
Formalizing and Checking Thread Refinement
for Data-Race-Free Execution Models

Daniel Poetzl(B) and Daniel Kroening

University of Oxford, Oxford, UK
daniel.poetzl@cs.ox.ac.uk

Abstract. When optimizing a thread in a concurrent program (either
done manually or by the compiler), it must be guaranteed that the result-
ing thread is a refinement of the original thread. Most definitions of
refinement are formulated in terms of valid syntactic transformations on
the program code, or in terms of valid transformations on thread exe-
cution traces. We present a new theory formulated instead in terms of
state transitions between synchronization operations. Our new method
shows refinement in more cases and leads to more efficient and simpler
procedures for refinement checking. We develop the theory for the SC-
for-DRF execution model (using locks for synchronization), and show
that its application in compiler testing yields speedups of on average
more than two orders of magnitude compared to a previous approach.

1 Introduction

The refinement problem between threads appears in various contexts, such as
the modular verification of concurrent programs, the validation of compiler opti-
mization passes, or compiler testing. Informally, a thread T ′ is a refinement of
a thread T if for all possible concurrent contexts C = T0 ‖ . . . ‖ Tn−1 (where
‖ denotes parallel composition), the set of final states reachable by T ′ ‖C is a
subset of the set of final states reachable by T ‖C. We consider the problem as
an instance of validating code optimization (either manual or by an optimizing
compiler): the optimized thread must be a refinement of the original thread.

We focus on refinement in the “SC for DRF” execution model [1], i.e., pro-
grams behave sequentially consistent (SC) [6] if their SC executions are free of
data races, and programs containing data races have undefined semantics. A pro-
gram that contains data races could thus end up in any final state. Synchroniza-
tion is provided via lock(l) and unlock(l) operations. The model is similar to,
e.g., pthreads with its variety of lock operations such as pthread mutex lock()
and pthread mutex unlock().

The definition of refinement given in the first paragraph is not directly use-
ful for automated or manual reasoning, as it would require the enumeration of
all possible concurrent contexts C. We thus develop a new theory that is based
on comparing the state transitions of the original thread and the transformed
thread between synchronization operations. We improve over existing work both

Supported by ERC project 280053 and SRC task 2269.002.

c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 515–530, 2016.
DOI: 10.1007/978-3-662-49674-9 30

516 D. Poetzl and D. Kroening

in terms of precision and efficiency. First, our theory allows to show refinement
in cases where others fail. For example, we also allow the reordering of shared
memory accesses out of critical sections (under certain circumstances); a trans-
formation that is unsupported by other theories. Second, we show that applying
our new specification method in a compiler testing setting leads to large per-
formance gains. We can check whether two thread execution traces match on
average 210 X as fast as a previous approach by Morisset et al. [12].

The rest of the paper is organized as follows. Section 2 introduces our
state-based refinement formulation and compares it to previous event-based
approaches on a concrete example. Section 3 formalizes state-based refinement.
Section 4 shows that our formulation is more precise in that it supports more
compiler optimizations than current theories. Section 5 evaluates our theory in
the context of a compiler testing application that involves checking thread exe-
cution traces. Section 6 surveys related work. Section 7 concludes.

2 State-Based vs. Event-Based Refinement

Current theories of refinement for language-level memory models (such as the
Java Memory Model or SC-for-DRF) are phrased in terms of transformations
on thread execution traces (see e.g. [2,11,12,14,15]). We refer to this notion of
refinement as event-based refinement. The trace transformations are then lifted
to transformations on the program code. Thread traces are sequences of memory
events (reads or writes) and synchronization events (lock or unlock). The valid
transformations are given as descriptions of which reorderings, eliminations, and
introductions of memory events on a trace are allowed. Checking whether a
trace t′ is a correctly transformed version of a trace t then amounts to deter-
mining whether there is a sequence of valid transformations that turns trace t
into trace t′. If each trace t′ of T ′ is a transformed version of a trace t of T , it
follows that T ′ is a refinement of T .

We show in the following that instead of describing refinement via a sequence
of valid transformations on traces, switching to a theory based on state tran-
sitions provides several benefits. We refer to our new approach as state-based
refinement. In essence, in the state-based approach, we only require that traces
t′ and t perform the same transformations on the shared state between corre-
sponding synchronization operations, and that t does not allow for more data
races than t. In the next section, we illustrate the difference between the two
approaches on an example.

2.1 Example

Consider Fig. 1, which gives an original thread T , a (correctly) transformed ver-
sion T ′, and a concurrent context C in the form of another thread. The threads
access shared variables x, y, z and local variables a, b. The context C outputs the
value of variable z in the final state. By inspecting T ′ ‖C and T ‖C (assuming
initial state {x �→ 0, y �→ 0, z �→ 0}), we see that both combinations produce the

Formalizing and Checking Thread Refinement 517

1 void thread_orig() {

2 int a, b;

3 lock(l);

4 x = 1;

5 x = 2;

6 unlock(l);

7 a = x;

8 b = y;

9 lock(l);

10 if (b == 0)

11 x = 0;

12 unlock(l);

13 }

(a) Original thread

1 void thread_trans() {

2 int a, b;

3 lock(l);

4 x = 2;

5 unlock(l);

6 b = y;

7 a = x;

8 lock(l);

9 if (b == 0)

10 x = 0;

11 b = y;

12 unlock(l);

13 }

(b) Transformed thread

1 void context() {

2 int a;

3 lock(l);

4 a = x;

5 z = a;

6 unlock(l);

7 join(thread_{orig|

8 trans});

9 printf("%d\n", z);

10 }

(c) Context

Fig. 1. Original thread T , transformed thread T ′, and concurrent context C

same possible outputs (0 or 2). In fact, T ′ and T exhibit the same behavior in
any concurrent context C for which T ‖C is data-race-free.

