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Abstract. Many runtime verification tools are built based on Aspect-
Oriented Programming (AOP) tools, most often AspectJ, a mature
implementation of AOP for Java. Although already popular in the Java
domain, there is few work on runtime verification of C programs via
AOP, due to the lack of a solid language and tool support. In this paper,
we propose a new general purpose and expressive language for defining
monitors as an extension to the C language, and present our tool imple-
mentation of the weaver, the Movec compiler, which brings fully-fledged
parametric runtime verification support into the C domain.

1 Introduction

Along with the popularity of runtime verification [16,19], many tools have been
developed. These runtime verification tools automatically synthesize the code
fragments of event extraction mechanisms and monitors from formal specifica-
tions, and then instrument the code into a target program, so that the moni-
tors can extract information from the program executions at runtime, to detect
and possibly react to observed behaviors satisfying or violating the specified
properties. As automated program instrumentation plays a key role in monitor
synthesis and weaving, many current tools are built based on Aspect-Oriented
Programming (AOP), which is a programming paradigm that supports the mod-
ular implementation of crosscutting concerns [15].

By using AOP compilers, these tools are hence built in the form of specification
transformers, that take an expressive high-level specification as input and produce
output code written in some AOP language, most often AspectJ, a mature imple-
mentation of AOP for the Java programming language [14]. For example, among
the large number of runtime verification tools, the most efficient parametric run-
time verification tool JavaMOP [4,13,17] is based on AspectJ. JavaMOP trans-
forms monitor definitions including desired properties into aspects, and then these
aspects are transformed into Java code fragments and weaved into target programs
using an AspectJ compiler. The desired properties can be automatically verified
at runtime by running the executable file generated by AspectJ. Other tools like
Tracematches [1,2] are designed in a similar way.
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Therefore, we believe that the popularity of runtime verification of Java pro-
grams is supported by the fact that a robust, reliable and efficient AOP compiler
such as ajc is available.

Although already popular in the Java domain, there is few work on runtime
verification of C programs via AOP, due to the lack of a solid language and tool
support. For example, AspectC++ is an implementation of AOP for C++, but
the generated code cannot be compiled by C compilers [20–23]. Coady et al.
used “AspectC” (a hypothetical and simple subset of AspectJ) to modularize
the implementation of prefetching within page fault handling in the FreeBSD
OS kernel, and showed significant benefits [9,10]. But they used only a paper
design for AspectC, supporting only join points of function calls and control
flow, and no implementation of AspectC exists. ACC (AspeCt-oriented C) is
the most advanced implementation of AOP for the C programming language at
present [11], but it is currently not maintained by its developers, and the latest
version is incorrect in many cases. For example, join points and pointcuts are
sometimes not correctly matched, and instrumented code is possibly not seman-
tically equivalent to its corresponding aspect. Worse, the ACC implementation
is not well modularized, so fixing ACC is hard.

However, the fact is that a large number of applications is still being devel-
oped in C, especially embedded software applications such as avionics systems,
which always require high dependability [7]. Thus, it is meaningful to provide
a runtime verification tool or an AOP tool for the C language, so programmers
can modularize the crosscutting concerns to improve maintainability, and based
on AOP tools, they can also develop or use runtime verification tools to monitor
and verify their programs at runtime.

In this paper, we propose a new general purpose and expressive language
for defining monitors as an extension to the C language, and present our tool
implementation of the weaver, the Movec compiler, which brings fully-fledged
parametric runtime verification and AOP support into the C domain. The major
contributions of our work include:

– We propose a new language for defining monitors for C programs by system-
atically redesigning the languages of AspectJ and JavaMOP. The main reason
is that, the C language uses the procedure-oriented programming paradigm,
which is very different from the object-oriented paradigm of Java, thus we have
to redesign what we learned from AspectJ and JavaMOP according to the spe-
cific peculiarities of the C language. Another reason is that, the traditional AOP
languages are somewhat conceptually confusing (the various types of pointcuts
and advices are not systematic), not enough elegant andnatural (somepointcuts
and advices are written in a redundant and uncomfortable way).

