
7Introduction to Classes

A class packs a set of data (variables) together with a set of functions operating on
the data. The goal is to achieve more modular code by grouping data and functions
into manageable (often small) units. Most of the mathematical computations in this
book can easily be coded without using classes, but in many problems, classes en-
able either more elegant solutions or code that is easier to extend at a later stage. In
the non-mathematical world, where there are no mathematical concepts and asso-
ciated algorithms to help structure the problem solving, software development can
be very challenging. Classes may then improve the understanding of the problem
and contribute to simplify the modeling of data and actions in programs. As a con-
sequence, almost all large software systems being developed in the world today are
heavily based on classes.

Programming with classes is offered by most modern programming languages,
also Python. In fact, Python employs classes to a very large extent, but one can
use the language for lots of purposes without knowing what a class is. However,
one will frequently encounter the class concept when searching books or the World
WideWeb for Python programming information. And more important, classes often
provide better solutions to programming problems. This chapter therefore gives an
introduction to the class concept with emphasis on applications to numerical com-
puting. More advanced use of classes, including inheritance and object orientation,
is treated in Chap. 9.

The folder src/class1 contains all the program examples from the present
chapter.

7.1 Simple Function Classes

Classes can be used for many things in scientific computations, but one of the most
frequent programming tasks is to represent mathematical functions that have a set of
parameters in addition to one or more independent variables. Section 7.1.1 explains
why such mathematical functions pose difficulties for programmers, and Sect. 7.1.2
shows how the class idea meets these difficulties. Sections 7.1.4 presents another
example where a class represents a mathematical function. More advanced material

1 http://tinyurl.com/pwyasaa/class
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410 7 Introduction to Classes

about classes, which for some readers may clarify the ideas, but which can also be
skipped in a first reading, appears in Sects. 7.1.5 and Sect. 7.1.6.

7.1.1 Challenge: Functions with Parameters

To motivate for the class concept, we will look at functions with parameters. One
example is y.t/ D v0t � 1

2
gt2. Conceptually, in physics, the y quantity is viewed as

a function of t , but y also depends on two other parameters, v0 and g, although it is
not natural to view y as a function of these parameters. We may write y.t I v0; g/ to
indicate that t is the independent variable, while v0 and g are parameters. Strictly
speaking, g is a fixed parameter (as long as we are on the surface of the earth and
can view g as constant), so only v0 and t can be arbitrarily chosen in the formula.
It would then be better to write y.t I v0/.

In the general case, we may have a function of x that has n parameters
p1; : : : ; pn: f .xI p1; : : : ; pn/. One example could be

g.xI A; a/ D Ae�ax :

How should we implement such functions? One obvious way is to have the
independent variable and the parameters as arguments:

def y(t, v0):

g = 9.81

return v0*t - 0.5*g*t**2

def g(x, a, A):

return A*exp(-a*x)

Problem There is one major problem with this solution. Many software tools we
can use for mathematical operations on functions assume that a function of one
variable has only one argument in the computer representation of the function. For
example, we may have a tool for differentiating a function f .x/ at a point x, using
the approximation

f 0.x/ � f .x C h/ � f .x/

h
(7.1)

coded as

def diff(f, x, h=1E-5):

return (f(x+h) - f(x))/h

The diff function works with any function f that takes one argument:

def h(t):

return t**4 + 4*t

dh = diff(h, 0.1)

from math import sin, pi

x = 2*pi

dsin = diff(sin, x, h=1E-6)
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Unfortunately, diff will not work with our y(t, v0) function. Calling diff(y,
t) leads to an error inside the diff function, because it tries to call our y function
with only one argument while the y function requires two.

Writing an alternative diff function for f functions having two arguments is
a bad remedy as it restricts the set of admissible f functions to the very special
case of a function with one independent variable and one parameter. A fundamen-
tal principle in computer programming is to strive for software that is as general
and widely applicable as possible. In the present case, it means that the diff func-
tion should be applicable to all functions f of one variable, and letting f take one
argument is then the natural decision to make.

The mismatch of function arguments, as outlined above, is a major problem
because a lot of software libraries are available for operations on mathematical
functions of one variable: integration, differentiation, solving f .x/ D 0, finding
extrema, etc. All these libraries will try to call the mathematical function we pro-
vide with only one argument. When our function has more arguments, the code
inside the library aborts in the call to our function, and such errors may not always
be easy to track down.

A bad solution: global variables The requirement is thus to define Python im-
plementations of mathematical functions of one variable with one argument, the
independent variable. The two examples above must then be implemented as

def y(t):

g = 9.81

return v0*t - 0.5*g*t**2

def g(t):

return A*exp(-a*x)

These functions work only if v0, A, and a are global variables, initialized before one
attempts to call the functions. Here are two sample calls where diff differentiates
y and g:

v0 = 3

dy = diff(y, 1)

A = 1; a = 0.1

dg = diff(g, 1.5)

The use of global variables is in general considered bad programming. Why
global variables are problematic in the present case can be illustrated when there is
need to work with several versions of a function. Suppose we want to work with
two versions of y.t I v0/, one with v0 D 1 and one with v0 D 5. Every time we
call y we must remember which version of the function we work with, and set v0
accordingly prior to the call:

v0 = 1; r1 = y(t)

v0 = 5; r2 = y(t)



412 7 Introduction to Classes

Another problem is that variables with simple names like v0, a, and Amay easily
be used as global variables in other parts of the program. These parts may change
our v0 in a context different from the y function, but the change affects the correct-
ness of the y function. In such a case, we say that changing v0 has side effects, i.e.,
the change affects other parts of the program in an unintentional way. This is one
reason why a golden rule of programming tells us to limit the use of global variables
as much as possible.

Another solution to the problem of needing two v0 parameters could be to intro-
duce two y functions, each with a distinct v0 parameter:

def y1(t):

g = 9.81

return v0_1*t - 0.5*g*t**2

def y2(t):

g = 9.81

return v0_2*t - 0.5*g*t**2

Now we need to initialize v0_1 and v0_2 once, and then we can work with y1
and y2. However, if we need 100 v0 parameters, we need 100 functions. This is
tedious to code, error prone, difficult to administer, and simply a really bad solution
to a programming problem.

So, is there a good remedy? The answer is yes: the class concept solves all the
problems described above!

7.1.2 Representing a Function as a Class

A class contains a set of variables (data) and a set of functions, held together as
one unit. The variables are visible in all the functions in the class. That is, we can
view the variables as “global” in these functions. These characteristics also apply
to modules, and modules can be used to obtain many of the same advantages as
classes offer (see comments in Sect. 7.1.6). However, classes are technically very
different from modules. You can also make many copies of a class, while there can
be only one copy of a module. When you master both modules and classes, you
will clearly see the similarities and differences. Now we continue with a specific
example of a class.

Consider the function y.t I v0/ D v0t � 1
2
gt2. We may say that v0 and g, rep-

resented by the variables v0 and g, constitute the data. A Python function, say
value(t), is needed to compute the value of y.t I v0/ and this function must have
access to the data v0 and g, while t is an argument.

A programmer experienced with classes will then suggest to collect the data v0
and g, and the function value(t), together as a class. In addition, a class usually
has another function, called constructor for initializing the data. The constructor
is always named __init__. Every class must have a name, often starting with
a capital, so we choose Y as the name since the class represents a mathematical
function with name y. Figure 7.1 sketches the contents of class Y as a so-called
UML diagram, here created with aid of the program class_Y_v1_UML.py. The

http://tinyurl.com/pwyasaa/class/class_Y_v1_UML.py
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Fig. 7.1 UML diagram with
function and data in the sim-
ple class Y for representing
a mathematical function
y.t I v0/

Y

__init__
value

g
v0

UML diagram has two “boxes”, one where the functions are listed, and one where
the variables are listed. Our next step is to implement this class in Python.

Implementation The complete code for our class Y looks as follows in Python:

class Y:

def __init__(self, v0):

self.v0 = v0

self.g = 9.81

def value(self, t):

return self.v0*t - 0.5*self.g*t**2

A puzzlement for newcomers to Python classes is the self parameter, which may
take some efforts and time to fully understand.

Usage and dissection Before we dig into what each line in the class implementa-
tion means, we start by showing how the class can be used to compute values of the
mathematical function y.t I v0/.

A class creates a new data type, here of name Y, so when we use the class to make
objects, those objects are of type Y. (Actually, all the standard Python objects, such
as lists, tuples, strings, floating-point numbers, integers, etc., are built-in Python
classes, with names list, tuple, str, float, int, etc.) An object of a user-
defined class (like Y) is usually called an instance. We need such an instance in order
to use the data in the class and call the value function. The following statement
constructs an instance bound to the variable name y:

y = Y(3)

Seemingly, we call the class Y as if it were a function. Actually, Y(3) is automat-
ically translated by Python to a call to the constructor __init__ in class Y. The
arguments in the call, here only the number 3, are always passed on as arguments
to __init__ after the self argument. That is, v0 gets the value 3 and self is just
dropped in the call. This may be confusing, but it is a rule that the self argument
is never used in calls to functions in classes.

With the instance y, we can compute the value y.t D 0:1I v0 D 3/ by the
statement

v = y.value(0.1)
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Here also, the self argument is dropped in the call to value. To access functions
and variables in a class, we must prefix the function and variable names by the
name of the instance and a dot: the value function is reached as y.value, and the
variables are reached as y.v0 and y.g. We can, for example, print the value of v0
in the instance y by writing

print y.v0

The output will in this case be 3.
We have already introduced the term "instance” for the object of a class. Func-

tions in classes are commonly called methods, and variables (data) in classes are
called data attributes. Methods are also known as method attributes. From now on
we will use this terminology. In our sample class Y we have two methods or method
attributes, __init__ and value, two data attributes, v0 and g, and four attributes in
total (__init__, value, v0, and g). The names of attributes can be chosen freely,
just as names of ordinary Python functions and variables. However, the constructor
must have the name __init__, otherwise it is not automatically called when we
create new instances.

You can do whatever you want in whatever method, but it is a common conven-
tion to use the constructor for initializing the variables in the class.

Extension of the class We can have as many attributes as we like in a class, so let
us add a new method to class Y. This method is called formula and prints a string
containing the formula of the mathematical function y. After this formula, we
provide the value of v0. The string can then be constructed as

’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

where self is an instance of class Y. A call of formula does not need any argu-
ments:

print y.formula()

should be enough to create, return, and print the string. However, even if the
formula method does not need any arguments, it must have a self argument,
which is left out in the call but needed inside the method to access the attributes.
The implementation of the method is therefore

def formula(self):

return ’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

For completeness, the whole class now reads

class Y:

def __init__(self, v0):

self.v0 = v0

self.g = 9.81
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def value(self, t):

return self.v0*t - 0.5*self.g*t**2

def formula(self):

return ’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

Example on use may be

y = Y(5)

t = 0.2

v = y.value(t)

print ’y(t=%g; v0=%g) = %g’ % (t, y.v0, v)

print y.formula()

with the output

y(t=0.2; v0=5) = 0.8038

v0*t - 0.5*g*t**2; v0=5

Be careful with indentation in class programming
A common mistake done by newcomers to the class construction is to place the
code that applies the class at the same indentation as the class methods. This is il-
legal. Only method definitions and assignments to so-called static data attributes
(Sect. 7.6) can appear in the indented block under the class headline. Ordinary
data attribute assignment must be done inside methods. The main program using
the class must appear with the same indent as the class headline.

Using methods as ordinary functions We may create several y functions with
different values of v0:

y1 = Y(1)

y2 = Y(1.5)

y3 = Y(-3)

We can treat y1.value, y2.value, and y3.value as ordinary Python functions
of t, and then pass them on to any Python function that expects a function of one
variable. In particular, we can send the functions to the diff(f, x) function from
Sect. 7.1.1:

dy1dt = diff(y1.value, 0.1)

dy2dt = diff(y2.value, 0.1)

dy3dt = diff(y3.value, 0.2)

Inside the diff(f, x) function, the argument f now behaves as a function of one
variable that automatically carries with it two variables v0 and g. When f refers
to (e.g.) y3.value, Python actually knows that f(x) means y3.value(x), and
inside the y3.valuemethod self is y3, and we have access to y3.v0 and y3.g.
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New-style classes versus classic classes When use Python version 2 and write
a class like

class V:

...

we get what is known as an old-style or classic class. A revised implementation of
classes in Python came in version 2.2 with new-style classes. The specification of
a new-style class requires (object) after the class name:

class V(object):

...

New-style classes have more functionality, and it is in general recommended to
work with new-style classes. We shall therefore from now write V(object) rather
than just V. In Python 3, all classes are new-style whether we write V or V(object).

Doc strings A function may have a doc string right after the function definition,
see Sect. 3.1.11. The aim of the doc string is to explain the purpose of the function
and, for instance, what the arguments and return values are. A class can also have
a doc string, it is just the first string that appears right after the class headline. The
convention is to enclose the doc string in triple double quotes """:

class Y(object):

"""The vertical motion of a ball."""

def __init__(self, v0):

...

More comprehensive information can include the methods and how the class is used
in an interactive session:

class Y(object):

"""

Mathematical function for the vertical motion of a ball.

Methods:

constructor(v0): set initial velocity v0.

value(t): compute the height as function of t.

formula(): print out the formula for the height.

Data attributes:

v0: the initial velocity of the ball (time 0).

g: acceleration of gravity (fixed).

Usage:

>>> y = Y(3)

>>> position1 = y.value(0.1)

>>> position2 = y.value(0.3)

>>> print y.formula()

v0*t - 0.5*g*t**2; v0=3

"""
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7.1.3 The Self Variable

Now we will provide some more explanation of the self parameter and how the
class methods work. Inside the constructor __init__, the argument self is a vari-
able holding the new instance to be constructed. When we write

self.v0 = v0

self.g = 9.81

we define two new data attributes in this instance. The self parameter is invisibly
returned to the calling code. We can imagine that Python translates the syntax y =
Y(3) to a call written as

Y.__init__(y, 3)

Now, self becomes the new instance y we want to create, so when we do self.v0
= v0 in the constructor, we actually assign v0 to y.v0. The prefix with Y. illus-
trates how to reach a class method with a syntax similar to reaching a function in
a module (just like math.exp). If we prefix with Y., we need to explicitly feed
in an instance for the self argument, like y in the code line above, but if we pre-
fix with y. (the instance name) the self argument is dropped in the syntax, and
Python will automatically assign the y instance to the self argument. It is the
latter “instance name prefix” which we shall use when computing with classes.
(Y.__init__(y, 3) will not work since y is undefined and supposed to be an Y
object. However, if we first create y = Y(2) and then call Y.__init__(y, 3),
the syntax works, and y.v0 is 3 after the call.)

Let us look at a call to the value method to see a similar use of the self argu-
ment. When we write

value = y.value(0.1)

Python translates this to a call

value = Y.value(y, 0.1)

such that the self argument in the value method becomes the y instance. In the
expression inside the valuemethod,

self.v0*t - 0.5*self.g*t**2

self is y so this is the same as

y.v0*t - 0.5*y.g*t**2

The use of self may become more apparent when we have multiple class in-
stances. We can make a class that just has one parameter so we can easily identify
a class instance by printing the value of this parameter. In addition, every Python



418 7 Introduction to Classes

object obj has a unique identifier obtained by id(obj) that we can also print to
track what self is.

class SelfExplorer(object):

def __init__(self, a):

self.a = a

print ’init: a=%g, id(self)=%d’ % (self.a, id(self))

def value(self, x):

print ’value: a=%g, id(self)=%d’ % (self.a, id(self))

return self.a*x

Here is an interactive session with this class:

>>> s1 = SelfExplorer(1)

init: a=1, id(self)=38085696

>>> id(s1)

38085696

We clearly see that self inside the constructor is the same object as s1, which we
want to create by calling the constructor.

A second object is made by

>>> s2 = SelfExplorer(2)

init: a=2, id(self)=38085192

>>> id(s2)

38085192

Now we can call the value method using the standard syntax s1.value(x) and
the “more pedagogical” syntax SelfExplorer.value(s1, x). Using both s1
and s2 illustrates how self take on different values, while we may look at the
method SelfExplorer.value as a single function that just operates on different
self and x objects:

>>> s1.value(4)

value: a=1, id(self)=38085696

4

>>> SelfExplorer.value(s1, 4)

value: a=1, id(self)=38085696

4

>>> s2.value(5)

value: a=2, id(self)=38085192

10

>>> SelfExplorer.value(s2, 5)

value: a=2, id(self)=38085192

10

Hopefully, these illustrations help to explain that self is just the instance used in
the method call prefix, here s1 or s2. If not, patient work with class programming
in Python will over time reveal an understanding of what self really is.
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Rules regarding self
� Any class method must have self as first argument. (The name can be any

valid variable name, but the name self is a widely established convention in
Python.)

� self represents an (arbitrary) instance of the class.
� To access any class attribute inside class methods, we must prefix with self,

as in self.name, where name is the name of the attribute.
� self is dropped as argument in calls to class methods.

