)
Mp−q−1−−−−−→ (x̂, ŷ) M̂−→ (x̄, ȳ) m̄−→ (ap, bp).

Altogether, we obtain the second preimage

M ′ = Mp−q−1‖M̂‖m̄‖mp+1‖ . . . ‖mL.

This attack can be optimized using the interchange structure, as described
in AppendixA.

Notation. For the sake of clarity, we summarize below the notation that is
shared across the various phases. We note that each phase also introduces addi-
tional “internal” notation whose scope is only defined within the phase.

M = m1| . . .‖mL : Target Message.
a0, . . . , aL : Sequence of internal states computed during the
(b0, . . . , bL) invocation of h1 (h2) on M .
M ′ : Computed second preimage.
(x̂, ŷ) : Endpoint pair of expandable message (computed

in Phase 1).
(ap, bp) : State pair (in the sequences a0, . . . , aL and b0, . . . , bL)

on which the computation of M and M ′ coincides
(computed in Phase 2).

(x̄, ȳ), m̄ : ”Special” state pair and message block used to reach
(ap, bp) (computed in Phase 2).

M̂ : Message fragment that maps (x̂, ŷ) to (x̄, ȳ) (computed
in Phase 3).

q : Length of M̂ (smaller than p − 1)
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Complexity Evaluation. Denote L = 2�. For a parameter g1 ≥ max(n/2,
n − �), the complexity of the phases of the attack (as computed in their detail
description) is given below (ignoring constant factors).

Phase 1: L + n2 · 2n/2 = 2� + n2 · 2n/2

Phase 2: 1/L · 22n−g1 = 22n−g1−�

Phase 3: 23g1/2

We balance the second and third phases by setting 2n − g1 − � = 3g1/2, or
g1 = 2/5 · (2n − �), giving time complexity of 23/5·(2n−�). This tradeoff holds as
long as 2� + n2 · 2n/2 ≤ 23/5(2n−�), or � ≤ 3n/4. The optimal complexity is 23�/4,
obtained for � = 3n/4. The attack is faster than 2n (Joux’s preimage attack) for8

� > n/3. The message range for which the attack is faster than 2n can be slightly
improved to L ≥ 22n/7 using the optimized attack, described in Appendix A.

3.1 Details of Phase 1: Constructing an Expandable Message

In this phase, we build a simultaneous expandable message for two Merkle-
Damg̊ard hash functions. This expandable message consists of the initial states
(IV1, IV2) and final states (x̂, ŷ) such that for each length κ in some appropriate
range (determined below) there is a message Mκ of κ blocks that maps (IV1, IV2)
to (x̂, ŷ).

We set C ≈ n/2 + log(n) as a constant. Our basic building block consists
of two pairs of states (xa, ya) and (xb, yb) and two message fragments ms and
ml that map the state pair (xa, ya) to (xb, yb). The message ms is the (shorter)
message fragment of fixed size C, while ml is of size i > C. Below, we will show
how to construct this building block for any state pair (xa, ya) and length i > C.

Given this building block and a positive parameter t, we build an expandable
message in the range of [C(C − 1) + tC, C2 − 1 + C(2t + t − 1)]. This is done by
utilizing a sequence of C − 1 + t basic building blocks. The first C − 1 building
blocks are built with parameters i ∈ {C + 1, C + 2, . . . , 2C − 1}. It is easy to see
that these structures give a (C(C − 1), C2 − 1)–expandable message by selecting
at most one longer message fragment from the sequence, where the remaining
C − 2 (or C − 1) fragments are of length C. The final t building blocks give a
standard expandable message, but it is built in intervals of C. These t building
blocks are constructed with parameters i = C(2j−1 + 1) for j ∈ {1, . . . , t}.

Given a length κ in the appropriate range of [C(C − 1)+ tC, C2 − 1+C(2t +
t − 1)], we can construct a corresponding message by first computing
κ (modulo C). We then select the length κ′ ∈ [C(C − 1), C2 − 1] such that
κ′ ≡ κ (modulo C), defining the first C − 1 message fragment choices. Finally,
we compute (κ−κ′)/C which is an integer in the range of [t, 2t + t−1] and select
the final t message fragment choices as in a standard expandable message using
the binary representation of (κ − κ′)/C.

8 Note that for � > n/3, g1 = 2/5 · (2n − �) > 2n/3 > max(n/2, n − �), as required.
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Construction of the Building Block. Given state pair (xa, ya) and length
i > C, the algorithm for constructing the building block for the expandable
message is based on multi-collisions as described below.

1. Pick an arbitrary prefix mp of size i − C blocks and compute xp =
h1(xa, mp).

2. Find a collision h1(xa, m1) = h1(xp, m′
1) = x2 with single block messages

m1,m
′
1.

3. Build a 2C−1 standard Joux multi-collision in h1 starting from x2 and
denote its final endpoint by xb. Altogether we have a multi-collision in
h1 with 2C messages that map xa to xb. Out of these messages, 2C−1

are of length C (obtained by first selecting m1) and we denote this set of
messages by S1. The remaining 2C−1 messages are of length i (obtained
by first selecting the (i−C +1)-block prefix mp‖m′

1), and we denote this
set of messages by S2.

4. Evaluate yp = h2(ya,mp) and store the result. Next, evaluate h2 from
ya on the two sets S1 and S2 (using the stored yp to avoid recomputing
h2(ya,mp)) and find a collision between them (such a collision is very
likely to occur since C−1 > n/2). The collision gives the required ms ∈ S1

and ml ∈ S2 of appropriate sizes such that yb � h2(ya,ms) = h2(ya,ml)
and xb � h1(xa, ms) = h1(xa, ml).

The complexity of Step 1 is less than i compression function evaluations.
The complexity of Step 2 is about 2n/2, while the complexity of Step 3 is about
C · 2n/2 ≈ n · 2n/2. The complexity of Step 4 is about i + n · 2n/2. In total, the
complexity of constructing the basic building block is about i+n ·2n/2 (ignoring
small factors).

Complexity Analysis of the Full Phase. The full expandable message
requires computing C − 1 + t building blocks whose sum of length parameters
(dominated by the final building block) is about C · 2t ≈ n · 2t. Assuming that
t < n, we construct C − 1 + t ≈ n building blocks and the total time complexity
of constructing the expandable message is about n · 2t + n2 · 2n/2. Our attack
requires the (C(C−1)+tC, C2−1+C(2t+t−1))–expandable message to extend
up to length L, implying that L ≈ n · 2t, and giving time complexity of about

L + n2 · 2n/2.

3.2 Details of Phase 2: Finding a Target State Pair

In the second phase, we fix some message block m, giving rise to the functional
graphs f1(x) = h1(x,m) and f2(y) = h1(y,m) and let g1 ≥ n/2 be a parameter
(to be determined later). Our goal is to find a pair of states (x̄, ȳ), a message
block m̄ and an index p such that the following two conditions hold:
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1. The state x̄ is an iterate of depth 2n−g1 in the functional graph of f1(x) and
ȳ is an iterate of depth 2n−g1 in the functional graph of f2(y).

2. The state pair (x̄, ȳ) is mapped to (ap, bp) by m̄, or (x̄, ȳ) m̄−→ (ap, bp).

The algorithm of this phase is given below.

1.1. Fix an arbitrary single-block valueFix an arbitrary single-block value mm..
2. Expand the functional graph of2. Expand the functional graph of ff11 using the procedure of Section 2.5using the procedure of Section 2.5

with parameterwith parameter gg11. Store all encountered iterates of depth 2. Store all encountered iterates of depth 2nn−−gg11 in ain a
tabletable TT11..

3. Similarly, expand the functional graph of3. Similarly, expand the functional graph of ff22 using the procedure ofusing the procedure of
Section 2.5 with parameterSection 2.5 with parameter gg11. Store all encountered iterates of depth. Store all encountered iterates of depth
22nn−−gg11 in a tablein a table TT22..

4. For single-block values4. For single-block values mm′′ = 0= 0,, 11, . . ., . . ., perform the following steps:, perform the following steps:
(a) For each node(a) For each node xx ∈∈ TT11 evaluateevaluate xx′′ == hh11((x,mx,m′′) and store the matches) and store the matches

xx′′ == aaii with thewith theaa sequencesequence aa11, . . . , a, . . . , aLL in a tablein a table TT ′′
11, sorted according, sorted according

to the indexto the index ii ofof aaii..
(b) Similarly, for each node(b) Similarly, for each node yy ∈∈ TT22 evaluateevaluate yy′′ == hh22((y,my,m′′) and look) and look

for matchesfor matches yy′′ == bbjj with the sequencewith the sequence bb11, . . . , b, . . . , bLL. For each match. For each match
with somewith some bbjj , search for the index, search for the index jj in the tablein the table TT ′′

11. If a match. If a match
ii == jj is found, setis found, set pp �� ii (namely, ((namely, (aapp, b, bpp)) �� ((xx′′, y, y′′)), ¯)), m̄m �� mm′′ andand
(¯(x̄,x, ¯̄yy)) �� ((x, yx, y). This gives (¯). This gives (x̄,x, ¯̄yy)) ¯̄mm−→−→ ((aapp, b, bpp) as required. Otherwise) as required. Otherwise
(no match(no match ii == jj is found), go back to Step 4.is found), go back to Step 4.

aa MoreMore precisely, due to the minimal length restriction of the expandable message,precisely, due to the minimal length restriction of the expandable message,
matchesmatches xx′′ == aaii withwith ii smaller than (approximately)smaller than (approximately) CC22 ≈≈ nn22 cannot becannot be
exploited in the full attack. Moreover, the maximal exploitable value ofexploited in the full attack. Moreover, the maximal exploitable value of ii isis
LL−− 2. However, the fraction of these nodes is very small and can be ignored in2. However, the fraction of these nodes is very small and can be ignored in
the complexity analysis.the complexity analysis.

The time complexity of steps 2 and 3 (which execute the algorithm of
Sect. 2.5) is about 2g1 . The time complexity of step 4.(a) and step 4.(b) is also
bounded by 2g1 (given that a1, . . . , aL and b1, . . . , bL are sorted in memory), as
the size of T1 and T2 is at most 2g1 and the number of matches found in each
step can only be smaller.

We now calculate the expected number of executions of Step 4 until the
required (ap, bp) is found. Using the analysis of Sect. 2.5, the expected size of
T1 and T2 (that contain iterates of depth 2n−g1) is close to 2g1 . According to
the birthday paradox, the expected size of T ′

1 is about L · 2g1−n. Similarly, the
number of matches y′ = bj is also about L · 2g1−n. The probability of a match
i = j in Step 4.(b) is computed using a birthday paradox on the L possible
indexes, namely, 1/L · (L · 2g1−n)2 = L · 22g1−2n. As a result, Step 4 is executed
about 1/L · 22n−2g1 times until the required (ap, bp) is found (the executions
with different blocks m′ are essentially independent). Altogether, the total time
complexity of this step is

2g1 · 1/L · 22n−2g1 = 1/L · 22n−g1 .
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Since the index p is uniformly distributed in the interval [1, L], we will assume
that p = Θ(L).

3.3 Details of Phase 3: Hitting the Target State Pair

In the third and final phase, we start from (x̂, ŷ) and compute a message fragment

M̂ of length q < p − 1 such that (x̂, ŷ) M̂−→ (x̄, ȳ). We use in a strong way the
fact that the state x̄ (and ȳ) is a deep iterate (of depth 2n−g1) in the functional
graph of f1(x) (f2(y)).

This phase is carried out by picking an arbitrary starting message block ms,
which gives points x0 = h1(x̂,ms) and y0 = h2(ŷ,ms). We then continue to
evaluate the chains xi = h1(xi−1,m) and yj = h2(yj−1,m) up to a maximal
length L′ (determined below). We hope to encounter x̄ at some distance q − 1
from x0 and to encounter ȳ at the same distance q − 1 from y0. Given that
q − 1 < p, this will give the required M̂ = ms‖[m]q−1 (where [m]q−1 denotes the
concatenation of q − 1 message blocks m), which is of length q < p − 1. In case
x̄ and ȳ are encountered at different distances in the chains, or at least one of
them is not encountered at all, we pick a different value for ms and start again.

The next question which we address is to what maximal length L′ should we
evaluate −→x and −→y . As we wish to reach iterates x̄ and ȳ of depth 2n−g1 , it can
be shown that L′ = 2n−g1 is optimal. Since the total chain length should be less
than p − 1, this imposes the restriction L′ = 2n−g1 < p − 1 < L, or 2g1 < 2n/L.

We now estimate the probability that x̄ and ȳ will be encountered at the
same distance from the arbitrary starting points of the chains x0 and y0. This
probability will allow us to compute the number of chains from different starting
points that we need to evaluate in this phase of the attack, which is an important
parameter in the complexity evaluation.

Since x̄ is an iterate of depth 2n−g1 in f1(x), it is an endpoint of a chain of
states of length L′ = 2n−g1 (such a chain was computed in Sect. 3.2). Let d be in
the interval [1, L′] = [1, 2n−g1 ], then according to Lemma 1, Pr[xd = x̄] ≈ d ·2−n

(this is the probability that x̄ will be encountered at distance d from x0). Due to
the independence of f1 and f2, Pr[xd = x̄

∧
yd = ȳ] ≈ (d · 2−n)2. Summing the

probabilities of the (disjoint) events over all distances d in the interval [1, 2n−g1 ],
we conclude that the probability that x̄ and ȳ will be encountered at the same
distance is about (2n−g1)3 · 2−2n = 2n−3g1 .

The probability calculation seems to give rise to the conclusion that we need
to compute about 23g1−n chains from different starting points in this phase of the
attack. This conclusion was verified experimentally, but its proof is incomplete
since the various trials performed by selecting different starting points for the
chains are dependent. More details can be found in AppendixB.

The Algorithm of Phase 3. The naive algorithm described above performs
about 23g1−n trials, where each trial evaluates chains of length L′ = 2n−g1 from
arbitrary points, giving a total time complexity of about 23g1−n+n−g1 = 22g1 .
Since g1 ≥ n/2, the time complexity of the full algorithm is at least 2n and it is
not faster than Joux’s preimage attack.
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In order to optimize the algorithm, we further expand the graphs of f1 and
f2. As a result, the evaluated chains are expected to collide with the graphs
sooner (before they are evaluated to the full length of 2n−g1). Once a collision
occurs, we use a lookahead procedure to calculate the distance of the chain’s
starting point from x̄ (or ȳ). This lookahead procedure resembles the one used
in recent attacks on hash-based MACs [17,32] (although the setting and actual
algorithm in our case are obviously different).

More specifically, we pick a parameter g2 > g1 and execute the algorithm
below (see Fig. 1 for illustration).

1. Develop 2g2 nodes in the functional graphs of f1 (and f2) (as specified in
Sect. 2.5) with the following modifications.

– Store at each node its distance from x̄ (or ȳ in f2) (the maximal
stored distance is L′ = 2n−g1): for each computed chain, once it hits
a previously visited node in the graph, obtain its stored distance from
x̄ (or ȳ in f2) and update it in all the computed nodes in the current
chain up to the maximal value L′ = 2n−g1 .

– If a chain does not hit x̄, then the distance of its nodes is undefined
and stored as a special value ⊥. Similarly, this special value is used
for nodes whose distance from x̄ is larger than L′.

– The evaluated nodes for f1 (f2) are stored in the data structure G1

(G2).
2. For single-block values ms = 0, 1, . . ., compute x0 = h1(x̂, ms) and y0 =

h2(ŷ,ms) and repeat the following step:
(a) Compute the chains −→x and −→y up to maximal length L′ = 2n−g1 , or

until they hit G1 and G2 (respectively).
– If −→x (or −→y ) does not hit G1 (G2), return to Step 2.
– Otherwise, once −→x (−→y ) hits G1 (G2), obtain the stored distance

from x̄ (ȳ) at the collision point. If the distance to x̄ (or ȳ) is
undefined, return to Step 2.

– Compute the respective distances i and j of x0 and y0 from x̄
and ȳ. If i 	= j, return to Step 2.

– Otherwise (i = j), denote q = i+1. If q ≥ p−1, return to Step 2.
– Otherwise (q < p − 1), return the message M̂ = ms‖[m]i =

ms‖[m]q−1 as output.

The time complexity of Step 1 is 2g2 . As previously computed, in Step 2
we perform about 23g1−n trials before encountering two starting points with
the same distance to x̄ and ȳ. According to the analysis of Sect. 2.5, each trial
requires about 2n−g2 computation (before hitting G1 and G2). Therefore, the
total time complexity of this phase is 2g2 + 23g1−n · 2n−g2 = 2g2 + 23g1−g2 . The
complexity is minimized by setting g2 = 3g1/2 which balances the two terms
and gives time complexity of

23g1/2.
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Fig. 1. Phase 3 of the attack

Finally, we note that the memory complexity of this algorithm can be opti-
mized using distinguished points. A detailed way to achieve this will be presented
in the closely related algorithm of Sect. 4.2.

4 A New Preimage Attack on the XOR Combiner

In this attack we are given a target n-bit preimage value V and our goal is to find
a message M such that H1(M)⊕H2(M) = V . Although the formal problem does
not restrict M in any way, several concrete hash functions restrict the length of
M . Therefore, we will also assume that the size of M is bounded by a parameter
L. As in the previous attack, we start with a high-level overview and then give
the technical details.

The attack is composed of three main phases which are similar to the sec-
ond preimage attack on the concatenation combiner of Sect. 3. The first phase is
identical to the first phase of the attack of Sect. 3. Namely, we build an expand-
able message that consists of the initial states (IV1, IV2) and final states (x̂, ŷ)
such that for each length κ in an appropriate range there is a message Mκ of κ
blocks that maps (IV1, IV2) to (x̂, ŷ). The description of this phase is given in
Sect. 3.1 and is not repeated below.

In the second phase of the attack, we find a set S (of size 2s) of tuples of the
form ((x, y), w) such that w is a single block, (x, y) w−→ (a, b), and h1(a, pad) ⊕
h2(b, pad) = V , where pad is the final block of the (padded) preimage message
of length L. Moreover, (x, y) has a special property that will be defined in the
detailed description of this phase.

In the third and final phase, we start from (x̂, ŷ) and compute a message

fragment M̂ of length q (shorter than L − 2) such that (x̂, ŷ) M̂−→ (x̄, ȳ) for some
((x̄, ȳ), m̄) ∈ S. For this tuple, denote (ā, b̄) � h1,2((x̄, ȳ), m̄).

Finally, we pick ML−q−2 using the expandable message, giving

(IV0, IV1)
ML−q−2−−−−−→ (x̂, ŷ), and concatenate ML−q−2‖M̂‖m̄ in order to reach

the state pair (ā, b̄) from (IV1, IV2) with a message of appropriate length L − 1.
Indeed, we have
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(IV0, IV1)
ML−q−2−−−−−→ (x̂, ŷ) M̂−→ (x̄, ȳ) m̄−→ (ā, b̄).

Altogether, we obtain the padded preimage for the XOR combiner

M = ML−q−2‖M̂‖m̄‖pad.

We note that this attack can be optimized using the interchange structure,
similarly to the attack on the concatenation combiner. However, the improve-
ment is rather small and we do not give the details here.

Notation. We summarize below the notation that is shared across the various
phases.

V : Target preimage.
M : Computed preimage.
L : Length of M .
pad : Final block of (the padded) M .
(x̂, ŷ) : Endpoint pair of expandable message

(computed in Phase 1).
S : Set containing tuples of the form ((x, y), w) such that w is a

single block, (x, y) w−→ (a, b), and h1(a, pad) ⊕ h2(b, pad) = V
(computed in Phase 2).

2s : Size of S.
((x̄, ȳ), m̄) : State pair and message block in S used in M

(computed in Phase 3).
(ā, b̄) : State pair defined as (ā, b̄) � h1,2((x̄, ȳ), m̄)

(computed in Phase 3).
M̂ : Message fragment used in M that maps (x̂, ŷ) to (x̄, ȳ)

(computed in Phase 3).
q : The length of M̂ (smaller than L − 2).

Complexity Evaluation. Denote L = 2�. For parameters g1 ≥ max(n/2, n−�)
and s ≥ 0, the complexity of the phases of the attack (as computed in their detail
description) is given below (ignoring constant factors).

Phase 1: 2� + n2 · 2n/2

Phase 2: 2n+s−g1

Phase 3: 23g1/2−s/2+L ·29g1/2−2n−3s/2+L ·22g1−n = 23g1/2−s/2+2�+9g1/2−2n−3s/2+

2�+2g1−n

We balance the time complexities of the second phase and the first term
in the expression of the third phase by setting n + s − g1 = 3g1/2 − s/2, or
s = 5g1/3 − 2n/3, giving a value of 2n/3+2g1/3 for these terms. Furthermore,
� + 9g1/2 − 2n − 3s/2 = � + 2g1 − n and the time complexity expression of
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Phase 3 is simplified to 2n/3+2g1/3 + 2�+2g1−n. Since g1 is a positive factor in all
the terms, we optimize the attack by picking the minimal value of g1 under the
restriction g1 ≥ max(n/2, n − �). In case � ≤ n/2, we set g1 = n − � and the
total time complexity of the attack9 is

2n/3+2(n−�)/3 = 2n−2�/3.

The optimal complexity is 22n/3, obtained for � = n/2 by setting g1 = n/2.

4.1 Details of Phase 2: Finding a Set of Target State Pairs

In the second phase, we fix some message block m, giving rise to the functional
graphs defined by the random mappings f1(x) = h1(x,m) and f2(y) = h1(y,m).
Given parameters g1 ≥ n/2 and s ≥ 0, our goal is to compute a set S (of size
2s) of tuples of the form ((x, y), w) where w is a single block such that for each
tuple:

1. The state x is an iterate of depth 2n−g1 in the functional graph of f1(x) and
y is an iterate of depth 2n−g1 in the functional graph of f2(y).

2. (x, y) w−→ (a, b) and h1(a, pad) ⊕ h2(b, pad) = V , where pad is a final block of
the (padded) preimage message of length L.

The algorithm of this phase is (obviously) somewhat different from the algo-
rithm of Sect. 3.2 due to the fact that the goal of this attack and the actual
combiner scheme attacked are different. This algorithm resembles the algorithm
used in the final phase in Leurent and Wang’s attack [25], as both look for state
pairs (x, y) that give h1(x,w‖pad) ⊕ h2(y, w‖pad) = V (for some message block
w). The difference is that in the attack of [25], (x, y) was an arbitrary endpoint
pair of the interchange structure, while in our case, we look for x and y that are
deep iterates.

1. Fix an arbitrary single-block value m.
2. Expand the functional graph of f1 using the procedure of Sect. 2.5 with

parameter g1. Store all encountered iterates of depth 2n−g1 in a table T1.
3. Similarly, expand the functional graph of f2 using the procedure of

Sect. 2.5 with parameter g1. Store all encountered iterates of depth 2n−g1

in a table T2.
4. Allocate a set S = ∅. For single-block values w = 0, 1, . . ., perform the

following steps until S contains 2s elements:
(a) For each node x ∈ T1 evaluate h1(x,w‖pad), and store the results in

a table T ′
1, sorted according h1(x,w‖pad).

(b) Similarly, for each node y ∈ T2 evaluate h2(y, w‖pad)⊕V , and look for
matches h2(y, w‖pad) ⊕ V = h1(x,w‖pad) with T ′

1. For each match,
add the tuple ((x, y), w) to S.

9 Note that � + 2g1 − n = n − � < n − 2�/3.
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The time complexity of steps 2 and 3 is about 2g1 . The time complexity of
step 4.(a) and step 4.(b) is also bounded by 2g1 . We now calculate the expected
number of executions of Step 4 until 2s matches are found and inserted into S.

According to the analysis of Sect. 2.5, the expected size of T1 and T2 (the
number of deep iterates) is close to 2g1 . Thus, for each execution of Step 4, the
expected number of matches on n-bit values h2(y, w‖pad) ⊕ V = h1(x,w‖pad)
is 22g1−n. Consequently, Step 4 is executed 2s+n−2g1 times in order to obtain 2s

matches. Altogether, the total time complexity of this step is

2n+s−2g1+g1 = 2n+s−g1 .

4.2 Details of Phase 3: Hitting a Target State Pair

In the third and final phase, we start from (x̂, ŷ) and compute a message M̂ of

length q (shorter than L− 2) such that (x̂, ŷ) M̂−→ (x̄, ȳ) for some ((x̄, ȳ), m̄) ∈ S.
This phase is carried out by picking an arbitrary starting message block ms,

which gives points x0 = h1(x̂, ms) and y0 = h2(ŷ,ms). We then continue to
evaluate the chains xi+1 = h1(xi,m) and yj+1 = h2(yj ,m) up to length at most
L − 3. We hope to encounter x̄ at some distance q − 1 from x0 and to encounter
ȳ at the same distance q − 1 from y0, where ((x̄, ȳ), m̄) ∈ S for some single block
value m̄. This gives the required M̂ = ms‖[m]q−1.

The goal of this algorithm is very similar to one of the algorithm of Sect. 3.3,
where the difference is the size of the set S, which essentially contained a single
element10 in Sect. 3.3, but can now have a larger size. This difference results in
a complication that arises when the algorithm builds the functional graph of f1
(and f2), and has to keep track of distances of encountered nodes from all the
2s nodes x (and y) that are in tuples of S (instead of merely keeping track of
distances from a single node as in Sect. 3.3).

More formally, we define an S-node (for f1) as a node x such that there
exists a node y and a message block w such that ((x, y), w) ∈ S. An S-node for
f2 in defined in a similar way. In order to avoid heavy update operations for
the distances from all the S-nodes, we use distinguished points. Essentially, each
computed chain is partitioned into intervals according to distinguished points,
where each distinguished point stores only the distances to all the S-nodes that
are contained in its interval up to the next distinguished point. Given a parameter
g2 > g1, the algorithm for this phase is described below.

The time complexity of Step 1 is about 2g1 , as described in Sect. 2.5 (note that
we always perform a constant amount of work per developed node). Compared
to the second step of the algorithm of Sect. 3.3, S contains 2s elements (instead
of 1), and this reduces by the same factor the expected number of trials we need
to execute in order to reach some ((x̄, ȳ), m̄) ∈ S in Step 2. Reusing the analysis
of Sect. 3.3, the expected number of trials (executions of Step 2) is reduced from
23g1−n to 23g1−n−s.

10 One may ask why we did not compute a larger set S in Sect. 3.2. The reason for this
is that it can be shown that in the previous case a set of size 1 is optimal.
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1. Develop (about) 2g2 nodes in the functional graphs of f1 (and f2) (as
specified in Section 2.5) with the following modifications.
– Store only distinguished points for which the n− g2 LSBs are zero.
– Once an S-node is encountered, update its distance in the previ-

ously encountered distinguished point (which is defined with high
probabilitya).

– Stop evaluating each chain once it hits a stored distinguished point.
– The evaluated distinguished points for f1 (f2) are stored in the data

structure G1 (G2).
2. For single-block values ms = 0, 1, . . ., compute x0 = h1(x̂,ms) and

y0 = h2(ŷ,ms) and repeat the following step:
(a) Compute chains − →x and − →y as specified below.

– First, compute the chains in a standard way by evaluating the
compression functions h1 and h2, until they hit stored distin-
guished points in G1 and G2 (respectively).

– Then, allocate a table T1 (T2 for f2) and continue traversing
(only) the distinguished points of the chain (using the links in
G1 and G2) up to depth L− 2, while updating T1 (T2): for each
visited distinguished point, add all its stored S-nodes to T1 (T2)
with its distance from x0 (y0).

– Once the maximal depth L−2 is reached, sort T1 and T2. Search
for nodes x̄ and ȳ that were encountered at the same distance
q − 1 from x0 and y0 (respectively), such that ((x̄, ȳ), m̄) ∈ S.
If such x̄ ∈ T1 and ȳ ∈ T2 exist, return the message M̂ =
ms‖[m]q−1 and m̄ (retrieved from S) as output. Otherwise (no
such x̄ and ȳ were found), return to Step 2.

a Since g2 > g1, S-nodes are deeper iterates than distinguished points, and thus
distinguished points are likely to be encountered in an arbitrary chain before
an S-node.

The analysis of the complexity of Step 2.(a) is somewhat more involved com-
pared to the corresponding step of Sect. 3.3. First, we estimate the expected
number of nodes that we visit during the computation of a chain. Initially (as
in Sect. 3.3), we compute about 2n−g2 nodes until we hit stored distinguished
points. Then, we continue by traversing (only) distinguished points up to depth
of about L. The expected number of such points is L·2g2−n. Therefore, we expect
to visit about 2n−g2 + L · 2g2−n nodes while computing a chain.

Finally, we need to account for all the S-nodes encountered while traversing
the chains of depth L. Basically, there are 2s S-nodes which are iterates of
depth 2n−g1 , (essentially) randomly chosen in Phase 2 out of about 2g1 such
deep iterates. As a result, the probability of such a deep iterate to be an S-node
is about 2s−g1 (while other nodes have probability 0). Therefore, while traversing
chains of depth L, we expect to encounter at most L · 2s−g1 S-nodes (which is a
bound on the sizes of T1 and T2). Altogether, the expected time complexity of
a single execution of Step 2.(a) is at most 2n−g2 + L · 2g2−n + L · 2s−g1 .
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The total time complexity of this phase is 2g2 +23g1−n−s ·(2n−g2 +L ·2g2−n +
L·2s−g1) = 2g2 +23g1−g2−s+L·23g1+g2−2n−s+L·22g1−n. We set g2 = 3g1/2−s/2
which balances the first two terms and gives time complexity of

23g1/2−s/2 + L · 29g1/2−2n−3s/2 + L · 22g1−n.

The time complexity evaluation of the full attack at the beginning of this
section shows that for the optimal parameters of this attack, the extra two terms
L · 29g1/2−2n−3s/2 + L · 22g1−n are negligible compared to the other terms in the
complexity equation. In other words, the distinguished points method allowed
us to resolve with no overhead the complication of keeping track of distances
from the S-nodes.

5 Conclusions and Open Problems

In this paper we devised the first second preimage attack on the concatena-
tion combiner and improved the preimage attack on the XOR combiner (due to
Leurent and Wang) in case both hash functions use the Merkle-Damg̊ard con-
struction. Since both of our second preimage and preimage attacks on the con-
catenation and XOR combiners have higher complexities than the lower bounds
(2n/L and 2n/2, respectively), it would be interesting to further improve them,
and it particular, extend the second preimage attack to shorter messages. There
are many additional interesting future work items such as extending our algo-
rithms to combine more than two hash functions. Indeed, while it is easy to
extend the expandable message to more than two hash functions with small
added complexity, extending the random mapping techniques is less obvious.
Yet another open problem is to improve preimage attack of Leurent and Wang
on the XOR combiner in case only one of the functions uses the Merkle-Damg̊ard
construction.
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A Optimizing the Second Preimage Attack Using the
Interchange Structure

The interchange structure [25] is built with a parameter that we denote by r.
It consists of a starting state pair (as, bs) and two sets of 2r internal states A
for H1 and B for H2 such that: for any value a ∈ A and any value b ∈ B,
it is possible to efficiently construct a message Ma,b (of length 22r) such that

(as, bs)
Ma,b−−−→ (a, b). We now describe how to use the interchange structure as a

black box in order to optimize the second preimage attack of Sect. 3.
The idea is to insert the interchange structure after the expandable message

in order to reach (x̄, ȳ) more efficiently in the third phase of the attack. More
specifically, consider Step 2 in the attack of Sect. 3.3. There, we start computing
from the state pair (x̂, ŷ) and evaluate chains independently for each single-
block value ms = 0, 1, . . .. In the optimized attack, we build the interchange
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structure with the starting state pair (x̂, ŷ) and sets of 2r states A, B. We pick
some single-block value ms and compute two sets of 2r chains starting from the
states of A and B. Our goal is to find any pair of states a ∈ A and b ∈ B

such that (a, b)
ms‖[m]q−1

−−−−−−−→ (x̄, ȳ) for some q ≤ p − 2r − 1. Therefore, we have

(x̂, ŷ)
Ma,b−−−→ (a, b)

ms‖[m]q−1

−−−−−−−→ (x̄, ȳ), and we set M̂ = Ma,b‖ms‖[m]q−1.
In the original attack, we evaluate and compare two chains for each execu-

tion of Step 2. In contrast, in the optimized attack, in each execution of modified
Step 2 we evaluate 2 · 2r chains and compare them in 2r · 2r = 22r pairs. Conse-
quently, the time complexity of (modified) Step 2 is increased by 2r, but we have
to execute it 22r less times. The complexity evaluation of the attack is rather
technical as we need to balance several parameters and account for the message
length 22r of Ma,b.

We sketch the complexity evaluation for short messages, where the length of
Ma,b is roughly equal to L, i.e., we have L = 2� = 22r or r = �/2. According to
Sect. 3.3, the complexity of Phase 3 in the original attack is 2g2 +23g1−n · 2n−g2 .
Since building the interchange structure requires 2n/2+2r time, the modified com-
plexity is 2g2 +23g1−n−2r ·2n−g2+r +2n/2+2r = 2g2 +23g1−g2−�/2+2n/2+� (setting
r = �/2). We balance the first two terms and obtain g2 = 3g1/2 − �/4, giving
time complexity of 23g1/2−�/4 + 2n/2+�. Recall from Sect. 3.2 that the complex-
ity of Phase 2 is 22n−g1−�. We balance the second and third phases by setting
g1 = 4n/5 − 3�/10, which gives time complexity of 26n/5−7�/10 for small values
of � in which the term 2n/2+� is negligible. Therefore, we obtain an attack faster
than 2n for messages of length L > 22n/7 (which is a small improvement com-
pared to L ≥ 2n/3, obtained without this optimization).

For larger values of � we need to redo the computation and account for the
term 2n/2+2r in the complexity evaluation. However, since the improvement over
the original attack in not very significant, we do not give the details here.

B On the Number of Required Chain Evaluations
in Sect. 3.3

In Sect. 3.3 we concluded that the probability of encountering x̄ and ȳ at the
same distance in chains (of f1 and f2) evaluated from arbitrary starting points
x0 and y0 is about 2n−3g1 . If the trials of chain evaluations were independent,
this would have led to the conclusion that we need to compute about 23g1−n

chains from different starting points in Phase 3. However, the trials are depen-
dent as explained below.

Reconsider Lemma 1 in case we select more than 2n/D2 starting points xi
0

such that the chains (of length D) evaluated from them contain in total more
than D · 2n/D2 = 2n/D nodes. In this case, a new chain of length D (evaluated
from x0) is very likely to collide with a previously evaluated node before colliding
with the original chain (evaluated from x′

0) due to the birthday paradox. After
a collision of the new chain with a previously evaluated node, the outcome of
the trial is determined and cannot be analyzed probabilistically. Of course, this
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does not imply that Lemma 1 does not hold for more than 2n/D2 trials, but it
does imply that in a formal proof we need to account for the dependency of the
trials when applying this lemma with more than 2n/D2 trials.11

A potential way to handle this is to select more targets12 of the form (x̄, ȳ)
in Phase 2, which reduces the number of trials that we need to perform in Phase
3 (as we need to reach only one target). This will enable us to complete the the-
oretical analysis of the attack, but it does result in a performance degradation
(although the attack remains faster than 2n for a modified set of parameters).

However, based on simulations (described below), we strongly believe that
indeed about 23g1−n trials are required in Sect. 3.3 in order to reach arbitrary
iterates x̄ and ȳ of depth 2n−g1 at the same distance. We note that assumptions
of this type are not uncommon in analysis of random functions. A recent and
related conjecture was made in [17].

Experimental Results. In our simulations we preformed hundreds of exper-
iments on independent n-bit random mappings f1 and f2 for n ∈ {12, . . . , 28}
with several13 values of n/3 ≤ g1 < n/2. In the beginning of each experiment,
we chose different mappings f1 and f2 and arbitrary deep iterates x̄, ȳ of depth
2n−g1 . Each experiment was carried out by performing 2 · 23g1−n trials (with
chains evaluated from arbitrary different starting points), trying to hit x̄ and
ȳ at the same distance (up to 2n−g1). The success rate of the experiments was
more than 50 % and did not drop as the value of n increased.

11 Note that in our case D = 2n−g1 or 2g1 = 2n/D, so 23g1−n = 22n/D3 > 2n/D2.
12 In a similar way to the algorithm of Sect. 4.
13 Smaller values of n where chosen for smaller values of g1, as these experiments are

more expensive.
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Abstract. Multilinear maps serve as a basis for a wide range of cryp-
tographic applications. The first candidate construction of multilinear
maps was proposed by Garg, Gentry, and Halevi in 2013, and soon
afterwards, another construction was suggested by Coron, Lepoint, and
Tibouchi (CLT13), which works over the integers. However, both of these
were found to be insecure in the face of so-called zeroizing attacks, by Hu
and Jia, and by Cheon, Han, Lee, Ryu and Stehlé. To improve on CLT13,
Coron, Lepoint, and Tibouchi proposed another candidate construction
of multilinear maps over the integers at Crypto 2015 (CLT15).

This article presents two polynomial attacks on the CLT15 multilin-
ear map, which share ideas similar to the cryptanalysis of CLT13. Our
attacks allow recovery of all secret parameters in time polynomial in the
security parameter, and lead to a full break of the CLT15 multilinear
map for virtually all applications.

Keywords: Multilinear maps · Graded encoding schemes

1 Introduction

Cryptographic multilinear maps are a powerful and versatile tool to build crypto-
graphic schemes, ranging from one-round multipartite Diffie-Hellman to witness
encryption and general program obfuscation. The notion of cryptographic mul-
tilinear map was first introduced by Boneh and Silverberg in 2003, as a natural
generalization of bilinear maps such as pairings on elliptic curves [BS03]. How-
ever it was not until 2013 that the first concrete instantiation over ideal lattices
was realized by Garg, Gentry and Halevi [GGH13a], quickly inspiring another
construction over the integers by Coron, Lepoint and Tibouchi [CLT13]. Along-
side these first instantiations, a breakthrough result by Garg, Gentry, Halevi,
Raykova, Sahai and Waters achieved (indistinguishability) obfuscation for all
circuits from multilinear maps [GGH+13b]. From that point multilinear maps
have garnered considerable interest in the cryptographic community, and a host
of other applications have followed.
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part I, LNCS 9665, pp. 509–536, 2016.
DOI: 10.1007/978-3-662-49890-3 20
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However this wealth of applications rests on the relatively fragile basis of only
three constructions of multilinear maps to date: namely the original construc-
tion over ideal lattices [GGH13a], the construction over the integers [CLT13],
and another recent construction over lattices [GGH15]. Moreover none of these
constructions relies on standard hardness assumptions. In fact all three con-
structions have since been broken for their more “direct” applications such
as one-round multipartite Diffie-Hellman [HJ15,CHL+15,Cor15]. Thus build-
ing candidate multilinear maps and assessing their security may be regarded as
a challenging work in progress, and research in this area has been very active in
recent years.

Following the attack by Cheon, Han, Lee, Ryu and Stehlé (CHLRS attack)
on the [CLT13] multilinear map over the integers, several attempts to repair
the scheme were published on ePrint, which hinged on hiding encodings of zero
in some way; however these attempts were quickly proven insecure [CGH+15].
At Crypto 2015, Coron, Lepoint and Tibouchi set out to repair their scheme
by following a different route [CLT15]: they essentially retained the structure
of encodings from [CLT13], but added a new type of noise designed to thwart
the CHLRS approach. Their construction was thus able to retain the attractive
features of the original, namely conceptual simplicity, relative efficiency, and
wide range of presumed hard problems on which applications could be built.

1.1 Our Contribution

In this paper we propose two polynomial attacks on the new multilinear map
over the integers presented by Coron, Lepoint and Tibouchi at Crypto 2015
[CLT15]. These two attacks were originally published independently on ePrint by
Cheon, Lee and Ryu [CLR15], and by Minaud and Fouque [MF15]. The present
paper is a merge of the two results for publication at Eurocrypt 2016.

The impact of both attacks is the same, and they both use the same starting
point (“integer extraction”). The second half of the attacks is where they differ.
In a nutshell, the attack by Cheon, Lee and Ryu looks into the exact expression
of the value a in the term av0 appearing in integer extractions. This makes it
possible to uncover a matrix product similar to the CHLRS attack on CLT13,
albeit a more complex one. As in the CHLRS attack, the secret parameters are
then recovered as the eigenvalues of a certain matrix. For this reason we shall
call this attack the eigenvalue attack.

By contrast the attack by Minaud and Fouque treats the value a in av0 as
a noise, which is removed by first recovering v0 and taking equations modulo
v0. The secret parameter v0 is recovered as (a divisor of) the determinant of
a CHLRS-type matrix product. For this reason we shall call this attack the
determinant attack. Once v0 is recovered, CLT15 essentially collapses to CLT13
and can be broken by the CHLRS attack.

Both of the proposed attacks are polynomial in the security parameter. In
addition, in the optimized version of the scheme where an exact multiple of
x0 is provided in the public parameters, the second attack is instant (as no
determinant computation is actually required).
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Moreover both attacks apply to virtually all possible applications of the
CLT15 multilinear map. Indeed, while they do require low-level encodings of
zero, these encodings are provided by the ladders given in the public parame-
ters. In this respect CLT15 is weaker than CLT13. A closer look at the impact
of our attacks is provided in Sect. 1.3.

We refer the reader to [MF15] for a third, probabilistic attack with similar
properties.

1.2 Overview of the Attacks

We begin by briefly recalling the CLT15 multilinear map (more precisely, graded
encoding scheme). The message space is Zg1 × · · · × Zgn

for some small primes
g1, . . . , gn, and (m1, . . . , mn) is encoded at some level k ≤ κ as:

CRT(pi)

(rigi + mi

zk

)
+ ax0

where:

(pi) is a sequence of n large primes.
x0 =

∏
pi.

CRT(pi)(xi) is the unique integer in [0, x0) congruent to xi modulo pi.

z is a fixed secret integer modulo x0.

ri is a small noise.
a is another noise.

Encodings at the same level can be added together, and the resulting encoding
encodes the sum of the messages. Similarly encodings at levels i and j can be
multiplied to yield an encoding at level i + j of the coordinate-wise product of
the encoded messages. This behavior holds as long as the values rigi +mi do not
go over pi, i.e. reduction modulo pi does not interfere. In order to prevent the
size of encodings from increasing as a result of additions and multiplications, a
ladder of encodings of zero of increasing size is published at each level. Encodings
can then be reduced by subtracting elements of the ladder at the same level.

The power of the multilinear map comes from the zero-testing procedure,
which allows users to test whether an encoding at the maximal level κ encodes
zero. This is achieved by publishing a so-called zero-testing parameter denoted
pzt ∈ Z, together with a large prime N � x0. An encoding at the maximal level
κ may be written as:

e =
∑

(ri + mig
−1
i mod pi)ui + ax0

where ui
�=

(
giz

−κ(p∗
i )

−1 mod pi

)
p∗

i with p∗
i =

∏

j �=i

pj .

That is, some constants independent of the encoding have been folded with the
CRT coefficients into ui. Now pzt is chosen such that vi

�= uipzt mod N and
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v0
�= x0pzt mod N satisfy |vi| � N and |v0| � N . In this way, for any encoding

e of zero at level κ, since mi = 0, we have:

|epzt mod N | =
∣∣ ∑

rivi + av0
∣∣ � N

provided the noises ri and a are small enough. Thus, users can test whether e is
an encoding of zero at level κ by checking whether |epzt mod N | � N .

1.2.1 Integer Extraction (φ-value). Our attacks proceed in two steps. The
first step is shared by both attacks and proceeds as follows. We define the integer
extraction procedure φ : Z → Z. In short, φ computes

∑
i rivi + av0 over the

integers for any level-κ encoding e (of size up to the largest ladder element). Note
that this value is viewed over the integers and not modulo N . If e is “small”,
then φ(e) = epzt mod N , i.e. φ matches the computation from the zero-testing
procedure.

If e is “large” on the other hand, then e would need to be reduced by the
ladder before zero-testing can be applied. However the crucial observation is that
φ is Z-linear as long as the values rigi + mi associated with each encoding do
not go over pi. Thus e can be ladder-reduced into e′, then φ(e′) = e′pzt mod N
is known, and φ(e) can be recovered from φ(e′) by compensating the ladder
reduction using Z-linearity.

1.2.2 Eigenvalue Attack. The point of a CHLRS attack can be divided
into two parts. The first is that, for a level-κ encoding of zero e =∑n

i=1[
rigi

zκ (x0
pi

)−1]pi

x0
pi

+ ax0,

[pzt · e]x0 =
n∑

i=1

riv̂i,

where v̂i is common to all the encodings in CLT13, holds over the integers. The
second point is that the zero-testing value of a product of two encodings is a
quadratic form of some values related to each encoding. More precisely, for two
encodings e1 =

∑n
i=1[

ri1gi

zt (x0
pi

)−1]pi

x0
pi

+a1x0 and e2 =
∑n

i=1[
ri2

zκ−t (x0
pi

)−1]pi

x0
pi

+
a2x0, the product is e1e2 ≡

∑n
i=1[

ri1ri2gi

zκ (x0
pi

)−1]pi

x0
pi

mod x0. Therefore, the
zero-testing value of e1e2 is

[pzt · e1e2]x0 =
n∑

i=1

ri1ri2v̂i.

Let us look at CLT15 in these aspects. For a level-κ encoding of zero e =∑n
i=1 riuiκ + ax0, the zero-testing value of x is written as

[pzt · e]N =
n∑

i=1

rivi + av0,
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for common vi’s, similar to CLT13. Let e1 be a level-t encoding of zero, e2
be a level-(κ − t) encoding, and e be a product of e1 and e2. Then, these can
be written as e1 =

∑n
i=1 ri1uit + a1x0, e2 =

∑n
i=1 ri2uiκ−t + a2x0, and e =∑n

i=1 ri1ri2uiκ + ax0, for some integers a, a1, a2, ri1, ri2, 1 ≤ i ≤ n, where a is
a quadratic form of a1, a2, ri1, ri2, 1 ≤ i ≤ n. Since the size of e is larger than
that of x0, we need to reduce the size of e to perform zero-testing. Let e′ be
a ladder-reduced encoding of e; then, it is of the form e′ = e −

∑M
j=0 bjXj =

∑n
i=1(ri1ri2 −

∑M
j=0 bjsij)uiκ +(a−

∑M
j=0 bjqj)x0, for some b0, · · · , bM ∈ {0, 1}.

In this case, the zero-testing value gives

[pzt · e′]N =
[
pzt ·

(
e −

M∑

j=0

bjXj

)]

N

=
n∑

i=1

(
ri1ri2 −

M∑

j=0

bjsij

)
vi +

(
a −

M∑

j=0

bjqj

)
v0

=
n∑

i=1

(
ri1ri2

)
vi + av0 −

M∑

j=0

bj

( n∑

i=1

sijvi + qjv0
)
.

Therefore, if one has
∑n

i=1 sijvi+qjv0 for all j, one can compute
∑n

i=1(ri1ri2)vi+
av0 and follow a CHLRS attack strategy. For this purpose the integer extraction
function φ provides exactly what we need.

By using (n+1) level-t encodings of zero and (n+1) level-(κ− t) encodings,
we constitute matrix equations that consist only of a product of matrices. As
in [CHL+15], we have a matrix, the eigenvalues of which consist of the CRT
components of an encoding. From these, we can recover all the secret parameters
of the CLT15 scheme. Our attack needs only ladders and two level-0 encodings
(which can be provided by ladder elements), and runs in polynomial time.

1.2.3 Determinant Attack. The determinant attack proceeds by first recov-
ering x0. Once x0 is known, the original CHLRS attack can be applied by taking
all values modulo v0. We now explain how to recover x0.

In the optimized variant of the scheme implemented in [CLT15], a small
multiple qx0 of x0 is given in the public parameters. In that case qx0 may be
regarded as an encoding of zero at level κ, and φ(qx0) = qv0. Since this holds
over the integers, we can compute q = gcd(qx0, qv0) and then x0 = qx0/q.

In the general case where no exact multiple of x0 is given in the public
parameters, pick n + 1 encodings ai at some level t, and n + 1 encodings of zero
bi at level κ − t. Note that ladder elements provide encodings of zero even if the
scheme itself does not. Then compute:

ωi,j
�= φ(aibj).
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If we write ai mod v0 = CRT(pj)(ai,j/zt) and bi mod v0 = CRT(pj)(ri,jgj/zκ−t),
then we get:

ωi,j mod v0 =
∑

k

ai,krj,kvk mod v0.

Similar to the CHLRS attack on the CLT13 multilinear map, this equality can
be viewed as a matrix product. Indeed, let Ω denote the (n+1)× (n+1) integer
matrix with entries ωi,j , let A denote the (n+1)×n integer matrix with entries
ai,j , let R denote the (n + 1) × n integer matrix with entries ri,j , and finally
let V denote the n × n diagonal matrix with diagonal entries vi. If we embed
everything into Z/v0Z, then we have:

Ω = A · V · RT in Z/v0Z.

Since A and R are (n + 1) × n matrices, this implies that Ω is not full-rank
when embedded into Z/v0Z. As a consequence v0 divides det(Ω). We can repeat
this process with different choices of the families (ai), (bi) to build another matrix
Ω′ with the same property. Finally we recover v0 as v0 = gcd(det(Ω), det(Ω′)),
and x0 = v0/pzt mod N .

1.3 Impact of the Attacks

Two variants of the CLT15 multilinear map should be considered. Either a small
multiple of x0 is provided in the public parameters. In that case x0 can be recov-
ered instantly with the determinant attack, and the scheme becomes equivalent
to CLT13 in terms of security (cf. Sect. 4.3.1). In particular it falls victim to the
CHLRS attack when low-level encodings of zero are present, but it may still be
secure for applications that do not require such encodings, such as obfuscation.
However the scheme is strictly less efficient than CLT13 by construction, so there
is no point in using CLT15 for those applications.

Otherwise, if no small multiple of x0 is given out in the public parameters,
then ladders of encodings of zero must be provided at levels below the maximal
level. Thus we have access to numerous encodings of zero below the maximal
level, even if the particular application of multilinear maps under consideration
does not require them. As a result both the eigenvalue and the determinant
attacks are applicable (cf. Sect. 4.3.3), and the secret parameters are still recov-
ered in polynomial time, albeit less efficiently than the previous case.

In summary, the optimized version of CLT15 providing a small multiple of x0

is no more secure than CLT13, and less efficient. On the other hand in the general
non-optimized case, the scheme is broken for virtually all possible applications
due to encodings of zero provided by the ladder. Thus overall the CLT15 scheme
can be considered fully broken.

1.4 Organization of the Paper

For the sake of being self-contained, a presentation of multilinear maps and
graded encoding schemes is provided in AppendixA. The CLT15 construction
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itself is described in Sect. 3. In Sect. 3.2 we recall the CHLRS attack on CLT13,
as it shares similar ideas with our attacks. Readers already familiar with the
CLT15 multilinear map can skip straight to Sect. 4 where we describe our main
attacks.

2 Notation

The symbol �= denotes an equality by definition.
For n an integer, size(n) is the size of n in bits.
For a finite set S, we use s ← S to denote the operation of uniformly choosing

an element s from S.

Modular Arithmetic. The group Z/nZ of integers modulo n is denoted by Zn.
For a, b, p ∈ Z, a ≡ bmod p or a ≡p b means that a is congruent to b modulo p.
The notation “mod p” should be understood as having the lowest priority. For
instance, the expression a · bmod p is equivalent to (a · b)mod p.

We always view amod p (or [a]p) as an integer inZ. The representative closest to
zero is always chosen, positive in case of tie. In other words −p/2 < amod p ≤ p/2.

Chinese Remainder Theorem. Given n prime numbers (pi), we define p∗
i as

in [Hal15a]:
p∗

i =
∏

j �=i

pj .

For (x1, . . . , xn) ∈ Z
n, let CRT(pi)(xi) denote the unique integer in Z ∩ [0,

∏
pi)

such that CRT(pi)(xi)mod pi = xi mod pi, as per the Chinese Remainder Theo-
rem.

It is useful to observe that for any (x1, . . . , xn) ∈ Z
n:

CRT(pi)(xip
∗
i ) =

∑

i

xip
∗
i mod

∏

i

pi. (1)

Matrix. For an n × n square matrix H , we use (hij) to represent a matrix H ,
the (i, j) component of which is hij . Similarly, for a vector v ∈ R

n, we define
(v)j as the j-th component of v . Let H T be the transpose of H and ‖H ‖∞
be the maxi

∑n
j=1 |hij |. We denote by diag(d1, · · · , dn) the diagonal matrix with

diagonal coefficients equal to d1, · · · , dn.

3 The CLT15 Multilinear Map and Its Cryptanalysis

In order to make our article self-contained, a short introduction to multilinear
maps and graded encoding schemes is provided in AppendixA.
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3.1 The CLT15 Multilinear Map over the Integers

Shortly after the multilinear map over ideal lattices by Garg, Gentry and Halevi
[GGH13a], another construction over the integers was proposed by Coron, Lep-
oint and Tibouchi [CLT13]. However a devastating attack was published by
Cheon, Han, Lee, Ryu and Stehlé at Eurocrypt 2015 (on ePrint in late 2014).
In the wake of this attack, a revised version of their multilinear map over the inte-
gers was presented by Coron, Lepoint and Tibouchi at Crypto 2015 [CLT15].
In the remainder of this article, we will refer to the original construction over
the integers as CLT13, and to the new version from Crypto 2015 as CLT15.

In this section we recall the CLT15 construction. We omit aspects of the
construction that are not relevant to our attack, and refer the reader to [CLT15]
for more details. The message space is R = Zg1 × · · · ×Zgn

, for some (relatively
small) primes gi ∈ N. An encoding of a message (m1, . . . , mn) ∈ Zg1 × · · · ×Zgn

at level k ≤ κ has the following form:

e = CRT(pi)

(rigi + mi

zk
mod pi

)
+ ax0 (2)

where:

– The pi’s are n large secret primes.
– The ri’s are random noise such that |rigi + mi| � pi.
– x0 =

∏
i≤n pi.

– z is a fixed secret integer modulo x0.
– a is random noise.

The scheme relies on the following parameters:

λ : the security parameter.
κ : the multilinearity level.
n : the number of primes pi.
η : the bit length of secret primes pi.

γ = nη : the bit length of x0.
α : the bit length of the gi’s.
ρ : the bit length of initial ri’s.
β : the bit size of matrix H used to zero-testing procedure.

Addition, negation and multiplication of encodings is exactly addition, negation
and multiplication over the integers. Indeed, mi is recovered from e · zk as mi =
(e · zk mod pi)mod gi, and as long as rigi + mi does not go over pi, addition and
multiplication will go through both moduli. Thus we have defined encodings and
how to operate on them.

Regarding the sampling procedure from AppendixA.2, for our purpose, it
suffices to know that it is realized by publishing a large number of level-0 encod-
ings of random elements. Users can then sample a new random element as a
subset sum of published elements. Likewise, the rerandomization procedure is
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achieved by publishing a large number of encodings of zero at each level, and an
element is re-randomized by adding a random subset sum of encodings of zero at
the same level. The encoding procedure is realized by publishing a single level-1
encoding y of 1 (by which we mean (1, . . . , 1) ∈ Zg1 × · · · × Zgn

): any encoding
can then be promoted to an encoding of the same element at a higher level by
multiplying by y.

Zero-testing in CLT13. We now move on to the crucial zero-testing procedure.
This is where CLT13 and CLT15 differ. We begin by briefly recalling the CLT13
approach.

In CLT13, the product x0 of the pi’s is public. In particular, every encoding
can be reduced modulo x0, and every value below should be regarded as being
modulo x0. Let p∗

i =
∏

j �=i pj . Using (1), define:

pzt
�=

∑

i≤n

(hiz
κ

gi
mod pi

)
p∗

i = CRT(pi)

(hiz
κ

gi
p∗

i mod pi

)
mod x0.

where the hi’s are some relatively small numbers with |hi| � pi. Now take a
level-κ encoding of zero:

e = CRT(pi)

(rigi

zκ
mod pi

)
mod x0.

Since multiplication acts coordinate-wise on the CRT components, using (1)
again, we have:

ω
�= epzt = CRT(pi)(hirip

∗
i ) =

∑

i

hirip
∗
i mod x0.

Since p∗
i = x0/pi, as long as we set our parameters so that |hiri| � pi, we have

|ω| � x0.
Thus the zero-testing procedure is as follows: for a level-κ encoding e, com-

pute ω = epzt mod x0. Output 1, meaning we expect e to encode zero, iff the ν
most significant bits of ω are zero, for an appropriately chosen ν. In [CLT13],
multiple pzt’s can be defined in order to avoid false positives; we restrict our
attention to a single pzt.

Zero-testing in CLT15. In CLT13, an encoding at some fixed level is entirely
defined by its vector of associated values ci = rigi + mi. Moreover, addition and
multiplication of encodings act coordinate-wise on these values, and the value
of the encoding itself is Zx0 -linear as a function of these values. Likewise, ω is
Zx0-linear as a function of the ri’s. This nice structure is an essential part of
what makes the devastating attack, so called CHLRS attack [CHL+15] possible.
In CLT15, the authors set out to break this structure by introducing a new noise
component a.

For this purpose, the public parameters include a new prime number N � x0,
with size(N) = γ + 2η + 1. Meanwhile x0 is kept secret, and no longer part of
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the public parameters. Encodings are thus no longer reduced modulo x0, and
take the general form given in (2), including a new noise value a. Equivalently,
we can write an encoding e of (mi) at level k as:

e =
∑

i

(
ri + mi(g−1

i mod pi)
)
ui + ax0 (3)

with ui
�=

(
giz

−k(p∗
i )

−1 mod pi

)
p∗

i .

That is, we fold the giz
−k multiplier of ri with the CRT coefficient into ui.

The zero-testing parameter pzt is now defined modulo N in such a way that:

v0
�= x0pzt mod N ∀i, vi

�= uipzt mod N (4)
satisfy: |v0| � N |vi| � N

To give an idea of the sizes involved, size(v0) ≈ γ and size(vi) ≈ γ + η for i > 0.
We refer the reader to [CLT15] for how to build such a pzt. The point is that if
e is an encoding of zero at level κ, then we have:

ω = epzt mod N =
∑

rivi + av0 mod N.

In order for this quantity to be smaller than N , the size of a must be somehow
controlled. Conversely as long as a is small enough and the noise satisfies |ri| � pi

then |ω| � N . We state the useful lemma for an exact zero-testing, the so-called
the zero-testing lemma, more precisely.

Lemma 1 (Zero-testing Lemma). Let e be a level-κ encoding of zero with
e =

∑n
i=1 riui + ax0, (r1, · · · , rn, a ∈ Z). Then,

[epzt]N =
n∑

i=1

rivi + av0,

holds over the integers, if |a| < 22η−β−log2 n−1 and |ri| < 2η−β−log2 n−6 for
1 ≤ i ≤ n.

Proof. By the construction of the zero-testing element, we have epzt ≡
n∑

i=1

rivi+

av0 mod N . It is sufficient to show that the right hand side is smaller than N/2.
For 1 ≤ i ≤ n,

vi ≡
n∑

j=1

hjαjp
−1
j ui ≡ hiβi +

∑

j �=i

hjαj

[
gi

zκ

(x0

pi

)−1
]

pi

x0

pipj
mod N,

and therefore, |vi| < 2γ+η+β+4 for 1 ≤ i ≤ n. Moreover, v0 =
∑n

j=1 hjαj
x0
pj

and
|v0| < n2γ+β−1. �
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Thus the size of a must be controlled. The term ax0 will be dominant in (3) in
terms of size, so decreasing a is the same as decreasing the size of the encoding as
a whole. The scheme requires a way to achieve this without altering the encoded
value (and without publishing x0).

For this purpose, inspired by [VDGHV10], a ladder (X(k)
i )0≤i≤γ′ of encodings

of zero of increasing size is published for each level k ≤ κ, where γ′ = γ +
�log2 �. The size of an encoding e at level k can then be reduced without altering
the encoded value by recursively subtracting from e the largest ladder element
smaller than e, until e is smaller than X

(κ)
0 . More precisely we can choose X

(κ)
0

small enough that the previous zero-testing procedure goes through, and then
choose X

(κ)
γ′ twice the size of X

(κ)
0 , so that the product of any two encodings

smaller than X
(κ)
0 can be reduced to an encoding smaller than X

(κ)
0 . After each

addition and multiplication, the size of the resulting encoding is reduced via the
ladder.

In the end, the zero-testing procedure is very similar to CLT13: given a
(ladder-reduced) level-κ encoding e, compute ω = epzt mod N . Then output 1,
meaning we expect e to encode zero, iff the ν high-order bits of ω are zero.

Extraction. The extraction procedure simply outputs the ν high-order bits of
ω, computed as above. For both CLT13 and CLT15, it can be checked that they
only depend on the mi’s (as opposed to the noises a and the ri’s).

3.2 CHLRS Attack on CLT13

In this section we provide a short description of CHLRS attack on CLT13
[CHL+15], as elements of this attack appear in our own. We actually present (a
close variant of) the slightly simpler version in [CGH+15].

Assume we have access to a level-0 encoding a of some random value, n level-1
encodings (bi) of zero, and a level-1 encoding y of 1. This is the case for one-round
multi-party Diffie-Hellman (see previous section). Let ai = a mod pi, i.e. ai is the
i-th value “rigi + mi” associated with a. For i ≤ n, define ri,j = biz/gj mod pj ,
i.e. ri,j is the j-th value “rj” associated with bi (recall that bi is an encoding of
zero, so mj = 0). Finally let yk = yz mod pk.

Now compute:

ei,j = a · bi · bj · yκ−2 mod x0 ωi,j = ei,jpzt mod x0

e′
i,j = bi · bj · yκ−2 mod x0 ω′

i,j = e′
i,jpzt mod x0

Note that:

ωi,j =
∑

k

(
ak

ri,kgk

z

rj,kgk

z

yκ−2
k

zκ−2

hkzκ

gk
mod pk

)
p∗

k

=
∑

k

akri,krj,kck with ck = gkyκ−2
k hkp∗

k. (5)
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Crucially, in the second line, the modulo pk disappears and the equation holds
over the integers, because ei,j is a valid encoding of zero, so the correctness of
the scheme requires |ei,jz

κ/gk mod pk| � pk.
Equation (5) may be seen as a matrix multiplication. Indeed, define Ω, resp.

Ω′, as the n × n matrix with entries ωi,j , resp. ω′
i,j , and likewise R with entries

ri,j . Moreover let A, resp. C, be the diagonal matrix with diagonal entries ai,
resp. ci. Then (5) may be rewritten:

Ω = R · A · C · RT

Ω′ = R · C · RT

Ω · (Ω′)−1 = R · A · R−1.

Here matrices are viewed over Q for inversion (they are invertible whp).
Once Ω · (Ω′)−1 has been computed, the (diagonal) entries of A can be

recovered as its eigenvalues. In practice this can be achieved by computing the
characteristic polynomial, and all computations can be performed modulo some
prime p larger than the ai’s (which are size 2ρ).

Thus we recover the ai’s, and by definition ai = a mod pi, so pi can be
recovered as pi = gcd(a − ai, x0). From there it is trivial to recover all other
secret parameters of the scheme.

4 Main Attack

4.1 Integer Extraction (φ-Value)

Integer extraction essentially removes the extra noise induced by ladder reduc-
tions when performing computations on encodings. In addition, as we shall see
in Sect. 4.3.2, this step is enough to recover x0 when an exact multiple is known,
as is the case in the optimized variant proposed and implemented in [CLT15].

In the remainder we say that an encoding at level k is small iff it is less than
X

(k)
0 in absolute value. In particular, any ladder-reduced encoding is small.

Now, we describe our idea of attack. For a level-κ encoding of zero e =∑n
i=1 riui+ax0 of arbitrary size, if one can compute the integer value

∑n
i=1 rivi+

av0, which is not reduced modulus N , then a CHLRS attack can be applied
similarly. Hence, we define the function φ such that it represents such a value
and examine how to obtain the function values for a level-κ encoding of zero of
arbitrary size.

When the size of e is small, by the zero-testing lemma, [pzt · e]N gives the
integer value

∑n
i=1 rivi + av0. However, if the size of e is large, the zero-testing

lemma does not hold and one cannot compute the integer value directly. To
reach the goal, we use the ladder X

(κ)
j =

∑n
i=1 r

(κ)
ij ui + a

(κ)
j . Let e be a level-κ

encoding of zero. Then, we can compute the size-reduced encoding e′ using the
ladder and obtain the quantity (for short, we define γ′ as γ + �log2 �.)
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[pzt · e′]N =
[
pzt ·

(
e −

γ′∑

j=0

bjX
(κ)
j

)]

N

=
n∑

i=1

(
ri −

γ′∑

j=0

bjr
(κ)
ij

)
vi +

(
a −

γ′∑

j=0

bja
(κ)
j

)
v0

=
n∑

i=1

rivi + av0 −
γ′∑

j=0

bj

( n∑

i=1

r
(κ)
ij vi + a

(κ)
j v0

)
.

Therefore, if one can compute
∑n

i=1 r
(κ)
ij vi + a

(κ)
j v0 from X

(κ)
j , one can easily

obtain
∑n

i=1 rivi + av0.
To compute

∑n
i=1 r

(κ)
ij vi + a

(κ)
j v0 for all j ∈ {0, · · · , γ + �log2 �}, we use an

induction on j. When j = 0, [pzt ·X
(κ)
0 ]N gives

∑n
i=1 r

(κ)
i0 vi +a

(κ)
0 v0, by the zero-

testing lemma. Suppose we have
∑n

i=1 r
(κ)
ij vi +a

(κ)
j v0 for j ∈ {0, · · · , t−1}; then,

[pzt ·Xt]N =
∑n

i=1 r
(κ)
it vi+a

(κ)
t v0−

∑t−1
j=0 bj(

∑n
i=1 r

(κ)
ij vi+a

(κ)
j v0) for computable

bi ∈ {0, 1}, where Xt is a size-reduced encoding of X
(κ)
t using {X

(κ)
0 , · · · ,X

(κ)
t−1}.

Since we know the latter terms, we can also compute
∑n

i=1 r
(κ)
it vi + a

(κ)
t v0. This

idea can be extended to any level ladder.
Now, we give a precise description of function φ.

φ : Z → Z

e �→
∑n

i=1

[
e · zκ

gi

]

pi

vi +
x−∑n

i=1[e· zκ

gi
]pi

ui

x0
v0,

where vi = [pzt · ui]N (1 ≤ i ≤ n) and v0 = [pzt · x0]N . Note that φ is defined
over the integers, and not modulo N . Indeed the vi’s are seen as integers:
recall from Sect. 2 that throughout this paper xmod N denotes an integer in
Z ∩ (−N/2, N/2].

Proposition 1. Let e be an integer such that e ≡ ri·gi

zκ mod pi for 1 ≤ i ≤ n. If
|ri| < pi/2 for each i, then x can be uniquely expressed as

∑n
i=1 riui + ax0 for

some integer a, and φ(e) =
∑n

i=1 rivi + av0.

Proof. We can see that e ≡
∑n

i=1 riui mod pj for each j and thus there exists
an integer a such that e =

∑n
i=1 riui + ax0. For uniqueness, suppose e can

be written as e =
∑n

i=1 r′
iui + a′x0 for integers r′

1, · · · , r′
n, a′ with |r′

i| < pi/2.
Then, e ≡ r′

i[
gi

zκ

(
x0
pi

)−1]pi
≡ r′

igi

zκ mod pi, which implies ri ≡ r′
i mod pi. Since

|ri − r′
i| < pi, we have r′

i = ri for each i and therefore a′ = a, which proves the
uniqueness. �

The point is that if e is a small encoding of zero at level κ, then φ(e) = epzt

mod N . In that case φ(e) matches the extraction in the sense of the ext procedure
of Appendix A.2 (more precisely ext returns the high-order bits of φ(e)).

However we want to compute φ(e) even when e is larger. For this purpose,
the crucial point is that φ is actually Z-linear as long as for all encodings involved,
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the associated ri’s do not go over pi/2, i.e. reduction modulo pi does not interfere.
More formally:

Proposition 2. Let e1, · · · , em be level-κ encodings of zero such that ej ≡
rijgi

zκ
mod pi and |rij | < pi/2 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then, the equality

φ(
m∑

j=1

ej) =
m∑

j=1

φ(ej),

holds if
∣∣∣

m∑
j=1

rij

∣∣∣ <
pi

2
, for all 1 ≤ i ≤ n.

Proof. From Proposition 1, each ej can be uniquely written as ej =
n∑

i=1

rijui +

ajx0 for some integer aj , and φ(ej) =
n∑

i=1

rijvi + ajv0. Then,

m∑

j=1

φ(ej) =
n∑

i=1

( m∑

j=1

rij

)
· vi +

( m∑

j=1

aj

)
· v0

= φ
(( m∑

j=1

rij

)
· ui +

( m∑

j=1

aj

)
· x0

)
= φ

( m∑

j=1

ej

)
,

where the source of the second equality is Proposition 1, since
∣
∣∑m

j=1 rij

∣
∣ < pi/2. �

An important remark is that the conditions on the rij ’s above are also required
for the correctness of the scheme to hold. In other words, as long as we perform
valid computations from the point of view of the multilinear map (i.e. there is
no reduction of the rij ’s modulo pi, and correctness holds), then the Z-linearity
of φ also holds.

4.2 Eigenvalue Attack

Our strategy to attack CLT15 is similar to that in [CHL+15]. The goal is to
construct a matrix equation over Q by computing the φ values of several products
of level-0, 1, and (κ − 1) encodings, fixed on level-0 encoding. We proceed using
the following three steps.

(Step 1) Compute the φ-value of level-κ ladder
(Step 2) Compute the φ-value of level-κ encodings of large size
(Step 3) Construct matrix equations over Q.

Using the matrix equations in Step 3, we have a matrix, the eigenvalues of
which are residue modulo pi of level-0 encoding. From this, we deduce a secret
modulus pi.
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4.2.1 Computing the φ-value of X
(κ)
j . To apply the zero-testing lemma

to a level-κ encoding of zero e =
∑n

i=1 riui + ax0, the size of ri and a has to
be bounded by some fixed values. By the parameter setting, η is larger than
the maximum bit size of the noise ri of a level-κ encoding obtained from the
multiplication of lower level encodings. Hence, we need to reduce the size of e so
that a satisfies the zero-testing lemma.

Let us consider a ladder of level-κ encodings of zero {X
(κ)
j }. This is provided

to reduce the size of encodings to that of 2x0. More precisely, given a level-
κ encoding of zero e of size smaller than 22γ+�log2 �	, one can compute e′ =
e−

∑γ′

j=0 bjX
(κ)
j for γ′ = γ+�log2 �, which is an encoding of the same plaintext;

its size is smaller than X
(κ)
0 . As noted in [CLT15], the sizes of X

(κ)
j are increasing

and differ by only one bit, and therefore, bj ∈ {0, 1}, which implies the noise
grows additively. We can reduce a to an integer much smaller than 22η−β−1/n so
that the zero-testing lemma can be applied. We denote such e′ as [e]X (κ) . More
generally, we use the notation

[e]X (t) := [· · · [[e]
X

(t)
γ′

]
X

(t)
γ′−1

· · · ]
X

(t)
0

for X (t) = (X
(t)
0 , X

(t)
1 , . . . , X

(t)

γ′ ), 1 ≤ t ≤ κ.

Note that, if e satisfies the condition in Lemma 1, i.e., it is an encoding of
zero of small size, then φ(e) is exactly the same as [pzt · e]N . However, if the size
of e is large, it is congruent only to [pzt · e]N modulo N . Now, we show how to
compute the integer value φ(e) for an encoding e of zero, although e does not
satisfy the condition in Lemma 1.

First, we adapt the size reduction process to a level-κ ladder itself. We can
compute binary bij for each i, j, satisfying

[X(κ)
0 ]X (κ) = X

(κ)
0

[X(κ)
1 ]X (κ) = X

(κ)
1 − b10 · X

(κ)
0

[X(κ)
2 ]X (κ) = X

(κ)
2 −

1∑

k=0

b2k · X
(κ)
k

...

[X(κ)
j ]X (κ) = X

(κ)
j −

j−1∑

k=0

bjk · X
(κ)
k .

Each [X(κ)
j ]X (κ) is an encoding of zero at level κ and therefore can be written

as [X(κ)
j ]X (κ) =

∑n
i=1 r′

ijui + a′
jx0 for some integers r′

ij and a′
j . Moreover, its

bit size is at most γ and therefore a′
j is small enough to satisfy the condition in

Lemma 1. Therefore,

φ([X(κ)
j ]X (κ)) = [pzt · [X(κ)

j ]X (κ) ]N =
n∑

i=1

r′
ijvi + a′

jv0.
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If we write X
(κ)
j =

∑n
i=1 rijui + ajx0 for some integer r1j , . . . , rnj , aj , we

have r′
ij = rij −

∑j−1
k=0 bjkrik for each i and a′

j = aj −
∑j−1

k=0 bjkak, since all the
coefficients of ui are sufficiently smaller than pi for each i. Therefore,

n∑

i=1

r′
ijvi + a′

jv0 =
n∑

i=1

rijvi + ajv0 −
j−1∑

k=0

bjk

( n∑

i=1

rikvi + akv0

)

holds over the integers. Hence, we have the following inductive equations for
0 ≤ j ≤ γ′.

φ(X(κ)
j ) =

[
pzt · [X(κ)

j ]X (κ)

]

N
+

j−1∑

k=0

bjk · φ
(
X

(κ)
k

)
,

which gives all φ(X(κ)
0 ), φ(X(κ)

1 ), . . . , φ(X(κ)
γ′ ), inductively. The computation con-

sists of (γ′ + 1) zero-testing and O(γ2)-times comparisons and subtractions of
(γ +γ′)-bit integers, and therefore, the total computation cost is Õ(γ2) by using
fast Fourier transform. Hence, we obtain the following lemma.

Lemma 2. Given the public parameters of the CLT15 scheme, one can compute

φ(X(κ)
j ) =

[
pzt · [X(κ)

j ]X(κ)

]

N
+

j−1∑

k=0

bjk · φ
(
X

(κ)
k

)

in Õ(γ2) bit computations.

4.2.2 Computing the φ-value of Level-κ Encodings of Large Size.
Using the φ values of the κ-level ladder, we can compute the φ value of any
κ-level encoding of zero, the bit size of which is between γ and γ + γ′.

Lemma 3. Let e be a level-κ encoding of zero, e = CRT(pi)

(rigi

zκ

)
+ qx0 =

∑n
i=1 riui + ax0 for some integer r1, . . . , rn, a satisfying |ri| < 2η−β−log2 n−7 for

each i and |a| < 2γ′
. Given the public parameters of the CLT15 scheme, one can

compute the value φ(e) =
∑n

i=1 rivi + av0 in Õ(γ2) bit computations.

Proof. Let e be a level-κ encoding of zero satisfying the above conditions. As in
Sect. 4.2.1, we can find binary bj ’s satisfying [e]X (κ) = e −

∑γ′

j=0 bj · X(κ)
j . Then,

we have

φ(e) = φ([e]X (κ)) +
γ′∑

j=0

bj · φ(X(κ)
j ).

Since [e]X (κ) is a κ-level encoding of zero of at most γ-bit and the size of noise is
bounded by (η −β − log2 n− 6)-bit, we can compute the value φ([e]X (κ)) via the
zero-testing procedure. Finally, the φ values of the κ-level ladder and φ([e]X (κ))
give the value φ(e). The source of the complexity is Lemma 2. �
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We apply Lemma 3 to obtain the φ value of a κ-level encoding of zero that is a
product of two encodings of (γ + γ′)-bit size.

Lemma 4. Let X be a level-1 encoding and Y a level-(κ−1) encoding of zero of
bit size at most γ+γ′. Then, one can compute φ(XY ) in Õ(γ3) bit computations.

Proof. We apply Lemma 3 to a product of two γ-bit encodings. From [X(1)
1 ]X (1) =

X
(1)
1 − b · X

(1)
0 for some b ∈ {0, 1}, we find φ(X(1)

1 · X
(κ−1)
0 ) = φ([X(1)

1 ]X (1) ·
X

(κ−1)
0 ) + b · φ(X(1)

0 · X
(κ−1)
0 ), since [X(1)

1 ]X (1) is γ-bit. Thus, we can obtain
inductively all φ(X(1)

j · X
(κ−1)
k ) for each j, k from φ(X(1)

lj
· X

(κ−1)
lk

), 0 ≤ lj ≤
j, 0 ≤ lk ≤ k, (lj , lk) �= (j, k).

Let [X]X (1) = X −
∑γ′

j=0 bj · X
(1)
j and [Y ]X (κ−1) = Y −

∑γ′

j=0 b′
j · X

(κ−1)
j .

Then,

[X]X (1) · [Y ]X (κ−1) = XY −
∑

j bj · X
(1)
j · Y

−
∑

j b′
j · X

(κ−1)
j · X +

∑
j,k bjb

′
k · X

(1)
j · X

(κ−1)
k .

Note that the noise of [[X]X (1) ·[Y ]X (κ−1) ]X (κ) is bounded by 2ρ+α+2 log2(γ′)+2
and η > κ(2α+2ρ+λ+2 log2 n+3), and therefore, we can adapt Proposition 2.
Therefore, if we know the φ-value of each term, we can compute the φ-value
of XY . Finally, Lemma3 enables one to compute φ([X]X (1) · [Y ]X (κ−1)). The
second and third terms of the right hand side can be computed using [X(1)

j ]X (1) ,

[X(κ−1)
j ]X (κ−1) , and we know the φ-value of the last one. Since we perform zero-

testings for O(γ2) encodings of zero, the complexity becomes Õ(γ3). �

Note that the above Lemma can be applied to a level-t encoding X and a level-
(κ− t) encoding of zero Y . The proof is exactly the same, except for the indexes.

4.2.3 Constructing Matrix Equations over Q. We reach the final stage.
The following theorem is the result.

Theorem 1. Given the public instances in [CLT15] and pzt, one can find all
the secret parameters given in [CLT15] in Õ(κω+4λ2ω+6) bit computations with
ω ≤ 2.38.

Proof. We construct a matrix equation by collecting several φ-values of the prod-
uct of level-0, 1 and (κ−1) encodings. Let c,X, and Y be a level-0, 1, and (κ−1)
encoding, respectively, and additionally we assume Y is an encoding of zero. Let
us express them as

c = CRT(pi)(ci),

X = CRT(pi)

(xi

z

)
= xi

[
z−1

]
pi

+ qipi,

Y = CRT(pi)

( yigi

zκ−1

)
=

n∑

i=1

yi

[
gi

zκ−1

(
pi

∗
)−1

]

pi

· pi
∗ + ax0.
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Assume that the size of each is less than 2x0. The product of c and X can be
written as cX = cixi

[
z−1

]
pi

+ q′
ipi for some integer q′

i.
By multiplying cX and Y , we have

cXY

=
n∑

i=1

(
cixiyi

[
z−1]

pi

[
gi

zκ−1

(x0

pi

)−1
]

pi

· x0

pi
+ yi

[
gi

zκ−1

(x0

pi

)−1
]

pi

q′
ix0

)
+ (cX)(ax0)

=

n∑

i=1

cixiyiui +

n∑

i=1

(cixiyisi + yiθiq
′
i)x0 + acXx0,

where θi =
[

gi

zκ−1

(x0

pi

)−1
]

pi

, θi

[
z−1

]
pi

x0

pi
= ui + six0 for some integer si ∈ Z.

Then, we can obtain φ(cXY ) =
∑n

i=1 cixiyivi+
∑n

i=1(cixiyisi+yiθiq
′
i)v0+acXv0

by Lemma 4.
By plugging q′

i = 1
pi

(cX − cixi[z−1]pi
) into the equation, we obtain

φ(cXY ) =
n∑

i=1

yi(vi + siv0 − θiv0
pi

[z−1]pi
)cixi +

n∑

i=1

yi
θiv0
pi

cX + av0cX

=
n∑

i=1

yiwicixi +
n∑

i=1

yiw
′
icX + av0cX,

where wi = vi + siv0 − θi

pi
[z−1]pi

v0 and w′
i = θiv0

pi
. It can be written (over Q) as

φ(cXY ) =
(
y1 y2 · · · yn a

)

⎛

⎜⎜⎜⎜⎜⎜⎝

w1 0 w′
1

w2 w′
2

. . .
...

wn w′
n

0 v0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

c1x1

c2x2

...

cnxn

cX

⎞

⎟⎟⎟⎟⎟⎟⎠
. (6)

Since piwi = pi(vi + siv0) − θi

[
z−1

]
pi

v0 ≡ −θi

[
z−1

]
pi

v0 �≡ 0mod pi, wi is not
equal to zero. Therefore, v0

∏n
i=1 wi �= 0 and thus the matrix in Eq. (6) is non

singular. By applying Eq. (6) to various X,Y , taking for 0 ≤ j, k ≤ n

X = [X(1)
j ]X (1) = CRT(pi)

(xij

z

)
,

Y = [X(κ−1)
k ]X (κ−1) =

n∑

i=1

yikθi
x0

pi
+ akx0,

we finally obtain the matrix equation
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W c =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y10 · · · yn0 a0

. . .
...

y1n · · · ynn an

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

w1 0 w′
1

w2 w′
2

. . .
...

wn w′
n

0 v0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c1 0
c2

. . .

cn

0 c

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x10 · · · x1n

. . .
...

xn0 xnn

X0 · · · Xn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= Y W diag(c1, · · · , cn, c) X .

We perform the same computation on c = 1, which is a level-0 encoding of
1 = (1, 1, · · · , 1), and then, it implies

W 1 = Y · W · I · X .

From W c and W 1, we have a matrix that is similar to diag(c1, · · · , cn, c):

W −1
1 · W c = X−1 · diag(c1, · · · , cn, c) · X .

Then, by computing the eigenvalues of W −1
1 · W c, we have c1, · · · , cn, sat-

isfying pi|(c − ci) for each i. Using an additional level-0 encoding c′, we
obtain W −1

1 · W c′ , and therefore, c′
1, · · · , c′

n with pi|(c′ − c′
i) for each i.

Computing gcd(c − ci, c
′ − c′

i) gives the secret prime pi.
Using p1, · · · , pn, we can recover all the remaining parameters. By the def-

inition of y and X
(1)
j , the equation y/[X(1)

j ]x0 ≡ (rigi + 1)/(r(1)ij gi)mod pi is

satisfied. Since rigi + 1 and r
(1)
ij gi are smaller than

√
pi and are co-prime, one

can recover them by rational reconstruction up to the sign. Therefore, we can
obtain gi by computing the gcd of r

(1)
i0 gi, · · · , r

(1)
imgi. Moreover, using r

(1)
ij gi and

[X(1)
j ]x0 , we can compute [z]pi

for each i and therefore z. Any other parameters
are computed using z, gi, and pi.

Our attack consists of the following arithmetics: computing φ(X(κ)
j ), φ(X(1)

j ·
X

(κ−1)
k ), constructing a matrix W c and W 1, matrix inversing and multiplying,

and computing eigenvalues and the greatest common divisor. All of these are
bounded by Õ(γ3 + nωγ) = Õ(κ6λ9) bit computations with ω ≤ 2.38. For
this algorithm to succeed, we need a property that W 1 is non-singular. If we
use the fact that the rank of a matrix A ∈ Z

(n+1)×(n+1) can be computed
in time Õ ((n + 1)ω log ‖A‖∞) (see [Sto09]), we can find that X ,Y · W ∈
Q

(n+1)×(n+1) are non-singular in Õ(2(γ + log )(nω log N)) = Õ(κω+4λ2ω+6)
by considering another (n + 1) subsets of X

(1)
0 , · · · ,X

(1)
γ′ for X and also for Y .

Therefore, the total complexity of our attack is Õ(κω+4λ2ω+6). �

4.3 Determinant Attack

4.3.1 On the Impact of Recovering x0 . If x0 is known, CLT15 essen-
tially collapses to CLT13. In particular, all encodings can be reduced modulo
x0 so ladders are no longer needed. What is more, all ωi,j ’s from the CHLRS
attack can be reduced modulo v0 = x0pzt mod N , which effectively removes the
new noise a. As a direct consequence the CHLRS attack goes through and all
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secret parameters are recovered (cf. [CLT15, Sect. 3.3]). Moreover ladder ele-
ments reduced by x0 provide low-level encodings of zero even if the scheme itself
does not. Also note that the CHLRS attack is quite efficient as it can be per-
formed modulo any prime larger than the values we are trying to recover, i.e.
larger than 22ρ.

4.3.2 Recovering x0 when an Exact Multiple is Known. The authors
of [CLT15] propose an optimized version of their scheme, where a multiple qx0

of x0 is provided in the public parameters. The size of q is chosen such that qx0

is about the same size as N . Ladders at levels below κ are no longer necessary:
every encoding can be reduced modulo qx0 without altering encoded values or
increasing any noise. The ladder at level κ is still needed as a preliminary to zero-
testing, however it does not need to go beyond qx0, which makes it much smaller.
In the end this optimization greatly reduces the size of the public key and speeds
up computations, making the scheme much more practical (cf. Sect. 4.3.4).

In this scenario, note that qx0 may be regarded as an encoding of 0 at
level κ (and indeed every level). Moreover by construction it is small enough
to be reduced by the ladder at level κ with a valid computation (i.e. with low
enough noise for every intermediate encoding involved that the scheme operates
as desired and zero-extraction is correct). As a direct consequence we have:

φ(qx0) = qv0

and so we can recover q as q = gcd(qx0, φ(qx0)), and get x0 = qx0/q. This attack
has been verified on the reference implementation, and recovers x0 instantly.

Remark. qv0 is larger than N by design, so that it cannot be computed simply
as qx0pzt mod N due to modular reductions (cf. [CLT15, Sect. 3.4]). The point
is that our computation of φ is over the integers and not modulo N .

4.3.3 Recovering x0 in the General Case. We now return to the non-
optimized version of the scheme, where no exact multiple of x0 is provided in
the public parameters.

The second step of our attack recovers x0 using a matrix product similar to
the CHLRS attack (cf. Sect. 3.2), except we start with families of n+1 encodings
rather than n. That is, assume that for some t we have n + 1 level-t small
encodings (ai) of any value, and n + 1 level-(κ − t) small encodings (bi) of zero.
This is easily achievable for one-round multi-party Diffie-Hellman (cf. Sect.A.2),
e.g. choose t = 1, then pick (n+1) level-1 encodings (ai) of zero from the public
parameters, and let bi = a′

iy
κ−2 for a′

i another family of (n+1) level-1 encodings
of zero and y any level-1 encoding, where the product is ladder-reduced at each
level. In other applications of the multilinear map, observe that ladder elements
provide plenty of small encodings of zero, as each ladder element can be reduced
by the elements below it to form a small encoding of zero. Thus the necessary
conditions to perform both our attack to recover x0, and the follow-up CHLRS
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attack to recover other secret parameters once x0 is known, are very lax. In this
respect CLT15 is weaker than CLT13.

Let ai,j = aiz mod pj , i.e. ai,j is the j-th value “rjgj + mj” associated with
ai. Likewise for i ≤ n, let ri,j = biz

κ−1/gj mod pj , i.e. ri,j is the j-th value
“rj” associated with bi (recall that bi is an encoding of zero, so mj = 0). Now
compute:

ωi,j
�= φ(aibj).

If we look at the ωi,j ’s modulo v0 (which is unknown for now), everything behaves
as in CLT13 since the new noise term av0 disappears, and the ladder reduction at
level κ is negated by the integer extraction procedure. Hence, similar to Sect. 3.2,
we have:

ωi,j mod v0 =
∑

k

ai,krj,kvk mod v0. (7)

Again, Eq. (7) may be seen as a matrix product. Indeed, define Ω as the
(n+1)× (n+1) integer matrix with entries ωi,j , let A be the (n+1)×n matrix
with entries ai,j , let R be the (n + 1) × n matrix with entries ri,j , and finally
let V be the n × n diagonal matrix with diagonal entries vi. Then (7) may be
rewritten modulo v0:

Ω = A · V · RT in Zv0 .

Since A and R are (n + 1) × n matrices, this implies that Ω is not full-
rank when embedded into Zv0 . As a consequence v0 divides det(Ω), where the
determinant is computed over the integers. Now we can build a new matrix
Ω′ in the same way using a different choice of bi’s, and recover v0 as v0 =
gcd(det(Ω),det(Ω′)). Finally we get x0 = v0/pzt mod N (note that N � x0 by
construction).

The attack has been verified on the reference implementation with reduced
parameters.

Remark. As pointed out above, Ω cannot be full-rank when embedded into Zv0 .
Our attack also requires that it is full-rank over Q (whp). This holds because
while Ω can be nicely decomposed as a product when viewed modulo v0, the
“remaining” part of Ω, that is Ω − (Ω mod v0) is the matrix of the terms av0
for each ωi,j , and the value a does have the nice structure of ωi,j mod v0. This
is by design, since the noise a was precisely added in CLT15 in order to defeat
the matrix product structure of the CHLRS attack.

4.3.4 Attack Complexity. It is clear that the attack is polynomial, and
asymptotically breaks the scheme. In this section we provide an estimate of its
practical complexity. When an exact multiple of x0 is known, the attack is instant
as mentioned in Sect. 4.3.2, so we focus on the general case from Sect. 4.3.3.
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In the general case, a ladder of encodings of size  ≈ γ is published at every
level1. Using the scheme requires κ ladder reductions, i.e. κ additions of integers
of size γ. Since there are κ users, this means the total computation incurred by
using the scheme is close to κ2γ2. For the smallest 52-bit instance, this is already
≈ 246. Thus using the scheme a hundred times is above the security parameter.
This highlights the importance of the optimization based on publishing qx0,
which makes the scheme much more practical. More importantly for our current
purpose, this makes it hard to propose an attack below the security parameters.

As a result, what we propose in terms of complexity evaluation is the follow-
ing. For computations that compare directly to using the multilinear scheme,
we will tally the complexity as the number of operations equivalent to using
the scheme, in addition to the bit complexity. For unrelated operations, we will
count the number of bit operations as usual.

There are two steps worth considering from a complexity point of view: com-
puting Ω and computing its determinant. In practice both steps happen to have
comparable complexity. Computing the final gcd is negligible in comparison using
a subquadratic algorithm [Mol08], which is practical for our parameter size.

Computing Ω. As a precomputation, in order to compute φ, the integer extrac-
tion of ladder elements at level κ needs to be computed. This requires  integer
extractions, where  ≤ γ. Computing Ω itself requires (n + 1)2 integer extrac-
tions of a single product. Each integer extraction requires 1 multiplication, and
2 additions (as well as  multiplications by small scalars). For comparison, using
the multilinear scheme for one user requires 1 multiplication and  additions on
integers of similar size. Thus overall computing Ω costs about γ + n2 times as
much as simply using the multilinear scheme. For the 52-bit instance proposed
in [CLT15] for instance, this means that if it is practical to use the scheme
about a million times, then it is practical to compute Ω. Here by using the
scheme we mean one (rather than κ2) ladder reduction, so the bit complexity is
O(γ3 + n2γ2).

Computing the Determinant. Let n denote the size of a matrix Ω (it is
(n + 1) in our case but we will disregard this), and β the number of bits of its
largest entry. When computing the determinant of an integer matrix, one has to
carefully control the size of the integers appearing in intermediate computations.
It is generally possible to ensure that these integers do not grow past the size
of the determinant. Using Hadamard’s bound this size can be upper bounded
as log(det(Ω)) ≤ n(β + 1

2 log n), which can be approximated to nβ in our case,
since β is much larger than n.2

1 As the level increases, it is possible to slightly reduce the size of the ladder. Indeed
the acceptable level of noise increases with each level, up to ρf at level κ. As a
consequence it is possible to leave a small gap between ladder elements as the level
increases. For instance if the base level of noise is 2ρ for ladder elements, then at
level κ it is possible to leave a gap of roughly ρf − 2ρ − log � bits between ladder
elements. We disregard this effect, although it slighly improves our complexity.

2 This situation is fairly unusual, and in the literature the opposite is commonly
assumed; algorithms are often optimized for large n rather than large β.
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As a result, computing the determinant using “naive” methods requires
O(n3) operations on integers of size up to nβ, which results in a complexity
Õ(n4β) using fast integer multiplication (but slow matrix multiplication). The
asymptotic complexity is known to be Õ(nωβ) [Sto05]; however we are inter-
ested in the complexity of practical algorithms. Computing the determinant can
be reduced to solving the linear system associated with Ω with a random tar-
get vector: indeed the determinant can then be recovered as the least common
denominator of the (rational) solution vector3. In this context the fastest algo-
rithms use p-adic lifting [Dix82], and an up-to-date analysis using fast arithmetic
in [MS04] gives a complexity O(n3β log2 β log log β) (with log n = o(β))4.

For the concrete instantiations of one-round multipartite Diffie-Hellman
implemented in [CLT15], this yields the following complexities:

Security parameter: 52 62 72 80

Building Ω: 260 266 274 282

Determinant: 257 266 274 281

Thus, beside being polynomial, the attack is actually coming very close to
the security parameter as it increases to 80 bits.5
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A Short Introduction to Multilinear Maps

In this section we give a brief introduction to multilinear maps to make our arti-
cle self-contained. In particular we only consider symmetric multilinear maps.
We refer the interested reader to [GGH13a,Hal15b] for a more thorough presen-
tation.

A.1 Multilinear Maps and Graded Encoding Schemes

Cryptographic multilinear maps were introduced by Boneh and Silverberg
[BS03], as a natural generalization of bilinear maps stemming from pairings
on elliptic curves, which had found striking new applications in cryptography
[Jou00,BF01, ...]. A (symmetric) multilinear map is defined as follows.

Definition 1 (Multilinear Map [BS03]). Given two groups G,GT of the same
prime order, a map e : G

κ → GT is a κ-multilinear map iff it satisfies the
following two properties:

1. for all a1, . . . , aκ ∈ Z and x1, . . . , xκ ∈ G,

e(xa1
1 , . . . , xaκ

κ ) = e(x1, . . . , xκ)a1···aκ

2. if g is a generator of G, then e(g, . . . , g) is a generator of GT .

A natural special case are leveled multilinear maps:
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Definition 2 (Leveled Multilinear Map [HSW13]). Given κ + 1 groups
G1, . . . ,Gκ,GT of the same prime order, and for each i ≤ κ, a generator
gi ∈ Gi, a κ-leveled multilinear map is a set of bilinear maps {ei,j : Gi × Gj →
Gi+j |i, j, i + j ≤ κ} such that for all i, j with i + j ≤ κ, and all a, b ∈ Z:

ei,j(ga
i , gb

j) = gab
i,j .

Similar to public-key encryption [DH76] and identity-based cryptosystems
[Sha85], multilinear maps were originally introduced as a compelling target for
cryptographic research, without a concrete instantiation [BS03]. The first mul-
tilinear map was built ten years later in the breakthrough construction of Garg,
Gentry and Halevi [GGH13a]. More accurately, what the authors proposed was
a graded encoding scheme, and to this day all known cryptographic multilinear
maps constructions are actually variants of graded encoding schemes [Hal15b].
For this reason, and because both constructions have similar expressive power,
the term “multilinear map” is used in the literature in place of “graded encoding
scheme”, and we follow suit in this article.

Graded encoding schemes are a relaxed definition of leveled multilinear map,
where elements xa

i for xi ∈ Gi, a ∈ Z are no longer required to lie in a group.
Instead, they are regarded as “encodings” of a ring element a at level i, with no
assumption about the underlying structure. Formally, encodings are thus defined
as general binary strings in {0, 1}∗. In the following definition, S

(α)
i should be

regarded as the set of encodings of a ring element α at level i.

Definition 3 (Graded Encoding System [GGH13a]). A κ-graded encoding
system consists of a ring R and a system of sets S = {S

(α)
i ⊂ {0, 1}∗|α ∈ R, 0 ≤

i ≤ κ}, with the following properties:

1. For each fixed i, the sets S
(α)
i are pairwise disjoint as α spans R.

2. There is an associative binary operation ‘+’ and a self-inverse unary operation
‘−’ on {0, 1}∗ such that for every α1, α2 ∈ R, every i ≤ κ, and every u1 ∈
S
(α1)
i , u2 ∈ S

(α2)
i , it holds that:

u1 + u2 ∈ S
(α1+α2)
i and − u1 ∈ S

(−α1)
i

where α1 + α2 and −α1 are addition and negation in R.
3. There is an associative binary operation ‘×’ on {0, 1}∗ such that for every

α1, α2 ∈ R, every i1, i2 ∈ N such that i1 + i2 ≤ κ, and every u1 ∈ S
(α1)
i1

, u2 ∈
S
(α2)
i2

, it holds that u1 ×u2 ∈ S
(α1·α2)
i1+i2

. Here α1 ·α2 is the multiplication in R,
and i1 + i2 is the integer addition.

Observe that a leveled multilinear map is a graded encoding system where
R = Z and, with the notation from the definitions, S

(α)
i contains the single ele-

ment gα
i . Also note that the behavior of addition and multiplication of encodings

with respect to the levels i is the same as that of a graded ring, hence the graded
qualifier.
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All known constructions of graded encoding schemes do not fully realize the
previous definition, insofar as they are “noisy”6. That is, all encodings have a
certain amount of noise; each operation, and especially multiplication, increases
this noise; and the correctness of the scheme breaks down if the noise goes
above a certain threshold. The situation in this regard is similar to somewhat
homomorphic encryption schemes.

A.2 Multilinear Map Procedures

The exact interface offered by a multilinear map, and called upon when it is
used as a primitive in a cryptographic scheme, varies depending on the scheme.
However the core elements are the same. Below we reproduce the procedures
for manipulating encodings defined in [CLT15], which are a slight variation of
[GGH13a].

In a nutshell, the scheme relies on a trusted third party that generates the
instance (and is typically no longer needed afterwards). Users of the instance
(that is, everyone but the generating trusted third party) cannot encode nor
decode arbitrary encodings: they can only combine existing encodings using
addition, negation and multiplication, and subject to the limitation that the
level of an encoding cannot exceed κ. The power of the multilinear map comes
from the zero-testing (resp. extraction) procedure, which allows users to test
whether an encoding at level κ encodes zero (resp. roughly get a λ-bit “hash” of
the value encoded by a level-κ encoding).

Here users are also given access to random level-0 encodings, and have the
ability to re-randomize encodings, as well as promote any encoding to a higher-
level encoding of the same element. These last functionalities are tailored towards
the application of multilinear maps to one-round multi-party Diffie-Hellman. In
general different applications of multilinear map require different subsets of the
procedures below, and sometimes variants of them.

instGen(1λ, 1κ): the randomized instance procedure takes as input the security
parameter λ, the multilinearity level κ, and outputs the public parameters
(pp,pzt), where pp is a description of a κ-graded encoding system as above,
and pzt is a zero-test parameter (see below).

samp(pp): the randomized sampling procedure takes as input the public parame-
ters pp and outputs a level-0 encoding u ∈ S

(α)
0 for a nearly uniform α ∈ R.

enc(pp, i, u): the possibly randomized encoding procedure takes as input the pub-
lic parameters pp, a level i ≤ κ, and a level-0 encoding u ∈ Sα

0 for some α ∈ R,
and outputs a level-i encoding u′ ∈ S

(α)
i .

reRand(pp, i, u): the randomized rerandomization procedure takes as input the
public parameters pp, a level i ≤ κ, and a level-i encoding u ∈ Sα

i for some
α ∈ R, and outputs another level-i encoding u′ ∈ S

(α)
i of the same α, such

6 In fact the question of achieving the functionality of multilinear maps without noise
may be regarded as an important open problem [Zim15].
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that for any u1, u2 ∈ S
(α)
i , the output distributions of reRand(pp, i, u1) and

reRand(pp, i, u2) are nearly the same.
neg(pp, u): the negation procedure is deterministic and that takes as input the

public parameters pp, and a level-i encoding u ∈ S
(α)
i for some α ∈ R, and

outputs a level-i encoding u′ ∈ S
(−α)
i .

add(pp, u1, u2): the addition procedure is deterministic and takes as input the
public parameters pp, two level-i encodings u1 ∈ S

(α1)
i , u2 ∈ S

(α2)
i for some

α1, α2 ∈ R, and outputs a level-i encoding u′ ∈ S
(α1+α2)
i .

mult(pp, u1, u2): the multiplication procedure is deterministic and takes as input
the public parameters pp, two encodings u1 ∈ S

(α1)
i , u2 ∈ S

(α2)
j of some

α1, α2 ∈ R at levels i and j such that i + j ≤ κ, and outputs a level-(i + j)
encoding u′ ∈ S

(α1·α2)
i+j .

isZero(pp, u): the zero-testing procedure is deterministic and takes as input the
public parameters pp, and an encoding u ∈ S

(α)
κ of some α ∈ R at the maxi-

mum level κ, and outputs 1 if α = 0, 0 otherwise, with negligible probability
of error (over the choice of u ∈ S

(α)
κ ).

ext(pp,pzt, u): the extraction procedure is deterministic and takes as input the
public parameters pp, the zero-test parameter pzt, and an encoding u ∈ S

(α)
κ

of some α ∈ R at the maximum level κ, and outputs a λ-bit string s such
that:
1. For α ∈ R and u1, u2 ∈ S

(α)
κ , ext(pp,pzt, u1) = ext(pp,pzt, u2).

