
Efficient Syntax-Driven Lumping
of Differential Equations

Luca Cardelli1,2(B), Mirco Tribastone3(B), Max Tschaikowski3(B),
and Andrea Vandin3(B)

1 Microsoft Research, Cambridge, UK
luca@microsoft.com

2 University of Oxford, Oxford, UK
3 IMT Institute for Advanced Studies Lucca, Lucca, Italy

{mirco.tribastone,max.tschaikowski,andrea.vandin}@imtlucca.it

Abstract. We present an algorithm to compute exact aggregations of
a class of systems of ordinary differential equations (ODEs). Our app-
roach consists in an extension of Paige and Tarjan’s seminal solution
to the coarsest refinement problem by encoding an ODE system into a
suitable discrete-state representation. In particular, we consider a simple
extension of the syntax of elementary chemical reaction networks because
(i) it can express ODEs with derivatives given by polynomials of degree
at most two, which are relevant in many applications in natural sciences
and engineering; and (ii) we can build on two recently introduced bisim-
ulations, which yield two complementary notions of ODE lumping. Our
algorithm computes the largest bisimulations in O(r ·s·log s) time, where
r is the number of monomials and s is the number of variables in the
ODEs. Numerical experiments on real-world models from biochemistry,
electrical engineering, and structural mechanics show that our prototype
is able to handle ODEs with millions of variables and monomials, pro-
viding significant model reductions.

1 Introduction

Ordinary differential equations (ODEs) are widespread in many disciplines
including chemistry, epidemiology, systems biology, electrical engineering, and
control theory. Often, due to the complexity of the system under consideration,
the state space size (intended as the number of ODE variables) is so large that it
makes the numerical solution intractable (e.g., in protein-based interaction net-
works [1,2]). Formal kinds of analyses such as reachability computation suffer
from the curse of dimensionality, particularly for nonlinear systems (e.g., [3,4]).
It is therefore an important goal to be able to obtain reduced size models that
appropriately preserve the original dynamics.

For discrete-state quantitative models based on labeled transition systems,
the notion of bisimilarity has played a key role for model reduction, with efficient
algorithms [5–7] based on Paige and Tarjan’s celebrated solution to the coarsest
refinement problem [8]. The main contribution of this paper is to lift this app-
roach to ODE systems. In particular we focus on a class of polynomial systems,
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 93–111, 2016.
DOI: 10.1007/978-3-662-49674-9 6

94 L. Cardelli et al.

where the time derivatives are multivariate polynomials of degree at most two
in the ODE variables. This class is quite general because it incorporates models
frequently used in (bio-)chemistry (cf. [9]) as well as the ubiquitous linear ODEs.

We reconcile the established approaches based on discrete-state models with
the continuous-state semantics of ODEs by reasoning at the level of a discrete-
state syntactic representation of the ODE system. In particular, our class of
interest can be encoded into a variant of elementary chemical reaction networks
(CRNs). This consists of species (the ODE variables) interacting through unary
or binary reactions that are appropriately mapped onto monomials that govern
the derivative of the species involved. To be able to encode an arbitrary polyno-
mial ODE system (with degree at most two), we slightly extend the CRN syntax
by allowing negative rates. This has important repercussions on the applicabil-
ity of established results of CRN theory (e.g., [10]). Hence, to disambiguate, we
refer to this extension as Reaction Networks (RN). Instead, all the results for
exact quantitative bisimulations for CRNs, recently proposed by these authors
in [11] (cf. Sect. 2), do carry over to RN. The forward bisimulation (FB) gives a
partition of the ODE variables such that the sum of the ODEs can be written
as an explicit function of the sum of the variables. With backward bisimulation
(BB) species in the same block have the same ODE solution, provided that they
start with the same initial condition.

Our key idea is to exploit the fact that the syntactic conditions for an equiv-
alence relation over species to be either bisimulation can be expressed in the
Larsen-Skou style of probabilistic bisimulation [12]. (Actually, while this is imme-
diate for FB, in this paper we provide a novel characterization of BB tailored to
that format, cf. Sect. 3.1.) Thus, we can approach the problem of computing the
largest bisimulations by developing a variant of Paige and Tarjan’s algorithm,
along the lines of the efficient partition refinement algorithms of [6] and [7] for
Markov chain lumping [13], and of [5] for probabilistic transition systems. In par-
ticular, for technical reasons that will be clarified later, we build on the Markov
chain lumping algorithm of [7].

Our algorithm, presented in Sects. 3 and 4, runs in O(r ·s·log s) time, where s
is the number of variables and r is the number of monomials in the ODEs. Inter-
estingly, this can be related to continuous-time Markov chain (CTMC) lumping.
The time complexity of our algorithm is a tight increase, in the following sense:
Since RNs can encode arbitrary affine ODEs, a fortiori they can encode a CTMC
through its Kolmogorov equations (cf. Sect. 5). For this encoding we show that
FB and BB correspond to the well-known notions of ordinary and exact lumpa-
bility for CTMCs, respectively. In the affine ODE case, the time complexity of
our algorithm collapses to O(r · log s), which is equivalent to that of the most
efficient CTMC lumpability algorithms [6,7].

We show the practical usefulness of our algorithm by means of numerical
experiments (in Sect. 6), with a prototype available at http://sysma.imtlucca.it/
crnreducer/. Using the benchmark biochemical models of [11], we measure run-
time speed-ups of up to four orders of magnitude over our own more straightfor-
ward O(r2 · s5) algorithm used in [11]. We are now able to reduce the largest

http://sysma.imtlucca.it/crnreducer/
http://sysma.imtlucca.it/crnreducer/

Efficient Syntax-Driven Lumping of Differential Equations 95

benchmark biochemical model within a few seconds on commodity hardware, as
opposed to almost one day as reported in [11]. To evaluate the effectiveness on affine
systems, we propose an application of the bisimulations beyond ODEs: we consider
linear systems of equations Ax = b. Stationary iterative methods such as Jacobi’s
(e.g., [14]) can be interpreted as an affine dynamical system in discrete time, to
which case the bisimulations carry over. For these, we report considerable aggre-
gations for real-world applications in atmospheric modeling, structural mechanics,
and electrical engineering, taken from the Sparse Matrix Collection [15].

Further Related Work. FB is a special case of the theory of ODE lump-
ing [16,17], which is more general because it considers an arbitrary linear trans-
formation of the state space, as opposed to a sum of variables for FB. While the
theory is established, no algorithm is available to compute such aggregations. BB
is a generalization of a behavioral equivalence originally defined for Markovian
process algebra [18]. FB and BB have been recently put in a unifying algorith-
mic context in [19], using the notions of forward and backward differential equiv-
alences for a low-level syntax describing a more general class of nonlinear ODE
systems. A symbolic partition-refinement algorithm to compute the largest differ-
ential equivalences is provided through a satisfiability modulo theories encoding.
Clearly, unlike this approach, the algorithm of [19] is independent of the restric-
tion of the RN language, and is not a variant of Paige and Tarjan’s approach. As
a result, it is more general but less efficient. Indeed, the runtimes reported in [19]
are at best only comparable to those of our earlier algorithm [11].

