
Perdita Stevens
Andrzej Wąsowski (Eds.)

 123

19th International Conference, FASE 2016
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016
Eindhoven, The Netherlands, April 2–8, 2016, Proceedings

Fundamental Approaches
to Software EngineeringLN

CS
 9

63
3

AR
Co

SS

Lecture Notes in Computer Science 9633

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M.Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Perdita Stevens • Andrzej Wąsowski (Eds.)

Fundamental Approaches
to Software Engineering
19th International Conference, FASE 2016
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016
Eindhoven, The Netherlands, April 2–8, 2016
Proceedings

123

Editors
Perdita Stevens
University of Edinburgh
Edinburgh
UK

Andrzej Wąsowski
IT University of Copenhagen
Copenhagen
Denmark

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-49664-0 ISBN 978-3-662-49665-7 (eBook)
DOI 10.1007/978-3-662-49665-7

Library of Congress Control Number: 2016932867

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

ETAPS Foreword

Welcome to the proceedings of ETAPS 2016, which was held in Eindhoven, located in
“the world’s smartest region,” also known as the Dutch Silicon Valley. Since ETAPS’
second edition held in Amsterdam (1999), ETAPS returned to The Netherlands this
year.

ETAPS 2016 was the 19th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, consisting of five constituting conferences (ESOP, FASE, FoSSaCS, TACAS,
and POST) this year. Each conference has its own Programme Committee and its own
Steering Committee. The conferences cover various aspects of software systems,
ranging from theoretical computer science to foundations to programming language
developments, analysis tools, formal approaches to software engineering, and security.
Organizing these conferences in a coherent, highly synchronized conference program,
enables attendees to participate in an exciting event, having the possibility to meet
many researchers working in different directions in the field, and to easily attend the
talks of various conferences. Before and after the main conference, numerous satellite
workshops took place and attracted many researchers from all over the globe.

The ETAPS conferences received 474 submissions in total, 143 of which were
accepted, yielding an overall acceptance rate of 30.2%. I thank all authors for their
interest in ETAPS, all reviewers for their peer-reviewing efforts, the Program Com-
mittee members for their contributions, and in particular the program co-chairs for their
hard work in running this intensive process. Last but not least, my congratulations to all
the authors of the accepted papers!

ETAPS 2016 was greatly enriched by the unifying invited speakers Andrew Gordon
(MSR Cambridge and University of Edinburgh, UK), and Rupak Majumdar (MPI
Kaiserslautern, Germany), as well as the conference-specific invited speakers (ESOP)
Cristina Lopes (University of California at Irvine, USA), (FASE) Oscar Nierstrasz
(University of Bern, Switzerland), and (POST) Vitaly Shmatikov (University of Texas
at Austin, USA). Invited tutorials were organized by Lenore Zuck (Chicago) and were
provided by Grigore Rosu (University of Illinois at Urbana-Champaign, USA) on
software verification and Peter Ryan (University of Luxembourg, Luxembourg) on
security. My sincere thanks to all these speakers for their inspiring and interesting talks!

ETAPS 2016 took place in Eindhoven, The Netherlands. It was organized by the
Department of Computer Science of the Eindhoven University of Technology. It was
further supported by the following associations and societies: ETAPS e.V., EATCS
(European Association for Theoretical Computer Science), EAPLS (European Asso-
ciation for Programming Languages and Systems), and EASST (European Association
of Software Science and Technology). The local organization team consisted of Mark
van den Brand, Jan Friso Groote (general chair), Margje Mommers, Erik Scheffers,
Julien Schmaltz, Erik de Vink, Anton Wijs, Tim Willemse, and Hans Zantema.

The overall planning for ETAPS is the main responsibility of the Steering
Committee, and in particular of its Executive Board. The ETAPS Steering Committee
consists of an Executive Board and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The Executive
Board consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), and Tarmo Uustalu (Tallinn). Other members of the Steering Com-
mittee are: Parosh Abdulla (Uppsala), David Basin (Zurich), Giuseppe Castagna
(Paris), Marsha Chechik (Toronto), Javier Esparza (Munich), Jan Friso Groote
(Eindhoven), Reiko Heckel (Leicester), Marieke Huisman (Twente), Bart Jacobs
(Nijmegen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Kim G. Larsen (Aalborg),
Axel Legay (Rennes), Christof Löding (Aachen), Matteo Maffei (Saarbrücken),
Pasquale Malacaria (London), Tiziana Margaria (Limerick), Andrzej Murawski
(Warwick), Catuscia Palamidessi (Palaiseau), Frank Piessens (Leuven), Jean-Francois
Raskin (Brussels), Mark Ryan (Birmingham), Julia Rubin (Massachussetts), Don
Sannella (Edinburgh), Perdita Stevens (Edinburgh), Gabriele Taentzer (Marburg), Peter
Thiemann (Freiburg), Luca Vigano (London), Igor Walukiewicz (Bordeaux), Andrzej
Wąsowski (Copenhagen), and Hongseok Yang (Oxford).

I sincerely thank all ETAPS Steering Committee members for all their work in
making the 19th edition of ETAPS a success. Moreover, thanks to all speakers,
attendees, organizers of the satellite workshops, and Springer for their support. Finally,
a big thanks to Jan Friso and his local organization team for all their enormous efforts
enabling ETAPS to take place in Eindhoven!

January 2016 Joost-Pieter Katoen
ETAPS SC Chair

ETAPS e.V. President

VI ETAPS Foreword

Preface

This book contains the proceedings of FASE 2016, the 19th International Conference
on Fundamental Approaches to Software Engineering, held in Eindhoven in April
2016, as part of the annual European Joint Conferences on Theory and Practice of
Software (ETAPS 2016).

As usual for FASE, the contributions combine the development of conceptual and
methodological advances with their formal foundations, tool support, and evaluation on
realistic or pragmatic cases. As a result the volume contains regular research papers,
long tool papers, and a short tool demo paper. It is also complemented by a contro-
versial but very interesting essay from our keynote speaker, Oscar Nierstrasz. We hope
that the community will find this volume engaging and worth reading.

The contributions included have been carefully selected. We received 108 abstract
submissions, from which 90 full-paper submissions materialised. All were reviewed by
experts in the field, and after intense discussion, only 24 were accepted, giving an
acceptance rate of only 27%. We thank all the authors for their hard work and will-
ingness to contribute, and all the Programme Committee members and external
reviewers who invested time in the selection process.

This year, FASE has experimented with a double-blind review process. The authors
were asked not to disclose their identity in the papers submitted for review. The
reviewers were thus able to read and discuss the papers while avoiding unintended bias
caused by author names, affiliations, and other potential influencing factors. The survey
of authors’ preferences indicates that the authors find this feature of the process
valuable, and worth the additional effort of anonymising the papers. We thank the
many people who filled in our surveys on the subject. FASE is likely to experiment
more with the idea in the future. The community is encouraged to contact the Steering
Committee members if they would like to comment.

January 2016 Perdita Stevens
Andrzej Wąsowski

Organization

Programme Committee

Sagar Chaki Carnegie Mellon University, USA
Nancy Day University of Waterloo, Canada
Ewen Denney SGT/NASA Ames, USA
Juergen Dingel Queen’s University, Canada
Stéphane Ducasse Inria Lille Nord Europe, France
Alexander Egyed Johannes Kepler University, Austria
Bernd Fischer Stellenbosch University, South Africa
Milos Gligoric University of Illinois at Urbana-Champaign, USA
Stefania Gnesi ISTI-CNR, Italy
Marieke Huisman University of Twente, The Netherlands
Valerie Issarny Inria, France
Marta Kwiatkowska University of Oxford, UK
Barbara König Universität Duisburg-Essen, Germany
Axel Legay IRISA/Inria, Rennes, France
Martin Leucker University of Lübeck, Germany
Fabrizio Pastore University of Luxembourg
Julia Rubin Massachusetts Institute of Technology, USA
Bernhard Rumpe RWTH Aachen University, Germany
Ina Schaefer Technische Universität Braunschweig, Germany
Perdita Stevens University of Edinburgh, UK
Marielle I.A. Stoelinga University of Twente, The Netherlands
Gabriele Taentzer Philipps-Universität Marburg, Germany
Mohammad Torabi Dashti ETH Zurich, Switzerland
Andrzej Wąsowski IT University of Copenhagen, Denmark
Martin Wirsing Ludwig-Maximilians-Universität München, Germany
Yingfei Xiong Peking University, China

Additional Reviewers

Arendt, Thorsten
Autili, Marco
Basset, Nicolas
Beohar, Harsh
Bertram, Vincent
Biondi, Fabrizio
Blom, Stefan

Botterweck, Goetz
Britz, Arina
Calinescu, Radu
Cito, Jürgen
Darabi, Saeed
Decker, Normann
Demuth, Andreas

Dong, Wei
Eikermann, Robert
Fahrenberg, Uli
Fantechi, Alessandro
Ferrari, Alessio
Fischer, Stefan
Gerhold, Marcus
Golas, Ulrike
Gordon, Michael
Greene, Gillian
Guarnieri, Marco
Guck, Dennis
Harder, Jannis
Heim, Robert
Hermerschmidt, Lars
Hildebrandt, Thomas
Huang, Xiaowei
Hölldobler, Katrin
Ismail, Azlan
Itzhaky, Shachar
Jiang, Jiajun
Kerstan, Henning
Kim, Chang Hwan Peter
Knapp, Alexander
Knaust, Alexander
Kolassa, Carsten
Kowal, Matthias
Kretchmer, Roland
Kumar, Rajesh
Kuraj, Ivan
Küpper, Sebastian
Lachmann, Remo
Linsbauer, Lukas
Lity, Sascha
Markin, Grigory
Mazzanti, Franco
Meijer, Jeroen
Meis, Rene
Milios, Dimitrios
Mir Seyed Nazari, Pedram
Moreira, Alvaro
Mostowski, Wojciech
Naddeo, Marco

Nagarajan, Vijay
Nieke, Michael
Noll, Thomas
Oortwijn, Wytse
Paoletti, Nicola
Plotnikov, Dimitri
Poll, Erik
Priefer, Dennis
Qu, Hongyang
Quilbeuf, Jean
Raco, Deni
Rensink, Arend
Roth, Alexander
Saha, Ripon
Scheffel, Torben
Schmitz, Malte
Schrammel, Peter
Schulze, Christoph
Schulze, Sandro
Schumann, Johann
Seidl, Christoph
Selim, Gehan M.K.
Semini, Laura
Shafiei, Nastaran
Sirjani, Marjan
Spagnolo, Giorgio Oronzo
Strüber, Daniel
Stückrath, Jan
Stümpel, Annette
Svoreňová, Mária
Thoma, Daniel
Thorn, Johannes
Tiezzi, Francesco
Traonouez, Louis-Marie
Tribastone, Mirco
Tsankov, Petar
Vallecillo, Antonio
van Dijk, Tom
von Wenckstern, Michael
Wille, David
Yu, Ingrid Chie
Zufferey, Damien

X Organization

Contents

Keynote Paper

The Death of Object-Oriented Programming . 3
Oscar Nierstrasz

Concurrent and Distributed Systems

Automated Choreography Repair. 13
Samik Basu and Tevfik Bultan

A Graph-Based Semantics Workbench for Concurrent
Asynchronous Programs. 31

Claudio Corrodi, Alexander Heußner, and Christopher M. Poskitt

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters . . . 49
Jia-Chun Lin, Ingrid Chieh Yu, Einar Broch Johnsen,
and Ming-Chang Lee

Integrated Environment for Verifying and Running Distributed
Components . 66

Ludovic Henrio, Oleksandra Kulankhina, Siqi Li, and Eric Madelaine

Model-Driven Development

Iterative and Incremental Model Generation by Logic Solvers. 87
Oszkár Semeráth, András Vörös, and Dániel Varró

Automated Model Merge by Design Space Exploration 104
Csaba Debreceni, István Ráth, Dániel Varró, Xabier De Carlos,
Xabier Mendialdua, and Salvador Trujillo

RuleMerger: Automatic Construction of Variability-Based Model
Transformation Rules. 122

Daniel Strüber, Julia Rubin, Thorsten Arendt, Marsha Chechik,
Gabriele Taentzer, and Jennifer Plöger

Two-Step Transformation of Model Traversal EOL Queries for Large
CDO Repositories . 141

Xabier De Carlos, Goiuria Sagardui, and Salvador Trujillo

http://dx.doi.org/10.1007/978-3-662-49665-7_1
http://dx.doi.org/10.1007/978-3-662-49665-7_2
http://dx.doi.org/10.1007/978-3-662-49665-7_3
http://dx.doi.org/10.1007/978-3-662-49665-7_3
http://dx.doi.org/10.1007/978-3-662-49665-7_4
http://dx.doi.org/10.1007/978-3-662-49665-7_5
http://dx.doi.org/10.1007/978-3-662-49665-7_5
http://dx.doi.org/10.1007/978-3-662-49665-7_6
http://dx.doi.org/10.1007/978-3-662-49665-7_7
http://dx.doi.org/10.1007/978-3-662-49665-7_8
http://dx.doi.org/10.1007/978-3-662-49665-7_8
http://dx.doi.org/10.1007/978-3-662-49665-7_9
http://dx.doi.org/10.1007/978-3-662-49665-7_9

Mind the Gap! Automated Anomaly Detection for Potentially Unbounded
Cardinality-Based Feature Models . 158

Markus Weckesser, Malte Lochau, Thomas Schnabel,
Björn Richerzhagen, and Andy Schürr

Analysis and Bug Triaging

Cut Branches Before Looking for Bugs: Sound Verification
on Relaxed Slices . 179

Jean-Christophe Léchenet, Nikolai Kosmatov, and Pascale Le Gall

The Influences of Edge Instability on Change Propagation and Connectivity
in Call Graphs . 197

Lei Wang, Han Li, and Xinchen Wang

Modeling and Abstraction of Memory Management in a Hypervisor 214
Pauline Bolignano, Thomas Jensen, and Vincent Siles

Crowdsourced Bug Triaging: Leveraging Q&A Platforms
for Bug Assignment . 231

Ali Sajedi Badashian, Abram Hindle, and Eleni Stroulia

Probabilistic and Stochastic Systems

Model-Based Testing of Probabilistic Systems . 251
Marcus Gerhold and Mariëlle Stoelinga

An Iterative Decision-Making Scheme for Markov Decision Processes
and Its Application to Self-adaptive Systems . 269

Guoxin Su, Taolue Chen, Yuan Feng, David S. Rosenblum,
and P.S. Thiagarajan

Family-Based Modeling and Analysis for Probabilistic Systems – Featuring
PROFEAT. 287

Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz,
and Christel Baier

Statistical Model Checking of e-Motions Domain-Specific Modeling
Languages . 305

Francisco Durán, Antonio Moreno-Delgado,
and José M. Álvarez-Palomo

Proof and Theorem Proving

Towards Formal Proof Metrics . 325
David Aspinall and Cezary Kaliszyk

XII Contents

http://dx.doi.org/10.1007/978-3-662-49665-7_10
http://dx.doi.org/10.1007/978-3-662-49665-7_10
http://dx.doi.org/10.1007/978-3-662-49665-7_11
http://dx.doi.org/10.1007/978-3-662-49665-7_11
http://dx.doi.org/10.1007/978-3-662-49665-7_12
http://dx.doi.org/10.1007/978-3-662-49665-7_12
http://dx.doi.org/10.1007/978-3-662-49665-7_13
http://dx.doi.org/10.1007/978-3-662-49665-7_14
http://dx.doi.org/10.1007/978-3-662-49665-7_14
http://dx.doi.org/10.1007/978-3-662-49665-7_15
http://dx.doi.org/10.1007/978-3-662-49665-7_16
http://dx.doi.org/10.1007/978-3-662-49665-7_16
http://dx.doi.org/10.1007/978-3-662-49665-7_17
http://dx.doi.org/10.1007/978-3-662-49665-7_17
http://dx.doi.org/10.1007/978-3-662-49665-7_18
http://dx.doi.org/10.1007/978-3-662-49665-7_18
http://dx.doi.org/10.1007/978-3-662-49665-7_19

Reduction Rules for Colored Workflow Nets . 342
Javier Esparza and Philipp Hoffmann

Many-Valued Institutions for Constraint Specification 359
Claudia Elena Chiriţă, José Luiz Fiadeiro, and Fernando Orejas

CafeInMaude: A CafeOBJ Interpreter in Maude . 377
Adrián Riesco, Kazuhiro Ogata, and Kokichi Futatsugi

Verification

Verifying a Verifier: On the Formal Correctness of an LTS Transformation
Verification Technique. 383

Sander de Putter and Anton Wijs

Hybrid Session Verification Through Endpoint API Generation 401
Raymond Hu and Nobuko Yoshida

PVAIR: Partial Variable Assignment InterpolatoR . 419
Pavel Jančík, Leonardo Alt, Grigory Fedyukovich, Antti E.J. Hyvärinen,
Jan Kofroň, and Natasha Sharygina

Author Index . 435

Contents XIII

http://dx.doi.org/10.1007/978-3-662-49665-7_20
http://dx.doi.org/10.1007/978-3-662-49665-7_21
http://dx.doi.org/10.1007/978-3-662-49665-7_22
http://dx.doi.org/10.1007/978-3-662-49665-7_23
http://dx.doi.org/10.1007/978-3-662-49665-7_23
http://dx.doi.org/10.1007/978-3-662-49665-7_24
http://dx.doi.org/10.1007/978-3-662-49665-7_25

Keynote Paper

The Death of Object-Oriented Programming

Oscar Nierstrasz(B)

Software Composition Group, University of Bern, Bern, Switzerland
oscar@inf.unibe.ch

http://scg.unibe.ch/

Abstract. Modern software systems are increasingly long-lived. In order
to gracefully evolve these systems as they address new requirements,
developers need to navigate effectively between domain concepts and
the code that addresses those domains. One of the original promises
of object-orientation was that the same object-oriented models would
be used throughout requirements analysis, design and implementation.
Software systems today however are commonly constructed from a het-
erogeneous “language soup” of mainstream code and dedicated DSLs
addressing a variety of application and technical domains. Has object-
oriented programming outlived its purpose?

In this essay we argue that we need to rethink the original goals of
object-orientation and their relevance for modern software development.
We propose as a driving maxim, “Programming is Modeling,” and explore
what this implies for programming languages, tools and environments. In
particular, we argue that: (1) source code should serve not only to specify
an implementation of a software system, but should encode a queryable
and manipulable model of the application and technical domains con-
cerned; (2) IDEs should exploit these domain models to enable inex-
pensive browsing, querying and analysis by developers; and (3) barriers
between the code base, the running application, and the software ecosys-
tem at large need to be broken down, and their connections exploited
and monitored to support developers in comprehension and evolution
tasks.

1 Introduction

Is object-oriented programming dying?
The code of real software systems is structured around a number of inter-

acting and overlapping technical and application domains. As we shall see, this
fact is not well supported by mainstream languages and development environ-
ments. Although object-oriented software development made early promises to
close the gaps between analysis, design and implementation by offering a uni-
fying object-oriented modeling paradigm for these activities, we still struggle to
navigate between these worlds. Do the emergence of domain-specific languages
(DSLs) and model-driven development (MDD) prove that object-orientation has
failed?

In this essay we explore some of the symptoms of this apparent failure, and
argue that we need to be bolder in interpreting the vision of object-orientation.
c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 3–10, 2016.
DOI: 10.1007/978-3-662-49665-7 1

4 O. Nierstrasz

We propose the slogan “Programming is Modeling” and identify a number of
challenges this leads us to.

Let us briefly summarize the key symptoms:

There Exists a Large Gap Between Models and Code. In an ideal world, require-
ments and domain models are clearly visible in the implementation of a soft-
ware system. In reality, most mainstream programming languages seem to be
ill-equipped to represent domain concepts in a concise way, leading to a prolif-
eration of DSLs. Internal DSLs, for example, “fluent interfaces” that exploit the
syntax of a host language, are often less fluent and readable than they should
be. External DSLs (i.e. with their own dedicated syntax) can lead to a “soup”
of heterogeneous code that is hard to navigate, understand, and analyse.

MDD represents another important trend, in which high-level models are
typically transformed to implementations, but such “model compilers” tend to
pay off only in well-understood domains where changes in requirements can be
well-expressed by corresponding changes to models.

Mainstream IDEs are Glorified Text Editors. Although software developers
spend much of their time reading and analyzing code, mainstream IDEs mostly
treat source code as text. In general, the IDE is not aware of application or tech-
nical domain concepts, and does not help the developer to formulate domain-
specific queries or custom analyses, such as: Where is this feature implemented?
Will this change impact the system architecture? Who is an expert on this part of
the code? Similarly classical development tools belonging to the IDE are unaware
of the application domain. A classical example is the interactive debugger, which
offers a uniform interface to debugging based on the run-time stack, without any
knowledge of the underlying application domain. Although popular IDEs offer
plugin architectures that allow third-party developers to integrate new tools into
the IDE, the barrier to building such tools remains relatively high, and the appli-
cation domain models of the underlying code base remain relatively inaccessible.

Programming Languages and Tools Live in a Closed World. Mainstream pro-
gramming languages assume the world is closed and frozen. Static type systems,
for example, assume that the type of an entity is fixed and will never change or
evolve. When a type changes, the entire world must change with it. In reality,
complex software systems have to cope with evolving and possibly inconsistent
entities. Another symptom is the strict divide between “compile time” and “run
time” in mainstream programming. For example, it is not possible to navigate
seamlessly from a feature of a running system to the code that implements it.
Finally, we see that developers often resort to web search engines and dedicated
Q&A fora to answer questions that the IDE cannot. We need to acknowledge
that code lives within a much larger ecosystem than the current code base.

In this essay we argue that we should revisit the object-oriented paradigm to
address these issues by adopting the maxim that “Programming is Modeling.”
We further propose a number of research challenges along the following lines:

The Death of Object-Oriented Programming 5

1. Bring models closer to code by expressing queryable and manipulable domain
models directly in source code;

2. Exploit domain models in the IDE to enable custom analyses by developers;
3. Link the code to its ecosystem and monitor them both to steer their evolution.

Caveat: we apologize in advance for referencing only little of the vast amount
of relevant related work.1

2 Bring Models Closer to Code

When we develop and evolve code, we need to comprehend the relationships
between requirements that refer to domain models, and the underlying code that
realizes those requirements. Ideally we want to see domain concepts directly in
the code. We therefore argue that a program should not just serve to specify an
implementation of a set of requirements, but it should encode domain models
suitable for querying and analysis.

This, we believe, was one of the early promises of object-oriented program-
ming as expressed in the 1980s. Nowadays, however, complex software systems
are implemented as a soup of mainstream and domain-specific languages. DSLs
can be used to address either technical or application domains. Typically several
DSLs are needed to address a complex application. Despite the availability of
many dedicated DSLs, important aspects of a software system may not be explic-
itly modeled at all. Notoriously, architectural constraints are implemented with
the help of frameworks and architectural styles, but rarely represented explicitly
or checked as the system evolves.

Introducing ever more DSLs is not a solution. Having many external DSLs
complicates program comprehension and makes it difficult for tools to reason
about the relationships between them.2

Internal (or embedded) DSLs are hard to achieve because (1) the syntax of
many mainstream object-oriented languages does not support well the design of
truly fluent interfaces (with some notable exceptions, such as Smalltalk, Ruby,
Scala, ...), and (2) design methods emphasize the development of “fluent inter-
faces,” so they can be hard to achieve post hoc.

We think that many of these problems have their roots in a fundamental mis-
understanding of the object-oriented paradigm. While the imperative program-
ming paradigm can be summarized as programs = algorithms + data structures,
object-oriented programming is often explained (following Alan Kay [8][p 78]) as
programs = objects + messages. While this is not incorrect, it is a mechanistic
interpretation that misses the key point.

In our view, the object-oriented paradigm is better expressed as: “design your
own paradigm” (i.e. programming is modeling). A well-designed object-oriented

1 A representative selection of related work can be found in the research plan of our
SNSF project, “Agile Software Analysis”: http://scg.unibe.ch/research/snf16.

2 Coping with this complexity is one of the goals of the GEMOC initiative [6]. See
http://gemoc.org.

http://scg.unibe.ch/research/snf16
http://gemoc.org

6 O. Nierstrasz

system consists of objects representing exactly the domain abstractions that
are needed for your application and suitable operations over them (if you like, a
many-sorted algebra). Code can be separated into the objects (or “components”)
representing domain concepts, and scripts that configure them [1].

We therefore posit as a challenge to revive object-oriented programming by
viewing OO languages as modeling languages, not just implementation languages.
Rather than viewing DSLs and MDD as the competition, we should encourage
the use of OO languages as modeling tools, and even as language workbenches
for developing embedded DSLs.3

3 Exploit Domain Models in the IDE

Although developers are known to spend much of their development time read-
ing and analyzing code, mainstream IDEs do not do a good job of supporting
program comprehension. IDEs are basically glorified text editors.

Developers need custom analyses to answer the questions that arise during
typical development tasks [7,16]. Building a dedicated analysis tool is expensive,
even using a plugin architecture such as that of Eclipse. Dedicated analysis
platforms like Moose [12] and Rascal [9] reduce the cost of custom queries, but
they rely on the existence of a queryable model of the target software.

As we have seen in the previous section, even though we would like to see
programs as models, they are not in a form useful for querying and analysis, so
we need to do extra work to extract these models and work with them.

We see two important challenges. The first is “Agile Model Extraction”, i.e.
the ability to efficiently extract models from source code. This is not just a
problem of parsing heterogeneous code and linking concepts encoded in different
languages (e.g. Java, SQL, XML), but also of recognizing concepts coming from
numerous and intertwined domain models. We are experimenting with approxi-
mate parsing technology, inexpensive heuristics, and other techniques [10,13] to
quickly and cheaply extract models from heterogeneous source code.

The second challenge is “Context-Aware Tooling”, i.e. the ability to cheaply
construct dedicated, custom analyses and tools that close the gap between IDEs
and application software. The key idea is, once we have access to the underlying
domain model of code (whether it is offered by the underlying infrastructure
or obtained by Agile Model Extraction), to make it easy to exploit that model
in tools used by developers to produce code, browse and query it, analyze it and
debug it. On the one hand, generic core functionality is needed for querying and
navigating models. On the other hand, tools and environments need to be aware
of the context of the domain model of the code under study so they can adapt
themselves accordingly.

An example is the “moldable debugger” which, instead of presenting only a
generic stack-based interface to the run-time environment, is aware of relevant
domain concepts, such as notifications in an event-driven system, or grammar
3 See, for example, Helvetia, a workbench for integrating DSLs into the IDE and

toolchain of the host language [15].

The Death of Object-Oriented Programming 7

Fig. 1. A domain-specific debugger for PetitParser. The debugging view displays rel-
evant information for debugging parsers ((4) Input, (5) Production structure). Each
widget loads relevant debugging operations (1, 2, 4).

rules in a parser [4]. In Fig. 1 we see a screenshot of a domain-specific debugger
for PetitParser, a parser combinator framework for Pharo Smalltalk [14]. Each
widget of the debugger is context-sensitive and loads the appropriate debugging
operations for the current context. The debugger is aware of a grammar’s pro-
duction rules and is capable, for example, of stepping to the next production or
the next parser failure, rather than simply to the next expression, statement or
method. Custom visualizations are also loaded to display the production struc-
ture in a suitable way. Custom debuggers can be defined in a straightforward way
by leveraging the explicit representation of the underlying application domain.

The same principles have been applied to the “moldable inspector,” a
context-aware tool for querying and exploring an object space [5]. Domain-
specific views are automatically loaded depending on the entities being inspected.
As with the moldable debugger, custom views are commonly expressed with just
a few lines of code.

In the long run we envision a development environment in which we are not
forced to extract models from code, but in which the code is actually a model
that we can interact with, query and analyze.

4 Link the Code to Its Ecosystem

Conventional software systems are trapped behind a number of artificial barri-
ers. The most obvious is the barrier between the source code and the running
application. This is manifested in the usual program/compile/run cycle. This

8 O. Nierstrasz

makes it difficult to navigate between application features and source code. The
debugger is classically the only place where the developer can navigate between
the two worlds. It does not have to be that way, as seen in the Morphic frame-
work of Self, in which one may navigate freely between user interface widgets and
the source code related to them [11]. (This is just one dramatic manifestation of
“live programming”, but perhaps one of the most important ones for program
comprehension.)

A second barrier is that between a current version of a system and other
related versions. In order to extract useful information about the evolution of
the system, one must resort to “mining software repositories”, but this possibility
is not readily available to average developers who do not have spare capacity to
carry out such studies. Furthermore, different versions cannot normally co-exist
within a single running system, complicating integration and migration. (There
has been much interesting research but not much is available for mainstream
development.)

A third barrier exists between the system under development and the larger
ecosystem of related software. Countless research efforts in the past decade have
shown that, by mining the ecosystem, much useful knowledge can be gleaned
about common coding practices, bugs and bug fixes, and so on. Unfortunately
this information is not readily accessible to developers, so they often turn instead
to question and answer fora.

We see two main challenges, namely “Ecosystem Mining” and “Evolution-
ary Monitoring.” By mining software ecosystems and offering platforms to ana-
lyze them [2], we hope to automatically discover intelligence relevant to a given
project. Examples are opportunities for code reuse, automatically-generated and
evolving documentation, and usage information than can influence maintainers
of libraries and frameworks.

Evolutionary monitoring refers to steering the evolution of a software system
by monitoring stakeholder needs. An example of this is architectural monitor-
ing [3] which formalizes architectural constraints and monitors conformance as
the application evolves. Other examples include tracking the needs of stake-
holders (i.e. both developers and users) to determine chronic pain points and
opportunities for improvements; tracking technical debt to assess priorities for
reengineering and replacement; and monitoring technical trends, especially with
respect to relevent technical debt.

In the long run, we envision a development environment that integrates not
just the current code base and the running application, enabling easy naviga-
tion between them, but also knowledge mined from the evolution of the software
under development as well as from the software ecosystem at large. The develop-
ment environment should support active monitoring of the target system as well
as the ecosystem to identify and assess opportunities for code improvements.

5 Conclusion

Object-oriented programming has fulfilled many of its promises. Software sys-
tems today are longer-lived and more amenable to change and extension than

The Death of Object-Oriented Programming 9

ever. Nevertheless we observe that object orientation is slowly dying, with the
introduction of ever more complex and heterogeneous systems.

We propose to rejuvenate object-oriented programming and let ourselves be
guided by the maxim that “programming is modeling.” We need programming
languages, tools and environments that enable models to be directly expressed
in code in such a way that they can be queried, manipulated and analyzed.

Acknowledgments. We thank Mircea Lungu for his comments on an early draft of
this essay. We also gratefully acknowledge the financial support of the Swiss National
Science Foundation for the project “Agile Software Analysis” (SNSF project No.
200020-162352, Jan 1, 2016 - Dec. 30, 2018), and its predecessor, “Agile Software
Assessment” (SNSF project No. 200020-144126/1, Jan 1, 2013 - Dec. 30, 2015).

References

1. Achermann, F., Nierstrasz, O.: Applications = components + scripts—a tour of
piccola. In: Aksit, M. (ed.) Software Architectures and Component Technology,
pp. 261–292. Kluwer, Alphen aan den Rijn (2001)

2. Caracciolo, A., Chiş, A., Spasojević, B., Lungu, M.: Pangea: a workbench for sta-
tically analyzing multi-language software corpora. In: 2014 IEEE 14th Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM),
pp. 71–76. IEEE, September 2014

3. Caracciolo, A., Lungu, M., Nierstrasz, O.: A unified approach to architecture con-
formance checking. In: Proceedings of the 12th Working IEEE/IFIP Conference
on Software Architecture (WICSA), pp. 41–50. ACM Pres, May 2015

4. Chiş, A., Denker, M., Gı̂rba, T., Nierstrasz, O.: Practical domain-specific debuggers
using the moldable debugger framework. Comput. Lang. Syst. Struct. 44(Part A),
89–113 (2015). Special issue on the 6th and 7th International Conference on Soft-
ware Language Engineering (SLE 2013 and SLE 2014)

5. Chiş, A., Gı̂rba, T., Nierstrasz, O., Syrel, A.: The moldable inspector. In:
Proceedings of the ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software. ACM, New York (2015) (Onward!
2015, page to appear)

6. Combemale, B., Deantoni, J., Baudry, B., France, R.B., Jézéquel, J.-M., Gray, J.:
Globalizing modeling languages. Computer 47(6), 68–71 (2014)

7. Fritz, T., Murphy, G.C.: Using information fragments to answer the questions
developers ask. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering, vol. 1, ICSE 2010, pp. 175–184. ACM, New York (2010)

8. Kay, A.C.: The early history of Smalltalk. In: ACM SIGPLAN Notices, vol. 28,
pp. 69–95. ACM Press, March 1993

9. Klint, P., van der Storm, T., Vinju, J.: RASCAL: A domain specific language
for source code analysis and manipulation. In: Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2009, pp. 168–177
(2009)

10. Kurš, J., Lungu, M., Nierstrasz, O.: Bounded seas. Comput. Lang. Syst. Struct.
44(Part A), 114–140 (2015). Special issue on the 6th and 7th International
Conference on SoftwareLanguage Engineering (SLE 2013 and SLE 2014)

10 O. Nierstrasz

11. Maloney, J.H., Smith, R.B.: Directness and liveness in the morphic user interface
construction environment. In: Proceedings of the 8th Annual ACM Symposium on
User Interface and Software Technology, UIST 1995, pp. 21–28. ACM, New York
(1995)

12. Nierstrasz, O., Ducasse, S., Gı̂rba, T.: The story of Moose: an agile reengineering
environment. In: Proceedings of the European Software Engineering Conference
(ESEC/FSE 2005), pp. 1–10. ACM Press, New York, September 2005 (invited
paper)

13. Nierstrasz, O., Kurš, J.: Parsing for agile modeling. Sci. Comput. Program.
97(Part 1), 150–156 (2015)

14. Renggli, L., Ducasse, S., Gı̂rba, T., Nierstrasz, O.: Practical dynamic grammars
for dynamic languages. In: 4th Workshop on Dynamic Languages and Applications
(DYLA 2010), Malaga, Spain, pp. 1–4, June 2010

15. Renggli, L., Gı̂rba, T., Nierstrasz, O.: Embedding languages without breaking
tools. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 380–404. Springer,
Heidelberg (2010)

16. Sillito, J., Murphy, G.C., De Volder, K.: Asking and answering questions during a
programming change task. IEEE Trans. Softw. Eng. 34, 434–451 (2008)

Concurrent and Distributed Systems

Automated Choreography Repair

Samik Basu1(B) and Tevfik Bultan2

1 Iowa State University, Ames, USA
sbasu@iastate.edu

2 University of California at Santa Barbara, Santa Barbara, USA
bultan@cs.ucsb.edu

Abstract. Choreography analysis is a crucial problem in concurrent and
distributed system development. A choreography specifies the desired
ordering of message exchanges among the components of a system. The
realizability of a choreography amounts to determining the existence of
components whose communication behavior conforms to the given chore-
ography. The realizability problem has been shown to be decidable. In
this paper, we investigate the repairability of un-realizable choreogra-
phies, where the goal is to identify a set of changes to a given un-realizable
choreography that will make it realizable. We present a technique for
automatically repairing un-realizable choreographies and provide formal
guarantees of correctness and termination. We demonstrate the viabil-
ity of our technique by applying it to several representative unrealizable
choreographies from Singularity OS channel contracts and Web services.

1 Introduction

Choreography specifications are used in a variety of domains including coordi-
nation of software in service-oriented computing [18], specification of process
interactions in Singularity OS [11], and specification of communication behavior
among processes in distributed programs [2]. Choreographies describe desired
message exchange sequences among components, programs or processes (we will
refer to them as peers) of a distributed system. The choreography realizabil-
ity problem is determining whether one can construct peers whose interaction
behavior conforms to the given choreography. As an example, consider the chore-
ography over two peers P1 and P2 shown in Fig. 1(a) where edges represent mes-
sages sent from one peer to another. This choreography describes a simple file
transfer protocol [9] where P1 is the client asking for the file transfer and P2

is the file server. First, the client sends a message to the server to request that
the server starts the transfer. When the transfer is finished, the server sends the
“Transfer Finished” message and the protocol terminates. However, the client
may decide to cancel the transfer before hearing back from the server by sending
a “Cancel Transfer” message in which case the server responds with “Transfer
Finished” message, which, again, terminates the protocol.

This work is partially supported by NSF grants CCF 1116836, CCF 1555780 and
CCF 1117708.

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 13–30, 2016.
DOI: 10.1007/978-3-662-49665-7 2

14 S. Basu and T. Bultan

Event Message Name

ms: P1 → P2 Start Transfer
mf: P2 → P1 Transfer Finished
mc: P1 → P2 Cancel Transfer

s0

s1

ms:P1 -> P2

s2

mc:P1 -> P2

s3

mf:P2 -> P1

s4

mf:P2 -> P1

s0

s1

ms:P1 -> P2

s2

mc:P1 -> P2

s3

mf:P2 -> P1

s4

mf:P2 -> P1 mc:P1 -> P2

s0

s1

ms:P1 -> P2

s3

mf:P2 -> P1

ns(0)

m(0):P2 -> P1

s2

s4

mf:P2 -> P1

mc:P1 -> P2

(a) (b) (c)

Fig. 1. (a) Un-realizable choreography [9]; Repair by (b) relaxation, (c) restriction
(Color figure online).

Figure 3(a) presents the projection of the choreography onto the participating
peers resulting in the corresponding peer behaviors (send actions are denoted by
“!” and receive actions are denoted by “?”). The distributed system that consists
of the peer specifications shown in Fig. 3(a) can generate the message sequence:

msP1→P2 ,mfP2→P1 ,mcP1→P2 (1)

This sequence corresponds to the case where the server sends a “Transfer Fin-
ished” message (mf), but before consuming that message, the client sends the
cancellation request message (mc). The sequence moves the server to an unde-
fined (error) configuration, where the server does not know whether the file
was transferred completely to the client before the client sent the cancellation
request. In terms of the choreography specification shown in Fig. 1(a), the mes-
sage sequence given above is not covered by the choreography, but any implemen-
tation of this choreography that uses asynchronous message passing will generate
the message sequence: (1), violating the choreography specification. Hence, the
choreography specification shown in Fig. 1(a) is un-realizable.

Problem Statement. This brings up the question: when a choreography is
determined to be un-realizable, is it possible to automatically repair the choreog-
raphy such that the repaired version is realizable? We will refer to this problem
as the choreography repairability problem. Its importance stems from the fact
that automation in repairing choreography will allow faster development of dis-
tributed systems with formal guarantees of correctness.

Our Solution. Our choreography repair technique analyzes and eliminates the
cause of violation of the condition for choreography realizability. In [4], we have
proved that choreography C is realizable if and only if its behavior (i.e., the set of
message sequences generated by C, denoted as L(C)) is identical to the behavior
of IC

1 (denoted as L(IC
1)), where IC

1 is the asynchronous system in which each

Automated Choreography Repair 15

public contract ReservationSessionContract {
state Start: {

request? -> Decide;
}
state Decide: {

succeed! -> Success;
failed! -> Sink;
cancel? -> (cancelled!);

}
state Success: {

cancel?;
confirm?;

}
state Sink: {

cancel?;
}

}

start

decide

request:C -> S

success

succeed:S -> C

sink

failed:S -> C

decide0

cancel:C -> S

end

cancel:C -> S cancel:C -> S cancelled:S -> C

)b()a(

Fig. 2. (a) Channel contract for ReservationSession and (b) the corresponding state
machine

participating peer has at most one pending message at any point of time, and is
obtained from the projection of C. We present two types of choreography repair
mechanisms that eliminate the differences between L(C) and L(IC

1):

1. Relaxation. The choreography C is changed to C′ such that L(C) ⊆ L(C′), i.e.,
new behavior is added to C, such that L(C′) = L(IC′

1).
2. Restriction. The choreography C is changed to C′ such that L(C) = L(C ↓C) =

L(IC′
1 ↓C) ⊆ L(IC

1), where ↓C denotes the behavior projected on the messages
in C. This change implies that some behavior of IC

1 is disallowed in IC′
1 . This

is achieved by adding extra synchronization messages in C′. When these extra
messages are projected away, the repaired choreography C′ specifies exactly
the same sequences of messages specified by the un-realizable choreography C.

For example, the choreography in Fig. 1(a) is changed to the one in Fig. 1(b) via
relaxation, by adding new behavior (blue bold-edge), which makes the latter real-
izable. This is because the sequence that made C un-realizable (see sequence (1)
above) is now included in the repaired version C′. On the other hand, Fig. 1(c)
demonstrates repair via restriction, by adding synchronization messages from
state s1 to ns(0) (red dotted-edges); this repair also makes the resulting chore-
ography realizable. In this case, the sequence in (1) is not possible in IC′

1 .

Contribution. We present a formal characterization of choreography repairabil-
ity. To the best of our knowledge, this is the first time such a characteri-
zation has been presented. We present a sound and complete algorithm for
choreography repair based on this characterization. We also discuss its applica-
tion by demonstrating automated repair of several unrealizable choreographies.
Although choreography examples we use in this paper consist of two-party chore-
ographies, the formal model and the repair algorithm we present are general and
handle multi-party choreographies.

16 S. Basu and T. Bultan

2 Repairing Singularity OS Channel Contracts

We motivate the practical applicability of automated choreography repair using
Singularity OS channel contracts. Singularity OS [16] is developed by Microsoft
research with the objective of improving OS dependability by ensuring process
isolation. The processes in Singularity OS communicate over FIFO channels
and follow specific channel contracts (choreographies in our case); that specify
allowable communication patterns between processes (client and server). The
Singularity OS channel contracts correspond to choreography specifications. One
problem is to determine whether one can implement a client and a server whose
interaction conforms to the given channel contract, i.e., determining realizability
of the given channel contract.

Figure 2(a) presents a channel contract called reservation session contract
(where message declarations are omitted for brevity). The contract specifies four
explicit states and the message sequences from the perspective of the server. For
instance, the contract specifies that the state changes from “Start” to “Decide”
when the server receives a message “request” from the client. From the state
“Decide”, there are three choices: the server sends the message “succeed” to
the client resulting in the state update to “Success”; the server responds to the
client with message “failed” leading to the state “Sink”; the client sends “cancel”
followed by the server sending “cancelled” message. Figure 2(b) presents the state
machine for this contract (C represents the client and S represents the server).

The Singularity Design Note 5 [16] states that the client and server processes
that are verified to conform to a given channel contract (i.e., that implement the
projection of the channel contract correctly) are guaranteed to interact without
any deadlocks. However, in [17], the authors demonstrated that this claim is
incorrect since the channel contract itself can be un-realizable, in which case the
processes implemented based on the projection of the contract can deadlock. One
of the examples demonstrating this problem is the reservation session contract
from Singularity OS shown above. Due to asynchronous communication, the
client and server can move out-of-sync and deadlock. Consider the scenario where
the client sends a “cancel” message and waits for the “cancelled” message from
the server, while the server sends a “failed” message and consumes the “cancel”
message from the client. This sequence of interactions leads to a deadlock. In fact
there are no client and server processes that can conform to this contract without
deadlock while interacting via FIFO channels (as required by the Singularity
OS), i.e., the choreography specified by this channel contract is un-realizable.

The automated choreography repair technique we present in this paper is
directly applicable to Singularity OS channel contracts. Using our technique we
can repair un-realizable channel contracts, and ensure deadlock free implemen-
tation of repaired contracts. We will discuss the application of our automated
choreography repair technique to the reservation contract in Sect. 5.

Automated Choreography Repair 17

3 Choreography Realizability

We proceed by presenting an overview of the existing results [4] on choreogra-
phy realizability, which forms the basis of our automated choreography repair
strategy.

Peers. The behavior B of a peer P is a finite state machine (M,T, t0, δ) where
M is the union of input (M in) and output (Mout) message sets, T is the finite set
of states, t0 ∈ T is the initial state, and δ ⊆ T × (M ∪ {ε}) × T is the transition
relation. A transition τ ∈ δ can be one of the following three types: (1) a send-
transition of the form (t1, !m1, t2) which sends out a message m1 ∈ Mout, (2) a
receive-transition of the form (t1, ?m2, t2) which consumes a message m2 ∈ M in

from peer’s input queue, and (3) an ε-transition of the form (t1, ε, t2). We write
t

a−→ t′ to denote that (t, a, t′) ∈ δ. Figure 3(a) illustrates the behavior of peers
P1 and P2; states in Pi are denoted by a tuple (Pi:“state-name”).

System. Given a set of peers P = {P1, . . . , Pn} with Bi = (Mi, Ti, t0i, δi) denot-
ing the behavior of Pi and Mi = M in

i ∪ Mout
i such that ∀i : M in

i ∩ Mout
i = ∅,

and ∀i, j : i
= j ⇒ M in
i ∩ M in

j = Mout
i ∩ Mout

j = ∅. A system behavior or
simply a system over P is denoted by a (possibly infinite state) state machine
I = (P, S, s0, M,Δ) where P is the set of peers, S is the set of states in the

P2 : s0

P2 : s1

 ?ms

P2 : s2

 ?mc

P2 : s3

 !mf

P2 : s4

 !mf

P1 : s1

P1 : s3

 ?mf

P1 : s2

 !mc

P1 : s4

 ?mf

P1 : s0

 !ms

[P1 : s0 : [],P2 : s0 : []]

[P1 : s1 : [],P2 : s0 : [ms]]

ms:P1 -> P2

[P1 : s1 : [],P2 : s1 : []]

 epsilon

[P1 : s2 : [],P2 : s1 : [mc]]

mc:P1 -> P2

[P1 : s1 : [mf],P2 : s3 : []]

mf:P2 -> P1

[P1 : s2 : [mf],P2 : s3 : [mc]]

mf:P2 -> P1

[P1 : s2 : [],P2 : s2 : []]

 epsilon mc:P1 -> P2

[P1 : s3 : [],P2 : s3 : []]

 epsilon

[P1 : s4 : [],P2 : s3 : [mc]]

 epsilon

[P1 : s2 : [mf],P2 : s4 : []]

mf:P2 -> P1

[P1 : s4 : [],P2 : s4 : []]

 epsilon

)b()a(

Fig. 3. (a) Projected peers P1 and P2 for Fig. 1(a); (b) System behavior

18 S. Basu and T. Bultan

system and each state s = (Q1, t1, Q2, t2, . . . Qn, tn) in the system is described
by the local states (tis) of the peers in P along with the contents of their queues
(Qis). s0 ∈ S is the start state, where none of the peers have any pending mes-
sages in their queue to consume. The set M contains the set of all messages that
are being exchanged by the participating peers.

Finally, the transition relation Δ is described as follows. The send actions are
non-blocking, i.e., when a peer Pi sends a message m to a peer Pj (denoted by
mPi→Pj), the message gets appended to the tail of the queue associated to Pj .
We refer to the queue as the receive queue of Pj . The receive actions are blocking,
i.e., a peer can only consume a message if it is present at the head of its receive
queue; on consumption of the message, it is removed from the head of the queue.
Only the send actions are observable in the system as these actions involve two
entities: the sender sending the message and the receive queue of the receiver. All
other actions are local to one peer and, therefore, unobservable (ε-transitions).
We will use the functions lSt(., .) and lQu(., .) to obtain local state and queue
of a peer from a state in the system, i.e., for s = (Q1, t1, Q2, t2, . . . Qn, tn) ∈ S,
lSt(s, P1) = t1 and lQu(s, P1) = Q1.

K-bounded System. A k-bounded system (denoted by Ik) is a system where
the length of message queue for any peer is at most k. In any k-bounded system,
the send actions can block if the receive queue of the receiver peer is full. Any
k-bounded system is finite state as long as the behaviors of the participating
peers are finite state. Figure 3(b) illustrates the system I1 obtained from the
communicating peers P1 and P2 of Fig. 3(a). Note that initially P1 is at the local
state P1 :s1 with an empty receive queue denoted by [].

Choreography Specification. A choreography specification is a finite state
machine C = (P, SC , sC0 , L,Δc) where P is a finite set of peers, SC is a finite
set of states, sC0 ∈ C is the initial state, L is a finite set of message labels and,
finally, Δc ⊆ SC × P × L × P × SC is the transition relation. A transition of the
form (sCi , P,m, P ′, sCj) ∈ Δc represents the sending of message m from P to P ′

(P, P ′ ∈ P).

Peer Projection. The projection of a choreography C on one of the peers P ,
is obtained from C by performing the following updates to the state machine
describing C. (a) If a transition label is mP→P ′

then replace it with !m; (b) if a
transition label is mP ′→P then replace it with ?m; (c) otherwise, replace transi-
tion label with ε. The system obtained from the asynchronous communication of
the projected peers of C is denoted by IC ; IC

1 being the corresponding 1-bounded
system. The language of a choreography or a system is described in terms of a
set of sequences of send actions of the form mP→P ′

; the concatenation of ε to
any sequence results in the sequence itself. The language is denoted by L(.).

Theorem 1 (Realizability [4]). C is language realizable ⇔ [L(C) = L(IC
1)]

This theorem states that a choreography is realizable if and only if the set of
sequences of send actions of a choreography is identical to the set of sequences of
send actions of the 1-bounded system where the participating peers are gener-
ated from the (determinized) projection of the choreography under consideration.

Automated Choreography Repair 19

Figure 3(b) presents the behavior of the system IC
1 for the choreography specifica-

tion C shown in Fig. 1(a), where epsilon-labeled transitions denote consumption
of messages and other transitions denote sending of messages. The choreography
C is un-realizable because it does not include a specific send sequence that is
possible in IC

1 (Fig. 3(b)) (Sequence (1) discussed in Sect. 1).

4 Choreography Repair

Types of Repair. In this paper, we present two alternative techniques for
repairing un-realizable choreographies. One is based on adding new behaviors
(in terms of sends) to C, which we call relaxation. The other is based on adding
constraints that do not alter allowed sequences of sends in C but restrict the
behavior in IC

1 . We call this approach restriction. The techniques will be based
on the observation that from Theorem 1 and from the nature of asynchrony, it
follows: L(C)
= L(IC

1) ⇒ L(C) ⊂ L(IC
1).

State Relationships Between IC
1 and C. Before we describe the repair tech-

niques, we first discuss the structure of the IC
1 , which is crucial for understanding

our approach. If a state in C is represented as sC , then the corresponding state
in the peer P is a tuple denoted by P : sC . Proceeding further, if s is a state in
IC
1 , then s = (Q1, t1, . . . , Qn, tn), where n is the number of peers and ti is of the

form Pi :sC
i . Note that, the local states of each peer in s may have been obtained

from different states sC
i in C.

Consider for example, the second state of the system in Fig. 3(b)–P1 is at a
state P1 :s1 obtained from the state s1 in C and P2 is at a state P2 :s0 obtained
from the state s0 in C. Using the notations introduced in Sect. 3, lSt((P1 : s1 :
[], P2 :s0 : [ms]), P1) = P1 :s1; lQu((P1 :s1 : [], P2 :s0 : [ms]), P2) = [ms].

4.1 Differences Between C and IC
1

In order to apply relaxation or restriction, it is important to identify at least
one difference between C and IC

1 in terms of sequences of send actions. We know
that for un-realizable C, L(C) ⊂ L(IC

1). Therefore, there exists at least one send
sequence in IC

1 which is absent in C.
Consider that there exists a path in IC

1 in the form

s1
m

P1→P ′
1

1−−−−−→ s2
m

P2→P ′
2

2−−−−−→ s3 −→ . . . si
m

Pi→P ′
i

i−−−−−→ si+1 (2)

which generates the following sequence of send actions m
P1→P ′

1
1 ,m

P2→P ′
2

2 , . . . ,

m
Pi→P ′

i
i . Assume that, none of the paths in C allow the above send sequence.

However, there exists a path in C which replicates the above sequence till
m

Pi−1→P ′
i−1

i−1 . Let such a path be denoted by

20 S. Basu and T. Bultan

t1
m

P1→P ′
1

1−−−−−→ t2
m

P2→P ′
2

2−−−−−→ t3 −→ . . . ti−1

m
Pi−1→P ′

i−1
i−1−−−−−−−−→ ti (3)

where ti does not have any outgoing transition labeled by m
Pi→P ′

i
i . In summary,

one of the differences between the send sequences present in C and IC
1 is due to the

presence of send action m
Pi→P ′

i
i at si and absence of the same at ti. For instance,

going back to the example in Fig. 3, the difference between C and IC
1 is due to

msP1→P2 ,mfP2→P1 ,mcP1→P2 , in which case si is equal to (P1 :s1 : [mf], P2 :s3 : [])
in IC

1 and ti is equal to s3 in C. The cause of the difference between the behaviors
can be explained in one of the two ways:

Independent Branches. The choreography specification includes a branching
behavior involving sends from at least two peers in two different branches. The
sender peers follow different paths in the branches. This is the case in Fig. 1(a).

Independent Sequences. The choreography specification includes a path
where there are two messages sent by two different peers and the sender of the
second message does not depend on the first message. This situation can be illus-

trated using the following choreography specification: t0
mP1→P2−−−−−→ t1

mP3→P4−−−−−→ t2.
The first and second transitions correspond to send actions of P1 and P3, which
can occur in any order in the corresponding system and therefore, this choreog-
raphy, therefore, cannot be realized. We will refer to the path as independent
sequences and the transitions as independent transitions.

The objective of repair via relaxation or restriction is to alter the behavior of
C proceeding from ti such that the above causes of differences can be eliminated.

4.2 Repair by Relaxation

As noted before, relaxing C corresponds to adding new behaviors to C. Specifi-
cally, adding a new behavior from state ti (in path (3) above) implies adding a
transition from ti to some t′i with transition label m

Pi→P ′
i

i . The addition of such
a new transition obviously results in a new choreography specification, say C′.
We will denote relaxation of C to C′ as C ↗ C′. Note that, the following holds:
C ↗ C′ ⇒ L(C) ⊆ L(C′).

While adding a new transition from ti to a state (say t′i) eliminates the
difference due to the send action m

Pi→P ′
i

i , the important next step is to identify
a suitable t′i. There are two possibilities: we can either assign t′i to some existing
state in C or generate a new state. Careful selection of one of the two choices is
important because it impacts the termination of the repair mechanism. Using the
form of the system path shown in (2), let lSt(si, Pi) = Pi : ci; lSt(si+1, Pi) =
Pi : ci+1; lQu(si, Pi) = Qi; lQu(si+1, Pi) = Qi+1. In the above, Qi = Qi+1

because the peer Pi does not consume any messages at this transition.

Case 1. Consider that the receive queue Qi of the peer Pi is non-empty,
implying that there is one pending message to be consumed (recall that the IC

1

is 1-bounded system with each receive queue capacity being 1). In other words,

Automated Choreography Repair 21

some peer (say, R) has sent the message (say m) to Pi and Pi has not encountered
any receive action along the choreography path it has taken resulting in system
path shown in (2).

This case corresponds to the situation described as independent branching
(see above), when peer Pi is moving along a choreography specification path π
and the other peer R is moving along a different path π′ of the choreography
specification, resulting in the path shown in (2). Furthermore, R has sent m to
Pi which resides un-consumed in the receive queue of Pi.

Case 1a. Let there be a transition in the behavior of peer Pi at state Pi : ci+1,
where it can consume the message in its queue: Pi :ci+1

?m−−→ Pi :c′
i. That is, the

choreography specification includes ci+1
mR→Pi−−−−−→ c′

i along the path π. Therefore,
both of the paths under consideration, π and π′, have the send action mR→Pi .
In π, m

Pi→P ′
i

i is followed by mR→Pi . In π′, mR→Pi is not followed by m
Pi→P ′

i
i .

In this case, the relaxation adds ti
m

Pi→P ′
i

i−−−−−→ t′i in the choreography specifica-
tion and sets t′i to c′

i.

Case 1b. On the other hand, if there exists no transition in the behavior of
peer Pi starting from state Pi : ci+1 where it can consume the message in its
queue, then the following repair is done.

Case 1b-i. If Pi : ci+1 belongs to a cycle then in the newly added transition

ti
m

Pi→P ′
i

i−−−−−→ t′i, t′i is set to a newly generated state, which replicates the chore-
ography specification starting from ci+1. Note that, the repair does not assign
t′i to ci+1. This is because such assignment will result in unnecessary over-
relaxation of choreography specification due to the presence in mR→Pi in path
π′ and its possible absence in the cycle which is part of the path π. We will
discuss below this scenario using the example in Fig. 4.

Case 1b-ii. If Pi at Pi :ci+1 cannot consume the pending message and Pi :ci+1

does not belong to any cycle, then t′i is set to a newly generated state. The
addition of the new transition removes the identified difference between the
choreography and the system.

For instance, in Fig. 3(b), the path in IC
1 that is absent in C (Fig. 1(a)) has the

sequence msP1→P2 , mfP2→P1 , mcP1→P2 . Note that, we are considering only the
send actions and the transitions are considered with zero or more occurrences of
ε followed by a send action. The path in C that replicates most of this sequence

is s0
msP1→P2−−−−−−→ s1

mfP2→P1−−−−−−→ s3. Therefore, for repair by relaxation, our objective
is to add a transition with send action mcP1→P2 from the choreography state
s3. From the system, we know that the peer P1 at the state P1 :s2 can consume
the message mf in its receive queue and move to a state in P1 : s4 (see Fig. 3).
Therefore, the transition added from s3 has the destination state s4. The result of
this repair by relaxation is the choreography specification presented in Fig. 1(b).
This illustrates the Case 1a of repair by relaxation.

Figure 4 illustrates the applications of Case 1b-i and 1a. The local states
of the peers participating in the system transitions are presented in bold-font.

22 S. Basu and T. Bultan

s1

s2

m1:P1 -> P2

s3

n1:P2 -> P1

m1:P1 -> P2

(a)

s1

s2

m1:P1 -> P2

s3

n1:P2 -> P1

m1:P1 -> P2

ns(0)

n1:P2 -> P1 m1:P1 -> P2

m1:P1 -> P2

(b)

System: (
P1 :s1 : []
P2 :s1 : []

)
n
P2→P1
1−−−−−−→ (

P1 :s1 : [n1]
P2 :s3 : []

)
m

P2→P1
1−−−−−−−→ (

P1 :s2 : [n1]
P2 :s3 : [m1]

)

Choreography: s1
n
P2→P1
1−−−−−−→ s3

Case 1b-i: s3
m

P1→P2
1−−−−−−−→ ns(0)

m
P1→P2
1−−−−−−−→ ns(0)

System: (
P1 :s1 : []
P2 :s1 : []

)
m

P1→P2
1−−−−−−−→ (

P1 :s2 : []
P2 :s1 : [m1]

)
n
P2→P1
1−−−−−−→ (

P1 :s2 : [n1]
P2 :s3 : [m1]

)

Choreography: s1
m

P1→P2
1−−−−−−−→ s2

Case 1a: s2
n
P2→P1
1−−−−−−→ ns(0)

Fig. 4. Example illustrating application of Case 1b-ii and 1a of relaxation

In the first step, the difference between the system transition sequence and the
choreography sequence is repaired following the Case 1b-i. P1 :s2 does not have
a transition where it consumes the pending message n1, and P1 : s2 belongs to
a cycle. Therefore, a new state ns(0) replicating s2 is generated as part of the
repair strategy instead of adding the transition mP1→P2

1 from s3 to s2.

Case 2. Now consider that the receive queue Qi of the peer Pi is empty,
implying that there is no pending message to be consumed. Unlike the previous
case, in this situation, the difference between IC

1 and C (represented by paths
(2) and (3) in Sect. 4.1) is not necessarily due to independent branches, when
two peers move along two different paths of the choreography specification.

Instead the peers may be moving along the same path of the choreography
specification, and the latter has imposed an “un-realizable” ordering of send
actions involving m

Pi→P ′
i

i . In other words, it is not possible to “stop” Pi from
sending the message mi from its projected behavior when the choreography
specification reaches ti, however ti does not have m

Pi→P ′
i

i . This corresponds to
the case of independent sequences (see above).

Recall that, the choreography specification state is ti from where there is no
matching m

Pi→P ′
i

i event. We check whether there exists a path from Pi : ti (i.e.,
local state of Pi obtained from projection at ti) to Pi : ti in the peer Pi via a
sequence of transitions such that after a sequence of ε-transitions, there is a !mi

transition followed by some other sequence of transitions.
Case 2a. If the check is successful, then we can infer that ti is part of a loop
and it contains independent transitions, which cause un-realizability.

Case 2a-i. Then we identify the first intermediate state Pi : t in this loop, which
has an outgoing transition over some other output action. In this case, a new

transition ti
m

Pi→P ′
i

i−−−−−→ t′i with t′i set to t is added to replicate the behavior
in IC

1 .

Automated Choreography Repair 23

Case 2a-ii. If no such intermediate state exists, then ti
m

Pi→P ′
i

i−−−−−→ t′i with t′i set
to ti (self-loop) is added.

In either case, the permutations of pairs of independent transitions that were
identified as the difference between C and IC

1 are added and nothing else.

Case 2b. On the other hand, if the check is unsuccessful, then we can infer that
ti is not part of a loop.

Case 2b-i. We find out whether P : ci+1 (local state of the sender at si+1) has
a path to P : ti (ti being the choreography state that cannot replicate the
behavior of the system from si). If such path exists in the behavior of Pi, we
infer that Pi moves along a path different from t1, t2, . . . , ti (see path 3) in
choreography but the path has the ability to join at ti. In this case, we add a

new transition labeled with ti
m

Pi→P ′
i

i−−−−−→ ci+1 to remove the difference between
the choreography and corresponding the system.

Case 2b-ii. If the condition in Case 2b-i fails, then we find out the choreography
state reachable from ci+1 (the choreography state corresponding the senders

local state at si+1) via the action m
Pi−1→P ′

i−1
i−1 . If such a state is t, then this

implies that the choreography path extending from ci+1 allows m
Pi−1→P ′

i−1
i−1

after m
Pi→P ′

i
i , while the choreography path along t1, t2, . . . , ti (see path 3)

does not allow m
Pi→P ′

i
i after m

Pi−1→P ′
i−1

i−1 . The repair in this case is similar to

Case 1a and amounts to adding ti
m

Pi→P ′
i

i−−−−−→ t. On the other hand, if no such
choreography state t exists, then a new state is generated and a transition
over m

Pi→P ′
i

i is added from ti to this newly generated state.

Figure 5 illustrates the application of Case 2 of relaxation.

4.3 Repair by Restriction

The objective of restriction, unlike relaxation, is to constrain the behavior of the
system IC

1 . In other words, going back to paths (3) and (2) in Sect. 4.1, restric-

tion implies disallowing the transition si
m

Pi→P ′
i

i−−−−−→ si+1 in IC
1 i.e., introducing

restriction to disallow the transition ci
m

Pi→P ′
i

i−−−−−→ c′
i in C from happening at the

system state si, where lSt(si, Pi) = Pi : ci and lSt(si+1, Pi) = Pi : ci+1. The

restriction of transition ci
m

Pi→P ′
i

i−−−−−→ c′
i is achieved by adding a new intermediate

state between ci and c′
i.

Case 1. Let ti have a transition to t where some peer P sends a message m
to P ′ and P is different from Pi, the sender peer of the message mi. We verify

whether the transition ci
m

Pi→P ′
i

i−−−−−→ ci+1 is reachable from t.

24 S. Basu and T. Bultan

s1

s2

a:P1 -> P2

s3

b:P3 -> P4

c:P1 -> P2

(a)

s1

s2

a:P1 -> P2

b:P3 -> P4

s3

b:P3 -> P4

c:P1 -> P2

c:P1 -> P2

b:P3 -> P4

(b)

System: (

P1 :s1 : []
P2 :s1 : []
P3 :s1 : []
P4 :s1 : []

)
bP3→P4−−−−−−→ (

P1 :s1 : []
P2 :s1 : []
P3 :s3 : []
P4 :s1 : [b]

)

Choreography: s1

Case 2a-ii: s1
bP3→P4−−−−−−→ s1

System: (

P1 :s1 : []
P2 :s1 : []
P3 :s1 : []
P4 :s1 : []

)
aP1→P2−−−−−−→ (

P1 :s2 : []
P2 :s1 : [a]
P3 :s1 : []
P4 :s1 : []

)
cP1→P2−−−−−−→ (

P1 :s1 : []
P2 :s1 : [ac]
P3 :s1 : []
P4 :s1 : []

)

Choreography: s1
aP1→P2−−−−−−→ s2

Case 2a-i: s2
cP1→P2−−−−−−→ s1

System: (

P1 :s1 : []
P2 :s1 : []
P3 :s1 : []
P4 :s1 : []

)
aP1→P2−−−−−−→ (

P1 :s2 : []
P2 :s1 : [a]
P3 :s1 : []
P4 :s1 : []

)
bP3→P4−−−−−−→ (

P1 :s2 : []
P2 :s1 : [a]
P3 :s1 : []
P4 :s1 : [b]

)

bP3→P4−−−−−−→ (

P1 :s2 : []
P2 :s1 : [a]
P3 :s1 : []

P4 :s1 : [bb]

)

Choreography: s1
aP1→P2−−−−−−→ s2

bP3→P4−−−−−−→ s3

Case 2a-ii: s3
bP3→P4−−−−−−→ s3

Fig. 5. Example illustrating application of Case 2a of Relaxation

If the verification is successful, this corresponds to the case of unrealizability
due to independent transitions. The repair, in this case, results from the addition

of an intermediate state between ti and t such that ti
mP →P ′
−−−−−→ ns

nmP ′→Pi−−−−−−→ t,
where nm is a new message and ns is a new state. Addition of such transitions
will disallow the m

Pi→P ′
i

i at the system state si.

Case 2. However, if there is no transition from the state ti or the transition is
labeled with a send action performed by the same peer Pi, then it corresponds
to the case of unrealizability due to independent branches. In this case, we iden-
tify the sender peer Pi−1 for the transition from ti−1 to ti. The restriction is
achieved by introducing an intermediate state between ci and ci+1 as follows:

ci
nmPi−1→Pi−−−−−−−−→ ns

m
Pi→P ′

i
i−−−−−→ ci+1, where nm and ns are newly added message and

newly added state, respectively.
These newly added messages and transitions in the choreography can be

viewed as an extra step which forces the peer Pi to come in sync with some
other peer (P ′ in Case 1a above and P in Case 1b and 2 above) before sending
the message mi. We refer to such extra step as the synchronization step.

We will denote restriction of C to generate C′ as C ↘ C′. It is immediate that

C ↘ C′ ⇒ L(C′ ↓C) = L(C′) ∧ L(IC′
1 ↓C) ⊆ L(IC

1) (4)

The operation ′.′ ↓C extracts the behavior with respect to actions present in
C. The restriction does not alter the behavior of the choreography in terms of
the actions in C but restricts the behavior of the corresponding system in terms

Automated Choreography Repair 25

Algorithm 1. Repair(C, inputRepairMechanism)
1: Compute IC

1

2: if L(C) = L(IC
1) return C � C is realizable

3: Find a difference between C and IC
1 � Sect. 4.1

4: Apply C inputRepairMechanism C′ � Sects. 4.2, 4.3
5: GOTO Line 1 with C assigned to C′ � Iterate

of the actions in C. Figure 1(c) presents the result of applying restriction based
repair of the choreography in Fig. 1(a). There exists a path in the system where
it reaches the state P1 : s1 : [mf], P2 : s3 : [] via the send sequence msP1→P2 ,
mfP2→P1 ; from this state, the system is capable of producing mcP1→P2 (see
Fig. 3). The choreography via the same sequence of sends reaches the state s3.
Therefore, the restriction is achieved by following the Case 2 above resulting in
a repaired choreography in Fig. 1(c).

4.4 Iterative Algorithm

It is necessary to apply the relaxation or the restriction iteratively till a realizable
choreography is obtained and all differences between the choreography and the
corresponding 1-bounded system behavior have been resolved. In Algorithm1
the input parameter “inputRepairMechanism” is either set to ↗ (relaxation) or
↘ (restriction). Figures 4 and 5 illustrate the application of Algorithm1.

Theorem 2 (Correctness). The algorithm Repair is guaranteed to terminate
and produce a repaired (i.e., realizable) choreography.

Proof Sketch. The algorithm iterates as long as there is a difference between the
choreography C and the interaction behavior of the corresponding system IC

1 . To
address the difference, the algorithm introduces new states as part of the repair
process. The number of such introduction of new states depends directly on the
number of independent branches and independent transitions (that cause un-
realizability of the choreography). The number of independencies are bounded
by the number of branches and the maximum length of a path (with one unfold-
ing) in the choreography, which ensures the boundedness in the introduction
of new states. This, in turn, ensures that all possible causes of choreography
un-realizability is removed within finite number of steps. ��

5 Case Studies

We have implemented Algorithm 1 and used it to repair several un-realizable
choreographies that were reported earlier [7,17]. Our implementation obtains
repaired versions of these un-realizable choreographies within a second.

26 S. Basu and T. Bultan

start

decide

request:C -> S

success

succeed:S -> C

sink

failed:S -> C

decide0

cancel:C -> S

end

cancel:C -> S cancel:C -> S cancelled:S -> C failed:S -> C succeed:S -> C

Fig. 6. ReservationSession contract repaired by relaxation

rs

rs1

gettpmstatus:C -> S

rs0

send:C -> Stpmstatus:S -> C

ior

ackstart:S -> C

sendcomplete:S -> C

ior0

gettpmstatus:C -> S tpmstatus:S -> C

rs

rs1

gettpmstatus:C -> S

rs0

send:C -> S

tpmstatus:S -> C ior

ackstart:S -> C

sendcomplete:S -> C

ior0

gettpmstatus:C -> S tpmstatus:S -> C

sendcomplete:S -> C

)b()a(

Fig. 7. (a) TpmContract specification, (b) repaired.

Recall that the Singularity OS reservation contract (see Sect. 2) is un-
realizable. Figure 6 presents a repaired version by adding new message exchanges.
Another un-realizable contract is TpmContract (Fig. 7(a)). In Fig. 7(b), we show
a repaired version that is automatically generated by our technique. The repaired
version is similar to the one identified by authors in [9]; note however that [9]
suggested an addition of a new state and two new transitions. Our repair mech-
anism achieves the same result by introducing one new transition between two
existing states.

We have also analyzed the “Meta Conversation” protocol developed by
IBM [12] and discussed in [7]. Two peers P1 and P2 race to decide the initia-
tor of the interaction. The protocol is illustrated in Fig. 8(a). It is un-realizable
because the peers can both send the start messages (aStartcp and bStartcp)
which is not allowed in the protocol. The restriction based solution (Fig. 8(b))
only allows peer P1 to start the interaction.

Automated Choreography Repair 27

(a)

start

bRequested

bStartcp:P2 -> P1

aRequested

aStartcp:P1 -> P2aAccept:P1 -> P2

done

aRefuse:P1 -> P2

bAccept:P2 -> P1

bRefuse:P2 -> P1

(b)

start

aRequested

aStartcp:P1 -> P2

ns(0)

m(0):P1 -> P2bAccept:P2 -> P1

done

bRefuse:P2 -> P1 bRequested

aAccept:P1 -> P2

aRefuse:P1 -> P2

bStartcp:P2 -> P1

Fig. 8. (a) Meta conversation, (b) repaired.

Note that the repair
only considers the tran-
sitions and their labels,
and not their semantics.
For instance, in Fig. 6,
the added bold blue edges
(relaxation) do not fol-
low the semantics of the
messages being exchanged.
Consider the new path
in the interaction, where
“cancel” from client to
server can be followed
by “succeed” from the
server to client. This is
present in the repair in
order to allow any order-
ing between “succeed” and
“cancel” messages (as “suc-
ceed” followed by “cancel”
is allowed in the original
contract), which may not
make sense in the con-
text of the contract. Therefore, it is sometimes necessary to obtain certain
application-domain specific information from the user such that relaxations can
be guided appropriately. If the user had provided additional information that
“cancel” can never be followed by “succeed”, then relaxation would have been
impossible and the only choice for removing difference between the un-realizable
choreography and the corresponding 1-bounded system will be restriction. We
allow users to provide such domain knowledge in our implementation. We have
also allowed user-interaction to decide on whether relaxation or restriction is
preferred for repair. The user-interaction essentially involves examination of the
difference (as presented by our tool) and deciding on the choice between relax-
ation and restriction. Figure 9 presents an alternative solution for repairing the
contract in Fig. 6 generated by our tool. Observe that in this solution, a combi-
nation of relaxation and restriction has been applied.

6 Related Work

Realizability of choreographies has been studied before. The authors in [7,9]
use state machine based specifications while the authors in [6,10] use session
types; both present sufficient conditions for realizability. In [4], we have proved
the decidability of choreography realizability in terms of send sequences1 by
presenting a necessary and sufficient condition for realizability.
1 Note that, the realizability problem for the MSC-graphs, which considers both send

and receive actions for realizability, is undecidable [1].

28 S. Basu and T. Bultan

start

decide

request:C -> S

sink

failed:S -> C

ns(1)

m(1):S -> C

ns(2)

m(2):S -> C

end

cancel:C -> S

success

cancel:C -> S

decide0

cancelled:S -> C failed:S -> C

ns(0)

succeed:S -> C

m(0):C -> S

cancel:C -> S

Fig. 9. Alternative repair strategy for ReservationSession (Fig. 2(b))

In [15], the realizability of choreography requires the developer to specify a
“dominant” process for each branch and loop construct, which allows the projec-
tion mechanism to synthesize necessary synchronization messages between the
dominant process and others. Similarly, techniques proposed in [3,8,14,19] rely
on introducing new processes, monitors and central controllers to ensure realiz-
ability. These may not be viable options if one is using a distributed comput-
ing paradigm. Moreover these techniques can be conservative in the sense that
unnecessary synchronization messages can be added to even realizable choreogra-
phies. Furthermore, the focus of these works is technically different from that
of our–for instance, the technique in [3] coordinates the activities of the peers
in a distributed fashion such that their coordinated behavior conforms to the
given choreography. The repair technique developed by authors in [13] focuses
on process algebraic description of choreographies and repair by restriction in
the context of independent sequences (referred to as connected choreography
by the authors); additionally, the description does not take into consideration
iterations, which makes the technique inapplicable to choreographies with cycles.

In contrast, our work (which includes both relaxation and restriction mecha-
nisms) does not require introduction of new processes, does not require a central
controller, and does not require use of synchronous communication between any
entities/peers. As our technique is based on finite state machines and their lan-
guage equivalence, it is applicable to choreographies and interactions which are
specified at different levels of abstractions, such as session-types [10] and collabo-
ration diagrams [5], as long as these specifications are translated to state-machine
based representation described in [4] and used in this paper.

Automated Choreography Repair 29

7 Conclusion

We present techniques for automatically repairing un-realizable choreographies
based on two strategies: (1) relaxation, where new behaviors are added to the
choreography as part of the repair and (2) restriction, where un-desired (excluded
by the choreography) behaviors in the system obtained by projecting the chore-
ography are removed as part of the repair. We prove that our repair algorithm
always terminates with a realizable choreography. To the best of our knowledge,
our method is the first to consider automatically repairing choreographies and
to provide formal guarantees of correctness.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC
graphs. In: Proceedings of 28th International Colloquium on Automata, Languages,
and Programming, pp. 797–808 (2001)

2. Armstrong, J.: Getting Erlang to talk to the outside world. In: Proceedings of
ACM SIGPLAN Workshop on Erlang, pp. 64–72 (2002)

3. Autili, M., Di Ruscio, D., Di Salle, A., Inverardi, P., Tivoli, M.: A model-based
synthesis process for choreography realizability enforcement. In: Cortellessa, V.,
Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793, pp. 37–52. Springer,
Heidelberg (2013)

4. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2012)

5. Bultan, T., Fu, X.: Specification of realizable service conversations using collabo-
ration diagrams. Serv. Oriented Comput. Appl. 2(1), 27–39 (2008)

6. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol.
7211, pp. 194–213. Springer, Heidelberg (2012)

7. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification
and verification of reactive electronic services. In: Ibarra, O.H., Dang, Z. (eds.)
CIAA 2003. LNCS, vol. 2759, pp. 188–200. Springer, Heidelberg (2003)

8. Güdemann, M., Salaün, G., Ouederni, M.: Counterexample guided synthesis of
monitors for realizability enforcement. In: Chakraborty, S., Mukund, M. (eds.)
ATVA 2012. LNCS, vol. 7561, pp. 238–253. Springer, Heidelberg (2012)

9. Hallé, S., Bultan, T.: Realizability analysis for message-based interactions using
shared-state projections. In: SIGSOFT Foundations of Software Engineering (2010)

10. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of Symposium Principles of Programming Languages (2008)

11. Hunt, G.C., Larus, J.R.: Singularity: rethinking the software stack. Operating Syst.
Rev. 41(2), 37–49 (2007)

12. Kumaran, S., Nandi, P., Hanson, J., Heath, T., Patnaik, Y.: Conversational
browser. IBM Techreport (2004)

13. Lanese, I., Montesi, F., Zavattaro, G.: Amending choreographies. In: Automated
Specification and Verification of Web Systems (2013)

14. Lohmann, N., Wolf, K.: Realizability is controllability. In: Laneve, C., Su, J. (eds.)
WS-FM 2009. LNCS, vol. 6194, pp. 110–127. Springer, Heidelberg (2010)

15. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of chore-
ography. In: Proceedings of Conference on World Wide Web (2007)

30 S. Basu and T. Bultan

16. Singularity design note 5: Channel contracts. singularity rdk documentation (v1.1)
(2004). http://www.codeplex.com/singularity

17. Stengel, Z., Bultan, T.: Analyzing singularity channel contracts. In: Proceedings
of 18th International Symposium on Software Testing and Analysis (ISSTA), pp.
13–24 (2009)

18. Web Service Choreography Description Language (WS-CDL) (2005). http://www.
w3.org/TR/ws-cdl-10/

19. Yoon, Y., Ye, C., Jacobsen, H.-A.: A distributed framework for reliable and efficient
service choreographies. In: Proceedings of the 20th International Conference on
World wide web, WWW 2011, pp. 785–794. ACM (2011)

http://www.codeplex.com/singularity
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

A Graph-Based Semantics Workbench
for Concurrent Asynchronous Programs

Claudio Corrodi1,2(B), Alexander Heußner3, and Christopher M. Poskitt1,4

1 Department of Computer Science, ETH Zürich, Zürich, Switzerland
2 Software Composition Group, University of Bern, Bern, Switzerland

corrodi@inf.unibe.ch
3 Software Technologies Research Group, University of Bamberg, Bamberg, Germany

4 Singapore University of Technology and Design, Singapore, Singapore

Abstract. A number of novel programming languages and libraries
have been proposed that offer simpler-to-use models of concurrency
than threads. It is challenging, however, to devise execution models that
successfully realise their abstractions without forfeiting performance or
introducing unintended behaviours. This is exemplified by Scoop—a
concurrent object-oriented message-passing language—which has seen
multiple semantics proposed and implemented over its evolution. We
propose a “semantics workbench” with fully and semi-automatic tools
for Scoop, that can be used to analyse and compare programs with
respect to different execution models. We demonstrate its use in check-
ing the consistency of semantics by applying it to a set of representative
programs, and highlighting a deadlock-related discrepancy between the
principal execution models of the language. Our workbench is based on
a modular and parameterisable graph transformation semantics imple-
mented in the Groove tool. We discuss how graph transformations are
leveraged to atomically model intricate language abstractions, and how
the visual yet algebraic nature of the model can be used to ascertain
soundness.

1 Introduction

To harness the power of multi-core and distributed architectures, software engi-
neers must program with concurrency, asynchronicity, and parallelism in mind.
Classical thread-based approaches to concurrent programming, however, are dif-
ficult to master and error prone. To address this, a number of programming APIs,
libraries, and languages have been proposed that provide safer and simpler-to-use
models of concurrency, such as the block-dispatch model of Grand Central Dis-
patch [14], or the message-passing-based model of Scoop [40]. The concurrent
programming abstractions that these languages provide rely on the existence of
effective execution models for realising them; effective in the sense that they do

C. Corrodi and C.M. Poskitt—Research done whilst employed by the Chair of Soft-
ware Engineering, ETH Zürich.

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 31–48, 2016.
DOI: 10.1007/978-3-662-49665-7 3

32 C. Corrodi et al.

so without forfeiting performance or introducing unintended behaviours. Devis-
ing execution models that successfully reconcile these requirements, however,
is challenging: a model that is too restrictive can deny desirable concurrency
and lead to unnecessary bottlenecks; a model that is too permissive can lead to
surprising and unexpected executions.

This challenge is exemplified by Scoop [40], a message-passing para-
digm for concurrent object-oriented programming that aims to preserve the
well-understood modes of reasoning enjoyed by sequential programs, such as
pre- and postcondition reasoning over blocks of code. Although the high-level
language mechanisms for achieving this were described informally as early as
the ‘90s [24,25], it took several years to understand how to effectively imple-
ment them: execution models [6,26,40], prototypes [28,37], and contrasting ver-
sions of a production-level implementation [11] gradually appeared over the last
decade, and can be seen as representing multiple, partially conflicting semantics
for realising Scoop. They are also unlikely to be the last, as new language fea-
tures continue to be proposed, prototyped, and integrated, e.g. [27]. Despite the
possible ramifications to behavioural and safety properties of existing programs,
little work has been done to support formal and automatic comparisons of the
program executions permitted by these different semantics. While general, tool-
supported formalisations exist—in Maude’s conditional rewriting logic [26], for
example, and in a custom-built Csp model checker [6]—these are tied to partic-
ular execution models, do not operate on program source code, and are geared
towards “testing” the semantics rather than general verification tasks. Further-
more, owing to the need to handle waiting queues, locks, asynchronous remote
calls, and several other intricate features of the Scoop execution models, these
formalisations quickly become complex, making it challenging to ascertain their
soundness with language designers who lack a formal methods background.

The Challenge. There is a need for languages like Scoop to have tools that
not only support the prototyping of new semantics (and semantic extensions),
but that also facilitate formal, automatic, and practical analyses for comparing
the executions permitted by these semantics, and highlighting where behavioural
and safety-related discrepancies arise. The underlying formalism for modelling
the semantics should not be ad hoc; rather, it should support re-use, a modular
design, and be easily extensible for language evolutions and changes. Further-
more, such tools should be usable in practice: the modelling formalism must be
accessible to and understandable by software engineers, and the analyses must
support several idiomatic uses of the language mechanisms.

Our Contributions. We propose a “semantics workbench” equipped with fully
and semi-automatic tools for Scoop, that can be used to analyse and compare
programs with respect to different execution models for the purpose of check-
ing their consistency. We demonstrate its use by formalising the two principal
execution models of Scoop, analysing a representative set of programs with
respect to both, and highlighting some behavioural and deadlock-related discrep-
ancies that the workbench uncovers automatically. Our workbench is based on a

A Graph-Based Semantics Workbench 33

modular and parameterisable graph transformation system (Gts) semantics,
built upon our preliminary modelling ideas in [18], and implemented in the
general-purpose Gts analysis tool Groove [16]. We leverage this powerful for-
malism to atomically model complex programmer-level abstractions, and show
how its inherently visual yet algebraic nature can be used to ascertain soundness.
For language designers, this paper presents a transferable approach to checking
the consistency of competing semantics for realising concurrency abstractions.
For the graph transformation community, it presents our experiences of applying
a state-of-the-art Gts tool to a non-trivial and practical problem in program-
ming language design. For the broader verification community, it highlights a
need for semantics-parameterised verification, and shows how Gts-based for-
malisms and tools can be used to derive an effective and modular solution. For
software engineers, it provides a powerful workbench for crystallising their men-
tal models of Scoop, thus helping them to write better quality code and (where
need be) port it across different Scoop implementations.

Plan of the Paper. After introducing the Scoop concurrency paradigm and its
two most established execution models (Sect. 2), we introduce our formal mod-
elling framework based on Gts, and show how to formalise different, parameter-
isable Scoop semantics (Sect. 3). Implementing our ideas in a small toolchain
(Sect. 4) allows us to check the consistency of semantics across a set of represen-
tative Scoop programs (Sect. 5), and highlight both a behavioural and deadlock-
related discrepancy. To conclude, we summarise some related work (Sect. 6), our
contributions, and some future research directions (Sect. 7).

2 SCOOP and its Execution Models

Scoop [40] is a message-passing paradigm for concurrent object-oriented pro-
gramming that aims to preserve the well-understood modes of reasoning enjoyed
by sequential programs; in particular, pre- and postcondition reasoning over
blocks of code. This section introduces the programmer-level language mech-
anisms and reasoning guarantees of Scoop, as well as its two most estab-
lished execution models. These will be described in the context of Scoop’s
production-level implementation for Eiffel [11], but the ideas generalise to any
object-oriented language (as explored, e.g. for Java [37]).

Language Mechanisms. In Scoop, every object is associated with a handler
(also called a processor), a concurrent thread of execution with the exclusive
right to call methods on the objects it handles. In this context, object references
may point to objects with the same handler (non-separate objects) or to objects
with distinct handlers (separate objects). Method calls on non-separate objects
are executed immediately by the shared handler. To make a call on a separate
object, however, a request must be sent to the handler of that object to process
it: if the method is a command (i.e. it does not return a result) then it is executed
asynchronously, leading to concurrency; if it is a query (i.e. a result is returned

34 C. Corrodi et al.

and must be waited for) then it is executed synchronously. Note that handlers
cannot synchronise via shared memory: only by exchanging requests.

The possibility for objects to have different handlers is captured in the
type system by the keyword separate . To request method calls on objects
of separate type, programmers simply make the calls within separate blocks.
These can be explicit (we will use the syntax separate x,y, . . . do . . . end);
but they also exist implicitly for methods with separate objects as parameters.

Reasoning Guarantees. Scoop provides certain guarantees about the order
in which calls in separate blocks are executed to help programmers avoid con-
currency errors. In particular, method calls on separate objects will be logged
as requests by their handlers in the order that they are given in the program
text; furthermore, there will be no intervening requests logged from other han-
dlers. These guarantees exclude object-level data races by construction, and
allow programmers to apply pre- and postcondition reasoning within separate
blocks independently of the rest of the program. Consider the following example
(adapted from [40]), in which two distinct handlers are respectively executing
blocks that set the “colours” of two separate objects:

separate x,y
do

x.set_colour (Green)
y.set_colour (Green)

end

separate x,y
do

x.set_colour (Indigo)
a_colour = x.get_colour
y.set_colour (a_colour)

end

The guarantees ensure that whilst a handler is inside its separate x,y block,
the other handler cannot log intervening calls on x or y. Consequently, if the
colours are later queried in another separate x,y block, both of them will
be Green or both of them will be Indigo; interleavings permitting any other
combination to be observed are entirely excluded. This additional control over
the order in which requests are processed represents a twist on classical message-
passing models, such as the actor model [1], and programming languages like
Erlang [2] that implement them.

Execution Models. The abstractions of Scoop require an execution model
that can realise them without forfeiting performance or introducing unintended
behaviours. Two contrasting models have been supported by different versions of
the implementation: initially, a model we call Request Queues (RQ) [26], and a
model that has now replaced it which we will call Queues of Queues (QoQ) [40].

The RQ execution model associates each handler with a single Fifo queue
for storing incoming requests. To ensure the reasoning guarantees, each queue
is protected by a lock, which another handler must acquire to be able to log a
request on the queue. Realising a separate x,y,. . . block then boils down
to acquiring locks on the request queues attached to the handlers of x,y,. . .
and exclusively holding them for the duration of the block. This coarse-grained
solution successfully prevents intervening requests from being logged, but leads
to performance bottlenecks in several situations (e.g. multiple handlers vying for
the lock of a highly contested request queue).

A Graph-Based Semantics Workbench 35

In contrast, the QoQ execution model associates each handler with a Fifo
queue that itself contains (possibly several) Fifo subqueues for storing incoming
requests. These subqueues represent “private areas” for handlers to log requests
without interference from other handlers. Realising a separate x,y,. . . block
no longer requires vying for locks; instead, the handlers of x,y,. . . simply
generate private subqueues on which requests can be logged without interruption
for the duration of the block. If another handler also wants to log requests, then
a new private subqueue is generated for it and its requests can be logged at the
same time. The QoQ model removes the performance bottlenecks caused by the
locks of RQ, while still ensuring the Scoop reasoning guarantees by completely
processing subqueues in the order that they were generated.

Figure 1 visualises three handlers (h1, h2, h3) logging requests (green blocks)
on another handler (h0) under the two execution models. Note that the RQ and
QoQ implementations (i.e. compilers and runtimes) include additional optimi-
sations, and strictly speaking, can themselves be viewed as competing semantics.

Fig. 1. Logging requests under the RQ (left) and QoQ (right) execution models

Semantic Discrepancies. Discrepancies between the execution models can
arise in practice. In the mental model of programmers, with RQ, separate
blocks had become synonymous with acquiring and holding locks—which are
not implied by the basic reasoning guarantees or the QoQ model. This discrep-
ancy comes to light with the classical dining philosophers program (as provided
in the official Scoop documentation [11]), which will form a running example for
this paper. Under RQ, Listing 1 (“eager” philosophers) solves the problem by
relying on the implicit parallel acquisition of locks on the forks’ handlers; no two
adjacent philosophers can be in their separate blocks (representing “eating”) at
the same time. Under RQ, Listing 2 (“lazy” philosophers) can lead to circular
deadlocks, as philosophers acquire the locks in turn. With QoQ however—where
there is no implicit locking—neither version represents a solution, and neither
can cause a deadlock; yet the basic guarantees about the order of logged requests
remain satisfied. We will return to this example in later sections, and show how
such discrepancies can be detected by our workbench.

3 A Graph-Based Semantic Model for the SCOOP
Family

There are several established and contrasting semantics of Scoop [6,18,26,29,
40], including a comprehensive reference semantics for RQ in Maude’s condi-
tional rewriting logic [26], and a semantics for the core of QoQ in the form of

36 C. Corrodi et al.

separate left_fork , right_fork
do

left_fork.use
right_fork.use

end

Listing 1. Eager philosophers

separate left_fork
do

separate right_fork
do

left_fork.use
right_fork.use

end
end

Listing 2. Lazy philosophers

simple structural operational rules [40]. These formalisations, however, cannot
easily be used for semantic comparisons, due to their varying levels of detail,
coverage, extensibility, and tool support. Hence we present in this section “yet
another” semantic model, called Scoop-Gts, based on our preliminary mod-
elling ideas for RQ in [18], using the formalism of graph transformation systems
(Gts).

Our reasons to introduce Scoop-Gts are manifold: (a) we need a common
modelling ground that can be parameterised by models of RQ and QoQ; (b)
known models based on algebra, process calculi, automata, or Petri nets do not
straightforwardly cover Scoop’s asynchronous concurrent nature, or would hide
these features in intricate encodings; (c) existing approaches are often proposed
from a theoretician’s point of view and are not easily readable by software engi-
neers, whereas graphs and diagrammatic notations (e.g. Uml) might already be
used in their everyday work. Choosing graph transformations as our base for-
malism is well-justified, as they satisfy the above requirements, and reconcile the
goal to have a theoretically rigorous formalisation with the goal to be accessible
to software engineers, e.g. for expert interviews with the language implementers
(see [31] for a detailed discussion of the pros and cons of Gts in this setting). The
“non-linear” context of graph rewriting rules proves to be a powerful mechanism
for defining semantics and their interfaces for parameterisation.

We formalised Scoop-Gts using the state-of-the-art Gts tool Groove [17].
Due to limited space, we provide all the files necessary to browse our Gts model
as supplementary material [36], including input graphs generated from the exam-
ple programs of Sect. 5 that can be simulated, analysed, and verified.

SCOOP-Graphs. Each global configuration of a Scoop program, i.e. snap-
shot of the global state, is represented by a directed, typed attributed graph
consisting of (i) handler nodes representing Scoop’s handlers, i.e. basic execu-
tion units; (ii) a representation of each handler’s local memory (i.e. “heap” of
non-separate objects) and its known neighbourhood, consisting of references to
separate objects that can be addressed by queries and commands; (iii) a repre-
sentation of each handler’s stack, via stack frames that model recursive calls to
non-separate objects; (iv) requests for modelling separate calls, which are stored
in (v) subgraphs representing each handler’s input work queue; (vi) a global con-
trol flow graph (Cfg) presenting the program’s execution blocks (consisting of
states and actions/transitions in-between); (vii) relations to model inter-handler
and handler-memory relations (e.g. locking, waiting, etc.) and to assign each

A Graph-Based Semantics Workbench 37

Fig. 2. Reachable deadlock under RQ for the lazy philosophers program (Listing 2)
simplified from Groove output with additional highlighting and information in colour

handler to its current state in the Cfg; and (viii) additional bookkeeping nodes,
e.g. containing information on detected deadlocks, and nodes to model the inter-
faces/contexts for semantic parameterisation. An example Scoop-Graph can be
seen in Fig. 2, depicting a configuration with two concurrently running and two
idle handlers.

GTS-Based Operational Semantics. The operational semantics of Scoop-
Gts is given by graph-rewriting rules that are regimented by control programs.
An example rule, concisely written using nesting as supported by Groove, can
be seen in Fig. 3. Note that nested rules (including ∀- and ∃-quantification) allow
us to express complex, atomic rule matchings in a relatively straightforward
and brief way (compared to rules in classical operational semantics, e.g. in [40]
for multiple handler reservations). A simplified, example control program can
be seen in Listing 3. Control programs allow us to make an execution model’s
scheduler explicit (and thus open to parameterisation) and help us to implement
“garbage collection” for the model (e.g. removing bookkeeping edges no longer
needed). Furthermore, they provide a fine-grained way to control the atomicity
of Scoop operations, by wrapping sequences of rule applications into so-called
recipes.

Semantic Modularity of SCOOP-GTS. We support semantic parameterisa-
tion for Scoop-Gts by providing fixed module interfaces in the graph via spe-
cial “plug-in nodes/edges” (e.g. WorkQueue , Memory, StackFrame in Fig. 2),
and changing only the set of Gts rules that operate on the subgraphs that they
guard. We have modelled both RQ and QoQ with distinct sets of rules that
operate on the subgraphs guarded by WorkQueue : we call the model parame-
terised by RQ and QoQ respectively Scoop-Gts(RQ) and Scoop-Gts(QoQ).

38 C. Corrodi et al.

initialize_model ; // call gts rule for initialisation

while (progress & no_error) {
for each handler p: // choose handlers under some scheduling strategy

alap handler_local_execution_step(p)+; // each handler executes local actions as long as possible

try synchronisation_step; // then try (one) possible global synchronisation step

}
recipe handler_local_execution_step (p){

try separate_object_creation (p)+; // try local actions that are possibly applicable

else try assignment_to_variable (p)+;
else try ... ; // sequentially try all other possible actions

try clean_up_model +; // do some"garbage collection" to keep the model small

}
recipe synchronisation_step (){

reserve_handlers | dequeue_task | ...; // non - deterministically try to synchronise

}
... // remaining recipes (core functionality)

// ---------- plug in ---

recipe separate_object_creation (p){ // provide different implementations for RQ and QoQ

... // and parameterise the control program

}
... // remaining recipes that are plugged in

Listing 3. Simplified control program (in Groove syntax)

As well as parameterising the queue semantics, it is possible to model different
recursion schemes, memory models, and global interprocess synchronisations.

This semantic modularity also permits us to directly apply abstractions to
Scoop-Gts, e.g. changing the queue’s semantics to a bag’s counting abstraction,
or flattening recursion. This could prove useful for providing advanced verifica-
tion approaches in the workbench.

Fig. 3. Simplified QoQ rule for entering a separate x,y,. . . block, which uses ∀-
quantification to atomically match arbitrarily many handlers. The rule assumes that
the handlers’ queues already contain some other private subqueues open

Soundness/Faithfulness. The relation of Scoop-Gts to the most prominent
execution models and runtimes is depicted in Fig. 4. Due to the varying levels
of detail in the formalisations of the RQ and QoQ execution models (and lack
of formalisations of their implementations/runtimes), there is no universal way
to prove Scoop-Gts’s faithfulness to them. We also remark that Scoop-Gts
currently does not support some programming mechanisms of the Eiffel language
(e.g. exceptions, agents), but could be straightforwardly extended to cover them.

We were able to conduct expert interviews with the researchers proposing the
execution models and the programmers implementing the Scoop compiler and
runtimes, which helped to improve our confidence that Scoop-Gts faithfully

A Graph-Based Semantics Workbench 39

Fig. 4. Relation between Scoop-Gts, the execution models, and the runtimes

covers their behaviour. Here, Scoop-Gts’s advantage of a visually accessible
notation was extremely beneficial, as we were able to directly use simulations
in Groove during the interviews, which were understood and accepted by the
interviewees. In addition, we compared Groove simulations of the executions
of Scoop programs (see the benchmarks of Sect. 5) against their actual exe-
cution behaviour in the official Scoop IDE and compiler (both the current
release that implements QoQ, and an older one that implemented RQ). Again,
this augmented our confidence. Furthermore, we were able to compare Scoop-
Gts(QoQ) with the structural operational semantics for QoQ provided in [40].
Unfortunately, the provided semantic rules focus only on a much simplified core,
preventing a rigorous bisimulation proof exploiting the algebraic characterisa-
tions of Gts. We can, however, straightforwardly implement and simulate them
in our model.

To conclude, Scoop-Gts fits into the suite of existing Scoop formalisations,
and is able to cover (avoiding the semantically overloaded word “simulate”) both
of the principal execution models.

Expressiveness. As previously discussed, Scoop-Gts is expressive enough to
cover the existing RQ and QoQ semantic models of Scoop due to its modu-
larity and the possibility to plug-in different queueing semantics. We currently
plan to include other semantic formalisations of Scoop-like languages, e.g. the
concurrent Eiffel proposed by [5] (similar to Scoop but differences regarding
separate object calls), other actor-based object-oriented languages, and concur-
rency concepts like “co-boxes” [34]. Scoop-Gts is obviously Turing-complete
(one can simulate a 2-counter Minsky machine by non-recursive models with
one object per handler, similar to the construction in [15]). A proper formal
investigation into its computational power (also that of subclasses of the model)
is ongoing.

4 Toolchain for the Workbench

Our semantics workbench consists of a toolchain that bridges the gap between
Scoop program code and the analysis of Scoop-Gts models in Groove. In
particular, it translates source code into Scoop-Graphs, executes the appropri-
ate analyses in Groove, and then collects and returns the results to the user.

Our toolchain is summarised in Fig. 5. Its principal component is a plug-in
for the Eve IDE—a research version of the Scoop/Eiffel IDE (including the
production compiler and runtime) which supports the integration of verification

40 C. Corrodi et al.

Fig. 5. Overview of our toolchain: a plugin integrated with the (research version of the)
official Scoop IDE, which interfaces with a wrapper that utilises and controls Groove
in the background. The wrapper can also be used as part of a standalone tool

tools [38]. For a given Scoop program, the plug-in uses the existing services
of Eve to check that the code compiles, and then extracts a representation
of it in which inheritance has been “flattened”. From this flattened program,
we generate a Scoop-Graph (encoded in the Graph eXchange Language) which
corresponds very closely to the abstract syntax tree of the original program. See,
for example, Fig. 6, which is generated from the code in Listing 2. Observe that
between the InitialState and FinalState , the control-flow graph directly
encodes the four actions of the original program: two declarations of separate

blocks, and two commands within them. We provide a wrapper (written in Java)
around the external Groove tool, which takes a generated Scoop-Graph as
input, and launches a full state-space exploration in Groove with respect to
Scoop-Gts(RQ) or Scoop-Gts(QoQ). The results—including statistics and
detected error states—are then extracted from Groove and returned to the
programmer for inspection. A standalone version of this wrapper without the
Eve integration is also available and can be downloaded from [36].

Checking the Consistency of Semantics. The workbench can be used to
check the consistency of program executions under RQ and QoQ with respect
to various properties. These properties are encoded in Scoop-Gts as error rules
that match on configurations if and only if they violate the properties. If they
match, they generate a special Error node that encodes some contextual infor-
mation for the toolchain to extract, and prevents the execution branch from
being explored any further. Two types of error rules are supported: general,
safety-related error rules for detecting problems like deadlock (whether caused
by waiting for request queue locks in RQ, or waiting on cycles of queries in
QoQ); but also user-specified error rules for program-specific properties (as we
will use in Sect. 5). If any of these error rules are applied in a state-space explo-
ration, this information is extracted and reported by the workbench toolchain;
discrepancies between semantics exist when such rules match under only one.
Figure 2 shows an actual deadlock between two handlers attempting to enter
the nested separate block of Listing 2 under RQ. This configuration is matched
by an error rule for deadlock (not shown), which catches the circular waiting
dependencies exhibited by the edges.

A Graph-Based Semantics Workbench 41

Fig. 6. Generated control-flow graph for Listing 2

5 Evaluation

To evaluate the use of our workbench for checking the consistency of semantics,
we devised a representative set of benchmark programs, based on documented
Scoop examples [11] and classical synchronisation problems. We then deployed
the toolchain to analyse their executions under RQ and QoQ with respect to
behavioural and safety-related properties, and highlight the discrepancies uncov-
ered by the workbench for our running example. Everything necessary to repro-
duce our evaluation is available at [36].

Benchmark Selection. Our aim was to devise a set of representative programs
covering different, idiomatic usages of Scoop’s concurrency mechanisms. To
achieve this, we based our programs on official, documented examples [11], as
well as some classical synchronisation problems, in order to deploy the language
mechanisms in a greater variety of usage contexts. Note that it is not (yet)
our goal to analyse large software projects, but rather to compare executions of
representative programs with manageable state spaces under different semantics.

We selected the following programs: dining philosophers—as presented in
Sect. 2—with its two implementations for picking up forks (eagerly or lazily)
which exploited the implicit locking of RQ; a third variant of dining philoso-
phers without any commands in the separate blocks; single-element producer
consumer, which uses a mixture of commands, queries, and condition synchroni-
sation; and finally, barbershop and dining savages (based on [10]), both of which
use a similar mix of features. These programs cover different usages of Scoop’s
language mechanisms and are well-understood examples in concurrent program-
ming. Note that while our compiler supports inheritance by flattening the used
classes, these examples do not use inheritance; in particular, no methods from
the implicitly inherited class ANY are used. By not translating these methods
into the start graphs, we obtain considerably smaller graphs (which impacts the
exploration speed, but not the sizes of the generated transition systems).

Benchmark Results. Table 1 contains metrics for the inspected examples,
obtained using our Groove wrapper utility. The presented values correspond

42 C. Corrodi et al.

Table 1. Results for the dining philosophers (DP, with the number of philosophers),
producer-consumer (PC, with the number of elements), barbershop (with the number
of customers), and dining savages (with the number of savages) programs; time and
memory metrics are means over five runs (standard deviation in brackets)

to full state-space exploration. Metrics for elapsed time (wall clock time) and
memory usage (computed using Java’s MemoryPoolMXBean) are the means of five
runs, while the other values are the same for each run. The experiments were
carried out on an off-the-shelf notebook with an Intel Core i7-4810MQ CPU and
16 ,GB of main memory. We used Oracle Java 1.8.0 25 with the -Xmx 14g option
together with Groove 5.5.5.

Across all instances, the start and final graph sizes are comparable. This can
be explained by the fact that our implementation contains a number of simple
“garbage collection” rules that remove edges and nodes that are no longer needed
(e.g. the results of intermediate computations). Final graphs simply contain the
control-flow graph and heap structure after the executions. Note that we do
not perform real garbage collection. For example, unreachable objects are not
removed; the graph size increases linearly with the number of created objects.

The number of configurations denotes the number of recipe applications. This
value is of interest because it allows one to directly compare explorations under
different semantics (i.e. how much more concurrency is permitted). Recall that
scheduler-specific rules are wrapped inside recipes. For example, enqueueing a
work item may trigger more bookkeeping rules in QoQ than in RQ. Since the
corresponding logic (see Listing 3) is implemented in a recipe, we end up with
just one more configuration in both cases, independently of how many individ-
ual rule applications are triggered within the recipe. Differences in the number
of configurations arise from different branching at synchronisation points. For
example, we can see that in most instances, QoQ generates considerably more

A Graph-Based Semantics Workbench 43

configurations than the RQ implementation, which suggests that Scoop pro-
grams are “more concurrent” under QoQ.

The time and memory columns show the raw power requirements of our
toolchain. Unfortunately, the state-space explosion problem is inevitable when
exploring concurrent programs. The number of configurations is, unsurpris-
ingly, particularly sensitive to programs with many handlers and only asynchro-
nous commands (e.g. dining philosophers). Programs that also use synchronous
queries (e.g. producer-consumer) scale better, since queries force synchronisa-
tion once they reach the front of the queue. We note again that our aim was
to facilitate automatic analyses of representative Scoop programs that covered
the different usages of the language mechanisms, rather than optimised verifica-
tion techniques for production-level software. The results suggest that for this
objective, the toolchain scales well enough to be practical.

Error Rules/Discrepancies Detected. In our evaluation of the various dining
philosophers implementations, we were able to detect that the lazy implemen-
tation (Listing 2) can result in deadlock under the RQ model, but not under
QoQ. This was achieved by using error rules that match circular waiting depen-
dencies. In case a deadlock occurs that is not matched by these rules, we can
still detect that the execution is stuck and report a generic error, after which we
manually inspect the resulting configuration. While such error rules are useful for
analysing Scoop-Graphs in general, it is also useful to define rules that match
when certain program-specific properties hold. For example, if we take a look
at the eager implementation of the dining philosophers (Listing 1) and its exe-
cutions under RQ and QoQ, we find that the program cannot deadlock under
either. This does not prove however that the implementation actually solves the
dining philosophers problem under both semantics. To check this, we defined an
error rule that matches if and only if two adjacent philosophers are in their sepa-
rate blocks at the same time, which is impossible if forks are treated as locks (as
they implicitly are under RQ). Consequently, this rule matches only under the
QoQ semantics, highlighting that under the new semantics, the program is no
longer a solution to the dining philosophers problem. (We remark that it can be
“ported” to QoQ by replacing the commands on forks with queries, which force
the waiting.) We implemented program-specific correctness rules for the other
benchmark programs analogously, but did not detect any further discrepancies.

6 Related Work

We briefly describe some related work closest to the overarching themes of our
paper: frameworks for semantic analyses, Gts models for concurrent asynchro-
nous programs, and verification techniques for Scoop.

Frameworks for Semantic Analysis. The closest approach in spirit to ours is
the work on K [21,33]. It consists of the K concurrent rewrite abstract machine
and the K technique. One can think of K as domain specific language for
implementing programming languages with a special focus on semantics, which

44 C. Corrodi et al.

was recently successfully applied to give elaborate semantics to Java [4] and
JavaScript [30]. Both K and our workbench have the same user group (program-
ming language designers and researchers) and focus on formalising semantics and
analysing programs based on this definition. We both have “modularity” as a
principal goal in our agendas, but in a contrasting sense: our modularity targets
a semantic plug-in mechanism for parameterising different model components,
whereas K focuses on modularity with respect to language feature reuse. In con-
trast to our approach, K targets the whole language toolchain—including the
possibility to define a language and automatically generate parsers and a runtime
simulation for testing the formalisation. Based on Maude’s formal power of con-
ditional rewriting logic, K also offers axiomatic models for formal reasoning on
programs and the possibility to also define complex static semantic features, e.g.
advanced typing and meta-programming. Despite having similar formal underly-
ing theoretical power (K’s rewriting is similar to “jungle rewriting” graph gram-
mars [35]), Scoop-Gts models make the graph-like interdependencies between
concurrently running threads or handlers a first-class element of the model. This
is an advantage for analyses of concurrent asynchronous programs, as many con-
currency properties can be straightforwardly reduced to graph properties (e.g.
deadlocks as wait-cycles). Our explicit Gts model also allows us to compare
program executions under different semantics, which is not a targeted feature of
K. We also conjecture that our diagrammatic notations are easier for software
engineers to grasp than purely algebraic and axiomatic formalisations.

GTS Models for Concurrent Asynchronous Programs. Formalising and
analysing concurrent object-oriented programs with Gts-based models is an
emerging trend in software specification and analysis, especially for approaches
rooted in practice. See [31] for a good overview discussion—based on a lot of
personal experience—on the general appropriateness of Gts for this task. In
recent decades, conditional rewriting logic has become a reference formalism for
concurrency models in general; we refer to [22] and its recent update [23] for
details. Despite having a comparable expressive power, our approach’s original
decision for Gts and for Groove as our state-space exploration tool led us
to an easily accessible, generic, and parameterisable semantic model and tools
that work in acceptable time on our representative Scoop examples. Closest to
our Scoop-Gts model is the Qdas model presented in [15], which represents
an asynchronous, concurrent waiting queue based model with global memory as
Gts, for verifying programs written in Grand Central Dispatch [14]. Despite the
formal work, there is currently no direct compiler to Gts yet. The Creol model
of [20] focuses on asynchronous concurrent models but without more advanced
remote calls via queues as needed for Scoop. Analysis of the model can be
done via an implementation in Maude [19]. Existing Gts-based models for Java
only translate the code to a typed graph similar to the control-flow sub-graph
of Scoop-Gts [8,32]. A different approach is taken by [12], which abstracts a
Gts-based model for concurrent OO systems [13] to a finite state model that can
be verified using the SPIN model checker. Groove itself was already used for
verifying concurrent distributed algorithms on an abstract Gts level [16], but not

A Graph-Based Semantics Workbench 45

on an execution model level as in our approach. However, despite the intention
to apply generic frameworks for the specification, analysis, and verification of
object-oriented concurrent programs, e.g. in [9,41], there are no publicly available
tools implementing this long-term goal that are powerful enough for Scoop.

SCOOP Analysis/Verification. Various analyses for Scoop programs have
been proposed, including: using a Scoop virtual machine for checking tempo-
ral properties [29]; checking Coffman’s deadlock conditions using an abstract
semantics [7]; and statically checking code annotated with locking orders for the
absence of deadlock [39]. In contrast to our work, these approaches are tied to
particular (and now obsolete) execution models, and do not operate on (unan-
notated) source code.

The complexity of other semantic models of Scoop led to scalability issues
when attempting to leverage existing analysis and verification tools. In [6],
Scoop programs were hand-translated to models in the process algebra Csp
to perform, e.g. deadlock analysis; but the leading Csp tools at the time could
not cope with these models and a new tool was purpose-built (but no longer
available/maintained today). In a recent deadlock detection benchmark on the
RQ execution model formalised in Maude [26], the tool was not able to give
verification results in reasonable time (i.e. less than one day) even for simple
programs like dining philosophers1; our benchmarks compare quite favourably
to this. Note that since our work focuses more on semantic modelling and com-
parisons than it does on the underlying model checking algorithms, we did not
yet evaluate the generic bounded model checking algorithms for temporal logic
properties implemented in Groove and accessible for Scoop-Gts models.

7 Conclusion and Future Work

We proposed and constructed a semantic workbench for a concurrent asynchro-
nous programming language via the following, general work flow: (i) derive a
Gts-based semantic model from existing semi-formal documentation of execu-
tion models; (ii) continuously compare the model by simulation runs against the
actual implementations; (iii) exploit semantic paramaterisation to derive a ver-
satile model; (iv) if possible, conduct expert interviews to ascertain the model’s
faithfulness; (v) apply existing generic model checking techniques for Gts to
implement analyses against the different execution models; (vi) implement dif-
ferent analyses on top of this model. This workflow resulted in the formalisation
Scoop-Gts, which covered the two principal execution models of Scoop, and
allowed us to formally, automatically, and practically compare the executions of
programs with respect to both. With the conducted expert interviews, and the
results of applying our model to check the consistency of the semantics across
a small but representative collection of Scoop programs in reasonable time, we
were reassured of our choice of Gts as an underlying formalism: theoretically

1 From personal communication with the researchers behind this benchmark.

46 C. Corrodi et al.

sound, yet diagrammatically accessible for software engineers, and able to scale
to the sizes of programs we need for semantic comparisons.

We are currently working on extending Scoop-Gts to cover some more
advanced and esoteric features of Scoop (including distributed exception han-
dling) and to enlarge the benchmark set, with the eventual aim of producing a
conformance test suite for Scoop-like languages. As noted in [42], the shape of
the rules and the control programs have a big influence on the running times
of Groove. We are currently working on refactoring Scoop-Gts for better
performance (relative to benchmarking on the conformance test suite).

A more general line of research focuses on the shape of the Scoop-Graphs
contained in the reachable state space of Scoop-Gts. Insights here would help
us to devise better abstraction techniques (along the lines of [3]) with which
we could implement better verification algorithms, and visualise the influence
of different semantic parameters on Scoop-Graphs. Generalising Scoop-Gts
to cover other actor-based concurrency languages would also extend this result
towards differences between the semantics of programming language families
expressed as Scoop-Graph properties.

Acknowledgements. We thank our interviewees from the Scoop development and
research team for the many helpful and insightful discussions. We are also deeply
grateful for the work of the Groove developers that we leverage in this paper, and
especially for their Groove-y feedback and support. The underlying research was
partially funded by ERC Grant CME #291389.