2. The distribution {ext(pp,pzt, v)|α ← R, v ∈ S
(α)
κ } is nearly uniform over

{0, 1}λ.
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Abstract. Multilinear map is a novel primitive which has many cryp-
tographic applications, and GGH map is a major candidate of K-linear
maps for K > 2. GGH map has two classes of applications, which are
applications with public tools for encoding and with hidden tools for
encoding. In this paper, we show that applications of GGH map with
public tools for encoding are not secure, and that one application of GGH
map with hidden tools for encoding is not secure. On the basis of weak-
DL attack presented by the authors themselves, we present several effi-
cient attacks on GGH map, aiming at multipartite key exchange (MKE)
and the instance of witness encryption (WE) based on the hardness of
exact-3-cover (X3C) problem. First, we use special modular operations,
which we call modified Encoding/zero-testing to drastically reduce the
noise. Such reduction is enough to break MKE. Moreover, such reduc-
tion negates K-GMDDH assumption, which is a basic security assump-
tion. The procedure involves mostly simple algebraic manipulations, and
rarely needs to use any lattice-reduction tools. The key point is our spe-
cial tools for modular operations. Second, under the condition of public
tools for encoding, we break the instance of WE based on the hardness
of X3C problem. To do so, we not only use modified Encoding/zero-
testing, but also introduce and solve “combined X3C problem”, which
is a problem that is not difficult to solve. In contrast with the assump-
tion that multilinear map cannot be divided back, this attack includes
a division operation, that is, solving an equivalent secret from a lin-
ear equation modular some principal ideal. The quotient (the equivalent
secret) is not small, so that modified Encoding/zero-testing is needed to
reduce size. This attack is under an assumption that some two vectors
are co-prime, which seems to be plausible. Third, for hidden tools for
encoding, we break the instance of WE based on the hardness of X3C
problem. To do so, we construct level-2 encodings of 0, which are used as
alternative tools for encoding. Then, we break the scheme by applying
modified Encoding/zero-testing and combined X3C, where the modi-
fied Encoding/zero-testing is an extended version. This attack is under
two assumptions, which seem to be plausible. Finally, we present crypt-
analysis of two simple revisions of GGH map, aiming at MKE. We show
that MKE on these two revisions can be broken under the assumption
that 2K is polynomially large. To do so, we further extend our modified
Encoding/zero-testing.
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1 Introduction

1.1 Background and Our Contributions

Multilinear map is a novel primitive. Mathematically speaking, multilinear map
is a leveled encoding system. In other words, it is such a system that can multiply
but cannot divide back, and goes further to let us recover some limited infor-
mation. It is the solution of a long-standing open problem [1], and has many
novel cryptographic applications, such as multipartite key exchange (MKE) [2],
witness encryption (WE) [3–9], obfuscation [8–10], and so on. It also has sev-
eral advantages in the traditional cryptographic area such as IBE, ABE [11],
Broadcasting encryption, and so on. The first candidate of multilinear map is
GGH map [2], and GGHLite map [12] is a special version of GGH map for the
purpose of improving efficiency. Up until now, GGH map is a major candidate
of K-linear maps for K > 2. It uses noisy encoding to obtain the trapdoor. The
security of GGH map is not well-understood. In particular, hardness of lattice
problems is necessary for its security, but it is not sufficient. GGH map has
two classes of applications. The first class is applications with public tools for
Encoding/zero-testing such as MKE [2], IBE, ABE, Broadcasting encryption,
and so on. The second class contains applications with hidden tools for encoding
such as GGHRSW obfuscation [8]. WE can be in the first and second classes.
For the first class, WE tools for encoding are generated and published by the
system, and can be used by any user. For the second class, WE tools for encod-
ing are generated and hidden by a unique encrypter, and can only be used by
him/herself. Besides, WE is another novel cryptographic notion and the instance
of WE based on the hardness of exact-3-cover (X3C) problem is its first instance.
Garg et al. provided in [2] a survey of relevant cryptanalysis techniques from the
literature, and also described two new attacks on GGH map. In particular they
presented the weak-DL attack, which indicated that GGH map makes division
possible to some extent, and which is used in our attacks as well. We emphasize,
however, that they did not show how to use that attack to break any of their
proposed schemes.

In this paper, we show that applications of GGH map with public tools for
encoding are not secure, and that one application of GGH map with hidden
tools for encoding is not secure. We present several efficient attacks on GGH
map, aiming at MKE and the instance of WE based on the hardness of X3C
problem. In all of our attacks we begin by using the weak-DL attack from [2] to
recover an “equivalent secret” which is equal to the original secret modulo some
known ideal, but is not small. Then we proceed as follows.

First, we use special modular operations, which we call modified
Encoding/zero-testing to drastically reduce the noise. Such reduction is enough
to break MKE. Moreover, such reduction negates K-GMDDH assumption
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(Assumption 5.1 of [11]), which is the security basis of the ABE scheme [11].
The procedure involves mostly simple algebraic manipulations, and rarely needs
to use any lattice-reduction tools. The key point is our special tools for modular
operations.

Second, under the condition of public tools for encoding, we break the
instance of WE based on the hardness of X3C problem. To do so, we not only
use modified Encoding/zero-testing, but also introduce and solve “combined X3C
problem”, which is a problem that is not difficult to solve. In contrast with the
assumption that multilinear map cannot be divided back, this attack includes a
division operation, that is, solving an equivalent secret from a linear equation
modular some principal ideal. The quotient (the equivalent secret) is not small,
so that modified Encoding/zero-testing is needed to reduce size. This attack is
under an assumption that some two vectors are co-prime, which seems to be
plausible.

Third, for hidden tools for encoding, we break the instance of WE based on
the hardness of X3C problem. To do so, we construct level-2 encodings of 0,
which are used as alternative tools for encoding. Then, we break the scheme by
applying modified Encoding/zero-testing and combined X3C, where the modified
Encoding/zero-testing is an extended version. This attack has several preparing
works, including solving a new type of “equivalent secret”. This attack is under
two assumptions, which seem to be plausible.

Finally, we check whether GGH structure can be simply revised to avoid
our attack. We present cryptanalysis of two simple revisions of GGH map, aim-
ing at MKE. We show that MKE on these two revisions can be broken under
the assumption that 2K is polynomially large. To do so, we further extend our
modified Encoding/zero-testing.

1.2 Principles and Main Techniques of Our Attack

Quite unlike the original DH maps and bilinear maps, all candidates of multilin-
ear maps have a common security worry that zero-testing tools are public. This
allows the adversary to zero-test messages freely. The adversary can choose those
zero-tested messages that are small enough without protection of the modular
operation. Such security worry has been used to break CLT map [13–17], which is
another major candidate of multilinear maps, and which is simply over integers.
Multilinear maps over the integer polynomials (GGH map [2] and GGHLite map
[12]) haven’t been broken because (1) (NTRU declaration) the product of a short
polynomial and modular inverse of another short polynomial seems unable to
be decomposed; and (2) the product of several short polynomials seems unable
to be decomposed. However, the product of several short polynomials is a some-
what short polynomial. Although it cannot be decomposed, it can be used as a
modulus to reduce the noise. On the other hand, breaking applications of GGH
map with public tools for encoding does not mean solving the users’ secrets.
It only means solving “high-order bits of zero-test of the product of encod-
ings of users’ secrets”, a weaker requirement. Therefore, by using our modified
Encoding/zero-testing, we can easily migrate between modular operations and
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real number operations to find vulnerabilities which have not been found before.
All of the above form the first principle of our attack. The second principle is
that if one uses GGH map for constructing the instance of WE based on the
hardness of X3C problem, special structure of GGH map allows us to transform
the underlying X3C problem into a much easier combined X3C problem. Our
main techniques are as follows.

Modified Encoding/zero-testing. For the secret of each user, we have an
equivalent secret which is the sum of original secret and a noise. These equiv-
alent secrets cannot be encoded, because they are not small. We compute the
product of these equivalent secrets, rather than computing their modular prod-
uct. Notice that the product is the sum of the product of original secrets and a
noise. Then our modified Encoding/zero-testing is quite simple. It contains three
simple operations, avoiding computing original secrets of users, and extracting
same information. That is, it extracts same high-order bits of zero-tested mes-
sage. Table 1 is a comparison between processing routines of GGH map and our
work. It is a note of our claim that we can achieve the same purpose without
knowing the secret of any user.

Table 1. Processing routines

GGH map secrets → encodings → modular product → zero-testing → high-order bits

Our work equivalent secrets → product → modified Encoding/zero-testing → high-order bits

Solving Combined Exact-3-cover (Combined X3C) Problem. The rea-
son that X3C problem can be transformed into a combined X3C problem is
that the special structure of GGH map sometimes makes division possible. We
can solve combined X3C problem with non-negligible probability and break
the instance of WE based on the hardness of X3C problem for public tools
of encoding.

Finding Alternative Encoding Tools. When encoding tools are hidden, we
can use redundant information to construct alternative encoding tools. For exam-
ple, there are many redundant pieces beside X3C. Encodings of these redundant
pieces can be composed into several level-2 encodings of 0. Only one level-2
encoding of 0 is enough to break the instance of WE based on the hardness of
X3C problem for hidden tools of encoding. This technique can be adapted to
other applications of GGH map, where although encoding tools are hidden, a
large number of redundant information are needed to protect some secrets.

1.3 The Organization

In Subsect. 1.4 we review recent works related to multilinear map. In Sect. 2 we
review GGH map and two applications, MKE and the instance of WE on X3C. In
Sect. 3 we define special tools for our attack, which are special polynomials used
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for our modular operations. Also in this section, for the secret of each user, we
generate an equivalent secret, which is not a short vector. Immediately, we obtain
an “equivalent secret” of the product of the users’ secrets, which is the product
of the users’ equivalent secrets. In Sect. 4 we present modified encoding/zero-
testing. We show how “high-order bits of zero-test of the product of encodings
of users’ secrets” can be solved, so that MKE is broken. In Sect. 5 we show how
to break the instance of WE on X3C problem with public tools for encoding. In
this section, we first introduce and solve “combined X3C problem”, then solve
“high-order bits of zero-test of the product of encodings of users’ secrets”. In
Sect. 6 we present an attack on the instance of WE based on the hardness of
X3C problem with hidden tools for encoding. We show that this instance can be
broken under several stronger assumptions. In Sect. 7 we present cryptanalysis
of two simple revisions of GGH map, aiming at MKE. We show that MKE on
these two revisions can be broken under the assumption that 2K is polynomially
large. Section 8 contains other results, some considerations, and poses several
questions.

1.4 Related Works

Garg et al. presented in [2] three variants, which are “asymmetric encoding”,
“providing zero-test security” and “avoiding principal ideals”. Arita and Handa
[5] presented two applications of multilinear maps: MKE with smaller commu-
nication and an instance of WE. Their WE scheme (called AH scheme) has the
security claim based on the hardness of Hamilton Cycle problem. The novelty
is that they used an asymmetric multilinear map over integer matrices. Bellare
and Hoang [6] presented adaptive witness encryption with stronger security than
soundness security, named adaptive soundness security. Garg et al. [8] presented
witness encryption by using indistinguishability obfuscation and Multilinear Jig-
saw Puzzle, a simplified variant of multilinear maps. Extractable witness encryp-
tion was presented [7,9,10]. Gentry et al. designed multilinear maps based on
graph [18]. Coron et al. presented efficient attack on CLT map for hidden tools
for encoding [19]. Coron et al. designed CLT15 map [20]. Then Cheon et al. [21]
and Minaud and Fouque [22] broke CLT15 respectively.

2 GGH Map and Two Applications

2.1 Notations and Definitions

We denote the rational numbers by Q and the integers by Z. We specify that n-
dimensional vectors of Qn and Z

n are row vectors. We consider the 2n’th cyclo-
tomic polynomial ring R = Z[X]/(Xn + 1), and identify an element u ∈ R with
the coefficient vector of the degree-(n − 1) integer polynomial that represents u.
In this way, R is identified with the integer lattice Z

n. We also consider the ring
Rq = R/qR = Zq[X]/(Xn + 1) for a (large enough) integer q. Addition in these
rings is done component-wise in their coefficients, and multiplication is polyno-
mial multiplication modulo the ring polynomial Xn + 1. In some cases, we also
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consider the ring K = Q[X]/(Xn +1), which is likewise associated with the linear
space Qn. We redefine the operation “mod q” as follows: if q is an odd, a(mod q) is
within {−(q − 1)/2,−(q − 3)/2, . . . , (q − 1)/2}; if q is an even, a(mod q) is within
{−q/2,−(q − 2)/2, . . . , (q − 2)/2}. For x ∈ R, 〈x〉 = {x · u : u ∈ R} is the prin-
cipal ideal in R generated by x (alternatively, the sub-lattice of Zn corresponding
to this ideal). For x ∈ R, y ∈ R, y(mod x) is such a vector: y(mod x) = ax, where
each entry of a is within [–0.5, 0.5), and y − y(mod x) ∈ 〈x〉. We refer the readers
to Babai [23].

2.2 The GGH Construction

We secretly sample a short element g ∈ R. Let 〈g〉 be the principal ideal in R.
g itself is kept secret, and no “good” description of 〈g〉 is made public. Another
secret element z ∈ Rq is chosen at random, and hence is not short.

An element y is called encoding parameter, or called level-1 encoding of 1,
and is set in the following description. We secretly sample a short element a ∈
R, and let y = (1 + ag)z−1(mod q). The elements {x(i), i = 1, 2} are called
randomizers, or called level-1 encodings of 0, and are set as follows. We secretly
sample a short element b(i) ∈ R, and let x(i) = b(i)gz−1(mod q), i = 1, 2. The
public element pzt is called level-K zero-testing parameter, where K ≥ 3 is an
integer. pzt is set as follows. We secretly sample a “somewhat small” element
h ∈ R, and let pzt = (hzKg−1)(mod q). Simply speaking, parameters y and
{x(i), i = 1, 2} are tools for encoding, while public parameter pzt is tool of zero-
test. {g, z, a, {b(i), i = 1, 2}, h} are kept from all users. For MKE, y and {x(i),
i = 1, 2} are public. For WE, they can be either public or hidden.

Suppose a user has a secret v ∈ R, which is a short element. He secretly sam-
ples short elements {u(i) ∈ R, i = 1, 2}. He computes noisy encoding V = vy +
(u(1)x(1) + u(2)x(2))(mod q), where vy(mod q) and (u(1)x(1) + u(2)x(2))(mod q)
are respectively encoded secret and encoded noise. He publishes V . Then, GGH
K-linear map includes K, y, {x(i), i = 1, 2}, pzt, and all noisy encoding V s for all
users.

We call g grade 1 element, and denote σ as the standard deviation for sam-
pling g. We call {a, {b(i), i = 1, 2}} and {v, {u(i), i = 1, 2}} grade 2 elements,
and denote σ′ as the standard deviation for sampling {a, {b(i), i = 1, 2}} and
{v, {u(i), i = 1, 2}}. Both σ and σ′ are much smaller than

√
q, and GGH K-linear

map [2] suggests σ′ = nσ. Finally, we call h grade 3 element, and take σ′′ =
√

q

as the standard deviation for sampling h. We say that g, {a, {b(i), i = 1, 2}} and
{v, {u(i), i = 1, 2}} are “very small”, and that h is “somewhat small”. h cannot
be “very small” for security reasons.

2.3 Application 1: MKE

Suppose that K + 1 users want to generate a commonly shared key by pub-
lic discussion. To do so, each user k generates his secret v(k), and publishes
the noisy encoding V (k), k = 1, . . . , K + 1. Then, each user can use his/her
secret and other users’ noisy encodings to compute KEY , the commonly
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shared key. KEY is high-order bits of any zero-tested message. For example,
user k0 first computes v(k0)pzt

∏
k �=k0

V (k)(mod q), then KEY is high-order bits
of v(k0)pzt

∏
k �=k0

V (k)(mod q). That is, he/she first computes

v
(k0)

pzt

∏
k �=k0

V
(k)

(mod q) =

h(1 + ag)
K

g
−1

K+1∏
k=1

v
(k)

+

hv
(k0)

∑
S⊂{1,...,K+1}
−{k0},|S|≥1

(1 + ag)
K−|S|

g
|S|−1

∏
k∈{1,...,K+1}

−{k0}−S

(v
(k)

)
∏
t∈S

(u
(t,1)

b
(1)

+ u
(t,2)

b
(2)

)(mod q).

It is the modular sum of two terms, zero-tested message and zero-tested noise.
Zero-tested message is

h(1 + ag)Kg−1
K+1∏

k=1

v(k)(mod q).

Zero-tested noise is

hv(k0)
∑

S⊂{1,...,K+1}
−{k0},|S|≥1

(1 + ag)K−|S|g|S|−1
∏

k∈{1,...,K+1}
−{k0}−S

(v(k))
∏

t∈S

(u(t,1)b(1) + u(t,2)b(2)).

Notice that zero-tested noise is the sum of 3K − 1 terms. For example,
h(1 + ag)K−1b(1)u(1,1)

∏K+1
k=2 (v(k)) is a term of the zero-tested noise. Each

term is the product of a “somewhat small” element and several “very small”
elements. Therefore, zero-tested noise is “somewhat small”, and it can be
removed if we only extract high-order bits of v(k0)pzt

∏
k �=k0

V (k)(mod q). In
other words, KEY is actually high-order bits of zero-tested message h(1 +
ag)Kg−1

∏K+1
k=1 v(k)(mod q).

2.4 Application 2: The Instance of WE on Exact-3-cover

Definition 1. A witness encryption scheme for an NP language L (with cor-
responding witness relation Rel) consists of the following two polynomial-time
algorithms:

Encryption. The algorithm Encrypt(1λ, x,M) takes as input a security para-
meter 1λ, a string x, and a message M , and outputs a ciphertext CT.

Decryption. The algorithm Decrypt(CT, w) takes as input a ciphertext CT and
a string w, and outputs a message M if Rel(w, x) = 1 or the symbol ⊥ otherwise.

Exact-3-cover Problem [3,24]. If we are given a subset of {1, 2, . . . , 3K} con-
taining 3 integers, we call it a piece. If we are given a collection of K pieces
without intersection, we call it a X3C of {1, 2, . . . , 3K}. The X3C problem is
that for arbitrarily given N(K) different pieces with a hidden X3C, find it.



544 Y. Hu and H. Jia

It is clear that 1 ≤ N(K) ≤ C3
3K . Intuitively, the X3C problem is often not hard

when N(K) ≤ O(K), because X3C is not hidden well. An extreme example is
that if the number i is contained by only one piece {i, j, k}, then {i, j, k} is cer-
tainly from X3C. Picking up {i, j, k} and abandoning those pieces containing j
or k, then other pieces form a reduced X3C problem on {1, 2, . . . , 3K}−{i, j, k}.
So that N(K) ≥ O(K2) to avoid weak case. On the other hand, the larger
N(K) the easier our attack. So that in rest of this paper we will always take
N(K) = O(K2).

Now we describe the WE based on the hardness of X3C problem from GGH
structure.

Encryption.The encrypter samples short elements v(1), v(2), . . . , v(3K) ∈ R. He/
she computes the encryption key as follows. He/she first computes
v(1)v(2) . . . v(3K)yK pzt(mod q), then takes EKEY as its high-order bits. In fact,
EKEY is high-order bits of v(1)v(2) . . . v(3K)(1 + ag)Khg−1(mod q). He/she can
use EKEY and an encryption algorithm to encrypt any plaintext. Then, he/she
hides EKEY into pieces as follows. He/she arbitrarily generates N(K) different
pieces of {1, 2, . . . , 3K}, with a hidden X3C called XC. For each piece {i1, i2, i3},
he/she computes noisy encoding of the product v(i1)v(i2)v(i3), that is, secretly
samples short elements {u({i1,i2,i3},i) ∈ R, i = 1, 2}, then computes and publishes
V {i1,i2,i3} = v(i1)v(i2)v(i3)y + (u({i1,i2,i3},1)x(1) + u({i1,i2,i3},2)x(2))(mod q).

Decryption. The one who knows XC computes the zero-test of
∏

{i1,i2,i3}∈XC

V {i1,i2,i3}(mod q), that is, he/she computes pzt

∏
{i1,i2,i3}∈XC V {i1,i2,i3}(mod q).

Then, EKEY is its high-order bits. In other words, pzt

∏
{i1,i2,i3}∈XC

V {i1,i2,i3}(mod q) is the modular sum of two terms, the first term is
zero-tested message v(1)v(2) . . . v(3K)(1 + ag)Khg−1 (mod q), while the sec-
ond term is zero-tested noise which doesn’t affect high-order bits of
pzt

∏
{i1,i2,i3}∈XC V {i1,i2,i3}(mod q).

3 Weak-DL Attack: Generating Equivalent Secrets

As the start of our attack, we will find equivalent secrets. The method is weak-DL
attack [2].

3.1 Generating an Equivalent Secret for One User

We can obtain special elements {Y,X(i), i = 1, 2}, where

Y = yK−1x(1)pzt(mod q) = h(1 + ag)K−1b(1),

X(i) = yK−2x(i)x(1)pzt(mod q) = h(1 + ag)K−2(b(i)g)b(1),
i = 1, 2.

Notice that the right sides of these equations have no operation “mod q”.
More precisely, each of {Y,X(i), i = 1, 2} is a factor of a term of zero-tested noise.
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For example, Y u(1,1)
∏K+1

k=2 (v(k)) is a term of the zero-tested noise. Therefore,
each of {Y,X(i), i = 1, 2} is far smaller than a term of the zero-tested noise.
However, they are not small enough because of the existence of the factor h. We
say they are “somewhat small”, and take them as our tools.

Take the noisy encoding V (corresponding to the secret v and unknown
{u(1), u(2)}), and compute special element

W = V yK−2x(1)pzt(mod q) = vY + (u(1)X(1) + u(2)X(2)).

Notice that the right side of this equation has no operation “mod q”. Then,
compute

W (mod Y ) =
(
u(1)X(1)(mod Y ) + u(2)X(2)(mod Y )

)
(mod Y ).

Step 1. By knowing W (mod Y ) and {X(1)(mod Y ),X(2)(mod Y )}, we obtain
W ′ ∈ 〈X(i), i = 1, 2〉 such that W − W ′(mod Y ) = 0. This is quite easy algebra,
and we present the details in Appendix A. Notice that W − W ′ is not a short
vector. Denote W ′ = u′(1)X(1) + u′(2)X(2).

Step 2. Compute v(0) = (W − W ′)/Y (division over real numbers with the
quotient which is an integer vector). Then,

v(0) = v + ((u(1)X(1) + u(2)X(2)) − W ′)/Y

= v + ((u(1) − u′(1))X(1) + (u(2) − u′(2))X(2))/Y

= v + ((u(1) − u′(1))b(1) + (u(2) − u′(2))b(2))g/(1 + ag).

By considering another fact that g and 1+ag are co-prime, we have v(0)−v ∈ 〈g〉.
We call v(0) an equivalent secret of v, and call residual vector v(0) − v the noise.
Notice that v(0) is not a short vector.

3.2 Generating an Equivalent Secret for the Product of Secrets

Suppose that each user k has his/her secret v(k) and we generate v(0,k), an equiva-
lent secret of v(k), where k = 1, . . . , K+1. For the product

∏K+1
k=1 v(k), we have an

equivalent secret
∏K+1

k=1 v(0,k), where the noise is
∏K+1

k=1 v(0,k) −
∏K+1

k=1 v(k) ∈ 〈g〉.
Notice that

∏K+1
k=1 v(0,k) is not a short vector.

4 Modified Encoding/zero-testing

In this section we transform
∏K+1

k=1 v(0,k) by our modified Encoding/zero-testing.
Denote η =

∏K+1
k=1 v(0,k). The procedure has three steps, which are η′ = Y η, η′′ =

η′(mod X(1)), and η′′′ = y(x(1))−1η′′(mod q) (or η′′′ = Y (X(1))−1η′′(mod q)).
To help understanding their functions, we compare them with GGH processing
procedure. The first operation is like a level-K encoding followed by a zero-
testing, but there are three differences. Difference 1: The first operation doesn’t
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use modular q. Difference 2: η′(mod q) contains a modular q factor yK−1, while
zero-tested message contains a modular q factor yK . In other words, η′(mod q)
lacks a y. Difference 3: η′(mod q) contains a modular q factor x(1), while zero-
tested message doesn’t contain such modular q factor. In other words, η′(mod q)
has a surplus x(1). η′′ is also like a level-K encoding followed by a zero-testing,
and there are also three differences as above, but the size is reduced to “somewhat
small”. To obtain η′′′, we get rid of x(1) and put y in so that η′′′ is a level-K
encoding followed by a zero-testing, and that we can guarantee zero-tested noise
“somewhat small”. Notice η =

∏K+1
k=1 v(k) + ξg, where ξ ∈ R.

Step 1. Compute η′ = Y η. By noticing that Y is a multiple of b(1), we have a
fact that η′ = Y

∏K+1
k=1 v(k) + ξ′b(1)g, where ξ′ ∈ R.

Step 2. Compute η′′ = η′(mod X(1)). There are 3 facts as follows.

(1) η′′ = Y
∏K+1

k=1 v(k) + ξ′′b(1)g, where ξ′′ ∈ R. Notice that η′′ is the sum of η′

and a multiple of X(1), and that X(1) is a multiple of b(1)g.
(2) η′′ has a similar size to that of

√
nX(1). In other words, η′′ is smaller than one

term of zero-tested noise. Notice standard deviations for sampling various
variables.

(3) Y
∏K+1

k=1 v(k) has a similar size to that of one term of zero-tested noise.

The above 3 facts result in a new fact that ξ′′b(1)g = η′′ − Y
∏K+1

k=1 v(k) has
a similar size to that of one term of zero-tested noise.

Step 3. Compute η′′′ = y(x(1))−1η′′(mod q). There are 3 facts as follows.

(1) η′′′ = (h(1 + ag)Kg−1)
∏K+1

k=1 v(k) + ξ′′(1 + ag)(mod q). Notice fact (1) of
Step 2, and notice the definitions of Y and X(1).

(2) ξ′′(1 + ag) has a similar size to that of one term of zero-tested noise. In
other words, ξ′′(1 + ag) is smaller than zero-tested noise. This fact is clear
by noticing that ξ′′b(1)g has a similar size to that of one term of zero-tested
noise, and by noticing that 1 + ag and b(1)g have a similar size.

(3) (h(1+ag)Kg−1)
∏K+1

k=1 v(k)(mod q) is zero-tested message, therefore its high-
order bits are what we want to obtain.

The above 3 facts result in a new fact that η′′′ is the modular sum of zero-
tested message and a new zero-tested noise which is smaller than original zero-
tested noise. Therefore, high-order bits of η′′′ are what we want to obtain. MKE
has been broken. More important is that K-GMDDH assumption (Assumption
5.1 of [11]) is negated.

5 Breaking the Instance of WE Based on the Hardness of
Exact-3-cover Problem with Public Tools for Encoding

Our modified Encoding/zero-testing cannot directly break the instance of WE
based on the hardness of X3C problem, because the X3C is hidden. In this section
we show that special structure of GGH map can simplify the X3C problem into
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a combined X3C problem, and then show how to use a combined exact cover
to break the instance under the condition that low-level encodings of zero are
made publicly available.

5.1 Combined Exact-3-cover Problem: Definition and Solution

Definition 2. Suppose we are given N(K) = O(K2) different pieces of
{1, 2, . . . , 3K}. A subset {i1, i2, i3} of {1, 2, . . . , 3K} is called a combined piece, if

(1) {i1, i2, i3} is not a piece;
(2) {i1, i2, i3} = {j1, j2, j3} ∪ {k1, k2, k3} − {l1, l2, l3};
(3) {j1, j2, j3}, {k1, k2, k3} and {l1, l2, l3} are pieces;
(4) {j1, j2, j3} and {k1, k2, k3} don’t intersect. (Then {j1, j2, j3} ∪ {k1, k2, k3} ⊃

{l1, l2, l3}).

Definition 3. A subset {i1, i2, i3} of {1, 2, . . . , 3K} is called a second-order
combined piece, if

(1) {i1, i2, i3} is neither a piece nor a combined piece;
(2) {i1, i2, i3} = {j1, j2, j3} ∪ {k1, k2, k3} − {l1, l2, l3};
(3) {j1, j2, j3}, {k1, k2, k3} and {l1, l2, l3} are pieces or combined pieces.
(4) {j1, j2, j3} and {k1, k2, k3} don’t intersect. (Then {j1, j2, j3} ∪ {k1, k2, k3} ⊃

{l1, l2, l3}).

K pieces or combined pieces or second-order combined pieces without inter-
section are called a combined X3C of {1, 2, . . . , 3K}. The combined X3C prob-
lem is that for arbitrarily given N(K) = O(K2) different pieces, find a combined
X3C. We will show that the combined X3C problem is not difficult to solve. More
specifically, suppose that O(K2) pieces are sufficiently randomly distributed, in
them there is a hidden X3C, and the instance of X3C problem is assumed to be
hard. Then we will prove that corresponding instance of combined X3C problem
can be solved in polynomial time. Our proving procedure has two steps, which
are obtaining combined pieces and obtaining second-order combined pieces.

Obtaining Combined Pieces. We take P (E) as the probability of the event
E, and P

(
E

∣∣E′) as the conditional probability of E under the condition E′.
Arbitrarily take a subset {i1, i2, i3} which is not a piece. In Appendix B we show
that P ({i1, i2, i3} is not a combined piece) ≈ exp{−(O(K2))3/K6}. For the sake
of simple deduction, we temporarily assume O(K2) > K2, then this probability
is smaller than e−1. Now we construct all combined pieces from O(K2) pieces,
and we have a result: there are more than (1 − e−1)C3

3K different subsets of
{1, 2, . . . , 3K}, each containing 3 elements, which are pieces or combined pieces.

Obtaining Second-Order Combined Pieces. There are less than e−1C3
3K

different subsets of {1, 2, . . . , 3K}, each containing 3 elements, which are neither
pieces nor combined pieces. Arbitrarily take one subset {i1, i2, i3} from them.
By a deduction procedure similar to Appendix B, we can show that P ({i1, i2, i3}
is not a second-order combined piece) is negatively exponential in K. Now we
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construct all second-order combined pieces from more than (1−e−1)C3
3K pieces or

combined pieces, and then we are almost sure to have a result: all C3
3K different

subsets of {1, 2, . . . , 3K}, each containing 3 elements, are pieces or combined
pieces or second-order combined pieces. Therefore, the combined X3C problem
is solved.

5.2 Positive/Negative Factors

Definition 4. Take a fixed combined X3C. Take an element {i1, i2, i3} of this
combined X3C.

(1) If {i1, i2, i3} is a piece, we count it as a positive factor.
(2) If {i1, i2, i3} is a combined piece, {i1, i2, i3} = {j1, j2, j3} ∪ {k1, k2, k3} −

{l1, l2, l3}, we count pieces {j1, j2, j3} and {k1, k2, k3} as positive factors,
and count the piece {l1, l2, l3} as a negative factor.

(3) Suppose {i1, i2, i3} is a second-order combined piece,{i1, i2, i3} =
{j1, j2, j3} ∪ {k1, k2, k3} − {l1, l2, l3}, where {j1, j2, j3}, {k1, k2, k3} and
{l1, l2, l3} are pieces or combined pieces.
(3.1) If {j1, j2, j3} is a piece, we count it as a positive factor; if {j1, j2, j3}

is a combined piece, we count 2 positive factors corresponding to it
as positive factors, and the negative factor corresponding to it as a
negative factor.

(3.2) Similarly, if {k1, k2, k3} is a piece, we count it as a positive factor; if
{k1, k2, k3} is a combined piece, we count 2 positive factors correspond-
ing to it as positive factors, and the negative factor corresponding to it
as a negative factor.

(3.3) Oppositely, if {l1, l2, l3} is a piece, we count it as a negative factor; if
{l1, l2, l3} is a combined piece, we count 2 positive factors corresponding
to it as negative factors, and the negative factor corresponding to it as
a positive factor.

Positive and negative factors are pieces. All positive factors form a collec-
tion, and all negative factors form another collection (notice that we use the
terminology “collection” rather than “set”, because it is possible that one piece
is counted several times). Take CPF as the collection of positive factors, NPF
as the number of positive factors. Take CNF as the collection of negative fac-
tors, NNF as the number of negative factors. Notice that some pieces may be
counted repeatedly. It is easy to see that NPF − NNF = K. On the other
hand, from C3

3K different subsets of {1, 2, . . . , 3K}, there are O(K2) different
pieces, more than (1 − e−1)C3

3K − O(K2) different combined pieces, and less
than e−1C3

3K different second-order combined pieces. Each piece is a positive
factor, each combined piece is attached by 2 positive factors and a negative fac-
tor, each second-order combined piece is attached by at most 5 positive factors
and 4 negative factors. Therefore, for a randomly chosen combined X3C, it is
almost sure that NPF ≤ 3K, resulting in NNF ≤ 2K.
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5.3 Our Construction

Randomly take a combined X3C. Obtain CPF , the collection of positive fac-
tors, and CNF , the collection of negative factors. For a positive factor pf =
{i1, i2, i3}, we denote v(pf) = v(i1)v(i2)v(i3) as the secret of pf , and v′(pf) as the
equivalent secret of v(pf) obtained in Subsect. 3.1. Similarly we denote v(nf) and
v′(nf) for a negative factor nf . Denote PPF =

∏
pf∈CPF v′(pf) as the product of

equivalent secrets of all positive factors. Denote PNF =
∏

nf∈CNF v′(nf) as the
product of equivalent secrets of all negative factors. Denote PTS =

∏3K
k=1 v(k)

as the product of true secrets. The first clear equation is
∏

pf∈CPF v(pf) =
PTS ×

∏
nf∈CNF v(nf). Then, we have

Proposition 1.

(1) PPF −
∏

pf∈CPF v(pf) ∈ 〈g〉.
(2) PNF −

∏
nf∈CNF v(nf) ∈ 〈g〉.

(3) PPF − PNF × PTS ∈ 〈g〉.

Proof. By considering Subsect. 3.1, we know that

(1) PPF =
∏

pf∈CPF v(pf) + βPF , where βPF ∈ 〈g〉.
(2) PNF =

∏
nf∈CNF v(nf) + βNF , where βNF ∈ 〈g〉.

On the other hand, (3) is true from
∏

pf∈CPF

v(pf) = PTS ×
∏

nf∈CNF

v(nf).

Proposition 1 is proven. �

Perhaps there is hope in solving PTS. However, we cannot filter off βPF and
βNF , because no “good” description of 〈g〉 has been made public. Fortunately,
we don’t need to solve PTS for breaking the instance. We only need to find
an equivalent secret of PTS, without caring about the size of the equivalent
secret. Then, we can reduce zero-tested noise much smaller by our modified
Encoding/zero-testing. Proposition 2 describes the shape of the equivalent secret
of PTS under an assumption.

Proposition 2.

(1) If PTS′ is an equivalent secret of PTS, then PPF − PNF × PTS′ ∈ 〈g〉.
(2) Assume that PNF and g are co-prime. If PPF − PNF × PTS′ ∈ 〈g〉, then

PTS′ is an equivalent secret of PTS.

Proof. (1) is clear by considering (3) of Proposition 1. If PPF −PNF ×PTS′ ∈
〈g〉, then PNF × (PTS′ − PTS) ∈ 〈g〉. According to our assumption, we have
(PTS′ − PTS) ∈ 〈g〉, hence (2) is proven. �
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Now we want to find an equivalent secret of PTS. From viewpoint of multi-
linear map, this is a division operation: We “divide” PPF by PNF to obtain
PTS′. Under our assumption, we only need to find a vector PTS′ ∈ R such that
PPF − PNF × PTS′ ∈ 〈g〉 without caring about the size of PTS′. To do so we
only need to obtain a “bad” description of 〈g〉. That is, we only need to obtain
a public basis of the lattice 〈g〉; for example, the Hermite normal form. This is
not a difficult task, and in Appendix C we will present our method for doing so.
After obtaining a public basis G, the condition PPF − PNF × PTS′ ∈ 〈g〉 is
transformed into an equivalent condition

PPF × G−1 − PTS′ × PNF × G−1 ∈ R,

where G−1 is the inverse matrix of G, and

PNF =

⎡

⎢⎢⎢⎣

PNF0 PNF1 · · · PNFn−1

−PNFn−1 PNF0 · · · PNFn−2

...
...

. . .
...

−PNF1 −PNF2 · · · PNF0

⎤

⎥⎥⎥⎦ .

Take each entry of PPF ×G−1 and PNF ×G−1 as the form of reduced fraction,
and take lcm as the least common multiple of all denominators, and then the
condition is transformed into another equivalent condition

(lcm × PPF × G−1)(mod lcm)
= PTS′ × (lcm × PNF × G−1)(mod lcm).

This is a linear equation modular lcm, and it is easy to obtain a solution PTS′.
After that we take our modified Encoding/zero-testing, exactly the same as in
Sect. 4. Denote η = PTS′. Compute η′ = Y η. Compute η′′ = η′(mod X(1)).
Compute η′′′ = y(x(1))−1η′′(mod q). Then, high-order bits of η′′′ are what we
want to obtain. The instance has been broken.

We can explain that temporary assumption O(K2) > K2 is not needed for
a successful attack. For smaller number of pieces, we can always generate com-
bined pieces, second-order combined pieces, third-order combined pieces, . . .,
step by step, until we can easily obtain a combined X3C. From this combined
X3C, each set is a piece or a combined piece or a second-order combined piece or
a third-order combined piece or . . ., rather than only a piece or a combined piece
or a second-order combined piece. Then, we can obtain all positive and negative
factors, which can be defined step by step. In other words, we can sequentially
define positive/negative factors attached to a third-order combined piece, to a
fourth-order combined piece, . . ., and so on. Finally, we can break the instance by
using the same procedure. The difference is merely a more complicated descrip-
tion. A question left is whether the assumption “PNF and g are co-prime” is
a plausible case. It means that g and each factor of PNF are co-prime. The
answer is seemingly yes. A test which we haven’t run is that we take two dif-
ferent combined X3Cs, so that we obtain two different values of PNF . If they
finally obtain the same high-order bits of η′′′, we can believe the assumption is
true for two values of PNF .
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6 Breaking the Instance of WE Based on the Hardness of
Exact-3-cover Problem with Hidden Tools for Encoding

6.1 Preparing Work (1): Finding Level-2 Encodings of 0

Take two pieces {i1, i2, i3} and {j1, j2, j3} which do not intersect. From other
pieces, randomly choose two pieces {k1, k2, k3} and {l1, l2, l3}, then the prob-
ability that {k1, k2, k3} ∪ {l1, l2, l3} = {i1, i2, i3} ∪ {j1, j2, j3} is about 1

C6
3K

,

which is polynomially small. From all of N(K) = O(K2) pieces, we con-
struct all sets of 4 pieces, and we estimate the average number of such sets
of 4 pieces {{i1, i2, i3}, {j1, j2, j3}, {k1, k2, k3}, {l1, l2, l3}} that {i1, i2, i3} and
{j1, j2, j3} do not intersect, and {k1, k2, k3}∪{l1, l2, l3} = {i1, i2, i3}∪{j1, j2, j3}.

This number is of the order of magnitude
C4

O(K2)

C6
3K

, meaning that we have
“many” such sets. At least finding one such set is noticeable. Take one of such
sets {{i1, i2, i3}, {j1, j2, j3}, {k1, k2, k3}, {l1, l2, l3}} and corresponding encodings
{V {i1,i2,i3}, V {j1,j2,j3}, V {k1,k2,k3}, V {l1,l2,l3}}, then

(
V {i1,i2,i3}V {j1,j2,j3} − V {k1,k2,k3}V {l1,l2,l3})(mod q) = ugz−2(mod q),

where u is very small. We call it a level-2 encoding of 0. According to the state-
ment above, we have “many” level-2 encodings of 0. Here we fix and remember
one such encoding of 0, and call it V ∗. Correspondingly, we fix and remember u.

6.2 Preparing Work (2): Supplement and Division

Take a combined X3C. Obtain CPF and CNF , collections of positive and nega-
tive factors. Suppose NPF ≤ 2K−2 (therefore NNF = NPF −K ≤ K−2. It is
easy to see that this case is noticeable). Take a piece {i1, i2, i3} and supplement
it 2K − NPF times into CPF , so that we have new NPF = 2K. Similarly,
supplement such a piece {i1, i2, i3} K − NNF = 2K − NPF times into CNF ,
so that we have a new NNF = K. We fix and remember the piece {i1, i2, i3}.

Then, we divide the collection CPF into two subcollections, CPF (1) and
CPF (2), where

(1) ‖CPF (1)‖ = ‖CPF (2)‖ = K. That is, CPF (1) and CPF (2) are of equal
size.

(2) CPF (2) contains {i1, i2, i3} at least twice.
(3) CPF (1) contains two pieces {j1, j2, j3} and {k1, k2, k3} which do not inter-

sect. We fix and remember these two pieces {j1, j2, j3} and {k1, k2, k3}.

The purpose of such supplementation and division is the convenience for
level-K zero-testing.
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6.3 Preparing Work (3): Constructing the Equation

We have fixed and remembered five elements: V ∗ (a level-2 encoding of 0), u
(V ∗ = ugz−2(mod q)), {i1, i2, i3} (a piece contained by CPF (2) at least twice),
{j1, j2, j3} and {k1, k2, k3} (they are from CPF (1), and do not intersect each
other). Now we denote four elements as follows.

Dec(P (1)) = pztV
∗ ∏

pf∈CPF (1)−{{j1,j2,j3},{k1,k2,k3}}
V (pf)(mod q),

Dec(P (2)) = pztV
∗ ∏

pf∈CPF (2)−{{i1,i2,i3},{i1,i2,i3}}
V (pf)(mod q),

Dec(N) = pztV
∗ ∏

nf∈CNF−{{i1,i2,i3},{i1,i2,i3}}
V (nf)(mod q),

Dec(Original) = hV ∗g−1z2
∏

k∈{1,...,3K}−{j1,j2,j3,k1,k2,k3}
v(k)(mod q).

We can rewrite Dec(P (1)), Dec(P (2)), Dec(N), Dec(Original), as follows.

Dec(P (1)) = hu
∏

pf∈CPF (1)−{{j1,j2,j3},{k1,k2,k3}}
(v(pf)(1 + ag) + u(pf,1)b(1)g + u(pf,2)b(2)g),

Dec(P (2)) = hu
∏

pf∈CPF (2)−{{i1,i2,i3},{i1,i2,i3}}
(v(pf)(1 + ag) + u(pf,1)b(1)g + u(pf,2)b(2)g),

Dec(N) = hu
∏

nf∈CNF−{{i1,i2,i3},{i1,i2,i3}}
(v(nf)(1 + ag) + u(nf,1)b(1)g + u(nf,2)b(2)g),

Dec(Original) = hu
∏

k∈{1,...,3K}−{j1,j2,j3,k1,k2,k3}
v(k).

Notice that {a, b(1), b(2)} has been fixed and remembered in Subsect. 2.2. Four
facts about {Dec(P (1)),Dec(P (2)),Dec(N),Dec(Original)} are as follows.

(1) They are all somewhat small.
(2) Dec(P (1)), Dec(P (2)), Dec(N) can be obtained, while Dec(Original) can-

not.
(3) We have the equation

Dec(P (1)) × Dec(P (2)) − Dec(N) × Dec(Original) ∈ 〈(hu)2g〉 ⊂ 〈hu2g〉.

This equation is clear by considering the encoding procedure and definitions
of {Dec(P (1)),Dec(P (2)),Dec(N),Dec(Original)}.

(4) Conversely, suppose there is D′ ∈ R such that

Dec(P (1)) × Dec(P (2)) − Dec(N) × D′ ∈ 〈hu2g〉.

Then, D′ is the sum of Dec(Original) and an element of 〈ug〉. Here we use
a small assumption that Dec(N)

u and (ug) are co-prime, which is noticeable.
In other words, D′ is a solution of the equation

Dec(P (1)) × Dec(P (2)) ≡ Dec(N) × D′(mod 〈hu2g〉),
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if and only if D′ is the sum of Dec(Original) and an element of 〈ug〉. Here
“mod 〈hu2g〉” is general lattice modular operation by using a basis of the
lattice 〈hu2g〉. We call D′ “an equivalent secret” of Dec(Original). Notice
that such new type of “equivalent secret” and original secret are congruent
modular 〈ug〉 rather than modular 〈g〉.

6.4 Solving the Equation: Finding “An Equivalent Secret”

We want to obtain “an equivalent secret” of Dec(Original) without caring about
the size. To do so we only need to obtain a basis of the lattice 〈hu2g〉 (the “bad”
basis). If we can obtain many elements of 〈hu2g〉 which are somewhat small,
obtaining a basis of 〈hu2g〉 is not hard work. Arbitrarily take K − 4 pieces
{piece(1), piece(2), . . . , piece(K −4)} without caring whether they are repeated.
Then,

pzt(V ∗)2
K−4∏

k=1

V (piece(k))(mod q) =

hu2g
K−4∏

k=1

(v(piece(k))(1 + ag) + u(piece(k),1)b(1)g + u(piece(k),2)b(2)g) ∈ 〈hu2g〉.

Thus, we can generate enough elements of 〈hu2g〉 which are somewhat small.
This fact implies that finding a D′ may be easy.

6.5 Reducing the Zero-Tested Noise Much Smaller

Suppose we have obtained D′, “an equivalent secret” of Dec(Original). D′ is
the sum of Dec(Original) and an element of 〈ug〉, and D′ is not a short vector.
Arbitrarily take an element of 〈hu2g〉 which is somewhat small, and call it V ∗∗.
Compute V ∗∗∗ = D′(mod V ∗∗). Two facts about V ∗∗∗ are as follows.

(1) V ∗∗∗ = Dec(Original) + V ∗∗∗∗, where V ∗∗∗∗ ∈ 〈ug〉.
(2) Both V ∗∗∗ and Dec(Original) are somewhat small, so that V ∗∗∗∗ is some-

what small.

Then, compute

V # = V ∗∗∗V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1(mod q)

=
[(

Dec(Original) × V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1
)

+
(
V ∗∗∗∗ × V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1

)]
(mod q).

Two facts about V # are as follows.
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(1)
(

Dec (Original) × V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1
)
(mod q)

= hg−1V (j1,j2,j3)V (k1,k2,k3)z2
∏

k∈{1,...,3K}−{j1,j2,j3,k1,k2,k3}
v(k)(mod q)

= hg−1(v(j1,j2,j3)(1 + ag) + u((j1,j2,j3),1)b(1)g + u((j1,j2,j3),2)b(2)g)
(v(k1,k2,k3)(1 + ag) + u((k1,k2,k3),1)b(1)g + u((k1,k2,k3),2)b(2)g)

∏

k∈{1,...,3K}−{j1,j2,j3,k1,k2,k3}
v(k) (mod q)

Therefore, its high-order bits are the secret key.
(2)

(
V ∗∗∗∗ × V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1

)
(mod q)

= V ∗∗∗∗(ug)−1(v(j1,j2,j3)(1 + ag) + u((j1,j2,j3),1)b(1)g + u((j1,j2,j3),2)b(2)g)
(v(k1,k2,k3)(1 + ag) + u((k1,k2,k3),1)b(1)g + u((k1,k2,k3),2)b(2)g) (mod q).

It is somewhat small because V ∗∗∗∗ is somewhat small, V ∗∗∗∗ is a multiple
of (ug), and (ug) and

(v(j1,j2,j3)(1 + ag) + u((j1,j2,j3),1)b(1)g + u((j1,j2,j3),2)b(2)g) ×
(v(k1,k2,k3)(1 + ag) + u((k1,k2,k3),1)b(1)g + u((k1,k2,k3),2)b(2)g)

have same size.

These two facts mean that high-order bits of V # are the secret key. The
instance has been broken.

6.6 A Note

We have assumed that original NPF ≤ 2K−2, and have supplemented pieces to
make a new NPF = 2K. In fact, we can assume that original NPF ≤ 3K − 2,
and supplement pieces to make a new NPF = 3K. In this case, we can still
break the instance, but our attack will be a little bit more complicated.

7 Cryptanalysis of Two Simple Revisions of GGH Map

7.1 The First Simple Revision of GGH Map and Corresponding
MKE

The first simple revision of GGH map is described as follows. All parameters
of GGH map are reserved, except that we change encoding parameter y into
encoding parameters {y(i), i = 1, 2}, and accordingly we change Level-K zero-
testing parameter pzt into Level-K zero-testing parameters {p

(i)
zt , i = 1, 2}.
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Our encoding parameters are {y(i), i = 1, 2}, where y(i) = (y(0,i) + a(i)g)z−1

(mod q), {y(0,i), a(i), i = 1, 2} are very small and are kept secret. We can see that
{y(i), i = 1, 2} are encodings of secret elements {y(0,i), i = 1, 2}, rather than
encodings of 1. Accordingly, our level-K zero-testing parameters are {p

(i)
zt , i =

1, 2}, where p
(i)
zt = hy(0,i)zKg−1(mod q).

Suppose a user has a secret (v(1), v(2)) ∈ R2, where v(1) and v(2) are short
elements. He/she secretly samples short elements {u(i) ∈ R, i = 1, 2}. He/she
computes noisy encoding V = (v(1)y(1) +v(2)y(2))+(u(1)x(1) +u(2)x(2))(mod q).
He/she publishes V . Then, the first revision of GGH map includes K, {y(i), i =
1, 2}, {x(i), i = 1, 2}, {p

(i)
zt , i = 1, 2}, and all noisy encoding V for all users. To

guarantee our attack work, we assume that 2K is polynomially large.
Suppose that K + 1 users want to generate KEY , a commonly shared

key by public discussion. To do so, each user k generates his/her secret
(v(k,1), v(k,2)), and publishes the noisy encoding V (k), k = 1, . . . , K + 1. Then,
each user can use his/her secret and other users’ noisy encodings to com-
pute KEY , the commonly shared key. For example, user k0 first computes
(v(k0,1)p

(1)
zt + v(k0,2)p

(2)
zt )

∏
k �=k0

V (k)(mod q), then takes KEY as its high-order
bits. It is easy to see that

(v(k0,1)p
(1)
zt + v(k0,2)p

(2)
zt )

∏

k �=k0

V (k)(mod q) = (A + B(k0))(mod q),

such that

A = hg−1
∑

(j1,...,jK+1)∈{1,2}K+1

v(K+1,jK+1)y(0,jK+1)
K∏

k=1

v(k,jk)(y(0,jk) + a(jk)g)(mod q),

which has no relation with user k0; B(k0) is the sum of several terms which are
somewhat small. If related parameters are small enough, KEY is high-order bits
of A(mod q).

7.2 Generating “Equivalent Secret”

For the secret (v(1), v(2)) ∈ R2, we construct an “equivalent secret (v′(1), v′(2)) ∈
R2”, such that
(
v(1)(y(0,1)+a(1)g)+v(2)(y(0,2)+a(2)g)

)
−

(
v′(1)(y(0,1)+a(1)g)+v′(2)(y(0,2)+a(2)g)

)

is a multiple of g. An equivalent requirement is that (v(1)y(0,1) + v(2)y(0,2)) −
(v′(1)y(0,1) + v′(2)y(0,2)) is a multiple of g. That is enough, and we do not need
(v′(1), v′(2)) small. Take V , the noisy encoding of (v(1), v(2)), we compute special
element

W ∗ = V (y(1))K−2x(1)p
(1)
zt (mod q) = hy(0,1)

[
v(1)(y(0,1) + a(1)g)K−1b(1)

+ v(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1)

+ u(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1)

+ u(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
.
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Notice that

(1) Right side of this equation has no operation “mod q”, therefore W ∗ is some-
what small.

(2) Four vectors hy(0,1)(y(0,1) + a(1)g)K−1b(1), hy(0,1)(y(0,2) + a(2)g)(y(0,1) +
a(1)g)K−2b(1), hy(0,1)(b(1)g)(y(0,1) + a(1)g)K−2b(1) and hy(0,1)(b(2)g)(y(0,1) +
a(1)g)K−2b(1) can be obtained.

Now we start to find (v′(1), v′(2)). First, compute W ∗(mod hy(0,1)(y(0,1) +
a(1)g)K−1b(1)). Second, compute {v′(2), u′(1), u′(2)} such that

W ∗(mod h y(0,1)(y(0,1) + a(1)g)K−1b(1)) =

h y(0,1)[v′(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1)+

u ′(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1)+

u ′(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
(mod hy(0,1)(y(0,1) + a(1)g)K−1b(1)).

Solving this modular equation is quite easy algebra, as shown in Appendix A.
Solutions are not unique, therefore {v′(2), u′(1), u′(2)} �= {v(2), u(1), u(2)}. Third,
compute v′(1) such that

W ∗ = hy(0,1)
[
v′(1)(y(0,1) + a(1)g)K−1b(1)

+ v′(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1)

+ u′(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1)

+ u′(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
,

which is another version of easy algebra. Finally, we obtain (v′(1), v′(2)), and
can easily check that (v(1)(y(0,1) + a(1)g) + v(2)(y(0,2) + a(2)g)) − (v′(1)(y(0,1) +
a(1)g) + v′(2)(y(0,2) + a(2)g)) is a multiple of g, although v′(1) and v′(2) are not
short vectors.

7.3 Generalization of Modified Encoding/zero-testing: Our Attack
on MKE

Suppose K + 1 users hide (v(k,1), v(k,2)) and publish V (k), k = 1, . . . , K + 1, and
for each user k we have obtained an equivalent secret (v′(k,1), v′(k,2)). For each
“K + 1-dimensional boolean vector” (j1, . . . , jK+1) ∈ {1, 2}K+1, we denote two
products

v(j1,...,jK+1) =
K+1∏

k=1

v(k,jk),

v′(j1,...,jK+1) =
K+1∏

k=1

v′(k,jk).

v(j1,...,jK+1) is clearly smaller than “somewhat small”, because it does not
include h. v′(j1,...,jK+1) is not a short vector. v(j1,...,jK+1) cannot be obtained,
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while v′(j1,...,jK+1) can. Suppose former K entries {j1, . . . , jK} include N1 1s and
N2 2s, N1 + N2 = K. We denote the supporter s(j1,...,jK+1) as follows.

s(j1,...,jK+1) = hy(0,jK+1)(y(0,1) + a(1)g)N1−1(y(0,2) + a(2)g)N2b(1) for N1 ≥ N2,

s(j1,...,jK+1) = hy(0,jK+1)(y(0,1) + a(1)g)N1(y(0,2) + a(2)g)N2−1b(1) for N1 < N2.

s(j1,...,jK+1) can be obtained. If N1 ≥ N2, s(j1,...,jK+1) = p
(jK+1)
zt (y(1))N1−1

(y(2))N2x(1)(mod q), and if N1 < N2, s(j1,...,jK+1) = p
(jK+1)
zt (y(1))N1(y(2))N2−1

x(1)(mod q). s(j1,...,jK+1) is somewhat small. Then, we denote

V (N1≥N2) =
2∑

jK+1=1

∑

N1≥N2

v(j1,...,jK+1)s(j1,...,jK+1),

V (N1<N2) =
2∑

jK+1=1

∑

N1<N2

v(j1,...,jK+1)s(j1,...,jK+1),

V ′(N1≥N2) =
2∑

jK+1=1

∑

N1≥N2

v′(j1,...,jK+1)s(j1,...,jK+1),

V ′(N1<N2) =
2∑

jK+1=1

∑

N1<N2

v′(j1,...,jK+1)s(j1,...,jK+1).

V (N1≥N2) and V (N1<N2) are somewhat small, while V ′(N1≥N2) and V ′(N1<N2)

are not short vectors. V (N1≥N2) and V (N1<N2) cannot be obtained, while
V ′(N1≥N2) and V ′(N1<N2) can be obtained, because v′(j1,...,jK+1)s(j1,...,jK+1) can
be obtained for each (j1, . . . , jK+1) ∈ {1, 2}K+1, and 2K is polynomially large.
Another fact is that ξ∗ is a multiple of b(1)g, where

ξ∗ = (y(0,1) + a(1)g)(V ′(N1≥N2) − V (N1≥N2)) + (y(0,2) + a(2)g)(V ′(N1<N2) − V (N1<N2)).

There are two reasons: (1) By considering the definitions of equivalent
secrets, we know that ξ∗ is a multiple of g. (2) By considering the definition of
s(j1,...,jK+1), we know that ξ∗ is a multiple of b(1). Here we use a small assump-
tion that b(1) and g are co-prime. Notice that ξ∗ is not a short vector, and that
ξ∗ cannot be obtained. Then, we compute a tool for the modular operations,

M = hy(0,1)(b(1))KgK−1 = p
(1)
zt (x(1))K(mod q).

For the same reason, M is somewhat small. Then, we compute the modular
operations

V ′′(N1≥N2) = V ′(N1≥N2)(mod M),

V ′′(N1<N2) = V ′(N1<N2)(mod M).
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Both V ′′(N1≥N2) and V ′′(N1<N2) are somewhat small. Therefore, both
V ′′(N1≥N2) − V (N1≥N2) and V ′′(N1<N2) − V (N1<N2) are somewhat small. There-
fore, both (y(0,1)+a(1)g)(V ′′(N1≥N2)−V (N1≥N2)) and (y(0,2)+a(2)g)(V ′′(N1<N2)−
V (N1<N2)) are somewhat small. Therefore,

ξ∗∗ = (y(0,1) +a(1)g)(V ′′(N1≥N2) −V (N1≥N2))+(y(0,2) +a(2)g)(V ′′(N1<N2) −V (N1<N2))

is somewhat small. On the other hand, ξ∗∗ is a multiple of b(1)g, because ξ∗ is a
multiple of b(1)g. Therefore, ξ∗∗/(b(1)g) is somewhat small. Finally,

ξ∗∗

(b(1)g)
= ξ∗∗(b(1)g)−1(mod q)

=
[(

(y(0,1) + a(1)g)V ′′(N1≥N2) + (y(0,2) + a(2)g)V ′′(N1<N2)
)

(b(1)g)−1 − A
]

(mod q),

which means that KEY is high-order bits of
[(

(y(0,1) + a(1)g)V ′′(N1≥N2) + (y(0,2) + a(2)g)V ′′(N1<N2)
)
(b(1)g)−1

]
(mod q),

which can be obtained, because (y(0,1) + a(1)g)(b(1)g)−1(mod q) and (y(0,2) +
a(2)g)(b(1)g)−1(mod q) can be obtained.

7.4 The Second Simple Revision of GGH Map and Its Cryptanalysis

The second simple revision of GGH map is described as follows. All parameters
of the first simple revision are reserved, except that we change K-order zero-
testing parameters {p

(i)
zt = hy(0,i)zKg−1(mod q), i = 1, 2} into {p

(i)
zt = (y(0,i) +

h(i)g)zKg−1(mod q), i = 1, 2}, where both h(1) and h(2) are somewhat small
sampled with standard deviation

√
q. MKE is just the same procedure as the

first simple revision, except for the different {p
(i)
zt , i = 1, 2}. Such a structure can

be taken as a simplified version of Gu map-1 [25]. Our cryptanalysis obtains the
same result: MKE can be broken under the assumption that 2K is polynomially
large. The deduction procedure is almost same, and we present it in Appendix D.

8 Some Considerations and Remaining Questions

There are many different variants of the GGH construction that one can con-
sider, below we briefly discuss one of them. The variant which seems to defeat
our attacks is using non-commutative operations (e.g., using matrices). However
this greatly reduces the usability of this construction, for example the WE con-
struction based on X3C requires commutativity. Other variants are under our
study.

Trying to find extensions of these attacks and their limitations remains an
interesting research direction. For example, we do not know whether the two
simple revisions that we analyzed above can be used to construct a secure WE
scheme based on X3C. It will also be very interesting to find a way to use our
attacks against GGH-based obfuscation schemes.
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B. Arbitrarily take a subset {i1, i2, i3} which is not a piece. We will compute

P ({i1, i2, i3} is not a combined piece). First, we take a random experiment: ran-
domly choosing 3 subsets {j1, j2, j3}, {k1, k2, k3}, {l1, l2, l3} from {1, 2, . . . , 3K}.
Then, the probability of such event:

{j1, j2, j3} ∪ {k1, k2, k3} ⊃ {i1, i2, i3},

{l1, l2, l3} = {j1, j2, j3} ∪ {k1, k2, k3} − {i1, i2, i3},

is
C3

3KC3
6

(C3
3K)3

≈ 1
K6

.

Second, from O(K2) pieces we generate all 3-tuples of 3 pieces {{j1, j2, j3},
{k1, k2, k3}, {l1, l2, l3}}. We know there are O(K2)(O(K2) − 1)(O(K2) − 2) 3-
tuples. Then, the probability of such event: there is no a 3-tuples {{j1, j2, j3},
{k1, k2, k3}, {l1, l2, l3}}, such that

{j1, j2, j3} ∪ {k1, k2, k3} ⊃ {i1, i2, i3},

{l1, l2, l3} = {j1, j2, j3} ∪ {k1, k2, k3} − {i1, i2, i3},

is about
(
1 − 1

K6

)O(K2)(O(K2)−1)(O(K2)−2)

≈ exp
{

− (O(K2))3

K6

}
.

C. We need to obtain Hermite normal form G =

⎡

⎣
G0
G1 1

...
. . .

Gn−1 1

⎤

⎦, where each row

of G is an element of 〈g〉, G0 is the absolute value of the determinant of the

matrix

⎡

⎣
g0 g1 ··· gn−1

−gn−1 g0 ··· gn−2

...
...

. . .
...−g1 −g2 ··· g0

⎤

⎦, and Gi(mod G0) = Gi for i = 1, . . . , n − 1.

For a principal ideal 〈g′〉, we call the determinant of

⎡

⎢⎣

g′
0 g′

1 ··· g′
n−1

−g′
n−1 g′

0 ··· g′
n−2

...
...

. . .
...

−g′
1 −g′

2 ··· g′
0

⎤

⎥⎦

corresponding determinant of 〈g′〉. We use the definition of parallel piped [26].
For a vector α ∈ R, we call the set PP (α) = {z ∈ R : z(mod α) = z} parallel
piped of α.

Two Facts. We have {Y,X(i), i = 1, 2}, therefore we can obtain hermite normal
forms of the principal ideals {〈Y 〉, 〈X(i)〉, i = 1, 2}.

Suppose Hermite normal form of the principal ideal 〈g′〉 is

⎡

⎢⎣

G′
0

G′
1 1

...
. . .

G′
n−1 1

⎤

⎥⎦,
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g ∈ R is a factor of g′, and absolute value of corresponding determi-
nant of 〈g〉 is G0. Then, Hermite normal form of the principal ideal 〈g〉 is⎡

⎢⎣

G0
G′

1(mod G0) 1

...
. . .

G′
n−1(mod G0) 1

⎤

⎥⎦.

Computing Hermite Normal Form of 〈h(1 + ag)K−2b(1)〉. We take a
trivial assumption that 1 + ag and b(1)g are co-prime.

Step 1. By using {Y, (−Yn−1, Y0, . . . , Yn−2), . . . , (−Y1, . . . ,−Yn−1, Y0)} as the
basis, Gaussian sample Z, with sufficiently large deviation.

Step 2. Compute Z ′ = Z(mod X(1)). Then, Z ′ is uniformly distributed over the
intersection area 〈h(1+ag)K−2b(1)〉∩PP (X(1)). Algebra and Gaussian sampling
theory have proven this result.

Step 3. Compute absolute value of corresponding determinant of 〈Z ′〉.
Step 4. Repeat Step 1∼3 polynomially many times, so that we obtain polyno-
mially many absolute values of corresponding determinant.

Step 5. Compute the greatest common divisor of these polynomially many
absolute values. Then, the greatest common divisor should be absolute value of
corresponding determinant of 〈h(1 + ag)K−2b(1)〉. By considering a fact stated
in last subsection, we obtain Hermite normal form of 〈h(1 + ag)K−2b(1)〉.
Computing Hermite Normal Form of 〈h(1 + ag)K−2b(1)g〉. We take a
trivial assumption that b(1) and b(2) are co-prime. The procedure is similar to
last subsection.

Step 1. By using {X(2), (−X
(2)
n−1,X

(2)
0 , . . . , X

(2)
n−2), . . . , (−X

(2)
1 , . . . ,−X

(2)
n−1,

X
(2)
0 )} as the basis, Gaussian sample Z, with sufficiently large deviation.

Step 2. Compute Z ′ = Z(mod X(1)). Then, Z ′ is uniformly distributed over
the intersection area 〈h(1 + ag)K−2b(1)g〉 ∩ PP (X(1)).

Step 3. Compute absolute value of corresponding determinant of 〈Z ′〉.
Step 4. Repeat Step 1∼3 polynomially many times, so that we obtain polyno-
mially many absolute values of corresponding determinant.

Step 5. Compute the greatest common divisor of these polynomially many
absolute values. Then, the greatest common divisor should be absolute value of
corresponding determinant of 〈h(1+ag)K−2b(1)g〉, therefore, we obtain Hermite
normal form of 〈h(1 + ag)K−2b(1)g〉.
Obtaining Hermite Normal Form of 〈g〉. Divide absolute value of corre-
sponding determinant of 〈h(1+ag)K−2b(1)g〉 by absolute value of corresponding
determinant of 〈h(1+ag)K−2b(1)〉. Then, we obtain absolute value of correspond-
ing determinant of 〈g〉, therefore we obtain Hermite normal form of 〈g〉.



Cryptanalysis of GGH Map 563

D. Here we use several symbols which have been used for analyzing the
first simple revision of GGH map. User k0 first computes (v(k0,1)p

(1)
zt +

v(k0,2)p
(2)
zt )

∏
k �=k0

V (k)(mod q), then takes KEY as its high-order bits. It is easy
to see that

(v(k0,1)p
(1)
zt + v(k0,2)p

(2)
zt )

∏

k �=k0

V (k)(mod q) = (A + B(k0))(mod q),

such that

A = g−1
∑

(j1,...,jK+1)∈{1,2}K+1

v(K+1,jK+1)(y(0,jK+1) + h(jK+1)g)
K
∏

k=1

v(k,jk)(y(0,jk) + a(jk)g)(mod q),

which has no relation with user k0; B(k0) is the sum of several terms which are
somewhat small. If related parameters are small enough, KEY is high-order bits
of A(mod q).

Generating “Equivalent Secret”. For the secret (v(1), v(2)) ∈ R2, we con-
struct an “equivalent secret (v′(1), v′(2)) ∈ R2”, such that
(
v(1)(y(0,1)+a(1)g)+v(2)(y(0,2)+a(2)g)

)
−

(
v′(1)(y(0,1)+a(1)g)+v′(2)(y(0,2)+a(2)g)

)

is a multiple of g. One equivalent requirement is that (v(1)y(0,1) + v(2)y(0,2)) −
(v′(1)y(0,1)+v′(2)y(0,2)) is a multiple of g. Another equivalent requirement is that
(
v(1)(y(0,1)+h(1)g)+v(2)(y(0,2)+h(2)g)

)
−

(
v′(1)(y(0,1)+h(1)g)+v′(2)(y(0,2)+h(2)g)

)

is a multiple of g. That is enough, and we do not need (v′(1), v′(2)) small. Take
V , the noisy encoding of (v(1), v(2)), we compute special element

W ∗ = V (y(1))K−2x(1)p
(1)
zt (mod q) = (y(0,1) + h(1)g)

[
v(1)(y(0,1) + a(1)g)K−1b(1)

+ v(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1)

+ u(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1)

+ u(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
.

Notice that

(1) Right side of this equation has no operation “mod q”, therefore W ∗ is some-
what small.

(2) Four vectors (y(0,1) + h(1)g)(y(0,1) + a(1)g)K−1b(1), (y(0,1) + h(1)g)(y(0,2) +
a(2)g)(y(0,1) +a(1)g)K−2b(1), (y(0,1) +h(1)g)(b(1)g)(y(0,1) +a(1)g)K−2b(1) and
hy(0,1)(b(2)g)(y(0,1) + a(1)g)K−2b(1) can be obtained.

Now we start to find (v′(1), v′(2)). First, compute W ∗(mod (y(0,1)+h(1)g)(y(0,1)+
a(1)g)K−1b(1)). Second, compute {v′(2), u′(1), u′(2)} such that
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W ∗(mod (y(0,1) + h(1) g)(y(0,1) + a(1)g)K−1b(1)) =

(y(0,1) + h(1) g)
[
v′(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1)

+ u′(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1)

+ u′(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
(mod (y(0,1)

+ h(1)g)(y(0,1) + a(1)g)K−1b(1)).

Solving this modular equation is quite easy algebra, as in Appendix A. Solutions
are not unique, therefore {v′(2), u′(1), u′(2)} �= {v(2), u(1), u(2)}. Third, compute
v′(1) such that

W ∗ = (y(0,1) + h(1)g)
[
v′(1)(y(0,1) + a(1)g)K−1b(1)

+ v′(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1)

+ u′(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1)

+ u′(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
,

which is another easy algebra. Finally, we obtain (v′(1), v′(2)), and can easily
check that (v(1)(y(0,1) + a(1)g) + v(2)(y(0,2) + a(2)g)) − (v′(1)(y(0,1) + a(1)g) +
v′(2)(y(0,2) + a(2)g)) is a multiple of g, although v′(1) and v′(2) are not short vec-
tors.

Generalization of Modified Encoding/zero-testing: Our Attack on
MKE. Suppose K+1 users hide (v(k,1), v(k,2)) and publish V (k), k = 1, . . . , K+1,
and for each user k we have obtained equivalent secret (v′(k,1), v′(k,2)). For each
“K + 1-dimensional boolean vector” (j1, . . . , jK+1) ∈ {1, 2}K+1, we denote two
products

v(j1,...,jK+1) =
K+1∏

k=1

v(k,jk),

v′(j1,...,jK+1) =
K+1∏

k=1

v′(k,jk).

v(j1,...,jK+1) is clearly smaller than “somewhat small”, because it does not
contain h(1) and h(2). v′(j1,...,jK+1) is not a short vector. v(j1,...,jK+1) cannot be
obtained, while v′(j1,...,jK+1) can. Suppose former K entries {j1, . . . , jK} include
N1 1s and N2 2s, N1 +N2 = K. We denote the supporter s(j1,...,jK+1) as follows.

s(j1,...,jK+1) = (y(0,jK+1)+h(jK+1)g)(y(0,1)+a(1)g)N1−1(y(0,2)+a(2)g)N2b(1) for N1 ≥ N2,

s(j1,...,jK+1) = (y(0,jK+1)+h(jK+1)g)(y(0,1)+a(1)g)N1 (y(0,2)+a(2)g)N2−1b(1) for N1 < N2.

s(j1,...,jK+1) can be obtained. If N1 ≥ N2, s(j1,...,jK+1) =
p
(jK+1)
zt (y(1))N1−1(y(2))N2x(1)(mod q), and if N1 < N2, s(j1,...,jK+1) =

p
(jK+1)
zt (y(1))N1(y(2))N2−1x(1)(mod q). s(j1,...,jK+1) is somewhat small. Then, we

denote

V (N1≥N2) =
2∑

jK+1=1

∑

N1≥N2

v(j1,...,jK+1)s(j1,...,jK+1),
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V (N1<N2) =
2∑

jK+1=1

∑

N1<N2

v(j1,...,jK+1)s(j1,...,jK+1),

V ′(N1≥N2) =
2∑

jK+1=1

∑

N1≥N2

v′(j1,...,jK+1)s(j1,...,jK+1),

V ′(N1<N2) =
2∑

jK+1=1

∑

N1<N2

v′(j1,...,jK+1)s(j1,...,jK+1).

V (N1≥N2) and V (N1<N2) are somewhat small, while V ′(N1≥N2) and V ′(N1<N2) are
not short vectors. V (N1≥N2) and V (N1<N2) cannot be obtained, while V ′(N1≥N2)

and V ′(N1<N2) can be obtained, because v′(j1,...,jK+1)s(j1,...,jK+1) can be obtained
for each (j1, . . . , jK+1) ∈ {1, 2}K+1, and 2K is polynomially large. Another fact
is that ξ∗ is a multiple of b(1)g, where

ξ∗ = (y(0,1) + a(1)g)(V ′(N1≥N2) − V (N1≥N2)) + (y(0,2) + a(2)g)(V ′(N1<N2) − V (N1<N2)).

There are two reasons: (1) By considering the definitions of equivalent secrets, we
know that ξ∗ is a multiple of g. (2) By considering the definition of s(j1,...,jK+1),
we know that ξ∗ is a multiple of b(1). Here we use a small assumption that b(1)

and g are co-prime. Notice that ξ∗ is not a short vector, and that ξ∗ cannot be
obtained. Then, we compute a tool for modular operations,

M = (y(0,1) + h(1)g)(b(1))KgK−1 = p
(1)
zt (x(1))K(mod q).

For the same reason, M is somewhat small. Then, we compute the modular
operations

V ′′(N1≥N2) = V ′(N1≥N2)(mod M),

V ′′(N1<N2) = V ′(N1<N2)(mod M).

Both V ′′(N1≥N2) and V ′′(N1<N2) are somewhat small. Therefore, both
V ′′(N1≥N2) − V (N1≥N2) and V ′′(N1<N2) − V (N1<N2) are somewhat small. There-
fore, both (y(0,1)+a(1)g)(V ′′(N1≥N2)−V (N1≥N2)) and (y(0,2)+a(2)g)(V ′′(N1<N2)−
V (N1<N2)) are somewhat small. Therefore,

ξ∗∗ = (y(0,1) + a(1)g)(V ′′(N1≥N2) − V (N1≥N2)) + (y(0,2) + a(2)g)(V ′′(N1<N2) − V (N1<N2))

is somewhat small. On the other hand, ξ∗∗ is a multiple of b(1)g, because ξ∗ is a
multiple of b(1)g. Therefore, ξ∗∗/(b(1)g) is somewhat small. Finally,

ξ∗∗

(b(1)g)
= ξ∗∗(b(1)g)−1(mod q)

=
[(

(y(0,1) + a(1)g)V ′′(N1≥N2) + (y(0,2) + a(2)g)V ′′(N1<N2)
)

(b(1)g)−1 − A
]

(mod q),

which means that KEY is high-order bits of
[(

(y(0,1) + a(1)g)V ′′(N1≥N2) + (y(0,2) + a(2)g)V ′′(N1<N2)
)
(b(1)g)−1

]
(mod q).
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Abstract. AMAC is a simple and fast candidate construction of a PRF
from an MD-style hash function which applies the keyed hash func-
tion and then a cheap, un-keyed output transform such as truncation.
Spurred by its use in the widely-deployed Ed25519 signature scheme, this
paper investigates the provable PRF security of AMAC to deliver the fol-
lowing three-fold message: (1) First, we prove PRF security of AMAC.
(2) Second, we show that AMAC has a quite unique and attractive fea-
ture, namely that its multi-user security is essentially as good as its
single-user security and in particular superior in some settings to that
of competitors. (3) Third, it is technically interesting, its security and
analysis intrinsically linked to security of the compression function in the
presence of leakage.

1 Introduction

This paper revisits a classical question, namely how can we turn a hash function
into a PRF? The canonical answer is HMAC [4], which (1) first applies the keyed
hash function to the message and then (2) re-applies, to the result, the hash
function keyed with another key. We consider another, even simpler, candidate
way, namely to change step (2) to apply a simple un-keyed output transform such
as truncation. We call this AMAC, for augmented MAC. This paper investigates
and establishes provable-security of AMAC, with good bounds, when the hash
function is a classical MD-style one like SHA-512.

Why? We were motivated to determine the security of AMAC by the following.
Usage.AMACwith SHA-512 is used as a PRF in the Ed25519 signature scheme [8].
(AMAC under a key that is part of the signing key is applied to the hashed message
to get coins for a Schnorr-like signature.) Ed25519 is widely deployed, including in
SSH, Tor, OpenBSD and dozens of other places [10]. The security ofAMAC for this
c© International Association for Cryptologic Research 2016
M. Fischlin and J.-S. Coron (Eds.): EUROCRYPT 2016, Part I, LNCS 9665, pp. 566–595, 2016.
DOI: 10.1007/978-3-662-49890-3 22
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usage was questioned in cfrg forum debates on Ed25519 as a proposed standard.
Analysis of AMAC is important to assess security of this usage and allow informed
choices. Speed.AMAC is faster thanHMAC, particularly on short messages. See [3].
Context. Sponge-based PRFs, where truncation is the final step due to its already
being so for the hash function, have been proven secure [1,9,11,17,20]. Our work
can be seen as stepping back to ask if truncation works in a similar way for classical
MD-style hash functions.

Findings in a nutshell. Briefly, the message of this paper is the following: (1)
First, we are able to prove PRF security of AMAC. (2) Second, AMAC has a quite
unique and attractive feature, namely that its multi-user security is essentially as
good as its single-user security and in particular superior in some settings to that
of competitors. (3) Third, it is technically interesting, its security and analysis
intrinsically linked to security of the compression function in the presence of
leakage, so that leakage becomes of interest for reasons entirely divorced from
side-channel attacks. We now step back to provide some background and discuss
our approach and results.

The basic cascade. Let h: {0, 1}c ×{0, 1}b → {0, 1}c represent a compression
function taking a c-bit chaining variable and b-bit message block to return a c-bit
output. The basic cascade of h is the function h∗: {0, 1}c × ({0, 1}b)+ → {0, 1}c

defined by

Basic Cascade h∗(K,X)
Y ← K ; For i = 1, . . . , n do Y ← h(Y,X[i]) ; Return Y

where X is a vector over {0, 1}b whose length is denoted n and whose i-th
component is denoted X[i]. This construct is the heart of MD-style hash func-
tions [13,21] like MD5, SHA-1, SHA-256 and SHA-512, which are obtained by
setting K to a fixed, public value and then applying h∗ to the padded message.

Now we want to key h∗ to get PRFs. We regard h itself as a PRF on domain
{0, 1}b, keyed by its c-bit chaining variable. Then h∗ is the natural candidate
for a PRF on the larger domain ({0, 1}b)+. Problem is, h∗ isn’t secure as a
PRF. This is due to the well-known extension attack. If I obtain Y1 = h∗(K, X1)
for some X1 ∈ {0, 1}b of my choice, I can compute Y2 = h∗(K, X1X2) for any
X2 ∈ {0, 1}b of my choice without knowing K, via Y2 ← h(Y1,X2). This clearly
violates PRF security of h∗.

Although h∗ is not a PRF, BCK2 [5] show that it is a prefix-free PRF.
(A PRF as long as no input on which it is evaluated is a prefix of another. The
two inputs X1,X1X2 of the above attack violate this property.) When b = 1 and
all inputs on which h∗ is evaluated are of the same fixed length, the cascade h∗

is the GGM construction of a PRF from a PRG [18].
To get a full-fledged PRF, NMAC applies h, under another key, to h∗. The

augmented cascade ACSC = Out◦h∗ that we discuss next replaces NMAC’s outer
application of a keyed function with a simple un-keyed one.

Augmented cascade. The augmented cascade is parameterized by some (key-
less) function Out: {0, 1}c → Out.R that we call the output transform, and is
obtained by simply applying this function to the output of the basic cascade:
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Augmented Cascade (Out ◦ h∗)(K,X)
Y ← h∗(K,X) ; Z ← Out(Y ) ; Return Z

AMAC is obtained from ACSC just as HMAC is obtained from NMAC, namely by
putting the key in the input to the hash function rather than directly keying the
cascade: AMAC(K, M) = Out(H(K‖M)). Just as NMAC is the technical core of
HMAC, the augmented cascade is the technical core of AMAC, and our analysis
will focus in it. We will be able to bridge to AMAC quite simply with the tools
we develop.

The ACSC construction was suggested by cryptanalysts with the intuition
that “good” choices of Out appear to allow Out ◦ h∗ to evade the extension
attack and thus possibly be a PRF. To understand this, first note that not all
choices of Out are good. For example if Out is the identity function then the
augmented cascade is the same as the basic one and the attack applies, or if
Out is a constant function returning 0r then Out ◦ h∗ is obviously not a PRF
over range {0, 1}r. Cryptanalysts have suggested some specific choices of Out,
the most important being (1) truncation, where Out: {0, 1}c → {0, 1}r returns,
say, the first r < c bits of its input, or (2) the mod function, as in Ed25519,
where Out treats its input as an integer and returns the result modulo, say, a
public r-bit prime number. Suppose r is sufficiently smaller than c (think c = 512
and r = 256). An adversary querying X1 in the PRF game no longer gets back
Y1 = h∗(K, X1) but rather Z1 = Out(Y1), and this does not allow the extension
attack to proceed. On this basis, and for the choices of Out just named, the
augmented cascade is already seeing extensive usage and is suggested for further
usage and standardization.

This raises several questions. First, that Out◦h∗ seems to evade the extension
attack does not mean it is a PRF. There may be other attacks. The goal is to
get a PRF, not to evade some specific attacks. Moreover we would like a proof
that this goal is reached. Second, for which choices of Out does the construction
work? We could try to analyze the PRF security of Out ◦ h∗ in an ad hoc way
for the specific choices of Out named above, but it would be more illuminating
and useful to be able to establish security in a broad way, for all Out satisfying
some conditions. These are the questions our work considers and resolves.

Connection to leakage. If we want to prove PRF security of Out ◦ h∗, a
basic question to ask is, under what assumption on the compression function h?
The natural one is that h is itself a PRF, the same assumption as for the proof
of NMAC [2,16]. We observe that this is not enough. Consider an adversary who
queries the one-block message X1 to get back Z1 = Out(Y1) and then queries
the two-block message X1X2 to get back Z2 = Out(Y2) where by definition
Y1 = h∗(K, X1) = h(K, X1) and Y2 = h∗(K, X1X2) = h(Y1,X2). Note that Y1 is
being used as a key in applying h to X2. But this key is not entirely unknown
to the adversary because the latter knows Z1 = Out(Y1). If the application of h
with key Y1 is to provide security, it must be in the face of the fact that some
information about this key, namely Out(Y1), has been “leaked” to the adversary.
As a PRF, h must thus be resilient to some leakage on its key, namely that
represented by Out viewed as a leakage function.
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Approach and qualitative results. We first discuss our results at the quali-
tative level and then later at the (in our view, even more interesting) quantitative
level. Theorems 3 and 4 show that if h is a PRF under Out-leakage then Out◦h∗

is indistinguishable from the result of applying Out to a random function. (The
compression function h being a PRF under Out-leakage means it retains PRF
security under key K even if the adversary is given Out(K). The formal defi-
nition is in Sect. 4.) This result makes no assumptions about Out beyond that
implicit in the assumption on h, meaning the result is true for all Out, and is in
the standard model. As a corollary we establish PRF security of Out ◦ h∗ for a
large class of output functions Out, namely those that are close to regular. (This
means that the distribution of Out(Y ) for random Y is close to the uniform
distribution on the range of Out.) In summary we have succeeded in providing
conditions on Out, h under which Out ◦ h∗ is proven to be PRF. Our conditions
are effectively both necessary and sufficient and cover cases proposed for usage
and standardization.

The above is a security proof for the augmented cascade Out ◦ h∗ under the
assumption that the compression function h is resistant to Out leakage. To assess
the validity of this assumption, we analyze the security under leakage of an ideal
compression function. Theorem 6 shows that an ideal compression function is
resistant to Out-leakage as long as no range point of Out has too few pre-images.
This property is in particular true if Out is close to regular. As a result, in
the ideal model, we have a validation of our Out-leakage resilience assumption.
Putting this together with the above we have a proof-based validation of the
augmented cascade.

Multi-user security. The standard definition of PRF security of a function
family F [18] is single user (su), represented by there being a single key K such that
the adversary has access to an oracle Fn that given x returns either F(K, x) or the
result of a random function F on x. But in “real life” there are many users, each
with their own key. If we look across the different entities and Internet connections
active at any time, the number of users/keys is very large. The more appropriate
model is thus a multi-user (mu) one, where, for a parameter u representing the
number of users, there are u keys K1, . . . , Ku. Oracle Fn now takes i, x with 1 ≤
i ≤ u and returns either F(Ki, x) or the result of a random function Fi on x. It is
in this setting that we should address security.

Multi-user security is typically neglected because it makes no qualitative dif-
ference: BCK2 [5], who first formalized the notion, also showed by a hybrid
argument that the advantage of an adversary relative to u users is not more
than u times the advantage of an adversary of comparable resources relative to
a single user. Our Lemma 1 is a generalization of this result. But this degra-
dation in advantage is quite significant in practice, since u is large, and raises
the important question of whether one can do quantitatively better. Clearly one
cannot in general, but perhaps one can for specific, special function families F. If
so, these function families are preferable in practice. This perspective is reflected
in recent work like [22,25].
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These special function families seem quite rare. But we show that the aug-
mented cascade is one of them. In fact we show that mu security gives us a
double benefit in this setting, one part coming from the cascade itself and the
other from the security of the compression function under leakage, the end result
being very good bounds for the mu security of the augmented cascade.

Theorem 3 establishes su security of the augmented cascade based not on
the su, but on the mu security of the compression function under Out-leakage.
The bound is very good, the advantage dropping only by a factor equal to the
maximum length of a query. The interesting result is Theorem 4, establishing
mu security of the augmented cascade under the same assumptions and with
essentially the same bounds as Theorem 3 establishing its su security. In partic-
ular we do not lose a factor of the number of users u in the advantage. This is
the first advance.

Now note that the assumption in both of the above-mentioned results is the
mu (not su) security of the compression function under Out-leakage. Our final
bound will thus depend on this. The second advance is that Theorem 6 shows
mu security of the compression function under Out-leakage with bounds almost
as good as for su security. This represents an interesting result of independent
interest, namely that, under leakage, the mu security of an ideal compression
function is almost as good as its su security. This is not true in the absence of
leakage. The results are summarized via Fig. 4.

Quantitative results. We obtain good quantitative bounds on the mu prf
security of the augmented cascade in the ideal compression function model by
combining our aforementioned results on the mu prf security under leakage of
an ideal compression function with our also aforementioned reduction of the
security of the cascade to the security of the compression function under leakage.
We illustrate these results for the case where the compression function is of form
h: {0, 1}c × {0, 1}b → {0, 1}c and the output transform Out simply outputs the
first r bits of its c-bit input, for r ≤ c. We consider an attacker making at
most q queries to a challenge oracle (that is either the augmented cascade or a
random function), each query consisting of at most � b-bit blocks, and qf queries
to the ideal compression function oracle. We show that such an attacker achieves
distinguishing advantage at most

�2q2 + �qqf
2c

+
cr · (�2q + �qf)

2c−r
, (1)

where we have intentionally omitted constant factors and lower order terms.
Note that this bound holds regardless of the number of users u. Here c is large,
like c = 512, so the first term is small. But c−r is smaller, for example c−r = 256
with r = 256. The crucial merit of the bound of Eq. (1) is that the numerator in
the second term does not contain quadratic terms like q2 or q · qf. In practice,
qf and q are the terms we should allow to be large, so this is significant. To
illustrate, say for example � = 210 (meaning messages are about 128 KBytes if
b = 1024) and qf = 2100 and q = 290. The bound from Eq. (1) is about 2−128,
which is very good. But, had the second term been of the form �2(q2

f
+ q2)/2c−r

then the bound would be only 2−36. See Sect. 8 for more information.
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2-tier cascade. We introduce and use an extension of the basic cascade h∗. Our
2-tier cascade is associated to two function families g, h. Under key K, it applies
g(K, ·) to the first message block to get a sub-key K∗ and the applies h∗(K∗, ·)
to the rest of the message. The corresponding augmented cascade applies Out
to the result. Our results about the augmented cascade above are in fact shown
for the augmented 2-tier cascade. This generalization has both conceptual and
analytical value. We briefly mention two instances. (1) First, we can visualize
mu security of Out◦h∗ as pre-pending the user identity to the message and then
applying the 2-tier cascade with first tier a random function. This effectively
reduces mu security to su security. With this strategy we prove Theorem 4 as
a corollary of Theorem 3 and avoid a direct analysis of mu security. Beyond
providing a modular proof this gives some insight into why the mu security is
almost as good as the su security. (2) Second, just as NMAC is the technical core
and HMAC the function used (because the latter makes blackbox use of the hash
function), in our case the augmented cascade is the technical core but what will
be used is AMAC, defined by AMAC(K, M) = Out(H(K, M)) where H is the
hash function derived from compression function h: {0, 1}c × {0, 1}b → {0, 1}c

and K is a k-bit key. For the analysis we note (assuming k = b) that this is simply
an augmented 2-tier cascade with the first tier being the dual of h, meaning the
key and input roles are swapped. We thus directly get an analysis and proof
for this case from our above-mentioned results. Obtaining HMAC from NMAC
was more work [2,4] and required assumptions about PRF security of the dual
function under related keys.

Davies-Meyer. Above we have assessed the PRF security under Out-leakage of
the compression function by modeling the latter as ideal (random). But, following
CDMP [12], one might say that the compression functions underlying MD-style
hash functions are not un-structured enough to be treated as random because
they are built from blockciphers via the Davies-Meyer (DM) construction. To
address this we analyze the mu PRF security under Out-leakage of the DM
construction in the ideal-cipher model. One’s first thought may be that such an
analysis would follow from our analysis for a random compression function and
the indifferentiability [12,19] of DM from a random oracle, but the catch is that
DM is not indifferentiable from a RO so a direct analysis is needed. The one we
give in [3] shows mu security with good bounds. Similar analyses can be given
for other PGV [24] compression functions.

2 Related Work

Sponges. SHA-3 already internally incorporates a truncation output trans-
form. The construction itself is a sponge. The suggested way to obtain a PRF
is to simply key the hash function via its IV, so that the PRF is a keyed,
truncated sponge. The security of this construct has been intensively analyzed
[1,9,11,17,20] with Gaži, Pietrzak and Tessaro (GPT) [17] establishing PRF
security with tight bounds. Our work can be seen as stepping back to ask whether
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the same truncation method would work for MD-style hash functions like SHA-
512. Right now these older hash functions are much more widely deployed than
SHA-3, and current standardization and deployment efforts continue to use
them, making the analysis of constructions based on them important with regard
to security in practice. The underlying construction in this case is the cascade,
which is quite different from the sponge. The results and techniques of GPT [17]
do not directly apply but were an important inspiration for our work.

We note that keyed sponges with truncation to an r-bit output from a c-
bit state can easily be distinguished from a random function with advantage
roughly q2/2c−r or qqf/2c−r, as shown for example in [17]. The bound of Eq. (1)
is better, meaning the augmented cascade offers greater security. See [3] for more
information.

Cascade. BCK2 [5] show su security of the basic cascade (for prefix-free queries)
in two steps. First, they show su security of the basic cascade (for prefix-free
queries) assuming not su, but mu security of the compression function. Second,
they apply the trivial bound mentioned above to conclude su security of the basic
cascade for prefix-free queries assuming su security of the compression function.
We follow their approach to establish su security of the augmented cascade, but
there are differences as well: They have no output transform while we do, they
assume prefix-free queries and we do not, we have leakage and they do not.
They neither target nor show mu security of the basic cascade in any form, mu
security arising in their work only as an intermediate technical step and only for
the compression function, not for the cascade.

Chop-MD. The chop-MD construction of CDMP [12] is the case of the aug-
mented cascade in which the output transform is truncation. They claim this is
indifferentiable from a RO when the compression function is ideal. This implies
PRF security but their bound is O(�2(q + qf)2/2c−r) which as we have seen is
significantly weaker than our bound of Eq. (1). Also, they have no standard-
model proofs or analysis for this construction. In contrast our results in Sect. 5
establish standard-model security.

NMAC and HMAC. NMAC takes keys Kin,Kout and input X to return h(Kout,
h∗(Kin,X)‖pad) where pad is some (b − c)-bit constant and b ≥ c. Through
a series of intensive analyses, the PRF security of NMAC has been established
based only on the assumed PRF security of the compression function h, and with
tight bounds [2,4,16]. Note that NMAC is not a special case of the augmented
cascade because Out is not keyed but the outer application of h in NMAC is keyed.
In the model where the compression function is ideal, one can show bounds for
NMAC that are somewhat better than for the augmented cascade. This is not
surprising. Indeed, when attacking the augmented cascade, the adversary can
learn far more information about the internal states of the hash computation.
What is surprising (at least to us) is that the gap is actually quite small. See
[3] for more information. We stress also that this is in the ideal model. In the
standard model, there is no proof that NMAC has the type of good mu prf
security we establish for the augmented cascade in Sect. 5.
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AES and other MACs. Why consider new MACs? Why not just use an AES-
based MAC like CMAC? The 128 bit key and block size limits security compared
to c = 512 for SHA-512. A Schnorr signature takes the result of the PRF modulo
a prime; the PRF output must have at least as many bits as the prime, and even
more bits for most primes, to avoid the Bleichenbacher attack discussed in [23].
Also in that context a hash function is already being used to hash the message
before signing so it is convenient to implement the PRF also with the same hash
function. HMAC-SHA-512 will provide the desired security but AMAC has speed
advantages, particularly on short messages, as discussed in [3], and is simpler.
Finally, the question is in some sense moot since AMAC is already deployed and
in widespread use via Ed25519 and we need to understand its security.

Leakage. Leakage-resilience of a PRF studies the PRF security of a function
h when the attacker can obtain the result of an arbitrary function, called the
leakage function, applied to the key [14,15]. This is motivated by side-channel
attacks. We are considering a much more restricted form of leakage where there
is just one, very specific leakage function, namely Out. This arises naturally,
as we have seen, in the PRF security of the augmented cascade. We are not
considering side-channel attacks.

3 Notation

If x is a vector then |x| denotes its length and x[i] denotes its i-th coordinate. (For
example if x = (10, 00, 1) then |x| = 3 and x[2] = 00.) We let ε denote the empty
vector, which has length 0. If 0 ≤ i ≤ |x| then we let x[1 . . . i] = (x[1], . . . ,x[i]),
this being ε when i = 0. We let Sn denote the set of all length n vectors over
the set S. We let S+ denote the set of all vectors of positive length over the
set S and S∗ = S+ ∪ {ε} the set of all finite-length vectors over the set S. As
special cases, {0, 1}n and {0, 1}∗ denote vectors whose entries are bits, so that
we are identifying strings with binary vectors and the empty string with the
empty vector.

For sets A1, A2 we let [[A1, A2]] denote the set of all vectors X of length
|X| ≥ 1 such that X[1] ∈ A1 and X[i] ∈ A2 for 2 ≤ i ≤ |X|.

We let x ←$ X denote picking an element uniformly at random from a set X
and assigning it to x. For infinite sets, it is assumed that a proper measure can
be defined on X to make this meaningful. Algorithms may be randomized unless
otherwise indicated. Running time is worst case. If A is an algorithm, we let
y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . . and
assigning the output to y. We let y ←$ A(x1, . . .) be the result of picking r at
random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all
possible outputs of A when invoked with inputs x1, . . ..

We use the code based game playing framework of [6]. (See Fig. 1 for an
example.) By Pr[G] we denote the probability that game G returns true.

For an integer n we let [1 . . . n] = {1, . . . , n}.
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4 Function-Family Distance Framework

We will be considering various generalizations and extensions of standard prf
security. This includes measuring proximity not just to random functions but to
some other family, multi-user security and leakage on the key. We also want to
allow an easy later extension to a setting with ideal primitives. To enable all this
in a unified way we introduce a general distance metric on function families and
then derive notions of interest as special cases.

Function families. A function family is a two-argument function F: F.K ×
F.D → F.R that takes a key K in the key space F.K and an input x in the
domain F.D to return an output y ← F(K, x) in the range F.R. We let f ←$ F
be shorthand for K ←$ F.K ; f ← F(K, ·), the operation of picking a function at
random from family F.

An example of a function family that is important for us is the compression
function underlying a hash function, in which case F.K = F.R = {0, 1}c and
F.D = {0, 1}b for integers c, b called the length of the chaining variable and the
block length, respectively. Another example is a block cipher. However, families
of functions do not have to be efficiently computable or have short keys. For
sets D,R the family A: A.K × D → R of all functions from D to R is defined
simply as follows: let A.K be the set of all functions mapping D to R and let
A(f, x) = f(x). (We can fix some representation of f as a key, for example the
vector whose i-th component is the value f takes on the i-th input under some
ordering of D. But this is not really necessary.) In this case f ←$ A denotes
picking at random a function mapping D to R.

Let F: F.K × F.D → F.R be a function family and let Out: F.R → Out.R be
a function with domain the range of F and range Out.R. Then the composition
Out ◦ F: F.K × F.D → Out.R is the function family defined by (Out ◦ F)(K, x) =
Out(F(K, x)). We will use composition in some of our constructions.

Basic distance metric. We define a general metric of distance between func-
tion families that will allow us to obtain other metrics of interest as special cases.
Let F0,F1 be families of functions such that F0.D = F1.D. Consider game DIST
on the left of Fig. 1 associated to F0,F1 and an adversary A. Via oracle New, the
adversary can create a new instance Fv drawn from Fc where c is the challenge
bit. It can call this oracle multiple times, reflecting a multi-user setting. It can
obtain Fi(x) for any i, x of its choice with the restriction that 1 ≤ i ≤ v (instance
i has been initialized) and x ∈ F1.D. It wins if it guesses the challenge bit c. The
advantage of adversary A is

AdvdistF0,F1
(A) = 2 Pr[DISTF0,F1(A)] − 1 (2)

= Pr[DISTF0,F1(A) | c = 1] − (1 − Pr[DISTF0,F1(A) | c = 0]) . (3)

Equation (2) is the definition, while Eq. (3) is a standard alternative formulation
that can be shown equal via a conditioning argument. We often use the second
in proofs.
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Game DISTF0,F1(A)

v ← 0

c ←$ {0, 1} ; c′ ←$ ANew,Fn

Return (c = c′)

New()

v ← v + 1 ; Fv ←$ Fc

Fn(i, x)

Return Fi(x)

Game DISTF0,F1,Out(A)

v ← 0

c ←$ {0, 1} ; c′ ←$ ANew,Fn

Return (c = c′)

New()

v ← v + 1 ; Kv ←$ F1.K

If (c = 1) then Fv ← F1(Kv, ·) else Fv ←$ F0

Return Out(Kv)

Fn(i, x)

Return Fi(x)

Fig. 1. Games defining distance metric between function families F0,F1. In
the basic (left) case there is no leakage, while in the extended (right) case there is
leakage represented by Out.

Let F be a function family and let A be the family of all functions from F.D to
F.R. Let AdvprfF (A) = AdvdistF,A(A). This gives a metric of multi-user prf security.
The standard (single user) prf metric is obtained by restricting attention to
adversaries that make exactly one New query.

Distance under leakage. We extend the framework to allow leakage on the
key. Let Out: F1.K → Out.R be a function with domain F1.K and range a set we
denote Out.R. Consider game DIST on the right of Fig. 1, now associated not
only to F0,F1 and an adversary A but also to Out. Oracle New picks a key Kv

for F1 and will return as leakage the result of Out on this key. The instance Fv

is either F1(Kv, ·) or a random function from F0. Note that the leakage is on a
key for a function from F1 regardless of the challenge bit, meaning even if c = 0,
we leak on the key Kv drawn from F1.K. The second oracle is as before. The
advantage of adversary A is

AdvdistF0,F1,Out(A) = 2 Pr[DISTF0,F1,Out(A)] − 1 (4)

= Pr[ DISTF0,F1,Out(A)| c = 1 ] − (1 − Pr[ DISTF0,F1,Out(A)| c = 0 ]) . (5)

This generalizes the basic metric because AdvdistF0,F1
(A) = AdvdistF0,F1,Out(A) where

Out is the function that returns ε on all inputs.
As a special case we get a metric of multi-user prf security under leakage.

Let F be a function family and let A be the family of all functions from F.D to
F.R. Let Out: F.K → Out.R. Let AdvprfF,Out(A) = AdvdistF,A,Out(A).

