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Chapter 1
Plant Phenology of Natural Landscape
Dynamics

Abstract From the perspectives of natural landscape dynamics, plant phenology is
the study of the timing (and quantity) of annually recurring plant growth and
reproductive phenomena, as well as the drivers of these events associated with
endogenous and exogenous forces. Conventional plant phenology usually serves as
time steps and markers of vegetation growth and reproductive processes within a
year and among different years, while modern plant phenology can serve as a key
link between climate change and biogeochemical cycles at seasonal and interannual
scales.

Keywords Natural landscape dynamics � Phenological phenomena � Plant
phenology � Integrative indicator � Key link between climate change and
biogeochemical cycles

1.1 Phenological Phenomena and Plant Phenology

In China, one of the earliest phenological records appeared in “The Book of Poetry”
during 1100 to 600 B.C. It said that “polygala seed matures in April, cicada sings in
May, beating the jujube in August, reaping the rice in October” (Yu 2012). Here,
“polygala seed maturity”, “cicada sing”, “beating the jujube”, and “reaping the rice”
are all phenological phenomena. Their occurrences have obvious periodicity and
rhythmicity. Thus, phenological phenomena can be defined as annually recurrent
and macroscopic natural and human phenomena on the Earth’s surface. According
to their properties, phenological phenomena include: (1) abiotic phenomena, such
as frost, snow, soil freezing-thawing, river and lake freezing-melting, thunder,
lightning, etc.; (2) biotic phenomena, such as budburst, leaf unfolding, flowering,
fruit or seed maturing and shedding, leaf coloration, leaf fall of plants, and first and
last observance or singing of birds, insects and other animals, etc.; and (3) human
life phenomena, such as farming activities, seasonal tours and sightseeing, seasonal
allergic disease and epidemic disease, etc. These phenological phenomena interact
and are interrelated. Their occurrence reflects not only the current status, but also

© The Author(s) 2017
X. Chen, Spatiotemporal Processes of Plant Phenology,
SpringerBriefs in Geography, DOI 10.1007/978-3-662-49839-2_1
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the accumulation state of environmental conditions, especially weather and climate
conditions over a past time period. Thus, phenological phenomena can be regarded
as sensitive indicators and integrators of natural landscape dynamics.

Plant phenology is the study of the timing (and quantity) of annually recurring
plant growth and reproductive phenomena, as well as the drivers of these events
associated with endogenous and exogenous forces. Within a year, the timing and
quantity of plant phenological phenomena show distinct seasonality. With regard to
plant phenology of ecosystem processes, studies deal with individual plants, pop-
ulations, and communities. From the perspectives of natural landscape dynamics,
the field of study also includes different spatial scales, namely local, regional,
hemispherical, and global scales. Therefore, plant phenology provides a unified
measure of the timing and quantity of plant growth and reproductive phenomena at
different vegetation units and spatial scales. A central purpose of plant phenological
studies is to discover temporal rhythmicity and spatial patterns within the timing
and quantity of plant phenological phenomena, as well as their physical, chemical
and biological mechanisms. Basic tasks of plant phenological studies include the
following aspects: (1) observing and recording the timing and quantity of plant
phenological phenomena visually, as well as with digital camera, and satellite
remote sensing, etc.; (2) examining and correcting visual phenological records, as
well as phenological data from photography and satellite remote sensing; (3) re-
vealing spatiotemporal characteristics of the timing and quantity of plant pheno-
logical phenomena and their endogenous and exogenous causes; and (4) simulating
and predicting spatiotemporal patterns of the timing and quantity of plant pheno-
logical phenomena.

1.2 Integrative Indicator of Natural Landscape Dynamics

Natural landscape dynamics include circadian rhythms, seasonal rhythms, circan-
nual rhythms and multi-year rhythms. Because vegetation is the integrative indi-
cator of natural landscape features, plant phenology becomes the integrative
indicator of natural landscape dynamics at seasonal and interannual scales.
Conventional plant phenology usually serves as time steps and markers of vege-
tation growth and reproductive processes within a year and among different years,
which are mainly controlled by various environmental factors, especially temper-
ature, water availability, and photoperiod. At local scales, phenological occurrence
dates of individual plants and communities can indicate seasonal rhythms of the
natural landscape. Using phenological observation data from the Beijing Botanical
Garden, twelve phenological seasons were identified by means of frequency and
cumulative frequency thresholds of plant phenological occurrence dates in every
five-day period throughout the year (Chen and Cao 1999). Each phenological
season represents a specific seasonal aspect stage of the natural landscape, which
has typical seasonal aspect characteristics and indicative phenophases (Table 1.1).
At regional and global scales, vegetation phenological timing metrics based on

2 1 Plant Phenology of Natural Landscape Dynamics



satellite sensor-derived vegetation indices can also display seasonal rhythms of the
natural landscape (Myneni et al. 1997; Zhang et al. 2003).

In addition, plant phenology can serve as a key link between climate change and
biogeochemical cycles at seasonal and interannual scales. It is well known that the
vegetation growing season is usually defined as the number of days between the
budburst/leaf unfolding date in spring and the leaf coloration/leaf fall date in
autumn (Chen and Xu 2012). Thus, plant phenological occurrence dates are crucial
biological indices for determining growing season start and end dates. Over recent
decades, scientists have found new relevance for phenological studies related to
global climate change. In terms of interactions among terrestrial biological pro-
cesses and atmospheric physical processes, since vegetation growing season start
and end dates are mainly influenced by seasonal thermal and moisture conditions,
they are regarded as sensitive, easily observable, and integrative indicators of rapid
ecosystem responses to climate change (Chen 1995; Menzel and Fabian 1999).

Table 1.1 Phenological seasons, seasonal aspect characteristics and indicative phenophases at the
Beijing Botanical Garden (1979–1987; Yang and Chen 1995)

Phenological
seasons

Average start–
end date (m/d)

Seasonal aspect
characteristics

Indicative phenophases at the
start of seasons

Early spring 2/25–3/21 Grass green-up and tree
budburst

Budburst of Populus tomentosa

Midspring 3/22–4/30 Flowers blooming in a
riot of color

First flowering of Jasminum
nudiflorum

Late spring 5/1–5/15 Flourishing leaves and
withering flowers

50 % leaf unfolding of
Paulownia tomentosa

Early summer 5/16–6/14 Prosperous flowers with
green leaves

First flowering of Aesculus
chinensis

Midsummer 6/15–8/8 A few red flowers in the
midst of thick foliage

First flowering of Campsis
radicans

Late summer 8/9–9/2 Dark green canopy but
lack of flowers

The end of the flowering of Vitex
negundo var. heterophylla

Early autumn 9/3–9/27 Autumn leaf coloring
and rich fruit ripening

Fruit maturing of Syringa
pekinensis

Midautumn 9/28–10/17 Gorgeous leaf coloring
and leaf fall starting

First leaf coloration of Forsythia
suspensa

Late autumn 10/18–11/21 Falling leaves rustling in
the wind

First leaf fall of Populus alba

Early winter 11/22–12/6 Withered leaves The end of leaf fall of Salix
matsudana var. tortuosa

Midwinter 12/7–2/4a Bare canopy of
deciduous trees

The end of leaf fall of
Chimonanthus praecox

Late winter 2/5a–2/24a Spring signal appearance Bud swelling of Chimonanthus
praecox

aDate of the next year

1.2 Integrative Indicator of Natural Landscape Dynamics 3



On the other hand, vegetation growing season duration represents the green leaf
period to a certain extent and therefore, its variation could regulate land surface
temperature and moisture regimes by altering albedo, latent and sensible heat
exchange, and turbulence, etc. (Schwartz 1996; Peñuelas et al. 2009). Considering
interactions among terrestrial biological processes and atmospheric chemical pro-
cesses, variation in the vegetation growing season influence the seasonal pattern of
atmospheric CO2 concentrations (Keeling et al. 1996) and the total annual emission
of biogenic volatile organic compounds (BVOCs, Peñuelas et al. 2009), which
contribute to many complex processes associated with global climate change.
Further, elevated CO2 might also influence the vegetation growing season, for
example by delaying flowering and greening in grasses (Cleland et al. 2006). Based
on the above evidence, variation in the vegetation growing season may influence
thermal and moisture regimes, seasonal carbon cycle and aerosol formation, etc., by
coupling physical, chemical and biological processes among land surfaces and the
atmosphere. Therefore, revealing spatiotemporal patterns of the vegetation growing
season at regional scales would be helpful for assessing responses and feedbacks of
vegetation dynamics to climate change.

Overall, because the vegetation growing season is approximately equivalent to
the photosynthetic period, carbon-uptake period, and transpiration period (Barr
et al. 2009), climate change induced vegetation growing season shifts may influence
the exchange capacities of carbon, water, and energy among land surfaces and the
atmosphere, and consequently result in ecosystem productivity variations. The
former in turn will affect the global carbon balance and climate change (Fig. 1.1).

Fig. 1.1 Interrelationship among plant phenology, climate change, biogeochemical cycles, and
ecosystem productivity

4 1 Plant Phenology of Natural Landscape Dynamics
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Chapter 2
Temporal Rhythmicity of Plant Phenology

Abstract Plant phenological observations show that plant growth and reproduction
obey a certain temporal rhythmicity, which is a macroscopic and integrative
reflection of local and regional natural landscape dynamics. The most obvious
temporal rhythmicities of plant phenology are displayed as sequential and correl-
ative rhythm, circannual rhythm, multi-year rhythm, circadian rhythm, and overlap
rhythm. Temporal rhythmicity of plant phenology is mainly attributed to climatic
rhythmicity, photoperiod, and response properties of phenological phenomena to
weather and climate.

Keywords Sequential and correlative rhythm � Circannual rhythm � Multi-year
rhythm � Circadian rhythm � Overlap rhythm

2.1 Sequential and Correlative Rhythm

Plant phenology sequential and correlative rhythm is defined as follows:

The occurrence dates of various plant phenological phenomena obey a certain time
sequence within a year, and synchronously advance or postpone among years.

The time sequence depends highly on geographical locations and specific plant
communities. External causes of the sequential and correlative rhythm of plant
phenology are seasonal insolation induced weather and climatic seasonal rhythms,
including temperature, precipitation, photoperiod, humidity, wind, etc. These
meteorological factors evolve along the time sequence within a year and fluctuate
among years, which form the environmental background of sequential and correl-
ative rhythm of plant phenology. With regard to plant phenological adaptation and
response to climate change, if a species is to thrive and extend its range in a certain
region, it must be able to coordinate its life cycle with the progression of periodic
phenomena in its environment (Larcher 1975). Because a plant phenological phe-
nomenon occurrence reflects the accumulation of environmental conditions (espe-
cially weather and climatic conditions) over a past time period, continuous
accumulation of climatic variables along the time sequence will subsequently

© The Author(s) 2017
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trigger occurrence of various phenological phenomena. Sequential and correlative
rhythm can be statistically expressed by correlation coefficient as follows:

r ¼
Pn

i¼1
ðxi � xÞðyi � yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðxi � xÞ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðyi � yÞ2

s

where xi and yi denote the occurrence dates of two arbitrary phenophases in year i; �x
and �y denote the multi-year mean occurrence dates of the two phenophases; n is the
number of years. If xi and yi have significant positive correlation, sequential and
correlative rhythm exists between them. The larger the correlation coefficient is, the
stronger the sequential and correlative rhythm is. Contrarily, if they have non-
significant positive correlation, only sequential rhythm but not correlative rhythm
exists between them. Table 2.1 and Fig. 2.1 show an example of sequential and
correlative rhythm of plant phenology in the Beijing Botanical Garden. Other
examples of sequential and correlative rhythm of plant phenology have also been
reported in Germany (Pfau 1964; Menzel 2003). Generally speaking, as the time
interval between two phenological occurrence dates expands, sequential and cor-
relative rhythm may become weaker due to the decrease of continuity of weather
processes influencing the two phenological occurrence dates (Fig. 2.2).

2.2 Circannual Rhythm

Plant phenology circannual rhythm can be expressed as:

The occurrence dates of various plant phenological phenomena have a recurrence interval
of approximate one year.

Table 2.1 Correlation coefficients between first flowering dates in the Beijing Botanical Garden
(1979–2013)

Species Pd Fs Md Cs So Rx Pp

Jn 0.826* 0.803* 0.780* 0.636* 0.661* 0.703* 0.546*

Pd 0.766* 0.805* 0.572* 0.697* 0.669* 0.494*

Fs 0.823* 0.589* 0.736* 0.720* 0.551*

Md 0.658* 0.819* 0.770* 0.653*

Cs 0.641* 0.715* 0.731*

So 0.613* 0.644*

Rx 0.739*

Data source Personal field observations conducted by Xiaoqiu Chen and Guodong Yang
*P < 0.01
Jn: Jasminum nudiflorum; Pd: Prunus davidiana; Fs: Forsythia suspensa;Md:Magnolia denudata;
Cs: Chaenomeles speciosa; So: Syringa oblata; Rx: Rosa xanthina; Pp: Philadelphus pekinensis
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Since the recurrence interval is usually less dependent on geographical locations
and specific plant species, circannual rhythm is the essential characteristic of plant
phenological phenomena. External causes of plant phenology’s circannual rhythm
are the Earth’s revolution-induced weather and climatic annual cycles, including
temperature, precipitation, photoperiod, humidity, wind, etc. Circannual rhythm of
plant phenology can be measured by multi-year mean value (�x), standard deviation

Fig. 2.1 Plots of sequential and correlative rhythm of the first flowering dates in the Beijing
Botanical Garden (1979–2013). 1 Jasminum nudiflorum; 2 Prunus davidiana; 3 Forsythia
suspensa; 4 Magnolia denudata; 5 Chaenomeles speciosa; 6 Syringa oblata; 7 Rosa xanthina; 8
Philadelphus pekinensis (Data source Personal field observations conducted by Xiaoqiu Chen and
Guodong Yang)
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(SD), and range (R; difference between maximum value and minimum value) of the
recurrence interval. Table 2.2 shows circannual rhythm of individual plant phe-
nophases in the Beijing Botanical Garden. On average, the recurrence intervals of
all plant phenophases are about 365 days, and the standard deviation (SD) of the
recurrence intervals display a decreasing tendency from midspring to early summer.
Namely, circannual rhythm of plant phenology is stronger for later phenophases
than earlier phenophases in the first half-year.

Further statistical analysis indicated that the first date for the daily mean air
temperature to steadily pass 0, 5, and 10 °C characterizes also circannual rhythm
(Table 2.3). It is worth noting that the mean recurrence intervals are also about 365
days, but the SD and R values of the recurrence intervals are much larger than those
of spring plant phenology. This shows that circannual rhythm of spring plant
phenology can reflect annual cycle of threshold daily mean air temperatures to a
large extent, and spring plant phenology is a more stable indicator in displaying
circannual rhythm of natural landscape dynamics than air temperature.

2.3 Multi-year Rhythm

Multi-year rhythm of plant phenology means that long time series of some plant
phenological occurrence dates have a quasi-periodicity over one year. That is,
notably early or late years in plant phenological occurrence dates appear at regular
intervals. It should be noted that this kind of rhythm is not strictly periodic and
depends highly on geographic location, time series length, and plant species. So far,
the most famous example in plant phenology multi-year rhythm was reported by
Margary (1926). He analyzed the annual mean flowering and leafing dates of seven
plants from the Marsham phenological record (over 1736–1925 in Norfolk,
England), and found the mean periods between early years or late years were 12.2
years for unsmoothed time series and 12.1 years for smoothed time series. Further
analysis indicated that flowering and leafing dates and mean temperature during
January to May showed an apparent correlation between earliness/lateness and
warmness/coldness, and similar mean periods between 11.8 and 12.2 years. In
addition, the flowering and leafing dates and sunspot numbers showed a moderate

Fig. 2.2 Relationship
between correlation
coefficient and corresponding
average time interval among
first flowering dates
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Table 2.2 Circannual rhythm of the first flowering dates from midspring to early summer in the
Beijing Botanical Garden (1979–2013)

Period Jn Pd Fs Md Cs So Rx Pp

1979–1980 376 373 367 367 378 369 367 368

1980–1981 358 354 357 356 349 349 356 356

1981–1982 365 371 368 367 362 369 362 361

1982–1983 367 364 369 366 367 366 368 369

1983–1984 371 377 376 374 371 – 374 371

1984–1985 369 362 363 365 369 – 359 361

1985–1986 352 359 354 355 360 357 361 361

1986–1987 376 371 376 375 367 373 375 375

1987–1988 363 365 367 361 367 367 356 359

1988–1989 353 349 354 356 – 350 359 –

1989–1990 367 375 368 372 – 375 373 –

1990–1991 371 357 371 374 372 370 370 373

1991–1992 357 370 354 357 – 358 361 359

1992–1993 369 364 372 360 – 363 366 372

1993–1994 371 375 365 371 365 367 363 362

1994–1995 352 352 361 360 360 364 362 –

1995–1996 375 375 – 372 385 376 – –

1996–1997 353 360 – 357 347 355 – 358

1997–1998 366 359 370 367 367 366 359 361

1998–1999 375 – 372 372 369 – – 370

1999–2000 366 – 360 362 362 – – 363

2000–2001 370 366 364 359 368 374 352 369

2001–2002 348 – – – 353 352 – –

2002–2003 382 – – – 378 379 – –

2003–2004 352 354 357 358 361 361 354 367

2004–2005 381 377 371 373 375 369 374 371

2005–2006 358 357 363 358 358 360 368 364

2006–2007 361 363 361 362 369 369 363 363

2007–2008 361 364 362 362 363 353 362 365

2008–2009 – 371 369 371 365 – 368 365

2009–2010 – 377 378 – – – 376 –

2010–2011 – 355 355 – – 354 354 –

2011–2012 372 375 366 369 368 363 367 365

2012–2013 369 362 372 370 371 374 372 –

�x (days) 365.4 365.1 365.4 364.9 365.9 364.4 364.3 365.1

SD (days) 9.0 8.3 6.8 6.4 8.2 8.3 6.8 5.1

R (days) 34 28 24 20 38 30 24 19

Data source Personal field observations conducted by Xiaoqiu Chen and Guodong Yang
Jn: Jasminum nudiflorum; Pd: Prunus davidiana; Fs: Forsythia suspensa; Md: Magnolia
denudata; Cs: Chaenomeles speciosa; So: Syringa oblata; Rx: Rosa xanthina; Pp: Philadelphus
pekinensis
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connection between earliness and maximum in nine times of fifteen and between
lateness and minimum at the same degree. The period of sunspot numbers was 11.2
years. Nowadays, spectrum analysis and wavelet analysis are usually used for
identifying phenological periodicity. A singular spectrum analysis has been
implemented to delineate periodicity of flowering dates of four eucalypt species
from 1940 to 1971 in Australia and a 4-year cycle was detected in Eucalyptus
tricarpa (Hudson and Keatley 2010). Using first flowering time series of the eight
plant species in the Beijing Botanical Garden from 1979 to 2013 (Fig. 2.1), a
wavelet analysis was carried out for identifying the multi-year rhythm. Results
showed that a 12-year major cycle exists in these phenological time series
(Fig. 2.3), which is coincident with the major cycle in average air temperature
during March to May in Beijing. Thus, multi-year rhythm of spring plant phenology
can reflect periodic variation of air temperature to a certain extent.

