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Abstract. We propose a method to construct finite-state reactive con-
trollers for systems whose interactions with their adversarial environment
are modeled by infinite-duration two-player games over (possibly) infi-
nite graphs. The method targets safety games with infinitely many states
or with such a large number of states that it would be impractical—if not
impossible—for conventional synthesis techniques that work on the entire
state space. We resort to constructing finite-state controllers for such
systems through an automata learning approach, utilizing a symbolic
representation of the underlying game that is based on finite automata.
Throughout the learning process, the learner maintains an approxima-
tion of the winning region (represented as a finite automaton) and refines
it using different types of counterexamples provided by the teacher until
a satisfactory controller can be derived (if one exists). We present a sym-
bolic representation of safety games (inspired by regular model checking),
propose implementations of the learner and teacher, and evaluate their
performance on examples motivated by robotic motion planning.

1 Introduction

We propose an automata learning-based method to construct reactive controllers
subject to safety specifications. We model the interaction between a controlled
system and its possibly adversarial environment as a two-player game over a
graph [16]. We consider games over infinite graphs. In this setting, the conven-
tional techniques for reactive controller synthesis (e.g., fixed-point computations)
are not applicable anymore. We resort to learning for constructing finite-state
reactive controllers. The learning takes place in a setting akin to counterexample-
guided inductive synthesis (CEGIS) [14] between a teacher, who has knowledge
about the safety game in question, and a learner, whose objective is to identify
a controller using information disclosed by the teacher in response to (incorrect)
conjectures.

A natural context for our method is one in which the interaction between
the controlled system and its environment is so complex that it can be repre-
sented only by graphs with infinitely many vertices (e.g., motion planning over
unbounded grid worlds) or “practically infinitely many” states (i.e., the number
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of possible configurations is so large that the game becomes impractical for con-
ventional techniques). Additionally, in situations in which a complete description
of the game is not available in a format amenable to existing game solvers [6,9],
there may still exist human experts (or automated oracles, as in Sect. 4) who
acts as teacher with their insight into how the controlled system should behave.

We focus on games with safety specifications, which already capture practi-
cally interesting properties (e.g., safety and bounded-horizon reachability). How-
ever, games over infinite graphs require special attention on the representation
and manipulation of the underlying graph structure. Hence, one of our main
contributions is a symbolic representation of safety games, called rational safety
games, that follows the idea of regular model checking [7] in that it represents
sets of vertices by regular languages and edges by so-called rational relations.

We develop an iterative framework for learning winning sets—equivalently
controllers—in rational safety games and particular implementations of a teacher
and learner. In each iteration, the learner conjectures a winning set, represented
as a deterministic finite automaton. The teacher performs a number of checks and
returns, based on whether the conjecture passes the checks, a counterexample.
Following the ICE learning framework [10] and partially deviating from the
classical learning frameworks for regular languages [1,11], the counterexample
may be one of the following four types: positive, negative, existential implication
and universal implication counterexamples. Based on the response of the teacher,
the learner updates his conjecture. If the conjecture passes all checks, the learning
terminates with the desired controller. However, our technique is necessarily a
semi-algorithm as reachability questions over rational relations are undecidable.

Even though the underlying game may be prohibitively large, a controller
with a compact representation may realize the specifications. For example,
depending on the given task specification in robotic motion planning, only a
small subset of all possible interactions between a robot and its environment is
often relevant. Based on this observation, our method possesses several desir-
able properties: (i) it usually identifies “small” solutions that are more likely
to be interpretable by users; (ii) its runtime mainly depends on the size of the
solution rather than the size of the underlying game; (iii) though the method is
applicable generally, it performs particularly well when the resulting controller
has a small representation; (iv) besides being applicable to infinite-state sys-
tems, the method performs well on finite-state problems by—unlike conventional
techniques—avoiding potentially large intermediate artifacts. We demonstrate
these properties empirically on a series of examples motivated by robotic motion
planning.

Related Work. Games over infinite graphs have been studied, predominantly
for games over pushdown graphs [15]. Also, a constraint-based approach to solv-
ing games over infinite graphs has recently been proposed [3]. Learning-based
techniques for reachability games over infinite graphs were studied in [19]; in
fact, our symbolic representation of safety games is a generalization of the rep-
resentation proposed there. In the context of safety games, recent work [20]
demonstrated the ability of learning-based approaches to extract small reactive
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controllers from a priori constructed controllers with a possibly large number of
states. In this work, we by-pass this a priori construction of reactive controllers
by learning a controller directly. Infinite (game) graphs occur often in the pres-
ence of data, and symbolic formalisms have been described for several domains,
including examples such as interface automata with data [13] and modal specifi-
cations with data [2]. However, we are not aware of learning algorithms for these
formalisms.

2 Rational Safety Games

We recap the basic notation and definitions used in the rest of the paper.

Safety Games.We consider safety games (i.e., infinite duration two-person games
on graphs) [16]. A safety game is played on an arena A = (V0, V1, E) consisting
of two nonempty, disjoint sets V0, V1 of vertices (we denote their union by V ) and
a directed edge relation E ⊆ V × V . In contrast to the classical (finite) setting,
we allow V0 and V1 to be countable sets. As shorthand notation, we write the
successors of a set X ⊆ V of vertices as E(X) = {y | ∃x ∈ X : (x, y) ∈ E}.