Naive mu to su reduction. Multi-user security for PRFs was first explicitly
considered in [5]. They used a hybrid argument to show that the prf advantage
of an adversary A against u users is at most u times the prf advantage of an
adversary of comparable resources against a single user. The argument extends to
the case where instead of prf advantage we consider distance and where leakage
is present. This is summarized in Lemma 1 below.
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We state this lemma to emphasize that mu security is not qualitatively differ-
ent from su security, at least in this setting. The question is what is the quantita-
tive difference. The lemma represents the naive bound, which always holds. The
interesting element is that for the 2-tier augmented cascade,
Theorem 4 shows that one can do better: the mu advantage is not a factor u less
than the single-user advantage, but about the same. In the proof of the lemma
in [3] we specify the adversary for the sake of making the reduction concrete but
we omit the standard hybrid argument that establishes that this works.

Lemma 1. Let F0,F1 be function families with F0.D = F1.D and let Out: F1.K →
Out.R be an output transform. Let A be an adversary making at most u queries
to its New oracle and at most q queries to its Fn oracle. The proof specifies an
adversary A1 making one query to its New oracle and at most q queries to its
Fn oracle such that

AdvdistF0,F1,Out(A) ≤ u · AdvdistF0,F1,Out(A1). (6)

The running time of A1 is that of A plus the time for u computations of
F0 or F1. �

5 The Augmented Cascade and Its Analysis

We first present a generalization of the basic cascade construction that we call
the 2-tier cascade. We then present the augmented (2-tier) cascade construction
and analyze its security.

2-tier cascade construction. Let K be a set. Let g, h be function families
such that g: g.K × g.D → K and h: K × h.D → K. Thus, outputs of both g
and h can be used as keys for h. This is the basis of our 2-tier version of the
cascade. This is a function family CSC[g, h]: g.K × [[g.D, h.D]] → K. That is, a
key is one for g. An input —as per the notation [[·, ·]] defined in Sect. 3— is a
vector X of length at least one whose first component is in g.D and the rest of
whose components are in h.D. Outputs are in K. The function itself is defined
as follows:

Function CSC[g, h](K,X)
n ← |X| ; Y ← g(K,X[1])
For j = 2, . . . , n do Y ← h(Y,X[j])
Return Y

We say that a function family G is a 2-tier cascade if G = CSC[g, h] for some g, h.
If f: K×f.D → K then its basic cascade is recovered as CSC[f, f]: K×f.D+ → K.
We will also denote this function family by f∗.

Recall that even if f: {0, 1}c×{0, 1}b → {0, 1}c is a PRF, f∗ is not a PRF due
to the extension attack. It is shown by BCK2 [5] to be a PRF when the adversary
is restricted to prefix-free queries. When b = 1 and the adversary is restricted to
queries of some fixed length �, the cascade f∗ is the GGM construction of a PRF
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from a PRG [18]. Bernstein [7] considers a generalization of the basic cascade in
which the function applied depends on the block index and proves PRF security
for any fixed number � of blocks.

Our generalization to the 2-tier cascade has two motivations and correspond-
ing payoffs. First, it will allow us to reduce mu security to su security in a simple,
modular and tight way, the idea being that mu security of the basic cascade is
su security of the 2-tier one for a certain choice of the 1st tier family. Second, it
will allow us to analyze the blackbox AMAC construction in which the cascade
is not keyed directly but rather the key is put in the input to the hash function.

The augmented cascade. With K, g, h as above let Out: K → Out.R be a
function we call the output transform. The augmented (2-tier) cascade
ACSC[g, h,Out]: g.K × [[g.D, h.D]] → Out.R is the composition of Out with
CSC[g, h], namely ACSC[g, h,Out] = Out ◦ CSC[g, h], where composition was
defined above. In code:

Function ACSC[g, h,Out](K,X)
Y ← CSC[g, h](K,X) ; Z ← Out(Y )
Return Z

We say that a function family G+ is an augmented (2-tier) cascade if G+ =
ACSC[g, h,Out] for some g, h,Out.

The natural goal is that an augmented cascade G+ be a PRF. This however
is clearly not true for all Out. For example Out may be a constant function, or a
highly irregular one. Rather than restrict Out at this point we target a general
result that would hold for any Out. Namely we aim to show that ACSC[g, h,Out]
is close under our distance metric to the result of applying Out to a random
function. Next we formalize and prove this.

Single-user security of 2-tier augmented cascade. Given g, h,Out defin-
ing the 2-tier augmented cascade Out ◦ CSC[g, h], we want to upper bound
AdvdistOut ◦A,Out ◦CSC[g,h](A) for an adversary A making one New query, where A
is the family of all functions with the same domain as CSC[g, h]. We will do
this in two steps. First, in Lemma 2, we will consider the case that the first
tier is a random function, meaning g = r is the family of all functions with the
same domain and range as g. Then, in Theorem 3, we will use Lemma 2 to
analyze the general case where g is a PRF. Most interestingly we will later use
these single-user results to easily obtain, in Theorem 4, bounds for multi-user
security that are essentially as good as for single-user security. This showcases a
feature of the 2-tier cascade that is rare amongst PRFs. We now proceed to the
above-mentioned lemma.

Lemma 2. Let K,D be non-empty sets. Let h: K × h.D → K be a function
family. Let r be the family of all functions with domain D and range K. Let
Out: K → Out.R be an output transform. Let A be the family of all functions
with domain [[D, h.D]] and range K. Let A be an adversary making exactly one
query to its New oracle followed by at most q queries to its Fn oracle, the second
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argument of each of the queries in the latter case being a vector X ∈ [[D, h.D]]
with 2 ≤ |X| ≤ � + 1. Let adversary Ah be as in Fig. 2. Then

AdvdistOut ◦A,Out ◦CSC[r,h](A) ≤ � · Advprfh,Out(Ah). (7)

Adversary Ah makes at most q queries to its New oracle and at most q queries
to its Fn oracle. Its running time is that of A plus the time for q� computations
of h. �

With the first tier being a random function, Lemma 2 is bounding the single-user
(A makes one New query) distance of the augmented 2-tier cascade to the result
of applying Out to a random function under our distance metric. The bound of
Eq. (7) is in terms of the multi-user security of h as a PRF and grows linearly
with one less than the maximum number of blocks in a query.

We note that we could apply Lemma 1 to obtain a bound in terms of the
single-user PRF security of h, but this is not productive. Instead we will go
the other way, later bounding the multi-user security of the 2-tier augmented
cascade in terms of the multi-user PRF security of its component functions.

The proof below follows the basic paradigm of the proof of BCK2 [5], which
is itself an extension of the classic proof of GGM [18]. However there are several
differences: (1) The cascade in BCK2 is single-tier and non-augmented, meaning
both the r component and Out are missing (2) BCK2 assume the adversary
queries are prefix-free, meaning no query is a prefix of another, an assumption
we do not make (3) BCK2 bounds prf security, while we bound the distance.

Proof (Lemma 2). Consider the hybrid games and adversaries in Fig. 2. The
following chain of equalities establishes Eq. (7) and will be justified below:

� · Advprfh,Out(Ah) =
∑�

g=1Adv
prf
h,Out(Ag) (8)

=
∑�

g=1 Pr[Hg−1] − Pr[Hg] (9)

= Pr[H0] − Pr[H�] (10)

= AdvdistOut ◦A,Out ◦CSC[r,h](A) (11)

Adversary Ah (bottom left of Fig. 2) picks g at random in the range 1, . . . , � and
runs adversary Ag (right of Fig. 2) so Advprfh,Out(Ah) = (1/�) ·

∑�
g=1 Adv

prf
h,Out(Ag),

which explains Eq. (8). For the rest we begin by trying to picture what is
going on.

We imagine a tree of depth � + 1, meaning it has � + 2 levels. The levels
are numbered 0, 1, . . . , � + 1, with 0 being the root. The root has |D| children
while nodes at levels 1, . . . , � have |h.D| children each. A query X of A in game
DISTOut ◦A,Out ◦CSC[r,h],Out(A) specifies a path in this tree starting at the root
and terminating at a node at level n = |X|. Both the path and the final node
are viewed as named by X. To a queried node X we associate two labels, an
internal label T1[X] ∈ K and an external label T2[X] = Out(T1[X]) ∈ Out.R.
The external label is the response to query X. Since the first component of
our 2-tier cascade is the family r of all functions from D to K, we can view
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Game Hs (0 ≤ s ≤ �)

b′ ←$ ANew
∗,Fn∗

Return (b′ = 1)

New
∗()

f ←$ A

Fn
∗(i,X)

n ← |X|
If (n ≤ s) then Y ← f(X)

Else

Y ← f(X[1..s + 1])

For j = s+2, . . . , n do Y ← h(Y,X[j])

T1[X] ← Y ; T2[X] ← Out(T1[X])

Return T2[X]

Adversary ANew,Fn
h

g ←$ {1, . . . , �} ; b′ ←$ ANew,Fn
g

Return b′

Adversary ANew,Fn
g (1 ≤ g ≤ �)

v ← 0 ; b′ ←$ ANew
∗,Fn∗

; Return b′

New
∗()

Fn
∗(i,X)

n ← |X|
If (n ≤ g − 1) then

If (not T1[X]) then

T1[X] ←$ K ; T2[X] ← Out(T1[X])

If (n ≥ g) then

If (not U [X[1..g]]) then

v ← v + 1 ; U [X[1..g]] ← v

T2[X[1..g]] ← New()

If (n ≥ g + 1) then

T1[X[1..g+1]] ← Fn(U [X[1..g]],X[g+1])

For j = g + 2, . . . , n do

T1[X[1..j]] ← h(T1[X[1..j − 1]],X[j])

T2[X] ← Out(T1[X])

Return T2[X]

Fig. 2. Games and adversaries for proof of Theorem 2.

DISTOut ◦A,Out ◦CSC[r,h],Out(A) as picking T1[X[1]] at random from K and then
setting T1[X] = h∗(T1[X[1]],X[2 . . . n]) for all queries X of A.

Now we consider the hybrid games H0, . . . ,H� of Fig. 2. They simulate A’s
New,Fn oracles via procedures New

∗,Fn∗, respectively. By assumption A
makes exactly one New

∗ query, and this will have to be its first. In response
Hs picks at random a function f : [[D,K]] → K. A query Fn

∗ has the form
(i,X) but here i can only equal 1 and is ignored in responding. By assumption
2 ≤ |X| ≤ �. The game populates nodes at levels 2, . . . , s of the tree with T1[·]
values that are obtained via f and thus are random elements of K. For a node
X at level n ≥ s + 1, the T1[X[1 . . . s + 1]] value is obtained at random and then
further values (if needed, meaning if n ≥ s + 2) are computed by applying the
cascade h∗ with key T1[X[1 . . . s + 1]] to input X[s + 2 . . . n].

Consider game H0, where s = 0. By assumption n ≥ 2 so we will always
be in the case n ≥ s + 1. In the Else statement, Y ← f(X[1]) is initial-
ized as a random element of K. With this Y as the key, h∗ is then applied
to X[2 . . . n] to get T1[X]. This means H0 exactly mimics the c = 1 case of game
DISTOut ◦A,Out ◦CSC[r,h],Out(A), so that

Pr[H0] = Pr[ DISTOut ◦A,Out ◦CSC[r,h](A)| c = 1 ]. (12)

At the other extreme, consider game H�, where s = �. By assumption n ≤ � + 1,
yielding two cases. If n ≤ � we are in the n ≤ s case and the game, via f ,
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the assigns T1[X] a random value. If n = � + 1 we are in the n ≥ s + 1 case, but
the For loop does nothing so T1[X] is again random. This means H� mimics the
c = 0 case of game DISTOut ◦A,Out ◦CSC[r,h],Out(A), except returning true exactly
when the latter returns false. Thus

Pr[H�] = 1 − Pr[ DISTOut ◦A,Out ◦CSC[r,h](A)| c = 0 ]. (13)

We will justify Eq. (9) in a bit but we can now dispense with the rest of the
chain. Equation (10) is obvious because the sum “telescopes”. Equation (11)
follows from Eqs. (12) and (13) and the formulation of dist advantage of Eq. (5).

It remains to justify Eq. (9), for which we consider the adversaries A1, . . . ,A�

on the right side of Fig. 2. Adversary Ag is playing the PRF, formally game
DISTB,h on the left of Fig. 1 in our notation, with B the family of all functions
from h.D to K. It thus has oracles New,Fn. It will make crucial use of the
assumed multi-user security of h, meaning its ability to query New many times,
keeping track in variable u of the number of instances it creates. It simulates the
oracles of A of the same names via procedures New

∗,Fn∗, sampling functions
lazily rather than directly as in the games. Arrays T1, T2, U are assumed initially
to be everywhere ⊥ and get populated as the adversary assigns values to entries.
A test of the form “If (not T1[X]) ...” returns true if T1[X] = ⊥, meaning has
not yet been initialized. In response to the (single) New

∗ query of A, adversary
Ag does nothing. Following that, its strategy is to have the T1[·] values of level
g nodes populated, not explicitly, but implicitly by the keys in game DISTB,h

created by the adversary’s own New queries, using array U to keep track of
the user index associated to a node. T1[·] values for nodes at levels 1, . . . , g − 1
are random. At level g + 1, the T1[·] values are obtained via the adversary’s Fn

oracle, and from then on via direct application of the cascade h∗. One crucial
point is that, if Ag does not know the T1[·] values at level g, how does it respond
to a length g query X with the right T2[·] value? This is where the leakage enters,
the response being the leakage provided by the New oracle. The result is that
for every g ∈ {1, . . . , �} we have

Pr[ DISTB,h(Ag) | c = 1 ] = Pr[Hg−1] (14)
1 − Pr[ DISTB,h(Ag) | c = 0 ] = Pr[Hg], (15)

where c is the challenge bit in game DISTB,h. Thus

Advprfh,Out(Ag) = Pr[ DISTB,h(Ag) | c = 1 ] − (1 − Pr[ DISTB,h(Ag) | c = 0 ])

= Pr[Hg−1] − Pr[Hg]. (16)

This justifies Eq. (9). �

We now extend the above to the case where the first tier g of the 2-tier cascade
is a PRF rather than a random function. We will exploit PRF security of g
to reduce this to the prior case. Since the proof uses standard methods, it is
relegated to [3].
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Theorem 3 Let K be a non-empty set. Let g: g.K×g.D → K and h: K×h.D →
K be function families. Let Out: K → Out.R be an output transform. Let A be
the family of all functions with domain [[g.D, h.D]] and range K. Let A be an
adversary making exactly one query to its New oracle followed by at most q
queries to its Fn oracle, the second argument of each of the queries in the latter
case being a vector X ∈ [[g.D, h.D]] with 2 ≤ |X| ≤ � + 1. The proof shows how
to construct adversaries Ah,Ag such that

AdvdistOut ◦A,Out ◦CSC[g,h](A) ≤ � · Advprfh,Out(Ah) + 2Advprfg (Ag). (17)

Adversary Ah makes at most q queries to its New oracle and at most q queries
to its Fn oracle. Adversary Ag makes one query to its New oracle and at most
q queries to its Fn oracle. The running time of both constructed adversaries is
about that of A plus the time for q� computations of h. �

Multi-user security of 2-tier augmented cascade. We now want to
assess the multi-user security of a 2-tier augmented cascade. This means we
want to bound AdvdistOut ◦A,Out ◦CSC[g,h](A) with everything as in Theorem 3 above
except that A can now make any number u of New queries rather than just one.
We could do this easily by applying Lemma 1 to Theorem 3, resulting in a bound
that is u times the bound of Eq. (17). We consider Theorem 4 below the most
interesting result of this section. It says one can do much better, and in fact the
bound for the multi-user case is not much different from that for the single-user
case.

Theorem 4 Let K be a non-empty set. Let g: g.K×g.D → K and h: K×h.D →
K be function families. Let Out: K → Out.R be an output transform. Let A be
the family of all functions with domain [[g.D, h.D]] and range K. Let A be an
adversary making at most u queries to its New oracle and at most q queries to
its Fn oracle, the second argument of each of the queries in the latter case being
a vector X ∈ [[g.D, h.D]] with 2 ≤ |X| ≤ � + 1. The proof shows how to construct
adversaries Ah,Ag such that

AdvdistOut ◦A,Out ◦CSC[g,h](A) ≤ � · Advprfh,Out(Ah) + 2Advprfg (Ag). (18)

Adversary Ah makes at most q queries to its New oracle and at most q queries
to its Fn oracle. Adversary Ag makes u queries to its New oracle and at most
q queries to its Fn oracle. The running time of both constructed adversaries is
about that of A plus the time for q� computations of h. �
A comparison of Theorems 3 and 4 shows that the bound of Eq. (18) is the
same as that of Eq. (17). So where are we paying for u now not being one? It is
reflected only in the resources of adversary Ag, the latter in Theorem 4 making
u queries to its New oracle rather than just one in Theorem 3.

The proof below showcases one of the advantages of the 2-tier cascade over
the basic single-tier one. Namely, by appropriate choice of instantiation of the
first tier, we can reduce multi-user security to single-user security in a modular
way. In this way we avoid re-entering the proofs above. Indeed, the ability to do
this is one of the main reasons we introduced the 2-tier cascade.
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Proof (Theorem 4). Let D = [1 . . . u]. Let r be the family of all functions with
domain D and range g.K. Let function family g: r.K× (D ×g.D) → K be defined
by g(f, (i, x)) = g(f(i), x). Let B be the family of all functions with domain
[[D × g.D, h.D]] and range K. The main observation is as follows. Suppose i ∈ D
and X ∈ [[g.D, h.D]]. Let Y ∈ [[D × g.D, h.D]] be defined by Y[1] = (i,X[1]) and
Y[j] = X[j] for 2 ≤ j ≤ |X|. Let f : D → g.K be a key for g. Then f(i) ∈ g.K is
a key for g, and

CSC[g, h](f,Y) = CSC[g, h](f(i),X). (19)

Think of f(i) as the key for instance i. Then Eq. (19) allows us to obtain values
of CSC[g, h] for different instances i ∈ D via values of CSC[g, h] on a single
instance with key f . This will allow us to reduce the multi-user security of
CSC[g, h] to the single-user security of CSC[g, h]. Theorem 3 will allow us to
measure the latter in terms of the prf security of h under leakage and the (plain)
prf security of g. The final step will be to measure the prf security of g in terms
of that of g.

Proceeding to the details, let adversary B be as follows:

Adversary BNew,Fn

New()
b′ ←$ ANew

∗,Fn∗
; Return b′

New
∗()

Fn
∗(i,X)

Y[1] ← (i,X[1])
For j = 2, . . . , |X| do Y[j] ← X[j]
Z ← Fn(1,Y) ; Return Z

Then we have

AdvdistOut ◦A,Out ◦CSC[g,h](A) = AdvdistOut ◦B,Out ◦CSC[g,h](B) (20)

≤ � · Advprfh,Out(Ah) + 2Advprfg (Ag) (21)

Adversary B is allowed only one New query, and begins by making it so as to
initialize instance 1 in its game. It answers queries of A to its New oracle via
procedure New

∗. Adversary A can make up to u queries to New
∗, but, as the

absence of code for New
∗ indicates, this procedure does nothing, meaning no

action is taken when A makes a New
∗ query. When A queries its Fn oracle,

B answers via procedure Fn
∗. The query consists of an instance index i with

1 ≤ i ≤ u and a vector X. Adversary B creates Y from X as described above.
Namely it modifies the first component of X to pre-pend i, so that Y[1] ∈ D×g.D
is in the domain of g. It leaves the rest of the components unchanged, and then
calls its own Fn oracle on vector Y ∈ [[D × g.D, h.D]]. The instance used is
1, regardless of i, since B has only one instance active. The result Z of Fn is
returned to A as the answer to its query. Eq. (20) is now justified by Eq. (19),
thinking of f(i) as the key Ki chosen in game DISTOut ◦A,Out ◦CSC[g,h](A) where f
is the (single) key chosen in game DISTOut ◦B,Out ◦CSC[g,h](B). Theorem 3 applied
to g, h and adversary B provides the adversaries Ah,Ag of Eq. (21).
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Now consider adversary Ag defined as follows:

Adversary ANew,Fn
g

For i = 1, . . . , u do New()
b′ ←$ ANew

∗,Fn∗
g ; Return b′

New
∗()

Fn
∗(j,X)

(i, x) ← X ; Y ← Fn(i, x)
Return Y

Adversary Ag begins by calling its New oracle u times to initialize u instances.
It then runs Ag, answering the latter’s oracle queries via procedures New

∗,Fn∗.
By Theorem 3 we know that Ag makes only one New

∗ query. In response the
procedure New

∗ above does nothing. When Ag makes query j,X to Fn
∗ we

know that j = 1 and X ∈ D × g.D. Procedure Fn
∗ parses X as (i, x). It then

invokes its own Fn oracle with instance i and input x and returns the result Y
to Ag. We have

Advprfg (Ag) = Advprfg (Ag). (22)

Equations (21) and (22) imply Eq. (18). �

One might ask why prove Theorem 4 for a 2-tier augmented cascade Out ◦
CSC[g, h] instead of a single tier one Out ◦ CSC[h, h]. Isn’t the latter the one
of ultimate interest in usage? We establish a more general result in Theorem 4
because it allows us to analyze AMAC itself by setting g to the dual of h [2], and
also for consistency with Theorem 3.

6 Framework for Ideal-Model Cryptography

In Sect. 5 we reduced the (mu) security of the augmented cascade tightly to the
assumed mu prf security of the compression function under leakage. To complete
the story, we will, in Sect. 7, bound the mu prf security of an ideal compression
function under leakage and thence obtain concrete bounds for the mu security
of the augmented cascade in the same model. Additionally, we will consider the
same questions when the compression function is not directly ideal but obtained
via the Davies-Meyer transform on an ideal blockcipher, reflecting the design
in popular hash functions. If we gave separate, ad hoc definitions for all these
different constructions in different ideal models for different goals, it would be
a lot of definitions. Accordingly we introduce a general definition of an ideal
primitive (that may be of independent interest) and give a general definition of
PRF security of a function family with access to an instance of an ideal primitive,
both for the basic setting and the setting with leakage. A reader interested in
our results on the mu prf security of ideal primitives can jump ahead to Sect. 7
and refer back here as necessary.

Idealized cryptography. We define an ideal primitive to simply be a function
family P: P.K×P.D → P.R. Below we will provide some examples but first let
us show how to lift security notions to idealized models using this definition by
considering the cases of interest to us, namely PRFs and PRFs under leakage.
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Game PRFF,P(A)

v ← 0

c ←$ {0, 1} ; P ←$ P ; c′ ←$ ANew,Fn,Prim

Return (c = c′)

New()

v ← v + 1

If (c = 1) then Fv ←$ FPrim

Else Fv ←$ A

Fn(i, x)

Return Fi(x)

Prim(x)

y ← P(x) ; Return y

Game PRFF,Out,P(A)

v ← 0

c ←$ {0, 1};P ←$ P; c′ ←$ ANew,Fn,Prim

Return (c = c′)

New()

v ← v + 1 ; Kv ←$ F.K

If (c = 1) then Fv ← FPrim(Kv, ·)
Else Fv ←$ A

Return Out(Kv)

Fn(i, x)

Return Fi(x)

Prim(x)

y P(x) ; Return y

Fig. 3. Games defining prf security of function family F in the presence of an
ideal primitive P. In the basic (left) case there is no leakage, while in the extended
(right) case there is leakage represented by Out.

An oracle function family F specifies for each function P in its oracle space
F.O a function family FP: F.K × F.D → F.R. We say F and ideal primitive P
are compatible if { P(KK, ·) : KK ∈ P.K } ⊆ F.O, meaning instances of P are
legitimate oracles for F. These represent constructs whose security we want to
measure in an idealized model represented by P.

We associate to F,P and adversary A the game PRF in the left of Fig. 3. In
this game, A is the family of all functions with domain F.D and range F.R. The
game begins by picking an instance P: P.D → P.R of P at random. The function
P is provided as oracle to F and to A via procedure Prim. The game is in the
multi-user setting, and when c = 1 it selects a new instance Fv at random from
the function family FP. Otherwise it selects Fv to be a random function from
F.D to F.R. As usual a query i, x to Fn must satisfy 1 ≤ i ≤ v and x ∈ F.D. A
query to Prim must be in the set P.D. We let AdvprfF,P(A) = 2Pr[PRFF,P(A)]−1
be the advantage of A.

We now extend this to allow leakage on the key. Let Out: F.K → Out.R be
a function with domain F.K and range Out.R. Game PRF on the right of Fig. 3
is now associated not only to F,P and an adversary A but also to Out. The
advantage of A is AdvprfF,Out,P(A) = 2 Pr[PRFF,Out,P(A)] − 1.

Capturing particular ideal models. The above framework allows us to
capture the random oracle model, ideal cipher model and many others as different
choices of the ideal primitive P. Not all of these are relevant to our paper but
we discuss them to illustrate how the framework captures known settings.
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Let Y be a non-empty set. Let P.K be the set of all functions P: {0, 1}∗ → Y.
(Each function is represented in some canonical way, in this case for example
as a vector over Y of infinite length.) Let P: P.K × {0, 1}∗ → Y be defined by
P(P, x) = P(x). Then P ←$ P is a random oracle with domain {0, 1}∗ and range
Y. In this case, an oracle function family compatible with P is simply a function
family in the random oracle model, and its prf security in the random oracle
model is measured by AdvprfF,P(A).

Similarly let P.K be the set of all functions P: {0, 1}∗ ×N → {0, 1}∗ with the
property that |P(x, l)| = l for all (x, l) ∈ {0, 1}∗×N. Let P: P.K×({0, 1}∗×N) →
{0, 1}∗ be defined by P(P, (x, l)) = P(x, l). Then P ←$ P is a variable output
length random oracle with domain {0, 1}∗ and range {0, 1}∗.

Let D be a non-empty set. To capture the single random permutation model,
let P.K be the set of all permutations π: D → D. Let P.D = D × {+,−}. Let
P.R = D. Define P(π, (x,+)) = π(x) and P(π, (y,−)) = π−1(y) for all π ∈ P.K
and all x, y ∈ D. An oracle for an instance P = P(π, ·) of P thus allows evaluation
of both π and π−1 on inputs of the caller’s choice.

Finally we show how to capture the ideal cipher model. If K,D are non-empty
sets, a function family E: K×D → D is a blockcipher if E(K, ·) is a permutation
on D for every K ∈ K, in which case E−1: K×D → D denotes the blockcipher in
which E−1(K, ·) is the inverse of the permutation E(K, ·) for all K ∈ K. Let P.K
be the set of all block ciphers E: K × D → D. Let P.D = K × D × {+,−}. Let
P.R = D. Define P(E, (K, X, +)) = E(K, X) and P(E, (K, Y,−)) = E−1(K, Y )
for all E ∈ P.K and all X,Y ∈ D. An oracle for an instance P = P(E, ·) of P
thus allows evaluation of both E and E−1 on inputs of the caller’s choice.

7 Security of the Compression Function Under Leakage

In Sect. 5 we reduced the (multi-user) security of the augmented cascade tightly
to the assumed multi-user prf security of the compression function under leakage.
To complete the story, we now study (bound) the multi-user prf security of the
compression function under leakage. This will be done assuming the compression
function is ideal. Combining these results with those of Sect. 5 we will get con-
crete bounds for the security of the augmented cascade for use in applications,
discussed in [3].

In the (leak-free) multi-user setting, it is well known that prf security of a com-
pression function decreases linearly in the number of users. We will show that this
is an extreme case, and as the amount of leakage increases, the multi-user prf secu-
rity degrades far more gracefully in the number of users (Theorem 6). This (per-
haps counterintuitive) phenomenon will turn out to be essential to obtain good
bounds on augmented cascades. We begin below with an informal overview of the
bounds and why this phenomenon occurs.

Overview of bounds. The setting of an ideal compression function map-
ping K × X → D is formally captured, in the framework of Sect. 6, by the
ideal primitive F: F.K × (K × X ) → K defined as follows. Let F.K be the set
of all functions mapping K × X → K and let F(f, (K, X)) = f(K, X). Now,
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AdvprfCF,F(B) AdvprfCF,Out,F(B)

su
qf
2c

qf
2c−r

mu, trivial
u(q + qf)

2c
u(q + qf)

2c−r

mu, dedicated
u2 + 2uqf

2c+1

u2 + 2uqf + 1
2c

+
3crqf
2c−r

Fig. 4. Upper bounds on prf advantage of an adversary B attacking an ideal
compression function mapping {0, 1}c × X to {0, 1}c. Left: Basic case, without
leakage. Right: With leakage Out being the truncation function that returns the first
r ≤ c bits of its output. First row: Single user security, qf is the number of queries to
the ideal compression function. Second row: Multi-user security as obtained trivially
by applying Lemma 1 to the su bound, u is the number of users. Third row: Multi-
user security as obtained by a dedicated analysis, with the bound in the leakage case
being from Theorem 6.

the construction we are interested in is the simplest possible, namely the com-
pression function itself. Formally, again as per Sect. 6, this means we consider
the oracle function family CF whose oracle space CF.O consists of all functions
f: K × X → K, and with CFf = f.

For this overview we let K = {0, 1}c. We contrast the prf security of an ideal
compression function along two dimensions: (1) Number of users, meaning su or
mu, and (2) basic (no leakage) or with leakage. The bounds are summarized in
Fig. 4 and discussed below. When we say the (i, j) table entry we mean the row
i, column j entry of the table of Fig. 4.

First consider the basic (no leakage) case. We want to upper bound AdvprfCF,F(B)
for an adversary B making qf queries to the ideal compression function (oracle
Prim) and q queries to oracle Fn. In the su setting (one New query) it is easy
to see that the bound is the (1, 1) table entry. This is because a fairly standard
argument bounds the advantage by the probability that B makes a Prim query
containing the actual secret key K used to answer Fn queries. We refer to issuing
such a query as guessing the secret key K. Note that this probability is actually
independent of the number q of Fn queries and q does not figure in the bound.
Now move to the mu setting, and let B make u queries to its New oracle. Entry
(2,1) of the table is the trivial bound obtained via Lemma 1 applied with F1

being our ideal compression function and F0 a family of all functions, but one
has to be careful in applying the lemma. The subtle point is that adversary A1

built in Lemma 1 runs B but makes an additional q queries to Prim to compute
the function F1, so its advantage is the (1, 1) table entry with qf replaced by
qf +q. This term gets multiplied by u according to Eq. (6), resulting in our (1, 2)
table entry. A closer look shows one can do a tad better: the bound of the (1, 1)
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table entry extends with the caveat that a collisions between two different keys
also allows the adversary to distinguish. In other words, the advantage is now
bounded by the probability that B guesses any of the u keys K1, . . . , Ku, or that
any two of these keys collide. This yields the (1, 3) entry of the table. Either
way, the (well known) salient point here is that the advantage in the mu case is
effectively u times the one in the su case.

We show that the growth of the advantage as a function of the number of
users becomes far more favorable when the adversary obtains some leakage about
the secret key under some function Out. For concreteness we take the leakage
function to be truncation to r bits, meaning Out = TRUNCr is the function
that returns the first r ≤ c bits of its input. (Theorem 6 will consider a general
Out.) Now we seek to bound AdvprfCF,Out,F(B). Now, given only TRUNCr(K) for a
secret key K, then there are only 2c−r candidate secret keys consistent with this
leakage, thus increasing the probability that the adversary can guess the secret
key. Consequently, the leakage-free bound from of the (1,1) entry generalizes to
the bound of the (2,1) entry. Moving to multiple users, the (2,2) entry represents
the naive bound obtained by applying Lemma 1. It is perhaps natural to expect
that this is best possible as in the no-leakage case. We however observe that this
is overly pessimistic. To this end, we exploit the following simple fact: Every
Prim query (K, X) made by B to the ideal compression function can only help
in guessing a key Ki such that Out(K) = Out(Ki). In particular, every Prim

query (K, X) has only roughly m · 2−(c−r) chance of guessing one of the u keys,
where m is the number of generated keys Ki such that Out(Ki) = K. A standard
balls-into-bins arguments (Lemma 5) can be used to infer that except with small
probability (e.g., 2−c), we always have m ≤ 2u/2r + 3cr for any K. Combining
these two facts yields our bound, which is the (3,2) entry of the table. Theorem
6 gives a more general result and the full proof. Note that if r = 0, i.e., nothing
is leaked, this is close to the bound of the (1,3) entry and the bound does grow
linearly with the number of users, but as r grows, the 3crqf·2−(c−r) term becomes
the leading one, and does not grow with u. We now proceed to the detailed proof
of the (3,2) entry.

Combinatorial preliminaries. Our statements below will depend on an
appropriate multi-collision probability of the output function Out: Out.D →
Out.R. In particular, for any X1, . . . , Xu ∈ Out.R, we first define

μ(X1, . . . , Xu) = max
Y ∈Out.R

|{ i : Xi = Y }| ,

i.e., the number of occurrences of the most frequent value amongst X1, . . . , Xu.
In particular, this is an integer between 1 and u, and μ(X1, . . . , Xu) = 1 if all
elements are distinct, whereas μ(X1, . . . , Xu) = u if they are all equal. (Note
when u = 1 the function has value 1.) Then, the m-collision probability of Out
for u users is defined as

Pcoll
Out(u,m) = PrK1,...,Ku ←$ Out.D [ μ(Out(K1), . . . ,Out(Ku)) ≥ m ] . (23)

We provide a bound on Pcoll
Out(u,m) for the case where Out(K), for a random K,

is close enough to uniform. (We stress that a combinatorial restriction on Out is
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necessary for this probability to be small – it would be one if Out is the contant
function, for example.) To this end, denote

δ(Out) = SD(Out(K),R) =
1
2

∑

y∈Out.R

∣∣∣∣Pr [Out(K) = y ] − 1
|Out.R|

∣∣∣∣ , (24)

i.e., the statistical distance between Out(K), where K is uniform on Out.D, and
a random variable R uniform on Out.R.

We will use the following lemma, which we prove using standard balls-into-
bins techniques. The proof is deferred to [3].

Lemma 5 (Multi-collision probability). Let Out : Out.D → Out.R, u ≥ 1,
and λ ≥ 0. Then, for any m ≤ u such that

m ≥ 2u

|Out.R| + λ ln |Out.R| , (25)

we have

Pcoll
Out(u,m) ≤ u · δ(Out)+exp(−λ/3). �

We stress that the factor 2 in Eq. (25) can be omitted (one can use an additive
Chernoff bound when u is sufficiently large in the proof given below, rather than
a multiplicative one) at the cost of a less compact statement. As this factor will
not be crucial in the following, we keep this simpler variant.

For the analysis below, we also need to use a lower bound the number of
potential preimages of a given output. To this end, given Out: Out.D → Out.R,
we define

ρ(Out) = min
y∈Out.R

∣∣Out−1(y)
∣∣ .

Security of ideal compression functions. The following theorem estab-
lishes the multi-user security under key-leakage of a random compression func-
tion. We stress that the bound here does not depend on the number of queries
the adversary B makes to oracle Fn. Also, the parameter m can be set arbitrar-
ily in the theorem statement for better flexibility, even though our applications
below will mostly use the parameters from Lemma 5.

Theorem 6. Let Out: K → Out.R. Then, for all m ≥ 1, and all adversaries B
making u queries to New, and qf queries to Prim,

AdvprfCF,Out,F(B) ≤ u2

2 |K| +Pcoll
Out(u,m)+

(m − 1) · qf
ρ(Out)

. �

The statement could be rendered useless whenever ρ(Out) = 1 because a
single point has a single pre-image. We note here that Theorem 6 can easily be
generalized to use a “soft” version of ρ(Out) guaranteeing that the number of
preimages of a point is bounded from below by ρ(Out), except with some small
probability ε, at the cost of an extra additive term u·ε. This more general version
will not be necessary for our applications. We also note that it is unclear how to
use the average number of preimages of Out(K) in our proof.
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Game G0,G1

v ← 0

c′ ←$ BNew,Fn,Prim

Return (c′ = 1)

New()

v ← v + 1 ; Kv ←$ K
Return Out(Kv)

Prim(k, x)

if Tf[k, x] = ⊥ then

Tf[k, x] ←$ K
If ∃j : k = Kj and TFn[j, x] �= ⊥ then

bad1 ← true

Tf[k, x] ← TFn[j, x]

Return Tf[k, x]

Fn(i, x)

If TFn[i, x] = ⊥ then

TFn[i, x] ←$ K
If Tf[Ki, x] �= ⊥ then

bad1 ← true

TFn[i, x] ← Tf[Ki, x]

else if ∃j �= i: Kj = Ki

and TFn[j, x] �= ⊥ then

bad2 ← true

TFn[i, x] ← TFn[j, x]

Return TFn[i, x]

Fig. 5. Games G0 and G1 in the proof of Theorem 6. The boxed assignment
statements are only executed in Game G1, but not in Game G0.

Proof (Theorem 6). The first step of the proof involves two games, G0 and G1,
given in Fig. 5. Game G1 is semantically equivalent to PRFCF,Out,F with challenge
bit c = 1, except that we have modified the concrete syntax of the oracles. In
particular, the randomly sampled function f ←$ F is now implemented via lazy
sampling, and the table entry Tf[k, x] contains the value of f(k, x) if it has been
queried. Otherwise, Tf is ⊥ on all entries which have not been set. Also, the
game keeps another table TFn such that TFn[i, x] contains the value returned
upon a query Fn(i, x). Note that the game enforces that any point in time, if
TFn[i, x] and Tf[Ki, x] are both set (i.e., they are not equal ⊥), then we also have
TFn[i, x] = Tf[Ki, x] and that, moreover, if Ki = Kj , then TFn[i, x] = TFn[j, x]
whenever both are not ⊥. Finally, whenever any of these entries is set for the
first time, then it is set to a fresh random value from K. This guarantees that
the combined behavior of the Fn and the Prim oracles are the same as in
PRFCF,Out,F for the case c = 1. Thus,

Pr [G1 ] = Pr[ PRFCF,Out,F | c = 1 ].

It is easier to see that in game G0, in contrast, the Prim and Fn oracles always
return random values, and thus, since we are checking whether c′ equals 1, rather
than c, we get Pr [ G0 ] = 1 − Pr[ PRFCF,Out,F | c = 0 ], and consequently,

AdvprfCF,Out,F(B) = Pr [ G1 ] − Pr [ G0 ].

Both games G0 and G1 also include two flags bad1 and bad2, initially false,
which can be set to true when specific events occur. In particular, bad1 is set
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Game H0

v ← 0

c′ ←$ BNew,Fn,Prim

Return (∃j, x: Tf[Kj , x] �= ⊥)

Game H1

v ← 0

c′ ←$ BNew,Fn,Prim

for i = 0 to v − 1 do

K′
i ←$ { k′ : Out(k′) = Yi }

Return (∃j, x: Tf[K
′
j , x] �= ⊥)

New()

v ← v+1; Kv ←$ K; Yv ← Out(Kv)

Return Yv

Prim(k, x)

if Tf[k, x] = ⊥ then Tf[k, x] ←$ K
Return Tf[k, x]

Fn(i, x)

If TFn[i, x] = ⊥ then TFn[i, x] ←$ K
Return TFn[i, x]

Fig. 6. Games H0 and H1 in the proof of Theorem 6. Both games share the same
New, Prim, and Fn oracles, the only difference being the additional re-sampling of
the secret keys K′

i in the main procedure of H1.

whenever one of the following two events happens: Either B queries Fn(i, x)
after querying Prim(Ki, x), or B queries Prim(Ki, x) after querying Fn(i, x).
Moreover, bad2 is set whenever B queries Fn(i, x) after Fn(j, x), Ki = Kj ,
and Prim(Ki, x) = Prim(Kj , x) was not queried earlier. (Note that if the latter
condition is not true, then bad1 has been set already.) It is immediate to see that
G0 and G1 are identical until bad1 ∨ bad2 is set. Therefore, by the fundamental
lemma of game playing [6],

AdvprfCF,Out,F(B) = Pr [ G1 ] − Pr [ G0 ] ≤ Pr [ G0 sets bad1 ] + Pr [ G0 sets bad2 ].
(26)

We immediately note that in order for bad2 to be set in G0, we must have
Ki = Kj for distinct i = j, i.e., two keys must collide. Since we know that at
most u calls are made to New, a simple Birthday bound yields

Pr [ G0 sets bad2 ] ≤ u2

2 · |K| . (27)

The rest of the proof thus deals with the more difficult problem of bounding
Pr [ G0 sets bad1 ]. To simplify this task, we first introduce a new game, called
H0 (cf. Fig. 6), which behaves as G0, except that it only checks at the end of the
game whether the bad event triggering bad1 has occurred during the interaction,
in which case the game outputs true. Note that we are relaxing this check a bit
further compared with G0, allowing it to succeed as long as a query to Prim of
form (Kj , x) for some j and some x was made, even if Fn(j, x) was never queried
before. Therefore,

Pr [ G0 sets bad1 ] ≤ Pr [ H0 ]. (28)



Hash-Function Based PRFs: AMAC and Its Multi-User Security 591

Note that in H0, the replies to all oracle calls made by B do not depend on
the keys K1,K2, . . . anymore, except for the leaked values Out(K1),Out(K2), . . .
returned by calls to New. We introduce a new and final game H1 which modifies
H0 by pushing the sampling of the actual key values as far as possible in the game:
That is, we first only gives values to B with the correct leakage distribution, and
in the final phase of H1, when computing the game output, we sample keys that
are consistent with this leakage. In other words, in the final check we replace the
keys K1,K2, . . . with freshly sampled key K ′

1,K
′
2, . . ., which are uniform, under

the condition that Out(Ki) = Out(K ′
i) = Yi.

It is not hard to see that Pr [ H0 ] = Pr [ H1 ]. This follows from two observa-
tions: First, for every i, the joint distribution of (Ki, Yi = Out(Ki)) is identical
to that of (K ′

i, Yi = Out(Ki)), since given Yi, both Ki and K ′
i are uniformly

distributed over the set of pre-images of Yi. Second, the behavior of both H0

and H1, before the final check to decide their outputs, only depends on values
Yi = Out(Ki), and not on the Ki’s. The actual keys Ki are only used for the
final check, and since the probability distributions of Ki and K ′

i conditioned on
Out(Yi) are identical, then so are the probabilities of outputting true in games
H0 and H1.

Thus, combining Eqs. (26), (27), and (28), we have

AdvprfCF,Out,F(B) ≤ u2

2 · |K| + Pr [ H1 ]. (29)

We are left with computing an upper bound on Pr [ H1 ]. For this purpose, denote
by S the set of pairs (k, x) on which Tf[k, x] = ⊥ after B outputs its bit c′ in
H1. Also, let Y be the multi-set {Y0, Y1, . . . , Yu−1} of values output by New to
B, and denote Y the resulting set obtained by removing repetitions. Note that
|S| ≤ qf and

∣∣Y
∣∣ ≤ |Y| ≤ u, and the first inequality may be strict, since some

elements can be repeated due to collisions Out(Ki) = Out(Kj).
Asume that now S and Y are given and fixed. We proceed to compute the

probability that H1 outputs true conditioned on the event that S and Y have
been generated. For notational help, for every y ∈ Y, also denote

Sy = { (k, x) ∈ S : Out(k) = y },

and let qy = |Sy|. Also, let ny be the number of occurrence of y ∈ Y in Y. Note
that except with probability Pcoll(u,m), we have ny ≤ m − 1 for all y ∈ Y, and
thus

Pr [ H1 ] ≤ Pr
[
∃y ∈ Y : ny ≥ m

]
+ Pr[ H1 | ∀y ∈ Y : ny < m ]

= Pcoll
Out(u,m) + Pr[ H1 | ∀y ∈ Y : ny < m ].

(30)

Therefore, let us assume we are given S and Y sich that ny ≤ m−1 for all y ∈ Y.
Denote by Pr[ H1 | S,Y ] the probability that H1 outputs true conditioned on
the fact that this S and Y has been generated. Using the fact that the keys
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K ′
0,K

′
1, . . . K

′
u−1 are sampled independently of S, we compute

Pr[H1|S,Y ] = Pr
[
∃j, x : (K ′

j , x) ∈ S
]

≤
∑

y∈Y

qy · ny∣∣Out−1(y)
∣∣

≤ (m − 1) ·
∑

y∈Y

qy∣∣Out−1(y)
∣∣ ≤ m − 1

ρ(Out)

∑

y∈Y
qy ≤ (m − 1)qf

ρ(Out)
.

Since the bound holds for all such S and Y, we also have

Pr[ H1 | ∀y ∈ Y : ny < m ] ≤ (m − 1)qf
ρ(Out)

. (31)

The final bound follows by combining Eqs. (29), (30), and (31). �

Security of the Davies-Meyer construction. One might object that
practical compression functions are not un-structured enough to be treated as
random because they are built from blockciphers via the Davies-Meyer con-
struction. Accordingly, in [3], we study the mu PRF security under leakage of
the Davies-Meyer construction with an ideal blockcipher and show that bounds
of the quality we have seen for a random compression function continue to hold.

8 Quantitative Bounds for Augmented
Cascades and AMAC

We consider two instantiations of augmented cascades, one using bit trunca-
tion, the other using modular reduction. We give concrete bounds on the mu prf
security of these constructions in the ideal compression function model, combin-
ing results from above. This will give us good guidelines for a comparison with
existing constructions – such as NMAC and sponges – in [3].

Bit truncation. Let K = {0, 1}c, and Out = TRUNCr : {0, 1}c → {0, 1}r,
for r ≤ c, outputs the first r bits of its inputs, i.e., TRUNCr(X) = X[1 . . . r].
Note that δ(TRUNCr) = 0, since omitting c − r bits does not affect uniformity,
and ρ(TRUNCr) = 2c−r, since every r-bit strings has 2c−r preimages. Then,
combining Lemma 5 with Theorem 6, using m = 2u/2r + 3cr, we obtain the
following corollary, denoting with Fc the ideal compression function for K =
{0, 1}c. (We do not specify X further, as it does not influence the statement.)

Corollary 7. For any c ≤ r, and all adversaries B making u queries to New

and qf queries to Prim,

AdvprfCF,TRUNCr,Fc
(B) ≤ u2

2c+1
+

2u · qf
2c

+
3cr · qf
2c−r

+exp(−c). �

We can then use this result to obtain our bounds for the augmented cascade
ACSC[CF,CF,TRUNCr] when using an ideal compression function {0, 1}c×X →
{0, 1}c. The proof is in [3].
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Theorem 8 (mu prf security for r-bit truncation). For any r ≤ n, and
all adversaries A making q queries to Fn consisting of vectors from X ∗ of length
at most �, qf queries to Prim, and u ≤ q queries to New,

AdvprfACSC[CF,CF,TRUNCr],Fc
(A) ≤ 5�2q2 + 3�qqf

2c
+

3cr(�2q + �qf)
2c−r

+� exp(−c), �

Modular reduction. Our second example becomes particularly important for
the application to the Ed25519 signature scheme.

Here, we let K = ZN , and consider the output function Out = MODM :
ZN → ZM for M ≤ N is such that MODM (X) = X mod M . (Note that as a
special case, we think of K = {0, 1}c here as Z2c .) We need the following two
properties of MODM , proved in [3].

Lemma 9. For all M ≤ N : (1) ρ(MODM ) ≥ N
M − 1, (2) δ(MODM ) ≤ M/N .

Then, combining Lemmas 5 and 9 with Theorem 6, using m = 2u/M +
3 ln N ln M , we obtain the following corollary, denoting with FN the ideal com-
pression function with K = ZN . (As above, we do not specify X further, as it
does not influence the statement.)

Corollary 10. For any M ≤ N/2, and all adversaries B making u queries to
New and qf queries to Prim,

AdvprfCF,MODM ,FN
(B) ≤ u2

2N
+

uM

N
+

4u · qf
N

+
6M ln N ln M · qf

N
+

1
N

. �

This can once again be used to obtain the final analysis of the augmented
cascade using modular reduction. The proof is similar to that of Theorem 8 and
is deferred to [3].

Theorem 11 (mu prf security for modular reduction). For any M ≤
N/2, and all adversaries A making q queries to Fn consisting of vectors from
X ∗ of length at most �, qf queries to Prim, and u ≤ q queries to New,

AdvprfACSC[CF,CF,MODM ],FN
(A) ≤ 5�2q2 + 3�qqf

N

+
7M ln N ln M(�2q + �qf)

N
+

�

N
. �

Bounds for AMAC. The above bounds are for augmented cascades, but they
can easily be adapted to AMAC, at the cost of adding an extra additive term,
which we now discuss. Recall that AMAC(K, M) = Out(H(K‖M)), where the
iterated hash function H is derived from a compression function h. We only
consider here the special case where the key K is completely handled by the
first compression function call of H (and is exactly a random element of X ), and
the message is processed from the second call onwards. In other words, AMAC
is the 2-tier cascade with the first tier being the dual of h, meaning the key and
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input roles are swapped. In particular, we can use Theorem 4, which would give
us a modified version of the above bounds with an additional additive term,
accounting 2Advprfg (Ag) for Ag as given in the reduction. This can easily be
upper bounded (using the dedicated mu bound from Fig. 4) as

2 · Advprfg (Ag) ≤ u2 + u(qf + q�)
|X | ≤ q2 + q(qf + q�)

|X | .
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Abstract. Many MAC (Message Authentication Code) algorithms have
security bounds which degrade linearly with the message length. Often
there are attacks that confirm the linear dependence on the message
length, yet PMAC has remained without attacks. Our results show that
PMAC’s message length dependence in security bounds is non-trivial.
We start by studying a generalization of PMAC in order to focus on
PMAC’s basic structure. By abstracting away details, we are able to
show that there are two possibilities: either there are infinitely many
instantiations of generic PMAC with security bounds independent of the
message length, or finding an attack against generic PMAC which estab-
lishes message length dependence is computationally hard. The latter
statement relies on a conjecture on the difficulty of finding subsets of a
finite field summing to zero or satisfying a binary quadratic form. Using
the insights gained from studying PMAC’s basic structure, we then shift
our attention to the original instantiation of PMAC, namely, with Gray
codes. Despite the initial results on generic PMAC, we show that PMAC
with Gray codes is one of the more insecure instantiations of PMAC, by
illustrating an attack which roughly establishes a linear dependence on
the message length.

Keywords: Unforgeability · Integrity · Verification · Birthday bound ·
Tag · PMAC · Message length

1 Introduction

When searching for optimal cryptographic schemes, security bounds provide an
important tool for selecting the right parameters. Security bounds, as formalized
by Bellare et al. [1], capture the concept of explicitly measuring the effect of an
adversary’s resources on its success probability in breaking the scheme. They
enable one to determine how intensively a scheme can be used in a session.
Therefore, provably reducing the impact of an adversary’s resources from, say, a
quadratic to a linear term, can mean an order of magnitude increase in a scheme’s
lifetime. Conversely, finding attacks which confirm an adversary’s success rate,
relative to its allotted resources, prove claims of security bound optimality.
c© International Association for Cryptologic Research 2016
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MAC algorithms provide a good example of schemes which have been studied
extensively to determine optimal bounds. A MAC’s longevity is defined as the
number of times the MAC can be used under a single key: it can be measured as
a function of the number of tagging queries, q, and the largest message length,
�, used before a first forgery attempt is successful. The impact of an adversary’s
resources, q and �, on its success probability in breaking a MAC is then described
via an upper bound of the form f(q, �) · ε, where f is a function, often a polyno-
mial, and ε is a quantity dependent on the MAC’s parameters. The maximum
number of queries qmax with length �max one can make under a key is computed
by determining when f(qmax, �max) · ε is less than some threshold success proba-
bility. For example, if one is comfortable with adversaries which have a one in a
million chance of breaking the scheme, but no more, then one would determine
qmax and �max via

f(qmax, �max) · ε ≤ 10−6 . (1)

Given that qmax and �max depend only on f , it becomes important to find the f
which establishes the tightest upper bound on the success probability.

The optimality of f depends on the environment in which the MAC oper-
ates, or in other words, the assumptions made on the MAC. For instance, stateful
MACs, such as the Wegman-Carter construction [21], can achieve bounds inde-
pendent of q and �. In this case, an adversary’s success remains negligible regard-
less of q and �, as long as the construction receives nonces, that is, additional
unique input. Therefore, determining qmax and �max for Wegman-Carter MACs
amounts to solving ε � 1, which is true under the assumption that nonces are
unique. Similarly, XOR MAC [3] with nonces achieves a security upper bound
of ε = 1/2τ , with τ the tag length in bits, which is the optimal bound for any
MAC. Randomized, but stateless MACs can achieve bounds similar to stateful
MACs, as shown by Minematsu [14].

In contrast, deterministic and stateless MACs necessarily have a lower bound
of q2/2n, where n is the inner state size, due to a generic attack by Preneel and
van Oorschot [18]. This means that for any f ,

f(q, �) · ε ≥ q2

2n
, (2)

hence any deterministic, stateless MAC must use fewer than 2n/2 tagging queries
per key.

Given this lower limit on f , one would perhaps expect to find schemes for
which the proven upper bound is q2/2n. Yet many deterministic, stateless MACs
have upper bounds including an �-factor. Block cipher based MACs, such as
CBC-MAC [4], OMAC [12], and PMAC [7], were originally proven with an upper
bound on the order of q2�2/2n, growing quadratically as a function of �. Much
effort has been placed in improving the bounds to a linear dependence on �,
resulting in bounds of the form q2�/2n [5,11,15,16].

For certain deterministic, stateless schemes the dependence on � has been
proven to be necessary. Dodis and Pietrzak [9] point out that this is the case
for polynomial based MACs, and try to avoid the dependence by introducing
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randomness. Pietrzak [17] notes that the EMAC bound must depend on �. Gazi,
Pietrzak, and Rybár [10] give an attack on NMAC showing its dependence on �.
Nevertheless, there are no known generic attacks establishing a lower bound of
the form �ε/2n for any ε > 0.

PMAC, introduced by Black and Rogaway [7], stands out as a construction for
which little analysis has been performed showing the necessity of � in the bound.
It significantly differs in structure from other MACs (see Fig. 1 and Definition 3),
which gives it many advantages:

1. it is efficient, since nearly all block cipher calls can be made in parallel,
2. it is simple, which in turn enables simple analysis,
3. and its basic structure lends itself to high-security extensions, such as PMAC-

Plus [22], PMAC-with-Parity [23], and PMACX [24].

The disadvantage of having such a different structure is that no known attacks
can help to establish �-dependency.

Contributions. We start by abstracting away some details of PMAC in order
to focus on its basic structure. We do so by considering generic PMAC, which is a
generalized version of PMAC accepting an arbitrary block cipher and constants,
and with an additional independent key. We prove that one of the following two
statements is true:

1. either there are infinitely many instances of generic PMAC for which there
are no attacks with success probability greater than 2q2/2n,

2. or finding an attack against generic PMAC with success probability greater
than 2q2/2n is computationally hard.

The second statement relies on a conjecture which we explain below.
Then we focus on an instantiation of generic PMAC, namely PMAC with

Gray codes, introduced by Black and Rogaway [7]. We show that PMAC with
Gray codes is an instantiation which does not meet the optimal bound of 2q2/2n,
by finding an attack with success probability (2k−1 − 1)/2n with � = 2k, estab-
lishing a dependence on � for every power of two.

Approach. Proving the above results requires viewing the inputs to PMAC’s
block cipher calls in a novel way: as a set of points P lying in a finite affine plane.
Keys are identified as slopes of lines in the affine plane. A collision is guaranteed
to occur under a specific key w if and only if each line with slope w covers an
even number of points in P; in this case we say that w evenly covers P.

Maximizing the collision probability means finding a set of points P for which
there is large set of slopes W evenly covering P. But finding such a set W is non-
trivial: the x-coordinates of the points in P must either contain a subset summing
to zero, or satisfying some quadratic form.

Finding a subset summing to zero is the subset sum (SS) problem, which is
known to be NP-complete. The second problem we call the binary quadratic form
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(BQF) problem (see Definition 9), and there is reason to believe this problem is
NP-complete as well (see Appendix B). As a result, we conjecture that finding
solutions to the union of the two problems is computationally hard.

By reducing SS and the BQF problem to finding slopes W evenly covering
points P, we establish our results.

Related Work. Rogaway [19] has shown that the dependence on � disap-
pears if you consider a version of PMAC with an ideal tweakable block cipher.
PMAC’s basic structure has also been used to design schemes where the impact
of � is reduced by construction: Yasuda’s PMAC-with-Parity [23] and Zhang’s
PMACX [24] get bounds of the form q2�2/22n.

For EMAC, Pietrzak [17] proved that if � ≤ 2n/8 and q ≥ �2, then the bound’s
order of growth is independent of �. The proven bound is

128 · q2�8

22n
+ 16 · q2

2n
+

q(q − 1)
2n+1

. (3)

Note that the condition on � means that EMAC’s bound is not truly independent
of �. An example of a construction which has a bound which is truly independent
of � is a variant of PMAC described by Yasuda [23, Sect. 1]. This construction
achieves a bound that does not grow as a function of �, with the limitation
that � ≤ 2n/2 and at a rate of two block cipher calls per block of message. The
construction works by splitting the message into half blocks, and then appending
a counter to each half-block, to create a full block. Each full block is input into
a block cipher, and all the block cipher outputs are XORed together, and finally
input into a last, independent block cipher.

2 Preliminaries

2.1 Notation

If X is a set then X is its complement, Xq is the Cartesian product of q copies
of X, X≤� =

⋃�
i=1 X

i, and X+ =
⋃∞

i=1 X
i. If x ∈ Xq, then its coordinates are

(x1, x2, . . . , xq). If f : X → Y then define f̃ : X+ → Y+ to be the mapping

f̃(x1, . . . , xq) = (f(x1), . . . , f(xq)) . (4)

If a ∈ X�1 and b ∈ X�2 , then a‖b is the concatenation of a and b, that is,

a‖b := (a1, a2, . . . , a�1 , b1, b2, . . . , b�2) ∈ X�1+�2 . (5)

If a ∈ X� and μ ≤ �, then a≤μ := (a1, a2, . . . , aμ). If X is a field, then for a ∈ X�,
1 · a =

∑�
i=1 ai. Furthermore, when considering elements (x, y) of X2, we call

the left coordinate of the pair the x-coordinate, and the other the y-coordinate.
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2.2 Primitives

A uniformly distributed random function (URF) from M to T is a uniformly
distributed random variable over the set of all functions from M to T. A uniformly
distributed random permutation (URP) on X is a uniformly distributed random
variable over the set of all permutations on X.

A pseudo-random function (PRF) is a function Φ : K × M → T defined on a
set of keys K and messages M with output in T. We write Φk(m) for Φ(k,m).
The PRF-advantage of an adversary A against the PRF Φ is the probability that
A distinguishes Φk from $, where k is a uniformly distributed random variable
over K, and $ is a URF. More formally, the advantage of A can be described as

∣∣∣Pr
[
AΦk = 1

]
− Pr

[
A$ = 1

]∣∣∣ , (6)

where AO = 1 is the event that A outputs 1 given access to oracle O.
A pseudorandom permutation (PRP) is a function E : K×X → X defined on

a set of keys K, where E(k, ·) is a permutation for each k ∈ K. As with PRFs,
we write Ek(x) for E(k, x). The PRP-advantage of an adversary A versus E is
defined similarly to the PRF-advantage, and can be described as follows:

∣∣Pr
[
AEk = 1

]
− Pr [Aπ = 1]

∣∣ , (7)

where k is uniformly distributed over K, and π is a URP.

2.3 Message Authentication

A MAC consists of a tagging and a verification algorithm. The tagging algorithm
accepts messages from some message set M and produces tags from a tag set
T. The verification algorithm receives message-tag pairs (m, t) as input, and
outputs 1 if the pair (m, t) is valid, and 0 otherwise. The insecurity of a MAC
is measured as follows.

Definition 1. Let A be an adversary with access to a MAC. The advantage of
A in breaking the MAC is the probability that A is able to produce a message-tag
pair (m, t) for which the verification algorithm outputs 1, where m has not been
previously queried to the tagging algorithm.

PRF-based MACs use a PRF Φ : K×M → T to define the tagging algorithm.
The verification algorithm outputs 1 if Φk(m) = t, and 0 otherwise. As shown
by the following theorem, the insecurity of a PRF-based MAC can be reduced
to the insecurity of the PRF, allowing us to focus on Φ.

Theorem 1 ([2]). Let α denote the advantage of adversary A in breaking a
PRF-based MAC with underlying PRF Φ. Say that A makes q tagging queries
and v verification queries. Then there exists a PRF-adversary B making q + v
PRF queries such that

α ≤ v

|T| + β , (8)

where β is the advantage of B.
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Some PRFs are constructed using a smaller PRP Ek : K × X → X. If ΦEk

denotes a PRF using Ek, then one can reduce the PRF-advantage of an adversary
against ΦEk to the PRF-advantage of an adversary against Φπ, where π is a URP
over X. The result is well-known, and used, for example, to prove the security of
PMAC [7].

Theorem 2. Let α denote the PRF-advantage of adversary A against ΦEk . Say
that A makes q queries to the PRF. Then there exists a PRF-adversary B against
Φπ making q queries and a PRP-adversary C against E such that

α ≤ β + γ , (9)

where β is the advantage of B and γ is the advantage of C.

The above theorem lets us focus on PRFs built with URPs instead of PRPs.

3 PMAC

PMAC is a PRF-based MAC, which means we can focus on the underlying PRF.
Throughout this paper we identify PMAC with its PRF. Furthermore, we focus
on PMAC defined with a URP.

The original PMAC specifications [7,19] have as message space the set of
arbitrary length strings. Although our results focus on the dependency of PMAC
on message length, it will suffice to consider strings with length a multiple of
some block size in order to illustrate how the security bounds evolve as a function
of message length. With this in mind, we define PHASH, first introduced by
Minematsu and Matsushima [15]. Figure 1 depicts a diagram of PHASH.

Definition 2 (PHASH). Let X be a finite field of characteristic two with N
elements. Let M := X≤N and let c ∈ XN be a sequence containing all elements
of X. Let π be a URP over X. Let ω = π(0), then PHASH : M → X is defined
to be

PHASH(m) := 1 · π̃ (m + ωc≤�) , (10)

where m has length �.

0 m1 m2 m3 m4

+ + + +

π π π π π

c1ω c2ω c3ω c4ω

ω + + + (m)

Fig. 1. PHASH evaluated on a message m = (m1,m2,m3,m4).
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PHASH maps messages to a single block. PMAC sends this block through
a last transformation, whose output will be the tag. We describe two different
generic versions of PMAC, one in which the last transformation is independent
of PHASH, and one in which it is not.

Definition 3 (PMAC). Consider PHASH : M → X with URP π and let c∗

denote the last element of c. If y is the output of PHASH under message m,
PMAC evaluated on m is π(y + c∗ω).

Definition 4 (PMAC*). Consider PHASH : M → X with URP π. Let φ :
X → X be an independent URF. Then PMAC* is the composition of PHASH
with φ.

Although PMAC* is defined with an independent outer URF instead of a URP,
all the results in the paper hold with slight modifications to the bounds if a URP
is used.

The two specifications of PMAC define the sequence c differently. Our attack
against PMAC applies to the specification with Gray codes [7], which we will
define in Sect. 6.4. As pointed out by Nandi and Mandal [16], in order to get a
PRF-advantage upper bound of the form q2�/N , the only requirement on c is
that each of its components are distinct.

4 PHASH Collision Probability

Definition 5. The collision probability of PHASH is

max
m1,m2∈M,m1 �=m2

Pr
[
PHASH(m1) = PHASH(m2)

]
. (11)

PHASH’s collision probability is closely linked with the security of PMAC and
PMAC*. In particular, if an adversary finds a collision in PHASH, then it is
able to distinguish PMAC and PMAC* from a URF. The converse is true for
PMAC*, which is a well-known result; see for example Dodis and Pietrzak [9].
Concluding that a distinguishing attack against PMAC results in a collision
found for PHASH has not been proven and is outside of the scope of the paper,
although we conjecture that the statement holds. In either case, understanding
the effect of the message length on PHASH’s collision probability will give us a
good understanding of PMAC’s message length dependence.

In this section we compute bounds on the collision probability for PHASH.
Minematsu and Matsushima [15] prove an upper bound for the collision proba-
bility of PHASH. We use their proof techniques and provide a lower bound as
well.

Throughout this section we fix two different messages m1 and m2 in M of
length �1 and �2, respectively, and consider the collision probability over these
messages. Let m = m1‖m2 and d = c≤�1‖c≤�2 .

If there exists i such that m1
i = m2

i , then these blocks will cancel each other
out in Eq. (11) and will not affect the collision probability, hence we remove



On the Influence of Message Length in PMAC’s Security Bounds 603

them. Let i1, i2, . . . , ik denote the indices of the blocks for which m1 equals m2,
then define m∗ to be m with the entries indexed by i1, i2, . . . , ik and i1+�1, i2+
�1, . . . , ik + �1 removed; d∗ is defined similarly and �∗ denotes the length of m∗

and d∗.
Let xw := m∗ + wd∗ for w ∈ X. The vector xw represents the inputs to

the permutation π when π(0) equals w, meaning the equality PHASH(m1) =
PHASH(m2) can be written as

1 · π̃ (xw) = 0 , (12)

given that π(0) = w. If there is a component of xw which does not equal
any of the other components, then Eq. (12) will contain a π-output which is
roughly independent of the other outputs, thereby making a collision unlikely
when π(0) = w. For example, say that xw = (a, b, c, b), then Eq. (12) becomes
π(a)+π(b)+π(c)+π(b) = π(a)+π(c), which equals 0 with negligible probability.

Similarly, if there are an odd number of components of xw which equal each
other, but do not equal any other components, then they will not cancel out,
resulting again in an unlikely collision. For example, if xw = (a, a, a, b, b), then
Eq. (12) becomes π(a). In fact, a collision is only guaranteed under a given key w
when each component of xw is paired with another component so that each pair
cancels each other out in Eq. (12). Bounding the collision probability in Eq. (11)
amounts to determining how many keys w there are for which each component
of xw is paired.

We formalize these “equality classes” of components of xw as follows. Define
I to be the set of integers from 1 to �∗, {1, . . . , �∗}, then the components of xw =
(xw

1 , xw
2 , . . . , xw

�∗), induce the following equivalence relation on I: i is equivalent
to j if and only if xw

i = xw
j . For i ∈ I, let [i] denote i’s equivalence class, and

#[i] the number of elements in [i]. Let Rw denote the set of equivalence class
representatives where each representative is the smallest element of its class. Let
Rw

e be those i ∈ Rw such that #[i] is even, and Rw
o the complement of Rw

e in
Rw. Taking the example xw = (c, c, c, b, b, b, b, a), then Rw would equal {1, 4, 8}
and Rw

e is {4}.
Define W to be the set of w ∈ X such that Rw

o is empty. In other words, the
set W is the set of keys w for which m1 and m2 are guaranteed to collide.

Proposition 1. Let F = PHASH, then

|W|
N

≤ Pr
[
F (m1) = F (m2)

]
≤ |W|

N
+

1
N − �∗ + 1

. (13)

Proof. Let Π be the set of permutations on X. Let δw be the number of distinct
components in 0‖xw and let Sw be the set of y such that 1 · y = 0 and w‖y
matches 0‖xw, where two sequences a and b of the same length match if ai = aj

if and only if bi = bj , for all i, j. We have that

Pr
[
F (m1) + F (m2) = 0

]
= Pr [1 · π̃(xω) = 0] (14)
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=
1

N !
·
∣∣∣
{

p ∈ Π | 1 · p̃
(
x p(0)

)
= 0

}∣∣∣ (15)

=
1

N !
·
∑

w∈X

∑

y∈Sw

|{p ∈ Π | p̃(0‖xw) = w‖y}| . (16)

Note that for all w and y ∈ Sw,

|{p ∈ Π | p̃(0‖xw) = w‖y}| = (N − δw)! , (17)

hence we get

Pr
[
F (m1) = F (m2)

]
=

1
N !

·
∑

w∈X

(N − δw)! · |Sw| . (18)

Let y be such that w‖y matches 0‖xw. Note that yi = yj if and only if i is
equivalent to j, and for any i ∈ Rw,

∑

j∈[i]

yj =

{
0 if #[i] is even
yi otherwise .

(19)

Then y ∈ Sw if and only if w‖y matches 0‖xw and
∑

i∈Rw
o

yi = 0.
Let w be such that xw

i �= 0 for all i. The number of y such that w‖y matches
0‖xw and

∑
i∈Rw

o
yi = 0 can be counted as follows. Consider y = (y1, . . . , y�∗)

satisfying the requirements, and enumerate the values in Rw
e : i1, i2, . . . , ik. By

fixing yi1 , yi2 , . . . , yik
, we determine all components of y contained in the equiv-

alence classes of Rw
e . Since yi1 , yi2 , . . . , yik

is a sequence of k distinct values, all
different from w, there are (N − 1)!/(N −k − 1)! possibilities for yi1 , yi2 , . . . , yik

.
If Rw

o �= ∅, then we enumerate the elements of Rw
o : j1, j2, . . . , jl. Similar to

Rw
e , by determining yj1 , yj2 , . . . , yjl

we will determine the remaining components
of y . The sequence yj1 , yj2 , . . . , yjl

contains l distinct values, all different from
yi1 , yi2 , . . . , yik

and w, and such that yj1 + yj2 + · · · + yjl
= 0, resulting in at

most (N −k −1)!/(N −k − l)! possibilities. Putting this together, and observing
that k + l = |Rw

e | + |Rw
o | = δw − 1, we get |Sw| ≤ (N−1)!

(N−δw+1)! when Rw
o �= ∅ and

xw
i �= 0 for all i. If Rw

o = ∅, then |Sw| = (N−1)!
(N−δw)! .

By following similar reasoning, we get that if w is such that there exists
xw

i = 0, |Sw| ≤ (N−1)!
(N−δw+1)! when Rw

o �= ∅, and |Sw| = (N−1)!
(N−δw)! otherwise.

Putting the above together, we have

Pr
[
F (m1) = F (m2)

]
≤ |W|

N
+

1
N

∑

w∈W

1
N − δw + 1

, (20)

and since the computation of |Sw| is exact when Rw
o = ∅, we get

|W|
N

≤ Pr
[
F (m1) = F (m2)

]
. (21)


�
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5 Necessary Conditions for a Collision

This section provides a geometric interpretation of the set W which facilitates
finding necessary conditions for W to contain more than two elements.

5.1 Evenly Covered Sets

Recall that an element w of X is in W only if Rw
o = ∅, meaning #[i] is even for

all i ∈ Rw. Two components xw
i and xw

j of xw are equal if and only if

w =
m∗

i − m∗
j

d∗
j − d∗

i

, (22)

since the points such that (di,mi) = (dj ,mj) were removed earlier when forming
m∗ from m . In particular, Eq. (22) says that xw

i equals xw
j if and only if the

points (d∗
i ,m

∗
i ) and (d∗

j ,m
∗
j ) lie on a line with slope w. Since #[i] is even, we

know that there are an even number of points on the line through (d∗
i ,m

∗
i ) with

slope w, which motivates the following definition.

Definition 6. Let P ⊂ X2 be a set of points. A line evenly covers P if it contains
an even number of points from P. A slope w ∈ X evenly covers P if all lines with
slope w evenly cover P. A subset of X evenly covers P if all slopes in the subset
evenly cover P.

We let P denote the set of points (di,mi) for 1 ≤ i ≤ �. Applying the above
definition together with Eq. (22), we get the following proposition.

Proposition 2. An element w ∈ X is in W if and only if w evenly covers P.

Using this geometric interpretation, we obtain the upper bound proved by Mine-
matsu and Matsushima [15] for the collision probability of PHASH.

Proposition 3.

|W| ≤ �∗ − 1 (23)

Proof. Given a point p0 ∈ P, all possible slopes connecting p0 to another point
in P can be generated from the lines connecting the points. This results in
at most |P| − 1 different slopes covering P, hence an upper bound for |W| is
|P| − 1 = �∗ − 1. 
�

It is easy to construct sets evenly covered by two slopes. Consider P :=
{(x1, 0), (x1, 1), (x2, 0), (x2, 1)}, depicted in Fig. 2. The possible slopes are 0 and
(x1 + x2)−1. Throughout the paper we do not consider ∞ to be a slope, since
such a slope would only be possible if d∗

i = d∗
j in Eq. (22), which happens only

if m∗
i = m∗

j . The lines with slope 0, from (x1, 0) to (x2, 0) and from (x1, 1) to
(x2, 1), evenly cover P. Similarly, the lines with slope (x1 + x2)−1, from (x1, 0)
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x1 x2

0

1 (x1 + x2)
−1

0

Fig. 2. A set of four points evenly covered by the slopes 0 and (x1 + x2)
−1. The

x-coordinates of the points are x1 and x2, and the y-coordinates are 0 and 1.

to (x2, 1) and from (x1, 1) to (x2, 0), also evenly cover P. Therefore P is evenly
covered by

{
0, (x1 + x2)−1

}
.

The above set can be converted into two messages: m1 = (0, 0) and m2 =
(1, 1). Setting x1 = c1 and x2 = c2, then we know that the collision probability
of m1 and m2 is at least 2/N .

Proposition 4. There exist messages m1 and m2 such that |W| ≥ 2.

Note that P constructed from m∗ contains at most two points per x-coordinate.

5.2 Properties of Evenly Covered Sets

Although Proposition 3 gives a good upper bound for the collision probability
of PHASH, it does not use any of the structure of evenly covered sets. In this
section we explore various properties of evenly covered sets, allowing us to relate
their discovery to NP-hard problems in Sect. 5.3.

The following lemma shows that removing an evenly covered subset from an
evenly covered set results in an evenly covered set.

Lemma 1. Let P ⊂ X2 and let W ⊂ X be a set evenly covering P. Say that P
contains a subset P′ evenly covered by W as well, then P \ P′ is evenly covered
by W.

Proof. Let Q := P \ P′. The set W evenly covers Q if and only if every line with
slope w ∈ W contains an even number of points in Q. Let p ∈ Q and w ∈ W and
consider the line λ with slope w through point p. By hypothesis, λ evenly covers
P and P′. By removing P′ from P, an even number of points are removed from
λ, resulting in λ evenly covering Q. 
�

If a set P is evenly covered by at least two slopes u and v, then all the points in
the set lie in a loop.

Definition 7. Let P ⊂ X2 be evenly covered by W ⊂ X. A (u, v)-loop in (W,P)
is a sequence of points (p1, p2, . . . , pk) with two different slopes u, v ∈ W such
that pi and pi+1 (mod k) lie on a line with slope u for i odd, and on a line with
slope v otherwise.
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The set from Fig. 2 contains (0, (x1 + x2)−1)-loops. In fact, there are always
at least four points in any (u, v)-loop. Note that there must be at least three
points since there are two distinct slopes. If there are only three points then p1
is connected to p2 via u, p2 is connected to p3 via v, and p3 must be connected
to p1 via u, resulting in all three lying on the same line with slope u, but also p2
lying on a line with slope v with p3, resulting in a contradiction. Figure 3 shows
a set with more complicated loops, including two which loop over all points in
the set.

Lemma 2. Let P ⊂ X2 be evenly covered by W ⊂ X. Let u, v ∈ W, then every
point in P is in a (u, v)-loop starting with slope u and ending with slope v.

Proof. Let p0 ∈ P, then by hypothesis there is another point p1 in P lying on a
line with slope u connecting to p0. Similarly, there is a point p2 different from
p0 and p1 lying on a line with slope v connected to p1. Continuing like this, we
can create a sequence of points p0, p1, . . . , pk until pk+1 = pi for some i ≤ k,
with the property that adjacent points in the sequence are connected by lines
alternating with slope u and v.

If i = 0, then we are done. Otherwise, consider pi−1, pi, pi+1, and pk. Say
that pi−1 is connected to pi via a line with slope u, so that pi is connected to
pi+1 via a line with slope v. If pk is connected to pi via a line with slope v, then
there are three points on the same line with slope v: pi, pi+1, and pk. This means
there is a fourth point p∗ on the same line. Since pk is connected to pi+1 via
v, the sequence pi+1, pi+2, . . . , pk forms a (u, v)-loop. We remove the (u, v)-loop
from P, which is evenly covered by u and v, resulting in a set evenly covered by
u and v, and we continue by induction. Similar reasoning can be applied when
pk is connected to pi via u. 
�

Proposition 5. The sum of the x-coordinates in a (u, v)-loop must be zero.

Proof. Say that (x1, y1), (x2, y2), . . . , (xk, yk) are the points in the loop. Then

yi + yi+1 = δi(xi + xi+1 (mod k)) , (24)

where δi is u if i is odd, and v otherwise. Since

(y1 + y2) + (y2 + y3) + · · · + (yk−1 + yk) + (yk + y1) = 0 , (25)

we have that

u(x1 + x2) + v(x2 + x3) + u(x3 + x4) + · · ·
+ u(xk−1 + xk) + v(xk + x1) = 0 , (26)

therefore

(u + v)(x1 + x2 + · · · + xk) = 0 . (27)

Since u �= v, it must be the case that x1 + x2 + · · · + xk = 0. 
�
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0 a

b c
u

v

w

Fig. 3. A set of points evenly covered by the slopes u, v, and w. Each point is accom-
panied by another point with the same x-coordinate. The x-coordinates of the pairs
are indicated below the lower points.

Adversaries can only construct sets P where there are at most two points
per x-coordinate. Therefore, either all loops only contain points (x, y) for which
there is exactly one other point (x, y′) with the same x-coordinate, or there exists
a loop with a point which is the only one with that x-coordinate. For example,
Figs. 2 and 3 depict evenly covered sets where every loop always contains all
x-coordinate pairs. If we consider the only loop in Fig. 2, then we get

0 · (x1 + x2) + (x1 + x2)−1(x2 + x1) + 0 · (x1 + x2) + (x1 + x2)−1(x2 + x1) , (28)

which trivially equals zero. All loops in Fig. 3 also trivially sum to zero.
In contrast, Fig. 4 depicts an evenly covered set in which we get a non-trivial

sum of the x-coordinates:

u · a + v(a + c) + u(c + b) + v · b = (u + v)(a + b + c) = 0 , (29)

hence such a set only exists if a + b + c = 0.
Therefore, Proposition 5 only poses a non-trivial restriction on the x-

coordinates if there is a loop which contains a point without another point
sharing its x-coordinate. If the loop contains all pairs of points with the same
x-coordinates, then the x-coordinates will trivially sum to zero. This is why in
the case of Fig. 2 there are no restrictions on the x-coordinates, other than the
fact that they must be distinct, resulting in the existence of sets evenly covered
by two slopes.

0 a

b c
u

v

w

Fig. 4. A set of points evenly covered by the slopes u, v, and w. None of the points are
accompanied by another point with the same x-coordinate. The points are labelled by
their x-coordinates.
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0 a

b c

0 a

b c
u

v

w

Fig. 5. Illustration of loops with three slopes.

In the case of Fig. 3 however, there are additional restrictions on the x-
coordinates. Consider the two points at x-coordinate 0. Then there is part of
a (u, v)-loop connecting them, and part of a (u,w)-loop connecting them, and
combining both parts we get a full loop using all three slopes; see the left hand
side of Fig. 5. A similar loop involving all three slopes can be constructed around
the points with x-coordinate b. Using these two loops, we get the following equa-
tions. From the left hand side of Fig. 5 we have

ua + va = wb + u(b + c) + w(a + c) + ua (30)
(u + v)a = (w + u)(a + b + c) . (31)

From the right hand side of Fig. 5 we have

(u + v)(b + c) = wb + ua + w(a + b) (32)
(u + v)(b + c) = (w + u)a . (33)

Combining both, we get the following:

a + b + c

a
=

a

b + c
(34)

a2 + b2 + c2 + ab + ac = 0 . (35)

The last equation above can be described as a so-called quadratic form.
A quadratic form over X is a homogeneous multivariate polynomial of degree
two. In our case, the quadratic form can be written as xT Qx , where x ∈ Xn is
the list of variables, and Q ∈ {0, 1}n×n is a matrix with entries in {0, 1}. We say
that x ∗ is a solution to Q if xT

∗ Qx ∗ = 0, and the quadratic form Q is non-trivial
if there exists x �= 0 such that xT Qx �= 0.

So the evenly covered set from Fig. 3 only exists if the x-coordinates satisfy
some non-trivial quadratic form. The same is true for any evenly covered set
where all loops always contain pairs of points with the same x-coordinate.

Proposition 6. Let P ⊂ X2 be evenly covered by W ⊂ X with W ≥ 3. Say that
all loops in P contain only pairs of points with the same x-coordinates. Then there
exists a subset S of k x-coordinates, and a non-trivial quadratic form described
by a matrix Q ∈ {0, 1}k×k over k variables, such that when the k elements of S
are placed in a vector x∗ ∈ Xk, xT

∗ Qx∗ = 0.
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Proof. Pick three slopes, u, v, w in W. We know that there are at least four
points in P. Pick two pairs of points with the same x-coordinates: (p, p′) and
(q, q′). Consider the (u, v)-loop starting at p. By hypothesis it must contain p′.
We let a = (a1, a2, . . . , aka

) denote the sequence of x-coordinates of the part
of the (u, v)-loop from p to p′. Note that a1 equals aka

since p and p′ have the
same x-coordinates. Similarly, the (u, v)-loop starting at q must contain q′, and
we denote the sequence of x-coordinates of the part of the (u, v)-loop from q to
q′ by b = (b1, b2, . . . , bkb

). The same holds for the (v, w)-loops containing p and
q, and we define the x-coordinate sequences e and f similarly.

Let y denote the difference in the y-coordinates of p and p′. For a we have
the following:

u(a1 + a2) + v(a2 + a3) + · · · + δ(u, v)ka
(aka−1 + aka

) = y , (36)

where δ(u, v)ka
is u if ka is even and v otherwise. Collecting the terms, if ka is

even, we get

u(a1 + a2 + · · · + aka−1 + aka
) + v(a2 + · · · + aka−1) = y , (37)

and since a1 = aka
, we know that

(u + v)(a2 + · · · + aka−1) = y . (38)

If ka is odd, then we get

(u + v)(a1 + a2 + · · · + aka−1) = y . (39)

Note that it cannot be the case that
∑

ai = 0, since y �= 0.
Similar reasoning applied to b gives

(v + w)(b2 + · · · + bkb−1) = y if kb is even
(v + w)(b1 + · · · + bkb−1) = y otherwise .

(40)

Regardless of ka and kb’s parities, setting both equations equal to each other
results in the following equation:

u + v

v + w
=

∑
bi∑
ai

. (41)

Applying the same result to e and f , we get

u + v

v + w
=

∑
fi∑
ei

. (42)

As a result, we have
(∑

bi

) (∑
ei

)
+

(∑
ai

) (∑
fi

)
= 0 , (43)

which is the solution to a quadratic form. 
�
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5.3 Computational Hardness

As shown in Propositions 5 and 6, either there is a loop where the x-coordinates
non-trivally sum to zero, or there is a subset of the x-coordinates which form
the solution to some non-trivial quadratic form. The former is Subset Sum (SS),
whereas the latter we name the binary quadratic form (BQF) problem.

Definition 8 (Subset Sum Problem (SS)). Given a finite field X of char-
acteristic two and a subset S ⊂ X, determine whether there is a subset S0 ⊂ S
such that

∑
x∈S0

x = 0.

Definition 9 (Binary Quadratic Form Problem (BQF)). Given a finite
field X of characteristic two and a subset S ⊂ X, determine whether there is a
non-trivial quadratic form Q ∈ {0, 1}k×k with a solution x∗ made up of distinct
components from S.

SS is know to be NP-complete. In AppendixB we show that BQF-t, a general-
ization of BQF, is NP-complete as well. The problem of finding either a subset
summing to zero or a non-trivial quadratic form we call the SS-or-BQF problem.

Conjecture 1. There do not exist polynomial time algorithms solving SS-or-BQF.

Definition 10 (PHASH Problem). Given a finite field X of characteristic
two and a sequence of masks c, determine whether there is a collision in PHASH
with probability greater than 2/N , where N = |X|.

Given a collision in PHASH one can easily find a solution to SS-or-BQF. The
converse does not necessarily hold, which means SS-or-BQF cannot be reduced
to the PHASH problem in general, although we can conclude the following.

Theorem 3. One of the following two statements holds.

1. There are infinitely many input sizes for which the PHASH problem does not
have a solution, but SS-or-BQF does.

2. For sufficiently large input sizes, SS-or-BQF can be reduced to the PHASH
problem.

Proof. Both the PHASH and SS-or-BQF problems are decision problems, so the
output of the algorithms solving the problems is a yes or a no, indicating whether
the problems have a solution or not. Note that the inputs to both problems are
identical. The reductions consist of simply converting the input to one problem
into the input of the other, and then directly using the output of the algorithm
solving the problem.

We proved that a yes instance for PHASH becomes a yes instance for SS-
or-BQF: if you have an instance of SS-or-BQF, then you can convert it into a
PHASH problem, and if you are able to determine that PHASH has a collision
with sufficient probability, then SS-or-BQF has a solution. Similarly, a no instance
for SS-or-BQF means a no instance for PHASH.
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The issue is when there exists a no instance for PHASH and a yes instance
for SS-or-BQF for a particular input size. If there are finitely many input sizes
for which there is a no instance for PHASH and a yes instance for SS-or-BQF
simultaneously, then there exists an r such that for all input sizes greater than r
a no instance for PHASH occurs if and only if a no instance for SS-or-BQF occurs,
and a yes instance for PHASH occurs if and only if a yes instance for SS-or-BQF
occurs. Therefore, an algorithm which receives a no instance for PHASH can say
that the corresponding SS-or-BQF problem is a no instance, and similarly for the
yes instances, which is our reduction. Otherwise there are infinitely many input
sizes for which PHASH is a no instance, and SS-or-BQF is a yes instance. 
�
If statement 1 holds, then there are infinitely many candidates for an instan-
tiation of PMAC* with security bound independent of the message length. If
statement 2 holds, and we assume that SS-or-BQF is hard to solve, then finding
a collision for generic PHASH is computationally hard.

6 Finding Evenly Covered Sets

The previous section focused on determining necessary conditions for the exis-
tence of evenly covered sets, illustrating the difficulty with which such sets are
found. Nevertheless, finding evenly covered sets becomes feasible in certain sit-
uations. In this section we provide an alternative description of evenly covered
sets in order to find sufficient conditions for their existence.

6.1 Distance Matrices

Let (x1, y1), (x2, y2), . . . , (xn, yn) be an enumeration of the elements of P ⊂ X2.
If w ∈ X covers P evenly, then the line with equation y = w(x − x1) + y1 must
meet P in an even number of points. In particular, there must be an even number
of xi values for which w(xi − x1) + y1 = yi, or in other words, the vector

w · (x1 − x1, x2 − x1, . . . , xn − x1) (44)

must equal
(y1 − y1, y2 − y1, . . . , yn − y1) (45)

in an even number of coordinates. The same must hold for the lines starting
from all other points in P.

Let Δx be the matrix with (i, j) entry equal to xi − xj and Δy the matrix
with (i, j) entry equal to yi − yj . We write A ∼ B if matrix A ∈ Xn×n equals
matrix B ∈ Xn×n in an even number of entries in each row. Then, following the
reasoning from above, we have that w ∈ X covers P evenly only if Δy ∼ wΔx .

The matrices Δx and Δy are so-called distance matrices, that is, symmetric
matrices with zero diagonal. Entry (i, j) in these distance matrices represents
the “distance” between xi and xj , or yi and yj . In fact, starting from distance
matrices M and D such that M ∼ wD we can also recover a set P evenly covered
by w: interpret the matrices M and D as the distances between the points in
the set P. This proves the following lemma.
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Lemma 3. Let k ≤ n − 1 and let W ⊂ X be a set of size k. There exist n by
n distance matrices M and D such that M ∼ wD for all w ∈ W if and only if
there exists P with |P| = n and W evenly covers P.

From the above lemma we can conclude that the existence of P ⊂ X2 evenly
covered by W ⊂ X is not affected by the following transformations:

1. Translating the set P by any vector in X2. This also preserves the set W.
2. Subtracting any element w0 ∈ W from the set W.
3. Scaling the set P in either x or y-direction by a non-zero scalar in X.
4. Scaling the set W by any non-zero element of X.

6.2 Connection with Graphs

Let P ⊂ X2 be evenly covered by W ⊂ P. The pair (P,W) has a natural graph
structure with vertices P and an edge connecting two vertices p1 and p2 if and
only if the line connecting them has slope in W. Figures 2 and 3 provide dia-
grams which can also be viewed as examples of the natural graph structure. In
this section we connect the existence of evenly covered sets with so-called fac-
torizations of a graph. See AppendixA for a review of the basic graph theoretic
definitions used in this section.

Each vertex in the natural graph has at least |W| neighbours, and if there
are two points per line in P, then the graph is |W|-regular. Vertices have more
than |W| neighbours only if they are on a line with more than two points. Since
we are not interested in the redundancy from connecting a point with all points
on the same line, we only consider graphs without the additional edges.

Definition 11. A graph associated to (P,W) is a |W|-regular graph G with P
as its set of vertices and an edge between two vertices p1 and p2 only if the line
connecting p1 with p2 has slope in W.

Any graph associated to (P,W) is a subgraph of the natural graph structure
described above, and there could be multiple associated graphs, depending upon
what edges are chosen to connect multiple points lying on the same line. For
example, Fig. 6 depicts an evenly covered set with twelve points, six of which

u

v

w

Fig. 6. Non-trivial example of a set with 12 points evenly covered by three slopes.
Horizontal points lie on the same y-coordinate, and vertical points on the same x-
coordinate. Since there are six points on a line with slope u, the natural graph is not
regular.
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u

v

w

Fig. 7. The diagram from Fig. 6 converted into an associated graph. The slopes u, v,
and w induce a natural 1-factorization of the graph.

lie on the same line. As depicted in Fig. 7, it can easily be converted into an
associated graph.

The following definition allows us to describe another property that associ-
ated graphs have.

Definition 12. A k-factor of a graph G is a k-regular subgraph with the same
vertex set as G. A k-factorization partitions the edges of a graph in disjoint
k-factors.

Associated graphs have a 1-factorization induced by W, where each 1-factor is
composed of the edges associated to the same slope in W. See Fig. 7 for an
example.

We know that every pair (P,W) has an associated |W|-regular graph with 1-
factorization. In order to determine the existence of evenly covered sets we need
to consider when a k-regular graph with 1-factorization describes the structure
of some pair (P,W) with |W| = k. By first fixing a graph with a 1-factorization, it
is possible to set up a system of equations to determine the existence of distance
matrices M and D, and slopes W such that M ∼ wD for all w ∈ W. Then, by
applying Lemma 3, we will have our desired pair (P,W).

Definition 13. Let G be a regular graph with vertices (v1, . . . , vn) and a 1-
factorization, and let Xn×n denote the set of matrices over X. Define SG ⊂ Xn×n

to be the matrices where entry (i, j) equals entry (k, l) if and only if the edges
(vi, vj) and (vk, vl) are in the same 1-factor of G.

Proposition 7. There exists a set P ⊂ X2 with n elements evenly covered by
W ⊂ X with |W| = k if and only if there exists a k-regular graph G of order n
with a 1-factorization such that there is a solution to

M = S ◦ D , (46)

where S ∈ SG, M,D ∈ Xn×n are distance matrices, and ◦ denotes elementwise
multiplication.

Therefore by picking a regular graph with a 1-factorization and solving a system
of equations, we can determine the existence of pairs (P,W) for various sizes, in
order to determine a lower bound for PHASH’s collision probability.
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6.3 Latin Squares and Abelian Subgroups

In this section we consider what happens when we solve Eq. (46) with a
1-factorization of the complete graph of order n. Since we look at complete
graphs, finding a solution would imply the existence of sets with n points evenly
covered by n − 1 slopes, the optimal number as shown by Proposition 3. We
describe a necessary and sufficient condition on the matrix D from Eq. (46),
which in turn becomes a condition on the x-coordinates of the evenly covered
sets.

As described by Laywine and Mullen [13, Sect. 7.3], 1-factorizations of a
complete graph G of order n, with n even, are in one-to-one correspondence
with reduced, symmetric, and unipotent Latin squares, that is, n by n matrices
with entries in N such that

1. the first row enumerates the numbers from 1 to n,
2. the matrix is symmetric, that is, entry (i, j) equals entry (j, i),
3. the diagonal consists of just ones,
4. and each natural number from 1 to n appears just once in every row and

column.

The correspondence between 1-factorizations of complete graphs and Latin
squares works by identifying row i and column i with a vertex in the graph,
labelling the 1-factor containing edge (1, i) with i, and then setting entry (i, j)
equal to the label of the 1-factor containing edge (i, j). This is exactly the struc-
ture of the matrices in SG.

Let n be a power of two. The abelian 2-group of order n is a commutative
group in which every element has order two, that is, a + a = 0 for all elements a
in the group. The Cayley table of the abelian 2-group of order n can be written
as a reduced, symmetric, and unipotent Latin square.

Definition 14. The (i, j) entry of the Cayley table of the abelian 2-group with
� elements is denoted γ(i, j).

Lemma 4. γ(i, γ(i, j)) = j.

Proposition 8. Let G denote the complete graph of order n, where n is a power
of two, with 1-factorization induced by the Cayley table of the abelian 2-group of
order n. Then Eq. (46) has a solution if and only if the first row of D forms an
additive subgroup of X of order n.

The above proposition shows that the graph structure corresponding to the
abelian 2-group induces the same additive structure on the x-coordinates of
the evenly covered set. This transfer of structure only works with this particular
1-factorization of the complete graph. In general, reduced, symmetric, and unipo-
tent Latin squares do not even correspond to the Cayley table of some group:
associativity is not guaranteed. Furthermore, 1-factorizations of non-complete
graphs do not necessarily even form Latin squares; see for example Fig. 6.
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Proof. Denote the first row of S by s1, s2, . . . , sn, and the first row of D by
d1, . . . , dn. Note that D is entirely determined by its first row, since the (i, j)
entry of D is di + dj , and since S follows the form of γ, it is entirely determined
by its first row as well. In particular, the (i, j) entry of S is sγ(i,j), where γ(i, j)
is the (i, j) entry of the Cayley table.

We need to determine the conditions under which S ◦D is a distance matrix,
as a function of s1, . . . , sn and d1, . . . , dn. This happens if and only if the (i, j)
entry of S ◦ D is equal to sidi + sjdj :

sidi + sjdj = sγ(i,j)(di + dj) . (47)

Furthermore, it must be the case that

sidi + sγ(i,j)dγ(i,j) = sj(di + dγ(i,j)) , (48)

since γ(i, γ(i, j)) = j. Therefore

sjdj + sγ(i,j)dγ(i,j) = sγ(i,j)(di + dj) + sj(di + dγ(i,j)) (49)
(sj + sγ(i,j))(di + dj + dγ(i,j)) = 0 . (50)

Since S must follow the Latin square structure, the first row of S must consist
of n distinct entries, hence sj �= sγ(i,j) and so di + dj + dγ(i,j) = 0. Therefore,
d1, . . . , dn satisfies the equations of the Cayley table, hence they form an additive
subgroup of X.

Continuing, we have the following equations:

sidi + sjdj + sγ(i,j)dγ(i,j) = 0 . (51)

In order for these equations to be satisfied, s1d1, . . . , sndn must form an additive
subgroup of X as well. In particular, there must exist an isomorphism φ mapping
di to sidi, which can be written as d−1

i φ(di) = si for i > 1. The only requirement
for the existence of such an isomorphism is that x−1φ(x) must map to distinct
values. Picking x �→ x2 as the isomorphism, we have our desired result. Note
that the di must be distinct, otherwise the si are not distinct, contradicting the
fact that S follows the Latin square structure. 
�

6.4 Application to PMAC

Before we present an attack, we first need the following lemma.

Lemma 5. Let P and P′ be disjoint subsets of X2 evenly covered by W ⊂ X.
Then P ∪ P′ is evenly covered by W.

A collision in PHASH with probability (� − 1)/N can be found as follows.
Take c and let k be the smallest index such that c≤k contains a subsequence c′

of length � such that the elements {c′
1 + c′

1, c
′
1 + c′

2, . . . , c
′
1 + c′

�} form an additive
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subgroup of X. Let μ be the mapping which maps indices of c′ onto indices of
c, so that c′

i = cμ(i).
Let D be a distance matrix in X�×� such that its first row is equal to (c′

1 +
c′
1, c

′
1 + c′

2, . . . , c
′
1 + c′

�); recall that a distance matrix is completely determined
by its first row. Let G be the complete graph of order � with 1-factorization
determined by the abelian 2-group of order �. Solve Eq. (46), that is, find a
distance matrix M such that there exists S ∈ SG where

M = S ◦ D . (52)

Let m1 denote the first row of M , and let W denote the elements mak-
ing up the first row of S, without the first row element. Then the set P :={
(c′

1,m
1
1), . . . , (c

′
�,m

1
�)

}
is evenly covered by W, which contains � − 1 slopes.

By translating P vertically by some constant, say 1, construct the disjoint
set P′, which is also evenly covered by W. Therefore, by Lemma 5, the union of
P and P′ is evenly covered by W. Let m2 denote the y-coordinates of P′.

Define m1 to be the vector of length k where for all i ≤ �, m1
μ(i) = m1

i , and
for all i not in the range of μ, m1

i = 0. Define m2 similarly. Then m1 and m2

collide with probability (� − 1)/N .
For sufficiently large k, c≤k will always contain additive subgroups. In par-

ticular, one can find such subgroups in PMAC with Gray codes [7], where c is
defined as follows. In this case X := {0, 1}ν is the set of ν-bit strings, identified
in some way with a finite field of size 2ν . We define the following sequence of
vectors λν :

λ1 = (0, 1) (53)

λν+1 = (0‖λν
1 , 0‖λν

2 , . . . , 0‖λν
2ν , 1‖λν

2ν , . . . , 1‖λν
2 , 1‖λν

1) . (54)

Note that λν contains all strings in X. Then c is λν without the first compo-
nent, meaning c contains all strings in X without the zero string. Similarly,
the sequence (c1, . . . , c2κ) contains all strings starting with ν − κ zeros, i.e.
0ν−κ‖ {0, 1}κ, excluding the zero string. Note that c1 = 0ν−11. The sequence
(c1 + c1, c1 + c2, . . . , c1 + c2κ) contains all strings in 0ν−κ‖ {0, 1}κ except for c1,
meaning it contains an additive subgroup of order 2κ−1. This results in an attack
using messages of length k = 2κ with success probability (2κ − 1)/2ν .
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A Basic Graph Theoretic Definitions

1. A neighbour of a vertex v in a graph G is a vertex with an edge connecting
it to v.

2. A graph G is said to be k-regular if every vertex of G has exactly k neighbours.
3. A subgraph of a graph G is a graph with vertex set and edge set subsets of

G’s vertex and edge sets, respectively.
4. A complete graph is a graph in which every vertex is connected to every other

vertex via an edge.

B BQF-t is NP-complete

Definition 15 (BQF-t). Given a finite field X with characteristic 2 and a vector
x∗ ∈ Xk and a target element t ∈ X, determine if there is a non-trivial binary
quadratic form Q ∈ {0, 1}k×k such that xT

∗ Qx∗ = t.

Note. The word ‘binary’ in our use of the term ‘binary quadratic form’ refers
to the coefficients of the quadratic form matrix Q and not to the number of
variables.

Proposition 9. BQF-t ∈ NP

Proof. Given a BQF-t yes-instance (X,x∗, t) of (k + 2) × � bits, there exists a
certificate of k2 × � bits that proves it is a yes-instance, namely the matrix Q
such that xT

∗ Qx∗ = t. Moreover, the validity of this certificate can be verified by
computing xT

∗ Qx∗ and testing if it is indeed equal to t. This evaluation requires
(n + 1) × n multiplications and the same number of additions in the finite field
X. After testing equality, the non-triviality of Q is verified by testing whether
QT +Q �= 0, costing another n2 finite field additions and as many equality tests.
Thus, for every yes-instance of BQF-t, there exists a polynomial-size certificate
whose validity is verifiable in polynomial time. Hence, BQF-t ∈ NP. 
�

Proposition 10. BQF-t is NP-hard.

Proof. We show that BQF-t is NP-hard by reducing the subset-sum problem
SS, another NP-hard problem, to it. In particular, we show that SS≤ BQF-t
under deterministic polynomial-time Karp reductions.

Given an instance (X, S) of SS, the goal is to find a subset S0 ⊂ S such that∑
x∈S0

x = 1. Note the target of SS can be changed without loss of generality.
We transform this problem instance to an instance (X′,x∗, t) of BQF-t as follows.

