
1Computing with Formulas

Our first examples on computer programming involve programs that evaluate math-
ematical formulas. You will learn how to write and run a Python program, how to
work with variables, how to compute with mathematical functions such as ex and
sin x, and how to use Python for interactive calculations.

We assume that you are somewhat familiar with computers so that you know
what files and folders are (another frequent word for folder is directory), how you
move between folders, how you change file and folder names, and how you write
text and save it in a file.

All the program examples associated with this chapter can be downloaded as
a tarfile or zipfile from the web page http://hplgit.github.com/scipro-primer. I
strongly recommend you to visit this page, download and pack out the files. The
examples are organized in a folder tree with src as root. Each subfolder corre-
sponds to a particular chapter. For example, the subfolder formulas contains the
program examples associated with this first chapter. The relevant subfolder name is
listed at the beginning of every chapter.

The folder structure with example programs can also be directly accessed in
a GitHub repository1 on the web. You can click on the formulas folder to see
all the examples from the present chapter. Clicking on a filename shows a nicely
typeset version of the file. The file can be downloaded by first clicking Raw to
get the plain text version of the file, and then right-clicking in the web page and
choosing Save As. . . .

1.1 The First Programming Encounter: a Formula

The first formula we shall consider concerns the vertical motion of a ball thrown
up in the air. From Newton’s second law of motion one can set up a mathematical
model for the motion of the ball and find that the vertical position of the ball, called
y, varies with time t according to the following formula:

y.t/ D v0t � 1

2
gt2 : (1.1)

1 http://tinyurl.com/pwyasaa

1© Springer-Verlag Berlin Heidelberg 2016
H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6, DOI 10.1007/978-3-662-49887-3_1

http://hplgit.github.com/scipro-primer
http://tinyurl.com/pwyasaa
http://tinyurl.com/pwyasaa

2 1 Computing with Formulas

Here, v0 is the initial velocity of the ball, g is the acceleration of gravity, and t is
time. Observe that the y axis is chosen such that the ball starts at y D 0 when
t D 0. The above formula neglects air resistance, which is usually small unless v0

is large, see Exercise 1.11.
To get an overview of the time it takes for the ball to move upwards and return

to y D 0 again, we can look for solutions to the equation y D 0:

v0t � 1

2
gt2 D t.v0 � 1

2
gt/ D 0) t D 0 or t D 2v0=g :

That is, the ball returns after 2v0=g seconds, and it is therefore reasonable to restrict
the interest of (1.1) to t 2 Œ0; 2v0=g�.

1.1.1 Using a Program as a Calculator

Our first program will evaluate (1.1) for a specific choice of v0, g, and t . Choosing
v0 D 5 m/s and g D 9:81 m/s2 makes the ball come back after t D 2v0=g � 1 s.
This means that we are basically interested in the time interval Œ0; 1�. Say we want
to compute the height of the ball at time t D 0:6 s. From (1.1) we have

y D 5 � 0:6 � 1

2
� 9:81 � 0:62 (1.2)

This arithmetic expression can be evaluated and its value can be printed by a very
simple one-line Python program:

print 5*0.6 - 0.5*9.81*0.6**2

The four standard arithmetic operators are written as +, -, *, and / in Python
and most other computer languages. The exponentiation employs a double asterisk
notation in Python, e.g., 0:62 is written as 0.6**2.

Our task now is to create the program and run it, and this will be described next.

1.1.2 About Programs and Programming

A computer program is just a sequence of instructions to the computer, written in
a computer language. Most computer languages look somewhat similar to English,
but they are very much simpler. The number of words and associated instructions
is very limited, so to perform a complicated operation we must combine a large
number of different types of instructions. The program text, containing the sequence
of instructions, is stored in one or more files. The computer can only do exactly
what the program tells the computer to do.

Another perception of the word program is a file that can be run (“double-
clicked”) to perform a task. Sometimes this is a file with textual instructions (which
is the case with Python), and sometimes this file is a translation of all the program
text to a more efficient and computer-friendly language that is quite difficult to read

1.1 The First Programming Encounter: a Formula 3

for a human. All the programs in this chapter consist of short text stored in a single
file. Other programs that you have used frequently, for instance Firefox or Internet
Explorer for reading web pages, consist of program text distributed over a large
number of files, written by a large number of people over many years. One sin-
gle file contains the machine-efficient translation of the whole program, and this is
normally the file that you double-click on when starting the program. In general,
the word program means either this single file or the collection of files with textual
instructions.

Programming is obviously about writing programs, but this process is more than
writing the correct instructions in a file. First, we must understand how a problem
can be solved by giving a sequence of instructions to the computer. This is one of
the most difficult things with programming. Second, we must express this sequence
of instructions correctly in a computer language and store the corresponding text in
a file (the program). This is normally the easiest part. Third, we must find out how
to check the validity of the results. Usually, the results are not as expected, and we
need to a fourth phase where we systematically track down the errors and correct
them. Mastering these four steps requires a lot of training, which means making
a large number of programs (exercises in this book, for instance!) and getting the
programs to work.

1.1.3 Tools for Writing Programs

There are three alternative types of tools for writing Python programs:

� a plain text editor
� an integrated development environment (IDE) with a text editor
� an IPython notebook

What you choose depends on how you access Python. Section H.1 contains infor-
mation on the various possibilities to install Python on your own computer, access
a pre-installed Python environment on a computer system at an institution, or access
Python in cloud services through your web browser.

Based on teaching this and previous books to more than 3000 students, my rec-
ommendations go as follows.

� If you use this book in a course, the instructor has probably made a choice for
how you should access Python – follow that advice.

� If you are a student at a university where Linux is the dominating operating
system, install a virtual machine with Ubuntu on your own laptop and do all
your scientific work in Ubuntu. Write Python programs in a text editor like
Gedit, Atom, Sublime Text, Emacs, or Vim, and run programs in a terminal
window (the gnome-terminal is recommended).

� If you are a student a university where Windows is the dominating operating
system, and you are a Windows user yourself, install Anaconda. Write and run
Python programs in Spyder.

� If you are uncertain how much you will program with Python and primarily
want to get a taste of Python programming first, access Python in the cloud, e.g.,
through the Wakari site.

4 1 Computing with Formulas

� If you want Python on your Mac and you are experienced with compiling and
linking software in the Mac OS X environment, install Anaconda on the Mac.
Write and run programs in Spyder, or use a text editor like Atom, TextWrangler,
Emacs, or Vim, and run programs in the Terminal application. If you are not
very familiar with building software on the Mac, and with environment variables
like PATH, it will be easier in the long run to access Python in Ubuntu through
a virtual machine.

1.1.4 Writing and Running Your First Python Program

I assume that you have made a decision on how to access Python, which dictates
whether you will be writing programs in a text editor or in an IPython notebook.
What you write will be the same – the difference lies in how you run the program.
Sections H.2 and H.4 briefly describe how to write programs in a text editor, run
them in a terminal window or in Spyder, and how to operate an IPython notebook.
I recommend taking a look at that material before proceeding.

Open up your chosen text editor and write the following line:

print 5*0.6 - 0.5*9.81*0.6**2

This is a complete Python program for evaluating the formula (1.2). Save the line
to a file with name ball1.py.

The action required to run this program depends on what type of tool you use for
running programs:

� terminal window: move to the folder where ball1.py is located and type
python ball1.py

� IPython notebook: click on the “play” button to execute the cell
� Spyder: choose Run from the Run pull-down menu

The output is 1.2342 and appears

� right after the python ball1.py command in a terminal window
� right after the program line (cell) in the IPython notebook
� in the lower right window in Spyder

We remark that there are other ways of running Python programs in the terminal
window, see Appendix H.5.

Suppose you want to evaluate (1.1) for v0 D 1 and t D 0:1. This is easy: move
the cursor to the editor window, edit the program text to

print 1*0.1 - 0.5*9.81*0.1**2

Run the program again in Spyder or re-execute the cell in an IPython notebook. If
you use a plain text editor, always remember to save the file after editing it, then
move back to the terminal window and run the program as before:

1.1 The First Programming Encounter: a Formula 5

Terminal

Terminal> python ball1.py
0.05095

The result of the calculation has changed, as expected.

Typesetting of operating system commands
We use the prompt Terminal> in this book to indicate commands in a Unix or
DOS/PowerShell terminal window. The text following the Terminal> prompt
must be a valid operating system command. You will likely see a different
prompt in the terminal window on your machine, perhaps something reflecting
your username or the current folder.

1.1.5 Warning About Typing Program Text

Even though a program is just a text, there is one major difference between a text in
a program and a text intended to be read by a human. When a human reads a text,
she or he is able to understand the message of the text even if the text is not perfectly
precise or if there are grammar errors. If our one-line program was expressed as

write 5*0.6 - 0.5*9.81*0.6^2

most humans would interpret write and print as the same thing, and many would
also interpret 6^2 as 62. In the Python language, however, write is a grammar
error and 6^2 means an operation very different from the exponentiation 6**2.
Our communication with a computer through a program must be perfectly precise
without a single grammar or logical error. The famous computer scientist Donald
Knuth put it this way:

Programming demands significantly higher standard of accuracy. Things don’t simply have
to make sense to another human being, they must make sense to a computer. Donald Knuth
[11, p. 18], 1938-.

That is, the computer will only do exactly what we tell it to do. Any error in the
program, however small, may affect the program. There is a chance that we will
never notice it, but most often an error causes the program to stop or produce wrong
results. The conclusion is that computers have a much more pedantic attitude to
language than what (most) humans have.

Now you understand why any program text must be carefully typed, paying at-
tention to the correctness of every character. If you try out program texts from this
book, make sure that you type them in exactly as you see them in the book. Blanks,
for instance, are often important in Python, so it is a good habit to always count
them and type them in correctly. Any attempt not to follow this advice will cause
you frustrations, sweat, and maybe even tears.

6 1 Computing with Formulas

1.1.6 Verifying the Result

We should always carefully control that the output of a computer program is correct.
You will experience that in most of the cases, at least until you are an experienced
programmer, the output is wrong, and you have to search for errors. In the present
application we can simply use a calculator to control the program. Setting t D 0:6

and v0 D 5 in the formula, the calculator confirms that 1.2342 is the correct solution
to our mathematical problem.

1.1.7 Using Variables

When we want to evaluate y.t/ for many values of t , we must modify the t value
at two places in our program. Changing another parameter, like v0, is in principle
straightforward, but in practice it is easy to modify the wrong number. Such modifi-
cations would be simpler to perform if we express our formula in terms of variables,
i.e., symbols, rather than numerical values. Most programming languages, Python
included, have variables similar to the concept of variables in mathematics. This
means that we can define v0, g, t, and y as variables in the program, initialize the
former three with numerical values, and combine these three variables to the desired
right-hand side expression in (1.1), and assign the result to the variable y.

The alternative version of our program, where we use variables, may be written
as this text:

v0 = 5

g = 9.81

t = 0.6

y = v0*t - 0.5*g*t**2

print y

Variables in Python are defined by setting a name (here v0, g, t, or y) equal to
a numerical value or an expression involving already defined variables.

Note that this second program is much easier to read because it is closer to the
mathematical notation used in the formula (1.1). The program is also safer to mod-
ify, because we clearly see what each number is when there is a name associated
with it. In particular, we can change t at one place only (the line t = 0.6) and not
two as was required in the previous program.

We store the program text in a file ball2.py. Running the program results in
the correct output 1.2342.

