
4User Input and Error Handling

Consider a program for evaluating the formula x D A sin.wt/:

from math import sin

A = 0.1

w = 1

t = 0.6

x = A*sin(w*t)

print x

In this program, A, w, and t are input data in the sense that these parameters must be
known before the program can perform the calculation of x. The results produced
by the program, here x, constitute the output data.

Input data can be hardcoded in the program as we do above. That is, we explicitly
set variables to specific values: A=0.1, w=1, t=0.6. This programming style may
be suitable for small programs. In general, however, it is considered good practice
to let a user of the program provide input data when the program is running. There
is then no need to modify the program itself when a new set of input data is to be
explored. This is an important feature, because a golden rule of programming is
that modification of the source code always represents a danger of introducing new
errors by accident.

This chapter starts with describing four different ways of reading data into a pro-
gram:

1. let the user answer questions in a dialog in the terminal window (Sect. 4.1),
2. let the user provide input on the command line (Sect. 4.2),
3. let the user provide input data in a file (Sect. 4.5),
4. let the user write input data in a graphical interface (Sect. 4.8).

Even if your programworks perfectly, wrong input data from the user may cause the
program to produce wrong answers or even crash. Checking that the input data are
correct is important, and Sect. 4.7 tells you how to do this with so-called exceptions.

The Python programming environment is organized as a big collection of mod-
ules. Organizing your own Python software in terms of modules is therefore a nat-

149© Springer-Verlag Berlin Heidelberg 2016
H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6, DOI 10.1007/978-3-662-49887-3_4

150 4 User Input and Error Handling

ural and wise thing to do. Section 4.9 tells you how easy it is to make your own
modules.

All the program examples from the present chapter are available in files in the
src/input1 folder.

4.1 Asking Questions and Reading Answers

One of the simplest ways of getting data into a program is to ask the user a question,
let the user type in an answer, and then read the text in that answer into a variable
in the program. These tasks are done by calling a function with name raw_input
in Python 2 – the name is just input in Python 3.

4.1.1 Reading Keyboard Input

A simple problem involving the temperature conversion from Celsius to Fahrenheit
constitutes our main example: F D 9

5
C C 32. The associated program with setting

C explicitly in the program reads

C = 22

F = 9./5*C + 32

print F

We may ask the user a question C=? and wait for the user to enter a number. The
program can then read this number and store it in a variable C. These actions are
performed by the statement

C = raw_input(’C=? ’)

The raw_input function always returns the user input as a string object. That is,
the variable C above refers to a string object. If we want to compute with this C,
we must convert the string to a floating-point number: C = float(C). A complete
program for reading C and computing the corresponding degrees in Fahrenheit now
becomes

C = raw_input(’C=? ’)

C = float(C)

F = 9.0/5*C + 32

print F

In general, the raw_input function takes a string as argument, displays this
string in the terminal window, waits until the user presses the Return key, and then
returns a string object containing the sequence of characters that the user typed in.

1 http://tinyurl.com/pwyasaa/input

http://tinyurl.com/pwyasaa/input
http://tinyurl.com/pwyasaa/input

4.2 Reading from the Command Line 151

The program above is stored in a file called c2f_qa.py (the qa part of the name
reflects question and answer). We can run this program in several ways. The con-
vention in this book is to indicate the execution by writing the program name only,
but for a real execution you need to do more: write run before the program name in
an interactive IPython session, or write python before the program name in a ter-
minal session. Here is the execution of our sample program and the resulting dialog
with the user:

Terminal

c2f_qa.py
C=? 21
69.8

In this particular example, the raw_input function reads the characters 21 from
the keyboard and returns the string ’21’, which we refer to by the variable C. Then
we create a new float object by float(C) and let the name C refer to this float
object, with value 21.

You should now try out Exercises 4.1, 4.6, and 4.9 to make sure you understand
how raw_input behaves.

4.2 Reading from the Command Line

Programs running on Unix computers usually avoid asking the user questions. In-
stead, input data are very often fetched from the command line. This section
explains how we can access information on the command line in Python programs.

4.2.1 Providing Input on the Command Line

We look at the Celsius-Fahrenheit conversion program again. The idea now is to
provide the Celsius input temperature as a command-line argument right after the
program name. This means that we write the program name, here c2f_cml.py
(cml for command line), followed the Celsius temperature:

Terminal

c2f_cml.py 21
69.8

Inside the program we can fetch the text 21 as sys.argv[1]. The sysmodule has
a list argv containing all the command-line arguments to the program, i.e., all the
“words” appearing after the program name when we run the program. In the present
case there is only one argument and it is stored in sys.argv[1]. The first element
in the sys.argv list, sys.argv[0], is always the name of the program.

A command-line argument is treated as a text, so sys.argv[1] refers to a string
object, in this case ’21’. Since we interpret the command-line argument as a num-
ber and want to compute with it, it is necessary to explicitly convert the string to
a float object. In the program we therefore write

http://tinyurl.com/pwyasaa/input/c2f_qa.py
http://tinyurl.com/pwyasaa/c2f_cml.py

152 4 User Input and Error Handling

import sys

C = float(sys.argv[1])

F = 9.0*C/5 + 32

print F

As another example, consider the program

v0 = 5

g = 9.81

t = 0.6

y = v0*t - 0.5*g*t**2

print y

for computing the formula y.t/ D v0t � 1
2
gt2. Instead of hardcoding the values of

v0 and t in the program we can read the two values from the command line:

Terminal

ball2_cml.py 0.6 5
1.2342

The two command-line arguments are now available as sys.argv[1] and sys.
argv[2]. The complete ball2_cml.py program thus takes the form

import sys

t = float(sys.argv[1])

v0 = float(sys.argv[2])

g = 9.81

y = v0*t - 0.5*g*t**2

print y

4.2.2 A Variable Number of Command-Line Arguments

Let us make a program addall.py that adds all its command-line arguments. That
is, we may run something like

Terminal

addall.py 1 3 5 -9.9
The sum of 1 3 5 -9.9 is -0.9

The command-line arguments are stored in the sublist sys.argv[1:]. Each ele-
ment is a string so we must perform a conversion to float before performing the
addition. There are many ways to write this program. Let us start with version 1,
addall_v1.py:

http://tinyurl.com/pwyasaa/input/ball2_cml.py

4.2 Reading from the Command Line 153

import sys

s = 0

for arg in sys.argv[1:]:

number = float(arg)

s += number

print ’The sum of ’,

for arg in sys.argv[1:]:

print arg,

print ’is ’, s

The output is on one line, but built of several print statements with a comma at the
end to prevent the usual newline character that print otherwise adds to the text.
The command-line arguments must be converted to numbers in the first for loop
because we need to compute with them, but in the second loop we only need to print
them and then the string representation is appropriate.

The program above can be written more compactly if desired:

import sys

s = sum([float(x) for x in sys.argv[1:]])

print ’The sum of %s is %s’ % (’ ’.join(sys.argv[1:]), s)

Here, we convert the list sys.argv[1:] to a list of float objects and then pass this
list to Python’s sum function for adding the numbers. The construction S.join(L)
places all the elements in the list L after each other with the string S in between.
The result here is a string with all the elements in sys.argv[1:] and a space in
between, which is the text that originally appeared on the command line.

4.2.3 More on Command-Line Arguments

Unix commands make heavy use of command-line arguments. For example, when
you write ls -s -t to list the files in the current folder, you run the program ls
with two command-line arguments: -s and -t. The former specifies that ls is to
print the file name together with the size of the file, and the latter sorts the list of
files according to their dates of last modification. Similarly, cp -r my new for
copying a folder tree my to a new folder tree new invokes the cp program with three
command line arguments: -r (for recursive copying of files), my, and new. Most
programming languages have support for extracting the command-line arguments
given to a program.

An important rule is that command-line arguments are separated by blanks.
What if we want to provide a text containing blanks as command-line argument?
The text containing blanks must then appear inside single or double quotes. Let us
demonstrate this with a program that simply prints the command-line arguments:

import sys, pprint

pprint.pprint(sys.argv[1:])

154 4 User Input and Error Handling

Say this program is named print_cml.py. The execution

Terminal

print_cml.py 21 a string with blanks 31.3
[’21’, ’a’, ’string’, ’with’, ’blanks’, ’31.3’]

demonstrates that each word on the command line becomes an element in sys.argv.
Enclosing strings in quotes, as in

Terminal

print_cml.py 21 "a string with blanks" 31.3
[’21’, ’a string with blanks’, ’31.3’]

shows that the text inside the quotes becomes a single command line argument.

4.3 Turning User Text into Live Objects

It is possible to provide text with valid Python code as input to a program and then
turn the text into live objects as if the text were written directly into the program
beforehand. This is a very powerful tool for letting users specify function formulas,
for instance, as input to a program. The program code itself has no knowledge about
the kind of function the user wants to work with, yet at run time the user’s desired
formula enters the computations.

4.3.1 TheMagic Eval Function

The eval functions takes a string as argument and evaluates this string as a Python
expression. The result of an expression is an object. Consider

>>> r = eval(’1+2’)

>>> r

3

>>> type(r)

<type ’int’>

The result of r = eval(’1+2’) is the same as if we had written r = 1+2 directly:

>>> r = 1+2

>>> r

3

>>> type(r)

<type ’int’>

In general, any valid Python expression stored as text in a string s can be turned
into live Python code by eval(s).

4.3 Turning User Text into Live Objects 155

Here is an example where the string to be evaluated is ’2.5’, which causes
Python to see r = 2.5 and make a float object:

>>> r = eval(’2.5’)

>>> r

2.5

>>> type(r)

<type ’float’>

Let us proceed with some more examples. We can put the initialization of a list
inside quotes and use eval to make a list object:

>>> r = eval(’[1, 6, 7.5]’)

>>> r

[1, 6, 7.5]

>>> type(r)

<type ’list’>

Again, the assignment to r is equivalent to writing

>>> r = [1, 6, 7.5]

We can also make a tuple object by using tuple syntax (standard parentheses in-
stead of brackets):

>>> r = eval(’(-1, 1)’)

>>> r

(-1, 1)

>>> type(r)

<type ’tuple’>

Another example reads

>>> from math import sqrt

>>> r = eval(’sqrt(2)’)

>>> r

1.4142135623730951

>>> type(r)

<type ’float’>

At the time we run eval(’sqrt(2)’), this is the same as if we had written

>>> r = sqrt(2)

directly, and this is valid syntax only if the sqrt function is defined. Therefore, the
import of sqrt prior to running eval is important in this example.

Applying eval to strings If we put a string, enclosed in quotes, inside the expres-
sion string, the result is a string object:

156 4 User Input and Error Handling

>>>

>>> r = eval(’"math programming"’)

>>> r

’math programming’

>>> type(r)

<type ’str’>

Note that we must use two types of quotes: first double quotes to mark math
programming as a string object and then another set of quotes, here single quotes
(but we could also have used triple single quotes), to embed the text "math
programming" inside a string. It does not matter if we have single or double
quotes as inner or outer quotes, i.e., ’"..."’ is the same as "’...’", because ’
and " are interchangeable as long as a pair of either type is used consistently.

Writing just

>>> r = eval(’math programming’)

is the same as writing

>>> r = math programming

which is an invalid expression. Python will in this case think that math and
programming are two (undefined) variables, and setting two variables next to each
other with a space in between is invalid Python syntax. However,

>>> r = ’math programming’

is valid syntax, as this is how we initialize a string r in Python. To repeat, if we put
the valid syntax ’math programming’ inside a string,

s = "’math programming’"

eval(s) will evaluate the text inside the double quotes as ’math programm-
ing’, which yields a string.

Applying eval to user input So, why is the eval function so useful? When we
get input via raw_input or sys.argv, it is always in the form of a string object,
which often must be converted to another type of object, usually an int or float.
Sometimes we want to avoid specifying one particular type. The eval function can
then be of help: we feed the string object from the input to the eval function and
let the it interpret the string and convert it to the right object.

An example may clarify the point. Consider a small program where we read in
two values and add them. The values could be strings, floats, integers, lists, and so
forth, as long as we can apply a + operator to the values. Since we do not know if
the user supplies a string, float, integer, or something else, we just convert the input
by eval, which means that the user’s syntax will determine the type. The program
goes as follows (add_input.py):

http://tinyurl.com/pwyasaa/input/add_input.py

4.3 Turning User Text into Live Objects 157

i1 = eval(raw_input(’Give input: ’))

i2 = eval(raw_input(’Give input: ’))

r = i1 + i2

print ’%s + %s becomes %s\nwith value %s’ % \

(type(i1), type(i2), type(r), r)

Observe that we write out the two supplied values, together with the types of the
values (obtained by eval), and the sum. Let us run the program with an integer and
a real number as input:

Terminal

add_input.py
Give input: 4
Give input: 3.1
<type ’int’> + <type ’float’> becomes <type ’float’>
with value 7.1

The string ’4’, returned by the first call to raw_input, is interpreted as an int by
eval, while ’3.1’ gives rise to a float object.

Supplying two lists also works fine:

Terminal

add_input.py
Give input: [-1, 3.2]
Give input: [9,-2,0,0]
<type ’list’> + <type ’list’> becomes <type ’list’>
with value [-1, 3.2000000000000002, 9, -2, 0, 0]

If we want to use the program to add two strings, the strings must be enclosed in
quotes for eval to recognize the texts as string objects (without the quotes, eval
aborts with an error):

Terminal

add_input.py
Give input: ’one string’
Give input: " and another string"
<type ’str’> + <type ’str’> becomes <type ’str’>
with value one string and another string

Not all objects are meaningful to add:

Terminal

add_input.py
Give input: 3.2
Give input: [-1,10]
Traceback (most recent call last):

File "add_input.py", line 3, in <module>
r = i1 + i2

TypeError: unsupported operand type(s) for +: ’float’ and ’list’

158 4 User Input and Error Handling

A similar program adding two arbitrary command-line arguments reads (add_
input.py):

import sys

i1 = eval(sys.argv[1])

i2 = eval(sys.argv[2])

r = i1 + i2

print ’%s + %s becomes %s\nwith value %s’ % \

(type(i1), type(i2), type(r), r)

Another important example on the usefulness of eval is to turn formulas, given
as input, into mathematics in the program. Consider the program

from math import * # make all math functions available

import sys

formula = sys.argv[1]

x = eval(sys.argv[2])

result = eval(formula)

print ’%s for x=%g yields %g’ % (formula, x, result)

Two command-line arguments are expected: a formula and a number. Say the
formula given is 2*sin(x)+1 and the number is 3.14. This information is read
from the command line as strings. Doing x = eval(sys.argv[2]) means x =
eval(’3.14’), which is equivalent to x = 3.14, and x refers to a float ob-
ject. The eval(formula) expression means eval(’2*sin(x)+1’), and the cor-
responding statement result = eval(formula is therefore effectively result =
2*sin(x)+1, which requires sin and x to be defined objects. The result is a float
(approximately 1.003). Providing cos(x) as the first command-line argument cre-
ates a need to have cos defined, so that is why we import all functions from the
mathmodule. Let us try to run the program:

Terminal

eval_formula.py "2*sin(x)+1" 3.14
2*sin(x)+1 for x=3.14 yields 1.00319

The very nice thing with using eval in x = eval(sys.argv[2]) is that we
can provide mathematical expressions like pi/2 or even tanh(2*pi), as the latter
just effectively results in the statement x = tanh(2*pi), and this works fine as
long has we have imported tanh and pi.

4.3.2 TheMagic Exec Function

Having presented eval for turning strings into Python code, we take the opportunity
to also describe the related exec function to execute a string containing arbitrary
Python code, not only an expression.

Suppose the user can write a formula as input to the program, available to us in
the form of a string object. We would then like to turn this formula into a callable

http://tinyurl.com/pwyasaa/input/add_input.py

4.3 Turning User Text into Live Objects 159

Python function. For example, writing sin(x)*cos(3*x) + x**2 as the formula,
we would make the function

def f(x):

return sin(x)*cos(3*x) + x**2

This is easy with exec: just construct the right Python syntax for defining f(x) in
a string and apply exec to the string,

formula = sys.argv[1]

code = """

def f(x):

return %s

""" % formula

from math import * # make sure we have sin, cos, exp, etc.

exec(code)

As an example, think of "sin(x)*cos(3*x) + x**2" as the first command-line
argument. Then formula will hold this text, which is inserted into the code string
such that it becomes

"""

def f(x):

return sin(x)*cos(3*x) + x**2

"""

Thereafter, exec(code) executes the code as if we had written the contents of the
code string directly into the program by hand. With this technique, we can turn any
user-given formula into a Python function!