References

1. Agha, G.: ACTORS: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Armstrong, J., Virding, R., Williams, M.: Concurrent Programming in ERLANG,
2nd edn. Prentice Hall, Englewood Cliffs (1996)

3. Backes, P., Reineke, J.: Analysis of infinite-state graph transformation systems by
cluster abstraction. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015.
LNCS, vol. 8931, pp. 135–152. Springer, Heidelberg (2015)

4. Bogdanas, D., Rosu, G.: K-Java: A complete semantics of Java. In: Proceedings of
POPL 2015, pp. 445–456. ACM (2015)

5. Brooke, P.J., Paige, R.F.: Cameo: an alternative model of concurrency for Eiffel.
Formal Aspects Comput. 21(4), 363–391 (2009)

6. Brooke, P.J., Paige, R.F., Jacob, J.L.: A CSP model of Eiffel’s SCOOP. Formal
Aspects Comput. 19(4), 487–512 (2007)

7. Caltais, G., Meyer, B.: Coffman deadlocks in SCOOP. In: Proceedings of NWPT
2014 (2014). http://arxiv.org/abs/1409.7514

8. Corradini, A., Dotti, F.L., Foss, L., Ribeiro, L.: Translating Java code to graph
transformation systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 383–398. Springer, Heidelberg (2004)

9. Dotti, F.L., Duarte, L.M., Foss, L., Ribeiro, L., Russi, D., dos Santos, O.M.: An
environment for the development of concurrent object-based applications. In: Pro-
ceedings of GraBaTs 2004. ENTCS, vol. 127, pp. 3–13. Elsevier (2005)

http://arxiv.org/abs/1409.7514

A Graph-Based Semantics Workbench 47

10. Downey, A.B.: The Little Book of Semaphores. http://greenteapress.com/
semaphores/. Accessed Jan 2016

11. Eiffel Documentation: Concurrent Eiffel with SCOOP. https://docs.eiffel.com/
book/solutions/concurrent-eiffel-scoop. Accessed Oct 2015

12. Ferreira, A.P.L., Foss, L., Ribeiro, L.: Formal verification of object-oriented graph
grammars specifications. In: Proceedings of GT-VC 2006. ENTCS, vol. 175, pp.
101–114. Elsevier (2007)

13. Ferreira, A.P.L., Ribeiro, L.: A graph-based semantics for object-oriented program-
ming constructs. In: Proceedings of CTCS 2004. ENTCS, vol. 122, pp. 89–104.
Elsevier (2005)

14. Grand Central Dispatch (GCD) Reference. https://developer.apple.com/library/
mac/documentation/Performance/Reference/GCD libdispatch Ref/index.html.
Accessed Oct 2015

15. Geeraerts, G., Heußner, A., Raskin, J.: On the verification of concurrent, asynchro-
nous programs with waiting queues. ACM Trans. Embed. Comput. Syst. 14(3), 58
(2015)

16. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. Int. J. Softw. Tools Technol. Transf. 14(1), 15–40
(2012)

17. Groove (project web page). http://groove.cs.utwente.nl/. Accessed October 2015
18. Heußner, A., Poskitt, C.M., Corrodi, C., Morandi, B.: Towards practical graph-

based verification for an object-oriented concurrency model. In: Proceedings of
GaM 2015. EPTCS, vol. 181, pp. 32–47 (2015)

19. Johnsen, E.B., Owe, O., Axelsen, E.W.: A run-time environment for concurrent
objects with asynchronous method calls. In: Proceedings of WRLA 2004. ENTCS,
vol. 117, pp. 375–392. Elsevier(2005)

20. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: a type-safe object-oriented model for
distributed concurrent systems. Theor. Comput. Sci. 365(1–2), 23–66 (2006)

21. Lucanu, D., Şerbănuţă, T.F., Roşu, G.: K framework distilled. In: Durán, F. (ed.)
WRLA 2012. LNCS, vol. 7571, pp. 31–53. Springer, Heidelberg (2012)

22. Meseguer, J.: Conditioned rewriting logic as a united model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

23. Meseguer, J.: Twenty years of rewriting logic. J. Logic Algebraic Program. 81(7–8),
721–781 (2012)

24. Meyer, B.: Systematic concurrent object-oriented programming. Commun. ACM
(CACM) 36(9), 56–80 (1993)

25. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall, Upper
Saddle River (1997)

26. Morandi, B., Schill, M., Nanz, S., Meyer, B.: Prototyping a concurrency model. In:
Proceedings of ACSD 2013, pp. 170–179. IEEE (2013)

27. Morandi, B., Nanz, S., Meyer, B.: Safe and efficient data sharing for message-
passing concurrency. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014.
LNCS, vol. 8459, pp. 99–114. Springer, Heidelberg (2014)

28. Nienaltowski, P.: Practical framework for contract-based concurrent object-
oriented programming. Doctoral dissertation, ETH Zürich (2007)

29. Ostroff, J.S., Torshizi, F.A., Huang, H.F., Schoeller, B.: Beyond contracts for con-
currency. Formal Aspects Comput. 21(4), 319–346 (2009)

30. Park, D., Ştefănescu, A., Roşu, G.: KJS: a complete formal semantics of JavaScript.
In: Proceedings of PLDI 2015, pp. 346–356. ACM (2015)

http://greenteapress.com/semaphores/
http://greenteapress.com/semaphores/
https://docs.eiffel.com/book/solutions/concurrent-eiffel-scoop
https://docs.eiffel.com/book/solutions/concurrent-eiffel-scoop
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
http://groove.cs.utwente.nl/

48 C. Corrodi et al.

31. Rensink, A.: The edge of graph transformation — graphs for behavioural specifica-
tion. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.)
Nagl Festschrift. LNCS, vol. 5765, pp. 6–32. Springer, Heidelberg (2010)

32. Rensink, A., Zambon, E.: A type graph model for Java programs. In: Lee, D.,
Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522, pp. 237–
242. Springer, Heidelberg (2009)

33. Rosu, G., Serbanuta, T.: An overview of the K semantic framework. J. Logic Alge-
braic Program. 79(6), 397–434 (2010)

34. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010)

35. Şerbănuţă, T.F., Roşu, G.: A truly concurrent semantics for the K framework based
on graph transformations. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 294–310. Springer, Heidelberg (2012)

36. Supplementary material. http://www.swt-bamberg.de/fase2016 supp/
37. Torshizi, F.A., Ostroff, J.S., Paige, R.F., Chechik, M.: The SCOOP concurrency

model in Java-like languages. In: Proceedings of CpPA 2009. Concurrent Systems
Engineering Series, vol. 67, pp. 7–27. IOS Press (2009)

38. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Usable verification of object-
oriented programs by combining static and dynamic techniques. In: Barthe, G.,
Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 382–398.
Springer, Heidelberg (2011)

39. West, S., Nanz, S., Meyer, B.: A modular scheme for deadlock prevention in an
object-oriented programming model. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010.
LNCS, vol. 6447, pp. 597–612. Springer, Heidelberg (2010)

40. West, S., Nanz, S., Meyer, B.: Efficient and reasonable object-oriented concurrency.
In: Proceedings of ESEC/FSE 2015, pp. 734–744. ACM (2015)

41. Zambon, E., Rensink, A.: Using graph transformations and graph abstractions for
software verification. In: Proceedings of ICGT-DS 2010. ECEASST, vol. 38 (2011)

42. Zambon, E., Rensink, A.: Solving the N-Queens problem with GROOVE - towards
a compendium of best practices. In: Proceedings of GT-VMT 2014. ECEASST, vol.
67 (2014)

http://www.swt-bamberg.de/fase2016_supp/

ABS-YARN: A Formal Framework for Modeling
Hadoop YARN Clusters

Jia-Chun Lin(B), Ingrid Chieh Yu, Einar Broch Johnsen,
and Ming-Chang Lee

Department of Informatics, University of Oslo, Oslo, Norway
{kellylin,ingridcy,einarj,mclee}@ifi.uio.no

Abstract. In cloud computing, software which does not flexibly adapt
to deployment decisions either wastes operational resources or requires
reengineering, both of which may significantly increase costs. However,
this could be avoided by analyzing deployment decisions already during
the design phase of the software development. Real-Time ABS is a for-
mal language for executable modeling of deployed virtualized software.
Using Real-Time ABS, this paper develops a generic framework called
ABS-YARN for YARN, which is the next generation of the Hadoop cloud
computing platform with a state-of-the-art resource negotiator. We show
how ABS-YARN can be used for prototyping YARN and for modeling
job execution, allowing users to rapidly make deployment decisions at
the modeling level and reduce unnecessary costs. To validate the mod-
eling framework, we show strong correlations between our model-based
analyses and a real YARN cluster in different scenarios with benchmarks.

1 Introduction

Cloud computing changes the traditional business model of IT enterprises by
offering on-demand delivery of IT resources and applications over the Internet
with pay-as-you-go pricing [6]. The cloud infrastructure on which software is
deployed can be configured to the needs of that software. However, software
which does not flexibly adapt to deployment decisions either require wasteful
resource over-provisioning or time-consuming reengineering, which may sub-
stantially increase costs in both cases. Shifting deployment decisions from the
deployment phase to the design phase of a software development process can sig-
nificantly reduce such costs by performing model-based validation of the chosen
decisions during the software design [14]. However, virtualized computing poses
new and interesting challenges for formal methods because we need to express
deployment decisions in formal models of distributed software and analyze the
non-functional consequences of these deployment decisions at the modeling level.

A popular example of cloud infrastructure used in industry is Hadoop [5], an
open-source software framework available in cloud environments from vendors

Supported by the EU projects H2020-644298 HyVar: Scalable Hybrid Variability
for Distributed Evolving Software Systems (http://www.hyvar-project.eu) and FP7-
610582Envisage: EngineeringVirtualized Services (http://www.envisage-project.eu).

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 49–65, 2016.
DOI: 10.1007/978-3-662-49665-7 4

http://www.hyvar-project.eu
http://www.envisage-project.eu

50 J.-C. Lin et al.

such as Amazon, HP, IBM, Microsoft, and Rackspace. YARN [27] is the next
generation of Hadoop with a state-of-the-art resource negotiator. This paper
presents ABS-YARN, a generic framework for modeling YARN infrastructure
and job execution. Using ABS-YARN, modelers can easily prototype a YARN
cluster and evaluate deployment decisions at the modeling level, including the
size of clusters and the resource requirements for containers depending on the
jobs to be executed and their arrival patterns. Using ABS-YARN, designers can
focus on developing better software to exploit YARN in a cost-efficient way.

ABS-YARN is defined using Real-Time ABS, a formal language for the exe-
cutable modeling of deployed virtualized software [10]. The basic approach to
modeling resource management for cloud computing in Real-Time ABS is a sep-
aration of concerns between the resource costs of the execution and the resource
provisioning at (virtual) locations [18]. Real-Time ABS has previously been used
to model and analyze the management of virtual resources in industry [3] and
compared to (informal) simulation tools [17]. Although Real-Time ABS provides
a range of formal analysis techniques (e.g., [2,30]), our focus here is on obtaining
results based on easy-to-use rapid prototyping, using the executable semantics
of Real-Time ABS, defined in Maude [12], as a simulation tool for ABS-YARN.

To evaluate the modeling framework, we comprehensively compare the results
of model-based analyses using ABS-YARN with the performance of a real YARN
cluster by using several Hadoop benchmarks to create a hybrid workload and
designing two scenarios in which the job inter-arrival time of the workload follows
a uniform distribution and an exponential distribution, respectively. The results
demonstrate that ABS-YARN models the real YARN cluster accurately in the
uniform scenario. In the exponential scenario, ABS-YARN performs less well but
it still provides a good approximation of the real YARN cluster.

The main contributions of this paper can be summarized as follows:

1. We introduce ABS-YARN, a generic framework for modeling software target-
ing YARN. Using Real-Time ABS, designers can develop software for YARN
on top of the ABS-YARN framework and evaluate the performance of the
software model before the software is realized and deployed on a real YARN
cluster.

2. ABS-YARN supports dynamic and realistic job modeling and simulation.
Users can define the number of jobs, the number of the tasks per job, task
cost, job inter-arrival patterns, cluster scale, cluster capacity, and the resource
requirement for containers to rapidly evaluate deployment decisions with the
minimum costs.

3. We comprehensively evaluate and validate ABS-YARN under several perfor-
mance metrics. The results demonstrate that ABS-YARN provides a satisfi-
able modeling to reflect the behaviors of real YARN clusters.

Paper Organization. Section 2 provides a background introduction to Real-
Time ABS and YARN. Section 3 presents the details of the ABS-YARN frame-
work. In Sect. 4, we validate ABS-YARN and compare it with a real YARN
cluster. Section 5 surveys related work and Sect. 6 concludes the paper.

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 51

Fig. 1. Syntax for the imperative layer of Real-Time ABS. Terms e and x denote
possibly empty lists over the corresponding syntactic categories, and square brackets
[] denote optional elements.

2 Background

2.1 Modeling Deployed Systems Using Real-Time ABS

Real-Time ABS [10] is a formal, executable, object-oriented language for mod-
eling distributed systems by means of concurrent object groups [16], akin to
concurrent objects [11], Actors [1], and Erlang processes [7]. Concurrent objects
groups execute in parallel and communicate by asynchronous method calls and
futures. In a group, at most one process is active at any time, and a queue of
suspended processes wait to execute on an object of the group. Processes, which
stem from methods calls, are cooperatively scheduled, so active and reactive
behaviors can be easily combined in the concurrent object groups. Real-Time
ABS combines functional and imperative programming styles with a Java-like
syntax and a formal semantics. Internal computations in an object are captured
in a simple functional language based on user-defined algebraic data types and
functions. A modeler may abstract from many details of the low-level impera-
tive implementations of data structures, but maintain an overall object-oriented
design. The semantics of Real-Time ABS is specified in rewriting logic [12], and
a model written in Real-Time ABS can be automatically translated into Maude
code and executed by the Maude tool.

The imperative layer of Real-Time ABS addresses concurrency, communica-
tion, and synchronization based on objects. The syntax is shown in Fig. 1. A pro-
gram P consists of interfaces IF , classes CL with method definitions M , and a
main block {[T x;] s }. Our discussion focuses on interesting imperative language
features, so we omit the explanations of standard syntax and the functional layer
(see [16]).

In Real-Time ABS, communication and synchronization are decoupled. Com-
munication is based on asynchronous method calls f = o!m(e) where f is a
future variable, o an object expression, m a method name, and e the parameter
values for the method invocation. After calling f = o!m(e), the caller may pro-
ceed with its execution without blocking on the method reply. Synchronization is

52 J.-C. Lin et al.

controlled by operations on futures. The statement await f? releases the proces-
sor while waiting for a reply, allowing other processes to execute. When the reply
arrives, the suspended process becomes enabled and the execution may resume.
The return value is retrieved by the expression f.get, which blocks all execu-
tion in the object until the return value is available. The syntactic sugar x =
await o!m(e) encodes the standard pattern f = o!m(e);await f?;x = f.get.

In Real-Time ABS, the timed behavior of concurrent objects is captured by
a maximal progress semantics. The execution time can be specified directly with
duration statements, or be implicit in terms of observations on the executing
model. Method calls have associated deadlines, specified by deadline annota-
tions. The statement duration(e1, e2) will cause time to advance between a
best case e1 and a worst case e2 execution time. Whereas duration-statements
advance time at any location, Real-Time ABS also allows a separation of con-
cerns between the resource cost of executing a task and the resource capacity of
the location where the task executes. Cost annotations [Cost: e] are used to
associate resource consumption with statements in Real-Time ABS models.

Real-Time ABS uses deployment components to capture the execution capac-
ity of a location in the deployment architecture, on which a number of concurrent
objects can be deployed [18]. Each deployment component has its own execu-
tion capacity, which will determine the performance of objects executing on
the deployment component. Deployment components are dynamically created
by x = new DeploymentComponent (descriptor, capacity), where x is typed
by the DC interface, descriptor is a descriptor for the purpose of monitoring,
and capacity specifies the initial CPU capacity of the deployment component.
Objects are deployed on a deployment component using the DC annotation on
the object creation statement.

2.2 YARN: Yet Another Resource Negotiator

YARN [27] is an open-source software framework supported by Apache for dis-
tributed processing and storage of high data volumes. It inherits the advantages
of its well-known predecessor Hadoop [5], including resource allocation, code
distribution, distributed data processing, data replication, and fault tolerance.
YARN further improves Hadoop’s limitations in terms of scalability, serviceabil-
ity, multi-tenancy support, cluster utilization, and reliability.

YARN supports the execution of different types of jobs, including MapRe-
duce, graph, and streaming. Each job is divided into tasks which are executed in
parallel on a cluster of machines. The key components of YARN are as follows:

– ResourceManager (RM): RM allocates resources to various competing jobs
and applications in a cluster, replacing Hadoop’s JobTracker. Unlike Job-
Tracker, the scheduling provided by RM is job level, rather than task level.
Thus, RM does not monitor each task’s progress or restart any failed task.
Currently, the default job scheduling policy of RM is CapacityScheduler [23],
which allows cluster administrators to create hierarchical queues for multiple
tenants to share a large cluster while giving each tenant a capacity guarantee.

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 53

Fig. 2. The architecture of a YARN cluster.

The jobs in each queue are scheduled based on a First-in-First-out policy
(FIFO), i.e., the first job to arrive is first allocated resources.

– ApplicationMaster (AM): This is an instance of a framework-specific library
class for a particular job. It acts as the head of the job to manage the job’s
lifecycle, including requesting resources from RM, scheduling the execution of
all tasks of the job, monitoring task execution, and re-executing failed tasks.

– Containers: Each container is a logical resource collection of a particular node
(e.g., 1 CPU and 2GB of RAM). Clients can specify container resource require-
ments when they submit jobs to RM and run any kind of applications.

Figure 2 shows the architecture of a YARN cluster, which consists of RM and
a set of slave nodes providing both computation resources and storage capacity
to execute applications and store data, respectively. A slave node has an agent
called NodeManager to periodically monitor its local resource usage and report
its status to RM. The execution flow of a job on a YARN cluster is as follows:

1. Whenever receiving a job request from a client, RM follows a pre-defined job
scheduling algorithm to find a container from an available slave and initiate
the AM of the job on the container.

2. Once the AM is initiated, it starts requesting a set of containers from RM
based on the client’s container resource requirement and the number of tasks
of the job. Basically, each task will be run on one container.

3. When RM receives a container request from the AM, it inserts the request
into its queue and follows its job scheduling algorithm to allocate a desired
container from an available slave node to the AM.

4. Upon receiving the container, the AM executes one task of the job on the
container and monitors this task execution. If a task fails due to some errors
such as an underlying container/slave node failure, the AM will re-request a
container from RM to restart the task.

5. When all tasks of a job finish successfully, implying that the job is complete,
the AM notifies the client about the completion.

54 J.-C. Lin et al.

Fig. 3. The structure of the ABS-YARN framework.

3 Formal Model of the ABS-YARN Framework

Figure 3 shows the structure of ABS-YARN with classes RM, AM, and Container
reflecting the main components of a YARN cluster. In our framework, RM is
deployed as an independent deployment component with its own CPU capacity.
To model the most general case, we assume that RM has a single queue for all
job requests, implying that all jobs are served in a FIFO order. When a client
submits a job, an AM object is created for this job, and its req method starts
requesting containers from RM by invoking the getContainer method. If a
slave has sufficient resources, a container will be created and returned to the
AM. Then the AM submits one task of the job to the allocated container by
invoking the exe method. When the task terminates, the result is returned to
the associated AM, the free method is invoked to release the container, and the
logger method is used to record execution statistics.

ABS-YARN allows modelers to freely determine the scale and resource capac-
ity of a YARN cluster, including (1) the number of slave nodes in the cluster,
(2) the CPU cores of each slave node, and (3) the memory capacity of each slave
node. To support dynamic and realistic modeling of job execution, ABS-YARN
also allows modelers to define the following parameters:

– Number of clients submitting jobs
– Number of jobs submitted by each client
– Number of tasks per job
– Cost annotation for each task
– CPU and memory requirements for each container
– Job inter-arrival pattern. Modelers can determine any kind of job inter-arrival

distributions in ABS-YARN.

MapReduce jobs are the most common jobs in YARN, so we focus on modeling
their execution in this paper. Each MapReduce job has a map phase followed by
a reduce phase. In the map phase, all map tasks are executed in parallel. When

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 55

all the map tasks have completed, the reduce tasks are executed (normally, each
jobs has only one reduce task). The job is completed when all the map and
reduce tasks have finished.

The execution time of a task in a real YARN cluster might be influenced
by many factors, e.g., the size of the processed data and the computational
complexity of the task. To reduce the complexity of modeling the task execution
time, ABS-YARN adopts the cost annotation functionality of Real-Time ABS
to associate cost to the execution of a task. Hence, the task execution time will
be the cost divided by the CPU capacity of the container that executes the task.

In the following, we limit our code presentation to the main building blocks
and functionalities to simplify the description.

3.1 Modeling ResourceManager (RM)

The ResourceManager implements the RM interface:

1 interface RM {
2 Bool initialization(Int s, Int sc, Int sm);
3 Pair<Int, Container> getContainer(Int c, Int m);
4 Unit free(Int slaveID, Int c, Int m);
5 Unit logger(...);}

Method initialization initializes the entire cluster environment, including
RM and s slaves. Each slave is modeled as a record in a database SlaveDB,
with a unique SlaveID, sc CPU cores, and amount sm of memory capacity.
After the initialization, the cluster can start serving client requests. Method
getContainer allows an AM to obtain containers from RM. The size of the
required container core and container memory are given by c and m, respectively.
Method free is used to release container resources whenever a container finishes
executing a task, and method logger is used to record job execution statistics,
including job ID and job execution time.

The getContainer method, invoked by an AM, tries to allocate a container
with c CPU cores and m amount of memory capacity from an available slave to
the AM. Each container request is allowed at most thd attempts. Hence, as long
as Find==False and attempt<=thd (line 3), the getContainer method
will keep trying to obtain the database token to ensure a safe database access.
The built-in function lookupDefault checks each slave in slaveDB to find a
slave with sufficient resources. If such a slave exists (line 11), the corresponding
container will be created as a deployment component with c cores, and the
slave’s resources will be reduced and updated accordingly (lines 12–14). The
successfully generated container is returned to the AM.

However, if no slaves have enough resources, the process will suspend (line
21), allowing RM to process other method activations. The suspended process
will periodically check whether any slaves can satisfy the request. If the desired
container cannot be allocated within thd attempts, the method terminates and
RM is unable to provide the desired container to the AM.

56 J.-C. Lin et al.

1 Pair <Int, Container> getContainer (Int c, Int m) {
2 Bool find=False; Int slaveID=1; Int attempt=1;
3 while (find==False && attempt<=thd){
4 await dbToken==True;
5 dbToken==False;
6 Int i=1;
7 while (find==False && i<=size(keys(slaveDB))){
8 Pair<Int,Int> slave= lookupDefault(slaveDB, i, Pair(1,1));
9 Int free_core= fst(slave);

10 Int free_mem= snd(slave);
11 if (free_core>=c && free_mem >= m){
12 slaveDB=put(slaveDB, i, Pair(free_core-c, free_mem-m));
13 DC s=new DeploymentComponent("slave", map[Pair(CPU,c)]);
14 [DC: s] Container container = new Container(this);
15 find=True;
16 slaveID=i;
17 }
18 i++;
19 }
20 ... // Release dbToken
21 await duration(1,1);
22 attempt++;
23 }
24 if (find==False){ container=null;}
25 return Pair(slaveID, container);
26 }

3.2 Modeling ApplicationMaster (AM)

An AM implements the AM interface with a req method to acquire a container
from RM and then execute a task on the container. For an AM, the total number
of times that req is called corresponds to the number of map tasks of a job (e.g.,
if a job is divided into 10 map tasks, this method will be called 10 times).

1 interface AM {
2 Unit req(Int mNum, Int c, Int m, Rat mCost, Rat rCost);}

The reqmethod first invokes the getContainermethod and sends a container-
resource request (i.e., the parameters c and m) to acquire a container from RM.
Since the call is asynchronous, the AM is able to request containers for other tasks
of jobID while waiting for the response.

1 Unit req(Int mNum, Int c, Int m, Rat mCost, Rat rCost) {
2 ...
3 Pair<Int, Container> p= await rm!getContainer(c, m);
4 Int slaveId=fst(p);
5 Container container=snd(p);
6 if (container!=null){
7 Fut<Bool> f = container!exe(slaveID, c, m, mCost);
8 await f?;
9 Bool map_result = f.get;

10 if (map_result==True){
11 returned_map++;
12 if (returned_map==mNum){
13 Bool red_result;
14 ...//Try to request a container and run the reduce task
15 if (red_result==True){
16 logging the job completion;
17 }

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 57

18 else{ logging the reducde-task failure;}
19 }
20 }
21 else{ logging the map-task failure;}
22 }
23 else{ logging unsuccessful container request;}
24 }

When a container is successfully obtained, a map task with cost mCost can
be executed on the container (line 7). The process suspends while waiting for
the result of the task execution. Each time when map result==True, the req
method increases the variable returned map by one. When all map tasks of
the job have successfully completed (line 12), the AM proceeds with a container
request to run the reduce task of the job with cost rCost. Only when all map
and reduce tasks are completed (line 15), the job is considered completed.

3.3 Modeling Containers

A container implements the Container interface:

1 interface Container{
2 Bool exe(Int slaveID, Int c, Int m, Rat tcost);}

Method exe is used to execute a task on a container. The formal parameters of
exe consist of slaveID, CPU capacity c, memory capacity m, and the task cost
tcost. Hence, the task execution time is tcost/c. When a task terminates,
the free method of RM is invoked to release the container, implying that the
corresponding CPU and memory resources will be returned back to the slave.

1 Bool exe(Int slaveID, Int c, Int m, Rat tcost){
2 [Cost: tcost] ... //executing a task;
3 rm!free(slaveID, c, m);
4 return true;}

4 Performance Evaluation and Validation

To compare the simulation results of ABS-YARN against YARN, we established
a real YARN cluster using Hadoop 2.2.0 [5] with one virtual machine acting as
RM and 30 virtual machines as slaves. Each virtual machine runs Ubuntu 12.04
with 2 virtual cores of Intel Xeon E5-2620 2 GHz CPU and 2 GB of memory.
To achieve a fair validation, we also created an ABS-YARN cluster with 30
slaves; each with 2 CPU cores and 2 GB of memory. To realistically compare
job execution performance between ABS-YARN and YARN clusters, we used
the following five benchmarks from YARN [23]: WordCount, which counts the
occurrence of each word in data files; WordMean, which calculates the average
length of the words in data files; WordStandardDeviation (WordSD), which
counts the standard deviation of the length of the words in data files; GrepSort,
which sorts data files; and GrepSearch, which searches for a pattern in data
files.

58 J.-C. Lin et al.

We created a hybrid workload consisting of 22 WordCount jobs, 22 Word-
Mean jobs, 20 WordSD jobs, 16 GrepSort jobs, and 20 GrepSearch jobs. The
submission orders of all jobs were randomly determined. Each job processes 1 GB
of enwiki data [13] with 128 MB block size (the default block size of YARN [23]).
Hence, each job was divided into 8 (=1 GB/128 MB) map tasks and one reduce
task, implying that 9 containers are required to execute each job. We assume
that the resource requirement for each container is 1 CPU core and 1 GB RAM
for both the ABS-YARN and YARN clusters.

We considered two job inter-arrival patterns in our experiments: Uniform and
exponential distribution [20]. In the former, the inter-arrival time between two
consecutive jobs submitted by clients are equal. In the latter, job inter-arrival
time follows a Poisson process [20], i.e., job submissions occur continuously and
independently at a constant average rate. Reiss et al. [25] show that job arrival
patterns in a Google trace approximates an exponential distribution. This dis-
tribution has also been widely used as job arrival pattern in the literature (e.g.,
[22,24]). Based on these distributions, two scenarios were designed:

– Uniform scenario: The job inter-arrival time of the workload is 150 sec in the
real YARN cluster. In ABS-YARN, this is normalized into 2 time units.

– Exponential scenario: The job inter-arrival time of the workload follows an
exponential distribution with the average inter-arrival time of 158 sec and a
standard deviation of 153 sec in the real YARN cluster. This is normalized into
the average inter-arrival time of 158/75 time units and a standard deviation
of 153/75 time units in the ABS-YARN cluster.

The following metrics were used to evaluate how well ABS-YARN can simulate
job scheduling, job execution behavior, and job throughput of YARN:

– Starting time of all jobs of the workload
– Finish time of all jobs of the workload
– The number of cumulative completed jobs
– Total number of completed jobs

4.1 Validation Results in the Uniform Scenario

In order to achieve a fair comparison, we conducted the uniform scenario
on the YARN cluster to obtain the average map-task execution time (AMT)
and average reduce-task execution time (ART) for each job type. The results
are listed in Table 1. After that, we respectively normalized each AMT and ART
into a map-task cost and a reduce-task cost for ABS-YARN by dividing the AMT
value by 75 and dividing the ART value by 75 (Note that 75 is half of the job
inter-arrival time for the uniform scenario). With the corresponding map-task
cost annotation (MCA) and reduce-task cost annotation (RCA), we simulated
the uniform scenario on ABS-YARN.

Figure 4(a) shows the normalized starting time of all jobs in both clusters. We
can see that the two curves are almost overlapping. The average time difference
between ABS-YARN and YARN is 0.02 time units with a standard deviation of

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 59

Table 1. The average map-task execution time (AMT), average reduce-task execution
time (ART), normalized map-task cost annotation (MCA), and normalized reduce-task
cost annotation (RCA) in the uniform scenario.

Benchmark AMT (sec) ART (sec) MCA RCA

WordCount 162.64 251.01 2.17 (=162.64/75) 3.35 (251.01/75)

WordMean 107.10 139.94 1.43 (=107.10/75) 1.87 (=139.94/75)

WordSD 108.23 162.27 1.44 (=108.23/75) 2.16 (=162.27/75)

GrepSort 20.39 38.44 0.27 (=20.39/75) 0.51 (=38.44/75)

GrepSearch 31.22 55.97 0.42 (=31.22/75) 0.75 (=55.97/75)

Fig. 4. The normalized time points of all jobs in the uniform scenario.

1.73 time units, showing that ABS-YARN is able to precisely capture the job
scheduling of YARN in the uniform scenario. Figure 4(b) depicts all job finish
time in both clusters. The average difference between ABS-YARN and YARN is
2.67 time units with a standard deviation of 1.81 time units, indicating that the
framework can accurately model how containers execute jobs in a real YARN
cluster. Based on the results shown in Fig. 4, we can derive that the cumulative
numbers of completed jobs between the two clusters are close (see Fig. 5(a)). The
average error is approximately 2.52 %, implying that ABS-YARN can precisely
reflect the operation of YARN in the uniform scenario. Figure 5(b) shows that
100 jobs of the workload successfully finished in the ABS-YARN cluster, but 99
jobs of the workload completed in the YARN cluster since the remaining one job
could not obtain sufficient containers to execute its tasks. The job completion
error of ABS-YARN is only 1.01 %. Based on the above-mentioned results, it is
evident that the ABS-YARN framework offers a superior modeling of YARN in
the uniform scenario.

4.2 Validation Results in the Exponential Scenario

In this section, we compare ABS-YARN and YARN under the exponential sce-
nario. Similar to the uniform scenario, we performed a normalization by exe-
cuting the exponential scenario on the YARN cluster to derive a map-task cost

60 J.-C. Lin et al.

Fig. 5. The cumulative completed jobs and the total number of completed jobs in the
uniform scenario.

annotation and a reduce-task cost annotation for each job type. The results are
listed in Table 2. Note that regardless of which job type was tested, the cor-
responding average map-task and reduce-task execution time were apparently
higher than those in the uniform scenario. The main reason is that the job inter-
arrival time in the exponential scenario had a much higher standard deviation,
implying that many jobs might compete for containers at the same time. How-
ever, due to the limited container resources, these jobs had to wait for available
containers and hence prolonged their execution time.

Table 2. The AMT, ART, MCA, and RCA in the exponential scenario.

Benchmark AMT (sec) ART (sec) MCA RCA

WordCount 295.47 430.24 3.94 (=295.27/75) 5.74 (430.24/75)

WordMean 139.98 201.11 1.87 (=139.98/75) 2.68 (=201.11/75)

WordSD 238.46 312.38 3.18 (=238.46/75) 4.17 (=312.38/75)

GrepSort 37.38 62.06 0.50 (=37.38/75) 0.83 (=62.06/75)

GrepSearch 173.92 205.94 2.32 (=173.92/75) 2.75 (205.94/75)

The normalized job starting time illustrated in Fig. 6(a) show that the ABS-
YARN cluster follows the same trend as the YARN cluster. However, as more
jobs were submitted, their starting time in ABS-YARN were later than those in
the YARN cluster. The average time difference is around 19.48 with standard
deviation of 12.92. The key reasons are two. First, the normalized map-task
(reduce-task) cost annotations used by ABS-YARN were based on average map-
task (reduce-task) execution time of the entire workload, which were longer
than the actual map-task (reduce-task) execution time spent by the real YARN
cluster in the early phase of the workload execution. Second, the number of
available containers gradually decreased when more jobs were submitted to the
ABS-YARN cluster. For these two reasons, the starting time of the subsequent
jobs were delayed.

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 61

Fig. 6. The time points of all jobs in the exponential scenario.

Figure 6(b) depicts the normalized job finish time of the two clusters under
the exponential scenario. We can see that during the workload execution, many
jobs in the ABS-YARN cluster finished later than the corresponding jobs in
the YARN cluster. The reasons are the same, i.e., the map-task (reduce-task)
cost annotation values were derived from the corresponding average map-task
(reduce-task) execution time, which were usually higher than the actual execu-
tion time in the YARN cluster during the early stage of the workload. Never-
theless, the results show that even under a heavy and dynamic workload, the
ABS-YARN framework can still adequately model YARN.

The cumulative number of completed jobs illustrated in Fig. 7(a) shows that
during most of the workload execution, the ABS-YARN cluster finished fewer
jobs than the YARN cluster for the above mentioned reasons. However, in the
late stage, the ABS-YARN cluster had more completed jobs than the YARN
cluster. This phenomenon can also be deduced from Fig. 6 since seven jobs could
not complete by the YARN cluster. The average difference of the cumulative
workload completion between ABS-YARN and YARN is 14.49 %. Due to failing
to get containers, 97 jobs and 93 jobs (as shown in Fig. 7(b)) were finished by
the ABS-YARN cluster and the YARN cluster, respectively. Although the job

Fig. 7. The cumulative completed jobs and the total number of completed jobs in the
exponential scenario.

62 J.-C. Lin et al.

completion error of ABS-YARN is increased to 4.3 % from the uniform scenario
to the exponential scenario, the above results still demonstrate that the ABS-
YARN framework provides a satisfiable modeling for YARN.

5 Related Work

General-purpose modeling languages provide abstractions where the main focus
has been on describing functional behavior and logical composition. However,
this is inadequate for virtualized systems such as clouds when the software’s
deployment influences its behavior and when virtual processors are dynamically
created. A large body of work on performance analysis using formal models
can be found based on, e.g., process algebra [9], Petri Nets [26], and timed
and probabilistic automata [4,8]. However, these works mainly focus on non-
functional aspects of embedded systems without associating capacities with
locations. A more closely related technique for modeling deployment can be
found in an extension of VDM++ for embedded real-time systems [28], in which
static architectures are explicitly modeled using buses and CPUs with fixed
resources.

Compared to these languages, Real-time ABS [10,18] provides a formal basis
for modeling not only timed behavior but also dynamically created resource-
constrained deployment architectures, which enables users to model feature-rich
object-oriented distributed systems with explicit resource management at an
abstract yet precise level. Case studies validating the formalization proposed in
Real-Time ABS include Montage [17] and the Fredhopper Replication Server [3].
Both case studies address resource management in clouds by combining simula-
tion techniques and cost analysis. Different from these case studies, this paper
uses Real-Time ABS to create a formal framework for YARN and comprehen-
sively compare this framework with a real YARN cluster.

In recent years, many simulation tools have been introduced for Hadoop,
including MRPerf, MRSim, and HSim. MRPerf [29] is a MapReduce simulator
designed to understand the performance of MapReduce jobs on a specific Hadoop
parameter setting, especially the impact of the underlying network topology, data
locality, and various failures. MRSim [15] is a discrete event based MapReduce
simulator for users to define the topology of a cluster, configure the specification
of a MapReduce job, and simulate the execution of the job running on the clus-
ter. HSim [21] models a large number of parameters of Hadoop, including nodes,
cluster, and simulator parameters. HSim also allows users to describe their own
job specification. All the above-mentioned simulators target Hadoop rather than
YARN. Due to the fundamental difference between Hadoop and YARN, these
simulators are unable to simulate YARN. Besides, these simulators concentrate
on simulating the execution of a single MapReduce job and compare the cor-
responding simulation results with the actual results on real Hadoop systems.
However, this is insufficient to confirm that they can faithfully simulate Hadoop
when multiple jobs are running on Hadoop. Similar work can also be found in
[19]. Different from all these simulators, the proposed ABS-YARN framework is

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 63

designed to model a set of jobs running on YARN, rather than just one job. With
ABS-YARN, users can comprehend the performance of YARN under a dynamic
workload.

To our knowledge, the Yarn Scheduler Load Simulator (SLS) [31] is the only
simulator currently designed for YARN, but it concentrates on simulating job
scheduling in a YARN cluster. Besides, SLS does not provide any performance
evaluation to validate its simulation accuracy. Compared with SLS, ABS-YARN
provides a formal executable YARN environment. In this paper, we also present
a comprehensive validation to demonstrate its applicability.

6 Conclusion and Future Work

This paper has presented the ABS-YARN framework based on the formal mod-
eling language Real-Time ABS. ABS-YARN provides a generic model of YARN
by capturing the key components of a YARN cluster in an abstract but pre-
cise way. With ABS-YARN, modelers can flexibly configure a YARN cluster,
including cluster size and resource capacity, and determine job workload and
job inter-arrival patterns to evaluate their deployment decisions.

To increase the applicability of formal methods in the design of virtualized
systems, we believe that showing a strong correlation between model behaviors
and real system results is of high importance. We validated ABS-YARN through
a comprehensive comparison of the model-based analyses with the actual per-
formance of a real YARN cluster. The results demonstrate that ABS-YARN is
accurate enough to offer users a dependable framework for making deployment
decisions about YARN at design time. In addition, the provided abstractions
enable designers to naturally model and design virtual systems at this complex-
ity, such as enhancing YARN with new algorithms.

In future work, we plan to further enhance ABS-YARN by incorporating
multi-queue scheduler modeling, slave and container failure modeling, and dis-
tributed file-system modeling. Modeling different job types will also be con-
sidered. Whereas this paper has focussed on the accuracy of the ABS-YARN
framework, our ongoing work on a more powerful simulation and visualization
tool for Real-Time ABS will improve the applicability of ABS-YARN.

Acknowledgement. The authors thank NCLab at National Chiao Tung Univer-
sity, Taiwan for providing computation facilities for the YARN cluster used in our
experiments.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. The MIT Press, Cambridge (1986)

2. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gómez-Zamalloa, M.,
Martin-Martin, E., Puebla, G., Román-Dı́ez, G.: SACO: static analyzer for concur-
rent objects. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS,
vol. 8413, pp. 562–567. Springer, Heidelberg (2014)

64 J.-C. Lin et al.

3. Albert, E., de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Tapia Tarifa,
S.L., Wong, P.Y.H.: Formal modeling and analysis of resource management for
cloud architectures: An industrial case study using Real-Time ABS. J. Serv. Ori-
ented Comput. Appl. 8(4), 323–339 (2014)

4. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: a tool
for schedulability analysis and code generation of real-time systems. In: Larsen,
K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 60–72. Springer,
Heidelberg (2004)

5. Apache Hadoop. http://hadoop.apache.org/
6. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,

G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

7. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, Raleigh (2007)

8. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9), 76–85 (2010)

9. Barbanera, F., Bugliesi, M., Dezani-Ciancaglini, M., Sassone, V.: Space-aware
ambients and processes. Theor. Comput. Sci. 373(1–2), 41–69 (2007)

10. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia, S.L.: Tarifa.: User-
defined schedulers for real-time concurrent objects. Innov. Syst. Softw. Eng. 9(1),
29–43 (2013)

11. Caromel, D., Henrio, L.: A Theory of Distributed Objects. Springer, New York
(2005)

12. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol.
4350. Springer, Heidelberg (2007)

13. enwiki. http://dumps.wikimedia.org/enwiki/
14. Hähnle, R., Johnsen, E.B.: Designing resource-aware cloud applications. IEEE

Comput. 48(6), 72–75 (2015)
15. Hammoud, S., Li, M., Liu, Y., Alham, N.K., Liu, Z.: MRSim: A discrete event based

MapReduce simulator. In: Seventh International Conference on Fuzzy Systems and
Knowledge Discovery, FSKD 2010, pp. 2993–2997. IEEE (2010)

16. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS,
vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

17. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Modeling resource-aware virtualized
applications for the cloud in real-time ABS. In: Aoki, T., Taguchi, K. (eds.) ICFEM
2012. LNCS, vol. 7635, pp. 71–86. Springer, Heidelberg (2012)

18. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. J. Log. Algebraic
Methods Program. 84(1), 67–91 (2015)

19. Kolberg, W., Marcos, P.D.B., Anjos, J.C., Miyazaki, A.K., Geyer, C.R., Arantes,
L.B.: MRSG - a MapReduce simulator over SimGrid. Parallel Comput. 39(4),
233–244 (2013)

20. Koralov, L.B., Sinai, Y.G.: Theory of Probability and Random Processes. Springer-
Verlag, Berling (2007)

21. Liu, Y., Li, M., Alham, N.K., Hammoud, S.: HSim: a MapReduce simulator in
enabling cloud computing. Future Gener. Comput. Syst. 29(1), 300–308 (2013)

http://hadoop.apache.org/
http://dumps.wikimedia.org/enwiki/

ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters 65

22. Luo, C., Zhan, J., Jia, Z., Wang, L., Lu, G., Zhang, L., Xu, C.-Z., Sun,
N.: Cloudrank-d: benchmarking and ranking cloud computing systems for data
processing applications. Front. Comput. Sci. 6(4), 347–362 (2012)

23. Murthy, A., Vavilapalli, V., Eadline, D., Niemiec, J., Markham, J.: Apache Hadoop
YARN: Moving Beyond MapReduce and Batch Processing with Apache Hadoop
2. Addison-Wesley Professional, San Francisco (2014)

24. Palanisamy, B., Singh, A., Liu, L., Bryan, L.: Cura: A cost-optimized model for
MapReduce in a cloud. In: IEEE 27th International Symposium on Parallel and
Distributed Processing, pp. 1275–1286. IEEE (2013)

25. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Towards under-
standing heterogeneous clouds at scale: Google traceanalysis.Technical Report
ISTC-CC-TR-12-101, Intel Science and TechnologyCenter for Cloud Comput-
ing, Carnegie Mellon University, April 2012. http://www.pdl.cmu.edu/PDL-FTP/
CloudComputing/ISTC-CC-TR-12-101.pdf

26. Sgroi, M., Lavagno, L., Watanabe, Y., Sangiovanni-Vincentelli, A.: Synthesis of
embedded software using free-choice petri nets. In: Proceedings of the Design
Automation Conference, DAC 1999, pp. 805–810. ACM (1999)

27. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R.,
Graves, T., Lowe, J., Shah, H., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia,
S., Reed, B., Baldeschwieler, E.: Apache Hadoop YARN: yet another resource
negotiator. In: Lohman, G.M. (ed.) ACM Symposium on Cloud Computing (SOCC
2013), pp. 5:1–5:16 (2013)

28. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and validating distributed embed-
ded real-time systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.)
FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006)

29. Wang, G., Butt, A.R., Pandey, P., Gupta, K.: A simulation approach to evaluat-
ing design decisions in MapReduce setups. In: IEEE International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
MASCOTS 2009, pp. 1–11. IEEE (2009)

30. Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.: The
ABS tool suite: modelling, executing and analysing distributed adaptable object-
oriented systems. J. Softw. Tools Technol. Transf. 14(5), 567–588 (2012)

31. Yarn Scheduler Load Simulator (SLS). https://hadoop.apache.org/docs/r2.4.1/
hadoop-sls/SchedulerLoadSimulator.html

http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/ISTC-CC-TR-12-101.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/ISTC-CC-TR-12-101.pdf
https://hadoop.apache.org/docs/r2.4.1/hadoop-sls/SchedulerLoadSimulator.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-sls/SchedulerLoadSimulator.html

Integrated Environment for Verifying
and Running Distributed Components

Ludovic Henrio1, Oleksandra Kulankhina1,2, Siqi Li3, and Eric Madelaine1,2(B)

1 University of Nice Sophia Antipolis, CNRS, Sophia Antipolis, France
Ludovic.Henrio@cnrs.fr

2 INRIA Sophia Antipolis Méditérannée, Sophia Antipolis, France
{Oleksandra.Kulankhina,Eric.Madelaine}@inria.fr

3 Shanghai Key Laboratory of Trustworthy Computing, ECNU, Shanghai, China
cathy.lsq09@gmail.com

Abstract. This paper targets the generation of distributed applica-
tions with safety guarantees. The proposed approach starts from graph-
ical specification formalisms allowing the architectural and behavioral
description of component systems. From this point, the user can auto-
matically verify application properties using model-checking techniques.
Finally, the specified and verified component model can be translated
into executable Java code. We implement our approach in a tool suite
distributed as an Eclipse plugin. This paper also illustrates our approach
by modeling and verifying Peterson’s leader election algorithm.

1 Introduction

Component-oriented programming has become a popular approach for distrib-
uted application development. Components enforce a clear design and specifi-
cation stage of the applications, and provide a solid basis for safe and modular
development of complex systems. This work aims at including systematic verifi-
cation of behavioral properties in the development process of component-based
applications. For this purpose we would like to provide the developers of distrib-
uted component-based systems with a set of tools supporting rigorous design and
implementation of safe applications. Our tools should guide the user through all
crucial phases of component software development: from application design spec-
ification to verification of the designed architecture and behavior properties as
well as automated code generation.

Applying static analysis on hand-coded programs is complex and often impre-
cise, especially for distributed systems. Instead we chose a Model-Driven Engi-
neering and a component-oriented approach in which the structure of the applica-
tion is directly specified by the developer, and in which the final code is generated
automaticaly, partialy or totaly.

VerCors1 is a software platform which aims at supporting the creation of safe
distributed component-based applications. VerCors2 includes a set of graphical
1 https://team.inria.fr/scale/software/vercors/vcev4-download/.
2 Not to be confused with http://fmt.cs.utwente.nl/research/projects/VerCors/.

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 66–83, 2016.
DOI: 10.1007/978-3-662-49665-7 5

https://team.inria.fr/scale/software/vercors/vcev4-download/
http://fmt.cs.utwente.nl/research/projects/VerCors/

Integrated Environment for Verifying and Running Distributed Components 67

designers based on UML where the user can specify the architecture and the
business logic of his application, and check the static correctness of the compo-
nent architecture [1]. The specification is then automatically transformed into a
behavior graph that can be model-checked to prove its correctness. We rely on
model-checking for verification, but we want to hide as much as possible the com-
plexity of the underlying formal techniques to make our tools accessible to non-
experts in model-checking. VerCors uses parametrized networks of asynchronous
automata (pNets) as an intermediate format for behavior modeling and relies on
CADP [2] model-checker to verify temporal properties. Last, Java code of the
modeled application can be automatically generated and executed. We rely on
ProActive3 and the Grid Component Model (GCM) [3]. We chose GCM/ProAc-
tive because it targets distributed systems and features a well-defined semantics.
Because of the chosen verification methodology, the current platform can only
verify finite-state systems, but infinite-space systems can already be specified,
modeled as pNets, and executed.

This paper shows that our approach is suitable for applications involving
complex interactions between processes but without too much computational
complexity. For the case studies involving such a computational complexity the
model-checking approach might be limited. However in that case we advocate
the use of the VerCors platform to specify and verify the core of the applica-
tion, abstracting away computational details. The user can still generate the
executable skeleton of the verified core application. He can then extend it with
computational details. While the application logic is unchanged, the behavioral
properties will still be valid.

The VerCors platform has already undergone several major generations, with
significant evolutions for the underlying semantic model, as well as the modeling
platform and the specification formalisms. The original version was using UML
component structures for describing the application architecture, but this was
too far from GCM needs, hence a new DSL and graphical formalism were defined.
At the same time, aiming at better support for maintenance and usability, Ver-
Cors was moved to an Eclipse-based environment [4]. A series of publications
described the support for several features of distributed component-based sys-
tems, including group communications, first-class futures, and reconfiguration.
At that time, the platform was only able to generate part of the behavioral
model and it relied on several manual steps only realizable by experts in formal
methods. No code generation was supported. Starting from that preliminary
work a new VerCors tool is presented in this paper. It includes the full set of
modeling formalisms (architecture, types abstractions, and state-machines), the
validation of static correctness, the full chain of tools for the generation of a
pNet model for model-checking, as well as a new tool for automatic generation
of executable GCM/ProActive code. More recently, theoretical papers defining
the pNet model [5] and the behavioral semantics of GCM in terms of pNets [6]
were published. They build a formal foundation for the VerCors tools.

3 https://team.inria.fr/scale/software/proactive/.

https://team.inria.fr/scale/software/proactive/

68 L. Henrio et al.

First, Sect. 2 presents the background on GCM, the pNets formalism and our
use-case (Peterson’s leader election algorithm). In Sect. 3 we introduce a set of
graphical formalisms to define abstractions of distributed component-based sys-
tem architecture and behavior. In Sect. 4 we show how the specified models can
be transformed into behavioral graphs accepted as input by a model-checker. We
present in Sect. 5 the generation of executable code from the model specification.
Finally, we discuss the related work in Sect. 6 and conclude in Sect. 7. We illus-
trate our contributions by modeling, verifying, and running Peterson’s leader-
election algorithm4[7]. An extended version has been published as a research
report [8]; it includes appendices with details on the usecase, the architecture of
the tool, and the generation process.

2 Background

2.1 Grid Component Model and ProActive Platform

The Grid Component Model (GCM) [3] targets large-scale distributed compo-
nent systems. Its reference implementation is GCM/ProActive.

Architecture. A GCM application consists of components, interfaces and bind-
ings. Figure 2 illustrates an example of a GCM system. A component can be
either composite (it consists of other subcomponents), e.g. Application, or
primitive (a simple element encapsulating business code), e.g. Comp1. Compo-
nents communicate through interfaces of two types: client and server (e.g. C1 and
S1 correspondingly). A component sends requests and receives replies through
client interfaces; a component receives requests and sends back results through
server interfaces. The interfaces that communicate are connected with bindings.

ProActive is a Java library for distributed computing. Every component in
GCM/ProActive is an active object made of a single applicative thread.

Informal semantics of ProActive components. Figure 1.a illustrates treat-
ment of requests by primitive components. Every primitive component has a
FIFO request queue, a body and an active object that serves requests. All
requests to the server interfaces are first dropped to the queue. The body takes
the first request from the queue and triggers the execution of the correspond-
ing method of the active object. To process a request the component may need
additional services provided by the other components, using operations calls on
its client interfaces. Once a request is served, the component sends back a reply
consisting of the value returned by the method. Then, the next can be served.

Figure 1.b illustrates the behavior of a GCM/ProActive composite. A com-
posite has a FIFO request queue, a body, an associated active object, and some
subcomponents. The body takes requests from the queue and forwards them to
the subcomponents that serve them. In order to serve a request, a subcomponent
may need to call methods of other subcomponents or outside of the composite,
using client interfaces. Once a request has been served by the subcomponent, the

4 Available at: https://github.com/Scale-VerCors/VCEv4/tree/master/Examples.

https://github.com/Scale-VerCors/VCEv4/tree/master/Examples

Integrated Environment for Verifying and Running Distributed Components 69

Fig. 1. GCM/ProActive component behavior

composite receives the reply and forwards it to the requester. Every request sent
from a subcomponent towards the outside of a composite passes by the queue
of the composite before being forwarded through the composite client interface.

GCM components communicate using futures. When a component sends a
request to another component, the caller continues its execution as long as it does
not need the result of the request. When the result is needed the caller blocks
automatically. We call this behavior a “wait-by-necessity”. In the meantime, an
empty object called future represents the result of the request.

2.2 pNets

Parametrized networks of asynchronous automata (pNets) have been formalized
in [5]. pNets are composition of labeled transition systems with parameters; they
are used as an intermediate model for encoding behavior of GCM-based applica-
tions. The behavioural semantics of GCM has been formalized in [6,9]. A pNet is
a hierarchical structure where leaves are pLTSs. A pLTS is a labelled transition
system with variables, where labels are of the form 〈α, eb, (xj := ej)j∈J〉, where
eb is a guard, the variables xj ∈ P are assigned when the transition is triggered,
finally α is a parametrized action that has a label and a set of arguments, some of
them are input variables, others are output expressions. By convention, we anno-
tate actions with “!” and “?” depending on the information flow. We assume that
the information goes from !α to ?α. A pNet is either a pLTS or the composition
of several pNets; in the second case, the possible interaction between sub-entities
are specified by synchronisation vectors: pNet � pLTS | 〈〈L, pNeti∈I

i , SV k∈K
k 〉〉

where L is the set of global actions, pNeti∈I
i is the family of sub-pNets. SV k∈K

k

is a set of synchronization vectors. SV k = αj∈Jk

j → α′
k means that each of the

sub-pNets in the set Jk can perform synchronously an internal action αj ; this
results in a global action α′

k. Elements not taking part in the synchronization
are denoted − as in: < −,−, α,− >→α.

70 L. Henrio et al.

2.3 Peterson’s Leader Election Algorithm

Distributed processes often need to select a unique leader. Peterson’s election
algorithm [7] can be used for this purpose in a unidirectional ring of asynchronous
processes. Every process participating in the elections has a FIFO queue and
the order of sent messages is preserved by the communication channels. Each
process can be either in active mode if the process participates in the election,
or in passive mode if it only forwards messages. Initially, every process stores a
unique number that will be modified during the election. The processes exchange
two rounds of messages so that every active process learns the numbers stored
by the two nearest active processes preceding it. If the maximum of the two
previous values and the value held by the current process is the value received
from the nearest predecessor of the process, then the active process takes this
value as its own value; otherwise the process becomes passive. The rounds of
messages and local decision steps are repeated until a process receives its own
number, this process is the leader.

In details, every process P stores variables max(P) and left(P). Max(P)
is the number stored by P . Left(P) is the number of the active process on
the left of P . Processes exchange messages of the form M(step, value) where
step is the phase of the algorithm. At the preliminary phase, each process Pi

sends M(1,max(Pi)) to its neighbor. Then, if an active process Pi receives a
message M(1, x) and x is equal to its own number, the process is the leader,
otherwise it assigns x to left(Pi) and sends M(2, x) to its neighbor. When an
active process Pi receives M(2, x) it compares left(Pi) to x and max(Pi). If
left(Pi) is greater than both values, Pi assigns left(Pi) to max(Pi) and sends
M(1,max(Pi)); otherwise Pi becomes passive.

3 Graphical Designer

VerCors includes a graphical designer for modeling component-based system
architecture and behavior. These models must be precise enough to be translated
into both input for validation and for executable code. The graphical specifica-
tion part of VerCors is based on Eclipse IDE; it was implemented using Sirius5.
The VerCors platform includes graphical designers for four types of diagrams:
Components, UML Class, UML State Machine, and Type diagrams. This section
describes the four editors and the way they are integrated.

3.1 Architecture Specification

Component diagrams are used for the specification of a distributed application
architecture. A component diagram includes primitives (grey boxes), and com-
posites (white rectangles with grey border). Interfaces are attached to the bor-
ders of their containers. An interface has a set of characteristics, e.g. whether an
5 Sirius is an open-source Eclipse project for development of graphical modeling envi-

ronment based on EMF and GMF: http://www.eclipse.org/sirius/.

http://www.eclipse.org/sirius/

Integrated Environment for Verifying and Running Distributed Components 71

Fig. 2. Components diagram

interface is server or client. The icon representing an interface changes depending
on the characteristics. Bindings are shown as arrows between interfaces.

UML Class diagrams are used to specify the list of attributes stored by
components and the list of operations a component offers. The user can attach
a UML class to a primitive component and a UML interface to client and server
interfaces. If a class is attached to a component, it means that the attributes
of the class are stored by the component and the operations of the class define
the business logic of the component. A UML interface attached to a client or a
server GCM interface stores the list of operations that can be called and served
with this interface. Each operation defined in a class either has a reference to
the operation of the interface it implements (or redefines in UML terms), or is
a local method of the component.

The types of operations, attributes, and variables can be declared using Type
diagrams. Enumerations, integer intervals, records (C-like structs) and infinite
integers can be specified, while boolean and void types are created by default.

Use-case example. The Component diagram representing the architecture of our
use-case model is shown on Fig. 2.

Application is a composite; it includes four primitives that participate in the
leader election process. The primitives are connected in a ring topology and have
similar structure. The entry point of the system is the runPeterson() operation of
Application server interface S1. This request is forwarded to Comp4 that triggers
the election process. During the election, components invoke method message
on their client interfaces C1. As defined in Sect. 2.3, each message transmits two
parameters: step and val. The message is transmitted to the server interface S1 of
the called component. The signature of message is specified in a UML interface
ElectionItf. If a component decides to become a leader or a non-leader, it
reports its decision to the environment by invoking an IAmTheLeader(cnum) or
an IAmNotTheLeader(cnum) method on its client interface C2. These operations
take the identifier of the component as a parameter.

All four components have the same set of attributes. They have the mes-
sage(...) method implementing the leader election algorithm and a set of methods

72 L. Henrio et al.

to access local attributes. Comp4 implements an additional operation runPeter-
son(). Comp1, Comp2, and Comp3 are implemented by Class0 while Comp4 uses
Class1 that extends Class0 with runPeterson() operation. Initially, the com-
ponents should have different default values of attribute max and cnum. cnum is a
static unique identifier of a component. To specify the values of those attributes
for every component individually, we define them in the Attributes field rep-
resented as a green box in every primitive definition.

In our model we define two integer interval types on Type diagram : StepIn-
terval = 0..2 for the parameter step of messages and IntInterval = 1..4 for the
component unique identifier.

3.2 Behavior Specification

UML State Machine diagrams are used for behavior specification in VerCors.
Each State Machine defines the behavior of an operation of a UML Class.

A State Machine has a set of states connected by transitions. A state stores
its name, while logic code is specified on transitions. To enable behavioral analy-
sis we specify the syntax of UML transitions: a transition has a label of the form
[guard]/action1....actionN where Guard is a boolean expression and an
action is an assignment or a method call (to a local operation or a client inter-
face). This set of actions is sufficient to encode any behaviour of distributed
objects; control structures have to be encoded as guards on transitions.

The VerCors UML-based editors are based on Obeo UML Designer6. In
particular, we integrated the State Machines graphical designer of Obeo UML
Designer into VerCors, adding local variable declarations. A State Machine has
access to its own local variables, to the client interfaces and to local methods of
the component which behavior the State Machine describes. A State Machine
can access the attributes of the component but only through getters and setters.

Figure 3 illustrates the State Machine of the message method of Peterson’s
leader election algorithm. It uses seven variables where step and val are input
parameters of the method. The initial state is illustrated with a blue circle. First,
Choice6 checks the phase of the election algorithm. If the algorithm is in the
preliminary (zero) phase either the component is active – it already participates
in the election – or the component triggers the election process on its neighbor
and performs the preliminary phase described in Sect. 2.3. If it is not the pre-
liminary phase, either the component is passive and the message is forwarded
to the neighbor [isActive==false]/C1.message(step,val), or the actions of
the State Machine correspond to the two cases M(1, x) or M(2, x) depending on
the value of step (see Sect. 2.3).

To illustrate future-based communications in VerCors, we extend our use-
case as follows. If a component decides to become the leader, it sends a
requestKey() invocation on its client interface (see the transition from State10 to
State12). The request is forwarded to outside of Application. Then, the com-
ponent claims itself as the leader by sending an IamTheLeader(cnum) request.

6 http://www.umldesigner.org/.

http://www.umldesigner.org/

Integrated Environment for Verifying and Running Distributed Components 73

Fig. 3. Message state machine (Color figure online)

Finally, the component calls its local method encrypt(key) using the result of
requestKey() as a parameter. The component should be able to claim itself as
the leader before it receives the result of requestKey(). However, it cannot exe-
cute encrypt(key) if the key is not obtained. The VerCors user does not need to
explicitly model future-based communications. Whenever a State Machine has
a non-void client method invocation, it is interpreted as a future-based one.

To conclude, four integrated diagram editors are implemented in VerCors.
Component diagrams correspond to architecture specification, Class diagrams
represent attributes and method signatures of components, State Machine dia-
grams are used for behavior specification, and Type diagrams define type
abstractions. They allow the user to easily describe his/her application and pro-
vide sufficient input both for model-checking and for code generation.

4 Behavior Verification

From user-defined architecture and behavior models VerCors produces input
data for the CADP [2] model-checker following a chain of transformations pre-
sented in this section. First, we analyze input models and generate a corre-
sponding pNet structure. Second, we generate a finite graph given as an input
to CADP, together with auxiliary scripts for managing state-space explosion.
Finally, the user can specify the properties that he wants to check on the gener-
ated graph and run CADP. While the specified system and the pNet model rely
on parameterized state-machines potentially featuring infinite state-space, the
model-checking phase can handle finite state-space only. As a consequence, the
correctness of the finite abstraction should be checked by abstract interpretation

74 L. Henrio et al.

techniques. From another point of view, the pNet model could also be checked
by a different tool that handles infinite state-space.

4.1 From Application Design to pNets

We present here the generation of pNets specifying the application behavior [6].
A pNet of a primitive assembles pLTSs of two types: the generic ones whose

structure is identical for all primitives (e.g. queue, body) and the pLTSs gener-
ated from the user-defined State Machines (server and local methods behavior).
Figure 4 shows the pNet generated for Comp1 of our use-case. An Attribute
controller pLTS is generated for each attribute of a primitive; it allows stor-
ing and modifying the value of this attribute. The list of component attributes
can be derived from the UML Class of the component. Proxy and Proxy-
Manager pLTSs are generated for every client operation having a non-void
result. They model the implementation of the futures mechanism. A pLTS is
generated for each server and local method. For this purpose we translate
UML State Machines specifying methods behavior into pLTSs. To translate a
State Machine into a pLTS we first map each state of a State Machine into
a pLTS state and each transition to one or several pLTS transition (poten-
tially adding intermediate states). For example, a State Machine transition [isAc-
tive==true]/max:=this.get max() involves one guard condition and two actions:
a call to a local function get max and a return of its result. A pLTS transition
can perform at most one action, hence, the result of the translation will consist
in two sequential transitions.

The behavior of the components is modeled by synchronization vectors,
expressing the synchronization and the data flow between pLTSs. As an example,
the Body and the Queue pLTSs of a primitive are synchronized using:

<!Serve message(...), ?Serve message(...),−,−,−,−,− >→ Serve message(...)

in which, the subnets occur in the following order:

< Queue,Body,message,max ac, cnum ac, left as, isActive ac > .

Synchronization of the Queue with the environment under reception of a request
is expressed by: <?Q message(...),−,−,−,−,−,− >→?Q message(...) mean-
ing that this action is exposed at the next level of pNet to synchronize with
another pNet. The other vectors synchronize the following entities: the Body
and a server method pLTS (Call message(...)); a server method pLTS and other
local methods, or client method of the environment; the server method, the Body
and the environment to return the result (R message(...)); the environment and
the Queue when the Queue is saturated, raising an Error queue event.

The pNet of a composite (Fig. 5) assembles pLTSs for queue, body and
sub-entities enabling futures mechanism with pNets of the subcomponents. The
request reception mechanism is similar to the one of a primitive. The only dif-
ference is that the body is synchronized with subcomponent pNets in order to
forward them the requests. pNets of subcomponents are synchronized with each

Integrated Environment for Verifying and Running Distributed Components 75

Fig. 4. pNet of Comp1 Fig. 5. pNet of application

other under internal method invocation (e.g. Comp4 Comp1 message(...)) and
result reception. If a subcomponent invokes an operation outside of the com-
posite, it synchronizes with the composite queue. Then, the queue synchronizes
with the environment and forwards the request to outside of the composite.

Scenario. The user can specify a Scenario State Machine, encoding the legal
sequences of actions performed by the environment, accessing only the server
interfaces of the root component. The scenario of our use-case calls the runPeter-
son method on interface S1 of Application once. The scenario State Machine is
translated into a pLTS and synchronized with the queue of the root component.
This leads to a much smaller and meaningful behavior model.

4.2 From pNets to Model-Checking

Generation of verification input. As the next step, VerCors translates the
pLTSs into the Fiacre format [10] and the synchronization vectors into EXP [11].
Then, the FLAC compiler translates the Fiacre specification into Lotos code.
Finally the CADP front-end generates a labelled transition system in a format
that can be used by the CADP model-checker. We generate a set of scripts for
managing the execution of all steps: communication hiding, minimization, and
hierarchical product using EXP files. In order to limit the state-space explosion
phenomenon inherent to explicit-state model-checkers, the user should:

• use a scenario to limit acceptable inputs of the modeled system,
• specify the internal actions that he does not want to observe during model-

checking (we generate a script transforming them into internal actions),
• limit the size of the data domains using the Types diagram.

All generated transition systems are minimized using branching bisimulation.
We have used the VerCors model-generation function to produce Fiacre, EXP

and auxiliary scripts for our use-case. Table 1 presents size information for some

76 L. Henrio et al.

Table 1. Behavior graph files (all with Queue size of 3)

Graph States Transitions Computation time

Behaviour of Comp4 3.217.983 45.055.266 2m48.520s

Comp4 (after hiding and minimization) 90.821 1.306.138 5m23.030s

full application 296 661 47m1.673s

of the intermediate behavior graphs. The last line is for the hierarchical con-
struction of the full model of the application (including the Scenario), and the
time includes the whole model-generation workflow. The time needed to generate
Fiacre, EXP files and scripts from VerCors is neglectible.

Model-checking. We use the Model Checking Language (MCL [12]) to express
the behavioral properties we want to prove on our system. MCL is a very expres-
sive logic including first order predicates for the data part, and the alternation
free μ-calculus for branching time logics. On top of MCL, we use Specification
Patterns [13] for easier expression of some usual temporal logic properties, as in
the examples below. We recall that in our example the properties are evaluated
in the context of the scenario where the election algorithm is triggered.

First, we check that after a call to runPeterson(), it is inevitable (under
fairness hypothesis) that either the leader is elected or one of the queues is satu-
rated. The model-checker answers true: the election terminates. We also proved
that with adequate queue size, they never saturate.

[’Call RunPeterson’] Inev (’Q IamTheLeader.*’ or’ErrorQueue.*’)

Then, we prove that the event Q IamTheLeader is emitted only once:

Absence Before (’Q IamTheLeader.*’,’Q IamTheLeader.*’)”

In order to check that the communications in the generated graph are indeed
implementing futures properly, we verify the following formula which states that
a key is always received before IamTheLeader() is invoked:

Existence Between(’R RequestKey.*’, ’Q requestKey.*’, ’Q IamTheLeader.*’)

The model-checker answers false and provides an example of system behav-
ior where IamTheLeader() method is invoked before the key is received. This
proves that a component is not blocked if the key is not needed.

To summarize, from the graphical models provided by the user we automat-
ically generate a behavior description in the form of pNets, and translate these
into an input for CADP verification tools. We tested our approach on our use-
case and proved by model-checking the correctness of the application, including
its safety, termination, and functional correctness.

Integrated Environment for Verifying and Running Distributed Components 77

5 Code Generation and Execution

5.1 Executable Code Generation

From the specified architecture and behavior we automatically generate exe-
cutable code. We produce an ADL (XML) file defining architecture, and Java
interfaces and classes files for the implementation of the methods specified by
State Machines. This code can be run using the GCM/ProActive Java library.

Listing 1.1. Generated Java code of message
1 Boolean i sAc t i v e = null ;

;
3 State curState = State . I n i t i a l ;

We generate a Java interface for every UML interface and a Java class for
every UML class. We translate each State Machine attached to a method into
Java code. To do this we use a Java enumeration representing the state machine
steps, a local variable curState holds the current state of the state machine
and actions are taken depending on this state. Listing 1.1 shows a skeleton of
the encoding of the message operation from Fig. 3. Note that if-else statements
are used for states with more than one outgoing transition. For example in
Choice 2, the guard label [isActive==false] is translated as an if-else state-
ment in line 12; depending on the result, a message invocation is emitted (cor-
responding to C1.message(...), line 13) and the value of curState is updated
(line 14). A drawback of this approach is that such code may not be very conve-
nient for the programmer since do-while, for, while constructs cannot be written
as such in the state machine, but will rather be encoded within the state struc-
ture, separated by case instructions. We also generate skeleton code for getter
and setter methods, which have no associated state machine.

The Java code generated by VerCors relies on futures. To implement their
generation, we analyze the State Machines and mark the variables that store
remote method invocation results. This information is used to generate the types
of those variables and to access their values. For example, the key variable
from our use-case State Machine will be generated with an IntWrapper type7.
Then the statement this.encrypt(key) requires the value of key and it will be
translated to the following Java code: this.encrypt(key.intValue()).
7 Basic types need to be wrapped to enable future-based commnuications.

78 L. Henrio et al.

Fig. 6. Code execution (Color figure online)

5.2 Code Execution

We generated ProActive/Java code of our use-case example; the resulting execu-
tion is shown in Fig. 68. Black arrows represent request emissions (the figure only
shows some of them). Yellow and blue rectangles show request processing. For
example, we can see how the call to runPeterson of Application is transmitted
to Comp4 and at the end of the runPeterson request processing Comp4 triggers
the elections on Comp1 by calling message(0,1). At the end of the algorithm
execution we can see how Comp3 reports to the Application that it is not the
leader and Comp1 claims to be the leader.

To sum up, from the specification provided by the user VerCors automatically
produces executable ProActive/Java code. We generated and executed code of
our use-case model and we observed expected behavior of the produced system.
The generated code is guaranteed to verify the temporal properties proven on the
model. It can either be used as it is or serve as code skeleton if the programmer
wants to add computational steps that he did not include in the model.

6 Related Work

There exist a number of languages, formalisms, and tools aiming at verifica-
tion and safe code generation, we focus here on the ones that are dedicated to
distributed systems and composition of distributed systems.

BIP (Behavior Interaction Priority) [14] allows rigorous design of complex
component-based systems. BIP is supported by a toolset including translators
of various source models to BIP, code generators, and verification mechanisms.
BIP focuses on the design of systems based on the notion of interacting enti-
ties whereas our approach takes the point of view of the software developer,
using classical UML-based descriptions augmented only by our graphical DSL
for architecture, relying on notions the user knows well. Our approach is closely
tied to the notion of distributed components interacting by requests and replies;

8 We use a dedicated tool for the visualization of ProActive program execu-
tion: https://github.com/scale-proactive/A-viewer-tool-for-multiactive-objects.git.

https://github.com/scale-proactive/A-viewer-tool-for-multiactive-objects.git

Integrated Environment for Verifying and Running Distributed Components 79

while this reduces the field of applicability of our work, it allows us to gener-
ate the component interaction automatically, without additional input from the
user.

Cadena [15] is a platform for the development of component-based appli-
cations, initially targeted for the Corba Component Model (CCM), and more
recently extended to support Open-CCM, EJBs, and sensor networks specified
with the nesC language. Cadena allows the user to specify component types,
define and analyze inter-component dependencies, specify and model-check cor-
rectness properties, generate code in the various component formalisms, and
even specify new user-defined component models. Unlike VerCors, it does not
manage hierarchical components, so it could not be used for Fractal or GCM.

Palladio [16] is a tool for design, analysis and generation of hierarchical large-
scale component-based systems. Palladio has less restrictions on types and allows
more expressive modeling than VerCors. However, while Palladio has strong
emphasis on simulation and system performance prediction, our approach ben-
efits from the use of formal methods for validation.

Creol [17] is an object-oriented programming language based on concurrent
objects that communicate asynchronously. Creol is supported by the Credo [18]
toolset. In Credo the application description relies on Reo [19]. Credo provides
an abstract but executable model of the application. Then, a test specification
is derived to check compatibility between the two models. Creol is supported by
a type-checker, a simulation and model-checking platform based on Maude. In
VerCors we rely on UML-based formalisms, better known by the programmers
than Reo. We also directly generate efficient code that can be executed on large-
scale distributed infrastructures.

SOFA 2 [20] is a framework for distributed hierarchical component-based
systems development. SOFA 2 is supported by a tool set comprising graphical
designers and behavior validation instruments. SOFA 2 supports dynamic archi-
tectures, multiple communication styles and transparent distribution with the
help of software connectors. Validation in SOFA 2 relies on behavioral protocols
that are easy to understand for the programmer. This provides developers with
validation capacities that require no expertise in any general logical formalism,
though the expressivity may be lower than with temporal logic.

JHelena is a framework for modeling and generation of executable code of
highly dynamic ensembles of autonomic distributed components that are mod-
eled using Helena [21] technique. Our approach allows modeling systems with
several levels of hierarchy while to our knowledge in Helena approach the com-
position only occurs at one level.

ABS [22] is a formal executable component modeling language supported by
a deductive verification system Key-ABS. ABS is a powerful language for con-
current object-oriented programming, however it does not support any architec-
tural description. The verification pattern is also quite different. Different tools
for ABS either focus on specific properties (absence of deadlock for example) or
use KeY to specify invariants of the program and verify them. Our approach
allows us to target a wide range of properties while not asking the programmer
to have the expertise necessary to write program invariants.

80 L. Henrio et al.

Concerning actor systems, the related work the closest to ours is Rebeca [23]
that handles both functional and real-time verification. The first main difference
between Rebeca and Vercors is the programming model: Rebeca has no future
and no synchronisation operation, which makes the generation of behavioural
model easier. The second one is that the Rebeca toolset does not provide a
design tool or an execution platform as efficient as Vercors+ProActive. On the
other side, Rebeca has strong results concerning the scalability of the approach,
and the range of systems and of properties handled.

Several verification tools focus on “real-time aspects” allowing to reason on
the time-sensitive properties [24]. In this section we have focused on the tools
that explicitly handle asynchrony and we have not cited works on real-time
systems in general.

7 Discussion and Perspectives

In this paper we presented our integrated environment for designing and imple-
menting safe component-based systems. Our approach includes three main
aspects. First, we provide graphical formalisms for the application architecture
and the behavior specification, as well as type abstractions. The formalism exten-
sively uses UML models that makes it easy to learn and use for the program-
mer. Second, we ensure behavioral correctness, by running a model-checker on
the specified model. In practice, we transform graphical models into input for
the CADP model-checker. As a result, the user can verify correctness properties
of the modeled system even if he does not have a strong expertise in formal
methods. Finally, we transform the models into executable application code. We
implemented our approach in the VerCors platform and we tested it by modeling,
verifying, and executing Peterson’s leader election algorithm. Our approach was
illustrated by generating GCM/ProActive code but it would be easy to generate
code for any actor or active-object based language, or more generally any pro-
gramming model made of components interacting by asynchronous requests and
replies. Beyond the academic example of this paper, we have also published a
study of a fault-tolerant protocol [25], showing how to handle scalability issues in
the model-checking activities. In another paper, we showed an industrial-inspired
study [26] in which we handle large state-spaces modeling an application with
dynamic reconfiguration of components.

This paper raises the question of the relation between the semantics of the
handled models: state-machines, pNets, finite-state models, and distributed Java
programs. Previous usecases show that many applications and protocols can be
encoded faithfully and executed correctly. It is not in the scope of this paper
to study the semantic gap between these models or to formally prove that the
behavioral model has the same semantics as the generated code. However, the
formal semantics of ProActive [27], the semantics of pNets [5], and the formal
definition of the translation from GCM to pNets [6] allowed us to check care-
fully that the semantics correspond faithfully. Considering the complexity of the
system, an exhaustive formal proof of bisimulation between the semantics would
require several years.

Integrated Environment for Verifying and Running Distributed Components 81

While creating the VerCors platform we tackled a number of challenges.
First, the choice of the underlying technology was not trivial: we experimented
with the Topcased platform, UML profiles, Eclipse Papyrus, before finding a
usable environment with Sirius. Second, finding an expressive and easy to learn
graphical formalism was a challenging task. We wanted to reuse UML notions as
much as possible, but we realized that we needed our own graphical formalism,
and had to find a way to map a large part of GCM specifications into UML
models. Finally, the integration of all languages, models and formalisms involved
in modeling, execution and verification was not trivial. For example, the syntax
of State Machine had to be precisely specified to be able to translate them
into Fiacre. Also, the translation between formalisms raised technical difficulties,
some of them detailed in [6] and others related to the Fiacre language.

We are currently working on extensions of the VerCors platform that would
address more features of distributed component-based applications. In particu-
lar, we want to address separation between functional code and application man-
agement and verify the correct interaction between those two aspects. Another
challenge that we plan to address is the expression of the system properties
using a higher level specification language. This should also include the transla-
tion from the model-checker diagnostics back to the user-level formalism, that is
not implemented in the current version; it would make our approach even more
attractive for users non-expert in model-checking.

References

1. Henrio, L., Kulankhina, O., Liu, D., Madelaine, E.: Verifying the correct compo-
sition of distributed components: formalisation and tool. In: FOCLASA, Rome,
Italy, September 2014

2. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

3. Baude, F., Caromel, D., Dalmasso, C., Danelutto, M., Getov, V., Henrio, L., Pérez,
C.: GCM: a grid extension to fractal for autonomous distributed components. Ann.
Telecommun. 64(1), 5–24 (2009)

4. Cansado, A., Madelaine, E.: Specification and verification for grid component-
based applications: from models to tools. In: de Boer, F.S., Bonsangue, M.M.,
Madelaine, E. (eds.) FMCO 2008. LNCS, vol. 5751, pp. 180–203. Springer, Heidel-
berg (2009)

5. Henrio, L., Madelaine, E., Zhang, M.: pnets: an expressive model for parameterised
networks of processes. In: 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP 2015, 4–6 March 2015, Turku,
Finland, pp. 492–496 (2015)

6. Ameur-Boulifa, R., Henrio, L., Madelaine, E., Savu, A.: Behavioural semantics for
asynchronous components. Rapport de recherche RR-8167, INRIA, December 2012

7. Dolev, D., Klawe, M.M., Rodeh, M.: An o(n log n) unidirectional distributed
algorithm for extrema finding in a circle. J. Algorithms 3(3), 245–260 (1982).
http://dx.doi.org/10.1016/0196-6774(82)90023-2

http://dx.doi.org/10.1016/0196-6774(82)90023-2

82 L. Henrio et al.

8. Henrio, L., Kulankhina, O., Li, S., Madelaine, E.: Integrated environment for ver-
ifying and running distributed components - extended version. Research Report
RR8841, INRIA Sophia-Antipolis, December 2015

9. Barros, T., Ameur-Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behav-
ioural models for distributed fractal components. Ann. Telecommun. 64(1–2), 25–
43 (2009)

10. Berthomieu, B., Bodeveix, J., Filali, M., Garavel, H., Lang, F., Peres, F., Saad,
R., Stoecker, J., Vernadat, F.: The syntax and semantics of Fiacre, March 2009

11. Lang, F.: Exp.Open 2.0: a flexible tool integrating partial order, compositional,
and on-the-fly verification methods. In: Romijn, J.M.T., Smith, G.P., van de Pol,
J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

12. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164.
Springer, Heidelberg (2008)

13. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: 21st International Conference on Software Engineering,
May 1999

14. Basu, A., Bensalem, B., Bozga, M., Combaz, J., Jaber, M., Nguyen, T., Sifakis, J.:
Rigorous component-based system design using the BIP framework. IEEE Softw.
28(3), 41–48 (2011)

15. Childs, A., Greenwald, J., Jung, G., Hoosier, M., Hatcliff, J.: CALM and Cadena:
metamodeling for component-based product-line development. IEEE Comput.
39(2), 42–50 (2006)

16. Reussner, R., Becker, S., Burger, E., Happe, J., Hauck, M., Koziolek, A.,
Koziolek, H., Krogmann, K., Kuperberg, M.: The Palladio component model. Tech-
nical report, Karlsruhe Institute of Technology, March 2011

17. Leister, W., Bjork, J., Schlatte, R., Griesmayer, A.: Verifying distributed algo-
rithms with executable Creol models, January 2011

18. Grabe, I., Jaghoori, M.M., Aichernig, B.K., Baier, C., Blechmann, T., de Boer,
F.S., Griesmayer, A., Johnsen, E.B., Klein, J., Klüppelholz, S., Kyas, M., Leister,
W., Schlatte, R., Stam, A., Steffen, M., Tschirner, S., Xuedong, L., Yi, W.: Credo
methodology: modeling and analyzing A peer-to-peer system in Credo. Electron.
Notes Theoret. Comput. Sci. 266, 33–48 (2010)

19. Arbab, F.: A behavioral model for composition of software components. L’OBJET
12(1), 33–76 (2006)

20. Hnětynka, P., Plášil, F.: Dynamic reconfiguration and access to services in hierar-
chical component models. In: Gorton, I., Heineman, G.T., Crnković, I., Schmidt,
H.W., Stafford, J.A., Ren, X.-M., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063,
pp. 352–359. Springer, Heidelberg (2006)

21. Klarl, A., Hennicker, R.: Design and implementation of dynamically evolving
ensembles with the HELENA framework. In: Proceedings of the 23rd Australasian
Software Engineering Conference, pp. 15–24. IEEE (2014)

22. Hähnle, R., Helvensteijn, M., Johnsen, E.B., Lienhardt, M., Sangiorgi, D., Schaefer,
I., Wong, P.Y.H.: HATS abstract behavioral specification: the architectural view.
In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2011.
LNCS, vol. 7542, pp. 109–132. Springer, Heidelberg (2012)

23. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundam. Inform. 63(4), 385–410 (2004)

24. Burmester, S., Giese, H., Hirsch, M., Schilling, D.: Incremental design and formal
verification with UML/RT in the FUJABA real-time tool suite. In: Proceedings of
the International Workshop SVERTS (2004)

Integrated Environment for Verifying and Running Distributed Components 83

25. Ameur-Boulifa, R., Halalai, R., Henrio, L., Madelaine, E.: Verifying safety of fault-
tolerant distributed components. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011.
LNCS, vol. 7253, pp. 278–295. Springer, Heidelberg (2012)

26. Gaspar, N., Henrio, L., Madelaine, E.: Formally reasoning on a reconfigurable
component-based system – a case study for the industrial world. In: Fiadeiro,
J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 137–156. Springer,
Heidelberg (2014)

27. Caromel, D., Henrio, L.: A Theory of Distributed Objects. Springer, Berlin (2005).
ISBN 3-540-20866-6

Model-Driven Development

Iterative and Incremental Model Generation
by Logic Solvers

Oszkár Semeráth(B), András Vörös, and Dániel Varró

Department of Measurement and Information Systems, Budapest University
of Technology and Economics, Budapest, Hungary

{semerath,vori,varro}@mit.bme.hu

Abstract. The generation of sample instance models of Domain-
Specific Language (DSL) specifications has become an active research
line due to its increasing industrial relevance for engineering complex
modeling tools by using large metamodels and complex well-formedness
constraints. However, the synthesis of large, well-formed and realistic
models is still a major challenge. In this paper, we propose an itera-
tive process for generating valid instance models by calling existing logic
solvers as black-box components using various approximations of meta-
models and constraints to improve overall scalability. (1) First, we apply
enhanced metamodel pruning and partial instance models to reduce the
complexity of model generation subtasks and the retrieved partial solu-
tions initiated in each step. (2) Then we propose an (over-)approximation
technique for well-formedness constraints in order to interpret and eval-
uate them on partial (pruned) metamodels. (3) Finally, we define a
workflow that incrementally generates a sequence of instance models by
refining and extending partial models in multiple steps, where each step
is an independent call to the underlying solver (the Alloy Analyzer in
our experiments).

Keywords: Domain-specific languages ·Logic solvers ·Model generation

1 Introduction

Motivation. The generation of sample instance models of Domain-Specific
Language (DSL) specifications has become an active research line due to its
increasing industrial relevance for engineering complex modeling tools by using
large metamodels (MM) and complex well-formedness (WF) constraints [25].
Such instance models derived as representative examples [2] and counterexam-
ples [18,32] may serve as test cases or performance benchmarks for DSL mod-
eling tools, model transformations or code generators [4]. Existing approaches
dominantly use either a logic solver or a rule-based instance generator in the
background.

This paper is partially supported by the MTA-BME Lendület 2015 Research Group
on Cyber-Physical Systems and by the ARTEMIS JU and the Hungarian National
Research, Development and Innovation Fund in the frame of the R5-COP project.

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 87–103, 2016.
DOI: 10.1007/978-3-662-49665-7 6

88 O. Semeráth et al.

Problem Statement. Model finding using logic solvers [16] (like SMT or SAT-
solvers) is an effective technique (1) to identify inconsistencies of a DSL specifi-
cation or (2) to generate well-formed sample instances of a DSL. This approach
handles complex global WF constraints which necessitates to access and query
several model elements during evaluation. Model generation for graph structures
needs to satisfy complex structural global constraints (which is typical character-
istic for DSLs), which restricts the direct use of logical numerical and constraint
solvers despite the existence of various encodings of graph structures into logic
formulae. As the metamodel of an industrial DSL may contain hundreds of model
elements, any realistic instance model should be of similar size. Unfortunately,
this cannot currently be achieved by a single direct call to the underlying solver
[17,32], thus existing logic based model generators fail to scale. Furthermore,
logic solvers tend to retrieve simple unrealistic models consisting of unconnected
islands of model fragments and many isolated nodes, which is problematic in an
industrial setting.

Rule-based instance generators [4,13,33] are effective in generating larger
model instances by independent modifications to the model by randomly apply-
ing mutation rules. Such a rule-based approach offers better scalability for com-
plex DSLs. These approaches may incorporate local WF constraints which can
be evaluated in the context of a single model element (or within its 1-context).
However, they fail to handle global WF constraints which require to access and
navigate along a complex network of model elements. Since constraint evaluation
is typically the final step of the generation process, the synthesized models may
violate several WF constraints of the DSL in an industrial setting.

Contribution. The long term objective of our research is to synthesize large,
well-formed and realistic models. In this paper, we propose an iterative process
for incrementally generating valid instance models by calling existing logic
solvers as black-box components using various abstractions and approximations
to improve overall scalability. (1) First, we apply enhanced metamodel pruning
[33] and partial instance models [32] to reduce the complexity of model genera-
tion subtasks and the retrieved partial solutions initiated in each step. (2) Then
we propose an (over-)approximation technique for well-formedness constraints in
order to interpret and evaluate them on partial (pruned) metamodels. (3) Finally,
we define a workflow that incrementally generates a sequence of instance models
by refining and extending partial models in multiple steps, where each step is an
independent call to the underlying solver. We carried out experiments using the
state-of-the-art Alloy Analyzer [16] to assess the scalability of our approach.

Added Value. Our approach increases the size of generated models by carefully
controlling the information fed into and retrieved back from logic solvers in
each step via abstractions. Each generated model (1) increases in size by only
a handful number of elements, (2) satisfies all WF constraints (on a certain
level of abstraction), and (3) it is realistic in the sense that each model is a
single component (and not disconnected islands). The incremental derivation

Iterative and Incremental Model Generation by Logic Solvers 89

Fig. 1. Example Yakindu statechart with synchronisations.

of the result set provides graceful degradation, i.e. if the back-end solver fails
to synthesize models of size N (due to timeout), all previous model instances
are still available. From a practical viewpoint, the DSL engineer can influence
or assist the instance generation process by selecting the important fragment of
the analyzed metamodel (so called effective metamodel [4]). This is also common
practice for testing model transformations or code generators.

Structure of the Report. Next, Sect. 2 introduces some preliminaries for
formalizing metamodels, constraints and partial snaptshots. Our approach is
presented in Sect. 3 followed by an initial experimental evaluation in Sect. 4.
Related work is assessed in Sect. 5 while Sect. 6 concludes our paper.

2 Preliminaries

In this section we present an overview of model generation with logic solvers
with a running case study of Yakindu statecharts. Yakindu Statecharts Tools
[37] is an industrial integrated modeling environment developed by Itemis AG
for the specification and development of reactive, event-driven systems based on
the concept of statecharts captured in combined graphical and textual syntax.
Yakindu simultaneously supports static validation of well-formedness constraints
as well as simulation of (and code generation from) statechart models. A sample
statechart is illustrated in Fig. 1. Yakindu provides two types of synchronization
mechanisms: explicit synchronization nodes (marked as black rectangles) and
event-based synchronization (i.e. raising and consuming events).

Validation is crucial for domain-specific modelling tools to detect conceptual
design flaws early and ensure that malformed models does not processed by
tooling. Therefore missing validation rules are considered as bugs of the editor.
While Yakindu is a stable modeling tool, it is still surprisingly easy to develop
model instances as corner cases which satisfy all (implemented) well-formedness
constraints of the language but crashes the simulator or code generator due to
synchronization issues. One of such problems is depicted in Fig. 1 where (1) after
5 s a (2) timeout event raised in region timer, but (3) it cannot be accepted in
state wait in the simulator and in the generated code.

90 O. Semeráth et al.

Our goal is to systematically synthesize such model instances by using logic
solvers in the background by mapping DSL specifications to a logic problem
[17,32]. Such model generation approach usually takes three inputs: (1) a meta-
model of the domain (Sect. 2.1), (2) a set of well-formedness constraints of the
language (Sect. 2.2), and optionally (3) a partial snapshot (Sect. 2.3) serving as
an initial seed which generated models need to contain.

2.1 Domain Metamodel

Metamodels define the main concepts, relations and attributes of the target
domain to specify the basic structure of the models. In this paper, the Eclipse
Modeling Framework (EMF) is used for domain modeling, which is dominantly
used in many industrial DSL tools and modeling environments. The main con-
cepts are illustrated using Yakindu state graph metamodel [37] in Fig. 2.

Fig. 2. Metamodel extract from Yakindu state machines

A state machine consists of Regions, which in turn contain states (called
Vertexes) and Transitions. An abstract state Vertex is further refined into Regu-
larStates (like State) and PseudoStates like Entry and Synchronization states. Note
that we intentionally kept the generalization hierarchy unchanged and simplified
the original metamodel only by removing some elements. Metamodel elements
are mapped to a set of logic relations as defined in [17,32]:

– Classes (CLS): In EMF, EClasses can be instantiated to EObjects, where the
set of objects of a model is denoted by objects . Additionally, the metamodel
can specify finite types with predefined set of enum = {l1, . . . , ln} literals by
EEnums. For both classes and enums, if an o is an instance of a type C it is
denoted as C(o).

– References (REF): EReferences between classes S and T capture a binary
relation R(S, T) of the metamodel. When two objects o and t are in a relation
R, an EReference is instantiated leading from o to t denoted as R(o, t).

– Attributes (ATT): EAttributes enrich a class C with values of predefined
primitive types like integers, strings, etc. by binary relations A(C, V). If an
object o stores a value v as attribute A it is denoted as A(o, v).

Iterative and Incremental Model Generation by Logic Solvers 91

Further structural restrictions implied by a metamodel (and formalized in
[32]) include (1) Generalization (GEN) which expresses that a more specific
(child) class has every structural feature of the more general (parent) class, (2)
Type compliance (TC) that requires that for any relation R(o, t), its source
and target objects o and t need to have compliant types, (3) Abstract (ABS):
If a class is defined as abstract, it is not allowed to have direct instances, (4)
Multiplicity (MUL) of structural features can be limited with upper and lower
bound in the form of “lower..upper” and (5) Inverse (INV), which states that
two parallel references of opposite direction always occur in pairs. EMF instance
models are arranged into a strict containment hierarchy, which is a directed
tree along relations marked in the metamodel as containment (e.g. regions or
vertices).

An instance model M is an instance of a metamodel Meta (denoted with
M |= Meta) if all the corresponding constraints above are satisfied, i.e. Meta =
CLS ∧ REF ∧ · · · ∧ MUL ∧ INV [32]. Therefore a model generation task for a
given size s and a metamodel Meta can be solved as logic problem, where the
solver creates an interpretation for all class predicates, all reference and attribute
relations over the set of objects = {o1, . . . , os} and sets of enum literals, which
satisfies all structural constraints.

2.2 Well-Formedness Constraints

Structural well-formedness (WF) constraints (aka design rules or consistency
rules) complement metamodels with additional restrictions that have to be sat-
isfied by a valid instance model (in our case, statechart model). Such constraints
are frequently defined by graph patterns [36] or OCL invariants [27]. To abstract
from the actual constraint language, we assume in the paper that WF constraints
are defined in first order logic. Given a set WF of well-formedness constraints,
a model M is called valid if M |= Meta ∧ WF .

Example. The Yakindu documentation states several constraints for statecharts
including the following ones regulating the use of synchronization states. (Abbre-
viated names of classes and references are used as predicates).

Φ1 Source states of a synchronization have to be contained in different regions!
∀syn, s1, s2, t1, t2, r1, r2 :
(Synchron(syn) ∧ outgoing(s1, t1) ∧ outgoing(s2, t2) ∧ target(t1, syn)∧
target(t2, syn) ∧ vertices(r1, s1) ∧ vertices(r2, s2) ∧ s1 �= s2) ⇒ r1 �= r2

Φ2 Source states of a synchronization are contained in the same parent state!
∀syn, s1, s2, t1, t2, r1, r2∃p :
(Synchron(syn) ∧ outgoing(s1, t1) ∧ outgoing(s2, t2) ∧ target(t1, syn)∧
target(t2, syn) ∧ vertices(r1, s1) ∧ vertices(r2, s2) ∧ s1 �= s2)
⇒ (regions(p, r1) ∧ regions(p, r2))

Φ3 Target states of a synchronization have to be contained in different regions!
∀syn, s1, s2, t1, t2, r1, r2 :
(Synchron(syn) ∧ incoming(s1, t1) ∧ incoming(s2, t2) ∧ source(t1, syn)∧
source(t2, syn) ∧ vertices(r1, s1) ∧ vertices(r2, s2) ∧ s1 �= s2) ⇒ r1 �= r2

92 O. Semeráth et al.

Φ4 Target states of a synchronization are contained in the same parent state!
∀syn, s1, s2, t1, t2, r1, r2∃p :
(Synchron(syn) ∧ incoming(s1, t1) ∧ incoming(s2, t2) ∧ source(t1, syn)∧
source(t2, syn) ∧ vertices(r1, s1) ∧ vertices(r2, s2) ∧ s1 �= s2)
⇒ (regions(p, r1) ∧ regions(p, r2))

Φ5 A synchronization shall have at least two incoming or outgoing transitions!
∀syn : Synchron(syn) ⇒ ∃t1, t2 : t1 �= t2 ∧ ((incoming(t1, syn) ∧
incoming(t2, syn)) ∨ (outgoing(t1, syn) ∧ outgoing(t2, syn)))

2.3 Partial Snapshots

Partial Snapshots (PS) specify required instance model fragments of a meta-
model [32]. A partial snapshot is a model constructed from the same classes
and relations as a valid instance model. Formally, a PS satisfies the constraints
CLS , GEN , REF and TC , but it possibly violates ABS , ATT , MUL and INV ,
which means that even abstract classes can be instantiated, and multiplicity
constraints, the inverse relation of references and containment hierarchy rules
might be violated. If a PS is a partial snapshot of a metamodel it is denoted
by PS |=P Meta. A model M contains a partial snapshot PS (denoted with
M |= PS) if there is a morphism m : PS → M (composed of a pair of morphisms
objectsPS → objectsM and referencesPS → referencesM for mapping objects and
references) which satisfies the following constraints for each o1, o2 ∈ objectsPS :

1. m is injective: o1 �= o2 ⇒ m(o1) �= m(o2)
2. For each class C the mapping preserves the type: C(o1) ⇒ C(m(o1))
3. For each reference R the mapping preserves the source and the target of the

reference: R(o1, o2) ⇒ R(m(o1),m(o2))
4. For each attribute A the mapping preserves the attribute value v and the

location: A(o1, v) ⇒ A(m(o1), v)

A partial snapshot can be generalized from a regular (fully specified) instance
model by relaxing specific properties identified by the DSL developer [32] to guide
testing in practical cases. In the current paper, we create partial snapshots by
iteratively reusing the instance models generated in a previous run to achieve
incremental model generation (see Sect. 3.3).

3 Incremental Model Generation by Approximations

Despite the precise definition of logic formulae for our statechart language using
existing mappings [32], a major practical drawback is that a direct (single step)
model generation using Z3 or Alloy as back-end solver only terminates for very
small model sizes. If we aim to improve scalability by omitting certain con-
straints, the synthesized models are no longer well-formed thus they cannot be
fed into Yakindu as sample models.

To increase the size of synthesized models while still keeping them well-
formed, we propose an incremental model generation approach (Sect. 3.3) by
iterative calls to backend solvers exploiting two enabling techniques of meta-
model pruning (Sect. 3.1) and constraint approximation (Sect. 3.2).

Iterative and Incremental Model Generation by Logic Solvers 93

Fig. 3. Metamodel pruning with overapproximation

3.1 Metamodel Pruning

Metamodel pruning [13,33] takes a metamodel Meta as input and derives a
simplified (pruned) metamodel MetaP as output by removing some EClasses,
EReferences and EAttributes. When removing a class from a metamodel, we
need to remove all subclasses, all attributes and incoming or outgoing references
to obtain a consistent pruned metamodel. Formally, we may iteratively remove
certain predicates from Meta by pruning as follows:

– EReference: if R(S, T) ∈ Meta then R(S, T) �∈ MetaP ;
– EAttributes: if A(C, V) ∈ Meta then A(C, V) �∈ MetaP ;
– EClasses: if C ∈ Meta and sub(C,Sub) �∈ MetaP and A(C, V) �∈ MetaP and

R(C, T) �∈ MetaP and R(S,C) �∈ MetaP then C �∈ MetaP ;

Example. We prune our statechart metamodel in two phases (see the slices in
Fig. 2): classes Trigger, Guard and Action are omitted together with incoming
references (Stage II), and then classes Transition, Pseudostate, Entry and Syn-
chronization are removed (Stage I).

By using metamodel pruning, we first aim to generate valid instance models
for the pruned metamodel and then extend them to valid instance models of
the original larger metamodel. For that purpose, we exploit a property we call
the overapproximation property of metamodel pruning (see Fig. 3), which ensures
that if there exist a valid instance model M for a metamodel Meta (formally,
M |= Meta) then there exists a valid instance model MP for the pruned meta-
model MetaP (formally, MP |= MetaP) such that MP is a partial snapshot of M
(MP ⊆ M). Consequently, if a model generation problem is unsatisfiable for the
pruned metamodel, then it remains unsatisfiable for the larger metamodel. How-
ever, we may derive a pruned instance model MP which cannot be completed in
the full metamodel Meta, which is called a false positive.

Example. The statechart model in the middle of Fig. 3 corresponds to the pruned
metamodel after Stage II. In our example, it can be extended by adding transi-
tions and entry states to the model illustrated in the right side of Fig. 3, which
now corresponds to the pruned metamodel of Stage I.

94 O. Semeráth et al.

Fig. 4. Constraint pruning and approximation

3.2 Constraint Pruning and Approximation

When removing certain metamodel elements by pruning, related structural con-
straints (such as multiplicity, inverse, etc.) can be automatically removed, which
trivially fulfills the overapproximation property. However, the treatment of addi-
tional well- formedness constraints needs special care since simple automated
removal would significantly increase the rate of false positives in a later phase of
model generation to such an extent that no intermediate models can be extended
to a valid final model.

Based on some first-order logic representation of the constraints (derived
e.g. in accordance with [32]), we propose to maintain approximated versions of
constraint sets during metamodel pruning. In order to investigate the interre-
lations of constraints, we assume that logical consequences of a constraint set
can be derived manually by experts or automatically by theorem provers [21].
The actual derivation approach falls outside the scope of the current paper.
Given a DSL specification with a metamodel Meta and a set of WF constraints
WF = {Φ1, . . . , Φn}, let Φ be a formula derived as a theorem WF � Φ.

Now an overapproximation of formula Φ over metamodel Meta for a pruned
metamodel MetaP is a formula ΦP such that (1) Φ ⇒ ΦP , (2) ΦP contains
symbols only from MetaP . The details of approximation are illustrated in Fig. 4
where R denotes a relation symbol derived for class or reference predicates in
accordance with the metamodel. While more precise approximations can possibly
be defined in the future, the current approximation is logically correct as if a
model generation problem is unsatisfiable for an approximated set of constraints
(over the pruned metamodel) then it remains unsatisfiable for the original set of
constraints.

Example. Based on the set of WF constraints {Φ1, Φ2, Φ3, Φ4, Φ5} defined in
Sect. 2.2, a prover can derive the following formula as a theorem over the meta-
model of Stage II: Φsyncout∨Φsyncin, where Φ1, Φ5 |= Φsyncout∨Φsyncin. The gen-
erated theorem Φsyncout (and Φsyncin) restricts the number of outgoing (ingoing)
transitions from (to) a synchronization as follows:

Φsyncout = ∀syn∃t1, t2, s1, r1, r2, p : Synchron(syn) ⇒
(outgoing(syn, t1) ∧ target(t1, s1) ∧ outgoing(syn, t2) ∧ target(t2, s2) ∧ s1 �= s2∧
vertices(r1, s1) ∧ vertices(r2, s2) ∧ r1 �= r2 ∧ regions(p, r1) ∧ regions(p, r2))

Iterative and Incremental Model Generation by Logic Solvers 95

The variables and relations approximated in this phase are underlined: in
Stage I the generation is restricted to the model by omitting transitions. The
result of overapproximation states that if a model contains a synchronization,
then needs to contain at least two regions:

ΦO
syncout ∨ ΦO

syncin = ∀syn∃s1, r1, r2, p : Synchron(syn) ⇒
(s1 �= s2∧vertices(r1, s1)∧vertices(r2, s2)∧r1 �= r2∧regions(p, r1)∧regions(p, r2))

Applying the approximation rules of Fig. 4 directly on {Φ1, Φ5} would lead
to ΦO

1 : true and ΦO
5 : true. These constraints are too coarse overapproximations

providing no useful information to the model generator at this phase.

3.3 Incremental Model Generation by Iterative Solver Calls

By using metamodel pruning, we first aim to generate valid instance models for
the pruned metamodel, which is a simplified problem for the underlying logic
solver. Instance models of increasing size will be gradually generated by using
valid models of the pruned metamodel as partial snapshots (i.e. initial seeds) for
generating instances for a larger metamodel. Therefore, an incremental model
generation task is also given with a target size s and a target metamodel Meta,
but with an additional partial snapshot MP . MP is a valid instance of pruned
metamodel MetaP . MP has sP number of objects (sP ≤ s).

From a logic perspective, the partial snapshot defines a partial interpreta-
tion of relations for model generation, which may simplify the task of the solver
compared to using fully uninterpreted relations. In order to exploit this addi-
tional information, the relations in the logic problem are partitioned into two
sets of interpreted and uninterpreted symbols. objectsP = {o1, . . . , osP

} are the
objects in the partial snapshot. The extra objects to be generated in this step are
denoted by objectsN = {osP +1, . . . , os}. The relations are partitioned according
to the following rules:

– Classes (CLS): Each class predicate C(o) in Meta is separated into two:
a fully interpreted CO(o) predicate for the objects in the partial snap-
shot objectsP , and an uninterpreted CN (o) for the newly generated objects
objectsN . Therefore an object o is instance of a class C in the generated
model if CO(o) ∨ CN (o) is satisfied. If the class is not in the pruned meta-
model (C �∈ MetaP) then CO(o) is to be omitted, and if no new elements are
created from a class then CN (o) can be omitted.

– References (REF): Each reference predicate R(o, t) is separated into four
categories: a fully interpreted ROO(o, t) between the objects of the partial
snapshot (objectsP), an uninterpreted RNN (o, t) between the objects of the
newly created objects (objectsN), and two additional uninterpreted relations
RON (o, t) and RNO(o, t) connecting the elements of the partial snapshot with
the newly created elements (relations over objectsO ×objectsN and objectsN ×
objectsO respectively). Therefore a reference R(o, t) exists in the generated
model if ROO(o, t) ∨ RNN (o, t) ∨ RNO(o, t) ∨ RON (o, t). If the relation is not
in the pruned metamodel (R �∈ MetaP) then ROO(o, t) can be omitted, and

96 O. Semeráth et al.

Fig. 5. Model generation iterations

if no new elements are created from a class then RNN (o, t), RNO(o, t) and
RON (o, t) can also be omitted.

– Attributes (ATT): Attribute predicates are separated into a fully inter-
preted AO(o, v) for the objects in the partial snapshots objectsP , and an unin-
terpreted relation AN (o, v) for the newly created elements objectsN . An object
o has an attribute value v (A(o, v)) if AO(o, v)∨AN (o, v). Attribute predicates
are treated as reference predicates for omission.

The level of incrementality is still unfortunately limited from an important
aspect. The background solvers typically provide no direct control over the simul-
taneous creation of new elements, i.e. we cannot provide domain- specific hints
to the solver when the creation of an object always depends on the creation or
existence of another object. This can still cause issues when a multitude of WF
constraints are defined.

Example. In our running example, the instance models are generated in four
steps, which is illustrated in Fig. 5. First, initial seeds are generated for the state
hierarchy (M1 over Meta1), which are extended in the second step to model M2

with the same metamodel elements. Then the metamodel is extended to Meta2,
and the transitions and the initial states are added to model M3. Finally, triggers,
guards and actions can be added to the model to obtain M4.

4 Measurements

In order to assess the effectiveness of incremental model generation using
constraint approximation for synthesizing well-formed instance models for
domain-specific languages, we conducted some initial experiments using the Alloy
Analyzer as background solver. We were interested in the following questions:

Iterative and Incremental Model Generation by Logic Solvers 97

– Is incremental model generation with metamodel pruning and constraint
approximation effective in increasing the size of models, the success rate or
decreasing the runtime of the solver?

– Is incremental model generation still effective if metamodel pruning or con-
straint approximation is excluded?

Configurations. We conducted measurements on two versions of the Yakindu
statechart metamodel: Phase 1 and Phase 2 (see Fig. 2). The pruned metamodel
of Phase 1 (MM1) contains 8 classes and 2 references, and no well- formedness
constraints by default. The metamodel of Phase 2 (MM2) contains 10 classes, 4
references and 8 constraints (including the 5 WF constraints listed in the paper
and 3 more for restricting entry states).

– As a base configuration, the Alloy Analyzer is executed separately for the two
problems with 1 min timeout. We record two cases: the largest model derived
and a slightly larger model size where timeout was observed.

– Next, we run the solver incrementally with an initial model of size N and an
increment of size K denoted as N +K in Fig. 6 without constraint approx-
imation but with metamodel pruning. Moreover, instance models derived for
Phase 1 are used as partial snapshots for Phase 2.

– Then we run the solver incrementally with constraint approximation but with-
out metamodel pruning. For that purpose, the constraint set for Phase 1
constains two approximated constraints: (1) Each region has a state where
the entry state will point, and (2) There are orthogonal states in the model.
Again, instance models derived for Phase 1 are used as partial snapshots for
Phase 2, but the full metamodel is considered in Phase 2.

– Finally we configure the solver for full incrementally with constraint approx-
imation and metamodel pruning by reusing instances of Phase 1 as partial
snapshots in Phase 2.

Measurement Setup. Each model generation task was executed on the DSL
presented in this paper 5 times using the Alloy Analyzer (with SAT4j- solver),
then the median of the execution times was calculated. The measures are exe-
cuted with one minute timeout on an average personal computer1. We measure
the runtime of model generation, the model size denoting the maximal number
of elements the derived model may contain, and the success rate denoting the
percentage of cases when a well-formed model was derived, which satisfies all
WF constraints within the given search scope.

Measurement Results. Results of our measurements are summarized in Fig. 6.
We summarize our observations below.
1 CPU: Intel Core-i5-m310M, MEM: 16GB but the back-end solver can use 4GB only,

OS: Windows 10 Pro, Reasoner: Alloy Analyzer 4.2 with sat4j.

98 O. Semeráth et al.

Fig. 6. Measurement results

– Base. For MM1 , Alloy was able to generate models with up to 60 objects.
As there are no constraints at this level, many synchronizations are created
(about half of the objects were synchronization and with only 5–10 states).
Over 60 objects, the runtime grows rapidly as the SAT solver runs out of the
maximal 4 GB memory. For MM2 , Alloy was unable to create any models
that satisfies all of the constraints as the search scope turned out to be too
small to create valid models with synchronizations.

– W/o Approx. Alloy was able to generate models with 100 elements in two
steps where each iterative step had comparable runtime. However, since no
constraints are considered for MM1 , Alloyed failed to extend partial snapshots
of MM1 to well-formed models for MM2 (success rate: 0 %, although for this
specific case, we executed over 100 runs of the solver due to the unexpectedly
low success rate). Furthermore, we had to reduce the scope of search to 20
and 30 new elements with types taken from MM2 \ MM1 due to timeouts.

– W/o Prune. When metamodel pruning was excluded but approximated con-
straints were included for MM1 , model generation succeeded for 100 elements,
but extending them to models of MM2 failed (as in this case, new elements
could take any elements from MM2)

– Full. With incremental model generation by combining metamodel pruning
and constraint approximation, we were able to generate well-formed models
for both MM1 and MM2 , which was the only successful case for the latter.

Analysis of Results. While we used a reasonably sized statechart meta-
model extracted from a real modeling tool (including everything to model state
machines, but excluding imports and namespacing), we avoid drawing generic
conclusions for the exact scalability of our results. Instead, we summarize some
negative results which are hardly specific to the chosen example:

– Mapping a model generation problem to Alloy and running the Alloy Ana-
lyzer in itself will likely fail to derive useful results for practical metamodels,
especially, in the presence of complex well-formedness constraints. Our obser-
vation is that many objects need to be created at the same time in consistent
way, which cannot be efficiently handled by the underlying solver (either the
scope is too small or out-of-memory). Altogether, the Alloy Analyzer was more
effective in finding consistent model instance than proving that a problem is
inconsistent, thus there are no solutions.

Iterative and Incremental Model Generation by Logic Solvers 99

Table 1. Comparison of related approaches

Logic Uncertain Rule-Based Iterative
Solvers Models Generators Solver Call

In
p
u
ts

Partial Snapshot + ++ - +
Effective Metamodel - - + +

Local Constraints + - + +
Global Constraints + - - +

O
u
tp

u
ts

Metamodel-compliant + + + +
Well-formed + - - +

Diverse - - + ?
Scalable - - ++ +/-

Decidability - + + - (graceful degradation)

– An incremental approach with metamodel pruning but without constraint
approximation will increase the overall size of the derived models, but the
false positive rate would quickly increase.

– An incremental approach without metamodel pruning but with constraint
approximation will likely have the same pitfalls as the original Alloy case:
either the scope of search will become insufficient, or we run out of memory.

– Combining incremental model generation with metamodel pruning and con-
straint approximation is promising as a concept as it significantly improved
wrt. the baseline case. But the underlying solver was still not sufficiently pow-
erful to guarantee scalability for complex industrial cases.

5 Related Work

We compared our solution with existing model generation techniques with
respect to the characteristics of inputs and output results in Table 1. As for
inputs, the model generation can be (1) initiated from a partial snapshot, (2)
focused on an effective metamodel. Additionally, an approach may support (3)
local and (4) global constraints well-formedness constraints: a local constraint
accesses only the attributes and the outgoing references of an object, while a
global constraint specifies a complex structural pattern. Local constraints are
frequently attached to objects (e.g. in UML class diagrams), while global con-
straints are widely used in domain-specific modeling languages. As outputs, the
generated models may (i) be metamodel-compliant (ii) satisfy all well-formedness
constraints of the language. When generated models are intended to be used as
test cases, some approaches may guarantee a certain level of coverage or (iii)
diversity. We consider a technique (iv) scalable if there is no hard limit on the
model size (as demonstrated in the respective papers). Finally, a model gen-
eration approach may be (v) decidable which always terminates with a result.
Our comparison excludes approaches like which do not guarantee metamodel-
compliance of generated instance models.

100 O. Semeráth et al.

Logic Solver Approaches. Several approaches map a model generation prob-
lem (captured by a metamodel, partial snapshots, and a set of WF constraints)
into a logic problem, which are solved by underlying SAT/SMT-solvers. Com-
plete frameworks with standalone specification languages include Formula [17]
(which uses Z3 SMT- solver [26]), Alloy [16] (which relies on SAT solvers like
Sat4j [23]) and Clafer [2] (using backend reasoners like Alloy).

There are several approaches aiming to validate standardized engineering
models enriched with OCL constraints [14] by relying upon different back-end
logic-based approaches such as constraint logic programming [6,8,9], SAT-based
model finders (like Alloy) [1,7,22,34,35], first-order logic [3], constructive query
containment [28], higher-order logic [5,15], or rewriting logics [10].

Partial snapshots and WF constraints can be uniformly represented as con-
straints [32], but metamodel pruning is not typical. Growing models are sup-
ported in [19] for a limited set of constraints. Scalability of all these approaches
are limited to small models / counter-examples. Furthermore, these approaches
are either a priori bounded (where the search space needs to be restricted explic-
itly) or they have decidability issues.

The main difference of our current approach is its iterative derivation of mod-
els and the approximative handling of metamodels and constraints. However, our
approach is independent from the actual mapping of constraints to logic formu-
lae, thus it could potentially be integrated with most of the above techniques.

Uncertain Models. Partial models are also similarity to uncertain models,
which offer a rich specification language [12,29] amenable to analysis. Uncertain
models provide a more expressive language compared to partial snapshots but
without handling additional WF constraints. Such models document semantic
variation points generically by annotations on a regular instance model, which
are gradually resolved during the generation of concrete models. An uncertain
model is more complex (or informative) than a concrete one, thus an a priori
upper bound exists for the derivation, which is not an assumption in our case.

Potential concrete models compliant with an uncertain model can synthesized
by the Alloy Analyzer [31], or refined by graph transformation rules [30]. Each
concrete model is derived in a single step, thus their approach is not iterative like
ours. Scalability analysis is omitted from the respective papers, but refinement
of uncertain models is always decidable.

Rule-based Instance Generators. A different class of model generators relies
on rule-based synthesis driven by randomized, statistical or metamodel coverage
information for testing purposes [4,13]. Some approaches support the calculation
of effective metamodels [33], but partial snapshots are excluded from input spec-
ifications. Moreover, WF constraints are restricted to local constraints evaluated
on individual objects while global constraints of a DSL are not supported. On
the positive side, these approaches guarantee the diversity of models and scale
well in practice.

Iterative and Incremental Model Generation by Logic Solvers 101

Iterative Approaches. An iterative approach is proposed specifically for allo-
cation problems in [20] based on Formula. Models are generated in two steps to
increase diversity of results. First, non-isomorphic submodels are created only
from an effective metamodel fragment. Diversity between submodels is achieved
by a problem-specific symmetry-breaking predicate [11] which ensures that no
isomorphic model is generated twice. In the second step the algorithm com-
pletes the different submodels according to the full model, but constraints are
only checked at the very final stage. This is a key difference in our approach
where an approximation of constraints is checked at each step, which reduces
the number of inconsistent intermediate models. An iterative, counter-example
guided synthesis is proposed for higher-order logic formulae in [24], but the size
of derived models is fixed.

6 Conclusion and Future Work

The validation of DSL tools frequently necessitates the synthesis of well-formed
and realistic instance models, which satisfy the language specification. In the
paper, we proposed an incremental model generation approach which (1) itera-
tively calls black- box logic solvers to guarantee well-formedness by (2) feeding
instance models obtained in a previous step as partial snapshots (compulsory
model fragments) to a subsequent phase to limit the number of new elements,
and using (3) various approximations of metamodels and constraints. Our initial
experiments show that significantly larger model instances can be generated with
the same solvers using such an incremental approach especially in the presence
of complex well-formedness constraints.

However, part of our experimental results are negative in the sense that the
proposed iterative approach is still not scalable to derive large model instances of
complex industrial languages due to restrictions of the underlying Alloy Analyzer
and the SAT solver libraries. We believe that dedicated decision procedures and
heuristics for graph models would be beneficial in the long run to improve the
performance of model generation.

As future work, we aim to generate a structurally diverse set of test cases by
enumerating different possible extensions of a partial snapshot in each iteration
step. Additionally, we plan to check other underlying solvers and further approx-
imations and strategies for deriving relevant formulae as logical consequences of
constraints. And finally, we will investigate if the metamodel partitions and the
iteration steps can be automatically created, thus creating a (semi-)automated
process with improved DSL-specific heuristics.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to alloy. Soft. Syst. Model. 9(1), 69–86 (2010)

2. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.: Clafer: unifying
class and feature modeling. Softw. Syst. Model., pp. 1–35 (2013)

102 O. Semeráth et al.

3. Beckert, B., Keller, U., Schmitt, P.H.: Translating the object constraint language
into first-order predicate logic. In: Proceedings of the VERIFY, Workshop at Fed-
erated Logic Conferences (FLoC), Copenhagen, Denmark (2002)

4. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Le Traon, Y.: Metamodel-based
test generation for model transformations: an algorithm and a tool. In: 17th Inter-
national Symposium on Software Reliability Engineering, ISSRE 2006, pp. 85–94,
November 2006

5. Brucker, A.D., Wolff, B.: The HOL-OCL tool (2007). http://www.brucker.ch/
6. Büttner, F., Cabot, J.: Lightweight string reasoning for OCL. In: Vallecillo, A.,

Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS,
vol. 7349, pp. 244–258. Springer, Heidelberg (2012)

7. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations
using transformation models and model finders. In: Aoki, T., Taguchi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 198–213. Springer, Heidelberg (2012)

8. Cabot, J., Clariso, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: IEEE International Conference on Software Testing
Verification and Validation Workshopp, ICSTW 2008, pp. 73–80, April 2008

9. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification
of UML/OCL models using constraint programming. In: Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE
2007), pp. 547–548. NY, USA. ACM, New York (2007)

10. Clavel, M., Egea, M.: The ITP/OCL tool (2008). http://maude.sip.ucm.es/itp/
ocl/

11. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for
search problems. In: KR 1996, pp. 148–159 (1996)

12. Famelis, M., Salay, R., Chechik, M.: Partial models: Towards modeling and rea-
soning with uncertainty. In: Proceedings of the 34th International Conference on
Software Engineering, pp. 573–583. IEEE Press, Piscataway, NJ, USA (2012)

13. Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: Testing
model transformations. In: International Workshop on Model, Design and Valida-
tion, pp. 29–40, November 2004

14. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE
by automatic snapshot generation. Softw. Syst. Model. 4, 386–398 (2005)

15. Grönniger, H., Ringert, J.O., Rumpe, B.: System model-based definition of mod-
eling language semantics. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.)
FMOODS 2009. LNCS, vol. 5522, pp. 152–166. Springer, Heidelberg (2009)

16. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

17. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reasoning about meta-
modeling with formal specifications and automatic proofs. In: Whittle, J., Clark,
T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 653–667. Springer,
Heidelberg (2011)

18. Jackson, E.K., Sztipanovits, J.: Towards a formal foundation for domain specific
modeling languages. In: Proceedings of the 6th ACM / IEEE International Con-
ference on Embedded Software, EMSOFT 2006, pp. 53–62, NY, USA. ACM, New
York (2006)

19. Jackson, E.K., Sztipanovits, J.: Constructive techniques for meta- and model-level
reasoning. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 405–419. Springer, Heidelberg (2007)

http://www.brucker.ch/
http://maude.sip.ucm.es/itp/ocl/
http://maude.sip.ucm.es/itp/ocl/

Iterative and Incremental Model Generation by Logic Solvers 103

20. Kang, E., Jackson, E., Schulte, W.: An approach for effective design space explo-
ration. In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop 2010. LNCS, vol.
6662, pp. 33–54. Springer, Heidelberg (2011)

21. Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A.
(ed.) CADE-22. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)

22. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models by
integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011.
LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

23. Le Berre, D., Parrain, A.: The sat4j library, release 2.2. J. Satisf. Boolean Model.
Comput. 7, 59–64 (2010)

24. Milicevic, A., Near, J.P., Kang, E., Jackson, D.: Alloy*: A general-purpose higher-
order relational constraint solver. In: 37th IEEE/ACM International Conference
on Software Engineering, ICSE, pp. 609–619 (2015)

25. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation
of huge metamodel instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 130–145. Springer, Heidelberg (2009)

26. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

27. The Object Management Group: Object Constraint Language, v2.0., May 2006
28. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: Finite reasoning

on UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1–22 (2012)
29. Salay, R., Chechik, M.: A generalized formal framework for partial modeling. In:

Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 133–148. Springer,
Heidelberg (2015)

30. Salay, R., Chechik, M., Famelis, M., Gorzny, J.: A methodology for verifying refine-
ments of partial models. J. Object Technol. 14(3), 1–3–1–31 (2015)

31. Salay, R., Famelis, M., Chechik, M.: Language independent refinement using partial
modeling. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software
Engineering. LNCS, vol. 7212, pp. 224–239. Springer, Heidelberg (2012)

32. Semeráth, O., Barta, A., Horváth, A., Szatmári, Z., Varró, D.: Formal validation of
domain-specific languages with derived features and well-formedness constraints.
Softw. Syst. Model., pp. 1–36 (2015)

33. Sen, S., Moha, N., Baudry, B., Jézéquel, J.-M.: Meta-model pruning. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 32–46. Springer, Heidelberg
(2009)

34. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and back again.
In: MoDeVVa 2009: Proceedings of the 6th International Workshop on Model-
Driven Engineering, Verification and Validation, pp. 1–10. ACM (2009)

35. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL models using boolean satisfiability. In: Design, Automation and Test
in Europe, (DATE 2010), pp. 1341–1344. IEEE (2010)

36. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Sci. Comput. Program. 68(3), 214–234 (2007)

37. Yakindu Statechart Tools: Yakindu. http://statecharts.org/

http://statecharts.org/

Automated Model Merge by Design
Space Exploration

Csaba Debreceni1(B), István Ráth1, Dániel Varró1, Xabier De Carlos2,
Xabier Mendialdua2, and Salvador Trujillo2

1 Department of Measurement and Information Systems,
Budapest University of Technology and Economics,
Magyar tudósok krt. 2, Budapest 1117, Hungary

{debreceni,rath,varro}@mit.bme.hu
2 IK4-IKERLAN Research Center,

P.J.M. Arizmendiarrieta, 2, 20500 Arrasate, Spain
{xdecarlos,xmendialdua,strujillo}@ikerlan.es

Abstract. Industrial applications of model-driven engineering to
develop large and complex systems resulted in an increasing demand
for collaboration features. However, use cases such as model differencing
and merging have turned out to be a difficult challenge, due to (i) the
graph-like nature of models, and (ii) the complexity of certain opera-
tions (e.g. hierarchy refactoring) that are common today. In the paper,
we present a novel search-based automated model merge approach where
rule-based design space exploration is used to search the space of solution
candidates that represent conflict-free merged models. Our method also
allows engineers to easily incorporate domain-specific knowledge into the
merge process to provide better solutions. The merge process automat-
ically calculates multiple merge candidates to be presented to domain
experts for final selection. Furthermore, we propose to adopt a generic
synthetic benchmark to carry out an initial scalability assessment for
model merge with large models and large change sets.