7.1.4 Another Function Class Example

Let us apply the ideas from the Y class to the function

v.r/ D
�

ˇ

2�0

�1=n
n

n C 1

�
R1C1=n � r1C1=n

�
;

where r is the independent variable. We may write this function as v.r I ˇ; �0; n; R/

to explicitly indicate that there is one primary independent variable (r) and four
physical parameters ˇ, �0, n, and R. Exercise 5.40 describes a physical interpreta-
tion of v as the velocity of a fluid. The class typically holds the physical parameters
as variables and provides an value(r)method for computing the v function:

class V(object):

def __init__(self, beta, mu0, n, R):

self.beta, self.mu0, self.n, self.R = beta, mu0, n, R

def value(self, r):

beta, mu0, n, R = self.beta, self.mu0, self.n, self.R

n = float(n) # ensure float divisions

v = (beta/(2.0*mu0))**(1/n)*(n/(n+1))*\

(R**(1+1/n) - r**(1+1/n))

return v

There is seemingly one new thing here in that we initialize several variables on the
same line:

self.beta, self.mu0, self.n, self.R = beta, mu0, n, R

The comma-separated list of variables on the right-hand side forms a tuple so this
assignment is just the a valid construction where a set of variables on the left-hand
side is set equal to a list or tuple on the right-hand side, element by element. An
equivalent multi-line code is

self.beta = beta

self.mu0 = mu0

self.n = n

self.R = R
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In the valuemethod it is convenient to avoid the self. prefix in the mathematical
formulas and instead introduce the local short names beta, mu0, n, and R. This is
in general a good idea, because it makes it easier to read the implementation of the
formula and check its correctness.

Remark Another solution to the problem of sending functions with parameters to
a general library function such as diff is provided in Sect. H.7. The remedy there
is to transfer the parameters as arguments “through” the diff function. This can be
done in a general way as explained in that appendix.

7.1.5 Alternative Function Class Implementations

To illustrate class programming further, we will now realize class Y from Sect. 7.1.2
in a different way. You may consider this section as advanced and skip it, but for
some readers the material might improve the understanding of class Y and give some
insight into class programming in general.

It is a good habit always to have a constructor in a class and to initialize the data
attributes in the class here, but this is not a requirement. Let us drop the constructor
andmake v0 an optional argument to the valuemethod. If the user does not provide
v0 in the call to value, we use a v0 value that must have been provided in an earlier
call and stored as a data attribute self.v0. We can recognize if the user provides
v0 as argument or not by using None as default value for the keyword argument and
then test if v0 is None.

Our alternative implementation of class Y, named Y2, now reads

class Y2(object):

def value(self, t, v0=None):

if v0 is not None:

self.v0 = v0

g = 9.81

return self.v0*t - 0.5*g*t**2

This time the class has only one method and one data attribute as we skipped the
constructor and let g be a local variable in the valuemethod.

But if there is no constructor, how is an instance created? Python fortunately
creates an empty constructor. This allows us to write

y = Y2()

to make an instance y. Since nothing happens in the automatically generated empty
constructor, y has no data attributes at this stage. Writing

print y.v0

therefore leads to the exception

AttributeError: Y2 instance has no attribute ’v0’



7.1 Simple Function Classes 421

By calling

v = y.value(0.1, 5)

we create an attribute self.v0 inside the valuemethod. In general, we can create
any attribute name in any method by just assigning a value to self.name. Now
trying a

print y.v0

will print 5. In a new call,

v = y.value(0.2)

the previous v0 value (5) is used inside value as self.v0 unless a v0 argument is
specified in the call.

The previous implementation is not foolproof if we fail to initialize v0. For
example, the code

y = Y2()

v = y.value(0.1)

will terminate in the valuemethod with the exception

AttributeError: Y2 instance has no attribute ’v0’

As usual, it is better to notify the user with a more informative message. To check
if we have an attribute v0, we can use the Python function hasattr. Calling
hasattr(self, ’v0’) returns True only if the instance self has an attribute
with name ’v0’. An improved valuemethod now reads

def value(self, t, v0=None):

if v0 is not None:

self.v0 = v0

if not hasattr(self, ’v0’):

print ’You cannot call value(t) without first ’\

’calling value(t,v0) to set v0’

return None

g = 9.81

return self.v0*t - 0.5*g*t**2

Alternatively, we can try to access self.v0 in a try-except block, and perhaps
raise an exception TypeError (which is what Python raises if there are not enough
arguments to a function or method):
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def value(self, t, v0=None):

if v0 is not None:

self.v0 = v0

g = 9.81

try:

value = self.v0*t - 0.5*g*t**2

except AttributeError:

msg = ’You cannot call value(t) without first ’

’calling value(t,v0) to set v0’

raise TypeError(msg)

return value

Note that Python detects an AttributeError, but from a user’s point of view, not
enough parameters were supplied in the call so a TypeError is more appropriate to
communicate back to the calling code.

We think class Y is a better implementation than class Y2, because the former
is simpler. As already mentioned, it is a good habit to include a constructor and
set data here rather than “recording data on the fly” as we try to in class Y2. The
whole purpose of class Y2 is just to show that Python provides great flexibility with
respect to defining attributes, and that there are no requirements to what a classmust
contain.

7.1.6 Making ClassesWithout the Class Construct

Newcomers to the class concept often have a hard time understanding what this
concept is about. The present section tries to explain in more detail how we can
introduce classes without having the class construct in the computer language. This
information may or may not increase your understanding of classes. If not, pro-
gramming with classes will definitely increase your understanding with time, so
there is no reason to worry. In fact, you may safely jump to Sect. 7.3 as there are no
important concepts in this section that later sections build upon.

A class contains a collection of variables (data) and a collection of methods
(functions). The collection of variables is unique to each instance of the class.
That is, if we make ten instances, each of them has its own set of variables. These
variables can be thought of as a dictionary with keys equal to the variable names.
Each instance then has its own dictionary, and we may roughly view the instance as
this dictionary. (The instance can also contain static data attributes (Sect. 7.6), but
these are to be viewed as global variables in the present context.)

On the other hand, the methods are shared among the instances. We may think
of a method in a class as a standard global function that takes an instance in the
form of a dictionary as first argument. The method has then access to the variables
in the instance (dictionary) provided in the call. For the Y class from Sect. 7.1.2
and an instance y, the methods are ordinary functions with the following names and
arguments:

Y.value(y, t)

Y.formula(y)
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The class acts as a namespace, meaning that all functions must be prefixed by the
namespace name, here Y. Two different classes, say C1 and C2, may have functions
with the same name, say value, but when the value functions belong to differ-
ent namespaces, their names C1.value and C2.value become distinct. Modules
are also namespaces for the functions and variables in them (think of math.sin,
cmath.sin, numpy.sin).

The only peculiar thing with the class construct in Python is that it allows us to
use an alternative syntax for method calls:

y.value(t)

y.formula()

This syntax coincides with the traditional syntax of calling class methods and pro-
viding arguments, as found in other computer languages, such as Java, C#, C++,
Simula, and Smalltalk. The dot notation is also used to access variables in an in-
stance such that we inside a method can write self.v0 instead of self[’v0’]
(self refers to y through the function call).

We could easily implement a simple version of the class concept without having
a class construction in the language. All we need is a dictionary type and ordinary
functions. The dictionary acts as the instance, and methods are functions that take
this dictionary as the first argument such that the function has access to all the
variables in the instance. Our Y class could now be implemented as

def value(self, t):

return self[’v0’]*t - 0.5*self[’g’]*t**2

def formula(self):

print ’v0*t - 0.5*g*t**2; v0=%g’ % self[’v0’]

The two functions are placed in a module called Y. The usage goes as follows:

import Y

y = {’v0’: 4, ’g’: 9.81} # make an "instance"

y1 = Y.value(y, t)

We have no constructor since the initialization of the variables is done when declar-
ing the dictionary y, but we could well include some initialization function in the Y
module

def init(v0):

return {’v0’: v0, ’g’: 9.81}

The usage is now slightly different:

import Y

y = Y.init(4) # make an "instance"

y1 = Y.value(y, t)
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This way of implementing classes with the aid of a dictionary and a set of
ordinary functions actually forms the basis for class implementations in many lan-
guages. Python and Perl even have a syntax that demonstrates this type of imple-
mentation. In fact, every class instance in Python has a dictionary __dict__ as
attribute, which holds all the variables in the instance. Here is a demo that proves
the existence of this dictionary in class Y:

>>> y = Y(1.2)

>>> print y.__dict__

{’v0’: 1.2, ’g’: 9.8100000000000005}

To summarize: A Python class can be thought of as some variables collected in
a dictionary, and a set of functions where this dictionary is automatically provided
as first argument such that functions always have full access to the class variables.

First remark We have in this section provided a view of classes from a technical
point of view. Others may view a class as a way of modeling the world in terms
of data and operations on data. However, in sciences that employ the language
of mathematics, the modeling of the world is usually done by mathematics, and
the mathematical structures provide understanding of the problem and structure of
programs. When appropriate, mathematical structures can conveniently be mapped
on to classes in programs to make the software simpler and more flexible.

Second remark The view of classes in this section neglects very important topics
such as inheritance and dynamic binding (explained in Chap. 9). For more com-
pleteness of the present section, we therefore briefly describe how our combination
of dictionaries and global functions can deal with inheritance and dynamic binding
(but this will not make sense unless you know what inheritance is).

Data inheritance can be obtained by letting a subclass dictionary do an update
call with the superclass dictionary as argument. In this way all data in the superclass
are also available in the subclass dictionary. Dynamic binding of methods is more
complicated, but one can think of checking if the method is in the subclass module
(using hasattr), and if not, one proceeds with checking super class modules until
a version of the method is found.

7.1.7 Closures

This section follows up the discussion in Sect. 7.1.6 and presents a more advanced
construction that may serve as alternative to class constructions in some cases.

Our motivating example is that we want a Python implementation of a mathe-
matical function y.t I v0/ D v0t � 1

2
gt2 to have t as the only argument, but also

have access to the parameter v0. Consider the following function, which returns
a function:
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>>> def generate_y():

... v0 = 5

... g = 9.81

... def y(t):

... return v0*t - 0.5*g*t**2

... return y

...

>>> y = generate_y()

>>> y(1)

0.09499999999999975

The remarkable property of the y function is that it remembers the value of v0 and
g, although these variables are not local to the parent function generate_y and not
local in y. In particular, we can specify v0 as argument to generate_y:

>>> def generate_y(v0):

... g = 9.81

... def y(t):

... return v0*t - 0.5*g*t**2

... return y

...

>>> y1 = generate_y(v0=1)

>>> y2 = generate_y(v0=5)

>>> y1(1)

-3.9050000000000002

>>> y2(1)

0.09499999999999975

Here, y1(t) has access to v0=1 while y2(t) has access to v0=5.
The function y(t) we construct and return from generate_y is called a closure

and it remembers the value of the surrounding local variables in the parent func-
tion (at the time we create the y function). Closures are very convenient for many
purposes in mathematical computing. Examples appear in Sect. 7.3.2. Closures are
also central in a programming style called functional programming.

Generatingmultiple closures in a function
As soon as you get the idea of a closure, you will probably use it a lot because
it is a convenient way to pack a function with extra data. However, there are
some pitfalls. The biggest is illustrated below, but this is considered advanced
material!

Let us generate a series of functions v(t) for various values of a parameter
v0. Each function just returns a tuple (v0, t) such that we can easily see what
the argument and the parameter are. We use lambda to quickly define each
function, and we place the functions in a list:

>>> def generate():

... return [lambda t: (v0, t) for v0 in [0, 1, 5, 10]]

...

>>> funcs = generate()
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Now, funcs is a list of functions with one argument. Calling each function and
printing the return values v0 and t gives

>>> for func in funcs:

... print func(1)

...

(10, 1)

(10, 1)

(10, 1)

(10, 1)

As we see, all functions have v0=10, i.e., they stored the most recent value of v0
before return. This is not what we wanted.

The trick is to let v0 be a keyword argument in each function, because the
value of a keyword argument is frozen at the time the function is defined:

>>> def generate():

... return [lambda t, v0=v0: (v0, t)

... for v0 in [0, 1, 5, 10]]

...

>>> funcs = generate()

>>> for func in funcs:

... print func(1)

...

(0, 1)

(1, 1)

(5, 1)

(10, 1)

7.2 More Examples on Classes

The use of classes to solve problems from mathematical and physical sciences may
not be so obvious. On the other hand, in many administrative programs for manag-
ing interactions between objects in the real world the objects themselves are natural
candidates for being modeled by classes. Below we give some examples on what
classes can be used to model.

7.2.1 Bank Accounts

The concept of a bank account in a program is a good candidate for a class. The
account has some data, typically the name of the account holder, the account num-
ber, and the current balance. Three things we can do with an account is withdraw
money, put money into the account, and print out the data of the account. These
actions are modeled by methods. With a class we can pack the data and actions
together into a new data type so that one account corresponds to one variable in
a program.
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Class Account can be implemented as follows:

class Account(object):

def __init__(self, name, account_number, initial_amount):

self.name = name

self.no = account_number

self.balance = initial_amount

def deposit(self, amount):

self.balance += amount

def withdraw(self, amount):

self.balance -= amount

def dump(self):

s = ’%s, %s, balance: %s’ % \

(self.name, self.no, self.balance)

print s

Here is a simple test of how class Account can be used:

>>> from classes import Account

>>> a1 = Account(’John Olsson’, ’19371554951’, 20000)

>>> a2 = Account(’Liz Olsson’, ’19371564761’, 20000)

>>> a1.deposit(1000)

>>> a1.withdraw(4000)

>>> a2.withdraw(10500)

>>> a1.withdraw(3500)

>>> print "a1’s balance:", a1.balance

a1’s balance: 13500

>>> a1.dump()

John Olsson, 19371554951, balance: 13500

>>> a2.dump()

Liz Olsson, 19371564761, balance: 9500

The author of this class does not want users of the class to operate on the at-
tributes directly and thereby change the name, the account number, or the balance.
The intention is that users of the class should only call the constructor, the deposit,
withdraw, and dump methods, and (if desired) inspect the balance attribute, but
never change it. Other languages with class support usually have special keywords
that can restrict access to attributes, but Python does not. Either the author of
a Python class has to rely on correct usage, or a special convention can be used:
any name starting with an underscore represents an attribute that should never be
touched. One refers to names starting with an underscore as protected names. These
can be freely used inside methods in the class, but not outside.

In class Account, it is natural to protect access to the name, no, and balance
attributes by prefixing these names by an underscore. For reading only of the
balance attribute, we provide a new method get_balance. The user of the class
should now only call the methods in the class and not access any data attributes
directly.
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The new “protected” version of class Account, called AccountP, reads

class AccountP(object):

def __init__(self, name, account_number, initial_amount):

self._name = name

self._no = account_number

self._balance = initial_amount

def deposit(self, amount):

self._balance += amount

def withdraw(self, amount):

self._balance -= amount

def get_balance(self):

return self._balance

def dump(self):

s = ’%s, %s, balance: %s’ % \

(self._name, self._no, self._balance)

print s

We can technically access the data attributes, but we then break the convention
that names starting with an underscore should never be touched outside the class.
Here is class AccountP in action:

>>> a1 = AccountP(’John Olsson’, ’19371554951’, 20000)

>>> a1.deposit(1000)

>>> a1.withdraw(4000)

>>> a1.withdraw(3500)

>>> a1.dump()

John Olsson, 19371554951, balance: 13500

>>> print a1._balance # it works, but a convention is broken

13500

print a1.get_balance() # correct way of viewing the balance

13500

>>> a1._no = ’19371554955’ # this is a "serious crime"

Python has a special construct, called properties, that can be used to protect data at-
tributes from being changed. This is very useful, but the author considers properties
a bit too complicated for this introductory book.

7.2.2 Phone Book

You are probably familiar with the phone book on your mobile phone. The phone
book contains a list of persons. For each person you can record the name, telephone
numbers, email address, and perhaps other relevant data. A natural way of repre-
senting such personal data in a program is to create a class, say class Person. The
data attributes of the class hold information like the name, mobile phone number,
office phone number, private phone number, and email address. The constructor
may initialize some of the data about a person. Additional data can be specified
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later by calling methods in the class. One method can print the data. Other meth-
ods can register additional telephone numbers and an email address. In addition we
initialize some of the data attributes in a constructor method. The attributes that
are not initialized when constructing a Person instance can be added later by call-
ing appropriate methods. For example, adding an office number is done by calling
add_office_number.

Class Personmay look as

class Person(object):

def __init__(self, name,

mobile_phone=None, office_phone=None,

private_phone=None, email=None):

self.name = name

self.mobile = mobile_phone

self.office = office_phone

self.private = private_phone

self.email = email

def add_mobile_phone(self, number):

self.mobile = number

def add_office_phone(self, number):

self.office = number

def add_private_phone(self, number):

self.private = number

def add_email(self, address):

self.email = address

Note the use of None as default value for various data attributes: the object None
is commonly used to indicate that a variable or attribute is defined, but yet not with
a sensible value.

A quick demo session of class Personmay go as follows:

>>> p1 = Person(’Hans Hanson’,

... office_phone=’767828283’, email=’h@hanshanson.com’)

>>> p2 = Person(’Ole Olsen’, office_phone=’767828292’)

>>> p2.add_email(’olsen@somemail.net’)

>>> phone_book = [p1, p2]

It can be handy to add a method for printing the contents of a Person instance in
a nice fashion:

class Person(object):

...

def dump(self):

s = self.name + ’\n’

if self.mobile is not None:

s += ’mobile phone: %s\n’ % self.mobile

if self.office is not None:

s += ’office phone: %s\n’ % self.office
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if self.private is not None:

s += ’private phone: %s\n’ % self.private

if self.email is not None:

s += ’email address: %s\n’ % self.email

print s

With this method we can easily print the phone book:

>>> for person in phone_book:

... person.dump()

...