2.4 Circadian Rhythm

Plant phenology circadian rhythm can be described as follows:

The occurrence time of some plant phenological phenomena show a recurrence interval
within 24 h at a specific site, which reflects the effect of photoperiod on plant phenological
phenomena.

Studies showed that some leguminous plants and their seedlings open their
leaves during the day and close them at night (Piltz and Bever 1970). Carolus
Linnaeus (1707–1778) found that flowers of some plants opened and closed peri-
odically at different hours of the day and that these times varied from species to
species. Thus, he proposed a flower clock to show the time. Namely, cultivating
these plants in a round flower bed according to time sequence of flowering within a
day, they constituted a kind of flower clock (Riedman 1982; Foster and Kreitzman
2004). The flower clock was a garden plan hypothesized by Carolus Linnaeus,
which would take advantage of several plants that open or close their flowers at
particular times of the day to accurately indicate the time. Nevertheless, although
many plants exhibit a strong circadian rhythm, few have been observed to open
their flowers at a precise solar time. Therefore, the accuracy of such a clock is
diminished because flowering time is also affected by weather and seasonal factors.
In addition, the flowering times recorded by Linnaeus would also be subject to
differences in daylight due to latitude (Gardiner 1987).

Table 2.3 Mean recurrence interval and its variation of the first date for the daily mean air
temperature to steadily pass 0, 5, and 10 °C in Beijing (1979–2013)

Statistical indicator First date ≥ 0 °C First date ≥ 5 °C First date ≥ 10 °C

�x (days) 365.7 365.2 365.1

SD (days) 14.1 13.5 8.8

R (days) 57 49 37

12 2 Temporal Rhythmicity of Plant Phenology



Fig. 2.3 Wavelet variance diagram of the first flowering dates in the Beijing Botanical Garden.
a Jasminum nudiflorum; b Prunus davidiana; c Forsythia suspensa; d Magnolia denudata;
e Chaenomeles speciosa; f Syringa oblata; g Rosa xanthina; h Philadelphus pekinensis
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2.5 Overlap Rhythm

Plant phenology overlap rhythm means that some plant phenological phenomena
occur roughly at the same time each year. The biological cause of overlap rhythm is
that occurrence of the overlapping phenological phenomena needs approximately
the same amount of accumulation of environmental conditions. Plant phenology
overlap rhythm can be measured by comparing average occurrence dates, standard
deviations, and the earliest and latest occurrence dates of two or more phenophases.
Obviously, the smaller the difference of these statistical indicators between two
phenophases is, the more synchronous the plant phenology overlap rhythm. Based
on overlap rhythm between two plant phenophases, the missing data in a pheno-
logical time series can be estimated using the observed data of another phenological
time series (Schnelle 1955). From the perspective of the food chain, overlapping
rhythms between plant and animal phenophases may reflect direct ecological
relationships. For example, whenever pears blossom, adults of Hoplocampa pyri-
cola lays eggs on the sepals of flowers in areas around Beijing. During the young
fruit stage, larva of H. pyricola hatches and drills into young fruits, making them
turn black and fall off (Yang and Chen 1995). Therefore, understanding overlapping
rhythms of plant and insect phenology may also be beneficial for preventing and
controlling pests.

Moreover, global climate warming and growing season shifts can alter the
overlapping rhythms of producers, consumers, and decomposers, leading to asyn-
chronies resulting in trophic mismatches, which may disrupt ecosystem interactions
and food chains (Visser et al. 1998; Both and Visser 2001; Visser and Holleman
2001; Warren et al. 2001; Walther et al. 2002; Strode 2003).
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Chapter 3
Spatial Pattern of Plant Phenology

Abstract Plant phenological observations show that occurrence dates of plant
growth and reproduction stages are different at different locations, which is mainly a
macroscopic and integrative reflection of climatic spatial heterogeneity. Early
studies on spatial differences of plant phenology focused on geographical depen-
dence of phenological spatial differences. Typical geographical models of plant
phenology were shown as multiple linear regression equations between multi-year
mean phenological occurrence dates at individual sites and geo-location parameters
(latitude, longitude, and elevation). More recent studies attempt to reveal the
relationship between phenological and climatic spatial patterns. Because air tem-
perature is the most important factor influencing spatial variation of plant phenol-
ogy, multi-year mean monthly temperatures at individual sites (replacing
geo-location parameters) have be used as the independent variable for fitting spa-
tial patterns of plant phenological occurrence dates.

Keywords Phenological spatial difference � Bioclimatic law � Multiple linear
regression equation � Geo-location parameters � Climatic attribution � Multi-year
mean monthly temperature

3.1 Geographical Dependence of Phenological Spatial
Differences

Based on early 20th century investigations in the eastern US, Hopkins proposed a
“Bioclimatic Law” to estimate the offset in onset of spring as a function of latitude,
longitude, and elevation. He wrote:

Other things being equal, this variation is at the rate of four days for each degree of latitude,
five degrees of longitude and 400 ft of altitude. Therefore, from any given place, as related
to extensive regions, an entire country, or a continent, the variation in a given periodical
event is (at the rate stated) later northward, eastward and upward in the spring and early
summer and the reverse in the late summer and during autumn (Hopkins 1919).

© The Author(s) 2017
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There is no doubt that this “Bioclimatic Law” was an important milestone in
revealing geographical attribution of phenological spatial differences. Nevertheless,
the geographical pattern and spatial changing rate of plant phenology is diverse and
highly dependent on specific regions, years, and phenological phenomena.
Subsequently, Nakahara (1948) derived a multiple linear regression equation
between multi-year mean flowering date (y) of Prunus yedoensis at individual sites
and geo-location parameters, such as latitude (/), longitude (k) and elevation (h).
Park-Ono et al. (1993) modified this model (using 37 years of phenological data,
1953–1989) as follows:

y ¼ 92:56þ 4:77ð/� 35�Þ � 0:59ðk� 135�Þþ 1:28h ð3:1Þ

The equation shows that the multi-year mean flowering date of P. yedoensis was
delayed at a rate of 4.77 days per latitudinal degree northward, 0.59 days per
longitudinal degree westward and 1.28 days per 100 m upward. Based on this kind
of regression equation, average flowering date isophanes of P. yedoensis could be
drawn (Momose 1974).

Following the above study, such multiple linear regression equations were also
constructed in other regions of the world. The general model for China was
described as follows (Gong and Jian 1983):

y ¼ aþ bð/� 30�Þþ cðk� 110�Þþ dh ð3:2Þ

Table 3.1 indicates that from spring to summer the representative phenophases
tended to be delayed by 0.49–5.61 days per latitudinal degree northward, 0.07–
1.10 days per longitudinal degree eastward, and 0.32–1.54 days per 100 m upward.
In autumn, however, the last three phenophases tended to advance by 2.39–
3.81 days per latitudinal degree northward, 0.02 to 0.36 days per longitudinal
degree eastward, and 0.06–0.77 days per 100 m upward.

On the basis of multiple linear regression equations between plant phenological
occurrence dates in multi-year mean and extreme years, and geo-location param-
eters, phenological maps of Europe were drawn showing spatial patterns of
beginning date, end date and length of the growing season during 1961–1998 and in
the warm year 1990 (Rötzer and Chmielewski 2001).

3.2 Climatic Attribution of Phenological Spatial
Differences

Overall, the above geographical models of plant phenology have two major dis-
advantages: (1) geo-location parameters are not climatic factors, so that they neither
explain the essential environmental causes nor detect the climatic differences
driving plant phenology spatial variations; and (2) since geo-location parameters are
constant at a given site, multiple linear regression equation cannot represent the
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interannual variation of plant phenologcal spatial pattern related to climate change.
Because air temperature is the most important factor influencing spatial and tem-
poral variations of plant phenology (Chen 1994; Chmielewski and Rötzer 2001;
Schwartz and Chen 2002; Menzel 2003; Gordo and Sanz 2010; Chen and Xu
2012), the spatial series of multi-year mean monthly temperature at individual sites
(replacing geo-locations) were used for fitting the spatial pattern of growing season
beginning date (BGS) and end date (EGS) derived from surface phenological data
and remote sensing data (Chen et al. 2005). The results show that spatial series of
multi-year mean BGS date correlates negatively (P < 0.001) with spatial series of
multi-year mean temperature from March to May across temperate eastern China.
The multinomial fitting (Fig. 3.1) shows that the dependence of BGS date on
multi-year mean temperature is much stronger at sites with March-May temperature
above 0 °C (linear correlation coefficient r = −0.8276, n = 51, P < 0.001) than at
sites with March-May temperature below 0 °C (linear correlation coefficient

Table 3.1 Spatial changing rates of plant phenological occurrence dates in China (Gong and Jian
1983)

Species Phenophase b (day/degree) c (day/degree) d (day/100 m)

Prunus persica bud swelling +5.61 +0.92 +1.25

Ulmus pumila bud swelling +4.16 +0.53 +0.59

Salix babylonica budburst +3.88 +0.78 +0.97

Ulmus pumila first flowering +3.55 +0.37 +0.90

Prunus davidiana first flowering +3.28 +0.55 +0.81

Thuja orientalis first flowering +4.73 +0.87 +0.36

Prunus armeniaca first flowering +3.74 +0.78 +1.54

Prunus persica first flowering +3.98 +0.71 +1.36

Salix babylonica first flowering +3.62 +0.71 +0.38

Morus alba first flowering +3.09 +0.36 +0.72

Juglans regia first flowering +2.53 +0.73 +1.37

Wisteria sinensis first flowering +2.40 +1.10 +0.73

Castanea mollissima first flowering +2.02 +0.90 +1.00

Albizzia julibrissin first flowering +2.53 +0.07 +0.60

Firmiana simplex first flowering +1.06 +0.36 −0.33

Sophora japonica first flowering +0.72 +0.19 +0.32

Lagerstroemia indica first flowering +0.49 +0.25 +0.53

Osmanthus fragrans first flowering −2.39 −0.02 −0.06

Chrysanthemum
indicum

first flowering −3.81 −0.08 −0.69

Ulmus pumila the end of
defoliation

−3.62 −0.36 −0.77

+: The occurrence date delays from south to north, from west to east, from low elevation to high
elevation
−: The occurrence date advances from south to north, from west to east, from low elevation to high
elevation
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r = −0.0454, n = 36, P > 0.1). The negative correlation indicates that the higher
the multi-year mean temperature during March and May at a site, the earlier the
average growing season beginning time. In contrast, spatial series of multi-year
mean EGS date correlates positively (P < 0.001) with spatial series of multi-year
mean temperature from August to October across temperate eastern China. The
positive correlation indicates that the higher the multi-year mean temperature during
August and October at a site, the later the average growing season end time
(Fig. 3.2).

Fig. 3.1 Spatial relationships between March–May mean temperatures and average growing
season beginning dates from 1982 to 1993 [Reprinted from Chen et al. (2005), with permission
from John Wiley and Sons]

Fig. 3.2 Spatial relationships between August-October mean temperatures and average growing
season end dates from 1982 to 1993 [Reprinted from Chen et al. (2005), with permission from
John Wiley and Sons]
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Chapter 4
Statistical Simulation of Plant Phenology
Temporal Variation

Abstract To simulate temporal variation of plant phenology, daily mean air
temperature-based temporal phenology models were constructed using Taraxacum
mongolicum first leaf unfolding and common leaf coloration data at 52 stations
within eastern China’s temperate zone from 1990 to 2009, and Ulmus pumila first
leaf unfolding and leaf fall end data at 46 stations across China’s temperate zone
from 1986 to 2005. Results show that the new model is more precise and rational in
detecting responses of plant phenology to temperature than conventional monthly
mean air temperature-based phenology models. Both T. mongolicum and U. pumila
phenology shows a consistent response to temperatures at local and regional scales.
Namely, first leaf unfolding date has a significantly negative response to spring
temperature, while common leaf coloration and leaf fall end dates have a signifi-
cantly positive response to autumn temperature. Moreover, a 1 °C increase in
spring temperature may cause a larger advancement of first leaf unfolding date at
warmer locations than at colder locations for both T. mongolicum and U. pumila,
whereas a 1 °C increase in autumn temperature may induce a larger delay of leaf
fall end date at warmer locations than at colder locations for U. pumila. Therefore,
future regional climate warming may enhance sensitivity of plant phenological
response to temperature, especially in the colder regions where the greatest climate
warming is expected.

Keywords Daily mean air temperature-based temporal phenology model �
Optimum length period � Phenological response to temperature � Spatial differ-
entiation of sensitivity

4.1 Introduction

According to the phenological rhythmicity described in Chap. 2, occurrence dates
of various plant phenological phenomena obey a certain time sequence within a
year, and synchronously advance or postpone among years. For a given pheno-
logical phenomenon, its occurrence dates have circannual and multi-year rhythms.
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Thus, temporal variations at seasonal, interannual, and multi-year scales are the
striking characteristics of phenological occurrence dates. To investigate climatic
attributions of the temporal variation of phenological occurrence dates, both sta-
tistical and process-based models can be employed. Because air temperature is the
most important climate driver of phenological occurrence dates for plant species
living in humid and semihumid areas, numerous statistical studies use air temper-
ature as the climatic factor to simulate phenological time series (Chen 1994;
Chmielewski and Rötzer 2001; Matsumoto et al. 2003; Menzel 2003; Gordo and
Sanz 2010; Chen and Xu 2012). In this chapter, a daily mean air temperature-based
statistical model and its applications in simulating long-term phenological time
series are introduced.

4.2 Model Description

The conventional approach for examining plant phenological response to air tem-
perature was to create a linear regression equation between a phenological event
occurrence date and mean air temperature within several months during and before
the average phenological event occurrence date (Chen 1994; Sparks et al. 2000;
Menzel 2003; Gordo and Sanz 2010). Nevertheless, using current and preceding
monthly mean air temperature as the independent variable may not be precise
sufficiently, as a phenological event occurrence date is not likely caused by the
integral monthly mean temperature exactly, but by daily mean temperature during a
certain length period (LP, days). Thus, an alternative method has been proposed
(Chen and Xu 2012). The basic hypothesis of the new method is that the
year-to-year variation of a phenological event occurrence date at a station is mainly
controlled by year-to-year variation of daily mean temperature within a particular
LP during and before its occurrence date at the station. The computation process is
implemented through following steps. First, the entire interval between the earliest
and latest date of a phenological time series at a station is defined as the basic LP
(bLP), and then the daily mean temperature time series during bLP + mLP are
computed. Here, mLP is a moving length period prior to the earliest date of the
phenological timing series, which moves with a step length of 1 day. The maximum
mLP is restricted to 60 days because daily mean temperature prior to this period is
usually assumed to have limited effects on a phenological event occurrence date in
temperate areas (Chen 1994; Sparks et al. 2000; Menzel 2003). The LP is therefore
defined as follows:

LP ¼ bLPþmLP ð4:1Þ

Further, correlation coefficients between phenological time series and daily mean
air temperature time series during the different LPs are calculated at the station, and
the optimum LP corresponding to the largest correlation coefficient between
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phenological time series and daily mean air temperature time series is obtained at
the station. Taking the daily mean air temperature during the optimum LP as the
independent variable and the phenological event occurrence date as the dependent
variable, the daily mean air temperature-based temporal phenology model can be
determined:

Phenodate ¼ aþ bToptimum ð4:2Þ

where Phenodate denotes the phenological event occurrence date in different years;
Toptimum denotes the daily mean air temperature during the optimum LP in different
years; a is the intercept; b is the regression coefficient.

4.3 Model Applications

In order to validate the feasibility and accuracy of this new phenology model form
in revealing temporal response of plant phenology to daily mean air temperature,
the optimum spring/autumn LPs were calculated for Taraxacum mongolicum first
leaf unfolding date (beginning date of the growing season, BGS) and common leaf
coloration date (end date of the growing season, EGS) at 52 stations across eastern
China’s temperate zone from 1990 to 2009 (Fig. 4.1; Chen et al. 2015) and for
Ulmus pumila first leaf unfolding date (BGS) and leaf fall end date (EGS) at 46
stations across China’s temperate zone from 1986 to 2005 (Fig. 4.2; Chen and Xu
2012), respectively.

For T. mongolicum (Chen et al. 2015), the optimum spring LPs range from 17 to
78 days, while the optimum autumn LPs are between 15 and 104 days at the 52
stations (Fig. 4.3). The daily mean air temperature-based temporal phenology
models were constructed between BGS date and the optimum spring LP temper-
ature (P < 0.05) at 51 stations (98 %) and between EGS date and the optimum
autumn LP temperature (P < 0.05) at only 17 stations (33 %). The regression
model slopes indicate that a higher optimum spring LP temperature triggers an
earlier BGS date at rates of −1.25 to −6.67 days °C−1, while a higher optimum
autumn LP temperature induces a later EGS date at rates of 1.59 to 7.85 days °C−1

(Table 4.1).
Moreover, daily mean air temperature-based temporal phenology models were

also created between the regional mean T. mongolicum BGS/EGS date and regional
daily mean temperature during the optimum spring/autumn LP (based on the 52
stations) from 1990 to 2009 (P < 0.001). The regional mean optimum spring and
autumn LPs are 46 and 47 days, respectively. The regression model slopes show
that a 1 °C increase in the regional mean optimum spring LP temperature causes an
advancement of 2.1 days in the regional mean BGS date, while a 1 °C increase in
the regional mean optimum autumn LP temperature induces a delay of 2.3 days in
the regional mean EGS date (Fig. 4.4).
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A further correlation analysis between regression model slope (Table 4.1) and
long-term annual mean temperature over the 52 stations shows that location-specific
BGS-temperature regression slope correlates negatively with location-specific
annual mean temperature (P < 0.05), which implies that the negative response of
BGS to the spring LP temperature was stronger at warmer locations than at colder
locations, namely, a 1 °C increase in the optimum spring LP temperature may cause
a larger advancement of BGS at warmer locations than at colder locations. In
contrast with BGS, location-specific EGS-temperature regression slope does not
correlate significantly with location-specific annual mean temperature.