– We develop a new instrumentation algorithm for the new language. In the
AOP part, this is necessary because the philosophy of the C language is
very different from Java, so we cannot implement aspects as classes like in
AspectJ. Besides, the instrumentation algorithm of ACC, the most relevant
AOP implementation, is incorrect in many cases. In the runtime verification
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part, our algorithm has to implement more infrastructures than JavaMOP,
because we cannot use the powerful Java class library, such as hashmaps.

– We implement an integrated tool supporting both AOP and parametric run-
time verification. Getting AOP and runtime verification into the C language
is a hard and tedious task, and our implementation supports all features of
the new language and provides convenient user instructions. Experimental
performance evaluation shows that our tool is robust, reliable and efficient.

This paper is organized as follows. Section 2 introduces the Movec compiler,
including its software architecture, compilation process and theoretical founda-
tions. Section 3 presents an example to show the tool’s functionality, i.e., how to
write monitor definitions and run Movec. Section 4 focuses on the design of our
new language for defining monitors of C programs by introducing the semantics
of each language element. Section 5 explains the tool implementation of the new
language, including core data structures. Section 6 evaluates and compares the
performance of Movec and related tools by presenting the experimental results
on the same benchmark. We conclude and discuss future work in Sect. 7.

2 The Movec Compiler

Movec is an automated tool for runtime MOnitoring, VErification and Con-
trol of C programs as an extension to the C programming language. Movec
is influenced by AOP and parametric runtime verification, and is an integrated
implementation of these ideas for the C programming language. Movec aims
at providing an infrastructure of AOP, runtime verification and related tech-
nologies in the context of software written in C, especially targeting embedded
software such as avionics systems, leading to further explorations and investi-
gations not possible today, as no reliable, efficient and stable implementation of
these technologies for C programs exists.

Movec provides a source-to-source transformation that automatically
weaves monitor specifications written in Movec into Movec-unaware C pro-
grams, and generates instrumented C programs which can be compiled by any
compliant C compiler such as GCC and other platform-specific compilers. Note
that Movec does not directly compile the instrumented C programs into a
binary executable file, because many embedded platforms use their own C com-
pilers which may be not compatible with each other. Thus, by using source code
transformation, Movec can be used for all target platforms supported by C
compilers.

Software Architecture and Compilation Process. The inputs of Movec
are C programs and files containing monitor definitions, and the outputs are
instrumented C programs. There are five major modules in Movec, correspond-
ing to the five phases in the Movec compilation process: command line analysis
(i.e., parsing the options given in a command line), parsing C programs, parsing
monitor definitions, monitor generation (i.e., generating C code fragments for
monitor definitions) and weaving (i.e., generating instrumented C programs).
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Theoretical Foundations. Rosu and Chen et al. proposed the theoretical
foundation of parametric runtime monitoring and verification [3,5,12,18], and
implemented JavaMOP supporting parametric runtime verification of Java pro-
grams [4,13,17]. For the parametric runtime verification part, our tool imple-
ments their monitoring algorithm in the context of C programs. Our tool also
implements a formal semantics of runtime monitoring, verification, enforcement
and control [8], which is an instance of a more general computational model,
namely control systems [6].

3 A Demonstration of the Tool

Generally speaking, Movec extends the C language with monitor definitions
that implement crosscutting concerns in a modular way. A monitor definition is
composed of declarations of types, variables, pointcuts, actions, properties and
their handlers.

In this section, we will present a simple example to show how to write monitor
definitions and run Movec. Suppose malloc.c is a C source program, which
requests 10 blocks of memory from the heap by calling malloc, and then frees
7 of these blocks. Note that some blocks are not freed, resulting in memory
leakage. We will show how to detect the memory leakage by defining monitors.

Let monitor1.mon be a monitor file containing the monitor named mon in
Listing 1.1. This parametric monitor definition takes two parameters: size and
address, and includes two parametric named pointcuts, three actions, a property
and a handler. Movec creates a complete monitor instance for each observed
value pair of size and address, both of which are specified in the creation
action in this example (but not necessarily in other examples).