We consider safety games with initial vertices, which are defined as triples
G = (A, F, I) consisting of an arena A = (V0, V1, E), a set F ⊆ V of safe vertices,
and a set I ⊆ F of initial vertices. Such safety games are played by two players,
named Player 0 and Player 1, who play the game by moving a token along the
edges. Formally, a play is an infinite sequence π = v0v1 . . . ∈ V ω that satisfies
v0 ∈ I and (vi, vi+1) ∈ E for all i ∈ N. The set F defines the winning condition
of the game in the sense that a play v0v1 . . . is winning for Player 0 if vi ∈ F
for all i ∈ N—otherwise it is winning for Player 1 .

A strategy for Player σ ∈ {0, 1} is a mapping fσ : V ∗Vσ → V , which pre-
scribes how to continue playing. A strategy fσ is called winning if any play
v0v1 . . . that is played according to the strategy (i.e., that satisfies vi+1 =
fσ(v0 . . . vi) for all i ∈ N and vi ∈ Vσ) is winning for Player σ. A winning
strategy for Player 0 translates into a controller satisfying the given safety speci-
fications. Hence, we restrict ourselves to compute winning strategies for Player 0.
Computing a winning strategy for Player 0 usually reduces to finding a so-called
winning set.

Definition 1 (Winning set). Let G = (A, I, F ) be a safety game over the
arena A = (V0, V1, E). A winning set is a set W ⊆ V satisfying (1) I ⊆ W , (2)
W ⊆ F , (3) E({v}) ∩ W �= ∅ for all v ∈ W ∩ V0 ( existential closedness), and
(4) E({v}) ⊆ W for all v ∈ W ∩ V1 (universal closedness).

By computing a winning set, one immediately obtains a strategy for Player 0:
starting in an initial vertex, Player 0 simply moves to a successor vertex inside
W whenever it is his turn. A straightforward induction over the length of plays
proves that every play that is played according to this strategy stays inside F , no
matter how Player 1 plays, and, hence, is won by Player 0 (since I ⊆ W ⊆ F ).
A winning set is what we want to compute—or, more precisely, learn.
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Algorithmically working with games over infinite arenas require symbolic
representations. We follow the idea of regular model checking [7] and represent
sets of vertices by regular languages and edges by so-called rational relations.
Before we introduce our symbolic representation of safety games, however, we
recap some basic concepts of automata theory.

Basics of Automata Theory. An alphabet Σ is a nonempty, finite set, whose
elements are called symbols. A word over the alphabet Σ is a sequence u =
a1 . . . an of symbols ai ∈ Σ for i ∈ {1, . . . , n}; the empty sequence is called
empty word and denoted by ε. Given two words u = a1 . . . am and v = b1 . . . bn,
the concatenation of u and v is the word u · v = uv = a1 . . . amb1 . . . bn. The set
of all words over the alphabet Σ is denoted by Σ∗, and a subset L ⊆ Σ∗ is called
a language. The set of prefixes of a language L ⊆ Σ∗ is the set Pref (L) = {u ∈
Σ∗ | ∃v ∈ Σ∗ : uv ∈ L}.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, q0,Δ, F )
consisting of a nonempty, finite set Q of states, an input alphabet Σ, an initial
state q0 ∈ Q, a transition relation Δ ⊆ Q × Σ × Q, and a set F ⊆ Q of final
states. A run of A on a word u = a1 . . . an is a sequence of states q0, . . . , qn such
that (qi−1, ai, qi) ∈ Δ for i ∈ {1, . . . , n}. We denote this run by A : q0

u−→ qn. An
NFA A accepts a word u ∈ Σ∗ if A : q0

u−→ q with q ∈ F . The set L(A) = {u ∈
Σ∗ | A : q0

u−→ q, q ∈ F} is called language of A. A language L is regular if there
exists an NFA A with L(A) = L. NFAΣ denotes the set of all NFAs over Σ.

A deterministic finite automaton (DFA) is an NFA in which (p, a, q) ∈ Δ and
(p, a, q′) ∈ Δ imply q = q′. For DFAs, we replace the transition relation Δ by a
transition function δ : Q × Σ → Q.

We define infinite arenas by resorting to transducers. A transducer is an NFA
T = (Q, Σ̂, q0,Δ, F ) over the alphabet Σ̂ = (Σ ∪ {ε}) × (Γ ∪ {ε})—Σ and Γ
are both alphabets—that processes pairs (u, v) ∈ Σ∗ × Γ ∗ of words. The run
of a transducer T on a pair (u, v) is a sequence q0, . . . , qn of states such that
(qi−1, (ai, bi), qi) ∈ Δ for all i ∈ {1, . . . , n}, u = a1 . . . an, and v = b1 . . . bn;
note that u and v do not need to be of equal length since any ai or bi can be
ε. A pair (u, v) is said to be accepted by T if there exists a run of T on (u, v)
that starts in the initial state and ends in a final state. As an acceptor of pairs
of words, a transducer T defines a relation, namely the relation consisting of
exactly the pairs accepted by T , which we denote by R(T ). Finally, a relation
R ⊆ Σ∗ × Γ ∗ is called rational if there exists a transducer T with R(T ) = R.
(This definition is simplified from that in [5] but sufficient for our purpose.) Note
that transducers as defined above do not need to preserve the length of words.