Let us now use this technique in a useful application. Suppose we have made
a function for computing the integral

R b

a
f .x/dx by the Midpoint rule with n inter-

vals:

def midpoint_integration(f, a, b, n=100):

h = (b - a)/float(n)

I = 0

for i in range(n):

I += f(a + i*h + 0.5*h)

return h*I

We now want to read a, b, and n from the command line as well as the formula that
makes up the f .x/ function:

from math import *

import sys

f_formula = sys.argv[1]

a = eval(sys.argv[2])

b = eval(sys.argv[3])

if len(sys.argv) >= 5:

n = int(sys.argv[4])

else:

n = 200

160 4 User Input and Error Handling

Note that we import everything from math and use evalwhen reading the input for
a and b as this will allow the user to provide values like 2*cos(pi/3).

The next step is to convert the f_formula for f .x/ into a Python function g(x):

code = """

def g(x):

return %s

""" % f_formula

exec(code)

Now we have an ordinary Python function g(x) that we can ask the integration
function to integrate:

I = midpoint_integration(g, a, b, n)

print ’Integral of %s on [%g, %g] with n=%d: %g’ % \

(f_formula, a, b, n, I)

The complete code is found in integrate.py. A sample run for
R �=2

0
sin.x/dx

goes like

Terminal

integrate.py "sin(x)" 0 pi/2
integral of sin(x) on [0, 1.5708] with n=200: 1

(The quotes in "sin(x)" are needed because of the parenthesis will otherwise
be interpreted by the shell.)

4.3.3 Turning String Expressions into Functions

The examples in the previous section indicate that it can be handy to ask the user for
a formula and turn that formula into a Python function. Since this operation is so
useful, we have made a special tool that hides the technicalities. The tool is named
StringFunction and works as follows:

>>> from scitools.StringFunction import StringFunction

>>> formula = ’exp(x)*sin(x)’

>>> f = StringFunction(formula) # turn formula into f(x) func.

The f object now behaves as an ordinary Python function of x:

>>> f(0)

0.0

>>> f(pi)

2.8338239229952166e-15

>>> f(log(1))

0.0

Expressions involving other independent variables than x are also possible. Here is
an example with the function g.t/ D Ae�at sin.!x/:

http://tinyurl.com/pwyasaa/input/integrate.py

4.4 Option-Value Pairs on the Command Line 161

g = StringFunction(’A*exp(-a*t)*sin(omega*x)’,

independent_variable=’t’,

A=1, a=0.1, omega=pi, x=0.5)

The first argument is the function formula, as before, but now we need to specify
the name of the independent variable (’x’ is default). The other parameters in
the function (A, a, !, and x) must be specified with values, and we use keyword
arguments, consistent with the names in the function formula, for this purpose. Any
of the parameters A, a, omega, and x can be changed later by calls like

g.set_parameters(omega=0.1)

g.set_parameters(omega=0.1, A=5, x=0)

Calling g(t) works as if g were a plain Python function of t, which also stores all
the parameters A, a, omega, and x, and their values. You can use pydoc to bring up
more documentation on the possibilities with StringFunction. Just run

pydoc scitools.StringFunction.StringFunction

A final important point is that StringFunction objects are as computationally
efficient as hand-written Python functions. (This property is quite remarkable, as
a string formula will in most other programming languages be much slower to eval-
uate than if the formula were hardcoded inside a plain function.)

4.4 Option-Value Pairs on the Command Line

The examples on using command-line arguments so far require the user of the pro-
gram to type all arguments in their right sequence, just as when calling a function
with positional arguments in the right order. It would be very convenient to assign
command-line arguments in the same way as we use keyword arguments. That is,
arguments are associated with a name, their sequence can be arbitrary, and only the
arguments where the default value is not appropriate need to be given. Such type of
command-line arguments may have –option value pairs, where option is some
name of the argument.

As usual, we shall use an example to illustrate how to work with –option
value pairs. Consider the physics formula for the location s.t/ of an object at
time t , given that the object started at s D s0 at t D 0 with a velocity v0, and
thereafter was subject to a constant acceleration a:

s.t/ D s0 C v0t C 1

2
at2 : (4.1)

This formula requires four input variables: s0, v0, a, and t . We can make a program
location.py that takes four options, –s0, –v0, –a, and –t, on the command line.
The program is typically run like this:

Terminal

location.py --t 3 --s0 1 --v0 1 --a 0.5

162 4 User Input and Error Handling

The sequence of –option value pairs is arbitrary. All options have a default value
such that one does not have to specify all options on the command line.

All input variables should have sensible default values such that we can leave out
the options for which the default value is suitable. For example, if s0 D 0, v0 D 0,
a D 1, and t D 1 by default, and we only want to change t , we can run

Terminal

location.py --t 3

4.4.1 Basic Usage of the Argparse Module

Python has a flexible and powerful module argparse for reading (parsing)
–option value pairs on the command line. Using argparse consists of three
steps. First, a parser object must be created:

import argparse

parser = argparse.ArgumentParser()

Second, we need to define the various command-line options,

parser.add_argument(’--v0’, ’--initial_velocity’, type=float,

default=0.0, help=’initial velocity’,

metavar=’v’)

parser.add_argument(’--s0’, ’--initial_position’, type=float,

default=0.0, help=’initial position’,

metavar=’s’)

parser.add_argument(’--a’, ’--acceleration’, type=float,

default=1., help=’acceleration’, metavar=’a’)

parser.add_argument(’--t’, ’--time’, type=float,

default=1.0, help=’time’, metavar=’t’)

The first arguments to parser.add_argument is the set of options that we want to
associate with an input parameter. Optional arguments are the type, a default value,
a help string, and a name for the value of the argument (metavar) in a usage string.
The argparse module will automatically allow an option -h or –help that prints
a usage string for all the registered options. By default, the type is str, the default
value is None, the help string is empty, and metavar is the option in upper case
without initial dashes.

Third, we must read the command line arguments and interpret them:

args = parser.parse_args()

Through the args object we can extract the values of the various registered param-
eters: args.v0, args.s0, args.a, and args.t. The name of the parameter is
determined by the first option to parser.add_argument, so writing

parser.add_argument(’--initial_velocity’, ’--v0’, type=float,

default=0.0, help=’initial velocity’)

4.4 Option-Value Pairs on the Command Line 163

will make the initial velocity value appear as args.initial_velocity. We can
add the dest keyword to explicitly specify the name where the value is stored:

parser.add_argument(’--initial_velocity’, ’--v0’, dest=’V0’,

type=float, default=0.0,

help=’initial velocity’)

Now, args.V0 will retrieve the value of the initial velocity. In case we do not
provide any default value, the value will be None.

Our example is completed either by evaluating s as

s = args.s0 + args.v0*t + 0.5*args.a*args.t**2

or by introducing new variables so that the formula aligns better with the mathe-
matical notation:

s0 = args.s0; v0 = args.v0; a = args.a; t = args.t

s = s0 + v0*t + 0.5*a*t**2

A complete program for the example above is found in the file location.py.
Try to run it with the -h option to see an automatically generated explanation of
legal command-line options.

4.4.2 Mathematical Expressions as Values

Values on the command line involving mathematical symbols and functions, say
–v0 ’pi/2’, pose a problem with the code example above. The argparsemodule
will in that case try to do float(’pi/2’)which does not work well since pi is an
undefined name. Changing type=float to type=eval is required to interpret the
expression pi/2, but even eval(’pi/2’) fails since pi is not defined inside the
argparsemodule. There are various remedies for this problem.

One can write a tailored function for converting a string value given on the com-
mand line to the desired object. For example,

def evalcmlarg(text):

return eval(text)

parser.add_argument(’--s0’, ’--initial_position’, type=evalcmlarg,

default=0.0, help=’initial position’)

The file location_v2.py demonstrates such explicit type conversion through
a user-provided conversion function. Note that eval is now taken in the program-
mer’s namespace where (hopefully) pi or other symbols are imported.

More sophisticated conversions are possible. Say s0 is specified in terms of
a function of some parameter p, like s0 D .1 � p2/. We could then use a string for
–s0 and the StringFunction tool from Sect. 4.3.3 to turn the string into a func-
tion:

http://tinyurl.com/pwyasaa/input/location.py
http://tinyurl.com/pwyasaa/input/location_v2.py

164 4 User Input and Error Handling

def toStringFunction4s0(text):

from scitools.std import StringFunction

return StringFunction(text, independent_variable=’p’)

parser.add_argument(’--s0’, ’--initial_position’,

type=toStringFunction4s0,

default=’0.0’, help=’initial position’)

Giving a command-line argument –s0 ’exp(-1.5) + 10(1-p**2) results in
args.s0 being a StringFunction object, which we must evaluate for a p value:

s0 = args.s0

p = 0.05

...

s = s0(p) + v0*t + 0.5*a*t**2

The file location_v3.py contains the complete code for this example.
Another alternative is to perform the correct conversion of values in our own

code after the parser object has read the values. To this end, we treat argu-
ment types as strings in the parser.add_argument calls, meaning that we replace
type=float by set type=str (which is also the default choice of type). Recall
that this approach requires specification of default values as strings too, say ’0’:

parser.add_argument(’--s0’, ’--initial_position’, type=str,

default=’0’, help=’initial position’)

...

from math import *

args.v0 = eval(args.v0)

or

v0 = eval(args.v0)

s0 = StringFunction(args.s0, independent_variable=’p’)

p = 0.5

...

s = s0(p) + v0*t + 0.5*a*t**2

Such code is found in the file location_v4.py. You can try out that program with
the command-line arguments –s0 ’pi/2 + sqrt(p)’ –v0 pi/4’.

The final alternative is to write an Action class to handle the conversion from
string to the right type. This is the preferred way to perform conversions and well
described in the argparse documentation. We shall exemplify it here, but the
technicalities involved require understanding of classes (Chap. 7) and inheritance
(Chap. 9). For the conversion from string to any object via eval we write

import argparse

from math import *

class ActionEval(argparse.Action):

def __call__(self, parser, namespace, values,

option_string=None):

setattr(namespace, self.dest, eval(values))

http://tinyurl.com/pwyasaa/input/location_v3.py
http://tinyurl.com/pwyasaa/input/location_v4.py

4.5 Reading Data from File 165

The command-line arguments supposed to be run through eval must then have an
action parameter:

parser.add_argument(’--v0’, ’--initial_velocity’,

default=0.0, help=’initial velocity’,

action=ActionEval)

From string to function via StringFunction for the –s0 argument we write

from scitools.std import StringFunction

class ActionStringFunction4s0(argparse.Action):

def __call__(self, parser, namespace, values,

option_string=None):

setattr(namespace, self.dest,

StringFunction(values, independent_variable=’p’))

A complete code appears in the file location_v5.py.

4.5 Reading Data from File

Getting input data into a program from the command line, or from questions and
answers in the terminal window, works for small amounts of data. Otherwise, input
data must be available in files. Anyone with some computer experience is used to
save and load data files in programs. The task now is to understand how Python
programs can read and write files. The basic recipes are quite simple and illustrated
through examples.

Suppose we have recorded somemeasurement data in the file src/input/data.
txt2. The goal of our first example of reading files is to read the measurement val-
ues in data.txt, find the average value, and print it out in the terminal window.

Before trying to let a program read a file, we must know the file format, i.e.,
what the contents of the file looks like, because the structure of the text in the file
greatly influences the set of statements needed to read the file. We therefore start
with viewing the contents of the file data.txt. To this end, load the file into a text
editor or viewer (one can use emacs, vim, more, or less on Unix andMac, while on
Windows, WordPad is appropriate, or the type command in a DOS or PowerShell
window, and even Word processors such as LibreOffice or Microsoft Word can also
be used on Windows). What we see is a column with numbers:

21.8

18.1

19

23

26

17.8

2 http://tinyurl.com/pwyasaa/input/data.txt

http://tinyurl.com/pwyasaa/input/location_v5.py
http://tinyurl.com/pwyasaa/input/data.txt
http://tinyurl.com/pwyasaa/input/data.txt

166 4 User Input and Error Handling

Our task is to read this column of numbers into a list in the program and compute
the average of the list items.

4.5.1 Reading a File Line by Line

To read a file, we first need to open the file. This action creates a file object, here
stored in the variable infile:

infile = open(’data.txt’, ’r’)

The second argument to the open function, the string ’r’, tells that we want to
open the file for reading. We shall later see that a file can be opened for writing
instead, by providing ’w’ as the second argument. After the file is read, one should
close the file object with infile.close().

The basic technique for reading the file line by line applies a for loop like this:

for line in infile:

do something with line

The line variable is a string holding the current line in the file. The for loop over
lines in a file has the same syntax as when we go through a list. Just think of the
file object infile as a collection of elements, here lines in a file, and the for loop
visits these elements in sequence such that the line variable refers to one line at
a time. If something seemingly goes wrong in such a loop over lines in a file, it is
useful to do a print line inside the loop.

Instead of reading one line at a time, we can load all lines into a list of strings
(lines) by

lines = infile.readlines()

This statement is equivalent to

lines = []

for line in infile:

lines.append(line)

or the list comprehension:

lines = [line for line in infile]

In the present example, we load the file into the list lines. The next task is to
compute the average of the numbers in the file. Trying a straightforward sum of all
numbers on all lines,

mean = 0

for number in lines:

mean = mean + number

mean = mean/len(lines)

4.5 Reading Data from File 167

gives an error message:

TypeError: unsupported operand type(s) for +: ’int’ and ’str’

The reason is that lines holds each line (number) as a string, not a float or int
that we can add to other numbers. A fix is to convert each line to a float:

mean = 0

for line in lines:

number = float(line)

mean = mean + number

mean = mean/len(lines)

This code snippet works fine. The complete code can be found in the file mean1.py.
Summing up a list of numbers is often done in numerical programs, so Python

has a special function sum for performing this task. However, sum must in the
present case operate on a list of floats, not strings. We can use a list comprehension
to turn all elements in lines into corresponding float objects:

mean = sum([float(line) for line in lines])/len(lines)

An alternative implementation is to load the lines into a list of float objects di-
rectly. Using this strategy, the complete program (found in file mean2.py) takes the
form

infile = open(’data.txt’, ’r’)

numbers = [float(line) for line in infile.readlines()]

infile.close()

mean = sum(numbers)/len(numbers)

print mean

4.5.2 AlternativeWays of Reading a File

A newcomer to programming might find it confusing to see that one problem is
solved by many alternative sets of statements, but this is the very nature of program-
ming. A clever programmer will judge several alternative solutions to a program-
ming task and choose one that is either particularly compact, easy to understand,
and/or easy to extend later. We therefore present more examples on how to read the
data.txt file and compute with the data.

The modern with statement Modern Python code applies the with statement to
deal with files:

with open(’data.txt’, ’r’) as infile:

for line in infile:

process line

http://tinyurl.com/pwyasaa/input/mean1.py
http://tinyurl.com/pwyasaa/input/mean2.py

168 4 User Input and Error Handling

This snippet is equivalent to

infile = open(’data.txt’, ’r’)

for line in infile:

process line

infile.close()

Note that there is no need to close the file when using the with statement. The
advantage of the with construction is shorter code and better handling of errors if
something goes wrong with opening or working with the file. A downside is that
the syntax differs from the very classical open-close pattern that one finds in most
other programming languages. Remembering to close a file is key in programming,
and to train that task, we mostly apply the open-close construction in this book.

The old while construction The call infile.readline() returns a string con-
taining the text at the current line. A new infile.readline()will read the next
line. When infile.readline() returns an empty string, the end of the file is
reached and we must stop further reading. The following while loop reads the file
line by line using infile.readline():

while True:

line = infile.readline()

if not line:

break

process line

This is perhaps a somewhat strange loop, but it is a well-established way of
reading a file in Python, especially in older code. The shown while loop runs
forever since the condition is always True. However, inside the loop we test if
line is False, and it is False when we reach the end of the file, because line
then becomes an empty string, which in Python evaluates to False. When line is
False, the break statement breaks the loop and makes the program flow jump to
the first statement after the while block.

Computing the average of the numbers in the data.txt file can now be done in
yet another way:

infile = open(’data.txt’, ’r’)

mean = 0

n = 0

while True:

line = infile.readline()

if not line:

break

mean += float(line)

n += 1

mean = mean/float(n)

Reading a file into a string The call infile.read() reads the whole file and
returns the text as a string object. The following interactive session illustrates the
use and result of infile.read():

4.5 Reading Data from File 169

>>> infile = open(’data.txt’, ’r’)

>>> filestr = infile.read()

>>> filestr

’21.8\n18.1\n19\n23\n26\n17.8\n’

>>> print filestr

21.8

18.1

19

23

26

17.8

Note the difference between just writing filestr and writing print filestr.
The former dumps the string with newlines as backslash n characters, while the
latter is a pretty print where the string is written out without quotes and with the
newline characters as visible line shifts.

Having the numbers inside a string instead of inside a file does not look like
a major step forward. However, string objects have many useful functions for ex-
tracting information. A very useful feature is split: filestr.split() will split
the string into words (separated by blanks or any other sequence of characters you
have defined). The “words” in this file are the numbers:

>>> words = filestr.split()

>>> words

[’21.8’, ’18.1’, ’19’, ’23’, ’26’, ’17.8’]

>>> numbers = [float(w) for w in words]

>>> mean = sum(numbers)/len(numbers)

>>> print mean

20.95

A more compact program looks as follows (mean3.py):

infile = open(’data.txt’, ’r’)

numbers = [float(w) for w in infile.read().split()]

mean = sum(numbers)/len(numbers)

The next section tells you more about splitting strings.

