Perdita Stevens

Andrzej Wasowski (Eds.)

ARCoSS

Fundamental Approaches
to Software Engineering

19th International Conference, FASE 2016
Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2016
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings

' ETAPS : |
EUROPEAN JOINT CONFERENCES ON l———.—._..

THEORY & PRACTICE OF SOFTWARE r
-
»
] f{

LNCS 9633

Lecture Notes in Computer Science 9633

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M.Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Perdita Stevens - Andrzej Wasowski (Eds.)

Fundamental Approaches
to Software Engineering

19th International Conference, FASE 2016

Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016
Eindhoven, The Netherlands, April 2-8, 2016
Proceedings

@ Springer

Editors

Perdita Stevens Andrzej Wasowski
University of Edinburgh IT University of Copenhagen
Edinburgh Copenhagen

UK Denmark

ISSN 0302-9743 ISSN 1611-3349 (electronic)

Lecture Notes in Computer Science

ISBN 978-3-662-49664-0 ISBN 978-3-662-49665-7 (eBook)

DOI 10.1007/978-3-662-49665-7

Library of Congress Control Number: 2016932867
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

ETAPS Foreword

Welcome to the proceedings of ETAPS 2016, which was held in Eindhoven, located in
“the world’s smartest region,” also known as the Dutch Silicon Valley. Since ETAPS’
second edition held in Amsterdam (1999), ETAPS returned to The Netherlands this
year.

ETAPS 2016 was the 19th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, consisting of five constituting conferences (ESOP, FASE, FoSSaCS, TACAS,
and POST) this year. Each conference has its own Programme Committee and its own
Steering Committee. The conferences cover various aspects of software systems,
ranging from theoretical computer science to foundations to programming language
developments, analysis tools, formal approaches to software engineering, and security.
Organizing these conferences in a coherent, highly synchronized conference program,
enables attendees to participate in an exciting event, having the possibility to meet
many researchers working in different directions in the field, and to easily attend the
talks of various conferences. Before and after the main conference, numerous satellite
workshops took place and attracted many researchers from all over the globe.

The ETAPS conferences received 474 submissions in total, 143 of which were
accepted, yielding an overall acceptance rate of 30.2%. I thank all authors for their
interest in ETAPS, all reviewers for their peer-reviewing efforts, the Program Com-
mittee members for their contributions, and in particular the program co-chairs for their
hard work in running this intensive process. Last but not least, my congratulations to all
the authors of the accepted papers!

ETAPS 2016 was greatly enriched by the unifying invited speakers Andrew Gordon
(MSR Cambridge and University of Edinburgh, UK), and Rupak Majumdar (MPI
Kaiserslautern, Germany), as well as the conference-specific invited speakers (ESOP)
Cristina Lopes (University of California at Irvine, USA), (FASE) Oscar Nierstrasz
(University of Bern, Switzerland), and (POST) Vitaly Shmatikov (University of Texas
at Austin, USA). Invited tutorials were organized by Lenore Zuck (Chicago) and were
provided by Grigore Rosu (University of Illinois at Urbana-Champaign, USA) on
software verification and Peter Ryan (University of Luxembourg, Luxembourg) on
security. My sincere thanks to all these speakers for their inspiring and interesting talks!

ETAPS 2016 took place in Eindhoven, The Netherlands. It was organized by the
Department of Computer Science of the Eindhoven University of Technology. It was
further supported by the following associations and societies: ETAPS e.V., EATCS
(European Association for Theoretical Computer Science), EAPLS (European Asso-
ciation for Programming Languages and Systems), and EASST (European Association
of Software Science and Technology). The local organization team consisted of Mark
van den Brand, Jan Friso Groote (general chair), Margje Mommers, Erik Scheffers,
Julien Schmaltz, Erik de Vink, Anton Wijs, Tim Willemse, and Hans Zantema.

VI ETAPS Foreword

The overall planning for ETAPS is the main responsibility of the Steering
Committee, and in particular of its Executive Board. The ETAPS Steering Committee
consists of an Executive Board and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The Executive
Board consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbriicken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Liittgen (Bamberg), Vladimiro Sassone
(Southampton), and Tarmo Uustalu (Tallinn). Other members of the Steering Com-
mittee are: Parosh Abdulla (Uppsala), David Basin (Zurich), Giuseppe Castagna
(Paris), Marsha Chechik (Toronto), Javier Esparza (Munich), Jan Friso Groote
(Eindhoven), Reiko Heckel (Leicester), Marieke Huisman (Twente), Bart Jacobs
(Nijmegen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Kim G. Larsen (Aalborg),
Axel Legay (Rennes), Christof Loding (Aachen), Matteo Maffei (Saarbriicken),
Pasquale Malacaria (London), Tiziana Margaria (Limerick), Andrzej Murawski
(Warwick), Catuscia Palamidessi (Palaiseau), Frank Piessens (Leuven), Jean-Francois
Raskin (Brussels), Mark Ryan (Birmingham), Julia Rubin (Massachussetts), Don
Sannella (Edinburgh), Perdita Stevens (Edinburgh), Gabriele Taentzer (Marburg), Peter
Thiemann (Freiburg), Luca Vigano (London), Igor Walukiewicz (Bordeaux), Andrzej
Wasowski (Copenhagen), and Hongseok Yang (Oxford).

I sincerely thank all ETAPS Steering Committee members for all their work in
making the 19th edition of ETAPS a success. Moreover, thanks to all speakers,
attendees, organizers of the satellite workshops, and Springer for their support. Finally,
a big thanks to Jan Friso and his local organization team for all their enormous efforts
enabling ETAPS to take place in Eindhoven!

January 2016 Joost-Pieter Katoen
ETAPS SC Chair
ETAPS e.V. President

Preface

This book contains the proceedings of FASE 2016, the 19th International Conference
on Fundamental Approaches to Software Engineering, held in Eindhoven in April
2016, as part of the annual European Joint Conferences on Theory and Practice of
Software (ETAPS 2016).

As usual for FASE, the contributions combine the development of conceptual and
methodological advances with their formal foundations, tool support, and evaluation on
realistic or pragmatic cases. As a result the volume contains regular research papers,
long tool papers, and a short tool demo paper. It is also complemented by a contro-
versial but very interesting essay from our keynote speaker, Oscar Nierstrasz. We hope
that the community will find this volume engaging and worth reading.

The contributions included have been carefully selected. We received 108 abstract
submissions, from which 90 full-paper submissions materialised. All were reviewed by
experts in the field, and after intense discussion, only 24 were accepted, giving an
acceptance rate of only 27%. We thank all the authors for their hard work and will-
ingness to contribute, and all the Programme Committee members and external
reviewers who invested time in the selection process.

This year, FASE has experimented with a double-blind review process. The authors
were asked not to disclose their identity in the papers submitted for review. The
reviewers were thus able to read and discuss the papers while avoiding unintended bias
caused by author names, affiliations, and other potential influencing factors. The survey
of authors’ preferences indicates that the authors find this feature of the process
valuable, and worth the additional effort of anonymising the papers. We thank the
many people who filled in our surveys on the subject. FASE is likely to experiment
more with the idea in the future. The community is encouraged to contact the Steering
Committee members if they would like to comment.

January 2016 Perdita Stevens
Andrzej Wasowski

Programme Committee

Sagar Chaki
Nancy Day

Ewen Denney
Juergen Dingel
Stéphane Ducasse
Alexander Egyed
Bernd Fischer
Milos Gligoric
Stefania Gnesi
Marieke Huisman
Valerie Issarny
Marta Kwiatkowska
Barbara Konig
Axel Legay
Martin Leucker
Fabrizio Pastore
Julia Rubin
Bernhard Rumpe
Ina Schaefer
Perdita Stevens

Marielle I.A. Stoelinga

Gabriele Taentzer

Mohammad Torabi Dashti

Andrzej Wasowski
Martin Wirsing
Yingfei Xiong

Additional Reviewers

Arendt, Thorsten
Autili, Marco
Basset, Nicolas
Beohar, Harsh
Bertram, Vincent
Biondi, Fabrizio
Blom, Stefan

Organization

Carnegie Mellon University, USA

University of Waterloo, Canada

SGT/NASA Ames, USA

Queen’s University, Canada

Inria Lille Nord Europe, France

Johannes Kepler University, Austria
Stellenbosch University, South Africa
University of Illinois at Urbana-Champaign, USA
ISTI-CNR, Italy

University of Twente, The Netherlands

Inria, France

University of Oxford, UK

Universitdt Duisburg-Essen, Germany
IRISA/Inria, Rennes, France

University of Liibeck, Germany

University of Luxembourg

Massachusetts Institute of Technology, USA
RWTH Aachen University, Germany
Technische Universitit Braunschweig, Germany
University of Edinburgh, UK

University of Twente, The Netherlands
Philipps-Universitit Marburg, Germany

ETH Zurich, Switzerland

IT University of Copenhagen, Denmark
Ludwig-Maximilians-Universitit Miinchen, Germany
Peking University, China

Botterweck, Goetz
Britz, Arina
Calinescu, Radu
Cito, Jiirgen
Darabi, Saeed
Decker, Normann
Demuth, Andreas

X Organization

Dong, Wei
Eikermann, Robert
Fahrenberg, Uli
Fantechi, Alessandro
Ferrari, Alessio
Fischer, Stefan
Gerhold, Marcus
Golas, Ulrike
Gordon, Michael
Greene, Gillian
Guarnieri, Marco
Guck, Dennis
Harder, Jannis
Heim, Robert
Hermerschmidt, Lars
Hildebrandt, Thomas
Huang, Xiaowei
Holldobler, Katrin
Ismail, Azlan
Itzhaky, Shachar
Jiang, Jiajun
Kerstan, Henning
Kim, Chang Hwan Peter
Knapp, Alexander
Knaust, Alexander
Kolassa, Carsten
Kowal, Matthias
Kretchmer, Roland
Kumar, Rajesh
Kuraj, Ivan

Kiipper, Sebastian
Lachmann, Remo
Linsbauer, Lukas
Lity, Sascha
Markin, Grigory
Mazzanti, Franco
Meijer, Jeroen

Meis, Rene

Milios, Dimitrios
Mir Seyed Nazari, Pedram
Moreira, Alvaro
Mostowski, Wojciech
Naddeo, Marco

Nagarajan, Vijay
Nieke, Michael
Noll, Thomas
Oortwijn, Wytse
Paoletti, Nicola
Plotnikov, Dimitri
Poll, Erik

Priefer, Dennis
Qu, Hongyang
Quilbeuf, Jean
Raco, Deni
Rensink, Arend
Roth, Alexander
Saha, Ripon
Scheffel, Torben
Schmitz, Malte
Schrammel, Peter
Schulze, Christoph
Schulze, Sandro
Schumann, Johann
Seidl, Christoph
Selim, Gehan M.K.
Semini, Laura
Shafiei, Nastaran
Sirjani, Marjan
Spagnolo, Giorgio Oronzo
Striiber, Daniel
Stiickrath, Jan
Stiimpel, Annette
Svorenova, Maria
Thoma, Daniel
Thorn, Johannes
Tiezzi, Francesco
Traonouez, Louis-Marie
Tribastone, Mirco
Tsankov, Petar
Vallecillo, Antonio
van Dijk, Tom
von Wenckstern, Michael
Wille, David

Yu, Ingrid Chie
Zufferey, Damien

Contents

Keynote Paper

The Death of Object-Oriented Programming.

Oscar Nierstrasz

Concurrent and Distributed Systems

Automated Choreography Repair.

Samik Basu and Tevfik Bultan

A Graph-Based Semantics Workbench for Concurrent

Asynchronous Programs. L

Claudio Corrodi, Alexander Heufsner, and Christopher M. Poskitt

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters . . .

Jia-Chun Lin, Ingrid Chieh Yu, Einar Broch Johnsen,
and Ming-Chang Lee

Integrated Environment for Verifying and Running Distributed

COMPONENLS vttt e e e e e e e e

Ludovic Henrio, Oleksandra Kulankhina, Sigi Li, and Eric Madelaine

Model-Driven Development

Iterative and Incremental Model Generation by Logic Solvers.

Oszkar Semerath, Andras Vérés, and Daniel Varro

Automated Model Merge by Design Space Exploration

Csaba Debreceni, Istvan Rath, Daniel Varro, Xabier De Carlos,
Xabier Mendialdua, and Salvador Trujillo

RuleMerger: Automatic Construction of Variability-Based Model

Transformation Rules.

Daniel Striiber, Julia Rubin, Thorsten Arendt, Marsha Chechik,
Gabriele Taentzer, and Jennifer Ploger

Two-Step Transformation of Model Traversal EOL Queries for Large

CDO RepOSItOrIeS « . o v v v et e e e e e e e e e e e e

Xabier De Carlos, Goiuria Sagardui, and Salvador Trujillo

13

31

49

66

http://dx.doi.org/10.1007/978-3-662-49665-7_1
http://dx.doi.org/10.1007/978-3-662-49665-7_2
http://dx.doi.org/10.1007/978-3-662-49665-7_3
http://dx.doi.org/10.1007/978-3-662-49665-7_3
http://dx.doi.org/10.1007/978-3-662-49665-7_4
http://dx.doi.org/10.1007/978-3-662-49665-7_5
http://dx.doi.org/10.1007/978-3-662-49665-7_5
http://dx.doi.org/10.1007/978-3-662-49665-7_6
http://dx.doi.org/10.1007/978-3-662-49665-7_7
http://dx.doi.org/10.1007/978-3-662-49665-7_8
http://dx.doi.org/10.1007/978-3-662-49665-7_8
http://dx.doi.org/10.1007/978-3-662-49665-7_9
http://dx.doi.org/10.1007/978-3-662-49665-7_9

XII Contents

Mind the Gap! Automated Anomaly Detection for Potentially Unbounded
Cardinality-Based Feature Models. 158
Markus Weckesser, Malte Lochau, Thomas Schnabel,
Bjérn Richerzhagen, and Andy Schiirr

Analysis and Bug Triaging

Cut Branches Before Looking for Bugs: Sound Verification
on Relaxed Slices e 179
Jean-Christophe Léchenet, Nikolai Kosmatov, and Pascale Le Gall

The Influences of Edge Instability on Change Propagation and Connectivity
in Call Graphs 197
Lei Wang, Han Li, and Xinchen Wang

Modeling and Abstraction of Memory Management in a Hypervisor 214
Pauline Bolignano, Thomas Jensen, and Vincent Siles

Crowdsourced Bug Triaging: Leveraging Q&A Platforms
for Bug Assignment 231
Ali Sajedi Badashian, Abram Hindle, and Eleni Stroulia

Probabilistic and Stochastic Systems

Model-Based Testing of Probabilistic Systems 251
Marcus Gerhold and Mariélle Stoelinga

An Iterative Decision-Making Scheme for Markov Decision Processes

and Its Application to Self-adaptive Systems 269
Guoxin Su, Taolue Chen, Yuan Feng, David S. Rosenblum,
and P.S. Thiagarajan

Family-Based Modeling and Analysis for Probabilistic Systems — Featuring

PROFEAT. . . . 287
Philipp Chrszon, Clemens Dubslaff, Sascha Kliippelholz,
and Christel Baier

Statistical Model Checking of e-Motions Domain-Specific Modeling

Languages 305
Francisco Duran, Antonio Moreno-Delgado,
and José M. Alvarez-Palomo

Proof and Theorem Proving

Towards Formal Proof Metrics i 325
David Aspinall and Cezary Kaliszyk

http://dx.doi.org/10.1007/978-3-662-49665-7_10
http://dx.doi.org/10.1007/978-3-662-49665-7_10
http://dx.doi.org/10.1007/978-3-662-49665-7_11
http://dx.doi.org/10.1007/978-3-662-49665-7_11
http://dx.doi.org/10.1007/978-3-662-49665-7_12
http://dx.doi.org/10.1007/978-3-662-49665-7_12
http://dx.doi.org/10.1007/978-3-662-49665-7_13
http://dx.doi.org/10.1007/978-3-662-49665-7_14
http://dx.doi.org/10.1007/978-3-662-49665-7_14
http://dx.doi.org/10.1007/978-3-662-49665-7_15
http://dx.doi.org/10.1007/978-3-662-49665-7_16
http://dx.doi.org/10.1007/978-3-662-49665-7_16
http://dx.doi.org/10.1007/978-3-662-49665-7_17
http://dx.doi.org/10.1007/978-3-662-49665-7_17
http://dx.doi.org/10.1007/978-3-662-49665-7_18
http://dx.doi.org/10.1007/978-3-662-49665-7_18
http://dx.doi.org/10.1007/978-3-662-49665-7_19

Reduction Rules for Colored Workflow Nets

Javier Esparza and Philipp Hoffmann

Many-Valued Institutions for Constraint Specification

Claudia Elena Chirita, José Luiz Fiadeiro, and Fernando Orejas

CafeInMaude: A CafeOBJ Interpreter in Maude

Adrian Riesco, Kazuhiro Ogata, and Kokichi Futatsugi

Verification

Verifying a Verifier: On the Formal Correctness of an LTS Transformation

Verification Technique. e

Sander de Putter and Anton Wijs

Hybrid Session Verification Through Endpoint API Generation

Raymond Hu and Nobuko Yoshida

PVAIR: Partial Variable Assignment InterpolatoR.

Pavel Jancik, Leonardo Alt, Grigory Fedyukovich, Antti E.J. Hyvdrinen,
Jan Kofron, and Natasha Sharygina

Author Index e

http://dx.doi.org/10.1007/978-3-662-49665-7_20
http://dx.doi.org/10.1007/978-3-662-49665-7_21
http://dx.doi.org/10.1007/978-3-662-49665-7_22
http://dx.doi.org/10.1007/978-3-662-49665-7_23
http://dx.doi.org/10.1007/978-3-662-49665-7_23
http://dx.doi.org/10.1007/978-3-662-49665-7_24
http://dx.doi.org/10.1007/978-3-662-49665-7_25

Keynote Paper

The Death of Object-Oriented Programming

Oscar Nierstrasz(®)

Software Composition Group, University of Bern, Bern, Switzerland
oscar@inf.unibe.ch
http://scg.unibe.ch/

Abstract. Modern software systems are increasingly long-lived. In order
to gracefully evolve these systems as they address new requirements,
developers need to navigate effectively between domain concepts and
the code that addresses those domains. One of the original promises
of object-orientation was that the same object-oriented models would
be used throughout requirements analysis, design and implementation.
Software systems today however are commonly constructed from a het-
erogeneous “language soup” of mainstream code and dedicated DSLs
addressing a variety of application and technical domains. Has object-
oriented programming outlived its purpose?

In this essay we argue that we need to rethink the original goals of
object-orientation and their relevance for modern software development.
We propose as a driving maxim, “Programming is Modeling,” and explore
what this implies for programming languages, tools and environments. In
particular, we argue that: (1) source code should serve not only to specify
an implementation of a software system, but should encode a queryable
and manipulable model of the application and technical domains con-
cerned; (2) IDEs should exploit these domain models to enable inex-
pensive browsing, querying and analysis by developers; and (3) barriers
between the code base, the running application, and the software ecosys-
tem at large need to be broken down, and their connections exploited
and monitored to support developers in comprehension and evolution
tasks.

1 Introduction

Is object-oriented programming dying?

The code of real software systems is structured around a number of inter-
acting and overlapping technical and application domains. As we shall see, this
fact is not well supported by mainstream languages and development environ-
ments. Although object-oriented software development made early promises to
close the gaps between analysis, design and implementation by offering a uni-
fying object-oriented modeling paradigm for these activities, we still struggle to
navigate between these worlds. Do the emergence of domain-specific languages
(DSLs) and model-driven development (MDD) prove that object-orientation has
failed?

In this essay we explore some of the symptoms of this apparent failure, and
argue that we need to be bolder in interpreting the vision of object-orientation.

© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. Wasowski (Eds.): FASE 2016, LNCS 9633, pp. 3-10, 2016.
DOI: 10.1007/978-3-662-49665-7 -1

4 O. Nierstrasz

We propose the slogan “Programming is Modeling” and identify a number of
challenges this leads us to.
Let us briefly summarize the key symptoms:

There Exists a Large Gap Between Models and Code. In an ideal world, require-
ments and domain models are clearly visible in the implementation of a soft-
ware system. In reality, most mainstream programming languages seem to be
ill-equipped to represent domain concepts in a concise way, leading to a prolif-
eration of DSLs. Internal DSLs, for example, “fluent interfaces” that exploit the
syntax of a host language, are often less fluent and readable than they should
be. External DSLs (i.e. with their own dedicated syntax) can lead to a “soup”
of heterogeneous code that is hard to navigate, understand, and analyse.

MDD represents another important trend, in which high-level models are
typically transformed to implementations, but such “model compilers” tend to
pay off only in well-understood domains where changes in requirements can be
well-expressed by corresponding changes to models.

Mainstream IDEs are Glorified Text Editors. Although software developers
spend much of their time reading and analyzing code, mainstream IDEs mostly
treat source code as text. In general, the IDE is not aware of application or tech-
nical domain concepts, and does not help the developer to formulate domain-
specific queries or custom analyses, such as: Where is this feature implemented?
Will this change impact the system architecture? Who is an expert on this part of
the code? Similarly classical development tools belonging to the IDE are unaware
of the application domain. A classical example is the interactive debugger, which
offers a uniform interface to debugging based on the run-time stack, without any
knowledge of the underlying application domain. Although popular IDEs offer
plugin architectures that allow third-party developers to integrate new tools into
the IDE, the barrier to building such tools remains relatively high, and the appli-
cation domain models of the underlying code base remain relatively inaccessible.

Programming Languages and Tools Live in a Closed World. Mainstream pro-
gramming languages assume the world is closed and frozen. Static type systems,
for example, assume that the type of an entity is fixed and will never change or
evolve. When a type changes, the entire world must change with it. In reality,
complex software systems have to cope with evolving and possibly inconsistent
entities. Another symptom is the strict divide between “compile time” and “run
time” in mainstream programming. For example, it is not possible to navigate
seamlessly from a feature of a running system to the code that implements it.
Finally, we see that developers often resort to web search engines and dedicated
Q&A fora to answer questions that the IDE cannot. We need to acknowledge
that code lives within a much larger ecosystem than the current code base.

In this essay we argue that we should revisit the object-oriented paradigm to
address these issues by adopting the maxim that “Programming is Modeling.”
We further propose a number of research challenges along the following lines:

The Death of Object-Oriented Programming 5

1. Bring models closer to code by expressing queryable and manipulable domain
models directly in source code;

2. FExploit domain models in the IDE to enable custom analyses by developers;

3. Link the code to its ecosystem and monitor them both to steer their evolution.

Caveat: we apologize in advance for referencing only little of the vast amount
of relevant related work.!

2 Bring Models Closer to Code

When we develop and evolve code, we need to comprehend the relationships
between requirements that refer to domain models, and the underlying code that
realizes those requirements. Ideally we want to see domain concepts directly in
the code. We therefore argue that a program should not just serve to specify an
implementation of a set of requirements, but it should encode domain models
suitable for querying and analysis.

This, we believe, was one of the early promises of object-oriented program-
ming as expressed in the 1980s. Nowadays, however, complex software systems
are implemented as a soup of mainstream and domain-specific languages. DSLs
can be used to address either technical or application domains. Typically several
DSLs are needed to address a complex application. Despite the availability of
many dedicated DSLs, important aspects of a software system may not be explic-
itly modeled at all. Notoriously, architectural constraints are implemented with
the help of frameworks and architectural styles, but rarely represented explicitly
or checked as the system evolves.

Introducing ever more DSLs is not a solution. Having many external DSLs
complicates program comprehension and makes it difficult for tools to reason
about the relationships between them.?

Internal (or embedded) DSLs are hard to achieve because (1) the syntax of
many mainstream object-oriented languages does not support well the design of
truly fluent interfaces (with some notable exceptions, such as Smalltalk, Ruby,
Scala, ...), and (2) design methods emphasize the development of “fluent inter-
faces,” so they can be hard to achieve post hoc.

We think that many of these problems have their roots in a fundamental mis-
understanding of the object-oriented paradigm. While the imperative program-
ming paradigm can be summarized as programs = algorithms + data structures,
object-oriented programming is often explained (following Alan Kay [8][p 78]) as
programs = objects + messages. While this is not incorrect, it is a mechanistic
interpretation that misses the key point.

In our view, the object-oriented paradigm is better expressed as: “design your
own paradigm” (i.e. programming is modeling). A well-designed object-oriented

1A representative selection of related work can be found in the research plan of our
SNSF project, “Agile Software Analysis”: http://scg.unibe.ch/research/snf16.

2 Coping with this complexity is one of the goals of the GEMOC initiative [6]. See
http://gemoc.org.

http://scg.unibe.ch/research/snf16
http://gemoc.org

6 O. Nierstrasz

system consists of objects representing exactly the domain abstractions that
are needed for your application and suitable operations over them (if you like, a
many-sorted algebra). Code can be separated into the objects (or “components”)
representing domain concepts, and scripts that configure them [1].

We therefore posit as a challenge to revive object-oriented programming by
viewing OO languages as modeling languages, not just implementation languages.
Rather than viewing DSLs and MDD as the competition, we should encourage
the use of OO languages as modeling tools, and even as language workbenches
for developing embedded DSLs.?

3 Exploit Domain Models in the IDE

Although developers are known to spend much of their development time read-
ing and analyzing code, mainstream IDEs do not do a good job of supporting
program comprehension. IDEs are basically glorified text editors.

Developers need custom analyses to answer the questions that arise during
typical development tasks [7,16]. Building a dedicated analysis tool is expensive,
even using a plugin architecture such as that of Eclipse. Dedicated analysis
platforms like Moose [12] and Rascal [9] reduce the cost of custom queries, but
they rely on the existence of a queryable model of the target software.

As we have seen in the previous section, even though we would like to see
programs as models, they are not in a form useful for querying and analysis, so
we need to do extra work to extract these models and work with them.

We see two important challenges. The first is “Agile Model Extraction”, i.e.
the ability to efficiently extract models from source code. This is not just a
problem of parsing heterogeneous code and linking concepts encoded in different
languages (e.g. Java, SQL, XML), but also of recognizing concepts coming from
numerous and intertwined domain models. We are experimenting with approxi-
mate parsing technology, inexpensive heuristics, and other techniques [10,13] to
quickly and cheaply extract models from heterogeneous source code.

The second challenge is “Context-Aware Tooling”, i.e. the ability to cheaply
construct dedicated, custom analyses and tools that close the gap between IDEs
and application software. The key idea is, once we have access to the underlying
domain model of code (whether it is offered by the underlying infrastructure
or obtained by Agile Model Extraction), to make it easy to exploit that model
in tools used by developers to produce code, browse and query it, analyze it and
debug it. On the one hand, generic core functionality is needed for querying and
navigating models. On the other hand, tools and environments need to be aware
of the context of the domain model of the code under study so they can adapt
themselves accordingly.

An example is the “moldable debugger” which, instead of presenting only a
generic stack-based interface to the run-time environment, is aware of relevant
domain concepts, such as notifications in an event-driven system, or grammar

3 See, for example, Helvetia, a workbench for integrating DSLs into the IDE and
toolchain of the host language [15].

The Death of Object-Oriented Programming 7

x - O PetitParser Debugger
Stack > Mmoo Y Source v Q [3) Stream Q v~
LB i th chaea parseon: astream public final class Double extends Number{

‘- Nextparserinvocation i =0p;
P < anypa-rsgr. M parser parseOn: astream private final double value = 0D;
o, Next parser failure any primitive parser
.| Nextparser type » any production .

Pa Next production [PPJavaParser] b same production 2. Source code publl:l.l)oull)le(fou::le.value)[

"PTri Next production [PPJavaSyntax] b same parser type thisvalusSvalue 4. Input
PPACt Next production [PPJavalLexicon] ¥

. Source Graph Map Example First Follow
8: 8! P :

ﬁp""‘:t " 1; parsen i ingPointLi ‘ B—' digits T art —"IE
PPDelegateParser(literal)>>parseOn: — —
PPChoiceParser(364642304)>>parseOn 1. Stack M._’_'
: G TR I e) S e
e 5. Production - ‘ Sxpoera atlypesuli 1
i structure —+|exponentpart |—+{floatTypesuffix
50/141
aPPDelegateParser (a PP...al)) =
Variable Value
_self a PPDelegateParser(decimalFloatingPointLiteral)
_stacktop public final class Doubl...ue =value; } }
_thisContext PPDelegateParser>>parseon: 3. Object inspector
aStream public final class Doubl...ue =value; } }
parser a PPChoiceParser(364380160)
properties a Dictionary(#name->#decimalFloatingPointLiteral)

Fig. 1. A domain-specific debugger for PetitParser. The debugging view displays rel-
evant information for debugging parsers ((4) Input, (5) Production structure). Each
widget loads relevant debugging operations (1, 2, 4).

rules in a parser [4]. In Fig. 1 we see a screenshot of a domain-specific debugger
for PetitParser, a parser combinator framework for Pharo Smalltalk [14]. Each
widget of the debugger is context-sensitive and loads the appropriate debugging
operations for the current context. The debugger is aware of a grammar’s pro-
duction rules and is capable, for example, of stepping to the next production or
the next parser failure, rather than simply to the next expression, statement or
method. Custom visualizations are also loaded to display the production struc-
ture in a suitable way. Custom debuggers can be defined in a straightforward way
by leveraging the explicit representation of the underlying application domain.

The same principles have been applied to the “moldable inspector,” a
context-aware tool for querying and exploring an object space [5]. Domain-
specific views are automatically loaded depending on the entities being inspected.
As with the moldable debugger, custom views are commonly expressed with just
a few lines of code.

In the long run we envision a development environment in which we are not
forced to extract models from code, but in which the code is actually a model
that we can interact with, query and analyze.

4 Link the Code to Its Ecosystem

Conventional software systems are trapped behind a number of artificial barri-
ers. The most obvious is the barrier between the source code and the running
application. This is manifested in the usual program/compile/run cycle. This

8 O. Nierstrasz

makes it difficult to navigate between application features and source code. The
debugger is classically the only place where the developer can navigate between
the two worlds. It does not have to be that way, as seen in the Morphic frame-
work of Self, in which one may navigate freely between user interface widgets and
the source code related to them [11]. (This is just one dramatic manifestation of
“live programming”, but perhaps one of the most important ones for program
comprehension.)

A second barrier is that between a current version of a system and other
related versions. In order to extract useful information about the evolution of
the system, one must resort to “mining software repositories”, but this possibility
is not readily available to average developers who do not have spare capacity to
carry out such studies. Furthermore, different versions cannot normally co-exist
within a single running system, complicating integration and migration. (There
has been much interesting research but not much is available for mainstream
development.)

A third barrier exists between the system under development and the larger
ecosystem of related software. Countless research efforts in the past decade have
shown that, by mining the ecosystem, much useful knowledge can be gleaned
about common coding practices, bugs and bug fixes, and so on. Unfortunately
this information is not readily accessible to developers, so they often turn instead
to question and answer fora.

We see two main challenges, namely “Ecosystem Mining” and “Evolution-
ary Monitoring.” By mining software ecosystems and offering platforms to ana-
lyze them [2], we hope to automatically discover intelligence relevant to a given
project. Examples are opportunities for code reuse, automatically-generated and
evolving documentation, and usage information than can influence maintainers
of libraries and frameworks.

Evolutionary monitoring refers to steering the evolution of a software system
by monitoring stakeholder needs. An example of this is architectural monitor-
ing [3] which formalizes architectural constraints and monitors conformance as
the application evolves. Other examples include tracking the needs of stake-
holders (i.e. both developers and users) to determine chronic pain points and
opportunities for improvements; tracking technical debt to assess priorities for
reengineering and replacement; and monitoring technical trends, especially with
respect to relevent technical debt.

In the long run, we envision a development environment that integrates not
just the current code base and the running application, enabling easy naviga-
tion between them, but also knowledge mined from the evolution of the software
under development as well as from the software ecosystem at large. The develop-
ment environment should support active monitoring of the target system as well
as the ecosystem to identify and assess opportunities for code improvements.

5 Conclusion

Object-oriented programming has fulfilled many of its promises. Software sys-
tems today are longer-lived and more amenable to change and extension than

The Death of Object-Oriented Programming 9

ever. Nevertheless we observe that object orientation is slowly dying, with the
introduction of ever more complex and heterogeneous systems.

We propose to rejuvenate object-oriented programming and let ourselves be
guided by the maxim that “programming is modeling.” We need programming
languages, tools and environments that enable models to be directly expressed
in code in such a way that they can be queried, manipulated and analyzed.

Acknowledgments. We thank Mircea Lungu for his comments on an early draft of
this essay. We also gratefully acknowledge the financial support of the Swiss National
Science Foundation for the project “Agile Software Analysis” (SNSF project No.
200020-162352, Jan 1, 2016 - Dec. 30, 2018), and its predecessor, “Agile Software
Assessment” (SNSF project No. 200020-144126/1, Jan 1, 2013 - Dec. 30, 2015).

References

1. Achermann, F., Nierstrasz, O.: Applications = components + scripts—a tour of
piccola. In: Aksit, M. (ed.) Software Architectures and Component Technology,
pp. 261-292. Kluwer, Alphen aan den Rijn (2001)

2. Caracciolo, A., Chis, A., Spasojevi¢, B., Lungu, M.: Pangea: a workbench for sta-
tically analyzing multi-language software corpora. In: 2014 TEEE 14th Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM),
pp. 71-76. IEEE, September 2014

3. Caracciolo, A., Lungu, M., Nierstrasz, O.: A unified approach to architecture con-
formance checking. In: Proceedings of the 12th Working IEEE/IFIP Conference
on Software Architecture (WICSA), pp. 41-50. ACM Pres, May 2015

4. Chis, A., Denker, M., Girba, T., Nierstrasz, O.: Practical domain-specific debuggers
using the moldable debugger framework. Comput. Lang. Syst. Struct. 44(Part A),
89-113 (2015). Special issue on the 6th and 7th International Conference on Soft-
ware Language Engineering (SLE 2013 and SLE 2014)

5. Chig, A., Girba, T., Nierstrasz, O., Syrel, A.: The moldable inspector. In:
Proceedings of the ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software. ACM, New York (2015) (Onward!
2015, page to appear)

6. Combemale, B., Deantoni, J., Baudry, B., France, R.B., Jézéquel, J.-M., Gray, J.:
Globalizing modeling languages. Computer 47(6), 68-71 (2014)

7. Fritz, T., Murphy, G.C.: Using information fragments to answer the questions
developers ask. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering, vol. 1, ICSE 2010, pp. 175-184. ACM, New York (2010)

8. Kay, A.C.: The early history of Smalltalk. In: ACM SIGPLAN Notices, vol. 28,
pp- 69-95. ACM Press, March 1993

9. Klint, P., van der Storm, T., Vinju, J.: RASCAL: A domain specific language
for source code analysis and manipulation. In: Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2009, pp. 168-177
(2009)

10. Kurg, J., Lungu, M., Nierstrasz, O.: Bounded seas. Comput. Lang. Syst. Struct.
44(Part A), 114-140 (2015). Special issue on the 6th and 7th International
Conference on SoftwareLanguage Engineering (SLE 2013 and SLE 2014)

10

11.

12.

13.

14.

15.

16.

O. Nierstrasz

Maloney, J.H., Smith, R.B.: Directness and liveness in the morphic user interface
construction environment. In: Proceedings of the 8th Annual ACM Symposium on
User Interface and Software Technology, UIST 1995, pp. 21-28. ACM, New York
(1995)

Nierstrasz, O., Ducasse, S., Girba, T.: The story of Moose: an agile reengineering
environment. In: Proceedings of the European Software Engineering Conference
(ESEC/FSE 2005), pp. 1-10. ACM Press, New York, September 2005 (invited
paper)

Nierstrasz, O., Kur§, J.: Parsing for agile modeling. Sci. Comput. Program.
97(Part 1), 150-156 (2015)

Renggli, L., Ducasse, S., Girba, T., Nierstrasz, O.: Practical dynamic grammars
for dynamic languages. In: 4th Workshop on Dynamic Languages and Applications
(DYLA 2010), Malaga, Spain, pp. 1-4, June 2010

Renggli, L., Girba, T., Nierstrasz, O.: Embedding languages without breaking
tools. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 380—404. Springer,
Heidelberg (2010)

Sillito, J., Murphy, G.C., De Volder, K.: Asking and answering questions during a
programming change task. IEEE Trans. Softw. Eng. 34, 434-451 (2008)

Concurrent and Distributed Systems

Automated Choreography Repair

Samik Basu!®) and Tevfik Bultan?

! Towa State University, Ames, USA
sbasu@iastate.edu
2 University of California at Santa Barbara, Santa Barbara, USA
bultan@cs.ucsb.edu

Abstract. Choreography analysis is a crucial problem in concurrent and
distributed system development. A choreography specifies the desired
ordering of message exchanges among the components of a system. The
realizability of a choreography amounts to determining the existence of
components whose communication behavior conforms to the given chore-
ography. The realizability problem has been shown to be decidable. In
this paper, we investigate the repairability of un-realizable choreogra-
phies, where the goal is to identify a set of changes to a given un-realizable
choreography that will make it realizable. We present a technique for
automatically repairing un-realizable choreographies and provide formal
guarantees of correctness and termination. We demonstrate the viabil-
ity of our technique by applying it to several representative unrealizable
choreographies from Singularity OS channel contracts and Web services.

1 Introduction

Choreography specifications are used in a variety of domains including coordi-
nation of software in service-oriented computing [18], specification of process
interactions in Singularity OS [11], and specification of communication behavior
among processes in distributed programs [2]. Choreographies describe desired
message exchange sequences among components, programs or processes (we will
refer to them as peers) of a distributed system. The choreography realizabil-
ity problem is determining whether one can construct peers whose interaction
behavior conforms to the given choreography. As an example, consider the chore-
ography over two peers P; and P, shown in Fig. 1(a) where edges represent mes-
sages sent from one peer to another. This choreography describes a simple file
transfer protocol [9] where P is the client asking for the file transfer and Ps
is the file server. First, the client sends a message to the server to request that
the server starts the transfer. When the transfer is finished, the server sends the
“Transfer Finished” message and the protocol terminates. However, the client
may decide to cancel the transfer before hearing back from the server by sending
a “Cancel Transfer” message in which case the server responds with “Transfer
Finished” message, which, again, terminates the protocol.

This work is partially supported by NSF grants CCF 1116836, CCF 1555780 and
CCF 1117708.
© Springer-Verlag Berlin Heidelberg 2016

P. Stevens and A. Wasowski (Eds.): FASE 2016, LNCS 9633, pp. 13-30, 2016.
DOI: 10.1007/978-3-662-49665-7 -2

14 S. Basu and T. Bultan

Event Message Name

ms: P, — Py Start Transfer
mf: P, — P; Transfer Finished
mc: P; — P> Cancel Transfer

Fig.1. (a) Un-realizable choreography [9]; Repair by (b) relaxation, (c) restriction
(Color figure online).

Figure 3(a) presents the projection of the choreography onto the participating
peers resulting in the corresponding peer behaviors (send actions are denoted by
“I” and receive actions are denoted by “?”). The distributed system that consists
of the peer specifications shown in Fig. 3(a) can generate the message sequence:

mspl—»P27mfP2—>P1,ch1—>P2 (1)

This sequence corresponds to the case where the server sends a “Transfer Fin-
ished” message (mf), but before consuming that message, the client sends the
cancellation request message (mc). The sequence moves the server to an unde-
fined (error) configuration, where the server does not know whether the file
was transferred completely to the client before the client sent the cancellation
request. In terms of the choreography specification shown in Fig. 1(a), the mes-
sage sequence given above is not covered by the choreography, but any implemen-
tation of this choreography that uses asynchronous message passing will generate
the message sequence: (1), violating the choreography specification. Hence, the
choreography specification shown in Fig. 1(a) is un-realizable.

Problem Statement. This brings up the question: when a choreography is
determined to be un-realizable, is it possible to automatically repair the choreog-
raphy such that the repaired version is realizable? We will refer to this problem
as the choreography repairability problem. Its importance stems from the fact
that automation in repairing choreography will allow faster development of dis-
tributed systems with formal guarantees of correctness.

Our Solution. Our choreography repair technique analyzes and eliminates the
cause of violation of the condition for choreography realizability. In [4], we have
proved that choreography C is realizable if and only if its behavior (i.e., the set of
message sequences generated by C, denoted as £(C)) is identical to the behavior
of Z{ (denoted as L(Z})), where Z{ is the asynchronous system in which each

Automated Choreography Repair 15

public contract ReservationSessionContract {
state Start: {
request? -> Decide;
¥
state Decide: {
succeed! -> Success;
failed! -> Sink;
cancel? -> (cancelled!);

} succeed:S -> C ffailed:S -> C \cancel:C -> S
state Success: {
cancel?;
confirm?;
}
state Sink: { firm:C - :C - cancelled:S -> C
cancel?;
}

}

(a) (b)

Fig. 2. (a) Channel contract for ReservationSession and (b) the corresponding state
machine

participating peer has at most one pending message at any point of time, and is
obtained from the projection of C. We present two types of choreography repair
mechanisms that eliminate the differences between £(C) and L£(Z¢):

1. Relazation. The choreography C is changed to C’ such that £(C) C L(C'), i.e.,
new behavior is added to C, such that £(C') = £(ZE).

2. Restriction. The choreography C is changed to C’ such that £(C) = L(C |¢) =
E(Ilcl le) € L(Z§), where |¢ denotes the behavior projected on the messages
in C. This change implies that some behavior of Z{ is disallowed in Ilcl. This
is achieved by adding extra synchronization messages in C’. When these extra
messages are projected away, the repaired choreography C’ specifies exactly
the same sequences of messages specified by the un-realizable choreography C.

For example, the choreography in Fig. 1(a) is changed to the one in Fig. 1(b) via
relaxation, by adding new behavior (blue bold-edge), which makes the latter real-
izable. This is because the sequence that made C un-realizable (see sequence (1)
above) is now included in the repaired version C’. On the other hand, Fig. 1(c)
demonstrates repair via restriction, by adding synchronization messages from
state s1 to ns(0) (red dotted-edges); this repair also makes the resulting chore-
ography realizable. In this case, the sequence in (1) is not possible in Ilc,.

Contribution. We present a formal characterization of choreography repairabil-
ity. To the best of our knowledge, this is the first time such a characteri-
zation has been presented. We present a sound and complete algorithm for
choreography repair based on this characterization. We also discuss its applica-
tion by demonstrating automated repair of several unrealizable choreographies.
Although choreography examples we use in this paper consist of two-party chore-
ographies, the formal model and the repair algorithm we present are general and
handle multi-party choreographies.

16 S. Basu and T. Bultan

2 Repairing Singularity OS Channel Contracts

We motivate the practical applicability of automated choreography repair using
Singularity OS channel contracts. Singularity OS [16] is developed by Microsoft
research with the objective of improving OS dependability by ensuring process
isolation. The processes in Singularity OS communicate over FIFO channels
and follow specific channel contracts (choreographies in our case); that specify
allowable communication patterns between processes (client and server). The
Singularity OS channel contracts correspond to choreography specifications. One
problem is to determine whether one can implement a client and a server whose
interaction conforms to the given channel contract, i.e., determining realizability
of the given channel contract.

Figure2(a) presents a channel contract called reservation session contract
(where message declarations are omitted for brevity). The contract specifies four
explicit states and the message sequences from the perspective of the server. For
instance, the contract specifies that the state changes from “Start” to “Decide”
when the server receives a message “request” from the client. From the state
“Decide”, there are three choices: the server sends the message “succeed” to
the client resulting in the state update to “Success”; the server responds to the
client with message “failed” leading to the state “Sink”; the client sends “cancel”
followed by the server sending “cancelled” message. Figure 2(b) presents the state
machine for this contract (C represents the client and S represents the server).

The Singularity Design Note 5 [16] states that the client and server processes
that are verified to conform to a given channel contract (i.e., that implement the
projection of the channel contract correctly) are guaranteed to interact without
any deadlocks. However, in [17], the authors demonstrated that this claim is
incorrect since the channel contract itself can be un-realizable, in which case the
processes implemented based on the projection of the contract can deadlock. One
of the examples demonstrating this problem is the reservation session contract
from Singularity OS shown above. Due to asynchronous communication, the
client and server can move out-of-sync and deadlock. Consider the scenario where
the client sends a “cancel” message and waits for the “cancelled” message from
the server, while the server sends a “failed” message and consumes the “cancel”
message from the client. This sequence of interactions leads to a deadlock. In fact
there are no client and server processes that can conform to this contract without
deadlock while interacting via FIFO channels (as required by the Singularity
08), i.e., the choreography specified by this channel contract is un-realizable.

The automated choreography repair technique we present in this paper is
directly applicable to Singularity OS channel contracts. Using our technique we
can repair un-realizable channel contracts, and ensure deadlock free implemen-
tation of repaired contracts. We will discuss the application of our automated
choreography repair technique to the reservation contract in Sect. 5.

Automated Choreography Repair 17

3 Choreography Realizability

We proceed by presenting an overview of the existing results [4] on choreogra-
phy realizability, which forms the basis of our automated choreography repair
strategy.

Peers. The behavior B of a peer P is a finite state machine (M, T\, t,0) where
M is the union of input (M) and output (M°"") message sets, T is the finite set
of states, tg € T is the initial state, and 6 C T x (M U {e}) x T is the transition
relation. A transition 7 € § can be one of the following three types: (1) a send-
transition of the form (t1,!m1,t2) which sends out a message m; € M°", (2) a
receive-transition of the form (¢, ?ma, ts) which consumes a message my € M
from peer’s input queue, and (3) an e-transition of the form (¢1, ¢, t2). We write
t % ¢’ to denote that (¢,a,t') € 6. Figure3(a) illustrates the behavior of peers
Py, and P»; states in P; are denoted by a tuple (P;: “state-name”).

System. Given a set of peers P = {Py,..., P,} with B; = (M;, T}, to;, ;) denot-
ing the behavior of P; and M; = M™ U M such that Vi : M N MY = (),
and Vi,j : i # j = M®™n M}“ = MP"* N M = (). A system behavior or
simply a system over P is denoted by a (possibly infinite state) state machine
T = (P,S,s0, M,A) where P is the set of peers, S is the set of states in the

[P1:50:[1,P2:50: []]

ms:P1 -> P2

A

[P1:sl:[],P2:5s0: [ms]]

epsilon

[PLl:sl:[],P2:sl:[]]

Pl:s2:[,P2:s2:[]] [P1:s2: [mf],P2:s3: [mc]] [P1:s3:[],P2:s3:[]]

mf:P2 > Pl epsilon
1 1

@l.[’225421“ [P1:s4:[],P2:s3: [mc]]

epsilon
A

Pl:s4:[]P2:s4:[]]

(b)

18 S. Basu and T. Bultan

system and each state s = (Q1,t1,Qa,t2,...Qn,ty) in the system is described
by the local states (¢;s) of the peers in P along with the contents of their queues
(Qis). sg € S is the start state, where none of the peers have any pending mes-
sages in their queue to consume. The set M contains the set of all messages that
are being exchanged by the participating peers.

Finally, the transition relation A is described as follows. The send actions are
non-blocking, i.e., when a peer P; sends a message m to a peer P; (denoted by
mPi=Fi) the message gets appended to the tail of the queue associated to P;.
We refer to the queue as the receive queue of P;. The receive actions are blocking,
i.e., a peer can only consume a message if it is present at the head of its receive
queue; on consumption of the message, it is removed from the head of the queue.
Only the send actions are observable in the system as these actions involve two
entities: the sender sending the message and the receive queue of the receiver. All
other actions are local to one peer and, therefore, unobservable (e-transitions).
We will use the functions 1St(.,.) and 1Qu(.,.) to obtain local state and queue
of a peer from a state in the system, i.e., for s = (Q1,t1, @2, t2,...Qn,tn) € S,
1St(S,P1) = tl and 1QU(S,P1) = Ql-

K-bounded System. A k-bounded system (denoted by Zj) is a system where
the length of message queue for any peer is at most k. In any k-bounded system,
the send actions can block if the receive queue of the receiver peer is full. Any
k-bounded system is finite state as long as the behaviors of the participating
peers are finite state. Figure 3(b) illustrates the system Z; obtained from the
communicating peers P; and P; of Fig. 3(a). Note that initially P; is at the local
state Pj:s; with an empty receive queue denoted by [].

Choreography Specification. A choreography specification is a finite state
machine C = (P, S, s§, L, A°) where P is a finite set of peers, S is a finite
set of states, sg € C' is the initial state, L is a finite set of message labels and,
finally, A® C S¢ x P x L x P x S¢ is the transition relation. A transition of the
form (s§, P,m, P’, sjc) € A° represents the sending of message m from P to P’
(PP €P).

Peer Projection. The projection of a choreography C on one of the peers P,
is obtained from C by performing the following updates to the state machine
describing C. (a) If a transition label is m®~F" then replace it with !m; (b) if a
transition label is m” —F then replace it with ?m; (c) otherwise, replace transi-
tion label with €. The system obtained from the asynchronous communication of
the projected peers of C is denoted by Z¢; Z¢ being the corresponding 1-bounded
system. The language of a choreography or a system is described in terms of a
set of sequences of send actions of the form m?—F /; the concatenation of € to
any sequence results in the sequence itself. The language is denoted by L(.).

Theorem 1 (Realizability [4]). C is language realizable < [L(C) = L(ZY)]

This theorem states that a choreography is realizable if and only if the set of
sequences of send actions of a choreography is identical to the set of sequences of
send actions of the 1-bounded system where the participating peers are gener-
ated from the (determinized) projection of the choreography under consideration.

Automated Choreography Repair 19

Figure 3(b) presents the behavior of the system Z¢ for the choreography specifica-
tion C shown in Fig. 1(a), where epsilon-labeled transitions denote consumption
of messages and other transitions denote sending of messages. The choreography
C is un-realizable because it does not include a specific send sequence that is
possible in Z{ (Fig.3(b)) (Sequence (1) discussed in Sect. 1).

4 Choreography Repair

Types of Repair. In this paper, we present two alternative techniques for
repairing un-realizable choreographies. One is based on adding new behaviors
(in terms of sends) to C, which we call relazation. The other is based on adding
constraints that do not alter allowed sequences of sends in C but restrict the
behavior in Z¢. We call this approach restriction. The techniques will be based
on the observation that from Theorem 1 and from the nature of asynchrony, it

follows: £(C) # L(I{) = L(C) C L(ZY).

State Relationships Between Z{ and C. Before we describe the repair tech-
niques, we first discuss the structure of the Z{, which is crucial for understanding
our approach. If a state in C is represented as sC, then the corresponding state
in the peer P is a tuple denoted by P:sC. Proceeding further, if s is a state in
Z¢, then s = (Qq,t1,...,Qn,t,), where n is the number of peers and ¢; is of the
form P;: szc Note that, the local states of each peer in s may have been obtained
from different states s§ in C.

Consider for example, the second state of the system in Fig.3(b)-P; is at a
state P;:sq obtained from the state s; in C and P is at a state Py :sg obtained
from the state sp in C. Using the notations introduced in Sect. 3, 1St((P; : sy :
[],Pg:SoZ[mS]),Pl) = P1 :81; 1Qu((P1 :S1 :[],PQ ZSOZ[’ITLS]),PQ) = [ms}

4.1 Differences Between C and l'lc

In order to apply relaxation or restriction, it is important to identify at least
one difference between C and Z¢ in terms of sequences of send actions. We know
that for un-realizable C, £(C) C L(Z{). Therefore, there exists at least one send
sequence in Z{ which is absent in C.

Consider that there exists a path in Z{ in the form

mfl_}P{ mfz_}Pé mfiﬂp{
s1 So S3 — ...8 — Sit1 (2)
. . . Pi—P] _ P,—P}
which generates the following sequence of send actions my' " *,my° 2,...,

?HPi. Assume that, none of the paths in C allow the above send sequence.
However, there exists a path in C which replicates the above sequence till

m; ' Pt Let such a path be denoted by

20 S. Basu and T. Bultan

!
Py —P] Py— P} Pi1—P;_4
mit T ma2 T2

1 to t3 — ... t;_1 m1_1—> t; (3)

where t; does not have any outgoing transition labeled by mfiépi. In summary,

one of the differences between the send sequences present in C and Z¢ is due to the
presence of send action mfﬁp’! at s; and absence of the same at t;. For instance,
going back to the example in Fig. 3, the difference between C and Z¢ is due to
msTi= P2 m fPe=P1 meP1 =P in which case s; is equal to (Py:s1:[mf], Pa:ss:]])
in Ilc and t; is equal to s3 in C. The cause of the difference between the behaviors
can be explained in one of the two ways:

Independent Branches. The choreography specification includes a branching
behavior involving sends from at least two peers in two different branches. The
sender peers follow different paths in the branches. This is the case in Fig. 1(a).

Independent Sequences. The choreography specification includes a path
where there are two messages sent by two different peers and the sender of the

second message does not depend on the first message. This situation can be illus-
Py — P P3—P,
trated using the following choreography specification: t; — i t, = i to.

The first and second transitions correspond to send actions of P; and Pj, which
can occur in any order in the corresponding system and therefore, this choreog-
raphy, therefore, cannot be realized. We will refer to the path as independent
sequences and the transitions as independent transitions.

The objective of repair via relaxation or restriction is to alter the behavior of
C proceeding from ¢; such that the above causes of differences can be eliminated.

4.2 Repair by Relaxation

As noted before, relaxing C corresponds to adding new behaviors to C. Specifi-

cally, adding a new behavior from state ¢; (in path (3) above) implies adding a

transition from ¢; to some ¢} with transition label mf)"_)P"'. The addition of such

a new transition obviously results in a new choreography specification, say C’.
We will denote relaxation of C to €' as C /* C’. Note that, the following holds:
C/C = L) CLl).

While adding a new transition from ¢; to a state (say t}) eliminates the
difference due to the send action mfiépi/, the important next step is to identify
a suitable ¢;. There are two possibilities: we can either assign ¢; to some existing
state in C or generate a new state. Careful selection of one of the two choices is
important because it impacts the termination of the repair mechanism. Using the
form of the system path shown in (2), let 18t(s;, P;) = P;:¢;; 18t(si41, Pi) =
P i cip1; 1Qu(si, P;) = Q45 1Qu(sip1, P;) = Qiq1. In the above, Q; = Qi1
because the peer P; does not consume any messages at this transition.

Case 1. Consider that the receive queue Q; of the peer P; is non-empty,
implying that there is one pending message to be consumed (recall that the Z¢
is 1-bounded system with each receive queue capacity being 1). In other words,

Automated Choreography Repair 21

some peer (say, R) has sent the message (say m) to P; and P; has not encountered
any receive action along the choreography path it has taken resulting in system
path shown in (2).

This case corresponds to the situation described as independent branching
(see above), when peer P; is moving along a choreography specification path =
and the other peer R is moving along a different path 7’ of the choreography
specification, resulting in the path shown in (2). Furthermore, R has sent m to
P; which resides un-consumed in the receive queue of P;.

Case 1la. Let there be a transition in the behavior of peer P; at state P;:c;y1,

. .. m .
where it can consume the message in its queue: P;:¢;y1 — P;:c,. That is, the

R—P;
choreography specification includes ¢;4 — ¢; along the path . Therefore,
both of the paths under consideration, 7 and 7', have the send action mf—=%%.
In 7, m " is followed by m®=F In ', mf=P is not followed by m.* .
P;—P]
In this case, the relaxation adds t; ML BN t; in the choreography specifica-
tion and sets t} to c}.

Case 1b. On the other hand, if there exists no transition in the behavior of
peer P; starting from state P; :c¢;+1 where it can consume the message in its
queue, then the following repair is done.

Case 1b-i. If P; : ¢;41 belongs to a cycle then in the newly added transition

P;—P]
t; BN t’, t} is set to a newly generated state, which replicates the chore-

ography specification starting from c; 1. Note that, the repair does not assign
t. to ¢;41. This is because such assignment will result in unnecessary over-
relaxation of choreography specification due to the presence in m®—% in path
7’ and its possible absence in the cycle which is part of the path 7. We will
discuss below this scenario using the example in Fig. 4.

Case 1b-ii. If P; at P;:¢;41 cannot consume the pending message and P;:c;y1
does not belong to any cycle, then ¢, is set to a newly generated state. The
addition of the new transition removes the identified difference between the
choreography and the system.

For instance, in Fig. 3(b), the path in Z{ that is absent in C (Fig. 1(a)) has the
sequence msT1 =2 m fP2= P e =Pz Note that, we are considering only the
send actions and the transitions are considered with zero or more occurrences of

€ followed by a send action. The path in C that replicates most of this sequence
Py — P Py— Py
is sg — i $1 mf s3. Therefore, for repair by relaxation, our objective

is to add a transition with send action mc¢™—2 from the choreography state
s3. From the system, we know that the peer P; at the state Pj:ss can consume
the message my in its receive queue and move to a state in P; :s4 (see Fig. 3).
Therefore, the transition added from s3 has the destination state s4. The result of
this repair by relaxation is the choreography specification presented in Fig. 1(b).
This illustrates the Case 1la of repair by relaxation.

Figure4 illustrates the applications of Case 1b-i and 1la. The local states
of the peers participating in the system transitions are presented in bold-font.

22 S. Basu and T. Bultan

Py—P Py— P
System: Py:sq:] ny27 01 Py :81:[n1] my 27 Py:s2:[nq]
yaem.(P2:slz[]) (Ps:ss:]) (P2:53:[m1])
P2 Py
> ° Choreography:|s; ——— s3
P1—P2 WP1—P2
Case 1b-i:|s5 — ns(0) — ns(0)
Py —Py Py—Py
. |, Piisy:]y ™ Py:so:] mq Py:sy:ng]
Systcm‘(Pg:slz[]> (P2:51:[m1]) (P2:53:[m1])
- WP1—P2
miPL-> Choreography:|sq L s
nF2—P1
Case la:|sy ——— ns(0)

Fig. 4. Example illustrating application of Case 1b-ii and la of relaxation

In the first step, the difference between the system transition sequence and the
choreography sequence is repaired following the Case 1b-i. P :sy does not have
a transition where it consumes the pending message ni, and P; : so belongs to
a cycle. Therefore, a new state ns(0) replicating so is generated as part of the
repair strategy instead of adding the transition mf 12 from s to sg.

Case 2. Now consider that the receive queue @); of the peer P, is empty,
implying that there is no pending message to be consumed. Unlike the previous
case, in this situation, the difference between Z¢ and C (represented by paths
(2) and (3) in Sect.4.1) is not necessarily due to independent branches, when
two peers move along two different paths of the choreography specification.
Instead the peers may be moving along the same path of the choreography
specification, and the latter has imposed an “un-realizable” ordering of send

actions involving mfiﬂpi. In other words, it is not possible to “stop” P; from
sending the message m; from its projected behavior when the choreography
specification reaches t;, however t; does not have mf"HPi . This corresponds to
the case of independent sequences (see above).

Recall that, the choreography specification state is ¢; from where there is no

matching mf’z_’Pi event. We check whether there exists a path from P;:¢; (i.e.,

local state of P; obtained from projection at ¢;) to P;:¢; in the peer P; via a
sequence of transitions such that after a sequence of e-transitions, there is a !m;
transition followed by some other sequence of transitions.

Case 2a. If the check is successful, then we can infer that t; is part of a loop
and it contains independent transitions, which cause un-realizability.

Case 2a-i. Then we identify the first intermediate state P;:t in this loop, which
has an outgoing transition over some other output action. In this case, a new

P;— P!
transition #; ——— t, with t; set to t is added to replicate the behavior
in Z¢.

Automated Choreography Repair 23

P;—P]
Case 2a-ii. If no such intermediate state exists, then t; —— t, with ¢} set
to t; (self-loop) is added.

In either case, the permutations of pairs of independent transitions that were
identified as the difference between C and Z{ are added and nothing else.

Case 2b. On the other hand, if the check is unsuccessful, then we can infer that
t; is not part of a loop.

Case 2b-i. We find out whether P:c; 1 (local state of the sender at s;11) has
a path to P :t; (t; being the choreography state that cannot replicate the
behavior of the system from s;). If such path exists in the behavior of P;, we
infer that P; moves along a path different from ¢,ts,...,¢; (see path 3) in
choreography but the path has the ability to join at ;. In this case, we add a

P;—P]
new transition labeled with t; o, ¢;+1 to remove the difference between
the choreography and corresponding the system.
Case 2b-ii. If the condition in Case 2b-i fails, then we find out the choreography
state reachable from ¢; ;1 (the choreography state corresponding the senders
P/ . .
‘=1 If such a state is ¢, then this

implies that the choreography path extending from c¢;;; allows mi]l_ﬂ’l

P/

Pi_q—

local state at s;41) via the action m, "

, while the choreography path along t1,%a,...,t; (see path 3)
P;_1—P]

1

does not allow mf"_)Pi after m;']" ~ *7'. The repair in this case is similar to
P;—P]

Case la and amounts to adding ¢; 2 t. On the other hand, if no such

choreography state ¢ exists, then a new state is generated and a transition

P—
after m;

over mfi’_)P'i is added from t; to this newly generated state.

Figure5 illustrates the application of Case 2 of relaxation.

4.3 Repair by Restriction

The objective of restriction, unlike relaxation, is to constrain the behavior of the
system Z¢. In other words, going back to paths (3) and (2) in Sect. 4.1, restric-
P;—P/
tion implies disallowing the transition s; ———— s;;; in Z{ i.e., introducing
P;—P]
restriction to disallow the transition c; MR ¢ in C from happening at the
system state s;, where 1St(s;, P;) = P;:¢; and 1St(s;11,P;) = P;: ¢iy1. The
P;—P]
restriction of transition ¢; ——— ¢} is achieved by adding a new intermediate
state between ¢; and c}.

Case 1. Let t; have a transition to t where some peer P sends a message m

to P’ and P is different from P;, the sender peer of the message m;. We verify
P;—P]

whether the transition c¢; o ¢;+1 is reachable from ¢.

24 S. Basu and T. Bultan

P1 S1 Pap Pltslt[]
System:|(:i 0) ——— L3, (1122 z; H)
Pyisy:| Py:sq:[b]

Choreography:|s

:Pl > P2 Case 2a-ii:|s] —— 1
Prisi:l Prisz:[] Prisiel]
« |, Pa:isy:]] oP1—P2 Py:sy:la], «P1—P2 Py:sy:lac]
System:|(Ps:s1:[]) — (Pyisitl]) (Proei])
Pyisi:] Py:si:] Pyisi:]
aP1— P2

Choreography:|s; ——— s2

(g 0:P3 > P4 Case 2a-i:|sy =5 51
Py :sq Pr:sa:] Py:sa:]
. |, Paisy:[] | af1—=P2 Porisyifa] »f37FP4 Pr:isy:lal
System:|(p .1) (Pyrsr:[)) (Pyrsr:[))
1> P2 Py:sq: Py:s1:] Py:s1:[b)
Py:sat]
pP3—Py (Py:s1:[a])
:P3—>P4 aP1— P2 pP3— Py P3:sy:]
Choreography:|sq Sa s3 Pysy:[bb]

(b) . pP3— Py
Case 2a-ii:|s3 ———— s3

Fig. 5. Example illustrating application of Case 2a of Relaxation

If the verification is successful, this corresponds to the case of unrealizability

due to independent transitions. The repair, in this case, results from the addition
P—P/ P/ —P;

of an intermediate state between t; and t such that #; — ns - t,

where nm is a new message and ns is a new state. Addition of such transitions

PimF] at the system state s;.

will disallow the m;

Case 2. However, if there is no transition from the state t; or the transition is
labeled with a send action performed by the same peer P;, then it corresponds
to the case of unrealizability due to independent branches. In this case, we iden-
tify the sender peer P;_; for the transition from t;_; to ¢;. The restriction is
achieved by introducing an intermediate state between c¢; and c¢;41 as follows:

nmbi- m?ﬂp:

C ns ¢i+1, where nm and ns are newly added message and
newly added state, respectively.