Now let us look at two traces t′ of T ′ and t of T , and how a conventional
event-based and our state-based theory would establish refinement. We assume
for now that T and T ′ are only composed with contexts that do not write any
shared memory locations accessed by them (as is the case for, e.g., the context
given in Fig. 1c). Figure 2 gives the execution traces of T (left trace) and T ′

(right trace) for initial state {x �→ 0, y �→ 0, z �→ 0}.
A theory based on trace transformations (Fig. 2a) would establish the refine-

ment between the two traces by noting that write x 1 can be removed (“overwrit-
ten write elimination”), read x 2 and read y 0 can be reordered (“non-conflicting
read reordering”), and read y 0 can be introduced (“irrelevant read introduc-
tion”). Showing refinement this way can become significantly more complicated
and costly if longer traces and more optimizations are considered.

We specify trace refinement by requiring that t′, t perform the same state
transitions from lock to subsequent unlock operations, and that t′ does not allow
more data races than t. When assuming that the threads are only composed with
contexts that do not write any shared memory locations, it is sufficient to check
that t′, t are in the same state at corresponding unlock operations. In this case,
given an initial state sinit, we say a trace t is in state s at step i if s is like
sinit, but updated with the values written by t up to step i. Indeed, both traces
in Fig. 2b are in state {x �→ 2, y �→ 0, z �→ 0} at the first unlock(l), and in
state {x �→ 0, y �→ 0, z �→ 0} at the second unlock(l). The key reason for why
trace refinement can be specified this way is that any context C for which T ‖C
is data-race-free can for each shared variable only observe the last write to it
before an unlock operation. If it could observe any intermediate write, there
would necessarily be a data race.

In addition to requiring that t′ and t are in the same state, we also require that
t′ does not allow more data races than t. This requirement is captured by the set

518 D. Poetzl and D. Kroening

lock m

write x 1

write x 2

unlock m

read x 2

read y 0

lock m

write x 0

unlock m

lock m

write x 2

unlock m

read y 0

read x 2

lock m

write x 0

read y 0

unlock m
(+)

(a) Event-based matching

lock m

write x 1

write x 2

unlock m

read x 2

read y 0

lock m

write x 0

unlock m

lock m

write x 2

unlock m

read x 2

read y 0

lock m

write x 0

read y 0

unlock m

{x �→ 2,

y �→ 0,

z �→ 0}

{x �→ 0,

y �→ 0,

z �→ 0}

R′
0 ⊆ (A0 ∪ A1)

W ′
0 ⊆ (W0 ∪ W1)

R′
1 ⊆ A1

W ′
1 ⊆ W1

R′
2 ⊆ (A2 ∪ A1)

W ′
2 ⊆ (W2 ∪ W1)

(b) State-based matching

Fig. 2. Trace matching

constraints in Fig. 2b. The primed sets correspond to t′, and the unprimed sets
to t. The sets R′

i, Ri (W ′
i ,Wi) denote the sets of memory locations read (written)

between subsequent lock operations. For example, R1 denotes the set of memory
locations read by t between the first unlock(l) and the second lock(l). We also use
the abbreviations A′

i = R′
i ∪W ′

i and Ai = Ri ∪Wi. As an example, the condition
W ′

0 ⊆ W0 ∪ W1 says that any memory location written by t′ between the first
lock(l) and the subsequent unlock(l) must also be written by t either between
the first lock(l) and the subsequent unlock(l), or between the first unlock(l) and
the subsequent lock(l). Since for x ∈ W ′

0 we require only that x ∈ W0 or x ∈ W1,
this allows a write to move into the critical section in t′ compared to t. We will
define the set constraints more precisely in Sect. 3.

Contexts that Write. In the case where a thread can be put in an arbitrary
context that can also write to the shared state, when generating the traces we
also need to take into account that a read of a variable x could yield a value
that is both different from the initial value of x, and which the thread has not
itself written (i.e., it was written by the context).

In an event-based theory this is typically handled by assuming that reads can
return arbitrary values (see, e.g., [12]). However, this assumption is unnecessarily
weak. For example, if a thread reads the same variable twice in a row with no
intervening lock operation, and it did not itself write to the variable, then both
reads need to return the same value. Otherwise, this would imply that another
thread has written to the variable and thus there would be a data race.

In fact, when generating the traces of a thread, it is sufficient to assume that
a thread observes the shared state only at its lock(l) operations. The reason for

Formalizing and Checking Thread Refinement 519

this is that lock(l) operations synchronize with preceding unlock(l) operations
of other threads. And those threads in turn make their writes available at their
unlock(l) operations.

