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Abstract. The generation of sample instance models of Domain-
Specific Language (DSL) specifications has become an active research
line due to its increasing industrial relevance for engineering complex
modeling tools by using large metamodels and complex well-formedness
constraints. However, the synthesis of large, well-formed and realistic
models is still a major challenge. In this paper, we propose an itera-
tive process for generating valid instance models by calling existing logic
solvers as black-box components using various approximations of meta-
models and constraints to improve overall scalability. (1) First, we apply
enhanced metamodel pruning and partial instance models to reduce the
complexity of model generation subtasks and the retrieved partial solu-
tions initiated in each step. (2) Then we propose an (over-)approximation
technique for well-formedness constraints in order to interpret and eval-
uate them on partial (pruned) metamodels. (3) Finally, we define a
workflow that incrementally generates a sequence of instance models by
refining and extending partial models in multiple steps, where each step
is an independent call to the underlying solver (the Alloy Analyzer in
our experiments).
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1 Introduction

Motivation. The generation of sample instance models of Domain-Specific
Language (DSL) specifications has become an active research line due to its
increasing industrial relevance for engineering complex modeling tools by using
large metamodels (MM) and complex well-formedness (WF) constraints [25].
Such instance models derived as representative examples [2] and counterexam-
ples [18,32] may serve as test cases or performance benchmarks for DSL mod-
eling tools, model transformations or code generators [4]. Existing approaches
dominantly use either a logic solver or a rule-based instance generator in the
background.
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Problem Statement. Model finding using logic solvers [16] (like SMT or SAT-
solvers) is an effective technique (1) to identify inconsistencies of a DSL specifi-
cation or (2) to generate well-formed sample instances of a DSL. This approach
handles complex global WF' constraints which necessitates to access and query
several model elements during evaluation. Model generation for graph structures
needs to satisfy complex structural global constraints (which is typical character-
istic for DSLs), which restricts the direct use of logical numerical and constraint
solvers despite the existence of various encodings of graph structures into logic
formulae. As the metamodel of an industrial DSL may contain hundreds of model
elements, any realistic instance model should be of similar size. Unfortunately,
this cannot currently be achieved by a single direct call to the underlying solver
[17,32], thus existing logic based model generators fail to scale. Furthermore,
logic solvers tend to retrieve simple unrealistic models consisting of unconnected
islands of model fragments and many isolated nodes, which is problematic in an
industrial setting.

Rule-based instance generators [4,13,33] are effective in generating larger
model instances by independent modifications to the model by randomly apply-
ing mutation rules. Such a rule-based approach offers better scalability for com-
plex DSLs. These approaches may incorporate local WF' constraints which can
be evaluated in the context of a single model element (or within its 1-context).
However, they fail to handle global WF constraints which require to access and
navigate along a complex network of model elements. Since constraint evaluation
is typically the final step of the generation process, the synthesized models may
violate several WF constraints of the DSL in an industrial setting.

Contribution. The long term objective of our research is to synthesize large,
well-formed and realistic models. In this paper, we propose an iterative process
for incrementally generating valid instance models by calling existing logic
solvers as black-box components using various abstractions and approximations
to improve overall scalability. (1) First, we apply enhanced metamodel pruning
[33] and partial instance models [32] to reduce the complexity of model genera-
tion subtasks and the retrieved partial solutions initiated in each step. (2) Then
we propose an (over-)approximation technique for well-formedness constraints in
order to interpret and evaluate them on partial (pruned) metamodels. (3) Finally,
we define a workflow that incrementally generates a sequence of instance models
by refining and extending partial models in multiple steps, where each step is an
independent call to the underlying solver. We carried out experiments using the
state-of-the-art Alloy Analyzer [16] to assess the scalability of our approach.

Added Value. Our approach increases the size of generated models by carefully
controlling the information fed into and retrieved back from logic solvers in
each step via abstractions. Each generated model (1) increases in size by only
a handful number of elements, (2) satisfies all WF constraints (on a certain
level of abstraction), and (3) it is realistic in the sense that each model is a
single component (and not disconnected islands). The incremental derivation
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Fig. 1. Example Yakindu statechart with synchronisations.

of the result set provides graceful degradation, i.e. if the back-end solver fails
to synthesize models of size N (due to timeout), all previous model instances
are still available. From a practical viewpoint, the DSL engineer can influence
or assist the instance generation process by selecting the important fragment of
the analyzed metamodel (so called effective metamodel [4]). This is also common
practice for testing model transformations or code generators.