1.1.8 Names of Variables

Introducing variables with descriptive names, close to those in the mathematical
problem we are going to solve, is considered important for the readability and relia-
bility (correctness) of the program. Variable names can contain any lower or upper
case letter, the numbers from 0 to 9, and underscore, but the first character cannot be

1.1 The First Programming Encounter: a Formula 7

a number. Python distinguishes between upper and lower case, so X is always dif-
ferent from x. Here are a few examples on alternative variable names in the present
example:

initial_velocity = 5

acceleration_of_gravity = 9.81

TIME = 0.6

VerticalPositionOfBall = initial_velocity*TIME - \

0.5*acceleration_of_gravity*TIME**2

print VerticalPositionOfBall

With such long variables names, the code for evaluating the formula becomes so
long that we have decided to break it into two lines. This is done by a backslash at
the very end of the line (make sure there are no blanks after the backslash!).

In this book we shall adopt the convention that variable names have lower case
letters where words are separated by an underscore. Whenever the variable repre-
sents a mathematical symbol, we use the symbol or a good approximation to it as
variable name. For example, y in mathematics becomes y in the program, and v0

in mathematics becomes v0 in the program. A close resemblance between mathe-
matical symbols in the description of the problem and variables names is important
for easy reading of the code and for detecting errors. This principle is illustrated by
the code snippet above: even if the long variable names explain well what they rep-
resent, checking the correctness of the formula for y is harder than in the program
that employs the variables v0, g, t, and y0.

For all variables where there is no associated precise mathematical description
and symbol, one must use descriptive variable names which explain the purpose of
the variable. For example, if a problem description introduces the symbol D for
a force due to air resistance, one applies a variable D also in the program. How-
ever, if the problem description does not define any symbol for this force, one
must apply a descriptive name, such as air_resistance, resistance_force,
or drag_force.

How to choose variable names
� Use the same variable names in the program as in the mathematical descrip-

tion of the problem you want to solve.
� For all variables without a precise mathematical definition and symbol, use

a carefully chosen descriptive name.

1.1.9 ReservedWords in Python

Certain words are reserved in Python because they are used to build up the Python
language. These reserved words cannot be used as variable names: and, as,
assert, break, class, continue, def, del, elif, else, except, False,
finally, for, from, global, if, import, in, is, lambda, None, nonlocal,
not, or, pass, raise, return, True, try, with, while, and yield. If you wish
to use a reserved word as a variable name, it is common to an underscore at the
end. For example, if you need a mathematical quantity � in the program, you may

8 1 Computing with Formulas

work with lambda_ as variable name. See Exercise 1.16 for examples on legal and
illegal variable names.

Program files can have a freely chosen name, but stay away from names that
coincide with keywords or module names in Python. For instance, do not use
math.py, time.py, random.py, os.py, sys.py, while.py, for.py, if.py,
class.py, or def.py.

1.1.10 Comments

Along with the program statements it is often informative to provide some com-
ments in a natural human language to explain the idea behind the statements. Com-
ments in Python start with the # character, and everything after this character on
a line is ignored when the program is run. Here is an example of our program with
explanatory comments:

Program for computing the height of a ball in vertical motion.

v0 = 5 # initial velocity

g = 9.81 # acceleration of gravity

t = 0.6 # time

y = v0*t - 0.5*g*t**2 # vertical position

print y

This program and the initial version in Sect. 1.1.7 are identical when run on the
computer, but for a human the latter is easier to understand because of the com-
ments.

Good comments together with well-chosen variable names are necessary for any
program longer than a few lines, because otherwise the program becomes difficult to
understand, both for the programmer and others. It requires some practice to write
really instructive comments. Never repeat with words what the program statements
already clearly express. Use instead comments to provide important information
that is not obvious from the code, for example, what mathematical variable names
mean, what variables are used for, a quick overview of a set of forthcoming state-
ments, and general ideas behind the problem solving strategy in the code.

Remark If you use non-English characters in your comments, Python will com-
plain with error messages like

SyntaxError: Non-ASCII character ’\xc3’ in file ...

but no encoding declared; see

http://www.python.org/peps/pep-0263.html for details

Non-English characters are allowed if you put the following magic line in the pro-
gram before such characters are used:

-*- coding: utf-8 -*-

1.1 The First Programming Encounter: a Formula 9

(Yes, this is a comment, but it is not ignored by Python!) More information on
non-English characters and encodings like UTF-8 is found in Sect. 6.3.5.

1.1.11 Formatting Text and Numbers

Instead of just printing the numerical value of y in our introductory program, we
now want to write a more informative text, typically something like

At t=0.6 s, the height of the ball is 1.23 m.

where we also have control of the number of digits (here y is accurate up to cen-
timeters only).

Printf syntax The output of the type shown above is accomplished by a print
statement combined with some technique for formatting the numbers. The oldest
and most widely used such technique is known as printf formatting (originating
from the function printf in the C programming language). For a newcomer to
programming, the syntax of printf formatting may look awkward, but it is quite
easy to learn and very convenient and flexible to work with. The printf syntax is
used in a lot of other programming languages as well.

The sample output above is produced by this statement using printf syntax:

print ’At t=%g s, the height of the ball is %.2f m.’ % (t, y)

Let us explain this line in detail. The print statement prints a string: everything
that is enclosed in quotes (either single: ’, or double: ") denotes a string in Python.
The string above is formatted using printf syntax. This means that the string has
various “slots”, starting with a percentage sign, here %g and %.2f, where variables
in the program can be put in. We have two “slots” in the present case, and conse-
quently two variables must be put into the slots. The relevant syntax is to list the
variables inside standard parentheses after the string, separated from the string by
a percentage sign. The first variable, t, goes into the first “slot”. This “slot” has
a format specification %g, where the percentage sign marks the slot and the follow-
ing character, g, is a format specification. The g format instructs the real number
to be written as compactly as possible. The next variable, y, goes into the second
“slot”. The format specification here is .2f, which means a real number written
with two digits after the decimal place. The f in the .2f format stands for float,
a short form for floating-point number, which is the term used for a real number on
a computer.

For completeness we present the whole program, where text and numbers are
mixed in the output:

v0 = 5

g = 9.81

t = 0.6

y = v0*t - 0.5*g*t**2

print ’At t=%g s, the height of the ball is %.2f m.’ % (t, y)

10 1 Computing with Formulas

The program is found in the file ball_print1.py in the src/formulas folder of
the collection of programs associated with this book.

There are many more ways to specify formats. For example, e writes a number
in scientific notation, i.e., with a number between 1 and 10 followed by a power
of 10, as in 1:2432 � 10�3. On a computer such a number is written in the form
1.2432e-03. Capital E in the exponent is also possible, just replace e by E, with
the result 1.2432E-03.

For decimal notation we use the letter f, as in %f, and the output number
then appears with digits before and/or after a comma, e.g., 0.0012432 instead of
1.2432E-03. With the g format, the output will use scientific notation for large
or small numbers and decimal notation otherwise. This format is normally what
gives most compact output of a real number. A lower case g leads to lower case e
in scientific notation, while upper case G implies E instead of e in the exponent.

One can also specify the format as 10.4f or 14.6E, meaning in the first case that
a float is written in decimal notation with four decimals in a field of width equal to
10 characters, and in the second case a float written in scientific notation with six
decimals in a field of width 14 characters.

Here is a list of some important printf format specifications (the program
printf_demo.py exemplifies many of the constructions):

Format Meaning
%s a string
%d an integer
%0xd an integer in a field of with x, padded with leading zeros
%f decimal notation with six decimals
%e compact scientific notation, e in the exponent
%E compact scientific notation, E in the exponent
%g compact decimal or scientific notation (with e)
%G compact decimal or scientific notation (with E)
%xz format z right-adjusted in a field of width x
%-xz format z left-adjusted in a field of width x
%.yz format z with y decimals
%x.yz format z with y decimals in a field of width x
%% the percentage sign % itself

For a complete specification of the possible printf-style format strings, follow
the link from the item printf-style formatting in the index2 of the Python Standard
Library online documentation.

We may try out some formats by writing more numbers to the screen in our
program (the corresponding file is ball_print2.py):

v0 = 5

g = 9.81

t = 0.6

y = v0*t - 0.5*g*t**2

2 http://docs.python.org/2/genindex.html

http://tinyurl.com/pwyasaa/formulas/ball_print1.py
http://tinyurl.com/pwyasaa/formulas/printf_demo.py
http://docs.python.org/2/genindex.html
http://tinyurl.com/pwyasaa/formulas/ball_print2.py
http://docs.python.org/2/genindex.html

1.1 The First Programming Encounter: a Formula 11

print """

At t=%f s, a ball with

initial velocity v0=%.3E m/s

is located at the height %.2f m.

""" % (t, v0, y)

Observe here that we use a triple-quoted string, recognized by starting and ending
with three single or double quotes: ’’’ or """. Triple-quoted strings are used for
text that spans several lines.

In the print statement above, we print t in the f format, which by default
implies six decimals; v0 is written in the .3E format, which implies three decimals
and the number spans as narrow field as possible; and y is written with two decimals
in decimal notation in as narrow field as possible. The output becomes

Terminal

Terminal> python ball_print2.py

At t=0.600000 s, a ball with
initial velocity v0=5.000E+00 m/s
is located at the height 1.23 m.

You should look at each number in the output and check the formatting in detail.

Format string syntax Python offers all the functionality of the printf format and
much more through a different syntax, often known as format string syntax. Let
us illustrate this syntax on the one-line output previously used to show the printf
construction. The corresponding format string syntax reads

print ’At t={t:g} s, the height of the ball is {y:.2f} m.’.format(

t=t, y=y)

The “slots” where variables are inserted are now recognized by curly braces rather
than a percentage sign. The name of the variable is listed with an optional colon
and format specifier of the same kind as was used for the printf format. The various
variables and their values must be listed at the end as shown. This time the “slots”
have names so the sequence of variables is not important.

The multi-line example is written as follows in this alternative format:

print """

At t={t:f} s, a ball with

initial velocity v0={v0:.3E} m/s

is located at the height {y:.2f} m.

""".format(t=t, v0=v0, y=y)

The newline character We often want a computer program to write out text that
spans several lines. In the last example we obtained such output by triple-quoted
strings. We could also use ordinary single-quoted strings and a special character
for indicating where line breaks should occur. This special character reads \n, i.e.,
a backslash followed by the letter n. The two print statements

12 1 Computing with Formulas

print """y(t) is

the position of

our ball."""

print ’y(t) is\nthe position of\nour ball’

result in identical output:

y(t) is

the position of

our ball.

1.2 Computer Science Glossary

It is now time to pick up some important words that programmers use when they talk
about programming: algorithm, application, assignment, blanks (whitespace), bug,
code, code segment, code snippet, debug, debugging, execute, executable, imple-
ment, implementation, input, library, operating system, output, statement, syntax,
user, verify, and verification. These words are frequently used in English in lots of
contexts, yet they have a precise meaning in computer science.

Program and code are interchangeable terms. A code/program segment is a col-
lection of consecutive statements from a program. Another term with similar mean-
ing is code snippet. Many also use the word application in the same meaning as
program and code. A related term is source code, which is the same as the text
that constitutes the program. You find the source code of a program in one or more
text files. (Note that text files normally have the extension .txt, while program
files have an extension related to the programming language, e.g., .py for Python
programs. The content of a .py file is, nevertheless, plain text as in a .txt file.)