These newly added messages and transitions in the choreography can be
viewed as an extra step which forces the peer P; to come in sync with some
other peer (P’ in Case la above and P in Case 1b and 2 above) before sending
the message m;. We refer to such extra step as the synchronization step.

We will denote restriction of C to generate C’ as C \, C’. It is immediate that

1= P

CN\.C = LI lo)=L(C) A LI o) C L(Ib) (4)

The operation '.” |¢ extracts the behavior with respect to actions present in
C. The restriction does not alter the behavior of the choreography in terms of
the actions in C but restricts the behavior of the corresponding system in terms

Automated Choreography Repair 25

Algorithm 1. Repair(C, inputRepairMechanism)

1: Compute Z¢

2: if £(C) = L(ZY) return C > C is realizable
3: Find a difference between C and Z¢ > Sect. 4.1
4: Apply C inputRepairMechanism C’ > Sects. 4.2, 4.3
5: GOTO Line 1 with C assigned to C’ > Iterate

of the actions in C. Figure 1(c) presents the result of applying restriction based
repair of the choreography in Fig. 1(a). There exists a path in the system where
it reaches the state Pj : sy : [mf], Py : s3: [] via the send sequence ms™ =12,
mfP2=P1; from this state, the system is capable of producing me™ =2 (see
Fig.3). The choreography via the same sequence of sends reaches the state s.
Therefore, the restriction is achieved by following the Case 2 above resulting in
a repaired choreography in Fig. 1(c).

4.4 TIterative Algorithm

It is necessary to apply the relaxation or the restriction iteratively till a realizable
choreography is obtained and all differences between the choreography and the
corresponding 1-bounded system behavior have been resolved. In Algorithm 1
the input parameter “inputRepairMechanism” is either set to * (relaxation) or
N\, (restriction). Figures4 and 5 illustrate the application of Algorithm 1.

Theorem 2 (Correctness). The algorithm REPAIR is guaranteed to terminate
and produce a repaired (i.e., realizable) choreography.

Proof Sketch. The algorithm iterates as long as there is a difference between the
choreography C and the interaction behavior of the corresponding system Z¢. To
address the difference, the algorithm introduces new states as part of the repair
process. The number of such introduction of new states depends directly on the
number of independent branches and independent transitions (that cause un-
realizability of the choreography). The number of independencies are bounded
by the number of branches and the maximum length of a path (with one unfold-
ing) in the choreography, which ensures the boundedness in the introduction
of new states. This, in turn, ensures that all possible causes of choreography
un-realizability is removed within finite number of steps. a

5 Case Studies

We have implemented Algorithm 1 and used it to repair several un-realizable
choreographies that were reported earlier [7,17]. Our implementation obtains
repaired versions of these un-realizable choreographies within a second.

26 S. Basu and T. Bultan

sendcomplete:S -> C

Fig. 7. (a) TpmContract specification, (b) repaired.

Recall that the Singularity OS reservation contract (see Sect.2) is un-
realizable. Figure 6 presents a repaired version by adding new message exchanges.
Another un-realizable contract is TpmContract (Fig. 7(a)). In Fig. 7(b), we show
a repaired version that is automatically generated by our technique. The repaired
version is similar to the one identified by authors in [9]; note however that [9]
suggested an addition of a new state and two new transitions. Our repair mech-
anism achieves the same result by introducing one new transition between two
existing states.

We have also analyzed the “Meta Conversation” protocol developed by
IBM [12] and discussed in [7]. Two peers P, and P, race to decide the initia-
tor of the interaction. The protocol is illustrated in Fig.8(a). It is un-realizable
because the peers can both send the start messages (aStartcp and bStartcp)
which is not allowed in the protocol. The restriction based solution (Fig.8(b))
only allows peer P; to start the interaction.

Automated Choreography Repair 27

Note that the repair
only considers the tran-
sitions and their labels,
and not their semantics.
For instance, in Fig.6,
the added bold blue edges
(relaxation) do not fol-
low the semantics of the
messages being exchanged.
Consider the new path
in the interaction, where
“cancel” from client to
server can be followed
by “succeed” from the (b)
server to client. This is
present in the repair in
order to allow any order-
ing between “succeed” and
“cancel” messages (as “suc-
ceed” followed by “cancel”
is allowed in the original
contract), which may not
make sense in the con-
text of the contract. Therefore, it is sometimes necessary to obtain certain
application-domain specific information from the user such that relaxations can
be guided appropriately. If the user had provided additional information that
“cancel” can never be followed by “succeed”, then relaxation would have been
impossible and the only choice for removing difference between the un-realizable
choreography and the corresponding 1-bounded system will be restriction. We
allow users to provide such domain knowledge in our implementation. We have
also allowed user-interaction to decide on whether relaxation or restriction is
preferred for repair. The user-interaction essentially involves examination of the
difference (as presented by our tool) and deciding on the choice between relax-
ation and restriction. Figure9 presents an alternative solution for repairing the
contract in Fig. 6 generated by our tool. Observe that in this solution, a combi-
nation of relaxation and restriction has been applied.

bStartcp:P2 ->P1 [aAccept:P1 -> P2 \aStartcp:P1 -> P2

aRefuse:P1 ->P2 /bRefuse:P2 ->P1

bAccept:P2 -> P1

bRequested

laAccept:P1 -> P2

aRefuse:P1 -> P2

Fig. 8. (a) Meta conversation, (b) repaired.

6 Related Work

Realizability of choreographies has been studied before. The authors in [7,9]
use state machine based specifications while the authors in [6,10] use session
types; both present sufficient conditions for realizability. In [4], we have proved
the decidability of choreography realizability in terms of send sequences' by
presenting a necessary and sufficient condition for realizability.

! Note that, the realizability problem for the MSC-graphs, which considers both send
and receive actions for realizability, is undecidable [1].

28 S. Basu and T. Bultan

Fig. 9. Alternative repair strategy for ReservationSession (Fig.2(b))

In [15], the realizability of choreography requires the developer to specify a
“dominant” process for each branch and loop construct, which allows the projec-
tion mechanism to synthesize necessary synchronization messages between the
dominant process and others. Similarly, techniques proposed in [3,8,14,19] rely
on introducing new processes, monitors and central controllers to ensure realiz-
ability. These may not be viable options if one is using a distributed comput-
ing paradigm. Moreover these techniques can be conservative in the sense that
unnecessary synchronization messages can be added to even realizable choreogra-
phies. Furthermore, the focus of these works is technically different from that
of our—for instance, the technique in [3] coordinates the activities of the peers
in a distributed fashion such that their coordinated behavior conforms to the
given choreography. The repair technique developed by authors in [13] focuses
on process algebraic description of choreographies and repair by restriction in
the context of independent sequences (referred to as connected choreography
by the authors); additionally, the description does not take into consideration
iterations, which makes the technique inapplicable to choreographies with cycles.

In contrast, our work (which includes both relaxation and restriction mecha-
nisms) does not require introduction of new processes, does not require a central
controller, and does not require use of synchronous communication between any
entities/peers. As our technique is based on finite state machines and their lan-
guage equivalence, it is applicable to choreographies and interactions which are
specified at different levels of abstractions, such as session-types [10] and collabo-
ration diagrams [5], as long as these specifications are translated to state-machine
based representation described in [4] and used in this paper.

7

Automated Choreography Repair 29

Conclusion

We present techniques for automatically repairing un-realizable choreographies
based on two strategies: (1) relaxation, where new behaviors are added to the
choreography as part of the repair and (2) restriction, where un-desired (excluded
by the choreography) behaviors in the system obtained by projecting the chore-
ography are removed as part of the repair. We prove that our repair algorithm
always terminates with a realizable choreography. To the best of our knowledge,
our method is the first to consider automatically repairing choreographies and
to provide formal guarantees of correctness.

References

10.

11.

12.

13.

14.

15.

Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC
graphs. In: Proceedings of 28th International Colloquium on Automata, Languages,
and Programming, pp. 797-808 (2001)

Armstrong, J.: Getting Erlang to talk to the outside world. In: Proceedings of
ACM SIGPLAN Workshop on Erlang, pp. 64-72 (2002)

Autili, M., Di Ruscio, D., Di Salle, A., Inverardi, P., Tivoli, M.: A model-based
synthesis process for choreography realizability enforcement. In: Cortellessa, V.,
Varrd, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793, pp. 37-52. Springer,
Heidelberg (2013)

Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2012)
Bultan, T., Fu, X.: Specification of realizable service conversations using collabo-
ration diagrams. Serv. Oriented Comput. Appl. 2(1), 27-39 (2008)

Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol.
7211, pp. 194-213. Springer, Heidelberg (2012)

Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification
and verification of reactive electronic services. In: Ibarra, O.H., Dang, Z. (eds.)
CIAA 2003. LNCS, vol. 2759, pp. 188-200. Springer, Heidelberg (2003)
Gidemann, M., Salaiin, G., Ouederni, M.: Counterexample guided synthesis of
monitors for realizability enforcement. In: Chakraborty, S., Mukund, M. (eds.)
ATVA 2012. LNCS, vol. 7561, pp. 238-253. Springer, Heidelberg (2012)

Hallé, S., Bultan, T.: Realizability analysis for message-based interactions using
shared-state projections. In: SIGSOFT Foundations of Software Engineering (2010)
Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of Symposium Principles of Programming Languages (2008)

Hunt, G.C., Larus, J.R.: Singularity: rethinking the software stack. Operating Syst.
Rev. 41(2), 37-49 (2007)

Kumaran, S., Nandi, P., Hanson, J., Heath, T., Patnaik, Y.: Conversational
browser. IBM Techreport (2004)

Lanese, 1., Montesi, F., Zavattaro, G.: Amending choreographies. In: Automated
Specification and Verification of Web Systems (2013)

Lohmann, N., Wolf, K.: Realizability is controllability. In: Laneve, C., Su, J. (eds.)
WS-FM 2009. LNCS, vol. 6194, pp. 110-127. Springer, Heidelberg (2010)

Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of chore-
ography. In: Proceedings of Conference on World Wide Web (2007)

30

16.

17.

18.

19.

S. Basu and T. Bultan

Singularity design note 5: Channel contracts. singularity rdk documentation (v1.1)
(2004). http://www.codeplex.com/singularity

Stengel, Z., Bultan, T.: Analyzing singularity channel contracts. In: Proceedings
of 18th International Symposium on Software Testing and Analysis (ISSTA), pp.
13-24 (2009)

Web Service Choreography Description Language (WS-CDL) (2005). http://www.
w3.org/TR/ws-cdl-10/

Yoon, Y., Ye, C., Jacobsen, H.-A.: A distributed framework for reliable and efficient
service choreographies. In: Proceedings of the 20th International Conference on
World wide web, WWW 2011, pp. 785-794. ACM (2011)

http://www.codeplex.com/singularity
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

A Graph-Based Semantics Workbench
for Concurrent Asynchronous Programs

Claudio Corrodi:2®)_ Alexander HeuBner?, and Christopher M. Poskitt!*

! Department of Computer Science, ETH Ziirich, Ziirich, Switzerland
2 Software Composition Group, University of Bern, Bern, Switzerland
corrodi@inf.unibe.ch
3 Software Technologies Research Group, University of Bamberg, Bamberg, Germany
* Singapore University of Technology and Design, Singapore, Singapore

Abstract. A number of novel programming languages and libraries
have been proposed that offer simpler-to-use models of concurrency
than threads. It is challenging, however, to devise execution models that
successfully realise their abstractions without forfeiting performance or
introducing unintended behaviours. This is exemplified by Scoop—a
concurrent object-oriented message-passing language—which has seen
multiple semantics proposed and implemented over its evolution. We
propose a “semantics workbench” with fully and semi-automatic tools
for Scoop, that can be used to analyse and compare programs with
respect to different execution models. We demonstrate its use in check-
ing the consistency of semantics by applying it to a set of representative
programs, and highlighting a deadlock-related discrepancy between the
principal execution models of the language. Our workbench is based on
a modular and parameterisable graph transformation semantics imple-
mented in the GROOVE tool. We discuss how graph transformations are
leveraged to atomically model intricate language abstractions, and how
the visual yet algebraic nature of the model can be used to ascertain
soundness.

1 Introduction

To harness the power of multi-core and distributed architectures, software engi-
neers must program with concurrency, asynchronicity, and parallelism in mind.
Classical thread-based approaches to concurrent programming, however, are dif-
ficult to master and error prone. To address this, a number of programming APIs,
libraries, and languages have been proposed that provide safer and simpler-to-use
models of concurrency, such as the block-dispatch model of Grand Central Dis-
patch [14], or the message-passing-based model of Scoop [40]. The concurrent
programming abstractions that these languages provide rely on the existence of
effective execution models for realising them; effective in the sense that they do

C. Corrodi and C.M. Poskitt—Research done whilst employed by the Chair of Soft-
ware Engineering, ETH Ziirich.
© Springer-Verlag Berlin Heidelberg 2016

P. Stevens and A. Wasowski (Eds.): FASE 2016, LNCS 9633, pp. 31-48, 2016.
DOI: 10.1007/978-3-662-49665-7_3

32 C. Corrodi et al.

so without forfeiting performance or introducing unintended behaviours. Devis-
ing execution models that successfully reconcile these requirements, however,
is challenging: a model that is too restrictive can deny desirable concurrency
and lead to unnecessary bottlenecks; a model that is too permissive can lead to
surprising and unexpected executions.

This challenge is exemplified by Scoop [40], a message-passing para-
digm for concurrent object-oriented programming that aims to preserve the
well-understood modes of reasoning enjoyed by sequential programs, such as
pre- and postcondition reasoning over blocks of code. Although the high-level
language mechanisms for achieving this were described informally as early as
the ‘90s [24,25], it took several years to understand how to effectively imple-
ment them: execution models [6,26,40], prototypes [28,37], and contrasting ver-
sions of a production-level implementation [11] gradually appeared over the last
decade, and can be seen as representing multiple, partially conflicting semantics
for realising Scoop. They are also unlikely to be the last, as new language fea-
tures continue to be proposed, prototyped, and integrated, e.g. [27]. Despite the
possible ramifications to behavioural and safety properties of existing programs,
little work has been done to support formal and automatic comparisons of the
program executions permitted by these different semantics. While general, tool-
supported formalisations exist—in Maude’s conditional rewriting logic [26], for
example, and in a custom-built CsP model checker [6]—these are tied to partic-
ular execution models, do not operate on program source code, and are geared
towards “testing” the semantics rather than general verification tasks. Further-
more, owing to the need to handle waiting queues, locks, asynchronous remote
calls, and several other intricate features of the SCOOP execution models, these
formalisations quickly become complex, making it challenging to ascertain their
soundness with language designers who lack a formal methods background.

The Challenge. There is a need for languages like SCOOP to have tools that
not only support the prototyping of new semantics (and semantic extensions),
but that also facilitate formal, automatic, and practical analyses for comparing
the executions permitted by these semantics, and highlighting where behavioural
and safety-related discrepancies arise. The underlying formalism for modelling
the semantics should not be ad hoc; rather, it should support re-use, a modular
design, and be easily extensible for language evolutions and changes. Further-
more, such tools should be usable in practice: the modelling formalism must be
accessible to and understandable by software engineers, and the analyses must
support several idiomatic uses of the language mechanisms.

Our Contributions. We propose a “semantics workbench” equipped with fully
and semi-automatic tools for SCOOP, that can be used to analyse and compare
programs with respect to different execution models for the purpose of check-
ing their consistency. We demonstrate its use by formalising the two principal
execution models of SCOOP, analysing a representative set of programs with
respect to both, and highlighting some behavioural and deadlock-related discrep-
ancies that the workbench uncovers automatically. Our workbench is based on a

A Graph-Based Semantics Workbench 33

modular and parameterisable graph transformation system (GTS) semantics,
built upon our preliminary modelling ideas in [18], and implemented in the
general-purpose GTS analysis tool GROOVE [16]. We leverage this powerful for-
malism to atomically model complex programmer-level abstractions, and show
how its inherently visual yet algebraic nature can be used to ascertain soundness.
For language designers, this paper presents a transferable approach to checking
the consistency of competing semantics for realising concurrency abstractions.
For the graph transformation community, it presents our experiences of applying
a state-of-the-art GTS tool to a non-trivial and practical problem in program-
ming language design. For the broader verification community, it highlights a
need for semantics-parameterised verification, and shows how GTs-based for-
malisms and tools can be used to derive an effective and modular solution. For
software engineers, it provides a powerful workbench for crystallising their men-
tal models of Scoop, thus helping them to write better quality code and (where
need be) port it across different SCOOP implementations.

Plan of the Paper. After introducing the SCOOP concurrency paradigm and its
two most established execution models (Sect.2), we introduce our formal mod-
elling framework based on GTS, and show how to formalise different, parameter-
isable SCOOP semantics (Sect. 3). Implementing our ideas in a small toolchain
(Sect. 4) allows us to check the consistency of semantics across a set of represen-
tative SCOOP programs (Sect. 5), and highlight both a behavioural and deadlock-
related discrepancy. To conclude, we summarise some related work (Sect. 6), our
contributions, and some future research directions (Sect. 7).

2 SCOOP and its Execution Models

Scoop [40] is a message-passing paradigm for concurrent object-oriented pro-
gramming that aims to preserve the well-understood modes of reasoning enjoyed
by sequential programs; in particular, pre- and postcondition reasoning over
blocks of code. This section introduces the programmer-level language mech-
anisms and reasoning guarantees of SCOOP, as well as its two most estab-
lished execution models. These will be described in the context of SCOOP’s
production-level implementation for Eiffel [11], but the ideas generalise to any
object-oriented language (as explored, e.g. for Java [37]).

Language Mechanisms. In SCOOP, every object is associated with a handler
(also called a processor), a concurrent thread of execution with the exclusive
right to call methods on the objects it handles. In this context, object references
may point to objects with the same handler (non-separate objects) or to objects
with distinct handlers (separate objects). Method calls on non-separate objects
are executed immediately by the shared handler. To make a call on a separate
object, however, a request must be sent to the handler of that object to process
it: if the method is a command (i.e. it does not return a result) then it is executed
asynchronously, leading to concurrency; if it is a query (i.e. a result is returned

34 C. Corrodi et al.

and must be waited for) then it is executed synchronously. Note that handlers
cannot synchronise via shared memory: only by exchanging requests.

The possibility for objects to have different handlers is captured in the
type system by the keyword separate. To request method calls on objects
of separate type, programmers simply make the calls within separate blocks.
These can be explicit (we will use the syntax separate x,y, ... do ... end);
but they also exist implicitly for methods with separate objects as parameters.

Reasoning Guarantees. SCOOP provides certain guarantees about the order
in which calls in separate blocks are executed to help programmers avoid con-
currency errors. In particular, method calls on separate objects will be logged
as requests by their handlers in the order that they are given in the program
text; furthermore, there will be no intervening requests logged from other han-
dlers. These guarantees exclude object-level data races by construction, and
allow programmers to apply pre- and postcondition reasoning within separate
blocks independently of the rest of the program. Consider the following example
(adapted from [40]), in which two distinct handlers are respectively executing
blocks that set the “colours” of two separate objects:

separate x,y separate x,y
do do
x.set_colour (Green) x.set_colour (Indigo)
y.set_colour (Green) a_colour = x.get_colour
end y.set_colour (a_colour)
end

The guarantees ensure that whilst a handler is inside its separate x,y block,
the other handler cannot log intervening calls on x or y. Consequently, if the
colours are later queried in another separate x,y block, both of them will
be Green or both of them will be Indigo; interleavings permitting any other
combination to be observed are entirely excluded. This additional control over
the order in which requests are processed represents a twist on classical message-
passing models, such as the actor model [1], and programming languages like
Erlang [2] that implement them.

Execution Models. The abstractions of SCOOP require an execution model
that can realise them without forfeiting performance or introducing unintended
behaviours. Two contrasting models have been supported by different versions of
the implementation: initially, a model we call Request Queues (RQ) [26], and a
model that has now replaced it which we will call Queues of Queues (Q0Q) [40].

The RQ execution model associates each handler with a single FIFO queue
for storing incoming requests. To ensure the reasoning guarantees, each queue
is protected by a lock, which another handler must acquire to be able to log a
request on the queue. Realising a separate x,y,... block then boils down
to acquiring locks on the request queues attached to the handlers of x,y,...
and exclusively holding them for the duration of the block. This coarse-grained
solution successfully prevents intervening requests from being logged, but leads
to performance bottlenecks in several situations (e.g. multiple handlers vying for
the lock of a highly contested request queue).

A Graph-Based Semantics Workbench 35

In contrast, the Q0Q execution model associates each handler with a Firo
queue that itself contains (possibly several) FIFO subqueues for storing incoming
requests. These subqueues represent “private areas” for handlers to log requests
without interference from other handlers. Realising a separate x,y,... block
no longer requires vying for locks; instead, the handlers of x,y,... simply
generate private subqueues on which requests can be logged without interruption
for the duration of the block. If another handler also wants to log requests, then
a new private subqueue is generated for it and its requests can be logged at the
same time. The QOQ model removes the performance bottlenecks caused by the
locks of RQ, while still ensuring the SCOOP reasoning guarantees by completely
processing subqueues in the order that they were generated.

Figure 1 visualises three handlers (hy, ho, h3) logging requests (green blocks)
on another handler (hg) under the two execution models. Note that the RQ and
QoQ implementations (i.e. compilers and runtimes) include additional optimi-
sations, and strictly speaking, can themselves be viewed as competing semantics.

h | [COHIOHIEES:he
£ h: 8 ho hs kE‘hskE“nkEHn

Fig. 1. Logging requests under the RQ (left) and QoQ (right) execution models

Semantic Discrepancies. Discrepancies between the execution models can
arise in practice. In the mental model of programmers, with RQ, separate
blocks had become synonymous with acquiring and holding locks—which are
not implied by the basic reasoning guarantees or the Q0Q model. This discrep-
ancy comes to light with the classical dining philosophers program (as provided
in the official SCOOP documentation [11]), which will form a running example for
this paper. Under RQ, Listing 1 (“eager” philosophers) solves the problem by
relying on the implicit parallel acquisition of locks on the forks’ handlers; no two
adjacent philosophers can be in their separate blocks (representing “eating”) at
the same time. Under RQ, Listing 2 (“lazy” philosophers) can lead to circular
deadlocks, as philosophers acquire the locks in turn. With QoQ however—where
there is no implicit locking—mneither version represents a solution, and neither
can cause a deadlock; yet the basic guarantees about the order of logged requests
remain satisfied. We will return to this example in later sections, and show how
such discrepancies can be detected by our workbench.

3 A Graph-Based Semantic Model for the SCOOP
Family

There are several established and contrasting semantics of Scoop [6,18,26,29,
40], including a comprehensive reference semantics for RQ in Maude’s condi-
tional rewriting logic [26], and a semantics for the core of QOQ in the form of

36 C. Corrodi et al.

separate left_fork, right_fork separate left_fork
do do
left_fork.use separate right_fork
right_fork.use do
end left_fork.use
right_fork.use
end
end
Listing 1. Eager philosophers Listing 2. Lazy philosophers

simple structural operational rules [40]. These formalisations, however, cannot
easily be used for semantic comparisons, due to their varying levels of detail,
coverage, extensibility, and tool support. Hence we present in this section “yet
another” semantic model, called SCOOP-GTS, based on our preliminary mod-
elling ideas for RQ in [18], using the formalism of graph transformation systems
(GTs).

Our reasons to introduce SCOOP-GTS are manifold: (a) we need a common
modelling ground that can be parameterised by models of RQ and QoQ; (b)
known models based on algebra, process calculi, automata, or Petri nets do not
straightforwardly cover SCOOP’s asynchronous concurrent nature, or would hide
these features in intricate encodings; (c) existing approaches are often proposed
from a theoretician’s point of view and are not easily readable by software engi-
neers, whereas graphs and diagrammatic notations (e.g. UML) might already be
used in their everyday work. Choosing graph transformations as our base for-
malism is well-justified, as they satisfy the above requirements, and reconcile the
goal to have a theoretically rigorous formalisation with the goal to be accessible
to software engineers, e.g. for expert interviews with the language implementers
(see [31] for a detailed discussion of the pros and cons of GTS in this setting). The
“non-linear” context of graph rewriting rules proves to be a powerful mechanism
for defining semantics and their interfaces for parameterisation.

We formalised SCOOP-GTS using the state-of-the-art GTS tool GROOVE [17].
Due to limited space, we provide all the files necessary to browse our GTS model
as supplementary material [36], including input graphs generated from the exam-
ple programs of Sect. 5 that can be simulated, analysed, and verified.

SCOOP-Graphs. Each global configuration of a SCOOP program, i.e. snap-
shot of the global state, is represented by a directed, typed attributed graph
consisting of (i) handler nodes representing SCOOP’s handlers, i.e. basic execu-
tion units; (ii) a representation of each handler’s local memory (i.e. “heap” of
non-separate objects) and its known neighbourhood, consisting of references to
separate objects that can be addressed by queries and commands; (iii) a repre-
sentation of each handler’s stack, via stack frames that model recursive calls to
non-separate objects; (iv) requests for modelling separate calls, which are stored
in (v) subgraphs representing each handler’s input work queue; (vi) a global con-
trol flow graph (CFG) presenting the program’s execution blocks (consisting of
states and actions/transitions in-between); (vii) relations to model inter-handler
and handler-memory relations (e.g. locking, waiting, etc.) and to assign each

A Graph-Based Semantics Workbench 37

H Each handler offers connectors for plugging in
1 Handler with empty work different semantics, i.e. different queue seman-
1 queue, no running execution tics, different interprocess synchronisations,
: (stack empty), and one ob- recursion mode\s etc.

i ject on the local heap

sync

B sl
Handler EET L m storage | ReferenceValue

value

Variable

name = "right" ,IOCk_'l QueueLockl | QueueLockIﬂ‘— lock

Variable
name = “rlght”

variable storage

_current _ state

S U : imeParameter] CFG (excerpt)
Handler with empty work queue, currently running, name = "right"
g ¥ , & parameter L4 expression
where the stack frame holds a reference to a sep
AT lin - AttributeExpression
& X
name = "right _fork"

arate object. The handler holds a lock (under Rq

semantics) to the workqueue of a different handler
Fig. 2. Reachable deadlock under RQ for the lazy philosophers program (Listing 2)
simplified from GROOVE output with additional highlighting and information in colour

storage , .Varla'b1e~

_current_state

ame

active frame

active

handler to its current state in the CFG; and (viii) additional bookkeeping nodes,
e.g. containing information on detected deadlocks, and nodes to model the inter-
faces/contexts for semantic parameterisation. An example SCOOP-Graph can be

seen in Fig. 2, depicting a configuration with two concurrently running and two
idle handlers.

GTS-Based Operational Semantics. The operational semantics of SCOOP-
GTS is given by graph-rewriting rules that are regimented by control programs.
An example rule, concisely written using nesting as supported by GROOVE, can
be seen in Fig. 3. Note that nested rules (including V- and 3-quantification) allow
us to express complex, atomic rule matchings in a relatively straightforward
and brief way (compared to rules in classical operational semantics, e.g. in [40]
for multiple handler reservations). A simplified, example control program can
be seen in Listing 3. Control programs allow us to make an execution model’s
scheduler explicit (and thus open to parameterisation) and help us to implement
“garbage collection” for the model (e.g. removing bookkeeping edges no longer
needed). Furthermore, they provide a fine-grained way to control the atomicity

of SCOOP operations, by wrapping sequences of rule applications into so-called
recipes.

Semantic Modularity of SCOOP-GTS. We support semantic parameterisa-
tion for SCOOP-GTS by providing fixed module interfaces in the graph via spe-
cial “plug-in nodes/edges” (e.g. WorkQueue, Memory, StackFrame in Fig.2),
and changing only the set of GTS rules that operate on the subgraphs that they
guard. We have modelled both RQ and Qo0Q with distinct sets of rules that
operate on the subgraphs guarded by WorkQueue: we call the model parame-
terised by RQ and QoQ respectively SCOOP-GTS(RQ) and SCOOP-GTS(QOQ).

38 C. Corrodi et al.

initialize_model; // call gts rule for initialisation
while (progress & mno_error) {
for each handler p: // choose handlers under some scheduling strategy
alap handler_local_execution_step(p)+; // each handler ezecutes local actions as long as possible
try synchronisation_step; // then try (one) possible global synchronisation step

recipe handler_local_execution_step (p){

try separate_object_creation(p)+; // try local actions that are possibly applicable
else try assignment_to_variable (p)+;
else try ... ; // sequentially try all other possible actions
try clean_up_model+; // do some"garbage collection” to keep the model small
¥
recipe synchronisation_step(){
reserve_handlers | dequeue_task | ...; // non-deterministically try to synchronise
}
. // remaining recipes (core functionality)
Y —— PLUG G == mmmm m o m
recipe separate_object_creation(p){ // provide different implementations for RQ and QoQ
// and parameterise the control program

¥

// remaining recipes that are plugged in

Listing 3. Simplified control program (in GROOVE syntax)

As well as parameterising the queue semantics, it is possible to model different
recursion schemes, memory models, and global interprocess synchronisations.

This semantic modularity also permits us to directly apply abstractions to
Scoopr-GTs, e.g. changing the queue’s semantics to a bag’s counting abstraction,
or flattening recursion. This could prove useful for providing advanced verifica-
tion approaches in the workbench.

refers _to- handler: c Lefend folj edge/n.ode. colouring: :-S-u-b.(s:le-L:e.:
2 red: negative application cond., Vanmmpmans
e, N blue: matched and deleted, 4
ReferenceValue Q@ y N §i stol]age green: newly created next
o .

o e H
o .
value syncnextiqueue.next*

variable

| StackFrame |'—U:)\—| Memory r/
>

next

I=
[bi
gﬂmi private queueﬂ
o open
currentsstate
InitialState

Fig. 3. Simplified Q0Q rule for entering a separate x,y,... block, which uses V-
quantification to atomically match arbitrarily many handlers. The rule assumes that
the handlers’ queues already contain some other private subqueues open

ame

sto

act

_ creator_frami

Soundness/Faithfulness. The relation of SCOOP-GTS to the most prominent
execution models and runtimes is depicted in Fig.4. Due to the varying levels
of detail in the formalisations of the RQ and Q0Q execution models (and lack
of formalisations of their implementations/runtimes), there is no universal way
to prove SCOOP-GTS’s faithfulness to them. We also remark that SCOOP-GTS
currently does not support some programming mechanisms of the Eiffel language
(e.g. exceptions, agents), but could be straightforwardly extended to cover them.

We were able to conduct expert interviews with the researchers proposing the
execution models and the programmers implementing the SCOOP compiler and
runtimes, which helped to improve our confidence that SCOOP-GTSs faithfully

A Graph-Based Semantics Workbench 39

. implements/optimises . . implements/optimises)
QoQ Runtime - wooy QoQ Execution Model RQ Execution Model< v o RQ Runtime
render/simulate, render/simulate,

“similar” in experiments . “ " . .
P implements SOS rules proof” by expert interview

cover, “proof”
by expert interview

“similar” in experiments

instance of
—_—

Scoopr-GTs(QoQ) SCOOP-GTS(«)<M Scoopr-GT1s(RQ)

Fig. 4. Relation between SCOOP-GTS, the execution models, and the runtimes

covers their behaviour. Here, SCOOP-GTS’s advantage of a visually accessible
notation was extremely beneficial, as we were able to directly use simulations
in GROOVE during the interviews, which were understood and accepted by the
interviewees. In addition, we compared GROOVE simulations of the executions
of Scoop programs (see the benchmarks of Sect.5) against their actual exe-
cution behaviour in the official Scoop IDE and compiler (both the current
release that implements Q0Q), and an older one that implemented RQ). Again,
this augmented our confidence. Furthermore, we were able to compare SCOOP-
GT1s(QoQ) with the structural operational semantics for QOQ provided in [40].
Unfortunately, the provided semantic rules focus only on a much simplified core,
preventing a rigorous bisimulation proof exploiting the algebraic characterisa-
tions of GTS. We can, however, straightforwardly implement and simulate them
in our model.

To conclude, SCOOP-GTS fits into the suite of existing SCOOP formalisations,
and is able to cover (avoiding the semantically overloaded word “simulate”) both
of the principal execution models.

Expressiveness. As previously discussed, SCOOP-GTS is expressive enough to
cover the existing RQ and Q0Q semantic models of SCOOP due to its modu-
larity and the possibility to plug-in different queueing semantics. We currently
plan to include other semantic formalisations of SCOOP-like languages, e.g. the
concurrent Eiffel proposed by [5] (similar to ScooP but differences regarding
separate object calls), other actor-based object-oriented languages, and concur-
rency concepts like “co-boxes” [34]. SCOOP-GTS is obviously Turing-complete
(one can simulate a 2-counter Minsky machine by non-recursive models with
one object per handler, similar to the construction in [15]). A proper formal
investigation into its computational power (also that of subclasses of the model)
is ongoing.

4 Toolchain for the Workbench

Our semantics workbench consists of a toolchain that bridges the gap between
ScoopP program code and the analysis of SCOOP-GTS models in GROOVE. In
particular, it translates source code into SCOOP-Graphs, executes the appropri-
ate analyses in GROOVE, and then collects and returns the results to the user.
Our toolchain is summarised in Fig. 5. Its principal component is a plug-in
for the EVE IDE—a research version of the Scoop/Eiffel IDE (including the
production compiler and runtime) which supports the integration of verification

40 C. Corrodi et al.

Scoop-GTs [

wrapper

w------4(G /E
Xt GROOVE

standalone tool

Eve IDE plugin

Eve IDE

Fig. 5. Overview of our toolchain: a plugin integrated with the (research version of the)
official Scoop IDE, which interfaces with a wrapper that utilises and controls GROOVE
in the background. The wrapper can also be used as part of a standalone tool

tools [38]. For a given SCOOP program, the plug-in uses the existing services
of EVE to check that the code compiles, and then extracts a representation
of it in which inheritance has been “flattened”. From this flattened program,
we generate a SCOOP-Graph (encoded in the Graph eXchange Language) which
corresponds very closely to the abstract syntax tree of the original program. See,
for example, Fig. 6, which is generated from the code in Listing 2. Observe that
between the InitialState and FinalState, the control-flow graph directly
encodes the four actions of the original program: two declarations of separate
blocks, and two commands within them. We provide a wrapper (written in Java)
around the external GROOVE tool, which takes a generated SCOOP-Graph as
input, and launches a full state-space exploration in GROOVE with respect to
Scoor-GTs(RQ) or Scoopr-GTS(QOQ). The results—including statistics and
detected error states—are then extracted from GROOVE and returned to the
programmer for inspection. A standalone version of this wrapper without the
EVE integration is also available and can be downloaded from [36].

Checking the Consistency of Semantics. The workbench can be used to
check the consistency of program executions under RQ and Q0Q with respect
to various properties. These properties are encoded in SCOOP-GTS as error rules
that match on configurations if and only if they violate the properties. If they
match, they generate a special Error node that encodes some contextual infor-
mation for the toolchain to extract, and prevents the execution branch from
being explored any further. Two types of error rules are supported: general,
safety-related error rules for detecting problems like deadlock (whether caused
by waiting for request queue locks in RQ, or waiting on cycles of queries in
Qo0Q); but also user-specified error rules for program-specific properties (as we
will use in Sect. 5). If any of these error rules are applied in a state-space explo-
ration, this information is extracted and reported by the workbench toolchain;
discrepancies between semantics exist when such rules match under only one.
Figure 2 shows an actual deadlock between two handlers attempting to enter
the nested separate block of Listing 2 under RQ. This configuration is matched
by an error rule for deadlock (not shown), which catches the circular waiting
dependencies exhibited by the edges.

A Graph-Based Semantics Workbench 41

s s
- 1 2 pr - Attril i 3 InlineParameter
name = Meft? | & | name = efe_fork" name = "right_fork" [~ £ 7| name = "right"
T s - ’ f
5 parameter parameter
tate
HILOSOPHER" N - " N <
e = "lazy_eat" - T . S ——to_action ActionStartInlineSeparateBlock

LocalExpression LocalExpression
_ name = "left" name = "right"
_ends_with
target target

ActionCommand oo
to_action to_state=» ControlState to_action to_state’ ControlState .
ControlState[—to_actio™] procedure = "use" |~ - procedure = "use" - ends_with

to_action

Fig. 6. Generated control-flow graph for Listing 2

5 Evaluation

To evaluate the use of our workbench for checking the consistency of semantics,
we devised a representative set of benchmark programs, based on documented
ScoopP examples [11] and classical synchronisation problems. We then deployed
the toolchain to analyse their executions under RQ and Qo0Q with respect to
behavioural and safety-related properties, and highlight the discrepancies uncov-
ered by the workbench for our running example. Everything necessary to repro-
duce our evaluation is available at [36].

Benchmark Selection. Our aim was to devise a set of representative programs
covering different, idiomatic usages of SCOOP’s concurrency mechanisms. To
achieve this, we based our programs on official, documented examples [11], as
well as some classical synchronisation problems, in order to deploy the language
mechanisms in a greater variety of usage contexts. Note that it is not (yet)
our goal to analyse large software projects, but rather to compare executions of
representative programs with manageable state spaces under different semantics.
We selected the following programs: dining philosophers—as presented in
Sect. 2—with its two implementations for picking up forks (eagerly or lazily)
which exploited the implicit locking of RQ; a third variant of dining philoso-
phers without any commands in the separate blocks; single-element producer
consumer, which uses a mixture of commands, queries, and condition synchroni-
sation; and finally, barbershop and dining savages (based on [10]), both of which
use a similar mix of features. These programs cover different usages of SCoor’s
language mechanisms and are well-understood examples in concurrent program-
ming. Note that while our compiler supports inheritance by flattening the used
classes, these examples do not use inheritance; in particular, no methods from
the implicitly inherited class ANY are used. By not translating these methods
into the start graphs, we obtain considerably smaller graphs (which impacts the
exploration speed, but not the sizes of the generated transition systems).

Benchmark Results. Table1 contains metrics for the inspected examples,
obtained using our GROOVE wrapper utility. The presented values correspond

42 C. Corrodi et al.

Table 1. Results for the dining philosophers (DP, with the number of philosophers),
producer-consumer (PC, with the number of elements), barbershop (with the number
of customers), and dining savages (with the number of savages) programs; time and
memory metrics are means over five runs (standard deviation in brackets)

Start graph Semantics Config- Rule Start graph size Final graph size Time [SD] Memory [SD]
urations applications (nodes/edges) (nodes/edges) (seconds) (GB)

DP 2 eager RQ 4219 54441 226/343 261/396 19.34 [0.25] 1.60 [0.02]
QoQ 5644 72762 226/343 284/462 25.61 [1.03] 1.63 [0.02]

DP 2 lazy RQ 5679 72692 221/334 288/470 24.76 [0.34] 2.05 [0.10]
QoQ 9609 123583 221/334 256,387 42.46 [0.65] 2.22 [0.06]

DP 2 eager RQ 442 6010 254/395 300/473 6.08 [0.28] 0.57 [0.00]
(no commands) QoQ 443 6135 254/395 300/473 5.84 [0.24] 0.57[0.01]
DP 2 lazy RQ 868 11211 250/387 325/541 9.53 [0.36] 0.66 [0.00]
(no commands’ QoQ 919 11935 250/387 296,/465 10.66 [0.61] 0.66 [0.01]
DP 3 eager RQ 99198 1270216 226/343 277/422 469.94[11.93] 11.14 [0.17]
QoQ 199144 2532882 226/343 304/498 1393.95[31.06] 13.88 [0.08]

DP 3 lazy RQ 170249 2166712 221/334 319/536 1149.07[53.59] 13.33 [0.69]
QoQ 444686 5683419 221/334 272/413 2564.45[55.94] 11.99 [0.07]

DP 3 eager RQ 3269 43967 254/395 316/499 37.31 [1.68] 1.70 [0.09]
(no commands) QoQ 3286 45152 254/395 316/499 39.32 0.65] 1.52[0.00]
DP 3 lazy RQ 10877 139216 250/387 355/604 114.26 [5.17] 3.39[0.13]
(no commands, QoQ 11774 151526 250/387 312/491 125.25 [4.19] 3.63[0.07]
PC5 RQ 4085 51283 307/476 353/548 45.87 [0.74] 2.07[0.14]
QoQ 12366 156210 307/476 353/548 140.86 [2.83] 3.14 [0.07]

PC 20 RQ 12890 159958 307/476 398/593 148.28 [2.85] 3.78 [0.25]
QoQ 50286 632820 307/476 398/593 618.33[15.42] 6.67 [0.20]

Barbershop 2 RQ 38509 494491 302/466 346/538 354.17[16.58] 6.91[0.19]
QoQ 54325 702611 302/466 346/538 537.21 [8.19] 7.79 [0.16]

Savages 2 RQ 35361 448576 410/631 459/716 550.92[14.99] 7.06 [0.07]
QoQ 79398 1008596 410/631 459/716 1299.52 [54.96] 11.33 [0.11]

to full state-space exploration. Metrics for elapsed time (wall clock time) and
memory usage (computed using Java’s MemoryPoolMXBean) are the means of five
runs, while the other values are the same for each run. The experiments were
carried out on an off-the-shelf notebook with an Intel Core i7-4810MQ CPU and
16 ,GB of main memory. We used Oracle Java 1.8.0_25 with the -Xmx 14g option
together with GROOVE 5.5.5.

Across all instances, the start and final graph sizes are comparable. This can
be explained by the fact that our implementation contains a number of simple
“garbage collection” rules that remove edges and nodes that are no longer needed
(e.g. the results of intermediate computations). Final graphs simply contain the
control-flow graph and heap structure after the executions. Note that we do
not perform real garbage collection. For example, unreachable objects are not
removed; the graph size increases linearly with the number of created objects.

The number of configurations denotes the number of recipe applications. This
value is of interest because it allows one to directly compare explorations under
different semantics (i.e. how much more concurrency is permitted). Recall that
scheduler-specific rules are wrapped inside recipes. For example, enqueueing a
work item may trigger more bookkeeping rules in QoQ than in RQ. Since the
corresponding logic (see Listing 3) is implemented in a recipe, we end up with
just one more configuration in both cases, independently of how many individ-
ual rule applications are triggered within the recipe. Differences in the number
of configurations arise from different branching at synchronisation points. For
example, we can see that in most instances, QOQ generates considerably more

A Graph-Based Semantics Workbench 43

configurations than the RQ implementation, which suggests that SCOOP pro-
grams are “more concurrent” under QOQ.

The time and memory columns show the raw power requirements of our
toolchain. Unfortunately, the state-space explosion problem is inevitable when
exploring concurrent programs. The number of configurations is, unsurpris-
ingly, particularly sensitive to programs with many handlers and only asynchro-
nous commands (e.g. dining philosophers). Programs that also use synchronous
queries (e.g. producer-consumer) scale better, since queries force synchronisa-
tion once they reach the front of the queue. We note again that our aim was
to facilitate automatic analyses of representative SCOOP programs that covered
the different usages of the language mechanisms, rather than optimised verifica-
tion techniques for production-level software. The results suggest that for this
objective, the toolchain scales well enough to be practical.

Error Rules/Discrepancies Detected. In our evaluation of the various dining
philosophers implementations, we were able to detect that the lazy implemen-
tation (Listing 2) can result in deadlock under the RQ model, but not under
Qo0Q. This was achieved by using error rules that match circular waiting depen-
dencies. In case a deadlock occurs that is not matched by these rules, we can
still detect that the execution is stuck and report a generic error, after which we
manually inspect the resulting configuration. While such error rules are useful for
analysing SCOOP-Graphs in general, it is also useful to define rules that match
when certain program-specific properties hold. For example, if we take a look
at the eager implementation of the dining philosophers (Listing 1) and its exe-
cutions under RQ and Q0Q, we find that the program cannot deadlock under
either. This does not prove however that the implementation actually solves the
dining philosophers problem under both semantics. To check this, we defined an
error rule that matches if and only if two adjacent philosophers are in their sepa-
rate blocks at the same time, which is impossible if forks are treated as locks (as
they implicitly are under RQ). Consequently, this rule matches only under the
Qo0Q semantics, highlighting that under the new semantics, the program is no
longer a solution to the dining philosophers problem. (We remark that it can be
“ported” to QOQ by replacing the commands on forks with queries, which force
the waiting.) We implemented program-specific correctness rules for the other
benchmark programs analogously, but did not detect any further discrepancies.

6 Related Work

We briefly describe some related work closest to the overarching themes of our
paper: frameworks for semantic analyses, GTS models for concurrent asynchro-
nous programs, and verification techniques for SCOOP.

Frameworks for Semantic Analysis. The closest approach in spirit to ours is
the work on K [21,33]. It consists of the K concurrent rewrite abstract machine
and the K technique. One can think of K as domain specific language for
implementing programming languages with a special focus on semantics, which

44 C. Corrodi et al.

was recently successfully applied to give elaborate semantics to Java [4] and
JavaScript [30]. Both K and our workbench have the same user group (program-
ming language designers and researchers) and focus on formalising semantics and
analysing programs based on this definition. We both have “modularity” as a
principal goal in our agendas, but in a contrasting sense: our modularity targets
a semantic plug-in mechanism for parameterising different model components,
whereas K focuses on modularity with respect to language feature reuse. In con-
trast to our approach, K targets the whole language toolchain—including the
possibility to define a language and automatically generate parsers and a runtime
simulation for testing the formalisation. Based on Maude’s formal power of con-
ditional rewriting logic, K also offers axiomatic models for formal reasoning on
programs and the possibility to also define complex static semantic features, e.g.
advanced typing and meta-programming. Despite having similar formal underly-
ing theoretical power (K’s rewriting is similar to “jungle rewriting” graph gram-
mars [35]), SCOOP-GTS models make the graph-like interdependencies between
concurrently running threads or handlers a first-class element of the model. This
is an advantage for analyses of concurrent asynchronous programs, as many con-
currency properties can be straightforwardly reduced to graph properties (e.g.
deadlocks as wait-cycles). Our explicit GTS model also allows us to compare
program executions under different semantics, which is not a targeted feature of
K. We also conjecture that our diagrammatic notations are easier for software
engineers to grasp than purely algebraic and axiomatic formalisations.

GTS Models for Concurrent Asynchronous Programs. Formalising and
analysing concurrent object-oriented programs with GTS-based models is an
emerging trend in software specification and analysis, especially for approaches
rooted in practice. See [31] for a good overview discussion—based on a lot of
personal experience—on the general appropriateness of GTs for this task. In
recent decades, conditional rewriting logic has become a reference formalism for
concurrency models in general; we refer to [22] and its recent update [23] for
details. Despite having a comparable expressive power, our approach’s original
decision for GTS and for GROOVE as our state-space exploration tool led us
to an easily accessible, generic, and parameterisable semantic model and tools
that work in acceptable time on our representative SCOOP examples. Closest to
our SCOOP-GTS model is the QDAS model presented in [15], which represents
an asynchronous, concurrent waiting queue based model with global memory as
GTs, for verifying programs written in Grand Central Dispatch [14]. Despite the
formal work, there is currently no direct compiler to GTS yet. The Creol model
of [20] focuses on asynchronous concurrent models but without more advanced
remote calls via queues as needed for SCOOP. Analysis of the model can be
done via an implementation in Maude [19]. Existing GTs-based models for Java
only translate the code to a typed graph similar to the control-flow sub-graph
of Scoop-GTs [8,32]. A different approach is taken by [12], which abstracts a
GTs-based model for concurrent OO systems [13] to a finite state model that can
be verified using the SPIN model checker. GROOVE itself was already used for
verifying concurrent distributed algorithms on an abstract GTs level [16], but not

A Graph-Based Semantics Workbench 45

on an execution model level as in our approach. However, despite the intention
to apply generic frameworks for the specification, analysis, and verification of
object-oriented concurrent programs, e.g. in [9,41], there are no publicly available
tools implementing this long-term goal that are powerful enough for Scoop.

SCOOP Analysis/Verification. Various analyses for SCOOP programs have
been proposed, including: using a SCOOP virtual machine for checking tempo-
ral properties [29]; checking Coffman’s deadlock conditions using an abstract
semantics [7]; and statically checking code annotated with locking orders for the
absence of deadlock [39]. In contrast to our work, these approaches are tied to
particular (and now obsolete) execution models, and do not operate on (unan-
notated) source code.

The complexity of other semantic models of SCOOP led to scalability issues
when attempting to leverage existing analysis and verification tools. In [6],
Scoop programs were hand-translated to models in the process algebra Csp
to perform, e.g. deadlock analysis; but the leading CsP tools at the time could
not cope with these models and a new tool was purpose-built (but no longer
available/maintained today). In a recent deadlock detection benchmark on the
RQ execution model formalised in Maude [26], the tool was not able to give
verification results in reasonable time (i.e. less than one day) even for simple
programs like dining philosophers'; our benchmarks compare quite favourably
to this. Note that since our work focuses more on semantic modelling and com-
parisons than it does on the underlying model checking algorithms, we did not
yet evaluate the generic bounded model checking algorithms for temporal logic
properties implemented in GROOVE and accessible for SCOOP-GTS models.

7 Conclusion and Future Work

We proposed and constructed a semantic workbench for a concurrent asynchro-
nous programming language via the following, general work flow: (i) derive a
GTS-based semantic model from existing semi-formal documentation of execu-
tion models; (ii) continuously compare the model by simulation runs against the
actual implementations; (iii) exploit semantic paramaterisation to derive a ver-
satile model; (iv) if possible, conduct expert interviews to ascertain the model’s
faithfulness; (v) apply existing generic model checking techniques for GTS to
implement analyses against the different execution models; (vi) implement dif-
ferent analyses on top of this model. This workflow resulted in the formalisation
Scoopr-GTs, which covered the two principal execution models of Scoop, and
allowed us to formally, automatically, and practically compare the executions of
programs with respect to both. With the conducted expert interviews, and the
results of applying our model to check the consistency of the semantics across
a small but representative collection of SCOOP programs in reasonable time, we
were reassured of our choice of GTS as an underlying formalism: theoretically

! From personal communication with the researchers behind this benchmark.

46 C. Corrodi et al.

sound, yet diagrammatically accessible for software engineers, and able to scale
to the sizes of programs we need for semantic comparisons.

We are currently working on extending SCOOP-GTS to cover some more
advanced and esoteric features of SCOOP (including distributed exception han-
dling) and to enlarge the benchmark set, with the eventual aim of producing a
conformance test suite for Scoop-like languages. As noted in [42], the shape of
the rules and the control programs have a big influence on the running times
of GROOVE. We are currently working on refactoring SCOOP-GTS for better
performance (relative to benchmarking on the conformance test suite).

A more general line of research focuses on the shape of the SCOOP-Graphs
contained in the reachable state space of SCOOP-GTs. Insights here would help
us to devise better abstraction techniques (along the lines of [3]) with which
we could implement better verification algorithms, and visualise the influence
of different semantic parameters on SCOOP-Graphs. Generalising SCOOP-GTS
to cover other actor-based concurrency languages would also extend this result
towards differences between the semantics of programming language families
expressed as SCOOP-Graph properties.

Acknowledgements. We thank our interviewees from the SCOOP development and
research team for the many helpful and insightful discussions. We are also deeply
grateful for the work of the GROOVE developers that we leverage in this paper, and
especially for their GROOVE-y feedback and support. The underlying research was
partially funded by ERC Grant CME #291389.

References

1. Agha, G.: ACTORS: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Armstrong, J., Virding, R., Williams, M.: Concurrent Programming in ERLANG,
2nd edn. Prentice Hall, Englewood Cliffs (1996)

3. Backes, P., Reineke, J.: Analysis of infinite-state graph transformation systems by
cluster abstraction. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015.
LNCS, vol. 8931, pp. 135-152. Springer, Heidelberg (2015)

4. Bogdanas, D., Rosu, G.: K-Java: A complete semantics of Java. In: Proceedings of
POPL 2015, pp. 445-456. ACM (2015)

5. Brooke, P.J., Paige, R.F.: Cameo: an alternative model of concurrency for Eiffel.
Formal Aspects Comput. 21(4), 363-391 (2009)

6. Brooke, P.J., Paige, R.F., Jacob, J.L.: A CSP model of Eiffel’s SCOOP. Formal
Aspects Comput. 19(4), 487-512 (2007)

7. Caltais, G., Meyer, B.: Coffman deadlocks in SCOOP. In: Proceedings of NWPT
2014 (2014). http://arxiv.org/abs/1409.7514

8. Corradini, A., Dotti, F.L., Foss, L., Ribeiro, L.: Translating Java code to graph
transformation systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 383-398. Springer, Heidelberg (2004)

9. Dotti, F.L., Duarte, L.M., Foss, L., Ribeiro, L., Russi, D., dos Santos, O.M.: An
environment for the development of concurrent object-based applications. In: Pro-
ceedings of GraBaTs 2004. ENTCS, vol. 127, pp. 3-13. Elsevier (2005)

http://arxiv.org/abs/1409.7514

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

A Graph-Based Semantics Workbench 47

Downey, A.B.: The Little Book of Semaphores. http://greenteapress.com/
semaphores/. Accessed Jan 2016

Eiffel Documentation: Concurrent Eiffel with SCOOP. https://docs.eiffel.com/
book/solutions/concurrent-eiffel-scoop. Accessed Oct 2015

Ferreira, A.P.L., Foss, L., Ribeiro, L.: Formal verification of object-oriented graph
grammars specifications. In: Proceedings of GT-VC 2006. ENTCS, vol. 175, pp.
101-114. Elsevier (2007)

Ferreira, A.P.L., Ribeiro, L.: A graph-based semantics for object-oriented program-
ming constructs. In: Proceedings of CTCS 2004. ENTCS, vol. 122, pp. 89-104.
Elsevier (2005)

Grand Central Dispatch (GCD) Reference. https://developer.apple.com/library/
mac/documentation/Performance/Reference/ GCD_libdispatch_Ref/index.html.
Accessed Oct 2015

Geeraerts, G., Heulner, A., Raskin, J.: On the verification of concurrent, asynchro-
nous programs with waiting queues. ACM Trans. Embed. Comput. Syst. 14(3), 58
(2015)

Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. Int. J. Softw. Tools Technol. Transf. 14(1), 15-40
(2012)

Groove (project web page). http://groove.cs.utwente.nl/. Accessed October 2015
Heuflner, A., Poskitt, C.M., Corrodi, C., Morandi, B.: Towards practical graph-
based verification for an object-oriented concurrency model. In: Proceedings of
GaM 2015. EPTCS, vol. 181, pp. 32-47 (2015)

Johnsen, E.B., Owe, O., Axelsen, E.W.: A run-time environment for concurrent
objects with asynchronous method calls. In: Proceedings of WRLA 2004. ENTCS,
vol. 117, pp. 375-392. Elsevier(2005)

Johnsen, E.B., Owe, O., Yu, I.C.: Creol: a type-safe object-oriented model for
distributed concurrent systems. Theor. Comput. Sci. 365(1-2), 23-66 (2006)
Lucanu, D., Serbanutd, T.F., Rosu, G.: K framework distilled. In: Durdn, F. (ed.)
WRLA 2012. LNCS, vol. 7571, pp. 31-53. Springer, Heidelberg (2012)

Meseguer, J.: Conditioned rewriting logic as a united model of concurrency. Theor.
Comput. Sci. 96(1), 73-155 (1992)

Meseguer, J.: Twenty years of rewriting logic. J. Logic Algebraic Program. 81(7-8),
721-781 (2012)

Meyer, B.: Systematic concurrent object-oriented programming. Commun. ACM
(CACM) 36(9), 56-80 (1993)

Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall, Upper
Saddle River (1997)

Morandi, B., Schill, M., Nanz, S., Meyer, B.: Prototyping a concurrency model. In:
Proceedings of ACSD 2013, pp. 170-179. IEEE (2013)

Morandi, B., Nanz, S., Meyer, B.: Safe and efficient data sharing for message-
passing concurrency. In: Kiihn, E., Pugliese, R. (eds.) COORDINATION 2014.
LNCS, vol. 8459, pp. 99-114. Springer, Heidelberg (2014)

Nienaltowski, P.: Practical framework for contract-based concurrent object-
oriented programming. Doctoral dissertation, ETH Ziirich (2007)

Ostroff, J.S., Torshizi, F.A., Huang, H.F., Schoeller, B.: Beyond contracts for con-
currency. Formal Aspects Comput. 21(4), 319-346 (2009)

Park, D., Stefanescu, A., Rosu, G.: KJS: a complete formal semantics of JavaScript.
In: Proceedings of PLDI 2015, pp. 346-356. ACM (2015)

http://greenteapress.com/semaphores/
http://greenteapress.com/semaphores/
https://docs.eiffel.com/book/solutions/concurrent-eiffel-scoop
https://docs.eiffel.com/book/solutions/concurrent-eiffel-scoop
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
http://groove.cs.utwente.nl/

48

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

C. Corrodi et al.

Rensink, A.: The edge of graph transformation — graphs for behavioural specifica-
tion. In: Engels, G., Lewerentz, C., Schéfer, W., Schiirr, A., Westfechtel, B. (eds.)
Nagl Festschrift. LNCS, vol. 5765, pp. 6—32. Springer, Heidelberg (2010)
Rensink, A., Zambon, E.: A type graph model for Java programs. In: Lee, D.,
Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522, pp. 237—
242. Springer, Heidelberg (2009)

Rosu, G., Serbanuta, T.: An overview of the K semantic framework. J. Logic Alge-
braic Program. 79(6), 397-434 (2010)

Schéfer, J., Poetzsch-Heffter, A.: JCoBox: generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275-299.
Springer, Heidelberg (2010)

Serbanuta, T.F., Rosu, G.: A truly concurrent semantics for the K framework based
on graph transformations. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 294-310. Springer, Heidelberg (2012)
Supplementary material. http://www.swt-bamberg.de/fase2016_supp/

Torshizi, F.A., Ostroff, J.S., Paige, R.F., Chechik, M.: The SCOOP concurrency
model in Java-like languages. In: Proceedings of CpPA 2009. Concurrent Systems
Engineering Series, vol. 67, pp. 7-27. IOS Press (2009)

Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Usable verification of object-
oriented programs by combining static and dynamic techniques. In: Barthe, G.,
Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 382-398.
Springer, Heidelberg (2011)

West, S., Nanz, S., Meyer, B.: A modular scheme for deadlock prevention in an
object-oriented programming model. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010.
LNCS, vol. 6447, pp. 597-612. Springer, Heidelberg (2010)

West, S., Nanz, S., Meyer, B.: Efficient and reasonable object-oriented concurrency.
In: Proceedings of ESEC/FSE 2015, pp. 734-744. ACM (2015)

Zambon, E.; Rensink, A.: Using graph transformations and graph abstractions for
software verification. In: Proceedings of ICGT-DS 2010. ECEASST, vol. 38 (2011)
Zambon, E., Rensink, A.: Solving the N-Queens problem with GROOVE - towards
a compendium of best practices. In: Proceedings of GT-VMT 2014. ECEASST, vol.
67 (2014)

http://www.swt-bamberg.de/fase2016_supp/

ABS-YARN: A Formal Framework for Modeling
Hadoop YARN Clusters

Jia-Chun Lin®9 | Ingrid Chieh Yu, Einar Broch Johnsen,
and Ming-Chang Lee

Department of Informatics, University of Oslo, Oslo, Norway
{kellylin, ingridcy,einarj,mclee}@ifi.uio.no

Abstract. In cloud computing, software which does not flexibly adapt
to deployment decisions either wastes operational resources or requires
reengineering, both of which may significantly increase costs. However,
this could be avoided by analyzing deployment decisions already during
the design phase of the software development. Real-Time ABS is a for-
mal language for executable modeling of deployed virtualized software.
Using Real-Time ABS, this paper develops a generic framework called
ABS-YARN for YARN, which is the next generation of the Hadoop cloud
computing platform with a state-of-the-art resource negotiator. We show
how ABS-YARN can be used for prototyping YARN and for modeling
job execution, allowing users to rapidly make deployment decisions at
the modeling level and reduce unnecessary costs. To validate the mod-
eling framework, we show strong correlations between our model-based
analyses and a real YARN cluster in different scenarios with benchmarks.

1 Introduction

Cloud computing changes the traditional business model of IT enterprises by
offering on-demand delivery of IT resources and applications over the Internet
with pay-as-you-go pricing [6]. The cloud infrastructure on which software is
deployed can be configured to the needs of that software. However, software
which does not flexibly adapt to deployment decisions either require wasteful
resource over-provisioning or time-consuming reengineering, which may sub-
stantially increase costs in both cases. Shifting deployment decisions from the
deployment phase to the design phase of a software development process can sig-
nificantly reduce such costs by performing model-based validation of the chosen
decisions during the software design [14]. However, virtualized computing poses
new and interesting challenges for formal methods because we need to express
deployment decisions in formal models of distributed software and analyze the
non-functional consequences of these deployment decisions at the modeling level.

A popular example of cloud infrastructure used in industry is Hadoop [5], an
open-source software framework available in cloud environments from vendors

Supported by the EU projects H2020-644298 HyVar: Scalable Hybrid Variability

for Distributed Evolving Software Systems (http://www.hyvar-project.eu) and FP7-

610582 Envisage: Engineering Virtualized Services (http: //www.envisage-project.eu).
© Springer-Verlag Berlin Heidelberg 2016

P. Stevens and A. Wasowski (Eds.): FASE 2016, LNCS 9633, pp. 49-65, 2016.
DOI: 10.1007/978-3-662-49665-7 4

http://www.hyvar-project.eu
http://www.envisage-project.eu

50 J.-C. Lin et al.

such as Amazon, HP, IBM, Microsoft, and Rackspace. YARN [27] is the next
generation of Hadoop with a state-of-the-art resource negotiator. This paper
presents ABS-YARN, a generic framework for modeling YARN infrastructure
and job execution. Using ABS-YARN, modelers can easily prototype a YARN
cluster and evaluate deployment decisions at the modeling level, including the
size of clusters and the resource requirements for containers depending on the
jobs to be executed and their arrival patterns. Using ABS-YARN, designers can
focus on developing better software to exploit YARN in a cost-efficient way.

ABS-YARN is defined using Real-Time ABS, a formal language for the exe-
cutable modeling of deployed virtualized software [10]. The basic approach to
modeling resource management for cloud computing in Real-Time ABS is a sep-
aration of concerns between the resource costs of the execution and the resource
provisioning at (virtual) locations [18]. Real-Time ABS has previously been used
to model and analyze the management of virtual resources in industry [3] and
compared to (informal) simulation tools [17]. Although Real-Time ABS provides
a range of formal analysis techniques (e.g., [2,30]), our focus here is on obtaining
results based on easy-to-use rapid prototyping, using the executable semantics
of Real-Time ABS, defined in Maude [12], as a simulation tool for ABS-YARN.

To evaluate the modeling framework, we comprehensively compare the results
of model-based analyses using ABS-YARN with the performance of a real YARN
cluster by using several Hadoop benchmarks to create a hybrid workload and
designing two scenarios in which the job inter-arrival time of the workload follows
a uniform distribution and an exponential distribution, respectively. The results
demonstrate that ABS-YARN models the real YARN cluster accurately in the
uniform scenario. In the exponential scenario, ABS-YARN performs less well but
it still provides a good approximation of the real YARN cluster.

The main contributions of this paper can be summarized as follows:

1. We introduce ABS-YARN, a generic framework for modeling software target-
ing YARN. Using Real-Time ABS, designers can develop software for YARN
on top of the ABS-YARN framework and evaluate the performance of the
software model before the software is realized and deployed on a real YARN
cluster.

2. ABS-YARN supports dynamic and realistic job modeling and simulation.
Users can define the number of jobs, the number of the tasks per job, task
cost, job inter-arrival patterns, cluster scale, cluster capacity, and the resource
requirement for containers to rapidly evaluate deployment decisions with the
minimum costs.

