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Abstract. A number of novel programming languages and libraries
have been proposed that offer simpler-to-use models of concurrency
than threads. It is challenging, however, to devise execution models that
successfully realise their abstractions without forfeiting performance or
introducing unintended behaviours. This is exemplified by Scoop—a
concurrent object-oriented message-passing language—which has seen
multiple semantics proposed and implemented over its evolution. We
propose a “semantics workbench” with fully and semi-automatic tools
for Scoop, that can be used to analyse and compare programs with
respect to different execution models. We demonstrate its use in check-
ing the consistency of semantics by applying it to a set of representative
programs, and highlighting a deadlock-related discrepancy between the
principal execution models of the language. Our workbench is based on
a modular and parameterisable graph transformation semantics imple-
mented in the Groove tool. We discuss how graph transformations are
leveraged to atomically model intricate language abstractions, and how
the visual yet algebraic nature of the model can be used to ascertain
soundness.

1 Introduction

To harness the power of multi-core and distributed architectures, software engi-
neers must program with concurrency, asynchronicity, and parallelism in mind.
Classical thread-based approaches to concurrent programming, however, are dif-
ficult to master and error prone. To address this, a number of programming APIs,
libraries, and languages have been proposed that provide safer and simpler-to-use
models of concurrency, such as the block-dispatch model of Grand Central Dis-
patch [14], or the message-passing-based model of Scoop [40]. The concurrent
programming abstractions that these languages provide rely on the existence of
effective execution models for realising them; effective in the sense that they do
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so without forfeiting performance or introducing unintended behaviours. Devis-
ing execution models that successfully reconcile these requirements, however,
is challenging: a model that is too restrictive can deny desirable concurrency
and lead to unnecessary bottlenecks; a model that is too permissive can lead to
surprising and unexpected executions.

This challenge is exemplified by Scoop [40], a message-passing para-
digm for concurrent object-oriented programming that aims to preserve the
well-understood modes of reasoning enjoyed by sequential programs, such as
pre- and postcondition reasoning over blocks of code. Although the high-level
language mechanisms for achieving this were described informally as early as
the ‘90s [24,25], it took several years to understand how to effectively imple-
ment them: execution models [6,26,40], prototypes [28,37], and contrasting ver-
sions of a production-level implementation [11] gradually appeared over the last
decade, and can be seen as representing multiple, partially conflicting semantics
for realising Scoop. They are also unlikely to be the last, as new language fea-
tures continue to be proposed, prototyped, and integrated, e.g. [27]. Despite the
possible ramifications to behavioural and safety properties of existing programs,
little work has been done to support formal and automatic comparisons of the
program executions permitted by these different semantics. While general, tool-
supported formalisations exist—in Maude’s conditional rewriting logic [26], for
example, and in a custom-built Csp model checker [6]—these are tied to partic-
ular execution models, do not operate on program source code, and are geared
towards “testing” the semantics rather than general verification tasks. Further-
more, owing to the need to handle waiting queues, locks, asynchronous remote
calls, and several other intricate features of the Scoop execution models, these
formalisations quickly become complex, making it challenging to ascertain their
soundness with language designers who lack a formal methods background.

The Challenge. There is a need for languages like Scoop to have tools that
not only support the prototyping of new semantics (and semantic extensions),
but that also facilitate formal, automatic, and practical analyses for comparing
the executions permitted by these semantics, and highlighting where behavioural
and safety-related discrepancies arise. The underlying formalism for modelling
the semantics should not be ad hoc; rather, it should support re-use, a modular
design, and be easily extensible for language evolutions and changes. Further-
more, such tools should be usable in practice: the modelling formalism must be
accessible to and understandable by software engineers, and the analyses must
support several idiomatic uses of the language mechanisms.

