Object-Oriented Programming

This chapter introduces the basic ideas of object-oriented programming. Different
people put different meanings into the term object-oriented programming: some
use the term for programming with objects in general, while others use the term
for programming with class hierarchies. The author applies the second meaning,
which is the most widely accepted one in computer science. The first meaning is
better named object-based programming. Since everything in Python is an object,
we do object-based programming all the time, yet one usually reserves this term for
the case when classes different from Python’s basic types (int, float, str, list,
tuple, dict) are involved.

Necessary background for the present chapter includes basic knowledge about
classes in Python, at least concepts such as attributes (method attributes, data
attributes), methods, constructors, the self object, and the __call__ special
method. Suitable material for this background is Sects. 7.1, 7.2, and 7.3.1. For
Sects. 9.2 and 9.3 one must know the most basic methods for numerical differentia-
tion and integration, for example from Appendix B. During an initial reading of the
chapter, it can be beneficial to skip the more advanced material in Sects. 9.2.4-9.2.7.

All the programs associated with this chapter are found in the folder src/oo'.

9.1 Inheritance and Class Hierarchies

Most of this chapter tells you how to put related classes together in families such that
the family can be viewed as one unit. This idea helps to hide details in a program,
and makes it easier to modify or extend the program.

A family of classes is known as a class hierarchy. As in a biological family, there
are parent classes and child classes. Child classes can inherit data and methods from
parent classes, they can modify these data and methods, and they can add their own
data and methods. This means that if we have a class with some functionality, we
can extend this class by creating a child class and simply add the functionality we
need. The original class is still available and the separate child class is small, since
it does not need to repeat the code in the parent class.

U http://tinyurl.com/pwyasaa/oo

© Springer-Verlag Berlin Heidelberg 2016 567
H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6, DOI 10.1007/978-3-662-49887-3_9

http://tinyurl.com/pwyasaa/oo
http://tinyurl.com/pwyasaa/oo

568 9 Object-Oriented Programming

The magic of object-oriented programming is that other parts of the code do not
need to distinguish whether an object is the parent or the child — all generations
in a family tree can be treated as a unified object. In other words, one piece of
code can work with all members in a class family or hierarchy. This principle has
revolutionized the development of large computer systems. As an illustration, two
of the most widely used computer languages today are Java and C#, and both of
them force programs to be written in an object-oriented style.

The concepts of classes and object-oriented programming first appeared in the
Simula programming language in the 1960s. Simula was invented by the Norwe-
gian computer scientists Ole-Johan Dahl and Kristen Nygaard, and the impact of
the language is particularly evident in C++, Java, and C#, three of the most domi-
nating programming languages in the world today. The invention of object-oriented
programming was a remarkable achievement, and the professors Dahl and Nygaard
received two very prestigious prizes: the von Neumann medal and the Turing prize
(popularly known as the Nobel prize of computer science).

A parent class is usually called base class or superclass, while the child class
is known as a subclass or derived class. We shall use the terms superclass and
subclass from now on.

9.1.1 ACClass for Straight Lines
Assume that we have written a class for straight lines, y = ¢¢ + c¢1x:

class Line(object):
def __init__(self, cO, cl):
self.cO = cO
self.cl cl

def __call__(self, x):
return self.cO + self.cl*x

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
S:’)
import numpy as np
for x in np.linspace(L, R, n):

y = self(x)
s += }12g Y12g\n’ % (x, y)
return s

The constructor __init__ initializes the coefficients ¢y and c; in the expression for
the straight line: y = ¢y + c;x. The call operator __call__ evaluates the function
c1x + ¢, while the table method samples the function at n points and creates
a table of x and y values.

9.1 Inheritance and Class Hierarchies 569

9.1.2 AFirst Try on a Class for Parabolas

A parabolay = ¢y + c1x + c,x2 contains a straight line as a special case (¢, = 0).
A class for parabolas will therefore be similar to a class for straight lines. All we
have do to is to add the new term ¢, x? in the function evaluation and store ¢, in the
constructor:

class Parabola(object):
def __init__(self, c0, cl, c2):

self.cO = cO
self.cl = c1
self.c2 = c2

def __call__(self, x):
return self.c2xx**2 + self.cl*x + self.cO

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
S=))
import numpy as np
for x in np.linspace(L, R, n):

y = self(x)
s += ’12g %12g\n’ % (x, y)
return s

Observe that we can copy the table method from class Line without any modifi-
cations.

9.1.3 A Class for Parabolas Using Inheritance

Python and other languages that support object-oriented programming have a spe-
cial construct, so that class Parabola does not need to repeat the code that we have
already written in class Line. We can specify that class Parabola inherits all code
from class Line by adding (Line) in the class headline:

class Parabola(Line):

Class Parabola now automatically gets all the code from class Line. Exercise 9.1
asks you to explicitly demonstrate the validity of this assertion. We say that class
Parabolais derived from class Line, or equivalently, that class Parabola is a sub-
class of its superclass Line.

Now, class Parabola should not be identical to class Line: it needs to add data
in the constructor (for the new term) and to modify the call operator (because of
the new term), but the table method can be inherited as it is. If we implement the
constructor and the call operator in class Parabola, these will override the inher-
ited versions from class Line. If we do not implement a table method, the one
inherited from class Line is available as if it were coded visibly in class Parabola.

Class Parabola must first have the statements from the class Line methods
__call__and __init__, and then add extra code in these methods. An important

——

570 9 Object-Oriented Programming

Line Parabola
__init__ __init__
__call__ __call__
table <]

c0
c0 cl
cl c2

Fig. 9.1 UML diagram for the class hierarchy with superclass Line and subclass Parabola

principle in computer programming is to avoid repeating code. We should therefore
call up functionality in class Line instead of copying statements from class Line
methods to Parabola methods. Any method in the superclass Line can be called
using the syntax

Line.methodname (self, argl, arg2, ...)
or
super (Parabola, self).methodname(argl, arg2, ...)

The latter construction only works if the super class is derived from Python’s gen-
eral super class object (i.e., class Line must be a new-style class).

Let us now show how to write class Parabola as a subclass of class Line, and
implement just the new additional code that we need and that is not already written
in the superclass:

class Parabola(Line):
def __init__(self, cO, cl, c2):
Line.__init__(self, cO, cl) # let Line store cO and cil
self.c2 = c2

def __call__(self, x):
return Line.__call__(self, x) + self.c2*x**2

This short implementation of class Parabola provides exactly the same functional-
ity as the first version of class Parabola that we showed in Sect. 9.1.2 and that did
not inherit from class Line. Figure 9.1 shows the class hierarchy in UML fashion.
The arrow from one class to another indicates inheritance.

A quick demo of the Parabola class in a main program,

p = Parabola(l, -2, 2)
pl = p(x=2.5)

print pil
print p.table(0, 1, 3)

gives this output:

8.5

o
= 0o

o
[N =

9.1 Inheritance and Class Hierarchies 571

Program flow The program flow can be somewhat complicated when we work
with class hierarchies. Consider the code segment

p = Parabola(l, -1, 2)
pl = p(x=2.5)

Let us explain the program flow in detail for these two statements. As always, you
can monitor the program flow in a debugger as explained in Sect. F.1 or you can
invoke the very illustrative Online Python Tutor?.

Calling Parabola(l, -1, 2) leads to a call to the constructor method
__init__, where the arguments cO, c1, and c2 in this case are int objects with
values 1, -1, and 2. The self argument in the constructor is the object that will be
returned and referred to by the variable p. Inside the constructor in class Parabola
we call the constructor in class Line. In this latter method, we create two data
attributes in the self object. Printing out dir (self) will explicitly demonstrate
what self contains so far in the construction process. Back in class Parabola’s
constructor, we add a third attribute c2 to the same self object. Then the self
object is invisibly returned and referred to by p.

The other statement, p1 = p(x=2.5), has a similar program flow. First we enter
the p.__call__ method with self as p and x as a float object with value 2.5.
The program flow jumps to the __call__ method in class Line for evaluating the
linear part ¢ x 4 ¢y of the expression for the parabola, and then the flow jumps back
to the __call__ method in class Parabola where we add the new quadratic term.

9.1.4 Checking the Class Type

Python has the function isinstance (i,t) for checking if an instance i is of class
type t:

>>> 1 = Line(-1, 1)

>>> isinstance(l, Line)
True

>>> isinstance(1l, Parabola)
False

A Line is not a Parabola, but is a Parabola a Line?

>>> p = Parabola(-1, 0, 10)
>>> isinstance(p, Parabola)
True

>>> isinstance(p, Line)
True

Yes, from a class hierarchy perspective, a Parabola instance is regarded as a Line
instance too, since it contains everything that a Line instance contains.

2 http://www.pythontutor.com/

http://www.pythontutor.com/
http://www.pythontutor.com/

572 9 Object-Oriented Programming

Every instance has an attribute __class__ that holds the type of class:

>>> p.__class__
<class __main__.Parabola at 0xb68f108c>

>>> p.__class__ == Parabola

True

>>> p.__class__.__name__ # string version of the class name
’Parabola’

Note that p. __class__is a class object (or class definition one may say), while
p.__class__.__name__is a string. These two variables can be used as an alter-

native test for the class type:

if p.__class__.__name__ == ’Parabola’:
or
if p.__class__ == Parabola:

However, isinstance(p, Parabola) is the recommended programming style
for checking the type of an object.
A function issubclass(cl, c2) testsif class c1is a subclass of class c2, e.g.,

>>> issubclass(Parabola, Line)
True

>>> issubclass(Line, Parabola)
False

The superclasses of a class are stored as a tuple in the __bases__ attribute of the
class object:

>>> p.__class__.__bases__
(<class __main__.Line at Oxb7cb5d2fc>,)
>>> p.__class__.__bases__[0].__name__ # extract name as string

’Line’

9.1.5 Attribute vs Inheritance: has-a vs is-a Relationship

Instead of letting class Parabola inherit from a class Line, we may let it contain
a class Line instance as a data attribute:

class Parabola(object):
def __init__(self, c0, cl, c2):
self.line = Line(cO, c1) # let Line store cO and cil
self.c2 = c2

def __call__(self, x):
return self.line(x) + self.c2*x**2

Whether to use inheritance or an attribute depends on the problem being solved.

9.1 Inheritance and Class Hierarchies 573

If it is natural to say that class Parabolais a Line object, we say that Parabola
has an is-a relationship with class Line. Alternatively, if it is natural to think that
class Parabola has a Line object, we speak about a has-a relationship with class
Line. In the present example, we may argue that technically the expression for the
parabola is a straight line plus another term and hence claim an is-a relationship,
but we can also view a parabola as a quantity that has a line plus an extra term,
which makes the has-a relationship relevant.

From a mathematical point of view, many will say that a parabola is not a line,
but that a line is a special case of a parabola. Adopting this reasoning reverses
the dependency of the classes: now it is more natural to let Line is a subclass of
Parabola (Line is a Parabola). This easy, and all we have to do is

class Parabola(object):
def __init__(self, c0, cl, c2):
self.cO, self.cl, self.c2 = cO, c2, c2

def __call__(self, x):
return self.cO + self.cl*x + self.c2*x**2

def table(self, L, R, n): # implemented as shown above

class Line(Parabola):
def __init__(self, c0, cl):
Parabola.__init__(self, cO, ci1, 0)

The inherited __call__ method from class Parabola will work since the c2 co-
efficient is zero. Exercises 9.4 suggests deriving Parabola from a general class
Polynomial and asks you to discuss the alternative class designs.

Extension and restriction of a superclass

In the example where Parabola as a subclass of Line, we used inheritance to
extend the functionality of the superclass. The case where Line is a subclass of
Parabolais an example on restricting the superclass functionality in a subclass.

How classes depend on each other is influenced by two factors: sharing of code
and logical relations. From a sharing of code perspective, many will say that class
Parabola is naturally a subclass of Line, the former adds code to the latter. On
the other hand, Line is naturally a subclass of Parabola from the logical relations
in mathematics. Computational efficiency is a third perspective when we imple-
ment mathematics. When Line is a subclass of Parabola we always evaluate the
¢>x2 term in the parabola although this term is zero. Nevertheless, when Parabola
is a subclass of Line, we call Line.__call__ to evaluate the linear part of the
second-degree polynomial, and this call is costly in Python. From a pure efficiency
point of view, we would reprogram the linear part in Parabola.__call__ (which
is against the programming habit we have been arguing for!). This little discus-
sion here highlights the many different considerations that come into play when
establishing class relations.

574 9 Object-Oriented Programming

9.1.6 Superclass for Defining an Interface

As another example of class hierarchies, we now want to represent functions by
classes, as described in Sect. 7.1.2, but in addition to the __call__ method, we
also want to provide methods for the first and second derivative. The class can be
sketched as

class SomeFunc(object):

def __init__(self, parameterl, parameter2, ...)
Store parameters

def __call__(self, x):
Evaluate function

def df(self, x):
Evaluate the first derivative

def ddf (self, x):
Evaluate the second derivative

For a given function, the analytical expressions for first and second derivative must
be manually coded. However, we could think of inheriting general functions for
computing these derivatives numerically, such that the only thing we must always
implement is the function itself. To realize this idea, we create a superclass

class FuncWithDerivatives(object):
def __init__(self, h=1.0E-5):
self.h = h # spacing for numerical derivatives

def __call__(self, x):

raise NotImplementedError\

(°___call__ missing in class %s’ % self.__class__.__name__)
def df (self, x):

"""Return the 1st derivative of self.f."""

Compute first derivative by a finite difference

h = self.h

return (self(x+h) - self(x-h))/(2.0%h)

def ddf (self, x):
"""Return the 2nd derivative of self.f."""
Compute second derivative by a finite difference:
h = self.h
return (self(x+h) - 2*self(x) + self(x-h))/(float(h)**2)

This class is only meant as a superclass of other classes. For a particular function,
say f(x) = cos(ax) + x3, we represent it by a subclass:

class MyFunc(FuncWithDerivatives):
def __init__(self, a):
self.a = a

def __call__(self, x):
return cos(self.a*xx) + x**3

9.1 Inheritance and Class Hierarchies 575

def df(self, x):
a = self.a
return -a*sin(a*x) + 3*xx**2

def ddf (self, x):
a = self.a
return -a*axcos(a*x) + 6%*x

The superclass constructor is never called, hence h is never initialized, and there
are no possibilities for using numerical approximations via the superclass methods
df and ddf. Instead, we override all the inherited methods and implement our own
versions.

Tip

Many think it is a good programming style to always call the superclass con-
structor in a subclass constructor, even in simple classes where we do not need
the functionality of the superclass constructor.

For a more complicated function, e.g., f(x) = In|p tanh(gx cosrx)|, we may
skip the analytical derivation of the derivatives, and just code f(x) and rely on the
difference approximations inherited from the superclass to compute the derivatives:

class MyComplicatedFunc (FuncWithDerivatives):
def __init__(self, p, q, r, h=1.0E-5):
FuncWithDerivatives.__init__(self, h)
self.p, self.q, self.r = p, q,

def __call__(self, x):
return log(abs(self.p*tanh(self.qg*x*cos(self.r*x))))

That’s it! We are now ready to use this class:

>>> f = MyComplicatedFunc(1l, 1, 1)
>>> x = pi/2

>>> f(x)

-36.880306514638988

>>> f.df (x)

-60.593693618216086

>>> f.ddf (x)
3.3217246931444789e+19

Class MyComplicatedFunc inherits the df and ddf methods from the superclass
FuncWithDerivatives. These methods compute the first and second derivatives
approximately, provided that we have defined a __call__ method. If we fail
to define this method, we will inherit __call__ from the superclass, which just
raises an exception, saying that the method is not properly implemented in class
MyComplicatedFunc.

The important message in this subsection is that we introduced a super class to
mainly define an interface, i.e., the operations (in terms of methods) that one can do
with a class in this class hierarchy. The superclass itself is of no direct use, since it
does not implement any function evaluation in the __call__ method. However, it

576 9 Object-Oriented Programming

stores a variable common to all subclasses (h), and it implements general methods
df and ddf that any subclass can make use of. A specific mathematical function
must be represented as a subclass, where the programmer can decide whether ana-
Iytical derivatives are to be used, or if the more lazy approach of inheriting general
functionality (df and ddf) for computing numerical derivatives is satisfactory.

In object-oriented programming, the superclass very often defines an interface,
and instances of the superclass have no applications on their own — only instances
of subclasses can do anything useful.

To digest the present material on inheritance, we recommend doing Exer-
cises 9.1-9.4 before reading the next section.

9.2 Class Hierarchy for Numerical Differentiation

Section 7.3.2 presents a class Derivative that (approximately) differentiate any
mathematical function represented by a callable Python object. The class employs
the simplest possible numerical derivative. There are a lot of other numerical for-
mulas for computing approximations to f’(x):

fl(x) = w + O(h), (Ist-order forward diff.) 9.1)
fl(x) = W + O(h), (Ist-order backward diff.) 9.2)
f'(x) = A h)z_h fle=h) + O(h?), (2nd-order central diff.) (9.3)
oy _ASfe+h)—fe—h) 1 f(x+2h)— f(x —2h) 4
F=3 20 3 4h + 00,
(4th-order central diff.) 9.4)
oo 3SR = fx—h) 3 f(x +2h) — f(x —2h)
=3 20 5 4h *
1 f(x +3h) — f(x —3h) 6
0 T + O(h°),
(6th-order central diff.) 9.5)
1 1 1 1
70 = 1 (<5 £ 2004 £) = 170 = 3 =) + 008
(3rd-order forward diff.) 9.6)

The key ideas about the implementation of such a family of formulas are explained
in Sect. 9.2.1. For the interested reader, Sects. 9.2.4-9.2.7 contains more advanced
additional material that can well be skipped in a first reading. However, the addi-
tional material puts the basic solution in Sect. 9.2.1 into a wider perspective, which
may increase the understanding of object orientation.

