
6Dictionaries and Strings

The present chapter addresses many techniques for interpreting information in files
and storing the data in convenient Python objects for further data analysis. A par-
ticularly handy object for many purposes is the dictionary, which maps objects
to objects, very often strings to various kinds of data that later can be looked up
through the strings. Section 6.1 is devoted to dictionaries.

Information in files often appear as pure text, so to interpret and extract data
from files it is sometimes necessary to carry out sophisticated operations on the
text. Python strings have many methods for performing such operations, and the
most important functionality is described in Sect. 6.2.

The World Wide Web is full of information and scientific data that may be use-
ful to access from a program. Section 6.3 tells you how to read web pages from
a program and interpret the contents using string operations.

Working with data often involves spreadsheets. Python programs not only need
to extract data from spreadsheet files, but it can be advantageous and convenient
to actually to the data processing in a Python program rather than in a spreadsheet
program like Microsoft Excel or LibreOffice. Section 6.4 goes through relevant
techniques for reading and writing files in the common CSV format for spread-
sheets.

The present chapter builds on fundamental programming concepts such as loops,
lists, arrays, if tests, command-line arguments, and curve plotting. The folder
src/files1 contains all the relevant program example files and associated data
files.

6.1 Dictionaries

So far in the book we have stored information in various types of objects, such as
numbers, strings, list, and arrays. A dictionary is a very flexible object for storing
various kind of information, and in particular when reading files. It is therefore time
to introduce the popular dictionary type.

A list is a collection of objects indexed by an integer going from 0 to the number
of elements minus one. Instead of looking up an element through an integer index,

1 http://tinyurl.com/pwyasaa/files
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it can be more handy to use a text. Roughly speaking, a list where the index can be
a text is called a dictionary in Python. Other computer languages use other names
for the same thing: HashMap, hash, associative array, or map.

6.1.1 Making Dictionaries

Suppose we need to store the temperatures from three cities: Oslo, London, and
Paris. For this purpose we can use a list,

temps = [13, 15.4, 17.5]

but then we need to remember the sequence of cities, e.g., that index 0 corresponds
to Oslo, index 1 to London, and index 2 to Paris. That is, the London temperature is
obtained as temps[1]. A dictionary with the city name as index is more convenient,
because this allows us to write temps[’London’] to look up the temperature in
London. Such a dictionary is created by one of the following two statements

temps = {’Oslo’: 13, ’London’: 15.4, ’Paris’: 17.5}

# or

temps = dict(Oslo=13, London=15.4, Paris=17.5)

Additional text-value pairs can be added when desired. We can, for instance, write

temps[’Madrid’] = 26.0

The temps dictionary has now four text-value pairs, and a print temps yields

{’Oslo’: 13, ’London’: 15.4, ’Paris’: 17.5, ’Madrid’: 26.0}

6.1.2 Dictionary Operations

The string “indices” in a dictionary are called keys. To loop over the keys in a dic-
tionary d, one writes for key in d: and works with key and the corresponding
value d[key] inside the loop. We may apply this technique to write out the tem-
peratures in the temps dictionary from the previous paragraph:

>>> for city in temps:

... print ’The temperature in %s is %g’ % (city, temps[city])

...

The temperature in Paris is 17.5

The temperature in Oslo is 13

The temperature in London is 15.4

The temperature in Madrid is 26
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We can check if a key is present in a dictionary by the syntax if key in d:

>>> if ’Berlin’ in temps:

... print ’Berlin:’, temps[’Berlin’]

... else:

... print ’No temperature data for Berlin’

...

No temperature data for Berlin

Writing key in d yields a standard boolean expression, e.g.,

>>> ’Oslo’ in temps

True

The keys and values can be extracted as lists from a dictionary:

>>> temps.keys()

[’Paris’, ’Oslo’, ’London’, ’Madrid’]

>>> temps.values()

[17.5, 13, 15.4, 26.0]

An important feature of the keys method in dictionaries is that the order of the
returned list of keys is unpredictable. If you need to traverse the keys in a cer-
tain order, you can sort the keys. A loop over the keys in the temps dictionary in
alphabetic order is written as

>>> for city in sorted(temps):

... print city

...

London

Madrid

Oslo

Paris

Python also has a special dictionary type OrderedDict where the key-value pairs
has a specific order, see Sect. 6.1.4.

A key-value pair can be removed by del d[key]:

>>> del temps[’Oslo’]

>>> temps

{’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}

>>> len(temps) # no of key-value pairs in dictionary

3

Sometimes we need to take a copy of a dictionary:

>>> temps_copy = temps.copy()

>>> del temps_copy[’Paris’] # this does not affect temps

>>> temps_copy

{’London’: 15.4, ’Madrid’: 26.0}

>>> temps

{’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}
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Note that if two variables refer to the same dictionary and we change the contents
of the dictionary through either of the variables, the change will be seen in both
variables:

>>> t1 = temps

>>> t1[’Stockholm’] = 10.0 # change t1

>>> temps # temps is also changed

{’Stockholm’: 10.0, ’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}

To avoid that temps is affected by adding a new key-value pair to t1, t1 must be
a copy of temps.

Remark In Python version 2.x, temps.keys() returns a list object while in
Python version 3.x, temps.keys() only enables iterating over the keys. To write
code that works with both versions one can use list(temps.keys()) in the cases
where a list is really needed and just temps.keys() in a for loop over the keys.

6.1.3 Example: Polynomials as Dictionaries

Python objects that cannot change their contents are known as immutable data types
and consist of int, float, complex, str, and tuple. Lists and dictionaries can
change their contents and are called mutable objects.

The keys in a dictionary are not restricted to be strings. In fact, any immutable
Python object can be used as key. For example, if you want a list as key, it cannot
be used since lists can change their contents are hence mutable objects, but a tuple
will do, since it is immutable.

A common type of key in dictionaries is integers. Next we shall explain how
dictionaries with integers as key provide a handy way of representing polynomials.
Consider the polynomial

p.x/ D �1 C x2 C 3x7 :

The data associated with this polynomial can be viewed as a set of power-coefficient
pairs, in this case the coefficient �1 belongs to power 0, the coefficient 1 belongs to
power 2, and the coefficient 3 belongs to power 7. A dictionary can be used to map
a power to a coefficient:

p = {0: -1, 2: 1, 7: 3}

A list can, of course, also be used, but in this case we must fill in all the zero
coefficients too, since the index must match the power:

p = [-1, 0, 1, 0, 0, 0, 0, 3]

The advantage with a dictionary is that we need to store only the non-zero coeffi-
cients. For the polynomial 1 C x100 the dictionary holds two elements while the list
holds 101 elements (see Exercise 6.10).
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The following function can be used to evaluate a polynomial represented as a dic-
tionary:

def eval_poly_dict(poly, x):

sum = 0.0

for power in poly:

sum += poly[power]*x**power

return sum

The poly argument must be a dictionary where poly[power] holds the coefficient
associated with the term x**power.

A more compact implementation can make use of Python’s sum function to sum
the elements of a list:

def eval_poly_dict2(poly, x):

return sum([poly[power]*x**power for power in poly])

That is, we first make a list of the terms in the polynomial using a list comprehen-
sion, and then we feed this list to the sum function. We can in fact drop the brackets
and storing all the poly[power]*x**power numbers in a list, because sum can
directly add elements of an iterator (like for power in poly):

def eval_poly_dict2(poly, x):

return sum(poly[power]*x**power for power in poly)

Be careful with redefining variables!
The name sum appears in both eval_poly_dict and eval_poly_dict2. In
the former, sum is a float object, and in the latter, sum is a built-in Python
function. When we set sum=0.0 in the first implementation, we bind the name
sum to a new float object, and the built-in Python function associated with the
name sum is then no longer accessible inside the eval_poly_dict function.
(Actually, this is not strictly correct, because sum is a local variable while the
built-in Python sum function is associated with a global name sum, which can
always be reached through globals()[’sum’].) Outside the eval_poly_dict
function, nevertheless, sum will be Python’s summation function and the local
sum variable inside the eval_poly_dict function is destroyed.

As a rule of thumb, avoid using sum or other names associated with frequently
used functions as new variables unless you are in a very small function (like
eval_poly_dict) where there is no danger that you need the original meaning
of the name.

With a list instead of dictionary for representing the polynomial, a slightly dif-
ferent evaluation function is needed:

def eval_poly_list(poly, x):

sum = 0

for power in range(len(poly)):

sum += poly[power]*x**power

return sum
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If there are many zeros in the poly list, eval_poly_list must perform all the
multiplications with the zeros, while eval_poly_dict computes with the non-zero
coefficients only and is hence more efficient.

Another major advantage of using a dictionary to represent a polynomial rather
than a list is that negative powers are easily allowed, e.g.,

p = {-3: 0.5, 4: 2}

can represent 1
2
x�3 C 2x4. With a list representation, negative powers require much

more book-keeping. We may, for example, set

p = [0.5, 0, 0, 0, 0, 0, 0, 2]

and remember that p[i] is the coefficient associated with the power i-3. In par-
ticular, the eval_poly_list function will no longer work for such lists, while the
eval_poly_dict function works also for dictionaries with negative keys (powers).

There is a dictionary counterpart to list comprehensions, called dictionary com-
prehensions, for quickly generating parameterized key-value pairs with a for loop.
Such a construction is convenient to generate the coefficients in a polynomial:

from math import factorial

d = {k: (-1)**k/float(factorial(k)) for k in range(n+1)}

The d dictionary now contains the power-coefficient pairs of the Taylor polynomial
of degree n for e�x . (Note the use of float to avoid integer division.)

You are now encouraged to solve Exercise 6.11 to become more familiar with
the concept of dictionaries.

6.1.4 Dictionaries with Default Values and Ordering

Dictionaries with default values Looking up keys that are not present in the dic-
tionary requires special treatment. Consider a polynomial dictionary of the type
introduced in Sect. 6.1.3. Say we have 2x�3 � 1:5x�1 � 2x2 represented by

p1 = {-3: 2, -1: -1.5, 2: -2}

If the code tries to look up p1[1], this operation results in a KeyError since 1 is
not a registered key in p1. We therefore need to do either

if key in p1:

value = p1[key]

or use

value = p1.get(key, 0.0)
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where p1.get returns p1[key] if key in p1 and the default value 0.0 if not.
A third possibility is to work with a dictionary with a default value:

from collections import defaultdict

def polynomial_coeff_default():

# default value for polynomial dictionary

return 0.0

p2 = defaultdict(polynomial_coeff_default)

p2.update(p1)

The p2 can be indexed by any key, and for unregistered keys the polynomial_
coeff_default function is called to provide a value. This must be a function
without arguments. Usually, a separate function is never made, but either a type is
inserted or a lambda function. The example above is equivalent to

p2 = defaultdict(lambda: 0.0)

p2 = defaultdict(float)

In the latter case float() is called for each unknown key, and float() returns
a float object with zero value. Now we can look up p2[1] and get the default
value 0. It must be remarked that this key is then a part of the dictionary:

>>> p2 = defaultdict(lambda: 0.0)

>>> p2.update({2: 8}) # only one key

>>> p2[1]

0.0

>>> p2[0]

0.0

>>> p2[-2]

0.0

>>> print p2

{0: 0.0, 1: 0.0, 2: 8, -2: 0.0}

Ordered dictionaries The elements of a dictionary have an undefined order. For
example,

>>> p1 = {-3: 2, -1: -1.5, 2: -2}

>>> print p1

{2: -2, -3: 2, -1: -1.5}

One can control the order by sorting the keys, either by the default sorting (alpha-
betically for string keys, ascending order for number keys):

>>> for key in sorted(p1):

... print key, p1[key]

...

-3 2

-1 -1.5

2 -2
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The sorted function also accept an optional argument where the user can supply
a function that sorts two keys (see Exercise 3.39).

However, Python features a dictionary type that preserves the order of the keys
as they were registered:

>>> from collections import OrderedDict

>>> p2 = OrderedDict({-3: 2, -1: -1.5, 2: -2})

>>> print p2

OrderedDict([(2, -2), (-3, 2), (-1, -1.5)])

>>> p2[-5] = 6

>>> for key in p2:

... print key, p2[key]

...

2 -2

-3 2

-1 -1.5

-5 6

Here is an example with dates as keys where the order is important.

>>> data = {’Jan 2’: 33, ’Jan 16’: 0.1, ’Feb 2’: 2}

>>> for date in data:

... print date, data[date]

...

Feb 2 2

Jan 2 33

Jan 16 0.1

The order of the keys in the loop is not the right registered order, but this is easily
achieved by OrderedDict

>>> data = OrderedDict()

>>> data[’Jan 2’] = 33

>>> data[’Jan 16’] = 0.1

>>> data[’Feb 2’] = 2

>>> for date in data:

... print date, data[date]

...

Jan2 33

Jan 16 0.1

Feb 2 2

A comment on alternative solutions should be made here. Trying to sort the
data dictionary when it is an ordinary dict object does not help, as by default the
sorting will be alphabetically, resulting in the sequence ’Feb 2’, ’Jan 16’, and
’Jan 2’. What does help, however, is to use Python’s datetime objects as keys
reflecting dates, since these objects will be correctly sorted. A datetime object
can be created from a string like ’Jan 2, 2017’ using a special syntax (see the
module documentation). The relevant code is
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>>> import datetime

>>> data = {}

>>> d = datetime.datetime.strptime # short form

>>> data[d(’Jan 2, 2017’, ’%b %d, %Y’)] = 33

>>> data[d(’Jan 16, 2017’, ’%b %d, %Y’)] = 0.1

>>> data[d(’Feb 2, 2017’, ’%b %d, %Y’)] = 2

Printing out in sorted order gives the right sequence of dates:

>>> for date in sorted(data):

... print date, data[date]

...

2017-01-02 00:00:00 33

2017-01-16 00:00:00 0.1

2017-02-02 00:00:00 2

The time is automatically part of a datetime object and set to 00:00:00when not
specified.

While OrderedDict provides a simpler and shorter solution to keeping keys
(here dates) in the right order in a dictionary, using datetime objects for dates has
many advantages: dates can be formatted and written out in various ways, counting
days between two dates is easy (see Sect. A.1.1), calculating the corresponding
week number and name of the weekday is supported, to mention some functionality.

6.1.5 Example: Storing File Data in Dictionaries

Problem The file files/densities.dat contains a table of densities of various
substances measured in g=cm3:

air 0.0012

gasoline 0.67

ice 0.9

pure water 1.0

seawater 1.025

human body 1.03

limestone 2.6

granite 2.7

iron 7.8

silver 10.5

mercury 13.6

gold 18.9

platinium 21.4

Earth mean 5.52

Earth core 13

Moon 3.3

Sun mean 1.4

Sun core 160

proton 2.3E+14
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In a program we want to access these density data. A dictionary with the name
of the substance as key and the corresponding density as value seems well suited
for storing the data.

Solution We can read the densities.dat file line by line, split each line into
words, use a float conversion of the last word as density value, and the remaining
one or two words as key in the dictionary.

def read_densities(filename):

infile = open(filename, ’r’)

densities = {}

for line in infile:

words = line.split()

density = float(words[-1])

if len(words[:-1]) == 2:

substance = words[0] + ’ ’ + words[1]

else:

substance = words[0]

densities[substance] = density

infile.close()

return densities

densities = read_densities(’densities.dat’)

This code is found in the file density.py. With string operations from Sect. 6.2.1
we can avoid the special treatment of one or two words in the name of the substance
and achieve simpler and more general code, see Exercise 6.3.

6.1.6 Example: Storing File Data in Nested Dictionaries

Problem We are given a data file with measurements of some properties with given
names (here A, B, C . . . ). Each property is measured a given number of times. The
data are organized as a table where the rows contain the measurements and the
columns represent the measured properties:

A B C D

1 11.7 0.035 2017 99.1

2 9.2 0.037 2019 101.2

3 12.2 no no 105.2

4 10.1 0.031 no 102.1

5 9.1 0.033 2009 103.3

6 8.7 0.036 2015 101.9

The word no stands for no data, i.e., we lack a measurement. We want to read
this table into a dictionary data so that we can look up measurement no. i of (say)
property C as data[’C’][i]. For each property p, we want to compute the mean
of all measurements and store this as data[p][’mean’].

http://tinyurl.com/pwyasaa/dictstring/density.py


6.1 Dictionaries 343

Algorithm The algorithm for creating the data dictionary goes as follows:

examine the first line: split it into words and

initialize a dictionary with the property names

as keys and empty dictionaries {} as values

for each of the remaining lines in the file:

split the line into words

for each word after the first:

if the word is not ‘no‘:

transform the word to a real number and store

the number in the relevant dictionary

� examine the first line: split it into words and initialize a dictionary with the
property names as keys and empty dictionaries as values

� for each of the remaining lines in the file
– split the line into words
– for each word after the first

� if the word is not no:
� transform the word to a real number and store the number in the relevant

dictionary

Implementation A new aspect needed in the solution is nested dictionaries, that
is, dictionaries of dictionaries. The latter topic is first explained, via an example:

>>> d = {’key1’: {’key1’: 2, ’key2’: 3}, ’key2’: 7}

Observe here that the value of d[’key1’] is a dictionary, which we can index with
its keys key1 and key2:

>>> d[’key1’] # this is a dictionary

{’key2’: 3, ’key1’: 2}

>>> type(d[’key1’]) # proof

<type ’dict’>

>>> d[’key1’][’key1’] # index a nested dictionary

2

>>> d[’key1’][’key2’]

3

In other words, repeated indexing works for nested dictionaries as for nested lists.
The repeated indexing does not apply to d[’key2’] since that value is just an
integer:

>>> d[’key2’][’key1’]

...