The first parametric named pointcut cm(s) refers to the function calls to
malloc, and the parameter s binds the value of its actual argument. The second
parametric named pointcut cf(p) refers to the function calls to free, and the
parameter p binds the value of its actual argument. The symbol % is a wildcard
character matching continuous strings of any length, e.g., any type name and
any parameter identifier. The symbol : is a renaming operator that renames a
parameter identifier to another one. The predefined pointcut call matches the
join points of the function calls to the matched functions.

The first parametric action named malloc prints the address range of
the allocated memory block, and is executed after any function call to malloc.
The predefined pointcut returning assigns an identifier to the return value of
the function call. The parameters address and size bind the address and size
of the allocated block respectively, and the variable tjp->loc is a predefined
variable which stores the line number of the function call. This action is also a
creation action, which creates a new monitor instance. The second parametric
action named free prints the address of the freed memory block, and is executed
after any function call to free. The last action named end is executed after the
execution of main. The symbol ... is a wildcard character matching item lists
of any length, e.g., any parameter list.
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Listing 1.1. A parametric monitor

1 monitor mon( s i z e t s i z e , void ∗ address )
2 {
3 po intcut cm( s ) = c a l l (% mal loc(% %:s ) ) ;
4 po intcut c f (p) = c a l l (% f r e e (% %:p) ) ;
5

6 c r e a t i on ac t i on mal loc ( address , s i z e ) a f t e r cm( s i z e ) &&
7 r e tu rn ing ( address ) {
8 p r i n t f ( ”Al located address %p−%p ( s i z e %lu ) at l i n e %d\n” ,
9 address , address+s i z e , s i z e , t jp−>l o c ) ;

10 }
11

12 ac t i on f r e e ( address ) a f t e r c f ( address ) {
13 p r i n t f ( ”Freed address %p at l i n e %d\n” , address , t jp−>l o c ) ;
14 }
15

16 ac t i on end a f t e r execut ion(% main ( . . . ) ) ;
17

18 e re : ( mal loc f r e e )∗ malloc end ;
19 @match {
20 p r i n t f ( ” e r r o r : address %p ( s i z e %lu ) was not”
21 ” c o r r e c t l y f r e ed !\n” , monitor−>address , monitor−>s i z e ) ;
22 }
23 } ;

The property over actions malloc, free and end is specified in extended
regular expression (ERE). It matches undesired action sequences that start with
zero or more malloc free, followed by a malloc, and end with end. The handler
@match contains a code fragment that prints a message, which will be automat-
ically executed when an execution of the program matches the property, i.e., a
memory block was allocated, but was not correctly freed. The variable monitor
is a predefined structure variable that refers to the current monitor instance,
and its member variables monitor->address and monitor->size refer to the
parameters address and size of the current monitor instance, respectively.

Movec takes monitor files and C header/source files as inputs, and out-
puts instrumented header/source files, which can be compiled into monitored
programs by any compliant C compiler such as GCC. For example, the fol-
lowing command line takes the monitor file monitor1.mon and the C source
file malloc.c as inputs, automatically weaves them together, and outputs the
instrumented source file malloc.c to the destination directory /home/user.

$ movec -m monitor1.mon -c malloc.c -d /home/user
Besides the instrumented source file malloc.c, Movec also outputs two

additional header files monitor.h and hashmap.h to this directory. The instru-
mented source file malloc.c can be compiled into an executable file a.out by
GCC. Running a.out prints a list of messages, and the last three error mes-
sages indicates that 3 allocated memory blocks were not freed, along with their
addresses and sizes (the addresses may be different on your computer).

... (omitted) ...
error: address 0x790ad0 (size 160) was not correctly freed!
error: address 0x790cf0 (size 320) was not correctly freed!
error: address 0x792590 (size 5120) was not correctly freed!
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In this example, Movec created 10 complete monitor instances, i.e., one for each
value pair of size and address. Then the handler was invoked for each one of
the 3 monitors that reached matching states, whereas the other 7 monitors did
not invoke the handler because they did not reach matching states. Thus, the
result shows that there are 3 unmatched malloc actions at the end.