Hans Hanson

office phone: 767828283

email address: h@hanshanson.com

Ole Olsen

office phone: 767828292

email address: olsen@somemail.net

A phone book can be a list of Person instances, as indicated in the examples
above. However, if we quickly want to look up the phone numbers or email address
for a given name, it would be more convenient to store the Person instances in
a dictionary with the name as key:

>>> phone_book = {’Hanson’: p1, ’Olsen’: p2}

>>> for person in sorted(phone_book): # alphabetic order

... phone_book[person].dump()

The current example of Person objects is extended in Sect. 7.3.5.

7.2.3 A Circle

Geometric figures, such as a circle, are other candidates for classes in a program.
A circle is uniquely defined by its center point .x0; y0/ and its radius R. We can
collect these three numbers as data attributes in a class. The values of x0, y0,
and R are naturally initialized in the constructor. Other methods can be area and
circumference for calculating the area �R2 and the circumference 2�R:

class Circle(object):

def __init__(self, x0, y0, R):

self.x0, self.y0, self.R = x0, y0, R

def area(self):

return pi*self.R**2

def circumference(self):

return 2*pi*self.R
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An example of using class Circle goes as follows:

>>> c = Circle(2, -1, 5)

>>> print ’A circle with radius %g at (%g, %g) has area %g’ % \

... (c.R, c.x0, c.y0, c.area())

A circle with radius 5 at (2, -1) has area 78.5398

The ideas of class Circle can be applied to other geometric objects as well:
rectangles, triangles, ellipses, boxes, spheres, etc. Exercise 7.4 tests if you are able
to adapt class Circle to a rectangle and a triangle.

Verification We should include a test function for checking that the implementa-
tion of class Circle is correct:

def test_Circle():

R = 2.5

c = Circle(7.4, -8.1, R)

from math import pi

expected_area = pi*R**2

computed_area = c.area()

diff = abs(expected_area - computed_area)

tol = 1E-14

assert diff < tol, ’bug in Circle.area, diff=%s’ % diff

expected_circumference = 2*pi*R

computed_circumference = c.circumference()

diff = abs(expected_circumference - computed_circumference)

assert diff < tol, ’bug in Circle.circumference, diff=%s’ % diff

The test_Circle function is written in a way that it can be used in a pytest or
nose testing framework (see Sect. H.9, or the brief examples in Sects. 3.3.3, 3.4.2,
and 4.9.4). The necessary conventions are that the function name starts with test_,
the function takes no arguments, and all tests are of the form assert success or
assert success, msgwhere success is a boolean condition for the test and msg
is an optional message to be written if the test fails (success is False). It is a good
habit to write such test functions to verify the implementation of classes.

Remark There are usually many solutions to a programming problem. Represent-
ing a circle is no exception. Instead of using a class, we could collect x0, y0, and R

in a list and create global functions area and circumference that take such a list
as argument:

x0, y0, R = 2, -1, 5

circle = [x0, y0, R]

def area(c):

R = c[2]

return pi*R**2

def circumference(c):

R = c[2]

return 2*pi*R
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Alternatively, the circle could be represented by a dictionary with keys ’center’
and ’radius’:

circle = {’center’: (2, -1), ’radius’: 5}

def area(c):

R = c[’radius’]

return pi*R**2

def circumference(c):

R = c[’radius’]

return 2*pi*R

7.3 Special Methods

Some class methods have names starting and ending with a double underscore.
These methods allow a special syntax in the program and are called special methods.
The constructor __init__ is one example. This method is automatically called
when an instance is created (by calling the class as a function), but we do not need
to explicitly write __init__. Other special methods make it possible to perform
arithmetic operations with instances, to compare instances with >, >=, !=, etc., to
call instances as we call ordinary functions, and to test if an instance evaluates to
True or False, to mention some possibilities.

7.3.1 The Call Special Method

Computing the value of the mathematical function represented by class Y from
Sect. 7.1.2, with y as the name of the instance, is performed by writing y.value(t).
If we could write just y(t), the y instance would look as an ordinary function. Such
a syntax is indeed possible and offered by the special method named __call__.
Writing y(t) implies a call

y.__call__(t)

if class Y has the method __call__ defined. Wemay easily add this special method:

class Y(object):

...

def __call__(self, t):

return self.v0*t - 0.5*self.g*t**2

The previous value method is now redundant. A good programming convention
is to include a __call__method in all classes that represent a mathematical func-
tion. Instances with __call__methods are said to be callable objects, just as plain
functions are callable objects as well. The call syntax for callable objects is the
same, regardless of whether the object is a function or a class instance. Given an
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object a,

if callable(a):

tests whether a behaves as a callable, i.e., if a is a Python function or an instance
with a __call__method.

In particular, an instance of class Y can be passed as the f argument to the diff
function from Sect. 7.1.1:

y = Y(v0=5)

dydt = diff(y, 0.1)

Inside diff, we can test that f is not a function but an instance of class Y. However,
we only use f in calls, like f(x), and for this purpose an instance with a __call__
method works as a plain function. This feature is very convenient.

The next section demonstrates a neat application of the call operator __call__
in a numerical algorithm.

7.3.2 Example: Automagic Differentiation

Problem Given a Python implementation f(x) of a mathematical function f .x/,
we want to create an object that behaves as a Python function for computing the
derivative f 0.x/. For example, if this object is of type Derivative, we should be
able to write something like

>>> def f(x):

return x**3

...

>>> dfdx = Derivative(f)

>>> x = 2

>>> dfdx(x)

12.000000992884452

That is, dfdx behaves as a straight Python function for implementing the derivative
3x2 of x3 (well, the answer is only approximate, with an error in the 7th decimal,
but the approximation can easily be improved).

Maple, Mathematica, and many other software packages can do exact symbolic
mathematics, including differentiation and integration. The Python package sympy
for symbolic mathematics (see Sect. 1.7) makes it trivial to calculate the exact
derivative of a large class of functions f .x/ and turn the result into an ordinary
Python function. However, mathematical functions that are defined in an algo-
rithmic way (e.g., solution of another mathematical problem), or functions with
branches, random numbers, etc., pose fundamental problems to symbolic differ-
entiation, and then numerical differentiation is required. Therefore we base the
computation of derivatives in Derivative instances on finite difference formulas.
Use of exact symbolic differentiation via SymPy is also possible.
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Solution The most basic (but not the best) formula for a numerical derivative is

f 0.x/ � f .x C h/ � f .x/

h
: (7.2)

The idea is that we make a class to hold the function to be differentiated, call it f,
and a step size h to be used in (7.2). These variables can be set in the constructor.
The __call__ operator computes the derivative with aid of (7.1). All this can be
coded in a few lines:

class Derivative(object):

def __init__(self, f, h=1E-5):

self.f = f

self.h = float(h)

def __call__(self, x):

f, h = self.f, self.h # make short forms

return (f(x+h) - f(x))/h

Note that we turn h into a float to avoid potential integer division.
Below follows an application of the class to differentiate two functions f .x/ D

sin x and g.t/ D t3:

>>> from math import sin, cos, pi

>>> df = Derivative(sin)

>>> x = pi

>>> df(x)

-1.000000082740371

>>> cos(x) # exact

-1.0

>>> def g(t):

... return t**3

...

>>> dg = Derivative(g)

>>> t = 1

>>> dg(t) # compare with 3 (exact)

3.000000248221113

The expressions df(x) and dg(t) look as ordinary Python functions that evaluate
the derivative of the functions sin(x) and g(t). Class Derivative works for
(almost) any function f .x/.

Verification It is a good programming habit to include a test function for verifying
the implementation of a class. We can construct a test based on the fact that the
approximate differentiation formula (7.2) is exact for linear functions:

def test_Derivative():

# The formula is exact for linear functions, regardless of h

f = lambda x: a*x + b

a = 3.5; b = 8

dfdx = Derivative(f, h=0.5)

diff = abs(dfdx(4.5) - a)

assert diff < 1E-14, ’bug in class Derivative, diff=%s’ % diff
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We have here used a lambda function for compactly defining a function f, see
Sect. 3.1.14. A special feature of f is that it remembers the variables a and b when
f is sent to class Derivative (it is a closure, see Sect. 7.1.7). Note that the test
function above follows the conventions for test functions outlined in Sect. 7.2.3.

Application: Newton’s method In what situations will it be convenient to au-
tomatically produce a Python function df(x) which is the derivative of another
Python function f(x)? One example arises when solving nonlinear algebraic equa-
tions f .x/ D 0 with Newton’s method and we, because of laziness, lack of time, or
lack of training do not manage to derive f 0.x/ by hand. Consider a function Newton
for solving f .x/ D 0: Newton(f, x, dfdx, epsilon=1.0E-7, N=100). Sec-
tion A.1.10 presents a specific implementation in a module file Newton.py. The
arguments are a Python function f for f .x/, a float x for the initial guess (start
value) of x, a Python function dfdx for f 0.x/, a float epsilon for the accuracy �

of the root: the algorithms iterates until jf .x/j < �, and an int N for the maximum
number of iterations that we allow. All arguments are easy to provide, except dfdx,
which requires computing f 0.x/ by hand then implementation of the formula in
a Python function. Suppose our target equation reads

f .x/ D 105.x � 0:9/2.x � 1:1/3 D 0 :

The function f .x/ is plotted in Fig. 7.2. The following session employs the
Derivative class to quickly make a derivative so we can call Newton’s method:

>>> from classes import Derivative

>>> from Newton import Newton

>>> def f(x):

... return 100000*(x - 0.9)**2 * (x - 1.1)**3

...

>>> df = Derivative(f)

>>> Newton(f, 1.01, df, epsilon=1E-5)

(1.0987610068093443, 8, -7.5139644257961411e-06)

The output 3-tuple holds the approximation to a root, the number of iterations, and
the value of f at the approximate root (a measure of the error in the equation).

The exact root is 1.1, and the convergence toward this value is very slow. (New-
ton’s method converges very slowly when the derivative of f is zero at the roots of
f . Even slower convergence appears when higher-order derivatives also are zero,
like in this example. Notice that the error in x is much larger than the error in the
equation (epsilon). For example, an epsilon tolerance of 10�10 requires 18 it-
erations with an error of 10�3.) Using an exact derivative gives almost the same
result:

>>> def df_exact(x):

... return 100000*(2*(x-0.9)*(x-1.1)**3 + \

... (x-0.9)**2*3*(x-1.1)**2)

...

>>> Newton(f, 1.01, df_exact, epsilon=1E-5)

(1.0987610065618421, 8, -7.5139689100699629e-06)

http://tinyurl.com/pwyasaa/diffeq/Newton.py
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Fig. 7.2 Plot of y D 105.x � 0:9/2.x � 1:1/3

This example indicates that there are hardly any drawbacks in using a "smart"
inexact general differentiation approach as in the Derivative class. The advan-
tages are many – most notably, Derivative avoids potential errors from possibly
incorrect manual coding of possibly lengthy expressions of possibly wrong hand-
calculations. The errors in the involved approximations can be made smaller, usu-
ally much smaller than other errors, like the tolerance in Newton’s method in this
example or the uncertainty in physical parameters in real-life problems.

Solution utilizing SymPy Class Derivative is based on numerical differentia-
tion, but it is possible to make an equally short class that can do exact differentiation.
In SymPy, one can perform symbolic differentiation of an expression e with respect
to a symbolic independent variable x by diff(e, x) (see Sect. 1.7.1). Assuming
that the user’s f function can be evaluated for a symbolic independent variable x,
we can call f(x) to get the SymPy expression for the formula in f and then use
diff to calculate the exact derivative. Thereafter, we turn the symbolic expression
of the derivative into an ordinary Python function (via lambdify) and define this
function as the __call__method. The proper Python code is very short:

class Derivative_sympy(object):

def __init__(self, f):

from sympy import Symbol, diff, lambdify

x = Symbol(’x’)

sympy_f = f(x) # make sympy expression

sympy_dfdx = diff(sympy_f, x)

self.__call__ = lambdify([x], sympy_dfdx)

Note how the __call__ method is defined by assigning a function to it (even
though the function returned by lambdify is a function of x only, it works to call
obj(x) for an instance obj of type Derivative_sympy).
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Both demonstration of the class and verification of the implementation can be
placed in a test function:

def test_Derivative_sympy():

def g(t):

return t**3

dg = Derivative_sympy(g)

t = 2

exact = 3*t**2

computed = dg(t)

tol = 1E-14

assert abs(exact - computed) < tol

def h(y):

return exp(-y)*sin(2*y)

from sympy import exp, sin

dh = Derivative_sympy(h)

from math import pi, exp, sin, cos

y = pi

exact = -exp(-y)*sin(2*y) + exp(-y)*2*cos(2*y)

computed = dh(y)

assert abs(exact - computed) < tol

The example with the g(t) should be straightforward to understand. In the
constructor of class Derivative_sympy, we call g(x), with the symbol x, and g
returns the SymPy expression x**3. The __call__ method then becomes a func-
tion lambda x: 3*x**2.

The h(y) function, however, deserves more explanation. When then constructor
of class Derivative_sympymakes the call h(x), with the symbol x, the h function
will return the SymPy expression exp(-x)*sin(2*x), provided exp and sin are
SymPy functions. Since we do from sympy import exp, sin prior to calling
the constructor in class Derivative_sympy, the names exp and sin are defined
in the test function, and our local h function will have access to all local variables,
as it is a closure as mentioned above and in Sect. 7.1.7 (see also Sect. 9.2.6). This
means that h has access to sympy.sin and sympy.cos when the constructor in
class Derivative_sympy calls h. Thereafter, we want to do some numerical com-
puting and need exp, sin, and cos from the math module. If we had tried to do
Derivative_sympy(h) after the import from math, h would then call math.exp
and math.sin with a SymPy symbol as argument, and would cause a TypeError
since math.exp expects a float, not a Symbol object from SymPy.

Although the Derivative_sympy class is small and compact, its construction
and use as explained here bring up more advanced topics than class Derivative
and its plain numerical computations. However, it may be interesting to see that
a class for exact differentiation of a Python function can be realized in very few
lines.
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7.3.3 Example: Automagic Integration

We can apply the ideas from Sect. 7.3.2 to make a class for computing the integral
of a function numerically. Given a function f .x/, we want to compute

F.xI a/ D
xZ

a

f .t/dt :

The computational technique consists of using the Trapezoidal rule with n intervals
(n C 1 points):

xZ
a

f .t/dt D h

 
1

2
f .a/ C

n�1X
iD1

f .a C ih/ C 1

2
f .x/

!
; (7.3)

where h D .x � a/=n. In an application program, we want to compute F.xI a/ by
a simple syntax like

def f(x):

return exp(-x**2)*sin(10*x)

a = 0; n = 200

F = Integral(f, a, n)

print F(x)

Here, f(x) is the Python function to be integrated, and F(x) behaves as a Python
function that calculates values of F.xI a/.

A simple implementation Consider a straightforward implementation of the
Trapezoidal rule in a Python function:

def trapezoidal(f, a, x, n):

h = (x-a)/float(n)

I = 0.5*f(a)

for i in range(1, n):

I += f(a + i*h)

I += 0.5*f(x)

I *= h

return I

Class Integralmust have some data attributes and a __call__method. Since
the latter method is supposed to take x as argument, the other parameters a, f, and
n must be data attributes. The implementation then becomes

class Integral(object):

def __init__(self, f, a, n=100):

self.f, self.a, self.n = f, a, n

def __call__(self, x):

return trapezoidal(self.f, self.a, x, self.n)
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Observe that we just reuse the trapezoidal function to perform the calculation.
We could alternatively have copied the body of the trapezoidal function into the
__call__ method. However, if we already have this algorithm implemented and
tested as a function, it is better to call the function. The class is then known as
a wrapper of the underlying function. A wrapper allows something to be called
with alternative syntax.

An application program computing
R 2�

0
sin x dx might look as follows:

from math import sin, pi

G = Integral(sin, 0, 200)

value = G(2*pi)

An equivalent calculation is

value = trapezoidal(sin, 0, 2*pi, 200)

Verification via symbolic computing We should always provide a test function
for verification of the implementation. To avoid dealing with unknown approxima-
tion errors of the Trapezoidal rule, we use the obvious fact that linear functions are
integrated exactly by the rule. Although it is really easy to pick a linear function,
integrate it, and figure out what an integral is, we can also demonstrate how to au-
tomate such a process by SymPy. Essentially, we define an expression in SymPy,
ask SymPy to integrate it, and then turn the resulting symbolic integral to a plain
Python function for computing:

>>> import sympy as sp

>>> x = sp.Symbol(’x’)

>>> f_expr = sp.cos(x) + 5*x

>>> f_expr

5*x + cos(x)

>>> F_expr = sp.integrate(f_expr, x)

>>> F_expr

5*x**2/2 + sin(x)

>>> F = sp.lambdify([x], F_expr) # turn f_expr to F(x) func.