4.5.3 Reading aMixture of Text and Numbers

The data.txt file has a very simple structure since it contains numbers only.
Many data files contain a mix of text and numbers. The file rainfall.dat from
www.worldclimate.com3 provides an example:

Average rainfall (in mm) in Rome: 1188 months between 1782 and 1970

Jan 81.2

Feb 63.2

Mar 70.3

3 http://www.worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1

http://tinyurl.com/pwyasaa/input/mean3.py
http://www.worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1
http://www.worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1

170 4 User Input and Error Handling

Apr 55.7

May 53.0

Jun 36.4

Jul 17.5

Aug 27.5

Sep 60.9

Oct 117.7

Nov 111.0

Dec 97.9

Year 792.9

How can we read the rainfall data in this file and store the information in lists
suitable for further analysis? The most straightforward solution is to read the file
line by line, and for each line split the line into words, store the first word (the
month) in one list and the second word (the average rainfall) in another list. The
elements in this latter list needs to be float objects if we want to compute with
them.

The complete code, wrapped in a function, may look like this (file rainfall1.
py):

def extract_data(filename):

infile = open(filename, ’r’)

infile.readline() # skip the first line

months = []

rainfall = []

for line in infile:

words = line.split()

words[0]: month, words[1]: rainfall

months.append(words[0])

rainfall.append(float(words[1]))

infile.close()

months = months[:-1] # Drop the "Year" entry

annual_avg = rainfall[-1] # Store the annual average

rainfall = rainfall[:-1] # Redefine to contain monthly data

return months, rainfall, annual_avg

months, values, avg = extract_data(’rainfall.dat’)

print ’The average rainfall for the months:’

for month, value in zip(months, values):

print month, value

print ’The average rainfall for the year:’, avg

Note that the first line in the file is just a comment line and of no interest to us. We
therefore read this line by infile.readline() and do not store the content in any
object. The for loop over the lines in the file will then start from the next (second)
line.

We store all the data into 13 elements in the months and rainfall lists. There-
after, we manipulate these lists a bit since we want months to contain the name of
the 12 months only. The rainfall list should correspond to this month list. The
annual average is taken out of rainfall and stored in a separate variable. Recall
that the -1 index corresponds to the last element of a list, and the slice :-1 picks
out all elements from the start up to, but not including, the last element.

http://tinyurl.com/pwyasaa/input/rainfall1.py

4.6 Writing Data to File 171

We could, alternatively, have written a shorter code where the name of the
months and the rainfall numbers are stored in a nested list:

def extract_data(filename):

infile = open(filename, ’r’)

infile.readline() # skip the first line

data = [line.split() for line in infile]

annual_avg = data[-1][1]

data = [(m, float(r)) for m, r in data[:-1]]

infile.close()

return data, annual_avg

This is more advanced code, but understanding what is going on is a good test on
the understanding of nested lists indexing and list comprehensions. An executable
program is found in the file rainfall2.py.

Is it more to file reading? With the example code in this section, you have the very
basic tools for reading files with a simple structure: columns of text or numbers.
Many files used in scientific computations have such a format, but many files are
more complicated too. Then you need the techniques of string processing. This is
explained in detail in Chap. 6.

4.6 Writing Data to File

Writing data to file is easy. There is basically one function to pay attention to:
outfile.write(s), which writes a string s to a file handled by the file object
outfile. Unlike print, outfile.write(s)does not append a newline character
to the written string. It will therefore often be necessary to add a newline character,

outfile.write(s + ’\n’)

if the string s is meant to appear on a single line in the file and s does not already
contain a trailing newline character. File writing is then a matter of constructing
strings containing the text we want to have in the file and for each such string call
outfile.write.

Writing to a file demands the file object f to be opened for writing:

write to new file, or overwrite file:

outfile = open(filename, ’w’)

append to the end of an existing file:

outfile = open(filename, ’a’)

4.6.1 Example: Writing a Table to File

Problem As a worked example of file writing, we shall write out a nested list with
tabular data to file. A sample list may look as

http://tinyurl.com/pwyasaa/input/rainfall2.py

172 4 User Input and Error Handling

[[0.75, 0.29619813, -0.29619813, -0.75],

[0.29619813, 0.11697778, -0.11697778, -0.29619813],

[-0.29619813, -0.11697778, 0.11697778, 0.29619813],

[-0.75, -0.29619813, 0.29619813, 0.75]]

Solution We iterate through the rows (first index) in the list, and for each row, we
iterate through the column values (second index) and write each value to the file. At
the end of each row, we must insert a newline character in the file to get a linebreak.
The code resides in the file write1.py:

data = [[0.75, 0.29619813, -0.29619813, -0.75],

[0.29619813, 0.11697778, -0.11697778, -0.29619813],

[-0.29619813, -0.11697778, 0.11697778, 0.29619813],

[-0.75, -0.29619813, 0.29619813, 0.75]]

outfile = open(’tmp_table.dat’, ’w’)

for row in data:

for column in row:

outfile.write(’%14.8f’ % column)

outfile.write(’\n’)

outfile.close()

The resulting data file becomes

0.75000000 0.29619813 -0.29619813 -0.75000000

0.29619813 0.11697778 -0.11697778 -0.29619813

-0.29619813 -0.11697778 0.11697778 0.29619813

-0.75000000 -0.29619813 0.29619813 0.75000000

An extension of this program consists in adding column and row headings:

column 1 column 2 column 3 column 4

row 1 0.75000000 0.29619813 -0.29619813 -0.75000000

row 2 0.29619813 0.11697778 -0.11697778 -0.29619813

row 3 -0.29619813 -0.11697778 0.11697778 0.29619813

row 4 -0.75000000 -0.29619813 0.29619813 0.75000000

To obtain this end result, we need to the add some statements to the program
write1.py. For the column headings we must know the number of columns, i.e.,
the length of the rows, and loop from 1 to this length:

ncolumns = len(data[0])

outfile.write(’ ’)

for i in range(1, ncolumns+1):

outfile.write(’%10s ’ % (’column %2d’ % i))

outfile.write(’\n’)

Note the use of a nested printf construction: the text we want to insert is itself
a printf string. We could also have written the text as ’column ’ + str(i), but
then the length of the resulting string would depend on the number of digits in

http://tinyurl.com/pwyasaa/input/write1.py

4.6 Writing Data to File 173

i. It is recommended to always use printf constructions for a tabular output format,
because this gives automatic padding of blanks so that the width of the output strings
remains the same. The tuning of the widths is commonly done in a trial-and-error
process.

To add the row headings, we need a counter over the row numbers:

row_counter = 1

for row in data:

outfile.write(’row %2d’ % row_counter)

for column in row:

outfile.write(’%14.8f’ % column)

outfile.write(’\n’)

row_counter += 1

The complete code is found in the file write2.py. We could, alternatively, iterate
over the indices in the list:

for i in range(len(data)):

outfile.write(’row %2d’ % (i+1))

for j in range(len(data[i])):

outfile.write(’%14.8f’ % data[i][j])

outfile.write(’\n’)

4.6.2 Standard Input and Output as File Objects

Reading user input from the keyboard applies the function raw_input as explained
in Sect. 4.1. The keyboard is a medium that the computer in fact treats as a file,
referred to as standard input.

The print command prints text in the terminal window. This medium is also
viewed as a file from the computer’s point of view and called standard output.
All general-purpose programming languages allow reading from standard input
and writing to standard output. This reading and writing can be done with two
types of tools, either file-like objects or special tools like raw_input and print in
Python. We will here describe the file-line objects: sys.stdin for standard input
and sys.stdout for standard output. These objects behave as file objects, except
that they do not need to be opened or closed. The statement

s = raw_input(’Give s:’)

is equivalent to

print ’Give s: ’,

s = sys.stdin.readline()

Recall that the trailing comma in the print statement avoids the newline that print
by default adds to the output string. Similarly,

s = eval(raw_input(’Give s:’))

http://tinyurl.com/pwyasaa/input/write2.py

174 4 User Input and Error Handling

is equivalent to

print ’Give s: ’,

s = eval(sys.stdin.readline())

For output to the terminal window, the statement

print s

is equivalent to

sys.stdout.write(s + ’\n’)

Why it is handy to have access to standard input and output as file objects can be
illustrated by an example. Suppose you have a function that reads data from a file
object infile and writes data to a file object outfile. A sample function may
take the form

def x2f(infile, outfile, f):

for line in infile:

x = float(line)

y = f(x)

outfile.write(’%g\n’ % y)

This function works with all types of files, including web pages as infile (see
Sect. 6.3). With sys.stdin as infile and/or sys.stdout as outfile, the
x2f function also works with standard input and/or standard output. With-
out sys.stdin and sys.stdout, we would need different code, employing
raw_input and print, to deal with standard input and output. Now we can
write a single function that deals with all file media in a unified way.

There is also something called standard error. Usually this is the terminal win-
dow, just as standard output, but programs can distinguish between writing ordinary
output to standard output and error messages to standard error, and these output
media can be redirected to, e.g., files such that one can separate error messages
from ordinary output. In Python, standard error is the file-like object sys.stderr.
A typical application of sys.stderr is to report errors:

if x < 0:

sys.stderr.write(’Illegal value of x’); sys.exit(1)

This message to sys.stderr is an alternative to print or raising an exception.

Redirecting standard input, output, and error Standard output from a program
prog can be redirected to a file output instead of the screen, by using the greater
than sign:

Terminal

Terminal> prog > output

4.6 Writing Data to File 175

Here, prog can be any program, including a Python program run as python
myprog.py. Similarly, output to the medium called standard error can be redi-
rected by

Terminal

Terminal> prog &> output

For example, error messages are normally written to standard error, which is exem-
plified in this little terminal session on a Unix machine:

Terminal

Terminal> ls bla-bla1 bla-bla2
ls: cannot access bla-bla1: No such file or directory
ls: cannot access bla-bla2: No such file or directory
Terminal> ls bla-bla1 bla-bla2 &> errors
Terminal> cat errors # print the file errors
ls: cannot access bla-bla1: No such file or directory
ls: cannot access bla-bla2: No such file or directory

When the program reads from standard input (the keyboard), we can equally well
redirect standard input from a file, say with name input, such that the program
reads from this file rather than from the keyboard:

Terminal

Terminal> prog < input

Combinations are also possible:

Terminal

Terminal> prog < input > output

Note The redirection of standard output, input, and error does not work for Python
programs executed with the run command inside IPython, only when executed di-
rectly in the operating system in a terminal window, or with the same command
prefixed with an exclamation mark in IPython.

Inside a Python program we can also let standard input, output, and error work
with ordinary files instead. Here is the technique:

sys_stdout_orig = sys.stdout

sys.stdout = open(’output’, ’w’)

sys_stdin_orig = sys.stdin

sys.stdin = open(’input’, ’r’)

Now, any print statement will write to the output file, and any raw_input call
will read from the input file. (Without storing the original sys.stdout and
sys.stdin objects in new variables, these objects would get lost in the redefini-
tion above and we would never be able to reach the common standard input and
output in the program.)

176 4 User Input and Error Handling

4.6.3 What is a File, Really?

This section is not mandatory for understanding the rest of the book. Nevertheless,
the information here is fundamental for understanding what files are about.

A file is simply a sequence of characters. In addition to the sequence of charac-
ters, a file has some data associated with it, typically the name of the file, its location
on the disk, and the file size. These data are stored somewhere by the operating sys-
tem. Without this extra information beyond the pure file contents as a sequence of
characters, the operating system cannot find a file with a given name on the disk.

Each character in the file is represented as a byte, consisting of eight bits. Each
bit is either 0 or 1. The zeros and ones in a byte can be combined in 28 D 256

ways. This means that there are 256 different types of characters. Some of these
characters can be recognized from the keyboard, but there are also characters that
do not have a familiar symbol. Such characters looks cryptic when printed.

Pure text files To see that a file is really just a sequence of characters, invoke an
editor for plain text, typically the editor you use to write Python programs. Write the
four characters ABCD into the editor, do not press the Return key, and save the text
to a file test1.txt. Use your favorite tool for file and folder overview and move
to the folder containing the test1.txt file. This tool may be Windows Explorer,
My Computer, or a DOS window on Windows; a terminal window, Konqueror, or
Nautilus on Linux; or a terminal window or Finder onMac. If you choose a terminal
window, use the cd (change directory) command to move to the proper folder and
write dir (Windows) or ls -l (Linux/Mac) to list the files and their sizes. In
a graphical program like Windows Explorer, Konqueror, Nautilus, or Finder, select
a view that shows the size of each file (choose view as details in Windows Explorer,
View as List in Nautilus, the list view icon in Finder, or you just point at a file icon
in Konqueror and watch the pop-up text). You will see that the test1.txt file has
a size of 4 bytes (if you use ls -l, the size measured in bytes is found in column
5, right before the date). The 4 bytes are exactly the 4 characters ABCD in the file.
Physically, the file is just a sequence of 4 bytes on your hard disk.

Go back to the editor again and add a newline by pressing the Return key. Save
this new version of the file as test2.txt. When you now check the size of the
file it has grown to five bytes. The reason is that we added a newline character
(symbolically known as backslash n: \n).

Instead of examining files via editors and folder viewers we may use Python
interactively:

>>> file1 = open(’test1.txt’, ’r’).read() # read file into string

>>> file1

’ABCD’

>>> len(file1) # length of string in bytes/characters

4

>>> file2 = open(’test2.txt’, ’r’).read()

>>> file2

’ABCD\n’

>>> len(file2)

5

4.6 Writing Data to File 177

Python has in fact a function that returns the size of a file directly:

>>> import os

>>> size = os.path.getsize(’test1.txt’)

>>> size

4

Word processor files Most computer users write text in a word processing pro-
gram, such as Microsoft Word or LibreOffice. Let us investigate what happens with
our four characters ABCD in such a program. Start the word processor, open a new
document, and type in the four characters ABCD only. Save the document as a .docx
file (Microsoft Word) or an .odt file (LibreOffice). Load this file into an editor for
pure text and look at the contents. You will see that there are numerous strange
characters that you did not write (!). This additional “text” contains information on
what type of document this is, the font you used, etc. The LibreOffice version of
this file has 8858 bytes and the Microsoft Word version contains over 26Kb! How-
ever, if you save the file as a pure text file, with extension .txt, the size is down to
8 bytes in LibreOffice and five in Microsoft Word.

Instead of loading the LibreOffice file into an editor we can again read the file
contents into a string in Python and examine this string:

>>> infile = open(’test3.odt’, ’r’) # open LibreOffice file

>>> s = infile.read()

>>> len(s) # file size

8858

>>> s

’PK\x03\x04\x14\x00\x00\x08\x00\x00sKWD^\xc62\x0c\’\x00...

\x00meta.xml<?xml version="1.0" encoding="UTF-8"?>\n<office:...

" xmlns:meta="urn:oasis:names:tc:opendocument:xmlns:meta:1.0"

Each backslash followed by x and a number is a code for a special character not
found on the keyboard (recall that there are 256 characters and only a subset is
associated with keyboard symbols). Although we show just a small portion of all
the characters in this file in the above output (otherwise, the output would have
occupied several pages in this book with thousands symbols like \x04...), we can
guarantee that you cannot find the pure sequence of characters ABCD. However, the
computer program that generated the file, LibreOffice in this example, can easily
interpret the meaning of all the characters in the file and translate the information
into nice, readable text on the screen where you can recognize the text ABCD.

Your are now in a position to look into Exercise 4.8 to see what happens if one
attempts to use LibreOffice to write Python programs.

Image files A digital image – captured by a digital camera or a mobile phone –
is a file. And since it is a file, the image is just a sequence of characters. Loading
some JPEG file into a pure text editor, reveals all the strange characters in there. On
the first line you will (normally) find some recognizable text in between the strange
characters. This text reflects the type of camera used to capture the image and the
date and time when the picture was taken. The next lines contain more information

178 4 User Input and Error Handling

about the image. Thereafter, the file contains a set of numbers representing the
image. The basic representation of an image is a set of m � n pixels, where each
pixel has a color represented as a combination of 256 values of red, green, and
blue, which can be stored as three bytes (resulting in 2563 color values). A 6-
megapixel camera will then need to store 3 � 6 � 106 D 18 megabytes for one
picture. The JPEG file contains only a couple of megabytes. The reason is that
JPEG is a compressed file format, produced by applying a smart technique that can
throw away pixel information in the original picture such that the human eye hardly
can detect the inferior quality.