9.2 Class Hierarchy for Numerical Differentiation 577

9.2.1 Classes for Differentiation

Itis argued in Sect. 7.3.2 that it is wise to implement a numerical differentiation for-
mula as a class where f(x) and & are data attributes and a __call__ method makes
class instances behave as ordinary Python functions. Hence, when we have a collec-
tion of different numerical differentiation formulas, like (9.1)—(9.6), it makes sense
to implement each one of them as a class.

Doing this implementation (see Exercise 7.16), we realize that the constructors
are identical because their task in the present case to store f and /. Object-
orientation is now a natural next step: we can avoid duplicating the constructors by
letting all the classes inherit the common constructor code. To this end, we intro-
duce a superclass Diff and implement the different numerical differentiation rules
in subclasses of Diff. Since the subclasses inherit their constructor, all they have
to do is to provide a __call__ method that implements the relevant differentiation
formula.

Let us show what the superclass Diff looks like and how three subclasses im-
plement the formulas (9.1)—(9.3):

class Diff (object):
def __init__(self, f, h=1E-5):
self.f = f
self.h = float(h)

class Forwardl (Diff):
def __call__(self, x):
f, h = self.f, self.h
return (f(x+h) - £(x))/h

class Backwardl (Diff):
def __call__(self, x):
f, h = self.f, self.h
return (f(x) - f(x-h))/h

class Central2(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (f(x+h) - f(x-h))/(2xh)

These small classes demonstrates an important feature of object-orientation:
code common to many different classes are placed in a superclass, and the sub-
classes add just the code that differs among the classes.

We can easily implement the formulas (9.4)—(9.6) by following the same method:

class Centrald(Diff):
def __call__(self, x):
f, h = self.f, self.h
return (4./3)*(f(x+h) - f(x-h)) /(2%h) - \
(1./3)*%(f (x+2%h) - f(x-2%h))/(4%h)

578 9 Object-Oriented Programming

class Central6(Diff):
def __call__(self, x):
f, h = self.f, self.h
return (3./2) *(£f(x+h) - £(x-h)) /(2*%h) - \
(3./5) *(f(x+2%h) f(x-2%h))/(4xh) + \
(1./10) % (f (x+3%h) - f(x-3%h))/(6xh)

class Forward3(Diff):
def __call__(self, x):
f, h = self.f, self.h
return (-(1./6)*f(x+2%h) + f(x+h) - 0.5%f(x) - \
(1./3)*f(x-h))/h

We have placed all the classes in a module file Diff . py. Here is a short interac-
tive example using the module to numerically differentiate the sine function:

>>> from Diff import x*

>>> from math import sin

>>> mycos = Central4(sin)

>>> mycos (pi) # compute sin’ (pi)
-1.000000082740371

Instead of a plain Python function we may use an object with a __call__
method, here exemplified through the function f(¢t;a,b,c) = at®> + bt + c:

class Poly2(object):
def __init__(self, a, b, c):
self.a, self.b, self.c = a, b, c
def __call__(self, t):
return self.a*xtx*x2 + self.b*t + self.c

f = Poly2(1, 0, 1)

dfdt = Central4(f)

t =2

print "f’ (%g)=lkg" % (t, dfdt(t))

Let us examine the program flow. When Python encounters dfdt = Central4(f),
it looks for the constructor in class Central4, but there is no constructor in that
class. Python then examines the superclasses of Central4, listed in Central4.
__bases__. The superclass Diff contains a constructor, and this method is called.
When Python meets the dfdt (t) call, it looks for __call__ in class Central4d
and finds it, so there is no need to examine the superclass. This process of looking
up methods of a class is called dynamic binding.

Computer science remark Dynamic binding means that a name is bound to
a function while the program is running. Normally, in computer languages, a func-
tion name is static in the sense that it is hardcoded as part of the function body and
will not change during the execution of the program. This principle is known as
static binding of function/method names. Object orientation offers the technical
means to associate different functions with the same name, which yields a kind of
magic for increased flexibility in programs. The particular function that the name

http://tinyurl.com/pwyasaa/oo/Diff.py

9.2 Class Hierarchy for Numerical Differentiation 579

refers to can be set at run-time, i.e., when the program is running, and therefore
known as dynamic binding.

In Python, dynamic binding is a natural feature since names (variables) can refer
to functions and therefore be dynamically bound during execution, just as any ordi-
nary variable. To illustrate this point, let func1 and func?2 be two Python functions
of one argument, and consider the code

if input == ’funcl’:
f = funcl

elif input == ’func2’:
f = func2

y = £(x)

Here, the name £ is bound to one of the func1 and func?2 function objects while
the program is running. This is a result of two features: (i) dynamic typing (so the
contents of f can change), and (ii) functions being ordinary objects. The bottom
line is that dynamic binding comes natural in Python, while it appears more like
convenient magic in languages like C++, Java, and C#.

9.2.2 \Verification

We have several alternative numerical methods for differentiation implemented in
the Diff hierarchy, and the Diff module should contain one or more test functions
for verifying the implementations. The fundamental problem is that even if we
know the exact derivative of a function, we do not know what the numerical error in
one of the subclass methods is. This fact prevents us from comparing the numerical
and the exact derivative.

Fortunately, numerical differentiation formulas of the type we have encountered
above are able to differentiate lower order polynomials exactly. All of them are
capable of computing f’'(x) = a, where f(x) = ax + b, without approximation
errors for any 4. We can use this knowledge to construct a test function:

def test_Central2():
def f(x):
return a*xx + b

def df_exact(x):
return a

a=0.2; b=-4

df = Central2(f, h=0.55)

x = 6.2

msg = ’method Central2 failed: df/dx=lg != %g’ % \
(df (x), df_exact(x))

tol = 1E-14

assert abs(df_exact(x) - df(x)) < tol

It will be boring to write such a test function for each class in the hierarchy.
Therefore, we parameterize the class name and rewrite test_Central such that it
can be reused for any class in the Diff hierarchy:

580 9 Object-Oriented Programming

def _test_one_method(method) :
"""Test method in string ‘method‘ on a linear function."""
f = lambda x: a*x + b
df _exact = lambda x: a
a=0.2; b=-4
df = eval (method) (f, h=0.55)
x = 6.2
msg = ’method %s failed: df/dx=lg '= %g’ % \
(method, df(x), df_exact(x))
tol 1E-14
assert abs(df_exact(x) - df(x)) < tol

Some comments are needed to explain this function:

o All our test functions are intended for the pytest and nose testing frameworks.
(See Sect. H.9 for more information on such test functions.) The function name
must then start with test_ and no arguments are allowed. For the helper func-
tion _test_one_method with an argument, the function name cannot start with
test, and that is why an underscore is added.

e Lambda functions (see Sect. 3.1.14) are used to save code in the definitions of £
and df _exact.

e The subclass to be tested is given as a string method. Calling the constructor
must then be done by eval (method) (£).

It remains to make a loop over all the implemented subclasses and call _test_
one_method for each of them. As always, we try to find a way to automate boring
work, which here consists of listing all the subclasses (and remembering to update
the list when new subclasses are added). All global variables in a file is available
from the dictionary returned by globals(). The key is a variable name and the
value is the corresponding object. For example, print globals() reveals that all
the defined classes are in globals(),e.g.,

’Central2’: <class Diff.Central2 at 0x1a87c80>,
’Centrald’: <class Diff.Centrald4d at 0x1a87£f58>,
’Diff’: <class Diff.Diff at 0x1a870b8>,

To find all the relevant classes to test, we grab all names from the globals()
dictionary, look for names that starts with upper case, and find the names that corre-
spond to a subclass of Diff (drop Diff itself as this class cannot compute anything
and therefore cannot be tested). Translating this algorithm to code gives us a test
function that can test all subclasses in the Diff hierarchy:

def test_all_methods():

"""Call _test_one_method for all subclasses of Diff."""

print globals()

names = list(globals().keys()) # all names in this module

for name in names:

if name[0] .isupper():
if issubclass(eval (name), Diff):
if name != ’Diff’:
_test_one_method (name)

9.2 Class Hierarchy for Numerical Differentiation 581

9.2.3 A flexible Main Program

As a demonstration of the power of Python programming, we shall now write a main
program for our Diff module that accepts a function on the command-line, together
with information about the difference type (centered, backward, or forward), the
order of the approximation, and a value of the independent variable. The corre-
sponding output is the derivative of the given function. An example of the usage of
the program goes like this:

Terminal

Diff.py ’exp(sin(x))’ Central 2 3.1
-1.04155573055

Here, we asked the program to differentiate f(x) = e*"* at x = 3.1 with a central
scheme of order 2 (using the Central2 class in the Diff hierarchy).

We can provide any expression with x as input and request any scheme from the
Diff hierarchy, and the derivative will be (approximately) computed. One great
thing with Python is that the code is very short:

from math import * # make all math functions available to main

def main():
from scitools.StringFunction import StringFunction
import sys

try:
formula = sys.argv[1]
difftype = sys.argv[2]
difforder = sys.argvl[3]
x = float(sys.argv[4])
except IndexError:
print ’Usage: Diff.py formula difftype difforder x’
print ’Example: Diff.py "sin(x)*exp(-x)" Central 4 3.14’
sys.exit (1)

classname = difftype + difforder
f = StringFunction(formula)

df = eval(classname) (f)

print df (x)

if __name == ’_ main__’:

main()

Read the code line by line, and convince yourself that you understand what is
going on. You may need to review Sects. 4.3.1 and 4.3.3.

One disadvantage is that the code above is limited to x as the name of the inde-
pendent variable. If we allow a 5th command-line argument with the name of the
independent variable, we can pass this name on to the StringFunction construc-
tor, and suddenly our program works with any name for the independent variable!

varname = sys.argv[5]
f = StringFunction(formula, independent_variables=varname)

582 9 Object-Oriented Programming

Of course, the program crashes if we do not provide five command-line arguments,
and the program does not work properly if we are not careful with ordering of the
command-line arguments. There is some way to go before the program is really
user friendly, but that is beyond the scope of this chapter.

Many other popular programming languages (C++, Java, C#) cannot perform
the eval operation while the program is running. The result is that one needs if
tests to turn the information in difftype and difforder into creation of subclass
instances. Such type of code would look like this in Python:

if classname == ’Forwardl’:
df = Forwardl(f)
elif classname == ’Backwardl’:

df = Backwardl(f)

and so forth. This piece of code is very common in object-oriented systems and
often put in a function that is referred to as a factory function. Thanks to eval in
Python, factory functions are usually only a matter of applying eval to a string.

9.2.4 Extensions

The great advantage of sharing code via inheritance becomes obvious when we
want to extend the functionality of a class hierarchy. It is possible to do this by
adding more code to the superclass only. Suppose we want to be able to assess the
accuracy of the numerical approximation to the derivative by comparing with the
exact derivative, if available. All we need to do is to allow an extra argument in the
constructor and provide an additional superclass method that computes the error in
the numerical derivative. We may add this code to class Diff, or we may add it
in a subclass Diff2 and let the other classes for various numerical differentiation
formulas inherit from class Dif£2. We follow the latter approach:

class Diff2(Diff):
def __init__(self, f, h=1E-5, dfdx_exact=None):
Diff.__init__(self, f, h)
self.exact = dfdx_exact

def error(self, x):
if self.exact is not None:
df _numerical = self(x)
df _exact = self.exact(x)
return df_exact - df_numerical

class Forwardl(Diff2):
def __call__(self, x):
f, h = self.f, self.h
return (f(x+h) - £(x))/h

The other subclasses, Backwardl, Central2, and so on, must also be derived
from Diff2 to equip all subclasses with new functionality for perfectly assessing

9.2 Class Hierarchy for Numerical Differentiation 583

Diff Diff2 Backward1

__init__ __init__ __call__

<]—\— error
<]— exact

h exact f
f h
h

-

Central2

__call__

exact
f
h

Central4

__call__

exact
f
h

Central6

__call__

exact
f
h

Forward1

__call__

exact
f
h

Forward3

__call__

exact
f
h

Fig. 9.2 UML diagram of the Diff hierarchy for a series of differentiation formulas
(Backwardl, Central?2, etc.)

the accuracy of the approximation. No other modifications are necessary in this ex-
ample, since all the subclasses can inherit the superclass constructor and the error
method. Figure 9.2 shows a UML diagram of the new Diff class hierarchy.

584 9 Object-Oriented Programming

Here is an example of usage:

mycos = Forwardl(sin, dfdx_exact=cos)
print ’Error in derivative is’, mycos.error(x=pi)

The program flow of the mycos.error(x=pi) call can be interesting to follow.
We first enter the error method in class Diff2, which then calls self (x), i.e.,
the __call__ method in class Forward1, which jumps out to the self . f function,
i.e., the sin function in the math module in the present case. After returning to the
error method, the next call is to self.exact, which is the cos function (from
math) in our case.

Application We can apply the methods in the Dif£2 hierarchy to get some insight
into the accuracy of various difference formulas. Let us write out a table where
the rows correspond to different /2 values, and the columns correspond to different
approximation methods (except the first column, which reflects the 4 value). The
values in the table can be the numerically computed f'(x) or the error in this ap-
proximation if the exact derivative is known. The following function writes such
a table:

def table(f, x, h_values, methods, dfdx=None):
Print headline (h and class names for the methods)
print ’ h 79
for method in methods:
print ’%-15s’ % method.__name__,
print # newline
Print table
for h in h_values:
print ’%10.2E’ % h,
for method in methods:
if dfdx is not None: # write error
d = method(f, h, dfdx)
output = d.error(x)
else: # write value
d = method(f, h)
output = d(x)
print ’%15.8E’ % output,
print # newline

The next lines tries three approximation methods on f(x) = e~'% for x = 0 and
withh =1,1/2,1/4,1/16,...,1/512:

from Diff2 import *
from math import exp

def f1(x):
return exp(-10%x)

def dfildx(x):
return -10*exp(-10%x)

table(f1, 0, [2*x(-k) for k in range(10)],
[Forwardl, Central2, Central4], dfidx)

9.2 Class Hierarchy for Numerical Differentiation 585

Note how convenient it is to make a list of class names — class names can be used as
ordinary variables, and to print the class name as a string we just use the __name__

attribute. The output of the main program above becomes

h Forwardl Central2 Centrald
1.00E+00 -9.00004540E+00 1.10032329E+04 -4.04157586E+07
5.00E-01 -8.01347589E+00 1.38406421E+02 -3.48320240E+03
2.50E-01 -6.32833999E+00 1.42008179E+01 -2.72010498E+01
1.25E-01 -4.29203837E+00 2.81535264E+00 -9.79802452E-01
6.25E-02 -2.56418286E+00 6.63876231E-01 -5.32825724E-02
3.12E-02 -1.41170013E+00 1.63556996E-01 -3.21608292E-03
1.56E-02 -7.42100948E-01 4.07398036E-02 -1.99260429E-04
7.81E-03 -3.80648092E-01 1.01756309E-02 -1.24266603E-05
3.91E-03 -1.92794011E-01 2.54332554E-03 -7.76243120E-07
1.95E-03 -9.70235594E-02 6.35795004E-04 -4.85085874E-08

From one row to the next, 4 is halved, and from about the 5th row and onwards,
the Forward1 errors are also halved, which is consistent with the error O (%) of this
method. Looking at the 2nd column, we see that the errors are reduced to 1/4 when
going from one row to the next, at least after the 5th row. This is also according
to the theory since the error is proportional to 42. For the last row with a 4th-order
scheme, the error is reduced by 1/16, which again is what we expect when the error
term is O(h*). What is also interesting to observe, is the benefit of using a higher-
order scheme like Central4: with, for example, 4 = 1/128 the Forward1 scheme
gives an error of —0.7, Central2 improves this to 0.04, while Central4 has an
error of —0.0002. More accurate formulas definitely give better results. (Strictly
speaking, it is the fraction of the work and the accuracy that counts: Central4d
needs four function evaluations, while Central2 and Forwardl only needs two.)
The test example shown here is found in the file Diff2_examples.py.

9.2.,5 Alternative Implementation via Functions

Could we implement the functionality offered by the Diff hierarchy of objects by
using plain functions and no object orientation? The answer is “yes, almost”. What
we have to pay for a pure function-based solution is a less friendly user interface to
the differentiation functionality: more arguments must be supplied in function calls,
because each difference formula, now coded as a straight Python function, must get
f(x), x, and & as arguments. In the class version we first store f and /& as data
attributes in the constructor, and every time we want to compute the derivative, we
just supply x as argument.
A Python function for implementing numerical differentiation reads

def central2_func(f, x, h=1.0E-5):
return (f(x+h) - f(x-h))/(2*h)

The usage demonstrates the difference from the class solution:

mycos = central2_func(sin, pi, 1E-6)
Compute sin’(pi):
print "g’ (%ig)=kg (exact value is %g)" % (pi, mycos, cos(pi))

http://tinyurl.com/pwyasaa/oo/Diff2_examples.py

586 9 Object-Oriented Programming

Now, mycos is a number, not a callable object. The nice thing with the class solution
is that mycos appeared to be a standard Python function whose mathematical values
equal the derivative of the Python function sin(x). But does it matter whether
mycos is a function or a number? Yes, it matters if we want to apply the difference
formula twice to compute the second-order derivative. When mycos is a callable
object of type Central2, we just write

mysin
or
mysin = Central2(Central2(sin))

Central2(mycos)

Compute g’’ (pi):
print "g’’ (%g)=tg" % (pi, mysin(pi))

With the central2_func function, this composition will not work. Moreover,
when the derivative is an object, we can send this object to any algorithm that ex-
pects a mathematical function, and such algorithms include numerical integration,
differentiation, interpolation, ordinary differential equation solvers, and finding ze-
ros of equations, so the applications are many.