>>> F(0)

0.0

>>> F(1)

3.3414709848078967

Using such functionality to do exact integration, we can write our test function as

def test_Integral():

# The Trapezoidal rule is exact for linear functions

import sympy as sp

x = sp.Symbol(’x’)

f_expr = 2*x + 5

# Turn sympy expression into plain Python function f(x)

f = sp.lambdify([x], f_expr)



440 7 Introduction to Classes

# Find integral of f_expr and turn into plain Python function F

F_expr = sp.integrate(f_expr, x)

F = sp.lambdify([x], F_expr)

a = 2

x = 6

exact = F(x) - F(a)

computed = Integral(f, a, n=4)

diff = abs(exact - computed)

tol = 1E-15

assert diff < tol, ’bug in class Integral, diff=%s’ % diff

If you think it is overkill to use SymPy for integrating linear functions, you
can equally well do it yourself and define f = lambda x: 2*x + 5 and F =
lambda x: x**2 + 5*x.

Remark Class Integral is inefficient (but probably more than fast enough) for
plotting F.xI a/ as a function x. Exercise 7.22 suggests to optimize the class for
this purpose.

7.3.4 Turning an Instance into a String

Another useful special method is __str__. It is called when a class instance needs
to be converted to a string. This happens when we say print a, and a is an in-
stance. Python will then look into the a instance for a __str__ method, which is
supposed to return a string. If such a special method is found, the returned string is
printed, otherwise just the name of the class is printed. An example will illustrate
the point. First we try to print an y instance of class Y from Sect. 7.1.2 (where there
is no __str__method):

>>> print y

<__main__.Y instance at 0xb751238c>

This means that y is an Y instance in the __main__ module (the main program or
the interactive session). The output also contains an address telling where the y
instance is stored in the computer’s memory.

If we want print y to print out the y instance, we need to define the __str__
method in class Y:

class Y(object):

...

def __str__(self):

return ’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

Typically, __str__ replaces our previous formulamethod and __call__ replaces
our previous valuemethod. Python programmers with the experience that we now
have gained will therefore write class Y with special methods only:
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class Y(object):

def __init__(self, v0):

self.v0 = v0

self.g = 9.81

def __call__(self, t):

return self.v0*t - 0.5*self.g*t**2

def __str__(self):

return ’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

Let us see the class in action:

>>> y = Y(1.5)

>>> y(0.2)

0.1038

>>> print y

v0*t - 0.5*g*t**2; v0=1.5

What have we gained by using special methods? Well, we can still only evaluate
the formula and write it out, but many users of the class will claim that the syntax
is more attractive since y(t) in code means y.t/ in mathematics, and we can do
a print y to view the formula. The bottom line of using special methods is to
achieve a more user-friendly syntax. The next sections illustrate this point further.

Note that the __str__method is called whenever we do str(a), and print a
is effectively print str(a), i.e., print a.__str__().

7.3.5 Example: Phone Book with Special Methods

Let us reconsider class Person from Sect. 7.2.2. The dump method in that class is
better implemented as a __str__ special method. This is easy: we just change the
method name and replace print s by return s.

Storing Person instances in a dictionary to form a phone book is straightfor-
ward. However, we make the dictionary a bit easier to use if we wrap a class around
it. That is, we make a class PhoneBook which holds the dictionary as an attribute.
An addmethod can be used to add a new person:

class PhoneBook(object):

def __init__(self):

self.contacts = {} # dict of Person instances

def add(self, name, mobile=None, office=None,

private=None, email=None):

p = Person(name, mobile, office, private, email)

self.contacts[name] = p
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A __str__ can print the phone book in alphabetic order:

def __str__(self):

s = ’’

for p in sorted(self.contacts):

s += str(self.contacts[p]) + ’\n’

return s

To retrieve a Person instance, we use the __call__ with the person’s name as
argument:

def __call__(self, name):

return self.contacts[name]

The only advantage of this method is simpler syntax: for a PhoneBook b we can
get data about NN by calling b(’NN’) rather than accessing the internal dictionary
b.contacts[’NN’].

We can make a simple demo code for a phone book with three names:

b = PhoneBook()

b.add(’Ole Olsen’, office=’767828292’,

email=’olsen@somemail.net’)

b.add(’Hans Hanson’,

office=’767828283’, mobile=’995320221’)

b.add(’Per Person’, mobile=’906849781’)

print b(’Per Person’)

print b

The output becomes

Per Person

mobile phone: 906849781

Hans Hanson

mobile phone: 995320221

office phone: 767828283

Ole Olsen

office phone: 767828292

email address: olsen@somemail.net

Per Person

mobile phone: 906849781

You are strongly encouraged to work through this last demo program by hand and
simulate what the program does. That is, jump around in the code and write down
on a piece of paper what various variables contain after each statement. This is
an important and good exercise! You enjoy the happiness of mastering classes if
you get the same output as above. The complete program with classes Person
and PhoneBook and the test above is found in the file PhoneBook.py. You can

http://tinyurl.com/pwyasaa/class/PhoneBook.py
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run this program, statement by statement, either in the Online Python Tutor2 or in
a debugger (see Sect. F.1) to control that your understanding of the program flow is
correct.

Remark Note that the names are sorted with respect to the first names. The reason
is that strings are sorted after the first character, then the second character, and so
on. We can supply our own tailored sort function, as explained in Exercise 3.39.
One possibility is to split the name into words and use the last word for sorting:

def last_name_sort(name1, name2):

lastname1 = name1.split()[-1]

lastname2 = name2.split()[-1]

if lastname1 < lastname2:

return -1

elif lastname1 > lastname2:

return 1

else: # equality

return 0

for p in sorted(self.contacts, last_name_sort):

...

7.3.6 Adding Objects

Let a and b be instances of some class C. Does it make sense to write a + b? Yes,
this makes sense if class C has defined a special method __add__:

class C(object):

...

__add__(self, other):

...

The __add__method should add the instances self and other and return the result
as an instance. So when Python encounters a + b, it will check if class C has an
__add__method and interpret a + b as the call a.__add__(b). The next example
will hopefully clarify what this idea can be used for.

7.3.7 Example: Class for Polynomials

Let us create a class Polynomial for polynomials. The coefficients in the poly-
nomial can be given to the constructor as a list. Index number i in this list
represents the coefficients of the xi term in the polynomial. That is, writing
Polynomial([1,0,-1,2]) defines a polynomial

1 C 0 � x � 1 � x2 C 2 � x3 D 1 � x2 C 2x3 :

2 http://www.pythontutor.com/

http://www.pythontutor.com/
http://www.pythontutor.com/
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Polynomials can be added (by just adding the coefficients corresponding to the same
powers) so our class may have an __add__method. A __call__method is natural
for evaluating the polynomial, given a value of x. The class is listed below and
explained afterwards.

class Polynomial(object):

def __init__(self, coefficients):

self.coeff = coefficients

def __call__(self, x):

"""Evaluate the polynomial."""

s = 0

for i in range(len(self.coeff)):

s += self.coeff[i]*x**i

return s

def __add__(self, other):

"""Return self + other as Polynomial object."""

# Two cases:

#

# self: X X X X X X X

# other: X X X

#

# or:

#

# self: X X X X X

# other: X X X X X X X X

# Start with the longest list and add in the other

if len(self.coeff) > len(other.coeff):

result_coeff = self.coeff[:] # copy!

for i in range(len(other.coeff)):

result_coeff[i] += other.coeff[i]

else:

result_coeff = other.coeff[:] # copy!

for i in range(len(self.coeff)):

result_coeff[i] += self.coeff[i]

return Polynomial(result_coeff)

Implementation Class Polynomial has one data attribute: the list of coefficients.
To evaluate the polynomial, we just sum up coefficient no. i times xi for i D 0 to
the number of coefficients in the list.

The __add__ method looks more advanced. The goal is to add the two lists
of coefficients. However, it may happen that the lists are of unequal length. We
therefore start with the longest list and add in the other list, element by element.
Observe that result_coeff starts out as a copy of self.coeff: if not, changes
in result_coeff as we compute the sum will be reflected in self.coeff. This
means that self would be the sum of itself and the other instance, or in other
words, adding two instances, p1+p2, changes p1 – this is not what we want! An
alternative implementation of class Polynomial is found in Exercise 7.24.

A subtraction method __sub__ can be implemented along the lines of __add__,
but is slightly more complicated and left as Exercise 7.25. You are strongly encour-
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aged to do this exercise as it will help increase the understanding of the interplay
between mathematics and programming in class Polynomial.

A more complicated operation on polynomials, from a mathematical point of
view, is the multiplication of two polynomials. Let p.x/ D PM

iD0 ci x
i and q.x/ DPN

j D0 dj xj be the two polynomials. The product becomes

 
MX

iD0

ci x
i

!0
@ NX

j D0

dj xj

1
A D

MX
iD0

NX
j D0

ci dj xiCj :

The double sum must be implemented as a double loop, but first the list for the
resulting polynomial must be created with lengthM CN C1 (the highest exponent is
M CN and then we need a constant term). The implementation of the multiplication
operator becomes

def __mul__(self, other):

c = self.coeff

d = other.coeff

M = len(c) - 1

N = len(d) - 1

result_coeff = numpy.zeros(M+N+1)

for i in range(0, M+1):

for j in range(0, N+1):

result_coeff[i+j] += c[i]*d[j]

return Polynomial(result_coeff)

We could also include a method for differentiating the polynomial according to
the formula

d

dx

nX
iD0

ci x
i D

nX
iD1

ici x
i�1 :

If ci is stored as a list c, the list representation of the derivative, say its name is dc,
fulfills dc[i-1] = i*c[i] for i running from 1 to the largest index in c. Note
that dc has one element less than c.

There are two different ways of implementing the differentiation functionality,
either by changing the polynomial coefficients, or by returning a new Polynomial
instance from the method such that the original polynomial instance is intact. We let
p.differentiate() be an implementation of the first approach, i.e., this method
does not return anything, but the coefficients in the Polynomial instance p are
altered. The other approach is implemented by p.derivative(), which returns
a new Polynomial object with coefficients corresponding to the derivative of p.

The complete implementation of the two methods is given below:

class Polynomial(object):

...

def differentiate(self):

"""Differentiate this polynomial in-place."""

for i in range(1, len(self.coeff)):

self.coeff[i-1] = i*self.coeff[i]

del self.coeff[-1]
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def derivative(self):

"""Copy this polynomial and return its derivative."""

dpdx = Polynomial(self.coeff[:]) # make a copy

dpdx.differentiate()

return dpdx

The Polynomial class with a differentiate method and not a derivative
method would be mutable (i.e., the object’s content can change) and allow in-
place changes of the data, while the Polynomial class with derivative and not
differentiatewould yield an immutable object where the polynomial initialized
in the constructor is never altered. (Technically, it is possible to grab the coeff
variable in a class instance and alter this list. By starting coeff with an under-
score, a Python programming convention tells programmers that this variable is
for internal use in the class only, and not to be altered by users of the instance,
see Sects. 7.2.1 and 7.5.2.) A good rule is to offer only one of these two func-
tions such that a Polynomial object is either mutable or immutable (if we leave
out differentiate, its function body must of course be copied into derivative
since derivative now relies on that code). However, since the main purpose of
this class is to illustrate various types of programming techniques, we keep both
versions.

Usage As a demonstration of the functionality of class Polynomial, we introduce
the two polynomials

p1.x/ D 1 � x; p2.x/ D x � 6x4 � x5 :

>>> p1 = Polynomial([1, -1])

>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])

>>> p3 = p1 + p2

>>> print p3.coeff

[1, 0, 0, 0, -6, -1]

>>> p4 = p1*p2

>>> print p4.coeff

[0, 1, -1, 0, -6, 5, 1]

>>> p5 = p2.derivative()

>>> print p5.coeff

[1, 0, 0, -24, -5]

One verification of the implementation may be to compare p3 at (e.g.) x D 1=2

with p1.x/ C p2.x/:

>>> x = 0.5

>>> p1_plus_p2_value = p1(x) + p2(x)

>>> p3_value = p3(x)

>>> print p1_plus_p2_value - p3_value

0.0

Note that p1 + p2 is very different from p1(x) + p2(x). In the former case,
we add two instances of class Polynomial, while in the latter case we add two
instances of class float (since p1(x) and p2(x) imply calling __call__ and that
method returns a float object).
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Pretty print of polynomials The Polynomial class can also be equipped with
a __str__ method for printing the polynomial to the screen. A first, rough imple-
mentation could simply add up strings of the form + self.coeff[i]*x^i:

class Polynomial(object):

...

def __str__(self):

s = ’’

for i in range(len(self.coeff)):

s += ’ + %g*x^%d’ % (self.coeff[i], i)

return s

However, this implementation leads to ugly output from a mathematical viewpoint.
For instance, a polynomial with coefficients [1,0,0,-1,-6] gets printed as

+ 1*x^0 + 0*x^1 + 0*x^2 + -1*x^3 + -6*x^4

A more desired output would be

1 - x^3 - 6*x^4

That is, terms with a zero coefficient should be dropped; a part ’+ -’ of the out-
put string should be replaced by ’- ’; unit coefficients should be dropped, i.e., ’
1*’ should be replaced by space ’ ’; unit power should be dropped by replacing
’x^1 ’ by ’x ’; zero power should be dropped and replaced by 1, initial spaces
should be fixed, etc. These adjustments can be implemented using the replace
method in string objects and by composing slices of the strings. The new version
of the __str__ method below contains the necessary adjustments. If you find this
type of string manipulation tricky and difficult to understand, you may safely skip
further inspection of the improved __str__ code since the details are not essential
for your present learning about the class concept and special methods.

class Polynomial(object):

...

def __str__(self):

s = ’’

for i in range(0, len(self.coeff)):

if self.coeff[i] != 0:

s += ’ + %g*x^%d’ % (self.coeff[i], i)

# Fix layout

s = s.replace(’+ -’, ’- ’)

s = s.replace(’x^0’, ’1’)

s = s.replace(’ 1*’, ’ ’)

s = s.replace(’x^1 ’, ’x ’)

if s[0:3] == ’ + ’: # remove initial +

s = s[3:]

if s[0:3] == ’ - ’: # fix spaces for initial -

s = ’-’ + s[3:]

return s

Programming sometimes turns into coding (what one think is) a general solution
followed by a series of special cases to fix caveats in the “general” solution, just as
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we experienced with the __str__method above. This situation often calls for ad-
ditional future fixes and is often a sign of a suboptimal solution to the programming
problem.

Pretty print of Polynomial instances can be demonstrated in an interactive ses-
sion:

>>> p1 = Polynomial([1, -1])

>>> print p1

1 - x^1

>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])

>>> p2.differentiate()

>>> print p2

1 - 24*x^3 - 5*x^4

Verifying the implementation It is always a good habit to include a test function
test_Polynomial() for verifying the functionality in class Polynomial. To this
end, we construct some examples of addition, multiplication, and differentiation of
polynomials by hand and make tests that class Polynomial reproduces the correct
results. Testing the __str__method is left as Exercise 7.26.

Rounding errors may be an issue in class Polynomial: __add__, derivative,
and differentiatewill lead to integer coefficients if the polynomials to be added
have integer coefficients, while __mul__ always results in a polynomial with the
coefficients stored in a numpy array with float elements. Integer coefficients in
lists can be compared using == for lists, while coefficients in numpy arrays must
be compared with a tolerance. One can either subtract the numpy arrays and use
the max method to find the largest deviation and compare this with a tolerance, or
one can use numpy.allclose(a, b, rtol=tol) for comparing the arrays a and
b with a (relative) tolerance tol.

Let us pick polynomials with integer coefficients as test cases such that __add__,
derivative, and differentiate can be verified by testing equality (==) of the
coeff lists. Multiplication in __mul__must employ numpy.allclose.

We follow the convention that all tests are on the form assert success, where
success is a boolean expression for the test. (The actual version of the test func-
tion in the file Polynomial.py adds an error message msg to the test: assert
success, msg.) Another part of the convention is that the function starts with
test_ and the function takes no arguments.

Our test function now becomes

def test_Polynomial():

p1 = Polynomial([1, -1])

p2 = Polynomial([0, 1, 0, 0, -6, -1])

p3 = p1 + p2

p3_exact = Polynomial([1, 0, 0, 0, -6, -1])

assert p3.coeff == p3_exact.coeff

p4 = p1*p2

p4_exact = Polynomial(numpy.array([0, 1, -1, 0, -6, 5, 1]))

assert numpy.allclose(p4.coeff, p4_exact.coeff, rtol=1E-14)

http://tinyurl.com/pwyasaa/class/Polynomial.py
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p5 = p2.derivative()

p5_exact = Polynomial([1, 0, 0, -24, -5])

assert p5.coeff == p5_exact.coeff

p6 = Polynomial([0, 1, 0, 0, -6, -1]) # p2

p6.differentiate()

p6_exact = p5_exact

assert p6.coeff == p6_exact.coeff

7.3.8 Arithmetic Operations and Other Special Methods

Given two instances a and b, the standard binary arithmetic operations with a and
b are defined by the following special methods:

� a + b : a.__add__(b)
� a - b : a.__sub__(b)
� a*b : a.__mul__(b)
� a/b : a.__div__(b)
� a**b : a.__pow__(b)

Some other special methods are also often useful:

� the length of a, len(a): a.__len__()
� the absolute value of a, abs(a): a.__abs__()
� a == b : a.__eq__(b)
� a > b : a.__gt__(b)
� a >= b : a.__ge__(b)
� a < b : a.__lt__(b)
� a <= b : a.__le__(b)
� a != b : a.__ne__(b)
� -a : a.__neg__()
� evaluating a as a boolean expression (as in the test if a:) implies calling

the special method a.__bool__(), which must return True or False – if
__bool__ is not defined, __len__ is called to see if the length is zero (False)
or not (True)

We can implement such methods in class Polynomial, see Exercise 7.25. Sec-
tion 7.4 contains examples on implementing the special methods listed above.