A video is just a sequence of images, and therefore a video is also a stream of
bytes. If the change from one video frame (image) to the next is small, one can
use smart methods to compress the image information in time. Such compression
is particularly important for videos since the file sizes soon get too large for being
transferred over the Internet. A small video file occasionally has bad visual quality,
caused by too much compression.

Music files An MP3 file is much like a JPEG file: first, there is some information
about the music (artist, title, album, etc.), and then comes the music itself as a stream
of bytes. A typical MP3 file has a size of something like five million bytes or five
megabytes (5Mb). The exact size depends on the complexity of the music, the
length of the track, and the MP3 resolution. On a 16Gb MP3 player you can then
store roughly 16;000;000;000=5;000;000 D 3200 MP3 files. MP3 is, like JPEG,
a compressed format. The complete data of a song on a CD (the WAV file) contains
about ten times as many bytes. As for pictures, the idea is that one can throw
away a lot of bytes in an intelligent way, such that the human ear hardly detects the
difference between a compressed and uncompressed version of the music file.

PDF files Looking at a PDF file in a pure text editor shows that the file contains
some readable text mixed with some unreadable characters. It is not possible for
a human to look at the stream of bytes and deduce the text in the document (well,
from the assumption that there are always some strange people doing strange things,
there might be somebody out there who, with a lot of training, can interpret the pure
PDF code with the eyes). A PDF file reader can easily interpret the contents of the
file and display the text in a human-readable form on the screen.

Remarks We have repeated many times that a file is just a stream of bytes. A hu-
man can interpret (read) the stream of bytes if it makes sense in a human language
– or a computer language (provided the human is a programmer). When the series
of bytes does not make sense to any human, a computer program must be used to
interpret the sequence of characters.

Think of a report. When you write the report as pure text in a text editor, the
resulting file contains just the characters you typed in from the keyboard. On the
other hand, if you applied a word processor like Microsoft Word or LibreOffice,
the report file contains a large number of extra bytes describing properties of the
formatting of the text. This stream of extra bytes does not make sense to a human,
and a computer program is required to interpret the file content and display it in
a form that a human can understand. Behind the sequence of bytes in the file there

4.7 Handling Errors 179

are strict rules telling what the series of bytes means. These rules reflect the file
format. When the rules or file format is publicly documented, a programmer can
use this documentation to make her own program for interpreting the file contents
(however, interpreting such files is much more complicated than our examples on
reading human-readable files in this book). It happens, though, that secret file for-
mats are used, which require certain programs from certain companies to interpret
the files.

4.7 Handling Errors

Suppose we forget to provide a command-line argument to the c2f_cml.py pro-
gram from Sect. 4.2.1:

Terminal

c2f_cml.py
Traceback (most recent call last):

File "c2f_cml.py", line 2, in ?
C = float(sys.argv[1])

IndexError: list index out of range

Python aborts the program and shows an error message containing the line where
the error occurred, the type of the error (IndexError), and a quick explanation of
what the error is. From this information we deduce that the index 1 is out of range.
Because there are no command-line arguments in this case, sys.argv has only one
element, namely the program name. The only valid index is then 0.

For an experienced Python programmer this error message will normally be clear
enough to indicate what is wrong. For others it would be very helpful if wrong usage
could be detected by our program and a description of correct operation could be
printed. The question is how to detect the error inside the program.

The problem in our sample execution is that sys.argv does not contain two
elements (the program name, as always, plus one command-line argument). We can
therefore test on the length of sys.argv to detect wrong usage: if len(sys.argv)
is less than 2, the user failed to provide information on the C value. The new version
of the program, c2f_cml_if.py, starts with this if test:

if len(sys.argv) < 2:

print ’You failed to provide Celsius degrees as input ’\

’on the command line!’

sys.exit(1) # abort because of error

F = 9.0*C/5 + 32

print ’%gC is %.1fF’ % (C, F)

We use the sys.exit function to abort the program. Any argument different from
zero signifies that the program was aborted due to an error, but the precise value of
the argument does not matter so here we simply choose it to be 1. If no errors are
found, but we still want to abort the program, sys.exit(0) is used.

180 4 User Input and Error Handling

A more modern and flexible way of handling potential errors in a program is
to try to execute some statements, and if something goes wrong, the program can
detect this and jump to a set of statements that handle the erroneous situation as
desired. The relevant program construction reads

try:

<statements>

except:

<statements>

If something goes wrong when executing the statements in the try block, Python
raises what is known as an exception. The execution jumps directly to the except
block whose statements can provide a remedy for the error. The next section ex-
plains the try-except construction in more detail through examples.

4.7.1 Exception Handling

To clarify the idea of exception handling, let us use a try-except block to han-
dle the potential problem arising when our Celsius-Fahrenheit conversion program
lacks a command-line argument:

import sys

try:

C = float(sys.argv[1])

except:

print ’You failed to provide Celsius degrees as input ’\

’on the command line!’

sys.exit(1) # abort

F = 9.0*C/5 + 32

print ’%gC is %.1fF’ % (C, F)

The program is stored in the file c2f_cml_except1.py. If the command-line ar-
gument is missing, the indexing sys.argv[1], which has an invalid index 1, raises
an exception. This means that the program jumps directly to the except block, im-
plying that float is not called, and C is not initialized with a value. In the except
block, the programmer can retrieve information about the exception and perform
statements to recover from the error. In our example, we know what the error can
be, and therefore we just print a message and abort the program.

Suppose the user provides a command-line argument. Now, the try block is
executed successfully, and the program neglects the except block and continues
with the Fahrenheit conversion. We can try out the last program in two cases:

Terminal

c2f_cml_except1.py
You failed to provide Celsius degrees as input on the command line!

c2f_cml_except1.py 21
21C is 69.8F

http://tinyurl.com/pwyasaa/input/c2f_cml_except1.py

4.7 Handling Errors 181

In the first case, the illegal index in sys.argv[1] causes an exception to be raised,
and we perform the steps in the except block. In the second case, the try block
executes successfully, so we jump over the except block and continue with the
computations and the printout of results.

For a user of the program, it does not matter if the programmer applies an if
test or exception handling to recover from a missing command-line argument. Nev-
ertheless, exception handling is considered a better programming solution because
it allows more advanced ways to abort or continue the execution. Therefore, we
adopt exception handling as our standard way of dealing with errors in the rest of
this book.

Testing for a specific exception Consider the assignment

C = float(sys.argv[1])

There are two typical errors associated with this statement: i) sys.argv[1] is ille-
gal indexing because no command-line arguments are provided, and ii) the content
in the string sys.argv[1] is not a pure number that can be converted to a float
object. Python detects both these errors and raises an IndexError exception in the
first case and a ValueError in the second. In the program above, we jump to the
except block and issue the same message regardless of what went wrong in the
try block. For example, when we indeed provide a command-line argument, but
write it on an illegal form (21C), the program jumps to the except block and prints
a misleading message:

Terminal

c2f_cml_except1.py 21C
You failed to provide Celsius degrees as input on the command line!

The solution to this problem is to branch into different except blocks de-
pending on what type of exception that was raised in the try block (program
c2f_cml_except2.py):

import sys

try:

C = float(sys.argv[1])

except IndexError:

print ’Celsius degrees must be supplied on the command line’

sys.exit(1) # abort execution

except ValueError:

print ’Celsius degrees must be a pure number, ’\

’not "%s"’ % sys.argv[1]

sys.exit(1)

F = 9.0*C/5 + 32

print ’%gC is %.1fF’ % (C, F)

Now, if we fail to provide a command-line argument, an IndexError occurs
and we tell the user to write the C value on the command line. On the other hand, if

http://tinyurl.com/pwyasaa/input/c2f_cml_except2.py

182 4 User Input and Error Handling

the float conversion fails, because the command-line argument has wrong syntax,
a ValueError exception is raised and we branch into the second except block and
explain that the form of the given number is wrong:

Terminal

c2f_cml_except1.py 21C
Celsius degrees must be a pure number, not "21C"

Examples on exception types List indices out of range lead to IndexError ex-
ceptions:

>>> data = [1.0/i for i in range(1,10)]

>>> data[9]

...

IndexError: list index out of range

Some programming languages (Fortran, C, C++, and Perl are examples) allow list
indices outside the legal index values, and such unnoticed errors can be hard to find.
Python always stops a program when an invalid index is encountered, unless you
handle the exception explicitly as a programmer.

Converting a string to float is unsuccessful and gives a ValueError if the
string is not a pure integer or real number:

>>> C = float(’21 C’)

...

ValueError: invalid literal for float(): 21 C

Trying to use a variable that is not initialized gives a NameError exception:

>>> print a

...

NameError: name ’a’ is not defined

Division by zero raises a ZeroDivisionError exception:

>>> 3.0/0

...

ZeroDivisionError: float division

Writing a Python keyword illegally or performing a Python grammar error leads to
a SyntaxError exception:

>>> forr d in data:

...

forr d in data:

^

SyntaxError: invalid syntax

What if we try to multiply a string by a number?

4.7 Handling Errors 183

>>> ’a string’*3.14

...

TypeError: can’t multiply sequence by non-int of type ’float’

The TypeError exception is raised because the object types involved in the multi-
plication are wrong (str and float).

Digression It might come as a surprise, but multiplication of a string and a number
is legal if the number is an integer. The multiplication means that the string should
be repeated the specified number of times. The same rule also applies to lists:

>>> ’--’*10 # ten double dashes = 20 dashes

’--------------------’

>>> n = 4

>>> [1, 2, 3]*n

[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> [0]*n

[0, 0, 0, 0]

The latter construction is handy when we want to create a list of n elements and
later assign specific values to each element in a for loop.

4.7.2 Raising Exceptions

When an error occurs in your program, you may either print a message and use
sys.exit(1) to abort the program, or you may raise an exception. The latter task
is easy. You just write raise E(message), where E can be a known exception type
in Python and message is a string explaining what is wrong. Most often E means
ValueError if the value of some variable is illegal, or TypeError if the type of
a variable is wrong. You can also define your own exception types. An exception
can be raised from any location in a program.

Example In the program c2f_cml_except2.py from Sect. 4.7.1 we show how
we can test for different exceptions and abort the program. Sometimes we see that
an exception may happen, but if it happens, we want a more precise error message
to help the user. This can be done by raising a new exception in an except block
and provide the desired exception type and message.

Another application of raising exceptions with tailored error messages arises
when input data are invalid. The code below illustrates how to raise exceptions in
various cases.

We collect the reading of C and handling of errors a separate function:

def read_C():

try:

C = float(sys.argv[1])

except IndexError:

raise IndexError\

(’Celsius degrees must be supplied on the command line’)

184 4 User Input and Error Handling

except ValueError:

raise ValueError\

(’Celsius degrees must be a pure number, ’\

’not "%s"’ % sys.argv[1])

C is read correctly as a number, but can have wrong value:

if C < -273.15:

raise ValueError(’C=%g is a non-physical value!’ % C)

return C

There are two ways of using the read_C function. The simplest is to call the func-
tion,

C = read_C()

Wrong input will now lead to a raw dump of exceptions, e.g.,

Terminal

c2f_cml_v5.py
Traceback (most recent call last):

File "c2f_cml4.py", line 5, in ?
raise IndexError\

IndexError: Celsius degrees must be supplied on the command line

New users of this program may become uncertain when getting raw output from
exceptions, because words like Traceback, raise, and IndexError do not make
much sense unless you have some experience with Python. A more user-friendly
output can be obtained by calling the read_C function inside a try-except block,
check for any exception (or better: check for IndexError or ValueError), and
write out the exception message in a more nicely formatted form. In this way, the
programmer takes complete control of how the program behaves when errors are
encountered:

try:

C = read_C()

except Exception as e:

print e # exception message

sys.exit(1) # terminate execution

Exception is the parent name of all exceptions, and e is an exception object.
Nice printout of the exception message follows from a straight print e. Instead of
Exception we can write (ValueError, IndexError) to test more specifically
for two exception types we can expect from the read_C function:

try:

C = read_C()

except (ValueError, IndexError) as e:

print e # exception message

sys.exit(1) # terminate execution

4.8 A Glimpse of Graphical User Interfaces 185

After the try-except block above, we can continue with computing F = 9*C/5
+ 32 and print out F. The complete program is found in the file c2f_cml.py. We
may now test the program’s behavior when the input is wrong and right:

Terminal

c2f_cml.py
Celsius degrees must be supplied on the command line

c2f_cml.py 21C
Celsius degrees must be a pure number, not "21C"

c2f_cml.py -500
C=-500 is a non-physical value!

c2f_cml.py 21
21C is 69.8F

This program deals with wrong input, writes an informative message, and termi-
nates the execution without annoying behavior.

Scattered if tests with sys.exit calls are considered a bad programming style
compared to the use of nested exception handling as illustrated above. You should
abort execution in the main program only, not inside functions. The reason is that
the functions can be re-used in other occasions where the error can be dealt with
differently. For instance, one may avoid abortion by using some suitable default
data.

The programming style illustrated above is considered the best way of dealing
with errors, so we suggest that you hereafter apply exceptions for handling potential
errors in the programs you make, simply because this is what experienced program-
mers expect from your codes.

4.8 A Glimpse of Graphical User Interfaces

Maybe you find it somewhat strange that the usage of the programs we have made
so far in this book – and the programs we will make in the rest of the book –
are less graphical and intuitive than the computer programs you are used to from
school or entertainment. Those programs are operated through some self-explaining
graphics, and most of the things you want to do involve pointing with the mouse,
clicking on graphical elements on the screen, and maybe filling in some text fields.
The programs in this book, on the other hand, are run from the command line in
a terminal window or inside IPython, and input is also given here in form of plain
text.

The reason why we do not equip the programs in this book with graphical inter-
faces for providing input, is that such graphics is both complicated and tedious to
write. If the aim is to solve problems from mathematics and science, we think it
is better to focus on this part rather than large amounts of code that merely offers
some “expected” graphical cosmetics for putting data into the program. Textual
input from the command line is also quicker to provide. Also remember that the
computational functionality of a program is obviously independent from the type of
user interface, textual or graphic.

http://tinyurl.com/pwyasaa/input/c2f_cml.py

186 4 User Input and Error Handling

Fig. 4.1 Screen dump of the graphical interface for a Celsius to Fahrenheit conversion program.
The user can type in the temperature in Celsius degrees, and when clicking on the is button, the
corresponding Fahrenheit value is displayed

As an illustration, we shall now show a Celsius to Fahrenheit conversion program
with a graphical user interface (often called a GUI). The GUI is shown in Fig. 4.1.
We encourage you to try out the graphical interface – the name of the program is
c2f_gui.py. The complete program text is listed below.

from Tkinter import *

root = Tk()

C_entry = Entry(root, width=4)

C_entry.pack(side=’left’)

Cunit_label = Label(root, text=’Celsius’)

Cunit_label.pack(side=’left’)

def compute():

C = float(C_entry.get())

F = (9./5)*C + 32

F_label.configure(text=’%g’ % F)

compute = Button(root, text=’ is ’, command=compute)

compute.pack(side=’left’, padx=4)

F_label = Label(root, width=4)

F_label.pack(side=’left’)

Funit_label = Label(root, text=’Fahrenheit’)

Funit_label.pack(side=’left’)

root.mainloop()

The goal of the forthcoming dissection of this program is to give a taste of how
graphical user interfaces are coded. The aim is not to equip you with knowledge on
how you can make such programs on your own.

A GUI is built of many small graphical elements, called widgets. The graphical
window generated by the program above and shown in Fig. 4.1 has five such wid-
gets. To the left there is an entrywidget where the user can write in text. To the right
of this entry widget is a label widget, which just displays some text, here “Celsius”.
Then we have a button widget, which when being clicked leads to computations in
the program. The result of these computations is displayed as text in a label widget
to the right of the button widget. Finally, to the right of this result text we have
another label widget displaying the text “Fahrenheit”. The program must construct
each widget and pack it correctly into the complete window. In the present case, all
widgets are packed from left to right.

The first statement in the program imports functionality from the GUI toolkit
Tkinter to construct widgets. First, we need to make a root widget that holds the
complete window with all the other widgets. This root widget is of type Tk. The

http://tinyurl.com/pwyasaa/input/c2f_gui.py

4.8 A Glimpse of Graphical User Interfaces 187

first entry widget is then made and referred to by a variable C_entry. This widget is
an object of type Entry, provided by the Tkintermodule. Widgets constructions
follow the syntax

variable_name = Widget_type(parent_widget, option1, option2, ...)

variable_name.pack(side=’left’)

When creating a widget, we must bind it to a parent widget, which is the graphical
element in which this new widget is to be packed. Our widgets in the present
program have the root widget as parent widget. Various widgets have different
types of options that we can set. For example, the Entry widget has a possibility
for setting the width of the text field, here width=4 means that the text field is 4
characters wide. The pack statement is important to remember – without it, the
widget remains invisible.