1 Introduction

Scalable collaborative model-driven engineering (MDE) for complex projects
with multiple stakeholders and development groups working in a distributed
way (both geographically and in time) is a major research challenge [21]. In tra-
ditional software engineering, version control systems (VCS) such as SVN or Git
assist to work with textual documents in off-line collaboration scenarios having
long transactions and complex modifications between commits. Since multiple
collaborators may try to commit changes to the same document, a comparison or
difference is calculated prior to local commit, which may cause conflicts between
remote changes (already published to the server) and local changes (aimed to be

This paper is partially supported by the EU Commission with project MONDO
(FP7-ICT-2013-10, #611125) and the MTA-BME Lendület 2015 Research Group
on Cyber-Physical Systems.

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 104–121, 2016.
DOI: 10.1007/978-3-662-49665-7 7

Automated Model Merge by Design Space Exploration 105

committed now). Such conflicts need to be resolved by merging the remote and
local changes in a consistent way before a commit succeeds.

Unfortunately, the direct use of VCS in MDE is hindered by numerous fac-
tors implied by the differences between graph-based documents (e.g. models)
and textual documents (e.g. source code). A major challenge is related to model
comparison, which is also computationally more expensive over graphs, and it
gave birth to advanced industrial strength frameworks like EMF Compare [1]
or Diff/Merge [2] built into model-level version control systems (like in Papyrus
UML or AMOR [5]). In order to achieve scalability for large models, these frame-
works frequently assume that unique identifiers are available for model elements.
That assumption results in more efficient model comparison algorithms.

While model comparison is computationally more challenging, resolving con-
flicting model changes is still a cumbersome task in practice, which is frequently
performed manually by the engineers. EMF Compare and Diff/Merge enable
automated conflict resolution in a programmatic way — but writing code for an
automated merge is hardly a task for a domain expert. Furthermore, domain-
specific conflict resolution strategies are rarely taken into consideration in indus-
trial frameworks, hence the well-formedness of merge results is questionable.

In this paper, we propose a novel automated search-based model merge tech-
nique [20] which builds on off-the-shelf tools for the model comparison step, but
uses guided rule-based design space exploration (DSE) [18] for merging models.
In general, rule-based DSE aims to search and identify various design candidates
to fulfill certain structural and numeric constraints. The exploration starts from
an initial model and systematically traverses paths by applying operators. In our
context, the results of model comparison will be the initial model, while target
design candidates will represent the conflict-free merged models.

While many existing model merge approaches detect conflicts statically in a
preprocessing phase, our DSE technique carries out conflict detection dynami-
cally during exploration time as conflicting rule activations and constraint vio-
lations. Then multiple consistent resolutions of conflicts are presented to the
domain experts. Our technique allows to incorporate domain-specific knowledge
into the merge process by additional constraints, goals and operations to provide
better solutions. Finally, we propose to adapt a generic scalability benchmark
for assessing model merge performance for large models and large change sets,
which is also an innovative aspect of the paper.

The rest of the paper is structured as follows: A motivating case study of
modeling wind turbine control systems is presented in Sect. 2 together with the
basics of model comparison and merge. A high-level overview of our approach
is provided in Sect. 3. A detailed explanation of executing a merge process is
discussed in Sect. 4. The case study will also serve as an initial assessment of the
usefulness of a domain-specific merge technique while scalability evaluation will
be carried out by adapting the Train Benchmark [29] in Sect. 5. Related work is
summarized in Sect. 6 while Sect. 7 concludes our paper.

106 C. Debreceni et al.

2 Preliminaries

2.1 From Model Comparison to Model Merge

Model comparison refers to identifying the differences between models. It requires
reliability, precision and completeness as the merge process frequently relies on
the output of this phase to detect conflicts and to resolve the detected conflicts.
Altmanninger et al. [6] classifies model comparison methods based on the kind
of information available. Only models are provided as input for state-based tech-
niques, while change-based comparison relies on a list of the performed changes,
e.g. op1, op2, . . . opn.

Based on the results of model comparison, model merge synthesizes a com-
bined model which reconciles the identified differences. This is not always possi-
ble due to conflicts between model changes carried out by different collaborators.
A merged model is called syntactically correct if it corresponds to its metamodel,
and consistent when additional constraints of the domain are satisfied.

We use a simplified difference model derived from the EMF Compare tool [1]
to store the changes in EMF models. This allows us to accept different types of
comparison model (e.g. EMF Compare or Diff/Merge [2]) as an input of model
merge. It contains the following default change types: (1) create or delete an
object; (2) set, add or remove a value or an object to/from an attribute or
a reference, respectively. Furthermore, we annotate the priority of changes as
may or must which will be decided by users. Changes with must priority are
mandatory to be involved in the solutions while the others with may priority
can be omitted.

In the paper, we focus on three-way merge, which also uses the common
ancestor O of local copy L and remote copy R to derive the merged model M . To
determine the changes executed on O, a comparison is conducted between O ↔ L
and O ↔ R. The solution of merge M is obtained by applying a combination of
changes performed either on L or R to the original model O.

2.2 A Motivating Model Merge Scenario

The domain of our motivating example describes Wind Turbine Control Systems
(WTCS) developed by IK4-Ikerlan where different artefacts and algorithms for
controlling a wind turbine are specified and connected to sensors and actuators.
Models are specified by several collaborators, and consequently modifications
could result in merge conflicts.

We introduce a simplified example of a wind turbine (WT1) in Fig. 1. Real
models are obviously larger, sample models of this paper contain only artifacts
related to the cooling of the Generator Subsystem:

– Inputs: Wind turbine WT1 gets data from a temperature sensor specified by
the SystemInput identified as Temperature.

– Outputs: WT1 acts on two fans for cooling the wind turbine generator specified
by the SystemOutputs: Fan1Activator and Fan2Activator.

Automated Model Merge by Design Space Exploration 107

(a) Original model

(b) Local instance (modified by User1) (c) Remote instance (modified by User2)

Fig. 1. Local and remote changes for 3-way merge

– Params: temperature limits for starting generator cooling can be specified by
SystemParams: CoolingTempLimit1 and CoolingTempLimit2.

Subsystem Generator contains all the control units for cooling the Generator:

– CoolingFan1: this control unit (of type FanCtrl) specifies the control algo-
rithm for fan #1 with High priority cycle with Temperature as SystemInput,
Fan1Activator as SystemOutput, CoolingTempLimit1 as SystemParam.

– CoolingFan2: this control unit (of type FanCtrl) specifies the control algo-
rithm for fan #2 with High priority cycle with Temperature as SystemInput,
Fan2Activator as SystemOutput and CoolingTempLimit2 as SystemParam.

As a running example, we investigate the following scenario:

Local Changes. The first expert creates a Local version of the model with the
following changes: (L1) the cycle attribute of CoolingFan1 is changed to Normal,
(L2) CoolingFan2 instance is deleted. (L3) A new control unit (WTCtrl) is created
with CoolingPump id. The new control unit is of type PumpCtrl with High cycle.
Its input references the existing Temperature and its param references the existing
CoolingTempLimit2. In contrast, (L4) its output references a new SystemOutput

instance identified as PumpActivator.

Remote Changes. Another expert also remotely modified and already com-
mitted the model (before the first expert working on the local version managed
to commit the model) to introduce the following remote changes: (R1) the cycle

108 C. Debreceni et al.

attribute of CoolingFan1 is changed to Low, (R2) the cycle attribute of CoolingFan2
is changed to Low, (R3) deletes SystemParam instance identified as CoolingTem-

pLimit2 and (R4) changes param reference of control unit identified as CoolingFan2

to SystemParam instance identified as CoolingTempLimit1.

Model Comparison. Table 1 shows the result of model comparison between
the different versions of the model calculated by using existing tools (using e.g.
EMF Compare or Diff/Merge [2]). The differences between the local and the
original model is denoted with Δ(L,O) (or shortly ΔL), while Δ(R,O) (or ΔR)
represents the differences between the remote and the original model.

Table 1. Elements of Δ(L) and Δ(R)

Change Annotation. After the comparison, the local collaborator annotates
local changes L2, L3 and L4 and remote change R2 as must which prescribes
that all such changes have to be present in the merged model unless some of
them are in a conflict. In such a case, the merged model should contain as
many (non-conflicting) must changes as possible, while some (conflicting) must
changes might be omitted from the merged model. All other changes are marked
as may to denote that the corresponding change may be included in the merged
model.

Challenges. The following challenges need to be addressed for our example:

– Calculate merged models automatically as a maximal subset of non-conflicting
changes from the local and remote change set. When there is a large number
of possible combination of changes where some of them are selected from
the local and the others from the remote branch, a merged model may be
restricted to solutions compliant with must and may change annotations.

– Use domain-specific goals and constraints to restrict merged models to consis-
tent ones (to ensure that all inputs and parameters are referenced by at least
one control unit and each output is referenced by different control unit).

– Specify domain-specific composite operations to guide the merge process into
a consistent solution (e.g. to remove inputs, parameters and outputs not ref-
erenced by any control unit).

Automated Model Merge by Design Space Exploration 109

3 Model Merge by Design Space Exploration: Concepts

3.1 Conceptual Overview

We propose to exploit guided rule-based design space exploration (DSE) [18]
for automated model merge with an architecture depicted in Fig. 2. Rule-based
DSE aims at finding optimal solutions from the several design candidates which
satisfy several structural and numeric constraints, and they are reachable from
an initial model along a trajectory by applying a sequence of exploration rules.
The input of a rule-based DSE includes (1) the initial model used as the start of
the exploration; (2) goals which need to be satisfied by solutions; (3) the set of
exploration rules; (4) constraints that need to be respected in each exploration
state and (5) further guidance for the exploration process.

Fig. 2. Architecture of DSE Merge

We applied three-way model merge to a DSE problem as follows:

(1) the initial model contains the original model O and two difference models
(ΔL and ΔR)

(2) the main goal is that there are no executable changes left in ΔL and ΔR
along a specific exploration path.

(3) the operations are defined by change driven transformation rules to process
generic change objects (create, delete, set, add, remove) of the difference
models, and potentially composite (domain-specific) operators;

(4) constraints may identify inconsistencies and conflicts to eliminate certain
trajectories;

(5) as main exploration strategy, any changes annotated as must are tried to
be merged before resolving may changes.

Input. Our model merge approach takes three models as input: the original
model O and the difference models between local and original models ΔL as
well as the remote and original models ΔR. These together constitute the initial
model for DSE. The calculation of the difference models ΔL and ΔR is carried
out by an external comparison tool such as EMF Compare or Diff/Merge. Fur-
thermore, in order to derive efficient state encoding for the exploration process,
we assume that each element in the original model has some unique identifier.

110 C. Debreceni et al.

Output. The output of the merge process automatically derived by DSE is a
set of solutions where each solution consists of (i) the merged model M derived
by applying a (non-extensible and non-conflicting) subset of local and remote
changes on the original model O; (ii) the set of non-executed changes ΔL′,ΔR′;
and (iii) the collection of the deleted objects stored in Cemetery.

3.2 Key Aspects of Exploration Process

Each solution is derived along a trajectory from the initial state to a solution
state by applying generic and domain-specific operations. Along this trajectory,
we transform the original model O into the merged model M , and the change
models ΔL and ΔR are gradually reduced to ΔL′ and ΔR′. In each exploration
step, conflicts are detected and resolved by incrementally tracking the matches
(activations) of operations and constraints. Finally, a solution state is identified
if all goals are satisfied without violating a constraint along the trajectory.

Operations. We incorporate two kinds of operations in the exploration based
model merge: generic merge operations [30] and (domain-specific) composite
operations [14,23] (such as refactorings, or repair rules). Each operation is
captured by (graph) transformation rules [16], which consist of a precondition
described as a graph pattern (using the EMF-IncQuery language [10] in our case)
and an action part which captures model manipulations.

Generic merge operations are change-driven transformations [9], which con-
sume or produce change models as additional input or output. The precondition
selects an applicable change c from the deltas ΔL ∪ ΔR and may require the
existence of certain model elements in the origin model O. The action part of a
generic merge operation (1) modifies the original model O to apply a change, (2)
moves the change c from the difference set ΔL∪ΔR into a completed set Comp
to prevent the application of the change multiple times. Thus such change-driven
rules transform state-based merging into operation-based merging [12].

By default, domain-specific composite operations only manipulate the model
O without consuming the deltas. Therefore, they need to be complemented with
generic change-driven rules which identify the model-level changes carried out
by them and record them as difference models in the completed set. In most
cases, domain experts are responsible for capturing complex (domain-specific)
operations only at the preparation of the merge tool for the specific domain.
Collaborating engineers only use them as part of the merge process.

Conflict Detection and Resolution. A local change l ∈ ΔL and a remote
change r ∈ ΔR may be conflicting, i.e. it is impossible to obtain a consistent
merged model M by applying both l and r. Alternatively, in an operation-based
interpretation, a conflict denotes a pair of operations o1 and o2, whereas one
operation masks the effect of the other (i.e., they do not commute) or one oper-
ation disables the applicability of the other [23].

Instead of static (a priori) detection of conflicts as proposed in [17,24,27], we
detect conflicts on- the-fly during the exploration process by relying upon the
incremental book-keeping of rule activations and constraints. In each state of the

Automated Model Merge by Design Space Exploration 111

DSE, we investigate one by one all (enabled) activations of transformation rules,
and try to find a solution by firing them. In case of a conflict, (1) firing one rule
may prevent the application of another activation, or (2) both rules are fireable,
but the result state violates a constraint. When two operations are confluent
(i.e. they can be applied in arbitrary order), state encoding of DSE [19] helps
identify that an already traversed state is reached. Hence applying operations in
a different order has no impact on the results.

Activations of rules and constraints are continuously and efficiently main-
tained when firing an operation (either generic or composite), thus disabled
rules and violated constraints are immediately identified. For that purpose, we
rely upon the reactive VIATRA framework [8] and incremental model queries.
The technicalities of conflict detection will be illustrated in Sect. 4.

Conflict Resolution by Exploration Strategy. In case of a conflict between
two operations, DSE will investigate both trajectories as possible resolutions and
derive two separate solutions correspondingly. Thus a merged model M derived
automatically as a solution contains no conflicts by definition.

In case of many conflicts, the result set can too large to be presented to
experts. Therefore, in order to reduce the number of solutions retrieved by DSE
and guide the exploration in case of conflicts, model changes can be prioritized
by the collaborators as may and must (see Table 1) prior to executing merge.

– If a change c1 with must priority is in conflict with another change c2 of may
priority, then the merge will always select the former (c1).

– If two conflicting changes c1 and c2 are both annotated with may than the
merge will randomly select one.

– However, if two changes c1 and c2 of must priority are in conflict, then the
merge process will enumerate both of them separately (in different solutions).

Goals. In generic, we aim to apply as many changes in ΔL and ΔR as pos-
sible to derive the merged model M . When extending a trajectory by any of
the remaining changes in ΔL′ or ΔR′ would cause a conflict with some already
applied change, a solution state of the DSE is reached. Technically, it is detected
by the termination of the rule system, i.e. no operations are activated. Addition-
ally, domain experts can provide domain-specific goals that act as heuristics for
the exploration and provide consistent solutions.

Altogether, we define a fully automated model merge approach where all pos-
sible resolutions of conflicts are calculated, and all consistent merged models are
prompted to experts, which was claimed to be beneficial in [31]. Representation
of solutions contains several layouts (e.g. tree, graph) and metrics (e.g. number of
executed changes) which help experts select the best solution for their purpose.

4 Elaboration of Model Merge on an Example

4.1 Operations and Goals

Change-Driven Rules for Generic Operations. We defined the fol-
lowing generic operations in the merge process for creating/deleting object,

112 C. Debreceni et al.

setting/adding/removing attribute and setting/adding/removing reference. For
space considerations, we only discuss operations for setting an attribute (setAt-
tribute) and deleting an object (deleteObject) in details (depicted in Fig. 3).

– setAttribute(ac,o): The precondition prescribes that an attribute change ac
is available in change set ΔL′ ∪ ΔR′ and its object o exists in the current
model. Its action sets (i) attribute ac.attribute of object o to the given value
ac.value, and (ii) moves the change ac to the completed set Comp.

– deleteObject(dc,o): The precondition states that a delete change dc is available
in the current change set ΔL′ ∪ ΔR′ and its referred object o exists in the
current state of the model where o is a leaf in the containment hierarchy.
The action part (i) deletes the object o from current state, (ii) puts it into
Cemetary and (iii) moves the change dc to the completed set Comp.

Domain-Specific Goals and Operations. Our example introduced in Sect. 2
requires to extend model merge with domain-specific knowledge to guarantee the
consistency of solutions. In the Wind Turbine Control System (WTCS) domain,
it is mandatory that all SystemInput and SystemParam instances should be refer-
enced by at least one control unit and each SystemOutput has to be referenced
by a unique control unit. Model merge needs to respect such domain specific
knowledge, which can be captured by additional goals specified as constraints
and depicted in a graphical representation in Fig. 3c.

A domain-specific operation called unreferencedPart can be defined to elim-
inate unreferenced SystemInput, SystemOutput and SystemParam instances (see
Fig. 3d). Here the precondition selects the unreferenced object o while the action
part (i) initiates a new delete change independently from the current change set
and (ii) executes the action part of the generic delete operation.

4.2 Conflict Detection in a Sample Exploration Step

Conflict detection and resolution is carried out during exploration by incremen-
tally tracking rule activations and special constraints. We illustrate this step in
the context of our running example (see Fig. 4, which is an extract of iteration 3
and 9 of merge session from Sect. 4.3). It demostrates a delete/use conflict: simul-
taneously setting the cycle attribute of CoolingFan2 and deleting CoolingFan2. Any
solution of model merge may only contain one of the two changes.

1. In the beginning, both operations have an activation (left in Fig. 4) in the
context of object CoolingFan2. Initially, all changes are located in ΔL or ΔR,
cemetery and completed changes are empty. In this state, all constraints are
satisfied, but goals are violated which means this state is not a solution.

2. Our merge process first selects and executes the deleteObject operation (top
branch of Fig. 4) which removes CoolingFan2 from the model, moves CoolingFan2
to the cemetery, and the corresponding change is moved from ΔL to the
completed set Comp. As a side effect, operation setAttribute loses its activation
in the context of CoolingFan2 since its precondition is no longer be satisfied in

Automated Model Merge by Design Space Exploration 113

(a) Generic setAttribute (b) Generic deleteObject

(c) Domain-specific goal (d) Domain-specific operation

Fig. 3. Operations and goal

the new state. This fact is immediately identified by the underlying reactive
transformation engine [8]. In the new state, the exploration incrementally
checks that all constraints are satisfied and goals are violated, and then selects
another enabled (activated) operation for execution.

3. Later, after backtracking to the first state, operation setAttribute is scheduled
for execution on object CoolingFan2 (bottom branch of Fig. 4). As a result,
Cemetery remains empty, the change is moved to the completed set, all goals
are violated, and all constraints are satisfied. As a main conceptual difference,
the activation of deleteObject is not disabled on CoolingFan2 as the correspond-
ing object still exists, hence its precondition is satisfied.

4. Next, the process selects and executes deleteObject operation. As a result,
CoolingFan2 is moved to the cemetery and the change is moved from ΔR to
the completed set Comp. We detect this conflict by (incrementally) checking
a generic merge constraint: there are two changes in the completed-set Comp
which modifies the same object. In this case, exploration has to backtrack
and finds another executable operation.

Obviously, the first type of constraint could also be detected by using similar
constraints as for the second type. However, lost activations reduce the number
of states to be traversed, thus they are preferred. Furthermore, note that when
two operations are applicable in both order with a confluent result, the state
encoding of DSE identifies that the same model is reached as a state.

4.3 A Merge Scenario on the Motivating Example

A possible execution of the DSE Merge is depicted in Fig. 5 which displays the
completed changes for two solutions. In each iteration, one change is processed.

114 C. Debreceni et al.

Fig. 4. Conflict resolution with incrementally tracking constraints and operations

– Itr. 1-2: all must changes are available and the algorithm randomly picked the
createObject of CoolingPump and PumpActivator.

– Itr. 3: at this point only two conflicting transitions have activation; the algo-
rithm picked deleteObject for CoolingFan2 non-deterministically. This leads to a
state where the precondition of setAttribute operation cannot be satisfied any
longer, thus it is disabled.

– Itr. 4-5: only may operations have activation where a setAttribute opera-
tion is selected that set the cycle attribute of CoolingFan1 to normal. Because
of the generic constraint, the other setAttribute related to the same object
(CoolingFan1) is disabled. The same happens when executing deleteObject for
CoolingTempLimit2 that disables the setReference operation which should con-
nect CoolingPump and CoolingTempLimit2.

– Itr. 6: this (aggregated) step is composed of all iterations that execution of
operation setAttribute related to the newly created CoolingPump.

– Itr. 7: on this trajectory, deletion of CoolingFan2 leads the model into a state
where the Fan2Activator output is not referenced by any control unit. Thus our
domain-specific (composite) operation (unreferencedPart) has an activation that
is executed on the model. After this iteration, there are no more activations
and all goals are satisfied, so Solution #1 is found.

– Itr. 8: after the solution, the strategy backtracks until it finds an activation for
a must operation that should lead the model into a partially traversed state
and forks the trajectory. Only the setAttribute operation related to CoolingFan2
can be executed. After the execution, deleteObject of CoolingFan2 could have
activation, but it is disabled by the generic constraint.

– Itr. 9-11: The same activations are available as for the 4th iteration except the
domain-specific operation. The algorithm randomly executes these operations
and finds Solution #2.

Automated Model Merge by Design Space Exploration 115

Resolved Conflicts. In iteration 3 and 8, two conflicting operations marked
with must are executed which forks the exploration into two separate solutions
to resolve the conflicts. At iterations of 4 and 9, two operations with may mark
are in conflict. In each trajectory, only one of them is selected. Similar happens
in iteration 5 and 10, but this time the same operation is selected in each branch.

Solution. There are two solutions in the output of the merge process. We dis-
cuss solution #1 in details where the merged model is depicted in Fig. 6. It
also displays in dashed line the deleted objects stored in Cemetery, namely,
CoolingTempLimit2, CoolingFan2 and Fan2Activator. There are four non-executed
changes as shown in the bottom left corner of Fig. 6.

Fig. 5. Possible execution of the
process

Fig. 6. Merged Model from Solution #1

5 Evaluation

As the state-of-the-art of model merge still lacks well-accepted benchmarks to
measure scalability of model merging components (e.g. [22] measures precision
and recall), we propose a new scalability benchmark for model merge by adapting
of the Train Benchmark [29], which is an existing performance benchmark for
model queries and well-formedness constraints (and also a case of the TTC 2015
contest [28]). The benchmark uses a domain-specific model of a railway system
originating from the MOGENTES project [4]. From the existing benchmark, we
reuse (1) the model generator to derive models of different size conforming to
a railway metamodel, (2) the fault injector which changes the generated model
(e.g. by changing structural features, and creating or deleting objects) to violate
predefined well-formedness constraints, and (3) repair actions which pseudo-
randomly resolve such violations in accordance with to a random seed value.

Based upon these components, we summarize how synthetic models are gen-
erated that contain conflicts serving as input for model comparison and model
merge: (1) First, we generate a well-formed model. (2) Next, we inject several

116 C. Debreceni et al.

faults into the generated model. The result of this phase acts as original (O)
model. (3) Then, local and remote changes are simulated by repairing these vio-
lations either in the local model (L) or remote model (R) or in both of them with
different random seeds. In the latter case, the framework repairs the same prob-
lems in both cases by using different values, which leads to a conflict between two
models. (4) We calculate the differences between the two with an existing com-
parison tool (EMF Compare). (5) Finally, these two model have to be merged
with may annotations for changes using our merge tool.

We evaluate our DSE-based automated merge approach to assess its scalabil-
ity using our benchmark where we investigate the scalability of the approach by
measuring execution time for model comparison (carried out by EMF Compare)
and model merge with respect to (i) the size of models, (ii) the size of change
set, and (iii) the number of changes in conflict. For the evaluation, we gener-
ated models where the number of model elements is from 10, 000 to 350, 000, the
number of faults injected into the models (i.e. size of the change set) is from 10
to 2000 while the number of conflicts are set to 0 %, 50 % and 100 % of the total
number of changes. Measurement results are summarized in Table 2 taking the
average of 5 separate runs.

Table 2. Scalability measurement results

Analysis of Results. As expected, merge time is linear in model and change
size, and also proportional to comparison time. Furthermore, fewer conflicts
imply faster merge time. Our results also show that runtime of merge is lower
than compare time in case of smaller change sets (120, 240), and gradually out-
grows it as the change set increases. However, change sets of an average commit
in real projects are even smaller than our smallest case (see also the evaluation
in [23]), which means that our scalability results represent a pessimistic setup.

6 Related Work

Several approaches address the model merge as depicted in Table 3. To position
them against our approach, we use several characteristics proposed in a survey
on model versioning [6], which also guides the structure of this section.

Automated Model Merge by Design Space Exploration 117

Table 3. Comparison of model merge approaches

Basis Conflict Merge Merge Objectives Guidance Evaluation

detection automation operations

EMF Compare [1] state static semi generic - - scalability

EMF Diff/Merge [2] state static semi generic - - scalability

Westfachtel [30] state runtime semi generic goals - preliminary

N-way Merge [25] state static semi generic - - preliminary

AMOR [13] state static semi generic,
composite

goals - precision
recall

Dam H.K. et al. [14] state static auto composite goals,
constraints

repair plan scalability
(closed)

MOMM [23] operation runtime auto composite fixed goals global search
prioritized

real data

DSE Merge state runtime auto generic,
composite

goals contraints local search
may/must

scalability
(open)

Comparison Basis. Based on the model comparison technique, the approaches
may be classified into state-based and operation-based. [1,2,13,14,25,30] and
DSE Merge are state-based as they execute a comparison process between model
states. However, [23] uses operations as input where even more complex opera-
tions as just the simple add, update, and delete operations are considered.

Conflict Detection. Finding the conflicting changes in the merge process is
crucial task for a correct resolution. Most approaches use an initial phase to stati-
cally analyze the changes and look for conflicting pairs such as in [1,2,13,14,25].
Westfechtel [30] defines transformation rules for searching conflicts where the
satisfied preconditions selects the conflicts in each iteration. Mansoor et al. [23]
uses conflict detection algorithm between operations [12]. DSE Merge identifies
conflicts incrementally as violations of constraints or as deactivations of merge
operations, while dependencies between rules and constraints are handled auto-
matically by the underlying DSE engine. This extends [14] where inconsistency
constraints are handled incrementally while conflict detection happens as pre-
processing.

Merge Automation. Most approaches [1,2,13,25,30] are semi-automated as
they use a two-phase process: (i) they apply the non-conflicting operations and
then (ii) let the user prioritize and select the operation to apply in case of two
conflicting changes. This always results in a single solution due to the man-
ual resolution by the user. In comparison, [14,23] and DSE Merge resolve the
conflicts automatically in different ways and offer several solutions.

Merge Operations. In this context, merge operations are responsible for apply-
ing the changes in the merged model. [1,2,25,30] use generic operations for
changes. The extension [11] of [30] adaptively learns resolution patterns from
user that can be applied on the models which results in composite operations.
[23] applies the input operations which are composite refactorings in their case.
[14] uses basic generic operators for conflicts but generates composite opera-
tions as repair plans from the description of inconsistency constraints. Our DSE
Merge approach allows to combine both generic and domain-specific composite
operators in the form of change-driven transformation rules.

118 C. Debreceni et al.

Objectives. Quality of the merge model can be improved by objectives that
have to be satisfied during (contraints) or at the end (goals) of the merge process.
This is an unsupported feature in [1,2,25]. [23] uses two fixed goals which are the
base of the conflict resolution. [14] provides support for incrementally detecting
violations of inconsistency constraints. [13] is connected to an additional model
checker component [11] which allows to check OCL constraints as goals. [30]
allows to define well-formedness constraints in OCL that act as goals. DSE Merge
let the users to provide additional constraints and goals using graph patterns in
addition to a built-in termination condition when no operations are activated.

Guidance. The execution of the merge process can use guidance to find the
solution(s) faster. The tool [26] of [30] uses a dedicated fusing algorithm for the
model merge phase using a fixed priority strategy of merge operations. [23] bases
their tool to a global search genetic algorithm (NSGA-II [15]) where the oper-
ations are also prioritized related to their importance. DSE Merge is built on
top of the ViatraDSE framework [19] using rule-based guided local search explo-
ration. Furthermore, annotating changes with may/must can further reduce the
result set retrieved to the user, which is another key difference wrt [14,23].

Evaluation. [23] provides an empirical evaluation of the tool based on real data,
but its scalability is not discussed as their largest model was the same as our
smallest. [14] represents an scalability evaluation of its tool with the largest size
of 33.000 model element and 1, 650 changes. [25] and [26] show a preliminary
evaluation which show the relevance of the approach on very small models and
change set. [13] evaluated by [22], but scalability is not discussed. For comparing
models, [1] has a scalability test presented in [7]. Scalability of [2] is not well
covered, however, we evaluated ourselves on the proposed benchmark [3]. DSE
Merge is evaluated on an open scalability benchmark [29]. As future work, we
plan to create an empirical user study from the usability aspect of our tool.

Summary. To summarize the key differences with [14] and [23], we rely on state-
based comparison, apply a guided local-search strategy (vs. [23]), detect conflicts
at runtime and allow complex generic merge operations (vs. [14]). Internally,
we uniquely use incremental and change-driven transformations to derive the
merged models. Finally, we report scalability of merge process for models which
are at least one order of magnitude larger compared to [14] and [23].

7 Conclusion

The current paper presented an automated technique for three-way model
merge exploiting design space exploration in the background. The original
model and two difference models (original model↔remote version, and origi-
nal model↔local version) calculated with existing model comparison tools (e.g.
EMF Compare or Diff/Merge) serve as an input of our technique. Our technique
automatically derives consistent and semantically correct merged models in all
possible ways and also highlights the remaining (unresolved thus conflicting)
model differences. Our approach incorporates the use of change-driven model

Automated Model Merge by Design Space Exploration 119

transformations [9] to capture and execute merge operations, and relies on an
incremental reactive model transformation engine [8] to detect and resolve merge
conflicts. We proposed scalability benchmark for scalability aspect of merge com-
ponents that demonstrates that DSE-based model merge can be executed for
models around 350,000 elements and conflicting change sets with 1000 elements.

Our approach is fully implemented in a tool developed as part of a European
project, which operates on well-known open source components of the Eclipse
framework, such as EMF Compare [1] or Diff/Merge for [2] for model compar-
ison and using the Viatra DSE [18,19] as underlying design space exploration
framework built on reactive transformations [8].

As future work, we plan to improve our model merge technique by further
search strategies to better exploit the dependencies between rules and constraints
and compare it with other search-based merge techniques [23]. Currently, we
are conducting an experimental user evaluation to compare the usability of the
presented DSE Merge tool with EMF-Compare and Diff/Merge.

Acknowledgments. We thank to Gábor Szárnyas for improving the syntectic per-
formance benchmark for the evaluation and András Szabolcs Nagy for his assistance
on design space exploration.

References

1. EMF compare. https://www.eclipse.org/emf/compare/
2. EMF Diff/Merge. http://eclipse.org/diffmerge/
3. Evaluation of EMF Compare and Diff/Merge. https://github.com/FTSRG/

publication-pages/wiki/Evaluation-of-EMF-Diff-Merge-and-EMF-Compare
4. Mogentes EU project. http://www.mogentes.eu/
5. Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W., Seidl, M., Schwinger,

W., Wimmer, M.: AMOR-towards adaptable model versioning. In: 1st Interna-
tional Workshop on Model Co-Evolution and Consistency Management, in con-
junction with MODELS, vol. 8, pp. 4–50 (2008)

6. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning
approaches. IJWIS 5(3), 271–304 (2009)

7. Barbero, M.: EMF compare 2.0: scaling to millions. In: EclipseCON 2013, Boston
8. Bergmann, G., Dávid, I., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z., Varró,

D.: Viatra 3: a reactive model transformation platform. In: Kolovos, D., Wimmer,
M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 101–110. Springer, Heidelberg (2015)

9. Bergmann, G., Ráth, I., Varró, G., Varró, D.: Change-driven model transformations
- change (in) the rule to rule the change. Softw. Syst. Model. 11(3), 431–461 (2012)

10. Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D.: A graph query language for EMF
models. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 167–182.
Springer, Heidelberg (2011)

11. Brosch, P., Egly, U., Gabmeyer, S., Kappel, G., Seidl, M., Tompits, H., Widl,
M., Wimmer, M.: Towards semantics-aware merge support in optimistic model
versioning. In: Kienzle, J. (ed.) MODELS 2011 Workshops. LNCS, vol. 7167, pp.
246–256. Springer, Heidelberg (2012)

https://www.eclipse.org/emf/compare/
http://eclipse.org/diffmerge/
https://github.com/FTSRG/publication-pages/wiki/Evaluation-of-EMF-Diff-Merge-and-EMF-Compare
https://github.com/FTSRG/publication-pages/wiki/Evaluation-of-EMF-Diff-Merge-and-EMF-Compare
http://www.mogentes.eu/

120 C. Debreceni et al.

12. Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., Wimmer, M.: An intro-
duction to model versioning. In: Bernardo, M., Cortellessa, V., Pierantonio, A.
(eds.) SFM 2012. LNCS, vol. 7320, pp. 336–398. Springer, Heidelberg (2012)

13. Brosch, P., Seidl, M., Wieland, K., Wimmer, M.: We can work it out: collaborative
conflict resolution in model versioning. In: Wagner, I., Tellioğlu, H., Balka, E.,
Simone, C., Ciolfi, L. (eds.) ECSCW 2009, pp. 207–214. Springer, London (2009)

14. Dam, H.K., Reder, A., Egyed, A.: Inconsistency resolution in merging versions of
architectural models. In: 2014 IEEE/IFIP Conference on Software Architecture,
WICSA 2014, Sydney, Australia, pp. 153–162, 7–11 April 2014

15. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

16. Ehrig, H., Kreowski, H.J., Rozenberg, G.: Handbook of Graph Grammars and
Computing by Graph Transformation, vol. 2. World Scientific, Singapore (1999)

17. Feather, M.S.: Detecting interference when merging specification evolutions. In:
ACM SIGSOFT Software Engineering Notes. vol. 14, pp. 169–176. ACM (1989)

18. Hegedus, A., Horváth, A., Ráth, I., Varró, D.: A model-driven framework for guided
design space exploration. In: Proceedings of the 2011 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pp. 173–182. IEEE Com-
puter Society (2011)

19. Hegedüs, Á., Horváth, Á., Varró, D.: A model-driven framework for guided design
space exploration. Autom. Softw. Eng. 22(3), 399–436 (2015)

20. Kessentini, M., Werda, W., Langer, P., Wimmer, M.: Search-based model merg-
ing. In: Genetic and Evolutionary Computation Conference, GECCO 2013,
Amsterdam, The Netherlands, pp. 1453–1460, 6–10 July 2013

21. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S.,
De Lara, J., Ráth, I., Varró, D., Tisi, M., et al.: A research roadmap towards
achieving scalability in model driven engineering. In: Proceedings of the Workshop
on Scalability in Model Driven Engineering, p. 2. ACM (2013)

22. Langer, P., Wimmer, M.: A benchmark for conflict detection components of model
versioning systems, vol. 33 (2013)

23. Mansoor, U., Kessentini, M., Langer, P., Wimmer, M., Bechikh, S., Deb, K.:
MOMM: multi-objective model merging. J. Syst. Softw. 103, 423–439 (2015)

24. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Softw. Eng.
28(5), 449–462 (2002)

25. Rubin, J., Chechik, M.: N-way model merging. In: Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE 2013, Saint Petersburg, Russian
Federation, pp. 301–311, 18–26 August 2013

26. Schwägerl, F., Uhrig, S., Westfechtel, B.: Model-based tool support for consistent
three-way merging of EMF models. In: Proceedings of the workshop on ACadeMics
Tooling with Eclipse, p. 2. ACM (2013)

27. Steyaert, P., Lucas, C., Mens, K., D’Hondt, T.: Reuse contracts: managing the evo-
lution of reusable assets. In: Proceedings of the 1996 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications (OOPSLA
1996), San Jose, California, pp. 268–285, 6–10 October 1996

28. Szárnyas, G., Semeráth, O., Ráth, I., Varró, D.: The TTC 2015 train benchmark
case for incremental model validation. In: Transformation Tool Contest, pp. 129–
141 (2015)

Automated Model Merge by Design Space Exploration 121

29. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári,
Z., Varró, D.: EMF-IncQuery: an integrated development environment for live
model queries. Sci. Comput. Program. 98, 80–99 (2015)

30. Westfechtel, B.: Merging of EMF models - formal foundations. Softw. Syst. Model.
13(2), 757–788 (2014)

31. Wieland, K., Langer, P., Seidl, M., Wimmer, M., Kappel, G.: Turning conflicts
into collaboration. Comput. Support. Coop. Work 22(2–3), 181–240 (2013)

RuleMerger : Automatic Construction
of Variability-Based Model

Transformation Rules

Daniel Strüber1(B), Julia Rubin2, Thorsten Arendt1, Marsha Chechik3,
Gabriele Taentzer1, and Jennifer Plöger1

1 Philipps-Universität Marburg, Marburg, Germany
{strueber,arendt,taentzer,ploeger1}@informatik.uni-marburg.de

2 Massachusetts Institute of Technology, Cambridge, USA
mjulia@csail.mit.edu

3 University of Toronto, Toronto, Canada
chechik@cs.toronto.edu

Abstract. Unifying similar model transformation rules into variability-
based ones can improve both the maintainability and the performance of
a model transformation system. Yet, manual identification and unifica-
tion of such similar rules is a tedious and error-prone task. In this paper,
we propose a novel merge-refactoring approach for automating this task.
The approach employs clone detection for identifying overlapping rule
portions and clustering for selecting groups of rules to be unified. Our
instantiation of the approach harnesses state-of-the-art clone detection
and clustering techniques and includes a specialized merge construction
algorithm. We formally prove correctness of the approach and demon-
strate its ability to produce high-quality outcomes in two real-life case-
studies.

1 Introduction

Model transformation is a key enabling technology for Model-Driven Engineer-
ing, pervasive in all of its activities, including the translation, optimization, and
synchronization of models [1]. Algebraic graph transformation (AGT) is one of
the main paradigms in model transformation, allowing rules to be specified in a
high-level, declarative manner [2]. Recently, many complex transformations have
been implemented using AGT [3–5]. AGT is gaining further importance due to
its use as an analysis back-end for imperative transformation languages [6].

Transformation systems often contain rules that are substantially similar to
each other. Yet, until recently, various model transformation languages lacked
constructs suited to capture these similar rule variants in a compact manner [7].
The most frequently applied mechanism for creating variants was cloning: devel-
opers produced rules by copying and modifying existing ones. The drawbacks of
cloning are well-known, e.g., the need to update all clones when a bug is found
in one of the variants. Furthermore, creating a large set of mutually similar rules

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 122–140, 2016.
DOI: 10.1007/978-3-662-49665-7 8

RuleMerger : Automatic Construction of VB Model Transformation Rules 123

also impairs the performance of transformation systems: each additional rule
increases the computational effort, possibly rendering the entire transformation
infeasible. Blouin et al. report that to be the case with as few as 250 rules [8].

Variability-based (VB) rules are an approach to address these issues [9].
Inspired by product line engineering (PLE) principles [10,11], a VB rule
encodes a set of rule variants in a single-copy representation, explicating common
and variable portions. In [9], we provide an algorithm for applying VB rules and
show that it outperforms the application of classical rules in terms of execution
time.

The VB rules in [9] were created manually, a tedious and error-prone task
relying on the precise identification of (i) sets of rule variants, each to be unified
into a single VB rule; (ii) rule portions that should be merged versus portions
that should remain isolated. The choices made during these steps have a sub-
stantial impact on the quality of the produced rules.

Fig. 1. Overview of RuleMerger

In this work, we present RuleMerger, a
novel approach for automating the merge-
refactoring of model transformation rules.
The approach includes a three-component
framework (see Fig. 1). It applies clone
detection [12] to identify overlapping por-
tions between rules and clustering [13] to
identify disjoint groups of similar rules.
During merge construction, common por-
tions are unified and variable ones are
annotated to create VB rules. Each com-
ponent can be instantiated and cus-
tomized with respect to specific quality
goals, e.g., to produce rules optimized
for background execution or easy editing.
Since the framework guarantees that all
created rule sets are semantically equiv-
alent, we envision a system that enables
users to edit rules in a convenient repre-
sentation and to automatically derive a
highly efficient one.

The distinguishing factors of this approach, compared to merge-refactoring
approaches in the PLE domain [14–16], are its ability to detect overlapping
portions rather than pairs of similar elements and to create multiple output VB
rules rather than one single-copy representation of all rules. These factors allow
us to address the performance and maintainability issues related to cloning.

Contributions. This paper makes the following contributions: (1) It presents
a novel merge-refactoring approach for AGT-based model transformation rules.
(2) It formally proves the correctness of the approach, showing the equivalence
of the produced VB rules to their classical counterparts. (3) It instantiates the
approach by providing a novel merge construction algorithm and harnessing

124 D. Strüber et al.

Fig. 2. Original transformation rules.

state-of-the-art clone detection and clustering techniques. (4) It empirically
shows that the approach allows producing VB rules being superior to their
classical counterparts in terms of execution time and the amount of contained
redundancy.

The rest of this paper is structured as follows: Sect. 2 introduces a running
example. In Sect. 3, we fix preliminaries. In Sect. 4, we outline the approach and
argue for its correctness. Section 5 reports on our instantiation of RuleMerger.
Section 6 presents our evaluation. In Sects. 7 and 8, we discuss related work and
conclude.

2 Running Example

Consider a set of model transformation rules aimed at improving the structure
of an existing code base by using refactoring [17]. Figure 2 shows six refactoring
rules expressed in an abstract syntax notation [2]. The rules describe several
simple ways of relocating a method between different classes. We present the
rules in an integrated form, with the left- and right-hand sides of the transfor-
mation being represented in one graph. The left-hand side of a rule comprises
all delete and preserve objects. The right-hand side contains all preserve and
create objects.

RuleMerger : Automatic Construction of VB Model Transformation Rules 125

Rule A takes as input two classes, one of them sub-classing the other, and a
method. Each of these input objects is specified by its name. The rule moves the
method from a sub-class to its super-class, by deleting it from the sub-class and
adding it to the super-class. Similarly, rule B moves a method from the super-
class to one of its sub-classes. Rule C also moves a method from the super- to a
sub-class, but, in addition, creates an abstract method with the same name in
the super-class. Rules D , E and F move a method across an association. The
latter two rules also create a “wrapper” method of the same name in the source
class. Rule F uses an annotation to mark this “wrapper” method as deprecated.

Such rule sets are often created by cloning, that is, copying a seed rule and
modifying it to fit the new purpose. We consider the merge-refactoring of a rule
set created using cloning. The result is a rule set with variability-based (VB) rules
in which the common portions are unified and the differences are explicated, as
shown in Fig. 3. Specifically, rules B and C are merged, producing a new VB
rule B+C . Rules D , E , and F are merged into D+E+F . Rule A remains as is.

Fig. 3. Variability-based rules.

Each VB rule has a set of vari-
ation points, corresponding to the
names of the original rules: Rule
B+C has the variation points
B and C . In addition, each rule
has a variability model specifying
relations between variation points,
such as their mutual exclusion:
B+C has the variability model
xor(B,C). VB rules are configured
by binding each variation point
to either true or false. Portions
of VB rules are annotated with
presence conditions. These portions
are removed if the presence con-
dition evaluates to false for the
given configuration. Element #32
and its incoming edge, both anno-
tated with C, are removed in the
configuration {C=false, B=true}.
These VB rules offer several benefits
w.r.t. maintainability: The amount
of redundancy is reduced, ensuring
consistency between variants during
changes; bugs are fixed in one place.
The total number of rules is smaller.

In this example, the user selects and configures one of theses rule at a time, to
derive one specific rule variant – a process similar to that in PLE approaches [11].
In an alternative use-case, all rules of a rule set may be applied simultaneously.
Configurations can then be determined automatically by the transformation

126 D. Strüber et al.

engine [9], leading to considerable performance savings: The application sites or
matches for the common portions are identified first and used as starting points
for matching the variable portions. Such cases are demonstrated in Sect. 6.

3 Preliminaries: Variability-Based Model Transformation

We now give preliminaries, starting with simple transformation rules.

Definition 1 (Rule). A rule r = L
le←− I

ri−→ R consists of graphs L, I and R,
called left-hand side, interface graph and right-hand side, respectively, and two
injective graph morphisms, le and ri. A rule is connected iff, treating all edges
as undirected, ∀G ∈ {L,R} there is a path between each pair of nodes in G.

The rules in Fig. 2 follow this definition. Elements of I are annotated with the
action preserve, elements of L \ le(I) and R \ ri(I) with delete and create.

Given a rule, a subrule encapsulates a subset of its actions on a substructure.
To identify actions on substructures of one rule, we talk about subrule embed-
dings. For clone detection, the subrule relation must capture common actions on
common patterns in different rules – we then talk about subrule morphisms.

Definition 2 (Subrule morphism). Given a pair of rules r0 = (L0
le0←− I0

ri0−→
R0) and r1 = (L1

le1←− I1
ri1−→ R1) with injective mappings lei, rii for i ∈ {0, 1},

a subrule mapping s : r0 → r1, s = (sL, sI , sR) consists of injective mappings
sL : L0 → L1, sI : I0 → I1, and sR : R0 → R1 such that in the diagram in
Fig. 4 (1) and (2) commute. In addition, the intersection of sL(L0) and le1(I1)
in L1 as well as the intersection of sR(R0) and ri1(I1) in R1 is isomorphic to I0.
Moreover, L1 − (sL(L0) − sL(le0(I0))) is a valid graph.

Subrule mapping s is called a subrule embedding if all of its morphisms
sL, sI , and sR are inclusions. Given two subrule embeddings s : r0 → r1 and
s′ : r′

0 → r′
1, we have that s ⊆ s′ if there are subrule embeddings t0 : r0 → r′

0 and
t1 : r1 → r′

1 with s′ ◦ t0 = t1 ◦ s.

The conditions prefaced with “in addition“ ensure that a subrule always performs
the same actions on related elements as the original rule and that the larger
pattern of the original rule does not prevent a subrule to be applied.

Fig. 4. Subrule morphism.

For example, in Fig. 2, B is a sub-
rule of B+C since B can be injec-
tively mapped to B+C . The actions on
the original and mapped elements are
always the same.

We capture variability in rule sets
by propositional expressions over a fixed
set of independent variation points,
calling these expressions variability
conditions.

RuleMerger : Automatic Construction of VB Model Transformation Rules 127

Definition 3 (Language of variability conditions). Given a set of atomic
terms V , called variation points, LV is the set of all propositional expressions
over V , called variability conditions. A variability configuration is a total func-
tion cfg : V → {true, false}. cfg satisfies a variability condition vc if vc eval-
uates to true when each variation point vp in vc is substituted by cfg(vp). A
variability condition is valid if there is a variability configuration satisfying it.
Given two variability conditions X and Y , X is stronger than Y iff X =⇒ Y .

For example, in the rule D+E+F in Fig. 2, V = {D,E, F}. True, E, and
E∨F are valid variability conditions; E∧¬E is not valid. A possible configuration
might bind the variation points D to false, E to true and F to false, which would
satisfy the variability condition E ∨ F .

In a VB rule, variability is formalized by means of subrule embeddings, each
describing a single variant. The intersection of subrule embeddings is the part
of the rule where all variants overlap, i.e., the base rule. Each subrule has a
variability condition determining when this variant shall be active. Moreover, the
entire rule has a variability model. The base rule does not have any annotations.

Definition 4 (Variability-based rule). Given LV , a VB rule r̂ = (r, S, v, pc)
consists of a rule r, a set S of subrule embeddings to r, a variability condition v,
called variability model, and a function pc : S∪{idr} → LV . Function pc defines
presence conditions for subrules s.t. pc(idr) is true and ∀s ⊆ s′ : pc(s′) =⇒
pc(s). The base rule is determined by the intersection of all subrule embeddings.

Rule D+E+F in Fig. 3 is a compact representation of a VB rule over
variation points D , E , and F with various subrule embeddings such as
{sE , sE∨F , sD∧E , ...}. The base rule comprises all elements with the presence
condition true: i.e., objects without annotations such as #33–36, and their rela-
tions. Elements #37 and #38 have non-true presence conditions and are there-
fore not present in all subrule embeddings. To ensure equivalence to the original
three rules, the variability model v specifies mutual exclusion between variation
points: v = xor(vD, vE , vF).

To show the correctness of our approach, we consider the flattening of a VB
rule – an operation for generating the individual “flat” rules it represents.

Definition 5 (Flattening of a VB rule). Let a VB rule r̂ = (r, S, v, pc) over
LV be given. For each variability condition c in LV , the following holds: if c∧ v
is valid, Sc ⊆ S is a set of subrule embeddings iff ∀s ∈ S : s ∈ Sc if c =⇒ pc(s).
Merging all subrule embeddings in Sc by first computing the intersections of all
pairs of embeddings and merging them along these interfaces afterwards, yields
a subrule embedding rc → r. rc is the flat rule for condition c. Flat(r̂) is the set
of all flattened rules: {rc | c ∈ LV ∧ (c ∧ v) is valid}.

For example, consider just the rule D+E+F in Fig. 3. c ∧ v becomes valid
if xor(cfg(vD), cfg(vE), cfg(vF)) is true. Hence, Flat(D+E+F) = {D,E,F}.
In [9], it is shown that the application of a VB rule is equal to the application
of flattened rules. This result is key to argue for the correctness of RuleMerger.

128 D. Strüber et al.

4 Framework

Given a rule set with similar rules, RuleMerger, outlined in Fig. 1, aims to find an
efficient representation of these rules using a set of variability-based (VB) rules.
At its core is a framework of three components called clone detection, clustering
and merge construction. We specify the input and output of each component and
show correctness of RuleMerger based on these specifications. Each component
may be instantiated in various ways, as long as its specification is implemented.

4.1 Clone Detection

Clone detection allows identifying overlapping portions between the input rules.
We use clone detection as a prerequisite for both clustering and merge con-
struction: Rules with a large overlap are clustered together. Merging overlap-
ping portions rather than individual elements allows us to preserve the essential
structural information expressed in the rules. Moreover, the execution perfor-
mance of the created VB rules can be considerably improved by restricting clone
detection to connected portions: Connected patterns can be matched much more
efficiently than multiple independent patterns [18].

Formally, given a set of rules, a clone is a largest subrule that can be embed-
ded into a subset of this rule set. To account for the optional restriction of clone
detection to connected portions, we analogously define connected clones based
on largest connected subrules. To establish a well-defined merge construction,
we define a compatibility relation, ensuring that two clones never assign the same
object contained in one rule to diverging objects contained in another one.

Definition 6 (Clone group). Given a set R = {ri|i ∈ I} of rules, a (con-
nected) clone group CGR = (rc, C) over R consists of a (connected) rule rc,
called clone, and set C = {ci|i ∈ I} of subrule mappings ci : rc → ri iff there is
no set C′ = {c′

i|i ∈ I} of subrule mappings c′
i : r′

c → ri with a subrule mapping
i : rc → r′

c where r′
c is a (connected) rule.

Given a clone group CGR and a subset R′ ⊆ R, CGR is reduced to R′,
written Red(CGR,R′) = (rc, C′), by C′ = C \{cj |rj �∈ R′}. Clone groups CGR =
(rc, {ck|k ∈ K}) and CGR′ = (r′

c, {c′
l|l ∈ L}) with R ⊆ R and K ⊂ L are

compatible if there is a subrule mapping in : rc → r′
c with ∀k ∈ K : ck = c′

k ◦ in.

Table 1. Clone groups, as reported by
clone detection.

Name Rules Size

CG1 {E, F} 10
CG2 {D, E, F} 8
CG3 {C, E, F} 7
CG4 {B, C} 6
CG5 {A, B, C, D, E, F} 5

Table 1 shows the result of apply-
ing clone detection to rules shown in
Fig. 2. Each row denotes a clone group,
comprising a set of rules and a clone
present in each of these rules. Clones
are indicated by their size, calculated as
the total number of involved nodes and
edges. The rows are ordered by the size
of the clone. In particular, CG2 repre-
sents objects #15–18, #20–23 and their

RuleMerger : Automatic Construction of VB Model Transformation Rules 129

interrelations. CG1 incorporates objects #19 and #25 and their incoming rela-
tionships in addition. Clone groups CG1 and CG2 are compatible: The clone
of CG2 extends the one of CG1. CG2 can be reduced to rule set {E,F} by
discarding the embedding into rule D. CG2 and CG3 are not compatible: their
rule sets are not in subset relation. Each clone group in Table 1 is connected.

The output of clone detection is a set of clone groups – in the example, all
rows of Table 1. These clone groups may be pair-wise incompatible.

4.2 Clustering

As a prerequisite for merge construction, we introduce clustering, an operation
that splits a rule set into a cluster partition based on similarity between rules.
Its input are a set of rules and a set of clone groups over these rules.

Definition 7 (Cluster). Given a set R of rules and a set CG of clone groups
over R, a cluster Cl over R is a set of clone groups CGR′ ⊂ CG over each
subset R′ ⊆ R. Given a partition P of R, a cluster partition is a set Par(Cl)P
of clusters over Cl where for each P ∈ P there is a cluster ClP ∈ Par(Cl)P
comprising clone groups Red(CGR′ , P) and CGP ′ ⊆ CGP over subsets P ′ of P .
Each cluster ClP ∈ Par(Cl)P is called a sub-cluster of Cl.

In the example, there is a cluster partition over the rule set with sub-clusters
over {A}, {B , C}, and {D , E , F}. We consider the sub-cluster over {D , E , F}:
The clone groups over this set are obtained by reducing the mappings of {CG2,
CG5} to rules D , E and F , i.e., discarding all mappings not referring to either
rule. To obtain the clone groups over subset {E , F}, we include CG1 and CG3
as well and reduce the mappings of {CG1, CG2, CG3, CG5} to E and F .

The output of clustering is one clustering partition over the rule set. Given
multiple possible partitions, the instantiation of clustering has to choose one.

4.3 Merge Construction

Merge construction takes a cluster partition over the entire rule set as input.
Each sub-cluster becomes a VB rule in the output. The available information
on overlapping, given by clone groups, is considered to merge corresponding
elements. Merging requires that the clone groups over each sub-cluster are com-
patible. Incompatible clone groups have to be discarded before merging, a non-
trivial task requiring a strategy to determine what to discard. The instantiation
in Sect. 5 provides such a strategy. To maintain traceability between original
and new rules, we define a variation point for each original rule. The variability
model is set over the variation points, specifying that exactly one of them is
valid at a time.

Definition 8 (Cluster merge). Given a cluster partition Par(Cl)P over a
cluster Cl over R, each sub-cluster ClP ∈ Par(Cl)P is merged to a variability-
based rule r̂ = (r, S, v, pc) by merging all rules in P = {rj |j ∈ J} over compatible

130 D. Strüber et al.

clone groups in ClP . The result is a rule r. S = {si : ri → r} consists of all
resulting subrule embeddings. Variation points V are determined by the rules
in P : V = {vj |j ∈ J}. Moreover, v = Xorj∈J(vj) and pc(sj) = vj. We use
the notation Merge(ClP) to indicate r̂ and Merge(Cl) = {Merge(ClP)|ClP ∈
Par(Cl)P}.

Rules are merged over compatible clone groups by gluing those rule elements
that are in relation via subrule mappings. This relation is extended to an equiv-
alence relation, so in particular, the transitive closure is considered as well. All
elements not in the relation are merged in disjointly.

In the example, considering all clone groups identified for the sub-cluster over
{D , E , F}, CG1–2 are compatible; since we consider the reduction to {D , E , F}
they are incompatible to CG3 and CG5. Merging the sub-cluster based on clone
groups CG1–2 yields a VB rule isomorphic to D+E+F in Fig. 3. The variability
model v is set to xor(cfg(vD), cfg(vE), cfg(vF)). In the compact representation of
VB rules shown in Fig. 3, the presence condition of an element is the disjunction
of all variation points whose corresponding subrules contain the element.

As a key well-definedness result, we obtain that merging a rule set and then
flattening it produces the original set. We provide a proof in [19].

Theorem 1 (Correctness of rule merger). For any cluster Cl over a set R
of flat rules, we have Flat(Merge(Cl)) = R.

Note that the opposite operation, first flattening a VB rule set and then
merging the resulting flat rules, may not yield the same VB rule set: In general,
there are several VB rules with the same flattening. In fact, Theorem1 ensures
that all VB rule sets created by instantiations of RuleMerger have the same
flattening, i.e., they are semantically equivalent.

5 Instantiating RuleMerger

We now present our instantiation of the RuleMerger framework based on state-
of-the-art clone detection and clustering algorithms and a new merge construc-
tion algorithm. We describe two input parameters enabling customizations with
respect to specific quality goals. For implementation details, see [19].

Clone Detection. We considered the applicability of three techniques for clone
detection, each of them allowing to identify connected clones as per Definition 6.
First, we applied gSpan, a general-purpose graph pattern mining tool [20]. Using
this tool, we experienced heap overflows even on small rule sets. Second, we re-
implemented eScan [21], which terminated with insufficient memory errors for
larger rule sets. While our implementation could be flawed, [22] reports on a sim-
ilar experience with their re-implementation of eScan. Finally, we applied Con-
QAT [22], a heuristic technique which delivers fast performance at the expense
of precision. It was able to analyze rule sets of 5000 elements in less than 10
seconds while reporting a large portion of relevant clones. We used ConQAT in
our experiments on realistic rule sets.

RuleMerger : Automatic Construction of VB Model Transformation Rules 131

We provide a customization to increase the speed-up produced by the con-
structed rules: The performance-critical task in rule application, matching, con-
siders just the rule left-hand sides. Consequently, performance is optimized when
rules are merged based on their overlap in left-hand sides. To this end, a Boolean
parameter restrictToLhs allows to restrict the rule portions considered by clone
detection. When set to true, it only finds and reports clones for left-hand sides.

Clustering. From a large variety of approaches to cluster a set of objects based
on their similarity [13], we chose AverageLinkage, a hierarchical agglomerative
method, due to its convenient application to our approach. It assumes a distance
function – a measure of similarity between the clustered elements. We consider
the similarity of rule pairs, defining it as the size of the rules’ largest common
clone divided by their average size. In the example, similarity of rules E and
F is calculated based on CG1, evaluating to 10

11 = 0.91. It further assumes a
customizable cutting-level threshold parameter that we describe in what follows.

Fig. 5. Cluster dendrogram,
as reported by clustering.

The method builds a cluster hierarchy, often
visualized using a dendrogram – a tree diagram
arranging the input elements, as shown in Fig. 5.
Tree nodes describe proximity between rule sets.
The “lower” in the tree two nodes are connected,
the more similar are their corresponding rules. For
example, rule D is similar to E and F , but the simi-
larity is not as strong as that between just E and F .
The clustering result is obtained by “cutting” using
the cutting-level threshold, marked by a vertical bar
in Fig. 5, and collecting the obtained subtrees.

Merge Construction. We propose a custom algorithm for merge construction.
It proceeds in two steps: determining what is to be merged and how to do
the merging. The first step, called merge computation, takes as input the cluster
partition created by clustering (see Definition 7). To ensure a well-defined merge,
merge computation refines the given cluster partition by discarding incompatible

Fig. 6. MergeSpecification metamodel.

clone groups (Definition 6), retaining
sub-clusters for which a set of compat-
ible clone groups is available. To this
end, we apply a greedy strategy that
aims to capture a high degree of overlap.
Each sub-cluster becomes a MergeRule
in the output of merge computation, a
MergeSpecification. The second step,
merge refactoring, creates VB rules
according to this MergeSpecification
as per Definition 8.

Figure 6 specifies a metamodel for
the interface between merge compu-
tation and merge refactoring. Merge
Specification, corresponding to the

132 D. Strüber et al.

overall rule set, acts as an overarching container for a set of MergeRules. One
MergeRule identifies a sub-cluster that is to be merged into a VB rule. In order
to preserve the graphical layout of the contained rules, one rule is stated as mas-
terRule; this rule is used as a starting point in creating the VB rule. To retain as
much layout information as possible, it is best to select the largest input rule as
the masterRule. A MergeRule specifies all elements to be unified in the created
VB rule. For each element in the resulting rule, a MergeRuleElement is defined,
referring to the elements to be represented by it. In a consistent specification,
each rule element is referred to by exactly one MergeRuleElement.

Fig. 7. Merge computation.

Figure 7 sketches
the merge computation
algorithm. The output
MergeSpecification
is created in line 2 and
incrementally filled by
considering each clus-
ter. In each iteration of
the loop starting in line
5, a new sub-cluster is
constructed. We apply
a greedy strategy to
integrate as many com-
patible clone groups as
possible, starting with
the top – the largest
available – clone group
in lines 6–8 and incre-
mentally adding the
next largest compatible
ones in 9–14. For each
clone group, we tem-
porarily create a new
MergeRule, integrating
its contents with the result MergeRule in line 12. When no more compatible
clone groups are found, we add the MergeRule to the result and discard map-
pings that concern its rules from the remaining clone groups, from which we
remove all empty and already considered clone groups, in lines 15–18. We repeat
this process until no clone groups are left to consider.

In the example, considering cluster {D , E , F} containing clone groups CG1,
CG2, CG3, and CG5, the largest one CG1 is chosen as top group in line 6.
In line 7, a MergeRule is created based on CG1, specifying the merge of the
involved rules E and F . One MergeRuleElement is created for each pair of
clone elements and for each non-clone element, e.g., one for {#15, #20} and
one for {#24}. In lines 9–14, CG2 is identified as the next largest compatible
clone. Its temporary merge rule, specifying the merge of rules D , E and F ,

RuleMerger : Automatic Construction of VB Model Transformation Rules 133

is created. The two merge rules are integrated by establishing that each rule
element finally belongs to exactly one MergeRuleElement, which involves the
deletion of redundant MergeRuleElements. Then, as no compatible clone groups
can be found, the MergeRule comprising the information of CG1 and CG2 is
added to the resulting MergeSpecification. In lines 17–18, the mappings of
CG3 and CG5 for D , E and F are removed, leaving them empty and leading to
their discarding.

Based on a given MergeSpecification, the merge refactoring procedure fol-
lows Definition 8 (see [19] for a detailed description): non-master-rule elements
are moved to the master rule; non-master rules are deleted; a variability model
is set for the master rule; and a presence condition is set for each contained
element.

6 Evaluation

We focus on two research questions: RQ1: How well does RuleMerger achieve
its goal of creating high-quality rule sets? RQ2: What is the impact of design
decisions made by RuleMerger on the quality of the created rules?

To answer these questions, we applied our instantiation of RuleMerger on
rule sets from two real-life model transformation scenarios, called Ocl2Ngc
and FmRecog, and one adapted from literature, called Comb. The main quality
goal in these scenarios is performance: Ocl2Ngc and Comb were considered as
benchmarks in [9] and [23]; FmRecog is an automatically derived rule set used in
the context of model differencing [24], a task that necessitates low latency. Thus,
we optimized the two input parameters described in Sect. 5 for performance. We
describe the rule sets and associated test input models in [19].

We assess the quality of the produced rules with respect to performance and
reduction in redundancy. To quantify performance, we applied the rule sets on
all input models and measured cumulative execution time on all input mod-
els. We repeated each experiment ten times to account for variance. To quan-
tify redundancy reduction, we measured the relative decrease in the number of
rule elements, based on the rationale that we produce semantically equivalent,
yet syntactically compacted rules (Theorem 1). As discussed in Sect. 2, reducing
redundancy in rules is related to benefits for their maintainability.

6.1 Methods and Set-Up

To address RQ1, we investigated three subquestions: RQ1.1: How do VB rules
created by RuleMerger compare to the equivalent classical rules? RQ1.2: How
do VB rules created by RuleMerger compare to those created manually? RQ1.3:
How do the VB rules created by RuleMerger scale to large input models? For
RQ1.1, we considered all three rule sets. For RQ1.2, we considered the scenario
where a manually created rule set was available: Ocl2Ngc [9]. For RQ1.3, we
considered the Comb scenario, as it features a procedure to increase the input

134 D. Strüber et al.

model automatically (increasing the size of the input grid [23]); we measured the
impact of model size on execution time until we ran out of memory.

To address RQ2, we investigated two questions: RQ2.1 What is the impact
of clone detection? RQ2.2 What is the impact of clustering? For RQ2.1, we
randomly discarded 25 %–100 % of the reported clone groups. For RQ2.2, we
replaced the default clustering strategy by one that assigns rules to clusters ran-
domly. We measured the execution time of the rules created using the modified
input.

As clone detection techniques, we applied ConQat [22] on Ocl2Ngc and
FmRecog, as it was the only tool scaling to these scenarios. We applied
gSpan [20] on the Comb rule set as it allowed us to consider all clones instead of
an approximation. The input parameters were optimized independently for each
scenario by applying the technique repeatedly until the execution time was min-
imized. Moreover, the Henshin transformation engine features an optimization
concerning the order of nodes considered during matching. To avoid biasing the
performance of the FmRecog rule set by that optimization, we deactivated it.
We ran all experiments on a Windows 7 workstation (3.40 GHz processor; 8 GB
of RAM).

Table 2. Results for RQ1.1 and RQ1.2: Quality characteristics of the rule sets.

Size Execution time (sec.)

Scenario Rule set #Rules #Elements Total Sd Median Sd

Ocl2Ngc Classic 36 3045 916.6 96.3 46.0 7.1

Manual merge 10 1018 181.8 27.1 10.8 2.4

RuleMerger 12 2147 5.8 0.4 0.4 0.1

FmRecog Classic 53 4626 799.9 41.4 63.2 3.5

RuleMerger 12 2790 211.4 46.0 15.9 0.3

Comb Classic 6 252 1.39 0.09 0.12 0.01

NoMatch RuleMerger 1 62 0.24 0.09 0.02 0.01

Comb Classic 6 252 10.4 0.18 0.83 0.02

SeveralMatches RuleMerger 1 62 14.2 0.26 1.07 0.05

6.2 Results and Discussion

Table 2 shows the size and performance characteristics for all involved rule sets.
Execution time is provided in terms of the total and median amount of time
required to apply the whole rule set on each test model, each of them paired
with the standard deviation (SD). The number of elements refers to edges and
nodes, including both left-hand and right-hand side of the involved rules.

RQ1.1. The execution time observed for Ocl2Ngc after the RuleMerger treat-
ment showed a decrease by the factor of 158. This substantial speed-up can be
partly explained by the merging component of RuleMerger that eliminates the

RuleMerger : Automatic Construction of VB Model Transformation Rules 135

anti-pattern Left-hand side not connected (LhsNC) [18]: In the automatically
constructed VB rules, connected rules are used as base rules, while in the clas-
sic rules, we found multiple instances of LhsNC. In the FmRecog and Comb
rule sets, the speed-up was less drastic, amounting to the factors of 4.5 and 5.8,
respectively. When applying the Comb rule set on the SeveralMatches sce-
nario, which involves an artificial input model with many possible matches [23],
execution time increased by the factor 1.36, showing a limitation of VB rules: If
the number of base matches is very high, the initialization overhead for extending
the base matches outweighs the initial savings. This overhead may be reduced by
extending the transformation engine implementation. The amount of redundancy
was reduced by 29 % in Ocl2Ngc, 40 % in FmRecog, and 75 % in Comb.

RQ1.2. In Ocl2Ngc, we found a speed-up by the factor of 36. To study this
observation further, we inspected the manually created rules, again finding sev-
eral instances of the LhsNC antipattern. This observation gives rise to an inter-
esting interpretation of the manual merging process: While the designer’s explicit
goal was to optimize the rule set for performance, they implicitly performed the
more intuitive task of optimizing for compactness. Indeed, the amount of reduced
redundancy in the manually created rules (67 %) was significantly greater than in
those created by RuleMerger (29 %), highlighting an inherent trade-off between
performance- and compactness-oriented merging: Not including overlap elements
into the base rule leads to duplications in the variable portions.

Fig. 8. Results for RQ1.3: Execu-
tion time in sec. (y) related to
length of grid (x).

RQ1.3. As shown in Fig. 8, the last sup-
ported input model was a 480x480 grid for
both rule sets. We observed that the ratio
between the execution time of applying the
classic (dark-gray bars) and the VB rules
(light-gray bars) stayed the same in each iter-
ation, independent of the size of the input
grid: The VB rules were always faster by the
factor of 6. In terms of the total execution
time, the speed-up provided by the VB rules
became more important as the size of input
models increased.

RQ2.1. As presented in Table 3, the execu-
tion time for the FmRecog rule set increased
monotonically when we increased the amount of discarded overlap, denoted as d.
Ocl2Ngc behaved almost monotonically as well. The slightly decreased execu-
tion time reported for d=0.25 can be explained by the heuristic merge construc-
tion strategy. While the merge of rules based on their largest clones might be
adequate in general, in some cases it may be preferable to discard a large clone in
favor of a more homogeneous distribution of rules. The reported execution time
for d=0.75 was higher than that for the set of classic rules. In this particular
case, small clones were used during merging, leading to small base rules, which
resulted in many detectable matches and thus in a high initialization overhead

136 D. Strüber et al.

Table 3. Results for RQ2.1: Impact of
considered overlap on execution time
(sec.).

d: Discarded portion
Scenario 0.0 0.25 0.5 0.75 1.0

Ocl2Ngc 5.8 5.6 251 981 917

FmRecog 211 252 604 690 800

Table 4. Results for RQ2.2: Impact of
clustering strategy on execution time
(sec.).

Clustering strategy
Scenario AvLinkage Random

Ocl2Ngc 5.8 80

FmRecog 211 788

for extending these matches. To mitigate this issue, one could define a lower
threshold for clone size.

RQ2.2. As indicated in Table 4, the employed clustering strategy had a signifi-
cant impact on performance, amounting to factors of 13.7 for the Ocl2Ngc and
3.7 for the FmRegoc rule set. Interestingly, in Ocl2Ngc, random clustering
still yielded better execution times than manual clustering did (see Table 2) –
this is related to the fact that RuleMerger removed the LhsNC antipattern. In
FmRecog, randomly clustered rules were comparable to the classic ones.

6.3 Threats to Validity and Limitations

Factors affecting external validity include our choice of rule sets, test models
and matching strategy, and the capability to optimize the two input parameters.
While the considered rule sets represent three heterogeneous use cases, exam-
ples to show that our approach scales to more diverse and larger scenarios are
required. To ensure that our test models were realistic, we employed the original
test or benchmark models. The performance of rule application depends on the
chosen matching strategy, in our case, mapping this task to a constraint satisfac-
tion problem [25]. We aim to consider the effect of other strategies in the future.
Parameter tuning requires the existence of realistic test models. If a rule set is
designed for productive use, it is reasonable to assume such models to exist.

With regard to construct validity, we focus on one aspect of maintainability,
the amount of redundancy. Giving a definitive answer on how to unify rules for
their optimal maintainability is outside the scope of this work. Specifically, sev-
eral unrelated rules may be unified, impairing understandability. To mitigate this
issue, we recommend to inspect the clustering result before merging. Further-
more, our approach increases the size of individual rules, a potential impediment
to readability [26]. We believe that this limitation can be mitigated by tool sup-
port. Inspired by related approaches to address the readability issues associated
with #ifdef directives [27,28], we aim to provide editable views, representing
portions of a VB rule that correspond to user-selected configurations.

7 Related Work

Our work is related to a number of approaches that create feature-annotated rep-
resentations of products lines. In [29], an approach to merge statecharts based

RuleMerger : Automatic Construction of VB Model Transformation Rules 137

on structural and behavioral commonalities is applied to models of telecommu-
nication features. In [16], an approach for merging and identifying variability in
Matlab product variants is proposed. In [14,30], a formal merge framework is
defined and instantiated for class models and state machines. It is studied how
a number of desired qualities of the resulting model can be obtained. In [31,32],
a technique for the reverse engineering of variability from block diagrams based
on their data-flow structures is introduced. In [15], a language-independent app-
roach for the reverse-engineering of product lines is proposed. These approaches
operate on the basis of an element-wise comparison using names and as well as
structural and behavioral similarities. In model transformation rules, the essen-
tial information lies in isomorphic structural patterns. To our knowledge, our
approach is the first that utilizes clone detection to identify such patterns.

Our work can be considered a performance optimization for the NP-complete
problem of transformation rule matching [33]. Earlier approaches in this area are
mostly complementary to ours as they focus on the matching of single rules [34–
37]. Mészáros et al. [38] first explored the idea of considering overlapping por-
tions in multiple rules. Their custom technique for detecting these sub-patterns,
however, did not scale up to complete rule sets. Instead, they considered just
two rules at once, enabling a moderate performance improvement of 11 %. In
our approach, applying clone detection and clustering techniques gives rise to an
increased speed-up. In, [39] shared sub-patterns are considered dynamically dur-
ing incremental pattern matching to mitigate the memory issue of Rete networks.
Yet, the authors report on deteriorated execution times: The index tables map-
ping sub-patterns to partial matches grow so large that performance is impaired.
Multi-query optimization has also been investigated for relational databases [40].
In graph databases, only single-query optimization has been considered [41].

The maintainability effects of cloning have been studied intensively [14,42].
In an empirical study, Kim et al. [43] identified three types of clones: short-lived
clones vanishing over the course of few revisions, “unfactorable” clones related
to language limitations, and repeatedly changing clones where a refactoring is
recommended. We second the idea that an aggressive refactoring style directed
at short-lived clones should be avoided. Instead, targeting clones of the two
latter categories, we propose to apply our approach to stable revisions of the
rule set. Specifically, clones that were previously “unfactorable” due to the lack
of suitable reuse concepts may benefit from the introduction of VB rules. An
approach complementary to clone refactoring is clone management, based on a
tool that detects and updates clones automatically [44]. This approach has a
low initial cost, but requires constant monitoring. Further works propose the
refactoring of transformation rules towards pre-defined patterns [45], modular
interfaces [46], and abstract metamodels [47]. None of these considers clones.

8 Conclusion and Future Outlook

In this work, we introduced an approach for constructing variability-based (VB)
model transformation rules automatically. Our experiments showed that the app-
roach is effective: The created rules always had preferable quality characteristics

138 D. Strüber et al.

when compared to classical rules, unless the number of expected matches was
very high. It is apparent that using the approach, the performance of model
transformation systems as well as redundancy-related maintainability concerns
can be considerably improved, making the benefits of VB rules available while
imposing little manual effort.

In the future, we aim to provide tool support to address the readability issue
brought by the increased amount of information in each rule. Moreover, we plan
to increase the expressiveness of VB rules. Covering all important transformation
features such as application conditions and amalgamation will make VB rules
applicable to the existing variety of model transformation languages [48–50].

Acknowledgements. We thank Felix Rieger and the anonymous reviewers for their
valuable comments on the present and earlier drafts of this manuscript.

References

1. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20(5), 42–45 (2003)

2. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation
approaches. IBM Syst. J. 45(3), 621–646 (2006)

3. Hermann, F., Gottmann, S., Nachtigall, N., Braatz, B., Morelli, G., Pierre, A.,
Engel, T.: On an automated translation of satellite procedures using triple graph
grammars. In: Duddy, K., Kappel, G. (eds.) ICMB 2013. LNCS, vol. 7909, pp.
50–51. Springer, Heidelberg (2013)

4. Mann, M., Ekker, H., Flamm, C.: The graph grammar library - a generic framework
for chemical graph rewrite systems. In: Duddy, K., Kappel, G. (eds.) ICMB 2013.
LNCS, vol. 7909, pp. 52–53. Springer, Heidelberg (2013)

5. Famelis, M., et al.: Migrating automotive product lines: a case study. In: Kolovos,
D., Wimmer, M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 82–97. Springer,
Heidelberg (2015)

6. Richa, E., Borde, E., Pautet, L.: Translating ATL model transformations to alge-
braic graph transformations. In: Kolovos, D., Wimmer, M. (eds.) ICMT 2015.
LNCS, vol. 9152, pp. 183–198. Springer, Heidelberg (2015)

7. Kusel, A., Schonbock, J., Kappel, G., Wimmer, M., Retschitzegger, W., Schwinger,
W.: Reuse in model-to-model transformation languages: are we there yet? Softw.
Syst. Model. 14, 537–572 (2013)

8. Blouin, D., Plantec, A., Dissaux, P., Singhoff, F., Diguet, J.-P.: Synchronization of
models of rich languages with triple graph grammars: an experience report. In: Di
Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 106–121. Springer,
Heidelberg (2014)

9. Strüber, D., Rubin, J., Chechik, M., Taentzer, G.: A variability-based approach
to reusable and efficient model transformations. In: Egyed, A., Schaefer, I. (eds.)
FASE 2015. LNCS, vol. 9033, pp. 283–298. Springer, Heidelberg (2015)

10. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Series
in Software Engineering. Addison-Wesley, Boston (2001)

11. Czarnecki, K., Antkiewicz, M.: Mapping features to models: a template approach
based on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

RuleMerger : Automatic Construction of VB Model Transformation Rules 139

12. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools: a qualitative approach. Sci. Comput. Program.
74(7), 470–495 (2009)

13. Xu, R., Wunsch, D., et al.: Survey of clustering algorithms. IEEE Trans. Neural
Netw. 16(3), 645–678 (2005)

14. Rubin, J., Chechik, M.: Combining related products into product lines. In: de Lara,
J., Zisman, A. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol.
7212, pp. 285–300. Springer, Heidelberg (2012)

15. Ziadi, T., Henard, C., Papadakis, M., Ziane, M., Le Traon, Y.: Towards a language-
independent approach for reverse-engineering of software product lines. In: SAC
2014, pp. 1064–1071. ACM (2014)

16. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Automatic variation-point identification
in function-block-based models. In: GPCE 2010, pp. 23–32. ACM (2010)

17. Fowler, M.: Refactoring: Improving the Design of Existing Code. Pearson Educa-
tion India, New Delhi (2002)

18. Tichy, M., Krause, C., Liebel, G.: Detecting performance bad smells for Henshin
model transformations. In: AMT 2013, vol. 1077 (2013)

19. Strüber, D.: Model-driven engineering in the large: refactoring techniques for mod-
els and model transformation systems. Ph.D. thesis, Philipps University Marburg
pending publication (2016)

20. Yan, X., Han, J.: gspan: graph-based substructure pattern mining. In: ICDM 2003,
pp. 721–724. IEEE (2002)

21. Pham, N.H., Nguyen, H.A., Nguyen, T.T., Al-Kofahi, J.M., Nguyen, T.N.: Com-
plete and accurate clone detection in graph-based models. In: ICSE 2009, pp.
276–286. IEEE (2009)

22. Deissenboeck, F., Hummel, B., Juergens, E., Pfaehler, M., Schaetz, B.: Model clone
detection in practice. In: the 4th International Workshop on Software Clones, pp.
57–64. ACM (2010)

23. Varró, G., Schürr, A., Varró, D.: Benchmarking for graph transformation. In: ISVL-
HCC 2005, pp. 79–88. IEEE (2005)

24. Bürdek, J., Kehrer, T., Lochau, M., Reuling, D., Kelter, U., Schürr, A.: Reason-
ing about product-line evolution using complex feature model differences. Autom.
Softw. Eng. 1–47 (2015). Springer

25. Rudolf, M.: Utilizing constraint satisfaction techniques for efficient graph pattern
matching. In: Workshop on Theory and Application of Graph Transformations, p.
238. Springer Science & Business Media (1998)

26. Störrle, H.: On the impact of layout quality to understanding UML diagrams: size
matters. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.)
MODELS 2014. LNCS, vol. 8767, pp. 518–534. Springer, Heidelberg (2014)

27. Kästner, C.: Virtual separation of concerns. Ph.D. thesis, University of Magdeburg
(2010)

28. Walkingshaw, E., Ostermann, K.: Projectional editing of variational software. In:
GPCE 2014, pp. 29–38. ACM (2014)

29. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and
merging of variant feature specifications. IEEE TSE 38(6), 1355–1375 (2012)

30. Rubin, J., Chechik, M.: Quality of merge-refactorings for product lines.
In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793,
pp. 83–98. Springer, Heidelberg (2013)

31. Wille, D.: Managing lots of models: the famine approach. In: FSE 2014, pp. 817–
819. ACM (2014)

140 D. Strüber et al.

32. Holthusen, S., Wille, D., Legat, C., Beddig, S., Schaefer, I., Vogel-Heuser, B.: Fam-
ily model mining for function block diagrams in automation software. In: SPLC
2014: Workshops, Demonstrations and Tools Companion, pp. 36–43. ACM (2014)

33. Atallah, M.: Algorithms and Theory of Computation Handbook. CRC, Boca Raton
(2002)

34. Varró, G., Friedl, K., Varró, D.: Adaptive graph pattern matching for model trans-
formations using model-sensitive search plans. ENTCS 152, 191–205 (2006)

35. Horváth, Á., Varró, G., Varró, D.: Generic search plans for matching advanced
graph patterns. Elec. Comm. of the EASST 6, 58 (2007)

36. Krause, C., Tichy, M., Giese, H.: Implementing graph transformations in the bulk
synchronous parallel model. In: Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS).
LNCS, vol. 8411, pp. 325–339. Springer, Heidelberg (2014)

37. Acretoaie, V., Störrle, H.: Efficient model querying with VMQL. In: CMSEBA
2014, pp. 7–16. CEUR-WS.org (2015)

38. Mészáros, T., Mezei, G., Levendovszky, T., Asztalos, M.: Manual and automated
performance optimization of model transformation systems. Int. J. Softw. Tools
Technol. Transfer 12(3–4), 231–243 (2010)

39. Varró, G., Deckwerth, F.: A rete network construction algorithm for incremental
pattern matching. In: ICMT 2013, pp. 125–140 (2013)

40. Sellis, T.K.: Multiple-query optimization. ACM Trans. Database Syst. (TODS)
13(1), 23–52 (1988)

41. Zhao, P., Han, J.: On graph query optimization in large networks. VLDB Endow-
ment 3(1–2), 340–351 (2010)

42. Kapser, C., Godfrey, M.W.: “cloning considered harmful” considered harmful. In:
Working Conference on Reverse Engineering, pp. 19–28. IEEE (2006)

43. Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An empirical study of code clone
genealogies. In: ACM SIGSOFT Software Engineering Notes, vol. 30, pp. 187–196.
ACM (2005)

44. Nguyen, H.A., Nguyen, T.T., Pham, N.H., Al-Kofahi, J., Nguyen, T.N.: Clone
management for evolving software. IEEE Trans. Softw. Eng. 38(5), 1008–1026
(2012)

45. Syriani, E., Gray, J.: Challenges for addressing quality factors in model transfor-
mation. In: ICST 2012, pp. 929–937. IEEE (2012)

46. Rentschler, A.: Model transformation languages with modular information hiding.
Ph.D. thesis, Karlsruher Institut für Technologie (2015)

47. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Reverse engineering of model trans-
formations for reusability. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS,
vol. 8568, pp. 186–201. Springer, Heidelberg (2014)

48. Balasubramanian, D., Narayanan, A., van Buskirk, C., Karsai, G.: The graph
rewriting and transformation language: GReAT. ECEASST 1 (2007)

49. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: a fast SPO-
based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer,
Heidelberg (2006)

50. Acretoaie, V., Störrle, H., Strüber, D.: Transparent model transformation: turning
your favourite model editor into a transformation tool. In: Kolovos, D., Wimmer,
M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 121–130. Springer, Heidelberg (2015)

Two-Step Transformation of Model Traversal
EOL Queries for Large CDO Repositories

Xabier De Carlos1(B), Goiuria Sagardui2, and Salvador Trujillo1

1 Ikerlan Research Center, P.J.M. Arizmendiarrieta 2, 20500 Arrasate, Spain
{xdecarlos,strujillo}@ikerlan.es

2 Mondragon Unibertsitatea, Goiru 2, 20500 Arrasate, Spain
gsagardui@mondragon.edu

Abstract. Recent approaches persist models in databases to overcome
performance and memory limitations of XMI. Among them, Connected
Data Objects (CDO) is a database-based model repository widely used
in Model Based Engineering by academia and industry. Model traver-
sal queries are intensively used in modelling scenarios and their perfor-
mance greatly impacts tools performance and user experience. In this
paper, we introduce the CDO-QT framework to transform model tra-
versal queries from Epsilon Object Language (EOL) into SQL queries
and execute them at CDO repositories. This way, model engineers can
define queries using domain concepts at performance similar to SQL. We
have evaluated CDO-QT executing a set of queries over repositories from
15 MB to 5 GB size. CDO-QT results in better performance and memory
consumption with respect to other approaches (Plain EMF, MDT OCL,
CDO-OCL).

Keywords: Model driven development · Query · Model persistence ·
Eclipse modelling framework · Connected data objects · Large models

1 Introduction

Model Based Engineering (MBE) raises the abstraction level of software develop-
ment promising productivity increases and greatly improved quality of the code
and development process [11]. In this paradigm, models automate and guide the
development processes and engineers focus on domain concepts rather than on
implementation details.

Modelling scenarios in industry can be really complex [1], with large models
of size of 100 MB and beyond, and with millions of model elements. Engineers use
modelling tools for model transformation, validation or execution. Performance
might have adverse effect on development, which makes MBE adoption difficult
in industry. Among all the activities, model queries are intensively used. There-
fore the impact of query performance on tool performance and user experience is
significant [4]. In practise, model traversal queries are the most commonly used
type of queries [9]. These queries obtain all the instances of a specific type and
require traversing the entire model.
c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 141–157, 2016.
DOI: 10.1007/978-3-662-49665-7 9

142 X. De Carlos et al.

The Eclipse Modelling Framework (EMF) is a mature framework widely used
by the industry and academia. By default, EMF models are persisted using XML
Metadata Interchange (XMI). XMI entails memory problems for models [9,15]
and requires to completely load them in-memory for model traversal queries.
EMF provides also a binary format which improves scalability of XMI, but it
also requires loading entire models. Alternative proposals to XMI for large mod-
els choose databases for persistence, overcoming limitations by partial loading
of models. Different back-end strategies have been proposed: noSQL databases
(e.g. Morsa, MongoDB, NeoEMF/Map, NeoEMF/Graph or EMF Fragments);
relational databases (e.g. Teneo); or several kinds of databases (e.g. CDO). Data-
bases improve significantly performance in model operation for large models. For
example, a database-based prototype introduced at [2] executes a model traver-
sal query (GraBaTs query) 20 times faster than XMI and requires 57 % of the
memory used by XMI.

Matureness and collaboration support makes Connected Data Objects
(CDO) [17] the most widely used model repository in academia and industry [8].
CDO provides support for model operation from Plain EMF and EMF-based
model query languages executed at client-side (e.g. MDT OCL or EMF query),
model query languages executed at server-side (CDO OCL) and persistence-
specific query languages (e.g. HQL and SQL). Persistence-specific languages
improve significantly model operation performance. For example, GraBaTs query
for CDO with H2 relational back-end for a model of almost 5 millon elements1

requires 6 seconds and 289 MB of memory usage from SQL, while in the best case
of model query languages, it requires 28 s using 525 MB. However, in model query
languages model engineers use domain specific concepts, while in persistence-
specific query languages engineers should be aware of the way information is
persisted and learn database specific concepts and languages. This increases
programming effort to get complex queries correct.

The main contribution of this paper is a framework (CDO-QT) that trans-
forms queries from a model query language (Epsilon Object Language [12]) to a
persistence specific query language (SQL) and executes them at a CDO repos-
itory. Generated queries are fully integrated with the versioning/branching of
CDO. This way, model engineers can define queries using domain concepts at
performance similar to SQL. CDO-QT is designed in a two-step transforma-
tion process to provide re-usability and extensibility. We evaluate performance
and memory usage of different model traversal queries using Plain EMF, MDT
OCL, CDO OCL, SQL and CDO-QT. We have executed the queries over ten
CDO repositories from 15.3 MB to 5 GB. Results show that CDO-QT is able to
execute all the queries faster and requiring less memory than the other solutions
(Plain EMF, MDT OCL and CDO-OCL).

The rest of the paper is organized as follows: Sect. 2 introduces CDO and
describes the motivation of this work. Section 3 describes the query transforma-
tion process performed by CDO-QT. In Sect. 4 we evaluate CDO-QT comparing
performance and memory usage for executing different model traversal queries
1 More details about the evaluation scenario and metrics in Sect. 4.

Transformation of Model Traversal EOL Queries 143

Fig. 1. Simplified CDO architec-
ture for relational backends.

Table 1. Execution time (s) and memory usage
(MB) for the GraBaTs query.

Set0 Set1 Set2 Set3 Set4

Plain EMF time 18 48 473 1069 1140

mem 400 1028 3407 5672 6133

MDT OCL time 18 46 453 1023 1101

mem 322 934 3112 5731 6110

CDO OCL time 1 2 11 26 28

mem 67 67 337 525 590

SQL time 0 1 2 5 6

mem 65 126 154 289 289

and using different model query languages. This paper concludes with related
work and conclusions in Sects. 5 and 6.

2 Operation with CDO Repositories

CDO provides transparent persistence of models in all kinds of back-end strategies,
with load on demand mechanisms and caching policies to operate persisted models.
CDO supports features such as: multi-user access, off-line collaboration, model-
level locking, branching and versioning. Figure 1 illustrates the client/server archi-
tecture of CDO. CDO Server interacts with the database back-end through an
IStore implementation. DBStore is the most mature and complete2, and in prac-
tice mainly relational back-ends are used with CDO [3]. For relational back-ends,
CDO provides a common data-schema with dedicated tables for change history,
branches, commits or user access; additionally it generates automatically one data-
schema for each different domain-metamodel.

EMF-based applications (editors, querying utilities, transformations, etc.)
can operate with CDO repositories. For this purpose, CDO Client provides a
custom extension of EMFs Resource (CDOResource) and EObjects (CDOOb-
jects). Elements of the model are loaded in memory to operate them. CDO
Client can also communicate with a server side query manager. CDO provides
support for OCL queries (OCLQueryHandler) and SQL (SQLQueryHandler).
Table 1 shows execution time and memory usage results for the GraBats case
study [16] using Plain EMF, OCL, CDO-OCL and SQL on five CDO repositories
with H2 relational database (Set0–4)3. Best results are obtained when operating
from server-side query manager. In particular, CDOs’ SQL query handler sig-
nificantly improves performance of operation. However, the programming effort
for model engineers to get complex queries right in SQL can be high, and they
should be aware of database schema and persistence related issues.
2 Comparison of CDO stores: http://goo.gl/cEemcL.
3 For extended information about the evaluation, please refer to Sect. 4.

http://goo.gl/cEemcL

144 X. De Carlos et al.

Fig. 2. EOL to SQL query transformation and execution process of CDO-QT.

3 CDO-QT

Some works have proposed query transformation from model query languages
to SQL [5–7,10,13,14]. Inspired in these works, and with the aim of improving
performance in CDO when operating with model query languages, we present
Query Transformation Engine for CDO (CDO-QT).

CDO-QT inputs model traversal queries in a model query language (EOL
[12]) and transforms automatically to SQL queries that are executed directly
in CDO relational back-ends. Figure 2 illustrates the transformation process:
(i) model engineers use EOL; (ii) CDO-QT transforms at runtime EOL state-
ments into a language independent model; (iii) CDO-QT transforms the model
into SQL statements; and (iv) SQL statements are executed directly over the
database.

3.1 Query Language Independent Metamodel

CDO-QT uses a Query Language Independent Metamodel (QLI Metamodel) to
specify queries in a language-independent way, separating the transformation to
SQL from the model-query language. At this time, CDO-QT supports transfor-
mation of model traversal and self-contained EOL queries. A simplification of
QLI Metamodel for model traversal EOL queries is illustrated in Fig. 3:

– Query: Root element of the model. Attribute returnType specifies the type of
result returned by the query and root reference contains an IModelTraversal
instance. IModelTraversal specifies statements that full-traverse models and
is implemented by AllInstancesOfKind and CollectionMethod.

– AllInstancesOfKind. Abstraction for statements that traverse models
searching instances of an specific kind (specified by type). Sample EOL state-
ment is MethodDeclaration.all.

– CollectionMethod. Abstraction for query statements where all values of an
input collection are evaluated (e.g. .select(md:MethodDeclaration | ...) EOL
statement). name specifies type of the CollectionMethod (e.g. select, collect,
etc.); iterator reference contains the input collection (VariableIterator
instance); and body optional reference contains a IQueryStatement instance.

– VariableIterator. Specifies variables that iterate a collection values within a
query. type contains EClass of the iterated values; name specifies the variable
name; and alias, contains an unique name of the variable. VariableIterator
contains an ISource instance (source reference). ISource is implemented
by classes that specify collection of values iterated by a VariableIterator
instance. Sample EOL statement is md:MethodDeclaration.

Transformation of Model Traversal EOL Queries 145

– IQueryStatement is an interface implemented by all classes that specify
statements that could be contained by a CollectionMethod (LogicalOP,
ComparisonOP and Value). getType() returns type of the value returned by
the specified statement.

– LogicalOP. Abstraction for logical comparison of two statements4 (contained
by left and right) and returns a boolean value (getType()=Boolean).
Operator specifies the logical operator type (AND, OR, NOT, etc.) Sample
EOL statement is: mod.private and mod.static.

– ComparisonOP. Similar to LogicalOP but for comparison of values (e.g.
EQUALS, LOWER, etc.). Sample EOL statement is mod.private=true.

– Value. Extended by PrimitiveValue, CollectionMethod, ValueMethod and
VariableValue classes, and specifies statements returning a value.

– PrimitiveValue. Abstraction for primitive values (e.g. true boolean value).
– ValueMethod. For query statements that evaluate a single-value. name speci-

fies method type; params contains parameters of the method; and variable
reference contains a VariableValue instance which is evaluated. Sample EOL
statement is md.isOfType(MethodDeclaration).

– VariableValue. Extended by LocalVariableValue and VariableIterator
classes, is an abstraction for statements returning values derived from a vari-
able specified within the query.

– LocalVariableValue. Abstraction for statements that specify value of a
variable within the query. It contains parentVariable feature that refer-
ences a VariableValue instance and sf attribute that specifies a EStructu-
ralFeature. If sf is empty, this class specifies the value returned by the
instance referenced at parentVariable. By contrast, if sf contains a feature,
the class specifies the feature value in the parentVariable class values.

Figure 4 illustrates a sample QLI model that conforms to the QLI Metamodel.
Section 3.3 describes this model and provides information about its generation.

3.2 CDO-QT Design

Figure 5 illustrates the class-diagram of CDO-QT:

– Language independent (CDO-QT.generic package). Classes and interfaces
to be extended by EOL- and CDO-Specific packages. This design facilitates
inclusion of new query languages. MLDriver transforms model queries into a
language independent representation (QLI Model). PLDriver transforms into
a database-specific language and executes the query.

– EOL-Specific (CDO-QT.eol-specific package). Deals with EOL and is
responsible for parsing and transforming EOL queries into a QLI Model.
EOLDriver extends MLDriver and implements IModel interface of the EMC
API (provided by EOL) to interact with EOL queries. generateQLIM()
method supports transformation of EOL queries into QLI model.

4 With the exception of NOT operator that only has one statement contained by right
reference.

146 X. De Carlos et al.

Fig. 3. Simplified QLI Metamodel Fig. 4. QLI Model for a sam-
ple EOL query.

– CDO-Specific (CDO-QT.dbstore-specific package). Deals with CDO and
is responsible for: (i) transforming QLI Model into a database specific lan-
guage; and (ii) executing the query. We provide implementation for DBStore
(SQL). CDODriver extends PLDriver. generateQuery() method that gener-
ates a SQL query from a language independent model. execQuery() method
executes the generated SQL query through a CDOQuery instance (provided by
CDO to execute SQL queries at server-side). CDODriver also implements
getVersionBranchInfo() (which adds version and branch information to
SQL queries) and postProcessResults() (for post-processing SQL results).

As shown in Fig. 6 user interacts with the EOLDriver (execQuery method).
EOLDriver generates the QLI Model (generateQLIModel method) and calls
getResult method of the CDODriver. CDODriver executes generateQuery
method to obtain SQL query. Then, SQL query is completed with version/branch
information (addVersionBranchInfo()). Next, query is executed, obtained
results post-processed, and returned to EOLDriver and to the user.

3.3 From EOL to QLI Model

CDO-QT generates an intermediate and query language independent QLI Model
from EOL queries: the EOLDriver receives from EOL an AST Tree that specifies
the EOL Query, which is the input point of the transformation. Listing 1.1
illustrates a fragment of the transformation algorithm (genQLIElem(AST n)),
where AST nodes are visited and artifacts of the QLI Model are instantiated.
The algorithm is called recursively until all nodes are visited.

Transformation of Model Traversal EOL Queries 147

Fig. 5. CDO-QT class diagram Fig. 6. CDO-QT sequence diagram

Following, QLI Model generation process for the EOL query illustrated
on Fig. 4 is described: the transformation process starts with the AST node
corresponding with the MethodDeclaration.all EOL statement. The trans-
formation algorithm obtains the AST node and generates corresponding
abstraction (AllInstancesOfKind instance). Next, AST node that specifies
.select(md — ...) statement is processed by the algorithm and creates a
CollectionMethod instance (with ‘select’ name value). This instance con-
tains a VariableIterator instance that specifies the collection iterator (md).
VariableIterator iterates values returned by MethodDeclaration.all statement
and consequently it contains the previously instantiated AllInstancesOfKind.

1 Object genQLIElem(AST n){

2 if ...

3 else if(n.hasChildren () && isComparison(n.getText ()){

4 ComparisonOP obj = createComparisonOP ();

5 obj.setLeft(genQLIElem(n.getFirstChild ()));

6 obj.setRight(genQLIElem(n.getSecondChild ()));

7 obj.setOperator(n.getText ());

8 return obj;

9 } ... }

Listing 1.1. Fragment of the QLI Model generation algorithm.

The condition of the CollectionMethod instance is specified by
md.modifiers.exists(mod:Modifier | ...) EOL statement and a CollectionMethod
(named ‘exists’) instance is created under the body reference. It contains a
VariableIterator instance that contains a LocalVariableValue that speci-
fies iterated values (md.modifiers). CollectionMethod body reference is filled
with a ComparisonOP (abstraction of condition mod.private=true condition).
The fragment shown in Listing 1.1 contains code related to the generation of

148 X. De Carlos et al.

the ComparisonOP instances. In this case, it satisfies n.hasChildren() con-
dition of line 3 (one child for each compared side) and n.getText() of line
3 returns the string = satisfying also second condition. Satisfying conditions
involves the instantiation of a new ComparisonOP(line 4). Left and right refer-
ences are obtained executing the algorithm genQLIElem(AST n) for two chil-
dren (lines 5,6). In this case, left contains a LocalVariableValue that spec-
ifies mod.private statement, and right contains a PrimitiveValue instance
that specifies true boolean value. Finally, operator feature is setted with the
value returned by n.getText()(line 7) and the instantiated element is returned
(line 8).

3.4 From QLI Model to SQL

EOLDriver calls CDODriver passing by arguments the QLI Model and a CDO-
Resource instance (queried model). At this point, the prototype uses the default
mapping strategy of the DBStore (horizontal mapping). We can distinguish two
different types of tables within the domain-specific data-schema: (a) Object-
Tables: contain information about all the instances of an specific type. The
name of the each table corresponds with name of the type of the contain-
ing elements (e.g. MethodDeclaration); (b) Many-Value-Ref-Tables: contain
information about a many-value reference of an specific type. The name of the
table will follow this format: TypeName FeatureName List (e.g. MethodDecla-
ration BodyDeclarations List).

Table 2 describes a simplified version of SQL queries that are generated from
each QLI Model element. Branching and versioning related statements are added
in generated SQL queries:

– WHERE statements that obtain information from an Object-Table.
Following, simplified version of the added SQL statement that is described:
CDO VERSION>0 AND ((CDO BRANCH =:branchID AND CDO CREATED <=
:commit AND (CDO REVISED=0 OR CDO REVISED>:commit)) OR (:hasBase
AND CDO BRANCH =:baseID AND CDO CREATED<=:basetime AND (CDO
REVISED=0 OR CDO REVISED>:basetime))). The statement contains the fol-
lowing parameters: (1) commit, specifies the timestamp of the commit corre-
sponding with the model version; (2) branchID, specifies the identifier of the
branch that is being queried; (3) hasBase, boolean value that specifies if the
branch is based in another branch; (4) baseID, specifies the identifier of the
base branch; and (5) baseTime, specifies the timestamp of the corresponding
version of the base branch.

– INNER JOIN statements that join an Object-Table with a Many-
Value-Ref-Table. This is a simplified version of the SQL statement that is
added: objectTable.CDO VERSION = referenceTable.CDO VERSION AND
objectTable.CDO BRANCH = referenceTable.CDO BRANCH.

Transformation of Model Traversal EOL Queries 149

Table 2. SQL queries generated for each QLI model element.

QLI Element Generated SQL

AllKindInstances types: SELECT * FROM TypeTable WHERE ...

subtypes: (SELECT * FROM SubType1Table)

UNION (SELECT * FROM SubType2Table) ...

LogicalOP (rightStatementSQL (AND | OR | ...) leftStatementSQL)

ComparisonOP (rightStatementSQL (= | < | ...)leftStatementSQL)

PrimitiveValue strings: ’value’ ; other types: value

ValueMethod method-specific SQL. Ex.: var.feature.isTypeOf(type):

EXISTS(SELECT * FROM TypeTable AS T

WHERE var.feature=T.CDO ID AND ...)

CollectionMethod method-specific SQL. Ex.: var.feature.exists(it — cond):

EXISTS (SELECT iteratorName.*

FROM (VariableIteratorSQL) AS iteratorName

WHERE condSQL)

VariableIterator IteratorParentType IteratorParentFeature List

INNER JOIN (iteratorType) AS iteratorName ON

LocalVariableValue multi-value refs: SELECT featureName.CDO VALUE

FROM ParentType Feature List

INNER JOIN FeatureType AS featureName ON

WHERE ParentType Feature List.CDO SOURCE =

parent.CDO ID AND ...)

attributes and single-value refs: SELECT parent.feature

FROM ParentTable WHERE l

3.5 Executing the Query

Version and branch parameters are set using the CDOResource. Listing 1.2 illus-
trates the parameter setting process: (1) parameter values are obtained from
the CDOResource instance; (2) obtained values are set to the generated SQL
through the CDOQuery instance (cqo); and (3) the SQL query is executed over
the CDO repository using the CDOQuery class provided by CDO. Obtained
results correspond to all the models (CDOResource) of the repository. To provide
results for a specific model, CDO-QT filters and/or analyses the SQL results.
For example, to obtain all MethodDeclaration instances, the post-process selects
those that are part of the model (object.cdoResource() == resource). To
check if a MethodDeclaration exists in a model, SQL results are analysed (e.g.
while(res.hasNext()){ if (res.getNext().cdoResource == resource)
return true;} return false;). We have decided to do this post-process as
including it in the transformation would require complex SQL queries that could
have impact in performance.

150 X. De Carlos et al.

void setQueryParameters(CDOResource resource , CDOQuery cqo){

boolean hasParent = false;

long commit = getTimeStamp(resource.cdoView)

long branchID = resource.cdoView ().getBranch ().getID();

if(existsBase(resource)) hasParent = true;

long baseID = getBaseID(resource);

long baseTime = getBaseTime(resource);

cqo.setParameter("commit", Long.toString(commit));

cqo.setParameter("branchID", Long.toString(branchID));

cqo.setParameter("hasParent", hasParent);

cqo.setParameter("baseID",Long.toString(baseID));

cqo.setParameter("baseTime",Long.toString(baseTime));}

Listing 1.2. Setting paramater values of the generated SQL queries.

4 Evaluation

All the experiments have been executed as a standalone application over a
Microsoft Azure5 virtual machine configured with a 4 Core processor, 14 GB
of RAM, 200 GB SSD, and running 64-Bit Windows Server 2012 and Java SE
v1.8.0. We have used Eclipse Mars with CDO 4.4. CDO repositories have been
executed in embedded mode6 to measure total memory usage and avoid the
uncertainty of connections in the execution time. Repositories run on top of H2
v1.3.168, using the DBStore with its default mapping, caching and pre-fetching
values, and supporting audits and branches.

Correctness of query-results has been ensured by automatically comparing
the results of each query using different languages. In order to get reliable num-
bers, each query was processed 5 times for each evaluation case and Java Vir-
tual Machine has been restarted for each execution. Results have been evaluated
against the following quantitative metrics: M1: Average Execution Time (in sec-
onds) and M2: Maximum Memory Usage (in MB). M2 includes memory used
by the CDO Client and Server. We have used three different queries in the eval-
uation: Q1: Number of classes (TypeDeclaration instances) existing within the
model, Q2: Number of private methods (MethodDeclaration instances) existing
within the model and Q3: Number of singletons (TypeDeclaration instances)
existing within the model (GraBaTs case study query). All queries traverse
model but with increasing complexity. We have expressed queries in Plain EMF,
OCL (used by MDT OCL and CDO-OCL), SQL and EOL (used by CDO-QT).
We have used metamodel and model instances from the GraBaTs 2009 case
study [16]. Models specify source code of different Java packages and conform to
the JDTAST metamodel which contains abstractions of the Java source code.
Table 3 shows results of queries for each model.

In this evaluation we address: Which is the performance of querying mod-
els within a CDO repository using EMF Plain, MDT OCL, CDO OCL, SQL
5 Azure: https://azure.microsoft.com/en-us/services/virtual-machines/.
6 CDO/Embedded: https://wiki.eclipse.org/CDO/Embedded.

https://azure.microsoft.com/en-us/services/virtual-machines/
https://wiki.eclipse.org/CDO/Embedded

Transformation of Model Traversal EOL Queries 151

Table 3. Properties of the GraBaTs models.

XMI Repository Numb. of Model Q1 Results Q2 Results Q3 Results
size size models Elem

Set0 8,8 15.3 MB 1 70447 14 4 1

Set1 27 43.8 MB 1 198466 40 38 2

Set2 271 307MB 1 2082841 1605 1793 41

Set3 598 784MB 1 4852855 5314 9275 155

Set4 646 1.17 GB 1 4961779 5984 10086 164

Set5 n/a 2.01 GB 2 9923558 5984 10086 164

Set6 n/a 2.88 GB 3 14885337 5984 10086 164

Set7 n/a 3.67 GB 4 19847116 5984 10086 164

Set8 n/a 4.45 GB 5 24808895 5984 10086 164

Set9 n/a 5GB 6 29770674 5984 10086 164

and CDO-QT? We distinguish two different configuration factors (F) that may
impact:

– F1, Size of the model: We measure how the increasing size of the model
may influence on the performance (execution time and memory). We measure
the size of a model in number of elements. For this factor, each model has
been persisted in a different CDO Repository (from Set0 to Set4 of Table 3).

– F2, Size of the repository: As in CDO we can save many models in the
repository, we have measured how the increasing size of the repository may
influence on the performance. We measure the size of the repository in number
of models and elements within the repository. For this factor, we have stored
set4 model copies within the same CDO Repository (from Set4 to Set9 of
Table 3).

Extended information in http://xdecarlos.bitbucket.org/fase 2016/.

4.1 Discussion

F1: Model-Size Influence (Set0-Set4). Size of the queried model has a great
impact over the time and memory required in Plain EMF and MDT OCL, and
three queries result in similar values (entire model is always loaded in memory).
In Set4, these client-side solutions require more than 6000 % of time of Set0 and
more than 1100 % of memory. Plain EMF requires 17-18 s and 396-513 MB for
querying the smallest model (Set0) and 1140-1166 s and 6-6.1 GB for the largest
(Set4). Model size impact is slightly lower for MDT OCL as it requires 17-18 s
and 322-342 MB for Set0 and 1090-1101 s and 6-6.1 GB for Set4.

Figure 7 illustrates time and memory results and they show that, the impact
of the model size is lower if queries are executed at server-side. In Set4, these

http://xdecarlos.bitbucket.org/fase_2016/

152 X. De Carlos et al.

a) Q1 exec. time (avg, s) b) Q2 exec. time (avg, s) c) Q3 exec. time (avg, s)

d) Q1 memory (max, MB) e) Q2 memory (max, MB) f) Q3 memory (max, MB)

Fig. 7. Execution time and memory results of queries from Set0 to Set4.

solutions require up to 2400 % of time of Set0 and up to 800 % of memory.
However, increase values are much lower than on client-side solutions.

CDO-OCL is more than 17 times faster than Plain EMF and MDT OCL, and
it only requires 1 s for executing queries in Set0. Memory usage is also reduced to
123 MB (Q1-Q2) and 67 MB (Q3). In case of other sets, results vary depending
on the query: Q1 requires less time than Q2 and Q3, and Q2 less than Q3. For
example, in Set4 Q1 requires 8 s, Q2 22 s and Q3 28 s. However, Q3 is more than
38 times faster than any query in Plain EMF or MDT OCL. In terms of memory,
Q1 requires less than Q2 and Q3: in Set4 Q1 needs 235 MB, Q2 636 MB and Q3
590 MB. Worst memory value (636 MB) is more than 9 times lower than the
best memory usage result of the client-side solutions. SQL shows better results:
queries require less than a second and 118 MB in Set0; and less than 12 s and
375 MB in Set4. Q1 requires less time and memory than Q2 and results are
similar of CDO-OCL. In the case of Q2 it is 2 times faster than CDO-OCL and
memory usage is reduced by 40 % for Set4. Q3 time and memory results are lower
than Q1 and Q2, and it is more than 4 times faster than CDO-OCL requiring
less than 50 % of memory.

Performance and memory results of CDO-QT for executing queries using
EOL are similar to SQL. Execution time results show that CDO-QT requires
between 1 and 2 s more than SQL to be executed. The generated SQL query is
the same that is used in the SQL experiments, and it indicates that the extra-
time corresponds with the EOL to SQL transformation. CDO-QT requires 1 s
and less than 130 MB for executing queries in Set0, and less than 8 s and 315 MB

Transformation of Model Traversal EOL Queries 153

a) Q1 exec. time (avg, s) b) Q2 exec. time (avg, s) c) Q3 exec. time (avg, s)

d) Q1 memory (max,MB) e) Q2 memory (max,MB) f) Q3 memory (max,MB)

Fig. 8. Execution time and memory results of queries from Set4 to Set9.

in Set4. As occurs in SQL, Q3 requires less time and memory than Q1 and Q2,
and Q1 less than Q2. For example in Set4: Q1 requires 8 s and 263 MB, Q2 12 s
and 315 MB, and Q3 7 s and 263 MB. CDO-QT results are significantly better
than using the other server-side solution (CDO-OCL), and much better than
using a client-side solution (Plain EMF and MDT-OCL).

F2: Repository-Size Influence (Set4-Set9). Time and memory results
obtained querying F2 models (set4-set9) indicate that the size of the reposi-
tory has not influence in queries executed at the client-side: In the case of Plain
EMF execution time value for executing queries is between 1140-1174 s and
requires around 6 GB of memory; in the case of MDT OCL the execution time is
slightly lower (between 1081-1113 s) and also requires around 6 GB of memory.

As Fig. 8 illustrates, this scenario changes in case of the server-side solutions,
where the size of the repository has influence. CDO-OCL results show a constant
increase of the query execution time from one repository to the subsequent one
(e.g. from Set5 to Set6). The increase changes according to query: between 20-
28 s for Q1, 31-41 s for Q2, and 35-42 s for Q3. Memory usage increases: from
235 MB to 695 MB in Q1; from 636 MB to 1860 MB in Q2; and from 590 MB
to 2171 MB of Q3. The influence of the repository size is greater in Q3, which
requires more time and memory. In Set4, CDO-OCL requires around 1100 % of
time of Set0 and around 330 % of memory. The trend is similar in SQL, but the
time increase between repositories is lower: 4-6 s for Q1, 7-8 s for Q2, and 4-5 s
for Q3. Memory values increase from 285 MB to 849 MB for Q1; from 375 MB

154 X. De Carlos et al.

to 1249 MB for Q2; and from 289 MB to 968 MB for Q3. In the case of SQL,
repository-size influence is greater in Q2. Q3 is resolved faster and Q1 requires
less memory than others. In Set4, SQL requires around 430 % of time of Set0
and around 300 % of memory. While increase is similar to CDO-OCL in case of
memory, increment of the execution time is lower.

CDO-QT results agree with those obtained in SQL and execution time and
memory is also influenced by repository size, but it is lower than in CDO-OCL.
Execution time difference between SQL and CDO-QT is only of 1-2 s (transfor-
mation time overhead). In terms of memory, CDO-QT uses less memory than
others (including SQL): from 263 MB to 761 MB for Q1, from 315 MB to 1136 MB
for Q2, and from 264 MB to 579 MB for Q3. The filtering mechanism provided
by CDO-QT could be the reason of memory usage difference between SQL and
CDO-QT. Results show that the execution time and memory usage of CDO-
QT is much lower than the required by the client-side solutions (Plain EMF
and MDT OCL). Additionally, CDO-QT resolves these queries faster than the
natively provided server-side version of OCL (CDO-OCL).

4.2 Threats to Validity

All the queries full traverse the model, therefore they start the computation
by obtaining all the instances of an specific type that exists within the queried
model. This type of queries covers the majority of computational-demanding
queries in real industrial domains such as reverse engineering domain [9]. How-
ever, there are other types of queries (e.g. non-traversal queries or queries that
modify the model) that have not been tested. Moreover, models have been gen-
erated for test-case purpose. Using industrial models and real model operations
would be more realistic. We plan to perform it in a future version of this work.

5 Related Work

Query Transformation. [10] describes a framework that supports mapping of
UML models to arbitrary data-schemas and mapping of OCL invariants to a
declarative query language. [14] transforms OCL constraints into SQL to check
integrity of UML models persisted in relational repositories. [7] generates SQL
queries from OCL constraints and executes over MySQL databases. [6] pro-
vides a tool based on OCL2SQL that generates views from OCL constraints.
All these approaches provide generation at compilation-time from OCL (declar-
ative language) to SQL (declarative language). By contrast, CDO-QT trans-
forms at run-time EOL, an imperative model-level language, into a declarative
persistence-specific query language (SQL).