7.3.9 Special Methods for String Conversion

Look at this class with a __str__method:

>>> class MyClass(object):

... def __init__(self):

... self.data = 2

... def __str__(self):
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... return ’In __str__: %s’ % str(self.data)

...

>>> a = MyClass()

>>> print a

In __str__: 2

Hopefully, you understand well why we get this output (if not, go back to
Sect. 7.3.4).

But what will happen if we write just a at the command prompt in an interactive
shell?

>>> a

<__main__.MyClass instance at 0xb75125ac>

When writing just a in an interactive session, Python looks for a special method
__repr__ in a. This method is similar to __str__ in that it turns the instance
into a string, but there is a convention that __str__ is a pretty print of the instance
contents while __repr__ is a complete representation of the contents of the in-
stance. For a lot of Python classes, including int, float, complex, list, tuple,
and dict, __repr__ and __str__ give identical output. In our class MyClass the
__repr__ is missing, and we need to add it if we want

>>> a

to write the contents like print a does.
Given an instance a, str(a) implies calling a.__str__() and repr(a) implies

calling a.__repr__(). This means that

>>> a

is actually a repr(a) call and

>>> print a

is actually a print str(a) statement.
A simple remedy in class MyClass is to define

def __repr__(self):

return self.__str__() # or return str(self)

However, as we explain below, the __repr__ is best defined differently.

Recreating objects from strings The Python function eval(e) evaluates a valid
Python expression contained in the string e, see Sect. 4.3.1. It is a convention
that __repr__ returns a string such that eval applied to the string recreates the
instance. For example, in case of the Y class from Sect. 7.1.2, __repr__ should
return ’Y(10)’ if the v0 variable has the value 10. Then eval(’Y(10)’)will be
the same as if we had coded Y(10) directly in the program or an interactive session.
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Below we show examples of __repr__ methods in classes Y (Sect. 7.1.2),
Polynomial (Sect. 7.3.7), and MyClass (above):

class Y(object):

...

def __repr__(self):

return ’Y(v0=%s)’ % self.v0

class Polynomial(object):

...

def __repr__(self):

return ’Polynomial(coefficients=%s)’ % self.coeff

class MyClass(object):

...

def __repr__(self):

return ’MyClass()’

With these definitions, eval(repr(x)) recreates the object x if it is of one of the
three types above. In particular, we can write x to file and later recreate the x from
the file information:

# somefile is some file object

somefile.write(repr(x))

somefile.close()

...

data = somefile.readline()

x2 = eval(data) # recreate object

Now, x2 will be equal to x (x2 == x evaluates to True).

7.4 Example: Class for Vectors in the Plane

This section explains how to implement two-dimensional vectors in Python such
that these vectors act as objects we can add, subtract, form inner products with, and
do other mathematical operations on. To understand the forthcoming material, it is
necessary to have digested Sect. 7.3, in particular Sects. 7.3.6 and 7.3.8.

7.4.1 SomeMathematical Operations on Vectors

Vectors in the plane are described by a pair of real numbers, .a; b/. In Sect. 5.1.2
we present mathematical rules for adding and subtracting vectors, multiplying two
vectors (the inner or dot or scalar product), the length of a vector, and multiplication
by a scalar:

.a; b/ C .c; d/ D .a C c; b C d/; (7.4)

.a; b/ � .c; d/ D .a � c; b � d/; (7.5)
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.a; b/ � .c; d/ D ac C bd; (7.6)

jj.a; b/jj D p
.a; b/ � .a; b/ : (7.7)

Moreover, two vectors .a; b/ and .c; d/ are equal if a D c and b D d .

7.4.2 Implementation

We may create a class for plane vectors where the above mathematical operations
are implemented by special methods. The class must contain two data attributes,
one for each component of the vector, called x and y below. We include special
methods for addition, subtraction, the scalar product (multiplication), the absolute
value (length), comparison of two vectors (== and !=), as well as a method for
printing out a vector.

class Vec2D(object):

def __init__(self, x, y):

self.x = x

self.y = y

def __add__(self, other):

return Vec2D(self.x + other.x, self.y + other.y)

def __sub__(self, other):

return Vec2D(self.x - other.x, self.y - other.y)

def __mul__(self, other):

return self.x*other.x + self.y*other.y

def __abs__(self):

return math.sqrt(self.x**2 + self.y**2)

def __eq__(self, other):

return self.x == other.x and self.y == other.y

def __str__(self):

return ’(%g, %g)’ % (self.x, self.y)

def __ne__(self, other):

return not self.__eq__(other) # reuse __eq__

The __add__, __sub__, __mul__, __abs__, and __eq__methods should be quite
straightforward to understand from the previous mathematical definitions of these
operations. The last method deserves a comment: here we simply reuse the equality
operator __eq__, but precede it with a not. We could also have implemented this
method as

def __ne__(self, other):

return self.x != other.x or self.y != other.y

Nevertheless, this implementation requires us to write more, and it has the danger
of introducing an error in the logics of the boolean expressions. A more reliable
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approach, when we know that the __eq__ method works, is to reuse this method
and observe that a != b means not (a == b).

A word of warning is in place regarding our implementation of the equality op-
erator (== via __eq__). We test for equality of each component, which is correct
from a mathematical point of view. However, each vector component is a floating-
point number that may be subject to rounding errors both in the representation on
the computer and from previous (inexact) floating-point calculations. Two math-
ematically equal components may be different in their inexact representations on
the computer. The remedy for this problem is to avoid testing for equality, but in-
stead check that the difference between the components is sufficiently small. The
function numpy.allclose can be used for this purpose:

if a == b:

by

if numpy.allclose(a, b):

A more reliable equality operator can now be implemented:

class Vec2D(object):

...

def __eq__(self, other):

return numpy.allclose(self.x, other.x) and \

numpy.allclose(self.y, other.y)

As a rule of thumb, you should never apply the == test to two float objects.
The special method __len__ could be introduced as a synonym for __abs__,

i.e., for a Vec2D instance named v, len(v) is the same as abs(v), because the
absolute value of a vector is mathematically the same as the length of the vector.
However, if we implement

def __len__(self):

# Reuse implementation of __abs__

return abs(self) # equiv. to self.__abs__()

we will run into trouble when we compute len(v) and the answer is (as usual)
a float. Python will then complain and tell us that len(v) must return an int.
Therefore, __len__ cannot be used as a synonym for the length of the vector in our
application. On the other hand, we could let len(v) mean the number of compo-
nents in the vector:

def __len__(self):

return 2

This is not a very useful function, though, as we already know that all our Vec2D
vectors have just two components. For generalizations of the class to vectors with
n components, the __len__method is of course useful.
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7.4.3 Usage

Let us play with some Vec2D objects:

>>> u = Vec2D(0,1)

>>> v = Vec2D(1,0)

>>> w = Vec2D(1,1)

>>> a = u + v

>>> print a

(1, 1)

>>> a == w

True

>>> a = u - v

>>> print a

(-1, 1)

>>> a = u*v

>>> print a

0

>>> print abs(u)

1.0

>>> u == v

False

>>> u != v

True

When you read through this interactive session, you should check that the calcu-
lation is mathematically correct, that the resulting object type of a calculation is
correct, and how each calculation is performed in the program. The latter topic is
investigated by following the program flow through the class methods. As an exam-
ple, let us consider the expression u != v. This is a boolean expression that is True
since u and v are different vectors. The resulting object type should be bool, with
values True or False. This is confirmed by the output in the interactive session
above. The Python calculation of u != v leads to a call to

u.__ne__(v)

which leads to a call to

u.__eq__(v)

The result of this last call is False, because the special method will evaluate the
boolean expression

0 == 1 and 1 == 0

which is obviously False. When going back to the __ne__ method, we end up
with a return of not False, which evaluates to True.

Comment For real computations with vectors in the plane, you would probably
just use a Numerical Python array of length 2. However, one thing such objects



7.5 Example: Class for Complex Numbers 455

cannot do is evaluating u*v as a scalar product. The multiplication operator for
Numerical Python arrays is not defined as a scalar product (it is rather defined as
.a; b/�.c; d/ D .ac; bd/). Another difference between our Vec2D class and Numer-
ical Python arrays is the abs function, which computes the length of the vector in
class Vec2D, while it does something completely different with Numerical Python
arrays.

7.5 Example: Class for Complex Numbers

Imagine that Python did not already have complex numbers. We could then make
a class for such numbers and support the standard mathematical operations. This
exercise turns out to be a very good pedagogical example of programming with
classes and special methods, so we shall make our own class for complex numbers
and go through all the details of the implementation.

The class must contain two data attributes: the real and imaginary part of the
complex number. In addition, we would like to add, subtract, multiply, and divide
complex numbers. We would also like to write out a complex number in some
suitable format. A session involving our own complex numbers may take the form

>>> u = Complex(2,-1)

>>> v = Complex(1) # zero imaginary part

>>> w = u + v

>>> print w

(3, -1)

>>> w != u

True

>>> u*v

Complex(2, -1)

>>> u < v

illegal operation "<" for complex numbers

>>> print w + 4

(7, -1)

>>> print 4 - w

(1, 1)

We do not manage to use exactly the same syntax with j as imaginary unit as in
Python’s built-in complex numbers so to specify a complex number we must create
a Complex instance.

7.5.1 Implementation

Here is the complete implementation of our class for complex numbers:

class Complex(object):

def __init__(self, real, imag=0.0):

self.real = real

self.imag = imag
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def __add__(self, other):

return Complex(self.real + other.real,

self.imag + other.imag)

def __sub__(self, other):

return Complex(self.real - other.real,

self.imag - other.imag)

def __mul__(self, other):

return Complex(self.real*other.real - self.imag*other.imag,

self.imag*other.real + self.real*other.imag)

def __div__(self, other):

sr, si, or, oi = self.real, self.imag, \

other.real, other.imag # short forms

r = float(or**2 + oi**2)

return Complex((sr*or+si*oi)/r, (si*or-sr*oi)/r)

def __abs__(self):

return sqrt(self.real**2 + self.imag**2)

def __neg__(self): # defines -c (c is Complex)

return Complex(-self.real, -self.imag)

def __eq__(self, other):

return self.real == other.real and self.imag == other.imag

def __ne__(self, other):

return not self.__eq__(other)

def __str__(self):

return ’(%g, %g)’ % (self.real, self.imag)

def __repr__(self):

return ’Complex’ + str(self)

def __pow__(self, power):

raise NotImplementedError\

(’self**power is not yet impl. for Complex’)

The special methods for addition, subtraction, multiplication, division, and the ab-
solute value follow easily from the mathematical definitions of these operations for
complex numbers (see Sect. 1.6). What -c means when c is of type Complex, is
also easy to define and implement. The __eq__ method needs a word of caution:
the method is mathematically correct, but comparison of real numbers on a com-
puter should always employ a tolerance. The version of __eq__ shown above is
about compact code and equivalence to the mathematics. Any real-world numer-
ical computations should employ a test that abs(self.real - other.real) <
eps and abs(self.imag - other.imag) < eps, where eps is some small tol-
erance, say eps = 1E-14.

The final __pow__ method exemplifies a way to introduce a method in a class,
while we postpone its implementation. The simplest way to do this is by inserting
an empty function body using the pass ("do nothing") statement:
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class Polynomial(object):

...

def __pow__(self, power):

# Postpone implementation of self**power

pass

However, the preferred method is to raise a NotImplementedError exception so
that users writing power expressions are notified that this operation is not available.
The simple pass will just silently bypass this serious fact!

7.5.2 Illegal Operations

Some mathematical operations, like the comparison operators >, >=, etc., do not
have a meaning for complex numbers. By default, Python allows us to use these
comparison operators for our Complex instances, but the boolean result will be
mathematical nonsense. Therefore, we should implement the corresponding special
methods and give a sensible error message that the operations are not available for
complex numbers. Since the messages are quite similar, we make a separate method
to gather common operations:

def _illegal(self, op):

print ’illegal operation "%s" for complex numbers’ % op

Note the underscore prefix: this is a Python convention telling that the _illegal
method is local to the class in the sense that it is not supposed to be used outside the
class, just by other class methods. In computer science terms, we say that names
starting with an underscore are not part of the application programming interface,
known as the API. Other programming languages, such as Java, C++, and C#, have
special keywords, like private and protected that can be used to technically hide
both data and methods from users of the class. Python will never restrict anybody
who tries to access data or methods that are considered private to the class, but the
leading underscore in the name reminds any user of the class that she now touches
parts of the class that are not meant to be used “from the outside”.

Various special methods for comparison operators can now call up _illegal to
issue the error message:

def __gt__(self, other): self._illegal(’>’)

def __ge__(self, other): self._illegal(’>=’)

def __lt__(self, other): self._illegal(’<’)

def __le__(self, other): self._illegal(’<=’)

7.5.3 Mixing Complex and Real Numbers

The implementation of class Complex is far from perfect. Suppose we add a com-
plex number and a real number, which is a mathematically perfectly valid operation:

w = u + 4.5
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This statement leads to an exception,

AttributeError: ’float’ object has no attribute ’real’

In this case, Python sees u + 4.5 and tries to use u.__add__(4.5), which
causes trouble because the other argument in the __add__ method is 4.5, i.e.,
a float object, and float objects do not contain an attribute with the name real
(other.real is used in our __add__method, and accessing other.real is what
causes the error).

One idea for a remedy could be to set

other = Complex(other)

since this construction turns a real number other into a Complex object. How-
ever, when we add two Complex instances, other is of type Complex, and the
constructor simply stores this Complex instance as self.real (look at the method
__init__). This is not what we want!

A better idea is to test for the type of other and perform the right conversion to
Complex:

def __add__(self, other):

if isinstance(other, (float,int)):

other = Complex(other)

return Complex(self.real + other.real,

self.imag + other.imag)

We could alternatively drop the conversion of other and instead implement two
addition rules, depending on the type of other:

def __add__(self, other):

if isinstance(other, (float,int)):

return Complex(self.real + other, self.imag)

else:

return Complex(self.real + other.real,

self.imag + other.imag)

A third way is to look for what we require from the other object, and check
that this demand is fulfilled. Mathematically, we require other to be a complex or
real number, but from a programming point of view, all we demand (in the original
__add__ implementation) is that other has real and imag attributes. To check
if an object a has an attribute with name stored in the string attr, one can use the
function

hasattr(a, attr)

In our context, we need to perform the test

if hasattr(other, ’real’) and hasattr(other, ’imag’):
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Our third implementation of the __add__method therefore becomes

def __add__(self, other):

if isinstance(other, (float,int)):

other = Complex(other)

elif not (hasattr(other, ’real’) and \

hasattr(other, ’imag’)):

raise TypeError(’other must have real and imag attr.’)

return Complex(self.real + other.real,

self.imag + other.imag)

The advantage with this third alternative is that we may add instances of class
Complex and Python’s own complex class (complex), since all we need is an object
with real and imag attributes.

7.5.4 Dynamic, Static, Strong, Weak, and Duck Typing

The presentations of alternative implementations of the __add__ actually touch
some very important computer science topics. In Python, function arguments can
refer to objects of any type, and the type of an argument can change during program
execution. This feature is known as dynamic typing and supported by languages
such as Python, Perl, Ruby, and Tcl. Many other languages, C, C++, Java, and C#
for instance, restrict a function argument to be of one type, which must be known
when we write the program. Any attempt to call the function with an argument
of another type is flagged as an error. One says that the language employs static
typing, since the type cannot change as in languages having dynamic typing. The
code snippet

a = 6 # a is integer

a = ’b’ # a is string

is valid in a language with dynamic typing, but not in a language with static typing.
Our next point is easiest illustrated through an example. Consider the code

a = 6

b = ’9’

c = a + b

The expression a + b adds an integer and a string, which is illegal in Python. How-
ever, since b is the string ’9’, it is natural to interpret a + b as 6 + 9. That is, if the
string b is converted to an integer, we may calculate a + b. Languages performing
this conversion automatically are said to employ weak typing, while languages that
require the programmer to explicit perform the conversion, as in

c = a + float(b)

are known to have strong typing. Python, Java, C, and C# are examples of lan-
guages with strong typing, while Perl and C++ allow weak typing. However, in our
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third implementation of the __add__method, certain types – int and float – are
automatically converted to the right type Complex. The programmer has therefore
imposed a kind of weak typing in the behavior of the addition operation for complex
numbers.

There is also something called duck typing where the code only imposes a re-
quirement of some data or methods in the object, rather than demanding the object
to be of a particular type. The explanation of the term duck typing is the principle:
if it walks like a duck, and quacks like a duck, it’s a duck. An operation a + b may
be valid if a and b have certain properties that make it possible to add the objects,
regardless of the type of a or b. To enable a + b in our third implementation of
the __add__ method, it is sufficient that b has real and imag attributes. That is,
objects with real and imag look like Complex objects. Whether they really are of
type Complex is not considered important in this context.