Our Contributions. We propose a “semantics workbench” equipped with fully
and semi-automatic tools for Scoop, that can be used to analyse and compare
programs with respect to different execution models for the purpose of check-
ing their consistency. We demonstrate its use by formalising the two principal
execution models of Scoop, analysing a representative set of programs with
respect to both, and highlighting some behavioural and deadlock-related discrep-
ancies that the workbench uncovers automatically. Our workbench is based on a
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modular and parameterisable graph transformation system (Gts) semantics,
built upon our preliminary modelling ideas in [18], and implemented in the
general-purpose Gts analysis tool Groove [16]. We leverage this powerful for-
malism to atomically model complex programmer-level abstractions, and show
how its inherently visual yet algebraic nature can be used to ascertain soundness.
For language designers, this paper presents a transferable approach to checking
the consistency of competing semantics for realising concurrency abstractions.
For the graph transformation community, it presents our experiences of applying
a state-of-the-art Gts tool to a non-trivial and practical problem in program-
ming language design. For the broader verification community, it highlights a
need for semantics-parameterised verification, and shows how Gts-based for-
malisms and tools can be used to derive an effective and modular solution. For
software engineers, it provides a powerful workbench for crystallising their men-
tal models of Scoop, thus helping them to write better quality code and (where
need be) port it across different Scoop implementations.

Plan of the Paper. After introducing the Scoop concurrency paradigm and its
two most established execution models (Sect. 2), we introduce our formal mod-
elling framework based on Gts, and show how to formalise different, parameter-
isable Scoop semantics (Sect. 3). Implementing our ideas in a small toolchain
(Sect. 4) allows us to check the consistency of semantics across a set of represen-
tative Scoop programs (Sect. 5), and highlight both a behavioural and deadlock-
related discrepancy. To conclude, we summarise some related work (Sect. 6), our
contributions, and some future research directions (Sect. 7).

2 SCOOP and its Execution Models

Scoop [40] is a message-passing paradigm for concurrent object-oriented pro-
gramming that aims to preserve the well-understood modes of reasoning enjoyed
by sequential programs; in particular, pre- and postcondition reasoning over
blocks of code. This section introduces the programmer-level language mech-
anisms and reasoning guarantees of Scoop, as well as its two most estab-
lished execution models. These will be described in the context of Scoop’s
production-level implementation for Eiffel [11], but the ideas generalise to any
object-oriented language (as explored, e.g. for Java [37]).

Language Mechanisms. In Scoop, every object is associated with a handler
(also called a processor), a concurrent thread of execution with the exclusive
right to call methods on the objects it handles. In this context, object references
may point to objects with the same handler (non-separate objects) or to objects
with distinct handlers (separate objects). Method calls on non-separate objects
are executed immediately by the shared handler. To make a call on a separate
object, however, a request must be sent to the handler of that object to process
it: if the method is a command (i.e. it does not return a result) then it is executed
asynchronously, leading to concurrency; if it is a query (i.e. a result is returned
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and must be waited for) then it is executed synchronously. Note that handlers
cannot synchronise via shared memory: only by exchanging requests.

The possibility for objects to have different handlers is captured in the
type system by the keyword separate . To request method calls on objects
of separate type, programmers simply make the calls within separate blocks.
These can be explicit (we will use the syntax separate x,y, . . . do . . . end);
but they also exist implicitly for methods with separate objects as parameters.

Reasoning Guarantees. Scoop provides certain guarantees about the order
in which calls in separate blocks are executed to help programmers avoid con-
currency errors. In particular, method calls on separate objects will be logged
as requests by their handlers in the order that they are given in the program
text; furthermore, there will be no intervening requests logged from other han-
dlers. These guarantees exclude object-level data races by construction, and
allow programmers to apply pre- and postcondition reasoning within separate
blocks independently of the rest of the program. Consider the following example
(adapted from [40]), in which two distinct handlers are respectively executing
blocks that set the “colours” of two separate objects:

separate x,y
do

x.set_colour (Green)
y.set_colour (Green)

end

separate x,y
do

x.set_colour (Indigo)
a_colour = x.get_colour
y.set_colour (a_colour)

end

The guarantees ensure that whilst a handler is inside its separate x,y block,
the other handler cannot log intervening calls on x or y. Consequently, if the
colours are later queried in another separate x,y block, both of them will
be Green or both of them will be Indigo; interleavings permitting any other
combination to be observed are entirely excluded. This additional control over
the order in which requests are processed represents a twist on classical message-
passing models, such as the actor model [1], and programming languages like
Erlang [2] that implement them.

Execution Models. The abstractions of Scoop require an execution model
that can realise them without forfeiting performance or introducing unintended
behaviours. Two contrasting models have been supported by different versions of
the implementation: initially, a model we call Request Queues (RQ) [26], and a
model that has now replaced it which we will call Queues of Queues (QoQ) [40].