TypeError: unsubscriptable object

>>> type(d[’key2’])

<type ’int’>

When we have understood the concept of nested dictionaries, we are in a position
to present a complete code that solves our problem of loading the tabular data in the
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file table.dat into a nested dictionary data and computing mean values. First,
we list the program, stored in the file table2dict.py, and display the program’s
output. Thereafter, we dissect the code in detail.

infile = open(’table.dat’, ’r’)

lines = infile.readlines()

infile.close()

data = {} # data[property][measurement_no] = propertyvalue

first_line = lines[0]

properties = first_line.split()

for p in properties:

data[p] = {}

for line in lines[1:]:

words = line.split()

i = int(words[0]) # measurement number

values = words[1:] # values of properties

for p, v in zip(properties, values):

if v != ’no’:

data[p][i] = float(v)

# Compute mean values

for p in data:

values = data[p].values()

data[p][’mean’] = sum(values)/len(values)

for p in sorted(data):

print ’Mean value of property %s = %g’ % (p, data[p][’mean’])

The corresponding output from this program becomes

Mean value of property A = 10.1667

Mean value of property B = 0.0344

Mean value of property C = 2015

Mean value of property D = 102.133

To view the nested data dictionary, we may insert

import scitools.pprint2; scitools.pprint2.pprint(data)

which produces something like

{’A’: {1: 11.7, 2: 9.2, 3: 12.2, 4: 10.1, 5: 9.1, 6: 8.7,

’mean’: 10.1667},

’B’: {1: 0.035, 2: 0.037, 4: 0.031, 5: 0.033, 6: 0.036,

’mean’: 0.0344},

’C’: {1: 2017, 2: 2019, 5: 2009, 6: 2015, ’mean’: 2015},

’D’: {1: 99.1,

2: 101.2,

3: 105.2,

4: 102.1,

5: 103.3,

6: 101.9,

’mean’: 102.133}}

http://tinyurl.com/pwyasaa/dictstring/table2dict.py
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Dissection To understand a computer program, you need to understand what the
result of every statement is. Let us work through the code, almost line by line, and
see what it does.

First, we load all the lines of the file into a list of strings called lines. The
first_line variable refers to the string

’ A B C D’

We split this line into a list of words, called properties, which then contains

[’A’, ’B’, ’C’, ’D’]

With each of these property names we associate a dictionary with the measurement
number as key and the property value as value, but first we must create these “inner”
dictionaries as empty before we can add the measurements:

for p in properties:

data[p] = {}

The first pass in the for loop picks out the string

’1 11.7 0.035 2017 99.1’

as the line variable. We split this line into words, the first word (words[0]) is
the measurement number, while the rest words[1:] is a list of property values,
here named values. To pair up the right properties and values, we loop over the
properties and values lists simultaneously:

for p, v in zip(properties, values):

if v != ’no’:

data[p][i] = float(v)

Recall that some values may be missing and we drop to record that value (we
could, alternatively, set the value to None). Because the values list contains strings
(words) read from the file, we need to explicitly transform each string to a float
number before we can compute with the values.

After the for line in lines[1:] loop, we have a dictionary data of dictio-
naries where all the property values are stored for each measurement number and
property name. Figure 6.1 shows a graphical representation of the data dictionary.

It remains to compute the average values. For each property name p, i.e., key
in the data dictionary, we can extract the recorded values as the list data[p].
values() and simply send this list to Python’s sum function and divide by the
number of measured values for this property, i.e., the length of the list:

for p in data:

values = data[p].values()

data[p][’mean’] = sum(values)/len(values)
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data 'A'

'C'

'B'

'D'

'mean' 102.133333333

1 99.1

2 101.2

3 105.2

4 102.1

5 103.3

6 101.9

'mean' 0.0344

6 0.036

5 0.033

4 0.031

2 0.037

1 0.035

'mean' 2015.0

6 2015.0

5 2009.0

2 2019.0

1 2017.0

'mean' 10.1666666667

6 8.7

5 9.1

4 10.1

3 12.2

2 9.2

1 11.7

Fig. 6.1 Illustration of the nested dictionary created in the table2dict.py program
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Alternatively, we can write an explicit loop to compute the average:

for p in data:

sum_values = 0

for value in data[p]:

sum_values += value

data[p][’mean’] = sum_values/len(data[p])

When we want to look up a measurement no. n of property B, we must recall
that this particular measurement may be missing so we must do a test if n is key in
the dictionary data[p]:

if n in data[’B’]:

value = data[’B’][n]

# alternative:

value = data[’B’][n] if n in data[’B’] else None

6.1.7 Example: Reading and Plotting Data Recorded at Specific
Dates

Problem We want to compare the evolution of the stock prices of some giant com-
panies in the computer industry: Microsoft, Apple, and Google. Relevant data files
for stock prices can be downloaded from http://finance.yahoo.com. Fill in the com-
pany’s name and click on Search Finance in the top bar of this page and choose
Historical Prices in the left pane. On the resulting web page one can specify start
and end dates for the historical prices of the stock. The default values were used in
this example. Ticking off Monthly values and clicking Get Prices result in a table
of stock prices for each month since the stock was introduced. The table can be
downloaded as a spreadsheet file in CSV format, typically looking like

Date,Open,High,Low,Close,Volume,Adj Close

2014-02-03,502.61,551.19,499.30,545.99,12244400,545.99

2014-01-02,555.68,560.20,493.55,500.60,15698500,497.62

2013-12-02,558.00,575.14,538.80,561.02,12382100,557.68

2013-11-01,524.02,558.33,512.38,556.07,9898700,552.76

2013-10-01,478.45,539.25,478.28,522.70,12598400,516.57

...

1984-11-01,25.00,26.50,21.87,24.75,5935500,2.71

1984-10-01,25.00,27.37,22.50,24.87,5654600,2.73

1984-09-07,26.50,29.00,24.62,25.12,5328800,2.76

The file format is simple: columns are separated by comma, the first line contains
column headings, and the data lines have the date in the first column and various
measures of stock prices in the next columns. Reading about the meaning of the
various data on the Yahoo! web pages reveals that our interest concerns the final
column (as these prices are adjusted for splits and dividends). Three relevant data

http://finance.yahoo.com
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files can be found in the folder src/files2 with the names stockprices_X.csv,
where X is Microsoft, Apple, or Google.

The task is visually illustrate the historical, relative stock market value of these
companies. For this purpose it is natural to scale the prices of a company’s stock to
start at a unit value when the most recent company entered the market. Since the
date of entry varies, the oldest data point can be skipped such that all data points
correspond to the first trade day every month.

Solution There are two major parts of this problem: reading the file and plotting
the data. The reading part is quite straightforward, while the plotting part needs
some special considerations since the x values in the plot are dates and not real
numbers. In the forthcoming text we solve the individual subproblems one by one,
showing the relevant Python snippets. The complete program is found in the file
stockprices.py.

We start with the reading part. Since the reading will be repeated for several
companies, we create a function for extracting the relevant data for a specific com-
pany. These data cover the dates in column 1 and the stock prices in the last column.
Since we want to plot prices versus dates, it will be convenient to turn the dates into
date objects. In more detail the algorithms has the following points:

1. open the file
2. create two empty lists, dates and prices, for collecting the data
3. read the first line (of no interest)
4. for each line in the rest of the file:

(a) split the line wrt. comma into words
(b) append the first word to the dates list
(c) append the last word to the prices list

5. reverse the lists (oldest date first)
6. convert date strings to datetime objects
7. convert prices list to float array for computations
8. return dates and prices, except for the first (oldest) data point

There are a couple of additional points to consider. First, the words on a line are
strings, and at least the prices (last word) should be converted to a float. Second, the
recipe for converting dates like ’2008-02-04’ to date (or datetime) objects goes
as

from datetime import datetime

datefmt = ’%Y-%m-%d’ # date format YYYY-MM-DD used in datetime

strdate = ’2008-02-04’

datetime_object = datetime.strptime(strdate, datefmt)

date_object = datetime_object.date()

The nice thing with date and datetime object is that we can compute with them
and in particular used them in plotting with Matplotlib.

2 http://tinyurl.com/pwyasaa/files

http://tinyurl.com/pwyasaa/files
http://tinyurl.com/pwyasaa/dictstring/stockprices.py
http://tinyurl.com/pwyasaa/files
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We can now translate the algorithm to Python code:

from datetime import datetime

def read_file(filename):

infile = open(filename, ’r’)

infile.readline() # read column headings

dates = []; prices = []

for line in infile:

words = line.split(’,’)

dates.append(words[0])

prices.append(float(words[-1]))

infile.close()

dates.reverse()

prices.reverse()

# Convert dates on the form ’YYYY-MM-DD’ to date objects

datefmt = ’%Y-%m-%d’

dates = [datetime.strptime(_date, datefmt).date()

for _date in dates]

prices = np.array(prices)

return dates[1:], prices[1:]

Although we work with three companies in this example, it is easy and almost
always a good idea to generalize the program to an arbitrary number of compa-
nies. All we assume is that their stock prices are in files with names of the form
stockprices_X.csv, where X is the company name. With aid of the function call
glob.glob(’stockprices_*.csv’) we get a list of all such files. By looping
over this list, extracting the company name, and calling read_file, we can store
the dates and corresponding prices in dictionaries dates and prices, indexed by
the company name:

dates = {}; prices = {}

import glob, numpy as np

filenames = glob.glob(’stockprices_*.csv’)

companies = []

for filename in filenames:

company = filename[12:-4]

d, p = read_file(filename)

dates[company] = d

prices[company] = p

The next step is to normalize the prices such that they coincide on a certain date.
We pick this date as the first month we have data for the youngest company. In lists
of date or datetime objects, we can use Python’s max and min functions to extract
the newest and oldest date.

first_months = [dates[company][0] for company in dates]

normalize_date = max(first_months)

for company in dates:

index = dates[company].index(normalize_date)

prices[company] /= prices[company][index]
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# Plot log of price versus years

import matplotlib.pyplot as plt

from matplotlib.dates import YearLocator, MonthLocator, DateFormatter

fig, ax = plt.subplots()

legends = []

for company in prices:

ax.plot_date(dates[company], np.log(prices[company]),

’-’, label=company)

legends.append(company)

ax.legend(legends, loc=’upper left’)

ax.set_ylabel(’logarithm of normalized value’)

# Format the ticks

years = YearLocator(5) # major ticks every 5 years

months = MonthLocator(6) # minor ticks every 6 months

yearsfmt = DateFormatter(’%Y’)

ax.xaxis.set_major_locator(years)

ax.xaxis.set_major_formatter(yearsfmt)

ax.xaxis.set_minor_locator(months)

ax.autoscale_view()

fig.autofmt_xdate()

plt.savefig(’tmp.pdf’); plt.savefig(’tmp.png’)

plt.show()

The normalized prices vary a lot, so to see the development over 30 years better,
we decide to take the logarithm of the prices. The plotting procedure is somewhat
involved so the reader should take the coming code more as a recipe than as a se-
quence of statement to really understand:

import matplotlib.pyplot as plt

from matplotlib.dates import YearLocator, MonthLocator, DateFormatter

fig, ax = plt.subplots()

legends = []

for company in prices:

ax.plot_date(dates[company], np.log(prices[company]),

’-’, label=company)

legends.append(company)

ax.legend(legends, loc=’upper left’)

ax.set_ylabel(’logarithm of normalized value’)

# Format the ticks

years = YearLocator(5) # major ticks every 5 years

months = MonthLocator(6) # minor ticks every 6 months

yearsfmt = DateFormatter(’%Y’)

ax.xaxis.set_major_locator(years)

ax.xaxis.set_major_formatter(yearsfmt)

ax.xaxis.set_minor_locator(months)

ax.autoscale_view()

fig.autofmt_xdate()

plt.savefig(’tmp.pdf’); plt.savefig(’tmp.png’)
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Fig. 6.2 The evolution of stock prices for three companies

Figure 6.2 shows the resulting plot. We observe that the normalized prices coincide
when Google entered the market, here at Sep 1, 2004. Note that there is a log
scale on the vertical axis. You may want to plot the real normalized prices to get
a stronger impression of the significant recent rise in value, especially for Apple.

6.2 Strings

Many programs need to manipulate text. For example, when we read the contents
of a file into a string or list of strings (lines), we may want to change parts of the
text in the string(s) – and maybe write out the modified text to a new file. So far in
this chapter we have converted parts of the text to numbers and computed with the
numbers. Now it is time to learn how to manipulate the text strings themselves.

6.2.1 CommonOperations on Strings

Python has a rich set of operations on string objects. Some of the most common
operations are listed below.

Substring specification The expression s[i:j] extracts the substring starting
with character number i and ending with character number j-1 (similarly to lists,
0 is the index of the first character):
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>>> s = ’Berlin: 18.4 C at 4 pm’

>>> s[8:] # from index 8 to the end of the string

’18.4 C at 4 pm’

>>> s[8:12] # index 8, 9, 10 and 11 (not 12!)

’18.4’

A negative upper index counts, as usual, from the right such that s[-1] is the last
element, s[-2] is the next last element, and so on.

>>> s[8:-1]

’18.4 C at 4 p’

>>> s[8:-8]

’18.4 C’

Searching for substrings The call s.find(s1) returns the index where the sub-
string s1 first appears in s. If the substring is not found, �1 is returned.

>>> s.find(’Berlin’) # where does ’Berlin’ start?

0

>>> s.find(’pm’)

20

>>> s.find(’Oslo’) # not found

-1

Sometimes the aim is to just check if a string is contained in another string, and
then we can use the syntax:

>>> ’Berlin’ in s:

True

>>> ’Oslo’ in s:

False

Here is a typical use of the latter construction in an if test:

>>> if ’C’ in s:

... print ’C found’

... else:

... print ’no C’

...

C found

Two other convenient methods for checking if a string starts with or ends with
a specified string are startswith and endswith:

>>> s.startswith(’Berlin’)

True

>>> s.endswith(’am’)

False
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Substitution The call s.replace(s1, s2) replaces substring s1 by s2 every-
where in s:

>>> s.replace(’ ’, ’_’)

’Berlin:_18.4_C__at_4_pm’

>>> s.replace(’Berlin’, ’Bonn’)

’Bonn: 18.4 C at 4 pm’

A variant of the last example, where several string operations are put together, con-
sists of replacing the text before the first colon:

>>> s.replace(s[:s.find(’:’)], ’Bonn’)

’Bonn: 18.4 C at 4 pm’

Take a break at this point and convince yourself that you understand how we specify
the substring to be replaced!

String splitting The call s.split() splits the string s into words separated by
whitespace (space, tabulator, or newline):

>>> s.split()

[’Berlin:’, ’18.4’, ’C’, ’at’, ’4’, ’pm’]

Splitting a string s into words separated by a text t can be done by s.split(t).
For example, we may split with respect to colon:

>>> s.split(’:’)

[’Berlin’, ’ 18.4 C at 4 pm’]

We know that s contains a city name, a colon, a temperature, and then C:

>>> s = ’Berlin: 18.4 C at 4 pm’

With s.splitlines(), a multi-line string is split into lines (very useful when a file
has been read into a string and we want a list of lines):

>>> t = ’1st line\n2nd line\n3rd line’

>>> print t

1st line

2nd line

3rd line

>>> t.splitlines()

[’1st line’, ’2nd line’, ’3rd line’]

Upper and lower case s.lower() transforms all characters to their lower case
equivalents, and s.upper() performs a similar transformation to upper case letters:

>>> s.lower()

’berlin: 18.4 c at 4 pm’

>>> s.upper()

’BERLIN: 18.4 C AT 4 PM’
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Strings are constant A string cannot be changed, i.e., any change always results
in a new string. Replacement of a character is not possible:

>>> s[18] = 5

...