The other widgets are constructed in similar ways. The next fundamental feature
of our program is how computations are tied to the event of clicking the button is.
The Button widget has naturally a text, but more important, it binds the button to
a function compute through the command=compute option. This means that when
the user clicks the button is, the function compute is called. Inside the compute
function we first fetch the Celsius value from the C_entry widget, using this wid-
get’s get function, then we transform this string (everything typed in by the user
is interpreted as text and stored in strings) to a float before we compute the cor-
responding Fahrenheit value. Finally, we can update (configure) the text in the
Label widget F_label with a new text, namely the computed degrees in Fahren-
heit.

A program with a GUI behaves differently from the programs we construct in
this book. First, all the statements are executed from top to bottom, as in all our
other programs, but these statements just construct the GUI and define functions.
No computations are performed. Then the program enters a so-called event loop:
root.mainloop(). This is an infinite loop that “listens” to user events, such as
moving the mouse, clicking the mouse, typing characters on the keyboard, etc.
When an event is recorded, the program starts performing associated actions. In
the present case, the program waits for only one event: clicking the button is. As
soon as we click on the button, the compute function is called and the program
starts doing mathematical work. The GUI will appear on the screen until we de-
stroy the window by click on the X up in the corner of the window decoration.
More complicated GUIs will normally have a special Quit button to terminate the
event loop.

In all GUI programs, we must first create a hierarchy of widgets to build up all
elements of the user interface. Then the program enters an event loop and waits for
user events. Lots of such events are registered as actions in the program when cre-
ating the widgets, so when the user clicks on buttons, move the mouse into certain
areas, etc., functions in the program are called and “things happen”.

Many books explain how to make GUIs in Python programs, see for instance
[5, 7, 13, 16].

188 4 User Input and Error Handling

4.9 MakingModules

Sometimes you want to reuse a function from an old program in a new program.
The simplest way to do this is to copy and paste the old source code into the new
program. However, this is not good programming practice, because you then over
time end up with multiple identical versions of the same function. When you want
to improve the function or correct a bug, you need to remember to do the same
update in all files with a copy of the function, and in real life most programmers fail
to do so. You easily end up with a mess of different versions with different quality
of basically the same code. Therefore, a golden rule of programming is to have one
and only one version of a piece of code. All programs that want to use this piece
of code must access one and only one place where the source code is kept. This
principle is easy to implement if we create a module containing the code we want
to reuse later in different programs.

When reading this, you probably know how to use a ready-made module. For
example, if you want to compute the factorial kŠ D k.k � 1/.k � 2/ � � � 1, there is
a function factorial in Python’s mathmodule that can be help us out. The usage
goes with the math prefix,

import math

value = math.factorial(5)

or without,

from math import factorial

or: from math import *

value = factorial(5)

Now you shall learn how to make your own Python modules. There is hardly
anything to learn, because you just collect all the functions that constitute the mod-
ule in one file, say with name mymodule.py. This file is automatically a module,
with name mymodule, and you can import functions from this module in the stan-
dard way. Let us make everything clear in detail by looking at an example.

4.9.1 Example: Interest on Bank Deposits

The classical formula for the growth of money in a bank reads

A D A0

�
1 C p

360 � 100

�n

; (4.2)

where A0 is the initial amount of money, and A is the present amount after n days
with p percent annual interest rate. (The formula applies the convention that the
rate per day is computed as p=360, while n counts the actual number of days the
money is in the bank, see the Wikipedia entry Day count convention4 for explana-
tion. There is a handy Python module datetime for computing the number of days
between two dates.)

4 http://en.wikipedia.org/wiki/Day_count_convention

http://en.wikipedia.org/wiki/Day_count_convention
http://en.wikipedia.org/wiki/Day_count_convention

4.9 Making Modules 189

Equation (4.2) involves four parameters: A, A0, p, and n. We may solve for any
of these, given the other three:

A0 D A
�
1 C p

360 � 100

��n

; (4.3)

n D ln A
A0

ln
�
1 C p

360�100

� ; (4.4)

p D 360 � 100

 �
A

A0

�1=n

� 1

!

: (4.5)

Suppose we have implemented (4.2)–(4.5) in four functions:

from math import log as ln

def present_amount(A0, p, n):

return A0*(1 + p/(360.0*100))**n

def initial_amount(A, p, n):

return A*(1 + p/(360.0*100))**(-n)

def days(A0, A, p):

return ln(A/A0)/ln(1 + p/(360.0*100))

def annual_rate(A0, A, n):

return 360*100*((A/A0)**(1.0/n) - 1)

We want to make these functions available in a module, say with name
interest, so that we can import functions and compute with them in a program.
For example,

from interest import days

A0 = 1; A = 2; p = 5

n = days(A0, 2, p)

years = n/365.0

print ’Money has doubled after %.1f years’ % years

How to make the interestmodule is described next.

4.9.2 Collecting Functions in a Module File

To make a module of the four functions present_amount, initial_amount,
days, and annual_rate, we simply open an empty file in a text editor and copy
the program code for all the four functions over to this file. This file is then auto-
matically a Python module provided we save the file under any valid filename. The
extension must be .py, but the module name is only the base part of the filename.
In our case, the filename interest.py implies a module name interest. To use
the annual_rate function in another program we simply write, in that program

190 4 User Input and Error Handling

file,

from interest import annual_rate

or we can write

from interest import *

to import all four functions, or we can write

import interest

and access individual functions as interest.annual_rate and so forth.

4.9.3 Test Block

It is recommended to only have functions and not any statements outside functions
in a module. The reason is that the module file is executed from top to bottom
during the import. With function definitions only in the module file, and no main
program, there will be no calculations or output from the import, just definitions of
functions. This is the desirable behavior. However, it is often convenient to have
test or demonstrations in the module file, and then there is need for a main program.
Python allows a very fortunate construction to let the file act both as a module with
function definitions only (and no main program) and as an ordinary program we
can run, with functions and a main program.

This two-fold “magic” is realized by putting the main program after an if test
of the form

if __name__ == ’__main__’:

<block of statements>

The __name__ variable is automatically defined in any module and equals the mod-
ule name if the module file is imported in another program, or __name__ equals the
string ’__main__’ if the module file is run as a program. This implies that the
<block of statements> part is executed if and only if we run the module file
as a program. We shall refer to <block of statements> as the test block of
a module.

Example on a test block in a minimalistic module A very simple example will
illustrate how this works. Consider a file mymod.py with the content

def add1(x):

return x + 1

if __name__ == ’__main__’:

print ’run as program’

import sys

print add1(float(sys.argv[1]))

4.9 Making Modules 191

We can import mymod as a module and make use of the add1 function:

>>> import mymod

>>> print mymod.add1(4)

5

During the import, the if test is false, and the only the function definition is exe-
cuted. However, if we run mymod.py as a program,

Terminal

mymod.py 5
run as program
6

the if test becomes true, and the print statements are executed.

Tip on easy creation of a module
If you have some functions and a main program in some program file, just move
the main program to the test block. Then the file can act as a module, giving
access to all the functions in other files, or the file can be executed from the
command line, in the same way as the original program.

A test block in the interest module Let us write a little main program for
demonstrating the interest module in a test block. We read p from the com-
mand line and write out how many years it takes to double an amount with that
interest rate:

if __name__ == ’__main__’:

import sys

p = float(sys.argv[1])

years = days(1, 2, p)/365.0

print ’With p=%.2f it takes %.1 years to double’ % (p, years)

Running the module file as a program gives this output:

Terminal

interest.py 2.45
With p=2.45 it takes 27.9 years to double

To test that the interest.py file also works as a module, invoke a Python shell
and try to import a function and compute with it:

>>> from interest import present_amount

>>> present_amount(2, 5, 730)

2.2133983053266699

We have hence demonstrated that the file interest.py works both as a program
and as a module.

192 4 User Input and Error Handling

Recommended practice in a test block
It is a good programming habit to let the test block do one or more of three
things:

� provide information on how the module or program is used,
� test if the module functions work properly,
� offer interaction with users such that the module file can be applied as a useful

program.

Instead of having a lot of statements in the test block, it is better to collect the
statements in separate functions, which then are called from the test block.

4.9.4 Verification of theModule Code

Functions that verify the implementation in a module should

� have names starting with test_,
� express the success or failure of a test through a boolean variable, say success,
� run assert success, msg to raise an AssertionErrorwith an optional mes-

sage msg in case the test fails.

Adopting this style makes it trivial to let the tools pytest or nose automatically run
through all our test_*() functions in all files in a folder tree. A very brief intro-
duction to test functions compatible with pytest and nose is provided in Sect. 3.4.2,
while Sect. H.9 contains a more thorough introduction to the pytest and nose testing
frameworks for beginners.

Test functions are used for unit testing. This means that we identify some units
of our software and write a dedicated test function for testing the behavior of each
unit. A unit in the present example can be the interestmodule, but we could also
think of the individual Python functions in interest as units. From a practical
point of view, the unit is often defined as what we find appropriate to verify in a test
function. For now it is convenient to test all functions in the interest.py file in
the same test function, so the module becomes the unit.

A proper test function for verifying the functionality of the interest module,
written in a way that is compatible with the pytest and nose testing frameworks,
looks as follows:

def test_all_functions():

Compatible values

A = 2.2133983053266699; A0 = 2.0; p = 5; n = 730

Given three of these, compute the remaining one

and compare with the correct value (in parenthesis)

A_computed = present_amount(A0, p, n)

A0_computed = initial_amount(A, p, n)

n_computed = days(A0, A, p)

p_computed = annual_rate(A0, A, n)

4.9 Making Modules 193

def float_eq(a, b, tolerance=1E-12):

"""Return True if a == b within the tolerance."""

return abs(a - b) < tolerance

success = float_eq(A_computed, A) and \

float_eq(A0_computed, A0) and \

float_eq(p_computed, p) and \

float_eq(n_computed, n)

msg = """Computations failed (correct answers in parenthesis):

A=%g (%g)

A0=%g (%.1f)

n=%d (%d)

p=%g (%.1f)""" % (A_computed, A, A0_computed, A0,

n_computed, n, p_computed, p)

assert success, msg

We may require a single command-line argument test to run the verification.
The test block can then be expressed as

if __name__ == ’__main__’:

if len(sys.argv) == 2 and sys.argv[1] == ’test’:

test_all_functions()

4.9.5 Getting Input Data

To make a useful program, we should allow setting three parameters on the com-
mand line and let the program compute the remaining parameter. For example,
running the program as

Terminal

interest.py A0=1 A=2 n=1095

will lead to a computation of p, in this case for seeing the size of the annual interest
rate if the amount is to be doubled after three years.

How can we achieve the desired functionality? Since variables are already intro-
duced and “initialized” on the command line, we could grab this text and execute
it as Python code, either as three different lines or with semicolon between each
assignment. This is easy:

init_code = ’’

for statement in sys.argv[1:]:

init_code += statement + ’\n’

exec(init_code)

(We remark that an experienced Python programmer would have created
init_code by ’\n’.join(sys.argv[1:]).) For the sample run above with
A0=1 A=2 n=1095 on the command line, init_code becomes the string

194 4 User Input and Error Handling

A0=1

A=2

n=1095

Note that one cannot have spaces around the equal signs on the command line as this
will break an assignment like A0 = 1 into three command-line arguments, which
will give rise to a SyntaxError in exec(init_code). To tell the user about such
errors, we execute init_code inside a try-except block:

try:

exec(init_code)

except SyntaxError as e:

print e

print init_code

sys.exit(1)

At this stage, our program has hopefully initialized three parameters in a suc-
cessful way, and it remains to detect the remaining parameter to be computed. The
following code does the work:

if ’A=’ not in init_code:

print ’A =’, present_amount(A0, p, n)

elif ’A0=’ not in init_code:

print ’A0 =’, initial_amount(A, p, n)

elif ’n=’ not in init_code:

print ’n =’, days(A0, A , p)

elif ’p=’ not in init_code:

print ’p =’, annual_rate(A0, A, n)

It may happen that the user of the program assigns value to a parameter with wrong
name or forget a parameter. In those cases we call one of our four functions with
uninitialized arguments, and Python raises an exception. Therefore, we should em-
bed the code above in a try-except block. An uninitialized variable will lead to
a NameError exception, while another frequent error is illegal values in the com-
putations, leading to a ValueError exception. It is also a good habit to collect
all the code related to computing the remaining, fourth parameter in a function for
separating this piece of code from other parts of the module file:

def compute_missing_parameter(init_code):

try:

exec(init_code)

except SyntaxError as e:

print e

print init_code

sys.exit(1)

Find missing parameter

try:

if ’A=’ not in init_code:

print ’A =’, present_amount(A0, p, n)

elif ’A0=’ not in init_code:

print ’A0 =’, initial_amount(A, p, n)

4.9 Making Modules 195

elif ’n=’ not in init_code:

print ’n =’, days(A0, A , p)

elif ’p=’ not in init_code:

print ’p =’, annual_rate(A0, A, n)

except NameError as e:

print e

sys.exit(1)

except ValueError:

print ’Illegal values in input:’, init_code

sys.exit(1)

If the user of the program fails to give any command-line arguments, we print
a usage statement. Otherwise, we run a verification if the first command-line argu-
ment is test, and else we run the missing parameter computation (i.e., the useful
main program):

_filename = sys.argv[0]

_usage = """

Usage: %s A=10 p=5 n=730

Program computes and prints the 4th parameter’

(A, A0, p, or n)""" % _filename

if __name__ == ’__main__’:

if len(sys.argv) == 1:

print _usage

elif len(sys.argv) == 2 and sys.argv[1] == ’test’:

test_all_functions()

else:

init_code = ’’

for statement in sys.argv[1:]:

init_code += statement + ’\n’

compute_missing_parameter(init_code)

Executing user input can be dangerous
Some purists would never demonstrate exec the way we do above. The reason
is that our program tries to execute whatever the user writes. Consider

Terminal

input.py ’import shutil; shutil.rmtree("/")’

This evil use of the program leads to an attempt to remove all files on the com-
puter system (the same as writing rm -rf / in the terminal window!). However,
for small private programs helping the programwriter out with mathematical cal-
culations, this potential dangerous misuse is not so much of a concern (the user
just does harm to his own computer anyway).

4.9.6 Doc Strings in Modules

It is also a good habit to include a doc string in the beginning of the module file.
This doc string explains the purpose and use of the module:

196 4 User Input and Error Handling

"""

Module for computing with interest rates.

Symbols: A is present amount, A0 is initial amount,

n counts days, and p is the interest rate per year.

Given three of these parameters, the fourth can be

computed as follows:

A = present_amount(A0, p, n)

A0 = initial_amount(A, p, n)

n = days(A0, A, p)

p = annual_rate(A0, A, n)

"""

You can run the pydoc program to see a documentation of the newmodule, contain-
ing the doc string above and a list of the functions in the module: just write pydoc
interest in a terminal window.

Now the reader is recommended to take a look at the actual file interest.py to
see all elements of a good module file at once: doc strings, a set of functions, a test
function, a function with the main program, a usage string, and a test block.

4.9.7 UsingModules

Let us further demonstrate how to use the interest.pymodule in programs. For
illustration purposes, we make a separate programfile, say with name doubling.py,
containing some computations:

from interest import days

How many days does it take to double an amount when the

interest rate is p=1,2,3,...14?

for p in range(1, 15):

years = days(1, 2, p)/365.0

print ’p=%d%% implies %.1f years to double the amount’ %\

(p, years)

What gets imported by various import statements? There are different ways to
import functions in a module, and let us explore these in an interactive session. The
function call dir() will list all names we have defined, including imported names
of variables and functions. Calling dir(m) will print the names defined inside
a module with name m. First we start an interactive shell and call dir()

>>> dir()

[’__builtins__’, ’__doc__’, ’__name__’, ’__package__’]

These variables are always defined. Running the IPython shell will introduce sev-
eral other standard variables too. Doing

http://tinyurl.com/pwyasaa/input/interest.py

4.9 Making Modules 197

>>> from interest import *

>>> dir()

[’__builtins__’, ’__doc__’, ’__name__’, ’__package__’,

’annual_rate’, ’compute_missing_parameter’, ’days’,

’initial_amount’, ’ln’, ’present_amount’, ’sys’,

’test_all_functions’]

shows that we get our four functions imported, along with ln and sys. The latter
two are needed in the interest module, but not necessarily in our new program
doubling.py.

The alternative import interest actually gives us access to more names in the
module, namely also all variables and functions that start with an underscore:

>>> import interest

>>> dir(interest)

[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,

’__package__’, ’_filename’, ’_usage’, ’annual_rate’,

’compute_missing_parameter’, ’days’, ’initial_amount’,

’ln’, ’present_amount’, ’sys’, ’test_all_functions’]

It is a habit to use an underscore for all variables that are not to be included in
a from interest import * statement. These variables can, however, be reached
through interest._filename and interest._usage in the present example.