The RQ execution model associates each handler with a single Fifo queue
for storing incoming requests. To ensure the reasoning guarantees, each queue
is protected by a lock, which another handler must acquire to be able to log a
request on the queue. Realising a separate x,y,. . . block then boils down
to acquiring locks on the request queues attached to the handlers of x,y,. . .
and exclusively holding them for the duration of the block. This coarse-grained
solution successfully prevents intervening requests from being logged, but leads
to performance bottlenecks in several situations (e.g. multiple handlers vying for
the lock of a highly contested request queue).



A Graph-Based Semantics Workbench 35

In contrast, the QoQ execution model associates each handler with a Fifo
queue that itself contains (possibly several) Fifo subqueues for storing incoming
requests. These subqueues represent “private areas” for handlers to log requests
without interference from other handlers. Realising a separate x,y,. . . block
no longer requires vying for locks; instead, the handlers of x,y,. . . simply
generate private subqueues on which requests can be logged without interruption
for the duration of the block. If another handler also wants to log requests, then
a new private subqueue is generated for it and its requests can be logged at the
same time. The QoQ model removes the performance bottlenecks caused by the
locks of RQ, while still ensuring the Scoop reasoning guarantees by completely
processing subqueues in the order that they were generated.

Figure 1 visualises three handlers (h1, h2, h3) logging requests (green blocks)
on another handler (h0) under the two execution models. Note that the RQ and
QoQ implementations (i.e. compilers and runtimes) include additional optimi-
sations, and strictly speaking, can themselves be viewed as competing semantics.

Fig. 1. Logging requests under the RQ (left) and QoQ (right) execution models

Semantic Discrepancies. Discrepancies between the execution models can
arise in practice. In the mental model of programmers, with RQ, separate
blocks had become synonymous with acquiring and holding locks—which are
not implied by the basic reasoning guarantees or the QoQ model. This discrep-
ancy comes to light with the classical dining philosophers program (as provided
in the official Scoop documentation [11]), which will form a running example for
this paper. Under RQ, Listing 1 (“eager” philosophers) solves the problem by
relying on the implicit parallel acquisition of locks on the forks’ handlers; no two
adjacent philosophers can be in their separate blocks (representing “eating”) at
the same time. Under RQ, Listing 2 (“lazy” philosophers) can lead to circular
deadlocks, as philosophers acquire the locks in turn. With QoQ however—where
there is no implicit locking—neither version represents a solution, and neither
can cause a deadlock; yet the basic guarantees about the order of logged requests
remain satisfied. We will return to this example in later sections, and show how
such discrepancies can be detected by our workbench.

3 A Graph-Based Semantic Model for the SCOOP
Family

There are several established and contrasting semantics of Scoop [6,18,26,29,
40], including a comprehensive reference semantics for RQ in Maude’s condi-
tional rewriting logic [26], and a semantics for the core of QoQ in the form of



36 C. Corrodi et al.

separate left_fork , right_fork
do

left_fork.use
right_fork.use

end

Listing 1. Eager philosophers

separate left_fork
do

separate right_fork
do

left_fork.use
right_fork.use

end
end

Listing 2. Lazy philosophers

simple structural operational rules [40]. These formalisations, however, cannot
easily be used for semantic comparisons, due to their varying levels of detail,
coverage, extensibility, and tool support. Hence we present in this section “yet
another” semantic model, called Scoop-Gts, based on our preliminary mod-
elling ideas for RQ in [18], using the formalism of graph transformation systems
(Gts).

Our reasons to introduce Scoop-Gts are manifold: (a) we need a common
modelling ground that can be parameterised by models of RQ and QoQ; (b)
known models based on algebra, process calculi, automata, or Petri nets do not
straightforwardly cover Scoop’s asynchronous concurrent nature, or would hide
these features in intricate encodings; (c) existing approaches are often proposed
from a theoretician’s point of view and are not easily readable by software engi-
neers, whereas graphs and diagrammatic notations (e.g. Uml) might already be
used in their everyday work. Choosing graph transformations as our base for-
malism is well-justified, as they satisfy the above requirements, and reconcile the
goal to have a theoretically rigorous formalisation with the goal to be accessible
to software engineers, e.g. for expert interviews with the language implementers
(see [31] for a detailed discussion of the pros and cons of Gts in this setting). The
“non-linear” context of graph rewriting rules proves to be a powerful mechanism
for defining semantics and their interfaces for parameterisation.