9.2.6 Alternative Implementation via Functional Programming

As a conclusion of the previous section, the great benefit of the object-oriented
solution in Sect. 9.2.1 is that one can have some subclass instance d from the Diff
(or Dif£2) hierarchy and write d(x) to evaluate the derivative at a point x. The
d(x) call behaves as if d were a standard Python function containing a manually
coded expression for the derivative.

The d(x) interface to the derivative can also be obtained by other and per-
haps more direct means than object-oriented programming. In programming
languages where functions are ordinary objects that can be referred to by vari-
ables, as in Python, one can make a function that returns the right d (x) function
according to the chosen numerical derivation rule. The code looks as this (see
Diff_functional.py for the complete code):

def differentiate(f, method, h=1.0E-5):
h = float(h) # avoid integer division

if method == ’Forwardl’:
def Forwardi(x):
return (f(x+h) - £(x))/h
return Forwardl

elif method == ’Backwardl’:
def Backwardl(x):
return (f(x) - f£(x-h))/h
return Backwardl

http://tinyurl.com/pwyasaa/oo/Diff_functional.py

9.2 Class Hierarchy for Numerical Differentiation 587

And the usage goes like
mycos = differentiate(sin, ’Forwardl’)
mysin = differentiate(mycos, ’Forwardl’)
X = pi

print mycos(x), cos(x), mysin, -sin(x)

The surprising thing is that when we call mycos (x) we provide only x, while the
function itself looks like

def Forwardil(x):
return (f(x+h) - f(x))/h
return Forwardl

How do the parameters £ and h get their values when we call mycos (x) ? There is
some magic attached to the Forward1 function, or literally, there are some variables
attached to Forward1: this function remembers the values of £ and h that existed as
local variables in the differentiate function when the Forward1 function was
defined.

In computer science terms, Forward1 always has access to variables in the scope
in which the function was defined. The Forward1 function is call a closure and
explained in Sect. 7.1.7. Closures are much used in a programming style called
functional programming. Two key features of functional programming is operations
on lists (like list comprehensions) and returning functions from functions. Python
supports functional programming, but we will not consider this programming style
further in this book.

9.2,7 Alternative Implementation via a Single Class

Instead of making many classes or functions for the many different differentiation
schemes, the basic information about the schemes can be stored in one table. With
a single method in one single class can use the table information, and for a given
scheme, compute the derivative. To do this, we need to reformulate the mathemati-
cal problem (actually by using ideas from Sect. 9.3.1).

A family of numerical differentiation schemes can be written

L)~ R Y w f(x), 9.7)

i=—r

where w; are weights and x; are points. The 2r 4 1 points are symmetric around
some point x:
Xp=x+ih, [i=-r...,r.

The weights depend on the differentiation scheme. For example, the Midpoint
scheme (9.3) has

588 9 Object-Oriented Programming

The table below lists the values of w; for different difference formulas. The type
of difference is abbreviated with ¢ for central, f for forward, and b for backward.
The number after the nature of a scheme denotes the order of the schemes (for
example, “c 2” is a central difference of 2nd order). We have set r = 4, which is
sufficient for the schemes written up in this book.

x—4h x-3h x—-2h x—h x x+h x+2h x+3h x-+4h
c2 0 0 0 -1 0 : 0 0 0
2 2 1
c4 0 0 & -2 0 z -5 0 0
1 3 3 3 3 1
c6b 0 % 2 -3 0 i) % 0
1 4 12 4 4 12 4 1
c8 3% ~15 & =3 0 H —& 703 3%
f1 0 0 0 0 1 1 0 0 0
2 1 1
£3 0 0 0 -2 -1 1 -1 0 0
b1l 0 0 0 =1 1 0 0 0 0

Given a table of the w; values, we can use (9.7) to compute the derivative.
A faster, vectorized computation can have the x;, w;, and f(x;) values as stored
in three vectors. Then h=! Y. w; f(x;) can be interpreted as a dot product between
the two vectors with components w; and f(x;), respectively.

A class with the table of weights as a static variable, a constructor, and
a __call__ method for evaluating the derivative via 2~' ", w; f(x;) looks as
follows:

class Diff3(object):
table = {
(’forward’, 1):
[o, o, o, 0, 1, 1, 0, 0, 0],
(’central’, 2):
[o, o, o, -1./2, o, 1./2, 0, 0, 0],
(’central’, 4):
[0, 0, 1./12, -2./3, 0, 2./3, -1./12, 0, 0],

}

def __init__(self, f, h=1.0E-5, type=’central’, order=2):
self.f, self.h, self.type, self.order = f, h, type, order
self .weights = np.array(Diff2.table[(type, order)])

def __call__(self, x):
f_values = np.array([f (self.x+i*self.h) \
for i in range(-4,5)])
return np.dot(self.weights, f_values)/self.h

Here we used numpy’s dot (x, y) function for computing the inner or dot product
between two arrays x and y.

Class Dif£3 can be found in the file Dif£3. py. Using class Dif£3 to differen-
tiate the sine function goes like this:

import Diff3
mycos = Diff3.Diff3(sin, type=’central’, order=4)
print "sin’(pi):", mycos(pi)

http://tinyurl.com/pwyasaa/oo/Diff3.py

9.3 Class Hierarchy for Numerical Integration 589

Remark The downside of class Diff3, compared with the other implementation
techniques, is that the sum A=' Y, w; f(x;) contains many multiplications by zero
for lower-order schemes. These multiplications are known to yield zero in advance
s0 we waste computer resources on trivial calculations. Once upon a time, program-
mers would have been extremely careful to avoid wasting multiplications this way,
but today arithmetic operations are quite cheap, especially compared to fetching
data from the computer’s memory. Lots of other factors also influence the compu-
tational efficiency of a program, but this is beyond the scope of this book.

9.3 Class Hierarchy for Numerical Integration

There are many different numerical methods for integrating a mathematical func-
tion, just as there are many different methods for differentiating a function. It is thus
obvious that the idea of object-oriented programming and class hierarchies can be
applied to numerical integration formulas in the same manner as we did in Sect. 9.2.

9.3.1 Numerical Integration Methods

First, we list some different methods for integrating fab f(x)dx using n evaluation
points. All the methods can be written as

b n—1
/ Sodx ~ Y w; f(x), 9.8)
g i=0
where w; are weights and x; are evaluation points, i = 0,...,n — 1. The Midpoint
method has
h b—
xi=a+3+ih wi=h h= 4 i=0...n—1. (99
n

The Trapezoidal method has the points

xi=a+ih, h= , 1=0,....,n—1, (9.10)
n—1
and the weights
h .
wo=wn—1=§, w;=h, i=1...,.n-2. 9.11)

Simpson’s rule has the same evaluation points as the Trapezoidal rule, but

b—a h
, = Wy_1 = —, 9.12
T Wo=War =g 9.12)

h
wi:§ fori =2,4,...,n—3, 9.13)
2h
3

h=2

w; = fori =1,3,5,...,n=2. 9.14)

590 9 Object-Oriented Programming

5
Midpoint | ©
Trapezoidal @ +
Simpson | x
GaussLegendre2: &
4 + A A A A A A A A A A —
3+ 3 * ¥ * * * ¥ ¥ * ¥ ¥ -
2 + + + + + + + + + + B
1r o o} ¢} o} ¢} o o} o o} o o} B
0 1 1 1 1 \
0 2 4 6 8 10

Fig. 9.3 Illustration of the distribution of points for various numerical integration methods. The
Gauss-Legendre method has 10 points, while the other methods have 11 points in [0, 10]

Note that » must be odd in Simpson’s rule. A Two-Point Gauss-Legendre method
takes the form

o1 1 h .
xi=a+(l+§)h_ﬁi fori =0,2,4,....,n -2, (9.15)
x-:a+(i—|—l)h+Lﬁ fori =1,3,5 n—1 (9.16)
i) ﬁ 5 3,0, .., . .
with & = 2(b — a)/n. Here n must be even. All the weights have the same value:
w; = h/2,i = 0,...,n — 1. Figure 9.3 illustrates how the points in various

integration rules are distributed over a few intervals.

9.3.2 Classes for Integration

We may store x; and w; in two NumPy arrays and compute the integral as
Z:’;(l) w; f(x;). This operation can also be vectorized as a dot (inner) product
between the w; vector and the f(x;) vector, provided f(x) is implemented in
a vectorizable form.

We argued in Sect. 7.3.3 that it pays off to implement a numerical integration
formula as a class. If we do so with the different methods from the previous section,
a typical class looks like this:

9.3 Class Hierarchy for Numerical Integration 591

class SomeIntegrationMethod (object):
def __init__(self, a, b, n):
Compute self.points and self.weights

def integrate(self, f):
s =0
for i in range(len(self.weights)):
s += self.weights[i]*f(self.points[i])
return s

Making such classes for many different integration methods soon reveals that all
the classes contain common code, namely the integrate method for computing
Z:’;(l] w; f(x;). Therefore, this common code can be placed in a superclass, and
subclasses can just add the code that is specific to a certain numerical integration
formula, namely the definition of the weights w; and the points x;.

Let us start with the superclass:

class Integrator(object):
def __init__(self, a, b, n):
self.a, self.b, self.n = a, b, n
self .points, self.weights = self.construct_method()

def construct_method(self):
raise NotImplementedError(’no rule in class %s’ %
self.__class__.__name__)

def integrate(self, f):
s =0
for i in range(len(self.weights)):
s += self.weights[i]*f (self.points[i])
return s

As we have seen, we store the a, b, and n data about the integration method
in the constructor. Moreover, we compute arrays or lists self.points for the x;
points and self.weights for the w; weights. All this code can now be inherited
by all subclasses.

The initialization of points and weights is put in a separate method, construct_
method, which is supposed to be implemented in each subclass, but the superclass
provides a default implementation, which tells the user that the method is not im-
plemented. What happens is that when subclasses redefine a method, that method
overrides the method inherited from the superclass. Hence, if we forget to redefine
construct_methodin a subclass, we will inherit the one from the superclass, and
this method issues an error message. The construction of this error message is quite
clever in the sense that it will tell in which class the construct_method method
is missing (self will be the subclass instance and its __class
a string with the corresponding subclass name).

In computer science one usually speaks about overloading a method in a sub-
class, but the words redefining and overriding are also used. A method that is
overloaded is said to be polymorphic. A related term, polymorphism, refers to cod-
ing with polymorphic methods. Very often, a superclass provides some default

name__ is

592 9 Object-Oriented Programming

implementation of a method, and a subclass overloads the method with the purpose
of tailoring the method to a particular application.

The integrate method is common for all integration rules, i.e., for all sub-
classes, so it can be inherited as it is. A vectorized version can also be added in the
superclass to make it automatically available also in all subclasses:

def vectorized_integrate(self, f):
return np.dot(self.weights, f(self.points))

Let us then implement a subclass. Only the construct_method method needs
to be written. For the Midpoint rule, this is a matter of translating the formulas in
(9.9) to Python:

class Midpoint(Integrator):
def construct_method(self):
a, b, n = self.a, self.b, self.n # quick forms
h = (b-a)/float(n)
x = np.linspace(a + 0.5%h, b - 0.5%h, n)
w = np.zeros(len(x)) + h
return x, w

Observe that we implemented directly a vectorized code. We could also have used
(slow) loops and explicit indexing:

x = np.zeros(n)

w = np.zeros(n)

for i in range(n):
x[i] = a + 0.5%h + i*h
wlil = h

Before we continue with other subclasses for other numerical integration formu-
las, we will have a look at the program flow when we use class Midpoint. Suppose
. 2 2 . . .
we want to integrate fo x*dx using 101 points:

def f(x): return x*x
m = Midpoint (0, 2, 101)
print m.integrate(f)

How is the program flow? The assignment to m invokes the constructor in class
Midpoint. Since this class has no constructor, we invoke the inherited one
from the superclass Integrator. Here data attributes are stored, and then the
construct_method method is called. Since self is a Midpoint instance, it
is the construct_method in the Midpoint class that is invoked, even if there
is a method with the same name in the superclass. Class Midpoint overloads
construct_method in the superclass. In a way, we “jump down” from the con-
structor in class Integrator to the construct_method in the Midpoint class.
The next statement, m. integrate (£f), just calls the inherited integral method
that is common to all subclasses.

The points and weights for a Trapezoidal rule can be implemented in a vectorized
way in another subclass with name Trapezoidal:

9.3 Class Hierarchy for Numerical Integration 593

class Trapezoidal (Integrator):
def construct_method(self):
x = np.linspace(self.a, self.b, self.n)

h = (self.b - self.a)/float(self.n - 1)
w = np.zeros(len(x)) + h

w[0] /= 2

wl-11 /= 2

return x, w

Observe how we divide the first and last weight by 2, using index 0 (the first) and
-1 (the last) and the /= operator (a /= b is equivalentto a = a/b). We could also
have implemented a scalar version with loops. The relevant code is in function
trapezoidal in Sect. 7.3.3.

Class Simpson has a slightly more demanding rule, at least if we want to vector-
ize the expression, since the weights are of two types.

class Simpson(Integrator):
def construct_method(self):
if self.n % 2 != 1:
print ’n=Yd must be odd, 1 is added’ % self.n
self.n += 1
x = np.linspace(self.a, self.b, self.n)
h = (self.b - self.a)/float(self.n - 1)*2
w = np.zeros(len(x))
w[0:self.n:2] = h*1.0/3
w[l:self.n-1:2] = h*2.0/3
w[0] /= 2
wl-11 /= 2
return x, w

We first control that we have an odd number of points, by checking that the re-
mainder of self.n divided by two is 1. If not, an exception could be raised, but
for smooth operation of the class, we simply increase n so it becomes odd. Such
automatic adjustments of input is not a rule to be followed in general. Wrong input
is best notified explicitly. However, sometimes it is user friendly to make small ad-
justments of the input, as we do here, to achieve a smooth and successful operation.
(In cases like this, a user might become uncertain whether the answer can be trusted
if she (later) understands that the input should not yield a correct result. Therefore,
do the adjusted computation, and provide a notification to the user about what has
taken place.)

The computation of the weights w in class Simpson applies slices with stride
(jump/step) 2 such that the operation is vectorized for speed. Recall that the upper
limit of a slice is not included in the set, so self.n-1 is the largest index in the first
case, and self .n-2is the largest index in the second case. Instead of the vectorized
operation of slices for computing w, we could use (slower) straight loops:

for i in range(0, self.n, 2):
w[i] = h*1.0/3

for i in range(1, self.n-1, 2):
wl[i] = h*2.0/3

594 9 Object-Oriented Programming

The points in the Two-Point Gauss-Legendre rule are slightly more complicated
to calculate, so here we apply straight loops to make a safe first implementation:

class GaussLegendre2(Integrator):
def construct_method(self):
if self.n % 2 != 0:
print ’n=Y%d must be even, 1 is subtracted’ % self.n
self.n =1
nintervals = int(self.n/2.0)
h = (self.b - self.a)/float(nintervals)
x = np.zeros(self.n)
sqrt3 = 1.0/math.sqrt(3)
for i in range(nintervals):
x[2*i] = self.a + (i+0.5)*h - 0.5%*sqrt3xh
x[2*%i+1] = self.a + (i+0.5)*h + 0.5*sqrt3+h
w = np.zeros(len(x)) + h/2.0
return x, w

A vectorized calculation of x is possible by observing that the (i+0.5)*h ex-
pression can be computed by np.linspace, and then we can add the remaining
two terms:

m = np.linspace(0.5%h, (nintervals-1+0.5)*h, nintervals)
x[0:self.n-1:2] = m + self.a - 0.5%sqrt3+h
x[1:self.n:2] m + self.a + 0.5%xsqrt3xh

The array on the right-hand side has half the length of x (1/2), but the length
matches exactly the slice with stride 2 on the left-hand side.
The code snippets above are found in the module file integrate.py.

9.3.3 Verification

To verify the implementation we use the fact that all the subclasses implement meth-
ods that can integrate a linear function exactly. A suitable test function is therefore

def test_Integrate():
"""Check that linear functions are integrated exactly."""
def f(x):
return x + 2

def F(x):
nn ||Integra1 of f." nn
return O0.5%x**2 + 2*x

a=2; b=3;n=4 # test data
I_exact = F(b) - F(a)
tol = 1E-15

http://tinyurl.com/pwyasaa/oo/integrate.py

9.3 Class Hierarchy for Numerical Integration 595

methods = [Midpoint, Trapezoidal, Simpson, GaussLegendre2,
GaussLegendre2_vec]
for method in methods:
integrator = method(a, b, n)

I = integrator.integrate(f)
assert abs(I_exact - I) < tol

I_vec = integrator.vectorized_integrate (f)
assert abs(I_exact - I_vec) < tol

A stronger method of verification is to compute how the error varies with n.
Exercise 9.15 explains the details.

9.3.4 Using the Class Hierarchy

To verify the implementation, we first try to integrate a linear function. All methods
should compute the correct integral value regardless of the number of evaluation
points:

def f(x):
return x + 2

a=2; b=3;n=4
for Method in Midpoint, Trapezoidal, Simpson, GaussLegendre2:
m = Method(a, b, n)

print m.__class name__, m.integrate(f)

Observe how we simply list the class names as a tuple (comma-separated objects),
and Method will in the for loop attain the values Midpoint, Trapezoidal, and so
forth. For example, in the first pass of the loop, Method(a, b, n) is identical to
Midpoint(a, b, n).