This is the first application of Paige and Tarjan’s seminal idea for a general
class of ODE systems, whereas automatic exact ODE reduction algorithms are
available for domain specific languages such as rule-based models of biochemical
networks [1] and Markovian process algebra using FB-like (though not BB-like)
conditions [20].

2 Background

Reaction Networks. An RN (S,R) is a pair of a finite set of species S and a
finite set of reactions R. A reaction is a triple written in the form ρ

α−−→ π, where
ρ and π are multisets of species, called reactants and products, respectively, and
α �= 0 is the reaction rate. We restrict to elementary reactions where |ρ| ≤ 2
(while no restriction is posed on the products). We denote by ρ(X) the multi-
plicity of species X in the multiset ρ, and by MS(S) the set of finite multisets
of species in S. The operator + denotes multiset union, e.g., X +Y +Y (or just
X + 2Y) is the multiset {|X,Y, Y |}. We also use X to denote either the species
X or the singleton {|X|}.

The semantics of an RN (S,R) is given by the (autonomous) ODE system
V̇ = F (V), with F : R

S → R
S , where each component FX , with X ∈ S is

defined as:

FX(V) :=
∑

ρ
α−−→π∈R

(π(X) − ρ(X)) · α ·
∏

Y ∈S

V
ρ(Y)
Y .

96 L. Cardelli et al.

This ODE satisfies a unique solution V (t) = (VX(t))X∈S for any initial condition
V (0).

The restriction to elementary reactions ensures that the monomials are of
degree at most 2; unary reactions give degree-one monomials; a nullary reaction,
∅ c−→ X, adds a constant c to FX(V). (The encoding of an arbitrary polynomial
ODE system is shown in Sect. 5.) Finally, we remark that a standard CRN with
mass-action semantics (where reactions speeds are proportional to the product
of the concentrations of the reactants) is recovered by restricting to positive
reaction rates and nonnegative initial conditions.

Example 1. We now provide a simple RN, (Se, Re), with Se = {A,B,C,D,E}
and Re ={A + C

α−−→ C + E,B + C
α−−→ C + E,C

β−−→ A,D
β−−→ B}, which will

be used as a running example in this section. Its ODE system is

V̇A = −αVAVC + βVC V̇C = −βVC V̇E = αVAVC + αVBVC

V̇B = −αVBVC + βVD V̇D = −βVD

We now overview the main definitions of [11], restating them in terms of an
RN.
Forward Bisimulation. FB induces a partition associating an ODE with each
block, representing the sum of the species in that block. It is defined in terms of
reaction and production rates.

Definition 1 (Reaction and Production rates). Let (S,R) be an RN,
X,Y ∈ S, and ρ ∈ S ∪ {∅}. The ρ-reaction rate of X, and the ρ-production
rate of Y-elements by X are defined respectively as

crr[X, ρ] := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α, pr(X,Y, ρ) := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α · π(Y)

Finally, for H ⊆ S we define pr[X,H, ρ] :=
∑

Y ∈H pr(X,Y, ρ).

Definition 2. Let (S,R) be an RN, R an equivalence relation over S and H =
S/R. Then, R is a forward RN bisimulation (FB) if for all (X,Y) ∈ R, all
ρ ∈ S ∪ {∅}, and all H ∈ H it holds that

crr[X, ρ] = crr[Y, ρ] and pr[X,H, ρ] = pr[Y,H, ρ] (1)

For instance, it can be shown that HF = {{A,B}, {C}, {D}, {E}} for Example 1
is an FB. Indeed, the ODEs can be reduced by writing them in terms of VAB :=
VA + VB:

V̇AB = −αVABVC + βVC + βVD V̇C = −βVC V̇D = −βVD V̇E = αVABVC

Backward Bisimulation. BB leads to partitions where species in the same
block have the same solution when starting with the same initial condition. It is
defined according to the notion of flux rates.

Efficient Syntax-Driven Lumping of Differential Equations 97

Definition 3 (Cumulative flux rate). Let (S,R) be an RN, X ∈ S, ρ ∈
MS(S), and M ⊆ MS(S). Then, we define

fr(X, ρ) :=
∑

ρ
α−−→π∈R

(π(X) − ρ(X)) · α, fr[X,M] :=
∑

ρ∈M
fr(X, ρ).

We call fr(X, ρ) and fr[X,M] ρ-flux rate and cumulative M-flux rate of X,
respectively.

Definition 4. Let (S,R) be an RN, R an equivalence relation over S, and H =
S/R. Then, R is a backward RN bisimulation (BB) if for any (X,Y) ∈ R it
holds that

fr[X,M] = fr[Y,M] for all M ∈ {ρ | ρ
α−−→ π ∈ R}/ ≈H,

where any two ρ, σ ∈ MS(S) satisfy ρ ≈H σ when
∑

Y ∈H ρ(Y) =
∑

Y ∈H σ(Y)
for all H ∈ H.

It can be shown that HB = {{A,B}, {C,D}, {E}} is a BB for the running
example. Indeed, it is easy to see that VA(t) = VB(t) and VC(t) = VD(t) at all
time points t ≥ 0 whenever VA(0) = VB(0) and VC(0) = VD(0). So, one can
remove the ODEs of V̇B , V̇D and replace each VB with VA and each VD by VC ,
yielding the reduced ODE:

V̇A = −αVAVC + βVC V̇C = −βVC V̇E = 2αVAVC

In [11] it is discussed how to additionally obtain a reduced network up to a
bisimulation H, having one species per block of H. For example, it can be shown
that HF induces the FB-reduced RN SF

e = {A,C,D,E} and RF
e ={A + C

α−−→
C + E,C

β−−→ A,D
β−−→ A}.

3 Computing the Coarsest RN Bisimulations

As introduced in Sect. 1, we exploit the fact that the conditions for FB and
BB are in the Larsen-Skou style of probabilistic bisimulation, whereby, roughly
speaking, two states are equivalent if their behavior toward any equivalence class
is the same.

For FB, the notion of pr[X,H, ρ] in Definition 2 is already in such desired
format: X is the species for which the equivalence is being checked, H is an
equivalence class of “target” states, while ρ plays the role of a “label”, identi-
fying partner species reacting with X (akin to an action type in a probabilis-
tic transition system). This is the intuitive correspondence that suggests us to
employ a partition refinement approach based on Paige and Tarjan’s algorithm,
iteratively refining an input partition based on a splitter block that tells apart
the behavior of two species toward that block, for some label ρ. One fundamental
aspect of such an approach is that, at each iteration, the blocks of the current

98 L. Cardelli et al.

partition are used as potential splitters. This ensures that the list of splitters
can be updated at essentially no additional cost while splitting the blocks.