Note that the above example only demonstrated a small portion of the
language and features of Movec. In the following sections, we will introduce
in-depth the semantics of each language element.

4 The Language for Defining Monitors

4.1 Join Points, Pointcuts and Actions

We only briefly introduce these language elements, because these concepts stem
from AOP languages, although with some improvements such as more system-
atic design of pointcuts and advices and more concise and comfortable syntax.
The reader unfamiliar with these concepts may refer to the literature on AOP
languages [11,14,20].

A join point is a point in the execution of a program, such as function calls
via function names or pointers, function executions.

A pointcut is an expression that matches a set of join points scattered in
the execution of a program. Currently, Movec supports match expressions for
matching program objects such as identifiers, variable declarations and function
signatures, and primitive pointcuts, composite pointcuts and named pointcuts for
matching join points.

A literal match expression matches a program object only if they are exactly
the same, whereas a regular expression can match a program object by using
the symbols % and ... as wildcard characters. For example, the expression %
func%(..., int x, ...) matches any functions whose name starts with func
and parameter list contains a parameter int x, but the return type and other
parameters are left unspecified, e.g., int* func1 (float foo, int x).

The predefined primitive pointcuts fall into four classes: core pointcut func-
tions, naming pointcut functions, dynamic scope and static scope pointcut func-
tions. The core pointcut functions include the following functions.

– call(function-signature) matches the join points of the function calls to the
functions matched by function-signature. For example, the expression call(%
func%(..., in%, ...)) matches the function calls to any function whose
name starts with func, parameter list contains a parameter whose type starts
with in, but return type is left unspecified, e.g., int* func1(float foo,
int x).

– callp(function-signature) matches the join points of the function calls to the
functions matched by function-signature via function pointers.

– execution(function-signature) matches the join points of executing the func-
tions matched by function-signature.



Parametric Runtime Verification of C Programs 305

The naming pointcut functions are used to assign names to some objects in
the execution of a program, e.g., return values.

– returning(identifier) assigns an identifier to the return value of the function
call matched by call or callp pointcuts, or to the return value of the function
execution matched by execution pointcuts.

The dynamic scope pointcut functions are used to restrict the scope of
matched join points at runtime.

– inexec(function-signature) matches the join points which are invoked during
the dynamic execution of the functions matched by function-signature.

– condition(boolean-expression) matches the join points at which the condition
specified by boolean-expression holds.

The static scope pointcut functions are used to restrict the scope of matched
join points at compile-time.

– infunc(function-signature) matches the join points which statically appear in
the function definitions matched by function-signature.

– intype(identifier) matches the join points which statically appear in the type
definitions matched by identifier, such as structures, unions and enumerations.

– infile(identifier) matches the join points which statically appear in the files
whose names are matched by identifier.

A composite pointcut is a primitive pointcut, or a logical composition of
composite pointcuts with the operators: && (and), || (or), ! (not), and ( ).

To reuse pointcut declarations, we can assign a name to a pointcut by declar-
ing a named pointcut, then the named pointcut can be referred by using its name
in any places where a pointcut can be used. For example,

pointcut ppc1(x,y) = call(int foo(int x)) && returning(y);

An action declaration associates a code fragment to a pointcut, and the
code fragment will be automatically executed when a join point is reached in an
execution of the monitored program, such that the join point is matched by the
pointcut defined inside the action declaration. Actions are also called advices in
AOP and events in JavaMOP. The syntax of action declarations is as follows.

[creation] ("action" | "advice" | "event")
[ACTIONID ["(" <paramids-list> ")"] ]

("before" | "after" | "around") <pc-composite>
("{" <act-action> "}" | ";")

An action declaration specifies a passive action and an active action. The
passive action contains a composite pointcut expression pc-composite to pas-
sively match reached join points, and specifies the position where the active
action shall be triggered relative to the invocations of matched join points, e.g.,
before, after etc. The active action act-action is a code fragment enclosed
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in curly braces. The active action is automatically executed if the passive action
is matched.