Structure of the Report. Next, Sect.2 introduces some preliminaries for
formalizing metamodels, constraints and partial snaptshots. Our approach is
presented in Sect.3 followed by an initial experimental evaluation in Sect. 4.
Related work is assessed in Sect. 5 while Sect. 6 concludes our paper.

2 Preliminaries

In this section we present an overview of model generation with logic solvers
with a running case study of Yakindu statecharts. Yakindu Statecharts Tools
[37] is an industrial integrated modeling environment developed by Itemis AG
for the specification and development of reactive, event-driven systems based on
the concept of statecharts captured in combined graphical and textual syntax.
Yakindu simultaneously supports static validation of well-formedness constraints
as well as simulation of (and code generation from) statechart models. A sample
statechart is illustrated in Fig. 1. Yakindu provides two types of synchronization
mechanisms: explicit synchronization nodes (marked as black rectangles) and
event-based synchronization (i.e. raising and consuming events).

Validation is crucial for domain-specific modelling tools to detect conceptual
design flaws early and ensure that malformed models does not processed by
tooling. Therefore missing validation rules are considered as bugs of the editor.
While Yakindu is a stable modeling tool, it is still surprisingly easy to develop
model instances as corner cases which satisfy all (implemented) well-formedness
constraints of the language but crashes the simulator or code generator due to
synchronization issues. One of such problems is depicted in Fig. 1 where (1) after
5s a (2) timeout event raised in region timer, but (3) it cannot be accepted in
state wait in the simulator and in the generated code.
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Our goal is to systematically synthesize such model instances by using logic
solvers in the background by mapping DSL specifications to a logic problem
[17,32]. Such model generation approach usually takes three inputs: (1) a meta-
model of the domain (Sect.2.1), (2) a set of well-formedness constraints of the
language (Sect.2.2), and optionally (3) a partial snapshot (Sect.2.3) serving as
an initial seed which generated models need to contain.

2.1 Domain Metamodel

Metamodels define the main concepts, relations and attributes of the target
domain to specify the basic structure of the models. In this paper, the Eclipse
Modeling Framework (EMF) is used for domain modeling, which is dominantly
used in many industrial DSL tools and modeling environments. The main con-
cepts are illustrated using Yakindu state graph metamodel [37] in Fig. 2.
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[1..1] trigger [0.#] incomingTransitions [1.1] target
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Fig. 2. Metamodel extract from Yakindu state machines

A state machine consists of Regions, which in turn contain states (called
Vertexes) and Transitions. An abstract state Vertex is further refined into Regu-
larStates (like State) and PseudoStates like Entry and Synchronization states. Note
that we intentionally kept the generalization hierarchy unchanged and simplified
the original metamodel only by removing some elements. Metamodel elements
are mapped to a set of logic relations as defined in [17,32]:

— Classes (CLS): In EMF, EClasses can be instantiated to EObjects, where the
set of objects of a model is denoted by objects. Additionally, the metamodel
can specify finite types with predefined set of enum = {l,...,[,} literals by
EEnums. For both classes and enums, if an o is an instance of a type C it is
denoted as C(o0).

— References (REF): EReferences between classes S and T capture a binary
relation R(S,T) of the metamodel. When two objects o and ¢ are in a relation
R, an EReference is instantiated leading from o to ¢t denoted as R(o, t).

— Attributes (ATT): EAttributes enrich a class C' with values of predefined
primitive types like integers, strings, etc. by binary relations A(C,V). If an
object o stores a value v as attribute A it is denoted as A(o,v).
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Further structural restrictions implied by a metamodel (and formalized in
[32]) include (1) Generalization (GEN) which expresses that a more specific
(child) class has every structural feature of the more general (parent) class, (2)
Type compliance (TC) that requires that for any relation R(o,t), its source
and target objects o and ¢ need to have compliant types, (3) Abstract (ABS):
If a class is defined as abstract, it is not allowed to have direct instances, (4)
Multiplicity (MUL) of structural features can be limited with upper and lower
bound in the form of “lower..upper” and (5) Inverse (INV), which states that
two parallel references of opposite direction always occur in pairs. EMF instance
models are arranged into a strict containment hierarchy, which is a directed
tree along relations marked in the metamodel as containment (e.g. regions or
vertices).