For U. pumila (Chen and Xu 2012), the optimum spring LPs range from 19 to
102 days and the optimum autumn LPs are between 15 and 99 days at the 46
stations (Fig. 4.5). The daily mean air temperature-based temporal phenology
models were constructed between BGS date and the optimum spring LP temper-
ature (P < 0.05) at 41 stations (89 %). On average, a 1 °C increase in the optimum
spring LP temperature advances BGS dates between 1.02 and 7.63 days
(Table 4.2). However, the daily mean air temperature-based temporal phenology
models were created between EGS date and the optimum autumn LP temperature

Fig. 4.1 Location of phenological stations of Taraxacum mongolicum with long-term observation
data (more than 15 years) across eastern China’s temperate zone [Reprinted from Chen et al.
(2015), with permission from Springer]
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Fig. 4.2 Location of phenological stations of Ulmus pumila with long-term observation data
(more than 16 years) across China’s temperate zone [Reprinted from Chen and Xu (2012), with
permission from Springer]

Fig. 4.3 Optimum spring LP
[black bars basic LP (bLP),
gray bars moving LP (mLP)]
and autumn LP (black bars
bLP, gray bars mLP)
corresponding to Taraxacum
mongolicum BGS and EGS at
each station [Reprinted from
Chen et al. (2015), with
permission from Springer]

4.3 Model Applications 27



Table 4.1 Regression analyses between BGS date and spring LP temperature and between EGS
date and autumn LP temperature for Taraxacum mongolicum at each station (Chen et al. 2015)

Station number BGS EGS

R2 Slope (days °C−1) R2 Slope (days °C−1)

1 0.23 −2.29* 0.18 +1.57

2 0.29 −2.20* 0.07 +0.91

3 0.26 −1.50* 0.45 +3.79**

4 0.46 −1.27*** 0.03 +1.19

5 0.45 −2.66** 0.04 +3.10

6 0.26 −2.50* 0.15 +6.37

7 0.55 −2.78*** 0.00 −0.04

8 0.32 −2.07** 0.07 +2.50

9 0.40 −1.25** 0.09 −3.24

10 0.27 −1.78* 0.06 +1.55

11 0.37 −1.53* 0.00 −0.14

12 0.46 −1.97*** 0.12 +2.93

13 0.73 −5.60*** 0.12 +1.66

14 0.75 −4.98*** 0.23 +3.98

15 0.48 −4.32*** 0.35 +5.04**

16 0.34 −3.39** 0.28 +3.81*

17 0.40 −6.67** 0.25 −5.93

18 0.37 −4.07** 0.09 +3.48

19 0.45 −1.78** 0.50 +7.26**

20 0.21 −1.72* 0.25 +1.68*

21 0.43 −3.35** 0.01 −1.58

22 0.28 −1.48* 0.45 +3.02***

23 0.32 −4.10* 0.06 −2.03

24 0.63 −5.47*** 0.21 +10.03

25 0.46 −2.29*** 0.01 −0.83

26 0.55 −4.66*** 0.00 −0.18

27 0.38 −2.21** 0.07 +2.17

28 0.35 −2.70** 0.02 +1.94

29 0.31 −5.95* 0.10 +2.29

30 0.35 −4.77** 0.28 +5.73*

31 0.25 −2.68* 0.50 +6.58***

32 0.44 −2.42*** 0.08 +3.45

33 0.62 −2.85*** 0.10 +2.56

34 0.59 −2.73*** 0.08 −2.13

35 0.48 −2.37*** 0.00 +0.07

36 0.40 −2.88** 0.18 +4.79

37 0.55 −2.34*** 0.29 +7.09*

38 0.37 −1.99** 0.00 +0.35
(continued)
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(P < 0.05) at only 12 stations (26 %), where a 1 °C increase in the optimum
autumn LP temperature delays EGS dates between 1.96 and 7.65 days (Table 4.2).

Across the entire China’s temperate zone, regional mean regression models were
constructed between the regional mean BGS/EGS time series and the regional mean
optimum spring/autumn LP temperature time series (based on the 46 stations)
during 1986–2005. The regional mean optimum spring and autumn LPs are 73 and

Table 4.1 (continued)

Station number BGS EGS

R2 Slope (days °C−1) R2 Slope (days °C−1)

39 0.25 −1.66* 0.02 +0.52

40 0.77 −3.66*** 0.28 +2.92*

41 0.23 −2.65* 0.27 +7.33*

42 0.56 −3.26*** 0.43 +7.85**

43 0.44 −5.27*** 0.00 −0.24

44 0.29 −1.54* 0.05 −0.50

45 0.72 −3.33*** 0.17 +2.08

46 0.70 −3.30*** 0.26 +3.10*

47 0.15 −1.47 0.34 +1.59**

48 0.32 −2.48** 0.24 +2.41*

49 0.44 −1.56** 0.05 +1.65

50 0.30 −2.80* 0.21 +7.33*

51 0.28 −3.59* 0.26 +6.08*

52 0.46 −3.96*** 0.01 −1.13

*P < 0.05; **P < 0.01; ***P < 0.001

Fig. 4.4 Regression analyses between a regional mean beginning date of the growing season
(BGS) and regional spring length period (LP) temperature (Ts), b regional mean end date of the
growing season (EGS) and regional autumn LP temperature (Ta) for Taraxacum mongolicum from
1990 to 2009 [Reprinted from Chen et al. (2015), with permission from Springer]
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65 days, respectively. Similar to individual stations, a 1 °C increase in the regional
mean optimum spring LP temperature induces an advancement of 2.8 days in the
regional mean BGS date and a 1 °C increase in the regional mean optimum autumn
LP temperature causes a delay of 2.1 days in the regional mean EGS date (Fig. 4.6).

In addition, a correlation analysis between regression model slope (Table 4.2)
and long-term annual mean temperature over the 46 stations indicates that location-
specific BGS-temperature regression slope correlates significantly negative with
location-specific annual mean temperature (P < 0.1), while location-specific EGS-
temperature regression slope correlates significantly positive with location-specific
annual mean temperature (P < 0.05). Thus, either the negative response of BGS to
the spring LP temperature or the positive response of EGS to the autumn LP tem-
perature was stronger at warmer locations than at colder locations. That is, a 1 °C
increase in the optimum spring LP temperature may cause a larger advancement of
BGS at warmer locations than at colder locations, whereas a 1 °C increase in the
optimum autumn LP temperature may induce a larger delay of EGS at warmer
locations than at colder locations.

The above two case studies demonstrate that the daily mean air temperature-based
temporal phenology model can not only be used to fit tree phenology but also to fit
herb phenology. BGS/EGS date of both T. mongolicum and U. pumila has a coin-
cident response to the optimum LP temperature at local and regional scales. That is,

Fig. 4.5 Optimum spring LP
[black bars basic LP (bLP),
gray bars moving LP (mLP)]
and autumn LP (black bars
bLP, gray bars mLP)
corresponding to Ulmus
pumila BGS and EGS at each
station [Reprinted from Chen
and Xu (2012), with
permission from Springer]
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Table 4.2 Regression analyses between BGS date and spring LP temperature and between EGS
date and autumn LP temperature for Ulmus pumila at each station (Chen and Xu 2012)

Station number BGS EGS

R2 Slope (days °C−1) R2 Slope (days °C−1)

1 0.58 −1.95*** 0.03 −0.88

2 0.14 −1.28 0.13 −0.70

3 0.74 −2.47*** 0.25 1.96*

4 0.31 −1.65* 0.12 1.83

5 0.35 −1.46** 0.12 1.83

6 0.18 −2.54* 0.30 2.08*

7 0.42 −4.12** 0.21 3.17*

8 0.67 −2.28*** 0.17 3.13

9 0.55 −4.35*** 0.04 −0.83

10 0.21 −1.02* 0.36 4.50**

11 0.72 −4.63*** 0.04 1.78

12 0.31 −2.79* 0.22 7.65*

13 0.46 −2.62** 0.17 2.66

14 0.48 −3.18*** 0.18 −2.09

15 0.26 −4.61* 0.08 −1.92

16 0.67 −6.37*** 0.15 3.92

17 0.18 −2.25 0.06 1.21

18 0.69 −3.99*** 0.18 3.18

19 0.32 −2.48** 0.12 0.56

20 0.25 −4.38* 0.07 3.26

21 0.27 −2.27* 0.08 2.86

22 0.62 −3.36*** 0.15 1.72

23 0.64 −4.00*** 0.01 −1.35

24 0.56 −4.20*** 0.06 −2.05

25 0.58 −2.73*** 0.06 1.97

26 0.36 −1.61** 0.04 −0.71

27 0.37 −2.33** 0.18 2.77

28 0.48 −2.51*** 0.26 2.67*

29 0.14 −2.18 0.50 5.20***

30 0.56 −3.55*** 0.09 1.36

31 0.55 −3.97*** 0.28 2.22*

32 0.58 −4.17*** 0.10 1.89

33 0.62 −3.94*** 0.06 0.84

34 0.66 −2.98*** 0.37 4.34**

35 0.44 −7.63** 0.03 1.52

36 0.21 −2.64* 0.29 4.76*

37 0.45 −3.39** 0.04 0.95

38 0.42 −3.29** 0.10 2.54
(continued)
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BGS displays a significantly negative response to optimum spring LP temperature,
while EGS indicates a significantly positive response to optimum autumn LP tem-
perature. Moreover, the sensitivity of plant phenology response to temperature fall in
similar ranges.

Generally speaking, the spatial differentiation of sensitivity of plant phenological
response to temperature may essentially be caused by the long-term adaptation of
plant phenology to local and regional climate. However, as rapid climate change is
likely to disturb this adaptation (Kramer 1996), future regional climate warming
may enhance sensitivity of plant phenological response to temperature, especially in
the colder regions where the greatest climate warming is expected (IPCC 2007).

Table 4.2 (continued)

Station number BGS EGS

R2 Slope (days °C−1) R2 Slope (days °C−1)

39 0.18 −4.17 0.08 2.75

40 0.66 −5.10*** 0.28 2.30*

41 0.11 −2.69 0.01 0.58

42 0.67 −6.58*** 0.10 4.35

43 0.72 −5.88*** 0.16 6.29

44 0.74 −4.46*** 0.17 2.12

45 0.79 −2.94* 0.40 6.42**

46 0.29 −2.68* 0.06 −1.74

*P < 0.05; **P < 0.01; ***P < 0.001

Fig. 4.6 Regression analyses between a regional mean beginning date of the growing season
(BGS) and regional spring length period (LP) temperature (Ts), b regional mean end date of the
growing season (EGS) and regional autumn LP temperature (Ta) for Ulmus pumila from 1986 to
2005 [Reprinted from Chen and Xu (2012), with permission from Springer]
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Chapter 5
Statistical Simulation of Plant Phenology
Spatial Variation

Abstract Daily mean air temperature-based spatial phenology models were fitted
and validated using Ulmus pumila first leaf unfolding and leaf fall end data at 46
stations within China’s temperate zone from 1986 to 2005. Results show that spatial
patterns of first leaf unfolding and leaf fall end dates were obviously influenced by
spatial patterns of daily mean air temperatures during the optimum spring and
autumn length period, respectively. A higher location-specific multi-year mean
spring and autumn temperature resulted in an earlier location-specific multi-year
mean first leaf unfolding date and a later leaf fall end date. On average, a 1 °C spatial
shift in multi-year mean spring and autumn temperatures may cause a spatial shift of
−3.1 days and 2.6 days in multi-year mean first leaf unfolding and leaf fall end
dates, respectively. Similar spatial relationships were also detected between daily
mean temperature and phenological occurrence date in each year. The regression
equations indicate that a 1 °C spatial shift in yearly mean spring and autumn tem-
peratures may induce a spatial shift between −4.28 and −2.75 days in yearly first
leaf unfolding date, and between 2.17 and 3.16 days in yearly leaf fall end date. Error
estimation confirmed the reliability of multi-year mean and yearly spatial phenology
models in simulating and predicting spatial patterns of Ulmus pumila first leaf
unfolding and leaf fall end dates. Further analysis showed that a 1 °C spatial shift in
mean spring temperature in warmer years may induce a larger spatial shift in first leaf
unfolding date than that in colder years. Thus, future climate warming may enhance
sensitivity of the spatial response of first leaf unfolding to temperature.

Keywords Daily mean air temperature-based spatial phenology model � Spatial
response � Sensitivity � Spatial extrapolation � Spatial standard deviation

5.1 Introduction

According to the geographical dependence and climatic attribution analyses of
phenological spatial difference reported in Chap. 3, spatial differences in occurrence
dates of plant phenological phenomena rely highly on geo-location parameters of
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the observation sites (latitude, longitude and elevation). As geo-location parameters
are constant at a given site, the multiple linear regression equation can usually
describe the statistical relationship between geo-location parameters and pheno-
logical occurrence dates on the multi-year average (Nakahara 1948; Gong and Jian
1983; Park-Ono et al. 1993; Rötzer and Chmielewski 2001). To investigate the
climatic causes resulting in plant phenology spatial variations, the monthly mean air
temperature-based regression equation can be used to fit the spatial series of
occurrence dates of a phenological phenomenon either to the multi-year average or
for specific years (Chen et al. 2005). However, the regression equation between
spatial series of phenological occurrence date and monthly mean temperature may
not describe the climatic attribution of plant phenology spatial variations suffi-
ciently, as a phenological event occurrence date may not be triggered by the integral
monthly mean temperature, but by daily mean temperature during a certain period.
Therefore, to fit plant phenology spatial pattern more effectively, a daily mean air
temperatures-based spatial phenology model has been proposed (Chen and Xu
2012a).

5.2 Model Description

Other than plant phenology time series modeling (Chen and Xu 2012b), the basic
hypothesis for plant phenology spatial series modeling is that the station-to-station
variation of a phenological event occurrence date in a geographic region is con-
trolled by the station-to-station variation of daily mean air temperature within a
particular length period (LP, days) during and before the phenological event
occurrence date in the geographic region. The computation process of the daily
mean air temperature-based spatial phenology model includes following steps.
First, the entire interval between the earliest and latest date of a phenological spatial
series across all sites in a year is defined as the basic LP (bLP). Then, the daily
mean temperature spatial series during bLP + mLP are computed. Here, mLP is a
moving length period prior to the earliest date of the phenological spatial series,
which moves with a step length of 1 day. The maximum mLP is restricted to
90 days because the station-to-station variation of daily mean temperature prior to
this period does not have any effects on the station-to-station variation of Ulmus
pumila first leaf unfolding and leaf fall end dates over 46 stations in China’s
temperate zone from 1986 to 2005 (Chen and Xu 2012a). Thus, the LP is defined as
follows:

LP ¼ bLPþmLP ð6:1Þ

Moreover, correlation coefficients between plant phenological spatial series and
daily mean temperature spatial series during the different LPs are computed across
all sites during the year, and the optimum LP corresponding to the largest corre-
lation coefficient between plant phenological spatial series and daily mean
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temperature spatial series in the year is obtained. The above computation steps to
find the optimum LP in a year can be also used to determine the multi-year mean
optimum LP of the entire study period. In that case, the multi-year mean plant
phenological spatial series and multi-year mean daily temperature spatial series
across all sites should be used (Chen and Xu 2012a). Taking the daily mean air
temperature during the optimum LP as the independent variable and phenological
event occurrence date as the dependent variable, the daily mean air
temperature-based spatial phenology model can be expressed as follows:

Phenodate ¼ aþ bToptimum ð6:2Þ

where Phenodate denotes the phenological event occurrence date at different sites
in a year; Toptimum denotes the daily mean air temperatures during the optimum LP
at different sites in the year; a is the intercept; b is the regression coefficient.

Model performance in the spatial simulation and extrapolation are evaluated
using Root Mean Square Error (RMSE) between predicted and observed pheno-
logical occurrence dates, and explained variance (R2). RMSE is calculated by the
following formula:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ðPrei � ObsiÞ2
n

s

ð6:3Þ

where Obsi represents the observed phenological event occurrence date at the site i;
Prei represents the predicted phenological event occurrence date at the site i; n is the
number of sites.

5.3 Model Applications

For assessing reliability and feasibility of the phenology model in detecting spatial
responses of plant phenology to daily mean air temperature, the optimum spatial
LPs were calculated for the Ulmus pumila first leaf unfolding date (beginning date
of the growing season, BGS) and leaf fall end date (end date of the growing season,
EGS) across 46 stations within China’s temperate zone with time series lengths of
at least 16 years from 1986 to 2005. In addition, model performance was validated
by means of the spatial extrapolation based on Ulmus pumila BGS and EGS data at
62 external stations with time series lengths less than 16 years during 1986–2005
(Chen and Xu 2012a; Fig. 5.1).

For the multi-year mean Ulmus pumila BGS modeling, a significant negative
response of mean BGS date to mean daily temperature during the optimum spring
LP (123 days) was detected (P < 0.001) across the 46 stations from 1986 to 2005.
That is, a higher location-specific mean daily temperature during the optimum
spring LP resulted in an earlier location-specific mean BGS date across China’s
temperate zone. The explained variance of mean spring spatial phenology model to
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BGS date is 90 % (P < 0.001) and the RMSE for differences between observed
and simulated BGSs is 4.6 days. On average, a 1 °C spatial shift in multi-year
mean daily temperature within the optimum spring LP may induce a spatial shift of
–3.1 days in multi-year mean BGS date (Fig. 5.2a). Contrast to BGS, a significant
positive response of mean EGS date to mean daily temperature during the optimum
autumn LP (66 days) was found (P < 0.001) across the 46 stations during
1986-2005, namely, a higher location-specific mean daily temperature during the
optimum autumn LP caused a later location-specific mean EGS date across China’s
temperate zone. The explained variance of mean autumn spatial phenology model
to EGS date is 82 % (P < 0.001) and the RMSE for differences between observed
and simulated EGSs is 5.6 days. On average, a 1 °C spatial shift in multi-year mean
daily temperature within the optimum autumn LP may result in a spatial shift of
2.6 days in multi-year mean EGS date (Fig. 5.2b).

Spatial extrapolation tests of the mean spring and autumn spatial phenology
models (Fig. 5.2) were carried out using multi-year mean daily temperatures during
the optimum spring and autumn LPs and observed multi-year mean BGS and EGS
dates at the 16 external stations. The accuracies of predicted BGS and EGS dates,
measured by RMSEs for differences between observed and predicted BGS/EGS
dates were 5.8 days and 4.8 days, respectively (Fig. 5.3). Comparing external
validation accuracy (Fig. 5.3) with internal simulation accuracy (Fig. 5.2) of mean
spatial phenology models, RMSE of external validation for BGS is 1.2 days larger
than that of internal simulation, while RMSE of external validation for EGS is

Fig. 5.1 Spatial distribution of phenological stations of Ulmus pumila in China’s temperate zone
[Reprinted from Chen and Xu (2012a), with permission from Elsevier]
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0.8 days smaller than that of internal simulation. Therefore, spatial patterns of
multi-year mean Ulmus pumila BGS and EGS dates can be effectively simulated
and predicted by spatial patterns of multi-year mean daily temperatures during the
optimum spring and autumn LPs.

Similar to the multi-year mean Ulmus pumila BGS modeling, significant neg-
ative responses of yearly BGS dates to yearly mean daily temperatures during the
optimum spring LP (P < 0.001) were also detected across the 46 stations during
1986–2005. Regression analyses showed that the yearly spring spatial phenology

Fig. 5.2 Spatial regression analyses, a between multi-year mean daily temperature during the
optimum spring LP and multi-year mean BGS date (day of year, DOY) of Ulmus pumila and
b between multi-year mean daily temperature during the optimum autumn LP and multi-year mean
EGS date (DOY) of Ulmus pumila over the 46 stations [Reprinted from Chen and Xu (2012a),
with permission from Elsevier]

Fig. 5.3 External validation of mean spatial phenology models by means of the spatial
extrapolation of mean Ulmus pumila (a) BGS and (b) EGS at 16 external stations [Reprinted from
Chen and Xu (2012a), with permission from Elsevier]
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models explained 73–86 % of BGS variances and the RMSEs for differences
between yearly observed and simulated BGSs ranged from 5.4 to 9.8 days. On
average, a 1 °C spatial shift in yearly mean daily temperature within the optimum
spring LP may cause a spatial shift between −4.28 and −2.75 days in yearly BGS
dates. Contrarily, significant positive responses of yearly EGS dates to yearly mean
daily temperatures during the optimum autumn LP (P < 0.001) were found across
the 46 stations during 1986–2005. The yearly autumn spatial phenology models
explained 49–77 % of EGS variances and the RMSEs for differences between
yearly observed and simulated EGSs ranged from 7.4 to 11.2 days. The regression
equations denote that a 1 °C spatial shift in yearly mean daily temperature within
the optimum autumn LP may induce a spatial shift between 2.17 and 3.16 days in
yearly EGS dates. The average RMSE of yearly BGS simulations is 1.5 days
smaller than that of yearly EGS simulations (Table 5.1).