For example, the following parametric action pact prints a message before
the execution of function foo, which takes only one integer parameter x. Note
that the parameter x is referred as a parameter of the action. As a result, the
value of x can be accessed and printed in its active action.

action pact(x) before execution(int foo(int x)) {
printf("before executing foo, x=%d\n",x);

}

4.2 Properties and Handlers

A property specifies the desired or undesired set of sequences of matched join
points in the execution of a program, and a handler can be automatically exe-
cuted when the property is matched or violated by an execution of the program.
Currently, we can express properties using Finite State Machines (FSM) and
Extended Regular Expressions (ERE).

An FSM includes a set of states, a set of actions and a set of transitions, in
which one of the states is the initial state and a subset of the states is matching
states (also called accepting states or final states). FSMs are also called Non-
deterministic Finite Automata (NFA) in formal language theory. The syntax of
FSM declarations is as follows.

"fsm" ":" ( STATEID1 "{"
(ACTIONID "->" STATEID2 ";")*
"}" )* ";"

An FSM declaration starts with the keyword fsm and a colon, possibly fol-
lowed by a list of state declarations, and finally ends with a semicolon. A state
declaration starts with its name STATEID1, followed by a list of transition dec-
larations enclosed in curly braces. A transition declaration consists of an action
name ACTIONID, the symbol ->, a state name STATEID2 and a semicolon in
sequence, denoting that the action ACTIONID will transfer the FSM from state
STATEID1 to state STATEID2, where STATEID1 and STATEID2 could be either the
same state or different states. If a state does not include a certain action, but
the action appears in other states, then the action will transfer the FSM from
the state to the implicit sink state, from which the FSM will never be matched.
Note that the first declared state is the initial state, and the states whose name
starts with acc are matching states.

For example, the following FSM declaration includes three states q0, q1,
acc1, two actions a, b and six transitions, in which the first declared state q0
is the initial state, and state acc1 is a matching state. For each state, there are
two transitions, e.g., state q0 has a transition labeled action a from q0 to q1.

fsm: q0 { a -> q1; b -> q2; }
q1 { a -> q1; b -> q0; }

acc1 { a -> q0; b -> acc1; };
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An ERE is a sequence of identifiers and operators that defines a pattern
to match sequences of identifiers. The operators in EREs include the concate-
nation of elements, the choice operator | which matches either the expression
before or the expression after the operator, the asterisk operator * which matches
the preceding element zero or more times, the plus operator + which matches the
preceding element one or more times, the question mark ? which matches the
preceding element zero or one time, and the parentheses () which are used to
define the scope and precedence of the operators. EREs can be translated into
equivalent Nondeterministic Finite Automata (NFA) in formal language theory.
The syntax of ERE declarations is as follows.

"ere" ":" <ere> ";"

An ERE declaration starts with the keyword ere and a colon, followed by
an extended regular expression <ere> over action names, and finally ends with a
semicolon. For example, the following ERE declaration over actions malloc, set,
get and free matches the action sequences that start with malloc, followed by
zero or more set and get, and end with free.

ere: malloc (set | get)* free;

A handler includes a category of property (e.g., match and violation)
and an active action (i.e., a code fragment). A property can be associated
with several handlers, so that an active action will be automatically executed
when an execution of the program transfers the property to the corresponding
category. Handlers can be used for many purposes, e.g., output or log-
ging observed information, controlling, recovering, blocking or terminating the
execution. The syntax of handler declarations is as follows.

"@" <cate> "{" <act-action> "}"

A handler starts with the symbol @, followed by a predefined category name
<cate>, and finally ends with an active action <act-action> enclosed in curly
braces. Note that different formalisms may have different sets of predefined cate-
gories, and the active action will be automatically executed when an execution of
the program transfers the property to the category. Currently Movec provides
two predefined categories match and fail for FSMs and EREs. The category
match means that the associated property is matched by the execution, fail
means that the property will never be matched by any extension of the execu-
tion.