It would be best that a statement from interest import * just imported the
four functions doing the computations of general interest in other programs. This
can be archived by deleting all unwanted names (among those without an initial
underscore) at the very end of the module:

del sys, ln, compute_missing_parameter, test_all_functions

Instead of deleting variables and using initial underscores in names, it is in gen-
eral better to specify the special variable __all__, which is used by Python to select
functions to be imported in from interest import * statements. Here we can
define __all__ to contain the four function of main interest:

__all__ = [’annual_rate’, ’days’, ’initial_amount’, ’present_amount’]

Now we get

>>> from interest import *

[’__builtins__’, ’__doc__’, ’__name__’, ’__package__’,

’annual_rate’, ’days’, ’initial_amount’, ’present_amount’]

How to make Python find a module file The doubling.py program works well
as long as it is located in the same folder as the interest.pymodule. However, if
we move doubling.py to another folder and run it, we get an error:

198 4 User Input and Error Handling

Terminal

doubling.py
Traceback (most recent call last):

File "doubling.py", line 1, in <module>
from interest import days

ImportError: No module named interest

Unless the module file resides in the same folder, we need to tell Python where
to find our module. Python looks for modules in the folders contained in the list
sys.path. A little program

import sys, pprint

pprint.pprint(sys.path)

prints out all these predefined module folders. You can now do one of two things:

1. Place the module file in one of the folders in sys.path.
2. Include the folder containing the module file in sys.path.

There are two ways of doing the latter task. Alternative 1 is to explicitly insert a new
folder name in sys.path in the program that uses the module:

modulefolder = ’../../pymodules’

sys.path.insert(0, modulefolder)

(In this sample path, the slashes are Unix specific. On Windows you must
use backslashes and a raw string. A better solution is to express the path as
os.path.join(os.pardir, os.pardir, ’mymodules’). This will work on
all platforms.)

Python searches the folders in the sequence they appear in the sys.path list so
by inserting the folder name as the first list element we ensure that our module is
found quickly, and in case there are other modules with the same name in other
folders in sys.path, the one in modulefolder gets imported.

Alternative 2 is to specify the folder name in the PYTHONPATH environment
variable. All folder names listed in PYTHONPATH are automatically included in
sys.path when a Python program starts. On Mac and Linux systems, environ-
ment variables like PYTHONPATH are set in the .bashrc file in the home folder,
typically as

export PYTHONPATH=$HOME/software/lib/pymodules:$PYTHONPATH

if §HOME/software/lib/pymodules is the folder containing Python modules. On
Windows, you launch Computer – Properties – Advanced System Settings – Envi-
ronment Variables, click under System Variable, write in PYTHONPATH as variable
name and the relevant folder(s) as value.

4.9 Making Modules 199

How to make Python run the module file The description above concerns im-
porting the module in a program located anywhere on the system. If we want to
run the module file as a program, anywhere on the system, the operating system
searches the PATH environment variable for the program name interst.py. It is
therefore necessary to update PATH with the folder where interest.py resides.

On Mac and Linux system this is done in .bashrc in the same way as for
PYTHONPATH:

export PATH=$HOME/software/lib/pymodules:$PATH

On Windows, launch the dialog for setting environment variables as described
above and find the PATH variable. It already has much content, so you add your
new folder value either at the beginning or end, using a semicolon to separate the
new value from the existing ones.

4.9.8 DistributingModules

Modules are usually useful pieces of software that others can take advantage of.
Even though our simple interest module is of less interest to the world, we can
illustrate how such a module is most effectively distributed to other users. The
standard in Python is to distribute the module file together with a program called
setup.py such that any user can just do

Terminal

Terminal> sudo python setup.py install

to install the module in one of the directories in sys.path so that the module is
immediately accessible anywhere, both for import in a Python program and for
execution as a stand-alone program.

The setup.py file is in the case of one module file very short:

from distutils.core import setup

setup(name=’interest’,

version=’1.0’,

py_modules=[’interest’],

scripts=[’interest.py’],

)

The scripts= keyword argument can be dropped if the module is just to be
imported and not run as a program as well. More module files can trivially be
added to the list.

A user who runs setup.py install on an Ubuntu machine will see from
the output that interest.py is copied to the system folders /usr/local/lib/
python2.7/dist-packages and /usr/local/bin. The former folder is for
module files, the latter for executable programs.

http://tinyurl.com/pwyasaa/input/setup.py

200 4 User Input and Error Handling

Remark
Distributing a single module file can be done as shown, but if you have two or
more module files that belong together, you should definitely create a package
[25].

4.9.9 Making Software Available on the Internet

Distributing software today means making it available on one of the major project
hosting sites such as GitHub or Bitbucket. Youwill develop and maintain the project
files on your own computer(s), but frequently push the software out in the cloud
such that others also get your updates. The mentioned sites have very strong support
for collaborative software development.

Sign up for a GitHub account if you do not already have one. Go to your account
settings and provide an SSH key (typically the file ~/.ssh/id_rsa.pub) such that
you can communicate with GitHub without being prompted for your password.

To create a new project, click on New repository on the main page and fill out
a project name. Click on the check button Initialize this repository with a README,
and click on Create repository. The next step is to clone (copy) the GitHub repo
(short for repository) to your own computer(s) and fill it with files. The typical
clone command is

Terminal

Terminal> git clone git://github.com:username/projname.git

where username is your GitHub username and projname is the name of the repo
(project). The result of git clone is a directory projname. Go to this folder and
add files. That is, copy setup.py and interst.py to the folder. It is good to also
write a short README file explaining what the project is about. Run

Terminal

Terminal> git add .
Terminal> git commit -am ’First registration of project files’
Terminal> git push origin master

The above git commands look cryptic, but these commands plus 2–3 more are
the essence of how programmers today work on software projects, small or big.
I strongly encourage you to learn more about version control systems and project
hosting sites [12]. The tools are in nature like Dropbox and Google Drive, just much
more powerful when you collaborate with others.

Your project files are now stored in the cloud at https://github.com/username/
projname. Anyone can get the software by the listed git clone command you
used above, or by clicking on the links for zip and tar files.

Every time you update the project files, you need to register the update at GitHub
by

https://github.com/username/projname
https://github.com/username/projname

4.10 Making Code for Python 2 and 3 201

Terminal

Terminal> git commit -am ’Description of the changes you made...’
Terminal> git push origin master

The files at GitHub are now synchronized with your local ones.
There is a bit more to be said here to make you up and going with this style of

professional work [12], but the information above gives you at least a glimpse of
how to put your software project in the cloud and opening it up for others. The
GitHub address for the particular interest module described above is https://
github.com/hplgit/interest-primer.

4.10 Making Code for Python 2 and 3

This book applies Python version 2.7, but there is a newer version of Python called
Python 3 (the current version is 3.5). Unfortunately, Python 2 programs do not work
with Python 3 and vice versa. Newcomers to Python are normally guided to pick
up version 3 rather than version 2, since the former has many improvements and
represents the future of the language. However, for scientific computing, version 3
still lacks many useful libraries, and that is the reason why this book applies Python
version 2.7.

4.10.1 Basic Differences Between Python 2 and 3

So, what are the major differences between version 2 and 3? We cover only the
three differences that involve statements we have seen so far in the book.

The print statement has changed Here are some examples on print statements in
Python 2:

a = 1

print a

print ’The value of a is’, a

print ’The value of a is’, a, # comma prevents newline

b = 2

print ’and b=%g’ % b

The print statement is not a statement anymore, but a function in Python 3. The
above code needs to be written as

a = 1

print(a)

print(’The value of a is’, a)

print(’The value of a is’, a, end=’ ’) # end=’’ prevents newline

b = 2

print(’and b=%g’ % b)

https://github.com/hplgit/interest-primer
https://github.com/hplgit/interest-primer

202 4 User Input and Error Handling

Integer division is not an issue in Python 3 The expression 1/10 is 0 in Python
2, while in Python 3 it equals 0.1. Nevertheless, there are so many computer lan-
guages and tools that interpret as 1/10 integer division, so rather than relying on
a language’s interpretation of integer divided by integer as float division, the pro-
grammer is strongly encouraged to turn one of the operands explicitly to float, as in
1.0/10.

The raw_input function is named input in Python 3 The Python 2 code

a = float(raw_input(’Give a: ’))

reads

a = float(input(’Give a: ’))

in Python 3.
Note that in Python 2 there is an input function which equals eval applied to

raw_input:

a = input(’Give a: ’) # Python 2!

Equivalent to

a = eval(raw_input(’Give a: ’))

4.10.2 Turning Python 2 Code into Python 3 Code

Suppose you have written some Python 2 code according to this book and want it
to run under Python 3. We strongly recommend to create a common version of your
program such that it works under both Python 2 and 3. This is quite easy if you use
the future5 package (it is easily installed by pip install future).

The future package has a program futurize that can rewrite a .py file such
that it works under Python 2 and 3. Let us grab a file c2f_qa.py,

C = raw_input(’C=? ’)

C = float(C)

F = 9.0/5*C + 32

print F

and convert it by

Terminal

Terminal> futurize -w c2f_qa.py

5 http://python-future.org/

http://python-future.org/
http://python-future.org/

4.10 Making Code for Python 2 and 3 203

Now c2f_qa.py has the content

from __future__ import print_function

from builtins import input

C = input(’C=? ’)

C = float(C)

F = 9.0/5*C + 32

print(F)

We notice that the raw_input call has been changed to input and that the print
statement is a call to the print function. A simple test shows that the new file runs
on both versions of Python:

Terminal

Terminal> python2 c2f_qa.py
C=? 21
69.8
Terminal> python3 py3/c2f_qa.py
C=? 21
69.80000000000001

(This test requires that you have Python 3 installed.)
Note that if we change the division 9.0/5 in the file to 9/5, futurize will not

make a float division out of that expression (i.e., the Python 2 meaning of the syntax
is not changed). If we want all syntax to be interpreted the Python 3 way, add the
–all-imports option:

Terminal

Terminal> futurize -w --all-imports c2f_qa.py

The result is

from __future__ import unicode_literals

from __future__ import print_function

from __future__ import division

from __future__ import absolute_import

from future import standard_library

standard_library.install_aliases()

from builtins import input

from builtins import *

C = input(’C=? ’)

C = float(C)

F = 9/5*C + 32

print(F)

Now, 9/5 represents float division, and the program runs under both versions of
Python.

Usually, you do not want futurize to overwrite your original Python 2 pro-
gram, but it is easy to let it generate the new version in a subfolder instead:

204 4 User Input and Error Handling

Terminal

Terminal> futurize -w -n -o py23 c2f_qa.py

The generated new version of c2f_qa.py is now in py23/c2f_qa.py.
Most of the programs in this book apply the command line for input, and the pro-

grammer should fix all issues about integer division, so running futurize on the
programs you have seen so far will just change the print statement. There are more
challenging differences between Python 2 and 3 when one applies more advanced
objects and modules. Section 6.6 contains further information.

4.11 Summary

4.11.1 Chapter Topics

Question and answer input Prompting the user and reading the answer back into
a variable is done by

var = raw_input(’Give value: ’)

The raw_input function returns a string containing the characters that the user
wrote on the keyboard before pressing the Return key. It is necessary to convert
var to an appropriate object (int or float, for instance) if we want to perform
mathematical operations with var. Sometimes

var = eval(raw_input(’Give value: ’))

is a flexible and easy way of transforming the string to the right type of object
(integer, real number, list, tuple, and so on). This last statement will not work,
however, for strings unless the text is surrounded by quotes when written on the
keyboard. A general conversion function that turns any text without quotes into the
right object is scitools.misc.str2obj:

from scitools.misc import str2obj

var = str2obj(raw_input(’Give value: ’))

Typing, for example, 3 makes var refer to an int object, 3.14 results in a float
object, [-1,1] results in a list, (1,3,5,7) in a tuple, and some text in the
string (str) object ’some text’ (run the program str2obj_demo.py to see this
functionality demonstrated).

Getting command-line arguments The sys.argv[1:] list contains all the
command-line arguments given to a program (sys.argv[0] contains the program
name). All elements in sys.argv are strings. A typical usage is

parameter1 = float(sys.argv[1])

parameter2 = int(sys.argv[2])

parameter3 = sys.argv[3] # parameter3 can be string

http://tinyurl.com/pwyasaa/input/str2obj_demo.py

4.11 Summary 205

Using option-value pairs The argparse module is recommended for interpret-
ing command-line arguments of the form –option value. A simple recipe with
argparse reads

import argparse

parser = argparse.ArgumentParser()

parser.add_argument(’--p1’, ’--parameter_1’, type=float,

default=0.0, help=’1st parameter’)

parser.add_argument(’--p2’, type=float,

default=0.0, help=’2nd parameter’)

args = parser.parse_args()

p1 = args.p1

p2 = args.p2

On the command line we can provide any or all of these options:

--parameter_1 --p1 --p2

where each option must be succeeded by a suitable value. However, argparse is
very flexible can easily handle options without values or command-line arguments
without any option specifications.

Generating code on the fly Calling eval(s) turns a string s, containing a Python
expression, into code as if the contents of the string were written directly into the
program code. The result of the following eval call is a float object holding the
number 21.1:

>>> x = 20

>>> r = eval(’x + 1.1’)

>>> r

21.1

>>> type(r)

<type ’float’>

The exec function takes a string with arbitrary Python code as argument and exe-
cutes the code. For example, writing

exec("""

def f(x):

return %s

""" % sys.argv[1])

is the same as if we had hardcoded the (for the programmer unknown) contents of
sys.argv[1] into a function definition in the program.

Turning string formulas into Python functions Given a mathematical formula
as a string, s, we can turn this formula into a callable Python function f(x) by

206 4 User Input and Error Handling

from scitools.std import StringFunction

f = StringFunction(s)

The string formula can contain parameters and an independent variable with another
name than x:

Q_formula = ’amplitude*sin(w*t-phaseshift)’

Q = StringFunction(Q_formula, independent_variable=’t’,

amplitude=1.5, w=pi, phaseshift=0)

values1 = [Q(i*0.1) for t in range(10)]

Q.set_parameters(phaseshift=pi/4, amplitude=1)

values2 = [Q(i*0.1) for t in range(10)]

Functions of several independent variables are also supported:

f = StringFunction(’x+y**2+A’, independent_variables=(’x’, ’y’),

A=0.2)

x = 1; y = 0.5

print f(x, y)

File operations Reading from or writing to a file first requires that the file is
opened, either for reading, writing, or appending:

infile = open(filename, ’r’) # read

outfile = open(filename, ’w’) # write

outfile = open(filename, ’a’) # append

or using with:

with open(filename, ’r’) as infile: # read

with open(filename, ’w’) as outfile: # write

with open(filename, ’a’) as outfile: # append

There are four basic reading commands:

line = infile.readline() # read the next line

filestr = infile.read() # read rest of file into string

lines = infile.readlines() # read rest of file into list

for line in infile: # read rest of file line by line

File writing is usually about repeatedly using the command

outfile.write(s)

where s is a string. Contrary to print s, no newline is added to s in outfile.
write(s).

After reading or writing is finished, the file must be closed:

somefile.close()

4.11 Summary 207

However, closing the file is not necessary if we employ the with statement for
reading or writing files:

with open(filename, ’w’) as outfile:

for var1, var2 in data:

outfile.write(’%5.2f %g\n’ % (var1, var2))

outfile is closed

Handling exceptions Testing for potential errors is done with try-except
blocks:

try:

<statements>

except ExceptionType1:

<provide a remedy for ExceptionType1 errors>

except ExceptionType2, ExceptionType3, ExceptionType4:

<provide a remedy for three other types of errors>

except:

<provide a remedy for any other errors>

...

The most common exception types are NameError for an undefined variable,
TypeError for an illegal value in an operation, and IndexError for a list index
out of bounds.

Raising exceptions When some error is encountered in a program, the program-
mer can raise an exception:

if z < 0:

raise ValueError(’z=%s is negative - cannot do log(z)’ % z)

r = log(z)

Modules A module is created by putting a set of functions in a file. The filename
(minus the required extension .py) is the name of the module. Other programs
can import the module only if it resides in the same folder or in a folder contained
in the sys.path list (see Sect. 4.9.7 for how to deal with this potential problem).
Optionally, the module file can have a special if construct at the end, called test
block, which tests the module or demonstrates its usage. The test block does not get
executed when the module is imported in another program, only when the module
file is run as a program.

Terminology The important computer science topics and Python tools in this chap-
ter are

� command line
� sys.argv
� raw_input
� eval and exec
� file reading and writing
� handling and raising exceptions

208 4 User Input and Error Handling

� module
� test block

4.11.2 Example: Bisection Root Finding

Problem The summarizing example of this chapter concerns the implementation
of the Bisection method for solving nonlinear equations of the form f .x/ D 0 with
respect to x. For example, the equation

x D 1 C sin x

can be cast in the form f .x/ D 0 if we move all terms to the left-hand side and
define f .x/ D x � 1 � sin x. We say that x is a root of the equation f .x/ D 0 if
x is a solution of this equation. Nonlinear equations f .x/ D 0 can have zero, one,
several, or infinitely many roots.