For BB, instead, the situation is more delicate because the equivalence con-
dition is based on the flux rate fr[X,M]. Unlike FB, here M does not represent
an equivalence class of the species, but it is an equivalence class of multi-sets
of species (all the possible reagents in the RN), which are equal up to ≈H, i.e.,
the equivalence induced by the current partition H. Within this setting Paige
and Tarjan’s approach cannot be used directly because the splitters are not the
partition blocks of the equivalence relation of interest. Thus, we first provide an
alternative characterization of BB which allows to use (species) partition blocks
as splitters. Then, we discuss a parameterized algorithm that can compute the
coarsest refinement of a given partition of species up to FB or BB.

3.1 Splitter-Based Characterization of Backward Bisimulation

The alternative characterization of BB is based on the following.

Definition 5 (Cumulative splitter flux rate). Let (S,R) be an RN, X,Y ∈
S, H a partition of S, H ∈ H and H ′ ∈ H ∪ {{∅}}. We define

sr(X, Y, H ′) :=
∑

ρ′∈H′

∑

ρ
α−−→π∈R

ρ=Y+ρ′

(π(X) − ρ(X)) · α′, sr[X, H, H ′] :=
∑

Y ∈H

sr(X, Y, H ′).

with α′ = α
2 if Y �= ρ′ and Y ∈ H ′, or α′ = α otherwise. We call the quantity

sr[X,H,H ′] the cumulative (H,H ′)-splitter flux rate of X.

Note that we account for summands that are counted twice due to the sum-
mation over H and H ′ in sr[X,H,H ′] by choosing α′ ∈ {α, α

2 } in the above
definition.

Theorem 1. Let (S,R) be an RN, R an equivalence relation over S and H =
S/R. Then R is a BB if and only if for all (X,Y) ∈ R, all H ∈ H and all
H ′ ∈ H ∪ {{∅}} it holds that sr[X,H,H ′] = sr[Y,H,H ′]. 1

With this characterization both pr and sr have three arguments, with anal-
ogous meaning, as discussed. In particular, the third argument of sr can now
be also interpreted as a label. However, while in FB this ranges over the set of
species (together with the distinguished species ∅ to indicate unary reactions),
in BB it ranges over blocks of the candidate BB partition to be checked (again,
together with the distinguished set {∅} for unary reactions). When used within
the partition refinement algorithm, splitting a partition block leads to a refine-
ment of the BB labels. In other words, unlike for FB the set of labels must be
updated at every iteration. However, differently from the original definition of
fr, this only requires splitting a block rather than computing an equivalence
relation over the species multi-sets appearing as reaction products. As we will
see, this can be done at no additional cost.
1 All proofs are given in a technical report available at http://sysma.imtlucca.it/

crnreducer/.

http://sysma.imtlucca.it/crnreducer/
http://sysma.imtlucca.it/crnreducer/

Efficient Syntax-Driven Lumping of Differential Equations 99

Remark 1. The analogy with the probabilistic-bisimulation condition (where a
label corresponds to an action type and the rates correspond to probabilities)
may suggest to use a variant of the algorithm for probabilistic bisimilarity devel-
oped in [5]. Indeed, by suitably encoding an RN into a hyper-graph, the largest
FB can be computed with [5]. However, a similar algorithm cannot be straight-
forwardly adapted to BB because the set of labels changes at every iteration. In
particular, the bounds of Lemma 4.5 in [5] would not carry over if the labels were
not kept fixed. For this reason, in this paper we consider an extension of the more
recent [7], which also has the advantage of a simpler implementation because it
does not require the intertwining between two classes of splitters like [5], or splay
trees like [6].

3.2 Data Structures

We introduce the data structures used in our algorithm for computing the coars-
est RN bisimulations. To achieve tight time and space bounds, we make use of
pointer-based data structures only. Furthermore, we assume that species, par-
tition blocks and reactions are stored once and then referred by other data
structures via pointers.

Notation. Fix an RN (S,R), set s := |S|, r := |R| and let L(R) := {X | ∃X +
Y

α−−→ π ∈ R}∪{∅} be the set of all labels. Set l := |L(R)| which can be bounded
by O(min(s, r)). Finally, use p := max{∑X∈S 1{π(X)>0} | ρ

α−−→ π ∈ R} to
denote the maximum number of different species which appear as products of
a reaction. We will also use the fact that s is bounded by (2 + p) · r. This is
because each reaction can have at most 2 and p different species as reagents and
products, respectively.2

We remark that, in general, p is bounded by s. However, we prefer to explic-
itly use this parameter because in the main application of this paper, i.e., the
encoding of an arbitrary polynomial ODE system, p becomes a constant (i.e.,
3). Instead, when an RN is used directly as the input specification to describe a
model, as is the case in CRNs, p is typically small. For instance, in most reac-
tions of biological processes the number of distinct products is typically one (e.g.,
for binding and internal state modification) or two (for unbinding or catalytic
reactions). Indeed, across all the benchmark CRNs considered in Sect. 6, p never
exceeds 3. This is due, for instance, to unbinding reactions favored by a catalyst,
in the form AB + C → A + B + C.

RN Representation. Species are stored in a list. We assume that the set L(R)
is given and stored as a list of pointers to species (plus one entry for ∅), requiring
O(l) space. However, its computation requires O(r) time because the reactions
have to be scanned only once, assuming that a vector with a boolean entry per
species is used to check (in constant time) if it has been already added to the
list. Indices from 0 to s − 1 and from 0 and l − 1 are implicitly assigned to each
species and label, respectively. A reaction is a structure with two fields, one for
2 We implicitly disregard pathological cases with species not appearing in any reaction.

100 L. Cardelli et al.

each possible reagent, and a list of pairs in the form (species, multiplicity)
for the products. Storing R requires O(p · r) space.

We make use of two vectors, inc and out, indexed by species. Each inc[X]
entry points to a list of pairs (reaction, multiplicity) containing all reac-
tions with X in their products, accompanied by the corresponding product mul-
tiplicity of X for each reaction. Note that each reaction may appear in inc[X]
for at most p species, thus requiring O(p · r) to store inc. The vector out is
similar, but each out[X] entry points to a list of reactions having X in their
reagents. The space required by out is thus O(r).

In the algorithm we build sets of elements. However, insertions in sets can be
implemented in constant time because an element is never added to a set more
than once.

Refinable Partition. A partition is stored as a doubly linked list of pointers
to its blocks. Each block record contains an integer to store its size and pointers
to two doubly linked lists that divide the species into marked and unmarked (as
a result of operations that are used to split blocks, discussed later). Each species
has a pointer to its block in the current partition. Thus, finding the block for a
species, marking, and unmarking take constant time. Also, it is possible to scan
the species of a block in time linear with respect to its size, and to split it in
time proportional to the number of marked states.