3 Formalization

We now formalize the ideas from the previous section. For lack of space, we first
make a few simplifying assumptions. Most notably we assume that threads do
not contain nested locks (this assumption is lifted in the extended version of the
paper [13]). We further assume that lock(l) and unlock(l) operations alternate on
each thread execution, and that lock(l) and unlock(l) operations occur infinitely
often on any infinite thread execution. This implies that a thread cannot get
stuck, e.g., in an infinite loop without reaching a next lock operation. We also
assume that the first operation in a thread is a lock(l), and the last lock operation
is an unlock(l). We assume that the concurrent execution is the only source of
nondeterminism, and that data races are the only source of undefined behavior.

3.1 Basics

A program P = T0 ‖ . . .‖Tn−1 is a parallel composition of threads T0, . . . , Tn−1.
We denote by h = (hT0 , . . . , hTn−1) the vector of program counters of the threads.
A program counter (pc) points at the next operation to be executed. We use the
predicate lock(T, h) (resp. unlock(T, h)) to denote that the next operation to be
executed by thread T is a lock(l) (resp. unlock(l)). We use term(T, h) to denote
that thread T has terminated.

Let M be a finite, fixed-size set of shared memory locations x1, . . . , x|M |.
A state is a total function s : M → V from M to the set of values V . We denote
the set of all states by S. We assume there is a transition relation → between
program configurations (P, h, s). We normally omit P when it is clear from con-
text. The transition relation is generated according to interleaving semantics,
and each transition step corresponds to an execution step of exactly one thread
and accesses exactly one shared memory location or performs a lock operation.
We denote by hs = (hs,T0 , . . . , hs,Tn−1) the initial pc vector with each thread at
its entry point, and by hf = (hf,T0 , . . . , hf,Tn−1) the final pc vector with each
thread having terminated.

We define a program execution fragment e as a (finite or infinite) sequence
of configurations such that successive configurations are related by →. A pro-
gram execution is an execution fragment that starts in a configuration with pc
vector hs, and either has infinite length (i.e., does not terminate) or ends in a
configuration with pc vector hf . A program execution prefix is a finite-length
execution fragment that starts in a configuration with pc vector hs. Given an
execution fragment such as e = (h0, s0)(h1, s1) . . . (hn, sn), we use indices 0 to
n − 1 to refer to the corresponding execution steps. For example, index 0 refers
to the first execution step from (h0, s0) to (h1, s1).

520 D. Poetzl and D. Kroening

wr(e, i): step i is a shared write th(e, i): thread that performed step i
rd(e, i): step i is a shared read src(e, i): source configuration of step i
mem(e, i): wr(e, i) ∨ rd(e, i) tgt(e, i): target configuration of step i
lock(e, i): step i is a lock initial(e): initial state
unlock(e, i):
loc(e, i):

step i is an unlock
memory location/lock ac-
cessed by step i

final(e): final state of execution e, or ⊥
if e is infinite

Fig. 3. Notation

We next define several predicates and functions on execution fragments
(Fig. 3). We usually omit the execution e when it is clear from context. The
expression src(e, i) (resp. tgt(e, i)) refers to the configuration to the left (resp.
right) of → of the transition corresponding to step i of e.

We next define the semantics of a program according to interleaving seman-
tics as the set of its initial/final state pairs.

Definition 1 (Program Semantics). M(P) = {(s, s′) | there exists an exe-
cution e of P such that |e| < ∞ ∧ initial(e) = s ∧ final(e) = s′}.
Only finite executions are relevant for the program semantics as defined above.
Consequently, two programs P ′, P for which M(P ′) = M(P) might have different
behavior. For example, P ′ might have a nonterminating execution while P might
always terminate. The programs P ′ and P are thus only partially equivalent.

We next define the relations sequenced-before (sb), synchronizes-with (sw),
and happens-before (hb) for a given execution e (with |e| = n). It holds that
(i, j) ∈ sb if 0 ≤ i < j < n and th(i) = th(j). It holds that (i, j) ∈ sw if
0 ≤ i < j < n, unlock(i), lock(j), and loc(i) = loc(j). The happens-before
relation hb is then the transitive closure of sb ∪ sw.

Definition 2 (hb race). We say an execution e (with |e| = n) contains an
hb data race, written hb-race(e), if there are 0 ≤ i < j < n such that th(i) �=
th(j), loc(i) = loc(j), wr(i) or wr(j), and (i, j) /∈ hb.

We write race(P) to indicate that program P has an execution that contains an
hb data race, and race-free(P) to indicate that it does not have an execution
that has an hb data race. We are now in a position to define thread refinement.

Definition 3 (Refinement). We say that T ′ is a refinement of T , written
ref(T ′, T), if the following holds:

∀C : racefree(T ‖C) ⇒ (racefree(T ′ ‖C) ∧ M(T ′ ‖C) ⊆ M(T ‖C))

The above defines that ref(T ′, T) holds when for all contexts C with which T is
data-race-free, T ′ is also data-race-free, and the set of initial/final state pairs of
T ′ ‖C is a subset of the set of initial/final state pairs of T ‖C.

The above definition is not directly suited for automated refinement checking,
as it would require implementing the ∀ quantifier (and hence enumerating all

Formalizing and Checking Thread Refinement 521

possible contexts C). We thus develop in the following our state-based refinement
condition that implies ref(T ′, T), and which is more amenable to automated and
manual reasoning about refinement.