An instance model M is an instance of a metamodel Meta (denoted with
M = Meta) if all the corresponding constraints above are satisfied, i.e. Meta =
CLS NREF A --- N MULA INV [32]. Therefore a model generation task for a
given size s and a metamodel Meta can be solved as logic problem, where the
solver creates an interpretation for all class predicates, all reference and attribute
relations over the set of objects = {o01,...,0s} and sets of enum literals, which
satisfies all structural constraints.

2.2 Well-Formedness Constraints

Structural well-formedness (WF) constraints (aka design rules or consistency
rules) complement metamodels with additional restrictions that have to be sat-
isfied by a valid instance model (in our case, statechart model). Such constraints
are frequently defined by graph patterns [36] or OCL invariants [27]. To abstract
from the actual constraint language, we assume in the paper that WF constraints
are defined in first order logic. Given a set WF of well-formedness constraints,
a model M is called valid if M = Meta A WF.

Ezample. The Yakindu documentation states several constraints for statecharts
including the following ones regulating the use of synchronization states. (Abbre-
viated names of classes and references are used as predicates).

@1 Source states of a synchronization have to be contained in different regions!
Vsyn, s1, Sa,t1,te, 71,72 ¢
(Synchron(syn) A outgoing(s1,t1) A outgoing(ss, t2) A target(ty, syn)A
target(ta, syn) A vertices(r1, $1) A vertices(ra, S2) A 81 # $2) = 1 # T2

@, Source states of a synchronization are contained in the same parent state!
Vsyn, s1,S2,t1,t2,71,723p :
(Synchron(syn) A outgoing(s1,t1) A outgoing(sz, t2) A target(ty, syn)A
target(ta, syn) A vertices(r1, s1) A vertices(ra, $3) A $1 # S2)
= (regions(p, r1) A regions(p,72))

@3 Target states of a synchronization have to be contained in different regions!
Vsyn, s1, Sa,t1,t2, 71,72 ¢
(Synchron(syn) A incoming(s1,t1) A incoming(sa, t2) A source(ty, syn)A
source(ta, syn) A vertices(r1, s1) A vertices(ra, $3) A S1 # S2) = 11 £ 1o
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@, Target states of a synchronization are contained in the same parent state!
Vsyn, S1, 52, tl, tg, 1, 7’23]? :
(Synchron(syn) A incoming(s1,%1) A incoming(sz, t2) A source(ty, syn)A
source(te, syn) A vertices(ry, s1) A vertices(ra, s2) A $1 # S2)
= (regions(p,r1) A regions(p,r2))

@5 A synchronization shall have at least two incoming or outgoing transitions!
Vsyn : Synchron(syn) = 3t1,ta : t1 # ta A ((incoming(t1,syn) A
incoming(ts, syn)) V (outgoing(t, syn) A outgoing(ta, syn)))

2.3 Partial Snapshots

Partial Snapshots (PS) specify required instance model fragments of a meta-
model [32]. A partial snapshot is a model constructed from the same classes
and relations as a valid instance model. Formally, a PS satisfies the constraints
CLS, GEN, REF and TC, but it possibly violates ABS, ATT, MUL and INV,
which means that even abstract classes can be instantiated, and multiplicity
constraints, the inverse relation of references and containment hierarchy rules
might be violated. If a PS is a partial snapshot of a metamodel it is denoted
by PS Ep Meta. A model M contains a partial snapshot PS (denoted with
M = PS) if there is a morphism m : PS — M (composed of a pair of morphisms
objects pg — objects,, and references pg — references,, for mapping objects and
references) which satisfies the following constraints for each o1, 09 € objects pg:

1. m is injective: 01 # 02 = m(01) # m(02)

2. For each class C' the mapping preserves the type: C(o;) = C(m(o01))

3. For each reference R the mapping preserves the source and the target of the
reference: R(01,02) = R(m(o1), m(02))

4. For each attribute A the mapping preserves the attribute value v and the
location: A(o1,v) = A(m(o1),v)

A partial snapshot can be generalized from a regular (fully specified) instance
model by relaxing specific properties identified by the DSL developer [32] to guide
testing in practical cases. In the current paper, we create partial snapshots by
iteratively reusing the instance models generated in a previous run to achieve
incremental model generation (see Sect.3.3).