Spatial extrapolation tests of the yearly spring and autumn spatial phenology
models at the 12–39 external stations during 1986 to 2005 show that the mean

Table 5.1 Spatial regression analyses between daily temperature within optimum spring/autumn
LP and Ulmus pumila BGS/EGS date in each year (Chen and Xu 2012a)

Year BGS simulation EGS simulation

Number
of stations

Slope
(days °C−1)

R2 RMSE
(days)

Number
of stations

Slope
(days °C−1)

R2 RMSE
(days)

1986 35 −3.07 0.78* 6.1 35 2.83 0.69* 7.7

1987 40 −3.06 0.86* 5.5 40 2.77 0.54* 9.8

1988 41 −3.08 0.81* 6.2 39 2.46 0.61* 8.0

1989 40 −3.36 0.87* 5.4 40 3.00 0.69* 8.2

1990 45 −3.30 0.79* 6.6 45 2.44 0.49* 9.9

1991 46 −2.75 0.73* 7.2 46 2.17 0.58* 8.7

1992 46 −3.01 0.80* 6.6 46 2.17 0.51* 8.9

1993 46 −3.12 0.81* 7.0 46 2.56 0.59* 9.8

1994 46 −2.94 0.79* 6.5 46 3.14 0.68* 9.0

1995 46 −3.25 0.82* 6.9 46 2.70 0.50* 11.2

1996 46 −3.39 0.76* 7.9 46 2.55 0.73* 7.4

1997 45 −3.43 0.85* 6.1 46 2.89 0.66* 9.2

1998 46 −3.71 0.79* 7.0 45 2.58 0.71* 7.9

1999 46 −2.93 0.78* 7.5 46 2.84 0.73* 8.2

2000 46 −3.04 0.79* 7.3 46 2.34 0.73* 7.6

2001 46 −3.43 0.80* 8.1 46 3.09 0.70* 8.4

2002 46 −4.28 0.79* 9.3 46 2.95 0.77* 7.6

2003 46 −3.71 0.72* 9.8 45 2.41 0.67* 8.0

2004 46 −3.33 0.83* 7.6 46 2.98 0.68* 8.5

2005 45 −2.85 0.82* 6.9 45 3.16 0.74* 7.8

Average – – – 7.1 – – – 8.6
*p < 0.001
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accuracy of predicted BGS/EGS date, measured by the average value of RMSEs for
differences between yearly observed and predicted BGS/EGS dates was 7.5 and
8.7 days, respectively (Table 5.2), which is approximately the same with the mean
accuracy of simulated BGS/EGS date (Table 5.1). Thus, spatial patterns of yearly
Ulmus pumila BGS and EGS dates can be effectively simulated and predicted by
spatial patterns of yearly mean daily temperatures during the optimum spring and
autumn LPs.

Further analysis shows that yearly BGS-temperature spatial regression slope
(Table 5.1) correlates significantly negative with yearly regional February-April
mean temperature (P < 0.01). Thus, a 1 °C spatial shift in daily mean temperature
within the optimum spring LP in warmer years with higher regional February-April
mean temperatures may induce a larger spatial shift in BGS date than that in colder
years with lower regional February-April mean temperatures (Fig. 5.4). However,
yearly EGS-temperature spatial regression slope (Table 5.1) does not correlate
significantly with yearly regional September-November mean temperature
(P > 0.05). The dependence of yearly spatial phenology model regression slope on

Table 5.2 External validation of yearly spatial phenology models by spatial extrapolation of
yearly Ulmus pumila BGS and EGS at the 12–39 external stations (Chen and Xu 2012a)

Year BGS validation EGS validation

Number of
stations

r RMSE
(days)

Number of
stations

r RMSE
(days)

1986 30 0.86** 6.3 28 0.90** 8.6

1987 32 0.78** 8.9 31 0.70** 9.4

1988 32 0.87** 5.7 32 0.87** 8.5

1989 35 0.78** 7.8 34 0.83** 11.0

1990 39 0.76** 7.9 39 0.78** 11.1

1991 38 0.83** 7.4 37 0.87** 8.7

1992 37 0.90** 6.4 36 0.79** 8.5

1993 33 0.92** 5.8 33 0.83** 8.5

1994 18 0.90** 6.0 19 0.66* 11.9

1995 20 0.92** 5.5 19 0.72** 9.0

1996 17 0.90** 5.2 17 0.88** 7.7

1997 16 0.90** 7.0 16 0.84** 6.9

1998 14 0.91** 7.3 16 0.92** 5.0

1999 15 0.91** 6.3 16 0.86** 7.3

2000 12 0.90** 6.7 15 0.89** 6.0

2001 12 0.89** 9.2 14 0.93** 7.7

2002 12 0.89** 11.4 15 0.92** 6.3

2003 13 0.88** 7.2 16 0.64* 11.9

2004 12 0.80* 11.5 15 0.77** 10.2

2005 13 0.73* 11.0 16 0.81** 10.6

Average – – 7.5 – – 8.7
*p < 0.01; **p < 0.001
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yearly regional mean temperature implies that future climate warming in late winter
and spring may enhance sensitivity of the spatial response of BGS to temperature,
namely, a 1 °C spatial shift in daily mean temperature within the optimum spring
LP in the future may induce a larger spatial shift in BGS date than at the present.

The dependence of yearly spatial phenology model regression slope on yearly
regional mean temperature can be decomposed into two parts, namely, the
dependences of yearly BGS spatial variation (dependent variable of yearly spatial
phenology model) and yearly optimum spring LP temperature spatial variation
(independent variable of yearly spatial phenology model) on yearly regional mean
temperature. A correlation analysis indicates that the spatial standard deviation of
yearly BGS correlates significantly positive with yearly regional February-April
mean temperature over the 46 stations during 1986–2005 (P < 0.01). That is, the
higher the regional February-April mean temperature in a year, the larger the spatial
standard deviation of BGS in the year (Fig. 5.5). Contrarily, the spatial standard
deviation of yearly optimum spring LP temperature does not correlate significantly
with yearly regional February-April mean temperature (P > 0.05). Thus, the spatial
difference of BGS shifted noticeably as the interannual variation of regional mean
temperature, while the spatial difference of optimum spring LP temperature did not
fluctuate obviously with the interannual variation of regional mean temperature. In
other words, sensitivity of the spatial response of yearly BGS to optimum spring LP
temperature (yearly BGS-temperature spatial regression slope) is determined
mainly by spatial difference of yearly BGS. In this context, future climate warming
may enhance sensitivity of the spatial response of BGS to temperature through
enlarging BGS spatial difference. As regional climate warming may significantly

Fig. 5.4 Correlation analysis between regional February-April mean temperature and spring
spatial phenology model regression slope (days °C−1) across China’s temperate zone from 1986 to
2005 [Reprinted from Chen and Xu (2012a), with permission from Elsevier]

42 5 Statistical Simulation of Plant Phenology Spatial …



increase the spatial difference of Ulmus pumila BGS and subsequently speed up the
spatial response of BGS to temperature, the vegetation dynamics under global
climate change scenarios may become more heterogeneous in spatial variation and
sensitive in spatial response than at present.

Daily mean air temperature-based spatial phenology models were also created to
simulate multi-year mean and yearly spatial patterns of Robinia pseudoacacia
flowering dates at 26 stations, and validated by extensive spatial extrapolation at 29
stations in eastern China’s warm temperate zone during 1986–2005 (Xu et al.
2013). Similar to Ulmus pumila leaf unfolding date, a significant negative response
of Robinia pseudoacacia flowering dates to mean daily temperature during the
optimum spring LP was detected (P < 0.05–0.001) across the 26 stations from 1986
to 2005. The multi-year mean spatial phenology models explained 87 % of variance
in first flowering date with a root mean square error (RMSE) of 2.5 days, 86 % of
variance in 50 % flowering date with a RMSE of 2.7 days, and 77 % of variance in
the end date of flowering with a RMSE of 4.1 days. The explained variances of
yearly spatial phenology models to Robinia pseudoacacia flowering dates are
between 44–94 % for first flowering date, 57–92 % for 50 % flowering date, and
39–84 % for the end date of flowering, respectively. The corresponding mean
RMSEs for differences between observed and simulated flowering dates are 3.9, 4.0
and 5.4 days, respectively. The spatial extrapolation accuracies of the multi-year
mean and yearly spatial phenology models for Robinia pseudoacacia flowering
dates are similar to those for Ulmus pumila leaf unfolding date. Overall, the daily
mean air temperature-based spatial phenology model can be used to simulate and
estimate both growth and reproductive phenology of trees.

Fig. 5.5 Correlation analysis between regional February-April mean temperature and spatial
standard deviation of BGS across China’s temperate zone from 1986 to 2005 [Reprinted from
Chen and Xu (2012a), with permission from Elsevier]

5.3 Model Applications 43



References

Chen XQ, Xu L (2012a) Temperature controls on the spatial pattern of tree phenology in China’s
temperate zone. Agric For Meteorol 154–155:195–202

Chen XQ, Xu L (2012b) Phenological responses of Ulmus pumila (Siberian Elm) to climate
change in the temperate zone of China. Int J Biometeorol 56:695–706

Chen XQ, Hu B, Yu R (2005) Spatial and temporal variation of phenological growing season and
climate change impacts in temperate eastern China. Global Change Biol 11(7):1118–1130

Gong G, Jian W (1983) On the geographical distribution of phenodate in China. Acta Geographica
Sinica 38(1):33–40

Nakahara M (1948) Phenology (in Japanese). Kawadesyobo Press, Tokyo
Park-Ono HS, Kawamura T, Yoshino M (1993). Relationships between flowering date of cherry

blossom (Prunus yedoensis) and air temperature in East Asia. In: Proceedings of the 13th
international congress of biometeorology, Calgary

Rötzer T, Chmielewski FM (2001) Phenological maps of Europe. Clim Res 18:249–257
Xu L, Chen XQ, Du X (2013) Simulation and prediction of spatial patterns of Robinia

pseudoacacia flowering dates in eastern China’s warm temperate zone (in Chinese). Acta
Ecologica Sinica 33:3584–3593

44 5 Statistical Simulation of Plant Phenology Spatial …



Chapter 6
Process-Based Simulation and Prediction
of Plant Phenology Spatiotemporal
Variations

Abstract Using tree first leaf unfolding and grass green-up data, and daily air
temperature and precipitation data, local and regional unified phenology models
were fitted and validated in northern China and the Inner Mongolian Grassland,
respectively. Based on the regional phenology models, spatiotemporal patterns of
first leaf unfolding dates and green-up dates were reconstructed over the continuous
geographic coverage. Within the 250 optimum local first leaf unfolding models for
the four tree species at 136 stations, the unified forcing and chilling models account
for 83 and 17 %, respectively. Thus, forcing temperature predominantly influence
first leaf unfolding dates in most parts of northern China, while the affect of chilling
temperature was stronger for earlier than later first leaf unfolding species. Spatial
and temporal validation confirmed the capability and reliability of the 16 regional
unified species-specific models in predicting leaf unfolding dates in the four climate
regions. The reconstructed leaf unfolding dates show a significant advancement in
most parts of northern China over 1960–2009, which is stronger for earlier than
later first leaf unfolding species. For grass green-up modeling, previous temperature
accumulation controls green-up dates of the three grass species at three stations,
while both previous temperature and precipitation accumulations control green-up
dates of these grass species at another three stations. The accumulated precipitation
plays a more important role as the precondition of forcing temperature than as the
supplementary condition of forcing temperature in triggering green-up of grasses.
The accuracy of the regional unified models in simulating and predicting green-up
dates of grasses at internal and external stations is at acceptable levels overall. The
reconstructed mean green-up dates for the three grass species represented a similar
spatial pattern across the Inner Mongolian Grassland, which is aligned approxi-
mately along the thermal and moisture gradient. Spatial patterns of green-up date
linear trends indicate a significant advancement at 40.3–71.4 % of all grids over the
Inner Mongolian Grassland during 1983–2009.

Keywords UniForc model � UniChill model � Traditional thermal time model �
Air temperature-precipitation parallel model � Air temperature-precipitation
sequential model � Regional unified model � Spatiotemporal patterns
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6.1 Introduction

Statistical phenology models are probabilistic and based on statistical hypotheses.
Parameters of statistical models are estimated from empirical data using various
statistical fitting methods (Chuine et al. 2003). Because these models may not
consider biological processes, they can only fit the specific sample dataset of a
given phenological occurrence date by means of climatic factors, but normally
cannot be used to extrapolate and predict the phenological occurrence date beyond
the time period of model fitting. By contrast, mechanistic (or process-based) phe-
nology models are causal and based on physiological and ecological hypotheses.
The known or assumed cause-effect relationships between biological processes and
driving factors in the plant’s environment should be included in a mechanistic
model only if information on its impacts on the process is available. Although
parameters of mechanistic models have physical dimensions that can theoretically
be measured directly instead of being estimated by fitting, this is rarely possible in
the practice (Chuine et al. 2003). Generally speaking, this type of phenology
models may not only simulate the specific sample dataset of a given phenological
occurrence date by means of climatic factors but also predict phenological occur-
rence dates beyond the time period of model fitting.

So far, most of mechanistic phenology models have been created for fitting and
predicting spring phenology of individual trees at station scales, such as budburst,
leaf unfolding and flowering dates (Landsberg 1974; Cannell and Smith 1983;
Murray et al. 1989; Hänninen 1990; Kramer 1994a; Chuine et al. 1998; Linkosalo
et al. 2008; Morin et al. 2009; Fu et al. 2012; Xu and Chen 2013). The basic
hypothesis of local species-specific phenology models is that spring tree phenology
is triggered mainly by chilling temperatures during the previous autumn and winter,
and forcing temperatures during the current spring (Chuine 2000). The simplest
models are only based on the accumulation of forcing temperatures that induce plant
growth and reproduction after bud dormancy has been broken in spring (Cannell and
Smith 1983; Hunter and Lechowicz 1992; Chuine et al. 1999). More sophisticated
models are based on the accumulation of both chilling temperatures and forcing
temperatures. Because chilling temperatures may influence bud dormancy and
accelerate bud growth from the state of quiescence to the state of budburst, the
negative relationship between the state of forcing and the state of chilling has been
considered in these models, namely, the less chilling temperatures are received, the
more forcing temperatures are subsequently needed to trigger budburst (Cannell and
Smith 1983; Murray et al. 1989; Kramer 1994b; Chuine 2000).

Applications of these spring phenology models have been restricted to the rel-
evant phenological event occurrence date at given locations (Chuine et al. 1998,
1999). However, as plant phenology has found a renewal in the context of global
climate change, there is an urgent need for simulating and predicting phenological
event occurrence dates at regional scales (Chuine et al. 2000). For meeting the
needs, regional unified species-specific models should be developed by upscaling
species-specific phenology models from individual stations to a region. A regional
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unified species-specific model assumes that responses of a phenological event
occurrence date to temperature at various stations are not significantly different
within the same climate region (Xu and Chen 2013).

Moreover, most phenology models were developed for tree species, rather than
non-woody species (Chuine et al. 2003). In comparison with forests, grasslands are
one of the most widespread vegetation types worldwide, and play a major but
poorly defined role in the global carbon cycle and climate change. As seasonal
distribution of rainfall is a major determinant of plant development and production
in many semiarid and arid regions (Hall et al. 2000), the moisture factors should be
taken into account in the grass phenology models. Thus, how to couple seasonal
precipitation to temperature-based models is the key difficulty. Unfortunately, there
is no a consistent pattern of seasonal precipitation impacts on grass phenology over
different grassland ecosystems (Cleland et al. 2006; Sherry et al. 2007; Shinoda
et al. 2007; Jentsch et al. 2009; Crimmins et al. 2010, 2011; Lesica and Kittelson
2010). Examining the combined effects of air temperature and precipitation during
late winter and early spring on green-up date of the dominant grass species by
means of process-based models is crucial not only for revealing ecological mech-
anisms of grassland phenology, but also for predicting appropriate grazing and
harvesting times, as well as estimating net primary productivity and carbon
sequestration in grassland ecosystems (Chen et al. 2014).

6.2 Leaf Unfolding Simulation and Prediction Across
Northern China

6.2.1 Study Area and Tree Species

The study area is located in northern China’s temperate zone, which includes cold
temperate, humid/sub-humid middle temperate, humid/sub-humid warm temperate,
semi-arid middle/warm temperate, and arid middle/warm temperate regions
(Fig. 6.1, China Meteorological Administration 1978). As no phenological stations
are located in the cold temperate region, only four climate regions were involved.

Salix matsudana, Populus simonii, Ulmus pumila and Prunus armeniaca were
chosen as indicator plant species because they are all native deciduous trees and
grow broadly in the study area. To reconstruct phenological time series for the four
tree species at grid scales, their possible distribution areas were determined
according to species distribution altitude limits and desert boundaries.

6.2.2 Phenological and Climate Data

The first leaf unfolding data for Salix matsudana, Populus simonii, Ulmus pumila
and Prunus armeniacawere acquired from the China Meteorological Administration
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(Chen 2009). Altogether, 136 stations (with phenological time series of more than
10 years from 1981 to 2005) were selected for first leaf unfolding modeling. The
number of stations is different for the four tree species, namely, 77 stations for Salix
matsudana, 61 stations for Populus simonii, 72 stations for Ulmus pumila, and 40
stations for Prunus armeniaca (Fig. 6.1).

Climate data were obtained from the China Meteorological Data Sharing Service
System (http://cdc.cma.gov.cn/), including daily mean air temperature at 343
meteorological stations in the northern China’s temperate zone over the 1959-2009
period. For reconstructing spatiotemporal patterns of first leaf unfolding dates at
grid scales, daily mean air temperatures were interpolated into 8 km × 8 km grids
over the study area using ANUSPLIN 4.2 (Hutchinson 2002) and Digital Elevation
Model (DEM) data derived from the United States Geological Survey. Meanwhile,
gridded daily mean air temperature data at a few phenological stations without
meteorological observations were also produced and used.

6.2.3 Phenology Models

The UniForc and UniChill models (Chuine 2000) were employed to fit first leaf
unfolding time series of the four tree species at each station from 1981 to 2005. The
UniForc model considers only the effect of forcing temperatures during spring. The

Fig. 6.1 Location of phenological stations with the four tree species observations in different
climate regions [Reprinted from Xu and Chen (2013), with permission from John Wiley and Sons]
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assumption is that first leaf unfolding appears when the state of forcing, Sf, reaches a
critical value F* on the date of y (Eq. 6.1):

Sf ¼
Xy
t1

Rf ðxtÞ ¼ F� ð6:1Þ

The state of forcing is defined as a daily accumulation of the rate of forcing, Rf

(xt), which begins at t1 (day of year, DOY). The rate of forcing is an exponential
function and xt is the daily mean air temperature (Eq. 6.2):

Rf ðxtÞ ¼ 1
1þ edðxt�eÞ ð6:2Þ

The UniForc model includes four parameters where t1 is usually set on 1 January
and d, e and F* were fitted, with d < 0 and e > 0.