The operation of splitting a block H creates a new block H1 containing
the marked species of H, while H maintains those that are not marked. This
requires to assign the list pointed by H.marked to H1.unmarked and to assign
an empty list to H.marked. These operations are done in constant time, while a
time proportional to originally marked species of H is necessary to update their
reference to the new block H1. If instead H originally contained just marked or
unmarked species, then no split is actually performed, and marked species get
unmarked at no further cost.

Splitters. The list of pointers spls refers to the blocks of the current partition
that will be used as splitters. An s× l matrix M of real numbers is maintained to
efficiently compute conditional, production and flux rates. A possible majority
candidate (pmc) of an array A of size s is either the value which appears more
than �s/2
 times in A, or any other value if it does not exist. We calculate the
pmc row of M by extending the algorithm from [7] to vectors in a straightforward
manner.

We denote the row of species X in M by M[X], that is M[X] ∈ R
l. In the course

of splitting, we sort species according to the lexicographical order on their rows
in M. Clearly, sorting a set H ∈ H takes O(l · |H| · log |H|) time, as O(|H| · log |H|)
comparisons are needed, each requiring O(l) time.

This leads to an overall O(p · r + l · s) ≤ O(s · r + r · s) = O(r · s) space
complexity. Other auxiliary lists and sets of pointers presented in the remainder
of the section will respect the space bound given above.

Efficient Syntax-Driven Lumping of Differential Equations 101

1 CoarsestRNBisimulation(χ,S,R,H) :=
2 M = build an s × l matrix of reals
3 i f (χ = FB)
4 H = RefineCRR(S,R,M,H)
5 spls = shallow copy of H
6 while(spls �= ∅)
7 Hsp = pop(spls)
8 Split(χ,S,R,M,H,Hsp,spls)

Algorithm 1. Computation of the coarsest bisimulations.

3.3 Overview

Algorithm 1 provides the parametric procedure CoarsestRNBisimulation for
computing the coarsest RN bisimulations that refine a given initial partition H
of species of an RN (S,R). The first argument (χ) specifies either FB or BB.

We first observe that the crr-condition of FB can be implemented as an
initialization step that pre-partitions the species according to the values of crr.
This is because crr is a “global” property of the RN, i.e., it does not depend
on the current partition. Instead, the conditions on pr and sr for FB and BB,
respectively, require the iterative partition-refinement treatment. Consequently,
our algorithm starts (Lines 3–4) by invoking, if necessary, the RefineCRR proce-
dure.

RefineCRR (Algorithm 2). This procedure provides the coarsest refinement
of H which satisfies the crr-condition of FB. It refines H according to the ρ-
reaction rates for each species X and label ρ. In particular, in this procedure
each entry M[X][ρ] is used to store crr(X, ρ), and is assumed to be initialized
with 0. We can thus compute the values of crr for all labels and species in one
iteration of R only (Lines 3–7), requiring O(r) time. Then, we refine H (Lines
10–12). This can be done, for each initial block H ∈ H, by sorting the species
X ∈ H according to a lexicographical ordering on their M[X] row. After sorting,
all species belonging to the same sub-block will be alongside each other, and
it is easy to transform them into new blocks in O(|H|) time. As discussed, the
sorting of each block requires O(l · |H| · log|H|) time, and the total time spent in
sorting is thus O(l ·∑H∈H |H| · log|H|) ≤ O(l ·∑H∈H |H| · log s) = O(l ·s · log s).
Finally, Line 13 resets to 0 all entries of M, requiring O(l · s) time.

Overall, this yields O(r+l ·s·log s) time complexity. Given that s ≤ (2+p)·r,
this can be bounded by O(r · p · l · log s).

Iterative Refinement (Algorithm 1, Lines 5–8). The procedure performs the
iterative partition refinement required by our bisimulations as an extension of
the algorithm for Markov chains of [7], as discussed. If χ = FB, blocks of H are
split into sub-blocks of species with same ρ-production rates towards the block
Hsp for all ρ ∈ L(R). Instead, if χ = BB, blocks are split with respect to their
(Hsp,H

′)-splitter flux rates with respect to all labels H ′ ∈ H ∪ {{∅}}.
Line 5 creates the linked list spls of initial candidate splitters containing

pointers to each H ∈ H: all blocks of H are considered as (initial) candidate

102 L. Cardelli et al.

1 RefineCRR(S,R,M,H) :=
2 // Iterate once R to compute crr[X, ρ] for all ρ and X

3 foral l (X
α−−→ π ∈ R)

4 M[X][∅] = M[X][∅] + α

5 foral l (X + Y
α−−→ π ∈ R)

6 M[X][Y] = M[X][Y] + α
7 M[Y][X] = M[Y][X] + α

8 // Refine H according to the M rows , and store it in H′

9 H′ = ∅
10 foral l (H ∈ H)
11 Sort and split H wrt crr[X], for all X ∈ H, yielding H1, . . . , Hb

12 Add H1, . . . , Hb to H′

13 CleanRowsOfMatrix(M,S)

14 return H′

15
16 CleanRowsOfMatrix(M,H) :=
17 foral l (X ∈ H and ρ ∈ L(R))
18 M[X][ρ]=0

Algorithm 2. Pre-partitioning according to the condition of FB on crr.

splitters. Then, Lines 6–8 iterate while there are candidate splitters to be con-
sidered: after selecting a splitter (Hsp) and removing it from spls, the procedure
Split is invoked to refine each block of H with respect to Hsp.

We now provide an overview of the Split procedure (Algorithm 3). A
detailed presentation is given in Sect. 4, together with the complexity results.
Split first computes either pr[X,Hsp, ρ] for all X ∈ S and ρ ∈ L(R) (FB case)
or sr[X,Hsp,H

′], for all X ∈ S and H ′ ∈ H ∪ {{∅}} (BB case). The rates are
computed for all labels at once and are stored in M similarly to RefineCRR. We
remark that BB uses different labels than FB. Nevertheless, as will be discussed
in Sect. 4, the number of labels used by BB is bounded by l as well, and hence
we can safely use M also in the BB case.

Then, we iterate over the set of blocks containing a species for which at least
one non-zero rate has been computed. Each partition block H is split in sub-
blocks with either same pr[·,Hsp, ρ] for all ρ ∈ L(R) (FB), or same sr[·,Hsp,H

′]
for all H ′ ∈ H∪{{∅}} (BB), updating the list spls. Following the usual approach
of Paige and Tarjan [8], a sub-block with maximal size is not added to spls.
However, this is done only if the block that is split (i.e., H) has been already used
as a splitter, as otherwise the algorithm would be incorrect (see the discussion
in [7]).