Our learning framework relies on the two facts given in Lemma1.

Lemma 1. Let R ⊆ Σ∗ × Γ ∗ be a rational relation and X ⊆ Σ∗ a regular
set. Then, (1) the relation R−1 = {(y, x) | (x, y) ∈ R} is again rational, and
a transducer defining this set can be constructed in linear time; and (2) the set
R(X) = {y ∈ Γ ∗ | ∃x ∈ X : (x, y) ∈ R}, called the image of X under R, is again
regular, and an NFA accepting this set can be constructed effectively.
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Rational Safety Games. A rational safety game is a symbolic representation of
a safety game in terms of regular languages and rational relations.

Definition 2. A rational arena over the alphabet Σ is an arena AΣ = (V0, V1, E)
where V0, V1 ⊆ Σ∗ are regular languages and E ⊆ V × V is a rational relation.

Definition 3. A rational safety game over the alphabet Σ is a safety game GΣ =
(AΣ , F, I) with a rational arena AΣ over Σ and regular languages F, I ⊆ Σ∗.

We assume regular languages to be given as NFAs and rational relations
as transducers. We use these notions interchangeably; for instance, we write a
rational area AΣ = (V0, V1, E) as AΣ = (AV0 ,AV1 , TE) given that L(AV0) = V0,
L(AV1) = V1, and R(TE) = E.

Example 1. Consider an example motivated by motion planning (see Fig. 1a) in
which a robot moves on an infinite, one-dimensional grid that is “bounded on
the left”. It can move to an adjacent cell (provided that it has not reached left
edge) or it stays still. The grid is partitioned into a safe (shaded in Fig. 1a) and
an unsafe area. The safe area is parameterized by k ∈ N \ {0} and consists of all
positions greater than or equal to k. The robot starts inside the safe area.

Fig. 1. Illustration of the safety game discussed in the introductory example.

The robot’s movement is governed by two adversarial players, called system
and environment. The system can move the robot to the right or keep it at its
current position, whereas the environment can move the robot to the left (if the
edge has not been reached) or keep it at its current position. The players move
the robot in alternation, and the system moves first. The system’s objective is to
stay within the safe area, whereas the environment wants to move the robot out
of it. Note that the system can win, irrespective of k, by always moving right.

A formalization as safety game is straightforward. Player 0 corresponds to the
system and Player 1 corresponds to the environment. The arena A = (V0, V1, E)
consists of vertices V0 = {s} × N and V1 = {e} × N—s, respectively e, indicates
the player moving next—as well as the edge relation E =

{(
(s, i), (e, i+1)

)
| i ∈

N
}
∪

{(
(e, i+1), (s, i)

)
| i ∈ N

}
. The safety game itself is the triple Gk = (A, F, I)

with F = {s, e} × {i ∈ N | i ≥ k} and I = {s} × {i ∈ N | i ≥ k}. Figure 1b
sketches the game Gk for the case k = 2.
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We now turn Gk into a rational safety game. To this end, we label each
vertex uniquely with a finite word. In our example, we choose Σ = {s, e, l} and
associate the vertex (x, i) ∈ {s, e}×N with the word xli where li is the encoding
of i in unary. We represent the sets V0 and V1 by the following NFAs:

Moreover, we represent the edges by the following transducer:

Finally, the NFA

represents the set F ; similarly, I is represented by a copy of AF in which the

transition labeled with e is omitted.

It is worth mentioning that rational arenas not only subsume finite arenas
but also a rich class of infinite arenas, including such encoding computations of
Turing machines. Hence, the problem of determining the winner of a rational
safety game is undecidable, and any algorithm for computing a winning set can
at best be a semi-algorithm (i.e., an algorithm that, on termination, gives the
correct answer but does not guarantee to halt). The algorithm we design in this
paper is of this kind and guarantees to learn a winning set if one exists. For ease
of presentation, we always assume that a winning set exists.

3 The Learning Framework

Our learning framework is an extension of the ICE framework [10] for learning
loop invariants from positive and negative data as well as implications. The
learning takes place between a teacher, who has (explicit or implicit) knowledge
about the rational safety game in question, and a learner, whose objective is
to learn a DFA accepting a winning set, but who is agnostic to the game. We
assume that the teacher announces the alphabet of the game before the actual
learning starts.

The learning proceeds in a CEGIS-style loop [14]. In every iteration, the
learner conjectures a DFA, call it C, and the teacher checks whether L(C) is a
winning set—this kind of query is often called equivalence or correctness query.
Although the teacher does not know a winning set (the overall objective is to
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learn one after all), he can resort to Conditions (1)–(4) of Definition 1 in order to
decide whether L(C) is a winning set. If L(C) satisfies Conditions (1)–(4), then
the teacher replies “yes” and the learning ends. If this is not the case, the teacher
returns a counterexample witnessing the violation of one of these conditions, and
the learning continues with the next iteration. The definition below fixes the
protocol between the teacher and the learner, and defines counterexamples.