The UniChill model considers the effect of both chilling temperatures during the
dormancy period and forcing temperatures during the growth period. The
hypothesis is that dormancy breaks when the state of chilling, Sc, reaches a critical
value C* on the date of t1 (Eq. 6.3):

Sc ¼
Xt1
t0

RcðxtÞ ¼ C� ð6:3Þ

The state of chilling is defined as a daily accumulation of the rate of chilling, Rc

(xt), which begins at t0 (DOY). The rate of chilling is also an exponential function
and xt is the daily mean air temperature (Eq. 6.4):

RcðxtÞ ¼ 1

1þ eaðxt�cÞ2 þ bðxt�cÞ ð6:4Þ

On the date of t1, forcing units start to accumulate until it reaches a critical value
F* (Eqs. 6.1 and 6.2). The UniChill model contains seven fitted parameters, in
which a, b, c, C* pertain to the chilling function and d, e, F*, belong to the forcing
function. t0 is commonly fixed on 1 September of the preceding year.

The species-specific parameters of UniForc and UniChill models at a station
were determined by the lowest value of the root mean square error (RMSE,
Eq. 6.5), while the optimum local model (UniForc or UniChill) was selected by the
lowest value of the Akaike Information Criterion (AIC, Eq. 6.6) (Akaike 1973). In
addition, the Nash–Sutcliffe Efficiency index (NSE, Eq. 6.7) (Nash and Sutcliffe
1970) was used to assess the reliability of model validation in the spatial extrap-
olation in comparison with the null model (mean dates of first leaf unfolding).
A negative NSE value denotes that the model performs worse than the null model,
whereas a positive NSE value (with a maximum value of 1) indicates that the model
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explains more variance than the null model. Moreover, the closer the NSE value to
1, the higher the model reliability, while the closer the NES value to 0, the lower the
model reliability.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 obsi � preið Þ2
n

s
ð6:5Þ

AIC ¼ n� ln
Pn

i¼1 ðobsi � preiÞ2
n

 !
þ 2ðkþ 1Þ ð6:6Þ

NSE ¼ 1�
Pn

i¼1 obsi � preið Þ2Pn
i¼1 obsi � obs
� �2 ð6:7Þ

where obsi is the observed value in year i; prei is the simulated (or predicted) value
in year i; obs is mean observed value in the validation period; n is the number of
years; k is the number of parameters (Xu and Chen 2013).

6.2.4 Local First Leaf Unfolding Modeling

Within the selected 250 optimum models for the four tree species at 136 stations,
the UniForc model accounts for 83 % (207 models), which implies that forcing
temperature predominantly influence first leaf unfolding date of the four tree species
in most parts of northern China’s temperate zone. For the rest 43 optimum models
(17 % of total) in the form of UniChill, the number and percentage of stations with
effective chilling temperature steadily decreases from earlier first leaf unfolding tree
species (such as Salix matsudana and Populus simonii) to later first leaf unfolding
tree species (such as Ulmus pumila and Prunus armeniaca), namely, 18 stations
(23 % of 77) for Salix matsudana, 13 stations (21 % of 61) for Populus simonii, 11
stations (15 % of 72) for Ulmus pumila and 1 station (3 % of 40) for Prunus
armeniaca. This indicates that the influence of chilling temperature on first leaf
unfolding date was stronger for earlier first leaf unfolding species than later first leaf
unfolding species in northern China. The RMSEs for differences between observed
and simulated first leaf unfolding dates range from 0.7 days to 10.2 days for the
250 optimum models, and the mean RMSE is 3.7 days (Xu and Chen 2013).

6.2.5 Regional Unified First Leaf Unfolding Modeling

Regional unified models were selected from optimum local species-specific models
based on their capability in the spatial extrapolation. For achieving this goal, each
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optimum local species-specific model was employed to extrapolate first leaf
unfolding dates of corresponding species at all other stations within its located
climate region during 1981–2005. The extrapolation errors were evaluated by NES
and RMSE, and the best local species-specific model with effective extrapolation
(NSE > 0) and the lowest value of the RMSE was determined as the regional
unified model for each species and each climate region (Table 6.1). Within the 16
regional unified models, only the model for Salix matsudana first leaf unfolding in
the humid/sub-humid middle temperate region contains both chilling and forcing
temperature accumulations (UniChill model), while the other 15 models require
only forcing temperature accumulation (UniForc model). The mean RMSE of each
regional unified model at stations with effective extrapolation ranges from 3.3 to
6.0 days (Table 6.1).

The temporal validation of the 16 regional unified models in years beyond the
time period of model fitting shows that the observed first leaf unfolding date cor-
relates significant positively (P < 0.01) with the predicted first leaf unfolding date

Table 6.1 Regional unified models and their assessments in spatial extrapolation over 1981–2005
for the four tree species in the four climate regions (Xu and Chen 2013)

Species Climate
region

Number
of
stations

Regional
unified
models

Number of
stations with
NSE > 0

Percentage
(%)

Mean
RMSE*

Salix
matsudana

HSMT 10 UniChill 8 80 5.44

HSWT 25 UniForc 16 64 6.01

SMWT 22 UniForc 12 55 5.79

AMWT 20 UniForc 14 70 3.57

Populus
simonii

HSMT 19 UniForc 12 63 4.45

HSWT 13 UniForc 11 85 5.80

SMWT 24 UniForc 17 71 4.33

AMWT 5 UniForc 3 60 3.43

Ulmus
pumila

HSMT 11 UniForc 9 82 5.97

HSWT 19 UniForc 14 74 5.70

SMWT 24 UniForc 14 58 5.17

AMWT 18 UniForc 8 44 4.95

Prunus
armeniaca

HSMT 7 UniForc 7 100 4.94

HSWT 8 UniForc 6 75 4.91

SMWT 10 UniForc 6 60 3.80

AMWT 15 UniForc 10 67 3.32

HSMT humid/sub-humid middle temperate region, HSWT humid/sub-humid warm temperate
region, SMWT semi-arid middle/warm temperate region, AMWT arid middle/warm temperate
region
*Mean RMSE at stations with NSE > 0
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during 2006–2009 in 15 of 16 models. The RMSE of each regional unified model in
the temporal validation ranges from 2.0 and 10.6 days (Fig. 6.2). As the mean
RMSEs of temporal validation for each tree species in the four climate regions
(Fig. 6.2) are only slightly larger (0.4–1.6 days) than those of spatial validation for
each tree species in the four climate regions (Table 6.1), the process-based regional
unified models provide a robust tool for predicting first leaf unfolding dates of the
four tree species in northern China’s temperate zone.

Fig. 6.2 Comparison between observed first leaf unfolding date and predicted first leaf unfolding
date based on regional unified species-specific models in the four climate regions during 2006–
2009. a–d Salix matsudana, e–h Populus simonii, i–l Ulmus pumila, m–p Prunus armeniaca
[Reprinted from Xu and Chen (2013), with permission from John Wiley and Sons]
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6.2.6 Spatiotemporal Patterns of First Leaf Unfolding Dates

Based on the 16 regional unified species-specific models, long-term first leaf
unfolding dates for the four tree species across northern China have been recon-
structed using gridded daily mean temperature data from 1959 to 2009. At the grid
level, a significantly advancing trend in first leaf unfolding dates was detected in
most parts of the possible distribution area of each tree species over 1960–2009. It
should be noted that the spatial differentiation in linear trends of first leaf unfolding
dates decreases gradually from the earlier to the later first leaf unfolding species
(Fig. 6.3).

At the climate region level, first leaf unfolding dates of the four tree species
display a synchronously significant advancement (P < 0.001) from 1960 to 2009
with trend values ranging from −1.2 days per decade to −2.2 days per decade
(Fig. 6.4).

Across northern China’s temperate zone, regional mean first leaf unfolding dates
advanced significantly (P < 0.001) at a slowing rate from earlier first leaf unfolding
species to later first leaf unfolding species, namely, –1.61 days per decade for Salix
matsudana, –1.59 days per decade for Populus simonii, –1.41 days per decade for
Ulmus pumila, and –1.39 days per decade for Prunus armeniaca during 1960–2009.

Fig. 6.3 Spatial pattern of linear trends in first leaf unfolding dates in northern China’s temperate
zone over 1960–2009. a Salix matsudana, b Populus simonii, c Ulmus pumila, d Prunus
armeniaca [Reprinted from Xu and Chen (2013), with permission from John Wiley and Sons]
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6.3 Green-up Simulation and Prediction in the Inner
Mongolian Grassland

6.3.1 Study Area and Grass Species

The Inner Mongolia Autonomous Region is located in temperate northern China
(Fig. 6.5). Influenced by both East Asian monsoon along the east coast and inland
drought in the west, the climate can be divided into temperate subhumid, semiarid
and arid regions from east to west (China Meteorological Administration 1978).
The topographical structure is composed of the Inner Mongolian Plateaus with an
average height of 1000 m above sea level and the surrounding catenulate mountains
at 1000–2500 m above sea level. The annual mean air temperature increases from
−5 °C in the northeast to 10 °C in the southwest, while the annual mean total
precipitation decreases from 530 mm in the east to 35 mm in the west. Along with
the thermal-moisture gradient, the vegetation contains six belts from northeast to
southwest, namely, coniferous forest, deciduous broadleaf forest, forest steppe,

Fig. 6.4 Linear trends in first leaf unfolding dates of the four tree species in the humid/subhumid
middle temperate region (HSMT, first column), humid/subhumid warm temperate region (HSWT,
second column), semiarid middle/warm temperate region (SMWT, third column), and arid
middle/warm temperate region (AMWT, fourth column) over 1960–2009. a–d Salix matsudana,
e–h Populus simonii, i–l Ulmus pumila, m–p Prunus armeniaca [Reprinted from Xu and Chen
(2013), with permission from John Wiley and Sons]
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typical steppe, desert steppe, and desert (Editorial Board of the Inner Mongolian
Grassland 1991). In addition, some intrazonal vegetation types are distributed
across lowland, sand plain and mountainous areas, such as meadow steppe and
subshrubs. Because typical steppe and meadow steppe are characterized by good
nutritional quality, high productivity, mowing suitability, and strong palatability,
they are the most important pasture in the temperate zone of China. Six grassland
meteorological experiment stations were selected for process-based modeling, in
which E’ergunayouqi, Ewenkeqi and Bayartuhushuo are located in the meadow
steppe areas, while Xilinhot, Xianghuangqi and Chaharyouyihouqi lie in the typical
steppe areas (Fig. 6.5). Geo-location parameters and thermal-moisture conditions of
the six stations are listed in Table 6.2. At these stations, three dominant grass
species in the Inner Mongolian Grassland (Leymus chinensis, Stipa baicalensis and
Stipa krylovii) were chosen as indicator species for process-based modeling.

6.3.2 Phenological and Climate Data

The phenological data include green-up dates of the three grass species at six
grassland meteorological experiment stations from 1983 to 2009 and at 14 eco-
logical stations from 2005 to 2009. The phenological observation was carried out in

Fig. 6.5 Location of phenological stations with the three dominant grass species observations in
the Inner Mongolian Grassland
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natural pastures with an area of 10000 m2 at each station. The green-up of a grass
species is identified when 10 % of individual grasses display green leaves and grow
up to one centimeter in spring or early summer (China Meteorological
Administration 1993; Study Group of Animal Husbandry Climate Regionalization
for China’s Pastoral Areas 1988). As different species have different distribution
ranges, observed green-up data of the three grass species are not identical at each
station. Namely, Leymus chinensis has been observed at the six grassland meteo-
rological experiment stations in both typical and meadow steppe areas, while Stipa
baicalensis and Stipa krylovii have been observed at E’ergunayouqi and Ewenkeqi
in meadow steppe areas, and at Xilinhot, Xianghuangqi and Chaharyouyihouqi in
typical steppe areas, respectively (Fig. 6.5).

Statistical analysis shows that mean green-up dates of Leymus chinensis
occurred during 17 April to 6 May with standard deviations (SD) between 4.5 and
6.9 days over the six stations, while mean green-up dates of Stipa baicalensis and
Stipa krylovii appeared during 1 May to 7 May with a SD of 5.0 days at
E’ergunayouqi and Ewenkeqi, and during 15 April to 28 April with SDs between
4.5 and 7.1 days at Xilinhot, Xianghuangqi and Chaharyouyihouqi, respectively.
A significant advancement in green-up date (P < 0.01–0.001) was detected at
Chaharyouyihouqi for Leymus chinensis and Stipa krylovii from 1983 to 2009,
while a significant delay (P < 0.05) was found at Xilinhot for Stipa krylovii
(Table 6.3).

Daily mean air temperature and daily precipitation data at 118 meteorological
stations during 1983–2009 were collected for green-up modelling. In order to
reconstruct time series of grass green-up dates over a continuous geographic cov-
erage, the climate data interpolation package ANUSPLIN 4.2 (Hutchinson 2002)
and Digital Elevation Model (DEM) data derived from the US Geological Survey
were used to interpolate the daily mean air temperature and daily precipitation into
8 km × 8 km grids over the Inner Mongolia Autonomous Region.

Table 6.2 Geo-location parameters and thermal-moisture conditions at each station (Chen et al.
2014)

Station Numbera North
latitude

East
longitude

Elevation
(m a.s.l)

Annual mean
temperature
(°C)

Annual
precipitation
(mm)

E’ergunayouqi 1 50°15′ 121°11′ 582 −2.0 375.9

Ewenkeqi 2 49°09′ 119°45′ 621 −1.0 344.9

Bayartuhushuo 3 45°04′ 120°20′ 629 3.8 438.9

Xilinhot 4 43°57′ 116°04′ 991 3.0 269.9

Xianghuangqi 5 42°14′ 113°50′ 1323 3.9 272.0

Chaharyouyihouqi 6 41°27′ 113°11′ 1425 4.2 325.7
a The station number is the same as in Fig. 6.5
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6.3.3 Phenology Models

To examine the combined effects of air temperature and precipitation on green-up
date of the dominant grass species, traditional thermal time model and two revised
thermal time models coupling air temperature and precipitation were employed to
fit green-up dates of Leymus chinensis, Stipa baicalensis and Stipa krylovii.

The traditional thermal time model considers only the effect of forcing air
temperatures during spring. The hypothesis is that green-up appears when the state
of forcing, ST, reaches a critical value F* on the date of y (Eq. 6.8):

ST ¼
Xy
t0

RTðTtÞ ¼ F� ð6:8Þ

The state of forcing is defined as a daily accumulation of the rate of forcing
above a base air temperature Tb, RT (Tt), which starts at t0 (DOY) and Tt is the daily
mean air temperature. The rate of forcing in the traditional thermal time model is
defined by Eq. 6.9:

RTðTtÞ ¼ 0 Tt � Tb
Tt � Tb Tt [ Tb

�
ð6:9Þ

Table 6.3 Statistical characteristic values of green-up dates of the three grass species at each
station during 1983–2009 (Chen et al. 2014)

Station
numbera

Species Number of
years

Mean date
(day of
year)

Standard
deviation
(days)

Linear trends
(days per
decade)

1 L. chinensis 22 126 4.5 1.98

S. baicalensis 24 127 5.0 –0.63

2 L. chinensis 21 120 4.5 0.30

S. baicalensis 19 121 5.0 1.35

3 L. chinensis 16 112 4.9 –1.83

4 L. chinensis 17 109 5.1 –1.23

S. krylovii 21 105 6.5 4.85*

5 L. chinensis 23 107 5.0 –0.09

S. krylovii 23 106 4.5 1.69

6 L. chinensis 24 118 6.9 –5.45***

S. krylovii 24 118 7.1 –4.63**

*P < 0.05, ** P < 0.01, *** P < 0.001
aThe station number is the same as in Fig. 6.5
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This model contains three parameters where the starting date of the temperature
accumulation (t0) was fixed on 1 January, and the base temperature (Tb) and the
critical value of state of forcing (F*) were fitted.

The revised thermal time model considers the effects of both forcing air tem-
peratures and precipitations from 1 January to green-up date. According to the field
observations during 2004–2006 in Ewenkeqi, accumulated late winter and early
spring precipitation, usually falling as snow, is at least as important as spring
temperature in triggering green-up of grass species (Chen et al. 2008). A statistical
analysis in the Mongolian Grasslands has also shown that precipitation or snow
melt events in spring could trigger grass to start growing (Shinoda et al. 2007). One
possible explanation for this association is that grass roots cannot start to grow until
the ground has been warmed and humidified above 0 °C, after snow melt. Namely,
more snow fall during late winter and early spring can mean more soil moisture
storage as spring temperature increases, and induce earlier green-up, whereas less
snow fall during late winter and early spring can create a soil moisture shortage
coupling with rapid spring temperature increases, and force later green-up. The
revised thermal time model assumes therefore that green-up of grasses is triggered
by accumulated spring air temperature and accumulated late winter and early spring
precipitation in the form of snow. This model contains two approaches.

The air temperature-precipitation parallel model assumes that accumulated air
temperature and precipitation are equivalently important in triggering green-up of
grasses. That is, green-up occurs when the state of forcing air temperature, ST
and the state of forcing precipitation, SP, achieve critical values F* and P*on the
date of y (Eqs. 6.8 and 6.10):

SP ¼
Xy
t0

RP Ptð Þ ¼ P� ð6:10Þ

The state of precipitation is defined as a daily accumulation of the rate of
precipitation, Rp (Pt), which starts at t0 (DOY) and Pt is the daily precipitation
(mm). Here, the starting date of precipitation accumulation was also set as 1 January
(t0). The rate of precipitation in the air temperature-precipitation parallel model is
defined by Eq. 6.11:

RPðPtÞ ¼ Pt ð6:11Þ

There are three fitted parameters in the air temperature-precipitation parallel
model, namely, Tb, F

* and P*.
The air temperature-precipitation sequential model assumes that air temperature

and precipitation trigger green-up of grasses sequentially, namely, the effect of
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forcing air temperature on green-up occurs when the state of forcing precipitation,
SP, achieves critical value P*on the date of t1 (Eq. 6.12):

SP ¼
Xt1
t0

RP Ptð Þ ¼ P� ð6:12Þ

The state of precipitation is defined as a daily accumulation of the rate of
precipitation, Rp (Pt), which starts at t0 (DOY) and terminates at t1 (DOY). The rate
of precipitation in the air temperature-precipitation sequential model is also defined
by Eq. 6.11. The time point t1 represents not only the end date of precipitation
accumulation but also the starting date of temperature accumulation. The air
temperature-precipitation sequential model contains also three fitted parameters Tb,
F*and P*. Because grass green-up appeared after the date daily mean air temper-
ature rose above 0 °C and before the date daily mean air temperature surpassed
5 °C (Study Group of Animal Husbandry Climate Regionalization for China’s
Pastoral Areas 1988), a candidate range of Tb was set between daily mean air
temperatures of 0 and 5 °C (Chen et al. 2014).

The species-specific parameters of the traditional thermal time model and the
revised thermal time models coupling air temperature and precipitation were
determined by the lowest value of the RMSE (Eq. 6.5), while the optimum local
model (traditional thermal time model or one of the revised thermal time models
coupling air temperature and precipitation) was selected by the lowest value of AIC
(Eq. 6.6).

To assess performances of the regional unified models in spatial extrapolation,
these models were validated by predicting green-up dates of the three grass species
from 2005 to 2009 at the 14 external stations within the research region (Fig. 6.5).
The precision of the spatial validation was evaluated by correlation coefficient and
RMSE between observed and predicted green-up dates.