3. We comprehensively evaluate and validate ABS-YARN under several perfor-
mance metrics. The results demonstrate that ABS-YARN provides a satisfi-
able modeling to reflect the behaviors of real YARN clusters.

Paper Organization. Section 2 provides a background introduction to Real-
Time ABS and YARN. Section 3 presents the details of the ABS-YARN frame-
work. In Sect.4, we validate ABS-YARN and compare it with a real YARN
cluster. Section 5 surveys related work and Sect. 6 concludes the paper.

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 51

Syntactzc categories. Definitions.

T in GroundType Pu=1IF CL{[T %] s}
ﬁ iﬁ \S{iriable IF ::= interface I {[S¢]}

m P p— Tl T T AT
o in Annotation CL:= classg[(T 7)] [implements | { [T 7;] M}
g in Guard Sgu=Tm ([T 7))
e in Expression M:u=Sg{[T ;] s}

a=Deadline: e | DC :e| Cost:e|a,a
gu=blxz?|gAg
su=s;s|skip|if b {s} else{s}|while b{s}|returne
| duration(e,e) | suspend | await g | [a] s | x = rhs
rhs:=e | cm | new C (€) | new DeploymentComponent (e, €)
cm = [e]!m(e) | z.get

Fig.1. Syntax for the imperative layer of Real-Time ABS. Terms e and T denote
possibly empty lists over the corresponding syntactic categories, and square brackets
[] denote optional elements.

2 Background

2.1 Modeling Deployed Systems Using Real-Time ABS

Real-Time ABS [10] is a formal, executable, object-oriented language for mod-
eling distributed systems by means of concurrent object groups [16], akin to
concurrent objects [11], Actors [1], and Erlang processes [7]. Concurrent objects
groups execute in parallel and communicate by asynchronous method calls and
futures. In a group, at most one process is active at any time, and a queue of
suspended processes wait to execute on an object of the group. Processes, which
stem from methods calls, are cooperatively scheduled, so active and reactive
behaviors can be easily combined in the concurrent object groups. Real-Time
ABS combines functional and imperative programming styles with a Java-like
syntax and a formal semantics. Internal computations in an object are captured
in a simple functional language based on user-defined algebraic data types and
functions. A modeler may abstract from many details of the low-level impera-
tive implementations of data structures, but maintain an overall object-oriented
design. The semantics of Real-Time ABS is specified in rewriting logic [12], and
a model written in Real-Time ABS can be automatically translated into Maude
code and executed by the Maude tool.

The imperative layer of Real-Time ABS addresses concurrency, communica-
tion, and synchronization based on objects. The syntax is shown in Fig. 1. A pro-
gram P consists of interfaces I'F, classes C'L with method definitions M, and a
main block {[T 7;] s }. Our discussion focuses on interesting imperative language
features, so we omit the explanations of standard syntax and the functional layer
(see [16]).

In Real-Time ABS, communication and synchronization are decoupled. Com-
munication is based on asynchronous method calls f = olm(e) where f is a
future variable, o an object expression, m a method name, and € the parameter
values for the method invocation. After calling f = olm(€), the caller may pro-
ceed with its execution without blocking on the method reply. Synchronization is

52 J.-C. Lin et al.

controlled by operations on futures. The statement await f7 releases the proces-
sor while waiting for a reply, allowing other processes to execute. When the reply
arrives, the suspended process becomes enabled and the execution may resume.
The return value is retrieved by the expression f.get, which blocks all execu-
tion in the object until the return value is available. The syntactic sugar z =
await olm(€) encodes the standard pattern f = olm(e);await f7;z = f.get.

In Real-Time ABS, the timed behavior of concurrent objects is captured by
a maximal progress semantics. The execution time can be specified directly with
duration statements, or be implicit in terms of observations on the executing
model. Method calls have associated deadlines, specified by deadline annota-
tions. The statement duration(ej,ez) will cause time to advance between a
best case e; and a worst case es execution time. Whereas duration-statements
advance time at any location, Real-Time ABS also allows a separation of con-
cerns between the resource cost of executing a task and the resource capacity of
the location where the task executes. Cost annotations [Cost: e] are used to
associate resource consumption with statements in Real-Time ABS models.

Real-Time ABS uses deployment components to capture the execution capac-
ity of a location in the deployment architecture, on which a number of concurrent
objects can be deployed [18]. Each deployment component has its own execu-
tion capacity, which will determine the performance of objects executing on
the deployment component. Deployment components are dynamically created
by © = new DeploymentComponent (descriptor, capacity), where x is typed
by the DC interface, descriptor is a descriptor for the purpose of monitoring,
and capacity specifies the initial CPU capacity of the deployment component.
Objects are deployed on a deployment component using the DC annotation on
the object creation statement.

2.2 YARN: Yet Another Resource Negotiator

YARN [27] is an open-source software framework supported by Apache for dis-
tributed processing and storage of high data volumes. It inherits the advantages
of its well-known predecessor Hadoop [5], including resource allocation, code
distribution, distributed data processing, data replication, and fault tolerance.
YARN further improves Hadoop’s limitations in terms of scalability, serviceabil-
ity, multi-tenancy support, cluster utilization, and reliability.

YARN supports the execution of different types of jobs, including MapRe-
duce, graph, and streaming. Each job is divided into tasks which are executed in
parallel on a cluster of machines. The key components of YARN are as follows:

— ResourceManager (RM): RM allocates resources to various competing jobs
and applications in a cluster, replacing Hadoop’s JobTracker. Unlike Job-
Tracker, the scheduling provided by RM is job level, rather than task level.
Thus, RM does not monitor each task’s progress or restart any failed task.
Currently, the default job scheduling policy of RM is CapacityScheduler [23],
which allows cluster administrators to create hierarchical queues for multiple
tenants to share a large cluster while giving each tenant a capacity guarantee.

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 53

_ _| NodeManager
(NM)

Slave 1

\

NodeManager

Slaven

shiejs ysel

snjejs ysel

()
(

Fig. 2. The architecture of a YARN cluster.

The jobs in each queue are scheduled based on a First-in-First-out policy
(FIFO), i.e., the first job to arrive is first allocated resources.

— ApplicationMaster (AM): This is an instance of a framework-specific library
class for a particular job. It acts as the head of the job to manage the job’s
lifecycle, including requesting resources from RM, scheduling the execution of
all tasks of the job, monitoring task execution, and re-executing failed tasks.

— Containers: Each container is a logical resource collection of a particular node
(e.g., 1 CPU and 2GB of RAM). Clients can specify container resource require-
ments when they submit jobs to RM and run any kind of applications.

Figure 2 shows the architecture of a YARN cluster, which consists of RM and
a set of slave nodes providing both computation resources and storage capacity
to execute applications and store data, respectively. A slave node has an agent
called NodeManager to periodically monitor its local resource usage and report
its status to RM. The execution flow of a job on a YARN cluster is as follows:

1. Whenever receiving a job request from a client, RM follows a pre-defined job
scheduling algorithm to find a container from an available slave and initiate
the AM of the job on the container.

2. Once the AM is initiated, it starts requesting a set of containers from RM
based on the client’s container resource requirement and the number of tasks
of the job. Basically, each task will be run on one container.

3. When RM receives a container request from the AM, it inserts the request
into its queue and follows its job scheduling algorithm to allocate a desired
container from an available slave node to the AM.

4. Upon receiving the container, the AM executes one task of the job on the
container and monitors this task execution. If a task fails due to some errors
such as an underlying container/slave node failure, the AM will re-request a
container from RM to restart the task.

5. When all tasks of a job finish successfully, implying that the job is complete,
the AM notifies the client about the completion.

54 J.-C. Lin et al.

Rt initialization

getContainer

e |
) AM

Clients }*
AM

] /_

|
:/
|

Main block . free Container
W, logger —
- AM S

AM Container

Fig. 3. The structure of the ABS-YARN framework.

3 Formal Model of the ABS-YARN Framework

Figure 3 shows the structure of ABS-YARN with classes RM, AM, and Container
reflecting the main components of a YARN cluster. In our framework, RM is
deployed as an independent deployment component with its own CPU capacity.
To model the most general case, we assume that RM has a single queue for all
job requests, implying that all jobs are served in a FIFO order. When a client
submits a job, an AM object is created for this job, and its req method starts
requesting containers from RM by invoking the getContainer method. If a
slave has sufficient resources, a container will be created and returned to the
AM. Then the AM submits one task of the job to the allocated container by
invoking the exe method. When the task terminates, the result is returned to
the associated AM, the free method is invoked to release the container, and the
logger method is used to record execution statistics.

ABS-YARN allows modelers to freely determine the scale and resource capac-
ity of a YARN cluster, including (1) the number of slave nodes in the cluster,
(2) the CPU cores of each slave node, and (3) the memory capacity of each slave
node. To support dynamic and realistic modeling of job execution, ABS-YARN
also allows modelers to define the following parameters:

— Number of clients submitting jobs

— Number of jobs submitted by each client

— Number of tasks per job

— Cost annotation for each task

— CPU and memory requirements for each container

— Job inter-arrival pattern. Modelers can determine any kind of job inter-arrival
distributions in ABS-YARN.

MapReduce jobs are the most common jobs in YARN, so we focus on modeling
their execution in this paper. Each MapReduce job has a map phase followed by
a reduce phase. In the map phase, all map tasks are executed in parallel. When

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 55

all the map tasks have completed, the reduce tasks are executed (normally, each
jobs has only one reduce task). The job is completed when all the map and
reduce tasks have finished.

The execution time of a task in a real YARN cluster might be influenced
by many factors, e.g., the size of the processed data and the computational
complexity of the task. To reduce the complexity of modeling the task execution
time, ABS-YARN adopts the cost annotation functionality of Real-Time ABS
to associate cost to the execution of a task. Hence, the task execution time will
be the cost divided by the CPU capacity of the container that executes the task.

In the following, we limit our code presentation to the main building blocks
and functionalities to simplify the description.

3.1 Modeling ResourceManager (RM)

The ResourceManager implements the RM interface:

1 |interface RM ({

2 Bool initialization(Int s, Int sc, Int sm);

3 Pair<Int, Container> getContainer (Int c, Int m);
4 Unit free(Int slaveID, Int c, Int m);

5 Unit logger(...);}

Method initialization initializes the entire cluster environment, including
RM and s slaves. Each slave is modeled as a record in a database SlaveDB,
with a unique SlaveID, sc CPU cores, and amount sm of memory capacity.
After the initialization, the cluster can start serving client requests. Method
getContainer allows an AM to obtain containers from RM. The size of the
required container core and container memory are given by ¢ and m, respectively.
Method free is used to release container resources whenever a container finishes
executing a task, and method 1logger is used to record job execution statistics,
including job ID and job execution time.

The getContainer method, invoked by an AM, tries to allocate a container
with ¢ CPU cores and m amount of memory capacity from an available slave to
the AM. Each container request is allowed at most thd attempts. Hence, as long
as Find==False and attempt<=thd (line 3), the getContainer method
will keep trying to obtain the database token to ensure a safe database access.
The built-in function lookupDefault checks each slave in slaveDB to find a
slave with sufficient resources. If such a slave exists (line 11), the corresponding
container will be created as a deployment component with ¢ cores, and the
slave’s resources will be reduced and updated accordingly (lines 12-14). The
successfully generated container is returned to the AM.

However, if no slaves have enough resources, the process will suspend (line
21), allowing RM to process other method activations. The suspended process
will periodically check whether any slaves can satisfy the request. If the desired
container cannot be allocated within thd attempts, the method terminates and
RM is unable to provide the desired container to the AM.

56

OO WN -

3.2

J.-C. Lin et al.

Pair <Int, Container> getContainer (Int c, Int m) {
Bool find=False; Int slaveID=1; Int attempt=1;
while (find==False && attempt<=thd) {
await dbToken==True;
dbToken==False;
Int i=1;
while (find==False && i<=size(keys(slaveDB))) {
Pair<Int,Int> slave= lookupDefault(slaveDB, i, Pair(1l,1));
Int free_core= fst(slave);
Int free_mem= snd(slave) ;
if (free_core>=c && free_mem >= m) {
slaveDB=put (slaveDB, i, Pair(free_core-c, free_mem-m)) ;
DC s=new DeploymentComponent ("slave", map[Pair (CPU,c)]);
[DC: s] Container container = new Container (this);
find=True;
slaveID=i;
!
i++;
}
// Release dbToken
await duration(l,1);
attempt++;

if (find==False){ container=null;}
return Pair(slaveID, container);

}

Modeling ApplicationMaster (AM)

An AM implements the AM interface with a req method to acquire a container
from RM and then execute a task on the container. For an AM, the total number
of times that req is called corresponds to the number of map tasks of a job (e.g.,
if a job is divided into 10 map tasks, this method will be called 10 times).

1
2

interface AM {
Unit reqg(Int mNum, Int ¢, Int m, Rat mCost, Rat rCost);}

The reqg method first invokes the getContainer method and sends a container-
resource request (i.e., the parameters ¢ and m) to acquire a container from RM.
Since the call is asynchronous, the AM is able to request containers for other tasks
of jobID while waiting for the response.

OO U WN

Unit reqg(Int mNum, Int ¢, Int m, Rat mCost, Rat rCost) {

Pair<Int, Container> p= await rm!getContainer(c, m);
Int slaveId=fst(p);
Container container=snd(p) ;
if (container!=null) {
Fut<Bool> f = container!exe(slaveID, c, m, mCost);
await f?;
Bool map_result = f.get;
if (map_result==True) {
returned_map++;
if (returned_map==mNum) {
Bool red_result;
...//Try to request a container and run the reduce task
if (red_result==True) {
logging the job completion;

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 57

18 else{ logging the reducde-task failure;}
19 }

20 }

21 else{ logging the map-task failure;}

22

23 else{ logging unsuccessful container request;}
24 |}

When a container is successfully obtained, a map task with cost mCost can
be executed on the container (line 7). The process suspends while waiting for
the result of the task execution. Each time when map_result==True, the req
method increases the variable returned map by one. When all map tasks of
the job have successfully completed (line 12), the AM proceeds with a container
request to run the reduce task of the job with cost rCost. Only when all map
and reduce tasks are completed (line 15), the job is considered completed.

3.3 Modeling Containers

A container implements the Container interface:

1 |interface Container{
2 Bool exe(Int slaveID, Int ¢, Int m, Rat tcost);}

Method exe is used to execute a task on a container. The formal parameters of
exe consist of slaveID, CPU capacity ¢, memory capacity m, and the task cost
tcost. Hence, the task execution time is tcost/c. When a task terminates,
the free method of RM is invoked to release the container, implying that the
corresponding CPU and memory resources will be returned back to the slave.

1 |Bool exe(Int slaveID, Int ¢, Int m, Rat tcost){
2 [Cost: tcost] ... //executing a task;

3 rm! free(slaveID, c, m);

4 return true;}

4 Performance Evaluation and Validation

To compare the simulation results of ABS-YARN against YARN, we established
a real YARN cluster using Hadoop 2.2.0 [5] with one virtual machine acting as
RM and 30 virtual machines as slaves. Each virtual machine runs Ubuntu 12.04
with 2 virtual cores of Intel Xeon E5-2620 2 GHz CPU and 2 GB of memory.
To achieve a fair validation, we also created an ABS-YARN cluster with 30
slaves; each with 2 CPU cores and 2 GB of memory. To realistically compare
job execution performance between ABS-YARN and YARN clusters, we used
the following five benchmarks from YARN [23]: WordCount, which counts the
occurrence of each word in data files; WordMean, which calculates the average
length of the words in data files; WordStandardDeviation (WordSD), which
counts the standard deviation of the length of the words in data files; GrepSort,
which sorts data files; and GrepSearch, which searches for a pattern in data
files.

58 J.-C. Lin et al.

We created a hybrid workload consisting of 22 WordCount jobs, 22 Word-
Mean jobs, 20 WordSD jobs, 16 GrepSort jobs, and 20 GrepSearch jobs. The
submission orders of all jobs were randomly determined. Each job processes 1 GB
of enwiki data [13] with 128 MB block size (the default block size of YARN [23]).
Hence, each job was divided into 8 (=1 GB/128 MB) map tasks and one reduce
task, implying that 9 containers are required to execute each job. We assume
that the resource requirement for each container is 1 CPU core and 1 GB RAM
for both the ABS-YARN and YARN clusters.

We considered two job inter-arrival patterns in our experiments: Uniform and
exponential distribution [20]. In the former, the inter-arrival time between two
consecutive jobs submitted by clients are equal. In the latter, job inter-arrival
time follows a Poisson process [20], i.e., job submissions occur continuously and
independently at a constant average rate. Reiss et al. [25] show that job arrival
patterns in a Google trace approximates an exponential distribution. This dis-
tribution has also been widely used as job arrival pattern in the literature (e.g.,
[22,24]). Based on these distributions, two scenarios were designed:

— Uniform scenario: The job inter-arrival time of the workload is 150 sec in the
real YARN cluster. In ABS-YARN, this is normalized into 2 time units.

— Exponential scenario: The job inter-arrival time of the workload follows an
exponential distribution with the average inter-arrival time of 158 sec and a
standard deviation of 153 sec in the real YARN cluster. This is normalized into
the average inter-arrival time of 158/75 time units and a standard deviation
of 153/75 time units in the ABS-YARN cluster.

The following metrics were used to evaluate how well ABS-YARN can simulate
job scheduling, job execution behavior, and job throughput of YARN:

— Starting time of all jobs of the workload
— Finish time of all jobs of the workload

— The number of cumulative completed jobs
— Total number of completed jobs

4.1 Validation Results in the Uniform Scenario

In order to achieve a fair comparison, we conducted the uniform scenario
on the YARN cluster to obtain the average map-task execution time (AMT)
and average reduce-task execution time (ART) for each job type. The results
are listed in Table 1. After that, we respectively normalized each AMT and ART
into a map-task cost and a reduce-task cost for ABS-YARN by dividing the AMT
value by 75 and dividing the ART value by 75 (Note that 75 is half of the job
inter-arrival time for the uniform scenario). With the corresponding map-task
cost annotation (MCA) and reduce-task cost annotation (RCA), we simulated
the uniform scenario on ABS-YARN.

Figure 4(a) shows the normalized starting time of all jobs in both clusters. We
can see that the two curves are almost overlapping. The average time difference
between ABS-YARN and YARN is 0.02 time units with a standard deviation of

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 59

Table 1. The average map-task execution time (AMT), average reduce-task execution
time (ART), normalized map-task cost annotation (MCA), and normalized reduce-task
cost annotation (RCA) in the uniform scenario.

Benchmark | AMT (sec) | ART (sec) | MCA RCA
WordCount | 162.64 251.01 2.17 (=162.64/75) | 3.35 (251.01/75)
WordMean | 107.10 139.94 | 1.43 (=107.10/75) | 1.87 (=139.94/75)
WordSD 108.23 162.27 1.44 (=108.23/75) | 2.16 (=162.27/75)
GrepSort | 20.39 3844 | 0.27 (=20.39/75) | 0.51 (=38.44/75)
GrepSearch | 31.22 55.97 | 0.42 (=31.22/75) | 0.75 (=55.97/75)
200 200

£ “— ABS-YARN g “~ ABS-YARN

S 150 S 150

g ~—*— YARN g ~—*—YARN

g 100 / € 100]

L / !

E 50 E 50

S / z

0 4 T T T T 0 TTTTTIT T T TF T AT I T T T
1 10 19 28 37 46 55 64 73 82 91 100 1 10 19 28 37 46 55 64 73 82 91 100
Job ID Job ID

(a) The normalized starting time (b) The normalized finish time

Fig. 4. The normalized time points of all jobs in the uniform scenario.

1.73 time units, showing that ABS-YARN is able to precisely capture the job
scheduling of YARN in the uniform scenario. Figure4(b) depicts all job finish
time in both clusters. The average difference between ABS-YARN and YARN is
2.67 time units with a standard deviation of 1.81 time units, indicating that the
framework can accurately model how containers execute jobs in a real YARN
cluster. Based on the results shown in Fig. 4, we can derive that the cumulative
numbers of completed jobs between the two clusters are close (see Fig. 5(a)). The
average error is approximately 2.52 %, implying that ABS-YARN can precisely
reflect the operation of YARN in the uniform scenario. Figure5(b) shows that
100 jobs of the workload successfully finished in the ABS-YARN cluster, but 99
jobs of the workload completed in the YARN cluster since the remaining one job
could not obtain sufficient containers to execute its tasks. The job completion
error of ABS-YARN is only 1.01 %. Based on the above-mentioned results, it is
evident that the ABS-YARN framework offers a superior modeling of YARN in
the uniform scenario.

4.2 Validation Results in the Exponential Scenario

In this section, we compare ABS-YARN and YARN under the exponential sce-
nario. Similar to the uniform scenario, we performed a normalization by exe-
cuting the exponential scenario on the YARN cluster to derive a map-task cost

60 J.-C. Lin et al.

100 100

2 100
) = ABS-YARN 2 2
= 80 2 80
L =
P IR
: :
S 40 3
T
= b
3 20 2
: MMM % -
3 0 4

0 20 40 60 80 100 120 140 160 180 200 0

Normalized time ABS-YARN YARN
(a) Cumulative completed jobs (b) Total number of completed jobs

Fig. 5. The cumulative completed jobs and the total number of completed jobs in the
uniform scenario.

annotation and a reduce-task cost annotation for each job type. The results are
listed in Table2. Note that regardless of which job type was tested, the cor-
responding average map-task and reduce-task execution time were apparently
higher than those in the uniform scenario. The main reason is that the job inter-
arrival time in the exponential scenario had a much higher standard deviation,
implying that many jobs might compete for containers at the same time. How-
ever, due to the limited container resources, these jobs had to wait for available
containers and hence prolonged their execution time.

Table 2. The AMT, ART, MCA, and RCA in the exponential scenario.

Benchmark | AMT (sec) | ART (sec) | MCA RCA

WordCount | 295.47 430.24 | 3.94 (=295.27/75) | 5.74 (430.24/75)
WordMean | 139.98 201.11 1.87 (=139.98/75) | 2.68 (=201.11/75)
WordSD | 238.46 312.38 | 3.18 (=238.46/75) 4.17 (=312.38/75)
GrepSort | 37.38 62.06 | 0.50 (=37.38/75) | 0.83 (=62.06/75)
GrepSearch | 173.92 205.94 | 2.32 (=173.92/75) | 2.75 (205.94/75)

The normalized job starting time illustrated in Fig. 6(a) show that the ABS-
YARN cluster follows the same trend as the YARN cluster. However, as more
jobs were submitted, their starting time in ABS-YARN were later than those in
the YARN cluster. The average time difference is around 19.48 with standard
deviation of 12.92. The key reasons are two. First, the normalized map-task
(reduce-task) cost annotations used by ABS-YARN were based on average map-
task (reduce-task) execution time of the entire workload, which were longer
than the actual map-task (reduce-task) execution time spent by the real YARN
cluster in the early phase of the workload execution. Second, the number of
available containers gradually decreased when more jobs were submitted to the
ABS-YARN cluster. For these two reasons, the starting time of the subsequent
jobs were delayed.

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 61

250 250
2 g " ki
£ 200 +—{—— ABS-YARN £ 200 1 ABS-YARN o
%‘) . W g 150 ——— —*— YARN o e
g 150 T YARN M < MMAA
- =
%
3
3 100 e % 100 -
3 E
g 50 1 2 30 W
Z o
1 10 19 28 37 46 55 64 73 82 91 100 110 19 28 37 46 55 64 73 82 91 100
Job ID Job ID
(a) The normalized starting time (b) The normalized finish time

Fig. 6. The time points of all jobs in the exponential scenario.

Figure 6(b) depicts the normalized job finish time of the two clusters under
the exponential scenario. We can see that during the workload execution, many
jobs in the ABS-YARN cluster finished later than the corresponding jobs in
the YARN cluster. The reasons are the same, i.e., the map-task (reduce-task)
cost annotation values were derived from the corresponding average map-task
(reduce-task) execution time, which were usually higher than the actual execu-
tion time in the YARN cluster during the early stage of the workload. Never-
theless, the results show that even under a heavy and dynamic workload, the
ABS-YARN framework can still adequately model YARN.

The cumulative number of completed jobs illustrated in Fig. 7(a) shows that
during most of the workload execution, the ABS-YARN cluster finished fewer
jobs than the YARN cluster for the above mentioned reasons. However, in the
late stage, the ABS-YARN cluster had more completed jobs than the YARN
cluster. This phenomenon can also be deduced from Fig. 6 since seven jobs could
not complete by the YARN cluster. The average difference of the cumulative
workload completion between ABS-YARN and YARN is 14.49 %. Due to failing
to get containers, 97 jobs and 93 jobs (as shown in Fig.7(b)) were finished by
the ABS-YARN cluster and the YARN cluster, respectively. Although the job

£ 100 100
S " ABS-YARN Z
3 %] ! 2 5 - 93
: R Y
B 60 3
5 2 60
S 40 £
23
£ UIERRETIE L =
2 20 1 g
e | t(RMMEMMEENETNY £ -
5 £
O 9 2
222 42 62 82 102 122 142 162 182 202 222 0
Normalized Time ABS-YARN YARN
(a) Cumulative completed jobs (b) Total number of completed jobs

Fig. 7. The cumulative completed jobs and the total number of completed jobs in the
exponential scenario.

62 J.-C. Lin et al.

completion error of ABS-YARN is increased to 4.3 % from the uniform scenario
to the exponential scenario, the above results still demonstrate that the ABS-
YARN framework provides a satisfiable modeling for YARN.

5 Related Work

General-purpose modeling languages provide abstractions where the main focus
has been on describing functional behavior and logical composition. However,
this is inadequate for virtualized systems such as clouds when the software’s
deployment influences its behavior and when virtual processors are dynamically
created. A large body of work on performance analysis using formal models
can be found based on, e.g., process algebra [9], Petri Nets [26], and timed
and probabilistic automata [4,8]. However, these works mainly focus on non-
functional aspects of embedded systems without associating capacities with
locations. A more closely related technique for modeling deployment can be
found in an extension of VDM++ for embedded real-time systems [28], in which
static architectures are explicitly modeled using buses and CPUs with fixed
resources.

Compared to these languages, Real-time ABS [10, 18] provides a formal basis
for modeling not only timed behavior but also dynamically created resource-
constrained deployment architectures, which enables users to model feature-rich
object-oriented distributed systems with explicit resource management at an
abstract yet precise level. Case studies validating the formalization proposed in
Real-Time ABS include Montage [17] and the Fredhopper Replication Server [3].
Both case studies address resource management in clouds by combining simula-
tion techniques and cost analysis. Different from these case studies, this paper
uses Real-Time ABS to create a formal framework for YARN and comprehen-
sively compare this framework with a real YARN cluster.

In recent years, many simulation tools have been introduced for Hadoop,
including MRPerf, MRSim, and HSim. MRPerf [29] is a MapReduce simulator
designed to understand the performance of MapReduce jobs on a specific Hadoop
parameter setting, especially the impact of the underlying network topology, data
locality, and various failures. MRSim [15] is a discrete event based MapReduce
simulator for users to define the topology of a cluster, configure the specification
of a MapReduce job, and simulate the execution of the job running on the clus-
ter. HSim [21] models a large number of parameters of Hadoop, including nodes,
cluster, and simulator parameters. HSim also allows users to describe their own
job specification. All the above-mentioned simulators target Hadoop rather than
YARN. Due to the fundamental difference between Hadoop and YARN, these
simulators are unable to simulate YARN. Besides, these simulators concentrate
on simulating the execution of a single MapReduce job and compare the cor-
responding simulation results with the actual results on real Hadoop systems.
However, this is insufficient to confirm that they can faithfully simulate Hadoop
when multiple jobs are running on Hadoop. Similar work can also be found in
[19]. Different from all these simulators, the proposed ABS-YARN framework is

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 63

designed to model a set of jobs running on YARN, rather than just one job. With
ABS-YARN, users can comprehend the performance of YARN under a dynamic
workload.

To our knowledge, the Yarn Scheduler Load Simulator (SLS) [31] is the only
simulator currently designed for YARN, but it concentrates on simulating job
scheduling in a YARN cluster. Besides, SLS does not provide any performance
evaluation to validate its simulation accuracy. Compared with SLS, ABS-YARN
provides a formal executable YARN environment. In this paper, we also present
a comprehensive validation to demonstrate its applicability.

6 Conclusion and Future Work

This paper has presented the ABS-YARN framework based on the formal mod-
eling language Real-Time ABS. ABS-YARN provides a generic model of YARN
by capturing the key components of a YARN cluster in an abstract but pre-
cise way. With ABS-YARN, modelers can flexibly configure a YARN cluster,
including cluster size and resource capacity, and determine job workload and
job inter-arrival patterns to evaluate their deployment decisions.

To increase the applicability of formal methods in the design of virtualized
systems, we believe that showing a strong correlation between model behaviors
and real system results is of high importance. We validated ABS-YARN through
a comprehensive comparison of the model-based analyses with the actual per-
formance of a real YARN cluster. The results demonstrate that ABS-YARN is
accurate enough to offer users a dependable framework for making deployment
decisions about YARN at design time. In addition, the provided abstractions
enable designers to naturally model and design virtual systems at this complex-
ity, such as enhancing YARN with new algorithms.

In future work, we plan to further enhance ABS-YARN by incorporating
multi-queue scheduler modeling, slave and container failure modeling, and dis-
tributed file-system modeling. Modeling different job types will also be con-
sidered. Whereas this paper has focussed on the accuracy of the ABS-YARN
framework, our ongoing work on a more powerful simulation and visualization

tool for Real-Time ABS will improve the applicability of ABS-YARN.

Acknowledgement. The authors thank NCLab at National Chiao Tung Univer-
sity, Taiwan for providing computation facilities for the YARN cluster used in our
experiments.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. The MIT Press, Cambridge (1986)

2. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gémez-Zamalloa, M.,
Martin-Martin, E., Puebla, G., Romén-Diez, G.: SACO: static analyzer for concur-
rent objects. In: Abrahdm, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS,
vol. 8413, pp. 562-567. Springer, Heidelberg (2014)

64

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

J.-C. Lin et al.

Albert, E., de Boer, F.S., Hihnle, R., Johnsen, E.B., Schlatte, R., Tapia Tarifa,
S.L., Wong, P.Y.H.: Formal modeling and analysis of resource management for
cloud architectures: An industrial case study using Real-Time ABS. J. Serv. Ori-
ented Comput. Appl. 8(4), 323-339 (2014)

Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: a tool
for schedulability analysis and code generation of real-time systems. In: Larsen,
K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 60-72. Springer,
Heidelberg (2004)

Apache Hadoop. http://hadoop.apache.org/

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50-58 (2010)

Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, Raleigh (2007)

Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9), 76-85 (2010)

Barbanera, F., Bugliesi, M., Dezani-Ciancaglini, M., Sassone, V.: Space-aware
ambients and processes. Theor. Comput. Sci. 373(1-2), 41-69 (2007)

Bjerk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia, S.L.: Tarifa.: User-
defined schedulers for real-time concurrent objects. Innov. Syst. Softw. Eng. 9(1),
29-43 (2013)

Caromel, D., Henrio, L.: A Theory of Distributed Objects. Springer, New York
(2005)

Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol.
4350. Springer, Heidelberg (2007)

enwiki. http://dumps.wikimedia.org/enwiki/

Hahnle, R., Johnsen, E.B.: Designing resource-aware cloud applications. IEEE
Comput. 48(6), 72-75 (2015)

Hammoud, S., Li, M., Liu, Y., Alham, N.K., Liu, Z.: MRSim: A discrete event based
MapReduce simulator. In: Seventh International Conference on Fuzzy Systems and
Knowledge Discovery, FSKD 2010, pp. 2993-2997. IEEE (2010)

Johnsen, E.B., Hahnle, R., Schéfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS,
vol. 6957, pp. 142-164. Springer, Heidelberg (2011)

Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Modeling resource-aware virtualized
applications for the cloud in real-time ABS. In: Aoki, T., Taguchi, K. (eds.) ICFEM
2012. LNCS, vol. 7635, pp. 71-86. Springer, Heidelberg (2012)

Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. J. Log. Algebraic
Methods Program. 84(1), 67-91 (2015)

Kolberg, W., Marcos, P.D.B., Anjos, J.C., Miyazaki, A.K., Geyer, C.R., Arantes,
L.B.: MRSG - a MapReduce simulator over SimGrid. Parallel Comput. 39(4),
233-244 (2013)

Koralov, L.B., Sinai, Y.G.: Theory of Probability and Random Processes. Springer-
Verlag, Berling (2007)

Liu, Y., Li, M., Alham, N.K., Hammoud, S.: HSim: a MapReduce simulator in
enabling cloud computing. Future Gener. Comput. Syst. 29(1), 300-308 (2013)

http://hadoop.apache.org/
http://dumps.wikimedia.org/enwiki/

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 65

Luo, C., Zhan, J., Jia, Z., Wang, L., Lu, G., Zhang, L., Xu, C.-Z., Sun,
N.: Cloudrank-d: benchmarking and ranking cloud computing systems for data
processing applications. Front. Comput. Sci. 6(4), 347-362 (2012)

Murthy, A., Vavilapalli, V., Eadline, D., Niemiec, J., Markham, J.: Apache Hadoop
YARN: Moving Beyond MapReduce and Batch Processing with Apache Hadoop
2. Addison-Wesley Professional, San Francisco (2014)

Palanisamy, B., Singh, A., Liu, L., Bryan, L.: Cura: A cost-optimized model for
MapReduce in a cloud. In: IEEE 27th International Symposium on Parallel and
Distributed Processing, pp. 1275-1286. IEEE (2013)

Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Towards under-
standing heterogeneous clouds at scale: Google traceanalysis.Technical Report
ISTC-CC-TR-12-101, Intel Science and TechnologyCenter for Cloud Comput-
ing, Carnegie Mellon University, April 2012. http://www.pdl.cmu.edu/PDL-FTP/
CloudComputing/ISTC-CC-TR-12-101.pdf

Sgroi, M., Lavagno, L., Watanabe, Y., Sangiovanni-Vincentelli, A.: Synthesis of
embedded software using free-choice petri nets. In: Proceedings of the Design
Automation Conference, DAC 1999, pp. 805-810. ACM (1999)

Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R.,
Graves, T., Lowe, J., Shah, H., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia,
S., Reed, B., Baldeschwieler, E.: Apache Hadoop YARN: yet another resource
negotiator. In: Lohman, G.M. (ed.) ACM Symposium on Cloud Computing (SOCC
2013), pp. 5:1-5:16 (2013)

Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and validating distributed embed-
ded real-time systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.)
FM 2006. LNCS, vol. 4085, pp. 147-162. Springer, Heidelberg (2006)

Wang, G., Butt, A.R., Pandey, P., Gupta, K.: A simulation approach to evaluat-
ing design decisions in MapReduce setups. In: IEEE International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
MASCOTS 2009, pp. 1-11. IEEE (2009)

Wong, P.Y.H., Albert, E., Muschevici, R., Proenga, J., Schéfer, J., Schlatte, R.: The
ABS tool suite: modelling, executing and analysing distributed adaptable object-
oriented systems. J. Softw. Tools Technol. Transf. 14(5), 567-588 (2012)

Yarn Scheduler Load Simulator (SLS). https://hadoop.apache.org/docs/r2.4.1/
hadoop-sls/SchedulerLoadSimulator.html

http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/ISTC-CC-TR-12-101.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/ISTC-CC-TR-12-101.pdf
https://hadoop.apache.org/docs/r2.4.1/hadoop-sls/SchedulerLoadSimulator.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-sls/SchedulerLoadSimulator.html

Integrated Environment for Verifying
and Running Distributed Components

Ludovic Henrio', Oleksandra Kulankhina'2, Siqi Li®, and Eric Madelaine!-2(*)

! University of Nice Sophia Antipolis, CNRS, Sophia Antipolis, France
Ludovic.Henrio@cnrs.fr
2 INRIA Sophia Antipolis Méditérannée, Sophia Antipolis, France
{0leksandra.Kulankhina,Eric.Madelaine}@inria.fr
3 Shanghai Key Laboratory of Trustworthy Computing, ECNU, Shanghai, China
cathy.1sq09@gmail.com

Abstract. This paper targets the generation of distributed applica-
tions with safety guarantees. The proposed approach starts from graph-
ical specification formalisms allowing the architectural and behavioral
description of component systems. From this point, the user can auto-
matically verify application properties using model-checking techniques.
Finally, the specified and verified component model can be translated
into executable Java code. We implement our approach in a tool suite
distributed as an Eclipse plugin. This paper also illustrates our approach
by modeling and verifying Peterson’s leader election algorithm.

1 Introduction

Component-oriented programming has become a popular approach for distrib-
uted application development. Components enforce a clear design and specifi-
cation stage of the applications, and provide a solid basis for safe and modular
development of complex systems. This work aims at including systematic verifi-
cation of behavioral properties in the development process of component-based
applications. For this purpose we would like to provide the developers of distrib-
uted component-based systems with a set of tools supporting rigorous design and
implementation of safe applications. Our tools should guide the user through all
crucial phases of component software development: from application design spec-
ification to verification of the designed architecture and behavior properties as
well as automated code generation.

Applying static analysis on hand-coded programs is complex and often impre-
cise, especially for distributed systems. Instead we chose a Model-Driven Engi-
neering and a component-oriented approach in which the structure of the applica-
tion is directly specified by the developer, and in which the final code is generated
automaticaly, partialy or totaly.

VerCors' is a software platform which aims at supporting the creation of safe
distributed component-based applications. VerCors? includes a set of graphical

! https://team.inria.fr/scale/software/vercors/vcev4-download /.
2 Not to be confused with http://fmt.cs.utwente.nl/research/projects/VerCors//.
© Springer-Verlag Berlin Heidelberg 2016

P. Stevens and A. Wasowski (Eds.): FASE 2016, LNCS 9633, pp. 66-83, 2016.
DOI: 10.1007/978-3-662-49665-7_5

https://team.inria.fr/scale/software/vercors/vcev4-download/
http://fmt.cs.utwente.nl/research/projects/VerCors/

Integrated Environment for Verifying and Running Distributed Components 67

designers based on UML where the user can specify the architecture and the
business logic of his application, and check the static correctness of the compo-
nent architecture [1]. The specification is then automatically transformed into a
behavior graph that can be model-checked to prove its correctness. We rely on
model-checking for verification, but we want to hide as much as possible the com-
plexity of the underlying formal techniques to make our tools accessible to non-
experts in model-checking. VerCors uses parametrized networks of asynchronous
automata (pNets) as an intermediate format for behavior modeling and relies on
CADP [2] model-checker to verify temporal properties. Last, Java code of the
modeled application can be automatically generated and executed. We rely on
ProActive® and the Grid Component Model (GCM) [3]. We chose GCM /ProAc-
tive because it targets distributed systems and features a well-defined semantics.
Because of the chosen verification methodology, the current platform can only
verify finite-state systems, but infinite-space systems can already be specified,
modeled as pNets, and executed.

This paper shows that our approach is suitable for applications involving
complex interactions between processes but without too much computational
complexity. For the case studies involving such a computational complexity the
model-checking approach might be limited. However in that case we advocate
the use of the VerCors platform to specify and verify the core of the applica-
tion, abstracting away computational details. The user can still generate the
executable skeleton of the verified core application. He can then extend it with
computational details. While the application logic is unchanged, the behavioral
properties will still be valid.

The VerCors platform has already undergone several major generations, with
significant evolutions for the underlying semantic model, as well as the modeling
platform and the specification formalisms. The original version was using UML
component structures for describing the application architecture, but this was
too far from GCM needs, hence a new DSL and graphical formalism were defined.
At the same time, aiming at better support for maintenance and usability, Ver-
Cors was moved to an Eclipse-based environment [4]. A series of publications
described the support for several features of distributed component-based sys-
tems, including group communications, first-class futures, and reconfiguration.
At that time, the platform was only able to generate part of the behavioral
model and it relied on several manual steps only realizable by experts in formal
methods. No code generation was supported. Starting from that preliminary
work a new VerCors tool is presented in this paper. It includes the full set of
modeling formalisms (architecture, types abstractions, and state-machines), the
validation of static correctness, the full chain of tools for the generation of a
pNet model for model-checking, as well as a new tool for automatic generation
of executable GCM/ProActive code. More recently, theoretical papers defining
the pNet model [5] and the behavioral semantics of GCM in terms of pNets [6]
were published. They build a formal foundation for the VerCors tools.

3 https://team.inria.fr /scale /software/proactive, .

https://team.inria.fr/scale/software/proactive/

68 L. Henrio et al.

First, Sect. 2 presents the background on GCM, the pNets formalism and our
use-case (Peterson’s leader election algorithm). In Sect. 3 we introduce a set of
graphical formalisms to define abstractions of distributed component-based sys-
tem architecture and behavior. In Sect. 4 we show how the specified models can
be transformed into behavioral graphs accepted as input by a model-checker. We
present in Sect. 5 the generation of executable code from the model specification.
Finally, we discuss the related work in Sect.6 and conclude in Sect. 7. We illus-
trate our contributions by modeling, verifying, and running Peterson’s leader-
election algorithm®*[7]. An extended version has been published as a research
report [8]; it includes appendices with details on the usecase, the architecture of
the tool, and the generation process.

2 Background

2.1 Grid Component Model and ProActive Platform

The Grid Component Model (GCM) [3] targets large-scale distributed compo-
nent systems. Its reference implementation is GCM/ProActive.

Architecture. A GCM application consists of components, interfaces and bind-
ings. Figure?2 illustrates an example of a GCM system. A component can be
either composite (it consists of other subcomponents), e.g. Application, or
primitive (a simple element encapsulating business code), e.g. Compl. Compo-
nents communicate through interfaces of two types: client and server (e.g. C1 and
81 correspondingly). A component sends requests and receives replies through
client interfaces; a component receives requests and sends back results through
server interfaces. The interfaces that communicate are connected with bindings.
ProActive is a Java library for distributed computing. Every component in
GCM/ProActive is an active object made of a single applicative thread.

Informal semantics of ProActive components. Figure 1.a illustrates treat-
ment of requests by primitive components. Every primitive component has a
FIFO request queue, a body and an active object that serves requests. All
requests to the server interfaces are first dropped to the queue. The body takes
the first request from the queue and triggers the execution of the correspond-
ing method of the active object. To process a request the component may need
additional services provided by the other components, using operations calls on
its client interfaces. Once a request is served, the component sends back a reply
consisting of the value returned by the method. Then, the next can be served.
Figure 1.b illustrates the behavior of a GCM/ProActive composite. A com-
posite has a FIFO request queue, a body, an associated active object, and some
subcomponents. The body takes requests from the queue and forwards them to
the subcomponents that serve them. In order to serve a request, a subcomponent
may need to call methods of other subcomponents or outside of the composite,
using client interfaces. Once a request has been served by the subcomponent, the

4 Available at: https://github.com/Scale-VerCors/VCEv4/tree/master /Examples.

https://github.com/Scale-VerCors/VCEv4/tree/master/Examples

Integrated Environment for Verifying and Running Distributed Components 69

N \
\ \
Primitive_logic1 hd X Composite_comp
........................... o=]
L g Queue ? & /. Queug ~——~—

\
A
*.. Prim_logicl Y
N ‘
"""""" > Server request

— — — —» Client request

— Binding

a. GCM/ProActive Primitive b. GCM/ProActive Composite

Fig. 1. GCM/ProActive component behavior

composite receives the reply and forwards it to the requester. Every request sent
from a subcomponent towards the outside of a composite passes by the queue
of the composite before being forwarded through the composite client interface.

GCM components communicate using futures. When a component sends a
request to another component, the caller continues its execution as long as it does
not need the result of the request. When the result is needed the caller blocks
automatically. We call this behavior a “wait-by-necessity”. In the meantime, an
empty object called future represents the result of the request.

2.2 pNets

Parametrized networks of asynchronous automata (pNets) have been formalized
in [5]. pNets are composition of labeled transition systems with parameters; they
are used as an intermediate model for encoding behavior of GCM-based applica-
tions. The behavioural semantics of GCM has been formalized in [6,9]. A pNet is
a hierarchical structure where leaves are pLTSs. A pLTS is a labelled transition
system with variables, where labels are of the form (a, e, (z;:= ¢;)7€/), where
ep is a guard, the variables x; € P are assigned when the transition is triggered,
finally « is a parametrized action that has a label and a set of arguments, some of
them are input variables, others are output expressions. By convention, we anno-
tate actions with “!” and “?” depending on the information flow. We assume that
the information goes from !a to 7. A pNet is either a pLTS or the composition
of several pNets; in the second case, the possible interaction between sub-entities
are specified by synchronisation vectors: pNet = pLTS | (L,pNet'!, SVZGK»
where L is the set of global actions, pNetﬁeI is the family of sub-pNets. SVZEK
is a set of synchronization vectors. SV = a;:e‘]’“ — «f, means that each of the
sub-pNets in the set Jj can perform synchronously an internal action «;; this
results in a global action «f,. Elements not taking part in the synchronization
are denoted — as in: < —, —, o, — >—a.

70 L. Henrio et al.

2.3 Peterson’s Leader Election Algorithm

Distributed processes often need to select a unique leader. Peterson’s election
algorithm [7] can be used for this purpose in a unidirectional ring of asynchronous
processes. Every process participating in the elections has a FIFO queue and
the order of sent messages is preserved by the communication channels. Each
process can be either in active mode if the process participates in the election,
or in passive mode if it only forwards messages. Initially, every process stores a
unique number that will be modified during the election. The processes exchange
two rounds of messages so that every active process learns the numbers stored
by the two nearest active processes preceding it. If the maximum of the two
previous values and the value held by the current process is the value received
from the nearest predecessor of the process, then the active process takes this
value as its own value; otherwise the process becomes passive. The rounds of
messages and local decision steps are repeated until a process receives its own
number, this process is the leader.

In details, every process P stores variables max(P) and left(P). Max(P)
is the number stored by P. Left(P) is the number of the active process on
the left of P. Processes exchange messages of the form M (step,value) where
step is the phase of the algorithm. At the preliminary phase, each process P;
sends M (1, maz(F;)) to its neighbor. Then, if an active process P; receives a
message M(1,z) and z is equal to its own number, the process is the leader,
otherwise it assigns x to left(P;) and sends M (2,x) to its neighbor. When an
active process P; receives M(2,z) it compares left(P;) to = and max(P;). If
left(P;) is greater than both values, P; assigns left(P;) to maxz(P;) and sends
M(1, max(P;)); otherwise P; becomes passive.

3 Graphical Designer

VerCors includes a graphical designer for modeling component-based system
architecture and behavior. These models must be precise enough to be translated
into both input for validation and for executable code. The graphical specifica-
tion part of VerCors is based on Eclipse IDE; it was implemented using Sirius®.
The VerCors platform includes graphical designers for four types of diagrams:
Components, UML Class, UML State Machine, and Type diagrams. This section

describes the four editors and the way they are integrated.

3.1 Architecture Specification

Component diagrams are used for the specification of a distributed application
architecture. A component diagram includes primitives (grey boxes), and com-
posites (white rectangles with grey border). Interfaces are attached to the bor-
ders of their containers. An interface has a set of characteristics, e.g. whether an

5 Sirius is an open-source Eclipse project for development of graphical modeling envi-
ronment based on EMF and GMF: http://www.eclipse.org/sirius/.

http://www.eclipse.org/sirius/

Integrated Environment for Verifying and Running Distributed Components 71

Application €2 <
PP : Y N ‘ Y§ @ KeyStorageltf
> . requestkey()
Compl Y 2V Comp2 Yz o 5? @ : Intinterval[1]
) RunElection H classo Attributes H classo Attributes LN
HC —@H ||
runPeterson() message(step © el s message(step maxc2ilt< B it
S tepinterval, =) =
Piperislivk s S & Sepneely SO IAmTheLeader
Lt ’ T (cnum : Intinterval)
@ a1 IAmNotTheLeader
< Comp4 Ya Comp3 , 21 o @ (cnum : Intinterval)
H class1 attributes | @< Eclasso | attrivutes | € » 1
@52 runPeterson() max = 44 LR ges?age(gep max = 52 e & Electlonitf
defi = Interval, v m= B I .
& {redefines cnum lcc ga SIS cenur e > message(step :
& Stepinterval, val :
Aa Intinterval)
Jl

Fig. 2. Components diagram

interface is server or client. The icon representing an interface changes depending
on the characteristics. Bindings are shown as arrows between interfaces.

UML Class diagrams are used to specify the list of attributes stored by
components and the list of operations a component offers. The user can attach
a UML class to a primitive component and a UML interface to client and server
interfaces. If a class is attached to a component, it means that the attributes
of the class are stored by the component and the operations of the class define
the business logic of the component. A UML interface attached to a client or a
server GCM interface stores the list of operations that can be called and served
with this interface. Each operation defined in a class either has a reference to
the operation of the interface it implements (or redefines in UML terms), or is
a local method of the component.

The types of operations, attributes, and variables can be declared using Type
diagrams. Enumerations, integer intervals, records (C-like structs) and infinite
integers can be specified, while boolean and void types are created by default.

Use-case example. The Component diagram representing the architecture of our
use-case model is shown on Fig. 2.

Application is a composite; it includes four primitives that participate in the
leader election process. The primitives are connected in a ring topology and have
similar structure. The entry point of the system is the runPeterson() operation of
Application server interface S1. This request is forwarded to Comp4 that triggers
the election process. During the election, components invoke method message
on their client interfaces C1. As defined in Sect. 2.3, each message transmits two
parameters: step and val. The message is transmitted to the server interface S1 of
the called component. The signature of message is specified in a UML interface
ElectionItf. If a component decides to become a leader or a non-leader, it
reports its decision to the environment by invoking an IAmTheLeader(cnum,) or
an IAmNotTheLeader(cnum) method on its client interface C2. These operations
take the identifier of the component as a parameter.

All four components have the same set of attributes. They have the mes-
sage(...) method implementing the leader election algorithm and a set of methods

72 L. Henrio et al.

to access local attributes. Comp4 implements an additional operation runPeter-
son(). Compl, Comp2, and Comp3 are implemented by ClassO while Comp4 uses
Classl that extends ClassO with runPeterson() operation. Initially, the com-
ponents should have different default values of attribute max and cnum. cnum is a
static unique identifier of a component. To specify the values of those attributes
for every component individually, we define them in the Attributes field rep-
resented as a green box in every primitive definition.

In our model we define two integer interval types on Type diagram : StepIn-
terval = 0..2 for the parameter step of messages and IntInterval = 1..4 for the
component unique identifier.

3.2 Behavior Specification

UML State Machine diagrams are used for behavior specification in VerCors.
Each State Machine defines the behavior of an operation of a UML Class.

A State Machine has a set of states connected by transitions. A state stores
its name, while logic code is specified on transitions. To enable behavioral analy-
sis we specify the syntax of UML transitions: a transition has a label of the form
[guard] /actionl....actionN where Guard is a boolean expression and an
action is an assignment or a method call (to a local operation or a client inter-
face). This set of actions is sufficient to encode any behaviour of distributed
objects; control structures have to be encoded as guards on transitions.

The VerCors UML-based editors are based on Obeo UML Designer®. In
particular, we integrated the State Machines graphical designer of Obeo UML
Designer into VerCors, adding local variable declarations. A State Machine has
access to its own local variables, to the client interfaces and to local methods of
the component which behavior the State Machine describes. A State Machine
can access the attributes of the component but only through getters and setters.

Figure 3 illustrates the State Machine of the message method of Peterson’s
leader election algorithm. It uses seven variables where step and wval are input
parameters of the method. The initial state is illustrated with a blue circle. First,
Choice6 checks the phase of the election algorithm. If the algorithm is in the
preliminary (zero) phase either the component is active — it already participates
in the election — or the component triggers the election process on its neighbor
and performs the preliminary phase described in Sect.2.3. If it is not the pre-
liminary phase, either the component is passive and the message is forwarded
to the neighbor [isActive==false]/C1.message(step,val), or the actions of
the State Machine correspond to the two cases M (1, z) or M (2, z) depending on
the value of step (see Sect.2.3).

To illustrate future-based communications in VerCors, we extend our use-
case as follows. If a component decides to become the leader, it sends a
requestKey() invocation on its client interface (see the transition from State10 to
Statel2). The request is forwarded to outside of Application. Then, the com-
ponent claims itself as the leader by sending an IamTheLeader(cnum) request.

5 http://www.umldesigner.org/.

http://www.umldesigner.org/

Integrated Environment for Verifying and Running Distributed Components 73

C* message Local variables
. (@ region step : Steplinterval
e - val : Intinterval
Inikial A—— [step==0] Choice6 ’ [step==1 || step ==2] = 2’_ isActive : BoolType
== oice. :
g s |
/max:=this.get_max cnum : Intinterval
[isActive == false]/this. [step == 1] ChokeS 9 0 key : Intinterval
set_isActfve(true) Chalice3 [step==2]/left:=thisbet_left()

[val==max] . Choiced I »
/cnum ;= this.get_cnum () isActive==false]
[left<=val || left <= max] /C1 message(step,val

[val|>max || val < max]

/C1.message|(0,val) /d1.message(2,val)

[left>val && Left > max]
/this.set_max(leff)

/max:=this.get_max() /C2.1AmThel eader (cnum)ftate11)
/this.encrypt(key)
=

/C2.1AmNotTheLeader (cnum)
/Cl.message(1,left)

fonat

/thisiset_isActive(false)
Cl.message([1,max)
1 StatelSl
/this.set_Left{val) M)

Fig. 3. Message state machine (Color figure online)

Finally, the component calls its local method encrypt(key) using the result of
requestKey() as a parameter. The component should be able to claim itself as
the leader before it receives the result of requestKey(). However, it cannot exe-
cute encrypt(key) if the key is not obtained. The VerCors user does not need to
explicitly model future-based communications. Whenever a State Machine has
a non-void client method invocation, it is interpreted as a future-based one.

To conclude, four integrated diagram editors are implemented in VerCors.
Component diagrams correspond to architecture specification, Class diagrams
represent attributes and method signatures of components, State Machine dia-
grams are used for behavior specification, and Type diagrams define type
abstractions. They allow the user to easily describe his/her application and pro-
vide sufficient input both for model-checking and for code generation.

4 Behavior Verification

From user-defined architecture and behavior models VerCors produces input
data for the CADP [2] model-checker following a chain of transformations pre-
sented in this section. First, we analyze input models and generate a corre-
sponding pNet structure. Second, we generate a finite graph given as an input
to CADP, together with auxiliary scripts for managing state-space explosion.
Finally, the user can specify the properties that he wants to check on the gener-
ated graph and run CADP. While the specified system and the pNet model rely
on parameterized state-machines potentially featuring infinite state-space, the
model-checking phase can handle finite state-space only. As a consequence, the
correctness of the finite abstraction should be checked by abstract interpretation

74 L. Henrio et al.

techniques. From another point of view, the pNet model could also be checked
by a different tool that handles infinite state-space.

4.1 From Application Design to pNets

We present here the generation of pNets specifying the application behavior [6].

A pNet of a primitive assembles pLTSs of two types: the generic ones whose
structure is identical for all primitives (e.g. queue, body) and the pLTSs gener-
ated from the user-defined State Machines (server and local methods behavior).
Figure4 shows the pNet generated for Compl of our use-case. An Attribute
controller pLTS is generated for each attribute of a primitive; it allows stor-
ing and modifying the value of this attribute. The list of component attributes
can be derived from the UML Class of the component. Proxy and Proxy-
Manager pLTSs are generated for every client operation having a non-void
result. They model the implementation of the futures mechanism. A pLTS is
generated for each server and local method. For this purpose we translate
UML State Machines specifying methods behavior into pLTSs. To translate a
State Machine into a pLTS we first map each state of a State Machine into
a pLTS state and each transition to one or several pLTS transition (poten-
tially adding intermediate states). For example, a State Machine transition [isAc-
tive==true| /max:=this.get_max() involves one guard condition and two actions:
a call to a local function get_maz and a return of its result. A pLTS transition
can perform at most one action, hence, the result of the translation will consist
in two sequential transitions.

The behavior of the components is modeled by synchronization vectors,
expressing the synchronization and the data flow between pLTSs. As an example,
the Body and the Queue pLTSs of a primitive are synchronized using:

<!Serve_message(...), ?Serve_message(...), —, —, —, —, — >— Serve_message(...)

in which, the subnets occur in the following order:

< Queue, Body, message, max_ac, cnum_ac, left_as,isActive_ac > .

Synchronization of the Queue with the environment under reception of a request
is expressed by: <?Q_message(...),—, —, —, —, —, — >—7Q_message(...) mean-
ing that this action is exposed at the next level of pNet to synchronize with
another pNet. The other vectors synchronize the following entities: the Body
and a server method pLTS (Call_message(...)); a server method pLTS and other
local methods, or client method of the environment; the server method, the Body
and the environment to return the result (R-message(...)); the environment and
the Queue when the Queue is saturated, raising an Error_queue event.

The pNet of a composite (Fig.5) assembles pLTSs for queue, body and
sub-entities enabling futures mechanism with pNets of the subcomponents. The
request reception mechanism is similar to the one of a primitive. The only dif-
ference is that the body is synchronized with subcomponent pNets in order to
forward them the requests. pNets of subcomponents are synchronized with each

Integrated Environment for Verifying and Running Distributed Components 75

Composite Application

Ptimitive Comp1 !Q_IAmTheLeader(cnum)

'Q_IAmNotThelLeader(cnum)
TQ_requestKey(p; >

?Q_runPéterson()

?Q_message(step, val)
X_Q_lAmThelLeader(cnum
X_Q_IAmNotTheleader(crjum

] "]
| Proxies and
Queue] | Proxy Managers | >
/ Senve_runPetey X_Q_requestKey(p)

Serve_rr isn): Ser!

Proxies and
ProxyManagers

Call_Get_* ()
Call_Set_* (val)

Call_runPeterson()

Subcomponents

Comp4_Compl_Q_message(...)

Fig. 4. pNet of Compl Fig. 5. pNet of application

!Q_message(steq, val)

Q IAmTheLeader: cngm)

'Q_AmNotThelLeader(cnum)

R_message()

other under internal method invocation (e.g. Comp4_-Compl_message(...)) and
result reception. If a subcomponent invokes an operation outside of the com-
posite, it synchronizes with the composite queue. Then, the queue synchronizes
with the environment and forwards the request to outside of the composite.

Scenario. The user can specify a Scenario State Machine, encoding the legal
sequences of actions performed by the environment, accessing only the server
interfaces of the root component. The scenario of our use-case calls the runPeter-
son method on interface S1 of Application once. The scenario State Machine is
translated into a pLTS and synchronized with the queue of the root component.
This leads to a much smaller and meaningful behavior model.

4.2 From pNets to Model-Checking

Generation of verification input. As the next step, VerCors translates the
pLTSs into the Fiacre format [10] and the synchronization vectors into EXP [11].
Then, the FLAC compiler translates the Fiacre specification into Lotos code.
Finally the CADP front-end generates a labelled transition system in a format
that can be used by the CADP model-checker. We generate a set of scripts for
managing the execution of all steps: communication hiding, minimization, and
hierarchical product using EXP files. In order to limit the state-space explosion
phenomenon inherent to explicit-state model-checkers, the user should:

e use a scenario to limit acceptable inputs of the modeled system,

e specify the internal actions that he does not want to observe during model-
checking (we generate a script transforming them into internal actions),

e limit the size of the data domains using the Types diagram.

All generated transition systems are minimized using branching bisimulation.
We have used the VerCors model-generation function to produce Fiacre, EXP
and auxiliary scripts for our use-case. Table 1 presents size information for some

76 L. Henrio et al.

Table 1. Behavior graph files (all with Queue size of 3)

Graph States Transitions | Computation time
Behaviour of Comp4 3.217.983 | 45.055.266 | 2m48.520s
Comp4 (after hiding and minimization) | 90.821 1.306.138 | 5m23.030s
full application 296 661 47m1.673s

of the intermediate behavior graphs. The last line is for the hierarchical con-
struction of the full model of the application (including the Scenario), and the
time includes the whole model-generation workflow. The time needed to generate
Fiacre, EXP files and scripts from VerCors is neglectible.

Model-checking. We use the Model Checking Language (MCL [12]) to express
the behavioral properties we want to prove on our system. MCL is a very expres-
sive logic including first order predicates for the data part, and the alternation
free p-calculus for branching time logics. On top of MCL, we use Specification
Patterns [13] for easier expression of some usual temporal logic properties, as in
the examples below. We recall that in our example the properties are evaluated
in the context of the scenario where the election algorithm is triggered.

First, we check that after a call to runPeterson(), it is inevitable (under
fairness hypothesis) that either the leader is elected or one of the queues is satu-
rated. The model-checker answers true: the election terminates. We also proved
that with adequate queue size, they never saturate.

all_RunPeterson’] Inev ('Q_lamTheLeader.*' or'ErrorQueue.
'Call_RunP 1 'Q_lamTheLeader.*" or'ErrorQ *

Then, we prove that the event Q_TamTheLeader is emitted only once:
Absence_Before ('Q_-lamTheLeader.*',’Q_lamTheLeader.*')"

In order to check that the communications in the generated graph are indeed
implementing futures properly, we verify the following formula which states that
a key is always received before lamTheLeader() is invoked:

Existence_Between('R_RequestKey.*', 'Q_requestKey.*', 'Q_lamThelLeader.*")

The model-checker answers false and provides an example of system behav-
ior where IamTheLeader() method is invoked before the key is received. This
proves that a component is not blocked if the key is not needed.

To summarize, from the graphical models provided by the user we automat-
ically generate a behavior description in the form of pNets, and translate these
into an input for CADP verification tools. We tested our approach on our use-
case and proved by model-checking the correctness of the application, including
its safety, termination, and functional correctness.

Integrated Environment for Verifying and Running Distributed Components 7

5 Code Generation and Execution

5.1 Executable Code Generation

From the specified architecture and behavior we automatically generate exe-
cutable code. We produce an ADL (XML) file defining architecture, and Java
interfaces and classes files for the implementation of the methods specified by
State Machines. This code can be run using the GCM/ProActive Java library.

Listing 1.1. Generated Java code of message

1 Boolean isActive = null;

2 Integer left = null, max = null, cnum = null;
3 State curState = State.Initial;

4 while(true) {

5 switch (curState) {

6

7 case Choice2:

8 if (isActive = true) {

9 max=this.get_max ();

10 curState = State.Choiceb;
11 break; }

12 else if(isActive == false) {
13 Cl.message (step, val);

14 curState = State.Statel3;
15 break; }... };}

We generate a Java interface for every UML interface and a Java class for
every UML class. We translate each State Machine attached to a method into
Java code. To do this we use a Java enumeration representing the state machine
steps, a local variable curState holds the current state of the state machine
and actions are taken depending on this state. Listing 1.1 shows a skeleton of
the encoding of the message operation from Fig. 3. Note that if-else statements
are used for states with more than one outgoing transition. For example in
Choice 2, the guard label [isActive==false] is translated as an if-else state-
ment in line 12; depending on the result, a message invocation is emitted (cor-
responding to C1.message(...), line 13) and the value of curState is updated
(line 14). A drawback of this approach is that such code may not be very conve-
nient for the programmer since do-while, for, while constructs cannot be written
as such in the state machine, but will rather be encoded within the state struc-
ture, separated by case instructions. We also generate skeleton code for getter
and setter methods, which have no associated state machine.

The Java code generated by VerCors relies on futures. To implement their
generation, we analyze the State Machines and mark the variables that store
remote method invocation results. This information is used to generate the types
of those variables and to access their values. For example, the key variable
from our use-case State Machine will be generated with an IntWrapper type’.
Then the statement this.encrypt (key) requires the value of key and it will be
translated to the following Java code: this.encrypt (key.intValue()).

" Basic types need to be wrapped to enable future-based commnuications.