We talk about running a program, or equivalently executing a program or exe-
cuting a file. The file we execute is the file in which the program text is stored. This
file is often called an executable or an application. The program text may appear
in many files, but the executable is just the single file that starts the whole program
when we run that file. Running a file can be done in several ways, for instance, by
double-clicking the file icon, by writing the filename in a terminal window, or by
giving the filename to some program. This latter technique is what we have used so
far in this book: we feed the filename to the program python. That is, we execute
a Python program by executing another program python, which interprets the text
in our Python program file.

The term library is widely used for a collection of generally useful program
pieces that can be applied in many different contexts. Having access to good li-
braries means that you do not need to program code snippets that others have
already programmed (most probable in a better way!). There are huge numbers
of Python libraries. In Python terminology, the libraries are composed of modules
and packages. Section 1.4 gives a first glimpse of the mathmodule, which contains
a set of standard mathematical functions for sin x, cosx, ln x, ex , sinhx, sin�1 x,
etc. Later, you will meet many other useful modules. Packages are just collec-
tions of modules. The standard Python distribution comes with a large number of
modules and packages, but you can download many more from the Internet, see

1.2 Computer Science Glossary 13

in particular www.python.org/pypi. Very often, when you encounter a program-
ming task that is likely to occur in many other contexts, you can find a Python
module where the job is already done. To mention just one example, say you need
to compute how many days there are between two dates. This is a non-trivial task
that lots of other programmersmust have faced, so it is not a big surprise that Python
comes with a module datetime to do calculations with dates.

The recipe for what the computer is supposed to do in a program is called algo-
rithm. In the examples in the first couple of chapters in this book, the algorithms
are so simple that we can hardly distinguish them from the program text itself, but
later in the book we will carefully set up an algorithm before attempting to imple-
ment it in a program. This is useful when the algorithm is much more compact than
the resulting program code. The algorithm in the current example consists of three
steps:

� initialize the variables v0, g, and t with numerical values,
� evaluate y according to the formula (1.1),
� print the y value to the screen.

The Python program is very close to this text, but some less experienced program-
mers may want to write the tasks in English before translating them to Python.

The implementation of an algorithm is the process of writing and testing a pro-
gram. The testing phase is also known as verification: After the program text is
written we need to verify that the program works correctly. This is a very important
step that will receive substantial attention in the present book. Mathematical soft-
ware produce numbers, and it is normally quite a challenging task to verify that the
numbers are correct.

An error in a program is known as a bug, and the process of locating and re-
moving bugs is called debugging. Many look at debugging as the most difficult and
challenging part of computer programming. We have in fact devoted Appendix F to
the art of debugging in this book. The origin of the strange terms bug and debugging
can be found in Wikipedia3.

Programs are built of statements. There are many types of statements:

v0 = 3

is an assignment statement, while

print y

is a print statement. It is common to have one statement on each line, but it is
possible to write multiple statements on one line if the statements are separated by
semi-colon. Here is an example:

v0 = 3; g = 9.81; t = 0.6

y = v0*t - 0.5*g*t**2

print y

3 http://en.wikipedia.org/wiki/Software_bug#Etymology

http://en.wikipedia.org/wiki/Software_bug#Etymology
http://en.wikipedia.org/wiki/Software_bug#Etymology

14 1 Computing with Formulas

Although most newcomers to computer programming will think they under-
stand the meaning of the lines in the above program, it is important to be aware
of some major differences between notation in a computer program and notation
in mathematics. When you see the equality sign = in mathematics, it has a certain
interpretation as an equation (x C2 D 5) or a definition (f .x/ D x2 C1). In a com-
puter program, however, the equality sign has a quite different meaning, and it is
called an assignment. The right-hand side of an assignment contains an expression,
which is a combination of values, variables, and operators. When the expression is
evaluated, it results in a value that the variable on the left-hand side will refer to.
We often say that the right-hand side value is assigned to the variable on the left-
hand side. In the current context it means that we in the first line assign the number
3 to the variable v0, 9.81 to g, and 0.6 to t. In the next line, the right-hand side
expression v0*t - 0.5*g*t**2 is first evaluated, and the result is then assigned
to the y variable.

Consider the assignment statement

y = y + 3

This statement is mathematically false, but in a program it just means that we evalu-
ate the right-hand side expression and assign its value to the variable y. That is, we
first take the current value of y and add 3. The value of this operation is assigned to
y. The old value of y is then lost.

You may think of the = as an arrow, y <- y+3, rather than an equality sign, to
illustrate that the value to the right of the arrow is stored in the variable to the left of
the arrow. In fact, the R programming language for statistical computing actually
applies an arrow, many old languages (like Algol, Simula, and Pascal) used := to
explicitly state that we are not dealing with a mathematical equality.

An example will illustrate the principle of assignment to a variable:

y = 3

print y

y = y + 4

print y

y = y*y

print y

Running this program results in three numbers: 3, 7, 49. Go through the program
and convince yourself that you understand what the result of each statement be-
comes.

A computer program must have correct syntax, meaning that the text in the
programmust follow the strict rules of the computer language for constructing state-
ments. For example, the syntax of the print statement is the word print, followed
by one or more spaces, followed by an expression of what we want to print (a Python
variable, text enclosed in quotes, a number, for instance). Computers are very picky
about syntax! For instance, a human having read all the previous pages may easily
understand what this program does,

1.2 Computer Science Glossary 15

myvar = 5.2

prinnt Myvar

but the computer will find two errors in the last line: prinnt is an unknown instruc-
tion and Myvar is an undefined variable. Only the first error is reported (a syntax
error), because Python stops the program once an error is found. All errors that
Python finds are easy to remove. The difficulty with programming is to remove the
rest of the errors, such as errors in formulas or the sequence of operations.

Blanksmay or may not be important in Python programs. In Sect. 2.1.2 you will
see that blanks are in some occasions essential for a correct program. Around =
or arithmetic operators, however, blanks do not matter. We could hence write our
program from Sect. 1.1.7 as

v0=3;g=9.81;t=0.6;y=v0*t-0.5*g*t**2;print y

This is not a good idea because blanks are essential for easy reading of a program
code, and easy reading is essential for finding errors, and finding errors is the diffi-
cult part of programming. The recommended layout in Python programs specifies
one blank around =, +, and -, and no blanks around *, /, and **. Note that the
blank after print is essential: print is a command in Python and printy is not
recognized as any valid command. (Python will complain that printy is an unde-
fined variable.) Computer scientists often use the term whitespace when referring
to a blank. (To be more precise, blank is the character produced by the space bar
on the keyboard, while whitespace denotes any character(s) that, if printed, do not
print ink on the paper: a blank, a tabulator character (produced by backslash fol-
lowed by t), or a newline character (produced by backslash followed by n). (The
newline character is explained in Sect. 1.1.11.)

When we interact with computer programs, we usually provide some informa-
tion to the program and get some information out. It is common to use the term
input data, or just input, for the information that must be known on beforehand.
The result from a program is similarly referred to as output data, or just output. In
our example, v0, g, and t constitute input, while y is output. All input data must be
assigned values in the program before the output can be computed. Input data can
be explicitly initialized in the program, as we do in the present example, or the data
can be provided by the user through keyboard typing while the program is running
(see Chap. 4). Output data can be printed in the terminal window, as in the current
example, displayed as graphics on the screen, as done in Sect. 5.3, or stored in a file
for later access, as explained in Sect. 4.6.

The word user usually has a special meaning in computer science: It means a hu-
man interacting with a program. You are a user of a text editor for writing Python
programs, and you are a user of your own programs. When you write programs, it is
difficult to imagine how other users will interact with the program. Maybe they pro-
vide wrong input or misinterpret the output. Making user-friendly programs is very
challenging and depends heavily on the target audience of users. The author had
the average reader of the book in mind as a typical user when developing programs
for this book.

16 1 Computing with Formulas

A central part of a computer is the operating system. This is actually a collection
of programs that manages the hardware and software resources on the computer.
There are three dominating operating systems today on computers: Windows, Mac
OS X, and Linux. In addition, we have Android and iOS for handheld devices. Sev-
eral versions of Windows have appeared since the 1990s: Windows 95, 98, 2000,
ME, XP, Vista, Windows 7, andWindows 8. Unix was invented already in 1970 and
comes in many different versions. Nowadays, two open source implementations of
Unix, Linux and Free BSD Unix, are most common. The latter forms the core of the
Mac OS X operating system on Macintosh machines, while Linux exists in slightly
different flavors: Red Hat, Debian, Ubuntu, and OpenSuse to mention the most im-
portant distributions. We will use the term Unix in this book as a synonym for all
the operating systems that inherit from classical Unix, such as Solaris, Free BSD,
Mac OS X, and any Linux variant. As a computer user and reader of this book, you
should know exactly what operating system you have.

The user’s interaction with the operation system is through a set of programs.
The most widely used of these enable viewing the contents of folders or starting
other programs. To interact with the operating system, as a user, you can either
issue commands in a terminal window or use graphical programs. For example, for
viewing the file contents of a folder you can run the command ls in a Unix terminal
window or dir in a DOS (Windows) terminal window. The graphical alternatives
are many, some of the most common are Windows Explorer on Windows, Nautilus
and Konqueror on Unix, and Finder on Mac. To start a program, it is common to
double-click on a file icon or write the program’s name in a terminal window.

1.3 Another Formula: Celsius-Fahrenheit Conversion

Our next example involves the formula for converting temperature measured in Cel-
sius degrees to the corresponding value in Fahrenheit degrees:

F D 9

5
C C 32 (1.3)

In this formula, C is the amount of degrees in Celsius, and F is the corresponding
temperature measured in Fahrenheit. Our goal now is to write a computer program
that can compute F from (1.3) when C is known.

1.3.1 Potential Error: Integer Division

Straightforward coding of the formula A straightforward attempt at coding the
formula (1.3) goes as follows:

C = 21

F = (9/5)*C + 32

print F

1.3 Another Formula: Celsius-Fahrenheit Conversion 17

The parentheses around 9/5 are not strictly needed, i.e., (9/5)*C is computation-
ally identical to 9/5*C, but parentheses remove any doubt that 9/5*C could mean
9/(5*C). Section 1.3.4 has more information on this topic.

When run under Python version 2.x, the program prints the value 53. You can
find the program in the file c2f_v1.py in the src/formulas folder in the folder
tree of example programs from this book (downloaded from http://hplgit.github.
com/scipro-primer). The v1 part of the name stands for version 1. Throughout
this book, we will often develop several trial versions of a program, but remove the
version number in the final version of the program.

Verifying the results Testing the correctness is easy in this case since we can eval-
uate the formula on a calculator: 9

5
� 21 C 32 is 69.8, not 53. What is wrong? The

formula in the program looks correct!

Float and integer division The error in our program above is one of the most
common errors in mathematical software and is not at all obvious for a newcomer to
programming. In many computer languages, there are two types of divisions: float
division and integer division. Float division is what you know from mathematics:
9/5 becomes 1.8 in decimal notation.

Integer division a=b with integers (whole numbers) a and b results in an integer
that is truncated (or mathematically, rounded down). More precisely, the result is
the largest integer c such that bc � a. This implies that 9=5 becomes 1 since
1 �5 D 5 � 9 while 2 �5 D 10 > 9. Another example is 1=5, which becomes 0 since
0 �5 � 1 (and 1 �5 > 1). Yet another example is 16=6, which results in 2 (try 2 �6 and
3 � 6 to convince yourself). Many computer languages, including Fortran, C, C++,
Java, and Python version 2, interpret a division operation a/b as integer division
if both operands a and b are integers. If either a or b is a real (floating-point)
number, a/b implies the standard mathematical float division. Other languages,
such as MATLAB and Python version 3, interprets a/b as float division even if
both operands are integers, or complex division if one of the operands is a complex
number.