CDO Evaluation. [15] includes evaluation of CDO by comparing results of
performing different model operations (store, query and modify) with XMI and
Morsa. [2] describes the performance and memory usage required by different
persistence mechanisms (Teneo, CDO, Neo4J and OrientDB) for executing the
GraBaTs case study query. These studies show CDO results for three models of

Transformation of Model Traversal EOL Queries 155

GraBaTs (Set0–2), by contrast, our evaluation includes results of all the Gra-
BaTs models (Set0–4). [3,9,15] include an analysis of CDO and other persistence
mechanisms through the execution of different types of queries. While they use
one query language for executing queries in CDO, our study shows results for
different query languages (Plain EMF, MDT OCL, CDO OCL, SQL and EOL
with CDO-QT). [8] focuses the evaluation in the model query languages and
describes the GraBaTs query results using different query languages and persis-
tences (XMI, CDO and MORSA). While the GraBats query is included in this
study, we have executed two additional queries using different query languages
that are executed against CDO repositories.

Improve Query Performance. EMF-IncQuery provides support for executing
model queries in an incremental way only over model parts that have changed
[18]. [19] focuses on improving efficiency of model traversal EOL queries. While
these approaches provide improvements on user-side query execution, CDO-QT
provides support for generating SQL queries that are executed over persistence
(relational back-end) and at server-side.

6 Conclusions and Future Work

In this paper, we have presented CDO-QT, an approach that: (i) provides a
two-step transformation process that generates SQL queries from EOL queries;
and (ii) executes generated SQL at server-side over CDO repositories. CDO-QT
is able to execute model traversal queries in a model query language (EOL),
but with a performance similar to SQL. We have compared the performance
and memory usage results of executing different model query languages: Plain
EMF, MDT OCL, CDO OCL, SQL and EOL using CDO-QT. GraBaTs 2009
Case Study models have been persisted in different CDO repositories with size
from 15.3 MB to 5 GB. Execution time and memory results show that CDO-QT
is a promising alternative for making queries from EOL to CDO repositories.
Results indicate that CDO-QT is much faster and use less memory than model
query languages executed at client-side of CDO (Plain EMF and MDT OCL).
Moreover, obtained results are better than the natively supported CDO-OCL
that executes OCL queries at server-side.

This prototype of CDO-QT provides support for executing self-contained and
model traversal EOL queries. However, we plan to extend it to support more
types of EOL queries (e.g. non-traversal queries, queries that modify models,
query chains, etc.). For future work, we plan to provide CDO-QT implementa-
tions of additional model query languages, supporting transformation of other
types of languages (e.g. IncQuery or OCL). We also plan to provide implemen-
tations for other stores of CDO and for other persistence mechanisms.

Acknowledgements. The authors wish to thank Xabier Mendialdua for his contri-
butions. This work is partially supported by the EC, through the Scalable Modelling
and Model Management on the Cloud (MONDO) FP7 STREP project (#611125).

156 X. De Carlos et al.

References

1. Bagnato, A., Brosse, E., Sadovykh, A., Maló, P., Trujillo, S., Mendialdua, X.,
De Carlos, X.: Flexible and scalable modelling in the MONDO project: industrial
case studies. In: Proceedings of the 3rd Workshop on Extreme Modeling Co-located
with ACM/IEEE 17th International Conference on Model Driven Engineering Lan-
guages & Systems, XM@MoDELS 2014, 29 September 2014, Valencia, Spain, pp.
42–51 (2014)

2. Barmpis, K., Kolovos, D.S.: Evaluation of contemporary graph databases for effi-
cient persistence of large-scale models. J. Object Technol. 13(3), 3:1–3:26 (2014)

3. Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., Launay, D.: Neo4EMF, a scalable
persistence layer for EMF models. In: Cabot, J., Rubin, J. (eds.) ECMFA 2014.
LNCS, vol. 8569, pp. 230–241. Springer, Heidelberg (2014)

4. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,
A.: Incremental evaluation of model queries over EMF models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp.
76–90. Springer, Heidelberg (2010)

5. De Carlos, X., Sagardui, G., Murguzur, A., Trujillo, S., Mendialdua, X.: Model
query translator - a model-level query approach for large-scale models. In: MODEL-
SWARD 2015 - Proceedings of the 3rd International Conference on Model-Driven
Engineering and Software Development, ESEO, 9–11 February 2015, Angers, Loire
Valley, France, pp. 62–73 (2015)

6. Demuth, B., Hussmann, H., Loecher, S.: OCL as a specification language for busi-
ness rules in database applications. In: Gogolla, M., Kobryn, C. (eds.) UML 2001.
LNCS, vol. 2185, pp. 104–117. Springer, Heidelberg (2001)

7. Egea, M., Dania, C., Clavel, M.: MySQL4OCL: a stored procedure-based MySQL
code generator for OCL. Electron. Commun. EASST 36, 1–16 (2010)

8. Pagán, J.E., Molina, J.G.: Querying large models efficiently. Inf. Softw. Technol.
56(6), 586–622 (2014)

9. Gómez, A., Tisi, M., Sunyé, G., Cabot, J.: Map-based transparent persistence for
very large models. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033,
pp. 19–34. Springer, Heidelberg (2015)

10. Heidenreich, F., Wende, C., Demuth, B.: A framework for generating query lan-
guage code from OCL invariants. Electron. Commun. EASST 9, 1–10 (2007)

11. Kärnä, J., Tolvanen, J.-P., Kelly, S.: Evaluating the use of domain-specific modeling
in practice. In: Proceedings of the 9th OOPSLA Workshop on Domain-Specific
Modeling (2009)

12. Kolovos, D.S., Rose, L., Garcia-Dominguez, A., Paige, R.: The Epsilon Book.
Eclipse, Newyork (2010)

13. Kolovos, D.S., Wei, R., Barmpis, K.: An approach for efficient querying of large
relational datasets with OCL based languages. In: Proceedings of the Workshop on
Extreme Modeling co-located with ACM/IEEE 16th International Conference on
Model Driven Engineering Languages & Systems (MoDELS 2013), 29 September
2013, Miami, Florida, USA, pp. 46–54 (2013)

14. Marder, U., Ritter, N., Steiert, H.P.: A DBMS-based approach for automatic check-
ing of OCL constraints. Proc. OOPSLA 99, 1–5 (1999)

15. Pagán, J.E., Cuadrado, J.S., Molina, J.G.: A repository for scalable model man-
agement. Softw. Syst. Model. 14, 1–21 (2013)

16. Sottet, J.-S., Jouault, F., et al.: Program comprehension. In: Proceedings of the
5th International Workshop on Graph-Based Tools (2009)

Transformation of Model Traversal EOL Queries 157

17. Stepper, E.: CDO (2009). http://eclipse.org/cdo/. Accessed 30 January 2015
18. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári,

Z., Varró, D.: EMF-IncQuery: an integrated development environment for live
model queries. Sci. Comput. Program. 98, 80–99 (2015)

19. Wei, R., Kolovos, D.S.: An efficient computation strategy for allInstances(). In:
Proceedings of the 3rd Workshop on Scalable Model Driven Engineering Part of
the Software Technologies: Applications and Foundations (STAF 2015) Federation
of Conferences, 23 July 2015, L’Aquila, Italy, pp. 32–41 (2015)

http://eclipse.org/cdo/

Mind the Gap! Automated Anomaly Detection
for Potentially Unbounded Cardinality-Based

Feature Models

Markus Weckesser1(B), Malte Lochau1, Thomas Schnabel1,
Björn Richerzhagen2, and Andy Schürr1

1 Real-Time Systems Lab, TU Darmstadt, Darmstadt, Germany
markus.weckesser@es.tu-darmstadt.de

2 Multimedia Communications Lab, TU Darmstadt, Darmstadt, Germany

Abstract. Feature models are frequently used for specifying variability
of user-configurable software systems, e.g., software product lines.
Numerous approaches have been developed for automating feature model
validation concerning constraint consistency and absence of anomalies.
As a crucial extension to feature models, cardinality annotations and
respective constraints allow for multiple, and even potentially unbounded
occurrences of feature instances within configurations. This is of particu-
lar relevance for user-adjustable application resources as prevalent, e.g.,
in cloud computing. However, a precise semantic characterization and
tool support for automated and scalable validation of cardinality-based
feature models is still an open issue. In this paper, we present a com-
prehensive formalization of cardinality-based feature models with poten-
tially unbounded feature multiplicities. We apply a combination of ILP
and SMT solvers to automate consistency checking and anomaly detec-
tion, including novel anomalies, e.g., interval gaps. We present evaluation
results gained from our tool implementation showing applicability and
scalability to larger-scale models.

Keywords: Software product lines · Cloud-based systems · Cardinality-
based feature models · Integer Linear Programming (ILP)

1 Introduction

Feature models become more and more established for specifying variability of
highly-configurable software, e.g., software product lines [11]. Feature models
are used during domain engineering to tailor configuration spaces of product
lines in terms of available configuration parameters (features) and respective
constraints, restricting their combinations within valid configurations. Each fea-
ture constitutes a user-visible (Boolean) configuration option from the problem
domain, being mapped onto variable implementation artifacts within the solu-
tion space. This way, customer-tailored products are derivable from a common
code base during application engineering. The FODA feature diagram notation
c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 158–175, 2016.
DOI: 10.1007/978-3-662-49665-7 10

Anomaly Detection for Cardinality-Based Feature Models 159

is a frequently used graphical representation for feature models [6,22]. FODA
feature diagrams organize features as nodes in a tree-like layout to denote a
parent-child hierarchy. This feature tree is enriched with constructs to describe
logical dependencies among features. Semantically, a feature model specifies a
set of valid product configurations, i.e., those feature combinations satisfying all
constraints. Recent approaches to formalizing feature model semantics either use
algebraic representations [19,34], or transformations into equivalent constraint
problems, e.g., propositional formulas (SAT) [5,25], and CSP [7]. The latter
approach allows for applying off-the-shelf constraint-solvers for automatically
validating desirable semantic properties of feature models such as constraint
consistency and absence of anomalies, e.g., dead features [6].

However, FODA feature diagram notation is, in many cases, not expres-
sive enough for capturing all user-configurable properties of real-world applica-
tions. In particular, two major extensions to feature models have been proposed,
usually summarized under the term extended feature models (EFM), namely
(1) non-Boolean feature attributes and respective constraints to denote extra-
functional properties of features, and (2) UML-like feature multiplicities [32] in
terms of cardinality annotations and respective constraints to allow selections
of multiple feature instances (also referred to as copies), including (recursive)
clones of their corresponding sub-trees [14]. Semantically, both concepts impose
extensions to the notion of product configurations by means of (1) feature types
beyond Boolean, and (2) multi-sets of selected feature instances. Both exten-
sions complicate feature model semantics, thus automated consistency checking
and anomaly detection becomes even more important for their applicability in
practice. Concerning (1), various promising approaches have been proposed for
analyzing non-Boolean configuration constraints [7,9,20,23]. In contrast, con-
cerning (2), only preliminary attempts exist so far [12,14,26,29,30], although
cardinality-based variability modeling is emerging in nowadays applications and,
therefore, recently found its way into novel modeling approaches like CVL [16]
and Clafer [3]. As a prominent example, for cloud-based systems, not only the
type, but also the amount of available resources is explicitly configurable by the
user [28], especially including (virtually) unrestricted resources [35]. The result-
ing compound cardinality intervals lead to novel kinds of anomalies by means of
dead cardinality, cardinality interval gaps and false unbounded cardinality.

In this paper, we present a comprehensive formalization and automated val-
idation technique for cardinality-based feature models (CFM). We support car-
dinality annotations including compound cardinality intervals and unbounded
cardinality for singleton features, feature groups, as well as cross-tree constraints.
Our approach is motivated by a real-world cloud-based application [31]. We fur-
ther introduce a normal form for cardinality constraints and enhance established
notions of feature model consistency and anomaly to explicitly take feature car-
dinality constraints into account. Our tool implementation, presented in full
detail in an accompanying tool paper [33], combines ILP solvers for interval-
bound analysis and SMT solvers for interval-gap analysis to automate valida-
tion of cardinality-based feature models. We provide evaluation results from
experiments investigating applicability and scalability of our validation approach
for input models of varying sizes and complexity.

160 M. Weckesser et al.

Fig. 1. CFM for fan-out group configuration of the event dissemination system

2 Cardinality-Based Feature Models

2.1 Background

Our running example is part of a cloud-based mobile augmented reality (AR)
multi-player game scenario [31]. During a game, players (nodes) move and carry
devices according to a predefined goal. Players communicate via cellular con-
nections with a cloud-based service provider which delivers relevant game data
and disseminating events. Players interact with the physical environment and
other players located nearby. For this purpose, an Area of Interest (AoI) virtu-
ally surrounds each player’s physical location, where overlapping AoI may form
Fan-Out Groups to establish decentralized ad-hoc connections. This bypassing
of the service provider may reduce latency of the cellular network.

All components of an AR game are highly configurable, including dynamic
reconfigurations for run-time adaptation. Configuration decisions not only com-
prise presence or absence of functionality, but also the available amount of par-
ticular resources. Thus, CFM provide a suitable formalism to capture all relevant
configuration choices and respective constraints of AR games. Figure 1 shows the
CFM for configuring the Dissemination Strategy, the communication Interface
and Channel properties of a (potentially unbounded) number of Nodes forming
a Fan-Out Group. Similar to FODA notation [22], configuration parameters (fea-
tures) reside in a tree-like diagram denoting a feature decomposition hierarchy.
As a crucial extension, CFM differentiate between selectable/deselectable feature
types as usual and, additionally, for each selected feature type, the multiplicity of
occurrences of feature instances together with copies of their corresponding sub-
trees within configurations [14]. Restrictions on selections of both feature types
and instances are specified by cardinality intervals (l, u), where l denotes the
lower bound and u denotes the upper bound for the number of feature types or
instances [32]. In particular, the CFM language considered in this paper provides
the following constructs.

Anomaly Detection for Cardinality-Based Feature Models 161

– Feature instance cardinality, annotated as 〈l, u〉 on the left-most position on
top of each feature rectangle, restricts the minimum and maximum number of
feature instances selectable from the sub-tree clone of respective parent fea-
ture instances. In our example, 〈1, 1〉 denotes that exactly one Dissemination
Strategy is selectable, whereas 〈1, *〉 denotes that arbitrary many, but at least
one Node must be part of a Fan-Out Group.

– Feature group type cardinality, annotated as [l, u], restricts the minimum and
maximum number of types of feature instances selectable from the set of all
immediate sub-features of a selected feature instance. In our example, [1, 1]
denotes that either instances of WiFi, or of BT must be selected for the
Interface, whereas [2, 3] denotes that at least two types of Channels from the
given three options must be instantiated in a Fan-Out Group.

– Feature group instance cardinality, annotated as 〈l, u〉 at the right-hand
side of each group arc, restricts the minimum and maximum number of fea-
ture instances of any type selectable from the set of all immediate sub-feature
types. In our example, 〈3, *〉 denotes that arbitrary many, but at least three
Channel instances are required for each Node.

– Cross-tree edges by means of require- and exclude-edges annotated with 〈l, u〉
constraints at both the source and target feature rectangles [30], define con-
straints on the number of instances of arbitrary pairs of features. In our exam-
ple, if at least one instance of Reliable is selected in a sub-tree clone, then no
instance of Probabilistic Broadcast is allowed in the Fan-Out Group and vice
versa. In addition, if between 1 and 5 Nodes are selected in a Fan-Out Group,
then BT is used for all Nodes and WiFi, otherwise.

Combining different cardinality annotations in one CFM may lead to compli-
cated dependencies among feature types and their possible number of instances.
In order to provide a precise characterization of CFM configuration semantics, we
provide a CFM formalization in the following. We first define the abstract syn-
tax of CFM. Therefore, we introduce an interval language to express cardinality
intervals (l, u) as pairs of lower and upper cardinality bounds, both given by nat-
ural numbers, or, in case of upper bounds, also by the special symbol * denoting
unbounded cardinality. By convention, k < * holds for any k ∈ N0. Compound
cardinality intervals are defined as the union of multiple (non-overlapping) inter-
vals (l1, u1), (l2, u2), . . . , (ln, un).

Definition 1 (Cardinality Interval). The set of cardinality intervals is
defined as I ⊂ N0 × (N0 ∪ {*}), where (l, u) ∈ I iff l ≤ u holds. The set
L ⊂fin 2I of compound cardinality intervals contains all finite subsets L ∈ L of
I such that for all pairs (li, ui) ∈ L, (lj , uj) ∈ L, i �= j, either li > uj, or ui < lj
holds.

We further require compound intervals L ∈ L to be defined as concise as
possible, e.g., {(1, 4)} instead of {(1, 2), (3, 4)}. Intervals L ∈ L are used for all
kinds of cardinality annotations in a CFM as described above. A CFM consists
of a finite set F of features together with a hierarchy relation ≺F defining the
tree hierarchy on F such that f ≺F f ′ denotes f to be the parent feature of f ′.

162 M. Weckesser et al.

In addition, a feature instance cardinality interval λF
I (f) ∈ L is assigned to

every feature f ∈ F by a function λF
I , as well as a group type cardinality

interval λG
T (f) ∈ L by a function λG

T , and a group instance cardinality interval
λG
I (f) ∈ L by a function λG

I . Both λG
T (f) and λG

I (f) define cardinality intervals
on the set of direct sub-features of feature f with respect to ≺F , hence we do
not allow multiple direct sub-groups below one feature node. Furthermore, we
require for every non-leaf feature f ∈ F λF

I (f), as well as λG
T (f) and λG

I to
be properly defined, even if f only contains a singleton sub-feature f ′, e.g.,
by assuming default group cardinality constraints λG

T (f) = (0, 1) and λG
I (f) =

(0, *). Cross-tree edges consist of four components, i.e., the source feature and the
target feature and corresponding cardinality annotations restricting the number
of feature instances. Due to the binary nature of cross-tree edges, cardinality
intervals referring to feature types are meaningless and, therefore, not supported.

Definition 2 (CFM). A cardinality-based feature model (CFM) defined over
a non-empty, finite set F is a tuple (≺F , λF

I , λG
T , λG

I , ΦR, ΦX), where

– ≺F⊆ F × F is a feature decomposition relation,
– λF

I : F → L is a feature instance cardinality function,
– λG

T : F → L is a feature group type cardinality function,
– λG

I : F → L is a feature group instance cardinality function,
– ΦR ⊆ F × L × L × F is a feature instance require-edge cardinality relation,
– ΦX ⊆ F × L × L × F is a feature instance exclude-edge cardinality relation.

For a CFM to be syntactically well-formed, it must satisfy further properties.

– ≺F forms a finite rooted tree on F , i.e., ≺+
F is a strict partial order on F with

root feature fr ∈ F as unique minimal element, and for each f ∈ F , f �= fr,
there is exactly one direct predecessor node f ′ ∈ F with f ′ ≺F f .

– Root feature fr is a mandatory single-instance feature, i.e., λF
I (fr) = (1, 1).

– Leaf nodes have empty group cardinality intervals, i.e., for each f ∈ F with
� ∃f ′ ∈ F : f ≺F f ′, λI

G(f) = λT
G(f) = (0, 0) holds.

Further well-formedness criteria may be imposed, e.g., forbidding * as upper
bound for feature group type cardinality. However, these and far more compli-
cated cases are comprehensively treated by the normal form in Definition 6.

Obviously, CFM syntax constitutes a conservative extension to FODA fea-
ture diagrams [14,30]. However, concerning CFM semantics, the structure of
valid CFM configurations essentially differs from FODA configurations. In par-
ticular, a CFM configuration not only contains information about the presence,
or absence of features, but also the number of instances selected for each feature,
as well as their memberships to the cloned sub-tree related to its parent feature
instance. In this regard, one crucial semantic consideration for CFM concerns the
interpretation of cardinality intervals restricting the number of feature instances.
As already pointed out by Michel et al. in [26], one may either apply a local,
or a global interpretation. For illustration purposes, we use the artificial CFM
in Fig. 2 with sample configurations C1, C2, C3, and C4. Each feature instance
constitutes the root of a (recursively) cloned sub-tree which can be configured

Anomaly Detection for Cardinality-Based Feature Models 163

fo

f1 f2

f4

f2

f4

C1 C3

f1
f1

fo

f2f2

f4f4

f1
f1

f1
f1

f1
f1

fo

f2f2

f4

f1
f1

f1
f1

f4
f4

f1
f1

fo

f2f2

f4

f1
f1

f1
f1

f4
f4

C4C2

Fig. 2. CFM with sample configurations

individually for that instance. Considering, e.g., the require-edge from f4 to f1,
a global interpretation would require this constraint to hold for the entire set of
selected feature instances of f4 and f1, whereas in case of a local interpretation,
the constraint must hold for every individual sub-tree clone. As a result, C1 is
invalid in case of a global interpretation, as the overall number of instances of
f4 is 2, but there is only one instance of f1 in C1. Hence, C2 is valid as the
overall number of instances of f4 is 3 and, therefore, the precondition of the
require-edge does not hold. C3 is also valid as a sufficient number of instances
of f1 is selected. In contrast, in case of a local interpretation, C1, C2, and C3

are all valid as either the precondition of the require-edge is not satisfied by any
sub-tree clone of f2 (C1 and C3), or the number of instances of f1 is sufficient
(C2). Finally, although C2 and C4 have the same number of instances of each
feature type, C2 is valid for both interpretations, whereas C4 is invalid in both
cases as the feature instance cardinality of f4 is violated. This example shows
that the membership of feature instances to their corresponding parent feature
instance sub-tree clones is a crucial part of CFM configuration semantics.

Here, we apply the global interpretation, constituting – in our opinion –
the more intuitive and graspable CFM semantics. CFM configuration semantics
characterizes those valid feature sub-tree copies with corresponding parent-child
feature instance dependencies satisfying all cardinality constraints. Our CFM
semantics is based on multi-sets M over set F to denote the number of feature
instances selected in a configuration. A multi-set M : F → N0 over set F defines
a mapping from each element f ∈ F onto a natural number k = M(f), defining
the multiplicity of f , where k = 0 denotes absence of f in M . We write fk

i ∈
M , 1 ≤ k ≤ M(fi) for short to refer to the kth instance of feature fi ∈ F
within multi-set M with M(fi) > 0. Furthermore, given a compound interval
L = {(l1, u1), (l2, u2), . . . , (ln, un)} ∈ L and k ∈ N0, we write k
 L if (li, ui) ∈ L
such that li ≤ k ≤ ui holds. We further denote a relation ≺M

F ⊆ M × M on
multi-set M , relating child feature instances to parent feature instances.

Definition 3 (CFM Configuration). A configuration of a cardinality-based
feature model (≺F , λF

I , λG
I , λG

T , ΦR, ΦX) defined over a set F is a pair (M,≺M
F).

A configuration (M,≺M
F) is valid iff

– M(fr) = 1,
– if fk

i ≺M
F f l

j then fi ≺F fj and (≺M
F)+ forms a rooted tree on M ,

164 M. Weckesser et al.

– if fk
i ∈ M , then for each fj ∈ F with fi ≺F fj it holds that |{f l

j ∈ M |fk
i ≺M

F

f l
j}|
 λI

F (fj),
– if fk

i ∈ M , then it holds that |{f l
j ∈ M |fk

i ≺M
F f l

j}|
 λI
G(fi),

– if fk
i ∈ M , then it holds that |{fj ∈ F |∃f l

j ∈ M : fk
i ≺M

F f l
j}|
 λF

G(fi),
– if (fi, Li, Lj , fj) ∈ ΦR and M(fi)
 Li then M(fj)
 Lj, and
– if (fi, Li, Lj , fj) ∈ ΦX and M(fi)
 Li then M(fj) �
 Lj and vice versa.

By �CFM �, we refer to the set of all valid configurations of CFM.

2.2 Analysis of Cardinality-Based Feature Models

We are now able to characterize fundamental validity properties of CFM. In
particular, we define consistency of CFM in terms of the absence of inconsistent
cardinality constraints. By including * as cardinality bound, CFM allow to select
an a-priori unbounded number of feature instances and, therefore, a potentially
infinite number of configurations.

Definition 4 (Consistent and Bounded CFM). A CFM is consistent iff it
holds that �CFM � �= ∅. A CFM is bounded iff * does not occur in a cardinality
annotation. A CFM is false unbounded iff * occurs in at least one cardinality
annotation and |�CFM �| < ∞ holds, and CFM is unbounded, else.

False unboundedness is one example for an undesirable CFM property going
beyond syntactic well-formedness criteria. To generalize, we recall the notion of
anomaly to summarize undesirable semantic CFM properties. For FODA feature
models, several types of anomalies and accompanying validation techniques have
been proposed, e.g., dead features and false optional features [6]. First proposals
exist to lift the anomaly notion also to CFM, e.g., dead cardinality anomaly [30].

Definition 5 (Dead Feature Instance Cardinality). k
 λI
F (fi) is a dead

feature instance cardinality of fi ∈ F , if no (M,≺M
F) ∈ �CFM � with fk

j ∈ M

and fj ≺F fi exists such that |{f l
i ∈ M |fk

j ≺M
f f l

i}| = k holds.

For other kinds of cardinality intervals of a CFM, the notion of dead cardi-
nality can be defined, accordingly. Hence, for a feature f to be dead in a CFM,
every cardinality k
 λI

F (fi) must be dead, thus the actual feature cardinality
instance interval of f is (0, 0), and a CFM is inconsistent if all features are dead.

The example in Fig. 2 exhibits several subtle cases of CFM anomalies. For
example, the group instance cardinality 〈1, *〉 of f0 is false unbounded as the
maximum number of possible child-feature instances is 11. The same holds for
the interval 〈1, *〉 on the right-hand side of the exclude-edge between f1 and
f2 whose upper bound is actually limited to 2. In contrast, feature f5 is truly
unbounded thus making the entire CFM unbounded. Besides (false) unbounded
intervals, this CFM contains further anomalies concerning bounded cardinality
intervals. The lower bound 1 of the group instance cardinality interval 〈1, *〉
of f0 is a dead cardinality, as at least one instance of both f1 and f2 must

Anomaly Detection for Cardinality-Based Feature Models 165

be selected. Thus, lower bound 1 of group type cardinality [1, 3] of f0 is also
dead. In addition, the lower bound of the target feature node cardinality interval
〈2, 6〉 of the require-edge from f4 to f1 is actually 6 instead of 2. Besides CFM
anomalies affecting upper and/or lower bounds of cardinality intervals, a dead
cardinality might be also located within intervals, thus imposing interval gaps.
For example, the group instance cardinality of f0 contains a gap at (6, 6) as no
valid combination of feature instances of f1, f2, and f3 with an overall number
of 6 is possible. As an even more subtle case, feature instance cardinality interval
〈1, 7〉 of f1 contains the interval gap (2, 5).

Due to the predominant role of cardinality constraints in CFM, any kind of
potential semantic inconsistency can be explained through dead cardinality. To
this end, we define a normal form for any given CFM by narrowing its declared
cardinality intervals down to the actual ones, while preserving its feature-tree
layout and configuration semantics. In case of gaps, closed interval declarations
can be replaced by compound intervals, e.g., replacing group instance interval
(1, ∗) of f0 in Fig. 2 by {(2, 5), (7, 11)}. In this way, a normal form CFM charac-
terizes all dead cardinality anomalies compared to the original model CFM by
means of those (sub-)ranges of feature cardinality intervals being removed from
CFM to obtain CFM. Hence, a CFM with * occurring in some cardinality inter-
val, but having no * in its normal form is false unbounded. Furthermore, if a given
CFM is inconsistent, all feature cardinality intervals of CFM are narrowed down
to (0, 0) (if we permit λI

F (fr) = (0, 0)). Finally, to handle redundant cross-tree
edges, we have to allow removals of edges from CFM to obtain a semantically
equivalent normal form CFM. For example, the precondition of the require-edge
leading from f3 to f2 in Fig. 2 is not satisfiable thus making this edge redun-
dant in CFM. To formalize CFM normal form, we define an inclusion hierarchy
relation �⊆ L × L as

L � L′ :⇔ ∀k ∈ N0 : k
 L ⇒ k
 L′

thus requiring L to be a sub-range of L′.

Definition 6 (CFM Normal Form). CFM is a normal form of CFM if

– �CFM � = �CFM �,
– F = F , ≺F =≺F , ΦR ⊆ ΦR, ΦX ⊆ ΦX , and
– for each fi, fj ∈ F , λ

F

I (fi), λ
G

T (fi), λ
G

I (fi), as well as Li and Lj in each
(fi, Li, Lj , fj) ∈ ΦR and (fi, Li, Li, fj) ∈ ΦX are minimal with respect to �.

Applied to the CFM in Fig. 2, the resulting normal form is shown in Fig. 3(a).
The following property is a direct consequence of Definitions 5 and 6.

Theorem 1. For any CFM according to Definition 2, a normal form CFM exists
and CFM contains no dead cardinality.

In contrast, a normal form is, in general, not unique as removals of (mutually
depending) redundant cross-tree edges may yield ambiguous results. A proce-
dure for computing normal forms would allow for automatically consolidating

166 M. Weckesser et al.

Fig. 3. Sample CFM normal and ILP encoding of CFM semantics

and validating CFM, e.g., during domain analysis. However, constraint-solvers
for SAT and CSP, usually used for validating FODA feature models, are not
applicable for CFM validation due to the potentially unbounded search space.

3 Automated Anomaly Detection for CFM

We observe two potential causes for anomalies in CFM during normal form
computation due to faulty declarations of cardinality intervals: (1) unsatisfi-
able lower/upper bounds (including false unbounded), and (2) unsatisfiable sub-
ranges (gaps). For (1), we encode CFM semantics in an ILP representation and
use a respective ILP-solver for bound analysis, whereas for (2), we apply an
SMT-solver to find interval gaps. To keep the presentation concise, we focus
our considerations on input models CFM with non-compound cardinality inter-
vals L ∈ I.

Analysis of Interval Bounds. An ILP consists of a set of linear inequalities on
a set of k integer-valued decision variables. The resulting convex hull forms the
feasible region within a k-dimensional search space. An objective function states
that either lower (minimum), or upper (maximum) boundary integer values for
decision variables should be found by an ILP-solver. Encoding CFM semantics
as ILP thus enables automated detection of dead cardinality potentially located
at the boundary of cardinality intervals.

The ILP encoding of the CFM from Fig. 2 is given in Fig. 3(b). As decision
variables, we introduce for each feature fi ∈ F a feature multiplicity variable
fi ∈ N0, denoting the number M(fi) of instances of type fi being selected, and
a feature selection variable ti ∈ {0, 1}, denoting whether at least one instance
of fi is selected in a CFM configuration. Consistency between variables fi and
corresponding variables ti is enforced by constraints M · ti ≥ fi and ti ≤ fi
for all fi ∈ F , (cf. 2 in Fig. 3(b)). Here, we incorporate a coefficient M ,

Anomaly Detection for Cardinality-Based Feature Models 167

frequently referred to as big M in the literature [37], by means of a sufficiently
large number for coupling binary variables ti to integer variables fi. Coefficient
M is conservatively approximated by multiplying the maximum upper bounds of
cardinality intervals occurring in each branch of the feature tree and choosing the
overall maximum value. The upper bound is derived from the syntactic context
of the cardinality interval under consideration. Occurrences of * are replaced
in the same way. Due to monotonicity of aggregated cardinality interval bound
values imposed by the CFM tree structure (cf. Definition 3), the restriction of
the ILP search space to M, therefore, yields correct analysis results also for
unbounded CFM.

To encode CFM semantics of feature instance cardinality intervals and sub-
tree cloning, we introduce inequalities l · fi ≤ fj ≤ u · fi for all parent-child pairs
fi ≺F fj and (l, u) = λI

F (fj) for child feature fj ∈ F (cf. 3 in Fig. 3(b)). The
inequality restricting the upper bound u is only introduced if u is bounded which
does not hold, e.g., for feature f5 in our example. For root feature fr (denoted
f0), we have a special constraint f0 = 1. For group instance cardinality intervals,
we introduce inequalities

l · fi ≤
∑

fi∈F :fi≺F fj

fj ≤ u · fi

for all parent-child pairs fi ≺F fj and (l, u) = λI
G(fi) for parent feature fi ∈ F .

Again, in the unbounded case, we only restrict the lower bound. Semantics of
group type cardinality intervals can be encoded, accordingly. The resulting group
constraints for our example are depicted at 4 and 5 in Fig. 3(b), where the
constraint at 4 for f0 only contains one inequality due to unboundedness.

Finally, cross-tree edges constitute the most complicated part potentially
obstructing linearity of the ILP constraint set. To handle those cases, we use
additional decision variables by means of fresh interval selection variables rk ∈
{0, 1} denoting a particular interval being selected or not. For each cross-tree
edge (fi, Li, Lj , fj)k ∈ ΦY , Y ∈ {R,X}, we define inequalities for source and
target feature node intervals. For the source feature node fi, we introduce three
interval selection variables rk−1, rk, and rk+1 to encode selection conditions for
Li = (li, ui). We encode the lower bounds of matching conditions of interval
selection variables by

fi ≥ rk−1 + (li + 1) · rk + (ui + 2) · rk+1 − 1

and, for the upper bounds, by

fi ≤ (li − 1) · rk−1 + ui · rk + M · rk+1,

respectively. To this end, rk−1 indicates that the value of fi is below li, rk indi-
cates that the value of fi is within interval Li, and rk+1 indicates that value of fi
is above ui. If the source feature node cardinality interval is either unbounded,
or its lower bound equals 1, the inequality is adapted, accordingly. In addition,
the constraint ti = rk−1 + rk + rk+1 ensures the interval not be selected and

168 M. Weckesser et al.

deselected at the same time if fi is present. Applied to our example, the result-
ing encoding of source feature node cardinality intervals of the four cross-tree
edges is shown in Fig. 3(b) at 5.1 , 6.1 , 7.1 , and 8.1 . Due to symmetry of
exclude-edge semantics, target feature node cardinality intervals can be encoded
in the same way as shown at 8.2 . To ensure mutual exclusion, an inequality
such as at 8.3 is added for each exclude-edge. For encoding target feature
node cardinality intervals of require-edges (fi, Li, Lj , fj) ∈ ΦR with (lj , uj) = Lj ,
we introduce the constraint

lj − M · (1 − rk) ≤ fj ≤ uj + M · (1 − rk)

to ensure that if the source node condition holds (rk = 1), then fj is within Lj

(cf. 5.2 , 6.2 and 7.2 in Fig. 3(b)).
Based on this ILP encoding, CFM bound analysis can be performed for inter-

vals (l, u) ∈ I by employing a corresponding ILP objective function, i.e., either
minimization for lower bound analysis, or maximization for upper bound analy-
sis. In Fig. 3(b), we analyze the upper bound of the group instance cardinality
interval of f0 by using the objective function max f1 + f2 + f3 (cf. 1), which
returns 11. Considering unbounded cardinality intervals, we have two cases. In
case of false unbounded intervals, e.g., the upper bound of the group instance
cardinality of f0, the solver run returns a bounded result with an objective value
less than M . In case of a truly unbounded cardinality interval, e.g., the upper
bound of feature instance cardinality of f5, the solver either reports unbounded
but feasible, or returns a value equal to M . To sum up, ILP-based interval bound
analysis is sound in the sense that bounds of the search space reported feasible
do not contain any dead cardinality. Similarly, the technique is complete in the
sense that any dead cardinality at the bounds of the search space is detectable.

Detection of Interval Gaps. The ILP-based approach for interval-bound analy-
sis is not directly applicable for interval-gap analysis as gaps are, by definition,
not located at minima/maxima locations of the search space. For example, for
detecting the group instance cardinality interval gap at (6, 6) of f0 in Fig. 2,
we have to check whether (6, 6) is a feasible value for the corresponding fea-
ture multiplicity variables. Hence, detecting interval gaps does not constitute an
optimization problem, but rather a constraint satisfaction problem incorporat-
ing integer inequalities. To this end, an SMT-solver is applicable, being capable
of interpreting first-order logics equipped with linear Integer arithmetics theory
according to our ILP encoding of CFM semantics (cf. Fig. 3). For gap analysis,
every sub-range of all cardinality intervals of a CFM has to investigated, where
in case of unbounded intervals, analysis has to be performed up to M.

Normal Form Computation. We can now combine interval-bound analysis and
interval-gap analysis to compute CFM normal forms. By ILP(CFM,interval) we
denote ILP-solver calls to investigate a particular cardinality interval of CFM.
The call returns the actual lower and upper bound of that interval to poten-
tially replace the declared intervals within the normal form. For lower bounds
of cardinality intervals defined by λF

I , λG
I and λG

T , the result is either greater

Anomaly Detection for Cardinality-Based Feature Models 169

than, or equal to the declared lower bound. For upper bounds, the result is
either lower than, or equal to the declared upper bound. In case of unbounded
intervals, the call either returns a concrete value in case of false unboundedness,
or reports unboundedness. In case of infeasible intervals, the call returns (0, 0).
For interval-gap analysis, we denote SMT(CFM,interval,range) for respective
SMT-solver calls, where range is a sub-range of interval to be investigated. For
reducing the search space for gap detection, parameter range can be obtained
from ILP-based bound analysis. The SMT call reports invalid sub-ranges within
range leading to compound intervals within the normal form. Finally, for car-
dinality intervals Li, Lj of cross-tree edges (fi, Li, Lj , fj) ∈ ΦY , Y ∈ {R,X},
bound and gap analysis is, in general, performed as described above. In contrast,
infeasibility of source and/or target feature node intervals imposes incremental
removals of the corresponding edges from ΦY during normal form computation.

4 Experimental Evaluation

We implemented CFM bound analysis and gap detection in a tool providing
textual syntax for specifying input CFM models [33]. Here, we present evaluation
results gained from several experiments performed with our tool. We address the
following research questions.

(RQ1) Is CFM normal form computation applicable to real-world input models?
(RQ2) How does the size and complexity of CFM affect scalability of CFM

analysis?
(RQ3) How does the ILP-based feasibility check perform on FODA feature

models compared to a SAT-based satisfiability check?

To address (RQ1), we applied our tool to the real-world CFM in Fig. 1. To
address (RQ2) and (RQ3), we used synthetically generated CFM models by
extending the BeTTy tool [36] with cardinality interval generation capabilities
including adjustable maximum feature instance cardinality and unbounded inter-
val probability. We generated CFM by randomly varying all CFM generation cri-
teria using uniformly distributed random variables. Experiments were performed
on a Unix machine with Intel Core i5 (2,3 GHz, 8 GB RAM). For bound analysis,
we employed as ILP-solvers CPLEX [21], Gurobi [18], and GLPK [17]. For gap
detection, we used SMT-solver Z3 [27] and for (RQ3), we utilized Sat4j [24].

For (RQ1), we computed the normal form for the AR game CFM which
includes bound analysis for 27 intervals, thus requiring 54 ILP-solver calls. The
CPLEX ILP-solver took about 10 ms per call. Gap analysis included 27 intervals
which took about 15.71 s per call. The resulting normal form exposed a false
unbounded group instance interval anomaly for the Channels group, thus the
unbounded interval symbol * is replaced by 11.

Concerning (RQ2), we performed regression analysis to estimate influences
of model characteristics on CFM analysis performance metrics. To identify sig-
nificant coefficients, we applied multiple linear regression analysis on input data
sets by randomly varying all generation criteria. We applied t-tests to check

170 M. Weckesser et al.

Fig. 4. Evaluation results for (RQ2)

significance of regression coefficients. With significance level p < 0.05, we identi-
fied (a) number of features, and (b) cross-tree constraint ratio (CTCR), (c) ratio
of unbounded cardinality intervals, as well as (d) CFM feasibility as coefficients
with potentially high influences on run-time of ILP-based bound analysis. In
contrast, the influence of average number of feature instances is not significant.
Figure 4 contains the results of one bound analysis run for individual variation of
coefficients (a)–(d). The plots show that run-time of ILP-based bound analysis
is dominated by (a) and (b), as the size of the feature tree and the number of
cross-tree edges directly affects the number of decision variables and constraints.
The results show that ILP-based analysis of one particular bound for CFM with
5,000 features takes about 50 ms and thus about 21 min. for complete bound
analysis. This can be considered industrial strength. In contrast, for SMT-based
gap analysis, we were only able to obtain run-time analysis results for small-sized
(and mostly bounded) CFM up to at most 200 features. As expected, run-time
of SMT-based gap analysis tends to show exponential growth with increasing
average size of cardinality intervals. For (RQ3) we conducted multiple linear
regression to estimate influences of FODA feature model characteristics, i.e.,
with CFM restricted to cardinality intervals between 0 and 1, for comparing run-
time of satisfiability checks using SAT and ILP-solvers. We identified coefficients

Anomaly Detection for Cardinality-Based Feature Models 171

Fig. 5. Evaluation results for (RQ3)

number of features, CTCR and CFM feasibility as highly significant (p < 0.01).
For CPLEX, the maximum branching factor has no significant influence. As
shown in Fig. 4, the SAT-solver exhibits lower run-time metrics with increasing
model size compared to ILP. Nevertheless, ILP-solvers perform remarkably well,
with differences in run-time metrics by means of a constant factor only up to
models with 5,000 features (Fig. 5).

Threats to Validity. Threats to validity may arise from our experimental input
data selection. Concerning (RQ1), the cloud-based AR game is part of a major
research project and has already been used for experimental evaluation [31].
Similarly, our design choices for CFM syntax and semantics are derived from
requirements of cloud-domain experts. Concerning synthetic data for (RQ2) and
(RQ3), we employed the well-established BeTTy tool for generating FODA-like
feature trees, additionally augmented with cardinality intervals. The cardinality
interval test data is dimensioned according to characteristics of our case study in
order to obtain realistic models. To the best of our knowledge, there does neither
exist a fully-fledged CFM generator, nor related approaches for comprehensive
CFM analysis as in our approach. Hence, neither a qualitative, nor a quantitative
comparison to existing other approaches has been possible so far.

5 Related Work

Formalization of Cardinality-Based Feature Models. Riebisch et al. first propose
to extend FODA notation with UML-like multiplicities by means of feature group
cardinality [32]. Czarnecki et al. extend feature models with group and feature
cardinality, but forbid combinations of both [13]. Thereupon, Czarnecki et al.
define CFM semantics based on sub-tree clones and propose their translation
into a context-free grammar [14]. They also permit unbounded cardinality but
do no investigate their semantic impact. Quinton et al. introduce source and
target cardinality for require-edges [30]. However, their approach does neither
consider exclude-edges, nor combinations of feature instance and group cardinal-
ity. Quinton et al. also mention unbounded cardinality, but neither address it in

172 M. Weckesser et al.

CFM semantics, nor as part of CFM analysis. Michel et al. investigate semantic
ambiguities due to combinations of feature and group cardinality and distinguish
local clone-based from global feature-based interpretation of group type cardi-
nality intervals, being similar to our notion of group instance and group type
cardinality intervals [26]. However, they only consider global feature-based inter-
pretation being similar to our notion of group type cardinality intervals. Cordy
et al. allow combinations of feature and group cardinality, but for the latter only
consider group type cardinality intervals [12]. Again, neither Michel et al., nor
Cordy et al. handle unboundedness semantically and during CFM analysis.

Automated Analysis of Cardinality-Based Feature Models. Quinton et al. define
inconsistent CFM similar to our notion of dead cardinality anomaly and perform
inconsistency detection using CSP [28–30]. Cordy et al. in [12] and Zhang et al.
in [38] present BDD-based CFM consistency analysis. However, neither of these
approaches is able to handle unbounded configuration spaces and/or interval
gaps, nor provide a normal form for CFM.

Analyzing Models with Unbounded Cardinality. Other modeling languages also
employ the concept of cardinality to restrict instance multiplicities of model
entities. CVL [16] provide iterators to mimic cardinality in feature diagrams
including unbounded intervals, and the specification language Clafer combines
concepts from UML and feature modeling including group and feature instance
cardinality [2]. However, no systematic analysis of unbounded cardinality is pro-
vided yet. In addition, several approaches have been proposed for analyzing
multiplicities in UML class diagrams using Alloy [1], CSP [10], and ILP [15] but
none of them explicitly handles unboundedness. Balaban et al. present a graph-
based algorithm for tightening multiplicities in UML class diagrams [4]. How-
ever, the approach essentially differs from CFM normal form computation as no
(recursively) cloned sub-tree hierarchy, cross-tree edges and multiple cardinality
constraints per entities occur in class diagrams. Amongst others, Boufares et al.
consider inconsistency in cardinality constraints of data-base schema definitions
including unbounded cardinality, but do not take interval gaps into account [8].

6 Conclusion

We presented a comprehensive formalization of CFM configuration seman-
tics including unbounded cardinality intervals. We further presented evaluation
results gained from experiments conducted with our tool implementation for
computing normal forms of CFM. The results show the general applicability
and scalability of ILP-based bound analysis. For scalable gap analysis, we aim
at replacing the SMT-solver also by an ILP-solver in our future work. We also
plan to conduct further experiments including real-world case studies and alter-
native CFM semantics [26]. For integrating CFM into a fully-fledged engineering
process with accompanying tool support, we plan to develop a methodology for
mapping feature instances to solution space artifacts as, e.g., propagated by
CVL [16].

Anomaly Detection for Cardinality-Based Feature Models 173

Acknowledgment. This work was partially supported by the DFG (German
Research Foundation) as part of projects B01 and C02 within CRC 1053 – MAKI
and under SPP 1593: Design For Future – Managed Software Evolution.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Softw. Syst. Model. 9(1), 69–86 (2010)

2. B ↪ak, K., Czarnecki, K., W ↪asowski, A.: Feature and meta-models in Clafer: mixed,
specialized, and coupled. In: Malloy, B., Staab, S., Brand, M. (eds.) SLE 2010.
LNCS, vol. 6563, pp. 102–122. Springer, Heidelberg (2011)

3. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.: Clafer: unifying
class and feature modeling. Softw. Syst. Model. 1–35 (2014)

4. Balaban, M., Maraee, A.: Simplification and correctness of UML class diagrams –
focusing on multiplicity and aggregation/composition constraints. In: Moreira, A.,
Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol.
8107, pp. 454–470. Springer, Heidelberg (2013)

5. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

6. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

7. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-
els. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
491–503. Springer, Heidelberg (2005)

8. Boufares, F., Bennaceur, H.: Consistency problems in ER-schemas for database
systems. Inf. Technol. 163(4), 263–274 (2004)

9. Bürdek, J., Lity, S., Lochau, M., Berens, M., Goltz, U., Schürr, A.: Staged config-
uration of dynamic software product lines with complex binding time constraints.
In: VaMoS 2014, pp. 16: 1–16: 8 (2014)

10. Cadoli, M., Calvanese, D., De Giacomo, G., Mancini, T.: Finite model reasoning
on UML class diagrams via constraint programming. In: Basili, R., Pazienza, M.T.
(eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 36–47. Springer, Heidelberg (2007)

11. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc, Boston (2001)

12. Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: Beyond boolean product-line
model checking: dealing with feature attributes and multi-features. In: ICSE 2013,
pp. 472–481 (2013)

13. Czarnecki, K., Helsen, S.: Staged configuration using feature models. In: Nord,
R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266–283. Springer, Heidelberg (2004)

14. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature
models and their specialization. Softw. Process Improv. Pract. 10(1), 7–29 (2005)

15. Falkner, A., Feinerer, I., Salzer, G., Schenner, G.: Computing product configura-
tions via UML and integer linear programming. Int. J. Mass Customisation 3(4),
351–367 (2010)

16. Fleurey, F., Haugen, Ø., Møller-Pedersen, B., Svendsen, A., Zhang, X.: Standard-
izing variability – challenges and solutions. In: Ober, I., Ober, I. (eds.) SDL 2011.
LNCS, vol. 7083, pp. 233–246. Springer, Heidelberg (2011)

174 M. Weckesser et al.

17. GNU Linear Programming Kit, Version 4.55. http://www.gnu.org/software/glpk/
glpk.html

18. Gurobi Optimization, I.: Gurobi Optimizer Reference Manual (2015). http://www.
gurobi.com

19. Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R.,
Classen, A.: Evaluating formal properties of feature diagram languages. IET Softw.
2(3), 281–302 (2008)

20. Hubaux, A., Heymans, P., Schobbens, P.-Y., Deridder, D.: Towards multi-view
feature-based configuration. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010.
LNCS, vol. 6182, pp. 106–112. Springer, Heidelberg (2010)

21. IBM ILOG CPLEX V12.6 User’s Manual for CPLEX. IBM Corp. (2015). http://
www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

22. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, S.A.: Feature oriented
domain analysis (FODA). Technical report, CMU (1990)

23. Karataş, A.S., Oğuztüzün, H., Doğru, A.: Mapping extended feature models to
constraint logic programming over finite domains. In: Bosch, J., Lee, J. (eds.)
SPLC 2010. LNCS, vol. 6287, pp. 286–299. Springer, Heidelberg (2010)

24. Le Berre, D., Parrain, A.: The Sat4j Library, Release 2.2. J. Satisfiability Boolean
Model. Comput. 7, 59–64 (2010)

25. Mendonça, M., Wasowski, A., Czarnecki, K.: SAT-based analysis of feature models
is easy. In: 13th SPLC, pp. 231–240 (2009)

26. Michel, R., Classen, A., Hubaux, A., Boucher, Q.: A formal semantics for feature
cardinalities in feature diagrams. In: VaMoS 2011, pp. 82–89 (2011)

27. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

28. Quinton, C., Romero, D., Duchien, L.: Automated selection and configuration of
cloud environments using software product lines principles. In: IEEE Cloud 2014,
pp. 144–151 (2014)

29. Quinton, C., Pleuss, A., Berre, D.L., Duchien, L., Botterweck, G.: Consistency
checking for the evolution of cardinality-based feature models. In: SPLC 2014, pp.
122–131 (2014)

30. Quinton, C., Romero, D., Duchien, L.: Cardinality-based feature models with con-
straints: a pragmatic approach. In: SPLC 2013, pp. 162–166 (2013)

31. Richerzhagen, B., Stingl, D., Hans, R., Groß, C., Steinmetz, R.: Bypassing the
cloud: peer-assisted event dissemination for augmented reality games. In: P2P 2014,
pp. 1–10 (2014)

32. Riebisch, M., Böllert, K., Streitferdt, D., Philippow, I.: Extending feature diagrams
with UML multiplicities. In: 6th World Conference on Integrated Design & Process
Technology (IDPT) (2002)

33. Schnabel, T., Weckesser, M., Kluge, R., Lochau, M., Schürr, A.: CardyGAn: tool
support for cardinality-based feature models. In: VaMoS 2016 (2016) (to appear)

34. Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: a survey and a
formal semantics. In: Proceedings of RE 2006, pp. 139–148 (2006)

35. Schroeter, J., Mucha, P., Muth, M., Jugel, K., Lochau, M.: Dynamic configuration
management of cloud-based applications. In: SPLC 2012, pp. 171–178 (2012)

36. Segura, S., Galindo, J., Benavides, D., Parejo, J., Ruiz-Cortés, A.: BeTTy: bench-
marking and testing on the automated analysis of feature models. In: VaMoS 2012,
pp. 63–71 (2012)

http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
http://www.gurobi.com
http://www.gurobi.com
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Anomaly Detection for Cardinality-Based Feature Models 175

37. Williams, H.P.: Model Building in Mathematical Programming. John Wiley &
Sons, Hoboken (2013)

38. Zhang, W., Yan, H., Zhao, H., Jin, Z.: A BDD-based approach to verifying clone-
enabled feature models’ constraints and customization. In: Mei, H. (ed.) ICSR
2008. LNCS, vol. 5030, pp. 186–199. Springer, Heidelberg (2008)

Analysis and Bug Triaging

Cut Branches Before Looking for Bugs:
Sound Verification on Relaxed Slices

Jean-Christophe Léchenet1,2(B), Nikolai Kosmatov1, and Pascale Le Gall2

1 CEA, LIST, Software Reliability and Security Laboratory, P.C. 174,
91191 Gif-sur-Yvette, France

{jean-christophe.lechenet,nikolai.kosmatov}@cea.fr
2 Laboratoire de Mathématiques et Informatique pour la Complexité et les Systèmes,

CentraleSupélec, Université Paris-Saclay, 92295 Châtenay-Malabry, France
pascale.legall@centralesupelec.fr

Abstract. Program slicing can be used to reduce a given initial program
to a smaller one (a slice) which preserves the behavior of the initial
program with respect to a chosen criterion. Verification and validation
(V&V) of software can become easier on slices, but require particular
care in presence of errors or non-termination in order to avoid unsound
results or a poor level of reduction in slices.

This article proposes a theoretical foundation for conducting V&V
activities on a slice instead of the initial program. We introduce the
notion of relaxed slicing that remains efficient even in presence of errors
or non-termination, and establish an appropriate soundness property. It
allows us to give a precise interpretation of verification results (absence
or presence of errors) obtained for a slice in terms of the initial program.
Our results have been proved in Coq.

1 Introduction

Context. Program slicing was initially introduced by Weiser [32,33] as a tech-
nique allowing to decompose a given program into a simpler one, called a pro-
gram slice, by analyzing its control and data flow. In the classic definition, a
(program) slice is an executable program subset of the initial program whose
behavior must be identical to a specified subset of the initial program’s behav-
ior. This specified behavior that should be preserved in the slice is called slicing
criterion. A common slicing criterion is a program point l. For the purpose of
this paper, we prefer this simple formulation to another criterion (l, V) where
a set of variables V is also specified. Informally speaking, program slicing with
respect to the criterion l should guarantee that any variable v at program point
l takes the same value in the slice and in the original program.

Since Weiser’s original work, many researchers have studied foundations of
program slicing (e.g. [4–6,8,11,14,20,26–28]). Numerous applications of slicing
have been proposed, in particular, to program understanding, software main-
tenance, debugging, program integration and software metrics. Comprehensive

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 179–196, 2016.
DOI: 10.1007/978-3-662-49665-7 11

180 J.-C. Léchenet et al.

surveys on program slicing can be found e.g. in [9,29,30,35]. In recent classifi-
cations of program slicing, Weiser’s original approach is called static backward
slicing since it simplifies the program statically, for all possible executions at the
same time, and traverses it backwards from the slicing criterion in order to keep
those statements that can influence this criterion. Static backward slicing based
on control and data dependencies is also the purpose of this work.

Goals and Approach. Verification and Validation (V&V) can become easier
on simpler programs after “cutting off irrelevant branches” [13,15,17,22]. Our
main goal is to address the following research question:

(RQ) Can we soundly conduct V&V activities on slices instead of the
initial program? In particular, if there are no errors in a program slice,
what can be said about the initial program? And if an error is found in
a program slice, does it necessarily occur in the initial program?

We consider errors determined by the current program state such as runtime
errors (that can either interrupt the program or lead to an undefined behavior).
We also consider a realistic setting of programs with potentially non-terminating
loops, even if this non-termination is unintended. So we assume neither that
all loops terminate, nor that all loops do not terminate, nor that we have a
preliminary knowledge of which loops terminate and which loops do not.

Dealing with potential runtime errors and non-terminating loops is very
important for realistic programs since their presence cannot be a priori excluded,
especially during V&V activities. Although quite different at first glance, both
situations have a common point: they can in some sense interrupt normal exe-
cution of the program preventing the following statements from being exe-
cuted. Therefore, slicing away (that is, removing) potentially erroneous or non-
terminating sub-programs from the slice can have an impact on soundness of
program slicing.

While some aspects of (RQ) were discussed in previous papers, none of them
provided a complete formal answer in the considered general setting (as we detail
in Sects. 2 and 6 below). To satisfy the traditional soundness property, program
slicing would require to consider additional dependencies of each statement on
previous loops and error-prone statements. That would lead to inefficient (that is,
too large) slices, where we would systematically preserve all potentially erroneous
or non-terminating statements executed before the slicing criterion. Such slices
would have very limited benefit for our purpose of performing V&V on slices
instead of the initial program.

This work proposes relaxed slicing, where additional dependencies on previ-
ous (potentially) erroneous or non-terminating statements are not required. This
approach leads to smaller slices, but needs a new soundness property. We state
and prove a suitable soundness property using a trajectory-based semantics, and
show how this result can justify V&V on slices by characterizing possible ver-
ification results on slices in terms of the initial program. The proof has been
formalized in the Coq proof assistant [7] and is available in [1].

The Contributions of this work include:

Cut Branches Before Looking for Bugs: Sound Verification 181

– a comprehensive analysis of issues arising for V&V on classic slices;
– the notion of relaxed slicing (Definition 6) for structured programs with pos-

sible errors and non-termination, that keeps fewer statements than it would
be necessary to satisfy the classic soundness property of slicing;

– a new soundness property for relaxed slicing (Theorem 1);
– a characterization of verification results, such as absence or presence of errors,

obtained for a relaxed slice, in terms of the initial program, that constitutes
a theoretical foundation for conducting V&V on slices (Theorems 2, 3);

– a formalization and proof of our results in Coq.

Paper Outline. Section 2 presents our motivation and illustrating examples.
The considered language and its semantics are defined in Sect. 3. Section 4 defines
the notion of relaxed slice and establishes its main soundness property. Next,
Sect. 5 formalizes the relationship between the errors in the initial program and in
a relaxed slice. Finally, Sects. 6 and 7 present the related work and the conclusion
with some future work.

2 Motivation and Running Examples

Errors and Assertions. We consider errors that are determined by the cur-
rent program state1 including runtime errors (division by zero, out-of-bounds
array access, arithmetic overflows, out-of-bounds bit shifting, etc.). Some of these
errors do not always interrupt program execution and can sometimes lead to an
(even more dangerous) undefined behavior, such as reading or writing an arbi-
trary memory location after an out-of-bounds array access in C. Since we cannot
take the risk to overlook some of these “silent runtime errors”, we assume that all
threatening statements are annotated with explicit assertions assert(C) placed
before them, that interrupt the execution whenever the condition C is false. This
assumption will be convenient for the formalization in the next sections: possible
runtime errors will always occur in assertions. Such assertions can be generated
syntactically (for example, by the RTE plugin of the Frama-C toolset [21] for
C programs). For instance, line 10 in Fig. 1a prevents division by zero at line 11,
while line 13 makes explicit a potential runtime error at line 14 if the array a is
known to be of size N. In addition, the assert(C) keyword can be also used to
express any additional user-defined properties on the current state.

Most previous applications of slicing to debugging used slices in order to
better understand an already detected error, by analyzing a simpler program
rather than a more complex one [8,29,30]. Our goal is quite different: to perform
V&V on slices in order to discover yet unknown errors, or show their absence
(cf. (RQ)). The interpretation of absence or presence of errors in a slice in terms
of the initial program requires solid theoretical foundations.

Classic Soundness Property. Let p be a program, and q a slice of p w.r.t. a
slicing criterion l. The classic soundness property of slicing (cf. [6, Definition 2.5]
or [28, Slicing Th.]) can be informally stated as follows.
1 Temporal errors (e.g. use-after-free in C) cannot be directly represented in this way.

182 J.-C. Léchenet et al.

1 s1 = 0;
2 s2 = 0;
3 i = 0;
4 while (i < N){
5 assert (i < N);
6 s1 = s1 + a[i];
7 i = i + k;
8 }
9 j = 0;

10 assert (k != 0);
11 last = N/k;
12 while (j <= last){
13 assert (k*j < N);
14 s2 = s2 + a[k*j];
15 j = j + 1;
16 }
17 assert (N != 0);
18 avg1 = s1 / N;
19 assert (N != 0);
20 avg2 = s2 / N;
21 if(avg1 == avg2)
22 print("equal");

1 s1 = 0;
2

3 i = 0;
4 while (i < N){
5 assert (i < N);
6 s1 = s1 + a[i];
7 i = i + k;
8 }
9

10

11

12

13

14

15

16

17 assert (N != 0);
18 avg1 = s1 / N;
19

20

21

22

1

2 s2 = 0;
3

4

5

6

7

8

9 j = 0;
10 assert (k != 0);
11 last = N/k;
12 while (j <= last){
13 assert (k*j < N);
14 s2 = s2 + a[k*j];
15 j = j + 1;
16 }
17

18

19 assert (N != 0);
20 avg2 = s2 / N;
21

22

(a) (b) (c)

Fig. 1. (a) A program computing in two ways the average of elements of a given array
a of size N whose only nonzero elements can be at indices {0, k, 2k, . . . }, and its two
slices: (b) w.r.t. line 18, and (c) w.r.t. line 20.

Property 1. Let σ be an input state of p. Suppose that p halts on σ. Then q halts
on σ and the executions of p and q on σ agree after each statement preserved in
the slice on the variables that appear in this statement.2

This property was originally established for classic dependence-based slicing for
programs without runtime errors and only for executions with terminating loops:
nothing is guaranteed if p does not terminate normally on σ. Let us show why
this property does not hold in presence of potential runtime errors or non-ter-
minating loops.

Illustrating Examples. Figure 1a presents a simple (buggy) C-like program
that takes as inputs an array a of length N and an integer k (with 0 � k� 100,
0 � N� 100), and computes in two different ways the average of the elements
of a. We suppose that all variables and array elements are unsigned integers,
and all elements of a whose index is not a multiple of k are zero, so it suffices
to sum array elements over the indices multiples of k and to divide the sum
by N. The sum is computed twice (in s1 at lines 3–8 and in s2 at lines 9–
16), and the averages avg1 and avg2 are computed (lines 17–20) and compared
(lines 21–22). We assume that necessary assertions with explicit guards (at lines
5, 10, 13, 17, 19) are inserted to prevent runtime errors.

Figure 1b shows a (classic dependence-based) slice of this program with
respect to the statement at line 18. Intuitively, it contains only statements

2 Formally, using the notation introduced hereafter in the paper (cf. Definition 8), their
projections are equal: ProjL(T �p�σ) = ProjL(T �q�σ).

Cut Branches Before Looking for Bugs: Sound Verification 183

Fig. 2. Errors (�), non-termination (�) and normal termination (—) of programs of
Fig. 1 for some inputs.

(at lines 1, 3, 4, 6, 7, 18) that can influence the slicing criterion, i.e. the values
of variables that appear at line 18 after its execution.3 In addition, we keep the
assertions to prevent potential errors in preserved statements. Similarly, Fig. 1c
shows a slice with respect to line 20, again with protecting assertions.

Figure 2 summarizes the behavior of the three programs of Fig. 1 on some
test data. The elements of a do not matter here. Suppose we found an error at
line 17 in slice (b) provoked by test datum σ4. Program (a) does not contain
the same error: it fails earlier, at line 13. We say that the error at line 17 in slice
(b) is hidden by the error at line 13 of the initial program. Similarly, test datum
σ5 provokes an error at line 17 in slice (b) while this error is hidden by an error
at line 10 in (a). In fact, the error at line 17 cannot be reproduced on the initial
program, so we say that it is totally hidden by other errors.

For slice (c), detecting an error at line 10 on test datum σ5 would allow us to
observe the same error in (a). However, if this error in slice (c) is also provoked
by test datum σ3, this test datum does not provoke any error in (a) because the
loop at line 4 does not terminate. We say that this error is (partially) hidden by
a non-termination of the loop at line 4.

These examples clearly show that Property 1 is not true in presence of errors
or non-terminating loops for classic slices. Indeed, the executions of p and q may
disagree at least for two reasons:

(i) a previously executed non-terminating loop not preserved in the slice, or
(ii) a previously executed failing statement not preserved in the slice.

Let us consider another example related to error-free programs. If we suppose
that 0 < k� 100, 0 < N� 100, and replace N/k by (N-1)/k at line 11 of Fig. 1,
neither slice contains any error. If we manage to verify the absence of errors on
both slices, can we be sure that the initial program is error-free as well?

Bigger Slices vs. Weaker Soundness Property. One solution (adopted
by [18,25,26]), cf. Sect. 6) proposes to ensure Property 1 even in presence of
errors and potentially non-terminating loops by considering additional depen-
dencies. This approach would basically lead to always preserving in the slice any

3 By formal definitions of Sect. 4, one easily checks that line 18 is data-dependent on
line 6, that is in turn data-dependent on lines 1,3,7 and control-dependent on line 4.

184 J.-C. Léchenet et al.

(potentially non-terminating) loop or error-prone statement that can be exe-
cuted before the slicing criterion. The resulting slices would be much bigger, and
the benefit of performing V&V on slices would be very limited.

For instance, to ensure that the executions of program (a) and slice (b)
activated by test datum σ4 agree on all statements of slice (b), line 13 should
be preserved in slice (b). That would result (by transitivity of dependencies) in
keeping e.g. the loop at line 12 and lines 9–11 in slice (b) as well. Similarly, the
loop at line 4 should be kept in slice (c) to avoid disagreeing executions for test
datum σ3. The slices can become much bigger in this approach.

In this paper we propose relaxed slicing, an alternative approach that does not
require to keep all loops or error-prone statements that can be executed before
the slicing criterion, but ensures a weaker soundness property. We demonstrate
that the new soundness property is sufficient to justify V&V on slices instead of
the initial program. In particular, we show that reasons (i) and (ii) above are
the only possible reasons of a hidden error, and investigate when the absence of
errors in slices implies the absence of errors in the initial program.

3 The Considered Language and Its Semantics

Language. In this study, we consider a simple WHILE language (with integer
variables, fixed-size arrays, pure expressions, conditionals, assertions and loops)
that is representative for our formalization of slicing in presence of runtime errors
and non-termination. The language is defined by the following grammar:

Prog ::= Stmt∗

Stmt ::= l : skip |
l : x = e |
if (l : b) Prog else Prog |
while (l : b) Prog |
l : assert (b, l′)

where l, l′ denote labels, e an expression and b a boolean expression. A program
(Prog) is a possibly empty list of statements (Stmt). The empty list is denoted λ,
and the list separator is “;”. We assume that the labels of any given program are
distinct, so that a label uniquely identifies a statement. Assignments, conditions
and loops have the usual semantics. As its name suggests, skip does nothing.

The assertion assert(b, l′) stops program execution in an error state (denoted
ε) if b is false, otherwise execution continues normally. As said earlier, we assume
that assertions are added to protect all threatening statements. The label l′

allows us to associate the assertion with another statement that should be pro-
tected by the assertion (e.g. because it could provoke a runtime error). An asser-
tion often protects the following line (like in Fig. 1, where the protected label
is not indicated). Two simple cases however need more flexibility (cf. Fig. 3).
Some assertions have to be themselves protected by assertions when they con-
tain a threatening expression. Figure 3a gives such an example where, instead

Cut Branches Before Looking for Bugs: Sound Verification 185

l3 : assert (z != 0, l1);

l2 : assert (w != 0, l);

l1 : assert ((y/z) + 1 != 0, l);

l : z = x / ((y/z) + 1) + v/w;

(a) Chained assertions

l1 : assert (k != 0, l);

while (l : j <= N/k) {

...

l2 : assert (k != 0, l); }

(b) Loop condition

Fig. 3. Two special cases of assertions

of creating three assertions pointing to l, assertions l1 and l2 point to l, and
assertion l3 points to another assertion l1. Figure 3b (inspired by the second
loop of Fig. 1) shows how assertions with explicit labels can be used to protect a
loop condition from a runtime error. The arrows in Fig. 3 indicate the protected
statement.

Assertions can be also added by the user to check other properties than
runtime errors. If the user does not need to indicate the protected statement,
they can choose for l′ either the label l of the assertion itself or any label not
used elsewhere in the program. User-defined assertions should be also protected
against errors by other assertions if necessary.

Semantics. Let p be a program. A program state is a mapping from variables
to values. Let Σ denote the set of all valid states, and Σε = Σ ∪ {ε}, where ε is
the error state. Let σ be an initial state of p. The trajectory of the execution of
p on σ, denoted T �p�σ, is the sequence of pairs 〈(l1, σ1) . . . (lk, σk) . . . 〉, where
l1, . . . , lk, . . . is the sequence of labels of the executed instructions, and σi is the
state of the program after the execution of instruction li. T can be seen as a
(partial) function

T : Prog → Σ → Seq(L × Σε)

where Seq(L × Σε) is the set of sequences of pairs (l, σ) ∈ L × Σε. Trajectories
can be finite or (countably) infinite. A finite subsequence at the beginning of a
trajectory T is called a prefix of T . The empty sequence is denoted 〈 〉.

Let ⊕ be the concatenation operator over sequences. For a finite trajectory
T , we denote by LSσ(T) the last state of T (i.e. the state component of its last
element) if T �= 〈 〉, and σ otherwise. The definition of T1 ⊕ T2 is standard if T1

is finite. If T1 is infinite or ends with the error state ε, then we set T1 ⊕ T2 = T1

for any T2 (and even if T2 is not well-defined, in other words, ⊕ performs lazy
evaluation of its arguments).

We denote by E an evaluation function for expressions, that is standard and
not detailed here. For any (pure) expression e and state σ ∈ Σ, E�e�σ is the
evaluation of expression e using σ to evaluate the variables present in e. The
error state is only reached through a failed assert. Thanks to the assumption
that all potentially failing statements are protected by assertions, we do not
need to model errors in expressions or other statements: errors always occur in
assertions. We also suppose for simplicity that all variables appearing in p are
initialized in any initial state of p, that ensures the absence of expressions that

186 J.-C. Léchenet et al.

Fig. 4. Trajectory-based semantics of the language (for a valid state σ ∈ Σ)

cannot be evaluated due to an uninitialized variable. These assumptions slightly
simplify the presentation without loss of generality for our purpose: loops and
errors (in assertions) are present in the language.

Figure 4 gives the inductive definition of T for any valid state σ ∈ Σ. The
definitions for a loop and a conditional rely on the notation (v → T1, T2) also
defined in Fig. 4. For any state σ, variable x and value v, σ[x ← v] denotes σ
overridden by the association x
→ v. Notice that in the definitions for a sequence
and a loop, it is important that ⊕ does not evaluate the second parameter when
the first trajectory is infinite or ends with the error state since the execution of
the remaining part is not defined in this case. Thus ε can appear only once at
the very end of a trajectory.

We illustrate these definitions on slice (b) of Fig. 1, denoted pb. For every ini-
tial state σ of pb and unsigned integer i, we define σi = σ[s1 ← (i·a[0] mod Mu)],
where Mu denotes the maximal representable value of an unsigned integer. Then
the trajectory on σ3 is infinite, while the trajectory on σ5 leads to an error:

T �pb�σ3 = 〈(1, σ0
3)(3, σ0

3)(4, σ0
3)(5, σ0

3)(6, σ1
3)(7, σ1

3)(4, σ1
3)(5, σ1

3)(6, σ2
3)(7, σ2

3) . . . 〉,
T �pb�σ5 = 〈(1, σ0

5)(3, σ0
5)(4, σ0

5)(17, ε)〉.

4 Relaxed Program Slicing

4.1 Control and Data Dependences

Let L(p) denote the set of labels of program p. Let us consider here a more
general slicing criterion defined as a subset of labels L0 ⊆ L(p), and construct
a slice with respect to all statements whose labels are in L0. In particular, this
generalization can be very useful when one wants to perform V&V on a slice with
respect to several threatening statements. In this work we focus on dependence-
based slicing, where a dependence relation D ⊆ L(p) × L(p) is used to construct

Cut Branches Before Looking for Bugs: Sound Verification 187

a slice. We write l
D−→
p

l′ to indicate that l′ depends on l according to D, i.e.

(l, l′) ∈ D. The definitions of control and data dependencies, denoted respectively
Dc and Dd, are standard, and given following [6].

Definition 1 (Control Dependence Dc). The control dependencies in p are
defined by if and while statements in p as follows:

for any statement if (l : b) q else r and l′ ∈ L(q) ∪ L(r), we define l
Dc−−→
p

l′;

for any statement while (l : b) q and l′ ∈ L(q), we define l
Dc−−→
p

l′.

For instance, in Fig. 1a, lines 5–7 are control-dependent on line 4, while lines
13–15 are control-dependent on line 12.

To define data dependence, we need the notion of (finite syntactic) paths.
Let us denote again by ⊕ the concatenation of paths, extend ⊕ to sets of paths
as the set of concatenations of their elements, and denote by “∗” Kleene closure.

Definition 2 (Finite Syntactic Paths). The set of finite syntactic paths
P(p) of a program p is inductively defined as follows:

P(�λ�) = {λ},

P(�s; p�) = P(s) ⊕ P(p),
P(�l : skip�) = {l},

P(�l : x = e�) = {l},

P(�if (l : b) p else q�) = {l} ⊕ (P(p) ∪ P(q)),
P(�while (l : b) p�) = ({l} ⊕ P(p))∗ ⊕ {l},

P(�l : assert(b, l′)�) = {l}.

For a given label l, let def(l) denote the set of variables defined at l (that
is, def(l) = {v} if l is an assignment of variable v, and ∅ otherwise), and let
ref(l) be the set of variables referenced at l. If l designates a conditional (or a
loop) statement, ref(l) is the set of variables appearing in the condition; other
variables appearing in its branches (or loop body) do not belong to ref(l). We
denote by used(l) the set def(l) ∪ ref(l).

Definition 3 (Data Dependence Dd). Let l and l′ be labels of a program p.
We say that there is a data dependency l

Dd−−→
p

l′ if def(l) �= ∅ and def(l) ⊆ ref(l′)

and there exists a path π = π1lπ2l
′π3 ∈ P(p) such that for all l′′ ∈ π2, def(l′′) �=

def(l). Each πi may be empty.

For instance, in Fig. 1b, line 18 is data-dependent on line 1 (with π =
1, 3, 4, 17, 18) and on line 6 (with π = 1, 3, 4, 5, 6, 7, 4, 17, 18), while line 6 is
data-dependent on lines 1, 3, 6 and 7.

188 J.-C. Léchenet et al.

A slice of p is expected to be a quotient of p, that is, a well-formed program
obtained from p by removing zero, one or more statements. A quotient can
be identified by the set of labels of preserved statements. Notice that when a
conditional (or a loop) statement is removed, it is removed with all statements
of its both branches (or its loop body) to preserve the structure of the initial
program in the quotient.

Given a dependence relation D and L0 ⊆ L(P), the slice based on D w.r.t. L0

will be also identified by the set of labels of preserved statements. The following
lemma justifies the correctness of the definitions of slices given hereafter. We
denote by D∗ the reflexive transitive closure of D, and by (D∗)−1(L0) the set of

all labels l′ ∈ L(p) such that there exists l ∈ L0 with l′ D∗
−−→

p
l.

Lemma 1. Let L0 ⊆ L(P). If D is a dependence relation on p such that Dc ⊆ D,
then (D∗)−1(L0) is the set of labels of a (uniquely defined) quotient of p.

Lemma 1 can be easily proven by structural induction. It allows us to define a
slice as the set of statements on which the statements in L0 are (directly or
indirectly) dependent.

Definition 4 (Dependence-based Slice). Let D be a dependence relation on
p such that Dc ⊆ D, and L0 ⊆ L(P). A dependence-based slice of p based on
D with respect to L0 is the quotient of p whose set of labels is (D∗)−1(L0). A
classic dependence-based slice of p with respect to L0 is based on D = Dc ∪ Dd.

4.2 Assertion Dependence and Relaxed Slices

Soundness of classic slicing for programs without runtime errors or non-termina-
ting loops can be expressed by Property 1 in Sect. 2. As we illustrated, to general-
ize this property in presence of runtime errors and for non-terminating executions
one would need to add additional dependencies and systematically preserve in
the slice all potentially erroneous or non-terminating statements executed before
(a statement of) the slicing criterion. We propose here an alternative approach,
called relaxed slicing, where only one additional dependency type is considered.

Definition 5 (Assertion Dependence Da). For every assertion l : assert
(b, l′) in p with l, l′ ∈ L(p), we define an assertion dependency l

Da−−→
p

l′.

Definition 6 (Relaxed Slice). A relaxed slice of p with respect to L0 is the
quotient of p whose set of labels is (D∗)−1(L0), where D = Dc ∪ Dd ∪ Da.

For instance, in Fig. 1a, there would be an assertion dependence of each threat-
ening statement on the corresponding protecting assertion (written on the pre-
vious line). Therefore both slices (b) and (c) of Fig. 1 (in which we artificially
preserved assertions in Sect. 2) are in fact relaxed slices where assertions are
naturally preserved thanks to the assertion dependence.

Cut Branches Before Looking for Bugs: Sound Verification 189

Assertion dependence brings two benefits. It ensures that a potentially threat-
ening instruction is never kept without its protecting assertion. At the same time,
an assertion can be preserved without its protected statement, that is quite useful
for V&V that focus on assertions: slicing w.r.t. assertions may produce smaller
slices if we do not need the whole threatening statement. For example, a relaxed
slice w.r.t. the assertion at line 17 would contain only this unique line.

Notice that a relaxed slice does not require to include potentially erroneous
or non-terminating statements that can prevent the slicing criterion from being
executed (like in [18,25,26]). For example, slice (b) does not include the potential
error at line 13, and slice (c) does not include the loop of line 4.

4.3 Soundness of Relaxed Slicing

We cannot directly compare the trajectory of the original program with a slice,
since it may refer to statements and variables not preserved in the slice. We use
projections of trajectories that reduce them to selected labels and variables.

Definition 7 (Projection of a State). The projection of a state σ to a set of
variables V , denoted σ↓V , is the restriction of σ to V if σ �= ε, and ε otherwise.

Definition 8 (Projection of a Trajectory). The projection of a one-element
sequence 〈(l, σ)〉 to a set of labels L, denoted 〈(l, σ)〉↓L, is defined as follows:

〈(l, σ)〉↓L =

{
〈(l, σ↓used(l))〉 if l ∈ L,

〈 〉 otherwise.

The projection of a trajectory T = 〈(l1, σ1) . . . (lk, σk) . . . 〉 to L, denoted ProjL(T),
is defined element-wise: ProjL(T) = 〈(l1, σ1)〉↓L ⊕ . . . ⊕ 〈(lk, σk)〉↓L ⊕

We can now state and prove the soundness property of relaxed slices.

Theorem 1 (Soundness of a Relaxed Slice). Let L0 ⊆ L(p) be a slicing
criterion of program p. Let q be the relaxed slice of p with respect to L0, and
L = L(q) the set of labels preserved in q. Then for any initial state σ ∈ Σ of p
and finite prefix T of T �p�σ, there exists a prefix T ′ of T �q�σ, such that:

ProjL(T) = ProjL(T ′)

Moreover, if p terminates without error on σ, T �p�σ and T �q�σ are finite, and

ProjL(T �p�σ) = ProjL(T �q�σ)

Proof. Let σ ∈ Σ, T �p�σ = 〈(l1, σ1)(l2, σ2) . . . 〉, and T �q�σ = 〈(l′1, σ′
1)(l

′
2, σ

′
2)

. . . 〉. Let T = 〈(l1, σ1) . . . (li, σi)〉 be a finite prefix of T �p�σ. By Definition 8, the
projections of T �q�σ and T to L = L(q) have the following form

ProjL(T �q�σ) = 〈 (l′1, σ
′
1↓used(l′1))(l

′
2, σ

′
2↓used(l′2)) . . . 〉,

ProjL(T) = 〈 (lf(1), σf(1)↓used(lf(1))) . . . (lf(j), σf(j)↓used(lf(j))) 〉,
where j ≤ i and f is a strictly increasing function.

190 J.-C. Léchenet et al.

Let us denote by k the greatest natural number such that k ≤ j and
such that the prefix of T �q�σ of length k exists and satisfies (ProjL(T))k =
ProjL((T �q�σ)k), where we denote by Uk the prefix of length k for any trajec-
tory U . Let T ′ = 〈(l′1, σ′

1) . . . (l′k, σ′
k)〉 be the prefix (T �q�σ)k. By Definition 8 we

have
ProjL(T ′) = 〈 (l′1, σ

′
1↓used(l′1)) . . . (l′k, σ′

k↓used(l′k)) 〉.
Since (ProjL(T))k = ProjL(T ′), for any m = 1, 2, . . . , k we have l′m = lf(m) and
σ′

m↓used(l′m) = σf(m)↓used(lf(m)). Set σ0 = σ′
0 = σ.

Let us prove that k = j. We reason by contradiction and assume that k < j.
By maximality of k, there can be three different cases:

1. T �q�σ is of size k, or
2. l′k+1 exists, but l′k+1 �= lf(k+1), or
3. l′k+1 exists, l′k+1 = lf(k+1), but σ′

k+1↓used(l′k+1) �= σf(k+1)↓used(lf(k+1)).

Since l′k = lf(k), cases 1 and 2 can be only due to a diverging evaluation of
a control flow statement (i.e. if, while or assert) situated in the execution of
p between lf(k) and lf(k+1)−1. If such a statement occurs at label l′k = lf(k), its
condition would be evaluated identically in both executions since σ′

k↓used(l′k) =
σf(k)↓used(lf(k)). The first non-equal label lf(k+1) cannot be part of the body
of some non-preserved if or while statement between lf(k) + 1 and lf(k+1)−1 in
p by definition of control dependence (cf. Definition 1). Finally, the divergence
cannot be due to an assert in p between lf(k)+1 and lf(k+1)−1 either, because
a passed assert has no effect, while a failing assert would make it impossible
to reach lf(k+1) in p. Thus a divergence leading to cases 1 and 2 is impossible.

In case 3, the key idea is to remark that σ′
k↓ref(l′k+1) = σf(k+1)−1↓ref(lf(k+1)).

Indeed, assume that there is a variable v ∈ ref(l′k+1) = ref(lf(k+1)) such that
σ′

k(v) �= σf(k+1)−1(v). The last assignment to v in the execution of p before its
usage at lf(k+1) must be preserved in q because of data dependence (cf. Defini-
tion 3), so it has a label l′u = lf(u) for some 1 � u � k. By definition of k, the state
projections after this statement were equal: σ′

u↓used(l′u) = σf(u)↓used(lf(u)), so
the last values assigned to v before its usage at lf(k+1) were equal, that contradicts
the assumption σ′

k(v) �= σf(k+1)−1(v). This shows that all variables referenced in
lf(k+1) have the same values, so the resulting states cannot differ, and case 3 is
not possible either. Therefore k = j, and T ′ satisfies ProjL(T) = ProjL(T ′).

If p terminates without error on σ, by the first part of the theorem we have
a prefix T ′ of T �q�σ such that ProjL(T �p�σ) = ProjL(T ′). If T ′ is a strict
prefix of T �q�σ, this means as before that a control flow statement executed
in p causes the divergence of the two trajectories. By hypothesis, there are no
failing assertions in the execution of p, therefore it is due to an if or a while.
By the same reasoning as in cases 1, 2 above we show that its condition must be
evaluated in the same way in both trajectories and cannot lead to a divergence.
Therefore, T ′ = T �q�σ. ��

Cut Branches Before Looking for Bugs: Sound Verification 191

5 Verification on Relaxed Slices

In this section, we show how the absence and the presence of errors in relaxed
slices can be soundly interpreted in terms of the initial program.

Lemma 2. Let q be a relaxed slice of p and σ ∈ Σ an initial state of p. If the
preserved assertions do not fail in the execution of q on σ, they do not fail in
the execution of p on σ either.

Proof. Let us show the contrapositive. Assume that T �p�σ ends with (l, ε) where
l ∈ L(q) is a preserved assertion. Let L = L(q). From Theorem 1 applied to
T = T �p�σ, it follows that there exists a finite prefix T ′ of T �q�σ such that
ProjL(T) = ProjL(T ′). The last state of ProjL(T ′) is ε, therefore the last state
of T ′ is ε too. It means that ε appears in T �q�σ, and by definition of semantics
(cf. Sect. 3) this is possible only if ε is its last state. Therefore T �q�σ ends with
(l, ε) as well. ��

The following theorem and corollary immediately follow from Lemma2.

Theorem 2. Let q be a relaxed slice of p. If all assertions contained in q never
fail, then the corresponding assertions in p never fail either.

Corollary 1. Let q1, . . . , qn be relaxed slices of p such that each assertion in
p is preserved in at least one of the qi. If no assertion in any qi fails, then no
assertion fails in p.

The last result justifies the detection of errors in a relaxed slice.

Theorem 3. Let q be a relaxed slice of p and σ ∈ Σ an initial state of p. We
assume that T �q�σ ends with an error state. Then one of the following cases
holds for p:

(†) T �p�σ ends with an error at the same label, or
(††) T �p�σ ends with an error at a label not preserved in q, or
(† † †) T �p�σ is infinite.

Proof. Let L = L(q) and assume that T �q�σ ends with (l, ε) for some preserved
assertion at label l ∈ L. We reason by contradiction and assume that T �p�σ does
not satisfy any of the three cases. Then two cases are possible.

First, T �p�σ ends with (l′, ε) for another preserved assertion at label l′ ∈ L
(with l′ �= l). Then reasoning as in the proof of Lemma2 we show that T �q�σ
ends with (l′, ε) as well, that contradicts l′ �= l.

Second, T �p�σ is finite without error. Then the second part of Theorem1 can
be applied and thus ProjL(T �p�σ) = ProjL(T �q�σ). This is contradictory since
T �q�σ contains an error (at label l ∈ L) and T �p�σ does not. ��

For instance, consider the example of Fig. 1 with 0 < k � 100, 0 < N � 100.
In this case we can prove that slice (b) does not contain any error, thus we can
deduce by Theorem 2 that the assertions at lines 5 and 17 (preserved in slice (b))

192 J.-C. Léchenet et al.

never fail in the initial program either. If in addition we replace N/k by (N-1)/k
at line 11 of Fig. 1, we can show that neither of the two slices of Fig. 1 contains
any error. Since these slices cover all assertions, we can deduce by Corollary 1
that the initial program is error-free.

Theorem 3 shows that despite the fact that an error detected in q does not
necessary appear in p, the detection of errors on q has a precise interpretation. It
can be particularly meaningful for programs supposed to terminate, for which a
non-termination within some time τ is seen as an anomaly. In this case, detection
of errors in a slice is sound in the sense that if an error is found in q for initial
state σ, there is an anomaly (same or earlier error, or non-termination within
time τ) in p whose type can be easily determined by running p on σ.

It can be noticed that a result similar to Theorem3 can be established for
non-termination: if T �q�σ is infinite, then either (††) or († † †) holds for p.

6 Related Work

Weiser [34] introduced the basics of intraprocedural and interprocedural static
slicing. A thorough survey provided in [30] explores both static and dynamic
slicing and compares the different approaches. It also lists the application areas
of program slicing. More recent surveys can be found at [9,29,35]. Foundations
of program slicing have been studied e.g. in [4–6,8,11,14,20,26–28]. This section
presents a selection of works that are most closely related to the present paper.

Debugging and Dynamic Slicing. Program debugging and testing are tradi-
tional application domains of slicing (e.g. [2,19,33]) where it can be used to better
understand an already detected error, to prioritize test cases (e.g. in regression
testing), simplify a program before testing, etc. In particular, dynamic slicing [8]
is used to simplify the program for a given (e.g. erroneous) execution. However,
theoretical foundations of applying V&V on slices instead of the initial program
(like in [13,22]) in presence of errors and non-termination, that constitute the
main purpose of this work, have been only partially studied.

Slicing and Non-terminating Programs. A few works tried to propose
a semantics preserved by classic slicing even in presence of non-termination.
Among them, we can cite the lazy semantics of [11], and the transfinite one of
[16], improved by [24]. Another semantics proposed in [6] has several improve-
ments compared to the previous ones: it is intuitive and substitutive. Despite
the elegance of these proposals, they turn out to be unsuitable for our purpose
because they consider non-existing trajectories, that are not adapted to V&V
techniques, for example, based on path-oriented testing like in [13,15].

Ranganath, et al. [26] provides foundations for the slicing of modern pro-
grams, i.e. programs with exceptions and potentially infinite loops, represented
by control flow graphs (CFG) and program dependence graphs (PDG). Their
work gives two definitions of control dependence, non-termination sensitive and
non-termination insensitive, corresponding respectively to the weak and strong
control dependences of [25] and further generalized for any finite directed graph

Cut Branches Before Looking for Bugs: Sound Verification 193

in [14]. [26] also establishes the soundness of classic slicing with non-termination
sensitive control dependence in terms of weak bisimulation, more adapted to
deal with infinite executions. Their approach requires to preserve all loops, that
results in much bigger slices than in relaxed slicing.

Amtoft [4] establishes a soundness property for non-termination insensitive
control dependence in terms of simulation. Ball and Horwitz [5] describes pro-
gram slicing for arbitrary control flow. Amtoft and Ball [4,5] state that an exe-
cution in the initial program can be a prefix of that in a slice, without care-
fully formalizing runtime errors. Our work establishes a similar property, and in
addition performs a complete formalization of slicing in presence of errors and
non-termination, explicitly formalizes errors by assertions and deduces several
results on performing V&V on slices.

Slicing in Presence of Errors. Harman, et al. [18] notes that classic algo-
rithms only preserve a lazy semantics. To obtain correct slices with respect to
a strict semantics, it proposes to preserve all potentially erroneous statements
through adding pseudo-variables in the def(l) and ref(l) sets of all potentially
erroneous statements l. Our approach is more fine-grained in the sense that we
can independently select assertions to be preserved in the slice and to be consid-
ered by V&V on this slice. This benefit comes from our dedicated formalization of
errors with assertions and a rigorous proof of soundness using a trajectory-based
semantics. In addition, we make a formal link about the presence or the absence
of errors in the program and its slices. Harman and Danicic [17] uses program
slicing as well as meaning-preserving transformations to analyze a property of
a program not captured by its own variables. For that, it adds variables and
assignments in the same idea as our assertions. Allen and Horwitz [3] extends
data and control dependences for Java program with exceptions. In both papers,
no formal justification is given.

Certified Slicing. The ideas developed in [4,26] were applied in [10,31].
Wasserrab [31] builds a framework in Isabelle/HOL to formally prove a slic-
ing defined in terms of graphs, therefore language-independent. Blazy, et al. [10]
proposes an unproven but efficient slice calculator for an intermediate language
of the CompCert C compiler [23], as well as a certified slice validator and a slice
builder written in Coq [7]. The modeling of errors and the soundness of V&V
on slices were not specifically addressed in these works.

To the best of our knowledge, the present work is the first complete for-
malization of program slicing for structured programs in presence of errors and
non-termination. Moreover, it has been formalized in the Coq proof assistant
on a representative structured language, that provides a certified program slicer
and justifies conducting V&V on slices instead of the initial program.

7 Conclusion

In many domains, modern software has become very complex and increasingly
critical. This explains both the growing efforts on verification and validation

194 J.-C. Léchenet et al.

(V&V) and, in many cases, the difficulties to analyze the whole program. We
revisit the usage of program slicing to simplify the program before V&V, and
study how it can be performed in a sound way in presence of possible runtime
errors (that we model by assertions) and non-terminating loops. Rather than
preserving more statements in a slice in order to satisfy the classic soundness
property (stating an equality of whole trajectory projections), we define smaller,
relaxed slices where only assertions are kept in addition to classic control and
data dependences, and prove a weaker soundness property (relating prefixes of
trajectory projections). It allows us to formally justify V&V on relaxed slices
instead of the initial program, and to give a complete sound interpretation of
presence or absence of errors in slices. First experiments with Sante [12,13],
where all-path testing is used on relaxed slices to confirm or invalidate alarms
initially detected by value analysis, show that using relaxed slicing allowed to
reduce the program in average by 51 % (going up to 97 % for some examples)
and accelerated V&V in average by 43 %.

The present study has been formalized in Coq for a representative program-
ming language with assertions and loops, and the results of this paper (as well as
many helpful additional lemmas on dependencies and slices) were proved in Coq,
providing a certified correct-by-construction slicer for the considered language
[1]. This Coq formalization represents an effort of 8 person-months of intensive
Coq development resulting in more than 10,000 lines of Coq code.

Future work includes a generalization to a wider class of errors, an extension
to a realistic programming language and a certification of a complete verification
technique relying on program slicing. Another research direction is to precisely
measure the reduction rate and benefits for V&V of relaxed slicing compared
to slicing approaches systematically introducing dependencies on previous loops
and erroneous statements. In an ongoing work in DEWI project, we apply relaxed
slicing for verification of protocols of wireless sensor networks.

Acknowledgments. Part of the research work leading to these results has received
funding for DEWI project (www.dewi-project.eu) from the ARTEMIS Joint Under-
taking under grant agreement No. 621353. The authors thank Omar Chebaro, Alain
Giorgetti and Jacques Julliand for many fruitful discussions and earlier work that lead
to the initial ideas of this paper. Many thanks to the anonymous reviewers for lots of
very helpful suggestions.

References

1. Formalization of relaxed slicing (2016). http://perso.ecp.fr/∼lechenetjc/slicing/
2. Agrawal, H., DeMillo, R.A., Spafford, E.H.: Debugging with dynamic slicing and

backtracking. Softw. Pract. Exper. 23(6), 589–616 (1993)
3. Allen, M., Horwitz, S.: Slicing java programs that throw and catch exceptions. In:

PEPM 2003, pp. 44–54 (2003)
4. Amtoft, T.: Slicing for modern program structures: a theory for eliminating irrel-

evant loops. Inf. Process. Lett. 106(2), 45–51 (2008)

http://perso.ecp.fr/~lechenetjc/slicing/

Cut Branches Before Looking for Bugs: Sound Verification 195

5. Ball, T., Horwitz, S.: Slicing programs with arbitrary control-flow. In: Fritzson,
P.A. (ed.) AADEBUG 1993. LNCS, vol. 749, pp. 206–222. Springer, Heidelberg
(1993)

6. Barraclough, R.W., Binkley, D., Danicic, S., Harman, M., Hierons, R.M., Kiss, A.,
Laurence, M., Ouarbya, L.: A trajectory-based strict semantics for program slicing.
Theor. Comp. Sci. 411(11–13), 1372–1386 (2010)

7. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004)

8. Binkley, D., Danicic, S., Gyimóthy, T., Harman, M., Kiss, Á., Korel, B.: Theoretical
foundations of dynamic program slicing. Theor. Comput. Sci. 360(1–3), 23–41
(2006)

9. Binkley, D., Harman, M.: A survey of empirical results on program slicing. Adv.
Comput. 62, 105–178 (2004)

10. Blazy, S., Maroneze, A., Pichardie, D.: Verified validation of program slicing. CPP
2015, 109–117 (2015)

11. Cartwright, R., Felleisen, M.: The semantics of program dependence. In: PLDI
(1989)

12. Chebaro, O., Cuoq, P., Kosmatov, N., Marre, B., Pacalet, A., Williams, N.,
Yakobowski, B.: Behind the scenes in SANTE: a combination of static and dynamic
analyses. Autom. Softw. Eng. 21(1), 107–143 (2014)

13. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances
a verification technique combining static and dynamic analysis. In: SAC (2012)

14. Danicic, S., Barraclough, R.W., Harman, M., Howroyd, J., Kiss, Á., Laurence,
M.R.: A unifying theory of control dependence and its application to arbitrary
program structures. Theor. Comput. Sci. 412(49), 6809–6842 (2011)

15. Ge, X., Taneja, K., Xie, T., Tillmann, N.: DyTa: dynamic symbolic execution
guided with static verification results. In: the 33rd International Conference on
Software Engineering (ICSE 2011), pp. 992–994. ACM (2011)

16. Giacobazzi, R., Mastroeni, I.: Non-standard semantics for program slicing. High.
Order Symbolic Comput. 16(4), 297–339 (2003)

17. Harman, M., Danicic, S.: Using program slicing to simplify testing. Softw. Test.
Verif. Reliab. 5(3), 143–162 (1995)

18. Harman, M., Simpson, D., Danicic, S.: Slicing programs in the presence of errors.
Formal Aspects Comput. 8(4), 490–497 (1996)

19. Hierons, R.M., Harman, M., Danicic, S.: Using program slicing to assist in the
detection of equivalent mutants. Softw. Test. Verif. Reliab. 9(4), 233–262 (1999)

20. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
In: PLDI (1988)

21. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015)

22. Kiss, B., Kosmatov, N., Pariente, D., Puccetti, A.: Combining static and dynamic
analyses for vulnerability detection: illustration on heartbleed. In: Piterman, N.,
et al. (eds.) HVC 2015. LNCS, vol. 9434, pp. 39–50. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-26287-1 3

23. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

24. Nestra, H.: Transfinite semantics in the form of greatest fixpoint. J. Log. Algebr.
Program. 78(7), 573–592 (2009)

25. Podgurski, A., Clarke, L.A.: A formal model of program dependences and its impli-
cations for software testing, debugging, and maintenance. IEEE Trans. Softw. Eng.
16(9), 965–979 (1990)

http://dx.doi.org/10.1007/978-3-319-26287-1_3

196 J.-C. Léchenet et al.

26. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foun-
dation for control dependence and slicing for modern program structures. ACM
Trans. Program. Lang. Syst. 29(5) (2007). Article number (27)

27. Reps, T.W., Yang, W.: The semantics of program slicing and program integration.
In: TAPSOFT (1989)

28. Reps, T.W., Yang, W.: The semantics of program slicing. Technical report, Uni-
versity of Wisconsin (1988)

29. Silva, J.: A vocabulary of program slicing-based techniques. ACM Comput. Surv.
44(3), 12 (2012)

30. Tip, F.: A survey of program slicing techniques. J. Prog. Lang. 3(3), 121–189 (1995)
31. Wasserrab, D.: From formal semantics to verified slicing: a modular framework

with applications in language based security. Ph.D. thesis, Karlsruhe Inst. of Techn
(2011)

32. Weiser, M.: Program slicing. In: ICSE (1981)
33. Weiser, M.: Programmers use slices when debugging. Commun. ACM 25(7), 446–

452 (1982)
34. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (1984)
35. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.

ACM SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)

The Influences of Edge Instability on Change
Propagation and Connectivity in Call Graphs

Lei Wang(B), Han Li, and Xinchen Wang

School of Computer Science and Engineering, Beihang University, Beijing, China
{wanglei,sy1406228,wxc11061106}@buaa.edu.cn

Abstract. During the lifetime of any software there are numerous
changes, which lead to a large number of versions over time. The amount
of effort in programming and debugging for these updates and therefore
the reliability of the software depends substantially on how far the change
propagates. We introduced the concept of Propagation Scope (PS) to
quantify change propagation and investigated several open-source soft-
ware systems. We found that the propagation property varies even with
systems of similar scales. According to the asymmetry between the in-
degree and out-degree distributions in call graphs of software, we defined
Edge Instability (EI) to measure the change propagation of a call graph.
Analyzing newly added nodes in six software, we found that the new
nodes exhibited preferential attachment behaviors and were more likely
to call new nodes. We proposed a model based on these observations to
adjust EI and Clustering Coefficient (CC). CC has been believed to be
the major factor determining the propagation scope in a network. Our
experiments showed, however, that EI had a larger impact on the prop-
agation of call graphs. In both real software and our model, we measured
the connectivity of call graphs with EI and evaluated connectivity under
three edge-removal strategies. Our experiments showed that removing
edges with high EI s hurt network connectivity the most.

Keywords: Complex networks · Software evolution · Change
propagation · Network model · Call graph

1 Introduction

It has been observed that ideas, information, viruses, and diseases often prop-
agate in the form of complex networks [30] and a network’s topological struc-
ture has a significant impact on the dynamics of change propagation [28]. In
the domain of computer science, it has been demonstrated that class diagrams
[34,35], collaboration graphs [29], package dependency networks [23], the object
graphs [31], software component graphs [20], and call graphs in large-scale soft-
ware systems [37] are all complex networks. In this paper, we studied change
propagation in call graphs, a critical aspect in software evolution. As developers
code to introduce new features or fix bugs for one part of a software system,
other parts need to be updated accordingly to stay consistent with the changes.
c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 197–213, 2016.
DOI: 10.1007/978-3-662-49665-7 12

198 L. Wang et al.

For example, when a function’s prototype changes, its callers have to be modi-
fied to call through the new interface. To understand the evolution of software
systems, we collected call graphs of a large number of software systems of multi-
ple versions. A call graph describes the calling relationship between functions in
a program. Specifically, functions in the program are represented as nodes in a
call graph. If one function calls another, an edge from the node representing the
caller to the node of the callee function is added to the graph. We generated a
call graph for each version of a selected software system and, by comparing the
graphs of different versions, investigated change propagation as software evolves.

We selected 35 stable Linux kernels from version 1.0 to version 2.2.26 (avail-
able at http://ftp.kernel.org) and generated their call graphs using a modi-
fied version of GCC 3.4.6 [2]. To compare update propagation characteristics
among different software, we collected call graphs for five additional open-source
projects, including 80 versions of Samba, 25 versions of BIND, 55 versions of
Sendmail, 76 versions of OpenSSH, and 59 versions of vsftpd obtained from the
code repository [7]. To identify updates between two adjacent versions of a soft-
ware system, we use ctags [1] to get the start and end points of a function in
one version. We then compared the functions of the same name in the two ver-
sions to decide if the function is updated. We also identified functions removed
from the older version or added in the newer version. All these changes, including
updates, additions, and removals of functions, can be identified in the call graphs
when they are propagated to other functions in the software. In this paper, we
name the versions with ordered sequence numbers starting from 0 following their
chronological order.

We quantified network propagation with Propagation Scope (PS). The scope
that a change propagation can reach is mostly determined by the topological
structure of the corresponding call graph, which can be characterized by many
factors, including the graph’s node count, edge count, average node degree, etc.
Among the factors, the clustering coefficient (CC) measures how tightly nodes in
a network are clustered and is believed to be the most powerful factor determin-
ing the propagation of networks [38,41]. We found, however, that propagation
in a call graph was not sensitive to CC changes. In fact, for the studied soft-
ware, the asymmetry between the in-degree and out-degree distributions were
manifest [36] and have a significant influence on the change propagation of soft-
ware [8]. Given the asymmetry, we introduce Edge Instability (EI) to measure
the propagation. We found that the new nodes exhibit preferential attachment
behaviors and are more likely to call new nodes. With these observations, we pro-
pose a model to adjust CC and EI based on Barabási and Albert (BA) model
and it’s extension [6,18]. Experiments showed that EI has a larger impact than
CC on the propagation of call graph.

Inspired by the influences of EI on change propagation, we use EI to measure
the connectivity of call graphs. In complex networks, researchers often study
robustness by measuring connectivity after removing nodes or edges [10,32]. We
adopted the same methodology to evaluate the connectivity of call graphs and
compare three strategies to attack generated graphs by our model: 1. Removing

http://ftp.kernel.org

The Influences of Edge Instability 199

edges randomly. 2. Removing edges with higher EI s. 3. Removing edges with
higher “edge degrees” [19]. Our experiments showed that removing edges with
high EI s hurt network robustness more than removing edges with high “edge
degrees” or randomly.

The rest of this paper is organized as follows. Section 2 introduces the con-
cept of propagation scope, edge instability and statistics with various software
systems. Connectivity of call graphs under three edge-removal strategies are
discussed in Sect. 3. Section 4 describes behaviors of new nodes and an innova-
tive model of software evolution. The correlation among parameters of the pro-
posed model, change propagation and connectivity are also discussed in Sect. 4.
Section 5 introduces the related work briefly. The paper closes with our conclu-
sions in Sect. 6.

2 Change Propagation

To quantify the change propagation in a network, we introduce the concept of
propagation scope (PS), derived from the concepts of Change Cost [26] and
Average Propagation Ratio [25], and edge instability. To reveal impact of the
structure of a call graph on PS, we will measure the number of nodes and edges,
the average node degree, the diameter, the clustering coefficient and the edge
instability of the call graphs under investigation.

2.1 Propagation Scope

The concept of propagation scope is motivated by the observation that in a call
graph a change propagates in one direction. For example, if Function A calls
Function B and B’s interface is changed, Function A has to change accordingly,
or the change of B propagates to A. Changes do not propagate in the opposite
direction. For example, the change of Function A does not affect function B.
Formally, we state that Node ni can reach Node nj within a distance of 1 if
there is a directed edge < ni, nj > in a network G. We use Rd

j to denote the set
of nodes that can reach nj within distance d. Formally, we use Eq. (1) to define
the propagation scope of Network G within distance d, or PSd

G.

PSd
G =

|N |∑
j=1

∣∣Rd
j

∣∣

|N |2 (1)

where |N | is the number of nodes in Network G.
According to Eq. (1) and the definition of Rd

j , if d1 > d2, then PSd1
G � PSd2

G ,
because Rd

j monotonically increases with d. Using D to denote network diameter,
we have PSd

G = PSD
G for any d larger than D. Finally, the propagation scope of

Network G, PSG, can be defined using Eq. (2).

PSG = PSD
G =

|N |∑
j=1

∣∣RD
j

∣∣

|N |2 (2)

200 L. Wang et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30

N
um

be
r o

f C
ha

ng
ed

 F
un

ct
io

ns

(a) Linux

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80

N
um

be
r o

f C
ha

ng
ed

 F
un

ct
io

ns

(b) Samba

Fig. 1. Number of changed functions in Linux and Samba.

The propagation scope can be used to differentiate networks of different
topologies in terms of impact of a node’s change on other nodes. The larger
the propagation scope, the greater the number of nodes affected by changes
taking place at a node.

By definition, PS is obviously related to the number of nodes, the number
of edges and the average node degree. We compare some versions of Linux with
versions of Samba of similar scale. The results are shown in Table 1. In the table,
“Linux1” stands for set of the Linux versions from 1.2.0 to 1.2.10, “Linux2”
stands for set of the Linux versions from 2.0.0 to 2.0.40. “Samba1” stands for set
of Samba versions from 2.2.8 to 2.2.12, and “Samba2” stands for set of Samba
versions from 3.0.25 to 3.0.34. As shown in Table 1, Linux1 and Samba1 have
similar node count and edge count. This is also the case for Linux2 and Samba2.
However, we can see that the PSG values of different Linux versions is always
smaller than those of Sambas in Table 1.

Table 1. Statistics with Linux and Samba of similar scale.

software Linux1 Samba1 Linux2 Samba2

Avg. node 3993 3803 8099 7373

Avg. edge 14996 13849 31400 30513

Ave. degree 7.51 7.28 7.75 8.27

PSG 0.0135 0.0297 0.0112 0.0295

We also investigate changes between two adjacent versions of Linux and
Samba, respectively. Figures 1 and 2 showed the number of changed functions
and the size of the maximal connected subgraphs. To compare Linux with Samba
using their call graphs of similar scales, we chose Linux 2.0.40 and Samba 3.0.34
as the last tested version shown in Figs. 1 and 2. For most versions, the number
of changed functions in Linux was fewer than that of Samba. For the maximal
connected subgraphs, the sizes in the two versions of Linux were larger than 200,
and those in other versions were less than 90. On the other hand, in over one
third of the versions of Samba, the sizes of the maximal connected subgraphs
were larger than 200, with the largest of 1501. The change propagation in Samba
seemed substantially larger than that in Linux. This observation is consistent
with Table 1. Therefore, PS could be used to measure the change propagation
in call graphs of software.

The Influences of Edge Instability 201

 0

 300

 600

 900

 1200

 1500

 0 5 10 15 20 25 30
Si

ze
 o

f M
ax

im
um

 C
on

ne
ct

ed
 S

ub
gr

ap
h

(a) Linux

 0

 300

 600

 900

 1200

 1500

 0 10 20 30 40 50 60 70 80

Si
ze

 o
f M

ax
im

um
 C

on
ne

ct
ed

 S
ub

gr
ap

h

(b) Samba

Fig. 2. Size of maximal connected subgraphs in Linux and Samba.

2.2 Edge Instability

The asymmetry between the in-degree and out-degree distributions of software
appears obviously [9,29,34,36]. The in-degree distribution of software systems
obviously obeys the power-law while the out-degree distribution are similar to
the power-law distribution with a cutoff. Inspired by the asymmetry of degree
distribution and direction of change propagation in software, we propose the
Edge Instability of a call graph.

Firstly, we define the node stability Si for Node ni in Eq. (3).

Si =
ki

in

ki
in + ki

out

(3)

where ki
in and ki

out are the in- and out-degree of node ni, respectively. A
greater value of Si means that ni has a smaller out-degree and therefore the
changes of other nodes are less likely to propagate to ni. Thus we say a node
with a greater Si is more stable. The value of Si is always in the range of [0, 1].

The instability Iij of the edge < ni, nj > is derived from node stability and
defined by Eq. (4).

Iij = Si − Sj (4)

where Si and Sj are the node stability of nodes ni and nj , respectively. With
this definition, an edge with a greater Iij propagates changes to more nodes.
Thus we call Iij as edge instability. The edge instability, EI, of a graph is the
average Iij of the edges in the graph.

Figure 3 includes two examples to explain this observation.

1. In Fig. 3(a), Si is 3/4 and Sj is 1/4. Accordingly, Iij of Edge < i, j > is 1/2.
A change at Nodes j, a, b or c will propagate to Nodes i, d, e, and f across
Edge < i, j >, as indicated by the dotted lines.

2. In Fig. 3(b), Si is 0 and Sj is 1/4. Accordingly, Iij of Edge < i, j > is -1/4.
Changes at Nodes j, a, b, and c only spread to Node i but do not reach nodes
d, e, and f.

202 L. Wang et al.

Fig. 3. Comparison between the effects of two edges with the higher and lower Iij for
the neighboring nodes

Apparently, Edge < i, j > with higher EI in the first example has a higher
impact on the propagation scope.

2.3 Statistics with Six Open Source Software

For a node in a call graph, the out-degree is the number of other functions that
the function represented by this node calls, and the in-degree is the number of
other functions that call the function of this node. The sum of the in-degree and
out-degree is the degree of the node. We calculated average degree of the nodes
in the call graphs of the selected systems. We found that the average degrees
stayed stable as the software systems evolve over many versions. For each call
graph, we measure the diameter, denoted as D.

Clustering, the tendency that a node’s neighbors are likely to be neighbors
themselves, has been commonly considered as one of the most important factors
in the study of propagation [38]. We calculated the clustering coefficient (CC)
in Ci of Node i using Eq. (5):

Ci =
2Ei

ki(ki − 1)
(5)

where Ei is the number of edges connecting neighbors of Node i, and ki is the
degree of Node i. The clustering coefficient C of a graph is the average clustering
coefficient of the nodes in the graph.

The number of nodes, the number of edges, the average node degree, the
diameter (D), the clustering coefficient (CC), the edge instability (EI) and the
propagation scope (PSG) of six selected systems are showed in Fig. 4. Figure 4
shows that for all the systems both the number of nodes and the number of
edges grow over time. A number of observations can be made as below.

1. Table 2 summarizes the correlation coefficient results between PSG and other
features of six software. Compared with the number of nodes, the number of
edges, the average node degree, the diameter (D) and the clustering coeffi-
cient, the edge instability is the only one that had a positive correlation with
PSG in all six software.

2. As the increase of node number, the corresponding PSG decreases except for
BIND. In fact, PSG is the ratio of the number of nodes a propagation reaches
to the number of all nodes. The propagation of changes in a system is hard
to maintain the same rate as a software system becomes larger.

The Influences of Edge Instability 203

 0

 8000

 16000

 0 5 10 15 20 25 30 35
 0

 32000

 64000

N
od

eN
um

E
dg

eN
um

node

edge

 6
 8

 10

 0 5 10 15 20 25 30 35
 10
 20
 30

A
vg

D
eg

re
e

D

AvgDegree

D

-0.8

-0.6

-0.4

 0 5 10 15 20 25 30 35
 0.1

 0.2

 0.3

E
I

C
C

EI

CC

 0
 0.04
 0.08
 0.12

 0 5 10 15 20 25 30 35

PS
G psG

(a) Linux

 0
 4000
 8000

 12000

 0 20 40 60 80
 0

 32000

 64000

N
od

eN
um

E
dg

eN
umnode

edge

 6
 8

 10

 0 20 40 60 80
 10
 20
 30

A
vg

D
eg

re
e

D

AvgDegree

D

-0.8

-0.6

-0.4

 0 20 40 60 80
 0.1

 0.2

 0.3

E
I

C
C

EI

CC

 0
 0.04
 0.08
 0.12

 0 20 40 60 80

PS
G psG

(b) Samba

 0
 2000
 4000
 6000

 0 5 10 15 20 25
 0
 6000
 12000
 18000

N
od

eN
um

E
dg

eN
um

node
edge

 6
 8

 10

 0 5 10 15 20 25
 10
 20
 30

A
vg

D
eg

re
e

D
AvgDegree

D

-0.8

-0.6

-0.4

 0 5 10 15 20 25
 0.1

 0.2

 0.3

E
I

C
C

EI
CC

 0
 0.04
 0.08
 0.12

 0 5 10 15 20 25

PS
G PSG

(c) BIND

 200
 400
 600
 800

 0 10 20 30 40 50 60
 0
 1600
 3200
 4800

N
od

eN
um

E
dg

eN
um

node

edge

 6
 8

 10

 0 10 20 30 40 50 60
 10
 20
 30

A
vg

D
eg

re
e

D

AvgDegree

D

-0.8

-0.6

-0.4

 0 10 20 30 40 50 60
 0.1

 0.2

 0.3
E

I

C
C

EI

CC

 0
 0.04
 0.08
 0.12

 0 10 20 30 40 50 60

PS
G

psG

(d) Sendmail

 0
 500

 1000
 1500

 0 10 20 30 40 50 60 70 80
 0
 2000
 4000
 6000

N
od

eN
um

E
dg

eN
umnode

edge

 6
 8

 10

 0 10 20 30 40 50 60 70 80
 10
 20
 30

A
vg

D
eg

re
e

D

AvgDegree

D

-0.8

-0.6

-0.4

 0 10 20 30 40 50 60 70 80
 0.1

 0.2

 0.3

E
I

C
C

EI

CC

 0
 0.04
 0.08
 0.12

 0 10 20 30 40 50 60 70 80

PS
G

psG

(e) OpenSSH

 300

 400

 500

 0 15 30 45 60
 800

 1200

 1600

N
od

eN
um

E
dg

eN
umnode

edge

 6
 8

 10

 0 15 30 45 60
 10
 20
 30

A
vg

D
eg

re
e

D

AvgDegree

D

-0.8

-0.6

-0.4

 0 15 30 45 60
 0.1

 0.2

 0.3

E
I

C
CEI

CC

 0
 0.04
 0.08
 0.12

 0 15 30 45 60

PS
G

psG

(f) vsftpd

Fig. 4. The number of nodes, the number of edges, the average degree, CC, EI and
PSG of six software. X axis indicates the sequence numbers of versions.

Table 2. The correlation coefficient results between PSG and other features.

Software Node Edge Ave. deg D CC EI

Linux −0.99 −0.99 −0.96 −0.96 0.42 0.41

Samba −0.11 −0.11 0.086 0.05 0.03 0.29

BIND 0.29 0.58 0.94 0.85 −0.75 0.48

Sendmail −0.80 −0.80 −0.79 −0.37 0.76 0.68

OpenSSH −0.96 −0.96 −0.85 −0.94 0.97 0.94

vsftpd −0.93 −0.92 −0.91 −0.26 −0.21 0.90

204 L. Wang et al.

3. Per the definition of PS, as the increases of the average degree, PS of a
software system would also increase. This phenomenon can be observed clearly
in BIND system (Fig. 4(c)). It is easy to understand that the more edges a
system has, the faster the propagation would be. The tendency, however, is
not apparent in other software systems. It is difficult to tell the impact of the
average degree on PSG in two cases: 1. The average degree is very stable. 2.
The average degree and node number change at the same time.

4. Previous works suggest that as CC increases the propagation scope in a
network would decrease [38]. This can be clearly observed in BIND and vsftpd.
It is not apparent, however in other systems as CC is very stable in different
versions.

3 Connectivity

In complex networks, researchers often study robustness by measuring connec-
tivity after removing nodes or edges [10,32]. As many error conditions do not
cause the crash of the whole software system, we assume that the other parts
of the software keep working. For example, when the kernel panics in a loadable
module of an Ethernet driver it can contain the failure and give out messages.
The other parts of the system cannot use this driver but may be able to access
the Ethernet device from other channels and certainly a user can continue to
work in a text editor. Thus, we adopted the same methodology to evaluate the
connectivity of call graphs in this paper.

We remove the edge to simulate the failure, and study how well the other
nodes in the call graph stay connected. Connectivity among the nodes left rep-
resents a measure of robustness of the graph under edge removal. It is not a
measure of how well the software handles crashes but how well its functions are
designed and coded to minimize the impact on the rest of the system when one
or more parts fail.

We try three strategies to attack generated call graphs. The first strategy, the
“RA removal”, removes edges randomly. The second removes edges with higher
EI s and is called the “HL removal”. The third strategy is proposed by Ref. [19]
where the edge degree is defined by Eq. (6):

ke = kv ∗ kw (6)

where the edge e connects two nodes v and w with node degrees kv and kw,
respectively. The attack strategy selects the edges in descending degrees. We
name this strategy as “ED removal”.