78 L. Henrio et al.

Application | Thread Id:60 4

]
Compl Thread Id:39 [I

runPeterson{D

Comp2 Thread I1d:45

IAmNotT heLeader(3)
Comp3 Thread I1d:50 I
Comp4 Thread Id:55 h

Fig. 6. Code execution (Color figure online)

5.2 Code Execution

We generated ProActive/Java code of our use-case example; the resulting execu-
tion is shown in Fig. 68. Black arrows represent request emissions (the figure only
shows some of them). Yellow and blue rectangles show request processing. For
example, we can see how the call to runPeterson of Application is transmitted
to Comp4 and at the end of the runPeterson request processing Comp4 triggers
the elections on Compl by calling message(0,1). At the end of the algorithm
execution we can see how Comp3 reports to the Application that it is not the
leader and Comp] claims to be the leader.

To sum up, from the specification provided by the user VerCors automatically
produces executable ProActive/Java code. We generated and executed code of
our use-case model and we observed expected behavior of the produced system.
The generated code is guaranteed to verify the temporal properties proven on the
model. It can either be used as it is or serve as code skeleton if the programmer
wants to add computational steps that he did not include in the model.

6 Related Work

There exist a number of languages, formalisms, and tools aiming at verifica-
tion and safe code generation, we focus here on the ones that are dedicated to
distributed systems and composition of distributed systems.

BIP (Behavior Interaction Priority) [14] allows rigorous design of complex
component-based systems. BIP is supported by a toolset including translators
of various source models to BIP, code generators, and verification mechanisms.
BIP focuses on the design of systems based on the notion of interacting enti-
ties whereas our approach takes the point of view of the software developer,
using classical UML-based descriptions augmented only by our graphical DSL
for architecture, relying on notions the user knows well. Our approach is closely
tied to the notion of distributed components interacting by requests and replies;

8 We use a dedicated tool for the visualization of ProActive program execu-
tion: https://github.com/scale-proactive/A-viewer-tool-for-multiactive-objects.git.

https://github.com/scale-proactive/A-viewer-tool-for-multiactive-objects.git

Integrated Environment for Verifying and Running Distributed Components 79

while this reduces the field of applicability of our work, it allows us to gener-
ate the component interaction automatically, without additional input from the
user.

Cadena [15] is a platform for the development of component-based appli-
cations, initially targeted for the Corba Component Model (CCM), and more
recently extended to support Open-CCM, EJBs, and sensor networks specified
with the nesC language. Cadena allows the user to specify component types,
define and analyze inter-component dependencies, specify and model-check cor-
rectness properties, generate code in the various component formalisms, and
even specify new user-defined component models. Unlike VerCors, it does not
manage hierarchical components, so it could not be used for Fractal or GCM.

Palladio [16] is a tool for design, analysis and generation of hierarchical large-
scale component-based systems. Palladio has less restrictions on types and allows
more expressive modeling than VerCors. However, while Palladio has strong
emphasis on simulation and system performance prediction, our approach ben-
efits from the use of formal methods for validation.

Creol [17] is an object-oriented programming language based on concurrent
objects that communicate asynchronously. Creol is supported by the Credo [18]
toolset. In Credo the application description relies on Reo [19]. Credo provides
an abstract but executable model of the application. Then, a test specification
is derived to check compatibility between the two models. Creol is supported by
a type-checker, a simulation and model-checking platform based on Maude. In
VerCors we rely on UML-based formalisms, better known by the programmers
than Reo. We also directly generate efficient code that can be executed on large-
scale distributed infrastructures.

SOFA 2 [20] is a framework for distributed hierarchical component-based
systems development. SOFA 2 is supported by a tool set comprising graphical
designers and behavior validation instruments. SOFA 2 supports dynamic archi-
tectures, multiple communication styles and transparent distribution with the
help of software connectors. Validation in SOFA 2 relies on behavioral protocols
that are easy to understand for the programmer. This provides developers with
validation capacities that require no expertise in any general logical formalism,
though the expressivity may be lower than with temporal logic.

JHelena is a framework for modeling and generation of executable code of
highly dynamic ensembles of autonomic distributed components that are mod-
eled using Helena [21] technique. Our approach allows modeling systems with
several levels of hierarchy while to our knowledge in Helena approach the com-
position only occurs at one level.

ABS [22] is a formal executable component modeling language supported by
a deductive verification system Key-ABS. ABS is a powerful language for con-
current object-oriented programming, however it does not support any architec-
tural description. The verification pattern is also quite different. Different tools
for ABS either focus on specific properties (absence of deadlock for example) or
use KeY to specify invariants of the program and verify them. Our approach
allows us to target a wide range of properties while not asking the programmer
to have the expertise necessary to write program invariants.

80 L. Henrio et al.

Concerning actor systems, the related work the closest to ours is Rebeca [23]
that handles both functional and real-time verification. The first main difference
between Rebeca and Vercors is the programming model: Rebeca has no future
and no synchronisation operation, which makes the generation of behavioural
model easier. The second one is that the Rebeca toolset does not provide a
design tool or an execution platform as efficient as Vercors+ProActive. On the
other side, Rebeca has strong results concerning the scalability of the approach,
and the range of systems and of properties handled.

Several verification tools focus on “real-time aspects” allowing to reason on
the time-sensitive properties [24]. In this section we have focused on the tools
that explicitly handle asynchrony and we have not cited works on real-time
systems in general.

7 Discussion and Perspectives

In this paper we presented our integrated environment for designing and imple-
menting safe component-based systems. Our approach includes three main
aspects. First, we provide graphical formalisms for the application architecture
and the behavior specification, as well as type abstractions. The formalism exten-
sively uses UML models that makes it easy to learn and use for the program-
mer. Second, we ensure behavioral correctness, by running a model-checker on
the specified model. In practice, we transform graphical models into input for
the CADP model-checker. As a result, the user can verify correctness properties
of the modeled system even if he does not have a strong expertise in formal
methods. Finally, we transform the models into executable application code. We
implemented our approach in the VerCors platform and we tested it by modeling,
verifying, and executing Peterson’s leader election algorithm. Our approach was
illustrated by generating GCM/ProActive code but it would be easy to generate
code for any actor or active-object based language, or more generally any pro-
gramming model made of components interacting by asynchronous requests and
replies. Beyond the academic example of this paper, we have also published a
study of a fault-tolerant protocol [25], showing how to handle scalability issues in
the model-checking activities. In another paper, we showed an industrial-inspired
study [26] in which we handle large state-spaces modeling an application with
dynamic reconfiguration of components.

This paper raises the question of the relation between the semantics of the
handled models: state-machines, pNets, finite-state models, and distributed Java
programs. Previous usecases show that many applications and protocols can be
encoded faithfully and executed correctly. It is not in the scope of this paper
to study the semantic gap between these models or to formally prove that the
behavioral model has the same semantics as the generated code. However, the
formal semantics of ProActive [27], the semantics of pNets [5], and the formal
definition of the translation from GCM to pNets [6] allowed us to check care-
fully that the semantics correspond faithfully. Considering the complexity of the
system, an exhaustive formal proof of bisimulation between the semantics would
require several years.

Integrated Environment for Verifying and Running Distributed Components 81

While creating the VerCors platform we tackled a number of challenges.
First, the choice of the underlying technology was not trivial: we experimented
with the Topcased platform, UML profiles, Eclipse Papyrus, before finding a
usable environment with Sirius. Second, finding an expressive and easy to learn
graphical formalism was a challenging task. We wanted to reuse UML notions as
much as possible, but we realized that we needed our own graphical formalism,
and had to find a way to map a large part of GCM specifications into UML
models. Finally, the integration of all languages, models and formalisms involved
in modeling, execution and verification was not trivial. For example, the syntax
of State Machine had to be precisely specified to be able to translate them
into Fiacre. Also, the translation between formalisms raised technical difficulties,
some of them detailed in [6] and others related to the Fiacre language.

We are currently working on extensions of the VerCors platform that would
address more features of distributed component-based applications. In particu-
lar, we want to address separation between functional code and application man-
agement and verify the correct interaction between those two aspects. Another
challenge that we plan to address is the expression of the system properties
using a higher level specification language. This should also include the transla-
tion from the model-checker diagnostics back to the user-level formalism, that is
not implemented in the current version; it would make our approach even more
attractive for users non-expert in model-checking.

References

1. Henrio, L., Kulankhina, O., Liu, D., Madelaine, E.: Verifying the correct compo-
sition of distributed components: formalisation and tool. In: FOCLASA, Rome,
Ttaly, September 2014

2. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372-387. Springer, Heidelberg (2011)

3. Baude, F., Caromel, D., Dalmasso, C., Danelutto, M., Getov, V., Henrio, L., Pérez,
C.: GCM: a grid extension to fractal for autonomous distributed components. Ann.
Telecommun. 64(1), 5-24 (2009)

4. Cansado, A., Madelaine, E.: Specification and verification for grid component-
based applications: from models to tools. In: de Boer, F.S., Bonsangue, M.M.,
Madelaine, E. (eds.) FMCO 2008. LNCS, vol. 5751, pp. 180-203. Springer, Heidel-
berg (2009)

5. Henrio, L., Madelaine, E., Zhang, M.: pnets: an expressive model for parameterised
networks of processes. In: 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP 2015, 4-6 March 2015, Turku,
Finland, pp. 492-496 (2015)

6. Ameur-Boulifa, R., Henrio, L., Madelaine, E., Savu, A.: Behavioural semantics for
asynchronous components. Rapport de recherche RR-8167, INRIA, December 2012

7. Dolev, D., Klawe, M.M., Rodeh, M.: An o(n log n) unidirectional distributed
algorithm for extrema finding in a circle. J. Algorithms 3(3), 245-260 (1982).
http://dx.doi.org/10.1016/0196-6774(82)90023-2

http://dx.doi.org/10.1016/0196-6774(82)90023-2

82

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

L. Henrio et al.

Henrio, L., Kulankhina, O., Li, S., Madelaine, E.: Integrated environment for ver-
ifying and running distributed components - extended version. Research Report
RR8841, INRIA Sophia-Antipolis, December 2015

Barros, T., Ameur-Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behav-
ioural models for distributed fractal components. Ann. Telecommun. 64(1-2), 25—
43 (2009)

Berthomieu, B., Bodeveix, J., Filali, M., Garavel, H., Lang, F., Peres, F., Saad,
R., Stoecker, J., Vernadat, F.: The syntax and semantics of Fiacre, March 2009
Lang, F.: Exp.Open 2.0: a flexible tool integrating partial order, compositional,
and on-the-fly verification methods. In: Romijn, J.M.T., Smith, G.P., van de Pol,
J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 70-88. Springer, Heidelberg (2005)
Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148-164.
Springer, Heidelberg (2008)

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: 21st International Conference on Software Engineering,
May 1999

Basu, A., Bensalem, B., Bozga, M., Combaz, J., Jaber, M., Nguyen, T., Sifakis, J.:
Rigorous component-based system design using the BIP framework. IEEE Softw.
28(3), 41-48 (2011)

Childs, A., Greenwald, J., Jung, G., Hoosier, M., Hatcliff, J.: CALM and Cadena:
metamodeling for component-based product-line development. IEEE Comput.
39(2), 42-50 (2006)

Reussner, R., Becker, S., Burger, E., Happe, J., Hauck, M., Koziolek, A.,
Koziolek, H., Krogmann, K., Kuperberg, M.: The Palladio component model. Tech-
nical report, Karlsruhe Institute of Technology, March 2011

Leister, W., Bjork, J., Schlatte, R., Griesmayer, A.: Verifying distributed algo-
rithms with executable Creol models, January 2011

Grabe, 1., Jaghoori, M.M., Aichernig, B.K., Baier, C., Blechmann, T., de Boer,
F.S., Griesmayer, A., Johnsen, E.B., Klein, J., Klippelholz, S., Kyas, M., Leister,
W., Schlatte, R., Stam, A., Steffen, M., Tschirner, S., Xuedong, L., Yi, W.: Credo
methodology: modeling and analyzing A peer-to-peer system in Credo. Electron.
Notes Theoret. Comput. Sci. 266, 33—-48 (2010)

Arbab, F.: A behavioral model for composition of software components. L’OBJET
12(1), 33-76 (2006)

Hnétynka, P., Pl4sil, F.: Dynamic reconfiguration and access to services in hierar-
chical component models. In: Gorton, 1., Heineman, G.T., Crnkovi¢, 1., Schmidt,
H.W., Stafford, J.A., Ren, X.-M., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063,
pp. 352-359. Springer, Heidelberg (2006)

Klarl, A., Hennicker, R.: Design and implementation of dynamically evolving
ensembles with the HELENA framework. In: Proceedings of the 23rd Australasian
Software Engineering Conference, pp. 15-24. IEEE (2014)

Hahnle, R., Helvensteijn, M., Johnsen, E.B., Lienhardt, M., Sangiorgi, D., Schaefer,
1., Wong, P.Y.H.: HATS abstract behavioral specification: the architectural view.
In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2011.
LNCS, vol. 7542, pp. 109-132. Springer, Heidelberg (2012)

Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundam. Inform. 63(4), 385-410 (2004)
Burmester, S., Giese, H., Hirsch, M., Schilling, D.: Incremental design and formal
verification with UML/RT in the FUJABA real-time tool suite. In: Proceedings of
the International Workshop SVERTS (2004)

Integrated Environment for Verifying and Running Distributed Components 83

25.

26.

27.

Ameur-Boulifa, R., Halalai, R., Henrio, L., Madelaine, E.: Verifying safety of fault-
tolerant distributed components. In: Arbab, F., Olveczky, P.C. (eds.) FACS 2011.
LNCS, vol. 7253, pp. 278-295. Springer, Heidelberg (2012)

Gaspar, N., Henrio, L., Madelaine, E.: Formally reasoning on a reconfigurable
component-based system — a case study for the industrial world. In: Fiadeiro,
J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 137-156. Springer,
Heidelberg (2014)

Caromel, D., Henrio, L.: A Theory of Distributed Objects. Springer, Berlin (2005).
ISBN 3-540-20866-6

Model-Driven Development

Iterative and Incremental Model Generation
by Logic Solvers

Oszkér Semeréth®) | Andrés Vorss, and Déniel Varré

Department of Measurement and Information Systems, Budapest University
of Technology and Economics, Budapest, Hungary
{semerath,vori,varro}@mit.bme.hu

Abstract. The generation of sample instance models of Domain-
Specific Language (DSL) specifications has become an active research
line due to its increasing industrial relevance for engineering complex
modeling tools by using large metamodels and complex well-formedness
constraints. However, the synthesis of large, well-formed and realistic
models is still a major challenge. In this paper, we propose an itera-
tive process for generating valid instance models by calling existing logic
solvers as black-box components using various approximations of meta-
models and constraints to improve overall scalability. (1) First, we apply
enhanced metamodel pruning and partial instance models to reduce the
complexity of model generation subtasks and the retrieved partial solu-
tions initiated in each step. (2) Then we propose an (over-)approximation
technique for well-formedness constraints in order to interpret and eval-
uate them on partial (pruned) metamodels. (3) Finally, we define a
workflow that incrementally generates a sequence of instance models by
refining and extending partial models in multiple steps, where each step
is an independent call to the underlying solver (the Alloy Analyzer in
our experiments).

Keywords: Domain-specific languages - Logic solvers - Model generation

1 Introduction

Motivation. The generation of sample instance models of Domain-Specific
Language (DSL) specifications has become an active research line due to its
increasing industrial relevance for engineering complex modeling tools by using
large metamodels (MM) and complex well-formedness (WF) constraints [25].
Such instance models derived as representative examples [2] and counterexam-
ples [18,32] may serve as test cases or performance benchmarks for DSL mod-
eling tools, model transformations or code generators [4]. Existing approaches
dominantly use either a logic solver or a rule-based instance generator in the
background.

This paper is partially supported by the MTA-BME Lendiilet 2015 Research Group

on Cyber-Physical Systems and by the ARTEMIS JU and the Hungarian National

Research, Development and Innovation Fund in the frame of the R5-COP project.
© Springer-Verlag Berlin Heidelberg 2016

P. Stevens and A. Wasowski (Eds.): FASE 2016, LNCS 9633, pp. 87-103, 2016.
DOI: 10.1007/978-3-662-49665-7 _6

88 O. Semerath et al.

Problem Statement. Model finding using logic solvers [16] (like SMT or SAT-
solvers) is an effective technique (1) to identify inconsistencies of a DSL specifi-
cation or (2) to generate well-formed sample instances of a DSL. This approach
handles complex global WF' constraints which necessitates to access and query
several model elements during evaluation. Model generation for graph structures
needs to satisfy complex structural global constraints (which is typical character-
istic for DSLs), which restricts the direct use of logical numerical and constraint
solvers despite the existence of various encodings of graph structures into logic
formulae. As the metamodel of an industrial DSL may contain hundreds of model
elements, any realistic instance model should be of similar size. Unfortunately,
this cannot currently be achieved by a single direct call to the underlying solver
[17,32], thus existing logic based model generators fail to scale. Furthermore,
logic solvers tend to retrieve simple unrealistic models consisting of unconnected
islands of model fragments and many isolated nodes, which is problematic in an
industrial setting.

Rule-based instance generators [4,13,33] are effective in generating larger
model instances by independent modifications to the model by randomly apply-
ing mutation rules. Such a rule-based approach offers better scalability for com-
plex DSLs. These approaches may incorporate local WF' constraints which can
be evaluated in the context of a single model element (or within its 1-context).
However, they fail to handle global WF constraints which require to access and
navigate along a complex network of model elements. Since constraint evaluation
is typically the final step of the generation process, the synthesized models may
violate several WF constraints of the DSL in an industrial setting.

Contribution. The long term objective of our research is to synthesize large,
well-formed and realistic models. In this paper, we propose an iterative process
for incrementally generating valid instance models by calling existing logic
solvers as black-box components using various abstractions and approximations
to improve overall scalability. (1) First, we apply enhanced metamodel pruning
[33] and partial instance models [32] to reduce the complexity of model genera-
tion subtasks and the retrieved partial solutions initiated in each step. (2) Then
we propose an (over-)approximation technique for well-formedness constraints in
order to interpret and evaluate them on partial (pruned) metamodels. (3) Finally,
we define a workflow that incrementally generates a sequence of instance models
by refining and extending partial models in multiple steps, where each step is an
independent call to the underlying solver. We carried out experiments using the
state-of-the-art Alloy Analyzer [16] to assess the scalability of our approach.

Added Value. Our approach increases the size of generated models by carefully
controlling the information fed into and retrieved back from logic solvers in
each step via abstractions. Each generated model (1) increases in size by only
a handful number of elements, (2) satisfies all WF constraints (on a certain
level of abstraction), and (3) it is realistic in the sense that each model is a
single component (and not disconnected islands). The incremental derivation

Iterative and Incremental Model Generation by Logic Solvers 89

Server main region

interface server: Ki
in event workDone ponang

. . after 55/ 1.
internal: working process timer raise imeout]? .
event timeout [o 3?

wait error timer
o> server.workDone o
finish
server.workDone

Fig. 1. Example Yakindu statechart with synchronisations.

of the result set provides graceful degradation, i.e. if the back-end solver fails
to synthesize models of size N (due to timeout), all previous model instances
are still available. From a practical viewpoint, the DSL engineer can influence
or assist the instance generation process by selecting the important fragment of
the analyzed metamodel (so called effective metamodel [4]). This is also common
practice for testing model transformations or code generators.

Structure of the Report. Next, Sect.2 introduces some preliminaries for
formalizing metamodels, constraints and partial snaptshots. Our approach is
presented in Sect.3 followed by an initial experimental evaluation in Sect. 4.
Related work is assessed in Sect. 5 while Sect. 6 concludes our paper.

2 Preliminaries

In this section we present an overview of model generation with logic solvers
with a running case study of Yakindu statecharts. Yakindu Statecharts Tools
[37] is an industrial integrated modeling environment developed by Itemis AG
for the specification and development of reactive, event-driven systems based on
the concept of statecharts captured in combined graphical and textual syntax.
Yakindu simultaneously supports static validation of well-formedness constraints
as well as simulation of (and code generation from) statechart models. A sample
statechart is illustrated in Fig. 1. Yakindu provides two types of synchronization
mechanisms: explicit synchronization nodes (marked as black rectangles) and
event-based synchronization (i.e. raising and consuming events).

Validation is crucial for domain-specific modelling tools to detect conceptual
design flaws early and ensure that malformed models does not processed by
tooling. Therefore missing validation rules are considered as bugs of the editor.
While Yakindu is a stable modeling tool, it is still surprisingly easy to develop
model instances as corner cases which satisfy all (implemented) well-formedness
constraints of the language but crashes the simulator or code generator due to
synchronization issues. One of such problems is depicted in Fig. 1 where (1) after
5s a (2) timeout event raised in region timer, but (3) it cannot be accepted in
state wait in the simulator and in the generated code.

90 O. Semerath et al.

Our goal is to systematically synthesize such model instances by using logic
solvers in the background by mapping DSL specifications to a logic problem
[17,32]. Such model generation approach usually takes three inputs: (1) a meta-
model of the domain (Sect.2.1), (2) a set of well-formedness constraints of the
language (Sect.2.2), and optionally (3) a partial snapshot (Sect.2.3) serving as
an initial seed which generated models need to contain.

2.1 Domain Metamodel

Metamodels define the main concepts, relations and attributes of the target
domain to specify the basic structure of the models. In this paper, the Eclipse
Modeling Framework (EMF) is used for domain modeling, which is dominantly
used in many industrial DSL tools and modeling environments. The main con-
cepts are illustrated using Yakindu state graph metamodel [37] in Fig. 2.

Il. Labels Il. Transitions |. State Hierarchy

[1..1] trigger [0.#] incomingTransitions [1.1] target

B Trigger E Transition] Vertex E Region
99 g
C) S —
-) " x -
(1.1 guard [0.*] outgoingTransitions [1.1] source (0.1 regions
B | (B |
J JaN
[1..1] action T ‘ ‘
[H Action [H Entry] [H synchronization] [H state] [[statechart]

l J () o) () ()

Fig. 2. Metamodel extract from Yakindu state machines

A state machine consists of Regions, which in turn contain states (called
Vertexes) and Transitions. An abstract state Vertex is further refined into Regu-
larStates (like State) and PseudoStates like Entry and Synchronization states. Note
that we intentionally kept the generalization hierarchy unchanged and simplified
the original metamodel only by removing some elements. Metamodel elements
are mapped to a set of logic relations as defined in [17,32]:

— Classes (CLS): In EMF, EClasses can be instantiated to EObjects, where the
set of objects of a model is denoted by objects. Additionally, the metamodel
can specify finite types with predefined set of enum = {l,...,[,} literals by
EEnums. For both classes and enums, if an o is an instance of a type C it is
denoted as C(o0).

— References (REF): EReferences between classes S and T capture a binary
relation R(S,T) of the metamodel. When two objects o and ¢ are in a relation
R, an EReference is instantiated leading from o to ¢t denoted as R(o, t).

— Attributes (ATT): EAttributes enrich a class C' with values of predefined
primitive types like integers, strings, etc. by binary relations A(C,V). If an
object o stores a value v as attribute A it is denoted as A(o,v).

Iterative and Incremental Model Generation by Logic Solvers 91

Further structural restrictions implied by a metamodel (and formalized in
[32]) include (1) Generalization (GEN) which expresses that a more specific
(child) class has every structural feature of the more general (parent) class, (2)
Type compliance (TC) that requires that for any relation R(o,t), its source
and target objects o and ¢ need to have compliant types, (3) Abstract (ABS):
If a class is defined as abstract, it is not allowed to have direct instances, (4)
Multiplicity (MUL) of structural features can be limited with upper and lower
bound in the form of “lower..upper” and (5) Inverse (INV), which states that
two parallel references of opposite direction always occur in pairs. EMF instance
models are arranged into a strict containment hierarchy, which is a directed
tree along relations marked in the metamodel as containment (e.g. regions or
vertices).

An instance model M is an instance of a metamodel Meta (denoted with
M = Meta) if all the corresponding constraints above are satisfied, i.e. Meta =
CLS NREF A --- N MULA INV [32]. Therefore a model generation task for a
given size s and a metamodel Meta can be solved as logic problem, where the
solver creates an interpretation for all class predicates, all reference and attribute
relations over the set of objects = {o01,...,0s} and sets of enum literals, which
satisfies all structural constraints.

2.2 Well-Formedness Constraints

Structural well-formedness (WF) constraints (aka design rules or consistency
rules) complement metamodels with additional restrictions that have to be sat-
isfied by a valid instance model (in our case, statechart model). Such constraints
are frequently defined by graph patterns [36] or OCL invariants [27]. To abstract
from the actual constraint language, we assume in the paper that WF constraints
are defined in first order logic. Given a set WF of well-formedness constraints,
a model M is called valid if M = Meta A WF.

Ezample. The Yakindu documentation states several constraints for statecharts
including the following ones regulating the use of synchronization states. (Abbre-
viated names of classes and references are used as predicates).

@1 Source states of a synchronization have to be contained in different regions!
Vsyn, s1, Sa,t1,te, 71,72 ¢
(Synchron(syn) A outgoing(s1,t1) A outgoing(ss, t2) A target(ty, syn)A
target(ta, syn) A vertices(r1, $1) A vertices(ra, S2) A 81 # $2) = 1 # T2

@, Source states of a synchronization are contained in the same parent state!
Vsyn, s1,S2,t1,t2,71,723p :
(Synchron(syn) A outgoing(s1,t1) A outgoing(sz, t2) A target(ty, syn)A
target(ta, syn) A vertices(r1, s1) A vertices(ra, $3) A $1 # S2)
= (regions(p, r1) A regions(p,72))

@3 Target states of a synchronization have to be contained in different regions!
Vsyn, s1, Sa,t1,t2, 71,72 ¢
(Synchron(syn) A incoming(s1,t1) A incoming(sa, t2) A source(ty, syn)A
source(ta, syn) A vertices(r1, s1) A vertices(ra, $3) A S1 # S2) = 11 £ 1o

92 O. Semerath et al.

@, Target states of a synchronization are contained in the same parent state!
Vsyn, S1, 52, tl, tg, 1, 7’23]? :
(Synchron(syn) A incoming(s1,%1) A incoming(sz, t2) A source(ty, syn)A
source(te, syn) A vertices(ry, s1) A vertices(ra, s2) A $1 # S2)
= (regions(p,r1) A regions(p,r2))

@5 A synchronization shall have at least two incoming or outgoing transitions!
Vsyn : Synchron(syn) = 3t1,ta : t1 # ta A ((incoming(t1,syn) A
incoming(ts, syn)) V (outgoing(t, syn) A outgoing(ta, syn)))

2.3 Partial Snapshots

Partial Snapshots (PS) specify required instance model fragments of a meta-
model [32]. A partial snapshot is a model constructed from the same classes
and relations as a valid instance model. Formally, a PS satisfies the constraints
CLS, GEN, REF and TC, but it possibly violates ABS, ATT, MUL and INV,
which means that even abstract classes can be instantiated, and multiplicity
constraints, the inverse relation of references and containment hierarchy rules
might be violated. If a PS is a partial snapshot of a metamodel it is denoted
by PS Ep Meta. A model M contains a partial snapshot PS (denoted with
M = PS) if there is a morphism m : PS — M (composed of a pair of morphisms
objects pg — objects,, and references pg — references,, for mapping objects and
references) which satisfies the following constraints for each o1, 09 € objects pg:

1. m is injective: 01 # 02 = m(01) # m(02)

2. For each class C' the mapping preserves the type: C(o;) = C(m(o01))

3. For each reference R the mapping preserves the source and the target of the
reference: R(01,02) = R(m(o1), m(02))

4. For each attribute A the mapping preserves the attribute value v and the
location: A(o1,v) = A(m(o1),v)

A partial snapshot can be generalized from a regular (fully specified) instance
model by relaxing specific properties identified by the DSL developer [32] to guide
testing in practical cases. In the current paper, we create partial snapshots by
iteratively reusing the instance models generated in a previous run to achieve
incremental model generation (see Sect.3.3).

3 Incremental Model Generation by Approximations

Despite the precise definition of logic formulae for our statechart language using
existing mappings [32], a major practical drawback is that a direct (single step)
model generation using Z3 or Alloy as back-end solver only terminates for very
small model sizes. If we aim to improve scalability by omitting certain con-
straints, the synthesized models are no longer well-formed thus they cannot be
fed into Yakindu as sample models.

To increase the size of synthesized models while still keeping them well-
formed, we propose an incremental model generation approach (Sect.3.3) by
iterative calls to backend solvers exploiting two enabling techniques of meta-
model pruning (Sect. 3.1) and constraint approximation (Sect. 3.2).

Iterative and Incremental Model Generation by Logic Solvers 93

Stage |. Model Stage II. Model
prune ‘ ‘
[Meta |=| Meta, | ;
model ‘ ‘ T, F
Lo —
+snapshot e\ model ; *‘ gl | |
L M |=[M ||] | | [-
snapshot

Fig. 3. Metamodel pruning with overapproximation

3.1 Metamodel Pruning

Metamodel pruning [13,33] takes a metamodel Meta as input and derives a
simplified (pruned) metamodel Metap as output by removing some EClasses,
EReferences and FEAttributes. When removing a class from a metamodel, we
need to remove all subclasses, all attributes and incoming or outgoing references
to obtain a consistent pruned metamodel. Formally, we may iteratively remove
certain predicates from Meta by pruning as follows:

— EReference: if R(S,T) € Meta then R(S,T) ¢ Metap;

— EAttributes: if A(C,V) € Meta then A(C,V) & Metap;

— EClasses: if C € Meta and sub(C, Sub) € Metap and A(C,V) & Metap and
R(C,T) & Metap and R(S,C) & Metap then C & Metap;

Ezample. We prune our statechart metamodel in two phases (see the slices in
Fig.2): classes Trigger, Guard and Action are omitted together with incoming
references (Stage II), and then classes Transition, Pseudostate, Entry and Syn-
chronization are removed (Stage I).

By using metamodel pruning, we first aim to generate valid instance models
for the pruned metamodel and then extend them to valid instance models of
the original larger metamodel. For that purpose, we exploit a property we call
the overapprozimation property of metamodel pruning (see Fig. 3), which ensures
that if there exist a valid instance model M for a metamodel Meta (formally,
M | Meta) then there exists a valid instance model Mp for the pruned meta-
model Metap (formally, Mp |= Metap) such that Mp is a partial snapshot of M
(Mp C M). Consequently, if a model generation problem is unsatisfiable for the
pruned metamodel, then it remains unsatisfiable for the larger metamodel. How-
ever, we may derive a pruned instance model Mp which cannot be completed in
the full metamodel Meta, which is called a false positive.

Ezxample. The statechart model in the middle of Fig. 3 corresponds to the pruned
metamodel after Stage II. In our example, it can be extended by adding transi-
tions and entry states to the model illustrated in the right side of Fig. 3, which
now corresponds to the pruned metamodel of Stage I.

94 O. Semerath et al.

, (-@)°=—(2")
R(z)O= R(z) if R € Metap (~0)V =—(3°) (3z : &(2))° =3z : &(2)°
true else (B1 A D2)°=31° AND° (Fz: B(ax))Y =3z : D(2)Y
v [R(z) if Re Metap (1A D2)"=01" ABY (Y : D(2)) =Yz : D(2)°
R(x)" = false else (P4 \/@2)02¢1 vV $,° (Vx:@(x))U:Vx:¢(x)U
(1 V P2) =0,V v B,V

Fig. 4. Constraint pruning and approximation

3.2 Constraint Pruning and Approximation

When removing certain metamodel elements by pruning, related structural con-
straints (such as multiplicity, inverse, etc.) can be automatically removed, which
trivially fulfills the overapproximation property. However, the treatment of addi-
tional well- formedness constraints needs special care since simple automated
removal would significantly increase the rate of false positives in a later phase of
model generation to such an extent that no intermediate models can be extended
to a valid final model.

Based on some first-order logic representation of the constraints (derived
e.g. in accordance with [32]), we propose to maintain approximated versions of
constraint sets during metamodel pruning. In order to investigate the interre-
lations of constraints, we assume that logical consequences of a constraint set
can be derived manually by experts or automatically by theorem provers [21].
The actual derivation approach falls outside the scope of the current paper.
Given a DSL specification with a metamodel Meta and a set of WF constraints
WF = {®4,...,P,}, let be a formula derived as a theorem WF + &.

Now an overapprozimation of formula @ over metamodel Meta for a pruned
metamodel Metap is a formula @p such that (1) & = Pp, (2) $p contains
symbols only from Metap. The details of approximation are illustrated in Fig. 4
where R denotes a relation symbol derived for class or reference predicates in
accordance with the metamodel. While more precise approximations can possibly
be defined in the future, the current approximation is logically correct as if a
model generation problem is unsatisfiable for an approximated set of constraints
(over the pruned metamodel) then it remains unsatisfiable for the original set of
constraints.

Ezample. Based on the set of WF constraints {®1, P2, P3, Py, P5} defined in
Sect. 2.2, a prover can derive the following formula as a theorem over the meta-
model of Stage II: gZ)syncout \/djsyncina where @17 @5 }: gzssyncout \/(Psyncin' The gen-
erated theorem Pgyncout (a0d Poynein) restricts the number of outgoing (ingoing)
transitions from (to) a synchronization as follows:

Dsyncout = VsynIty, to, s1,71,72,p : Synchron(syn) =
(outgoing(syn, t1) A target(ty, s1) A outgoing(syn, t2) A target(ta, s2) A s1 # SaA
vertices(ry, $1) A vertices(r2, s2) A ry # 1o A regions(p, r1) A regions(p, r2))

Iterative and Incremental Model Generation by Logic Solvers 95

The variables and relations approximated in this phase are underlined: in
Stage I the generation is restricted to the model by omitting transitions. The
result of overapproximation states that if a model contains a synchronization,
then needs to contain at least two regions:

3 v $9 = Vsyn3sy, 71,72, p : Synchron(syn) =

syncout syncin

(s1 # saAvertices(r1, s1) Avertices(r2, s2) Ary # ra Aregions(p, 1) Aregions(p, 72))

Applying the approximation rules of Fig.4 directly on {&,P5} would lead
to @ : true and @Y : true. These constraints are too coarse overapproximations
providing no useful information to the model generator at this phase.

3.3 Incremental Model Generation by Iterative Solver Calls

By using metamodel pruning, we first aim to generate valid instance models for
the pruned metamodel, which is a simplified problem for the underlying logic
solver. Instance models of increasing size will be gradually generated by using
valid models of the pruned metamodel as partial snapshots (i.e. initial seeds) for
generating instances for a larger metamodel. Therefore, an incremental model
generation task is also given with a target size s and a target metamodel Meta,
but with an additional partial snapshot Mp. Mp is a valid instance of pruned
metamodel Metap. Mp has sp number of objects (sp < s).

From a logic perspective, the partial snapshot defines a partial interpreta-
tion of relations for model generation, which may simplify the task of the solver
compared to using fully uninterpreted relations. In order to exploit this addi-
tional information, the relations in the logic problem are partitioned into two
sets of interpreted and uninterpreted symbols. objects p = {01,...,0s, } are the
objects in the partial snapshot. The extra objects to be generated in this step are
denoted by objects y = {0sp+1,--.,0s . The relations are partitioned according
to the following rules:

— Classes (CLS): Each class predicate C(o) in Meta is separated into two:
a fully interpreted Cp(o) predicate for the objects in the partial snap-
shot objects p, and an uninterpreted Cn(0) for the newly generated objects
objects ;. Therefore an object o is instance of a class C' in the generated
model if Cp(0) V Cn(0) is satisfied. If the class is not in the pruned meta-
model (C & Metap) then Cp(0) is to be omitted, and if no new elements are
created from a class then Cn(0) can be omitted.

— References (REF): Each reference predicate R(o,t) is separated into four
categories: a fully interpreted Rpo(o,t) between the objects of the partial
snapshot (objectsp), an uninterpreted Ry (0,t) between the objects of the
newly created objects (objectsy), and two additional uninterpreted relations
Ron(o,t) and Ryo(o,t) connecting the elements of the partial snapshot with
the newly created elements (relations over objects, X objects 5 and objects ;X
objects respectively). Therefore a reference R(o,t) exists in the generated
model if Rpo(0,t) V Ryn(0,t) V Ryo(o,t) V Ron(o,t). If the relation is not
in the pruned metamodel (R ¢ Metap) then Roo(0,t) can be omitted, and

96 O. Semerath et al.

L Meta, Metas

anguage

LB | et | [Meta, [+4] {Metay [+4]

LMe(\)/SIeI M, ——{M; [+A] M, [+A] M; [+4]
M, M3 M,

|. States |l. State Refinement Ill. Transitions IV. Labels

Fig. 5. Model generation iterations

if no new elements are created from a class then Ryn(0,t), Ryo(o,t) and
Ron(o,t) can also be omitted.

— Attributes (ATT): Attribute predicates are separated into a fully inter-
preted Ap(o,v) for the objects in the partial snapshots objects p, and an unin-
terpreted relation Ay (o, v) for the newly created elements objects . An object
o0 has an attribute value v (A(o,v)) if Ap(0,v)V An(0,v). Attribute predicates
are treated as reference predicates for omission.

The level of incrementality is still unfortunately limited from an important
aspect. The background solvers typically provide no direct control over the simul-
taneous creation of new elements, i.e. we cannot provide domain- specific hints
to the solver when the creation of an object always depends on the creation or
existence of another object. This can still cause issues when a multitude of WF
constraints are defined.

Example. In our running example, the instance models are generated in four
steps, which is illustrated in Fig. 5. First, initial seeds are generated for the state
hierarchy (M; over Meta,), which are extended in the second step to model Mo
with the same metamodel elements. Then the metamodel is extended to Metas,
and the transitions and the initial states are added to model Mj3. Finally, triggers,
guards and actions can be added to the model to obtain Mjy.

4 Measurements

In order to assess the effectiveness of incremental model generation using
constraint approximation for synthesizing well-formed instance models for
domain-specific languages, we conducted some initial experiments using the Alloy
Analyzer as background solver. We were interested in the following questions:

Iterative and Incremental Model Generation by Logic Solvers 97

— Is incremental model generation with metamodel pruning and constraint
approximation effective in increasing the size of models, the success rate or
decreasing the runtime of the solver?

— Is incremental model generation still effective if metamodel pruning or con-
straint approximation is excluded?

Configurations. We conducted measurements on two versions of the Yakindu
statechart metamodel: Phase 1 and Phase 2 (see Fig. 2). The pruned metamodel
of Phase 1 (MM1) contains 8 classes and 2 references, and no well- formedness
constraints by default. The metamodel of Phase 2 (MM2) contains 10 classes, 4
references and 8 constraints (including the 5 WF constraints listed in the paper
and 3 more for restricting entry states).

— As a base configuration, the Alloy Analyzer is executed separately for the two
problems with 1 min timeout. We record two cases: the largest model derived
and a slightly larger model size where timeout was observed.

— Next, we run the solver incrementally with an initial model of size N and an
increment of size K denoted as N + K in Fig. 6 without constraint approx-
imation but with metamodel pruning. Moreover, instance models derived for
Phase 1 are used as partial snapshots for Phase 2.

— Then we run the solver incrementally with constraint approximation but with-
out metamodel pruning. For that purpose, the constraint set for Phase 1
constains two approximated constraints: (1) Each region has a state where
the entry state will point, and (2) There are orthogonal states in the model.
Again, instance models derived for Phase 1 are used as partial snapshots for
Phase 2, but the full metamodel is considered in Phase 2.

— Finally we configure the solver for full incrementally with constraint approx-
imation and metamodel pruning by reusing instances of Phase 1 as partial
snapshots in Phase 2.

Measurement Setup. Each model generation task was executed on the DSL
presented in this paper 5 times using the Alloy Analyzer (with SAT4j- solver),
then the median of the execution times was calculated. The measures are exe-
cuted with one minute timeout on an average personal computer'. We measure
the runtime of model generation, the model size denoting the maximal number
of elements the derived model may contain, and the success rate denoting the
percentage of cases when a well-formed model was derived, which satisfies all
WF constraints within the given search scope.

Measurement Results. Results of our measurements are summarized in Fig. 6.
We summarize our observations below.

! CPU: Intel Core-i5-m310M, MEM: 16GB but the back-end solver can use 4GB only,
OS: Windows 10 Pro, Reasoner: Alloy Analyzer 4.2 with sat4j.

98

O. Semerath et al.

MM1 MM2
#CLS:X #REF:Y #WF:Z #CLS:X #REF:Y #WF:Z
8 2 0+2 10 4 8

Incre- MM Constraint Model Success Model Success

mental Pruning Approx |Runtime (ms) size (#) rate (%) | Runtime (ms) size (#) rate (%)
Base No No No 18349 60 100% 39040 12 0%
Timeout 70 N/A| Timeout 16 N/A
W/o Prune Yes No Yes 7327 + 11176 50+50 100%| Timeout 16 N/A
W/o Approx Yes Yes No 12600+34804 50+50 100%[230 + 183465 20+30 0%
Full Yes Yes Yes 7327 + 11176 50+50 100%|1644 + 44362 20+30 100%

Fig. 6. Measurement results

— Base. For MM1, Alloy was able to generate models with up to 60 objects.
As there are no constraints at this level, many synchronizations are created
(about half of the objects were synchronization and with only 5-10 states).
Over 60 objects, the runtime grows rapidly as the SAT solver runs out of the
maximal 4 GB memory. For MM2, Alloy was unable to create any models
that satisfies all of the constraints as the search scope turned out to be too
small to create valid models with synchronizations.

— W /o Approx. Alloy was able to generate models with 100 elements in two
steps where each iterative step had comparable runtime. However, since no
constraints are considered for MM1, Alloyed failed to extend partial snapshots
of MM1 to well-formed models for MM2 (success rate: 0%, although for this
specific case, we executed over 100 runs of the solver due to the unexpectedly
low success rate). Furthermore, we had to reduce the scope of search to 20
and 30 new elements with types taken from MM2 \ MM due to timeouts.

— W /o Prune. When metamodel pruning was excluded but approximated con-
straints were included for MM1, model generation succeeded for 100 elements,
but extending them to models of MM2 failed (as in this case, new elements
could take any elements from MM2)

— Full. With incremental model generation by combining metamodel pruning
and constraint approximation, we were able to generate well-formed models
for both MM1 and MM2, which was the only successful case for the latter.

Analysis of Results. While we used a reasonably sized statechart meta-
model extracted from a real modeling tool (including everything to model state
machines, but excluding imports and namespacing), we avoid drawing generic
conclusions for the exact scalability of our results. Instead, we summarize some
negative results which are hardly specific to the chosen example:

— Mapping a model generation problem to Alloy and running the Alloy Ana-
lyzer in itself will likely fail to derive useful results for practical metamodels,
especially, in the presence of complex well-formedness constraints. Our obser-
vation is that many objects need to be created at the same time in consistent
way, which cannot be efficiently handled by the underlying solver (either the
scope is too small or out-of-memory). Altogether, the Alloy Analyzer was more
effective in finding consistent model instance than proving that a problem is
inconsistent, thus there are no solutions.

Iterative and Incremental Model Generation by Logic Solvers 99

Table 1. Comparison of related approaches

Logic |Uncertain|Rule-Based Iterative
Solvers| Models |Generators Solver Call
Partial Snapshot| + ++ - +

Jﬁ Effective Metamodel| - - + +

= Local Constraints| + - + +

- Global Constraints| + - - +

«» |Metamodel-compliant| + + + +

é Well-formed| + - - +

b= Diverse| - - + ?

© Scalable| - - ++ +/-

Decidability| - + + - (graceful degradation)

— An incremental approach with metamodel pruning but without constraint
approximation will increase the overall size of the derived models, but the
false positive rate would quickly increase.

— An incremental approach without metamodel pruning but with constraint
approximation will likely have the same pitfalls as the original Alloy case:
either the scope of search will become insufficient, or we run out of memory.

— Combining incremental model generation with metamodel pruning and con-
straint approximation is promising as a concept as it significantly improved
wrt. the baseline case. But the underlying solver was still not sufficiently pow-
erful to guarantee scalability for complex industrial cases.

5 Related Work

We compared our solution with existing model generation techniques with
respect to the characteristics of inputs and output results in Table1. As for
inputs, the model generation can be (1) initiated from a partial snapshot, (2)
focused on an effective metamodel. Additionally, an approach may support (3)
local and (4) global constraints well-formedness constraints: a local constraint
accesses only the attributes and the outgoing references of an object, while a
global constraint specifies a complex structural pattern. Local constraints are
frequently attached to objects (e.g. in UML class diagrams), while global con-
straints are widely used in domain-specific modeling languages. As outputs, the
generated models may (i) be metamodel-compliant (ii) satisfy all well-formedness
constraints of the language. When generated models are intended to be used as
test cases, some approaches may guarantee a certain level of coverage or (iii)
diversity. We consider a technique (iv) scalable if there is no hard limit on the
model size (as demonstrated in the respective papers). Finally, a model gen-
eration approach may be (v) decidable which always terminates with a result.
Our comparison excludes approaches like which do not guarantee metamodel-
compliance of generated instance models.

100 O. Semerath et al.

Logic Solver Approaches. Several approaches map a model generation prob-
lem (captured by a metamodel, partial snapshots, and a set of WF constraints)
into a logic problem, which are solved by underlying SAT/SMT-solvers. Com-
plete frameworks with standalone specification languages include Formula [17]
(which uses Z3 SMT- solver [26]), Alloy [16] (which relies on SAT solvers like
Sat4j [23]) and Clafer [2] (using backend reasoners like Alloy).

There are several approaches aiming to validate standardized engineering
models enriched with OCL constraints [14] by relying upon different back-end
logic-based approaches such as constraint logic programming [6,8,9], SAT-based
model finders (like Alloy) [1,7,22,34,35], first-order logic [3], constructive query
containment [28], higher-order logic [5,15], or rewriting logics [10].

Partial snapshots and WF constraints can be uniformly represented as con-
straints [32], but metamodel pruning is not typical. Growing models are sup-
ported in [19] for a limited set of constraints. Scalability of all these approaches
are limited to small models / counter-examples. Furthermore, these approaches
are either a priori bounded (where the search space needs to be restricted explic-
itly) or they have decidability issues.

The main difference of our current approach is its iterative derivation of mod-
els and the approximative handling of metamodels and constraints. However, our
approach is independent from the actual mapping of constraints to logic formu-
lae, thus it could potentially be integrated with most of the above techniques.

Uncertain Models. Partial models are also similarity to uncertain models,
which offer a rich specification language [12,29] amenable to analysis. Uncertain
models provide a more expressive language compared to partial snapshots but
without handling additional WF constraints. Such models document semantic
variation points generically by annotations on a regular instance model, which
are gradually resolved during the generation of concrete models. An uncertain
model is more complex (or informative) than a concrete one, thus an a priori
upper bound exists for the derivation, which is not an assumption in our case.

Potential concrete models compliant with an uncertain model can synthesized
by the Alloy Analyzer [31], or refined by graph transformation rules [30]. Each
concrete model is derived in a single step, thus their approach is not iterative like
ours. Scalability analysis is omitted from the respective papers, but refinement
of uncertain models is always decidable.

Rule-based Instance Generators. A different class of model generators relies
on rule-based synthesis driven by randomized, statistical or metamodel coverage
information for testing purposes [4,13]. Some approaches support the calculation
of effective metamodels [33], but partial snapshots are excluded from input spec-
ifications. Moreover, WF constraints are restricted to local constraints evaluated
on individual objects while global constraints of a DSL are not supported. On
the positive side, these approaches guarantee the diversity of models and scale
well in practice.

Iterative and Incremental Model Generation by Logic Solvers 101

Iterative Approaches. An iterative approach is proposed specifically for allo-
cation problems in [20] based on Formula. Models are generated in two steps to
increase diversity of results. First, non-isomorphic submodels are created only
from an effective metamodel fragment. Diversity between submodels is achieved
by a problem-specific symmetry-breaking predicate [11] which ensures that no
isomorphic model is generated twice. In the second step the algorithm com-
pletes the different submodels according to the full model, but constraints are
only checked at the very final stage. This is a key difference in our approach
where an approximation of constraints is checked at each step, which reduces
the number of inconsistent intermediate models. An iterative, counter-example
guided synthesis is proposed for higher-order logic formulae in [24], but the size
of derived models is fixed.

6 Conclusion and Future Work

The validation of DSL tools frequently necessitates the synthesis of well-formed
and realistic instance models, which satisfy the language specification. In the
paper, we proposed an incremental model generation approach which (1) itera-
tively calls black- box logic solvers to guarantee well-formedness by (2) feeding
instance models obtained in a previous step as partial snapshots (compulsory
model fragments) to a subsequent phase to limit the number of new elements,
and using (3) various approximations of metamodels and constraints. Our initial
experiments show that significantly larger model instances can be generated with
the same solvers using such an incremental approach especially in the presence
of complex well-formedness constraints.

However, part of our experimental results are negative in the sense that the
proposed iterative approach is still not scalable to derive large model instances of
complex industrial languages due to restrictions of the underlying Alloy Analyzer
and the SAT solver libraries. We believe that dedicated decision procedures and
heuristics for graph models would be beneficial in the long run to improve the
performance of model generation.

As future work, we aim to generate a structurally diverse set of test cases by
enumerating different possible extensions of a partial snapshot in each iteration
step. Additionally, we plan to check other underlying solvers and further approx-
imations and strategies for deriving relevant formulae as logical consequences of
constraints. And finally, we will investigate if the metamodel partitions and the
iteration steps can be automatically created, thus creating a (semi-)automated
process with improved DSL-specific heuristics.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to alloy. Soft. Syst. Model. 9(1), 69-86 (2010)

2. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.: Clafer: unifying
class and feature modeling. Softw. Syst. Model., pp. 1-35 (2013)

102

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

O. Semerath et al.

Beckert, B., Keller, U., Schmitt, P.H.: Translating the object constraint language
into first-order predicate logic. In: Proceedings of the VERIFY, Workshop at Fed-
erated Logic Conferences (FLoC), Copenhagen, Denmark (2002)

Brottier, E., Fleurey, F., Steel, J., Baudry, B., Le Traon, Y.: Metamodel-based
test generation for model transformations: an algorithm and a tool. In: 17th Inter-
national Symposium on Software Reliability Engineering, ISSRE 2006, pp. 85-94,
November 2006

Brucker, A.D., Wolff, B.: The HOL-OCL tool (2007). http://www.brucker.ch/
Biittner, F., Cabot, J.: Lightweight string reasoning for OCL. In: Vallecillo, A.,
Tolvanen, J.-P., Kindler, E., Storrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS,
vol. 7349, pp. 244-258. Springer, Heidelberg (2012)

Biittner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations
using transformation models and model finders. In: Aoki, T., Taguchi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 198-213. Springer, Heidelberg (2012)

Cabot, J., Clariso, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: IEEE International Conference on Software Testing
Verification and Validation Workshopp, ICSTW 2008, pp. 73-80, April 2008
Cabot, J., Claris6, R., Riera, D.: UMLtoCSP: a tool for the formal verification
of UML/OCL models using constraint programming. In: Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE
2007), pp. 547-548. NY, USA. ACM, New York (2007)

Clavel, M., Egea, M.: The ITP/OCL tool (2008). http://maude.sip.ucm.es/itp/
ocl/

Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for
search problems. In: KR 1996, pp. 148-159 (1996)

Famelis, M., Salay, R., Chechik, M.: Partial models: Towards modeling and rea-
soning with uncertainty. In: Proceedings of the 34th International Conference on
Software Engineering, pp. 573-583. IEEE Press, Piscataway, NJ, USA (2012)
Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: Testing
model transformations. In: International Workshop on Model, Design and Valida-
tion, pp. 29-40, November 2004

Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE
by automatic snapshot generation. Softw. Syst. Model. 4, 386-398 (2005)
Gronniger, H., Ringert, J.O., Rumpe, B.: System model-based definition of mod-
eling language semantics. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.)
FMOODS 2009. LNCS, vol. 5522, pp. 152-166. Springer, Heidelberg (2009)
Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256-290 (2002)

Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reasoning about meta-
modeling with formal specifications and automatic proofs. In: Whittle, J., Clark,
T., Kithne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 653-667. Springer,
Heidelberg (2011)

Jackson, E.K., Sztipanovits, J.: Towards a formal foundation for domain specific
modeling languages. In: Proceedings of the 6th ACM / IEEE International Con-
ference on Embedded Software, EMSOFT 2006, pp. 53-62, NY, USA. ACM, New
York (2006)

Jackson, E.K., Sztipanovits, J.: Constructive techniques for meta- and model-level
reasoning. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 405-419. Springer, Heidelberg (2007)

http://www.brucker.ch/
http://maude.sip.ucm.es/itp/ocl/
http://maude.sip.ucm.es/itp/ocl/

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Iterative and Incremental Model Generation by Logic Solvers 103

Kang, E., Jackson, E., Schulte, W.: An approach for effective design space explo-
ration. In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop 2010. LNCS, vol.
6662, pp. 33-54. Springer, Heidelberg (2011)

Kovécs, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A.
(ed.) CADE-22. LNCS, vol. 5663, pp. 199-213. Springer, Heidelberg (2009)
Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models by
integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011.
LNCS, vol. 6705, pp. 290-306. Springer, Heidelberg (2011)

Le Berre, D., Parrain, A.: The sat4j library, release 2.2. J. Satisf. Boolean Model.
Comput. 7, 59-64 (2010)

Milicevic, A., Near, J.P., Kang, E., Jackson, D.: Alloy*: A general-purpose higher-
order relational constraint solver. In: 37th IEEE/ACM International Conference
on Software Engineering, ICSE, pp. 609-619 (2015)

Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation
of huge metamodel instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 130-145. Springer, Heidelberg (2009)

de Moura, L., Bjgrner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008)

The Object Management Group: Object Constraint Language, v2.0., May 2006
Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: Finite reasoning
on UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1-22 (2012)

Salay, R., Chechik, M.: A generalized formal framework for partial modeling. In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 133-148. Springer,
Heidelberg (2015)

Salay, R., Chechik, M., Famelis, M., Gorzny, J.: A methodology for verifying refine-
ments of partial models. J. Object Technol. 14(3), 1-3-1-31 (2015)

Salay, R., Famelis, M., Chechik, M.: Language independent refinement using partial
modeling. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software
Engineering. LNCS, vol. 7212, pp. 224-239. Springer, Heidelberg (2012)
Semerath, O., Barta, A., Horvath, A., Szatmari, Z., Varrd, D.: Formal validation of
domain-specific languages with derived features and well-formedness constraints.
Softw. Syst. Model., pp. 1-36 (2015)

Sen, S., Moha, N., Baudry, B., Jézéquel, J.-M.: Meta-model pruning. In: Schiirr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 32-46. Springer, Heidelberg
(2009)

Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and back again.
In: MoDeVVa 2009: Proceedings of the 6th International Workshop on Model-
Driven Engineering, Verification and Validation, pp. 1-10. ACM (2009)

Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL models using boolean satisfiability. In: Design, Automation and Test
in Europe, (DATE 2010), pp. 1341-1344. IEEE (2010)

Varré, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Sci. Comput. Program. 68(3), 214-234 (2007)

Yakindu Statechart Tools: Yakindu. http://statecharts.org/

http://statecharts.org/

Automated Model Merge by Design
Space Exploration

Csaba Debreceni' ®9 | Istvan Réth!, Déniel Varré!, Xabier De Carlos?,
Xabier Mendialdua?, and Salvador Trujillo?

! Department of Measurement and Information Systems,
Budapest University of Technology and Economics,
Magyar tudésok krt. 2, Budapest 1117, Hungary
{debreceni,rath,varro}@mit.bme.hu
2 IK4-TKERLAN Research Center,

P.J.M. Arizmendiarrieta, 2, 20500 Arrasate, Spain
{xdecarlos,xmendialdua,strujillo}@ikerlan.es

Abstract. Industrial applications of model-driven engineering to
develop large and complex systems resulted in an increasing demand
for collaboration features. However, use cases such as model differencing
and merging have turned out to be a difficult challenge, due to (i) the
graph-like nature of models, and (ii) the complexity of certain opera-
tions (e.g. hierarchy refactoring) that are common today. In the paper,
we present a novel search-based automated model merge approach where
rule-based design space exploration is used to search the space of solution
candidates that represent conflict-free merged models. Our method also
allows engineers to easily incorporate domain-specific knowledge into the
merge process to provide better solutions. The merge process automat-
ically calculates multiple merge candidates to be presented to domain
experts for final selection. Furthermore, we propose to adopt a generic
synthetic benchmark to carry out an initial scalability assessment for
model merge with large models and large change sets.

1 Introduction

Scalable collaborative model-driven engineering (MDE) for complex projects
with multiple stakeholders and development groups working in a distributed
way (both geographically and in time) is a major research challenge [21]. In tra-
ditional software engineering, version control systems (VCS) such as SVN or Git
assist to work with textual documents in off-line collaboration scenarios having
long transactions and complex modifications between commits. Since multiple
collaborators may try to commit changes to the same document, a comparison or
difference is calculated prior to local commit, which may cause conflicts between
remote changes (already published to the server) and local changes (aimed to be

This paper is partially supported by the EU Commission with project MONDO
(FP7-ICT-2013-10, #611125) and the MTA-BME Lendiilet 2015 Research Group
on Cyber-Physical Systems.

© Springer-Verlag Berlin Heidelberg 2016

P. Stevens and A. Wasowski (Eds.): FASE 2016, LNCS 9633, pp. 104-121, 2016.
DOI: 10.1007/978-3-662-49665-7 _7

Automated Model Merge by Design Space Exploration 105

committed now). Such conflicts need to be resolved by merging the remote and
local changes in a consistent way before a commit succeeds.

Unfortunately, the direct use of VCS in MDE is hindered by numerous fac-
tors implied by the differences between graph-based documents (e.g. models)
and textual documents (e.g. source code). A major challenge is related to model
comparison, which is also computationally more expensive over graphs, and it
gave birth to advanced industrial strength frameworks like EMF Compare [1]
or Diff/Merge [2] built into model-level version control systems (like in Papyrus
UML or AMOR [5]). In order to achieve scalability for large models, these frame-
works frequently assume that unique identifiers are available for model elements.
That assumption results in more efficient model comparison algorithms.

While model comparison is computationally more challenging, resolving con-
flicting model changes is still a cumbersome task in practice, which is frequently
performed manually by the engineers. EMF Compare and Diff/Merge enable
automated conflict resolution in a programmatic way — but writing code for an
automated merge is hardly a task for a domain expert. Furthermore, domain-
specific conflict resolution strategies are rarely taken into consideration in indus-
trial frameworks, hence the well-formedness of merge results is questionable.

In this paper, we propose a novel automated search-based model merge tech-
nique [20] which builds on off-the-shelf tools for the model comparison step, but
uses guided rule-based design space exploration (DSE) [18] for merging models.
In general, rule-based DSE aims to search and identify various design candidates
to fulfill certain structural and numeric constraints. The exploration starts from
an initial model and systematically traverses paths by applying operators. In our
context, the results of model comparison will be the initial model, while target
design candidates will represent the conflict-free merged models.

While many existing model merge approaches detect conflicts statically in a
preprocessing phase, our DSE technique carries out conflict detection dynami-
cally during exploration time as conflicting rule activations and constraint vio-
lations. Then multiple consistent resolutions of conflicts are presented to the
domain experts. Our technique allows to incorporate domain-specific knowledge
into the merge process by additional constraints, goals and operations to provide
better solutions. Finally, we propose to adapt a generic scalability benchmark
for assessing model merge performance for large models and large change sets,
which is also an innovative aspect of the paper.

The rest of the paper is structured as follows: A motivating case study of
modeling wind turbine control systems is presented in Sect. 2 together with the
basics of model comparison and merge. A high-level overview of our approach
is provided in Sect.3. A detailed explanation of executing a merge process is
discussed in Sect. 4. The case study will also serve as an initial assessment of the
usefulness of a domain-specific merge technique while scalability evaluation will
be carried out by adapting the Train Benchmark [29] in Sect. 5. Related work is
summarized in Sect. 6 while Sect. 7 concludes our paper.

106 C. Debreceni et al.

2 Preliminaries

2.1 From Model Comparison to Model Merge

Model comparison refers to identifying the differences between models. It requires
reliability, precision and completeness as the merge process frequently relies on
the output of this phase to detect conflicts and to resolve the detected conflicts.
Altmanninger et al. [6] classifies model comparison methods based on the kind
of information available. Only models are provided as input for state-based tech-
niques, while change-based comparison relies on a list of the performed changes,
e.g. op1, OpP2, - .. O0Px.

Based on the results of model comparison, model merge synthesizes a com-
bined model which reconciles the identified differences. This is not always possi-
ble due to conflicts between model changes carried out by different collaborators.
A merged model is called syntactically correct if it corresponds to its metamodel,
and consistent when additional constraints of the domain are satisfied.

We use a simplified difference model derived from the EMF Compare tool [1]
to store the changes in EMF models. This allows us to accept different types of
comparison model (e.g. EMF Compare or Diff/Merge [2]) as an input of model
merge. It contains the following default change types: (1) create or delete an
object; (2) set, add or remove a value or an object to/from an attribute or
a reference, respectively. Furthermore, we annotate the priority of changes as
may or must which will be decided by users. Changes with must priority are
mandatory to be involved in the solutions while the others with may priority
can be omitted.

In the paper, we focus on three-way merge, which also uses the common
ancestor O of local copy L and remote copy R to derive the merged model M. To
determine the changes executed on O, a comparison is conducted between O < L
and O < R. The solution of merge M is obtained by applying a combination of
changes performed either on L or R to the original model O.

2.2 A Motivating Model Merge Scenario

The domain of our motivating example describes Wind Turbine Control Systems
(WTCS) developed by IK4-Ikerlan where different artefacts and algorithms for
controlling a wind turbine are specified and connected to sensors and actuators.
Models are specified by several collaborators, and consequently modifications
could result in merge conflicts.

We introduce a simplified example of a wind turbine (WT1) in Fig. 1. Real
models are obviously larger, sample models of this paper contain only artifacts
related to the cooling of the Generator Subsystem:

— Inputs: Wind turbine WT1 gets data from a temperature sensor specified by
the Systemlnput identified as Temperature.

— Outputs: WT1 acts on two fans for cooling the wind turbine generator specified
by the SystemOutputs: FanlActivator and Fan2Activator.

Automated Model Merge by Design Space Exploration 107

arams outputs
B WS ysteml——
: Subsystem

wictrls

inputs

subsystems
para put
- WTCtrl : SystemOutput

id: CoolingFanl id: Fan1Activator
type: FanCtrl

cycle: high

“SystemParam

le——
id: CoolingTempLimitl
value: 100

input

id: CoolingTempLimit.
value: 120

(a) Original model

: SystemOutput

id: Fan2Activator

param |cycle: high

wictrls

param output
WTCtr

[CoolingFanl
pe: FanCtrl

: SystemParam

id: CoolingTempLimitl
value: 100

stemOutput

S
id: Fan1Activator

outputs

P ¢ WiSystem}

- wictrls
inputs = psystems

param out

3 D ___: SystemParam _ Je—] : WTCtrl S stemOytut
systemparem | W csolnaany [SEemoumE i coclogTemplimitL [Copg "
id: CoolingTemplimit2 type: FanCtrl | L value: 100 o
value: 12 cycle: high 2 jcycieslow R1

id: CoolingFan2
pe: FanCtrl

cycle: low R2

: SystemOutput

id: Fan2Activator

id: gl
type: PumpCtrl
param |cycle: high

(b) Local instance (modified by Userl) (c) Remote instance (modified by User2)

Fig. 1. Local and remote changes for 3-way merge

— Params: temperature limits for starting generator cooling can be specified by
SystemParams: CoolingTempLimitl and CoolingTempLimit2.