6.3.4 Local Green-up Modeling

Within the 11 optimum models for the three grass species at six stations, six models
belong to the traditional thermal time model. They were created at E’ergunayouqi,
Ewenkeqi and Chaharyouyihouqi (Table 6.4). This indicates that late winter and
early spring precipitation did not significantly influence green-up dates of the three
grass species at these three locations. The RMSEs for Leymus chinensis green-up
modeling ranged from 3.6 to 5.8 days, whereas the RMSEs for Stipa baicalensis
and Stipa krylovii green-up modeling were between 4.0 and 5.6 days. Moreover,
the traditional thermal time model can explain 48 % (R2, P < 0.001) and 47 %
(P < 0.001) of the observed interannual variations in Leymus chinensis and Stipa
baicalensis green-up dates at Ewenkeqi, and 57 % (P < 0.001) and 40 %
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(P < 0.001) of the observed interannual variations in Leymus chinensis and Stipa
krylovii green-up dates at Chaharyouyihouqi, respectively. In contrast, coefficients
of determination (R2) between observed and predicted Leymus chinensis green-up
dates and between observed and predicted Stipa baicalensis green-up dates are only
4 and 14 % (P > 0.05), respectively at E’ergunayouqi, which implies that the
traditional thermal time model cannot effectively explain the observed interannual
variations in Leymus chinensis and Stipa baicalensis green-up dates there
(Table 6.4).

The green-up dates of Leymus chinensis and Stipa krylovii at Bayartuhushuo,
Xilinhot and Xianghuangqi were best fitted by the revised thermal time models
coupling air temperature and precipitation, including four air temperature-
precipitation sequential models and one air temperature-precipitation parallel
model. The RMSEs for Leymus chinensis green-up modeling ranged from 3.1 to
6 days over the three stations, whereas the RMSEs for Stipa krylovii green-up
modeling were 6.3 days at both Xilinhot and Xianghuangqi. Thus, accumulated late
winter and early spring precipitation might be the precondition (sequential model)
or supplementary condition (parallel model) of the dominant effect of forcing
temperature in triggering green-up of grass species at these three locations.
Coefficients of determination (R2) show that the optimum revised thermal time
models can explain 68 % (P < 0.001) of the observed interannual variation in
Leymus chinensis green-up date at Bayartuhushuo, and 63 % (P < 0.001) and 23 %
(P < 0.05) of the observed interannual variations in Leymus chinensis and Stipa

Table 6.4 Parameters and simulation accuracies of optimum local species-specific models (Chen
et al. 2014)

Station
number

Species Optimum
modela

Tb (°C) F* (°C) P* (mm) R2 RMSE
(days)

1 L. chinensis Mt 0.0 119.1 – 0.04 5.8

S. baicalensis Mt 0.2 135.3 – 0.14 5.2

2 L. chinensis Mt 0.0 105.8 – 0.48*** 3.6

S. baicalensis Mt 0.1 117.9 – 0.47*** 4.0

3 L. chinensis Mt-p2 0.2 97.0 2.0 0.68*** 3.1

4 L. chinensis Mt-p1 2.5 42.5 5.9 0.63*** 3.6

S. krylovii Mt-p2 0.1 52.6 5.1 0.23* 6.3

5 L. chinensis Mt-p2 0.0 105.1 2.5 0.07 6.0

S. krylovii Mt-p2 0.1 89.8 3.0 0.01 6.3

6 L. chinensis Mt 0.0 185.6 – 0.57*** 4.5

S. krylovii Mt 0.2 170.1 – 0.40*** 5.6
aMt traditional thermal time model, Mt-p1 air temperature-precipitation parallel model, Mt-p2 air
temperature-precipitation sequential model
*P < 0.05, **P < 0.01, ***P < 0.001
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krylovii green-up dates at Xilinhot. However, R2 values between observed and
predicted Leymus chinensis green-up dates and between observed and predicted
Stipa krylovii green-up dates are only 7 and 1 % (P > 0.05), respectively at
Xianghuangqi, which means that the air temperature-precipitation sequential model
cannot effectively explain the observed interannual variation in Leymus chinensis
and Stipa krylovii green-up dates at that location (Table 6.4).

Overall, parameter estimates of the optimum local species-specific models show
that Tb and F* ranged from 0 to 2.5 °C and from 42.5 to 185.6 °C, respectively,
while P* ranged from 2 to 5.9 mm (Table 6.4). As F* values of the traditional
thermal time model are generally larger than those of the air
temperature-precipitation parallel and sequential models, precipitation has com-
pensation effects to air temperature in triggering green-up of grass species.
Simulation errors for the 11 optimum local species-specific models, as measured by
RMSE are between 3.1 and 6.3 days, and the mean RMSE is 4.9 days.

6.3.5 Regional Unified Green-Up Modeling

The basic hypothesis for regional green-up modeling is that local model estimates
of green-up response to climatic factors for a grass species are not significantly
different within its distribution range, based on which regional models can be
constructed by pooling time series of species-specific green-up dates from different
sample stations (García-Mozo et al. 2008; Delpierre et al. 2009). For Leymus
chinensis green-up modeling, time series of green-up dates from all six sample
stations within the research region were combined. For Stipa baicalensis and Stipa
krylovii green-up modeling however, time series of green-up dates from
E’ergunayouqi and Ewenkeqi within meadow steppe areas, and from Xilinhot,
Xianghuangqi and Chaharyouyihouqi within typical steppe areas were merged,
respectively. Results show that the traditional thermal time model has higher
simulation parsimony and efficiency than the revised thermal time models coupling
air temperature and precipitation for Stipa baicalensis. By contrast, the revised
thermal time models coupling air temperature and precipitation has higher simu-
lation parsimony and efficiency than the traditional thermal time model for Leymus
chinensis (air temperature-precipitation parallel model) and Stipa krylovii (air
temperature-precipitation sequential model). Simulation errors for the three opti-
mum regional species-specific models, as measured by RMSE range from 5 to
9.2 days (Table 6.5), and the mean RMSE is 7 days.

To validate performances of the three regional models in spatial extrapolation,
daily mean air temperature and daily precipitation data at the 14 external stations
during 2005–2009 were substituted into regional species-specific models and the
predicted green-up dates were compared with field observations. As sample sizes of
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green-up data for Stipa baicalensis and Stipa krylovii at external stations are rela-
tively small, the precision of the spatial validation was evaluated based on the
mixed sample of green-up data for the two species at Stipa. Results show that the
observed green-up dates of Leymus chinensis and Stipa baicalensis/Stipa krylovii
correlate significantly positive with the predicted green-up dates of Leymus chi-
nensis and Stipa baicalensis/Stipa krylovii, and the RMSEs are 9.8 and 10.4 days,
respectively (Fig. 6.6). The RMSEs of the spatial validation are 3.0 days larger than
the RMSE of the regional modeling for Leymus chinensis, and 3.3 days larger than
the average RMSE of the regional modeling for Stipa baicalensis and Stipa krylovii,
respectively (Table 6.5).

6.3.6 Spatiotemporal Patterns of Green-up Dates

For reconstructing spatial patterns of green-up dates of the three grass species
across the Inner Mongolian Grassland, daily mean air temperature and daily pre-
cipitation data at 8 km × 8 km grids from 1983 to 2009 were substituted into the

Table 6.5 Parameters and simulation accuracies of optimum regional species-specific models

Species Number of
observation

Optimum model Tb (°C) F* (°C) P* (mm) RMSE (days)

L. chinensis 123 Mt-p1 0.0 119.7 2.5 6.8

S. baicalensis 43 Mt 0.2 129.4 – 5.0

S. krylovii 68 Mt-p2 0.3 106.8 2.6 9.2

Fig. 6.6 Comparison between observed and predicted green-up dates for a Leymus chinensis and
b Stipa baicalensis/Stipa krylovii at external stations during 2005–2009
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three regional models. Because the regional models of Stipa baicalensis and Stipa
krylovii were created within meadow steppe areas and typical steppe areas,
respectively, time series of gridded green-up dates for Stipa baicalensis within
meadow steppe areas and Stipa krylovii within typical steppe areas were recon-
structed separately, and then merged together for illustrating spatial patterns of
green-up dates and their linear trends during 1983–2009 for the two grass species at
Stipa. Generally speaking, the spatial pattern of mean green-up dates for Leymus
chinensis is similar to that for Stipa baicalensis/Stipa krylovii. Green-up dates
represented a spatial progression from southwest and southeast to north in the
southern part and from west to east in the northern part of the Inner Mongolian
Grassland, which is aligned approximately along the thermal and moisture gradient.
The spatial differences in mean green-up dates for Leymus chinensis and Stipa
baicalensis/Stipa krylovii were between 91 DOY (1 April) and 142 DOY (22 May)
and between 89 DOY (30 March) and 143 DOY (23 May), respectively (Fig. 6.7).

With regard to spatial patterns of green-up date linear trends, a significant
advancement in Leymus chinensis green-up dates was detected at 71.4 % of all
grids during 1983–2009, and trend values are between 2.2 and 6.0 days per dec-
ades. The largest advancing trends appear in southwestern parts of the Inner
Mongolian Grassland. Nonsignificant trends are mainly located in the central and
eastern parts of the Inner Mongolian Grassland (Fig. 6.8a). By contrast, a signifi-
cant advancement in green-up dates of Stipa baicalensis/Stipa krylovii was only
found at 40.3 % of all grids, and trend values range from 2.3 and 6.2 days per
decades, which are mainly distributed in the northeastern and southwestern parts of
the Inner Mongolian Grassland (Fig. 6.8b).

At regional scales, green-up dates of Leymus chinensis, Stipa baicalensis and
Stipa krylovii have significantly advanced at rates of 2.9 days per decade across the
Inner Mongolian Grassland, 3.0 days per decade in meadow steppe areas, and
2.2 days per decade in typical steppe areas over 1983–2009, respectively (Fig. 6.9).

Fig. 6.7 Reconstructed spatial patterns of mean green-up dates for a Leymus chinensis and
b Stipa baicalensis/Stipa krylovii in the Inner Mongolian Grassland during 1983–2009
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Fig. 6.8 Reconstructed spatial patterns of linear trends of green-up dates for a Leymus chinensis
and b Stipa baicalensis/Stipa krylovii in the Inner Mongolian Grassland during 1983–2009

Fig. 6.9 Reconstructed
linear trends of green-up dates
for a Leymus chinensis over
the Inner Mongolian
Grassland b Stipa baicalensis
in meadow steppe areas, and
c Stipa krylovii in typical
steppe areas during 1983–
2009
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Chapter 7
Spatial and Temporal Validation
of Remote Sensing Phenology

Abstract To validate remote sensing vegetation phenology in the deciduous
broadleaf forest of northern China, monthly and daily mean air temperature-based
spatial phenology models were employed to establish yearly gridded spatial data-
sets of first leaf unfolding (beginning of the growing season, BGS) and leaf fall end
(end of the growing season, EGS) dates of dominant tree species at spatial scales
commensurate with satellite data. Two separate approaches were conducted for
validating satellite-derived growing season parameters by means of ground-based
growing season parameters (BGS and EGS). First, a spatial validation of the
satellite-derived BGS and EGS retrieved from Normalized Difference Vegetation
Index (NDVI) data of Moderate Resolution Imaging Spectroradiometer (MODIS)
was implemented in northeastern China from 2001 to 2005. Results show that
satellite-derived BGS might be a better indicator than EGS in monitoring spatial
variation of ground-based growing season parameters, whereas satellite-derived
EGS might be a better indicator than BGS in measuring occurrence time of
ground-based growing season parameters. Then, spatial, temporal and spatiotem-
poral validations of the satellite-derived start of season (SOS) generated from NDVI
data of Advanced Very High Resolution Radiometer (AVHRR) were carried out in
northern China during 1986–2006. Results indicate that the yearly spatial series of
SOS correlates significantly positive (P < 0.001) with the yearly spatial series of
BGS over all pixels, while the time series of SOS correlates significantly positively
(P < 0.05) with the time series of BGS at 65.8 % of all pixels during 1986–2006.
Moreover, the spatiotemporal series of SOS correlate also significantly positive
(P < 0.001) with the spatiotemporal series of BGS. The spatial, temporal and
spatiotemporal differences between SOS and BGS are all at acceptable levels
overall. Thus, the satellite-derived start of season can effectively monitor spatial,
temporal and spatiotemporal variations of the ground-based growing season
beginning.

Keywords First leaf unfolding � Leaf fall end � Normalized difference vegetation
index � Growing season � Spatial and temporal correlation � Error estimate
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7.1 Introduction

A true growing season may be defined as the number of days in a year in which a
plant can grow (Wang 1963). In practice, the vegetation growing season is deter-
mined by plant budburst or leaf unfolding date in spring (beginning of the growing
season, BGS) and leaf coloration or leaf fall date in autumn (end of the growing
season, EGS) (Chen 1994; Chmielewski and Rötzer 2001; Matsumoto et al. 2003;
Menzel 2003; Chen and Xu 2012). Because the vegetation growing season shifts
influenced by climate change control seasonal CO2, water, and energy exchanges
between vegetation and low atmosphere and their feedbacks to regional and global
climate change (Churkina et al. 2005; Barr et al. 2009; Migliavacca et al. 2012;
Richardson et al. 2012), detecting the vegetation growing season and its spa-
tiotemporal variations is crucial for revealing two-way feedback mechanisms
among climate change, vegetation dynamics and biogeochemical cycles. There are
mainly two types of data sources for identifying the vegetation growing season. The
ground visually observed phenological data are usually applied to determine the
growing season of individual plants and plant communities at local scales, while
satellite remote sensing data are mainly used to estimate the land surface growing
season at regional and global scales (Reed et al. 1994; Zhou et al. 2001; Zhang et al.
2003; Jeong et al. 2011). Due to spatial scale and temporal resolution differences,
remotely sensed vegetation indices may not directly reflect ground-based pheno-
logical stages, such as leaf unfolding and leaf fall (Reed et al. 1994). Thus, a spatial
and temporal comparison of these coarse resolution satellite measures with
point-based field phenological events is necessary (Schwartz 1998; Chen et al.
2000, 2013; Fisher et al. 2006; Luo et al. 2013). However, this kind of surface
validation of remote sensing phenology was commonly restricted by a lack of
in situ phenological data at spatial scales commensurate with satellite data (Fisher
et al. 2006; Liang et al. 2011; Zhang and Goldberg 2011; Chen et al. 2013; Luo
et al. 2013). Reliable validation is possible by up-scaling intensive field phenology
measurements to pixel scales (Liang et al. 2011). In this chapter, monthly and daily
mean air temperatures-based spatial phenology models were employed to build
gridded spatial datasets of first leaf unfolding date and leaf fall end date of indicator
tree species for validating the remotely sensed BGS and EGS.

7.2 Spatial Validation of Satellite-Derived Phenology
in Northeastern China’s Deciduous Broadleaf Forest

7.2.1 Study Area and Indicator Tree Species

The deciduous broadleaf forest is a dominant forest vegetation type in northern
China’s temperate zone, which is mainly distributed in mountainous areas,
including middle part of the Da Hinggan Ling mountains, southeast part of the Xiao
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Hinggan Ling mountains, the Changbai Shan mountains, the Yan Shan mountains,
and the Qin Ling mountains from north to south (Fig. 7.1). The plant community is
consisted of broadleaf trees and shrubs, such as Quercus, Betula, Carpinus, Ulmus,
Celtis, Acer, Populus, Malus, etc. (Compilation Committee of the Vegetation of
China 1980). Because Ulmus pumila is one of the major deciduous trees that grow
widely on plains, hills, low mountains, and sand hills, it can serve as an indicator
species (Chen and Xu 2012) for spatial validation of satellite-derived vegetation
phenology. The Ulmus pumila growing season was defined as the period between
first leaf unfolding date and leaf fall end date. First leaf unfolding was identified as
when a few leaves are fully open in spring, whereas leaf fall end was identified as
when almost all leaves have fallen to the ground during late autumn or early winter.

7.2.2 Materials and Methods

Using Ulmus pumila first leaf unfolding and leaf fall end data and air temperature
data collected at 46 stations in China’s temperate zone during 1986–2005, monthly
mean air temperature-based spatial phenology models were created for each year
(Xu and Chen 2012). These models can be employed to calculate yearly spatial
patterns of Ulmus pumila growing season beginning and end dates on the basis of

Fig. 7.1 Distribution of the deciduous broadleaf forest in northeastern China [Reprinted from
Chen et al. (2013), with permission from Taylor & Francis]
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yearly spatial patterns of February–April and September–November mean tem-
peratures in the deciduous broadleaf forest areas. To achieve this goal, monthly
mean air temperature data at 343 stations in China’s temperate zone from 2001 to
2005 were interpolated into gridded monthly mean air temperature data using the
climate data interpolation package ANUSPLIN 4.2 (Hutchinson 2002) and Digital
Elevation Model data derived from the US Geological Survey with a grid size of
8 km. Then, yearly February–April and September–November mean temperatures
during 2001–2005 at all 8 km � 8 km grids within the deciduous broadleaf forest
areas were substituted into the corresponding yearly spring and autumn spatial
phenology models, and yearly gridded ground-based growing season beginning
(BGSgb) and end (EGSgb) dates were calculated.

The MODIS-NDVI data were acquired from the dataset MOD13A2 with a
spatial resolution of 1 km and temporal interval of 16 days during 2001 and 2005
(http://reverb.echo.nasa.gov/reverb/). A typical NDVI curve can be divided into
four phenological phases, namely, green-up, maturity, senescence, and dormancy
(Zhang et al. 2003). Here, green-up and dormancy dates were defined as beginning
(BGSsat) and end (EGSsat) dates of the satellite-derived growing season. As the
NDVI data have to be time-stamped on a particular day-of-year (DOY) for curve
fitting, the center DOY in each 16-day window was used to represent the particular
day-of-year. Then, the logistic model was employed to simulate the discrete NDVI
values on these particular days-of-year, and the transition dates of BGSsat and
EGSsat were determine by calculating turning points with maximum change rates of
curvature on the logistic curve (Zhang et al. 2003).

Because the spatial resolutions are different between satellite-derived growing
season parameters (1 km � 1 km) and ground-based growing season parameters
(8 km � 8 km), mean dates of BGSsat and EGSsat at all 1 km � 1 km pixels within
an 8 km � 8 km grid were calculated as the corresponding BGSsat and EGSsat
dates at the 8 km � 8 km grid. Thus, the spatially commensurate BGSsat/EGSsat
and BGSgb/EGSgb datasets were obtained.

7.2.3 Spatial Pattern Comparison of Satellite-Derived
and Ground-Based Growing Seasons

With respect to geographical distributions of satellite-derived and ground-based
growing season parameters, spatial patterns of Ulmus pumila growing season
beginning and end dates are similar to those of satellite-derived growing season
beginning and end dates, respectively. Generally speaking, the beginning dates of
both growing seasons displayed a spatial progression from south to north and from
east to west during 2001–2005. Namely, the growing season started first in the Qin
Ling mountains, then in the Yan Shan mountains and the Changbai Shan moun-
tains, and at last in the Xiao Hinggan Ling mountains and the Da Hinggan Ling
mountains. On average, the satellite-derived growing season beginning dates
appeared between the first ten-day period of March in south and the first ten-day
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period of June in north, whereas the Ulmus pumila growing season beginning dates
occurred between the last ten-day period of March in south and the mid-month of
June in north (Fig. 7.2a, b). By contrast, the end dates of both growing seasons
showed a spatial progression from north to south and from west to east. That is, the
growing season terminated first in the Da Hinggan Ling mountains and the Xiao
Hinggan Ling mountains, then in the Changbai Shan mountains and the Yan Shan
mountains, and at last in the Qin Ling mountains. On average, the satellite-derived
growing season end dates appeared between the mid-month of September in north
and the mid-month of December in south, while the Ulmus pumila growing season
end dates occurred between the last ten-day period of September in north and the
last ten-day period of November in south (Fig. 7.2c, d).