The output of the test above becomes

Midpoint 4.5

Trapezoidal 4.5

n=4 must be odd, 1 is added
Simpson 4.5

GaussLegendre2 4.5

Since f; (x +2)dx = % = 4.5, all methods passed this simple test.
A more challenging integral, from a numerical point of view, is

1

1
/(1+—)t$dt=1.
m

0

To use any subclass in the Integrator hierarchy, the integrand must be a function
of one variable only. For the present integrand, which depends on ¢t and m, we use
a class to represent it:

596 9 Object-Oriented Programming

class F(object):
def __init__(self, m):
self.m = float(m)

def __call__(self, t):
m = self.m
return (1 + 1/m)*t**(1/m)

We now ask the question: how much is the error in the integral reduced as we
increase the number of integration points (n)? It appears that the error decreases
exponentially with n, so if we want to plot the errors versus n, it is best to plot the
logarithm of the error versus Inn. We expect this graph to be a straight line, and
the steeper the line is, the faster the error goes to zero as n increases. A common
conception is to regard one numerical method as better than another if the error goes
faster to zero as we increase the computational work (here n).

For a given m and method, the following function computes two lists containing
the logarithm of the n values, and the logarithm of the corresponding errors in
a series of experiments:

def error_vs_n(f, exact, n_values, Method, a, b):
log_n = [1 # log of actual n values (Method may adjust n)
log_e = [1 # log of corresponding errors
for n_value in n_values:
method = Method(a, b, n_value)
error = abs(exact - method.integrate(f))
log_n.append(log(method.n))
log_e.append(log(error))
return log_n, log_e

We can plot the error versus n for several methods in the same plot and make one
plot for each m value. The loop over m below makes such plots:

n_values = [10, 20, 40, 80, 160, 320, 640]
for m in 1./4, 1./8., 2, 4, 16:
f = F(m)
figure()
for Method in Midpoint, Trapezoidal, \
Simpson, GaussLegendre2:
n, e = error_vs_n(f, 1, n_values, Method, 0, 1)
plot(n, e); legend(Method.__name__); hold(’on’)
title(’m=Yg’ % m); xlabel(’1n(n)’); ylabel(’ln(error)’)

The code snippets above are collected in a function test in the integrate. py file.

The plots for m > 1 look very similar. The plots for 0 < m < 1 are also similar,
but different from the m > 1 cases. Let us have a look at the results form = 1/4
and m = 2. The first, m = 1/4, corresponds to fol 5x%dx. Figure 9.4 shows that the
error curves for the Trapezoidal and Midpoint methods converge more slowly com-
pared to the error curves for Simpson’s rule and the Gauss-Legendre method. This
is the usual situation for these methods, and mathematical analysis of the methods
can confirm the results in Fig. 9.4.

9.3 Class Hierarchy for Numerical Integration 597

m=0.25
0 T T T N i
Midpoint
Trag_ezoidal """""
impson -~
GausslLegendre2----
.5 [
-10 -
s
o 15
£
20 -
25 -
_30 1 1 1 1 1 1 1 1
2 2.5 3 3.5 4 45 5 5.5 6 6.5

In(n)

Fig. 9.4 The logarithm of the error versus the logarithm of integration points for integral 5x*
computed by the Trapezoidal and Midpoint methods (upper two lines), and Simpson’s rule and the
Gauss-Legendre methods (lower two lines)

However, when we consider the integral fol %ﬁdx, (m =2)andm > 1in
general, all the methods converge with the same speed, as shown in Fig. 9.5. Our
integral is difficult to compute numerically when m > 1, and the theoretically better
methods (Simpson’s rule and the Gauss-Legendre method) do not converge faster
than the simpler methods. The difficulty is due to the infinite slope (derivative) of
the integrand at x = 0.

9.3.5 About Object-Oriented Programming

From an implementational point of view, the advantage of class hierarchies in
Python is that we can save coding by inheriting functionality from a superclass.
In programming languages where each variable must be specified with a fixed type,
class hierarchies are particularly useful because a function argument with a special
type also works with all subclasses of that type. Suppose we have a function where
we need to integrate:

def do_math(argl, arg2, integrator):

I = integrator.integrate (myfunc)

598 9 Object-Oriented Programming

m=2
'4 T R T
Midpoint
Trapezoidal --------
-5 - Simpson ------- B
GausslLegendre2 -----
_6 [
_7 [
-8 -
s
o 9r
£
-10 +
11 -
-12 -
13 -
-14 | | | | | | | |
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

In(n)

Fig. 9.5 The logarithm of the error versus the logarithm of integration points for integral %ﬁ
computed by the Trapezoidal method and Simpson’s rule (upper two lines), and Midpoint and
Gauss-Legendre methods (lower two lines)

That is, integrator must be an instance of some class, or a module, such that
the syntax integrator.integrate (myfunc) corresponds to a function call, but
nothing more (like having a particular type) is demanded.

This Python code will run as long as integrator has a method integrate
taking one argument. In other languages, the function arguments are specified with
a type, say in Java we would write

void do_math(double argl, int arg2, Simpson integrator)

A compiler will examine all calls to do_math and control that the arguments are of
the right type. Instead of specifying the integration method to be of type Simpson,
one can in Java and other object-oriented languages specify integrator to be of
the superclass type Integrator:

void do_math(double argl, int arg2, Integrator integrator)

Now it is allowed to pass an object of any subclass type of Integrator as the
third argument. That is, this method works with integrator of type Midpoint,
Trapezoidal, Simpson, etc., not just one of them. Class hierarchies and object-
oriented programming are therefore important means for parameterizing away types
in languages like Java, C++, and C#. We do not need to parameterize types in
Python, since arguments are not declared with a fixed type. Object-oriented pro-

9.4 Class Hierarchy for Making Drawings 599

gramming is hence not so technically important in Python as in other languages for
providing increased flexibility in programs.

Is there then any use for object-oriented programming beyond inheritance? The
answer is yes! For many code developers object-oriented programming is not just
a technical way of sharing code, but it is more a way of modeling the world, and
understanding the problem that the program is supposed to solve. In mathematical
applications we already have objects, defined by the mathematics, and standard
programming concepts such as functions, arrays, lists, and loops are often sufficient
for solving simpler problems. In the non-mathematical world the concept of objects
is very useful because it helps to structure the problem to be solved. As an example,
think of the phone book and message list software in a mobile phone. Class Person
can be introduced to hold the data about one person in the phone book, while class
Message can hold data related to an SMS message. Clearly, we need to know who
sent a message so a Message object will have an associated Person object, or just
a phone number if the number is not registered in the phone book. Classes help
to structure both the problem and the program. The impact of classes and object-
oriented programming on modern software development can hardly be exaggerated.

A good, real-world, pedagogical example on inheritance is the class hierarchy
for numerical methods for ordinary differential equations described in Sect. E.2.

9.4 Class Hierarchy for Making Drawings

Implementing a drawing program provides a very good example on the usefulness
of object-oriented programming. In the following we shall develop the simpler
parts of a relatively small and compact drawing program for making sketches of
the type shown in Fig. 9.6. This is a typical principal sketch of a physics problem,
here involving a rolling wheel on an inclined plane. The sketch is made up many
individual elements: a rectangle filled with a pattern (the inclined plane), a hollow
circle with color (the wheel), arrows with labels (the N and M g forces, and the x
axis), an angle with symbol 6, and a dashed line indicating the starting location of
the wheel.

Drawing software and plotting programs can produce such figures quite easily in
principle, but the amount of details the user needs to control with the mouse can be
substantial. Software more tailored to producing sketches of this type would work
with more convenient abstractions, such as circle, wall, angle, force arrow, axis, and
so forth. And as soon we start programming to construct the figure we get a range
of other powerful tools at disposal. For example, we can easily translate and rotate
parts of the figure and make an animation that illustrates the physics of the problem.
Programming as a superior alternative to interactive drawing is the mantra of this
section.

Classes are very suitable for implementing the various components that build
up a sketch. In particular, we shall demonstrate that as soon as some classes are
established, more are easily added. Enhanced functionality for all the classes is
also easy to implement in common, generic code that can immediately be shared by
all present and future classes.

The fundamental data structure involved in this case study is a hierarchical tree,
and much of the material on implementation issues targets how to traverse tree

600 9 Object-Oriented Programming

Fig. 9.6 Sketch of a physics problem

structures with recursive function calls. This topic is of key relevance in a wide
range of other applications as well.

9.4.1 Using the Object Collection

We start by demonstrating a convenient user interface for making sketches of the
type in Fig. 9.6. However, it is more appropriate to start with a significantly simpler
example as depicted in Fig. 9.7. This toy sketch consists of several elements: two
circles, two rectangles, and a “ground” element.

Basic drawing A typical program creating these five elements is shown next. After
importing the pysketcher package, the first task is always to define a coordinate
system:

from pysketcher import *

drawing_tool.set_coordinate_system(
xmin=0, xmax=10, ymin=-1, ymax=8)

SEcuoNE

2 4 [8 10 12 14 16

Fig. 9.7 Sketch of a simple figure

9.4 Class Hierarchy for Making Drawings 601

Instead of working with lengths expressed by specific numbers it is highly recom-
mended to use variables to parameterize lengths as this makes it easier to change
dimensions later. Here we introduce some key lengths for the radius of the wheels,
distance between the wheels, etc.:

N =

radius of wheel

distance between wheels

height of vehicle body
5 # position of front wheel
drawing_tool.set_coordinate_system(xmin=0, xmax=w_1 + 2+L + 3%R,
ymin=-1, ymax=2%R + 3%H)

R
L, =
H

V_

With the drawing area in place we can make the first Circle object in an intuitive
fashion:

wheell = Circle(center=(w_1, R), radius=R)

to change dimensions later.

To translate the geometric information about the wheell object to instructions
for the plotting engine (in this case Matplotlib), one calls the wheell.draw().
To display all drawn objects, one issues drawing_tool.display (). The typical
steps are hence:

wheell = Circle(center=(w_1, R), radius=R)
wheell.draw()

Define other objects and call their draw() methods

drawing_tool.display()
drawing_tool.savefig(’tmp.png’) # store picture

The next wheel can be made by taking a copy of wheell and translating the
object to the right according to a displacement vector (L, 0):

wheel2 = wheell.copy()
wheel2.translate((L,0))

The two rectangles are also made in an intuitive way:

under = Rectangle(lower_left_corner=(w_1-2*R, 2*R),
width=2#R + L + 2#R, height=H)

Rectangle (lower_left_corner=(w_1, 2*R + H),
width=2.5%R, height=1.25%H)

over

Groups of objects Instead of calling the draw method of every object, we can
group objects and call draw, or perform other operations, for the whole group. For
example, we may collect the two wheels in a wheels group and the over and under
rectangles in a body group. The whole vehicle is a composition of its wheels and
body groups. The code goes like

602 9 Object-Oriented Programming

wheels = Composition({’wheell’: wheell, ’wheel2’: wheel2})
body Composition({’under’: under, ’over’: overl})

vehicle = Composition({’wheels’: wheels, ’body’: bodyl})

The ground is illustrated by an object of type Wall, mostly used to indicate walls
in sketches of mechanical systems. A Wall takes the x and y coordinates of some
curve, and a thickness parameter, and creates a thick curve filled with a simple
pattern. In this case the curve is just a flat line so the construction is made of two
points on the ground line ((w; — L, 0) and (w; + 3L, 0)):

ground = Wall(x=[w_1 - L, w_1 + 3*L], y=[0, 0], thickness=-0.3%R)

The negative thickness makes the pattern-filled rectangle appear below the defined
line, otherwise it appears above.

We may now collect all the objects in a “top” object that contains the whole
figure:

fig = Composition({’vehicle’: vehicle, ’ground’: ground})
fig.draw() # send all figures to plotting backend
drawing_tool.display()

drawing_tool.savefig(’tmp.png’)

The fig.draw() call will visit all subgroups, their subgroups, and so forth in the
hierarchical tree structure of figure elements, and call draw for every object.

Changing line styles and colors Controlling the line style, line color, and line
width is fundamental when designing figures. The pysketcher package allows the
user to control such properties in single objects, but also set global properties that
are used if the object has no particular specification of the properties. Setting the
global properties are done like

drawing_tool.set_linestyle(’dashed’)
drawing_tool.set_linecolor(’black’)
drawing_tool.set_linewidth(4)

At the object level the properties are specified in a similar way:

wheels.set_linestyle(’solid’)
wheels.set_linecolor(’red’)

and so on.
Geometric figures can be specified as filled, either with a color or with a special
visual pattern:

Set filling of all curves
drawing_tool.set_filled_curves(color=’blue’, pattern=’/’)

Turn off filling of all curves
drawing_tool.set_filled_curves(False)

9.4 Class Hierarchy for Making Drawings 603

Fill the wheel with red color
wheell.set_filled_curves(’red’)

The figure composition as an object hierarchy The composition of objects mak-
ing up the figure is hierarchical, similar to a family, where each object has a parent
and a number of children. Do a print fig to display the relations:

ground
wall
vehicle
body
over
rectangle
under
rectangle
wheels
wheell
arc
wheel2
arc

The indentation reflects how deep down in the hierarchy (family) we are. This
output is to be interpreted as follows:

fig contains two objects, ground and vehicle
ground contains an object wall

vehicle contains two objects, body and wheels
body contains two objects, over and under
wheels contains two objects, wheell and wheel2

In this listing there are also objects not defined by the programmer: rectangle
and arc. These are of type Curve and automatically generated by the classes
Rectangle and Circle.

More detailed information can be printed by

print fig.show_hierarchy(’std’)

yielding the output

ground (Wall):
wall (Curve): 4 coords fillcolor=’white’ fillpattern=’/’
vehicle (Composition):
body (Composition) :
over (Rectangle):
rectangle (Curve): 5 coords
under (Rectangle):
rectangle (Curve): 5 coords
wheels (Composition):
wheell (Circle):
arc (Curve): 181 coords
wheel2 (Circle):
arc (Curve): 181 coords

604 9 Object-Oriented Programming

Fig. 9.8 Hierarchical relation between figure objects

Here we can see the class type for each figure object, how many coordinates that
are involved in basic figures (Curve objects), and special settings of the basic figure
(fillcolor, line types, etc.). For example, wheel2 is a Circle object consisting of
an arc, which is a Curve object consisting of 181 coordinates (the points needed
to draw a smooth circle). The Curve objects are the only objects that really holds
specific coordinates to be drawn. The other object types are just compositions used
to group parts of the complete figure.

One can also get a graphical overview of the hierarchy of figure objects that build
up a particular figure fig. Just call fig.graphviz_dot(’fig’) to produce a file
fig.dot in the dot format. This file contains relations between parent and child
objects in the figure and can be turned into an image, as in Fig. 9.8, by running the
dot program:

Terminal> dot -Tpng -o fig.png fig.dot

The call fig.graphviz_dot(’fig’, classname=True) makes a fig.dot
file where the class type of each object is also visible, see Fig. 9.9. The ability
to write out the object hierarchy or view it graphically can be of great help when
working with complex figures that involve layers of subfigures.

Any of the objects can in the program be reached through their names, e.g.,

fig[’vehicle’]

fig[’vehicle’] [’wheels’]

fig[’vehicle’] [’wheels’] [’wheel2’]
fig[’vehicle’] [’wheels’] [’wheel2’] [’arc’]

9.4 Class Hierarchy for Making Drawings 605

Composition:
fig

Composition:
vehicle

Composition:
body

Composition:
wheels

Circle:
wheell

Rectangle:
over

Rectangle:
under

Circle:
wheel2

Curve:
rectangle (2)

Curve:
rectangle (1)

Fig. 9.9 Hierarchical relation between figure objects, including their class names

figl[’vehicle’] [’wheels’] [’wheel2’] [’arc’].x # x coords
figl[’vehicle’] [’wheels’] [’wheel2’] [’arc’].y # y coords
fig[’vehicle’] [’wheels’] [’wheel2’][’arc’].linestyle
figl[’vehicle’] [’wheels’] [’wheel2’] [’arc’].linetype

Grabbing a part of the figure this way is handy for changing properties of that part,
for example, colors, line styles (see Fig. 9.10):

fig[’vehicle’] [’wheels’] .set_filled_curves(’blue’)
fig[’vehicle’] [’wheels’].set_linewidth(6)
figl[’vehicle’] [’wheels’].set_linecolor(’black’)

figl[’vehicle’] [’body’] [’under’].set_filled_curves(’red’)

fig[’vehicle’] [’body’][’over’].set_filled_curves(pattern=’/’)
figl[’vehicle’] [’body’] [’over’].set_linewidth(14)
figl[’vehicle’] [’body’] [’over’] [’rectangle’].linewidth = 4

The last line accesses the Curve object directly, while the line above, accesses the
Rectangle object, which will then set the linewidth of its Curve object, and other
objects if it had any. The result of the actions above is shown in Fig. 9.10.

We can also change position of parts of the figure and thereby make animations,
as shown next.