3 Incremental Model Generation by Approximations

Despite the precise definition of logic formulae for our statechart language using
existing mappings [32], a major practical drawback is that a direct (single step)
model generation using Z3 or Alloy as back-end solver only terminates for very
small model sizes. If we aim to improve scalability by omitting certain con-
straints, the synthesized models are no longer well-formed thus they cannot be
fed into Yakindu as sample models.

To increase the size of synthesized models while still keeping them well-
formed, we propose an incremental model generation approach (Sect.3.3) by
iterative calls to backend solvers exploiting two enabling techniques of meta-
model pruning (Sect. 3.1) and constraint approximation (Sect. 3.2).
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Fig. 3. Metamodel pruning with overapproximation

3.1 Metamodel Pruning

Metamodel pruning [13,33] takes a metamodel Meta as input and derives a
simplified (pruned) metamodel Metap as output by removing some EClasses,
EReferences and FEAttributes. When removing a class from a metamodel, we
need to remove all subclasses, all attributes and incoming or outgoing references
to obtain a consistent pruned metamodel. Formally, we may iteratively remove
certain predicates from Meta by pruning as follows:

— EReference: if R(S,T) € Meta then R(S,T) ¢ Metap;

— EAttributes: if A(C,V) € Meta then A(C,V) & Metap;

— EClasses: if C € Meta and sub(C, Sub) € Metap and A(C,V) & Metap and
R(C,T) & Metap and R(S,C) & Metap then C & Metap;

Ezample. We prune our statechart metamodel in two phases (see the slices in
Fig.2): classes Trigger, Guard and Action are omitted together with incoming
references (Stage II), and then classes Transition, Pseudostate, Entry and Syn-
chronization are removed (Stage I).

By using metamodel pruning, we first aim to generate valid instance models
for the pruned metamodel and then extend them to valid instance models of
the original larger metamodel. For that purpose, we exploit a property we call
the overapprozimation property of metamodel pruning (see Fig. 3), which ensures
that if there exist a valid instance model M for a metamodel Meta (formally,
M | Meta) then there exists a valid instance model Mp for the pruned meta-
model Metap (formally, Mp |= Metap) such that Mp is a partial snapshot of M
(Mp C M). Consequently, if a model generation problem is unsatisfiable for the
pruned metamodel, then it remains unsatisfiable for the larger metamodel. How-
ever, we may derive a pruned instance model Mp which cannot be completed in
the full metamodel Meta, which is called a false positive.

Ezxample. The statechart model in the middle of Fig. 3 corresponds to the pruned
metamodel after Stage II. In our example, it can be extended by adding transi-
tions and entry states to the model illustrated in the right side of Fig. 3, which
now corresponds to the pruned metamodel of Stage I.
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Fig. 4. Constraint pruning and approximation

3.2 Constraint Pruning and Approximation

When removing certain metamodel elements by pruning, related structural con-
straints (such as multiplicity, inverse, etc.) can be automatically removed, which
trivially fulfills the overapproximation property. However, the treatment of addi-
tional well- formedness constraints needs special care since simple automated
removal would significantly increase the rate of false positives in a later phase of
model generation to such an extent that no intermediate models can be extended
to a valid final model.

Based on some first-order logic representation of the constraints (derived
e.g. in accordance with [32]), we propose to maintain approximated versions of
constraint sets during metamodel pruning. In order to investigate the interre-
lations of constraints, we assume that logical consequences of a constraint set
can be derived manually by experts or automatically by theorem provers [21].
The actual derivation approach falls outside the scope of the current paper.
Given a DSL specification with a metamodel Meta and a set of WF constraints
WF = {®4,...,P,}, let  be a formula derived as a theorem WF + &.

Now an overapprozimation of formula @ over metamodel Meta for a pruned
metamodel Metap is a formula @p such that (1) & = Pp, (2) $p contains
symbols only from Metap. The details of approximation are illustrated in Fig. 4
where R denotes a relation symbol derived for class or reference predicates in
accordance with the metamodel. While more precise approximations can possibly
be defined in the future, the current approximation is logically correct as if a
model generation problem is unsatisfiable for an approximated set of constraints
(over the pruned metamodel) then it remains unsatisfiable for the original set of
constraints.