4 The Split Procedure

We now provide a detailed description of the Split procedure shown in Algo-
rithm 3. It begins (Line 2) by initializing the set of pointers ST that will refer to
all species X for which either there exists a ρ such that pr[X,Hsp, ρ] �= 0 if χ =
FB, or for which there exists a block H ′ (or {∅}) such that sr[X,Hsp,H

′] �= 0
if χ = BB. Similarly, Line 3 initializes the set HT which will point to the blocks
of the species in ST . We remark that only the blocks in HT may be split due

Efficient Syntax-Driven Lumping of Differential Equations 103

1 Split(χ,S,R,M,H,Hsp,spls) :=
2 ST = ∅ //Set of species X with at least a non -zero pr/sr[X,Hsp,·]
3 HT = ∅ //Set of blocks containing the species in ST

4 foral l (Y ∈ Hsp)
5 i f (χ = FB)
6 ComputePR(Y,M) // Compute pr[X, Y, ρ] for all X and ρ. Populate ST

7 else

8 ComputeSR(Y,Hsp,M) // Compute sr[X, Y, H′] for all X and H′. Populate ST

9 //Now each M[X][ρ] stores pr[X, Hsp, ρ] (or sr[X, Hsp, H′], with ρ = H′.label)
10 foral l (X ∈ ST)
11 H = get block of X
12 Discard label of H, if any
13 i f (M[X] is not a zero row) // Discard spurious species from ST

14 i f (H contains no marked states) //Add only once H to HT

15 Add H to HT

16 Mark X in H
17 while(HT �= ∅)
18 H = pop(HT)
19 H1 = marked states of H
20 H = not marked states of H
21 i f (H = ∅)
22 Give the identity of H to H1
23 else
24 Make H1 a new block
25 pmc = PMCRow(H1,M)
26 H2 = {X ∈ H1 | M[X] not equal to the pmc -row}
27 H1 = H1 \ H2
28 i f (H2 = ∅)
29 b = 1 //No need to split H1.
30 else
31 Sort and split H2 according to M[X], yielding H2, . . . , Hb

32 Make each of H2, . . . , Hb a new block
33 i f (H ∈spls)
34 Add H1, . . . , Hb except H to spls
35 else

36 Add [H,]?H1, . . . , Hb to spls except a sub -block of maximal size
37 while(ST �= ∅)
38 X = pop(ST)
39 touched[X]=false
40 CleanRowsOfMatrix(M,X)

Algorithm 3. The Split procedure.

to the current splitter Hsp. If χ = FB, Line 4–8 compute pr[X,Hsp, ρ] and
store it in M[X][ρ] for each X and ρ. This is done by ComputePR in Algorithm 4.
The procedure scans all the reactions in the inc list of each Y ∈ Hsp. We can
have either unary or binary reactions (Lines 2–3 or 4–6, respectively). In the
latter case, if the two reagents are equal (i.e., X = X ′) we add α · π(Y) twice
to M[X][X]. This corresponds to the ρ(X) + 1 factor of Definition 1. The actual
updates on the entries of M are performed by the simple sub-routine Update in
Lines 9–13 of Algorithm 4 which also updates ST if necessary.

If χ = BB, Lines 4–8 of Algorithm 3 compute sr[X,Hsp,H
′] and store it in

M[X, ρH′] for each X ∈ S and H ′ ∈ H ∪ {{∅}}, with H the current partition.
The symbol ρH′ denotes a label in L(R) which identifies H ′ and is discussed
below. The flux rates are computed by ComputeSR of Algorithm 5. It is similar
to ComputePR, but it scans the reactions in the out lists of each species Y ∈ Hsp.

104 L. Cardelli et al.

By Definition 5, unary reactions contribute to splitter flux rates with {∅} as
third parameter. Here we associate the label ∅ ∈ L(R) to unary reactions. For
each unary reaction Y

α−−→ π ∈ out[Y] (Lines 2–5), M[Y][∅] is decreased by α
and we increase M[X][∅] of each species X in π by α · π(X). Instead, each binary
reaction Y + Y ′ α−−→ π ∈ out[Y] contributes to those with the block of Y ′ as
third parameter. As depicted in Lines 6–15, we provide each block H ′ with a field
label used to point to the label in L(R) assigned to H ′. This will be a species in
H ′∩L(R). In particular, in Line 7 we get the block of Y ′ (H ′). Then, if no label
is currently assigned to H ′, we set Y ′ as label of H ′. Finally, the entries of M are
updated by Update similarly to the FB case, but using H ′.label as label. Note
that all reactions involving species Y ′ of a block H ′ will contribute to the same
H ′.label entries of M, thus computing the summation over the elements of H ′ of
Definition 5. We remark that we may have blocks H ′′ ∈ H with H ′′ ∩ L(R) = ∅.
Those do not contribute to ComputeSR as both reagents of an arbitrary binary
reaction are elements of L(R). Finally, we note that in Lines 10–11 we halve the
rate of reactions with two different reagents Y + Y ′ belonging to the splitter
block Hsp, as done in Definition 5.

Now that ST and M have been populated, Lines 10–16 of Algorithm 3 build
HT and mark all species in ST as discussed in Sect. 3.2. The marking operation
could have not been done in Lines 4–8 because it changes the order of species in
a block, and hence might interfere with the iteration of the forall statement of
Line 4. Note that Line 13 discards species in ST whose M-rows have only zeros.
This can happen because positive and negative values can sum up to zero (see,
e.g., lines 3 and 5 and of Algorithm 5). In addition, Line 12 reinitializes all label
fields of the blocks in HT , a super-set of those to which ComputeSR might have
assigned a label.

1 ComputePR(Y,M):=

2 foral l ((X
α−−→ π, π(Y)) ∈ inc[Y])

3 Update(M,X,∅,π(Y),α)

4 foral l ((X+X′ α−−→ π, π(Y)) ∈ inc[Y
])

5 Update(M,X,X′,π(Y),α)

6 Update(M,X′,X,π(Y),α)\\
7
8 //Sub -routine to update M and ST

9 Update(M,X,ρ,mult,α):=
10 i f (! touched[X])
11 touched[X] = true
12 add X to ST

13 M[X][ρ] = M[X][ρ] + α · mult

Algorithm 4. Compute pr wrt the
splitters.

1 ComputeSR(Y,Hsp,M):=

2 foral l (Y
α−−→ π ∈ out[Y])

3 Update(M,Y ,∅,1,−α)
4 foral l (X ∈ π)
5 Update(M,X,∅,π(X),α)

6 foral l (Y +Y ′ α−−→ π ∈ out[Y])

7 H′ = get block of Y ′

8 i f (H′ does not have a label)

9 H′.label = Y ′

10 i f (Y �= Y ′ and H′ = Hsp)
11 α = α/2

12 Update(M,Y ,H′.label ,1,−α)

13 Update(M,Y ′,H′.label ,1,−α)
14 foral l (X ∈ π)

15 Update(M,X,H′.label ,π(X),α)

Algorithm 5. Compute sr wrt the
splitters.