606 9 Object-Oriented Programming

Fig. 9.10 Left: Basic line-based drawing. Right: Thicker lines and filled parts

Animation: translating the vehicle Can we make our little vehicle roll? A first
attempt will be to fake rolling by just displacing all parts of the vehicle. The rel-
evant parts constitute the fig[’vehicle’] object. This part of the figure can be
translated, rotated, and scaled. A translation along the ground means a translation
in x direction, say a length L to the right:

fig[’vehicle’].translate((L,0))

You need to erase, draw, and display to see the movement:

drawing_tool.erase()
fig.draw()
drawing_tool.display()

Without erasing, the old drawing of the vehicle will remain in the figure so you get
two vehicles. Without fig.draw() the new coordinates of the vehicle will not be
communicated to the drawing tool, and without calling display the updated drawing
will not be visible.

A figure that moves in time is conveniently realized by the function animate:

animate(fig, tp, action)

Here, fig is the entire figure, tp is an array of time points, and action is a user-
specified function that changes fig at a specific time point. Typically, action will
move parts of fig.

In the present case we can define the movement through a velocity function v (t)
and displace the figure v (t)*dt for small time intervals dt. A possible velocity
function is

def v(t):
return -8*Rxt*(1 - t/(2%R))

Our action function for horizontal displacements v (t) *dt becomes

def move(t, fig):
x_displacement = dt*v(t)
fig[’vehicle’].translate((x_displacement, 0))

Since our velocity is negative for ¢ € [0, 2 R] the displacement is to the left.

9.4 Class Hierarchy for Making Drawings 607

The animate function will for each time point t in tp erase the drawing, call
action(t, fig), and show the new figure by fig.draw() and drawing_tool.
display (). Here we choose a resolution of the animation corresponding to 25 time
points in the time interval [0, 2R]:

import numpy
tp = numpy.linspace(0, 2*R, 25)
dt = tp[1] - tp[0] # time step

animate(fig, tp, move, pause_per_frame=0.2)

The pause_per_frame adds a pause, here 0.2 seconds, between each frame in the
animation.
We can also ask animate to store each frame in a file:

files = animate(fig, tp, move_vehicle, moviefiles=True,
pause_per_frame=0.2)

The files variable, here >tmp_frame_%04d.png’, is the printf-specification used
to generate the individual plot files. We can use this specification to make a video
file via ffmpeg (or avconv on Debian-based Linux systems such as Ubuntu).
Videos in the Flash and WebM formats can be created by

Terminal

Terminal> ffmpeg -r 12 -i tmp_frame_%04d.png -vcodec flv mov.flv
Terminal> ffmpeg -r 12 -i tmp_frame_%04d.png -vcodec libvpx mov.webm

An animated GIF movie can also be made using the convert program from the
ImageMagick software suite:

Terminal

Terminal> convert -delay 20 tmp_frame*.png mov.gif
Terminal> animate mov.gif # play movie

The delay between frames, in units of 1/100s, governs the speed of the movie. To
play the animated GIF file in a web page, simply insert in
the HTML code.

The individual PNG frames can be directly played in a web browser by running

Terminal

Terminal> scitools movie output_file=mov.html fps=5 tmp_framex*

or calling

from scitools.std import movie
movie(files, encoder=’html’, output_file=’mov.html’)

608 9 Object-Oriented Programming

N N

F A A A A

Fig. 9.11 Wheels with spokes to illustrate rolling

in Python. Load the resulting file mov.html into a web browser to play the movie.
Try to run vehicleO. py and then load mov.html into a browser, or play one of

the mov . * video files. Alternatively, you can view a ready-made movie?.

Animation: rolling the wheels It is time to show rolling wheels. To this end,
we add spokes to the wheels, formed by two crossing lines, see Fig. 9.11. The
construction of the wheels will now involve a circle and two lines:

wheell = Composition({
’wheel’: Circle(center=(w_1, R), radius=R),
’cross’: Composition({’crossi’: Line((w_1,0), (w_1,2%R)),
’cross2’: Line((w_1-R,R), (w_1+R,R))})})
wheel2 = wheell.copy()
wheel2.translate((L,0))

Observe that wheell.copy () copies all the objects that make up the first wheel,
and wheel2.translate translates all the copied objects.

The move function now needs to displace all the objects in the entire vehicle
and also rotate the cross1 and cross2 objects in both wheels. The rotation angle
follows from the fact that the arc length of a rolling wheel equals the displacement
of the center of the wheel, leading to a rotation angle

angle = - x_displacement/R

With w_1 tracking the x coordinate of the center of the front wheel, we can rotate
that wheel by

wl = fig[’vehicle’] [’wheels’] [’wheell’]
from math import degrees
wl.rotate(degrees(angle), center=(w_1, R))

The rotate function takes two parameters: the rotation angle (in degrees) and the
center point of the rotation, which is the center of the wheel in this case. The other
wheel is rotated by

3 http://tinyurl.com/oou9lp7/mov-tut/vehicle0.html

http://tinyurl.com/pwyasaa/oo/vehicle0.py
http://tinyurl.com/oou9lp7/mov-tut/vehicle0.html
http://tinyurl.com/oou9lp7/mov-tut/vehicle0.html

9.4 Class Hierarchy for Making Drawings 609

w2 = fig[’vehicle’] [’wheels’] [’wheel2’]
w2.rotate(degrees(angle), center=(w_1 + L, R))

That is, the angle is the same, but the rotation point is different. The update of the
center point is done by w_1 += x_displacement. The complete move function
with translation of the entire vehicle and rotation of the wheels then becomes

w.l=wl1l+1L # start position

def move(t, fig):
x_displacement = dt*v(t)
fig[’vehicle’] .translate((x_displacement, 0))

Rotate wheels

global w_1

w_1 += x_displacement

Rxangle = -x_displacement

angle = - x_displacement/R

wl = fig[’vehicle’] [’wheels’] [’wheell’]
wl.rotate(degrees(angle), center=(w_1, R))

w2 = fig[’vehicle’] [’wheels’] [’wheel2’]
w2.rotate(degrees(angle), center=(w_1 + L, R))

The complete example is found in the file vehiclel.py. You may run this file or
watch a ready-made movie*.

The advantages with making figures this way, through programming rather than
using interactive drawing programs, are numerous. For example, the objects are pa-
rameterized by variables so that various dimensions can easily be changed. Subparts
of the figure, possible involving a lot of figure objects, can change color, linetype,
filling or other properties through a single function call. Subparts of the figure can
be rotated, translated, or scaled. Subparts of the figure can also be copied and moved
to other parts of the drawing area. However, the single most important feature is
probably the ability to make animations governed by mathematical formulas or data
coming from physics simulations of the problem, as shown in the example above.

9.4.2 Example of Classes for Geometric Objects

We shall now explain how we can, quite easily, realize software with the capabilities
demonstrated in the previous examples. Each object in the figure is represented as
a class in a class hierarchy. Using inheritance, classes can inherit properties from
parent classes and add new geometric features.

We introduce class Shape as superclass for all specialized objects in a figure.
This class does not store any data, but provides a series of functions that add func-
tionality to all the subclasses. This will be shown later.

Simple geometric objects One simple subclass is Rectangle, specified by the
coordinates of the lower left corner and its width and height:

4 http://tinyurl.com/oou9lp7/mov- tut/vehicle1.html

http://tinyurl.com/pwyasaa/oo/vehicle1.py
http://tinyurl.com/oou9lp7/mov-tut/vehicle1.html
http://tinyurl.com/oou9lp7/mov-tut/vehicle1.html

610 9 Object-Oriented Programming

class Rectangle (Shape):
def __init__(self, lower_left_corner, width, height):

p = lower_left_corner # short form
x = [p[0], p[0] + width,

pl0] + width, p[0], p[0]]

[p[1], p[1], p[1] + height,

p[1] + height, p[1]]

self.shapes = {’rectangle’: Curve(x,y)}

y

Any subclass of Shape will have a constructor that takes geometric information
about the shape of the object and creates a dictionary self . shapes with the shape
built of simpler shapes. The most fundamental shape is Curve, which is just a col-
lection of (x, y) coordinates in two arrays x and y. Drawing the Curve object is
a matter of plotting y versus x. For class Rectangle the x and y arrays contain
the corner points of the rectangle in counterclockwise direction, starting and ending
with in the lower left corner.

Class Line is also a simple class:

class Line(Shape):
def __init__(self, start, end):
x = [start[0], end[0]]
y = [start[1], end[1]]
self.shapes = {’line’: Curve(x, y)}

Here we only need two points, the start and end point on the line. However, we may
want to add some useful functionality, e.g., the ability to give an x coordinate and
have the class calculate the corresponding y coordinate:

def __call__(self, x):
"""Given x, return y on the line."""
x, y = self.shapes[’line’].x, self.shapes[’line’].y
self.a = (y[1] - y[0])/(x[1] - x[0])
self.b = y[0] - self.a*x[0]
return self.a*x + self.b

Unfortunately, this is too simplistic because vertical lines cannot be handled (in-
finite self.a). The true source code of Line therefore provides a more general
solution at the cost of significantly longer code with more tests.

A circle implies a somewhat increased complexity. Again we represent the ge-
ometric object by a Curve object, but this time the Curve object needs to store
a large number of points on the curve such that a plotting program produces a vi-
sually smooth curve. The points on the circle must be calculated manually in the
constructor of class Circle. The formulas for points (x, y) on a curve with radius
R and center at (xg, yo) are given by

X = x9 + Rcos(t),
y = yo + Rsin(?),

where ¢ € [0, 27]. A discrete set of ¢ values in this interval gives the corresponding
set of (x, y) coordinates on the circle. The user must specify the resolution as the
number of ¢ values. The circle’s radius and center must of course also be specified.

9.4 Class Hierarchy for Making Drawings 611

We can write the Circle class as

class Circle(Shape) :
def __init__(self, center, radius, resolution=180):
self.center, self.radius = center, radius
self .resolution = resolution

t = linspace(0, 2*pi, resolution+1)
x0 = center[0]; yO = center[1]

R = radius

x = x0 + Rxcos(t)

y = yO + R*sin(t)

self .shapes = {’circle’: Curve(x, y)}

As in class Line we can offer the possibility to give an angle 6 (equivalent to ¢ in
the formulas above) and then get the corresponding x and y coordinates:

def __call__(self, theta):
"""Return (x, y) point corresponding to angle theta."""
return self.center[0] + self.radius*cos(theta), \
self.center[1] + self.radius*sin(theta)

There is one flaw with this method: it yields illegal values after a translation, scal-
ing, or rotation of the circle.

A part of a circle, an arc, is a frequent geometric object when drawing mechani-
cal systems. The arc is constructed much like a circle, but ¢ runs in [6;, 65+ 6,]. Giv-
ing 6, and 6, the slightly more descriptive names start_angle and arc_angle,
the code looks like this:

class Arc(Shape):
def __init__(self, center, radius,
start_angle, arc_angle,
resolution=180) :
self.start_angle = radians(start_angle)
self.arc_angle = radians(arc_angle)

t = linspace(self.start_angle,
self.start_angle + self.arc_angle,
resolution+1)

x0 = center[0]; yO = center[1]

R = radius

x = x0 + R*cos(t)

y = yO + R*sin(t)

self.shapes = {’arc’: Curve(x, y)}

Having the Arc class, a Circle can alternatively be defined as a subclass spe-
cializing the arc to a circle:

class Circle(Arc):
def __init__(self, center, radius, resolution=180):
Arc.__init__(self, center, radius, 0, 360, resolution)

612 9 Object-Oriented Programming

Class curve Class Curve sits on the coordinates to be drawn, but how is that done?
The constructor of class Curve just stores the coordinates, while a method draw
sends the coordinates to the plotting program to make a graph. Or more precisely,
to avoid a lot of (e.g.) Matplotlib-specific plotting commands in class Curve we
have created a small layer with a simple programming interface to plotting pro-
grams. This makes it straightforward to change from Matplotlib to another plotting
program. The programming interface is represented by the drawing_tool object
and has a few functions:

e plot_curve for sending a curve in terms of x and y coordinates to the plotting

program,

set_coordinate_systemfor specifying the graphics area,

erase for deleting all elements of the graph,

set_grid for turning on a grid (convenient while constructing the figure),

set_instruction_filefor creating a separate file with all plotting commands

(Matplotlib commands in our case),

e a series of set_X functions where X is some property like linecolor,
linestyle, linewidth, filled_curves.

This is basically all we need to communicate to a plotting program.

Any class in the Shape hierarchy inherits set_X functions for setting proper-
ties of curves. This information is propagated to all other shape objects in the
self.shapes dictionary. Class Curve stores the line properties together with
the coordinates of its curve and propagates this information to the plotting pro-
gram. When saying vehicle.set_linewidth(10), all objects that make up the
vehicle object will get a set_linewidth(10) call, but only the Curve object at
the end of the chain will actually store the information and send it to the plotting
program.

A rough sketch of class Curve reads

class Curve(Shape) :
"""General curve as a sequence of (x,y) coordintes."""
def __init__(self, x, y):
self.x = asarray(x, dtype=float)
self.y = asarray(y, dtype=float)

def draw(self):
drawing_tool.plot_curve(
self.x, self.y,
self.linestyle, self.linewidth, self.linecolor, ...)

def set_linewidth(self, width):
self.linewidth = width

det set_linestyle(self, style):
self.linestyle = style

Compound geometric objects The simple classes Line, Arc, and Circle could
can the geometric shape through just one Curve object. More complicated shapes

9.4 Class Hierarchy for Making Drawings 613

are built from instances of various subclasses of Shape. Classes used for profes-
sional drawings soon get quite complex in composition and have a lot of geometric
details, so here we prefer to make a very simple composition: the already drawn ve-
hicle from Fig. 9.7. That is, instead of composing the drawing in a Python program
as shown above, we make a subclass VehicleO in the Shape hierarchy for doing
the same thing.

The Shape hierarchy is found in the pysketcher package, so to use these
classes or derive a new one, we need to import pysketcher. The constructor of
class VehicleO performs approximately the same statements as in the example
program we developed for making the drawing in Fig. 9.7.

from pysketcher import *

class VehicleO(Shape) :
def __init__(self, w_1, R, L, H):
wheell = Circle(center=(w_1, R), radius=R)
wheel2 = wheell.copy()
wheel2.translate((L,0))

under = Rectangle(lower_left_corner=(w_1-2*R, 2x*R),
width=2*%R + L + 2*R, height=H)

Rectangle(lower_left_corner=(w_1, 2*R + H),
width=2.5%R, height=1.25%H)

over

wheels = Composition(

{’wheell’: wheell, ’wheel2’: wheel2})
body = Composition(

{’under’: under, ’over’: over})

vehicle = Composition({’wheels’: wheels, ’body’: bodyl})
xmax = w_1 + 2%L + 3*R
ground = Wall(x=[R, xmax], y=[0, 0], thickness=-0.3%R)

self.shapes = {’vehicle’: vehicle, ’ground’: ground}

Any subclass of Shape must define the shapes attribute, otherwise the inherited
draw method (and a lot of other methods too) will not work.

The painting of the vehicle, as shown in the right part of Fig. 9.10, could in class
VehicleO be offered by a method:

def colorful(self):
wheels = self.shapes[’vehicle’][’wheels’]
wheels.set_filled_curves(’blue’)
wheels.set_linewidth(6)
wheels.set_linecolor(’black’)
under = self.shapes[’vehicle’] [’body’] [’under’]
under.set_filled_curves(’red’)
over = self.shapes[’vehicle’] [’body’][’over’]
over.set_filled_curves(pattern=’/’)
over.set_linewidth(14)

The usage of the class is simple: after having set up an appropriate coordinate
system as previously shown, we can do

614 9 Object-Oriented Programming

vehicle = VehicleO(w_1, R, L, H)
vehicle.draw()
drawing_tool.display()

and go on the make a painted version by

drawing_tool.erase()
vehicle.colorful ()
vehicle.draw()
drawing_tool.display()

A complete code defining and using class VehicleO is found in the file vehicle2.
Py.

The pysketcher package contains a wide range of classes for various geomet-
rical objects, particularly those that are frequently used in drawings of mechanical
systems.

9.4.3 Adding Functionality via Recursion

The really powerful feature of our class hierarchy is that we can add much function-
ality to the superclass Shape and to the “bottom” class Curve, and then all other
classes for various types of geometrical shapes immediately get the new function-
ality. To explain the idea we may look at the draw method, which all classes in the
Shape hierarchy must have. The inner workings of the draw method explain the
secrets of how a series of other useful operations on figures can be implemented.

Basic principles of recursion Note that we work with two types of hierarchies in
the present documentation: one Python class hierarchy, with Shape as superclass,
and one object hierarchy of figure elements in a specific figure. A subclass of
Shape stores its figure in the self.shapes dictionary. This dictionary represents
the object hierarchy of figure elements for that class. We want to make one draw call
for an instance, say our class VehicleO0, and then we want this call to be propagated
to all objects that are contained in self.shapes and all is nested subdictionaries.
How is this done?

The natural starting point is to call draw for each Shape object in the self.
shapes dictionary:

def draw(self):
for shape in self.shapes:
self . shapes [shape] .draw ()

This general method can be provided by class Shape and inherited in subclasses
like VehicleO. Let v be a VehicleO instance. Seemingly, a call v.draw() just
calls

v.shapes[’vehicle’] .draw()
v.shapes[’ground’] .draw()

http://tinyurl.com/pwyasaa/oo/vehicle2.py

9.4 Class Hierarchy for Making Drawings 615

However, in the former call we call the draw method of a Composition ob-
ject whose self.shapes attributed has two elements: wheels and body. Since
class Composition inherits the same draw method, this method will run through
self.shapes and call wheels.draw() and body.draw(). Now, the wheels
object is also a Composition with the same draw method, which will run through
self.shapes, now containing the wheell and wheel2 objects. The wheell
object is a Circle, so calling wheell.draw() calls the draw method in class
Circle, but this is the same draw method as shown above. This method will
therefore traverse the circle’s shapes dictionary, which we have seen consists of
one Curve element.