4.3 Monitors

A monitor declaration collects multiple pointcuts, actions, properties and their
handlers together, to implement crosscutting concerns in a modular way. A mon-
itor declaration can also include additional type declarations and variable dec-
larations. The syntax of monitor declarations is as follows.
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<modifier>* ("monitor" | "aspect")
MONITORID ["(" <param-list> ")"] "{"

( <C-type-decl> | <C-var-decl>
| <pointcut-decl> | <action-decl>
| <property> <handler>* )* "}" ";"

A monitor declaration starts with a list of modifiers, then specifies the signa-
ture of the monitor. The signature declaration starts with one of the keywords
monitor or aspect, which can be used interchangeably. The keyword is followed
by a name MONITORID and possibly an enclosed parameter list param-list. If
the parameter list is given, then the parameter declarations should be separated
by commas in the parentheses, and the monitor is called a parametric monitor.

Then the monitor declaration specifies the body of the monitor enclosed
in curly braces, and a semicolon denotes the end of the declaration. In the
declaration body, we can declare types, variables, pointcuts, actions, properties
and their handlers. Note that,

– All declared types and variables will be instrumented as global declarations.
– At least one action declaration should be preceded by the keyword creation,

denoting that observing this action should create a new monitor instance
with different parameter values. If the monitor is parametric, then some of
the action declarations must be parametric, such that the union of all action
parameters is exactly the set of monitor parameters in param-list. That is,
creation actions do not necessarily contain all monitor parameters.

– Each property should be specified in one of the supported formalisms, and
can refer to the declared action names. Each property may be associated with
zero or more handlers.

– The handlers can access the declared types and variables, and can access
the predefined variable monitor which refers to the current monitor instance,
through which we can access the monitor parameters in param-list of the
current monitor instance.

5 Implementation of Parametric Monitoring

Recall that a monitor definition may contain a set of parameters, and Movec
may create a monitor (instance) for each parameter instance containing the
observed values of a subset of the parameters, to store the current state of each
parameter instance. That is, a monitor or parameter instance may be complete
or partial (i.e., containing a strict subset of the parameters). As the literature
shows, a program may create thousands of monitors during runtime monitoring,
thus storing these monitors using naive structures like linked lists or arrays will
significant increase runtime overhead. Therefore, developing an efficient algo-
rithm for indexing monitors is one of the most valuable and challenging parts in
implementing parametric runtime monitoring.

Indeed, thanks to the indexing algorithm of JavaMOP, it becomes the most
efficient parametric runtime verification tool at present. Our indexing algorithm
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Fig. 1. Data structures of hierarchical hashmap forests

is inspired by JavaMOP, but our task is even more hard and tedious. We have to
implement the data structures and related algorithms from scratch, because we
cannot use the powerful Java class library, which includes efficient data structures
such as hashmaps.

In this section, we present a new data structure, namely hierarchical hashmap
forests, which is implemented in Movec for indexing monitors. Generally speak-
ing, we maintain a list of hierarchical hashmap forests during runtime monitor-
ing, and each created monitor is added into a hierarchical hashmap according
to its corresponding property and parameter instance, so that all monitors can
be efficiently retrieved. Figure 1 shows the data structures used by hierarchical
hashmap forests. The monitor structure abstracts a monitor, including the val-
ues of parameters, a mask denoting the parameter instance, the current state
etc. In the followings, we will present these structures from the top level.