It is now possible to refine H and update the list of candidate splitters by
splitting each block H ∈ HT according to the pr or sr values (Lines 17–36).
Lines 19–20 perform the split operation discussed in Sect. 3.2. They split (in
constant time) the species in H which appear in HT (the marked ones) from
those which do not appear in HT (the unmarked ones). Those X ∈ H that yield

Efficient Syntax-Driven Lumping of Differential Equations 105

M[X][·] �= 0 form the block H1, while the other remain in H. If the new H is
empty, H1 contains the elements originally present in H and thus receives its
identity. Otherwise H1 is made to a new block in O(|H1|) time.

Lines 25–27 further split H1 by moving some of its elements in a new block
H2 in O(|H1|) time. In particular, we calculate the pmc-row in order to split H1

into (a new) H1 and H2. In case more than half of the species of the original
H1 have their M-row equal, the new block H1 will contain those species with the
pmc-row; otherwise, it will contain any sub-set of H1 with same row in M. In both
cases the obtained H1 does not need to be further split. Instead H2 might need
to be split further. We note that H2 might be empty, meaning that there was no
need in splitting H1. In such case H1 remains unchanged; in the opposite case,
instead, H2 is split in Lines 31–32 and the obtained sub-blocks are added to H.
We remark that we are guaranteed that each sub-block of H2 has at most half
the elements originally in H. Moreover, it is worth noting that splitting blocks
in H affects spls because spls stores pointers to the elements of H.

Finally, we add the so obtained sub-blocks to spls by storing the correspond-
ing pointers in spls. As discussed, we do not add a sub-block with maximal size
if the original H has already been used as splitter (Line 36). Note that [H,]?H1

means that we add only one of the two blocks to spls if Line 22 gave the iden-
tity of H to H1. Instead, in Line 34 there is no need to add the new H to spls
because it is already there (i.e., the original H was there, and hence the refined
H inherited its presence).

The procedure terminates by resetting the vector touched, used to build ST ,
and the rows of M regarding the species in ST .

Theorem 2. Algorithm 1 calculates the coarsest RN bisimulations that refine a
partition H. Its time complexity is O(r · p · l · log s), while its space complexity is
O(r · s).

The proof lifts the ideas of [7] to RNs. As discussed previously, the complexity
stated above relates to an arbitrary RN. We shall see next that in the encoding
of a polynomial ODE system the factor p · l simplifies to s, while it becomes a
constant for CTMCs.

5 Applications

We discuss how to encode into an RN an arbitrary polynomial ODE system of
degree at most two. Based on this, we consider the special case of an affine ODE
system, which gives reduced time and space complexities; here, we will show an
application of RN bisimulations for the numerical solution of systems of linear
equations using stationary iterative methods. Finally, we relate RN bisimulations
to CTMC lumpability [13].

It is easy to see that the encoding of polynomials ODEs to RNs is not unique
(cf. [21] for CRNs). Here, we propose one for which the algorithmic complex-
ity can be directly related to the number of monomials appearing in the ODE
system, leaving the question of investigating minimality issues to future work.

106 L. Cardelli et al.

Polynomial Systems. We consider the ODE system ẏ = G(y) with compo-
nents

ẏk = Gk(y) :=
∑

1≤i,j≤n

α
(k)
i,j · yi · yj +

∑

1≤i≤n

α
(k)
i · yi + β(k), 1 ≤ k ≤ n, (2)

and with α
(k)
i,j , α

(k)
i , β(k) ∈ R.

Lemma 1. The RN (SG, RG), with SG := {1, . . . , n} and

RG :=
{

i + j
α

(k)
i,j−−−→ i + j + k | α

(k)
i,j �= 0

}

∪
{

i
α

(k)
i−−−→ i + k | α

(k)
i �= 0

}
∪

{
∅ β(k)

−−−→ k | β(k) �= 0
}

,

has ODEs V̇k = Gk(V), for 1 ≤ k ≤ n.

Note that with this encoding r relates to the number of monomials used in
the ODEs (while s is the number of ODE variables). As anticipated in Sect. 1,
Theorem 2 and Lemma 1 imply that Algorithm 1 gives the coarsest FB and BB
partitions of an arbitrary polynomial ODE system in O(r · s · log s) time and
O(r · s) space.

Affine Systems. Equation (2) also subsumes the interesting case of affine ODE
systems where G(y) = Cy + d for some C ∈ R

n×n and d ∈ R
n. In this case,

Theorem 2 and Lemma 1 imply that the complexity reduces to O(r·log s) time and
O(r + s) space. Here we consider the problem of computing a solution of a linear
system of equations Ax = b, with A ∈ R

n×n and x, b ∈ R
n. Stationary iterative

methods approximate a solution with updates in the form x(k + 1) = F (x(k))
where k is the iteration index and F is affine. For instance, Jacobi’s method is
written as x(k + 1) = −Rx(k) + D−1b, with x(0) = 0, where D,R are such that
D is a diagonal matrix and A = D + R. Under the assumption of strict diagonal
dominance for A, it converges to the solution of Ax = b (e.g., [14]). We interpret
this sequence as a dynamical system, but in discrete time, and observe that the
bisimulations carry over to the discrete time case. We denote the encoding of the
Jacobi iterations by the RN (SA,b, RA,b). Then, the following holds.

Theorem 3. An RN bisimulation H = {H1, . . . , Hm} on (SA,b, RA,b) induces a
reduced discrete-time model x̂(k +1) = Âx̂(k)+ b̂, with Â ∈ R

m×m and x̂(k), b̂ ∈
R

m. If H is an FB then, x̂i(k) =
∑

l∈Hi
xl(k) for all 1 ≤ i ≤ m and k ≥ 0. If H

is a BB then, x̂i(k) = xl(k) for all 1 ≤ i ≤ m, l ∈ Hi and k ≥ 0.

Here, Â and b̂ can be obtained by constructing the reduced RN up to FB/BB [11].

Continuous-time Markov Chains. Let us fix a CTMC with transition rate
matrix Q = (qi,j)1≤i,j≤n. Then the probability distribution π = (πi)1≤i≤n solves
the Kolmogorov linear ODEs π̇ = πQ.

Efficient Syntax-Driven Lumping of Differential Equations 107

Lemma 2. Let Q be the transition matrix of a CTMC and (SQ, RQ) be the RN
encoding according to (2) of its Kolmogorov ODEs. Then, H is an ordinarily
(resp., exactly) lumpable partition for Q if and only if H is an FB (resp., a BB)
for (SQ, RQ).