We select Linux 2.0.1, Samba 3.0.10, BIND 9.2.4rc5, Sendmail 8.11.3,
OpenSSH 2.5.2p1 and vsftpd 1.1.2 to compare the three strategies. Each time, 5
percent of edges are removed. We measure the change of the size of the maximal
connected subgraph, S, with Eq. (7):

S =
Na

Ni
(7)

The Influences of Edge Instability 205

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S

f

hi
ran
ed

(a) Linux 2.0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S

f

hi
ran
ed

(b) Samba 3.0.10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S

f

hi
ran
ed

(c) BIND 9.2.4rc5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S

f

hi
ran
ed

(d) Sendmail 8.11.3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S

f

hi
ran
ed

(e) OpenSSH 2.5.2p1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S

f

hi
ran
ed

(f) vsftpd 1.1.2

Fig. 5. Six software under three attack strategies.

where Ni and Na are the numbers of nodes in the maximal connected sub-
graph before and after the attack, respectively.

The results are shown in Fig. 5 when a fraction f of the edges is removed in
six software. In Fig. 5, it is difficult to distinguish the impact of the connectivity
between the RA and ED removal. When the call graphs undergo the HL removal
attacks, however, the sizes of maximal connected subgraph decreases rapidly. We
observed the top 20 edges with high EI in Linux and found the similar structure
as Fig. 6 when we extract all edges that directly connect to the edge with high
EI from call graph. The edges with high EI behave like some kind of “weak
ties” [15] between two parts of software modules. Removing these edges results
in quick disintegration of the call graphs.

4 Features of Call Graphs and Evolution Model

To understand how software systems evolve into particular structures, we studied
the ways new nodes were added into call graphs.

4.1 Preferential Attachment

Call graphs show that their in-degree distribution largely obeys the power-law
while the out-degree exhibits the power-law distribution with a cutoff [36]. Thus,
we investigated whether new nodes would contribute to the distributions of in-
degree and out-degree. Specifically, for in-degree distribution we would like to
know whether new nodes are more likely to be connected to existing nodes of
higher in-degrees (in terms of function calls, the functions corresponding to the
new nodes are the callers in this case). For out-degree distribution, we would like
to know whether existing nodes of higher out-degree are more likely to be con-
nected to the new nodes (the functions corresponding to the new nodes are the

206 L. Wang et al.

Fig. 6. The edge with high EI.

callees in this case). The tendency for new nodes to be connected to either high
in-degree/out-degree nodes is commonly known as “preferential attachment”.
Preferential attachment has been considered as an important factor contribut-
ing to the scale-free feature of complex networks [5]. We would like to know
whether in-degree and out-degree preferential attachments exist when the new
nodes are added.

We studied how the newly added nodes are connected to the top 5 % nodes
with the highest in-degrees and the top 5 % nodes with the highest out-degrees
in each software version. To quantify the preferential attachment tendency, we
define the concept of connecting probability (CP) as the probability that a new
node is connected to the top 5 % nodes with the highest in-degree/out-degrees.
Formally, CP can be calculated using Eq. (8):

CP =
Nc

Nt
(8)

where Nc is the number of new nodes that call the top 5 % nodes with
the highest in-degrees when we consider in-degree preferential attachment (the
resulting CP is called in-degree CP) and Nt is the total number of new nodes
in the corresponding version. When we consider out-degree preferential attach-
ment, Nc is the number of new nodes that are called by the top 5 % nodes
with the highest out-degrees and Nt stays the same (the resulting CP is called
out-degree CP). The average in-degree and out-degree CP are summarized in
Table 3. Table 3 indicates that the in-degree CP is consistently large for each
system, which suggests high in-degree preferential attachment behaviors in all
systems. Table 3 also shows that the out-degree CP is consistently lower than the
corresponding in-degree CP for each version. The out-degree preferential attach-
ment tendency, if any, seems much weaker than that of the in-degree preferential
attachment.

4.2 Callers of New Nodes

In Sect. 4.1, the out-degree CP results indicate that the top 5 % nodes with the
highest out-degrees do not call the new nodes extensively. It is interesting to

The Influences of Edge Instability 207

Table 3. Average connecting probability.

Software Linux Samba BIND Sendmail OpenSSH vsftpd

Avg. In-degree 73.06 % 60.28 % 60.36 % 60.66 % 62.46 % 64.65 %

Avg. Out-degree 4.43 % 12.35 % 5.79 % 6.99 % 10.91 % 34.32 %

know which nodes call the new nodes the most. We used Nnew and Nold to
denote the number of the new nodes that call the new nodes and the number
of the old nodes that call the new nodes in each version, respectively. We use
Rnew to quantify the ratio of Nnew to (Nnew+Nold). It can be calculated using
the Eq. (9):

Rnew =
Nnew

Nnew + Nold
(9)

Thus, we can obtain Rnew for each software version. The average Rnew of
the Linux, Samba, BIND, Sendmail, OpenSSH, and vsftpd are 47.3 %, 38.6 %,
37.6 %, 23.4 %, 41.0 %, and 29.1 %, respectively. Note that the average ratio of
the number of new nodes to that of old nodes for all Linux versions is only 1.8 %.
These results indicate that compared with old nodes, new nodes are more likely
to call new nodes. In other words, the “age” of a node is one factor to determine
whether the node calls another node in real-life software, which ultimately will
have an impact on the degree distribution.

4.3 Evolution Model for Software

The “age” of a node seemed to be critical to determine the likelihood for connect-
ing new nodes. With these observations and analysis, we propose a novel model
to compare the impact of CC and EI on propagation, in which the two prop-
erties can be tuned by changing some parameters. We build our model based
on Barabási and Albert (BA) model [6,18] and extend it to adjust clustering
coefficient and edge instability as follows:

1. In the beginning, a network consists of m0 nodes and no edges. m0 is a small
integer. In our experiments it is set to 3.

2. Add Node v (v = m0 + 1 intially).
3. Repeat the following two steps for Node v until m edges are added.

(a) Preferential attachment (PA): Each edge of Node v is then attached to
an existing node with the probability proportional to its degree and age,
i.e., the probability for Node w (w = 1, 2, ..., m0 + v - 1) to be attached
to v is

Pw =
kw∑m0+v−1

i=1 ki

(10)

where ki = (agei)−β ∗ k
′
i. agei, with the initial value of 1, represents the

age of Node i. When a new node is added to the network, the age of each
existing node is incremented by 1. k

′
i is the degree of Node i. β controls

the influence of a node’s age.

208 L. Wang et al.

(b) Triad formation (TF): If an edge between Nodes v and w was added in
the previous PA step, then add one more edge from Node v to a randomly
chosen neighbor of Node w. If all neighbors of Node w have been connected
to Node v, go back to Step 3(a).

4. If v < |N | − m0 + 1, increment v by 1 and go back to step 2. Otherwise, the
network is generated.

In generating the network, the total number of the PA and TF steps that
produces edges for each new node is m. After one PA, we perform a TF step
with a probability of Pt. Pt is a parameter that adjusts the CC of the generated
network.

Equation (2) shows that the diameter of a graph has a major impact on PSG.
When a new edge does not cause the current diameter to exceed a threshold,
LD, the edge is added. Otherwise, the new edge is dropped and a new possible
edge is selected to repeat the above step.

Following [34], we first generate undirected graphs and then transform them
into directed graphs by making edges to start from the newly added nodes and
end at the existing nodes.

There are five parameters in our model (N, m, Pt, β, and LD). In the exper-
iments, we used N = 10000 and m = 3. To understand the effect of the Pt and
β, we select Pt and β in the ranges of 0 to 0.8 and 0 to 1.0, respectively. Figure 7
showed the relationship among PSG, CC and EI with the different Pt and β
parameters of the generated graphs by our model. We have some observations:

– Pt correlated positively with CC as shown in Fig. 7 (a) and (d).
– β correlated positively with EI as shown in Fig. 7 (b) and (e).
– β, which determines PSG of a network, has a larger impact on the propagation

than Pt, as shown in Fig. 7 (c) and (f). Thus, in our model, the propagation
scope was highly correlated with β and therefore EI but less affected by the
changes in CC.

To study the impact of EI on connectivity, we use the three strategies
to attack graphs generated by different βs. Figure 8 summarized the results.
Figure 8(a) showed that, under different βs (between 0 and 1), the effect of
node age on network structure changed significantly. The effect of the node ages
limited the preferential attachment and prevented a scale-free distribution of
connectivities [4]. It seemed to be a critical point in a network and the network
became scale-free when β was below a certain value. With large βs, the network
showed no power law characteristics and the degree became exponentially dis-
tributed. As shown in Fig. 8(a), overall and for different βs, the networks had
a good connectivity. This result was consistent with the experiments on net-
work connectivity [3]. This suggested that the network was connected under the
random attack due to the scale-free feature. When β fell between 0.4 and 0.8,
however, the degree distribution of network transited from scale-free to expo-
nential and the network more vulnerable to random attacks.

Figure 8(b) showed a fast decay for different values of β and f between 0.2
and 0.3. The network was less connected and therefore it became “harder” for

The Influences of Edge Instability 209

(a)

 0 0.2 0.4 0.6 0.8 1β 0
 0.2

 0.4
 0.6

 0.8

Pt

 0
 0.1
 0.2
 0.3
 0.4
 0.5

C
C

 0
 0.1
 0.2
 0.3
 0.4
 0.5

(b)

 0 0.2 0.4 0.6 0.8 1
β 0 0.2 0.4 0.6 0.8

Pt

-0.5

-0.4

-0.3

-0.2

-0.1

EI

-0.5
-0.4
-0.3
-0.2
-0.1

(c)

 0 0.2 0.4 0.6 0.8 1

β 0
 0.2

 0.4
 0.6

 0.8
Pt

 0

 0.1

 0.2

 0.3

 0.4

PS
G

 0
 0.1
 0.2
 0.3
 0.4

(d)

 0 0.2 0.4 0.6 0.8 1β 0
 0.2

 0.4
 0.6

 0.8

Pt

 0
 0.1
 0.2
 0.3
 0.4
 0.5

C
C

 0
 0.1
 0.2
 0.3
 0.4
 0.5

(e)

 0 0.2 0.4 0.6 0.8 1
β 0 0.2 0.4 0.6 0.8

Pt

-0.5

-0.4

-0.3

-0.2

-0.1

EI

-0.5
-0.4
-0.3
-0.2
-0.1

(f)

 0 0.2 0.4 0.6 0.8 1

β 0
 0.2

 0.4
 0.6

 0.8
Pt

 0

 0.1

 0.2

 0.3

 0.4

PS
G

 0
 0.1
 0.2
 0.3
 0.4

Fig. 7. Summary of PSG, clustering coefficient and edge instability under different
parameters. (a) CC with Pt and β, LD is 20. (b) EI with Pt and β, LD is 20. (c) PSG

with Pt and β, LD is 20. (d) CC with Pt and β, LD is 25. (e) EI with Pt and β, LD
is 25. (f) PSG with Pt and β, LD is 25.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S

f

(a)RA

β=0.0
β=0.2
β=0.4
β=0.6
β=0.8
β=1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S

f

(b)HL

β=0.0
β=0.2
β=0.4
β=0.6
β=0.8
β=1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S

f

(c)ED

β=0.0
β=0.2
β=0.4
β=0.6
β=0.8
β=1.0

Fig. 8. Three attack strategies applied to the graphs generated with Pt 0.30, LD 20
and β from 0 to 1. (a) The RA attack strategies. (b) The HL attack strategies. (c) The
ED attack strategies.

the remaining nodes to communicate with each other when the unstable edges
(the edges with the EI values close to 1) were removed.

Figure 8(b) with 8(c) showed that when β is small the HL and ED removals
had a similar effect for network connectivity. When β is large, however, the
HL removal hurt the connectivity more than ED. As β increased the distribu-
tion of degree morphs from scale-free to exponential. Under exponential degree
distribution, each node in the network has approximately the same degree, and
therefore the damage to network connectivity by ED removal was less obvious. In
HL removal, however, the EI highly affected the propagation of networks when
β increased (see Fig. 7) and the edges with high EI had a structure of “weak
ties” (see Fig. 6). Thus, removing the edges with high EI s in HL removal broke
the network into small pieces fast for all β values. HL instead of ED removal
became a good indicator for attacks when the degree distribution of networks
shifts from scale-free to exponential.

5 Related Work

Two main approaches to study change propagation in software are Impact Analy-
sis (IA) and Mining Software Repositories (MSR). IA uses dependency or trace-
ability information and MSR uses historical information [21]. An in-depth review

210 L. Wang et al.

of impact analysis for software change can be found in [24]. Mirarab et al. [27]
propose to use BBNs for impact analysis, and their approach achieves a precision
of 63 % with a recall of 26 %. Formal Concept Analysis (FCA) [14], probabilistic
approach [33], and Family Dependence Graph (FDG) [39] have been employed
for change impact analysis. In the context of complex technical systems, Giffin
et al. [13] analyze change propagation with design structure matrix (DSM) and
categorize a number of typical change patterns. Recently, Zhang et al. [40] use
requirement dependency as a tool to conduct change propagation analysis. They
investigate whether existing dependency types are sufficient for change propaga-
tion analysis. In our work, we analyze the impact of software network structures
on the change propagation without tracing the affected functions in software.

Hassan and Holt propose to determine how changes propagate with developer
information, historical co-change information of entity, code structure, and code
layout heuristic [16]. Hassan and Malik further improve the approach with an
adaptive heuristic method [17]. Zimmermann et al. [42] apply data mining tech-
niques to analyze version histories, and to uncover couplings between fine-grained
entities to guide programmers among related changes. Gall et al. [12] propose an
approach to extract software evolution patterns and dependencies from the CVS
data. Their proposed methodology, QCR, is to examine the historical develop-
ment of classes by analyzing changes of classes and common change behavior
obtained from CVS. They further [11] classify changes according to their sig-
nificance levels (low, medium, high, or crucial). In our work, we explain why
asymmetric structures inside the software are formed after analyzing call graphs
of many software system versions, and propose an evolution model capturing the
way new nodes are added during the process of software evolution. By varying
the parameters of the proposed model, we study the relationship between the
change propagation and software structure.

Asymmetric structures can increase the fragility of software [8]. Studies on the
mechanism of asymmetric software structures can help optimization of software.
Myers points out that the asymmetry typically is due to the common practice
of software reuse [29]. Others [34] argue that the asymmetry is rooted right
in the economization of development effort and related costs. Additionally [9]
notes that the out-degree of the class in the object oriented software systems is
limited by the size of the class. They have found that the limitation leads to the
asymmetry of degree distributions. We found, however, that the manner in which
new nodes are added into the call graphs during software evolution contributes
to the asymmetric feature of software, and that the asymmetric structures have
a significant impact on the change propagation of software.

Many network models have been proposed in the past decade. In BA
model [5], each newly added node is connected to nodes selected with a probabil-
ity proportional to their respective degrees. Although the degree distribution of
the BA model follows the power-law distribution, the resulting clustering coef-
ficient is much lower than those measured in software systems. In the Copying
model [22], each newly added node randomly selects a target node and connects
to it, as well as to all neighbor nodes of the target node. The Copying model has

The Influences of Edge Instability 211

a large clustering coefficient. In the process of selecting the target node in the
Copying model, however, older nodes have greater priority to be connected to
the newly added nodes. This feature is different from actual new node behavior
demonstrated in real software systems, in which new nodes are more likely to be
connected among themselves.

6 Conclusions

Using propagation scope, we quantified change propagation in different versions
of six open-source software systems. Inspired by the asymmetry of degree distri-
bution and direction of change propagation in software, we proposed the edge
instability to measure the change propagation of a call graph. We calculated the
number of nodes, the number of edges, the average node degree, the diameter,
CC, EI in the call graphs of the selected systems, and found that EI is the only
one that had a positive correlation with propagation scope in all six studied
software. To compare the impact of CC and EI on change propagation, we have
proposed a novel model allowing us to adjust these properties. Although CC is
traditionally considered one of the most important factors in the study of prop-
agation, our experimental results indicated that EI had a much bigger impact
in call graphs. Furthermore, we showed the correlation between the connectivity
of call graphs and EI, i.e., eliminating the edges with high EI breaks a network
into small pieces faster in real software and networks generated by our model.
In summary, we demonstrated that EI could be a good indicator of the change
propagation and connectivity of software networks.

Acknowledgments. This work was supported by National Natural Science Founda-
tion of China (No. 61272167).

References

1. ctags 5.8 release. http://ctags.sourceforge.net
2. Gcc 3.4 release series. http://gcc.gnu.org/gcc-3.4/
3. Albert, R., Jeong, H., Barabósi, A.: Error and attack tolerance of complex net-

works. Nature 406(6794), 378–382 (2000)
4. Amaral, L., Scala, A., Barthélémy, M.: Classes of small-world networks. Proc. Nat.

Acad. Sci. 97, 11149–11152 (2000)
5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,

509–512 (1999)
6. Barabási, A.L., Albert, R.: Emergence of scaling in random networksscience. Sci-

ence 286(5439), 509–512 (1999)
7. Bhattacharya, P., Iliofotou, M., Neamtiu, I., Faloutsos, M.: Graph-based analysis

and prediction for software evolution. In: ICSM, pp. 419–429 (2012)
8. Challet, D., Lombardoni, A.: Bug propagation and debugging in asymmetric soft-

ware structures. Phys. Rev. E 70, 046109 (2004)
9. Concas, G., Marchesi, S.P.M., Serra, N.: Powerlaws in a large object-oriented soft-

ware system. IEEE Trans. Softw. Eng. 33(10), 687–708 (2007)

http://ctags.sourceforge.net
http://gcc.gnu.org/gcc-3.4/

212 L. Wang et al.

10. Crucittia, P., Latorab, V., Marchiori, M., Rapisarda, A.: Error and attacktolerance
of complex networks. Phys. A 340, 388–394 (2004)

11. Fluri, B., Gall, H.C.: Classifying change types for qualifying change couplings. In:
ICPC, pp. 35–45 (2006)

12. Gall, H., Jazayeri, M., Krajewski, J.: Cvs release history data for detecting logical
couplings. In: IWPSE (2003)

13. Giffin, M., de Weck, O., Bounova, G., Keller, R., Eckert, C., Clakson, J.: Change
propagation analysis in complex technical systems. J. Mech. Des. 131(8), 081001-
1–081001-14 (2009)

14. Girba, T., Ducasse, S., Kuhn, A.: Using concept analysis to detect co-change pat-
terns. In: Ninth International Workshop on Principles of Software Evolution: In
conjunction with the 6th ESEC/FSE, pp. 83–89 (2007)

15. Granovetter, M.: The strength of weak ties. Am. J. Socio. 78(6), 1360–1380 (1973)
16. Hassan, A.E., Holt, R.C.: Predicting change propagation in software systems. In:

International Conference on Software Maintenance, pp. 284–293 (2004)
17. Hassan, A.E., Malik, H.: Supporting software evolution using adaptive change

propagation heuristics. In: ICSM, pp. 177–186 (2008)
18. Holme, P., Kim, B.: Growing scale-free networks with tunable clustering. Phys.

Rev. E 65(2), 026107 (2000)
19. Holme, P., Kim, B., Yoon, C.: Attack vulnerability of complex networks. Phys.

Rev. E 65(2), 056109 (2002)
20. Ichii, M., Matsushita, M., Inoue, K.: An exploration of power-law in use-relation

of java software systems. In: 19th Australian Software Engineering Conference, pp.
422–4311 (2008)

21. Kagdi, H., Maletic, J.: Software-change prediction: estimated+actual. In: Software
Evolvability, pp. 38–43 (2006)

22. Krapivsky, P.L., Redner, S.: Network growth by copying. Phys. Rev. E 71(3),
036118 (2005)

23. LaBelle, N., Wallingford, E.: Inter-package dependency networks in open-source
software. CoRR, cs.SE/0411096 (2004)

24. Lehnert, S.: A review of software change impact analysis. Technical University
Ilmenau, pages Report ilm1-200618 (2011)

25. Liu, J., Lu, K.H.J., Li, B., Tse, C.: Characterizing the structural quality of general
complex software networks. Int. J. Bifurcat. Chaos 18(02), 605–613 (2008)

26. MacCormack, A., Rusnak, J., Baldwin, C.: Exploring the structure of complex
software designs: an empirical study of open source and proprietary code. Manag.
Sci. 52(7), 1015–1030 (2006)

27. Mirarab, S., Hassouna, A., Tahvildari, L.: Using bayesian belief networks to predict
change propagation in software systems. In: ICPC, pp. 177–188 (2007)

28. Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks.
Phys. Rev. E 61(5), 5678 (2000)

29. Myers, C.R.: Software systems as complex networks: structure, function, and evolv-
ability of software collaboration graphs. Phys. Rev. E 68, 046116.1–046116.15
(2003)

30. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45,
167–256 (2003)

31. Potanin, A., Noble, J., Frean, M., Biddle, R.: Scale-free geometry in oo programs.
Commun. ACM 48(5), 99–103 (2005)

32. Albert, A.B.R., Jeong, H.: Error and attack tolerance of complex networks. Nature
406, 378–382 (2000)

The Influences of Edge Instability 213

33. Sharafat, A.R., Tahvildari, L.: Change prediction in object-oriented software sys-
tems: a probabilistic approac. J. Softw. 3(5), 26–39 (2008). (1796217X)

34. Valverde, S., Cancho, R.F., Solé, R.V.: Scale-free networks from optimal design.
Europhys. Lett. 60, 512–517 (2002)

35. Valverde, S., Solé, R.V.: Hierarchical small worlds in software architecture. cond-
mat/0307278 (2003)

36. Wang, L., Wang, Y., Zhao, Y.: Mechanism of asymmetric software structures: a
complex network perspective from behaviors of new nodes. Phys. A Stat. Mech.
Appl. 413, 162–172 (2014)

37. Wang, L., Wang, Z., Yang, C., Zhang, L., Ye, Q.: Linux kernels as complex net-
works: a novel method to study evolution. In: ICSM, pp. 41–50 (2009)

38. Wu, X., Liu, Z.: How community structure influences epidemic spread in social
networks. Phys. A 387, 623–630 (2008)

39. Yazdanshenas, A.R., Moonen, L.: Fine-grained change impact analysis for
component-based product families. In: ICSM, pp. 119–128 (2012)

40. Zhang, H., Li, J., Zhu, L., Zhu, L., Jeffery, R., Liu, Y., Wang, Q., Li, M.: Investi-
gating dependencies in software requirements for change propagation analysis. Inf.
Softw. Technol. 56(1), 40–53 (2014)

41. Zhou, T., Yan, G., Wang, B.: Maximal planar networks with large clustering coef-
ficient and power-law degree distribution. Phys. Rev. E 71(4), 046141 (2005)

42. Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S., Zeller, A.: Mining version
histories to guide software changes. IEEE Trans. Softw. Eng. 31(6), 429–445 (2005)

Modeling and Abstraction of Memory
Management in a Hypervisor

Pauline Bolignano1,2(B), Thomas Jensen1, and Vincent Siles2

1 Inria, Rennes, France
{pauline.bolignano,thomas.jensen}@inria.fr

2 Prove & Run, 77 Avenue Niel, 75017 Paris, France
{pauline.bolignano,vincent.siles}@provenrun.com

Abstract. Hypervisors must isolate memories of guest operating sys-
tems. This paper is concerned with proving memory isolation properties
about the virtualization of the memory management unit provided by
a hypervisor through shadow page tables. We conduct the proofs using
abstraction techniques between high-level and low-level descriptions of
the system, based on techniques from previous work on formally prov-
ing memory isolation in micro-kernels. The present paper shows how a
hypervisor developed by Technische Universität Berlin has been formal-
ized and presents the isolation properties we have proved on the targeted
abstract model. In particular, we provide details about how the manage-
ment of page tables has been formally modeled.

1 Introduction

A hypervisor is a software that makes it possible to run several guest operating
systems (OS) on the same hardware. It is responsible for enforcing isolation
between guests, for supervising their communication, etc. Hypervisors usually
run at a privileged level, where all instructions are executable, whereas only
some instructions are available to the guests. Their key role in managing the
resources of the hardware make them highly security-critical components.

An OS running on bare metal manages the piece of hardware responsible for
the memory management, called the Memory Management Unit (MMU). On
every memory access, the MMU translates the virtual addresses manipulated
by the software into physical addresses. The mappings from virtual to physical
addresses are kept in page tables (PT) and managed by the OS. However when an
OS runs on top of a hypervisor, the latter is the one managing the MMU and the
translations. The hypervisor emulates the MMU for the guest OS and supervises
the translations by maintaining PTs that shadow the PTs of the guest OS,
called the Shadow Page Tables (SPTs). The SPT algorithms control the access
of the guests to memory resources, and are thus central when proving security
properties of guest OSes. Yet, they are definitely non-trivial, and considered an
important challenge in formal OS development [1,6,7].

The motivation for our approach is obtaining the certification of isolation
properties between guest OSes according to criteria such as Common Criteria [8].
c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 214–230, 2016.
DOI: 10.1007/978-3-662-49665-7 13

Modeling and Abstraction of Memory Management in a Hypervisor 215

One key element of this methodology is designing an abstract model of the
concrete target of certification, and proving properties on this abstraction. We
first build a low-level model of the hypervisor in the form of a transition system
which represents its behavior precisely. This model is abstracted into a simpler
transition system, in which properties are simpler to express and prove. We
have written our model and conducted our proof with the language and tools
developed at Prove & Run. These tools have already shown to be efficient in
proving this kind of systems [12]. It should be stressed though, that the work
presented here is independent of the particular tool used for its mechanized
formalization.

The central part of our approach is that we abstract the paged address space
(the memory and a pointer to the SPT) into a linear memory address space.
To do this, we first provide a low-level model of the hypervisor and prove a
set of key invariants of this model that are needed to prove isolation. This low-
level model is then abstracted into a high-level model with separated memory
segments. We have designed the abstract model to be as small as possible while
keeping enough expressiveness to state our isolation property. This property
guarantees that some resources of the guests are isolated from other guests. It
can be divided in two sub-properties, concerning integrity and confidentiality,
respectively. The integrity property for one guest ensures that its resources are
not modified by other guests, unless it has given the authorization to do so.
The confidentiality for one guest ensures that executions of other guests do not
depend on its resources, unless it has given the authorization to do so. By its
structure, the abstract model has inherent properties that ensure isolation, e.g.
each guest has its own memory segments, whereas in the concrete model the
memory is an array of bytes possibly shared with all the guests. To link the two
models, we prove invariants on the concrete model which show that the whole
system can be divided into well-separated subsystems.

Section 2 introduces the concept of page tables and shadow data structures.
In Sect. 3, we outline the concrete model of a paravirtualized ARM version of a
hypervisor developed by the SecT team at TU Berlin [17]. We give a classifica-
tion of the transitions regarding the effects they have on the global state. We
present the proof of an invariant which is essential for isolation. In Sect. 4 we
present our abstract model, which is novel and interesting because it allows to
precisely observe the memory while avoiding the notion of PTs. We show how we
abstract the concrete memory. We then present the properties of integrity and
confidentiality that we proved, and which taken together guarantee the isolation
of guest memories. Finally, in Sect. 5 we discuss related work.

2 Memory Management in Hypervisors

When memory is virtualized, each entity runs as if it had the whole memory for
itself, while the underlying platform shares the memory between several entities.
In a classic OS with MMU, the OS keeps and manages the translations from
virtual pages to physical pages in PTs. In the case of hypervision, a level of

216 P. Bolignano et al.

translation is added. The hypervisor may either use a hardware virtualization
extension (if available) or implement a virtualization mechanism in software. We
cover the latter scenario.

The hypervisor on which we work uses the most common software solution,
based on SPT. SPTs are maintained by the hypervisor and translate guest virtual
addresses (GVA) to physical addresses (PA), as illustrated in Fig. 1. The hyper-
visor creates and manages them by combining the Guest Page Tables (GPT),
which translate GVA into guest physical addresses (GPA), and the Host Page
Tables (HPT), which translate host virtual addresses HVA to PA. To simplify
the presentation, we here consider that GPA and HVA are equal. The algorithm
of managing SPTs we are working on is similar to those governing the Trans-
lation Lookaside Buffer (TLB) [5, Chapter 19]. For example when a page fault
occurs at GVA gva, the hypervisor is notified. It goes through the GPTs to find
out if any HVA hva was mapped to gva in the GPTs. If there is one, it computes
the physical address pa corresponding to hva and, provided the guest is allowed
to access this part of the memory, it adds the mapping from gva to pa in the
SPTs. If the gva was not present in the GPTs, the hypervisor injects the page
fault into the guest, so that the guest can add the mapping to the GPTs. Then
the execution faults again on gva, because it is not yet in the SPTs, and it brings
us back to the first case. Similarly when the guest switches PTs, when there is
a TLB invalidation, the hypervisor handles the trap and updates the SPTs. In
the hypervisor on which we work, the HPTs are allocated during system initial-
ization, and a contiguous segment of PA corresponds to a contiguous segment of
HVA.

Addr Space A Addr Space B Addr Space C

Guest 0
GPT

Addr Space A Addr Space B Addr Space C

GPT
Guest 1

Guest 0 Guest 1 Hypervisor

Guest 0Guest 1Hypervisor
HPT

SPT

GVA

GPA

HVA

PA

Fig. 1. Page tables of the hypervisor

3 The Concrete Hypervisor Model

The concrete model is the lowest level of our modeling effort; we kept it close
to the implementation. However, unlike the C implementation, the effects of
hypervisor and guest commands on memory are made explicit. We use untyped
memory at this level to remain close to the C code. The closer the concrete

Modeling and Abstraction of Memory Management in a Hypervisor 217

model is to the C code, the smaller the gap is between what is proved and what
is executed. Using untyped memory permits us to reason about type misinter-
pretation, and allows casts that are legitimate. We represent the memory as an
array of bytes on which we use arithmetic computations to prove that there are
no aliasing problems or overlapping data structures.

The memory that we model does not take the hypervisor memory space
into account, except for the PTs about which we want to reason. Indeed,
each time the hypervisor performs an action, it has an impact on its memory
(e.g.pushing/popping something on its stack), and reasoning about these side-
effects while reasoning about the effects of the action is not realistic. Moreover,
we do not handle DMA and we do not model the devices’ memory (cf Sect. 6).

3.1 Global State

We decompose a transition in three sub-transitions, the flow of execution is
shown in Fig. 2. The hypervisor first restores the execution of the guest (0 → 1),
in particular, it sets the processor to user mode, which is an unprivileged mode,
i.e.in the Privilege Level of execution 0 (PL0). Then the guest executes until
it raises an exception or makes a hypercall, making the hardware switch to a
privileged mode of execution (1 → 2). A privileged mode is in the Privilege Level
1 (PL1). Depending on the level of privilege, some registers may or may not be
visible, and accesses to registers may raise an exception. Finally the hypervisor
saves the registers of the guest, then handles the call or the fault, while fixing
the saved registers as necessary (step 2 → 0).

1

0 2

Guest Trans

Hyp TransR
es
to
re

pl1

pl0

Fig. 2. Execution flow

The state σ = 〈σHW, σHYP, exception〉 of the system is made of three compo-
nents: the hardware state, the hypervisor state (which itself contains the states
of the n guests) and an exception. The state of the hardware σHW is a tuple:
〈mem, base, level, regsgp, regsmmu, regsgic〉.

Let Addr be the set of all the 32 bit addresses, Byte the set of all the bytes.
The physical memory is a function from addresses to bytes: mem ∈ Mem =
Addr → Byte. In the hardware state σHW, the tuple regsgp represents the values
of the thirteen general purpose registers, the stack pointer, the link register and
the program counter currently in the hardware, regsgp = 〈r0, ..., r12, sp, lr, pc〉.
The base is the pointer to the root of the PT used by the processor for address
translations. The tuple regsmmu represents the fault status registers related to
the MMU, which are needed to solve a page fault. The hardware state also

218 P. Bolignano et al.

provides the privilege level level ∈ {pl0, pl1}, and the registers of the Generic
Interrupt Controller (regsgic), which concern the management of the interrupts.

In a configuration with n guests, a guest is identified by an index in {1, ..., n}.
The hypervisor state σHYP keeps the index of the current guest, its internal state,
and the states of all the guests.

σHYP = 〈curr , σint, 〈σG1, ..., σGn〉〉
where, ∀i, σGi = 〈 gic〉

The emulated PT base pointer (vbase) of the guest contains a pointer to the GPT,
i.e. from GVA to GPA. When a page fault occurs, the hypervisor uses the vbase
to walk the GPT. However the hardware base pointer never contains the vbase
pointer but rather the pointer to the SPT or the HPT.

3.2 Page Tables

A PT maps virtual addresses to physical addresses and provides the access rights
to the address. The set of rights is denoted by Rights and contains two elements:
{rw, ro}. We define the total order relation ≥ over Rights by rw ≥ ro. The set
of page tables PT is defined by PT = Addr → Addr × Rights, these functions
are not total, a virtual address va ∈ Addr not in the domain corresponds to an
address for which there is no translation, i.e. the access to va would raise a fault.
The function pt takes a memory and a pointer and returns the PT located there:
pt(mem, base) is read as“the page table at address base in memory mem”, pt ∈
Mem → Addr → PT . We denote by Γf the graph of function f , in particular
Γpt(mem,base) is the set of mappings present in the PT at address base in memory
mem. In practice, when looking for the physical address corresponding to the
virtual address va, va is split in three parts: the first part is an index i1 in the
first level of PT, the second is an index i2 in a second level of PT, and the last
is an offset in a page. The base address in pt(mem, base) is the base address of
the first level of PT, each entry of the first level of PT either holds a fault or the
address to a second level of PTs. Similarly to pt, we note pt2 the function that
takes a memory and a base address and returns a second level of PT.

An address which is not in the image of a PT is not mapped, whereas an
address in the image is mapped with some rights. For a page table table ∈ PT ,
we denote the first projection of Im(table) by Map(table). Similarly, we use
MapRW(table) to denote the set of all the physical addresses mapped with RW
rights by table: MapRW(table) = {pa|(pa, rw) ∈ Im(table)}. The hypervisor
associates a SPT to each GPT, we note BSPT(σint, i) the set of base addresses
of the SPTs of guest i.

We define m non-overlapping intervals I1, ..., Im of physical addresses, such
that

⋃m
k=1 Ik ⊂ Dom(mem). We let I represent the set {I1, ..., Im}. During the

execution, the hypervisor ensures that the addresses of each interval are only
mapped in the SPT of the allowed guests. The permissions for each interval are
provided by the initial configuration through the region function. The function
region takes an interval and a guest index and returns the maximum rights

Modeling and Abstraction of Memory Management in a Hypervisor 219

that the guest can have on this interval: region ∈ (I × {1, .., n}) → Rights.
The function is partial, (Ij , i) /∈ Dom(region) means that the guest i has no
rights on the interval Ij . The hypervisor ensures that an address in an interval
is always mapped in the SPT of a guest with rights inferior or equal to the
rights defined by the region function (see Invariant 1 in Sect. 3.4). The relation
allowed(a, i, r) is true if the address a is in a region of guest i with rights r:
∃k, a ∈ Ik ∧ region(Ik, i) = r. An interval might be private or shared between
two guests. If shared, one guest has RO access and the other RW access to it,
i.e. it is a one way buffer. Let j be in {1, ...,m}. Let i and k be in {1, ..., n}. The
following predicates formalize the two possible configurations of an interval:

– private(Ij , i) ⇔ ∀a ∈ Ij ,∀l �= i, allowed(a, i, rw) ∧ ¬allowed(a, l,)
– shared(Ij , i, k) ⇔ ∀a ∈ Ij , (allowed(a, i, rw) ∧ allowed(a, k, ro) ∧ ∀l /∈

{i, k},¬allowed(a, l,))

3.3 Concrete Transitions

A transition of the system is decomposed into three transitions, as defined in
Fig. 2. The restore transition models the change from privileged mode to user
mode. The hypervisor injects an interrupt to the guest beforehand if any is
pending. We define the two other types of sub-transitions below.

Guest transitions occur in user mode. We confine the possible effects they
can have on the system by making two hypotheses on the processor. First, the
guest may only change the non-privileged registers regsgp regsgic.
In particular, it cannot change the PT base register. Secondly, it may only
change the memory mapped in RW by the PT currently used by the hardware
(pt(mem, base)). This second hypothesis only makes sense if the so-called current
PT is constant during a guest transition. This is ensured by an invariant stating
that the memory space where SPT are stored is not mapped in RW by any
guest. We denote by wf (mem, base) the property stating that the PT at address
base does not map itself in the memory mem. The guest transition is depicted
in Fig. 3, where the notation mem′ ∼= mem[mapRW (pt(mem, base))] means that
mem and mem′ are equal except at the physical addresses mapped in RW by
the PT at address base in mem. For readability, fields modified by the transition
are represented bolded.

As previously explained, the guest execution gives back the control to the
hypervisor when it raises an exception. That is why when the guest ends, the field
exception e is always updated. In the case of an abort, information about the
fault is stored in the . As stated, the guest transition does not capture a
third hypothesis on the processor, which is fundamental to prove confidentiality.
Thus, in Axiom 1 we state that a guest transition only depends on the part of
the memory mapped by the current PTs. Here, σ

A= σ′ means that the restriction
to A of the memories of two states σ and σ′ are equal and that all their other
fields are equal.

Axiom 1. Let σ1 and σ2 be two states such that σ1
A= σ2, where A = map(pt

(σ1.base, σ1.mem)). If σ1
GuestTrans−−−−−−−→ σ′

1 then σ2
GuestTrans−−−−−−−→ σ′

2 and σ′
1

A= σ′
2.

220 P. Bolignano et al.

guest trans:
wf (mem, base) mem ∼= mem[mapRW (pt(mem, base))]

memmemmem, base,pl0pl0pl0, regsgpregsgpregsgp, regsmmuregsmmuregsmmu, regsgicregsgicregsgic
σHYP

eee
→

memmemmem , base,pl1pl1pl1, regsgpregsgpregsgp, regsmmuregsmmuregsmmu, regsgicregsgicregsgic
σHYP

eee

pg fault:
decode(abt, σHW) = pf(gva)

σGi.vregsmmu.pg = enabled hpt(σGi.vbase) = (pbase,)
{(gva, (gpa, r0))} ∈ Γpt(mem,pbase) hpt(gpa) = (pa,)

∃r1 ≥ r0, allowed(pa, i, r1) Γpt(mem ,base) = Γpt(mem,base) ∪ {(gva, (pa, r0))}
σHYP = σHYP[σint ← alloc(σint, mem, gva)]

memmemmem, base, regsmmu, regsgp, pl1, regsgic
σHYPσHYPσHYP

abt
→

memmemmem , base, regsmmu, regsgp, pl1, regsgic
σHYPσHYPσHYP

abt

Fig. 3. Concrete guest transition and page fault transition

Hypervisor transitions happen in a privileged mode. There are fourteen
hypervisor transitions, that can be grouped as follows. The first group contains
the six transitions related to the memory management: they either modify the
current SPTs or the base pointer. The second group only contains the scheduling
transition. It corresponds to the guest context switch, that loads the registers of
the new guest. In particular, it changes the PT base pointer. The third group
contains three transitions that inject a fault to the guest. These transitions
only have an impact on general purpose registers. The fourth group contains
the emulation of the access to privileged registers. The hypervisor writes to the
corresponding emulated privileged register, or reads its value and put it in one of
the general purpose registers. This transition may have an impact on the general
purpose register or on the guest’s GIC. Finally, the transitions of the fifth group
concern the IRQs, they have an impact on the GIC registers of the hypervisor
or of the guests.

As an example, a transition corresponding to a page fault is presented in
Fig. 3. A page fault occurs when the guest tries to access an address gva which
is not mapped in the current SPT, the first premise illustrates the decoding of the
fault by the hypervisor. The second premise indicates that the MMU of the guest
is activated. The GPA vbase is the base of the GPT that the guest is currently
using, pbase is the corresponding physical address. The faulting address gva is
in the domain of the GPT, and is bound to pa with the rights r0. The physical
address pa corresponds to gpa in the HPT, guest i is allowed to map it with
r0 rights. The memory mem′ of the resulting state is such that the graph of
the current SPT in mem′ contains the new mapping (gva, (pa, r0)). The internal
state σint of the hypervisor might be modified if the addition of a new mapping
necessitates the allocation of a new PT (it changes the state of the allocator),
we do not detail the behavior of the alloc function here.

3.4 SPT Invariants

The main invariant needed in the concrete model is that if a physical address
pa is mapped by one of the SPTs of a guest i with some rights r0, then pa is in

Modeling and Abstraction of Memory Management in a Hypervisor 221

one of the intervals to which this guest has access, with compatible rights. We
express this invariant formally, using the notations introduced in Sect. 3.2:

Invariant 1. (base ∈ BSPT(σint, i) ∧ (pa, r0) ∈ Im(pt(mem, base))) ⇒ ∃r1 ≥
r0 ∧ allowed(pa, i, r1)

We have seen in Sect. 3.3 that the page fault handling may lead to the addi-
tion of a new mapping in the SPT of the guest. The addition and removal of
mappings in a SPT are the crucial parts of the algorithm when it comes to
isolation. We have proved the preservation of Invariant 1 during this sensitive
operation. We present below the main invariants needed for the proof.

We denote by Pool(i) the set of physical addresses where the SPT of the guest
i might be located. The static configuration ensures that the physical addresses of
the pools are not in a part of memory attributed to a guest: ∀i,∀pa ∈ Pool(i) ⇒
∀j, r,¬allowed(pa, j, r). We say that part of(mem, b, a) is true if the byte at
address a holds any value of the PT at base address b.

Invariant 2 ensures that the SPTs of a guest are located within its pool. For
each guest, the hypervisor references the free slots available to allocate a new
SPT, we write free pt2(σint, j, b) if b is the address of a free slot for guest j.
Invariant 3 states that the free slots for a guest are in its pool, it allows to prove
that the former invariant holds after the allocation of a new level of SPT.

Invariant 2 (SPTs disjoint Pools). b ∈ BSPT(σint, i) ∧ part of(mem, b, pa)
⇒ pa ∈ Pool(i).

Invariant 3 (Free PTs disjoint Pools). free pt2(σint, j, b2) ⇒ b2 ∈ Pool(j).

In order to maintain Invariant 1 during the allocation of a new PT in the
SPT of guest i, we need to know that the new PT does not map any physical
address outside the range allowed to guest i. This property can be stated more
easily if a new PT is flushed before being attributed, yet Invariant 4 is sufficient
in order to ensure isolation.

Invariant 4 (Free PT allowed). free pt2(σint, j, b2) ∧ (pa, ra) ∈ Im(pt2
(mem, b2)) ⇒ (∃rb ≥ ra ∧ allowed(pa, j, rb)).

Last but not least, SPTs must not overlap, i.e. addresses where a part of a
SPT is kept must not correspond to addresses where another part of any SPT is
kept. We write overlap(mem, b, b′) if the SPT at base b in memory mem overlaps
with the SPT at base b′. In particular overlap(mem, b, b) means that the different
branches of the same PT overlap. In order to prove that this invariant holds after
the allocation of a new second level PT, we must also ensure that a free PT was
not allocated in another SPT of that guest beforehand. Note that Invariant 2
already ensures that the PT was not allocated to another guest.

Invariant 5 (No overlap). b, b′ ∈ BSPT(σint, j) ⇒ ¬overlap(mem, b, b′).

Invariant 6 (Free PT not allocated). free pt2(σint, j, b2) ⇒ ∀b ∈
BSPT(σint, j),¬part of(mem, b, b2).

222 P. Bolignano et al.

Preservation of Invariant 1: Consider the case where the hypervisor adds a new
mapping mnew from the GVA va to the physical address pa in a SPT of guest
j, with rights r such that allowed(pa, j, r). We write base for the physical base
address of the SPT, and let i1 and i2 be the indexes in the first and second level
PTs for va. The hypervisor evaluates the ith1 descriptor of the first level of PT.
Suppose that this descriptor is a fault. The hypervisor performs three steps: (1)
it searches for a free second level PT in the pool of guest j, marks it as used
and returns its base address base2, (2) it modifies the first level descriptor at
the ith1 entry in the first level PT at base base so that it points to base2, (3) it
modifies the second level descriptor at the ith2 entry in the second level of PT
freshly allocated so that it leads to pa with the rights r.

We sketch the proof of preservation of Invariant 1. Let mem (resp. mem′)
be the memory before (resp. after) the transition. We assume that Invariant 1
holds for mem (Hinv). Assume that there exists a mapping mbad=(va′, (pa′, r′))
which contradicts Invariant 1 in mem′ (Hbreak). Let basek be the base of a SPT
of a guest k in which the mapping mbad is: mbad ∈ Γpt(mem′,basek). We write i′1
and i′2 for the decomposition of the virtual address va′ into indexes in the first
and second level PT. We proceed by analyzing all the possible branches in all
the SPTs where mbad can be, and for each case we refute the existence of such
a mapping. The following lines summarize the hypotheses:

– mnew = (va, (pa, r)) is the new mapping added in the SPT of guest j, located
at base basej .

– base2 is the base of the second level of PT freshly allocated.
– Hpa: The mapping to be inserted is allowed (allowed(pa, j, r)).
– Hinv: Invariant 1 holds for mem.
– mbad = (va′, (pa′, r′)).
– Hbreak: Invariant 1 does not holds for mem (mbad ∈ Γpt(mem′,basek) ∧ �r0 ≥

r′, allowed(pa′, j, r0)).
– va can be decomposed in i1 and i2.
– va′ can be decomposed in i′1 and i′2.

Proof. Case k = j, basek = basej and i′1 = i1: this case means that mbad is one
of the mapping that we have just added, i.e. that the address pa′ is mapped
by the second level of PT we have just allocated.
♦ Case i′2 = i2: it means that m is the very mapping we have added,

m = (va, (pa, r))1. Yet we know that this mapping is allowed for guest j
(allowed(pa, j, r)), which contradicts Hbreak.

♦ Case i′2 �= i2: it means that the address pa′ is mapped by the second level
PT we have just added but does not correspond to the page at index i2.
From Invariant 4 we know that all the indexes of the new PT are in an
allowed range for the guest, so it contradicts Hbreak.

1 In reality we just know that m is in the page that we have just mapped, other
invariants and conditions on the arguments must be verified (e.g. that the addresses
va and pa are aligned to the size of a page) but we do not introduce all the details
here.

Modeling and Abstraction of Memory Management in a Hypervisor 223

Case k �= j, or basek �= basej or i′1 �= i1: these are the cases where m is in another
branch than the modified one, we show that it was necessarily present before,
thus contradicting Hinv.
♦ Case k �= j: From Invariants 2 and 3, we know that pt(mem, basek) =

pt(mem′, basek). Thus Hbreak yields that mbad was already present in
mem (mbad ∈ Γpt(mem,basek)), which contradicts Hinv.

♦ Case k = j ∧ basek �= basej : Invariants 6 and 5 lead to the same conclusion
as the precedent case.

♦ Case k = j ∧ basek = basej ∧ i′1 �= i1: From Invariants 6 and 5 we know
that the change we made in one branch i1 of the SPT does not affects
other branches, in particular the one in i′1. Thus mbad was necessarily in
the SPT before the addition of the mapping, contradicting Hinv.

Note that the hypervisor itself is virtualized by the HPT (i.e. it manipulates
virtual addresses which are translated by the processor with the HPT). The
addition of a new mapping in the SPT that we have described hides that when
the hypervisor accesses the ith entry of a PT located at some physical address,
it refers to the entry by its virtual address. Hence one must ensure that the
traversal of the SPTs made by the hypervisor with virtual addresses is equivalent
as the one that would be made with physical addresses. We do not present the
invariants here, yet it must be underlined that these invariants are used in each
case of the proof to specify the effects of the actions of the hypervisor.

The invariants presented are not tight to implementation, they concern SPT
algorithms in general. We do have some properties for free due to our particu-
lar static configuration, e.g. we know that the pools and the guest regions are
disjoint. In a dynamic configuration, this kind of properties would have to be
proved, but the reasoning stays unchanged.

The preservation of Invariant 1 under the addition of a mapping is the major
requirement to formally link the page fault transition that we have presented in
Fig. 3 to the abstract transition mm that we present later in Sect. 4.2.

4 The Abstract Hypervisor Model

This section presents the abstract model used to prove that SPTs provide mem-
ory isolation between guests. Some data structures and algorithms of the con-
crete model have no impact on the isolation property. Thus, provided the right
invariants are proved on the concrete model, there is no need to project them on
the abstract state. For example, in our case the generic interruption controller
has no effect on the memory management; therefore we can remove it from the
abstract model and remove all the derived operations. That is why the abstract
state is much smaller.

The abstract state contains the index of the current guest and the states of
all the guests:

σα = 〈curr, σ1, ...σn〉, where σi = 〈abs regs, priv, 〈s1, ..., sn〉, 〈r1, ..., rn〉〉

224 P. Bolignano et al.

The guest state is composed of some abstract registers and an address space.
We model the address space as a set of segments. Each guest has: (1) a private
segment, (2) n shared segments to which it has write access, called the send
segments, (3) n shared segments to which it has read access, called the receive
segments. A segment has the type Addr → Cell , where Cell represents a byte
either mapped or not: Cell = Byte ×Bool2. We say that two cells have the same
value if they have the same byte value. We say that two cells have the same
tag if they have the same boolean value. The segment function is not total. The
segment sj of σi represents the segment in which i can write and j can read.
The segment rj of σi represents the segment in which i can read and j can
write. The segments are duplicated, such that the jth send segment of guest i is
synchronized with the ith receive segment of guest j. Two segments are said to be
synchronized if they have the same values but possibly different tags. The notion
of synchronization instead of a mere equality allows to reason about sharing, by
capturing the fact that a byte value at some address in some segment of a guest
can change even if the guest does not map the address. Such an abstraction
allows to have a precise view of the memory while discarding the PTs.

4.1 Link Between the Concrete and the Abstract Model

In this section we show how the concrete and the abstract models can be linked.
For a guest i, the abstract cell corresponding to the byte b at address pa in

memory mem is such that (1) the value of the cell is b (2) the tag of the cell is
mapped if pa is mapped by the current SPT of guest i, unmapped otherwise.

However not all the memory addresses of the concrete model are to be
abstracted in the segments of a guest i, we define below which addresses are
abstracted for each guest, and in which segment they are located. Recall from
the concrete guest transition that when a guest runs, it only has access to the
addresses mapped by the PT currently in the base register of the processor. We
assume in the sequel that when a guest runs, only one of its own SPT can be
used by the processor (the preservation of this invariant is obvious).

All the addresses which are in the domain of a segment of the abstract guest
i correspond to all the physical addresses that the concrete guest i can possibly
access. Thus it corresponds to all the addresses that the guest i might map in
its SPTs, formally it corresponds to the set:

{pa ∈ Addr|∃r0,∃base ∈ BSPT(σint, i) ∧ (pa, r0) ∈ Im(pt(mem, base))}
When Invariant 1 is verified, we can characterize this set by the addresses

located in the intervals on which guest i has some rights, that is the set:

{pa ∈ Addr|∃r1, allowed(pa, i, r1)}
Thus, we can bound the domains of the segments to the intervals defined in

Sect. 3.2. The fact that this part of the abstraction does not depend on the SPTs
2 In fact we differentiate a byte mapped in RW and a byte mapped in RO, but we

omit the details here for clarity’s sake.

Modeling and Abstraction of Memory Management in a Hypervisor 225

but rather on the definition of intervals is convenient. Indeed it simplifies the
proof of correspondence between an abstract and a concrete action, particularly
if the action has an impact on the SPTs.

Now that we have a characterization of all the addresses that are in the
segments of a guest, we dispatch them in the segments with the right properties.
For example if an address is in an interval over which guest i has RW access and
guest k has RO access, it appears in the kth send segment of guest i and in the
ith receive segment of guest k. Recall from Sect. 3.2 that an interval can be in
two configurations, shared or private. The correspondence between the concrete
intervals and the segments is defined as follow:

– pa ∈ Ij ∧ private(Ij , i) ⇔ pa ∈ Dom(σi.priv)
– pa ∈ Ij ∧ shared(Ij , i, k) ⇔ pa ∈ Dom(σi.sk) ∧ pa ∈ Dom(σk.ri)

4.2 Abstract Transitions

We present here the abstractions of the transitions presented in Sect. 3.3, i.e. the
restore, guest, and hypervisor transitions.

The view of the concrete restore transition does either nothing (in case
just the PL is changed) or injects an IRQ into the guest, which only impacts the
registers.

The whole guest transition is represented in Fig. 4, but in practice, we split
the guest transition in two steps. The first part, called the abstract run, is the
view of the concrete guest transition seen from the current guest. Invariants on
the concrete level allow to state that only the writable segments of the abstract
guest (private and send segments) are modified during the run, formally: σ′ =
run(σ) ⇒ σ′ ∼= σ[r1...rn]. Secondly, changes in the send segments of the current
guest are mirrored in the corresponding receive segments of the other guests.
In other terms, the receive segments of the other guests are synchronized with
the send segment of the current guest. The synchronization seg′

1 of segment seg1
with seg2, i.e. updating all the values of seg1 with those of seg2 without changing
its tags, is denoted by seg′

1 = seg1
VAL←−−− seg2.

We distinguish four types of hypervisor transitions, depending on their
impact on the guest states. Each transition corresponds to one or several groups
of the hypervisor concrete transitions presented in Sect. 3.3. The change register
(chreg) transition is the abstraction of the concrete injection transitions and of
the access to privileged register transition. The particularity of these transitions
is that their only observable impact is on registers. The memory management
(mm) transition captures the effects of the concrete transitions concerning the
memory management virtualization. These concrete transitions have an impact
on the registers and on memory. In particular, they do not change the value of
memory cells but only the active SPT. It means that the impact of the mm
transition on the segments is only on their tag (i.e. mapped or not). The nop
transition is the abstraction of all the concrete transitions which do not have
any observable impact on the abstract state. It abstracts all the IRQ transitions,
indeed, all these transitions only impact the GIC which we do not represent in the

226 P. Bolignano et al.

abstract model. The scheduling (sched) transition corresponds to the concrete
scheduling transition.

σi = run(σi)

∀k = i, σk = σk[ri
VAL←−−− σi.sk]

i,σ1σ1σ1, ...σnσnσn → i,σ1σ1σ1, ...σnσnσn

guest trans

decode(σi.abs regs) = inject(r)
σi = σi[abs regs ← r]

i, σ1, ...,σiσiσi, ...σn → i, σ1, ...,σiσiσi, ...σn

chreg

decode(σi.abs regs) = sched(nxt)

iii, σ1, ...σn → nxtnxtnxt, σ1, ...σn

sched
decode(regs) = nop

i, σ1, ...σn . → i, σ1, ...σn

nop

decode(σi.abs regs) = mm(σi)

i, σ1, ...σiσiσi, ...σn → i, σ1, ...σiσiσi, ...σn

mm
σi

∼= σi[abs regs]

i, σ1, ...σiσiσi, ...σn → i, σ1, ...σiσiσi, ...σn

restore

Fig. 4. Abstract sub-transitions

In order to establish a formal link between the two models, we need to prove
the correspondence between all the transitions of the models. More specifically,
we need to prove that if a concrete and an abstract state are related by the
abstract relation defined in Sect. 4.1, the two states resulting from two corre-
sponding transitions are also related. The correspondence proofs rely on the
proof of preservation of invariants presented in Sect. 3.4. The preservation of
the low-level invariants is the most difficult part of the proof. Therefore the
correspondence of the transitions related to memory management are the most
subtle to prove, because they may modify the SPT, making the preservation of
the invariant more difficult to ensure. We have already proved the preservation
of our invariants under the map operation which is used in the page fault tran-
sition, in order to prove its correspondence with the abstract mm transition.
We have completed the proof of correspondence between the abstract and the
concrete guest transitions. We have thus partially validated our abstraction.

4.3 Properties

Guests may interfere with each other (e.g.through shared memory), so we cannot
prove non-interference. Instead we prove an isolation property on some resources
of the guests, i.e. we prove their integrity and their confidentiality. The resources
on which we prove isolation are the registers and the memory segments. Below,
we detail the properties on segments, as our main focus is the memory isola-
tion. We express the properties on one transition step. More exactly, to state
a property for one guest, we confine the effects that the execution of another
guest can have on the former. Thus, as our system is sequential, we consider a
transition where the former guest does not run. We prove the extension of these
properties to any sequence of transitions where a guest does not run. The proof
sketch of integrity shows the simplicity with which we can bound the effects of
a transition in our model. The proof of confidentiality is done in a similar way.

Integrity for a guest i means that if another guest j runs, then the private
segment and the send segments of i are not modified, and only its jth receive
segment might have change.

Modeling and Abstraction of Memory Management in a Hypervisor 227

Theorem 1 (Integrity). Let i and j be two guest indexes such that i �= j.
Consider a transition where j is the running guest. If

〈j, σ1, ..., σi, ..., σn〉 → 〈j′, σ′
1, ..., σ

′
i, ..., σ

′
n〉

then σ′
i.priv = σi.priv and ∀k, σ′

i.sk = σi.sk and ∀k �= j, σ′
i.rk = σi.rk.

Proof. Let i and j be two guest indexes such that i �= j. We consider a transition
from the state 〈j, σ0, ..., σn〉. The first part of the transition is the restore transi-
tion, which does not change the running guest nor the state of guest i. The second
part of the transition is the guest transition. From the definition of the guest
transition (Fig. 4) we know that the running guest is not changed, and that the
state σ′

i of guest i after the transition is such that: σ′
i = σi[rj

VAL←−−− σ′
j .si]. Hence

the three following facts are verified: σ′
i.priv = σi.priv and ∀k, σ′

i.sik = σi.sk

and ∀k �= j, σ′
i.rk = σi.rk. The third part of the transition is the hypervisor

transition. None of the four hypervisor transitions changes the state of guest i.
Therefore integrity is verified for any transition.

To express confidentiality properties, we compare one step of execution from
two states which differ only on some resources of guest i. If the guest j which
runs in this step has no authorization to access these resources, then the two
states resulting from the transition are equal except on guest i. Notice that we
cannot prove our property on a non-deterministic system because we reason on
the very fact that two executions end in similar states. Yet the scheduling and
restore sub-transitions are non-deterministic, indeed we have not included in our
model sufficient information to decide whether an interrupt is to be injected or
which guest is to be run on a scheduling. We address this issue by making two
assumptions that allow us to add some extra information which make these sub-
transitions deterministic. We suppose that when a guest does not run, its memory
does not interfere with the scheduler nor with the interrupt management of other
guests. There is no major difficulty in proving these properties but we set them
aside in the first instance in order to focus on memory isolation. Therefore, we
reason with two extra arguments which make the system deterministic: a guest to
be run next (nxt) and the optional registers corresponding to the IRQ injection

(oirq). We write
nxt,oirq−−−−−→ for such an enhanced transition.

Theorem 2 (Confidentiality). Let i, k and j be three guest indexes such that
i �= j and k �= j. Let σ̂i be a guest state such that σ̂i

∼= σi[priv, sk, rk]. If

〈j, σ1, ...σi, ..., σn〉 nxt,oirq−−−−−→ 〈j′, σ′
1, ..., σ

′
i, ..., σ

′
n〉

then
〈j, σ1, ...σ̂i, ..., σn〉 nxt,oirq−−−−−→ 〈j′, σ′

1, ...σ̂i
′, ..., σ′

n〉.

5 Related Work

Daum et al. [10] strengthened the refinement between the abstraction layers of
the micro-kernel seL4 to reason about virtual memory management. It allows

228 P. Bolignano et al.

them to reason at a finer granularity and to have an abstract model upon which
they can extend their previous proofs [14] to prove isolation between processes.
Although OSes and hypervisors have much in common, the memory management
part is quite different, since the SPTs are not present in OSes.

Barthe et al. formalized in Coq an idealized model of a paravirtualized hyper-
visor [6]. They included the caches in their model and considered cache-based
side-channel attacks, which is out of our scope. They do not refine their model to
an implementation level, and they make several simplifications, such as consid-
ering only one level of page tables. In addition they do not consider any sharing
between guests.

Blanchard et al. present a case study on the creation of a new mapping in a
page table [7]. Their method is quite different from ours. They work on a part
(i.e. one function) independently of the rest of the system whereas we model
the interactions between the several parts of the system, to prove high-level
properties on the whole system. In contrast to us, they consider parallelism and
show that their model is valid for weak memory models.

In [1,11], Kovalev et al. present the proof of a correctness property of the TLB
virtualization code, using the verifier VCC [9]. They prove that if a translation
is present in the virtual TLB (i.e. the TLB that the guest would have if it were
running directly on the hardware), it is also present, modulo some translation
stages, in the hardware TLB (i.e. the cache of the SPT). Their property does
not provide isolation, it is complementary to ours. Their hardware model is very
complete and detailed, but their SPT algorithm is rather simplified. For example,
they suppose that there is always a free SPT slot available when allocating a
new one, whereas we go in deeper details in the model of the SPT allocator, as
we consider that the proof of its well-formedness is a key aspect of the isolation
proof.

Nemati et al. [15] prove isolation properties on a hypervisor which uses direct
paging. Direct paging does not use shadow data structures. Though still super-
vised by the hypervisor, the guest OS directly manages mappings from GVA to
PA. This solution requires additional modifications of the guest.

On a hypervisor supporting one guest, Vasudevan et al. [16] proved that the
guest cannot write in hypervisor memory, i.e. they proved the integrity of the
hypervisor memory. They verified automatically some modules of the hypervisor,
using the CBMC model checker, and other manually, due to the limitation of the
tool. Andrabi extended the automatic verification by proving the well-formedness
of the PT setup in [3]. They do not virtualize the memory with SPTs, but rather
use the hardware virtualization solution.

6 Conclusion

The management of page tables (PT) is a core task for a hypervisor and involves
non-trivial algorithms which make it difficult to prove -and even to state- that
the hypervisor enforces isolation between its guest OSes. In this paper we have
argued that it is possible to construct an abstract model of a hypervisor, on

Modeling and Abstraction of Memory Management in a Hypervisor 229

which it is considerably simpler to conduct such proof. To this end, we have
presented a concrete model of a hypervisor (in which six out of the fourteen
hypervisor transitions concern the PTs), and established a number of invariants
on this model. Based on these invariants, it is possible to construct an abstract
model in which the management of PTs has been abstracted away. We have
proved isolation on the resulting abstract model.

Handling page faults that lead to the addition of a mapping in the SPTs, is
the most complex and security-critical operation of the SPT algorithm. Complex,
because it modifies the structure of the SPT, requiring a substantial number of
well-formedness invariants to capture the effects of the modifications. Security-
critical, because it gives guests access to new parts of the memory. A central part
of the work reported here has been to state and prove the low-level invariants
needed to prove the correspondence of the concrete page fault operation with
its abstract counterpart. The major part of the other operations of the SPT
algorithm do not threaten our current invariants, and are therefore less complex
to integrate.

Reaching a level of abstraction where the PTs are no longer present simplifies
the whole model and alleviates the proof effort for the other dependent subsys-
tems. Our abstract model can be extended to integrate additional features such
as management of devices, that we have not taken into account in this paper,
since the focus is on the SPT algorithm. More specifically, if we virtualize devices,
the hypervisor controls the guest accesses to memory of the devices, so, in this
case, we can ensure isolation. If we do not virtualize devices, every guest who has
access rights to a device memory region can access it, in this case there might
be channels between the guests accessing this part of memory. Another feature
not currently accommodated by the hypervisor model is direct memory access
(DMA) from devices. DMA hardware extensions (I/O MMU [2], SMMU [4,13])
allow the hypervisor to control the access to memory by a PT mechanism similar
to the MMU, and can be proved secure. Without such extensions, DMA-aware
devices can access any part of the memory and make it impossible to establish
isolation within any model. Further work will investigate how to integrate device
management and DMA into our models.

References

1. Alkassar, E., Cohen, E., Kovalev, M., Paul, W.J.: Verification of TLB vir-
tualization implemented in C. In: Joshi, R., Müller, P., Podelski, A. (eds.)
VSTTE 2012. LNCS, vol. 7152, pp. 209–224. Springer, Heidelberg (2012).
http://www-wjp.cs.uni-saarland.de/publikationen/ACKP12.pdf

2. AMD I/O virtualization technology (IOMMU) specification (2015). http://
support.amd.com/TechDocs/48882 IOMMU.pdf

3. Andrabi, S.J.: Verification of XMHF HPT protection setup. Technical report,
University of North Carolina (2013). http://cs.unc.edu/∼sandrabi/Project work/
VerificationofXMHFHPTProtectionSetup.pdf

4. ARM system memory management unit (2012). http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ihi0062b/index.html

http://www-wjp.cs.uni-saarland.de/publikationen/ACKP12.pdf
http://support.amd.com/TechDocs/48882_IOMMU.pdf
http://support.amd.com/TechDocs/48882_IOMMU.pdf
http://cs.unc.edu/~sandrabi/Project_work/VerificationofXMHFHPTProtectionSetup.pdf
http://cs.unc.edu/~sandrabi/Project_work/VerificationofXMHFHPTProtectionSetup.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0062b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0062b/index.html

230 P. Bolignano et al.

5. Arpaci-Dusseau, R.H., Arpaci-Dusseau, A.C.: Operating Systems: Three Easy
Pieces, 0.80th edn. Arpaci-Dusseau Books, Wisconsin (2014)

6. Barthe, G., Betarte, G., Campo, J., Luna, C.: Cache-leakage resilient OS isolation
in an idealized model of virtualization. In: 2012 IEEE 25th Computer Security
Foundations Symposium (CSF), pp. 186–197, June 2012

7. Blanchard, A., Kosmatov, N., Lemerre, M., Loulergue, F.: A case study on for-
mal verification of the anaxagoros hypervisor paging system with frama-C. In:
Núñez, M., Güdemann, M. (eds.) Formal Methods for Industrial Critical Sys-
tems. LNCS, vol. 9128, pp. 15–30. Springer, Heidelberg (2015). http://dx.doi.org/
10.1007/978-3-319-19458-5 2

8. Common criteria portal. http://www.commoncriteriaportal.org/
9. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,

Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009). http://research.microsoft.com/
apps/pubs/default.aspx?id=117859

10. Daum, M., Billing, N., Klein, G.: Concerned with the unprivileged: user pro-
grams in kernel refinement. Formal Asp. Comput. 26(6), 1205–1229 (2014).
http://dx.doi.org/10.1007/s00165-014-0296-9

11. Kovalev, M.: TLB virtualization in the context of hypervisor verification. Ph.D.
thesis, Universität des Saarlandes, Postfach 151141, 66041 Saarbrücken (2013).
http://scidok.sulb.unisaarland.de/volltexte/2013/5215

12. Lescuyer, S.: ProvenCore: towards a verified isolation micro-kernel. In: Inter-
national Workshop on MILS: Architecture and Assurance for Secure Sys-
tems (2015). http://milsworkshop2015.euromils.eu/downloads/hipeac literature/
04-mils15 submission 6.pdf

13. Mijat, R., Nightingale, A.: Virtualization is coming to a platform near you (2011).
https://www.arm.com/files/pdf/System-MMU-Whitepaper-v8.0.pdf

14. Murray, T.C., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S.,
Lewis, C., Gao, X., Klein, G.: sel4: from general purpose to a proof of information
flow enforcement. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, 19–22 May 2013. pp. 415–429 (2013). http://dx.doi.org/10.
1109/SP.2013.35

15. Nemati, H., Guanciale, R., Dam, M.: Trustworthy virtualization of the ARMv7
memory subsystem. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J.,
Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015-Testing. LNCS, vol. 8939,
pp. 578–589. Springer, Heidelberg (2015). http://dx.doi.org/10.1007/978-3-662-
46078-8 48

16. Vasudevan, A., Chaki, S., Jia, L., McCune, J., Newsome, J., Datta, A.: Design,
implementation and verification of an extensible and modular hypervisor frame-
work. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP
2013, pp. 430–444. IEEE Computer Society, Washington (2013). http://dx.doi.
org/10.1109/SP.2013.36

17. Vetter, J., Petschik-Junker, M., Nordholz, J., Peter, M., Danisevskis, J.: Uncloak-
ing rootkits on mobile devices with a hypervisor-based detector. In: ICISC (Inter-
national Conference on Information Security and Cryptology), Seoul, Republic of
Korea (2015)

http://dx.doi.org/10.1007/978-3-319-19458-5_2
http://dx.doi.org/10.1007/978-3-319-19458-5_2
http://www.commoncriteriaportal.org/
http://research.microsoft.com/apps/pubs/default.aspx?id=117859
http://research.microsoft.com/apps/pubs/default.aspx?id=117859
http://dx.doi.org/10.1007/s00165-014-0296-9
http://scidok.sulb.unisaarland.de/volltexte/2013/5215
http://milsworkshop2015.euromils.eu/downloads/hipeac_literature/04-mils15_submission_6.pdf
http://milsworkshop2015.euromils.eu/downloads/hipeac_literature/04-mils15_submission_6.pdf
https://www.arm.com/files/pdf/System-MMU-Whitepaper-v8.0.pdf
http://dx.doi.org/10.1109/SP.2013.35
http://dx.doi.org/10.1109/SP.2013.35
http://dx.doi.org/10.1007/978-3-662-46078-8_48
http://dx.doi.org/10.1007/978-3-662-46078-8_48
http://dx.doi.org/10.1109/SP.2013.36
http://dx.doi.org/10.1109/SP.2013.36

Crowdsourced Bug Triaging: Leveraging Q&A
Platforms for Bug Assignment

Ali Sajedi Badashian(B), Abram Hindle, and Eleni Stroulia

University of Alberta, Edmonton, Canada
{alisajedi,abram.hindle,stroulia}@ualberta.ca

Abstract. Bug triaging, i.e., assigning a bug report to the “best” person
to address it, involves identifying a list of developers that are qualified to
understand and address the bug report, and then ranking them according
to their expertise. Most research in this area examines the description
of the bug report and the developers’ prior development and bug-fixing
activities. In this paper, we propose a novel method that exploits a new
source of evidence for the developers’ expertise, namely their contri-
butions in Stack Overflow, the popular software Question and Answer
(Q&A) platform. The key intuition of our method is that the questions
a developer asks and answers in Stack Overflow, or more generally in
software Q&A platforms, can potentially be an excellent indicator of
his/her expertise. Motivated by this idea, our method uses the bug-report
description as a guide for selecting relevant Stack Overflow contributions
on the basis of which to identify developers with the necessary expertise
to close the bug under examination. We evaluated this method in the
context of the 20 largest GitHub projects, considering 7144 bug reports.
Our results demonstrate that our method exhibits superior accuracy to
other state-of-the-art methods.

1 Introduction

Software development, today more than ever, is a community-of-practice activ-
ity. Developers often work on multiple projects, hosted on large-scale software
repository platforms, such as GitHub and BitBucket. They access and contribute
information to open question-answering web sites, such as Java Forum, Yahoo!
Answers and Stack Overflow1. Through the developers’ participation on these
code-sharing and question-answering platforms, rich evidence of their software
development expertise is collected. Understanding the developers’ expertise is
relevant to many software-engineering activities, including “onboarding” of new
project members so that their expertise is best utilized in the new context, form-
ing new teams that have the necessary expertise to take on new projects, and
bug triaging and assignment to the person that is best skilled to fix it.

In this paper we focus on the bug-triaging-and-assignment task, which has
already received substantial attention by the software-engineering community

1 http://www.coderanch.com/forums, http://answers.yahoo.com, and http://
stackoverflow.com/.

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 231–248, 2016.
DOI: 10.1007/978-3-662-49665-7 14

http://www.coderanch.com/forums
http://answers.yahoo.com
http://stackoverflow.com/
http://stackoverflow.com/

232 A. Sajedi Badashian et al.

[2,8,10,15,16,19]. The typical formulation of bug triaging problem aims at
ranking a number of developers that could potentially fix a given bug report.
Most solutions to date have considered developers’ expertise, using their past
development and bug-resolving contribution as evidence. In contrast, we describe
and report on the effectiveness of a bug-assignment method that uses expertise
networks extracted from social software-development platforms.

At a high level, based on our initial study on the crowdsourced approach [26],
our work makes two novel contributions to the bug-triaging research. First, we
demonstrate that as a software focused Q&A web site, Stack Overflow contains
valuable information about the expertise of the participating developers, which
may be exploited to support bug triaging. Second, we comparatively investigate
a family of methods for analyzing Stack Overflow posts to precisely understand
how to improve state-of-the-art bug-triaging methods.

The rest of the paper is as follows. Section 2 sets the background context for
our work. Section 3 describes in detail our new bug-assignment method, ranking
the expertise of developers based on a new metric relying on Stack Overflow.
Section 4 reports on the evaluation of our method. Finally, Sect. 6 concludes
with a summary of the take-home lessons of this work.

2 Literature Review

There are two categories of previous research relevant to this body of work: (a)
expertise identification and recommendation; and (b) bug triaging.

Expertise Identification andRecommendation: Venkaratamani et al. [32] described
a system for recommending specific questions to StackOverflowmembers qualified
to answer them. The system infers the developers’ expertise based on the names of
the classes and methods to which the developers have contributed. Similarly, Fritz
et al. [9] developed the “Degree of Knowledge” (DOK) metric to determine the
level of a developer’s knowledge regarding a code element (class, method or field),
based on the developer’s contribution to the development of this element. Mockus
and Herbsleb [17] developed the Expertise Browser (EB), a tool that identifies the
developers’ expertise from their code and documentation, considering system com-
mits and changes to classes, sub-systems, packages, etc.

Zhang et al. [33] described a method for constructing a “Community Exper-
tise Network” (CEN) from the post-reply relations of Java Forum users. They
then ranked the users’ expertise using the PageRank [6] and HITS (Hyperlink-
Induced Topic Search) [11] algorithms on this network.

Bug Triaging: Previous research in bug-triaging has produced a number of dif-
ferent techniques for selecting the (list of k) most capable developer(s) to resolve
a given bug report. Typically the first developer in the list is selected as the bug
assignee but, if this developer is unavailable or somehow unsuitable to work on
the bug report, the other developers in the recommendations list may be tasked
with the bug. Given this problem formulation, most researchers evaluate their

Crowdsourced Bug Triaging: Leveraging Q&A Platforms for Bug Assignment 233

methods by reporting top-k “accuracy” [1,5,8,10,13,14,28–30] (hit ratio in the
top-k recommended list) or precision-and-recall [1–3,7,16,27] (precision is the
percentage of the suggested developers who were actual bug fixers and recall is
the percentage of bug fixers who were actually suggested).

Machine Learning (ML) Approaches: Čubranić and Murphy [8] used a
Naive Bayes classifier to assign each bug report (a “text document” consisting
of the bug summary and description) to a developer (seen as the “class”). Their
classifier was able to predict the bug assignee with a top-1 accuracy of up to
30 %.

Next, Anvik et al. [2] proposed a Support Vector Machine (SVM) method
as a more effective text classifier for this problem, reporting up to 57 %, 64 %
and 18 % top-3 accuracy. Additionally considering the bug-report severity and
priority [3] resulted in 75 %, 70 %, 84 %, 98 % and 98 % top-5 accuracy. Note
that the last two high-accuracy results are were obtained in very small projects,
with 6 and 11 developers respectively. A subsequent method, taking also into
account information about the components linked to bugs and the list of active
developers resulted in 64 % and 86 % accuracies in two projects [1].

Lin et al. [14] used SVM and C4.5 classifiers, considering the bug-report tex-
tual data (title and description) as well as the bug type, class, priority, submitter
and the module IDs, and obtained up to 77 % accuracy.

Considering severity and component of the bug reports in addition to the
textual descriptions, Lamkanfi et al. [13] compared the effectiveness of four ML
approaches, Naive Bayes, Multinomial Naive Bayes, 1NN and SVM in predicting
the real assignee. They reported Multinomial Naive Bayes as the most accurate
method with 79 % accuracy.

Naguib et al. [18] used LDA to assign the bug reports to topics. Then, mining
the activity profiles of the developers in a bug-tracking repository, they associate
topics to developers. Finally, they suggest the developers with the most topics
matching with the bug-report topics. They obtained up to 75 % top-5 accuracy.

Information Retrieval (IR) Approaches: Canfora and Cerulo [7] consider
each developer as a document by aggregating the textual descriptions of the
change requests that the developer has addressed. Given a new bug report,
the textual description of the new request is used as a query to the document
repository to retrieve the candidate developer. This method achieved 62 % and
85 % accuracy in two projects.

Develect, by Matter et al. [16], employs the Vector Space Model (VSM) and
relies on a vocabulary of “technical terms” collected from the developers’ source-
code commits and the bug-report keywords. The developer’s expertise is modeled
as a term vector, based on that developer’s commit history. Given a new bug
report, the closest –according to the cosine distance– developer is identified. This
method achieved up to 34 % and 71 % top-1 and top-10 accuracies.

Linares-Vásquez et al. [15] applied IR-based concept-location techniques [20]
to locate the source code files relevant to the text-change request. Source-code
authorship information of these files was used to recommend expert developers
and they obtained up to 65 % precision.

234 A. Sajedi Badashian et al.

Shokripour et al. [28] proposed an assignee recommender for the bug reports
based on information extracted from the developers’ source code, comments, pre-
viously fixed bugs, and source code change locations. A subsequent study [27]
improved these results using additional data, such as the source-code files, com-
mits and comments of the developers, names of classes, methods, fields and
parameters in the source code. The maximum top-5 accuracy of their approach
on three different projects was 62 %. They obtained 48 % and 48 % top-1 and
60 % and 89 % top-5 accuracies on two projects (between 57 and 9 developers
respectively).

Other Approaches: Tamrawi et al. [29] introduced a fuzzy approach that
computes a score for each “developer - technical term” based on the technical
terms available in previous bug reports and their fixing history by the developers.
Considering the new bug report, they calculate a score for each developer as
a candidate assignee by combining his/her scores for all the technical terms
associated with the bug report in question. This method was shown to achieve
between b40 % and 75 % for top-1 and top-5 accuracy over 7 projects.

A number of studies have examined bug reassignments, the reasons that cause
them, and ways to reduce them [4,34]. To reduce bug reassignments, Jeong et al.
[10] introduced “tossing graphs” of developers (as nodes) and edges between
them, weighed by the number of times the destination developer was assigned a
bug originally assigned to the source developer. Then, beginning with the first
prediction (developer candidate) in hand, they used this graph to predict the
next developer by consulting this graph, obtaining up to 77 % top-5 accuracy.

All the above studies use some combination of the bug textual and categorical
attributes, the bug code components, and the developers’ coding and bug-fixing
contributions. Our method is unique in that it uses the developers’ Stack Over-
flow questions and answers, the semantic tags of these artifacts, as well as the
developers’ previous bug assignments to determine the relevance of a developer
to a particular bug report.

3 A Social Bug-Triaging Model

Software developers today contribute to a variety of social platforms, includ-
ing social software-development platforms, question-and-answering communities,
technical blogs, and presentation-sharing web sites. The key intuition of our work
is that these contributions constitute evidence of expertise that can be exploited
in the context of bug triaging. More specifically, in this paper, we analyze the
developers’ contributions in Stack Overflow for assigning them to GitHub bug
reports. Focusing on the overlap of the two social platforms [25], our approach
examines the questions and answers in Stack Overflow that pertain to the terms
mentioned in a bug report’s title and description. It uses Stack Overflow tags for
cross-referencing GitHub bug reports with Stack Overflow questions and answers.
Tags categorize the questions and their corresponding answers in terms of a few
well-known technical terms. The community curates these tags to improve their
quality: the person asking a question selects the initial tags for the question

Crowdsourced Bug Triaging: Leveraging Q&A Platforms for Bug Assignment 235

Bug report title: TooManyOpenFiles might cause data-loss in ElasticSearch Lucene
Bug report body: Under certain circumstances a TooManyOpenFiles exception in
Java thrown as FileNotFoundException might cause data loss where entire shards
lucene indices are deleted. This is mainly caused by Lucene-4870 https issues.apache.org
jira browse LUCENE-4870 - currently all Elasticsearch releases are affected by this.
Project title: elasticSearch
Project description: Open Source Distributed RESTful Search Engine
Project language: Java

Fig. 1. An example bug report (selected fields)

Table 1. The activity of some developers in Stack Overflow, and their various expertise
scores.

Question/Answerer up
Votes Bob Ali Joe Mike Jane Tom Ben

Q1/Mike;
version control,
open source

3 46 5 53 28

Q2/Jane;
ajax, data, search,
jquery, php

1 20 16 22 6

Q3/Mike;
elasticsearch, php,
java, lucene

21 11 14 29 10

Q4/Ali;
https, css, java,
jira, data

0 27 0 86

Q5/Ben;
search,java,lucene,
elasticsearch,https

70 1 18 42 -4 14 98

AnswerNum 5 4 4 3 3 2 0
Z score 2.24 1.34 2 0.45 1 1.41 -1

A score

(46+1).1+
(20+1).2+
(11+1).3+
(27+1).4+
(1+1).5 =

247

(5+1).1+
(16+1).2+
(14+1).3+
(18+1).5=

180

(53+1).1+
(22+1).2+
(29+1).3+
(42+1).5=

405

(6+1).2+
(0+1).4+
(-4+1).5=

3

(28+1).1+
(10+1).3+
(14+1).5=

137

(86+1).4+
(98+1).5=

843
0

Q score
(µ = 20)

0
20.(4

0+1)

=80
0

20.(1
3+1 +

3
21+1)

=7.7

20.(2
1+1)

=20
0

20.(5
70+1)

=1.41

SSA Z score 15.72 6.20 20.12 -1.44 9.34 29.03 -1.19

(out of around 40,000 available but evolving tags) and expert community mem-
bers, who enjoy a reputation above some threshold, can edit them. Tags are
also used as indication of expertise; for example, the person answering a ques-
tion tagged with Android and Java is assumed to be knowledgeable in these
two domains. Furthermore, the more upVotes this answers collects, the more
knowledgeable this answerer is assumed to be.

Figure 1 summarizes the elements of interest in a real bug report2. Some of
the words in the bug-report’s title and description are shown as italic because
they also appear as tags in the Stack Overflow questions reported in Table 1,

2 https://github.com/elasticsearch/elasticsearch/issues/2812 2014-08-20.

https://github.com/elasticsearch/elasticsearch/issues/2812

236 A. Sajedi Badashian et al.

where they are shown in bold. Note that the only characters allowed in Stack
Overflow tags are alphanumeric and the four characters ‘+’, ‘-’, ‘.’ and ‘#’. So
all other caracters in the bug report were converted to white space.

Table 1 reports partial information about five questions in Stack Overflow and
the answers provided by 7 developers. Each question is associated with the devel-
oper who asked it, the number of upVotes it received, and its thematic tags. The
questions are sorted based on the number of their tags that match with the bug-
report textual information (in Fig. 1) and are shown in bold under each question.
The more tags the question shares with the bug-report terms, the more relevant
it is to the bug report. We will use these tags to characterize the expertise areas
required to address the bug report in question.

3.1 Social Metrics of Expertise

Zhang et al. [33] introduced a family of metrics for measuring expertise in social
networks. The simplest one is AnswerNum, the number of answers contributed by
a user. However, while answering a question is an indication of expertise, asking
a question is an indication of lack of expertise. Z score is a more sophisticated
metric that considers both questions and answers: Z = (a− q)/

√
(a+ q). In this

formula, q and a are the numbers of the questions and answers correspondingly
posted by user u. If a user asks as many questions as he answers, his Z score will
be close to 0. Developers who answer more questions than they ask have positive
Z scores, and vice versa. The Z score is undefined for users who have not asked
nor answered a question. The developers in Table 1 are ordered (left to right) in
descending AnswerNum order.

3.2 A Bug-Specific Social Metric of Expertise

The Z score would likely identify the most active question answerers as the pre-
ferred bug assignees every time, consistently ignoring all other developers. To
prevent this phenomenon, we have chosen to refine the Z score with bug-specific
information, making a social and subject-aware version called SSA Z score. As
discussed before, we use Stack Overflow tags as a cross-referencing mechanism
between GitHub bug reports and Stack Overflow questions and answers. Devel-
opers facing problems with their tasks, use these tags, which are indexed by
search engines [23], to search for earlier questions and their answers that could
be helpful to them. Tags are generic enough to convey semantic topics and, yet,
specific enough to relate to programming concepts and expertise needed to fix
GitHub bugs. As a sanity check against the possibility that tags may drastically
limit the relevant information between GitHub and Stack Overflow, we examined
the bug reports in three selected GitHub projects (out of the 20 projects consid-
ered in this study) and found that in the textual information of each bug report,
there were between 2 to 89 Stack Overflow tags mentioned (avg = 14.9, var = 132
and σ = 11.5). In effect, the Stack Overflow tags define a common vocabulary for

Crowdsourced Bug Triaging: Leveraging Q&A Platforms for Bug Assignment 237

developers to exchange information. This vocabulary has a fundamental advan-
tage over natural languages; all tags are useful and there is no need for stop-word
and noise-word removal from the bug-report texts.

Our approach limits the search for potential bug assignees to the Stack Over-
flow members that have asked questions or provided answers with at least one
tag in common with the text of the bug report under examination, b. To that
end, we define the followings:

– match tagsSO,b: all the Stack Overflow tags that appear in the title and
description of the bug report; these are, in effect, the Stack Overflow topics
that are important for the bug report in hand.

– match tagsq,b: the shared tags between a question (q) and b.
– match tagsa,b: the tags that annotate the question of an answer (a) that

also appear in b.

A scoreu,b =
∑

a ∈ uanswers

(upV otesa + 1) · (match tagsa,b) (1)

Q scoreu,b = μ ·
∑

q ∈ uquestions

(match tagsq,b)
(upV ptesq + 1)

(2)

Z scoreu =
(a − q)√
(a + q)

(3)

SSA Z scoreu,b =
(A scoreu,b − Q scoreu,b)√
(A scoreu,b + Q scoreu,b)

(4)

For user u and bug report b, we define the A scoreu,b (Eq. 1) and Q scoreu,b
(Eq. 2) to replace a and q respectively in the original definition of the Z score.
At any point in time, for every answer the user has contributed in the past that
is relevant to the bug in question (i.e., is associated with a tag that appears
in the bug report), the number of match tagsa,b is multiplied with the number
of the answer’s upVotes (plus one, for the answer itself). In effect, each answer
contributes to the calculation of the user’s expertise, taking into account the
number of upVotes that the answer has received, which reflects the community’s
judgement on the answer’s quality and usefulness. The sum of these terms make
up A scoreu,b. Each question is considered as evidence of lack of relevant exper-
tise but this weakness is compensated by promotion of the question by other
users (upVotes). To reflect the intuition that the “asker of a naive question is
less knowledgeable than asker of a good one”, we divide match tagsa,b by the
number of upVotes (plus one for the question itself). This tends to make the value
of Q scoreu,b very small relative to A scoreu,b, which is why we use the μ nor-
malization factor to adjust it. The social subject-aware Z score (SSA Z score)
can then be defined as shown in Eq. 4. This formula involves the terms relevant
to the user’s expertise (as match tagsq,b and match tagsa,b used in A scoreu,b
and Q scoreu,b for different questions and answers). Furthermore, it takes into
account the votes of the users to the answers and questions to advance good

238 A. Sajedi Badashian et al.

ones. The SSA Z scoreu,b as a measure of expertise of u regarding b focuses on
answers and questions related to the bug under examination.

Table 1 shows different scores for the users. Each cell at the intersection of a
question and a developer contains the number of upVotes for the answer posted
by that developer to the question. Tom has the best SSA Z scoreu,b: he provided
two answers to questions relevant to the bug, which received many upVotes.

Note that our implementation of the above score is aware of the temporal
aspect of a developer’s expertise. The activity of a developer in Stack Over-
flow accumulates over time but the estimation of the developer’s expertise for
a given bug report, reported in time t, is based only on his contributions up to
date: the SSA Z scoreu,b considers questions and answers of the user u posted
in time t1 < t.

3.3 A Recency-Aware, Social and Subject-Aware Expertise Metric

The expertise of the developers shifts over time as they work on different projects
with potentially different technologies [16]. Developers actively working in a
particular domain are more appropriate to be assigned to a bug in this domain.
This is why Matter et al. consider a decay factor in their model of developers’
expertise. Shokripour et al. [28] also consider this idea in their bug-assignment
method: the older the evidence for a particular expertise is, the less relevant it is
for current expertise needs. Anvik et al. [2] used filtering approaches to capture
the recency of work.

Motivated by the intuition that “more recent evidence of expertise is more
relevant”, we define the recency-aware, social, subject-aware RA SSA Z scoreu,b
as follows.

RA SSA Z score u, b = α · (SSA Z scoreu,b)

+ β · (
∑

i ∈ previous bugs
assigned to u

1
1 + number of bugs occurred between i and b

)

(5)

In this formula, α and β are tuning parameters and we explain how we tuned
them in Sect. 4.4. Having the RA SSA Z scoreu,b for all users in the community
over a bug report, our algorithm sorts the users and reports the top k as the
most capable developers to fix the bug.

4 Evaluation

We obtained two Stack Overflow data sets [21,22] (approximately 65 GB and
90 GB). They consist of several XML files including information of 2,332,403
and 3,080,577 users, their posts, tags, votes, etc. In order to link these users to
GitHub, their emails are normalized by a hash algorithm and they are joined
via their emailHash [25,31], which is provided by the older data set. We merged

Crowdsourced Bug Triaging: Leveraging Q&A Platforms for Bug Assignment 239

these two data sets to get a large data set including the newer posts with old
users.

We used a MySQL database dump [24] (with a size of about 21 GB) contain-
ing information of 4,212,377 GitHub users and their project memberships. How-
ever, this data set did not include the textual information of the bug reports. We
obtained this information from a set of MongoDB dumps provided by the same
web site [24] (with a size of about 210 GB) including information of 2,908,292
users. Again, we also merged the two data sets and obtained a large data set
including information about GitHub users, projects and bug reports.

As our method assigns bugs to developers with a presence in both GitHub and
Stack Overflow, we used identity merging [25,31] to identity the common users
in GitHub and Stack Overflow. The GitHub data set contains the e-mails of the
users, but Stack Overflow data set includes e-mail hash. So for each GitHub user,
using MD5 function, we obtained the e-mail hash and compared it with e-mail
hashes in Stack Overflow. With this approach, we found 358,472 common users.

4.1 Experiment Setup

For each GitHub project, we first calculated the union of the sets of project mem-
bers, committers, bug reporters and bug assignees, and we removed from this
set all developers without any Stack Overflow activity, to calculate the project’s
community-members set. Next, we sorted the projects based on the cardinality
of their community-member sets and we identified the top 20 projects3 with the
highest number of community members and the highest number of bug assignees.

For the selected 20 projects, the number of community members vary from 28
to 822 (average=127, median=87). Out of 14,172 bug reports in all the selected
projects, we examined 7144 bug reports that have been assigned to one of the
project’s community members. Note that we could not use the rest of bug reports
since they were assigned to developers with no Stack Overflow activity. For each
bug report in each of the 20 chosen projects, we ran our algorithm to recognize
the RA SSA Z scoreu,b for all project-community members. Then, we ranked the
users from the highest score to the lowest and compared the top ones against the
real assignee. We used bug reports from three of these projects for training and
tuning purposes (e.g., the parameters of RA SSA Z scoreu,b or investigating the
inclusion of Stack Overflow tags) and 17 for final evaluation.

We report the average top-k recommendation accuracies. We compare our
results for k=1 and k=5 with several implemented methods, as well as previously
published results. We also report our results based on MAP (Mean Average
Precision) as a precise, synthesized, rank-based evaluation measure.

3 rails/rails, scala/scala, adobe/brackets, JuliaLang/julia, mozilla/rust, mozilla-b2g/
gaia, angular/angular.js, bundler/bundler, lift/framework, dotcloud/docker, edx/
edx-platform, elasticsearch/elasticsearch, fog/fog, html5rocks/www.html5rocks.com,
Khan/khan-exercises, saltstack/salt, travis-ci/travis-ci, NServiceBus/NServiceBus,
TryGhost/Ghost and yui/yui3.

240 A. Sajedi Badashian et al.

4.2 Comparison to State of the Art

Direct comparison with earlier methods is not possible since none of the previous
studies we reviewed above have made available their bug-assignment algorithm
implementation and data sets. To approximate this comparison, we experimented
with the scikit-learn4 implementations of a number of algorithms classify-
ing bugs to developers, which we applied to our own data set. Considering the
previous bug reports and the real assignee for each one, these algorithms use
word-based features of the bug reports to predict the most probable developer
who would fix the bug.

1NN, 3NN and 5NN. In this family of classifier methods, each bug report
is considered a point in a multi-dimensional space, each dimension defined by
a distinct word. Each developer (class) corresponds to a hyper-plane in this
space, consisting of all the bugs closed by the developer. Then, given a new bug
report and a corresponding new point in the space, the closest existing point is
selected. The class of the selected point (bug report) is the recommendation for
the new bug report. This process is called Nearest Neighbor (1NN). In 3NN and
5NN, we look for 3 or 5 nearest points (bug reports) to that point and simply
get their average to determine a hyper-plane and its class (developer) as the
recommendation. Lamkanfi, et al. [13] and Anvik [3] used this method for their
predictions about bug reports.

Naive Bayes (NB) and Multinomial Naive Bayes (MNB). In this fam-
ily of algorithms, the developers’ features are the words included in the textual
elements of the bug reports they have handled before. These features are con-
sidered by the learner as a bag of words. Given a new bug report, the classifier
returns the classes (developers) with the highest number features in common
with the bug. Bhatacharya et al. [5], Čubranić and Murphy [8] and Anvik [2]
are from those researchers who used this method for bug triaging. Building on
the above method, a group of Naive Bayes classifiers, one per developer, may
be constructed to decide the developer to which a given bug report belongs,
and to calculate the probability of that being the case. Then, this probability is
compared over all the developers to infer the most probable bug fixers. Lamkanfi
et al. [13] and Anvik [3] used this method for bug triaging.

SVM. This approach represents bug reports as vectors in a multi-dimensional
space –similar to 1NN, 3NN and 5NN. With each word being a dimension, this
classifier considers each bug report a point in this multidimensional space. Then,
considering all the bug reports that are already assigned to each developer as
a category, the optimal hyper-planes between these points to separate different
categories is inferred. This method also assigns a label (name of a developer) to
each category. Then, given a new bug report, it reports the label of its category.
Lin et al. [14], Anvik et al. [2] and Bhattacharya et al. [5] used this method for
bug triaging.

4 http://scikit-learn.org/stable/.

http://scikit-learn.org/stable/

Crowdsourced Bug Triaging: Leveraging Q&A Platforms for Bug Assignment 241

4.3 Implementation

The Java implementation of our approach as well as our data sets (3 training
and tuning and 17 final evaluation projects and their bug reports) and out-
put results are available online at http://github.com/alisajedi/BugTriaging for
consideration or future comparisons.

Regarding the implemented Machine-Learning approaches, given that no
open implementations were available for the previous bug-assignment methods
reported in the literature, we made fair effort toward the best implementation
of the competitor algorithms. We processed bug reports’ title and body words
with TF-IDF, producing TF-IDF word vectors. In order to make the process
competitive enough to our approach, we made the process online; train them on
first n-1 bug reports and then test on the nth. Then train on first n bug reports
and test on n+1th and so on.

We used the followings parameters for scikit-learn machine learners. For
KNN, we chose k as the parameter (1, 3 or 5), weights=‘uniform’, algorithm=
‘auto’, leaf size=30, p=2, metric=‘minkowski’ and metric params=None. For
Multinomial Naive Bayes, we used Laplace smoothing priors (α = 1.0) fit to
prior distribution using OneVsRestClassifier classifier strategy. Similarly for
Naive Bayes, but it uses multiclass classification. For SVM, we used Support
Vector Classification (SVC) class. We chose RBF kernel type, used shrinking
heuristic, with gamma kernel coefficient 1/n for n features, error penalty=1
and probability=true. More details as well as the Python implementation of the
mentioned approaches are available online at: http://github.com/abramhindle/
bug-triager-scikit/blob/ali/dumpbayes.py.

4.4 Performance of Variant Social Metrics of Expertise

In Sect. 3 we incrementally developed our Triage score starting with the simple
social measures of expertise a and q. To gain an insight on how each aspect of
this measure contributes to the bug-assignment effectiveness, we applied several
intermediate variants of the metric, representing different intuitions in its evolu-
tionary construction process, to three test projects with 490 bug reports in total,
randomly selected from the 20 projects of our study.

The performance of the simplest measure, i.e., the number of answers,
AnswerNum [33], tagged with at least one of those match tagsSO,b is shown
in Table 2. The triaging accuracy is poor and does not recommend this naive
measure for the bug-assignment task.

The original Z score [33], which considers answers as indication of expertise
and questions as indication of lack of expertise, does not perform much better.
The problem was that the Z score metric measures general expertise rather than
expertise specific to the bug under examination, and, as a result, it is inadequate
to compete with the approaches reported in the literature.

Next we evaluated the subject-aware Z score, SA Z score, which measures
expertise of the developers in match tagsSO,b, without considering upVotes.

http://github.com/alisajedi/BugTriaging
http://github.com/abramhindle/bug-triager-scikit/blob/ali/dumpbayes.py
http://github.com/abramhindle/bug-triager-scikit/blob/ali/dumpbayes.py

242 A. Sajedi Badashian et al.

Table 2. Accuracy results for preliminary approaches and tuning

Method Top-1 Top-5 MAP

AnswerNum 3.40 21.00 0.1384

Z score 3.49 21.05 0.1453

SA Z score (μ=1, upVotes=0) 9.12 23.59 0.1801

SSA Z score μ=1 12.33 56.97 0.3216

μ=10 12.06 52.68 0.3153

μ=20 11.79 50.67 0.3128

μ=1+avg(upVotes) 12.06 53.61 0.3166

μ=1+avg(upVotes)2 11.66 53.73 0.3130

μ=1+HM(upVotes) 12.33 58.45 0.3223

recency-aware SSA Z score α=0.001 42.65 88.37 0.618

α=0.01 43.06 88.57 0.621

α=0.1 41.84 86.33 0.609

α=1 39.59 77.96 0.565

α=10 38.98 77.14 0.559

This score is in effect equivalent to SSA Z score, but with μ=1 and without
considering upVotes. μ was the normalization factor which we used to balance
the values of Q scoreu,b with A scoreu,b when it was divided by “1+number of
upVotes of the question”. In other words, we set μ = 1 for SA Z score because it
does not consider upVotes. Again, a small improvement was observed in the per-
formance, evidence that, not surprisingly, awareness of the bug under examina-
tion is useful in selecting the right bug assignee. Still this score is not competitive
with the literature results.

Our next step was to consider the community’s curation of the questions and
answers. Instead of uniformly considering all Stack Overflow answers of a devel-
oper as evidence of expertise and all questions as evidence of lack of expertise,
we evaluated whether weighing “good” answers and questions more than “bad”
ones would make a difference. The Stack Overflow users’ upVotes are evidence
for the quality of the questions and answers and the social subject-aware Z score
(SSA Z score) was designed to take them into account, as well as being aware
of the bug context. This metric involves the μ normalization factor that deter-
mines the importance of considering “asking” as “lack of expertise” with respect
to answers. It can be assigned a static value, or, it may be tuned for different
projects. In our main experiments, we set it to “1+Harmonic Mean of upVotes
of all related questions” (all questions containing at least one match tagsSO,b)
which has slightly better performance. The tuning results are shown in Table 2.
Note that for the example of Table 1, we have μ=20, obtained simply based on
the average of upVotes of the questions mentioned in the first column.

The final improvement leading to our triage score was to make it sensitive
to the recency of the relevant Stack Overflow activity. The key intuition here is

Crowdsourced Bug Triaging: Leveraging Q&A Platforms for Bug Assignment 243

that “the fixing activity has locality” meaning that “the recent fixing developers
are likely to fix bug reports in the near future” [29]. Inspired by this idea, we
considered the recency of the developers” activities, highlighting recent ones
more than past ones. As we anticipated, the results improved further.

Finally, we examined the impact of the various parameters of our metrics
to the bug-triaging performance. For the purpose of tuning and calibrating our
method, we needed to determine the values for α and β in the RA SSA Z scoreu,b
(Eq. 5). We set the value of β to 1 in order to reduce the variables to one. Then,
changed α and measured the accuracy and MAP on three test projects. The best
results obtained with α=0.01. This is because of very large numbers attained for
Social Z score (i.e., number of upVotes multiplied by number of tags, summed
over all answers of each user). Later in this section, we apply the parameter
values (μ, α and β) obtained from the three projects into the remaining 17
projects in our final evaluation.

4.5 Performance of the RA SSA Z scoreu,b

As the final evaluation, we ran our algorithm over 17 projects (holding out
the three projects used for tuning) including 6654 bug reports and sorted the
recommended developers for each bug report. We measured the average top-k
accuracies as well as MAP. The average top-k accuracies of our approach for
k from 1 to 5 are 45.17 %, 66.41 %, 77.50 %, 84.79 % and 89.43 % respectively.
We also obtained the MAP as 0.633, which is very strong and shows that the
harmonic mean of the real assignee is 1.58 over all the bug reports.

We also implemented the other approaches discussed in Sect. 4.2. We ran
those experiments to compare the results of our method with other approaches
on the same data set. The results for average top-1 and top-5 accuracies as well
as MAP are shown in Table 3.

Note that all the values reported in Table 3 are averages over all the 17
projects examined; due to paper-length limitations, the per-project values are
not shown here. However, we examined the detailed results for each project and
found them close to the mean (var=60.97 and σ=7.81 for top-5 accuracies).
Our results demonstrate that our RA SSA Z scoreu,b, relying on evidence of
developers’ expertise from their Stack Overflow activities, is very effective in
selecting the right assignee for the right bug, much more so than all competing
machine-learning algorithms relying exclusively on GitHub data. In the next
section, we analyze these results and compare the details with the other methods.

Table 3. Accuracy results for different simulated approaches compared with ours

1NN 3NN 5NN Naive Bayes Multinomial
Naive Bayes

SVM Our Approach

Top1 Accuracy (%) 43.09 46.48 45.60 43.77 42.75 45.46 45.17

Top5 Accuracy (%) 70.46 75.63 75.00 78.98 75.97 81.82 89.43

MAP 0.575 0.610 0.596 0.609 0.606 0.617 0.633

244 A. Sajedi Badashian et al.

5 Analysis

First, we compare our approach against implemented machine-learning meth-
ods. The results in Table 3 show that our method outperforms all of the other
machine learning methods in terms of top-5 accuracy and MAP. 3NN, 5NN and
SVM do well for top-1 accuracy, slightly better than our approach. Our average
top-5 accuracy is between 8 to 19 percent better than other approaches. The
MAP value of our approach, 0.633, corresponds to the harmonic mean 1.58 for
the rank of the real assignee (implying that the real assignee frequently appeared
in the rank-1 and rank-2 positions in the results). MAP varies from 0.575 (for
1NN) to 0.617 (for SVM as the best approach after ours). Comparing the differ-
ent algorithms on the same data set demonstrates the usefulness of our method.
The improved MAP and accuracy of our approach over these other methods
shows that our approach is trustworthy and capable of precise assignee recom-
mendation.

Let us now compare the accuracy of our approach against the accuracy
reported in previous published contributions. Due to differences in the exper-
imental design and collected metrics of the various studies, it is impossible to
have an exact and fair comparison. Some of these earlier methods reported the
maximum accuracy over different projects instead of the average accuracy. Also
they differ in reported values for k in top-k accuracies, with top-1 and especially
top-5 being the most frequently used. As one of the best obtained accuracies in
the previous studies, Shokripour et al. obtained 48 % top-1 and 60 % and 89 %
top-5 accuracies on two projects (between 57 and 9 developers respectively).
Our top-5 accuracy outperforms theirs, but their approach performs 3 % better
on top-1. Note that their best results were obtained in a project with only 9 can-
didate developers (our projects included between 28 and 822 developers). Also
note that their approach was tested only on 80 and 85 bug reports, as opposed
to our 7144 bug reports. In fact, some of the features and meta-data that are
required for their method (e.g., product and component of the bug reports)
are quite difficult to obtain [13], which makes this study quite challenging to
replicate.

To summarize our comparison findings, it is important to mention the follow-
ing. Our evaluation of our metric is the most thorough reported in the literature
(with 20 projects and 7144 bug reports). Our metric highly outperforms all pre-
viously reported methods in terms of average top-5 accuracy, and most of them
in terms of average top-1 accuracy. More importantly, our metric exhibits the
highest MAP.

Limitations and Threats to Validity. The most important concern with
respect to the validity of our method is that the common users (between Stack
Overflow and GitHub) who constitute the project community are a small part of
the complete set of developers associated with each project. The common users
between Stack Overflow and GitHub represent up to 20 % of the total number of
users, in each of these networks. There are many users about whom we do not
have information, because we could not match their profile in the two networks.

Crowdsourced Bug Triaging: Leveraging Q&A Platforms for Bug Assignment 245

However, to mitigate this limitation, unlike most previous studies, we examined
our approach on a large number (i.e., 20) of big projects with thousands of users
and bug reports which is quite substantial, limiting threats to external validity.
We can even argue that this phenomenon may be an advantage of our approach
that focuses on high-quality evidence of developers’ expertise established in the
actively curated Stack Overflow community and ignores developers who do not
have such credentials. If our method performs well by accessing parts of the
developers’ contributions, it should improve when accessing the complete infor-
mation. Looking from another point of view, regarding commercial and non-open
source software, while the users may or may not participate in Q&A networks,
there are tracks of developers’ activities in their private networks and documents.
These information supplement the sources of expertise that are introduced in this
study, compensating the limitation.

Currently, for privacy reasons, much of the Q&A content at the software
social networks is provided anonymously. One could envision however that
project managers could request their developers to provide their Stack Over-
flow IDs. Thus, the step of identifying users common across the two networks
through their e-mails should become unnecessary and a larger community of
developers, with far more extensive Q&A contributions, will become available
to the bug-assignment process.

One concern, is the practice of some developers answering their own questions
on Stack Overflow for announcing a commonly encountered issue with some API,
library, etc. However, we investigated the questions and answers of members of
three (out of the 20) chosen projects and found that only 3 % of their answers
are answers to one’s own questions, and only in around half of these cases the
question is up-voted, meaning that the case did not indicate expertise, but lack
of expertise (as we assumed).

6 Conclusions and Future Work

The fundamental novelty of our work lies in that it is the first bug-assignment
method to consider evidence of developers’ expertise beyond their contributions
to software development, examining instead their contributions to a Q& A plat-
form. Our method takes advantage of the fact that many developers participate
in both platforms. Relying on the expertise of the community to recognize good
(and bad) questions and answers, our method taps into a rich, and as yet unex-
ploited, social source of expertise information. To consider this information in the
context of the software-development task at hand, our method relies on the inter-
section between GitHub bug-report text and tags of the Stack Overflow questions
and answers. We believe Stack Overflow is a rich source of expertise for software
engineering purposes since the privilege of important Stack Overflow contribu-
tions like up/downVoting is only available to community members who have
established a minimum reputation.

We have thoroughly evaluated our method with 20 popular GitHub projects,
comparing its performance (a) against six traditional machine-learning
approaches that have been widely used for bug assignment before, and

246 A. Sajedi Badashian et al.

(b) against the reported accuracies of previous bug-triaging publications. Our
approach exploits expertise information found in Stack Overflow and readily
outperforms the competition. We believe that in order to achieve even better
performance, a project manager may ask the ID of his developers in the soft-
ware social networks and identify their full Q&A contributions.

Generalizing beyond Stack Overflow, how helpful it is for bug assignment,
and what limitations it suffers, we envision a new research agenda studying
the application of third-party expertise networks to bug triaging. The biggest
open question is how to generalize this approach to multiple expertise networks.
As well as various Q&A networks and code forums, perhaps there are wikis,
project documentation, or developer performance histories that could be mined
for expertise networks to exploit for bug triage.

In addition to considering multiple social platforms, we also plan to consider
tag synonyms: Stack Overflow introduces lists of tag synonyms and suggests the
users to use the primary definitions (e.g., “servlets” instead of “webservlet”,
“authentication” instead of “login”), but does not enforce the practice. In the
future, we plan to consider integration of the synonyms in their primary defini-
tions in code and data sets.

As a useful application, the methods mentioned in this paper can be exploited
in the onboarding programs [12] to guide the newcomers in the process of fixing
bugs. Since these users have no previous background in the current project, the
utilization of expertise scores proposed in this paper, based on the users’ Q&A
contributions will be very useful.

Acknowledgments. This work has been partially funded by IBM, the Natural Sci-
ences and Engineering Research Council of Canada (NSERC) and the GRAND NCE.

References

1. Anvik, J.: Automating bug report assignment. In: Proceedings of the 28th Inter-
national Conference on Software Engineering (Doctoral Symposium), ICSE 2006,
pp. 937–940. ACM (2006)

2. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: Proceedings of the
28th International Conference on Software Engineering, ICSE 2006, pp. 361–370.
ACM (2006)

3. Anvik, J.K.: Assisting Bug Report Triage through Recommendation. Ph.D. thesis,
University of British Columbia, November 2007

4. Baysal, O., Holmes, R., Godfrey, M.W.: Revisiting bug triage and resolution prac-
tices. In: Proceedings of the User evaluation for Software Engineering Researchers
(USER) Workshop at the International Conference on Software Engineering
(ICSE), 2012, pp. 29–30. IEEE (2012)

5. Bhattacharya, P., Neamtiu, I., Shelton, C.R.: Automated, highly-accurate, bug
assignment using machine learning and tossing graphs. J. Syst. Softw. 85(10),
2275–2292 (2012)

6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems 30(1), 107–117 (1998)

Crowdsourced Bug Triaging: Leveraging Q&A Platforms for Bug Assignment 247

7. Canfora, G., Cerulo, L.: Supporting change request assignment in open source
development. In: Proceedings of the 2006 ACM Symposium on Applied Computing,
SAC 2006, pp. 1767–1772. ACM (2006)

8. Čubranić, D., Murphy, G.C.: Automatic bug triage using text categorization. In:
SEKE 2004: Proceedings of the Sixteenth International Conference on Software
Engineering & Knowledge Engineering. Citeseer (2004)

9. Fritz, T., Ou, J., Murphy, G.C., Murphy-Hill, E.: A degree-of-knowledge model to
capture source code familiarity. In: Proceedings of the 32Nd ACM/IEEE Interna-
tional Conference on Software Engineering, ICSE 2010, vol. 1, pp. 385–394. ACM
(2010)

10. Jeong, G., Kim, S., Zimmermann, T.: Improving bug triage with bug tossing
graphs. In: Proceedings of the 7th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC/FSE 2009, pp. 111–120. ACM (2009)

11. Kleinberg, J.M.: Hubs, authorities, and communities. ACM Comput. Surv. (CSUR)
31(4es), 5 (1999)

12. Labuschagne, A., Holmes, R.: Do onboarding programs work? In: Proceedings of
the 12th Working Conference on Mining Software Repositories, MSR 2015 (2015)

13. Lamkanfi, A., Demeyer, S., Soetens, Q.D., Verdonck, T.: Comparing mining algo-
rithms for predicting the severity of a reported bug. In: 2011 15th European Con-
ference on Software Maintenance and Reengineering (CSMR), pp. 249–258. IEEE
(2011)

14. Lin, Z., Shu, F., Yang, Y., Hu, C., Wang, Q.: An empirical study on bug assignment
automation using chinese bug data. In: Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, ESEM 2009,
pp. 451–455. IEEE Computer Society (2009)

15. Linares-Vásquez, M., Hossen, K., Dang, H., Kagdi, H., Gethers, M., Poshyvanyk,
D.: Triaging incoming change requests: Bug or commit history, or code authorship?
In: 2012 28th IEEE International Conference on Software Maintenance (ICSM),
pp. 451–460. IEEE (2012)

16. Matter, D., Kuhn, A., Nierstrasz, O.: Assigning bug reports using a vocabulary-
based expertise model of developers. In: 6th IEEE International Working Confer-
ence on Mining Software Repositories, MSR 2009, pp. 131–140, May 2009

17. Mockus, A., Herbsleb, J.D.: Expertise browser: A quantitative approach to identi-
fying expertise. In: Proceedings of the 24th International Conference on Software
Engineering, ICSE 2002, pp. 503–512. ACM (2002)

18. Naguib, H., Narayan, N., Brugge, B., Helal, D.: Bug report assignee recommen-
dation using activity profiles. In: 2013 10th IEEE Working Conference on Mining
Software Repositories (MSR). IEEE(2013)

19. Nguyen, T.T., Nguyen, A.T., Nguyen, T.N.: Topic-based, time-aware bug assign-
ment. SIGSOFT Softw. Eng. Notes 39(1), 1–4 (2014)

20. Poshyvanyk, D., Marcus, A.: Combining formal concept analysis with information
retrieval for concept location in source code. In: 15th IEEE International Confer-
ence on Program Comprehension, ICPC 2007, pp. 37–48. IEEE (2007)

21. Stack Exchange Community: Is there a direct download link with a raw data
dump of stack overflow? http://meta.stackexchange.com/questions/198915/
is-there-a-direct-download-link-with-a-raw-data-dump-of-stack-overflow-not-a-t.
Accessed on 20 Auguest 2014

22. Stack Exchange Inc: Stack exchange data dump. https://archive.org/details/
stackexchange. Accessed 20 Auguest 2014

http://meta.stackexchange.com/questions/198915/is-there-a-direct-download-link-with-a-raw-data-dump-of-stack-overflow-not-a-t
http://meta.stackexchange.com/questions/198915/is-there-a-direct-download-link-with-a-raw-data-dump-of-stack-overflow-not-a-t
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange

248 A. Sajedi Badashian et al.

23. Stack Exchange Team: What are tags, and how should i use them? http://
stackoverflow.com/help/tagging. Accessed on 17 March 2015

24. The GHTorrent Project: Mysql database dumps. http://GHTorrent.org/
downloads/mysql-2014-08-18.sql.gz. Accessed on 20 Auguest 2014

25. Sajedi Badashian, A., Esteki, A., GholiPour, A., Hindle, A., Stroulia, E.: Involve-
ment, contribution and influence in github and stack overflow. In: Proceedings of
the 2014 Conference of the Center for Advanced Studies on Collaborative Research,
CASCON 2014. ACM, Markham (2014)

26. Sajedi Badashian, A., Hindle, A., Stroulia, E.: Crowdsourced bug triaging. In: 2015
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pp. 506–510. IEEE (2015)

27. Shokripour, R., Kasirun, Z., Zamani, S., Anvik, J.: Automatic bug assignment
using information extraction methods. In: 2012 International Conference on
Advanced Computer Science Applications and Technologies (ACSAT), pp. 144–
149, November 2012

28. Shokripour, R., Anvik, J., Kasirun, Z.M., Zamani, S.: Why so complicated? sim-
ple term filtering and weighting for location-based bug report assignment recom-
mendation. In: Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR 2013, pp. 2–11. IEEE Press (2013)

29. Tamrawi, A., Nguyen, T.T., Al-Kofahi, J., Nguyen, T.N.: Fuzzy set-based auto-
matic bug triaging (nier track). In: Proceedings of the 33rd International Confer-
ence on Software Engineering, ICSE 2011, pp. 884–887. ACM (2011)

30. Tamrawi, A., Nguyen, T.T., Al-Kofahi, J.M., Nguyen, T.N.: Fuzzy set and cache-
based approach for bug triaging. In: Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering, ESEC/FSE 2011, pp. 365–375. ACM (2011)

31. Vasilescu, B., Filkov, V., Serebrenik, A.: Stackoverflow and github: associations
between software development and crowdsourced knowledge. In: 2013 International
Conference on Social Computing (SocialCom), pp. 188–195. IEEE (2013)

32. Venkataramani, R., Gupta, A., Asadullah, A., Muddu, B., Bhat, V.: Discovery of
technical expertise from open source code repositories. In: Proceedings of the 22nd
International Conference on World Wide Web Companion, WWW 2013 Compan-
ion, International World Wide Web Conferences Steering Committee, pp. 97–98
(2013)

33. Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities:
Structure and algorithms. In: Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, pp. 221–230. ACM (2007)

34. Zimmermann, T., Nagappan, N., Guo, P.J., Murphy, B.: Characterizing and pre-
dicting which bugs get reopened. In: 34th International Conference on Software
Engineering (ICSE), 2012, pp. 1074–1083. IEEE (2012)

http://stackoverflow.com/help/tagging
http://stackoverflow.com/help/tagging
http://GHTorrent.org/downloads/mysql-2014-08-18.sql.gz
http://GHTorrent.org/downloads/mysql-2014-08-18.sql.gz

Probabilistic and Stochastic Systems

Model-Based Testing of Probabilistic Systems

Marcus Gerhold and Mariëlle Stoelinga(B)

University of Twente, Enschede, The Netherlands
m.gerhold@utwente.nl, marielle@cs.utwente.nl

Abstract. This paper presents a model-based testing framework for
probabilistic systems. We provide algorithms to generate, execute and
evaluate test cases from a probabilistic requirements model. In doing so,
we connect ioco-theory for model-based testing and statistical hypothe-
sis testing: our ioco-style algorithms handle the functional aspects, while
statistical methods, using χ2 tests and fitting functions, assess if the fre-
quencies observed during test execution correspond to the probabilities
specified in the requirements.