Across the deciduous broadleaf forest areas, regional mean BGSsat was obvi-
ously earlier than regional mean BGSgb during 2001–2005. The difference ranged
from 8 days (in 2005) to 18 days (in 2002). In contrast, regional mean EGSsat was
slightly later than regional mean EGSgb during 2001–2005 and the difference was
between 1 day (in 2004) and 6 days (in 2005). Therefore, the mean satellite-derived
growing season duration was longer than the mean ground-based growing season

Fig. 7.2 Spatial patterns of satellite-derived and ground-based growing season beginning and end
dates. a BGSsat; b BGSgb; c EGSsat; d EGSgb; i 2001; ii 2002; iii 2003; iv 2004; v 2005 [Reprinted
from Chen et al. (2013), with permission from Taylor & Francis]
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duration. Moreover, the spatial standard deviation of BGSsat was larger than that of
BGSgb in three of five years, whereas the spatial standard deviation of EGSsat was
larger than that of EGSgb in all five years (Table 7.1). Namely, satellite-derived
growing season parameters have a larger spatial heterogeneity than ground-based
growing season parameters.

7.2.4 Spatial Relationship Between Satellite-Derived
and Ground-Based Growing Seasons

In order to precisely assess the spatial consistency between satellite-derived and
ground-based growing season parameters, a correlation and regression analysis was
implemented between spatial series of BGSsat and BGSgb and between spatial series
of EGSsat and EGSgb across the study areas year-by-year. BGSsat correlates posi-
tively with BGSgb over all pixels during 2001–2005 (p < 0.001), namely, the earlier
the BGSgb at a pixel in a year, the earlier the BGSsat at the pixel in the year. The
explained variances (R2) of yearly spatial regression equations between BGSsat and
BGSgb range from 22 to 62 %, and the Root Mean Square Errors (RMSEs) of
yearly BGSsat simulations range from 9.4 to 11.7 days. Slopes of yearly spatial
regression equations indicate that a spatial shift (advance or delay) in BGSgb by
1 day corresponds to a spatial shift (advance or delay) in BGSsat between 0.49 and
0.99 days (Fig. 7.3a). Similarly, EGSsat correlates also positively with EGSgb over
all pixels during 2001–2005 (p < 0.001). That is, the earlier the EGSgb at a pixel in
a year, the earlier the EGSsat at the pixel in the year. The explained variances (R

2) of
yearly spatial regression equations between EGSsat and EGSgb range from 29 to
54 %, and the RMSEs of yearly EGSsat simulations range from 12.6 to 12.9 days.
On average, a spatial shift (advance or delay) in EGSgb by 1 day corresponds to a
spatial shift (advance or delay) in EGSsat between 0.85 and 1.21 days (Fig. 7.3b).

Table 7.1 Regional mean value (RM, DOY) and spatial standard deviationa (SSD in days) of
satellite-derived and ground-based growing season beginning and end dates from 2001 to 2005
(Chen et al. 2013)

Year BGSsat BGSgb EGSsat EGSgb
RM SSD RM SSD RM SSD RM SSD

2001 116 13.1 129 14.5 301 16.2 297 10.1

2002 107 13.2 125 14.7 297 18.5 295 11.2

2003 111 13.2 127 12.6 303 16.4 300 9.1

2004 112 16.0 127 14.9 304 15.1 303 8.5

2005 119 15.3 127 12.2 305 15.6 299 10.3
aSpatial standard deviation (SSD) measures variation of a spatial variable (such as BGSsat at all

pixels in the study areas in a year) using the formula: SSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
Xi � �Xð Þ2

.
n

s

, where Xi denotes

the value of the spatial variable at pixel i; �X denotes the regional mean value of the spatial variable
at all pixels; n is the total number of pixels in the study areas
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It is noteworthy that the explained variances of spatial BGS models are larger
than those of spatial EGS models in three of five years, whereas the RMSEs of
BGSsat simulations are smaller than those of EGSsat simulations in all five years.
Therefore, the spatial consistency between BGSsat and BGSgb is better than that
between EGSsat and EGSgb. However, because the slopes of the regression equa-
tions between EGSsat and EGSgb are close to 1 in all five years but the slopes of the
regression equations between BGSsat and BGSgb are much smaller than 1 in three of
five years, the spatial synchronism between EGSsat and EGSgb is better than that
between BGSsat and BGSgb.

7.3 Spatial and Temporal Validation of Satellite-Derived
Phenology in Northern China’s Deciduous Broadleaf
Forest

7.3.1 Study Area and Indicator Tree Species

In this section, the temperate deciduous broadleaf forest areas across all of northern
China (Fig. 7.4) were selected to analyze the spatial and temporal relationships
between ground-based beginning date of the growing season (BGS) and remotely
sensed starting date of season (SOS). The BGS was defined as the mean first leaf
unfolding date of Ulmus pumila, Salix matsudana, Populus simonii and Prunus

Fig. 7.3 Spatial correlation and regression analysis a between BGSsat and BGSgb and b between
EGSsat and EGSgb over all pixels. i 2001; ii 2002; iii 2003; iv 2004; v 2005. R

2 denotes the coefficient
of determination [Reprinted from Chen et al. (2013), with permission from Taylor & Francis]
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armeniaca. Because these trees are all native species and grow widely in temperate
northernChina, they can serve as representative tree species of local plant community.

7.3.2 Materials and Methods

The first leaf unfolding dates of the four tree species during 1986–2006 were used
as the dependent variable of the daily mean air temperature-based spatial phenology
model (Chap. 5). The first leaf unfolding data with a time series length of at least
10 years were obtained from 77 stations for Salix matsudana, 61 stations for
Populus simonii, 72 stations for Ulmus pumila, and 40 stations for Prunus arme-
niaca (Fig. 7.5).

Using spatial series of first leaf unfolding dates and daily mean air temperatures
within the optimum length period over corresponding stations in each year, the
daily mean air temperature-based spatial leaf unfolding models were created for
each tree species and in each year. Then, the species-specific daily mean air tem-
peratures during the optimum length period at all 8 km � 8 km grids (interpolated
also by the climate data interpolation package ANUSPLIN 4.2 and Digital
Elevation Model data derived from the US Geological Survey, see Sect. 7.2.2)
across the deciduous broadleaf forest areas in each year were substituted into the
corresponding yearly spatial leaf unfolding models of the four tree species,
respectively. As a result, gridded first leaf unfolding dates of the four tree species
were estimated across the deciduous broadleaf forest areas in each year. Based on
the gridded first leaf unfolding dates of each species in each year, the gridded mean

Fig. 7.4 Distribution of the temperate deciduous broadleaf forest areas in northern China
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first leaf unfolding dates of the four tree species in each year were calculated. Thus,
the spatially commensurate BGS datasets with satellite data were established.

Remotely sensed AVHRR NDVI data with the spatial resolution of 8 km and
temporal interval of 15 days from 1986 to 2006 were used for retrieving SOS across
the deciduous broadleaf forest areas. The computation process was implemented
through following steps. First, the Savitzky–Golay filter was employed to smooth
the original NDVI time series so that abnormal high and low values could be
eliminated (Chen et al. 2004). Then, the midpoint model (White et al. 1997) was
applied to extract the satellite-derived SOS at each pixel and in each year.

7.3.3 Spatial Relationship Between Satellite-Derived SOS
and Ground-Based BGS

Similar to the results in Sect. 7.2.3, the mean BGS and SOS dates displayed a
consistent spatial progression from south (earlier) to north (later) and from east
(earlier) to west (later) in the eastern part of northern China during 1986–2006. The
spatial differences in mean BGS and SOS dates ranged from 90 DOY (the end of
March) to 170 DOY (early June) (Fig. 7.6).

With regard to spatial variation consistency between satellite-derived SOS and
ground-based BGS at the pixel level, a significantly positive correlation (P < 0.001)
was detected in each year (Table 7.2). This indicates that the earlier the SOS date at
a pixel in a year, the earlier the BGS date at the pixel in the year across the
deciduous broadleaf forest areas.

Fig. 7.5 Location of phenological stations and time series length of first leaf unfolding data for
the four tree species

7.3 Spatial and Temporal Validation of Satellite-Derived Phenology … 75



The yearly mean errors between satellite-derived SOS and ground-based BGS at
all pixels range from −2.8 days (1998) to 6.1 days (1990), while the yearly mean
absolute errors fall in between 6.6 (1988) days and 11.0 days (2004) (Table 7.2).
Overall, spatial patterns of the yearly NDVI-retrieved start of season can effectively
reflect spatial patterns of the yearly ground-based growing season beginning across
the deciduous broadleaf forest areas.

7.3.4 Temporal and Spatiotemporal Relationship Between
Satellite-Derived SOS and Ground-Based BGS

To examine interannual variation consistency between satellite-derived SOS and
ground-based BGS at the pixel level, spatial patterns of temporal correlation

Fig. 7.6 Spatial patterns of mean BGS (growing season beginning) and SOS (start of season) over
1986–2006 in the deciduous broadleaf forest of northern China. a BGS; b SOS
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coefficients between SOS and BGS at each pixel were established (Fig. 7.7). The
results show that SOS correlates significantly positive (P < 0.05) with BGS at
65.8 % of all pixels during 1986–2006. The areas with nonsignificant correlation
coefficients are predominantly distributed in the south part of the Da Hinggan Ling
mountains (Figs. 7.4 and 7.7a). Thus, consistent interannual variation between
satellite-derived start of season and ground-based beginning of the growing season
were apparent in most parts of the deciduous broadleaf forest areas of northern
China from 1986 to 2006.

Meanwhile, spatial patterns of mean differences between SOS and BGS
time series at each pixel during 1986–2006 display that the MEs range from +10 to
–10 days at 74.3 % of all pixels. Pixels with positive MEs appear mainly in the
southern parts of the deciduous broadleaf forest areas, whereas pixels with negative
MEs occur mostly in the northern parts. That is, satellite-derived SOS date was
normally later than ground-based BGS date in southern areas but earlier in the north
(Fig. 7.7b). Similarly, the MAEs are less than 10 days at 70.6 % of all pixels. The
smallest MAEs were concentrated in southern part of the Changbai Shan mountains
(Figs. 7.4 and 7.7c). In general, interannual variation of the NDVI-retrieved start of
season can effectively capture interannual variation of the ground-based growing
season beginning in the most part of the deciduous broadleaf forest areas.

Table 7.2 Spatial correlation
coefficients (r), mean errors
(MEs) and mean absolute
errors (MAEs) between SOS
and BGS at all pixels in each
year (n = 3994) (Luo et al.
2013)

Year Between SOS and BGS

r ME MAE

1986 0.46*** 1.91 8.63

1987 0.69*** 2.98 8.43

1988 0.62*** 2.77 6.56

1989 0.41*** 5.38 10.19

1990 0.45*** 6.08 9.56

1991 0.47*** 1.04 7.91

1992 0.47*** −0.87 8.38

1993 0.60*** 1.95 7.35

1994 0.61*** 4.17 7.99

1995 0.61*** 4.90 9.19

1996 0.17*** 1.51 9.67

1997 0.58*** 1.57 8.06

1998 0.50*** −2.76 10.17

1999 0.64*** 2.14 8.68

2000 0.52*** 0.25 8.31

2001 0.54*** 0.19 9.87

2002 0.51*** 1.97 10.44

2003 0.53*** 3.14 10.55

2004 0.59*** −0.68 11.01

2005 0.72*** −1.69 7.86

2006 0.62*** 1.66 9.8

***P < 0.001
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The spatiotemporal relationship between SOS and BGS was analyzed by pooling
SOS and BGS dates from all pixels and all years in the deciduous broadleaf forest
areas. The results indicate that SOS correlates significantly positive (P < 0.001) with
BGS, which implies that the earlier the BGS at a pixel in a year, the earlier the SOS at
the pixel in the year. The overall average ME and MAE are 1.79 and 8.98 days,
respectively (Fig. 7.8). Therefore, spatiotemporal variation of the NDVI-retrieved
start of season can effectively monitor spatiotemporal variation of the ground-based
growing season beginning in the deciduous broadleaf forest areas of northern China.

Fig. 7.7 Spatial patterns of
temporal correlation
coefficients and mean
differences between SOS and
BGS at each pixel from 1986
to 2006. a correlation
coefficients between SOS and
BGS; b MEs between SOS
and BGS; c MAEs between
SOS and BGS
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Chapter 8
Process-Based Spatiotemporal
Simulation and Prediction
of Remote Sensing Phenology

Abstract To predict vegetation phenology under global climate change scenarios
on continuous and large geographical ranges, satellite-derived start date of season
(SOS) retrieved from AVHRR third generation NDVI data from 1982 to 2006 were
fitted using UniForc and UniChill models at all pixels in the deciduous broadleaf
forest region of northern China. The pixel-specific optimum models were then
validated using daily mean air temperature and SOS data from 2007 to 2011.
Further, the pixel-specific optimum models were employed to reconstruct SOS time
series from 1950 to 2005 and predict SOS time series from 2006 to 2100 across the
research region based on the calibrated historical daily mean air temperature data
(1950–2005) and daily mean air temperature data under scenarios of the
Representative Concentration Pathway (RCP) 4.5 and 8.5 (2006–2100) from out-
puts of the Regional Climate Model HadGEM3-RA. Because the UniForc model
performs better in simulation efficiency than the UniChill model at 96.4 % of
pixels, it was determined as the optimum model at these pixels. The temporal
validation of the pixel-specific UniForc models during 2007–2011 confirmed the
feasibility of the UniForc model in predicting SOS date in most parts of the
research region. The predicted regional mean SOS dates show a significantly
advancing trend during 2006–2100 at rates of 0.65 days (under RCP 4.5) and
1.79 days (under RCP 8.5) per decade. Taking the mean SOS date during 1961–
1990 as the reference value, an overall advancement of decadal mean SOS date was
detected in each decade during 2006 and 2100. The advancement amplitude and the
spatial standard deviation (under RCP 8.5) of decadal mean SOS dates would
increase with time. At the end of 21st century, the predicted regional mean SOS
date under the RCP 4.5 and RCP 8.5 scenarios would be 11.8 and 20 days earlier
than the regional mean SOS date during 1961–1990, respectively. Meanwhile, the
spatial patterns of spring vegetation phenology under global warming would likely
turn into more uncertain than at present. Furthermore, SOS dates at each pixel show
also an advancement in each decade during 2011–2100 under both RCP 4.5 and
RCP 8.5 scenarios. The advancement amplitude of decadal mean SOS dates under
the RCP 8.5 scenario would be larger in southern parts of the deciduous broadleaf
forest region than in northern parts. Thus, an enhanced sensitivity of spring phe-
nology response to air temperature would be expected under future climate
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warming, especially in colder areas or higher latitudes where the greatest climate
warming is predicted.

Keywords Process-based phenology model � Satellite-derived start date of
season � Regional climate model � Climate change scenarios � Spatiotemporal
prediction

8.1 Introduction

As stated in Chap. 6, process-based phenology models have been usually created
for fitting and predicting ground observed spring phenology of individual trees at
individual locations. Air temperature is considered as the primary climate driver of
spring tree phenology. Because the existing process-based phenology models are
species-specific and location-dependent, they can not meet the urgent needs for
predicting vegetation phenology under global climate change scenarios on con-
tinuous and large geographical ranges. To achieve this goal, developing satellite
data-based spring phenology models might be an appropriate option. In this
chapter, satellite-derived start date of season (SOS) retrieved from AVHRR third
generation NDVI (NDVI3g) data during 1982–2006 were fitted using UniForc and
UniChill models (Chuine 2000) at all pixels in the deciduous broadleaf forest region
of northern China (Fig. 7.4 in Sect. 7.3.1). The pixel-specific optimum models were
then validated using air temperature and SOS data from 2007 to 2011. Further, a
spatiotemporal prediction of SOS date were implemented based on the
pixel-specific optimum models and the calibrated daily mean air temperature data
from outputs of the Regional Climate Model HadGEM3-RA over 1950–2100 (Luo
et al. 2014).

8.2 Materials and Methods

The resampled NDVI3g data with the spatial resolution of 8 km and temporal
interval of 15 days from 1982 to 2011 were used for extracting SOS date at each
pixel across the deciduous broadleaf forest region. The computation process was
implemented through the same steps in Sect. 7.3.2.

For fitting process-based phenology models using satellite-derived SOS data and
air temperature data at each 8 km � 8 km pixel in the deciduous broadleaf forest
region of northern China, daily mean air temperature data at 343 meteorological
stations in the northern China’s temperate zone over the 1981–2011 period were
interpolated into 8 km � 8 km grids using the climate data interpolation package

82 8 Process-Based Spatiotemporal Simulation and Prediction …

http://dx.doi.org/10.1007/978-3-662-49839-2_6
http://dx.doi.org/10.1007/978-3-662-49839-2_7
http://dx.doi.org/10.1007/978-3-662-49839-2_7


ANUSPLIN 4.2 (Hutchinson 2002) and Digital Elevation Model (DEM) data
derived from the United States Geological Survey. Furthermore, the daily mean air
temperature data acquired from outputs of the Regional Climate Model
HadGEM3-RA under the project Coordinated Regional Downscaling Experiment
(CORDEX)-EAST ASIA (Giorgi et al. 2009) over 1950–2100 were selected as
input data of the pixel-specific optimum phenology models for predicting SOS date.
The prediction was divided into two parts, namely, the historical reconstruction
from 1950 to 2005 and the future estimation from 2006 to 2100 under global
climate change scenarios. Two scenarios were chosen for assessing impacts of
global warming on SOS date. The Representative Concentration Pathway
(RCP) 4.5 was defined as a stabilization scenario, in which total radiative forcing is
stabilized before 2100 (Thomson et al. 2011), while the RCP 8.5 scenario is
characterized by increasing greenhouse gas emissions over time, which denotes the
scenario with the highest greenhouse gas concentration level (Riahi et al. 2011).
Because the grids of the daily mean air temperature data acquired from outputs of
the Regional Climate Model HadGEM3-RA (0.44° � 0.44°) are much larger than
the pixel size of SOS data (8 km � 8 km), the daily mean air temperature data were
downscaled into 8 km � 8 km resolution by means of an elevation adjustment
approach (Eq. 8.1). The formula is as follows:

Xt ¼ �0:64� Xh � Yh
100

þ Yt ð8:1Þ

where Xt and Yt denote the daily mean air temperature at 8 km grid and 0.44° grid,
respectively; Xh and Yh denote the average elevation at 8 km grid and 0.44° grid,
respectively. The normal lapse rate of air temperature was set to −0.64 °C/100 m.

It is noteworthy that the two types of temperature datasets are different, and thus
it is not reasonable to make direct prediction using a temperature dataset differing
from the one used for model generation until both temperature datasets are cali-
brated (Luo et al. 2014). Therefore, historical daily mean air temperatures (1950–
2005) and daily mean air temperatures under RCP 4.5 and RCP 8.5 scenarios
(2006–2100) from the HadGEM3-RA outputs at each grid were further calibrated
based on the mean bias values between monthly mean air temperatures downscaled
from HadGEM3-RA outputs (8 km � 8 km) and monthly mean air temperatures
interpolated from meteorological stations (8 km � 8 km) during 1961–1990.