The problem with our program is the coding of the formula (9/5)*C + 32.
This formula is evaluated as follows. First, 9/5 is calculated. Since 9 and 5 are
interpreted by Python as integers (whole numbers), 9/5 is a division between two
integers, and Python version 2 chooses by default integer division, which results in
1. Then 1 is multiplied by C, which equals 21, resulting in 21. Finally, 21 and 32
are added with 53 as result.

We shall very soon present a correct version of the temperature conversion pro-
gram, but first it may be advantageous to introduce a frequently used term in Python
programming: object.

1.3.2 Objects in Python

When we write

C = 21

http://tinyurl.com/pwyasaa/formulas/c2f_v1.py
http://hplgit.github.com/scipro-primer
http://hplgit.github.com/scipro-primer

18 1 Computing with Formulas

Python interprets the number 21 on the right-hand side of the assignment as an
integer and creates an int (for integer) object holding the value 21. The variable
C acts as a name for this int object. Similarly, if we write C = 21.0, Python
recognizes 21.0 as a real number and therefore creates a float (for floating-point)
object holding the value 21.0 and lets C be a name for this object. In fact, any
assignment statement has the form of a variable name on the left-hand side and
an object on the right-hand side. One may say that Python programming is about
solving a problem by defining and changing objects.

At this stage, you do not need to know what an object really is, just think of
an int object as a collection, say a storage box, with some information about an
integer number. This information is stored somewhere in the computer’s memory,
and with the name C the program gets access to this information. The fundamental
issue right now is that 21 and 21.0 are identical numbers in mathematics, while in
a Python program 21 gives rise to an int object and 21.0 to a float object.

There are lots of different object types in Python, and you will later learn how to
create your own customized objects. Some objects contain a lot of data, not just an
integer or a real number. For example, when we write

print ’A text with an integer %d and a float %f’ % (2, 2.0)

a str (string) object, without a name, is first made of the text between the quotes
and then this str object is printed. We can alternatively do this in two steps:

s = ’A text with an integer %d and a float %f’ % (2, 2.0)

print s

1.3.3 Avoiding Integer Division

As a quite general rule of thumb, one should be careful to avoid integer division
when programming mathematical formulas. In the rare cases when a mathematical
algorithm does make use of integer division, one should use a double forward slash,
//, as division operator, because this is Python’s way of explicitly indicating integer
division.

Python version 3 has no problem with unintended integer division, so the prob-
lem only arises with Python version 2 (and many other common languages for
scientific computing). There are several ways to avoid integer division with the
plain / operator. The simplest remedy in Python version 2 is to write

from __future__ import division

This import statement must be present in the beginning of every file where the /
operator always shall imply float division. Alternatively, one can run a Python
program someprogram.py from the command line with the argument -Qnew to the
Python interpreter:

Terminal

Terminal> python -Qnew someprogram.py

1.3 Another Formula: Celsius-Fahrenheit Conversion 19

A more widely applicable method, also in other programming languages than
Python version 2, is to enforce one of the operands to be a float object. In the
current example, there are several ways to do this:

F = (9.0/5)*C + 32

F = (9/5.0)*C + 32

F = float(C)*9/5 + 32

In the first two lines, one of the operands is written as a decimal number, implying
a float object and hence float division. In the last line, float(C)*9means float
times int, which results in a float object, and float division is guaranteed.

A related construction,

F = float(C)*(9/5) + 32

does not work correctly, because 9/5 is evaluated by integer division, yielding 1,
before being multiplied by a float representation of C (see next section for how
compound arithmetic operations are calculated). In other words, the formula reads
F=C+32, which is wrong.

We now understand why the first version of the program does not work and what
the remedy is. A correct program is

C = 21

F = (9.0/5)*C + 32

print F

Instead of 9.0 we may just write 9. (the dot implies a float interpretation of the
number). The program is available in the file c2f.py. Try to run it – and observe
that the output becomes 69.8, which is correct.

Locating potential integer division Running a Python program with the
-Qwarnall argument, say

Terminal

Terminal> python -Qwarnall someprogram.py

will print out a warning every time an integer division expression is encountered in
Python version 2.

Remark We could easily have run into problems in our very first programs if we
instead of writing the formula 1

2
gt2 as 0.5*g*t**2 wrote (1/2)*g*t**2. This

term would then always be zero!

http://tinyurl.com/pwyasaa/formulas/c2d.py

20 1 Computing with Formulas

1.3.4 Arithmetic Operators and Precedence

Formulas in Python programs are usually evaluated in the same way as we would
evaluate them mathematically. Python proceeds from left to right, term by term in
an expression (terms are separated by plus or minus). In each term, power opera-
tions such as ab, coded as a**b, has precedence over multiplication and division.
As in mathematics, we can use parentheses to dictate the way a formula is evaluated.
Below are two illustrations of these principles.

� 5/9+2*a**4/2: First 5/9 is evaluated (as integer division, giving 0 as result),
then a4 (a**4) is evaluated, then 2 is multiplied with a4, that result is divided by
2, and the answer is added to the result of the first term. The answer is therefore
a**4.

� 5/(9+2)*a**(4/2): First 5
9C2

is evaluated (as integer division, yielding 0), then
4/2 is computed (as integer division, yielding 2), then a**2 is calculated, and that
number is multiplied by the result of 5/(9+2). The answer is thus always zero.

As evident from these two examples, it is easy to unintentionally get integer division
in formulas. Although integer division can be turned off in Python, we think it is
important to be strongly aware of the integer division concept and to develop good
programming habits to avoid it. The reason is that this concept appears in so many
common computer languages that it is better to learn as early as possible how to deal
with the problem rather than using a Python-specific feature to remove the problem.

1.4 Evaluating StandardMathematical Functions

Mathematical formulas frequently involve functions such as sin, cos, tan, sinh, cosh,
exp, log, etc. On a pocket calculator you have special buttons for such functions.
Similarly, in a program you also have ready-made functionality for evaluating these
types of mathematical functions. One could in principle write one’s own program
for evaluating, e.g., the sin.x/ function, but how to do this in an efficient way is
a non-trivial topic. Experts have worked on this problem for decades and imple-
mented their best recipes in pieces of software that we should reuse. This section
tells you how to reach sin, cos, and similar functions in a Python context.

1.4.1 Example: Using the Square Root Function

Problem Consider the formula for the height y of a ball in vertical motion, with
initial upward velocity v0:

yc D v0t � 1

2
gt2;

where g is the acceleration of gravity and t is time. We now ask the question:
How long time does it take for the ball to reach the height yc? The answer is
straightforward to derive. When y D yc we have

yc D v0t � 1

2
gt2 :

1.4 Evaluating Standard Mathematical Functions 21

We recognize that this equation is a quadratic equation, which we must solve with
respect to t . Rearranging,

1

2
gt2 � v0t C yc D 0;

and using the well-known formula for the two solutions of a quadratic equation, we
find

t1 D
�

v0 �
q

v2
0 � 2gyc

�
=g; t2 D

�
v0 C

q
v2

0 � 2gyc

�
=g : (1.4)

There are two solutions because the ball reaches the height yc on its way up .t D t1)
and on its way down (t D t2 > t1).

The program To evaluate the expressions for t1 and t2 from (1.4) in a computer
program, we need access to the square root function. In Python, the square root
function and lots of other mathematical functions, such as sin, cos, sinh, exp, and
log, are available in a module called math. We must first import the module be-
fore we can use it, that is, we must write import math. Thereafter, to take the
square root of a variable a, we can write math.sqrt(a). This is demonstrated in
a program for computing t1 and t2:

v0 = 5

g = 9.81

yc = 0.2

import math

t1 = (v0 - math.sqrt(v0**2 - 2*g*yc))/g

t2 = (v0 + math.sqrt(v0**2 - 2*g*yc))/g

print ’At t=%g s and %g s, the height is %g m.’ % (t1, t2, yc)

The output from this program becomes

At t=0.0417064 s and 0.977662 s, the height is 0.2 m.

You can find the program as the file ball_yc.py in the src/formulas folder.

Two ways of importing a module The standard way to import a module, say
math, is to write

import math

and then access individual functions in the module with the module name as prefix
as in

x = math.sqrt(y)

People working with mathematical functions often find math.sqrt(y) less pleas-
ing than just sqrt(y). Fortunately, there is an alternative import syntax that allows

http://tinyurl.com/pwyasaa/formulas/ball_yc.py

22 1 Computing with Formulas

us to skip the module name prefix. This alternative syntax has the form from
module import function. A specific example is

from math import sqrt

Now we can work with sqrt directly, without the math. prefix. More than one
function can be imported:

from math import sqrt, exp, log, sin

Sometimes one just writes

from math import *

to import all functions in the math module. This includes sin, cos, tan, asin,
acos, atan, sinh, cosh, tanh, exp, log (base e), log10 (base 10), sqrt, as
well as the famous numbers e and pi. Importing all functions from a module,
using the asterisk (*) syntax, is convenient, but this may result in a lot of extra
names in the program that are not used. It is in general recommended not to import
more functions than those that are really used in the program. Nevertheless, the
convenience of the compact from math import * syntax occasionally wins over
the general recommendation among practitioners – and in this book.

With a from math import sqrt statement we can write the formulas for the
roots in a more pleasing way:

t1 = (v0 - sqrt(v0**2 - 2*g*yc))/g

t2 = (v0 + sqrt(v0**2 - 2*g*yc))/g

Import with new names Imported modules and functions can be given new names
in the import statement, e.g.,

import math as m

m is now the name of the math module

v = m.sin(m.pi)

from math import log as ln

v = ln(5)

from math import sin as s, cos as c, log as ln

v = s(x)*c(x) + ln(x)

In Python, everything is an object, and variables refer to objects, so new variables
may refer to modules and functions as well as numbers and strings. The examples
above on new names can also be coded by introducing new variables explicitly:

m = math

ln = m.log

s = m.sin

c = m.cos

1.4 Evaluating Standard Mathematical Functions 23

1.4.2 Example: Computing with sinhx

Our next examples involve calling some more mathematical functions from the
mathmodule. We look at the definition of the sinh.x/ function:

sinh.x/ D 1

2
.ex � e�x/ : (1.5)

We can evaluate sinh.x/ in three ways: i) by calling math.sinh, ii) by computing
the right-hand side of (1.5), using math.exp, or iii) by computing the right-hand
side of (1.5) with the aid of the power expressions math.e**x and math.e**(-x).
A program doing these three alternative calculations is found in the file 3sinh.py.
The core of the program looks like this:

from math import sinh, exp, e, pi

x = 2*pi

r1 = sinh(x)

r2 = 0.5*(exp(x) - exp(-x))

r3 = 0.5*(e**x - e**(-x))

print r1, r2, r3

The output from the program shows that all three computations give identical re-
sults:

267.744894041 267.744894041 267.744894041

1.4.3 A First Glimpse of Rounding Errors

The previous example computes a function in three different yet mathematically
equivalent ways, and the output from the print statement shows that the three
resulting numbers are equal. Nevertheless, this is not the whole story. Let us try to
print out r1, r2, r3 with 16 decimals:

print ’%.16f %.16f %.16f’ % (r1,r2,r3)

This statement leads to the output

267.7448940410164369 267.7448940410164369 267.7448940410163232

Now r1 and r2 are equal, but r3 is different! Why is this so?
Our program computes with real numbers, and real numbers need in general an

infinite number of decimals to be represented exactly. The computer truncates the
sequence of decimals because the storage is finite. In fact, it is quite standard to
keep only 17 digits in a real number on a computer. Exactly how this truncation is
done is not explained in this book, but you read more on Wikipedia4. For now the

4 http://en.wikipedia.org/wiki/Floating_point_number

http://tinyurl.com/pwyasaa/formulas/3sinh.py
http://en.wikipedia.org/wiki/Floating_point_number
http://en.wikipedia.org/wiki/Floating_point_number

24 1 Computing with Formulas

purpose is to notify the reader that real numbers on a computer often have a small
error. Only a few real numbers can be represented exactly, the rest of the real
numbers are only approximations.