Definition 4 (Teacher for rational safety games). Let GΣ = (AΣ , F, I)
be a rational safety game over the rational arena AΣ = (V0, V1, E). Confronted
with a DFA C, a teacher for GΣ replies as follows:

1. If I �⊆ L(C), then the teacher returns a positive counterexample u ∈ I \L(C).
2. If L(C) �⊆ F , then the teacher returns a negative counterexample u ∈ L(C)\F .
3. If there exists u ∈ L(C) ∩ V0 such that E({u}) ∩ L(C) = ∅, then the teacher

picks such a word u and returns an existential implication counterexample
(u,A) ∈ Σ∗ × NFAΣ where L(A) = E({u}).

4. If there exists u ∈ L(C) ∩ V1 such that E({u}) �⊆ L(C), then the teacher picks
such a word u and returns a universal implication counterexample (u,A) ∈
Σ∗ × NFAΣ where L(A) = E({u}).

If C passes all four checks (in arbitrary order), the teacher replies “yes”.

It is easy to see that the language of a conjecture is indeed a winning set if the
teacher replies “yes” (since it satisfies all conditions of Definition 1). The meaning
of a positive counterexample is that any conjecture needs to accepts it but it was
rejected. Similarly, a negative counterexample indicates that any conjecture has
to reject it but it was accepted. An existential implication counterexample (u,A)
means that any conjecture accepting u has to accept at least one v ∈ L(A),
which was violated by the current conjecture. Finally, a universal implication
counterexample (u,A) means that any conjecture accepting u needs to accept
all v ∈ L(A). At this point, it is important to note that Definition 4 is sound
(in particular, both types of implication counterexamples are well-defined due
to Lemma 1 Part 2) and every counterexample is a finite object.

Example 2. We revisit Example 1 for k = 2 and describe how a winning set
is learned. Suppose the learner conjectures the DFA C0 with L(C0) = ∅. As C0

fails Check 4 (it passes all other checks), the teacher returns a positive coun-
terexample, say u = sll ∈ I. Next, suppose the learner conjectures the DFA
C1 with L(C1) = {sln | n ≥ 2}, which passes all checks but Check 4 (as the
players alternate but L(C1) does not contain a vertex of the environment). The
teacher replies with an existential implication counterexample, say (sll,A) with
L(A) = {ell, elll}. In the next round, suppose the learner conjectures the DFA
C2 with L(C2) = {sln | n ≥ 2} ∪ {elm | m ≥ 3}. This conjecture passes all checks
(i.e., L(C2) is a winning set), the teacher replies “yes”, and the learning ends.

It is important to note that classical learning frameworks for regular lan-
guages that involve learning from positive and negative data only, such as Gold’s
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passive learning [11] or Angluin’s active learning [1], are insufficient in our set-
ting. If the learner provides a conjecture C that violates Condition (3) or (4)
of Definition 1, the teacher is stuck. For instance, if C does not satisfy Condi-
tions (4), the teacher does not know whether to exclude u or to include E({u}).
Returning an implication counterexample resolves this problem by communicat-
ing exactly why the conjecture is incorrect and, hence, allows the learner to make
progress.1

4 A Generic Teacher

We now present a generic teacher that, taking a rational safety game as input,
answers queries according to Definition 4. For the remainder of this section,
fix a rational safety game GΣ = (AΣ ,AF ,AI) over the rational arena AΣ =
(AV0 ,AV1 , TE), and let C be a DFA conjectured by the learner.

To answer a query, the teacher performs Checks 1 to 4 of Definition 4 as
described below. If the conjecture passes all checks, the teacher returns “yes”;
otherwise, he returns a corresponding counterexample, as described next.

Check 1 (initial vertices). The teacher computes an NFA B with L(B) = L(AI)\
L(C). If L(B) �= ∅, he returns a positive counterexample u ∈ L(B).

Check 2 (safe vertices). The teacher computes an NFA B with L(B) = L(C) \
L(AF ). If L(B) �= ∅, he returns a negative counterexample u ∈ L(B).

Check 3 (existential closure). The teacher successively computes three NFAs:

1. An NFA B1 with L(B1) = R(TE)−1(L(C)); the language L(B1) contains all
vertices that have a successor in L(C).

2. An NFA B2 with L(B2) = L(AV0) \ L(B1); the language L(B2) contains all
vertices of Player 0 that have no successor in L(C).

3. An NFA B3 with L(B3) = L(C) ∩ L(B2); the language L(B3) contains all
vertices of Player 0 that belong to L(C) and have no successor in L(C).

Every u ∈ L(B3) is a witness that C is not existentially closed. Hence, if L(B3) �=
∅, the teacher picks an arbitrary u ∈ L(B3) and returns the existential implica-
tion counterexample (u,A) where L(A) = R(TE)({u}).