3.2 State-Based Refinement

We next define the transition relation →L, which is more coarse-grained than
→. It will form the basis of the definition of our refinement condition.

Definition 4 (→L). (P, h, s)
l,(Ra,Wa),(Rb,Wb)−−−−−−−−−−−−→L (P, h′, s′) if and only if there

exists an execution fragment e = (h0, s0)(h1, s1), . . . , (hk, sk), . . . , (hn, sn) such
that th(0) = th(1) = . . . = th(n − 1) = T for some thread T of P , lock(0),
mem(1), . . . ,mem(k − 1), unlock(k), mem(k + 1), . . . ,mem(n − 1), either lock(T,
hn) or term(T, hn), loc(0) = l, h0 = h and hn = h′. The set Ra (resp. Wa) is
the set of memory locations read (resp. written) by steps 1 to k − 1. The set Rb

(resp. Wb) is the set of locations read (resp. written) by steps k + 1 to n − 1.

We also use the abbreviations Aa = Ra ∪ Wa and Ab = Rb ∪ Wb. The relation
→L embodies uninterrupted execution of a thread T of P from a lock(l) to the
next lock(l) (or the thread terminates). Since we have excluded nested locks,
this means the thread executes exactly one unlock(l) in between. For example,
in Fig. 2b (left trace), the execution from the first lock in Line 1 to immediately
before the second lock in Line 7 corresponds to a transition of →L. If we assume
the thread starts in a state with all variables being 0, we have s = {x �→ 0, y �→
0, z �→ 0} and s′ = {x �→ 2, y �→ 0, z �→ 0}. The corresponding access sets are
Ra = {},Wa = {x}, and Rb = {x, y},Wb = {}.

We now define the semantics of a single thread T as the set of its state traces.
A state trace is a finite sequence of the form (l0, s0, R0,W0)(R1,W1, s1)(l2, s2, R2,
W2)(R3,W3, s3) . . . (ln−1, sn−1, Rn−1,Wn−1)(Rn,Wn, sn). Two items i, i + 1
(with i being even) of a state trace belong together. The item i corresponds to
execution starting in state si at a lock(l) and executing up to the next unlock(l),
with the thread reading the variables in Ri and writing the variables in Wi. The
subsequent item i + 1 corresponds to execution continuing at the unlock(l) and
executing until the next lock(l) reaching state si+1, with the thread reading the
variables in Ri+1 and writing the variables in Wi+1.

The formal definition of the state trace set S(T) is given in Fig. 4. Intuitively,
the state trace set of a thread T embodies all interactions it could potentially have
with a context C for which race-free(T ‖ C). A thread might observe writes by
the context at a lock(l) operation. This is modeled in S(T) by the state changing
between transitions. For example, the target state s1 of the first transition is differ-
ent from the source state s2 of the second transition. The last line of the definition
of S(T) constrains how the state may change between transitions. It defines that
those memory locations that the thread T accesses in an execution portion from
an unlock(l) to the next lock(l) (i.e., those in Ai−1) do not change at this lock(l).
The reason for this is that if those memory locations would be written by the con-
text, then there would be a data race. But since S(T) only models the potential
interactions with race-free contexts, the last line excludes those state traces.

522 D. Poetzl and D. Kroening

Fig. 4. Definition of the state trace set of a thread

Previously we stated that we are interested in the states of a thread at lock
and unlock operations, but S(T) embodies transitions from a lock(l) to the next
lock(l). However, since we know the state at a lock(l), and we know the set of
memory locations Wi written between the previous unlock(l) and that lock(l),
we know the state of the memory locations M − Wi at the unlock(l). This is
sufficient for phrasing the refinement in the following.

We are now in a position to define the matcha(t′, t) predicate. We will later
extend it to the predicate matchb(t′, t), which indicates whether a state trace
t′ ∈ S(T ′) matches a state trace t ∈ S(T). The formal definition of matcha(t′, t) is
given in Fig. 5. Primed symbols refer to components of t′, and unprimed symbols
refer to components of t. We denote by evenn (resp. oddn) the set of all even
(resp. odd) indices i such that 0 ≤ i ≤ n. Intuitively, the constraints in Lines 3–6
specify that t′ must not allow more data races than t. The constraints in Lines 3–
4 correspond to an execution portion from a lock(l) to the next unlock(l), and
Lines 5–6 correspond to an execution portion from the unlock(l) to the next
lock(l). Since we have R′

i ⊆ Ai−1 ∪ Ai ∪ Ai+1 and W ′
i ⊆ Wi−1 ∪ Wi ∪ Wi+1, the

specification allows an access in t to move into a critical section in t′ (we further
investigate this in Sect. 4). The constraint in Line 7 specifies that t′ and t receive
the same new values at lock(l) operations (modeling writes by the context). The
constraint at Line 9 specifies that the values written by t′ and t before unlock(l)
operations must be the same. The last constraint specifies that t′ and t perform
the same sequence of lock operations.

We next define the matchb(t′, t) predicate. We denote by t[0 : i] the slice of a
trace from index 0 to index i (exclusive).