By Theorem 2 and Lemma 1, Algorithm 1 calculates the coarsest ordinarily and
exactly lumpable partitions of Q in O(r · log s) time and O(r + s) space. Thus,
we recover the bounds of Markov-chain specific algorithms [6,7]. We also remark
that, in the case of BB, Lemma 2 recovers a result from [19] using an alternative
proof. Finally, it can be shown that Lemma 2 is still valid if the reactions are
encoded via RQ = {i

qi,j−−→ j | qi,j �= 0}, using one-to-one reactions only. Though
not affecting asymptotic complexity, this reduces memory and time consumption,
and thus we will use it in our prototype.

6 Evaluation

We evaluate our algorithm using (i) the biochemical networks evaluated in [11]
as case studies for degree-two polynomial systems; (ii) Ax = b systems from [15];
and (iii) selected CTMCs from the MRMC distribution [33]. Comparing against
the reductions of [11] and MRMC also allowed us to validate the implementation
of our algorithm.

The results are presented in Table 1. To ease layout, we label the models with
short identifiers (first column), and refer to the publications in the second column
for details. Headers |R| and |S| give the number of reactions and species of the
original and reduced RNs. Headers “Red. [11]” and “Red.” provide the runtimes
of the algorithm considered in [11] and of the proposed approach, respectively.
Measurements were taken on a 2.6 GHz Intel Core i5 machine with 4 GB of
RAM. The experiments are replicable using a prototype available at http://
sysma.imtlucca.it/crnreducer/.

Biochemical Models (M1–M13). For consistency, we computed the coarsest
bisimulations that refine the same initial partitions as specified in [11]. Specifi-
cally, for each RN (S,R), in the case of FB we considered the trivial partition
{S} (thus yielding the largest bisimulation); due to the side condition of BB, in
that case the initial partition was chosen in agreement with the initial conditions
— two species are in the same initial block if their initial conditions, read from
the original model specification, are equal (thus ensuring that the reduction is a
lossless simplification of the original one).

We refer to [11] for a description of the models and the biological interpre-
tation of the bisimulations therein computed. Here, we confirm the same reduc-
tions, at a much improved performance over that of [11]. For the largest model
(M1) we registered a speedup of four orders of magnitude—now all cases can be
reduced within seconds.

Systems of Linear Equations (F1–F5). These are encodings of the Jacobi
iterative method to solve large-scale real-world linear systems from the Sparse
Matrix Collection [15]. F1–F2 (original names Bourchtein/atmosmodl and

http://sysma.imtlucca.it/crnreducer/
http://sysma.imtlucca.it/crnreducer/

108 L. Cardelli et al.

Table 1. FB and BB reductions. Entries labeled with “—” indicate that the reduction
algorithm did not terminate within 24 hours. Greyed out entries indicate no reduction.

Original model FB reduction BB reduction

Id Ref. |R| |S| Red.(s) [11] Red.(s) |R| |S| Red.(s) [11] Red.(s) |R| |S|
Biochemical reaction networks

M1 [22] 3 538 944 262 146 4.61E+4 7.49E+0 990 222 7.65E+4 1.21E+1 2 614 222
M2 [22] 786 432 65 538 1.92E+3 1.58E+0 720 167 3.68E+3 2.51E+0 1 873 167
M3 [22] 172 032 16 386 8.15E+1 2.89E–1 504 122 1.77E+2 6.03E–1 1 305 122
M4 [22] 48 18 1.00E–3 1.00E–3 24 12 2.00E–3 2.00E–3 44 12
M5 [23] 194 054 14 531 3.72E+1 3.88E–1 142 165 10 855 1.32E+3 6.00E–1 91 001 6 634
M6 [24] 187 468 10 734 3.07E+1 6.09E–1 57 508 3 744 2.71E+2 1.40E+0 145 650 5 575
M7 [24] 32 776 2 506 1.26E+0 1.19E–1 16 481 1 281 1.66E+1 2.14E–1 32 776 2 506
M8 [25] 41 233 2 562 1.12E+0 2.69E–1 33 075 1 897 1.89E+1 3.97E–1 41 233 2 562
M9 [25] 5 033 471 1.91E–1 1.60E–2 4 068 345 4.35E–1 2.40E–2 5 033 471
M10 [26] 5 797 796 1.61E–1 1.90E–2 4 210 503 7.37E–1 3.30E–2 5 797 796
M11 [27] 5832 730 3.89E–1 1.50E–2 1296 217 6.00E–1 2.40E–2 237 217
M12 [28] 487 85 2.00E–3 2.00E–3 264 56 6.00E–3 3.00E–3 431 56
M13 [29] 24 18 1.20E–2 4.00E–3 24 18 7.00E–3 4.00E–3 7 3

Affine systems

F1 [15] 10 319 760 1 489 753 9.74E+3 8.70E+2 1 295 514 188 101 — 2.23E+2 10 319 760 1 489 753
F2 [15] 8 814 880 1 270 433 8.86E+2 5.58E+2 1 108 224 160 951 — 1.55E+2 4 420 168 639 509
F3 [15] 2 101 250 525 826 3.71E+2 1.24E+1 526 338 131 842 — 4.79E+1 2 101 250 525 826
F4 [15] 4 706 074 143 572 6.72E+0 6.70E+0 565 288 47 858 — 1.47E+1 2 739 188 112 444
F5 [15] 706 577 116 836 3.23E+0 3.11E+0 609 459 73 423 — 2.86E+0 609 307 73 348

Continuous-time Markov chains

C1 [30] 22 871 849 3 101 445 4.00E+4 2.01E+3 1 069 777 135 752 — 1.34E+3 1 166 931 148 092
C2 [31] 11 583 520 2 373 652 1.73E+2 9.78E+1 5 792 531 1 187 597 — 3.07E+2 5 814 622 1 187 597
C3 [32] 10 485 761 1 048 576 1.48E+1 1.76E+1 3301 792 — 1.23E+1 5083 792

Bourchtein/atmosmodd, respectively) arise from atmospheric modeling; F3
(Wissgott/parabolicFEM) is to be computed during a finite-element-method
solution to a convection-diffusion reaction; F4 (TTK/engine) comes from a prob-
lem in structural mechanics; F5 (IBMEDA/dc1) arises from the simulation of an
electrical circuit. For F1–F4 we verified (in O(r) steps) that the sparse matrix is
strictly diagonal dominant, a known sufficient condition for the convergence of
Jacobi’s method. All cases enjoy significant reductions with either bisimulation,
up to one order of magnitude fewer species and reactions for F1.

In some cases (i.e., F2, F4, and F5) the FB runtimes are comparable to those
of [11]. This can be explained by noting that, in the encoding of affine ODEs, the
splitting based on the “labels” cannot yield a significant improvement because
the RN has only unary reactions (hence only one label, ∅). This is not the
case in the biochemical benchmarks M1–M13, which as a matter of fact showed
significant runtime differences.

Regarding BB, the algorithm of [11] was not able to compute any BB reduc-
tion within 24 hours. The remarkable performance improvement is due to the
novel splitter-based characterization of BB (Sect. 3.1), while with [11] it was
required to compute, at each iteration, the equivalence classes for multi-sets of
species according to Definition 4.