Numerical methods for computing roots normally lead to approximate results
only, i.e., f .x/ is not made exactly zero, but very close to zero. More precisely,
an approximate root x fulfills jf .x/j � �, where � is a small number. Methods for
finding roots are of an iterative nature: we start with a rough approximation to a root
and perform a repetitive set of steps that aim to improve the approximation. Our
particular method for computing roots, the Bisection method, guarantees to find an
approximate root, while other methods, such as the widely used Newton’s method
(see Sect. A.1.10), can fail to find roots.

The idea of the Bisection method is to start with an interval Œa; b� that contains
a root of f .x/. The interval is halved at m D .a C b/=2, and if f .x/ changes
sign in the left half interval Œa; m�, one continues with that interval, otherwise one
continues with the right half interval Œm; b�. This procedure is repeated, say n times,
and the root is then guaranteed to be inside an interval of length 2�n.b � a/. The
task is to write a program that implements the Bisection method and verify the
implementation.

Solution To implement the Bisection method, we need to translate the description
in the previous paragraph to a precise algorithm that can be almost directly trans-
lated to computer code. Since the halving of the interval is repeated many times, it
is natural to do this inside a loop. We start with the interval Œa; b�, and adjust a to
m if the root must be in the right half of the interval, or we adjust b to m if the root
must be in the left half. In a language close to computer code we can express the
algorithm precisely as follows:

for i in range(0, n+1):

m = (a + b)/2

if f(a)*f(m) <= 0:

b = m # root is in left half

else:

a = m # root is in right half

f(x) has a root in [a,b]

4.11 Summary 209

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The Bisection method, iteration 1: [0.41, 0.82]

f(x)
a
b
m

y=0

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The Bisection method, iteration 2: [0.41, 0.61]

f(x)
a
b
m

y=0

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The Bisection method, iteration 3: [0.41, 0.51]

f(x)
a
b
m

y=0

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The Bisection method, iteration 4: [0.46, 0.51]

f(x)
a
b
m

y=0

Fig. 4.2 Illustration of the first four iterations of the Bisection algorithm for solving cos.�x/ D 0.
The vertical lines correspond to the current value of a and b

Figure 4.2 displays graphically the first four steps of this algorithm for solv-
ing the equation cos.�x/ D 0, starting with the interval Œ0; 0:82�. The graphs are
automatically produced by the program bisection_movie.py, which was run as
follows for this particular example:

Terminal

bisection_movie.py ’cos(pi*x)’ 0 0.82

The first command-line argument is the formula for f .x/, the next is a, and the
final is b.

In the algorithm listed above, we recompute f .a/ in each if-test, but this is
not necessary if a has not changed since the last f .a/ computations. It is a good
habit in numerical programming to avoid redundant work. On modern computers
the Bisection algorithm normally runs so fast that we can afford to do more work
than necessary. However, if f .x/ is not a simple formula, but computed by compre-
hensive calculations in a program, the evaluation of f might take minutes or even
hours, and reducing the number of evaluations in the Bisection algorithm is then
very important. We will therefore introduce extra variables in the algorithm above
to save an f .m/ evaluation in each iteration in the for loop:

f_a = f(a)

for i in range(0, n+1):

m = (a + b)/2

210 4 User Input and Error Handling

f_m = f(m)

if f_a*f_m <= 0:

b = m # root is in left half

else:

a = m # root is in right half

f_a = f_m

f(x) has a root in [a,b]

To execute the algorithm above, we need to specify n. Say we want to be sure
that the root lies in an interval of maximum extent �. After n iterations the length of
our current interval is 2�n.b � a/, if Œa; b� is the initial interval. The current interval
is sufficiently small if

2�n.b � a/ D �;

which implies

n D � ln � � ln.b � a/

ln 2
: (4.6)

Instead of calculating this n, we may simply stop the iterations when the length
of the current interval is less than �. The loop is then naturally implemented as
a while loop testing on whether b �a � �. To make the algorithm more foolproof,
we also insert a test to ensure that f .x/ really changes sign in the initial interval.
This guarantees a root in Œa; b�. (However, f .a/f .b/ < 0 is not a necessary condi-
tion if there is an even number of roots in the initial interval.)

Our final version of the Bisection algorithm now becomes

f_a=f(a)

if f_a*f(b) > 0:

error: f does not change sign in [a,b]

i = 0

while b-a > epsilon:

i = i + 1

m = (a + b)/2

f_m = f(m)

if f_a*f_m <= 0:

b = m # root is in left half

else:

a = m # root is in right half

f_a = f_m

if x is the real root, |x-m| < epsilon

This is the algorithm we aim to implement in a Python program.
A direct translation of the previous algorithm to a valid Python program is a mat-

ter of some minor edits:

eps = 1E-5

a, b = 0, 10

fa = f(a)

if fa*f(b) > 0:

4.11 Summary 211

print ’f(x) does not change sign in [%g,%g].’ % (a, b)

sys.exit(1)

i = 0 # iteration counter

while b-a > eps:

i += 1

m = (a + b)/2.0

fm = f(m)

if fa*fm <= 0:

b = m # root is in left half of [a,b]

else:

a = m # root is in right half of [a,b]

fa = fm

print ’Iteration %d: interval=[%g, %g]’ % (i, a, b)

x = m # this is the approximate root

print ’The root is’, x, ’found in’, i, ’iterations’

print ’f(%g)=%g’ % (x, f(x))

This program is found in the file bisection_v1.py.

Verification To verify the implementation in bisection_v1.pywe choose a very
simple f .x/ where we know the exact root. One suitable example is a linear func-
tion, f .x/ D 2x � 3 such that x D 3=2 is the root of f . As can be seen from the
source code above, we have inserted a print statement inside the while loop to
control that the program really does the right things. Running the program yields
the output

Iteration 1: interval=[0, 5]

Iteration 2: interval=[0, 2.5]

Iteration 3: interval=[1.25, 2.5]

Iteration 4: interval=[1.25, 1.875]

...

Iteration 19: interval=[1.5, 1.50002]

Iteration 20: interval=[1.5, 1.50001]

The root is 1.50000572205 found in 20 iterations

f(1.50001)=1.14441e-05

It seems that the implementation works. Further checks should include hand cal-
culations for the first (say) three iterations and comparison of the results with the
program.

Making a function The previous implementation of the bisection algorithm is fine
for many purposes. To solve a new problem f .x/ D 0 it is just necessary to change
the f(x) function in the program. However, if we encounter solving f .x/ D 0

in another program in another context, we must put the bisection algorithm into
that program in the right place. This is simple in practice, but it requires some
careful work, and it is easy to make errors. The task of solving f .x/ D 0 by the
bisection algorithm is much simpler and safer if we have that algorithm available
as a function in a module. Then we can just import the function and call it. This
requires a minimum of writing in later programs.

http://tinyurl.com/pwyasaa/input/bisection_v1.py

212 4 User Input and Error Handling

When you have a “flat” program as shown above, without basic steps in the
program collected in functions, you should always consider dividing the code into
functions. The reason is that parts of the program will be much easier to reuse
in other programs. You save coding, and that is a good rule! A program with
functions is also easier to understand, because statements are collected into logical,
separate units, which is another good rule! In a mathematical context, functions
are particularly important since they naturally split the code into general algorithms
(like the bisection algorithm) and a problem-specific part (like a special choice of
f .x/).

Shuffling statements in a program around to form a new and better designed ver-
sion of the program is called refactoring. We shall now refactor the bisection_v1.
py program by putting the statements in the bisection algorithm in a function
bisection. This function naturally takes f .x/, a, b, and � as parameters and
returns the found root, perhaps together with the number of iterations required:

def bisection(f, a, b, eps):

fa = f(a)

if fa*f(b) > 0:

return None, 0

i = 0 # iteration counter

while b-a > eps:

i += 1

m = (a + b)/2.0

fm = f(m)

if fa*fm <= 0:

b = m # root is in left half of [a,b]

else:

a = m # root is in right half of [a,b]

fa = fm

return m, i

After this function we can have a test program:

def f(x):

return 2*x - 3 # one root x=1.5

x, iter = bisection(f, a=0, b=10, eps=1E-5)

if x is None:

print ’f(x) does not change sign in [%g,%g].’ % (a, b)

else:

print ’The root is’, x, ’found in’, iter, ’iterations’

print ’f(%g)=%g’ % (x, f(x))

The complete code is found in file bisection_v2.py.

Making a test function Rather than having a main program as above for verifying
the implementation, we should make a test function test_bisection as described
in Sect. 4.9.4. To this end, we move the statements above inside a function, drop
the output, but instead make a boolean variable success that is True if the test
is passed and False otherwise. Then we do assert success, msg, which will
abort the program if the test fails. The msg variable is a string with more explanation

http://tinyurl.com/pwyasaa/input/bisection_v2.py

4.11 Summary 213

of what went wrong the test fails. A test function with this structure is easy to
integrate into the widely used testing frameworks nose and pytest, and there are no
good reasons for not adopting this structure. The code checking that the root is
within a distance � to the exact root becomes

def test_bisection():

def f(x):

return 2*x - 3 # one root x=1.5

eps = 1E-5

x_expected = 1.5

x, iter = bisection(f, a=0, b=10, eps=eps)

success = abs(x - x_expected) < eps # test within eps tolerance

assert success, ’found x=%g != 1.5’ % x

Making amodule Amotivating factor for implementing the bisection algorithm as
a function bisection was that we could import this function in other programs to
solve f .x/ D 0 equations. We therefore need to make a module file bisection.py
such that we can do, e.g.,

from bisection import bisection

x, iter = bisection(lambda x: x**3 + 2*x -1, -10, 10, 1E-5)

A module file should not execute a main program, but just define functions, import
modules, and define global variables. Any execution of a main program must take
place in the test block, otherwise the import statement will start executing the main
program, resulting in very disturbing statements for another program that wants to
solve a different f .x/ D 0 equation.

The bisection_v2.py file had a main program that was just a simple test for
checking that the bisection algorithm works for a linear function. We took this
main program and wrapped in a test function test_bisection above. To run the
test, we make the call to this function from the test block:

if __name__ == ’__main__’:

test_bisection()

This is all that is demanded to turn the file bisection_v2.py into a proper module
file bisection.py.

Defining a user interface It is nice to have our bisectionmodule do more than
just test itself: there should be a user interface such that we can solve real prob-
lems f .x/ D 0, where f .x/, a, b, and � are defined on the command line by the
user. A dedicated function can read from the command line and return the data
as Python object. For reading the function f .x/ we can either apply eval on the
command-line argument, or use the more sophisticated StringFunction tool from
Sect. 4.3.3. With eval we need to import functions from the math module in case
the user have such functions in the expression for f .x/. With StringFunction
this is not necessary.

A get_input() for getting input from the command line can be implemented
as

214 4 User Input and Error Handling

def get_input():

"""Get f, a, b, eps from the command line."""

from scitools.std import StringFunction

try:

f = StringFunction(sys.argv[1])

a = float(sys.argv[2])

b = float(sys.argv[3])

eps = float(sys.argv[4])

except IndexError:

print ’Usage %s: f a b eps’ % sys.argv[0]

sys.exit(1)

return f, a, b, eps

To solve the corresponding f .x/ D 0 problem, we simply add a branch in the if
test in the test block:

if __name__ == ’__main__’:

import sys

if len(sys.argv) >= 2 and sys.argv[1] == ’test’:

test_bisection()

else:

f, a, b, eps = get_input()

x, iter = bisection(f, a, b, eps)

print ’Found root x=%g in %d iterations’ % (x, iter)

Desired properties of a module
Our bisection.py code is a complete module file with the following generally
desired features of Python modules:

� other programs can import the bisection function,
� the module can test itself (with a pytest/nose-compatible test function),
� the module file can be run as a program with a user interface where a general

rooting finding problem can be specified in terms of a formula for f .x/ along
with the parameters a, b, and �.

Using the module Suppose you want to solve x=.x � 1/ D sin x using the
bisection module. What do you have to do? First, you must reformulate the
equation as f .x/ D 0, i.e., x=.x � 1/ � sin x D 0, or maybe multiply by x � 1 to
get f .x/ D x � .x � 1/ sin x.

It is required to identify an interval for the root. By evaluating f .x/ for some
points x one can be trial and error locate an interval. A more convenient approach
is to plot the function f .x/ and visually inspect where a root is. Chapter 5 describes
the techniques, but here we simply state the recipe. We start ipython –pylab and
write

In [1]: x = linspace(-3, 3, 50) # generate 50 coordinates in [-3,3]

In [2]: y = x - (x-1)*sin(x)

In [3]: plot(x, y)

http://tinyurl.com/pwyasaa/input/bisection.py

4.11 Summary 215

Fig. 4.3 Plot of f .x/ D x � sin.x/

Figure 4.3 shows f .x/ and we clearly see that, e.g., Œ�2; 1� is an appropriate inter-
val.

The next step is to run the Bisection algorithm. There are two possibilities:

� make a program where you code f .x/ and run the bisection function, or
� run the bisection.py program directly.

The latter approach is the simplest:

Terminal

bisection.py "x - (x-1)*sin(x)" -2 1 1E-5
Found root x=-1.90735e-06 in 19 iterations

The alternative approach is to make a program:

from bisection import bisection

from math import sin

def f(x):

return x - (x-1)*sin(x)

x, iter = bisection(f, a=-2, b=1, eps=1E-5)

print x, iter

Potential problems with the software Let us solve

� x D tanhx with start interval Œ�10; 10� and � D 10�6,
� x5 D tanh.x5/ with start interval Œ�10; 10� and � D 10�6.

Both equations have one root x D 0.

216 4 User Input and Error Handling

Terminal

bisection.py "x-tanh(x)" -10 10
Found root x=-5.96046e-07 in 25 iterations

bisection.py "x**5-tanh(x**5)" -10 10
Found root x=-0.0266892 in 25 iterations

These results look strange. In both cases we halve the start interval Œ�10; 10� 25
times, but in the second case we end up with a much less accurate root although the
value of � is the same. A closer inspection of what goes on in the bisection algorithm
reveals that the inaccuracy is caused by rounding errors. As a; b; m ! 0, raising
a small number to the fifth power in the expression for f .x/ yields a much smaller
result. Subtracting a very small number tanhx5 from another very small number
x5 may result in a small number with wrong sign, and the sign of f is essential
in the bisection algorithm. We encourage the reader to graphically inspect this
behavior by running these two examples with the bisection_plot.py program
using a smaller interval Œ�1; 1� to better see what is going on. The command-
line arguments for the bisection_plot.py program are ’x-tanh(x)’ -1 1 and
’x**5-tanh(x**5)’ -1 1. The very flat area, in the latter case, where f .x/ � 0

for x 2 Œ�1=2; 1=2� illustrates well that it is difficult to locate an exact root.

Distributing the bisection module to others The Python standard for installing
software is to run a setup.py program,

Terminal

Terminal> sudo python setup.py install

to install the system. The relevant setup.py for the bisection module arises
from substituting the name interest by bisection in the setup.py file listed in
Sect. 4.9.8. You can then distribute bisection.py and setup.py together.

4.12 Exercises

Exercise 4.1: Make an interactive program
Make a program that asks the user for a temperature in Fahrenheit degrees and reads
the number; computes the corresponding temperature in Celsius degrees; and prints
out the temperature in the Celsius scale.
Filename: f2c_qa.

Exercise 4.2: Read a number from the command line
Modify the program from Exercise 4.1 such that the Fahrenheit temperature is read
from the command line.
Filename: f2c_cml.

Exercise 4.3: Read a number from a file
Modify the program from Exercise 4.1 such that the Fahrenheit temperature is read
from a file with the following content:

http://tinyurl.com/pwyasaa/input/bisection_plot.py

4.12 Exercises 217

Temperature data

Fahrenheit degrees: 67.2

Hint Create a sample file manually. In the program, skip the first three lines, split
the fourth line into words and grab the third word.
Filename: f2c_file_read.

Exercise 4.4: Read and write several numbers from and to file
This is a variant of Exercise 4.3 where we have several Fahrenheit degrees in a file
and want to read all of them into a list and convert the numbers to Celsius degrees.
Thereafter, we want to write out a file with two columns, the left with the Fahrenheit
degrees and the right with the Celsius degrees.

An example on the input file format looks like

Temperature data

Fahrenheit degrees: 67.2

Fahrenheit degrees: 66.0

Fahrenheit degrees: 78.9

Fahrenheit degrees: 102.1

Fahrenheit degrees: 32.0

Fahrenheit degrees: 87.8

A sample file is Fdeg.dat6.
Filename: f2c_file_read_write.

Exercise 4.5: Use exceptions to handle wrong input
Extend the program from Exercise 4.2 with a try-except block to handle the
potential error that the Fahrenheit temperature is missing on the command line.
Filename: f2c_cml_exc.