Ezample. Based on the set of WF constraints {®1, P2, P3, Py, P5} defined in
Sect. 2.2, a prover can derive the following formula as a theorem over the meta-
model of Stage II: gZ)syncout \/djsyncina where @17 @5 }: gzssyncout \/(Psyncin' The gen-
erated theorem Pgyncout (a0d Poynein) restricts the number of outgoing (ingoing)
transitions from (to) a synchronization as follows:

Dsyncout = VsynIty, to, s1,71,72,p : Synchron(syn) =
(outgoing(syn, t1) A target(ty, s1) A outgoing(syn, t2) A target(ta, s2) A s1 # SaA
vertices(ry, $1) A vertices(r2, s2) A ry # 1o A regions(p, r1) A regions(p, r2))
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The variables and relations approximated in this phase are underlined: in
Stage I the generation is restricted to the model by omitting transitions. The
result of overapproximation states that if a model contains a synchronization,
then needs to contain at least two regions:

3 v $9 = Vsyn3sy, 71,72, p : Synchron(syn) =

syncout syncin

(s1 # saAvertices(r1, s1) Avertices(r2, s2) Ary # ra Aregions(p, 1) Aregions(p, 72))

Applying the approximation rules of Fig.4 directly on {&,P5} would lead
to @ : true and @Y : true. These constraints are too coarse overapproximations
providing no useful information to the model generator at this phase.

3.3 Incremental Model Generation by Iterative Solver Calls

By using metamodel pruning, we first aim to generate valid instance models for
the pruned metamodel, which is a simplified problem for the underlying logic
solver. Instance models of increasing size will be gradually generated by using
valid models of the pruned metamodel as partial snapshots (i.e. initial seeds) for
generating instances for a larger metamodel. Therefore, an incremental model
generation task is also given with a target size s and a target metamodel Meta,
but with an additional partial snapshot Mp. Mp is a valid instance of pruned
metamodel Metap. Mp has sp number of objects (sp < s).

From a logic perspective, the partial snapshot defines a partial interpreta-
tion of relations for model generation, which may simplify the task of the solver
compared to using fully uninterpreted relations. In order to exploit this addi-
tional information, the relations in the logic problem are partitioned into two
sets of interpreted and uninterpreted symbols. objects p = {01,...,0s, } are the
objects in the partial snapshot. The extra objects to be generated in this step are
denoted by objects y = {0sp+1,--.,0s . The relations are partitioned according
to the following rules:

— Classes (CLS): Each class predicate C(o) in Meta is separated into two:
a fully interpreted Cp(o) predicate for the objects in the partial snap-
shot objects p, and an uninterpreted Cn(0) for the newly generated objects
objects ;. Therefore an object o is instance of a class C' in the generated
model if Cp(0) V Cn(0) is satisfied. If the class is not in the pruned meta-
model (C & Metap) then Cp(0) is to be omitted, and if no new elements are
created from a class then Cn(0) can be omitted.

— References (REF): Each reference predicate R(o,t) is separated into four
categories: a fully interpreted Rpo(o,t) between the objects of the partial
snapshot (objectsp), an uninterpreted Ry (0,t) between the objects of the
newly created objects (objectsy ), and two additional uninterpreted relations
Ron(o,t) and Ryo(o,t) connecting the elements of the partial snapshot with
the newly created elements (relations over objects, X objects 5 and objects ;X
objects respectively). Therefore a reference R(o,t) exists in the generated
model if Rpo(0,t) V Ryn(0,t) V Ryo(o,t) V Ron(o,t). If the relation is not
in the pruned metamodel (R ¢ Metap) then Roo(0,t) can be omitted, and
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Fig. 5. Model generation iterations

if no new elements are created from a class then Ryn(0,t), Ryo(o,t) and
Ron(o,t) can also be omitted.

— Attributes (ATT): Attribute predicates are separated into a fully inter-
preted Ap(o,v) for the objects in the partial snapshots objects p, and an unin-
terpreted relation Ay (o, v) for the newly created elements objects . An object
o0 has an attribute value v (A(o,v)) if Ap(0,v)V An(0,v). Attribute predicates
are treated as reference predicates for omission.