TypeError: ’str’ object does not support item assignment

If we want to replace s[18], a new string must be constructed, for example by
keeping the substrings on either side of s[18] and inserting a ’5’ in between:

>>> s[:18] + ’5’ + s[19:]

’Berlin: 18.4 C at 5 pm’

Strings with digits only One can easily test whether a string contains digits only
or not:

>>> ’214’.isdigit()

True

>>> ’ 214 ’.isdigit()

False

>>> ’2.14’.isdigit()

False

Whitespace We can also check if a string contains spaces only by calling the
isspacemethod. More precisely, isspace tests for whitespace, which means the
space character, newline, or the TAB character:

>>> ’ ’.isspace() # blanks

True

>>> ’ \n’.isspace() # newline

True

>>> ’ \t ’.isspace() # TAB

True

>>> ’’.isspace() # empty string

False

The isspace is handy for testing for blank lines in files. An alternative is to strip
first and then test for an empty string:

>>> line = ’ \n’

>>> line.strip() == ’’

True

Stripping off leading and/or trailing spaces in a string is sometimes useful:

>>> s = ’ text with leading/trailing space \n’

>>> s.strip()

’text with leading/trailing space’

>>> s.lstrip() # left strip

’text with leading/trailing space \n’

>>> s.rstrip() # right strip

’ text with leading/trailing space’
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Joining strings The opposite of the split method is join, which joins elements
in a list of strings with a specified delimiter in between. That is, the following two
types of statements are inverse operations:

t = delimiter.join(words)

words = t.split(delimiter)

An example on using joinmay be

>>> strings = [’Newton’, ’Secant’, ’Bisection’]

>>> t = ’, ’.join(strings)

>>> t

’Newton, Secant, Bisection’

As an illustration of the usefulness of split and join, we want to remove the
first two words on a line. This task can be done by first splitting the line into words
and then joining the words of interest:

>>> line = ’This is a line of words separated by space’

>>> words = line.split()

>>> line2 = ’ ’.join(words[2:])

>>> line2

’a line of words separated by space’

There are many more methods in string objects. All methods are described in
the String Methods3 section of the Python Standard Library online document.

6.2.2 Example: Reading Pairs of Numbers

Problem Suppose we have a file consisting of pairs of real numbers, i.e., text of the
form .a; b/, where a and b are real numbers. This notation for a pair of numbers
is often used for points in the plane, vectors in the plane, and complex numbers.
A sample file may look as follows:

(1.3,0) (-1,2) (3,-1.5)

(0,1) (1,0) (1,1)

(0,-0.01) (10.5,-1) (2.5,-2.5)

The file can be found as read_pairs1.dat. Our task is to read this text into
a nested list pairs such that pairs[i] holds the pair with index i, and this pair is
a tuple of two float objects. We assume that there are no blanks inside the paren-
theses of a pair of numbers (we rely on a split operation, which would otherwise
not work).

Solution To solve this programming problem, we can read in the file line by line;
for each line: split the line into words (i.e., split with respect to whitespace); for

3 http://docs.python.org/2/library/stdtypes.html#string-methods

http://docs.python.org/2/library/stdtypes.html#string-methods
http://docs.python.org/2/library/stdtypes.html#string-methods
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each word: strip off the parentheses, split with respect to comma, and convert the
resulting two words to floats. Our brief algorithm can be almost directly translated
to Python code:

# Load the file into list of lines

with open(’read_pairs1.dat’, ’r’) as infile:

lines = infile.readlines()

# Analyze the contents of each line

pairs = [] # list of (n1, n2) pairs of numbers

for line in lines:

words = line.split()

for word in words:

word = word[1:-1] # strip off parenthesis

n1, n2 = word.split(’,’)

n1 = float(n1); n2 = float(n2)

pair = (n1, n2)

pairs.append(pair) # add 2-tuple to last row

This code is available in the file read_pairs1.py. The with statement is the
modern Python way of reading files, see Sect. 4.5.2, with the advantage that we
do not need to think about closing the file. Figure 6.3 shows a snapshot of the
state of the variables in the program after having treated the first line. You should
explain each line in the program to yourself, and compare your understanding with
the figure.

The output from the program becomes

[(1.3, 0.0),

(-1.0, 2.0),

(3.0, -1.5),

(0.0, 1.0),

(1.0, 0.0),

(1.0, 1.0),

(0.0, -0.01),

(10.5, -1.0),

(2.5, -2.5)]

We remark that our solution to this programming problem relies heavily on the
fact that spaces inside the parentheses are not allowed. If spaces were allowed, the
simple split to obtain the pairs on a line as words would not work. What can we
then do?

We can first strip off all blanks on a line, and then observe that the pairs are
separated by the text ’)(’. The first and last pair on a line will have an extra
parenthesis that we need to remove. The rest of code is similar to the previous code
and can be found in read_pairs2.py:

with open(’read_pairs2.dat’, ’r’) as infile:

lines = infile.readlines()

# Analyze the contents of each line

pairs = [] # list of (n1, n2) pairs of numbers

http://tinyurl.com/pwyasaa/dictstring/read_pairs1.py
http://tinyurl.com/pwyasaa/dictstring/read_pairs2.py
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lumpy_fig True

words 0 ’(1.3,0)’

1 ’(−1,2)’

2 ’(3,−1.5)’

pair 0 3.0

1 −1.5

line ’(1.3,0)    (−1,2)    (3,−1.5)’

pairs 0 0 1.3

1 0.0

1 0 −1.0

1 2.0

2

word ’3,−1.5’

n1 3.0

n2 −1.5

Fig. 6.3 Illustration of the variables in the read_pairs.py program after the first pass in the
loop over words in the first line of the data file

for line in lines:

line = line.strip() # remove whitespace such as newline

line = line.replace(’ ’, ’’) # remove all blanks

words = line.split(’)(’)

# strip off leading/trailing parenthesis in first/last word:

words[0] = words[0][1:] # (-1,3 -> -1,3

words[-1] = words[-1][:-1] # 8.5,9) -> 8.5,9

for word in words:

n1, n2 = word.split(’,’)

n1 = float(n1); n2 = float(n2)

pair = (n1, n2)

pairs.append(pair)

The program can be tested on the file read_pairs2.dat:

(1.3 , 0) (-1 , 2 ) (3, -1.5)

(0 , 1) ( 1, 0) ( 1 , 1 )

(0,-0.01) (10.5,-1) (2.5, -2.5)
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A third approach is to notice that if the pairs were separated by commas,

(1, 3.0), (-1, 2), (3, -1.5),

(0, 1), (1, 0), (1, 1),

the file text is very close to the Python syntax of a list of 2-tuples. We only miss the
enclosing brackets:

[(1, 3.0), (-1, 2), (3, -1.5),

(0, 1), (1, 0), (1, 1),]

Running eval on this text will automatically produce the list object we want to
construct! All we need to do is to read the file into a string, add a comma after
every right parenthesis, add opening and closing bracket, and call eval (program
read_pairs3.py):

with open(’read_pairs2.dat’, ’r’) as infile:

text = infile.read()

text = text.replace(’)’, ’),’)

text = ’[’ + text + ’]’

pairs = eval(text)

In general, it is a good idea to construct file formats that are as close as possible to
valid Python syntax such that one can take advantage of the eval or exec functions
to turn text into “live objects”.

6.2.3 Example: Reading Coordinates

Problem Suppose we have a file with coordinates .x; y; z/ in three-dimensional
space. The file format looks as follows:

x=-1.345 y= 0.1112 z= 9.1928

x=-1.231 y=-0.1251 z= 1001.2

x= 0.100 y= 1.4344E+6 z=-1.0100

x= 0.200 y= 0.0012 z=-1.3423E+4

x= 1.5E+5 y=-0.7666 z= 1027

The goal is to read this file and create a list with (x,y,z) 3-tuples, and thereafter
convert the nested list to a two-dimensional array with which we can compute.

Note that there is sometimes a space between the = signs and the following num-
ber and sometimes not. Splitting with respect to space and extracting every second
word is therefore not an option. We shall present three solutions.

Solution 1: substring extraction The file format looks very regular with the x=,
y=, and z= texts starting in the same columns at every line. By counting characters,
we realize that the x= text starts in column 2, the y= text starts in column 16, while
the z= text starts in column 31. Introducing

http://tinyurl.com/pwyasaa/dictstring/read_pairs3.py
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x_start = 2

y_start = 16

z_start = 31

the three numbers in a line string are obtained as the substrings

x = line[x_start+2:y_start]

y = line[y_start+2:z_start]

z = line[z_start+2:]

The following code, found in file file2coor_v1.py, creates the coor array with
shape .n; 3/, where n is the number of .x; y; z/ coordinates.

infile = open(’xyz.dat’, ’r’)

coor = [] # list of (x,y,z) tuples

for line in infile:

x_start = 2

y_start = 16

z_start = 31

x = line[x_start+2:y_start]

y = line[y_start+2:z_start]

z = line[z_start+2:]

print ’debug: x="%s", y="%s", z="%s"’ % (x,y,z)

coor.append((float(x), float(y), float(z)))

infile.close()

import numpy as np

coor = np.array(coor)

print coor.shape, coor

The print statement inside the loop is always wise to include when doing string
manipulations, simply because counting indices for substring limits quickly leads
to errors. Running the program, the output from the loop looks like this

debug: x="-1.345 ", y=" 0.1112 ", z=" 9.1928

"

for the first line in the file. The double quotes show the exact extent of the extracted
coordinates. Note that the last quote appears on the next line. This is because line
has a newline at the end (this newline must be there to define the end of the line),
and the substring line[z_start:] contains the newline at the of line. Writing
line[z_start:-1] would leave the newline out of the z coordinate. However,
this has no effect in practice since we transform the substrings to float, and an
extra newline or other blanks make no harm.

The coor object at the end of the program has the value

[[ -1.34500000e+00 1.11200000e-01 9.19280000e+00]

[ -1.23100000e+00 -1.25100000e-01 1.00120000e+03]

[ 1.00000000e-01 1.43440000e+06 -1.01000000e+00]

[ 2.00000000e-01 1.20000000e-03 -1.34230000e+04]

[ 1.50000000e+05 -7.66600000e-01 1.02700000e+03]]

http://tinyurl.com/pwyasaa/dictstring/file2coor_v1.py
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Solution 2: string search One problem with the solution approach above is that
the program will not work if the file format is subject to a change in the column
positions of x=, y=, or z=. Instead of hardcoding numbers for the column positions,
we can use the findmethod in string objects to locate these column positions:

x_start = line.find(’x=’)

y_start = line.find(’y=’)

z_start = line.find(’z=’)

The rest of the code is similar to the complete program listed above, and the com-
plete code is stored in the file file2coor_v2.py.

Solution 3: string split String splitting is a powerful tool, also in the present case.
Let us split with respect to the equal sign. The first line in the file then gives us the
words

[’x’, ’-1.345 y’, ’ 0.1112 z’, ’ 9.1928’]

We throw away the first word, and strip off the last character in the next word.
The final word can be used as is. The complete program is found in the file
file2coor_v3.py and looks like

infile = open(’xyz.dat’, ’r’)

coor = [] # list of (x,y,z) tuples

for line in infile:

words = line.split(’=’)

x = float(words[1][:-1])

y = float(words[2][:-1])

z = float(words[3])

coor.append((x, y, z))

infile.close()

import numpy as np

coor = np.array(coor)

print coor.shape, coor

More sophisticated examples of string operations appear in Sect. 6.3.4.

6.3 Reading Data fromWeb Pages

Python has a module urllibwhich makes it possible to read data from a web page
as easily as we can read data from an ordinary file. (In principle this is true, but in
practice the text in web pages tend to be much more complicated than the text in
the files we have treated so far.) Before we do this, a few concepts from the Internet
world must be touched.

http://tinyurl.com/pwyasaa/dictstring/file2coor_v2.py
http://tinyurl.com/pwyasaa/dictstring/file2coor_v3.py


6.3 Reading Data fromWeb Pages 361

6.3.1 About Web Pages

Web pages are viewed with a web browser. There are many browsers: Firefox,
Internet Explorer, Safari, Opera, and Google Chrome to mention the most famous.
Any web page you visit is associated with an address, usually something like

http://www.some.where.net/some/file.html

This type of web address is called a URL (Uniform Resource Locator) or URI
(Uniform Resource Identifier). (We stick to the term URL in this book because
Python’s tools for accessing resources on the Internet have url as part of module
and function names.) The graphics you see in a web browser, i.e., the web page you
see with your eyes, is produced by a series of commands that specifies the text on
the page, the images, buttons to be pressed, etc. Roughly speaking, these commands
are like statements in computer programs. The commands are stored in a text file
and follow rules in a language, exactly as you are used to when writing statements
in a programming language.

The common language for defining web pages is HTML. A web page is then
simply a text file with text containing HTML commands. Instead of a physical file,
the web page can also be the output text from a program. In that case the URL is
the name of the program file.

The web browser interprets the text and the HTML commands, and then decides
how to display the information visually. Let us demonstrate this for a very simple
web page shown in Fig. 6.4. This page was produced by the following text with
embedded HTML commands:

<html>

<body bgcolor="orange">

<h1>A Very Simple HTML Page</h1> <!-- headline -->

Web pages are written in a language called

<a href="http://www.w3.org/MarkUp/Guide/">HTML</a>.

Ordinary text is written as ordinary text, but when we

need links, headlines, lists,

<ul>

<li><em>emphasized words</em>, or

Fig. 6.4 Example of what a very simple HTML file looks like in a web browser
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<li> <b>boldface text</b>,

</ul>

we need to embed the text inside HTML tags. We can also

insert GIF or PNG images, taken from other Internet sites,

if desired.

<hr> <!-- horizontal line -->

<img src="http://www.simula.no/simula_logo.gif">

</body>

</html>

A typical HTML command consists of an opening and a closing tag. For exam-
ple, emphasized text is specified by enclosing the text inside em (emphasize) tags:

<em>emphasized words</em>

The opening tag is enclosed in less than and greater than signs, while the closing
tag has an additional forward slash before the tag name.

In the HTML file we see an opening and closing html tag around the whole
text in the file. Similarly, there is a pair of body tags, where the first one also
has a parameter bgcolor which can be used to specify a background color in the
web page. Section headlines are specified by enclosing the headline text inside h1
tags. Subsection headlines apply h2 tags, which results in a smaller font compared
with h1 tags. Comments appear inside <!-- and –>. Links to other web pages are
written inside a tags, with an argument href for the link’s web address. Lists apply
the ul (unordered list) tag, while each item is written with just an opening tag li
(list item), but no closing tag is necessary. Images are also specified with just an
opening tag having name img, and the image file is given as a file name or URL of
a file, enclosed in double quotes, as the src parameter.

The ultra-quick HTML course in the previous paragraphs gives a glimpse of how
web pages can be constructed. One can either write the HTML file by hand in a pure
text editor, or one can use programs such as Dream Weaver to help design the page
graphically in a user-friendly environment, and then the program can automatically
generate the right HTML syntax in files.

6.3.2 How to Access Web Pages in Programs

Why is it useful to know some HTML and how web pages are constructed? The
reason is that the web is full of information that we can get access to through pro-
grams and use in new contexts. What we can get access to is not the visual web
page you see, but the underlying HTML file. The information you see on the screen
appear in text form in the HTML file, and by extracting text, we can get hold of the
text’s information in a program.

Given the URL as a string stored in a variable, there are two ways of accessing
the HTML text in a Python program:

Alternative 1 Download the HTML file and store it as a local file with a given
name, say webpage.html:
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import urllib

url = ’http://www.simula.no/research/scientific/cbc’

urllib.urlretrieve(url, filename=’webpage.html’)

Alternative 2 Open the HTML file as a file-like object:

infile = urllib.urlopen(url)

This infile object has methods such as read, readline, and readlines.

6.3.3 Example: Reading Pure Text Files

Some web pages are just pure text files. Extracting the data from such pages are as
easy as reading ordinary text files. Here is an example of historic weather data from
the UK:

http://www.metoffice.gov.uk/climate/uk/stationdata/

We may choose a station, say Oxford, which directs us to the page

http://www.metoffice.gov.uk/climate/uk/stationdata/oxforddata.txt

We can download this data file by

import urllib

url = \

’http://www.metoffice.gov.uk/climate/uk/stationdata/oxforddata.txt’

urllib.urlretrieve(url, filename=’Oxford.txt’)

The files looks as follows:

Oxford

Location: 4509E 2072N, 63 metres amsl

Estimated data is marked with a * after the value.