Exercise 4.6: Read input from the keyboard
Make a program that asks for input from the user, applies eval to this input, and
prints out the type of the resulting object and its value. Test the program by pro-
viding five types of input: an integer, a real number, a complex number, a list, and
a tuple.
Filename: objects_qa.

Exercise 4.7: Read input from the command line

a) Let a program store the result of applying the eval function to the first
command-line argument. Print out the resulting object and its type.

b) Run the program with different input: an integer, a real number, a list, and
a tuple.

6 http://tinyurl.com/pwyasaa/input/Fdeg.dat

http://tinyurl.com/pwyasaa/input/Fdeg.dat
http://tinyurl.com/pwyasaa/input/Fdeg.dat

218 4 User Input and Error Handling

Hint On Unix systems you need to surround the tuple expressions in quotes on the
command line to avoid error message from the Unix shell.

c) Try the string "this is a string" as a command-line argument. Why does
this string cause problems and what is the remedy?

Filename: objects_cml.

Exercise 4.8: Try MSWord or LibreOffice to write a program
The purpose of this exercise is to tell you how hard it may be to write Python
programs in the standard programs that most people use for writing text.

a) Type the following one-line program in either MSWord or LibreOffice:

print "Hello, World!"

Both Word and LibreOffice are so “smart” that they automatically edit “print”
to “Print” since a sentence should always start with a capital. This is just an
example that word processors are made for writing documents, not computer
programs.

b) Save the program as a .docx (Word) or .odt (LibreOffice) file. Now try to run
this file as a Python program. What kind of error message do you get? Can you
explain why?

c) Save the program as a .txt file in Word or LibreOffice and run the file as
a Python program. What happened now? Try to find out what the problem
is.

Exercise 4.9: Prompt the user for input to a formula
Consider the simplest program for evaluating the formula y.t/ D v0t � 1

2
gt2:

v0 = 3; g = 9.81; t = 0.6

y = v0*t - 0.5*g*t**2

print y

Modify this code so that the program asks the user questions t=? and v0=?, and
then gets t and v0 from the user’s input through the keyboard.
Filename: ball_qa.

Exercise 4.10: Read parameters in a formula from the command line
Modify the program listed in Exercise 4.9 such that v0 and t are read from the
command line.
Filename: ball_cml.

Exercise 4.11: Use exceptions to handle wrong input
The program from Exercise 4.10 reads input from the command line. Extend that
program with exception handling such that missing command-line arguments are
detected. In the except IndexError block, use the raw_input function to ask
the user for missing input data.
Filename: ball_cml_qa.

4.12 Exercises 219

Exercise 4.12: Test validity of input data
Test if the t value read in the program from Exercise 4.10 lies between 0 and 2v0=g.
If not, print a message and abort the execution.
Filename: ball_cml_tcheck.

Exercise 4.13: Raise an exception in case of wrong input
Instead of printing an error message and aborting the program explicitly, raise
a ValueError exception in the if test on legal t values in the program from Exer-
cise 4.12. Notify the user about the legal interval for t in the exception message.
Filename: ball_cml_ValueError.

Exercise 4.14: Evaluate a formula for data in a file
We consider the formula y.t/ D v0t � 0:5gt2 and want to evaluate y for a range of
t values found in a file with format

v0: 3.00

t:

0.15592 0.28075 0.36807889 0.35 0.57681501876

0.21342619 0.0519085 0.042 0.27 0.50620017 0.528

0.2094294 0.1117 0.53012 0.3729850 0.39325246

0.21385894 0.3464815 0.57982969 0.10262264

0.29584013 0.17383923

More precisely, the first two lines are always present, while the next lines contain
an arbitrary number of t values on each line, separated by one or more spaces.

a) Write a function that reads the input file and returns v0 and a list with the t

values. A sample file is ball.dat7

b) Make a test function that generates an input file, calls the function in a) for
reading the file, and checks that the returned data objects are correct.

c) Write a function that creates a file with two nicely formatted columns containing
the t values to the left and the corresponding y values to the right. Let the t

values appear in increasing order (note that the input file does not necessarily
have the t values sorted).

Filename: ball_file_read_write.

Exercise 4.15: Write a function given its test function
A common software development technique in the IT industry is to write the test
function before writing the function itself.

a) We want to write a function halve(x) that returns the half of its argument x.
The test function is

def test_halve():

assert halve(5.0) == 2.5 # Real number division

assert halve(5) == 2 # Integer division

7 http://tinyurl.com/pwyasaa/input/ball.dat

http://tinyurl.com/pwyasaa/input/ball.dat
http://tinyurl.com/pwyasaa/input/ball.dat

220 4 User Input and Error Handling

Write the associated function halve. Call test_halve (or run pytest or nose)
to verify that halve works.

b) We want to write a function add(a, b) that returns the sum of its arguments a
and b. The test function reads

def test_add():

Test integers

assert add(1, 2) == 3

Test floating-point numbers with rounding error

tol = 1E-14

a = 0.1; b = 0.2

computed = add(a, b)

expected = 0.3

assert abs(expected - computed) < tol

Test lists

assert add([1,4], [4,7]) == [1,4,4,7]

Test strings

assert add(’Hello, ’, ’World!’) == ’Hello, World!’

Write the associated function add. Call test_add (or run pytest or nose) to
verify that add works.

c) We want to write a function equal(a, b) for determining if two strings a and
b are equal. If equal, the function returns True and the string a. If not equal,
the function returns False and a string displaying the differences. This latter
string contains the characters common in a and b, but for every difference, the
character from a and b are written with a pipe symbol ’|’ in between. In case a
and b are of unequal length, pad the string displaying differences with a * where
one of the strings lacks content. For example, equal(’abc’, ’aBc’) would
return False, ’ab|Bc’, while equal(’abc’, ’aBcd’)would return False,
’ab|Bc*|d’. Here is the test function:

def test_equal():

assert equal(’abc’, ’abc’) == (True, ’abc’)

assert equal(’abc’, ’aBc’) == (False, ’ab|Bc’)

assert equal(’abc’, ’aBcd’) == (False, ’ab|Bc*|d’)

assert equal(’Hello, World!’, ’hello world’) == \

(False, ’H|hello,| |wW|oo|rr|ll|dd|*!|*’)

Write the equal function (which is handy to detect very small differences be-
tween texts).

Filename: testfunc2func.

Exercise 4.16: Compute the distance it takes to stop a car
A car driver, driving at velocity v0, suddenly puts on the brake. What braking
distance d is needed to stop the car? One can derive, using Newton’s second law of

4.12 Exercises 221

motion or a corresponding energy equation, that

d D 1

2

v2
0

�g
: (4.7)

Make a program for computing d in (4.7) when the initial car velocity v0 and
the friction coefficient � are given on the command line. Run the program for two
cases: v0 D 120 and v0 D 50 km/h, both with � D 0:3 (� is dimensionless).

Hint Remember to convert the velocity from km/h to m/s before inserting the value
in the formula.
Filename: stopping_length.

Exercise 4.17: Look up calendar functionality
The purpose of this exercise is to make a program that takes a date, consisting of
year (4 digits), month (2 digits), and day (1–31) on the command line and prints the
corresponding name of the weekday (Monday, Tuesday, etc.). Python has a module
calendar, which makes it easy to solve the exercise, but the task is to find out how
to use this module.
Filename: weekday.

Exercise 4.18: Use the StringFunction tool
Make the program integrate.py from Sect. 4.3.2 shorter by using the convenient
StringFunction tool from Sect. 4.3.3. Write a test function for verifying this new
implementation.
Filename: integrate2.

Exercise 4.19: Why we test for specific exception types
The simplest way of writing a try-except block is to test for any exception, for
example,

try:

C = float(sys.arg[1])

except:

print ’C must be provided as command-line argument’

sys.exit(1)

Write the above statements in a program and test the program. What is the problem?
The fact that a user can forget to supply a command-line argument when running

the program was the original reason for using a try block. Find out what kind of
exception that is relevant for this error and test for this specific exception and re-run
the program. What is the problem now? Correct the program.
Filename: unnamed_exception.

Exercise 4.20: Make a complete module

a) Make six conversion functions between temperatures in Celsius, Kelvin, and
Fahrenheit: C2F, F2C, C2K, K2C, F2K, and K2F.

222 4 User Input and Error Handling

b) Collect these functions in a module convert_temp.
c) Import the module in an interactive Python shell and demonstrate some sample

calls on temperature conversions.
d) Insert the session from c) in a triple quoted string at the top of the module file as

a doc string for demonstrating the usage.
e) Write a function test_conversion() that verifies the implementation. Call

this function from the test block if the first command-line argument is verify.

Hint Check that C2F(F2C(f)) is f, K2C(C2K(c)) is c, and K2F(F2K(f)) is f –
with tolerance. Follow the conventions for test functions outlined in Sects. 4.9.4
and 4.11.2 with a boolean variable that is False if a test failed, and True if all test
are passed, and then an assert statement to abort the program when any test fails.

f) Add a user interface to the module such that the user can write a temperature as
the first command-line argument and the corresponding temperature scale as the
second command-line argument, and then get the temperature in the two other
scales as output. For example, 21.3 C on the command line results in the output
70.3 F 294.4 K. Encapsulate the user interface in a function, which is called
from the test block.

Filename: convert_temp.

Exercise 4.21: Organize a previous program as a module
Collect the f and S functions in the program from Exercise 3.21 in a sep-
arate file such that this file becomes a module. Put the statements making
the table (i.e., the main program from Exercise 3.21) in a separate function
table(n_values, alpha_values, T). Make a test block in the module to
read T and a series of n and ˛ values as positional command-line arguments and
make a corresponding call to table.
Filename: sinesum2.

Exercise 4.22: Read options and values from the command line
Let the input to the program in Exercise 4.21 be option-value pairs with the options
–n, –alpha, and –T. Provide sensible default values in the module file.

Hint Apply the argparse module to read the command-line arguments. Do not
copy code from the sinesum2 module, but make a new file for reading option-
value pairs from the command and import the table function from the sinesum2
module.
Filename: sinesum3.

Exercise 4.23: Check if mathematical identities hold
Because of rounding errors, it could happen that a mathematical rule like .ab/3 D
a3b3 does not hold exactly on a computer. The idea of testing this potential problem
is to check such identities for a large number of random numbers. We can make
random numbers using the randommodule in Python:

import random

a = random.uniform(A, B)

b = random.uniform(A, B)

4.12 Exercises 223

Here, a and b will be random numbers, which are always larger than or equal to A
and smaller than B.

a) Make a function power3_identity(A=-100, B=100, n=1000) that tests the
identity (a*b)**3 == a**3*b**3 a large number of times, n. Return the frac-
tion of failures.

Hint Inside the loop over n, draw random numbers a and b as described above and
count the number of times the test is True.

b) We shall now parameterize the expressions to be tested. Make a function

equal(expr1, expr2, A=-100, B=100, n=500)

where expr1 and expr2 are strings containing the two mathematical expres-
sions to be tested. More precisely, the function draws random numbers a and
b between A and B and tests if eval(expr1) == eval(expr2). Return the
fraction of failures.
Test the function on the identities .ab/3 D a3b3, eaCb D eaeb , and ln ab D
b ln a.

Hint Make the equal function robust enough to handle illegal a and b values in
the mathematical expressions (e.g., a � 0 in ln a).

c) We want to test the validity of the following set of identities on a computer:
� a � b and �.b � a/

� a=b and 1=.b=a/

� .ab/4 and a4b4

� .a C b/2 and a2 C 2ab C b2

� .a C b/.a � b/ and a2 � b2

� eaCb and eaeb

� ln ab and b ln a

� ln ab and ln a C ln b

� ab and eln aCln b

� 1=.1=a C 1=b/ and ab=.a C b/

� a.sin2 b C cos2 b/ and a

� sinh.a C b/ and .eaeb � e�ae�b/=2

� tan.a C b/ and sin.a C b/= cos.a C b/

� sin.a C b/ and sin a cos b C sin b cos a

Store all the expressions in a list of 2-tuples, where each 2-tuple contains two
mathematically equivalent expressions as strings, which can be sent to the
equal function. Make a nicely formatted table with a pair of equivalent expres-
sions at each line followed by the failure rate. Write this table to a file. Try out
A=1 and B=2 as well as A=1 and B=100. Does the failure rate seem to depend on
the magnitude of the numbers a and b?

Filename: math_identities_failures.

224 4 User Input and Error Handling

Exercise 4.24: Compute probabilities with the binomial distribution
Consider an uncertain event where there are two outcomes only, typically success
or failure. Flipping a coin is an example: the outcome is uncertain and of two types,
either head (can be considered as success) or tail (failure). Throwing a die can be
another example, if (e.g.) getting a six is considered success and all other outcomes
represent failure. Such experiments are called Bernoulli trials.

Let the probability of success be p and that of failure 1 � p. If we perform
n experiments, where the outcome of each experiment does not depend on the
outcome of previous experiments, the probability of getting success x times, and
consequently failure n � x times, is given by

B.x; n; p/ D nŠ

xŠ.n � x/Š
px.1 � p/n�x : (4.8)

This formula (4.8) is called the binomial distribution. The expression xŠ is the facto-
rial of x: xŠ D x.x �1/.x �2/ � � �1 and math.factorial can do this computation.

a) Implement (4.8) in a function binomial(x, n, p).
b) What is the probability of getting two heads when flipping a coin five times?

This probability corresponds to n D 5 events, where the success of an event
means getting head, which has probability p D 1=2, and we look for x D 2

successes.
c) What is the probability of getting four ones in a row when throwing a die?

This probability corresponds to n D 4 events, success is getting one and has
probability p D 1=6, and we look for x D 4 successful events.

d) Suppose cross country skiers typically experience one ski break in one out of
120 competitions. Hence, the probability of breaking a ski can be set to p D
1=120. What is the probability b that a skier will experience a ski break during
five competitions in a world championship?

Hint This question is a bit more demanding than the other two. We are looking for
the probability of 1, 2, 3, 4 or 5 ski breaks, so it is simpler to ask for the probability
c of not breaking a ski, and then compute b D 1 � c. Define success as breaking
a ski. We then look for x D 0 successes out of n D 5 trials, with p D 1=120 for
each trial. Compute b.
Filename: Bernoulli_trials.

Exercise 4.25: Compute probabilities with the Poisson distribution
Suppose that over a period of tm time units, a particular uncertain event happens (on
average) �tm times. The probability that there will be x such events in a time period
t is approximately given by the formula

P.x; t; �/ D .�t/x

xŠ
e��t : (4.9)

This formula is known as the Poisson distribution. (It can be shown that (4.9) arises
from (4.8) when the probability p of experiencing the event in a small time interval
t=n is p D �t=n and we let n ! 1.) An important assumption is that all events are
independent of each other and that the probability of experiencing an event does not

4.12 Exercises 225

change significantly over time. This is known as a Poisson process in probability
theory.

a) Implement (4.9) in a function Poisson(x, t, nu), and make a program
that reads x, t , and � from the command line and writes out the probability
P.x; t; �/. Use this program to solve the problems below.

b) Suppose you are waiting for a taxi in a certain street at night. On average, 5
taxis pass this street every hour at this time of the night. What is the probability
of not getting a taxi after having waited 30 minutes? Since we have 5 events in
a time period of tm D 1 hour, �tm D � D 5. The sought probability is then
P.0; 1=2; 5/. Compute this number. What is the probability of having to wait
two hours for a taxi? If 8 people need two taxis, that is the probability that two
taxis arrive in a period of 20 minutes?

c) In a certain location, 10 earthquakes have been recorded during the last 50 years.
What is the probability of experiencing exactly three earthquakes over a period
of 10 years in this area? What is the probability that a visitor for one week
does not experience any earthquake? With 10 events over 50 years we have
�tm D � � 50 years D 10 events, which implies � D 1=5 event per year. The
answer to the first question of having x D 3 events in a period of t D 10 years
is given directly by (4.9). The second question asks for x D 0 events in a time
period of 1 week, i.e., t D 1=52 years, so the answer is P.0; 1=52; 1=5/.

d) Suppose that you count the number of misprints in the first versions of the re-
ports you write and that this number shows an average of six misprints per page.
What is the probability that a reader of a first draft of one of your reports reads
six pages without hitting a misprint? Assuming that the Poisson distribution can
be applied to this problem, we have “time” tm as 1 page and � � 1 D 6, i.e.,
� D 6 events (misprints) per page. The probability of no events in a “period” of
six pages is P.0; 6; 6/.

Filename: Poisson_processes.

	4 User Input and Error Handling
	4.1 Asking Questions and Reading Answers
	4.2 Reading from the Command Line
	4.3 Turning User Text into Live Objects
	4.4 Option-Value Pairs on the Command Line
	4.5 Reading Data from File
	4.6 Writing Data to File
	4.7 Handling Errors
	4.8 A Glimpse of Graphical User Interfaces
	4.9 Making Modules
	4.10 Making Code for Python 2 and 3
	4.11 Summary
	4.12 Exercises