Subsystem Generator contains all the control units for cooling the Generator:

— CoolingFanl: this control unit (of type FanCtrl) specifies the control algo-
rithm for fan #1 with High priority cycle with Temperature as Systemlnput,
FanlActivator as SystemOutput, CoolingTempLimitl as SystemParam.

— CoolingFan2: this control unit (of type FanCtrl) specifies the control algo-
rithm for fan #2 with High priority cycle with Temperature as Systemlnput,
Fan2Activator as SystemOutput and CoolingTempLimit2 as SystemParam.

As a running example, we investigate the following scenario:

Local Changes. The first expert creates a Local version of the model with the
following changes: (L1) the cycle attribute of CoolingFanl is changed to Normal,
(L2) CoolingFan2 instance is deleted. (L3) A new control unit (WTCtrl) is created
with CoolingPump id. The new control unit is of type PumpCtrl with High cycle.
Its input references the existing Temperature and its param references the existing
CoolingTempLimit2. In contrast, (L4) its output references a new SystemOutput
instance identified as PumpActivator.

Remote Changes. Another expert also remotely modified and already com-
mitted the model (before the first expert working on the local version managed
to commit the model) to introduce the following remote changes: (R1) the cycle

108 C. Debreceni et al.

attribute of CoolingFanl is changed to Low, (R2) the cycle attribute of CoolingFan2
is changed to Low, (R3) deletes SystemParam instance identified as CoolingTem-
pLimit2 and (R4) changes param reference of control unit identified as CoolingFan2
to SystemParam instance identified as CoolingTempLimit1.

Model Comparison. Table1 shows the result of model comparison between
the different versions of the model calculated by using existing tools (using e.g.
EMF Compare or Diff/Merge [2]). The differences between the local and the

original model is denoted with A(L, O) (or shortly AL), while A(R,O) (or AR)
represents the differences between the remote and the original model.

Table 1. Elements of A(L) and A(R)

A(L,0O)comparison model A(R,O)comparison model
attribute{CoolingFanl,cycle,Normal} attribute{CoolingFan1,cycle,Low}

S delete{CoolingFan2} VS attribute{CoolingFan2,cycle,Low}

U¥EE create{CoolingPump,WTCtrl, WT1,ctrls} delete{CoolingTempLimit2}
attribute{CoolingPump,type,PumpCtrl} reference{CoolingFan2,param,
attribute{CoolingPump,cycle,High} CoolingTempLimit1}

reference{CoolingPump,param,CoolingTempLimit2}
V¥SI create{PumpActivator,SystemOutput, WT1,outputs}
reference{CoolingPump,output,PumpActivator}

Change Annotation. After the comparison, the local collaborator annotates
local changes L2, L3 and L4 and remote change R2 as must which prescribes
that all such changes have to be present in the merged model unless some of
them are in a conflict. In such a case, the merged model should contain as
many (non-conflicting) must changes as possible, while some (conflicting) must
changes might be omitted from the merged model. All other changes are marked
as may to denote that the corresponding change may be included in the merged
model.

Challenges. The following challenges need to be addressed for our example:

— Calculate merged models automatically as a maximal subset of non-conflicting
changes from the local and remote change set. When there is a large number
of possible combination of changes where some of them are selected from
the local and the others from the remote branch, a merged model may be
restricted to solutions compliant with must and may change annotations.

— Use domain-specific goals and constraints to restrict merged models to consis-
tent ones (to ensure that all inputs and parameters are referenced by at least
one control unit and each output is referenced by different control unit).

— Specify domain-specific composite operations to guide the merge process into
a consistent solution (e.g. to remove inputs, parameters and outputs not ref-
erenced by any control unit).

Automated Model Merge by Design Space Exploration 109

3 Model Merge by Design Space Exploration: Concepts

3.1 Conceptual Overview

We propose to exploit guided rule-based design space exploration (DSE) [18]
for automated model merge with an architecture depicted in Fig. 2. Rule-based
DSE aims at finding optimal solutions from the several design candidates which
satisfy several structural and numeric constraints, and they are reachable from
an initial model along a trajectory by applying a sequence of exploration rules.
The input of a rule-based DSE includes (1) the initial model used as the start of
the exploration; (2) goals which need to be satisfied by solutions; (3) the set of
exploration rules; (4) constraints that need to be respected in each exploration
state and (5) further guidance for the exploration process.

Local

: i
A A u change set

- guidance

1
Original DSE merge —]
3 Operations

Fig. 2. Architecture of DSE Merge

We applied three-way model merge to a DSE problem as follows:

(1) the initial model contains the original model O and two difference models
(AL and AR)

(2) the main goal is that there are no executable changes left in AL and AR
along a specific exploration path.

(3) the operations are defined by change driven transformation rules to process
generic change objects (create, delete, set, add, remove) of the difference
models, and potentially composite (domain-specific) operators;

(4) constraints may identify inconsistencies and conflicts to eliminate certain
trajectories;

(5) as main exploration strategy, any changes annotated as must are tried to
be merged before resolving may changes.

Input. Our model merge approach takes three models as input: the original
model O and the difference models between local and original models AL as
well as the remote and original models AR. These together constitute the initial
model for DSE. The calculation of the difference models AL and AR is carried
out by an external comparison tool such as EMF Compare or Diff/Merge. Fur-
thermore, in order to derive efficient state encoding for the exploration process,
we assume that each element in the original model has some unique identifier.

110 C. Debreceni et al.

Output. The output of the merge process automatically derived by DSE is a
set of solutions where each solution consists of (i) the merged model M derived
by applying a (non-extensible and non-conflicting) subset of local and remote
changes on the original model O; (ii) the set of non-executed changes AL’ AR/';
and (iil) the collection of the deleted objects stored in Cemetery.

3.2 Key Aspects of Exploration Process

Each solution is derived along a trajectory from the initial state to a solution
state by applying generic and domain-specific operations. Along this trajectory,
we transform the original model O into the merged model M, and the change
models AL and AR are gradually reduced to AL’ and AR’. In each exploration
step, conflicts are detected and resolved by incrementally tracking the matches
(activations) of operations and constraints. Finally, a solution state is identified
if all goals are satisfied without violating a constraint along the trajectory.

Operations. We incorporate two kinds of operations in the exploration based
model merge: generic merge operations [30] and (domain-specific) composite
operations [14,23] (such as refactorings, or repair rules). Each operation is
captured by (graph) transformation rules [16], which consist of a precondition
described as a graph pattern (using the EMF-IncQuery language [10] in our case)
and an action part which captures model manipulations.

Generic merge operations are change-driven transformations [9], which con-
sume or produce change models as additional input or output. The precondition
selects an applicable change ¢ from the deltas AL U AR and may require the
existence of certain model elements in the origin model O. The action part of a
generic merge operation (1) modifies the original model O to apply a change, (2)
moves the change ¢ from the difference set ALU AR into a completed set Comp
to prevent the application of the change multiple times. Thus such change-driven
rules transform state-based merging into operation-based merging [12].

By default, domain-specific composite operations only manipulate the model
O without consuming the deltas. Therefore, they need to be complemented with
generic change-driven rules which identify the model-level changes carried out
by them and record them as difference models in the completed set. In most
cases, domain experts are responsible for capturing complex (domain-specific)
operations only at the preparation of the merge tool for the specific domain.
Collaborating engineers only use them as part of the merge process.

Conflict Detection and Resolution. A local change [€ AL and a remote
change r € AR may be conflicting, i.e. it is impossible to obtain a consistent
merged model M by applying both [and r. Alternatively, in an operation-based
interpretation, a conflict denotes a pair of operations o; and o0, whereas one
operation masks the effect of the other (i.e., they do not commute) or one oper-
ation disables the applicability of the other [23].

Instead of static (a priori) detection of conflicts as proposed in [17,24,27], we
detect conflicts on- the-fly during the exploration process by relying upon the
incremental book-keeping of rule activations and constraints. In each state of the

Automated Model Merge by Design Space Exploration 111

DSE, we investigate one by one all (enabled) activations of transformation rules,
and try to find a solution by firing them. In case of a conflict, (1) firing one rule
may prevent the application of another activation, or (2) both rules are fireable,
but the result state violates a constraint. When two operations are confluent
(i.e. they can be applied in arbitrary order), state encoding of DSE [19] helps
identify that an already traversed state is reached. Hence applying operations in
a different order has no impact on the results.

Activations of rules and constraints are continuously and efficiently main-
tained when firing an operation (either generic or composite), thus disabled
rules and violated constraints are immediately identified. For that purpose, we
rely upon the reactive VIATRA framework [8] and incremental model queries.
The technicalities of conflict detection will be illustrated in Sect. 4.

Conflict Resolution by Exploration Strategy. In case of a conflict between
two operations, DSE will investigate both trajectories as possible resolutions and
derive two separate solutions correspondingly. Thus a merged model M derived
automatically as a solution contains no conflicts by definition.

In case of many conflicts, the result set can too large to be presented to
experts. Therefore, in order to reduce the number of solutions retrieved by DSE
and guide the exploration in case of conflicts, model changes can be prioritized
by the collaborators as may and must (see Table 1) prior to executing merge.

— If a change ¢; with must priority is in conflict with another change ¢y of may
priority, then the merge will always select the former (¢).

— If two conflicting changes ¢; and ¢y are both annotated with may than the
merge will randomly select one.

— However, if two changes ¢; and ¢y of must priority are in conflict, then the
merge process will enumerate both of them separately (in different solutions).

Goals. In generic, we aim to apply as many changes in AL and AR as pos-
sible to derive the merged model M. When extending a trajectory by any of
the remaining changes in AL’ or AR’ would cause a conflict with some already
applied change, a solution state of the DSE is reached. Technically, it is detected
by the termination of the rule system, i.e. no operations are activated. Addition-
ally, domain experts can provide domain-specific goals that act as heuristics for
the exploration and provide consistent solutions.

Altogether, we define a fully automated model merge approach where all pos-
sible resolutions of conflicts are calculated, and all consistent merged models are
prompted to experts, which was claimed to be beneficial in [31]. Representation
of solutions contains several layouts (e.g. tree, graph) and metrics (e.g. number of
executed changes) which help experts select the best solution for their purpose.

4 Elaboration of Model Merge on an Example
4.1 Operations and Goals

Change-Driven Rules for Generic Operations. We defined the fol-
lowing generic operations in the merge process for creating/deleting object,

112 C. Debreceni et al.

setting/adding/removing attribute and setting/adding/removing reference. For
space considerations, we only discuss operations for setting an attribute (setAt-
tribute) and deleting an object (deleteObject) in details (depicted in Fig. 3).

— setAttribute(ac,0): The precondition prescribes that an attribute change ac
is available in change set AL’ U AR’ and its object o exists in the current
model. Its action sets (i) attribute ac.attribute of object o to the given value
ac.value, and (ii) moves the change ac to the completed set Comp.

— deleteObject(dc,0): The precondition states that a delete change dc is available
in the current change set AL’ U AR’ and its referred object o exists in the
current state of the model where o is a leaf in the containment hierarchy.
The action part (i) deletes the object o from current state, (ii) puts it into
Cemetary and (iii) moves the change dc to the completed set Comp.

Domain-Specific Goals and Operations. Our example introduced in Sect. 2
requires to extend model merge with domain-specific knowledge to guarantee the
consistency of solutions. In the Wind Turbine Control System (WTCS) domain,
it is mandatory that all Systemlnput and SystemParam instances should be refer-
enced by at least one control unit and each SystemOutput has to be referenced
by a unique control unit. Model merge needs to respect such domain specific
knowledge, which can be captured by additional goals specified as constraints
and depicted in a graphical representation in Fig. 3c.

A domain-specific operation called unreferencedPart can be defined to elim-
inate unreferenced SystemInput, SystemOutput and SystemParam instances (see
Fig. 3d). Here the precondition selects the unreferenced object o while the action
part (i) initiates a new delete change independently from the current change set
and (ii) executes the action part of the generic delete operation.

4.2 Conflict Detection in a Sample Exploration Step

Conflict detection and resolution is carried out during exploration by incremen-
tally tracking rule activations and special constraints. We illustrate this step in
the context of our running example (see Fig. 4, which is an extract of iteration 3
and 9 of merge session from Sect. 4.3). It demostrates a delete/use conflict: simul-
taneously setting the cycle attribute of CoolingFan2 and deleting CoolingFan2. Any
solution of model merge may only contain one of the two changes.

1. In the beginning, both operations have an activation (left in Fig.4) in the
context of object CoolingFan2. Initially, all changes are located in AL or AR,
cemetery and completed changes are empty. In this state, all constraints are
satisfied, but goals are violated which means this state is not a solution.

2. Our merge process first selects and executes the deleteObject operation (top
branch of Fig. 4) which removes CoolingFan2 from the model, moves CoolingFan2
to the cemetery, and the corresponding change is moved from AL to the
completed set Comp. As a side effect, operation setAttribute loses its activation
in the context of CoolingFan2 since its precondition is no longer be satisfied in

Automated Model Merge by Design Space Exploration 113

setAttribute(ac,o, model

0:EObject

changes

Ac

tion: . Acti%[]:
set o.(ac.attribut] = ac.value elete o; add o to]Cemetery
move ac -> Compi move dc -> Compl,

(a) Generic setAttribute (b) Generic deleteObject

0:SystemInput
inputs

or ‘WTCtrl

neg
inputs

:SystemParam neg. [l o:SystemParam neg
o WTCtrl or e ‘WTCtrl

:SystemOutput neg 0:SystemOutput neg
CLLEER \\TCtr outputs “WTCtrl
S b:WTCtrl

A

ction:
dc = new DeleteChan, %o)
execute deleteOl]ectﬁ c, 0)

(c) Domain-specific goal (d) Domain-specific operation

Fig. 3. Operations and goal

the new state. This fact is immediately identified by the underlying reactive
transformation engine [8]. In the new state, the exploration incrementally
checks that all constraints are satisfied and goals are violated, and then selects
another enabled (activated) operation for execution.

3. Later, after backtracking to the first state, operation setAttribute is scheduled
for execution on object CoolingFan2 (bottom branch of Fig.4). As a result,
Cemetery remains empty, the change is moved to the completed set, all goals
are violated, and all constraints are satisfied. As a main conceptual difference,
the activation of deleteObject is not disabled on CoolingFan2 as the correspond-
ing object still exists, hence its precondition is satisfied.

4. Next, the process selects and executes deleteObject operation. As a result,
CoolingFan2 is moved to the cemetery and the change is moved from AR to
the completed set Comp. We detect this conflict by (incrementally) checking
a generic merge constraint: there are two changes in the completed-set Comp
which modifies the same object. In this case, exploration has to backtrack
and finds another executable operation.

Obviously, the first type of constraint could also be detected by using similar
constraints as for the second type. However, lost activations reduce the number
of states to be traversed, thus they are preferred. Furthermore, note that when
two operations are applicable in both order with a confluent result, the state
encoding of DSE identifies that the same model is reached as a state.

4.3 A Merge Scenario on the Motivating Example

A possible execution of the DSE Merge is depicted in Fig. 5 which displays the
completed changes for two solutions. In each iteration, one change is processed.

114 C. Debreceni et al.

............

Toowrcl

Vi CoolingFan2 1
Jtype: FanCtrl |
cycle:high ___.

AL: [...]

AR: [attribute(CoolingFan2), ...]

Completed: [delete (CF2)]
[CoolingFan2]

Activations:
Constraint[OK]
Goals x]

: WTCtrl

id: CoolingFan2
type: FanCtrl
cycle: high

Backtrack

- — / __________
2; [dele.te(CooImg_FanZ), gl Wt [CwTeel
: [attribute(CoolingFan2), ...] 7d: CoolingFan2 iid: CoolingFan2 1
Completed: [] type: FanCtrl Stype: FanCtrl
cycle: low cycle:low 1

AL: [delete(CoolingFan2), ...] ‘ AL: [...]
AR: [...] AR: [...]
Ce leted: [attr (CF2)] Completed: [attr (CF2), delete(CF2)]

Activations:
setAttribute(CoolingFan2), ...
deleteObject(CoolingFan2), ...

Constraint[OK]

|Activations:
deleteOject(CoolingFan2), ...

Constraint[OK]

Exec attr (CF2) [\ W

Exec del (CF2)

Activations:

Fig. 4. Conflict resolution with incrementally tracking constraints and operations

— Itr. 1-2: all must changes are available and the algorithm randomly picked the
createObject of CoolingPump and PumpActivator.

— Itr. 3: at this point only two conflicting transitions have activation; the algo-
rithm picked deleteObject for CoolingFan2 non-deterministically. This leads to a
state where the precondition of setAttribute operation cannot be satisfied any
longer, thus it is disabled.

— Itr. 4-5: only may operations have activation where a setAttribute opera-
tion is selected that set the cycle attribute of CoolingFanl to normal. Because
of the generic constraint, the other setAttribute related to the same object
(CoolingFanl) is disabled. The same happens when executing deleteObject for
CoolingTempLimit2 that disables the setReference operation which should con-
nect CoolingPump and CoolingTempLimit2.

— Ttr. 6: this (aggregated) step is composed of all iterations that execution of
operation setAttribute related to the newly created CoolingPump.

— Itr. 7: on this trajectory, deletion of CoolingFan2 leads the model into a state
where the Fan2Activator output is not referenced by any control unit. Thus our
domain-specific (composite) operation (unreferencedPart) has an activation that
is executed on the model. After this iteration, there are no more activations
and all goals are satisfied, so Solution #1 is found.

— Itr. 8: after the solution, the strategy backtracks until it finds an activation for
a must operation that should lead the model into a partially traversed state
and forks the trajectory. Only the setAttribute operation related to CoolingFan2
can be executed. After the execution, deleteObject of CoolingFan2 could have
activation, but it is disabled by the generic constraint.

— Itr. 9-11: The same activations are available as for the 4th iteration except the
domain-specific operation. The algorithm randomly executes these operations
and finds Solution #2.

Automated Model Merge by Design Space Exploration 115

Resolved Conflicts. In iteration 3 and 8, two conflicting operations marked
with must are executed which forks the exploration into two separate solutions
to resolve the conflicts. At iterations of 4 and 9, two operations with may mark
are in conflict. In each trajectory, only one of them is selected. Similar happens
in iteration 5 and 10, but this time the same operation is selected in each branch.

Solution. There are two solutions in the output of the merge process. We dis-
cuss solution #1 in details where the merged model is depicted in Fig.6. It
also displays in dashed line the deleted objects stored in Cemetery, namely,
CoolingTempLimit2, CoolingFan2 and Fan2Activator. There are four non-executed
changes as shown in the bottom left corner of Fig. 6.

params _________ outputs

inputs wtctrls

subsystems
param output
: SystemParam Je—— __WrCtrl : SystemOutput
id: CoolingTempLimit1 id: CoolingFan1 | id: Fan1Activator
value: 100 |—typ;e: FanCtrII
il Cycle: norma
- Systeminput input] o

Tdelete

4 - 3
attribute (CoolingFan, cycle, normal)| |attribute (CoolingFand, cycle, lo

5Jdelete(CoolingTempLimit2) | [delete(CoolingTempLimit2] 1t

CoolingPump related Attributes CoolingPump related Attributesr

- WTCtrl
id: CoolingPump]
type: PumpCtrl
cycle: high

[SystemOutput |
id: PumpActivator

output

Wl e T P pse]
-delete_FanZActlvatorl E-CoollngTemlemltZI

Solution #1 Solution #2 |reference(CoolingPump, param, CoolingTempLimit2) { " CoolingFan2 |

) must may [solution [reference(CoolingFan2, param, CoolingTempLimit1 ==

Fig.5. DPossible execution of the Fig. 6. Merged Model from Solution #1
process

5 Evaluation

As the state-of-the-art of model merge still lacks well-accepted benchmarks to
measure scalability of model merging components (e.g. [22] measures precision
and recall), we propose a new scalability benchmark for model merge by adapting
of the Train Benchmark [29], which is an existing performance benchmark for
model queries and well-formedness constraints (and also a case of the TTC 2015
contest [28]). The benchmark uses a domain-specific model of a railway system
originating from the MOGENTES project [4]. From the existing benchmark, we
reuse (1) the model generator to derive models of different size conforming to
a railway metamodel, (2) the fault injector which changes the generated model
(e.g. by changing structural features, and creating or deleting objects) to violate
predefined well-formedness constraints, and (3) repair actions which pseudo-
randomly resolve such violations in accordance with to a random seed value.
Based upon these components, we summarize how synthetic models are gen-
erated that contain conflicts serving as input for model comparison and model
merge: (1) First, we generate a well-formed model. (2) Next, we inject several

116 C. Debreceni et al.

faults into the generated model. The result of this phase acts as original (O)
model. (3) Then, local and remote changes are simulated by repairing these vio-
lations either in the local model (L) or remote model (R) or in both of them with
different random seeds. In the latter case, the framework repairs the same prob-
lems in both cases by using different values, which leads to a conflict between two
models. (4) We calculate the differences between the two with an existing com-
parison tool (EMF Compare). (5) Finally, these two model have to be merged
with may annotations for changes using our merge tool.

We evaluate our DSE-based automated merge approach to assess its scalabil-
ity using our benchmark where we investigate the scalability of the approach by
measuring execution time for model comparison (carried out by EMF Compare)
and model merge with respect to (i) the size of models, (ii) the size of change
set, and (iii) the number of changes in conflict. For the evaluation, we gener-
ated models where the number of model elements is from 10, 000 to 350, 000, the
number of faults injected into the models (i.e. size of the change set) is from 10
to 2000 while the number of conflicts are set to 0%, 50 % and 100 % of the total
number of changes. Measurement results are summarized in Table 2 taking the
average of 5 separate runs.

Table 2. Scalability measurement results

. Diff Merge (sec . Diff Merge (sec
Size| A (gee) 0% 5(0%) 100% 574 | (e 0% conflict (500/)0 100%
conflict conflict conflict conflict conflict
120| 4.672 1.265 2.095 3.477 120 28.302 10.654 13.556 22.913
240 7.329 2.241 3.345 4.109 240 30.711 20.285 24.377 37.501
11710 480[12.951 3.923 4.650 8.813 87396| 480 36.378 38.154 48.655 76.703
960| 23.323 8.853 12.008 21.842 960 49.382 75.567 92.797 153.234
1920 26.368 11.352 19.766 29.948 1920 80.934 162.845 205.423 367.357
120 7.233 2.686 2.924 6.262 120 59.236 21.332 27.699 43.492
240 7.569 4.355 5.106 8.596 240 79.068 42.308 50.843 79.492
23180[480[13.695 9.433 14.127 17.796 175754 480 93.395 80.130 95.332 162.106
960| 23.383 18.219 22.474 40.589 960 97.313 157.720 185.030 279.367
1920[41.857 34.181 57.207 96.806 1920[118.439 311.525 362.841 626.946
120 17.258 6.679 8.156 12.567 120 176.200 47.410 57.695 89.101
240] 18.592 10.625 12.623 20.047 240| 177.280 84.678 104.739 166.990
46728 | 480][27.410 19.063 24.210 39.855 354762| 480| 188.028 156.568 198.307 317.629
960| 40.915 37.961 51.924 90.295 960| 209.440 307.878 406.879 636.156
1920 69.344 165.203 180.534 217.343 1920[257.355 1,342.081 1,401.882 1,535.091

Analysis of Results. As expected, merge time is linear in model and change
size, and also proportional to comparison time. Furthermore, fewer conflicts
imply faster merge time. Our results also show that runtime of merge is lower
than compare time in case of smaller change sets (120, 240), and gradually out-
grows it as the change set increases. However, change sets of an average commit
in real projects are even smaller than our smallest case (see also the evaluation
in [23]), which means that our scalability results represent a pessimistic setup.

6 Related Work

Several approaches address the model merge as depicted in Table 3. To position
them against our approach, we use several characteristics proposed in a survey
on model versioning [6], which also guides the structure of this section.

Automated Model Merge by Design Space Exploration 117

Table 3. Comparison of model merge approaches

Basis Conflict |Merge Merge Objectives Guidance Evaluation
detection |automation |operations
EMF Compare [1] state static semi generic - - scalability
EMF Diff/Merge [2] |state static semi generic - - scalability
Westfachtel [30] state runtime |semi generic goals - preliminary
N-way Merge [25] state static semi generic - - preliminary
AMOR [13] state static semi generic, goals - precision
composite recall
Dam H.K. et al. [14]|state static auto composite goals, repair plan scalability
constraints (closed)
MOMM [23] operation|runtime |auto composite fixed goals global search real data
prioritized
DSE Merge state runtime |auto generic, goals contraints |local search scalability
composite may /must (open)

Comparison Basis. Based on the model comparison technique, the approaches
may be classified into state-based and operation-based. [1,2,13,14,25,30] and
DSE Merge are state-based as they execute a comparison process between model
states. However, [23] uses operations as input where even more complex opera-
tions as just the simple add, update, and delete operations are considered.

Conflict Detection. Finding the conflicting changes in the merge process is
crucial task for a correct resolution. Most approaches use an initial phase to stati-
cally analyze the changes and look for conflicting pairs such as in [1,2,13,14,25].
Westfechtel [30] defines transformation rules for searching conflicts where the
satisfied preconditions selects the conflicts in each iteration. Mansoor et al. [23]
uses conflict detection algorithm between operations [12]. DSE Merge identifies
conflicts incrementally as violations of constraints or as deactivations of merge
operations, while dependencies between rules and constraints are handled auto-
matically by the underlying DSE engine. This extends [14] where inconsistency
constraints are handled incrementally while conflict detection happens as pre-
processing.

Merge Automation. Most approaches [1,2,13,25,30] are semi-automated as
they use a two-phase process: (i) they apply the non-conflicting operations and
then (ii) let the user prioritize and select the operation to apply in case of two
conflicting changes. This always results in a single solution due to the man-
ual resolution by the user. In comparison, [14,23] and DSE Merge resolve the
conflicts automatically in different ways and offer several solutions.

Merge Operations. In this context, merge operations are responsible for apply-
ing the changes in the merged model. [1,2,25,30] use generic operations for
changes. The extension [11] of [30] adaptively learns resolution patterns from
user that can be applied on the models which results in composite operations.
[23] applies the input operations which are composite refactorings in their case.
[14] uses basic generic operators for conflicts but generates composite opera-
tions as repair plans from the description of inconsistency constraints. Our DSE
Merge approach allows to combine both generic and domain-specific composite
operators in the form of change-driven transformation rules.

118 C. Debreceni et al.

Objectives. Quality of the merge model can be improved by objectives that
have to be satisfied during (contraints) or at the end (goals) of the merge process.
This is an unsupported feature in [1,2,25]. [23] uses two fixed goals which are the
base of the conflict resolution. [14] provides support for incrementally detecting
violations of inconsistency constraints. [13] is connected to an additional model
checker component [11] which allows to check OCL constraints as goals. [30]
allows to define well-formedness constraints in OCL that act as goals. DSE Merge
let the users to provide additional constraints and goals using graph patterns in
addition to a built-in termination condition when no operations are activated.

Guidance. The execution of the merge process can use guidance to find the
solution(s) faster. The tool [26] of [30] uses a dedicated fusing algorithm for the
model merge phase using a fixed priority strategy of merge operations. [23] bases
their tool to a global search genetic algorithm (NSGA-II [15]) where the oper-
ations are also prioritized related to their importance. DSE Merge is built on
top of the ViatraDSE framework [19] using rule-based guided local search explo-
ration. Furthermore, annotating changes with may/must can further reduce the
result set retrieved to the user, which is another key difference wrt [14,23].

Evaluation. [23] provides an empirical evaluation of the tool based on real data,
but its scalability is not discussed as their largest model was the same as our
smallest. [14] represents an scalability evaluation of its tool with the largest size
of 33.000 model element and 1,650 changes. [25] and [26] show a preliminary
evaluation which show the relevance of the approach on very small models and
change set. [13] evaluated by [22], but scalability is not discussed. For comparing
models, [1] has a scalability test presented in [7]. Scalability of [2] is not well
covered, however, we evaluated ourselves on the proposed benchmark [3]. DSE
Merge is evaluated on an open scalability benchmark [29]. As future work, we
plan to create an empirical user study from the usability aspect of our tool.

Summary. To summarize the key differences with [14] and [23], we rely on state-
based comparison, apply a guided local-search strategy (vs. [23]), detect conflicts
at runtime and allow complex generic merge operations (vs. [14]). Internally,
we uniquely use incremental and change-driven transformations to derive the
merged models. Finally, we report scalability of merge process for models which
are at least one order of magnitude larger compared to [14] and [23].

7 Conclusion

The current paper presented an automated technique for three-way model
merge exploiting design space exploration in the background. The original
model and two difference models (original model«<sremote version, and origi-
nal model«—local version) calculated with existing model comparison tools (e.g.
EMF Compare or Diff/Merge) serve as an input of our technique. Our technique
automatically derives consistent and semantically correct merged models in all
possible ways and also highlights the remaining (unresolved thus conflicting)
model differences. Our approach incorporates the use of change-driven model

Automated Model Merge by Design Space Exploration 119

transformations [9] to capture and execute merge operations, and relies on an
incremental reactive model transformation engine [8] to detect and resolve merge
conflicts. We proposed scalability benchmark for scalability aspect of merge com-
ponents that demonstrates that DSE-based model merge can be executed for
models around 350,000 elements and conflicting change sets with 1000 elements.

Our approach is fully implemented in a tool developed as part of a European
project, which operates on well-known open source components of the Eclipse
framework, such as EMF Compare [1] or Diff/Merge for [2] for model compar-
ison and using the Viatra DSE [18,19] as underlying design space exploration
framework built on reactive transformations [8].

As future work, we plan to improve our model merge technique by further
search strategies to better exploit the dependencies between rules and constraints
and compare it with other search-based merge techniques [23]. Currently, we
are conducting an experimental user evaluation to compare the usability of the
presented DSE Merge tool with EMF-Compare and Diff/Merge.

Acknowledgments. We thank to Gédbor Szarnyas for improving the syntectic per-
formance benchmark for the evaluation and Andras Szabolcs Nagy for his assistance
on design space exploration.

References

1. EMF compare. https://www.eclipse.org/emf/compare/

2. EMF Diff/Merge. http://eclipse.org/diffmerge/

3. Evaluation of EMF Compare and Diff/Merge. https://github.com/FTSRG/
publication- pages/wiki/Evaluation-of- EMF-Diff-Merge-and- EMF-Compare

4. Mogentes EU project. http://www.mogentes.eu/

5. Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W., Seidl, M., Schwinger,
W., Wimmer, M.: AMOR-towards adaptable model versioning. In: 1st Interna-
tional Workshop on Model Co-Evolution and Consistency Management, in con-
junction with MODELS, vol. 8, pp. 4-50 (2008)

6. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning

approaches. IJWIS 5(3), 271-304 (2009)

Barbero, M.: EMF compare 2.0: scaling to millions. In: EclipseCON 2013, Boston

8. Bergmann, G., David, 1., Hegediis, A’.7 Horvath, A., Rath, 1., Ujhelyi, Z., Varro,
D.: Viatra 3: a reactive model transformation platform. In: Kolovos, D., Wimmer,
M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 101-110. Springer, Heidelberg (2015)

9. Bergmann, G., Rath, L., Varré, G., Varré, D.: Change-driven model transformations
- change (in) the rule to rule the change. Softw. Syst. Model. 11(3), 431-461 (2012)

10. Bergmann, G., Ujhelyi, Z., Rath, 1., Varré, D.: A graph query language for EMF
models. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 167-182.
Springer, Heidelberg (2011)

11. Brosch, P., Egly, U., Gabmeyer, S., Kappel, G., Seidl, M., Tompits, H., Widl,
M., Wimmer, M.: Towards semantics-aware merge support in optimistic model
versioning. In: Kienzle, J. (ed.) MODELS 2011 Workshops. LNCS, vol. 7167, pp.
246-256. Springer, Heidelberg (2012)

=

https://www.eclipse.org/emf/compare/
http://eclipse.org/diffmerge/
https://github.com/FTSRG/publication-pages/wiki/Evaluation-of-EMF-Diff-Merge-and-EMF-Compare
https://github.com/FTSRG/publication-pages/wiki/Evaluation-of-EMF-Diff-Merge-and-EMF-Compare
http://www.mogentes.eu/

120

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

C. Debreceni et al.

Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., Wimmer, M.: An intro-
duction to model versioning. In: Bernardo, M., Cortellessa, V., Pierantonio, A.
(eds.) SFM 2012. LNCS, vol. 7320, pp. 336-398. Springer, Heidelberg (2012)
Brosch, P., Seidl, M., Wieland, K., Wimmer, M.: We can work it out: collaborative
conflict resolution in model versioning. In: Wagner, I., Tellioglu, H., Balka, E.,
Simone, C., Ciolfi, L. (eds.) ECSCW 2009, pp. 207-214. Springer, London (2009)
Dam, H.K., Reder, A., Egyed, A.: Inconsistency resolution in merging versions of
architectural models. In: 2014 IEEE/IFIP Conference on Software Architecture,
WICSA 2014, Sydney, Australia, pp. 153—-162, 7-11 April 2014

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182-197 (2002)
Ehrig, H., Kreowski, H.J., Rozenberg, G.: Handbook of Graph Grammars and
Computing by Graph Transformation, vol. 2. World Scientific, Singapore (1999)
Feather, M.S.: Detecting interference when merging specification evolutions. In:
ACM SIGSOFT Software Engineering Notes. vol. 14, pp. 169-176. ACM (1989)
Hegedus, A., Horvath, A., Rath, 1., Varré, D.: A model-driven framework for guided
design space exploration. In: Proceedings of the 2011 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pp. 173-182. IEEE Com-
puter Society (2011)

Hegediis, A., Horvath, A., Varrd, D.: A model-driven framework for guided design
space exploration. Autom. Softw. Eng. 22(3), 399-436 (2015)

Kessentini, M., Werda, W., Langer, P., Wimmer, M.: Search-based model merg-
ing. In: Genetic and Evolutionary Computation Conference, GECCO 2013,
Amsterdam, The Netherlands, pp. 1453-1460, 6—10 July 2013

Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S.,
De Lara, J., Rath, 1., Varrd, D., Tisi, M., et al.: A research roadmap towards
achieving scalability in model driven engineering. In: Proceedings of the Workshop
on Scalability in Model Driven Engineering, p. 2. ACM (2013)

Langer, P., Wimmer, M.: A benchmark for conflict detection components of model
versioning systems, vol. 33 (2013)

Mansoor, U., Kessentini, M., Langer, P., Wimmer, M., Bechikh, S., Deb, K.:
MOMM: multi-objective model merging. J. Syst. Softw. 103, 423439 (2015)
Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Softw. Eng.
28(5), 449-462 (2002)

Rubin, J., Chechik, M.: N-way model merging. In: Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE 2013, Saint Petersburg, Russian
Federation, pp. 301-311, 18-26 August 2013

Schwagerl, F., Uhrig, S., Westfechtel, B.: Model-based tool support for consistent
three-way merging of EMF models. In: Proceedings of the workshop on ACadeMics
Tooling with Eclipse, p. 2. ACM (2013)

Steyaert, P., Lucas, C., Mens, K., D’Hondt, T.: Reuse contracts: managing the evo-
lution of reusable assets. In: Proceedings of the 1996 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications (OOPSLA
1996), San Jose, California, pp. 268-285, 6-10 October 1996

Szarnyas, G., Semerath, O., Réath, 1., Varré, D.: The TTC 2015 train benchmark
case for incremental model validation. In: Transformation Tool Contest, pp. 129—
141 (2015)

29.

30.

31.

Automated Model Merge by Design Space Exploration 121

Ujhelyi, Z., Bergmann, G., Hegediis, A., Horvéath, A., Izsé, B., Réth, L., Szatmari,
Z., Varré, D.: EMF-IncQuery: an integrated development environment for live
model queries. Sci. Comput. Program. 98, 80-99 (2015)

Westfechtel, B.: Merging of EMF models - formal foundations. Softw. Syst. Model.
13(2), 757788 (2014)

Wieland, K., Langer, P., Seidl, M., Wimmer, M., Kappel, G.: Turning conflicts
into collaboration. Comput. Support. Coop. Work 22(2-3), 181-240 (2013)

RuleMerger: Automatic Construction
of Variability-Based Model
Transformation Rules

Daniel Stritber!®)| Julia Rubin?, Thorsten Arendt!, Marsha Chechik?,
Gabriele Taentzer!, and Jennifer Ploger!

! Philipps-Universitit Marburg, Marburg, Germany
{strueber,arendt,taentzer,ploegeri}@informatik.uni-marburg.de
2 Massachusetts Institute of Technology, Cambridge, USA
mjulia@csail.mit.edu
3 University of Toronto, Toronto, Canada
chechik@cs.toronto.edu

Abstract. Unifying similar model transformation rules into variability-
based ones can improve both the maintainability and the performance of
a model transformation system. Yet, manual identification and unifica-
tion of such similar rules is a tedious and error-prone task. In this paper,
we propose a novel merge-refactoring approach for automating this task.
The approach employs clone detection for identifying overlapping rule
portions and clustering for selecting groups of rules to be unified. Our
instantiation of the approach harnesses state-of-the-art clone detection
and clustering techniques and includes a specialized merge construction
algorithm. We formally prove correctness of the approach and demon-
strate its ability to produce high-quality outcomes in two real-life case-
studies.

1 Introduction

Model transformation is a key enabling technology for Model-Driven Engineer-
ing, pervasive in all of its activities, including the translation, optimization, and
synchronization of models [1]. Algebraic graph transformation (AGT) is one of
the main paradigms in model transformation, allowing rules to be specified in a
high-level, declarative manner [2]. Recently, many complex transformations have
been implemented using AGT [3-5]. AGT is gaining further importance due to
its use as an analysis back-end for imperative transformation languages [6].

Transformation systems often contain rules that are substantially similar to
each other. Yet, until recently, various model transformation languages lacked
constructs suited to capture these similar rule variants in a compact manner [7].
The most frequently applied mechanism for creating variants was cloning: devel-
opers produced rules by copying and modifying existing ones. The drawbacks of
cloning are well-known, e.g., the need to update all clones when a bug is found
in one of the variants. Furthermore, creating a large set of mutually similar rules
© Springer-Verlag Berlin Heidelberg 2016

P. Stevens and A. Wasowski (Eds.): FASE 2016, LNCS 9633, pp. 122-140, 2016.
DOI: 10.1007/978-3-662-49665-7 -8

RuleMerger: Automatic Construction of VB Model Transformation Rules 123

also impairs the performance of transformation systems: each additional rule
increases the computational effort, possibly rendering the entire transformation
infeasible. Blouin et al. report that to be the case with as few as 250 rules [8].

Variability-based (VB) rules are an approach to address these issues [9].
Inspired by product line engineering (PLE) principles [10,11], a VB rule
encodes a set of rule variants in a single-copy representation, explicating common
and variable portions. In [9], we provide an algorithm for applying VB rules and
show that it outperforms the application of classical rules in terms of execution
time.

The VB rules in [9] were created manually, a tedious and error-prone task
relying on the precise identification of (i) sets of rule variants, each to be unified
into a single VB rule; (ii) rule portions that should be merged versus portions
that should remain isolated. The choices made during these steps have a sub-
stantial impact on the quality of the produced rules.

In this work, we present RuleMerger, a
novel approach for automating the merge- .:»» == :::: =:::
refactoring of model transformation rules. Rule set with similar rules
The approach includes a three-component e a“!n:les_ Rule
framework (see Fig.1). It applies clone T e Merger
detection [12] to identify overlapping por- ess T2 I8 222
tions between rules and clustering [13] to
. . e . Clone Detection
identify disjoint groups of similar rules. v
During merge construction, common por- | g resbassion || e connenaite
tions are unified and variable ones are
annotated to create VB rules. Each com- === a2 bian . 1es
ponent can be instantiated and cus- A =1~) =3z I&' -
tomized with respect to specific quality == =b=
goals, e.g., to produce rules optimized Clustering Merge Gonstruction
for background execution or easy editing. L _
Since the framework guarantees that all - DI?"
created rule sets are semantically equiv- - =
alent, we envision a system that enables Rule set with variability-based rules

users to edit rules in a convenient repre-
sentation and to automatically derive a
highly efficient one.

The distinguishing factors of this approach, compared to merge-refactoring
approaches in the PLE domain [14-16], are its ability to detect overlapping
portions rather than pairs of similar elements and to create multiple output VB
rules rather than one single-copy representation of all rules. These factors allow
us to address the performance and maintainability issues related to cloning.

Fig. 1. Overview of RuleMerger

Contributions. This paper makes the following contributions: (1) It presents
a novel merge-refactoring approach for AGT-based model transformation rules.
(2) Tt formally proves the correctness of the approach, showing the equivalence
of the produced VB rules to their classical counterparts. (3) It instantiates the
approach by providing a novel merge construction algorithm and harnessing

124

D. Striber et al.

A: pullUp(src, trg, m) D: move(src, trg, m)
«preserve» 1 “%’;ﬁzﬁé/;m «preserve» 2 «preserve» 11 “U’FSMVU“ «preserve» 12 <\'W§'>CWC” «preserve» 13
:Class :Class :Class 1elds :Field ype :Class
=name=src —name=trg =name=src = —name=trg
«delete» «create» ~—___ «delete» «create»
methods methods ~methods methods
«preserve» 3 “sl«preserve» 14
:Method :Method
=name=m =name=m
B: pushDown(src, trg, m) E: moveAndCreateDelegate(src, trg, m)
«preserve» 4 ‘“%’;tbeﬂé/se” «preserve» 5 «preserve» 15 ‘f\'D'F'Slt('jVVE” «preserve» 16 ‘*fpf;‘beWt'” «preserve» 17
:Class :Class :Class 1elds :Field ype :Class
=name=src =name=trg =name=src & =name=trg
«delete» «create» «create» T “delﬁti” «creﬁtz»
methods methods methods ~methods methods
«preserve 6 «create» 19 Tfepreserver 18
2serve» « »
:Method
:Method :Method
=name=m
=name=m =name=m
C: pushDownWithAbstract(src, trg, m) F: moveAndCreateDeprecatedDelegate(src, trg, m)
«preserve» 7 “%r:t;%'a/:” «preserve» 8 «preserve» 20 “D’f‘_‘e‘ﬁjfs\’*"” «preserve» 21 <<prf%eév9>> «preserve» 22
:Class :Class :Class ! :Field yp :Class
=abstract=true =name=trg =name=src > =name=trg
=name=src ~_
N «create» T~ «delete» «create»
«create» S «create» T
methods «det‘lst%»\\ methode methods —mgthods methods
methods
«create» 0 «preserve» 9 «create» 25 ;;’\Cgtegé%: «create» 24 sl «preserve» 23
:Method :Method :Method :Annotation :Method
= =
abstract=true =name=m =name=m =value="Dep" =name=m
=name=m

Fig. 2. Original transformation rules.

state-of-the-art clone detection and clustering techniques. (4) It empirically
shows that the approach allows producing VB rules being superior to their
classical counterparts in terms of execution time and the amount of contained
redundancy.

The rest of this paper is structured as follows: Sect. 2 introduces a running
example. In Sect. 3, we fix preliminaries. In Sect. 4, we outline the approach and
argue for its correctness. Section5 reports on our instantiation of RuleMerger.
Section 6 presents our evaluation. In Sects. 7 and 8, we discuss related work and
conclude.

2 Running Example

Consider a set of model transformation rules aimed at improving the structure
of an existing code base by using refactoring [17]. Figure 2 shows six refactoring
rules expressed in an abstract syntax notation [2]. The rules describe several
simple ways of relocating a method between different classes. We present the
rules in an integrated form, with the left- and right-hand sides of the transfor-
mation being represented in one graph. The left-hand side of a rule comprises
all delete and preserve objects. The right-hand side contains all preserve and
create objects.

RuleMerger: Automatic Construction of VB Model Transformation Rules 125

Rule A takes as input two classes, one of them sub-classing the other, and a
method. Each of these input objects is specified by its name. The rule moves the
method from a sub-class to its super-class, by deleting it from the sub-class and
adding it to the super-class. Similarly, rule B moves a method from the super-
class to one of its sub-classes. Rule C' also moves a method from the super- to a
sub-class, but, in addition, creates an abstract method with the same name in
the super-class. Rules D, E and F move a method across an association. The
latter two rules also create a “wrapper” method of the same name in the source
class. Rule F' uses an annotation to mark this “wrapper” method as deprecated.

Such rule sets are often created by cloning, that is, copying a seed rule and
modifying it to fit the new purpose. We consider the merge-refactoring of a rule
set created using cloning. The result is a rule set with variability-based (VB) rules
in which the common portions are unified and the differences are explicated, as
shown in Fig.3. Specifically, rules B and C' are merged, producing a new VB
rule B+ C. Rules D, E, and F are merged into D + E + F. Rule A remains as is.
Each VB rule has a set of wari-

ation points, corresponding to the A: pullUp(src, trg, m) FE A
names of the original rules: Rule 2 sery 2
. . . . extends .
B+ C has the variation points Class__ Class
L. =name=src —name=trg
B and C. In addition, each rule
. . . «delete»\ «create»
has a wariability model specifying methods \ methods
relations between variation points, e)
. . :Method
such as their mutual exclusion: cnamesm
B+ C has the variability model
B+C: pushDown(src, trg, m) xor(B,C)
zor(B,C). VB rules are configured
. 29 30
by binding each variation point Class extends Class
. . =abstract=trueci = =
to either true or false. Portions mamessre e hame=tg
. ~— « »
of VB rules are annotated with «create» ~~_methods «create»
o R method ic] methods
presence conditions. These portions «creater @32 ~
. :Method &l
are removed if the presence con- e :Method
dition evaluates to false for the Sname=m = hame=m
given CODﬁgU.I‘a.tiOIl. Element #32 D+E+F: move(src, trg, m) xor(D,E,F)
and its incoming edge, both anno- 5| cpreser | pre 3
. . . jelds |.c: ype |,
tated with C, are removed in the | - Held R
configuration {C=false, B=true}. . «deleter .
«create» '*7,77; methods «create»
These VB rules offer several benefits methodsien — methods
w.r.t. maintainability: The amount | [ccreater mniss|, (Cieater [icreater w37 | 3
f d d . d d . :Method :Annotation :Method
of redundancy is reduced, ensuring | = neom —value="Dep" —namecm

consistency between variants during
changes; bugs are fixed in one place.
The total number of rules is smaller.

In this example, the user selects and configures one of theses rule at a time, to
derive one specific rule variant — a process similar to that in PLE approaches [11].
In an alternative use-case, all rules of a rule set may be applied simultaneously.
Configurations can then be determined automatically by the transformation

Fig. 3. Variability-based rules.

126 D. Striber et al.

engine [9], leading to considerable performance savings: The application sites or
matches for the common portions are identified first and used as starting points
for matching the variable portions. Such cases are demonstrated in Sect. 6.

3 Preliminaries: Variability-Based Model Transformation

We now give preliminaries, starting with simple transformation rules.

Definition 1 (Rule). A rule r = L &7 % R consists of graphs L, I and R,
called left-hand side, interface graph and right-hand side, respectively, and two
injective graph morphisms, le and ri. A rule is connected iff, treating all edges
as undirected, YG € {L, R} there is a path between each pair of nodes in G.

The rules in Fig. 2 follow this definition. Elements of I are annotated with the

action preserve, elements of L\ le(I) and R\ ri(I) with delete and create.
Given a rule, a subrule encapsulates a subset of its actions on a substructure.

To identify actions on substructures of one rule, we talk about subrule embed-

dings. For clone detection, the subrule relation must capture common actions on

common patterns in different rules — we then talk about subrule morphisms.

Definition 2 (Subrule morphism). Given a pair of rules ro = (Lg deo Iy =2

leq

Ro) and r1 = (L, <= I} ™% Ry) with injective mappings le;,ri; for i € {0,1},
a subrule mapping s : 19 — r1, s = (81, S1,SR) consists of injective mappings
sy Lo — L1, sy : Iy — Iy, and sg : Ry — Ry such that in the diagram in
Fig. 4 (1) and (2) commute. In addition, the intersection of sy, (Lo) and ley(I1)
in Ly as well as the intersection of sgr(Rg) and riy(I1) in Ry is isomorphic to Iy.
Moreover, Ly — (sp.(Lo) — sr(leo(1o))) is a valid graph.

Subrule mapping s is called a subrule embedding if all of its morphisms
sL, s1, and sg are inclusions. Given two subrule embeddings s : ro — r1 and
s ry — i, we have that s C ' if there are subrule embeddings to : 1o — r{ and
t1 11 — 1] with ' oty =t 0s.

The conditions prefaced with “in addition“ ensure that a subrule always performs
the same actions on related elements as the original rule and that the larger
pattern of the original rule does not prevent a subrule to be applied.

For example, in Fig.2, B is a sub-
rule of B+ (C since B can be injec-
tively mapped to B + C. The actions on
the original and mapped elements are
always the same.

We capture variability in rule sets | r'= 1 «
by propositional expressions over a fixed
set of independent wvariation points,
calling these expressions variability Fig. 4. Subrule morphism.
conditions.

l .
ro = Lot Jo—"0 s Ry

I

i1

RuleMerger: Automatic Construction of VB Model Transformation Rules 127

Definition 3 (Language of variability conditions). Given a set of atomic
terms V', called variation points, Ly is the set of all propositional expressions
over V, called variability conditions. A variability configuration is a total func-
tion cfg : V — {true, false}. cfg satisfies a variability condition ve if ve eval-
uates to true when each variation point vp in ve is substituted by cfg(vp). A
variability condition is valid if there is a variability configuration satisfying it.
Given two variability conditions X and Y, X is stronger than Y iff X — Y.

For example, in the rule D+ E+ F in Fig.2, V. = {D, E, F}. True, E, and
EVF are valid variability conditions; EA—F is not valid. A possible configuration
might bind the variation points D to false, E to true and F to false, which would
satisfy the variability condition E'V F.

In a VB rule, variability is formalized by means of subrule embeddings, each
describing a single variant. The intersection of subrule embeddings is the part
of the rule where all variants overlap, i.e., the base rule. Each subrule has a
variability condition determining when this variant shall be active. Moreover, the
entire rule has a variability model. The base rule does not have any annotations.

Definition 4 (Variability-based rule). Given Ly, a VB rule # = (1, S, v, pc)
consists of a rule r, a set S of subrule embeddings to r, a variability condition v,
called variability model, and a function pc : SU{id,.} — Ly . Function pc defines
presence conditions for subrules s.t. pc(id,) is true and Vs C s’ : pe(s’) =
pe(s). The base rule is determined by the intersection of all subrule embeddings.

Rule D+ FE+F in Fig.3 is a compact representation of a VB rule over
variation points D, E, and F with various subrule embeddings such as
{sE,SEvF,SDAE, ---}. The base rule comprises all elements with the presence
condition true: i.e., objects without annotations such as #33-36, and their rela-
tions. Elements #37 and #38 have non-true presence conditions and are there-
fore not present in all subrule embeddings. To ensure equivalence to the original
three rules, the variability model v specifies mutual exclusion between variation
points: v = zor(vp, Vg, VF).

To show the correctness of our approach, we consider the flattening of a VB
rule — an operation for generating the individual “flat” rules it represents.

Definition 5 (Flattening of a VB rule). Let a VB rule # = (r, S, v, pc) over
Ly be given. For each variability condition c in Ly, the following holds: if ¢ A v
is valid, S, C S is a set of subrule embeddings iff Vs € S : s € S, if c = pc(s).
Merging all subrule embeddings in S. by first computing the intersections of all
pairs of embeddings and merging them along these interfaces afterwards, yields
a subrule embedding r. — r. r. is the flat rule for condition c. Flat(+) is the set
of all flattened rules: {r. | c € Ly A (c Av) is valid}.

For example, consider just the rule D + F + F in Fig. 3. ¢ A v becomes valid
if zor(cfg(vp),cfg(vg),cfg(vr)) is true. Hence, Flat(D+ E+ F) = {D, E, F}.
In [9], it is shown that the application of a VB rule is equal to the application
of flattened rules. This result is key to argue for the correctness of RuleMerger.

128 D. Striber et al.

4 Framework

Given a rule set with similar rules, RuleMerger, outlined in Fig. 1, aims to find an
efficient representation of these rules using a set of variability-based (VB) rules.
At its core is a framework of three components called clone detection, clustering
and merge construction. We specify the input and output of each component and
show correctness of RuleMerger based on these specifications. Each component
may be instantiated in various ways, as long as its specification is implemented.

4.1 Clone Detection

Clone detection allows identifying overlapping portions between the input rules.
We use clone detection as a prerequisite for both clustering and merge con-
struction: Rules with a large overlap are clustered together. Merging overlap-
ping portions rather than individual elements allows us to preserve the essential
structural information expressed in the rules. Moreover, the execution perfor-
mance of the created VB rules can be considerably improved by restricting clone
detection to connected portions: Connected patterns can be matched much more
efficiently than multiple independent patterns [18].

Formally, given a set of rules, a clone is a largest subrule that can be embed-
ded into a subset of this rule set. To account for the optional restriction of clone
detection to connected portions, we analogously define connected clones based
on largest connected subrules. To establish a well-defined merge construction,
we define a compatibility relation, ensuring that two clones never assign the same
object contained in one rule to diverging objects contained in another one.

Definition 6 (Clone group). Given a set R = {r;|i € I} of rules, a (con-
nected) clone group CGr = (r,C) over R consists of a (connected) rule re,
called clone, and set C = {¢;|i € I} of subrule mappings ¢; : r. — r; iff there is
no set C' = {c}|i € I} of subrule mappings c; : . — r; with a subrule mapping
i:7e — 1., where rl. is a (connected) rule.

Given a clone group CGr and a subset R' C R, CGxr is reduced to R/,
written Red(CGr,R’) = (r¢,C"), by C' = C\{¢;|r; ¢ R'}. Clone groups CGgr =
(re,{cklk € K}) and CGr = (r,{q|l € L}) with R C R and K C L are
compatible if there is a subrule mapping in : r. — v, with Vk € K : ¢, = ¢}, oin.

Table1 shows the result of apply- Table 1. Clone groups, as reported by
ing clone detection to rules shown in clone detection.
Fig. 2. Each row denotes a clone group,
comprising a set of rules and a clone Name | Rules Size
present in each of these rules. Clones CG1 |{E, F} 10
are indicated by their size, calculated as CG2 |{D, E, F}
the total number of involved nodes and
edges. The rows are ordered by the size CG3 |{C, E, F}
of the clone. In particular, CG2 repre- CG4 {B,C}
sents objects #15-18, #20-23 and their CG5 |{A,B,C, D, E, F}

TS| | 0o

RuleMerger: Automatic Construction of VB Model Transformation Rules 129

interrelations. CG1 incorporates objects #19 and #25 and their incoming rela-
tionships in addition. Clone groups CG1 and CG2 are compatible: The clone
of CG2 extends the one of CGl. CG2 can be reduced to rule set {E, F} by
discarding the embedding into rule D. CG2 and CG3 are not compatible: their
rule sets are not in subset relation. Each clone group in Table 1 is connected.

The output of clone detection is a set of clone groups — in the example, all
rows of Table 1. These clone groups may be pair-wise incompatible.

4.2 Clustering

As a prerequisite for merge construction, we introduce clustering, an operation
that splits a rule set into a cluster partition based on similarity between rules.
Its input are a set of rules and a set of clone groups over these rules.

Definition 7 (Cluster). Given a set R of rules and a set CG of clone groups
over R, a cluster Cl over R is a set of clone groups CGr: C CG over each
subset R' C R. Given a partition P of R, a cluster partition is a set Par(Cl)p
of clusters over Cl where for each P € P there is a cluster Clp € Par(Cl)p
comprising clone groups Red(CGr:, P) and CGp: C CGp over subsets P’ of P.
Each cluster Clp € Par(Cl)p is called a sub-cluster of CI.

In the example, there is a cluster partition over the rule set with sub-clusters
over {A}, {B, C}, and {D, E, F}. We consider the sub-cluster over {D, F, F}:
The clone groups over this set are obtained by reducing the mappings of {CG2,
CG5} to rules D, E and F, i.e., discarding all mappings not referring to either
rule. To obtain the clone groups over subset {E, F'}, we include CG1 and CG3
as well and reduce the mappings of {CG1, CG2, CG3, CG5} to E and F.

The output of clustering is one clustering partition over the rule set. Given
multiple possible partitions, the instantiation of clustering has to choose one.

4.3 Merge Construction

Merge construction takes a cluster partition over the entire rule set as input.
Each sub-cluster becomes a VB rule in the output. The available information
on overlapping, given by clone groups, is considered to merge corresponding
elements. Merging requires that the clone groups over each sub-cluster are com-
patible. Incompatible clone groups have to be discarded before merging, a non-
trivial task requiring a strategy to determine what to discard. The instantiation
in Sect.5 provides such a strategy. To maintain traceability between original
and new rules, we define a variation point for each original rule. The variability
model is set over the variation points, specifying that exactly one of them is
valid at a time.

Definition 8 (Cluster merge). Given a cluster partition Par(Cl)p over a
cluster Cl over R, each sub-cluster Clp € Par(Cl)p is merged to a variability-
based rule # = (r, S, v, pc) by merging all rules in P = {r;|j € J} over compatible

130 D. Striber et al.

clone groups in Clp. The result is a rule r. S = {s; : r; — r} consists of all
resulting subrule embeddings. Variation points V' are determined by the rules
in P:' V = {vj]j € J}. Moreover, v = Xorje;(v;) and pc(s;) = vj. We use
the notation Merge(Clp) to indicate # and Merge(Cl) = {Merge(Clp)|Clp €
Par(Cl)p}.

Rules are merged over compatible clone groups by gluing those rule elements
that are in relation via subrule mappings. This relation is extended to an equiv-
alence relation, so in particular, the transitive closure is considered as well. All
elements not in the relation are merged in disjointly.

In the example, considering all clone groups identified for the sub-cluster over
{D, E, F}, CG1-2 are compatible; since we consider the reduction to {D, E, F}
they are incompatible to CG3 and CG5. Merging the sub-cluster based on clone
groups CG1-2 yields a VB rule isomorphic to D + E + F in Fig. 3. The variability
model v is set to zor(cfg(vp), cfg(ve), cfg(vr)). In the compact representation of
VB rules shown in Fig. 3, the presence condition of an element is the disjunction
of all variation points whose corresponding subrules contain the element.

As a key well-definedness result, we obtain that merging a rule set and then
flattening it produces the original set. We provide a proof in [19].

Theorem 1 (Correctness of rule merger). For any cluster Cl over a set R
of flat rules, we have Flat(Merge(Cl)) = R.

Note that the opposite operation, first flattening a VB rule set and then
merging the resulting flat rules, may not yield the same VB rule set: In general,
there are several VB rules with the same flattening. In fact, Theorem 1 ensures
that all VB rule sets created by instantiations of RuleMerger have the same
flattening, i.e., they are semantically equivalent.

5 Instantiating RuleMerger

We now present our instantiation of the RuleMerger framework based on state-
of-the-art clone detection and clustering algorithms and a new merge construc-
tion algorithm. We describe two input parameters enabling customizations with
respect to specific quality goals. For implementation details, see [19].

Clone Detection. We considered the applicability of three techniques for clone
detection, each of them allowing to identify connected clones as per Definition 6.
First, we applied gSpan, a general-purpose graph pattern mining tool [20]. Using
this tool, we experienced heap overflows even on small rule sets. Second, we re-
implemented eScan [21], which terminated with insufficient memory errors for
larger rule sets. While our implementation could be flawed, [22] reports on a sim-
ilar experience with their re-implementation of eScan. Finally, we applied Con-
QAT [22], a heuristic technique which delivers fast performance at the expense
of precision. It was able to analyze rule sets of 5000 elements in less than 10
seconds while reporting a large portion of relevant clones. We used ConQAT in
our experiments on realistic rule sets.

RuleMerger: Automatic Construction of VB Model Transformation Rules 131

We provide a customization to increase the speed-up produced by the con-
structed rules: The performance-critical task in rule application, matching, con-
siders just the rule left-hand sides. Consequently, performance is optimized when
rules are merged based on their overlap in left-hand sides. To this end, a Boolean
parameter restrictToLhs allows to restrict the rule portions considered by clone
detection. When set to true, it only finds and reports clones for left-hand sides.

Clustering. From a large variety of approaches to cluster a set of objects based
on their similarity [13], we chose AverageLinkage, a hierarchical agglomerative
method, due to its convenient application to our approach. It assumes a distance
function — a measure of similarity between the clustered elements. We consider
the similarity of rule pairs, defining it as the size of the rules’ largest common
clone divided by their average size. In the example, similarity of rules F and
F is calculated based on CG1, evaluating to i—‘l) = 0.91. It further assumes a
customizable cutting-level threshold parameter that we describe in what follows.

The method builds a cluster hierarchy, often

visualized using a dendrogram — a tree diagram ——= RuleA
: ; : s Rule B

rranging the in lemen hown in Fig.5.
arranging the p.uteeehzt's,assow 2.5 —:Rulec
Tree nodes describe proximity between rule sets. =] Rule D
The “lower” in the tree two nodes are connected, I_E: Rule E
Rule F

the more similar are their corresponding rules. For
example, rule D is similar to £ and F', but the simi-
larity is not as strong as that between just £ and F'.
The clustering result is obtained by “cutting” using
the cutting-level threshold, marked by a vertical bar
in Fig. 5, and collecting the obtained subtrees.

Fig. 5. Cluster dendrogram,
as reported by clustering.

Merge Construction. We propose a custom algorithm for merge construction.
It proceeds in two steps: determining what is to be merged and how to do
the merging. The first step, called merge computation, takes as input the cluster
partition created by clustering (see Definition 7). To ensure a well-defined merge,
merge computation refines the given cluster partition by discarding incompatible
clone groups (Definition6), retaining

sub-clusters for which a set of compat-

El Rule L
ible clone groups is available. To this = variablityModel : EString

end, we apply a greedy strategy that

aims to capture a high degree of overlap. (0 mergelules 1211 1hs
Each sub-cluster becomes a MergeRule E MergeRule (0- 11 masterRule [1l1] rhs
in the output of merge computation, a [0.4] rules

[H Graph L
[0..*] el

MergeSpecification. The second step,
merge refactoring, creates VB rules

. . cps . leEl *
according to this MergeSpecification | o MergeRuleElement [0.7] elements
as per Definition 8. % Graphétement 2

Figure 6 specifies a metamodel for = presenceCondition : EString
[0..*] referenceEl

the interface between merge compu-
tation and merge refactoring. Merge

. . . Fig. 6. MergeSpecification metamodel.
Specification, corresponding to the

132 D. Striber et al.

overall rule set, acts as an overarching container for a set of MergeRules. One
MergeRule identifies a sub-cluster that is to be merged into a VB rule. In order
to preserve the graphical layout of the contained rules, one rule is stated as mas-
terRule; this rule is used as a starting point in creating the VB rule. To retain as
much layout information as possible, it is best to select the largest input rule as
the masterRule. A MergeRule specifies all elements to be unified in the created
VB rule. For each element in the resulting rule, a MergeRuleElement is defined,
referring to the elements to be represented by it. In a consistent specification,
each rule element is referred to by exactly one MergeRuleElement.

