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Abstract This paper addresses the problem of parameter estimation and adaptive
separation by antenna arrays. The technique of Sparse Bayesian Learning (SBL),
with remarkable performance in low SNR and limited snapshots, is introduced to
estimate Direction-of-Arrival (DOA), as no information about the statistical prop-
erty or deterministic property is known in advance. The spatial filter is designed
based on the DOA estimates to separate signals from different directions. It is
shown that the spatial filter can separate the signals with the noise power decreased.
To enhance the performance of separation, an iteration processing is utilized until
satisfying the convergence criterion. Experimental results are used to evaluate the
performance of the spatial filter.

Keywords Array signal processing ⋅ Sparse bayesian learning ⋅ Spatial filter ⋅
Diversity processing ⋅ Direction-of-Arrival

1 Introduction

As an important technique of signal processing, spatial filtering is widely applied in
communication system, biomagnetic source imaging [1], surface electromyography
[2], electroencephalogram analysis [3] and fiber transmission [4]. It is well-known
that it can obtain signal from certain direction and suppress unwanted signals from
other directions, with SINR increased and system performance improved. As the
electromagnetic environment becomes more congested, the effective spatial filtering
of communication signals seems to be necessary and essential. Consequently in this
paper we present a new method to spatially filter communication signals.

The existing spatial filtering techniques generally consist of two main structures:
classical spatial filter [5–7] and adaptive spatial filter [8, 9]. The former is computed
as an optimization problem and derives closed-form solution according to the prior
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information. A null phase-shift spatial filter (NPSF) in [5] is designed by subspaces
of target signal and interference which aims to cover a narrow band rather than a
single direction, and can avoid the amplitude and phase distortion caused by the
filters. A spatial filter is designed in an efficient manner by formulating the design
procedure as a rank-deficient linear least-squares problem in [6]. The combination
of the subspace-based bearing-estimation and spatial filter algorithms is capable of
resolving sources that are below the resolution limit. Spatial filter can also separate
the ultra-wideband signals. A spatial filter [7] is proposed for one-dimensional
time-of-arrival localization and its performance is comparable to basic time-reversal
systems.

The adaptive spatial filter is computed without prior parameters; however, it
needs to utilize the characteristics of signals. An adaptive blind spatial filter [8] is
proposed by utilizing a constant modulus criterion and Kalman filter without prior
information about the signals. An algorithm with less computational complexity [9]
is proposed to filter signals with cyclostationary characteristic and this subspace
projection-based method achieves better performance than the original algorithms.

In this paper, we propose a method to design adaptive blind spatial filter without
prior information or signal characteristic. The proposed method generally combines
direction estimation and spatial filter design. The direction can be estimated by
Sparse Bayesian Learning (SBL) and then spatial filter based on direction estimates
is proposed to separate the signals. Generally the algorithm can blindly separate the
signals and adaptively adjust filter parameter to changing directions.

This paper is organized as follows. Section 2 presents a review of the array
output model. Section 3 introduces the estimation of sparse matrix and exploitation
of spatial filters, and the overall scheme of proposed method is also illustrated in
Sect. 3. Section 4 contains numerical simulations to examine the performance of
the proposed method, and conclusions are given in Sect. 5.

2 Model Formulation

Suppose that K independent far-field stochastic and stationary signals impinge onto
an M-element array from directions of θ= θ1, . . . , θK½ � simultaneously, the array
output y tð Þ= y1 tð Þ, . . . , yM tð Þ½ �T at time t is

y tð Þ=A θð Þs tð Þ+υ tð Þ ð1Þ

where the array responding matrix to all the incident signals is denoted by
A θð Þ= a θ1ð Þ, . . . , a θKð Þ½ �, with each column being the array responding vector of the
kth incident signal a θkð Þ= ejφk, 1 , . . . , ejφk,M½ �T . φk,m is the phase shift of the kth signal
propagating from the reference antenna to the mth antenna. s tð Þ= s1 tð Þ, . . . , sK tð Þ½ �T
is the complex waveform vector of the signal. υ tð Þ∼N 0, σ2IMð Þ is the zero-mean
white Gaussian noise with power σ2. In the scenario of N snapshots, the array output
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formulation presented in (1) can be extended and rewritten as Y=A θð ÞS+V, where
Y= y t1ð Þ, . . . , y tNð Þ½ �, S= s t1ð Þ, . . . , s tNð Þ½ �, V= υ t1ð Þ, . . . ,υ tNð Þ½ �.