Check 4 (universal closure). The teacher computes three NFAs:

1. An NFA B1 with L(B1) =
(
L(AV0) ∪ L(AV1)

)
\ L(C); the language L(B1)

contains all vertices not in L(C).

1 Garg et al. [10] argue comprehensively in the case of learning loop invariants of
While-programs why implications are in fact required. Their arguments also apply
here as one obtains a setting similar to theirs by considering a solitary game with
Player 1 as the only player.
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2. An NFA B2 with L(B2) = R(TE)−1(L(B1)); the language L(B2) contains all
vertices that have a successor not belonging to L(C).

3. An NFA B3 with L(B3) = L(AV1)∩L(C)∩L(B2); the language L(B3) contains
all vertices of Player 1 in L(C) with at least one successor not in L(C).

Every u ∈ L(B3) is a witness that C is not universally closed. Hence, if L(B3) �= ∅,
the teacher picks an arbitrary u ∈ L(B3) and returns the universal implication
counterexample (u,A) where L(A) = R(TE)({u}).

All checks can be performed using standard methods of automata theory. In
our implementation, the teacher performs the checks in the order 1 to 4.

5 A Learner for Rational Safety Games

We design our learner with two key features: (1) it always conjectures a DFA
consistent with the counterexamples received so far, and (2) it always conjectures
a minimal, consistent DFA (i.e., a DFA with the least number of states among all
DFAs that are consistent with the received counterexamples). The first feature
prevents the learner from making the same mistake twice, while the second
facilitates convergence of the overall learning (provided that a winning set exists).

Our learner stores counterexamples in a so-called sample, which is a tuple
S = (Pos,Neg ,Ex ,Uni) consisting of a finite set Pos ⊂ Σ∗ of positive words, a
finite set Neg ⊂ Σ∗ of negative words, a finite set Ex ⊂ Σ∗×NFAΣ of existential
implications, and a finite set Uni ⊂ Σ∗ × NFAΣ of universal implications. We
encourage the reader to think of a sample as a finite approximation of the safety
game learned thus far.

In every iteration, our learner constructs a minimal DFA consistent with the
current sample S = (Pos,Neg ,Ex ,Uni). A DFA B is called consistent with S if

1. Pos ⊆ L(B);
2. Neg ∩ L(B) = ∅;
3. u ∈ L(B) implies L(B) ∩ L(A) �= ∅ for each (u,A) ∈ Ex ; and
4. u ∈ L(B) implies L(A) ⊆ L(B) for each (u,A) ∈ Uni .

Constructing a DFA that is consistent with a sample is possible only if the
sample does not contain contradictory information. Contradictions can arise in
two ways: first, Pos and Neg are not disjoint; second, the (alternating) transitive
closure of the implications in Ex and Uni contains a pair (u, v) with u ∈ Pos and
v ∈ Neg . This observation justifies the notion of contradiction-free samples: a
sample S is called contradiction-free if a DFA that is consistent with S exists. If
Player 0 wins from set I, a winning set exists and the counterexamples returned
by the teacher always form contradiction-free samples.2

2 Checking for contradictions allows detecting that a game is won by Player 1. How-
ever, since determining the winner of a rational safety game is undecidable, any sam-
ple obtained during the learning might be contradiction-free despite that Player 1
wins.
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Algorithm 1. A learner for rational safety games
1 Initialize an empty sample S = (Pos,Neg ,Ex ,Uni) with Pos = ∅, Neg = ∅,

Ex = ∅, and Uni = ∅;
2 repeat
3 Construct a minimal DFA AS consistent with S;
4 Submit AS to an equivalence query;
5 if the teacher returns a counterexample then
6 Add the counterexample to S;
7 end

8 until the teacher replies “yes” to an equivalence query ;
9 return AS ;

Once a minimal, consistent DFA is constructed, the learner conjectures it to
the teacher. If the teacher replies “yes”, the learning terminates with a winning
set. If the teacher returns a counterexample, the learner adds it to S and iterates.
This procedure is sketched as Algorithm 1. Note that unravelling the game graph
provides additional examples without the need to construct conjectures, but
there is a trade-off between the number of iterations and the time needed to
compute consistent DFAs. We leave an investigation of this trade-off for future
work.

It is left to describe how the learner actually constructs a minimal DFA
that is consistent with the current sample. However, this task, known as passive
learning, is computationally hard (i.e., the corresponding decision problem is NP-
complete) already in the absence of implications [11]. We approach this hurdle
by translating the original problem into a sequence of satisfiability problems
of formulas in propositional Boolean logic and use highly optimized constraint
solvers as a practically effective means to solve the resulting formulas (note that
a translation into a logical formulation is a popular and effective strategy). More
precisely, our learner creates and solves propositional Boolean formulas ϕS

n , for
increasing values of n ∈ N, n ≥ 1, with the following two properties:

1. The formula ϕS
n is satisfiable if and only if there exists a DFA that has n

states and is consistent with S.
2. A model M of (i.e., a satisfying assignment of the variables in) ϕS

n contains
sufficient information to construct a DFA AM that has n states and is con-
sistent with S.