For this reason, most arithmetic operations involve inaccurate real numbers, re-
sulting in inaccurate calculations. Think of the following two calculations: 1=49 �49

and 1=51 � 51. Both expressions are identical to 1, but when we perform the calcu-
lations in Python,

print ’%.16f %.16f’ % (1/49.0*49, 1/51.0*51)

the result becomes

0.9999999999999999 1.0000000000000000

The reason why we do not get exactly 1.0 as answer in the first case is because 1/49
is not correctly represented in the computer. Also 1/51 has an inexact representa-
tion, but the error does not propagate to the final answer.

To summarize, errors in floating-point numbers may propagate through mathe-
matical calculations and result in answers that are only approximations to the exact
underlying mathematical values. The errors in the answers are commonly known as
rounding errors. As soon as you use Python interactively as explained in the next
section, you will encounter rounding errors quite often.

Python has a special module decimal and the SymPy package has an alternative
module mpmath, which allow real numbers to be represented with adjustable accu-
racy so that rounding errors can be made as small as desired (an example appears
at the end of Sect. 3.1.12). However, we will hardly use such modules because ap-
proximations implied by many mathematical methods applied throughout this book
normally lead to (much) larger errors than those caused by rounding.

1.5 Interactive Computing

A particular convenient feature of Python is the ability to execute statements and
evaluate expressions interactively. The environments where you work interactively
with programming are commonly known as Python shells. The simplest Python
shell is invoked by just typing python at the command line in a terminal window.
Some messages about Python are written out together with a prompt >>>, after
which you can issue commands. Let us try to use the interactive shell as a calculator.
Type in 3*4.5-0.5 and then press the Return key to see Python’s response to this
expression:

Terminal> python

Python 2.7.5+ (default, Sep 19 2013, 13:48:49)

[GCC 4.8.1] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> 3*4.5-0.5

13.0

1.5 Interactive Computing 25

The text on a line after >>> is what we write (shell input) and the text without
the >>> prompt is the result that Python calculates (shell output). It is easy, as
explained below, to recover previous input and edit the text. This editing feature
makes it convenient to experiment with statements and expressions.

1.5.1 Using the Python Shell

The program from Sect. 1.1.7 can be typed in line by line in the interactive shell:

>>> v0 = 5

>>> g = 9.81

>>> t = 0.6

>>> y = v0*t - 0.5*g*t**2

>>> print y

1.2342

We can now easily calculate an y value corresponding to another (say) v0 value: hit
the up arrow key to recover previous statements, repeat pressing this key until the
v0 = 5 statement is displayed. You can then edit the line, e.g., to

>>> v0 = 6

Press return to execute this statement. You can control the new value of v0 by either
typing just v0 or print v0:

>>> v0

6

>>> print v0

6

The next step is to recompute y with this new v0 value. Hit the up arrow key
multiple times to recover the statement where y is assigned, press the Return key,
and write y or print y to see the result of the computation:

>>> y = v0*t - 0.5*g*t**2

>>> y

1.8341999999999996

>>> print y

1.8342

The reason why we get two slightly different results is that typing just y prints out
all the decimals that are stored in the computer (16), while print y writes out y
with fewer decimals. As mentioned in Sect. 1.4.3 computations on a computer often
suffer from rounding errors. The present calculation is no exception. The correct
answer is 1.8342, but rounding errors lead to a number that is incorrect in the 16th
decimal. The error is here 4 � 10�16.

26 1 Computing with Formulas

1.5.2 Type Conversion

Often you can work with variables in Python without bothering about the type of
objects these variables refer to. Nevertheless, we encountered a serious problem in
Sect. 1.3.1 with integer division, which forced us to be careful about the types of
objects in a calculation. The interactive shell is very useful for exploring types. The
following example illustrates the type function and how we can convert an object
from one type to another.

First, we create an int object bound to the name C and check its type by calling
type(C):

>>> C = 21

>>> type(C)

<type ’int’>

We convert this int object to a corresponding float object:

>>> C = float(C) # type conversion

>>> type(C)

<type ’float’>

>>> C

21.0

In the statement C = float(C) we create a new object from the original object
referred to by the name C and bind it to the same name C. That is, C refers to
a different object after the statement than before. The original int with value 21
cannot be reached anymore (since we have no name for it) and will be automatically
deleted by Python.

We may also do the reverse operation, i.e., convert a particular float object to
a corresponding int object:

>>> C = 20.9

>>> type(C)

<type ’float’>

>>> D = int(C) # type conversion

>>> type(D)

<type ’int’>

>>> D

20 # decimals are truncated :-/

In general, one can convert a variable v to type MyType by writing v=MyType(v),
if it makes sense to do the conversion.

In the last input we tried to convert a float to an int, and this operation implied
stripping off the decimals. Correct conversion according to mathematical rounding
rules can be achieved with help of the round function:

>>> round(20.9)

21.0

>>> int(round(20.9))

21

1.5 Interactive Computing 27

1.5.3 IPython

There exist several improvements of the standard Python shell presented in
Sect. 1.5. The author advocates IPython as the preferred interactive shell. You
will then need to have IPython installed. Typing ipython in a terminal window
starts the shell. The (default) prompt in IPython is not >>> but In [X]:, where
X is the number of the present input command. The most widely used features of
IPython are summarized below.

Running programs Python programs can be run from within the shell:

In [1]: run ball2.py

1.2342

This command requires that you have taken a cd to the folder where the ball2.py
program is located and started IPython from there.

On Windows you may, as an alternative to starting IPython from a DOS or Pow-
erShell window, double click on the IPython desktop icon or use the Start menu. In
that case, you must move to the right folder where your program is located. This
is done by the os.chdir (change directory) command. Typically, you write some-
thing like

In [1]: import os

In [2]: os.chdir(r’C:\Documents and Settings\me\My Documents\div’)

In [3]: run ball2.py

if the ball2.py program is located in the folder div under My Documents of user
me. Note the r before the quote in the string: it is required to let a backslash
really mean the backslash character. If you end up typing the os.chdir command
every time you enter an IPython shell, this command (and others) can be placed in
a startup file such that they are automatically executed when you launch IPython.

Inside IPython you can invoke any operating system command. This allows us
to navigate to the right folder above using Unix or Windows (cd) rather than Python
(os.chdir):

In [1]: cd C:\Documents and Settings\me\My Documents\div

In [3]: run ball2.py

We recommend running all your Python programs from the IPython shell. Es-
pecially when something goes wrong, IPython can help you to examine the state of
variables so that you become quicker to locate bugs.

Typesetting convention for executing Python programs
In the rest of the book, we just write the program name and the output when we
illustrate the execution of a program:

Terminal

ball2.py
1.2342

28 1 Computing with Formulas

You then need to write run before the program name if you execute the program
in IPython, or if you prefer to run the program directly in a terminal window,
you need to write python prior to the program name. Appendix H.5 describes
various other ways to run a Python program.

Quick recovery of previous output The results of the previous statements in an
interactive IPython session are available in variables of the form _iX (underscore, i,
and a number X), where X is 1 for the last statement, 2 for the second last statement,
and so forth. Short forms are _ for _i1, __ for _i2, and ___ for _i3. The output
from the In [1] input above is 1.2342. We can now refer to this number by an
underscore and, e.g., multiply it by 10:

In [2]: _*10

Out[2]: 12.341999999999999

Output from Python statements or expressions in IPython are preceded by Out[X]
where X is the command number corresponding to the previous In [X] prompt.
When programs are executed, as with the run command, or when operating system
commands are run (as shown below), the output is from the operating system and
then not preceded by any Out[X] label.

The command history from previous IPython sessions is available in a new ses-
sion. This feature makes it easy to modify work from a previous session by just
hitting the up-arrow to recall commands and edit them as necessary.

Tab completion Pressing the TAB key will complete an incompletely typed vari-
able name. For example, after defining my_long_variable_name = 4, write just
my at the In [4]: prompt below, and then hit the TAB key. You will experience
that my is immediately expanded to my_long_variable_name. This automatic ex-
pansion feature is called TAB completion and can save you from quite some typing.

In [3]: my_long_variable_name = 4

In [4]: my_long_variable_name

Out[4]: 4

Recovering previous commands You can walk through the command history by
typing Ctrl+p or the up arrow for going backward or Ctrl+n or the down arrow
for going forward. Any command you hit can be edited and re-executed. Also
commands from previous interactive sessions are stored in the command history.

Running Unix/Windows commands Operating system commands can be run
from IPython. Below we run the three Unix commands date, ls (list files), mkdir
(make directory), and cd (change directory):

In [5]: date

Thu Nov 18 11:06:16 CET 2010

In [6]: ls

myfile.py yourprog.py

1.6 Complex Numbers 29

In [7]: mkdir mytestdir

In [8]: cd mytestdir

If you have defined Python variables with the same name as operating system com-
mands, e.g., date=30, you must write !date to run the corresponding operating
system command.

IPython can do much more than what is shown here, but the advanced features
and the documentation of them probably do not make sense before you are more
experienced with Python – and with reading manuals.

Typesetting of interactive shells in this book
In the rest of the book we will apply the >>> prompt in interactive sessions
instead of the input and output prompts as used by default by IPython, simply
because most Python books and electronic manuals use >>> to mark input in
interactive shells. However, when you sit by the computer and want to use an
interactive shell, we recommend using IPython, and then you will see the In
[X] prompt instead of >>>.

Notebooks A particularly interesting feature of IPython is the notebook, which
allows you to record and replay exploratory interactive sessions with a mix of text,
mathematics, Python code, and graphics. See Sect. H.4 for a quick introduction to
IPython notebooks.

1.6 Complex Numbers

Suppose x2 D 2. Then most of us are able to find out that x D p
2 is a solution

to the equation. The more mathematically interested reader will also remark that
x D �p

2 is another solution. But faced with the equation x2 D �2, very few are
able to find a proper solution without any previous knowledge of complex numbers.
Such numbers have many applications in science, and it is therefore important to be
able to use such numbers in our programs.

On the following pages we extend the previous material on computing with real
numbers to complex numbers. The text is optional, and readers without knowledge
of complex numbers can safely drop this section and jump to Sect. 1.8.