In fact, the signals only impinge on the array from limited directions. In order to
utilize the sparsity characteristics, we partition the potential space of the incident
signals with Ψ= θ1, . . . , θP½ � and the direction set is Φ= a θ1ð Þ, . . . , a θPð Þ½ �.
Generally, the cardinality of the direction set is much larger than the antenna
number and the dictionary is overcomplete. When substituting Φ for A θð Þ, (1) can
be rewritten as

Y=ΦX+V ð2Þ

where X= ρ t1ð Þ, . . . , ρ tNð Þ½ �∈CP×N is sparse matrix with K non-zero rows. Then
signal direction can be derived by scanning the location of non-zero rows in sparse
matrix. When P≫K the waveform matrix X presents sparsity characteristics which
can be solved by sparsity recovery.

3 Spatial Filtering for Signal Separation

3.1 Sparse Matrix Estimation

The likelihood function of ρ tnð Þ∈CP×1 is

P y tnð Þjρ tnð Þ, σ2� �
= 2πσ2
� �−M 2̸

exp −
1
2σ2

y tnð Þ−Φρ tnð Þð ÞH y tnð Þ−Φρ tnð Þð Þ
� �

ð3Þ

To complete the structure of hierarchical prior, we define the individual
hyperparameter αp p=1, . . . ,Pð Þ to independently moderate the strength of each
row in sparse matrix X. Suppose that the column ρ tnð Þ is Gaussian distributed, i.e.,
ρ tnð Þ∼CN 0,Γð Þ and Γ=diag α1, . . . , αP

� �
. Then the probability of X with respect

to Γ and σ2 can be derived by Bayesian criterion as follows

P XjY,Γ, σ2� �
= 2πð Þ−NP 2̸ Σj j−N 2̸exp −

1
2
∑
N

n=1
ρ tnð Þ−μnð ÞHΣ− 1 ρ tnð Þ−μnð Þ

� �
ð4Þ

where Σt = σ2I+ΦΓΦH , the posterior covariance and mean are, respectively

Σ= σ − 2ΦHΦ+Γ− 1� �− 1
=Γ−ΓΦHΣ− 1

t ΦΓ ð5Þ

Λ= μ1, . . . ,μN½ �=ΓΦHΣ− 1
t y1, . . . , yN½ � ð6Þ
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We regard posterior mean Λ as the sparse matrix estimate which is directly
influenced by Γ. SBL estimates Γ by maximizing the marginal likelihood known as
type-II maximum likelihood method. The EM algorithm is an iterative method to
implement the maximum likelihood estimation. The E-step step is derived by
calculating the conditional mean according to EX lnP Y,XjΓ, σ2ð Þ. The M-step is
expressed via the update rule [10]

α newð Þ
p =

1
N

Λp
�� ��2

2 +Σpp, ∀ p=1, . . . ,P ð7Þ

σ2
� � newð Þ

=
1
N Y−ΦΛk k2F

M −P+ ∑P
p=1

Σpp

α newð Þ
p

ð8Þ

where Λp is the pth row of Λ at last iteration and Σpp is the pth diagonal value of Σ.
Essentially the learning processing is composed of two steps. Firstly we calculate
posterior covariance and mean based on (5) and (6), then update parameters based
on (7) and (8). The iteration will stop when reaching the final convergence criterion.