TheUniForc andUniChillmodels’ structures as well as their parameterization and
evaluation methods can be found in Sect. 6.2.3 of this book.Model validation (2007–
2011) and prediction (1950–2100) were carried out by substituting the interpolated
daily mean air temperatures from meteorological stations and calibrated daily mean
air temperatures from outputs of the Regional ClimateModel HadGEM3-RA into the
pixel-specific optimum models, respectively (Luo et al. 2014).
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8.3 Simulation and Validation of Phenology Models

Fitting root mean square errors (RMSE, Eq. 6.5) of the UniForc and UniChill
models are very similar (ranging from 2.2 to 14.7 days and from 2.2 to 11.8 days,
respectively), which are generally larger in southern parts of the deciduous
broadleaf forest region than in northern parts (Fig. 8.1a, b). The positive
Nash-Sutcliffe Efficiencies (NSE, Eq. 6.7) at more than 97 % of pixels (Fig. 8.1c,
d) indicate that both UniForc and UniChill models can effectively simulate SOS
date at almost all pixels.

Comparing the Akaike Information Criterion values (AIC, Eq. 6.6) of the
UniForc and UniChill models at each pixel during 1982–2006, the UniForc model
performs better in simulation efficiency (lower AIC value) than the UniChill model
at 96.4 % of pixels, which implies that forcing temperature predominantly influence
SOS date in most parts of the research region. Therefore, the UniForc model was
determined as the optimum model at these pixels. The similar model form of the

Fig. 8.1 Spatial patterns of simulation error (RMSE) and simulation effectiveness (NSE) of the
models. a RMSE of the UniForc model; b RMSE of the UniChill model; c NSE of the UniForc
model; d NSE of the UniChill model [Reprinted from Luo et al. (2014), with permission from
Elsevier]
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SOS model and the leaf unfolding model (Xu and Chen 2013) in northern China
indicate that spring remotely sensed vegetation phenology derived by the NDVI3g
data can capture the ground signal of spring tree phenology to some extent.

Temporal extrapolation of the pixel-specific UniForc models during 2007–2011
shows that the regional mean RMSE (7.4 days) is only 2.6 days larger than that of
model fitting (4.8 days). Over the 1982–2011 period, the largest difference between
observed and fitted/predicted SOS dates is 4.3 days (in 1985) and the mean error is
−0.2 days. Thus, the UniForc model performs pretty well in simulating and pre-
dicting SOS dates in most parts of the research region (Fig. 8.2).

8.4 Predicting SOS Dates from 1950 to 2100

The pixel-specific UniForc models were employed to reconstruct SOS time series
from 1950 to 2005 and predict SOS time series from 2006 to 2100 in the deciduous
broadleaf forest region of northern China based on historical daily mean air tem-
perature dataset (1950–2005) and daily mean air temperature dataset under RCP 4.5
and RCP 8.5 scenarios (2006–2100), respectively.

Regional mean SOS time series from 2006 to 2100 show a significantly
advancing trend (P < 0.01). The advancement rates would be 0.65 days per decade
under RCP 4.5 and 1.79 days per decade under RCP 8.5, respectively. By contrast,
the significant advancement rates of regional mean SOS dates over the 1950–2100
period increase to 0.85 days per decade under RCP 4.5 but decrease to 1.45 days
per decade under RCP 8.5 (Fig. 8.3).

The detailed temporal and spatial characteristics of SOS date can be revealed by
computing decadal mean anomalies and decadal mean spatial standard deviations
under the RCP 4.5 and RCP 8.5 scenarios over the 2006–2100 period across the
deciduous broadleaf forest region (taking the mean SOS date during 1961–1990 as

Fig. 8.2 Comparison between regional mean observed growing season start date and regional
mean simulated/predicted growing season start date by the UniForc model over 1982–2011
[Reprinted from Luo et al. (2014), with permission from Elsevier]
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the reference value). Because predicted SOS dates are available only from 2006 to
2010, the five-year mean anomaly and the five-year mean spatial standard deviation
were calculated for the decade 2001–2010.

Table 8.1 shows that an overall advancement of SOS date would occur in each
decade during 2006 and 2100, and the absolute values of the negative decadal mean
anomalies under the RCP 8.5 scenario would be generally larger than those under
the RCP 4.5 scenario with the exception during 2011–2020 and 2021–2030. In
addition, the advancement amplitude of decadal mean SOS dates would increase
overall with time. At the end of 21st century, the predicted regional mean SOS date
under the RCP 4.5 and RCP 8.5 scenarios would be 11.8 and 20 days earlier than
the regional mean SOS date during 1961–1990, respectively. Meanwhile, the
spatial standard deviation of decadal mean SOS dates under the RCP 8.5 scenario
would also increase with time during 2006–2100, whereas the spatial standard
deviation of decadal mean SOS dates under the RCP 4.5 scenario would not
indicate an obvious tendency. This finding is consistent with the conclusion from
the correlation analysis between regional February-April mean air temperature and
spatial standard deviation of the ground-based growing season beginning date
across China’s temperate zone from 1986 to 2005 (Fig. 5.5). Namely, regional air
temperature increase would significantly enhance the spatial variability (measured
by spatial standard deviation in days) of spring tree phenology and consequently
accelerate the spatial response sensitivity of spring tree phenology to air tempera-
ture (in a spatial shift in phenological occurrence date caused by a spatial shift in
mean air temperature by 1 °C, days °C−1). Therefore, the spatial patterns of spring
vegetation phenology under global warming would likely turn into more uncertain
than at present (Chen and Xu 2012a).

Fig. 8.3 Time series of growing season start date from 1950 to 2100, as predicted by calibrated
output daily mean air temperature data from the regional climate model HadGEM3-RA in
comparison with observed growing season start date over 1982–2011 across the deciduous
broadleaf forest region [Reprinted from Luo et al. (2014), with permission from Elsevier]
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Similar to regional mean SOS dates, SOS dates at each pixel show also an
advancement in each decade during 2011–2100 under both RCP 4.5 and RCP 8.5
scenarios. Spatial patterns of the negative decadal mean anomalies display that the
advancement amplitude of decadal mean SOS dates under the RCP 8.5 scenario
would be larger in southern parts of the deciduous broadleaf forest region than in
northern parts, whereas the advancement amplitude of decadal mean SOS dates
under the RCP 4.5 scenario would not show such a latitudinal differentiation.
Namely, decadal mean SOS dates would advance slower with the increase of
latitude under the RCP 8.5 scenario (Fig. 8.4), which can be partially explained by
the fact that the spring tree phenology sensitivity to air temperature (in days °C−1)
is stronger at warmer areas than at colder areas (Chen and Xu 2012b). Thus, an
enhanced sensitivity of spring phenology response to air temperature would be
expected under future climate warming, especially in colder areas or higher lati-
tudes where the greatest climate warming is predicted (IPCC 2007).

Comparing the absolute values of decadal mean anomalies of the SOS date
under the RCP 8.5 scenario with those under the RCP 4.5 scenario at the pixel level,
the former would not always be larger than the latter. Nevertheless, the percent of
pixels with larger advancing anomaly of the SOS date under the RCP 8.5 scenario
would gradually increase with time. The number of pixels with larger advancing
anomaly under the RCP 8.5 accounts for 7.8 % during 2011–2020 and 76.1 %
during 2031–2040, and reaches 96.8 % during 2091–2100 (Fig. 8.4).

Table 8.1 Decadal mean anomalies and decadal mean spatial standard deviations of growing
season start date under the RCP 4.5 and RCP 8.5 scenarios during 2006–2100 across the deciduous
broadleaf forest region (Luo et al. 2014)

Period RCP 4.5 RCP 8.5

Anomalya

(days)
Spatial SDb

(days)
Anomaly
(days)

Spatial SD
(days)

2006–2010 −3.4 11.2 −6.7 12.8

2011–2020 −6.6 12.4 −4.8 12.6

2021–2030 −8.1 12.6 −7.6 12.7

2031–2040 −7.3 12.4 −9.0 12.9

2041–2050 −7.2 12.7 −8.8 13.8

2051–2060 −9.8 12.8 −11.4 13.6

2061–2070 −10.0 13.2 −13.7 14.1

2071–2080 −8.4 12.5 −17.3 15.8

2081–2090 −10.8 13.2 −18.0 15.9

2091–2100 −11.8 13.6 −20.0 17.1
aThe reference value is the regional mean growing season start date during 1961–1990
bSpatial standard deviation (SD) measures average variability of a spatial variable. In this research,
the spatial variable is the SOS date at each pixel across the deciduous broadleaf forest region
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Fig. 8.4 Spatial patterns of decadal mean anomalies of growing season start date under RCP 4.5
and RCP 8.5 scenarios during 2011–2100. The reference value is the mean growing season start
date during 1961–1990
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Chapter 9
Spatiotemporal Coupling Effects of Plant
Phenology

Abstract From the geographic perspective, spatial differentiation among natural
landscape units determines spatial flow and vice versa. Thus, spatial differentiation
is not only the cause of natural landscape dynamics but also the result of natural
landscape dynamics. As the integrative indicator of natural landscape dynamics at
seasonal and interannual scales, spatial and temporal variations of plant phenology
are mainly controlled by spatial and temporal variations of thermal and moisture
conditions derived from changes of net radiation distributions and atmospheric
movements. With regard to spatiotemporal unification of plant phenological vari-
ation, spatial movements of heat and moisture flows in each year, and their inter-
annual and long-term changes induce spatial movements of plant phenology flows
in each year, and their interannual and long-term dynamics. Spatial flow of phe-
nological event occurrence dates across a region in a specific year demonstrates
spatial patterns of phenological event occurrence dates in the year. Interannual
shifts of the spatial flow make the spatial patterns vary from year to year, forming
temporal variation of spatial patterns. Temporal flow of phenological event
occurrence dates at a location during long period of time creates temporal patterns
of phenological event occurrence dates at the location. Spatial shifts of the temporal
flow make the temporal patterns vary from location to location, presenting spatial
patterns of temporal variation. Thus, the temporal variations of spatial patterns of
phenological event occurrence dates are converted to the spatial pattern of temporal
variations of phenological event occurrence dates. Overall, the nearer the distance
between two locations and the shorter the interval between two time slices or
between two phenological events, the stronger the coupling and substitutability
between spatial and temporal series.

Keywords Natural landscape dynamics � Spatial flow � Plant phenological
variation � Temporal variation of spatial pattern � Spatial pattern of temporal
variation � Scale conversion � Spatiotemporal unification � Spatiotemporal series
substitutability
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9.1 Causality of Natural Landscape Dynamics

Geography’s relevance to science and society arises from a distinctive and inte-
grating set of perspectives through which geographers view the world around them
(National Research Council 1997). Physical geographic perspectives include
mainly three aspects. First, physical geography looks at the natural landscape
composition and structure through the lenses of spatial scale, such as location,
place, region, and the whole world. Second, physical geography understands nat-
ural landscape heterogeneity through spatial differentiation, for instance latitudinal
and vertical zonation of natural landscapes. Third, physical geography observes
natural landscape dynamics through spatial flow, such as material flow, energy
flow, and information flow. Generally speaking, past spatial differentiation, such as
in air pressure, elevation, soil moisture and pollen release timing (among natural
landscape units) triggers spatial flow, such as air flow (from high air pressure to low
air pressure areas), water flow (from high elevation to low elevation areas), dust
flow (from high air pressure and dry areas to low air pressure and humid areas) and
pollen flow (from high air pressure and early flowering areas to low air pressure and
late flowering areas), which are the concrete representations of interactions among
different natural landscape units. The spatial flow has altered the past spatial dif-
ferentiation among natural landscape units and generates the current spatial dif-
ferentiation among natural landscape units. Similarly, spatial flow will also change
the current spatial differentiation and produce the future spatial differentiation
(Fig. 9.1). It should be noted that spatial differentiation and spatial flow manifest a
continuous interaction process. Therefore, spatial differentiation among natural
landscape units is not only the cause of natural landscape dynamics but also the
result of natural landscape dynamics.

9.2 Spatiotemporal Unification of Plant Phenological
Variation

As the integrative indicator of natural landscape dynamics at seasonal and inter-
annual scales, spatial variations of plant phenology are commonly represented by
spatial series of phenological event occurrence dates over a certain region within a
particular time unit, such as a day, a month, or a year, while temporal variations of

Fig. 9.1 Interaction between spatial differentiation and spatial flow
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plant phenology are usually described by time series of phenological event
occurrence dates at a specific natural landscape unit, such as a location, a place, or a
region. It is well known that spatial differentiation of net radiation controls spatial
patterns of air temperature and air pressure, which trigger horizontal and vertical
atmospheric movement, and determine spatial patterns of precipitation. The spatial
patterns of air temperature and precipitation change over time. Because spatial and
temporal variations of plant phenology are mainly controlled by spatial and tem-
poral variations of thermal and moisture conditions derived from changes of net
radiation distributions and atmospheric movements, spatial and temporal patterns of
plant phenology might be simulated and predicted by means of statistical and
process-based models using spatial and temporal datasets of temperature and pre-
cipitation (Chen et al. 2005, 2014, 2015a, b; Chen and Xu 2012a, b; Xu and Chen
2013; Luo et al. 2014).

From the perspective of spatiotemporal scales, spatial variations during short
period of time are the sections of spatial variation during long period of time, while
spatial variation during long period of time is the superposition of spatial variations
during short period of time. Spatial variations at different time scales might be
unified through scale conversion, namely integration and differentiation. Similarly,
temporal variations at small spatial scales form the basis of temporal variation at
large spatial scales, while temporal variation at large spatial scales is the integration
of temporal variations at small spatial scales. Temporal variations at different spatial
scales might be unified through scale conversion, namely upscaling and down-
scaling. Considering spatiotemporal unification of plant phenological variation,
spatial movements of heat and moisture flows (energy and material flows) in each
year, and their interannual and long-term changes induce spatial movements of
plant phenology flows (information flows) in each year, and their interannual and
long-term dynamics. Generally, spatial flow of phenological event occurrence dates
across a region in a specific year, such as from south to north and from low
elevation to high elevation during spring and summer, or from north to south and
from high elevation to low elevation during autumn and winter, demonstrates
spatial patterns of phenological event occurrence dates in the year. Meanwhile,
interannual shifts of the spatial flow make the spatial patterns vary from year to year
(Fig. 7.2) and from decade to decade (Fig. 8.4), forming temporal variation of
spatial patterns. If integrating the shorter period of time, such as a year into a longer
period of time, spatial patterns of average phenological event occurrence dates can
be obtained (Fig. 7.6). Temporal flow of phenological event occurrence dates at a
location during long period of time creates temporal patterns of phenological event
occurrence dates at the location, which can normally be portrayed by amplitudes,
rhythms and trends of phenological time series. At the same time, spatial shifts of
the temporal flow make the temporal patterns vary from location to location, pre-
senting spatial patterns of temporal variation. Spatial differentiation of linear trends
of local phenological time series can represent spatial patterns of overall pheno-
logical temporal variation (Fig. 6.3). That is, phenological time series at different
locations have different temporal patterns. Thus, the temporal variations of spatial
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patterns of phenological event occurrence dates are converted to the spatial pattern
of temporal variations of phenological event occurrence dates. It is worth pointing
out that the conversions from spatial flow to temporal variation of spatial pattern,
and from temporal variation of spatial pattern to spatial pattern of temporal varia-
tion are interacted. Finally, spatial pattern of temporal variation may also influence
the speed and direction of spatial flows through feedback loops (Fig. 9.2).

9.3 Spatiotemporal Series Substitutability in Plant
Phenology

As plant phenology has found renewal in the context of global climate change, there
is an urgent need for predicting plant phenological occurrence dates at regional
scales (Chuine et al. 2000). Therefore, regional unified models should be developed
(Xu and Chen 2013). There are two types of approaches to create regional unified
models for plant phenological simulation and prediction. The top-down approach
assumes that model estimates of plant phenological response to climatic fluctuation
for individual species are not significantly different at various stations within a
similar climate region, based on which regional single species models and multi-
species models were constructed by pooling phenological time series from different
sample stations, for example, for flowering dates in Germany (Chen 1994) and
Spain (García-Mozo et al. 2008), green-up dates in Inner Mongolia, China (see
Chap. 6.3), and leaf coloring dates in France (Delpierre et al. 2009). This type of
approach for constructing regional unified phenology models may neglect biocli-
matic mechanisms. Since spatial phenological variations are not equivalent to
temporal phenological variations, pooling time series from different stations is
arbitrary, especially when time series length (number of years) are obviously shorter
than spatial series length (number of stations), and phenological time series from
multispecies and different stations were merged (García-Mozo et al. 2008; Delpierre
et al. 2009). Thus, attempting this approach based on highly asymmetrical spa-
tiotemporal datasets may hinder statistical and process-based phenological model-
ing. Contrarily, the bottom-up approach tries to select the most robust local

Fig. 9.2 Spatiotemporal
unification flow chart of plant
phenological variation
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species-specific model in predicting the phenological occurrence dates at all
external stations within a similar climate region as the regional unified
species-specific model in the climate region (Xu and Chen 2013). Obviously, the
latter approach may be more rational and reliable. Nevertheless, the former
approach can also be more effective when used under the condition of spatiotem-
poral series substitutability, which can be generally described as follows:

(1) For time series across spatial scales, the temporal consistency of a pheno-
logical event between two locations decreases generally with the increasing
distance. That is, the nearer the distance between two locations, the more
similar the temporal variation causes and the stronger the substitutability
between time series, whereas the farther the distance between two locations,
the more dissimilar the temporal variation causes and the weaker the substi-
tutability between time series. Therefore, principal characteristics of plant
phenological temporal variation and its responses to climate change at regional
scales can be captured by phenological and climatic time series at a few
representative locations (Xu and Chen 2013).

(2) For spatial series across time scales, the spatial inheritance of a phenological
event between two time slices decreases generally with the lengthening
interval. Namely, the shorter the interval between two time slices, the more
similar the spatial variation causes and the stronger the substitutability
between spatial series, whereas the longer the interval between two time slices,
the more dissimilar the spatial variation causes and the weaker the substi-
tutability between spatial series. Thus, the main features of plant phenological
spatial variation and its climatic controls over the entire time period can be
determined by phenological and climatic spatial series at several typical time
slices (Chen and Wang 2009).

(3) For time series across time scales, the temporal synchronism between two
phenological events at a location decreases generally with the lengthening
interval between them. That is to say that the shorter the interval between the
two phenological events, the more similar the temporal variation causes and
the stronger the substitutability between the two time series, whereas the
longer the interval between the two phenological events, the more dissimilar
the temporal variation causes and the weaker the substitutability between the
two time series. So, temporal variation of a phenological event and its
responses to seasonally climatic variability at a location can be replaced by
time series of another phenological event with highly sequential and correl-
ative rhythm at the location (Chap. 2.1).

(4) Overall, the nearer the distance between two locations and the shorter the
interval between two time slices or between two phenological events, the
stronger the coupling and substitutability between spatial and temporal series,
while the farther the distance between two locations and the longer the interval
between two time slices or between two phenological events, the weaker the
coupling and substitutability between spatial and temporal series.
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