We formalised Scoop-Gts using the state-of-the-art Gts tool Groove [17].
Due to limited space, we provide all the files necessary to browse our Gts model
as supplementary material [36], including input graphs generated from the exam-
ple programs of Sect. 5 that can be simulated, analysed, and verified.

SCOOP-Graphs. Each global configuration of a Scoop program, i.e. snap-
shot of the global state, is represented by a directed, typed attributed graph
consisting of (i) handler nodes representing Scoop’s handlers, i.e. basic execu-
tion units; (ii) a representation of each handler’s local memory (i.e. “heap” of
non-separate objects) and its known neighbourhood, consisting of references to
separate objects that can be addressed by queries and commands; (iii) a repre-
sentation of each handler’s stack, via stack frames that model recursive calls to
non-separate objects; (iv) requests for modelling separate calls, which are stored
in (v) subgraphs representing each handler’s input work queue; (vi) a global con-
trol flow graph (Cfg) presenting the program’s execution blocks (consisting of
states and actions/transitions in-between); (vii) relations to model inter-handler
and handler-memory relations (e.g. locking, waiting, etc.) and to assign each
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Fig. 2. Reachable deadlock under RQ for the lazy philosophers program (Listing 2)
simplified from Groove output with additional highlighting and information in colour

handler to its current state in the Cfg; and (viii) additional bookkeeping nodes,
e.g. containing information on detected deadlocks, and nodes to model the inter-
faces/contexts for semantic parameterisation. An example Scoop-Graph can be
seen in Fig. 2, depicting a configuration with two concurrently running and two
idle handlers.

GTS-Based Operational Semantics. The operational semantics of Scoop-
Gts is given by graph-rewriting rules that are regimented by control programs.
An example rule, concisely written using nesting as supported by Groove, can
be seen in Fig. 3. Note that nested rules (including ∀- and ∃-quantification) allow
us to express complex, atomic rule matchings in a relatively straightforward
and brief way (compared to rules in classical operational semantics, e.g. in [40]
for multiple handler reservations). A simplified, example control program can
be seen in Listing 3. Control programs allow us to make an execution model’s
scheduler explicit (and thus open to parameterisation) and help us to implement
“garbage collection” for the model (e.g. removing bookkeeping edges no longer
needed). Furthermore, they provide a fine-grained way to control the atomicity
of Scoop operations, by wrapping sequences of rule applications into so-called
recipes.

Semantic Modularity of SCOOP-GTS. We support semantic parameterisa-
tion for Scoop-Gts by providing fixed module interfaces in the graph via spe-
cial “plug-in nodes/edges” (e.g. WorkQueue , Memory, StackFrame in Fig. 2),
and changing only the set of Gts rules that operate on the subgraphs that they
guard. We have modelled both RQ and QoQ with distinct sets of rules that
operate on the subgraphs guarded by WorkQueue : we call the model parame-
terised by RQ and QoQ respectively Scoop-Gts(RQ) and Scoop-Gts(QoQ).
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initialize_model ; // call gts rule for initialisation

while (progress & no_error) {

for each handler p: // choose handlers under some scheduling strategy

alap handler_local_execution_step(p)+; // each handler executes local actions as long as possible

try synchronisation_step; // then try (one) possible global synchronisation step

}

recipe handler_local_execution_step (p){

try separate_object_creation (p)+; // try local actions that are possibly applicable

else try assignment_to_variable (p)+;

else try ... ; // sequentially try all other possible actions

try clean_up_model +; // do some"garbage collection" to keep the model small

}

recipe synchronisation_step (){

reserve_handlers | dequeue_task | ...; // non - deterministically try to synchronise

}

... // remaining recipes (core functionality)

// ---------- plug in -------------------------------------------------------------------------------

recipe separate_object_creation (p){ // provide different implementations for RQ and QoQ

... // and parameterise the control program

}

... // remaining recipes that are plugged in

Listing 3. Simplified control program (in Groove syntax)

As well as parameterising the queue semantics, it is possible to model different
recursion schemes, memory models, and global interprocess synchronisations.

This semantic modularity also permits us to directly apply abstractions to
Scoop-Gts, e.g. changing the queue’s semantics to a bag’s counting abstraction,
or flattening recursion. This could prove useful for providing advanced verifica-
tion approaches in the workbench.