A complex number is a pair of real numbers a and b, most often written as aCbi ,
or a C ib, where i is called the imaginary unit and acts as a label for the second
term. Mathematically, i D p�1. An important feature of complex numbers is
definitely the ability to compute square roots of negative numbers. For example,p�2 D p

2i (i.e.,
p

2
p�1). The solutions of x2 D �2 are thus x1 D Cp

2i and
x2 D �p

2i .
There are rules for addition, subtraction, multiplication, and division between

two complex numbers. There are also rules for raising a complex number to a real
power, as well as rules for computing sin z, cos z, tan z, ez , ln z, sinh z, cosh z,
tanh z, etc. for a complex number z D a C ib. We assume in the following that
you are familiar with the mathematics of complex numbers, at least to the degree

30 1 Computing with Formulas

encountered in the program examples.

let u D a C bi and v D c C di

The following rules reflect complex arithmetics:

u D v) a D c; b D d

�u D �a � bi

u� � a � bi (complex conjugate)

u C v D .a C c/ C .b C d/i

u � v D .a � c/ C .b � d/i

uv D .ac � bd/ C .bc C ad/i

u=v D ac C bd

c2 C d 2
C bc � ad

c2 C d 2
i

juj D
p

a2 C b2

eiq D cos q C i sin q

1.6.1 Complex Arithmetics in Python

Python supports computation with complex numbers. The imaginary unit is written
as j in Python, instead of i as in mathematics. A complex number 2�3i is therefore
expressed as (2-3j) in Python. We remark that the number i is written as 1j, not
just j. Below is a sample session involving definition of complex numbers and
some simple arithmetics:

>>> u = 2.5 + 3j # create a complex number

>>> v = 2 # this is an int

>>> w = u + v # complex + int

>>> w

(4.5+3j)

>>> a = -2

>>> b = 0.5

>>> s = a + b*1j # create a complex number from two floats

>>> s = complex(a, b) # alternative creation

>>> s

(-2+0.5j)

>>> s*w # complex*complex

(-10.5-3.75j)

>>> s/w # complex/complex

(-0.25641025641025639+0.28205128205128205j)

A complex object s has functionality for extracting the real and imaginary parts as
well as computing the complex conjugate:

1.6 Complex Numbers 31

>>> s.real

-2.0

>>> s.imag

0.5

>>> s.conjugate()

(-2-0.5j)

1.6.2 Complex Functions in Python

Taking the sine of a complex number does not work:

>>> from math import sin

>>> r = sin(w)

Traceback (most recent call last):

File "<input>", line 1, in ?

TypeError: can’t convert complex to float; use abs(z)

The reason is that the sin function from the math module only works with real
(float) arguments, not complex. A similar module, cmath, defines functions that
take a complex number as argument and return a complex number as result. As an
example of using the cmathmodule, we can demonstrate that the relation sin.ai/ D
i sinh a holds:

>>> from cmath import sin, sinh

>>> r1 = sin(8j)

>>> r1

1490.4788257895502j

>>> r2 = 1j*sinh(8)

>>> r2

1490.4788257895502j

Another relation, eiq D cos q C i sin q, is exemplified next:

>>> q = 8 # some arbitrary number

>>> exp(1j*q)

(-0.14550003380861354+0.98935824662338179j)

>>> cos(q) + 1j*sin(q)

(-0.14550003380861354+0.98935824662338179j)

1.6.3 Unified Treatment of Complex and Real Functions

The cmath functions always return complex numbers. It would be nice to have
functions that return a float object if the result is a real number and a complex
object if the result is a complex number. The Numerical Python package has such
versions of the basic mathematical functions known from math and cmath. By
taking a

from numpy.lib.scimath import *

32 1 Computing with Formulas

one obtains access to these flexible versions of mathematical functions. The func-
tions also get imported by any of the statements

from scipy import *

from scitools.std import *

A session will illustrate what we obtain. Let us first use the sqrt function in the
mathmodule:

>>> from math import sqrt

>>> sqrt(4) # float

2.0

>>> sqrt(-1) # illegal

Traceback (most recent call last):

File "<input>", line 1, in ?

ValueError: math domain error

If we now import sqrt from cmath,

>>> from cmath import sqrt

the previous sqrt function is overwritten by the new one. More precisely, the name
sqrt was previously bound to a function sqrt from the math module, but is now
bound to another function sqrt from the cmath module. In this case, any square
root results in a complex object:

>>> sqrt(4) # complex

(2+0j)

>>> sqrt(-1) # complex

1j

If we now take

>>> from numpy.lib.scimath import *

we import (among other things) a new sqrt function. This function is slower than
the versions from math and cmath, but it has more flexibility since the returned
object is float if that is mathematically possible, otherwise a complex is returned:

>>> sqrt(4) # float

2.0

>>> sqrt(-1) # complex

1j

As a further illustration of the need for flexible treatment of both complex and
real numbers, we may code the formulas for the roots of a quadratic function
f .x/ D ax2 C bx C c:

1.7 Symbolic Computing 33

>>> a = 1; b = 2; c = 100 # polynomial coefficients

>>> from numpy.lib.scimath import sqrt

>>> r1 = (-b + sqrt(b**2 - 4*a*c))/(2*a)

>>> r2 = (-b - sqrt(b**2 - 4*a*c))/(2*a)

>>> r1

(-1+9.94987437107j)

>>> r2

(-1-9.94987437107j)

Using the up arrow, we may go back to the definitions of the coefficients and change
them so the roots become real numbers:

>>> a = 1; b = 4; c = 1 # polynomial coefficients

Going back to the computations of r1 and r2 and performing them again, we get

>>> r1

-0.267949192431

>>> r2

-3.73205080757

That is, the two results are float objects. Had we applied sqrt from cmath, r1
and r2would always be complex objects, while sqrt from the mathmodule would
not handle the first (complex) case.

1.7 Symbolic Computing

Python has a package SymPy for doing symbolic computing, such as symbolic
(exact) integration, differentiation, equation solving, and expansion of Taylor se-
ries, to mention some common operations in mathematics. We shall here only give
a glimpse of SymPy in action with the purpose of drawing attention to this powerful
part of Python.

For interactive work with SymPy it is recommended to either use IPython or the
special, interactive shell isympy, which is installed along with SymPy itself.

Below we shall explicitly import each symbol we need from SymPy to empha-
size that the symbol comes from that package. For example, it will be important
to know whether sin means the sine function from the mathmodule, aimed at real
numbers, or the special sine function from sympy, aimed at symbolic expressions.

1.7.1 Basic Differentiation and Integration

The following session shows how easy it is to differentiate a formula v0t � 1
2
gt2

with respect to t and integrate the answer to get the formula back:

34 1 Computing with Formulas

>>> from sympy import (

... symbols, # define symbols for symbolic math

... diff, # differentiate expressions

... integrate, # integrate expressions

... Rational, # define rational numbers

... lambdify, # turn symbolic expr. into Python functions

...)

>>> t, v0, g = symbols(’t v0 g’)

>>> y = v0*t - Rational(1,2)*g*t**2

>>> dydt = diff(y, t)

>>> dydt

-g*t + v0

>>> print ’acceleration:’, diff(y, t, t) # 2nd derivative

acceleration: -g

>>> y2 = integrate(dydt, t)

>>> y2

-g*t**2/2 + t*v0

Note here that t is a symbolic variable (not a float as it is in numerical computing),
and y (like y2) is a symbolic expression (not a float as it would be in numerical
computing).

A very convenient feature of SymPy is that symbolic expressions can be turned
into ordinary Python functions via lambdify. (Python functions are introduced in
Chap. 3, but when discussing SymPy here in the present chapter, it is very natural
to explain how lambdify can transform symbolic expressions back to ordinary
numerical Python expressions.) Let us take the dydt expression above and turn it
into a Python function v(t, v0, g) for numerical computing:

>>> v = lambdify([t, v0, g], # arguments in v

dydt) # symbolic expression

>>> v(t=0, v0=5, g=9.81)

5

>>> v(2, 5, 9.81)

-14.62

>>> 5 - 9.81*2 # control the previous calculation

-14.62

1.7.2 Equation Solving

A linear equation defined through an expression e that is zero, can be solved by
solve(e, t), if t is the unknown (symbol) in the equation. Here we may find the
roots of y D 0:

>>> from sympy import solve

>>> roots = solve(y, t)

>>> roots

[0, 2*v0/g]

We can easily check the answer by inserting the roots in y. Inserting an expression
e2 for e1 in some expression e is done by e.subs(e1, e2). In our case we check
that

1.8 Summary 35

>>> y.subs(t, roots[0])

0

>>> y.subs(t, roots[1])

0

1.7.3 Taylor Series andMore

A Taylor polynomial of order n for an expression e in a variable t around the point
t0 is computed by e.series(t, t0, n). Testing this on et and esin.t/ gives

>>> from sympy import exp, sin, cos

>>> f = exp(t)

>>> f.series(t, 0, 3)

1 + t + t**2/2 + O(t**3)

>>> f = exp(sin(t))

>>> f.series(t, 0, 8)

1 + t + t**2/2 - t**4/8 - t**5/15 - t**6/240 + t**7/90 + O(t**8)

Output of mathematical expressions in the LATEX typesetting system is possible:

>>> from sympy import latex

>>> print latex(f.series(t, 0, 7))

’1 + t + \frac{t^{2}}{2} - \frac{t^{4}}{8} - \frac{t^{5}}{15} -

\frac{t^{6}}{240} + \mathcal{O}\left(t^{7}\right)’

Finally, we mention that there are tools for expanding and simplifying expres-
sions:

>>> from sympy import simplify, expand

>>> x, y = symbols(’x y’)

>>> f = -sin(x)*sin(y) + cos(x)*cos(y)

>>> simplify(f)

cos(x + y)

>>> expand(sin(x+y), trig=True) # requires a trigonometric hint

sin(x)*cos(y) + sin(y)*cos(x)

Later chapters utilize SymPy where it can save some algebraic work, but this book
is almost exclusively devoted to numerical computing.

1.8 Summary

1.8.1 Chapter Topics

Programs must be accurate! A program is a collection of statements stored in
a text file. Statements can also be executed interactively in a Python shell. Any
error in any statement may lead to termination of the execution or wrong results.
The computer does exactly what the programmer tells the computer to do!

36 1 Computing with Formulas

Variables The statement

some_variable = obj

defines a variable with the name some_variable which refers to an object obj.
Here objmay also represent an expression, say a formula, whose value is a Python
object. For example, 1+2.5 involves the addition of an int object and a float
object, resulting in a float object. Names of variables can contain upper and lower
case English letters, underscores, and the digits from 0 to 9, but the name cannot
start with a digit. Nor can a variable name be a reserved word in Python.

If there exists a precise mathematical description of the problem to be solved in
a program, one should choose variable names that are in accordance with the math-
ematical description. Quantities that do not have a defined mathematical symbol,
should be referred to by descriptive variables names, i.e., names that explain the
variable’s role in the program. Well-chosen variable names are essential for making
a program easy to read, easy to debug, and easy to extend. Well-chosen variable
names also reduce the need for comments.

Comment lines Everything after # on a line is ignored by Python and used to insert
free running text, known as comments. The purpose of comments is to explain, in
a human language, the ideas of (several) forthcoming statements so that the program
becomes easier to understand for humans. Some variables whose names are not
completely self-explanatory also need a comment.

Object types There are many different types of objects in Python. In this chapter
we have worked with the following types.

� Integers (whole numbers, object type int):

x10 = 3

XYZ = 2

� Floats (decimal numbers, object type float):

max_temperature = 3.0

MinTemp = 1/6.0

� Strings (pieces of text, object type str):

a = ’This is a piece of text\nover two lines.’

b = "Strings are enclosed in single or double quotes."

c = """Triple-quoted strings can

span

several lines.

"""

� Complex numbers (object type complex):

a = 2.5 + 3j

real = 6; imag = 3.1

b = complex(real, imag)

1.8 Summary 37

Operators Operators in arithmetic expressions follow the rules frommathematics:
power is evaluated before multiplication and division, while the latter two are eval-
uated before addition and subtraction. These rules are overridden by parentheses.
We suggest using parentheses to group and clarify mathematical expressions, also
when not strictly needed.