Efficient Syntax-Driven Lumping of Differential Equations 109

CTMCs (C1–C3). These are the three largest CTMCs of the MRMC dis-
tribution [33], used in [34] to study the impact of ordinary CTMC lumpabil-
ity in model checking. In particular, these are: a protocol for wireless group
communication (C1, original model name FDT3E3 PE16E4 S4OD40); a cluster
model (C2, WORKSTATION CLUSTER N256); and a peer-to-peer protocol
(C3. TORRENT N04). The initial partitions for both FB and BB are consistent
with the atomic propositions on the CTMC states.

Being affine ODE systems, the above observations regarding the runtime
comparisons with [11] carry over to these models. Instead, a thorough compari-
son against MRMC is difficult because of the different languages were used for
the implementation (C with specialized data structures for sparse matrices for
MRMC, vs. Java with plain data structures from its API in our prototype) and
because MRMC is CTMC-specific. However, MRMC ran one order of magnitude
faster and was less memory demanding, indicating the potential in improving
performance in optimized versions of our prototype.

7 Conclusion

The main advantage in aggregating dynamical systems from a chemical reaction
network syntax lies in adapting established and efficient bisimulation algorithms
for discrete-state models. The numerical benchmarks have demonstrated scal-
ability as well as the effectiveness of exact aggregations in non-synthetic mod-
els. Future work will concern the equivalences and related algorithms to handle
higher-degree polynomial nonlinearities.

Acknowledgment. This work was partially supported by the EU project QUANTI-
COL, 600708. L. Cardelli is partially funded by a Royal Society Research Professorship.

References

1. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differ-
ential semantics of rule-based models: exact and automated model reduction. In:
LICS, pp. 362–381 (2010)

2. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for
rule-based modeling of signal transduction based on the interactions of molecular
domains. Bioinformatics 20, 3289–3291 (2004)

3. Dang, T., Guernic, C.L., Maler, O.: Computing reachable states for nonlinear bio-
logical models. TCS 412, 2095–2107 (2011)

4. Ben Sassi, M.A., Testylier, R., Dang, T., Girard, A.: Reachability analysis of
polynomial systems using linear programming relaxations. In: Chakraborty, S.,
Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 137–151. Springer, Heidel-
berg (2012)

5. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and simi-
larity for probabilistic processes. J. Comput. Syst. Sci. 60, 187–231 (2000)

6. Derisavi, S., Hermanns, H., Sanders, W.: Optimal state-space lumping in Markov
chains. Inf. Process. Lett. 87, 309–315 (2003)

110 L. Cardelli et al.

7. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52.
Springer, Heidelberg (2010)

8. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Comput.
16, 973–989 (1987)

9. Murray, J.D.: Mathematical Biology I: An Introduction, 3rd edn. Springer, Heidel-
berg (2002)

10. Feinberg, M.: Chemical reaction network structure and the stability of complex
isothermal reactors – I. The deficiency zero and deficiency one theorems. Chem.
Eng. Sci. 42, 2229–2268 (1987)

11. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward
bisimulations for chemical reaction networks. In: CONCUR, pp. 226–239 (2015)

12. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94, 1–28 (1991)

13. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl.
Probab. 31, 59–75 (1994)

14. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Indus-
trial and Applied Mathematics, Philadelphia (2003)

15. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38, 1–25 (2011)

16. Li, G., Rabitz, H.: A general analysis of exact lumping in chemical kinetics. Chem.
Eng. Sci. 44, 1413–1430 (1989)

17. Toth, J., Li, G., Rabitz, H., Tomlin, A.S.: The effect of lumping and expanding on
kinetic differential equations. SIAM J. Appl. Math. 57, 1531–1556 (1997)

18. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for Markovian process
algebra. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp.
380–394. Springer, Heidelberg (2012)

19. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation
of differential equivalences. In: POPL (2016, to appear)

20. Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a Markovian
process algebra. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015.
LNCS, vol. 9234, pp. 293–306. Springer, Heidelberg (2015)

21. Hars, V., Toth, J.: On the inverse problem of reaction kinetics. Colloquia Mathe-
matica Societatis Janos Bolyai 30, 363–379 (1979)

22. Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and
coarse-graining of biological complexity with NFsim. Nat. Methods 8, 177–183
(2011)

23. Suderman, R., Deeds, E.J.: Machines vs ensembles: effective MAPK signaling
through heterogeneous sets of protein complexes. PLoS Comput. Biol. 9, e1003278
(2013)

24. Faeder, J.R., Hlavacek, W.S., Reischl, I., Blinov, M.L., Metzger, H., Redondo, A.,
Wofsy, C., Goldstein, B.: Investigation of early events in FcεRI-mediated signaling
using a detailed mathematical model. J. Immunol. 170, 3769–3781 (2003)

25. Barua, D., Faeder, J.R., Haugh, J.M.: A bipolar clamp mechanism for activation
of jak-family protein tyrosine kinases. PLoS Comput. Biol. 5, e1000364 (2009)

26. Barua, D., Hlavacek, W.S.: Modeling the effect of apc truncation on destruction
complex function in colorectal cancer cells. PLoS Comput. Biol. 9, e1003217 (2013)

27. Colvin, J., Monine, M.I., Faeder, J.R., Hlavacek, W.S., Hoff, D.D.V., Posner, R.G.:
Simulation of large-scale rule-based models. Bioinformatics 25, 910–917 (2009)

28. Kocieniewski, P., Faeder, J.R., Lipniacki, T.: The interplay of double phosphory-
lation and scaffolding in MAPK pathways. J. Theor. Biol. 295, 116–124 (2012)

Efficient Syntax-Driven Lumping of Differential Equations 111

29. Cardelli, L.: Morphisms of reaction networks that couple structure to function.
BMC Syst. Biol. 8, 84 (2014)

30. Massink, M., Katoen, J., Latella, D.: Model checking dependability attributes of
wireless group communication. In: DSN, pp. 711–720 (2004)

31. Haverkort, B., Hermanns, H., Katoen, J.P.: On the use of model checking tech-
niques for dependability evaluation. In: SRDS, pp. 228–237 (2000)

32. Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic
model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
234–248. Springer, Heidelberg (2006)

33. Katoen, J., Khattri, M., Zapreev, I.: A Markov reward model checker. In: QEST,
pp. 243–244 (2005)

34. Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation
mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007)

	Efficient Syntax-Driven Lumping of Differential Equations
	1 Introduction
	2 Background
	3 Computing the Coarsest RN Bisimulations
	3.1 Splitter-Based Characterization of Backward Bisimulation
	3.2 Data Structures
	3.3 Overview

	4 The Split Procedure
	5 Applications
	6 Evaluation
	7 Conclusion
	References