Fig. 3. Simplified QoQ rule for entering a separate x,y,. . . block, which uses ∀-
quantification to atomically match arbitrarily many handlers. The rule assumes that
the handlers’ queues already contain some other private subqueues open

Soundness/Faithfulness. The relation of Scoop-Gts to the most prominent
execution models and runtimes is depicted in Fig. 4. Due to the varying levels
of detail in the formalisations of the RQ and QoQ execution models (and lack
of formalisations of their implementations/runtimes), there is no universal way
to prove Scoop-Gts’s faithfulness to them. We also remark that Scoop-Gts
currently does not support some programming mechanisms of the Eiffel language
(e.g. exceptions, agents), but could be straightforwardly extended to cover them.

We were able to conduct expert interviews with the researchers proposing the
execution models and the programmers implementing the Scoop compiler and
runtimes, which helped to improve our confidence that Scoop-Gts faithfully
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Fig. 4. Relation between Scoop-Gts, the execution models, and the runtimes

covers their behaviour. Here, Scoop-Gts’s advantage of a visually accessible
notation was extremely beneficial, as we were able to directly use simulations
in Groove during the interviews, which were understood and accepted by the
interviewees. In addition, we compared Groove simulations of the executions
of Scoop programs (see the benchmarks of Sect. 5) against their actual exe-
cution behaviour in the official Scoop IDE and compiler (both the current
release that implements QoQ, and an older one that implemented RQ). Again,
this augmented our confidence. Furthermore, we were able to compare Scoop-
Gts(QoQ) with the structural operational semantics for QoQ provided in [40].
Unfortunately, the provided semantic rules focus only on a much simplified core,
preventing a rigorous bisimulation proof exploiting the algebraic characterisa-
tions of Gts. We can, however, straightforwardly implement and simulate them
in our model.

To conclude, Scoop-Gts fits into the suite of existing Scoop formalisations,
and is able to cover (avoiding the semantically overloaded word “simulate”) both
of the principal execution models.

Expressiveness. As previously discussed, Scoop-Gts is expressive enough to
cover the existing RQ and QoQ semantic models of Scoop due to its modu-
larity and the possibility to plug-in different queueing semantics. We currently
plan to include other semantic formalisations of Scoop-like languages, e.g. the
concurrent Eiffel proposed by [5] (similar to Scoop but differences regarding
separate object calls), other actor-based object-oriented languages, and concur-
rency concepts like “co-boxes” [34]. Scoop-Gts is obviously Turing-complete
(one can simulate a 2-counter Minsky machine by non-recursive models with
one object per handler, similar to the construction in [15]). A proper formal
investigation into its computational power (also that of subclasses of the model)
is ongoing.

4 Toolchain for the Workbench

Our semantics workbench consists of a toolchain that bridges the gap between
Scoop program code and the analysis of Scoop-Gts models in Groove. In
particular, it translates source code into Scoop-Graphs, executes the appropri-
ate analyses in Groove, and then collects and returns the results to the user.

Our toolchain is summarised in Fig. 5. Its principal component is a plug-in
for the Eve IDE—a research version of the Scoop/Eiffel IDE (including the
production compiler and runtime) which supports the integration of verification
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Fig. 5. Overview of our toolchain: a plugin integrated with the (research version of the)
official Scoop IDE, which interfaces with a wrapper that utilises and controls Groove
in the background. The wrapper can also be used as part of a standalone tool

tools [38]. For a given Scoop program, the plug-in uses the existing services
of Eve to check that the code compiles, and then extracts a representation
of it in which inheritance has been “flattened”. From this flattened program,
we generate a Scoop-Graph (encoded in the Graph eXchange Language) which
corresponds very closely to the abstract syntax tree of the original program. See,
for example, Fig. 6, which is generated from the code in Listing 2. Observe that
between the InitialState and FinalState , the control-flow graph directly
encodes the four actions of the original program: two declarations of separate

blocks, and two commands within them. We provide a wrapper (written in Java)
around the external Groove tool, which takes a generated Scoop-Graph as
input, and launches a full state-space exploration in Groove with respect to
Scoop-Gts(RQ) or Scoop-Gts(QoQ). The results—including statistics and
detected error states—are then extracted from Groove and returned to the
programmer for inspection. A standalone version of this wrapper without the
Eve integration is also available and can be downloaded from [36].