The Curve object holds the coordinates to be plotted so here draw really needs
to do something “physical”, namely send the coordinates to the plotting program.
The draw method is outlined in the short listing of class Curve shown previously.

We can go to any of the other shape objects that appear in the figure hierarchy
and follow their draw calls in the similar way. Every time, a draw call will invoke
anew draw call, until we eventually hit a Curve object at the “bottom” of the figure
hierarchy, and then that part of the figure is really plotted (or more precisely, the
coordinates are sent to a plotting program).

When a method calls itself, such as draw does, the calls are known as recursive
and the programming principle is referred to as recursion. This technique is very
often used to traverse hierarchical structures like the figure structures we work with
here. Even though the hierarchy of objects building up a figure are of different types,
they all inherit the same draw method and therefore exhibit the same behavior with
respect to drawing. Only the Curve object has a different draw method, which does
not lead to more recursion.

Explaining recursion Understanding recursion is usually a challenge. To get
a better idea of how recursion works, we have equipped class Shape with a method
recurse that just visits all the objects in the shapes dictionary and prints out
a message for each object. This feature allows us to trace the execution and see
exactly where we are in the hierarchy and which objects that are visited.

The recurse method is very similar to draw:

def recurse(self, name, indent=0):
print message where we are (name is where we come from)
for shape in self.shapes:
print message about which object to visit
self.shapes [shape] .recurse(indent+2, shape)

The indent parameter governs how much the message from this recurse method
is intended. We increase indent by 2 for every level in the hierarchy, i.e., every
row of objects in Fig. 9.12. This indentation makes it easy to see on the printout
how far down in the hierarchy we are.

A typical message written by recurse when name is *body’ and the shapes
dictionary has the keys >over’ and ’under’, will be

Composition: body.shapes has entries ’over’, ’under’
call body.shapes["over"].recurse("over", 6)

616 9 Object-Oriented Programming

The number of leading blanks on each line corresponds to the value of indent. The
code printing out such messages looks like

def recurse(self, name, indent=0):

space = ’ ’*indent
print space, ’%s: ’%s.shapes has entries’ % \
(self.__class__.__name__, name), \

str(list(self.shapes.keys()))[1:-1]

for shape in self.shapes:
print space,
print ’call %s.shapes["%s"].recurse("%s", %d)’ % \
(name, shape, shape, indent+2)
self.shapes[shape] .recurse(shape, indent+2)

Let us follow a v.recurse(’vehicle?’) call in detail, v being a VehicleO
instance. Before looking into the output from recurse, let us get an overview of
the figure hierarchy in the v object (as produced by print v)

ground
wall
vehicle
body
over
rectangle
under
rectangle
wheels
wheell
arc
wheel?2
arc

The recurse method performs the same kind of traversal of the hierarchy, but
writes out and explains a lot more.

The data structure represented by v.shapes is known as a tree. As in physical
trees, there is a root, here the v. shapes dictionary. A graphical illustration of the
tree (upside down) is shown in Fig. 9.12. From the root there are one or more
branches, here two: ground and vehicle. Following the vehicle branch, it has
two new branches, body and wheels. Relationships as in family trees are often
used to describe the relations in object trees too: we say that vehicle is the parent
of body and that body is a child of vehicle. The term node is also often used to
describe an element in a tree. A node may have several other nodes as descendants.

Recursion is the principal programming technique to traverse tree structures.
Any object in the tree can be viewed as a root of a subtree. For example, wheels is
the root of a subtree that branches into wheell and wheel2. So when processing an
object in the tree, we imagine we process the root and then recurse into a subtree,
but the first object we recurse into can be viewed as the root of the subtree, so the
processing procedure of the parent object can be repeated.

A recommended next step is to simulate the recurse method by hand and care-
fully check that what happens in the visits to recurse is consistent with the output

9.4 Class Hierarchy for Making Drawings 617

VehicleO:
VehicleO

Composition:
vehicle

Composition:
body

Composition:
wheels

Circle:
wheell

Rectangle:
over

Rectangle:
under

Circle:
wheel2

Curve:
rectangle (2)

Curve:
rectangle (1)

Fig.9.12 Hierarchy of figure elements in an instance of class VehicleO

listed below. Although tedious, this is a major exercise that guaranteed will help to
demystify recursion.
A part of the printout of v.recurse(’vehicle’) looks like

Vehicle0O: vehicle.shapes has entries ’ground’, ’vehicle’
call vehicle.shapes["ground"].recurse("ground", 2)
Wall: ground.shapes has entries ’wall’
call ground.shapes["wall"].recurse("wall", 4)
reached "bottom" object Curve
call vehicle.shapes["vehicle"].recurse("vehicle", 2)

Composition: vehicle.shapes has entries ’body’, ’wheels’
call vehicle.shapes["body"].recurse("body", 4)
Composition: body.shapes has entries ’over’, ’under’

call body.shapes["over"].recurse("over", 6)
Rectangle: over.shapes has entries ’rectangle’
call over.shapes["rectangle"].recurse("rectangle", 8)
reached "bottom" object Curve
call body.shapes["under"].recurse("under", 6)
Rectangle: under.shapes has entries ’rectangle’
call under.shapes["rectangle"].recurse("rectangle", 8)
reached "bottom" object Curve

This example should clearly demonstrate the principle that we can start at any object
in the tree and do a recursive set of calls with that object as root.

618 9 Object-Oriented Programming

9.4.4 Scaling, Translating, and Rotating a Figure

With recursion, as explained in the previous section, we can within minutes equip
all classes in the Shape hierarchy, both present and future ones, with the ability to
scale the figure, translate it, or rotate it. This added functionality requires only a few
lines of code.

Scaling We start with the simplest of the three geometric transformations, namely
scaling. For a Curve instance containing a set of n coordinates (x;, y;) that make
up a curve, scaling by a factor ¢ means that we multiply all the x and y coordinates
by a:

X; <—ax;, yi<ay, 1=0,....,n—1.

Here we apply the arrow as an assignment operator. The corresponding Python
implementation in class Curve reads

class Curve:

def scale(self, factor):
self.x = factor*self.x
self.y = factor*self.y

Note here that self.x and self.y are Numerical Python arrays, so that multipli-
cation by a scalar number factor is a vectorized operation.

An even more efficient implementation is to make use of in-place multiplication
in the arrays,

class Curve:

def scale(self, factor):
self.x *= factor
self.y *= factor

as this saves the creation of temporary arrays like factor*self .x.

In an instance of a subclass of Shape, the meaning of a method scale is to
run through all objects in the dictionary shapes and ask each object to scale itself.
This is the same delegation of actions to subclass instances as we do in the draw
(or recurse) method. All objects, except Curve instances, can share the same
implementation of the scale method. Therefore, we place the scale method in
the superclass Shape such that all subclasses inherit the method. Since scale and
draw are so similar, we can easily implement the scale method in class Shape by
copying and editing the draw method:

class Shape:

def scale(self, factor):
for shape in self.shapes:
self.shapes [shape] .scale(factor)

9.4 Class Hierarchy for Making Drawings 619

This is all we have to do in order to equip all subclasses of Shape with scaling
functionality! Any piece of the figure will scale itself, in the same manner as it can
draw itself.

Translation A set of coordinates (x;, y;) can be translated v units in the x direc-
tion and v; units in the y direction using the formulas

Xi < X;i+vy, yi<yi+v, i=0,....n—1.

The natural specification of the translation is in terms of the vector v = (v, v1).
The corresponding Python implementation in class Curve becomes

class Curve:

def translate(self, v):
self.x += v[0]
self.y += v[1]

The translation operation for a shape object is very similar to the scaling and draw-
ing operations. This means that we can implement a common method translate
in the superclass Shape. The code is parallel to the scale method:

class Shape:

def translate(self, v):
for shape in self.shapes:
self.shapes [shape] . translate(v)

Rotation Rotating a figure is more complicated than scaling and translating.
A counter clockwise rotation of 6 degrees for a set of coordinates (x;, y;) is given
by

X; < x;cosf — y;sin 6,

Vi < x;sinf + y; cos 6.

This rotation is performed around the origin. If we want the figure to be rotated
with respect to a general point (x, y), we need to extend the formulas above:

X;i < x4+ (x; —x)cosO — (y; — y)sin0,
Vi< y+(x; —x)sinf + (y; — y)cos 6.

The Python implementation in class Curve, assuming that 6 is given in degrees and
not in radians, becomes

def rotate(self, angle, center):
angle = radians(angle)
X, y = center
c = cos(angle); s = sin(angle)
xnew = x + (self.x - x)*c - (self.y - y)*s
ynew + (self.x - x)*s + (self.y - y)*c
self.x = xnew
self.y = ynew

]
<

620 9 Object-Oriented Programming

The rotate method in class Shape follows the principle of the draw, scale, and
translate methods.

We have already seen the rotate method in action when animating the rolling
wheel at the end of Sect. 9.4.1.

9.5 Classes for DNA Analysis

We shall here exemplify the use of classes for performing DNA analysis as ex-
plained in Sects. 3.3.1, 6.5.1, 6.5.2, 6.5.3, 6.5.4, 6.5.5, and 8.3.4. Basically, we
create a class Gene to represent a DNA sequence (string) and a class Region to
represent a subsequence (substring), typically an exon or intron.

9.5.1 Class for Regions
The class for representing a region of a DNA string is quite simple:

class Region(object):
def __init__(self, dna, start, end):
self._region = dnal[start:end]

def get_region(self):
return self._region

def __len__(self):
return len(self._region)

def __eq__(self, other):
"""Check if two Region instances are equal."""
return self._region == other._region

def __add__(self, other):

"""Add Region instances: self + other"""
return self._region + other._region

def __iadd__(self, other):

"""Increment Region instance: self += other"""
self._region += other._region
return self

Besides storing the substring and giving access to it through get_region, we have
also included the possibility to

say len(r) if r is a Region instance

check if two Region instances are equal

write r1 + r2 for two instances r1 and r2 of type Region
performrl += r2

The latter two operations are convenient for making one large string out of all exon
or intron regions.

9.5 Classes for DNA Analysis 621

9.5.2 Class for Genes

The class for gene will be longer and more complex than class Region. We already
have a bunch of functions performing various types of analysis. The idea of the
Gene class is that these functions are methods in the class operating on the DNA
string and the exon regions stored in the class. Rather than recoding all the functions
as methods in the class we shall just let the class “wrap” the functions. That is,
the class methods call up the functions we already have. This approach has two
advantages: users can either choose the function-based or the class-based interface,
and the programmer can reuse all the ready-made functions when implementing the
class-based interface.
The selection of functions include

generate_string for generating a random string from some alphabet
download and read_dnafile (version read_dnafile_v1) for downloading
data from the Internet and reading from file

e read_exon_regions (version read_exon_regions_v2) for reading exon re-
gions from file

e tofile_with_line_sep (version tofile_with_line_sep_v2) for writing
strings to file

e read_genetic_code (version read_genetic_code_v2) for loading the map-
ping from triplet codes to 1-letter symbols for amino acids

e get_base_frequencies (version get_base_frequencies_v2) for finding

frequencies of each base

format_frequencies for formatting base frequencies with two decimals

create_mRNA for computing an mRNA string from DNA and exon regions

mutate for mutating a base at a random position

create_markov_chain, transition, and mutate_via_markov_chain for

mutating a base at a random position according to randomly generated transition

probabilities

e create_protein_fixed for proper creation of a protein sequence (string)

The set of plain functions for DNA analysis is found in the file dna_functions.py,
while dna_classes. py contains the implementations of classes Gene and Region.

Basic features of class gene Class Gene is supposed to hold the DNA sequence
and the associated exon regions. A simple constructor expects the exon regions to
be specified as a list of (start, end) tuples indicating the start and end of each region:

class Gene(object):
def __init__(self, dna, exon_regions):
self._dna = dna

self._exon_regions = exon_regions

self._exons = []

for start, end in exon_regions:
self._exons.append(Region(dna, start, end))

http://tinyurl.com/pwyasaa/oo/dna_functions.py
http://tinyurl.com/pwyasaa/oo/dna_classes.py

622 9 Object-Oriented Programming

Compute the introns (regions between the exons)

self._introns = []

prev_end = 0

for start, end in exon_regions:
self._introns.append(Region(dna, prev_end, start))
prev_end = end

self._introns.append(Region(dna, end, len(dna)))

The methods in class Gene are trivial to implement when we already have the
functionality in stand-alone functions. Here are a few examples on methods:

from dna_functions import *

class Gene(object):

def write(self, filename, chars_per_line=70):
"""Write DNA sequence to file with name filename."""
tofile_with_line_sep(self._dna, filename, chars_per_line)

def count(self, base):
"""Return no of occurrences of base in DNA."""
return self._dna.count (base)

def get_base_frequencies(self):
"""Return dict of base frequencies in DNA."""
return get_base_frequencies(self._dna)

def format_base_frequencies(self):
"""Return base frequencies formatted with two decimals."""
return format_frequencies(self.get_base_frequencies())

Flexible constructor The constructor can be made more flexible. First, the exon
regions may not be known so we should allow None as value and in fact use that
as default value. Second, exon regions at the start and/or end of the DNA string
will lead to empty intron Region objects so a proper test on nonzero length of the
introns must be inserted. Third, the data for the DNA string and the exon regions
can either be passed as arguments or downloaded and read from file. Two different
initializations of Gene objects are therefore

Gene(dna, exon_regions) # user has read data from file
Gene ((urlbase, dna_file), (urlbase, exon_file)) # download

gl
g2

One can pass None for urlbase if the files are already at the computer. The flex-
ible constructor has, not surprisingly, much longer code than the first version. The
implementation illustrates well how the concept of overloaded constructors in other
languages, like C++ and Java, are dealt with in Python (overloaded constructors
take different types of arguments to initialize an instance):

9.5 Classes for DNA Analysis 623

class Gene(object):
def __init__(self, dna, exon_regions):
dna: string or (urlbase,filename) tuple
exon_regions: None, list of (start,end) tuples
or (urlbase,filename) tuple
In case of (urlbase,filename) tuple the file
is downloaded and read.
if isinstance(dna, (list,tuple)) and \
len(dna) == 2 and isinstance(dnal[0], str) and \
isinstance(dna[1], str):
download (urlbase=dna[0], filename=dnal[1])
dna = read_dnafile(dna[1])
elif isinstance(dna, str):
pass # ok type (the other possibility)
else:
raise TypeError(
’dna=%s %s is not string or (urlbase,filename) ’\
’tuple’ % (dna, type(dna)))

self._dna = dna

er = exon_regions
if er is Nonme:
self._exons = None
self._introns = None
else:
if isinstance(er, (list,tuple)) and \
len(er) == 2 and isinstance(er[0], str) and \
isinstance(er[1], str):
download (urlbase=er[0], filename=er[1])
exon_regions = read_exon_regions(er[1])
elif isinstance(er, (list,tuple)) and \
isinstance(er[0], (list,tuple)) and \
isinstance(er[0] [0], int) and \
isinstance(er[0] [1], int):
pass # ok type (the other possibility)
else:
raise TypeError(
’exon_regions=Ys %s is not list of (int,int) ’
’or (urlbase,filename) tuple’ % (er, type(era)))

self._exon_regions = exon_regions

self._exons = []

for start, end in exon_regions:
self._exons.append(Region(dna, start, end))

Compute the introns (regions between the exons)
self._introns = []
prev_end = 0
for start, end in exon_regions:

if start - prev_end > O:

self._introns.append(
Region(dna, prev_end, start))

prev_end = end
if len(dna) - end > O:

self._introns.append(Region(dna, end, len(dna)))

624 9 Object-Oriented Programming

Note that we perform quite detailed testing of the object type of the data struc-
tures supplied as the dna and exon_regions arguments. This can well be done to
ensure safe use also when there is only one allowed type per argument.

Other methods A create_mRNA method, returning the mRNA as a string, can be
coded as

def create_mRNA(self):
"""Return string for mRNA."""
if self._exons is not None:
return create_mRNA(self._dna, self._exon_regions)
else:
raise ValueError(
’Cannot create mRNA for gene with no exon regions’)

Also here we rely on calling an already implemented function, but include some
testing whether asking for mRNA is appropriate.
Methods for creating a mutated gene are also included:

def mutate_pos(self, pos, base):
"""Return Gene with a mutation to base at position pos."""
dna = self._dnal:pos] + base + self._dna[pos+1:]
return Gene(dna, self._exon_regions)

def mutate_random(self, n=1):
nun
Return Gene with n mutations at a random position.
A1l mutations are equally probable.
nnn
mutated_dna = self._dna
for i in range(n):
mutated_dna = mutate(mutated_dna)
return Gene(mutated_dna, self._exon_regions)

def mutate_via_markov_chain(markov_chain):

nun

Return Gene with a mutation at a random position.
Mutation into new base based on transition
probabilities in the markov_chain dict of dicts.

nun

mutated_dna = mutate_via_markov_chain(
self._dna, markov_chain)
return Gene(mutated_dna, self._exon_regions)

Some “get” methods that give access to the fundamental attributes of the class
can be included:

def get_dna(self):
return self._dna

def get_exons(self):
return self._exons

9.5 Classes for DNA Analysis 625

def get_introns(self):
return self._introns

Alternatively, one could access the attributes directly: gene._dna, gene._exons,
etc. In that case we should remove the leading underscore as this underscore signals
that these attributes are considered “protected”, i.e., not to be directly accessed by
the user. The “protection” in “get” functions is more mental than actual since we
anyway give the data structures in the hands of the user and she can do whatever
she wants (even delete them).