There is a continuously ongoing debate in computer science which kind of typing
that is preferable: dynamic versus static, and weak versus strong. Static and strong
typing, as found in Java and C#, support coding safety and reliability at the expense
of long and sometimes repetitive code, while dynamic and weak typing support
programming flexibility and short code. Many will argue that short code is more
readable and reliable than long code, so there is no simple conclusion.

7.5.5 Special Methods for “Right” Operands

What happens if we add a float and a Complex in that order?

w = 4.5 + u

This statement causes the exception

TypeError: unsupported operand type(s) for +: ’float’ and ’instance’

This time Python cannot find any definition of what the plus operation means with
a float on the left-hand side and a Complex object on the right-hand side of the
plus sign. The float class was created many years ago without any knowledge
of our Complex objects, and we are not allowed to extend the __add__ method in
the float class to handle Complex instances. Nevertheless, Python has a special
method __radd__ for the case where the class instance (self) is on the right-hand
side of the operator and the other object is on the left-hand side. That is, we may
implement a possible float or int plus a Complex by

def __radd__(self, other): # defines other + self

return self.__add__(other) # other + self = self + other

Similar special methods exist for subtraction, multiplication, and division. For the
subtraction operator, observe that other - self, which is the operation assumed
to implemented in __rsub__, can be realized by other.__sub__(self). A pos-
sible implementation is
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def __sub__(self, other):

print ’in sub, self=%s, other=%s’ % (self, other)

if isinstance(other, (float,int)):

other = Complex(other)

return Complex(self.real - other.real,

self.imag - other.imag)

def __rsub__(self, other):

print ’in rsub, self=%s, other=%s’ % (self, other)

if isinstance(other, (float,int)):

other = Complex(other)

return other.__sub__(self)

The print statements are inserted to better understand how these methods are vis-
ited. A quick test demonstrates what happens:

>>> w = u - 4.5

in sub, self=(2, -1), other=4.5

>>> print w

(-2.5, -1)

>>> w = 4.5 - u

in rsub, self=(2, -1), other=4.5

in sub, self=(4.5, 0), other=(2, -1)

>>> print w

(2.5, 1)

Remark As you probably realize, there is quite some code to be implemented and
lots of considerations to be resolved before we have a class Complex for profes-
sional use in the real world. Fortunately, Python provides its complex class, which
offers everything we need for computing with complex numbers. This fact reminds
us that it is important to know what others already have implemented, so that we
avoid “reinventing the wheel”. In a learning process, however, it is a probably a very
good idea to look into the details of a class Complex as we did above.

7.5.6 Inspecting Instances

The purpose of this section is to explain how we can easily look at the contents of
a class instance, i.e., the data attributes and the methods. As usual, we look at an
example – this time involving a very simple class:

class A(object):

"""A class for demo purposes."""

def __init__(self, value):

self.v = value

def dump(self):

print self.__dict__

The self.__dict__ attribute is briefly mentioned in Sect. 7.1.6. Every instance is
automatically equipped with this attribute, which is a dictionary that stores all the
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ordinary attributes of the instance (the variable names are keys, and the object refer-
ences are values). In class A there is only one data attribute, so the self.__dict__
dictionary contains one key, ’v’:

>>> a = A([1,2])

>>> a.dump()

{’v’: [1, 2]}

Another way of inspecting what an instance a contains is to call dir(a). This
Python function writes out the names of all methods and variables (and more) of an
object:

>>> dir(a)

’__doc__’, ’__init__’, ’__module__’, ’dump’, ’v’]

The __doc__ variable is a docstring, similar to docstrings in functions (see
Sect. 3.1.11), i.e., a description of the class appearing as a first string right af-
ter the class headline:

>>> a.__doc__

’A class for demo purposes.’

The __module__ variable holds the name of the module in which the class is
defined. If the class is defined in the program itself and not in an imported module,
__module__ equals ’__main__’.

The rest of the entries in the list returned from dir(a) correspond to attribute
names defined by the programmer of the class, in this example the method attributes
__init__ and dump, and the data attribute v.

Now, let us try to add new variables to an existing instance:

>>> a.myvar = 10

>>> a.dump()

{’myvar’: 10, ’v’: [1, 2]}

>>> dir(a)

[’__doc__’, ’__init__’, ’__module__’, ’dump’, ’myvar’, ’v’]

The output of a.dump() and dir(a) show that we were successful in adding a new
variable to this instance on the fly. If we make a new instance, it contains only the
variables and methods that we find in the definition of class A:

>>> b = A(-1)

>>> b.dump()

{’v’: -1}

>>> dir(b)

[’__doc__’, ’__init__’, ’__module__’, ’dump’, ’v’]

We may also add new methods to an instance, but this will not be shown here.
Adding or removing attributes may sound scary and highly illegal to C, C++,

and Java programmers, but more dynamic classes is natural and legal in many other
languages – and often useful.
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Python classes are dynamic and their contents can be inspected
As seen by the examples above,

1. a class instance is dynamic and allows attributes to be added or removed
while the program is running,

2. the contents of an instance can be inspected by the dir function, and the data
attributes are available through the __dict__ dictionary.

There is a special module, inspect, doing more detailed inspection of Python
objects. One can, for example, get the arguments of functions or methods and
even inspect the code of the object.

7.6 Static Methods and Attributes

Up to now, each instance has its own copy of data attributes. Sometimes it can be
natural to have data attributes that are shared among all instances. For example, we
may have an attribute that counts how many instances that have been made so far.
We can exemplify how to do this in a little class for points .x; y; z/ in space:

>>> class SpacePoint(object):

... counter = 0

... def __init__(self, x, y, z):

... self.p = (x, y, z)

... SpacePoint.counter += 1

The counter data attribute is initialized at the same indentation level as the meth-
ods in the class, and the attribute is not prefixed by self. Such attributes declared
outside methods are shared among all instances and called static attributes. To ac-
cess the counter attribute, we must prefix by the classname SpacePoint instead of
self: SpacePoint.counter. In the constructor we increase this common counter
by 1, i.e., every time a new instance is made the counter is updated to keep track of
how many objects we have created so far:

>>> p1 = SpacePoint(0,0,0)

>>> SpacePoint.counter

1

>>> for i in range(400):

... p = SpacePoint(i*0.5, i, i+1)

...

>>> SpacePoint.counter

401

The methods we have seen so far must be called through an instance, which is
fed in as the self variable in the method. We can also make class methods that
can be called without having an instance. The method is then similar to a plain
Python function, except that it is contained inside a class and the method name
must be prefixed by the classname. Such methods are known as static methods. Let
us illustrate the syntax by making a very simple class with just one static method
write:
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>>> class A(object):

... @staticmethod

... def write(message):

... print message

...

>>> A.write(’Hello!’)

Hello!

As demonstrated, we can call writewithout having any instance of class A, we just
prefix with the class name. Also note that write does not take a self argument.
Since this argument is missing inside the method, we can never access non-static
attributes since these always must be prefixed by an instance (i.e., self). However,
we can access static attributes, prefixed by the classname.

If desired, we can make an instance and call write through that instance too:

>>> a = A()

>>> a.write(’Hello again’)

Hello again

Static methods are used when you want a global function, but find it natural to let
the function belong to a class and be prefixed with the classname.

7.7 Summary

7.7.1 Chapter Topics

Classes A class contains attributes, which are variables (data attributes) and func-
tions (method attributes, also called just methods). A first rough overview of a class
can be to just list the attributes, e.g., in a UML diagram.

Below is a sample class with three data attributes (m, M, and G) and three methods
(a constructor, force, and visualize). The class represents the gravity force
between two masses. This force is computed by the force method, while the
visualizemethod plots the force as a function of the distance between the masses.

class Gravity(object):

"""Gravity force between two physical objects."""

def __init__(self, m, M):

self.m = m # mass of object 1

self.M = M # mass of object 2

self.G = 6.67428E-11 # gravity constant, m**3/kg/s**2

def force(self, r):

G, m, M = self.G, self.m, self.M

return G*m*M/r**2

def visualize(self, r_start, r_stop, n=100):

from scitools.std import plot, linspace

r = linspace(r_start, r_stop, n)

g = self.force(r)

title=’Gravity force: m=%g, M=%g’ % (self.m, self.M)

plot(r, g, title=title)
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Note that to access attributes inside the forcemethod, and to call the forcemethod
inside the visualizemethod, we must prefix with self. Also recall that all meth-
ods must take self, “this” instance, as first argument, but the argument is left out
in calls. The assignment of a data attributes to a local variable (e.g., G = self.G)
inside methods is not necessary, but here it makes the mathematical formula easier
to read and compare with standard mathematical notation.

This class (found in file Gravity.py) can be used to find the gravity force be-
tween the Moon and the Earth:

mass_moon = 7.35E+22; mass_earth = 5.97E+24

gravity = Gravity(mass_moon, mass_earth)

r = 3.85E+8 # Earth-Moon distance in meters

Fg = gravity.force(r)

print ’force:’, Fg

Special methods A collection of special methods, with two leading and trailing
underscores in the method names, offers special syntax in Python programs.

The table below provides an overview of the most important special methods.

Construction Meaning2
a.__init__(self, args) constructor: a = A(args)
a.__del__(self) destructor: del a
a.__call__(self, args) call as function: a(args)
a.__str__(self) pretty print: print a, str(a)
a.__repr__(self) representation: a = eval(repr(a))
a.__add__(self, b) a + b
a.__sub__(self, b) a - b
a.__mul__(self, b) a*b
a.__div__(self, b) a/b
a.__radd__(self, b) b + a
a.__rsub__(self, b) b - a
a.__rmul__(self, b) b*a
a.__rdiv__(self, b) b/a
a.__pow__(self, p) a**p
a.__lt__(self, b) a < b
a.__gt__(self, b) a > b
a.__le__(self, b) a <= b
a.__ge__(self, b) a => b
a.__eq__(self, b) a == b
a.__ne__(self, b) a != b
a.__bool__(self) boolean expression, as in if a:
a.__len__(self) length of a (int): len(a)
a.__abs__(self) abs(a)

Terminology The important computer science topics in this chapter are

� classes
� attributes
� methods

http://tinyurl.com/pwyasaa/class/Gravity.py
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� constructor (__init__)
� special methods (__add__, __str__, __ne__, etc.)

7.7.2 Example: Interval Arithmetic

Input data to mathematical formulas are often subject to uncertainty, usually be-
cause physical measurements of many quantities involve measurement errors, or
because it is difficult to measure a parameter and one is forced to make a qualified
guess of the value instead. In such cases it could be more natural to specify an input
parameter by an interval Œa; b�, which is guaranteed to contain the true value of the
parameter. The size of the interval expresses the uncertainty in this parameter. Sup-
pose all input parameters are specified as intervals, what will be the interval, i.e.,
the uncertainty, of the output data from the formula? This section develops a tool
for computing this output uncertainty in the cases where the overall computation
consists of the standard arithmetic operations.

To be specific, consider measuring the acceleration of gravity by dropping a ball
and recording the time it takes to reach the ground. Let the ground correspond to
y D 0 and let the ball be dropped from y D y0. The position of the ball, y.t/, is
then

y.t/ D y0 � 1

2
gt2 :

If T is the time it takes to reach the ground, we have that y.T / D 0, which gives
the equation 1

2
gT 2 D y0, with solution

g D 2y0T
�2 :

In such experiments we always introduce some measurement error in the start po-
sition y0 and in the time taking (T ). Suppose y0 is known to lie in Œ0:99; 1:01� m
and T in Œ0:43; 0:47� s, reflecting a 2% measurement error in position and a 10%
error from using a stop watch. What is the error in g? With the tool to be developed
below, we can find that there is a 22% error in g.

Problem Assume that two numbers p and q are guaranteed to lie inside intervals,

p D Œa; b�; q D Œc; d � :

The sum p C q is then guaranteed to lie inside an interval Œs; t � where s D a C c

and t D b C d . Below we list the rules of interval arithmetic, i.e., the rules for
addition, subtraction, multiplication, and division of two intervals:

� p C q D Œa C c; b C d�

� p � q D Œa � d; b � c�

� pq D Œmin.ac; ad; bc; bd/;max.ac; ad; bc; bd/�

� p=q D Œmin.a=c; a=d; b=c; b=d/;max.a=c; a=d; b=c; b=d/� provided that
Œc; d � does not contain zero
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For doing these calculations in a program, it would be natural to have a new type
for quantities specified by intervals. This new type should support the operators +,
-, *, and / according to the rules above. The task is hence to implement a class for
interval arithmetics with special methods for the listed operators. Using the class,
we should be able to estimate the uncertainty of two formulas:

� The acceleration of gravity, g D 2y0T �2, given a 2% uncertainty in y0: y0 D
Œ0:99; 1:01�, and a 10% uncertainty in T : T D ŒTm � 0:95; Tm � 1:05�, with
Tm D 0:45.

� The volume of a sphere, V D 4
3
�R3, given a 20% uncertainty in R: R D

ŒRm � 0:9; Rm � 1:1�, with Rm D 6.

Solution The new type is naturally realized as a class IntervalMath whose data
consist of the lower and upper bound of the interval. Special methods are used
to implement arithmetic operations and printing of the object. Having understood
class Vec2D from Sect. 7.4, it should be straightforward to understand the class
below:

class IntervalMath(object):

def __init__(self, lower, upper):

self.lo = float(lower)

self.up = float(upper)

def __add__(self, other):

a, b, c, d = self.lo, self.up, other.lo, other.up

return IntervalMath(a + c, b + d)

def __sub__(self, other):

a, b, c, d = self.lo, self.up, other.lo, other.up

return IntervalMath(a - d, b - c)

def __mul__(self, other):

a, b, c, d = self.lo, self.up, other.lo, other.up

return IntervalMath(min(a*c, a*d, b*c, b*d),

max(a*c, a*d, b*c, b*d))

def __div__(self, other):

a, b, c, d = self.lo, self.up, other.lo, other.up

# [c,d] cannot contain zero:

if c*d <= 0:

raise ValueError\

(’Interval %s cannot be denominator because ’\

’it contains zero’ % other)

return IntervalMath(min(a/c, a/d, b/c, b/d),

max(a/c, a/d, b/c, b/d))

def __str__(self):

return ’[%g, %g]’ % (self.lo, self.up)

The code of this class is found in the file IntervalMath.py. A quick demo of the
class can go as

http://tinyurl.com/pwyasaa/class/IntervalMath.py
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I = IntervalMath

a = I(-3,-2)

b = I(4,5)

expr = ’a+b’, ’a-b’, ’a*b’, ’a/b’

for e in expr:

print ’%s =’ % e, eval(e)

The output becomes

a+b = [1, 3]

a-b = [-8, -6]

a*b = [-15, -8]

a/b = [-0.75, -0.4]

This gives the impression that with very short code we can provide a new type that
enables computations with interval arithmetic and thereby with uncertain quantities.
However, the class above has severe limitations as shown next.

Consider computing the uncertainty of aq if a is expressed as an interval Œ4; 5�

and q is a number (float):

a = I(4,5)

q = 2

b = a*q

This does not work so well:

File "IntervalMath.py", line 15, in __mul__

a, b, c, d = self.lo, self.up, other.lo, other.up

AttributeError: ’float’ object has no attribute ’lo’

The problem is that a*q is a multiplication between an IntervalMath object a
and a float object q. The __mul__ method in class IntervalMath is invoked,
but the code there tries to extract the lo attribute of q, which does not exist since q
is a float.

We can extend the __mul__ method and the other methods for arithmetic oper-
ations to allow for a number as operand – we just convert the number to an interval
with the same lower and upper bounds:

def __mul__(self, other):

if isinstance(other, (int, float)):

other = IntervalMath(other, other)

a, b, c, d = self.lo, self.up, other.lo, other.up

return IntervalMath(min(a*c, a*d, b*c, b*d),

max(a*c, a*d, b*c, b*d))

Looking at the formula g D 2y0T
�2, we run into a related problem: now

we want to multiply 2 (int) with y0, and if y0 is an interval, this multiplica-
tion is not defined among int objects. To handle this case, we need to imple-
ment an __rmul__(self, other) method for doing other*self, as explained
in Sect. 7.5.5:
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def __rmul__(self, other):

if isinstance(other, (int, float)):

other = IntervalMath(other, other)

return other*self

Similar methods for addition, subtraction, and division must also be included in the
class.

Returning to g D 2y0T
�2, we also have a problem with T �2 when T is an

interval. The expression T**(-2) invokes the power operator (at least if we do
not rewrite the expression as 1/(T*T)), which requires a __pow__method in class
IntervalMath. We limit the possibility to have integer powers, since this is easy
to compute by repeated multiplications:

def __pow__(self, exponent):

if isinstance(exponent, int):

p = 1

if exponent > 0:

for i in range(exponent):

p = p*self

elif exponent < 0:

for i in range(-exponent):

p = p*self

p = 1/p

else: # exponent == 0

p = IntervalMath(1, 1)

return p

else:

raise TypeError(’exponent must int’)

Another natural extension of the class is the possibility to convert an interval to
a number by choosing the midpoint of the interval:

>>> a = IntervalMath(5,7)

>>> float(a)

6

float(a) calls a.__float__(), which we implement as

def __float__(self):

return 0.5*(self.lo + self.up)

A __repr__ method returning the right syntax for recreating the present instance
is also natural to include in any class:

def __repr__(self):

return ’%s(%g, %g)’ % \

(self.__class__.__name__, self.lo, self.up)

We are now in a position to test out the extended class IntervalMath.