Missing data (more than 2 days missing in month) is marked by ---.

Sunshine data taken from an automatic ...

yyyy mm tmax tmin af rain sun

degC degC days mm hours

1853 1 8.4 2.7 4 62.8 ---

1853 2 3.2 -1.8 19 29.3 ---

1853 3 7.7 -0.6 20 25.9 ---

1853 4 12.6 4.5 0 60.1 ---

1853 5 16.8 6.1 0 59.5 ---

...

2010 1 4.7 -1.0 17 56.4 68.2

2010 2 7.1 1.3 7 79.8 59.3

2010 3 11.3 3.2 8 47.6 130.2

2010 4 15.8 4.9 0 25.5 209.5

2010 5 17.6 7.3 0 28.6 207.4
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2010 6 23.0 11.1 0 34.5 230.5

2010 7 23.3* 14.1* 0* 24.4* 184.4* Provisional

2010 8 21.4 12.0 0 146.2 123.8 Provisional

2010 9 19.0 10.0 0 48.1 118.6 Provisional

2010 10 14.6 7.4 2 43.5 128.8 Provisional

After the 7 header lines the data consists of 7 or 8 columns of numbers, the 8th
being of no interest. Some numbers may have * or # appended to them, but this
character must be stripped off before using the number. The columns contain the
year, the month number (1–12), average maximum temperature, average minimum
temperature, total number of days of air frost (af) during the month, total rainfall
during the month, and the total number of hours with sun during the month. The
temperature averages are taken over the maximum and minimum temperatures for
all days in the month. Unavailable data are marked by three dashes.

The data can be conveniently stored in a dictionary with, e.g., three main keys:
place (name), location (the info on the 2nd), and data. The latter is a dictionary with
two keys: year and month.

The following program creates the data dictionary:

infile = open(local_file, ’r’)

data = {}

data[’place’] = infile.readline().strip()

data[’location’] = infile.readline().strip()

# Skip the next 5 lines

for i in range(5):

infile.readline()

data[’data’] ={}

for line in infile:

columns = line.split()

year = int(columns[0])

month = int(columns[1])

if columns[-1] == ’Provisional’:

del columns[-1]

for i in range(2, len(columns)):

if columns[i] == ’---’:

columns[i] = None

elif columns[i][-1] == ’*’ or columns[i][-1] == ’#’:

# Strip off trailing character

columns[i] = float(columns[i][:-1])

else:

columns[i] = float(columns[i])

tmax, tmin, air_frost, rain, sun = columns[2:]

if not year in data[’data’]:

data[’data’][year] = {}

data[’data’][year][month] = {’tmax’: tmax,

’tmin’: tmin,

’air frost’: air_frost,

’sun’: sun}

The code is available in the file historic_weather.py.

http://tinyurl.com/pwyasaa/dictstring/historic_weather.py
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With a few lines of code, we can extract the data we want, say a two-dimensional
array of the number of sun hours in a month (these data are available from year
1929):

sun = [[data[’data’][y][m][’sun’] for m in range(1,13)] \

for y in range(1929, 2010)]

import numpy as np

sun = np.array(sun)

One can now do analysis of the data as exemplified in Sect. 2.6.2 and Exercise 5.8.

6.3.4 Example: Extracting Data fromHTML

Very often, interesting data in a web page appear inside HTML code. We then
need to interpret the text using string operations and store the data in variables. An
example will clarify the principle.

The web site www.worldclimate.comcontains data on temperature and rainfall
in a large number of cities around the world. For example,

http://www.worldclimate.com/cgi-bin/data.pl?ref=N38W009+2100+08535W

contains a table of the average rainfall for each month of the year in the town Lisbon,
Portugal. Our task is to download this web page and extract the tabular data (rainfall
per month) in a list.

Downloading the file is done with urllib as explained in Sects. 6.3.2 and 6.3.3.
Before attempting to read and interpret the text in the file, we need to look at the
HTML code to find the interesting parts and determine how we can extract the data.
The table with the rainfall data appears in the middle of the file. A sketch of the
relevant HTML code goes as follows:

<p>Weather station <strong>LISBOA</strong> ...

<tr><th align=right><th> Jan<th> Feb<th> ... <br>

<tr><td> mm <td align=right> 95.2 <td align=right> 86.7 ...<br>

<tr><td>inches <td align=right>3.7<td align=right>3.4 ...<br>

Our task is to walk through the file line by line and stop for processing the first and
third line above:

infile = open(’Lisbon_rainfall.html’, ’r’)

rainfall = []

for line in infile:

if ’Weather station’ in line:

station = line.split(’</strong>’)[0].split(’<strong>’)[1]

if ’<td> mm <td’ in line:

data = line.split(’<td align=right>’)

The resulting data list looks like

[’<tr><td> mm ’, ’ 95.2 ’, ..., ’702.4<br> \n’]
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To process this list further, we strip off the <br>... part of the last element:

data[-1] = data[-1].split(’<br>’)[0]

Then we drop the first element and convert the others to float objects:

data = [float(x) for x in data[1:]]

Nowwe have the rainfall data for each month as a list of real numbers. The complete
program appears in the file Lisbon_rainfall.py. The recipe provided in this
example can be used to interpret many other types of web pages where HTML code
and data are wired together.

6.3.5 Handling Non-English Text

By default, Python only accepts English characters in a program file. Comments
and strings in other languages, containing non-English characters, requires a special
comment line before any non-English characters appears:

# -*- coding: utf-8 -*-

This line specifies that the file applies the UTF-8 encoding. Alternative encodings
are UTF-16 and latin-1, depending on what your computer system supports. UTF-8
is most common nowadays.

There are two types of strings in Python: plain strings (known as byte strings)
with type str and unicode strings with type unicode. Plain strings suffice as long
as you are writing English text only. A string is then just a series of bytes represent-
ing integers between 0 and 255. The first characters corresponding to the numbers
0 to 127 constitute the ASCII set. These can be printed out:

for i in range(0, 128):

print i, chr(i)

The keys on an English keyboard can be recognized from i=32 to i=126. The next
numbers are used to represent non-English characters.

Texts with non-English characters are recommended to be represented by uni-
code strings. This is the default string type in Python 3, while in Python 2 we need
to explicitly annotate a string as unicode by a u prefix as in s = u’my text’.

We shall now explore plain strings and unicode strings and will for that purpose
need a help function for displaying a string in the terminal window, printing the
type of string, dumping the exact content of the string, and telling us the length of
the string in bytes:

def check(s):

print ’%s, %s: %s (%d)’ % \

(s, s.__class__.__name__, repr(s), len(s))

http://tinyurl.com/pwyasaa/dictstring/Lisbon_rainfall.py
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Let us start with a German character typed with a German keyboard:

>>> Gauss = ’C. F. ßGau’

>>> check(Gauss)

C. F. ßGau, str: ’C. F. Gau\xc3\x9f’ (11)

Observe that there are 10 characters in the string, but len(Gauss) is 11. We can
write each character:

>>> for char in Gauss:

... print ord(char),

...

67 46 32 70 46 32 71 97 117 195 159

The last character in the Gauss object, the special German character, is represented
by two bytes: 195 and 159. The other characters are in the range 0–127.

The Gauss object above is a plain Python 2 (byte) string. We can define the
string as unicode in Python 2:

>>> Gauss = u’C. F. ßGau’

>>> check(Gauss)

C. F. ßGau, unicode: u’C. F. Gau\xdf’ (10)

This time the unicode representation is as long as the expected number of charac-
ters, and the special German ß looks like \xdf. In fact, this character has unicode
representation DF and we can use this code directly when we define the string,
instead of a German keyboard:

>>> Gauss = u’C. F. Gau\xdf’

>>> check(Gauss)

C. F. ßGau, unicode: u’C. F. Gau\xdf’ (10)

The string can be defined through the UTF-8 bytecode counterpart to ß, which is
C3 9F:

>>> Gauss = ’C. F. Gau\xc3\x9f’ # plain string

>>> check(Gauss)

C. F. ßGau, str: ’C. F. Gau\xc3\x9f’ (11)

Mixing UTF-8 bytecode in unicode strings, as in u’C. F. Gau\xc3\x9f’, gives
and unreadable output.

We can convert from a unicode representation to UTF-8 bytecode and back
again:

>>> Gauss = u’C. F. Gau\xdf’

>>> repr(Gauss.encode(’utf-8’)) # convert to UTF-8 bytecode

’C. F. Gau\xc3\x9f’

>>> unicode(Gauss.encode(’utf-8’), ’utf-8’) # convert back again

u’C. F. Gau\xdf’
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Other encodings are UTF-16 and latin-1:

>>> repr(Gauss.encode(’utf-16’))

’\xff\xfeC\x00.\x00 \x00F\x00.\x00 \x00G\x00a\x00u\x00\xdf\x00’

>>> repr(Gauss.encode(’latin-1’))

’C. F. Gau\xdf’

Writing the unicode variable Gauss to file, a la f.write(Gauss), leads
to a UnicodeEncodeError in Python 2, saying that ’ascii’ codec can’t
encode character u’\xdf’ in position 9. The UTF-8 bytecode represen-
tation of strings does not pose any problems with file writing. The solution for
unicode strings is to use the codecs module and explicitly work with a file object
that converts unicode to UTF-8:

import codecs

with codecs.open(’tmp.txt’, ’w’, ’utf-8’) as f:

f.write(Gauss)

This is not necessary with Python 3, so if you use non-English characters, Python 3
has a clear advantage over Python 2.

To summarize, non-English character can be input with a non-English keyboard
and stored either as a plain (byte) string or as a unicode string:

>>> name = ’Åsmund Øådegrd’ # plain string

>>> check(name)Å

smund Øådegrd, str: ’\xc3\x85smund \xc3\x98deg\xc3\xa5rd’ (17)

>>> name = u’Åsmund Øådegrd’ # unicode

>>> check(name)Å

smund Øådegrd, unicode: u’\xc5smund \xd8deg\xe5rd’ (14)

Alternatively, the non-English characters can be specified with special codes, de-
pending on whether the representation is a plain UTF-8 string or a unicode string.
Using a table4 with conversion between unicode and UTF-8 representation we find
that in UTF-8, Å has the code C3 85, Ø is C3 98, and å is C3 A5:

>>> name = ’\xc3\x85smund \xc3\x98deg\xc3\xa5rd’

>>> check(name)Å

smund Øådegrd, str: ’\xc3\x85smund \xc3\x98deg\xc3\xa5rd’ (17)

In unicode, Å is C5, Ø is D8, å is E5:

>>> name = u’\xc5smund \xd8deg\xe5rd’

>>> check(name)Å

smund Øådegrd, unicode: u’\xc5smund \xd8deg\xe5rd’ (14)

The examples above have been collected in the file unicode_utf8.py.

4 http://www.utf8-chartable.de/

http://www.utf8-chartable.de/
http://tinyurl.com/pwyasaa/dictstring/unicode_utf8.py
http://www.utf8-chartable.de/
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6.4 Reading andWriting Spreadsheet Files

From school you are probably used to spreadsheet programs such as Microsoft Ex-
cel or LibreOffice. This type of program is used to represent a table of numbers
and text. Each table entry is known as a cell, and one can easily perform calcula-
tions with cells that contain numbers. The application of spreadsheet programs for
mathematical computations and graphics is steadily growing.

Also Python may be used to do spreadsheet-type calculations on tabular data.
The advantage of using Python is that you can easily extend the calculations far
beyond what a spreadsheet program can do. However, even if you can view Python
as a substitute for a spreadsheet program, it may be beneficial to combine the two.
Suppose you have some data in a spreadsheet. How can you read these data into
a Python program, perform calculations on the data, and thereafter read the data
back to the spreadsheet program? This is exactly what we will explain below
through an example. With this example, you should understand how easy it is to
combine Excel or LibreOffice with your own Python programs.

6.4.1 CSV Files

The table of data in a spreadsheet can be saved in so-called CSV files, where CSV
stands for comma separated values. The CSV file format is very simple: each row
in the spreadsheet table is a line in the file, and each cell in the row is separated by
a comma or some other specified separation character. CSV files can easily be read
into Python programs, and the table of cell data can be stored in a nested list (table,
see Sect. 2.4), which can be processed as we desire. The modified table of cell data
can be written back to a CSV file and read into the spreadsheet program for further
processing.

Figure 6.5 shows a simple spreadsheet in the LibreOffice program. The table
contains 4 � 4 cells, where the first row contains column headings and the first
column contains row headings. The remaining 3�3 subtable contains numbers that

Fig. 6.5 A simple spreadsheet in LibreOffice
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we may compute with. Let us save this spreadsheet to a file in the CSV format. The
complete file will typically look as follows:

,"year 1","year 2","year 3"

"person 1",651000,651000,651000

"person 2",1100500,950100,340000

"person 3",740000,780000,800000

Our primary task is now to load these data into a Python program, compute the
sum of each column, and write the data out again in the CSV format.

6.4.2 Reading CSV Files

We start with loading the data into a table, represented as a nested list, with aid of
the csv module from Python’s standard library. This approach gives us complete
control of all details. Later, we will use more high-level numpy functionality for
accomplishing the same thing with less lines.

The csv module offers functionality for reading one line at a time from a CSV
file:

infile = open(’budget.csv’, ’r’) # CSV file

import csv

table = []

for row in csv.reader(infile):

table.append(row)

infile.close()

The row variable is a list of column values that are read from the file by the csv
module. The three lines computing table can be condensed to one using a list
comprehension:

table = [row for row in csv.reader(infile)]

We can easily print table,

import pprint

pprint.pprint(table)

to see what the spreadsheet looks like when it is represented as a nested list in
a Python program:

[[’’, ’year 1’, ’year 2’, ’year 3’],

[’person 1’, ’651000’, ’651000’, ’651000’],

[’person 2’, ’1100500’, ’950100’, ’340000’],

[’person 3’, ’740000’, ’780000’, ’800000’]]

Observe now that all entries are surrounded by quotes, which means that all entries
are string (str) objects. This is a general rule: the csv module reads all cells
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into string objects. To compute with the numbers, we need to transform the string
objects to float objects. The transformation should not be applied to the first row
and first column, since the cells here hold text. The transformation from strings to
numbers therefore applies to the indices r and c in table (table[r][c]), such
that the row counter r goes from 1 to len(table)-1, and the column counter c
goes from 1 to len(table[0])-1 (len(table[0]) is the length of the first row,
assuming the lengths of all rows are equal to the length of the first row). The relevant
Python code for this transformation task becomes

for r in range(1,len(table)):

for c in range(1, len(table[0])):

table[r][c] = float(table[r][c])

A pprint.pprint(table) statement after this transformation yields

[[’’, ’year 1’, ’year 2’, ’year 3’],

[’person 1’, 651000.0, 651000.0, 651000.0],

[’person 2’, 1100500.0, 950100.0, 340000.0],

[’person 3’, 740000.0, 780000.0, 800000.0]]

The numbers now have a decimal and no quotes, indicating that the numbers are
float objects and hence ready for mathematical calculations.

6.4.3 Processing Spreadsheet Data

Let us perform a very simple calculation with table, namely adding a final row
with the sum of the numbers in the columns:

row = [0.0]*len(table[0])

row[0] = ’sum’

for c in range(1, len(row)):

s = 0

for r in range(1, len(table)):

s += table[r][c]

row[c] = s

As seen, we first create a list row consisting of zeros. Then we insert a text in the
first column, before we invoke a loop over the numbers in the table and compute
the sum of each column. The table list now represents a spreadsheet with four
columns and five rows:

[[’’, ’year 1’, ’year 2’, ’year 3’],

[’person 1’, 651000.0, 651000.0, 651000.0],

[’person 2’, 1100500.0, 950100.0, 340000.0],

[’person 3’, 740000.0, 780000.0, 800000.0],

[’sum’, 2491500.0, 2381100.0, 1791000.0]]
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6.4.4 Writing CSV Files

Our final task is to write the modified table list back to a CSV file so that the data
can be loaded in a spreadsheet program. The write task is done by the code segment

outfile = open(’budget2.csv’, ’w’)

writer = csv.writer(outfile)

for row in table:

writer.writerow(row)

outfile.close()

The budget2.csv looks like this:

year 1,year 2,year 3

person 1,651000.0,651000.0,651000.0

person 2,1100500.0,950100.0,340000.0

person 3,740000.0,780000.0,800000.0

sum,2491500.0,2381100.0,1791000.0

The final step is to read budget2.csv into a spreadsheet. The result is displayed
in Fig. 6.6 (in LibreOffice one must specify in the Open dialog that the spreadsheet
data are separated by commas, i.e., that the file is in CSV format).