Special methods for the length of a gene, adding genes, checking if two genes
are identical, and printing of compact gene information are relevant to add:

def __len__(self):
return len(self._dna)

def __add__(self, other):
"""self + other: append other to self (DNA string)."""
if self._exons is None and other._exons is None:
return Gene(self._dna + other._dna, None)
else:
raise ValueError(
’cannot do Gene + Gene with exon regions’)

def __iadd__(self, other):
"""self += other: append other to self (DNA string)."""
if self._exons is None and other._exons is None:
self._dna += other._dna
return self
else:
raise ValueError(
’cannot do Gene += Gene with exon regions’)

def __eq__(self, other):
"""Check if two Gene instances are equal."""
return self._dna == other._dna and \
self._exons == other._exons

def __str__(self):
"""Pretty print (condensed info)."""
s = ’Gene: ’ + self. _dnal[:6] + ’...° + self._dnal[-6:] + \
>, length=7,d’ ¥ len(self._dna)
if self._exons is not None:
s += ’, /d exon regions’ % len(self._exons)
return s

Here is an interactive session demonstrating how we can work with class Gene
objects:

>>> from dna_classes import Gene

>>> gl = Gene(’ATCCGTAATTGCGCA’, [(2,4), (6,9)1)
>>> print gl

Gene: ATCCGT...TGCGCA, length=15, 2 exon regions
>>> g2 = gl.mutate_random(10)

>>> print g2

626 9 Object-Oriented Programming

Gene: ATCCGT...TGTGCT, length=15, 2 exon regions
>>> gl == g2

False

>>> gl += g2 # expect exception

Traceback (most recent call last):

ValueError: cannot do Gene += Gene with exon regions
>>> glb = Gene(gl.get_dna(), None)

>>> g2b = Gene(g2.get_dna(), None)

>>> print glb

Gene: ATCCGT...TGCGCA, length=15

>>> g3 = glb + g2b

>>> g3.format_base_frequencies ()

’A: 0.17, C: 0.23, T: 0.33, G: 0.27’

9.5.3 Subclasses

There are two fundamental types of genes: the most common type that codes for
proteins (indirectly via mRNA) and the type that only codes for RNA (without being
further processed to proteins). The product of a gene, mRNA or protein, depends
on the type of gene we have. It is then natural to create two subclasses for the two
types of gene and have a method get_product which returns the product of that
type of gene.

The get_product method can be declared in class Gene:

def get_product (self):
raise NotImplementedError (
’Subclass %s must implement get_product’ % \
self.__class__.__name__)

The exception here will be triggered by an instance (self) of any subclass that just
inherits get_product from class Gene without implementing a subclass version of
this method.

The two subclasses of Gene may take this simple form:

class RNACodingGene (Gene) :
def get_product(self):
return self.create_mRNA()

class ProteinCodingGene (Gene) :

def __init__(self, dna, exon_positions):
Gene.__init__(self, dna, exon_positions)
urlbase = ’http://hplgit.github.com/bioinf-py/data/’
genetic_code_file = ’genetic_code.tsv’
download (urlbase, genetic_code_file)
code = read_genetic_code(genetic_code_file)
self.genetic_code = code

def get_product(self):
return create_protein_fixed(self.create_mRNA(),
self.genetic_code)

9.6 Summary 627

A demonstration of how to load the lactase gene and create the lactase protein is
done with

def test_lactase_gene():
urlbase = ’http://hplgit.github.com/bioinf-py/data/’
lactase_gene_file = ’lactase_gene.txt’
lactase_exon_file = ’lactase_exon.tsv’
lactase_gene = ProteinCodingGene (
(urlbase, lactase_gene_file),
(urlbase, lactase_exon_file))

protein = lactase_gene.get_product ()
tofile_with_line_sep(protein, ’output’, ’lactase_protein.txt’)

Now, envision that the Lactase gene would instead have been an RNA-coding
gene. The only necessary changes would have been to exchange ProteinCoding
Gene by RNACodingGene in the assignment to lactase_gene, and one would get
out a final RNA product instead of a protein.

9.6 Summary
9.6.1 Chapter Topics

A subclass inherits everything from its superclass, in particular all data attributes
and methods. The subclass can add new data attributes, overload methods, and
thereby enrich or restrict functionality of the superclass.

Subclass example Consider class Gravity from Sect. 7.7.1 for representing the
gravity force GMm/r? between two masses m and M being a distance r apart.
Suppose we want to make a class for the electric force between two charges ¢g; and
>, being a distance r apart in a medium with permittivity € is Gg,¢»/r>, where
G~ = 4mey. We use the approximate value G = 8.99 - 10° Nm?/C? (C is the
Coulomb unit used to measure electric charges such as g, and ¢). Since the electric
force is similar to the gravity force, we can easily implement the electric force as
a subclass of Gravity. The implementation just needs to redefine the value of G!

class CoulombsLaw(Gravity) :
def __init__(self, ql, g2):
Gravity.__init__(self, ql, q2)
self .G = 8.99E9

We can now call the inherited force (r) method to compute the electric force and
the visualize method to make a plot of the force:

¢ = CoulombsLaw(1E-6, -2E-6)
print ’Electric force:’, c.force(0.1)
c.visualize(0.01, 0.2)

However, the plot method inherited from class Gravity has an inappropriate title
referring to “Gravity force” and the masses m and M. An easy fix could be to have

628 9 Object-Oriented Programming

the plot title as a data attribute set in the constructor. The subclass can then override
the contents of this attribute, as it overrides self . G. It is quite common to discover
that a class needs adjustments if it is to be used as superclass.

Subclassing in general The typical sketch of creating a subclass goes as follows:

class SuperClass(object):
def __init__(self, p, q):
self.p, self.q = p, q

def where(self):

print ’In superclass’, self.__class name_

def compute(self, x):
self .where()
return self.p*x + self.q

class SubClass(SuperClass):
def __init__(self, p, q, a):
SuperClass.__init__(self, p, q)
self.a = a

def where(self):
print ’In subclass’, self.__class__.__name__

def compute(self, x):
self .where ()
return SuperClass.compute(self, x) + self.a*xx**2

This example shows how a subclass extends a superclass with one data attribute
(a). The subclass’ compute method calls the corresponding superclass method, as
well as the overloaded method where. Let us invoke the compute method through
superclass and subclass instances:

>>> super = SuperClass(1l, 2)
>>> sub = SubClass(1l, 2, 3)
>>> v1 = super.compute(0)

In superclass SuperClass
>>> v2 = sub.compute(0)

In subclass SubClass

In subclass SubClass

Observe that in the subclass sub, method compute calls self.where, which trans-
lates to the where method in SubClass. Then the compute method in SuperClass
is invoked, and this method also makes a self.where call, which is a call to
SubClass’ where method (think of what self is here, it is sub, so it is natural
that we get where in the subclass (sub.where) and not where in the superclass
part of sub).

In this example, classes SuperClass and SubClass constitute a class hierarchy.
Class SubClass inherits the attributes p and q from its superclass, and overrides the
methods where and compute.

9.6 Summary 629

Terminology The important computer science topics in this chapter are

superclass
subclass
inheritance
class hierarchies
tree structures
recursion

9.6.2 Example: Input Data Reader

The summarizing example of this chapter concerns a class hierarchy for simplify-
ing reading input data into programs. Input data may come from several different
sources: the command line, a file, or from a dialog with the user, either of input
form or in a graphical user interface (GUI). Therefore it makes sense to create
a class hierarchy where subclasses are specialized to read from different sources
and where the common code is placed in a superclass. The resulting tool will make
it easy for you to let your programs read from many different input sources by
adding just a few lines.

Problem Let us motivate the problem by a case where we want to write a program
for dumping n function values of f(x) to a file for x € [a, b]. The core part of the
program typically reads

import numpy as np
with open(filename, ’w’) as outfile:
for x in np.linspace(a, b, n):
outfile.write(’%12g %12g\n’ % (x, £(x)))

Our purpose is to read data into the variables a, b, n, filename, and £. For the
latter we want to specify a formula and use the StringFunctiontool (Sect. 4.3.3)
to make the function £:

from scitools.StringFunction import StringFunction
f = StringFunction(formula)

How can we read a, b, n, formula, and filename conveniently into the program?

The basic idea is that we place the input data in a dictionary, and create a tool
that can update this dictionary from sources like the command line, a file, a GUI,
etc. Our dictionary is then

p = dict(formula=’x+1’, a=0, b=1, n=2, filename=’tmp.dat’)

This dictionary specifies the names of the input parameters to the program and the
default values of these parameters.

Using the tool is a matter of feeding p into the constructor of a subclass in the
tools’ class hierarchy and extract the parameters into, for example, distinct vari-
ables:

630 9 Object-Oriented Programming

inp = Subclassname (p)
a, b, filename, formula, n = inp.get_all()

Depending on what we write as Subclassname, the five variables can be read from
the command line, the terminal window, a file, or a GUIL The task now is to imple-
ment a class hierarchy to facilitate the described flexible reading of input data.

Solution We first create a very simple superclass ReadInput. Its main purpose
is to store the parameter dictionary as a data attribute, provide a method get to
extract single values, and a method get_all to extract all parameters into distinct
variables:

class ReadInput(object):
def __init__(self, parameters):
self.p = parameters

def get(self, parameter_name):
return self.p[parameter_name]

def get_all(self):
return [self.p[name] for name in sorted(self.p)]

def __str__(self):
import pprint
return pprint.pformat(self.p)

Note that we in the get_all method must sort the keys in self.p such that the
list of returned variables is well defined. In the calling program we can then list
variables in the same order as the alphabetic order of the parameter names, for
example:

a, b, filename, formula, n = inp.get_all()

The __str__ method applies the pprint module to get a pretty print of all the
parameter names and their values.

Class ReadInput cannot read from any source — subclasses are supposed to do
this. The forthcoming text describes various types of subclasses for various types
of reading input.

Prompting the user The perhaps simplest way of getting data into a program is
to use raw_input. We then prompt the user with a text Give name: and get
an appropriate object back (recall that strings must be enclosed in quotes). The
subclass PromptUser for doing this then reads

class PromptUser (ReadInput):
def __init__(self, parameters):
ReadInput.__init__(self, parameters)
self._prompt_user()

9.6 Summary 631

def _prompt_user(self):
for name in self.p:
self.plname] = eval(raw_input("Give " + name + ": "))

Note the underscore in _prompt_user: the underscore signifies that this is a “pri-
vate” method in the PromptUser class, not intended to be called by users of the
class.

There is a major difficulty with using eval on the input from the user. When
the input is intended to be a string object, such as a filename, say tmp.inp, the
program will perform the operation eval (tmp.inp), which leads to an excep-
tion because tmp.inp is treated as a variable inp in a module tmp and not as the
string >tmp. inp’. To solve this problem, we use the str2obj function from the
scitools.misc module. This function will return the right Python object also in
the case where the argument should result in a string object (see Sect. 4.11.1 for
some information about str2obj). The bottom line is that str2obj acts as a safer
eval (raw_input(...)) call. The key assignment in class PromptUser is then
changed to

self.p[name] = str2obj(raw_input("Give " + name + ": "))

Reading from file We can also place name = value commands in a file and load
this information into the dictionary self.p. An example of a file can be

formula = sin(x) + cos(x)
filename = tmp.dat

a =0

b =1

In this example we have omitted n, so we rely on its default value.

A problem is how to give the filename. The easy way out of this problem is
to read from standard input, and just redirect standard input from a file when we
run the program. For example, if the filename is tmp.inp, we run the program as
follows in a terminal window

Terminal

Terminal> python myprog.py < tmp.inp

(The redirection of standard input from a file does not work in IPython so we are
in this case forced to run the program in a terminal window.)

To interpret the contents of the file, we read line by line, split each line with
respect to =, use the left-hand side as the parameter name and the right-hand side
as the corresponding value. It is important to strip away unnecessary blanks in the
name and value. The complete class now reads

class ReadInputFile(ReadInput):
def __init__(self, parameters):
ReadInput.__init__(self, parameters)
self. _read_file()

632 9 Object-Oriented Programming

def _read_file(self, infile=sys.stdin):
for line in infile:
if "=" in line:
name, value = line.split("=")
self.p[name.strip()] = str2obj(value.strip())

A nice feature with reading from standard input is that if we do not redirect
standard input to a file, the program will prompt the user in the terminal window,
where the user can give commands of the type name = value for setting selected
input data. A Ctrl+d is needed to terminate the interactive session in the terminal
window and continue execution of the program.

Reading from the command line For input from the command line we assume
that parameters and values are given as option-value pairs, e.g., as in

--a 1 --b 10 --n 101 --formula "sin(x) + cos(x)"

We apply the argparse module (see Sect. 4.4) to parse the command-line argu-
ments. The list of legal option names must be constructed from the list of keys in
the self.p dictionary. The complete class takes the form

class ReadCommandLine (ReadInput) :
def __init__(self, parameters):
self.sys_argv = sys.argv[1:] # copy
ReadInput.__init__(self, parameters)
self._read_command_line()

def _read_command_line(self):
parser = argparse.ArgumentParser ()
Make argparse list of optiomns
for name in self.p:
Default type: str
parser.add_argument (’--’+name, default=self.p[name])

args = parser.parse_args()
for name in self.p:
self .p[name] = str2obj(getattr(args, name))

import Tkinter
try:

We could specify the type of a parameter as type (self.p[name]) or self.
plname] .__class__, butif a float parameter has been given an integer default
value, the type will be int and argparse will not accept a decimal number as
input. Our more general strategy is to drop specifying the type, which implies that
all parameters in the args object become strings. We then use the str2obj function
to convert to the right type, a technique that is used throughout the ReadInput

module.

Reading from a gui We can with a little extra effort also make a graphical user in-
terface (GUI) for reading the input data. An example of a user interface is displayed

9.6 Summary 633

a IIII

formula |x+1

b 10
filename |[trip.dat
n IE

Run program

Fig. 9.13 Screen dump of a graphical user interface to read input data into a program (class GUI
in the ReadInput hierarchy)

in Fig. 9.13. Since the technicalities of the implementation is beyond the scope of
this book, we do not show the subclass GUI that creates the GUI and loads the user
input into the self . p dictionary.

More flexibility in the superclass Some extra flexibility can easily be added to
the get method in the superclass. Say we want to extract a variable number of
parameters:

a, b, n = inp.get(’a’, ’b’, ’n’) # 3 variables
n = inp.get(’n’) # 1 variable

The key to this extension is to use a variable number of arguments as explained in
Sect. H.7.1:

class ReadInput(object):

def get(self, *parameter_names):
if len(parameter_names) ==
return self.p[parameter_names[0]]
else:
return [self.p[name] for name in parameter_names]

Demonstrating the tool Let us show how we can use the classes in the ReadInput
hierarchy. We apply the motivating example described earlier. The name of the pro-
gram is demo_ReadInput.py. As first command-line argument it takes the name of
the input source, given as the name of a subclass in the ReadInput hierarchy. The
code for loading input data from any of the sources supported by the ReadInput
hierarchy goes as follows:

p = dict(formula=’x+1’, a=0, b=1, n=2, filename=’tmp.dat’)

from ReadInput import *

input_reader = eval(sys.argv[1]) # PromptUser, ReadInputFile,
del sys.argv[1] # otherwise argparse don’t like our extra option
inp = input_reader (p)

a, b, filename, formula, n = inp.get_all()

print inp

http://tinyurl.com/pwyasaa/oo/demo_ReadInput.py

634 9 Object-Oriented Programming

Note how convenient eval is to automatically create the right subclass for reading
input data.
Our first try on running this program applies the PromptUser class:

demo_ReadInput.py PromptUser
Give a: O
Give formula: sin(x) + cos(x)
Give b: 10
Give filename: function_data
Give n: 101
{’a’: 0,
’b’: 10,
’filename’: ’function_data’,
’formula’: ’sin(x) + cos(x)’,
’n’: 101}

The next example reads data from a file tmp.inp with the same contents as
shown in paragraph above about reading from file.

Terminal> demo_ReadInput.py ReadFilelInput < tmp.inp
{’a’: 0, ’b’: 1, ’filename’: ’tmp.dat’,
’formula’: ’sin(x) + cos(x)’, ’n’: 2}

We can also drop the redirection of standard input to a file, and instead run an
interactive session in IPython or the terminal window:

demo_ReadInput.py ReadFilelInput
n = 101
filename = myfunction_data_file.dat
D
{’a’: 0,
’b’: 1,
’filename’: ’myfunction_data_file.dat’,
’formula’: ’x+1’,
’n’: 101}

Note that Ctr1+d is needed to end the interactive session with the user and continue
program execution.
Command-line arguments can also be specified:

demo_ReadInput.py ReadCommandLine \
--a -1 --b 1 --formula "sin(x) + cos(x)"
{’a’: -1, ’b’: 1, ’filename’: ’tmp.dat’,
’formula’: ’sin(x) + cos(x)’, ’n’: 2}

9.7 Exercises 635

Finally, we can run the program with a GUI,

demo_ReadInput.py GUI

{’a’: -1, ’b’: 10, ’filename’: ’tmp.dat’,
‘formula’: ’x+1’, ’n’: 2}

The GUI is shown in Fig. 9.13.

Fortunately, it is now quite obvious how to apply the ReadInput hierarchy of
classes in your own programs to simplify input. Especially in applications with
a large number of parameters one can initially define these in a dictionary and then
automatically create quite comprehensive user interfaces where the user can specify
only some subset of the parameters (if the default values for the rest of the parame-
ters are suitable).