Key results of our paper are the classical soundness and completeness
properties, establishing the mathematical correctness of our framework;
Soundness states that each test case is assigned the right verdict. Com-
pleteness states that the framework is powerful enough to discover each
probabilistic deviation from the specification, with arbitrary precision.

We illustrate the use of our framework via two case studies.

1 Introduction

Probability. Probability plays an important role in many computer applica-
tions. A vast number of randomized algorithms, protocols and computation
methods use randomization to achieve their goals. Routing in sensor networks,
for instance, can be done via random walks [1]; speech recognition is based on
hidden Markov models [32]; population genetics use Bayesian computation [2],
security protocols use random bits in their encryption methods [10], control poli-
cies in robotics, leading to the emerging field of probabilistic robotics, concerned
with perception and control in the face of uncertainty networking algorithms
assign bandwidth in a random fashion. Such applications can be implemented in
one of the many probabilistic programming languages, such as Probabilistic-C
[26] or Figaro [28]. At a higher level, service level agreements are formulated in
a stochastic fashion, stating that the average uptime should be at least 99 %, or
that the punctuality of train services should be 95 %.

Key question is whether such probabilistic systems are correct: is band-
width distributed fairly among all parties? Is the up-time, packet delay and
jitter according to specification? Do the trains on a certain day run punctual

This work has been supported by the NWO project BEAT (612.001.303), the STW
project SUMBAT (13859), the EU FP7 project SENSATION (318490) and by the
STW and ProRail project ArRangeer (12238).

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 251–268, 2016.
DOI: 10.1007/978-3-662-49665-7 15

252 M. Gerhold and M. Stoelinga

enough? To investigate such questions, probabilistic verification has become a
mature research field, putting forward models like probabilistic automata (PAs)
[33,38], Markov decision processes [30], (generalized) stochastic Petri nets [23],
with verification techniques like stochastic model checking [31], and tools like
Prism [20].

Testing. In practice, the most common validation technique is testing, where
we subject the system under test to many well-designed test cases, and compare
the outcome to the specification. Surprisingly, only few papers are concerned
with the testing of probabilistic systems1, with notable exceptions being [16,18].

This paper presents a model-based testing framework for probabilistic sys-
tems. Model-based testing (MBT) is an innovative method to automatically
generate, execute and evaluate test cases from a requirements model. By pro-
viding faster and more thorough testing at lower cost, MBT has gained rapid
popularity in industry. A wide variety of MBT frameworks exist, capable of
handling different system aspects, such as functional properties [40], real-time
[5,8,22], quantitative aspects [7], and continuous behaviour [27]. As stated, MBT
approaches dealing with probability are underdeveloped.

Our Approach. Our specification is given as probabilistic input/output transi-
tion system pIOTS, a mild generalization of the PA model. As usual, pIOTSs
contain two type of choices, non-deterministic choices model choices that are not
under the control of the system. As argued in [33], these are needed to model
phenomena like implementation freedom, scheduler choices, intervals of proba-
bility and interleaving. Probabilistic choices model random choices made by the
system (e.g., coin tosses) or nature (e.g., failure probabilities, degradation rates).

Important contribution are our algorithms to automatically generate, exe-
cute and evaluate test cases from a specification pIOTS. These test cases are
probabilistic and check if both the functional and the probabilistic behaviour
conform to the specification. Probability is observed through frequencies, hence
we execute each test multiple times. We use statistical hypothesis testing, in
particular the χ2 test, to assess whether a test case should pass or fail. Technical
complication here is the non-determinism in pIOTSs, which prevents us from
directly using the χ2 test. Rather, we first need to find the best resolution of the
non-determinism that could have led to these observations. To do so, we set up
a non-linear optimization problem that finds the best fit for the χ2 test.

Key result of our paper is the soundness and completeness of our framework.
Soundness states that each test case we derive contains the correct verdict: a
pass if the behaviour observed during testing conforms to the requirements; a
fail if it does not. Completeness states that the framework is powerful enough
to discover each deviation of non-conforming implementations. Formulating the
soundness and completeness results requires a formal notion of conformance.
Here, we propose the pioco-relation, which pins down when an implementation
1 Note that the popular topic of statistical testing is concerned with choosing the test

inputs probabilistically; it does not check for the correctness of the random choices
made by a system itself.

Model-Based Testing of Probabilistic Systems 253

modelled as pIOTS conforms to a specification pIOTs. We prove several proper-
ties of the pioco-relation, in particular it being a conservative extension of ioco.
Lastly, we illustrate our approach with two case studies: the exponential binary
back off protocol, and the IEEE 1394 root contention protocol.

While test efficiency is important, this paper focusses on the methodologi-
cal set up and correctness. Important future work is to optimize the statistical
verdicts we derive and to provide a fully fledged implementation of our methods.

Related Work. Probabilistic testing preorders and equivalences are well stud-
ied [11,13,34], defining when two probabilistic transition systems are equivalent,
or one subsumes the other. In particular, early and influential work by [21]
introduces the fundamental concept of probabilistic bisimulation via hypothesis
testing. Also, [9] shows how to observe trace probabilities via hypothesis test-
ing. Executable test frameworks for probabilistic systems have been defined for
probabilistic finite state machines [17,24], dealing with mutations and stochastic
timing, Petri nets [6], and CSL [35,36]. The important research line of statis-
tical testing [4,42,43] is concerned with choosing the inputs for the SUT in a
probabilistic way in order to optimize a certain test metric, such as (weighted)
coverage. The question on when to stop statistical testing is tackled in [29].

An approach similar in the spirit of ours is by Hierons et al. [16]. However,
our model can be considered as an extension of [16] reconciling probabilistic and
non-deterministic choices in a fully fledged way. Being more restrictive enables
[16] to focus on individual traces, whereas we use trace distributions.

Furthermore, the current paper extends a workshop paper by [14] that intro-
duced the pioco-relation and roughly sketched the test case process. Novel con-
tributions of our current paper are 1. a more generic model pIOTS model that
includes internal transitions, 2. the soundness and completeness results, 3. solid
definitions of test cases, test execution, and verdicts, 4. the treatment of quies-
cence, i.e., absence of outputs, 5. the handling of probabilistic test cases.

Overview of the Paper. Section 2 sets the mathematical framework and intro-
duces pIOTSs, adversaries and trace distributions. Section 3 shows how we
generate and execute probabilistic tests and evaluate them functionally and sta-
tistically. Section 4 introduces the pioco relation and shows the soundness and
completeness of our testing method. Two case studies can be found in Sect. 5.
Lastly Sect. 6 ends the paper with future work and conclusions.

2 Preliminaries

2.1 Probabilistic Input/Output Systems

We start by introducing some standard notions from probability theory. A dis-
crete probability distribution over a set X is a function μ : X −→ [0, 1] such that∑

x∈X μ (x) = 1. The set of all distributions over X is denoted by Distr (X).
The probability distribution that assigns 1 to a certain element x ∈ X is called
the Dirac distribution over x and is denoted Dirac (x).

254 M. Gerhold and M. Stoelinga

s0 s1δ
0.5

0.5
s0 s1δ

0.4

0.6

s0 s1

s2

s3

δ

Fig. 1. Specification and two implementations of a shuffle music player. Actions sepa-
rated by commas indicate that two transitions are enabled from the state.

A probability space is a triple (Ω,F ,P), such that Ω is a set, F is a σ-
field of Ω, and P : F → [0, 1] a probability measure such that P (Ω) = 1 and
P (

⋃∞
i=0 Ai) =

∑∞
i=0 P (Ai) for Ai ∈ F , i = 1, 2, . . . pairwise disjoint.

Definition 1. A probabilistic input/output transition system is a sixtuple A =
(S, s, LI , LO, LH ,Δ), where

– S is a finite set of states,
– s0 is the unique starting state,
– LI , LO and LH are disjoint sets of input, output and internal labels respec-

tively, containing a special quiescence label δ ∈ LO. We write L = LI ∪Lδ
O∪LH

for the set of all labels.
– Δ ⊆ S×Distr (L × S) a finite transition relation such that for all input actions

a?, μ (a?, s′) > 0 implies μ (b, s′′) = 0 for all b �= a?.

We use “?” to suffix input and “!” to suffx output. We write s
μ,a−−→ s′ if (s, μ) ∈ Δ

and μ (a, s′) > 0; and s → a if there are μ ∈ Distr (L × S) and s′ ∈ S such that
s

μ,a−−→ s′ (s��→a if not). We write s
μ,a−−→A s′, etc. to clarify ambiguities if needed.

Lastly, A is input-enabled if for all s ∈ S we have s → a? for all a ∈ LI .

Following [15], pIOTSs are input-reactive and output-generative. Upon receiv-
ing an input, the pIOTS decides probabilistically which next state to move to.
On producing an output, the pIOTS chooses both the output action and the
state probabilistically. As required in clause 4 of Definition 1, this means that
each transition can either involve a single input action, or several outputs, quies-
cence or internal actions. Note that a state can enable input and output transi-
tions albeit not in the same distribution. Furthermore, in testing, a verdict must
also be given if the system-under-test is quiescent, i.e., produces no output at
all. Hence, the requirements model must explicitly indicate when quiescence is
allowed, which is expressed by a special output label δ, for details see [39,41].

Example 2. Figure 1 shows three models of a simple shuffle mp3 player with
two songs. The pIOTS in (Fig. 1a) models the requirements: pressing the shuffle
button enables the two songs with probability 0.5 each, repeatedly until stop is
pressed.

Model-Based Testing of Probabilistic Systems 255

Implementation (Fig. 1b) is subject to a small probabilistic deviation. In
implementation (Fig. 1c) the same song cannot be played twice in a row with-
out intervention of the shuffle button. States without enabled output transition
allow quiescence, denoted by δ transitions. The model-based testing framework
established in the paper is capable of detecting all of the above flaws.

Parallel composition is defined in a standard fashion. Two pIOTSs in compo-
sition synchronize on shared actions, and evolve independently on others. Since
the transitions in the component pIOTSs are stochastically independent, we
multiply the probabilities when taking shared actions, denoted by μ × ν. To
avoid name clashes, we only compose compatible pIOTSs. Note that parallel
composition of two input-enabled pIOTSs yields a pIOTS.

Definition 3. Two pIOTSs A = (S, s0, LI , LO, LH ,Δ) and A′ = (S′, s′
0, L

′
I ,

L′
O, L′

H ,Δ′), are compatible if LO ∩ L′
O = {δ}, LH ∩ L′ = ∅ and L ∩ L′

H = ∅.
Their parallel composition is the tuple

A || A′ = (S′′, (s0, s′
0) , L′′

I , L′′
O, L′′

H ,Δ′′) , where

S′′ = S × S′, L′′
I = (LI ∪ L′

I) \ (LO ∪ L′
O), L′′

O = LO ∪ L′
O, L′′

H = LH ∪ L′
H , and

finally Δ′′ = {((s, t) , μ) ∈ S′′ × Distr (L′′ × S′′) |

μ ≡

⎧
⎪⎨

⎪⎩

ν1 × ν2 if ∃a ∈ L ∩ L′ such that s
ν1,a−−→ ∧t

ν2,a−−→
ν1 × 1 if ∀a ∈ L with s

ν1,a−−→ wehave t��→a

1 × ν2 if ∀a ∈ L′ with t
ν2,a−−→ wehave s��→a

},

where (s, ν1) ∈ Δ,(t, ν2) ∈ Δ′ respectively, and ν1 ×1 ((s, t) , a) = ν1 (s, a) ·1 and
1 × ν2 ((s, t) , a) = 1 · ν2 (t, a).

2.2 Paths and Traces

We define the usual language concepts for LTSs. Let A = (S, s0, LI , LO, LH ,Δ)
be a pIOTS. A path π of A is a (possibly) infinite sequence of the following form

π = s1μ1a1s2μ2a2s3μ3a3s4 . . . ,

where si ∈ S, ai ∈ L and μi ∈ Distr (L × S), such that each finite path ends in
a state and si

μi+1,ai+1−−−−−−→ si+1 for each non-final i. We use last (π) to denote the
last state of a finite path (last (π) = ∞ for infinite paths). The set of all finite
paths of A is denoted by Path∗ (A) and all infinite paths by Path (A).

The associated trace of a path π is obtained by omitting states, distributions
and internal actions, i.e. trace (π) = a1a2a3 Conversely, trace−1 (σ) gives
the set of all paths, which have trace σ. The length of a path is the number of
occurring actions on its associated trace. All finite traces of A are summarized in
traces (A). The set of complete traces, ctraces (A), contains every trace based on
paths ending in states that do not enable any more actions. We write outA (σ)
for the set of all output actions enabled with positive probability after trace σ.

256 M. Gerhold and M. Stoelinga

2.3 Adversaries and Trace Distributions

Very much like traces of LTSs are obtained by first selecting a path and by then
removing all states and internal actions, we do the same in the probabilistic case.
First, we resolve all non-deterministic choices in the pIOTS via an adversary and
then we remove all states to get the trace distribution.

The resolution of the non-determinism via an adversary leads to a purely
probabilistic system, in which we can assign a probability to each finite path.
A classical result in measure theory [12] shows that it is impossible to assign a
probability to all sets of traces, hence we use σ-fields F consisting of cones.

Adversaries. Following the standard theory for probabilistic automata [38], we
define the behaviour of a pIOTS via adversaries (a.k.a. policies or schedulers) to
resolve the non-deterministic choices in pIOTSs; in each state of the pIOTS, the
adversary may choose which transition to take or it may also halt the execution.

Given any finite history leading to a state, an adversary returns a discrete
probability distribution over the set of next transitions. In order to model ter-
mination, we define schedulers such that they can continue paths with a halting
extension, after which only quiescence is observed.

Definition 4. An adversary E of a pIOTS A = (S, s0, LI , LO, LH ,Δ) is a
function

E : Path∗ (A) −→ Distr (Distr (L × S) ∪ {⊥}) ,

such that for each finite path π, if E (π) (μ) > 0, then (last (π) , μ) ∈ Δ or
μ ≡⊥. We say that E is deterministic, if E (π) assigns the Dirac distribution to
every distribution after all π ∈ Path∗ (A). The value E (π) (⊥) is considered as
interruption/halting. An adversary E halts on a path π, if E (π) (⊥) = 1. We
say that an adversary halts after k ∈ N steps, if it halts for every path of length
greater or equal to k. We denote all such finite adversaries by adv (A, k).

Intuitively an adversary tosses a multi-faced and biased die at every step
of the computation, thus resulting in a purely probabilistic computation tree.
The probability assigned to a path π is obtained by the probability of its cone
Cπ = {π′ ∈ Path (A) | π � π′}. We use the inductively defined path probability
function QE , i.e. QE (s0) = 1 and QE (πμas) = QE (π) E (π) (μ) μ (a, s). This
function enables us to assign a unique probability space (ΩE ,FE , PE) associated
to an adversary E. Thus, the probability of π is PE (π) = PE (Cπ) = QE (π).

Trace Distributions. A trace distribution is obtained from (the probability space
of) an adversary by removing all states. Thus, the probability assigned to a set
of traces X is the probability of all paths whose trace is an element of X.

Definition 5. The trace distribution H of an adversary E, denoted H = trd (E)
is the probability space (ΩH ,FH , PH) given by

1. ΩH = Lω,
2. FH is the smallest σ-field containing the set {Cβ ⊆ ΩH | β ∈ Lω},
3. PH is the unique prob. measure on FH such that PH (X) = PE

(
trace−1 (X)

)

for X ∈ FH .

Model-Based Testing of Probabilistic Systems 257

We write trd (A) for the set of all trace distributions of A and trd (A, k) for those
halting after k ∈ N. Lastly we write A =TD B if trd (A) = trd (B), A �TD B if
trd (A) ⊆ trd (B) and A �k

TD B if trd (A, k) ⊆ trd (B, k) for k ∈ N.
The fact that (ΩE ,FE , PE) and (ΩH ,FH , PH) define probability spaces, fol-

lows from standard measure theory arguments (see for example [12]).

Example 6. Consider (c) in Fig. 1 and an adversary E starting from the beginning
state s0 scheduling probability 1 to shuf?, 1 to the distribution consisting of song1!
and song2! and 1

2 to both shuffle? transitions in s2. Then choose the paths π =
s0μ1shuf?s1μ2song1!s2μ3shuf?s2 and π′ = s0μ1shuf?s1μ2song1!s2μ4shuf?s1.

We see that σ = trace (π) = trace (π′) and PE (π) = QE (π) = 1
4 and

PE (π′) = QE (π′) = 1
4 , but Ptrd(E) (σ) = PE

(
trace−1 (σ)

)
= PE ({π, π′}) = 1

2 .

3 Testing with pIOTS

3.1 Test Generation

Model-based testing entails the automatic test case generation, execution and
evaluation based on a requirements model. We provide two algorithms for test
case generation: an offline or batch algorithm that generates test cases before
their execution; and an online or on-the-fly algorithm generating test cases dur-
ing execution.

First, we formalize the notion of a (offline) test case over an action signature
(LI , LO). In each state of a test, the tester can either provide some stimulus
a? ∈ LI , or wait for a response of the system or stop the testing process.2

Each of these possibilities can be chosen with a certain probability, leading to
probabilistic test cases. We model this as a probabilistic choice between the
internal actions τobs, τstop and τstim. Note that, even in the non-probabilistic
case, the test cases are often generated probabilistically in practice, but this is
not supported in theory. Thus, our definition fills a small gap here.

Furthermore, note that, when waiting for a system response, we have to
take into account all potential outputs in LO, including the situation that the
system provides no response at all, modelled by δ. Since the continuation of a
test depends on the history, offline test cases are formalized as trees.

Definition 7. A test or test case over an action signature (LI , LO) is a pIOTS
of the form t = (S, s0, LO\ {δ} , LI ∪ {δ} , {τobs, τstim, τstop} ,Δ) such that

– t is internally deterministic and does not contain an infinite path;
– t is acyclic and connected;
– For every state s ∈ S, we either have

- after (s) = ∅, or
- after (s) = {τobs, τstim, τstop}, or
- after (s) = LI ∪ {δ}, or
- after (s) = Lout , such that Lout ⊆ LO\ {δ},

2 Note that in more recent version of ioco theory [41], test cases are input-enabled.
This can easily be incorporated into our framework.

258 M. Gerhold and M. Stoelinga

where after (s) is the set of actions in state s. A test suite T is a set of test
cases. A test case (suite) for a pIOTS AS = (S, s0, LI , LO, LH ,Δ), is a test case
(suite) over (LI , LO).

Note that the action signature of tests has switched input and output label sets.
Definition 8. For a given test t a test annotation is a function

a : ctraces (t) −→ {pass, fail}.

A pair t̂ = (t, a) consisting of a test and a test annotation is called an annotated
test. The set of all such t̂, denoted by T̂ =

{
(ti, ai)i∈I

}
for some index set I, is

called an annotated test suite. If t is a test case for a specification AS we define
the test annotation aAS ,t : ctraces (t) −→ {pass, fail} by

aAS ,t (σ) =

{
fail if ∃� ∈ traces (AS) , a! ∈ Lδ

O : �a! � σ ∧ �a! /∈ traces (AS) ;
pass otherwise.

Example 9. Figure 2 shows two derived tests for the specification in Fig. 1. Note
that the action signature is mirrored. Therefore if s

μ,a−−→
̂t s′ with a an output

action of the specification, then we have μ = Dirac. Test t̂2 shows how we apply
stimuli, observe or stop with probabilities 1

3 each. If we stimulate, we apply stop!
and shuf! with probability 1

2 each.

fail

pass fail pass failpass pass

δ

δ δ

t̂1

pass

failpass pass pass pass

τobs τstimτstop

1
3

1
3

1
3

1
2

1
2

δ

t̂2

Fig. 2. Two tests derived from
the specification in Fig. 1

Algorithms. The procedure batch in Algorithm 1
generates test cases from a specification, given a
specification pIOTSs AS and a history σ, which
is initially ε. Each step a probabilistic choice is
made to return an empty test, to observe or to
stimulate, denoted with probabilities pσ,1, pσ,2

or pσ,3 respectively. The latter two call the
procedure batch again. If erroneous output is
detected, we stop immediately. We require that
pσ,1 + pσ,2 + pσ,3 = 1.

Algorithm 2 shows a sound way to derive
tests on-the-fly. The inputs are a specification
AS , a concrete implementation AI and a test
length n ∈ N. The algorithm returns a verdict
of whether or not the implementation is ioco
correct in the first n steps. If erroneous out-
put was detected, the verdict will be fail and
pass otherwise. With probability pσ,1 we observe
and with probability pσ,2 we stimulate. The algo-
rithm stops after n steps. Thus, pσ,1 + pσ,2 = 1.

Theorem 10. All test cases generated by Algo-
rithm 1 are test cases according to Definition 7.
All test cases generated by Algorithm 2 assign
the correct verdict according to Definition 8.

Model-Based Testing of Probabilistic Systems 259

AS
σ ∈ traces (AS)

t AS
(AS , σ)

pσ,1· →
{τ }

pσ,2· →
:= {τ }
b! ∈ LO

σb! ∈ traces (AS)
:= ∪ {

b!σ′ |
σ′ ∈ (AS , σb!)

}

:= ∪ {b!}

pσ,3· σa? ∈ traces (AS) →
:= {τ } ∪{

a?σ′ | σ′ ∈ (AS , σa?)
}

b! ∈ LO

σb! ∈ traces (AS)
:= ∪ {

b!σ′ |
σ′ ∈ (AS , σb!)

}

:= ∪ {b!}

AS
AI

n ∈ N

n
σ := ε

|σ| < n
pσ,1· →

b!
δ AI

σ := σb!
σ /∈ traces (AS)

pσ,2 · [σa? ∈ traces (AS)] →

a?
σ := σa?

b!
a?

σ := σb!
σ /∈ traces (AS)

3.2 Test Evaluation

In our framework, we assess functional behaviour by the test verdict aAS ,t and
probabilistic behaviour via statistics, as elaborated below.

Statistical Verdict. Given a (black box) implementation, the idea is to run an
offline or online test case multiple times, in order to collect a sample. Then, we
check if the frequencies of the traces contained in this sample match the proba-
bilities in the specification via statistical hypothesis testing. However, since the
specification contains non-determism, we cannot apply statistical means directly.
Rather, we check if the observed trace frequencies can be explained, if we resolve
occurring non-determinism in the specification according to some scheduler.

We formulate a hypothesised scheduler that makes the occurrence of the sam-
ple most likely. This gives rise to a purely probabilistic computation tree and
probabilities and expected values for each trace can be calculated. Based on a
predefined level of significance α ∈ (0, 1) we use null hypothesis testing to deter-
mine whether to accept or reject the hypothesised scheduler. If it is accepted,
we have no reason to assume that the implementation differs probabilistically
from the specification and give the pass label. If it is rejected, we assign the fail
verdict, because there is no scheduler to explain the observed frequencies.

260 M. Gerhold and M. Stoelinga

Sampling. To collect a sample, we define the length k ∈ N and width m ∈ N of an
experiment first, i.e. how long shall we observe the machine and how many times
do we want to run it before stopping. Thus, we collect σ1, . . . , σm ∈ traces (AI)
with |σi| = k for i = 1, . . . ,m. We call O = (σ1, . . . , σm) ∈ (

Lk
)m a sample.

We assume the system is governed by a trace distribution Di in every run, thus
running the machine m times, means that a sample is generated by a sequence of
m (possibly) different trace distributions D = (D1,D2, . . . , Dm) ∈ trd (AI , k)m.

Each run the implementation makes two choices. (1) It chooses a trace distri-
bution Di and (2) Di chooses a trace σi. Once a trace distribution Di is chosen,
it is solely responsible for the trace σi, meaning that for i �= j the choice of σi

by Di is independent of the choice σj by Dj .

Frequencies. The frequency function is defined as freq :
(
Lk

)m → Distr
(
Lk

)
,

such that freq (O) (σ) = |{i=1,...,m∧σ=σi}|
m . Assume that k,m ∈ N, D and σ ∈ Lk

are fixed. Then a sample O can be treated as a Bernoulli experiment of length
m, where success occurs in position i ∈ {1, . . . ,m} if σ = σi. Thus, the success
probability in the i-th step is given by PDi

(σ). So assume Xi are Bernoulli
distributed random variables for i = 1, . . . , m. We define a new random variable
as Z = 1

m

∑m
i=1 Xi, which represents the frequency of success in m steps governed

by D. Thus the expected frequency is given as

ED
σ := E (Z) =

1
m

m∑

i=1

E (Xi) =
1
m

m∑

i=1

PDi
(σ).

It is
∑

σ ED
σ = 1, which means ED is the distribution expected under D.

Acceptable Outcomes. We will accept a sample O if freq (O) lies within some
distance r of the expected distribution ED. Recall the definition of a ball cen-
tred at x ∈ X with radius r as Br (x) = {y ∈ X | dist (x, y) ≤ r}. All distri-
butions deviating at most by r from the expected distribution are contained
within the ball Br

(
ED

)
, where dist (u, v) := supσ∈Lk | u (σ) − v (σ) | and u

and v are distributions. In order to minimize the error of falsely accepting a
sample, we choose the smallest radius, such that the error of falsely rejecting
a sample is not greater than a predefined level of significance α ∈ (0, 1) by
r̄ := inf

{
r | PD

(
freq−1

(
Br

(
ED

)))
> 1 − α

}
.

Definition 11. For k,m ∈ N and a pIOTS A the acceptable outcomes under
D ∈ trd (A, k)m of significance level α ∈ (0, 1) are given by the set of obser-
vations Obs (D, α, k,m) =

{
O ∈ (

Lk
)m | dist

(
freq (O) ,ED

) ≤ r̄
}
. The set of

observations of A of significance level α ∈ (0, 1) is given by

Obs (A, α, k,m) =
⋃

D∈trd(A,k)m

Obs (D, α, k,m).

The defined set of observations of a pIOTS A therefore has two properties,
reflecting the error of false rejection and false acceptance respectively.

Model-Based Testing of Probabilistic Systems 261

1. For D ∈ trd (A) of length k, we have PD (Obs (A, α, k,m)) ≥ 1 − α,
2. For D′ /∈ trd (A) of length k, we have PD′ (Obs (A, α, k,m)) ≤ βm,

where α is the predefined level of significance and βm is unknown but minimal by
construction. Note that βm → 0 as m → ∞, thus the error of falsely accepting
an observation decreases with increasing sample width.

Application. This framework has two problems for practical applications: (1) the
parameter r̄ may be hard to find and (2) for a given sample, it is no trivial task
to find the trace distribution, that gives it maximal likelihood, i.e.

Pk,m
A (O) := max

D∈(trd(A,k)\trd(A,k−1))m
PD (O).

The parameter r̄ gives the best fit, but finding it is no trivial task. It is of
interest for the soundness and completeness proofs, but in practice we will use
χ2 hypothesis testing. The empirical value χ2 =

∑m
i=1(n (σi) − mED

σi
)2/mED

σi
,

where n (σ) is the amount σ occurred in the sample, is compared to critical
values of given degrees of freedom and levels of significance. These values can be
calculated or looked up in a χ2 table.

Since expectations in our construction depend on a scheduler/trace distribu-
tion to explain a possible sample, it is of interest to find the best fit. Hence, we
are trying to solve the minimisation

min
D

m∑

i=1

(
n (σi) − mED

σi

)2

mED
σi

. (1)

By construction, we want to optimize the probabilities pi used by a scheduler
to resolve non-determinism. This turns (1) into a minimisation of a rational
function f (p) /g (p) with inequality constraints on the vector p. As shown in
[25], minimizing rational functions is NP-hard. This approach optimizes one
possible trace distribution to fit the sample data instead of finding m different
ones. This topic could be handled in future research, with the assumption of one
distribution which lets the implementation choose different trace distributions.

Verdict Function. With this framework, the following decision process sum-
marizes if an implementation fails for functional and/or statistical behaviour.

Definition 12. Given a specification AS , an annotated test t̂ for AS , k,m ∈ N
where k given by the trace length of t̂ and a level of significance α ∈ (0, 1), we
define the functional verdict as the function v

̂t : pIOTS −→ {pass, fail}, with

v
̂t (AI) =

{
pass if ∀σ ∈ ctraces (AI || t) ∩ ctraces (t) : a (σ) = pass
fail otherwise,

the statistical verdict as the function vα,m
t : pIOTS −→ {pass, fail}, with

vα,m
t (AI) =

{
pass if Pk,m

AS (Obs (AI || t, α, k,m)) ≥ 1 − α

fail otherwise,

262 M. Gerhold and M. Stoelinga

and finally the overall verdict as the function V α,m
̂t

: pIOTS → {pass, fail},
with V α,m

̂t
(AI) = pass if v

̂t (AI) = vα,m
t (AI) = pass and V α,m

̂t
(AI) = fail

otherwise. For an annotated test suite T̂ for AS we lift this to V α,m
̂T

(AI) = pass

if V α,m
̂t

(AI) = pass for each t̂ ∈ T̂ and V α,m
̂T

(AI) = fail otherwise.

4 Conformance, Soundness and Completeness

A key result of our paper is the correctness of our framework, formalized as
soundness and completeness. Soundness states that each test case is assigned
the correct verdict. Completeness states that the framework is powerful enough
to discover each deviation from the specification. Formulating these properties
requires a formal notion of conformance that we formalize as the pioco-relation.

4.1 Probabilistic Input/Output Conformance �pioco

The classical ioco relation [40] states that an implementation conforms to a
specification, if it never provides any unspecified output or quiescence, i.e. for
two IOTSs AI and AS , with AI input-enabled, we say AI �ioco AS , iff

∀σ ∈ traces (AS) : outAI (σ) ⊆ outAS (σ) .

To generalize ioco to pIOTSs, we introduce two auxiliary concepts:

1. the prefix relation for trace distributions H �k H ′ is the analogue of trace
prefixes, i.e. H �k H ′ iff ∀σ ∈ Lk : PH (σ) = PH′ (σ)

2. for a pIOTSs A and a trace distribution H of length k, the output continuation
of H in A contains all trace distributions, which are equal up to length k and
assign every trace of length k + 1 ending in input probability 0. We set

outcont (H,A) :=
{
H ′ ∈ trd (A, k + 1) | H �k H ′ ∧ ∀σ ∈ LkLI : PH′ (σ) = 0

}
.

Intuitively an implementation should conform to a specification, if the probabil-
ity of every trace in AI specified in AS , can be matched. Just like in ioco, we
neglect unspecified traces ending in input actions. However, if there is unspeci-
fied output in the implementation, there is at least one adversary that schedules
positive probability to this continuation.

Definition 13. Let AI and AS be two pIOTSs. Furthermore let AI be input-
enabled, then we say AI �pioco AS iff

∀k ∈ N∀H ∈ trd (AS , k) : outcont (H,AI) ⊆ outcont (H,AS) .

The pioco relation conservatively extends the ioco relation, i.e. both relations
coincide for IOTSs.

Theorem 14. Let A and B be two IOTSs and A be input-enabled, then

A �ioco B ⇐⇒ A �pioco B.

Model-Based Testing of Probabilistic Systems 263

The implementation is always assumed to be input-enabled. If the specification
is input-enabled too, then pioco coincides with trace distribution inclusion.
Moreover, our results show that pioco is transitive, just like ioco.

Theorem 15. Let A, B and C be pIOTSs and let A and B be input-enabled,
then

– A �pioco B if and only if A �TD B.
– A �pioco B and B �pioco C then A �pioco C.

4.2 Soundness and Completeness

Talking about soundness and completeness when referring to probabilistic sys-
tems is not a trivial topic, since one of the main inherent difficulties of statistical
analysis is the possibility of false rejection or false acceptance.

The former is of interest when we refer to soundness (i.e. what is the proba-
bility that we erroneously assign fail to a correct implementation), and the latter
is important when we talk about completeness (i.e. what is the probability that
we assign pass to an erroneous implementation). Thus, a test suite can only fulfil
these properties with a guaranteed (high) probability (c.f. Definition 12).

Definition 16. Let AS be a specification over an action signature (LI , LO),
α ∈ (0, 1) the level of significance and T̂ an annotated test suite for AS . Then

– T̂ is sound for AS with respect to �pioco , if for all input-enabled implementa-
tions Ai ∈ pIOTS and sufficiently large m ∈ N it holds that

AI �pioco AS =⇒ V α,m
̂T

(AI) = pass.

– T̂ is complete for AS with respect to �pioco , if for all input-enabled implemen-
tations AI ∈ pIOTS and sufficiently large m ∈ N it holds that

AI ��pioco AS =⇒ V α,m
̂T

(AI) = fail .

Soundness for a given α ∈ (0, 1) expresses that we have a 1 − α chance that a
correct system will pass the annotated suite for sufficiently large sample width m.
This relates to false rejection of a correct hypothesis or correct implementation
respectively.

Theorem 17 (Soundness). Each annotated test for a pIOTS AS is sound for
every level of significance α ∈ (0, 1) wrt pioco.

Completeness of a test suite is inherently a theoretic result. Since we allow
loops, we require a test suite of infinite size. Moreover, there is still the chance of
falsely accepting an erroneous implementation. However, this is bound from above
by construction, and will decrease for bigger sample sizes (c.f. Definition 11).

Theorem 18 (Completeness). The set of all annotated test cases for a specifi-
cation AS is complete for every level of significance α ∈ (0, 1) wrt pioco.

264 M. Gerhold and M. Stoelinga

5 Experimental Validation

To apply our framework, we implemented two well-known randomized commu-
nication protocols in Java, and tested these with the MBT tool JTorX [3]. The
statistical verdicts were calculated in MatLab with a level of significance α = 0.1.

5.1 Binary Exponential Backoff

The Binary Exponential Backoff protocol is a data transmission protocol between
N hosts, trying to send information via one bus [19]. If two hosts send simul-
taneously, then their messages collide and they pick a new waiting time before
trying again: after i collisions, they randomly choose a slot in {0, . . . 2i −1} until
the message gets through.

A sample of the protocol is shown in Table 1. Note that our specification of
this protocol contains no non-determinism. Thus, calculations in this example
are not subject to optimization to find the best trace distribution.

Table 1. A sample O of trace length k = 5 and depth (number of test runs) m = 105.
Calculations yield χ2 = 14.84 < 17.28 = χ2

0.1, hence we accept the implementation.

n in Table 1 shows how many times each trace occurred and Eσ gives the
expected value. The interval [l0.1, r0.1] represents the 90 % confidence interval
under the assumption of a normal distribution. It gives a rough idea how much
values will deviate for the given level of confidence. However, we are interested in
the multinomial deviation (i.e. less deviation of one trace allows higher deviation
for another trace). For that purpose we use the χ2 score, given by the sum of
the entries of the last column. Calculation shows χ2 = 14.84 < 17.28 = χ2

0.1,
which is the critical value for 11 degrees of freedom and α = 0.1. Consequently,
we accept the hypothesis of the probabilities being implemented correctly.

Model-Based Testing of Probabilistic Systems 265

5.2 IEEE 1394 FireWire Root Contention Protocol

The IEEE 1394 FireWire Root Contention Protocol [37] elects a leader between
two nodes via coin flips: If head comes up, node i picks a waiting time fast i ∈
[0.24μs, 0.26μs], if tail comes up, it waits slow i ∈ [0.57μs, 0.60μs]. After the
waiting time has elapsed, the node checks whether a message has arrived: if so,
the node declares itself leader. If not, the node will send out a message itself,
asking the other node to be the leader. Thus, the four outcomes of the coin flips
are: {fast1, fast2}, {slow1, slow2}, {fast1, slow2} and {slow1, fast2}. The proto-
col contains inherent non-determinism [37]; If different times were picked, the
protocol always terminates. However, if equal times were picked, it may either
elect a leader, or retry depending on the resolution of the non-determinism.

Table 2. A sample O of length k = 5 and depth m = 105 of the FireWire root
contention protocol. Calculations of χ2 are done after optimization in p.

Table 2 shows the recorded traces, where c1? and c2? denote coin1 and
coin2 respectively. We have tested five implementations: Implementation Correct
implements fair coins, while the mutants M1, M2, M3 and M4 were subjects to
probabilistic deviations giving advantage to the second node, i.e. P (fast1) =
P (slow2) = 0.1, P (fast1) = P (slow2) = 0.4, P (fast1) = P (slow2) = 0.45
and P (fast1) = P (slow2) = 0.49 for mutants 1, 2, 3 and 4 respectively. The
expected value ED

σ depends on resolving one non-determinism by varying p
(which coin was flipped first). Note that other non-determinism was not subject
to optimization, but immediately clear by trace frequencies. The calculated χ2

scores are based on an optimized value for p for each sample and compared to
the critical value χ2

0.1 = 17.28 resulting in the verdicts shown.

266 M. Gerhold and M. Stoelinga

6 Conclusions and Future Work

We defined a sound and complete framework to test probabilistic systems, defined
a conformance relation in the ioco tradition called pioco and showed how to derive
probabilistic tests of a requirements model. Verdicts that handle the functional
and statistical behaviour are assigned after a test is applied. We showed that
the correct verdict can be assigned up to arbitrary precision by setting a level
of significance and sufficiently large sample size.

Future work should focus on the practical aspects of our theory: tool support,
larger case studies and more powerful statistical methods to increase efficiency.

References

1. Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: a
survey. IEEE Wireless Commun. 11(6), 6–28 (2004)

2. Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate bayesian computation
in population genetics. Genetics 162(4), 2025–2035 (2002)

3. Belinfante, A.: JTorX: a tool for on-line model-driven test derivation and execution.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 266–270.
Springer, Heidelberg (2010)

4. Beyer, M., Dulz, W.: Scenario-based statistical testing of quality of service require-
ments. In: Leue, S., Systä, T.J. (eds.) Scenarios: Models, Transformations and
Tools. LNCS, vol. 3466, pp. 152–173. Springer, Heidelberg (2005)

5. Bohnenkamp, H.C., Belinfante, A.: Timed testing with TorX. In: Fitzgerald, J.S.,
Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 173–188. Springer,
Heidelberg (2005)

6. Böhr, F.: Model based statistical testing of embedded systems. In: IEEE 4th Inter-
national Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pp. 18–25 (2011)

7. Bozga, M., David, A., Hartmanns, A., Hermanns, H., Larsen, K.G., Legay, A.,
Tretmans, J.: State-of-the-art tools and techniques for quantitative modeling and
analysis of embedded systems. In: DATE, pp. 370–375 (2012)

8. Briones, Laura Brandán, Brinksma, Ed: A test generation framework for quiescent
real-time systems. In: Grabowski, Jens, Nielsen, Brian (eds.) FATES 2004. LNCS,
vol. 3395, pp. 64–78. Springer, Heidelberg (2005)

9. Cheung, L., Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic
automata. J. ACM 54(6), 45 (2007). Article No. 29

10. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009)

11. Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S.: Testing preorders for probabilis-
tic processes. Inform. Comput. 154(2), 93–148 (1999)

12. Cohn, D.L.: Measure Theory. Birkhäuser, Boston (1980)
13. Deng, Y., Hennessy, M., van Glabbeek, R.J., Morgan, C.: Characterising Testing

Preorders for Finite Probabilistic Processes. CoRR (2008)
14. Gerhold, M., Stoelinga, M.: Ioco Theory for Probabilistic Automata. In: Proceed-

ings of the Tenth Workshop on MBT, pp. 23–40 (2015)

Model-Based Testing of Probabilistic Systems 267

15. van Glabbeek, R.J., Smolka, S.A., Steffen, B., Tofts, C.: Reactive, Generative, and
Stratified Models of Probabilistic Processes, pp. 130–141. IEEE Computer Society
Press (1990)

16. Hierons, R.M., Núñez, M.: Testing probabilistic distributed systems. In: Hatcliff,
J., Zucca, E. (eds.) FMOODS 2010, Part II. LNCS, vol. 6117, pp. 63–77. Springer,
Heidelberg (2010)

17. Hierons, R.M., Merayo, M.G.: Mutation testing from probabilistic and stochastic
finite state machines. J. Syst. Softw. 82, 1804–1818 (2009)

18. Hwang, I., Cavalli, A.R.: Testing a probabilistic FSM using interval estimation.
Comput. Netw. 54, 1108–1125 (2010)

19. Jeannet, B., D’Argenio, P.R., Larsen, K.G.: Rapture: a tool for verifying markov
decision processes. In: Tools Day (2002)

20. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

21. Larsen, K.G., Skou, A.: Bisimulation Through Probabilistic Testing, pp. 344–352.
ACM Press (1989)

22. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79–94. Springer, Heidelberg (2005)

23. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with Generalized Stochastic Petri Nets. Wiley, New York (1994)

24. Merayo, M.G., Hwang, I., Núñez, M., Cavalli, A.: A statistical approach to test sto-
chastic and probabilistic systems. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM
2009. LNCS, vol. 5885, pp. 186–205. Springer, Heidelberg (2009)

25. Nie, J., Demmel, J., Gu, M.: Global minimization of rational functions and the
nearest GCDs. J. Global Optim. 40(4), 697–718 (2008)

26. Paige, B., Wood, F.: A Compilation Target for Probabilistic Programming
Languages. CoRR arXiv:1403.0504 (2014)

27. Peters, H., Knieke, C., Brox, O., Jauns-Seyfried, S., Krämer, M., Schulze, A.:
A test-driven approach for model-based development of powertrain functions. In:
Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 294–301. Springer,
Heidelberg (2014)

28. Pfeffer, A.: Practical probabilistic programming. In: Frasconi, P., Lisi, F.A. (eds.)
ILP 2010. LNCS, vol. 6489, pp. 2–3. Springer, Heidelberg (2011)

29. Prowell, S.J.: Computations for Markov Chain Usage Models. Technical Report
(2003)

30. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley, New York (2014)

31. Remke, A., Stoelinga, M. (eds.): Stochastic Model Checking. LNCS, vol. 8453.
Springer, Heidelberg (2014)

32. Russell, N., Moore, R.: Explicit modelling of state occupancy in hidden markov
models for automatic speech recognition. In: Acoustics, Speech, and Signal Process-
ing, IEEE International Conference on ICASSP 1985, vol. 10, pp. 5–8 (1985)

33. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Cambridge, MA, USA (1995)

34. Segala, R.: Testing Probabilistic Automata. In: Sassone, V., Montanari, U. (eds.)
CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996)

35. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004)

http://arxiv.org/abs/1403.0504

268 M. Gerhold and M. Stoelinga

36. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005)

37. Stoelinga, M., Vaandrager, F.W.: Root contention in IEEE 1394. In: Katoen, J.-P.
(ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601,
pp. 53–74. Springer, Heidelberg (1999)

38. Stoelinga, M.: Alea jacta est: verification of probabilistic, real-time and parametric
systems. Ph.D. thesis, Radboud University of Nijmegen (2002)

39. Stokkink, W.G.J., Timmer, M., Stoelinga, M.I.A.: Divergent quiescent transition
systems. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 214–231.
Springer, Heidelberg (2013)

40. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Softw. Concepts Tools 17(3), 103–120 (1996)

41. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

42. Walton, G.H., Poore, J.H., Trammell, C.J.: Statistical Testing of Software Based
on a Usage Model. Softw. Pract. Exper. 25(1), 97–108 (1995)

43. Whittaker, J.A., Thomason, M.G.: A markov chain model for statistical software
testing. IEEE Trans. Softw. Eng. 20(10), 812–824 (1994)

An Iterative Decision-Making Scheme
for Markov Decision Processes

and Its Application to Self-adaptive Systems

Guoxin Su1(B), Taolue Chen2, Yuan Feng3, David S. Rosenblum1,
and P.S. Thiagarajan4

1 School of Computing, National University of Singapore, Singapore, Singapore
guoxinsu@gmail.com

2 Department of Computer Science, Middlesex University London, London, UK
3 Centre for Quantum Computation and Intelligent Systems,

University of Technology Sydney, Sydney, Australia
4 Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA

Abstract. Software is often governed by and thus adapts to phenom-
ena that occur at runtime. Unlike traditional decision problems, where a
decision-making model is determined for reasoning, the adaptation logic
of such software is concerned with empirical data and is subject to practi-
cal constraints. We present an Iterative Decision-Making Scheme (IDMS)
that infers both point and interval estimates for the undetermined transi-
tion probabilities in a Markov Decision Process (MDP) based on sampled
data, and iteratively computes a confidently optimal scheduler from a
given finite subset of schedulers. The most important feature of IDMS is
the flexibility for adjusting the criterion of confident optimality and the
sample size within the iteration, leading to a tradeoff between accuracy,
data usage and computational overhead. We apply IDMS to an existing
self-adaptation framework Rainbow and conduct a case study using a
Rainbow system to demonstrate the flexibility of IDMS.

1 Introduction

Software is often governed by and thus adapts to phenomena that occur at run-
time [22]. One typical example is the control software of autonomous systems,
such as driverless vehicles. Because the occurrence of runtime phenomena is
asynchronous with respect to the flow of the application logic, because not all
information about the phenomena is available at the design time, and because
the specification of the adaptive behavior may evolve over time, it is advanta-
geous to gather the complex adaptation logic into a component separated from

This work was partially supported by the Singapore Ministry of Education (Grant
Nos. R-252-000-458-133 and MOE2015-T2-1-137), the Australian Research Council
(Grant Nos. DP130102764 and DP160101652), the National Natural Science Founda-
tion of China (Grant Nos. 61428208 and 61502260), the CAS/SAFEA International
Partnership Program for Creative Research Team, and an overseas grant from the
State Key Laboratory of Novel Software Technology at Nanjing University.

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 269–286, 2016.
DOI: 10.1007/978-3-662-49665-7 16

270 G. Su et al.

the application logic. In contrast to traditional decision problems where a deci-
sion model, such as a Markov Decision Process (MDP) [27], is determined for
reasoning, the adaptation logic of autonomous systems is governed by empirical
data and is subject to practical constraints. In many situations, one has to sacri-
fice the optimality of an adaptive solution to a certain extent in order to satisfy
various Quality-of-Service (QoS) constraints.

Consider a Web system that provides news content services. At some moment,
the system may detect high latency of content delivery. Suppose that the system
can lower the content fidelity (such as delivering multimedia contents in the text
mode) and/or increase the server pool size, and that the benefits or costs of these
operations are measured quantitatively. Further, to achieve more sophisticated
effects, operations can be combined to form a strategy. For example, one simple
strategy could be the following: Once “high latency” is detected, increase the
number of Virtual Machine (VM) instances by one; if “high latency” persists,
switch from the multimedia mode to the text mode. Because multiple strate-
gies built into the adaptation logic may be triggered by the same condition, an
additional mechanism is required to select one of them.

A key challenge of the strategy selection for the Web system is that some
probability parameters, such as successful chances of operations, are not fixed.
For example, if the VM number is increased by one, the probability that latency
will drop below the threshold may increase, but it still has to be estimated based
on runtime data. While the idealized goal is to select an optimal strategy, it is
important to take into account the practical constraints. For example, obsolete
data no longer reflects the current environmental situation; the time frame of
data sampling may be constrained by the tolerance of adaptation delay; the
sampling frequency may be restricted because of its performance overhead on
the network; and last but not the least, the adaptation should not downgrade
the functional performance of the system by consuming too much computational
capacity (e.g., CPU and RAM). In short, besides decision accuracy, runtime
decision-making has to address the limitation of data and computation resource.

The above adaptation model for the Web system can be formalized as an
MDP in which actions represent operations and schedulers represent strategies.
The runtime data are stored in a data structure (i.e., a set of integer matrices)
for estimating the transition probabilities of the MDP. Therefore, the prob-
lem of strategy selection is an instance of the general problem of minimizing
the (expected) cumulative cost for an MDP with empirically determined tran-
sition probabilities and a given subset of schedulers. Despite this problem is
well understood in the theory of MDPs [27], our first contribution is an Itera-
tive Decision-Making Scheme (IDMS) that supports a trade-off between three
important metrics, namely, accuracy, data usage and computational overhead.
The basic idea of IDMS is as follows:

1. We infer both point and interval estimates of transition probabilities for the
MDP decision model based on the data structure for runtime data.

2. Next, we compute a scheduler that minimizes the cumulative cost for a given
reachability problem.

An Iterative Decision-Making Scheme for Markov Decision Processes 271

3. We then determine whether this scheduler meets a criterion called confident
optimality. If yes, or if the maximal number of iterative steps is reached, the
iteration terminates; otherwise, the iteration returns to data sampling.

We formalize three metrics for IDMS: (i) the probability that a confidently opti-
mal scheduler is truly optimal, namely accuracy; (ii) the average sample size of
the iteration, which is a direct metric of data usage; and (iii) the average time
of iteration, which measures computational overhead conveniently. The trade-
off among these three metrics is realized by adjusting the criterion of confident
optimality and the sample size during the iteration. The core method of IDMS
is a value-iteration algorithm developed from probabilistic model checking [19].

The second contribution of this paper is an application of IDMS to self-
adaptive systems. Several high-level frameworks and approaches based on prob-
abilistic model checking have been proposed to aid the design of self-adaptive
systems, but with emphasis on different aspects of the adaptation [3,4,18,20,23].
However none of these works address the problem of making the aforementioned
tradeoff in the adaptation. We demonstrate that IDMS can be naturally embed-
ded into the Rainbow framework [11] which employs a standard, point-valued
MDP as its decision model, and thus extends the adaptation function of the
latter. We present a case study on a Rainbow system and the empirical evidence
that demonstrates the flexibility of IDMS.

The remainder of the paper is organized as follows. Section 2 presents the
formal models and core method. Section 3 presents the IDMS scheme. Section 4
describes the application to self-adaptive systems. Section 5 presents the case
study. Section 6 reports the related work. Section 7 concludes the paper.

2 Formal Model and Value-Iteration Method

In this section, we present our formal models and value-iteration method. The
position of our method in the state of the art is discussed in Sect. 6.

Definition 1 (MDP). An MDP is a tuple M = (S,Act, P, α, C) where

– S is a finite, non-empty state space,
– Act is a finite non-empty set of actions,
– α is the initial distribution over S,
– P = {Pa}a∈Act is a family of transition probability matrices indexed by a ∈

Act, and
– C : S → R≥0 is a cost function.

We require that, for each a ∈ Act and s ∈ S, Pa[s, t] ≥ 0 for all t ∈ S and∑
t∈S Pa[s, t] ∈ {0, 1}. We say action a is enabled at s if

∑
t∈S Pa[s, t] = 1.

Schedulers play a crucial role in the analysis of MDPs. For our purposes, it
suffices to consider simple schedulers, in which for each state s, the scheduler
fixes one of the enabled actions at s and selects the same action every time when
the system resides in s. Formally, a simple scheduler is a function σ : S → Act

272 G. Su et al.

such that σ(s) is one of the actions enabled at state s. In our setting, instead
of considering the whole set of schedulers, we work only with a (finite) subset
of simple schedulers Σ specified by the user. A path in M under σ is an infinite
sequence of states ρ = s0s1 · · · such that, for all i ≥ 0, Pa[si, si+1] > 0 for
a = σ(si). Let PathM,σ be the set of paths in M under σ. Let PathM,σ(s) be
the subset of paths that start from s. Let PrM,σ be the standard probability
distribution over PathM,σ as defined in the literature [1, Chap. 10].

The expected cumulative cost, or simply cumulative cost, of reaching a set G ⊆
S of goal states (called G-states hereafter) in M under σ, denoted CM,σ(G), is
defined as follows: First, let CM,σ(s,G) be the expected value of random variable
X : PathM,σ(s) → R≥0 such that (i) if s ∈ G then X(ρ) = 0, (ii) if ρ[i] /∈ G for
all i ≥ 0 then X(ρ) = ∞, and (iii) otherwise X(ρ) =

∑n−1
i=0 C(si) where sn ∈ G

and sj /∈ G for all j < n. Then, let CM,σ(G) =
∑

s∈S α(s) · CM,σ(s,G).
By the above definitions, for those states which do not reach the goal states

almost surely (viz. with probability less than 1), the cumulative cost is ∞. We
remark that other definitions on the costs of paths not reaching the goal states
do exist and can be found in [8]. However, they are more involved and are not
needed in the current setting. In order to compute the cumulative cost, we first
have to identify the set of states S=1 from which the probability to reach the goal
states in G is 1. This can be done by a standard graph analysis [1, Chap. 10].
Next, we solve the following system of linear equations with variables (xs)s∈S=1 :

xs = 0 if s ∈ G

xs = C(s) +
∑

t∈S=1
Pa[s, t] · xt if s /∈ G

(1)

where a = σ(s). When the scheduler is fixed, the MDP is reduced to a discrete-
time Markov chain (DTMC) and hence solving (1) is straightforward. One can
employ standard Jacobi or Gauss-Seidel itertaion methods to compute the least
fixpoint [31]. In detail, one starts from x(0) where x

(0)
s = 0 for all s ∈ S=1,

and computes x
(n+1)
s = C(s) +

∑
t∈S=1

Pa[s, t] · x
(n)
t if s �∈ G and 0 otherwise,

until maxs∈S |x(n+1)
s − x

(n)
s | < ε for some predetermined ε > 0. In practice,

and especially in probabilistic verification, this is usually more efficient than the
Gaussian elimination [19].

Interval-valued MDPs (IMDP) are MDPs where some of the transition prob-
abilities are specified as real intervals.

Definition 2 (IMDP). An IMDP is a tuple MI = (S,Act,P+,P−, α, C) where

– S, Act, α and C are defined the same as in Definition 1,
– P+ = {P+

a }a∈Act, P− = {P−
a }a∈Act are two families of nonnegative matrices

indexed by a ∈ Act, giving the upper and lower bounds of transition prob-
abilities respectively. Further, for each a ∈ Act, P+

a and P−
a have the same

corresponding 0- and 1-entries.

With MI = (S,Act,P+,P−, α, C) we associate a set of MDPs �MI� such that
M = (S,Act,P, α, C) ∈ �MI� if and only if for each a ∈ Act, P−

a ≤ Pa ≤ P+
a .

where ≤ is interpreted entry-wise. We call an M ∈ �MI� an instance of MI .

An Iterative Decision-Making Scheme for Markov Decision Processes 273

Given an IMDP MI and a simple scheduler σ, since the possible cumulative
cost of reaching G-states is in the form of an interval, we are interested in the
bounds of such an interval. The minimum cumulative cost of reaching G-states
in MI under σ is

).

Because the maximum cumulative cost) is symmetrical to the minimum
case, in the remainder of this section, we mainly deal with the latter.

To this end, as before we first identify states that reach the goal states G
almost surely (under σ) and are denoted by S=1. Owing to the assumption made
on IMDPs in Definition 2, this can be done by graph-analysis as on MDPs MI .
For those states not in S=1, the minimal cost is ∞ according to our convention.
We then consider the following Bellman equation over the variables (xs)s∈S=1 :

xs = 0 if s ∈ G

xs = min
P−

a ≤Pa≤P+
a

{C(s) +
∑

t∈S=1
Pa[s, t] · xt} if s /∈ G

(2)

where a = σ(s). Note that Pa is required to be a transition probability matrix.
Let x = (xs)s∈S=1 be the least fixpoint of (2). We easily obtain:

Proposition 1.) =
∑

s∈S α(s)xs.

To solve (2), there are essentially two approaches. The first one is to reduce
it to linear programming (LP). However, despite theoretically elegant, this is
not practical for real-life cases. Instead, we apply the second approach, i.e., the
value-iteration method. For each iteration, the crucial part is to compute

min
P−

a ≤Pa≤P+
a

{
C(s) +

∑
t∈S=1

Pa[s, t] · xt

}

for a given x. This problem can be reduced to a standard linear program. Indeed,
for each s, introduce variables (yt)t∈S and consider the problem:

minimize C(s) +
∑

t∈S=1
ytxt

subject to
∑

t∈S=1
yt = 1 and P−

a [s, t′] ≤ yt′ ≤ P+
a [s, t′] for all t′ ∈ S=1.

This can be solved efficiently via off-shelf LP solvers (note that here xt’s and a are
given). Hence each iteration takes polynomial time. We also remark that the LP
here admits a very simple structure and only contains at most |S| variables (and
usually much less for practical examples), while the direct approach (based on
LP as well) requires at least |S|2+|S| variables and is considerably more involved.
Although it might take exponentially many iterations to reach the least fixpoint,
in practice one usually sets a stopping criteria such as maxs∈S |x(n+1)

s −x
(n)
s | < ε

for a fixed error bound ε > 0.

274 G. Su et al.

G are clear
in the context, to simplify notations we make the following abbreviations:

Fully-Spelled)
Abbreviated

3 Iterative Decision-Making Scheme

In this section, we present main stages and techniques of IDMS and describe the
realization of trade-offs between the three metrics.

3.1 IDMS Preview and Example

IDMS is an iterative process that contains one pre-stage and five runtime stages
(i.e., Stage 1 to 5), as depicted in Fig. 1. The pre-stage builds up a parametric
MDP with transition probability parameters in the design time. At runtime Stage
1 collects data samples and Stage 2 infers point and interval estimates based
on the samples. By instantiating the parameters with the point and interval
estimates, Stage 3 builds up a (concrete) MDP and an IMDP. Stage 4 attempts
to compute a confidently optimal scheduler. Then the process either moves to
Stage 5 where a decision is made or goes back to Stage 1. The process terminates
when either a confidently optimal scheduler is returned, or the maximal time of
iteration (namely the maximal number of steps within the iteration) is reached.
Note as the decision making may need to be repeated periodically at runtime,
Stage 5 may be followed by Stage 1.

A parametric MDP example Meg(θ) is described in Fig. 2. The state space
of Meg(θ) is {s0, . . . , s7, sG} with s0 being the only initial state (i.e., the initial
distribution assigns 1 to s0 and 0 to other states) and sG being the only goal
state. The dashed arrows are probabilistic transitions, labeled by parameters
θ = (θ1, . . . , θ5). The solid arrows are non-probabilistic transitions (or, equiv-
alently, transitions with the fixed probability 1). The wavy arrows represent
non-deterministic transitions, with a and b being two actions. For Meg(θ), the
two actions induce two schedulers, denoted σa and σb, respectively. States of
Meg(θ) are associated with costs ranging from 0 to 2.

Fig. 1. Pre-stage and runtime stages of IDMS

An Iterative Decision-Making Scheme for Markov Decision Processes 275

s0
0 a s1

1

θ1

1−θ1

s2
1

θ2

1−θ2

s3
1

sG
0

b
θ3

1−θ3

s4
2

θ4

1−θ4

s6
1

s5
1

θ5

1−θ5

s7
2

Fig. 2. A parametric MDP example Meg(θ)

3.2 Data Structure and Parameter Estimation

IDMS does not presume a particular method for collecting runtime data but it
stores them in a specific data structure, namely a set of non-negative integer
matrices that are related to schedulers of the parametric MDP. The integer in
each entry represents the number of times that the corresponding transition
is recorded in the sampling time frame. For example, the two integer matrices
related to σa and σb of Meg(θ) are as follows:

Ma :

s1 s2 s3 sG[]
s1 0 N1,2 0 N1,G

s2 0 0 N2,3 N2,G

Mb :

s4 s5 s6 s7 sG[]s0 N0,4 N0,5 0 0
s4 0 0 N4,5 0 N4,G

s5 0 0 0 N5,7 N5,G

where N�,� > 0, with � and 	 denoting (some) elements in {0, . . . , 7, G}, are
integer variables. N�,� is increased by 1 (i.e., N�,� ← N�,� +1) if a transition from
s� to s� is newly observed. Note that zero entries in Ma and Mb remain unchanged
for all time, because according to the structural specification of Meg(θ), the
correspondent transitions are impossible to occur.

The data structure is used to estimate parameters in the parametric MDP.
IDMS adopts two forms of estimation, namely point estimation and interval
estimation, which we illustrate using Ma. Note that Ma is used to estimate
parameters θ1 and θ2. For point estimation, θ1 is estimated as the numerical
value N1,2/(N1,2 +N1,G) and θ2 is estimated as N2,3/(N2,3 +N2,G). For interval
estimation, IDMS assumes that θ1 (resp., θ2) is the mean of a Bernoulli dis-
tribution and (N1,2, N1,G) (resp., (N2,3, N2,G)) forms a random sample of the
distribution. In other words, (N1,2, N1,G) denote a random sample containing
N1,2 copies of 1 and N1,G copies of 0, and (N2,3, N2,G) has a similar meaning.
Therefore, one can employ the standard statistical inference method to derive
a confidence interval for θ1 and one for θ2. By the laws of large numbers, if
N1,2 + N1,G (resp., N2,3 + N2,G) increases then the width of the resulted con-
fidence interval for θ1 (resp., θ2) likely decreases (when the confidence level is
fixed).

276 G. Su et al.

3.3 Confident Optimality

By instantiating the transition probability parameters in the parametric MDP
with the corresponding point estimates and interval estimates, one obtains a
concrete MDP M and an IMDP MI . Note that if [p, q] ⊂ [0, 1] instantiates a
parameter θ then, equivalently, [1 − q, 1 − p] instantiates 1 − θ. Clearly, M and
MI share the same state space S, initial distribution α and cost function C.
Moreover, M is an instance of MI , namely, M ∈ �MI�. From now on, for given
M and MI , we always assume M ∈ �MI�. A key decision-making criterion in
IDMS is formalized as follows:

Definition 3 (Confident Optimality). Given M, MI , G ⊆ S of goal states
and a finite nonempty subset Σ of schedulers, σ∗ ∈ Σ is confidently optimal if,
for all σ ∈ Σ\σ∗, the following two conditions hold:

0.
(3)

In words, a scheduler σ∗ in the given scheduler subset Σ of M (or, equiva-
lently, MI) is confidently optimal if for all other schedulers σ in Σ (i.e., σ �= σ∗):

– The cumulative cost (of reaching G-states) in M under σ∗ is not larger than
the cumulative cost in M under σ;

– The (1/γ)-portion of the difference between the maximum cumulative cost in
MI under σ∗ and the minimum cumulative cost in MI under σ is not larger
than the maximum-minimum difference of cumulative cost in MI under σ∗.

A correct illustrative example is presented in the latter text. It is noteworthy
that, different from an standard MDP problem, a subset of schedulers is explicitly
given in our definition.

The parameter γ, which is specified by the user, has the function of adjusting
the criterion of confident optimality. A confidently optimal scheduler may not
exist for the given MDP and IMDP; in some rare case, there may be more than
one confidently optimal schedulers. Note that if a sufficiently large value for γ is
selected, then the second condition in Eq. (3) is guaranteed to be true. If so, the
definition is degenerated to the standard definition of optimal cumulative costs
for MDPs with point-valued transition probabilities.

Given M,MI , G,Σ, γ, the following procedure decides whether a confidently
optimal scheduler σ∗ exists and returns σ∗ if it exists:

1. Compute Cσ for all σ ∈ Σ, and compute Σ1 ⊆ Σ such that Cσ1 = minσ∈Σ Cσ

if and only if σ1 ∈ Σ1.
∈ Σ.

where σ �= σ∗, then
return σ∗; otherwise, return “no confidently optimal scheduler”.

The procedure relies on the core method of value-iteration presented in Sect. 2.
The computational complexity of is dependent on the core value-iteration

An Iterative Decision-Making Scheme for Markov Decision Processes 277

method and the size of Σ. Note that although the number of all schedulers
in an MDP increases exponentially as the size of the MDP increases, in our case
a specific subset of schedulers Σ is predefined by the model builder. If we sup-
pose the value-iteration takes constant time (e.g., the model is fixed), then the
time complexity of the procedure is linear in the size of Σ.

We present an example to explain how IDMS is affected by γ and the sample
size. Suppose after instantiating θ of Meg(θ) with point estimates and interval
estimates, the cumulative cost intervals for schedulers σa and σb are [l1, u1] and
[l2, u2], respectively. The positions of l1, u1, l2 and u2 are illustrated on the left
side of the following drawing (where 0 ≤ p < q).

p q

l1 u1

l2 u2 p q

l′1 u′
1

l′2 u′
2

If u1 ≤ l2+γ(u1−l1), the above procedure returns σa. But if u1 > l2+γ(u1−
l1), neither σa nor σb is confidently optimal and so the procedure returns “no
confidently optimal scheduler”. If one lowers the value γ and/or increases the
sample size, the computed cost intervals usually shrink, as depicted on the right
side of the above drawing. Then there is a higher probability that a confidently
optimal scheduler (namely σa) is returned from the procedure and the iteration
of IDMS terminates.

3.4 Metrics and Tradeoff

One main advantage of IDMS is the flexibility that enables a tradeoff between the
three important metrics for practical, especially runtime, decision-making. The
three metrics are accuracy of the decision, data usage for making the decision
and computational overhead on the runtime system. Because random sampling
is involved in IDMS, under a specific scheduler of an MDP and an IMDP, the
cumulative cost and the minimum/maximum cumulative costs (of reaching the
goal states) are uncertain. Therefore, a confidently optimal scheduler may be
decided at each iterative step with a certain probability. Further, a confidently
optimal scheduler may not be the truly optimal one, which is defined based on
the unknown real values of the transition probability parameters in the abstract
MDP. In view of this, we define the three metrics as follows:

– Accuracy is the probability that a confidently optimal scheduler is optimal.
– Data usage is the average size of sampled data used in the iteration.
– Computational overhead is measured by the average iteration time (namely,

the average number of iterative steps).

Ideally, one wants to maximize the first one while minimize the latter two.
However, according to laws of statistics this is impossible. To obtain high accu-
racy in a statistical process (including IDMS), a large-sized sample has to be
used; although it is possible to set a high accuracy threshold and then try to
infer the result using a sample whose size is as small as possible, this usually
leads to a costly iterative process. Therefore, a practical solution is to achieve
a suitable tradeoff between the three metrics. In IDMS, to realize this tradeoff,
one can adjust the constant γ and the sample size within the iteration.

278 G. Su et al.

4 Application to Self-adaptive System

In this section, we describe an application of IDMS to self-adaptive systems. A
variety of frameworks are proposed to aid the design of self-adaptive systems
[12,13,25] and we focus on the Rainbow framework.

4.1 Rainbow Framework

We illustrate Rainbow with the example Z.com [11] which is a fictional news
website providing multi-media and textual news service while keeping the cost
of maintaining its server pool within its operational budget. Z.com has a client-
server architecture with three additional adaptation-relevant components, as
shown in Fig. 3: The Sensor collects runtime data; the Manager controls the
adaptation, such as switching the news content mode from multi-media to text
and vice versa; and the Effector executes the adaptation to affect the system.

In Rainbow, the adaptation is specified as strategies in its customized lan-
guage Stitch [9]. A strategy is a tree structure consisting of tactics, which in turn
contain operations. Figure 4 specifies two strategies a and b, guarded by a com-
mon condition cond where SNo and MaxSNo refer to the current server number
and the maximal server number, respectively.1 If strategy a is selected, operation
enlistSever[1] in tactic s1 is first executed. Next, if the variable hiLatency is true
then enlistSever[1] in tactic s2 is executed; otherwise strategy a terminates. Last,

Server 1 ⇒ Sensor

Client
... Manager

Server n ⇐ Effector

Fig. 3. Software architecture of Z.com

de f i ne cond := h iLa t en c y&!TextMode&(SNo<=MaxSNo−2);
s t r a tegy a [cond]{
t a c t i c s 1 : e n l i s t S e r v e r [1] {

t a c t i c s 2 : h iLa tency−>e n l i s t S e r v e r [1] {
t a c t i c s 3 : h iLa tency−>switchToTextMode ;}}}

s t r a tegy b [cond]{
t a c t i c s 4 : hiLoad−>e n l i s t S e r v e r [2] {

t a c t i c s 6 : h iLa tency−>switchToTextMode ;}
t a c t i c s 5 : ! h iLoad−>switchToTextMode{

t a c t i c s 7 : h iLa tency−>e n l i s t S e r v e r [2] ; } }
. . . % othe r s t r a t e g y s p e c i f i c a t i o n

Fig. 4. Strategy specification for Z.com in Stitch

1 For simplicity, the specification does not strictly follow the syntax of Stitch.

An Iterative Decision-Making Scheme for Markov Decision Processes 279

Table 1. Costs of operations in strategies a and b

Utility Dimension Operation

op(s1) op(s2) op(s3) op(s4) op(s5) op(s6) op(s7)

Content 0 0 1 0 1 1 0

Budget 1 1 0 2 0 0 2

if hiLatency persists to be true then switchToTextMode in tactic s3 is executed;
otherwise strategy a terminates. Strategy b is specified in a similar style.

To evaluate strategies, Rainbow uses utilities to describe the costs and ben-
efits of operations. The quantities of utilities are provided by human experts or
stakeholders. Table 1 describes two utilities called content and budget and the
costs of the operations in terms of the two. Note that because there is only one
operation in each tactic of the adaptation specification in Fig. 4, we use tactic
names to label operations—the correspondent operation to an tactic s is denoted
op(s). For example, if switchToTextMode is executed, then the content cost is,
say, 1; if enlistServer[i] with i ∈ {1, 2} is executed, then the budget cost is, say,
i. Then, the overall cost of an operation is the weighted sum of utilities. For
simplicity, we let the weights of all utilities equal to 1.

Rainbow characterizes uncertainty in the detection of guarding conditions
(such as hiLantency in tactic s2) as probabilities called likelihoods. The likelihoods
in strategies a and b are specified in Table 2. Note that because there is one
likelihood parameter in each tactic (except s1) of in Fig. 4, like for operations,
we also use tactic names to label likelihoods—the correspondent operation to an
tactic s is denoted lk(s). We explain how these likelihoods are elicited in Rainbow
later; for now, they are viewed as undetermined parameters.

It is not hard to observe a correspondence between the adaptation specifica-
tion of Z.com and an MPD model, where operations are represented by actions
and strategies are represented by schedulers. Indeed, the Stitch specification
under consideration can be translated into Meg(θ). Therefore, the adaptation
problem in Rainbow is an instance of the problem of selecting a strategy that
minimizes the cumulative cost (of reaching the goal states in the MDP).

4.2 Embedding IDMS into Rainbow

At least two methods to elicit likelihoods are supported in Rainbow. First, like
utilities and their weights, concrete values of likelihoods can be explicitly given
by human experts or stakeholders [9]. Second, sampling methods for estimating
likelihoods are also implemented in Rainbow [7,10]. For example, the Manager
can check the values of Boolean variables hiLatency and hiLoad as the system
operates and record the result. Then, with respect to the condition probabilities
described in Table 2, one easily obtains a sample for each parameter θi. Therefore,
we can embed IDMS into Rainbow economically, just by enhancing the reasoning
mechanism of strategy selection in the Manager with IDMS, but with little
change made to the Sensor and the Effector

280 G. Su et al.

Table 2. Likelihood parameters in strategies a and b

Likelihood Interpretation as a conditional probability

lk(s2) Pr(hiLatency=true | SNo=MaxSNo - 1 & textMode=true)

lk(s3) Pr(hiLatency=true | SNo=MaxSNo & textMode=true)

lk(s4) Pr(hiLoad=true | hiLatency=true & SNo=MaxSNo - 2 & textMode=true)

lk(s4) Pr(hiLoad=false | hiLatency=true & SNo=MaxSNo - 2 & textMode=true)

lk(s6) Pr(hiLatency=true | hiLoad=true & SNo=MaxSNo & textMode=true)

lk(s7) Pr(hiLatency=true | hiLoad=true & SNo=MaxSNo - 2 & textMode=false)

Rainbow exploits point estimates for likelihoods, as its decision model is a
standard MDP. Because the runtime data set cannot be arbitrarily large, point
estimates may be error-prone. Poor strategy selection often causes some extra
cost and reduced benefit. Even worse, the extra cost and reduced benefit may
accumulate if the non-optimal strategy is selected repeatedly. In view of this,
the interval estimation method in IDMS can complement to the point estima-
tion method in Rainbow, and leads to more stable decision-making outputs. By
applying IDMS to Rainbow, another and more important benefit is the pos-
sibility of making a tradeoff between accuracy, data usage and computational
overhead, thus improving the adaptation function of Rainbow.

5 Simulation-Based Experiment

5.1 Methodology and Setting

The general experimental methodology we adopt is simulation. Recall that IDMS
assumes that likelihood parameters in Z.com are means of Bernoulli distribu-
tions. We use Matlab to simulate the generation and collection of runtime data.
To this end, we need to fix the expected values of the Bernoulli random vari-
ables, namely the true values of θ of Meg(θ). We let θ1 = 2

3 , θ2 = 4
7 , θ3 = 1

3 ,
θ4 = 4

9 and θ5 = 4
9 . As the true values of θ are given, we also know which

scheduler is optimal. Indeed, by computation, the overall cost of strategy a is
2.0476 and that of strategy b is 2.0741. Thus, strategy a is optimal. It is note-
worthy that the difference between the above two overall costs may seem small,
but it is non-negligible because they are proportional to the weights of utility
dimensions, which may be large in some case, and also because the extra cost
may accumulate if the adaptation is triggered repeatedly.

To evaluate the flexibility of IDMS for making the intended tradeoff, we
implement the computing procedure presented in Sect. 3.3 in Matlab. Given
a sample of specific size for estimating each parameter θi of θ, and given a
specific value of γ, IDMS terminates with a certain probability, called termina-
tion probability in the experiment. Based on the termination probability, we can
immediately calculate the data usage and the computational overhead. Upon
termination, with a certain probability, the selected scheduler is strategy a. This

An Iterative Decision-Making Scheme for Markov Decision Processes 281

probability, called correctness rate in the experiment, is equal to the metric
of accuracy. Since we can simulate IDMS (applied to Meg(θ)), we can estimate
the correctness rate and termination probability using the standard Monte Carlo
estimation. In this experiment, we estimate the two for different sample sizes
and values of γ. Note that the confidence level of interval estimation is fixed in
IDMS and we set it to be 95 % in the experiment. The Matlab source code and
data are available on http://www.comp.nus.edu.sg/∼sugx/fase16/.

5.2 Experimental Data and Concrete Tradeoffs

The experimental data, summarized in Fig. 5, is generated from samples of n-size
with n ranging from 200 to 5,000 in an increment of 200, and with a selection
of values for γ as specified in the legends of the figures (where “large” refers to
a sufficiently large value of γ such that the computing procedure is degenerated
to a point estimation). For each n, the number of generalized samples is 10,000,
based on which we calculate the correctness rate and termination probability.

Figure 5 demonstrates the dependence of the correctness rate and termination
probability on γ and the sample size. Figure 5(a) shows that as γ decreases or
as the sample size increases, the correctness rate increases. In particular, except
for samples of small size (less than 1,000), IDMS provides a higher correctness
rate than the point estimation method. Figure 5(b) shows that as γ increases or
as the sample size increases, the termination probability increases. Note that if
a sufficiently large value for γ is selected, the termination probability is 1 for
samples of all selected sizes (and thus L8 is not depicted in Fig. 5(b).)

An important implication of Fig. 5 is that, by adjusting the value of γ and the
sample size in different ways, one is able to achieve different tradeoffs between
accuracy, data usage and computational overhead. To illustrate this flexibility,
Table 3 describes three cases where the three metrics have different priorities.
Based on Fig. 5, by selecting different pairs of γ and sample size, we obtain three

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Sample Size

C
or

re
ct

ne
ss

 R
at

es

L1(0.50)
L2(0.60)
L3(0.70)
L4(0.80)
L5(0.85)
L6(0.90)
L7(0.95)
L8(large)

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample Size

Te
rm

in
at

io
n

Pr
ob

ab
ilit

ie
s

L1(0.50)
L2(0.60)
L3(0.70)
L4(0.80)
L5(0.85)
L6(0.90)
L7(0.95)

(b)

Fig. 5. (a) Correctness rates and (b) termination probabilities with different sample
sizes and γ values

http://www.comp.nus.edu.sg/~sugx/fase16/

282 G. Su et al.

Table 3. Priorities of metrics in three different cases

Metric Priority

A B C

Accuracy high medium low

Data usage low medium high

Computational overhead low high high

1000 1500 2000 2500 3000 3500 4000 4500 5000
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Sample Size

C
or

re
ct

ne
ss

 R
at

e

Scheme A
Scheme B
Scheme C

(a)

1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample Size

Te
rm

in
at

io
n

Pr
ob

ab
ilit

y

Scheme A
Scheme B
Scheme C

(b)

Fig. 6. Three iteration schemes in items of (a) correctness rates and (b) termination
probabilities

examples of iteration schemes depicted in Fig. 6. Each marker in Fig. 6 refers
to an iterative step with a specific value of γ and a specific sample size. For
example, setting γ = 0.5 and the sample size as 1,400, according to Fig. 5, we
obtain the leftmost marker of Scheme A in Fig. 6. The other markers in Fig. 6
are identified in the same way. All three schemes terminate with probability
1 before or when the sample size reaches 5,000. It is easy to observe that the
schemes reflect the metric priorities in the corresponding cases in Table 3. For
example, Scheme A has a high correctness rate compared with the other two
schemes, because the priority of accuracy is high in Case A; it has a low average
termination probability and a high number of markers, because the priorities of
both data usage and computational overhead are low in Case A.

6 Related Work

Probabilistic model checking is a relatively mature technique that has been suc-
cessfully applied to a wide range of domains, and we refer the readers to Forejt
et al. [19] for a survey. The IMDP model considered in this paper falls into the
class of probabilistic models with uncertainty, which have received substantial
attention. For instance, in AI research, IMDPs were considered with different
objectives such as discounted sum and limiting average [21,30]. The motivation

An Iterative Decision-Making Scheme for Markov Decision Processes 283

of those works is to come up with an abstract framework, which is different from
our motivation of runtime decision-making. In robust control theory, IMDPs
or MDPs with more general forms of uncertainty are advocated to address the
robustness of the controller under potential perturbation of the system [24,32].
In this paper, we consider expected cumulative costs of reachability proper-
ties. On the computational aspect, some of the mentioned approaches [21,24,30]
also employed a value-iteration method. However, they mostly rely on ordering
between intervals which is not needed in our case. Furthermore, Puggelli et al.
[26] proposed polynomial algorithms for Markov chains with uncertainty based
on optimization techniques, but only for reachability and PCTL properties.

Several high-level frameworks and approaches based on probabilistic model
checking have been proposed for self-adaptive systems recently, but with empha-
sis on different aspects of the adaptation, such as QoS management and opti-
mization [4], adaptation decisions [20], verification with information of confidence
intervals [3], runtime verification efficiency and sensitivity analysis [18], and
proactive verification and adaptation latency [23]. None of those works addressed
the problem of making a practical tradeoff similar to the one supported by IDMS.
Rainbow [9] supports the computation of cumulative costs and/or rewards when
the likelihood parameters in the adaptation strategies are explicitly specified.
Subsequent work [5,6] employs a combination of a simulation method and prob-
abilistic model checking to evaluate properties such as resilience and adaptation
latency. As mentioned, our IDMS can be economically embedded into Rainbow
and extend the adaptation function of the latter.

We mention some other existing approaches to the design of self-adaptive
systems, which rely on mathematical methods related to probability theory and
statistics. Esfahani et al. [15,16] presented a general definition of adaptation
optimality using fuzzy mathematics, which accounts for not only the current
utility but also the optimal consequence of future operations. But IDMS esti-
mates the probability parameters based on runtime data. Epifani et al. [14] pre-
sented the KAMI framework to deal with the inaccuracy of parameters related
to the non-functional aspect of the system (such as reliability and performance),
and Bencomo et al. [2] presented a Bayesian network for modeling self-adaptive
systems. These two approaches rely on the Bayesian (point) estimation method
while IDMS exploits both point and interval estimates from the frequentist sta-
tistics theory. Finally, Filieri et al. [17] constructed approximate dynamic models
of a self-adaptive system and for synthesizing, from those models, a suitable con-
troller that guarantees prescribed multiple non-functional system requirements.
The method they used is from control theory, which is quite different from the
theory of MDPs.

7 Conclusions

We have presented IDMS, an iterative framework that supports a tradeoff among
three important metrics in practical runtime decision-making problems: accu-
racy, data usage and computational overhead. We have also instantiated IDMS
on the Rainbow framework and presented a simulation-based evaluation.

284 G. Su et al.

For future work, we plan to enhance IDMS with a mechanism for automati-
cally adjusting the confident optimality and the sample size based on the given
priorities of the three metrics. Another interesting topic is a generalization of
the value-iteration method in IMDP to synthesize a scheduler that minimizes
the cumulative cost, without prescribing a subset of schedulers.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

2. Bencomo, N., Belaggoun, A., Issarny, V.: Dynamic decision networks for decision-
making in self-adaptive systems: A case study. In: Proceedings of the 8th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS 2013, pp. 113–122. IEEE Press, Piscataway, NJ, USA (2013)

3. Calinescu, R., Ghezzi, C., Johnson, K., Pezzé, M., Rafiq, Y., Tamburrelli, G.:
Formal verification with confidence intervals: A new approach to establishing the
quality-of-service properties of software systems. IEEE Trans. Reliab. 99, 1–19
(2015)

4. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.:
Dynamic QoS management and optimization in service-based systems. IEEE
Trans. Softw. Eng. 37(3), 387–409 (2011)

5. Camára, J., de Lemos, R.: Evaluation of resilience in self-adaptive systems using
probabilistic model-checking. In: 2012 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), pp. 53–62, June 2012

6. Cámara, J., Moreno, G.A., Garlan, D.: Stochastic game analysis and latency aware-
ness for proactive self-adaptation. In: Proceedings of the 9th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS,
pp. 155–164. ACM, New York, NY, USA (2014)

7. Celiku, O., Garlan, D., Schmerl, B.: Augmenting architectural modeling to cope
with uncertainty. In: Proceedings of the International Workshop on Living with
Uncertainty (IWLU 2007), Atlanta, Georgia, USA (2007)

8. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic veri-
fication of competitive stochastic systems. Formal Method Syst. Des. 43(1), 61–92
(2013)

9. Cheng, S.-W.: Rainbow: Cost-Effective Software Architecture-based Self Adapta-
tion. Ph.D. thesis, Carnegie Mellon University (2008)

10. Cheng, S.-W., Garlan, D.: Handling uncertainty in autonomic systems. In: Pro-
ceedings of the International Workshop on Living with Uncertainty (IWLU 2007),
Atlanta, Georgia, USA (2007)

11. Cheng, S.-W., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the
presence of multiple objectives. In: ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2006), Shanghai, China (2006)

12. Cooray, D., Malek, S., Roshandel, R., Kilgore, D.: RESISTing reliability degrada-
tion through proactive reconfiguration. In: Proceedings of the IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2010, pp. 83–92.
ACM, New York, NY, USA (2010)

13. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: A framework for engineering
self-tuning self-adaptive software systems. In: Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2010, pp. 7–16. ACM, New York, NY, USA (2010)

An Iterative Decision-Making Scheme for Markov Decision Processes 285

14. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time parameter adaptation. In: Proceedings of the 31st International Conference
on Software Engineering, ICSE 2009, pp. 111–121. IEEE Computer Society, Wash-
ington, DC, USA (2009)

15. Esfahani, N., Kouroshfar, E., Malek, S.: Taming uncertainty in self-adaptive soft-
ware. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Euro-
pean Conference on Foundations of Software Engineering, ESEC/FSE 2011, pp.
234–244. ACM, New York, NY, USA (2011)

16. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de
Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-
Adaptive Systems. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013)

17. Filieri, A., Hoffmann, H., Maggio, M.: Automated multi-objective control for self-
adaptive software design. In: Proceedings of the 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pp. 13–24 (2015)

18. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantitative
verification and sensitivity analysis at run time. IEEE Trans. Softw. Eng. 42, 75–99
(2015)

19. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011)

20. Ghezzi, C., Pinto, L.S., Spoletini, P., Tamburrelli, G.: Managing non-functional
uncertainty via model-driven adaptivity. In: Proceedings of the International Con-
ference on Software Engineering, ICSE 2013, pp. 33–42. IEEE Press (2013)

21. Givan, R., Leach, S.M., Dean, T.L.: Bounded-parameter Markov Decision
Processes. J. Artif. Intell. 122(1–2), 71–109 (2000)

22. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing-degrees, mod-
els, and applications. ACM Comput. Surv. 40(3), 7: 1–7: 28 (2008)

23. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Proactive self-adaptation under
uncertainty: A probabilistic model checking approach. In: Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pp. 1–12.
ACM, New York, NY, USA (2015)

24. Nilim, A., Ghaoui, L.E.: Robust control of Markov Decision Processes with uncer-
tain transition matrices. Oper. Res. 53(5), 780–798 (2005)

25. Poladian, V., Garlan, D., Shaw, M., Satyanarayanan, M., Schmerl, B., Sousat, J.:
Leveraging resource prediction for anticipatory dynamic configuration. In: First
International Conference on Self-Adaptive and Self-Organizing Systems, SASO
2007, pp. 214–223 (2007)

26. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg
(2013)

27. Puterman, M.L.: Markov decision processes. Handb. Oper. Res. Manage. Sci. 2,
331–434 (1990)

28. Su, G., Feng, Y., Chen, T., Rosenblum, D.S.: Asymptotic perturbation bounds for
probabilistic model checking with empirically determined probability parameters.
IEEE Trans. Softw. Eng. 99, 1–19 (2015)

29. Su, G., Rosenblum, D.S., Tamburrelli, G.: Reliability of run-time quality-of-service
evaluation using parametirc model checking. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering, ICSE 2016. ACM, New York, NY, USA
(2016)

286 G. Su et al.

30. Tewari, A., Bartlett, P.L.: Bounded parameter markov decision processes with aver-
age reward criterion. In: Bshouty, N.H., Gentile, C. (eds.) COLT. LNCS (LNAI),
vol. 4539, pp. 263–277. Springer, Heidelberg (2007)

31. Varga, R.S.: Matrix Iterative Analysis. Springer Series in Computational Mathe-
matics. Springer, Heidelberg (2009)

32. Wiesemann, W., Kuhn, D., Rustem, B.: Robust markov decision processes. Math.
Oper. Res. 38(1), 153–183 (2013)

Family-Based Modeling and Analysis
for Probabilistic Systems – Featuring PROFEAT

Philipp Chrszon(B), Clemens Dubslaff, Sascha Klüppelholz,
and Christel Baier

Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
{chrszon,dubslaff,klueppel,baier}@tcs.inf.tu-dresden.de

Abstract. Feature-based formalisms provide an elegant way to spec-
ify families of systems that share a base functionality and differ in cer-
tain features. They can also facilitate an all-in-one analysis, where all
systems of the family are analyzed at once on a single family model
instead of one-by-one. This paper presents the basic concepts of the tool
ProFeat, which provides a guarded-command language for modeling
families of probabilistic systems and an automatic translation of family
models to the input language of the probabilistic model checker Prism.
This translational approach enables a family-based quantitative analysis
with Prism. Besides modeling families of systems that differ in system
parameters such as the number of identical processes or channel sizes,
ProFeat also provides special support for the modeling and analysis
of (probabilistic) product lines with dynamic feature switches, multi-
features and feature attributes. By means of several case studies we show
how ProFeat eases family-based modeling and compare the one-by-one
and all-in-one analysis approach.

1 Introduction

Feature orientation is a popular paradigm for the development of customizable
software systems (see, e.g., [3,7,29]). Formalisms with feature-oriented concepts
provide an elegant way to specify families of systems that can be seen as variants,
sharing some base functionality but differing in the combinations of features. The
most prominent application of feature-oriented formalisms are software product
lines [12]. Several techniques for the analysis of feature-oriented models and soft-
ware product lines using testing, type checking, static analysis, theorem proving
or model checking have been proposed and implemented in tools (see, e.g., [35]
for an overview). The focus of the paper is on a feature-oriented formalism for the
quantitative analysis of families of probabilistic systems modeled by discrete- or
continuous-time Markov chains or Markov decision processes (MDPs). For this

The authors are supported by the DFG through the collaborative research cen-
tre HAEC (SFB 912), the Excellence Initiative by the German Federal and State
Governments (cluster of excellence cfAED and Institutional Strategy), the Research
Training Groups QuantLA (GRK 1763) and RoSI (GRK 1907), and the DFG/NWO-
project ROCKS, and Deutsche Telekom Stiftung.

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 287–304, 2016.
DOI: 10.1007/978-3-662-49665-7 17

288 P. Chrszon et al.

purpose, we introduce ProFeat, a feature-oriented extension of the input lan-
guage of the probabilistic model checker Prism [28] together with an automatic
translation of ProFeat models to pure (feature-less) Prism models. To specify
valid feature combinations, we rely on a feature-model formalism similar to the
Textual Variability Language (TVL) [8]. ProFeat also allows for (numerical)
feature attributes and multi-features [8,15,16].

ProFeat follows the approach of [21] for modeling product lines using the
parallel composition of (possibly interacting) feature modules and a feature con-
troller that synchronizes with the feature modules when dynamic switches of
the feature combinations occur. The dynamics of the feature controller and its
interactions with the feature modules are crucial to model dynamic product lines
[13,17,20,24]. Probabilistic dynamic product lines as presented in [21] allow, e.g.,
to model the frequencies of uncontrollable feature switches by stochastic distrib-
utions. The potential adaptations are then modeled by non-deterministic feature
switches. In ProFeat the operational behavior of the feature modules and the
feature controller are represented by an extension of Prism’s guarded command
language, supporting constraints for the feature combinations and synchroniza-
tion actions for the activation and deactivation of features. Thus, whereas [21]
uses MDP-like models for both the feature modules and the feature controller and
handcrafted translations of the feature-oriented concepts into Prism language,
the ProFeat framework provides an elegant way to specify the feature modules
and feature controller and automatically generates corresponding Prism code.

The quantitative analysis of ProFeat models in terms of the (maximal
or minimal) probabilities of path properties or expected costs can be carried
out using Prism or other probabilistic model checkers that support Prism’s
input language. Besides the translation of ProFeat models into Prism models,
our implementation also supports the analysis of product lines by providing
commands to trigger the Prism model-checking engines either for the family
model (“all-in-one”) or for each family member separately (“one-by-one”). The
one-by-one analysis can be carried out sequentially or in parallel.

Besides static or dynamic product lines, ProFeat can also be used to specify
families of probabilistic systems with the same functionality, but different system
parameters. Examples for such system parameters that may constitute a family
of systems are initial values of discrete variables (and hence the set of starting
states), threshold values triggering a certain behavior or reset values, the sizes
of a buffer, a data package, an encryption key, the number of redundant compo-
nents, or of retries and the energy consumption for some send operation.1 In these
cases, ProFeat’s family-based modeling approach and support for the one-by-
one analysis offers a convenient way to perform analysis benchmarks which till
now are usually done using handcrafted templates. To illustrate the capabilities
of ProFeat, we considered a series of examples and compared the performance
of all-in-one and one-by-one analyses using the three Prism engines Mtbdd,
Hybrid and Sparse. While the Mtbdd engine is fully symbolic and carries
1 To ensure the finiteness of the family model (which is necessary to employ standard

model-checking techniques) the range of the parameters is required to be finite.

Family-Based Modeling and Analysis for Probabilistic Systems 289

out all computations using multi-terminal binary decision diagrams (MTBDD),
the numerical computations of the Sparse engine are carried out using sparse
matrices, and the Hybrid engine relies on an MTBDD-representation of the
model and a sparse representation of probability or expectation vectors. Our
experimental results indicate that there is no clear superiority of the all-in-one
analysis approach, no matter which of the three Prism engines is used. How-
ever, for well-known product line models, where the base functionality contains
most of the behaviors and features have comparably less behaviors, all-in-one
approaches are feasible (especially within the Mtbdd engine).

Related Work. Various authors have presented model-checking techniques for
families of non-probabilistic systems. For the automatic detection of feature
interactions, Plath and Ryan [36] introduced a feature-oriented extension of the
input language of the model checker SMV and Apel et al. [5] presented the tool
SPLVerifier. FeatureIDE [40] is a tool set supporting all phases of the software-
product-line development with connections to the theorem prover KeY and the
model checker JPF-BDD. Gruler et al. [25] introduced a feature-based extension
of the process algebra CCS and presented model-checking algorithms to verify
requirements expressed in the μ-calculus. We are not aware of any implementa-
tion of this approach. Lauenroth et al. [34] deal with family models based on I/O
automata with may (“variable”) and must (“common”) transitions and a model
checker for a CTL-like temporal logic that has been adapted for reasoning about
the variability of product lines. Featured transition systems (FTS) are labeled
transition systems with annotations for the feature combinations of static prod-
uct lines [11] or a variant of dynamic product lines [13]. The SNIP tool [9,11,15]
relies on FTS specified using a feature-based extension of the modeling lan-
guage Promela and allows for checking FTS against LTL properties one-by-one
or using a symbolic all-in-one verification algorithm. Its re-engineered version
ProVeLines [14] provides several extensions, including verification techniques for
reachability properties with real-time constraints. For branching-time temporal-
logic specifications, [10,13] proposed a symbolic model-checking approach for
(adaptive) FTS. We are not aware of an implementation of the approach of [13].
In [10], an all-in-one analysis based on the feature-oriented extension of the SMV
input language by [36] has been proposed, which allows verifying static product
lines using the (non-probabilistic) symbolic model checker NuSMV. This exten-
sion of SMV follows the compositional feature-oriented software design paradigm
(as we do) but puts the emphasis on superimposition [1,2,30], rather than par-
allel composition of feature behaviors [21].

None of the approaches mentioned above deals with probabilistic behaviors.
To the best of our knowledge, there is no other tool that provides support for
family-based probabilistic model checking of dynamic product lines. The ben-
efits of probabilistic model checking for the analysis of adaptive software has
been already drawn by Filieri et al. [22]. The work on model-checking algo-
rithms for parametric Markov chains [18,27] and tool support in the model
checkers Param [26] (which has been reimplemented and integrated in Prism)
and PROPhESY [19] is orthogonal. By computing rational functions for the

290 P. Chrszon et al.

probabilities of reachability conditions or expected accumulated costs, these
techniques can be seen as an all-in-one analysis of families of probabilistic sys-
tems with the same state space, but different transition probabilities. Ghezzi
and Sharifloo [23] and the recent work by Rodrigues et al. [37] illustrate the
potential of parametric probabilistic model-checking techniques for the analysis
of product lines. The ProFeat language can handle probability parameters as
well and translate them to Prism code. However, there is no direct connection
between ProFeat and the parametric probabilistic model checkers as they do
not support multiple initial states. The recent work by Beek et al. [39] presents
a framework for the analysis of software product lines using statistical model
checking. An approach towards a family-based performance analysis of dynamic
probabilistic product lines arising from UML activity diagrams has been pre-
sented by [32].

Outline. Section 2 presents the main principles of the ProFeat language. Details
on the automatic generation of Prism code from ProFeat models as well as
explanations on ProFeat’s support for the all-in-one and one-by-one analysis
will be given in Sect. 3. Section 4 reports on experimental studies. A brief con-
clusion is provided in Sect. 5. The source code of ProFeat can be obtained at
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FASE16.

2 Modeling Families of Systems: The PROFEAT Language

A ProFeat model might represent a family of randomized protocols or other
probabilistic systems that can be modeled by finite-state Markovian models,
such as discrete- or continuous-time Markov chains (DTMCs, or CTMCs, respec-
tively) or Markov decision processes (MDPs). Therefore, the model consists of
two parts: the declaration of the family, and a compact feature-oriented rep-
resentation of the operational behavior of all family members. Inspired by the
application of feature-oriented formalisms for software product lines, a family
member is specified by some combination of features, each either active or inac-
tive. The language constructs for the declaration of feature models, i.e., the valid
feature combinations, are inspired by the Textual Variability Language (TVL) [8].
For the definition of the operational behaviors, we adopt the guarded-command
input language of the model checker Prism [28] and extend it by feature-specific
concepts presented in [21]. Guards in commands of a Prism module can contain
constraints for feature combinations. To model dynamic product lines, dynamic
feature switches may occur by interactions with a feature controller, which is
represented by a separate Prism module with synchronization actions for acti-
vating and deactivating features. Apart from feature models, other families of
probabilistic systems that differ, e.g., in the number of processes, the queue size
or other system parameters can easily be modeled. For instance, existing para-
metrized Prism models are usually checked within Prism’s experiment envi-
ronment in a one-by-one fashion. Within ProFeat only minor modifications
are necessary to represent the whole family of systems that differ in the system
parameters.

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FASE16

Family-Based Modeling and Analysis for Probabilistic Systems 291

We illustrate the modeling approach of ProFeat using a simple producer-
consumer model. The system consists of a single producer that enqueues jobs
with probabilistic workload sizes into a FIFO buffer handed to one or more
workers. One worker can only process one package at a time and the duration of
the processing is determined by the work-package size. Varying the buffer size,
the number of workers, the processing speed of individual workers or the load
caused by the producer yields different variants, i.e., families of systems.

2.1 Feature Modeling

A product line comprises a set of feature combinations, which are defined through
a feature model. For the producer-consumer product line, the following figure

System

Fast Producer Buffer

Worker0 Worker1 Worker2

Workers

depicts a feature diagram, the standard formalism to define feature models in the
software-engineering domain, and a part of its declaration in ProFeat. Similar
to feature diagrams, where each feature is represented by a rectangular node,
ProFeat uses textual feature-blocks to declare features and also has a tree-like
structure. The root feature (denoted by System in the diagram) is a special
feature, representing the base functionality on which the product line is built
upon. Each feature can be decomposed into one or more sub-features. Here, the
System is decomposed into four sub-features. An all of decomposition indicates
that all sub-features are required in every feature combination whenever their
parent feature is active. As used by the Workers feature, the some of opera-
tor implies that at least one of the sub-features has to be active if the parent
is active. In addition to the one of operator (which requires exactly one sub-
feature), the decomposition can also be given by a cardinality. Optional features
are preceded by the optional keyword, indicating that the feature may or may
not be part of a valid feature combination, regardless of the decomposition oper-
ator. ProFeat has built-in support for multi-features [15], i.e., features that
can appear more than once in a feature combination. The number of instances
is given in brackets behind the feature name. In the producer-consumer exam-
ple, the Workers feature is decomposed into three distinct copies of the Worker
feature. It is important to note that the decomposition operator ranges over
the feature instances. Thus, the some operator could be replaced by cardinality

292 P. Chrszon et al.

[1..3] in the above listing. Multi-features can be marked optional as well.
Then, each individual copy of the multi-feature is an optional feature. Besides
multi-features, the ProFeat language supports non-Boolean features in the
form of numeric feature attributes [8]. In the example shown above, the Worker
has the attribute speed which can take any integer value from 1 to 5. Access to
feature attributes is possible regardless of whether the corresponding feature is
active or not. The combination of multi-features and feature attributes enables
a compact representation of complex product lines.

The introduction of multi-features necessitates the distinction between
features and feature instances. In ProFeat, each feature instance is
uniquely identified by its fully qualified name. Sub-feature instances as
well as feature attributes are addressed using the familiar dot-notation.
Instances of multi-features are referred to by an array-like syntax. For
example, the fully qualified name of the second worker’s speed attribute is
root.Workers.Worker[1].speed. As long as the qualified name is unambigu-
ous, the prefix can be omitted. For instance, the name Worker[1].speed is valid
as well.

A feature block may also contain cross-tree constraints over feature instances
and feature attributes. In our example, the first constraint given in the root feature
expresses that the first two Worker instances must be active whenever the Fast
feature is active. The second constraint limits the accumulated speed of the first
two workers. A constraint can be preceded by the initial keyword, which only
affects the initial set of valid feature combinations. Obviously, this distinction is
only relevant for dynamic product lines.

Behavior of Features. In a ProFeat model, the declarative feature model
is strictly separated from the operational behavior of features. A feature may be

“implemented” by one or more fea-
ture modules, which are listed after
the modules keyword inside the
feature block. In our running exam-
ple, the Worker feature is imple-
mented by the Worker impl module.
The listing on the left shows the fea-
ture module and the extended feature
declaration of the Worker feature. For
the definition of feature modules, we
use an extension of Prism’s guarded
command language. Besides Boolean
or integer variables defined in fea-

ture modules as in Prism, ProFeat supports (one dimensional) arrays. A
set of commands defines the behavior of the feature module, having the form
guard → stochastic-update. If the guard evaluates to true, the module can transi-
tion (with some probability) into a successor state defined through the updates of
the variables. Consider the following command of the producer feature module.

[enqueue] ! b u f f e r f u l l −> 0 . 1 : (s i z e ’=2) + 0 . 9 : (s i z e ’=1) ;

Family-Based Modeling and Analysis for Probabilistic Systems 293

Here, the producer enqueues a work package of size 2 with a probability 0.1 if
the buffer is not full. The guard expression may reference the local variables of
other feature modules. Furthermore, the built-in active function can be used
in guards, evaluating to true if applied to a feature which is currently active.

Another means for communication besides shared variables is synchronization
between feature modules. A command can be labeled with an action that is
placed between the square brackets preceding the guard. If two or more modules
share an action, they are forced to take the labeled transitions simultaneously.
However, if any of those modules cannot take the transition (because its guard
is not fulfilled), then the action is blocked, so that none of the modules can take
the transition. In our running example, a worker synchronizes with the feature
module implementing the FIFO buffer over the dequeue action to obtain a new
work package (line 11). In ProFeat, action labels can be indexed using an
array-like syntax. In case of multi-features, the implicit id parameter evaluates
to the index of the feature instance. Thus, there exist three distinct dequeue
actions in our model. By default, feature modules of inactive features do not
block actions. Thus, with regard to synchronization, deactivating a feature has
the same effect as removing it entirely from the model. This is useful if the
model is fully synchronous, i.e., if there is a global action that synchronizes
over all transitions. However, in some cases it is crucial that an inactive feature
hinders active features to synchronize with its actions. In the producer-consumer
example, an inactive worker should not take a work package out of the queue
(line 11). Therefore, its dequeue action is modeled as blocking using the block
keyword inside the feature module (line 3).

Specification of Costs and Rewards. As in Prism, states and transitions
in ProFeat can be augmented with costs and rewards. This allows reasoning

about quantitative measures, such as
energy consumption, performance and
throughput. Costs and rewards are
defined as a part of feature decla-
rations using the keyword rewards.
In the listing on the left, the energy
consumption of a worker is specified

depending on its processing speed.

Feature Controller. In a ProFeat model, the feature combination is not nec-
essarily static, but may also change over time. The feature controller is a special
module that defines the rules for the dynamic activation and deactivation of
features, whose declaration we exemplify within our producer-consumer model:

controller
[] b u f f e r f u l l & ! active (Worker [2]) −> activate (Worker [2]) ;
[] buf fer low & active (Worker [2]) −> deactivate (Worker [2]) ;

endcontroller

Essentially, a controller is a module, which can modify feature com-
binations using the activate and deactivate updates. In the controller

294 P. Chrszon et al.

shown above, the third worker is activated to speed up processing whenever
the buffer is full. Once the buffer is nearly empty, the worker is deactivated.
The definition of a feature controller is optional. If no controller is given, the
defined product line is assumed to be static. Feature modules can synchronize
with the controller over the activate and deactivate actions, which enables
them to react or even block the activation or deactivation of their corresponding
feature. For instance, by adding the following line to the Worker impl module,
the deactivation of the worker is blocked as long as it is still processing a work
package:

[deactivate] t=0 −> true ;

Templates and Metaprogramming. ProFeat also provides constructs com-
monly found in template engines but not included in Prism’s input language.
Commands can be generated at translation time by using for loops. Further-
more, feature blocks as well as feature modules can be parametrized, which,
in turn, allows for parametrization of guards, probabilities and costs/rewards.
These feature and module templates are instantiated by referencing them in a
decomposition or using the modules keyword, respectively. Consider the follow-
ing excerpt of the feature module implementing the FIFO buffer:

1 module f i f o (capac i ty)

2 c e l l : array [0 . . capac i ty −1] of [−1 . . max work size] i n i t −1;

3 for w in [0 . . 2]

4 [dequeue [w]] c e l l [0] != −1 −>
5 (c e l l [capac i ty −1]’=−1) &

6 for i in [0 . . capac i ty −2] (c e l l [i] ’= c e l l [i +1]) endfor ;

7 endfor

8 . . .

9 endmodule

The module is parametrized over the capacity of the buffer (line 1). The for
loop stretching from line 3 to 7 generates a dequeue labeled command for each
worker. The inner loop (lines 6) shifts the buffer entries to remove the first
element from the buffer.

2.2 Parametrization

While ProFeat provides special support for feature-oriented modeling, families
can also be formed by ranging over system parameters. In our running example,

such a parameter might be the FIFO buffer
size. Parameters are declared in a family
block, as shown on the left. Similar to fea-
ture attributes, system parameters can be
constrained as well. Furthermore, a family
declaration can be combined with a feature

model, resulting in a family that is both defined by system parameters and all
valid initial feature combinations. To declare subsets of valid feature combina-
tions as initial ones, ProFeat provides the initial constraint keyword (see

Family-Based Modeling and Analysis for Probabilistic Systems 295

line 3 of the listing). Valid feature combinations not fulfilling the listed con-
straints are still possible during runtime by dynamic feature switches.

System parameters can be used anywhere in the model description, including
guards, probabilities and costs/rewards. In contrast to feature attributes, system
parameters are constant for each instance of a family. This has an important
consequence: parameters can be used to specify the range of variables, the size
of arrays, the range of for loops and even the number of multi-feature instances.
Thus, system parameters can directly influence the structure of the system.

3 Implementation

We have implemented a software tool2 that translates a ProFeat model into
the input language of the model checker Prism. This translation-based app-
roach enables the use of existing machinery for the verification and quantita-
tive analysis of ProFeat models. The ProFeat tool furthermore supports
the translation of queries into Prism’s properties file format. Thus, queries can
be formulated in the extended syntax of ProFeat and allow reasoning about
feature-specific properties. In this section, we provide a semantics for the Pro-
Feat language and highlight notable steps of the translation process. The com-
positional modeling framework for probabilistic dynamic product lines by [21]
provides a translation of feature modules under a feature controller into the input
language of Prism, naturally mapping feature composition to the parallel com-
position of Prism. Thus, the semantics of the behavioral model of ProFeat is
defined in terms of the Prism language semantics. The semantics of ProFeat’s
feature modeling formalism is given by the semantics of TVL [8] extended with
multi-features as described in [15].

3.1 Translation of Feature-Specific Constructs

In ProFeat, the access to the feature combination is provided through the use of
the active function and the activate and deactivate updates of the feature
controller. We encode feature combinations by a set of integer variables with
range [0..1], which simplifies the handling of feature cardinalities (compared
to a Boolean encoding). Instead of creating one variable per feature instance,
the tool generates one variable per atomic set to reduce the number of variables:
An atomic set is a set of features that can be treated as a unit as they never
appear separately in a feature combination [38]. Given this representation, the
translation of the active function is simple: The call to active is replaced
by a check testing whether the atomic-set variable evaluates to 1. Analogously,
the activate and deactivate updates assign a 0 or a 1 to the corresponding
variable, respectively. However, the feature controller cannot change the feature
combination arbitrarily: As an update has to yield a valid feature combination,
2 For the Haskell source code of the tool, we refer to https://wwwtcs.inf.tu-dresden.

de/ALGI/PUB/FASE16.

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FASE16
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FASE16

296 P. Chrszon et al.

the translation has to add a guard to commands containing atomic-set variable
updates. This guard is synthesized from the feature model and evaluates to false
if the transition described by the command would result in an invalid feature
combination.

Another aspect of the translation concerns the synchronization between the
feature controller and the feature modules in case of feature activation and deac-
tivation. Implicitly, an activatef action and a deactivatef action is created for
each feature instance f . In Prism, commands can only be labeled with a single
action. However, an update may activate or deactivate multiple feature instances
at once, thus requiring multiple action labels per command for synchronization.
To circumvent this restriction of the Prism language, the set of action labels is
merged into a single action label. This solution requires special care in the trans-
lation of feature modules. Let us assume a command C labeled with the action
activatef . Then, we collect the action labels of all feature-controller commands
that activate the feature instance f . Finally, we create a copy of the command
C for each collected action label. This translation realizes the intended synchro-
nization between the feature controller and the feature modules, even in the case
of multiple simultaneous feature activations and deactivations.

Lastly, the translation must ensure that feature modules of inactive features
do not block actions, i.e., deactivating a feature should have the same effect as
removing the corresponding feature modules from the model. To achieve this
behavior, we take the following approach. Suppose the feature module M imple-
ments the feature instance f . Then, for each command in M that has the form
[α] guard → update, a command [α] ¬active(f) → true is generated. Thus, if
the feature instance f is not active, the translated module does not block the
action α. However, this command is not generated if the user explicitly requests
the blocking of action α by using the block keyword in the feature declaration.

3.2 All-in-One and One-by-One Translation

Essentially, there are two different approaches for the analysis of a family of
systems described by some ProFeat model: The one-by-one and the all-in-one
approach. Within a one-by-one approach, each member of the family is analyzed
separately. Differently, within an all-in-one approach, the whole family is encoded
into a single Prism model and analyzed in a single run. The result of the all-in-
one analysis is then interpreted for each member of the family, providing results
as the members would have been analyzed separately. An all-in-one approach
can potentially exploit the similarities between the family instances and speed
up the analysis, but may require additional memory. However, a big advantage
of the one-by-one approach is that it can be easily parallelized. As we illustrate
in our case studies (see Sect. 4), it depends on the model as well as the time and
memory constraints which approach is appropriate. For this reason, ProFeat
supports both, an all-in-one and a one-by-one translation of the family model.
Switching from one analysis approach to the other requires no adjustments to
the model.

Family-Based Modeling and Analysis for Probabilistic Systems 297

In case of one-by-one translation, ProFeat generates a Prism model for
every instance of the family. That is, for each valid valuation of the system
parameters and for each initial feature combination, the system parameters are
replaced by constants. If no family block is given, then one model for each valid
initial feature combination is generated. The all-in-one translation generates a
single Prism model with multiple initial states, one for each instance of the
family. However, there is a technical difficulty in the translation into an all-in-
one model: Array sizes, numbers of multi-features and variable bounds can be
defined in terms of system parameters. Hence, these parameters might depend on
the initial state and thus are not known at translation time. Therefore, ProFeat
instantiates these parametrized structures with their maximal size.

4 Experimental Studies

As ProFeat follows a translational approach, all-in-one and one-in-one analy-
ses can be carried out using the same model-checking tool Prism, allowing for
a conceptual comparison of both approaches. Besides a sequential one-by-one
analysis as usually performed within product-line verification (see, e.g., [4]), we
also provide results for analyzing the models generated by the one-by-one trans-
lation in parallel. Clearly, under the quite unrealistic assumption that lots of
CPU cores (which allow for parallelization) and enough memory is provided, a
parallel execution is likely to outperform an all-in-one approach. For our exper-
iments we used a Linux machine with two 8-core Intel Xeon E5-2680 CPUs
running at 2.7 GHz and equipped with 384 GBytes of RAM, hyper-threading
enabled. Thus, we restricted ourselves to an execution of 32 analyses in parallel.

4.1 The Producer-Consumer Example

In the base model of the producer-consumer example, as considered already
in previous sections, the controller can activate or deactivate workers in the
workers pool, increase or decrease the size of the buffer, and increase or decrease
the processing speed of individual workers. For realizing fairness among regular
actions and controller actions, we introduced an additional progress module.
When considering expected costs, the goal will be to finish a certain number of
jobs. For this we enriched the model with a counter. In this section, we consider
three variants of the base model and corresponding analysis queries:

Best Buffer. A static product line which parametrizes over the buffer size. Here,
we ask for the buffer size for which minimal expected storage costs arise until
a certain number of jobs are processed.

Best Worker. This family parametrizes over all possible combinations of work-
ers. Within this family model, we ask for the combination of workers where
the minimal expected energy is required to finish a given number of jobs.

Distributions. Here, we consider different workload distributions as parame-
ter space of the model. The goal is to compute the distribution where the
expected energy required to finish a certain number of jobs is minimal.

298 P. Chrszon et al.

Figure 1a shows the number of MTBDD nodes for representing the three model
variants depending on the family parameter. Within all variants, the number
of nodes in the all-in-one model is significantly smaller that the sum of the
MTBDD nodes for the separate models, indicating shared behaviors between
the family members. We evaluated the quantitative queries stated above using
both, the Mtbdd and the Sparse engine of Prism. In general, the Sparse
engine turned out to perform slightly better than the Mtbdd engine, especially
within expectation queries. The results are illustrated in Fig. 1b–d.

Fig. 1. Number of MTBDD nodes for the producer-consumer models (a), Analysis
times of the variants best buffer (b), best worker (c) and distributions (d)

In some cases, where the number of instances is exponential in the family
parameter (cf. Fig. 1c – Best Worker), the all-in-one analysis approach outper-
forms the one-by-one approach and can even keep up with the parallel compu-
tation. In other cases (cf. Fig. 1b – Best Buffer), the all-in-one approach was
only superior up to a system size of 14. For the third model variant (cf. Fig. 1d
– Distributions), the all-in-one and one-by-one approaches asymptotically dis-
played similar performance. Overall, there is a no clear trend on which approach
is favorable, the one-by-one or the all-in-one analysis.

Family-Based Modeling and Analysis for Probabilistic Systems 299

4.2 Feature-Aware Case Studies

The development of ProFeat has been first and foremost motivated by several
studies from the domain of feature-oriented systems such as product lines, where
all-in-one analysis approaches turned out to outperform the traditional one-
by-one analysis approach. In this section, we demonstrate how (probabilistic)
versions of classical product lines can be modeled and analyzed with ProFeat.

Body Sensor Network Product Line. A Body Sensor Network (BSN) sys-
tem is a network of connected sensors sending measurements to a central entity
which evaluates the data and identifies health critical situations. In [37], a BSN
product line with features for several sensors has been introduced. The app-
roach presented in [37] follows the ideas by [23] towards parameterized DTMC
models: For each feature, a Boolean parameter f is 1 if the feature is active
and 0 otherwise. A factor p is multiplied to the probability of every transition,
where p=f in case the feature enables the transition and p = 1−f otherwise.
Parametric model checkers are then used to compute a single formula which for
each feature combination evaluates to the probability of reaching a successful
configuration, i.e., the reliability of the BSN. The authors of [37] report that the
parametric approach using Param can be seven times faster, a novel symbolic
bounded-search approach can be eleven times faster, and a handcrafted (model
dependent) compositional parametric approach can even be 100 times faster
than a Prism-based one-by-one analysis. For obtaining the results, three differ-
ent model-checking tools have been used. Furthermore, special tailored scripts
were required to perform the one-by-one analysis and to evaluate the formulas
returned by the parametric model checkers. With ProFeat the feature model
of the BSN product line can be directly incorporated into the parametric model
specified by [37], as ProFeat’s representation of features as Boolean parameters
is compatible with the approach by [23]. Thus, ProFeat allows for an all-in-one
approach on the same model as of [37] and simplifies the comparison to one-by-
one analysis also concerning different model-checking engines such as the explicit
or symbolic engines of Prism.

In the first line of Table 1, we show the results of our experiments for com-
puting the same reliability probability as in [37]. The all-in-one approach turns
out to be ≈100 times faster than the one-by-one approach, independent of the
chosen engine. Hence, ProFeat directly enables a speed up of the analysis time
in the same magnitude as handcrafted decomposition optimizations by [37].

Elevator Product Line. A classical (non-probabilistic) product line considers
an elevator system, introduced by [36] for checking feature interactions. It has
been then considered in several case studies issuing family-based product-line
verification (see, e.g., [4,15]). An elevator system is modeled by a cabin which
can transport persons to floors of a building. The persons first have to push
a button at the floor and then in the cabin for calling the elevator and defin-
ing a direction where to ride, respectively. In its basic version [36], the product
line comprises 32 products built by five features, not changeable after deploy-
ment. We extend this product line in various aspects. First, we resolve some

300 P. Chrszon et al.

non-deterministic choices by probabilities when appropriate, e.g., modeling the
request rate of a person and introducing a probability of failure. Second, we add
a service feature, which enables to call technical staff repairing the elevator or
change feature combinations. As a consequence, our elevator system is a dynamic
product line where features can be changed during runtime. Third, we modeled
dynamic feature changes as non-deterministic choices in the feature controller.
This yields an MDP model for which a strategy-synthesis problem can be consid-
ered: Compute best- and worst-case strategies on how to activate or deactivate
features to reach certain goals [21]. We deal with a simple instance of the eleva-
tor which can transport one person and where at most two persons act in the
system. Our product lines have 64 feature combinations each, parametrized over
the number of floors (2-4) in the building. We finally consider the family of the
three product lines, containing 192 single instances of the elevator system. We
asked for the minimal probability that if the cabin is on the ground floor and
the top floor is requested, the probability to serve the top floor within the next
three steps is greater than 0.99. Our analysis results are depicted in Table 1,
where especially for larger instances the Mtbdd all-in-one analysis outperforms
other approaches and engines. Notice that the number of MTBDD nodes of the
family model containing all three elevator product lines (cf. the row above the
double rule) is greater than the sum of nodes of the family models for each prod-
uct line. Possibly, other MTBDD variable orderings, e.g., provided by methods
presented in [31], could yield smaller model representations and faster all-in-one
analyses.