As show in Fig. 2, we maintain a list of hierarchical hashmap forests during
runtime monitoring. In the list, for each property pid, we create a node con-
taining a forest of hierarchical hashmaps. The capacity of the forest depends on
the number of parameters associated with the property. If a property includes
n parameters from p1 to pn, then there are 2n hashmaps in the node, and each
hashmap corresponds to a combination of the parameters. For example, the first
location corresponds to the empty set of parameters, and the last one corre-
sponds to the complete set. Note that the first location actually points to a
monitor, instead of a hashmap, because there is only one parameter instance
for this empty combination of parameters. Next we introduce the hierarchical
hashmap for a set of parameters.
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Fig. 2. A list of hierarchical hashmap forests

As shown in Fig. 3, a hierarchical hashmap is a multi-level hashmap, i.e., a
hashmap may have several child hashmaps, like a tree. Note that a hierarchical
hashmap corresponds to a set of parameters, thus each level corresponds to a
parameter, and the last level points to the stored objects, i.e., monitors. To put
these hashmaps in a tree, each hashmap contains not only the addresses of the
next level hashmaps, but also a pointer prn to its parent and a pointer ref to
the reference node in its parent hashmap, i.e., the pointer that refers to itself.

Recall that a hashmap maps keys to values, i.e., it uses a hash function to
compute an index from which the desired value or object can be found, e.g., using
modulo arithmetic. For our hierarchical hashmaps, we use parameter values as
the keys for the corresponding level of hashmaps. Furthermore, we use linked
lists to solve hash collisions.

For example, the hierarchical hashmap in Fig. 3 corresponds to the parame-
ters a and b, thus contains two levels. The first level is used to index the values
of variable a, while the second to index the values of variable b. Each monitor
stored in this hashmap corresponds to a parameter instance of a and b. The
monitor of the parameter instance a1b2 can be located via index 1 of the first

Fig. 3. A hierarchical hashmap
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level, and then index 2 of the second level. Suppose parameter instances aib2
and a1bj have the same index as a1b2, then we put them in a linked list to solve
the hash collisions. Similarly, the monitors of the parameter instances a2b1, apb1
and a2bq can be located via another path in the hierarchical hashmap.

6 Experimental Performance Evaluation

Movec uses a different weaving algorithm, compared with related tools. As Java-
MOP and ACC are the most relevant and advanced tools in the runtime verifi-
cation and AOP domains respectively, we compared the performance of Movec
and the latest versions of JavaMOP and ACC on the same benchmark respec-
tively. All experiments are done under the following platform: Intel i5-2410M
CPU at 2.30 GHz, 4 GB memory, running Ubuntu 14.04 LTS 64-bit operating
system.

Movec vs. JavaMOP. In our experiment, we designed a benchmark containing
four projects. Note that Movec and JavaMOP can only process C and Java
programs respectively, so each project is implemented as two equivalent versions,
written in C and Java respectively, and these two versions are also very similar
literally.

The first project unsafe-Enum creates a set of vectors, then creates an enu-
meration for each vector, and uses the enumeration to traverse the elements in
the vector. But for one of these vectors, the vector is modified by adding an
element while the enumeration is in use. A monitor with a regular expression
property is designed to match the unsafe case where a vector with an associ-
ated enumeration is modified while the enumeration is in use. If the property is
matched, a handler is invoked to print an error message.

The second project unsafe-File opens a set of files, then writes some strings
into the files, and finally closes all files, except one. A monitor with a regular
expression property is designed to match the unsafe case where a file was opened,
but has not been closed until the program terminates. If the property is matched,
a handler is invoked to increase a counter, and the count is printed when the
program terminates.

The third project unsafe-Grant creates a set of tasks and a set of resources,
then grants these resources to tasks, and finally these tasks release some of the
granted resources, but not all. A monitor with a regular expression property is
designed to match the unsafe case where a resource was granted to a task, but
has not been released by the task until the program terminates. If the property
is matched, a handler is invoked to increase a counter, and the count is printed
when the program terminates.

The last project unsafe-MapIterator creates a map, then creates a set of
collections for the map, creates an iterator for each collection, and adds an
element to the map. But for two of these iterators, the iterators are used to
get the next element in the collection, after the map is modified. A monitor
with a regular expression property is designed to match the unsafe case where
a map with an associated iterator is modified while the iterator is in use. If the
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property is matched, a handler is invoked to print an error message. This offers
a larger challenge, because the monitor creation actions do not contain all the
parameters (collections are created before iterators).