The complete program reading the budget.csv file, processing its data, and
writing the budget2.csv file can be found in rw_csv.py. With this example at
hand, you should be in a good position to combine spreadsheet programs with your
own Python programs.

Remark You may wonder why we used the csv module to read and write CSV
files when such files have comma separated values, which we can extract by splitting
lines with respect to the comma (this technique is used in Sect. 6.1.7 to read a CSV
file):

Fig. 6.6 A spreadsheet processed in a Python program and loaded back into LibreOffice

http://tinyurl.com/pwyasaa/dictstring/rw_csw.py
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infile = open(’budget.csv’, ’r’)

for line in infile:

row = line.split(’,’)

This works well for the present budget.csv file, but the technique breaks down
when a text in a cell contains a comma, for instance "Aug 8, 2007". The
line.split(’,’) will split this cell text, while the csv.reader functionality
is smart enough to avoid splitting text cells with a comma.

6.4.5 Representing Number Cells with Numerical Python Arrays

Instead of putting the whole spreadsheet into a single nested list, we can make
a Python data structure more tailored to the data at hand. What we have are two
headers (for rows and columns, respectively) and a subtable of numbers. The
headers can be represented as lists of strings, while the subtable could be a two-
dimensional Numerical Python array. The latter makes it easier to implement var-
ious mathematical operations on the numbers. A dictionary can hold all the three
items: two header lists and one array. The relevant code for reading, processing, and
writing the data is shown below and can be found in the file rw_csv_numpy.py:

infile = open(’budget.csv’, ’r’)

import csv

table = [row for row in csv.reader(infile)]

infile.close()

# Convert subtable of numbers (string to float)

import numpy

subtable = [[float(c) for c in row[1:]] for row in table[1:]]

data = {’column headings’: table[0][1:],

’row headings’: [row[0] for row in table[1:]],

’array’: numpy.array(subtable)}

# Add a new row with sums

data[’row headings’].append(’sum’)

a = data[’array’] # short form

data[’column sum’] = [sum(a[:,c]) for c in range(a.shape[1])]

outfile = open(’budget2.csv’, ’w’)

writer = csv.writer(outfile)

# Turn data dictionary into a nested list first (for easy writing)

table = a.tolist() # transform array to nested list

table.append(data[’column sum’])

table.insert(0, data[’column headings’])

# Extend table with row headings (a new column)

[table[r+1].insert(0, data[’row headings’][r])

for r in range(len(table)-1)]

for row in table:

writer.writerow(row)

outfile.close()

http://tinyurl.com/pwyasaa/dictstring/rw_csv_numpy.py
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The code makes heavy use of list comprehensions, and the transformation between
a nested list, for file reading and writing, and the data dictionary, for representing
the data in the Python program, is non-trivial. If you manage to understand every
line in this program, you have digested a lot of topics in Python programming!

6.4.6 UsingMore High-Level Numerical Python Functionality

The previous program can be shortened significantly by applying the genfromtxt
function from Numerical Python:

import numpy as np

arr = np.genfromtxt(’budget.csv’, delimiter=’,’, dtype=str)

data = {’column headings’: arr[0,1:].tolist(),

’row headings’: arr[1:,0].tolist(),

’array’: np.asarray(arr[1:,1:], dtype=np.float)}

data[’row headings’].append(’sum’)

data[’column sum’] = np.sum(data[’array’], axis=1).tolist()

Doing a repr(arr) on the array returned from genfromtxt results in

array([[’’, ’"year 1"’, ’"year 2"’, ’"year 3"’],

[’"person 1"’, ’651000’, ’651000’, ’651000’],

[’"person 2"’, ’1100500’, ’950100’, ’340000’],

[’"person 3"’, ’740000’, ’780000’, ’800000’]],

dtype=’|S10’)

That is, the data in the CSV file are available as an array of strings. The code shows
how we can easily use slices to extract the row and column headings, convert the
numbers to a floating-point array for computations, compute the sums, and store
various object in the data dictionary. Then we may write a CSV file as described
in the previous example (see rw_csv_numpy2.py) or we may take a different ap-
proach and extend the arr array with an extra row and fill in the row heading and
the sums (see rw_csv_numpy3.py for the complete code):

arr = np.genfromtxt(’budget.csv’, delimiter=’,’, dtype=str)

# Add row for sum of columns

arr.resize((arr.shape[0]+1, arr.shape[1]))

arr[-1,0] = ’"sum"’

subtable = np.asarray(arr[1:-1,1:], dtype=np.float)

sum_row = np.sum(subtable, axis=1)

arr[-1,1:] = np.asarray(sum_row, dtype=str)

# numpy.savetxt writes table with a delimiter between entires

np.savetxt(’budget2c.csv’, arr, delimiter=’,’, fmt=’%s’)

Observe how we extract the numbers in subtable, compute with them, and put
the results back into the arr array as strings. The savetxt function saves a two-
dimensional array as a plain table in a text file, here with comma as delimiter. The

http://tinyurl.com/pwyasaa/dictstring/rw_csv_numpy2.py
http://tinyurl.com/pwyasaa/dictstring/rw_csv_numpy3.py
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function suffices in this example, none of the approaches with genfromtxt and
savetxt work with column or row headings containing a comma. Then we need
to use the csvmodule.

6.5 Examples from Analyzing DNA

We shall here continue the bioinformatics applications started in Sect. 3.3. Analysis
of DNA sequences is conveniently done in Python, much with the aid of lists, dic-
tionaries, numpy arrays, strings, and files. This will be illustrated through a series
of examples.

6.5.1 Computing Frequencies

Your genetic code is essentially the same from you are born until you die, and the
same in your blood and your brain. Which genes that are turned on and off make
the difference between the cells. This regulation of genes is orchestrated by an im-
mensely complex mechanism, which we have only started to understand. A central
part of this mechanism consists of molecules called transcription factors that float
around in the cell and attach to DNA, and in doing so turn nearby genes on or off.
These molecules bind preferentially to specific DNA sequences, and this binding
preference pattern can be represented by a table of frequencies of given symbols at
each position of the pattern. More precisely, each row in the table corresponds to
the bases A, C, G, and T, while column j reflects how many times the base appears
in position j in the DNA sequence.

For example, if our set of DNA sequences are TAG, GGT, and GGG, the table
becomes

base 0 1 2
A 0 1 0
C 0 0 0
G 2 2 2
T 1 0 1

From this table we can read that base A appears once in index 1 in the DNA strings,
base C does not appear at all, base G appears twice in all positions, and base T
appears once in the beginning and end of the strings.

In the following we shall present different data structures to hold such a table
and different ways of computing them. The table is known as a frequency matrix in
bioinformatics and this is the term used here too.

Separate frequency lists Since we know that there are only four rows in the fre-
quency matrix, an obvious data structure would be four lists, each holding a row.
A function computing these lists may look like
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def freq_lists(dna_list):

n = len(dna_list[0])

A = [0]*n

T = [0]*n

G = [0]*n

C = [0]*n

for dna in dna_list:

for index, base in enumerate(dna):

if base == ’A’:

A[index] += 1

elif base == ’C’:

C[index] += 1

elif base == ’G’:

G[index] += 1

elif base == ’T’:

T[index] += 1

return A, C, G, T

We need to initialize the lists with the right length and a zero for each element,
since each list element is to be used as a counter. Creating a list of length n with
object x in all positions is done by [x]*n. Finding the proper length is here carried
out by inspecting the length of the first element in dna_list, the list of all DNA
strings to be counted, assuming that all elements in this list have the same length.

In the for loop we apply the enumerate function, which is used to extract
both the element value and the element index when iterating over a sequence. For
example,

>>> for index, base in enumerate([’t’, ’e’, ’s’, ’t’]):

... print index, base

...

0 t

1 e

2 s

3 t

Here is a test,

dna_list = [’GGTAG’, ’GGTAC’, ’GGTGC’]

A, C, G, T = freq_lists(dna_list)

print A

print C

print G

print T

with output

[0, 0, 0, 2, 0]

[0, 0, 0, 0, 2]

[3, 3, 0, 1, 1]

[0, 0, 3, 0, 0]

Nested list The frequency matrix can also be represented as a nested list M such
that M[i][j] is the frequency of base i in position j in the set of DNA strings.
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Here i is an integer, where 0 corresponds to A, 1 to T, 2 to G, and 3 to C. The
frequency is the number of times base i appears in position j in a set of DNA
strings. Sometimes this number is divided by the number of DNA strings in the set
so that the frequency is between 0 and 1. Note that all the DNA strings must have
the same length.

The simplest way to make a nested list is to insert the A, C, G, and T lists into
another list:

>>> frequency_matrix = [A, C, G, T]

>>> frequency_matrix[2][3]

2

>>> G[3] # same element

2

Alternatively, we can illustrate how to compute this type of nested list directly:

def freq_list_of_lists_v1(dna_list):

# Create empty frequency_matrix[i][j] = 0

# i=0,1,2,3 corresponds to A,T,G,C

# j=0,...,length of dna_list[0]

frequency_matrix = [[0 for v in dna_list[0]] for x in ’ACGT’]

for dna in dna_list:

for index, base in enumerate(dna):

if base == ’A’:

frequency_matrix[0][index] +=1

elif base == ’C’:

frequency_matrix[1][index] +=1

elif base == ’G’:

frequency_matrix[2][index] +=1

elif base == ’T’:

frequency_matrix[3][index] +=1

return frequency_matrix

As in the case with individual lists we need to initialize all elements in the nested
list to zero.

A call and printout,

dna_list = [’GGTAG’, ’GGTAC’, ’GGTGC’]

frequency_matrix = freq_list_of_lists_v1(dna_list)

print frequency_matrix

results in

[[0, 0, 0, 2, 0], [0, 0, 0, 0, 2], [3, 3, 0, 1, 1], [0, 0, 3, 0, 0]]

Dictionary for more convenient indexing The series of if tests in the Python
function freq_list_of_lists_v1 are somewhat cumbersome, especially if we
want to extend the code to other bioinformatics problems where the alphabet is
larger. What we want is a mapping from base, which is a character, to the corre-
sponding index 0, 1, 2, or 3. A Python dictionary may represent such mappings:
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>>> base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}

>>> base2index[’G’]

2

With the base2index dictionary we do not need the series of if tests and the
alphabet ’ATGC’ could be much larger without affecting the length of the code:

def freq_list_of_lists_v2(dna_list):

frequency_matrix = [[0 for v in dna_list[0]] for x in ’ACGT’]

base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}

for dna in dna_list:

for index, base in enumerate(dna):

frequency_matrix[base2index[base]][index] += 1

return frequency_matrix

Numerical Python array As long as each sublist in a list of lists has the same
length, a list of lists can be replaced by a Numerical Python (numpy) array. Pro-
cessing of such arrays is often much more efficient than processing of the nested
list data structure. To initialize a two-dimensional numpy array we need to know
its size, here 4 times len(dna_list[0]). Only the first line in the function
freq_list_of_lists_v2 needs to be changed in order to utilize a numpy array:

import numpy as np

def freq_numpy(dna_list):

frequency_matrix = np.zeros((4, len(dna_list[0])), dtype=int)

base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}

for dna in dna_list:

for index, base in enumerate(dna):

frequency_matrix[base2index[base]][index] += 1

return frequency_matrix

The resulting frequency_matrix object can be indexed as [b][i] or [b,i],
with integers b and i. Typically, b will be something line base2index[’C’].

Dictionary of lists Instead of going from a character to an integer index via
base2index, we may prefer to index frequency_matrix by the base name and
the position index directly, like in [’C’][14]. This is the most natural syntax
for a user of the frequency matrix. The relevant Python data structure is then
a dictionary of lists. That is, frequency_matrix is a dictionary with keys ’A’,
’C’, ’G’, and ’T’. The value for each key is a list. Let us now also extend the
flexibility such that dna_list can have DNA strings of different lengths. The lists
in frequency_listwill have lengths equal to the longest DNA string. A relevant
function is
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def freq_dict_of_lists_v1(dna_list):

n = max([len(dna) for dna in dna_list])

frequency_matrix = {

’A’: [0]*n,

’C’: [0]*n,

’G’: [0]*n,

’T’: [0]*n,

}

for dna in dna_list:

for index, base in enumerate(dna):

frequency_matrix[base][index] += 1

return frequency_matrix

Running the test code

frequency_matrix = freq_dict_of_lists_v1(dna_list)

import pprint # for nice printout of nested data structures

pprint.pprint(frequency_matrix)

results in the output

{’A’: [0, 0, 0, 2, 0],

’C’: [0, 0, 0, 0, 2],

’G’: [3, 3, 0, 1, 1],

’T’: [0, 0, 3, 0, 0]}

The initialization of frequency_matrix in the above code can be made more
compact by using a dictionary comprehension:

dict = {key: value for key in some_sequence}

In our example we set

frequency_matrix = {base: [0]*n for base in ’ACGT’}

Adopting this construction in the freq_dict_of_lists_v1 function leads to
a slightly more compact version:

def freq_dict_of_lists_v2(dna_list):

n = max([len(dna) for dna in dna_list])

frequency_matrix = {base: [0]*n for base in ’ACGT’}

for dna in dna_list:

for index, base in enumerate(dna):

frequency_matrix[base][index] += 1

return frequency_matrix
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As an additional comment on computing the maximum length of the DNA
strings can be made as there are several alternative ways of doing this. The classical
use of max is to apply it to a list as done above:

n = max([len(dna) for dna in dna_list])

However, for very long lists it is possible to avoid the memory demands of storing
the result of the list comprehension, i.e., the list of lengths. Instead max can work
with the lengths as they are computed:

n = max(len(dna) for dna in dna_list)

It is also possible to write

n = max(dna_list, key=len)

Here, len is applied to each element in dna_list, and the maximum of the result-
ing values is returned.

Dictionary of dictionaries.
The dictionary of lists data structure can alternatively be replaced by a dictio-
nary of dictionaries object, often just called a dict of dicts object. That is,
frequency_matrix[base] is a dictionary with key i and value equal to the
added number of occurrences of base in dna[i] for all dna strings in the list
dna_list. The indexing frequency_matrix[’C’][i] and the values are exactly
as in the last example; the only difference is whether frequency_matrix[’C’] is
a list or dictionary.

Our function working with frequency_matrix as a dict of dicts is written as

def freq_dict_of_dicts_v1(dna_list):

n = max([len(dna) for dna in dna_list])

frequency_matrix = {base: {index: 0 for index in range(n)}

for base in ’ACGT’}

for dna in dna_list:

for index, base in enumerate(dna):

frequency_matrix[base][index] += 1

return frequency_matrix

Using dictionaries with default values The manual initialization of each subdic-
tionary to zero,

frequency_matrix = {base: {index: 0 for index in range(n)}

for base in ’ACGT’}

can be simplified by using a dictionary with default values for any key. The con-
struction defaultdict(lambda: obj) makes a dictionary with obj as default
value. This construction simplifies the previous function a bit:
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from collections import defaultdict

def freq_dict_of_dicts_v2(dna_list):

n = max([len(dna) for dna in dna_list])

frequency_matrix = {base: defaultdict(lambda: 0)

for base in ’ACGT’}

for dna in dna_list:

for index, base in enumerate(dna):

frequency_matrix[base][index] += 1

return frequency_matrix

Remark Dictionary comprehensions were new in Python 2.7 and 3.1, but can be
simulated in earlier versions by making (key, value) tuples via list comprehensions.
A dictionary comprehension

d = {key: value for key in sequence}

is then constructed as

d = dict([(key, value) for key in sequence])

Using arrays and vectorization The frequency_matrixdict of lists for can eas-
ily be changed to a dict of numpy arrays: just replace the initialization [0]*n by
np.zeros(n, dtype=np.int). The indexing remains the same:

def freq_dict_of_arrays_v1(dna_list):

n = max([len(dna) for dna in dna_list])

frequency_matrix = {base: np.zeros(n, dtype=np.int)

for base in ’ACGT’}

for dna in dna_list:

for index, base in enumerate(dna):

frequency_matrix[base][index] += 1

return frequency_matrix

Having frequency_matrix[base] as a numpy array instead of a list does not
give any immediate advantage, as the storage and CPU time is about the same.
The loop over the dna string and the associated indexing is what consumes all
the CPU time. However, the numpy arrays provide a potential for increasing ef-
ficiency through vectorization, i.e., replacing the element-wise operations on dna
and frequency_matrix[base] by operations on the entire arrays at once.