Figure7 sketches
the merge computation
algorithm. The output
MergeSpecification

1: function CoMPUTEMERGE(c! : Cluster[])

2 var mergeSpecification = ()

3 for each c < cl do

4: var cg = c.cloneGroups

is created in line 2 and 5, while ¢cg # 0 do > Create a new sub-cluster
incrementally filled by ¢: var top = FINDTorCLONEGROUP(cg)
considering each clus- 7 var mergeRule = CREATEM ERGERULE(top)
ter. In each iteration of 8 var considered — {top}

the loop starting in line 9 while nasCompATIBLE(considered, cg) do
5, a new sub-cluster is 10: var comp = FINDTOPCOMPATIBLE(cg)
constructed. We apply Ll var temp — CREATEMERGERULE(comp)
a greedy strategy to 12: IN'l‘l*_.}GRA'I‘E(IneI'geRllle, temp)

13: considered.ADD(comp)

integrate as many com- " end while

patll.)le clone g‘rouPS'aS 15: mergeSpecification.rules.ApD(mergeRule)
possible, starting with 16: ¢g.REMOVEMAPPINGS(mergeRule.rules)

the top — the largest q7. cg.REMOVEALLEMPTY

available — clone group 1g: cg.REMOVEALL(considered)

in lines 6-8 and incre- 19: end while > Done with current sub-cluster
mentally adding the 20: end for

next largest compatible 21: return mergeSpecification

ones in 9-14. For each 22: end function
clone group, we tem-
porarily create a new
MergeRule, integrating
its contents with the result MergeRule in line 12. When no more compatible
clone groups are found, we add the MergeRule to the result and discard map-
pings that concern its rules from the remaining clone groups, from which we
remove all empty and already considered clone groups, in lines 15-18. We repeat
this process until no clone groups are left to consider.

In the example, considering cluster {D, E, F'} containing clone groups CGl1,
CG2, CG3, and CGH, the largest one CG1 is chosen as top group in line 6.
In line 7, a MergeRule is created based on CG1, specifying the merge of the
involved rules F and F. One MergeRuleElement is created for each pair of
clone elements and for each non-clone element, e.g., one for {#15, #20} and
one for {#24}. In lines 9-14, CG2 is identified as the next largest compatible
clone. Its temporary merge rule, specifying the merge of rules D, F and F,

Fig. 7. Merge computation.

RuleMerger: Automatic Construction of VB Model Transformation Rules 133

is created. The two merge rules are integrated by establishing that each rule
element finally belongs to exactly one MergeRuleElement, which involves the
deletion of redundant MergeRuleElements. Then, as no compatible clone groups
can be found, the MergeRule comprising the information of CG1 and CG2 is
added to the resulting MergeSpecification. In lines 17-18, the mappings of
CG3 and CG5 for D, E and F are removed, leaving them empty and leading to
their discarding.

Based on a given MergeSpecification, the merge refactoring procedure fol-
lows Definition 8 (see [19] for a detailed description): non-master-rule elements
are moved to the master rule; non-master rules are deleted; a variability model
is set for the master rule; and a presence condition is set for each contained
element.

6 Evaluation

We focus on two research questions: RQ1: How well does RuleMerger achieve
its goal of creating high-quality rule sets? RQ2: What is the impact of design
decisions made by RuleMerger on the quality of the created rules?

To answer these questions, we applied our instantiation of RuleMerger on
rule sets from two real-life model transformation scenarios, called OCL2NGC
and FMRECOG, and one adapted from literature, called COMB. The main quality
goal in these scenarios is performance: OCL2NGC and COMB were considered as
benchmarks in [9] and [23]; FMRECOG is an automatically derived rule set used in
the context of model differencing [24], a task that necessitates low latency. Thus,
we optimized the two input parameters described in Sect. 5 for performance. We
describe the rule sets and associated test input models in [19].

We assess the quality of the produced rules with respect to performance and
reduction in redundancy. To quantify performance, we applied the rule sets on
all input models and measured cumulative execution time on all input mod-
els. We repeated each experiment ten times to account for variance. To quan-
tify redundancy reduction, we measured the relative decrease in the number of
rule elements, based on the rationale that we produce semantically equivalent,
yet syntactically compacted rules (Theorem 1). As discussed in Sect. 2, reducing
redundancy in rules is related to benefits for their maintainability.

6.1 Methods and Set-Up

To address RQ1, we investigated three subquestions: RQ1.1: How do VB rules
created by RuleMerger compare to the equivalent classical rules? RQ1.2: How
do VB rules created by RuleMerger compare to those created manually? RQ1.3:
How do the VB rules created by RuleMerger scale to large input models? For
RQ1.1, we considered all three rule sets. For RQ1.2, we considered the scenario
where a manually created rule set was available: OcL2NGc [9]. For RQ1.3, we
considered the COMB scenario, as it features a procedure to increase the input

134 D. Striber et al.

model automatically (increasing the size of the input grid [23]); we measured the
impact of model size on execution time until we ran out of memory.

To address RQ2, we investigated two questions: RQ2.1 What is the impact
of clone detection? RQ2.2 What is the impact of clustering? For RQ2.1, we
randomly discarded 25 %—100% of the reported clone groups. For RQ2.2, we
replaced the default clustering strategy by one that assigns rules to clusters ran-
domly. We measured the execution time of the rules created using the modified
input.

As clone detection techniques, we applied ConQat [22] on OcL2NGc and
FMREcCoOG, as it was the only tool scaling to these scenarios. We applied
gSpan [20] on the COMB rule set as it allowed us to consider all clones instead of
an approximation. The input parameters were optimized independently for each
scenario by applying the technique repeatedly until the execution time was min-
imized. Moreover, the Henshin transformation engine features an optimization
concerning the order of nodes considered during matching. To avoid biasing the
performance of the FMRECOG rule set by that optimization, we deactivated it.
We ran all experiments on a Windows 7 workstation (3.40 GHz processor; 8 GB
of RAM).

Table 2. Results for RQ1.1 and RQ1.2: Quality characteristics of the rule sets.

Size Ezecution time (sec.)

Scenario Rule set #Rules | #Elements | Total | Sd Median | Sd
OcL2NGe Classic 36 3045 916.6 |96.3 |46.0 7.1

Manual merge | 10 1018 181.8 |27.1 |10.8 2.4

RuleMerger 12 2147 5.8 0.4 0.4 0.1
FMREcCoG Classic 53 4626 799.9 414 |63.2 3.5

RuleMerger 12 2790 2114 |46.0 |15.9 0.3
ComB Classic 6 252 1.39| 0.09| 0.12 0.01
NoMATcH RuleMerger 1 62 0.24| 0.09| 0.02 0.01
ComB Classic 6 252 10.4 0.18] 0.83 0.02
SEVERALMATCHES | RuleMerger 1 62 14.2 0.26 | 1.07 0.05

6.2 Results and Discussion

Table 2 shows the size and performance characteristics for all involved rule sets.
Execution time is provided in terms of the total and median amount of time
required to apply the whole rule set on each test model, each of them paired
with the standard deviation (SD). The number of elements refers to edges and
nodes, including both left-hand and right-hand side of the involved rules.

RQ1.1. The execution time observed for OCL2NGC after the RuleMerger treat-
ment showed a decrease by the factor of 158. This substantial speed-up can be
partly explained by the merging component of RuleMerger that eliminates the

RuleMerger: Automatic Construction of VB Model Transformation Rules 135

anti-pattern Left-hand side not connected (LhsNC) [18]: In the automatically
constructed VB rules, connected rules are used as base rules, while in the clas-
sic rules, we found multiple instances of LhsNC. In the FMREcoG and COMB
rule sets, the speed-up was less drastic, amounting to the factors of 4.5 and 5.8,
respectively. When applying the COMB rule set on the SEVERALMATCHES sce-
nario, which involves an artificial input model with many possible matches [23],
execution time increased by the factor 1.36, showing a limitation of VB rules: If
the number of base matches is very high, the initialization overhead for extending
the base matches outweighs the initial savings. This overhead may be reduced by
extending the transformation engine implementation. The amount of redundancy
was reduced by 29 % in OcL2NGc, 40 % in FMRECOG, and 75 % in COMB.

RQ1.2. In OcL2Ncc, we found a speed-up by the factor of 36. To study this
observation further, we inspected the manually created rules, again finding sev-
eral instances of the LhsNC' antipattern. This observation gives rise to an inter-
esting interpretation of the manual merging process: While the designer’s explicit
goal was to optimize the rule set for performance, they implicitly performed the
more intuitive task of optimizing for compactness. Indeed, the amount of reduced
redundancy in the manually created rules (67 %) was significantly greater than in
those created by RuleMerger (29 %), highlighting an inherent trade-off between
performance- and compactness-oriented merging: Not including overlap elements
into the base rule leads to duplications in the variable portions.

RQ1.3. As shown in Fig.8, the last sup- . _
ported input model was a 480x480 grid for ;\C,Efj:zsnﬂreesated l

2000

both rule sets. We observed that the ratio by RuleMerger
between the execution time of applying the

1500
L

classic (dark-gray bars) and the VB rules

1000
I

(light-gray bars) stayed the same in each iter-

50

time, the speed-up provided by the VB rules)
became more important as the size of input o
models increased.

ation, independent of the size of the input
grid: The VB rules were always faster by the g
factor of 6. In terms of the total execution L

Fig. 8. Results for RQ1.3: Execu-
RQ2.1. As presented in Table3, the execu- tion time in sec. (y) related to
tion time for the FMRECOG rule set increased length of grid (x).
monotonically when we increased the amount of discarded overlap, denoted as d.
OcL2NccC behaved almost monotonically as well. The slightly decreased execu-
tion time reported for d=0.25 can be explained by the heuristic merge construc-
tion strategy. While the merge of rules based on their largest clones might be
adequate in general, in some cases it may be preferable to discard a large clone in
favor of a more homogeneous distribution of rules. The reported execution time
for d=0.75 was higher than that for the set of classic rules. In this particular
case, small clones were used during merging, leading to small base rules, which
resulted in many detectable matches and thus in a high initialization overhead

136 D. Striber et al.

Table 3. Results for RQ2.1: Impact of Table 4. Results for RQ2.2: Impact of
considered overlap on execution time clustering strategy on execution time
(sec.). (sec.).

d: Discarded portion Clustering strategy
Scenario 0.0 [0.25]0.5 |0.75| 1.0 Scenario | AvLinkage | Random
OcL2NGc | 5.8 | 5.6 |251]981 917 OcL2NGce | 5.8 80
FMREcoG | 211|252 | 604|690 | 800 FMREcoG | 211 788

for extending these matches. To mitigate this issue, one could define a lower
threshold for clone size.

RQ2.2. As indicated in Table4, the employed clustering strategy had a signifi-
cant impact on performance, amounting to factors of 13.7 for the OcL2NGC and
3.7 for the FMREGOC rule set. Interestingly, in OCL2NGc, random clustering
still yielded better execution times than manual clustering did (see Table2) —
this is related to the fact that RuleMerger removed the LhsNC' antipattern. In
FMREcCOG, randomly clustered rules were comparable to the classic ones.

6.3 Threats to Validity and Limitations

Factors affecting external wvalidity include our choice of rule sets, test models
and matching strategy, and the capability to optimize the two input parameters.
While the considered rule sets represent three heterogeneous use cases, exam-
ples to show that our approach scales to more diverse and larger scenarios are
required. To ensure that our test models were realistic, we employed the original
test or benchmark models. The performance of rule application depends on the
chosen matching strategy, in our case, mapping this task to a constraint satisfac-
tion problem [25]. We aim to consider the effect of other strategies in the future.
Parameter tuning requires the existence of realistic test models. If a rule set is
designed for productive use, it is reasonable to assume such models to exist.

With regard to construct validity, we focus on one aspect of maintainability,
the amount of redundancy. Giving a definitive answer on how to unify rules for
their optimal maintainability is outside the scope of this work. Specifically, sev-
eral unrelated rules may be unified, impairing understandability. To mitigate this
issue, we recommend to inspect the clustering result before merging. Further-
more, our approach increases the size of individual rules, a potential impediment
to readability [26]. We believe that this limitation can be mitigated by tool sup-
port. Inspired by related approaches to address the readability issues associated
with #ifdef directives [27,28], we aim to provide editable views, representing
portions of a VB rule that correspond to user-selected configurations.

7 Related Work

Our work is related to a number of approaches that create feature-annotated rep-
resentations of products lines. In [29], an approach to merge statecharts based

RuleMerger: Automatic Construction of VB Model Transformation Rules 137

on structural and behavioral commonalities is applied to models of telecommu-
nication features. In [16], an approach for merging and identifying variability in
Matlab product variants is proposed. In [14,30], a formal merge framework is
defined and instantiated for class models and state machines. It is studied how
a number of desired qualities of the resulting model can be obtained. In [31,32],
a technique for the reverse engineering of variability from block diagrams based
on their data-flow structures is introduced. In [15], a language-independent app-
roach for the reverse-engineering of product lines is proposed. These approaches
operate on the basis of an element-wise comparison using names and as well as
structural and behavioral similarities. In model transformation rules, the essen-
tial information lies in isomorphic structural patterns. To our knowledge, our
approach is the first that utilizes clone detection to identify such patterns.

Our work can be considered a performance optimization for the NP-complete
problem of transformation rule matching [33]. Earlier approaches in this area are
mostly complementary to ours as they focus on the matching of single rules [34—
37]. Mészéros et al. [38] first explored the idea of considering overlapping por-
tions in multiple rules. Their custom technique for detecting these sub-patterns,
however, did not scale up to complete rule sets. Instead, they considered just
two rules at once, enabling a moderate performance improvement of 11 %. In
our approach, applying clone detection and clustering techniques gives rise to an
increased speed-up. In, [39] shared sub-patterns are considered dynamically dur-
ing incremental pattern matching to mitigate the memory issue of Rete networks.
Yet, the authors report on deteriorated execution times: The index tables map-
ping sub-patterns to partial matches grow so large that performance is impaired.
Multi-query optimization has also been investigated for relational databases [40].
In graph databases, only single-query optimization has been considered [41].

The maintainability effects of cloning have been studied intensively [14,42].
In an empirical study, Kim et al. [43] identified three types of clones: short-lived
clones vanishing over the course of few revisions, “unfactorable” clones related
to language limitations, and repeatedly changing clones where a refactoring is
recommended. We second the idea that an aggressive refactoring style directed
at short-lived clones should be avoided. Instead, targeting clones of the two
latter categories, we propose to apply our approach to stable revisions of the
rule set. Specifically, clones that were previously “unfactorable” due to the lack
of suitable reuse concepts may benefit from the introduction of VB rules. An
approach complementary to clone refactoring is clone management, based on a
tool that detects and updates clones automatically [44]. This approach has a
low initial cost, but requires constant monitoring. Further works propose the
refactoring of transformation rules towards pre-defined patterns [45], modular
interfaces [46], and abstract metamodels [47]. None of these considers clones.

8 Conclusion and Future Outlook

In this work, we introduced an approach for constructing variability-based (VB)
model transformation rules automatically. Our experiments showed that the app-
roach is effective: The created rules always had preferable quality characteristics

138 D. Striber et al.

when compared to classical rules, unless the number of expected matches was
very high. It is apparent that using the approach, the performance of model
transformation systems as well as redundancy-related maintainability concerns
can be considerably improved, making the benefits of VB rules available while
imposing little manual effort.

In the future, we aim to provide tool support to address the readability issue
brought by the increased amount of information in each rule. Moreover, we plan
to increase the expressiveness of VB rules. Covering all important transformation
features such as application conditions and amalgamation will make VB rules
applicable to the existing variety of model transformation languages [48-50].

Acknowledgements. We thank Felix Rieger and the anonymous reviewers for their
valuable comments on the present and earlier drafts of this manuscript.

References

1. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20(5), 42-45 (2003)

2. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation
approaches. IBM Syst. J. 45(3), 621-646 (2006)

3. Hermann, F., Gottmann, S., Nachtigall, N., Braatz, B., Morelli, G., Pierre, A.,
Engel, T.: On an automated translation of satellite procedures using triple graph
grammars. In: Duddy, K., Kappel, G. (eds.) ICMB 2013. LNCS, vol. 7909, pp.
50-51. Springer, Heidelberg (2013)

4. Mann, M., Ekker, H., Flamm, C.: The graph grammar library - a generic framework
for chemical graph rewrite systems. In: Duddy, K., Kappel, G. (eds.) ICMB 2013.
LNCS, vol. 7909, pp. 52-53. Springer, Heidelberg (2013)

5. Famelis, M., et al.: Migrating automotive product lines: a case study. In: Kolovos,
D., Wimmer, M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 82-97. Springer,
Heidelberg (2015)

6. Richa, E., Borde, E., Pautet, L.: Translating ATL model transformations to alge-
braic graph transformations. In: Kolovos, D., Wimmer, M. (eds.) ICMT 2015.
LNCS, vol. 9152, pp. 183-198. Springer, Heidelberg (2015)

7. Kusel, A., Schonbock, J., Kappel, G., Wimmer, M., Retschitzegger, W., Schwinger,
W.: Reuse in model-to-model transformation languages: are we there yet? Softw.
Syst. Model. 14, 537-572 (2013)

8. Blouin, D., Plantec, A., Dissaux, P., Singhoff, F'., Diguet, J.-P.: Synchronization of
models of rich languages with triple graph grammars: an experience report. In: Di
Ruscio, D., Varré, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 106-121. Springer,
Heidelberg (2014)

9. Striiber, D., Rubin, J., Chechik, M., Taentzer, G.: A variability-based approach
to reusable and efficient model transformations. In: Egyed, A., Schaefer, I. (eds.)
FASE 2015. LNCS, vol. 9033, pp. 283-298. Springer, Heidelberg (2015)

10. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Series
in Software Engineering. Addison-Wesley, Boston (2001)

11. Cgzarnecki, K., Antkiewicz, M.: Mapping features to models: a template approach
based on superimposed variants. In: Gliick, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422-437. Springer, Heidelberg (2005)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

RuleMerger: Automatic Construction of VB Model Transformation Rules 139

Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools: a qualitative approach. Sci. Comput. Program.
74(7), 470-495 (2009)

Xu, R., Wunsch, D., et al.: Survey of clustering algorithms. IEEE Trans. Neural
Netw. 16(3), 645-678 (2005)

Rubin, J., Chechik, M.: Combining related products into product lines. In: de Lara,
J., Zisman, A. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol.
7212, pp. 285-300. Springer, Heidelberg (2012)

Ziadi, T., Henard, C., Papadakis, M., Ziane, M., Le Traon, Y.: Towards a language-
independent approach for reverse-engineering of software product lines. In: SAC
2014, pp. 1064-1071. ACM (2014)

Ryssel, U., Ploennigs, J., Kabitzsch, K.: Automatic variation-point identification
in function-block-based models. In: GPCE 2010, pp. 23-32. ACM (2010)

Fowler, M.: Refactoring: Improving the Design of Existing Code. Pearson Educa-
tion India, New Delhi (2002)

Tichy, M., Krause, C., Liebel, G.: Detecting performance bad smells for Henshin
model transformations. In: AMT 2013, vol. 1077 (2013)

Striiber, D.: Model-driven engineering in the large: refactoring techniques for mod-
els and model transformation systems. Ph.D. thesis, Philipps University Marburg
pending publication (2016)

Yan, X., Han, J.: gspan: graph-based substructure pattern mining. In: ICDM 2003,
pp. 721-724. IEEE (2002)

Pham, N.H., Nguyen, H.A., Nguyen, T.T., Al-Kofahi, J.M., Nguyen, T.N.: Com-
plete and accurate clone detection in graph-based models. In: ICSE 2009, pp.
276-286. IEEE (2009)

Deissenboeck, F., Hummel, B., Juergens, E., Pfaehler, M., Schaetz, B.: Model clone
detection in practice. In: the 4th International Workshop on Software Clones, pp.
57-64. ACM (2010)

Varré, G., Schiirr, A., Varré, D.: Benchmarking for graph transformation. In: ISVL-
HCC 2005, pp. 79-88. IEEE (2005)

Biirdek, J., Kehrer, T., Lochau, M., Reuling, D., Kelter, U., Schiirr, A.: Reason-
ing about product-line evolution using complex feature model differences. Autom.
Softw. Eng. 1-47 (2015). Springer

Rudolf, M.: Utilizing constraint satisfaction techniques for efficient graph pattern
matching. In: Workshop on Theory and Application of Graph Transformations, p.
238. Springer Science & Business Media (1998)

Storrle, H.: On the impact of layout quality to understanding UML diagrams: size
matters. In: Dingel, J., Schulte, W., Ramos, 1., Abrahao, S., Insfran, E. (eds.)
MODELS 2014. LNCS, vol. 8767, pp. 518-534. Springer, Heidelberg (2014)
Kastner, C.: Virtual separation of concerns. Ph.D. thesis, University of Magdeburg
(2010)

Walkingshaw, E., Ostermann, K.: Projectional editing of variational software. In:
GPCE 2014, pp. 29-38. ACM (2014)

Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and
merging of variant feature specifications. IEEE TSE 38(6), 1355-1375 (2012)
Rubin, J., Chechik, M.: Quality of merge-refactorings for product lines.
In: Cortellessa, V., Varré, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793,
pp- 83-98. Springer, Heidelberg (2013)

Wille, D.: Managing lots of models: the famine approach. In: FSE 2014, pp. 817—
819. ACM (2014)

140

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

D. Striber et al.

Holthusen, S., Wille, D., Legat, C., Beddig, S., Schaefer, I., Vogel-Heuser, B.: Fam-
ily model mining for function block diagrams in automation software. In: SPLC
2014: Workshops, Demonstrations and Tools Companion, pp. 36-43. ACM (2014)
Atallah, M.: Algorithms and Theory of Computation Handbook. CRC, Boca Raton
(2002)

Varré, G., Friedl, K., Varré, D.: Adaptive graph pattern matching for model trans-
formations using model-sensitive search plans. ENTCS 152, 191-205 (2006)
Horvéth, A., Varrd, G., Varrd, D.: Generic search plans for matching advanced
graph patterns. Elec. Comm. of the EASST 6, 58 (2007)

Krause, C., Tichy, M., Giese, H.: Implementing graph transformations in the bulk
synchronous parallel model. In: Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS).
LNCS, vol. 8411, pp. 325-339. Springer, Heidelberg (2014)

Acretoaie, V., Storrle, H.: Efficient model querying with VMQL. In: CMSEBA
2014, pp. 7-16. CEUR-WS.org (2015)

Mészéros, T., Mezei, G., Levendovszky, T., Asztalos, M.: Manual and automated
performance optimization of model transformation systems. Int. J. Softw. Tools
Technol. Transfer 12(3-4), 231-243 (2010)

Varré, G., Deckwerth, F.: A rete network construction algorithm for incremental
pattern matching. In: ICMT 2013, pp. 125-140 (2013)

Sellis, T.K.: Multiple-query optimization. ACM Trans. Database Syst. (TODS)
13(1), 23-52 (1988)

Zhao, P., Han, J.: On graph query optimization in large networks. VLDB Endow-
ment 3(1-2), 340-351 (2010)

Kapser, C., Godfrey, M.W.: “cloning considered harmful” considered harmful. In:
Working Conference on Reverse Engineering, pp. 19-28. IEEE (2006)

Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An empirical study of code clone
genealogies. In: ACM SIGSOFT Software Engineering Notes, vol. 30, pp. 187-196.
ACM (2005)

Nguyen, H.A., Nguyen, T.T., Pham, N.H., Al-Kofahi, J., Nguyen, T.N.: Clone
management for evolving software. IEEE Trans. Softw. Eng. 38(5), 1008-1026
(2012)

Syriani, E., Gray, J.: Challenges for addressing quality factors in model transfor-
mation. In: ICST 2012, pp. 929-937. IEEE (2012)

Rentschler, A.: Model transformation languages with modular information hiding.
Ph.D. thesis, Karlsruher Institut fiir Technologie (2015)

Sénchez Cuadrado, J., Guerra, E., de Lara, J.: Reverse engineering of model trans-
formations for reusability. In: Di Ruscio, D., Varré, D. (eds.) ICMT 2014. LNCS,
vol. 8568, pp. 186-201. Springer, Heidelberg (2014)

Balasubramanian, D., Narayanan, A., van Buskirk, C., Karsai, G.: The graph
rewriting and transformation language: GReAT. ECEASST 1 (2007)

Geif3, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: a fast SPO-
based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383-397. Springer,
Heidelberg (2006)

Acretoaie, V., Storrle, H., Striiber, D.: Transparent model transformation: turning
your favourite model editor into a transformation tool. In: Kolovos, D., Wimmer,
M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 121-130. Springer, Heidelberg (2015)

Two-Step Transformation of Model Traversal
EOL Queries for Large CDO Repositories

Xabier De Carlos! ™) Goiuria Sagardui?, and Salvador Trujillo!

! Tkerlan Research Center, P.J.M. Arizmendiarrieta 2, 20500 Arrasate, Spain
{xdecarlos,strujillo}@ikerlan.es
2 Mondragon Unibertsitatea, Goiru 2, 20500 Arrasate, Spain
gsagardui@mondragon.edu

Abstract. Recent approaches persist models in databases to overcome
performance and memory limitations of XMI. Among them, Connected
Data Objects (CDO) is a database-based model repository widely used
in Model Based Engineering by academia and industry. Model traver-
sal queries are intensively used in modelling scenarios and their perfor-
mance greatly impacts tools performance and user experience. In this
paper, we introduce the CDO-QT framework to transform model tra-
versal queries from Epsilon Object Language (EOL) into SQL queries
and execute them at CDO repositories. This way, model engineers can
define queries using domain concepts at performance similar to SQL. We
have evaluated CDO-QT executing a set of queries over repositories from
15 MB to 5 GB size. CDO-QT results in better performance and memory
consumption with respect to other approaches (Plain EMF, MDT OCL,
CDO-OCL).

Keywords: Model driven development - Query - Model persistence -
Eclipse modelling framework - Connected data objects - Large models

1 Introduction

Model Based Engineering (MBE) raises the abstraction level of software develop-
ment promising productivity increases and greatly improved quality of the code
and development process [11]. In this paradigm, models automate and guide the
development processes and engineers focus on domain concepts rather than on
implementation details.

Modelling scenarios in industry can be really complex [1], with large models
of size of 100 MB and beyond, and with millions of model elements. Engineers use
modelling tools for model transformation, validation or execution. Performance
might have adverse effect on development, which makes MBE adoption difficult
in industry. Among all the activities, model queries are intensively used. There-
fore the impact of query performance on tool performance and user experience is
significant [4]. In practise, model traversal queries are the most commonly used
type of queries [9]. These queries obtain all the instances of a specific type and
require traversing the entire model.

© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. Wasowski (Eds.): FASE 2016, LNCS 9633, pp. 141-157, 2016.
DOI: 10.1007/978-3-662-49665-7 9

142 X. De Carlos et al.

The Eclipse Modelling Framework (EMF) is a mature framework widely used
by the industry and academia. By default, EMF models are persisted using XML
Metadata Interchange (XMI). XMI entails memory problems for models [9,15]
and requires to completely load them in-memory for model traversal queries.
EMF provides also a binary format which improves scalability of XMI, but it
also requires loading entire models. Alternative proposals to XMI for large mod-
els choose databases for persistence, overcoming limitations by partial loading
of models. Different back-end strategies have been proposed: noSQL databases
(e.g. Morsa, MongoDB, NeoEMF /Map, NeoEMF /Graph or EMF Fragments);
relational databases (e.g. Teneo); or several kinds of databases (e.g. CDO). Data-
bases improve significantly performance in model operation for large models. For
example, a database-based prototype introduced at [2] executes a model traver-
sal query (GraBaTs query) 20 times faster than XMI and requires 57 % of the
memory used by XMI.

Matureness and collaboration support makes Connected Data Objects
(CDO) [17] the most widely used model repository in academia and industry [8].
CDO provides support for model operation from Plain EMF and EMF-based
model query languages executed at client-side (e.g. MDT OCL or EMF query),
model query languages executed at server-side (CDO OCL) and persistence-
specific query languages (e.g. HQL and SQL). Persistence-specific languages
improve significantly model operation performance. For example, GraBaT's query
for CDO with H2 relational back-end for a model of almost 5 millon elements’
requires 6 seconds and 289 MB of memory usage from SQL, while in the best case
of model query languages, it requires 28 s using 525 MB. However, in model query
languages model engineers use domain specific concepts, while in persistence-
specific query languages engineers should be aware of the way information is
persisted and learn database specific concepts and languages. This increases
programming effort to get complex queries correct.

The main contribution of this paper is a framework (CDO-QT) that trans-
forms queries from a model query language (Epsilon Object Language [12]) to a
persistence specific query language (SQL) and executes them at a CDO repos-
itory. Generated queries are fully integrated with the versioning/branching of
CDO. This way, model engineers can define queries using domain concepts at
performance similar to SQL. CDO-QT is designed in a two-step transforma-
tion process to provide re-usability and extensibility. We evaluate performance
and memory usage of different model traversal queries using Plain EMF, MDT
OCL, CDO OCL, SQL and CDO-QT. We have executed the queries over ten
CDO repositories from 15.3 MB to 5 GB. Results show that CDO-QT is able to
execute all the queries faster and requiring less memory than the other solutions
(Plain EMF, MDT OCL and CDO-OCL).

The rest of the paper is organized as follows: Sect.2 introduces CDO and
describes the motivation of this work. Section 3 describes the query transforma-
tion process performed by CDO-QT. In Sect. 4 we evaluate CDO-QT comparing
performance and memory usage for executing different model traversal queries

! More details about the evaluation scenario and metrics in Sect. 4.

Transformation of Model Traversal EOL Queries 143

(" CDO Client) Table 1. Execution time (s) and memory usage
(MB) for the GraBaT's query.
CDOObject

AN) Set0 | Setl | Set2 | Set3 | Setd
] Z
\/

Plain EMF | time | 18 48 | 4731069 | 1140

CDOResource

mem | 400 | 1028 | 3407 | 5672 | 6133

N
Domain-specific II MDT OCL | time 18 46 | 4531|1023 | 1101

CDO Server

Query Manager
schems mem | 322 | 9343112 | 5731|6110
|| CDO OCL | time | 1 2 11| 26 28
3 e mem | 67 | 67 337 525| 590
0 SQL time | 0 1 2 5 6
- J mem | 65 | 126 154 289| 289

Fig. 1. Simplified CDO architec-
ture for relational backends.

and using different model query languages. This paper concludes with related
work and conclusions in Sects. 5 and 6.

2 Operation with CDO Repositories

CDO provides transparent persistence of models in all kinds of back-end strategies,
with load on demand mechanisms and caching policies to operate persisted models.
CDO supports features such as: multi-user access, off-line collaboration, model-
level locking, branching and versioning. Figure 1 illustrates the client /server archi-
tecture of CDO. CDO Server interacts with the database back-end through an
IStore implementation. DBStore is the most mature and complete?, and in prac-
tice mainly relational back-ends are used with CDO [3]. For relational back-ends,
CDO provides a common data-schema with dedicated tables for change history,
branches, commits or user access; additionally it generates automatically one data-
schema for each different domain-metamodel.

EMF-based applications (editors, querying utilities, transformations, etc.)
can operate with CDO repositories. For this purpose, CDO Client provides a
custom extension of EMFs Resource (CDOResource) and EObjects (CDOODb-
jects). Elements of the model are loaded in memory to operate them. CDO
Client can also communicate with a server side query manager. CDO provides
support for OCL queries (OCLQueryHandler) and SQL (SQLQueryHandler).
Table 1 shows execution time and memory usage results for the GraBats case
study [16] using Plain EMF, OCL, CDO-OCL and SQL on five CDO repositories
with H2 relational database (Set0—4)3. Best results are obtained when operating
from server-side query manager. In particular, CDOs’ SQL query handler sig-
nificantly improves performance of operation. However, the programming effort
for model engineers to get complex queries right in SQL can be high, and they
should be aware of database schema and persistence related issues.

2 Comparison of CDO stores: http://goo.gl/cEemcL.
3 For extended information about the evaluation, please refer to Sect. 4.

http://goo.gl/cEemcL

144 X. De Carlos et al.

EOL to Query

Query L
, :3"9“299 . LaQ;eg o Independent Model EXB:‘:"SQL
i ndependent t nguag i to SQL —out saLa inp| generate
Hag Model o Independent " Transformation uery n query
T i Model (iv)

s (iii)

Fig. 2. EOL to SQL query transformation and execution process of CDO-QT.

3 CDO-QT

Some works have proposed query transformation from model query languages
to SQL [5-7,10,13,14]. Inspired in these works, and with the aim of improving
performance in CDO when operating with model query languages, we present
Query Transformation Engine for CDO (CDO-QT).

CDO-QT inputs model traversal queries in a model query language (EOL
[12]) and transforms automatically to SQL queries that are executed directly
in CDO relational back-ends. Figure?2 illustrates the transformation process:
(i) model engineers use EOL; (ii) CDO-QT transforms at runtime EOL state-
ments into a language independent model; (iii) CDO-QT transforms the model
into SQL statements; and (iv) SQL statements are executed directly over the
database.

3.1 Query Language Independent Metamodel

CDO-QT uses a Query Language Independent Metamodel (QLI Metamodel) to
specify queries in a language-independent way, separating the transformation to
SQL from the model-query language. At this time, CDO-QT supports transfor-
mation of model traversal and self-contained EOL queries. A simplification of
QLI Metamodel for model traversal EOL queries is illustrated in Fig. 3:

— Query: Root element of the model. Attribute returnType specifies the type of
result returned by the query and root reference contains an IModelTraversal
instance. IModelTraversal specifies statements that full-traverse models and
is implemented by AllInstances0fKind and CollectionMethod.

— AllInstances0fKind. Abstraction for statements that traverse models
searching instances of an specific kind (specified by type). Sample EOL state-
ment is MethodDeclaration.all.

— CollectionMethod. Abstraction for query statements where all values of an
input collection are evaluated (e.g. .select(md:MethodDeclaration | ...) EOL
statement). name specifies type of the CollectionMethod (e.g. select, collect,
etc.); iterator reference contains the input collection (VariableIterator
instance); and body optional reference contains a IQueryStatement instance.

— VariableIterator. Specifies variables that iterate a collection values within a
query. type contains EClass of the iterated values; name specifies the variable
name; and alias, contains an unique name of the variable. VariableIterator
contains an ISource instance (source reference). ISource is implemented
by classes that specify collection of values iterated by a VariableIterator
instance. Sample EOL statement is md:MethodDeclaration.

Transformation of Model Traversal EOL Queries 145

IQueryStatement is an interface implemented by all classes that specify
statements that could be contained by a CollectionMethod (LogicalOP,
ComparisonOP and Value). getType () returns type of the value returned by
the specified statement.

LogicalOP. Abstraction for logical comparison of two statements* (contained
by left and right) and returns a boolean value (getType()=Boolean).
Operator specifies the logical operator type (AND, OR, NOT, etc.) Sample
EOL statement is: mod.private and mod.static.

ComparisonOP. Similar to LogicalOP but for comparison of values (e.g.
EQUALS, LOWER, etc.). Sample EOL statement is mod.private=true.
Value. Extended by PrimitiveValue, CollectionMethod, ValueMethod and
VariableValue classes, and specifies statements returning a value.
PrimitiveValue. Abstraction for primitive values (e.g. true boolean value).
ValueMethod. For query statements that evaluate a single-value. name speci-
fies method type; params contains parameters of the method; and variable
reference contains a VariableValue instance which is evaluated. Sample EOL
statement is md.isOfType(MethodDeclaration).

VariableValue. Extended by LocalVariableValue and VariablelIterator
classes, is an abstraction for statements returning values derived from a vari-
able specified within the query.

LocalVariableValue. Abstraction for statements that specify value of a
variable within the query. It contains parentVariable feature that refer-
ences a VariableValue instance and sf attribute that specifies a EStructu-
ralFeature. If sf is empty, this class specifies the value returned by the
instance referenced at parentVariable. By contrast, if sf contains a feature,
the class specifies the feature value in the parentVariable class values.

Figure 4 illustrates a sample QLI model that conforms to the QLI Metamodel.

Section 3.3 describes this model and provides information about its generation.

3.2 CDO-QT Design

Figure 5 illustrates the class-diagram of CDO-QT:

4

Language independent (CD0O-QT.generic package). Classes and interfaces
to be extended by EOL- and CDO-Specific packages. This design facilitates
inclusion of new query languages. MLDriver transforms model queries into a
language independent representation (QLI Model). PLDriver transforms into
a database-specific language and executes the query.

EOL-Specific (CDO-QT.eol-specific package). Deals with EOL and is
responsible for parsing and transforming EOL queries into a QLI Model.
EOLDriver extends MLDriver and implements IModel interface of the EMC
API (provided by EOL) to interact with EOL queries. generateQLIM()
method supports transformation of EOL queries into QLI model.

With the exception of NOT operator that only has one statement contained by right

reference.

146 X. De Carlos et al.

| £ Query 1.1] mot‘ % IModelTraversal |l]7 l E AllInstancesOfKind | £oL Query:
_ returnType : g S | = type : EClass | MethodDeclaration.all.select(md | md.Modifiers
EJavaObject N T . exi d:Modifier| mod.private = true))
H CollectionMethod [1..1] iterator ' [_query Al OfKind
= name : EString ! 'EtumTYpe= type= MethodDeclaration
EolCollectionType

[0.1] left \ : root
H LogicaloP H % IQueryStatement I .
- 1..1] right I |
© operator : EString | @ getType(| |
[8 & Variabl !
- | | Collocti hod arentVariable
. [1..1] left © type : EClass ! C
& ComparisonOP {L.1] right H Value = name : EString | name = Select :LocalVariableValue
© operator : EString _ o alias : EString |
y ! I body sf=EReference

e . T I ‘ [1..1][source i e — {name=modifiers}

iterator

type = MethodDeclaration
name =md

alias=md0

© value : E)avaObject

L i name = Exists
L

[VariableValue | [isource |
bod!
H ValueMethod (J () I oy type = Modifier

1..1] variable | : ComparisonOP name=s
&% params : Object alias=s1
= name : EString operator =EQUALS o1z parentVariable
o) right :LocalVariableValue
H LocalVariableValue Primitiveval
. :PrimitiveValue =
© sf : EStructuralFeature |[1.-1] parentVariable #1=Eqmtibute
value = true {name=private}

Fig. 3. Simplified QLI Metamodel Fig. 4. QLI Model for a sam-
ple EOL query.

— CDO-Specific (CDO-QT.dstore-specific package). Deals with CDO and
is responsible for: (i) transforming QLI Model into a database specific lan-
guage; and (ii) executing the query. We provide implementation for DBStore
(SQL). CDODriver extends PLDriver. generateQuery () method that gener-
ates a SQL query from a language independent model. execQuery() method
executes the generated SQL query through a CDOQuery instance (provided by
CDO to execute SQL queries at server-side). CDODriver also implements
getVersionBranchInfo() (which adds version and branch information to
SQL queries) and postProcessResults() (for post-processing SQL results).

As shown in Fig. 6 user interacts with the EOLDriver (execQuery method).
EOLDriver generates the QLI Model (generateQLIModel method) and calls
getResult method of the CDODriver. CDODriver executes generateQuery
method to obtain SQL query. Then, SQL query is completed with version/branch
information (addVersionBranchInfo()). Next, query is executed, obtained
results post-processed, and returned to EOLDriver and to the user.

3.3 From EOL to QLI Model

CDO-QT generates an intermediate and query language independent QLI Model
from EOL queries: the EOLDriver receives from EOL an AST Tree that specifies
the EOL Query, which is the input point of the transformation. Listing 1.1
illustrates a fragment of the transformation algorithm (genQLIElem(AST n)),
where AST nodes are visited and artifacts of the QLI Model are instantiated.
The algorithm is called recursively until all nodes are visited.

Transformation of Model Traversal EOL Queries 147

CDO-QT.generic

H PLDriver

@ getResult() : EObject
@ generateQuery()
@ execQuery()

:
' !
e S * *
[1.."] pidriver execQuery(eolQuery, odoM;ode!)
CDO-QT.eol-specific # CDO-QT.dbstore-specific |
£ oLDriver

EOLDriver:MLDriver CDODriver:PLDriver

@ execQuery()

:CDOQuery
@ generateQLiModel) 7

5 MLDriver ‘
7
]

i
i

generateQLIModel(eolQuery)
i

etResult(QLIModel, cdoModel)

@

E coopriver
@ generateQuery()

!
@ execQuery() !
@ addVersionBranchinfo(> generateQuery(QLIModel)
© postProcessResults)]

@ generateQLUIModel)
a

<<external> » org.eclipse.| |# <<external>>|org.eclipse.emf.cdo T

qlQuery)

1..1] edoquery :
execQuery(sqlQueny) |

#®

epsilon

X 1

5 IModel £ cooQuery !
> postProcessResults(sqlResults)

|

!

'

7 !

: '

' '

7 ' !

Fig. 5. CDO-QT class diagram Fig. 6. CDO-QT sequence diagram

Following, QLI Model generation process for the EOL query illustrated
on Fig.4 is described: the transformation process starts with the AST node
corresponding with the MethodDeclaration.all EOL statement. The trans-
formation algorithm obtains the AST node and generates corresponding
abstraction (AllInstancesOfKind instance). Next, AST node that specifies
.select(md — ...) statement is processed by the algorithm and creates a
CollectionMethod instance (with ‘select’ name value). This instance con-
tains a VariableIterator instance that specifies the collection iterator (md).
Variablelterator iterates values returned by MethodDeclaration.all statement
and consequently it contains the previously instantiated A11Instances0fKind.

1 Object genQLIElem (AST n){

2 if

3 else if(n.hasChildren() && isComparison(n.getText ()){
4 ComparisonOP obj = createComparisonOP () ;

5 obj.setlLeft (genQLIElem(n.getFirstChild ()));

6 obj.setRight (genQLIElem(n.getSecondChild ()));

7 obj.setOperator (n.getText ());

8 return obj;

9} ... }

Listing 1.1. Fragment of the QLI Model generation algorithm.

The condition of the CollectionMethod instance is specified by
md.modifiers.exists(mod:Modifier | ...) EOL statement and a CollectionMethod
(named ‘exists’) instance is created under the body reference. It contains a
Variablelterator instance that contains a LocalVariableValue that speci-
fies iterated values (md.modifiers). CollectionMethod body reference is filled
with a ComparisonOP (abstraction of condition mod.private=true condition).
The fragment shown in Listing 1.1 contains code related to the generation of

148 X. De Carlos et al.

the ComparisonOP instances. In this case, it satisfies n.hasChildren() con-
dition of line 3 (one child for each compared side) and n.getText() of line
3 returns the string = satisfying also second condition. Satisfying conditions
involves the instantiation of a new ComparisonOP(line 4). Left and right refer-
ences are obtained executing the algorithm genQLIElem(AST n) for two chil-
dren (lines 5,6). In this case, left contains a LocalVariableValue that spec-
ifies mod.private statement, and right contains a PrimitiveValue instance
that specifies true boolean value. Finally, operator feature is setted with the
value returned by n.getText () (line 7) and the instantiated element is returned
(line B).

3.4 From QLI Model to SQL

EOLDriver calls CDODriver passing by arguments the QLI Model and a CDO-
Resource instance (queried model). At this point, the prototype uses the default
mapping strategy of the DBStore (horizontal mapping). We can distinguish two
different types of tables within the domain-specific data-schema: (a) Object-
Tables: contain information about all the instances of an specific type. The
name of the each table corresponds with name of the type of the contain-
ing elements (e.g. MethodDeclaration); (b) Many-Value-Ref-Tables: contain
information about a many-value reference of an specific type. The name of the
table will follow this format: TypeName FeatureName List (e.g. MethodDecla-
ration_BodyDeclarations_List).

Table 2 describes a simplified version of SQL queries that are generated from
each QLI Model element. Branching and versioning related statements are added
in generated SQL queries:

— WHERE statements that obtain information from an Object-Table.
Following, simplified version of the added SQL statement that is described:
CDO_VERSION>0 AND ((CDO_BRANCH =:branchID AND CDO_CREATED <=
:commit AND (CDO_REVISED=0 OR CDO_REVISED>:commit)) OR (:hasBase
AND CDO_BRANCH =:baseID AND CDO_CREATED<=:basetime AND (CDO_
REVISED=0 OR CDO_REVISED>:basetime))). The statement contains the fol-
lowing parameters: (1) commit, specifies the timestamp of the commit corre-
sponding with the model version; (2) branchID, specifies the identifier of the
branch that is being queried; (3) hasBase, boolean value that specifies if the
branch is based in another branch; (4) baseID, specifies the identifier of the
base branch; and (5) baseTime, specifies the timestamp of the corresponding
version of the base branch.

— INNER JOIN statements that join an Object-Table with a Many-
Value-Ref-Table. This is a simplified version of the SQL statement that is
added: objectTable.CDO_VERSION = referenceTable.CDO_VERSION AND
objectTable.CDO_BRANCH = referenceTable.CDO_BRANCH.

Transformation of Model Traversal EOL Queries 149

Table 2. SQL queries generated for each QLI model element.

QLI Element Generated SQL

AllKindInstances |types: SELECT * FROM TypeTable WHERE ...
subtypes: (SELECT * FROM SubTypelTable)
UNION (SELECT * FROM SubType2Table)

LogicalOP (rightStatementSQL (AND | OR | ...) leftStatementSQL)
ComparisonOP (rightStatementSQL (=| < | ...)leftStatementSQL)
PrimitiveValue strings: ‘value’; other types: value

ValueMethod method-specific SQL. Ex.: var.feature.isTypeOf(type):

EXISTS(SELECT * FROM TypeTable AS T

WHERE var.feature=T.CDO_ID AND ...)
CollectionMethod | method-specific SQL. Ex.: var.feature.exists(it — cond):
EXISTS (SELECT iteratorName.*

FROM (VariableIteratorSQL) AS iteratorName
WHERE condSQL)

Variablelterator IteratorParentType_IteratorParentFeature_List
INNER JOIN (iteratorType) AS iteratorName ON
LocalVariableValue | multi-value refs: SELECT featureName.CDO_VALUE

FROM ParentType_Feature_ List

INNER JOIN FeatureType AS featureName ON

WHERE ParentType_Feature_List.CDO_SOURCE =
parent.CDO_ID AND ...)

attributes and single-value refs: SELECT parent.feature
FROM ParentTable WHERE 1

3.5 Executing the Query

Version and branch parameters are set using the CDOResource. Listing 1.2 illus-
trates the parameter setting process: (1) parameter values are obtained from
the CDOResource instance; (2) obtained values are set to the generated SQL
through the CDOQuery instance (cqo); and (3) the SQL query is executed over
the CDO repository using the CDOQuery class provided by CDO. Obtained
results correspond to all the models (CDOResource) of the repository. To provide
results for a specific model, CDO-QT filters and/or analyses the SQL results.
For example, to obtain all MethodDeclaration instances, the post-process selects

those that are part of the model (object.cdoResource() == resource). To
check if a MethodDeclaration exists in a model, SQL results are analysed (e.g.
while(res.hasNext()){ if (res.getNext().cdoResource == resource)

return true;} return false;). We have decided to do this post-process as
including it in the transformation would require complex SQL queries that could
have impact in performance.

150 X. De Carlos et al.

void setQueryParameters (CDOResource resource, CDOQuery cqo){
boolean hasParent = false;

long commit = getTimeStamp (resource.cdoView)

long branchID = resource.cdoView().getBranch().getID();
if (existsBase (resource)) hasParent = true;

long baseID = getBaseID(resource);

long baseTime = getBaseTime (resource) ;

cqo.setParameter ("commit", Long.toString(commit));
cqo.setParameter ("branchID", Long.toString(branchID));
cqo.setParameter ("hasParent", hasParent);
cqo.setParameter ("baseID",Long.toString(baselD));
cqo.setParameter ("baseTime" ,Long.toString(baseTime)) ;}

Listing 1.2. Setting paramater values of the generated SQL queries.

4 FEvaluation

All the experiments have been executed as a standalone application over a
Microsoft Azure® virtual machine configured with a 4 Core processor, 14 GB
of RAM, 200 GB SSD, and running 64-Bit Windows Server 2012 and Java SE
v1.8.0. We have used Eclipse Mars with CDO 4.4. CDO repositories have been
executed in embedded mode® to measure total memory usage and avoid the
uncertainty of connections in the execution time. Repositories run on top of H2
v1.3.168, using the DBStore with its default mapping, caching and pre-fetching
values, and supporting audits and branches.

Correctness of query-results has been ensured by automatically comparing
the results of each query using different languages. In order to get reliable num-
bers, each query was processed 5 times for each evaluation case and Java Vir-
tual Machine has been restarted for each execution. Results have been evaluated
against the following quantitative metrics: M1: Average Execution Time (in sec-
onds) and M2: Maximum Memory Usage (in MB). M2 includes memory used
by the CDO Client and Server. We have used three different queries in the eval-
uation: Q1: Number of classes (TypeDeclaration instances) existing within the
model, Q2: Number of private methods (MethodDeclaration instances) existing
within the model and Q3: Number of singletons (TypeDeclaration instances)
existing within the model (GraBaTs case study query). All queries traverse
model but with increasing complexity. We have expressed queries in Plain EMF,
OCL (used by MDT OCL and CDO-OCL), SQL and EOL (used by CDO-QT).
We have used metamodel and model instances from the GraBaTs 2009 case
study [16]. Models specify source code of different Java packages and conform to
the JDTAST metamodel which contains abstractions of the Java source code.
Table 3 shows results of queries for each model.

In this evaluation we address: Which is the performance of querying mod-
els within a CDO repository using EMF Plain, MDT OCL, CDO-OCL, SQL

5 Azure: https://azure.microsoft.com/en-us/services/virtual-machines, .
5 CDO/Embedded: https://wiki.eclipse.org/CDO/Embedded.

https://azure.microsoft.com/en-us/services/virtual-machines/
https://wiki.eclipse.org/CDO/Embedded

Transformation of Model Traversal EOL Queries 151

Table 3. Properties of the GraBaTs models.

XMI | Repository | Numb. of | Model Q1 Results | Q2 Results | Q3 Results
size |size models Elem
Set0 | 8,8 |15.3MB 1 70447 14 4
Setl |27 |43.8MB 1 198466 | 40 38 2
Set2 | 271 |307MB 1 2082841 | 1605 1793 41
Set3 | 598 | 784 MB 1 4852855 | 5314 9275 155
Setd | 646 |1.17GB 1 4961779 | 5984 10086 164
Sets | n/a |2.01GB 2 9923558 | 5984 10086 164
Set6 |n/a |2.88GB 3 14885337 | 5984 10086 164
Set7 |n/a |3.67GB 4 19847116 | 5984 10086 164
Set8 | n/a |4.45GB 5 24808895 | 5984 10086 164
Set9 n/a |5GB 6 29770674 | 5984 10086 164

and CDO-QT? We distinguish two different configuration factors (F) that may
impact:

— F1, Size of the model: We measure how the increasing size of the model
may influence on the performance (execution time and memory). We measure
the size of a model in number of elements. For this factor, each model has
been persisted in a different CDO Repository (from SetO to Set4 of Table 3).

— F2, Size of the repository: As in CDO we can save many models in the
repository, we have measured how the increasing size of the repository may
influence on the performance. We measure the size of the repository in number
of models and elements within the repository. For this factor, we have stored
set4d model copies within the same CDO Repository (from Set4 to Set9 of
Table 3).

Extended information in http://xdecarlos.bitbucket.org/fase_2016/.

4.1 Discussion

F1: Model-Size Influence (Set0-Set4). Size of the queried model has a great
impact over the time and memory required in Plain EMF and MDT OCL, and
three queries result in similar values (entire model is always loaded in memory).
In Set4, these client-side solutions require more than 6000 % of time of Set0 and
more than 1100 % of memory. Plain EMF requires 17-18s and 396-513 MB for
querying the smallest model (Set0) and 1140-1166 s and 6-6.1 GB for the largest
(Setd). Model size impact is slightly lower for MDT OCL as it requires 17-18s
and 322-342 MB for Set0 and 1090-1101s and 6-6.1 GB for Set4.

Figure 7 illustrates time and memory results and they show that, the impact
of the model size is lower if queries are executed at server-side. In Set4, these

http://xdecarlos.bitbucket.org/fase_2016/

152 X. De Carlos et al.

10000 10000 10000

Plain EMF #~MDTOCL ~ —4—CDOOCL TH-CBREME SESMOTOCL =e=CDOOCL Plzin EMF DT OCL —e—coooct
—=-sa coo-ar
—=-sa coo-ar —m-saL coo-ar
1000 L 1000 3 1000 -

100 A

Set0 sett set2 set3 et set0 Set1 set2 set3 sets set0 Set1 set2 ser3 sets

a) Q1 exec. time (avg, s) b) Q2 exec. time (avg, s) c) Q3 exec. time (avg, s)

0000 0000 10000

& Plain EMF mDT oCL B —— Plain FMF DT OC Plain EMF MDT OCL
——DoOCL —m-saL

coo-ar

execution time (s)
execution time (s)

A = CDOOCL ~m-sat A ——cpoocL —s—saL S
= cpo-ar = coo-ar -~

E
E

memory usage (Vi8)
g
memory usage (MB)
g

g

memory usage (MB)

)
\

10 10 10
Set0 Sett Set2 Set3 Setd seto set1 setz set3 seta set0 sett ser2 ser3 Sets

d) Q1 memory (max, MB) e) Q2 memory (max, MB) f) Q3 memory (max, MB)

Fig. 7. Execution time and memory results of queries from Set0 to Set4.

solutions require up to 2400 % of time of SetO and up to 800% of memory.
However, increase values are much lower than on client-side solutions.

CDO-OCL is more than 17 times faster than Plain EMF and MDT OCL, and
it only requires 1 s for executing queries in Set0. Memory usage is also reduced to
123 MB (Q1-Q2) and 67 MB (Q3). In case of other sets, results vary depending
on the query: Q1 requires less time than Q2 and Q3, and Q2 less than Q3. For
example, in Setd Q1 requires 8 s, Q2 22s and Q3 28s. However, Q3 is more than
38 times faster than any query in Plain EMF or MDT OCL. In terms of memory,
Q1 requires less than Q2 and Q3: in Set4 Q1 needs 235 MB, Q2 636 MB and Q3
590 MB. Worst memory value (636 MB) is more than 9 times lower than the
best memory usage result of the client-side solutions. SQL shows better results:
queries require less than a second and 118 MB in Set0; and less than 12s and
375MB in Set4. Q1 requires less time and memory than Q2 and results are
similar of CDO-OCL. In the case of Q2 it is 2 times faster than CDO-OCL and
memory usage is reduced by 40 % for Set4. Q3 time and memory results are lower
than Q1 and Q2, and it is more than 4 times faster than CDO-OCL requiring
less than 50 % of memory.

Performance and memory results of CDO-QT for executing queries using
EOL are similar to SQL. Execution time results show that CDO-QT requires
between 1 and 2s more than SQL to be executed. The generated SQL query is
the same that is used in the SQL experiments, and it indicates that the extra-
time corresponds with the EOL to SQL transformation. CDO-QT requires 1s
and less than 130 MB for executing queries in Set0, and less than 8s and 315 MB

Transformation of Model Traversal EOL Queries 153

10000 - 10000 10000
—<=Plain EMF —#—MDT OCL —4—CDOOCL PlainEME MDTOCL DoOCL e Plain EMF = MDT OCL —4=CDOOCL
—m-saL coo-ar -—saL coo-ar —m-saL coo-ar

1000 - 1000 = 1000

als)

‘\

L\
\\
\\ \

a) QI exec. time (avg, s) b) Q2 exec. time (avg, s) ¢) Q3 exec. time (avg, s)

10000 10000 10000

1000

E
|

memory usage (VB)
memoryusage [MB)

o //
=

= e

——PlainEMF ——MDIOCL ——CDOOCL
——PlainEMF ——MDTOCL ——CDOOCL ——PlinEMF ——MDTOCL ——CDOOCL

—=-saL coo-ar y
—— coo-ar —=-sal coo-ar
100 100 a a 100

Sett Sets Set6 Se7 Sed Serd Setd Sets Sels Se7 Set8 Se9 Sett Sets Sel6 Se7 Seld Sew

d) Q1 memory (max,MB) e) Q2 memory (max,MB) f) Q3 memory (max,MB)

memory usage [ME)

Fig. 8. Execution time and memory results of queries from Set4 to Set9.

in Set4. As occurs in SQL, Q3 requires less time and memory than Q1 and Q2,
and Q1 less than Q2. For example in Set4: Q1 requires 8s and 263 MB, Q2 12s
and 315MB, and Q3 7s and 263 MB. CDO-QT results are significantly better
than using the other server-side solution (CDO-OCL), and much better than
using a client-side solution (Plain EMF and MDT-OCL).

F2: Repository-Size Influence (Set4-Set9). Time and memory results
obtained querying F2 models (set4-set9) indicate that the size of the reposi-
tory has not influence in queries executed at the client-side: In the case of Plain
EMF execution time value for executing queries is between 1140-1174 s and
requires around 6 GB of memory; in the case of MDT OCL the execution time is
slightly lower (between 1081-1113 s) and also requires around 6 GB of memory.

As Fig. 8 illustrates, this scenario changes in case of the server-side solutions,
where the size of the repository has influence. CDO-OCL results show a constant
increase of the query execution time from one repository to the subsequent one
(e.g. from Set5 to Set6). The increase changes according to query: between 20-
28s for Q1, 31-41s for Q2, and 35-42s for Q3. Memory usage increases: from
235MB to 695MB in Q1; from 636 MB to 1860 MB in Q2; and from 590 MB
to 2171 MB of Q3. The influence of the repository size is greater in Q3, which
requires more time and memory. In Set4, CDO-OCL requires around 1100 % of
time of SetO and around 330 % of memory. The trend is similar in SQL, but the
time increase between repositories is lower: 4-6s for Q1, 7-8s for Q2, and 4-5s
for Q3. Memory values increase from 285 MB to 849 MB for Q1; from 375 MB

154 X. De Carlos et al.

to 1249 MB for Q2; and from 289 MB to 968 MB for Q3. In the case of SQL,
repository-size influence is greater in Q2. Q3 is resolved faster and Q1 requires
less memory than others. In Set4, SQL requires around 430 % of time of Set0
and around 300 % of memory. While increase is similar to CDO-OCL in case of
memory, increment of the execution time is lower.

CDO-QT results agree with those obtained in SQL and execution time and
memory is also influenced by repository size, but it is lower than in CDO-OCL.
Execution time difference between SQL and CDO-QT is only of 1-2s (transfor-
mation time overhead). In terms of memory, CDO-QT uses less memory than
others (including SQL): from 263 MB to 761 MB for Q1, from 315 MB to 1136 MB
for Q2, and from 264 MB to 579 MB for Q3. The filtering mechanism provided
by CDO-QT could be the reason of memory usage difference between SQL and
CDO-QT. Results show that the execution time and memory usage of CDO-
QT is much lower than the required by the client-side solutions (Plain EMF
and MDT OCL). Additionally, CDO-QT resolves these queries faster than the
natively provided server-side version of OCL (CDO-OCL).

4.2 Threats to Validity

All the queries full traverse the model, therefore they start the computation
by obtaining all the instances of an specific type that exists within the queried
model. This type of queries covers the majority of computational-demanding
queries in real industrial domains such as reverse engineering domain [9]. How-
ever, there are other types of queries (e.g. non-traversal queries or queries that
modify the model) that have not been tested. Moreover, models have been gen-
erated for test-case purpose. Using industrial models and real model operations
would be more realistic. We plan to perform it in a future version of this work.

5 Related Work

Query Transformation. [10] describes a framework that supports mapping of
UML models to arbitrary data-schemas and mapping of OCL invariants to a
declarative query language. [14] transforms OCL constraints into SQL to check
integrity of UML models persisted in relational repositories. [7] generates SQL
queries from OCL constraints and executes over MySQL databases. [6] pro-
vides a tool based on OCL2SQL that generates views from OCL constraints.
All these approaches provide generation at compilation-time from OCL (declar-
ative language) to SQL (declarative language). By contrast, CDO-QT trans-
forms at run-time EOL, an imperative model-level language, into a declarative
persistence-specific query language (SQL).

CDO Evaluation. [15] includes evaluation of CDO by comparing results of
performing different model operations (store, query and modify) with XMI and
Morsa. [2] describes the performance and memory usage required by different
persistence mechanisms (Teneo, CDO, Neo4J and OrientDB) for executing the
GraBaTs case study query. These studies show CDO results for three models of

Transformation of Model Traversal EOL Queries 155

GraBaTs (Set0-2), by contrast, our evaluation includes results of all the Gra-
BaTs models (Set0-4). [3,9,15] include an analysis of CDO and other persistence
mechanisms through the execution of different types of queries. While they use
one query language for executing queries in CDO, our study shows results for
different query languages (Plain EMF, MDT OCL, CDO OCL, SQL and EOL
with CDO-QT). [8] focuses the evaluation in the model query languages and
describes the GraBaTs query results using different query languages and persis-
tences (XMI, CDO and MORSA). While the GraBats query is included in this
study, we have executed two additional queries using different query languages
that are executed against CDO repositories.

Improve Query Performance. EMF-IncQuery provides support for executing
model queries in an incremental way only over model parts that have changed
[18]. [19] focuses on improving efficiency of model traversal EOL queries. While
these approaches provide improvements on user-side query execution, CDO-QT
provides support for generating SQL queries that are executed over persistence
(relational back-end) and at server-side.

6 Conclusions and Future Work

In this paper, we have presented CDO-QT, an approach that: (i) provides a
two-step transformation process that generates SQL queries from EOL queries;
and (ii) executes generated SQL at server-side over CDO repositories. CDO-QT
is able to execute model traversal queries in a model query language (EOL),
but with a performance similar to SQL. We have compared the performance
and memory usage results of executing different model query languages: Plain
EMF, MDT OCL, CDO OCL, SQL and EOL using CDO-QT. GraBaTs 2009
Case Study models have been persisted in different CDO repositories with size
from 15.3 MB to 5 GB. Execution time and memory results show that CDO-QT
is a promising alternative for making queries from EOL to CDO repositories.
Results indicate that CDO-QT is much faster and use less memory than model
query languages executed at client-side of CDO (Plain EMF and MDT OCL).
Moreover, obtained results are better than the natively supported CDO-OCL
that executes OCL queries at server-side.

This prototype of CDO-QT provides support for executing self-contained and
model traversal EOL queries. However, we plan to extend it to support more
types of EOL queries (e.g. non-traversal queries, queries that modify models,
query chains, etc.). For future work, we plan to provide CDO-QT implementa-
tions of additional model query languages, supporting transformation of other
types of languages (e.g. IncQuery or OCL). We also plan to provide implemen-
tations for other stores of CDO and for other persistence mechanisms.

Acknowledgements. The authors wish to thank Xabier Mendialdua for his contri-
butions. This work is partially supported by the EC, through the Scalable Modelling
and Model Management on the Cloud (MONDO) FP7 STREP project (#611125).

156 X. De Carlos et al.
References
1. Bagnato, A., Brosse, E., Sadovykh, A., Mal6, P., Trujillo, S., Mendialdua, X.,

10.

11.

12.

13.

14.

15.

16.