4.3 Benchmark Suite Examples

We used ProFeat also to model and analyze some examples taken from the
Prism benchmark suite [33] and the probabilistic locking protocol PWCS [6] to
investigate whether also standard parametrized models can profit from an all-
in-one analysis. In the PWCS model, we consider two family parameters: The
number of writers that intend to access a shared object (1) and the number of
replicas for a given object (2). When providing ProFeat code for the examples
based on the existing models, the scripting and parameterization of ProFeat
yield a more compact model representation and required only mild modifications.
Each row in the lower part of Table 1 stands for the evaluation of a query, which
cover minimal and maximal expected values as well as probabilities for bounded
and unbounded reachability. The Hybrid engine of Prism does not yet support
the computation of expectations. A reduction of the MTBDD size was only
achieved for the self-stabilization protocol. In all other cases, the size of the
family model was in the order of the sum of the separate models. The one-by-
one approaches outperform the all-in-one approaches in almost all cases, even
for the self-stabilization protocol.

Family-Based Modeling and Analysis for Probabilistic Systems 301

Table 1. Analysis times (in seconds) of feature and benchmark suite models

Model MTBDD nodes Mtbdd Hybrid Sparse

family separate all 1by1 par all 1by1 par all 1by1 par

BSN 5651 111507 1 129 25 1 128 25 1 128 25

Elevator (2 floors) 42254 1329204 1 65 7 2 49 7 1 45 7

Elevator (3 floors) 151274 4924349 4 223 11 98 2531 96 7 286 18

Elevator (4 floors) 420448 13519274 15 910 32 2601 54262 1952 56 2008 83

Elevator

(2-4 floors)

779569 19772827 29 1199 49 5089 56843 2052 74 2339 106

CSMA

(2–4 processes)

633997 634076 timeout not supported 1236 1251 1220

“ “ timeout 3660 3577 3384 1078 1013 954

Stabilization

(3–21 processes)

4340 10662 2036 1643 932 251 37 22 129 33 20

“ “ � 1 1 2 not supported 122 24 15

“ “ timeout not supported 2629 476 269

“ “ 13 10 7 12 10 6 12 10 7

“ “ 13 10 7 13 10 7 13 10 6

Philosophers (3–12) 82995 82689 9056 6212 3945 9722 5949 4009 out of memory

PWCS

(3 replicas, 1–9

writers)

134236 134190 49 26 15 232 165 130 314 271 220

“ “ 6564 2247 960 not supported 5473 1544 1230

PWCS

(3 writers, 1–7

replicas)

955505 958033 752 2279 1628 968 348 306 738 2209 1265

“ “ timeout not supported 1221 3857 2735

5 Conclusions

We presented the language ProFeat for family-based modeling and analysis
of probabilistic systems. To the best of our knowledge, ProFeat is the first
modeling language for probabilistic dynamic product lines with tool support for
an all-in-one and one-by-one analysis without employing templates, scripting or
different model descriptions. Whereas for experiments on product-line inspired
case studies an all-in-one approach turns out to be usually faster than a one-by-
one approach, this cannot be generalized to arbitrary families, e.g., when only
a few common behaviors exist within the family members. There are various
directions for further work, e.g., establishing an all-in-many approach clustering
families and thus mixing both approaches. Symmetry reductions on the model
could also speed up an all-in-one analysis, especially within multi-features.

References

1. Apel, S., Hutchins, D.: A calculus for uniform feature composition. ACM Trans.
Program. Lang. Syst. 32(5), 19:1–19:33 (2010)

2. Apel, S., Janda, F., Trujillo, S., Kästner, C.: Model superimposition in soft-
ware product lines. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 4–19.
Springer, Heidelberg (2009)

302 P. Chrszon et al.

3. Apel, S., Kästner, C.: An overview of feature-oriented software development. J.
Object Technol. 8(5), 49–84 (2009)

4. Apel, S., von Rhein, A., Wendler, P., Groesslinger, A., Beyer, D.: Strategies for
product-line verification: Case studies and experiments. In: Proceedings of the
International Conference on Software Engineering, ICSE 2013, pp. 482–491. IEEE
(2013)

5. Apel, S., Speidel, H., Wendler, P., von Rhein, A., Beyer, D.: Detection of fea-
ture interactions using feature-aware verification. In: International Conference on
Automated Software Engineering (ASE), pp. 372–375. IEEE (2011)

6. Baier, C., Engel, B., Klüppelholz, S., Märcker, S., Tews, H., Völp, M.: A probabilis-
tic quantitative analysis of probabilistic-Write/Copy-select. In: Brat, G., Rungta,
N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 307–321. Springer, Heidelberg
(2013)

7. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. Inf. Syst. 35(6), 615–636 (2010)

8. Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature modelling:
Syntax and semantics of TVL. Sci. Comput. Program. 76(12), 1130–1143 (2011)

9. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y.: Model checking
software product lines with SNIP. STTT 14(5), 589–612 (2012)

10. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y.: Formal seman-
tics, modular specification, and symbolic verification of product-line behaviour.
Sci. Comput. Program. 80, 416–439 (2014)

11. Classen, A., Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A., Raskin, J.-F.:
Featured transition systems: Foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE Trans. Softw. Eng. 39(8),
1069–1089 (2013)

12. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Professional, Reading (2001)

13. Cordy, M., Classen, A., Heymans, P., Legay, A., Schobbens, P.-Y.: Model checking
adaptive software with featured transition systems. In: Cámara, J., Lemos, R.,
Ghezzi, C., Lopes, A. (eds.) Assurances for Self-Adaptive Systems. LNCS, vol.
7740, pp. 1–29. Springer, Heidelberg (2013)

14. Cordy, M., Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A.: ProVeLines: a
product line of verifiers for software product lines. In: 17th International Software
Product Line Conference (SPLC), pp. 141–146. ACM (2013)

15. Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A.: Beyond boolean product-line
model checking: Dealing with feature attributes and multi-features. In: Proceedings
of the International Conference on Software Engineering, ICSE 2013, pp. 472–481.
IEEE Press (2013)

16. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature
models and their specialization. Softw. Process: Improv. Pract. 10(1), 7–29 (2005)

17. Damiani, F., Schaefer, I.: Dynamic delta-oriented programming. In: Proceedings
of the 15th International Software Product Line Conference, SPLC 2011. ACM
(2011)

18. Daws, C.: Symbolic and parametric model checking of discrete-time markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005)

19. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J.-P., Ábrahám, E.: PROPhESY: A PRObabilistic parameter synthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Heidelberg (2015)

Family-Based Modeling and Analysis for Probabilistic Systems 303

20. Dinkelaker, T., Mitschke, R., Fetzer, K., Mezini, M.: A dynamic software product
line approach using aspect models at runtime. In: Proceedings of the 1st Workshop
on Composition and Variability (2010)

21. Dubslaff, C., Baier, C., Klüppelholz, S.: Probabilistic model checking for feature-
oriented systems. In: Chiba, S., Tanter, É., Ernst, E., Hirschfeld, R. (eds.) Trans-
actions on AOSD XII. LNCS, vol. 8989, pp. 180–220. Springer, Heidelberg (2015)

22. Filieri, A., Ghezzi, C., Tamburrelli, G.: A formal approach to adaptive software:
Continuous assurance of non-functional requirements. Formal Aspects Comput.
24(2), 163–186 (2012)

23. Ghezzi, C., Sharifloo, A.M.: Model-based verification of quantitative non-functional
properties for software product lines. Inf. Softw. Technol. 55(3), 508–524 (2013)

24. Gomaa, H., Hussein, M.: Dynamic software reconfiguration in software product
families. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 435–444.
Springer, Heidelberg (2004)

25. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol.
5051, pp. 113–131. Springer, Heidelberg (2008)

26. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: A model checker for
parametric markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010)

27. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Softw. Tools Technol. Transf. 13(1), 3–19 (2011)

28. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Palsberg, J., Hermanns, H. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

29. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21,
Carnegie-Mellon University (1990)

30. Katz, S.: A superimposition control construct for distributed systems. ACM Trans.
Program. Lang. Syst. 15(2), 337–356 (1993)

31. Klein, J., Baier, C., Chrszon, P., Daum, M., Dubslaff, C., Klüppelholz, S., Märcker,
S., Müller, D.: Advances in symbolic probabilistic model checking with PRISM. In:
Proceedings of the 22th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), LNCS. Springer, to appear (2016)

32. Kowal, M., Schaefer, I., Tribastone, M.: Family-based performance analysis of
variant-rich software systems. In: Gnesi, S., Rensink, A. (eds.) FASE 2014
(ETAPS). LNCS, vol. 8411, pp. 94–108. Springer, Heidelberg (2014)

33. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
Proceedings of the Quantitative Evaluation of Systems (QEST 2012), pp. 203–
204. IEEE, 2012. https://github.com/prismmodelchecker/prism-benchmarks/

34. Lauenroth, K., Pohl, K., Toehning, S.: Model checking of domain artifacts in prod-
uct line engineering. In: 24th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 269–280. IEEE (2009)

35. Meinicke, J., Thüm, T., Schröter, R., Benduhn, F., Saake, G.: An overview on
analysis tools for software product lines. In: 18th International Software Product
Lines Conference (SPLC), pp. 94–101. ACM (2014)

36. Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput.
Program. 41(1), 53–84 (2001)

https://github.com/prismmodelchecker/prism-benchmarks/

304 P. Chrszon et al.

37. Rodrigues, G.N., Alves, V., Nunes, V., Lanna, A., Cordy, M., Schobbens, P.-Y.,
Sharifloo, A.M., Legay, A.: Modeling and verification for probabilistic properties
in software product lines. In: High Assurance Systems Engineering (HASE), pp.
173–180. IEEE (2015)

38. Segura, S.: Automated analysis of feature models using atomic sets. In: SPLC (2),
pp. 201–207 (2008)

39. ter Beek, M.H., Legay, A., Lluch-Lafuente, A., Vandin, A.: Statistical analysis of
probabilistic models of software product lines with quantitative constraints. In:
19th International Conference on Software Product Line (SPLC), pp. 11–15. ACM
(2015)

40. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Fea-
tureIDE: An extensible framework for feature-oriented software development. Sci.
Comput. Program. 79, 70–85 (2014)

Statistical Model Checking of e-Motions
Domain-Specific Modeling Languages

Francisco Durán(B), Antonio Moreno-Delgado, and José M. Álvarez-Palomo

E.T.S.I. Informática, University of Málaga, Málaga, Spain
{duran,amoreno,alvarezp}@lcc.uma.es

Abstract. Domain experts may use novel tools that allow them to
design and model their systems in a notation very close to the domain
problem. However, the use of tools for the statistical analysis of stochas-
tic systems requires software engineers to carefully specify such systems
in low level and specific languages. In this work we line up both sce-
narios, specific domain modeling and statistical analysis. Specifically, we
have extended the e-Motions system, a framework to develop real-time
domain-specific languages where the behavior is specified in a natural
way by in-place transformation rules, to support the statistical analysis
of systems defined using it. We discuss how restricted e-Motions sys-
tems are used to produce Maude corresponding specifications, using a
model transformation from e-Motions to Maude, which comply with the
restrictions of the VeStA tool, and which can therefore be used to per-
form statistical analysis on the stochastic systems thus generated. We
illustrate our approach with a very simple messaging distributed system.

1 Introduction

Model Driven Engineering advocates the use of models as the key artifacts in
all phases of development, artifacts from which whole systems can be derived,
analysed and implemented [21]. To be able to define such models in terms as
close to the problem domain as possible, different technologies for the defini-
tion of Domain Specific Modeling Languages (DSMLs) have been proposed (see,
e.g., [20]). The main goal of these DSMLs is to follow the domain abstractions
and semantics, allowing modelers to perceive themselves as working directly with
domain concepts. Model transformations may then be used to analyze certain
aspects of models and then automatically synthesize various types of artifacts,
such as source code, simulation inputs, or alternative model representations.

DSMLs are typically defined by means of its structural aspects (with its
corresponding abstract and, in some cases, concrete syntaxes). These definitions
allow the rapid development of languages and some of their associated tools, such
as editors or browsers. Typically, to perform some type of analysis or to generate
code, such models need to be transformed into formalisms or programming lan-
guages with the appropriate tool support. There are many success stories using
this approach. However, the semantics of such DSMLs is embedded in the model

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 305–322, 2016.
DOI: 10.1007/978-3-662-49665-7 18

306 F. Durán et al.

transformations, and provided by the target formalism, what constrains the rapid
definition of such languages. To overcome this situation different authors have
proposed different ways of providing an operational semantics as part of the
definition of DSMLs, possibly being the most successful one the one using graph
transformation systems (GTS) [33], with systems such as AToM3 [13], AGG [37]
or e-Motions [29] implementing it.

The specification of the explicit behavioral semantics of DSMLs helps in MDE
activities such as quick prototyping, simulation, or analysis. Ensuring semantic
properties of models is important because any error in a model can easily become
a systemic error in the system under development. E.g., AGG and e-Motions
provide support for the simulation of models defined conforming to user-defined
DSMLs. These and other languages provide support for different kinds of analy-
sis as well, like termination checks, critical pair analysis, or reachability analysis
(see, e.g., [31,37]). CheckVML [34], GROOVE [28] and e-Motions [29] support
the model checking of systems whose behavior is specified by graph transforma-
tion systems.

This is, however, not enough, since applications become more and more com-
plex, and model checking is a very expensive procedure, both in time and space,
being infeasible in many cases. A very important class of systems that falls out
of the scope of classical model checkers are real-time stochastic systems. The
methods used to verify quantitative properties of stochastic systems are typically
based on numerical methods [19], that iteratively compute the exact (or approx-
imate) measure of paths satisfying relevant logical formulas. Although tools like
PRISM [22] and UPPAAL [4] have shown very successful in the analysis of this
kind of systems, explicitly constructing the corresponding probabilistic model
is infeasible in many cases. An alternative method that solves this problem is
based on statistical methods, similar to Monte Carlo simulations. By testing our
hypothesis on many executions of a system, we may infer statistical evidence on
the satisfaction or violation of the specification. Thus, properties like “the prob-
ability of completing task X with Y units of energy is greater than 0.3” or “the
average amount of energy required to complete task X with confidence interval
α and error bound β” are evaluable. YMER [39] and VeStA [36] were pioneering
tools implementing these techniques. Latest releases of the well-established tools
PRISM and UPPAAL have more recently also included capabilities for statistical
model checking (see [9,23]).

Statistical methods has another advantage in the context of DSMLs: are
“easy” to use and “cheap”. As other model-checking methods, statistical model
checking is completely automatic, and can be used where other methods fail. But
can also be used for “normal” systems with a shorter computation time. Since
statistical model checking assumes the existence of inaccuracy in its results,
answers are calculated provided a confidence interval and an error bound. As
may be expected, these requirements have an impact on the number of samples
to be processed, and therefore on the evaluation time.

In this paper we describe how the e-Motions tool has been extended so the
models built conforming to user-defined DSMLs are suitable for statistical model

Statistical Model Checking of e-Motions Domain-Specific Modeling 307

checking. e-Motions models are transformed into Maude specifications satisfying
the requirements of the PVeStA tool [3] (an extension and parallelization of
VeStA [36]). Such Maude specifications are therefore suitable to be stochastically
analyzed using PVeStA. We illustrate the use of e-Motions to model systems and
its statistical model checker with a very simple messaging system.

The remaining of the paper is structured as follows. Section 2 presents
e-Motions and VeStA/PVeStA, and their underlying Maude system. Section 3
explains how e-Motions specifications are statistically analysed using PVeStA
and how the connection between these two systems is established. The way sys-
tems are defined in e-Motions and how they can be statistically analysed is
illustrated with a case study in Sect. 4. Section 5 discusses some related work
and Sect. 6 wraps up presenting some conclusions and future work.

2 Preliminaries

In this section, we introduce the e-Motions language and tool, the Maude system
and the Maude implementation of e-Motions, and the VeStA/PVeStA tool.

2.1 The e-Motions System

e-Motions [29] is a graphical language and framework that supports the spec-
ification, simulation, and formal analysis of real-time systems. It supports the
graphical specification of the dynamic behavior of DSMLs using their concrete
syntax, making this task very intuitive.1 The abstract syntax of a DSML is
specified as an Ecore metamodel, which defines all relevant concepts—and their
relations—in the language. Its concrete syntax is given by a GCS (Graphical
Concrete Syntax) model, which attaches an image to each language concept.
Then, its behavior is specified with (graphical) in-place model transformations.
e-Motions provides a model of time, supporting features like duration, periodic-
ity, etc., and mechanisms to state action properties [29,30].

In-place transformations are defined by rules, each of which represents a pos-
sible action of the system. These rules are of the form [NAC]∗ × LHS → RHS,
where LHS (left-hand side), RHS (right-hand side) and NAC (negative appli-
cation conditions) are model patterns that represent certain (sub-)states of the
system. The LHS and NAC patterns express the conditions for the rule to be
applied, whereas the RHS represents the effect of the corresponding action. A
LHS may also have positive conditions, which are expressed, as any expression
in the RHS, using OCL. Thus, a rule can be applied, i.e., triggered, if a match of
the LHS is found in the model, its conditions are satisfied, and none of its NAC
patterns occur. If several matches are found, one of them is non-deterministically
chosen and applied, giving place to a new model where the matching objects are
substituted by the appropriate instantiation of its RHS pattern. The transfor-
mation of the model proceeds by applying the rules on sub-models of it in a
non-deterministic order, until no further transformation rule is applicable.
1 e-Motions got an “ease of use” award at the 7th Transformation Tool Contest [26].

308 F. Durán et al.

In e-Motions, there are two types of rules to specify time-dependent behavior,
namely, atomic and on-going rules. Atomic rules represent atomic actions with
a duration, which is specified by an interval of time. Atomic rules with duration
zero are called instantaneous rules. On the other hand, on-going rules represent
continuous actions that may be interrupted at any time.

A special kind of object, named Clock, represents the current global time
elapse. Designers can use it in their rules (using its attribute time) to know the
amount of time that the system has been working.

Figure 1 shows the metamodel and concrete syntax for a very simple messag-
ing system, where there are nodes interconnected via channels. Each node has an
agenda (a set with the identifiers of the other nodes in the net), and may deliver
messages to any other node in it. There are two types of messages in the system,
namely Token and Message. Figure 2 shows a sample initial configuration con-
forming to the metamodel in Fig. 1a and using the concrete syntax in Fig. 1b.
Figure 3 shows the atomic rules defining the possible actions that may happen in
such systems. The NewMessage rule states that every time a node receives a token
message with time zero, a new message is created addressed to another node cho-
sen from the agenda following a uniform distribution, and will be sent through
an outgoing channel also chosen probabilistically—WITH blocks state positive
conditions that have to be hold on a given match of the LHS for the rule to be
triggered. Mail objects will be moved from nodes to channels and from channels
to nodes by rules Node2Channel and Channel2Node, respectively, both with a
duration that follows a normal distribution (see the definition of variable STime
at the bottom of the rule and its use in the header to establish the duration).
The MessageArrival and DecreaseToken rules model, respectively, the arrival
of a message to its destination node, where the observer gathers information
about the time taken, and the pass of time for the token messages. NewMessage
and MessageArrival are modelled as instantaneous actions (duration [0,0]).
Node2Channel, Channel2Node and DecreaseToken have probabilistic durations,
whilst the duration of the first two are calculated in the rule itself, for the third
one the duration is given by the attribute t of the token, whose value was
assigned in a previous NewMessage rule.

2.2 Maude

Maude [10,11] is an executable formal specification language based on rewrit-
ing logic [24], a logic of change that can naturally deal with states and
non-deterministic concurrent computations. A rewrite logic theory is a tuple
(Σ,E,R), where (Σ,E) is an equational theory that specifies the system states
as elements of the initial algebra T(Σ,E), and R is a set of rewrite rules that
describe the one-step possible concurrent transitions in the system.

Rewriting will operate on congruence classes of terms modulo E. This of
course does not mean that an implementation of rewriting logic must have an
E-matching algorithm for each equational theory E that a user might specify.
The equations are divided into a set A of structural axioms for which matching
algorithms are available and a set E of equations. Then, for having a complete

Statistical Model Checking of e-Motions Domain-Specific Modeling 309

(a) Metamodel (b) Concrete syntax

Fig. 1. Metamodel and concrete syntax for the messaging system

Fig. 2. Messaging system’s initial configuration

agreement between the specification’s initial algebra and its operational seman-
tics by rewriting, a rewrite theory (Σ,E ∪ A,R) is assumed to be such that the
set E of equations is (ground) Church-Rosser and terminating modulo A, and
the rules R are (ground) coherent with the equations E modulo A (see [14,15]).

In the case of Maude, the equational logic is membership equational logic
(MEL) [7], which can be seen as an extension of order-sorted logic with sorts,
subsorts, and partial functions, and where atomic sentences include both equa-
tions t = t′ and memberships t : s, stating that term t has sort s. Maude provides
support for rewriting modulo associativity, commutativity and identity, which
perfectly captures the evolution of models made up of objects linked by refer-
ences as in graph grammar.

310 F. Durán et al.

F
ig
.
3
.
M
es
sa
g
in
g
sy
st
em

’s
ru
le
s

Statistical Model Checking of e-Motions Domain-Specific Modeling 311

Maude counts with a rich set of validation and verification tools, increasingly
used as support to the development of UML, MDA, and OCL tools (see, e.g., [32]
for an overview). Furthermore, Maude has demonstrated to be a good environ-
ment for rapid prototyping, and also for application development (see [11]).

Among other applications, Maude may be seen as a general framework where
to develop model transformations [6]. Maude is used as a formal notation to
provide the precise semantics of the corresponding e-Motions specifications (as
described in [30]), while at the same time the model transformations between
e-Motions and Maude allow the Maude tools to become available in the e-Motions
environment. More precisely, the generated Maude specification is a Real-Time
Maude specification. Real-Time Maude [27] is a rewriting-logic-based specifica-
tion language and formal analysis tool that extends the Maude system [11] to
support the formal specification and analysis of real-time systems. Real-Time
Maude provides a sort Time to model the time domain, which can be either
discrete or dense. Then, pass of time is modelled with tick rules like

crl [l] : { t, T } => { t′, T + τ } if C.

where t and t′ are system states (an evolving model in our case), T is the global
time, and τ is a term of sort Time that denotes the duration of the rewrite,
and that affects the global time elapse. Since tick rules affect the global time, in
Real-Time Maude time elapse is usually modeled by one single tick rule, and the
system dynamic behavior by instantaneous transitions [27]. Although there are
other sampling strategies, in the most convenient one this single tick rule models
time elapse by using two functions: the delta function, that defines the effect
of time elapse over every model element, and the mte (maximal time elapse)
function, that defines the maximum amount of time that can elapse before any
action is performed. Then, time advances non-deterministically by any amount
τ , which must be less or equal than the maximum time elapse of the system.

crl [tick] : { t, T } => { delta(t, τ), T + τ } if τ ≤ mte(t) ∧ C.

2.3 Maude Representation of e-Motions Models and Metamodels

As in [5,32], the algebraic semantics of an Ecore2 metamodel MM is provided by
a MEL theory SpecMM so that a model M conformant with MM is an element
of the initial algebra TSpecMM

. The e-Motions definition of a domain specific lan-
guage provided by a metamodel MM plus a set of transformation rules defining
its dynamic semantics, is then represented as a rewrite theory extending SpecMM

with some additional definitions and rules specifying such a behavior.
An ATL transformation transforms e-Motions models into Maude executable

specifications, which can be used for simulation and analysis. Although a detailed
presentation of this transformation can be found in [30], we give here a general
account of it to understand the rest of the paper.

2 Ecore is equivalent to the EMOF (Essential MOF) portion of MOF defined in the
MOF 2 specification [25].

312 F. Durán et al.

e-Motions’ models are represented in Maude as structures of sort @Model
of the form mm{obj1 obj2 ... objN}, where mm is the name of its metamodel
and obji are the objects that constitute the model. An object is a record-like
structure of the form < o : c | a1 : v1#...#an : vn > (of sort @Object), where
o is the object identifier (of sort Oid), c is the class the object belongs to (of
sort @Class), and ai : vi are attribute-value pairs (of sort @StructuralFeature-
Instance). Given appropriate definitions for all classes, attributes and references
in its corresponding metamodel, a possible valid state could be as follows:

@smp-mm@ {

< n1 : Node | id :"n1" # out : Set{"ch1", "ch2"} # agenda : ... >

< ch1 : Channel | id : "ch1" # node : "n2" >

...

}

This code snippet shows part of a model in which there is a node object "n1" of
class Node which is connected to channels "ch1" and "ch2", which in turn are
connected to nodes "n2" and "n3".3

Although in e-Motions there are two kinds of rules, namely, atomic and on-
going rules, for the purpose of the work at hand only atomic rules are used. So in
what follows, we sketch the Maude specification of the atomic e-Motions rules.

Atomic rules are represented as two Real-Time Maude instantaneous rules,
one modeling its triggering and another one modeling its actual realization.
Triggering rules represent the action’s preconditions. When a rule precondition
is satisfied, the triggering Maude rule is applied and an atomic action execution
(AAE) object is created. AAE objects represent atomic rules’ executions, each
one acting as a countdown to the finalization of the action. AAE objects gather
the information needed for its instantiation: the rule’s name (l), the identifiers of
the elements involved in the action (ρ), and the variables used in it (ν). Initially,
the timer (τ) is set to the given duration of the rule.

crl [l] : {t, T} => {t, AAE (l, ρ, ν, τ), T} if C.

The realization rule represents the postcondition of the rule, which can be per-
formed once the action’s timer is consumed, and only if none of the action’s
participants have been deleted by other actions. Then, the subterm matching
the LHS is substituted by the corresponding instantiation of the RHS and the
attribute values are computed.

crl [l] : {t, AAE (l, ρ, ν, 0), T} => {t′, T} if C.

As above explained, time elapse is modeled by using the delta and mte
functions. Both functions need to be defined only over time-dependent elements,
namely the Clock instance and AAE objects. The delta function decreases AAE
timers and increases the clock value. The rest of objects remain unchanged.

3 In e-Motions, all structural features are qualified with the name of the class they
belong to, and all elements are qualified with the name of the metamodel they are
defined in. All these qualifications have been removed to improve readability.

Statistical Model Checking of e-Motions Domain-Specific Modeling 313

Action execution objects AAE gather additional information for dealing with
scheduling, periodicity, etc. The interested reader is referred to [30] for a complete
account on them and on the representation of on-going rules. From the point of
view of executability by rewriting and, in particular, for the discussion on un-
quantified non-determinism in the following sections the key idea is that AAE
objects are required for the realization of actions.

2.4 The VeStA/PVeStA Tool

There are two main approaches for statistical model checking: sequential test-
ing [40], implemented, e.g., in Ymer [39], and black-box testing [35], imple-
mented, e.g., in VeStA [36]. In sequential testing, sample execution paths are
generated until its answer can be guaranteed to be correct within the required
error bounds. In black-box testing, the system is not controlled to generate spe-
cific execution traces. Instead, a quantitative measure of confidence is computed
for given samples.

VeStA [36] performs discrete-event simulation from a Maude specification
by invoking the Maude interpreter. Given a Maude model, an initial state (or
configuration) and a temporal logical formula expressed in QuaTeX [2], VeStA
is used to perform stochastic analysis. QuaTeX uses real-valued states and path
functions to quantitatively specify properties about probabilistic models. Specif-
ically, QuaTeX provides an expressive language for real-valued temporal prop-
erties through the combination of recursive function declarations, an if-then-else
construct, and a next operator. The reader is referred to [2] for a detailed account
on QuaTeX. For the soundness of the analysis carried out in VeStA, the specifi-
cation to be analyzed has to have absence of un-quantified non-determinism [35].

AlTurki et al. have extended the VeStA tool with a parallel implementation,
PVeStA [3], which makes the analysis substantially more efficiently. VeStA and
PVeStA have been used for the analysis of systems and algorithms by different
authors (see, e.g., [1,8,16]).

3 PVeStA-Compliant Representation of e-Motions
Models

When rewriting a system, there might be different sources of non-determinism.
Some of them are part of our specification, due to probabilistic choices and sto-
chastic real-time. However, rewrite engines need to take their own choices. When
there are several matches, for a given rule or for several rules, rewrite engines will
choose an alternative following some internal criteria. For the statistical analy-
sis used in VeStA/PVeStA to be sound the rewriting logic specification cannot
contain un-quantified non-determinism [2].

The thus obtained specification may be used for rewriting in Maude, but
other tools in the Maude formal environment, as its model checker or its reach-
ability analysis tool, can also be used on it [31]. In Sect. 3.2 we show how, by
meeting its requirements, we can also use the PVeStA tool for carrying on sta-
tistical model checking.

314 F. Durán et al.

3.1 Un-quantified-non-determinism-free e-Motions Systems

Writing an arbitrary rewrite specification that meets the un-quantified-non-
determinism free requirement is non-trivial. We could check whether a speci-
fication meets the requirement by performing a critical pair analysis and check-
ing that there are no rules that can be applied simultaneously.4 However, the
checking would not be easy either. And although it may give us some hints on
the sources of un-quantified non-determinism, we would still have to change the
specification.

To avoid this problem, and to make easier to write a specification free from
un-quantified non-determinism, Agha et al. propose in [2] the use of the actor
model. To guarantee that only one rule can be fired at any time, messages
are scheduled following a continuous probability distribution. To improve its
executability, a centralized scheduler is used in [3], so that only one scheduled
message or object is available for execution at any time. With this scheduler-
based scheme, having a single message in the initial configuration, rules with
one object and a message in its left-hand sides, and no two rules for the same
message, are a sufficient condition to meet the requirement. Eckhardt et al.
relaxed the requirements on systems in [16] by allowing nested configurations
of objects. The basic idea is however the same one, if every rule is going to be
fired by a message, this message determines the rule match, and there is only
one message out of the scheduler at a time, there is only one rule that may be
fired and in one possible way.

Given the direct transformation of e-Motions configurations of objects with
references into Maude configurations of objects, we may use the same scheduler
scheme with the following changes on the requirements:

– There is a distinguish class Message whose objects represent messages.
– Objects communicate through asynchronous message passing, avoiding direct

synchronization among them. We allow several objects in the left-hand sides
of rules, but only when they are related by a containment relation, and not
to model communication between them.

– Message and action execution objects are scheduled so that there is only one
of these objects out of the scheduler.

– In the initial configuration there is only one message object, and no action
execution object. If there are more than one message objects, they have to be
scheduled.

– Rules may be fired either by messages or by action execution objects AAE.
Each rule has in its left-hand side either a message or an action execution
object. There is no rule without one of these objects in its left-hand side.

– As in [3], there might be in the right-hand side of a rule any number of
message and action execution objects, but only one may be non-scheduled.
The rest must be scheduled so that only one remains in the under-execution
configuration. When there are several messages in the left-hand side of a rule,
the order of the messages is specified in the transformation.

4 Critical pair analysis is available in Maude, and has been used for tools like its
confluence and coherence checkers (see [15]).

Statistical Model Checking of e-Motions Domain-Specific Modeling 315

– If there are two rules with the same message or action execution object in its
LHS, they cannot be simultaneously applicable. This is a requirement often
used in critical pair analysis (cf. [15]): if there is a critical pair between two
rules, their conditions should not be simultaneously satisfiable.

– The duration intervals of all atomic rules must be of the form [n,n]. Intervals
of the form [n,m] are a source of un-quantified no-determinism, since the
actual duration of the corresponding action might be any value in that interval.

These requirements are a sufficient condition for the specification to meet the
un-quantified-non-determinism-free condition. Given the direct transformation
between e-Motions rules and Maude rules, these requirements can indeed be
checked on the e-Motions model itself.

Our scheduler contains both messages and action execution objects, which
are released one by one in every rewriting tick step. As in [3], the elements in
the scheduler are ordered according to their scheduled time. Messages are always
ahead of actions, as they are ready to be consumed as soon as they are generated
by a realization rule. Those objects scheduled for the same time are served in
accordance with the time they were inserted in the scheduler (FIFO). The order
of AAE objects is determined by their timers, being the first action execution
object the one with the smallest timer. If several action execution objects have
the same countdown, they follow a FIFO order.

Thus, a Maude rule mapped from an e-Motions rule can be triggered by two
reasons:

1. there is a message which matches the message of the left-hand side of an
instantaneous rule or a triggering rule of a non-instantaneous rule, or

2. there is an AAE object whose countdown has reached zero.

Let us check these requirements on the example given in Sect. 2. The first
observation is that there is a single message (Mail or Token) in the lefthand
side of each rule. If we assume that the initial configuration has a single message
(a Token object in our case), the scheduler will make sure that there is only
one message at a time in the running configuration. Notice that NewMessage
is the only rule that have two messages in its righthand side. In this case, the
transformation generating the Maude specification will decide which one goes
first in the scheduler. The other important observation is that there will never be
two nodes referencing to the same Mail object. In those other cases in which there
are possible overlaps, indicating that there may be more than one applicable
rule, or multiple matches for the same rule, we can check that their conditions
are not simultaneously satisfiable. See for example that with a Token object in
the running configuration, there might be matches for rules NewMessage and
DecreaseToken at the same time. Notice however that NewMessage requires e.t
= 0 and DecreaseToken requires e.t > 0. There is a similar situation for rules
Node2Channel and MessageArrival, in this case m.to <> n.id and m.to =
n.id cannot be satisfied simultaneously.

316 F. Durán et al.

3.2 Modifications of Maude Rules

The Maude modules supporting the e-Motions infrastructure and the Maude
rules mapped from the e-Motions rules have been modified to make use of the
scheduler. Regarding the infrastructure modules, a new module defines the sched-
uler, operations to insert and remove objects from the scheduler, and extensions
to the operations delta and mte. This module is independent from the systems
and is added to the resulting Maude specification.

Every Maude rule mapped from an e-Motions atomic instantaneous rule must
be modified by wrapping all the messages in its right-hand side with the oper-
ator schedule, which takes a list of one or more elements and insert them in
the scheduler, following equations defined in the infrastructure module. For the
Maude rules mapped from e-Motions non-instantaneous rules, there are more
modifications. Messages present in the left-hand side of the triggering rule can-
not be removed when the rule is executed, they must be available in the system
because they are required for the corresponding realization action. However, they
cannot stay free in the configuration because they could be chosen again. There-
fore, they must be wrapped with the operator blocked, allowing to free another
scheduled message from the scheduler. AAE objects created on the RHSs of rules
have to be included within schedule operators to be handled by the scheduler.
For the realization rules, messages that appear on its LHS must be wrapped
with blocked operators, since the have to match with those wrapped in the
triggering rule. Finally, those messages created in such rules have to be enclosed
within schedule operators. The e-Motions scheduler releases a new message or
AAE object if the current state of the system has no free message or AAE after
a rewriting step.

In e-Motions systems time advances by means of the tick rule which, given
the current state, computes the minimum among the maximum time elapses
(MTEs) of the actions that may be performed on the current state. If that value
is greater than zero, it means that there is no action that can be triggered or
realized at that time. In that case, the global time is advanced until that value
and the countdown values of all the AAE objects are updated according to that
value. The operation delta makes that update. The operations delta and mte
have been modified to take into account the elements contained in the scheduler.

3.3 e-SMC: e-Motions & PVeStA Integration

A new extension for the e-Motions framework has been developed to allow auto-
matic modifications of e-Motions specifications for them to hold the restrictions
mentioned in Sect. 3.2. This extension is named e-SMC and it has been imple-
mented as an Eclipse plugin, integrated with the e-Motions tool. e-SMC encapsu-
lates all the process from the mapping from the e-Motions system to the Maude
specification to the execution of PVeStA as statistical analyzer, and the presen-
tation of the analysis results. e-SMC also allows the user to specify the QuaTeX
query that describes the property to be analyzed. The e-SMC tool, its documen-
tation and some examples are available at http://maude.lcc.uma.es/esmc.

http://maude.lcc.uma.es/esmc

Statistical Model Checking of e-Motions Domain-Specific Modeling 317

In the e-Motions framework, the model described with the DSML passes
through a series of transformations to finally generate a Maude specification. The
first one is an ATL model-to-model transformation, which generates Maude mod-
els conforming the Maude metamodel. The second one is a Xtend transformation
which generates the final Maude code. e-SMC includes a new model-to-model
transformation from the generated Maude models by the ATL transformation to
Maude models compliant with the PVeStA restrictions. This new Maude models
are, in turn, passed as input to the Xtend transformation.

4 Case Study: A Simple Messaging System

We illustrate the kind of statistical model checking we may perform with the
very simple messaging system introduced in Sect. 2. To better illustrate the pos-
sible kinds of analysis, we compare the first simple messaging protocol results
with a second version of the system in which each node has a routing table to
decide which channel the message will be sent through in rules NewMessage and
Channel2Node. In this second version, instead of probabilistically choosing an
output channel, the value of the via attribute is retrieved from a table storing
the best channel for a given destination.

The most interesting property to be analyzed in these simple message passing
systems is how well connected is each node? Or how long does it take a message to
reach its target? However, this property has to be statistically analyzed, since it
depends on the value of three stochastic parameters: (i) when is the next message
going to be sent, (ii) which is the target node, and (iii) which channel chooses
a node to send the message through. In terms of statistical model-checking, the
property at hand could be expressed as “with a confidence of 99 %, which is the
mean time a message takes to commute between the source and target nodes?”.

We proceed by defining a state expression which retrieves the mean response
time collected by the Observer object at that time. Our executions have been
performed using 8 threads (servers in the PVeStA terminology) and a master
(client in PVeStA terms) running batches of 30 samples on each thread. After
several iterations PVeStA returns the mean time elapsed between the start node
ni sending the message and the target node receiving it.

For the case of simple message passing with routing tables the time elapsed
for messages sent from each node has been drastically reduced. Note that in the
first case there may be even messages looping without finding their target. In
this case we run batches of 10 samples on each thread, since it takes a smaller
amount of values to converge.

Table 1 shows the execution times for each node, the number of samples
needed to reach the confidence interval, and finally value of the property under
study. Of course, the case study with routing converges with less samples since
we are fixing which is the route the message will follow. Graphs in Fig. 4 show
the evolution of the mean of the arrival times for each of the nodes in the system.
Notice how they converge after some number of samples to their respective final
mean values, once the confidence interval is reached.

318 F. Durán et al.

Table 1. Execution times and mean time for messages being sent

Simple message passing Simple message passing routing

ni Ex. time # samples mean. time Ex. time # samples mean. time

n1 93 s 600 8.7795 23 s 240 2.9484

n2 111 s 660 7.2204 18 s 160 2.9639

n3 96 s 870 7.6253 16 s 160 2.9984

n4 92 s 510 8.3019 18 s 160 3.0141

n5 87 s 1080 7.7106 25 s 240 3.0233

(a) Simple Message Passing (b) Message Passing with Routing

Fig. 4. Mean message delivery time

5 Related Work

Heckel et al. propose in [17] the modeling and analysis of stochastic graphs
transformation systems by defining Continuous Time Markov chains from GTSs
with transition matrices representing the probabilities of the application of each
rule. They provide some support using GROOVE [28] and PRISM. In later
works [38], they handle distributions depending on pairs rule-match and may
perform stocastic simulation. They develop GRaSS, with VIATRA as back-end,
which can run multiples simulations limited by a time amount or number of
steps. GRaSS may then calculate some statistical values with given confidence
intervals.

GROOVE [28] supports the modeling of object-oriented systems, with graph
transformations as a basis for model transformation and operational semantics.
Systems thus defined may then be verified using model checking. CheckVML
does something similar, although in this case system specifications into a tool-
independent abstract representation of transition systems, from which Promela
specifications are generated to model check using Spin.

Statistical Model Checking of e-Motions Domain-Specific Modeling 319

Several attempts to reduce the complexity of model checking have also been
proposed. Isenberg et al. propose in [18] the use of bounded model checking via
SMT solving. Yousefian et al. use genetic algorithms in [41] to search specific
states in large state spaces.

Based on ideas from Event Scheduling, de Lara et al. propose in [12] an inter-
esting way of adding explicit time to graph transformation rules by scheduling
rules in the future. Basically, they schedule all possible matches of rules (what
they call events) and proceed by handling each of these events. To avoid the
explosion in the number of matches, they use a control graph which establishes
the possible sequences in which the rules may be applied. This idea could be an
alternative way of guaranteeing the absence of un-quantified non-determinism,
although at the cost of providing the control graph.

6 Conclusions

We have presented how the e-Motions tool has been extended so that the models
built conforming to user-defined DSMLs are suitable for statistical model check-
ing. e-Motions models are transformed into Maude specifications satisfying the
requirements of the PVeStA tool [3], making them suitable to be stochastically
analyzed. We have illustrated the use of e-Motions to model systems and its
statistical model check with a very simple application for message delivery.

With our approach we provide statistical model checking capabilities to user-
defined DSMLs in a user-friendly graphical environment. Statistical model check-
ing offers a completely automatic procedure, with the possibility of adjusting the
desired confidence interval and error bound.

Although the basic functionality and tooling is already available, much work
remains ahead. For example, we would like to automate the check of the satis-
faction of the non-quantified-non-determinism requirements. e-Motions features
like periodicity, scheduling, or non-degenerate intervals are not yet supported.
Moreover, although the response times obtained with PVeStA are acceptable,
we would like to explore the possibility of using more powerful model checkers
as back-end tools. Finally, we will complete the graphical representations of the
obtained distributions of results inside our Eclipse plugin.

Acknowledgements. This work was partially supported by Research Project
TIN2014-52034-R and by Universidad de Málaga (Campus de Excelencia Internacional
Andalućıa Tech).

References

1. Agha, G., Greenwald, M., Gunter, C.A., Khanna, S., Meseguer, J., Sen, K., Thati,
P.: Formal modeling and analysis of DOS using probabilistic rewrite theories. In:
Proceedings of FCS (2005)

2. Agha, G., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language for
probabilistic object systems. In: Proceedings of the QAPL, ENTCS, vol. 153, pp.
213–239 (2006)

320 F. Durán et al.

3. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011)

4. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a
tool suite for automatic verification of real-time systems. In: Alur, R., Sontag,
E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer,
Heidelberg (1996)

5. Boronat, A., Meseguer, J.: An algebraic semantics for MOF. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 377–391. Springer, Heidelberg
(2008)

6. Boronat, A., Meseguer, J.: MOMENT2: EMF model transformations in Maude.
In: Proceedings of JISBD, pp. 178–179 (2009)

7. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theoret. Comput. Sci. 236(1–2), 35–132 (2000)

8. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Modelling
and analyzing adaptive self-assembly strategies with Maude. In: Durán, F. (ed.)
WRLA 2012. LNCS, vol. 7571, pp. 118–138. Springer, Heidelberg (2012)

9. Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: UPPAAL-SMC: statistical model checking for priced timed automata.
EPTCS 85, 1–16 (2012). Proceedings of QAPL

10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.F.: Maude: specification and programming in rewriting logic. Theoret. Comput.
Sci. 285(2), 187–243 (2001)

11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

12. de Lara, J., Guerra, E., Boronat, A., Heckel, R., Torrini, P.: Domain-specific dis-
crete event modelling and simulation using graph transformation. Softw. Syst.
Model. 13(1), 209–238 (2014)

13. de Lara, J., Vangheluwe, H.: AToM: a tool for multi-formalism and meta-modelling.
In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188.
Springer, Heidelberg (2002)

14. Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving operational
termination of membership equational programs. Higher-Order Symbol. Comput.
21(1–2), 59–88 (2008)

15. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of con-
ditional order-sorted rewrite theories. J. Log. Algebr. Program. 81(7–8), 816–850
(2012)

16. Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable avail-
ability under denial of service attacks through formal patterns. In: de Lara, J.,
Zisman, A. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol.
7212, pp. 78–93. Springer, Heidelberg (2012)

17. Heckel, R., Lajios, G., Menge, S.: Stochastic graph transformation systems. In:
Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS,
vol. 3256, pp. 210–225. Springer, Heidelberg (2004)

18. Isenberg, T., Steenken, D., Wehrheim, H.: Bounded model checking of graph trans-
formation systems via SMT solving. In: Beyer, D., Boreale, M. (eds.) FORTE 2013
and FMOODS 2013. LNCS, vol. 7892, pp. 178–192. Springer, Heidelberg (2013)

19. Jansen, D.N., Katoen, J.-P., Oldenkamp, M., Stoelinga, M., Zapreev, I.: How fast
and fat is your probabilistic model checker? An experimental performance com-
parison. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 69–85. Springer,
Heidelberg (2008)

Statistical Model Checking of e-Motions Domain-Specific Modeling 321

20. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley, New York (2008)

21. Caskurlu, B.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.)
IFM 2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002)

22. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: a hybrid approach. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002.
LNCS, vol. 2280, pp. 52–66. Springer, Heidelberg (2002)

23. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

24. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oret. Comput. Sci. 96(1), 73–155 (1992)

25. Meta object facility (MOF) core specification, Version 2.4.1 (2013)
26. Moreno-Delgado, A., Durán, F.: The movie database case: a solution using the

Maude-based e-Motions tool. In: 7th Transformation Tool Contest (TTC), vol.
1305, pp. 116–124. CEUR Workshop Proceedings (2014)

27. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order Symbol. Comput. 20(1–2), 161–196 (2007)

28. Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004)

29. Rivera, J.E., Durán, F., Vallecillo, A.: A graphical approach for modeling time-
dependent behavior of DSLs. In: Proceedings of VL/HCC, pp. 51–55. IEEE (2009)

30. Rivera, J.E., Durán, F., Vallecillo, A.: On the behavioral semantics of real-time
domain specific visual languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol.
6381, pp. 174–190. Springer, Heidelberg (2010)

31. Rivera, J.E., Vallecillo, A., Durán, F.: Formal specification and analysis of domain
specific languages using Maude. Simulation 85(11/12), 778–792 (2009)

32. Romero, J.R., Rivera, J.E., Durán, F., Vallecillo, A.: Formal and tool support for
model driven engineering with Maude. J. Object Technol. 6(9), 187–207 (2007)

33. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations: Volume 1 Foundations. World Scientific, River Edge (1997)

34. Schmidt, Á., Varró, D.: CheckVML: a tool for model checking visual modeling
languages. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol.
2863, pp. 92–95. Springer, Heidelberg (2003)

35. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004)

36. Sen, K., Viswanathan, M., Agha, G.A.: VeStA: a statistical model-checker and
analyzer for probabilistic systems. In: Proceedings of QEST, pp. 251–252. IEEE
(2005)

37. Taentzer, G.: AGG: a graph transformation environment for modeling and valida-
tion of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

38. Torrini, P., Heckel, R., Ráth, I.: Stochastic simulation of graph transformation
systems. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013,
pp. 154–157. Springer, Heidelberg (2010)

39. Younes, H.L.S.: Ymer: a statistical model checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)

322 F. Durán et al.

40. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002)

41. Yousefian, R., Rafe, V., Rahmani, M.: A heuristic solution for model checking
graph transformation systems. Appl. Soft Comput. 24, 169–180 (2014)

Proof and Theorem Proving

Towards Formal Proof Metrics

David Aspinall1(B) and Cezary Kaliszyk2

1 LFCS, School of Informatics, University of Edinburgh,
Edinburgh EH8 9AB, Scotland, UK

David.Aspinall@ed.ac.uk
2 University of Innsbruck, Technikerstr. 21a/2 6020, Innsbruck, Austria

Abstract. Recent years have seen increasing success in building large
formal proof developments using interactive theorem provers (ITPs).
Some proofs have involved many authors, years of effort, and resulted in
large, complex interdependent sets of proof “source code” files. Develop-
ing these in the first place, and maintaining and extending them after-
wards, is a considerable challenge. It has prompted the idea of Proof
Engineering as a new sub-field, to find methods and tools to help. It is
natural to try to borrow ideas from Software Engineering for this.

In this paper we investigate the idea of defining proof metrics by
analogy with software metrics. We seek metrics that may help to mon-
itor and compare formal proof developments, which might be used to
guide good practice, locate likely problem areas, or suggest refactorings.
Starting from metrics that have been proposed for object-oriented design,
we define analogues for formal proofs. We show that our metrics enjoy
reasonable properties, and we demonstrate their behaviour with some
practical experiments, showing changes over time as proof developments
evolve, and making comparisons across between different ITPs.

1 Introduction

Interactive formal proof has advanced to make some impressive achievements,
demonstrating that large software and hardware systems can be verified and
that large mathematical proofs can be completely captured on machine, giving
very high degrees of confidence each case. Some examples are:

– Hales’s FlySpeck formalisation of his proof of the Kepler Conjecture [13], which
includes about 510,000 lines of code proving 27,451 lemmas in the HOL Light
interactive theorem prover. This involved a team of 22 people, and an esti-
mated total of 20 person-years of work [14].

– Klein’s verification of the seL4 microkernel [20], the core of which consists of
almost 400,000 lines of code with 59,000 lemmas, which verifies around 9,000
lines of C and assembler code in the Isabelle ITP. This project involved a
team of 13 people, and an estimated total of 20 person-years of work.

– The Compendium of Complex Lattices book formalized in Mizar, performed
by a team of 15 people led by Bancerek [3]: it consists of 57 articles with 2,566
theorems and 124,628 lines of proof; it took over 5 person-years.

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 325–341, 2016.
DOI: 10.1007/978-3-662-49665-7 19

326 D. Aspinall and C. Kaliszyk

In each case, the result consists of instructions written in a dedicated formal
proof language which direct the proof engine to check a formal proof of some
logical statement; these instructions are sometimes called a (formal) proof script.

To give further background for those unfamiliar: a proof script is somewhat
like a program written in an ordinary programming language; like a program it
is usually stored in a plain text file. In interactive theorem proving, one works
intensively with the machine’s help to build the proof script; the system checks
progress at intermediate points. There are several currently successful ITP sys-
tems in which large proofs have been constructed, including the three mentioned
above, and others such as HOL4, Coq, ACL2 and PVS. Some ITPs are concep-
tually similar and use related logics, but each implementation has its own formal
proof language so proofs scripts from one cannot be used in another; there are
few, if any, useful tools that work for more than one system. This is like the sit-
uation with different programming languages, but the user community for each
ITP is small. Learning an ITP requires expertise and typically takes months.

Despite the fragmentation, ITPs have continually advanced so that multi-
person developments are more common. Leaders of large proof projects have
become concerned about the engineering aspects of building and then main-
taining large proof scripts, motivating a new sub-field of study: Proof Engineer-
ing [6,10,19]. There are many questions which we do not yet know how to answer.
For example: How should a large proof be broken into separate modules? Given
a large proof, how can we tell if it is well-structured or in need of improvement,
perhaps to improve understanding or maintainability? If a basic definition needs
to be changed, how much of the rest of the development will break? These are
similar to the concerns of software engineering, so it is natural to ask if software
engineering research and practice can provide ideas that transfer.

1.1 From Software Metrics to Proof Metrics

In this paper we make some first steps to investigate proof metrics, deliberately
making a connection to software metrics that have been studied extensively and
found utility in practice. Certainly it would be useful to get a handle on the size
and complexity of a formal proof and its change over time. It would also be useful
to understand how well-structured a formal proof is; one of the most painful proof
engineering activities is refactoring existing proofs to change structure [11]; so
much so that it is often avoided [12]. So the classic software design goals for
modularity of high coherence (a module should contain related things) and low
coupling (connected modules should only have a few connections) are equally
applicable to formal proof development.

As our starting point, we take inspiration from the landmark metrics for
object-oriented design that were introduced by Chidamber and Kemerer [7]
(“C&K”). Although the C&K metrics have since been criticised and modified in
a myriad of ways, they still stand as a plausible starting point for a new applica-
tion area. In particular, they are appropriate because they have simple definitions
and motivations and also because there is a rough analogy between the static
structure of an object-oriented design and the structure of proof scripts.

Towards Formal Proof Metrics 327

Fig. 1. A loose analogy between object-oriented programming and formal proof

Just as with programs, large formal proofs are broken up into modules. Vari-
ous sorts of module have been studied and are adopted in different systems, sup-
porting both in-the-small structuring (e.g., capturing the notion of an algebraic
structure with its operations and axioms: locales in Isabelle) and in-the-large
(e.g., capturing a whole collection of definitions and properties about groups).
Here we are concerned with in-the-large modules which form the basic top-level
decomposition of a formal proof. In Isabelle modules are called theories, in Mizar
they are called articles; in HOL Light, modules are identified with files.

Top-level modules contain statements to be proved and their proofs, which
we (and most ITPs) call theorems. A formal proof also needs to define the sub-
ject of its concern: whether some mathematics or a proof of software correctness,
declarations and definitions are needed to introduce types and constants of dis-
course. Although specific mechanisms differ, top-level modules have some import
mechanism to allow access to other modules. Scoping mechanisms for restricting
visibility are currently either primitive or little used; hence visibility of imported
theorems usually extends transitively through imported modules, just as class
inheritance extends member visibility transitively through the class hierarchy.
(Section 2 shows some small example proofs and import graphs, along with the
abstraction that we use to define metrics.)

This leads us to the loose analogy shown in Fig. 1. Classes in OO design
or programming are like proof modules. Theorems are somewhat like meth-
ods: both have complex bodies that describe their implementation. In OO,
instance variables capture the nature of what a class models; methods inspect
and manipulate the variables. In ITP land, theorem statements describe prop-
erties of (immutable) types and constants. Proofs may refer to further types
and constants and to other theorems: usually ones proved earlier in some well-
founded ordering. This is analogous to methods that invoke other methods in
their implementation. (As an aside: ITPs grudgingly admit theorems without
proof: assumptions or axioms taken as given; this allows a form of top-down
development, but does not really make up for the lack of any modeling language
or technology.)

The plan is now clear. Using the analogy, size metrics that consider the
number of methods in a class can be recast as metrics counting the number of
theorems in a theory. Metrics based on the class hierarchy relationships can be
recast to examine dependencies among proof modules. And so on; how we recast
the C&K metrics is defined precisely and discussed in Sect. 3. We can also show

328 D. Aspinall and C. Kaliszyk

that our metrics satisfy some analytical properties which have been studied in
software metrics; this is covered in Sect. 4.

There is a risk that the investigation may be futile. Despite good properties,
naive translations of software metrics using Fig. 1 could result in functions that
are uninteresting or meaningless in the setting of formal proof. Our analogy is
rough: the structuring mechanisms differ, and programs have dynamics which
is the whole purpose of their construction. But the dynamics of a completed
formal proof is a one-shot check and annotation: a black-box operation in which
the ITP emits compilation errors if the developer made a mistake or a “QED”
acknowledgement in the case of success.

To demonstrate that our metrics may be actually interesting in practice,
we examine several large repositories of formal developments, taken from three
different ITPs. Our metrics confirm some expected “folklore” aspects of the sys-
tem differences. Looking at some version control history, we are able to correlate
certain changes in formal proof files with changes in the expected metrics, and
vice-versa. Our practical experiments are described in Sect. 5.

Contributions. We believe this is the first attempt to adapt ideas from software
metrics to formal proof that goes beyond size-based metrics. We contribute:

1. a simple abstract model definition for formal proofs;
2. a precise definition of a set of proof metrics using this model;
3. (informal) proofs that our metrics satisfy some reasonable properties;
4. an implementation of the metrics for three different ITPs;
5. demonstration of metrics for various large proof corpora;
6. demonstration of the historical change of the metrics on 38 versions taken

from the version control history of HOL Light.

As well as size measurements, our metrics include complexity against relation-
ships and positions within a proof development and estimates of interdependence
between parts of a formal proof.

Related Work. There is a large literature on software metrics concerning their
definition and empirical study as well as (often) debating their utility. Despite
any debate, metrics continue to be studied and used in practice. For example,
metrics are used in cost estimations models (e.g., COCOMO and variants; see
Trendowicz and Jeffrey for a recent overview [29]). They can also be used to
implement heuristics to detect “bad smells” in code that may suggest when
refactorings may be desirable [27] or where they have occured in the past [9].

On the side of formal proof, the topic is quite new. Researchers in the seL4
project have set out an agenda similar to ours [17] and empirically demonstrated
a relationship between theorem statement size and proof size [23] in seL4 and, to
a restricted extent, other Isabelle proofs (see Sects. 5 and 6 for more remarks).
Also for Isabelle, Blanchette et al. [5] studied the dependencies and size of whole
formalization libraries in the AFP contributed library. They found little entry
reuse based on the import graph and showed that the size distribution of the

Towards Formal Proof Metrics 329

entries follows the power law. Working with Mizar proofs, Pak investigated ways
of improving proof readability using notions of legibility based on locality of
reference, taking inspiration from models of cognitive perception [24]; this is
similar to the software engineering idea of cohesion, which is a metric we define.
We mention some other related work in the body of the paper.

2 Programming Formal Proofs

Languages of different ITPs vary considerably, but all provide the user with a way
to express theorem statements and give proofs, which the system verifies. There
are two predominant styles of proof script: procedural, where user instructions
(tactics) are transformations that successively refine a state backwards from the
goal; and declarative, where instructions drive the ITP forwards to its target,
providing justifications “by” that gives the ITP hints. Some systems support
both styles. Often, procedural proofs are easier to write and declarative proofs
are easier to read. To give a flavour, Fig. 2 shows two formal proof excerpts.

In both styles, instructions used in a theorem’s proof take arguments that are
theorems themselves, creating dependencies between theorems. Circular depen-
dencies are not allowed: to prove a theorem P using another theorem Q, Q must
be provable itself without P . As proof libraries grow larger, theorems are col-
lected together into modules; a well organised library collects related theorems
together. Modules also have a cycle-free dependency ordering, as new modules
are built from older ones. Figure 3 shows the dependencies between modules and
theorems in the first part of the HOL Light library.

Fig. 2. A HOL Light procedural proof (left) and an Isabelle declarative proof (right).

2.1 Formal Proof Developments, Abstractly

We now model this situation. Suppose two sets of identifiers: the module names
M and the theorem names T . For simplicity (to avoid considering notions of
scope) but without loss of generality, we assume that theorem names are globally
unique. So each theorem belongs to a module: the mapping mn : T → M returns
the module name of a given theorem. We use “theorem” in a general sense,

330 D. Aspinall and C. Kaliszyk

nums

theorems

pair trivia

class

bool bool/
FORALL_DEF

theorems/
EQ_REFL

theorems/
REFL_CLAUSE

theorems/
EQ_SYM

theorems/
EQ_SYM_EQ

theorems/
EQ_TRANS

bool/
TRUTH

bool/
IMP_DEF

bool/
AND_DEF

Fig. 3. Module dependencies and theorem dependencies in HOL Light.

in reality ITP modules can contain declarations or definitions of various other
things (axioms, constants, types, syntax, etc.); we are agnostic whether these
are included in the abstract notion of “theorem” or not.

Definition 1 (Proof Module and Proof Development)

– A proof module is a pair (M,T) of a module name M ∈ M and a finite set
of theorem names T ⊂ T such that mn(t) = M for all t ∈ T .

– A proof development P = {(M,TM)} is given by a finite set of proof modules
having distinct module names M .

Formal mathematics is a well-founded endeavour: later definitions or theorems
may only depend on ones that have been given earlier. Theorem dependency
relations have been investigated in practice before for real systems (e.g., [1,26])
but the next definition has not been spelled out before.

Definition 2 (Proof Development Dependency)

– A module dependency (uses) relation →M is a well-founded relation on a
subset of M. We write ≤M for the reflexive, transitive closure of →M.

– A theorem dependency (uses) relation →T is a well-founded relation on a
subset of T . We write ≤T for the reflexive, transitive closure of →M.

– A dependency for a proof development P is given by a module dependency
relation →M on the module names of P , together with a theorem dependency
relation →T on all of the theorem names in P , which respects →M in the sense
that t1 →T t2 =⇒ mn(t1) ≤M mn(t2).

Thus, a proof development forms a DAG of modules which overlays a set of
DAGs of theorems. Note that we distinguish direct or “immediate” dependencies
from indirect ones: a theorem t3 may use a theorem t2, in its proof which in turn
uses t1 (t3 →T t2 and t2 →T t1); but t3 may have a different proof that uses
both t2 and t1 directly (t3 →T t1 and t3 →T t2). In both cases t3 ultimately
depends on t1, so t3 ≤T t1.

Module dependencies suggest the proof checking (or compilation) order: we
suppose that proofs of theorems in each module are checked together, and mod-
ules are checked in some defined or inferred order. Then M2 ≤M M1 says that

Towards Formal Proof Metrics 331

M2 is the later module that may build on concepts and lemmas, etc., given in
M1. So whenever t2 →T t1, we require that t1 has been checked in the same or
an earlier module (perhaps transitively earlier) than t1.

The converse implication need not hold; module dependencies can be “loose”
in that they may not reflect any (direct or transitive) theorem dependencies;
a bit like “redundant imports” in programming languages. We call a module
dependency M1 →M M2 between different modules strict only when there is
indeed some t1 ≤T t2 for which mn(t1) = M1 and mn(t2) = M2. In our imple-
mentation of the metrics to follow, we take the theorem dependency relation
to be primary, and derive →M as the minimal strict relation between modules
which respects →T. This is an implementation choice that conveniently unifies
the treatment between different systems.

The theorem dependency relationship is all that we use to model the bodies of
theorems (an axiom has no dependencies). But we need more to capture theorem
statements. To avoid any detail of the logical language for statements we suppose
that there is an abstract set of features F which capture the constants, types,
etc. that a theorem statement may refer to. We suppose, for simplicity again,
that every theorem name is associated globally with a statement, so there is a
mapping fea : T → Fin(F). Given a theorem t, fea(t) ⊂ F is the finite set of
features used in its statement. For example, the Kepler conjecture, which gives
an upper bound on ball packings in R

3 with the formal HOL Light statement:

can be characterized by the following features based on the constants and types
appearing in its formal statement:

fea(kepler conjecture) = {packing, sqrt, ball, pi,BIT0,BIT1,NUMERAL, 0,

real add, real div, real le, real mul, real of num

real pow,CARD, INTER, 3, cart, num, prod, real}.

3 Six Simple Proof Metrics

In their landmark paper [7], now over 20 years old, Chidamber and Kamerer pro-
posed metrics for object-oriented design which are also applicable to implemen-
tations in object-oriented programs. They consolidated earlier work and aimed
to set their metrics on a rigorous footing. They designed six metrics for OOD:
each metric is a function on a class. The metrics were evaluated by checking
analytically that they possess reasonable properties and by examining the result
of their application in two real software projects.

Here we revisit C&K’s metrics and recast them for formal proof develop-
ments. There have been many criticisms, variants and improvements on C&K’s
work, and empirical studies providing varying degrees of external validation. In
this first study, we cannot expect to find perfect metrics for formal proof so we
start off with a “straw-man” proposal inspired by this indisputably key work.

332 D. Aspinall and C. Kaliszyk

3.1 WTM: Weighted Theorems per Module

WTM is our analogue of C&K’s WMC, Weighted Methods per Class, which is
a basic size assessment of a module. Let the theorems of a proof module M be
TM = {t1, . . . , tn}. Then WTM is defined by:

WTM(M) =
n∑

i=1

c(ti)

where c is some complexity function applied to theorems ti in the theory T .
The idea of the complexity function is that it allows more complex theo-

rems to be given a higher weighting. For example, we could measure the size of
the theorem statement (perhaps counting distinct constants unwinding defini-
tions recursively [6,23]), or, we could instead measure proof size by counting the
number of lines-of-code in the proof script for the theorem’s proof. The simplest
choice (and common in OOP studies) is to take c to be the identity, so WTM=n,
the number of theorems in the theory.

3.2 DIT: Depth in Tree

The metric DIT calculates the maximum depth of the proof module in the mod-
ule dependency graph; it corresponds to the DIT metric for a class in OOP which
measures the depth of a class in the inheritance tree. Intuitively, higher DIT val-
ues in a proof development suggest modules that are potentially more complex
since they rely on more levels of previously constructed proofs. We define:

DIT(M) = depthP (M)

where depthP (Mn) is the length n of the longest path Mn →M Mn−1 · · · →M M0.

3.3 NOC: Number of Children

The Number of Children, NOC, for a proof module is the number of immediate
descendent modules that depend upon it. This is defined as:

NOC(M) = | {M ′ | M →M M ′} |
In OOP, this is a measure of scope of a class: how many other classes immedi-

ately depend on this one. Intuitively, modules with higher NOC values may incur
greater cost to change, since a local change will have a broader effect. But at
the same time, a higher NOC shows a greater reuse, indicating that the module
is actually used in many places, demonstrating that it is good or important.

C&K suggest that too many children may indicate “improper” abstraction:
superclasses should not be overly general. They found a case of this in a project
they examined. In proof developments, we expect the core library modules to
have many children. OOP languages often have a separate import mechanism for
library functions, independently of subclassing. This is a tension in our analogy:
class inheritance is arguably more akin to theories in-the-small, but in-the-small
proof modules are less widely used and harder to compare across systems.

Towards Formal Proof Metrics 333

3.4 CBM: Coupling Between Modules

C&K define a metric called Coupling Between Object classes (CBO) which is a
complexity measure on the class hierarchy. Two classes are coupled if one uses
member functions or instance variables of the other. Our analogous metric is:

CBM(M) = | {M ′ | M →M M ′ ∨ M ′ →M M} |
Intuitively, coupling refers to the degree of interdependence between parts of a
design: it means dependency as ancestor or child. Modules with higher coupling
values are more closely bound into the proof development hierarchy, meaning
that they may be difficult to understand in isolation. The simple definition above
doesn’t account for a multiplicity of couplings between modules. Later work on
OOP coupling metrics addressed this; we might similarly consider a metric which
counts the number of strict theorem dependencies that cross module boundaries.

3.5 TDM: Total Dependencies for Module

C&K’s next metric is RFC, Response For a Class, which counts the number of
methods that could be executed in response to a message received by an object
of that class. Intuitively this may estimate the potential (dynamic) complexity
of behaviours of objects in the class; high RFC values might suggest classes that
are harder to test. We re-interpret this using theorem dependency:

TDM(M) = | { t′ | t →T t′ ∧ t ∈ TM} |
There is no analogue of “response” for a theorem, but just as invoking a method
m() leads to invoking other methods mentioned in the body of m, our metric
counts the number of theorems depended on in the definition of a given theorem.
Notice that this includes internal dependencies which do not cross the module
boundary, as well as external ones.

In the proof setting, we hypothesise that this metric may suggest the overall
brittleness of a theory: if (too) many other theorems are used in the construction
of a module, it may break easily if the statements of those other theorems change.

3.6 LCOM: Lack of Cohesion in Module

The final metric given by C&K is LCOM, originally Lack of Cohesion of Methods
in a class. Cohesion refers to internal consistency within a module; a high LCOM
value suggests a module that gathers together many unrelated things. C&K’s
metric is defined as the difference between the number of pairs of methods which
that entirely different instance variables (p), and the number of pairs of methods
that access some of the same attributes (q); LCOM was taken to be p − q or
zero if q > p. Early on, LCOM was criticised for failing to fit empirical data [4],
spawning a slew of alternatives (for partial surveys, see e.g. [2,22]).

As a first proposal for the formal proof setting, we suggest a metric based
on theorem statement dissimilarity counted using features: two theorems are

334 D. Aspinall and C. Kaliszyk

similar if they concern the same concepts, and so mention the same constant
names, types, etc.1 An overall measure of similarity for the module is given by
summing up the Jaccard index for each pair of theorem statements:

sim(M) =
n∑

i=1

n∑

j=i+1

| fea(ti) ∩ fea(tj) |
| fea(ti) ∪ fea(tj) |

Then we compute LCOM as the average dissimilarity:

LCOM(M) = 1 − sim(M)
1
2 (n2 − n)

.

(this is similar to CC, among others [2]). Unlike the preceding metrics which are
on an interval scale with no maximum, LCOM is a ratio in the range 0 to 1.

4 Properties of Proof Metrics

Weyuker [31] proposed desirable analytical properties for structured program
metrics, six of which were adapted by C&K to OOD, again, generating much
subsequent discussion and criticism. Here we briefly revisit the properties and
their connection to our metrics.

Several properties relate to combinations of programs; for structured pro-
gramming this meant, essentially simple juxtaposition of source code P ;Q. Com-
position in OOP is more complicated. But for our simple model of formal proof
languages, we suppose that the operation M + M ′ stands for (disjoint) combi-
nation of modules.

Proposition 1. Properties of formal proof metrics.

W1 Non-coarseness. Given a module M and a metric µ, one can always find
a module M ′ st µ(M) �= µ(M ′). This is satisfied by all of our metrics.

W2 Non-uniqueness. There can be distinct modules M and M ′ with µ(M) =
µ(M ′). This is satisfied by all of our metrics.

W3 Design is important. Two modules M and M ′ may have the same mean-
ing without µ(M) = µ(M ′) holding. If we take the semantics of an abstract
module to be the set of (named) theorems it proves, then this property is
not satisfied by the basic size metric WTM metric or the cohesion metric
LCOM, which only consider the (number of) theorem statements and don’t
relate to design-in-the-large. Of course the property holds if we consider the
full proof language, which has a complex concrete syntax, so many ways to
describe the same module.

W4 Monotonicity. For all M and M ′, µ(M) ≤ µ(M + M ′) and µ(M ′) ≤
µ(M + M ′). This is true for all of our metrics except LCOM, since it is
normalised for comparison between modules; LCOM can be reduced by
adding theorems to a module that have an average greater similarity to
those already there.

1 A similar idea was in fact suggested by Matichuk et al. [23] as future work.

Towards Formal Proof Metrics 335

W5 Combination can cause interaction. ∃M1,M2,M3 such that µ(M1) =
µ(M2) does not imply µ(M1 + M3) �= µ(M1 + M3). This property can be
satisfied for all the dependency related metrics, but not the size measure
WTM. It can be satisfied by LCOM since this is non-compositional.

W6 Interaction can increase complexity. ∃M1,M2 such that µ(M1) +
µ(M2) < µ(M1 + M2). This opposite of the triangle inequality fails for all of
our metrics except LCOM. C&K argued against it; all of their metrics failed
it and it prevents µ being a distance metric in the mathematical sense.

5 Experimental Study

To test our metrics, we implemented a tool to make calculations using fea-
ture and dependency data exported from (suitably modified) ITPs during proof
checking. Then we investigated the metrics on a range of existing formal proof
developments and their version histories.

5.1 Large Proof Development Examples

We investigated large developments in three systems:

1. The Kepler formal proof, FlySpeck: we focused on the final version of the text
formalization [13] together with the underlying core library of HOL Light and
the formalization of Multivariate Analysis [15] (SVN revision 245).

2. The Isabelle HOL Main (core library) theory together with three formaliza-
tions: cryptographic protocols, Auth [25]; Java bytecode, Bali; and Probabil-
ity theory [16] (Isabelle 2015 release version).

3. The Mizar Mathematical Library. We focused on the basic libraries of formal-
ized topology and theory of lattices [3] (Mizar version 7.11.07, MML version
4.156.1112).

In each case, information was exported in a uniform format, containing theorem
dependencies and statement features. To be as similar as possible across provers,
we used symbol features (i.e., names of constants and types present in the the-
orem statement, as shown in Sect. 2.1), rather than more complex notions.

For HOL Light, we used the HOLyHammer proof advice tool [18] by Kaliszyk
and Urban. For the Isabelle formalizations we used the Blanchette’s TPTP/-
Mash Export [21], which can compute dependencies and MaSh features for a
given set of Isabelle/HOL theories. For Mizar, used the data available in the
MPTP2078 challenge by Urban [30]. The challenge includes the proof depen-
dencies and statements for the selected Mizar articles. We extracted symbol
features using standard TPTP tools [28].

Space precludes a complete breakdown of metric values, but the summary
in Fig. 4 shows the averages for each development. From theorem count totals
we can see, for example, how large Flyspeck is; but metrics give an idea of the
form of its structure: it has a large number of modules with comparatively fewer
theorems, compared to library code. This likely contributes to the better cohesion
score. For module hierarchy, the development is, on average, almost twice as deep
as the next deepest, Isabelle’s highly structured Main HOL library.

336 D. Aspinall and C. Kaliszyk

Fig. 4. The overall statistics for the considered proof libraries together with the mean
values of the proposed proof metrics computed on these libraries.

Fig. 5. Cohesion (top) and coupling (bottom) distributions across modules in the three
ITPs. Coupling is normalized to [0; 1] for comparison.

5.2 Distribution of Cohesion and Coupling

In general, the metrics differ widely across modules in the same formal library, so
it is interesting to examine their distributions. Figure 5 shows the distributions
of cohesion and coupling across the three considered ITPs. Cohesion shows a
similar distribution across the systems, with slightly higher values for Mizar.
For Mizar we focused on a more advanced part of the library without including
all the foundational modules; perhaps suprisingly we see high dissimilarity scores
within those modules. In HOL Light we see a peak on the histogram for the zero
bracket. This is because of a few Flyspeck modules that export precisely one
theorem with a large complicated proof. When it comes to coupling, we see that

Towards Formal Proof Metrics 337

coupling is generally low, but higher for the Mizar case: this is to be expected
because we considered a self-contained development in isolation.

5.3 LCOM, TDM, and WTM over Time

We compared metrics for the HOL Light core library over the last five years of
HOL Light development, by exporting the data from 38 selected SVN revisions.
The values of selected metrics for these revisions are depicted in Fig. 6. In gen-
eral, the library has grown to prove more theorems over time without changing
its modular structure. The average WTM and TDM both increase, showing the
growing average number of theorems per module and complexity of the depen-
dency relationship. The jump in LCOM and TDM between revisions 200 and
205 can be traced back to the removal of a module called ind defs, the only
change in modular structure that we see. As the library becomes more dense,
similar theorems added to the same modules may decrease LCOM, which is seen
around version 145. LCOM can also change because of library restructuring; we
show an example of this next.

5.4 Case Study: HOL Light Refactoring

On Dec 1, 2011 John Harrison slightly reorganised the HOL Light library. He
moved definitions of supremum and infimum of a set along with all the properties
of these concepts from Multivariate/misc to sets. Three basic Archimedian
properties moved from Multivariate/misc to real. Finding this history in the
version control logs, we examined the impact on our metrics.

Fig. 6. The values of the metrics for the HOL Light core library compared to the
number of lines of code over five years of HOL Light development.

338 D. Aspinall and C. Kaliszyk

Fig. 7. The impact of a library reorganization on the proof metrics.

Figure 7 shows the results for LCOM, TDM and WTM. The latter metrics
reflect moves but averages do not change, since the theorems proved and their
proofs stay the same. For LCOM, there is small reduction for real and sets
by the moves, reflecting that relocated theorems enjoyed similarity and/or were
similar to those of their destination modules. But the misc module was left with
a poorer score; less similarity remained among what was left. As an experiment
we tested what would happen if a separate module infsup was added to hold the
relocated theorems about infimum and supremum; the new module introduces
few cross-module dependencies decreasing TDM and has a much better cohesion
score which brings down the average LCOM value for the whole development.

5.5 Theorem Size and the Number of Dependencies

In a striking recent result, Matichuk et al. showed that proof size increases
quadratically with statement size (measured by recursively unfolding constant
names) in the seL4 verification [23]. This is potentially useful as a predictor of
effort, in connection to earlier work that shows a relation between human effort
and proof size in seL4.

Fig. 8. The number of dependencies compared to three notions of theorem statement
size on the Mizar/MPTP2078 proof library.

Towards Formal Proof Metrics 339

As a related comparison with a different ITP, and to investigate potential
ways of measuring statement size, we compared the number of dependencies with
the number of theorem features, the number of subterms in a statement and the
size of the theorem statement in MPTP2078. The scatter plots in Fig. 8 show our
results. Although increasing numbers of dependencies tend to correspond with
larger statement sizes, there are no clear relationships, and plenty of outliers.
This is not surprising: we are in a very different setting, with mathematical
proofs constructed using an automation strategy, which is rather powerful for
the considered domain.

6 Conclusions

This is the first (to our knowledge) investigation of formal proof metrics which
considers both the modular structure of a proof development and its size profile.
We also gave the first implementation and experimental data for metrics applied
to proofs in more than one theorem proving system, raising intriguing questions
of whether such measures can be used to compare developments across systems.

There are many caveats for this initial study. It is easy to imagine improve-
ments to our definitions, or to spot potential flaws (e.g., one issue: we count
dependencies manifested in final proofs, rather than ones the user mentioned).

Nevertheless, we are believe that our results give evidence of potential value
for proof metrics. A central question around metrics — can we show that they
actually measure something? — is perhaps even more thorny than for software.
Notions of formal proof quality are not yet developed and there are questions
over what to assess empirically. Defect prediction is not an obvious aim; bugs
as such do not exist in formal proof. If a proof is found by the system, it must
be correct! (Saying this, definitions and theorem statements can be wrong, even
inconsistent, which is serious; dependency metrics might provide hints on that.)
Effort prediction in general cannot be feasible: ITPs work in undecidable proof
systems, which means that there are profound theorems that have short state-
ments but will need immensely long proofs. The Kepler statement shown in
Sect. 2.1 is (almost certainly) just such an example. So it is hard to imagine a
mathematical analogue of “function points”. Software or hardware verification
is a more hopeful domain: where a body of proofs exists about some complex
system, we may hope to see correlated scaling effects in proof size or effort as
the system evolves, or as more properties are proven; Matichuk et al. [23] have
demonstrated a case of this, as mentioned above. And a different, perhaps more
transferable, use of proof metrics may be for stability tracking, to see where a
development seems to be proceeding to an optimal design. This was found to be
effective in a study of a particular object-oriented framework [8].

Even without general predictive models, we suspect that proof metrics will
find a valuable use inside a range of future tools that provide monitoring of proof
development progress, and perhaps hints of “bad smells” in a development. We
look forward to their further investigation and application.

340 D. Aspinall and C. Kaliszyk

Acknowledgements. We’re grateful to colleagues Iain Whiteside, Ajitha Rajan and
the DReaM group at Edinburgh for discussions. The referees provided useful remarks.
We acknowledge financial support from grants from UK EPSRC (EP/J001058/1) and
the Austrian Science Fund (P26201). For tools and data, please visit http://homepages.
inf.ed.ac.uk/da/proofmetrics/.

References

1. Alama, J., Mamane, L., Urban, J.: Dependencies in formal mathematics: applica-
tions and extraction for coq and mizar. In: Jeuring, J., Campbell, J.A., Carette,
J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol.
7362, pp. 1–16. Springer, Heidelberg (2012)

2. Al-Dallal, J., Briand, L.C.: A precise method-method interaction-based cohesion
metric for object-oriented classes. ACM Trans. Softw. Eng. Methodol. 21(2), 8:1–
8:34 (2012)

3. Bancerek, G., Rudnicki, P.: A compendium of continuous lattices in MIZAR. J.
Autom. Reasoning 29(3–4), 189–224 (2002)

4. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design met-
rics as quality indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996)

5. Blanchette, J.C., Haslbeck, M., Matichuk, D., Nipkow, T.: Mining the archive of
formal proofs. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.)
CICM 2015. LNCS, vol. 9150, pp. 3–17. Springer, Heidelberg (2015)

6. Bourke, T., Daum, M., Klein, G., Kolanski, R.: Challenges and experiences in
managing large-scale proofs. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis,
G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 32–48.
Springer, Heidelberg (2012)

7. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

8. Demeyer, S., Ducasse, S.: Metrics, do they really help? In: Malenfant, J. (ed.)
Proceedings LMO 1999 (Languages et Models a Objets), pp. 69–82 (1999)

9. Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding refactorings via change metrics.
In: Object-Oriented Programming Systems, Languages & Applications, OOPSLA
2000, pp. 166–177 (2000)

10. Gonthier, G., Mathematics, E.: The odd order theorem proof. In: Principles of
Programming Languages, POPL 2013, pp. 1–2. ACM (2013)

11. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux,
S., Mahboubi, A., O’Connor, R., Ould Biha, S., Pasca, I., Rideau, L., Solovyev,
A., Tassi, E., Théry, L.: A machine-checked proof of the odd order theorem. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp.
163–179. Springer, Heidelberg (2013)

12. Hales, T.C.: The jordan curve theorem, formally and informally. Am. Math. Mon.
114(10), 882–894 (2007)

13. Hales, T.C., et al.: A formal proof of the Kepler conjecture. In: CoRR
abs/1501.02155 (2015)

14. Hales, T.C., et al.: A revision of the proof of the kepler conjecture. Discrete Com-
put. Geom. 44(1), 1–34 (2010)

15. Harrison, J.: The HOL light theory of euclidean space. J. Autom. Reasoning 50(2),
173–190 (2013)

http://homepages.inf.ed.ac.uk/da/proofmetrics/
http://homepages.inf.ed.ac.uk/da/proofmetrics/

Towards Formal Proof Metrics 341

16. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: van
Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol.
6898, pp. 135–151. Springer, Heidelberg (2011)

17. Jeffery, R.D., et al.: An empirical research agenda for understanding formal meth-
ods productivity. Inf. Softw. Technol. 60, 102–112 (2015)

18. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with flyspeck. J.
Autom. Reasoning 53(2), 173–213 (2014)

19. Klein, G.: Proof engineering considered essential. In: Jones, C., Pihlajasaari, P.,
Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 16–21. Springer, Heidelberg (2014)

20. Klein, G., et al.: seL4: Formal verification of an OS kernel. In: Symposium on
Operating Systems Principles SOSP, pp. 207–220. ACM (2009)

21. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: Machine learning
for sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013)

22. Marcus, A., Poshyvanyk, D.: The conceptual cohesion of classes. In: IEEE Inter-
national Conference on Software Maintenance, ICSM 2005, pp. 133–142 (2005)

23. Matichuk, D., et al.: Empirical study towards a leading indicator for cost of formal
software verification. In: International Conference on Software Engineering, ICSE
2015, pp. 722–732 (2015)

24. P ↪ak, K.: Automated improving of proof legibility in the mizar system. In: Watt,
S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS,
vol. 8543, pp. 373–387. Springer, Heidelberg (2014)

25. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J.
Comput. Secur. 6(1–2), 85–128 (1998)

26. Pons, O., Bertot, Y., Rideau, L.: Notions of dependency in proof assistants. In:
User Interfaces for Theorem Provers (UITP) (1998)

27. Simon, F., Steinbruckner, F., Lewerentz, C.: Metrics based refactoring. In: Software
Maintenance and Reengineering, CSMR. 2001, pp. 30–38 (2001)

28. Sutcliffe, G.: The TPTP world – Infrastructure for automated reasoning. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 1–12. Springer,
Heidelberg (2010)

29. P ↪ak, K.: Automated improving of proof legibility in the mizar system. In: Watt,
S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS,
vol. 8543, pp. 373–387. Springer, Heidelberg (2014)

30. Urban, J., Sutcliffe, G.: ATP cross-verification of the mizar MPTP challenge prob-
lems. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790,
pp. 546–560. Springer, Heidelberg (2007)

31. Weyuker, E.J.: Evaluating software complexity measures. IEEE Trans. Software
Eng. 14(9), 1357–1365 (1988)

Reduction Rules for Colored Workflow Nets

Javier Esparza(B) and Philipp Hoffmann(B)

Technische Universität München, Munich, Germany
esparza@in.tum.de, ph.hoffmann@tum.de

Abstract. We study Colored Workflow nets [8], a model based on Work-
flow nets [14] enriched with data. Based on earlier work by Esparza and
Desel on the negotiation model of concurrency [3,4], we present reduc-
tion rules for our model. Contrary to previous work, our rules preserve
not only soundness, but also the data flow semantics. For free choice
nets, the rules reduce all sound nets (and only them) to a net with one
single transition and the same data flow semantics. We give an explicit
algorithm that requires only a polynomial number of rule applications.

1 Introduction

Workflow Petri nets [13,14] are a very successful formalism for modeling and ana-
lyzing business processes. They have become the most popular formal backend
for graphical notations like BPMN (Business Process Modeling Notation), EPC
(Event-driven Process Chain), or UML Activity Diagrams, which typically do not
have a formal semantics. By translating the basic constructs of such languages into
Petri nets one gets access to a large variety of analysis techniques and tools.

One of these analysis techniques is reduction. Reduction algorithms are a very
efficient analysis technique for workflows, EPCs, AND-XOR graphs and other
models (see for instance [11,15,18,21]). They consist of a set of reduction rules,
whose application allows one to simplify the workflow while preserving important
properties. Reduction aims to elude the state-explosion problem, and, when the
property does not hold, provides error diagnostics in the form of an irreducible
graph [15]. Moreover, for certain classes of nets the rules can be complete, meaning
that they reduce all workflows satisfying the property to some unique canonical
workflow (and only them); in this case, reduction provides a decision algorithm for
the property that avoids any kind of state-space exploration. Reduction algorithms
are an important part of the well-known Woflan tool [9,20].

Free choice workflow nets (also called workflow graphs) are a class of workflow
nets that captures many control-flow constructs of BPMN, EPC, or Activity
Diagrams (see [14], or [6] for a very recent study). In [15] it is shown that a certain
set of reduction rules for free choice workflow models, originally presented in [2],
preserves the soundness property, and is complete. Soundness is a fundamental
analysis problem for workflows [14,16]. Loosely speaking, a workflow net is sound
if a distinguished marking signaling successful termination is reachable from any
reachable marking. The reduction algorithm provides a polynomial-time decision

This work was partially funded by the DFG Graduiertenkolleg 1480 (PUMA).

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 342–358, 2016.
DOI: 10.1007/978-3-662-49665-7 20

Reduction Rules for Colored Workflow Nets 343

procedure for soundness, in sharp contrast with the fact that deciding soundness
is at least PSPACE-hard for general workflow nets1.

However, the rules of [2] have two important shortcomings. First, while they
preserve soundness, they do not preserve any property concerning data. Work-
flows manipulating data can be modeled as colored workflow nets [8], where
tokens carry data values, and transitions transform a tuple of values for its
input places into a tuple of values for its output places. The linearly dependent
place rule (Rule 2 in Chap. 7 of [2]) allows one to remove place p from a net,
if it is redundant in the sense that there are other places which together have
the same incoming and outgoing transitions as p. However, this reduction does
not make sense for the colored workflow net: the tokens on p might hold a value
needed by an outgoing transition t to compute the value of the produced tokens!
Loosely speaking, the application of the rule destroys the dataflow semantics of
the net.

The second shortcoming is that the linearly dependent place rule is not correct
for arbitrary workflow nets, only for free choice ones ([2], p. 1452). Since not all
industrial business processes are free choice (30 % of our benchmarks in Sect. 5 are
non-free choice), this considerably reduces the applicability of the rules.

The most satisfactory solution to these two problems would be to replace the
linearly dependent place rule by rules extensible to colored nets, while keeping
completeness. However, this problem has remained open for over 15 years.

In this paper we solve this problem and present a set of surprisingly simple
rules that overcomes the shortcomings. First, the rules can be applied to arbi-
trary colored workflow nets. Second, they preserve not only the sound/unsound
character of the net, but also the input/output relation of the workflow; more
precisely, the original workflow net has a firing sequence that transforms an
entry token with value vin into an exit token with value vout iff the net after the
reduction also has such a sequence. Therefore, the rules can be applied to decide
any property of the input/output relation. Finally, the new rules are complete
for free choice workflow nets.

Our results rely on previous work on negotiations, a model of concurrency
introduced in [3,4]. Negotiations share many features with Petri nets, but, unlike
Petri nets, are a structured model of communicating sequential agents. In [4] a
complete set of reduction rules for the class of deterministic negotiations is pre-
sented. We generalize the results of [4] to show that a similar set of rules is correct
for arbitrary workflow nets, and complete for free choice workflow nets. Since
the proofs of [4] make strong use of the agent structure, we must substantially
modify them, and in fact write many of them from scratch. Moreover, because
of the agent structure of negotiations, workflow nets obtained as translations
of negotiations are automatically 1-safe. Therefore, the results cannot be used
to deal with variants of the soundness notion, like k-soundness or generalized

1 The exact complexity depends on the specifics of the workflow model, for instance
whether the workflow Petri net is assumed to be 1-safe or not.

2 The example of page 145 is not a workflow net, but can be easily transformed into one.

344 J. Esparza and P. Hoffmann

soundness [16]. Making use of the theory of free choice nets we can however show
that our rules are still correct and complete for these variants.

Finally, and as a third contribution of the paper, we report on some experi-
mental results. In [4] only the rules and the completeness result are presented, but
neither a specific algorithm prescribing a concrete strategy to decide which rule
to apply at which point, nor an implementation and experimental validation.
In this paper we report on a prototype implementation, and on experimental
results on a benchmark suite of nearly 2000 workflows derived from industrial
business processes.

Other Related Work. The soundness problem has been extensively studied, both
from a theoretical and a practical point of view, and very efficient verification
algorithms have been developed (see e.g. [16] for a comprehensive survey). Our
approach is not more efficient for checking soundness than the ones of e.g. [5], but
can also be applied to checking arbitrary properties of the input/output relation,
while retaining completeness. In [10,12] state-space exploration of workflows is
performed to identify data flow anti-patterns (like a variable being assigned a
value during an execution, but never being read afterwards). Our technique aims
at avoiding state-space exploration and considers properties of the input/output
relation.

The paper is organized as follows. Section 2 defines workflow nets, free choice
nets, and soundness. Section 3 presents our reduction rules and proves them
correct. In Sect. 4 we first show completeness for acyclic nets and then extend the
result to cyclic nets. Section 5 presents experimental results on the benchmarks
of [5,17]. Finally, Sect. 6 contains some conclusions and open questions. The
proofs of all results can be found in the arXiv version.

2 Workflow Nets and Colored Workflow Nets

We recall the definitions of workflow nets and the soundness property.

Definition 1 (Workflow Net [14]). A Workflow net (WF net) is a quintuple
(P, T, F, i, o) where

– P is a finite set of places.
– T is a finite set of transitions (P ∩ T = ∅).
– F ⊆ (P × T) ∪ (T × P) is a set of arcs.
– i, o ∈ P are places such that i has no incoming arcs, o has no outgoing arcs.
– The graph (P ∪ T, F ∪ (o, i)) is strongly connected.

We write •p and p• to denote the input and output transitions of a place
p, respectively, and similarly •t and t• for the input and output places of a
transition t. A marking M is a function from P to the natural numbers that
assigns a number of tokens to each place. A transition t is enabled at M if all
places of •t contain at least one token in M . An enabled transition may fire,
removing a token from each place of •t and adding one token to each place of t•.

Reduction Rules for Colored Workflow Nets 345

p1 p2

p3 p4

p5 p6

t1x

f(x)

g(x)

t2

z

y

h(y, z)

t3

u

v

i(u, v)

Fig. 1. A partial workflow net with data

The initial marking (final marking) of a workflow net puts one token on place i
(on place o), and no tokens elsewhere. A marking is reachable if some sequence of
transition firings leads from the initial marking to it. We call elements in P ∪ T
the nodes of the workflow net.

Definition 2 (Soundness [14]). A WF net W = (P, T, F, i, o) is sound if

– the final marking is reachable from any reachable marking, and
– every transition occurs in some firing sequence starting from the initial mark-

ing.

When modeling a workflow, it is useful to model not only control flow but
also data flow. We do so by means of Colored Workflow nets.

Definition 3 (Colored WF Net [8]). A colored WF net (CWF net) is a
tuple W = (P, T, F, i, o, V, λ) where (P, T, F, i, o) is a WF net, V is a function
that assigns to every place p ∈ P a color set Cp and λ is a function that assigns
to each transition t ∈ T a left-total relation λ(t) ⊆ ∏

p∈•t Cp ×∏
p∈t• Cp between

the values of the input places and those of the output places of t.
A colored marking M of W is a function that assigns to each place p a

multiset M(p) over Cp, interpreted as a multiset of colored tokens currently on
p. A colored marking is initial (final) if it puts one token on place i (on place
o), of any color in Ci (Co), and no tokens elsewhere.

Observe that there are as many initial markings as elements in Ci. To dis-
tinguish between input and output values of a transformer λ, we separate them
by a →.

Consider the partial workflow net in Fig. 1 and take Cp = N for every
place p of the net. An example of a colored marking could be the marking
({3}, ∅, ∅, ∅, {2, 4}, ∅) which puts a token of color 3 on p1 and two tokens, one of
color 2 and one of color 4, on p5. If f(x) = x+1 and g(x) = x+2, then we have
λ(t1) = {(n → n + 1, n + 2) | n ≥ 0}.

We call λ(t) the transformer associated with t. When a transition t fires, the
colored marking changes in the expected way [8]: (a) remove a token from each
input place of t; (b) choose an element of λ(t) whose projection onto the input
places matches the tuple of removed tokens; (c) add the projection of λ(t) onto

346 J. Esparza and P. Hoffmann

the output places to the output places of t. We write M
t−→ M ′ to denote that

t is enabled at M and its firing leads to M ′. For example, the colored marking
({3}, ∅, ∅, ∅, {2, 4}, ∅) enables transition t1, and taking h(y, z) = y · z we have

({3}, ∅, ∅, ∅, {2, 4}, ∅) t1−→ (∅, {4}, {5}, ∅, {2, 4}, ∅) t2−→ (∅, {4}, ∅, ∅, {4}, {10}).

2.1 A Colored Version of the Insurance Claim Example

We extend the well known insurance complaint process of [14] with data. The
workflow is shown in Fig. 2. After initial registration of the complaint, a ques-
tionnaire is sent to the complainant. In parallel, the complaint is evaluated. The
evaluation decides whether processing is required. In that case, the processing
takes place (e.g. by some employee) and is checked for correctness (e.g. by a
senior employee) which may either lead to another round of processing if an
error is found, or the processing ends. Finally, the complaint is archived.

We add colors to keep track of the status of the complaint and its estimated
cost for the company, modeled by a number in the interval [1..10] (see Table 1).
Furthermore each claimant belongs to a customer group, either A or B. A’s and
B’s insurance policies entitle them, respectively, to the full cost or to half the cost
of the damage. The color sets of places i, o, c2, c6 are the pairs {A,B} × [1..10],
modeling the customer group and the cost of the claim as estimated by the
customer. The colors of place c4 additionally contain the result of the evaluation:
PR (process) or NPR (do not process). Colors of c5 store the result of the
questionnaire: the answer to the question “was it your fault?” (YES/NO), or a
time out (TO). In place c7, the information from c4 and c5 is put together, and
in c8 the result of the first processing is added. Finally, tokens in c9 can have
the same values as those in c8, plus an additional value ERR if the check at
transition check processing reveals a miscalculation. Tokens in c6 and o store

i

c1

c2

c3

c4

c5

c6

c7 c8 c9

oregister

send questionnaire process questionnaire

time out

evaluate no processing

processing required process complaint check processing

processing NOK

processing OK

archive

Fig. 2. Insurance claim process

Reduction Rules for Colored Workflow Nets 347

Table 1. Color sets and transformers for the insurance claim workflow

Ci = Co = Cc2 = Cc6 = {A, B} × [1..10] Cc7 = Ci × Cc5

Cc1 = Cc3 = {•} Cc8 = Cc7 × [1..10]
Cc4 = Ci × {PR, NPR} Cc9 = Cc7 × ([1..10] ∪ {ERR})
Cc5 = {YES, NO, TO}

λ(register) = {(x, k → {•} × {x, k}) | 1 ≤ k ≤ 10}
λ(send questionnaire) = {(• → •)}

λ(time out) = {(• → TO)}
λ(process questionnaire) = {(• → YES), (• → NO)}

λ(evaluate) = {(x, k → x, k, NPR) | 1 ≤ k ≤ 3}
∪ {(x, k → x, k, PR) | 4 ≤ k ≤ 10}

λ(no processing) = {(x, k, NPR, q → x, k) | 1 ≤ k ≤ 3}
λ(processing required) = {(x, k, PR, q → x, k, q) | 4 ≤ k ≤ 10}

λ(process complaint) = {(x, k, q → x, k, q, v) | 4 ≤ k ≤ 10, 1 ≤ v ≤ k}
λ(check processing) = {(x, k, v, q → x, k, q, v) | x = A, 4 ≤ k ≤ 10, v = k}

∪ {(x, k, v, q → x, k, q, v) | x = B, 4 ≤ k ≤ 10, v = k/2}
∪ {(x, k, v, q → x, k, q, ERR) | otherwise}

λ(processing NOK) = {(x, k, q, ERR → x, k, q) | 4 ≤ k ≤ 10}
λ(processing OK) = {(x, k, q, v → x, v) | 4 ≤ k ≤ 10, 1 ≤ v ≤ 10}

λ(archive) = {(x, v → x, v) | (x, v) ∈ Cc6}

the amount that was actually paid by the company after the processing was
successful (or without processing).

Assume that the company’s policy is to accept all claims which are evaluated
to a value of 3 or less without any further processing, and process all other claims.
The transformers modeling this policy are given in Table 1, where x ∈ {A,B}
and q ∈ {YES,NO,TO} unless otherwise stated. Division by 2 is assumed to be
integer division.

All transformers are self-explanatory except perhaps process complaint
and check processing. In process complaint, an employee may lower the cus-
tomer’s estimate k to a new value v. In check processing, a senior employee
checks that the employee made no mistake (modeled by the fact that v must be
k/2 or k depending on the customer group). If the check fails, an error flag is
set and the processing is repeated.

Apart from the soundness of the workflow, we wish to check the following
property: if two customers in the same group register insurance complaints, then
the one claiming a higher also receives a higher amount (notice that our ideal
insurance company does not reject any complaint). We shall use our reduction
algorithm to check that the property holds for customers of group A, but not
for customers of group B.

The attentive reader may have noticed that the semantics of colored nets
allows, e.g., to take the transition no processing even when the evaluation
indicates that processing is necessary. This can easily be dealt with by intro-
ducing additional error values that are then propagated until the end. We omit

348 J. Esparza and P. Hoffmann

them to ease the reading and assume that no processing and processing are
taken according to the result of evaluate, and similarly in other cases.

2.2 Summaries and Equivalence

Since a workflow net describes a process starting at i and ending at o, it is
interesting to study the input/output relation or summary of the whole process.

Definition 4 (Summary and Equivalence). Let W be a colored WF net. Let
Mi and Mo be the sets of initial and final colored markings of W. The summary
of W is the relation S ⊆ Mi × Mo given by: (Mi,Mo) ∈ S iff Mo is reachable
from Mi. Two colored WF nets are equivalent iff they are both sound or both
unsound, and have the same summary.

Our rules aim to reduce CWF nets while preserving equivalence. If we are able
to reduce a CWF to another one with one single transition t, then the summary
is given by λ(t), and we say that the CWF has been completely reduced and
we have computed the summary. Since this CWF net is obviously sound and
rules preserve equivalence, if a CWF net can be completely reduced, then it is
sound. We prove that our rules preserve equivalence for all CWF nets, and give
an algorithm that completely reduces all sound free choice CWF nets, defined
below, by means of a polynomial number of rule applications.

In Sect. 4 we compute the summary of the free choice CWF net of Fig. 2
using our reduction procedure. The result (where we write Mi ⇒ Mo instead of
(Mi,Mo) ∈ S, and omit the error values) is:

{(A, k ⇒ A, k) | 1 ≤ k ≤ 10} ∪ {(B, k ⇒ B, k) | 1 ≤ k ≤ 3}
∪ {(B, k ⇒ B, k/2) | 4 ≤ k ≤ 10}

Since the summary contains (B, 3 ⇒ B, 3) and (B, 4 ⇒ B, 2), the company
policy does not satisfy the desired property for customers of group B.

2.3 Free Choice Workflow Nets

We recall the definition of free choice workflow nets [2,14].

Definition 5 (Free Choice Workflow Nets). A workflow net W =
(P, T, F, i, o) is free choice (FC) if for every two places p1, p2 ∈ P either
p•
1 ∩ p•

2 = ∅ or p•
1 = p•

2.

The net of Fig. 2 is free choice. We also need to introduce clusters, and the
new notion of free choice cluster and free choice node.

Definition 6 (Clusters, Free Choice Nodes [2]). Let W = (P, T, F, i, o) be
a workflow net. The cluster of x ∈ P ∪ T is the unique smallest set [x] ⊆ P ∪ T
satisfying: x ∈ [x], if p ∈ P ∩ [x] then p• ⊆ [x], and if t ∈ T ∩ [x], then •t ⊆ [x].
A set X ⊆ P ∪ T is a cluster if X = [x] for some x. A cluster c is free choice if
(p, t) ∈ F for every p ∈ P ∩ c and t ∈ T ∩ c. A node x is free choice if [x] is a
free choice cluster.

Reduction Rules for Colored Workflow Nets 349

The sets {c3} ∪ c•
3 and {c4, c5} ∪ c•

4 ∪ c•
5 are free choice clusters of the net

of Fig. 2. It is easy to see that clusters are equal or disjoint, and therefore the
clusters of W are a partition of P ∪ T . Further, we have [i] ∩ P = {i} and
[o] = {o}. Finally, we have that W is free choice iff all its nodes are free choice.

We say that a marking M marks a cluster c if it marks all places in c. Observe
that if a cluster is marked, then all its transitions are enabled. We say that a
cluster fires if one of its transitions fires.

3 Reduction Rules

We present a set of three reduction rules for CWF nets similar to those used for
transforming finite automata into regular expressions [7].

A reduction rule, or just rule, is a binary relation on the set of CWF nets.
For a rule R, we write W1

R−→ W2 for (W1,W2) ∈ R. A rule R is correct if it
preserves equivalence, i.e., if W1

R−→ W2 implies that W1 and W2 are equivalent.
Given a set of rules R = {R1, . . . , Rk}, we denote by R∗ the transitive closure

of R1 ∪ . . . ∪ Rk. We say that R is complete for a class of CWF nets if for every
sound CWF net W in that class there is a CFW net W ′ consisting of a single
transition between the two only places i and o such that W R∗

−−→ W ′.
We describe rules as pairs of a guard and an action. W1

R−→ W2 holds if W1

satisfies the guard, and W2 is a possible result of applying the action to W1.

Merge rule. Intuitively, the merge rule merges two transitions with the same
input and output places into one single transition.

Definition 7. Merge rule

Guard: W contains two distinct transitions t1, t2 ∈ T such that •t1 = •t2 and
t•1 = t•2.

Action: (1) T := (T \ {t1, t2}) ∪ {tm}, where tm is a fresh name.
(2) t•m := t•1 and •tm := •t1.
(3) λ(tm) := λ(t1) ∪ λ(t2).

Iteration rule. Loosely speaking, the iteration rule replaces arbitrary iterations
of a transition by a single transition with the same effect.

Definition 8. Iteration rule

Guard: W contains a free choice cluster c with a transition t ∈ c such that
t• = •t.

Action:
(1) T := (T \ {t}).
(2) For all t′ ∈ c \ {t}: λ(t′) := λ(t)∗ · λ(t′) where λ(t)∗ =

∑
i≥0 λ(t)i,

and λ(t)0 is the identity relation.

Observe that λ(t)∗ captures the fact that t can be executed arbitrarily often.

350 J. Esparza and P. Hoffmann

Shortcut Rule. The shortcut rule merges transitions of two clusters, one of which
will occur as a consequence of the other, into one single transition with the same
effect.

Definition 9. A transition t unconditionally enables a cluster c if c ∩ P ⊆ t•.

Observe that if t unconditionally enables c and a marking M enables t, then the
marking M ′ given by M

t−→ M ′ enables every transition in c.

Definition 10. Shortcut rule

Guard: W contains a transition t and a free choice cluster c /∈ {[o], [t]} such
that t unconditionally enables c.

Action:
(1) T := (T \ {t}) ∪ {t′s | t′ ∈ c}, where t′s are fresh names.
(2) For all t′ ∈ c: •t′s := •t and t′s

• := (t• \ •t′) ∪ t′•.
(3) For all t′ ∈ c: λ(t′s) := λ(t) · λ(t′).
(4) If •p = ∅ for all p ∈ c, then remove c from W.

We also use a restricted version of this rule, called the d-shortcut rule. This
rule is obtained by adding an additional guard to the shortcut rule: |c ∩ T | = 1.
This guard guarantees that the number of edges does not increase when the
d-shortcut rule is applied.

Figure 3 shows a sequence of reductions illustrating the definitions of the
rules. Notice that the graphical description does not contain the transformer
information. A second example of reduction in which the workflow net also
exhibits concurrency is shown in Sect. 4.1.

Theorem 1. The merge, shortcut and iteration rules are correct for CWF nets.

i

c1 c2

o

t1

t2

t3

t4

t5
merge t2,t3

i

c1 c2

o

t1

t6

t4

t5

sho
rtc

ut
t4

i

c1 c2

o

t1 t6t6

t7

t5
iteration t7

i

c1 c2

o

t1 t6 t5

Fig. 3. Example of rule applications

Reduction Rules for Colored Workflow Nets 351

4 Reduction Procedure

We show that the rules presented in the previous section summarize all sound
FC-CWF nets in polynomial time. The proof is very involved, and we can only
sketch it.

We first show that acyclic FC-CWF nets can be completely reduced.

Definition 11 (Graph). The graph of a CWF net is the graph (P ∪ T, F). A
CWF net is acyclic if its graph is acyclic.

Theorem 2. The merge and d-shortcut rule are complete for acyclic FC-CWF
nets.

In the cyclic case we need the notion of synchronizer of a loop. Although a
similar concept was already used in [4], the definition there exploits the fact that
negotiations are a structured model of communicating sequential agents. Since
workflow nets do not have such a structure, we need a different definition.

Definition 12 (Loop). Let W be a CWF net. A non-empty transition sequence
σ is a loop of W if M

σ−→ M for some reachable marking M .

Definition 13 (Synchronizer). Let W be a WF net. A free choice transition t
synchronizes a loop σ if t appears in σ and for every reachable marking M : if M
enables t, then M(p) = 0 for every p ∈ (

⋃
t′∈σ,t′ �=t

•t′). A free choice transition
is a synchronizer if it synchronizes some loop.

Consider the insurance claim net, replacing the part between the places
c7 and c9 by Fig. 4. The sequence process check1 check2 combine
processing NOK is a loop. Transitions process, combine, and processing NOK
are synchronizers, but check1 and check2 are not. We use synchronizers to
define fragments of W on which to apply our rules.

Definition 14 (Fragment). Let W be a CWF net and let t be a synchronizer of
W. The fragment Wt contains all transitions appearing in all loops synchronized
by t, together with their input and output places, and the arcs connecting them.

In our example, the fragment Wprocess is exactly the net of Fig. 4. Our proce-
dure selects a synchronizer t and applies the rules to Wt until, loosely speaking,
all loops synchronized by t are removed from the net, and t is no longer a synchro-
nizer. The next lemma shows that when no synchronizers can be found anymore,
the workflow net is acyclic, and so can be completely reduced by Theorem 2.

Lemma 1. Every sound cyclic FC-CWF net has at least one synchronizer.

Proof Sketch. We first show that in every sound cyclic FC-CWF net there exists
a loop. We then inspect minimal loops and show that they must include a syn-
chronizer. The proof constructs a transition sequence that pushes one token
towards the final marking while all other tokens stay inside the loop. Should no
synchronizer be present in the loop, this sequence ends in a dead lock contra-
dicting soundness.

352 J. Esparza and P. Hoffmann

Given two synchronizers t and t′, we say Wt � W ′
t if every node of Wt is also

a node of W ′
t. The relation � is a partial order on fragments. We have:

Lemma 2. Let t be a synchronizer of a sound FC-CWF net. If Wt is minimal
with respect to the partial order on fragments, then all non-synchronizers of Wt

can be removed by means of applications of the d-shortcut and merge rules.

Proof Sketch. Intuitively, synchronizers are points where loops begin and end.
For two distinct synchronizers of a minimal fragment, any occurrence sequence
starting from the marking enabling one of them, ending in the marking enabling
the other, and in which no other synchronizers occur, is acyclic. Thus we can
reduce the possible paths from one synchronizer to another to a single transition
using our rules. We do so by constructing auxiliary acyclic workflow nets and
reducing those, applying the same reduction rules to our original net.

In our example, the fragment of Fig. 4 on the left is reduced to the
synchronizer-only fragment shown in Fig. 4 on the right. In such a fragment,
a marking always marks exactly the places of one of the clusters, and nothing
else. Intuitively, the synchronizer-only fragment is an S-net, i.e., a net where
every transition has exactly one input and one output place, but in which some
places are duplicated. Figure 3 shows an example of an S-net, while the net on
the right of Fig. 4 is an S-net in which place c10 is duplicated in place c11.

When reducing S-nets we must be careful that the shortcut rule does not
“run into cycles”. Consider for instance the second net in Fig. 3. If instead of
shortcutting t4 we shortcut t1, we obtain a new transition t7 with i and c2 as
input and output place. If we now shortcut t7, we return to the original net with
an additional transition connecting i and o. This problem is solved by imposing
an (arbitrary) total order on the clusters. Using this order we classify transitions
as “forward” (leading to a greater cluster) and “backward” (leading to a smaller
cluster). Running into cycles is avoided by only applying the shortcut rule to
the backward transition leading to a minimal cluster. Ultimately, this procedure
reduces the fragment to an acyclic net. The total number of synchronizers is
thus reduced, until none are left. At this point, by Lemma 1 the net is acyclic,
and Theorem 2 can be applied. The complete reduction algorithm is listed as
Algorithm 1. The algorithm contains several points where the computation might
end if some condition is fulfilled. If the net was free choice, we can then conclude
that it is unsound.

We have not yet discussed why a fragment could be malformed as mentioned
in Line 3 of the algorithm. The proof that every minimal loop has a synchronizer
also shows something more: tokens can only exit a loop at a cluster that contains
a synchronizer, and all tokens exit the loop at the same time. Thus when we
compute a fragment and find transitions that lead out of the fragment and
whose cluster does not contain a synchronizer, or transitions that partially end
outside and partially inside the fragment, we can already conclude that the net
is unsound. For more information on how to compute fragments, see the next
section.

Reduction Rules for Colored Workflow Nets 353

Algorithm 1. Reduction procedure for cyclic workflow nets W
1: while W is cyclic do
2: c ← a minimal synchronizer of W � If there is none, return
3: F ← the fragment of c � If fragment is malformed, return
4: while F contains non-synchronizers do
5: apply the merge rule exhaustively
6: apply the iteration rule exhaustively
7: apply the d-shortcut rule to F � If not possible, return
8: end while
9: fix a total order on F

10: while F is cyclic do
11: apply the merge rule exhaustively
12: apply the iteration rule exhaustively
13: apply the shortcut rule to the backward transition which ends at a minimal

cluster
14: end while
15: end while
16: while W is not reduced completely do
17: apply the merge rule exhaustively
18: apply the d-shortcut rule to F � If neither was possible, return
19: end while

With some analysis on the number of rule application in the acyclic case
as well as the S-net case, we can bound the number of rule application to be
polynomial:

Theorem 3. Every sound FC-CWF net can be summarized in at most O(|C|4 ·
|T |) shortcut rule applications and O(|C|4 + |C|2 · |T |) merge rule applications
where C is the set of clusters of the net. Any unsound FC-CWF net can be
recognized as unsound in the same time.

4.1 Summarizing the Example

We illustrate our algorithm on the example of the insurance claim of Fig. 2. To
better illustrate our approach, we replace the part between the places c7 and c9
by Fig. 4.

Our algorithm begins by checking whether W is cyclic and finds a mini-
mal synchronizer. This could in our example be c7, its fragment is exactly the
part of the net depicted in Fig. 4 on the left. Since the fragment contains non-
synchronizers c10, c11, the while loop of Line 4 is entered. The d-shortcut rule is
applied to check1 and check2. The resulting fragment is depicted in Fig. 4 on
the right. This fragment consists only of synchronizers and thus the while loop
ends. We fix as total order [c7] ≺ [c10] ≺ [c9].

Transition processing NOK is a backward transition as its post-set [c7] is
smaller than its pre-set [c9] according to the total order. It is shortcut resulting
in another backward transition ending in the cluster containing c10, c11, which is

354 J. Esparza and P. Hoffmann

c7

c10

c11

c12

c13

c9process

check1

check2

combine

processing NOK

c7

3

c10

2

c11

c9

1

process

check&
combine

processing NOK

Fig. 4. Extension of the insurance claim net and the synchronizer-only fragment

i

c1

c2

c3

c4

c5

c6

c7

c10

c11

c9

oregister

send questionnaire process questionnaire

time out

evaluate no processing

processing required process check&combine

processing OK

archive

Fig. 5. After shortcutting backward transitions

i

c2 c4

c5 c6

c7

oregister&
questionnaire

evaluate

no processing

processing required process&archive

archive

Fig. 6. After some rule applications

then shortcut again to a self-loop on c9. The self-loop is removed via the iteration
rule.

The resulting net is depicted in Fig. 5. This net is acyclic, thus now the
d-shortcut and merge rule are applied exhaustively. An intermediate step is
depicted in Fig. 6. First process questionnaire and time out are merged and
the path from i to c5 is shortcut. Then the linear path from c7 to o is short-
cut into a single transition. Next the path from i to c4 is shortcut, result-
ing in the transition register to unconditionally enable no processing and
processing required. Finally, with three more shortcuts and a merge, the net
is completely reduced, and we obtain the transformer shown in Sect. 2.2.

Reduction Rules for Colored Workflow Nets 355

4.2 Extension to Generalized Soundness

In [1,19] (see also [16]), two alternative notions of soundness are introduced: k-
soundness and generalized soundness. We show that for free choice workflow nets
they coincide with the standard notion. Therefore, our rules are also complete
with respect to these alternative notions.

Definition 15. Let W = (P, T, F, i, o) be a workflow net. For every k ≥ 1, let ik

(ok) denote the marking that puts k tokens on i (on o), and no tokens elsewhere.
W is k-sound if ok is reachable from every marking reachable from ik. W is
generalized sound if it is k-sound for every k ≥ 1.

Theorem 4. Let W be a free choice workflow net. The following statements
are equivalent: (1) W is sound; (2) W is k-sound for some k ≥ 1; (3) W is
generalized sound.

5 Experimental Evaluation

We have implemented our reduction algorithm and applied it to a benchmark
suite of models previously studied in [5,17].3

The most complex part of the implementation4 is the computation of syn-
chronizers and their fragments. A crucial point is that we are only interested in
fragments that consist of free choice places as those are the fragments we might
be able to completely reduce. The computation of the synchronizers starts with
an overapproximation: starting from a cluster c, we begin by marking for all
transitions t ∈ cT , the places in t• that are free choice as visited. Whenever
we have marked all places in a cluster as visited, we repeat the same for this
cluster. In that way we overapproximate the set of clusters that can occur in an
occurrence sequence as in the definition of synchronizer. Should all places in c
be marked as visited at some point, we consider c a potential synchronizer.

We now compute the fragment of c in a backwards fashion. Starting with only
c, we check for every transition whose out-places are contained in the currently
identified fragment, whether its in-places were completely marked in the first
step. If so, add its in-places and the transition to the fragment. We also check
simple soundness properties, e.g. that no transition exists which starts in the
fragment and ends partially inside and partially outside the fragment.

We have conducted some experiments to obtain answers to the following two
questions: (1) Since our rules must preserve not only soundness, but also the
input/output relation, they cannot be as “aggressive” as previous ones. So it
could be the case that they only lead to a small reduction factor in the non-free
choice case. To explore this question, we experimentally compute the reduction
factor for non-free choice benchmarks. (2) While Theorem 3 is a strong theoret-
ical result (compared to PSPACE-hardness of soundness for arbitrary workflow
3 Nets can be obtained under http://svn.gna.org/viewcvs/service-tech/trunk/ meta/

nets/challenge/ in folders sap-reference and ibm-soundness.
4 Can be obtained under https://www7.in.tum.de/tools/workflow/index.php.

http://svn.gna.org/viewcvs/service-tech/trunk/_meta/nets/challenge/
http://svn.gna.org/viewcvs/service-tech/trunk/_meta/nets/challenge/
https://www7.in.tum.de/tools/workflow/index.php

356 J. Esparza and P. Hoffmann

Table 2. Analyzed workflow nets

|P | |T | red # rule

nets avg med max avg med max by appl

Acyclic FC sound 446 20.7 13 154 13.1 9 95 — 12.8

Acyclic FC uns 761 60.4 49 264 41.1 33 285 73.6 % 38.0

Cyclic FC sound 24 46.1 43 118 34.3 26 93 — 43.2

Cyclic FC uns 155 73.2 61 274 51.1 44 243 78.1 % 53.2

Acyclic not FC 542 47.0 38 262 46.8 37 267 68.4 % 38.4

Cyclic not FC 30 85.6 72 193 88.1 72 185 66.4 % 82.7

nets), the O(|C|4 · |T |) bound has rather high exponents, and could potentially
lead to an impractical reduction algorithm. To explore if the worst case appears
in practice, we compute the number of rule applications for free choice bench-
marks.