Let us use the interactive Python shell to explore the possibilities of vectoriza-
tion. We first convert the string to a numpy array of characters:

>>> dna = ’ACAT’

>>> dna = np.array(dna, dtype=’c’)

>>> dna

array([’A’, ’C’, ’A’, ’T’],

dtype=’|S1’)
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For a given base, say A, we can in one vectorized operation find which locations in
dna that contain A:

>>> b = dna == ’A’

>>> b

array([ True, False, True, False], dtype=bool)

By converting b to an integer array i we can update the frequency counts for all
indices by adding i to frequency_matrix[’A’]:

>>> i = np.asarray(b, dtype=np.int)

>>> i

array([1, 0, 1, 0])

>>> frequency_matrix[’A’] = frequency_matrix[’A’] + i

This recipe can be repeated for all bases:

for dna in dna_list:

dna = np.array(dna, dtype=’c’)

for base in ’ACGT’:

b = dna == base

i = np.asarray(b, dtype=np.int)

frequency_matrix[base] = frequency_matrix[base] + i

It turns out that we do not need to convert the boolean array b to an integer array
i, because doing arithmetics with b directly is possible: False is interpreted as 0
and True as 1 in arithmetic operations. We can also use the += operator to update
all elements of frequency_matrix[base] directly, without first computing the
sum of two arrays frequency_matrix[base] + i and then assigning this result
to frequency_matrix[base]. Collecting all these ideas in one function yields
the code

def freq_dict_of_arrays_v2(dna_list):

n = max([len(dna) for dna in dna_list])

frequency_matrix = {base: np.zeros(n, dtype=np.int)

for base in ’ACGT’}

for dna in dna_list:

dna = np.array(dna, dtype=’c’)

for base in ’ACCT’:

frequency_matrix[base] += dna == base

return frequency_matrix

This vectorized function runs almost 10 times as fast as the (scalar) counterpart
freq_list_of_arrays_v1!

6.5.2 Analyzing the Frequency Matrix

Having built a frequency matrix out of a collection of DNA strings, it is time to
use it for analysis. The short DNA strings that a frequency matrix is built out of, is
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typically a set of substrings of a larger DNA sequence, which shares some common
purpose. An example of this is to have a set of substrings that serves as a kind of
anchors/magnets at which given molecules attach to DNA and perform biological
functions (like turning genes on or off). With the frequency matrix constructed
from a limited set of known anchor locations (substrings), we can now scan for
other similar substrings that have the potential to perform the same function. The
simplest way to do this is to first determine the most typical substring according to
the frequency matrix, i.e., the substring having the most frequent nucleotide at each
position. This is referred to as the consensus string of the frequency matrix. We can
then look for occurrences of the consensus substring in a larger DNA sequence, and
consider these occurrences as likely candidates for serving the same function (e.g.,
as anchor locations for molecules).

For instance, given three substrings ACT, CCA and AGA, the frequency matrix
would be (list of lists, with rows corresponding to A, C, G, and T):

[[2, 0, 2]

[1, 2, 0]

[0, 1, 0]

[0, 0, 1]]

We see that for position 0, which corresponds to the left-most column in the table,
the symbol A has the highest frequency (2). The maximum frequencies for the other
positions are seen to be C for position 1, and A for position 2. The consensus string
is therefore ACA. Note that the consensus string does not need to be equal to any of
the substrings that formed the basis of the frequency matrix (this is indeed the case
for the above example).

List of lists frequency matrix Let frequency_matrix be a list of lists. For each
position i we run through the rows in the frequency matrix and keep track of the
maximum frequency value and the corresponding letter. If two or more letters have
the same frequency value we use a dash to indicate that this position in the consen-
sus string is undetermined.

The following function computes the consensus string:

def find_consensus_v1(frequency_matrix):

base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}

consensus = ’’

dna_length = len(frequency_matrix[0])

for i in range(dna_length): # loop over positions in string

max_freq = -1 # holds the max freq. for this i

max_freq_base = None # holds the corresponding base

for base in ’ATGC’:

if frequency_matrix[base2index[base]][i] > max_freq:

max_freq = frequency_matrix[base2index[base]][i]

max_freq_base = base

elif frequency_matrix[base2index[base]][i] \

== max_freq:

max_freq_base = ’-’ # more than one base as max
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consensus += max_freq_base # add new base with max freq

return consensus

Since this code requires frequency_matrix to be a list of lists we should insert
a test and raise an exception if the type is wrong:

def find_consensus_v1(frequency_matrix):

if isinstance(frequency_matrix, list) and \

isinstance(frequency_matrix[0], list):

pass # right type

else:

raise TypeError(’frequency_matrix must be list of lists’)

...

Dict of dicts frequency matrix How must the find_consensus_v1 function be
altered if frequency_matrix is a dict of dicts?

1. The base2index dict is no longer needed.
2. Access of sublist, frequency_matrix[0], to test for type and length of the

strings, must be replaced by frequency_matrix[’A’].

The updated function becomes

def find_consensus_v3(frequency_matrix):

if isinstance(frequency_matrix, dict) and \

isinstance(frequency_matrix[’A’], dict):

pass # right type

else:

raise TypeError(’frequency_matrix must be dict of dicts’)

consensus = ’’

dna_length = len(frequency_matrix[’A’])

for i in range(dna_length): # loop over positions in string

max_freq = -1 # holds the max freq. for this i

max_freq_base = None # holds the corresponding base

for base in ’ACGT’:

if frequency_matrix[base][i] > max_freq:

max_freq = frequency_matrix[base][i]

max_freq_base = base

elif frequency_matrix[base][i] == max_freq:

max_freq_base = ’-’ # more than one base as max

consensus += max_freq_base # add new base with max freq

return consensus

Here is a test:

frequency_matrix = freq_dict_of_dicts_v1(dna_list)

pprint.pprint(frequency_matrix)

print find_consensus_v3(frequency_matrix)
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with output

{’A’: {0: 0, 1: 0, 2: 0, 3: 2, 4: 0},

’C’: {0: 0, 1: 0, 2: 0, 3: 0, 4: 2},

’G’: {0: 3, 1: 3, 2: 0, 3: 1, 4: 1},

’T’: {0: 0, 1: 0, 2: 3, 3: 0, 4: 0}}

Consensus string: GGTAC

Let us try find_consensus_v3 with the dict of defaultdicts as input (freq_
dicts_of_dicts_v2). The code runs fine, but the output string is just G! The
reason is that dna_length is 1, and therefore that the length of the A dict in
frequency_matrix is 1. Printing out frequency_matrix yields

{’A’: defaultdict(X, {3: 2}),

’C’: defaultdict(X, {4: 2}),

’G’: defaultdict(X, {0: 3, 1: 3, 3: 1, 4: 1}),

’T’: defaultdict(X, {2: 3})}

where our X is a short form for text like

‘<function <lambda> at 0xfaede8>‘

We see that the length of a defaultdict will only count the nonzero entries. Hence,
to use a defaultdict our function must get the length of the DNA string to build as
an extra argument:

def find_consensus_v4(frequency_matrix, dna_length):

...

Exercise 6.16 suggests to make a unified find_consensus function which
works with all of the different representations of frequency_matrix that we have
used.

The functions making and using the frequency matrix are found in the file
freq.py.

6.5.3 Finding Base Frequencies

DNA consists of four molecules called nucleotides, or bases, and can be repre-
sented as a string of the letters A, C, G, and T. But this does not mean that all four
nucleotides need to be similarly frequent. Are some nucleotides more frequent than
others, say in yeast, as represented by the first chromosome of yeast? Also, DNA is
really not a single thread, but two threads wound together. This wounding is based
on an A from one thread binding to a T of the other thread, and C binding to G (that
is, A will only bind with T, not with C or G). Could this fact force groups of the four
symbol frequencies to be equal? The answer is that the A-T and G-C binding does
not in principle force certain frequencies to be equal, but in practice they usually
become so because of evolutionary factors related to this pairing.

http://tinyurl.com/pwyasaa/dictstring/freq.py
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Our first programming task now is to compute the frequencies of the bases A, C,
G, and T. That is, the number of times each base occurs in the DNA string, divided
by the length of the string. For example, if the DNA string is ACGGAAA, the
length is 7, A appears 4 times with frequency 4/7, C appears once with frequency
1/7, G appears twice with frequency 2/7, and T does not appear so the frequency is
0.

From a coding perspective we may create a function for counting how many
times A, C, G, and T appears in the string and then another function for computing
the frequencies. In both cases we want dictionaries such that we can index with the
character and get the count or the frequency out. Counting is done by

def get_base_counts(dna):

counts = {’A’: 0, ’T’: 0, ’G’: 0, ’C’: 0}

for base in dna:

counts[base] += 1

return counts

This function can then be used to compute the base frequencies:

def get_base_frequencies_v1(dna):

counts = get_base_counts(dna)

return {base: count*1.0/len(dna)

for base, count in counts.items()}

Since we learned at the end of Sect. 3.3.2 that dna.count(base)was much faster
than the various manual implementations of counting, we can write a faster and
simpler function for computing all the base frequencies:

def get_base_frequencies_v2(dna):

return {base: dna.count(base)/float(len(dna))

for base in ’ATGC’}

A little test,

dna = ’ACCAGAGT’

frequencies = get_base_frequencies_v2(dna)

def format_frequencies(frequencies):

return ’, ’.join([’%s: %.2f’ % (base, frequencies[base])

for base in frequencies])

print "Base frequencies of sequence ’%s’:\n%s" % \

(dna, format_frequencies(frequencies))

gives the result

Base frequencies of sequence ’ACCAGAGT’:

A: 0.38, C: 0.25, T: 0.12, G: 0.25

The format_frequencies function was made for nice printout of the frequencies
with 2 decimals. The one-line code is an effective combination of a dictionary, list
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comprehension, and the join functionality. The latter is used to get a comma cor-
rectly inserted between the items in the result. Lazy programmers would probably
just do a print frequencies and live with the curly braces in the output and (in
general) 16 disturbing decimals.

We can try the frequency computation on real data. The file

http://hplgit.github.com/bioinf-py/data/yeast_chr1.txt

contains the DNA for yeast. We can download this file from the Internet by

urllib.urlretrieve(url, filename=name_of_local_file)

where url is the Internet address of the file and name_of_local_file is a string
containing the name of the file on the computer where the file is downloaded. To
avoid repeated downloads when the program is run multiple times, we insert a test
on whether the local file exists or not. The call os.path.isfile(f) returns True
if a file with name f exists in the current working folder.

The appropriate download code then becomes

import urllib, os

urlbase = ’http://hplgit.github.com/bioinf-py/data/’

yeast_file = ’yeast_chr1.txt’

if not os.path.isfile(yeast_file):

url = urlbase + yeast_file

urllib.urlretrieve(url, filename=yeast_file)

A copy of the file on the Internet is now in the current working folder under the
name yeast_chr1.txt. (See Sect. 6.3.2 for more information about urllib and
downloading files from the Internet.)

The yeast_chr1.txt files contains the DNA string split over many lines. We
therefore need to read the lines in this file, strip each line to remove the trailing
newline, and join all the stripped lines to recover the DNA string:

def read_dnafile_v1(filename):

lines = open(filename, ’r’).readlines()

# Remove newlines in each line (line.strip()) and join

dna = ’’.join([line.strip() for line in lines])

return dna

As usual, an alternative programming solution can be devised:

def read_dnafile_v2(filename):

dna = ’’

for line in open(filename, ’r’):

dna += line.strip()

return dna

dna = read_dnafile_v2(yeast_file)

yeast_freq = get_base_frequencies_v2(dna)

print "Base frequencies of yeast DNA (length %d):\n%s" % \

(len(dna), format_frequencies(yeast_freq))
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The output becomes

Base frequencies of yeast DNA (length 230208):

A: 0.30, C: 0.19, T: 0.30, G: 0.20

The varying frequency of different nucleotides in DNA is referred to as nu-
cleotide bias. The nucleotide bias varies between organisms, and have a range of
biological implications. For many organisms the nucleotide bias has been highly
optimized through evolution and reflects characteristics of the organisms and their
environments, for instance the typical temperature the organism is adapted to.

The functions computing base frequencies are available in the file basefreq.py.

6.5.4 Translating Genes into Proteins

An important usage of DNA is for cells to store information on their arsenal of
proteins. Briefly, a gene is, in essence, a region of the DNA, consisting of several
coding parts (called exons), interspersed by non-coding parts (called introns). The
coding parts are concatenated to form a string called mRNA, where also occur-
rences of the letter T in the coding parts are substituted by a U. A triplet of mRNA
letters code for a specific amino acid, which are the building blocks of proteins.
Consecutive triplets of letters in mRNA define a specific sequence of amino acids,
which amounts to a certain protein.

Here is an example of using the mapping from DNA to proteins to create the
Lactase protein (LPH), using the DNA sequence of the Lactase gene (LCT) as un-
derlying code. An important functional property of LPH is in digesting Lactose,
which is found most notably in milk. Lack of the functionality of LPH leads to
digestive problems referred to as lactose intolerance. Most mammals and humans
lose their expression of LCT and therefore their ability to digest milk when they
stop receiving breast milk.

The file

http://hplgit.github.com/bioinf-py/doc/src/data/genetic_code.tsv

contains a mapping of genetic codes to amino acids. The file format looks like

UUU F Phe Phenylalanine

UUC F Phe Phenylalanine

UUA L Leu Leucine

UUG L Leu Leucine

CUU L Leu Leucine

CUC L Leu Leucine

CUA L Leu Leucine

CUG L Leu Leucine

AUU I Ile Isoleucine

AUC I Ile Isoleucine

AUA I Ile Isoleucine

AUG M Met Methionine (Start)

http://tinyurl.com/pwyasaa/dictstring/basefreq.py
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The first column is the genetic code (triplet in mRNA), while the other columns rep-
resent various ways of expressing the corresponding amino acid: a 1-letter symbol,
a 3-letter name, and the full name.

Downloading the genetic_code.tsv file can be done by this robust function:

def download(urlbase, filename):

if not os.path.isfile(filename):

url = urlbase + filename

try:

urllib.urlretrieve(url, filename=filename)

except IOError as e:

raise IOError(’No Internet connection’)

# Check if downloaded file is an HTML file, which

# is what github.com returns if the URL is not existing

f = open(filename, ’r’)

if ’DOCTYPE html’ in f.readline():

raise IOError(’URL %s does not exist’ % url)

We want to make a dictionary of this file that maps the code (first column) on to
the 1-letter name (second column):

def read_genetic_code_v1(filename):

infile = open(filename, ’r’)

genetic_code = {}

for line in infile:

columns = line.split()

genetic_code[columns[0]] = columns[1]

return genetic_code

Downloading the file, reading it, and making the dictionary are done by

urlbase = ’http://hplgit.github.com/bioinf-py/data/’

genetic_code_file = ’genetic_code.tsv’

download(urlbase, genetic_code_file)

code = read_genetic_code_v1(genetic_code_file)

Not surprisingly, the read_genetic_code_v1 can be made much shorter by
collecting the first two columns as list of 2-lists and then converting the 2-lists to
key-value pairs in a dictionary:

def read_genetic_code_v2(filename):

return dict([line.split()[0:2]

for line in open(filename, ’r’)])

Creating a mapping of the code onto all the three variants of the amino acid
name is also of interest. For example, we would like to make look ups like
[’CUU’][’3-letter’] or [’CUU’][’amino acid’]. This requires a dictionary
of dictionaries:
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def read_genetic_code_v3(filename):

genetic_code = {}

for line in open(filename, ’r’):

columns = line.split()

genetic_code[columns[0]] = {}

genetic_code[columns[0]][’1-letter’] = columns[1]

genetic_code[columns[0]][’3-letter’] = columns[2]

genetic_code[columns[0]][’amino acid’] = columns[3]

return genetic_code

An alternative way of writing the last function is

def read_genetic_code_v4(filename):

genetic_code = {}

for line in open(filename, ’r’):

c = line.split()

genetic_code[c[0]] = {

’1-letter’: c[1], ’3-letter’: c[2], ’amino acid’: c[3]}

return genetic_code

To formmRNA, we need to grab the exon regions (the coding parts) of the lactase
gene. These regions are substrings of the lactase gene DNA string, corresponding
to the start and end positions of the exon regions. Then we must replace T by U,
and combine all the substrings to build the mRNA string.

Two straightforward subtasks are to load the lactase gene and its exon posi-
tions into variables. The file lactase_gene.txt, at the same Internet location as
the other files, stores the lactase gene. The file has the same format as yeast_
chr1.txt. Using the download function and the previously shown read_
dnafile_v1, we can easily load the data in the file into the string lactase_
gene.