If ϕS
n is satisfiable, then Property 2 enables us to construct a consistent

DFA from a model. However, if the formula is unsatisfiable, then the parameter
n has been chosen too small and the learner increments it. This procedure is
summarized as Algorithm 2. We comment on its correctness later in this section.
A proof can be found in the extended paper [22].

The key idea of the formula ϕS
n is to encode a DFA with n states by means

of Boolean variables and to pose constraints on those variables. Our encoding
relies on a simple observation: for every DFA there exists an isomorphic (hence,
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Algorithm 2. Computing a minimal consistent DFA.

Input: A contradiction-free sample S
Output: A minimal DFA that is consistent with S

1 n ← 0;
2 repeat
3 n ← n + 1;

4 Construct and solve ϕS
n ;

5 until ϕS
n is satisfiable, say with model M;

6 return AM ;

equivalent) DFA over the state set Q = {0, . . . , n − 1} with initial state q0 = 0;
moreover, given that Q and q0 are fixed, any DFA with n states is uniquely
determined by its transitions and final states. Therefore, we can fix the state set
of the prospective DFA as Q = {0, . . . , n− 1} and the initial state as q0 = 0; the
alphabet Σ is announced by the teacher.

Our encoding of transitions and final states follows an idea from [12,21]
(similar to the approach of Biermann and Feldman [4]). We introduce Boolean
variables dp,a,q and fq where p, q ∈ Q and a ∈ Σ, which have the following
meaning: setting dp,a,q to true means that the transition δ(p, a) = q exists in the
prospective DFA, and setting fq to true means that q is a final state.

To make sure that the variables dp,a,q encode a deterministic transition func-
tion, we impose two constraints:

∧

p∈Q

∧

a∈Σ

∧

q,q′∈Q,q �=q′
¬dp,a,q ∨ ¬dp,a,q′ (1)

∧

p∈Q

∧

a∈Σ

∨

q∈Q

dp,a,q (2)

Let ϕDFA
n be the conjunction of Formulas (1) and (2). Given a model M of

ϕDFA
n (we assume a model to be a map from the variables of a formula to the

set {true, false}), deriving the encoded DFA is straightforward, as shown next.

Definition 5 (DFA AM). Given a model M of ϕDFA
n , we define the DFA AM =

(Q,Σ, q0, δ, F ) by (i) δ(p, a) = q for the unique q ∈ Q with M(dp,a,q) = true;
and (ii) F = {q ∈ Q | M(fq) = true}. (Recall that we fixed Q = {0, . . . , n − 1}
and q0 = 0.)

To ensure that AM is consistent with a sample S = (Pos,Neg ,Ex ,Uni),
we impose further constraints, corresponding to the requirements of consistent
DFAs: (i) A formula ϕPos

n asserting Pos ⊆ L(AM). (ii) A formula ϕNeg
n asserting

Neg∩L(AM) = ∅. (iii) A formula ϕEx
n asserting that u ∈ L(AM) implies L(AM)∩

L(A) �= ∅ for each (u,A) ∈ Ex . (iv) A formula ϕUni
n asserting that u ∈ L(AM)

implies L(AM) ⊆ L(A) for each (u,A) ∈ Uni . Then, ϕS
n := ϕDFA

n ∧ϕPos
n ∧ϕNeg

n ∧
ϕEx

n ∧ ϕUni
n . We here sketch formula ϕUni

n and refer the reader to the extended
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paper [22] for a detailed presentation of the remaining formulas. A description
of ϕPos

n and ϕNeg
n can also be found in [21].

The Formula ϕUni
n . We break the construction of ϕUni

n down into smaller parts.
Roughly, we construct a formula ϕι

n that asserts L(A) ⊆ L(AM) if u ∈ L(AM)
for each universal implication ι = (u,A) ∈ Uni . The formulas ϕUni

n is then the
finite conjunction

∧
ι∈Uni ϕι

n. For the remainder, let us fix a universal implication
ι ∈ Uni , say ι = (u,A) with A = (QA, Σ, qA

0 ,ΔA, FA), and let Ante(Uni) =
{u | (u,A) ∈ Uni} be the set of all words occurring as antecedent of a universal
implication.

As a preparatory step, we introduce auxiliary Boolean variables that track
the runs of AM on words of Pref (Ante(Uni)) in order to detect when AM accepts
the antecedent of a universal implication. More precisely, we introduce variables
xu,q where u ∈ Pref (Ante(Uni)) and q ∈ Q, which have the meaning that xu,q

is set to true if AM : q0
u−→ q (i.e., AM reaches state q on reading u):

xε,q0 (3)
∧

u∈Pref (Ante(Uni))

∧

q �=q′∈Q

¬xu,q ∨ ¬xu,q′ (4)

∧

ua∈Pref (Ante(Uni))

∧

p,q∈Q

(xu,p ∧ dp,a,q) → xua,q (5)