Definition 5

matchb(T ′, T) ⇔ matcha(t′, t)∨
∃i ∈ even+ : matcha(t′[0 : i], t[0 : i])∧

∃x ∈ (Ai−1 − A′
i−1) : s′

i−1(x) �= s′
i(x)

Formalizing and Checking Thread Refinement 523

The above defines that either t′ and t match, or there are same-length prefixes
that match, and at the subsequent lock(l) a memory location in t′ changes that
is accessed by t but not by t′ (x ∈ Ai−1 − A′

i−1). Thus, a context that could
perform the change of the memory location that t′ observes would have a data
race with t. Since when t is involved in a data race we have undefined behavior,
any behavior of t′ is allowed. Thus, t′ and t are considered matched.

Fig. 5. Definition of matching state traces

We can now define our refinement specification check(T ′, T), which we later
show implies the refinement specification ref(T ′, T) of Definition 3.

Definition 6 (Check)

check(T ′, T) ⇔ ∀t′ ∈ S(T ′) : ∃t ∈ S(T) : matchb(t′, t)

We next state two lemmas that we use in the soundness proof of check(T ′, T).
We refer to the extended version of the paper for the corresponding proofs [13].

Lemma 1 (Coarse-Grained Interleaving). Let e (with |e| = n) be an exe-
cution prefix of P with ¬hb-race(e) and final(e) = s. Then there is an execution
prefix e′ of P with ¬hb-race(e′) and final(e′) = s, such that execution portions
from a lock(l) to the next lock(l) of a thread are not interleaved with other
threads. Formally:

∀ 0 ≤ i < n : lock(i) ⇒ ∃j > i : (lock(th(i), tgt(j)) ∨ term(th(i), tgt(j))∧
∀i < k < j : th(k) = th(i))

524 D. Poetzl and D. Kroening

Lemma 2 (Race Refinement). Let check(T ′, T). Then for all contexts C, if
T ′ ‖C has an execution that has a data race, then T ‖C also has an execution
that has a data race. Formally:

check(T ′, T)⇒∀C: (race(T ′ ‖C)⇒ race(T ‖C))

The following theorem establishes the soundness of our refinement condition
check(T ′, T).

Theorem 1 (Soundness). check(T ′, T) ⇒ ref(T ′, T)

Proof sketch. Let C be an arbitrary context C such that race-free(T ‖ C). Let
further (s, s′) in M(T ′ ‖C). Thus, there is an execution e of T ′ ‖C that starts in
state s and ends in state s′. By Lemma 2, race-free(T ′ ‖C). Thus, by Lemma 1,
there is an execution e′ for which portions from a lock(l) to the next lock(l) of a
thread are not interleaved with other threads. The sequence of those execution
portions of T ′ corresponds to an element t′ ∈ S(T ′). Then, by the definition of
check(T ′, T), there is an element t ∈ S(T) such that either (a) matcha(t′, t), or
(b) ∃i ∈ evenn : matcha(t′[0 : i], t[0 : i]) ∧ ∃x ∈ (Ai−1 − A′

i−1) : s′
i−1(x) �= s′

i(x).
(a) Then t embodies the same state transitions as t′. This is ensured by

constraints 7 and 9 of the definition of matcha(). Constraint 7 specifies that the
starting states of a transition match, and constraint 9 specifies that the resulting
states of a transition match. A closer look at constraints 7 and 9 reveals that
the corresponding states of t′ and t do not need to be completely equal (only
those memory locations in M − Ai−1 resp. M − Wi need to have the same
value). The reason for this is that if a thread would observe those memory
locations it would give rise to a data race. Since we have both race-free(T ′ ‖ C)
and race-free(T ‖ C), it follows that the values of the memory locations Ai−1

resp. Wi can be arbitrary. Therefore, T can perform the same state transitions
as T ′. Thus, we can replace the steps of T ′ in e′ by steps of T , and get a valid
execution e′′ of T ‖C ending in the same state. Therefore, (s, s′) ∈ M(T ‖C).

(b) Since matcha(t′[0 : i], t[0 : i]), the first i state transitions of t are the same
as those of t′. Thus, we can replace the first i execution portions of T ′ in e′

by execution portions of T . The last execution portion of T accesses a memory
location x that was not accessed by the corresponding execution portion of T ′

(since we have ∃x ∈ Ai−1 − A′
i−1). Moreover, by s′

i−1(x) �= s′
i(x) it follows that

this memory location is written by the context C. Thus, we have race(T ‖ C),
which contradicts the premise race-free(T ‖ C). ��

4 Supported Optimizations

We now investigate which optimizations are validated by our theory. By inspect-
ing the definition of matcha() we see that it requires that t′ and t perform the
same state transitions between lock operations, and that the sets of memory loca-
tions accessed between lock operations of t′ must be subsets of the corresponding
sets of memory locations accessed by t. Together with the definitions of matchb()

Formalizing and Checking Thread Refinement 525

1 lock(l);

2 x = 1;

3 y = 1;

4 unlock(l);

5 y = 2;

(a) Original (T)

1 lock(l);

2 x = 1;

3 y = 1;

4 y = 2;

5 unlock(l);

(b) Transformation 1 (T ′)

1 lock(l);

2 x = 1;

3 unlock(l);

4 y = 1;

5 y = 2;

(c) Transformation 2 (T ′′)

Fig. 6. Original, roach motel reordering, inverse roach motel reordering

and check(), this implies that if an optimization only performs transformations
that do not change the state transitions between lock operations, and does not
introduce accesses to new memory locations, then the optimized thread T ′ will
be a refinement of the original thread T . This includes all the transformations
shown to be sound by Boehm [2] and Morisset et al. [12] (considering programs
using lock(l) and unlock(l) for synchronization).