Checking the Consistency of Semantics. The workbench can be used to
check the consistency of program executions under RQ and QoQ with respect
to various properties. These properties are encoded in Scoop-Gts as error rules
that match on configurations if and only if they violate the properties. If they
match, they generate a special Error node that encodes some contextual infor-
mation for the toolchain to extract, and prevents the execution branch from
being explored any further. Two types of error rules are supported: general,
safety-related error rules for detecting problems like deadlock (whether caused
by waiting for request queue locks in RQ, or waiting on cycles of queries in
QoQ); but also user-specified error rules for program-specific properties (as we
will use in Sect. 5). If any of these error rules are applied in a state-space explo-
ration, this information is extracted and reported by the workbench toolchain;
discrepancies between semantics exist when such rules match under only one.
Figure 2 shows an actual deadlock between two handlers attempting to enter
the nested separate block of Listing 2 under RQ. This configuration is matched
by an error rule for deadlock (not shown), which catches the circular waiting
dependencies exhibited by the edges.
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Fig. 6. Generated control-flow graph for Listing 2

5 Evaluation

To evaluate the use of our workbench for checking the consistency of semantics,
we devised a representative set of benchmark programs, based on documented
Scoop examples [11] and classical synchronisation problems. We then deployed
the toolchain to analyse their executions under RQ and QoQ with respect to
behavioural and safety-related properties, and highlight the discrepancies uncov-
ered by the workbench for our running example. Everything necessary to repro-
duce our evaluation is available at [36].

Benchmark Selection. Our aim was to devise a set of representative programs
covering different, idiomatic usages of Scoop’s concurrency mechanisms. To
achieve this, we based our programs on official, documented examples [11], as
well as some classical synchronisation problems, in order to deploy the language
mechanisms in a greater variety of usage contexts. Note that it is not (yet)
our goal to analyse large software projects, but rather to compare executions of
representative programs with manageable state spaces under different semantics.

We selected the following programs: dining philosophers—as presented in
Sect. 2—with its two implementations for picking up forks (eagerly or lazily)
which exploited the implicit locking of RQ; a third variant of dining philoso-
phers without any commands in the separate blocks; single-element producer
consumer, which uses a mixture of commands, queries, and condition synchroni-
sation; and finally, barbershop and dining savages (based on [10]), both of which
use a similar mix of features. These programs cover different usages of Scoop’s
language mechanisms and are well-understood examples in concurrent program-
ming. Note that while our compiler supports inheritance by flattening the used
classes, these examples do not use inheritance; in particular, no methods from
the implicitly inherited class ANY are used. By not translating these methods
into the start graphs, we obtain considerably smaller graphs (which impacts the
exploration speed, but not the sizes of the generated transition systems).

Benchmark Results. Table 1 contains metrics for the inspected examples,
obtained using our Groove wrapper utility. The presented values correspond
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Table 1. Results for the dining philosophers (DP, with the number of philosophers),
producer-consumer (PC, with the number of elements), barbershop (with the number
of customers), and dining savages (with the number of savages) programs; time and
memory metrics are means over five runs (standard deviation in brackets)

to full state-space exploration. Metrics for elapsed time (wall clock time) and
memory usage (computed using Java’s MemoryPoolMXBean) are the means of five
runs, while the other values are the same for each run. The experiments were
carried out on an off-the-shelf notebook with an Intel Core i7-4810MQ CPU and
16 ,GB of main memory. We used Oracle Java 1.8.0 25 with the -Xmx 14g option
together with Groove 5.5.5.

Across all instances, the start and final graph sizes are comparable. This can
be explained by the fact that our implementation contains a number of simple
“garbage collection” rules that remove edges and nodes that are no longer needed
(e.g. the results of intermediate computations). Final graphs simply contain the
control-flow graph and heap structure after the executions. Note that we do
not perform real garbage collection. For example, unreachable objects are not
removed; the graph size increases linearly with the number of created objects.

The number of configurations denotes the number of recipe applications. This
value is of interest because it allows one to directly compare explorations under
different semantics (i.e. how much more concurrency is permitted). Recall that
scheduler-specific rules are wrapped inside recipes. For example, enqueueing a
work item may trigger more bookkeeping rules in QoQ than in RQ. Since the
corresponding logic (see Listing 3) is implemented in a recipe, we end up with
just one more configuration in both cases, independently of how many individ-
ual rule applications are triggered within the recipe. Differences in the number
of configurations arise from different branching at synchronisation points. For
example, we can see that in most instances, QoQ generates considerably more
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configurations than the RQ implementation, which suggests that Scoop pro-
grams are “more concurrent” under QoQ.