Formula (3) asserts that xε,q0 is set to true since any run starts in the initial state
q0. Formula (4) enforces that for every u ∈ Pref (Ante(Uni)) there exists at most
one q ∈ Q such that xu,q is set to true (in fact, the conjunction of Formulas (2)–
(5) implies that there exists a unique such state). Finally, Formula (5) prescribes
how the run of AM on a word u ∈ Pref (Ante(Uni)) proceeds: if AM reaches
state p on reading u (i.e., xu,p is set to true) and there exists a transition from
p to state q on reading the symbol a ∈ Σ (i.e., dp,a,q is set to true), then AM

reaches state q on reading ua and xua needs to be set to true.
We now define ϕι

n. The formula ranges, in addition to dp,a,q, fq, and xu,q,
over Boolean variables yι

q,q′ where q ∈ Q and q′ ∈ QA and yι
q,q′ track runs of A

and AM. More precisely, if there exists a word u ∈ Σ∗ with AM : q0
u−→ q and

A : qA
0

u−→ q′, then yι
q,q′ is set to true.

yι
q0,qA

0
and (6)

∧

p,q∈Q

∧

(p′,a,q′)∈ΔA

(yι
p,p′ ∧ dp,a,q) → yι

q,q′ . (7)

Formula (6) enforces yι
q0,qA

0
to be set to true because AM : q0

ε−→ q0 and A : qA
0

ε−→
qA
0 . Formula (7) is similar to Formula (5) and describes how the runs of AM and

A proceed: if there exists a word v such that AM : q0
v−→ p and A : qA

0
v−→ p′ (i.e.,

yι
p,p′ is set to true) and there are transitions (p′, a, q′) ∈ ΔA and δ(p, a) = q in

AM, then AM : q0
va−→ q and A : qA

0
va−→ q′, which requires yι

q,q′ to be set to true.
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Finally, the next constraint ensures that whenever AM accepts u (i.e., the
antecedent is true), then all words that lead to an accepting state in A also lead
to an accepting state in AM (i.e., the consequent is true):

( ∨

q∈Q

xu,q ∧ fq

)
→

( ∧

q∈Q

∧

q′∈FA

yι
q,q′ → fq

)
(8)

Let ϕ
Ante(Uni)
n be the conjunction of Formulas (3), (4), and (5) as well as ϕι

n

the conjunction of Formulas (6), (7), and (8). Then, ϕUni
n is the (finite) conjunc-

tion ϕ
Ante(Uni)
n ∧

∧
ι∈Uni ϕι

n.

Correctness of the Learner. We now sketch the technical results necessary
to prove the correctness of the learner—we refer the reader to the extended
paper [22] for a detailed proof. First, we state that ϕS

n has the desired properties.

Lemma 2. Let S be a sample, n ≥ 1, and ϕS
n be as defined above. Then, the

following statements hold: (1) If M |= ϕS
n , then AM is a DFA with n states that

is consistent with S. (2) If there exists a DFA that has n states and is consistent
with S, then ϕS

n is satisfiable.

The next theorem states the correctness of Algorithm 2, which follows from
Lemma 2 and the fact that n is increased by one until ϕS

n becomes satisfiable.

Theorem 1. Given a contradiction free-sample S, Algorithm 2 returns a min-
imal DFA (in terms of the number of states) that is consistent with S. If a
minimal, consistent DFA has k states, then Algorithm 2 terminates after k
iterations.

Finally, one can prove the correctness of our learner by using the facts that
(a) the learner never conjectures a DFA twice as it always constructs minimal
consistent DFAs, (b) conjectures grow in size, and (c) adding counterexamples
to the sample does not rule out correct solutions.

Theorem 2. Given a teacher, Algorithm 1, equipped with Algorithm 2 to con-
struct conjectures, terminates and returns a (minimal) DFA accepting a winning
set if one exists.

6 Experiments

We implemented a Java prototype of our technique based on the Brics automa-
ton library [17] and the Z3 [18] constraint solver.3 In addition to the learner of
Sect. 5, we implemented a learner based on the popular RPNI algorithm [23],
which is a polynomial time algorithm for learning DFAs from positive and neg-
ative words. For this learner, we modified the RPNI algorithm such that it
3 The source code, including the games described later, is available at https://www.

ae.utexas.edu/facultysites/topcu/misc/rational safety.zip.

https://www.ae.utexas.edu/facultysites/topcu/misc/rational_safety.zip
https://www.ae.utexas.edu/facultysites/topcu/misc/rational_safety.zip


An Automaton Learning Approach to Solving Safety Games 217

constructs a consistent DFA from existential and universal implications in addi-
tion to positive and negative words (a detailed presentation can be found in the
extended paper [22]). In contrast to Algorithm 2, this learner cannot guaran-
tee to find smallest consistent DFAs and, hence, the resulting learner is a fast
heuristic that is sound but in general not complete. Another limitation is that
it can only handle implication counterexamples (u,A) where L(A) is finite. To
accommodate this restriction, the arenas of the games used in the experiments
are of finite out-degree (i.e., each vertex of an arena has a finite, but not nec-
essarily bounded, number of outgoing edges). We refer to the learner of Sect. 5
as SAT learner and the RPNI-based learner as RPNI learner. As teacher, we
implemented the generic teacher described in Sect. 4.