Let k = #S, the number of elements in S and let each unique element si of
S be indexed by i ∈ {1, . . . , k}. Choose a degree 2k + 1 irreducible polynomial
ψ(z) ∈ X[z] and define the extension field X′ = X[z]/〈ψ(z)〉. Then define the
vector x∗ as follows:
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x∗ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1s1
z2s2

...
zksk

z−1

z−2

...
z−k

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The BQF-t instance is (X′,x∗, 1). It now remains to be shown that (1) this
transformation is computable in polynomial time; (2) if the SS problem instance
is a yes-instance, then the BQF-t problem instance is yes-instance; (3) conversely,
if the SS problem instance is a no-instance, then the BQF-t problem instance is
a no-instance.

1. It is known to be possible to deterministically select an irreducible polyno-
mial over a finite field of small characteristic in polynomial time [20]. After
selecting the polynomials, the inverse of z is computed using the polynomial-
time extended GCD algorithm and all the necessary powers of z and z−1 are
found after two times k multiplications. Lastly, the proper powers of z are
combined with the si elements using k multiplications for the construction of
the first half of the vector x∗; the second half of this vector has already been
computed. So since this transformation consists of a polynomial-number of
polynomial-time steps, its total running time is also polynomial.

2. If the SS instance is a yes-instance, then there exist k binary weights
wi ∈ {0, 1} for all i ∈ {1, . . . , k} such that

∑k
i=1 wisi = 1. The existence

of these weights imply the existence of the matrix Q, as defined below. This
matrix consists of four k × k submatrices and only the diagonal of the upper
right submatrix is nonzero. In fact, this diagonal is where the weights wi

appear.

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1

. . .
wk

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(55)

Indeed, the BQF-t instance is guaranteed to be a yes-instance as

xT
∗ Qx∗ =

k∑

i=1

zisiwiz
−i = 1
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if and only if
k∑

i=1

wisi = 1 ,

which is the solution to the SS problem. Also, Q is non-trivial if there exists
at least one nonzero weight wi.

3. If the SS instance is a no-instance, then no set of weights wi such that∑k
i=1 wisi = 1 exists. Consequently, no Q satisfying xT

∗ Qx∗ = 1 can exist.
The reason is that all the elements of the Q-matrix except for the upper right
diagonal are multiplied with higher or lower powers of z, which make them
linearly independent from 1. Hence, neither the upper right diagonal nor any
other set of nonzero elements in Q can make the total quadratic form equal
to one. 
�

Corollary 1. BQF-t is NP-complete.
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Abstract. s2n is an implementation of the TLS protocol that was
released in late June 2015 by Amazon. It is implemented in around 6,000
lines of C99 code. By comparison, OpenSSL needs around 70,000 lines
of code to implement the protocol. At the time of its release, Amazon
announced that s2n had undergone three external security evaluations
and penetration tests. We show that, despite this, s2n — as initially
released — was vulnerable to a timing attack in the case of CBC-mode
ciphersuites, which could be extended to complete plaintext recovery
in some settings. Our attack has two components. The first part is a
novel variant of the Lucky 13 attack that works even though protec-
tions against Lucky 13 were implemented in s2n. The second part deals
with the randomised delays that were put in place in s2n as an addi-
tional countermeasure to Lucky 13. Our work highlights the challenges
of protecting implementations against sophisticated timing attacks. It
also illustrates that standard code audits are insufficient to uncover all
cryptographic attack vectors.

Keywords: TLS · CBC-mode encryption · Timing attack · Plaintext
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1 Introduction

In late June 2015, Amazon announced a new implementation of TLS (and
SSLv3), called s2n [Lab15,Sch15]. A particular feature of s2n is its small code-
base: while s2n relies on OpenSSL or any of its forks for low-level cryptographic
processing the core of the TLS protocol implementation is written in around
6,000 lines of C99. This is intended to make s2n easier to audit. Indeed, Amazon
also announced that s2n had undergone three external security evaluations and
penetration tests prior to release. No details of these audits appear to be in the
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public domain at the time of writing. Given the recent travails of SSL/TLS in
general and the OpenSSL implementation in particular, s2n generated significant
interest in the security community and technical press.1

We show that s2n — as initially released — was vulnerable to a timing attack
on its implementation of CBC-mode ciphersuites. Specifically, we show that the
two levels of protection offered against the Lucky 13 attack [AP13] in s2n at the
time of first release were imperfect, and that a novel variant of the Lucky 13
attack could be mounted against s2n.

The attack is particularly powerful in the web setting, where an attack involv-
ing malicious client-side Javascript (as per BEAST, POODLE [MDK14] and
Lucky 13) results in the complete recovery of HTTP session cookies, and user
credentials such as BasicAuth passwords. In this setting, an adversary runs mali-
cious JavaScript in a victim’s browser and additionally performs a Person-in-
the-Middle attack. We note, though, that many modern browsers prefer TLS 1.2
AEAD cipher suites avoiding CBC-mode, making them immune to the attack
described in this work if the sever also supports TLS 1.2 cipher suites as s2n
does. The issues identified in this work have since been addressed in s2n, partly
in response to this work, and current versions are no longer vulnerable to the
attacks described in this work.

We stress that the problem we identify in s2n does not arise from reusing
OpenSSL’s crypto code, but rather from s2n’s own attempt to protect itself
against the Lucky 13 attack when processing incoming TLS records. It does this
in two steps: (1) using additional cryptographic operations, to equalise the run-
ning time of the record processing; and (2) introducing random waiting periods
in case of an error such as a MAC failure.

Step (1) involves calls to a function s2n hmac update, which in turn makes
hash compression function calls to, for example, OpenSSL or LibreSSL. The
designers of s2n chose to draw a line above which to start their implementation,
roughly aligned at the boundary between low-level crypto functions and the
protocol itself. The first part of our attack is focused at the lowest level above that
line. Specifically, we show that the desired additional cryptographic operations
may not be carried out as anticipated: while s2n always fed the same number
of bytes to s2n hmac update, to defeat timing attacks, this need not result in
the same number of compression function calls of the underlying hash function.
Indeed this latter number may vary depending on the padding length byte which
controls after how many bytes s2n hmac digest is called, this call producing a
digest over all data submitted so far. We can also arrange that subsequent calls
to s2n hmac update do not trigger any compression function calls at all. This
has the effect of removing the timing equalisation and reopening the window for
an attack in the style of Lucky 13.

The second part of our attack is focussed on step (2), the random waiting
periods introduced in s2n as an additional protection against timing attacks.

1 See for example http://www.theregister.co.uk/2015/07/01/amazon s2n tls library/,
http://www.securityweek.com/amazon-releases-new-open-source-implementation-
tls-protocol.

http://www.theregister.co.uk/2015/07/01/amazon_s2n_tls_library/
http://www.securityweek.com/amazon-releases-new-open-source-implementation-tls-protocol
http://www.securityweek.com/amazon-releases-new-open-source-implementation-tls-protocol
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The authors of [AP13] showed that adding random delays as a countermeasure to
Lucky 13 would be ineffective if the maximum delay was too small. The s2n code
had a maximum waiting period that is enormous relative to the processing time
for a TLS record, 10s compared to around 1µs, putting the attack techniques
of [AP13] well out of contention. However, the initial release of s2n used timing
delays generated by calls to sleep and usleep, giving them a granularity much
greater than the timing differences arising from the failure to equalise the running
time in step (1). Consequently, at a high level, we were able to bypass step (2)
by “mod-ing out” the timing delays provided by sleep and usleep. However,
the reality is slightly more complex than this simple description would suggest,
because those functions do not provide delays that are exact multiples of 1µs but
instead themselves have distributions that need to be taken into account in our
statistical analysis. Weaknesses in random delays as countermeasures to timing
side-channels have been point out before, cf. [CK10]. In contrast to previous
work, though, here the source of timing differences was not close enough to
uniform, allowing our analysis of the low-level code to “leak through” the random
timing delays, despite them being very large.

Our attack illustrates that protecting TLS’s CBC construction against
attacks in the style of Lucky 13 is hard (cf. [AIES15]). It also shows that standard
code audits may be insufficient to uncover all cryptographic attack vectors.

Our attack can be prevented by more carefully implementing countermea-
sures to the Lucky 13 attack that were presented in [AP13]. A fully constant
time/constant memory access patch can be found in the OpenSSL implementa-
tion; its complexity is such that around 500 lines of new code were required to
implement it, and it is arguable whether the code would be understandable by all
but a few crypto-expert developers. It is worth noting that the countermeasure
against Lucky 13 in OpenSSL does not respect the separation adopted in the
s2n design, i.e. it avoids higher-level interfaces to HMAC but makes hash com-
pression function calls directly on manually constructed blocks.2 The s2n code
was patched to prevent our attacks using a different strategy, (mostly) main-
taining the above-mentioned separation. At a high-level, the first step of our
attacks exploits that s2n counted bytes submitted to HMAC instead of com-
pression function calls. In response, s2n now counts the number of compression
function calls. Furthermore, the second s2n countermeasure was strengthened
by switching from using usleep to using nanosleep.

1.1 Disclosure and Remediation

We notified Amazon of the issue in step (1) of their countermeasures, in the
function s2n verify cbc in s2n on 5th July 2015. Subsequently and in response,
this function was revised to address the issue reported. This issue in itself does
not constitute a successful attack because s2n also implemented step (2), the
randomised waiting period, as was pointed out to us by the developers of s2n.
This countermeasure has since been strengthened by switching to the use of

2 See [Lan13] for a detailed description of the patch.
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nanosleep to implement randomised wait periods. This transition was already
planned by the developers of s2n prior to learning about our work, but the
change was accelerated in response to it. Our work shows that the switch to
using nanosleep was a good decision because this step prevents the attacks
described in this work.3

1.2 Lucky 13 Remedies in Other Libraries

As mentioned above OpenSSL prevents the Lucky 13 attack in 500 lines of code
which achieves fully constant time/memory access [Lan13]. GnuTLS does not
completely eliminate all potential sources of timing differences, but makes sure
the number of compression function calls is constant and other major sources of
timing differences are eliminated. As reported in [Mav13] this results in timing
differences in the tens of nanonseconds, likely too small to be exploited in prac-
tice. In contrast, GoTLS as of now does not implement any countermeasure to
Lucky 13. However, a patch is currently under review to equalise the number of
compression function calls regardless of padding value [VF15]. This fix does not
promise constant time/memory access. Botan does not implement any counter-
measure to Lucky 13.4 WolfSSL implements the recommended countermeasures
to Lucky 13 from [AP13].5

2 The TLS Record Protocol and S2n

The main component of TLS of interest here is the Record Protocol, which
uses symmetric key cryptography (block ciphers, stream ciphers and MAC algo-
rithms) in combination with sequence numbers to build a secure channel for
transporting application-layer data. In SSL and versions of TLS prior to TLS
1.2, the only encryption option uses a MAC-Encode-Encrypt (MEE) construc-
tion. Here, the plaintext data to be transported is first passed through a MAC
algorithm (along with a group of 13 header bytes) to create a MAC tag. The sup-
ported MAC algorithms are all HMAC-based, with MD5, SHA-1 and SHA-256
being typical hash algorithms. Then an encoding step takes place. For the RC4
stream cipher, this just involves concatenation of the plaintext and the MAC
tag, while for CBC-mode encryption (the other possible option), the plaintext,
MAC tag, and some encryption padding of a specified format are concatenated.
In the encryption step, the encoded plaintext is encrypted with the selected
cipher. In the case where CBC-mode is selected, the block cipher is DES, 3DES

3 We also note that the first fix was still vulnerable to a timing attack in step (1),
as reported in [ABBD15]. This further highlights the delicacy of protecting against
timing side-channel attacks and that the move towards using nanosleep was a good
decision.

4 https://github.com/randombit/botan/blob/master/src/lib/tls/tls record.cpp#
L398.

5 http://www.yassl.com/forums/topic328-wolfssl-releases-protocol-fix-for-lucky-
thirteen-attack.html.

https://github.com/randombit/botan/blob/master/src/lib/tls/tls_record.cpp#L398
https://github.com/randombit/botan/blob/master/src/lib/tls/tls_record.cpp#L398
http://www.yassl.com/forums/topic328-wolfssl-releases-protocol-fix-for-lucky-thirteen-attack.html
http://www.yassl.com/forums/topic328-wolfssl-releases-protocol-fix-for-lucky-thirteen-attack.html
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or AES (with DES being deprecated in TLS 1.2). The s2n implementation sup-
ports 3DES and AES. Following [PRS11], we refer to this MEE construction as
MEE-TLS-CBC.

The MEE construction used in the TLS has been the source of many security
issues and attacks [Vau02,CHVV03,Moe04,PRS11,AP12,AP13]. These all stem
from how the padding that is required in MEE-TLS-CBC is handled during
decryption, specifically the fact that the padding is added after the MAC has
been computed and so forms unauthenticated data in the encoded plaintext. This
long sequence of attacks shows that handling padding arising during decryption
processing is a delicate and complex issue for MEE-TLS-CBC. It, along with
the attacks on RC4 in TLS [ABP+13], has been an important spur in the TLS
community’s push to using TLS 1.2 and its Authenticated Encryption modes.
AES-GCM is now widely supported in implementations. However, the MEE
construction is still in widespread use, as highlighted by the fact that Amazon
chose to support it in its minimal TLS implementation s2n.

2.1 MEE-TLS-CBC

We now explain the core encryption process for MEE-TLS-CBC in more detail.
Data to be protected by TLS is received from the application and may be

fragmented and compressed before further processing. An individual record R
(viewed as a byte sequence of length at least zero) is then processed as follows.
The sender maintains an 8-byte sequence number SQN which is incremented for
each record sent, and forms a 5-byte field HDR consisting of a 2-byte version
field, a 1-byte type field, and a 2-byte length field. The sender then calculates
a MAC over the bytes SQN||HDR||R; let T denote the resulting MAC tag. Note
that exactly 13 bytes of data are prepended to the record R here before the
MAC is computed. The size of the MAC tag is 16 bytes (HMAC-MD5), 20 bytes
(HMAC-SHA-1), or 32 bytes (HMAC-SHA-256). We let t denote this size in
bytes.

The record is then encoded to create the plaintext P by setting P =
R||T ||pad. Here pad is a sequence of padding bytes chosen such that the length
of P in bytes is a multiple of b, where b is the block-size of the selected block
cipher (so b = 8 for 3DES and b = 16 for AES). In all versions of TLS, the
padding must consist of p + 1 copies of some byte value p, where 0 ≤ p ≤ 255.
In particular, at least one byte of padding must always be added. The padding
may extend over multiple blocks, and receivers must support the removal of such
extended padding. In SSL the padding format is not so strictly specified: it is
only required that the last byte of padding must indicate the total number of
additional padding bytes. The attack on s2n that we present works irrespective
of whether the padding format follows the SSL or the TLS specification.

In the encryption step, the encoded record P is encrypted using CBC-mode
of the selected block cipher. TLS 1.1 and 1.2 mandate an explicit IV, which
should be randomly generated. TLS 1.0 and SSL use a chained IV; our attack
works for either option. Thus, the ciphertext blocks are computed as:

Cj = EKe
(Pj ⊕ Cj−1)
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where Pi are the blocks of P , C0 is the IV, and Ke is the key for the block cipher
E. For TLS (and SSL), the ciphertext data transmitted over the wire then has
the form:

HDR||C
where C is the concatenation of the blocks Ci (including or excluding the IV
depending on the particular SSL or TLS version). Note that the sequence number
is not transmitted as part of the message.

Simplistically, the decryption process reverses this sequence of steps: first the
ciphertext is decrypted block by block to recover the plaintext blocks:

Pj = DKe
(Cj) ⊕ Cj−1,

where D denotes the decryption algorithm of the block cipher. Then the padding
is removed, and finally, the MAC is checked, with the check including the header
information and a version of the sequence number that is maintained at the
receiver.

However, in order to avoid a variety of known attacks, these operations must
be performed without leaking any information about what the composition of
the plaintext blocks is in terms of message, MAC field and padding, and indeed
whether the format is even valid. The difficulties and dangers inherent in this
are explained at length in [AP13].

For TLS, any error arising during decryption should be treated as fatal, mean-
ing an encrypted error message is sent to the sender and the session terminated
with all keys and other cryptographic material being disposed of.

2.2 Details of HMAC

As mentioned above, TLS exclusively uses the HMAC algorithm [KBC97], with
HMAC-MD5, HMAC-SHA-1, and HMAC-SHA-256 being supported in TLS 1.2.6

To compute the MAC tag T for a message M with key Ka, HMAC applies the
specified hash algorithm H twice, in an iterated fashion:

T = H((Ka ⊕ opad)||H((Ka ⊕ ipad)||M)).

Here opad and ipad are specific 64-byte values, and the key Ka is zero-padded
to bring it up to 64 bytes before the XOR operations are performed. All the
hash functions H used in TLS have an iterated structure, processing messages
in chunks of 64 bytes (512 bits) using a compression function, with the output of
each compression step being chained into the next step. Also, for all relevant hash
functions used in TLS, an 8-byte length field followed by padding of a specified
byte format are appended to the message M to be hashed. The padding is at
least 1 byte in length and extends the data to a (56 mod 64)-byte boundary.

6 TLS ciphersuites using HMAC with SHA-384 are specified in RFC 5289 (ECC cipher
suites for SHA256/SHA384) and RFC 5487 (Pre-Shared Keys SHA384/AES) but we
do not consider the SHA-384 algorithm further here.
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In combination, these features mean that HMAC implementations for MD5,
SHA-1 and SHA-256 have a distinctive timing profile. Messages M of length up to
55 bytes can be encoded into a single 64-byte block, meaning that the first, inner
hash operation in HMAC is done in 2 compression function evaluations, with 2
more being required for the outer hash operation, for a total of 4 compression
function evaluations. Messages M containing from 56 up to 64 + 55 = 119 bytes
can be encoded in two 64-byte blocks, meaning that the inner hash is done in
3 compression function evaluations, with 2 more being required for the outer
operation, for a total of 5. In general, an extra compression function evaluation
is needed for each additional 64 bytes of message data. A single compression
function evaluation takes typically a few hundred clock cycles.7

Implementations typically implement HMAC via an “IUF” interface, mean-
ing that the computation is first initialised (I), then the computation is updated
(U) as many times as are needed with each update involving the buffering
and/or hashing of further message bytes. When the complete message has been
processed, a finalisation (F) step is performed. In s2n, OpenSSL or any of its
forks is used to implement HMAC. The initialisation step s2n hmac init carries
out a compression function call on the 64-byte string Ka⊕ipad. The update step
s2n hmac update involves buffering of message bytes and calls to the compres-
sion function on buffered 64-byte chunks of message. Note that no compression
function call will be made until at least 64 bytes have been buffered. The finalisa-
tion step s2n hmac digest consists of adding the length encoding and padding,
performing final compression function calls to compute the inner hash and then
performing the outer hash operation (itself involving 2 compression function
evaluations).

2.3 HMAC Computations After Decryption in s2n

The s2n implementation uses the code in Fig. 1 to check the MAC on a record in
the function s2n verify cbc. This code is followed by a constant-time padding
check that need not concern us here (except to note that the fact that it is con-
stant time helps our attack, since it enables us to isolate timing differences com-
ing from this code fragment). In Fig. 1, the content of buffer decrypted->data
is the plaintext after CBC-mode decryption. The header SQN||HDR of 13 bytes is
dealt with by the calling function.

Notice how the code first computes, using the last byte of plaintext, a
value for padding length, the presumed length of padding that should be
removed (excluding the pad length byte). Arithmetic is then performed to find
payload length, the presumed length of the remaining payload over which
the HMAC computation is to be done. The actual HMAC computation is
performed via an initialise call (not shown), and then the code in line 78
(update via the function s2n hmac update) and line 84 (finalise via the func-
tion s2n hmac digest). Line 86 compares the computed HMAC value with that

7 For example, SHA-256 takes about 550 cycles per block on one of our test systems,
an Intel Core i7–4850HQ CPU @ 2.30 GHz, whereas SHA-1 takes about 300 cycles.
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contained in the plaintext, and sets a flag mismatches if they do not match as
expected.

Line 79 copies the HMAC state to a dummy state, so that line 89 can per-
form a dummy s2n hmac update computation on data from the plaintext buffer.
This attempts to ensure that the number of hash computations carried out is the
same, irrespective of the amount of padding that should be removed. This is in an
effort to remove the timing channel exploited in the Lucky 13 attack. The num-
ber of bytes over which the update is performed is equal to decrypted->size
- payload length - mac digest size - 1, which is one less than the number of
bytes in the plaintext buffer excluding the 13 bytes of SQN||HDR, the message,
and the MAC value. Recall, however, that this update operation may not actu-
ally result in any compression function computations being carried out. What
happens depends on exactly how many bytes are already sitting unprocessed in
the internal buffer and how many are added to it in the call.

2.4 Randomised Waiting Period

In order to additionally protect against attacks exploiting timing side-channels,
s2n implements the following countermeasure: whenever an error occurs, the

67 int payload_and_padding_size = decrypted ->size - mac_digest_size;

68

69 /* Determine what the padding length is */

70 uint8_t padding_length = decrypted ->data[decrypted ->size - 1];

71

72 int payload_length = payload_and_padding_size - padding_length \

- 1;

73 if (payload_length < 0) {

74 payload_length = 0;

75 }

76

77 /* Update the MAC */

78 GUARD(s2n_hmac_update(hmac , decrypted ->data , payload_length ));

79 GUARD(s2n_hmac_copy (&copy , hmac ));

80

81 /* Check the MAC */

82 uint8_t check_digest[S2N_MAX_DIGEST_LEN ];

83 lte_check(mac_digest_size , sizeof(check_digest ));

84 GUARD(s2n_hmac_digest(hmac , check_digest , mac_digest_size ));

85

86 int mismatches = s2n_constant_time_equals(decrypted ->data +

payload_length ,

check_digest ,

mac_digest_size) ^ 1;

87

88 /* Compute a MAC on the rest of the data so that we perform

the same number of hash operations */

89 GUARD(s2n_hmac_update (&copy , decrypted ->data + payload_length +

mac_digest_size ,

decrypted ->size - payload_length -

mac_digest_size - 1));

Fig. 1. Excerpt from s2n verify cbc, s2n’s code for checking the MAC on a TLS
record
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implementation waits for a random period of time before sending an error mes-
sage. We reproduce the relevant code excerpts in Fig. 2; at a high level, when a
MAC failure occurs, the following steps are taken:

– All available data is erased. Depending on the amount of buffered data, the
time this takes may vary.

– All connection data is wiped, which may also introduce a timing difference.
– A random integer x between 1,000 and 10,001,000 is requested. Since rejec-

tion sampling is used to generate x, this might also introduce some timing
variation.

– This random integer is then fed to usleep and sleep calls (after the appro-
priate scaling), causing a random delay of at least x μs.

s2n_record_read.c

91 int s2n_record_parse(struct s2n_connection *conn)

...

238 /* Padding */

239 if (cipher_suite ->cipher ->type == S2N_CBC) {

240 if (s2n_verify_cbc(conn , mac , &en) < 0) {

241 GUARD(s2n_stuffer_wipe (&conn ->in));

242 S2N_ERROR(S2N_ERR_BAD_MESSAGE );

243 return -1;

244 }

s2n_recv.c

36 int s2n_read_full_record(struct s2n_connection *conn , \

uint8_t *record_type , int *isSSLv2)

97 /* Decrypt and parse the record */

98 if (s2n_record_parse(conn) < 0) {

99 GUARD(s2n_connection_wipe(conn ));

100 if (conn ->blinding == S2N_BUILT_IN_BLINDING) {

101 int delay;

102 GUARD(delay = s2n_connection_get_delay(conn ));

103 GUARD(sleep(delay / 1000000));

104 GUARD(usleep(delay % 1000000));

105 }

106 return -1;

107 }

Fig. 2. Excerpts from s2n record read.c and s2n recv.c, s2n’s code for adding a
random waiting period

We note that this countermeasure, which is activated by default, is designed
as an API mode which can in principle be disabled. This is to support implemen-
tations which provide their own timing channel countermeasures. If the variable
blinding is not equal to S2N BUILT IN BLINDING then none of the countermea-
sure code is run.8 Since this countermeasure introduces a delay of up to 10 s in
8 However, we note that a bug in the version of s2n that we studied prevented this

from ever happening, because the call to wipe the connection data erased this con-
figuration flag as well.
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case of an error, it might be tempting for some application developers to disable
it. However, note that the s2n documentation strongly advises against disabling
this counter measure without replacing it by an equivalent one on the application
level.

3 The Attack Without the Random Waiting Period
Countermeasure

We first describe our variant of the Lucky 13 attack against s2n assuming the
random waiting period countermeasure is not present. We show how to deal with
this additional countermeasure in Sect. 4.

For simplicity of presentation, in what follows, we assume the CBC-mode
IVs are explicit (as in TLS 1.1 and 1.2). We also assume that b = 16 (so our
block cipher is AES). It is easy to construct variants of our attacks for implicit
IVs and for b = 8. The MAC algorithm is HMAC-H where H is either MD5,
SHA-1 or SHA-256. We focus at first on the case where the MAC algorithm
is HMAC-SHA-256, so that t = 32. We explain below how the attack can be
adapted to t = 16 and t = 20 (HMAC-MD5 and HMAC-SHA-1, respectively).

Let C∗ be any ciphertext block whose corresponding plaintext P ∗ the
attacker wishes to recover. Let C ′ denote the ciphertext block preceding C∗.
Note that C ′ may be the IV or the last block of the preceding ciphertext if C∗

is the first block of a ciphertext. We have:

P ∗ = DKe
(C∗) ⊕ C ′.

Let Δ be an arbitrary block of 16 bytes and consider the decryption of a
ciphertext Catt(Δ) of the form

Catt(Δ) = HDR||C0||C1||C2||C3||C ′ ⊕ Δ||C∗

consisting of a header field HDR containing an appropriate value in the length
field, an IV block, and 5 non-IV blocks. The IV block and the first 3 non-IV
blocks are arbitrary, the penultimate block C4 = C ′ ⊕ Δ is an XOR-masked
version of C ′ and the last block is C5 = C∗. The corresponding 80-byte plaintext
is P = P1||P2||P3||P4||P5 in which

P5 = DKe
(C∗) ⊕ (C ′ ⊕ Δ)

= P ∗ ⊕ Δ.

Notice that P5 is closely related to the unknown, target plaintext block
P ∗. Notice also that, via line 67 of the code in Fig. 1, the variable
payload and padding size is set to 80− 32 = 48 (recall that the 13-byte string
SQN||HDR was fed to HMAC by the calling function and is buffered but otherwise
unprocessed at this point). We now consider 2 distinct cases:
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1. Suppose P5 ends with a byte value from the set {0x00, . . . , 0x04}. In this
case, the code sets padding length to be at most 4 and then, at line 72,
payload length is set to a value that is at least 48 − 4 − 1 = 43 (and at
most 47). This means that when the HMAC computation is performed in
lines 78 (update) and 84 (finalise), the internal buffer contains at least 56
bytes (because 13 bytes were already buffered by the calling function) and
exactly 5 calls to the compression function will be made, including one call
that initialises HMAC and 2 that finalises it. The time equalising code at line
89 adds between 0 and 4 bytes to the internal buffer, which still holds the
previous message bytes. However, because of the short length of our chosen
ciphertext, the buffer ends up being exactly 60 bytes in size. This number is
obtained by considering the 13 bytes of SQN||HDR, the payload length bytes
added to the buffer at line 78 and the decrypted->size - payload length -
mac digest size - 1 bytes added to the buffer at line 89. Combining these,
one arrives at there being 12 + decrypted->size - mac digest size bytes in
the buffer. This evaluates to 60 for the particular values in the attack. Notably,
this number is independent of payload length and padding length. The call
at line 89 is to the update function rather than the finalise function, so at
least 64 bytes would be needed in the buffer to cause any compression function
computations to be performed at this point. Thus no compression function
call is made as a consequence of the call to s2n hmac update at line 89.

2. Suppose P5 ends with a byte value from the set {0x05, . . . , 0xff}. In this
case, the code sets padding length to be at least 5 and then, at line 72,
payload length is set to a value that is at most 48 − 5 − 1 = 42 (and at
least 0). This means that when the HMAC computation is performed in lines
78 (update) and 84 (finalise), the internal buffer contains at most 55 bytes and
exactly 4 calls to the compression function will be made (again, including the
initialisation and finalisation calls). The time equalising code at line 89 will
again result in no additional calls to the compression function being made, as
the internal buffer is again too small at exactly 60 bytes in size (recall that
the buffer size is independent of payload length and padding length).

Based on this case analysis, a timing difference will arise in HMAC processing
of the attack ciphertext Catt(Δ), according to whether the last byte of P5 = P ∗⊕
Δ is from the set {0x00, . . . , 0x04} or not. The difference is equal to that taken
by one compression function call. This timing difference becomes evident on the
network in the form of a difference in the arrival time of an error message at
the man-in-the-middle attacker who injects the attack ciphertext. The difference
is of the same size as that observed in the plaintext recovery attack presented
in [AP13], a few hundred clock cycles on a modern processor. Of course, as
in [AP13], this time difference would be affected by noise arising from network
jitter, but it is sufficiently big to enable it to be detected. Furthermore, if the
attacker can arrange to be co-resident with the victim in a cloud environment,
a realistic prospect as shown by a line of work culminating in [VZRS15], the
attacker can perform a Person-in-the-Middle attack and observe the usage of
resources on the server by being co-resident.
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As was the case in [AP13], the attack can be iterated as often as is desired
and with different values of Δ, provided the same plaintext is repeated at a
predictable location across multiple sessions. The attack as presented already
takes care of the complication that each trial will involve a different key in a
different TLS session; only P ∗ needs to be constant for it to work.

By carefully exploring the timing behaviour for different values in the last
byte of Δ (each value being tried sufficiently often so as to minimise the effect
of noise), the attacker can deduce the value of the last byte of P ∗. For example,
the attacker can try every value in the 6 most significant bits in the last byte
of Δ to identify a value Δ∗ for which the time taken is relatively high. This
indicates that the last byte of P ∗ ⊕ Δ∗ is in the set {0x00, . . . , 0x04}; a more
refined analysis can then be carried out on the 3 least significant bits of the last
byte of Δ∗ to identify the exact value of the last byte of P ∗. The worst case
cost of this version of the attack is 64 + 8 = 72 trials (multiplied by a factor
corresponding to the number of trials per Δ needed to remove noise).

The attack cost can be reduced further by using initially longer ciphertexts,
because the peculiar characteristics of the s2n code mean that this choice results
in there being a greater number of values for (the last byte of) Δ that result in
a higher processing time; the precise value of the last byte of P ∗ can then be
pinned down by using progressively shorter ciphertexts. We omit the details of
this enhancement.

3.1 Extending to Full Plaintext Recovery

In the web setting, with HTTP session cookies as the target, the attack extends
in a straightforward manner to full plaintext recovery using by-now-standard
techniques involving malicious client-side Javascript and careful HTTP message
padding. A good explanation of how this is achieved can be found in [MDK14]
describing the POODLE attack on TLS. BasicAuth passwords also form a good
target; see [GPdM15] for details.

3.2 Variants for HMAC-MD5 and HMAC-SHA-1

Assume b = 16 (as in AES) and consider the case of HMAC-MD5. Then, because
t = 16 in this case, and t is still a multiple of b, the attack described above works
perfectly, except that we need to use a ciphertext having 4 non-IV blocks instead
of 5. The attack also works for b = 8 for both HMAC-MD5 and HMAC-SHA-256
by doubling the number of non-IV blocks used.

For HMAC-SHA-1, we have t = 20. Assume b = 16 (AES). Then a similar
case analysis as above shows that using a ciphertext with 4 blocks result in a
slow execution time if and only if the last plaintext block P4 ends with 0x00.
This leads to a plaintext recovery attack requiring, in the worst case, 256 trials
per byte. The attack adapts to the b = 8 case by again doubling the number of
non-IV blocks used.
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4 Defeating the Random Wait Period Countermeasure

As described in Sect. 2.4, s2n implemented a second countermeasure against
attacks exploiting timing channels. In this section, we show how it could be
defeated.

4.1 Characterising the Timing Delays

To start off, we notice that at the price of increasing the number of samples by a
factor of roughly ten, we can assume that sleep at line 103 in the code in Fig. 2
is called with parameter zero, by rejecting in an attack any sample where the
overall time is more than 1s. This removes one potential source of randomness.
As shown in Fig. 3, calling sleep(0) has a rather stable timing profile.

0 50 100 150 200 250 300 350 400 450 500

0

5 · 10−2

0.1

clock cycles

Fig. 3. Distribution of clock ticks for calling sleep(0) on Intel(R) Xeon(R) CPU E5-
2667 v2 @ 3.30 GHz.

Next, we consider calls to usleep with a random delay as a source of timing
randomness. For this, note that usleep has a granularity of 1µs. On our main
test machine, which is clocked at 3.3 GHz, this translates to 3,300 clock cycles.9

From this, we might expect that if we take our timings modulo the clock ticks
per µs (namely, 3,300 on our test machine), we could filter out all the additional
noise contributed by the usleep(delay) call. However, usleep(delay) does
not guarantee to return after exactly delay μs, or even to return after an exact
number of μs. Instead, it merely guarantees that it will return after at least
delay μs have elapsed. Indeed, on a typical UNIX system, waking up a process
from sleep can take an unpredictable amount of time depending on global the
state of the OS.
9 We note, however, that modern CPUs reclock their CPUs dynamically both below

the base operating frequency and above it (e.g. Intel Turbo Boost). This must be
taken into account when measuring time delays in elapsed clock cycles.
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However, despite this, usleep does show exploitable non-uniform behaviour
on the systems we tested. Figures 4 and 5 illustrate this behaviour. Figure 4 shows
raw timings (in clock cycles) for usleep(d), normalised to remove the minimum
possible delay, namely 3, 300 · d clock cycles. Figure 5 shows the distribution of
timings (in clock cycles) for usleep(delay) with delay uniformly random in an
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d = 773
d = 1,000
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Fig. 4. Distribution of usleep(d)−3, 300 ·d (in clock cycles) on Intel(R) Xeon(R) CPU
E5-2667 v2 @ 3.30 GHz. Probability on the y axis.
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Fig. 5. Distribution of clock ticks modulo 3,300 for usleep(delay) with delay uni-
formly random in [0, d), on Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30 GHz.
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Fig. 6. Distribution of clock ticks for calling s2n stuffer wipe on Intel(R) Xeon(R)
CPU E5-2667 v2 @ 3.30 GHz.
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Fig. 7. Distribution of clock ticks modulo 3300 for calling s2n public random on
Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30 GHz.

interval [0, d), but now taken modulo 3,300. Both figures are generated from data
captured on our main test machine. They exhibit the non-uniformity needed to
bypass the random waiting period countermeasure in s2n.

Figures 6 and 7 show that, like the call to usleep, the calls to the functions
s2n stuffer wipe and s2n public random also do not produce timing profiles
which are uniform modulo 1µs (3,300 clock cycles).

However, it is not enough to simply characterise the timing profile of the
calls to usleep; rather it is necessary to study the distribution of the running
time of the entire random timing delay code in Fig. 2, in combination with the
code for checking the MAC on a TLS record in Fig. 1, for different values of
the mask Δ in the attack in Sect. 3. Figure 8 brings different sources of timing
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difference together and shows that the timing distributions (modulo 3,300) that
are obtained for different mask values are indeed still rather easily distinguish-
able. The figure is for samples with the maximum delay restricted to 100,000µs
instead of 10 s. We stress that this is a synthetic benchmark for studying the
behaviour of the various sources of timing randomness and does not necessar-
ily represent actual behaviour. See Sect. 5 for experiments with the actual s2n
implementation of these countermeasures.

4.2 Distinguishing Attack

Having characterised the timing behaviour of the s2n code, as exemplified in
Fig. 8, we are now in a position to describe a statistical attack recovering plain-
text bytes and its performance. In fact, the approach is completely standard:
given the preceding analysis, we expect the timing distributions modulo 1µs
for ciphertexts in the attack of Sect. 3 to fall into two classes depending on the
value of the last byte of P ∗ ⊕Δ, one class H = {0x00, . . . , 0x04}, the other class
L = {0x05, . . . , 0xff}; if the observed distributions for all values in L (resp.
H) are close to each other but the Kullback-Leibler (KL) divergence between
distributions from L and H is large (and equal to D, say), then, applying stan-
dard statistical machinery, we know that we will require about 1/D samples to
distinguish samples from the two distributions. As Tables 1 and 2 demonstrate,
the requirements on KL divergence for values in L and H are indeed satisfied,
even for relatively large values for the maximum delay.

For example, assuming for the sake of argument that no additional noise is
introduced by network jitter or other sources, we would be able to distinguish
the value 0x00 from 0xc8 in the last byte of P ∗ ⊕ Δ with 1/(3.6/1, 000) ≈ 280
TLS sessions if the maximum delay were restricted to 100,000 μs. Using rejection
sampling, i.e. discarding all samples with a delay greater than 100,000μs from
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Fig. 8. Distribution of clock ticks modulo 3,300 for timing signals on Intel(R) Xeon(R)
CPU E5-2667 v2 @ 3.30 GHz with the maximum delay restricted to d = 100, 000.
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Table 1. KL divergence multiplied by 1,000 of time distributions in clock cycles modulo
3,300 with the maximum delay limited to 1,000µs on Intel(R) Xeon(R) CPU E5-2667
v2 @ 3.30 GHz.

0x00 0x04 0x05 0x10 0x20 0x30 0x40 0x64 0xc8

0x00 .0 .7 14.1 15.1 17.7 13.2 18.4 17.4 17.6

0x04 .7 .0 15.4 16.8 19.5 15.3 20.0 18.9 19.3

0x05 14.0 15.3 .0 .1 .2 .3 .3 .2 .2

0x10 15.0 16.6 .1 .0 .1 .2 .2 .1 .1

0x20 17.4 19.2 .2 .1 .0 .5 .0 .0 .0

0x30 13.0 15.1 .3 .2 .5 .0 .7 .5 .5

0x40 18.2 19.7 .3 .2 .0 .7 .0 .0 .0

0x64 17.2 18.7 .2 .1 .0 .5 .0 .0 .0

0xc8 17.4 19.0 .2 .1 .0 .5 .0 .0 .0

Table 2. KL divergence (scaled by 1,000 for readability) of time distributions in clock
cycles modulo 3,300 with the maximum delay limited to 100,000µs on Intel(R) Xeon(R)
CPU E5-2667 v2 @ 3.30 GHz.

0x00 0x04 0x05 0x10 0x20 0x30 0x40 0x64 0xc8

0x00 .0 .0 2.4 1.9 2.3 2.0 2.8 2.1 3.6

0x04 .0 .0 2.3 1.8 2.1 2.0 2.6 1.9 3.3

0x05 2.4 2.3 .0 .0 .0 .1 .0 .0 .2

0x10 1.9 1.8 .0 .0 .1 .1 .1 .0 .3

0x20 2.3 2.1 .0 .1 .0 .2 .0 .0 .1

0x30 2.0 2.0 .1 .1 .2 .0 .3 .2 .5

0x40 2.8 2.7 .0 .1 .0 .3 .0 .1 .0

0x64 2.1 1.9 .0 .0 .0 .2 .1 .0 .2

0xc8 3.6 3.4 .2 .3 .1 .5 .0 .2 .0

the actual distribution produced by s2n (where the maximum delay is 10 s), this
increases to roughly 28, 000 TLS sessions for a successful distinguishing attack.
We stress that this estimate is optimistic because it is derived from a synthetic
benchmark not the actual implementation and because the surrounding code
and network jitter will introduce additional noise.

4.3 Plaintext Recovery Attack

We can extend this distinguishing attack to a plaintext recovery attack in
the following (standard) way. We assume that in a characterisation step, we
have obtained, for possible value x of the last byte in block P5, a histogram of
the timing distribution modulo 1μs for ciphertexts Catt(Δ) of the form used in
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Table 3. Timing of function s2n verify cbc (in cycles) with H = SHA-256 for different
values of last byte in the decrypted buffer, each cycle count averaged over 28 trials.

Byte value Cycles Byte value Cycles Byte value Cycles

0x00 2251.96 0x05 1746.49 . . . . . .

0x01 2354.57 0x06 1747.65 0xfc 1640.79

0x02 2252.07 0x07 1705.62 0xfd 1634.61

0x03 2135.11 0x08 1808.73 0xfe 1648.70

0x04 2130.02 0x09 1806.50 0xff 1634.64

the attack. We assume these timings are distributed into B equal-sized bins, and
so the empirical probability of each bin px,b for 0 ≤ b < B can be calculated. (In
fact, since we expect that timing behaviours for the classes H and L are similar,
it is sufficient to sample for two values x, one from each class.)

Now, in the actual attack, for each value δ of the last byte of Δ, we obtain N
samples for ciphertexts Catt(Δ) for which the timing delay is at most 100,000 μs.
This then requires a total of about 256 · 100 · N TLS sessions. We bin these into
B bins as above, letting nδ,b denote the number of values in bin b for last byte
value δ. Now for each candidate value y for the last byte of P ∗, we compute the
log likelihood for the candidate, using the formula:

LL(y) =
∑

δ∈{0x00,...,0xFF}
nδ,b · log(pδ⊕y,b) .

We then output as the preferred candidate for the last plaintext byte the value
y∗ having the highest value of LL(y) amongst all candidates.

We omit the detailed analysis of the performance of this attack, pausing only
to note that it will require more samples than the distinguishing attack because
the underlying statistical problem is to now separate one correct candidate from
255 wrong candidates, and this is more demanding than the basic distinguishing
problem.

To wrap up, we note that nanosleep, which is now used in s2n to add a ran-
dom time delay, has a granularity of nanoseconds, does not show this behaviour,
and therefore thwarts the attacks described in this work.

5 Proof of Concept

We confirmed that s2n does indeed behave as expected using the following two
experiments.

For the first experiment, we setup a s2n blob buffer of length 93 and filled it
with random data. Then, we assigned all possible padding length values 0x00 to
0xff by overwriting the last byte of the buffer and timed how long the function
s2n verify cbc took to return. As expected, the padding length values between
0x00 and 0x04 resulted in timings about 500–550 cycles longer than all other
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values. The timing difference was clear and stable. Some sample data is shown in
Tables 3 and 4. We note that at present we cannot explain the variation within
the second and third columns of those tables.

Table 4. Timing of function s2n verify cbc (in cycles) with H = SHA-1 for different
values of last byte in the decrypted buffer, each cycle count averaged over 210 trials.

Byte value Cycles Byte value Cycles Byte value Cycles

0x00 1333.99 0x05 1095.01 . . . . . .

0x01 1174.29 0x06 1092.68 0xfc 1062.37

0x02 1178.52 0x07 1065.08 0xfd 1035.48

0x03 1156.56 0x08 1102.31 0xfe 1035.15

0x04 1140.14 0x09 1101.04 0xff 1036.02

For the second experiment, we ran the attack against the actual s2n imple-
mentation instead of running a synthetic benchmark. That is, we timed the
execution of s2n recv under the attack described in Sect. 3. However, to speed
up execution we patched s2n to only sample random delays up to 10,000 μs. As
highlighted in Table 5, this, too, shows marked non-uniform timing behaviour
modulo 1μs.

Table 5. KL divergence observed the full attack against actual s2n implementation
(scaled by 105 for readability) using 224 samples on Intel(R) Xeon(R) CPU E5-2667
v2 @ 3.30 GHz.

0x00 0x01 0x02 0x03 0x04 0x05 0x0a 0x10 0x20

0x00 .0 .4 .2 .1 .4 1.7 1.6 1.9 2.2

0x01 .4 .0 .4 .3 .3 2.6 2.6 2.8 3.2

0x02 .2 .4 .0 .1 .2 2.3 2.2 2.6 2.8

0x03 .1 .3 .1 .0 .3 2.1 1.9 2.3 2.7

0x04 .4 .3 .2 .3 .0 2.6 2.6 2.9 3.2

0x05 1.7 2.6 2.3 2.1 2.6 .0 .1 .2 .3

0x0a 1.6 2.6 2.2 1.9 2.6 .1 .0 .2 .3

0x10 1.9 2.8 2.6 2.3 2.9 .2 .2 .0 .2

0x20 2.2 3.2 2.8 2.7 3.2 .3 .3 .2 .0

We did not adjust our proof-of-concept code to realise a full plaintext recovery
attack, because (a) s2n has since been patched in response to this work and
because (b) the cost is somewhat dependent on the target machine and operating
system. We note, though, that an attack can establish the characteristics of a
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target machine by establishing genuine TLS sessions (where, hence, padding
bytes are known) but with some random bits flipped.

The complete source codes for our experiments (which borrow heav-
ily from the s2n test suite) are available at https://bitbucket.org/malb/
research-snippets.

6 Discussion

Our attack successfully overcomes both levels of defence against timing attacks
that were instituted in s2n, the first level being the inclusion of extra crypto-
graphic operations in an attempt to equalise the code’s running time and the
second level being the use of a random wait interval in the event of an error such
as a MAC failure.

Fundamentally, the first level could be bypassed because s2n counted bytes
going into s2n hmac update instead of computing the number of compression
function calls that need to be performed as suggested in [AP13]. A call to
s2n hmac update in itself will not necessarily trigger a compression function
call if insufficient data for such a call is provided. A call to s2n hmac digest,
however, will pad the data and trigger several compression function calls, the
number also depending on the data already submitted at the time of the call.
We note that in OpenSSL this issue is avoided by effectively re-implementing
HMAC in the function ssl3 cbc digest record, i.e. by performing lower-level
cryptographic operations within the protocol layer. In contrast, s2n is specifi-
cally aimed at separating those layers. In response to this work, s2n now sensibly
counts the number of compression function calls performed, somewhat maintain-
ing this separation.

The second level could be bypassed because, while the randomised wait
periods were large, they were not sufficiently random to completely mask the
timing signal remaining from the first step of our attack. Note that the analy-
sis in [AP13] of the effectiveness of random delays in preventing the Lucky 13
attack assumed the delays were uniformly distributed; under this assumption,
their analysis shows that the count measure is not effective unless the maximum
delay is rather large. What the second step of our attack shows is that, even if
the maximum delay is very large, non-uniformity in the distribution of the delay
can be exploited. In short, it is vital to carefully study any source of timing delay
to ensure it is of an appropriate quality when using it for this kind of protection.

Our experiments indicate that the distribution of nanonsleep as imple-
mented on Linux is sufficiently close to uniform to thwart the attack described in
this work. We note, however, that this puts a high security burden on this func-
tion which is not designed for this purpose. In particular, nanosleep(2) states
(emphasis added): “nanosleep() suspends the execution of the calling thread
until either at least the time specified in *req has elapsed, or the delivery of
a signal that triggers the invocation of a handler in the calling thread or that
terminates the process”.

https://bitbucket.org/malb/research-snippets
https://bitbucket.org/malb/research-snippets
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Finally, since randomised waiting can also have a significant performance
impact, this work further highlights that MAC-then-Encrypt constructions such
as MEE-TLS should be avoided where possible.

Acknowledgement. We would like to thank Colm MacCarthaigh and the rest of the
s2n development team for pointing out the randomised waiting countermeasure and
for helpful discussions on an earlier draft of this work.
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Abstract. In this work we demonstrate various weaknesses of the ran-
dom number generator (RNG) in the OpenSSL cryptographic library. We
show how OpenSSL’s RNG, knowingly in a low entropy state, potentially
leaks low entropy secrets in its output, which were never intentionally
fed to the RNG by client code, thus posing vulnerabilities even when in
the given usage scenario the low entropy state is respected by the client
application. Turning to the core cryptographic functionality of the RNG,
we show how OpenSSL’s functionality for adding entropy to the RNG
state fails to be effectively a mixing function. If an initial low entropy
state of the RNG was falsely presumed to have 256 bits of entropy based
on wrong entropy estimations, this causes attempts to recover from this
state to succeed only in long term but to fail in short term. As a result, the
entropy level of generated cryptographic keys can be limited to 80 bits,
even though thousands of bits of entropy might have been fed to the RNG
state previously. In the same scenario, we demonstrate an attack recov-
ering the RNG state from later output with an off-line effort between 282

and 284 hash evaluations, for seeds with an entropy level n above 160
bits. We also show that seed data with an entropy of 160 bits, fed into the
RNG, under certain circumstances, might be recovered from its output
with an effort of 282 hash evaluations. These results are highly relevant
for embedded systems that fail to provide sufficient entropy through their
operating system RNG at boot time and rely on subsequent reseeding of
the OpenSSL RNG. Furthermore, we identify a design flaw that limits
the entropy of the RNG’s output to 240 bits in the general case even for
an initially correctly seeded RNG, despite the fact that a security level
of 256 bits is intended.

1 Introduction

The ability to generate high entropy random numbers is crucial to the genera-
tion of secret keys, initialization vectors, and other values that the security of
cryptographic operations depends on. Thus, random number generators (RNGs)
are the backbone of basically any cryptographic architecture. Numerous works
have already dealt with the security of RNGs of operating systems [1–4]. In [5],
the predictability of OpenSSL’s [6] RNG on the Android [7] operating system
is investigated. That work reveals the problem of a too low entropy level of
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the OpenSSL RNG output as a consequence of its weak seeding through the
operating system entropy sources at boot time.

In contrast, in the present work, we analyse the security features of the
OpenSSL RNG itself. Specifically, we analyse the behaviour of the RNG in high
and low entropy states. In a low entropy state, i.e. before the RNG has been
properly seeded, we certainly know it to be unable to produce cryptographically
secure random numbers – but we also expect it not to do any damage if we
respect this condition by refraining from using it in cryptographic algorithms.
Furthermore, in such a situation, we expect the RNG to produce cryptographi-
cally strong output after it has been reseeded with fresh high entropy seed data.
As we shall see, neither property is fulfilled by the OpenSSL RNG.

We wish to point out that we are not addressing the RNG recovery problem
by continuous entropy collection, which is for instance the subject of [8]. The
OpenSSL RNG does not even attempt this, but solely relies on reseeding by the
client application. The problems discussed here are in the context of the explicit
invocation of these methods for reseeding the RNG from the client application.

As a very fundamental result, we prove that even when seeded initially with
a 256 bit entropy seed, the RNG output may only have an entropy level of
240 bits for up to several hundreds of output bytes. The remainder of our findings
is concerned with the behaviour of the RNG when it is initially in a low entropy
level. We show that in this state, various functions of OpenSSL silently feed data
to the RNG that is potentially secret and of low entropy. As a consequence, the
RNG’s function for outputting low entropy random numbers, which is available
before the complete seeding of the RNG, is prone to leak these low entropy
secrets. The potentially leaked values we have identified are keys of weak ciphers
such as DES and the previous contents of buffers overwritten with random bytes.
The latter is problematic in that wiping secret data by overwriting them with
(pseudo) random data is an established practice.

Furthermore, we analyse the recovery ability of the RNG from a low entropy
state. There are two scenarios in which this becomes relevant: first, the RNG
might falsely presume a high entropy state based on false entropy estimations by
the client application feeding it with seed data, or during the automatic seeding
from the operating system RNG, which OpenSSL performs for instance on Linux
systems. This makes our findings relevant for embedded system that feature only
a small entropy level in their operating system RNG at boot time, for instance
if they rely on reseeding the OpenSSL RNG by using a seed-file after the initial
automatic seed from the operating system RNG. The second scenario is that
though the RNG was seeded with correctly estimated high entropy data, its
current state is revealed to an attacker through a break-in into the system. The
latter scenario mainly applies to standard platforms such as servers or personal
computers. In either scenario, it is vital that through the addition of further high
entropy seeding data to the RNG state an immediate recovery is possible in the
sense that subsequently generated output will also be of high entropy. We find
that this recovery essentially fails: when the RNG is in a state with low entropy
level close or equal to zero, we show that despite the feeding of a arbitrarily
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high amount of entropy to the RNG, various attacks are possible that allow to
predict previous and future output of the RNG with a computational effort of
around 280 hash evaluations.

The adversarial model underlying all the weaknesses presented in this work
is that of a passive adversary who receives output from the attacked RNG and
wishes to predict previous or future RNG output, or in some cases even the seed
values. Most of the weaknesses identified in this work, in order to be actually
exploited, demand a computational effort beyond what is believed be practi-
cal today even for computationally strong adversaries but might easily become
feasible within a decade. Due to the entirely passive nature of the attacks, it
would be possible for an adversary to record the RNG output and carry out the
computational part of the attack at a later point in time when he has gained
sufficient computational power.

All our results are based on the analysis of OpenSSL version 1.0.2a, but to
the best of our knowledge apply to all versions, as the RNG is legacy feature of
the library.

2 API, Life Cycle of OpenSSL’s RNG, and the Associated
Vulnerabilities

In this section we describe the RNG’s API functions that are relevant to our
analysis and how they relate to its life cycle states. The purpose of this descrip-
tion is to give a high level understanding of RNG’s operation as it is necessary
to understand the low entropy secret leakage issues discussed in Sect. 3 and
introduce our formal life cycle states that are relevant for the remaining issues.
Furthermore, we give an overview of the vulnerabilities presented in this work
and relate them to the respective life cycle states where they are manifest. The
core cryptographic operation of the RNG will be introduced later in Sect. 4.

The implementation of the RNG is found in the file md rand.c. It defines the
default RNG to be used in OpenSSL, though in principle the framework allows
for switching to different RNG implementations provided by the user. As any
purely software-based RNG it is based on a pseudo random number generator
(PRNG). The API of functions related to OpenSSL’s RNG are described in the
respective manual page [9]. The functions relevant to our problem domain are
described in the following.

void RAND add(const void *buf, int num, double entropy)

“adds” the entropy contained in buf of length num to the RNG’s internal state,
where entropy shall be an estimate of the actual entropy contained in buf. The
newly fed data modifies the RNG’s state such that any subsequently generated
random output will be affected by it. In this work we show that the claimed
“addition” of entropy suffers from a severe weakness. However, for the issue of
low entropy secret leakage, this feature is irrelevant.

void RAND seed(const void *buf, int num) is a wrapper for RAND add. It
calls that function with entropy = num, i.e. it expects the seed data to have
maximal entropy.
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int RAND poll() draws entropy from the operating system’s randomness
sources, e.g. /dev/random on Linux, and feeds it to the RNG.

int RAND load file(const char *filename, long max bytes) just loads a file
and feeds up to max bytes from that file to the RNG using RAND add. Depending
on the operating system, it feeds some further data to the RNG, but this is
irrelevant to the issues discussed in this work.

int RAND bytes(unsigned char *buf, int num) outputs num random bytes
into buf. If the entropy level of the RNG, computed as the sum of the esti-
mates provided by the calls to RAND add, is less than the specified minimum of
256 bits, this function returns with an error code.

int RAND pseudo bytes(unsigned char *buf, int num)

performs the same operation for the random output generation as RAND bytes,
except that it also generates output if the minimum entropy level has not been
reached.

unseeded

seeded

RAND add, seed
entropy = 256 bits

falsely seeded

compromise

reseeded

RAND add, seed
entropy = 256 bits

RAND add, seed
with low entropy

RAND pseudo bytes

RAND bytes

stirring on first call
to RAND bytes

stirring never done

Fig. 1. Depiction of the life cycle states of OpenSSL’s RNG.

Figure 1 shows the formalized life cycle states of the RNG. It always starts
in the state unseeded. In this state, it has zero entropy. If on the system a
random device such as /dev/random on Unix is available, a call to RAND bytes or
RAND pseudo bytes will transfer the RNG automatically into the state seeded
or falsely seeded by drawing 32 bytes of randomness from that device with
a presumed entropy of 256 bits and feeding them to the RNG through a call to
RAND add. The distinction between seeded and falsely seeded is not reflected
by the RNG state directly, but only implicitly through the quality of the seed.
In case of a seed with considerably lower entropy than 256 bits drawn from
the random device, we identify the resulting state as falsely seeded. Another
possibility of entering this state is through a compromise of the seeded state
through a break-in into the system. Recovery from the falsely seeded state is
attempted by feeding the RNG with a high entropy seed.
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The resulting state is referred to as reseeded. It is distinguished from the
seeded state by the fact that the so-called “stirring” operation, which distrib-
utes the entropy within the RNG state, is never carried out in this state. This
operation is executed in the first call to RAND bytes in the seeded state and
never again after that. But, as we shall see, it is essential that it is carried out
after a call to RAND add for the distribution of the entropy in the RNG state and
its safety. The details of these considerations will be given in the later sections
when we turn to the core cryptographic design of the RNG and also explain the
exact effect of the stirring operation.

Table 1. Overview of the identified weaknesses.

Issue State Condition Section

LESLI: low entropy secret
leakage in output of
RAND pseudo bytes

unseeded,
falsely
seeded

attacker has access to
output of
RAND pseudo bytes

3

ELO-240: entropy
limitation of the output
of RAND bytes to 240
bits

seeded attacker has access to some
output from the same
call to RAND bytes as
that which he wishes to
predict

5

ELO-80: entropy
limitation of the output
of RAND bytes to 80
bits

reseeded attacker has access to some
output from the same
call to RAND bytes as
that which he wishes to
predict

6

ELO-160: entropy
limitation of the output
of RAND bytes to 160
bits

reseeded attacker has access to
output after the
reseeding

6

DEJA-SEED: recovery of
the seed data of
entropy of 160 bits and
the resulting RNG
state with an effort of
about 282 hash
evaluations given that
the seed is prepended
with a known value of
a specific length

reseeded attacker has access to
output after the
reseeding at a specific
offset

7.1

DEJA-STATE: for
instance recovery of the
RNG state after a
320-bit entropy reseed
with an effort of 284

hash evaluations

reseeded attacker has access to
output after the
reseeding at a specific
offset

7.2
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We want to point out how easy it is to get into the reseeded state on a
device with low boot time entropy provided by the operating system RNG. It is
for instance achieved through the following sequence:

RAND pseudo bytes()
RAND load file().

The first call triggers the automatic initial seeding of the RNG. The second call
attempts to seed the RNG using a high entropy seed file.

Table 1 shows an overview of our contributions. In the first column, following
a short identifier for easier referencing of the respective issue, a brief description
is given. In the next column the state in which the issue arises is listed. The
remaining two columns specify the condition under which the issue arises and
the number of the section within this work that explains the issue. LESLI is the
abbreviation of “low entropy secret leakage issue”. The label ELO. . . is based on
the abbreviation of “entropy limitation of output”. The ELO-issues apply to the
roughly 1kB of output generated after the reseeding. The last two issues allow
an attacker to recover the RNG state, if he gets output at a specific “position”
after the reseeding. Here, “position” refers to an offset determined by the sum
of length parameters to later calls to either RAND add or RAND bytes.

3 Low Entropy Secret Leakage in Low Entropy
States of the RNG

A low entropy state of an RNG certainly makes it impossible to generate secure
keys or to carry out cryptographic operations safely that depend on genera-
tion of random values. But there is no indication for application developers that
are using a cryptographic library through its API to assume that it is gener-
ally unsafe either to use functions of the library appearing totally disjoint from
the RNG functionality or to make use of the RNG for purposes where the low
entropy state would not be a problem from a cryptographic perspective. Note
that OpenSSL’s function RAND pseudo bytes explicitly has the purpose of gen-
erating output before the RNG is sufficiently seeded. In the following sections
we learn that OpenSSL violates the above assumptions, potentially resulting in
the leakage of various secrets through the RNG output.

3.1 The General Problem

The basis of the low entropy secret leakage problems we investigate in the fol-
lowing, which we refer to as LESLI, is a fundamental one: given an RNG in a
low entropy state, any further seed data fed to the RNG to increase its entropy,
is leaked through the RNG output if the resulting state still fails to have a
sufficient entropy level. The attack is simply carried out by iterating through
all the possible seed inputs, generating the resulting outputs in the attacker’s
own instance of the RNG, and comparing these outputs to those of the attacked
device. If they are equal, the seed values used in that attack iteration are the
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actual values used to seed the attacked RNG. Thus, any secret value that was
part of the seed data is recovered. A requirement for this attack to work is that
the number of output bits from RNG is approximately at least as high as the
number of entropy bits in its state from the attacker’s point of view. In general,
the expectation value for the number of collisions, i.e. the number of wrong input
values that map to the output value identified as correct, is

e =
2n − 1

2l
, (1)

where n is the entropy of the input in bits and l is the size of the output in bits.
This relation holds under the assumption that the mapping of RNG input to its
output is a random mapping. Assuming n = l, we find that on average there will
be one collision.

On the basis of these considerations, it is rather doubtful that OpenSSL’s
manual pages suggest the feeding of low entropy secrets such as user-entered
passwords through the function RAND add() to increase the RNG’s entropy level.
They state: “RAND add() may be called with sensitive data such as user entered
passwords. The seed values cannot be recovered from the PRNG output” [10].
This is, as we have seen above, only true if the resulting entropy level of the RNG
is sufficiently high1. From this analysis we learn that the feeding of low entropy
secrets to RNGs such as that of OpenSSL is a risky and doubtful approach. It is
only safe in situations where the RNG already has an entropy level that is secure
with respect to brute force state recovery attacks – and in these situations it is
needed the least.

However, to avoid the same-state problem, the feeding of low entropy data
is indeed useful. Given that two systems share the same but otherwise high
entropic RNG state, the feeding of a single bit with value zero to the first RNG
and one bit with value one to the second, both RNGs will be in a secure state –
as long as they don’t appear as adversaries to one another. OpenSSL uses this
approach to be secure with respect to the well known process-forking problem
of RNGs by feeding the process-ID to the RNG before generating output [11].

But even forearmed with this knowledge, not following OpenSSL’s manual
pages’ encouragement to feed low entropy secrets to the RNG, we run into prob-
lems, as various OpenSSL API functions silently feed secret data to RNG, as we
explain in the following.

3.2 Leakage of Secrets Overwritten with Random Data

The first leakage problem we present occurs in the following scenario: Assume
an application is developed for an embedded system using OpenSSL as the cryp-
tographic library. The system designers are aware of the fact that they might
have a low entropy state problem in OpenSSL’s RNG. However, they only use
OpenSSL for the following purposes (possibly they might later seed it with a

1 Generally, an entropy of 80 bits is regarded as the minimum to achieve at least short
term security.
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fresh high-entropy seed and use it also for different purposes): They overwrite
short PIN numbers the system temporarily stores during user interactions. They
follow a common security advice to overwrite these critical secrets with random
numbers using OpenSSL’s RAND pseudo bytes function. This measure to wipe
secret data is not necessarily useful in all application contexts. However, it is
useful when one cannot exclude the possibility of working on memory-mapped
files [12]. Furthermore it can be useful to prevent compiler optimizations from
removing the wiping procedure [13]2. Another reason for this measure is side-
channel security: using a fixed byte value such as zero to overwrite the secret
bytes could result in leakage of their Hamming weights through power consump-
tion or electromagnetic emission.

Furthermore, in our scenario, we assume that the application uses the RNG
to generate weak random numbers with calls to RAND pseudo bytes, which are
output by the device, for instance as nonces for cryptographic purposes.

Neither usage of the potentially predictable random numbers is a problem
from a cryptographic point of view: given that there is at least some minimal
entropy in the RNG state, side-channel attacks will be severely complicated and
also the other two purposes of the random overwriting will not be impeded.
Nonce values only need to have the property to be non-repetitive, a property
that is not affected by the low entropy state problem even if the RNG state was
completely known to the attacker – at least until a reboot that might incur the
same-state problem.

However, in the described usage scenario, the secret PIN is leaked through
the random numbers output by the device. This is due to the fact that the
RAND add function uses the initial content of the memory area to be overwritten
as an additional seed value. For the detailed description of function of RAND add,
which shows how exactly the initial buffer contents affect the PRNG state, refer
to Sect. 4. The RNG’s state becomes dependent on the PIN number, and the
attacker simply has to execute a brute force search on the joint input space of
all possible RNG states before the call to RAND add and all possible PIN values
as additional seeds and match the resulting RNG output to the nonces recorded
from the device under attack3.

Furthermore, despite the realistic scenario where the RAND pseudo bytes
function is used to wipe secrets from RAM, there is certainly also a potential leak-
age problem when previously uninitialized buffers are overwritten with random
bytes. Uninitialized buffers on the heap or stack may also by chance contain sensi-
tive low entropy data from previous operations of the application. Which memory
locations are reused in parts of the program on the heap or stack is often determin-

2 In that reference randomizing the target buffer is not suggested, however, since calls
to an RNG function have a side effect (on the RNG state), it is almost impossible for
the compiler to remove that call. OpenSSL itself uses a similar approach internally,
though not by using an actual RNG.

3 Note that the usage of uninitialized memory for the purpose of random number gen-
eration can lead to an even greater threat, namely the compiler’s decision to remove
subsequent operations on variables that become “tainted” by the uninitialized data
[14]. However, this does not seem to apply to OpenSSL’s implementation [15].
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istic or under the influence of the attacker. In addition, a program may implement
buffer reuse at the source code level as an optimization technique.

3.3 Leakage of des Keys in PKCS#8 Conversion

In the file evp pkey.c, in a function used for converting private keys to PKCS#8
format, RAND add is called with the key data as a seed. Given that DES keys,
that might otherwise be used in a secure cryptographic construction, can be
brute force attacked, they are at risk to be leaked through RAND pseudo bytes.

4 Detailed Description of OpenSSL’s RNG

In this section we give a complete description of the OpenSSL’s RNG, since this is
necessary to explain the further vulnerabilities presented in this work. However,
we omit some details such as the seeding of the RNG with the process-ID (PID)
and certain counter values. The PID generally does not feature any entropy
since PIDs are predictable on Linux [16], and the counters only depend on the
number of bytes provided in the calls to RAND add and RAND bytes and thus
can be assumed to be known from the application program’s source code and
the sequence of high level operations. For a description involving these counters,
see [5]. Furthermore, management operations such as checking and updating
the level of the estimated entropy are ignored. Algorithm 1 and 2 provide the
algorithmic descriptions – simplified in this sense – of the functions RAND add and
RAND bytes. First, we explain the symbols used in the algorithmic description.
The RNG state is comprised of four elements: md0 refers to a message digest
of 20 bytes length. The state bytes are an array of 1023 bytes represented by s.
Furthermore, the index of the current state byte is labelled p (corresponds to

m
d ′0

s0 . . . s2 s3 s4 . . .

p: initial RAND add

b0 b2. . . r0 r1

SHA1 SHA1

p: final RAND add,
initial RAND bytes

p: final RAND bytes

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

Fig. 2. Depiction of actions induced by a call to function RAND add and a subsequent
call to RAND bytes. The blocks bi, s0 to s2 have a length of 20 bytes each, ri, s3 and
s4 have a length of 10 bytes each.
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Algorithm 1. Simplified algorithmic description of RAND add

Input: md0, s, p, q, b = (b0||b1|| . . . ||bn−1) where each bi is 20 bytes long except for
the final one which is potentially shorter

Output: md0, s, p, q
1: for i = 1 to n do
2: t = size(bi−1) − 1
3: mdi = SHA1(mdi−1||s[p : p + t mod 1023]||bi−1)
4: s[p : p + t mod 1023] = s[p : p + t mod 1023] ⊕ mdi[0 : t]
5: p = p + t + 1 mod 1023
6: end for
7: md0 = mdi ⊕ md0

8: q = min(q + size(b), 1023)
9: return md0, s, p, q

Algorithm 2. Simplified algorithmic description of RAND bytes

Input: md0, s, p, q, r = (r0||r1|| . . . ||rn−1) where each ri is 10 bytes long except for
the final one which is potentially shorter

Output: md0, s, p, r = (r0||r1|| . . . ||rn−1)
1: for i = 1 to n do
2: mdi = SHA1(mdi−1||ri−1||s[p : p + 9 mod q]
3: ri−1 = mdi[10 : 10 + size(ri−1) − 1]
4: s[p : p + 9 mod q] = s[p : p + 9 mod q] ⊕ mdi[0 : 9]
5: p = p + 10 mod q
6: end for
7: md0 = SHA1(mdi||md0)
8: return md0, s, p, r

Algorithm 3. The stirring operation executed within RAND bytes
1: i = 0
2: c = c[0 : 19] // constant
3: while i < 1023 do
4: call RAND add with r = c
5: i = i + 20
6: end while

the variable state index in the source code) and q is the sum of the number of
state bytes updated by RAND add (corresponds to the code variable state num).
Both algorithms update all four state elements, with the exception that RAND -
bytes does not update q. Both s and md0 have arbitrary starting values as they
use uninitialized memory. However, this can in general not be viewed as reliable
source of entropy. The initial value of p and q is zero. q is increased up to 1023 in
each call to RAND add by the number of input bytes. For most of the analyses
we conduct in the following sections q is always equal to 1023, since in the state
reseeded, which will be the starting point for all remaining issues except for
ELO − 240, the previous stirring operation has already increased q to 1023.
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Algorithm 1 specifies the cryptographic operations carried out by a call to
RAND add. Apart from the four state elements, it has an additional input b which
represents the seed data. It is partitioned into blocks bi having a size of 20 bytes
each, except for the last block, which has a potentially smaller size. The “size()”
operation returns the size of the respective block in bytes. In the loop, iteratively,
new values of mdi are computed as the SHA1 hash value of the specified elements.
Here “x[y]” indicates the y-th byte of x and “||” denotes concatenation. x[y : z]
is the block formed by the bytes x[y]||x[y + 1]|| . . . ||x[z], where the index z may
also indicate a byte position before y, in which case the wraparound is performed
at the highest byte position of x. During each iteration, up to 20 state bytes are
updated with the iteratively computed mdi. At the end of the operation md0 is
updated as the XOR of the previous value of md0 and the final mdi.

The action of the function RAND bytes is given in Algorithm 2. Additionally
to the state elements, the memory area r to be filled with random bytes is an
input and output value. Here, r is partitioned into blocks ri, each having a size
of 10 bytes except for the last block, which again has a potentially smaller size.
After the computation of the value mdi in each iteration of the loop, one half of
this byte string is XORed back to the state bytes that were used to feed the hash
function in that iteration, and the other half is written to the 10 byte output
block ri−1. If the final output block is shorter than 10 bytes, a correspondingly
smaller number of bytes is written to it. Finally, the value md0 as part of the
RNG state is updated.

Note that both Algorithms 1 and 2 implement a seamless wraparound when
reaching the end of the state bytes s, so that the beginning and end of this array
do not have any special properties. Algorithm 3 specifies the stirring operation.
As already explained in Sect. 2, this algorithm is carried out on the first call to
RAND bytes after the RNG state has reached an entropy level of 256 bits by its
own accounting based on the entropy measures provided in the calls to RAND add.
Here, c is a 20 byte constant value. By feeding a total of 1040 bytes to the RNG,
a certain distribution of the entropy in the state s is achieved.

Figure 2 depicts the operations carried out by a call to RAND add and a sub-
sequent call to RAND bytes. On the bottom, the respective values of p are indi-
cated: its initial value at the start of RAND add, its value after the execution of
that function, which corresponds to the initial value in the subsequent call to
RAND bytes, and its final value after termination of the latter function. In the
figure, for better readability, the state bytes have been arranged as blocks si.
Note that this partitioning of the state bytes is done dynamically within both
functions starting from the current position indicated by p when they are called.

5 Restriction of the RNG’s Output to an Entropy
of 240 Bits

The first design flaw of OpenSSL’s core RNG, which we refer to as ELO-240,
leads to the possibility that generated keys are limited to 240 bits of security
whereas it tries to achieve 256 bit – however, due to lack of documentation, the
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intended security level can be only inferred from the source code. In contrast to
further weaknesses reported in this work, this issue arises even when the RNG is
initially seeded with correctly estimated high entropy data before any output is
generated. From a practical point of view, this problem is meaningless, since it
does not allow any practical attacks, not even in the foreseeable distant future,
but it shows us a design flaw of the RNG, which will turn out to be relevant for
the further issues reported in this work. From a strictly formal point of view,
we find that it is commonly agreed that keys with 256 bit security shall be
used for applications where long term security matters, as it is reflected by the
standardized key sizes for AES and elliptic curve keys, and that thus an RNG
should produce output with the corresponding entropy level.

In order to understand how this limitation arises, we consider the following
example. The RNG, in its initial state, is seeded with a 256 bit entropy seed, the
length of which is rather irrelevant as long as it remains considerably shorter than
the state length of 1023 bytes. To simplify things, we assume that the length of
the seed data is 256 bits. As a result of this seeding operation, the first 32 bytes
of the state contain high entropy data, the remaining state bytes contain zero
entropy, and p points to the byte with index 32 (counted from zero). With a sub-
sequent call to RAND bytes the stirring operation is induced. With a sequence of
calls to RAND add, the stirring operation, Algorithm 3, completely cycles over all
state bytes once, except for the first 17 bytes pointed to by p before the operation,
which are processed twice. During this operation, from the entropy added into
the first 32 bytes, only 160 bits flow into the remaining state bytes through md0.
Accordingly, an attacker could theoretically enumerate all possible values of the
state bytes from position 32 to 1022 by 2160 guesses. We now assume that a call to
RAND bytes is made to draw 42 random bytes from the RNG. The first ten bytes
are generated on the basis of current state block indicated by p. During the out-
put generation, the new value of mdi is calculated as md1 = SHA1(md0||rinit0 ||s0),
with rinit0 being the initial value of the output buffer, which we assume to carry
no entropy. Half of md1, i.e. 80 bits, are output as r0. Then the following 10-byte
blocks and the 2-byte final block are computed iteratively in the same manner.
Now assume that the first generated 10-byte block, r0, is output to the attacker.
This means that the attacker learns 80 bits of md1. Accordingly, the entropy of
md1 is reduced to 80 bits from his point of view. Since all state bytes that flow
into the output generation of the further output blocks r1, r2, and r3 have a total
entropy of 160 bits as we have seen above, and that 80 bits of entropy flow into the
generation from md1, the remaining generated 32 bytes not output to the attacker
have an entropy of 240 bits.

Note that this theoretical attack does not apply when the attacker receives
output bytes from one call to RAND bytes and the output value he wishes to
predict from a different call. This is due to the fact that at the end of RAND
bytes, as given in Algorithm 2, md0 is updated as md0 = SHA1(mdi||md0),
where md0 on the right hand side is another source of entropy, which foils his
knowledge gained through the output r0. Thus, we conclude that this weakness
can be seen as due to a design fault which causes the security of the RNG output
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to depend on the call sequence. In reality it may be well possible that a client
application generates multiple symmetric keys for different users or a key along
with the first CBC initialisation vector in a single call to RAND bytes. In the
theoretic view of RNGs, implementation details such as concrete call sequences
to draw random bytes find no regard.

6 Low Entropy Recovery Failure

We now investigate what happens when OpenSSL’s RNG executed the stirring
operation in a low entropy state and the client application subsequently adds
high entropy seed data to the RNG before generating 256 bit cryptographic keys.
The two issues identified in this scenario are ELO-80 and ELO-160.

A principally useful notion for a function to feed entropy to an RNG is that
of a mixing function, defined as follows [2]: A mixing function f guarantees that

H(f(I, S)) ≥ H(S) and H(f(I, S) ≥ H(I),

where H() denotes the Shannon entropy, I the input seed data and S the state of
the RNG. A function adhering to this notion guarantees that it does not reduce
the entropy of the RNG state and that after its operation the state will have at
least the same entropy as the input seed data.

From a purely formal perspective, OpenSSL’s RNG fulfils both requirements.
However, the definition of the mixing function as provided in the reference and
shown above turns out to be of limited usefulness: Given an RNG that uses only
a part of its internal state for the production of output, such as it is the case with
OpenSSL’ RNG, the definition should refer to the entropy of newly generated
output instead of that of the state S. With respect to this adjusted definition
of a mixing function, we will learn that RAND add fulfils the first requirement,
but not the second: when the RNG is in a low entropy state, even after adding
high entropy seed data, the RNG will effectively remain in a low entropy state
in short term, i.e. generate low entropy output.

We develop the following scenario. After an initial entropy update of the
RNG of 32 bytes with a believed entropy of 256 bits, but an actual entropy of
x < 256 bits, the stirring operation is carried out. This causes, following the
analysis from Sect. 5, the whole state s[0 : 1023] to contain x bits of entropy.
Now we assume that a second call to RAND add is made, this time with a 32 byte
string with the full entropy of 256 bits. After the stirring operation, p pointed to
position 32 + 17 = 59. Thus the high entropy update affects the state bytes s[59]
to s[90], and p afterwards points to s[91]. Now a call is made to RAND bytes for
the output comprised of the 10 byte blocks r0, r1, . . . , ry. The only limitations
of the length of the output is that it may only cause RAND bytes to process low
entropy state bytes, i.e. not to reach the high entropy block starting at position
59 again, and thus can be of a length of several hundreds of bytes. The first three
blocks r0, r1, and r2 are output to the attacker. We now show that he can fully
recover the remaining output r3, r4, . . . , ry with a complexity of 280+x hash
evaluations. The analysis follows that of Sect. 5.
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Through the stirring operation carried out after the initial addition of the x
bit entropy seed, x bits of entropy were distributed to all the state blocks s[i].
After the second high entropy update, only the state bytes s[59] to s[90] hold
256 bits of entropy. In the subsequent call to RAND bytes, the only source of
entropy are md0, carrying 160 bits, and the processed state bytes starting from
s[91]. After having seen output r0, the entropy of md1 is reduced to 80 bits for
the attacker. He now iterates through all the possible values of the unknown
80 bits from md1 and x bits of the initial entropy seed, i.e. a total of 280+x

possibilities. Each guess for the 2x initial states implies a value for state bytes
s[91] through s[1022]. With access to the values of r0, r1 and r2 he can reliably
identify the correct guess by comparing his simulated RNG output to the actual
output. He now has completely determined the state of the RNG except for the
high entropy block spanning from s[59] to s[90] and the value of md0 before the
call to RAND add. He can thus now predict as many output bytes from the same
call as can be generated before again processing the high entropy state bytes,
which is a little less than one 1 kB. After that call, he loses information about
the new value of md0, according to the update md0 = SHA1(mdi||md0) at the
end of RAND bytes. This is the manifestation of ELO-80.

If the attacker has no access to output from the same call, we find the ELO-
160 issue, described in the following. After the high entropy reseed without the
stirring operation carried out, output bytes of the RNG while processing the
low entropy state bytes s[91] through s[1022] have an entropy of 160 + x bits.
However, if he sees enough output bytes from a single call to RAND bytes to
reliably determine the initial seed with entropy level x and thus the values of
all the state bytes s[91] through s[1022] as described above, then the entropy of
output produced with further calls to RAND bytes when processing these state
bytes is only 160 bits (stemming only from md0).

7 State Recovery Attacks in the RESEEDED State

We now investigate the possibility of another class of attacks against the
reseeded state. We label these attacks after the deja-vu effect since they exploit
the “re-entering” of the state bytes where the high entropy seed was added by
exploiting the wraparound at the end of the state bytes in the RNG. In the fol-
lowing sections, we develop two different attacks in the same scenario: we assume
that in the falsely seeded state with zero entropy a high entropy bit string
v is fed to RNG. The first attack, DEJA-SEED, explained in Sect. 7.1, recovers
the seed v and the RNG state after the reseed. The second attack, subject of
Sect. 7.2, is named DEJA-STATE and only recovers the RNG state after the
feeding of v. Both attacks recover any secret random values generated after the
reseeding.

For the development of both attacks in the following sections, we assume an
initial seeding with an entropy of zero. Section 7.3 explains how the attacks can
be adjusted if that is not the case and how this affects their complexity.
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7.1 Recovery of RNG State and Seed Data

The DEJA-SEED attack presumes the following scenario: The RNG is in the
state falsely seeded with zero entropy. Then, a 160-bit entropy seed v is fed
to the RNG using RAND add. Afterwards, a 160-bit key (for instance for HMAC)
is generated. To simplify the discussion, we use again fixed positions of the state
bytes. Let the 160-bit entropy seed data be fed to the RNG when p = 40. Assume
the added seed data v is of the following form: a publicly known 10-byte constant
part followed by the 20 byte seed data with full entropy. After the seed has been
added, p points to s[70]. Now the 160-bit key k is generated (from the analysis
of Sect. 6 it follows that it achieves the full 160-bit entropy level, provided that
no RNG output from the same call to RAND bytes is accessible to the attacker).
Afterwards, either through further additions of seed data or through output
generation, p reaches the value 0 again. In this situation, a 90 byte output is
generated with a single call to RAND bytes, which is accessible to the attacker.
The attacker uses this output to recover the seed v and subsequently the 160-bit
key k as follows.

Figure 3 depicts the attack. The state bytes shown at the top represent the
RNG’s state after the initial zero entropy seed and before the high entropy seed
with v. As indicated, the feeding of v alters the state bytes s[40 : 69]. The
values of md entering the respective computations are shown above the state
bytes as md′

i, with md′
0 being the value before the call to RAND add. Here, the

state bytes prior to the feeding are labelled as s′ where they differ from those
of the state s after the feeding of v and the key generation. In the lower half of
the figure, the execution of the call to RAND bytes is depicted that produces the
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Fig. 3. Depiction of the DEJA-SEED attack.
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output the attacker uses for the attack. Below the state bytes s after the feeding
of v, the values of mdi belonging to the respective RNG state are shown. The
attacker uses r[0 : 39] to recover md1 with an effort of 280 simulations of output
generation: With the knowledge of r[0 : 9] he has to guess 280 possibilities of the
other half of md1. The identification of the correct guess is reliable since he can
use r[10 : 39] with a total size of 240 bits for the matching.

For the output generation of a single 20-byte block, a SHA-1 computation
with an input of 38 bytes has to be carried out. Since in the vast majority of
the guesses, already r[10 : 19] differs from the simulated output, the cost for the
generation of further simulated output values for the few cases where r[20 : 39]
has to be checked, can be ignored. Accordingly, the cost for this step is 280

computations of SHA-1 with a 38-byte input.
Note that the state block s[0 : 39] is still completely known to the attacker

and thus the 80-bit second half of md1 is the only value unknown to him that
serves as an input to the output generation of r[10 : 39]. The attacker knows the
value of mdi for as long as known state bytes are processed, i.e. until the start
of the processing of s[40]. From Algorithm 1, Steps 3 and 4, we find the relation

s[40 : 59] = s′[40 : 59] ⊕ SHA1(md′
0||s′[40 : 59]||v0) = f(v0), (2)

where md′
0 is the value of md0 at the beginning of Algorithm 1 during the

feeding of v and s′[40 : 59] indicates the respective value of the variable prior to
the feeding of v and which is thus known to the attacker. The result of the hash
function on the right hand side amounts to md′

1. Accordingly, we view s[40 : 59]
as a function f() of v0, the only unknown value for the attacker in the update of
s[40 : 59]. The seed bytes of v0, which flow into that computation, contain 80 bits
of entropy: their first half is the fixed 10 byte value, their second half has full
80 bit entropy. The attacker recovers the value of v0 as follows: He iterates
through all the 280 possible values of v0. For each guessed value v(g)0 , he computes
the resulting value of s[40 : 59] according to (2). This procedure is indicated
in Fig. 3 as “sim#1”. For each guess of v

(g)
0 , this procedure outputs a value

m[40 : 59](g) where, according to Algorithm 2, Steps 2 and 3,

m[40 : 49](g) = md5[10 : 19] = SHA1
(
md4||r[40 : 49]init||f(v(g)0 )[0 : 9]

)
[10 : 19],

m[50 : 59](g) is computed accordingly as

m[50 : 59](g) = md6[10 : 19] = SHA1
(
md5||r[50 : 59]init||f(v

(g)
0 )[10 : 19]

)
[10 : 19],

and riniti indicates the initial contents of the output buffer, which in our model
does not contain any entropy. If the attacker finds m[40 : 59](g) = r[40 : 59], then
he concludes that v0 = v

(g)
0 and he has determined the first seed block.

Since here the output space (r[40 : 59] with 160 bits) used for the verification
has the double size of the input space (v0 with 80 bits), the chance for a collision
is overwhelmingly small and the attacker can determine v

(g)
0 with certainty.
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After having recovered v0, he applies the same brute force recovery to v1.
This procedure is denoted as “sim#2” in the figure. The only difference to the
attack on v0 is that for each guess of v(g)1 , also the subsequent state bytes starting
from s[70] are determined. Using the 320 bits of r[60 : 69] and r[70 : 89] to match
the guess values m[60 : 69](g) and m[70 : 89](g), he can reliably verify his 80-bit
guess of v1. At this point, the attacker has completely recovered the state of the
RNG after the feeding of v and v itself. If no further entropy was added after
the feeding of v, he can predict any future output of the RNG. In any case he
recovers the key k directly generated after the feeding of v.

In this example, the attacker needs an effort of 3 · 280 ≈ 282 hash evaluations
(recovery of md with 56-byte hash input; of v0, and v1 each with 38-byte hash
inputs, and with an average effort of 280 hash evaluations for each of the three)
to recover a 160 bit seed. With less prepended constant data, and thus a greater
entropy in v0, the attack complexity increases accordingly.

7.2 Recovery of only the RNG State

In this section we present the DEJA-STATE attack, also applicable in the RNG
state reseeded. It is similar to the DEJA-SEED attack from Sect. 7.1, the
difference being that not the high entropy seed value is recovered, but only
the RNG state. Furthermore, there is no requirement on the seed data v to be
prepended with constant data, since here we attack the state bytes in blocks of
80 bits, as they are processed by RAND bytes, anyway. This attack allows the
prediction of all output of the RNG after the high entropy reseeding like in the
DEJA-SEED attack.

We assume that a 160-bit seed with full entropy was fed to the RNG through
a call to RAND add when p pointed to s[40]. Accordingly, the state bytes s[40 : 59]
are affected by this update. The attack starts in the same way as the DEJA-
SEED attack from Sect. 7.1, including the recovery of md1 through the first
output blocks, up to the point where in the DEJA-SEED attack the values
for v0 and v1 would be guessed. From this point on, the DEJA-STATE attack
proceeds as follows.

The state of the attack is that md4, the value entering the output generation
of r[40 : 49] based on s[40 : 49], is known. Figure 4 depicts this analogously to
the previous attack. Now the attacker performs the following steps:

1. He iterates through all the 280 possible values of s[40 : 49]. For each guess
s[40 : 49](g), he simulates the attacked RNG’s output generation, creating a
match value

m[40 : 49](g) = md5[10 : 19] = SHA1
(
md4||r[40 : 49]init||s[40 : 49](g)

)
[10 : 19].

Here we again assume all values rinit to be known. He determines the correct
guess as the one where m[40 : 49](g) = r[40 : 49]. This allows him to verify
his input space of 280 on an output space of 280, giving him an expectation
value for the number of collisions of one according to (1), since also a hash
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Fig. 4. Depiction of the DEJA-STATE attack.

function with truncated output can be viewed as a random mapping. In the
following, we proceed with the description of the attack as though there were
no collisions and take them into account when we calculate the complexity of
the attack. This procedure is indicated as “sim#1” in the figure.

2. He applies the same procedure to recover s[50 : 59], where he uses the updated
value of md that enters this iteration as md5, thus recovering the value of md6.
This procedure is indicated as “sim#2” in the figure, which also includes the
following two items.

3. Now he knows s[40 : 59] and also md6. Since he also knows s′[40 : 59], the
state before the feeding of v, he can calculate md′

1, the value of md after the
processing of v during RAND add, as md′

1 = s′[40 : 59] ⊕ s[40 : 59], according
to Algorithm 1, Step 4.

4. He computes the final updated value of md at the end of RAND add, during
the feeding of v, as md′′

0 = md′
1 ⊕ md′

0, according to Algorithm 1, Step 7.
Again, md′

0 is known to him as a value from the state prior to the feeding of
v. With s[40 : 59] and the updated value md′′

0 , he has recovered the complete
state after the reseeding with v. This allows him to identify the correct guess
for s[40 : 49] and s[50 : 59] with respect to the occurring collisions based on
further output from r[60] on.

We now estimate the average complexity of the attack: The attacker itera-
tively applies the single block recovery procedure of a complexity of 280 hash
evaluations to the initial recovery of md0 and to each of the two blocks r[40 : 49]
and r[50 : 59]. Since for each block he has on average one collision, on average
he has to process r[50 : 59] two times. This means he has to go through an effort
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of 280 hash evaluations for four times on average, thus yielding an average effort
of 282 hash evaluations of the attack.

The cost estimation for this attack when two full 20-byte blocks with full
entropy are used in the seeding is achieved easily: there is on average an addi-
tional effort in terms of hash evaluations of 4 · 280 for the third and 8 · 280 for
the fourth 10-byte block, yielding a total average effort of 16 · 280 = 284 hash
evaluations.

In our attack, we chose a length of a single 20 byte blocks on purpose to sim-
plify the description. Now we consider the case of seed data the length of which
is not a multiple of 20-byte blocks. If the seed, for instance, has a length between
31 and 39 bytes, the second block is shorter than 20 bytes. Then, according to
Algorithm 1, in Step 4 only a part of md′

2 is XORed to s[70 : 79]. This means that
the attacker can recover only a part of md′

2. Assuming for instance a seed length
of 32 bytes, 64 bits of md′

2 are not recoverable from the state bytes. Accordingly,
they have to be recovered through brute force effort, using further output blocks
for the matching. Obviously, if the final block vl becomes shorter than 80 bits,
it is more efficient to iterate through the possible values of vl than to guess the
lost part of md′

2. From these considerations we see that all possible seed value
lengths of maximally 40 bytes can be attacked with an extra average effort 283,
where we also account for the 8 expected collisions when processing r[70 : 79].

Like in the DEJA-SEED attack from Sect. 7.1, the attacker recovers com-
pletely the state of the RNG after the feeding of v. Thus he can predict all RNG
output from that point on without any further effort.

7.3 Dealing with Non-Zero Initial Entropy

In Sects. 7.1 and 7.2 we have assumed an initial entropy of zero for the RNG
state before the reseed. Given that the seed used for the initial seeding of the
RNG had a low but non-zero entropy of x bits, two approaches can be considered
dealing with this entropy in the DEJA-SEED and DEJA-STATE attacks.

If the attacker has access to RNG output before the reseeding, he can recover
the initial state with an effort of 2x hash evaluations. This effort will be negligible
compared to that of the presented attacks for actual low entropy states. If the
attacker has no access to output prior to the reseeding, he has to recover the
initial state parallel to the recovery of md1 using the first output blocks. This
means that additionally to the 280 input space of the unknown half of md1, he
has also to iterate over the 2x input space for the initial entropy (each guess for
the initial seed implies a guess for the whole state s), yielding a total effort of
280+x hash evaluations. Thus, depending on the initial entropy level, this can
become the dominating cost for DEJA-SEED and DEJA-STATE attacks.

8 Conclusion

In this section we discuss the impact, the possibilities for removing of the dis-
covered issues and summarize the theoretical conclusions of our findings.
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8.1 Theoretical Aspects of Our Findings

Our central result is that under worst conditions, OpenSSL’s RNG only achieves
a security level of 80 bits. This sounds devastating, but when we discuss the
impact of our results, we will find that from a realistic perspective the majority
of real-world systems will be affected to a lesser extend, if at all.

The common notions of security applied to RNGs [4,17] are the well estab-
lished forward and backward security, i.e. the security of an RNG under the
assumption of the disclosure of its state at a point forward or backward in time,
respectively; as well as the notion of resilience. The latter would be violated if
an attacker can reduce the entropy of the RNG’s output by feeding specially
prepared seed data to the RNG.

From these notions, backward security is not even attempted by the RNG
itself, but when it is attempted by the client application, then it suffers from
the DEJA-SEED and DEJA-STATE attacks that allow the disclosure of the
RNG state based on the generated output after a reseeding. Accordingly, the
backward security of the RNG is impaired. The RNG’s forward security in the
state reseeded is affected by the same attacks since they allow the recovery of
previous output – which certainly is also possible with access to the RNG state
instead of its output.

Our findings do not suggest that the RNG’s resilience is defective in any
way. As it seems, the transformations leading to updated RNG states during the
addition of seed data are sound in this respect.

Moreover, we find that the addition of seed data to the RNG is not optimal
in the sense that if the RNG is in a low entropy state, then the added seed data
remains recoverable from the RNG state with a much lower complexity than that
corresponding to their combined entropy. Since, to our knowledge, the security
of the seed data in the RNG state is not covered by any of the existing notions,
we propose the forward security of seed data as a new security notion for RNGs.

We also had to point out a shortcoming in the existing notion of a mixing
function: using the entropy of the RNG state in its definition, its application
leads to meaningless results if the RNG does not use its complete RNG state in
a symmetric way for the output production. Accordingly, we propose the notion
of an effective mixing function, wherein the role of the RNG state is replaced by
the subsequent output of the RNG.

What remains from our findings is the low entropy secret leakage issues
(LESLI). It is a rather trivial requirement for an RNG not to produce out-
put before sufficiently seeded, however, to our knowledge, this has so far only
been viewed from the angle of the low-entropy-recovery problem, which imposes
different restrictions than the prevention of seed data leakage. Accordingly, also
this problem seems to require formal treatment in RNG security models.

8.2 Impact

Estimating the impact of our findings, we conclude that, excluding the possibility
of system break-ins revealing the RNG state to an attacker for the time being,



664 F. Strenzke

any application running on a system that features a sufficiently high boot time
entropy and automatic seeding of the OpenSSL RNG will be safe, since then the
initial seed will be of high entropy. The same applies to systems that perform the
high entropy reseeding before ever having generated any random numbers. Thus,
the only issue such systems suffer from will be ELO-240, meaning that the RNG
will produce about 1KB of 240-bit entropy output before it runs at full 256-bit
security. Though a clear error in the cryptographic design, this vulnerability can
be seen as purely cosmetic problem of the RNG, as generally no system building
on ordinary software implementations will be able to achieve the corresponding
security level with respect to other aspects such as a general assured security
features and physically secure key storage.

However, for any system where the potentially automatic seeding from the
operating system RNG delivers a low entropy level, or where this feature is
absent, and the client application for instance relies on the loading of a seed-
file, the issues ELO-80, ELO-160, DEJA-SEED and DEJA-STATE come up as
a threat. The first two are a comparatively minor threat, since ELO-80 depends
on the attacker receiving some bytes from the same call to RAND bytes as the
one he wishes to predict output from, which is presumably not possible in most
designs. And ELO-160 at least maintains a reasonable security level of 160 bits
which will most likely remain impossible to break even for “nation-strength”
adversaries in the long term. However, especially DEJA-STATE is applicable in
general scenarios and has such a small complexity that it forms a concrete threat,
since an entropy level of around 80 bits is generally assumed to provide only
short term security. So-called “lightweight” cryptographic algorithms such as
PRESENT [18] provide 80 bit security. Even though today such a computational
effort must be assumed to still be impossible to realize, this can quickly change in
the near future. Since all the attacks presented in this work are entirely passive
procedures, the RNG output values can be recorded and the computational part
of the attack be carried out once the necessary computational resources become
available to the attacker. From this perspective, the OpenSSL RNG must be
considered as broken in the reseeded state, i.e. a scenario where the stirring
operation is ceased due to a falsely believed high entropy level. In order to
assess the security of an application on a potentially vulnerable system, one must
assure that before the high entropy seeding, no other low entropy seeding with
subsequent output generation was performed. This is an undesirable situation,
since such an analysis is inherently non-local, making it a complex and error
prone task.

Good news is that RSA key generation remains safe if it is performed directly
after the reseeding, i.e. without any other output generation in between. First
of all, there are no RSA keys in use with a security level of 256 bits (this would
correspond to a modulus of 15360 bits), so that ELO-240 has no effect, but much
more importantly, in an RSA key generation so much output is drawn from the
RNG that none of the issues apply any more after such an operation. This is due
to the fact that also the RNG’s output generation has a “stirring” effect on the
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state. However, this helpful effect of RSA key generation certainly only applies
if it is performed before the generation of any other random output.

LESLI remains an issue for any system that temporarily operates in the
unseeded or falsely seeded state. Here, the leakage of intentionally over-
written or uninitialized/reused memory is a potential threat that could affect
real world systems. But the number of actually exploitable applications must be
deemed to be small, since in general the use of the library with the RNG being
in a low entropy state will be unintentional and is thus likely to incur greater
problems than low entropy secret leakage.

The main category of systems potentially affected by the any of the issues
identified in this work must be assumed to be embedded systems and mobile
platforms. As it is well known, such platforms often feature insufficient entropy
levels of their operating system RNGs at least at boot time, without this being
detectable by the RNG implementation. Accordingly, the use of a seed file, which
stores entropy for applications across application restarts or system reboots, is
a common mitigating measure under these circumstances. As we have learned,
this approach is at risk to be affected by the issues reported in this work.

8.3 Repair of OpenSSL’s RNG

From our analysis of the individual issues it becomes clear what the two main
problems of OpenSSL’s RNG are: the cessation the stirring operation after hav-
ing entered the seeded state, and subversion of its remaining backbone, the
running md, by leaking 80 bits of it through the output. We want to point out
that this problem must have been clear to some extent to the designer, since a
source code comment in md rand.c just above the code implementing the stirring
operation states:

/*
* In the output function only half of ’md’ remains secret, so we
* better make sure that the required entropy gets ’evenly
* distributed’ through ’state’, our randomness pool. The input
* function (ssleay_rand_add) chains all of ’md’, which makes it more
* suitable for this purpose.
*/

However, it seems that neither the exact nature of the entropy distribution
through the stirring operation nor the necessity of being able to recover from a
compromised state at any point during the RNG’s life cycle was seen. In any
case, if the RNG was intentionally designed to be only one-time seedable, then
at least this would have to be stated in the documentation.

The straightforward repair is given by two measures. First, make the updated
md in RAND bytes dependent (through hashing or XOR) on the previous value
of md after the generation of each block, as it is the case when the vulnerable
implementation is used only with calls generating 10 bytes or less of output.
Second, the stirring operation must be carried out after each call to RAND add
before the generation of new output.

This brings us to a further point, already discussed in the previous section,
namely the forward security of the RNG with respect to the recovery of poten-
tially low entropy seed data fed to it. With the current approach of executing the
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stirring function from RAND bytes, even in the case of correct entropy estimation
during the initial seeding, the seed values would remain recoverable through an
attack in the style of DEJA-SEED directly on the state bytes s in the period
between their feeding through RAND add and the next call to RAND bytes. The
correct approach would be to implement RAND add in such a way that a brute
force attack on the state s would have the same complexity as the total entropy
of all the data fed to it so far.

Concerning LESLI, the only solution is to let RAND pseudo bytes generate
output using a different RNG state than that used for RAND bytes. This would
also remove another subtle issue concerning the security with respect to process
forking and the RNG’s entropy calculation, which is reported in a source code
comment of md rand.c itself.

The above described measures will remove all vulnerabilities discovered in
this work. However, with respect to efficiency aspects, a standard construction
for instance using a CTR mode generator would be much more favourable than a
repair of the current design. An AES-based RNG will generally be able to achieve
a higher efficiency due to the wide-spread hardware support for this cipher,
whereas hardware support of hash functions is very rare. As it becomes evident
from our results, the employment of such a large state as used by the OpenSSL
RNG does not have any positive effects on security. It remains completely unclear
what was the goal of this design choice. A substantial reduction of its size could
also help to increase the RNG’s performance.

8.4 Countermeasures in Client Code

In order for users of vulnerable versions of OpenSSL to be able to use the RNG
without being affected by the issues ELO-240, ELO-80, ELO-160, DEJA-SEED,
and DEJA-STATE, in Appendix A, we provide secure wrapper functions for
OpenSSL’s RNG functionality. The LESLI issue is based on a fundamental design
problem that cannot be repaired by wrapper functions. Accordingly, we advise
not to use the function RAND pseudo bytes at all. All calls to that function
should be replaced by calls to RAND bytes instead. Note that it is important to
check the return value of RAND bytes: if this function fails due to an insufficiently
seeded RNG, although returning an error value, it still outputs random bytes.
Our secure version of RAND bytes retains this behaviour. Failing to check the
error value means, among other problems, that the LESLI issue remains even
when abstaining from using RAND pseudo bytes.