9.7 Exercises

Exercise 9.1: Demonstrate the magic of inheritance
Consider class Line from Sect. 9.1.1 and a subclass Parabola0 defined as

class Parabola0O(Line):
pass

That is, class Parabola0 does not have any own code, but it inherits from class
Line. Demonstrate in a program or interactive session, using dir and looking at
the __dict__ object, (see Sect. 7.5.6) that an instance of class Parabola0 contains
everything (i.e., all attributes) that an instance of class Line contains.

Filename: dir_subclass.

Exercise 9.2: Make polynomial subclasses of parabolas
The task in this exercise is to make a class Cubic for cubic functions

c3x> + cax? 4 c1x + ¢

with a call operator and a table method as in classes Line and Parabola from
Sect. 9.1. Implement class Cubic by inheriting from class Parabola, and call
up functionality in class Parabola in the same way as class Parabola calls up
functionality in class Line.

Make a similar class Poly4 for 4-th degree polynomials

caxt 4+ e3x + ex? + e1x + ¢

by inheriting from class Cubic. Insert print statements in all the __call__ meth-
ods such that you can easily watch the program flow and see when __call__ in the
different classes is called.

Evaluate cubic and a 4-th degree polynomial at a point, and observe the printouts
from all the superclasses.
Filename: Cubic_Poly4.

636 9 Object-Oriented Programming

Remarks This exercise follows the idea from Sect. 9.1 where more complex poly-
nomials are subclasses of simpler ones. Conceptually, a cubic polynomial is not
a parabola, so many programmers will not accept class Cubic as a subclass of
Parabola; it should be the other way around, and Exercise 9.2 follows that ap-
proach. Nevertheless, one can use inheritance solely for sharing code and not for
expressing that a subclass is a kind of the superclass. For code sharing it is natural
to start with the simplest polynomial as superclass and add terms to the inherited
data structure as we make subclasses for higher degree polynomials.

Exercise 9.3: Implement a class for a function as a subclass

Implement a class for the function f(x) = Asin(wx) + ax? + bx + c. The class
should have a call operator for evaluating the function for some argument x, and
a constructor that takes the function parameters A, w, a, b, and c as arguments. Also
a table method as in classes Line and Parabola should be present. Implement
the class by deriving it from class Parabola and call up functionality already im-
plemented in class Parabola whenever possible.

Filename: sin_plus_quadratic.

Exercise 9.4: Create an alternative class hierarchy for polynomials

Let class Polynomial from Sect. 7.3.7 be a superclass and implement class
Parabola as a subclass. The constructor in class Parabola should take the
three coefficients in the parabola as separate arguments. Try to reuse as much code
as possible from the superclass in the subclass. Implement class Line as a subclass
specialization of class Parabola.

Which class design do you prefer, class Line as a subclass of Parabola and
Polynomial, or Line as a superclass with extensions in subclasses? (See also
remark in Exercise 9.2.)

Filename: Polynomial_hier.

Exercise 9.5: Make circle a subclass of an ellipse

Section 7.2.3 presents class Circle. Make a similar class E11ipse for representing
an ellipse. Then create a new class Circle that is a subclass of E1lipse.
Filename: E11ipse_Circle.

Exercise 9.6: Make super- and subclass for a point
A point (x, y) in the plane can be represented by a class:

class Point(object):
def __init__(self, x, y):
self.x, self.y = x, y

def __str__(self):
return ’(%g, %g)’ % (self.x, self.y)

We can extend the Point class to also contain the representation of the point in
polar coordinates. To this end, create a subclass PolarPoint whose constructor
takes the polar representation of a point, (r,6), as arguments. Store r and 6 as
data attributes and call the superclass constructor with the corresponding x and y

9.7 Exercises 637

values (recall the relations x = rcosf and y = rsinf between Cartesian and
polar coordinates). Add a __str__ method in class PolarPoint which prints out
r, 0, x, and y. Write a test function that creates two PolarPoint instances and
compares the four data attributes x, y, r, and theta with the expected values.
Filename: PolarPoint.

Exercise 9.7: Modify a function class by subclassing
Consider a class F implementing the function f(z;a,b) = e~ sin(bt):

class F(object):
def __init__(self, a, b):
self.a, self.b = a, b
def __call__(self, t):
return exp(-self.a*t)*sin(self.b*t)

We now want to study how the function f(¢;a,b) varies with the parameter b,
given ¢ and a. Mathematically, this means that we want to compute g(b;t,a) =
f(t;a,b). Write a subclass Fb of F with a new __call__ method for evaluating
g(b;t,a). Do not reimplement the formula, but call the __call__ method in the
superclass to evaluate f(¢;a,b). The Fs should work as follows:

f = Fs(t=2, a=4.5)
print £(3) # b=3

Hint Before calling __call__ in the superclass, the data attribute b in the super-
class must be set to the right value.
Filename: Fb.

Exercise 9.8: Explore the accuracy of difference formulas
The purpose of this exercise is to investigate the accuracy of the Backwardl,
Forwardl, Forward3, Central2, Central4, Central6 methods for the function

1 et/
v(x) = T_ol/s -
Compute the errors in the approximations for x = 0,0.9 and u = 1, 0.01. Illustrate
in a plot how the v(x) function looks like for these two u values.

Hint Modify the src/oo/Diff2_examples.py program which produces tables of
errors of difference approximations as discussed at the end of Sect. 9.2.4.
Filename: boundary_layer_derivative.

Exercise 9.9: Implement a subclass

Make a subclass Sinel of class FuncWithDerivatives from Sect. 9.1.6 for the
sin x function. Implement the function only, and rely on the inherited df and ddf
methods for computing the derivatives. Make another subclass Sine2 for sinx
where you also implement the df and ddf methods using analytical expressions for
the derivatives. Compare Sinel and Sine2 for computing the first- and second-
order derivatives of sin x at two x points.

Filename: Sinel2.

http://tinyurl.com/pwyasaa/oo/Diff2_examples.py

638 9 Object-Oriented Programming

Exercise 9.10: Make classes for numerical differentiation

Carry out Exercise 7.16. Find the common code in the classes Derivative,
Backward, and Central. Move this code to a superclass, and let the three men-
tioned classes be subclasses of this superclass. Compare the resulting code with the
hierarchy shown in Sect. 9.2.1.

Filename: numdiff_classes.

Exercise 9.11: Implement a new subclass for differentiation
A one-sided, three-point, second-order accurate formula for differentiating a func-
tion f(x) has the form

f(x —=2h) —4f(x —h) + 3f(x)

F) ~ o

9.17)
Implement this formula in a subclass Backward2 of class Diff from Sect. 9.2.
Compare Backward?2 with Backward1 for g(t) = e~ fort = 0 and h = 27 for
k =0,1,...,14 (write out the errors in g'(¢)).

Filename: Backward2.

Exercise 9.12: Understand if a class can be used recursively
Suppose you want to compute f”(x) of some mathematical function f(x), and that
you apply some class from Sect. 9.2 twice, e.g.,

ddf = Central2(Central2(f))

Will this work?

Hint Follow the program flow, and find out what the resulting formula will be.
Then see if this formula coincides with a formula you know for approximating
f"(x) (actually, to recover the well-known formula with an /4 parameter, you would
use /1/2 in the nested calls to Central?2).

Exercise 9.13: Represent people by a class hierarchy

Classes are often used to model objects in the real world. We may represent the
data about a person in a program by a class Person, containing the person’s name,
address, phone number, date of birth, and nationality. A method __str__ may print
the person’s data. Implement such a class Person.

A worker is a person with a job. In a program, a worker is naturally represented
as class Worker derived from class Person, because a worker is a person, i.e.,
we have an is-a relationship. Class Worker extends class Person with additional
data, say name of company, company address, and job phone number. The print
functionality must be modified accordingly. Implement this Worker class.

A scientist is a special kind of a worker. Class Scientist may therefore be
derived from class Worker. Add data about the scientific discipline (physics, chem-
istry, mathematics, computer science, ...). One may also add the type of scientist:
theoretical, experimental, or computational. The value of such a type attribute
should not be restricted to just one category, since a scientist may be classified

9.7 Exercises 639

as, e.g., both experimental and computational (i.e., you can represent the value as
a list or tuple). Implement class Scientist.

Researcher, postdoc, and professor are special cases of a scientist. One can either
create classes for these job positions, or one may add an attribute (position) for
this information in class Scientist. We adopt the former strategy. When, e.g.,
a researcher is represented by a class Researcher, no extra data or methods are
needed. In Python we can create such an empty class by writing pass (the empty
statement) as the class body:

class Researcher(Scientist):
pass

Finally, make a demo program where you create and print instances of classes
Person, Worker, Scientist, Researcher, Postdoc, and Professor. Print out
the attribute contents of each instance (use the dir function).

Remark An alternative design is to introduce a class Teacher as a special case of
Worker and let Professor be both a Teacher and Scientist, which is natural.
This implies that class Professor has two superclasses, Teacher and Scientist,
or equivalently, class Professor inherits from two superclasses. This is known as
multiple inheritance and technically achieved as follows in Python:

class Professor(Teacher, Scientist):
pass

It is a continuous debate in computer science whether multiple inheritance is a good
idea or not. One obvious problem in the present example is that class Professor
inherits two names, one via Teacher and one via Scientist (both these classes
inherit from Person).

Filename: Person.

Exercise 9.14: Add a new class in a class hierarchy

a) Add the Monte Carlo integration method from Sect. 8.5.2 as a subclass MCint
in the Integrator hierarchy explained in Sect. 9.3. Import the superclass
Integrator from the integrate module in the file with the new integration
class.

b) Make a test function for class MCint where you fix the seed of the random
number generator, use three function evaluations only, and compare the result
of this Monte Carlo integration with results calculated by hand using the same
three random numbers.

¢) Run the Monte Carlo integration class in a case with known analytical solution
and see how the error in the integral changes with n = 10 function evaluations,
k=3,4,56.

Filename: MCint_class.

640 9 Object-Oriented Programming

Exercise 9.15: Compute convergence rates of numerical integration methods
Numerical integration methods can compute “any” integral fab f(x)dx, but the re-
sult is not exact. The methods have a parameter 7, closely related to the number
of evaluations of the function f, that can be increased to achieve more accurate
results. In this exercise we want to explore the relation between the error E in the
numerical approximation to the integral and n. Different numerical methods have
different relations.
The relations are of the form

E=Cn",

where and C and r < 0 are constants to be determined. That is, r is the most
important of these parameters, because if Simpson’s method has a more negative
r than the Trapezoidal method, it means that increasing n in Simpson’s method
reduces the error more effectively than increasing n in the Trapezoidal method.
One can estimate 7 from numerical experiments. For a chosen f(x), where the
exact value of fub f(x)dx is available, one computes the numerical approximation
for N + 1 values of n: np < n; < --- < ny and finds the corresponding errors
Ey, E|, ..., Ey (the difference between the exact value and the value produced by
the numerical method).
One way to estimate r goes as follows. For two successive experiments we have
Ei = Cl’llr .
and
Eiv1=Cnjy,y

Divide the first equation by the second to eliminate C, and then take the logarithm
to solve for r:
_ In(Ei/Ei 1)
ln(ni/n,-H) '
We can compute r for all pairs of two successive experiments. Say r; is the r value
found from experiment i and i + 1,

o In(E; /E; 1)
! ln(n,-/nH_l) ’

Usually, the last value, 7y _1, is the best approximation to the true r value. Knowing
r, we can compute C as E;n;" forany i.

Use the method above to estimate and C for the Midpoint method, the Trape-
zoidal method, and Simpson’s method. Make your own choice of integral problem:
f(x), a, and b. Let the parameter n be the number of function evaluations in
each method, and run the experiments with n = 2k + 1 fork = 2,...,11. The
Integrator hierarchy from Sect. 9.3 has all the requested methods implemented.
Filename: integrators_convergence.

9.7 Exercises 641

Exercise 9.16: Add common functionality in a class hierarchy
Suppose you want to use classes in the Integrator hierarchy from Sect. 9.3. to
calculate integrals of the form

F(x) =/f(t)dt.

Such functions F(x) can be efficiently computed by the method from Exercise 7.22.
Implement this computation of F(x) in an additional method in the superclass
Integrator. Test that the implementation is correct for f(x) = 2x — 3 for all the
implemented integration methods (the Midpoint, Trapezoidal and Gauss-Legendre
methods, as well as Simpson’s rule, integrate a linear function exactly).

Filename: integrate_efficient.

Exercise 9.17: Make a class hierarchy for root finding
Given a general nonlinear equation f(x) = 0, we want to implement classes for
solving such an equation, and organize the classes in a class hierarchy. Make classes
for three methods: Newton’s method (in Sect. A.1.10), the Bisection method (in
Sect. 4.11.2), and the Secant method (in Exercise A.10).

It is not obvious how such a hierarchy should be organized. One idea is to let the
superclass store the f(x) function and its derivative f’(x) (if provided — if not, use
a finite difference approximation for f’(x)). A method

def solve(start_values=[0], max_iter=100, tolerance=1E-6):

in the superclass can implement a general iteration loop. The start_values argu-
ment is a list of starting values for the algorithm in question: one point for Newton,
two for Secant, and an interval [a, b] containing a root for Bisection. Let solve
define a list self.x holding all the computed approximations. The initial value of
self .xis simply start_values. For the Bisection method, one can use the con-
ventiona, b, ¢ = self .x[-3:], where [a, b] represents the most recently computed
interval and c is its midpoint. The solve method can return an approximate root x,
the corresponding f(x) value, a boolean indicator that is True if | f(x)] is less than
the tolerance parameter, and a list of all the approximations and their f values
(i.e., a list of (x, f(x)) tuples).
Do Exercise A.11 using the new class hierarchy.
Filename: Rootfinders.

Exercise 9.18: Make a calculus calculator class

Given a function f(x) defined on a domain [a, b], the purpose of many mathemat-
ical exercises is to sketch the function curve y = f(x), compute the derivative
f/(x), find local and global extreme points, and compute the integral fab f(x)dx.
Make a class CalculusCalculator which can perform all these actions for any
function f(x) using numerical differentiation and integration, and the method ex-
plained in Exercise 7.34. for finding extrema.

642 9 Object-Oriented Programming

Here is an interactive session with the class where we analyze f(x) =

x2e%2¥ sin(27 x) on [0, 6] with a grid (set of x coordinates) of 700 points:

>>> from CalculusCalculator import *
>>> def f(x):
return x**2%exp(-0.2xx)*sin(2%pi*x)

>>>

¢ = CalculusCalculator(f, 0, 6, resolution=700)
>>> c.plot() # plot f
>>> c.plot_derivative() # plot £’
>>> c.extreme_points()

A1l minima: 0.8052, 1.7736, 2.7636, 3.7584, 4.7556, 5.754, 0
A1l maxima: 0.3624, 1.284, 2.2668, 3.2604, 4.2564, 5.2548, 6
Global minimum: 5.754
Global maximum: 5.2548

>>> c.integral

-1.7353776102348935

>>> ¢.df(2.51) # c.df (x) is the derivative of f
-24.056988888465636

>>> c.set_differentiation_method(Central4d)

>>> c.df(2.51)

-24.056988832723189

>>> c.set_integration_method(Simpson) # more accurate integration
>>> c.integral

-1.7353857856973565

Design the class such that the above session can be carried out.

Hint Use classes from the Diff and Integrator hierarchies (Sects. 9.2 and 9.3)
for numerical differentiation and integration (with, e.g., Central2 and
Trapezoidal as default methods for differentiation and integration). The method
set_differentiation_method takes a subclass name in the Diff hierarchy as
argument, and makes a data attribute df that holds a subclass instance for com-
puting derivatives. With set_integration_method we can similarly set the
integration method as a subclass name in the Integrator hierarchy, and then
compute the integral fab f(x)dx and store the value in the attribute integral. The
extreme_points method performs a print on a MinMax instance, which is stored
as an attribute in the calculator class.

Filename: CalculusCalculator.

Exercise 9.19: Compute inverse functions
Extend class CalculusCalculator from Exercise 9.18 to offer computations of
inverse functions.

Hint A numerical way of computing inverse functions is explained in Sect. A.1.11.
Other, perhaps more attractive methods are described in Exercises E.17-E.20.
Filename: CalculusCalculator2.

9.7 Exercises 643

Exercise 9.20: Make line drawing of a person; program

A very simple sketch of a human being can be made of a circle for the head, two
lines for the arms, one vertical line, a triangle, or a rectangle for the torso, and two
lines for the legs. Make such a drawing in a program, utilizing appropriate classes
in the Shape hierarchy.

Filename: draw_person.

Exercise 9.21: Make line drawing of a person; class

Use the code from Exercise 9.20 to make a subclass of Shape that draws a person.
Supply the following arguments to the constructor: the center point of the head and
the radius R of the head. Let the arms and the torso be of length 4R, and the legs
of length 6 R. The angle between the legs can be fixed (say 30 degrees), while the
angle of the arms relative to the torso can be an argument to the constructor with
a suitable default value.

Filename: Person.

Exercise 9.22: Animate a person with waving hands

Make a subclass of the class from Exercise 9.21 where the constructor can take an
argument describing the angle between the arms and the torso. Use this new class
to animate a person who waves her/his hands.

Filename: waving_person.

	9 Object-Oriented Programming
	9.1 Inheritance and Class Hierarchies
	9.2 Class Hierarchy for Numerical Differentiation
	9.3 Class Hierarchy for Numerical Integration
	9.4 Class Hierarchy for Making Drawings
	9.5 Classes for DNA Analysis
	9.6 Summary
	9.7 Exercises