The time and memory columns show the raw power requirements of our
toolchain. Unfortunately, the state-space explosion problem is inevitable when
exploring concurrent programs. The number of configurations is, unsurpris-
ingly, particularly sensitive to programs with many handlers and only asynchro-
nous commands (e.g. dining philosophers). Programs that also use synchronous
queries (e.g. producer-consumer) scale better, since queries force synchronisa-
tion once they reach the front of the queue. We note again that our aim was
to facilitate automatic analyses of representative Scoop programs that covered
the different usages of the language mechanisms, rather than optimised verifica-
tion techniques for production-level software. The results suggest that for this
objective, the toolchain scales well enough to be practical.

Error Rules/Discrepancies Detected. In our evaluation of the various dining
philosophers implementations, we were able to detect that the lazy implemen-
tation (Listing 2) can result in deadlock under the RQ model, but not under
QoQ. This was achieved by using error rules that match circular waiting depen-
dencies. In case a deadlock occurs that is not matched by these rules, we can
still detect that the execution is stuck and report a generic error, after which we
manually inspect the resulting configuration. While such error rules are useful for
analysing Scoop-Graphs in general, it is also useful to define rules that match
when certain program-specific properties hold. For example, if we take a look
at the eager implementation of the dining philosophers (Listing 1) and its exe-
cutions under RQ and QoQ, we find that the program cannot deadlock under
either. This does not prove however that the implementation actually solves the
dining philosophers problem under both semantics. To check this, we defined an
error rule that matches if and only if two adjacent philosophers are in their sepa-
rate blocks at the same time, which is impossible if forks are treated as locks (as
they implicitly are under RQ). Consequently, this rule matches only under the
QoQ semantics, highlighting that under the new semantics, the program is no
longer a solution to the dining philosophers problem. (We remark that it can be
“ported” to QoQ by replacing the commands on forks with queries, which force
the waiting.) We implemented program-specific correctness rules for the other
benchmark programs analogously, but did not detect any further discrepancies.

6 Related Work

We briefly describe some related work closest to the overarching themes of our
paper: frameworks for semantic analyses, Gts models for concurrent asynchro-
nous programs, and verification techniques for Scoop.

Frameworks for Semantic Analysis. The closest approach in spirit to ours is
the work on K [21,33]. It consists of the K concurrent rewrite abstract machine
and the K technique. One can think of K as domain specific language for
implementing programming languages with a special focus on semantics, which
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was recently successfully applied to give elaborate semantics to Java [4] and
JavaScript [30]. Both K and our workbench have the same user group (program-
ming language designers and researchers) and focus on formalising semantics and
analysing programs based on this definition. We both have “modularity” as a
principal goal in our agendas, but in a contrasting sense: our modularity targets
a semantic plug-in mechanism for parameterising different model components,
whereas K focuses on modularity with respect to language feature reuse. In con-
trast to our approach, K targets the whole language toolchain—including the
possibility to define a language and automatically generate parsers and a runtime
simulation for testing the formalisation. Based on Maude’s formal power of con-
ditional rewriting logic, K also offers axiomatic models for formal reasoning on
programs and the possibility to also define complex static semantic features, e.g.
advanced typing and meta-programming. Despite having similar formal underly-
ing theoretical power (K’s rewriting is similar to “jungle rewriting” graph gram-
mars [35]), Scoop-Gts models make the graph-like interdependencies between
concurrently running threads or handlers a first-class element of the model. This
is an advantage for analyses of concurrent asynchronous programs, as many con-
currency properties can be straightforwardly reduced to graph properties (e.g.
deadlocks as wait-cycles). Our explicit Gts model also allows us to compare
program executions under different semantics, which is not a targeted feature of
K. We also conjecture that our diagrammatic notations are easier for software
engineers to grasp than purely algebraic and axiomatic formalisations.