Our theory also allows the reordering of shared memory accesses into and out
of critical sections (under certain circumstances). The former are called roach
motel reorderings and have been studied for example in the context of the Java
memory model (see, e.g., [15]). The latter have not been previously described
in the literature. In analogy to the former we term them inverse roach motel
reorderings. We show on an example that our theory enables the proof of both
optimizations.

Roach Motel Reorderings. Consider Fig. 6. Both x and y are shared vari-
ables. Figure 6a depicts the original thread T , and Fig. 6b a correctly transformed
version T ′. The statement y = 2 has been moved into the critical section. This
is safe as it cannot introduce data races (but might remove data races).

Let t′ be a state trace of T ′ starting in some initial state sinit . Then there
is a state trace t of T starting also in sinit . The state sinit corresponds to the
state at the first lock(l) for both threads. At the unlock(l) they are in states
s′ = {x �→ 1, y �→ 2} resp. s = {x �→ 1, y �→ 1}. The access sets of the two state
traces are R′

0 = R′
1 = R0 = R1 = {} (we ignore the read sets in the following as

they are empty), and W ′
0 = W0 = {x, y},W ′

1 = {},W1 = {y}. At the unlock(l),
according to the definition of matcha(), the constraint ∀x ∈ M−W1 : s′(x) = s(x)
needs to be satisfied. This is the case as the variable y for which s′ and s differ is in
W1. Moreover, for matcha() to be satisfied, the following must hold for the write
sets: W ′

0 ⊆ W0 ∪ W1 and W ′
1 ⊆ W1. This also holds. Hence, matcha(t′, t) holds.

Consequently, we also have matchb(t′, t) and thus check(T ′, T), which implies
ref(T ′, T) according to Theorem 1. Thread T ′ is thus a correctly transformed
version of thread T .

Inverse Roach Motel Reorderings. Consider now the example in Fig. 6,
which is a version T ′′ of the thread T . Again, it is correctly optimized. In order to
get defined behavior for T ‖C, the context C must in particular avoid data races

526 D. Poetzl and D. Kroening

with y = 2. But this implies that the context cannot observe the write y = 1,
for if it could, there would be a data race with y = 2. Moreover, moving y = 1
downwards out of the critical section cannot introduce data races, as a write to
y already occurs in this section. Consequently, y = 1 can be moved downwards
out of the critical section (or in this particular case removed completely).

We can use a similar argument as in the previous section to show within
our theory that T ′′ is a correctly optimized version of T . Let t′′, t be again two
state traces starting in the same initial state sinit . At the unlock(l) they are in
states s′′ = {x �→ 1, y �→ yinit} resp. s = {x �→ 1, y �→ 1}, with yinit denoting
the value of y in sinit . Again, the constraints ∀x ∈ M − W1 : s′′(x) = s(x),
and W ′′

0 ⊆ W0 ∪ W1 and W ′′
1 ⊆ W1 are satisfied, and we can conclude that

matcha(t′′, t), matchb(t′′, t), check(T ′′, T), and finally ref(T ′′, T) hold.

5 Evaluation

Previously we have argued that our specification efficiently captures thread
refinement in the SC-for-DRF execution model, as it abstracts over the way
in which a thread implements the state transitions between lock operations. In
this section, we show that with our approach we can check in linear time whether
two traces match. We also provide experimental data, showing that the appli-
cation of our state-based approach in a compiler testing setting leads to large
performance improvements compared to using an event-based approach.

5.1 Compiler Testing

Eide and Regehr [4] pioneered an approach to test that a compiler correctly
optimizes programs that involves repeatedly (1) generating a random C program,
(2) compiling it both with and without optimizations (e.g., gcc -O0 and gcc
-O3), (3) collecting a trace from both the original and the optimized program,
and (4) checking whether the traces match. If two traces do not match, then a
compiler bug has been found. Morisset et al. [12] extended this approach to a
fragment of C11 and implemented it in their cmmtest tool.

The cmmtest tool consists of the following components: an adapted version
of csmith [17] (we call it “csmith-sync” in the following) to generate random
C threads, a tool to collect execution traces of a thread (“pin-interceptor”),
and a tool to check whether two given traces match (“cmmtest-check”). The
csmith-sync tool generates random C threads with synchronization operations
such as pthread mutex lock(), pthread mutex unlock(), or the C11 primi-
tives release() and acquire(). We only consider programs that contain lock
operations. The pin-interceptor tool is based on the Pin binary instrumentation
framework [10]. It executes a program and instruments the memory accesses and
synchronization operations in order to collect a trace of those operations. The
cmmtest-check tool takes two traces (produced by pin-interceptor) of an opti-
mized and an unoptimized thread, and checks whether the traces match. We
use the existing csmith-sync and pin-interceptor tools, and implemented our own
trace checker tracecheck.