-t**2*g/2

-(t**2)*(g/2) # equivalent

-t**(2*g)/2 # a different formula!

a = 5.0; b = 5.0; c = 5.0

a/b + c + a*c # yields 31.0

a/(b + c) + a*c # yields 25.5

a/(b + c + a)*c # yields 1.6666666666666665

Particular attention must be paid to coding fractions, since the division operator /
often needs extra parentheses that are not necessary in the mathematical notation
for fractions (compare a

bCc
with a/(b+c) and a/b+c).

Common mathematical functions The math module contains common mathe-
matical functions for real numbers. Modules must be imported before they can be
used. The three types of alternative module import go as follows:

Import of module - functions requires prefix

import math

a = math.sin(math.pi*1.5)

Import of individual functions - no prefix in function calls

from math import sin, pi

a = sin(pi*1.5)

Import everything from a module - no prefix in function calls

from math import *

a = sin(pi*1.5)

Print To print the result of calculations in a Python program to a terminal window,
we apply the print command, i.e., the word print followed by a string enclosed
in quotes, or just a variable:

print "A string enclosed in double quotes"

print a

Several objects can be printed in one statement if the objects are separated by com-
mas. A space will then appear between the output of each object:

>>> a = 5.0; b = -5.0; c = 1.9856; d = 33

>>> print ’a is’, a, ’b is’, b, ’c and d are’, c, d

a is 5.0 b is -5.0 c and d are 1.9856 33

38 1 Computing with Formulas

The printf syntax enables full control of the formatting of real numbers and integers:

>>> print ’a=%g, b=%12.4E, c=%.2f, d=%5d’ % (a, b, c, d)

a=5, b= -5.0000E+00, c=1.99, d= 33

Here, a, b, and c are of type float and formatted as compactly as possible (%g for
a), in scientific notation with 4 decimals in a field of width 12 (%12.4E for b), and
in decimal notation with two decimals in as compact field as possible (%.2f for c).
The variable d is an integer (int) written in a field of width 5 characters (%5d).

Be careful with integer division!
A common error in mathematical computations is to divide two integers, because
this results in integer division (in Python 2).

� Any number written without decimals is treated as an integer. To avoid integer
division, ensure that every division involves at least one real number, e.g., 9/5
is written as 9.0/5, 9./5, 9/5., or 9/5.0.

� In expressions with variables, a/b, ensure that a or b is a float object, and if
not (or uncertain), do an explicit conversion as in float(a)/b to guarantee
float division.

� If integer division is desired, use a double slash: a//b.
� Python 3 treats a/b as float division also when a and b are integers.

Complex numbers Values of complex numbers are written as (X+Yj), where X
is the value of the real part and Y is the value of the imaginary part. One example
is (4-0.2j). If the real and imaginary parts are available as variables r and i,
a complex number can be created by complex(r, i).

The cmath module must be used instead of math if the argument is a complex
variable. The numpy package offers similar mathematical functions, but with a uni-
fied treatment of real and complex variables.

Terminology Some Python and computer science terms briefly covered in this
chapter are

� object: anything that a variable (name) can refer to, such as a number, string,
function, or module (but objects can exist without being bound to a name:
print ’Hello!’ first makes a string object of the text in quotes and then the
contents of this string object, without a name, is printed)

� variable: name of an object
� statement: an instruction to the computer, usually written on a line in a Python

program (multiple statements on a line must be separated by semicolons)
� expression: a combination of numbers, text, variables, and operators that results

in a new object, when being evaluated
� assignment: a statement binding an evaluated expression (object) to a variable

(name)
� algorithm: detailed recipe for how to solve a problem by programming
� code: program text (or synonym for program)
� implementation: same as code

1.8 Summary 39

� executable: the file we run to start the program
� verification: providing evidence that the program works correctly
� debugging: locating and correcting errors in a program

1.8.2 Example: Trajectory of a Ball

Problem What is the trajectory of a ball that is thrown or kicked with an initial
velocity v0 making an angle � with the horizontal? This problem can be solved by
basic high school physics as you are encouraged to do in Exercise 1.13. The ball
will follow a trajectory y D f .x/ through the air where

f .x/ D x tan � � 1

2v2
0

gx2

cos2 �
C y0 : (1.6)

In this expression, x is a horizontal coordinate, g is the acceleration of gravity, v0

is the size of the initial velocity that makes an angle � with the x axis, and .0; y0/

is the initial position of the ball. Our programming goal is to make a program
for evaluating (1.6). The program should write out the value of all the involved
variables and what their units are.

We remark that the formula (1.6) neglects air resistance. Exercise 1.11 explores
how important air resistance is. For a soft kick (v0 D 30 km/h) of a football, the
gravity force is much larger than the air resistance, but for a hard kick, air resistance
may be as important as gravity.

Solution We use the SI system and assume that v0 is given in km/h; g D 9:81m/s2;
x, y, and y0 are measured in meters; and � in degrees. The program has naturally
four parts: initialization of input data, import of functions and � from math, con-
version of v0 and � to m/s and radians, respectively, and evaluation of the right-hand
side expression in (1.6). We choose to write out all numerical values with one dec-
imal. The complete program is found in the file trajectory.py:

g = 9.81 # m/s**2

v0 = 15 # km/h

theta = 60 # degrees

x = 0.5 # m

y0 = 1 # m

print """\

v0 = %.1f km/h

theta = %d degrees

y0 = %.1f m

x = %.1f m\

""" % (v0, theta, y0, x)

from math import pi, tan, cos

Convert v0 to m/s and theta to radians

v0 = v0/3.6

theta = theta*pi/180

http://tinyurl.com/pwyasaa/formulas/trajectory.py

40 1 Computing with Formulas

y = x*tan(theta) - 1/(2*v0**2)*g*x**2/((cos(theta))**2) + y0

print ’y = %.1f m’ % y

The backslash in the triple-quoted multi-line string makes the string continue on
the next line without a newline. This means that removing the backslash results in
a blank line above the v0 line and a blank line between the x and y lines in the out-
put on the screen. Another point to mention is the expression 1/(2*v0**2), which
might seem as a candidate for unintended integer division. However, the conversion
of v0 to m/s involves a division by 3.6, which results in v0 being float, and there-
fore 2*v0**2 being float. The rest of the program should be self-explanatory at
this stage in the book.

We can execute the program in IPython or an ordinary terminal window and
watch the output:

Terminal

v0 = 15.0 km/h
theta = 60 degrees
y0 = 1.0 m
x = 0.5 m
y = 1.6 m

1.8.3 About Typesetting Conventions in This Book

This version of the book applies different design elements for different types of
“computer text”. Complete programs and parts of programs (snippets) are typeset
with a light blue background. A snippet looks like this:

a = sqrt(4*p + c)

print ’a =’, a

A complete program has an additional, slightly darker frame:

C = 21

F = (9.0/5)*C + 32

print F

As a reader of this book, you may wonder if a code shown is a complete program
you can try out or if it is just a part of a program (a snippet) so that you need to add
surrounding statements (e.g., import statements) to try the code out yourself. The
appearance of a vertical line to the left or not will then quickly tell you what type
of code you see.

An interactive Python session is typeset as

>>> from math import *

>>> p = 1; c = -1.5

>>> a = sqrt(4*p + c)

1.9 Exercises 41

Running a program, say ball_yc.py, in the terminal window, followed by some
possible output is typeset as

Terminal

ball_yc.py
At t=0.0417064 s and 0.977662 s, the height is 0.2 m.

Recall from Sect. 1.5.3 that we just write the program name. A real execution
demands prefixing the program name by python in a terminal window, or by run if
you run the program from an interactive IPython session. We refer to Appendix H.5
for more complete information on running Python programs in different ways.

Sometimes just the output from a program is shown, and this output appears as
plain computer text:

h = 0.2

order=0, error=0.221403

order=1, error=0.0214028

order=2, error=0.00140276

order=3, error=6.94248e-05

order=4, error=2.75816e-06

Files containing data are shown in a similar way in this book:

date Oslo London Berlin Paris Rome Helsinki

01.05 18 21.2 20.2 13.7 15.8 15

01.06 21 13.2 14.9 18 24 20

01.07 13 14 16 25 26.2 14.5

Style guide for Python code This book presents Python code that is (mostly) in
accordance with the official Style Guide for Python Code5, known in the Python
community as PEP8. Some exceptions to the rules are made to make code snippets
shorter: multiple imports on one line and less blank lines.

1.9 Exercises

About solving exercises There is only one way to learn programming: you have to
program yourself. This means that you have to do a lot of exercises! Reading this
book is necessary to learn about the Python syntax and studying the examples in
depth is necessary to grasp how to think about programming and solving problems.
But the main effort in the learning process is your work with exercises or your own
programming projects.

Solving an exercise is a three-stage procedure. First, you have to study the text
in the exercise carefully to understand what the problem is about. Programming
exercises, especially in this book, are about a problem setting that has to be thor-
oughly understood before it makes sense to understand the specific questions in

5 http://www.python.org/dev/peps/pep-0008/

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

42 1 Computing with Formulas

the exercise. The second phase is to write the program. The more efforts you put
into the first phase, the easier it will be to find the right statements and write the
code. The third and final stage is to test the program and remove errors (known
as debugging and verification from Sect. 1.2). This is by far the greatest challenge
for beginners. Very often, especially for newcomers to programming, it boils down
to writing out the result of every statement and checking these results carefully by
playing computer with pen and paper.

Beginners often underestimate the amount of work required in the first and third
stage and instead try to do the second stage (i.e., write the program) as quickly as
possible. The more work you put into the first stage, the easier it will be to find
an example in this book or elsewhere that is similar to the exercise and that can
help you get started. And the more work you put into stage three up front, with
constructing a test case, the better your understanding of the statements will be and
the fewer errors you will commit. Experience will prove that all these assertions are
right!

Most exercises are associated with a filename, e.g., myexer. If the answer to the
exercise is a Python program, you should store the program in a file myexer.py. If
the answer can be an explanation, you may store it in a plain text file, myexer.txt,
or write the text in a word processor and produce a PDF file (myexer.pdf).

When you hand in exercises to teaching assistants, it is often a requirement that
a trial run of the program is inserted at the end of the code. This means that you
run some case with known result, direct the output to a file result,

Terminal

Terminal> python myprogram.py > result

and copy the contents of result to a triple-quoted string with appropriate com-
ments after the statements of the program. Here is an example of a program with its
trial run inserted:

F = 69.8 # Fahrenheit degrees

C = (5.0/9)*(F - 32) # Corresponding Celsius degrees

print C

’’’

Trial run (correct result is 21):

python f2c.py

21.0

’’’

The trial run demonstrates that the program runs and produces correct results in
a test case.

Exercise 1.1: Compute 1+1
The first exercise concerns some very basic mathematics and programming: assign
the result of 1C1 to a variable and print the value of that variable.
Filename: 1plus1.

1.9 Exercises 43

Exercise 1.2: Write a Hello World program
Almost all books about programming languages start with a very simple program
that prints the text Hello, World! to the screen. Make such a program in Python.
Filename: hello_world.

Exercise 1.3: Derive and compute a formula
Can a newborn baby in Norway expect to live for one billion (109) seconds? Write
a Python program for doing arithmetics to answer the question.
Filename: seconds2years.