Calls to RAND add shall be replaced with RAND add secure 240bits or
RAND add secure 256bits. Which of the respective version, “240bits” or
“256bits” shall be used depends on whether the user deems it sufficient to have
240 bit entropy output or needs the full 256 bit security. These functions are
implemented as follows: after adding the seed through RAND add, the 240 bit
version executes a single stirring operation, the 256 bit version repeats this
operation once more. The secure functions to replace RAND seed, RAND poll
and RAND load file follow the same principle and naming convention.
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Calls to RAND bytes shall be replaced with RAND bytes secure. This function
sets the target buffer to all zeroes before calling RAND bytes, thus avoiding the
leakage of its previous contents in future RNG output under all conditions.
If this behaviour is not desired, the function can be modified correspondingly.
Furthermore, the function makes calls to RAND bytes block-wise with a block
length of maximally 10 bytes. This avoids the issues that rely on the learning of
half of md through the RNG output, which are ELO-240, ELO-80, DEJA-SEED,
and DEJA-STATE.

For users which cannot dispense with RAND pseudo bytes, we also provide
the function RAND pseudo bytes secure, which at least prevents leakage of the
previous contents of the target buffer.
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A Secure Wrapper Functions for the OpenSSL RNG

In this section we give secure wrapper functions for the OpenSSL RNG function-
ality. Please refer to Sect. 8.4 for an explanation of the countermeasures used in
these functions.

void RAND_add_secure_240bits( const void* buf , int num, double
entropy) {
int n = 1023;
const unsigned char dummy_seed[20] = { 0 };
if(buf)
{
RAND_add(buf, num, entropy);

}
while (n > 0)
{
RAND_add(dummy_seed, sizeof(dummy_seed), 0.0);
n -= sizeof(dummy_seed);

}
}

void RAND_add_secure_256bits(const void* buf , int num, double
entropy) {
RAND_add_secure_240bits( buf, num, entropy);
RAND_add_secure_240bits( NULL, 0, 0.0);

}

void RAND_seed_secure_240bits(const void *buf, int num) {
RAND_add_secure_240bits(buf, num, (double)num);

}

void RAND_seed_secure_256bits(const void *buf, int num) {
RAND_add_secure_256bits(buf, num, (double)num);

}

int RAND_poll_secure_240bits() {
int result = RAND_poll();
RAND_add_secure_240bits( NULL, 0, 0.0);
return result;

}
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int RAND_poll_secure_256bits() {
int result = RAND_poll();
RAND_add_secure_256bits( NULL, 0, 0.0);
return result;

}

int RAND_load_file_secure_240bits(const char *file, long max_bytes)
{
int ret = RAND_load_file(file, max_bytes);
RAND_add_secure_240bits(NULL, 0, 0.0);
return ret;
}

int RAND_load_file_secure_256bits(const char *file, long max_bytes)
{
int ret = RAND_load_file(file, max_bytes);
RAND_add_secure_256bits(NULL, 0, 0.0);
return ret;
}

int RAND_bytes_secure(unsigned char *buf, int num) {
memset(buf, 0, num);
int final_ret = 1;
while(num)
{
int ret;
int this_round = num > 10 ? 10 : num;
ret = RAND_bytes(buf, this_round);
if(ret != 1)
{
final_ret = ret;

}
buf += this_round;
num -= this_round;

}
return final_ret;

}

int RAND_pseudo_bytes_secure(unsigned char *buf, int num) {
memset(buf, 0, num);
return RAND_pseudo_bytes(buf, num);

}
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Abstract. We investigate how to safely export additional cryptographic
keys from secure channel protocols, modelled with the authenticated and
confidential channel establishment (ACCE) security notion. For exam-
ple, the EAP-TLS protocol uses the Transport Layer Security (TLS)
handshake to output an additional shared secret which can be used for
purposes outside of TLS, and the RFC 5705 standard specifies a general
mechanism for exporting keying material from TLS. We show that, for
a class of ACCE protocols we call “TLS-like” protocols, the EAP-TLS
transformation can be used to export an additional key, and that the
result is a secure AKE protocol in the Bellare–Rogaway model. Interest-
ingly, we are able to carry out the proof without looking at the specifics
of the TLS protocol itself (beyond the notion that it is “TLS-like”), but
rather are able to use the ACCE property in a semi black-box way. To
facilitate our modular proof, we develop a novel technique, notably an
encryption-based key checking mechanism that is used by the security
reduction. Our results imply that EAP-TLS using secure TLS 1.2 cipher-
suites is a secure authenticated key exchange protocol.

1 Introduction

Secure channel protocols are widely used in practice to allow two parties to
authenticate each other and securely transmit data. A common design paradigm
is to use an authenticated key exchange (AKE) protocol to authenticate parties
based on public key certificates and to establish a session key, and then use a
stateful authenticated encryption scheme to encrypt and authenticate the trans-
mission of application data. Real-world secure channel protocols such as TLS,
SSH, IPsec, Google’s QUIC, the EMV chip-and-pin system, and IEEE 802.11i
all follow this paradigm.
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For theoreticians, this paradigm is desirable because it allows for modular
proofs via composability. A classic result by Canetti and Krawczyk [11] shows
how to provably construct a secure channel by running a key exchange protocol
that satisfies standard key indistinguishability notions, and then using the key
output by the AKE protocol as the symmetric key in authenticated encryption.

For practitioners, this paradigm is desirable because it is efficient and allows
to use and combine simple software and hardware components in a variety of
ways to form the overall system.

Despite the merits of modularity, most real-world designs are not as clean. In
TLS versions up to 1.2, a key exchange protocol, the so-called handshake proto-
col, is used to establish a premaster secret, which is then used to derive a master
secret, which is then used to derive session keys. The final messages of the hand-
shake protocol are encrypted using the session keys, and then application data
can be sent, encrypted using the same session keys. SSH has a similar design. In
this design, the session keys do not satisfy the standard key indistinguishability
notion for key exchange security: an adversary can decide whether they have
been given the real session key or a random one simply by trial decrypting the
encrypted handshake messages.

Early work on proving the security of TLS avoided this problem by showing
that a modified version of the TLS handshake yields indistinguishable session
keys [29], but this is unsatisfactory since it does not consider the TLS protocol
as used in practice. In 2012, Jager, Kohlar, Schäge, and Schwenk (JKSS) [20]
introduced the authenticated and confidential channel establishment (ACCE)
security notion, which treats the key exchange and authenticated encryption
as a single monolithic object, allowing them to prove security of the signed
Diffie–Hellman ciphersuites in the unmodified TLS 1.2 protocol. ACCE has been
applied or adapted to prove security of most other TLS ciphersuites [21,24,26],
as well as SSH [4], QUIC [15,27], and the EMV chip-and-pin system [10].

The ACCE notion is not necessarily ideal to cryptographers; its monolithic
nature can make modular analysis more difficult, and in particular individual
components of ACCE-secure protocols cannot necessarily be used independently.
For example, although TLS 1.2’s signed Diffie–Hellman ciphersuite is ACCE-
secure, one has no security assurance that the session key satisfies any indepen-
dent security notion: we only have the assurance that the session key is safe
to use with the corresponding authenticated encryption scheme in the manner
described by the protocol.

Moreover, practitioners seem to like to use the TLS handshake in order to
establish keying material for their own purposes. A prominent example is the
EAP-TLS protocol [33], which uses the TLS handshake to derive a session key
between two peers in the Extensible Authentication Protocol (EAP) [1]. More
generally, the practice of exporting additional keys from the master secret in the
TLS handshake has been formalized in the proposed IETF standard RFC 5705
on TLS key material exporters [31].

However, is it actually safe to use keys exported from the master secret in
the TLS handshake? Solely assuming ACCE security of TLS does not at first
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sight seem to say anything about the internal variables of TLS, such as the mas-
ter secret. However, interestingly, inspired by Morrissey, Smart, and Warinschi
(MSW) [29] we can show that the ACCE security of TLS implies that the master
secret is unpredictable. If the master secret were predictable, then we would be
able to break the security of the ACCE channel. This intuition lies at the heart
of our proof which uses the ACCE property of TLS in a (semi-)black-box way.

Our Contributions. In this paper we analyze the security of key exporters from
ACCE protocols in the provable security setting. Concretely, for TLS we show
that if one derives an additional exported key from the TLS master secret—
independently of the other handshake messages—then TLS (outputting this
additional exported key as the session key) constitutes a secure AKE proto-
col in the sense of Bellare and Rogaway [2]. However, while our starting point is
the TLS protocol, our result is in fact more general, pertaining to a wider class
of protocols which we call TLS-like ACCE protocols. Roughly speaking, these
are protocols which satisfy the ACCE security notion and, like TLS, establish a
master secret during the handshake, and from the master secret derive both the
channel encryption key and the additional exported key. Apart from this require-
ment, our result has no other dependencies on the specifics of the protocol. In
other words, our main result is a general theorem showing that the transforma-
tion specified by EAP-TLS as a key exporter turns any ACCE protocol which
has a concept of a master secret into an AKE protocol.

An immediate application of our result is a proof of security in the Bellare-
Rogaway model for TLS Key Material Exporters [31] and EAP-TLS [33]. The
former has never been subject to a formal security analysis, while the latter has
only been analyzed in the symbolic model by He et al. [17] who gave a proof in
the context of IEEE 802.11.

Motivation for Our Approach. MSW [29] proved that a modified version of
the TLS handshake yields indistinguishable session keys. Specifically, they con-
sidered a variant of TLS were the final messages are sent unencrypted. As an
intermediate step in their analysis, they showed that the TLS master secret is
unpredictable, i.e., that no adversary is able to output the full master secret of a
fresh target session. They modeled the key derivation function (KDF) in TLS as
a random oracle, and as the inputs to the random oracle are unpredictable, the
session keys derived from the master secret are indistinguishable from random.

Similar to MSW, we want to use the fact that the master secret is unpre-
dictable to show that export keys are indistinguishable from random. This should
be possible even for the unmodified TLS protocol, because exported keys are not
used to encrypt messages during the handshake phase. One obvious approach
would be to reuse one of the existing security proofs which shows TLS to be
ACCE secure. Specifically, in these proofs the master secret of a particular ses-
sion is typically swapped out with a completely random value, allowing the rest
of the proof to continue on the assumption that the master secret is completely
hidden from the adversary. Due to the unpredictability of the master secret, the
adversary will not be able to detect the switch. Using this truly random master
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secret, we could extend the proof with one additional step where we derive the
export key through a random oracle query. It would then follow that the derived
export key is indistinguishable from random.

However, such a result could not be re-used across different TLS ciphersuites,
nor hold for future versions of TLS. Instead, for every variant of TLS, one would
have to copy-paste the corresponding security proof and augment it accordingly
to account for the extra export key. This approach is of course inherently non-
modular since it is tied to the innards of each particular proof. Still, it seems
likely that most of these proofs would be fairly similar in terms of technique, and
also reasonably independent of the specific details of the TLS protocol itself.

The question is whether we can isolate exactly those properties of the TLS
protocol that these proofs rely on. If so, we could extract a generic proof of
TLS key exporters that works across different versions unmodified. Moreover, it
would be even better if we could have a result that is not tied to TLS at all, but
rather one that targets an appropriate abstract security notion.

Essentially, this is what we do in this paper. We identify some features of the
TLS protocol which, when added to a generic ACCE protocol, are sufficient to
establish the indistinguishability of the export keys derived from the protocol.
Note that, apart from the features that we identify, the result is completely
independent of the internals of TLS. Below we describe these features.

Technical Overview of Our Result. Surprisingly, the number of additional fea-
tures we require in addition to a generic ACCE protocol is rather minimal and
consists of the following three requirements (which we make more precise in
Sect. 3). We call an ACCE protocol that satisfies these requirements TLS-like.

(i) The handshake includes a random nonce from each party.
(ii) Each party maintains a value called the master secret during the handshake.
(iii) The session key is derived from the master secret, the nonces, and possibly

some other public information.

Our result can now be more precisely formulated as follows: starting from
an ACCE secure TLS-like protocol Π, we create an AKE secure protocol Π+,
where Π+ consists of first running protocol Π until a session accepts (according
to Π), then deriving one additional key from the master secret and nonces of
Π. This key—which is distinct from the session key in the underlying protocol
Π—becomes the session key of Π+. In our security proof the key derivation step
will be modeled using a random oracle. The construction of Π+ from Π precisely
captures the definition used in TLS key exporters [31] and EAP-TLS [33].

Note that while we put no security requirements on the master secret of a
TLS-like protocol, it is pivotal in our proof to relate the indistinguishability of
the session keys in Π+ to the ACCE security of Π. As mentioned previously, we
build on the idea used by MSW [29] to show that unless the adversary queries the
random oracle on the exact master secret of a party, it has no advantage in dis-
tinguishing the corresponding exported session key in Π+. MSW proved that an
application key agreement protocol (having indistinguishable session keys) could
be built out of a master key agreement protocol (having unpredictable master
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secrets). In their security reduction the simulator could simulate the application
key agreement protocol since it had access to a perfect key-checking oracle, allow-
ing it to test the validity of master secrets supplied to the random oracle. Our
proof is complicated by the fact that we do a reduction to a (TLS-like) ACCE
protocol for which there is no key-checking oracle available. The main technical
novelty of our proof is to show that we can still create an approximation of the
key-checking oracle as long as we allow a (small) one-sided error probability.
This emulated key-checking oracle suffices to simulate the AKE experiment of
protocol Π+ in our reduction to the ACCE security of Π.

To give some intuition for our key-checking oracle within the ACCE setting,
suppose we want to test whether the value ms′ is the master secret of some
session π. First, we use ms′, the nonces π accepted with, and the KDF of Π (all
available due to the TLS-like requirement on Π) to derive a guess on π’s session
key in Π. Next, we obtain a ciphertext C of a random message under π’s actual
session key in Π, using our access to a left-or-right encryption oracle in the
ACCE game. Finally, we locally decrypt C using the guessed session key of Π,
i.e., we do not use the decrypt oracle of the ACCE game. If this decryption gives
back the random message we started with, we guess that ms′ was the correct
master secret of π; otherwise, we guess that it was incorrect.

In the above we tacitly assumed that different master secrets derive differ-
ent session keys (using the same nonces). Normally, this would follow directly
from the pseudorandomness of the KDF used in Π. However, since we do not
require the master secrets to be independent and uniformly distributed, we can-
not invoke this property of the KDF. Instead, we have to explicitly assume that
different master secrets do not “collide” to the same session key. We expect this
property to hold for most real-world KDFs. Concretely, we show in Theorem 2
(AppendixA) that the HMAC-based KDF used in TLS has this property.

Alternatives to using the ACCE Security Notion? The main reason for using the
ACCE security notion in our analysis is that is has proved to be a very useful
model for studying the security of two-stage channel establishment protocols. As
already mentioned, it has been used repeatedly to analyze real-world protocols
such as TLS, SSH, and QUIC. Since our result applies to any ACCE protocol
that is TLS-like, it can be applied to all these protocols in a near black-box
manner. In particular, we can plug in any existing ACCE result without having
to re-do any of the steps carried out in the (ACCE) proof of the protocol itself.
For example, our result applies unmodified to every ciphersuite version of TLS
for which there exist an ACCE proof. Moreover, we can even apply our theorem
to future versions of TLS, as long as these continue to be TLS-like and derive
their channel keys using a collision resistant KDF.

Still, in the specific case of TLS, one might ask whether another approach
could give a simpler, yet equally modular proof of the same result, namely that
EAP-TLS (and more generally, TLS key exporters) constitutes a secure AKE.

Krawczyk, Paterson, and Wee (KPW) [24] showed that all the major hand-
shake variants of TLS satisfy a security notion on its key encapsulation mech-
anism (KEM) called IND-CCCA [18]. If we could reduce the AKE security of
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EAP-TLS to the IND-CCCA security of the TLS-KEM, then the results of KPW
would give us all the major TLS ciphersuites “for free”.

Unfortunately, it is not obvious how such a result can be obtained in a black-
box manner from the KEM in [24]. Technically, in order to reduce the AKE
security of EAP-TLS to the IND-CCCA security of the TLS-KEM, we need
to be able to simulate the key derivation step in the AKE game of EAP-TLS.
This requires knowledge about the sessions’ master secrets. However, the KEM
defined by KPW does not contain the TLS master secret. This means that an
adversary against the TLS-KEM in the IND-CCCA game cannot simulate the
Test-challenge for some adversary playing in the AKE game against EAP-TLS.
Moreover, as remarked by KPW [24, Remark 4], if the KEM key actually was
defined to be the TLS master secret, then the resulting scheme would be insecure
for TLS-RSA provided that RSA PKCS#1v1.5 is re-randomizable1.

Other Modular Approaches to Analyzing TLS. Canetti and Krawczyk [11] pre-
sented a model that allows to analyze protocols in modular way. Unfortunately,
since TLS does not meet the stringent requirement of key indistinguishability, it
cannot be analyzed within their framework. Küsters and Thuengerthal [25] ana-
lyzed the core of TLS in their simulation-based universal composability model
called IITM. Unlike some other UC models, the IITM model has the appeal-
ing feature that it does not rely on pre-established session identifiers. Brzuska
et al. [8] introduced a framework that uses so-called key-independent reduc-
tions and allows to analyze protocols such as TLS. Their analysis is in a game-
based setting and, up to some small technical differences between models, implies
ACCE security of TLS. Kohlweiss et al. [22] recently used the abstract cryptog-
raphy framework by Maurer and Renner [28] for a modular analysis of TLS.

2 Protocol Definitions

2.1 Execution Environment

Parties. A two-party protocol is carried out by a set of parties P =
{P1, . . . , PnP}. Each party Pi has an associated long-term key pair (ski, pki).
We presuppose the existence of a public key infrastructure (PKI) by assuming
that every party has an authenticated copy of all the other parties’ public keys
pki. For simplicity we restrict to the setting of mutual authentication, but our
results apply equally to the server-only authenticated setting.

Sessions. Each party can take part in multiple executions of the protocol, both
concurrently and subsequently. Each run of the protocol is called a session. Let
nπ denote the maximum number of sessions per party; for party Pi’s sth session,
we associate an oracle πs

i which embodies this (local) session’s execution of the

1 On the other hand, Bhargavan et al. [6] conjecture that re-randomizing RSA
PKCS#1v1.5 is infeasible, allowing the master secret to be used as the KEM key in
TLS-RSA too. We forgo the issue by not reducing to the KEM-security of TLS.
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Table 1. State variables for session oracle πs
i .

Variable Description

ρ the role ρ ∈ {init, resp} of the session in the protocol execution, being
either the initiator or the responder

pid the identity pid ∈ P of the intended communication partner of πs
i

pk the public key of πs
i .pid

α the state α ∈ {accepted, rejected, running} of the session oracle

T the ordered transcript of all messages sent and received by πs
i

k the symmetric session-key k ∈ K derived by πs
i

γ the status γ ∈ {⊥, revealed} of the session key πs
i .k

sid a session identifier sid ∈ {0, 1}∗ locally computable by πs
i

b a random bit b ∈ {0, 1} sampled at the initialization of πs
i

st additional auxiliary state that might be needed by the protocol

protocol, maintains the state specific to this session (as described in Table 1),
and has access to the long-term secret key ski of the party. We put the following
correctness requirements on the variables α, k, sid and pid:

πs
i .α = accepted =⇒ πs

i .k �= ⊥ ∧ πs
i .sid �= ⊥, (1)

πs
i .α = πt

j .α = accepted ∧ πs
i .sid = πt

j .sid =⇒

⎧
⎪⎨

⎪⎩

πs
i .k = πt

j .k

πs
i .pid = Pj

πt
j .pid = Pi

. (2)

Adverserial Queries. The adversary is assumed to control the network, and
interacts with the oracles by issuing queries to them. Below we describe the
admissible queries.

– NewSession(Pi, ρ, pid): This query creates a new session πs
i with at party Pi,

having role ρ and intended partner pid. Based on pid, πs
i sets the variable pk

correspondingly. The session’s state is set to πs
i .α = running and, if ρ = init,

it also produces the first message of the protocol which is returned to the
adversary.

– Send(πs
i ,m): This query allows the adversary to send any message m to the

session oracle πs
i . If πs

i .α �= running return ⊥. Otherwise, the oracle responds
according to the protocol specification, which depends on its role and current
internal state.

– Corrupt(Pi): Return the private key Pi.sk held by party Pi. If Corrupt(Pi) was
the τ -th query issued by A, then we say that Pi is τ -corrupted. For uncorrupted
parties we define τ := ∞.

– Reveal(πs
i ): This query returns the session key πs

i .k and sets πs
i .γ = revealed.
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2.2 AKE Protocols

An authenticated key exchange protocol (AKE) is a two-party protocol satisfying
the syntactical requirement of (1) and (2), and where the security is defined
in terms of an AKE security experiment played between a challenger and an
adversary. This experiment uses the execution environment described in Sect. 2.1,
but has one additional query:

– Test(πs
i ): This query may be asked only once during the course of the game.

If πs
i .α �= accepted, then the oracle returns ⊥. Otherwise, based on b = πs

i .b,
it returns kb, where k0 ← K is an independent uniformly sampled key and
k1 := πs

i .k. The key kb is called the Test-challenge.

The adversary can win in the AKE experiment in one of two ways: (i) by
making a session accept maliciously or (ii) by guessing the secret bit of the
Test-session. We formalize these winning conditions below. We simultaneously
consider AKE protocols with and without perfect forward secrecy (PFS) [13].

Definition 1. Two sessions πs
i and πt

j are partners if πs
i .sid = πt

j .sid.

Definition 2. A session πs
i is said to be fresh (resp. PFS-fresh), with intended

partner Pj, if

(a) πs
i .α = accepted and πs

i .pid = Pj when A issued its τ0-th query,
(b) πs

i .γ �= revealed and Pi is uncorrupted (resp. τ -corrupted with τ0 < τ)2,
(c) for any partner oracle πt

j of πs
i , we have that πt

j .γ �= revealed and Pj is
uncorrupted (resp. τ ′-corrupted with τ0 < τ ′).

Definition 3 (Entity Authentication). A session πs
i is said to have accepted

maliciously (resp. accepted maliciously with PFS) in the AKE security experi-
ment with intended partner Pj, if

(a) πs
i .α = accepted and πs

i .pid = Pj when A issued its τ0-th query,
(b) Pi and Pj are uncorrupted (resp. τ - and τ ′-corrupted with τ0 < τ, τ ′), and
(c) there is no unique session πt

j such that πs
i and πt

j are partners.

We let Advauth
Π (A) (resp. Advauth-PFS

Π (A)) denote the probability that an adver-
sary A gets a session to accept maliciously (resp. accepts maliciously with PFS)
during the AKE security experiment.

Definition 4 (Key Indistinguishability). An adversary A that issued its
Test-query to session πs

i during the AKE security experiment, answers the Test-
challenge correctly (resp. answers the Test-challenge correctly with PFS) if it
terminates with output b′, such that

(a) πs
i is fresh (resp. PFS-fresh) with some intended partner Pj, and

(b) πs
i .b = b′.

2 For simplicity we do not model key-compromise impersonation attacks in this paper,
which should allow Pi itself to be τ -corrupted, with τ < τ0.
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We assign the following advantage measure to the event that A answers the
Test-challenge correctly (resp. answers the Test-challenge correctly with PFS):

Advkey-ind(-PFS)
Π (A) :=

∣∣∣∣Pr[πs
i .b = b′] − 1

2

∣∣∣∣ . (3)

Definition 5 (AKE Security). An adversary A wins (resp. wins with PFS)
in the AKE security experiment if a session to accept maliciously (resp. accept
maliciously with PFS) or it answers the Test-challenge correctly (resp. answers
the Test-challenge correctly with PFS). We assign the following advantage mea-
sure to the event that A wins (resp. wins with PFS):

AdvAKE(-PFS)
Π (A) := Advauth(-PFS)

Π (A) + Advkey-ind(-PFS)
Π (A). (4)

2.3 ACCE Protocols

Jager et al. [20] introduced the notion of authenticated and confidential channel
establishment (ACCE) protocols in order to model TLS. An ACCE protocol is
a two-party protocol satisfying the syntactical requirement of Eqs. (1) and (2)
and where the session key k is used to key a stateful length-hiding authenticated
encryption scheme (sLHAE) stE = (st.Gen, stE.Init, stE.Enc, stE.Dec) (following
the definition in [24]). For correctness, we require that if the deterministic algo-
rithm st.Init produced initial states st0E , st0D, and the ACCE session key k was
used to produce a sequence of encryptions (Ci, st

i+1
E ) ← stE.Enc(k, �,mi,Hi, st

i
E)

where no Ci equal ⊥, then the sequence of decryptions (m′
i, st

i+1
D ) ← stE.Dec(k,

Ci,Hi, st
i
D) is such that m′

i = mi for each i ≥ 0. For security, we define an ACCE
security experiment based on the execution environment described in Sect. 2.1
that has the following two additional queries (note that there is no Test query).

– Encrypt(πs
i , �,m0,m1,H): This query takes as input a ciphertext length spec-

ification �, two messages m0, m1, and a header H. If πs
i .α �= accepted, the

query returns ⊥. Otherwise, πs
i has (by assumption) computed its session key

k and run the stE.Init algorithm of a sLHAE scheme stE to initiate states
πs

i .stE and πs
i .stD. Depending on the bit πs

i .b, this call returns the encryption
of either m0 or m1 using stE. For details, see Fig. 1.

– Decrypt(πs
i , C,H): This query takes as input a ciphertext C and a header H. If

πs
i .α �= accepted, then the query returns ⊥. Otherwise, it (statefully) decrypts

(C, H) using the underlying sLHAE scheme stE. For details, see Fig. 1.

The adversary can win in the ACCE experiment in one of two ways: (i) by
making a session accept maliciously according to Definition 3 (as in the AKE
security experiment), or (ii) by breaking one of the sLHAE channels through
guessing the corresponding session’s secret bit, (we formally define this condition
below). Partnering and freshness in the ACCE experiment are defined exactly
like in the AKE experiment, i.e., according to Definitions 1 and 2, respectively.

Definition 6 (Channel Security). An adversary A breaks the channel (resp.
breaks the channel with PFS) in the ACCE security experiment if it terminates
with output (πs

i , b
′), such that
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Fig. 1. The Encrypt and Decrypt queries of the ACCE security experiment. The vari-
ables k, b, stE, stD,C,H, u and v all belong to the internal state of πs

i . The variables C
and H are lists, initially empty. The counters u and v are initialized to 0, and in-sync

is set to true at the beginning of every session πs
i . In case πs

i does not have a partner
when answering a Decrypt query, then in-sync = false.

(a) πs
i is fresh (resp. PFS-fresh) with some intended partner Pj, and

(b) πs
i .b = b′.

We assign the following advantage measure to the event that A breaks the channel
(resp. breaks the channel with PFS):

Advchan(-PFS)
Π (A) :=

∣∣∣∣Pr[πs
i .b = b′] − 1

2

∣∣∣∣ . (5)

Definition 7 (ACCE Security). An adversary A wins (resp. wins with PFS)
in the ACCE security experiment if it either gets a session to accept maliciously
(resp. accept maliciously with PFS) or breaks the channel (resp. breaks the chal-
lenge with PFS). We assign the following advantage measure to the event that
A wins (resp. wins with PFS) in the ACCE experiment:

AdvACCE(-PFS)
Π (A) := Advauth(-PFS)

Π (A) + Advchan(-PFS)
Π (A). (6)

3 TLS-Like Protocols

Definition 8. An ACCE protocol Π is said to be TLS-like if

(i) each session uniformly at random generates and transmits a distinguished

nonce value n
$← {0, 1}λ during its run of the protocol,

(ii) each session holds a variable πs
i .ms ∈ {0, 1}λ∪{⊥}, called the master secret,

(iii) if n1, n2 are the two nonces on a session’s transcript T , then the session
key is derived as

k ← Kdf(ms, n1‖n2, FΠ(T )), (7)

where Kdf : {0, 1}λ ×{0, 1}2λ ×{0, 1}∗ → {0, 1}λ and FΠ : {0, 1}∗ → {0, 1}∗

are deterministic functions.
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Remark 1. The function FΠ is protocol specific and meant to capture any addi-
tional input that might be used to derive the session keys. In TLS, FΠ(T ) is
the empty string, while for example in IPSec (IKEv2), FΠ(T ) is the Security
Parameter Index (SPI) of the initiator and responder.

Remark 2. Clearly TLS is TLS-like, but most other real-world protocols, like
SSH, IPSec and QUIC, belong to this class as well.

4 Constructing an AKE Protocol from a TLS-Like
ACCE Protocol

4.1 Construction

Let Π be a TLS-like ACCE protocol with key derivation function Kdf and let
G : {0, 1}λ × {0, 1}2λ × {0, 1}∗ → {0, 1}λ be a random oracle. From Π and G
we create an AKE protocol Π+ as follows. Protocol Π+ consists of first running
protocol Π as usual until a session accepts, then it derives an additional key
ek ← G(ms, nC‖nS , aux), where ms is the master secret of Π, nC and nS are
the nonces, and aux ∈ {0, 1}∗ is an (optional) string containing selected values
from the session’s transcript T . The key ek becomes the session key in protocol
Π+. The session identifier in Π+ is inherited from Π.

By construction, a session in Π+ derives (at least) two keys: its “true” session
key in the sense of the AKE-model, i.e., the key ek derived from G, and the
channel encryption key derived in the underlying protocol Π using Π.Kdf. To
avoid confusion, we will call the former key the export key ; while we will call the
latter key the channel key and denote it ck. In particular, in the formal AKE
security experiment the session key variable πs

i .k will store the export key ek,
while the channel key ck will simply be part of πs

i ’s internal state, written πs
i .ck.

4.2 Main Result

Informally, our main result shows that the construction described above trans-
forms a TLS-like ACCE protocol Π into an AKE protocol Π+. However, in our
proof we need to rely on two additional assumptions besides the ACCE-notion:
(1) the key derivation function Π.Kdf used to derive the channel keys in Π+ is
collision resistant in a particular sense (Definition 9) and (2) the session identi-
fier allows for public session matching (Definition 10) and contains the sessions’
nonces and FΠ(T ) value (q.v. Eq. (7)).

Definition 9 (KDF Collision Resistance). Let KDF be an oracle implement-
ing the key derivation function of a TLS-like ACCE protocol Π. Define the fol-
lowing advantage measure for an adversary A:

AdvKDFcoll
Π.Kdf (A) := Pr

[

((ms, ms′), n, s) ← AKDF :
KDF(ms, n, s) = KDF(ms′, n, s)

ms �= ms′

]

.

(8)
A triple ((ms, ms′), n, s) satisfying the criteria in (8) is called a (KDF) collision
for Π.Kdf.
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Remark 3. Definition 9 is a variant of the more common notion of collision resis-
tant hash functions. The difference is that KDF collision resistance is about
collisions in the keys, not the messages.

Definition 10 (Public Session Matching). A session identifier sid allows
for public session matching in security experiment E, if there exists an efficient
algorithm M—having access to all the queries/responses exchanged between A
and the challenger—that can always answer whether or not two accepted sessions
are partners during the execution of E, i.e.:

∀k ∈ N, and ∀πs
i , π

t
j having accepted before A′s τk-th query :

M(πs
i , π

t
j) :=

{
1 if πs

i .sid = πt
j .sid,

0 otherwise.
(9)

Theorem 1. Let Π be a TLS-like ACCE protocol having a session identifier
that allows for public session matching and contains the sessions’ nonces and
FΠ(T ) values. Let Π+ be the protocol derived from Π and random oracle G,
using the construction described in Sect. 4.1. Then for any adversary A in the
AKE security experiment against Π+

Adv
AKE(-PFS)

Π+ (A) ≤ 6 ·Adv
ACCE(-PFS)
Π (B)+3 ·AdvKDFcoll

Π.Kdf (C)+
6qnPnπ

2cλ
+

(nPnπ)2

2λ+1
, (10)

where λ is the security parameter, nP is the number of parties, nπ is the number
of sessions at each party, q is A’s number of random oracle queries, and c ∈ N

is an arbitrary constant.

The main idea behind the proof of Theorem 1 is to relate the security of the
derived export keys to the security of the channel keys in the underlying ACCE
protocol Π. Roughly speaking, by using the property that TLS-like protocols
derive their channel keys from the master secret and nonces, we establish that
two sessions derive the same export key if and only if they derive the same
channel key (barring certain bad events which we bound). This fact will make it
possible to derive the sessions’ export keys in Π+ independently of their master
secrets, and still fully simulate the random oracle G.

4.3 Proof of Theorem1

Let A be the adversary in an AKE security experiment against protocol Π+.
From A we construct an algorithm B against the ACCE security of the underly-
ing protocol Π. Our proof proceeds through a sequence of games ([3,32]), where
each consecutive game aims to reduce the challenger’s dependency on the ses-
sions’ master secrets and the random oracle G, in order to derive the export keys
in protocol Π+. Eventually, in the final game, the random oracle G will have
been completely replaced by a local list LG, and the Π+ export keys are derived
independently of the sessions’ master secrets. Thus, at this point, algorithm B
will be able to simulate the game.
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Game 0. This is the original AKE security experiment for protocol Π+:

AdvAKE(-PFS)
Π+ (A) = AdvG0

Π+(A). (11)

Game 1. Game 1 proceeds like in Game 0, but aborts if two sessions generate
the same nonce value. Since there are nP · nπ generated nonces, the probability
of there being at least one collision is bounded by (nPnπ)2 · 2−(λ+1). By the
Difference Lemma ([32]) we have

AdvG0

Π+(A) ≤ AdvG1

Π+(A) +
(nPnπ)2

2λ+1
. (12)

The remaining games are aimed at removing the challenger’s dependency on
the random oracle and enabling it to derive the Π+ export keys without knowing
the sessions’ master secrets. To this end, the challenger will begin to maintain a
list LG which it will use to simulate the random oracle G and derive the sessions’
export keys. The entries of LG are tuples of the form (ms, n, aux, ek, [∗]), where
ms ∈ {0, 1}λ ∪ {⊥}, n ∈ {0, 1}2λ, ek ∈ {0, 1}λ, aux ∈ {0, 1}∗, and [∗] denotes a
list that contains zero or more session oracles. Specifically, we use the notation
“[ ]” to denote an empty list, “[πs

i ]” for a list containing exactly πs
i , “[πs

i , ∗]” for
a list containing πs

i plus zero or more (unspecified) sessions, and “[∗]” for a list
containing zero or more (unspecified) sessions. LG is initially empty and is filled
out either in response to A’s random oracle queries or when a session reaches
the accepted state.

All the remaining games either change the way export keys are derived for
newly accepted sessions (which we call the “Send-code”), or how they answer
random oracle calls (which we call the “G-code”). The evolution of the Send-
code in Game 2 through Game 6 is shown in Fig. 2, while the corresponding
G-code is shown in Fig. 3. We annotate the changes made to a game relative to
the previous one using red boxes. Note that some games make changes to both
the Send-code and G-code simultaneously.

Game 2. This game introduces the list LG. When a session πs
i accepts with

master secret ms, nonces n = nC‖nS , and auxiliary data aux, the challenger
uses the Send-code shown in the panel labeled “Game 2” in Fig. 2 to derive its
export key. It uses the G-code shown in the panel labeled “Game 2’ in Fig. 3 to
answer the adversary’s random oracle queries. We claim that

AdvG1

Π+(A) = AdvG2

Π+(A). (13)

Since the challenger considers all of the input values to the random oracle
when answering from LG in this game—in particular, it explicitly looks at the
master secrets of the sessions—and because a random oracle always returns
the same value when given the same input twice, the answers in Game 2 are
distributed exactly like in Game 1.

In the remaining games, we define ck -colli to be the event that during the run
of Game i, the challenger calls the key derivation function Π.Kdf on two different
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Fig. 2. How to derive the export key ek of a session πs
i that accepted with master

secret ms, nonces n = nC‖nS , and auxiliary data aux, in Game 2 to Game 6, and in
B’s simulation. Variables with underscores denote those that are “pattern matched”
against πs

i ’s variables. For example, πs
i is “matched” to (a, b, c, ek, [∗]) ∈ LG only if

nC‖nS = b, and aux = c. In particular, ms could be different from a.

master secrets ms �= ms′, but with the same nonces n = nC‖nS and additional
input FΠ(T ), such that Π.Kdf(ms, n, FΠ(T )) = Π.Kdf(ms′, n, FΠ(T )). We call
event ck -colli a channel key collision.

Game 3. In this game the Send-code is modified so that when a session accepts,
the challenger first checks whether the session’s partner is present in a tuple on
LG before deriving its export key (see the panel labeled “Game 3” in Fig. 2).
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Fig. 3. How A’s G queries, being of the form G(ms, n, aux), are answered in Game 2
to Game 6, and in B’s simulation.

The G-code remains unchanged. We claim that unless a channel key collision
occurs, then Game 3 and Game 2 are identical.

To see this, suppose the if-check at line 1 of Game 3 matched two sessions πs
i

and πt
j . This means that πs

i .sid = πt
j .sid, which by Eq. (2), implies that they have

the same channel key. Then our assumption that no key collision occurs further
implies that they must also have the same master secret. Hence, the else-if check
at line 7 would also have matched πs

i and πt
j in Game 2. This shows that Game 2

and Game 3 matches exactly the same sessions when no channel key collision
occurs, hence

AdvG2

Π+(A) ≤ AdvG3

Π+(A) + Pr[ck -coll3]. (14)

To bound Pr[ck -coll3] we create an algorithm C′ that finds (KDF) collisions
in Π.Kdf such that

Pr[ck -coll3] ≤ AdvKDFcoll
Π.Kdf (C′). (15)

Algorithm C′ emulates adversary A and the challenger in an execution of
Game 3 by instantiating all the parties’ long-term keys and running all the
sessions according to the specification of the game. If event ck -coll1 happened
during this run, say due to calls Π.Kdf(ms, n, FΠ(T )) and Π.Kdf(ms′, n, FΠ(T )),
then algorithm C′ outputs ((ms, ms′), n, FΠ(T )) as its collision for Π.Kdf.

Since C′ holds all the keys, it can simulate Game 3 perfectly. In particular,
it can correctly simulate the random oracle G in those places where it is called
inside of Game 3 (i.e., line 11 of the Send-code, and line 6 of the G-code). Thus,
the probability that C′ finds a collision in Π.Kdf is exactly the probability that
event ck -coll1 occurs during its simulation of Game 3 for A.

Remark 4. The reason we have to condition on there being no channel key col-
lision in Game 3 is because we do not assume that equal session identifiers
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implies equal master secrets (cf. Eq. (2)). It is conceivable that two partner ses-
sions might end up with the same channel key (and export key) even if their
master secrets differ. This would lead to a discrepancy in how G queries are
answered in Game 2 and Game 3.

Game 4. In this game the Send-code is augmented by matching non-fresh
sessions based on their channel keys (see Fig. 2). That is, if two non-fresh sessions
are found to have the same channel key (and the same nonces and auxiliary data),
then they are given the same export key too. Again, as long as a channel key
collision does not occur (event ck -coll1), then Game 4 and Game 3 are identical.
Similarly, to bound Pr[ck -coll4] we build an algorithm C′′ against the collision
resistance of Π.Kdf just like C′ in Game 3. Thus

AdvG3

Π+(A) − AdvG4

Π+(A) ≤ Pr[ck -coll4] ≤ AdvKDFcoll
Π.Kdf (C′′). (16)

Game 5. In this game the challenger replaces the calls to the random oracle
(both in the Send-code and in the G-code) with strings drawn uniformly at
random. We claim that this change does not affect A’s view compared to Game 4
in any way, hence

AdvG4

Π+(A) = AdvG5

Π+(A). (17)

To prove (17) we show that the challenger in Game 4 never repeats a call to
the random oracle on the same input. Thus, replacing these calls with uniformly
drawn strings in Game 5 yields exactly the same distribution on the export keys.

Suppose at some point during Game 4 the challenger made the random oracle
call G(ms, n, aux) for the first time (either due to a session accepting, or because
A made this exact G query). Suppose the random oracle responded with ek, and
let t = (ms, n, aux, ek, [∗]) be the tuple that was added to LG in response to this
call.

If the adversary later makes a G query on the same values, i.e. a query of the
form G(ms, n, aux), then line 1 of the G-code will be used to answer the query.
Thus, the random oracle call on line 6 of the G-code would never be made on
the same values twice in Game 4.

Likewise, if a session πs
i accepts with the same values, i.e., master secret ms,

nonces n = nC‖nS , and auxiliary data aux, after the initial G query was made,
then the else-if check on line 7 of the Send-code would match πs

i to t. Thus, the
random oracle call on line 11 of the Send-code would not be made on the same
values twice in Game 4 either.

In the final game the challenger will derive the sessions’ export keys indepen-
dently of their master secrets. To do this, it will use a probabilistic key-checking
oracle KO to test whether the adversary ever queried the random oracle at the
correct master secret of a session. Oracle KO is defined as follows:

KO(πs
i ,ms′) :=

{
true with probability 1 when πs

i .ms = ms′,
false with probability (1 − ε) when πs

i .ms �= ms′ .
(18)
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Specifically, KO has a one-sided error probability since it can potentially
return true (with probability ε) when πs

i .ms �= ms. Based on KO we define the
following event, which will be important in our later analysis:

Q : KO returns truewhen called on a fresh session. (19)

We will later show that A has zero advantage in guessing the Test-challenge
correctly unless Q happens (Lemma 1). Note that, if event Q happened, say due
to a call KO(πs

i ,ms′), then this does not necessarily imply that πs
i .ms = ms′;

namely, event Q also includes those cases where KO erroneously returns true.

Game 6. Game 6 modifies the else-if clause at line 7 of the Send-code in Game 5
to use the key-checking oracle KO instead of explicitly looking at a session’s
master secret. In addition, if a session accepts without a match on LG, then
Game 6 omits its master secret from the tuple that gets added to LG (line 13).
The G-code of Game 6 is also changed to use KO, as shown in Fig. 3.

We claim that as long as KO does not make a mistake, then Game 6 and
Game 5 are identical:

AdvG5

Π+(A) ≤ AdvG6

Π+(A) + ε. (20)

Let t⊥ denote the tuple derived from t = (ms, n, aux, ek, [∗]) ∈ LG by setting
ms = ⊥. To show (20) we prove the following three invariants.

(i) A session πs
i accepts with master secret ms, nonces n = nC‖nS and aux-

iliary data aux in Game 5 if and only if it accepts with the same master
secret, nonces and auxiliary data, and at the same time instance, in Game 6.

(ii) A session πs
i gets matched to a tuple t ∈ LG by one of the if/else-if clauses

in the Send-code of Game 6 if and only if πs
i gets matched to t or t⊥ by the

corresponding else/if-else clause in Game 6.
(iii) A G query is answered using tuple t = (ms, n, aux, ek, [∗]) ∈ LG at line 1

of the G-code in Game 5 if and only if it is answered by t ∈ LG at line 1,
or t⊥ ∈ LG at line 3, in Game 6.

We only show that (i) holds for the first accepting session since (ii) and (iii)
implies that it also holds for all subsequent sessions.

(i) Fix a tape of random coins and some adversary A, and consider a run of A
in Game 5 and Game 6 using this tape as the source of randomness (both for the
adversary and the challenger). Suppose πs

i was the first session that accepted
in this run of Game 5, say with values ms, n = nC‖nS , aux. If A made no G
queries before πs

i accepted, then πs
i would have accepted with the same values

(and at the same time) in the corresponding run in Game 6 too, since there are
no differences between the two games up until this point. On the other hand,
if A first made, say q0, G queries before πs

i accepted, then these queries would
have been answered identically by the G-code in both Game 5 and Game 6 (in
particular, by the else-clause at line 5). Hence, πs

i would have accepted identically
in both games also in the case where A made prior G queries.
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(ii) Note that the first two if/else-if clauses in the Send-code do not look at the
master secret explicitly (as indicated by the “∗”). Thus, these two checks behave
identically in Game 5 and Game 6.

Next, if πs
i got matched to t = (ms, n, aux, ek, [∗]) at line 7 in Game 5,

then we claim that [∗] = [ ]. To see this, suppose [∗] = [πt
j , ∗]. Clearly πs

i .sid �=
πt

j .sid, since otherwise the if-check at line 1 would already have matched πs
i

and t. Furthermore, since we can assume that πs
i has not accepted maliciously

(otherwise the game would already have ended), both πs
i and πt

j must be non-
fresh by the assumption that the nonces are part of the session identifiers and
are unique (Game 1). But then the else-if check at line 4 would have matched πs

i

and t, contradicting our assumption that πs
i got matched to t at line 7. Hence

[∗] = [ ]. It follows that πs
i would also have gotten matched to t at line 7 in

Game 6 (by assumption, πs
i .ms = ms, so KO is guaranteed to return true).

Conversely, if πs
i got matched to t = (ms′, n, aux, ek, [ ]) at line 7 in Game 6, it

means that KO(πs
i ,ms′) = true. Since we have conditioned on KO not making

a mistake, πs
i .ms = ms′. Moreover, since line 7 is the only check that considers

tuples having [∗] = [ ] in Game 5, it follows that πs
i would have gotten matched

to t at this line in Game 5 too.

(iii) Line 1 of the G-code ensures that the answers to G queries are consistent
with respect to repeated queries in both Game 5 and Game 6, so we only consider
non-repeated G-queries.

Suppose t = (ms, n, aux, ek, [∗]) ∈ LG was used to answer a G query of the
form G(ms, n, aux) in Game 5. Note that if [∗] = [ ], then this was a repeated
G query, so we assume [∗] = [πs

i , ∗]. By (i) and (ii), t⊥ must have been on LG

prior to the G query being made in Game 6, and consequently line 3 would have
been used to answer it in this game (KO is guaranteed to return true since
πs

i .ms = ms).
Conversely, if t⊥ = (⊥, n, aux, [πs

i , ∗]) ∈ LG was used at line 3 to answer
the query G(ms′, n, aux) in Game 6, then KO(πs

i ,ms′) = true. Since we have
conditioned on KO not making a mistake, it follows that πs

i .ms = ms′. Thus,
when A makes the G query in Game 5, t would already be on LG by (i) and (ii),
yielding the right answer at line 1.

This establishes (20). We now turn to the analysis of Game 6.

Analyzing Game 6. It remains to bound the right-hand terms in Eq. (20).
First we show that unless A manages to get event Q to happen (q.v. Eq. (19)),
then it has zero advantage in guessing the Test-challenge correctly.

Lemma 1. Suppose A issued its Test-query against session πs
i during Game 6,

and that it output b′ as its answer to the Test-challenge. Then

Pr[πs
i .b = b′ | Q] =

1
2
, (21)

i.e. A has zero advantage in answering the Test-challenge correctly if event Q
did not happen during Game 6.
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Proof. That event Q did not happen means that KO never returned true for
any fresh session during Game 6. Since KO is always correct when rejecting a
key, i.e. when outputting false, this implies that A never queried the random
oracle on the correct master secret of any fresh session. In particular, this means
that the derived export key of the Test-session in Game 6 is distributed exactly
like that of a random key. Thus, the hidden bit of the Test-session is independent
of the derived export key from A’s point of view. ��

Lemma 1 implies that it is sufficient to bound the probability of event Q and the
probability of a session accepting maliciously in order to bound A’s advantage in
Game 6. To this end, we construct an ACCE adversary B against the underlying
protocol Π, which instantiates the key-checking oracle KO of Game 6 with a
concrete procedure called CheckKey, such that

AdvG6-auth
Π+ (A) ≤ Advauth-(PFS)

Π (B), (22)

Pr[Q] ≤ 2 · Advchan-(PFS)
Π (B) +

2 · qnPnπ

2cλ
. (23)

Moreover, the CheckKey procedure will allow us to put a concrete bound
on the failure probability ε in Eq. (20), specifically

ε ≤ 2 · Pr[Q] + AdvKDFcoll
Π.Kdf (C′′′). (24)

We prove (22), (23), and (24), in Lemmas 3, 4, and 2, respectively.

Description of Algorithm B. Algorithm B plays in an ACCE security exper-
iment against protocol Π and will use adversary A of Game 6 to win. Roughly
speaking, algorithm B will simulate Game 6 for A by “embedding” the sessions in
its own ACCE experiment into Game 6 and outfitting them with export keys. To
derive these export keys, B maintains the list LG which it fills out, and answers
from, according to the Send and G-code shown in the last panels of Figs. 2 and 3,
respectively (both labeled “B’s simulation”). The difference between Game 6 and
B’s simulation is that B has to “implement” the key-checking oracle KO and also
be able to correctly match partnered sessions.

To match partnered sessions, B uses one of the public session matching algo-
rithms M guaranteed to exist for sid (since Π is TLS-like).

To instantiate the KO oracle, B uses the aforementioned procedure called
CheckKey, which is formally defined in Algorithm1 below. We will later show
that CheckKey has the same properties as the key-checking oracle KO (as
defined in Eq. (18)), but first we describe B’s simulation in detail.

At the beginning of its ACCE security experiment, B receives the public keys
of all the parties from its challenger E which it forwards to A. Then B initializes
LG to an empty list and runs A, answering its queries as follows:

– NewSession(Pi, ρ, pid): B forwards the query to its own ACCE challenger and,
if ρ = init, returns the corresponding response back to A.
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– Send(πs
i ,m): B forwards the query to its own challenger and returns its

response back to A. Additionally, if m caused πs
i to accept then B derives

its export key by running the Send-code shown in the last panel of Fig. 2.
– Corrupt(Pi): B issues Corrupt(Pi) to its own challenger to obtain the secret key

of Pi which it returns back to A.
– G(ms, n, aux): B answers this query by running the G-code shown in the last

panel of Fig. 3.
– Reveal(πs

i )/Test(π
s
i ): If πs

i .α �= accepted, then B returns ⊥. Otherwise, there
will be an entry (∗, n, aux, ek, [πs

i , ∗]) ∈ LG, and B returns ek.

In addition to the above, B stops and outputs a guess (πs
i , b

′) to its ACCE
challenger if one of the following events happen.

– Two sessions generated the same nonce: select πs
i arbitrarily among the fresh

sessions and draw b′ randomly.
– Event Q happened due to a call to CheckKey(πs

i ,ms): if the ciphertext C
decrypted to m0 at line 20 of Algorithm 1, output (πs

i , 0), otherwise, if it
decrypted to m1, output (πs

i , 1).
– A outputs a guess for the Test-challenge: select πs

i arbitrarily among the fresh
sessions and draw b′ randomly3.

This ends the description of algorithm B. Note that the only thing that differs
between B’s simulation and Game 6 is B’s usage of the CheckKey procedure
and the algorithm M for matching sessions. By definition, the latter is always
correct, so B’s simulation is sound given that CheckKey correctly implements
the KO oracle.

Analysis of CheckKey. We need to show that CheckKey has the same
properties as the key-checking oracle KO used in Game 6, i.e. that it always
returns true if called on the right master secret of a session and returns false
(with high probability) when not. The idea of CheckKey is to derive from the
supplied master secret a guess on the session’s channel key and then compare
this to the channel key actually held by the session.

For non-fresh sessions this is straightforward since B can just make a Reveal
query in order to obtain their channel keys and make the comparison directly
(line 9 in Algorithm 1). On the other hand, issuing a Reveal query to a fresh
session would “destroy” its status as a valid target in the ACCE game, preventing
B from capitalizing on the event where A queries the random oracle on the master
secret of a fresh session.

For fresh sessions CheckKey instead tests the validity of a derived channel
key indirectly by trying to (locally) decrypt a ciphertext that was legitimately
created with the actual channel key of the session. To obtain this ciphertext,

3 By Lemma 1 it is immaterial whether B outputs a random bit or uses A’s guess on
the Test-challenge, since Q did not happen.
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Algorithm 1. CheckKey(πs
i ,ms)

Note: The procedure is parameterized by c ∈ N. Calls on the same input always
return the same value, i.e. CheckKey records its results for every input combination.
To simplify the presentation, we leave out the code that deals with this below.

Precondition: (C1, H1), (C2, H2), . . . , (Ck, Hk), are the encrypted handshake mes-
sages (if any) output by πs

i during the run of Π+, together with the corresponding
additional data.

1: x, y
$← {0, 1}λ;

2: (m0, m1) := (0‖x, 1‖y);
3:
4: // nC , nS are the nonces, and T the transcript, πs

i accepted with.
5: ck′ ← Π.Kdf(ms, nC‖nS , FΠ(T ));
6:
7: if πs

i is non-fresh then
8: ck ← Reveal(πs

i );

9: return ck
?
= ck′;

10: else
11: C ← Encrypt(πs

i , �, m0, m1, H); 	 obtain an encryption of mπs
i .b under πs

i .ck.
12:
13: // “recreate” a decrypt state st′

D matching the encrypt state used to create C.
14: (∗, st′

D) ← stE.Init;
15: for all (Cr, Hr) do
16: (∗, st′

D) ← stE.Dec(ck′, Cr, Hr, st
′
D);

17: for all C’s from previous calls to CheckKey(πs
i , ∗) do

18: (∗, st′
D) ← stE.Dec(ck′, C, H, st′

D);

19:
20: (m′, ∗) ← stE.Dec(ck′, C, H, st′

D); 	 locally decrypt C using ck′ and st′
D.

21: return m′ ?
∈ {m0, m1};

CheckKey exploits B’s access to a left-or-right encryption oracle for every ses-
sion in the ACCE game (i.e., the Encrypt query). However, CheckKey is com-
plicated by the statefulness of the sLHAE scheme. That is, before attempting to
(locally) decrypt the ciphertext at line 20 of Algorithm 1, CheckKey first needs
to “recreate” a valid decryption state. This is done as follows: starting from the
initial state of the sLHAE scheme, CheckKey chronologically decrypts each
encrypted message output by the session during the handshake (if any). Then it
decrypts all ciphertext messages created in prior calls to CheckKey (because
these advance the session’s encrypt state stE). Finally, it attempts the decryp-
tion of C. If the correct channel key was used, then this process is guaranteed to
generate a decryption state st′D that “matches”4 the encrypt state stE which was
used to create the ciphertext C (due to the correctness of the sLHAE scheme).

4 The recreated state st′
D does not necessarily have to be equal to the decryption state

held by πs
i — it only needs to yield a valid decryption.
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Since Π.Kdf is deterministic, the above shows that CheckKey(πs
i ,ms) will

always return true if ms is equal to the master secret of πs
i , since the derived

channel key ck′ will then equal πs
i .ck.

Conversely, if CheckKey is called on a wrong master secret, then it does
indeed have a one-sided error probability. In particular, let fresh (resp. non-fresh)
denote that CheckKey was called on a fresh (resp. non-fresh) session, and let
CKerror denote that a call to CheckKey erroneously returned true. Note that
for a fresh session πs

i and master secret ms′, this requires that the decryption
of C at line 20 of Algorithm 1 returned one of the two messages (m0,m1) asso-
ciated to the pair (πs

i ,ms′). Letting b = πs
i .b, we write correctDec for the event

that C decrypted to mb, and wrongDec for the event that it decrypted to mb
5.

Consequently, CKerror can be partitioned as follows, depending on whether the
session was fresh or not.

CKerror = (CKerror ∩ fresh) ∪ (CKerror ∩ non-fresh) (25)
= (CKerror ∩ (correctDec ∪ wrongDec)) ∪ (CKerror ∩ non-fresh). (26)

By the above we have shown that CheckKey correctly implements the key-
checking oracle KO. Moreover, we can now provide concrete bounds on the error
probability ε in (20) by bounding CKerror.

Lemma 2.

Pr[CKerror] = Pr[CKerror ∩ fresh] + Pr[CKerror ∩ non-fresh] (27)
≤ Pr[correctDec] + Pr[wrongDec] + Pr[ck-coll6] (28)

≤ 2 · Pr[Q] + Advck-coll
Π.Kdf (C′′′). (29)

Proof. For CKerror ∩ fresh, note that correctDec and wrongDec are mutually
exclusive since B aborts as soon as one of them happens. Also, in the con-
text of CheckKey, they are both sub-events of Q. Thus, Pr[CKerror ∩ fresh] =
Pr[correctDec] + Pr[wrongDec] ≤ 2 · Pr[Q].

If CKerror ∩ non-fresh happens in Game 6, then event ck -coll6 must by defin-
ition have happened too. Hence Pr[CKerror ∩ non-fresh] ≤ Pr[ck -coll6]. Further-
more, the bound Pr[ck -coll6] ≤ Advck-coll

Π.Kdf (C′′′) follows from the same strategy
used in the game hop from Game 2 to 3, and from Game 3 to 4. That is, we
construct an algorithm C′′′ that plays the challenger in Game 6; once ck -coll6
occurs in this game, then C′′′ has found a collision in Π.Kdf. ��

Analysis of B. Having shown that B’s simulation of Game 6 is sound, we now
turn to bounding A’s advantage in Game 6 in terms of B’s advantage in the
ACCE security experiment.

Lemma 3.
AdvG6-auth

Π+ (A) ≤ Advauth-(PFS)
Π (B). (30)

5 Event correctDec can either happen legitimately (πs
i .ms = ms′), or because of an

error (πs
i .ms �= ms′). On the other hand, event wrongDec can only happen due to

an error.
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Proof. Since B’s simulation of Game 6 is sound, and because the protocols Π+

and Π have the same session identifier, it follows that A gets a session to accept
maliciously in Game 6, if and only if the session accepts maliciously in the
underlying ACCE security experiment in B’s simulation. ��

Lemma 4.

AdvG6-chan
Π+ (A) ≤ Pr[Q] ≤ 2 · Advchan-(PFS)

Π (B) +
2qnPnπ

2cλ
. (31)

Proof. The first inequality follows from Lemma1. The proof of the second
inequality amounts to a direct calculation based on conditional probabilities.
Suppose B halted with output (πs

i , b
′) in its ACCE security experiment, where

πs
i is some fresh session. By conditioning on whether event Q happened or not

during B’s simulation of Game 6 for A, we get that B’s probability of breaking
the ACCE channel is:

Pr[πs
i .b = b′] = Pr[πs

i .b = b′ | Q] · Pr[Q] + Pr[πs
i .b = b′ | Q] · Pr[Q] (32)

(a)
= Pr[πs

i .b = b′ | Q] · Pr[Q] +
1
2
(1 − Pr[Q]) (33)

(b)
=

( =1︷ ︸︸ ︷
Pr[πs

i .b = b′ | Q ∩ correctDec] ·Pr[correctDec | Q]

+

=0︷ ︸︸ ︷
Pr[πs

i .b = b′ | Q ∩ wrongDec] ·Pr[wrongDec | Q]
)

· Pr[Q]

(34)

+
1
2
(1 − Pr[Q])

= Pr[correctDec | Q] · Pr[Q] +
1
2
(1 − Pr[Q]) (35)

= Pr[correctDec ∩ Q] − 1
2

· Pr[Q] +
1
2

(36)

(c)
=

(
Pr[Q] − Pr[wrongDec ∩ Q]

)
− 1

2
Pr[Q] +

1
2

(37)

=
1
2

Pr[Q] − Pr[wrongDec ∩ Q] +
1
2

(38)

(d)
=

1
2

Pr[Q] − Pr[wrongDec] +
1
2

(39)

≥ 1
2

Pr[Q] − qnPnπ

2cλ
+

1
2
. (40)

In (a) we used the fact that B outputs a random bit when Q does not happen,
(b) and (c) used that Q = correctDec∪wrongDec and correctDec∩wrongDec = ∅,
and (d) used that wrongDec ⊆ Q. We prove the final inequality as follows.

Let b = 1 − πs
i .b and let (m0,m1) be the two messages associated to the pair

(πs
i ,ms) in CheckKey. Since mb is independent of the ciphertext C produced

at line 11 of Algorithm 1, the probability that C decrypts to mb at line 20 is
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statistically bounded by 2−cλ for any key k. By taking the union bound over
all parties, the number of sessions per party, and the number of random oracle
calls, we get that Pr[wrongDec] ≤ qnPnπ/2cλ.

Solving (40) for Pr[Q] yields the second inequality in Lemma4. ��

Concluding the Proof of Theorem 1. Applying Lemmas 2, 3, and 4, we get
that the right-hand side of Eq. (20) is bounded by

Advauth-(PFS)
Π (B) + 6 · Advchan-(PFS)

Π (B) +
6qnPnπ

2cλ
+ AdvKDFcoll

Π.Kdf (C′′′). (41)

By collecting all the probabilities from Game 0 to Game 6, and letting C =
maxAdvKDFcoll

Π.Kdf
{C′, C′′, C′′′}, the theorem follows.

4.4 Application to EAP-TLS and TLS Key Material Exporters

EAP [1] is a widely used authentication framework which defines a set of generic
message formats and message flows. EAP is not a specific authentication mecha-
nism on its own, but is instead used to encapsulate another concrete authentica-
tion protocol, like TLS, IKEv2 or IEEE 802.1X, known as a method. Each EAP
method can additionally specify a way of generating keying material, known as
export keys, both for internal and external use. For example, in EAP-TLS [33]
the export key ek is derived as follows:

ek := tls.PRF(ms, “client EAP encryption”, nC‖nS), (42)

where ms is the master secret and nC , nS the nonces established during the
TLS handshake. How export keys should be derived from the TLS handshake in
settings outside of EAP is defined in RFC 5705: “Keying Material Exporters for
Transport Layer Security (TLS)” [31]. Besides a different constant label string,
RFC 5705 defines ek almost exactly as in (42). The only difference is that it also
allows an extra context value aux to be added into the key derivation together
with the nonces. For both EAP-TLS and RFC 5705 the security requirement on
ek is that it be indistinguishable from random.

In order to apply Theorem 1 to EAP-TLS, we have to show that TLS is
in fact a TLS-like ACCE protocol, using a session identifier that satisfies the
requirements of the theorem. Since several works have already proven TLS to
be ACCE secure, it only remains to demonstrate that the session identifier used
in these prior analyses allowed for public session matching and contained the
sessions’ nonces.

As an example, in their analysis of TLS, Krawczyk, Paterson, and Wee [24]
defined their session identifier to consist of the two first flows between the client
and the server, in addition to the client’s KEM-value (either a Diffie-Hellman
share or the pre-master secret encrypted with the server’s public RSA key).
This session identifier includes the parties’ nonces, and allows for public session
matching since it only consists of public values. Thus, using the TLS analysis
of Krawczyk et al. [24], we can apply Theorem1 with Π = TLS, and Π+ =
EAP-TLS, in order to get the following result.
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Corollary 1 (AKE Security of EAP-TLS).

AdvAKE
EAP-TLS(A) ≤ 6 · AdvACCE

TLS (B) + 3 · AdvKDFcoll
tls.PRF (C) +

6qnPnπ

2cλ
+

(nPnπ)2

2λ+1
, (43)

where Π.Kdf = tls.PRF, and all other quantities are defined as stated in
Theorem1.

Remark 5. The KDF used in TLS is based on HMAC [23], and its KDF collision
resistance follows from the (hash function) collision resistance of the underlying
hash function used in HMAC (see Theorem 2, AppendixA).

Remark 6. JKSS [20] used matching conversations as their partnering mecha-
nism in their analysis of TLS. Since matching conversations contain the parties’
nonces and trivially allow for public session matching, it would seem like JKSS’s
analysis could also be used with Theorem 1 in order to establish Corollary 1.

However, there is a subtle technical difference between the ACCE model
as defined in this paper and the ACCE model as defined by JKSS, stemming
from the difference in choice of partnering mechanism. Specifically, in JKSS’s
definition of ACCE [19, Definition 11] one must forbid the adversary from issuing
a Reveal query towards the server after it sent out its last message, but before
the client to which it has a matching conversation received it. This is to avoid a
trivial attack whereby the adversary re-encrypts the final message towards the
client, getting it to accept maliciously (see [19, Remark 6] for further details)6.

In contrast, the definition of ACCE used in this paper (in particular,
Definition 3) allows all Reveal queries. It should be noted that the trivial attack
in JKSS’s model does not imply any actual weakness in TLS, but rather high-
lights a peculiarity of using matching conversations as the partnering mechanism
when defining ACCE.

Remark 7. Brzuska et al. [8] defined their session identifier to consist of the
parties’ nonces and identities, together with the TLS pre-master secret. Unfor-
tunately, basing the session identifier upon secret values does not in general
allow for public session matching. For instance, if the KEM used in the TLS
handshake was a re-randomizable encryption scheme [12,30], then the choice of
Brzuska et al. [8] would not allow for public session matching (see also [9] for
further details).

Remark 8. Bhargavan et al. [5] showed that the full TLS protocol, including
resumption and renegotiation, is vulnerable to an unknown key-share attack [7].
The attack allows an adversary to synchronize the master secret and nonces of
two non-partnered sessions, leading them to derive the same channel key. While
the attack carries over to EAP-TLS, it does not invalidate Corollary 1, since
our model does not consider resumption nor renegotiation. However, it should
be noted that this has been done for the sake of simplicity, not because of an

6 This extra requirement was not included in the original published version [20], but
was later added to the online version [19].
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essential limitation in our analysis. Our result can be extended to incorporate
features like renegotiation, resumption or ciphersuite and version negotiation,
either by using the multi-phase ACCE model of Giesen et al. [16] or the multi-
ciphersuite ACCE model of Bergsma et al. [4]. The former has been used to
prove results on TLS with renegotiation [16], while the latter has been used to
prove results on SSH and TLS with ciphersuite and version negotiation [4,14].
Since our proof uses the underlying ACCE protocol in an almost black-box
way, by adopting one of the above models we would essentially “inherit” their
corresponding results for EAP-TLS as well.
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A KDF Collision Resistance of the TLS KDF

Let H be a hash function, and let H denote the HMAC function using H as its
underlying hash function, namely

H(k,m) def= H (k ⊕ opad‖H(k ⊕ ipad‖m)) , (44)

where ipad and opad are distinct constants.
The TLS 1.2 KDF is defined as follows, where the variable t depends on how

much keying material is needed.

tls.PRF(ms,L, n) def=
t�

i=1

H(ms, A(i)‖L‖n) (45)

A(1) = H(ms, n) (46)

A(i) = H(ms, A(i − 1)) (47)

In TLS 1.2, L = “key expansion” and n = nC‖nS , where and nC , nS are
the client and server nonces, respectively. For simplicity, we write S = L‖n.

Theorem 2. A KDF collision (Definition 9) in tls.PRF implies a collision in H.

Proof. Suppose tls.PRF(ms,L, n) = tls.PRF(ms′, L, n), with ms �= ms′. By (45)
we specifically have that

H(ms, A(1)‖S) = H(ms′, A′(1)‖S), (48)
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where A′(1) = H(ms′, n). Expanding (48) using (44) we get:

H (ms ⊕ opad‖H (ms ⊕ ipad‖A(1)‖S))
=

H (ms′ ⊕ opad‖H (ms′ ⊕ ipad‖A′(1)‖S)) .
(49)

Letting X = H (ms ⊕ ipad‖A(1)‖S) and Y = H (ms′ ⊕ ipad‖A′(1)‖S)
denote the “inner” hash function values, (49) becomes:

H(ms ⊕ opad‖X) = H(ms′ ⊕ opad‖Y ). (50)

Since ms⊕opad �= ms′⊕opad, it follows that ms⊕opad‖X and ms′⊕opad‖Y
constitute a collision in H. ��

Remark 9. The construction of tls.PRF in TLS 1.0/1.1 is different from that in
TLS 1.2 (shown in Eq. (45)). In versions prior to TLS 1.2, tls.PRF is defined
as PMD5 ⊕ PSHA1, where PMD5 and PSHA1 are equal to the right-hand side of
Eq. (45) with H using MD5 and SHA1, respectively. Theorem 2 only applies to
the construction used in TLS 1.2.
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Abstract. Universal circuits (UCs) can be programmed to evaluate
any circuit of a given size k. They provide elegant solutions in var-
ious application scenarios, e.g. for private function evaluation (PFE)
and for improving the flexibility of attribute-based encryption (ABE)
schemes. The optimal size of a universal circuit is proven to be Ω(k log k).
Valiant (STOC’76) proposed a size-optimized UC construction, which
has not been put in practice ever since. The only implementation of uni-
versal circuits was provided by Kolesnikov and Schneider (FC’08), with
size O(k log2 k).

In this paper, we refine the size of Valiant’s UC and further improve
the construction by (at least) 2k. We show that due to recent optimiza-
tions and our improvements, it is the best solution to apply in the case
for circuits with a constant number of inputs and outputs. When the
number of inputs or outputs is linear in the number of gates, we propose
a more efficient hybrid solution based on the two existing constructions.
We validate the practicality of Valiant’s UC, by giving an example imple-
mentation for PFE using these size-optimized UCs.

Keywords: Universal circuit · Size-optimization · Private function eval-
uation

1 Introduction

Any computable function f(x) can be represented as a Boolean circuit with input
bits x = (x1, . . . , xu). Universal circuits (UCs) are programmable circuits, which
means that beyond the true u inputs, they receive p = (p1, . . . , pm) program
bits as further inputs. By means of these program bits, the universal circuit is
programmed to evaluate the function, such that UC (x, p) = f(x). The advantage
of universal circuits in general is that one can apply the same UC for computing
different functions of the same size. An analogy between universal circuits and
a universal Turing machine allows to turn any function into data in the form of
a program description. Thus, the size-depth problem of UCs can be related to
the time-space problem for Turing machines [Val76].

Efficient constructions considering both the size and the depth of the UC were
proposed. The first approach was the optimization of the size by Valiant [Val76],
resulting in a construction with asymptotically optimal size O(k log k) and depth
O(k), where k denotes the size of the simulated circuits. The second optimization
c© International Association for Cryptologic Research 2016
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was proposed with respect to the UC depth in [CH85], where a construction
with linear depth O(d) in the simulated circuit depth d and size O( k3d

log k ) was
designed. In this paper, due to the applications that we revisit in Sect. 1.2, e.g.,
diagnostic programs, blinded policies and database queries, we concentrate on
the existing size-optimized UCs and note, that the asymptotically optimal size is
Ω(k log k) [Val76,Weg87].

The most prominent application of universal circuits is the evaluation of
private functions based on secure function evaluation (SFE) or secure two-
party computation. SFE enables two parties P1 and P2 to evaluate a pub-
licly known function f(x, y) on their private inputs x and y, ensuring that
none of the participants learns anything about the other participant’s input.
SFE ensures that both P1 and P2 learn the correct result of the evaluation.
Many secure computation protocols use Boolean circuits for representing the
desired functionality, such as Yao’s garbled circuit protocol [Yao86,LP09a] and
the GMW protocol [GMW87]. In some applications the function itself should
be kept secret. This setting is called private function evaluation (PFE), where
we assume that only one of the parties P1 knows the function f(x), whereas the
other party P2 provides the input to the private function. P2 learns no informa-
tion about f besides the size of the circuit defining the function and the number
of inputs and outputs.

PFE can be reduced to SFE [AF90,SYY99,Pin02,KS08b] by securely eval-
uating a UC that is programmed by P1 to evaluate the function f on P2’s
input x. Thus, P1 provides the program bits for the UC and P2 provides his pri-
vate input x into an SFE protocol that computes a UC. The complexity of PFE
in this case is determined mainly by the complexity of the UC construction. The
security follows from that of the SFE protocol that is used to evaluate the UC. If
the SFE protocol is secure against semi-honest, covert or malicious adversaries,
then the PFE protocol is secure in the same adversarial setting.

1.1 Related Work on Universal Circuits and Private
Function Evaluation

Universal Circuits. Valiant presented an asymptotically optimal universal circuit
construction with size ≈ 4.75(u+v+k∗) log2(u+v+k∗) [Val76], relying on edge-
universal graphs. u, k and v denote the respective number of inputs, gates and
outputs in the simulated circuit, and k∗ is the number of gates in the equivalent
fanout-2 circuit, with k ≤ k∗ ≤ 2k + v. Valiant’s size-optimized UC construction
was recapitulated in [Weg87, Sect. 4.8]. However, Valiant’s construction has been
considered to be mostly a proof of existence of a universal circuit, whereas details
needed for the practical realization, e.g., how to derive the program for the UC
are left open. Kolesnikov and Schneider proposed a UC construction with size
≈ 0.75k log22 k+2.25k log2 k+k log2 u+(0.5k+0.5v) log2 v [KS08b,Sch08]. They
present the first implementation of PFE using UCs by extending the Fairplay
secure computation framework [MNPS04]. Some building blocks of this con-
struction are of interest, but due to its asymptotically non-optimal size, we show
in Sect. 3.2 that Valiant’s UC construction results in smaller UCs for circuits in
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the most general case. The UC constructions from [Val76,KS08b] were general-
ized for circuits consisting of gates with more than two inputs in [SS08]. In this
paper, we show the practicality of Valiant’s UC construction.

In concurrent and independent work [LMS16], Lipmaa et al. also bring the
same UC construction to practice. They detail a k-way recursive construction
for UCs, instantiate it for k ∈ {2, 4} as in [Val76], and descrease its total number
of gates compared to that of Valiant’s construction. However, in contrast to our
optimizations, their number of AND gates is exactly the same and therefore their
improvement does not affect PFE with UC, when XOR gates are evaluated for
free [KS08a]. Currently their implementation for generating and programming
UCs supports the 2-way recursive construction, the same construction that we
study and realize in practice in this work.

Private Function Evaluation. In [KM11], Katz and Malka presented an app-
roach for PFE that does not rely on UCs. They use (singly) homomor-
phic public-key encryption as well as a symmetric-key encryption scheme
and achieve constant-round PFE with linear communication complexity. How-
ever, the number of public-key operations is linear in the circuit size and
due to the gap between the efficiency of public-key and symmetric-key
operations, this results in a less efficient protocol for circuits with reason-
able size. Their protocol is secure against semi-honest adversaries and uses
Yao’s garbled circuit technique [Yao86]. Mohassel and Sadeghian consider PFE
with semi-honest adversaries in [MS13]. Their generic PFE framework can be
instantiated with different secure computation protocols. The first version uses
homomorphic encryption with which they achieve linear complexity in the cir-
cuit size and the second alternative relies solely on oblivious transfers (OT),
that results in a method with O(k log k) symmetric-key operations, where k
denotes the circuit size. The OT-based construction is more desirable in prac-
tice, since using OT extension, the number of expensive public-key opera-
tions can significantly be reduced, s.t. it is independent of the number of
OTs [IKNP03,ALSZ13]. The asymptotical complexity of the OT-based construc-
tion of [MS13] and Valiant’s UCs for PFE is the same, and therefore we compare
these solutions for PFE in more detail in Sect. 4.2. Mohassel et al. extend the
framework from [MS13] to malicious adversaries in [MSS14] and show that an
actively secure PFE framework with linear complexity O(k) is feasible, using
singly homomorphic encryption.

1.2 Applications of Universal Circuits

Universal circuits have several applications, which we summarize in this section.

Private Function Evaluation. As mentioned before, UCs can be used to
securely evaluate a private function using a generic secure computation
protocol. [CCKM00] shows an application for secure computation, where evaluat-
ing UCs or other PFE protocols would ensure privacy: when autonomous mobile
agents migrate between several distrusting hosts, the privacy of the inputs of
the hosts is achieved using SFE, while privacy of the mobile agent’s code can be
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guaranteed with PFE. Privacy-preserving credit checking using garbled circuits is
described in [FAZ05]. Their original scheme cannot represent any policy, though
by evaluating a UC, their scheme can be extended to more complicated credit
checking policies. [OI05] show a method to filter remote streaming data oblivi-
ously, using secret keywords and their combinations. Their scheme can addition-
ally preserve data privacy by using PFE to search the matching data with a pri-
vate search function. Privacy-preserving evaluation of diagnostic programs was
considered in [BPSW07], where the owner of the program does not want to reveal
the diagnostic method and the user does not want to reveal his data. Example
applications for such programs include medical systems [BFK+09] and remote
software fault diagnosis, where in both cases the function and the user’s input
are desired to be handled privately. In the protocol presented in [BPSW07], the
diagnostic programs are represented as binary decision trees or branching pro-
grams which can easily be converted into a Boolean circuit representation and
evaluated using PFE based on universal circuits. Besides, PFE can be applied to
create blinded policy evaluation protocols [FAL06,FLA06]. [FAL06] utilizes UCs
for so-called oblivious circuit policies and [DDKZ13] for hiding the circuit topol-
ogy in order to create one-time programs. Since PFE using UCs utilizes general
secure computation protocols, it is possible to outsource the function and the
data to two or multiple servers (using XOR secret sharing) and then run private
queries on these. This is not directly possible with other PFE protocols, e.g.,
with the protocol presented in [KM11] or the homomorphic encryption-based
protocols from [MS13,MSS14].

Beyond Private Function Evaluation. Besides being used for PFE, UCs can be
applied in various other scenarios. Efficient verifiabile computation on encrypted
data was studied in [FGP14]. A verifiable computation scheme was proposed for
arbitrary computations and a UC is required to hide the function. [GGPR13]
make use of universal circuits for reducing the verifier’s preprocessing step.
In [GHV10], a multi-hop homomorphic encryption scheme is proposed that also
uses a universal circuit evaluator to achieve the privacy of the function. When the
common reference string is dependent on a function that the verifier is interested
in outsourcing, then the function description can be provided as input to a UC
of appropriate size. In [PKV+14,FVK+15], universal circuits are used for hiding
queries in database management systems (DBMSs). The Blind Seer DBMS was
improved in [PKV+14] by making use of a simpler UC for evaluating queries,
which does not hide the circuit topology. The authors mention that in case the
topology of the SQL formula and the circuit have to be kept private, a UC can be
utilized. As described in [Att14], the Attribute-Based Encryption (ABE) schemes
for some polynomial-size circuits can be turned into ciphertext-policy ABE by
using universal circuits. The ABE scheme of [GGHZ14] also uses UCs.

1.3 Outline and Our Contributions

In Sect. 2, we revisit the two existing size-optimized UC constructions
of [Val76,KS08b]. We put an emphasis on the asymptotically size-optimal
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method proposed by Valiant in [Val76]. This complex construction makes use of
an internal graph representation and programs a so-called edge-universal graph.
However, the algorithm for programming a universal circuit is not explicitly
described and in the presence of the included optimizations is not straightfor-
wardly applicable. In Sect. 2.1, we recapitulate Valiant’s recursive edge-universal
graph construction and describe how the construction of UCs can be reduced to
this problem. In Sect. 2.2, we briefly summarize the main building blocks of the
UC construction of [KS08b].

Optimized Size and Depth of Valiant’s UC Construction: In Sect. 3, we elab-
orate on the concrete size of Valiant’s UC construction. We refine upper and
lower bounds for the size of the edge-universal graph and approximate a closed
formula with ≤ 2% deviation from the actual size in Sect. 3.1. We include two
optimizations detailed in Sect. 3.2, achieving altogether a linear improvement of
at least 4u+4v+2k. We give hybrid constructions for cases with many inputs and
outputs in the same section. In Sect. 3.2, we compare the refined concrete size
and the depth of Valiant’s construction with that of [KS08b] and conclude the
advantage of Valiant’s method (potentially using building blocks from [KS08b]).

Valiant’s Size-Optimized UC Construction in Practice: In Sect. 4, we detail the
steps of our algorithm for a practical realization of Valiant’s UC construction
and provide an example application for PFE. We describe the internal represen-
tations and the algorithms in our UC compiler in Sect. 4.1, along with detailed
implementations of universal gates and switches. We compare our resulting PFE
with the OT-based protocol from [MS13] in Sect. 4.2. We show concrete exam-
ple circuits and elaborate on the number of symmetric-key operations and the
performance of our UC compiler.

2 Existing Universal Circuit Constructions

In this section, we summarize the two size-optimized universal circuit construc-
tions: of [Val76] in Sect. 2.1 and of [KS08b] in Sect. 2.2.

2.1 Valiant’s Universal Circuit Construction

In this section, we describe Valiant’s edge-universal graph construction for graphs
for which all nodes have at most one incoming and at most one outgoing
edge and detail how two such graphs can be used for constructing universal
circuits [Val76].

Edge-Universal Graphs. G = (V,E) is a directed graph with the set of nodes
V = {1, . . . , n} and the set of edges E ⊆ V × V . A directed graph has fanin
or fanout � if each of its nodes has at most � edges directed into or out of it,
respectively. Γ�(n) denotes the set of all acyclic directed graphs with n nodes
and fanin and fanout �. Further on, we require a labelling of the nodes in a
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topological order, i.e., i > j implies that there is no directed path from i to j. In
a graph in Γ�(n), a topological ordering can always be found with computational
complexity O(n + �n).

An edge-embedding of graph G = (V,E) into G′ = (V ′, E′) is a mapping
that maps V into V ′ one-to-one, with possible additional nodes in V ′, and E
into directed paths in E′, such that they are pairwise edge-disjoint, i.e., an edge
can be used only in one path. A graph G′ is edge-universal for Γ�(n) if it has
distinguished poles {p1, . . . , pn} ⊆ V ′ and every graph G ∈ Γ�(n) with node
set V = {1, . . . , n} can be edge-embedded into G′ by a mapping ϕG such that
ϕG : i �→ pi and ϕG : (i, j) �→ {path from pole pi to pole pj} for each i, j ∈ V .

Here, we recapitulate Valiant’s construction for acyclic edge-universal graph
for Γ1(n), denoted by Un, that has fewer than 2.5n log2 n nodes, fanin and
fanout 2 and poles with fanin and fanout 1. Valiant presents another edge-
universal graph construction with a lower multiplicative constant 2.375n log2 n.
We omit that version of the algorithm for two reasons: firstly, our aim is to
show the practicality of Valiant’s approach and secondly, including all the opti-
mizations even in the simpler construction is a challenging task in practice. The
more efficient algorithm uses four subgraphs instead of two at each recursion
and utilizes a skeleton with a more complex structure. For more details on this
improved algorithm, the reader is referred to [Val76,LMS16]. We leave showing
the practicality of the improved method as future work.

Valiant’s Edge-Universal Graph Construction for Γ1(n) Graphs: The edge-
universal graph for Γ1(n), denoted by Un, is constructed with poles {p1, . . . , pn}
with fanin and fanout 1, which are connected according to the skeleton shown
in Figs. 1a and b. The poles are emphasized as special nodes with squares, and
the additional nodes are shown as circles. The recursive construction works as
follows: the nodes denoted by {q1, . . . , q� n−2

2 �} and {r1, . . . , r� n−2
2 �} are consid-

ered as the poles of two smaller edge-universal graphs called subgraphs Q�n−2
2 �

and R�n−2
2 �, respectively, that are otherwise not shown. Since they are poles of

the two subgraphs with such a skeleton but not of Un, they will have at most
the allowed fanin and fanout 2: they inherit one incoming and one outgoing edge
from the outer skeleton, and at most one incoming and one outgoing edge from
the subgraph. Q�n−2

2 � (and R�n−2
2 �) is then constructed similarly: the skeleton

is completed and two smaller graphs with sizes � �n−2
2 �−2

2 	 and 
 �n−2
2 �−2

2 � (and

sizes � �n−2
2 �−2

2 	 and 
 �n−2
2 �−2

2 �) are constructed. For starting off the recursion,
U1 is a graph with a single pole while U2 and U3 are graphs with two and three
connected poles, respectively. Valiant gives special constructions for U4, U5 and
U6 and shows that it is possible to obtain the respective edge-universal graphs
with altogether 3, 7 and 9 additional nodes, respectively, as shown in Figs. 1c, d,
and e.

We recapitulate the proof from [Val76] that Un is edge-universal for Γ1(n),
such that any graph with n nodes and fanin and fanout 1 can be edge-embedded
into Un. According to the definition of edge-embedding, it has to be shown that
given any Γ1(n) graph G with set of edges E, for any (i, j) ∈ E and (k, l) ∈ E
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Fig. 1. Skeleton of Valiant’s edge-universal graph and optimized cases.
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we can find pairwise edge-disjoint paths from pi to pj and from pk to pl in Un.
As before, the labelling of nodes V = {1, . . . , n} in the Γ1(n) graph is according
to a topological order of the nodes.

Firstly, each two neighbouring poles of the edge-universal graph, p2s

and p2s+1 for s ∈ {1, . . . , �n
2 	}, are thought of as merged superpoles, with their

fanin and fanout becoming 2. In a similar manner, any G ∈ Γ1(n) graph can
be regarded as a Γ2(�n

2 	) graph with supernodes, i.e. each pair (2s, 2s + 1) will
be merged into one node in a Γ2(�n

2 	) graph G′ = (V ′, E′). If there are edges
between the nodes in G, they are simulated with loops1. The set of edges of this
graph G is partitioned to sets E1 and E2, s.t. G1 = (V,E1) and G2 = (V,E2)
are instances of Γ1(�n

2 	) and Γ1(
n
2 �), respectively. This can be done efficiently,

as shown later in this section. The edges in E1 are embedded as directed paths
in Q, and the edges in E2 as directed paths in R. Both E1 and E2 have at
most one edge directed into and at most one directed out of any supernode
and therefore, there is only one edge from E1 and one from E2 to be simu-
lated going through any superpole in Un as well. Thus, the edge coming into a
superpole (p2s, p2s+1) in E1 is embedded as a path through qs−1, while the edge
going out of the pole in E1 is embedded as a path through qs in the appropri-
ate subgraph. Similarly, the edges in E2 are simulated as edges through rs−1

and rs. These paths can be chosen disjoint according to the induction hypothe-
sis. Finally, the paths from qs−1 and rs−1 to superpole (p2s−1, p2s) as well as the
paths from (p2s−1, p2s) to qs and rs can be chosen edge-disjoint due to the skele-
ton shown in Figs. 1a and b. With this, Valiant’s graph construction is a valid
edge-universal graph construction with asymptotically optimal size O(n log n),
and depth O(n) [Val76].

Valiant’s Edge-Universal Graph Construction for Γ2(n) Graphs: Given a directed
acyclic graph G ∈ Γ2(n), the set of edges E can be separated into two distinct
sets E1 and E2, such that graphs G1 = (V,E1) and G2 = (V,E2) are instances
of Γ1(n), having fanin and fanout 1 for each node [Val76]. Given the set of
nodes V = {1, . . . , n}, one constructs a bipartite graph G = (V ,E) with nodes
V = {m1, . . . , mn,m′

1, . . . , m
′
n} and edges E such that (mi,m

′
j) ∈ E if and only

if (i, j) ∈ E. The edges of G and thus the corresponding edges of G can be
colored in a way that the result is a valid two-coloring. Having fanin and fanout
at most 2, such coloring can be found directly with the following method, used
in the proof of Kőnig-Hall theorem in [LP09b]:

1: while There are uncolored edges in G do
2: Choose an uncolored edge e = (mi,m

′
j) randomly and color the path

or cycle that contains it in an alternating manner: the neighbouring
edge(s) of an edge of the first color will be colored with the second
color and vice versa.

3: end while

1 We note that these G′ graphs are constructed from the original Γ1(n) graph G in
order to define the correct embedding. Therefore, they are not required to be acyclic.
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This coloring can be performed in O(n) steps and it defines the edges in E1

and E2, s.t. E1 contains the edges colored with color one and E2 the ones with
color two and G1 = (V,E1) and G2 = (V,E2) (cf. full version [KS16]).

With this method, the problem of constructing edge-universal graphs
for Γ2(n) can be reduced to the Γ1(n) construction. After constructing two edge-
universal graphs for Γ1(n) (i.e. Un,1 and Un,2), their poles are merged and an
edge-universal graph for Γ2(n) is obtained. The merged poles now have fanin
and fanout 2, since the poles of Un,1 and Un,2 previously had fanin and fanout 1.
E1 can then be edge-embedded using the edges of Un,1 and E2 using the edges
of Un,2.

Universal Circuits. We now describe how to construct UCs by means of
Valiant’s edge-universal graph construction for Γ2(n) graphs [Val76]. Our goal
is to obtain an acyclic circuit built from special gates that simulate any acyclic
Boolean circuit with u inputs, v outputs and k gates. In the circuit, the inputs of
the gates are either connected to an input variable, to the output of another gate
or are assigned a fixed constant. Due to the nature of Valiant’s edge-universal
graph construction, we have two restrictions on the original circuit. Firstly, all
the gates must have at most two inputs and secondly, the fanout of inputs and
gates must be at most 2, i.e., each input of the circuit and each output of any
gate can only be the input of at most two later gates. This is necessary in order
to guarantee that the graph of the original circuit has fanin and fanout 2. We
note that the first restriction was present in case of the construction in [KS08b]
as well, but the output of any input or any gate could be used multiple times.
However, it was proven in [Val76] that the general case, where the fanout of
the circuit can be any integer m ≥ 2, can be transformed to the special case
when m ≤ 2 by introducing copy gates, where the resulting circuit will have
k∗ gates with k ≤ k∗ ≤ 2k + v, where k denotes the number of gates and v the
number of outputs in the circuit. We detail how this can be done in Sect. 4.1.

After this transformation, given a circuit C with u inputs, v outputs
and k∗ gates with fanin and fanout 2, the graph of C, denoted by GC consists
of a node for each gate, input and output variable and thus is in Γ2(u + v + k∗).
The wires of circuit C are represented by edges in GC . A topological ordering of
the gates is chosen, which ensures that gate gi has no inputs that are outputs
of a later gate gj , where j > i. The inputs and the outputs can be ordered arbi-
trarily within themselves as long as the inputs are kept before the topologically
ordered gates and the outputs after them. Even though the output nodes cause
an overhead in Valiant’s UC, they are required to fully hide the topology of the
circuit in the corresponding universal circuit. If, one can observe which gates
provide the output of the computation, it might reveal information about the
structure of the circuit, e.g. how many times is the result of an output gate used
after being calculated. We ensure by adding nodes corresponding to the outputs
that the last v nodes in Uu+v+k∗ are the ones providing the outputs. We note
that our understanding of universal circuits here slightly differs from Valiant’s,
since he constructs Uu+k∗ [Val76].
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Therefore, after obtaining GC a Γ2 edge-universal graph Uu+v+k∗ is con-
structed, into which GC is edge-embedded. Valiant shows in [Val76] how to
obtain the universal circuit corresponding to Uu+v+k∗ and how to program it
according to the edge-embedding of GC . Firstly, the first u poles become inputs,
the next k∗ poles are so-called universal gates, and the last v poles are outputs
in the universal circuit. A universal gate denoted by U(in1, in2; c0, c1, c2, c3), can
compute any function with two inputs in1 and in2 and four control bits c0, c1, c2
and c3 as in Eq. 1.

out1 = c0in1in2 ⊕ c1in1in2 ⊕ c2in1in2 ⊕ c3in1in2. (1)

The rest of the nodes of the edge-universal graph are translated into universal
switches or X gates, denoted by (out1, out2) = X(in1, in2; c) that are defined by
one control bit c and return the two input values either in the same or in reversed
order as in Eq. 2.

out1 = c in1 ⊕ c in2, out2 = c in1 ⊕ c in2. (2)

The programming of the universal circuit means specifying the control bit of each
universal switch and the four control bits of each universal gate. The universal
gates are programmed according to the simulated gates in C and the universal
switches according to the paths defined by the edge-embedding of the graph
of the circuit GC in the edge-universal graph Uu+v+k∗ . Depending on if the
path takes the same direction during the embedding (e.g. arrives from the left
and continues on the left) or changes its direction at a given node (e.g. arrives
from the left and continues on the right), the control bit of the universal switch
can be programmed accordingly. In Sect. 4.1, we detail our concrete method
for programming the universal circuit and discuss efficient implementations of
universal gates and switches.

2.2 Universal Circuit Construction from [KS08b]

The universal circuit construction from [KS08b] is built from three main build-
ing blocks (cf. full version [KS16]) that we summarize in this section. The con-
struction uses efficient building blocks for hiding the wiring of the u inputs and
v outputs, using the fact that the maximum number of inputs to a circuit with
k gates is 2k and the maximum number of outputs is k. A recursive building
block with size O(k log2 k) is constructed for hiding the wiring between the gates.

For hiding the input wiring, a selection block Su
2k≥u is used, i.e., a program-

mable block that selects for 2k outputs one of u ≤ 2k inputs. This means that
with the u inputs of circuit C, it can be programmed to assign the output wires
according to the original structure of C and assign duplicates to the rest of the
wires. The authors show an efficient implementation of selection blocks with size
O(k log k) and depth O(k) with a small constant factor [KS08b].

For hiding the output wiring, the authors use a smaller selection block. We
note that the usage of their so-called truncated permutation block is enough to
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program the output wires according to the original topology of C as no dupli-
cates can occur. This truncated permutation block TPk≥v

v permutes a subset
of the maximal k inputs to the v ≤ k outputs. An efficient construction of
size O(k log v) and depth O(log k) is given in [KS08b].

A universal block UBk is placed between the input selection block and the
output permutation block. It takes care of the simulation of the gates using
universal gates and ensures that each possible wiring can be implemented in the
UC. The universal block construction is recursive, makes use of two universal
blocks of smaller size with a selection block and a mixing block (essentially a
layer of universal switches with one output) in between them. The O(k log2 k)
size of this universal block is asymptotically not optimal and its O(k log k) depth
is also a factor of log k larger than Valiant’s UC’s. Thus, despite the efficiency
of the other two building blocks, the construction from [KS08b] yields larger
circuits than Valiant’s UC in most cases. However, we note that using some of
its building blocks can be beneficial in some scenarios (cf. Sect. 3.2).

3 The Size and the Depth of Valiant’s Construction

In this section, we obtain new formulae for the size and the depth of Valiant’s
construction: the Γ1 edge-universal graph construction is described in Sect. 3.1
and the universal circuit construction in Sect. 3.2. The size of the edge-universal
graph is the number of nodes, counting all the poles and nodes created while
using Valiant’s construction. The depth of the edge-universal graph is the number
of nodes on the longest path between any two nodes. When considering UCs
and the PFE application, since XOR gates can be evaluated for free in secure
computation [KS08a], the ANDsize of the universal circuit is the number of
AND gates that are needed to realize the UC in total. The ANDdepth of the
universal circuit in this scenario is the maximum number of AND gates between
any input and output. For the sake of generality, we give the total size and depth
of Valiant’s UC construction with respect to both the AND and XOR gates that
are used. Our implementation of universal gates and switches is optimized for
PFE (cf. Sect. 4.1) and therefore uses the fewest AND gates possible. However,
the total size and depth can be relevant when optimizing for other applications,
in which case our implementation gives an upper bound that can be improved.
For instance, when XOR and AND gates have the same costs, one needs to
minimize the total number of gates instead of the number of AND gates as
in [LMS16].

3.1 The Size and the Depth of the Γ1 Edge-Universal Graph

In the skeleton, node A in Fig. 1a is redundant, since one can choose to embed the
edge (y, n − 1) as (py, pn−1) through Q, and (z, n) as (pz, pn) through R for any
y and z nodes [Val76]. Thus, the number of nodes other than poles Exact(n),
for even n becomes

Exact(n) = 2 · Exact
(

n − 2
2

)
+ 5 · n − 2

2
. (3)
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For odd n, the construction makes use of n−1
2 poles in Q and n−3

2 poles in R.
Then, edge (y, n) is embedded as (py, pn) through Q for any y node, and node A
is again redundant. Thus,

Exact(n) = Exact

(
n − 1

2

)
+ Exact

(
n − 3

2

)
+ 5 · n − 3

2
+ 3. (4)

Using these recursive formulae, given the value n, it is possible to obtain the
exact number of nodes other than poles in Un. Valiant includes optimizations
for starting off the recursion: for 1, 2, 3, 4, 5 and 6 nodes; the respective number
of additional nodes are 0, 0, 0, 3, 7 and 9 (cf. Figs. 1c, d and e). Thus, a simple
algorithm using dynamic programming based on the recursion relations of Eqs. 3
and 4 yields the exact number of nodes other than the original n poles that are
created during the edge-universal graph construction. It depends on the parity of
the input n at each iteration and unfortunately does not yield a closed formula for
the size of Valiant’s edge-universal graph construction, which is n + Exact(n).

Valiant states that using his method, an edge-universal graph for Γ1(n) can
be found “with fewer than 19

8 n log2 n nodes, and fanin and fanout 2” [Val76].
As mentioned in Sect. 2.1, we consider the more detailed algorithm that yields
the result with a slightly larger prefactor of 2.5n log2 n instead of 2.375n log2 n.
In this section, we sharpen this bound and give an approximate closed formula
for the size of the construction. We first give upper and lower bounds, and then
derive an approximation for a closed formula. For our lower bound, we consider
the case when only the formula for even numbers, i.e., Eq. 3, is considered. This
yields our lower bound of

n+5

⎛

⎝
log2 n−1∑

i=0

2i

(
n

2i+1
− 2(2i+1 − 1)

2i+1

)⎞

⎠ = 2.5n log2 n−9n+5 log2 n+10. (5)

The upper bound can be obtained similarly, considering the case when only
the formula for odd numbers with 5 ·

(
n−1
2

)
is considered

n + 5

⎛

⎝
log2 n−1∑

i=0

2i

(
n

2i+1
− 2i+1 − 1

2i+1

)⎞

⎠ = 2.5n log2 n − 4n + 2.5 log2 n + 5. (6)

Figure 2 depicts our upper and lower bounds along with Valiant’s upper
bound on the same construction for up to 100 000 nodes. We observe that the
mean of our bounds is very close to the exact number of nodes. Figure 3 shows
that already after a couple of hundreds of poles, it only slightly deviates from
the exact number of nodes Exact(n). Thus, we accept

size(Un) ≈ 2.5n log2 n − 6.5n + 3.75 log2 n + 7.5 (7)

as a good approximation of the closed formula for the size of the construction,
noting that an estimated deviation of at most 2% compared to the exact number
of nodes, i.e., ε ≤ 0.02 · size(Un) may occur.
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Fig. 2. Our upper and lower bounds for the size of Valiant’s edge-universal graph
construction for Γ1(n) graphs, along with Valiant’s upper bound on the same con-
struction and the exact size Exact(n), considering the size of the embedded graph
n ∈ {1, . . . , 100 000} (Color figure online).

The depth of the edge-universal graph, i.e., the maximum number of nodes
between any two nodes is defined by the number of nodes between p1 and pn

in the skeleton (cf. Figs. 1a and b). Thus, depth(Un) = 3n − 3 for even n and
depth(Un) = 3n − 2 for odd n.

3.2 The Size and the Depth of Valiant’s Universal Circuit

As described in Sect. 2.1, a universal circuit is constructed by means of an edge-
universal graph for graphs with fanin and fanout 2, which is in turn constructed
from two Γ1 edge-universal graphs with poles merged together and thus taken
only once into consideration. When constructing a UC, the number of inputs u,
the number of outputs v and the number of gates k is public. We set k∗ as the
number of gates in the equivalent fanout-2 circuit, where k ≤ k∗ ≤ 2k + v, in
order to be able to later fairly compare with the UC construction of [KS08b]. We
consider k∗ as the public parameter instead of k, since without the knowledge
of the original number of simulated gates, it does not reveal information about
the simulated circuit. If the original k is public, one can hide k∗ by setting it
to its maximal value 2k + v. Thus, using Valiant’s UC construction, a Γ2 edge-
universal graph with u+v+k∗ poles is constructed and thus, our approximative
formula for the size of the Γ2 edge-universal graph corresponding to the graph of
the circuit would become 2 · size(Uu+v+k∗) − (u + v + k∗) and the exact number
would be u + v + k∗ + 2 ·Exact(u + v + k∗), i.e., the u + v + k∗ merged poles of
the two edge-universal graphs plus the exact number of nodes other than poles.
Therefore, the size of Valiant’s UC is
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Fig. 3. The deviation of the mean of our upper and lower bounds (Eqs. 5 and 6) from
the exact size of the edge-universal graph Exact(n) + n, considering the size of the
embedded graph n ∈ {1, . . . , 100 000}.

size(UCValiant
u,v,k∗ ) ≈[5(u + v + k∗) log2(u + v + k∗) − 15(u + v + k∗)

+ 7.5 log2(u + v + k∗) + 15] · size(X) + k∗ · size(U)
(8)

and the depth stays

depth(UCValiant
u,v,k∗ ) ≈ [2(u + v + k∗) − 2] · depth(X) + k∗ · depth(U). (9)

When transforming the Γ2 edge-universal graph into a UC, the first u poles
are associated with inputs, the last v poles with outputs, and the k∗ poles
between are realized with universal gates (cf. Eq. 1) and their programming is
defined by the corresponding gates in the simulated circuit. The rest of the nodes
of the edge-universal graph are translated into universal switches (cf. Eq. 2),
whose programming is defined by the edge-embedding of the graph of the circuit
into the Γ2 edge-universal graph. Thus, the size and depth of Valiant’s UC can
be directly derived from the size of the Γ2 edge-universal graph. However, we
include two optimizations to obtain a smaller size of the UC. The first opti-
mization improves already the size of the edge-universal graph and the second
optimization is applied when translating the edge-universal graph into a UC
description (cf. Sect. 4.1).