470 7 Introduction to Classes

>>> g = 9.81

>>> y_0 = I(0.99, 1.01) # 2% uncertainty

>>> Tm = 0.45 # mean T

>>> T = I(Tm*0.95, Tm*1.05) # 10% uncertainty

>>> print T

[0.4275, 0.4725]

>>> g = 2*y_0*T**(-2)

>>> g

IntervalMath(8.86873, 11.053)

>>> # Compute with mean values

>>> T = float(T)

>>> y = 1

>>> g = 2*y_0*T**(-2)

>>> print ’%.2f’ % g

9.88

Another formula, the volume V D 4
3
�R3 of a sphere, shows great sensitivity to

uncertainties in R:

>>> Rm = 6

>>> R = I(Rm*0.9, Rm*1.1) # 20 % error

>>> V = (4./3)*pi*R**3

>>> V

IntervalMath(659.584, 1204.26)

>>> print V

[659.584, 1204.26]

>>> print float(V)

931.922044761

>>> # Compute with mean values

>>> R = float(R)

>>> V = (4./3)*pi*R**3

>>> print V

904.778684234

Here, a 20% uncertainty in R gives almost 60% uncertainty in V , and the mean of
the V interval is significantly different from computing the volume with the mean
of R.

The complete code of class IntervalMath is found in IntervalMath.py.
Compared to the implementations shown above, the real implementation in the file
employs some ingenious constructions and help methods to save typing and repeat-
ing code in the special methods for arithmetic operations. You can read more about
interval arithmetics on Wikipedia3.

7.8 Exercises

Exercise 7.1: Make a function class
Make a class F that implements the function

f .xI a; w/ D e�ax sin.wx/ :

3 http://en.wikipedia.org/wiki/Interval_arithmetic

http://en.wikipedia.org/wiki/Interval_arithmetic
http://en.wikipedia.org/wiki/Interval_arithmetic
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A value(x)method computes values of f , while a and w are data attributes. Test
the class in an interactive session:

>>> from F import F

>>> f = F(a=1.0, w=0.1)

>>> from math import pi

>>> print f.value(x=pi)

0.013353835137

>>> f.a = 2

>>> print f.value(pi)

0.00057707154012

Filename: F.

Exercise 7.2: Add a data attribute to a class
Add a data attribute transactions to the Account class from Sect. 7.2.1. The
new attribute counts the number of transactions done in the deposit and withdraw
methods. Print the total number of transactions in the dump method. Write a test
function test_Account() for testing that the implementation of the extended class
Account is correct.
Filename: Account2.

Exercise 7.3: Add functionality to a class
In class AccountP from Sect. 7.2.1, introduce a list self._transactions, where
each element holds a dictionary with the amount of a transaction and the point of
time the transaction took place. Remove the _balance attribute and use instead the
_transactions list to compute the balance in the method get_balance. Print out
a nicely formatted table of all transactions, their amounts, and their time in a method
print_transactions.

Hint Use the time or datetimemodule to get the date and local time.
Filename: Account3.

Remarks Observe that the computation of the balance is implemented in a different
way in the present version of class AccountP compared to the version in Sect. 7.2.1,
but the usage of the class, especially the get_balancemethod, remains the same.
This is one of the great advantages of class programming: users are supposed to
use the methods only, and the implementation of data structures and computational
techniques inside methods can be changed without affecting existing programs that
just call the methods.

Exercise 7.4: Make classes for a rectangle and a triangle
The purpose of this exercise is to create classes like class Circle from Sect. 7.2.3
for representing other geometric figures: a rectangle with width W , height H ,
and lower left corner .x0; y0/; and a general triangle specified by its three vertices
.x0; y0/, .x1; y1/, and .x2; y2/ as explained in Exercise 3.16. Provide three meth-
ods: __init__ (to initialize the geometric data), area, and perimeter. Write test
functions test_Rectangle() and test_Triangle() for checking that the results
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produced by area and perimeter coincide with exact values within a small toler-
ance.
Filename: geometric_shapes.

Exercise 7.5: Make a class for quadratic functions
Consider a quadratic function f .xI a; b; c/ D ax2 C bx C c. Make a class
Quadratic for representing f , where a, b, and c are data attributes, and the
methods are

� __init__ for storing the attributes a, b, and c,
� value for computing a value of f at a point x,
� table for writing out a table of x and f values for n x values in the interval

ŒL; R�,
� roots for computing the two roots.

The file with class Quadratic and corresponding demonstrations and/or tests
should be organized as a module such that other programs can do a from
Quadratic import Quadratic to use the class. Also equip the file with a test
function for verifying the implementation of value and roots.
Filename: Quadratic.

Exercise 7.6: Make a class for straight lines
Make a class Linewhose constructor takes two points p1 and p2 (2-tuples or 2-lists)
as input. The line goes through these two points (see function line in Sect. 3.1.11
for the relevant formula of the line). A value(x)method computes a value on the
line at the point x. Also make a function test_Line() for verifying the implemen-
tation. Here is a demo in an interactive session:

>>> from Line import Line, test_Line

>>> line = Line((0,-1), (2,4))

>>> print line.value(0.5), line.value(0), line.value(1)

0.25 -1.0 1.5

>>> test_Line()

Filename: Line.

Exercise 7.7: Flexible handling of function arguments
The constructor in class Line in Exercise 7.6 takes two points as arguments. Now
we want to have more flexibility in the way we specify a straight line: we can give
two points, a point and a slope, or a slope and the line’s interception with the y

axis. Write this extended class and a test function for checking that the increased
flexibility does work.

Hint Let the constructor take two arguments p1 and p2 as before, and test with
isinstancewhether the arguments are float versus tuple or list to determine
what kind of data the user supplies:
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if isinstance(p1, (tuple,list)) and isinstance(p2, (float,int)):

# p1 is a point and p2 is slope

self.a = p2

self.b = p1[1] - p2*p1[0]

elif ...

Filename: Line2.

Exercise 7.8: Wrap functions in a class
The purpose of this exercise is to make a class interface to an already existing set of
functions implementing Lagrange’s interpolation method from Exercise 5.25. We
want to construct a class LagrangeInterpolationwith a typical usage like:

import numpy as np

# Compute some interpolation points along y=sin(x)

xp = np.linspace(0, np.pi, 5)

yp = np.sin(xp)

# Lagrange’s interpolation polynomial

p_L = LagrangeInterpolation(xp, yp)

x = 1.2

print ’p_L(%g)=%g’ % (x, p_L(x)),

print ’sin(%g)=%g’ % (x, np.sin(x))

p_L.plot() # show graph of p_L

The plot method visualizes pL.x/ for x between the first and last interpolation
point (xp[0] and xp[-1]). In addition to writing the class itself, you should write
code to verify the implementation.

Hint The class does not need much code as it can call the functions p_L from
Exercise 5.25 and graph from Exercise 5.26, available in the Lagrange_poly2
module made in the latter exercise.
Filename: Lagrange_poly3.

Exercise 7.9: Flexible handling of function arguments
Instead of manually computing the interpolation points, as demonstrated in Exer-
cise 7.8, we now want the constructor in class LagrangeInterpolation to also
accept some Python function f(x) for computing the interpolation points. Typi-
cally, we would like to write this code:

from numpy import exp, sin, pi

def myfunction(x):

return exp(-x/2.0)*sin(x)

p_L = LagrangeInterpolation(myfunction, x=[0, pi], n=11)

With such a code, n D 11 uniformly distributed x points between 0 and � are
computed, and the corresponding y values are obtained by calling myfunction.
The Lagrange interpolation polynomial is then constructed from these points. Note
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that the previous types of calls, LangrangeInterpolation(xp, yp), must still
be valid.

Hint The constructor in class LagrangeInterpolationmust now accept two dif-
ferent sets of arguments: xp, yp vs. f, x, n. You can use the isinstance(a,
t) function to test if object a is of type t. Declare the constructor with three
arguments arg1, arg2, and arg3=None. Test if arg1 and arg2 are arrays
(isinstance(arg1, numpy.ndarray)), and in that case, set xp=arg1 and
yp=arg2. On the other hand, if arg1 is a function (callable(arg1) is True),
arg2 is a list or tuple (isinstance(arg2, (list,tuple))), and arg3 is an
integer, set f=arg1, x=arg2, and n=arg3.
Filename: Lagrange_poly4.

Exercise 7.10: Deduce a class implementation
Write a class Hello that behaves as illustrated in the following session:

>>> a = Hello()

>>> print a(’students’)

Hello, students!

>>> print a

Hello, World!

Filename: Hello.

Exercise 7.11: Implement special methods in a class
Modify the class from Exercise 7.1 such that the following interactive session can
be run:

>>> from F import F

>>> f = F(a=1.0, w=0.1)

>>> from math import pi

>>> print f(x=pi)

0.013353835137

>>> f.a = 2

>>> print f(pi)

0.00057707154012

>>> print f

exp(-a*x)*sin(w*x)

Filename: F2.

Exercise 7.12: Make a class for summation of series
The task in this exercise is to calculate a sum S.x/ D PN

kDM fk.x/, where fk.x/

is some user-given formula for the terms in the sum. The following snippet demon-
strates the typical use and functionality of a class Sum for computing S.x/ DPN

kD0.�x/k :
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def term(k, x):

return (-x)**k

S = Sum(term, M=0, N=3)

x = 0.5

print S(x)

print S.term(k=4, x=x) # (-0.5)**4

a) Implement class Sum such that the code snippet above works.
b) Implement a test function test_Sum() for verifying the results of the various

methods in class Sum for a specific choice of fk.x/.
c) Apply class Sum to compute the Taylor polynomial approximation to sin x for

x D � and some chosen x and N .

Filename: Sum.

Exercise 7.13: Apply a numerical differentiation class
Isolate class Derivative from Sect. 7.3.2 in a module file. Also isolate class Y
from Sect. 7.1.2 in a module file. Make a program that imports class Derivative
and class Y and applies the former to differentiate the function y.t/ D v0t � 1

2
gt2

represented by class Y. Compare the computed derivative with the exact value for
t D 0; 1

2
v0=g; v0=g.

Filenames: dYdt.py, Derivative.py, Y.py.

Exercise 7.14: Implement an addition operator
An anthropologist was asking a primitive tribesman about arithmetic. When the
anthropologist asked, What does two and two make? the tribesman replied, Five.
Asked to explain, the tribesman said, If I have a rope with two knots, and another
rope with two knots, and I join the ropes together, then I have five knots.

a) Make a class Rope for representing a rope with a given number of knots. Imple-
ment the addition operator in this class such that we can join two ropes together
in the way the tribesman described:

>>> from Rope import Rope

>>> rope1 = Rope(2)

>>> rope2 = Rope(2)

>>> rope3 = rope1 + rope2

>>> print rope3

5

As seen, the class also features a __str__ method for returning the number of
knots on the rope.

b) Equip the module file with a test function for verifying the implementation of
the addition operator.

Filename: Rope.py.
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Exercise 7.15: Implement in-place += and -= operators
As alternatives to the deposit and withdrawmethods in class Account class from
Sect. 7.2.1, we could use the operation += for deposit and -= for withdraw. Im-
plement the += and -= operators, a __str__ method, and preferably a __repr__
method in class Account. Write a test_Account() function to verify the imple-
mentation of all functionality in class Account.

Hint The special methods __iadd__ and __isub__ implement the += and -= op-
erators, respectively. For instance, a -= p implies a call to a.__isub__(p). One
important feature of __iadd__ and __isub__ is that they must return self to work
properly, see the documentation of these methods in Chapter 3 of the Python Lan-
guage Reference4.
Filename: Account4.

Exercise 7.16: Implement a class for numerical differentiation
A widely used formula for numerical differentiation of a function f .x/ takes the
form

f 0.x/ � f .x C h/ � f .x � h/

2h
: (7.8)

This formula usually gives more accurate derivatives than (7.1) because it applies
a centered, rather than a one-sided, difference.

The goal of this exercise is to use the formula (7.8) to automatically differenti-
ate a mathematical function f .x/ implemented as a Python function f(x). More
precisely, the following code should work:

def f(x):

return 0.25*x**4

df = Central(f) # make function-like object df

# df(x) computes the derivative of f(x) approximately

x = 2

print ’df(%g)=%g’ % (x, df(x))

print ’exact:’, x**3

a) Implement class Central and test that the code above works. Include an op-
tional argument h to the constructor in class Central so that h in the approxi-
mation (7.8) can be specified.

b) Write a test function test_Central() to verify the implementation. Utilize the
fact that the formula (7.8) is exact for quadratic polynomials (provided h is not
too small, then rounding errors in (7.8) require use of a (much) larger tolerance
than the expected machine precision).

c) Write a function table(f, x, h=1E-5) that prints a table of errors in the nu-
merical derivative (7.8) applied to a function f at some points x. The argument
f is a sympy expression for a function. This f object can be transformed to
a Python function and fed to the constructor of class Central, and f can be
used to compute the exact derivative symbolically. The argument x is a list or
array of points x, and h is the h in (7.8).

4 http://docs.python.org/2/reference/

http://docs.python.org/2/reference/
http://docs.python.org/2/reference/


7.8 Exercises 477

Hint The following session demonstrates how sympy can differentiate a mathemat-
ical expression and turn the result into a Python function:

>>> import sympy

>>> x = sympy.Symbol(’x’)

>>> f_expr = ’x*sin(2*x)’

>>> df_expr = sympy.diff(f_expr)

>>> df_expr

2*x*cos(2*x) + sin(2*x)

>>> df = sympy.lambdify([x], df_expr) # make Python function

>>> df(0)

0.0

d) Organize the file with the class and functions such that it can be used a module.

Filename: Central.

Exercise 7.17: Examine a program
Consider this program file for computing a backward difference approximation to
the derivative of a function f(x):

from math import *

class Backward(object):

def __init__(self, f, h=e-9):

self.f, self.h = f, h

def __call__(self, x):

h, f = self.h, self.f

return (f(x) - f(x-h))/h # finite difference

dsin = Backward(sin)

e = dsin(0) - cos(0); print ’error:’, e

dexp = Backward(exp, h=e-7)

e = dexp(0) - exp(0); print ’error:’, e

The output becomes

error: -1.00023355634

error: 371.570909212

Is the approximation that bad, or are there bugs in the program?
Filename: find_errors_class.

Exercise 7.18: Modify a class for numerical differentiation
Make the two data attributes h and f of class Derivative from Sect. 7.3.2 pro-
tected as explained in Sect. 7.2.1. That is, prefix h and f with an underscore to
tell users that these attributes should not be accessed directly. Add two methods
get_precision() and set_precision(h) for reading and changing h. Make
a separate test function for checking that the new class works as intended.
Filename: Derivative_protected.
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Exercise 7.19: Make a class for the Heaviside function

a) Use a class to implement the discontinuous Heaviside function (3.25) from Ex-
ercise 3.29 and the smoothed continuous version (3.26) from Exercise 3.30 such
that the following code works:

H = Heaviside() # original discontinous Heaviside function

print H(0.1)

H = Heaviside(eps=0.8) # smoothed continuous Heaviside function

print H(0.1)

b) Extend class Heaviside such that array arguments are allowed:

H = Heaviside() # original discontinous Heaviside function

x = numpy.linspace(-1, 1, 11)

print H(x)

H = Heaviside(eps=0.8) # smoothed Heaviside function

print H(x)

Hint Use ideas from Sect. 5.5.2.

c) Extend class Heaviside such that it supports plotting:

H = Heaviside()

x, y = H.plot(xmin=-4, xmax=4) # x in [-4, 4]

from matplotlib.pyplot import plot

plot(x, y)

H = Heaviside(eps=1)

x, y = H.plot(xmin=-4, xmax=4)

plot(x, y)

Hint Techniques from Sect. 5.4.1 must in the first case be used to return arrays
x and y such that the discontinuity is exactly reproduced. In the continuous
(smoothed) case, one needs to compute a sufficiently fine resolution (x) based on
the eps parameter, e.g., 201/� points in the interval Œ��; ��, with a coarser set of
coordinates outside this interval where the smoothed Heaviside function is almost
constant, 0 or 1.

d) Write a test function test_Heaviside() for verifying the result of the various
methods in class Heaviside.

Filename: Heaviside_class.

Exercise 7.20: Make a class for the indicator function
The purpose of this exercise is the make a class implementation of the indicator
function from Exercise 3.31. Let the implementation be based on expressing the
indicator function in terms of Heaviside functions. Allow for an � parameter in the
calls to the Heaviside function, such that we can easily choose between a discontin-
uous and a smoothed, continuous version of the indicator function:



7.8 Exercises 479

I = Indicator(a, b) # indicator function on [a,b]

print I(b+0.1), I((a+b)/2.0)

I = Indicator(0, 2, eps=1) # smoothed indicator function on [0,2]

print I(0), I(1), I(1.9)

Note that if you build on the version of class Heaviside in Exercise 7.19b, any
Indicator instance will accept array arguments too.
Filename: Indicator.