The level of incrementality is still unfortunately limited from an important
aspect. The background solvers typically provide no direct control over the simul-
taneous creation of new elements, i.e. we cannot provide domain- specific hints
to the solver when the creation of an object always depends on the creation or
existence of another object. This can still cause issues when a multitude of WF
constraints are defined.

Example. In our running example, the instance models are generated in four
steps, which is illustrated in Fig. 5. First, initial seeds are generated for the state
hierarchy (M; over Meta,), which are extended in the second step to model Mo
with the same metamodel elements. Then the metamodel is extended to Metas,
and the transitions and the initial states are added to model Mj3. Finally, triggers,
guards and actions can be added to the model to obtain Mjy.

4 Measurements

In order to assess the effectiveness of incremental model generation using
constraint approximation for synthesizing well-formed instance models for
domain-specific languages, we conducted some initial experiments using the Alloy
Analyzer as background solver. We were interested in the following questions:
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— Is incremental model generation with metamodel pruning and constraint
approximation effective in increasing the size of models, the success rate or
decreasing the runtime of the solver?

— Is incremental model generation still effective if metamodel pruning or con-
straint approximation is excluded?

Configurations. We conducted measurements on two versions of the Yakindu
statechart metamodel: Phase 1 and Phase 2 (see Fig. 2). The pruned metamodel
of Phase 1 (MM1) contains 8 classes and 2 references, and no well- formedness
constraints by default. The metamodel of Phase 2 (MM2) contains 10 classes, 4
references and 8 constraints (including the 5 WF constraints listed in the paper
and 3 more for restricting entry states).

— As a base configuration, the Alloy Analyzer is executed separately for the two
problems with 1 min timeout. We record two cases: the largest model derived
and a slightly larger model size where timeout was observed.

— Next, we run the solver incrementally with an initial model of size N and an
increment of size K denoted as N + K in Fig. 6 without constraint approx-
imation but with metamodel pruning. Moreover, instance models derived for
Phase 1 are used as partial snapshots for Phase 2.

— Then we run the solver incrementally with constraint approximation but with-
out metamodel pruning. For that purpose, the constraint set for Phase 1
constains two approximated constraints: (1) Each region has a state where
the entry state will point, and (2) There are orthogonal states in the model.
Again, instance models derived for Phase 1 are used as partial snapshots for
Phase 2, but the full metamodel is considered in Phase 2.

— Finally we configure the solver for full incrementally with constraint approx-
imation and metamodel pruning by reusing instances of Phase 1 as partial
snapshots in Phase 2.

Measurement Setup. Each model generation task was executed on the DSL
presented in this paper 5 times using the Alloy Analyzer (with SAT4j- solver),
then the median of the execution times was calculated. The measures are exe-
cuted with one minute timeout on an average personal computer'. We measure
the runtime of model generation, the model size denoting the maximal number
of elements the derived model may contain, and the success rate denoting the
percentage of cases when a well-formed model was derived, which satisfies all
WF constraints within the given search scope.

Measurement Results. Results of our measurements are summarized in Fig. 6.
We summarize our observations below.

! CPU: Intel Core-i5-m310M, MEM: 16GB but the back-end solver can use 4GB only,
OS: Windows 10 Pro, Reasoner: Alloy Analyzer 4.2 with sat4j.
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MM1 MM2
#CLS:X #REF:Y  #WF:Z #CLS:X #REF:Y #WF:Z
8 2 0+2 10 4 8

Incre- MM Constraint Model Success Model  Success

mental Pruning  Approx |Runtime (ms) size (#) rate (%) | Runtime (ms) size (#) rate (%)
Base No No No 18349 60 100% 39040 12 0%
Timeout 70 N/A| Timeout 16 N/A
W/o Prune Yes No Yes 7327 + 11176 50+50 100%| Timeout 16 N/A
W/o Approx Yes Yes No 12600+34804 50+50 100%[230 + 183465 20+30 0%
Full Yes Yes Yes 7327 + 11176 50+50 100%|1644 + 44362 20+30 100%

Fig. 6. Measurement results

— Base. For MM1, Alloy was able to generate models with up to 60 objects.
As there are no constraints at this level, many synchronizations are created
(about half of the objects were synchronization and with only 5-10 states).
Over 60 objects, the runtime grows rapidly as the SAT solver runs out of the
maximal 4 GB memory. For MM2, Alloy was unable to create any models
that satisfies all of the constraints as the search scope turned out to be too
small to create valid models with synchronizations.