The exon regions are described in a file lactase_exon.tsv, also found at the
same Internet site as the other files. The file is easily transferred to your computer
by calling download. The file format is very simple in that each line holds the start
and end positions of an exon region:

0 651

3990 4070

7504 7588

13177 13280

15082 15161

We want to have this information available in a list of (start, end) tuples. The
following function does the job:

def read_exon_regions_v1(filename):

positions = []

infile = open(filename, ’r’)

for line in infile:

start, end = line.split()

start, end = int(start), int(end)

positions.append((start, end))
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infile.close()

return positions

Readers favoring compact code will appreciate this alternative version of the func-
tion:

def read_exon_regions_v2(filename):

return [tuple(int(x) for x in line.split())

for line in open(filename, ’r’)]

lactase_exon_regions = read_exon_regions_v2(lactase_exon_file)

For simplicity’s sake, we shall consider mRNA as the concatenation of exons,
although in reality, additional base pairs are added to each end. Having the lactase
gene as a string and the exon regions as a list of (start, end) tuples, it is straightfor-
ward to extract the regions as substrings, replace T by U, and add all the substrings
together:

def create_mRNA(gene, exon_regions):

mrna = ’’

for start, end in exon_regions:

mrna += gene[start:end].replace(’T’,’U’)

return mrna

mrna = create_mRNA(lactase_gene, lactase_exon_regions)

We would like to store the mRNA string in a file, using the same format as
lactase_gene.txt and yeast_chr1.txt, i.e., the string is split on multiple lines
with, e.g., 70 characters per line. An appropriate function doing this is

def tofile_with_line_sep_v1(text, filename, chars_per_line=70):

outfile = open(filename, ’w’)

for i in xrange(0, len(text), chars_per_line):

start = i

end = start + chars_per_line

outfile.write(text[start:end] + ’\n’)

outfile.close()

It might be convenient to have a separate folder for files that we create. Python
has good support for testing if a folder exists, and if not, make a folder:

output_folder = ’output’

if not os.path.isdir(output_folder):

os.mkdir(output_folder)

filename = os.path.join(output_folder, ’lactase_mrna.txt’)

tofile_with_line_sep_v1(mrna, filename)

Python’s term for folder is directory, which explains why isdir is the function
name for testing on a folder existence. Observe especially that the combination
of a folder and a filename is done via os.path.join rather than just inserting
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a forward slash, or backward slash on Windows: os.path.join will insert the
right slash, forward or backward, depending on the current operating system.

Occasionally, the output folder is nested, say

output_folder = os.path.join(’output’, ’lactase’)

In that case, os.mkdir(output_folder)may fail because the intermediate folder
output is missing. Making a folder and also all missing intermediate folders is
done by os.makedirs. We can write a more general file writing function that takes
a folder name and file name as input and writes the file. Let us also add some
flexibility in the file format: one can either write a fixed number of characters per
line, or have the string on just one long line. The latter version is specified through
chars_per_line=’inf’ (for infinite number of characters per line). The flexible
file writing function then becomes

def tofile_with_line_sep_v2(text, foldername, filename,

chars_per_line=70):

if not os.path.isdir(foldername):

os.makedirs(foldername)

filename = os.path.join(foldername, filename)

outfile = open(filename, ’w’)

if chars_per_line == ’inf’:

outfile.write(text)

else:

for i in xrange(0, len(text), chars_per_line):

start = i

end = start + chars_per_line

outfile.write(text[start:end] + ’\n’)

outfile.close()

To create the protein, we replace the triplets of the mRNA strings by the corre-
sponding 1-letter name as specified in the genetic_code.tsv file.

def create_protein(mrna, genetic_code):

protein = ’’

for i in xrange(len(mrna)/3):

start = i * 3

end = start + 3

protein += genetic_code[mrna[start:end]]

return protein

genetic_code = read_genetic_code_v1(’genetic_code.tsv’)

protein = create_protein(mrna, genetic_code)

tofile_with_line_sep_v2(protein, ’output’,

Unfortunately, this first try to simulate the translation process is incorrect. The
problem is that the translation always begins with the amino acid Methionine, code
AUG, and ends when one of the stop codons is met. We must thus check for the
correct start and stop criteria. A fix is
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def create_protein_fixed(mrna, genetic_code):

protein_fixed = ’’

trans_start_pos = mrna.find(’AUG’)

for i in range(len(mrna[trans_start_pos:])/3):

start = trans_start_pos + i*3

end = start + 3

amino = genetic_code[mrna[start:end]]

if amino == ’X’:

break

protein_fixed += amino

return protein_fixed

protein = create_protein_fixed(mrna, genetic_code)

tofile_with_line_sep_v2(protein, ’output’,

’lactase_protein_fixed.txt’, 70)

print ’10 last amino acids of the correct lactase protein: ’, \

protein[-10:]

print ’Lenght of the correct protein: ’, len(protein)

The output, needed below for comparison, becomes

10 last amino acids of the correct lactase protein: QQELSPVSSF

Lenght of the correct protein: 1927

6.5.5 Some Humans Can DrinkMilk, While Others Cannot

One type of lactose intolerance is called Congenital lactase deficiency. This is
a rare genetic disorder that causes lactose intolerance from birth, and is particularly
common in Finland. The disease is caused by a mutation of the base in position
30049 (0-based) of the lactase gene, a mutation from T to A. Our goal is to check
what happens to the protein if this base is mutated. This is a simple task using the
previously developed tools:

def congential_lactase_deficiency(

lactase_gene,

genetic_code,

lactase_exon_regions,

output_folder=os.curdir,

mrna_file=None,

protein_file=None):

pos = 30049

mutated_gene = lactase_gene[:pos] + ’A’ + lactase_gene[pos+1:]

mutated_mrna = create_mRNA(mutated_gene, lactase_exon_regions)

if mrna_file is not None:

tofile_with_line_sep_v2(

mutated_mrna, output_folder, mrna_file)

mutated_protein = create_protein_fixed(

mutated_mrna, genetic_code)
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if protein_file:

tofile_with_line_sep_v2(

mutated_protein, output_folder, protein_file)

return mutated_protein

mutated_protein = congential_lactase_deficiency(

lactase_gene, genetic_code, lactase_exon_regions,

output_folder=’output’,

mrna_file=’mutated_lactase_mrna.txt’,

protein_file=’mutated_lactase_protein.txt’)

print ’10 last amino acids of the mutated lactase protein:’, \

mutated_protein[-10:]

print ’Lenght of the mutated lactase protein:’, \

len(mutated_protein)

The output, to be compared with the non-mutated gene above, is now

10 last amino acids of the mutated lactase protein: GFIWSAASAA

Lenght of the mutated lactase protein: 1389

As we can see, the translation stops prematurely, creating a much smaller protein,
which will not have the required characteristics of the lactase protein.

A couple of mutations in a region for LCT located in front of LCT (actually in
the introns of another gene) is the reason for the common lactose intolerance. That
is, the one that sets in for adults only. These mutations control the expression of
the LCT gene, i.e., whether that the gene is turned on or off. Interestingly, different
mutations have evolved in different regions of the world, e.g., Africa and Northern
Europe. This is an example of convergent evolution: the acquisition of the same
biological trait in unrelated lineages. The prevalence of lactose intolerance varies
widely, from around 5% in northern Europe, to close to 100% in south-east Asia.

The functions analyzing the lactase gene are found in the file genes2proteins.
py.

6.6 Making Code that is Compatible with Python 2 and 3

Some basic differences between Python 2 and 3 are covered Sect. 4.10. With the
additional constructions met in this chapter, there are some important additional
differences between the two versions of Python.

6.6.1 More Basic Differences Between Python 2 and 3

xrange in Python 2 is range in Python 3 The range function in Python 2 gen-
erates a list of integers, and for very long loops this list may consume significant
computer memory. The xrange function in Python was therefore made to just gen-
erate a series of integers without storing them. In Python 3, range is the xrange
function from Python 2. If one wants a list of integers in Python 3, one has to do
list(range(5)) to store the output from range in a list.

http://tinyurl.com/pwyasaa/dictstring/genes2proteins.py
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Python 3 often avoids returning lists and dictionaries The Python 3 idea of
letting range just generate one object at a time instead of storing all of them applies
to many other constructions too. Let d be a dictionary. In Python 2, d.keys()
returns a list of the keys in the dictionary, while in Python 3, d.keys() just enables
iteration over the keys in a for loop. Similarly, d.values() and d.items() returns
lists of values or key-value pairs in Python 2, while in Python 3 we can only iterate
over the values in a for loop. A simple loop like

for key in d.keys():

...

works well for both Python versions, but

keys = d.keys()

in Python 2, where we want the keys as a list, needs a modification in Python 3:

keys = list(d.keys())

We should add that for key in d.keys() is not the preferred syntax anyway –
use for key in d. Also, if we just want a for loop over all key-value pairs, we
can use d.iteritems()which does not return any list, neither in Python 2 nor in
Python 3.

Library modules have different names We have used the urllib module in
Sects. 6.3.2 and 6.3.3. Python 3 has some different names for this module:

# Python 2

import urllib

with urllib.urlopen(’http://google.com’) as webfile:

text = webfile.read()

urllib.urlretrieve(’http://google.com’, filename=’tmp.html’)

# Python 3

import urllib.request as urllibr

with urllibr.urlopen(’http://google.com’) as webfile:

text = webfile.read()

urllibr.urlretrieve(’http://google.com’, filename=’tmp.html’)

A lot of other modules have also changed names, but the futurize program (see
below) help you to find the right new names.

Python 3 has unicode and byte strings A standard Python 2 string, s = ’abc’,
is a sequence of bytes, called byte string in Python 3, declared as s = b’abc’ in
Python 3. The assignment s = ’abc’ in Python 3 leads to a unicode string and
is equivalent to s = u’abc’ in Python 2. To convert a byte string in Python 3 to
an ordinary (unicode) string, do s.decode(’utf-8’). String handling is often the
most tricky task when converting Python 2 code to Python 3.
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Python 3 has different relative import syntax inside packages If you work with
Python packages5, relative imports inside a package has slightly different syntax
in Python 2 and 3. Say you want to import somefunc from a module somemod in
some other module at the same level (same subfolder) in the package. Python 2 syn-
tax would be from somemod import somefunc, while Python 3 demands from
.somemod import somefunc. The leading dot in the module name indicates that
somemod is a module located in the same subfolder as the file containing this import
statement. The alternative import, import somemod, in Python 2 must read from
. import somemod in Python 3.

6.6.2 Turning Python 2 Code into Python 3 Code

As demonstrated in Sect. 4.10, one can use the futurize program to turn a Python
2 program into a version that works with both Python 2 and 3. For the programs at
this stage in the book, and also for more advanced programs, we recommend to run
the command

Terminal

Terminal> futurize --all-imports -w -n -o py23 prog.py

which generates the new version of the program prog.py in the subfolder py23.
Sometimes manual changes are needed in addition, but this depends on the com-
plexity of prog.py.

By frequently running just futurize prog.py to see what needs to be changed,
you can learn a lot of the differences between Python 2 and 3 and also change
your programming style in Python 2 so that it comes even closer to Python 3. The
python-futuredocumentation has a very useful list of difference between Python
2 and 36 and recipes on how to make common code for both versions.

Porting of larger programs from Python 2 to 3 is recommended to use futurize
in a two-stage fashion7.

6.7 Summary

6.7.1 Chapter Topics

Dictionaries Array or list-like objects with text or other (fixed-valued) Python ob-
jects as indices are called dictionaries. They are very useful for storing general
collections of objects in a single data structure. The table below displays some of
the most important dictionary operations.

5 https://docs.python.org/3/tutorial/modules.html#packages
6 http://python-future.org/compatible_idioms.html
7 http://python-future.org/futurize.html#forwards-conversion-stage1

https://docs.python.org/3/tutorial/modules.html#packages
http://python-future.org/compatible_idioms.html
http://python-future.org/futurize.html#forwards-conversion-stage1
https://docs.python.org/3/tutorial/modules.html#packages
http://python-future.org/compatible_idioms.html
http://python-future.org/futurize.html#forwards-conversion-stage1
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Construction Meaning
a = fg initialize an empty dictionary
a = f’point’: [0,0.1], ’value’: 7g initialize a dictionary
a = dict(point=[2,7], value=3) initialize a dictionary w/string keys
a.update(b) add/update key-value pairs from b in a
a.update(key1=value1, key2=value2) add/update key-value pairs in a
a[’hide’] = True add new key-value pair to a
a[’point’] get value corresponding to key point
for key in a: loop over keys in unknown order
for key in sorted(a): loop over keys in alphabetic order
’value’ in a True if string value is a key in a
del a[’point’] delete a key-value pair from a
list(a.keys()) list of keys
list(a.values()) list of values
len(a) number of key-value pairs in a
isinstance(a, dict) is True if a is a dictionary

Strings Some of the most useful functionalities in a string object s are listed below.

Split the string into substrings separated by delimiter:

words = s.split(delimiter)

Join elements in a list of strings:

newstring = delimiter.join(words[i:j])

Extract a substring:

substring = s[2:n-4]

Replace a substring substr by new a string replacement:

s_new = s.replace(substr, replacement)

Check if a substring is contained within another string:

if ’some text’ in s:

...

Find the index where some text starts:

index = s.find(text)

if index == -1:

print ’Could not find "%s" in "%s" (text, s)

else:

substring = s[index:] # strip off chars before text
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Extend a string:

s += another_string # append at the end

s = another_string + s # append at the beginning

Check if a string contains whitespace only:

if s.isspace():

...

Note: you cannot change the characters in a string like you can change elements in
a list (a string is in this sense like a tuple). You have to make a new string:

>>> filename = ’myfile1.txt’

>>> filename[6] = ’2’

Traceback (most recent call last):

...

TypeError: ’str’ object does not support item assignment

>>> filename.replace(’1’, ’2’)

’myfile2.txt’

>>> filename[:6] + ’2’ + filename[7:] # ’myfile’ + ’2’ + ’.txt’

’myfile2.txt’

Downloading Internet files Internet files can be downloaded if we know their
URL:

import urllib

url = ’http://www.some.where.net/path/thing.html’

urllib.urlretrieve(url, filename=’thing.html’)

The downloaded information is put in the local file thing.html in the current
working folder. Alternatively, we can open the URL as a file object:

webpage = urllib.urlopen(url)

HTML files are often messy to interpret by string operations.

Terminology The important computer science topics in this chapter are

� dictionaries
� strings and string operations
� CSV files
� HTML files

6.7.2 Example: A File Database

Problem We have a file containing information about the courses that students
have taken. The file format consists of blocks with student data, where each block
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starts with the student’s name (Name:), followed by the courses that the student has
taken. Each course line starts with the name of the course, then comes the semester
when the exam was taken, then the size of the course in terms of credit points, and
finally the grade is listed (letters A to F). Here is an example of a file with three
student entries:

Name: John Doe

Astronomy 2003 fall 10 A

Introductory Physics 2003 fall 10 C

Calculus I 2003 fall 10 A

Calculus II 2004 spring 10 B

Linear Algebra 2004 spring 10 C

Quantum Mechanics I 2004 fall 10 A

Quantum Mechanics II 2005 spring 10 A

Numerical Linear Algebra 2004 fall 5 E

Numerical Methods 2004 spring 20 C

Name: Jan Modaal

Calculus I 2005 fall 10 A

Calculus II 2006 spring 10 A

Introductory C++ Programming 2005 fall 15 D

Introductory Python Programming 2006 spring 5 A

Astronomy 2005 fall 10 A

Basic Philosophy 2005 fall 10 F

Name: Kari Nordmann

Introductory Python Programming 2006 spring 5 A

Astronomy 2005 fall 10 D

Our problem consists of reading this file into a dictionary data with the student
name as key and a list of courses as value. Each element in the list of courses is
a dictionary holding the course name, the semester, the credit points, and the grade.
A value in the data dictionary may look as

’Kari Nordmann’: [{’credit’: 5,

’grade’: ’A’,

’semester’: ’2006 spring’,

’title’: ’Introductory Python Programming’},

{’credit’: 10,

’grade’: ’D’,

’semester’: ’2005 fall’,

’title’: ’Astronomy’}],

Having the data dictionary, the next task is to print out the average grade of each
student.

Solution We divide the problem into two major tasks: loading the file data into the
data dictionary, and computing the average grades. These two tasks are naturally
placed in two functions.

We need to have a strategy for reading the file and interpreting the contents. It
will be natural to read the file line by line, and for each line check if this is a line
containing a new student’s name, a course information line, or a blank line. In
the latter case we jump to the next pass in the loop. When a new student name is
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encountered, we initialize a new entry in the data dictionary to an empty list. In
the case of a line about a course, we must interpret the contents on that line, which
we postpone a bit.