Exercise 7.21: Make a class for piecewise constant functions
The purpose of this exercise is to make a class implementation of a piecewise con-
stant function, as defined in Exercise 3.32.

a) Implement the minimum functionality such that the following code works:

f = PiecewiseConstant([(0.4, 1), (0.2, 1.5), (0.1, 3)], xmax=4)

print f(1.5), f(1.75), f(4)

x = np.linspace(0, 4, 21)

print f(x)

b) Add a plot method to class PiecewiseConstant such that we can easily plot
the graph of the function:

x, y = f.plot()

from matplotlib.pyplot import plot

plot(x, y)

Filename: PiecewiseConstant.

Exercise 7.22: Speed up repeated integral calculations
The observant reader may have noticed that our Integral class from Sect. 7.3.3 is
very inefficient if we want to tabulate or plot a function F.x/ D R x

a
f .x/ for several

consecutive values of x: x0 < x1 < � � � < xm. Requesting F.xk/ will recompute
the integral computed for F.xk�1/, and this is of course waste of computer work.
Use the ideas from Sect. A.1.7 to modify the __call__ method such that if x is
an array, assumed to contain coordinates of increasing value: x0 < x1 < � � � <

xm, the method returns an array with F.x0/; F.x1/; : : : ; F .xm/ with the minimum
computational work. Also write a test function to verify that the implementation is
correct.

Hint The n (n) parameter in the constructor of the Integral class can be taken as
the total number of trapezoids (intervals) that are to be used to compute the final
F.xm/ value. The integral over an interval Œxk; xkC1� can then be computed by
the trapezoidal function (or an Integral object) using an appropriate fraction
of the n total trapezoids. This fraction can be .xkC1 � xk/=.xm � a/ (i.e., nk D
n.xkC1 � xk/=.xm � a/) or one may simply use a constant nk D n=m number of
trapezoids for all the integrals over Œxk; xkC1�, k D 0; : : : ; m � 1.
Filename: Integral_eff.
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Exercise 7.23: Apply a class for polynomials
The Taylor polynomial of degree N for the exponential function ex is given by

p.x/ D
NX

kD0

xk

kŠ
:

Make a program that (i) imports class Polynomial from Sect. 7.3.7, (ii) reads x

and a series of N values from the command line, (iii) creates a Polynomial object
for each N value for computing with the given Taylor polynomial, and (iv) prints
the values of p.x/ for all the given N values as well as the exact value ex . Try the
program out with x D 0:5; 3; 10 and N D 2; 5; 10; 15; 25.
Filename: Polynomial_exp.

Exercise 7.24: Find a bug in a class for polynomials
Go through this alternative implementation of class Polynomial from Sect. 7.3.7
and explain each line in detail:

class Polynomial(object):

def __init__(self, coefficients):

self.coeff = coefficients

def __call__(self, x):

return sum([c*x**i for i, c in enumerate(self.coeff)])

def __add__(self, other):

maxlength = max(len(self), len(other))

# Extend both lists with zeros to this maxlength

self.coeff += [0]*(maxlength - len(self.coeff))

other.coeff += [0]*(maxlength - len(other.coeff))

result_coeff = self.coeff

for i in range(maxlength):

result_coeff[i] += other.coeff[i]

return Polynomial(result_coeff)

The enumerate function, used in the __call__method, enables us to iterate over
a list somelist with both list indices and list elements: for index, element
in enumerate(somelist). Write the code above in a file, and demonstrate that
adding two polynomials does not work. Find the bug and correct it.
Filename: Polynomial_error.

Exercise 7.25: Implement subtraction of polynomials
Implement the special method __sub__ in class Polynomial from Sect. 7.3.7. Add
a test for this functionality in function test_Polynomial.

Hint Study the __add__ method in class Polynomial and treat the two cases,
where the lengths of the lists in the polynomials differs, separately.
Filename: Polynomial_sub.

Exercise 7.26: Test the functionality of pretty print of polynomials
Verify the functionality of the __str__ method in class Polynomial from
Sect. 7.3.7 by writing a new test function test_Polynomial_str().
Filename: Polynomial_test_str.
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Exercise 7.27: Vectorize a class for polynomials
Introducing an array instead of a list in class Polynomial does not enhance the
efficiency of the implementation unless the mathematical computations are also
vectorized. That is, all explicit Python loops must be substituted by vectorized
expressions.

a) Go through class Polynomial.py and make sure the coeff attribute is always
a numpy array with float elements.

b) Update the test function test_Polynomial to make use of the fact that
the coeff attribute is always a numpy array with float elements. Run
test_Polynomial to check that the new implementation is correct.

c) Vectorize the __add__ method by adding the common parts of the coefficients
arrays and then appending the rest of the longest array to the result.

Hint Appending an array a to an array b can be done by concatenate(a, b).

d) Vectorize the __call__ method by observing that evaluation of a polynomial,Pn�1
iD0 ci x

i , can be computed as the inner product of two arrays: .c0; : : : ; cn�1/

and .x0; x1; : : : ; xn�1/. The latter array can be computed by x**p, where p is
an array with powers 0; 1; : : : ; n � 1, and x is a scalar.

e) The differentiatemethod can be vectorized by the statements

n = len(self.coeff)

self.coeff[:-1] = linspace(1, n-1, n-1)*self.coeff[1:]

self.coeff = self.coeff[:-1]

Show by hand calculations in a case where n is 3 that the vectorized statements
produce the same result as the original differentiatemethod.

Filename: Polynomial_vec.

Remarks The __mul__method is more challenging to vectorize so you may leave
this unaltered. Check that the vectorized versions of __add__, __call__, and
differentiatework as intended by calling the test_Polynomial function.

Exercise 7.28: Use a dict to hold polynomial coefficients
Use a dictionary (instead of a list) for the coeff attribute in class Polynomial from
Sect. 7.3.7 such that self.coeff[k] holds the coefficient of the xk term. The
advantage with a dictionary is that only the nonzero coefficients in a polynomial
need to be stored.

a) Implement a constructor and the __call__ method for evaluating the polyno-
mial. The following demonstration code should work:

from Polynomial_dict import Polynomial

p1_dict = {4: 1, 2: -2, 0: 3} # polynomial x^4 - 2*x^2 + 3

p1 = Polynomial(p1_dict)

print p1(2) # prints 11 (16-8+3)
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b) Implement the __add__ method. The following demonstration code should
work:

p1 = Polynomial({4: 1, 2: -2, 0: 3}) # x^4 - 2*x^2 + 3

p2 = Polynomial({0: 4, 1: 3} # 4 + 3*x

p3 = p1 + p2 # x^4 - 2*x^2 + 3*x + 7

print p3.coeff # prints {0: 7, 1: 3, 2: -2, 4: 1}

Hint The structure of __add__may be

class Polynomial(object):

...

def __add__(self, other):

"""Return self + other as a Polynomial object."""

result = self.coeff.copy()

for exponent in result:

if exponent in other.coeff:

# add other’s term to result’s term

else:

result[exponent] = other[exponent]

# return Polynomial object based on result dict

c) Implement the __sub__ method. The following demonstration code should
work:

p1 = Polynomial({4: 1, 2: -2, 0: 3}) # x^4 - 2*x^2 + 3

p2 = Polynomial({0: 4, 1: 3} # 4 + 3*x

p3 = p1 - p2 # x^4 - 2*x^2 - 3*x - 1

print p3.coeff # prints {0: -1, 1: -3, 2: -2, 4: 1}

d) Implement the __mul__ method. The following demonstration code should
work:

p1 = Polynomial({0: 1, 3: 1}) # 1 + x^3

p2 = Polynomial({1: -2, 2: 3}) # -2*x + 3*x^2

p3 = p1*p3

print p3.coeff # prints {1: -2, 2: 3, 4: -2, 5: 3}

Hint Study the __mul__ method in class Polynomial based on a list representa-
tion of the data in the polynomial and adapt to a dictionary representation.

e) Write a test function for each of the methods __call__, __add__, and
__mul__.

Filename: Polynomial_dict.

Exercise 7.29: Extend class Vec2D to work with lists/tuples
The Vec2D class from Sect. 7.4 supports addition and subtraction, but only addition
and subtraction of two Vec2D objects. Sometimes we would like to add or subtract
a point that is represented by a list or a tuple:



7.8 Exercises 483

u = Vec2D(-2, 4)

v = u + (1,1.5)

w = [-3, 2] - v

That is, a list or a tuple must be allowed in the right or left operand. Implement
such an extension of class Vec2D.

Hint Ideas are found in Sects. 7.5.3 and 7.5.5.
Filename: Vec2D_lists.

Exercise 7.30: Extend class Vec2D to 3D vectors
Extend the implementation of class Vec2D from Sect. 7.4 to a class Vec3D for vec-
tors in three-dimensional space. Add a method cross for computing the cross
product of two 3D vectors.
Filename: Vec3D.

Exercise 7.31: Use NumPy arrays in class Vec2D
The internal code in class Vec2D from Sect. 7.4 can be valid for vectors in any
space dimension if we represent the vector as a NumPy array in the class instead of
separate variables x and y for the vector components. Make a new class Vec where
you apply NumPy functionality in the methods. The constructor should be able to
treat all the following ways of initializing a vector:

a = array([1, -1, 4], float) # numpy array

v = Vec(a)

v = Vec([1, -1, 4]) # list

v = Vec((1, -1, 4)) # tuple

v = Vec(1, -1) # coordinates

Hint In the constructor, use variable number of arguments as described in Sect. H.7.
All arguments are then available as a tuple, and if there is only one element in
the tuple, it should be an array, list, or tuple you can send through asarray to
get a NumPy array. If there are many arguments, these are coordinates, and the
tuple of arguments can be transformed by array to a NumPy array. Assume in
all operations that the involved vectors have equal dimension (typically that other
has the same dimension as self). Recall to return Vec objects from all arithmetic
operations, not NumPy arrays, because the next operation with the vector will then
not take place in Vec but in NumPy. If self.v is the attribute holding the vector as
a NumPy array, the addition operator will typically be implemented as

class Vec(object):

...

def __add__(self, other):

return Vec(selv.v + other.v)

Filename: Vec.
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Exercise 7.32: Impreciseness of interval arithmetics
Consider the function f .x/ D x=.1 C x/ on Œ1; 2�. Find the variation of f over
Œ1; 2�. Use interval arithmetics from Sect. 7.7.2 to compute the variation of f when
x 2 Œ1; 2�.
Filename: interval_arithmetics.

Remarks In this case, interval arithmetics overestimates the variation in f . The
reason is that x occurs more than once in the formula for f (the so-called depen-
dency problem5).

Exercise 7.33: Make classes for students and courses
Use classes to reimplement the summarizing problem in Sect. 6.7.2. More precisely,
introduce a class Student and a class Course. Find appropriate attributes. The
classes should have a __str__method for pretty-printing of the contents.
Filename: Student_Course.

Exercise 7.34: Find local and global extrema of a function
Extreme points of a function f .x/ are normally found by solving f 0.x/ D 0.
A much simpler method is to evaluate f .x/ for a set of discrete points in the in-
terval Œa; b� and look for local minima and maxima among these points. We work
with n C 1 equally spaced points a D x0 < x1 < � � � < xn D b, xi D a C ih,
h D .b � a/=n.

First we find all local extreme points in the interior of the domain. Local minima
are recognized by

f .xi�1/ > f .xi / < f .xiC1/; i D 1; : : : ; n � 1 :

Similarly, at a local maximum point xi we have

f .xi�1/ < f .xi / > f .xiC1/; i D 1; : : : ; n � 1 :

LetPmin be the set of x values for local minima and Fmin the set of the corresponding
f .x/ values at these minima. Two sets Pmax and Fmax are defined correspondingly
for the maxima.

The boundary points x D a and x D b are for algorithmic simplicity also defined
as local extreme points: x D a is a local minimum if f .a/ < f .x1/, and a local
maximum otherwise. Similarly, x D b is a local minimum if f .b/ < f .xn�1/, and
a local maximum otherwise. The end points a and b and the corresponding function
values must be added to the sets Pmin; Pmax; Fmin; Fmax.

The global maximum point is defined as the x value corresponding to the maxi-
mum value in Fmax. The global minimum point is the x value corresponding to the
minimum value in Fmin.

a) Make a class MinMax with the following functionality:
� __init__ takes f .x/, a, b, and n as arguments, and calls a method

_find_extrema to compute the local and global extreme points.

5 http://en.wikipedia.org/wiki/Interval_arithmetic#Dependency_problem

http://en.wikipedia.org/wiki/Interval_arithmetic#Dependency_problem
http://en.wikipedia.org/wiki/Interval_arithmetic#Dependency_problem
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� _find_extrema implements the algorithm above for finding local and global
extreme points, and stores the sets Pmin; Pmax; Fmin; Fmax as list attributes in
the (self) instance.

� get_global_minimum returns the global minimum point as a pair .x; f .x//.
� get_global_maximum returns the global maximum point as a pair .x; f .x//.
� get_all_minima returns a list or array of all .x; f .x// minima.
� get_all_maxima returns a list or array of all .x; f .x// maxima.
� __str__ returns a string where a nicely formatted table of all the min/max

points are listed, plus the global extreme points.
Here is a sample code using class MinMax:

def f(x):

return x**2*exp(-0.2*x)*sin(2*pi*x)

m = MinMax(f, 0, 4, 5001)

print m

The output becomes

All minima: 0.8056, 1.7736, 2.7632, 3.7584, 0

All maxima: 0.3616, 1.284, 2.2672, 3.2608, 4

Global minimum: 3.7584

Global maximum: 3.2608

Make sure that the program also works for functions without local extrema, e.g.,
linear functions f .x/ D ax C b.

b) The algorithm sketched above finds local extreme points xi , but all we know
is that the true extreme point is in the interval .xi�1; xiC1/. A more accu-
rate algorithm may take this interval as a starting point and run a Bisection
method (see Sect. 4.11.2) to find the extreme point Nx such that f 0. Nx/ D 0. Add
a method _refine_extrema in class MinMax, which goes through all the inte-
rior local minima and maxima and solves f 0. Nx/ D 0. Compute f 0.x/ using the
Derivative class (Sect. 7.3.2 with h � xiC1 � xi�1.

Filename: minmaxf.

Exercise 7.35: Find the optimal production for a company
The company PROD produces two different products, P1 and P2, based on three
different raw materials, M1, M2 and M3. The following table shows how much of
each raw material Mi that is required to produce a single unit of each product Pj :

P1 P2

M1 2 1
M2 5 3
M3 0 4

For instance, to produce one unit of P2 one needs 1 unit of M1, 3 units of M2 and
4 units of M3. Furthermore, PROD has available 100, 80 and 150 units of material
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M1, M2 and M3 respectively (for the time period considered). The revenue per
produced unit of product P1 is 150 NOK, and for one unit of P2 it is 175 NOK. On
the other hand the raw materials M1, M2 and M3 cost 10, 17 and 25 NOK per unit,
respectively. The question is: how much should PROD produce of each product?
We here assume that PROD wants to maximize its net revenue (which is revenue
minus costs).

a) Let x and y be the number of units produced of product P1 and P2, respectively.
Explain why the total revenue f .x; y/ is given by

f .x; y/ D 150x � .10 � 2 C 17 � 5/x C 175y � .10 � 1 C 17 � 3 C 25 � 4/y

and simplify this expression. The function f .x; y/ is linear in x and y (make
sure you know what linearity means).

b) Explain why PROD’s problem may be stated mathematically as follows:

maximize f .x; y/

subject to

2x C y � 100

5x C 3y � 80

4y � 150

x � 0; y � 0:

(7.9)

This is an example of a linear optimization problem.
c) The production .x; y/ may be considered as a point in the plane. Illustrate

geometrically the set T of all such points that satisfy the constraints in model
(7.9). Every point in this set is called a feasible point.

Hint For every inequality determine first the straight line obtained by replacing the
inequality by equality. Then, find the points satisfying the inequality (a half-plane),
and finally, intersect these half-planes.

d) Make a program for drawing the straight lines defined by the inequalities. Each
line can be written as ax C by D c. Let the program read each line from
the command line as a list of the a, b, and c values. In the present case the
command-line arguments will be

’[2,1,100]’ ’[5,3,80]’ ’[0,4,150]’ ’[1,0,0]’ ’[0,1,0]’

Hint Perform an eval on the elements of sys.argv[1:] to get a, b, and c for
each line as a list in the program.

e) Let ˛ be a positive number and consider the level set of the function f , defined
as the set

L˛ D f.x; y/ 2 T W f .x; y/ D ˛g:
This set consists of all feasible points having the same net revenue ˛. Extend the
program with two new command-line arguments holding p and q for a function
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f .x; y/ D px C qy. Use this information to compute the level set lines y D
˛=q � px=q, and plot the level set lines for some different values of ˛ (use the
˛ value in the legend for each line).

f) Use what you saw in e) to solve the problem (7.9) geometrically. This solution
is called an optimal solution.

Hint How large can you choose ˛ such that L˛ is nonempty?

g) Assume that we have other values on the revenues and costs than the actual
numbers in a). Explain why (7.9), with these new parameter values, still has an
optimal solution lying in a corner point of T . Extend the program to calculate all
the corner points of a region T in the plane determined by the linear inequalities
like those listed above. Moreover, the program shall compute the maximum of
a given linear function f .x; y/ D ax C by over T by calculating the function
values in the corner points and finding the smallest function value.

Filename: optimization.
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