— W /o Approx. Alloy was able to generate models with 100 elements in two
steps where each iterative step had comparable runtime. However, since no
constraints are considered for MM1, Alloyed failed to extend partial snapshots
of MM1 to well-formed models for MM2 (success rate: 0%, although for this
specific case, we executed over 100 runs of the solver due to the unexpectedly
low success rate). Furthermore, we had to reduce the scope of search to 20
and 30 new elements with types taken from MM2 \ MM due to timeouts.

— W /o Prune. When metamodel pruning was excluded but approximated con-
straints were included for MM1, model generation succeeded for 100 elements,
but extending them to models of MM2 failed (as in this case, new elements
could take any elements from MM2)

— Full. With incremental model generation by combining metamodel pruning
and constraint approximation, we were able to generate well-formed models
for both MM1 and MM2, which was the only successful case for the latter.

Analysis of Results. While we used a reasonably sized statechart meta-
model extracted from a real modeling tool (including everything to model state
machines, but excluding imports and namespacing), we avoid drawing generic
conclusions for the exact scalability of our results. Instead, we summarize some
negative results which are hardly specific to the chosen example:

— Mapping a model generation problem to Alloy and running the Alloy Ana-
lyzer in itself will likely fail to derive useful results for practical metamodels,
especially, in the presence of complex well-formedness constraints. Our obser-
vation is that many objects need to be created at the same time in consistent
way, which cannot be efficiently handled by the underlying solver (either the
scope is too small or out-of-memory). Altogether, the Alloy Analyzer was more
effective in finding consistent model instance than proving that a problem is
inconsistent, thus there are no solutions.



Iterative and Incremental Model Generation by Logic Solvers 99

Table 1. Comparison of related approaches

Logic |Uncertain|Rule-Based Iterative
Solvers| Models |Generators Solver Call
Partial Snapshot| + ++ - +

Jﬁ Effective Metamodel| - - + +

= Local Constraints| + - + +

- Global Constraints| + - - +

«» |Metamodel-compliant| + + + +

é Well-formed| + - - +

b= Diverse| - - + ?

© Scalable| - - ++ +/-

Decidability| - + + - (graceful degradation)

— An incremental approach with metamodel pruning but without constraint
approximation will increase the overall size of the derived models, but the
false positive rate would quickly increase.

— An incremental approach without metamodel pruning but with constraint
approximation will likely have the same pitfalls as the original Alloy case:
either the scope of search will become insufficient, or we run out of memory.

— Combining incremental model generation with metamodel pruning and con-
straint approximation is promising as a concept as it significantly improved
wrt. the baseline case. But the underlying solver was still not sufficiently pow-
erful to guarantee scalability for complex industrial cases.

5 Related Work

We compared our solution with existing model generation techniques with
respect to the characteristics of inputs and output results in Table1. As for
inputs, the model generation can be (1) initiated from a partial snapshot, (2)
focused on an effective metamodel. Additionally, an approach may support (3)
local and (4) global constraints well-formedness constraints: a local constraint
accesses only the attributes and the outgoing references of an object, while a
global constraint specifies a complex structural pattern. Local constraints are
frequently attached to objects (e.g. in UML class diagrams), while global con-
straints are widely used in domain-specific modeling languages. As outputs, the
generated models may (i) be metamodel-compliant (ii) satisfy all well-formedness
constraints of the language. When generated models are intended to be used as
test cases, some approaches may guarantee a certain level of coverage or (iii)
diversity. We consider a technique (iv) scalable if there is no hard limit on the
model size (as demonstrated in the respective papers). Finally, a model gen-
eration approach may be (v) decidable which always terminates with a result.
Our comparison excludes approaches like which do not guarantee metamodel-
compliance of generated instance models.
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Logic Solver Approaches. Several approaches map a model generation prob-
lem (captured by a metamodel, partial snapshots, and a set of WF constraints)
into a logic problem, which are solved by underlying SAT/SMT-solvers. Com-
plete frameworks with standalone specification languages include Formula [17]
(which uses Z3 SMT- solver [26]), Alloy [16] (which relies on SAT solvers like
Sat4j [23]) and Clafer [2] (using backend reasoners like Alloy).