1. Optimization for Input and Output Nodes: We observe that obviously
circuit inputs need no ingoing edges and circuit outputs need no outgoing
edges. Therefore, since u, v and k∗ are publicly known, we optimize by delet-
ing nodes that become redundant while canceling the edges going to the
first u (input) and coming from the last v (output) nodes. Depending on the
parity of u, v and u + v + k∗, the number of redundant switching nodes is
u+ v −3±1 in both Γ1 edge-universal graphs that build up the graph of the
UC. Therefore, we have, on average, 2(u + v − 3) redundant nodes, which
number we use in our calculations further on. This optimization also affects
the depth by, on average, u + v − 3.
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2. Optimization for Fanin-1 Nodes: We observe that in the skeleton of
the Γ1 edge-universal graph construction there is a fanin-1 node (denoted
with B in Figs. 1a and b). Such fanin-1 nodes exist in the base-cases for
a small number of poles as well (cf. Figs. 1c, d and e). These nodes are
important to achieve fanin and fanout 2 of each nodes in the graph, but can
be ignored and replaced with wires when translated into a circuit description,
essentially resulting in the same UC. According to Valiant’s construction,
these gates would translate into universal switches with one real input (and
an other arbitrary one). Instead, we translate each of them into two wires
and therefore set the second input to the same as the first one. Since at least
one such node can be ignored in each subgraph when nodes are translated
into gates, this results in altogether around

2 ·

⎛

⎝
log2(u+v+k∗)−1∑

i=0

2i

⎞

⎠ − 1 = 2(u + v + k∗) − 3 (10)

less gates for the two Γ1 edge-universal graphs. This improvement has no
effect on the depth of the construction.

Since both the size and the depth are dependent on the underlying represen-
tation of the circuit building blocks (of the universal gate U and of the universal
switch or X gate), and the secure computation protocol, we express the size of
the universal circuit with the size and depth of U and of X as parameters. Includ-
ing the above optimizations of altogether 4(u + v) + 2k∗ − 9, the approximate
formula for the size of Valiant’s optimized UC construction becomes

size(UC opt
u,v,k∗) ≈[5(u + v + k∗) log2(u + v + k∗) − 17k∗ − 19(u + v)

+ 7.5 log2(u + v + k∗) + 24] · size(X) + k∗ · size(U).
(11)

To obtain the exact size of the UC, we use the recursive relations depicted in
Eqs. 3 and 4 and include our optimizations. Thus, we obtain

sizeexact(UC
opt
u,v,k∗) =[2 · Exact(u + v + k∗)

− 4(u + v) − 2k∗ + 9] · size(X) + k∗ · size(U).
(12)

From the depth of the edge-universal graph, the depth of the UC becomes

depth(UC opt
u,v,k∗) ≈ [u + v + 2k∗ + 3] · depth(X) + k∗ · depth(U). (13)

Depending on the application, size(X) and size(U) as well as depth(X) and
depth(U) can be optimized. Due to the PFE application, where XOR gates
can be evaluated for free, we assess the ANDsize and ANDdepth of our AND-
optimized implementations of universal gates and switches (cf. Sect. 4.1). In gen-
eral, a universal gate can be realized with 3 AND gates (and 6 XOR gates), and
ANDdepth of 2 (total depth of 6). Universal switches can be realized with only
one AND gate (and 3 XOR gates), and ANDdepth of 1 (total depth of 3) [KS08a].
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For private function evaluation, the size and the depth of U can be fur-
ther optimized depending on the underlying secure computation protocol. In
case the SFE implementation uses Yao’s garbled circuit protocol [Yao86], both
ANDsize(U) and ANDdepth(U) can be minimized to 1, due to the fact that in
some garbling schemes the evaluator does not learn the type of the evaluated
gate such as in case of garbled 3-row-reduction [NPS99]. Therefore, a universal
gate can be implemented with one 2-input non-XOR gate [PSS09].

Optimized Hybrid Universal Circuit Construction: We investigate if
hybrid methods utilizing building blocks of both UC constructions, i.e., of
both [Val76] summarized in Sect. 2.1 and [KS08b] in Sect. 2.2, could yield bet-
ter size. The simulation of the k gates of the original circuit is asymptotically
more efficient using Valiant’s UC construction due to the logarithmic factor,
despite the overhead caused by taking the equivalent fanout-2 circuit with k∗

gates, where k ≤ k∗ ≤ 2k + v. However, we calculate if the modular approach
of [KS08b] using a selection block Su

m≥u for selecting the input variables or a
truncated permutation block TPk∗≥v

v for the output variables results in a smaller
size.

Placing a selection block on top of Valiant’s UC with m universal gates
would imply a selection block Su

m≥u which is then programmed to direct the
u inputs of the circuit to the proper inputs of the m universal gates. Depending
on how the output nodes are represented, m is either 2(k∗ + v) for the case
when including the outputs in Valiant’s construction or 2k∗ for the construction
with a truncated permutation block. In the latter case, TPk∗≥v

v takes care of
permuting a subset of the outputs of the k∗ gates, resulting in the v outputs
of the UC. A selection block Su

m≥u has size u+m
2 log2 u + m log2 m − u + 1 and

depth 2 log2 u + 2 log2 m + m − 2, and a truncated permutation block TPk∗≥v
v

has size k∗+v
2 log2 v − 2v + k∗ + 1 and depth log2 k∗ + log2 v − 1 [KS08b] (cf. full

version [KS16]).
Let us take three scenarios into consideration, depending on the number of

inputs u and the number of outputs v. The number of gates in the circuit to be
simulated is k and the number of gates in the equivalent fanout-2 circuit is k∗

with k ≤ k∗ ≤ 2k + v.

1. Constant I/O Case: u = c1 constant, v = c2 constant: If both u and v
are constant values c1 and c2 respectively, as is the case in many applications
that compute a non-trivial function with relatively few inputs and outputs,
the size of the selection block becomes ≈ 2k∗ log2 k∗ + (2 + log2 c1)k∗ and
the size of the truncated permutation block is ≈ (0.5 log2 c2 + 1) k∗. With
Valiant’s UC construction, the overhead caused by a constant number of
inputs and outputs is around 5(c1 + c2) log2 k∗. The depth of Valiant’s UC
is only affected with constant overhead, while the depth of the selection and
permutation blocks are ≈ 2k∗ + 2 log2 k∗ and ≈ log2 k, respectively. Thus,
both for the inputs and the outputs, Valiant’s UC is an asymptotically better
solution in the case with a constant number of inputs and outputs.
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2. Many Inputs: u ∼ k, v = c constant: For many inputs where u is around
the number of gates k and we have a constant number of c outputs, we include
these c nodes in Valiant’s UC instead of using a truncated permutation block
due to the same reasoning as in the previous case. However, a selection block
can be constructed to direct k inputs to k∗ + c universal gates. Thus, its size
becomes ≈ 2k∗ log2 k∗ + k∗ log2 k + 0.5k log2 k + 2k∗ − k + 3c log2 k∗ and its
depth ≈ 2k∗ + 2 log2 k∗ + 2 log2 k. In case of Valiant’s UC construction, k
inputs result in an overhead of ≈ 5k log2 k − 9k + 5c log2 k for the size and
≈ k for the depth, since a large part (up to a half) of the circuit is built in
order to hide the input wiring. Therefore, in this scenario it is often worth
to use a hybrid method, utilizing the selection block from [KS08b] for input
selection. Our many inputs hybrid construction places a selection block on
top of a UC with k∗ +c universal gates and has approximate size when u ∼ k
and v is constant c

size(UCmany I
k,c,k∗ ) ≈ [7k∗ log2 k∗ + k∗ log2 k + 0.5k log2 k − k − 15k∗

+ (7.5 + 5c) log2 k∗ + 3c log2 k∗ + O(1)] · size(X) + k∗ · size(U)
(14)

and approximate depth

depth(UCmany I
k,c,k∗ ) ≈ [4k∗ + 2 log2 k∗ + 2 log2 k + O(1)] · depth(X)

+k∗ · depth(U).
(15)

3. Maximal I/O Case: u ∼ 2k, v ∼ k: For circuits with u ∼ 2k inputs and
v ∼ k outputs, we discuss the possibility of using both an input selection
block and an output permutation block. The size of the selection block is
≈ 2k∗ log2 k∗ + k∗ log2 k + k log2 k + 3k∗ − k and its depth becomes ≈ 2k∗ +
2 log2 k∗ + 2 log2 k, which is more beneficial (when it comes to the size) than
the ≈ 10k log2 k − 12k size overhead and ≈ 2k depth overhead in Valiant’s
construction caused by 2k inputs (up to half of the UC is constructed for
inputs only). The truncated permutation block has size ≈ 0.5k∗ log2 k +
0.5k log2 k + k∗ − 2k and depth ≈ log2 k∗ + log2 k, while the same amount
of outputs in Valiant’s construction introduces at least 5k log2 k − 9k new
switches with depth of ≈ k. Thus, for the case when the maximal 2k inputs
and k outputs are considered, we conclude that it is advantageous to use
our maximal I/O hybrid construction, utilizing Valiant’s graph construction
for the k∗ gates [Val76], a selection block for the inputs and a truncated
permutation block for the outputs [KS08b]. This yields an approximate size
when u ∼ 2k and v ∼ k

size(UCmax I/O
2k,k∗,k ) ≈[7k∗ log2 k∗ + 1.5k∗ log2 k + 1.5k log2 k − 13k∗ − 3k

+ 7.5 log2 k∗ + O(1)] · size(X) + k∗ · size(U)
(16)

and an approximate depth

depth(UCmax I/O
2k,k∗,k ) ≈ [4k∗ + 3 log2 k∗ + 3 log2 k + O(1)] · depth(X)

+k∗ · depth(U).
(17)
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Fig. 4. Comparison between the sizes of the universal circuit constructions for
k∗ = k ∈ {0 , . . . , 50 000} gates, considering the three scenarios: constant I/O with
constant number of inputs and outputs, many inputs with ∼ k inputs and constant
outputs and maximal I/O with ∼ 2k inputs and ∼ k outputs (Color figure online).

We conclude that in case of a large number of inputs and outputs it is
beneficial to construct a hybrid UC, making use of both existing construc-
tions (cf. Sects. 2.1 and 2.2). Most practical applications have input and out-
put with constant size and only some specific applications use input size lin-
ear in the number of gates (e.g. simple computations on large databases).
Thus, we consider Valiant’s construction as the most beneficial for general
purposes, however we have shown, that one can optimize the construction for
many inputs or outputs by adding selection or truncated permutation blocks
from [KS08b].

Comparison with the Universal Circuit Construction from [KS08b].
In [KS08b], a universal circuit construction was proposed with approximate size
1.5k log22 k + 2.5k log2 k. This was calculated with the doubled size of the uni-
versal switches, not yet considering the free-XOR optimizations of [KS08a]. We
recalculated the size of the construction with our additional optimization for
the outputs described in Sect. 2.2. We give our detailed calculations in the full
version [KS16] and summarize its exact size here as

size(UC [KS08b]
u,v,k ) = [0.75k log22 k + 2.25k log2 k + (0.5 + k) log u+

(0.5k + 0.5v) log v + 5k − u − 2v] · size(X) + k · size(U),
(18)

and from [KS08b] we know that its depth is

depth(UC [KS08b]
u,v,k ) = [k log2 k + 2k + 7 log2 k + 2 log2 u+

log2 v − 14] · k · depth(U).
(19)
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Fig. 5. Comparison between the depths of the universal circuit constructions
for k∗ = k ∈ {0, . . . , 50 000} gates, considering the three scenarios: constant I/O with
constant number of inputs and outputs, many inputs with ∼ k inputs and constant
outputs and maximal I/O with ∼ 2k inputs and ∼ k outputs (Color figure online).

It was concluded in [KS08b] that this construction outperforms Valiant’s
construction for circuits with up to 5 000 gates. However, this was achieved using
the assumption that Valiant’s UC has size ≈ 9.5(u + 2v + 2k) log2(u + 2v + 2k),
which can vary between two to four times its actual size. On the one hand, a
factor of two of this difference is due to the free-XOR optimizations in [KS08a].
On the other hand, [KS08b] used the maximal k∗ = 2k+v in their approximation.
In Sect. 4.2, we show on concrete example circuits that k∗ stays significantly
below this upper bound. The construction described in detail in Sect. 2.1 has a
larger constant factor 5, but due to the logarithmic factor it outperforms the
construction from [KS08b] (Sect. 2.2) already for a few hundred gates in the
constant I/O case. Figures 4 and 5 compare the sizes and depth of the different
UC constructions, respectively in the three scenarios described above, with the
lowest possible gate number k∗ = k. When considering the hybrid approach, the
method corresponding to the given scenario is indeed always the most efficient
construction for many inputs and/or outputs. We give a comparison for the upper
bound case k∗ = 2k+v, for the sizes of all universal circuit constructions for well-
known circuits from [TS15] and compare their structure in the full version [KS16].

4 Implementing Valiant’s Universal Circuit in Practice

In this section, we detail the challenges that we faced while demonstrating the
practicality of Valiant’s universal circuit construction. We show how to construct
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a universal circuit from a standard circuit description and how to program it
accordingly. We validate our results with an implementation, creating a novel
toolchain for private function evaluation, using two existing frameworks as fron-
tend and backend of our application. We emphasize that our tool for construct-
ing and programming UC is generic and can easily be adapted to other secure
computation frameworks or other applications of UCs listed in Sect. 1.2.

4.1 Our Tool for Universal Circuit Construction and Toolchain
for Private Function Evaluation

The architecture of our toolchain for PFE using universal circuits is shown
in Fig. 6. In this section, we describe its different artifacts and its use of the
Fairplay [MNPS04] and ABY [DSZ15] frameworks. Our implementation is avail-
able online at http://encrypto.de/code/UC.

Step 1. Compiling Input Circuits from High-Level Functionality:
Due to its easy adoptability, we decided to use the Fairplay
compiler [MNPS04,BNP08] with the FairplayPF extension [KS08b] to trans-
late the functionality described in the high-level SFDL format to the Fairplay
circuit description called Secure Hardware Definition Language (SHDL). The
FairplayPF extension already converts circuits with gates of an arbitrary fanin
into gates with at most two inputs, which is required for Valiant’s construction
as well. However, in case of Valiant’s UC construction, there is another restric-
tion on the input circuit. It has to have fanout 2, i.e., the outputs of all the gates
and inputs can only be used as the input of at most two later gates.

In case the input circuit does not follow this restriction, an algorithm places
a binary tree in place of each gate with fanout larger than 2, following Valiant’s
proposition: “Any gate with fanout x + 2 can be replaced by a binary fanout tree
with x + 1 gates” [Val76, Corollary 3.1]. This is done using so-called copy gates,
i.e., identity gates, each of them eliminating one from the extra fanout of the
original gate. An upper bound can be given on the number of copy gates. The
class of Boolean functions with u inputs and v outputs that can be realized by
acyclic circuits with k gates and arbitrary fanout, can also be realized with an
acyclic fanout-2 circuit with k ≤ k∗ ≤ 2k+v gates [Val76, Corollary 3.1]. We give
concrete examples in Sect. 4.2 on how this conversion changes the input circuit
size for practical circuits and show that in most cases, the resulting number of
gates remains significantly below the upper bound 2k + v.

Step 2. Obtaining the Γ2 Graph of the Circuit: From the SHDL description
of a C circuit with fanin and fanout 2, the Γ2 graph GC of the circuit C can
be directly generated as described in Sect. 2.1: with the number of inputs u, the
number of outputs v and the number of gates k∗ in circuit C, GC has u+ v + k∗

nodes and the wires are represented as edges in the graph. Then, the first u
nodes in the topological order correspond to the inputs, the last v nodes to the
outputs and the nodes in between them to the k∗ ordered gates. We note that
since C had fanin and fanout 2, the resulting GC graph is in Γ2(u + v + k∗).

http://encrypto.de/code/UC
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Fig. 6. Our toolchain for universal circuits and private function evaluation.

Therefore in GC , each node can have at most two incoming edges, one defined
to be the first and the other the second. It is possible in the modified SHDL
circuit description that an internal value becomes two times the first or two
times the second input of gates. This is due to the fact that in the original
SHDL circuit with arbitrary fanout, a value could be the input of arbitrary
number of later gates. Transforming the circuit to a fanout-2 circuit by adding
copy gates allows a value to be an input only two times, but the order of the
inputs is fixed. Therefore, in such a case when a value is the second time the
same input to a gate (i.e., first or second), besides the two inputs, the two middle
bits of the function table of the gate must be reversed as well (i.e., to compute
f(in1, in2) instead of f(in2, in1)) for the correct programming of the universal
circuit in Step 5.
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Step 3. Generating Γ2 Edge-Universal Graph Un: Knowing the number
of input bits u, the number of gates k∗ and the number of output bits v one
can construct the corresponding edge-universal graph Un, where n = u+ v + k∗,
with out input-output optimization from Sect. 3.2. We note that no knowledge
is necessary about the topology or the gate tables in circuit C for this step. As
we described in Sect. 2.1, two edge-universal graphs for Γ1(n), i.e. Un,1 and Un,2,
are merged in order to obtain an edge-universal graph for Γ2(n), such that the
poles are merged and the edges coming into and going out from them become
as follows: the edges in Un,1 will be the first input and output for each pole,
the edges in Un,2 will be the second input and output. For efficiency reasons, we
directly generate the merged edge-universal graph, i.e., an edge-universal graph
for Γ2(n), with the poles as common nodes.

We include our optimization for the input and output nodes from Sect. 3.2
and Valiant’s optimizations for n ∈ {2, 3}, but do not consider Valiant’s opti-
mizations for n ∈ {4, 5, 6} (cf. Figs. 1c, d, and e). These special cases lead to a
specific edge-embedding for the nodes and result in linear improvement only in
very rare cases. Moreover, with our second optimization from Sect. 3.2, we ignore
most of the extra nodes when the graph is translated into a universal circuit
description, i.e., we have for n = {4, 5, 6} only {3, 5, 8} additional nodes other
than poles, respectively, in our implementation which is already an improvement
over Valiant’s original optimizations.

We note that the edge-universal graph (with undefined function tables and
control bits for the universal switches) can be publicly generated. However, the
party programming it has to either generate or receive a copy of it for program-
ming the control bits according to the topology of the simulated circuit (i.e., to
edge-embed GC into Un).

Step 4. Programming Un According to an Arbitrary Γ2(n) Graph: The
Γ2 graph of the circuit GC with n nodes is partitioned into two Γ1(n) graphs GC

1

and GC
2 which are embedded into the two edge-universal graphs for Γ1(n) that

build up Un. Valiant proved in [Val76] that for any topologically ordered Γ1(n)
graph, for any (i, j) ∈ E and (k, l) ∈ E edges there exist edge-disjoint paths
in Un between the ith and the jth poles and between the kth and the lth poles.
We described Valiant’s method in Sect. 2.1 and here we show the algorithm that
uniquely defines these paths in Un.

For the description of our algorithm, we first define a Γ1(n) supergraph,
which is a Γ1(n) graph with additionally a binary tree of Γ1 graphs of decreas-
ing size. These Γ1 graphs uniquely define the embedding of the edges into Un.
When embedding an edge (i, j) of the topologically ordered graph G into the
edge-universal graph, one needs to construct the supergraph of G as described in
Algorithm 1 and then look at the binary tree in the supergraph. The path of
the edge (i, j) defines the edge-embedding uniquely. This means that if edge
(� i

2	, � j
2	 − 1) is in the left subgraph of G, then it can be embedded through

subgraph Q in Un, otherwise it is in the right subgraph of G and can be
embedded through subgraph R in Un. The unique embedding happens through
{r� i

2 �, r� j
2 �−1} or through {q� i

2 �, q� j
2 �−1}, utilizing the unique shortest path

between them, through subpoles further identified by smaller subgraphs of G.
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Algorithm 1. Supergraph(G)
Input: Γ1(n) graph G with set of nodes V = {1, . . . , n}
Output: Γ1(n) supergraph

1: Create a graph H with �n
2
� − 1 nodes � H Γ2 graph (with possible loops)

2: if there exist an edge (i, j) in G and � j
2
� − 1 ≥ � i

2
� then

3: Add edge
(
� i
2
�, � j

2
� − 1

)
in H � each pair of nodes in G is one node in H

4: end if
5: Partition H into two Γ1 graphs G1 of size �n

2
� − 1 and G2 of size �n

2
� − 1 using

Kőnig’s theorem as in §2.1
� in odd case, the (e, �n

2
� − 1) edge in H for arbitrary e will be added in G1

6: if size(G1) 	= 0 then
7: Supergraph(G1)
8: Store G1 as the left subgraph of G
9: end if

10: if size(G2) 	= 0 then
11: Supergraph(G2)
12: Store G2 as the right subgraph of G
13: end if
14: delete H
15: return G

When the embedding is done (cf. full version [KS16]), for defining the control
bits, each node x has at most two nodes that have ingoing edges to x, one is
represented as the left parent and one as the right parent of x in the edge-
universal graph. The two consecutive nodes are also saved as left and right
children of x. Now, when x is a switching node and we take edges (v, x) and (x,w)
in the path, we save for x if parent v and child w are on the same or on the
opposite side in the edge-universal graph. This defines the control bit of each
universal switch in the translated universal circuit, where left and right parent
and child translate to first and second input and output, respectively. We note
that in order to program Un correctly, we require that if x is the left (right)
parent of v in the edge-universal graph, then v is the left (right) child of x.

Step 5. Generating the Output Circuit Description and the Program-
ming of the Universal Circuit: After embedding the graph of the simulated
circuit into the edge-universal graph Un, we write the resulting circuit in a file
using our own circuit description. In the edge-universal graph, each node stores
the program bit resulting from the edge-embedding (control bit c of the corre-
sponding universal switch in Eq. 2) and each pole stores four bits corresponding
to the simulated circuit (the four control bits of the function table, c0, c1, c2, c3
in Eq. 1, their order possibly changed in Step 2). Thus, after topologically order-
ing Un, one can directly write out the gate identifiers into a circuit file and the
program bits to a programming file.

Our circuit description format starts with enumerating the inputs and ends
with enumerating the outputs. We have universal gates denoted by U , universal
switches denoted by X or Y depending on the number of outputs (X with two
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outputs and Y with one). We note that we replace any gates that have only one
input by wires in the UC, thus achieving our fanin-1 node optimization from
Sect. 3.2. The wires are represented in the following manner:

U in1 in2 out1
X in1 in2 out1 out2 (20)
Y in1 in2 out1

denotes that wire out1 (and possibly out2) is coming from a gate with input wires
in1 and in2. The program bits are not represented in the circuit format, but in a
separate file, for each universal gate we save a four-bit number representing the
control bits and for each universal switch we store the control bit. The output
nodes are outputs of Y universal switches and are marked in the end of the
file as O o1 o2 . . . ov. The circuit and its programming are given in plain
text files.

Step 6. Evaluating Universal Circuits for PFE in ABY: As an example
application of UCs, we implement PFE using SFE of a universal circuit. We
adapted the ABY secure two-party computation framework [DSZ15] for this
purpose. Firstly, since ABY uses the free-XOR optimization from [KS08a], we
construct universal gates and switches with low ANDsize and ANDdepth given
in Sect. 3.2. With the cost metric we consider, X and Y gates have the same
AND complexity, optimized in [KS08a] and are obtained as

out1 = Y (in1, in2; c) = (in1 ⊕ in2)c ⊕ in1

(out1, out2) = X(in1, in2; c) = (e ⊕ in1, e ⊕ in2) with e = (in1 ⊕ in2)c (21)

with ANDsize and ANDdepth of 1 for both universal switches. X gates are
realized with one additional XOR gate compared to Y gates.

Our efficient implementation of generic universal gates uses Y gates yielding

out1 = U(in1, in2; c0, c1, c2, c3) = Y [Y (c0, c1; in2), Y (c2, c3; in2); in1] (22)

with ANDsize(U) = 3 and ANDdepth(U) = 2. This universal gate implemen-
tation is generic and works in all secure computation protocols. However, for
Yao’s garbled circuits protocol, one can further optimize it to ANDsize(U) =
ANDdepth(U) = 1, as in some garbling schemes such as the garbled 3-row-
reduction [NPS99] the gate being evaluated remains oblivious to the evaluator.

After constructing the efficient building blocks, the output circuit file of our
UC compiler is parsed, a circuit is generated accordingly and programmed with
the input program bits. We conclude that our toolchain is the first implementa-
tion of Valiant’s size-optimized universal circuit that supports efficient private
function evaluation.

4.2 Comparison of Our PFE-Toolchain with Other PFE Protocols

Mohassel et al. in [MS13] design a generic framework for PFE and apply it
to three different scenarios: to the m-party GMW protocol [GMW87], to Yao’s



Valiant’s Universal Circuit is Practical 723

Table 1. The number of symmetric-key operations using different PFE protocols:
Valiant’s UC with SFE, the universal circuit construction from [KS08b] or Mohassel
et al.’s OT-based method from [MS13]. u, v and k denote the number of inputs, outputs
and gates in the simulated circuit, and k∗ denotes the number of gates in the equivalent
fanout-2 circuit.

Circuit u k v k∗ − k ( k∗
k

) Valiant [KS08b] OT-based

[MS13]

AES-non-exp 256 31 924 128 14 539 (1.46) 1.150 · 107 2.797 · 107 6.243 · 106

AES-expanded 1 536 25 765 128 11 089 (1.43) 9.211 · 106 2.206 · 107 4.943 · 106

DES-non-exp 128 19 464 64 12 290 (1.63) 7.502 · 106 1.560 · 107 3.639 · 106

md5 512 43 234 128 22 623 (1.52) 1.700 · 107 3.995 · 107 8.681 · 106

add 32 64 187 33 58 (1.31) 35 512 55 341 19 939

comp 32 64 150 1 1 (1.01) 19 384 40 222 15 424

mult 32x32 64 6 995 64 5 079 (1.73) 2.522 · 106 4.647 · 106 1.184 · 106

Branching 18 72 121 4 3 (1.02) 17 312 30 994 11 994

CreditCheck 25 50 1 6 (1.12) 5 056 9 348 4 198

MobileCode 80 64 16 0 (1.00) 12 528 13 727 5 644

garbled circuits [Yao86] and to arithmetic circuits using homomorphic encryp-
tion [CDN01]. Both the two-party version of their framework with the GMW
protocol and the solution with Yao’s garbled circuit protocol has two alterna-
tives: using homomorphic encryption they achieve linear complexity O(k) in
the circuit size k and when using a solution solely based on oblivious trans-
fers (OTs), they obtain a construction with O(k log k) symmetric-key opera-
tions. The OT-based construction in both cases is more desirable in practice,
since using OT extension the number of public-key operations can be reduced
significantly [IKNP03,ALSZ13].

Since the asymptotical complexity of this construction and using Valiant’s
UC for PFE is the same, we compare these methods for PFE. We revisit the
formulas provided in [MS13] for the PFE protocol based on Yao’s garbled circuits
and elaborate on the number of symmetric-key operations when the different
PFE protocols are used. Mohassel et al. show that the total number of switches
in their framework is 4k log2(2k) + 1 that are evaluated using OT extension,
for which they calculate 8k log2(2k)+8 symmetric-key operations together with
5k operations for evaluating the universal gates with Yao’s protocol. We count
only the work of the party that performs most of the work, i.e., 4k symmetric-
key operations for creating a garbled circuit with k gates and 3 symmetric-key
operations (two calls to a hash function and one call to a pseudorandom function
(PRF)) for each OT using today’s most efficient OT extension of [ALSZ13].
Hence, according to our estimations, the protocol of [MS13] requires 12 log2(2k)+
4k + 12 symmetric-key operations.
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In the same way, we assume that in our case, for evaluating both the universal
gates and switches, the garbler needs 4k symmetric-key operations. Thus, for a
fair comparison, we essentially update Table 4 from the full version of [MS13,
Appendix J.1], where Valiant’s UC size was calculated with assumed k∗ = 2k+v,
without calculating 4 operations for the garbling.

We took our example circuit files of varying size in Table 1 from two different
sources and elaborate on the resulting number of symmetric-key operations using
the different constructions. The first 7 circuits we obtained from the function
set of [TS15] and the last three from the FairplayPF extension of the Fairplay
compiler [MNPS04,KS08b]. The example circuits that we took from [TS15] had
to be converted to our desired SHDL format, which was a necessary step in order
to be able to elaborate on the performance of these more complicated circuits
as well. We included the INV gates in the function table of the consecutive
gate and therefore, resulted in smaller gate numbers k for the equivalent SHDL
circuits with arbitrary fanout. Then, these SHDL circuits were considered as
input circuits for our tool.

We now compare the size of the three two-party PFE protocols: the two UC-
based PFE with secure computation and the OT-based method of [MS13]. We
assess our findings in Table 1. We note that our numbers are estimations, i.e., we
do not consider that [MS13] works with circuits made up solely of NAND gates.
Since Valiant’s UC construction depends also on the number of gates with fanout
more than 2 in the original circuit, we include the number of copy gates, (k∗ −k)
in the table. We emphasize the ratio between the new number of gates k∗ and the
original number of gates k and conclude that in general circuits, it is well below
the maximal k∗

k ∼ 2. The size of the UC construction from [KS08b] obviously
makes their method less efficient, in our examples using more than twice as many
symmetric-key operations as the method with Valiant’s UC and four times as
many as Mohassel et al.’s efficient OT-based method [MS13]. We conclude that
universal circuits are not the most efficient solution to perform PFE, however, we
show the feasibility of generating and evaluating UCs simulating large circuits.
We emphasize that even though the PFE-specific protocol from [MS13] achieves
better results for PFE, universal circuits are generic and can be applied for
various other scenarios (cf. Sect. 1.2), and the most efficient UC construction is
Valiant’s construction.

Our Experimental Results. We validated the practicality of Valiant’s univer-
sal circuit construction with an efficient implementation. We ran our experiments
on two Desktop PCs, each equipped with an Intel Haswell i7-4770K CPU with
3.5 GHz and 16 GB RAM, that are connected via Gigabit-LAN and give our
benchmarks in Table 2. We are able to generate UCs up to around 300 000 gates
of the simulated circuit, i.e., which results in billions of gates in the UC. Until
now, the only implementation of universal circuits was given in [KS08b], which
is outperformed by Valiant’s construction already for a couple of hundred gates
(cf. Figs. 4 and 5) due to its asymptotically larger complexity. We show the real
practicality of UCs through experimental results proving the efficiency of our
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Table 2. Running time and communication for our UC-based PFE implementation
with ABY. We include the compile time, the I/O time of the UC compiler, and the
evaluation time (in milliseconds) and the total communication (in Kilobytes) between
the parties in GMW as well as in Yao sharing.

Circuit UC Compile UC I/O GMW Yao

Time Time Time Communic. Time Communic.

(ms) (ms) (ms) (KB) (ms) (KB)

AES-non-exp 2 909.2 6 331.2 5 522.08 137 561.13 2 349.35 88 417.61

AES-expanded 2 103.7 5 063.6 4 136.72 109 033.79 1 878.75 70 097.48

DES-non-exp 1 596.2 4 173.5 2 695.51 76 644.38 1 310.52 48 180.69

md5 4 043.5 8 785.4 7 041.12 169 558.83 3 547.68 110 043.59

add 32 11.4 63.8 31.97 457.77 26.49 224.77

comp 32 5.8 34.1 29.94 340.23 8.90 159.73

mult 32x32 328.9 1 443.2 1 092.46 31 053.53 539.98 18741.85

Branching 18 4.8 31.4 26.23 307.77 17.34 145.87

CreditCheck 1.2 11.4 26.25 113.35 5.67 45.15

MobileCode 3.2 26.3 25.71 202.50 28.16 103.45

implementation of PFE with the ABY framework [DSZ15]. Furthermore, due to
its asymptotically smaller depth, we are also able to evaluate our generated UCs
with the GMW protocol [GMW87], whereas the construction from [KS08b] was
only evaluated with Yao’s garbled circuit protocol. We do not directly compare
our runtimes with the method of [MS13], since to the best of our knowledge,
their framework has not yet been implemented.

Converting from circuit descriptions and writing into and reading out from
files slows down the program significantly, but it still achieves good performance
for practical circuits such as AES and DES. Our implementation in ABY can
evaluate most of the circuits in both the GMW and Yao’s protocols, but for some
examples it runs out of memory (e.g. SHA-256). However, improvements on SFE
protocols imply improvements on UC-based PFE frameworks as well. As can be
seen in Table 2, the evaluation time and the communication in case of Yao’s
garbled cirucit protocol is about a factor of two smaller than that of the GMW
protocol. This difference is due to the more efficient universal gate construction
with only one gate for the case of Yao’s protocol in contrast to the universal
gates used in the GMW protocol with ANDsize = 3 and ANDdepth = 2.
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Abstract. We take nonce-based cryptography beyond symmetric
encryption, developing it as a broad and practical way to mitigate dam-
age caused by failures in randomness, whether inadvertent (bugs) or
malicious (subversion). We focus on definitions and constructions for
nonce-based public-key encryption and briefly treat nonce-based signa-
tures. We introduce and construct hedged extractors as a general tool
in this domain. Our nonce-based PKE scheme guarantees that if the
adversary wants to violate IND-CCA security then it must do both of
the following: (1) fully compromise the RNG (2) penetrate the sender
system to exfiltrate a seed used by the sender.

1 Introduction

An old security adage says there is no point putting strong locks on the door
if you leave the window open. The lock here is modern public-key encryption,
proven to meet the strong IND-CCA goal. The window is the assumption made in
these proofs that, at every encryption, the encryptor has access to perfect, fresh
(independent from prior) randomness. To allow encryption to fulfill in practice
the promise it makes in theory, we must close the window. This paper develops
nonce-based public-key encryption as a practical way to do this. It goes on to
develop nonce-based digital signatures.

Randomness. That randomness failures occur and lead to cryptographic failures
is by now very well known and does not need to be belabored. The news of
interest is perhaps that it is getting worse. Let us explain. There are two sources
of randomness failures. The first, which has been with us a while and is not going
away, is bugs. A good example is the Debian Linux vulnerability present from
September 2006 to May 2008 where a programmer removed some lines of code
from the OpenSSL source, resulting in there being only 15 bits of entropy in
the seed for the PRNG [1]. HDWH [19] finds cryptographic vulnerabilities in a
significant fraction of TLS and SSH servers due to what they call “malfunctioning
RNGs.” And the list goes on. The second source of randomness failures, which
may have been with us for a while but of which we have learned only recently due
c© International Association for Cryptologic Research 2016
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to the mass-surveillance revelations, is subversion, the deliberate and targeted
attempt to weaken randomness. At the South by South West (SXSW) 2014
conference, Snowden said “we know that the encryption algorithms we are using
today work... it is the random number generators that are attacked as opposed
to the encryption algorithms themselves.” The prime example here is Dual EC,
a RNG the NSA designed to have a backdoor and then pushed into standards
and adoption. The ability to compromise security in practice via the backdoor
has been demonstrated in [14].

Prior work. The basic definitions of security for public-key encryption (PKE),
namely IND-CPA [18] and IND-CCA [5,15], provide no guarantees if the ran-
domness is bad. There is a long line of work giving new definitions of security
that do provide such guarantees, and building PKE schemes to meet these defi-
nitions.

The simplest way to avoid vulnerabilities due to poor randomness is to not
use randomness at all. Deterministic PKE [3,6,12,17] however only provides
security when the messages have high min-entropy. This limits utility (for exam-
ple, we may want to encrypt votes, which have low min-entropy) and, although
in a different context, CGPR [13] show that in practice the entropy of “real”
data is often quite low. Hedged PKE [4,7,27] extends Deterministic PKE to
provide privacy as long as the message and randomness together have suffi-
cient min-entropy. This is a significant benefit and we recommend that one use
Hedged PKE whenever possible. But the limitations remain. Since messages reg-
ularly do not in fact have entropy [13], and the “randomness” can be entirely
predictable (this happened both with the Debian Linux bug and the Dual EC
subversion), the message and randomness together still may not have enough
entropy for hedged encryption to provide security. A further limitation of both
Deterministic and Hedged PKE is that security is only provided for messages
that do not depend on the public key. (This second limitation can be partially
addressed but at some cost [26].) Yilek [32] defines and achieves security against
randomness-reset attacks, where the randomness is perfect but the adversary can
force its re-use across different encryptions. This is useful in the context of vir-
tual machine resets but not more broadly. PSS [24] introduce related-randomness
attacks, where encryption is under adversary-specified functions of some initial
uniform randomness. However, negative results they provide show that for many
functions one cannot achieve security.

In summary, all these notions have some limitations and the practical benefit
they provide is not clear. Most importantly, these were all designed in the older
mindset of RNG failures due to bugs and can break down severely when the RNG
is subverted. The latter is the new reality against which we need to defend.

Nonces. Rogaway [28,29] introduced nonce-based symmetric-key encryption,
where the encryption algorithm is deterministic, taking the shared key, mes-
sage and a quantity called a nonce. Security is provided as long as the nonce
does not repeat. The notion was strengthened by Rogaway and Shrimpton
(RS) [30]. Rogaway suggests that packet sequence numbers may play the role
of the nonce. Motivations he provides include reducing implementor error and



Nonce-Based Cryptography: Retaining Security When Randomness Fails 731

achieving stronger notions of security. We suggest that nonces can be used much
more broadly and are a good defense against poor randomness. The goal we
pursue in depth is nonce-based PKE.

The obvious extension fails. Towards this we begin by noting that a direct
extension of nonce-based symmetric-key encryption as defined in [28–30] to the
public-key setting does not work. Such an extension would have the encryption
algorithm E be deterministic, taking input the encryption key ek, message m and
a nonce n to return the ciphertext C = E(ek,m, n). The privacy game would
give the adversary an oracle that takes messages m0,m1 and a nonce n (in the
definitions of [28–30], nonces are adversarially chosen subject to not repeating)
to return C = E(ek,mb, n), where b is a challenge bit chosen at random by the
game. Security would require that the adversary has little advantage in guessing b.
But such security would not be achieved because in the public-key setting the
adversary has ek and can itself encrypt. Thus it could query its oracle with any
m0,m1, n of its choice to get back ciphertext C = E(ek,mb, n), and itself compute
C0 = E(ek,m0, n). If C = C0 it knows that the challenge b is 0, else it is 1.

Nonce-based PKE. We define a nonce-based PKE scheme NPE as follows. The
receiver runs key-generation algorithm NPE.Kg as usual to get an encryption key
ek and decryption key dk. Not as usual, the sender begins by locally running a
seed generation algorithm NPE.sKg to get a seed xk. The encryption algorithm
NPE.Enc is deterministic, taking in addition to the usual ek and message m,
two new inputs, a nonce n and the seed xk, and returning ciphertext C =
NPE.Enc(ek, xk,m, n). Decryption is unchanged, taking dk and a ciphertext C
to return a message. The receiver does not need to know the seed, and the
keys and seed are entirely independent. The sender can either re-use the same
seed across multiple encryptions, or generate a fresh one at every encryption, or
anything in between, and the receiver will be oblivious to all of this.

Security is captured via two games and corresponding requirements. Nonce-
based privacy One (NBP1) asks that IND-CCA privacy be maintained as long as
message-nonce pairs do not repeat. That is, the only way security fails is if, for
the same message, a nonce is re-used. This is a very strong guarantee. However
there is one caveat, namely this holds when the seed is kept private from the
adversary. Nonce-based privacy Two (NBP2) addresses the possibility that the
adversary compromises the sender’s system and obtains the seed. Even in this
case, it guarantees IND-CCA privacy as long as nonces are unpredictable to the
adversary. The formalizations are in terms of a stateful nonce generator NG that
takes an adversary specified input η to return the next nonce, so that nonces are
(indirectly) under adversary control.

In practice we would expect a combination of a variety of things to be used
as the nonce, for example the current time (this does not repeat) and prior
ciphertexts, but, also, randomness from the system RNG, since, for NBP2, nonce
unpredictability is required. (This is a departure from the symmetric setting.)
However guarantees in the face of poor randomness are much better than before,
as we now explain.
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What this buys us. Intuitively our definitions are saying the following. Con-
sider two cases. The expected and good case is that the sender seed stays private.
In this case we get IND-CCA privacy regardless of the quality of the randomness,
the only requirement being that message-nonce pairs do not repeat. The latter
is a mild condition, such repetition being unlikely with reasonable nonces, even
simply using the date and time as the nonce. The other case is that the sender’s
system is compromised and the seed is exposed. In this case, we are effectively in
the setting of standard PKE and we cannot deterministically provide IND-CCA.
We guarantee that we do no worse than standard PKE, meaning we provide IND-
CCA as long as the randomness (here part of the nonce) is good. But in fact we
do better, since the requirement on nonces is only unpredictability. This means
that we are safe even if the outputs of the RNG are correlated and structured,
as long as they remain unpredictable.

Put another way, if a subvertor wanted to compromise privacy, it would not
suffice to compromise the RNG. They would have to also break in to the sender’s
system, find the seed, and exfiltrate it. Frequent rotation of seeds (which has
effectively no cost) makes this even harder. This ups the ante. Now, it is true
that with the NSA’s capabilities in malware, we should not under-estimate their
ability to penetrate a target sender. But this would have to be done on per-sender
basis, making mass surveillance harder.

Hedged extractors and our scheme. It is easy to achieve either of NBP1 or
NBP2 in isolation. We can get an NBP1 nonce-based PKE scheme by encrypting
under a conventional (randomized) IND-CCA PKE scheme with the coins set to
the result of a PRF keyed by the sender seed and applied to the message and
nonce, but there is no reason this scheme would also be NBP2 secure. We can
get an NBP2 nonce-based PKE scheme by encrypting under the conventional
IND-CCA PKE scheme with the coins set to the result of an extractor keyed
by the seed and applied to the (message and) nonce, but there is no reason this
scheme would also be NBP1 secure. To simultaneously get both properties, we
introduce and use hedged extractors.

A hedged extractor HE takes a seed (also called a key) xk, a message m
and a nonce n to deterministically return a string r = HE(xk, (m, n)). It has
two properties: (1) It is a PRF, meaning if xk is random and hidden then the
outputs look random even to an adversary that picks m, n, and (2) it is an
extractor, meaning if xk is random but known, then r looks random if (m, n) is
unpredictable (meaning, has enough min-entropy). Again, achieving either goal
in isolation is trivial. The task is to achieve them simultaneously, in the same
construction. We give two solutions, one in the ROM, the other in the standard
model. The first is easy but practical, and likely to be what we would use,
namely to simply apply the RO to xk, (m, n). The second combines a PRF with
a strong randomness extractor via XOR. The ROM solution delivers optimal
security, the standard-model one a bit less due to the inherent limitations of
strong randomness extractors, namely that they are only guaranteed to work
for seed-independent inputs that retain min-entropy even conditioned on prior
inputs.
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Our nonce-based PKE scheme is then simply defined via the same para-
digm as for the in-isolation cases, namely we encrypt under a conventional (ran-
domized) IND-CCA PKE scheme with the coins set to the result of a hedged
extractor keyed by the sender seed and applied to the message and nonce. Both
NBP1 and NBP2 security are proven for this scheme assuming IND-CCA of the
conventional scheme and security of the hedged extractor.

Discussion and pragmatics. We can view nonce-based cryptography as mov-
ing the traditional abstraction boundary between cryptography and system
RNGs closer to the cryptography. The view is that, in the presence of bad RNGs,
a safer and better architecture is that the cryptography take on as large a share
of the burden of providing security as possible, in other words, rely on its envi-
ronment as little as possible. Our suggestion here is that the environment is
relied on only to produce nonces with relatively weak requirements. This view is
in some ways the opposite of that represented by work that aims to strengthen
RNGs against failure or subversion [16]. In practice the two can co-exist and
their combined presence will increase security.

Our nonce-based encryption scheme is simple and modular, a way to trans-
form any given conventional IND-CCA scheme into an NBP1+NBP2 secure
nonce-based scheme. With a practical choice of hedged extractor such as our
ROM one, we retain the efficiency attributes of the initial PKE scheme. In our
scheme, decryption is unchanged. The decryptor does not need to change its soft-
ware or even know that nonces are being used. These attributes make it easier
to deploy nonce-based PKE as a practical defense against poor randomness.

In the above-discussed prior work aimed at increasing resistance of PKE to
randomness failures, the model was unchanged in the sense that the object whose
security was being considered continued in syntax to be a classical public-key
encryption scheme as per [18]. Nonce-based encryption is a new model (because
the sender has a seed) and a new syntax (there is a seed generation algorithm
and the encryption algorithm is different). It is these changes, and in particular
not just the nonce, but the combination of nonce and seed, that are a game
changer and result in significantly better guarantees against poor randomness
compared to prior work.

Picking a seed, like picking a key, does require (good) randomness. The view-
point here, as in all the prior work discussed above, is that there is a difference
between static and dynamic randomness usage. We assume good randomness
for key generation because effort can be invested in it. Current key-generation
software often has the user generate coins by waving their mouse around. Good
seed generation would require similar effort, but one would expect to use a seed
for some time so this effort is not frequent. This is flexible. If a seed is lost due
to a system reboot, or compromised, the user can elect to make the effort to pick
a new one. If you are encrypting from multiple systems (your desktop, laptop
and phone) each can have its own, independently chosen seed.

Nonce-based signatures and beyond. We define nonce-based signatures,
where the signing algorithm is deterministic, and takes not only the signing key
and message, but also a seed and nonce. We require that (1) if the seed remains
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hidden then we have regular security (unforgeability) regardless of how nonces
are generated, and (2) if the seed is exposed, then we have security as long as the
nonces were unpredictable. Section 5 formalizes this and shows how to convert
any signature scheme into a nonce-based one with these security properties using
a hedged extractor.

Due to their speed and short signature sizes, the most attractive signa-
ture schemes for practice are elliptic-curve versions of DSA, El Gamal and
Schnorr [31]. However, they are randomized, and fail spectacularly when the
randomness is bad. Discussions on the cfrg forum show overwhelming support
for making these schemes deterministic. This is easily done, by deriving the coins
either as a PRF, keyed by a seed that is part of the secret key and applied to
the message, or as a RO applied to the secret key and message [9,21,23,25], and
the popular Ed25519 signature scheme of [11] already embodies this. Making
a scheme nonce-based complements this traditional de-randomization, retaining
the benefits of deterministic signing while adding further ones. See Sect. 5 for
more extensive background and discussion.

Nonces in combination with seeds can similarly be used in many other areas
of cryptography to provide resilience in the face of poor randomness or even
provide other gains. Our work aims to be illustrative rather than exhaustive.

Related work. BKS [8] introduce stateful PKE. Here also the sender can
maintain a seed. They show that this leads to significant efficiency gains. Their
schemes are however randomized, and there are no nonces. An interesting direc-
tion for future work is to combine their methods with ours to get similar efficiency
gains for nonce-based PKE.

Rogaway [29] discusses nonces as “surfacing the IV.” As motivation, he says
that when IVs are implicit, implementors and even books get things wrong.
He says that often nonces are readily available, for example packet sequence
numbers. He does not seem to explicitly mention robustness in the face of ran-
domness failure as a goal in the symmetric case. Intriguingly, in the final section
of the paper, he goes on to say: “ ... it makes just as much sense to consider
nonce-based public-key encryption schemes as it does to consider nonce-based
symmetric encryption schemes. This provides an approach to effectively weaken-
ing the requirement for randomness on the sender.” Our work has pursued this
suggestion. It is surprising that this waited 12 years.

2 Notation and Standard Definitions

Notation. We let ε denote the empty string. If X is a finite set, we let x ←$ X
denote picking an element of X uniformly at random and assigning it to x.
Algorithms may be randomized unless otherwise indicated. Running time is
worst case. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A
with random coins r on inputs x1, . . . and assigning the output to y. We let
y ←$ A(x1, . . .) be the result of picking r at random and letting y ← A(x1, . . . ; r).
We let [A(x1, . . .)] denote the set of all possible outputs of A when invoked
with inputs x1, . . .. We use the code based game playing framework of [10].
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Fig. 1. Games for defining PRF security of a function family F, standard IND-CCA
security of a standard PKE scheme PE and EUF-CMA security of a signature scheme
DS.

(See Fig. 1 for an example.) By Pr[G] we denote the event that the execution
of game G results in the game returning true. Random oracles are variable out-
put length, represented by a game procedure RO that takes x, l and returns a
random string of length l. The min-entropy of a random variable X over X is
defined as H∞(X) = − log(maxx∈X (Pr[X = x])).

Function families. A family of functions F: F.Keys × F.Dom → F.Rng is a
two-argument function that takes a key K in the key space F.Keys, an input x
in the domain F.Dom and returns an output F(K, x) in the range F.Rng. In the
ROM, F takes an oracle RO.

Pseudo-random functions. The security of F as a PRF is defined via
game Gprf

F (A) that is associated to adversary A and shown in Fig. 1. Here
F could have access to a RO and thus the game is in the ROM. Tables
S, T are assumed initially ⊥ everywhere. The advantage of A is defined as
Advprf

F (A) = 2 Pr[Gprf
F (A)] − 1.

Public-key encryption. A public-key encryption scheme PE specifies the fol-
lowing. Receiver key-generation algorithm PE.Kg returns an encryption key ek
and associated decryption key dk. Encryption algorithm PE.Enc takes ek and
message m ∈ {0, 1}∗ to return a ciphertext c. Deterministic decryption algo-
rithm PE.Dec takes ek,dk and ciphertext c to return a value in {0, 1}∗ ∪ {⊥},
and we require standard decryption correctness. The advantage of an adver-
sary A in breaking the IND-CCA security of PE is defined as Advind

PE(A) =
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2Pr[Gind
PE (A) − 1 for the game Gind

PE (A) described in Fig. 1. This represents a
conventional (not nonce-based scheme), and thus PE.Enc is randomized. We will
use such schemes as base schemes and we will need to surface their coins, writing
c ← PE.Enc(ek,m; r) to mean that PE.Enc is run with coins r to deterministically
return c. The length of the coins is denoted PE.rl.

Digital signatures. A digital signature scheme DS specifies the following.
Signer key-generation algorithm DS.Kg returns a signature key sk and a ver-
ification key vk. Signing algorithm DS.Sig takes sk and message m ∈ {0, 1}∗

to return a signature s ∈ {0, 1}DS.ol. Verification algorithm DS.Ver takes vk,
message m ∈ {0, 1}∗, and signature s ∈ {0, 1}DS.ol, to return a bit b ∈ {0, 1}.
The advantage of an adversary A in breaking the EUF-CMA security of DS
is defined as Advuf

DS(A) = Pr[Guf
DS(A)] for the game Guf

DS(A) described in
Fig. 1. Again we may need to surface the coins r ∈ {0, 1}DS.rl of DS.Sig, writing
s ← DS.Sig(sk,m; r).

3 Hedged Extractors

Our nonce-based schemes work simply by supplying coins to a base scheme via a
hedged extractor keyed by the sender seed. This primitive, that we introduce and
build here, is a function family that has two security properties. The first is that
it is a PRF. The second, which we define and call ror (real or random) security,
formalizes randomness of outputs when the key (seed) is known. Clearly this can
only be achieved with some restrictions, and the type of ror security achieved
will vary across constructions, from the “best possible” achieved by our ROM
construction to a weaker, but we think still meaningful, version for our standard
model construction. To make the goals precise we first introduce the notion of a
nonce generator.

Nonce generators. A nonce generator is an algorithm NG that, on input
a nonce selector η and a current state St , returns a nonce n, belonging to
the range set NG.Rng ⊆ {0, 1}∗ of NG, together with an updated state, writ-
ten (n,St) ←$ NG(η,St). We say the generator has nonce length NG.nl ∈ N if
NG.Rng = {0, 1}NG.nl. Let P be an adversary called a predictor and consider
game Gpred

NG (P) of Fig. 2. Let

Advpred
NG (P) = Pr[Gpred

NG (P)] and Advpred
NG (q1, q2) = max

P
Advpred

NG (P) ,

where the maximum is over all P making at most q1 ∈ N queries to GEN and
q2 ∈ {0, 1} queries to EXPOSE. Now let us explain. A call to GEN generates the
next nonce in the sequence, returning nothing to the adversary, The adversary
can influence the choice of nonces through its choice of the selector η. The
EXPOSE oracle allows to additionally get access to the state of the nonce
generator. To win, the adversary needs to guess some generated nonce or create
a collision between generated nonces.
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Fig. 2. Games for defining predictability of the nonce generator NG and real-or-random
security of function family HE.

Nonce generators represent another departure from nonce-based symmetric
encryption. In the latter the adversary picks the nonce, but we saw in Sect. 1
that this does not work in the public-key setting. Instead, we model the process
of a sender picking a nonce via a nonce generator.

In discussions, we refer to NG as weakly unpredictable if it is unpredictable
for adversaries making no EXPOSE query, meaning Advpred

NG (q1, 0) is “small”
for “practical” values of q1, and strongly unpredictable if it is unpredictable even
for adversaries making an EXPOSE query, meaning Advpred

NG (q1, 1) is “small”
for “practical” values of q1. If NG is strongly unpredictable it is also weakly
unpredictable, but not necessarily vice versa. That is, the class of weakly unpre-
dictable nonce generators is larger than the class of strongly unpredictable nonce
generators.

Real or random security. Let HE: HE.Keys × HE.Dom → HE.Rng be an
oracle family of functions (this means it may have access to a random oracle).
The first input is referred to as the “key” or the “seed.” The domain has the
form HE.Dom = {0, 1}∗ × HE.NS, so that an input is a pair of strings, the first
referred to as the “message” and the second as the “nonce,” the latter drawn
from a nonce space HE.NS associated to HE. Consider game Gror

HE,NG(G) of Fig. 2
associated to HE, nonce generator NG and an adversary G. The number of queries
to EXPOSE is either 0 or 1, and the number to other oracles is arbitrary. Let

Advror
HE,NG(G) = 2 Pr[Gror

HE,NG(G)] − 1 .
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Note that here the adversary is given the key (seed) xk as input, unlike in the
PRF notion, modeling exposure of the sender seed. Security asks that outputs of
HE(xk, (·, ·)), for adversary-chosen messages and nonces from the nonce genera-
tor, are indistinguishable from random. Clearly, this will be possible only with
certain restrictions, which will emerge when we discuss our constructions below.

In game Gror
HE,NG(G), we say that adversary G is agnostic if its RoR queries

do not depend on the seed xk. More formally, there exists a pair (G1,G2) of
algorithms such that GRoR,EXPOSE,RO(xk) does the following:

St ←$ GRoR,EXPOSE,RO

1 (ε) ; c′ ← GEXPOSE,RO

2 (xk,St) ; Return c′ .

This represents one of the restrictions we will impose to achieve ror security in
the standard model.

Hedged extractors. A hedged extractor HE: HE.Keys × HE.Dom → HE.Rng
is an oracle family of functions as above where the goal is that (1) HE is a PRF,
meaning Advprf

HE(A) is low for any adversary A of practical resources, and also
(2) Advror

HE,NG(G) is small for some class of nonce generators NG and some class of
ror adversaries G, both specified via results for individual hedged extractors. We
give a ROM construction and standard model one. Both achieve PRF security,
but differ in the type of ror security achieved. The ROM construction achieves
ror security for unpredictable nonce generators (both weak and strong) and for
all ror adversaries. This is “best possible” because the unpredictability assump-
tion is easily seen to be necessary. The standard model construction achieves
ror security for strongly unpredictable generators and agnostic ror adversaries.
These restrictions reflect limitations of the randomness extractors that are our
underlying tool. The restriction to agnostic adversaries reflects that randomness
extractors only work on seed-independent distributions, and the strong unpre-
dictability requirement on the generator reflects that when extracting from a
sequence of inputs, one needs not only that each has some min-entropy, but that
it does even given the others.

ROM hedged extractor. We start by giving a simple and efficient construc-
tion HE1 of a hedged extractor in the ROM. Let � be a desired number of output
bits for the extractor, and k a desired seed (key) length. Associated to �, k is the
hedged extractor HE = HE1[�, k]: {0, 1}k × ({0, 1}∗ ×{0, 1}∗) → {0, 1}� defined
by

HERO(xk, x) = RO((xk, x), �) .

Here HE.Keys = {0, 1}k, HE.Dom = {0, 1}∗ × HE.NS with HE.NS = {0, 1}∗, and
HE.Rng = {0, 1}�.

The following lemma states that this construction achieves PRF security and
also achieves real or random security assuming only that the nonce generator
is unpredictable. Note the latter only requires each nonce to individually be
unpredictable, but nonces may be arbitrarily correlated, and it could be that
given n1 one can easily predict n2. But the extractor works nonetheless.

Lemma 1. Let �, k ≥ 1 be integers and let HE = HE1[�, k] be the ROM function
family associated to � and k as above.
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1. If A is an adversary making q2 queries to its RO oracle, then

Advprf
HE(A) ≤ q2

2k
. (1)

2. Let NG be a nonce generator. If G is an adversary making q1 queries to
its RoR oracle, q2 queries to its RO oracle, and q3 ∈ {0, 1} queries to its
EXPOSE oracle, then

Advror
HE,NG(G) ≤ q2 · Advpred

NG (q1, q3) . (2)

Note that in the 2nd case, the reduction preserves the number of EXPOSE

queries, meaning the number reflected by q3 is the number made by G. This is
the best one could hope for.

Proof (Lemma 1). For the proof of Eq. 1, consider the games G0, G1 of Fig. 3,
where G1 contains the boxed code and G0 does not. Letting c denote the chal-
lenge bit in game Gprf

HE (A), the following, justified below, establishes Eq. 1:

Advprf
HE(A) = Pr[Gprf

HE (A) | c = 1 ] −
(
1 − Pr[Gprf

HE (A) | c = 0 ]
)

(3)

= Pr[G1] − Pr[G0] (4)
≤ Pr[G0 sets bad] (5)

≤ q2
2k

. (6)

Equation 3 is a standard re-formulation of the definition of the advantage. In
game G0, replies to queries to the Fn and RO oracles are independently dis-
tributed, so that it is equivalent to the c = 0 case of game Gprf

HE (A), up to the
flipping of the outcomes from true to false. In game G1, the replies to Fn queries
are given by HERO, making it equivalent to the c = 1 case of game Gprf

HE (A).
This justifies Eq. 4. Games G0,G1 are identical until bad (differ only in state-
ments following the setting of bad to true), so the Fundamental Lemma of Game
Playing [10] justifies Eq. 5. In game G0, replies to all oracle queries are random
and independent of xk so the probability that the latter is queried as part of an
RO query is at most the quantity of Eq. 6.

For Eq. 2, consider the games G2,G3 of Fig. 3, where G3 contains the boxed
code and G2 does not. Let predictor adversary P be as specified in Fig. 3. Letting
c denote the challenge bit in game Gror

HE,NG(G), the following, justified below,
establishes Eq. 2:

Advror
HE,NG(G) = Pr[Gror

HE,NG(G) | c = 1 ] −
(
1 − Pr[Gror

HE,NG(G) | c = 0 ]
)

(7)

= Pr[G3] − Pr[G2] (8)
≤ Pr[G2 sets bad] (9)

≤ q2 · Advpred
NG (G) (10)

≤ q2 · Advpred
NG (q1, q3) . (11)
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Fig. 3. Games and adversary for proof of Lemma 1.

Equation 7 is a standard re-formulation of the definition of the advantage. In
game G2, replies to queries to the RoR and RO oracles are independently dis-
tributed, so that it is equivalent to the c = 0 case of game Gror

HE,NG(G), up to
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the flipping of the outcomes from true to false. In game G3, the replies to RoR

queries are given by HERO, making it equivalent to the c = 1 case of game
Gror

HE,NG(G). This justifies Eq. 8. Games G2,G3 are identical until bad, so the
Fundamental Lemma of Game Playing [10] justifies Eq. 9. In game G2, replies
to all oracle queries are random and independent, so adversary P can simulate
the oracles of adversary G directly. Its output is a random one of the nonces in
a RO-query of G, whence Eq. 10. Equation 11 is because P makes q1 calls to its
GEN oracle and q3 queries to its EXPOSE oracle. 
�

Standard-model hedged extractor. Next we give a standard-model
hedged extractor based on a PRF F and an almost-XOR-universal hash
function H. We use the latter essentially as a strong extractor. The construc-
tion is simple: the PRF is evaluated on the message and nonce, and the hash
function is evaluated only on the nonce. The results are combined via a simple
XOR operation. The intuition behind this is that as long as at least one of the
outputs generated by the two schemes is random, then the result is also random.
PRF security of the hedged extractor is proved assuming only on the assumed
PRF security of F. Real-or-random security of the hedged extractor is shown for
a restricted class of nonce generators NG and adversaries G. Namely NG must
retain unpredictability even in the presence of an EXPOSE query revealing the
state, and G’s RoR queries must not depend on the seed. These restrictions
reflect inherent limitations of strong extractors.

We start with some definitions. For ε ∈ [0, 1], function family H is ε-almost
XOR-universal [22] if H.Rng = {0, 1}� for some � ∈ N and, for all distinct
x, y ∈ H.Dom and all s ∈ {0, 1}�, we have

Pr[H(hk, x) ⊕ H(hk, y) = s : hk ←$ H.Keys] ≤ ε.

Our standard model construction is as follows. Let � be a desired number of
output bits for the extractor. Let F: F.Keys × ({0, 1}∗ × {0, 1}∗) → {0, 1}� be
a function family assumed to be a PRF, and let H: H.Keys × H.Dom → {0, 1}�

be an almost-XOR-universal hash function with H.Dom ⊆ {0, 1}∗. We asso-
ciate to �,F,H the standard-model hedged extractor HE = HE2[F,H]: (F.Keys×
H.Keys) × ({0, 1}∗ × H.Dom) → {0, 1}� defined by

Algorithm HE(xk, (x, y))
(hk, fk) ← xk ; z1 ← H(hk, y) ; z2 ← F(fk, (x, y)) ; Return z1 ⊕ z2

Here HE.Keys = F.Keys × H.Keys, HE.Dom = {0, 1}∗ × HE.NS with HE.NS =
H.Dom, and HE.Rng = {0, 1}�. The following says this hedged extractor achieves
PRF security and restricted real-or-random security.

Lemma 2. Let � ≥ 1 be an integer. Let F: F.Keys×({0, 1}∗ ×{0, 1}∗) → {0, 1}�

be a function family. Let H: H.Keys × H.Dom → {0, 1}� be a (1 + γ) · 2−�-
almost-XOR-universal hash function. Let HE = HE2[F,H] be the function family
associated to �, F and H as above.
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1. If A is an adversary making q queries to its Fn oracle then there is an
adversary B (described in the proof) such that

Advprf
HE(A) ≤ Advprf

F (B) . (12)

Adversary B also makes q queries to its Fn oracle and has running time that
of A plus the time for q computations of H.

2. Let NG be a nonce generator that produces outputs in the set H.Dom. If G is an
agnostic adversary making q queries to its RoR oracle and Advpred

NG (q, 1) ≤
2−m, then

Advror
HE,NG(G) ≤ q

2

√
γ +

2�

2m
. (13)

To prove this we first need some more definitions. Recall that for ε ∈ [0, 1], a func-
tion family H is ε-almost universal if Pr[H(hk, x) = H(hk, y) : hk ←$ H.Keys] ≤
ε for all distinct x, y ∈ H.Dom. For a function family H with H.Dom =
{0, 1}∗ × {0, 1}∗, we say that H is ε-almost universal in the second input com-
ponent if for all x1, y1 ∈ {0, 1}∗ and all x2, y2 ∈ {0, 1}∗ with x2 = y2,
Pr[H(hk, (x1, x2)) = H(hk, (y1, y2)) : hk ←$ H.Keys] ≤ ε. For k ∈ N and ε ∈ [0, 1],
a (k, ε)-strong extractor SE is a (standard model) family of functions such that
Advror

E,NG(1, 0, 1) ≤ ε for all NG with Advpred
NG (1, 1) ≤ 2−k. This is a re-formulation

of the standard requirement that is clearly equivalent to it. The Leftover Hash
Lemma, a celebrated result by Impagliazzo, Levin, and Luby [20], states that an
almost universal hash function is a strong extractor:

Lemma 3 (Leftover Hash Lemma). Let γ, k > 0. Let H be an (1 +
γ)/|H.Rng|-almost universal hash function family. Then H is an (k, ε)-strong
extractor where

ε =
1
2

√
γ +

|H.Rng|
2k

.

The original result is stated in a different formalism and a slightly more restricted
form, but it generalizes to the form stated here. (The formulation of the bounds
comes from [2].)

Since we use the nonce that is used in the hash function H also outside of
it, namely in the evaluation of the PRF F, we cannot immediately apply the
leftover-hash lemma. However, we show that if the function H is almost XOR-
universal, then the hedged extractor HE obtained by XORing the output of F to
the output of H is almost universal and therefore serves as a strong extractor.

Lemma 4. Let H : H.Keys × H.Dom → {0, 1}� be an ε-almost-XOR-universal
hash function. Let F : F.Keys×({0, 1}∗×{0, 1}∗) → {0, 1}� a function family and
H.Dom ⊆ {0, 1}∗. Then HE as defined above is ε-almost-universal in the second
input component.
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Proof. For all m, m′ ∈ {0, 1}∗ and n, n′ ∈ H.Dom with n = n′:

Pr [HE(xk, (m, n)) = HE(xk, (m′, n′)) : xk ←$ HE.Keys]

= Pr
[
H(hk, n) ⊕ F(fk, (m, n)) = H(hk, n′) ⊕ F(fk, (m′, n′))

: (hk, fk) ←$ H.Keys × F.Keys
]

≤ max
fk∈F.Keys

Pr
[
H(hk, n) ⊕ H(hk, n′) = F(fk, (m, n)) ⊕ F(fk, (m′, n′))

: hk ←$ H.Keys
]

≤ ε,

since for each fk ∈ F.Keys the term F(fk, (m, n))⊕F(fk, (m′, n′)) describes a fixed
value s ∈ {0, 1}� and H is ε-almost XOR-universal. 
�

A strong extractor will only guarantee the outputs to be random and inde-
pendent of the seed if the inputs to the extractor, that is the nonces, do not
depend on the seed. Once the seed is exposed to the adversary, no guarantee on
further outputs can be given. Therefore, for the game Gror

HE,NG(G) we restrict our
attention to agnostic adversaries G.

Proof (Lemma 2). We first prove Eq. 12. Adversary B starts by choosing a
seed hk ←$ H.Keys uniformly at random. It then uses the assumed adversary A,
and whenever A makes a query Fn(x, y), then B first computes z1 ← H(hk, y)
and then makes a query z2 ← Fn(x, y), and returns z1 ⊕ z2. Finally, B provides
the same output as A. The view of A has the same distribution in Gprf

HE (A) and
in Gprf

F (B), and therefore the distribution of the output is also the same. This
implies Eq. 12.

We prove Eq. 13 using a hybrid argument similarly to Zuckerman [33,
Lemma 6]. The hybrid argument involves a game G as specified in Fig. 4 and
adversaries G1, . . . ,Gq that each query the oracle RoR only once. This is achieved
by having Gi answer the ith query of G by using the RoR oracle, by using for all
previous queries uniformly random values and computing all subsequent values
by evaluating HE. In more detail, for all queries j = 1, . . . , i−1, the adversary Gi

will call its GEN(η) oracle and then sample a value from HE.Rng = {0, 1}� uni-
formly at random. For the ith query, the adversary Gi will call RoR(m, η) and
obtain the output r, as well as the nonce generator’s state St through a subse-
quent EXPOSE query. The answer to G will be r in this case. For all queries
j = i + 1, . . . , q, adversary Gi will compute the nonce via (nj ,St) ← NG(η,St)
and the output as HE(xk,m, nj). This is possible because it uses the seed xk
only after the challenge query. We can therefore specify the adversary as a pair
Gi = (Gi,prep,Gi,chal) as described in Fig. 4.

To conclude the hybrid argument, we first observe that the view of G in
Gror

HE,NG(G) with c = 1 is the same as its view in G(G1) with c = 1. Subsequently,
for each i = 1, . . . , q − 1, the view of G in G(Gi) with c = 0 is the same as in
G(Gi+1) with c = 1. Finally, the view of G in G(Gq) with c = 0 is the same as in
Gror

HE,NG(G) with c = 0.
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Fig. 4. Hybrid game for E, as needed in the proof of Lemma 2.

We still have to bound the advantage of adversary Gi. By Lemma 4, we know
that HE is (1+γ)/2�-almost universal in its second input and therefore by a slight
generalization of Lemma 3 an (m, ε)-strong extractor for ε = 1/2

√
γ + 2�−m.

Fix i, then Gi,prep makes i − 1 queries to its GEN oracle. We can therefore
define a nonce generator RG(Gi,guess,NG) as follows: Set St ← ε and execute
(n,StG) ←$ GGEN

i,guess with the oracle as defined in the game. Compute a random x
via (x,St) ←$ NG(η,St) and output a pair (x, (St ,StG)).

This implies that Advpred
RG(Gi,prep,NG)

(1, 1) ≤ Advpred
NG (i, 1), since otherwise

Gi,prep could be used in the statement against the assumption on NG. But now
we can view Gi,chal as an adversary against HE in the original Gror game, and
2Pr [HYBHE,NG(Gi)] − 1 ≤ Advror

SE,RG(Gi,prep,NG)(Gi,chal) ≤ ε. We obtain a factor q
through the hybrid argument; this completes the proof. 
�

4 Nonce-Based Public-Key Encryption

In this section we define nonce-based public-key encryption, giving first a syntax
and then two security goals, NBP1 and NPB2. We give a construction, simul-
taneously meeting both goals, based on a hedged extractor. Instantiating the
latter via our constructions of Sect. 3 yields concrete nonce-based PKE schemes,
one in the ROM and the other in the standard model.

Syntax. A nonce-based public-key encryption scheme NPE specifies the follow-
ing. Receiver key-generation algorithm NPE.Kg returns an encryption key ek and
associated decryption key dk. Sender seed-generation algorithm NPE.sKg returns
a seed xk. Encryption algorithm NPE.Enc takes ek, xk, message m ∈ {0, 1}∗ and
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nonce n from nonce set NPE.NS to return a ciphertext c. This algorithm is
deterministic. Decryption algorithm NPE.Dec (also deterministic) takes ek,dk
and ciphertext c to return a value in {0, 1}∗ ∪ {⊥}. The scheme NPE is cor-
rect if for all (ek,dk) ∈ [NPE.Kg], all xk ∈ [NPE.sKg], all m ∈ {0, 1}∗ and all
n ∈ NPE.NS we have NPE.Dec(ek,dk,NPE.Enc(ek, xk,m, n)) = m.

The receiver key-generation algorithm has the same role as in a random-
ized PKE scheme. The sender seed-generation algorithm is a new element of
nonce-based PKE schemes. Encryption is changed to take a nonce rather than
randomness and, importantly, is now deterministic. Decryption is as in a stan-
dard PKE scheme. Unlike symmetric nonce-based encryption, the decryption
algorithm is not given the nonce.

Nonce-based encryption is a sender-side hardening and can be added to an
existing encryption scheme in such a way that the receiver is oblivious to its
presence and the receiver implementation needs no changes.

Fig. 5. Games for security goals for nonce-based asymmetric encryption scheme NPE.
Both are relative to nonce generator NG.
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Security definitions. Let NPE be a nonce-based PKE scheme. Let NG be
a nonce generator returning nonces in NPE.NS. We associate to NPE, NG and
adversary A the games of Fig. 5. We define the advantages of A in these games
via

Advnbp1
NPE,NG(A) = 2 Pr[Gnbp1

NPE,NG(A)] − 1

and
Advnbp2

NPE,NG(A) = 2 Pr[Gnbp2
NPE,NG(A)] − 1 ,

respectively. The games are described in the ROM; standard-model definitions
are derived by considering only schemes and adversaries that do not query the
RO oracle. The notation “nbp” stands for “nonce-based privacy.” We proceed
to discuss the definitions.

Game Gnbp1
NPE,NG(A) formalizes security in the case where the sender’s seed is

not exposed, captured in the formalism by the fact that the adversary is not given
the seed as input, while game Gnbp2

NPE,NG(A) formalizes security in the case where
the sender’s seed is exposed, formalized by its being given to the adversary as
input. Both ask for indistinguishability-style security under a chosen-ciphertext
attack. In Gnbp1

NPE,NG(A), the natural restriction that one would consider is to ask
that nonces not repeat. The restriction we make is weaker, resulting in a stronger
security condition, namely that message-nonce pairs may not repeat. (Thus,
security is provided even if a nonce repeats, as long as the message is different.)
We will achieve this notion for any nonce generator, meaning we get very good
privacy with minimal restrictions on nonces. In Gnbp2

NPE,NG(A), no restriction is
made, so a priori the notion is stronger, but we will achieve it only if the hedged
extractor is ror-secure, which will be further reduced to unpredictability of the
nonce generator. Thus, in this case, security requires unpredictable nonces.

In game Gnbp2
NPE,NG(A), we say that adversary A is agnostic if its ENC,DEC

queries do not depend on the seed xk. More formally, there exists a pair (A1,A2)
of algorithms such that AENC,DEC,RO(ek, xk) does the following:

St ←$ AENC,DEC,RO

1 (ek) ; c′ ← ARO

2 (xk,St) ; Return c′ .

Scheme. We specify a scheme NPE that achieves both the NPB1 and NPB2 secu-
rity notions simultaneously, that is, it guarantees security if either the sender’s
state remains secret andas long as themessage-noncepairs are unique, or even if the
sender’s state is leaked to the adversary as long as the nonces are sufficiently unpre-
dictable. The construction is actually a transform R2NPE that takes a base, ran-
domized PKE scheme PE and a hedged extractorHE to return a nonce-based PKE
scheme NPE = R2NPE[PE,HE] whose algorithms are described in Fig. 6. The
nonce space is that of the hedged extractor, i.e. NPE.NS = HE.NS. The construc-
tion requires that the randomness provided by HE is sufficient, i.e., PE.rl = HE.ol.

We first prove that the scheme achieves NBP1-security, that is, it is secure as
a nonce-based scheme as long as the sender’s seed remains secret. The theorem
bounds the adversaries advantage by advantages of other, related adversaries
against the underlying probabilistic public-key scheme and the PRF-property of
the hedged extractor HE. For the constructions described in Sect. 3, the latter
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Fig. 6. The nonce-based public-key encryption scheme NPE, based on probabilistic
public-key encryption scheme PE and hedged extractor HE. The nonce space is the
same as for the hedged extractor.

advantage is then bounded by Lemmas 1 (for the ROM construction) and 2 (for
the standard-model construction), respectively.

Theorem 5. Let PE be a (standard, randomized) public-key encryption scheme.
LetHE be a hedged extractor. Let nonce-based public-key encryption schemeNPE =
R2NPE[PE,HE] be associated to them as above. Let NG be a nonce generator. Let
A be an adversary making at most q1 queries to its ENC oracle, q2 queries to its
DEC oracle, and q3 queries to its RO oracle. Then the proof specifies adversaries
B and G such that

Advnbp1
NPE,NG(A) ≤ 2Advprf

HE(G) + Advind
PE(B) , (14)

where adversary B makes at most q1 queries to its ENC oracle and q2 queries
to its DEC oracle; in terms of computation it evaluates NG for q1 times and
manages an array of generated ciphertexts. Adversary G makes at most q1 queries
to its Fn oracle and q3 queries to its RO oracle; it generates keys for PE and
compute q1 encryptions and q2 decryptions in addition to the computation of A.

Proof. Adversary B obtains ek and starts by setting St ← ε, S0 ← ∅, and
S1 ← ∅. Adversary B then runs the adversary A internally on input ek. For queries
ENC(m0,m1, η), adversary B computes (n,St) ←$ NG(η,St), checks whether
(m0, n) ∈ S0 or (m1, n) ∈ S1, and returns ⊥ in that case. Otherwise, it queries
its own oracle ENC(m0,m1) and returns the result to A. Queries DEC(c) are
answered using the respective oracles in the game, and potential queries RO(x, l)
are answered by emulating a random oracle via lazy sampling as also described in
the game.

For each d ∈ {0, 1}, adversary Gd against the PRF initializes St ← ε, S0 ← ∅,
and S1 ← ∅ as B and generates a key pair (ek,dk) ←$ PE.Kg. Adversary Gd

then runs adversary A on input ek. Upon a query ENC(m0,m1, η) from A,
adversary Gd computes (n,St) ←$ NG(η,St), checks whether (m0, n) ∈ S0 or
(m1, nonce) ∈ S1, and returns ⊥ in that case. Gd gets r from its oracle Fn(md, n),
computes c ← PE.Enc(ek,md; r) and returns c. Queries DEC(c) are answered by
computing m ← PE.Dec(ek,dk, c) and returning m. Potential queries RO(x, l)
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are referred to the random oracle provided in the game. When A provides its
output b′, then Gd outputs b′ ⊕ d.

We define a hybrid game G in which all computations are performed as before,
except that in the encryption with a new pair of message mb and nonce n a fresh
random string r ← {0, 1}� is used. The difference with the game Gnbp1

NPE,NG(A)
can be highlighted as described in game G in Fig. 7.

Fig. 7. Intermediate games used in the proofs of Theorem 5 (left) and Theorem 6
(right).

The view of A in G is exactly the same as in Gind
PE (B). Furthermore, we

observe that

2Pr[Gprf
HE (G0)] = Pr[Gnbp1

NPE,NG(A)|b = 0] − Pr[G|b = 0] + 1,

the reason is that if the bit b = 0 is chosen in Gprf
HE (G0), then the view of A

is exactly as in G with b = 0; all ciphertexts are encryptions of m0 with fresh
randomness. Analogously, if b = 1 is chosen in Gprf

HE (G0), then the view of A is
exactly as in Gnbp1

NPE,NG(A) with b = 0; all ciphertexts are encryptions of m0 with
randomness computed via NG and HE from the message m0 and the input η,
but in this case G0 outputs the “wrong” bit. In the same sense,

2Pr[Gprf
HE (G1)] = Pr[Gnbp1

NPE,NG(A)|b = 1] − Pr[G|b = 1] + 1,

since if the bit b is chosen as b = 0 in Gprf
HE (G0), then the view of A is exactly as

in G with b = 1; all ciphertexts are encryptions of m1 with fresh randomness.
This is the reason for G1 to invert the output of A. Overall, we obtain

Advnbp1
NPE,NG(A) = Pr[Gnbp1

NPE,NG(A)|b = 0] + Pr[Gnbp1
NPE,NG(A)|b = 1] − 1

= Pr[Gnbp1
NPE,NG(A)|b = 0] − Pr[G|b = 0]

+ Pr[Gnbp1
NPE,NG(A)|b = 1] − Pr[G|b = 1] + 2Pr[G] − 1

≤ 2Pr[Gprf
HE (G0)] − 1 + 2 Pr[Gprf

HE (G1)] − 1 + Advnbp1
PE (B)

= Advprf
HE(G0) + Advprf

HE(G1) + Advnbp1
PE (B).
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The proof concludes by defining G as choosing G0 or G2 with probability 1/2
each. 
�

The property of a hedged extractor to serve simultaneously as extractor and
as a PRF implies that the scheme described above is also secure even if the
sender’s seed leaks, as long as the nonces are sufficiently unpredictable. The
reduction in the theorem below preserves agnosticity, meaning if A is agnostic,
so is G. This allows us to draw conclusions based on Lemma 2 in the case of the
standard-model hedged extractor.

Theorem 6. Let PE be a (standard, randomized) public-key encryption scheme.
Let HE be a hedged extractor. Let nonce-based public-key encryption scheme
NPE = R2NPE[PE,HE] be associated to them as above. Let NG be a nonce
generator. Let A be an adversary making at most q1 queries to its ENC oracle,
q2 queries to its DEC oracle, and q3 queries to its RO oracle. Then the proof
specifies adversaries B and G such that

Advnbp2
NPE,NG(A) ≤ 2Advror

HE,NG(G) + Advind
PE(B) , (15)

where adversary B makes at most q1 queries to its ENC oracle and q2 queries to
its DEC oracle, and emulates a random oracle for q3 queries. Adversary G makes
at most q1 queries to its RoR oracle and q3 queries to its RO oracle; it generates
keys for PE and computes q1 encryptions and q2 decryptions in addition to the
computation of A. Furthermore, if A is agnostic, then G is also agnostic.

Proof. The proof follows the same ideas as the one for Theorem 5. Adversary B
against the underlying public-key encryption scheme PE behaves as follows. It
obtains an encryption key ek as an input and generates a seed xk ←$ HE.Keys,
and then runs adversary A on input (ek, xk). Upon a query ENC(m0,m1, η)
by A, adversary B queries its oracle ENC(m0,m1) and returns the result to A.
Queries DEC(c) are answered by making the same query to its own oracle; the
queries RO(x, l) are answered by emulating a random oracle via lazy sampling.
Adversary B outputs the same output bit as A.

For each d ∈ {0, 1}, adversary Gd against the extractor behaves as follows. It
obtains an extractor seed xk ∈ HE.Keys, generates a key pair (ek,dk) ←$ PE.Kg,
and then runs adversary A on input (ek, xk). Upon a query ENC(m0,m1, η)
from A, adversary Gd calls RoR(md, η) to obtain a random string r. It then
computes c ← PE.Enc(ek,md; r) and returns c. Queries DEC(c) are answered by
computing m ← PE.Dec(ek,dk, c) and returning m. Potential queries RO(x, l)
are referred to the random oracle provided in the game. When A provides its
output b′, then Gd outputs b′ ⊕ d. Note that Gd uses the seed only through A,
and if A uses it only after all encryption queries, then Gd uses it only after all
RoR queries. Thus, if A is agnostic, then Gd is also agnostic.

We define a hybrid game H in which all computations are performed as
before, except that in the encryption a fresh random string r ← {0, 1}� is used;
the difference with the game Gnbp2

NPE,NG(A) is highlighted by the boxed code in
Fig. 7.
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The view of A in H is exactly the same as in Gnbp2
PE (B). Furthermore, we

observe that

2Pr[Gror
HE,NG(G0)] = Pr[Gnbp2

NPE,NG(A)|b = 0] − Pr[H|b = 0] + 1,

the reason is that if the bit b = 0 is chosen in Gror
HE,NG(G0), then the view of A

is exactly as in H with b = 0; all ciphertexts are encryptions of m0 with fresh
randomness. Analogously, if b = 1 is chosen in Gror

HE,NG(G0), then the view of A is
exactly as in Gnbp2

NPE,NG(A) with b = 0; all ciphertexts are encryptions of m0 with
randomness computed via HE and NG from the message m0 and the input η,
but in this case G0 outputs the “wrong” bit. In the same sense,

2Pr[Gror
HE,NG(G1)] = Pr[Gnbp2

NPE,NG(A)|b = 1] − Pr[H|b = 1] + 1,

since if the bit b is chosen as b = 0 in Gror
HE,NG(G0), then the view of A is exactly

as in H with b = 1; all ciphertexts are encryptions of m1 with fresh randomness.
This is the reason for G1 to invert the output of A. The final computation follows
exactly as in Theorem 5. 
�

Settings with multiple senders and multiple receivers. The secu-
rity properties defined above take into account only a single sender and a
single receiver. Realistic settings, however, involve multiple senders and mul-
tiple receivers. This means that, on the one hand, encryptions toward the same
receivers will be made with respect to different sender seeds. On the other hand,
senders will use the same seed to generate randomness for encryptions toward
different receivers. To achieve security in these settings, we extend the games
Gnbp2

NPE,NG(A) and Gnbp1
NPE,NG(A) by the following oracle:

ENC2(ek,m, η)
(n,St) ←$ NG(η,St)
c ← NPE.Enc(ek, xk,m, n)
Return c

The scheme discussed above can easily be shown to achieve the correspond-
ingly modified games; the hedged extractor provides uniform and independent
randomness for each encryption.

Extending this game to multiple senders and multiple receives is done by
generating multiple sets of keys and seeds in the game and extending the oracles
with arguments to select the desired sender and/or receiver of the messages to
be processed. The proof then follows by two hybrid arguments, one for reducing
the number of senders, and one for reducing the number of receivers. The oracle
ENC2 is required in the step to reduce the number of receivers to simulate
encryptions toward the receivers not captured in the game.

5 Nonce-Based Signatures

In this section we define and construct nonce-based digital signature schemes.
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Background. Eliminating randomness in signing is not new and is easily done.
A simple way to convert a given randomized EUF-CMA digital signature scheme
DS into a deterministic one is as follows. Let F be a PRF. The key-generation
algorithm lets (sk, vk) ←$ DS.Kg and fk ←$ F.Keys, and stores the pair (fk, sk) as
the secret signing key of the new scheme. A signature on a message m ∈ {0, 1}∗ is
then computed by first evaluating r ← F(fk,m) and then s ← DS.Sig(sk,m; r).
This method goes back to MNPV [23] and it is easy to show that it works,
meaning the constructed, deterministic signature scheme retains the EUF-CMA
security of the starting randomized one assuming F is a PRF.

The above solution, however, changes the secret key, which is not always
desirable. For example it may be a problem to retrofit deployed schemes with
the modification, or if the same signature key is used by multiple applications
and the format cannot easily be changed. A folklore solution is to leave the
keys unchanged and obtain the coins r via a random oracle applied to the exist-
ing secret key sk and the message. In the case that DS is ECDSA, this was
proven to work by KM [21]. It was proven to work in general (meaning, for
any base EUF-CMA scheme) by BPS [9]. Such de-randomization is used in the
Ed25519 signature scheme [11] and is specified for DSA and ECDSA in an RFC
by Pornin [25].

Nonce-based signatures. In our model, the signer has a secret key as well
as a seed. Signing uses both these and a nonce, and is deterministic. If the seed
(and secret key) are kept private, we get the usual EUF-CMA level of security,
regardless of how nonces are generated. So far this is providing the same security
as deterministic signature schemes. The added condition is that if the seed is
exposed (but the secret key isn’t) then we still retain security as long as the
nonces are unpredictable.

The secret key and seed are held by the same entity, namely the signer.
So one may ask how it could be that the seed is exposed but the secret key
isn’t. That is, either the system is secure, in which case both are secure, or not,
in which case both are exposed. If so, indeed, nonce-based signatures do not
provide anything over and above classical deterministic signatures. However, we
can imagine settings where the level of security for the secret key and seed are
different. For example the secret key may be already stored in hardware, and the
seed not. The seed may be stored at a different place than the signature scheme’s
secret key, and it may be re-generated at any frequency that seems appropriate
for the application (ranging from never, at fixed time intervals, at every system
reboot, or at every signature operation). Being a signer-only modification of the
signature generation, a user may also use different seeds on different machines,
or use the modified scheme with the standard probabilistic one.

The scheme we propose is again based on hedged extractors.

Definitions. A nonce-based signature scheme NDS specifies the following.
Signer key-generation algorithm NDS.Kg returns a signature key sk, a verifi-
cation key vk, and a seed xk. Deterministic signature algorithm NDS.sign takes
sk, xk, message m ∈ {0, 1}∗, and nonce n from nonce set NDS.NS, to return
a signature s ∈ {0, 1}NDS.ol. Deterministic verification algorithm NDS.vrf takes



752 M. Bellare and B. Tackmann

Fig. 8. Games for security goals for nonce-based digital scheme NDS relative to nonce-
generator NG, and our nonce-based digital signature scheme.

vk, message m ∈ {0, 1}∗, and candidate signature s ∈ {0, 1}NDS.ol, to return
a bit b ∈ {0, 1}. The scheme NDS is correct if for all (sk, vk, xk) ∈ [NDS.Kg],
all m ∈ {0, 1}∗ and n ∈ NDS.NS, the verification of true signatures succeeds:
NDS.vrf(vk,m,NDS.sign(sk, xk,m, n)) = 1.

To formalize security, we consider the games Gnbuf1
NDS,NG(A) and Gnbuf2

NDS,NG(A)
in Fig. 8 associated to nonce-based signature scheme NDS, nonce generator NG
returning nonces in NDS.NS, and adversary A, where the second game includes
the boxed code and the first does not. We let

Advnbuf1
NDS,NG(A) = Pr[Gnbuf1

NDS,NG(A)] , and

Advnbuf2
NDS,NG(A) = Pr[Gnbuf2

NDS,NG(A)] .

As usual the games are described in the ROM, with standard-model definitions
are derived by considering only schemes and adversaries that do not query the
RO oracle. The difference between the games is tiny, and in just one line of
the code, namely that in the second game, the adversary gets the seed xk as an
additional input. The first game captures the case that the seed is not exposed,
and we will guarantee security for any nonce generator. The second game cap-
tures the case that the seed is exposed, in which case we will provide security
for unpredictable nonce generators.

Regular signature schemes can be viewed as a special case of nonce-based ones
where the seed xk is defined to be the empty string and security is measured
relative only to the nonce generator that always returns a uniformly random
string.
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In game Advnbuf2
NDS,NG(A), we say that adversary A is agnostic if its SIG queries

do not depend on the seed xk. More formally, there exists a pair (A1,A2) of
algorithms such that ASIG,RO(vk, xk) does the following:

St ←$ ASIG,RO

1 (vk) ; (m, s) ← ARO

2 (xk,St) ; Return (m, s) .

Scheme. We specify a transform R2NDS that takes a (standard, randomized)
signature scheme DS and a hedged extractor HE and returns the nonce-based sig-
nature scheme NDS = R2NDS[DS,HE] whose algorithms are described in Fig. 8.
The nonce space is the same as for the hedged extractor, i.e. NDS.NS = HE.NS.
The length of the signatures is preserved, NDS.ol = DS.ol. The construction
requires that HE provides sufficient randomness, i.e., DS.rl = HE.ol.

We first show that the described scheme NDS is indeed secure according to the
game Gnbuf1

NDS,NG(A), that is, in case the seed is not exposed. In this case and if the
hedged extractor is a good pseudo-random function, we achieve the same security
guarantees as achieved by the original scheme if proper randomness is used.

Theorem 7. Let DS be a (standard, randomized) digital-signature scheme. Let
HE be a hedged extractor. Let nonce-based digital signature scheme NDS =
R2NDS[DS,HE] be associated to them as above. Let NG be a nonce genera-
tor. Let A be an adversary making at most q1 queries to its SIG oracle and q2
queries to its RO oracle. Then the proof specifies adversaries B and G such that

Advnbuf1
NDS,NG(A) ≤ Advprf

HE(G) + Advuf
DS(B) , (16)

where adversary B makes at most q1 queries to its SIG oracle; besides emulating
a Random Oracle it performs almost the same computation as A. Adversary G
makes at most q1 queries to its RoR oracle and q2 queries to its RO oracle; in
terms of computation it generates a key pair for DS and computes q1 signatures.

Proof. Adversary B against DS behaves as follows. When started with input vk,
it executes A(vk). Upon a query SIG(m, η) from A, adversary B queries SIG(m),
obtaining a signature s, and returns s to A. Queries to the oracle RO are exactly
as in the game, that is, by lazy sampling of a random function.

Adversary G against the hedged extractor behaves as follows. It generates
a key pair (sk, vk) ←$ DS.Kg, and then runs adversary A on input vk. Upon a
query SIG(m, η) from A, adversary G calls Fn(m, η) to obtain a random string r.
It then computes s ← DS.Sig(sk,m; r) and returns s. Potential queries RO(x, l)
are referred to the random oracle provided in the game. When A provides its
output (m, s), then G outputs the result of DS.Ver(vk,m, s) = 1.

We define a hybrid game G that is defined almost identically with
Gnbuf1

NDS,NG(A), with the only difference that the randomness used in SIG queries
is uniformly random instead of derived via the hedged extractor. The difference
with the game Gnbuf1

NDS,NG(A) is highlighted in Fig. 9.
The view of A in G is the same as in Guf

DS(B); in both cases the signatures
are computed with fresh randomness.
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Fig. 9. Intermediate games used in the proofs of Theorem 7 (left) and Theorem 8
(right).

We observe that

2Pr[Gprf
HE (G)] = Pr[Gprf

HE (G)|b = 1] + Pr[Gprf
HE (G)|b = 0]

= Pr[Gprf
HE (G)|b = 1] + 1 − Pr[¬Gprf

HE (G)|b = 0]

= Pr[Gnbuf1
NDS,NG(A)] + 1 − Pr[Guf

DS(B)],

the reason is that if the bit b is chosen as b = 0 in Gprf
HE (G), then the view of

A is exactly as in Guf
DS(B); all signatures are generated using fresh randomness.

Analogously, if b is chosen as b = 1 in Gprf
HE (G), then the view of A is exactly as in

Gnbuf1
NDS,NG(A) with b = 0; all signatures are generated with randomness computed

via HE and NG from the message m and the input η. For b = 1 the probability of
G guessing correctly is the same as the probability of A forging the signature, but
for b = 0 the probability of G guessing correctly is the same as the probability
of A not forging a signature. The above equation implies

Advprf
HE(G) = Advnbuf1

NDS,NG(A) − Advuf
DS(B)

and therefore the inequality claimed in the theorem statement. 
�

The second statement concerns the security in the sense of Gnbuf2
NDS,NG(A), that

is, the signatures are indeed secure even if the seed is exposed, as long as the
nonces contain a sufficient amount of min-entropy. For the scheme based on our
standard-model hedged extractor, we again restrict the statement to agnostic
adversaries A. The scheme based on our ROM-based hedged extractor is again
secure against all (i.e., not necessarily agnostic) adversaries.

Theorem 8. Let DS be a (standard, randomized) digital-signature scheme. Let
HE be a hedged extractor. Let nonce-based digital signature scheme NDS =
R2NDS[DS,HE] be associated to them as above. Let NG be a nonce generator.
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Let A be an adversary making at most q1 queries to its SIG oracle and q2 queries
to its RO oracle. Then the proof specifies adversaries B and G such that

Advnbuf2
NDS,NG(A) ≤ Advror

HE,NG(G) + Advuf
DS(B) , (17)

where adversary B makes at most q1 queries to its SIG oracle; besides emulating
a Random Oracle it performs almost the same computation as A. Adversary G
makes at most q1 queries to its RoR oracle and q2 queries to its RO oracle; in
terms of computation it generates a key pair for DS and computes q1 signatures.
Furthermore, if A is agnostic, then G is also agnostic.

Proof. Adversary B against DS behaves as follows. When started with input vk,
it samples xk ←$ HE.Keys and executes A(vk, xk). Upon a query SIG(m, η) from
A, adversary B queries SIG(m), obtaining a signature s, and returns s to A.
Queries to the oracle RO are exactly as in the game, that is, by lazy sampling
of a random function.

Adversary G against the hedged extractor behaves as follows. It obtains a
seed xk ∈ HE.Keys and generates a key pair (sk, vk) ←$ DS.Kg, and then runs
adversary A on input (vk, xk). Upon a query SIG(m, η) from A, adversary G calls
RoR(m, η) to obtain a random string r. It then computes s ← DS.Sig(sk,m; r)
and returns s. Potential queries RO(x, l) are referred to the random oracle pro-
vided in the game. When A provides its output (m, s), then G outputs the result
of DS.Ver(vk,m, s) = 1.

We define a hybrid game H that is defined almost identically with
Gnbuf2

NDS,NG(A), with the only difference that the randomness used in SIG queries
is uniformly random instead of derived via the hedged extractor. The difference
with the game Gnbuf2

NDS,NG(A) is highlighted in Fig. 9.
The view of A in H is the same as in Guf

DS(B); in both cases the signatures
are computed with fresh randomness. The remainder of the proof follows almost
exactly as in Theorem 7. 
�
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Abstract. Juels and Ristenpart introduced honey encryption (HE) and
showed how to achieve message recovery security even in the face of
attacks that can exhaustively try all likely keys. This is important in
contexts like password-based encryption where keys are very low entropy,
and HE schemes based on the JR construction were subsequently pro-
posed for use in password management systems and even long-term pro-
tection of genetic data. But message recovery security is in this setting,
like previous ones, a relatively weak property, and in particular does not
prohibit an attacker from learning partial information about plaintexts
or from usefully mauling ciphertexts.

We show that one can build HE schemes that can hide partial
information about plaintexts and that prevent mauling even in the
face of exhaustive brute force attacks. To do so, we introduce target-
distribution semantic-security and target-distribution non-malleability
security notions. We prove that a slight variant of the JR HE construc-
tion can meet them. The proofs require new balls-and-bins type analyses
significantly different from those used in prior work. Finally, we provide
a formal proof of the folklore result that an unbounded adversary which
obtains a limited number of encryptions of known plaintexts can always
succeed at message recovery.

1 Introduction

Password-based encryption (PBE) suffers from the threat of brute-force attacks.
People pick poor, easy-to-predict passwords and so an attacker, given a ciphertext,
can try decrypting it with the most likely password, the next most likely, and so
on. It is easy to determine when the right password is found, and so as long as the
password falls in this list the attacker wins, recovering the password and the full
plaintext. Unfortunately, studies indicate that the most common password is typ-
ically selected by almost 1 % of users [10], meaning that passwords have less than
μ = 7 bits of min-entropy. The straightforward attack succeeds with probability a
bit more than q/2μ where q is the number of decryption attempts. Bellare, Risten-
part, and Tessaro [7] proved a closely matching upper bound, perhaps suggesting
that the case was closed and that, for PBE, one cannot do better.
c© International Association for Cryptologic Research 2016
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Honey Encryption. Juels and Ristenpart (JR) [23], however, showed how
one might provably achieve security for relatively low-entropy keys—even when
attackers can try decrypting a ciphertext with all possible keys. Intuitively, their
approach makes attacks unsuccessful by ensuring that all plaintexts generated
during a brute-force attack look plausible. This approach was used previously
for the special case of uniformly random plaintexts by Kausik and Hoover [26].
JR proposed a more general cryptographic primitive that they called honey
encryption (HE). An HE scheme is tailored to an estimate of the (possibly non-
uniform) distribution of messages for which it will be employed. We refer to this
distribution as the target distribution. Decrypting an HE ciphertext with an
incorrect key yields a decoy (or honey) message that appears, to the attacker,
to be a fresh sample from the target distribution. An attacker that knows no
further information about the true message will be unable to pick it out from
the decoys.

JR gave a framework for building HE schemes that composes a distribution-
transforming encoder (DTE) with an encryption scheme. A DTE is a kind of
randomized encoding scheme tailored to the target distribution. They propose
that HE schemes should achieve security in two distinct settings, what we will
call the high-entropy key setting and the low-entropy key setting. The former is
the conventional setting in which security rests on the adversary being unable
to do work proportional to 2μ. Here they show that DTE-then-Encrypt can use
standard mechanisms to provably achieve the conventional goals of [7].

The novelty lies in the low-entropy setting, where we assume that keys have
some entropy μ but that adversaries can nevertheless do work much greater than
2μ. For simplicity here one most often just assumes unbounded attackers. In this
context, JR formalized a message recovery security goal. They then proved that
in some useful cases DTE-then-Encrypt constructions can achieve close to opti-
mal message recovery security: for a (relatively high-entropy) message encrypted
under a key whose maximum probability of taking on any particular value is at
most 1/2μ, then an unbounded adversary’s ability to guess the correct message,
even given the ciphertext, is at most 1/2μ plus a negligible amount. Given that
an attacker can always output the decryption of the challenge ciphertext under
the most likely key, the JR result is essentially tight.

The DTE-then-Encrypt construction provides a recipe for building HE for
particular applications, as one need only build a custom DTE for the setting by
way of some estimate of the message distribution. Chatterjee et al. [11] showed
how to do so for messages that are themselves lists of human-chosen passwords
and built a prototype password vault system based on HE. Huang et al. [21]
showed how to construct DTEs for messages that describe a person’s genetic
information. The application was for building a secure, long-term genetic infor-
mation store. In both contexts they rely on JR’s goal of MR security.

But MR security has several deficiencies from the viewpoint of modern
security goals for conventional symmetric encryption (SE), and even for the
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applications for which researchers have explored use of HE. For SE one strives
for authenticated encryption security [6], or its robust variants [19,29]. These
notions allow chosen message and ciphertext attacks. Informally speaking, they
demand that not even a single bit of information about plaintexts can be learned
by an adversary and that ciphertexts cannot be forged. We are therefore left with
a significant gap between the JR results and what we might like in terms of secu-
rity. In the genetic store application, for example, it could be that using an only
MR-secure HE scheme would leak most of your genome. All this begs the ques-
tion of whether there exist stronger security goals for HE and constructions that
meet them.

Our Contributions. In this work, we provide a systematic study of stronger
notions of security for HE schemes in the low-entropy key setting. The bad news
first: we formally rule out the ability to strengthen the JR security notions to
allow known-message attacks when attackers can exhaust the key space. While
this result seems intuitively obvious, and was taken for granted in [23], showing it
formally for arbitrary HE schemes required a surprising amount of care. Having
done so, we return to unknown message attack settings, but here provide good
news in the way of stronger security goals and proofs that simple constructions
meet them. First, we give a semantic security-style notion suitable for unknown
message attacks and, second, a notion of target-distribution non-malleability.
We show how the JR construction meets the first, and a new construction that
achieves both. In the remainder of the introduction we provide more overview
of these results.