3.2 Spatial Filters Design

The K spatial filters aim to separate the signals in space domain based on the DOA
estimates. Define the kth spatial filter by Tk k=1, . . . ,Kð Þ. The most intuitive
expression of output filtered by Tk can be written by

TkX=TkA θð Þ
s1 tð Þ
⋮

sK tð Þ

2
4

3
5+TkV=

sk tð Þ
⋮

sk tð Þ

2
4

3
5+TkV ð9Þ

From the above equation, we aim to obtain sufficient samples of signal sk tð Þ for
further processing. In this subsection, we utilize the subarray composed of K suc-
cessive antennas to filter each sample of the kth signal. Denote the partial
responding matrix consisting of the mth to (m + K − 1)th rows of the original
matrix A θð Þ by Am θð Þ m=1, . . . ,M −K +1ð Þ, and inverse matrix by
Bm θð Þ= Am θð Þ½ �− 1, with its kth row denoted by b kð Þ

m ∈C1×K , then

Bm θð ÞAm θð ÞS=
b 1ð Þ
m
⋮

b Kð Þ
m

2
4

3
5Am θð ÞS=S ð10Þ

where b kð Þ
m Am θð ÞS= sk , indicating that kth row of Bm θð Þ can filter kth signal from

the sources impinging onto array. Then the kth spatial filter Tk ∈C M −K +1ð Þ×M can
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be designed by ðTkÞm∙ = 01 × ðm− 1Þ,bðkÞm , 01× M −K +1−mð Þ
� �

. The kth spatial filter
output uk ∈C M −K +1ð Þ × N is

uk =TkA θð Þ
s1 tð Þ
⋮

sK tð Þ

2
4

3
5+TkV=

b kð Þ
1 A1 θð Þ

⋮
b kð Þ
M −K +1AM −K +1 θð Þ

2
4

3
5 s1 tð Þ

⋮
sK tð Þ

2
4

3
5+TkV=

sk tð Þ
⋮

sk tð Þ

2
4

3
5+TkV

ð11Þ

It can be inferred from the above equation that the output uk through kth spatial
filter Tk contains the kth signal and effectively eliminates the other signals. Fur-
thermore, each row in uk represents the identical kth signal sk tð Þ, indicating that
every subarray consisting of K successive antennas can spatially filter the signal. It
ends up with M − K + 1 identical signals and then we formulate the kth signal
estimation as

sk̃ tð Þ= 1
M −K +1

∑
M −K +1

j=1
ukð Þj ⋅ ð12Þ

where ukð Þj ⋅ is the jth row of the output uk. Similar to diversity processing, it can be
concluded that (12) can decrease noise power and improve filtering performance.

3.3 Overall Scheme of the New Method

During the above procedure, the design of the spatial filter relies on accurate matrix
estimate and directly influences the algorithm performance. Therefore, a refined
DOA estimation should be introduced to obtain the accurate value iteratively until it
satisfies the convergence criterion.

Remark 1 Denote the signal passed through the kth spatial filter in qth iteration by

s ̃ qð Þ
k tð Þ. The iteration satisfies the convergence criterion when the difference of signal
filtered in the qth iteration and (q + 1)th iteration is smaller than a fixed threshold
ε1. We set the convergence criterion as

∑
K

k=1
s ̃ q+1ð Þ
k tð Þ− s̃ qð Þ

k tð Þ
��� ���2 < ε1 ð13Þ

Remark 2 To obtain coarse DOA estimates, the potential space of the incident
signals is divided into P samples in the initialization step. However, the coarse
sampling cannot promise to include the actual DOA into the direction set which
results in inaccurate DOA estimates. In the simulation, the mismatch of direction set
leads to cluster peak emerging beside the real value. Therefore, we propose a
probabilistic method to redesign the direction set. Denote the DOA estimate of the
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kth signal in qth iteration by θ qð Þ
k and the direction set in (q + 1)th iteration is

updated by Ψ q+1ð Þ = β q+1ð Þ
1 , . . . , β q+1ð Þ

K

h i
. β q+1ð Þ

k ∼N θ qð Þ
k , σ2φ

	 

is a sub-dictionary

with σ2φ being the perturbation variance.