De Carlos, X.: Flexible and scalable modelling in the MONDO project: industrial
case studies. In: Proceedings of the 3rd Workshop on Extreme Modeling Co-located
with ACM/IEEE 17th International Conference on Model Driven Engineering Lan-
guages & Systems, XMQ@QMoDELS 2014, 29 September 2014, Valencia, Spain, pp.
42-51 (2014)

Barmpis, K., Kolovos, D.S.: Evaluation of contemporary graph databases for effi-
cient persistence of large-scale models. J. Object Technol. 13(3), 3:1-3:26 (2014)
Benelallam, A.; Gémez, A., Sunyé, G., Tisi, M., Launay, D.: Neo4dEMF, a scalable
persistence layer for EMF models. In: Cabot, J., Rubin, J. (eds.) ECMFA 2014.
LNCS, vol. 8569, pp. 230-241. Springer, Heidelberg (2014)

Bergmann, G., Horvath, A., Réth, 1., Varr6, D., Balogh, A., Balogh, Z., Okrés,
A.: Incremental evaluation of model queries over EMF models. In: Petriu, D.C.,
Rouquette, N., Haugen, @. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp.
76-90. Springer, Heidelberg (2010)

De Carlos, X., Sagardui, G., Murguzur, A., Trujillo, S., Mendialdua, X.: Model
query translator - a model-level query approach for large-scale models. In: MODEL-
SWARD 2015 - Proceedings of the 3rd International Conference on Model-Driven
Engineering and Software Development, ESEO, 9-11 February 2015, Angers, Loire
Valley, France, pp. 62-73 (2015)

Demuth, B., Hussmann, H., Loecher, S.: OCL as a specification language for busi-
ness rules in database applications. In: Gogolla, M., Kobryn, C. (eds.) UML 2001.
LNCS, vol. 2185, pp. 104-117. Springer, Heidelberg (2001)

Egea, M., Dania, C., Clavel, M.: MySQL4OCL: a stored procedure-based MySQL
code generator for OCL. Electron. Commun. EASST 36, 1-16 (2010)

Pagéan, J.E., Molina, J.G.: Querying large models efficiently. Inf. Softw. Technol.
56(6), 586622 (2014)

Gémez, A., Tisi, M., Sunyé, G., Cabot, J.: Map-based transparent persistence for
very large models. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033,
pp. 19-34. Springer, Heidelberg (2015)

Heidenreich, F., Wende, C., Demuth, B.: A framework for generating query lan-
guage code from OCL invariants. Electron. Commun. EASST 9, 1-10 (2007)
Kaéarna, J., Tolvanen, J.-P., Kelly, S.: Evaluating the use of domain-specific modeling
in practice. In: Proceedings of the 9th OOPSLA Workshop on Domain-Specific
Modeling (2009)

Kolovos, D.S., Rose, L., Garcia-Dominguez, A., Paige, R.: The Epsilon Book.
Eclipse, Newyork (2010)

Kolovos, D.S., Wei, R., Barmpis, K.: An approach for efficient querying of large
relational datasets with OCL based languages. In: Proceedings of the Workshop on
Extreme Modeling co-located with ACM/IEEE 16th International Conference on
Model Driven Engineering Languages & Systems (MoDELS 2013), 29 September
2013, Miami, Florida, USA, pp. 46-54 (2013)

Marder, U., Ritter, N., Steiert, H.P.: A DBMS-based approach for automatic check-
ing of OCL constraints. Proc. OOPSLA 99, 1-5 (1999)

Pagéan, J.E., Cuadrado, J.S., Molina, J.G.: A repository for scalable model man-
agement. Softw. Syst. Model. 14, 1-21 (2013)

Sottet, J.-S., Jouault, F., et al.: Program comprehension. In: Proceedings of the
5th International Workshop on Graph-Based Tools (2009)

17.
18.

19.

Transformation of Model Traversal EOL Queries 157

Stepper, E.: CDO (2009). http://eclipse.org/cdo/. Accessed 30 January 2015
Ujhelyi, Z., Bergmann, G., Hegediis, A., Horvéth, A., Izsé, B., Réath, 1., Szatméri,
Z., Varré, D.:. EMF- Ianuery. an 1ntegrated development env1ronment for live
model queries. Sci. Comput. Program. 98, 80-99 (2015)

Wei, R., Kolovos, D.S.: An efficient computation strategy for alllnstances(). In:
Proceedings of the 3rd Workshop on Scalable Model Driven Engineering Part of
the Software Technologies: Applications and Foundations (STAF 2015) Federation
of Conferences, 23 July 2015, I’Aquila, Italy, pp. 3241 (2015)

http://eclipse.org/cdo/

Mind the Gap! Automated Anomaly Detection
for Potentially Unbounded Cardinality-Based
Feature Models

Markus Weckesser! ™) Malte Lochau', Thomas Schnabel!,
Bjorn Richerzhagen?, and Andy Schiirr!

! Real-Time Systems Lab, TU Darmstadt, Darmstadt, Germany
markus.weckesser@es.tu-darmstadt.de
2 Multimedia Communications Lab, TU Darmstadt, Darmstadt, Germany

Abstract. Feature models are frequently used for specifying variability
of user-configurable software systems, e.g., software product lines.
Numerous approaches have been developed for automating feature model
validation concerning constraint consistency and absence of anomalies.
As a crucial extension to feature models, cardinality annotations and
respective constraints allow for multiple, and even potentially unbounded
occurrences of feature instances within configurations. This is of particu-
lar relevance for user-adjustable application resources as prevalent, e.g.,
in cloud computing. However, a precise semantic characterization and
tool support for automated and scalable validation of cardinality-based
feature models is still an open issue. In this paper, we present a com-
prehensive formalization of cardinality-based feature models with poten-
tially unbounded feature multiplicities. We apply a combination of ILP
and SMT solvers to automate consistency checking and anomaly detec-
tion, including novel anomalies, e.g., interval gaps. We present evaluation
results gained from our tool implementation showing applicability and
scalability to larger-scale models.

Keywords: Software product lines - Cloud-based systems + Cardinality-
based feature models - Integer Linear Programming (ILP)

1 Introduction

Feature models become more and more established for specifying variability of
highly-configurable software, e.g., software product lines [11]. Feature models
are used during domain engineering to tailor configuration spaces of product
lines in terms of available configuration parameters (features) and respective
constraints, restricting their combinations within valid configurations. Each fea-
ture constitutes a user-visible (Boolean) configuration option from the problem
domain, being mapped onto variable implementation artifacts within the solu-
tion space. This way, customer-tailored products are derivable from a common
code base during application engineering. The FODA feature diagram notation
© Springer-Verlag Berlin Heidelberg 2016

P. Stevens and A. Wasowski (Eds.): FASE 2016, LNCS 9633, pp. 158-175, 2016.
DOI: 10.1007/978-3-662-49665-7_10

Anomaly Detection for Cardinality-Based Feature Models 159

is a frequently used graphical representation for feature models [6,22]. FODA
feature diagrams organize features as nodes in a tree-like layout to denote a
parent-child hierarchy. This feature tree is enriched with constructs to describe
logical dependencies among features. Semantically, a feature model specifies a
set of valid product configurations, i.e., those feature combinations satisfying all
constraints. Recent approaches to formalizing feature model semantics either use
algebraic representations [19,34], or transformations into equivalent constraint
problems, e.g., propositional formulas (SAT) [5,25], and CSP [7]. The latter
approach allows for applying off-the-shelf constraint-solvers for automatically
validating desirable semantic properties of feature models such as constraint
consistency and absence of anomalies, e.g., dead features [6].

However, FODA feature diagram notation is, in many cases, not expres-
sive enough for capturing all user-configurable properties of real-world applica-
tions. In particular, two major extensions to feature models have been proposed,
usually summarized under the term extended feature models (EFM), namely
(1) non-Boolean feature attributes and respective constraints to denote extra-
functional properties of features, and (2) UML-like feature multiplicities [32] in
terms of cardinality annotations and respective constraints to allow selections
of multiple feature instances (also referred to as copies), including (recursive)
clones of their corresponding sub-trees [14]. Semantically, both concepts impose
extensions to the notion of product configurations by means of (1) feature types
beyond Boolean, and (2) multi-sets of selected feature instances. Both exten-
sions complicate feature model semantics, thus automated consistency checking
and anomaly detection becomes even more important for their applicability in
practice. Concerning (1), various promising approaches have been proposed for
analyzing non-Boolean configuration constraints [7,9,20,23]. In contrast, con-
cerning (2), only preliminary attempts exist so far [12,14,26,29,30], although
cardinality-based variability modeling is emerging in nowadays applications and,
therefore, recently found its way into novel modeling approaches like CVL [16]
and Clafer [3]. As a prominent example, for cloud-based systems, not only the
type, but also the amount of available resources is explicitly configurable by the
user [28], especially including (virtually) unrestricted resources [35]. The result-
ing compound cardinality intervals lead to novel kinds of anomalies by means of
dead cardinality, cardinality interval gaps and false unbounded cardinality.

In this paper, we present a comprehensive formalization and automated val-
idation technique for cardinality-based feature models (CEM). We support car-
dinality annotations including compound cardinality intervals and unbounded
cardinality for singleton features, feature groups, as well as cross-tree constraints.
Our approach is motivated by a real-world cloud-based application [31]. We fur-
ther introduce a normal form for cardinality constraints and enhance established
notions of feature model consistency and anomaly to explicitly take feature car-
dinality constraints into account. Our tool implementation, presented in full
detail in an accompanying tool paper [33], combines ILP solvers for interval-
bound analysis and SMT solvers for interval-gap analysis to automate valida-
tion of cardinality-based feature models. We provide evaluation results from
experiments investigating applicability and scalability of our validation approach
for input models of varying sizes and complexity.

160 M. Weckesser et al.

Fan-Out Group
NEE

1,1
Dissemination
Strategy

N\ LD

<0,1» <0,1» <0,1> <1,1»

Probabilistic
Broadcast
a1, BES

Unicast Broadcast Interface

HERONSS 01>
' ‘ WiFi
‘

<1.*>\\

High
Throughput

Reliable

«excludey

Fig. 1. CFM for fan-out group configuration of the event dissemination system

2 Cardinality-Based Feature Models

2.1 Background

Our running example is part of a cloud-based mobile augmented reality (AR)
multi-player game scenario [31]. During a game, players (nodes) move and carry
devices according to a predefined goal. Players communicate via cellular con-
nections with a cloud-based service provider which delivers relevant game data
and disseminating events. Players interact with the physical environment and
other players located nearby. For this purpose, an Area of Interest (Aol) virtu-
ally surrounds each player’s physical location, where overlapping Aol may form
Fan-Out Groups to establish decentralized ad-hoc connections. This bypassing
of the service provider may reduce latency of the cellular network.

All components of an AR game are highly configurable, including dynamic
reconfigurations for run-time adaptation. Configuration decisions not only com-
prise presence or absence of functionality, but also the available amount of par-
ticular resources. Thus, CFM provide a suitable formalism to capture all relevant
configuration choices and respective constraints of AR games. Figure 1 shows the
CFM for configuring the Dissemination Strategy, the communication Interface
and Channel properties of a (potentially unbounded) number of Nodes forming
a Fan-Out Group. Similar to FODA notation [22], configuration parameters (fea-
tures) reside in a tree-like diagram denoting a feature decomposition hierarchy.
As a crucial extension, CFM differentiate between selectable/deselectable feature
types as usual and, additionally, for each selected feature type, the multiplicity of
occurrences of feature instances together with copies of their corresponding sub-
trees within configurations [14]. Restrictions on selections of both feature types
and instances are specified by cardinality intervals (I,u), where | denotes the
lower bound and u denotes the upper bound for the number of feature types or
instances [32]. In particular, the CFM language considered in this paper provides
the following constructs.

Anomaly Detection for Cardinality-Based Feature Models 161

— Feature instance cardinality, annotated as (I,u) on the left-most position on
top of each feature rectangle, restricts the minimum and maximum number of
feature instances selectable from the sub-tree clone of respective parent fea-
ture instances. In our example, (1,1) denotes that exactly one Dissemination
Strategy is selectable, whereas (1, *) denotes that arbitrary many, but at least
one Node must be part of a Fan-Out Group.

— Feature group type cardinality, annotated as [I, u], restricts the minimum and
maximum number of types of feature instances selectable from the set of all
immediate sub-features of a selected feature instance. In our example, [1,1]
denotes that either instances of WiFi, or of BT must be selected for the
Interface, whereas [2, 3] denotes that at least two types of Channels from the
given three options must be instantiated in a Fan-Out Group.

— Feature group instance cardinality, annotated as (l,u) at the right-hand
side of each group arc, restricts the minimum and maximum number of fea-
ture instances of any type selectable from the set of all immediate sub-feature
types. In our example, (3, *) denotes that arbitrary many, but at least three
Channel instances are required for each Node.

— Cross-tree edges by means of require- and exclude-edges annotated with (I, u)
constraints at both the source and target feature rectangles [30], define con-
straints on the number of instances of arbitrary pairs of features. In our exam-
ple, if at least one instance of Reliable is selected in a sub-tree clone, then no
instance of Probabilistic Broadcast is allowed in the Fan-Out Group and vice
versa. In addition, if between 1 and 5 Nodes are selected in a Fan-Out Group,
then BT is used for all Nodes and WiFi, otherwise.

Combining different cardinality annotations in one CFM may lead to compli-
cated dependencies among feature types and their possible number of instances.
In order to provide a precise characterization of CFM configuration semantics, we
provide a CFM formalization in the following. We first define the abstract syn-
tax of CFM. Therefore, we introduce an interval language to express cardinality
intervals (I, u) as pairs of lower and upper cardinality bounds, both given by nat-
ural numbers, or, in case of upper bounds, also by the special symbol * denoting
unbounded cardinality. By convention, k£ < * holds for any k € Ny. Compound
cardinality intervals are defined as the union of multiple (non-overlapping) inter-
vals (I1,u1), (I2,u2), ..., (In, un).

Definition 1 (Cardinality Interval). The set of cardinality intervals is
defined as T C Ny x (Ng U {#}), where (l,u) € T iff | < u holds. The set
L Cfin 2% of compound cardinality intervals contains all finite subsets L € L of
T such that for all pairs (I;,w;) € L, (I;,u;) € L, i # j, either {; > u;, or u; <l
holds.

We further require compound intervals L € £ to be defined as concise as
possible, e.g., {(1,4)} instead of {(1,2),(3,4)}. Intervals L € £ are used for all
kinds of cardinality annotations in a CFM as described above. A CFM consists
of a finite set F' of features together with a hierarchy relation <y defining the
tree hierarchy on F such that f <g f’ denotes f to be the parent feature of f’.

162 M. Weckesser et al.

In addition, a feature instance cardinality interval A\f'(f) € L is assigned to
every feature f € F by a function A, as well as a group type cardinality
interval /\%(f) € L by a function)\% , and a group instance cardinality interval
MG (f) € L by a function A¢. Both AZ(f) and A§(f) define cardinality intervals
on the set of direct sub-features of feature f with respect to <p, hence we do
not allow multiple direct sub-groups below one feature node. Furthermore, we
require for every non-leaf feature f € F A(f), as well as A% (f) and ¢ to
be properly defined, even if f only contains a singleton sub-feature f’, e.g.,
by assuming default group cardinality constraints A% (f) = (0,1) and A\¢(f) =
(0, *). Cross-tree edges consist of four components, i.e., the source feature and the
target feature and corresponding cardinality annotations restricting the number
of feature instances. Due to the binary nature of cross-tree edges, cardinality
intervals referring to feature types are meaningless and, therefore, not supported.

Definition 2 (CFM). A cardinality-based feature model (CFM) defined over
a non-empty, finite set F is a tuple (<p, \I', NG, \F @R, @x), where

- <pC F x F is a feature decomposition relation,

— M. F — L is a feature instance cardinality function,

~ A} 1 F — L is a feature group type cardinality function,

~ A¥: F — L is a feature group instance cardinality function,

- ®r CF x Lx L XxF is a feature instance require-edge cardinality relation,
- ®x CF X LxLXF is a feature instance exclude-edge cardinality relation.

For a CFM to be syntactically well-formed, it must satisfy further properties.

— < forms a finite rooted tree on F i.e., <; is a strict partial order on F with
root feature f. € F' as unique minimal element, and for each f € F, f # f,,
there is exactly one direct predecessor node f’ € F' with f' <pg f.

— Root feature f, is a mandatory single-instance feature, i.e., AX'(f,) = (1,1).

— Leaf nodes have empty group cardinality intervals, i.e., for each f € F' with

Af € F: f <p f', N(f) = AL(f) = (0,0) holds.

Further well-formedness criteria may be imposed, e.g., forbidding * as upper
bound for feature group type cardinality. However, these and far more compli-
cated cases are comprehensively treated by the normal form in Definition 6.
Obviously, CFM syntax constitutes a conservative extension to FODA fea-
ture diagrams [14,30]. However, concerning CFM semantics, the structure of
valid CFM configurations essentially differs from FODA configurations. In par-
ticular, a CFM configuration not only contains information about the presence,
or absence of features, but also the number of instances selected for each feature,
as well as their memberships to the cloned sub-tree related to its parent feature
instance. In this regard, one crucial semantic consideration for CFM concerns the
interpretation of cardinality intervals restricting the number of feature instances.
As already pointed out by Michel et al. in [26], one may either apply a local,
or a global interpretation. For illustration purposes, we use the artificial CFM
in Fig. 2 with sample configurations C, Cs, C3, and Cy4. Each feature instance
constitutes the root of a (recursively) cloned sub-tree which can be configured

Anomaly Detection for Cardinality-Based Feature Models 163

Fig. 2. CFM with sample configurations

individually for that instance. Considering, e.g., the require-edge from f; to fi,
a global interpretation would require this constraint to hold for the entire set of
selected feature instances of f4 and f;, whereas in case of a local interpretation,
the constraint must hold for every individual sub-tree clone. As a result, C; is
invalid in case of a global interpretation, as the overall number of instances of
fa is 2, but there is only one instance of f; in Cy. Hence, C5 is valid as the
overall number of instances of f4 is 3 and, therefore, the precondition of the
require-edge does not hold. Cj is also valid as a sufficient number of instances
of f1 is selected. In contrast, in case of a local interpretation, C7, Cs, and Cj
are all valid as either the precondition of the require-edge is not satisfied by any
sub-tree clone of fy (C7 and C3), or the number of instances of f; is sufficient
(C2). Finally, although Cs and Cj have the same number of instances of each
feature type, Cs is valid for both interpretations, whereas Cy is invalid in both
cases as the feature instance cardinality of f is violated. This example shows
that the membership of feature instances to their corresponding parent feature
instance sub-tree clones is a crucial part of CFM configuration semantics.
Here, we apply the global interpretation, constituting — in our opinion —
the more intuitive and graspable CFM semantics. CFM configuration semantics
characterizes those valid feature sub-tree copies with corresponding parent-child
feature instance dependencies satisfying all cardinality constraints. Our CFM
semantics is based on multi-sets M over set F' to denote the number of feature
instances selected in a configuration. A multi-set M : F' — Ny over set F' defines
a mapping from each element f € F onto a natural number k = M(f), defining
the multiplicity of f, where k = 0 denotes absence of f in M. We write fF €
M, 1 < k < M(f;) for short to refer to the kth instance of feature f; € F
within multi-set M with M (f;) > 0. Furthermore, given a compound interval
L ={(l1,u1),(2,u2),...,(In,un)} € L and k € Ny, we write k T L if (I;,u;) € L
such that [; < k < wu; holds. We further denote a relation <f¥[§ M x M on
multi-set M, relating child feature instances to parent feature instances.

Definition 3 (CFM Configuration). A configuration of a cardinality-based
feature model (<p, \F' NG NG, @p, @x) defined over a set F is a pair (M, <}).
A configuration (M, <¥) is valid iff

- M(fr) =1,
—if fF <M fjl then fi <r f; and (%AF4)+ forms a rooted tree on M,

164 M. Weckesser et al.

—if fF € M, then for each f; € F with f; <r f; it holds that |{le € M|fF <M
I ENE(f),

— if fk € M, then it holds that |{le e M|fk <M fjl}| CAL(f),

— if fk € M, then it holds that |{f; € F|E|f]l e M: fF <M f]l}\ CAE(f),

- ’Lf (fi7L7;,Lj,fj) S @R and M(fz) C Li then M(fj) C Lj, and

—if (fi,Li, Lj, f;) € Px and M(f;) T L; then M(f;) ¥ L; and vice versa.

By [CFM]), we refer to the set of all valid configurations of CFM.

2.2 Analysis of Cardinality-Based Feature Models

We are now able to characterize fundamental validity properties of CFM. In
particular, we define consistency of CEM in terms of the absence of inconsistent
cardinality constraints. By including * as cardinality bound, CFM allow to select
an a-priori unbounded number of feature instances and, therefore, a potentially
infinite number of configurations.

Definition 4 (Consistent and Bounded CFM). A CFM is consistent iff it
holds that [CFM] # 0. A CFM is bounded iff * does not occur in a cardinality
annotation. A CFM is false unbounded iff * occurs in at least one cardinality
annotation and |[CFM]| < oo holds, and CFM is unbounded, else.

False unboundedness is one example for an undesirable CFM property going
beyond syntactic well-formedness criteria. To generalize, we recall the notion of
anomaly to summarize undesirable semantic CFM properties. For FODA feature
models, several types of anomalies and accompanying validation techniques have
been proposed, e.g., dead features and false optional features [6]. First proposals
exist to lift the anomaly notion also to CFM, e.g., dead cardinality anomaly [30].

Definition 5 (Dead Feature Instance Cardinality). k C AL(f;) is a dead
feature instance cardinality of f; € F, if no (M,<M) € [CFM] with ff eEM
and f; <p fi exists such that |{f! € M|fJ’C <?4 5 =k holds.

For other kinds of cardinality intervals of a CFM, the notion of dead cardi-
nality can be defined, accordingly. Hence, for a feature f to be dead in a CFM,
every cardinality k¥ C AL(f;) must be dead, thus the actual feature cardinality
instance interval of f is (0,0), and a CFM is inconsistent if all features are dead.

The example in Fig. 2 exhibits several subtle cases of CFM anomalies. For
example, the group instance cardinality (1,*) of fq is false unbounded as the
maximum number of possible child-feature instances is 11. The same holds for
the interval (1,*) on the right-hand side of the exclude-edge between f; and
f2 whose upper bound is actually limited to 2. In contrast, feature f5 is truly
unbounded thus making the entire CFM unbounded. Besides (false) unbounded
intervals, this CFM contains further anomalies concerning bounded cardinality
intervals. The lower bound 1 of the group instance cardinality interval (1,%*)
of fy is a dead cardinality, as at least one instance of both f; and f; must

Anomaly Detection for Cardinality-Based Feature Models 165

be selected. Thus, lower bound 1 of group type cardinality [1,3] of fy is also
dead. In addition, the lower bound of the target feature node cardinality interval
(2,6) of the require-edge from f4 to fi is actually 6 instead of 2. Besides CFM
anomalies affecting upper and/or lower bounds of cardinality intervals, a dead
cardinality might be also located within intervals, thus imposing «nterval gaps.
For example, the group instance cardinality of fy contains a gap at (6,6) as no
valid combination of feature instances of f1, f2, and f3 with an overall number
of 6 is possible. As an even more subtle case, feature instance cardinality interval
(1,7) of f contains the interval gap (2,5).

Due to the predominant role of cardinality constraints in CFM, any kind of
potential semantic inconsistency can be explained through dead cardinality. To
this end, we define a normal form for any given CFM by narrowing its declared
cardinality intervals down to the actual ones, while preserving its feature-tree
layout and configuration semantics. In case of gaps, closed interval declarations
can be replaced by compound intervals, e.g., replacing group instance interval
(1,%) of fo in Fig.2 by {(2,5),(7,11)}. In this way, a normal form CFM charac-
terizes all dead cardinality anomalies compared to the original model CFM by
means of those (sub-)ranges of feature cardinality intervals being removed from
CFM to obtain CFM. Hence, a CFM with * occurring in some cardinality inter-
val, but having no * in its normal form is false unbounded. Furthermore, if a given
CFM is inconsistent, all feature cardinality intervals of CFM are narrowed down
to (0,0) (if we permit AL(f,) = (0,0)). Finally, to handle redundant cross-tree
edges, we have to allow removals of edges from CFM to obtain a semantically
equivalent normal form CFM. For example, the precondition of the require-edge
leading from f3 to fo in Fig.2 is not satisfiable thus making this edge redun-
dant in CFM. To formalize CFM normal form, we define an inclusion hierarchy
relation SC L X L as

L3 sVkeNy:kCL=kCL
thus requiring L to be a sub-range of L’.

Definition 6 (CFM Normal Form). CFM is a normal form of CFM if

- [CFM] = [CFM], B
- F=F, Jp=<p, Pp C Pp, Px C Px, and
~ for each fi,f; € F, Xf(fl), X?(fl), X?(fl), as well as Ly and L; in each

(fisLi, Lj, f;) € Pr and (fi, Li, Li, f;) € @x are minimal with respect to 3.

Applied to the CFM in Fig. 2, the resulting normal form is shown in Fig. 3(a).
The following property is a direct consequence of Definitions 5 and 6.

Theorem 1. For any CFM according to Definition 2, a normal form CFM exists
and CFM contains no dead cardinality.

In contrast, a normal form is, in general, not unique as removals of (mutually
depending) redundant cross-tree edges may yield ambiguous results. A proce-
dure for computing normal forms would allow for automatically consolidating

166 M. Weckesser et al.

e <vo+2v + 4
fa >ty —vo 411+ 2t
ty=rvo+1t+12

i to <fo < Mty
Cly < <My

0o=1

fo <T1 < 7o
m?fogfzgfo

T 0 <13 <2
L0 <fa <200
§f3§f5
<fitfet+is
to <t +ta +t3 < 3f

(a) Normalized CFM (b) ILP Encoding of CFM

Fig. 3. Sample CFM normal and ILP encoding of CFM semantics

and validating CFM, e.g., during domain analysis. However, constraint-solvers
for SAT and CSP, usually used for validating FODA feature models, are not
applicable for CFM validation due to the potentially unbounded search space.

3 Automated Anomaly Detection for CFM

We observe two potential causes for anomalies in CFM during normal form
computation due to faulty declarations of cardinality intervals: (1) unsatisfi-
able lower /upper bounds (including false unbounded), and (2) unsatisfiable sub-
ranges (gaps). For (1), we encode CFM semantics in an ILP representation and
use a respective ILP-solver for bound analysis, whereas for (2), we apply an
SMT-solver to find interval gaps. To keep the presentation concise, we focus
our considerations on input models CFM with non-compound cardinality inter-
vals L € Z.

Analysis of Interval Bounds. An ILP consists of a set of linear inequalities on
a set of k integer-valued decision variables. The resulting convex hull forms the
feasible region within a k-dimensional search space. An objective function states
that either lower (minimum), or upper (maximum) boundary integer values for
decision variables should be found by an ILP-solver. Encoding CFM semantics
as ILP thus enables automated detection of dead cardinality potentially located
at the boundary of cardinality intervals.

The ILP encoding of the CFM from Fig. 2 is given in Fig.3(b). As decision
variables, we introduce for each feature f; € F a feature multiplicity variable
fi € Np, denoting the number M(f;) of instances of type f; being selected, and
a feature selection variable t; € {0,1}, denoting whether at least one instance
of f; is selected in a CFM configuration. Consistency between variables f; and
corresponding variables t; is enforced by constraints M - t; > f; and t; < f;
for all f; € F, (cf. in Fig.3(b)). Here, we incorporate a coefficient M,

Anomaly Detection for Cardinality-Based Feature Models 167

frequently referred to as big M in the literature [37], by means of a sufficiently
large number for coupling binary variables t; to integer variables f;. Coefficient
M is conservatively approximated by multiplying the maximum upper bounds of
cardinality intervals occurring in each branch of the feature tree and choosing the
overall maximum value. The upper bound is derived from the syntactic context
of the cardinality interval under consideration. Occurrences of * are replaced
in the same way. Due to monotonicity of aggregated cardinality interval bound
values imposed by the CFM tree structure (cf. Definition 3), the restriction of
the ILP search space to M, therefore, yields correct analysis results also for
unbounded CFM.

To encode CFM semantics of feature instance cardinality intervals and sub-
tree cloning, we introduce inequalities [- f; < f; < u - f; for all parent-child pairs
fi <p f; and (I,u) = AL(f;) for child feature f; € F (cf. in Fig. 3(b)). The
inequality restricting the upper bound u is only introduced if u is bounded which
does not hold, e.g., for feature f5 in our example. For root feature f, (denoted
fo), we have a special constraint fo = 1. For group instance cardinality intervals,
we introduce inequalities

i< > f<u-f

fi€F:fi<Frf;

for all parent-child pairs f; <p f; and (I,u) = A5(f;) for parent feature f; € F.
Again, in the unbounded case, we only restrict the lower bound. Semantics of
group type cardinality intervals can be encoded, accordingly. The resulting group

constraints for our example are depicted at and in Fig. 3(b), where the

constraint at for fo only contains one inequality due to unboundedness.

Finally, cross-tree edges constitute the most complicated part potentially
obstructing linearity of the ILP constraint set. To handle those cases, we use
additional decision variables by means of fresh interval selection variables vy €
{0,1} denoting a particular interval being selected or not. For each cross-tree
edge (fi, Li, Lj, fj)r € v, Y € {R, X}, we define inequalities for source and
target feature node intervals. For the source feature node f;, we introduce three
interval selection variables vi_1, tg, and ti41 to encode selection conditions for
L; = (l;,u;). We encode the lower bounds of matching conditions of interval
selection variables by

fi>vteor + LG+ v+ (ug +2) -t — 1
and, for the upper bounds, by
fo <(li—1) -1+t + M- vpg,

respectively. To this end, t;_; indicates that the value of f; is below [;, vx indi-
cates that the value of §; is within interval L;, and tx; indicates that value of f;
is above wu;. If the source feature node cardinality interval is either unbounded,
or its lower bound equals 1, the inequality is adapted, accordingly. In addition,
the constraint t; = v;x_1 + tx + ti41 ensures the interval not be selected and

168 M. Weckesser et al.

deselected at the same time if f; is present. Applied to our example, the result-
ing encoding of source feature node cardinality intervals of the four cross-tree
edges is shown in Fig. 3(b) at ’ 5.1 ‘, ’ 6.1 ‘, ’ 7.1 ‘, and ’ 8.1 ‘ Due to symmetry of
exclude-edge semantics, target feature node cardinality intervals can be encoded
in the same way as shown at . To ensure mutual exclusion, an inequality

such as at is added for each exclude-edge. For encoding target feature
node cardinality intervals of require-edges (f;, L;, L;, f;) € g with (I;,u;) = L;,
we introduce the constraint

lj—M'(l—tk)SfjSUj+M-(1—tk)

to ensure that if the source node condition holds (vx, = 1), then f; is within L,
(cf. [5.2],[6.2]and [7.2] in Fig.3(b)).

Based on this ILP encoding, CFM bound analysis can be performed for inter-
vals (I,u) € Z by employing a corresponding ILP objective function, i.e., either
minimization for lower bound analysis, or maximization for upper bound analy-
sis. In Fig.3(b), we analyze the upper bound of the group instance cardinality
interval of fy by using the objective function maz fi + fo + f3 (cf.), which
returns 11. Considering unbounded cardinality intervals, we have two cases. In
case of false unbounded intervals, e.g., the upper bound of the group instance
cardinality of fy, the solver run returns a bounded result with an objective value
less than M. In case of a truly unbounded cardinality interval, e.g., the upper
bound of feature instance cardinality of fs5, the solver either reports unbounded
but feasible, or returns a value equal to M. To sum up, ILP-based interval bound
analysis is sound in the sense that bounds of the search space reported feasible
do not contain any dead cardinality. Similarly, the technique is complete in the
sense that any dead cardinality at the bounds of the search space is detectable.

Detection of Interval Gaps. The ILP-based approach for interval-bound analy-
sis is not directly applicable for interval-gap analysis as gaps are, by definition,
not located at minima/maxima locations of the search space. For example, for
detecting the group instance cardinality interval gap at (6,6) of fy in Fig.2,
we have to check whether (6,6) is a feasible value for the corresponding fea-
ture multiplicity variables. Hence, detecting interval gaps does not constitute an
optimization problem, but rather a constraint satisfaction problem incorporat-
ing integer inequalities. To this end, an SMT-solver is applicable, being capable
of interpreting first-order logics equipped with linear Integer arithmetics theory
according to our ILP encoding of CFM semantics (cf. Fig.3). For gap analysis,
every sub-range of all cardinality intervals of a CFM has to investigated, where
in case of unbounded intervals, analysis has to be performed up to M.

Normal Form Computation. We can now combine interval-bound analysis and
interval-gap analysis to compute CFM normal forms. By ILP(CFM, interval) we
denote ILP-solver calls to investigate a particular cardinality interval of CFM.
The call returns the actual lower and upper bound of that interval to poten-
tially replace the declared intervals within the normal form. For lower bounds
of cardinality intervals defined by AF, A\¥ and A{, the result is either greater

Anomaly Detection for Cardinality-Based Feature Models 169

than, or equal to the declared lower bound. For upper bounds, the result is
either lower than, or equal to the declared upper bound. In case of unbounded
intervals, the call either returns a concrete value in case of false unboundedness,
or reports unboundedness. In case of infeasible intervals, the call returns (0, 0).
For interval-gap analysis, we denote SMT(CFM, interval ,range) for respective
SMT-solver calls, where range is a sub-range of interval to be investigated. For
reducing the search space for gap detection, parameter range can be obtained
from ILP-based bound analysis. The SMT call reports invalid sub-ranges within
range leading to compound intervals within the normal form. Finally, for car-
dinality intervals L;, L; of cross-tree edges (fi,Li,Lj, f;) € &y, Y € {R, X},
bound and gap analysis is, in general, performed as described above. In contrast,
infeasibility of source and/or target feature node intervals imposes incremental
removals of the corresponding edges from @y during normal form computation.

4 Experimental Evaluation

We implemented CFM bound analysis and gap detection in a tool providing
textual syntax for specifying input CFM models [33]. Here, we present evaluation
results gained from several experiments performed with our tool. We address the
following research questions.

(RQ1) Is CFM normal form computation applicable to real-world input models?

(RQ2) How does the size and complexity of CFM affect scalability of CFM
analysis?

(RQ3) How does the ILP-based feasibility check perform on FODA feature
models compared to a SAT-based satisfiability check?

To address (RQ1), we applied our tool to the real-world CFM in Fig.1. To
address (RQ2) and (RQ3), we used synthetically generated CFM models by
extending the BeTTy tool [36] with cardinality interval generation capabilities
including adjustable mazimum feature instance cardinality and unbounded inter-
val probability. We generated CFM by randomly varying all CFM generation cri-
teria using uniformly distributed random variables. Experiments were performed
on a Unix machine with Intel Core i5 (2,3 GHz, 8 GB RAM). For bound analysis,
we employed as ILP-solvers CPLEX [21], Gurobi [18], and GLPK [17]. For gap
detection, we used SMT-solver Z3[27] and for (RQ3), we utilized Sat4j [24].

For (RQ1), we computed the normal form for the AR game CFM which
includes bound analysis for 27 intervals, thus requiring 54 ILP-solver calls. The
CPLEX ILP-solver took about 10 ms per call. Gap analysis included 27 intervals
which took about 15.71s per call. The resulting normal form exposed a false
unbounded group instance interval anomaly for the Channels group, thus the
unbounded interval symbol * is replaced by 11.

Concerning (RQ2), we performed regression analysis to estimate influences
of model characteristics on CFM analysis performance metrics. To identify sig-
nificant coefficients, we applied multiple linear regression analysis on input data
sets by randomly varying all generation criteria. We applied t-tests to check

170 M. Weckesser et al.

n =80

60 Feature Number = 1000 *
CTCR =5%
& Branching Factor = 10 * 20
£ Unbounded = 10% x
g40
é 15
3
o
P
¥el 10
(2]
5 X ¥ 5
R* =0.8478 . R* =0.3238
0
0 1000 2000 3000 4000 500C 0 10 20 30 40 50
Number of Features CTCR [%)]
16
X X
@ 9 *
£
g 12 % X X X
= x
g X XX » X X X
T 6 M X X X X
= X X X X
g XX X X K XXX X
S 8 W —
wn X XBOOX KA X XX %X XX
X XA XX XXX Xt XX
X X X X % X 3 b X X XXX XX XX *
R? =0.02307 R? = —0.01072
x XX
0.00 0.25 0.50 0.75 0 500 1000 1500 2000 2500
Unbounded Intervals [%] Avg. Number of Feature Instances

Fig. 4. Evaluation results for (RQ2)

significance of regression coefficients. With significance level p < 0.05, we identi-
fied (a) number of features, and (b) cross-tree constraint ratio (CTCR), (c) ratio
of unbounded cardinality intervals, as well as (d) CFM feasibility as coefficients
with potentially high influences on run-time of ILP-based bound analysis. In
contrast, the influence of average number of feature instances is not significant.
Figure 4 contains the results of one bound analysis run for individual variation of
coefficients (a)—(d). The plots show that run-time of ILP-based bound analysis
is dominated by (a) and (b), as the size of the feature tree and the number of
cross-tree edges directly affects the number of decision variables and constraints.
The results show that ILP-based analysis of one particular bound for CEFM with
5,000 features takes about 50 ms and thus about 21 min. for complete bound
analysis. This can be considered industrial strength. In contrast, for SMT-based
gap analysis, we were only able to obtain run-time analysis results for small-sized
(and mostly bounded) CFM up to at most 200 features. As expected, run-time
of SMT-based gap analysis tends to show exponential growth with increasing
average size of cardinality intervals. For (RQ3) we conducted multiple linear
regression to estimate influences of FODA feature model characteristics, i.e.,
with CFM restricted to cardinality intervals between 0 and 1, for comparing run-
time of satisfiability checks using SAT and ILP-solvers. We identified coefficients

Anomaly Detection for Cardinality-Based Feature Models 171

600 CPLEX vs. Sat4j Gurobi vs. Sat4j , -+ GLPK vs. Sat4j -
n =319 Y g
CTCR = 30% 5o

Branching-Factor = 5

+CFM feasiblity
« CFM infeasibility +
Sat4j 't

N
(==}
(==}

R*=0.

Run-time [ms|

= 200

Solver

0

0 2500 5000 7500 100000 2500 5000 7500 10000 O 2500 5000 7500 10000
Number of Features

Fig. 5. Evaluation results for (RQ3)

number of features, CTCR and CFM feasibility as highly significant (p < 0.01).
For CPLEX, the mazimum branching factor has no significant influence. As
shown in Fig. 4, the SAT-solver exhibits lower run-time metrics with increasing
model size compared to ILP. Nevertheless, ILP-solvers perform remarkably well,
with differences in run-time metrics by means of a constant factor only up to
models with 5,000 features (Fig.5).

Threats to Validity. Threats to validity may arise from our experimental input
data selection. Concerning (RQ1), the cloud-based AR game is part of a major
research project and has already been used for experimental evaluation [31].
Similarly, our design choices for CFM syntax and semantics are derived from
requirements of cloud-domain experts. Concerning synthetic data for (RQ2) and
(RQ3), we employed the well-established BeTTy tool for generating FODA-like
feature trees, additionally augmented with cardinality intervals. The cardinality
interval test data is dimensioned according to characteristics of our case study in
order to obtain realistic models. To the best of our knowledge, there does neither
exist a fully-fledged CFM generator, nor related approaches for comprehensive
CFM analysis as in our approach. Hence, neither a qualitative, nor a quantitative
comparison to existing other approaches has been possible so far.

5 Related Work

Formalization of Cardinality-Based Feature Models. Riebisch et al. first propose
to extend FODA notation with UML-like multiplicities by means of feature group
cardinality [32]. Czarnecki et al. extend feature models with group and feature
cardinality, but forbid combinations of both [13]. Thereupon, Czarnecki et al.
define CFM semantics based on sub-tree clones and propose their translation
into a context-free grammar [14]. They also permit unbounded cardinality but
do no investigate their semantic impact. Quinton et al. introduce source and
target cardinality for require-edges [30]. However, their approach does neither
consider exclude-edges, nor combinations of feature instance and group cardinal-
ity. Quinton et al. also mention unbounded cardinality, but neither address it in

172 M. Weckesser et al.

CFM semantics, nor as part of CFM analysis. Michel et al. investigate semantic
ambiguities due to combinations of feature and group cardinality and distinguish
local clone-based from global feature-based interpretation of group type cardi-
nality intervals, being similar to our notion of group instance and group type
cardinality intervals [26]. However, they only consider global feature-based inter-
pretation being similar to our notion of group type cardinality intervals. Cordy
et al. allow combinations of feature and group cardinality, but for the latter only
consider group type cardinality intervals [12]. Again, neither Michel et al., nor
Cordy et al. handle unboundedness semantically and during CFM analysis.

Automated Analysis of Cardinality-Based Feature Models. Quinton et al. define
inconsistent CFM similar to our notion of dead cardinality anomaly and perform
inconsistency detection using CSP [28-30]. Cordy et al. in [12] and Zhang et al.
in [38] present BDD-based CFM consistency analysis. However, neither of these
approaches is able to handle unbounded configuration spaces and/or interval
gaps, nor provide a normal form for CFM.

Analyzing Models with Unbounded Cardinality. Other modeling languages also
employ the concept of cardinality to restrict instance multiplicities of model
entities. CVL [16] provide iterators to mimic cardinality in feature diagrams
including unbounded intervals, and the specification language CLAFER combines
concepts from UML and feature modeling including group and feature instance
cardinality [2]. However, no systematic analysis of unbounded cardinality is pro-
vided yet. In addition, several approaches have been proposed for analyzing
multiplicities in UML class diagrams using Alloy [1], CSP [10], and ILP [15] but
none of them explicitly handles unboundedness. Balaban et al. present a graph-
based algorithm for tightening multiplicities in UML class diagrams [4]. How-
ever, the approach essentially differs from CFM normal form computation as no
(recursively) cloned sub-tree hierarchy, cross-tree edges and multiple cardinality
constraints per entities occur in class diagrams. Amongst others, Boufares et al.
consider inconsistency in cardinality constraints of data-base schema definitions
including unbounded cardinality, but do not take interval gaps into account [8].

6 Conclusion

We presented a comprehensive formalization of CFM configuration seman-
tics including unbounded cardinality intervals. We further presented evaluation
results gained from experiments conducted with our tool implementation for
computing normal forms of CFM. The results show the general applicability
and scalability of ILP-based bound analysis. For scalable gap analysis, we aim
at replacing the SMT-solver also by an ILP-solver in our future work. We also
plan to conduct further experiments including real-world case studies and alter-
native CFM semantics [26]. For integrating CFM into a fully-fledged engineering
process with accompanying tool support, we plan to develop a methodology for
mapping feature instances to solution space artifacts as, e.g., propagated by
CVL [16].

Anomaly Detection for Cardinality-Based Feature Models 173

Acknowledgment. This work was partially supported by the DFG (German
Research Foundation) as part of projects B0l and C02 within CRC 1053 — MAKI
and under SPP 1593: Design For Future — Managed Software Evolution.

References

10.

11.

12.

13.

14.

15.

16.

. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-

mation from UML to Alloy. Softw. Syst. Model. 9(1), 69-86 (2010)

Bak, K., Czarnecki, K., Wasowski, A.: Feature and meta-models in Clafer: mixed,
specialized, and coupled. In: Malloy, B., Staab, S., Brand, M. (eds.) SLE 2010.
LNCS, vol. 6563, pp. 102-122. Springer, Heidelberg (2011)

Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.: Clafer: unifying
class and feature modeling. Softw. Syst. Model. 1-35 (2014)

Balaban, M., Maraee, A.: Simplification and correctness of UML class diagrams —
focusing on multiplicity and aggregation/composition constraints. In: Moreira, A.,
Schitz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol.
8107, pp. 454-470. Springer, Heidelberg (2013)

Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7-20. Springer, Heidelberg
(2005)

Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615-636 (2010)

Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-
els. In: Pastor, O., Falcao e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
491-503. Springer, Heidelberg (2005)

Boufares, F., Bennaceur, H.: Consistency problems in ER-schemas for database
systems. Inf. Technol. 163(4), 263-274 (2004)

Biirdek, J., Lity, S., Lochau, M., Berens, M., Goltz, U., Schiirr, A.: Staged config-
uration of dynamic software product lines with complex binding time constraints.
In: VaMoS 2014, pp. 16: 1-16: 8 (2014)

Cadoli, M., Calvanese, D., De Giacomo, G., Mancini, T.: Finite model reasoning
on UML class diagrams via constraint programming. In: Basili, R., Pazienza, M.T.
(eds.) AT*TA 2007. LNCS (LNAI), vol. 4733, pp. 36-47. Springer, Heidelberg (2007)
Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc, Boston (2001)

Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: Beyond boolean product-line
model checking: dealing with feature attributes and multi-features. In: ICSE 2013,
pp. 472-481 (2013)

Czarnecki, K., Helsen, S.: Staged configuration using feature models. In: Nord,
R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266—-283. Springer, Heidelberg (2004)
Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature
models and their specialization. Softw. Process Improv. Pract. 10(1), 7-29 (2005)
Falkner, A., Feinerer, 1., Salzer, G., Schenner, G.: Computing product configura-
tions via UML and integer linear programming. Int. J. Mass Customisation 3(4),
351-367 (2010)

Fleurey, F., Haugen, ., Mgller-Pedersen, B., Svendsen, A., Zhang, X.: Standard-
izing variability — challenges and solutions. In: Ober, I., Ober, 1. (eds.) SDL 2011.
LNCS, vol. 7083, pp. 233-246. Springer, Heidelberg (2011)

174

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

M. Weckesser et al.

GNU Linear Programming Kit, Version 4.55. http://www.gnu.org/software/glpk/
glpk.html

Gurobi Optimization, I.: Gurobi Optimizer Reference Manual (2015). http://www.
gurobi.com

Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R.,
Classen, A.: Evaluating formal properties of feature diagram languages. IET Softw.
2(3), 281-302 (2008)

Hubaux, A., Heymans, P., Schobbens, P.-Y., Deridder, D.: Towards multi-view
feature-based configuration. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010.
LNCS, vol. 6182, pp. 106-112. Springer, Heidelberg (2010)

IBM ILOG CPLEX V12.6 User’s Manual for CPLEX. IBM Corp. (2015). http://
www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, S.A.: Feature oriented
domain analysis (FODA). Technical report, CMU (1990)

Karatag, A.S., Oguztiiziin, H., Dogru, A.: Mapping extended feature models to
constraint logic programming over finite domains. In: Bosch, J., Lee, J. (eds.)
SPLC 2010. LNCS, vol. 6287, pp. 286—299. Springer, Heidelberg (2010)

Le Berre, D., Parrain, A.: The Sat4j Library, Release 2.2. J. Satisfiability Boolean
Model. Comput. 7, 59-64 (2010)

Mendonga, M., Wasowski, A., Czarnecki, K.: SAT-based analysis of feature models
is easy. In: 13th SPLC, pp. 231-240 (2009)

Michel, R., Classen, A., Hubaux, A., Boucher, Q.: A formal semantics for feature
cardinalities in feature diagrams. In: VaMoS 2011, pp. 82-89 (2011)

de Moura, L., Bjgrner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008)

Quinton, C., Romero, D., Duchien, L.: Automated selection and configuration of
cloud environments using software product lines principles. In: IEEE Cloud 2014,
pp. 144-151 (2014)

Quinton, C., Pleuss, A., Berre, D.L., Duchien, L., Botterweck, G.: Consistency
checking for the evolution of cardinality-based feature models. In: SPLC 2014, pp.
122-131 (2014)

Quinton, C., Romero, D., Duchien, L.: Cardinality-based feature models with con-
straints: a pragmatic approach. In: SPLC 2013, pp. 162-166 (2013)
Richerzhagen, B., Stingl, D., Hans, R., Grof}; C., Steinmetz, R.: Bypassing the
cloud: peer-assisted event dissemination for augmented reality games. In: P2P 2014,
pp. 1-10 (2014)

Riebisch, M., Bollert, K., Streitferdt, D., Philippow, I.: Extending feature diagrams
with UML multiplicities. In: 6th World Conference on Integrated Design & Process
Technology (IDPT) (2002)

Schnabel, T., Weckesser, M., Kluge, R., Lochau, M., Schiirr, A.: CardyGAn: tool
support for cardinality-based feature models. In: VaMoS 2016 (2016) (to appear)
Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: a survey and a
formal semantics. In: Proceedings of RE 2006, pp. 139-148 (2006)

Schroeter, J., Mucha, P., Muth, M., Jugel, K., Lochau, M.: Dynamic configuration
management of cloud-based applications. In: SPLC 2012, pp. 171-178 (2012)
Segura, S., Galindo, J., Benavides, D., Parejo, J., Ruiz-Cortés, A.: BeTTy: bench-
marking and testing on the automated analysis of feature models. In: VaMoS 2012,
pp. 63-71 (2012)

http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
http://www.gurobi.com
http://www.gurobi.com
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Anomaly Detection for Cardinality-Based Feature Models 175

37. Williams, H.P.: Model Building in Mathematical Programming. John Wiley &
Sons, Hoboken (2013)

38. Zhang, W., Yan, H., Zhao, H., Jin, Z.: A BDD-based approach to verifying clone-
enabled feature models’ constraints and customization. In: Mei, H. (ed.) ICSR
2008. LNCS, vol. 5030, pp. 186-199. Springer, Heidelberg (2008)

Analysis and Bug Triaging

Cut Branches Before Looking for Bugs:
Sound Verification on Relaxed Slices

Jean-Christophe Léchenet!2(®) Nikolai Kosmatov', and Pascale Le Gall?

L CEA, LIST, Software Reliability and Security Laboratory, P.C. 174,
91191 Gif-sur-Yvette, France
{jean-christophe.lechenet,nikolai.kosmatov}@cea.fr
2 Laboratoire de Mathématiques et Informatique pour la Complexité et les Systemes,
CentraleSupélec, Université Paris-Saclay, 92295 Chatenay-Malabry, France
pascale.legall@centralesupelec.fr

Abstract. Program slicing can be used to reduce a given initial program
to a smaller one (a slice) which preserves the behavior of the initial
program with respect to a chosen criterion. Verification and validation
(V&V) of software can become easier on slices, but require particular
care in presence of errors or non-termination in order to avoid unsound
results or a poor level of reduction in slices.

This article proposes a theoretical foundation for conducting V&V
activities on a slice instead of the initial program. We introduce the
notion of relazed slicing that remains efficient even in presence of errors
or non-termination, and establish an appropriate soundness property. It
allows us to give a precise interpretation of verification results (absence
or presence of errors) obtained for a slice in terms of the initial program.
Our results have been proved in Coq.

1 Introduction

Context. Program slicing was initially introduced by Weiser [32,33] as a tech-
nique allowing to decompose a given program into a simpler one, called a pro-
gram slice, by analyzing its control and data flow. In the classic definition, a
(program) slice is an executable program subset of the initial program whose
behavior must be identical to a specified subset of the initial program’s behav-
ior. This specified behavior that should be preserved in the slice is called slicing
criterion. A common slicing criterion is a program point . For the purpose of
this paper, we prefer this simple formulation to another criterion (I, V') where
a set of variables V is also specified. Informally speaking, program slicing with
respect to the criterion [should guarantee that any variable v at program point
[takes the same value in the slice and in the original program.

Since Weiser’s original work, many researchers have studied foundations of
program slicing (e.g. [4-6,8,11,14,20,26-28]). Numerous applications of slicing
have been proposed, in particular, to program understanding, software main-
tenance, debugging, program integration and software metrics. Comprehensive

© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. Wasowski (Eds.): FASE 2016, LNCS 9633, pp. 179-196, 2016.
DOI: 10.1007/978-3-662-49665-7_11

180 J.-C. Léchenet et al.

surveys on program slicing can be found e.g. in [9,29,30,35]. In recent classifi-
cations of program slicing, Weiser’s original approach is called static backward
slicing since it simplifies the program statically, for all possible executions at the
same time, and traverses it backwards from the slicing criterion in order to keep
those statements that can influence this criterion. Static backward slicing based
on control and data dependencies is also the purpose of this work.

Goals and Approach. Verification and Validation (V&V) can become easier
on simpler programs after “cutting off irrelevant branches” [13,15,17,22]. Our
main goal is to address the following research question:

(RQ) Can we soundly conduct V&V activities on slices instead of the
initial program? In particular, if there are no errors in a program slice,
what can be said about the initial program? And if an error is found in
a program slice, does it necessarily occur in the initial program?

We consider errors determined by the current program state such as runtime
errors (that can either interrupt the program or lead to an undefined behavior).
We also consider a realistic setting of programs with potentially non-terminating
loops, even if this non-termination is unintended. So we assume neither that
all loops terminate, nor that all loops do not terminate, nor that we have a
preliminary knowledge of which loops terminate and which loops do not.

Dealing with potential runtime errors and non-terminating loops is very
important for realistic programs since their presence cannot be a priori excluded,
especially during V&V activities. Although quite different at first glance, both
situations have a common point: they can in some sense interrupt normal exe-
cution of the program preventing the following statements from being exe-
cuted. Therefore, slicing away (that is, removing) potentially erroneous or non-
terminating sub-programs from the slice can have an impact on soundness of
program slicing.

While some aspects of (RQ) were discussed in previous papers, none of them
provided a complete formal answer in the considered general setting (as we detail
in Sects. 2 and 6 below). To satisfy the traditional soundness property, program
slicing would require to consider additional dependencies of each statement on
previous loops and error-prone statements. That would lead to inefficient (that is,
too large) slices, where we would systematically preserve all potentially erroneous
or mon-terminating statements executed before the slicing criterion. Such slices
would have very limited benefit for our purpose of performing V&V on slices
instead of the initial program.

This work proposes relaxed slicing, where additional dependencies on previ-
ous (potentially) erroneous or non-terminating statements are not required. This
approach leads to smaller slices, but needs a new soundness property. We state
and prove a suitable soundness property using a trajectory-based semantics, and
show how this result can justify V&V on slices by characterizing possible ver-
ification results on slices in terms of the initial program. The proof has been
formalized in the Coq proof assistant [7] and is available in [1].

The Contributions of this work include:

Cut Branches Before Looking for Bugs: Sound Verification 181

— a comprehensive analysis of issues arising for V&V on classic slices;

— the notion of relaxed slicing (Definition 6) for structured programs with pos-
sible errors and non-termination, that keeps fewer statements than it would
be necessary to satisfy the classic soundness property of slicing;

— a new soundness property for relaxed slicing (Theorem 1);

— a characterization of verification results, such as absence or presence of errors,
obtained for a relaxed slice, in terms of the initial program, that constitutes
a theoretical foundation for conducting V&V on slices (Theorems 2, 3);

— a formalization and proof of our results in Coq.

Paper Outline. Section2 presents our motivation and illustrating examples.
The considered language and its semantics are defined in Sect. 3. Section 4 defines
the notion of relaxed slice and establishes its main soundness property. Next,
Sect. 5 formalizes the relationship between the errors in the initial program and in
a relaxed slice. Finally, Sects. 6 and 7 present the related work and the conclusion
with some future work.

2 Motivation and Running Examples

Errors and Assertions. We consider errors that are determined by the cur-
rent program state! including runtime errors (division by zero, out-of-bounds
array access, arithmetic overflows, out-of-bounds bit shifting, etc.). Some of these
errors do not always interrupt program execution and can sometimes lead to an
(even more dangerous) undefined behavior, such as reading or writing an arbi-
trary memory location after an out-of-bounds array access in C. Since we cannot
take the risk to overlook some of these “silent runtime errors”, we assume that all
threatening statements are annotated with explicit assertions assert(C) placed
before them, that interrupt the execution whenever the condition C is false. This
assumption will be convenient for the formalization in the next sections: possible
runtime errors will always occur in assertions. Such assertions can be generated
syntactically (for example, by the RTE plugin of the FRAMA-C toolset [21] for
C programs). For instance, line 10 in Fig. 1a prevents division by zero at line 11,
while line 13 makes explicit a potential runtime error at line 14 if the array a is
known to be of size N. In addition, the assert(C) keyword can be also used to
express any additional user-defined properties on the current state.

Most previous applications of slicing to debugging used slices in order to
better understand an already detected error, by analyzing a simpler program
rather than a more complex one [8,29,30]. Our goal is quite different: to perform
V&V on slices in order to discover yet unknown errors, or show their absence
(cf. (RQ)). The interpretation of absence or presence of errors in a slice in terms
of the initial program requires solid theoretical foundations.

Classic Soundness Property. Let p be a program, and ¢ a slice of p w.r.t. a
slicing criterion I. The classic soundness property of slicing (cf. [6, Definition 2.5]
or [28, Slicing Th.]) can be informally stated as follows.

! Temporal errors (e.g. use-after-free in C) cannot be directly represented in this way.

182 J.-C. Léchenet et al.

1 s1 = 0; 1 s1 = 0; 1
2 s2 = 0; 2 2 s2 = 0;
3 1 = 03 3 1 = 03 3
4 while (i < N){ 4 while (i < N){ 4
5 assert (i < N); 5 assert (i < N); 5
6 s1 = s1 + al[il; 6 s1 = s1 + al[il; 6
7 i=1i+ k; 7 i=1i+ k; 7
s } s } 8
9 j = 0; 9 9 j = 0;
10 assert (k != 0); 10 10 assert (k != 0);
11 last = N/k; 11 11 last = N/k;
12 while (j <= last){ 12 12 while (j <= last){
13 assert (kxj < N); 13 13 assert (k*j < N);
14 s2 = s2 + alkxjl; 14 14 s2 = s2 + alkxjl;
15 j=3+1; 15 15 j=3+ 1
16 16 16 }
17 assert (N != 0); 17 assert (N != 0); 17
18 avgl = s1 / N; 18 avgl = s1 / N; 18
19 assert (N != 0); 19 19 assert (N != 0);
20 avg2 = s2 / N; 20 20 avg2 = s2 / N;
21 if (avgl == avg2) 21 21
22 print ("equal"); 22 22
(a) (b) (c)

Fig. 1. (a) A program computing in two ways the average of elements of a given array
a of size N whose only nonzero elements can be at indices {0, k, 2k, ...}, and its two
slices: (b) w.r.t. line 18, and (c) w.r.t. line 20.

Property 1. Let o be an input state of p. Suppose that p halts on 0. Then ¢ halts
on ¢ and the executions of p and ¢ on o agree after each statement preserved in
the slice on the variables that appear in this statement.?

This property was originally established for classic dependence-based slicing for
programs without runtime errors and only for executions with terminating loops:
nothing is guaranteed if p does not terminate normally on o. Let us show why
this property does not hold in presence of potential runtime errors or non-ter-
minating loops.

Illustrating Examples. Figure la presents a simple (buggy) C-like program
that takes as inputs an array a of length N and an integer k (with 0 <k < 100,
0 <N< 100), and computes in two different ways the average of the elements
of a. We suppose that all variables and array elements are unsigned integers,
and all elements of a whose index is not a multiple of k are zero, so it suffices
to sum array elements over the indices multiples of k and to divide the sum
by N. The sum is computed twice (in s1 at lines 3-8 and in s2 at lines 9-
16), and the averages avgl and avg2 are computed (lines 17-20) and compared
(lines 21-22). We assume that necessary assertions with explicit guards (at lines
5,10,13,17,19) are inserted to prevent runtime errors.

Figure 1b shows a (classic dependence-based) slice of this program with
respect to the statement at line 18. Intuitively, it contains only statements

2 Formally, using the notation introduced hereafter in the paper (cf. Definition 8), their
projections are equal: Proj, (T [p]o) = Proj. (7 [g]o).

Cut Branches Before Looking for Bugs: Sound Verification 183

Initial state| Inputs (a) (b) (c)
o1 k=2, N=5 — —
o2 k=2, N =44 line 13 — 4 line 13
o3 k=0, N=4|Cline 4|0 line 4|4 line 10
o4 k=2, N =0|4 line 13|/ line 17|/ line 13
o5 k=0, N =0|4 line 10(4 line 17|4 line 10

Fig. 2. Errors (4), non-termination (©) and normal termination (—) of programs of
Fig. 1 for some inputs.

(at lines 1,3,4,6,7,18) that can influence the slicing criterion, i.e. the values
of variables that appear at line 18 after its execution.? In addition, we keep the
assertions to prevent potential errors in preserved statements. Similarly, Fig. 1c
shows a slice with respect to line 20, again with protecting assertions.

Figure 2 summarizes the behavior of the three programs of Fig.1 on some
test data. The elements of a do not matter here. Suppose we found an error at
line 17 in slice (b) provoked by test datum o4. Program (a) does not contain
the same error: it fails earlier, at line 13. We say that the error at line 17 in slice
(b) is hidden by the error at line 13 of the initial program. Similarly, test datum
o5 provokes an error at line 17 in slice (b) while this error is hidden by an error
at line 10 in (a). In fact, the error at line 17 cannot be reproduced on the initial
program, so we say that it is totally hidden by other errors.

For slice (c), detecting an error at line 10 on test datum o5 would allow us to
observe the same error in (a). However, if this error in slice (c) is also provoked
by test datum o3, this test datum does not provoke any error in (a) because the
loop at line 4 does not terminate. We say that this error is (partially) hidden by
a non-termination of the loop at line 4.

These examples clearly show that Property 1 is not true in presence of errors
or non-terminating loops for classic slices. Indeed, the executions of p and ¢ may
disagree at least for two reasons:

(i) a previously executed non-terminating loop not preserved in the slice, or
(ii) a previously executed failing statement not preserved in the slice.

Let us consider another example related to error-free programs. If we suppose
that 0 <k < 100, 0 <N < 100, and replace N/k by (N-1)/k at line 11 of Fig. 1,
neither slice contains any error. If we manage to verify the absence of errors on
both slices, can we be sure that the initial program is error-free as well?

Bigger Slices vs. Weaker Soundness Property. One solution (adopted
by [18,25,26]), cf. Sect.6) proposes to ensure Property 1 even in presence of
errors and potentially non-terminating loops by considering additional depen-
dencies. This approach would basically lead to always preserving in the slice any

3 By formal definitions of Sect. 4, one easily checks that line 18 is data-dependent on
line 6, that is in turn data-dependent on lines 1,3,7 and control-dependent on line 4.

184 J.-C. Léchenet et al.

(potentially non-terminating) loop or error-prone statement that can be exe-
cuted before the slicing criterion. The resulting slices would be much bigger, and
the benefit of performing V&V on slices would be very limited.

For instance, to ensure that the executions of program (a) and slice (b)
activated by test datum o4 agree on all statements of slice (b), line 13 should
be preserved in slice (b). That would result (by transitivity of dependencies) in
keeping e.g. the loop at line 12 and lines 9-11 in slice (b) as well. Similarly, the
loop at line 4 should be kept in slice (c) to avoid disagreeing executions for test
datum o3. The slices can become much bigger in this approach.

In this paper we propose relaxed slicing, an alternative approach that does not
require to keep all loops or error-prone statements that can be executed before
the slicing criterion, but ensures a weaker soundness property. We demonstrate
that the new soundness property is sufficient to justify V&V on slices instead of
the initial program. In particular, we show that reasons (i) and (ii) above are
the only possible reasons of a hidden error, and investigate when the absence of
errors in slices implies the absence of errors in the initial program.

3 The Considered Language and Its Semantics

Language. In this study, we consider a simple WHILE language (with integer
variables, fixed-size arrays, pure expressions, conditionals, assertions and loops)
that is representative for our formalization of slicing in presence of runtime errors
and non-termination. The language is defined by the following grammar:

Prog == Stmt*
Stmt = 1:skip |
l:x=e|

if (I:b) Prog else Prog |
while (I :b) Prog |
[:assert (b,1)

where [,1’ denote labels, e an expression and b a boolean expression. A program
(Prog) is a possibly empty list of statements (Stmt). The empty list is denoted A,
and the list separator is “;”. We assume that the labels of any given program are
distinct, so that a label uniquely identifies a statement. Assignments, conditions
and loops have the usual semantics. As its name suggests, skip does nothing.
The assertion assert (b, l’) stops program execution in an error state (denoted
¢) if b is false, otherwise execution continues normally. As said earlier, we assume
that assertions are added to protect all threatening statements. The label I’
allows us to associate the assertion with another statement that should be pro-
tected by the assertion (e.g. because it could provoke a runtime error). An asser-
tion often protects the following line (like in Fig. 1, where the protected label
is not indicated). Two simple cases however need more flexibility (cf. Fig.3).
Some assertions have to be themselves protected by assertions when they con-
tain a threatening expression. Figure 3a gives such an example where, instead

Cut Branches Before Looking for Bugs: Sound Verification 185

13 : assert (z != 0, 11); 11 : assert (k !'=0, 1);
12 : assert (w !'=0, 1); while (1 : j <= N/k) {
11 : assert ((y/z) + 1 !=0, 1);

1 :z=x/ ((y/z) + 1) + v/w; 12 : assert (k !=0, 1); }

(a) Chained assertions (b) Loop condition

Fig. 3. Two special cases of assertions

of creating three assertions pointing to 1, assertions 11 and 12 point to 1, and
assertion 13 points to another assertion 11. Figure3b (inspired by the second
loop of Fig. 1) shows how assertions with explicit labels can be used to protect a
loop condition from a runtime error. The arrows in Fig. 3 indicate the protected
statement.