We can now sketch the algorithm described above in terms of some unfinished
Python code, just to get the overview:

def load(studentfile):

infile = open(studentfile, ’r’)

data = {}

for line in infile:

i = line.find(’Name:’)

if i != -1:

# line contains ’Name:’, extract the name.

...

elif line.isspace(): # Blank line?

continue # Yes, go to next loop iteration.

else:

# This must be a course line, interpret the line.

...

infile.close()

return data

If we find ’Name:’ as a substring in line, we must extract the name. This can
be done by the substring line[i+5:]. Alternatively, we can split the line with
respect to colon and strip off the first word:

words = line.split(’:’)

name = ’ ’.join(words[1:])

We have chosen the former strategy of extracting the name as a substring in the final
program.

Each course line is naturally split into words for extracting information:

words = line.split()

The name of the course consists of a number of words, but we do not know how
many. Nevertheless, we know that the final words contain the semester, the credit
points, and the grade. We can hence count from the right and extract information,
and when we are finished with the semester information, the rest of the words list
holds the words in the name of the course. The code goes as follows:

grade = words[-1]

credit = int(words[-2])

semester = ’ ’.join(words[-4:-2])

course_name = ’ ’.join(words[:-4])

data[name].append({’title’: course_name,

’semester’: semester,

’credit’: credit,

’grade’: grade})

This code is a good example of the usefulness of split and join operations when
extracting information from a text.
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Now to the second task of computing the average grade. Since the grades are
letters we cannot compute with them. A natural way to proceed is to convert the
letters to numbers, compute the average number, and then convert that number back
to a letter. Conversion between letters and numbers is easily represented by a dic-
tionary:

grade2number = {’A’: 5, ’B’: 4, ’C’: 3, ’D’: 2, ’E’: 1, ’F’: 0}

To convert from numbers to grades, we construct the inverse dictionary:

number2grade = {}

for grade in grade2number:

number2grade[grade2number[grade]] = grade

In the computation of the average grade we should use a weighted sum such that
larger courses count more than smaller courses. The weighted mean value of a set
of numbers ri with weights wi , i D 0; : : : ; n � 1, is given by

Pn�1
iD0 wi ri

Pn�1
iD0 wi

:

This weighted mean value must then be rounded to the nearest integer, which can be
used as key in number2grade to find the corresponding grade expressed as a letter.
The weight wi is naturally taken as the number of credit points in the course with
grade ri . The whole process is performed by the following function:

def average_grade(data, name):

sum = 0; weights = 0

for course in data[name]:

weight = course[’credit’]

grade = course[’grade’]

sum += grade2number[grade]*weight

weights += weight

avg = sum/float(weights)

return number2grade[round(avg)]

The complete code is found in the file students.py. Running this program gives
the following output of the average grades:

John Doe: B

Kari Nordmann: C

Jan Modaal: C

One feature of the students.py code is that the output of the names are sorted
after the last name. How can we accomplish that? A straight for name in data
loop will visit the keys in an unknown (random) order. To visit the keys in alphabetic
order, we must use

for name in sorted(data):

http://tinyurl.com/pwyasaa/dictstring/student.py
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This default sort will sort with respect to the first character in the name strings. We
want a sort according to the last part of the name. A tailored sort function can then
be written (see Exercise 3.39 for an introduction to tailored sort functions). In this
function we extract the last word in the names and compare them:

def sort_names(name1, name2):

last_name1 = name1.split()[-1]

last_name2 = name2.split()[-1]

if last_name1 < last_name2:

return -1

elif last_name1 > last_name2:

return 1

else:

return 0

We can now pass on sort_names to the sorted function to get a sequence that is
sorted with respect to the last word in the students’ names:

for name in sorted(data, sort_names):

print ’%s: %s’ % (name, average_grade(data, name))

6.8 Exercises

Exercise 6.1: Make a dictionary from a table
The file src/dictstring/constants.txt8 contains a table of the values and the
dimensions of some fundamental constants from physics. We want to load this table
into a dictionary constants, where the keys are the names of the constants. For
example, constants[’gravitational constant’] holds the value of the grav-
itational constant (6:67259 � 10�11) in Newton’s law of gravitation. Make a function
that reads and interprets the text in the file, and finally returns the dictionary.
Filename: fundamental_constants.

Exercise 6.2: Explore syntax differences: lists vs. dicts
Consider this code:

t1 = {}

t1[0] = -5

t1[1] = 10.5

Explain why the lines above work fine while the ones below do not:

t2 = []

t2[0] = -5

t2[1] = 10.5

What must be done in the last code snippet to make it work properly?
Filename: list_vs_dict.

8 http://tinyurl.com/pwyasaa/dictstring/constants.txt

http://tinyurl.com/pwyasaa/dictstring/constants.txt
http://tinyurl.com/pwyasaa/dictstring/constants.txt
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Exercise 6.3: Use string operations to improve a program
Consider the program density.py from Sect. 6.1.5. One problem with this pro-
gram is that the name of the substance can contain only one or two words, while
more comprehensive tables may have substances with names consisting of several
words. The purpose of this exercise is to use string operations to shorten the code
and make it more general and elegant.

a) Make a Python function that lets the name substance consist of all the words
that line is split into, but not the last (which is the value of the corresponding
density). Use the joinmethod in string objects to combine the words that make
up the name of the substance.

b) Observe that all the density values in the file densities.dat start in the same
column. Write an alternative function that makes use of substring indexing to
divide line into two parts (substance and density).

Hint Remember to strip the first part such that, e.g., the density of ice is obtained
as densities[’ice’] and not densities[’ice ’].

c) Make a test function that calls the two other functions and tests that they produce
the same result.

Filename: density_improved.

Exercise 6.4: Interpret output from a program
The program src/funcif/lnsum.py produces, among other things, this output:

epsilon: 1e-04, exact error: 8.18e-04, n=55

epsilon: 1e-06, exact error: 9.02e-06, n=97

epsilon: 1e-08, exact error: 8.70e-08, n=142

epsilon: 1e-10, exact error: 9.20e-10, n=187

epsilon: 1e-12, exact error: 9.31e-12, n=233

Redirect the output to a file (by python lnsum.py > file). Write a Python pro-
gram that reads the file and extracts the numbers corresponding to epsilon, exact
error, and n. Store the numbers in three arrays and plot epsilon and the exact
error versus n. Use a logarithmic scale on the y axis.

Hint The function semilogy is an alternative to plot and gives logarithmic scale
on y axis.
Filename: read_error.

Exercise 6.5: Make a dictionary
Based on the stars data in Exercise 3.39, make a dictionary where the keys contain
the names of the stars and the values correspond to the luminosity.
Filename: stars_data_dict1.

http://tinyurl.com/pwyasaa/funcif/lnsum.py
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Exercise 6.6: Make a nested dictionary
Store the data about stars from Exercise 3.39 in a nested dictionary such that we
can look up the distance, the apparent brightness, and the luminosity of a star with
name N by

stars[N][’distance’]

stars[N][’apparent brightness’]

stars[N][’luminosity’]

Hint Initialize the data by just copying the stars.txt9 text into the program.
Filename: stars_data_dict2.

Exercise 6.7: Make a nested dictionary from a file
The file src/dictstring/human_evolution.txt10 holds information about
various human species and their height, weight, and brain volume. Make a pro-
gram that reads this file and stores the tabular data in a nested dictionary humans.
The keys in humans correspond to the specie name (e.g., homo erectus), and
the values are dictionaries with keys for height, weight, brain volume,
and when (the latter for when the specie lived). For example, humans[’homo
neanderthalensis’][’mass’] should equal ’55-70’. Let the program write
out the humans dictionary in a nice tabular form similar to that in the file.
Filename: humans.

Exercise 6.8: Make a nested dictionary from a file
The viscosity � of gases depends on the temperature. For some gases the following
formula is relevant:

�.T / D �0

T0 � C

T C C

�
T

T0

�1:5

;

where the values of the constants C , T0, and �0 are found in the file src/
dictstring/viscosity_of_gases.dat11. The temperature is measured in
Kelvin.

a) Load the file into a nested dictionary mu_data such that we can look up C , T0,
and �0 for a gas with name name by mu_data[name][X], where X is ’C’ for
C , ’T_0’ for T0, and ’mu_0’ for �0.

b) Make a function mu(T, gas, mu_data) for computing �.T / for a gas with
name gas (according to the file) and information about constants C , T0, and �0

in mu_data.
c) Plot �.T / for air, carbon dioxide, and hydrogen with T 2 Œ223; 373�.

Filename: viscosity_of_gases.

9 http://tinyurl.com/pwyasaa/funcif/stars.txt
10 http://tinyurl.com/pwyasaa/dictstring/human_evolution.txt
11 http://tinyurl.com/pwyasaa/dictstring/viscosity_of_gases.txt

http://tinyurl.com/pwyasaa/funcif/stars.txt
http://tinyurl.com/pwyasaa/dictstring/human_evolution.txt
http://tinyurl.com/pwyasaa/dictstring/viscosity_of_gases.txt
http://tinyurl.com/pwyasaa/funcif/stars.txt
http://tinyurl.com/pwyasaa/dictstring/human_evolution.txt
http://tinyurl.com/pwyasaa/dictstring/viscosity_of_gases.txt
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Exercise 6.9: Compute the area of a triangle
The purpose of this exercise is to write an area function as in Exercise 3.16, but
now we assume that the vertices of the triangle is stored in a dictionary and not
a list. The keys in the dictionary correspond to the vertex number (1, 2, or 3) while
the values are 2-tuples with the x and y coordinates of the vertex. For example, in
a triangle with vertices .0; 0/, .1; 0/, and .0; 2/ the vertices argument becomes

{1: (0,0), 2: (1,0), 3: (0,2)}

Filename: area_triangle_dict.

Exercise 6.10: Compare data structures for polynomials
Write a code snippet that uses both a list and a dictionary to represent the polyno-
mial � 1

2
C 2x100. Print the list and the dictionary, and use them to evaluate the

polynomial for x D 1:05.

Hint You can apply the eval_poly_dict and eval_poly_list functions from
Sect. 6.1.3).
Filename: poly_repr.

Exercise 6.11: Compute the derivative of a polynomial
A polynomial can be represented by a dictionary as explained in Sect. 6.1.3. Write
a function diff for differentiating such a polynomial. The diff function takes the
polynomial as a dictionary argument and returns the dictionary representation of
the derivative. Here is an example of the use of the function diff:

>>> p = {0: -3, 3: 2, 5: -1} # -3 + 2*x**3 - x**5

>>> diff(p) # should be 6*x**2 - 5*x**4

{2: 6, 4: -5}

Hint Recall the formula for differentiation of polynomials:

d

dx

nX

j D0

cj xj D
nX

j D1

jcj xj �1 : (6.1)

This means that the coefficient of the xj �1 term in the derivative equals j times the
coefficient of xj term of the original polynomial. With p as the polynomial dictio-
nary and dp as the dictionary representing the derivative, we then have dp[j-1] =
j*p[j] for j running over all keys in p, except when j equals 0.
Filename: poly_diff.

Exercise 6.12: Specify functions on the command line
Explain what the following two code snippets do and give an example of how they
can be used.
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Hint Read about the StringFunction tool in Sect. 4.3.3 and about a variable
number of keyword arguments in Sect. H.7.

a)

import sys

from scitools.StringFunction import StringFunction

parameters = {}

for prm in sys.argv[4:]:

key, value = prm.split(’=’)

parameters[key] = eval(value)

f = StringFunction(sys.argv[1], independent_variables=sys.argv[2],

**parameters)

var = float(sys.argv[3])

print f(var)

b)

import sys

from scitools.StringFunction import StringFunction

f = eval(’StringFunction(sys.argv[1], ’ + \

’independent_variables=sys.argv[2], %s)’ % \

(’, ’.join(sys.argv[4:])))

var = float(sys.argv[3])

print f(var)

Filename: cml_functions.

Exercise 6.13: Interpret function specifications
To specify arbitrary functions f .x1; x2; : : : I p1; p2; : : :/ with independent variables
x1; x2; : : : and a set of parameters p1; p2; : : :, we allow the following syntax on the
command line or in a file:

<expression> is function of <list1> with parameter <list2>

where <expression> denotes the function formula, <list1> is a comma-
separated list of the independent variables, and <list2> is a comma-separated
list of name=value parameters. The part with parameters <list2> is omitted if
there are no parameters. The names of the independent variables and the parameters
can be chosen freely as long as the names can be used as Python variables. Here
are four different examples of what we can specify on the command line using this
syntax:

sin(x) is a function of x

sin(a*y) is a function of y with parameter a=2

sin(a*x-phi) is a function of x with parameter a=3, phi=-pi

exp(-a*x)*cos(w*t) is a function of t with parameter a=1,w=pi,x=2

Create a Python function that takes such function specifications as input and returns
an appropriate StringFunctionobject. This object must be created from the func-
tion expression and the list of independent variables and parameters. For example,
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the last function specification above leads to the following StringFunction cre-
ation:

f = StringFunction(’exp(-a*x)*cos(w*t)’,

independent_variables=[’t’],

a=1, w=pi, x=2)

Write a test function for verifying the implementation (fill sys.argv with ap-
propriate content prior to each individual test).

Hint Use string operations to extract the various parts of the string. For example,
the expression can be split out by calling split(’is a function of’). Typ-
ically, you need to extract <expression>, <list1>, and <list2>, and create
a string like

StringFunction(<expression>, independent_variables=[<list1>],

<list2>)

and sending it to eval to create the object.
Filename: text2func.

Exercise 6.14: Compare average temperatures in cities
The tarfile src/misc/city_temp.tar.gz12 contains a set of files with tempera-
ture data for a large number of cities around the world. The files are in text format
with four columns, containing the month number, the date, the year, and the temper-
ature, respectively. Missing temperature observations are represented by the value
�99. The mapping between the names of the text files and the names of the cities
are defined in an HTML file citylistWorld.htm.

a) Write a function that can read the citylistWorld.htmfile and create a dictio-
nary with mapping between city and filenames.

b) Write a function that takes this dictionary and a city name as input, opens the
corresponding text file, and loads the data into an appropriate data structure
(dictionary of arrays and city name is a suggestion).

c) Write a function that can take a number of data structures and the corresponding
city names to create a plot of the temperatures over a certain time period.

Filename: temperature_data.

Exercise 6.15: Generate an HTML report with figures
The goal of this exercise is to let a program write a report in HTML format con-
taining the solution to Exercise 5.33. First, include the program from that exercise,
with additional explaining text if necessary. Program code can be placed inside
<pre> and </pre> tags. Second, insert three plots of the f .x; t/ function for three
different t values (find suitable t values that illustrate the displacement of the wave
packet). Third, add an animated GIF file with the movie of f .x; t/. Insert headlines
(<h1> tags) wherever appropriate.
Filename: wavepacket_report.

12 http://tinyurl.com/pwyasaa/misc/city_temp.tar.gz

http://tinyurl.com/pwyasaa/misc/city_temp.tar.gz
http://tinyurl.com/pwyasaa/misc/city_temp.tar.gz
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Exercise 6.16: Allow different types for a function argument
Consider the family of find_consensus_v* functions from Sect. 6.5.2. The dif-
ferent versions work on different representations of the frequency matrix. Make
a unified find_consensus function that accepts different data structures for the
frequency_matrix. Test on the type of data structure and perform the necessary
actions.
Filename: find_consensus.

Exercise 6.17: Make a function more robust
Consider the function get_base_counts(dna) from Sect. 6.5.3, which counts
how many times A, C, G, and T appears in the string dna:

def get_base_counts(dna):

counts = {’A’: 0, ’T’: 0, ’G’: 0, ’C’: 0}

for base in dna:

counts[base] += 1

return counts

Unfortunately, this function crashes if other letters appear in dna. Write an en-
hanced function get_base_counts2which solves this problem. Test it on a string
like ’ADLSTTLLD’.
Filename: get_base_counts2.

Exercise 6.18: Find proportion of bases inside/outside exons
Consider the lactase gene as described in Sects. 6.5.4 and 6.5.5. What is the pro-
portion of base A inside and outside exons of the lactase gene?

Hint Write a function get_exons, which returns all the substrings of the exon
regions concatenated. Also write a function get_introns, which returns all
the substrings between the exon regions concatenated. The function get_base_
frequencies from Sect. 6.5.3 can then be used to analyze the frequencies of bases
A, C, G, and T in the two strings.
Filename: prop_A_exons.
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