GTS Models for Concurrent Asynchronous Programs. Formalising and
analysing concurrent object-oriented programs with Gts-based models is an
emerging trend in software specification and analysis, especially for approaches
rooted in practice. See [31] for a good overview discussion—based on a lot of
personal experience—on the general appropriateness of Gts for this task. In
recent decades, conditional rewriting logic has become a reference formalism for
concurrency models in general; we refer to [22] and its recent update [23] for
details. Despite having a comparable expressive power, our approach’s original
decision for Gts and for Groove as our state-space exploration tool led us
to an easily accessible, generic, and parameterisable semantic model and tools
that work in acceptable time on our representative Scoop examples. Closest to
our Scoop-Gts model is the Qdas model presented in [15], which represents
an asynchronous, concurrent waiting queue based model with global memory as
Gts, for verifying programs written in Grand Central Dispatch [14]. Despite the
formal work, there is currently no direct compiler to Gts yet. The Creol model
of [20] focuses on asynchronous concurrent models but without more advanced
remote calls via queues as needed for Scoop. Analysis of the model can be
done via an implementation in Maude [19]. Existing Gts-based models for Java
only translate the code to a typed graph similar to the control-flow sub-graph
of Scoop-Gts [8,32]. A different approach is taken by [12], which abstracts a
Gts-based model for concurrent OO systems [13] to a finite state model that can
be verified using the SPIN model checker. Groove itself was already used for
verifying concurrent distributed algorithms on an abstract Gts level [16], but not



A Graph-Based Semantics Workbench 45

on an execution model level as in our approach. However, despite the intention
to apply generic frameworks for the specification, analysis, and verification of
object-oriented concurrent programs, e.g. in [9,41], there are no publicly available
tools implementing this long-term goal that are powerful enough for Scoop.

SCOOP Analysis/Verification. Various analyses for Scoop programs have
been proposed, including: using a Scoop virtual machine for checking tempo-
ral properties [29]; checking Coffman’s deadlock conditions using an abstract
semantics [7]; and statically checking code annotated with locking orders for the
absence of deadlock [39]. In contrast to our work, these approaches are tied to
particular (and now obsolete) execution models, and do not operate on (unan-
notated) source code.

The complexity of other semantic models of Scoop led to scalability issues
when attempting to leverage existing analysis and verification tools. In [6],
Scoop programs were hand-translated to models in the process algebra Csp
to perform, e.g. deadlock analysis; but the leading Csp tools at the time could
not cope with these models and a new tool was purpose-built (but no longer
available/maintained today). In a recent deadlock detection benchmark on the
RQ execution model formalised in Maude [26], the tool was not able to give
verification results in reasonable time (i.e. less than one day) even for simple
programs like dining philosophers1; our benchmarks compare quite favourably
to this. Note that since our work focuses more on semantic modelling and com-
parisons than it does on the underlying model checking algorithms, we did not
yet evaluate the generic bounded model checking algorithms for temporal logic
properties implemented in Groove and accessible for Scoop-Gts models.

7 Conclusion and Future Work

We proposed and constructed a semantic workbench for a concurrent asynchro-
nous programming language via the following, general work flow: (i) derive a
Gts-based semantic model from existing semi-formal documentation of execu-
tion models; (ii) continuously compare the model by simulation runs against the
actual implementations; (iii) exploit semantic paramaterisation to derive a ver-
satile model; (iv) if possible, conduct expert interviews to ascertain the model’s
faithfulness; (v) apply existing generic model checking techniques for Gts to
implement analyses against the different execution models; (vi) implement dif-
ferent analyses on top of this model. This workflow resulted in the formalisation
Scoop-Gts, which covered the two principal execution models of Scoop, and
allowed us to formally, automatically, and practically compare the executions of
programs with respect to both. With the conducted expert interviews, and the
results of applying our model to check the consistency of the semantics across
a small but representative collection of Scoop programs in reasonable time, we
were reassured of our choice of Gts as an underlying formalism: theoretically

1 From personal communication with the researchers behind this benchmark.
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sound, yet diagrammatically accessible for software engineers, and able to scale
to the sizes of programs we need for semantic comparisons.

We are currently working on extending Scoop-Gts to cover some more
advanced and esoteric features of Scoop (including distributed exception han-
dling) and to enlarge the benchmark set, with the eventual aim of producing a
conformance test suite for Scoop-like languages. As noted in [42], the shape of
the rules and the control programs have a big influence on the running times
of Groove. We are currently working on refactoring Scoop-Gts for better
performance (relative to benchmarking on the conformance test suite).

A more general line of research focuses on the shape of the Scoop-Graphs
contained in the reachable state space of Scoop-Gts. Insights here would help
us to devise better abstraction techniques (along the lines of [3]) with which
we could implement better verification algorithms, and visualise the influence
of different semantic parameters on Scoop-Graphs. Generalising Scoop-Gts
to cover other actor-based concurrency languages would also extend this result
towards differences between the semantics of programming language families
expressed as Scoop-Graph properties.
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