4 Simulation Results

Consider a uniform linear array with 16 half-wavelength spaced antennas and two
signals modulated with binary-phase-shift-keying (BPSK) arrive from 30° and 60°,
respectively. The carrier frequency is set to 5 MHz and the sampling frequency is
set to 15 MHz. The baud rates are 1 MHz and 0.6 MHz, respectively. In the
initialization step, the sparsity-inducing space is sampled form 0° to 180° with 2°
interval to obtain the direction set Ψ. The threshold ε1 and the perturbation variance
σ2φ are set to 0.01 and 0.05 respectively.

In the initialization, we sample the potential space uniformly to obtain the coarse
estimates and refine the dictionary set for the next iteration. The performance of
DOA estimates versus iteration index is demonstrated to prove the effectivity of
proposed method. 300 independent simulations are carried out. The average
root-mean-square-error (RMSE) in qth iteration is defined as

RMSE qð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
W

w=1
∑
K

k=1
θ w, qð Þ
k − θk

	 
2
K̸W

s
ð14Þ

where θ ̃ w, qð Þ
k is the DOA estimate in qth iteration and θk is the actual value. The

signal-to-noise ratio (SNR) is set to 0 dB for both of the signals. In Fig. 1, the
simulation result indicates that the estimation performance improves with respect to
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Fig. 1 DOA estimation
RMSE versus iteration index
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increased iteration index. The RMSE of DOA becomes stable when iteration index
reaches to 7.

Figure 2 demonstrates the spectrum of original signals and filtered signals when
satisfying the stop criterion. Figure 2b, c show two original signals that arrive at the
array and Fig. 2a is the sum of two original signals. From Fig. 2e, f, it is obviously
that the spatial filters based on final direction estimates can effectively separate two
signals and as a result of (12) the noise power is decreased distinctly.

The performance of signal separation by different algorithms is to be demonstrated.
The signal-to-interference-plus-noise ratio (SINR)of all the incident signals is used for
precision evaluation. In this subsectionSNR is changing from−30 to30 dB for both of
the signals. 75 snapshots are collected and 300 independent simulations are carried out
in each scenario.We define signal from θe =30◦ as expected signal se and signal from
θi =60◦ as interference si. Then we evaluate the performance of spatial filter Te

designed for expected signal. The SINR of the proposed spatial filter is defined as

SINR=
∑M −K +1

j=1 Te a θeð Þ se½ �j ⋅
��� ���2

∑M −K +1
j=1 Te a θið Þ si½ �j ⋅

��� ���2 + ∑M −K +1
j=1 TeVð Þj ⋅

��� ���2 ð15Þ

Figure 3 demonstrates the performance of the proposed method based on the
spatial filter (SF), Stimulate Covariance Matrix Inversing (SMI) algorithm, and
Eigenspace-Based (ESB) algorithm. The SNR of expected signal and the interfer-
ence is identical in each scenario. The performance of SMI deteriorates because the
power of expected signal is high. The performance of ESB under high SNR sur-
passes SMI. However, the performance of ESB under low SNR is not satisfactory.
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Fig. 2 Power spectrum of signals: a original signals; b original signal 1; c original signal
2; d filtered signals; e filtered signal 1; f filtered signal 2
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By contrast, the spatial filter can increase SINR and outperforms the
subspace-based algorithms remarkably.

5 Conclusions

In this paper, we proposed a novel method to separate signals devised by the
combination of SBL algorithm and spatial filters. The SBL algorithm is utilized to
estimate the directions without any prior information or characteristic of signals.
We design spatial filters based on direction of each signal to achieve efficient
separation. The filtering outputs obtain sufficient samples which can be used to
calculate the mean values of each signal with the noise power reduced extremely.
The simulation results indicate that the proposed algorithm can spatially filter the
signals and outperform existing subspace-based algorithms.
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