Assertions can be also added by the user to check other properties than
runtime errors. If the user does not need to indicate the protected statement,
they can choose for I’ either the label I of the assertion itself or any label not
used elsewhere in the program. User-defined assertions should be also protected
against errors by other assertions if necessary.

Semantics. Let p be a program. A program state is a mapping from variables
to values. Let X' denote the set of all valid states, and X, = X U {e}, where ¢ is
the error state. Let o be an initial state of p. The trajectory of the execution of
p on o, denoted T [p]o, is the sequence of pairs ((l1,01)...(lk,0%)...), where
l,...,l,... is the sequence of labels of the executed instructions, and o; is the
state of the program after the execution of instruction I;. 7 can be seen as a
(partial) function
T : Prog — X — Seq(L x X,)

where Seq(L x X.) is the set of sequences of pairs (I,0) € L x X.. Trajectories
can be finite or (countably) infinite. A finite subsequence at the beginning of a
trajectory T is called a prefiz of T. The empty sequence is denoted ().

Let @ be the concatenation operator over sequences. For a finite trajectory
T, we denote by LS, (T) the last state of T (i.e. the state component of its last
element) if T # (), and o otherwise. The definition of T7 @ T5 is standard if T}
is finite. If 77 is infinite or ends with the error state e, then we set 77 ® 1o = T3
for any T (and even if T5 is not well-defined, in other words, @ performs lazy
evaluation of its arguments).

We denote by £ an evaluation function for expressions, that is standard and
not detailed here. For any (pure) expression e and state o € X, E[e]o is the
evaluation of expression e using o to evaluate the variables present in e. The
error state is only reached through a failed assert. Thanks to the assumption
that all potentially failing statements are protected by assertions, we do not
need to model errors in expressions or other statements: errors always occur in
assertions. We also suppose for simplicity that all variables appearing in p are
initialized in any initial state of p, that ensures the absence of expressions that

186 J.-C. Léchenet et al.

TANle = O,
Tls; plo = Tlslo® TIpl(LS-(T[s]o)),
T : skip]le = {(,0)),
Tl:z=€Jc = {Io[z< Ee]o])),

Tlif (I:b) p else ¢Jo

(
(,0)) @ (E[b]le — Tlplo, Tldlo),
Tlwhile (1:0) plo = {(

l,o))® (E[b]o —
Tplo ® Twhile (1:b) p](LS-(T [plo)), (),
T : assert(b,)]o = (E[b]o — {(1,0)),{({,¢))),

(
(

where for any trajectories T, T" and boolean value v, we define

(T, T) = T/i?~ v = True,
T if v = False.

Fig. 4. Trajectory-based semantics of the language (for a valid state o € X))

cannot be evaluated due to an uninitialized variable. These assumptions slightly
simplify the presentation without loss of generality for our purpose: loops and
errors (in assertions) are present in the language.

Figure4 gives the inductive definition of 7 for any valid state o € X. The
definitions for a loop and a conditional rely on the notation (v — Ti,T5) also
defined in Fig.4. For any state o, variable x and value v, o[z « v] denotes o
overridden by the association x — v. Notice that in the definitions for a sequence
and a loop, it is important that @ does not evaluate the second parameter when
the first trajectory is infinite or ends with the error state since the execution of
the remaining part is not defined in this case. Thus € can appear only once at
the very end of a trajectory.

We illustrate these definitions on slice (b) of Fig. 1, denoted p;. For every ini-
tial state o of p, and unsigned integer i, we define o = o[s; « (i-a[0] mod M,,)],
where M,, denotes the maximal representable value of an unsigned integer. Then
the trajectory on o3 is infinite, while the trajectory on o5 leads to an error:

a3)

& (6,03)(7,03)(4,03)(5,03)(6,03)(7,03)),
1,0

TpsJos = ((1,03)(3,08)(4,05) (5 ;
((3,08)(4,05)(17, ¢)).

6
Tpslos =)

4 Relaxed Program Slicing

4.1 Control and Data Dependences

Let L(p) denote the set of labels of program p. Let us consider here a more
general slicing criterion defined as a subset of labels Ly C L(p), and construct
a slice with respect to all statements whose labels are in Lg. In particular, this
generalization can be very useful when one wants to perform V&V on a slice with
respect to several threatening statements. In this work we focus on dependence-
based slicing, where a dependence relation D C L(p) x L(p) is used to construct

Cut Branches Before Looking for Bugs: Sound Verification 187

a slice. We write I = I’ to indicate that I’ depends on [according to D, i.e.
P

(1,1") € D. The definitions of control and data dependencies, denoted respectively
D. and Dy, are standard, and given following [6].

Definition 1 (Control Dependence D.). The control dependencies in p are
defined by if and while statements in p as follows:

for any statement if (1:b) q elser and I' € L(q)UL(r), we define |25 1';
»

for any statement while (I:b) ¢ and I € L(q), we define 1 Le, v
P

For instance, in Fig. la, lines 5-7 are control-dependent on line 4, while lines
13-15 are control-dependent on line 12.

To define data dependence, we need the notion of (finite syntactic) paths.
Let us denote again by @ the concatenation of paths, extend & to sets of paths
as the set of concatenations of their elements, and denote by “x” Kleene closure.

Definition 2 (Finite Syntactic Paths). The set of finite syntactic paths
P(p) of a program p is inductively defined as follows:

P(IAD = {A},
P([s; p]) =P(s) & P(p),

P([l : skip]) = {I},

P([l:z = e]) = {1},

P([if (1:b) p else q]) = {I} & (P(p) UP(q)),
P([while (I:0) p]) = ({{} & Pp)" ® {1},
P([l : assert(b,1")]) = {I}.

For a given label [, let def(l) denote the set of variables defined at ! (that
is, def(l) = {v} if [is an assignment of variable v, and () otherwise), and let
ref(1) be the set of variables referenced at . If [designates a conditional (or a
loop) statement, ref(l) is the set of variables appearing in the condition; other
variables appearing in its branches (or loop body) do not belong to ref(l). We
denote by used(l) the set def(l) Uref(l).

Definition 3 (Data Dependence D). Let ! and !’ be labels of a program p.

We say that there is a data dependency l LDa, if def(l) # 0 and def(l) C ref(l)
p

and there exists a path m = mwilmel'ws € P(p) such that for alll” € my, def(1"”) #

def(l). Each m; may be empty.

For instance, in Fig.1b, line 18 is data-dependent on line 1 (with 7 =
1,3,4,17,18) and on line 6 (with # = 1,3,4,5,6,7,4,17,18), while line 6 is
data-dependent on lines 1, 3, 6 and 7.

188 J.-C. Léchenet et al.

A slice of p is expected to be a quotient of p, that is, a well-formed program
obtained from p by removing zero, one or more statements. A quotient can
be identified by the set of labels of preserved statements. Notice that when a
conditional (or a loop) statement is removed, it is removed with all statements
of its both branches (or its loop body) to preserve the structure of the initial
program in the quotient.

Given a dependence relation D and Lo C L(P), the slice based on D w.r.t. Lg
will be also identified by the set of labels of preserved statements. The following
lemma justifies the correctness of the definitions of slices given hereafter. We
denote by D* the reflexive transitive closure of D, and by (D*)~*(Lg) the set of

all labels I’ € L(p) such that there exists [€ Lo with I’ Ly
P

Lemma 1. Let Lo C L(P). If D is a dependence relation on p such that D, C D,
then (D*)~1(Lg) is the set of labels of a (uniquely defined) quotient of p.

Lemma 1 can be easily proven by structural induction. It allows us to define a
slice as the set of statements on which the statements in Lo are (directly or
indirectly) dependent.

Definition 4 (Dependence-based Slice). Let D be a dependence relation on
p such that D. C D, and Ly C L(P). A dependence-based slice of p based on
D with respect to Lo is the quotient of p whose set of labels is (D*)71(Lg). A
classic dependence-based slice of p with respect to Lg is based on D = D, U Dy.

4.2 Assertion Dependence and Relaxed Slices

Soundness of classic slicing for programs without runtime errors or non-termina-
ting loops can be expressed by Property 1 in Sect. 2. As we illustrated, to general-
ize this property in presence of runtime errors and for non-terminating executions
one would need to add additional dependencies and systematically preserve in
the slice all potentially erroneous or non-terminating statements executed before
(a statement of) the slicing criterion. We propose here an alternative approach,
called relazed slicing, where only one additional dependency type is considered.

Definition 5 (Assertion Dependence D,). For every assertion | : assert

(b,1") in p with 11" € L(p), we define an assertion dependency l Lo, .
p

Definition 6 (Relaxed Slice). A relaxed slice of p with respect to Ly is the
quotient of p whose set of labels is (D*)~'(Lg), where D = D.U Dy UD,.

For instance, in Fig. 1a, there would be an assertion dependence of each threat-
ening statement on the corresponding protecting assertion (written on the pre-
vious line). Therefore both slices (b) and (c) of Fig.1 (in which we artificially
preserved assertions in Sect.2) are in fact relaxed slices where assertions are
naturally preserved thanks to the assertion dependence.

Cut Branches Before Looking for Bugs: Sound Verification 189

Assertion dependence brings two benefits. It ensures that a potentially threat-
ening instruction is never kept without its protecting assertion. At the same time,
an assertion can be preserved without its protected statement, that is quite useful
for V&V that focus on assertions: slicing w.r.t. assertions may produce smaller
slices if we do not need the whole threatening statement. For example, a relaxed
slice w.r.t. the assertion at line 17 would contain only this unique line.

Notice that a relaxed slice does not require to include potentially erroneous
or non-terminating statements that can prevent the slicing criterion from being
executed (like in [18,25,26]). For example, slice (b) does not include the potential
error at line 13, and slice (¢) does not include the loop of line 4.

4.3 Soundness of Relaxed Slicing

We cannot directly compare the trajectory of the original program with a slice,
since it may refer to statements and variables not preserved in the slice. We use
projections of trajectories that reduce them to selected labels and variables.

Definition 7 (Projection of a State). The projection of a state o to a set of
variables V', denoted oV, is the restriction of o to V if 0 # €, and € otherwise.

Definition 8 (Projection of a Trajectory). The projection of a one-element
sequence {(1,0)) to a set of labels L, denoted {(I,0))|L, is defined as follows:

((I,olused(l))) ifleL,

otherwise.

(o)L = {

—~
~

The projection of a trajectoryT = ((l1,01) ... (lg,0k) ...) to L, denoted Proj; (T),
is defined element-wise: Proj (T) = ((I1,01)) L & ... & (g, 06)) L &

We can now state and prove the soundness property of relaxed slices.

Theorem 1 (Soundness of a Relaxed Slice). Let Ly C L(p) be a slicing
criterion of program p. Let q be the relaxed slice of p with respect to Ly, and
L = L(q) the set of labels preserved in q. Then for any initial state o € X of p
and finite prefix T of T[p]o, there exists a prefiz T' of T[q]o, such that:

Proj, (T') = Proj.(T")
Moreover, if p terminates without error on o, T [p]o and T[q]o are finite, and
Proj, (T [p]o) = Proj,(T[4]o)

Proof. Let 0 € X, Tplo = ((l1,01)(l2,02)...), and T[q]o = ((I1,01)(%,0%)
). Let T = {(l4,01) ... (l;,0;)) be a finite prefix of T [p]o. By Definition 8, the
projections of 7 [¢]o and T to L = L(q) have the following form

Proj. (T [q]o) = ((I}, oyl used(1})) (1, oblused(l})) ...),
PI“OjL(T) = < (lf(l), Uf(l)lused(lf(l))) .. (lf(j), Uf(j)iused(lf(j))) >,

where 7 < i and f is a strictly increasing function.

190 J.-C. Léchenet et al.

Let us denote by k the greatest natural number such that & < j and
such that the prefix of T[g]o of length k exists and satisfies (Proj, (T))* =
Proj; ((T[q]o)*), where we denote by U* the prefix of length k for any trajec-
tory U. Let 7' = ((I{,01) ... (I}, 0})) be the prefix (7 [¢]o)*. By Definition 8 we
have

Proj, (T") = ((1}, Lused(1}) ... (1, o} L used())).

Since (Proj; (T))* = Proj(T”), for any m = 1,2, ...,k we have I, = l4(,,) and
o bused(ly,) = opimylused(ly(m)). Set o9 = 0f = 0.

Let us prove that & = j. We reason by contradiction and assume that &k < j.
By maximality of k, there can be three different cases:

1. T[q]o is of size k, or
2. 1y ex%sts, but I}y # l(k+1), OF
3. g exists, [| = l¢ug1), but oy lused(l} 1) # o pat1yd used(lprr))-

Since l;, = lf(1), cases 1 and 2 can be only due to a diverging evaluation of
a control flow statement (i.e. if, while or assert) situated in the execution of
p between Iy and lf(41y—1. If such a statement occurs at label I} = l; (), its
condition would be evaluated identically in both executions since o} | used(l},) =
o ¢yl used(ls)). The first non-equal label lf(;11y cannot be part of the body
of some non-preserved if or while statement between [y) +1 and lf(r41)—1 in
p by definition of control dependence (cf. Definition 1). Finally, the divergence
cannot be due to an assert in p between)41 and l¢41)—1 either, because
a passed assert has no effect, while a failing assert would make it impossible
to reach l¢ 1) in p. Thus a divergence leading to cases 1 and 2 is impossible.

In case 3, the key idea is to remark that oy | ref (I}, ;) = o ppg1)—1l ref (I (hg1))-
Indeed, assume that there is a variable v € ref(l} ;) = ref(lf41)) such that
01, (v) # 0¢k41)—1(v). The last assignment to v in the execution of p before its
usage at [¢(,41) must be preserved in ¢ because of data dependence (cf. Defini-
tion 3), so it has a label I;, = [, for some 1 < u < k. By definition of k, the state
projections after this statement were equal: o7, | used(l},) = o ¢yl used(ls(y)), so
the last values assigned to v before its usage at [(,41) were equal, that contradicts
the assumption o, (v) # 0 ¢(k+1)—1(v). This shows that all variables referenced in
l¢(k+1) have the same values, so the resulting states cannot differ, and case 3 is
not possible either. Therefore k = j, and T’ satisfies Proj, (T) = Proj (T").

If p terminates without error on o, by the first part of the theorem we have
a prefix 77 of T[q]o such that Proj; (7 [p]o) = Proj,(T7). If TV is a strict
prefix of T[q¢]o, this means as before that a control flow statement executed
in p causes the divergence of the two trajectories. By hypothesis, there are no
failing assertions in the execution of p, therefore it is due to an if or a while.
By the same reasoning as in cases 1, 2 above we show that its condition must be
evaluated in the same way in both trajectories and cannot lead to a divergence.
Therefore, T" = T [q]o. O

Cut Branches Before Looking for Bugs: Sound Verification 191

5 Verification on Relaxed Slices

In this section, we show how the absence and the presence of errors in relaxed
slices can be soundly interpreted in terms of the initial program.

Lemma 2. Let q be a relazed slice of p and o € X' an initial state of p. If the
preserved assertions do not fail in the execution of ¢ on o, they do not fail in
the execution of p on o either.

Proof. Let us show the contrapositive. Assume that 7 [p]o ends with (I, &) where
l € L(q) is a preserved assertion. Let L = L(g). From Theorem 1 applied to
T = T[p]o, it follows that there exists a finite prefix 7" of 7 [¢g]o such that
Proj; (T) = Proj;(T"). The last state of Proj; (T") is €, therefore the last state
of T" is € too. It means that ¢ appears in 7 [¢]o, and by definition of semantics
(cf. Sect. 3) this is possible only if € is its last state. Therefore T [g]lo ends with
(I,e) as well. O

The following theorem and corollary immediately follow from Lemma 2.

Theorem 2. Let q be a relazed slice of p. If all assertions contained in q never
fail, then the corresponding assertions in p never fail either.

Corollary 1. Let ¢1, ..., qn be relazed slices of p such that each assertion in
p is preserved in at least one of the q;. If no assertion in any q; fails, then no
assertion fails in p.

The last result justifies the detection of errors in a relaxed slice.

Theorem 3. Let q be a relaxed slice of p and o € X an initial state of p. We
assume that T[q]o ends with an error state. Then one of the following cases
holds for p:

(1) Tlplo ends with an error at the same label, or
(1) T[plo ends with an error at a label not preserved in q, or

(t71) Tplo is infinite.

Proof. Let L = L(q) and assume that 7 [¢]o ends with (I,) for some preserved
assertion at label [€ L. We reason by contradiction and assume that 7 [p]o does
not satisfy any of the three cases. Then two cases are possible.

First, T[p]o ends with (I’,¢) for another preserved assertion at label I’ € L
(with I # [). Then reasoning as in the proof of Lemma2 we show that 7 [¢]o
ends with (I, ¢) as well, that contradicts I’ # I.

Second, T [p]o is finite without error. Then the second part of Theorem 1 can
be applied and thus Proj; (7 [p]o) = Proj; (7 [¢]o). This is contradictory since
T[q]o contains an error (at label I € L) and T [p]o does not. O

For instance, consider the example of Fig. 1 with 0 < k < 100, 0 < N < 100.
In this case we can prove that slice (b) does not contain any error, thus we can
deduce by Theorem 2 that the assertions at lines 5 and 17 (preserved in slice (b))

192 J.-C. Léchenet et al.

never fail in the initial program either. If in addition we replace N/k by (N-1) /k
at line 11 of Fig. 1, we can show that neither of the two slices of Fig. 1 contains
any error. Since these slices cover all assertions, we can deduce by Corollary 1
that the initial program is error-free.

Theorem 3 shows that despite the fact that an error detected in ¢ does not
necessary appear in p, the detection of errors on g has a precise interpretation. It
can be particularly meaningful for programs supposed to terminate, for which a
non-termination within some time 7 is seen as an anomaly. In this case, detection
of errors in a slice is sound in the sense that if an error is found in ¢ for initial
state o, there is an anomaly (same or earlier error, or non-termination within
time 7) in p whose type can be easily determined by running p on o.

It can be noticed that a result similar to Theorem 3 can be established for
non-termination: if 7 [¢]o is infinite, then either (1) or (f { 1) holds for p.

6 Related Work

Weiser [34] introduced the basics of intraprocedural and interprocedural static
slicing. A thorough survey provided in [30] explores both static and dynamic
slicing and compares the different approaches. It also lists the application areas
of program slicing. More recent surveys can be found at [9,29,35]. Foundations
of program slicing have been studied e.g. in [4-6,8,11,14,20,26-28]. This section
presents a selection of works that are most closely related to the present paper.

Debugging and Dynamic Slicing. Program debugging and testing are tradi-
tional application domains of slicing (e.g. [2,19,33]) where it can be used to better
understand an already detected error, to prioritize test cases (e.g. in regression
testing), simplify a program before testing, etc. In particular, dynamic slicing [8]
is used to simplify the program for a given (e.g. erroneous) execution. However,
theoretical foundations of applying V&V on slices instead of the initial program
(like in [13,22]) in presence of errors and non-termination, that constitute the
main purpose of this work, have been only partially studied.

Slicing and Non-terminating Programs. A few works tried to propose
a semantics preserved by classic slicing even in presence of non-termination.
Among them, we can cite the lazy semantics of [11], and the transfinite one of
[16], improved by [24]. Another semantics proposed in [6] has several improve-
ments compared to the previous ones: it is intuitive and substitutive. Despite
the elegance of these proposals, they turn out to be unsuitable for our purpose
because they consider non-existing trajectories, that are not adapted to V&V
techniques, for example, based on path-oriented testing like in [13,15].
Ranganath, et al. [26] provides foundations for the slicing of modern pro-
grams, i.e. programs with exceptions and potentially infinite loops, represented
by control flow graphs (CFG) and program dependence graphs (PDG). Their
work gives two definitions of control dependence, non-termination sensitive and
non-termination insensitive, corresponding respectively to the weak and strong
control dependences of [25] and further generalized for any finite directed graph

Cut Branches Before Looking for Bugs: Sound Verification 193

in [14]. [26] also establishes the soundness of classic slicing with non-termination
sensitive control dependence in terms of weak bisimulation, more adapted to
deal with infinite executions. Their approach requires to preserve all loops, that
results in much bigger slices than in relaxed slicing.

Amtoft [4] establishes a soundness property for non-termination insensitive
control dependence in terms of simulation. Ball and Horwitz [5] describes pro-
gram slicing for arbitrary control flow. Amtoft and Ball [4,5] state that an exe-
cution in the initial program can be a prefix of that in a slice, without care-
fully formalizing runtime errors. Our work establishes a similar property, and in
addition performs a complete formalization of slicing in presence of errors and
non-termination, explicitly formalizes errors by assertions and deduces several
results on performing V&V on slices.

Slicing in Presence of Errors. Harman, et al. [18] notes that classic algo-
rithms only preserve a lazy semantics. To obtain correct slices with respect to
a strict semantics, it proposes to preserve all potentially erroneous statements
through adding pseudo-variables in the def(l) and ref(l) sets of all potentially
erroneous statements [. Our approach is more fine-grained in the sense that we
can independently select assertions to be preserved in the slice and to be consid-
ered by V&V on this slice. This benefit comes from our dedicated formalization of
errors with assertions and a rigorous proof of soundness using a trajectory-based
semantics. In addition, we make a formal link about the presence or the absence
of errors in the program and its slices. Harman and Danicic [17] uses program
slicing as well as meaning-preserving transformations to analyze a property of
a program not captured by its own variables. For that, it adds variables and
assignments in the same idea as our assertions. Allen and Horwitz [3] extends
data and control dependences for Java program with exceptions. In both papers,
no formal justification is given.

Certified Slicing. The ideas developed in [4,26] were applied in [10,31].
Wasserrab [31] builds a framework in Isabelle/HOL to formally prove a slic-
ing defined in terms of graphs, therefore language-independent. Blazy, et al. [10]
proposes an unproven but efficient slice calculator for an intermediate language
of the CompCert C compiler [23], as well as a certified slice validator and a slice
builder written in Coq [7]. The modeling of errors and the soundness of V&V
on slices were not specifically addressed in these works.

To the best of our knowledge, the present work is the first complete for-
malization of program slicing for structured programs in presence of errors and
non-termination. Moreover, it has been formalized in the Coq proof assistant
on a representative structured language, that provides a certified program slicer
and justifies conducting V&V on slices instead of the initial program.

7 Conclusion

In many domains, modern software has become very complex and increasingly
critical. This explains both the growing efforts on verification and validation

194 J.-C. Léchenet et al.

(V&V) and, in many cases, the difficulties to analyze the whole program. We
revisit the usage of program slicing to simplify the program before V&V, and
study how it can be performed in a sound way in presence of possible runtime
errors (that we model by assertions) and non-terminating loops. Rather than
preserving more statements in a slice in order to satisfy the classic soundness
property (stating an equality of whole trajectory projections), we define smaller,
relaxed slices where only assertions are kept in addition to classic control and
data dependences, and prove a weaker soundness property (relating prefixes of
trajectory projections). It allows us to formally justify V&V on relaxed slices
instead of the initial program, and to give a complete sound interpretation of
presence or absence of errors in slices. First experiments with SANTE [12,13],
where all-path testing is used on relaxed slices to confirm or invalidate alarms
initially detected by value analysis, show that using relaxed slicing allowed to
reduce the program in average by 51 % (going up to 97 % for some examples)
and accelerated V&V in average by 43 %.

The present study has been formalized in Coq for a representative program-
ming language with assertions and loops, and the results of this paper (as well as
many helpful additional lemmas on dependencies and slices) were proved in Coq,
providing a certified correct-by-construction slicer for the considered language
[1]. This Coq formalization represents an effort of 8 person-months of intensive
Coq development resulting in more than 10,000 lines of Coq code.

Future work includes a generalization to a wider class of errors, an extension
to a realistic programming language and a certification of a complete verification
technique relying on program slicing. Another research direction is to precisely
measure the reduction rate and benefits for V&V of relaxed slicing compared
to slicing approaches systematically introducing dependencies on previous loops
and erroneous statements. In an ongoing work in DEWI project, we apply relaxed
slicing for verification of protocols of wireless sensor networks.

Acknowledgments. Part of the research work leading to these results has received
funding for DEWI project (www.dewi-project.eu) from the ARTEMIS Joint Under-
taking under grant agreement No. 621353. The authors thank Omar Chebaro, Alain
Giorgetti and Jacques Julliand for many fruitful discussions and earlier work that lead
to the initial ideas of this paper. Many thanks to the anonymous reviewers for lots of
very helpful suggestions.

References

1. Formalization of relaxed slicing (2016). http://perso.ecp.fr/~lechenetjc/slicing/

2. Agrawal, H., DeMillo, R.A., Spafford, E.H.: Debugging with dynamic slicing and
backtracking. Softw. Pract. Exper. 23(6), 589-616 (1993)

3. Allen, M., Horwitz, S.: Slicing java programs that throw and catch exceptions. In:
PEPM 2003, pp. 44-54 (2003)

4. Amtoft, T.: Slicing for modern program structures: a theory for eliminating irrel-
evant loops. Inf. Process. Lett. 106(2), 45-51 (2008)

http://perso.ecp.fr/~lechenetjc/slicing/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Cut Branches Before Looking for Bugs: Sound Verification 195

Ball, T., Horwitz, S.: Slicing programs with arbitrary control-flow. In: Fritzson,
P.A. (ed.) AADEBUG 1993. LNCS, vol. 749, pp. 206-222. Springer, Heidelberg
(1993)

Barraclough, R.W., Binkley, D., Danicic, S., Harman, M., Hierons, R.M., Kiss, A.,
Laurence, M., Ouarbya, L.: A trajectory-based strict semantics for program slicing.
Theor. Comp. Sci. 411(11-13), 1372-1386 (2010)

Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004)

Binkley, D., Danicic, S., Gyiméthy, T., Harman, M., Kiss, A., Korel, B.: Theoretical
foundations of dynamic program slicing. Theor. Comput. Sci. 360(1-3), 23-41
(2006)

Binkley, D., Harman, M.: A survey of empirical results on program slicing. Adv.
Comput. 62, 105-178 (2004)

Blazy, S., Maroneze, A., Pichardie, D.: Verified validation of program slicing. CPP
2015, 109-117 (2015)

Cartwright, R., Felleisen, M.: The semantics of program dependence. In: PLDI
(1989)

Chebaro, O., Cuoq, P., Kosmatov, N., Marre, B., Pacalet, A., Williams, N.,
Yakobowski, B.: Behind the scenes in SANTE: a combination of static and dynamic
analyses. Autom. Softw. Eng. 21(1), 107-143 (2014)

Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances
a verification technique combining static and dynamic analysis. In: SAC (2012)
Danicic, S., Barraclough, R.W., Harman, M., Howroyd, J., Kiss, A., Laurence,
M.R.: A unifying theory of control dependence and its application to arbitrary
program structures. Theor. Comput. Sci. 412(49), 6809-6842 (2011)

Ge, X., Taneja, K., Xie, T., Tillmann, N.: DyTa: dynamic symbolic execution
guided with static verification results. In: the 33rd International Conference on
Software Engineering (ICSE 2011), pp. 992-994. ACM (2011)

Giacobazzi, R., Mastroeni, I.: Non-standard semantics for program slicing. High.
Order Symbolic Comput. 16(4), 297-339 (2003)

Harman, M., Danicic, S.: Using program slicing to simplify testing. Softw. Test.
Verif. Reliab. 5(3), 143-162 (1995)

Harman, M., Simpson, D., Danicic, S.: Slicing programs in the presence of errors.
Formal Aspects Comput. 8(4), 490-497 (1996)

Hierons, R.M., Harman, M., Danicic, S.: Using program slicing to assist in the
detection of equivalent mutants. Softw. Test. Verif. Reliab. 9(4), 233-262 (1999)
Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
In: PLDI (1988)

Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Asp. Comput. 27(3), 573-609 (2015)
Kiss, B., Kosmatov, N., Pariente, D., Puccetti, A.: Combining static and dynamic
analyses for vulnerability detection: illustration on heartbleed. In: Piterman, N.,
et al. (eds.) HVC 2015. LNCS, vol. 9434, pp. 39-50. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-26287-1_3

Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107-
115 (2009)

Nestra, H.: Transfinite semantics in the form of greatest fixpoint. J. Log. Algebr.
Program. 78(7), 573-592 (2009)

Podgurski, A., Clarke, L.A.: A formal model of program dependences and its impli-
cations for software testing, debugging, and maintenance. IEEE Trans. Softw. Eng.
16(9), 965-979 (1990)

http://dx.doi.org/10.1007/978-3-319-26287-1_3

196

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

J.-C. Léchenet et al.

Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foun-
dation for control dependence and slicing for modern program structures. ACM
Trans. Program. Lang. Syst. 29(5) (2007). Article number (27)

Reps, T.W., Yang, W.: The semantics of program slicing and program integration.
In: TAPSOFT (1989)

Reps, T.W., Yang, W.: The semantics of program slicing. Technical report, Uni-
versity of Wisconsin (1988)

Silva, J.: A vocabulary of program slicing-based techniques. ACM Comput. Surv.
44(3), 12 (2012)

Tip, F.: A survey of program slicing techniques. J. Prog. Lang. 3(3), 121-189 (1995)
Wasserrab, D.: From formal semantics to verified slicing: a modular framework
with applications in language based security. Ph.D. thesis, Karlsruhe Inst. of Techn
(2011)

Weiser, M.: Program slicing. In: ICSE (1981)

Weiser, M.: Programmers use slices when debugging. Commun. ACM 25(7), 446—
452 (1982)

Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352-357 (1984)

Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.
ACM SIGSOFT Softw. Eng. Notes 30(2), 1-36 (2005)

The Influences of Edge Instability on Change
Propagation and Connectivity in Call Graphs

Lei Wang®™), Han Li, and Xinchen Wang

School of Computer Science and Engineering, Beihang University, Beijing, China
{wanglei,sy1406228,wxc11061106}@buaa.edu.cn

Abstract. During the lifetime of any software there are numerous
changes, which lead to a large number of versions over time. The amount
of effort in programming and debugging for these updates and therefore
the reliability of the software depends substantially on how far the change
propagates. We introduced the concept of Propagation Scope (PS) to
quantify change propagation and investigated several open-source soft-
ware systems. We found that the propagation property varies even with
systems of similar scales. According to the asymmetry between the in-
degree and out-degree distributions in call graphs of software, we defined
Edge Instability (EI) to measure the change propagation of a call graph.
Analyzing newly added nodes in six software, we found that the new
nodes exhibited preferential attachment behaviors and were more likely
to call new nodes. We proposed a model based on these observations to
adjust EI and Clustering Coefficient (CC'). CC has been believed to be
the major factor determining the propagation scope in a network. Our
experiments showed, however, that EI had a larger impact on the prop-
agation of call graphs. In both real software and our model, we measured
the connectivity of call graphs with EI and evaluated connectivity under
three edge-removal strategies. Our experiments showed that removing
edges with high EIs hurt network connectivity the most.

Keywords: Complex networks -+ Software evolution - Change
propagation - Network model - Call graph

1 Introduction

It has been observed that ideas, information, viruses, and diseases often prop-
agate in the form of complex networks [30] and a network’s topological struc-
ture has a significant impact on the dynamics of change propagation [28]. In
the domain of computer science, it has been demonstrated that class diagrams
[34,35], collaboration graphs [29], package dependency networks [23], the object
graphs [31], software component graphs [20], and call graphs in large-scale soft-
ware systems [37] are all complex networks. In this paper, we studied change
propagation in call graphs, a critical aspect in software evolution. As developers
code to introduce new features or fix bugs for one part of a software system,
other parts need to be updated accordingly to stay consistent with the changes.

© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. Wasowski (Eds.): FASE 2016, LNCS 9633, pp. 197-213, 2016.
DOI: 10.1007/978-3-662-49665-7_12

198 L. Wang et al.

For example, when a function’s prototype changes, its callers have to be modi-
fied to call through the new interface. To understand the evolution of software
systems, we collected call graphs of a large number of software systems of multi-
ple versions. A call graph describes the calling relationship between functions in
a program. Specifically, functions in the program are represented as nodes in a
call graph. If one function calls another, an edge from the node representing the
caller to the node of the callee function is added to the graph. We generated a
call graph for each version of a selected software system and, by comparing the
graphs of different versions, investigated change propagation as software evolves.

We selected 35 stable Linux kernels from version 1.0 to version 2.2.26 (avail-
able at http://ftp.kernel.org) and generated their call graphs using a modi-
fied version of GCC 3.4.6 [2]. To compare update propagation characteristics
among different software, we collected call graphs for five additional open-source
projects, including 80 versions of Samba, 25 versions of BIND, 55 versions of
Sendmail, 76 versions of OpenSSH, and 59 versions of vsftpd obtained from the
code repository [7]. To identify updates between two adjacent versions of a soft-
ware system, we use ctags [1] to get the start and end points of a function in
one version. We then compared the functions of the same name in the two ver-
sions to decide if the function is updated. We also identified functions removed
from the older version or added in the newer version. All these changes, including
updates, additions, and removals of functions, can be identified in the call graphs
when they are propagated to other functions in the software. In this paper, we
name the versions with ordered sequence numbers starting from 0 following their
chronological order.

We quantified network propagation with Propagation Scope (PS). The scope
that a change propagation can reach is mostly determined by the topological
structure of the corresponding call graph, which can be characterized by many
factors, including the graph’s node count, edge count, average node degree, etc.
Among the factors, the clustering coefficient (CC') measures how tightly nodes in
a network are clustered and is believed to be the most powerful factor determin-
ing the propagation of networks [38,41]. We found, however, that propagation
in a call graph was not sensitive to CC changes. In fact, for the studied soft-
ware, the asymmetry between the in-degree and out-degree distributions were
manifest [36] and have a significant influence on the change propagation of soft-
ware [8]. Given the asymmetry, we introduce Edge Instability (ET) to measure
the propagation. We found that the new nodes exhibit preferential attachment
behaviors and are more likely to call new nodes. With these observations, we pro-
pose a model to adjust CC and EI based on Barabési and Albert (BA) model
and it’s extension [6,18]. Experiments showed that EI has a larger impact than
CC on the propagation of call graph.

Inspired by the influences of EI on change propagation, we use EI to measure
the connectivity of call graphs. In complex networks, researchers often study
robustness by measuring connectivity after removing nodes or edges [10,32]. We
adopted the same methodology to evaluate the connectivity of call graphs and
compare three strategies to attack generated graphs by our model: 1. Removing

http://ftp.kernel.org

The Influences of Edge Instability 199

edges randomly. 2. Removing edges with higher Els. 3. Removing edges with
higher “edge degrees” [19]. Our experiments showed that removing edges with
high ETls hurt network robustness more than removing edges with high “edge
degrees” or randomly.

The rest of this paper is organized as follows. Section 2 introduces the con-
cept of propagation scope, edge instability and statistics with various software
systems. Connectivity of call graphs under three edge-removal strategies are
discussed in Sect. 3. Section 4 describes behaviors of new nodes and an innova-
tive model of software evolution. The correlation among parameters of the pro-
posed model, change propagation and connectivity are also discussed in Sect. 4.
Section 5 introduces the related work briefly. The paper closes with our conclu-
sions in Sect. 6.

2 Change Propagation

To quantify the change propagation in a network, we introduce the concept of
propagation scope (PS), derived from the concepts of Change Cost [26] and
Average Propagation Ratio [25], and edge instability. To reveal impact of the
structure of a call graph on PS, we will measure the number of nodes and edges,
the average node degree, the diameter, the clustering coefficient and the edge
instability of the call graphs under investigation.

2.1 Propagation Scope

The concept of propagation scope is motivated by the observation that in a call
graph a change propagates in one direction. For example, if Function A calls
Function B and B’s interface is changed, Function A has to change accordingly,
or the change of B propagates to A. Changes do not propagate in the opposite
direction. For example, the change of Function A does not affect function B.
Formally, we state that Node n; can reach Node n; within a distance of 1 if
there is a directed edge < n;,n; > in a network G. We use R? to denote the set
of nodes that can reach n; within distance d. Formally, we use Eq. (1) to define
the propagation scope of Network G within distance d, or PSg.

|V
L
where |N| is the number of nodes in Network G.

According to Eq. (1) and the definition of R, if dy > da, then PSE > PSE,
because R;l monotonically increases with d. Using D to denote network diameter,
we have PS% = PSE for any d larger than D. Finally, the propagation scope of
Network G, PSg, can be defined using Eq. (2).

ELI .
Pl

200

L. Wang et al.

Number of Changed Functions

6000
5000
4000
3000 I i
2000 | I

1000 |4

Number of Changed Functions

6000

5000

4000

3000

2000

1000

oMM

| M

|| ‘”u“
Wl il
) i \

H““

\/ \ \ \‘H

J ‘h

0

(a) Linux

0 10 20 30 40 50 60 70 80

(b) Samba

Fig. 1. Number of changed functions in Linux and Samba.

The propagation scope can be used to differentiate networks of different
topologies in terms of impact of a node’s change on other nodes. The larger
the propagation scope, the greater the number of nodes affected by changes
taking place at a node.

By definition, PS is obviously related to the number of nodes, the number
of edges and the average node degree. We compare some versions of Linux with
versions of Samba of similar scale. The results are shown in Table 1. In the table,
“Linux1” stands for set of the Linux versions from 1.2.0 to 1.2.10, “Linux2”
stands for set of the Linux versions from 2.0.0 to 2.0.40. “Sambal” stands for set
of Samba versions from 2.2.8 to 2.2.12, and “Samba2” stands for set of Samba
versions from 3.0.25 to 3.0.34. As shown in Table 1, Linuxl and Sambal have
similar node count and edge count. This is also the case for Linux2 and Samba2.
However, we can see that the PS¢ values of different Linux versions is always
smaller than those of Sambas in Table 1.

Table 1. Statistics with Linux and Samba of similar scale.
software Linux1 | Sambal | Linux2 | Samba2
Avg. node | 3993 3803 8099 7373
Avg. edge | 14996 | 13849 |31400 |30513
Ave. degree | 7.51 7.28 7.75 8.27
PSq 0.0135 | 0.0297 |0.0112 | 0.0295

We also investigate changes between two adjacent versions of Linux and
Samba, respectively. Figures 1 and 2 showed the number of changed functions
and the size of the maximal connected subgraphs. To compare Linux with Samba
using their call graphs of similar scales, we chose Linux 2.0.40 and Samba 3.0.34
as the last tested version shown in Figs. 1 and 2. For most versions, the number
of changed functions in Linux was fewer than that of Samba. For the maximal
connected subgraphs, the sizes in the two versions of Linux were larger than 200,
and those in other versions were less than 90. On the other hand, in over one
third of the versions of Samba, the sizes of the maximal connected subgraphs
were larger than 200, with the largest of 1501. The change propagation in Samba
seemed substantially larger than that in Linux. This observation is consistent
with Table 1. Therefore, PS could be used to measure the change propagation
in call graphs of software.

Size of Maximum Connected Subgraph

1500

1200

Qg
8
S

9
8
S

@
&
S

o

A

°
@
3
@
N
8

(a) Linux

The Influences of Edge Instability

1500

1200

2 ©
g <]
5 S

Size of Maximum Connected Subgraph
@
&
5

i an o L
"]

0 10 20 30 40 50 60 70 80

(b) Samba

201

Fig. 2. Size of maximal connected subgraphs in Linux and Samba.

2.2 Edge Instability

The asymmetry between the in-degree and out-degree distributions of software
appears obviously [9,29,34,36]. The in-degree distribution of software systems
obviously obeys the power-law while the out-degree distribution are similar to
the power-law distribution with a cutoff. Inspired by the asymmetry of degree
distribution and direction of change propagation in software, we propose the
Edge Instability of a call graph.

Firstly, we define the node stability S; for Node n; in Eq. (3).

ki
— AATAAAAAZZEAATAA, E;
B+ B ¥

out

S

where k!, and k’,, are the in- and out-degree of node n;, respectively. A
greater value of S; means that n; has a smaller out-degree and therefore the
changes of other nodes are less likely to propagate to n;. Thus we say a node
with a greater S; is more stable. The value of S; is always in the range of [0, 1].

The instability I;; of the edge < n;,n; > is derived from node stability and
defined by Eq. (4).

Iij =5, = S; (4)

where S; and S; are the node stability of nodes n; and n;, respectively. With
this definition, an edge with a greater I;; propagates changes to more nodes.
Thus we call I;; as edge instability. The edge instability, FI, of a graph is the
average I;; of the edges in the graph.

Figure 3 includes two examples to explain this observation.

1. In Fig. 3(a), S; is 3/4 and S; is 1/4. Accordingly, I;; of Edge < i,j > is 1/2.
A change at Nodes j, a, b or ¢ will propagate to Nodes i, d, e, and f across
Edge < 1,5 >, as indicated by the dotted lines.

2. In Fig.3(b), S; is 0 and S, is 1/4. Accordingly, I;; of Edge < 4,5 > is -1/4.
Changes at Nodes j, a, b, and ¢ only spread to Node ¢ but do not reach nodes
d, e, and f.

202 L. Wang et al.

Fig. 3. Comparison between the effects of two edges with the higher and lower I;; for
the neighboring nodes

Apparently, Edge < 4,5 > with higher EI in the first example has a higher
impact on the propagation scope.

2.3 Statistics with Six Open Source Software

For a node in a call graph, the out-degree is the number of other functions that
the function represented by this node calls, and the in-degree is the number of
other functions that call the function of this node. The sum of the in-degree and
out-degree is the degree of the node. We calculated average degree of the nodes
in the call graphs of the selected systems. We found that the average degrees
stayed stable as the software systems evolve over many versions. For each call
graph, we measure the diameter, denoted as D.

Clustering, the tendency that a node’s neighbors are likely to be neighbors
themselves, has been commonly considered as one of the most important factors
in the study of propagation [38]. We calculated the clustering coefficient (CC)
in C; of Node ¢ using Eq. (5):

28,
ki(ki — 1))

where F; is the number of edges connecting neighbors of Node 4, and k; is the
degree of Node 7. The clustering coefficient C' of a graph is the average clustering
coefficient of the nodes in the graph.

The number of nodes, the number of edges, the average node degree, the
diameter (D), the clustering coefficient (CC), the edge instability (ET) and the
propagation scope (PSg) of six selected systems are showed in Fig. 4. Figure4
shows that for all the systems both the number of nodes and the number of
edges grow over time. A number of observations can be made as below.

Ci=

1. Table 2 summarizes the correlation coefficient results between PS¢ and other
features of six software. Compared with the number of nodes, the number of
edges, the average node degree, the diameter (D) and the clustering coeffi-
cient, the edge instability is the only one that had a positive correlation with
PSg in all six software.

2. As the increase of node number, the corresponding PSg decreases except for
BIND. In fact, PS¢ is the ratio of the number of nodes a propagation reaches
to the number of all nodes. The propagation of changes in a system is hard
to maintain the same rate as a software system becomes larger.

The Influences of Edge Instability 203

4800 £

32002
1600 %
0 =
0 0 1020 30 40 50 60
g £ 30
3 o \ [
a £ a8 — — 1209
E) % 6 0
< 0 5 10 5 20 25 < 0 1020 30 40 50 60
04 = 03 04y 03
= v.c% —C—v—u———~ — /{ 028 = (J.GF a { 029
085 5 10 15 20 250! 085 10 20 30 4 0 e
0.12 0.12
©008 5008
4 0,04E 4 o.o¢ =
T
5 s 10 15 20 25 g 1020 30 40 50 60

883

NodeNum

AvgDegree

(e) OpenSSH

Fig. 4. The number of nodes, the number of edges, the average degree, CC, EI and
PSg of six software. X axis indicates the sequence numbers of versions.

Table 2. The correlation coefficient results between PSg and other features.

Software |Node |Edge | Ave. deg|D cCc | EI

Linux —0.99 | —0.99 | —0.96 —0.96, 0.42/0.41
Samba —0.11 | -0.11| 0.086 0.05| 0.03]0.29
BIND 0.29| 0.58| 0.94 0.85| —0.750.48
Sendmail | —0.80 | —0.80 | —0.79 —0.37| 0.76 | 0.68
OpenSSH | —0.96 | —0.96 | —0.85 —0.94, 0.97/0.94
vsftpd —0.93 | —0.92 | -0.91 —0.26 | —0.21 | 0.90

204 L. Wang et al.

3. Per the definition of PS, as the increases of the average degree, PS of a
software system would also increase. This phenomenon can be observed clearly
in BIND system (Fig.4(c)). It is easy to understand that the more edges a
system has, the faster the propagation would be. The tendency, however, is
not apparent in other software systems. It is difficult to tell the impact of the
average degree on PS¢ in two cases: 1. The average degree is very stable. 2.
The average degree and node number change at the same time.

4. Previous works suggest that as CC increases the propagation scope in a
network would decrease [38]. This can be clearly observed in BIND and vsftpd.
It is not apparent, however in other systems as CC is very stable in different
versions.

3 Connectivity

In complex networks, researchers often study robustness by measuring connec-
tivity after removing nodes or edges [10,32]. As many error conditions do not
cause the crash of the whole software system, we assume that the other parts
of the software keep working. For example, when the kernel panics in a loadable
module of an Ethernet driver it can contain the failure and give out messages.
The other parts of the system cannot use this driver but may be able to access
the Ethernet device from other channels and certainly a user can continue to
work in a text editor. Thus, we adopted the same methodology to evaluate the
connectivity of call graphs in this paper.

We remove the edge to simulate the failure, and study how well the other
nodes in the call graph stay connected. Connectivity among the nodes left rep-
resents a measure of robustness of the graph under edge removal. It is not a
measure of how well the software handles crashes but how well its functions are
designed and coded to minimize the impact on the rest of the system when one
or more parts fail.

We try three strategies to attack generated call graphs. The first strategy, the
“RA removal”, removes edges randomly. The second removes edges with higher
EIs and is called the “HL removal”. The third strategy is proposed by Ref. [19]
where the edge degree is defined by Eq. (6):

ke = ky * Ky (6)

where the edge e connects two nodes v and w with node degrees k, and k.,
respectively. The attack strategy selects the edges in descending degrees. We
name this strategy as “ED removal”.

We select Linux 2.0.1, Samba 3.0.10, BIND 9.2.4rc5, Sendmail 8.11.3,
OpenSSH 2.5.2pl and vsftpd 1.1.2 to compare the three strategies. Each time, 5
percent of edges are removed. We measure the change of the size of the maximal
connected subgraph, S, with Eq. (7):

S:

z|z

(7)

o

The Influences of Edge Instability

ol |
AN

0 10 20 30 40 50 60 70 80 90 100
£

(a) Linux 2.0.1

0
0 10 20 30 40 50 60 70 80 90 100

(b) Samba 3.0.10

0 =
0 10 20 30 40 50 60 70 80 90 100

(c) BIND 9.2.4rc5

\

N

o
0 10 20 30 40 50 60 70 80 90 100

0
0 10 20 30 40 50 60 70 80 90 100

0 =
0 10 20 30 40 50 60 70 80 90 100

205

(d) Sendmail 8.11.3 (e) OpenSSH 2.5.2pl (f) vsftpd 1.1.2

Fig. 5. Six software under three attack strategies.

where N; and N, are the numbers of nodes in the maximal connected sub-
graph before and after the attack, respectively.

The results are shown in Fig. 5 when a fraction f of the edges is removed in
six software. In Fig. 5, it is difficult to distinguish the impact of the connectivity
between the RA and ED removal. When the call graphs undergo the HL removal
attacks, however, the sizes of maximal connected subgraph decreases rapidly. We
observed the top 20 edges with high EI in Linux and found the similar structure
as Fig. 6 when we extract all edges that directly connect to the edge with high
EI from call graph. The edges with high EI behave like some kind of “weak
ties” [15] between two parts of software modules. Removing these edges results
in quick disintegration of the call graphs.

4 Features of Call Graphs and Evolution Model

To understand how software systems evolve into particular structures, we studied
the ways new nodes were added into call graphs.

4.1 Preferential Attachment

Call graphs show that their in-degree distribution largely obeys the power-law
while the out-degree exhibits the power-law distribution with a cutoff [36]. Thus,
we investigated whether new nodes would contribute to the distributions of in-
degree and out-degree. Specifically, for in-degree distribution we would like to
know whether new nodes are more likely to be connected to existing nodes of
higher in-degrees (in terms of function calls, the functions corresponding to the
new nodes are the callers in this case). For out-degree distribution, we would like
to know whether existing nodes of higher out-degree are more likely to be con-
nected to the new nodes (the functions corresponding to the new nodes are the

206 L. Wang et al.

Fig. 6. The edge with high EIL

callees in this case). The tendency for new nodes to be connected to either high
in-degree/out-degree nodes is commonly known as “preferential attachment”.
Preferential attachment has been considered as an important factor contribut-
ing to the scale-free feature of complex networks [5]. We would like to know
whether in-degree and out-degree preferential attachments exist when the new
nodes are added.

We studied how the newly added nodes are connected to the top 5% nodes
with the highest in-degrees and the top 5% nodes with the highest out-degrees
in each software version. To quantify the preferential attachment tendency, we
define the concept of connecting probability (CP) as the probability that a new
node is connected to the top 5% nodes with the highest in-degree/out-degrees.
Formally, CP can be calculated using Eq. (8):

N,
pP=-=
oP=% (8)

where N, is the number of new nodes that call the top 5% nodes with
the highest in-degrees when we consider in-degree preferential attachment (the
resulting CP is called in-degree CP) and N, is the total number of new nodes
in the corresponding version. When we consider out-degree preferential attach-
ment, N, is the number of new nodes that are called by the top 5% nodes
with the highest out-degrees and N, stays the same (the resulting CP is called
out-degree CP). The average in-degree and out-degree CP are summarized in
Table 3. Table 3 indicates that the in-degree CP is consistently large for each
system, which suggests high in-degree preferential attachment behaviors in all
systems. Table 3 also shows that the out-degree CP is consistently lower than the
corresponding in-degree CP for each version. The out-degree preferential attach-
ment tendency, if any, seems much weaker than that of the in-degree preferential
attachment.

4.2 Callers of New Nodes

In Sect. 4.1, the out-degree CP results indicate that the top 5% nodes with the
highest out-degrees do not call the new nodes extensively. It is interesting to

The Influences of Edge Instability 207

Table 3. Average connecting probability.

Software Linux |Samba | BIND |Sendmail | OpenSSH | vsftpd
Avg. In-degree | 73.06 % | 60.28 % | 60.36 % | 60.66 % | 62.46 % 64.65 %
Avg. Out-degree |4.43% [12.35% |5.79% |6.99% 1091% |34.32%

know which nodes call the new nodes the most. We used Ny, and Ngg to
denote the number of the new nodes that call the new nodes and the number
of the old nodes that call the new nodes in each version, respectively. We use
Ryew to quantify the ratio of Npeyw t0 (Npew+Nowg). It can be calculated using
the Eq. (9):

N,
Ryew = _~new 9
Nnew + Nold ()

Thus, we can obtain R,., for each software version. The average Ry, of
the Linux, Samba, BIND, Sendmail, OpenSSH, and vsftpd are 47.3 %, 38.6 %,
37.6 %, 23.4%, 41.0%, and 29.1 %, respectively. Note that the average ratio of
the number of new nodes to that of old nodes for all Linux versions is only 1.8 %.
These results indicate that compared with old nodes, new nodes are more likely
to call new nodes. In other words, the “age” of a node is one factor to determine
whether the node calls another node in real-life software, which ultimately will
have an impact on the degree distribution.

4.3 Evolution Model for Software

The “age” of a node seemed to be critical to determine the likelihood for connect-
ing new nodes. With these observations and analysis, we propose a novel model
to compare the impact of CC and EI on propagation, in which the two prop-
erties can be tuned by changing some parameters. We build our model based
on Barabdsi and Albert (BA) model [6,18] and extend it to adjust clustering
coefficient and edge instability as follows:

1. In the beginning, a network consists of my nodes and no edges. myq is a small
integer. In our experiments it is set to 3.
2. Add Node v (v =mqg + 1 intially).
3. Repeat the following two steps for Node v until m edges are added.
(a) Preferential attachment (PA): Each edge of Node v is then attached to
an existing node with the probability proportional to its degree and age,
i.e., the probability for Node w (w =1, 2, ..., mg + v - 1) to be attached
to v is

K
Zmo +v—1 kl

i=1

where k; = (age;) P * k; age;, with the initial value of 1, represents the
age of Node i. When a new node is added to the network, the age of each
existing node is incremented by 1. k; is the degree of Node i. 3 controls
the influence of a node’s age.

208 L. Wang et al.

(b) Triad formation (TF): If an edge between Nodes v and w was added in
the previous PA step, then add one more edge from Node v to a randomly
chosen neighbor of Node w. If all neighbors of Node w have been connected
to Node v, go back to Step 3(a).

4. f v < |N|—mg + 1, increment v by 1 and go back to step 2. Otherwise, the
network is generated.

In generating the network, the total number of the PA and TF steps that
produces edges for each new node is m. After one PA, we perform a TF step
with a probability of P;. P; is a parameter that adjusts the CC' of the generated
network.

Equation (2) shows that the diameter of a graph has a major impact on PSg.
When a new edge does not cause the current diameter to exceed a threshold,
LD, the edge is added. Otherwise, the new edge is dropped and a new possible
edge is selected to repeat the above step.

Following [34], we first generate undirected graphs and then transform them
into directed graphs by making edges to start from the newly added nodes and
end at the existing nodes.

There are five parameters in our model (N, m, P;, 8, and LD). In the exper-
iments, we used N = 10000 and m = 3. To understand the effect of the P; and
B, we select P; and (3 in the ranges of 0 to 0.8 and 0 to 1.0, respectively. Figure 7
showed the relationship among PSg, CC and FEI with the different P, and
parameters of the generated graphs by our model. We have some observations:

— P, correlated positively with CC as shown in Fig. 7 (a) and (d).

— [correlated positively with EI as shown in Fig. 7 (b) and (e).

— (B, which determines PS¢ of a network, has a larger impact on the propagation
than P;, as shown in Fig.7 (¢) and (f). Thus, in our model, the propagation
scope was highly correlated with 8 and therefore EI but less affected by the
changes in CC.

To study the impact of EI on connectivity, we use the three strategies
to attack graphs generated by different (s. Figure8 summarized the results.
Figure 8(a) showed that, under different 8s (between 0 and 1), the effect of
node age on network structure changed significantly. The effect of the node ages
limited the preferential attachment and prevented a scale-free distribution of
connectivities [4]. It seemed to be a critical point in a network and the network
became scale-free when 8 was below a certain value. With large s, the network
showed no power law characteristics and the degree became exponentially dis-
tributed. As shown in Fig.8(a), overall and for different (s, the networks had
a good connectivity. This result was consistent with the experiments on net-
work connectivity [3]. This suggested that the network was connected under the
random attack due to the scale-free feature. When (3 fell between 0.4 and 0.8,
however, the degree distribution of network transited from scale-free to expo-
nential and the network more vulnerable to random attacks.

Figure 8(b) showed a fast decay for different values of 8 and f between 0.2
and 0.3. The network was less connected and therefore it became “harder” for

The Influences of Edge Instability 209

—06 08 !
T 02 04 O

04 Gt
4 . P,
s %0870 '

Fig. 7. Summary of PSg, clustering coefficient and edge instability under different
parameters. (a) CC with P, and 8, LD is 20. (b) EI with P, and 8, LD is 20. (¢) PSa
with P; and 8, LD is 20. (d) CC with P; and 8, LD is 25. (e) EI with P; and 38, LD
is 25. (f) PS¢ with P, and 8, LD is 25.

08 A
06
”

0.4

0.2

Fig. 8. Three attack strategies applied to the graphs generated with P, 0.30, LD 20
and g from O to 1. (a) The RA attack strategies. (b) The HL attack strategies. (c) The
ED attack strategies.

the remaining nodes to communicate with each other when the unstable edges
(the edges with the ET values close to 1) were removed.

Figure 8(b) with 8(c) showed that when (is small the HL and ED removals
had a similar effect for network connectivity. When [is large, however, the
HL removal hurt the connectivity more than ED. As [increased the distribu-
tion of degree morphs from scale-free to exponential. Under exponential degree
distribution, each node in the network has approximately the same degree, and
therefore the damage to network connectivity by ED removal was less obvious. In
HL removal, however, the EI highly affected the propagation of networks when
3 increased (see Fig.7) and the edges with high EI had a structure of “weak
ties” (see Fig.6). Thus, removing the edges with high ETs in HL removal broke
the network into small pieces fast for all § values. HL instead of ED removal
became a good indicator for attacks when the degree distribution of networks
shifts from scale-free to exponential.

5 Related Work

Two main approaches to study change propagation in software are Impact Analy-
sis (IA) and Mining Software Repositories (MSR). IA uses dependency or trace-
ability information and MSR uses historical information [21]. An in-depth review

210 L. Wang et al.

of impact analysis for software change can be found in [24]. Mirarab et al. [27]
propose to use BBNs for impact analysis, and their approach achieves a precision
of 63 % with a recall of 26 %. Formal Concept Analysis (FCA) [14], probabilistic
approach [33], and Family Dependence Graph (FDG) [39] have been employed
for change impact analysis. In the context of complex technical systems, Giffin
et al. [13] analyze change propagation with design structure matrix (DSM) and
categorize a number of typical change patterns. Recently, Zhang et al. [40] use
requirement dependency as a tool to conduct change propagation analysis. They
investigate whether existing dependency types are sufficient for change propaga-
tion analysis. In our work, we analyze the impact of software network structures
on the change propagation without tracing the affected functions in software.

Hassan and Holt propose to determine how changes propagate with developer
information, historical co-change information of entity, code structure, and code
layout heuristic [16]. Hassan and Malik further improve the approach with an
adaptive heuristic method [17]. Zimmermann et al. [42] apply data mining tech-
niques to analyze version histories, and to uncover couplings between fine-grained
entities to guide programmers among related changes. Gall et al. [12] propose an
approach to extract software evolution patterns and dependencies from the CVS
data. Their proposed methodology, QCR, is to examine the historical develop-
ment of classes by analyzing changes of classes and common change behavior
obtained from CVS. They further [11] classify changes according to their sig-
nificance levels (low, medium, high, or crucial). In our work, we explain why
asymmetric structures inside the software are formed after analyzing call graphs
of many software system versions, and propose an evolution model capturing the
way new nodes are added during the process of software evolution. By varying
the parameters of the proposed model, we study the relationship between the
change propagation and software structure.

Asymmetric structures can increase the fragility of software [8]. Studies on the
mechanism of asymmetric software structures can help optimization of software.
Myers points out that the asymmetry typically is due to the common practice
of software reuse [29]. Others [34] argue that the asymmetry is rooted right
in the economization of development effort and related costs. Additionally [9]
notes that the out-degree of the class in the object oriented software systems is
limited by the size of the class. They have found that the limitation leads to the
asymmetry of degree distributions. We found, however, that the manner in which
new nodes are added into the call graphs during software evolution contributes
to the asymmetric feature of software, and that the asymmetric structures have
a significant impact on the change propagation of software.

Many network models have been proposed in the past decade. In BA
model [5], each newly added node is connected to nodes selected with a probabil-
ity proportional to their respective degrees. Although the degree distribution of
the BA model follows the power-law distribution, the resulting clustering coef-
ficient is much lower than those measured in software systems. In the Copying
model [22], each newly added node randomly selects a target node and connects
to it, as well as to all neighbor nodes of the target node. The Copying model has

The Influences of Edge Instability 211

a large clustering coeflicient. In the process of selecting the target node in the
Copying model, however, older nodes have greater priority to be connected to
the newly added nodes. This feature is different from actual new node behavior
demonstrated in real software systems, in which new nodes are more likely to be
connected among themselves.

6 Conclusions

Using propagation scope, we quantified change propagation in different versions
of six open-source software systems. Inspired by the asymmetry of degree distri-
bution and direction of change propagation in software, we proposed the edge
instability to measure the change propagation of a call graph. We calculated the
number of nodes, the number of edges, the average node degree, the diameter,
CC, EI in the call graphs of the selected systems, and found that FEI is the only
one that had a positive correlation with propagation scope in all six studied
software. To compare the impact of CC and EI on change propagation, we have
proposed a novel model allowing us to adjust these properties. Although CC' is
traditionally considered one of the most important factors in the study of prop-
agation, our experimental results indicated that EI had a much bigger impact
in call graphs. Furthermore, we showed the correlation between the connectivity
of call graphs and FI, i.e., eliminating the edges with high EI breaks a network
into small pieces faster in real software and networks generated by our model.
In summary, we demonstrated that EI could be a good indicator of the change
propagation and connectivity of software networks.

Acknowledgments. This work was supported by National Natural Science Founda-
tion of China (No. 61272167).

References

1. ctags 5.8 release. http://ctags.sourceforge.net

Gec 3.4 release series. http://gec.gnu.org/gec-3.4/

3. Albert, R., Jeong, H., Barabési, A.: Error and attack tolerance of complex net-
works. Nature 406(6794), 378-382 (2000)

4. Amaral, L., Scala, A., Barthélémy, M.: Classes of small-world networks. Proc. Nat.
Acad. Sci. 97, 11149-11152 (2000)

5. Barabadsi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509-512 (1999)

6. Barabasi, A.L., Albert, R.: Emergence of scaling in random networksscience. Sci-
ence 286(5439), 509-512 (1999)

7. Bhattacharya, P., Iliofotou, M., Neamtiu, I., Faloutsos, M.: Graph-based analysis
and prediction for software evolution. In: ICSM, pp. 419-429 (2012)

8. Challet, D., Lombardoni, A.: Bug propagation and debugging in asymmetric soft-
ware structures. Phys. Rev. E 70, 046109 (2004)

9. Concas, G., Marchesi, S.P.M., Serra, N.: Powerlaws in a large object-oriented soft-
ware system. IEEE Trans. Softw. Eng. 33(10), 687-708 (2007)

N

http://ctags.sourceforge.net
http://gcc.gnu.org/gcc-3.4/

212

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

L. Wang et al.

Crucittia, P., Latorab, V., Marchiori, M., Rapisarda, A.: Error and attacktolerance
of complex networks. Phys. A 340, 388-394 (2004)

Fluri, B., Gall, H.C.: Classifying change types for qualifying change couplings. In:
ICPC, pp. 35-45 (2006)

Gall, H., Jazayeri, M., Krajewski, J.: Cvs release history data for detecting logical
couplings. In: IWPSE (2003)

Giffin, M., de Weck, O., Bounova, G., Keller, R., Eckert, C., Clakson, J.: Change
propagation analysis in complex technical systems. J. Mech. Des. 131(8), 081001-
1-081001-14 (2009)

Girba, T., Ducasse, S., Kuhn, A.: Using concept analysis to detect co-change pat-
terns. In: Ninth International Workshop on Principles of Software Evolution: In
conjunction with the 6th ESEC/FSE, pp. 83-89 (2007)

Granovetter, M.: The strength of weak ties. Am. J. Socio. 78(6), 1360-1380 (1973)
Hassan, A.E., Holt, R.C.: Predicting change propagation in software systems. In:
International Conference on Software Maintenance, pp. 284-293 (2004)

Hassan, A.E., Malik, H.: Supporting software evolution using adaptive change
propagation heuristics. In: ICSM, pp. 177-186 (2008)

Holme, P., Kim, B.: Growing scale-free networks with tunable clustering. Phys.
Rev. E 65(2), 026107 (2000)

Holme, P., Kim, B., Yoon, C.: Attack vulnerability of complex networks. Phys.
Rev. E 65(2), 056109 (2002)

Ichii, M., Matsushita, M., Inoue, K.: An exploration of power-law in use-relation
of java software systems. In: 19th Australian Software Engineering Conference, pp.
422-4311 (2008)

Kagdi