Formalizing and Checking Thread Refinement 527

5.2 Complexity

Our tool tracecheck takes two traces (such as those depicted in Fig. 2b), and first
determines the states of the traces at lock operations, and the sets of memory
locations accessed between lock operations. That is, given a trace it constructs
its corresponding state trace (i.e., an element of S(P)). Then, it checks whether
the two state traces match by evaluating the matchb() predicate. This way of
checking traces is very efficient as it has runtime linear in the trace lengths.

This can be seen as follows. The size of a state is bounded by the number
of writes that have occurred so far. Moreover, it is not necessary to check the
complete states for equality at each lock operation; it suffices to check the mem-
ory locations that have been written to since the last check at the previous lock
operation. Thus, checking the states at lock operations (corresponding to the
“states at lock” and “states at unlock” constraints of the matcha() predicate) is
a linear-time operation.

The race constraints can also be checked in linear time. First, the size of the
sets is bounded by the number of memory locations accessed between the two
corresponding lock operations. Second, subset checking between two sets A and
B can be implemented in linear time.1 In summary, we have a linear procedure
for checking whether two traces match.

By contrast, cmmtest-check attempts to match traces by finding a sequence
of valid transformations that transforms one trace into the other. Different
sequences are explored in a tree-like fashion [12], suggesting exponential run-
time in the worst case.

5.3 Experiments

We compared tracecheck to cmmtest-check on in total 40, 000 randomly generated
C threads. We compiled each with gcc -O0 and gcc -O3 and collected a trace
from each. The length of the traces was in the range of 1 to 4,000 events. We
have chosen this range such that also cmmtest-check could match all the traces
within the available memory limit. On some longer traces, cmmtest-check yields
a stack overflow (it is implemented in the functional language OCaml). Our tool
tracecheck can also handle traces with hundreds of thousands of events. Our tool
outperformed cmmtest-check on all traces and was 210 X faster on average. Both
tracecheck and cmmtest-check agreed on all traces, i.e., they either both classified
a trace as correct or they both classified it as buggy.

Figure 7 shows the average time it took to match two traces of a certain
length, for cmmtest-check (Fig. 7a) and tracecheck (Fig. 7b). Along the x-axis,
we classify the pairs of traces t′, t into bins according to the length of the
unoptimized trace t. Each bin i contains 100 pairs t′, t such that the length of t
is in the range [250 · i, 250 · (i + 1)]. For example, bin 5 contains the pairs with

1 If A and B are represented as hash sets, then A ⊆ B can be checked by iterating over
the elements of A, and for each one performing a lookup in B (which has constant
time). If all elements are found, A is a subset of B.

528 D. Poetzl and D. Kroening

0 2,000 4,000

0

2

4

6

8

trace length (number of events)

av
er

a
g
e

ch
ec

k
in

g
ti

m
e

(i
n

s)

(a) cmmtest

0 2,000 4,000

0.00

0.01

0.02

0.03

trace length (number of events)

av
er

a
g
e

ch
ec

k
in

g
ti

m
e

(i
n

s)

(b) tracecheck

Fig. 7. Average checking time over length of traces

0 500 1,000
0

2

4

6

Number of lock events

av
er

a
g
e

ch
ec

k
in

g
ti

m
e

(i
n

s)

(a) cmmtest

0 500 1,000

0.01

0.01

0.01

0.02

Number of lock events

av
er

a
g
e

ch
ec

k
in

g
ti

m
e

(i
n

s)

(b) tracecheck

Fig. 8. Average checking time over number of locks in a trace

the length of the unoptimized trace being in the range [1250, 1500]. The y-axis
shows the average time it took to match two traces t′, t in the respective bin.
The dotted lines represent the 20th and 80th percentile to indicate the spread
of the times.

Figure 8 illustrates the effect of the number of lock operations in the two
traces on the time it takes to check if they match. We have evaluated this on
pairs of traces t′, t with the unoptimized trace t having length in the range of
[1900, 2100]. Along the x-axis, we classify the pairs of traces t′, t into bins accord-
ing to the number of lock operations they contain. The y-axis again indicates
the average matching time. As can be seen in Fig. 8a, cmmtest-check is sensi-
tive to the number of locks in a trace. That is, matching traces generally takes
longer the fewer locks they contain. The reason for this is that cmmtest-check
considers lock operations as “barriers” against transformations: it does not try
to reorder events across lock operations. Thus, the more lock operations there

Formalizing and Checking Thread Refinement 529

are in a trace, the fewer potential transformations it tries, and thus the lower
the checking time. By contrast, the performance of our tool tracecheck is largely
insensitive to the number of locks in a trace.

6 Related Work

Refinement approaches can be classified based on whether they handle language-
level memory models (such as SC-for-DRF or C11) [2,11,12,14,15], hardware
memory models (such as TSO) [5,16], or idealized models (typically SC) [3,9].

The approaches for language-level models typically define refinement by giv-
ing valid transformations on thread execution traces. These trace transforma-
tions are then lifted to the program code level. An example is the theory of valid
optimizations of Morisset et al. [12]. They handle the fragment of C11 with
lock/unlock and release/acquire operations. The theory is relatively restrictive
in that they do not allow the reordering of memory accesses across synchroniza-
tion operations (such as the roach motel reorderings described in Sect. 4).