Exercise 1.4: Convert from meters to British length units
Make a program where you set a length given in meters and then compute and write
out the corresponding length measured in inches, in feet, in yards, and in miles. Use
that one inch is 2.54 cm, one foot is 12 inches, one yard is 3 feet, and one British
mile is 1760 yards. For verification, a length of 640 meters corresponds to 25196.85
inches, 2099.74 feet, 699.91 yards, or 0.3977 miles.
Filename: length_conversion.

Exercise 1.5: Compute the mass of various substances
The density of a substance is defined as % D m=V , where m is the mass of a volume
V . Compute and print out the mass of one liter of each of the following substances
whose densities in g/cm3 are found in the file src/files/densities.dat6: iron,
air, gasoline, ice, the human body, silver, and platinum.
Filename: 1liter.

Exercise 1.6: Compute the growth of money in a bank
Let p be a bank’s interest rate in percent per year. An initial amount A has then
grown to

A
�
1 C p

100

�n

after n years. Make a program for computing how much money 1000 euros have
grown to after three years with 5 percent interest rate.
Filename: interest_rate.

Exercise 1.7: Find error(s) in a program
Suppose somebody has written a simple one-line program for computing sin.1/:

x=1; print ’sin(%g)=%g’ % (x, sin(x))

Create this program and try to run it. What is the problem?
Filename: find_errors_sin1.

Exercise 1.8: Type in program text
Type the following program in your editor and execute it. If your program does not
work, check that you have copied the code correctly.

6 http://tinyurl.com/pwyasaa/files/densities.dat

http://tinyurl.com/pwyasaa/files/densities.dat
http://tinyurl.com/pwyasaa/files/densities.dat

44 1 Computing with Formulas

from math import pi

h = 5.0 # height

b = 2.0 # base

r = 1.5 # radius

area_parallelogram = h*b

print ’The area of the parallelogram is %.3f’ % area_parallelogram

area_square = b**2

print ’The area of the square is %g’ % area_square

area_circle = pi*r**2

print ’The area of the circle is %.3f’ % area_circle

volume_cone = 1.0/3*pi*r**2*h

print ’The volume of the cone is %.3f’ % volume_cone

Filename: formulas_shapes.

Exercise 1.9: Type in programs and debug them
Type these short programs in your editor and execute them. When they do not work,
identify and correct the erroneous statements.

a) Does sin2.x/ C cos2.x/ D 1?

from math import sin, cos

x = pi/4

1_val = math.sin^2(x) + math.cos^2(x)

print 1_VAL

b) Compute s in meters when s D v0t C 1
2
at2, with v0 D 3 m/s, t D 1 s, a D

2 m/s2.

v0 = 3 m/s

t = 1 s

a = 2 m/s**2

s = v0.t + 0,5.a.t**2

print s

c) Verify these equations:

.a C b/2 D a2 C 2ab C b2

.a � b/2 D a2 � 2ab C b2

a = 3,3 b = 5,3

a2 = a**2

b2 = b**2

1.9 Exercises 45

eq1_sum = a2 + 2ab + b2

eq2_sum = a2 - 2ab + b2

eq1_pow = (a + b)**2

eq2_pow = (a - b)**2

print ’First equation: %g = %g’, % (eq1_sum, eq1_pow)

print ’Second equation: %h = %h’, % (eq2_pow, eq2_pow)

Filename: find_errors_programs.

Exercise 1.10: Evaluate a Gaussian function
The bell-shaped Gaussian function,

f .x/ D 1p
2� s

exp
�
�1

2

�x � m

s

�2
�
; (1.7)

is one of the most widely used functions in science and technology. The parameters
m and s > 0 are prescribed real numbers. Make a program for evaluating this
function when m D 0, s D 2, and x D 1. Verify the program’s result by comparing
with hand calculations on a calculator.
Filename: gaussian1.

Remarks The function (1.7) is named after Carl Friedrich Gauss7, 1777–1855,
who was a German mathematician and scientist, now considered as one of the
greatest scientists of all time. He contributed to many fields, including number
theory, statistics, mathematical analysis, differential geometry, geodesy, electrostat-
ics, astronomy, and optics. Gauss introduced the function (1.7) when he analyzed
probabilities related to astronomical data.

Exercise 1.11: Compute the air resistance on a football
The drag force, due to air resistance, on an object can be expressed as

Fd D 1

2
CD%AV 2; (1.8)

where % is the density of the air, V is the velocity of the object, A is the cross-
sectional area (normal to the velocity direction), and CD is the drag coefficient,
which depends heavily on the shape of the object and the roughness of the surface.

The gravity force on an object with mass m is Fg D mg, where g D 9:81ms�2.
We can use the formulas for Fd and Fg to study the importance of air resistance

versus gravity when kicking a football. The density of air is % D 1:2 kg m�3. We
have A D �a2 for any ball with radius a. For a football, a D 11 cm and the mass
is 0.43 kg. The drag coefficient CD varies with the velocity and can be taken as 0.4.

Make a program that computes the drag force and the gravity force on a football.
Write out the forces with one decimal in units of Newton (N D kgm=s2). Also
print the ratio of the drag force and the gravity force. Define CD , %, A, V , m, g,

7 http://en.wikipedia.org/wiki/Carl_Gauss

http://en.wikipedia.org/wiki/Carl_Gauss
http://en.wikipedia.org/wiki/Carl_Gauss

46 1 Computing with Formulas

Fd , and Fg as variables, and put a comment with the corresponding unit. Use the
program to calculate the forces on the ball for a hard kick, V D 120 km=h and for
a soft kick, V D 30 km=h (it is easy to mix inconsistent units, so make sure you
compute with V expressed in m=s).
Filename: kick.

Exercise 1.12: How to cook the perfect egg
As an egg cooks, the proteins first denature and then coagulate. When the temper-
ature exceeds a critical point, reactions begin and proceed faster as the temperature
increases. In the egg white, the proteins start to coagulate for temperatures above
63 ıC, while in the yolk the proteins start to coagulate for temperatures above 70 ıC.
For a soft boiled egg, the white needs to have been heated long enough to coagulate
at a temperature above 63 ıC, but the yolk should not be heated above 70 ıC. For
a hard boiled egg, the center of the yolk should be allowed to reach 70 ıC.

The following formula expresses the time t it takes (in seconds) for the center of
the yolk to reach the temperature Ty (in Celsius degrees):

t D M 2=3c�1=3

K�2.4�=3/2=3
ln

�
0:76

To � Tw

Ty � Tw

�
: (1.9)

Here, M , �, c, and K are properties of the egg: M is the mass, � is the density,
c is the specific heat capacity, and K is thermal conductivity. Relevant values are
M D 47 g for a small egg and M D 67 g for a large egg, � D 1:038 g cm�3, c D
3:7 J g�1 K�1, and K D 5:4 �10�3 Wcm�1 K�1. Furthermore, Tw is the temperature
(in C degrees) of the boiling water, and To is the original temperature (in C degrees)
of the egg before being put in the water. Implement the formula in a program, set
Tw D 100 ıC and Ty D 70 ıC, and compute t for a large egg taken from the fridge
(To D 4 ıC) and from room temperature (To D 20 ıC).
Filename: egg.

Exercise 1.13: Derive the trajectory of a ball
The purpose of this exercise is to explain how Equation (1.6) for the trajectory of
a ball arises from basic physics. There is no programming in this exercise, just
physics and mathematics.

The motion of the ball is governed by Newton’s second law:

Fx D max (1.10)

Fy D may (1.11)

where Fx and Fy are the sum of forces in the x and y directions, respectively, ax

and ay are the accelerations of the ball in the x and y directions, and m is the
mass of the ball. Let .x.t/; y.t// be the position of the ball, i.e., the horizontal and
vertical coordinate of the ball at time t . There are well-known relations between
acceleration, velocity, and position: the acceleration is the time derivative of the
velocity, and the velocity is the time derivative of the position. Therefore we have

1.9 Exercises 47

that

ax D d 2x

dt2
; (1.12)

ay D d 2y

dt2
: (1.13)

If we assume that gravity is the only important force on the ball, Fx D 0 and
Fy D �mg.

Integrate the two components of Newton’s second law twice. Use the initial
conditions on velocity and position,

d

dt
x.0/ D v0 cos �; (1.14)

d

dt
y.0/ D v0 sin �; (1.15)

x.0/ D 0; (1.16)

y.0/ D y0; (1.17)

to determine the four integration constants. Write up the final expressions for x.t/

and y.t/. Show that if � D �=2, i.e., the motion is purely vertical, we get the
formula (1.1) for the y position. Also show that if we eliminate t , we end up with
the relation (1.6) between the x and y coordinates of the ball. You may read more
about this type of motion in a physics book, e.g., [15].
Filename: trajectory.

Exercise 1.14: Find errors in the coding of formulas
Some versions of our program for calculating the formula (1.3) are listed below.
Find the versions that will not work correctly and explain why in each case.

C = 21; F = 9/5*C + 32; print F

C = 21.0; F = (9/5)*C + 32; print F

C = 21.0; F = 9*C/5 + 32; print F

C = 21.0; F = 9.*(C/5.0) + 32; print F

C = 21.0; F = 9.0*C/5.0 + 32; print F

C = 21; F = 9*C/5 + 32; print F

C = 21.0; F = (1/5)*9*C + 32; print F

C = 21; F = (1./5)*9*C + 32; print F

Filename: find_errors_division.

Exercise 1.15: Explain why a program does not work
Figure out why the following program does not work:

C = A + B

A = 3

B = 2

print C

Filename: find_errors_vars.

48 1 Computing with Formulas

Exercise 1.16: Find errors in Python statements
Try the following statements in an interactive Python shell. Explain why some
statements fail and correct the errors.

1a = 2

a1 = b

x = 2

y = X + 4 # is it 6?

from Math import tan

print tan(pi)

pi = "3.14159’

print tan(pi)

c = 4**3**2**3

_ = ((c-78564)/c + 32))

discount = 12%

AMOUNT = 120.-

amount = 120$

address = hpl@simula.no

and = duck

class = ’INF1100, gr 2"

continue_ = x > 0

rev = fox = True

Norwegian = [’a human language’]

true = fox is rev in Norwegian

Hint It is wise to test the values of the expressions on the right-hand side, and the
validity of the variable names, separately before you put the left- and right-hand
sides together in statements. The last two statements work, but explaining why
goes beyond what is treated in this chapter.
Filename: find_errors_syntax.

Exercise 1.17: Find errors in the coding of a formula
Given a quadratic equation,

ax2 C bx C c D 0;

the two roots are

x1 D �b C p
b2 � 4ac

2a
; x2 D �b � p

b2 � 4ac

2a
: (1.18)

What are the problems with the following program?

a = 2; b = 1; c = 2

from math import sqrt

q = b*b - 4*a*c

q_sr = sqrt(q)

x1 = (-b + q_sr)/2*a

x2 = (-b - q_sr)/2*a

print x1, x2

Correct the program so that it solves the given equation.
Filename: find_errors_roots.

1.9 Exercises 49

Exercise 1.18: Find errors in a program
What is the problem in the following program?

from math import pi, tan

tan = tan(pi/4)

tan2 = tan(pi/3)

print tan, tan2

Filename: find_errors_tan.

	1 Computing with Formulas
	1.1 The First Programming Encounter: a Formula
	1.2 Computer Science Glossary
	1.3 Another Formula: Celsius-Fahrenheit Conversion
	1.4 Evaluating Standard Mathematical Functions
	1.5 Interactive Computing
	1.6 Complex Numbers
	1.7 Symbolic Computing
	1.8 Summary
	1.9 Exercises