Impossibility of Known-message Attack Security. The JR security mes-
sage recovery (MR) definition works as follows. A challenge message is drawn
from the target distribution, encrypted under a key, and the resulting ciphertext
is given to the adversary. It wins if it can output the challenge message. While
the adversary knows the target distribution and the distribution from which
keys are drawn, it does not get access to any known message, ciphertext pairs
under the key. We extend the notion to additionally give the adversary an oracle
from which it can obtain message-ciphertext pairs more messages drawn from
the target distribution, yielding a known-message attack variant. We denote this
notion by MR-KMA.

Intuitively MR-KMAshould be unachievable when the adversary can exhaus-
tively search the key space. The adversary simply queries the oracle on several
different messages, runs a brute-force attack to find the key that is consistent
with all the message-ciphertext pairs, and uses that to decrypt the challenge
ciphertext. While this attack might seem to work against all schemes, in fact
there exist many for which there will be a large set of consistent keys. In the
most extreme case, all keys will be consistent after any number of queries when
encryption is the identity function for each key. One approach to deal with this
is to make assumptions about the underlying scheme that allow one to show that
after sufficiently many queries the consistent set will shrink to one. For example,
if the encryption scheme has “sufficiently random” mappings for distinct keys.
But we would like to make no assumptions about the HE scheme.
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Our attacker instead simply embraces that there may be a large set of con-
sistent keys, and just uses one of them at random to decrypt the challenge
ciphertext. We then have to lower bound the probability that a random key
from the consistent set decrypts the challenge ciphertext to the target plaintext.
In fact we do not know how to (or whether one can) prove this for an adversary
that makes a fixed number of queries. Rather we show that there exists some
number of queries between zero and κ, where 2κ is the size of the key space, for
which an adversary will achieve advantage at least 1/2κ.

In the end, our result rules out security against known-message attacks. We
also note that the proof techniques here already apply to (non-stateful) symmet-
ric encryption as they do not take advantage of any properties specific to HE.
We are, in fact, unaware of any previous general lower bound on message recov-
ery for exhaustive key search attacks against conventional symmetric encryption
schemes. Finally, the proof technique can generalize as well to message authen-
tication goals, such as unforgeability under chosen-message attack.

Protecting Partial Information. We now return to unknown message attacks,
but seek to strengthen the security goals along two dimensions. First, we consider
partial information leakage. MR security is potentially adequate in settings for
which the encrypted message is, say, an authentication credential which must be
supplied in full elsewhere (the original motivating settings in [23]). It is likely to
prove insufficient more generally. Schemes meeting MR might trivially leak a sig-
nificant amount of information about messages. The seminal work of Goldwasser
and Micali [17] argued (in the context of public-key encryption) that one should
instead prefer encryption to hide all partial information about plaintexts. This
stronger goal, called semantic security, was subsequently adapted to (at least)
the settings of symmetric encryption [3], deterministic symmetric encryption
[15,30], and deterministic and hedged public-key encryption [1,2,4].

Unfortunately the traditional symmetric encryption semantic security notion
(denoted SS below) [3], along with its variants of indistinguishability under cho-
sen plaintext attack [3], are unachievable when keys are low entropy. (This is a
corollary of our negative results about MR-CPA.)

We therefore introduce a new semantic-security style notion suitable for the
low-entropy key setting. We call it target-distribution semantic security (TDSS).
In it, an adversary is given the encryption of a message drawn from a target
distribution and must predict a boolean function applied to the plaintext. It
needs to do this better than is possible when predicting the predicate without
the ciphertext. The key difference from SS is that it is asked to hold only for a
specific message distribution, the target, and not for all message distributions.
Interestingly we could find no meaningful indistinguishability-style variant of
TDSS (unlike in the conventional setting, where we have the notion of IND-
CPA and, moreover, an equivalence between it and SS [3]).

We relate the MR and TDSS notions, in particular using a result from Dodis
and Smith [15] (see also [4]) that straightforwardly adapts to our setting. We use
it as an intermediate step to show that predicting predicates implies predicting
functions for TDSS. Since MR security is equivalent to predicting the identity
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function, we obtain that TDSS implies MR security. There exists a simple sep-
aration showing that MR does not imply TDSS.

We go on to analyze the DTE-then-Encrypt scheme due to JR, showing via

a new balls-and-bins analysis an upper bound of about 2ω
7
16
k + 2e

− 1
3ωk

1/8 on the
advantage of unbounded TDSS attackers. Like the MR proof by JR, ours is in the
random oracle model [8]. Because TDSS focuses on predicates, the new balls-and-
bins analysis necessarily focuses on the trickier setting of having many more balls
(representing keys here) than the two bins (the possible predicate outputs). Our
proof crucially relies, as did JR’s, on a majorization lemma due to Berenbrink
et al. [9] to transition the balls-and-bins analysis from non-uniform keys to uni-
form ones. In comparison to MR security our new bound is quantitatively weaker:
JR showed MR advantage upper bounded by ωk (when message distribution
entropy is sufficiently large). Here we instead lose about half the entropy of the
key. Nevertheless our result may be close to optimal (see Remark 1).

Non-malleability. The JR message recovery security goal, as well as the TDSS
goal above, do not rule out active attackers manipulating ciphertexts. Indeed,
DTE-then-Encrypt instantiations used in [11,21,23] are trivially malleable as
they encrypt the DTE output by XOR’ing it with a pad derived from a hash of
the key. An attacker can flip particular bits of the ciphertext and know that the
resulting ciphertext will be decrypted to a plaintext related in a predictable way
to the original. This is true regardless of the unpredictability of either the key
or message.

Complicating matters, achieving MR or TDSS security seems to rule out
preventing manipulation by including in an HE scheme typical mechanisms such
as authentication tags or redundancy. Intuitively, this is because they would
seem to always help the attacker rule out incorrect keys. We therefore turn to
weaker notions like non-malleability [16,25], which again are unachievable in the
low-entropy key setting (by our negative results above) but may be adaptable to
unknown message settings because their goals do not seem to inherently conflict
with confidentiality goals like MR and TDSS.

We introduce a target-distribution non-malleability (TDNM) notion for HE
schemes when used with low-entropy keys. Informally, an attacker should not be
able maul a ciphertext C to produce a new ciphertext C̃ in a way that some fixed
relation R over the associated plaintexts is met with probability higher than one
can achieve without access to C. All this holds for C being the encryption of a
message taken from the target distribution.

We propose a simple construction that we call DTE-then-Encipher. It com-
poses a DTE with a block cipher with sufficiently large domain. Modeling
the cipher as ideal allows us to prove both TDSS and TDNM security. The
TDNM proof shares some similarity to the TDSS proof of DTE-then-Encrypt,
but requires additional techniques. In particular, the balls-in-bins analysis here
cannot use the majorization lemma of [9], and so we perform a new majorization-
style analysis that exploits Schur convexity [22].
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Further Related Work. Entropic security was considered in [15,30] as a sta-
tistical analogue of semantic security, and like HE they can also resist unbounded
attackers. They show security against can be achieved when μk +μm ≥ n, where
μk, μm are the min-entropy of the key and message distribution, respectively,
and n is the message length in bits. They show one can do no better in their
setting, which requires security to hold over all distributions with the indicated
min-entropy. HE low-entropy key security instead relaxes this to focus on specific
target distributions, thereby skirting their lower bounds on required entropy, and
providing meaningful security even when μk + μm < n.

2 Notation and Definitions

Notation. If n is an integer we let Zn be the set {0, . . . , n−1}. We use y ←$ A(x)
to denote running randomized algorithm A on input x and setting y equal to its
output. If instead A is deterministic we write y ← A(x). If G is a game we let
Pr[G ⇒ true] denote the probability that G outputs true.

Let S be a set. A distribution on S is a function p : S → [0, 1] such that∑
s∈S p(s) = 1. The maximum probability ω of a distribution p is defined to

be ω = maxs∈S p(s). The min-entropy μ of p is defined to be μ = − log ω.
When referencing min-entropy and maximum probability the distribution will
always be clear from context. By s ←p S we denote sampling an element s ∈ S
according to the distribution p. That is, each s ∈ S is chosen with probability
p(s). For B ⊆ S we overload notation and let p(B) =

∑
s∈B p(s).

Hash Functions. A hash function H is a function H : {0, 1}∗ → {0, 1}n which
maps strings of arbitrary length to strings of some fixed length n. The length
n will always be clear from context. In this work, we model hash functions as
random oracles.

Symmetric Encryption. A symmetric encryption scheme SE = (Enc, Dec) is a
pair of algorithms defined relative to a key space K and message space M. The
randomized encryption algorithm Enc takes as input a key K ∈ K and a message
M ∈ M and outputs a ciphertext C ∈ C. The deterministic decryption algorithm
Dec takes as input a key K ∈ K and a ciphertext C ∈ C and outputs a message
M ∈ M. We require that a symmetric encryption scheme must be correct,
meaning that for all K ∈ K and all M ∈ M, Pr[Dec(K, Enc(K, M)) = M ] = 1.

Majorization. We say p̄ majorizes q̄ (denoted as p̄ � q̄), if the two vectors
p̄ = 〈p1, p2, . . . , pn〉, and q̄ = 〈q1, q2, . . . , qn〉 (written in descending order such
that for all i ∈ [1, n−1] that pi ≥ pi+1, and qi ≥ qi+1) satisfy

∑k
i=1 pi ≥

∑k
i=1 qi

for all k ∈ {1, . . . , n}. When p̄ denotes the probabilities of a distribution with
support size n, it is easy to see that q̄ � p̄, if q̄ is defined as qi = p1 for
1 ≤ i ≤ �1/p1 and qi = 0 for �1/p1 + 1 ≤ i ≤ n.
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MRA
HE,pm,pk

K∗ ←pk K
M∗ ←pm M
C∗ ←$ HEnc(K∗, M∗)
M ← A(C∗)
Return (M = M∗)

SAMP1D
DTE,pm

M ←pm M
S ←$ encode(M)

b ←$ D(S)

Return (b = 1)

SAMP0D
DTE

S ←$ S
b ←$ D(S)

Return (b = 1)

Fig. 1. Left: Game defining message recovery security. Middle and Right: Games
defining security of a DTE.

3 Background on Honey Encryption

Honey Encryption Schemes. An HE scheme HE = (HEnc, HDec) is a symmet-
ric encryption scheme for some key space K and message space M. Typically K
will be strings representating human-chosen passwords, but HE can be applied
in other settings as well. HE schemes should meet conventional security goals for
password-based symmetric encryption [7,24]. Differentiating HE schemes from
conventional ones, however, is that they are designed relative to a specific (esti-
mated) distribution over M. This allows schemes that achieve a level of security
even when the keys are relatively predictable, or have low min-entropy, from an
attacker’s perspective. Again, human-chosen passwords are the canonical exam-
ple of such keys.

We let pm represent the message distribution on the message space M and
μm, ωm denote its min-entropy and maximum probability respectively. Similarly
we let pk represent the key distribution on the key space K and let μk, ωk denote
its min-entropy and maximum probability respectively. In the low-entropy set-
tings we focus on, we assume that ωk is large enough that an attacker can easily
perform work proportional to 2μk . For simplicity in fact we will in our treatment
simply assume adversaries can run in unbounded time. Our results extend to
this setting, but also can be translated to computationally bounded settings in
a straightforward manner.

MR Decurity. Juels and Ristenpart [23] formalized and built schemes to
achieve message recovery (MR) security. Their MR security game is defined
in Fig. 1 for a scheme HE and distributions pm, pk. An MR adversary A takes
as input a ciphertext encrypting a challenge message chosen according to pm

and outputs a message M ∈ M. The adversary wins if it outputs the chal-
lenge message. More precisely, we measure the advantage of a (computationally
unbounded) MR adversary A against scheme HE and distributions pm and pk

by
Advmr

HE,pm,pk
(A) = Pr

[
MRA

HE,pm,pk
⇒ true

]
.

Distribution-transforming Encoders. A distribution-tranforming encoder
(let us use DTE for short) is a pair of algorithms DTE = (encode, decode)
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defined relative to a message space M and a set S called the seed space. Via
S ←$ encode(M) the randomized encoding algorithm encode taking a message
M ∈ M as input and outputs a seed S ∈ S. A DTE must satisfy correctness, that
for any message M ∈ M, Pr[decode(encode(M)) = M ] = 1. Like HE schemes, a
DTE is designed for a specific message distribution pm.

Following [23], the security property desired for a DTE is that it is hard for
an adversary to distinguish between S ∈ S chosen uniformly at random and
chosen by first picking a message according to pm and then applying encode.
This property is formalized by two of the games shown in Fig. 1. We measure
the advantage of an adversary D against DTE and distribution pm by

Advdte
DTE,pm

(D) = Pr[SAMP1D
DTE,pm

] − Pr[SAMP0D
DTE] ,

and the DTE-goodness is defined by Advdte
DTE,pm

= maxD Advdte
DTE,pm

(D) and
where the the maximization is over all, even computationally unbounded, adver-
saries D. When the DTE in question is clear we let pd represent the distribution
induced on M by sampling a random seed from S and applying decode. Formally,

pd(M) = Pr[M ′ = M : S ←$ S;M ′ ← decode(S)] .

DTE-then-Encrypt. JR introduced a framework of constructing HE schemes
for a target distribution pm from a symmetric encryption scheme SE and
a distribution-transforming encoder DTE. More specifically, the DTE-then-
Encrypt framework encrypts a message by applying the DTE encoding first and
then encrypting the encoding using SE. Security requires some easy-to-meet
properties of SE, such as that it does not pad out inputs.

In more detail, let H be a hash function and r an integer representing the
number of random bits to be used by encryption. Then the scheme which we
will denote by HE[DTE,H] is shown in Fig. 2.

Note that as written, this scheme does not achieve the password-based
encryption security goals of [7] for the high-entropy key setting. It is easy to
modify the scheme to do so: simply replace the hash function with an appropri-
ate password-based key derivation function (PBKDF). One can also deal with
using fixed-output-length hash functions with large seed spaces by appropriate
use of a mode of operation. See [23] for more detailed discussion.

HEnc(K, M)

S ←$ encode(M)

R ←$ {0, 1}rl

C2 ← H(R||K) ⊕ S

Return (R, C2)

HDec(K, C)

(R, C2) ← C

S ← H(R||K) ⊕ C2

M ← decode(S)

Return M

Fig. 2. The DTE-then-Encrypt construction HE[DTE,H], using hash function H and
DTE DTE = (encode, decode).
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4 Impossibility of KMA Security with Low-Entropy Keys

Recall that the MR security notion is a relatively weak goal in various ways.
One such weakness is that it is only an unknown-message attack and provides
adversaries with no plaintext-ciphertext examples. In this section we show that
one cannot hope to achieve security in the low-entropy key setting when given
a relatively small number of plaintext-ciphertext examples in a known-message
attack. Making this claim formal required a surprising amount of care.

MR-KMA Security Definition. Let game MR-KMA be defined as in Fig. 3
for scheme HE and distributions pm, pk. This game is exactly the same as the
MR security game except the adversary additionally has access to an encryption
oracle which samples a message M according to pm and returns an encryption
of M under the secret key. We measure the advantage of a (computationally
unbounded) adversary A against HE with distributions pm and pk by

Advmr-kma
HE,pm,pk

(A) = Pr[MR-KMAA
HE,pm,pk

⇒ true].

The “obvious” Attack Strategy. A straightforward strategy for an MR-KMA
adversary is to use its encryption oracle to receive q distinct message-ciphertext
pairs. Then, use test decryption under all keys to find those keys that correctly
decrypt all the ciphertexts correctly. We refer to such a key as being consistent.
The intuition is that even for small q the set of consistent keys will be a singleton
and that, necessarily, it is the key chosen by the experiment. This intuition stems
from the fact that for a “reasonable” scheme, the probability that the wrong key
decrypts all the ciphertexts correctly is low.

Of course formally this logic is meaningless as it makes unspecified assump-
tions on the scheme. Indeed there are many examples of schemes for which the
set of consistent keys will be large, no matter how large q gets. In the most egre-
gious case, where HEnc and HDec implement the identity function for all keys,

MR-KMAA
HE,pm,pk

K∗ ←pk K
M∗ ←pm M
C∗ ←$ HEnc(K∗, M∗)
M ←$ AEnc(C∗)
Return (M = M∗)

Enc()

M ←pm M
C ←$ HEnc(K∗, M)

Return (M, C)

Fig. 3. Game defining message recovery security under a known message attack.
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then the set of consistent keys will always be K. Clearly this scheme is not MR
secure, but the point is that when giving a proof that holds for all schemes we
must handle such degenerate cases. This issue (and the particular degenerate
example just given) is related to the well-known fact that key recovery security
does not imply message recovery security for all schemes. Nevertheless, we are
unaware of any proofs showing that no SE scheme can resist message recovery
attacks that exhaustively search the key space.

A Lower Bound on MR-KMA Security. Given the example that ruling out
keys may not work very well, we give a slightly different adversary. Our adver-
sary, shown in Fig. 4, runs the attack as described above, but simply finishes by
decrypting the challenge using a uniformly chosen key from the set of consis-
tent keys. It is clear, for example, that in the trivial identity-function scheme
mentioned above all keys will be consistent with the challenge and this attack
achieves advantage one.

We must lower-bound the success probability for any scheme. Doing so
requires showing that with high probability the uniformly selected consistent
key must be consistent also with the challenge ciphertext. Due to technical diffi-
culties relating to our proof, we cannot give an exact number of oracle queries for
which this attack has a high advantage. Instead we show that for some number
of queries which is at most κ = �log |K| this attack has a high success proba-
bility of at least 1/(2κ). For concreteness we then say that the advantage of an
adversary who picks the number of queries at random from 0, . . . , κ will have
advantage at least 1/(2κ2). These results give us the following theorem.

Adversary A(C∗)

q ←$ Zκ; Sq ← ∅
For i = 1, . . . , q do

(Mi, Ci) ← Enc(Mi)

For K ∈ K do

If (∀i HDec(K, Ci) = Mi)

Sq ← Sq ∪ {K}
K ←$ Sq

Return HDec(K, C∗)

Fig. 4. Adversary for MR-KMA making at most κ = �log |K|	 encryption queries.

Theorem 1. Let HE be an encryption scheme and κ = �log |K|. Then for any
pm, pk the adversary A shown in Fig. 4 makes at most κ − 1 oracle queries and
has advantage

Advmr-kma
HE,pm,pk

(A) ≥ 1
2κ2

. (1)

The idea of the proof is to note that the advantage of the adversary A for a
particular value of q is equal to the probability that a randomly chosen key that
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is consistent with q message-ciphertext pairs is also consistent with a (q + 1)-th
pair (the challenge message and ciphertext). Then letting Sq denote the set of
keys consistent after q pairs. We have that the advantage of A for a particular
value of q is E[|Sq+1|/|Sq|], where the expectation is taken over the appropriate
experiment (defined below). Intuitively, this ratio can only be really small for a
small number of q’s because each Sq must contain between 1 and 2κ keys.

Before presenting the full proof we formalize the above intuition with the
following lemma about random variables.

Lemma 1. If s0, . . . , sκ are positive integer-valued random variables such that
s0 ≤ 2κ and sq+1 ≤ sq for q ∈ Zκ, then maxq∈Zκ

E[sq+1/sq] ≥ 1
2κ .

Proof. Let ε = maxq∈Zκ
E[sq+1/sq]. We will use an inductive argument to prove

that Pr[sq ≥ 2κ−q] ≤ 2qε for 1 ≤ q ≤ κ. Then considering when q is κ and noting
that sκ ≥ 1 always we have 1 = Pr[sκ ≥ 1] ≤ 2κε. Solving for ε gives the desired
bound.

We now give the inductive argument. First, Markov’s inequality can be used
to bound the probability that sq+1 is at least half sq by Pr[sq+1/sq ≥ 1/2] ≤
2E[sq+1/sq]. Rewriting and bounding E[sq+1/sq] by ε we get

Pr[sq+1 ≥ (1/2)sq] ≤ 2ε (2)

for all q ∈ Zκ.
Recalling that s0 ≤ 2κ, the base case is easily derived by Pr[s1 ≥ 2κ−1] ≤

Pr[s1 ≥ (1/2)s0] ≤ 2ε.
Now suppose 1 < q ≤ κ and Pr[sq−1 ≥ 2κ−(q−1)] ≤ 2(q − 1)ε. By definition

we have,

Pr[sq ≥ 2κ−q] = Pr[sq ≥ 2κ−q|sq−1 < 2κ−(q−1)] Pr[sq−1 < 2κ−(q−1)]

+ Pr[sq ≥ 2κ−q|sq−1 ≥ 2κ−(q−1)] Pr[sq−1 ≥ 2κ−(q−1)];

The first part of the equation can be bounded using our inductive assumption:

Pr[sq ≥ 2κ−q|sq−1 ≥ 2κ−(q−1)] Pr[sq−1 ≥ 2κ−(q−1)] ≤ Pr[sq−1 ≥ 2κ−(q−1)]
≤ 2(q − 1)ε;

To bound the second part note that conditioned on the fact that sq−1 is less
than 2κ−(q−1), it can only hold that sq is greater than 2κ−q if sq is greater than
(1/2)sq−1. This gives us

Pr[sq ≥ 2κ−q|sq−1 < 2κ−(q−1)] ≤ Pr[sq ≥ (1/2)sq−1|sq−1 < 2κ−(q−1)] .

Then from the definition of conditional probability and using (2) we get that

Pr[sq ≥ (1/2)sq−1|sq−1 < 2κ−(q−1)] Pr[sq−1 < 2κ−(q−1)] ≤ Pr[sq ≥ (1/2)sq−1]
≤ 2ε;

Putting the above equations together we get Pr[sq ≥ 2κ−q] ≤ 2qε, completing
the proof. ��
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We now use the above result to prove Theorem 1. The proof proceeds by
showing that the advantage of adversary A for a particular q is E[|Sq+1|/|Sq|]
where Sq is the set of consistent keys after q message-ciphertext pairs and then
noting that the size of these sets fulfill the conditions of the lemma above.

Game G

K∗ ←pk K; M∗ ←pm M
C∗ ←$ HEnc(K∗, M∗)
q ←$ Zκ; Sq ← ∅
For i = 1, . . . , q do

Mi ←pm M
Ci ←$ HEnc(K∗, Mi)

For K ∈ K do

If (∀i HDec(K, Ci) = Mi)

Sq ← Sq ∪ {K}
K ←$ Sq

M ← HDec(K, C∗)
Return (M = M∗)

Game H

K∗ ←pk K; q ←$ Zκ

S0 ← K; S1, . . . , Sq+1 ← ∅
For i = 1, . . . , q do

Mi ←pm M
Ci ←$ HEnc(K∗, Mi)

For K ∈ Si−1 do

If (HDec(K, Ci) = Mi)

Si ←$ Si ∪ {K}
M∗ ←pm M
C∗ ←$ HEnc(K∗, M∗)
For K ∈ Sq do

If (HDec(K, C∗) = M∗)
Sq+1 ← Sq+1 ∪ {K}

K ←$ Sq

Return (K ∈ Sq+1)

Experiment E

S0 ← K; S1, . . . , Sκ ← ∅
K∗ ←pk K
For i = 1, . . . , κ do

Mi ←pm M
Ci ←$ HEnc(K∗, Mi)

For K ∈ Si−1 do

If (HDec(K, Ci) = Mi)

Si ←$ Si ∪ {K}

Fig. 5. Left and Middle: Games used in MR-KMA proof. Right: Experiment used
in MR-KMA proof.

Proof (of Theorem 1). First note that Advmr-kma
HE,pm,pk

(A) = Pr[G ⇒ true], where
game G is defined on the left side of Fig. 5. This is clear because G is simply the
game MR-KMAA

HE,pm,pk
with the code of A inserted.

Now consider game H shown in the middle of Fig. 5. Game H is obtained
from G via a few simple transforms. In it Sq is computed iteratively one (M,C)
pair at a time, the choice of M∗ and C∗ is deferred until they are used, and
instead of checking whether M = M∗ the game equivalently checks whether the
randomly chosen K falls in the subset of Sq that decrypts C∗ to M∗ which is
called Sq+1. It is thus clear that Pr[H ⇒ true] = Pr[G ⇒ true].

Noting that Sq+1 ⊆ Sq holds for every q, it is clear from the last two lines of
H that once q, Sq, and Sq+1 are chosen, the probability that H will output true
is E[|Sq+1|/|Sq|]. Thus we have that Pr[H ⇒ true] =

∑κ
q=0(1/κ)E[|Sq+1|/|Sq|].

Next we transition our analysis to considering the experiment E shown in
Fig. 5. Note that the distribution of Sq+1 and Sq for any q ∈ Zκ in E is identical
to the distribution in H. For 0 ≤ q ≤ κ, let sq be the random variable repre-
senting |Sq| in E and ε be maxq∈Zκ

E[sq+1/sq] where the expectation is taken in
experiment E.

Since all Sq always contains at least K∗, each sq must be positive. Thus
s0, . . . , sκ are positive integer-valued random variables which fulfill the conditions
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of Lemma 1 so we have ε ≥ 1
2κ . Then the following sequence of inequalities

exhibits (1):

Advmr-kma
HE,pm,pk

(A) = Pr[H ⇒ true] =
κ∑

q=0

1
κ
E[sq+1/sq] ≥ 1

κ
· ε ≥ 1

2κ2
. ��

Extensions. While we focused above on known-message attacks, our proof tech-
niques carry over to the more typical setting of chosen-plaintext attacks. Here
the adversary has access instead to an encryption oracle that takes as input an
adversarially chosen message, encrypts it using the secret key, and returns the
ciphertext.

Furthermore, the ideas behind our proof can be extended to cover unforge-
ability under chosen-message attacks for, e.g., message authentication codes
[5,18]. Here an adversary with access to a tagging oracle tries to come up with a
valid message-tag pair for a message it has not queried yet. The adversary used
to prove its impossibility would use a fixed sequence of messages M1 . . . , Mκ and
use a random key consistent with the first q messages to sign the next message
(a fixed sequence of messages is used here to avoid the problem of the adversary
trying to tag a message it has already been given the correct tag for). Then
essentially the exact same analysis shows that this adversary will succeed with
high probability. We omit the details for brevity.

5 Stronger Message Privacy for HE Schemes

Given the impossibility result of the last section, we turn to explore achiev-
able but still meaningful security notions that capture the goal of hiding partial
informations about the messages encrypted by an HE scheme. In this section,
we propose a semantic security-style definition tailored to the low-entropy key
setting. We call it targeted-distribution semantic security (TDSS). We will also
investigate its relationship with MR security. We then go on to show that the
DTE-then-Encrypt construction meets this stronger notion of security, though
with concrete security bounds slightly worse than what could be proved in the
MR case.

5.1 TDSS Security and its Relation to MR Security

Recall that semantic security style notions ask, roughly, that an attacker given
the encryption of a message cannot predict a predicate on it with probability
better than is possible without the encryption. In the symmetric encryption
setting, semantic security was first formalized by Bellare et al. [3] where they
give the adversary a chosen-message encryption oracle. By our impossibility
results in the last section, we cannot do so, and instead return to an unknown-
message only attack setting for the target message distribution. We refer to this
as target-distribution semantic security (TDSS).
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Let M be a message space and pm be an associated target distribution. Let
HE be an HE scheme for M. We let f : M → {0, 1} be a predicate on messages.
Let pf (b) = Pr[f(M) = b | M ←pm

M] and let ωf = max(pf (0), pf (1)).
The TDSS security games are shown in Fig. 6. In game TDSS1A,f

HE,pm,pk
an

adversary A is charged with predicting f(M) given an encryption of it. In game
TDSS0As,f

pm
an adversary As, called the simulator, which attempts to guess f(M)

without access to a ciphertext. The optimal simulator As for any pm, f pair
simply outputs most likely value of f(M) given the message distribution and
predicate f . This forces Pr[TDSS0As,f

pm
⇒ true] = ωf . We therefore define the

advantage of adversary A against the TDSS security of an HE scheme HE with
respect to distributions pm, pk and predicate f by

Advtdss
HE,pm,pk

(A, f) = Pr
[
TDSS1A,f

HE,pm,pk
⇒ true

]
− ωf .

When working with a random oracle H, the game allows the adversary and the
encryption algorithm to query H but f must be independent of H.

TDSS1A,f
HE,pm,pk

K ←pk K
M ←pm M
C ←$ HEnc(K, M)

b ←$ A(C)

Return (b = f(M))

TDSS0As,f
HE,pm,pk

M ←pm M
b ←$ As

Return (b = f(M))

Fig. 6. Games defining TDSS security.

And the TDSS security of HE is measured by

Advtdss
HE,pm,pk

= max
A,f

Advtdss
HE,pm,pk

(A, f) .

The maximization is over all, even unbounded adversaries A and arbitrary pred-
icates f . It is easy to derive ways of measuring restricted versions of TDSS
security, such as by placing computational limits on A or restricting the class of
predicates. We will not consider such weaker notions further.

TDSS and MR. We will now consider the relation between MR security and
TDSS security. It is not hard to see that MR security does not imply TDSS
security. We can easily construction an HE scheme such that one bit of the
message is revealed completely but the rest is secure using a good HE scheme,
thus making the resulting scheme secure in the MR sense but not in the TDSS
sense.

Intuitively, TDSS should imply MR, but proving this is not as easy as the
other direction. Consider the trivial reduction in which a TDSS adversary B runs
an MR adversary A and then computes the predicate on the message returned
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by A. It’s clear that Pr[TDSS0B,f
HE,pm,pk

⇒ true] ≥ Advmr
HE,pm,pk

(A), but this
might be smaller than ωf even if A is a very good MR adversary.

Fortunately, Dodis and Smith [15] showed that in the information theoretic
setting, a good predictor for a function can be turned into a good predictor for
a boolean predicate. Viewing a MR adversary as a predictor for the identity
function, we can use this to convert a good MR adversary into a good TDSS
adversary. We defer the proof of the following theorem to the full version.

Theorem 2. Let HE be a honey encryption scheme for message distribution pm.
(i) If Advmr

HE,pm,pk
≥ ωm + ω

2/3
m , then Advmr

HE,pm,pk
≤ ωm + 4 · Advtdss

HE,pm,pk
.

(ii) There exists message distribution p′
m, honey encryption scheme HE′, predi-

cate f , and TDSS adversary A such that for any pk, HE′ satisfies
Advmr

HE′,p′
m,pk

= Advmr
HE,pm,pk

and Advtdss
HE′,p′

m,pk
(A, f) = 1

2 .

5.2 TDSS Security of DTE-then-Encrypt

We turn to showing that the DTE-then-Encrypt construction (refer back to
Fig. 2 in Sect. 3) achieves TDSS security in the random oracle model.

Our analysis proceeds in a modular fashion similar to the JR proof of MR
security for this construction, but with important differences. First we use DTE
security to transition to a game in which the ciphertext is chosen uniformly at
random and the challenge key is not sampled until after the adversary has run
(one might look ahead to Fig. 8 for the games). In this game, we can show that the
advantage of any adversary is no better than the advantage of an adversary A∗

that decrypts the ciphertext using all possible keys, computes the predicate value
on the resulting plaintext, and outputs the bit which has the higher cumulative
mass of keys that resulted in this bit.

One can then view the game measuring this optimal adversary’s success
equivalently as a balls-and-bins experiment. The detailed experiment is shown
in Fig. 7. Here the balls represent keys and each ball has weight indicated by pk.
There are two bins B0 and B1, and throwing a ball into a bin corresponds to
seeing the predicate value arrived at by decrypting the fixed ciphertext under the
key associated to that ball. Ball throws are independent because H is modeled
as a RO.

To our knowledge, in the case that the number of balls is much larger than
the number of bins, existing analyses of balls-and-bins experiments only provide
an asymptotic bound [28] and in the case that bins are chosen uniformly. We
instead analyze the maximum load in the case of non-uniform bin selection and
uniformly weighted balls (with the same weights). We can finally then apply a
majorization lemma [9] to get a concrete upper bound in the general case of
non-uniform balls. We break down the analysis into a series of lemmas, and give
the final theorem at the end of this section.

The following lemma captures the first part of our analysis, reducing the
security of HE[DTE,H] to the security of DTE, the expected maximum load
E[LH,DTE,f

pk
] in experiment EH,DTE,f

pk
, and the bias ωf of the predicate f on pm.
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Experiment EH,DTE,f
pk

R ←$ {0, 1}r; C2 ←$ S
For K ∈ K do

S ← H(R||K) ⊕ C2

M ← decode(S)

b ← f(M)

Bb ← Bb ∪ {K}
LH,DTE,f

pk
← maxb∈{0,1} pk(Bb)

Fig. 7. Balls-into-bins experiment used to analyze the security of HE[DTE,H].

Lemma 2. Let HE be HE[DTE,H] as defined in Sect. 3 for distributions pm, pk.
Let f be a predicate on M, A be any adversary, then we have:

Advtdss
HE,pm,pk

(A, f) ≤ Advdte
DTE,pm

+ E[LH,DTE,f
pk

] − ωf .

Proof. We will use the sequence of games shown in Fig. 8 to transition to a game
in which the optimal strategy is clearly A∗ (shown in Fig. 9) which outputs the
bit most likely to be the output of f applied to the decryption of the challenge
ciphertext under a randomly chosen key.

First note that Pr[G0 ⇒ true] = Pr[TDSS0A,f,0
HE,pm,pk

⇒ true], which is clear
because game G0 is simply the TDSS0 game with the code of HE inserted. Thus,

Advtdss
HE,pm,pk

(A, f) = Pr [G0 ⇒ true ] − ωf .

We can then use the security of DTE to transition to game G1 because G1

is identical to G0 except instead of a random message being sampled and then
encoded, a random seed is sampled and then decoded. Consider the adversary
D against the security of DTE shown on the left side of Fig. 9. Adversary D uses
its input S to simulate the view of A, returning 1 if A selects the correct bit and
0 otherwise. It’s easy to verify that Pr[G0 ⇒ true] = Pr[SAMP1D

DTE,pm
⇒ true]

and Pr[G1 ⇒ true] = Pr[SAMP0D
DTE ⇒ true]. This gives us:

Pr [ G0 ⇒ true ] ≤ Advdte
DTE,pm

+ Pr [ G1 ⇒ true ] .

Next we will see that G2 is equivalent to G1. In game G2 the ciphertext C is
sampled uniformly at random while the sampling of K and computation of M
are delayed until the adversary has already executed. Note that in G1 because
S was a uniformly chosen element of S, C2 was also a uniform element of S
independent of the choice of K. Thus we can instead select C2 at random and
defer the choice of K (and thus S and M) until after A is executed. Consequently,

Pr [ G1 ⇒ true] = Pr[G2 ⇒ true ] .

Now we argue that A∗ is the best possible adversary in game G2. To see this
note that in G2 the choice of the challenge key K is independent of the input to
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A, so the values L0 and L1 calculated by A∗ are exactly the probabilities that 0
and 1 will be the correct output, respectively. Thus it’s clear that the b∗ output
by A∗ is the optimal output. Letting Pr[G∗

2 ⇒ true] denote the probability that
A∗ succeeds in G2 we have Pr[G2 ⇒ true] ≤ Pr[G∗

2 ⇒ true].
Finally we note that the weight L∗ of the maximally loaded bin in the balls-

in-bins experiment LH,DTE,f
pk

is identical to the probability that the output of A∗

is correct for the chosen (R,C2). So we have Pr[G∗
2 ⇒ true] = E[LH,DTE,f

pk
].

Putting everything together gives the desired theorem. ��

Game G0

K ←pk K
M ←pm M
S ←$ encode(M)

R ←$ {0, 1}r

C2 ← H(R||K) ⊕ S

C ← (R, C2)

b ←$ A(C)

Return (b = f(M))

Game G1

K ←pk K
S ←$ S
M ← decode(S)

R ←$ {0, 1}r

C2 ← H(R||K) ⊕ S

C ← (R, C2)

b ←$ A(C)

Return (b = f(M))

Game G2

R ←$ {0, 1}r

C2 ←$ S
C ← (R, C2)

b ←$ A(C)

K ←pk K
S ← H(R||K) ⊕ C2

M ← decode(S)

Return (b = f(M))

Fig. 8. Games used in proof of Theorem 2.

Adversary D(S)

K ←pk K
M ← decode(S)

R ←$ {0, 1}r

C2 ← H(R||K) ⊕ S

C ← (R, C2)

b ←$ A(C)

If (b = f(M))

Return 1

Return 0

Adversary A∗(C)

(R, C2) ← C

For K ∈ K do

S ← H(R||K) ⊕ C2

M ← decode(S)

Lf(M) ← Lf(M) + pk(K)

b∗ ← argmaxb∈{0,1} Lb

Return b∗

Fig. 9. Adversaries used in proof of Theorem 2.

Before we move onto the next step, we first simplify notation. Recall that pd

is the distribution on M given by applying decode to uniform samples from S.
When H is a random oracle each of its outputs is a uniform and independent
sample S from S. Thus we can view each message M as being independently
sampled according to pd. Now we can see that experiment EH,DTE,f

pk
is equivalent
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Experiment E
pd,f
pk

For K ∈ K do

M ←pd M
bK ← f(M)

BbK ← BbK ∪ {K}
L

pd,f
pk ← maxb∈{0,1} pk(Bb)

Fig. 10. Simplified balls-into-bin experiment.

to a new experiment Epd,f
pk

in Fig. 10, which is more intuitive. Thus E[LH,DTE,f
pk

] =
E[Lpd,f

pk
].

Next, we will recall a majorization lemma so that we can transition to a
balls and bins experiment with uniform ball weights. Let K1, . . . , K|K| denote
an ordering of K according to weight, that is, for all i ∈ {1, . . . , |K|− 1} we have
pk(Ki) ≥ pk(Ki+1). Then we let p′

k be defined such that for i ≤ �1/ωk we have
p′

k(Ki) = ωk and p′
k(Ki) = 0 otherwise. (Note that p′

k may no longer define a
distribution because it’s elements may sum to more than one, but this is not
important for our analysis below.) Recalling the notion of majorization defined
in Sect. 2, we see that p′

k majorizes pk. The following is a special case of a lemma
from [9].

Lemma 3 (BFHM08). For all pd, f , and weight vectors p′
k, pk for which p′

k

majorizes pk it holds that E[Lpd,f
pk

] ≤ E[Lpd,f
p′

k
].

We can now concentrate on establishing an upper-bound on E[Lpd,f
p′

k
], where

p′
k consists of a = �1/ωk weights all equal to ωk. Note that we have here ignored

the keys of weight zero, but this is clearly without loss of generality since they
have no influence on bin loads. The following lemma is gives a bound on the
expected maximum load.

Lemma 4. Let f be a predicate, pd be a distribution, and pt be the distribution
over {0, 1} defined by sampling from pd and applying f . Let p′

k be a weight vector
with a = �1/ωk values each equal to ωk ≤ 1. Then for all s satisfying as−1 ≤ ωt

E[Lpd,f
p′

k
] ≤ (1 + ωk)(ωt + as−1 + 2e

−a2s−1
3 ).

Proof. As per the lemma statement, we have that pt is defined by pt(b) =
Pr[f(M) = b : M ←pd

M] and that ωt is the associated probability of the most
probable value in pt. That is, let b∗ = argmaxb∈{0,1} pt(b) and then ωt = pt(b∗).
For simplicity we will assume without loss of generality that b∗ = 1.

Referring to experiment Epd,f
p′

k
(Fig. 7 with pk replaced by p′

k), bK is a random
variable which equals 1 if Ki is thrown into B1 and 0 otherwise. Noting then
that |B1| =

∑
K∈K bK it is easy to see that E[|B1|] = aωt. Let B = (1/ωk) ·Lpd,f

p′
k

be the random variable corresponding to the number of balls that fall into the
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maximally loaded bin at the end of the experiment. Then we can see that for
all n, Pr[B ≥ n] ≤ 2 · Pr[|B1| ≥ n] because if B ≥ n then either B0 or B1 must
have size at least n and from our assumption that b∗ = 1, Pr[|B0| ≥ n] is clearly
less than Pr[|B1| ≥ n].

To complete the proofs we carefully chose a value of n, so that we can bound
the probability that B is greater than n and obtain the desired result by pes-
simistically assuming that B is a whenever it is greater than n and n otherwise.

Recall that Chernoff’s bound tells us that for any 0 ≤ δ ≤ 1, Pr[|B1| ≥
(1 + δ)E[|Bb∗ |]] ≤ e

−δ2E[|B1|]
3 . Then setting δ = as−1/ωt (which is less than 1

from our choice s) and let we get Pr[|B1| ≥ aωt + as] ≤ e
−a2s−1

3 . Then we get
the following sequence of inequalities.

E[B] =
a∑

i=1

i · Pr[B = i]

≤ (aωt + as) Pr[B < aωt + as] + a · Pr[B ≥ aωt + as]
≤ (aωt + as) + 2a · Pr[|B1| ≥ aωt + as]

≤ a(ωt + as−1 + 2e
−a2s−1

3 )

Multiplying both sides of the inequality by ω and noting that �1/ωk·ωk ≤ 1+ωk

gives the bound on E[Lpd,f
pk

]. ��

At this point we can combine Lemmas 2, 3 and 4 in turn to derive the fol-
lowing sequence of inequalities:

Advtdss
HE,pm,pk

(A, pm) ≤ Advdte
DTE,pm

+ E[LH,DTE,f
pk

] − ωf

≤ Advdte
DTE,pm

+ E[Lpd,f
pk

] − ωf

≤ Advdte
DTE,pm

+ E[Lpd,f
p′

k
] − ωf

≤ Advdte
DTE,pm

+ (1 + ωk)(ωt + as−1 + 2e
−a2s−1

3 ) − ωf

along with the restriction that as−1 ≤ ωt needed for the last transition. To
proceed we note that we can apply again the security of our DTE to transition
ωt to ωf . Consider the adversary Df who just decodes its input S and outputs
f applied to the resulting message. It is easy to verify that Pr[SAMP1Df

DTE,pm
] =

pf (1) and Pr[SAMP0Df

DTE] = pt(1) which gives us:

|ωf − ωt| ≤ Advdte
DTE,pm

(Df ) ≤ Advdte
DTE,pm

.

One can apply this to the last inequality above and rearrange, as well as to the
restriction on as−1. Together all this, combined with maximizing over A, f yields
a proof of the following theorem.
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Theorem 3. Let HE be HE[DTE,H] as defined in Sect. 3 for distributions pm, pk

and with H modeled as a random oracle. Then for any A, and any s satisfying
as−1 ≤ 1/2 − Advdte

DTE,pm
,

Advtdss
HE,pm,pk

≤ ωk + �1/ωks−1 + 2Advdte
DTE,pm

+ 2 exp
(

−�1/ωk2s−1

3

)
.

Remark 1. (1) This bound does not seem too far from optimal. From existing
results about the estimation of the number of balls in the uniform bin case
(see full version for details.) we can see that when ωf = 1

2 , choosing α = 3
4 ,

E[Lpd,f
p′

k
] ≥ Pr[X > kα] · kαωk ≥ (1 − o(1))(12 +

√
ωk

3 ), thus the advantage of the

TDSS adversary is at least at the order of ω
1
2
k . (2). As long as pk has more than

3 bits entropy, we can easily find s such that �1/ωks−1 ≤ 1
2 . (3). If we choose

s = 9
16 , Advtdss

HE,pm,pk
≤ 2ω

7
16
k + 2e

− 1
3ωk

1/8 + 2ε. When ωk = 2−30, the bound
is close to 2−13, for which we lose about half of the entropy in the key. If we
don’t mind losing more entropy (choosing larger s), we can tolerate even smaller
ωk. (3). The condition that as−1 ≤ 1/2 − Advdte

DTE,pm
, simply comes from the

condition that as−1 ≤ ωf for all f .

6 Non-malleability for HE Schemes

The TDSS security goal provides stronger confidentiality properties than MR.
But it still does not speak to the threat of attackers mauling ciphertexts. In par-
ticular, the DTE-then-Encrypt construction as instantiated with a hash func-
tion is trivially malleable: an attacker can, without any knowledge of the key
or plaintext, flip bits in a ciphertext so that when it is later decrypted the
resulting plaintext is different from the original in a predictable way. Unfortu-
nately the negative results in Sect. 4 suggest that we cannot meet traditional
non-malleability security goals [16,25], let alone ciphertext integrity notions [6],
when attackers can exhaustively search the key space.

Analogously to the last section, we therefore provide a notion of target-
distribution non-malleability (TDNM) for HE schemes for use in the low-entropy
key setting. TDNM, like TDSS, is an unknown-message attack setting, and intu-
itively demands that even if the key space is searchable, the ability of an attacker
to successfully maul a ciphertext is not improved by having access to the cipher-
text. We then give a construction called DTE-then-Encipher and show it enjoys
both TDSS and TDNM security in the ideal cipher model.

6.1 TDNM Security

We adjust the standard non-malleability notion for symmemtric encryption [25]
to consider only messages from a target distribution. Informally, TDNM security
requires that given a ciphertext, it is difficult to come up with a new ciphertext
so that the underling messages satisfy some relation. This is formalized by the
two games shown in Fig. 11.



778 J. Jaeger et al.

Both games are defined with respect to a binary relation R : M × M →
{0, 1}. To simplify notation we sometimes say R(M,M ′) is true if R(M,M ′) = 1
and false otherwise. We let pR = Pr[R(M,M ′) = 1 | M,M ′ ←pm

M]. The first
game has an adversary A attempt to maul a ciphertext C so as to satisfy R.
The second game has another adversary As, called the simulator, attempt to do
so without access to C.

TDNM1A,R
HE,pm,pk

K ←pk K; M ←pm M
C ←$ HEnc(K, M)

C̃ ←$ A(C)

If (C̃ = C)

Return false

M̃ ← HDec(K, C̃)

Return R(M, M̃)

TDNM0As,R
HE,pm,pk

K ←pk K; M ←pm M
C̃ ←$ As

M̃ ← HDec(K, C̃)

Return R(M, M̃)

Fig. 11. Games defining TDNM security.

The TDNM advantage of an adversary A with respect to a binary relation
R, HE scheme HE, and distributions pm, pk is defined by

Advtdnm
HE,pm,pk

(A, R) =

Pr
[
TDNM1A,R

HE,pm,pk
⇒ true

]
− max

As

Pr
[
TDNM0As,R

HE,pm,pk
⇒ true

]

We can then define the TDNM advantage of an HE with distributions pm, pk by

Advtdnm
HE,pm,pk

= max
A,R

Advtdnm
HE,pm,pk

(A, R).

Remark 2. There are two points we would like to note.

1. TDNM with n-ary relations: For simplicity we choose the simpler binary form
of the TDNM definition. Of course, we may generalize it to an n-ary relations,
but one must be careful about concrete security with respect to n. Imagine
that n equals the size of the key space. Then TDNM can be broken for
the relation that returns true if at least one of M1, . . . , Mn is the challenge
message. An adversary that generates each Ci by decrypting the challenge
ciphertext using a different key and re-encrypting the message with the same
key, sill succeed with probability 1.

2. Relationship between TDNM and TDSS (or MR): It is easy obvious that
MR and TDSS do not imply TDNM, the encode-then-encrypt construction
serves as an example. However, the other directions are less clear. Intuitively,
an MR adversary can be used as an imperfect decryption oracle, this prop-
erty may be explored for the TDNM adversary to compute a new ciphertext
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encrypting the same message. We conjecture that TDNM implies MR (and
TDSS), at least under certain conditions. On the other hand, proving uncon-
ditional implication results would require new observations. The straightfor-
ward transformation of an MR adversary to find the secret key would likely
incur a large reduction loss which we can not afford. In all those notions, the
bound is already quite small.

Note that this implication is in contrast with the classical notions when
adversary has no access to the encryption oracle. A trivial scheme than out-
puts the plaintext directly together with a MAC is unforgeable, but has no
message security.

It would be an interesting open problem to give a complete characterization
of the security notions of the honey encryption schemes.

6.2 The DTE-then-Encipher Construction

Intuitively, to achieve non-malleability we would like a scheme for which modi-
fying any portion of a ciphertext would yield a ciphertext that will be decrypted
to an independent message. Revisiting the DTE-then-Encrypt construction, a
natural route to achieving this property is to replace the (malleable) encryption
with one that is non-malleable. A good block cipher has the property that chang-
ing any bit of a ciphertext will randomize the decrypted plaintext. In our low-key
setting standard security properties like being a pseudorandom permutation are
insufficient, and we will instead turn to the ideal cipher model. Here we model
a deterministic, length-preserving encryption scheme (Enc, Dec) as a family of
|K| random permutations, one for each key. The resulting DTE-then-Encipher
construction is shown in Fig. 12. We denote it by HE-NM.

HEnc(K,M):

S ← encode(M)
C ← Enc(K,S)
return C

HDec(K,C)

S ← Dec(K,C)
M ← decode(S)
return M

Fig. 12. The TDNM construction HE-NM

To instantiate Enc, Dec one could use a standard block cipher such as AES,
but this will only work when the seed space of the DTE used is exactly the set of
bit strings of length equal to the block size of the cipher, e.g., 128. One can turn
to constructions that are proven indifferntiable [27] from an ideal cipher of the
appropriate domain size. Coron et al. [12] show how to build form an ideal cipher
E : {0, 1}2k×{0, 1}n an ideal cipher with domain 2n and key length k. One could
repeatedly use this construction to extend the domain sufficiently. In theory one
could also build large-domain ciphers using a hash function (modeled as a RO)
within the Feistel-like constructions analyzed in [13,14,20], but the bounds are
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too loose to be of practical use. We leave as an open question finding more
efficient constructions of TDNM constructions, and focus in the remainder on
analysis assuming a suitable ideal cipher.

The TDSS security for HE[DTE,H] can be adjusted to apply to HE-NM in a
straightforward manner. We focus below on establishing TDNM security.

Proof Intuition. Intuitively, in an DTE-then-Encipher construction, any two
different ciphertext would be decrypted to a pair of (nearly) uniform encoded
strings, and they will thus decoded to two randomly sampled messages. However,
to formally demonstrate the analysis for TDNM, it still requires us to show
that the maximum probability that an (unbounded) adversary can generate a
ciphertext that is correlated with a given ciphertext is not much better than
without having it. In particular, the adversary can even enumerate all possible
ciphertexts that are not equal to the given ciphertext C, and try decrypting each
of them using all possible keys. Based on the decrypted message pairs, she may
choose one to try to maximize the chance of success.

The nontrivial part of the analysis concentrates on bounding the maxi-
mal possible success probability in TDNM1A,R

HE-NM,pm,pk
. Again we first do game

changes so that the adversary would output the modified ciphertext before the
key is selected. In this case, for each pair of ciphertext, we can define clearly a set
of “preferable” keys for which the decrypted messages resulting from decrypt-
ing using these keys satisfy the relation. After exhausting searching all possi-
ble ciphertexts, the maximum probability that an adversaries can win with is
achieved by outputting the ciphertext C̃ which defines the set of “preferable”
keys which has the maximum accumulated probability among all those sets,
i.e., the largest possible probability that a randomly selected key will fall into a
preferable set. Bounding the accumulated probability can again be transformed
into bounding the maximum weight of balls in a bin. The difference compared to
the TDSS analysis is that now in every experiment, we will throw |K| balls into
two bins, but once for every single ciphertext. Letting N be the number of possi-
ble ciphertexts in the range of the scheme, we therefore analyze N experiments
and find the maximum load among all N experiments.

It is not hard to see the expected load in one experiment would be pR, how-
ever, directly bounding the load using, e.g., a Chernoff bound would not be
very effective since the expected value is small but the “bad” event (load with
significant deviation compared to the expected value) happens with a signifi-
cant probability. To proceed forward in a similar way as the TDSS analysis, we
would reduce the bound to the flat distribution. Unfortunately, in this case, the
expected maximum load defined in the TDNM analysis is over several indepen-
dent balls-into-bins experiments instead of a single such experiment we can not
directly apply the majorization lemma from [9].

We turn to a more general majorization technique that uses the property of
Schur convexity [22] (to be defined below). A Schur convex function preserves
the order under majorization, i.e., if p̄ � q̄, for a Schur convex function f , it holds
that f(p̄) ≥ f(q̄). To bound the expected maximum load in N experiments, we
then proceed in two steps. First we argue the expected value of maximum weight
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across all bins in the N experiments as a function over the key distribution pk is
indeed Schur convex. Since the flat weight vector (�1/ωk keys each with prob-
ability at most ωk) majorizes the key distribution, we then bound the expected
maximum load in N experiments for the flat weight vector which can be done
by counting the maximum number of balls falling into a bin in N experiments.

First we introduce some notion we will use for the generalized majorization
technique.

Schur Convex Functions. A function g : Rn → R is called Schur-convex if for
any p, q ∈ R

n, if p � q then g(p) ≥ g(q). A useful result from Schur [22], tells
us that any function satisfying two properties known as convex and symmetric
must be Schur-convex.

We say g is convex if for any t ∈ [0, 1] and p, q ∈ R
n we have g(tp+(1−t)q)] ≤

tg(p) + (1 − t)g(q). Finally, g is symmetric if the value of the function does not
change if the input vector is permuted, that is if φ : n → n is a permutation and
pφ ∈ R

n is define by pφ(i) = p(φ(i)) for all 1 ≤ i ≤ n then g(p) = g(pφ).

Lemma 5 (Schur23). If a function g : Rn → R is symmetric and convex, then
g is Schur-convex.

6.3 Security Proofs for DTE-then-Encipher

We are now in position to formalize the proof intuition above. The main theorem
of this section, given below, establishes an upper bound on the TDNM security
of the DTE-then-Encipher construction.

Theorem 4. Let HE-NM be defied as in Fig. 12 for distributions pm, pk, where
(Enc, Dec) is an ideal cipher with Enc : K×{0, 1}� → {0, 1}�. Let ε = Advdte

DTE,pm
.

Then for any s satisfying �1/ωks−1 ≤ pR − ε − 2� we have

Advtdnm
HE-NM,pm,pk

≤ ωk(1 + �1/ωks) + 21−� + 2�− �1/ωk�2s−1

3 + 2ε

Remark 3. The given bound will typically be quantitatively similar to that of
the TDSS advantage, since the message length � is quite small comparing to
�1/ωk2s−1. When we take ωk = 2−40, � = 128, s = 5

8 , we can get Advtdnm
HE-NM,pm,pk

is around 2−15.

Proof. First we give a lower bound for maxB Pr[TDNM0B,R
HE,pm,pk

⇒ true]. Con-
sider the simulator As that simply outputs a ciphertext C̃ randomly sampled
from C. It’s easy to verify that the probability As succeeds is equal to the prob-
ability that a random sample according to pm and a random sample according
to pd satisfy the relation, i.e., Pr[R(M,M̃) = 1 : M ←pm

M, M̃ ←pd
M].

Denoting this quantity by pd
R, let DR be the adversary against the security of

DTE which simply samples a random M according to pm and decodes its input
S to obtain M̃ , then outputs 1 if M and M̃ satisfy R. It is easy to verify that
Pr[SAMP1DR

DTE,pm
] = pR and Pr[SAMP0DR

DTE] = pd
R which gives us:

max
As

Pr[TDNM0B,R
HE,pm,pk

⇒ true] ≥ pR − Advdte
DTE,pm

.
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Transitioning TDNM1A,R
HE,pm,pk

. Now we analyze the maximum winning proba-

bility of an adversary A in TDNM1A,R
HE-NM,pm,pk

. Consider the sequence of game
shown in Fig. 13. Game G0 is the simply TDNM1A,R

HE-NM,pm,pk
with the encryption

code of HE-NM inserted. Thus,

Pr[G0 ⇒ true] = Pr[TDNM1A,R
HE,pm,pk

⇒ true].

We can then use the security of DTE to transition to game G1 because G1

is identical to G0 except instead of a random message being sampled and then
encoded, a random seed is sampled and then decoded. Consider the adversary
D against the security of DTE shown in the center of Fig. 14. Adversary D uses
its input to simulate the view of A returning 1 is A wins and 0 otherwise. It is
easy to check that when in SAMP1, D perfectly simulated game G0 for A and
when in SAMP0 it perfect simulates game G1. It is then clear that

Pr[G1 ⇒ true] ≤ Pr[G0 ⇒ true] + Advdte
DTE,pm

.

Finally game G2 is simply a rewriting of G1 so that the sampling of K is
delayed until after A has already executed. It is clear that,

Pr[G2 ⇒ true] = Pr[G1 ⇒ true].

Game G0

K ←pk K; M ←pm M
S ←$ encode(M)

C ← Enc(K, S)

C̃ ←$ A(C)

If (C̃ = C)

Return false

M̃ ← HDec(K, C̃)

Return R(M, M̃)

Game G1

K ←pk K; S ←$ S
C ← Enc(K, S)

C̃ ←$ A(C)

If (C̃ = C)

Return false

M ← decode(S)

M̃ ← HDec(K, C̃)

Return R(M, M̃)

Game G2

C ←$ C C̃ ←$ A(C)

If (C̃ = C)

Return false

K ←pk K
M ← HDec(K, C)

M̃ ← HDec(K, C̃)

Return R(M, M̃)

Fig. 13. Game transition for TDNM analysis

Next, we will focus on bounding the winning probability of A in game G2.
Consider the attacking strategy described on the right side of Fig. 14. The adver-
sary A∗ takes a ciphertext C as input. For each other C ′ ∈ C, adversary A∗ tries
decrypting both C and C ′ using all possible keys and defines a set KC′ consist-
ing of all the keys for which the corresponding decrypted messages M and M ′

satisfy the relation R. Then A∗ defines a quantity pC′ as the probability that a
key sampled according to pk will fall into KC′ .

Recall that in G2, the key is selected after the adversary outputs the cipher-
text C̃, thus we can see that the winning probability of an adversary A in G2

will be exactly the value pC′ calculated by A∗ corresponding to the output C ′.
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Adversary D(S)

K ←pk K
C ← Enc(K, S)

C̃ ←$ A(C)

If (C̃ = C)

Return 0

M ← decode(S)

M̃ ← HDec(K, C̃)

Return R(M, M̃)

Adversary A∗(C)

pC ← 0

For C ∈ C \ {C}
KC ← ∅
For K ∈ K

M ← HDec(K, C)

M ← HDec(K, C )

If R(M, M )

KC ← KC ∪ {K}
pC ← pk(KC )

C̃ ← argmaxC ∈C pC

Return C̃

Fig. 14. Adversaries used in proof of Theorem 4.

Thus because A∗ outputs C̃ maximizing this value, it is clear that A∗ is an
optimal adversary for G2. Thus letting G∗

2 denote the game G2 when run with
A∗ it is clear that:

Pr[G∗
2 ⇒ true] ≥ Pr[G2 ⇒ true].

Furthermore we can clear see that Pr[G∗
2 ⇒ true] will be exactly the expected

value of maxC∈C pC , denoted by E[maxC∈C pC ].

Schur convexity of E[maxC∈C pC ]. To apply the majorization technique, we will
argue the Schur convexity of the quantity we want to bound. We will argue
E[maxC∈C pC ] is symmetric and convex. then following Lemma 5, it is Schur
convex.

For a given key distribution pk let Ppk
be a random variable denoting the

value maxC′∈C p′
C when A∗ uses distribution pk as the key distribution.

It is clear that E[Pp] is symmetric because the key are only used for the
ideal cipher (Enc, Dec) whose a priori behavior of the key used as input. Thus
permuting the corresponding probabilities of the keys will does not change the
expected value of P .

To see that E[Pp] is convex let p, q ∈ R
|K|, t ∈ R, and set r = tp + (1 − t)q.

We would like to show that E[Pr] ≤ t · E[Pp] + (1 − t) · E[Pq]. Note that the
corresponding executions of A∗ differ only in the weights assigned to the keys,
so the distributions of which keys are included in the various sets KC are the
same between them.

For a fixed choice of random coins, let Cr, Cp, Cq denote the respective output
of A∗ in the different experiments. Then from the definition of r and the fact
that the ciphertexts are chosen to maximize the weights of the corresponding
KC we get:
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Pr = r(KCr
)

= t · p(KCr
) + (1 − t)q(Cr)

≤ t · p(KCp
) + (1 − t)q(Cq)

= tPp + (1 − t)Pq.

Because the above holds for every choice of random coins in the corresponding
experiments it is clear that E[Pr] ≤ t ·E[Pp] + (1 − t) ·E[Pq], so E[Pp] is convex.

Having now shown that E[Pp] is symmetric and convex, Lemma 5 tells us it
is Schur-convex.

Bounding E[Pp′
k
] for flat distribution p′

k. Now as in our TDSS analysis let p′
k be

defined such that for i ≤ �1/ωk we have p′
k(Ki) = ωk and p′

k(Ki) = 0 otherwise,
and note that p′

k majorizes pk. Since E[Pp] is Schur convex, and p′
k majorizes pk,

we have:
E[Ppk

] ≤ E[Pp′
k
]

Next, we will focus on bounding E[Pp′
k
].

Experiment E
pd,R

p
k

For K ∈ K do

(M, M ) ←p
d

M × M
b ← R(M, M )

Bb ← Bb ∪ {K}
L

pd,R
pk ← pk(B1)

Fig. 15. Ball-into-bins experiments used to analyze the security of HE-NM.

Let us rephrase the quantity pC′ using the terminology of a balls-into-bins
game. Letting the challenge ciphertext C be fixed we can think of each K ∈ K
as a ball into bins B0 and B1 according to the value of R(M,M ′) where M
and M ′ are obtained by decrypting C and C ′ respectively with K. Because each
decryption uses the ideal cipher it is clear that each key is thrown independently.

Because decrypting applying Dec to ciphertext results in a uniformly ran-
dom S we would like to say that we can view M and M ′ as both being drawn
independently according to pd. However, this is not quite true because there is a
small dependence between the samples because Dec applied to C and C ′ results
in uniformly chosen S and S′ with the restriction that S �= S′. Let p′

d denote
the distribution on M × M obtained by applying decode to two uniformly cho-
sen seeds with the restriction that the seeds are not equal. Then we can view
the values of M and M ′ for each K in the balls-into-bins experiment as being
independent samples from p′

d.
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Putting this together we can thing of the quantity pC′ as the load Lp′
d,R

p′
k

in

the balls-into-bins experiment Ep′
d,R

pk shown in Fig. 15.
Let p′

R = Pr[R(M,M ′)|(M,M ′) ←p′
d

M × M] denote the probability that
(M,M ′) sampled according to p′

d satisfies R and a = �1/ωk denote the number
of balls thrown in experiment Ep′

d,R

p′
k

. Then it is clear that the expected number
of balls that fall into bin B1 is a ap′

R.
Then letting X denote the number of balls thrown into B1 and δ = as−1/p′

R

(which is less than 1 from our choice of s) we can apply Chernoff’s bound to get:

Pr[X ≥ ap′
R + as] ≤ e

−a2s−1
3 .

Now we can complete the proof by using this to bound the expected value
of maxC∈C p′

C for A∗. For this to be greater than ωk(ap′
R + as) it must be the

case that for some C ∈ C, p′
C is greater than ωk(ap′

R +as). Then from the union
bound we get

Pr
[
max
C∈C

p′
C ≥ ωk(ap′

R + as)
]

≤
∑

C∈C
Pr[p′

C ≥ ωk(ap′
R + as)]

≤
∑

C∈C
Pr[Lp′

d,R

p′
k

≥ ωk(ap′
R + as)]

= (|C| − 1) · Pr[X ≥ ap′
R + as]

≤ (|C| − 1)e
−a2s−1

3 .

Note that applying the union bound in this manner allows us to ignore the
dependence that exists between difference p′

C for different C.
Finally we can bound the expected value of maxC∈C p′

C by pessimistically
assuming it is always 1 whenever it is greater than ωk(ap′

R+as) and it is ωk(ap′
R+

as) otherwise. Recalling that |C| = 2� and letting P = maxC∈C p′
C , this gives us

the following sequence of inequalities:

E[P ] ≤ ωk(ap′
R + as) Pr[P ≤ ωk(ap′

R + as)] + 1 · Pr[P ≥ ωk(ap′
R + as)]

≤ ωk(ap′
R + as) + (2� − 1)e

−a2s−1
3

≤ ωk(ap′
R + as) + 2�− a2s−1

3

From the definition of p′
R it is clear that p′

R ≤ pR + 1/|S| = pR + 2−�.
Putting everything together we get the final bound of

Advtdnm
HE-NM,pm,pk

≤ ωk(�1/ωk(pR + 2−�) + �1/ωks) + 2�− �1/ωk�2s−1

3 − pR + 2ε

≤ (1 + ωk)(pR + 2−�) + ωk�1/ωks + 2�− �1/ωk�2s−1

3 − pR + 2ε

≤ ωk(1 + �1/ωks) + 21−� + 2�− �1/ωk�2s−1

3 + 2ε.

This completes the proof. ��
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7 Conclusions and Open Problems

In this work, we initiated the study of security notions for honey encryption
schemes stronger than the previously proposed goal of resistance to message
recovery attacks. We, first, proved that message recovery is always possible
with a known-message attack. Formally proving this folklore result was more
nuanced than expected. We then defined semantic security and non-malleability
for honey encryption schemes with respect to targeted message distributions,
and we showed that the simple constructions of encode-then-encrypt and encode-
then-encipher achieve targeted distribution semantic security and targeted dis-
tribution non-malleability, respectively. The general technique for balls-into-bins
type of analysis using Schur convexity may be of independent interest.

Security notions for symmetric key encryption with low-entropy keys are
still not yet fully understood. For honey encryption schemes, completely charac-
terizing the relations among various security notions remains an open problem
whose solution would expand on our results. Also, although replacing a random
oracle with a k-wise independent hash function to get a standard model con-
struction for TDSS seems intuitive, formally analyzing its security requires more
delicate balls-into-bins analysis than we have provided here. Last, our TDNM
construction relies on an ideal cipher with large block size. Obtaining a construc-
tion provably TDNM secure in the random oracle model therefore represents an
important open question.
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Abstract. In this paper, we investigate a variant of the BKZ algorithm,
called progressive BKZ, which performs BKZ reductions by starting with
a small blocksize and gradually switching to larger blocks as the process
continues. We discuss techniques to accelerate the speed of the progres-
sive BKZ algorithm by optimizing the following parameters: blocksize,
searching radius and probability for pruning of the local enumeration
algorithm, and the constant in the geometric series assumption (GSA).
We then propose a simulator for predicting the length of the Gram-
Schmidt basis obtained from the BKZ reduction. We also present a model
for estimating the computational cost of the proposed progressive BKZ
by considering the efficient implementation of the local enumeration algo-
rithm and the LLL algorithm. Finally, we compare the cost of the pro-
posed progressive BKZ with that of other algorithms using instances
from the Darmstadt SVP Challenge. The proposed algorithm is approx-
imately 50 times faster than BKZ 2.0 (proposed by Chen-Nguyen) for
solving the SVP Challenge up to 160 dimensions.

Keywords: Lattice basis reduction · Progressive BKZ · Gram-Schmidt
orthogonal basis · Geometric series assumption

1 Introduction

Lattices in cryptography have been actively used as the foundation for con-
structing efficient or high-functional cryptosystems such as public-key encryp-
tions [17,26,41], fully homomorphic encryptions [10,22], and multilinear maps
[21]. The security of lattice-based cryptography is based on the hardness of solv-
ing the (approximate) shortest vector problems (SVP) in the underlying lattice
[15,32,35,36]. In order to put lattice-based cryptography into practical use, we
must precisely estimate the secure parameters in theory and practice by analyz-
ing the previously known efficient algorithms for solving the SVP.
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Currently the most efficient algorithms for solving the SVP are perhaps a
series of BKZ algorithms [13,14,46,47]. Numerous efforts have been made to
estimate the security of lattice-based cryptography by analyzing the BKZ algo-
rithms. Lindner and Peikert [32] gave an estimation of secure key sizes by con-
necting the computational cost of BKZ algorithm with the root Hermite factor
from their experiment using the NTL-BKZ [49]. Furthermore, van de Pol and
Smart [51] estimated the key sizes of fully homomorphic encryptions using a
simulator based on Chen-Nguyen’s BKZ 2.0 [13]. Lepoint and Naehrig [31] gave
a more precise estimation using the parameters of the full-version of BKZ 2.0
paper [14]. On the other hand, Liu and Nguyen [33] estimated the secure key
sizes of some LWE-based cryptosystems by considering the BDD in the associ-
ated q-ary lattice. Aono et al. [7] gave another security estimation for LWE-based
cryptosystems by considering the challenge data from the Darmstadt Lattice
Challenge [50]. Recently, Albrecht et al. presented a comprehensive survey on
the state-of-the-art of hardness estimation for the LWE problem [5].

The above analyzing algorithms are usually called “lattice-based attacks”,
which have a generic framework consisting of two parts:

(1) Lattice reduction: This step aims to decrease the norm of vectors in
the basis by performing a lattice reduction algorithm such as the LLL or BKZ
algorithm.

(2) Point search: This step finds a short vector in the lattice with the reduced
basis by performing the enumeration algorithm.

In order to obtain concrete and practical security parameters for lattice-
based cryptosystems, it is necessary to investigate the trade-offs between the
computational cost of a lattice reduction and that of a lattice point search.

For our total cost estimation, we further limit the lattice-based attack model
by (1) using our improved progressive BKZ algorithm for lattice reduction, and
(2) using the standard (sometimes randomized) lattice vector enumeration algo-
rithm with sound pruning [20]. To predict the computational cost under this
model, we propose a simulation method to generate the computing time of lat-
tice reduction and the lengths of the Gram-Schmidt vectors of the basis to be
computed.

BKZ Algorithms: Let B = (b1, . . . ,bn) be the basis of the lattice. The BKZ
algorithms perform the following local point search and update process from
index i = 1 to n − 1. The local point search algorithm, which is essentially the
same as the algorithm used in the second part of the lattice-based attacks, finds
a short vector in the local block Bi = πi(bi, . . . ,bi+β−1) of the fixed blocksize
β (the blocksize shrinks to n − i + 1 for large i ≥ n − β + 1). Here, the lengths
of vectors are measured under the projection πi which is defined in Sect. 2.1.
Then, the update process applies lattice reduction for the degenerated basis
(b1, . . . ,bi−1,v, bi, . . . ,bn) after inserting vector v at i-th index.

The point search subroutine finds a short vector in some searching radius
α · GH(Bi) with some probability which is defined over random local blocks
of the fixed dimension. Here, GH(Bi) is an approximation of the length of the
shortest vector in the sublattice generated by Bi.



Improved Progressive BKZ Algorithms and Their Precise Cost Estimation 791

Table 1. Technical comparison from BKZ 2.0

Technique BKZ 2.0 [13] Our algorithm

Enumeration setting

randomizing basis [20] yes no

optimal pruning [20] yes yes

blocksize β fixed iteratively increasing (Sect. 6.1)

search radius α · GH(Bi)
√
1.1 · GH(Bi)

}

optimized by GSA (Sect. 4)

probability p optimized by simulator

Preprocessing local block optimal BKZ strategy progressive BKZ

Terminating BKZ strategy simulator based (fixed) FEC based (adaptive, Sect. 5)

Predicting ‖b∗
i ‖ simulator based simulator based (Sect. 5.1)

In the classical BKZ algorithms [46,47], the local point search calls a single
execution of a lattice vector enumeration algorithm with a reasonable pruning for
searching tree. The BKZ 2.0 algorithm proposed by Chen and Nguyen [13] uses
the extreme pruning technique [20], which performs the lattice enumeration with
success probability p for �1/p� different bases G1, . . . , G�1/p� obtained by ran-
domizing the local basis Bi. They use the fixed searching radius as

√
1.1·GH(Bi).

We stress that BKZ 2.0 is practically the fastest algorithm for solving the approx-
imate SVP of large dimensions. Indeed, many top-records in the Darmstadt
Lattice Challenge [50] have been solved by BKZ 2.0 (Table 1).

Our Contributions: In this paper we revisit progressive BKZ algorithms, which
have been mentioned in several studies; these include [13,19,25,45,48]. The main
idea of progressive BKZ is that performing BKZ iteratively starting with a small
blocksize is practically faster than the direct execution of BKZ with a larger
blocksize. The method used to increase the blocksize β strongly affects the overall
computational cost of progressive BKZ. The research goal here is to find an
optimal method of increasing the blocksize β according to the other parameters
in the BKZ algorithms.

One major difference between BKZ 2.0 and our algorithm is the usage of
randomized enumeration in local blocks. To find a very short vector in each
local block efficiently, BKZ 2.0 uses the randomizing technique in [20]. Then, it
reduces each block to decrease the cost of lattice enumeration. Although it is
significantly faster than the enumeration without pruning, it introduces overhead
because the bases are not good in practice after they have been randomized. To
avoid this overhead, we adopted the algorithm with a single enumeration with a
low probability.

Moreover, BKZ of a large blocksize with large pruning (i.e., a low probability)
is generally better in both speed and quality of basis than that of a small blocksize
with few pruning (i.e., a high probability), as a rule of thumb. We pursue this
idea and add the freedom to choose the radius α · GH(L) of the enumeration of
the local block; this value is fixed in BKZ 2.0 as

√
1.1 · GH(L).
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To optimize the algorithm, we first discuss techniques for optimizing the BKZ
parameters of enumeration subroutine, including the blocksize β, success prob-
ability p of enumeration, and α to set the searching radius of enumeration as
α ·GH(Bi). We then show the parameter relationship that minimizes the compu-
tational cost for enumeration of a BKZ-β-reduced basis. Next, we introduce the
new usage of full enumeration cost (FEC), derived from Gama-Nguyen-Regev’s
cost estimation [20] with a Gaussian heuristic radius and without pruning, to
define the quality of the basis and to predict the cost after BKZ-β is performed.
Using this metric, we can determine the timing for increasing blocksize β that
provides an optimized strategy; in previous works, the timing was often heuristic.

Furthermore, we propose a new BKZ simulator to predict the Gram-Schmidt
lengths ‖b∗

i ‖ after BKZ-β. Some previous works aimed to find a short vector as
fast as possible, and did not consider other quantities. However, additional infor-
mation is needed to analyze the security of lattice-based cryptosystems. In liter-
atures, a series of works on lattice basis reduction [13,14,19,44] have attempted
to predict the Gram-Schmidt lengths ‖b∗

i ‖ after lattice reduction. In particular,
Schnorr’s GSA is the first simulator of Gram-Schmidt lengths and the informa-
tion it provides is used to analyze the random sampling algorithm. We follow
this idea, i.e., predicting Gram-Schmidt lengths to analyze other algorithms.

Our simulator is based on the Gaussian heuristic with some modifications,
and is computable directly from the lattice dimension and the blocksize. On
the other hand, Chen-Nguyen’s simulator must compute the values sequentially;
it has an inherent problem of accumulative error, if we use the strategy that
changes blocksize many times. We also investigate the computational cost of our
implementation of the new progressive BKZ, and show our estimation for solving
challenge problems in the Darmstadt SVP Challenge and Ideal Lattice Challenge
[50]. Our cost estimation is derived by setting the computation model and by
curve fitting based on results from computer experiments. Using our improved
progressive BKZ, we solved Ideal Lattice Challenge of 600 and 652 dimensions
in the exact expected times of 220.7 and 224.0 s, respectively, on a standard PC.

Finally, we compare our algorithm with several previous algorithms. In par-
ticular, compared with Chen-Nguyen’s BKZ 2.0 algorithm [13,14] and Schnorr’s
blocksize doubling strategy [48], our algorithm is significantly faster. For exam-
ple, to find a vector shorter than 1.05 · GH(L), which is required by the SVP
Challenge [50], our algorithm is approximately 50 times faster than BKZ 2.0 in
a simulator-based comparison up to 160 dimensions.

Roadmap: In Sect. 2 we introduce the basic facts on lattices. In Sect. 3 we give
an overview of BKZ algorithms, including Chen-Nguyen’s BKZ 2.0 [13] and its
cost estimation; we also state some heuristic assumptions. In Sect. 4, we propose
the optimized BKZ parameters under the Schnorr’s geometric series assumption
(GSA). In Sect. 5, we explain the basic variant of the proposed progressive BKZ
algorithm and its simulator for the cost estimation. In Sect. 6, we discuss the
optimized block strategy that improved the speed of the proposed progressive
BKZ algorithm. In Sect. 7, we show the cost estimation for processing local
blocks based on our implementation. Due to the spacing limitation, we omit the
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Optimizing the total cost (Sec. 8) BKZ-then-ENUM strategy

↑
Progressive BKZ with optimized blocksize (Sec. 6) Strategy for increasing β

↑
Estimating the cost for

Strategy
for terminating BKZ

the proposed progressive BKZ (Sec. 7)
↑

Simulator Sim-GS-lengths(n, β)
for Gram-Schmidt Lengths (Sec. 5.1)

↑
Optimal (α, p) for blocksize β by GSA (Sec. 4) Strategy in a tour

Fig. 1. Roadmap of this paper: optimizing parameters from local to global

details of our implementation (See the full version [8] for the details). We then
discuss an extended strategy using many random reduced bases [20] besides our
progressive BKZ in Sect. 8. Finally, Sect. 9 gives the results of our simulation
to solve the SVP Challenge problems and compares these results with previous
works (Fig. 1).

2 Lattice and Shortest Vector

A lattice L is generated by a basis B which is a set of linearly independent vectors
b1, . . . ,bn in R

m. We will refer to it as L(b1, . . . ,bn) = {
∑n

i=1 xibi, xi ∈ Z}.
Throughout this paper, we assume m = O(n) to analyze the computational cost,
though it is not essential. The length of v ∈ R

m is the standard Euclidean norm
‖v‖ :=

√
v · v, where the dot product of any two lattice vectors v = (v1, . . . , vm)

and w = (w1, . . . , wm) is defined as v · w =
∑m

i=1 viwi. For natural numbers i
and j with i < j, [i : j] is the set of integers {i, i + 1, . . . , j}. Particularly, [1 : j]
is denoted by [j].

The gamma function Γ (s) is defined for s > 0 by Γ (s) =
∫ ∞
0

ts−1 · e−tdt.
The beta function is B(x, y) =

∫ 1

0
tx−1(1 − t)y−1dt. We denote by Balln(R)

the n-dimensional Euclidean ball of radius R, and then its volume Vn(R) =
Rn · πn/2

Γ (n/2+1) . Stirling’s approximation yields Γ (n/2 + 1) ≈ √
πn(n/2)n/2e−n/2

and Vn(1)−1/n ≈
√

n/(2πe) ≈
√

n/17.

2.1 Gram-Schmidt Basis and Projective Sublattice

For a given lattice basis B = (b1, . . . ,bn), we define its Gram-Schmidt orthog-
onal basis B∗ = (b∗

1, . . . ,b
∗
n) by b∗

i = bi −
∑i−1

j=1 μijb∗
j for 1 ≤ j < i ≤ n,

where μij = (bi · b∗
j )/‖b∗

j‖2 are the Gram-Schmidt coefficients (abbreviated
as GS-coefficients). We sometimes refer to ‖b∗

i ‖ as the Gram-Schmidt lengths
(abbreviated as GS-lengths). We also use the Gram-Schmidt variables (abbrevi-
ated as GS-variables) to denote the set of GS-coefficients μij and lengths ||b∗

i ||.
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The lattice determinant is defined as det(L) :=
∏n

i=1 ‖b∗
i ‖ and it is equal to

the volume vol(L) of the fundamental parallelepiped. We denote the orthogonal
projection by πi : Rm 
→ span(b1 , . . . ,bi−1)⊥ for i ∈ {1, . . . , n}. In particular,
π1(·) is used as the identity map.

We denote the local block by the projective sublattice

L[i:j] := L(πi(bi), πi(bi+1), . . . , πi(bj))

for j ∈ {i, i + 1, . . . , n}. We sometimes use Bi to denote the lattice whose basis
is (πi(bi), . . . , πi(bj)) of projective sublattice L[i:j]. That is, we omit the change
of blocksize β = j − i + 1 if it is clear by context.

2.2 Shortest Vector and Gaussian Heuristic

A non-zero vector in a lattice L that has the minimum norm is called the shortest
vector. We use λ1(L) to denote the norm of the shortest vector. The notion is
also defined for a projective sublattice as λ1(L[i:j]) (we occasionally refer to this
as λ1(Bi) in this paper).

The shortest vector problem (SVP) is the problem of finding a vector of length
λ1(L). For a function γ(n) of a lattice dimension n, the standard definition of
γ-approximate SVP is the problem of finding a vector shorter than γ(n) · λ1(L).

An n-dimensional lattice L and a continuous (usually convex and symmetric)
set S ⊂ R

m are given. Then the Gaussian heuristic says that the number of
points in S ∩ L is approximately vol(S)/vol(L).

In particular, taking S as the origin-centered ball of radius R, the number of
lattice points is approximately Vn(R)/vol(L), which derives the length of shortest
vector λ1 by R so that the volume of the ball is equal to that of the lattice:

λ1(L) ≈ det(L)1/n/Vn(1)1/n =
(Γ (n/2 + 1) det(L))1/n

√
π

This is usually called the Gaussian heuristic of a lattice, and we denote it by
GH(L) = det(L)1/n/Vn(1)1/n.

For our analysis, we use the following lemma on the randomly generated
points.

Lemma 1. Let x1, . . . , xK be K points uniformly sampled from the n-
dimensional unit ball. Then, the expected value of the shortest length of vectors
from origin to these points is

E
[

min
i∈[K]

||xi||
]

= K · B
(
K,

n + 1
n

)
:= K ·

∫ 1

0

t1/n(1 − t)K−1dt.

In particular, letting K = 1, the expected value is n/(n + 1).

Proof. Since the cumulative distribution function of each ‖xi‖ is Fi(r) =
rn, the cumulative function of the shortest length of the vectors is
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Fmin(r) = 1 − (1 − Fi(r))K = 1 − (1 − rn)K . Its probability density function
is Pmin(r) = dF

dr = Kn · rn−1(1 − rn)K−1. Therefore, the expected value of the
shortest length of the vectors is

∫ 1

0

rPmin(r)dr = K ·
∫ 1

0

t1/n(1 − t)K−1dt.
�

2.3 Enumeration Algorithm [20,28,46]

We explain the enumeration algorithm for finding a short vector in the lattice.
The pseudo code of the enumeration algorithm is given in [20,46]. For given
lattice basis (b1, . . . ,bn), and its Gram-Schmidt basis (b∗

1, . . . ,b
∗
n), the enumer-

ation algorithm considers a search tree whose nodes are labeled by vectors. The
root of the search tree is the zero vector; for each node labeled by v ∈ L at depth
k ∈ [n], its children have labels v + an−k · bn−k (an−k ∈ Z) whose projective
length ‖πn−k(

∑n
i=n−k ai ·bi)‖ is smaller than a bounding value Rk+1 ∈ (0, ‖b1‖].

After searching all possible nodes, the enumeration algorithm finds a lattice vec-
tor shorter than Rn at a leaf of depth n, or its projective length is somehow
short at a node of depth k < n. It is clear that by taking Rk = ‖b1‖ for all
k ∈ [n], the enumeration algorithm always finds the shortest vector v1 in the
lattice, namely ‖v1‖ = λ1(L).

Because ‖b1‖ is often larger than λ1(L), we can set a better searching radius
Rn = GH(L) to decrease the computational cost. We call this the full enu-
meration algorithm and define the full enumeration cost FEC(B) as the cost of
the algorithm for this basis. With the same argument in [20], we can evaluate
FEC(B) using the following equation.

FEC(B) =
n∑

k=1

Vk(GH(L))∏n
i=n−k+1 ‖b∗

i ‖
.

Because full enumeration is a cost-intensive algorithm, several improvements
have been proposed by considering the trade-offs between running time, search-
ing radius, and success probability [20,47]. Gama-Nguyen-Regev [20] proposed
a cost estimation model of the lattice enumeration algorithm to optimize the
bounding functions of R1, . . . , Rn, which were mentioned above. The success
probability p of finding a single vector within a radius c is given by

p = Pr
(x1,...,xn)←c·Sn

[ �∑

i=1

x2
i < R2

� for ∀ � ∈ [n]
]
,

where Sn is the surface of the n-dimensional unit ball. Then, the cost of the
enumeration algorithm can be estimated by the number of processed nodes, i.e.,

N =
1
2

n∑

k=1

vol{(x1, . . . , xk) ∈ R
k :

∑�
i=1 x2

i < R2
� for ∀ � ∈ [k]}∏n

i=n−k+1 ‖b∗
i ‖

. (1)
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Note that the factor 1/2 is based on the symmetry. Using the methodology in
[20], Chen-Nguyen proposed a method to find the optimal bounding functions
of R1, . . . , Rn that minimizes N subject to p.

In this paper, we use the lattice enumeration cost, abbreviated as ENUM
cost, to denote the number N in Eq. (1). For a lattice L defined by a basis B
and parameters α > 0 and p ∈ [0, 1], we use ENUMCost(B; α, p) to denote the
minimized cost N of lattice enumeration with radius c = α · GH(L) subject to
the success probability p. This notion is also defined for a projective sublattice.

3 Lattice Reduction Algorithms

Lattice reduction algorithms transform a given lattice basis (b1, . . . ,bn) to
another basis whose Gram-Schmidt lengths are relatively shorter.

LLL Algorithm [30]: The LLL algorithm transforms the basis (b1, . . . ,bn)
using the following two operations: size reduction bi ← bi−�μji�bj for j ∈ [i−1],
and neighborhood swaps between bi and bi+1 if ‖b∗

i+1‖2 ≤ 1/2‖b∗
i ‖2 until no

update occurs.

BKZ Algorithms [46,47]. For a given lattice basis and a fixed blocksize β, the
BKZ algorithm processes the following operation in the local block Bi, i.e., the
projected sublattice L[i,i+β−1] of blocksize β, starting from the first index i = 1
to i = n − 1. Note that the blocksize β reluctantly shrinks to n − i + 1 for large
i > n − β + 1, and thus we sometimes use β′ to denote the dimension of Bi, i.e.
β′ = min(β, n − i + 1).

At index i, the standard implementation of the BKZ algorithm calls the
enumeration algorithm for the local block Bi. Let v be a shorter vector found
by the enumeration algorithm. Then the BKZ algorithm inserts v into bi−1 and
bi, and constructs the degenerated basis (b1, . . . ,bi−1,v,bi, . . . ,bmin(i+β−1,n)).
For this basis, we apply the LLL algorithm (or BKZ with a smaller blocksize) so
that the basis of shorter independent vectors can be obtained. One set of these
procedures from i = 1 to n − 1 is usually called a tour. The original version of
the BKZ algorithm stops when no update occurs during n − 1 iterations. In this
paper, we refer to the BKZ algorithm with blocksize β as the BKZ-β.

HKZ Reduced Basis: The lattice basis (b1, . . . ,bn) is called Hermite-Korkine-
Zolotarev (HKZ) reduced [38, Chapter 2] if it is size-reduced |μji| ≤ 1/2 for all
i and j, and πi(bi) is the shortest vector in the projective sublattice L[i:n] for
all i. We can estimate the Gram-Schmidt length of the HKZ-reduced basis by
using the Gaussian heuristic as ‖b∗

i ‖ = GH(L[i:n]). Since the HKZ-reduced basis
is completely reduced in this sense, we will use this to discuss the lower bound
of computing time in Sect. 8.2.

3.1 Some Heuristic Assumptions in BKZ

Gaussian Heuristic in Small Dimensions: Chen and Nguyen observed that
the length λ1(Bi) of the shortest vector in the local block Bi is usually larger
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Fig. 2. Semi-log graph of ‖b∗
i ‖ of a 240-dimensional highly reduced basis

than GH(Bi) in small dimensions i.e., small β′ [13]. They gave the averaged
values of ‖b∗

i ‖/det(L)1/n for the last indexes of highly reduced bases to modify
their BKZ simulator, see [13, Appendix C]. For their 50 simulated values for
‖b∗

n−49‖, . . . , ‖b∗
n‖, we define the modified Gaussian heuristic constant by

τi :=
λ1(πn−i+1(L))
GH(πn−i+1(L))

=
‖b∗

n−i+1‖
Vi(1)−1/i ·

∏n
j=n−i+1 ‖b∗

j‖1/i
. (2)

We will use τi for i ≤ 50 to denote these modifying constants; for i > 50 we
define τi = 1 following Chen-Nguyen’s simulator [13].

In the rest of this paper, we assume that the shortest vector lengths of β-
dimensional local blocks Bi of reduced bases satisfies

λ1(Bi) ≈
{

τβ · GH(Bi) (β ≤ 50)
GH(Bi) (β > 50)

on average.
We note that there exists a mathematical theory to guarantee τi → 1 for

random lattices when the dimension goes to infinity [42]. Though it does not
give the theoretical guarantee τi = 1 for BKZ local blocks, they are very close
in our preliminary experiments.

Geometric Series Assumption (GSA): Schnorr [44] introduced geometric
series assumption (GSA), which says that the Gram-Schmidt lengths ‖b∗

i ‖ in the
BKZ-reduced basis decay geometrically with quotient r for i = 1, . . . , n, namely,
‖b∗

i ‖2/‖b1‖2 = ri−1, for some r ∈ [3/4, 1). Here r is called the GSA constant.
Figure 2 shows the Gram-Schmidt lengths of a 240-dimensional reduced basis
after processing BKZ-100 using our algorithm and parameters.

It is known that GSA does not hold exactly in the first and last indexes
[11]. Several previous works [3,11,44] aimed to modify the reduction algorithm
that outputs the reduced basis satisfying GSA. However, it seems difficult to
obtain such a reduced basis in practice. In this paper, we aim to modify the
parameters in the first and last indexes so that the proposed simulator performs
with optimal efficiency (See Sect. 5.1).



798 Y. Aono et al.

3.2 Chen-Nguyen’s BKZ 2.0 Algorithm [13]

We recall Chen-Nguyen’s BKZ 2.0 Algorithm in this section. The outline of the
BKZ 2.0 algorithm is described in Fig. 3.

Input: A lattice basis B of n dimensions, blocksize β, and
some terminating condition.

Output: A reduced basis B.
1: B ← LLL(B);
2: for i = 1 to n − 1
3: Set probability p for local block Bi of fixed blocksize βi = min(β, n− i+1)

and let M = 1/p ;
4: Generate randomized local blocks G1, . . . , GM from local block Bi,

and preprocess G1, . . . , GM (reduction by LLL and small blocksize BKZ);
5: Find a vector v using lattice enumeration with radius

c = min{||b∗
i ||,

√
1.1 · GH(Bi)} for G1, . . . , GM with probability p;

6: if v satisfies v < b∗
i then update basis B by v;

7: end-for
8: if terminating condition is satisfied then return B else goto Step 2;

Fig. 3. Outline of BKZ 2.0

Speed-Up Techniques for BKZ 2.0: BKZ 2.0 employs four major speed-up
techniques that differentiate it from the original BKZ:

1. BKZ 2.0 employs the extreme pruning technique [20], which attempts to find
shorter vectors in the local blocks Bi with low probability p by randomizing
basis Bi to more blocks G1, . . . , GM where M = �1/p�.

2. For the search radius min{||b∗
i ||, α · GH(Bi)} in the enumeration algorithm

of the local block Bi, Chen and Nguyen set the value as α =
√

1.1 from their
experiments, while the previous works set the radius as ‖b∗

i ‖.
3. In order to reduce the cost of the enumeration algorithm, BKZ 2.0 pre-

processes the local blocks by executing the sequence of BKZ algorithm, e.g.,
3 tours of BKZ-50 and then 5 tours of BKZ-60, and so on. The parameters
blocksize, number of rounds and number of randomized bases, are precom-
puted to minimize the total enumeration cost.

4. BKZ 2.0 uses the terminating condition introduced in [23], which aborts BKZ
within small number of tours. It can find a short vector faster than the full
execution of BKZ.

Chen-Nguyen’s BKZ 2.0 Simulator: In order to predict the computa-
tional cost and the quality of the output basis, they also propose the simu-
lating procedure of the BKZ 2.0 algorithm. Let (�1, . . . , �n) be the simulated
values of the GS-lengths ‖b∗

i ‖ for i = 1, . . . , n. Then, the simulated values of
the determinant and the Gaussian heuristic are represented by

∏n
j=1 �j and

GH(Bi) = Vβ′(1)−1/β′ ∏i+β′−1
j=i �i where β′ = min{β, n − i + 1}, respectively.



Improved Progressive BKZ Algorithms and Their Precise Cost Estimation 799

Input: A lattice basis B of n dimensions, blocksize β
Output: A reduced basis B.
1: B ← LLL(B);
2: flag = 1 // set flag = 0 when the basis is updated.
3: for i = 1 to n − 1
4: Set (α, p) for local block Bi of fixed blocksize βi = min(β, n − i + 1);
5: Execute lattice enumeration with probability p and radius α · GH(Bi);
6: if v satisfies v < α · GH(Bi), then update basis B by v and flag = 0;
7: end-for
8: if flag = 1 then return B else goto Step 2;

Fig. 4. Plain BKZ algorithm

They simulate a BKZ tour of blocksize β assuming that each enumeration
procedure finds a vector of projective length GH(Bi). Roughly speaking, their
simulator updates (�i, �i+1) to (�′

i, �
′
i+1) for i = 1, . . . , n − 1, where �′

i = GH(Bi)
and �′

i+1 = �i+1 ·(�i/�′
i). Here, the last 50 GS-lengths are modified using an HKZ

reduced basis. The details of their simulator are given in [13, Algorithm 3].
They also present the upper and lower bounds for the number of processed

nodes during the lattice enumeration of blocksize β. From [14, Table 4], we
extrapolate the costs as

log2(Costβ) = 0.000784314β2 + 0.366078β − 6.125 (3)

Then, the total enumeration cost of performing the BKZ 2.0 algorithm using
blocksize β and t tours is given by

t ·
n−1∑

i=1

Costmin{β,n−i+1}. (4)

To convert the number of nodes into single-threaded time in seconds, we use
the rational constant 4 ·109/200 = 2 ·107, because they assumed that processing
one node requires 200 clock cycles in a standard CPU, and we assume it can
work at 4.0GHz.

We note that there are several models to extrapolate log2(Costβ). Indeed,
Lepoint and Naehrig [31] consider two models by a quadratic interpolation and
a linear interpolation from the table. Albrecht et al. [5] showed another BKZ 2.0
cost estimation that uses an interpolation using the cost model log2(Costβ) =
O(n log n). It is a highly non-trivial task to find a proper interpolation that
estimates a precise cost of the BKZ 2.0 algorithm.

We further mention that the upper bound of the simulator is somewhat debat-
able, because they use the enumeration radius c = min{

√
1.1 · GH(Bi), ‖b∗

i ‖}
for i < n − 30 in their experiment whereas they assume c = GH(Bi) for the cost
estimation in their upper bound simulation. Thus, the actual cost of BKZ 2.0
could differ by a factor of 1.1O(β).
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4 Optimizing Parameters in Plain BKZ

In this section we consider the plain BKZ algorithm described in Fig. 4, and
roughly predict the GS-lengths of the output basis, which were computed by
the GSA constant r. Using this analysis, we can obtain the optimal settings for
parameters (α, p) in Step 4 of the plain BKZ algorithm of blocksize β.

4.1 Relationship of Parameters α, P, β, R

We fix the values of parameters (β, α) and assume that the lattice dimension n
is sufficiently large.

Suppose that we found a vector v of ‖v‖ < α · GH(Bi) in the local block Bi.
We update the basis Bi by inserting v at i-th index, and perform LLL or small
blocksize BKZ on the updated basis.

When the lattice dimension is large, Rogers’ theorem [42] says that approxi-
mately αn/2 vector pairs (v,−v) exist within the ball of radius c = α · GH(L).
Since the pruning probability is defined for a single vector pair, we expect
the actual probability that the enumeration algorithm finds at least one vec-
tor shorter than c is roughly

1 − (1 − p)αn/2 ≈ p · αn

2
. (5)

From relation (5), there may exist one lattice vector in the searching space by
setting parameter p as

p =
2

αβ
. (6)

Remark 1. The probability setting of Eq. (6) is an optimal choice under our
assumption. If p is smaller, the enumeration algorithm finds no short vector
with high probability and basis updating at i-th index does not occur, which
is a waste of time. On the other hand, if we take a larger p so that there exist
p · αβ/2 > 1 vector pairs, the computational time of the enumeration algorithm
increases more than p ·αβ/2 times [20]. Although it can find shorter vectors, this
is also a waste of time from the viewpoint of basis updating.

Assume that one vector is found using the enumeration, and also assume
that the distribution of it is the same as the random point in the β-dimensional
ball of radius α · GH(Bi). Then, the expected value of ‖v‖ is β

β+1α · GH(Bi) by
letting K = 1 in Lemma 1. Thus, we can expect that this is the value ‖b∗

i ‖ after
update.

Therefore, after executing a sufficient number of BKZ tours, we can expect
that all the lengths ‖b∗

i ‖ of the Gram-Schmidt basis satisfy

‖b∗
i ‖ =

β

β + 1
α · GH(Bi) (7)

on average. Hence, under Schnorr’s GSA, we have the relation
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Fig. 5. Relation between β and r that minimizes the computational cost

‖b∗
i ‖ =

αβ

β + 1
· Vβ(1)−1/β‖b∗

i ‖
β∏

j=1

r(j−1)/2β , (8)

and the GSA constant is

r =
(

β + 1
αβ

) 4
β−1

· Vβ(1)
4

β(β−1) . (9)

Therefore, by fixing (α, β), we can set the probability p and obtain r as
a rough prediction of the quality of the output lattice basis. We will use the
relations (6) and (9) to set our parameters. Note that any two of β, α, p and r
are determined from the other two values.

Remark 2. Our estimation is somehow underestimate, i.e., in our experiments,
the found vectors during BKZ algorithm are often shorter than the estimation
in Eq. (7). This gap is mainly from the estimation in (5), which can be explained
as follows. Let (R1, . . . , Rβ) be a bounding function of probability p for a vector
of length ‖v‖. Then, the probability p′ for a vector of length ‖v′‖ of a shorter
vector is the same as the scaled bounding function (R′

1, . . . , R
′
β) where R′

i =
min{1.0, Ri · ‖v‖/‖v′‖}. Here, p′ is clearly larger than p due to R′

i ≥ Ri for
i ∈ [β]. Therefore, when the above parameters are used, the quality of the
output basis is better than that derived from Eq. (9) if we perform a sufficient
number of tours. Hence, within a few tours, our algorithm can output a basis
which has a good quality predicted by our estimation in this section.

4.2 Optimizing Parameters

Now for a fixed parameter pair (β, r), the cost ENUMCost(Bi; α, p) of the enu-
meration algorithm in local block Bi satisfying GSA is computable. Concretely,
we compute α using the relation (9), fix p by (6), and simulate the Gram-Schmidt
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lengths of Bi using ‖b∗
i ‖ = r(i−1)/2. Using the computation technique in [20], for

several GSA constants r, we search for the optimal blocksize β that minimizes
the enumeration cost ENUMCost(Bi;α, p). The small squares in Fig. 5 show the
results. From these points, we find the functions f1(β) and f2(β), whose graphs
are also in the figure.

We explain how to find these functions f1(β) and f2(β). Suppose lattice
dimension n is sufficiently large, and suppose the cost of the enumeration algo-
rithm is roughly dominated by the probability p times the factor at k = n/2 in
the summation (1). Then ENUMCost(Bi;α, p) is approximately

D = p ·
Vβ/2(α · GH(Br))
∏β

i=β/2+1 ‖b∗
i ‖

= 2α−β/2Vβ/2(1)Vβ(1)−1/2

rβ2/16
,

where from Eq. (9) we have obtained

D ≈ Const.× r(β
2−2β)/16 ·

(
β

eπ

)β/4

, and
∂ log D

∂β
≈ β − 1

8
log r +

1
4

+
1
4

log
β

eπ
.

In order to minimize D, we roughly need the above derivative to be zero;
thus, we use the following function of β for our cost estimation with constants ci

log(r) = 2 · (log β + 1 − log(eπ))/(β − 1) =
log c1β

c2β + c3
.

From this observation, we fix the fitting function model as f(β) = log(c1β+c2)
c3β+c4

.
By using the least squares method implemented in gnuplot, we find the

coefficients ci so that f(β) is a good approximation of the pairs (βi, log(ri)). In
our curve fitting, we separate the range of β into the interval [40, 100], and the
larger one. This is needed for converging to log(r) = 0 when β is sufficiently
large; however, our curve fitting using a single natural function did not achieve
it. Curves f1(β) and f2(β) in Fig. 5 are the results of our curve fitting for the
range [40, 100] and the larger one, respectively.