The approaches of Brookes [3] (for SC) and Jagadeesan [5] (for TSO) are
closer to ours in that they also specify refinement in terms of state transitions
rather than transformations on traces. They provide a sound and complete deno-
tational specification of refinement. However, their completeness proofs rely on
the addition of an unrealistic await() statement, which provides strong atomicity.

Liang et al. [7] presented a rely-guarantee-based approach to reason about
thread refinement. Starting from the assumption of arbitrary concurrent con-
texts, they allow to add constraints that capture knowledge about the context
in which the threads run in. They later extended their approach to also allow
reasoning about whether the original and the refined thread exhibit the same
termination behavior [8].

Lochbihler [9] provides a verified non-optimizing compiler for concurrent Java
guaranteeing refinement between the threads in the source program and the byte-
code. It is however based on SC semantics rather than the Java memory model.
Sevcik et al. [16] developed the verified CompCertTSO compiler for compilation
from a C-like language with TSO semantics to x86 assembly.

The compiler testing method based on checking traces of randomly gener-
ated programs on which we evaluated our refinement specification in Sect. 5 was
pioneered by Eide and Regehr [4]. They used this approach to check the cor-
rect compilation of volatile variables. It was extended to a fragment of C11 by
Morisset et al. [12].

7 Conclusions

We have presented a new theory of thread refinement for the SC-for-DRF exe-
cution model. The theory is based on matching the state of the transformed and
the original thread at lock operations, and ensuring that the former does not
introduce data races that were not possible with the latter. Our theory is more
precise than previous ones in that it allows to show refinement in cases where

530 D. Poetzl and D. Kroening

others fail. It also boosts the efficiency of reasoning about refinement. Check-
ing whether two traces match can be done in linear time, and consequently our
implementation outperformed that of a previous approach by factor 210 X.

References

1. Adve, S.V., Hill, M.D.: Weak ordering - a new definition. In: International Sym-
posium on Computer Architecture (ISCA), pp. 2–14. ACM (1990)

2. Boehm, H.-J.: Reordering constraints for Pthread-style locks. In: Principles and
Practice of Parallel Programming (PPoPP), pp. 173–182. ACM (2007)

3. Brookes, S.: Full abstraction for a shared variable parallel language. In: Logic in
Computer Science (LICS), pp. 98–109. IEEE (1993)

4. Eide, E., Regehr, J.: Volatiles are miscompiled, and what to do about it. In: Embed-
ded Software (EMSOFT), pp. 255–264. ACM (2008)

5. Jagadeesan, R., Petri, G., Riely, J.: Brookes is relaxed, almost!. In: Birkedal, L.
(ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 180–194. Springer, Heidelberg (2012)

6. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. TC 100(9), 690–691 (1979)

7. Liang, H., Feng, X., Fu, M.: A rely-guarantee-based simulation for verifying concur-
rent program transformations. In: Principles of Programming Languages (POPL),
pp. 455–468. ACM (2012)

8. Liang, H., Feng, X., Shao, Z.: Compositional verification of termination-preserving
refinement of concurrent programs. In: Logic in Computer Science (LICS), pp.
65:1–65:10. ACM (2014)

9. Lochbihler, A.: Verifying a compiler for Java threads. In: Gordon, A.D. (ed.) ESOP
2010. LNCS, vol. 6012, pp. 427–447. Springer, Heidelberg (2010)

10. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: Programming Language Design and Implementation
(PLDI), pp. 190–200. ACM (2005)

11. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Principles of
Programming Languages (POPL), pp. 378–391. ACM (2005)

12. Morisset, R., Pawan, P., Nardelli, F.Z.: Compiler testing via a theory of sound opti-
misations in the C11/C++11 memory model. In: Programming Language Design
and Implementation (PLDI), pp. 187–196. ACM (2013)

13. Poetzl, D., Kroening, D.: Formalizing and checking thread refinement for data-
race-free execution models (extended version) (2015). CoRR, abs/1505.08581

14. Ševč́ık, J.: Safe optimisations for shared-memory concurrent programs. In: Pro-
gramming Language Design and Implementation (PLDI), pp. 306–316. ACM
(2011)

15. Ševč́ık, J., Aspinall, D.: On validity of program transformations in the Java memory
model. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 27–51. Springer,
Heidelberg (2008)

16. Ševč́ık, J., Vafeiadis, V., Nardelli, F.Z., Jagannathan, S., Sewell, P.: Com-
pCertTSO: A verified compiler for relaxed-memory concurrency. JACM 60(3), 49
(2013)

17. X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in
C compilers. In Programming Language Design and Implementation (PLDI), pp.
283–294. ACM, (2011)

	Formalizing and Checking Thread Refinement for Data-Race-Free Execution Models
	1 Introduction
	2 State-Based vs. Event-Based Refinement
	2.1 Example

	3 Formalization
	3.1 Basics
	3.2 State-Based Refinement

	4 Supported Optimizations
	5 Evaluation
	5.1 Compiler Testing
	5.2 Complexity
	5.3 Experiments

	6 Related Work
	7 Conclusions
	References