Table 1. Experimental performance evaluation

Movec JavaMOP

mon. orig. hand. run time orig. hand. run time

num time num time diff. time num time diff

Enum 1000 0.016 1 0.199 0.183 0.114 1 0.218 0.104

Enum 20000 0.141 1 21.715 21.574 0.179 1 0.817 0.638

File 1000 0.144 1 0.145 0.001 0.232 1 0.334 0.102

File 20000 2.585 1 2.793 0.208 1.867 0 2.106 0.239

Grant 1000 0.006 500 0.030 0.024 0.102 500 0.205 0.103

Grant 20000 0.010 10000 12.397 12.387 0.110 9370 0.499 0.389

MapIter 1000 0.006 2 0.079 0.073 0.104 0 0.228 0.124

MapIter 20000 0.019 2 35.735 35.716 0.118 0 22.782 22.664

Note: JavaMOP failed to correctly print the numbers of monitors and invoked
handlers.

For each of the two versions of each project, we used two settings to generate
different numbers of complete monitors. For each setting, we ran each version
for three times, and measured in average the original run time (in seconds), the
number of invoked handlers, the run time after instrumentation (in seconds) and
the time difference. The data is listed in Table 1. Note that the two versions create
the same number of complete monitors. Besides, JavaMOP failed to correctly
print the numbers of monitors and invoked handlers, so we have to get the
numbers by temporarily putting a println statement in the handlers.

The results show that Movec correctly invoked handlers for all projects,
whereas JavaMOP failed to correctly invoke handlers in 3 projects (denoted by
numbers with strikethrough lines), especially when the number of monitors is
large. We considered two criteria of overhead: absolute time difference (i.e., the
difference between the run time before and after instrumentation) and relative
time difference (i.e., the ratio of the increased run time after instrumentation).
Note that Java VM spends some time to load Java programs before execution,
which is included in original run time but not in the difference, thus Java pro-
grams will benefit if we use relative time difference. In contrast, absolute time
difference can avoid the effect of loading time. Indeed, absolute time difference
is largely due to the algorithm for indexing and retrieving monitors, thus can
more accurately reflect overhead. Hence, absolute time difference is an appropri-
ate criterion for comparing their performance. According to this criterion, our
algorithm is comparable with JavaMOP, because each tool succeeded in half of
the runs. We also note that JavaMOP outperforms Movec when the number of
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monitors is large. The reason probably is that JavaMOP uses the efficient data
structures from Java class library, such as hashmaps, whereas our data structures
and algorithms are less optimized.

Movec vs. ACC. For evaluating ACC, we have to use another benchmark,
because ACC does not support parametric monitoring. In our experiment, we
used ten projects from MiBench, a free and commercially representative embed-
ded benchmark suite. We evaluated the performance of Movec and ACC by
defining exactly equivalent monitors for each project, and of course in a differ-
ent syntax. Due to page limit, we do not list the data here. The results show
that the instrumentation time of Movec is less than ACC for all projects, and
Movec significantly outperforms ACC in reliability (the results of ACC are
incorrect for 7 projects, whereas Movec is correct for all projects according
to our manual inspection) and efficiency (the overhead introduced by ACC is
greater than Movec for all remaining 3 correctly executed projects of ACC).

7 Conclusion and Future Work

The main elements of the language design and compiler implementation are now
fairly stable, but the project is not nearly finished. We are focusing on fine-tuning
parts of the language design (e.g., adding more pointcuts and formalisms), opti-
mizing data structures and building the next generation compiler, to improve the
quality, performance and power of the compiler. We are also working on its IDE
extensions and documentation. We want to build up and support a real user com-
munity of Movec, and plan to work with them to empirically study the practical
value of Movec. We are open for suggestions how to further optimize the syn-
tax and semantics. Movec and a set of working code examples/benchmarks are
available for download from http://svlab.nuaa.edu.cn/zchen/projects/movec.
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