For the range of β ∈ [40, 100], we have obtained

log(r) = f1(β) := −18.2139/(β + 318.978) (10)

and for the larger blocksize β > 100,

log(r) = f2(β) := (−1.06889/(β − 31.0345)) · log(0.417419β − 25.4889). (11)

Note that we will use the relation (10) when the blocksize is smaller than 40.
Moreover, we obtain pairs of β and minimize ENUMCost(Bi; α, p), in accor-

dance with the above experiments. Using the curve fitting that minimizes∑
β |f(β)− log2 ENUMCost(Bi;α, p)|2 using gnuplot, we find the extrapolating

formula

log2 MINCost(β) :=
{

0.1375β + 7.153 (β ∈ [60, 105])
0.000898β2 + 0.270β − 16.97 (β > 105) (12)

to log2 ENUMCost(Bi;α, p). We will use this as the standard of the enumeration
cost of blocksize β.



Improved Progressive BKZ Algorithms and Their Precise Cost Estimation 803

Remark 3. Our estimation from the real experiments is 0.25β · ENUMCost(Bi;
α, p) (See, Sect. 7.1 of the full-version [8]), which crosses over the estimation of
BKZ 2.0 simulator (3) at β = 873. Thus, the performance of BKZ 2.0 might
be better in some extremely high block sizes, while our algorithm has a better
performance in the realizable block sizes < 200.

4.3 Parameter Settings in Step 4 in Fig. 4

Using the above arguments, we can fix the optimized pair (α, p) for each block-
size β. That is, to process a local block of blocksize β in Step 4 of the plain BKZ
algorithm in Fig. 4, we compute the corresponding r by Eqs. (10) and (11), and
additionally obtain the parameters α by Eq. (9) and p by Eq. (6). These are our
basic parameter settings.

Modifying Blocksize at First Indexes: We sometimes encounter the phe-
nomenon in which the actual ENUMCost(Bi; α, p) in small indexes is much
smaller than that in middle indexes. This is because ||b∗

i || is smaller than GH(Bi)
in small indexes. In other words, bi is hard to update using the enumeration of
blocksize β. To speed up the lattice reduction, we use a heuristic method that
enlarges the blocksizes as follows.

From the discussion in the above subsection, we know the theoretical value
of the enumeration cost at blocksize β. On the other hand, in the actual comput-
ing of BKZ algorithms, the enumeration cost is increased because the sequence
(||b∗

i ||, . . . , ||b∗
i+β−1||), which mainly affects the computing cost, does not follow

the GSA of slope r exactly. Thus, we define the expected enumeration cost in
blocksize β as β · MINCost(β). With this expectation, we reset the blocksize as
the minimum β satisfying ENUMCost(B[i:i+β−1]; α, p) > β · MINCost(β).

Modifying (α, p) at Last Indexes: For large indexes such as i > n − β, the
blocksize of a local block shrinks to β′ = min(β, n−i+1). In our implementation,
we increase the success probability to a new p′, while ENUMCost(Bi; α′, p′) is
smaller than β · MINCost(β). We also reset the radius as α′ = (2/p′)1/β from
Eq. (6).

5 Our Proposed Progressive BKZ: Basic Variant

In this section, we explain the basic variant of our proposed progressive BKZ
algorithm.

In general, if the blocksize of the BKZ algorithm increases, a shorter vec-
tor b1 can be computed; however, the running cost will eventually increase.
The progressive BKZ algorithm starts a BKZ algorithm with a relatively small
blocksize βstart and increases the blocksize to βend by some criteria. The idea
of the progressive BKZ algorithm has been mentioned in several literatures, for
example, [13,25,45,48]. The research challenge in the progressive BKZ algorithm
is to find an effective criteria for increasing blocksizes that minimizes the total
running time.
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Input: A lattice basis B of n dimensions, starting blocksize βstart,
and ending blocksize βend.

Output: A reduced basis B.
1: B ← LLL(B);
2: for β = βstart to βend do
3: while FEC(B) > Sim-FEC(n, β) do
4: for i = 1 to n − 1
5: Set (α, p) for local block Bi of blocksize β = min(β, n − i + 1)

using the setting in Section 4.3;
6: Preprocess the basis by the progressive BKZ;
7: Execute lattice enumeration with probability p and radius α · GH(Bi);
8: if v satisfies v < α · GH(Bi) then update basis B by v;
9: end-for
10: end-while
11: end-for

Fig. 6. Our progressive BKZ algorithm (basic variant)

In this paper we employ the full enumeration cost (FEC) in Sect. 2.3, in order
to evaluate the quality of the basis for finding the increasing criteria. Recall that
the FEC of basis B = (b1, . . . ,bn) of n-dimensional lattice L is defined by
FEC(B) =

∑n
k=1

Vk(GH(L))∏n
i=n−k+1 ‖b∗

i ‖ , where ‖b∗
i ‖ represents the GS-lengths. Note

that FEC(B) eventually decreases after performing several tours of the BKZ
algorithm using the fixed blocksize β.

Moreover, we construct a simulator that evaluates the GS-lengths by the opti-
mized parameters α, p, β, r for the BKZ algorithm described in the local block
discussion in Sect. 4.3. The simulator for an n-dimensional lattice only depends
on the blocksize β of the local block; we denote by Sim-GS-lengths(n, β) the sim-
ulated GS-lengths (�1, . . . , �n). The construction of simulator will be presented
in Sect. 5.1.

For this purpose, we define some functions defined on the simulated GS-
lengths (�1, . . . , �n). Sim-GH(�1, . . . , �n) = Vn(1)−1/n

∏n
j=1 �

1/n
j is the simulated

Gaussian heuristic. The simulated value of full enumeration cost is

Sim-FEC(�1, . . . , �n) :=
n∑

k=1

Vk(Sim-GH(�1, . . . , �n))∏n
i=n−k+1 �i

.

Further, for (�1, . . . , �n) = Sim-GS-lengths(n, β), we use the notation
Sim-FEC(n, β) := Sim-FEC(�1, . . . , �n) in particular. The simulated enumera-
tion cost Sim-ENUMCost(�1, . . . , �β ;α, p) is defined by ENUMCost(B; α, p) for
a lattice basis B that has GS-lengths ‖b∗

i ‖ = �i for i ∈ [β].
The key point of our proposed progressive BKZ algorithm is to increase the

blocksize β if FEC(B) becomes smaller than Sim-FEC(n, β). In other words,
we perform the BKZ tours of blocksize β while FEC(B) > Sim-FEC(n, β). We
describe the proposed progressive BKZ in Fig. 6.
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Remark 4. In the basic variant of our progressive BKZ described in Sect. 6.1, we
increase the blocksize β in increments of one in Step 2. However, we will present
an optimal strategy for increasing the blocksize in Sect. 5.

5.1 Sim-GS-lengths(n, β): Predicting Gram-Schmidt Lengths

In the following, we construct a simulator for predicting the Gram-Schmidt
lengths ‖b∗

i ‖ obtained from the plain BKZ algorithm of blocksize β.
Our simulator consists of two phases. First, we generate approximated GS-

lengths using Gaussian heuristics; we then modify it for the first and last indexes
of GSA in Sect. 3.1. We will explain how to compute (�1, . . . , �n) as the output
of Sim-GS-lengths(n, β).

First Phase: Our simulator computes the initial value of (�1, . . . , �n).
We start from the last index by setting �n = 1, and compute �i backwards.

From Eqs. (2) and (7) we are able to simulate the GS-lengths �i by solving the
following equation of �i:

�i = max
{

β′

β′ + 1
α, τβ′

}
· GH(�i, . . . , �i+β′−1), where β′ = min(β, n − i + 1).

(13)
Here, α is the optimized radius parameter in Sect. 4.3 and τβ′ is the coefficient
of the modified Gaussian heuristic.

This simple simulation in the first phase is sufficient for smaller blocksizes
(β < 30). However, for simulating larger blocksizes, we must modify the GS-
lengths of the first and last indexes in Sect. 3.1.

Second Phase: To modify the results of the simple simulation, we consider our
two modifying methods described in Sect. 4.3. We recall that MINCost(β) is the
standard value of the enumeration cost of blocksize β.

We first consider the modification for the last indexes i > n − β + 1, i.e., a
situation in which the blocksize is smaller than β. We select the modified prob-
ability pi at index i so that Sim-ENUMCost(�i, . . . , �n; αi, pi) = MINCost(β),
where �i, . . . , �n is the result of the first simulation, and we use αi = (2/pi)n−i+1.
After all (αi, pi) for n − β + 1 ≤ i ≤ n are fixed, we modify the GS-lengths by
solving the following equation of �i again:

�i = max
{

β′

β′ + 1
αi, τβ′

}
· GH(�i, . . . , �n) where β′ = n − i + 1.

Next, using the modified (�1, . . . , �n), we again modify the first indexes as
follows. We determine the integer parameter b > 0 for the size of enlargement.
For b = 1, 2, . . ., we reset the blocksize at index i as βi := β + max{(b −
i + 1)/2, b − 2(i − 1)} for i ∈ {1, . . . , b}. Using these blocksizes, we recom-
pute the GS-lengths by solving Eq. (13) from i = βi to 1. Then, we compute
Sim-ENUMCost(�1, . . . , �β+b;α, p). We select the maximum b such that this
simulated enumeration cost is smaller than 2 · MINCost(β).
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Fig. 7. Left figure: Semi-log graph of ‖b∗
i ‖ of reduced random lattices from the SVP

Challenge problem generator: Simulation (bold lines) vs. Experiment (small squares).
Right figure: The root Hermite factor of reduced random 300-dimensional bases
after BKZ-β. Simulation (bold red lines) vs. Experiment (thin blue lines) (Color figure
online).

Experimental Result of Our GS-lengths Simulator: We performed some
experiments on the GS-lengths for some random lattices from the Darmstadt
SVP Challenge [50]. We computed the GS-lengths for 120, 150 and 200 dimen-
sions using the proposed progressive BKZ algorithm, with ending blocksizes of
40, 60, and 100, respectively (Note that the starting blocksize is irrelevant to the
quality of the GS-lengths). The simulated result is shown in Fig. 7. Almost all
small squares of the computed GS-lengths are plotted on the bold line obtained
by our above simulation. Our simulator can precisely predict the GS-lengths
of these lattices. The progress of the first vector, which uses 300-dimensional
lattices, is also shown in the figure.

5.2 Expected Number of BKZ Tours at Step 3

At Step 3 in the proposed algorithm (Fig. 6) we iterate the BKZ tour with block-
size β as long as the full enumeration cost FEC(B) is larger than the simulated
cost Sim-FEC(n, β). In the following we estimate the expected number of BKZ
tours (we denote it as �tours) at blocksize β.

In order to estimate �tours, we first compute (�1, . . . , �n) and the output of
Sim-GS-lengths(n, β − 1), and update it by using the modified Chen-Nguyen’s
BKZ 2.0 simulator described in Sect. 3.2, until Sim-FEC(�1, . . . , �n) is smaller
than Sim-FEC(n, β). We simulate a BKZ tour by updating the pair (�i, �i+1) to
(�′

i, �
′
i+1) for i = 1, . . . , n − 1 according to the following rule:

�′
i = max

{
β

β+1α, τβ

}
· GH(�i, . . . , �min(n,i+β−1))

and �′
i+1 = �i+1 · (�i/�′

i).

At the simulation of t-th BKZ tour, write the input GS-lengths (�′
1, . . . , �

′
n);

i.e., the output of the (t − 1)-th BKZ tour. We further denote the output of t-th
BKZ tour as (�1, . . . , �n). Suppose they satisfy

Sim-FEC(�′
1, . . . , �

′
n) > Sim-FEC(n, β) > Sim-FEC(�1, . . . , �n).
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Then, our estimation of �tours is the interpolated value:

�tours = (t − 1) +
Sim-FEC(�′

1, . . . , �
′
n) − Sim-FEC(n, β)

Sim-FEC(�′
1, . . . , �

′
n) − Sim-FEC(�1, . . . , �n)

. (14)

Note that we can use this estimation for other BKZ strategies, although we
estimate the number of BKZ tours from BKZ-(β−1) basis to BKZ-β basis, using
BKZ-β algorithm. We will estimate the tours for other combinations of starting
and ending blocksizes, and use them in the algorithm.

6 Our Progressive BKZ: Optimizing Blocksize Strategy

We propose how to optimally increase the blocksize β in the proposed progressive
BKZ algorithm. Several heuristic strategies for increasing the blocksizes have
been proposed. The following sequences of blocksizes after LLL-reduction have
been used in the previous literatures:

20 → 21 → 22 → 23 → 24 → · · · Gama and Nguyen [19]
2 → 4 → 8 → 16 → 32 → · · · Schnorr and Shevchenko [48],
2 → 4 → 6 → 8 → 10 → · · · Haque, Rahman, and Pieprzyk [25],
50 → 60 → 70 → 80 → 90 → · · · Chen and Nguyen [13, 14]

The timings for changing to the next blocksize were not explicitly given. They
sometimes continue the BKZ tour until no update occurs as the original BKZ.
In this section we try to find the sequence of the blocksizes that minimizes the
total cost of the progressive BKZ to find a BKZ-β reduced basis. To find this
strategy, we consider all the possible combinations of blocksizes used in our BKZ
algorithm and the timing to increase the blocksizes.

Notations on Blocksize Strategy: We say a lattice basis B of dimension n is
β-reduced when FEC(B) is smaller than Sim-FEC(n, β). For a tuple of blocksizes
(βalg, βstart, βgoal) satisfying 2 ≤ βstart < βgoal ≤ βalg, the notation

βstart βalg

→ βgoal

is the process of the BKZ following algorithm. The input is a βstart-reduced
basis B, and the algorithm updates B using the tours of BKZ-βalg algorithm
with parameters in Sect. 4.3. It stops when FEC(B) < Sim-FEC(n, βgoal).

TimeBKZ(n, βstart βalg

→ βgoal) is the computing time in seconds of this algo-
rithm. We provide a concrete simulating procedure in this and the next sections.
We assume that TimeBKZ is a function of n, βalg, βstart and βgoal.

To obtain a BKZ-β reduced basis from an LLL reduced basis, many blocksize
strategies are considered as follows:

βgoal
0 = LLL

β
alg
1→ βgoal

1

β
alg
2→ βgoal

2

β
alg
3→ · · ·

β
alg
D→ βgoal

D (= β). (15)

We denote this sequence as {(βalg
j , βgoal

j )}j=1,...,D, and regard it as the
progressive BKZ given in Fig. 8.
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Input: A lattice basis B of n dimensions,

Blocksize strategy {(βalg
j , βgoal

j )}j=1,...,D

Output: A βgoal
D -reduced basis B.

1: B ← LLL(B);
2: for j = 1 to D do

3: while FEC(B) > Sim-FEC(n, βgoal
j ) do

4-9: The same as Step 4-9 in Figure 6 with blocksize βalg
j

10: end-while
11: end-for

Fig. 8. Our progressive BKZ algorithm with blocksize strategy

6.1 Optimizing Blocksize Strategies

Our goal in this section is to find the optimal sequence that minimizes the total
computing time

D∑

i=1

TimeBKZ(n, βgoal
i−1

β
alg
i→ βgoal

i ) (16)

of the progressive BKZ algorithm to find a BKZ-βgoal
D basis.

Based on our experimental results, which are given in Sect. 7, we can estimate
the computing time of the BKZ algorithm:

TimeBKZ(n, βstart βalg

→ βgoal) [sec.]

=
�tours∑

t=1

[
1.5 · 10−10 · (βalg)2n3 + 1.5 · 10−8 · βalg

n−1∑

i=1

ENUMCost(Bi; α, p)
]

(17)
when dimension n is small (n < 400), and

TimeBKZ(n, βstart βalg

→ βgoal) [sec.]

=
�tours∑

t=1

[
2.5 · 10−4 · n − βalg

250 − βalg
· n2. + 3.0 · 10−8 · βalg

n−1∑

i=1

ENUMCost(Bi; α, p)
]

(18)
when dimension n is large (n ≥ 400). The difference is caused by the differ-
ence in the types to compute Gram-Schmidt variables in implementation. The
former and latter implementation employ quad float and RR (320 bits) respec-
tively, where RR is the arbitrary precision floating point type in the NTL library
[49]. To compute �tours we use the procedure in Sect. 5.2. The input of the
ENUMCost function is from Sim-GS-lengths(n, βstart) at the first tour. From
the second tour, we use the updated GS-lengths by the Chen-Nguyen’s simula-
tor with blocksize βalg.

Using these computing time estimations, we discuss how to find the optimal
blocksize strategy (15) that minimizes the total computing time. In this optimiz-
ing procedure, the input consists of n and β, the lattice dimension and the goal
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blocksize. We denote TimeBKZ(n, βgoal) to be the minimized time in seconds to
find a β-reduced basis from an LLL reduced basis, that is, the minimum of (16)
from among the possible blocksize strategies. By definition, we have

TimeBKZ(n, βgoal) = min
β′,βalg

{
TimeBKZ(n, β′) + TimeBKZ(n, β′ βalg

→ βgoal)
}

where we take the minimum over the pair of blocksizes (β′, βalg) satisfying β′ <
βgoal ≤ βalg.

For the given (n, β), our optimizing algorithm computes TimeBKZ(n, β̄) from
small β̄ to the target β̄ = β. As the base case, we define that TimeBKZ(n, 20)
represents the time to compute a BKZ-20 reduced basis using a fixed blocksize,
starting from an LLL reduced basis:

TimeBKZ(n, 20) := min
βalg

{
TimeBKZ(n,LLL βalg

→ 20)
}

.

6.2 Simulating Time to Find Short Vectors in Random Lattices

In this section, we give our simulating result of finding short vectors for random
lattices. For the given lattice dimension n and the target length, we simulate the
necessary BKZ blocksize β so that �1 of Sim-GS-lengths(n, β) is smaller than
the target length. Then, we simulate TimeBKZ(n, β) by using the method in
Sect. 6.1.

As an example, in Table 2, we show the optimized blocksize strategy and
computing time to find a 102-reduced basis in n = 600 dimension. We estimate
blocksize 102 is necessary to find a vector shorter than n · det(L)1/n, which
is the condition to enter the Hall of Fame in the Approximate Ideal Lattice
Challenge [50].

Table 2. The optimized blocksize strategy and computational time in seconds in 600-
dimensional lattice.

βalg

→ βgoal LLL
32→ 21

50→ 36
58→ 46

65→ 55
71→ 61

75→ 70
81→ 76

85→ 84

log2(Time [sec.]) 15.61 15.86 16.04 16.21 16.31 16.51 16.70 17.07
βalg

→ βgoal 89→ 88
91→ 90

93→ 92
99→ 98

101→ 100
103→ 102

log2(Time [sec.]) 17.42 17.67 17.97 18.89 19.49 20.09

Table 3 shows the blocksize and predicted total computing time in seconds to
find a vector shorter than n ·GH(L) (this corresponds to the n-approximate SVP
from the learning with errors problem [41].), n · det(L)1/n (from the Approxi-
mate Ideal Lattice Challenge published in Darmstadt [50]), and

√
n ·GH(L). For

comparison, the simulating result of BKZ 2.0 is given to find n ·det(L)1/n. Recall
that their estimated cost in seconds is given by �ENUM/2 · 107. From Table 3,
our algorithm is asymptotically faster than BKZ 2.0.
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Table 3. Simulated log2(Time [sec.]) of our algorithm and BKZ 2.0 for large dimensions
to find short vectors. The time is after LLL-reduced basis. Because the estimate for
BKZ 2.0 is only the cost for enumeration, our algorithm appears to be slow in small
blocksizes.

Goal n · GH(L) n · det(L)1/n
√

n · GH(L)

n β log2(Ours) β log2(Ours) log2(BKZ 2.0) β log2(Ours)

600 35 15.8 102 20.1 16.0 145 38.4

650 45 16.6 114 24.3 21.9 157 51.0

700 59 17.3 124 28.3 28.2 169 60.4

800 100 20.8 144 38.6 41.3 193 82.1

6.3 Comparing with Other Heuristic Blocksize Strategies

In this section, we compare the blocksize strategy of our progressive BKZ in
Fig. 8. Using a random 256-dimensional basis, we experimented and simulated
the progressive BKZ to find a BKZ-128 reduced basis with the three following
strategies:

2 4→ 4 8→ 8 16→ 16 32→ 32 64→ 64 128→ 128

(Schnorr-Shevchenko’s doubling strategy [48])

2 20→ 20 21→ 21 22→ 22 23→ 23 24→ 24 25→ · · · 128→ 128

(Simplest step-by-step in Fig. 6)

2 30→ 20 35→ 25 39→ 29 43→ 33 47→ 37 48→ · · · 128→ 128

(Optimized blocksize strategy in Fig. 8)
In experiment, our simple and optimized strategy takes about 27.1 min and

about 11.5 min respectively to achieve BKZ-64 basis after the LLL reduction. On
the other hand, Schnorr-Schevchenko’s doubling strategy takes about 21 min.

After then, the doubling strategy switches to BKZ-128 and takes about 14
single-core days to process the first one index, while our strategies comfortably
continues the execution of progressive BKZ.

Our simulator predicts that it takes about 225.3, 225.1 and 237.3 s to finish
BKZ-128 by our simple, optimized, and Schnorr-Schevchenko’s doubling strat-
egy, respectively. Our strategy is about 5000 times faster than the doubling
strategy.

Interestingly, we find that the computing time of simple blocksize strategy
is close to that of optimized strategy in many simulations when the blocksize
is larger than about 100. Hence, the simple blocksize strategy would be better
than the optimizing blocksize strategy in practice, because the latter needs a
heavy precomputing as in Sect. 6.1.
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7 Our Implementation and Cost Estimation
for Processing Local Blocks

In this section we describe how to derive the estimation of the computing times of
Eqs. (17) and (18) of Step 3–10 in Fig. 6. Remark that due to the page limitation,
we omit almost of detailed description from the full-version [8].

The total computing time is the sum of times to process local blocks (corre-
sponds to Step 5–8 in Fig. 6):

TimeBKZ(n, βstart βalg

→ βgoal) =
�tours∑

t=1

n−1∑

i=1

[
Time of processing local block Biwith parameters (α, p)

]
.

(19)

We constructed our model of computing time for small dimensional lattices
(dim < 400) as follows.

TimeSim-small(dim, β,A1,W1) =
βgoal∑

βstart

�tours∑

t=1

[
A1 · β2n3 + W1 · β

n−1∑

i=1

ENUMCost(Bi; α, p)
]
[sec.].

(20)

And for the large dimensions as

TimeSim-large(dim, β,A2,W2) =
βgoal∑

βstart

�tours∑

t=1

[
A2 · n − β

H − β
· Hn2 + W2 · β

n−1∑

i=1

ENUMCost(Bi; α, p)
]
[sec.]. (21)

In this section, we conduct the computer experiments with the simple block-
size strategy:

2 20→ 20 21→ 21 22→ 22 23→ 23 24→ 24 25→ · · ·

Fig. 9. Result of our parameter fitting for cost estimation. Left Figure: implementa-
tion for small dimensional lattices. Right Figure: implementation for large dimensional
lattices. In both graphs, experimental results are plotted by small squares and the
simulating results are drawn in bold lines.
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using a lattice generated by the SVP challenge problem generator, and then
we estimate the undefined variables W1, W2, A1 and A2 by the experimental
computing time after BKZ-55, i.e., βstart = 55.

We find the suitable coefficients (A1,W1) by using the standard curve fitting
method in semi-log scale, which minimize

∑

dim∈{200,300}

∑

β=55

∣∣∣log
(
T (dim, β,A1,W1)

)
− log

(
TimeExp(dim, β)

)∣∣∣
2

,

where T (dim, β,A1,W1) = TimeSim-large(dim, β,A1,W1) in the small dimen-
sional situation. For the large dimensional situation, we use the result of
dim ∈ {600, 800} to fix A2 and W2.

We find suitable coefficients

A1 = 1.5 · 10−10 and W1 = 1.5 · 10−8

A2 = 10−6 and W2 = 3.0 · 10−8.
(22)

The fitting results are given in Fig. 9. Using the Eqs. (20) and (21) with the
above coefficients (22), we can estimate the computing times of our progressive
BKZ algorithm.

8 Pre/Post-Processing the Entire Basis

In this section, we consider an extended strategy that enhances the speed of our
progressive BKZ by pre/post-precessing the entire basis.

In pre-processing we first generate a number of randomized bases for input
basis. Each basis is then reduced by using the proposed progressive BKZ algo-
rithm. Finally we perform the enumeration algorithm for each reduced basis with
some low probability in the post-processing. This strategy is essentially the same
as the extreme pruning technique [20]. However, it is important to note that we
do not generate a randomized basis inside the progressive BKZ. Our simulator
for the proposed progressive BKZ is so precise that we can also estimate the
speedup by the pre/post-precessing using our simulator.

8.1 Algorithm for Finding Nearly Shortest Vectors

In the following, we construct an algorithm for finding a vector shorter than
γ ·GH(L) with a reasonable probability using the strategy above, and we analyze
the total computing time using our simulator for the BKZ algorithm.

Concretely, for given lattice basis B of dimension n, the pre-processing part
generates M randomized bases Bi = UiB by multiplying unimodular matrices
Ui for i = 1, . . . , M . Next, we apply our progressive BKZ for finding the BKZ-β
reduced basis. The cost to obtain the randomized reduced bases is estimated
by M · (TimeRandomize(n) + TimeBKZ(n, β)). Here, TimeRandomize includes
the cost of generating a random unimodular matrix and matrix multiplication,
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Table 4. The cost of solving SVP Challenge using our optimal blocksize strategy

dim M log2(Time

[sec.])

Optimal blocksize strategy in Sect. 6

100 5 10.8 LLL
30→ 20

35→ 25
36→ 26

40→ 30
42→ 32

44→ 34
48→ 38

49→ 39
50→ 40

51→ 41
52→ 42

54→ 44
58→ 48

60→ 50
62→ 52

64→ 54
67→ 57

71→ 70
81→ 79

120 35 20.3 LLL
30→ 20

35→ 24
36→ 26

40→ 30
42→ 32

44→ 34
48→ 38

49→ 39
50→ 40

51→ 41
52→ 42

54→ 44
58→ 48

60→ 50
62→ 52

64→ 54
66→ 56

68→ 58
69→ 59

72→ 71
84→ 84

93→ 93
99→ 99

101→ 100
105→ 105

140 164 30.3 LLL
30→ 20

35→ 24
36→ 26

40→ 30
42→ 32

44→ 34
48→ 38

49→ 39
50→ 40

52→ 42
54→ 44

58→ 48
62→ 52

64→ 54
66→ 56

68→ 58
70→ 60

71→ 61
72→ 70

80→ 79
87→ 87

93→ 93
99→ 99

103→ 103
107→ 107

111→ 111
115→ 115

118→ 118
123→ 122

160 49 41.2 LLL
30→ 20

35→ 24
36→ 26

40→ 30
42→ 32

44→ 34
48→ 38

50→ 40
52→ 42

54→ 44
58→ 48

62→ 52
64→ 54

66→ 56
68→ 58

70→ 60
72→ 62

74→ 70
76→ 72

82→ 80
87→ 86

92→ 92
99→ 99

100→ 100
103→ 103

104→ 104
107→ 107

108→ 108
110→ 110

112→ 112
114→ 114

116→ 116
119→ 119

121→ 121
125→ 125

129→ 129
135→ 134

138→ 136
141→ 139

144→ 143

180 2148 52.4 LLL
30→ 20

35→ 24
36→ 26

40→ 30
44→ 34

48→ 38
50→ 40

52→ 42
54→ 44

58→ 48
62→ 52

64→ 54
66→ 56

68→ 58
70→ 59

72→ 70
80→ 76

85→ 82
87→ 86

93→ 92
99→ 98

103→ 103
104→ 104

107→ 107
108→ 108

110→ 110
113→ 113

114→ 114
116→ 116

118→ 118
120→ 120

122→ 122
125→ 125

127→ 127
130→ 130

133→ 133
136→ 136

139→ 138
141→ 141

144→ 144
148→ 147

149→ 148
152→ 149

154→ 154
155→ 155

157→ 157
160→ 158

which is negligibly smaller than TimeBKZ in general. Thus we assume the com-
putational cost for lattice reduction is M · TimeBKZ(n, β).

Finally, in the post-processing part, we execute the standard enumeration
algorithm with the searching radius parameter α = γ and probability parameter
p = 2 · γ−n/M . As with the similar argument in Sect. 4.1, there exist about
γn/2 short vector pairs in Balln(γ · GH(L)). Therefore, the probability that one
enumeration finds the desired vector is about (γn/2) · (2 · γ−n/M) = 1/M and
the total probability of success is 1 − (1 − 1/M)M ≈ 0.632.

Consequently, the total computing cost in our model is

M ·
(

TimeBKZ(n, β) +
ENUMCost(B; γ, p = 2 · γ−n/M)

6 · 107

)
[sec.], (23)

where TimeBKZ(n, β) and ENUMCost(B; γ, p) are defined by Sect. 6.1 and
Sect. 2.3, respectively. We can optimize this total cost by finding the minimum
of formula (23) over parameter (β,M). Here, note that the constant 6 · 107

comes from our best benchmarking record of lattice enumeration. In Table 4,
we provide the detailed simulating result with setting γ = 1.05 to analyze the
hardness of the Darmstadt SVP Challenge in several dimensions. A comparison
with previous works are given in Sect. 9 (See the line C in Fig. 10).
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8.2 Lower Bound of the Cost by an Idealized Algorithm

Here we discuss the lower bound of the total computing cost of the proposed
progressive BKZ algorithm (or other reduction algorithm) with the pre/post-
processing.

The total cost is estimated by the sum of the computational time for the
randomization, the progressive BKZ algorithm, and the enumeration algorithm
by the following extremely idealized situations. Note that we believe that they
are beyond the most powerful cryptanalysis which we can achieve in the future,
and thus we say that this is the lower bound in our model.

(a) The cost for the randomization becomes negligibly small. The algorithm
for randomizing the basis would not only be the method of multiplying random
unimodular bases, and we could find an ideal randomization at a negligibly small
cost. Thus, TimeRandomize(n) = 0.

(b) The cost for the progressive BKZ algorithm does not become lower than
that of computing the Gram-Schmidt lengths. Even though the progressive BKZ
algorithm ideally improved, we always need the Gram-Schmidt basis computa-
tion used for the enumeration algorithm or the LLL algorithm. The compu-
tation of the Gram-Schmidt basis (even though the computation is performed
in an approximation using floating-point operations with a sufficient precision)
includes Θ(n3) floating point arithmetic operations via the Cholesky factoriza-
tion algorithm (See, for example [38, Chapter 5]). A modern CPU can perform
a floating point operation in one clock cycle, and it can work at about 4.0 GHz.
Thus, we assume that the lower bound of the time in seconds is (4.0 ·109)−1 ·n3.

(c) The reduced basis obtained by the progressive BKZ (or other reduction
algorithm) becomes ideally reduced. We define the simulated γ-approximate HKZ
basis Bγ-HKZ by a basis satisfying

||b∗
i || = τn−i+1GH(L[i:n]) for i = 2, . . . , n and ||b1|| = γ · GH(L).

For any fixed γ and p, we assume this basis minimizes the cost for enumeration
over any basis satisfying ||b1|| ≥ γ · GH(L).

Therefore, the lower bound of the total cost of the idealized algorithm in
seconds is given by

min
M∈N

M ·
(

(4.0 · 109)−1 · n3 +
ENUMCost(Bγ-HKZ ; α, p/M)

6 · 107

)
. (24)

Setting γ = 1.05, we analyze the lower bound cost to enter the SVP Chal-
lenge. (See the line D in Fig. 10).

9 Simulation Results for SVP Challenge and Comparison

In this section, we give our simulation results using our proposed progressive
BKZ algorithm together with the pre/post-processing strategy in Sect. 8.1 for
solving the Darmstadt SVP Challenge [50], which tries to find a vector shorter
than 1.05 · GH(L) in the random lattice L of dimension n.
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Fig. 10. Comparing cost in seconds. A: Lindner-Peikert estimation, B: Chen-Nguyen’s
BKZ 2.0 simulation, C: Simulating estimation of our randomized BKZ-then-ENUM
algorithm, D: Lower bound in the randomized BKZ-then-ENUM strategy. Records in
the SVP Challenge are indicated by the black circles “•”, and our experimental results
are indicated by the white circles “◦”.

We also simulate the cost estimation of Lindner and Peikert [32] and that of
Chen and Nguyen [13] in the same model. The summery of our simulation results
and the latest records published in the SVP Challenge are given in Fig. 10. The
outlines of our estimations A to D in Fig. 10 are given below.

From our simulation, the proposed progressive BKZ algorithm is about 50
times faster than BKZ 2.0 and about 100 times slower than the idealized algo-
rithm that achieves the lower bound in our model of Sect. 8.2.

A: Lindner-Peikert’s Estimation [32]: From the experiments using the BKZ
implementation in the NTL library [49], they estimated that the BKZ algorithm
can find a short vector of length δn det(L)1/n in 21.8/ log2(δ)−110 [sec.] in the
n-dimensional lattice. The computing time of Lindner-Peikert’s model becomes

TimeLP = 21.8/ log2(δ)−110 with δ = 1.051/n · Vn(1)−1/n2
,

because this δ attains 1.05 · GH(L) = δn det(L)1/n.

B: Chen-Nguyen’s BKZ 2.0 [13,14]: We estimated the cost of BKZ 2.0 using
the simulator in Sect. 3.2. Following the original paper [13], we assume that a
blocksize is fixed and the estimation is the minimum of (4) over all possible pairs
of the blocksize β and the number t of tours. Again we convert the number of
nodes into the single-threaded time, we divide the number by 2 · 107.

C: Our Estimation: We searched the minimum cost using the estimation (23)
over M and β with setting γ = 1.05.
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D: Lower Bound in Our Model: We searched the minimum cost using the
estimation (24) over M with setting γ = 1.05.

Records of SVP Challenge: From the hall of fame in the SVP Challenge [50]
and reporting paper [18], we listed up the records that contain the computing
time with a single thread in Fig. 10, as black circles “•”. Moreover we performed
experiments on our proposed progressive BKZ algorithm using the pre/post-
processing strategy in Sect. 8.1 up to 123 dimensions which are also indicated by
the white circles “◦” in Fig. 10.

10 Conclusions and Future Work

We proposed an improved progressive BKZ algorithm with optimized parameters
and block-increasing strategy. We also gave a simulator that can precisely predict
the Gram-Schmidt lengths computed using the proposed progressive BKZ. We
also presented the efficient implementation of the enumeration algorithm and
LLL algorithm, and the total cost of the proposed progressive BKZ algorithm
was precisely evaluated by the sharp simulator.

Moreover, we showed a comparison with other algorithms by simulating the
cost of solving the instances from the Darmstadt SVP Challenge. Our progres-
sive BKZ algorithm is about 50 times faster than the BKZ 2.0 proposed by Chen
and Nguyen for solving the SVP Challenges up to 160 dimensions. Finally, we
discussed a computational lower bound of the proposed progressive BKZ algo-
rithm under certain ideal assumptions. These simulation results contribute to
the estimation of the secure parameter sizes used in lattice based cryptography.

We outline some future works: (1) constructing a BKZ simulator without
using our ENUMCost, (2) adopting our simulator with other strategies such as
BKZ-then-Sieve strategy for computing a short vector more efficiently, and (3)
estimating the secure key length of lattice-based cryptosystems using the lower
bound of the proposed progressive BKZ.
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Abstract. Lattice reduction algorithms are notoriously hard to predict,
both in terms of running time and output quality, which poses a major
problem for cryptanalysis. While easy to analyze algorithms with good
worst-case behavior exist, previous experimental evidence suggests that
they are outperformed in practice by algorithms whose behavior is still
not well understood, despite more than 30 years of intensive research.
This has lead to a situation where a rather complex simulation pro-
cedure seems to be the most common way to predict the result of their
application to an instance. In this work we present new algorithmic ideas
towards bridging this gap between theory and practice. We report on an
extensive experimental study of several lattice reduction algorithms, both
novel and from the literature, that shows that theoretical algorithms are
in fact surprisingly practical and competitive. In light of our results we
come to the conclusion that in order to predict lattice reduction, simula-
tion is superfluous and can be replaced by a closed formula using weaker
assumptions.

One key technique to achieving this goal is a novel algorithm to solve
the Shortest Vector Problem (SVP) in the dual without computing the
dual basis. Our algorithm enjoys the same practical efficiency as the
corresponding primal algorithm and can be easily added to an existing
implementation of it.

1 Introduction

Lattice basis reduction is a fundamental tool in cryptanalysis and it has been
used to successfully attack many cryptosystems, based on both lattices, and
other mathematical problems. (See for example [9,23,39,44–47,61,62,66].) The
success of lattice techniques in cryptanalysis is due to a large extent to the
fact that reduction algorithms perform much better in practice than predicted
by their theoretical worst-case analysis. Basis reduction algorithms have been
investigated in many papers over the past 30 years [3,6,8,10,12–16,18,20,21,
26,28,32,36,40–42,45,48,50,51,54–56,58–60,63,65,67–69], but the gap between
theoretical analysis and practical performance is still largely unexplained. This
gap hinders our ability to estimate the security of lattice based cryptographic
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functions, and it has been widely recognized as one of the main obstacles to
the use of lattice cryptography in practice. In this work, we make some modest
progress towards this challenging goal.

By and large, the current state of the art in lattice basis reduction (in theory
and in practice) is represented by two algorithms:

– the eminently practical Block-Korkine-Zolotarev (BKZ) algorithm of Schnorr
and Euchner [54,60], in its modern BKZ 2.0 incarnation [8] incorporating
pruning, recursive preprocessing and early termination strategies [14,18],

– the Slide reduction algorithm of Gama and Nguyen [15], an elegant gener-
alization of LLL [27,40] which provably approximates short lattice vectors
within factors related to Mordell’s inequality.

Both algorithms make use of a Shortest Vector Problem (SVP) oracle for
lower dimensional lattices, and are parameterized by a bound k (called the
“block size”) on the dimension of these lattices. The Slide reduction algorithm
has many attractive features: it makes only a polynomial number of calls to the
SVP oracle, all SVP calls are to projected sub-lattices in exactly the same dimen-
sion k, and it achieves the best known worst-case upper bound on the length
of its shortest output vector: γ

(n−1)/(2(k−1))
k det(L)1/n, where γk = Θ(k) is the

Hermite constant, and det(L) is the determinant of the lattice. Unfortunately,
it has been reported [15,16] that in experiments the Slide reduction algorithm
is outperformed by BKZ, which produces much shorter vectors for comparable
block size. In fact, [15] remarks that even BKZ with block size k = 20 produces
better reduced bases than Slide reduction with block size k = 50. As a conse-
quence, the Slide reduction algorithm is never used in practice, and it has not
been implemented and experimentally tested beyond the brief claims made in
the initial work [15,16].1

On the other hand, while surprisingly practical in experimental evaluations,
the BKZ algorithm has its own shortcomings too. In its original form, BKZ is not
even known to terminate after a polynomial number of calls to the SVP oracle,
and its observed running time has been reported [16] to grow superpolynomially
in the lattice dimension, even when the block size is fixed to some relatively small
value k ≈ 30. Even upon termination, the best provable bounds on the output
quality of BKZ are worse than Slide reduction by at least a polynomial factor
[15].2 In practice, in order to address running time issues, BKZ is often employed
with an “early termination” strategy [8] that tries to determine heuristically
when no more progress is expected from running the algorithm. Theoretical
bounds on the quality of the output after a polynomial number of iterations

1 While we are referencing two separate works, both refer to the same experimental
study.

2 We remark that polynomial approximation factors, while being asymptotically
insignificant, can make a substantial difference in practice, as lattice-based cryptog-
raphy relies on the hardness of approximating lattice problems within factors that are
super-linear in the lattice dimension. In fact, much effort has been put on minimizing
such factors in the design of cryptographic constructions [1,2,31,33,35,49,52,53].
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have been proved [18], but they are worse than Slide reduction by even larger
polynomial factors. Another fact that complicates the analysis (both in theory
and in practice) of the output quality of BKZ is the fact that the algorithm
makes SVP calls in all dimensions up to the block size. In theory, this results
in a formula that depends on all worst-case (Hermite) constants γi for i ≤ k.
In practice, the output quality and running time is evaluated by a simulator
[8] that initially attempts to numerically estimate the performance of the SVP
oracle on random lattices in all possible dimensions up to k.

Our Contribution. We introduce new algorithmic techniques that can be used
to design improved lattice basis reduction algorithms, analyze their theoretical
performance, implement them, and report on their practical behavior through
a detailed set of experiments with block size as high as 75, and several data
points per dimension for (still preliminary, but already meaningful) statistical
estimation.

One of our main findings is that the Slide reduction algorithm is much more
practical than originally thought, and as the dimension increases, it performs
almost as well as BKZ, while at the same time, offering a simple closed-formula
to evaluate its output quality. This provides a simple and effective method to
evaluate the impact of lattice basis reduction attacks on lattice cryptography,
without the need to run simulators or other computer programs [8,68]. Key to
our findings, is a new procedure to enumerate shortest lattice vectors in dual lat-
tices, without the need to explicitly compute a dual basis. Interestingly, our dual
enumeration procedure is almost identical (syntactically) to the standard enu-
meration procedure to find short vectors in a (primal) lattice, and, as expected,
it is just as efficient in practice. Using our new procedure, we are able to con-
duct experiments using Slide reduction with significantly larger block size than
previously reported, and observe that the gap between theoretical (more predica-
ble) algorithms and practical heuristics gets pretty narrow already for moderate
block size and dimension.

For small block sizes (say, up to 40), there is still a substantial gap between
the output quality of Slide reduction and BKZ in practice. For this setting,
we design a new variant of BKZ, based on lattice duality and a new notion of
block reduced basis. Our new DBKZ algorithm can be efficiently implemented
using our dual enumeration procedure, achieving running times comparable to
BKZ, and matching its experimental output quality for small block size almost
exactly. At the same time, our algorithm has various advantages over BKZ, that
make it a better target for theoretical analysis: it only makes calls to an SVP
oracle in fixed dimension k, and it is self dual, in the sense that it performs
essentially the same operations when run on a basis or its dual. The fact that all
SVP calls on projected sublattices are in the same fixed dimension k has several
important implications. First, it results in a simpler bound on the length of the
shortest output vector, which can be expressed as a function of just γk. More
importantly, this allows to get a practical estimate on the output quality simply
by replacing γk with the value predicted by the Gaussian Heuristic GH(k),
commonly used in lattice cryptanalysis. We remark that the GH(k) formula has
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been validated for moderately large values of k, where it gives fairly accurate
estimates on the shortest vector length in k-dimensional sublattices. However,
early work on predicting lattice reduction [16] has also shown that for small k
(say, up to k ≤ 25), BKZ sublattices do not follow the Gaussian Heuristic. As a
result, while the BKZ 2.0 simulator of [8] makes extensive use of GH(k) for large
values of k, it also needs to resort to cumbersome experimental estimations for
predicting the result of SVP calls in dimension lower than k. By making only
SVP calls on k-dimensional sublattices, our algorithm obviates the need for any
such experimental estimates, and allows to predict the output quality (under the
same, or weaker heuristic assumptions than the BKZ 2.0 simulator) just using the
GH(k) formula. We stress that this is not only true for the length of the shortest
vector found by our algorithm, but one can estimate many more properties of the
resulting basis. This is important in many cryptanalytic settings, where lattice
reduction is used as a preprocessing for other attacks. In particular, using the
Gaussian Heuristic we are able to show that a large part of the basis output
by our algorithm can be expected to follow the Geometric Series Assumption
[57], an assumption often made about the output of lattice reduction, but so
far never proven. (See Sect. 5 for details.) One last potential advantage of only
making SVP calls in fixed dimension k (and, consequently, the ability to use the
Gaussian Heuristic for all of them) is that it opens up the possibility of even
more accurate stochastic simulations (or analytic solutions) where the GH(k)
deterministic formula is replaced by a probability distribution (following the
length of the shortest vector in a random k-dimensional lattice). We leave the
investigation of such a stochastic simulator to future work.

Technical Ideas. Enumeration algorithms (as typically used within block basis
reduction) find short vectors in a lattice by examining all possible coordinates
x1, . . . , xn of candidate short lattice vectors

∑
i bi · xi with respect to the given

lattice basis, and using the length of the projected lattice vector to prune the
search. Our dual lattice enumeration algorithm works similarly, but without
explicitly computing a basis for the dual lattice. The key technical idea is that
one can enumerate over the scalar products yi = 〈bi,v〉 of the candidate short
dual vectors v and the primal basis vectors bi.3 Perhaps surprisingly, one can
also compute the length of the projections of the dual lattice vector v (required to
prune the enumeration tree), without explicitly computing v or a dual basis. The
simplicity of the algorithm is best illustrated just by looking at the pseudo code,
and comparing it side-to-side to the pseudo code of standard (primal) lattice
enumeration. (See Algorithms 2 and 3 in Sect. 7.) The two programs are almost
identical, leading to a dual enumeration procedure that is just as efficient as
primal enumeration, and allowing the application of all standard optimizations
(e.g., all various forms of pruning) that have been developed for enumerating in
primal lattices.

3 By definition of dual lattice, all these products yi are integers, and, in fact, they are
the coordinates of v with respect to the standard dual basis of b1, . . . ,bn.
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On the basis reduction front, our DBKZ algorithm is based on a new notion
of block-reduced basis. Just as for BKZ, DBKZ-reduction is best described as
a recursive definition. In fact, the recursive condition is essentially the same for
both algorithms: given a basis B, if b is a shortest vector in the sublattice gener-
ated by the first k basis vectors B[1,k], we require the projection of B orthogonal
to b to satisfy the recursive reduction property. The difference between BKZ and
DBKZ is that, while BKZ requires B[1,k] to start with a shortest lattice vector
b = b1, in DBKZ we require it to end with a shortest dual vector.4 This simple
twist in the definition of reduced basis leads to a much simpler bound on the
length of b, improving the best known bound for BKZ reduction, and matching
the theoretical quality of Slide reduction.

Experiments. To the best of our knowledge, we provide the first experimental
study of lattice reduction with large block size parameter beyond BKZ. Even
for BKZ we improve on the currently only study involving large block sizes [8]
by collecting multiple data points per block size parameter. This allows us to
apply standard statistical methods to try to get a sense of the main statistical
parameters of the output distribution. Clearly, learning more about the out-
put distribution of these algorithms is highly desirable for cryptanalysis, as an
adversary is drawing samples from that distribution and will utilize the most
convenient sample, rather than a sample close to the average.

Finally, in contrast to previous experimental work [8,16], we contribute to the
community by making our code5 and data6 publicly available. To the best of our
knowledge, this includes the first publicly available implementation of dual SVP
reduction and Slide reduction. At the time of publication of this work, a modified
version of our implementation of dual SVP reduction has been integrated into
the main branch of fpLLL [4]. We hope that this will spur more research into
the predictability of lattice reduction algorithms.

2 Preliminaries

Notation. Numbers and reals are denoted by lower case letters. For n ∈ Z+

we denote the set {0, . . . , n} by [n]. For vectors we use bold lower case letters
and the i-th entry of a vector v is denoted by vi. Let 〈v,w〉 =

∑
i vi · wi be

the scalar product of two vectors. If p ≥ 1 we define the p norm of a vector
v to be ‖v‖p = (

∑
|vi|p)1/p. We will only be concerned with the norms given

by p = 1, 2, and ∞. Whenever we omit the subscript p, we mean the standard
Euclidean norm, i.e. p = 2. We define the projection of a vector b orthogo-
nal to a vector v as πv(b) = b − 〈b,v〉

‖v‖2 v. Matrices are denoted by bold upper
case letters. The i-th column of a matrix B is denoted by bi. Furthermore, we
denote the submatrix comprising the columns from the i-th to the j-th column
4 To be precise, we require b∗

k/‖b∗
k‖2 to be a shortest vector in the dual lattice of

B[1,k]. See Sect. 3 for details.
5 http://cseweb.ucsd.edu/∼miwalter/src/fplll-dual enum/fplll-dual enum.zip.
6 http://cseweb.ucsd.edu/∼miwalter/src/fplll-dual enum/results.zip.

http://cseweb.ucsd.edu/~miwalter/src/fplll-dual_enum/fplll-dual_enum.zip
http://cseweb.ucsd.edu/~miwalter/src/fplll-dual_enum/results.zip
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(inclusive) as B[i,j] and the horizontal concatenation of two matrices B1 and
B2 by [B1|B2]. For any matrix B and p ≥ 1 we define the induced norm to be
‖B‖p = max‖x‖p=1(‖Bx‖p). For p = 1 (resp. ∞) this is often denoted by the
column (row) sum norm; for p = 2 this is also known as the spectral norm. It
is a classical fact that ‖B‖2 ≤

√
‖B‖1‖B‖∞. Finally, we extend the projection

operator to matrices, where πV(B) is the matrix obtained by applying πV to
every column bi of B and πV(bi) = πvk

(· · · (πv1(bi)) · · · ).

2.1 Lattices

A lattice Λ is a discrete subgroup of Rm and is generated by a matrix B ∈ Rm×n,
i.e. Λ = L(B) = {Bx : x ∈ Zn}. If B has full column rank, it is called a basis of
Λ and dim(Λ) = n is the dimension (or rank) of Λ. A lattice has infinitely many
bases, which are related to each other by right-multiplication with unimodular
matrices. With each matrix B we associate its Gram-Schmidt-Orthogonalization
(GSO) B∗, where the i-th column b∗

i of B∗ is defined as b∗
i = πB∗

[1,i−1]
(bi) =

bi −
∑

j<i μi,jb∗
j and μi,j = 〈bi,b∗

j 〉/‖b∗
j‖2 (and b∗

1 = b1). For every lattice
basis there are infinitely many bases that have the same GSO vectors b∗

i , among
which there is a (not necessarily unique) basis that minimizes ‖bi‖ for all i.
Transforming a basis into this form is commonly known as size reduction and
is easily and efficiently done using a slight modification of the Gram-Schmidt
process. In this work we will implicitly assume all bases to be size reduced.
The reader can simply assume that any basis operation described in this work
is followed by a size reduction. For a fixed matrix B we extend the projection
operation to indices: πi(·) = πB∗

[1,i−1]
(·), so π1(B) = B. Whenever we refer to

the shape of a basis B, we mean the vector (‖b∗
i ‖)i∈[n]. We define D† to be the

GSO of D in reverse order.
For every lattice Λ there are a few invariants associated to it. One of them is

its determinant det(L(B)) =
∏

i ‖b∗
i ‖ for any basis B. Even though the basis of a

lattice is not uniquely defined, the determinant is and it is efficiently computable
given a basis. Furthermore, for every lattice Λ we denote the length of its shortest
non-zero vector (also known as the first minimum) by λ1(Λ), which is always
well defined. We use the short-hand notations det(B) = det(L(B)) and λ1(B) =
λ1(L(B)). Minkowski’s theorem is a classic result that relates the first minimum
to the determinant of a lattice. It states that λ1(Λ) ≤ √

γn det(Λ)1/n, for any
Λ with dim(Λ) = n, where Ω(n) ≤ γn ≤ n is Hermite’s constant. Finding a
(even approximate) shortest nonzero vector in a lattice, commonly known as
the Shortest Vector Problem (SVP), is NP-hard under randomized reductions
[25,34].

For every lattice Λ, its dual is defined as Λ̂ = {w ∈ span(Λ)|〈w,v〉 ∈
Z for all v ∈ Λ}. It is a classical fact that det(Λ̂) = det(Λ)−1. For a lattice
basis B, let D be the unique matrix that satisfies span(B) = span(D) and
BTD = DTB = I. Then L̂(B) = L(D) and we denote D as the dual basis of
B. It follows that for any vector w = Dx we have that BTw = x, i.e. we can
recover the coefficients x of w with respect to the dual basis D by multiplication
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with the transpose of the primal basis BT . Given a lattice basis, its dual basis is
computable in polynomial time, but requires at least Ω(n3) bit operations using
matrix inversion. Finally, if D is the dual basis of B, their GSOs are related by
‖b∗

i ‖ = 1/‖d†
i‖.

In this work we will often modify a lattice basis B such that its first vector
satisfies α‖b1‖ ≤ λ1(B) for some α ≤ 1. We will call this process SVP reduc-
tion of B. Given an SVP oracle, it can be accomplished by using the oracle to
find the shortest vector in L(B), prepending it to the basis, and running LLL
(cf. Sect. 2.3) on the resulting generating system. Furthermore, we will modify a
basis B such that its dual D satisfies α‖dn‖ ≤ λ1(L̂(B)), i.e. its reversed dual
basis is SVP reduced. This process is called dual SVP reduction. Note that if
B is dual SVP reduced, then ‖b∗

n‖ is maximal among all bases of L(B). The
obvious way to achieve dual SVP reduction is to compute the dual of the basis,
SVP reduce it as described above, and compute the primal basis. We present an
alternative way to achieve this in Sect. 7. In the context of reduction algorithms,
the relaxation factor α is usually needed for proofs of termination or running
time and only impacts the analysis of the output quality in lower order terms.
In this work, we will sweep it under the rug and take it implicitly to be a con-
stant close to 1. Finally, we will apply SVP and dual SVP reduction to projected
blocks of a basis B, for example we will (dual) SVP reduce the block πi(B[i,i+k]).
By that we mean that we will modify B in such a way that πi(B[i,i+k]) is (dual)
SVP reduced. This can easily be achieved by applying the transformations to
the original basis vectors instead of their projections.

2.2 Enumeration Algorithms

In order to solve SVP in practice, enumeration algorithms are usually employed,
since these are the most efficient algorithms for currently realistic dimensions.
The standard enumeration procedure, usually attributed to Fincke, Pohst [11],
and Kannan [24] can be described as a recursive algorithm: given as input a basis
B ∈ Zm×n and a radius r, it first recursively finds all vectors v′ ∈ L(π2(B))
with ‖v′‖ ≤ r, and then for each of them finds all v ∈ L(B), s.t. π2(v) = v′

and ‖v‖ ≤ r, using b1. This essentially corresponds to a breadth first search
on a large tree, where layers correspond to basis vectors and the nodes to the
respective coefficients. While it is conceptually simpler to think of enumeration
as a BFS, implementations usually employ a depth first search for performance
reasons. Pseudo code can be found in Algorithm 3 in Sect. 7.

There are several practical improvements of this algorithm collectively known
as SchnorrEuchner enumeration [60]: First, due to the symmetry of lattices, we
can reduce the search space by ensuring that the last non zero coefficient is
always positive. Furthermore, if we find a vector shorter than the bound r, we
can update the latter. And finally, we can enumerate the coefficients of a basis
vector in order of the length of the resulting (projected) vector and thus increase
the chance of finding some short vector early, which will update the bound r and
keep the search space smaller.
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It has also been demonstrated [14] that reducing the search space (and thus
the success probability) – a technique known as pruning – can speed up enumer-
ation by exponential factors. For more details on recent improvements we refer
to [14,19,20,36,69].

2.3 Lattice Reduction

As opposed to exact SVP algorithms, lattice reductions approximate the shortest
vector. The quality of their output is usually measured in the length of the
shortest vector they are able to find with respect to the root determinant of the
lattice. This quantity is denoted by the Hermite factor δ̄ = ‖b1‖/det(B)1/n.
The Hermite factor depends on the lattice dimension n, but the experiments of
[16] suggest that the root Hermite factor δ = δ̄1/n converges to a constant as
n increases for popular reduction algorithms. During our experiments we found
that to be true at least for large enough dimensions (n ≥ 140).

The LLL algorithm [27] is a polynomial time basis reduction algorithm.
A basis B ∈ Zm×n can be defined to be LLL reduced if B[1,2] is SVP reduced
and π2(B) is LLL reduced. From this it is straight forward to prove that LLL
reduction achieves a root Hermite factor of at most δ ≤ γ

1/4
2 ≈ 1.0746. However,

LLL has been reported to behave much better in practice [16,43].
BKZ [54] is a generalization of LLL to larger block size. A basis B is BKZ

reduced with block size k (denoted by BKZ-k) if B[1,min(k,n)] is SVP reduced and
π2(B) is BKZ-k reduced. BKZ achieves this by simply scanning the basis from
left to right and SVP reducing each projected block of size k (or smaller once
it reaches the end) by utilizing a SVP oracle for all dimensions ≤ k. It iterates
this process (which is usually called a tour) until no more change occurs. When
k = n, this is usually referred to as HKZ reduction and is essentially equivalent
to solving SVP. The following bound for the Hermite factor holds for b1 of a
BKZ-k reduced basis [18]:

‖b1‖ ≤ 2γ
n−1

2(k−1)+
3
2

k det(B)1/n (1)

Equation (1) shows that the root Hermite factor achieved by BKZ-k is at most

� γ
1

2(k−1)

k . Furthermore, while there is no polynomial bound on the number of
calls BKZ makes to the SVP oracle, Hanrot, Pujol, and Stehlé showed in [18] that
one can terminate BKZ after a polynomial number of calls to the SVP oracle and
still provably achieve the bound (1). Finally, BKZ has been repeatedly reported
to behave very well in practice [8,16]. For these reasons, BKZ is very popular in
practice and implementations are readily available in different libraries, e.g. in
NTL [64] or fpLLL [4].

In [15], Gama and Nguyen introduced a different block reduction algorithm,
namely Slide reduction. It is also parameterized by a block size k, which is
required to divide the lattice dimension n, but uses a SVP oracle only in
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dimension k.7 A basis B is defined to be slide reduced, if B[1,k] is SVP reduced,
π2(B[2,k+1]) is dual SVP reduced (if k > n), and πk+1(B[k+1,n]) is slide reduced.
Slide reduction, as described in [15], reduces a basis by first alternately SVP
reducing all blocks πik+1(B[ik+1,(i+1)k]) and running LLL on B. Once no more
changes occur, the blocks πik+2(B[ik+2,(i+1)k+1]) are dual SVP reduced. This
entire process is iterated until no more changes occur. Upon termination, the
basis is guaranteed to satisfy

‖b1‖ ≤ γ
n−1

2(k−1)

k det(B)1/n (2)

This is slightly better than Eq. (1), but the achieved root Hermite factor is

also only guaranteed to be less than γ
1

2(k−1)

k . Slide reduction has the desirable
properties of only making a polynomial number of calls to the SVP oracle and
that all calls are in dimension k (and not in lower dimensions). The latter allows
for a cleaner analysis, for example when combined with the Gaussian Heuristic
(cf. Sect. 2.4). Unfortunately, Slide reduction has been reported to be greatly
inferior to BKZ in experiments [16], so it is rarely used in practice and we are
not aware of any publicly available implementation.

2.4 The Gaussian Heuristic

The Gaussian Heuristic gives an approximation of the number of lattice points
in a “nice” subset of Rn. More specifically, it says that for a given set S and a
lattice Λ, we have |S ∩ Λ| ≈ vol(S)/det(Λ). The heuristic has been proved to
be very useful in the average case analysis of lattice algorithms. For example,
it can be used to estimate the complexity of enumeration algorithms [14,19] or
the output quality of lattice reduction algorithms [8]. For the latter, note that
reduction algorithms work by repeatedly computing the shortest vector in some
lattice and inserting this vector in a certain position of the basis. To estimate
the effect such a step has on the basis, it is useful to be able to predict how long
such a vector might be. This is where the Gaussian Heuristic comes in: using
the above formula, one can estimate how large the radius of an n-dimensional
ball (this is the “nice” set) needs to be such that we can expect it to contain
a non-zero lattice point (where n = dim(Λ)). Using the volume formula for the
n-dimensional ball, we get an estimate for the shortest non-zero vector in a
lattice Λ:

GH(Λ) =
(Γ (n/2 + 1) · det(Λ))1/n

√
π

(3)

If k is an integer, we define GH(k) to be the Gaussian Heuristic (i.e. Eq. (3))
for k-dimensional lattices with unit determinant. The heuristic has been tested
7 Strictly speaking, the algorithm as described in [15] uses HKZ reduction and thus

requires an SVP oracle in lower dimensions as well. However, the entire analysis in
[15] only relies on the SVP reducedness of the projected blocks and thus the HKZ
reduction can be replaced by SVP reduction, which we do in the following.
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experimentally [14], also in the context of lattice reduction [8,16], and been
found to be too rough in small dimensions, but to be quite accurate starting in
dimension > 45. In fact, for a precise definition of random lattices (which we are
not concerned with in this work) it can be shown that the expected value of the
first minimum of the lattice (over the choice of the lattice) converges to Eq. (3)
as the lattice dimension tends to infinity.8

Heuristic 1 [Gaussian Heuristic]. For a given lattice Λ, λ1(Λ) = GH(Λ).

Invoking Heuristic 1 for all projected sublattices that the SVP oracle is called
on during the process, the root Hermite factor achieved by lattice reduction
(usually with regards to BKZ) is commonly estimated to be [5]

δ ≈ GH(k)
1

k−1 . (4)

However, since the Gaussian Heuristic only seems to hold in large enough dimen-
sions and BKZ makes calls to SVP oracles in all dimensions up to the block size
k, it is not immediately clear how justified this estimation is. While there is a
proof by Chen [7] that under the Gaussian Heuristic, Eq. (4) is accurate for BKZ,
this is only true as the lattice dimension tends to infinity. It might be reason-
able to assume that this also holds in practice as long as the lattice dimension
is large enough compared to the block size, but in practice and cryptanalytic
settings this is often not the case. In fact, in order to achieve an approximation
good enough to break a cryptosystem, a block size at least linear in the lattice
dimension is often required. As another approach to predicting the output of
BKZ, Chen and Nguyen proposed a simulation routine [8]. Unfortunately, the
simulator approach has several drawbacks. Obviously, it requires more effort to
apply than a closed formula like (4), since it needs to be implemented and “typ-
ical” inputs need to be generated or synthesized (among others, the shape of a
“typical” HKZ reduced basis in dimension 45). On top of that, the accuracy of
the simulator is based on several additional heuristic assumptions, the validity
of which has not been independently verified.

To the best of our knowledge there have been no attempts to make similar
predictions for Slide reduction, as it is believed to be inferior to BKZ and thus
usually not considered for cryptanalysis.

3 Self-Dual BKZ

In this section we describe our new reduction algorithm. Like BKZ it is parame-
terized by a block size k and a SVP oracle in dimension k, and acts on the input
basis B ∈ Zm×n by iterating tours. The beginning of every tour is exactly like a
BKZ tour, i.e. SVP reducing every block πi(B[i,i+k−1]) from i = 1 to n − k + 1.

8 One can also formulate Heuristic 1 for a given lattice by assuming it “behaves like
a random lattice”. Depending on the exact definition of what it means for a lattice
to “behave like a random lattice”, this version is either stronger as or equivalent to
Heuristic 1.
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We will call this part a forward tour. For the last block, which BKZ simply
HKZ reduces and where most of the problems for meaningful predictions stem
from, we do something different. Instead, we dual SVP the last block and pro-
ceed by dual SVP reducing all blocks of size k backwards (which is a backward
tour). After iterating this process (which we call a tour of Self-Dual BKZ) the
algorithm terminates when no more progress is made. The algorithm is formally
described in Algorithm 1.

Algorithm 1. Self-Dual BKZ
procedure DBKZ (B, k, SVPk)
Input: A lattice basis B ∈ Zm×n, a block size k, a SVP oracle in dimension k
Output: A k-reduced basis B′ (See Definition 1 for a formal definition.)
1 do

2 for i = 1 . . . n − k
3 SVP reduce πi(B[i,i+k−1]) using SVPk

4 for i = n − k + 1 . . . 1
5 dual SVP reduce πi(B[i,i+k−1]) using SVPk

6 while progress is made
7 return B

Note that, like BKZ, Self-Dual BKZ (DBKZ) is a proper block generalization
of the LLL algorithm, which corresponds to the case k = 2.

The terminating condition in Line 6 is left ambiguous at this point on purpose
as there are several sensible ways to approach this as we will see in the next
section. One has to be careful to, on the one hand guarantee termination, while
on the other hand achieving a meaningful reducedness definition.

3.1 Analysis

The output of Algorithm 1 satisfies the following reducedness definition upon
termination:

Definition 1. A basis B = [b1, . . . ,bn] is k-reduced if either n < k, or it
satisfies the following conditions:

– ‖b∗
k‖−1 = λ1( ̂L(B[1,k])), and

– for some SVP reduced basis B̃ of L(B[1,k]), π2([B̃|B[k+1,n]]) is k-reduced.

We first prove that Algorithm 1 indeed achieves Definition 1 when used with
a specific terminating condition:

Lemma 1. Let B be an n-dimensional basis. If πk+1(B) is the same before and
after one loop of Algorithm 1, then B is k-reduced.
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Proof. The proof is inductive: for n = k the result is trivially true. So, assume
n > k, and that the result already holds for n − 1. At the end of each iteration,
the first block B[1,k] is dual-SVP reduced by construction. So, we only need
to verify that for some B̃ an SVP reduced basis for L(B[1,k), the projection
π2([B̃|B[k+1,n]]) is also k-reduced. Let B̃ be the SVP reduced basis produced in
the first step. Note that the first and last operation in the loop do not change
L(B[1,k]) and B[k+1,n]. It follows that πk+1(B) is the same before and after the
partial tour (the tour without the first and the last step) on the projected basis
π2([B̃|B[k+1,n]]), and so πk+2(B) is the same before and after the partial tour.
By induction hypothesis, π2([B̃|B[k+1,n]]) is k-reduced. �

Lemma 1 gives a terminating condition which ensures that the basis is reduced.
We remark that it is even possible to adapt the proof such that it is sufficient
to check that the shape of the projected basis πk+1(B) is the same before and
after the tour, which is much closer to what one would do in practice to check
if progress was made (cf. Line 6). However, this requires to relax the definition
of SVP-reduction slightly, such that the first vector is not necessarily a shortest
vector, but merely a short vector achieving Minkowski’s bound. Since this is
the only property of SVP reduced bases we need for the analysis below, this
does not affect the worst case output quality. Finally, we are aware that it is
not obvious that either of these conditions are ever met, e.g. (the shape of)
πk+1(B) might loop indefinitely. However, in Sect. 4 we show that one can put a
polynomial upper bound on the number of loops without sacrificing worst case
output quality.

To show that the output quality of Self-Dual BKZ in the worst case is at
least as good as BKZ’s worst case behavior, we analyze the Hermite factor it
achieves:

Theorem 1. If B is k-reduced, then λ1(B[1,k]) ≤ √
γk

n−1
k−1 · det(B)1/n.

Proof. Assume without loss of generality that L(B) has determinant 1, and let
Δ be the determinant of L(B[1,k]). Let λ ≤ √

γkΔ1/k and λ̂ ≤ √
γkΔ−1/k be the

lengths of the shortest nonzero primal and dual vectors of L(B[1,k]). We need to

prove that λ ≤ √
γk

n−1
k−1 .

We first show, by induction on n, that the determinant Δ1 of the first k − 1
vectors is at most

√
γk

n−k+1 det(B)(k−1)/n =
√

γk
n−k+1. Since B is k-reduced,

this determinant equals Δ1 = λ̂ · Δ ≤ √
γkΔ1−1/k. (This alone already proves

the base case of the induction for n = k.) Now, let B̃ be a SVP reduced basis
of L(B[1,k]) satisfying the k-reduction definition, and consider the determinant
Δ2 = Δ/λ of π2(B̃). Since π2([B̃|B[k+1,n]]) has determinant 1/‖b̃1‖ = 1/λ, by
induction hypothesis we have Δ2 ≤ √

γk
n−k(1/λ)(k−1)/(n−1).

Δ = λΔ2 ≤ √
γk

n−k
λ

n−k
n−1 ≤ √

γk
n−k(

√
γkΔ

1
k )

n−k
n−1 =

√
γk

(n−k)n
n−1 Δ

n−k
k(n−1) .
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Rising both sides to the power (n − 1)/n we get Δ1− 1
n ≤ √

γn
n−kΔ

1
k − 1

n ,
or, equivalently, Δ1− 1

k ≤ √
γk

n−k. It follows that Δ1 = λ̂Δ ≤ √
γkΔ1− 1

k ≤
√

γk
n−k+1, concluding the proof by induction.

We can now prove the main theorem statement. Recall from the inductive
proof that Δ ≤ √

γk
n−kλ

n−k
n−1 . Therefore, λ ≤ √

γkΔ1/k ≤ √
γk

n
k λ

n−k
k(n−1) . Solving

for λ, proves the theorem. �

4 Dynamical System

Proving a good running time on DBKZ directly seems just as hard as for BKZ,
so in this section we analyze the DBKZ algorithm using the dynamical system
technique from [18].

Let B = [b1, . . . ,bn] be an input basis to DBKZ, and assume without loss
of generality that det(B) = 1. During a forward tour, our algorithm computes a
sequence of lattice vectors B′ = [b′

1, . . . ,b
′
n−k] where each b′

i is set to a shortest
vector in the projection of [bi, . . . ,bi+k−1] orthogonal to [b′

1, . . . ,b
′
i−1]. This set

of vectors can be extended to a basis B′′ = [b′′
1 , . . . ,b′′

n] for the original lattice.
Since [b′

1, . . . ,b
′
i−1] generates a primitive sublattice of [bi, . . . ,bi+k−1], the pro-

jected sublattice has determinant det(L(b1, . . . ,bi+k−1))/det(L(b′
1, . . . ,b

′
i−1)),

and the length of its shortest vector is

‖(b′
i)

∗‖ ≤ √
γk

(
det(L(b1, . . . ,bi+k−1))
det(L(b′

1, . . . ,b
′
i−1))

)1/k

. (5)

At this point, simulations based on the Gaussian Heuristics typically assume
that (5) holds with equality. In order to get a rigorous analysis without heuristic
assumptions, we employ the amortization technique of [18,19]. For every i =
1, . . . , n − k, let xi = log det(b1, . . . ,bk+i−1) and x′

i = log det(b′
1, . . . ,b

′
i). Using

(5), we get for all i = 1, . . . , n − k,

x′
i = x′

i−1 + log ‖(b′
i)

∗‖

≤ x′
i−1 + α +

xi − x′
i−1

k
= ωx′

i−1 + α + (1 − ω)xi

where ω = (1 − 1/k), α = 1
2 log γk and x′

0 = 0. By induction on i,

x′
i ≤ α

1 − ωi

1 − ω
+ (1 − ω)

i∑

j=1

ωi−jxj ,

or, in matrix notation x′ ≤ b + Ax where

b = αk

⎡

⎢⎣
1 − ω

...
1 − ωn−k

⎤

⎥⎦ A =
1
k

⎡

⎢⎢⎢⎣

1
ω 1
...

. . .
. . .

ωn−k−1 · · · ω 1

⎤

⎥⎥⎥⎦ .
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Since all the entries of A are positive, we also see that if Xi ≥ xi are upper
bounds on the initial values xi for all i, then the vector X ′ = AX + b gives
upper bounds on the output values x′

i ≤ X ′
i.

The vector x′ describes the shape of the basis matrix before the execution
of a backward tour. Using lattice duality, the backward tour can be equivalently
formulated by the following steps:

1. Compute the reversed dual basis D of B′
2. Apply a forward tour to D to obtain a new dual basis D′
3. Compute the reversed dual basis of D′

The reversed dual basis computation yields a basis D such that, for all i =
1, . . . , n − k,

yi = log det(d1, . . . ,dk+i−1)
= − log(det(B′)/det([b′

1, . . . ,b
′
n−k+1−i]))

= log det([b′
1, . . . ,b

′
n−k+1−i]) = x′

n−k+1−i.

So, the vector y describing the shape of the dual basis at the beginning of the
backward tour is just the reverse of x′. It follows that applying a full (forward
and backward) DBKZ tour produces a basis such that if X are upper bounds
on the log determinants x of the input matrix, then the log determinants of the
output matrix are bounded from above by

R(AR(AX + b) + b) = (RA)2X + (RA + I)Rb

where R is the coordinate reversal permutation matrix. This leads to the study
of the discrete time affine dynamical system

X �→ (RA)2X + (RA + I)Rb. (6)

4.1 Output Quality

We first prove that this system has at most one fixed point.

Claim. The dynamical system (6) has at most one fixed point.

Proof. Any fixed point is a solution to the linear system ((RA)2 − I)X +(RA+
I)Rb = 0. To prove uniqueness, we show that the matrix ((RA)2 − I) is non-
singular, i.e., if (RA)2x = x then x = 0. Notice that the matrix RA is sym-
metric, so we have (RA)2 = (RA)TRA = ATA. So proving ((RA)2 − I) is
non-singular is equivalent to showing that 1 is not an eigenvalue of ATA. We
have ρ(ATA) = ‖A‖22 ≤ ‖A‖1‖A‖∞, where ρ(·) denotes the spectral radius of
the given matrix (i.e. the largest eigenvalue in absolute value). But we also have

‖A‖∞ = ‖A‖1 =
1
k

n−k−1∑

i=0

ωi =
1 − ωn−k

k(1 − ω)
= 1 − ωn−k < 1 (7)

which shows that the absolute value of any eigenvalue of ATA is strictly smaller
than 1. �
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We need to find a fixed point for (6). We have proved that (RA)2 − I is a non-
singular matrix. Since (RA)2 − I = (RA+ I)(RA− I), it follows that (RA± I)
are also non singular. So, we can factor (RA+ I) out of the fixed point equation
((RA)2 − I)x+ (RA+ I)Rb = 0, and obtain (RA− I)x+Rb = 0. This shows
that the only fixed point of the full dynamical system (if it exists) must also be
a fixed point of a forward tour x �→ R(Ax + b).

Claim. The fixed point of the dynamical system x �→ R(Ax + b) is given by

xi =
(n − k − i + 1)(k + i − 1)

k − 1
α. (8)

Proof. The unique fixed point of the system is given by the solution to the linear
system (R−A)x = b. We prove that (8) is a solution to the system by induction
on the rows. For the first row, the system yields

xn−k − x1/k = α. (9)

From (8) we get that xn−k = n−1
k−1α and x1 = k(n−k)

k−1 α. Substituting these into
(9), the validity is easily verified.

The r-th row of the system is given by

xn−k−r+1 − 1
k

⎛

⎝
r∑

j=1

ωr−jxj

⎞

⎠ =
1 − ωr

1 − ω
α (10)

which is equivalent to

xn−k−r+1+ω

⎛

⎝xn−k−r+2 − 1
k

⎛

⎝
r−1∑

j=1

ωr−1−jxj

⎞

⎠

⎞

⎠−xr

k
−ωxn−k−r+2 =

1 − ωr

1 − ω
α.

(11)
By induction hypothesis, this is equivalent to

ω

(
1 − ωr−1

1 − ω

)
α + xn−k−r+1 − xr

k
− ωxn−k−r+2 =

1 − ωr

1 − ω
α. (12)

Substituting (8) in for i = n − k − r + 1, r, and n − k − r + 2, we get

xn−k−r+1 − xr

k
− ωxn−k−r+2 =

kr(n − r) − (n − r − k + 1)(r + k − 1) − (k − 1)(r − 1)(n − r + 1)
k(k − 1)

α

which, after some tedious, but straight forward, calculation can be shown to be
equal to α (i.e. the fraction simplifies to 1). This in turn shows that the left hand
side of (12) is equivalent to

ω

(
1 − ωr−1

1 − ω

)
α + α

which is equal to its right hand side. �



Practical, Predictable Lattice Basis Reduction 835

Note that since x1 corresponds to the log determinant of the first block, applying
Minkowski’s theorem results in the same worst case Hermite factor as proved in
Theorem 1.

4.2 Convergence

Consider any input vector v and write it as v = x + e, where x is the fixed
point of the dynamical system as in (8). The system sends v to v �→ RAv +
b = RAx + RAe + b = x + RAe, so the difference e to the fixed point
is mapped to RAe in each iteration. In order to analyze the convergence of
the algorithm, we consider the induced norm of the matrix ‖RA‖p = ‖A‖p,
since after t iterations the difference is (RA)te and so its norm is bounded by
‖(RA)te‖p ≤ ‖(RA)t‖p‖e‖p ≤ ‖RA‖t

p‖e‖p. So if the induced norm of A is
strictly smaller than 1, the corresponding norm of the error vector follows an
exponential decay. While the spectral norm of A seems hard to bound, the 1 and
the infinity norm are straight forward to analyze. In particular, we saw in (7)
that ‖A‖∞ = 1−ωn−k. This proves that the algorithm converges. Furthermore,
let the input be a basis B (with det(B) = 1), the corresponding vector v =
(log det(b1, . . . ,bk+i−1))1≤i≤n and write v = x + e. Then we have ‖e‖∞ =
‖v − x‖∞ ≤ ‖v‖∞ + ‖x‖∞ ≤ poly(n, size(B)). This implies that for

t = polylog(n, size(B))/ωn−k ≈ O(e(n−k)/k)polylog(n, size(B)) (13)

we have that ‖(RA)te‖ ≤ c for constant c. Eq. (13) already shows that for
k = Ω(n), the algorithm converges in a number of tours polylogarithmic in the
lattice dimension n, i.e. makes at most Õ(n) SVP calls. In the initial version of
this work, proving polynomial convergence for arbitrary k was left as an open
problem. Recently, Neumaier filled this gap [38]. We reformulate his proof using
our notation in the full version of this paper [37].

5 Heuristic Analysis

In the context of cryptanalysis, we are more interested in the average case behav-
ior of algorithms. For this we can use a very simple observation to predict the
Hermite factor achieved by DBKZ. Note that the proof of Theorem 1 is based
solely on Minkowski’s bound λ1(B) ≤ √

γn det(B)1/n. Replacing it with Heuris-
tic 1 yields the following corollary.

Corollary 1. Applying Heuristic 1 to every lattice that is passed to the SVP
oracle during the execution of Algorithm 1, if B is k-reduced, then λ1(B1,k) =
GH(k)

n−1
k−1 det(B)1/n.

As the Hermite factor is the most relevant quantity in many cryptanalytic
settings, Corollary 1 is already sufficient for many intended applications in terms
of output quality. We remark that the proof of achieved worst-case output quality
of Slide reduction also only relies on Minkowski’s bound. This means the same
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observation can be used to predict the average case behavior of Slide reduction
and yields the same estimate as Corollary 1. In fact, from the recursive defini-
tion of Slide reduction it is clear that this yields even more information about
the returned basis: we can use Corollary 1 to predict the norm of ‖bik+1‖ for
all i ∈ [n/k]. A short calculation shows that these vectors follow a geometric
series, supporting a frequently assumed behavior of lattice reduction, namely
the Geometric Series Assumption [57].

However, many attacks [30,45] require to estimate the average case output
much more precisely. Fortunately, applying a similar trick as in Corollary 1 to the
dynamical systems analysis in Sect. 4 allows us to obtain much more information
about the basis. For this, note that again we can replace Minkowski’s theorem in
the analysis by Heuristic 1. This transformation changes the dynamical system
in (6) only slightly, the only difference being that α = 1

2 log GH(k). As the
analysis is independent of the constant α, we can translate the fixed point in (8)
to information about the shape of the basis that DBKZ is likely to return.

Corollary 2. Applying Heuristic 1 to every lattice that is passed to the SVP ora-
cle during the execution of Algorithm 1, the fixed point of the heuristic dynamical
system, i.e. (6) with α = 1

2 log GH(k), is (8) with the same α and implies that
after one more forward tour, the basis satisfies

‖b∗
i ‖ = GH(k)

n+1−2i
2(k−1) det(L(B))

1
n (14)

for all i ≤ n − k.

Proof. According to (8), upon termination of Algorithm 1 the output basis
satisfies

log(det([b1, . . . ,bi])) =
(n − k − i + 1)(k + i − 1)

k − 1
α

By Heuristic 1 we have log ‖b1‖ = α + x1/k, from which Eq. (14) easily follows
for i = 1. Now assume (14) holds for all j < i. Then we have, again by Heuristic
1, log ‖b∗

i ‖ = α + (xi −
∑

j<i log ‖b∗
j‖)/k. Invoking the induction hypothesis,

Eq. (14) easily follows for all i ≤ n − k. �

Corollary 2 shows that the output of the DBKZ algorithm, if terminated after a
forward tour, can be expected to closely follow the GSA, at least for all i ≤ n−k
and can be computed using simple closed formulas. It is noteworthy that the
self-dual properties of DBKZ imply that if terminated after a backward tour,
the GSA holds for all i ≥ k. This means, depending on the application one
can choose which part of the output basis to predict. Moreover, we see that
DBKZ allows to predict a much larger part of the basis than Slide reduction
solely based on the Gaussian Heuristic. If one is willing to make additional
assumptions, i.e. assumptions about the shape of a k-dimensional HKZ reduced
basis, the BKZ simulator allows to predict the shape of the entire basis output
by BKZ. Obviously, the same assumptions can be used to estimate the remaining
parts of the shape of the basis in the case of Slide reduction and DBKZ, since a
final application of a HKZ reduction to individual blocks of size k only requires
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Fig. 1. Expected shape of the first 100 basis vectors in dimension n = 200 after BKZ
compared to the GSA. Note that the latter corresponds exactly to the expected shape
of the first 100 basis vectors after DBKZ (cf. 2).

negligible amount of time compared to the running time of the entire algorithm.
Furthermore, since the estimation of the known part of the shape (from Corollary
2 and 1) do not depend on these additional assumptions, the estimation for
Slide reduction and DBKZ is much less sensitive to the (in-)correctness of these
assumptions, while errors propagate during the BKZ simulation.

To compare the expected output of BKZ, DBKZ, and Slide reduction, we
generated a Goldstein-Mayer lattice [17] in dimension n = 200 with numbers
of bit size 2000, applied LLL to it, and simulated the execution of BKZ with
block size k = 100 until no more progress was made. The output in terms of
the logarithm of the shape of the basis for the first 100 basis vectors is shown in
Fig. 1 and compared to the GSA. Recall that the latter represents the expected
output of DBKZ and, to some degree, Slide reduction. Under the assumption
that Heuristic 1 and the BKZ simulator are accurate, one would expect BKZ to
behave a little worse than the other two algorithms in terms of output quality.

6 Experiments

For an experimental comparison, we implemented DBKZ and Slide reduction in
fpLLL. SVP reduction in fplll is implemented in the standard way as described
in Sect. 2.1. For dual SVP reduction we used the algorithm explained in the
Sect. 7.

6.1 Methodology

In the context of cryptanalysis we are usually interested in the root Hermite
factor achievable using lattice reduction in order to choose parameters for
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cryptosystems, as this often determines the success probability and/or complex-
ity of an attack. It is clear that merely reporting on the average root Hermite
factor achieved is of limited use for this. Instead we will view the resulting root
Hermite factor achieved by a certain reduction algorithm (with certain parame-
ters) as a random variable and try to estimate the main statistical parameters
of its distribution. We believe this will eventually allow for more meaningful
security estimates. The only previous experimental work studying properties of
the underlying distribution of the root Hermite factor [16] suggests that it is a
Gaussian-like but the study is limited to relatively small block sizes.

Since experiments with lattice reduction are rather time consuming, it is
infeasible to generate as much data as desirable to estimate statistical parame-
ters like the mean value and standard deviation accurately. A standard statistical
technique to overcome this is to use bootstrapping to compute confidence inter-
vals for these parameters. Roughly speaking, in order to compute the confidence
interval for an estimator from a set of N samples, we sample l sets of size N
with replacement from the original samples and compute the estimator for each
of them. Intuitively, this should give a sense of the variability of the estimator
computed on the samples. Our confidence interval with confidence parameter
α, according to the bootstrap percentile interval method, is simply the α/2 and
1 − α/2 quantiles. For further discussion we refer to [70]. Throughout this work
we use α = .05 and l = 100. The complete confidence intervals for mean value
and standard deviation are listed in Appendix A. Whenever we refer to the
standard deviation of a distribution resulting from the application of a reduc-
tion algorithm and computing the root Hermite factor achieved, we mean the
maximum of the corresponding confidence interval.

It is folklore that the output quality of lattice reduction algorithms measured
in the root Hermite factor depends mostly on the block size parameter rather
than on properties of the input lattice, like the dimension or bit size of the
numbers, at least when the lattice dimension and size of the numbers is large
enough. A natural approach to comparing the different algorithms would be to
fix a number of lattices of certain dimension and bit size and run the differ-
ent algorithms with varying block size on them. Unfortunately, Slide reduction
requires the block size to divide the dimension.9 To circumvent this we select
the dimension of the input lattices depending on the block sizes we want to
test, i.e. n = t · k, where k is the block size and t is a small integer. This is
justified as most lattice attacks involve choosing a suitable sublattice to attack,
where such a requirement can easily be taken into account. Since for very small
dimensions block reduction performs a little better then in larger dimensions,
we need to deal with a trade-off here: on the one hand we need to ensure that
the lattice dimension n is large enough, even for small block sizes, so that the
result is not biased positively for small block sizes due to the small dimension.
On the other hand, if the lattice dimension grows very large we would have to

9 While it is trivial to generalize Slide reduction to other block sizes, the performance
in terms of the achieved output quality of the basis deteriorates somewhat in this
case compared to other reduction algorithms [29].
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increase the precision of the GSO computation significantly which would result
in an artificial slow down and thus limit the data we are able to collect. Our
experiments and previous work [16] suggest that the bias for small dimensions
weakens sufficiently as soon as the lattice dimension is larger than 140, so for
the lattice dimension n we select the smallest multiple t of the block size k such
that t · k ≥ 140.

For each block size we generated 10 different subset sum lattices in dimension
n in the sense of [19] and we fix the bit size of the numbers to 10 · n following
previous work [19,36]. Experimental studies [43] have shown that this notion of
random lattices is suitable in this context as lattice reduction behaves similarly
on them as on “random” lattices in a mathematically more precise sense [17].10

Then we ran each of the three reduction algorithms with corresponding block
size on each of those lattices. For BKZ and DBKZ we used the same terminating
condition: the algorithms terminate when the slope of the shape of the basis
does not improve during 5 loop iterations in a row (this is the default termi-
nating condition in fpLLL’s BKZ routine with auto abort option set). Finally,
for sufficiently large block sizes (k > 45), we preprocessed the local blocks with
BKZ-(k/2) before calling the SVP oracle, since this has been shown to achieve
good asymptotic running time [69] and also seemed a good choice in practice in
our experiments.

6.2 Results

Figure 2 shows the average output quality including the confidence interval pro-
duced by each of the three algorithms in comparison with the prediction based

Fig. 2. Confidence interval of average root Hermite factor for random bases as com-
puted by different reduction algorithms and the prediction given by Eq. (4).

10 In fact, subset sum lattices are extremely similar to the random lattices of [17].
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(a) BKZ (b) Slide Reduction (c) DBKZ

Fig. 3. Same as Fig. 2 with estimated standard deviation

on the Gaussian Heuristic (cf. Eq. (4)). It demonstrates that BKZ and DBKZ
have comparable performance in terms of output quality and clearly outperform
Slide reduction for small block sizes (< 50), which confirms previous reports [16].
For some of the small block sizes (e.g. k = 35) BKZ seems to perform unexpect-
edly well in our experiments. To see if this is indeed inherent to the algorithms
or a statistical outlier owed to the relatively small number of data points, we
ran some more experiments with small block sizes. We report on the results in
the full version [37], where we show that the performance of BKZ and DBKZ
are actually extremely close for these parameters.

Furthermore, Fig. 2 shows that all three algorithms tend towards the predic-
tion given by Eq. (4) in larger block sizes, supporting the conjecture, and Slide
reduction becomes quite competitive. Even though BKZ still seems to have a
slight edge for block size 75, note that the confidence intervals for Slide reduction
and BKZ are heavily overlapping here. This is in contrast to the only previous
study that involved Slide reduction [16], where Slide reduction was reported to
be entirely noncompetitive in practice and thus mainly of theoretical interest.

Figure 3 shows the same data separately for each of the three algorithms
including estimated standard deviation. The data does not seem to suggest that
one or the other algorithm behaves “nicer” with respect to predictability – the
standard deviation ranges between 0.0002 and 0.0004 for all algorithms, but
can be as high as 0.00054 (cf. Appendix A). Note that while these numbers
might seem small, it affects the base of the exponential that the short vector
is measured in, so small changes have a large impact. The standard deviation
varies across different block sizes, but there is no evidence that it might con-
verge to smaller values or even 0 in larger block sizes. So we have to assume,
that it remains a significant factor for larger block sizes and should be taken
into account in cryptanalysis. It is entirely conceivable that the application of a
reduction algorithm yields a root Hermite factor significantly smaller than the
corresponding mean value.

In order to compare the runtime of the algorithms we ran separate experi-
ments, because due to the way we selected the dimension, the data would exhibit
a somewhat strange “zigzag” behavior. For each block size 50 ≤ k ≤ 75 we
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generated again 10 random subset sum lattices with dimension n = 2k and the
bit size of the numbers was fixed to 1400. Figure 4 shows the average runtime for
each of the algorithms and block size in log scale. It shows that the runtime of
all three algorithms follows a close to single exponential (in the block size) curve.
This supports the intuition that the runtime mainly depends on the complexity
of the SVP oracle, since we are using an implementation that preprocesses the
local blocks before enumeration with large block size. This has been shown to
achieve an almost single exponential complexity (up to logarithmic factors in
the exponent) [69].

The data also shows that in terms of runtime, Slide reduction outperforms
both, BKZ and DBKZ. But again, with increasing block size the runtime of the
different algorithms seem to converge to each other. Combined with the data
from Fig. 2 this suggests that all three algorithms offer a similar trade-off between
runtime and achieved Hermite factor for large block sizes. This shows that Slide
reduction is not only theoretically interesting with its cleaner and tighter analysis
of both, output quality and runtime, but also quite competitive in practice. It
should be noted that we analyzed Slide reduction as described in [15]. While
significant research effort has been spent on improving BKZ, essentially nothing
along these lines has been done with regards to Slide reduction. We hope that
the results reported here will initiate more research into improvements, both in
practice and theory, of Slide reduction.

Fig. 4. Average runtime in seconds for random bases in dimension n = 2k for different
reduction algorithms (in log scale).
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7 Dual Enumeration

Similar to Slide reduction, DBKZ makes intensive use of dual SVP reduction
of projected blocks. The obvious way to achieve this reduction is to compute
the dual basis for the projected block, run the primal SVP reduction on it,
and finally compute the primal basis of the block. While the transition between
primal and dual basis is a polynomial time computation and is thus dominated by
the enumeration step, it does involve matrix inversion, which can be quite time
consuming in practice. To address this issue, Gama and Nguyen [15] proposed
a different strategy. Note that SVP reduction, as performed by enumeration,
consists of two steps: (1) the coordinates of a shortest vector in the given basis
are computed, and (2) this vector is inserted into the basis. Gama and Nguyen
observe that for dual SVP reduction, (2) can be achieved using the coordinates
obtained during the dual enumeration by solely operating on the primal basis.
Furthermore, note that the enumeration procedure (step (1)) only operates on
the GSO of the basis so it is sufficient for (1) to invert the GSO matrices of the
projected block, which is considerably easier since they consist of a diagonal and
an upper triangular matrix. However, this still incurs a computational overhead
of Ω(n3).

We now introduce a way to find the coordinates of a shortest vector in the
dual lattice without computing the dual basis or dual GSO.

Lemma 2. Let B be a lattice basis and w an arbitrary vector in the linear span
of B. Let x be the coefficient vector expressing w with respect to the dual basis,
i.e., xi = 〈w,bi〉 for all i ≤ n. Then, for any k ≤ n, the (uniquely defined) vector
w(k) ∈ span(B[1,k]) such that 〈w(k),bi〉 = xi for all i ≤ k, can be expressed as
w(k) =

∑
i≤k αib∗

i /‖b∗
i ‖2 where

αi = xi −
∑

j<i

μi,jαj . (15)

Proof. The condition w(k) ∈ span(B[1,k]) directly follows from the definition
of w(k) =

∑
i≤k αib∗

i /‖b∗
i ‖2. We need to show that this vector also satisfies

the scalar product conditions 〈w(k),bi〉 = xi for all i ≤ k. Substituting the
expression for w(k) in the scalar product we get

〈w(k),bi〉 =
∑

j≤k

αj

〈b∗
j ,bi〉

‖b∗
j‖2

=
∑

j≤i

αj

〈b∗
j ,bi〉

‖b∗
j‖2

= αi +
∑

j<i

αjμi,j = xi

where the last equality follows from the definition of αi. �

This shows that if we enumerate the levels from k = 1 to n (note the reverse
order as opposed to primal enumeration) we can easily compute αk from all the
given or previously computed quantities in O(n). The length of w(k) is given by

‖w(k)‖2 =
∑

i≤k

α2
i /‖b∗

i ‖2 = ‖w(k−1)‖2 + α2
k/‖b∗

k‖2. (16)
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To obtain an algorithm that is practically as efficient as primal enumeration,
it is necessary to apply the same standard optimizations known as SchnorrEuch-
ner enumeration to the dual enumeration. It is obvious that we can exploit lat-
tice symmetry and dynamic radius updates in the same fashion as in the primal
enumeration. The only optimization that is not entirely obvious is enumerating
the values for xk in order of increasing length of the resulting partial solu-
tion. However, from Eqs. (15) and (16) it is clear that we can start by selecting
xk = �

∑
j<k μk,jαj� in order to minimize the first value of αk, and then pro-

ceed by alternating around this first value just as in the SchnorrEuchner primal
enumeration algorithm.

It is also noteworthy that being able to compute partial solutions even allows
us to apply pruning [14] directly. In summary this shows that dual SVP enu-
meration should be just as efficient as primal enumeration. To illustrate this,
Algorithms 2 and 3 show the SchnorrEuchner variant of the two enumeration
procedures.11

Algorithm 2. Dual Enumeration
procedure DualEnum(μ, (‖b∗

i ‖2)i∈[n], A)
Input: The GSO of a lattice μ and
(‖b∗

i ‖2)i∈[n] and an upper bound A to the
squared length of a shortest dual vector
Output: The coordinates of a shortest
dual vector in the dual basis D
1 k ← 1
2 while k ≥ 1
3 αk ← xk −∑j<k μk,jαj

4 lk ← lk−1 + α2
k/‖b∗

k‖2
5 if lk ≤ A and k = n then

6 s ← x, A ← lk
7 if lk ≤ A and k < n then

8 k ← k + 1, xk ← �∑j<k μk,jαj�
9 else

10 k ← k − 1, xk ← nextX(k)
11 return s

Algorithm 3. Primal Enumeration
procedure PrimalEnum(μ, (‖b∗

i ‖2)i∈[n], A)
Input: The GSO of a lattice μ and
(‖b∗

i ‖2)i∈[n] and an upper bound A to the
squared length of a shortest vector
Output: The coordinates of a shortest
vector in the basis B
1 k ← n

2 while k ≤ n

3 αk ← xk +
∑

j>k μj,kxj

4 lk ← lk+1 + α2
k‖b∗

k‖2
5 if lk ≤ A and k = 1 then

6 s ← x, A ← lk
7 if lk ≤ A and k > 1 then

8 k ← k − 1, xk ← �−∑j>k μj,kxj�
9 else

10 k ← k + 1, xk ← nextX(k)
11 return s

Implementation Notes. To give some experimental evidence that the dual enu-
meration is just as efficient as primal enumeration, we implemented it in fpLLL.12

Note that Algorithm 2 can be easily added to an implementation of Algorithm 3
by using special cases in data accesses and a few operations. Furthermore, in
order to avoid the division in line 4 we precomputed the values 1/‖b∗

k‖2 for all k.

11 The function nextX simply selects the next value for a specific variable in order to
alternate correctly around the center of the interval of valid values. We omit details
here since it works identical in both algorithms and requires auxiliary variables that
would clutter the code unnecessarily.

12 At the point of publication of this work, a modified version of this implementation
is now included in the main branch of fplll.
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We compared the implementation with the primal enumeration on 10 random
bases (in the same sense as in Sect. 6) in dimension 35 ≤ n ≤ 50. As expected,
the rate of enumeration was close to equal in both cases – around 3.2 ·107 nodes
per second (cf. Table 1), which corresponds to slightly more than 100 cycles per
node on our 3.4 Ghz test machine. The slight discrepancies (and the low rate for
n = 35) can be explained by the variable number of nodes that were enumerated
and thus certain setup costs are amortized over a different number of nodes.

Table 1. Rate of enumeration (in 107 nodes per s) in primal and dual enumeration

n 35 40 45 50

primal 2.73 3.16 3.13 3.17

dual 2.77 3.19 3.18 3.27

8 Conclusion and Future Work

While our experimental study of lattice reduction confirms that the average root
Hermite factor achieved by lattice reduction is indeed, as conjectured, given by
Eq. (4), the standard deviation is large enough that it is conceivable that a single
instance finds a much shorter vector. This means that cryptanalytic estimates
should take this into account.

It is clear that we need to learn more about the underlying distribution
in order to aid parameter selection. For example, using more data one could
try to verify experimentally if the distribution follows a (possibly truncated)
Gaussian as already suspected in [16] for small block sizes, which would allow
for much tighter bounds and meaningful estimates. A brief inspection of our data
suggests that this might be true even for larger block sizes, but 10 data points
per experiment is not sufficient to allow for any further conclusions about the
distribution. In any case, we believe our results show that simply relying on the
average of a handful of data points is not very meaningful and we hope that this
work can serve as a starting point for more sophisticated approaches to selecting
parameters secure against attacks involving lattice reduction.

With our new dual enumeration algorithm we provide another tool to practi-
cally examine different reduction algorithms. This should facilitate experimental
research into reduction algorithms that make use of dual SVP reduction, like
variants of Slide reduction. Future lines of research could explore if, for example,
the block Rankin reduction algorithm of [28] can be efficiently implemented by
using it to apply the densest sublattice algorithm of [10] to the dual lattice. This
could be used to achieve potentially stronger notions of reduction with better
output quality.
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4. Albrecht, M., Cadé, D., Pujol, X., Stehlé, D.: fplll-4.0, a floating-point LLL imple-
mentation. http://perso.ens-lyon.fr/damien.stehle

5. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Cryptology ePrint Archive, Report 2015/046 (2015). http://eprint.iacr.org/

6. Bachem, A., Kannan, R.: Lattices and basis reduction algorithm. Technical Report
84–006, Mathematisches Institut, Universität zu Köln (1984)
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A Experimental Data

See Table 2.

Table 2. Confidence intervals for mean value μ and standard deviation σ of root
Hermite factor achieved by lattice reduction with block size k

k μ[min] μ[max] σ[min] σ[min]

BKZ

25 1.0129 1.0132 0.00014910 0.00031542

30 1.0129 1.0131 0.00013775 0.00028044

35 1.0122 1.0127 0.00030272 0.00053605

40 1.0122 1.0125 0.00020367 0.00045143

45 1.0120 1.0122 0.00011779 0.00022000

50 1.0119 1.0122 0.00019697 0.00035792

55 1.0117 1.0119 0.00012984 0.00025347

60 1.0114 1.0116 0.00009925 0.00022226

65 1.0111 1.0114 0.00012052 0.00038869

70 1.0106 1.0109 0.00012487 0.00026133

75 1.0105 1.0107 0.00009756 0.00020439

Slide reduction

25 1.0145 1.0148 0.00016524 0.00034219

30 1.0141 1.0142 0.00005426 0.00017119

35 1.0135 1.0137 0.00013333 0.00022903

40 1.0129 1.0133 0.00018023 0.00041554

45 1.0127 1.0129 0.00013605 0.00027860

50 1.0123 1.0125 0.00014877 0.00026298

55 1.0121 1.0122 0.00005830 0.00009498

60 1.0117 1.0119 0.00013659 0.00022897

65 1.0114 1.0115 0.00009455 0.00017193

70 1.0109 1.0111 0.00012178 0.00023823

75 1.0106 1.0108 0.00010597 0.00019067

Self-Dual BKZ

25 1.0130 1.0133 0.00012817 0.00029479

30 1.0129 1.0131 0.00017812 0.00027150

35 1.0127 1.0129 0.00016756 0.00025963

40 1.0123 1.0126 0.00013635 0.00028876

45 1.0122 1.0123 0.00010143 0.00018625

50 1.0120 1.0123 0.00018334 0.00038216

55 1.0119 1.0123 0.00026051 0.00046222

60 1.0116 1.0120 0.00018311 0.00040919

65 1.0113 1.0116 0.00014412 0.00037256

70 1.0110 1.0112 0.00013096 0.00030097

75 1.0107 1.0109 0.00011095 0.00021169
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