We conducted three series of experiments, all of which contain games that
allow for small controllers. The first series serves to asses the performance of our
techniques on games over infinite arenas. The second and third series compare
our prototype to existing synthesis tools, namely GAVS+ [8] and TuLiP [24], on
games over finite arenas. More precisely, in the second series, we consider motion
planning problem in which an autonomous robot has to follow an entity through
a fairly complex 2-dimensional grid-world, while the third series compares the
scalability of different approaches on games of increasing size. We conducted all
experiments on an Intel Core i7-4790K CPU running at 4.00 GHz with a memory
limit of 16 GiB. We imposed a runtime limit of 300 s.

Games over Infinite Arenas. The first series of examples consists of the fol-
lowing games, which are predominantly taken from the area of motion planning.

Diagonal game: A robot moves on a two-dimensional, infinite grid world. Player 0
controls the robot’s vertical movement, whereas Player 1 controls the horizon-
tal movement. The players move in alternation, and, stating on the diagonal,
Player 0’s objective is to stay inside a margin of two cells around the diagonal.

Box game: A version of the diagonal game in which Player 0’s objective is to
stay within a horizontal stripe of width three.

Solitary box game: A version of the box game in which Player 0 is the only player
and has control over both the horizontal and the vertical movement.

Evasion game: Two robots, each controlled by one player, move in alternation on
an infinite, two-dimensional grid. Player 0’s objective is to avoid a collision.

Follow game: A version of the evasion game in which Player 0’s objective is to
keep his robot within a distance of two cells to Player 1’s robot.

Program-repair game: A finitely-branching version of the program-repair game
described by Beyene et al. [3].

Table 1 lists the overall runtimes (including the time taken by the teacher),
the number of iterations, the number of states of the learned DFA, and the
cardinality of each set of the final sample. As the table shows, the SAT learner
computed the winning sets for all games, whereas the RPNI learner computed
the winning sets for all but the Follow game. Since the RPNI learner does not
compute minimal consistent DFAs, we expected that it is faster on average than
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Table 1. Summary of results on games over infinite arenas.

the SAT learner, which turned out to be the case. However, the RPNI learner
fails to solve the Follow game within the time limit.

It is worth noting that the teacher replied implication counterexamples in
all but one experiment. This observation highlights that classical learning algo-
rithms, which learn from positive and negative words only, are insufficient to
learn winning sets (since the learning would be stuck at that point), and one
indeed requires a richer learning framework.

Motion Planning. The motion planning example is designed to
demonstrate the applicability of our techniques to motion plan-
ning problems in a fairly complex environment and compare it
to mature tools. We considered an autonomous robot that has to
follow some entity that is controlled by the environment through
the (randomly generated) 2-dimensional 9 × 9 grid-world shown
to the right (cells drawn black indicate obstacles that cannot be passed). More
precisely, both the robot and the entity start at the same position and the robot’s
objective is to maintain a Manhattan distance of at most 1 to the entity.

We modeled this game as rational safety game as well as for the tools TuLiP
and GAVS+. The SAT learner solved the game in 7.8 s, the RPNI learner in
2.1 s, and TuLiP in 5.4 s. GAVS+ did not solve the game (it could only solve
games on a 3 × 3 world).

Scalability. We compared the scalability of our prototype, GAVS+, TuLiP, as
well as a simple fixed-point algorithm (using our automaton representation) on
a slightly modified and finite version of the game of Example 1. In this modified
game, the one-dimensional grid world consists of m cells, of which all but the
rightmost cell are safe. The movement of the robot is slight changed as well: the
environment can move the robot to the right or stay; the system can move the
robot to the left or stay, a move to the left, however, is only allowed on the first
� = �m

2 � cells. As a result, any winning set is a subset of the cells smaller or equal
than �. (In the case of TuLiP, we had to disallow Player 1 to stay for technical
reasons; however, this does not change the described properties of the game.)
Note that the number of states of the automata AV0 , AV1 , and AF increase when
m increases as the automata need to count (in unary) to track the position of the
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robot. Moreover, note that this game is hard for algorithms based on fixed-point
computations since a fixed point is reached no sooner than after at least � steps.

Fig. 2. Results of the scalability benchmark.

Figure 2 compares the runtimes of the various techniques for varying values
of m (the number of vertices of the resulting arena is roughly 2m). The RPNI
learner performed best and solved games up to m = 50 000 (about 100 000
vertices), while the SAT learner ranked second and solved game up to m =
30 000. TuLiP, GAVS+, and the fixed-point algorithm, which all work with the
complete, large arena (explicitly or symbolically), performed worse. The third-
ranked algorithm TuLiP, for instance, solved games only up to m = 10 000 and
was one order of magnitude slower than the RPNI learner. Though designed
for games over infinite arenas, these results demonstrate that our learning-based
techniques perform well even on games over large finite arenas.

7 Conclusion

We developed an automata learning method to construct finite-state reactive
controllers for systems whose interactions with their environment are modeled
by infinite-state games. We focused on the practically interesting family of safety
games, introduced a symbolic representation, developed specific implementations
of learners and a teacher, and demonstrated the feasibility of the method on a
set of problems motivated by robotic motion planning. Our experimental results
promise applicability to a wide array of practically interesting problems.
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