There are several approaches aiming to validate standardized engineering
models enriched with OCL constraints [14] by relying upon different back-end
logic-based approaches such as constraint logic programming [6,8,9], SAT-based
model finders (like Alloy) [1,7,22,34,35], first-order logic [3], constructive query
containment [28], higher-order logic [5,15], or rewriting logics [10].

Partial snapshots and WF constraints can be uniformly represented as con-
straints [32], but metamodel pruning is not typical. Growing models are sup-
ported in [19] for a limited set of constraints. Scalability of all these approaches
are limited to small models / counter-examples. Furthermore, these approaches
are either a priori bounded (where the search space needs to be restricted explic-
itly) or they have decidability issues.

The main difference of our current approach is its iterative derivation of mod-
els and the approximative handling of metamodels and constraints. However, our
approach is independent from the actual mapping of constraints to logic formu-
lae, thus it could potentially be integrated with most of the above techniques.

Uncertain Models. Partial models are also similarity to uncertain models,
which offer a rich specification language [12,29] amenable to analysis. Uncertain
models provide a more expressive language compared to partial snapshots but
without handling additional WF constraints. Such models document semantic
variation points generically by annotations on a regular instance model, which
are gradually resolved during the generation of concrete models. An uncertain
model is more complex (or informative) than a concrete one, thus an a priori
upper bound exists for the derivation, which is not an assumption in our case.

Potential concrete models compliant with an uncertain model can synthesized
by the Alloy Analyzer [31], or refined by graph transformation rules [30]. Each
concrete model is derived in a single step, thus their approach is not iterative like
ours. Scalability analysis is omitted from the respective papers, but refinement
of uncertain models is always decidable.

Rule-based Instance Generators. A different class of model generators relies
on rule-based synthesis driven by randomized, statistical or metamodel coverage
information for testing purposes [4,13]. Some approaches support the calculation
of effective metamodels [33], but partial snapshots are excluded from input spec-
ifications. Moreover, WF constraints are restricted to local constraints evaluated
on individual objects while global constraints of a DSL are not supported. On
the positive side, these approaches guarantee the diversity of models and scale
well in practice.
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Iterative Approaches. An iterative approach is proposed specifically for allo-
cation problems in [20] based on Formula. Models are generated in two steps to
increase diversity of results. First, non-isomorphic submodels are created only
from an effective metamodel fragment. Diversity between submodels is achieved
by a problem-specific symmetry-breaking predicate [11] which ensures that no
isomorphic model is generated twice. In the second step the algorithm com-
pletes the different submodels according to the full model, but constraints are
only checked at the very final stage. This is a key difference in our approach
where an approximation of constraints is checked at each step, which reduces
the number of inconsistent intermediate models. An iterative, counter-example
guided synthesis is proposed for higher-order logic formulae in [24], but the size
of derived models is fixed.

6 Conclusion and Future Work

The validation of DSL tools frequently necessitates the synthesis of well-formed
and realistic instance models, which satisfy the language specification. In the
paper, we proposed an incremental model generation approach which (1) itera-
tively calls black- box logic solvers to guarantee well-formedness by (2) feeding
instance models obtained in a previous step as partial snapshots (compulsory
model fragments) to a subsequent phase to limit the number of new elements,
and using (3) various approximations of metamodels and constraints. Our initial
experiments show that significantly larger model instances can be generated with
the same solvers using such an incremental approach especially in the presence
of complex well-formedness constraints.

However, part of our experimental results are negative in the sense that the
proposed iterative approach is still not scalable to derive large model instances of
complex industrial languages due to restrictions of the underlying Alloy Analyzer
and the SAT solver libraries. We believe that dedicated decision procedures and
heuristics for graph models would be beneficial in the long run to improve the
performance of model generation.

As future work, we aim to generate a structurally diverse set of test cases by
enumerating different possible extensions of a partial snapshot in each iteration
step. Additionally, we plan to check other underlying solvers and further approx-
imations and strategies for deriving relevant formulae as logical consequences of
constraints. And finally, we will investigate if the metamodel partitions and the
iteration steps can be automatically created, thus creating a (semi-)automated
process with improved DSL-specific heuristics.
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