We have used the benchmark suites of [5,17], both consisting of industrial
examples. We analyzed a total of 1958 nets, of which 1386 were free choice.
Running the reduction procedure for all benchmarks took 6 seconds. The results
are shown in Table 2. The number of places and transitions are always given as
average/median/max. In the free choice case, our algorithm found that 470 nets
were sound (i.e. those nets were reduced completely), and on average the nets
were reduced to about 23 % of their original size. In the non-free choice case
no net could be reduced completely (which does not necessarily mean they are
all unsound). However, the size of the nets was still reduced to about 35 % of
their original size. While we have omitted some more data on the number of rule
applications due to lack of space, our experiments indicate that the number of
rule applications is close to linear in the size of the net.

6 Conclusion

We have presented the first set of reduction rules for colored workflow nets that
preserves not only soundness, but also the input/output relation, and is com-
plete for free choice nets. We have also designed a specific reduction algorithm.
Experimental results for 1958 workflow nets derived from industrial business
processes show that the nets are reduced to about 30 % of their original size.

Our rules can be used to prove properties of the input/output relation by
computing it. To reduce the complexity of the computation, we observe that our
reduction rules are easily compatible with abstract interpretation techniques:
given an abstract domain of data values, the rules can be adapted so that,
instead of computing the transformers of the new transitions using the union,
join, and Kleene-star operators, they compute their abstract versions. We plan
to study this combination in future research.

Reduction Rules for Colored Workflow Nets 357

Acknowledgements. Thank you very much to Karsten Wolf for pointing us to the
benchmarks. Many thanks to the anonymous reviewers for the helpful comments.

References

1. Cortadella, J., Reisig, W. (eds.): ICATpPN 2004. LNCS, vol. 3099. Springer,
Heidelberg (2004)

2. Desel, J., Esparza, J.: Free Choice Petri Nets, vol. 40. Cambridge University Press,
Cambridge (2005)

3. Esparza, J., Desel, J.: On negotiation as concurrency primitive. In: D’Argenio,
P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052,
pp. 440–454. Springer, Heidelberg (2013)

4. Esparza, J., Desel, J.: On negotiation as concurrency primitive ii: deterministic
cyclic negotiations. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol.
8412, pp. 258–273. Springer, Heidelberg (2014)

5. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H.,
Wolf, K.: Instantaneous soundness checking of industrial business process models.
In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol.
5701, pp. 278–293. Springer, Heidelberg (2009)

6. Favre, C., Fahland, D., Völzer, H.: The relationship between workflow graphs and
free-choice workflow nets. Inf. Syst. 47, 197–219 (2015)

7. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co.,
Boston (2006)

8. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer Science & Business Media, New York (2009)

9. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter
Hofstede, A.H.M.: WofBPEL: A tool for automated analysis of BPEL processes.
In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 484–489. Springer, Heidelberg (2005)

10. Sadiq, S., Orlowska, M., Sadiq, W., Foulger, C.: Data flow and validation in work-
flow modelling. In: Proceedings of the 15th Australasian Database Conference, vol.
27, pp. 207–214. Australian Computer Society Inc. (2004)

11. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-
niques. Inf. Syst. 25(2), 117–134 (2000)

12. Trčka, N., van der Aalst, W.M.P., Sidorova, N.: Data-flow anti-patterns: discovering
data-flow errors in workflows. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.)
CAiSE 2009. LNCS, vol. 5565, pp. 425–439. Springer, Heidelberg (2009)

13. Van Der Aalst, W., Van Hee, K.M.: Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge (2004)

14. van der Wil, M.P.: Aalst.: The application of petri nets to workflow management.
J. Circ. Syst. Comput. 8(1), 21–66 (1998)

15. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W.E.: An alternative way to
analyze workflow graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T.
(eds.) CAiSE 2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

16. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Aspects Comput. 23(3), 333–363 (2011)

358 J. Esparza and P. Hoffmann

17. van Dongen, B.F., Jansen-Vullers, M.H., Verbeek, H.M.W., van der Aalst, W.M.P.:
Verification of the sap reference models using epc reduction, state-space analysis,
and invariants. Comput. Ind. 58(6), 578–601 (2007)

18. van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.E.: Verification of
EPCs: Using reduction rules and petri nets. In: Pastor, Ó., Falcão e Cunha, J.
(eds.) CAiSE 2005. LNCS, vol. 3520, pp. 372–386. Springer, Heidelberg (2005)

19. van Hee, K.M., Sidorova, N., Voorhoeve, M.: Generalised soundness of workflow
nets is decidable. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol.
3099, pp. 197–215. Springer, Heidelberg (2004)

20. (Eric) Verbeek, M.H.W., Basten, T., van der Aalst, W.M.P.: Diagnosing workflow
processes using woflan. Comput. J. 44(4), 246–279 (2001)

21. Verbeek, H.M.W., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M.:
Reduction rules for reset/inhibitor nets. J. Comput. Syst. Sci. 76(2), 125–143
(2010)

Many-Valued Institutions
for Constraint Specification

Claudia Elena Chiriţă1(B), José Luiz Fiadeiro1, and Fernando Orejas2

1 Department of Computer Science,
Royal Holloway University of London, Egham, UK

claudia.elena.chirita@gmail.com, jose.fiadeiro@rhul.ac.uk
2 Dep. de Llenguatges i Sistemes Informàtics,

Uni. Politècnica de Catalunya, Barcelona, Spain
orejas@lsi.upc.edu

Abstract. We advance a general technique for enriching logical systems
with soft constraints, making them suitable for specifying complex soft-
ware systems where parts are put together not just based on how they
meet certain functional requirements but also on how they optimise cer-
tain constraints. This added expressive power is required, for example, for
capturing quality attributes that need to be optimised or, more generally,
for formalising what are usually called service-level agreements. More
specifically, we show how institutions endowed with a graded seman-
tic consequence can accommodate soft-constraint satisfaction problems.
We illustrate our approach by showing how, in the context of service
discovery, one can quantify the compatibility of two specifications and
thus formalise the selection of the most promising provider of a required
resource.

1 Introduction

The problem of supporting the process of building complex systems from simpler
parts has deserved a lot of attention since the birth of software engineering,
and has been addressed by formal methods of different kinds (e.g. [12]). One
such family of formal methods is known under the general heading of ‘algebraic
specification’ (e.g. [23]). In a nutshell, the method is based on the simple principle
that parts of software applications (components, modules, and so on) should
expose interfaces where they specify required and provided properties. Those
parts can then be connected if their interfaces match (in the sense that required
properties are met by those provided).

A well-known theory of algebraic specifications is based on the theory of
‘institutions’ [17]. Essentially, institutions provide logical languages for formu-
lating the properties that will go on the interfaces of parts and an algebra of

Work partially supported by funds from the Spanish Ministry for Economy and
Competitiveness (MINECO) and the European Union (FEDER funds) under grant
COMMAS (ref. TIN2013-46181-C2-1-R).

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. Wąsowski (Eds.): FASE 2016, LNCS 9633, pp. 359–376, 2016.
DOI: 10.1007/978-3-662-49665-7_21

360 C.E. Chiriţă et al.

models that provide mathematical abstractions of the parts; properties and mod-
els are related in a way that supports compositionality, i.e. that the properties
of a complex whole can be derived from those of its parts.

That theory is based on exact matches between interfaces, i.e. either the
provided properties satisfy the required ones or they do not. Whereas this has
served well the specification of functional requirements, software development
has evolved in ways that require the specification of properties that can be met
in more than one way, i.e. that express ‘soft’ constraints. A typical example is
service-oriented software development where software applications (requesters)
can choose among several application suppliers (providers) every time a need
for a service arises; the requester first needs to discover a provider that can
guarantee, through an interface, the fulfilment of certain requirements, and then
to bind to a provider that optimises the satisfaction of certain constraints (e.g.
shipment costs in relation to delivery time) establishing a ‘service-level agree-
ment’. Another example arises in the context of software product lines, where
the selection of features may require the optimisation of given quality attributes
of the resulting software variant [18].

In this context, soft-constraint systems have been successfully employed for
capturing such non-functional requirements in service-oriented architectures [20,
27], including the negotiation of service-level agreements [6], as well as in the
context of software product lines (e.g. [2]). The two main approaches to soft
constraint satisfaction problems, scsp [4] and vcsp [9,24], generalise the classical
crisp variant of constraint satisfaction problems (csp) by evaluating constraints
over c-semirings and valuation structures, respectively.

Our aim in this paper is to extend the institution-based theory of algebraic
specifications to address soft constraints. Although the idea of extending abstract
data types with soft constraints was already outlined, essentially through exam-
ples, in [15], it lacks a rigorous formalisation within the setting of institutions.
Such an extension is essential to provide a logic-independent foundation that, on
the one hand, can be used to support different specification languages and, on the
other hand, can be integrated in development environments that, like Hets [21],
offer automated support for the specification and analysis of systems.

To this end, in Sect. 2, we first extend the traditional notion of institution
along the lines of [10] by replacing the boolean space of truth values with resid-
uated lattices [16], which offer a unifying truth structure for both idempotent
c-semirings and valuation structures [3]. Using a simple example, we explain how
first-order logic specifications can be extended with soft constraints, and then
show how this extension can be generalised to define a logical system of soft
constraints as a many-valued institution parameterised by a stratified logic [1].
Based on this construction, in Sect. 3, we formalise the mechanism of selecting a
most promising provider of a needed resource in the context of service discovery
and binding on the quantification of the compatibility of two constraint specifica-
tions as a value of a residuated lattice; we achieve this by defining a compatibility
score using the concept of graded semantic consequence [10]. Lastly, in Sect. 4
we study the evolutionary behaviour of service applications. We show how our

Many-Valued Institutions for Constraint Specification 361

framework captures situations where different service components (constraint
specifications) are based on different truth spaces, which arise in heterogeneous
complex systems. We also take into account the dynamicity of preferences during
the development of a system (the change of the truth structures, or of the prefer-
ences expressed as sentences of the specifications), and underline the uncertain-
ties of predicting the evolutionary behaviour of service applications. The paper
relies on basic knowledge of category theory, for example at the level of [11,22].

2 Soft-Constraint Specification in Institutions

In this section, after briefly recalling the notion of institution, we focus on the
construction of a particular type of institution that is suitable for defining soft
csp specifications. As an example, we describe in more detail how constraint
specifications can be written over the institution of first-order logic. This allows
us to identify the properties and the additional structure that an institution
I should have in order to deal with soft constraints, and to further define a
many-valued institution CSP(I).

2.1 Institutions

The notion of institution was introduced by Goguen and Burstall [17] at the
beginning of the 80’s to allow for studying concepts for structuring and mod-
ularising specifications, independently of the actual formalism to be used for
writing the specifications. Intuitively, the notion of institution is an abstract
view of the main ingredients of a logical or specification formalism. In particu-
lar, an institution consists of:

– A category of signatures, where signatures are the basic elements that we use
for building formulas. For instance, in first-order logic, signatures are sets of
sorts and function and predicate symbols together with their arity.

– A functor Sen that associates, to each signature Σ, the set of all the formulas
that can be written using Σ. In the case of first-order logic, this would mean
all the formulas that can be written using the predicate and function symbols
in the signature, and including the standard logical connectives and quanti-
fiers. Sen is a functor and not just a mapping, because we want to explicitly
associate to each signature morphism ϕ : Σ → Σ′ that translates symbols in
Σ into symbols in Σ′, the mapping Sen(ϕ) that translates formulas over Σ
into formulas over Σ′.

– A functor Mod that associates, to each signature Σ, the category of all its mod-
els. In the case of first-order logic, Mod(Σ) is the category of all Σ-algebras.
Again, Mod is a functor and not just a mapping, because we want to explicitly
associate to each signature morphism ϕ : Σ → Σ′ that translates symbols in
Σ into symbols in Σ′, the reduct associated to that morphism. In particular, if
A′ is a Σ′-algebra, its reduct along ϕ : Σ → Σ′ would be a Σ-algebra A, where
each symbol s in Σ is interpreted like the symbol ϕ(s) in A′.

362 C.E. Chiriţă et al.

– A satisfaction relation that, given a Σ-formula ρ and a Σ-model M , tells us
if M satisfies ρ. Moreover, it is required that institutions (i.e. the formalisms
that we consider valid) satisfy the satisfaction condition that states that satis-
faction does not depend on the choice of signature, i.e. satisfaction is invariant
under language translation.

Definition 1 (Institution). An institution I consists of

– a category SigI whose objects are called signatures,
– a sentence functor SenI : SigI → Set giving for every signature Σ the set

SenI(Σ) of Σ-sentences and for every signature morphism ϕ the sentence
translation map SenI(ϕ),

– a model functor ModI : (SigI)op → Cat defining for every signature Σ the
category ModI(Σ) of Σ-models and Σ-model homomorphisms, and for every
signature morphism ϕ the reduct functor ModI(ϕ),

– a satisfaction relation |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ) for every signature Σ,

such that the satisfaction condition ModI(ϕ)(M ′) |=I
Σ ρ iff M ′ |=I

Σ′

SenI(ϕ)(ρ) holds for any signature morphism ϕ : Σ → Σ′, Σ′-model M ′ and
Σ-sentence ρ.

We may omit sub- or super-scripts when there is no risk of confusion. The sen-
tence translation SenI(ϕ) and the reduct functor ModI(ϕ) may also be denoted
by ϕ(_) and _�ϕ. When M = M ′�ϕ we say that M is a ϕ-reduct of M ′ and that
M ′ is a ϕ-expansion of M .

A specification in an institution I is a pair (Σ,E) consisting of a signature
and a collection of sentences (axioms) in the language of that signature, i.e.
E ⊆ SenI(Σ) – what is usually called a (theory) presentation. A morphism
of specifications φ : (Σ,E) → (Σ′, E′) is a signature morphism φ : Σ → Σ′ such
that E′ |= φ(E), i.e. the axioms of (Σ,E) are semantic consequences of (Σ′, E′) –
such a morphism formalises the way (Σ,E) is a part of (Σ′, E′). Presentations
and their morphisms constitute a category, which we denote by PresI .

An example of a specification in first-order logic is given in Fig. 1 (written
in a Casl-like syntax [8]) – the specification of residuated lattices, i.e. the first-
order structures that satisfy the axioms of the specification are the residuated
lattices, which play an essential role in this paper.1

2.2 Generalising the Truth Space

As said above, institutions are an abstraction of logical formalisms, where you
describe its main ingredients, in particular, when a given formula is satisfied (or
is not satisfied) by a given model. However, when dealing with soft constraints,
we need to allow for different degrees of satisfaction. This means, replacing the

1 The residuated lattices thus specified are sometimes called commutative (because
the monoid is commutative), integral (because the unit of the monoid is a greatest
element of the lattice), and zero-bounded (because there is a lowest element 0) [16].

Many-Valued Institutions for Constraint Specification 363

Fig. 1. The specification (ΣRL, ERL) of residuated lattices

‘true’/‘false’ structure of truth values by a more complex kind of structures.
In this paper, we consider that these structures are residuated lattices. The
choice for residuated lattices is motivated by the fact that the addition of a
residual operation to semirings and valuation structures has been shown in [3,7]
to provide a unifying framework for soft csp: residuated lattices generalise both
commutative idempotent semirings and fair valuation structures, which are the
structures usually employed with local consistency techniques [5].

We actually need for the lattices to be complete (i.e. that a supremum and
an infimum exists for every set of degrees of satisfaction).

Definition 2 (Complete Residuated Lattices). A complete residuated lat-
tice L = (L,≤,∨,∧, ∗,→, 0, 1) is a complete lattice (with supremum ∨, infi-
mum ∧, smallest element 0 and greatest element 1) equipped with a monoidal
structure (a commutative and associative binary operation ∗ having 1 as iden-
tity) such that, for all elements x, y, z ∈ L, (x ∗ y) ≤ (x ∗ z) if y ≤ z, and
y ≤ (x → z) iff x ∗ y ≤ z.

A morphism λ : L → L′ is a function λ : L → L′ that is simultaneously a
morphism of complete lattices and of commutative monoids, and is compatible
with the residual →. We denote the corresponding category by RL.

Intuitively, the set L provides the degrees of satisfaction (with 0 as dissatisfaction
and 1 as total satisfaction) which are ordered according to ∨ or, equivalently, to
∧: a ≤ b iff a∨ b = b. The operation ∗ captures the accumulation of truth values
that result from successive inferences, and → corresponds to the entailment
between two degrees of satisfaction. To capture soft csp as a many-valued logical
system, we therefore extend the notion of institution in keeping with [10]:

Definition 3 (RL-institution). An RL-institution I is defined as a tuple
(SigI ,SenI ,ModI ,RLI , |=I) consisting of

– a category SigI , a functor SenI , and a functor ModI as for an institution,
– a truth space functor RLI : (SigI)op → RL giving for every signature a com-

plete residuated lattice, and

364 C.E. Chiriţă et al.

– a many-valued satisfaction relation |=I
Σ : |ModI(Σ)| × SenI(Σ) → RLI(Σ)

for every signature Σ,

such that the equality
(
ModI(ϕ)(M ′) |=I

Σ ρ
)
= RLI(ϕ)

(
M ′ |=I

Σ′ SenI(ϕ)(ρ)
)

holds for any signature morphism ϕ : Σ → Σ′, Σ′-model M ′ and Σ-sentence ρ.
The satisfaction relation extends to a consequence relation over E,Γ ⊆ Sen(Σ)
as follows: E |=I

Σ Γ =
∧{(M |=I

Σ E) → (M |=I
Σ Γ) | M ∈ |Mod(Σ)|}.

The rest of this section is dedicated to showing how, starting from an institu-
tion I that satisfies some structural properties, we can define an RL-institution
CSP(I) of soft-constraint satisfaction problems based on I.

2.3 The First-Order Soft-Constraint RL-institution

To specify systems using constraints, which we evaluate over residuated lattices,
we consider only those presentations that extend (ΣRL, ERL), that is presenta-
tions (Σ,E) with ΣRL ⊆ Σ and E |= ERL. This means that, on the one hand,
every (Σ,E)-model has an underlying residuated lattice (its reduct as a ΣRL-
model) and that, on the other hand, we can make use of the symbols in ΣRL when
writing the sentences of E. Moreover, we admit only morphisms of presentations
ϕ : (Σ,E) → (Σ′, E′) that do not change the symbols of ΣRL.

Example 4. Figure 2 depicts the specification of a customer’s book-buying pref-
erences. Customer extends the specification BookData, which concerns a
book trader that stores a number of books and offers three kinds of delivery:
standard, express and online; for every book, two operations return the lan-
guage in which the book is written and the number of days associated with each
delivery mode.

Fig. 2. The specifications BookData and Customer

Many-Valued Institutions for Constraint Specification 365

Customer also extends the specification of residuated lattices given in Fig. 1
and adds two new function symbols – languagePref and deliveryPref – both of sort
Sat. Because every model of Sat is a residuated lattice, the two new function
symbols can be used to express preferences through axioms of the specification:
German is preferred to English and French to German; regardless of the book and
delivery time, online delivery is preferred to express and to standard; standard
delivery is preferred to express when express delivery takes three days or more
and standard takes seven days or less.

In order to include constraints in specifications, we need a new syntactic cat-
egory through which we can declare constraint variables, and we need constraint
sentences through which we can express preferences over those variables that we
wish to be optimised. For example, in the case of Customer, we could specify
the following constraint variables and sentences:

cvars book : Book; delivery : Delivery
• languagePref(language(book))
• deliveryPref(delivery, book, deliveryTime(delivery, book))

A constraint sentence (or constraint for short) is a term of sort Sat. The speci-
fied constraints express the existence of preferences on the language in which the
book is written, and the wish to optimise the method of delivery relatively to
the expected delivery period. This optimisation is made relative to the axioma-
tisation of the preferences in Customer: given a model of Customer and a
valuation χ of the constraint variables (i.e. a choice of a book and of a delivery
mode), every constraint is assigned a value (degree of satisfaction) in the resid-
uated lattice; the degree of satisfaction of a constraint in a model can then be
defined as the supremum of all the degrees of satisfaction obtained by varying
χ, i.e. for all possible combinations of books and delivery modes, which in soft
csp is known as the best level of consistency [5].

The extension of first-order logic with constraint sentences is best accommo-
dated in what are called stratified institutions [1], which provide an elegant way
of capturing the valuations of constraint variables through states of models:

Definition 5 (Stratified Institution). A stratified institution I is defined as
a tuple (SigI ,SenI ,ModI , [[_]]I , |=I)2 where

– SigI , SenI and ModI are as for an institution,
– [[_]]I is a stratification, i.e. a collection of

• functors [[_]]IΣ : ModI(Σ) → Set for every signature Σ, and
• surjective3 natural transformations [[_]]Iφ : [[_]]IΣ′ ⇒ ModI(φ) ; [[_]]IΣ for

every signature morphism φ : Σ → Σ′,
– the satisfaction relation M |=m

Σ ρ is parameterised by model states,

2 In order to simplify the notation, we will omit the stratified institution in the super-
script of the satisfaction relation.

3 By the surjectivity of the natural transformations we understand that for every
morphism φ : Σ → Σ′ and every M ′ ∈ |ModI(Σ′)|, [[M ′]]Iφ is surjective.

366 C.E. Chiriţă et al.

such that, for every φ : Σ → Σ′, M ′ ∈ |ModI(Σ′)|, m′ ∈ [[M ′]]IΣ′ , ρ ∈ SenI(Σ):

ModI(φ)(M ′) |=[[M ′]]Iφ(m′)
Σ ρ iff M ′ |=m′

Σ′ SenI(φ)(ρ).

The stratified version of the institution of first-order logic that we adopt, which
will be denoted by FOL, has as signatures pairs 〈Σ,V 〉 of a first-order signature
Σ and a set of sorted constraint variables V . The 〈Σ,V 〉-sentences are simply
sentences over Σ with the constraint variables V as constants (nullary operation
symbols). The models of a signature 〈Σ,V 〉 are the Σ-models, while the states
of a model M are the valuations χ : V → M , i.e., sorted functions from V to
the many-sorted carrier set of M . The satisfaction of a 〈Σ,V 〉-sentence ρ by a
〈Σ,V 〉-model M in a state χ ∈ [[M]]〈Σ,V 〉 is defined as the satisfaction of ρ in
(M,χ), i.e. in the extension of M with the interpretation χ of variables.

Notice that every specification in the institution of first-order logic defines
a specification in FOL by choosing an empty set of constraint variables, i.e. we
identify a first-order specification such as (ΣRL, ERL) with (〈ΣRL, ∅〉, ERL).

We can now summarise the construction of the RL-institution CSP(FOL) of
first-order soft-constraint satisfaction problems:

Signatures. A signature is a pair (L,Δ) of a complete residuated lattice L
and an extension Δ : (ΣRL, ERL) → (〈Σ,V 〉, E) of the specification of residuated
lattices. We include a residuated lattice as part of a signature in order to let
specifiers decide on which space of degrees of satisfaction they want to work with.
For simplicity we may denote (L,Δ : (ΣRL, ERL) → (〈Σ,V 〉, E)) by (L, Σ, V,E).

Constraint Sentences. A constraint sentence (or constraint for short) for a
signature (L, Σ, V,E) is a 〈Σ,V 〉-term of sort Sat.

Models. The models of (L, Σ, V,E) are the models of (〈Σ,V 〉, E) whose reducts
along Δ are complete and admit a morphism into L. Notice that it would be
too restrictive to choose only those models of (〈Σ,V 〉, E) whose reducts over
ΣRL are L because we wish to support mappings between specifications that use
different residuated lattices as their spaces of degrees of satisfaction. Formally,
a model of (L,Δ : (ΣRL, ERL) → (〈Σ,V 〉, E)) is a pair (M,f) consisting of a
model M of (〈Σ,V 〉, E) together with a morphism f : M�Δ → L.
Satisfaction Relation. For every constraint signature (L, Σ, V,E) and every
model M , we define the value of c over M as the best level of consistency :

(
(M,f) |=(L,Σ,V,E) c

)
= f

(∨
χ∈[[M]]Σ

eval(M,χ)(c)
)
,

where eval(M,χ)(c) is the usual (inductively defined) interpretation of the first-
order 〈Σ,V 〉-term c in (M,χ). Note that f translates the supremum to the
residuated lattice L chosen by the specifier.

2.4 The CSP(I) RL-institution of Soft CSP over I
We now generalise the construction CSP(FOL) to an arbitrary stratified insti-
tution I = (SigI ,SenI ,ModI , [[_]]I , |=I) that satisfies the following conditions:

Many-Valued Institutions for Constraint Specification 367

C1. To make residuated lattices available to the specifier, we require the exis-
tence of an I-presentation (ΣRL, ERL) such that RL ⊆ ModI(ΣRL, ERL).
This does not restrict applicability as most institutions suitable for the
domains where soft constraints are useful will provide the ability to specify
data structures.

C2. In order to be able to express constraints, we require the existence of a
functor C: SigI → Set that provides the set of constraints for each signa-
ture. In addition, we assume that for every object Δ : (ΣRL, ERL) → (Σ,E)
of the comma category (ΣRL, ERL)/PresI there exists a family of functors
|_|Σ : [[_]]Σ → [C(Σ) → ModI(Δ)] such that, for any signature morphism
ϕ : Σ → Σ′, Σ′-model M ′, state χ′ ∈ [[M ′]]Σ′ , and constraint c ∈ C(Σ),
|M ′�ϕ|Σ([[M ′]]ϕ(χ′))(c) = |M ′|Σ′(χ′)(ϕ(c)).

On this basis, we define the logical system CSP(I) as follows:

– The category SigCSP(I) of constraint signatures is the product category of
RL

op and the comma category (ΣRL, ERL)/PresI .
– SenCSP(I)((L,Δ : (ΣRL, ERL) → (Σ,E)) = C(Σ).
– ModCSP(I)(L,Δ) = ModI(Δ)/L, with ModI(Δ) : ModI(Δ)−1(RL) → RL.
– Given an (L,Δ)-model (M,f : M�Δ → L) and a sentence ρ ∈ Sen(L,Δ), the

satisfaction of ρ by (M,f) is defined as:
(
(M,f) |=(L,Δ) ρ

)
= f

(∨
χ∈[[M]]Σ

|M |Σ(χ)(ρ)
)

Theorem 6. For any stratified institution I satisfying the conditions C1 and
C2 above, CSP(I) is an RL-institution.

The following results are important for Sect. 3.

Proposition 7. CSP(I) inherits the following properties of I:

1. If SigI is finitely cocomplete so is SigCSP(I).
2. If I has (weak) model amalgamation, so does CSP(I).
3. Given factorisation systems [19] (E,M) for SigI and (ERL,MRL) for RL, we

obtain a factorisation system for SigCSP(I) by taking the epimorphisms to be
the pairs of arrows in MRL and (ΣRL, ERL)/Epres, and the monomorphisms
to be the pairs of arrows in ERL and (ΣRL, ERL)/Mpres.

3 Soft Constraints for Service-Oriented Computing

As an application of our approach, we study how soft-constraint institutions
can be used for formalising structures and processes specific to service-oriented
computing: we describe service applications and modules by means of constraint
specifications, and define the requirements of applications and the properties
guaranteed by service modules as constraint sentences. Consequently, we obtain
a series of new results on the way in which service applications evolve through
the processes of service discovery, selection, and binding.

368 C.E. Chiriţă et al.

We fix an arbitrary RL-institution (SigI ,SenI ,ModI ,RLI , |=I) – see
Definition 3 – for which the category of signatures has pushouts, is equipped with
a factorisation system, and for which the functor RLI preserves pullbacks. In par-
ticular, for a soft constraint institution CSP(I), it suffices that SigI has pushouts
and admits a factorisation system (see Proposition 7). We use n to denote the set
{1, . . . , n}.

In our framework of service-oriented computing, for simplicity, we consider
that we have two kinds of units, service applications and service modules. Service
applications can be seen as units that require some services. We may consider
that they have an orchestration part, describing what the unit intends to do,
and some interfaces describing the services required. In particular, interfaces are
subspecifications of the given orchestration together with some property that
describes the preferences of the unit to use a given service.

Definition 8 (Service Application). A service application (Σ, I,R) consists
of a signature Σ ∈ |Sig|, called orchestration, together with a finite family I =
{ix}x∈n of interfaces, that is, a family of monic signature morphisms ix : Σx →
Σ such that RL(Σx) = RL(Σ), and their associated requirements R = {rx ∈
Sen(Σx)}x∈n. We will refer to a pair (Σx, rx) consisting of the domain of an
interface and its corresponding requirement as a requires-specification.

Example 9. As part of our running example, we consider a service application
C = (Σ, I,R) whose orchestration Σ is Customer (as in Fig. 2), and whose
single interface consists of the identity and the requirement

R = languagePref(language(book)) ∧
deliveryPref(delivery, book, deliveryTime(delivery, book)).

Service modules are like service applications but, in addition, they provide
functionalities or resources. In this sense, they have an orchestration part and
some interfaces for the services required, as well as a provides interface.

Definition 10 (Service Module). A service module (Ω,P, J,Q) consists of
an orchestration Ω ∈ |Sig|, a provides-property P ∈ Sen(Ω), a finite family
J = {jy}y∈m of interfaces jy : Ωy → Ω, and a family of associated requirements
Q = {qy ∈ Sen(Ωy)}y∈m.

Example 11 We define a service module S = (Ω,P, J,Q) for the appli-
cation C given in Example 9 by taking Ω as the specification Supplier in
Fig. 3, the provides-property P = available(book, delivery), and the requirement

Many-Valued Institutions for Constraint Specification 369

Fig. 3. The specification Supplier (The table is only a convenient abbreviation for
a set of sentences that specify, for example, that the book “Schiele” is available in
German with 3-day express delivery. The column “id” is just an annotation that we
use to reference the rows.)

Q = deliverable(book, delivery, days) defined over Ω (i.e. J consists of an iden-
tity). The module guarantees the delivery of a book b for a method d within
deliveryTime(b, d) days, but in turn it depends on another external delivery-
service provider.

Definition 12 (α-Satisfiability of an Application). A service application
(Σ, I,R) is α-satisfiable if all of its requirements can be satisfied at once with a
value greater than α, i.e. there exists a model of its orchestration that satisfies
R with at least the value α:

∨
M∈|Mod(Σ)|

(∧
x∈n M |= ix(rx)

) ≥ α.

Definition 13 (β-Correctness of a Service Module). A service module
M = (Ω,P, J,Q) is said to be β-correct if P is a consequence of Q with a value
βM greater than β. Formally, this means that βM =

({jy(qy)}y∈m |=Ω P
) ≥ β.

We now focus on the execution of service applications in the context of a fixed set
Rep of service modules – a service repository. Each execution step is triggered by
the need to fulfil a requirement of the current application, which in the context of
our work corresponds to a requires-specification. Similarly to conventional soft-
constraint satisfaction problems, the goal is to maximize the satisfaction of the
requirement. To this end, we distinguish three elementary processes: discovery,
selection and binding.
Service Discovery. Let A = (Σ, I,R) be a service application and (Σk, rk)
one of its requires-specifications. Unlike the selection and binding processes, we
model the discovery of new service modules to be bound to A in a minimal way:
all we assume is that it provides a set of possible matches – pairs (M, φ) of service
modules M = (Ω,P, J,Q) from Rep and attachment morphisms φ : Σk → Ω.

370 C.E. Chiriţă et al.

Note that the output of the discovery process only depends on the repository
and the selected requires-specification, and not on the application itself.

Service Selection. In order to select from the set of discovered service mod-
ules the best module that satisfies the requirement, we compute for each match
(M, φ) provided by the discovery process the compatibility score between the
provides-property P guaranteed by the correctness of the service module M
and of the requirement rk of the application. To this end, we first compute
the pushout (i, j) of the signature morphisms ik and φ linking the requires-
specification (Σk, rk) to the orchestrations of the application and of the service
module (see the diagram below), and then translate both the requirement and
the provides-property to the vertex Σ′ of the pushout:
(
j(P) |= Sen(ik ;i)(rk)

)
=

∧

M∈|Mod(Σ′)|

(
M |=Σ′ j(P)

) → (
M |=Σ′ Sen(ik ;i)(rk)

)
.

These values belong to different lattices (of different service providers), hence we
have to further translate them to the lattice of the service application via the
morphisms RL(φ ; j) in order to be able to compare them. Here it is useful to
note that RL(φ ; j) = RL(φ) because RL(j) is an identity.

However, computing such compatibility scores is not enough: the selection
of a best module for the distinguished requirement of the application must also
take into account the correctness of the modules. Thus, for every match (M, φ),
we have to multiply the score RL(φ)(j(P) |= Sen(ik ; i)(rk)) obtained as above
with βM, the correctness of M. Finally, we will select those service modules for
which this product is maximal.

sel(Rep,A, Σk, rk) = arg max
(M,φ)

{βM ∗ RL(φ)(j(P) |= Sen(ik ; i)(rk)
)}

Example 14. Consider the repository Rep = {S,S ′} where the new service
module S ′ = (Ω′, P ′, J ′, Q′) is such that Ω′ is as in Fig. 4, P ′ = P , and Q′ = Q.
When selecting a best supplier for the service application C from Example 9, the
books that best fit the preferences are the online version of “Schiele” (1.3) for
S and “Chagall – Ma vie” with an express delivery (2.2) for S ′. In principle, we
would need to compute the compatibility scores between Customer and Sup-
plier and OtherSupplier, respectively, using all possible models. However,

Many-Valued Institutions for Constraint Specification 371

Fig. 4. The specification OtherSupplier

due to the way the specifications are written, the choice of the best book for each
supplier can be calculated directly from the axioms. First, the constraint vari-
ables book and delivery are limited to the interpretations defined by the tables.
Second, the axioms of Customer that express specific preferences, such as for a
language, make it feasible to determine the best books provided by each supplier
for any model. With respect to language, Book 3 is the least preferred, while 2.1
and 2.2 are the most preferred because languagePref(en) ≤ languagePref(de) ≤
languagePref(fr). In order to determine the best buying option, it suffices now to
decide which variant of 2.1 and 2.2 is the most suitable for our constraints, which
we do by comparing their delivery options: since express delivery is preferred to
standard when the latter does not guarantee a delivery within seven days, the
best choice is 2.2, and thus the selection process chooses S ′ as the best supplier.

Service Binding. After selecting a service module (non-deterministically from
the set sel(Rep,A, Σk, rk)), the application will commit to the chosen provider
through a binding process which changes the application as follows:

– The new orchestration is the vertex Σ′ of the pushout (i, j).
– Apart from the interface ik corresponding to the distinguished requirement,

the interfaces of the application are preserved via a factorisation of the compo-
sition of the old interfaces and the morphism of orchestrations i: for x ∈ n\{k},
we obtain the interface mΣ

x : Σ′
x → Σ′ by taking the factorisation eΣ

x ; mΣ
x of

the composed morphism ix ; i.
– The interface ik is replaced by the interfaces of the selected service module:

for y ∈ m, mΩ
y : Ω′

y → Σ′ is the monic in the factorisation of jy ; j.
– The distinguished requirement rk is replaced by the requirements {eΩ

y (qy)}y∈m

of the selected module, while the other requirements of the application are
kept: for x ∈ n \ {k}, rx is translated to eΣ

x (rx).

372 C.E. Chiriţă et al.

The final goal of binding a service application to different service modules is
to obtain an application with all the requirements fulfilled. It is thus natural
to be interested in determining a lower bound for the satisfiability of a service
application based on the satisfiability of the application that results from the
process of binding to a service module with a certain degree of correctness.

Proposition 15 (Correctness of Service Binding). Let M = (Ω,P, J,Q)
be a β-correct module that matches a service application A = (Σ, I,R) through a
morphism φ : Σk → Ω. If the selection process guarantees that the compatibility
score of the requirement rk of A and the provides-property P of M is at least δ,
and if the resulting application A′ = (Σ′, I ′, R′) of their binding is α-satisfiable,
then A is ζ-satisfiable with ζ = RL(φ)(β ∗ δ ∗ α).

4 History and Value Systems

In this section, we analyse two distinguishing features of our method of selecting
a best service module: unlike previous boolean approaches [13,14], it relies on
arbitrary residuated lattices that may change through binding; moreover, it takes
into account not only the properties of the supplier, but also the information
encoded in the orchestration of the application. Each of these features raises new
challenges in predicting which service modules will be bound to the application.

4.1 History Matters

The choice of a best supplier is usually not invariant to the change of the orches-
tration of an application. In this section, we identify those situations in which
the information contained by the orchestration of a service application becomes
irrelevant to the selection of a best service module.

Example 16. Consider the service application C′ = (Σ′, I ′, R) with the orches-
tration Σ′ defined as the specification Customer of the application C from
Example 9 to which we add the sentence

∀ b : Book, d : Delivery, n : Nat. deliveryPref(d, b, n) = 0 if n > 7,

and having the same requirement R as C. If we repeat the selection process for
C′ and the repository Rep = {S,S ′}, the supplier S will be chosen instead of S ′.
This is due to the fact that the delivery time for Book 2 is greater than seven
days, and thus it does not meet the time-limit imposed by the new application.

Proposition 17. Let A = (Σ, I,R) be a service application and (Σk, rk) a
requires-specification written over an RL-institution having the model-amalgam-
ation property. If the interface ik : Σk → Σ ∈ I is a signature morphism that
admits model expansions, the compatibility score between the requirement rk of
A and the provides-property of a service module M = (Ω,P, J,Q) can be eval-
uated directly with respect to the orchestration Ω of M, rather than having to
first compute the pushout of the application and the module.

Many-Valued Institutions for Constraint Specification 373

Fact 18. For a CSP(I) institution having the model-amalgamation property, a
constraint signature morphism ϕ : (Δ,L) → (Δ′,L′) in SigCSP(I), with underly-
ing morphisms ϕpr : (Σ,E) → (Σ′, E′) and ϕrl : L′ → L, admits model expan-
sions whenever the morphism of presentations ϕpr admits model expansions and
the reduct M�Δ of any (Σ,E)-model M is projective with respect to ϕrl .

4.2 Changing the Truth Space

The choice of a residuated lattice affects both the compatibility score (between
a requirement and a provides-property) and the correctness of a service module.

Example 19. Consider once again the service application C from Example 9 and
two suppliers S1 and S2 whose orchestrations have the same underlying signature
– SimpleSupplier as in Fig. 5. Moreover, they have the same provides-property

P1 = available(book, delivery) ∧ (available(book, delivery) →
deliverable(book, delivery, deliveryTime(book, delivery)))

and no requirements. The residuated lattices of the orchestrations of S1 and S2

differ: both S1 and C are based on the same Heyting algebra L with the under-
lying set of truth values [0, 1], while S2 is based on the real-valued Łukasiewicz
lattice = ([0, 1],min,max, ∗,→, 0, 1), with x ∗ y = max{0, x + y − 1} and
x → y = min{1, 1−x+y}, for any x, y ∈ [0, 1]. The compatibility scores between
the requirement R = deliveryTime(book, delivery, deliveryTime(book, delivery)) of
the service application C and the provides-property P1 of S1 and S2 will be 1
and 0.5, respectively. Consequently, for any match φ between C and S2 such that
the morphism of residuated lattices RL(φ) : → L does not map 0.5 to 1, the
selection process will only determine S1 as a best service module. Notice that,
even when S1 and S2 have the same underlying residuated lattices, the selection
process may still depend on the matches between C and the two modules.

Fig. 5. The specification SimpleSupplier

Similarly, the correctness of a service module depends on its associated lattice.

Example 20. Let S3 be a service module based on the extension of Simple-
Supplier with the sentence

∀ b : Book, d : Delivery. (deliverable(b, d, deliveryTime(b, d)) → available(b, d)) = 1.

Its provides-property is P = available(book, delivery), and it has only one require-
ment, deliverable(book, delivery, deliveryTime(book, delivery)). The correctness of

374 C.E. Chiriţă et al.

the module S3 will depend on the residuated lattice of its orchestration: for any
Heyting algebra, the module will be correct with the value 1, while for the real-
valued Łukasiewicz lattice, the module will only be 0.5-correct. Of course, these
values cannot be compared, as they belong to different lattices. Still, the first
one is absolute, while the second is not.

5 Conclusions and Future Work

We have developed a general technique for extending arbitrary institutions with
soft constraints that formalises and generalises the results presented in [15]. Our
approach consists in adding constraints to specifications written over a base
stratified institution that provides functional requirements. The proposed tech-
nique requires that the underlying stratified institution I is expressive enough to
capture residuated lattices, which provide the space of degrees of satisfaction in
which constraints are expressed, and that every signature of I provides constraint
variables, constraint sentences, and mappings through which each valuation of
the constraint variables determines an interpretation of the constraints as ele-
ments of the residuated lattice. Building on this formalisation, we have shown
how the selection of a best supplier in the context of service discovery and bind-
ing can be defined in terms of graded semantic consequence, and we have studied
the unpredictability of the evolution of service applications that originates from
the change of the truth structures that underlie the service components.

In order to facilitate an implementation of our model-theoretical approach to
choosing a best supplier, we intend to further examine sound and complete proof
systems defined in terms of many-valued rules as in [10]. These could be used
in the development of operational semantics for the execution of such service-
oriented applications (i.e. of a model for dynamic reconfiguration of systems in
the style of [14]) with evolving preferences and truth spaces. Towards that end,
the logic-programming semantics of services recently proposed in [26] provides a
starting point. Besides the obvious need to adapt the theory presented therein to
our many-valued setting (which means replacing linear temporal sentences with
soft constraint specifications), the main open question is how to generalise the
orchestrations of client applications and service modules in order to capture the
way in which the satisfaction of constraint sentences changes upon iterations of
the processes of service discovery, selection and binding.

We also consider worthwhile investigating how a graded variant of institution-
independent logic programming, which generalises service-oriented logic pro-
gramming, can be defined in relation to the developments presented in [25].
This would necessitate adapting the institution-independent abstractions of the
concepts of Herbrand model, unification, resolution and computed answer (with
a given degree of confidence) to the many-valued nature of our setting.

Acknowledgements. The authors would like to thank the anonymous referees for
their very useful comments and suggestions. These have lead to an improved over-
all readability of the paper and to a more accurate presentation of the completeness
requirement of the residuated lattices.

Many-Valued Institutions for Constraint Specification 375

References

1. Aiguier, M., Diaconescu, R.: Stratified institutions and elementary homomor-
phisms. Inf. Process. Lett. 103(1), 5–13 (2007)

2. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-
els. In: Pastor, Ó., e Cunha, J.F. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503.
Springer, Heidelberg (2005)

3. Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based
formalisms. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI,
vol. 141, pp. 63–67. IOS Press (2006)

4. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

5. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.:
Semiring-based CSPs and valued CSPs: frameworks, properties, and comparison.
Constraints 4(3), 199–240 (1999)

6. Bistarelli, S., Santini, F.: A nonmonotonic soft concurrent constraint language for
SLA negotiation. Electr. Notes Theor. Comput. Sci. 236, 147–162 (2009)

7. Bova, S.: Soft constraints processing over divisible residuated lattices. In: Sossai,
C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 887–898. Springer,
Heidelberg (2009)

8. Mosses, P.D.: CASL Reference Manual, The Complete Documentation of the Com-
mon Algebraic Specification Language. LNCS, vol. 2960. Springer, Berlin (2004).
doi:10.1007/b96103

9. Cohen, D.A., Cooper, M., Jeavons, P.G., Krokhin, A.A.: Soft constraints: com-
plexity and multimorphisms. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp.
244–258. Springer, Heidelberg (2003)

10. Diaconescu, R.: Graded consequence: an institution theoretic study. Soft Comput.
18(7), 1247–1267 (2014)

11. Fiadeiro, J.L.: Categories for Software Engineering. Springer, Heidelberg (2005)
12. Fiadeiro, J.L.: The many faces of complexity in software design. In: Hinchey, M.,

Coyle, L. (eds.) Conquering Complexity, pp. 3–47. Springer, Heidelberg (2012)
13. Fiadeiro, J.L., Lopes, A.: An interface theory for service-oriented design. Theor.

Comput. Sci. 503, 1–30 (2013)
14. Fiadeiro, J.L., Lopes, A.: A model for dynamic reconfiguration in service-oriented

architectures. Softw. Syst. Model. 12(2), 349–367 (2013)
15. Fiadeiro, J.L., Orejas, F.: Abstract constraint data types. In: De Nicola, R.,

Hennicker, R. (eds.) Wirsing Festschrift. LNCS, vol. 8950, pp. 155–170. Springer,
Heidelberg (2015)

16. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathe-
matics. Elsevier Science, New York (2007)

17. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

18. Harman, M., Jia, Y., Krinke, J., Langdon, W.B., Petke, J., Zhang, Y.: Search based
software engineering for software product lineengineering: a survey and directions
for future work. In: Gnesi, S., Fantechi, A., Heymans, P., Rubin, J., Czarnecki, K.,
Dhungana, D. (eds.) Software Product Line, pp. 5–18. ACM (2014)

19. Herrlich, H., Strecker, G.: Category Theory: An Introduction. Allyn and Bacon
Series in Advanced Mathematics. Allyn and Bacon, Boston (1973)

http://dx.doi.org/10.1007/b96103

376 C.E. Chiriţă et al.

20. Hölzl, M.M., Meier, M., Wirsing, M.: Which soft constraints do you prefer? Electr.
Notes Theor. Comput. Sci. 238(3), 189–205 (2009)

21. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522.
Springer, Heidelberg (2007)

22. Pierce, B.C.: Basic Category Theory for Computer Scientists. Foundations of Com-
puting. MIT Press, Cambridge (1991)

23. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Springer, Heidelberg (2012)

24. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard
and easy problems. ĲCAI 1(95), 631–639 (1995)

25. Ţuţu, I., Fiadeiro, J.L.: From conventional to institution-independent logic pro-
gramming. J. Logic Comput. (2015). http://logcom.oxfordjournals.org/content/
early/2015/06/04/logcom.exv021.abstract

26. Ţuţu, I., Fiadeiro, J.L.: Service-oriented logic programming. Log. Meth. Comput.
Sci. 11(3), 1–38 (2015)

27. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M., Knapp, A., Koch, N., Schroeder,
A.: Semantic-based development of service-oriented systems. In: Najm, E.,
Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229,
pp. 24–45. Springer, Heidelberg (2006)

http://logcom.oxfordjournals.org/content/early/2015/06/04/logcom.exv021.abstract
http://logcom.oxfordjournals.org/content/early/2015/06/04/logcom.exv021.abstract

CafeInMaude: A CafeOBJ Interpreter in Maude

Adrián Riesco1(B), Kazuhiro Ogata2,3, and Kokichi Futatsugi3

1 Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
ariesco@fdi.ucm.es

2 School of Information Science, JAIST, Nomi, Japan
3 Research Center for Software Verification, JAIST, Nomi, Japan

{ogata,futatsugi}@jaist.ac.jp

Abstract. We present in this paper CafeInMaude, an interpreter for
non-behavioral CafeOBJ specifications. The interpreter has been imple-
mented in Maude. This alternative implementation combines CafeOBJ
specification and theorem proving capabilities with efficient and exten-
sible Maude commands and tools. Hence, it makes it possible to use
both CafeOBJ proof scores and reduction commands and Maude model
checking, narrowing, or theorem proving capabilities with the same tool.

Keywords: CafeOBJ · Full maude · Model checking · Theorem proving

1 Introduction

CafeOBJ [4] is a language for writing formal specifications for a wide variety of
software and/or hardware systems, and verifying properties of them. CafeOBJ
implements equational logic by rewriting and can be used as a powerful interac-
tive theorem proving system. Specifiers can write proof scores [5] also in CafeOBJ
and perform proofs by executing these proof scores. CafeOBJ, implemented in
Lisp, provides several features to ease the specification of systems. These features
include a flexible mix-fix syntax, powerful and clear typing system with ordered
sorts, parameterized modules and views for instantiating the parameters, mod-
ule expressions, operators for defining terms, equations for defining the (possibly
conditional) equalities between terms, and (possibly conditional) transitions for
specifying how a system evolves, among others.

CafeOBJ and Maude [1] are sister languages of the OBJ family. Maude mod-
ules are executable rewriting logic specifications and its C++ implementation
shares many features with CafeOBJ. However, while the CafeOBJ community
has focused on proofs via proof scores, the Maude community has focused on (i)
verification of properties via model checking and exhaustive search, efficiently
implemented in Maude, and (ii) tools implemented in Maude itself, thanks to the
reflective capabilities of Maude [1], which allows users to extend Maude with new

Research partially supported by Japanese project Kakenhi 23220002, MICINN Span-
ish project StrongSoft (TIN2012-39391-C04-04), Comunidad de Madrid project N-
Greens Software-CM (S2013/ICE-2731), and UCM-Santander grant GR3/14.

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 377–380, 2016.
DOI: 10.1007/978-3-662-49665-7 22

378 A. Riesco et al.

syntax and commands.1 Among these tools we have the Maude Formal Envi-
ronment (MFE) [3], which includes tools for proving termination, confluence,
and coherence, the Constructor-based Inductive Theorem Prover (CITP) [6], a
tool for proving inductive properties of systems specified with constructor-based
logics, and the declarative debugger and test-case generator [8].

Taking into account the similarities between both languages, using Maude
reflective capabilities, and using the translation in [7] we have implemented
CafeInMaude, a CafeOBJ interpreter implemented in Maude. It defines both
the parsing mechanisms required to introduce CafeOBJ specifications into the
Maude database (hence allowing other Maude tools to be used with these specifi-
cations) and the execution strategies for faithfully executing proof scores. In this
way it is possible to combine both Maude and CafeOBJ features. For example,
it is now possible to first prove the termination and confluence of a theory using
the MFE and then prove properties on it by using proof scores.

Moreover, CafeInMaude provides a simple framework where new features
and commands can be added and tested just by using Maude code (much more
familiar to CafeOBJ programmers than the Lisp implementation of CafeOBJ or
the C++ implementation of Maude). Once these new features become mature
they can be added to the standard Lisp implementation. In fact, we have easily
added new features like the metadata and the nonexec attributes, which are
used to indicate extra information and to prevent the engine from using these
statements when executing, respectively.

We outline in the next section how to use the tool, explaining how to parse
and execute standard CafeOBJ specifications in Sect. 2.1, how to use Maude
tools with these specifications in Sect. 2.2, and how to extend CafeOBJ syntax
in Sect. 2.3, while the limitations of the tool are presented in Sect. 2.4. Section 3
concludes and outlines some lines of future work. The tool and several case
studies are available at https://github.com/ariesco/CafeInMaude.

2 Using CafeInMaude

We present in this section how to execute CafeOBJ specifications, how to com-
bine them with Maude tools, and how to extend CafeOBJ syntax and commands.
Finally, we summarize the limitations of the tool with respect to the standard
Lisp implementation.

2.1 Executing CafeOBJ Specifications

Although Maude requires some constraints to allow input/output with the user,
being the most important of them that modules and commands must be enclosed
in parentheses, standard CafeOBJ specifications can be easily loaded by CafeIn-
Maude by using the script provided in the webpage above. It executes a Java
pre-parser to the files and introduces these modified files into Maude.
1 Actually, we extend Full Maude [1, Part II], an extension of Maude written in Maude

itself that is used as base for any further extension.

https://github.com/ariesco/CafeInMaude

CafeInMaude: A CafeOBJ Interpreter in Maude 379

CafeInMaude supports any non-behavioral CafeOBJ specification and open-
close environment, including those using the search predicates available in the
latest releases of CafeOBJ [9]. As an interesting case study, we have used our
tool for the falsification of the NSPK protocol, which finds a state in which
NSPK does not enjoy the authentication property by combining bounded model
checking by means of search and induction by using proof scores. More details
are available at http://www.jaist.ac.jp/∼kokichi/class/i613-1312 and https://
github.com/ariesco/CafeInMaude.

2.2 Using Maude Commands

CafeInMaude considers both CafeOBJ and Maude specifications first-order citi-
zens, so it is possible to import Maude modules into CafeOBJ modules and vice
versa. Hence, it is possible to import, for example, the MODEL-CHECKER module.
Once this module is imported, it is possible to define, using CafeOBJ syntax,
the type for the states and the atomic formulas to be used in our LTL formulas.
Then, it is possible to verify whether some initial CafeOBJ configurations fulfill
these formulas by using the predefined modelCheck predicate.

In the same way, any command can be applied to CafeOBJ specifications.
Therefore, it is possible to use Maude commands such as narrowing [2], which
allows the user to perform symbolic search starting with non-ground terms.

Finally, additional tools extending Maude can also be used. In order to use
these tools the user must indicate that the grammar used by the tool is an
extension of the CafeOBJ grammar: CafeGrammar. Using this idea, we have
already integrated the Maude Formal Environment (MFE) [3], the Constructor-
based Inductive Theorem Prover (CITP) [6], and the declarative debugger and
test-case generator [8].

2.3 Extending CafeOBJ

Since the implementation of CafeInMaude depends on a grammar defined in
Maude, it is easy for Maude and CafeOBJ programmers to extend it. Extensions
just require two steps: (i) defining the type (if it does not exist yet) and the syntax
of the new feature and (ii) define how to parse it, which includes its translation
into Maude. The former is straightforward and just requires to define some
operators in the grammar module, while the latter, though complex, is greatly
eased by the parsing functions that we provide for parsing and translating any
CafeOBJ term. Using these ideas we have added the metadata, nonexec, and
owise attributes to add information, prevent from executing, and apply only
when it is the only applicable equation, respectively.

2.4 Limitations

Since CafeInMaude is based in a translation from CafeOBJ to Maude, it is con-
strained by the constructions available in CafeOBJ that are not available in

http://www.jaist.ac.jp/~kokichi/class/i613-1312
https://github.com/ariesco/CafeInMaude
https://github.com/ariesco/CafeInMaude

380 A. Riesco et al.

Maude. These limitations mainly affect the modules with loose semantics: in
Maude these modules cannot be parameterized and can only be imported by
other modules with loose semantics, and only in including mode (indicating
that junk and confusion are allowed). We deal with these restriction in a conser-
vative way: if the user allows a non-strict translation (which is enough for the
tools currently integrated in CafeInMaude), they are translated as modules with
tight semantics, while a warning message indicates the changes performed in the
modules; otherwise, the translation fails.

Moreover, Maude does not allow modules with free parameters to be used
to instantiate parameterized modules. In this case the tool cannot translate the
module and it displays an error message.

3 Concluding Remarks and Ongoing Work

We have presented in this paper CafeInMaude, a tool to introduce CafeOBJ
specifications into the Maude database. This tool provides an alternative imple-
mentation of CafeOBJ that allows us to use Maude modules and commands with
CafeOBJ specifications, improves the performance of some of its commands, and
eases the task of connecting CafeOBJ specifications with tools implemented on
top of Full Maude. As future work we plan to use the narrowing techniques
implemented in Maude [2] to analyze protocols previously defined in CafeOBJ.

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: Reflection, metalevel computation, and strategies. In: Clavel, M., Durán, F.,
Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott, C. (eds.) All About
Maude - A High-Performance Logical Framework. LNCS, vol. 4350, pp. 419–458.
Springer, Heidelberg (2007)

2. Clavel, M., Durán, F., Escobar, S., Eker, S., Lincoln, P., Mart́ı-Oliet, N.,
Meseguer,J., Talcott, C.: Maude Manual (Version 2.7), March 2015. http://maude.
cs.uiuc.edu/maude2-manual

3. Durán, F., Rocha, C., Álvarez, J.M.: Towards a maude formal environment. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 329–351. Springer, Heidelberg (2011)

4. Futatsugi, K., Diaconescu, R.: CafeOBJ report. World Scientific, AMAST Series
(1998)

5. Futatsugi, K., Gâinâ, D., Ogata, K.: Principles of proof scores in CafeOBJ. Theor.
Comput. Sci. 464, 90–112 (2012)

6. Găină, D., Zhang, M., Chiba, Y., Arimoto, Y.: Constructor-based inductive the-
orem prover. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp.
328–333. Springer, Heidelberg (2013)

7. Riesco, A.: An integration of CafeOBJ into full maude. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 230–246. Springer, Heidelberg (2014)

8. Riesco, A., Verdejo, A., Mart́ı-Oliet, N., Caballero, R.: Declarative debugging of
rewriting logic specifications. JLAP 81(7–8), 851–897 (2012)

9. Sawada, T., Futatsugi, K., Preining, N.: CafeOBJ Reference Manual (version 1.5.3),
February 2015

http://maude.cs.uiuc.edu/maude2-manual
http://maude.cs.uiuc.edu/maude2-manual

Verification

Verifying a Verifier: On the Formal Correctness
of an LTS Transformation Verification Technique

Sander de Putter and Anton Wijs(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
{s.m.j.d.putter,a.j.wijs}@tue.nl

Abstract. Over the years, various formal methods have been proposed
and further developed to determine the functional correctness of models
of concurrent systems. Some of these have been designed for application
in a model-driven development workflow, in which model transforma-
tions are used to incrementally transform initial abstract models into
concrete models containing all relevant details. In this paper, we con-
sider an existing formal verification technique to determine that formal-
isations of such transformations are guaranteed to preserve functional
properties, regardless of the models they are applied on. We present our
findings after having formally verified this technique using the Coq the-
orem prover. It turns out that in some cases the technique is not correct.
We explain why, and propose an updated technique in which these issues
have been fixed.

1 Introduction

It is a well-known fact that concurrent systems are very hard to develop correctly.
In order to support the development process, over the years, a whole range of for-
mal methods techniques have been constructed to determine the functional cor-
rectness of system models [3]. Over time, these techniques have greatly improved,
but the analysis of complex models is still time-consuming, and often beyond what
is currently possible.

To get a stronger grip on the development process, model-driven development
has been proposed [6]. In this approach, models are constructed iteratively, by
defining model transformations that can be viewed as functions applicable on
models: they are applied on models, producing new models. Using such trans-
formations, an abstract initial model can be gradually transformed into a very
detailed model describing all aspects of the system. If one can determine that
the transformations are correct, then it is guaranteed that a correct initial model
will be transformed into a correct final model.

Many model transformation verification techniques are focussed on determin-
ing that a given transformation applied on a given model produces a correct new
model, but in order to show that a transformation is correct in general, one would

S. de Putter—This work is supported by ARTEMIS Joint Undertaking project
EMC2 (grant nr. 621429).

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 383–400, 2016.
DOI: 10.1007/978-3-662-49665-7 23

384 S. de Putter and A. Wijs

have to determine this for all possible input models. There are some techniques that
can do this [1,11], but it is often far from trivial to show that these are correct.

In this work, we formally prove the correctness of such a formal transfor-
mation verification technique proposed in [17,19] and implemented in the tool
Refiner [20]. It is applicable on models with a semantics that can be captured
by Labelled Transition Systems (LTSs). Transformations are formally defined
as LTS transformation rules. Correctness of transformations is interpreted as
the preservation of properties. Given a property ϕ written in a fragment of the
μ-calculus [9], and a system of transformation rules Σ, Refiner checks whether
Σ preserves ϕ for all possible input. This is done by first hiding all behaviour
irrelevant for ϕ [9] and then checking whether the rules replace parts of the input
LTSs by new parts that are branching bisimilar to the old ones. Branching bisim-
ilarity preserves safety properties and a subset of liveness properties involving
inevitable reachability [5]. When no property is considered, the technique checks
for full semantics preservation, useful, for instance, when refactoring models.

The technique has been successfully applied to reason very efficiently about
model transformations; speedups of five orders of magnitude have been measured
w.r.t. traditional model checking of the models the transformations are applied
on [17]. However, the correctness of the transformation verification technique,
i.e. whether it returns true iff a given transformation is property preserving for
all possible input models, has been an open question until now. With this paper
we address that issue.

Contributions. We address the formal correctness of the transformation verifica-
tion technique from [19]. We have fully verified the correctness of this technique
using the Coq proof assistant1, and therefore present proofs in this paper that
have been rigorously checked. The full proof is available at [10]. We have identi-
fied situations in which the technique is in fact not correct for certain cases. We
propose two alterations to repair the identified issues: one involves a more rig-
orous comparison of combinations of glue-states (the states in the LTS patterns
that need to be matched, but will not be transformed), and one means deter-
mining whether a rule system has a particular property which we call cascading.

Structure of the Paper. Related work is discussed in Sect. 2. Section 3 presents the
notions for and analysis of the application of a single transformation rule. Next, in
Sect. 4, the discussion is continued by considering networks of concurrent process
LTSs, and systems of transformation rules. Two issues with the correctness of the
technique in this setting are presented and solutions are proposed. Furthermore,we
present a proof sketch along the lines of the Coq proof for the repaired technique.
Finally, Sect. 5 contains our conclusions and pointers to future work.

2 Related Work

Papers on incremental model checking (IMC) propose how to reuse model
checking results of safety properties for a given input model after it has been
1 http://coq.inria.fr.

http://coq.inria.fr

Verifying a Verifier: On the Formal Correctness 385

altered [14,16]. We also consider verifying models that are subject to changes.
However, we focus on analysing transformation specifications, i.e. the changes,
themselves, allowing us to determine whether a change always preserves correct-
ness, independent of the input model. Furthermore, our technique can also check
the preservation of liveness properties.

In [12], an incremental algorithm is presented for updating bisimulation rela-
tions based on changes applied on a graph. Their goal is to efficiently maintain a
bisimulation, whereas our goal is to assess whether bisimulations are guaranteed
to remain after a transformation has been applied without considering the whole
relation. As is the case for the IMC techniques, this algorithm works only for
a given input graph, while we aim to prove correctness of the transformation
specification itself regardless of the input.

In some works, e.g. [4,15], theorem proving is used to verify the preservation
of behavioural semantics. The use of theorem provers requires expert knowledge
and high effort [15]. In contrast, our equivalence checking approach is more
lightweight, automated, and allows the construction of counter-examples which
help developers identify issues with the transformations.

In [2], transformation rules for Open Nets are verified on the preservation of
dynamic semantics. Open Nets are a reactive extension of Petri Nets. The tech-
nique is comparable to the technique thatweverifywith twomain exceptions.First,
they consider weak bisimilarity for the comparison of rule patterns, which pre-
serves a strictly smaller fragment of the μ-calculus than branching bisimilarity [9].
Second, their technique does not allow transforming the communication interfaces
between components. Our approach allows this, and checks whether the compo-
nents remain ‘compatible’.

Finally, in [13], transformations expressed in the DSLTrans language are
checked for correspondence between source and target models. DSLTrans uses a
symbolic model checker to verify properties that can be derived from the meta-
models. The state space captures the evolution of the input model. In contrast,
our approach considers the state spaces of combinations of transformation rules,
which represent the potential behaviour described by those rules. An interesting
pointer for future work is whether those two approaches can be combined.

3 Verifying Single LTS Transformations

This section introduces the main concepts related to the transformation of LTSs,
and explains how a single transformation rule can be analysed to guarantee that
it preserves the branching structure of all LTSs it can be applied on.

3.1 LTS Transformation and LTS Equivalence

We use LTSs as in Definition 1 to reason about the potential behaviour of
processes.

Definition 1 (Labelled Transition System). An LTS G is a tuple (SG ,AG ,
TG , IG), with

386 S. de Putter and A. Wijs

– SG a finite set of states;
– AG a set of action labels;
– TG ⊆ SG × AG × SG a transition relation;
– IG ⊆ SG a (non-empty) set of initial states.

Action labels in AG are denoted by a, b, c, etc. In addition, there is the spe-
cial action label τ to represent internal, or hidden, system steps. A transition
(s, a, s′) ∈ TG , or s

a−→G s′ for short, denotes that LTS G can move from state s

to state s′ by performing the a-action. For the transitive reflexive closure of a−→G ,
we use a−→∗

G . Note that transitions are uniquely identifiable by the combination
of their source state, action label, and target state. This property is sometimes
called the extensionality of LTSs [21].

We allow LTSs to be transformed by means of formally defined transforma-
tion rules. Transformation rules are defined as shown in Definition 2.

Definition 2 (Transformation Rule). A transformation rule r = 〈L,R〉
consists of a left pattern LTS L = 〈SL,AL, TL, IL〉 and a right pattern
LTS R = 〈SR,AR, TR, IR〉, with IL = IR = SL ∩ SR.

The states in SL∩SR are called the glue-states. When applying a transforma-
tion rule to an LTS, the changes are applied relative to these glue-states. For the
verification we consider glue-states as initial states, i.e. IL = IR = SL ∩ SR. A
transformation rule r = (L,R) is applicable on an LTS G iff a match m : L → G
exists according to Definition 3.

Definition 3 (Match). A pattern LTS P = (SP ,AP , TP , IP) has a match
m : P → G on an LTS G = (SG ,AG , TG , IG) iff m is injective and ∀s ∈ SP \
IP , p ∈ SG:

– m(s) a−→G p =⇒ (∃s′ ∈ SP . s
a−→P s′ ∧ m(s′) = p);

– p
a−→G m(s) =⇒ (∃s′ ∈ SP . s′ a−→P s ∧ m(s′) = p).

A match is a behaviour preserving embedding of a pattern LTS P in an LTS
G defined via a category of LTSs [21]. Moreover, a match may not cause removal
of transitions that are not explicitly present in P. The set m(S) = {m(s) ∈ SG |
s ∈ S} is the image of a set of states S through match m on an LTS G.

An LTS G is transformed to an LTS T (G) according to Definition 4.

Definition 4 (LTS Transformation). Let G = 〈SG ,AG , TG , IG〉 be an LTS
and let r = 〈L,R〉 be a transformation rule with match m : L → G. Moreover,
consider match m̂ : R → T (G), with ∀q ∈ SL ∩ SR. m̂(q) = m(q) and ∀q ∈ SR \
SL. m̂(q) /∈ SG, defining the new states being introduced by the transformation.
The transformation of LTS G, via rule r with match m, is defined as T (G) =
〈ST (G),AT (G), TT (G), IG〉 where

– ST (G) = SG \ mL(SL) ∪ mR(SR);
– TT (G) = (TG \ {mL(s) a−→ mL(s′) | s

a−→L s′}) ∪ {mR(s) a−→ mR(s′) | s
a−→R s′}

– AT (G) = {a | ∃s
a−→ s′ ∈ TT (G)}

Verifying a Verifier: On the Formal Correctness 387

0̃

1̃

a

a

L
0̃

5̃

a

2̃

a

R

2̃

0

1

a

2

a

3 4

a b

G
0

5

a

2

a

3 4

a b

T (G)

Fig. 1. Application of a transforma-
tion rule

Given a match, an LTS transformation
replaces states and transitions matched by
L by a copy of R yielding LTS T (G). Since
in general, L may have several matches
on G, we assume that transformations are
confluent, i.e. they are guaranteed to ter-
minate and lead to a unique T (G). Con-
fluence of LTS transformations can be
checked efficiently [18]. Assuming conflu-
ence means that when verifying transfor-
mation rules, we can focus on having a
single match, since the transformations of
individual matches do not influence each other. An application of a transforma-
tion rule is shown in Fig. 1. The initial and glue-states are coloured black. In
the middle of Fig. 1, a transformation rule r = (L,R) is shown, which is applied
on LTS G resulting in LTS T (G). The states are numbered such that matches
can be identified by the state label, i.e. a state ĩ is matched onto state i. The
left-pattern of r does not match on states 〈1〉, 〈2〉, and 〈3〉 as this would remove
the b-transition.

To compare LTSs, we use the branching bisimulation equivalence relation [5]
as presented in Definition 5. Branching bisimulation supports abstraction from
actions and is sensitive to internal actions and the branching structure of an
LTS. Abstraction from actions is required for verification of abstraction and
refinement transformations such that input and output models can be compared
on the same abstraction level.

Definition 5 (Branching bisimulation). A binary relation B between two
LTSs G1 and G2 is a branching bisimulation iff s B t implies

1. s
a−→G1 s′ =⇒ (a = τ ∧ s′ B t) ∨ (t τ−→∗

G2
t̂

a−→G2 t′ ∧ s B t̂ ∧ s′ B t′),
2. t

a−→G2 t′ =⇒ (a = τ ∧ s B t′) ∨ (s τ−→∗
G1

ŝ
a−→G1 s′ ∧ ŝ B t ∧ s′ B t′)

Two states s, t ∈ S are branching bisimilar, denoted s ↔b t, iff there is a branch-
ing bisimulation B such that s B t. Two sets of states S1 and S2 are called
branching bisimilar, denoted S1 ↔b S2, iff ∀s1 ∈ S1.∃s2 ∈ S2.s1 ↔b s2 and
vice versa. We say that two LTSs G1 and G2 are branching bisimilar, denoted
G1 ↔b G2, iff IG1 ↔b IG2 .

3.2 Analysing a Transformation Rule

The basis of the transformation verification procedure is to check whether the two
patterns making up a rule are equivalent, while respecting that the patterns share
initial states. That is, given a rule r = 〈L,R〉, we are looking for a branching
bisimulation relation R such that for all s ∈ SL ∩ SR, we have s R s.

388 S. de Putter and A. Wijs

0̃

1̃ 2̃

a b

↔b/

κ1 κ2

κ00̃

1̃ 2̃

b a

κ1 κ2

κ0

Lκ Rκ

Fig. 2. κ-loops ensure 〈2̃〉 ↔b/ 〈1̃〉

Directly applying bisimilarity check-
ing on a pair of LTSs, however, will not
necessarily produce a suitable bisimula-
tion relation. For instance, consider the
rule in Fig. 2 which swaps a and b tran-
sitions. Without the κ-loops, explained
in the next paragraph, the LTS patterns
are branching bisimilar. However, the pat-
terns should be interpreted as possible
embeddings in larger LTSs. These larger LTSs may not be branching bisimilar,
because glue-states 〈1̃〉 and 〈2̃〉 could be mapped to states with different in- and
outgoing transitions, apart from the behaviour described in the LTS patterns.

To restrict bisimilarity checking to exactly those bisimulations that adhere
to relating glue-states to themselves, we introduce a so-called κ-transition-loop
for each glue-state, as defined in Definition 6. The resulting κ-extended trans-
formation rule can now be defined as rκ = (Lκ,Rκ), and is specifically used for
the purpose of analysing r, it does not replace r. The κ-loop of a glue-state s is
labelled with a unique label κs /∈ AL∪AR. If we add κ-loops to the rule in Fig. 2,
the analysis is able to determine that the rule does not guarantee bisimilarity
between input and output LTSs.

Definition 6 (κ-extension of an LTS). The LTS P extended with κ-loops is
defined as: Pκ = (SP ,AP ∪ {κs | s ∈ IP}, TP ∪ {(s, κs, s) | s ∈ IP}, IP).

The Analysis. A transformation rule preserves the branching structure of all
LTSs it is applicable on if the patterns of a transformation rule extended with
κ-loops are branching bisimilar. This is expressed in Proposition 1.

Proposition 1. Let G be an LTS, let r be a transformation rule with matches
m : L → G and m̂ : R → T (G) with m(s) = m̂(s) for all s ∈ SL ∩SR. Then,

Lκ ↔b Rκ =⇒ G ↔b T (G)

Intuition. A match of pattern L is replaced with an instance of pattern R.
If Lκ ↔b Rκ, then these two patterns exhibit branching bisimilar behaviour.
Therefore, the behaviour of the original and transformed systems (G and TG
respectively) are branching bisimilar.

4 Verifying Sets of Dependent LTS Transformations

In this section, we extend the setting by considering sets of interacting process
LTSs in so-called networks of LTSs [7] or LTS networks. Transformations can
now affect multiple LTSs in an input network, and the analysis of transformations
is more involved, since changes to process-local behaviour may affect system-
global properties. We address two complications that arose while trying to prove
the correctness of the technique using Coq and propose how to fix the technique
to overcome these problems. Finally, we provide a proof-sketch of the correctness
of the fixed technique based on the complete Coq proof.

Verifying a Verifier: On the Formal Correctness 389

4.1 LTS Networks and Their Transformation

An LTS network (Definition 7) describes a system consisting of a finite number
of concurrent process LTSs and a set of synchronisation laws which define the
possible interaction between the processes. The explicit behaviour of an LTS
network is defined by its system LTS (Definition 8). We write 1..n for the set of
integers ranging from 1 to n. A vector v̄ of size n contains n elements indexed
from 1 to n. For all i ∈ 1..n, v̄i represents the ith element of vector v̄.

Definition 7 (LTS network). An LTS network M of size n is a pair (Π,V),
where

– Π is a vector of n concurrent LTSs. For each i ∈ 1..n, we write Πi =
(Si,Ai, Ti, Ii).

– V is a finite set of synchronisation laws. A synchronisation law is a tuple (t̄, a),
where t̄ is a vector of size n, called the synchronisation vector, describing
synchronising action labels, and a is an action label representing the result of
successful synchronisation. We have ∀i ∈ 1..n. t̄i ∈ Ai ∪ {•}, where • is a
special symbol denoting that Πi performs no action.

Definition 8 (System LTS). Given an LTS network M = (Π,V), its system
LTS is defined by GM = (SM,AM, TM, IM), with

– SM = S1 × · · · × Sn;
– AM = {a | (t̄, a) ∈ V};
– IM = {〈s1, . . . , sn〉 | si ∈ Ii}, and
– TM is the smallest relation satisfying:

(t̄, a) ∈ V ∧ ∀i ∈ 1..n.

(
(t̄i = • ∧ s̄i = s̄′

i ∧ s̄i ∈ Si)

∨ (t̄i �= • ∧ s̄i
t̄i−→i s̄′

i)

)
=⇒ s̄

a−→M s̄′

The system LTS is obtained by combining the processes in Π according to the syn-
chronisation laws in V. The LTS network model subsumes most hiding, renaming,
cutting, and parallel composition operators present in process algebras, but also
more expressive operators such as m among n synchronisation [8]. For instance,
hiding can be applied by replacing the a component in a law by τ . A transition of
a process LTS is cut if it is blocked with respect to the behaviour of the whole sys-
tem (system LTS), i.e. there is no synchronization law involving the transition’s
action label on the process LTS.

Figure 3 shows an LTS network M = (Π,V) with two processes and three
synchronisation laws (left) and its system LTS (right). To construct the system
LTS, first, the initial states of Π1 and Π2 are combined to form the initial state
of GM. Then, the outgoing transitions of the initial states of Π1 and Π2 are
combined using the synchronisation laws, leading to new states in GM, and so
on. For simplicity, we do not show unreachable states.

390 S. de Putter and A. Wijs

1

Π1

2

V =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a, a , a)
(b, d , e)
(c, , c),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

b 1 2

3 4

GM

c43c d

a a a a a a

Π2

Fig. 3. An LTS network M =
(Π,V) (left) and its system LTS GM
(right)

Law (〈a, a〉, a) specifies that the
process LTSs can synchronise on their
a-transitions, resulting in a-transitions
in the system LTS. The other laws
specify that b- and d-transitions can syn-
chronise, resulting in e-transitions, and
that c-transitions can be fired inde-
pendently. Note that in fact, b- and
d-transitions in Π1 and Π2 are never able
to synchronise.

The set of indices of processes par-
ticipating in a synchronisation law (t̄, a)
is formally defined as Ac(t̄) = {i | i ∈
1..n ∧ t̄i �= •}; e.g. Ac(〈c, b, •〉) = {1, 2}.

Branching bisimilarity is a congruence
for construction of the system LTS of
LTS networks if the synchronisation laws do not synchronise, rename, or cut
τ -transitions [7]. Given an LTS network M = (Π,V), these properties are for-
malised as follows:

1. ∀(t̄, a) ∈ V, i ∈ 1..n. t̄i = τ =⇒ Ac(t̄) = {i} (no synchronisation of τ ’s);
2. ∀(t̄, a) ∈ V, i ∈ 1..n. t̄i = τ =⇒ a = τ (no renaming of τ ’s);
3. ∀i ∈ 1..n. τ ∈ Ai =⇒ ∃(t̄, a) ∈ V. t̄i = τ (no cutting of τ ’s).

In this paper, we assume these properties hold.

Transformation of an LTS Network. A rule system is used to define transfor-
mations for LTS networks. A rule system Σ is a tuple (R,V ′, V̂), where R is a
vector of transformation rules, V ′ is a set of synchronisation laws that must be
present in networks that Σ is applied on, and V̂ is a set of synchronisation laws
introduced in the result of a transformation. A rule system Σ = (R,V ′, V̂) is
applicable on a given LTS network M = (Π,V) when for each synchronisation
law in V ′ there is a synchronisation law in V, and no other synchronisation laws
in V involve behaviour described by the rules in R. As R is a vector, we identify
transformation rules in R by an index. We write Li and Ri for the left and right
patterns, respectively, of rule ri, where i ∈ 1..|R|.

Furthermore, the rule system must satisfy three analysis conditions related
to transformation of synchronising behaviour in a network. The first condition
concerns the applicability of a rule system on an LTS network. A rule transform-
ing synchronising transitions must be applicable on all equivalent synchronising
transitions:

∀Πi ∈ M, rj ∈ R, (t̄, a) ∈ V ′. ({j} ⊂ Ac(t̄) ∧ ∃m:Lj → Πi) (AC1)
=⇒ ∀(s, t̄j , s′)∈Ti. ∃m′ : Lj → Πi, p, p′∈SLj

. m′(s) = p ∧ m′(s′)=p′

Suppose Σ is applied on a network M and Σ contains a rule transforming
synchronising a-transitions. If not all a-transitions are transformed it is unclear

Verifying a Verifier: On the Formal Correctness 391

how this affects synchronisation between the processes, since the original and
the transformed synchronising behaviour may coexist. The second and third
conditions concern how a rule system is defined. The second condition requires
that Σ is complete w.r.t. synchronising behaviour.

∀(t̄, a) ∈ V ′, i ∈ 1..|R|. t̄i ∈ ALi
∪ {•} (AC2)

For each action a synchronising with an action subjected to a rule there must
be a rule also transforming a-transitions. This ensures that all the behaviour
related to the synchronisation is captured in the rule system. Hence, the analy-
sis considers a complete picture. For AC1 and AC2 the symmetric conditions
involving the R and V ′ ∪ V̂ apply as well.

The third condition prevents that the new synchronisation laws in V̂ are
defined over actions already present in the processes of an input network. Oth-
erwise, a model could be altered without actually defining any transformation
rules:

∀(t̄, a) ∈ V̂, i ∈ 1..|R|. t̄i ∈ (ARi
\ ALi

) ∪ {•} (AC3)

When transforming an LTS network M by means of a rule system Σ, first,
we check whether Σ is applicable on M and satisfies AC1. Then, for every Πi

(i ∈ 1..n) and every r ∈ R, the largest set of matches is calculated. For each
match, the corresponding transformation rule is applied. We call the resulting
network TΣ(M). In contrast, when verifying a rule system, we first check that
it is confluent and satisfies both AC2 and AC3. Checking confluence, AC1, AC2
and AC3 can be done efficiently [17–20].

4.2 Analysing Transformations of an LTS Network

In a rule system, transformation rules can be dependent on each other regarding
the behaviour they affect. In particular, the rules may refer to actions that require
synchronisation according to some law, either in the network being transformed,
or the network resulting from the transformation. Since in general, it is not
known a-priori whether or not those synchronisations can actually happen (see
Fig. 3, the a-transitions versus the b- and d-transitions), full analysis of such
rules must consider both successful and unsuccessful synchronisation.

To this end, dependent rules must be analysed in all possible combinations.
Potential synchronisation between the behaviour in transformation rules is char-
acterised by the direct dependency relation D = {(i, j) | ∃(t̄, a) ∈ V ′ ∪ V̂. {i, j}
⊆ Ac(t̄)}. Rule ri is related via D to rj iff both rules participate in a synchro-
nisation law. The relation considering directly and indirectly dependent rules,
called the dependency relation, is defined by the transitive closure of D, i.e. D+.
The D+ relation can be used to construct a partition D of the transformation
rules into classes of dependent rules. Each class can be analysed independently.
We call these classes dependency sets.

For the analysis of combinations of LTS patterns, we define in Definition 9
LTS networks L̄κ and R̄κ of κ-extended patterns, or pattern networks in short,

392 S. de Putter and A. Wijs

consisting of a combination of the κ-extended left and right LTS patterns of a
rule system Σ, respectively.

Definition 9 ((κ-Extended) Pattern network). Given a rule system Σ =
(R,V ′, V̂), its left and right pattern networks are L̄κ and R̄κ, respectively,
where

L̄κ = (〈Lκ
1 , . . . ,Lκ

|R|〉,V ′ ∪ Vκ),
R̄κ = (〈Rκ

1 , . . . ,Rκ
|R|〉,V ′ ∪ V̂ ∪ Vκ), and

Vκ = {(t̄, κs) | ∃i ∈ 1..n. κs ∈ ALκ
i

∧ t̄i = κs ∧ ∀j ∈ 1..n \ i. t̄j = •}
In order to focus the analysis on combinations of dependent rules, we define

how to filter an LTS network w.r.t. a given set I of indices. With the filtering
operation, we can create filtered κ-extended pattern networks Lκ

I , Rκ
I for any set

I of indices of dependent rules.

Definition 10 (Filtered LTS network). Given an LTS network M = (Π,V)
of size n and a set of indices I ⊆ 1..n, the filtered LTS network is defined by
MI = (Φ,VΦ), with

∀i ∈ 1..n. Φi =

{
Πi if i ∈ I

({∗}, ∅, ∅, {∗}) otherwise

VΦ = {(t̄, a) ∈ V | ∀i ∈ 1..n. t̄i ∈ AΦi
∪ {•}}

where ∗ is a dummy state.

Next, we discuss the analysis of networks with focus on two areas in which
the analysis technique as presented in [17,19] was not correct. Firstly, the work
did not consider the synchronisation of κ-transitions. Secondly, the consistency
of synchronising behaviour across pattern networks was not considered.

Analysis of Pattern Networks and Synchronisation of κ-Transitions. Figure 4a
shows a rule system Σ, in which the two rules are dependent. The example
demonstrates that the verification technique may produce incorrect results, since
it does not consider synchronisations between κ-transitions. The corresponding
pattern networks for Σ are presented in Fig. 4b, if we ignore the last synchro-
nisation law in Vκ. The resulting bisimulation checks are given in Fig. 4c, if
we ignore the κ12-transitions. Unsuccessful synchronisation is considered in the
checks between Lκ

{1} and Rκ
{1}, and Lκ

{2} and Rκ
{2}. In those, synchronisations are

not possible (for instance between the z-transitions). The check between pattern
networks Lκ

{1,2} and Rκ
{1,2} considers successful synchronisation. In the original

verification technique [17,19] the κ12-loops in pattern networks Lκ
{1,2} and Rκ

{1,2}
were not introduced. Without those loops, the pattern networks are branching
bisimilar. However, as pattern networks may appear as an embedding in a larger
network, all possible in- and outgoing transitions must be considered. Hence,
synchronising transitions which enter and leave the pattern network must be
considered as well. The κ12-transitions in Fig. 4c are the result of synchronising
κ1 and κ2-transitions, and therefore represent these synchronising transitions.
Observe that in Rκ

{1,2} the possibility to perform κ12-transitions is lost once the

Verifying a Verifier: On the Formal Correctness 393

1̃ 2̃1̃ 2̃

4̃

z t2t1 t1t2 V̂ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(z, z , τ),
(t1, t1 , τ),
(t2, t2 , τ)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

b

3̃

V =
⎧
⎨

⎩
(a, , a),
(, b , b)

⎫
⎬

⎭a ba

z

R1L1 R2L2

(a) A rule system Σ = (R, V , V̂)

1̃ 2̃
1̃ 2̃

4̃

z t2t1 t1t2

b

3̃

a b
a

z

Rκ
1

Lκ
1

Rκ
2

Lκ
2

L̄κ R̄κ

κ1 κ2

V ∪ Vκ =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a, , a),
(, b , b),
(κ1, , κ1),
(, κ2 , κ2),
(κ1, κ2 , κ12)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

κ1 κ2

V ∪ V ∪ Vκ =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a, , a),
(, b , b),
(z, z , τ),
(t1, t1 , τ),
(t2, t2 , τ),
(κ1, , κ1),
(, κ2 , κ2),
(κ1, κ2 , κ12)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(b) The corresponding pattern networks

1̃ 2̃

3̃ 2̃1̃ 4̃

τ
τ

τ

κ2
κ1

κ1, κ2,

↔b/↔b/

Lκ
{1,2} Rκ

{1,2}

1̃ 2̃

a, b,

a b

κ121̃ 2̃1̃ 2̃

4̃

b

3̃

a baκ1 κ2κ1 κ2

↔b

Rκ
{1}Lκ

{1}

↔b

Rκ
{2}Lκ

{2}
κ1, κ2,
a, b,

κ12

(c) Bisimulation checks; κ-synchronisation laws ensure that Lκ
{1,2} ↔b/ Rκ

{1,2}

Fig. 4. A rule system and its pattern networks and bisimulation checks

τ -transition at state 〈1̃, 2̃〉 has been taken, while in Lκ
{1,2} it is always possible to

perform the κ12-transition. Hence, the left and right networks are not branching
bisimilar. These bisimulation checks show that Σ does not guarantee preserva-
tion of the branching structure in all cases; e.g. take (Π,V ′) as input network,
with ∀i ∈ 1..n. Πi = Li.

Fixing the Technique. To overcome the above mentioned shortcoming, we need
to allow κ-transitions to synchronise. For this, additional κ-synchronisation laws
must be introduced in the pattern networks by redefining Vκ in Definition 9 as
follows:

Vκ={(t̄, κs̄) | ∃I ⊆ 1..n. s̄ ∈ ILI
∧ (∀i ∈ I. t̄i = κs̄i

) ∧ (∀i ∈ 1..n \ I. t̄i = •)}
For each vector glue-state s̄ ∈ ILI

(I ⊆ 1..n) there is now an enabled κ-
synchronisation law. These κ-laws ensure that each vector of glue-states is at
least related to itself.

Due to the κ-laws, groups of glue-states can be uniquely identified. This gives
rise to Lemma 1 that states: if a state vector s̄ ∈ SLI

, containing a group of glue-
states, is related to a state vector p̄ ∈ SRI

, then there must be a be a τ -path
from p̄ to a state ˆ̄p ∈ SRI

such that ˆ̄p and s̄ are related, and ˆ̄p contains the same
group of glue-states as s̄.

394 S. de Putter and A. Wijs

Lemma 1. Consider a rule system Σ = (R,V ′, V̂) and sets of indices I ⊆ 1..n
and J ⊆ I. Let LI and RI be the corresponding pattern networks. Furthermore,
let BI be a branching bisimulation relation such that Lκ

I ↔b Rκ
I , then

∀s̄ ∈ SLI
, p̄ ∈ SRI

. s̄ BI p̄ ∧ (∀i ∈ J. s̄i ∈ ILi
) =⇒

∃ ˆ̄p ∈ SRI
. p̄

τ−→∗
RI

ˆ̄p ∧ s̄ BI ˆ̄p ∧ ∀i ∈ J. ˆ̄pi = s̄i

Proof. Follows from the fact that s̄ has a loop with a unique label, say κs̄J
,

identifying the group of glue-states. Hence, if s̄ BI p̄, then p̄ must be able to
perform a κs̄J

-transition directly (i.e. ∀i ∈ J. s̄i = p̄i) or be able to reach such a
transition via a τ -path. ��

Consistency of Synchronising Behaviour. Formal verification of the analysis
technique in Coq furthermore showed that in one other case, the technique
also incorrectly concludes that a rule system is correct for all possible input.
This happens when a rule system is not behaviourally consistent across pattern
networks. Consider a rule system Σ with two transformation rules such that
Lκ

{1,2} ↔b Rκ
{1,2}, Lκ

{1} ↔b Rκ
{1}, and Lκ

{2} ↔b Lκ
{2}. Furthermore, consider vec-

tor states 〈tL, g〉 ∈ SLκ
{1,2} and 〈tR, g〉 ∈ SRκ

{1,2} such that 〈tL, g〉 ↔b 〈tR, g〉,
where g is a glue-state. When we also have tL ↔b tR we say that this relation
cascades from the relation between 〈tL, g〉 and 〈tR, g〉. If such a cascading effect
holds for all states across different combinations of pattern networks, then the
rule system is said to be cascading, i.e. it is behaviourally consistent across the
pattern networks. A formal definition is given in Definition 11.

Definition 11 (Cascading rule system). A rule system Σ = (R, V̂) with
synchronisation vectors of size n is called cascading, iff for all sets of indices
I, J ⊆ 1..n with I ∩ J = ∅:

∀s̄ ∈ SLI
, p̄ ∈ SRI

, q̄ ∈ ILJ
. s̄ ↔b p̄ ⇐⇒ s̄ ‖ q̄ ↔b p̄ ‖ q̄

where x̄ ‖ ȳ is the merging of states x̄ and ȳ via vector addition with dummy state
∗ as the zero element. Intuitively, this operation constructs a state for the system
LTS considering LTS patterns indexed by I ∪ J , i.e. the parallel composition of
x̄ and ȳ.

It may be the case that Σ is not cascading, i.e. we have 〈tL, g〉 ↔b 〈tR, g〉,
but not tL ↔b/ tR. In such a case it is always possible to construct an input
LTS network M such that M ↔b/ TΣ(M). To construct M take a copy of
L{1,2} and add a transition g

d−→2 s, where s is a state that is not matched
by L1 and the d-transition signifies departure from the pattern network. We
have 〈tL, g〉 d−→M 〈tL, s〉 and 〈tR, g〉 d−→TΣ(M) 〈tR, s〉. To represent continuing
behaviour in Π1 (copy of L1) we add a selfloop tL

a−→1 tL where a is a unique
action. Since state s is not matched and tL ↔b/ tR, it follows that 〈tL, s〉 can
perform the a-loop while 〈tR, s〉 cannot. Hence, we have M ↔b/ TΣ(M).

Figure 5a presents a transformation of an LTS network M using a non-
cascading rule system Σ. The corresponding bisimulation checks are shown in

Verifying a Verifier: On the Formal Correctness 395

L1

L2

R1

R2

V̂ = (t, t , τ)

1̃ 1̃

2̃ 2̃

4̃

V = V =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a, , a),
(a, b , c),
(d, , d)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

2

d

Π1 T1(Π1)

T2(Π2)

1

3

GM TΣ(GM)

1 2

1 3 ↔b/

a a

t t

b t

a a

t t

Π2

2

d

3

b tbb

a c

d

4 2

4 3

d

a

1 2

1 3

a

dτ

τ

a

c

1

4

(a) Transforming an LTS network M = (Π, V) using a non-cascading rule system
Σ = (R, V , V̂)

Lκ
{1,2} Rκ

{1,2}Lκ
{1} Rκ

{1}
κ1 κ1

1̃ 2̃

4̃ 2̃

2̃ 2̃

Lκ
{2} Rκ

{2}
κ2 κ2 κ1, κ2, κ12

↔b

1̃ 1̃

4̃

↔b
a a 1̃ 2̃a, c

κ1, κ2, κ12

↔b

τ τ

a, c

κ2

↔b

(b) The checks fail to detect that Σ does not guarantee bisimilarity between input and
output LTS networks

Fig. 5. A transformation using a non-cascading rule system does not preserve
the branching structure of LTS network M

Lκ
{1,2} Rκ

{1,2}Lκ
{1} Rκ

{1}

4̃ 2̃4̃ 2̃

2̃ 2̃

Lκ
{2} Rκ

{2}

↔b

1̃ 1̃

4̃

↔b
a a

1̃ 2̃

a, c

↔b/

κ κ κ κ
κ1 κ1 κ1 κ1 κ2 κ2 κ2 κ2

↔b↔b

κ κ

κ 2̃

1̃ κ

a, c

κ2

κ1

τ

τ

4̃ κ 4̃ κ κ κ

κ 2̃
κ1

κ2κ2 κ2

κ1

κ2 κ2κ2κ2

κ1

κ1

κ1

κ12

κ12κ12κ2 κ12
κ1

κ2

κ1

κ1

Fig. 6. The revised check recognises that the non-cascading rule system does
not preserve the branching structure of input networks: 〈 1̃, κ〉 ↔b/ 〈 4̃, κ〉

Fig. 5b. The rule system is not cascading since state 〈1̃〉 is not related to state
〈4̃〉, while 〈1̃, 2̃〉 ↔b 〈4̃, 2̃〉. The matches of the latter states (i.e. 〈1, 2〉 and 〈4, 2〉)
can perform a d-transition to states 〈1, 3〉 and 〈4, 3〉, respectively. However, state
〈1, 3〉 can perform an a-loop while state 〈4, 3〉 cannot. In other words, states 〈1̃, 2̃〉
and 〈4̃, 2̃〉 are branching bisimilar, but their matched states 〈1, 2〉 and 〈4, 2〉 are
clearly not. Hence, the bisimulation checks fail to establish that Σ does not
guarantee M ↔b TΣ(M) for arbitrary M.

396 S. de Putter and A. Wijs

Fixing the Technique. To overcome this shortcoming, we propose, instead of
κ-loops, to introduce a κ-state in the κ-extension of an LTS pattern with κ-
transitions from and to all glue-states. The κ-state represents all states that
have transitions to and from (but are themselves not present in) matches of
LTS patterns. This captures the possibility of leaving a match of a pattern
network and ending up in a sub-state which is not related through the cascading
effect. The κ-state extended version of Fig. 5b is presented in Fig. 6. The (vector)
states containing κ-states are coloured grey. In the new situation, the lack of the
cascading effect in Σ becomes visible through checking branching bisimilarity.
We implemented this approach in Refiner, and observed no extra runtime
overhead.

The Analysis. Checking a rule system Σ = (R,V ′, V̂) now proceeds as follows:

1. Check whether in Σ, no τ -transitions can be synchronised, renamed, or cut,
and whether Σ satisfies AC2 and AC3. If not, report this and stop.

2. Extend the patterns of each rule in R with a κ-state and κ-transitions between
the κ-state and the glue-states.

3. Construct the set of dependency sets D.
4. For each class (dependency set) P ∈ D, and each non-empty subset P ′ ⊆ P :

(a) Combine the patterns of rules in P ′ into networks Lκ
P ′ , Rκ

P ′ , respectively.
(b) Determine whether Lκ

P ′ ↔b Rκ
P ′ holds.

If 4b only gives positive results, then Σ is branching-structure preserving for
all inputs it is applicable on. At step 4, all non-empty subsets of dependency sets
are considered. Proper subsets represent unsuccessful synchronisation situations.
Proposition 2 formally describes the technique. The full proof in the form of Coq
code can be found at [10]. Here we present a proof sketch.

To show the correctness of Proposition 2, we have to define a branching bisim-
ulation relation relating the original and transformed LTS networks. To simplify
the proof, we assume that Σ has n rules, and that a rule r with index i, denoted
as ri, matches on Πi in the LTS network that Σ is applied on. For confluent
rule systems, the result can be lifted to the general case where rules can match
arbitrary process LTSs. Moreover, we want to relate the matched elements of
vector states via their corresponding pattern networks. For this we define a set
of indices of elements in vector state s̄ matched on by the corresponding trans-
formation rule, i.e. M(s̄) = {i | s̄i ∈ mi(SLi

) ∪ m̂i(SRi
)}. With this set the

elements of a vector state with transformed behaviour can be selected.
Furthermore, we introduce a mapping of state vectors. Similar to matches

for a single rule, the mapping of a state vector of a pattern network defines how
it is mapped to a state vector of an LTS network. By referring to matches of
the individual vector elements, a state vector is mapped on to another state
vector. Consider an LTS network M = (Π,V) of size n and a pattern network
MI = (ΠI ,VI) with I ⊆ 1..n. We say a vector state q̄ ∈ SMI

is mapped to a
state s̄ ∈ SM, denoted by q̄ �I s̄, iff ∀i ∈ I. m(q̄i) = s̄i. Mapping q̄ �I s̄ amounts
to a simulation relation between the state vectors: the group of states s̄i indexed
by i ∈ I can simulate the behaviour of state vector q̄.

Verifying a Verifier: On the Formal Correctness 397

Proposition 2. Let M = (Π,V) be an LTS network of size n and let Σ =
(R,V ′, V̂) be a cascading rule system satisfying AC2 and AC3. Let r̄ be a vector of
size n such that for all i ∈ 1..n, r̄i ∈ R with corresponding matches mi : Li → Πi

and m̂i : Ri → T (Πi). Then,

(∀P ∈ D, I ⊆ P. Lκ
I ↔b Rκ

I) =⇒ M ↔b TΣ(M)

Proof Sketch. By definition, we have M ↔b TΣ(M) iff there exists a branching
bisimulation relation C with IM ↔b ITΣ(M). Branching bisimilarity is a con-
gruence for the construction of system LTSs from LTS networks, i.e. two pairs of
pattern networks LI and RI , LJ and RJ , with LI ↔b RI and LJ ↔b RJ , can be
combined to form pattern networks LI∪J and RI∪J such that LI∪J ↔b RI∪J .
Therefore, we have ∀I ⊆ 1..n. Lκ

I ↔b Rκ
I and we can avoid reasoning about the

dependency sets in D. As a consequence, for any I ⊆ 1..n there exists a branching
bisimulation relation BI with ILκ

I
↔b IRκ

I
. We define C as follows:

C = {(s̄, p̄) | ∀i ∈ 1..n. (i /∈ M(s̄) ∪ M(p̄) =⇒ s̄i ∈ Si ∧ s̄i = p̄i)
∧ (i ∈ M(s̄) ∪ M(p̄) =⇒ ∃s̄m ∈ SLM(s̄)∪M(p̄) , p̄m ∈ SRM(s̄)∪M(p̄) .

s̄m BM(s̄)∪M(p̄) p̄m ∧ s̄m �M(s̄)∪M(p̄) s̄ ∧ p̄m �M(s̄)∪M(p̄) p̄)}

The first case in the relation, i /∈ M(s̄) ∪ M(p̄), relates the sub-states of
a state vector that are not matched by transformation rules. The second case,
i ∈ M(s̄) ∪ M(p̄), relates the matched sub-states of a state vector. Because of
the way that C is constructed we have that if s C p, then M(s̄) = M(p̄). For
brevity, we will write M(s̄) instead of M(s̄) ∪ M(p̄).

To prove the proposition we have to show that C is a bisimulation relation.
This requires proving that C relates the initial states of M and TΣ(M) and that
C satisfies Definition 5 as presented below.

• C relates the initial states of M and TΣ(M), i.e. IM C ITΣ(M). We have
IM = ITΣ(M). Initial states are not removed by the transformation. Further-
more, if states are matched on initial states, then the matching states are
glue-states according to Definition 3. For i ∈ M(s̄) glue-states are related to
themselves. Furthermore, for i /∈ M(s̄) the sub-state is not touched by the trans-
formation. Hence, C relates the initial states.

• If s̄ C p̄ and s̄
a−→M s̄′ then either a = τ ∧ s̄′ C p̄, or p̄ ⇒TΣ(M) ˆ̄p a−→TΣ(M)

p̄′∧s̄ C ˆ̄p∧s̄′ C p̄′. Consider synchronisation law (t̄, a) ∈ V enabling the transition
s̄

a−→M s̄′. We distinguish two cases:

1. There exists i ∈ Ac(t̄) such that transition s̄
t̄i−→Πi

s̄′ is matched. By analysis
conditions (AC1) and (AC2), for all i ∈ Ac(t̄) there must be a transition

matching s̄
t̄i−→Πi

s̄′. Hence, we have Ac(t̄) ⊆ M(s̄) and a transition matching
s̄

a−→M s̄′. Since the transition is matched there exists s̄m, s̄′
m ∈ SLM (s̄) and

p̄m ∈ SRM (s̄) with s̄m �M(s̄) s̄, p̄m �M(s̄) p̄, s̄m BM(s̄) p̄m and s̄
a−→LM(s̄) s̄′

(by Definition of C). Since s̄m BM(s̄) p̄m, by Definition 5, we have:

398 S. de Putter and A. Wijs

– a = τ with s̄′
m BM(s̄) p̄m. We have to show s̄′ C p̄, which follows from def.

of C and Definition 8 (system LTS).
– p̄m

τ−→ ∗
RM (s̄)

ˆ̄pm
a−→RM (s̄) p̄′ with s̄m BM(s̄) ˆ̄pm and s̄′

m BM(s̄) p̄′
m. We

construct states ˆ̄p and p̄′ such that p̄
τ−→∗

TΣ(M)
ˆ̄p a−→TΣ(M) p̄′ and s̄ C ˆ̄p.

Finally, s̄′ C p̄′ follows from def. of C and Definition 8 (system LTS).
2. There is no transition matching s̄

a−→M s̄′. We distinguish two cases:
(a) One or more active sub-states of s̄ are matched on, i.e. Ac(t̄)∩M(s̄) �= ∅.

Since the transition is not matched the active sub-states of s̄ must be
matches of glue-states. By Lemma 1, we have states ˆ̄p and p̄′ such that
p̄

τ−→∗
TΣ(M)

ˆ̄p a−→TΣ(M) p̄′ and s̄ C ˆ̄p. Left to show is s̄′ C p̄′. Let i ∈ 1..n:
– i /∈ M(s̄). By construction of p̄′ it follows that s̄′

i = p̄′
i.

– i ∈ M(s̄). Only sub-states index by Ac(t̄) change. Sub-states index
by Ac(t̄) may have a transition from a matched sub-state to another
matched sub-state, or such a matched sub-state may transition to a
sub-state that is not matched (or vice versa). We construct states
s̄′ ∈ SLM(s̄′) and p̄′ ∈ SRM(s̄′) by considering the two disjoint sets
M(s̄′) \ Ac(t̄) and M(s̄′) ∩ Ac(t̄). For the first set we can construct
two states s̄mJ and p̄mJ that, because of Definition 11 (cascading rule
system), are related by BM(s̄′)\Ac(t̄). From sub-states of s̄m indexed by
the second set we can construct a state q̄ ∈ ILM(s̄′)∩Ac(t̄)

. Because glue-
state are related to themselves we have q̄ BM(s̄′)∩Ac(t̄) q̄. From s̄mJ ,
p̄mJ , and q̄ we can construct states s̄′

m and p̄′
m such that s̄′

m BM(s̄′) p̄m

(by Definition 11).
(b) No active sub-states of s̄ are matched on, i.e. Ac(t̄) ∩ M(s̄) = ∅. We

construct a state p̄′ ∈ STΣ(M) from p̄ and the active sub-states of s̄′ such
that p̄

a−→TΣ(M) p̄′. Left to show s̄′ C p̄′. Considering an i ∈ 1..n we have
to distinguish the following cases:
– i /∈ M(s̄). We have to show that s̄′

i = p̄′
i, this can be derived from,

s̄ C p̄, Definition 8 (system LTS), and construction of p̄′.
– i ∈ M(s̄). To relate s̄′ and p̄′ we need to find a relation BM(s̄′) relating

two states that map on s̄′ and p̄′ respectively. If only active sub-states
of s̄′ are matched we can use the property that initial states are related
to themselves in BM(s̄′). In the opposite case, there is a j ∈ 1..n\Ac(t̄)
and we can use s̄ C p̄ to construct the required relation.

• The symmetric case: if s̄ C p̄ and p̄
a−→M p̄′ then either a = τ ∧ s̄′ C p̄, or

s̄ ⇒M ˆ̄s a−→M s̄′ ∧ s̄ C ˆ̄p ∧ s̄′ C p̄′.
This case is symmetric to the previous case with the exception that p̄

a−→T (M)

p̄′ is enabled by some (t̄, a) ∈ V ∪ V̂. Therefore, when transition p̄
a−→T (M) p̄′ is

not matched on, we have to show that (t̄, a) ∈ V. Let p̄, p̄′ ∈ STΣ(M) such
that p̄

a−→T (M) p̄′ is enabled by some (t̄, a) ∈ V ∪ V̂. Furthermore, transition
p̄

a−→T (M) p̄′ is not matched on. Assume for a contradiction that (t̄, a) ∈ V̂. Since
(t̄, a) ∈ V̂ is introduced by the transformation , by (AC3), there must be an i such
that t̄i ∈ ARi

\ ALi
. It follows that there is a transition matching p̄

a−→T (M) p̄′

contradicting our earlier assumption. Hence, we must have (t̄, a) ∈ V. ��

Verifying a Verifier: On the Formal Correctness 399

5 Conclusions

We discussed the correctness of an LTS transformation verification technique.
The aim of the technique is to verify whether a given LTS transformation system
Σ preserves a property ϕ, written in a fragment of the μ-calculus, for all possible
input models formalised as LTS networks. It does this by determining whether Σ
is guaranteed to transform an input network into one that is branching bisimilar,
ignoring the behaviour not relevant for ϕ.

It turned out that the technique was not correct for two reasons: (1) it ignored
potentially synchronising behaviour connected to the glue-states of rules, but not
part of the rule patterns, and (2) it did not check whether the rule system is
cascading. We proposed how to repair the technique and presented a proof-sketch
of its correctness. A complete proof has been carried out in Coq.

Future Work. Originally divergence-sensitive branching bisimulation was used
[19], which preserves τ -loops and therefore liveness properties. In future work, we
would like to prove that for this flavour of bisimulation the technique is also cor-
rect. Moreover, we would like to investigate what the practical limitations of the
pre-conditions of the technique are in industrial sized transformation systems.

Finally, in [17], the technique from [19] has been extended to explicitly
consider the communication interfaces between components, thereby removing
the completeness condition AC2 regarding synchronising behaviour being trans-
formed (see Sect. 4.1). We wish to prove that also this extension is correct.

References

1. Amrani, M., Combemale, B., Lúcio, L., Selim, G.M.K., Dingel, J., Le Traon, Y.,
Vangheluwe, H., Cordy, J.R.: Formal verification techniques for model transforma-
tions: a tridimensional classification. JOT 14(3), 1–43 (2015)

2. Baldan, P., Corradini, A., Ehrig, H., Heckel, R., König, B.: Bisimilarity and
behaviour-preserving reconfigurations of open petri nets. In: Mossakowski, T.,
Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 126–142.
Springer, Heidelberg (2007)

3. Bowen, J., Hinchey, M.: Formal methods. In: Tucker, A.B. (ed.) Computer Science
Handbook Chap. 106, pp. 106-1–106-25. ACM, New York (2004)

4. Giese, H., Glesner, S., Leitner, J., Schäfer, W., Wagner, R.: Towards verified model
transformations. In: MoDeVVa 2006, pp. 78–93 (2006)

5. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

6. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture(TM): Practice and Promise. Addison-Wesley Professional, Boston (2005)

7. Lang, F.: Refined interfaces for compositional verification. In: Najm, E., Pradat-
Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 159–
174. Springer, Heidelberg (2006)

8. Lang, F., Mateescu, R.: partial model checking using networks of labelled transition
systems and boolean equation systems. Log. Methods Comput. Sci. 9(4), 1–32
(2013)

400 S. de Putter and A. Wijs

9. Mateescu, R., Wijs, A.: Property-dependent reductions adequate with divergence-
sensitive branching bisimilarity. Sci. Comput. Prog. 96(3), 354–376 (2014)

10. de Putter, S.: Coq code proving the correctness of the LTS transformation verifi-
cation technique (2015). http://www.mdsetechnology.org/attachments/article/2/
FASE16 property preservation.zip

11. Rahim, L.A., Whittle, J.: A survey of approaches for verify-
ing model transformations. Softw. Syst. Model. 14, 1–26 (2013).
http://dx.doi.org/10.1007/s10270-013-0358-0

12. Saha, D.: An incremental bisimulation algorithm. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 204–215. Springer, Heidelberg (2007)

13. Selim, G.M.K., Lúcio, L., Cordy, J.R., Dingel, J., Oakes, B.J.: Specification and
verification of graph-based model transformation properties. In: Giese, H., König,
B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 113–129. Springer, Heidelberg (2014)

14. Sokolsky, O., Smolka, S.: Incremental model checking in the modal mu-calculus.
In: Dill, D.L. (ed.) Computer Aided Verification. LNCS, vol. 818, pp. 351–363.
Springer, Heidelberg (1994)

15. Stenzel, K., Moebius, N., Reif, W.: Formal verification of QVT transformations
for code generation. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011.
LNCS, vol. 6981, pp. 533–547. Springer, Heidelberg (2011)

16. Swamy, G.: Incremental methods for formal verification and logic synthesis. Ph.D.
thesis, University of California (1996)

17. Wijs, A.: Define, verify, refine: correct composition and transformation of concur-
rent system semantics. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS,
vol. 8348, pp. 348–368. Springer, Heidelberg (2014)

18. Wijs, A.J.: Confluence detection for transformations of labelled transition systems.
In: GaM 2015. EPTCS, vol. 181, pp. 1–15. Open Publishing Association (2015)

19. Wijs, A., Engelen, L.: Efficient property preservation checking of model refine-
ments. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 565–579. Springer, Heidelberg (2013)

20. Wijs, A., Engelen, L.: REFINER: towards formal verification of model transfor-
mations. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp.
258–263. Springer, Heidelberg (2014)

21. Winskel, G.: A Compositional proof system on a category of labelled transition
systems. Inf. Comput. 87(1–2), 2–57 (1990)

http://www.mdsetechnology.org/attachments/article/2/FASE16_property_preservation.zip
http://www.mdsetechnology.org/attachments/article/2/FASE16_property_preservation.zip
http://dx.doi.org/10.1007/s10270-013-0358-0

Hybrid Session Verification Through Endpoint
API Generation

Raymond Hu(B) and Nobuko Yoshida

Imperial College London, London, UK
{Raymond.Hu05,n.yoshida}@imperial.ac.uk

Abstract. This paper proposes a new hybrid session verification
methodology for applying session types directly to mainstream lan-
guages, based on generating protocol-specific endpoint APIs from mul-
tiparty session types. The API generation promotes static type checking
of the behavioural aspect of the source protocol by mapping the state
space of an endpoint in the protocol to a family of channel types in the
target language. This is supplemented by very light run-time checks in
the generated API that enforce a linear usage discipline on instances
of the channel types. The resulting hybrid verification guarantees the
absence of protocol violation errors during the execution of the session.
We implement our methodology for Java as an extension to the Scribble
framework, and use it to specify and implement compliant clients and
servers for real-world protocols such as HTTP and SMTP.

1 Introduction

Application of Session Types to Practice. Session types [4,14,15] are a
type theory for communications programming which can guarantee the absence
of communication errors in the execution of a session, such as sending an unex-
pected message or failing to handle an incoming message, and deadlocks due to
mutual input dependencies between the participants. One direction of applying
session types to practice has investigated extending existing languages with the
necessary features, following the theory, to support static session typing. This
includes extensions of Java [17,39] with first-class channel I/O primitives and
mechanisms for restricting the aliasing of channel objects, that perform static
session type checking as a preprocessor step alongside standard Java compila-
tion. New languages have also been developed from session type concepts. The
design of SILL [33,40] is based on a Curry-Howard isomorphism between propo-
sitions in linear logic and session types, giving a language with powerful linear
and session typing features, but that requires programmers to shape their data
structures and algorithms according to this paradigm.

To apply session types more directly to existing languages, another direction
has investigated dynamic verification of sessions. In [8], multiparty session types
(MPST) are used as a protocol specification language from which run-time end-
point monitors can be automatically generated. The framework guarantees that
each monitor will allow its endpoint to perform only the I/O actions permitted
according to the source protocol [1]. Although flexible, dynamic verification loses
c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 401–418, 2016.
DOI: 10.1007/978-3-662-49665-7 24

402 R. Hu and N. Yoshida

benefits of static type checking such as compile-time error detection and IDE sup-
port. Session types have been also applied through code generation to specific tar-
get contexts. Ng, et al. [30] develops a framework for MPI programming in C that
uses MPST as a language for specifying parallel processing topologies, from which
a skeleton implementation of the communication structure using MPI operations
is generated. The skeleton is then merged with user supplied functions for the com-
putations around the communicated messages to obtain the final program.

This Paper presents a new methodology for applying session types directly to
mainstream statically typed languages. There are two main novel elements:
Hybrid Session Verification. A trend in recent works [2,6,7,12,41] has involved
the study of explicit relationships between session types and linear types. In
this work, we continue in the direction of developing session types as a system
for tracking correct communication behaviour, in terms of I/O channel actions,
built on top of a linear usage discipline for channel resources (every instance of
a channel should be used exactly once). We apply this formulation practically as
hybrid session verification: we statically verify the behavioural aspect through
the native type system of the target language, supplemented by very light run-
time checks on linear channel usage.
Endpoint API Generation. In this work, we use multiparty session types as a pro-
tocol specification language from which we can generate APIs for implementing
the endpoints in a statically typed target language. Taking a finite state machine
(FSM) representation of the endpoint behaviour in the protocol [10,20], the API
generation (i.e. type generation) reifies each state as a distinct channel type in
the target language that permits only the exact I/O operations in that state
according to the source protocol. These state channels are linked up as a call-
chaining API for the endpoint that returns a new instance of the successor state
channel for the action performed. Our hybrid form of session type safety is thus
ensured by static typing of I/O behaviour on each state channel, in conjunction
with run-time checks that every instance of a state channel is used linearly.

Our methodology is a practical compromise that combines benefits from sta-
tic session type systems with the utility of code generation approaches. First,
this methodology allows protocol conformance to be statically checked in main-
stream languages like Java, up to the linear channel usage contract of the gener-
ated API, by constraining outputs to the specified message types and promoting
exhaustive handling of inputs. Second, by directly targetting existing languages,
user implementations of session endpoints using generated APIs can be readily
integrated with native language features, existing libraries and IDE support.

We present the implementation of our methodology for Java as an exten-
sion to Scribble [37], a practical protocol description language based on MPST.
Beyond the core safety benefits of regulating session type behaviour through
endpoint FSMs, we take advantage of hybrid verification and API generation
to support additional practically motivated features for session programming in
Java, and to apply further features from session type theory. The former includes
value-switched session branching and the abstraction of nominal state channel

Hybrid Session Verification Through Endpoint API Generation 403

types as I/O interfaces. Examples of the latter are the generation of state-specific
input futures to support aspects of non-blocking inputs [16], safe permutations of
I/O actions [3,25] and affine inputs [24,33]; and the generation of Java subtype
hierarchies for I/O interfaces to reflect session subtyping [11]. We have tested
our framework by using our API generation to implement compliant clients and
servers for real-world protocols such as HTTP and SMTP.

Outline. Section 2 describes the Scribble toolchain that this paper builds on, and
gives an overview of the proposed methodology for hybrid session verification
through API generation. Section 3 presents our implementation that generates
Java endpoint APIs from Scribble protocol specifications. Section 4 discusses
SMTP as a use case, and practically motivated extensions to the core API gen-
eration related to session programming in Java and more advanced session type
features. Section 5 discusses related work. An extended version of this paper and
other resources can be found at http://www.doc.ic.ac.uk/∼rhu/scribble.

2 Overview

The Scribble Toolchain. The Scribble [37,43] framework starts from speci-
fying a global protocol, a description of the full protocol of interaction in a mul-
tiparty communication session from a neutral perspective, i.e. all potential and
necessary message exchanges between all participants from the start of a session
until completion. The communication model for Scribble protocols is designed
for asynchronous but reliable message transports with ordered delivery between
each pair of participants, which encompasses standard Internet applications and
Web services that use TCP, HTTP, etc.

Global Protocol Specification. We use as the first running example a simple
client-server protocol for a service that adds two integers, written in Scribble in
Fig. 1(a). The main elements of the protocol specification are as follows.

The protocol signature (line 3) declares the name of the protocol (Adder) and
the abstraction of each participant as a named role (C and S). Payload format
types (line 1) give an alias (e.g. Int) to data type definitions from an external

1 type <java> "java.lang.Integer" from "rt.jar" as Int;
2

3 global protocol Adder(role C, role S) {
4 choice at C { // Internal choice by C

5 Add(Int, Int) from C to S; // Message sig: op(payload)

6 Res(Int) from S to C;
7 do Adder(C, S); // Recursive protocol def

8 } or {
9 Bye() from C to S;

10 Bye() from S to C; // Protocol end

11 } }

1 2

3

4

S!Bye()

S?Bye()

S!Add(Int, Int)

S?Res(Int)

Fig. 1. (a) A scribble global protocol. (b) The endpoint FSM for C.

http://www.doc.ic.ac.uk/~rhu/scribble

404 R. Hu and N. Yoshida

language (java.lang.Integer) used to define the wire protocols for message for-
matting. A message signature (e.g. Add(Int, Int)) declares an operator name
(Add) as an abstract message identifier (which may correspond concretely to,
e.g., a header field value), and some number of payload types (a pair of Int).
Message passing (e.g. line 5) is output-asynchronous: dispatching the message is
non-blocking for the sender (C), but the message input is blocking for the receiver
(S). Located choice (e.g. line 4) states the subject role (C) for which selecting one
of the listed protocol blocks to follow is a mutually exclusive internal choice. This
decision is an external choice to all other roles involved in each block, which must
be appropriately coordinated by explicit messages. Recursive protocol definitions
(line 7) describe recursive interactions between the roles involved. Non-recursive
do statements can be used to factor out common subprotocols.

Scribble performs an initial validation on global protocols to assert that the
protocol can indeed be soundly realised by a system of independent endpoint
processes. For instance, in this example, the validation ensures that the two
choice cases are communicated by C to S unambiguously (a simple error would
be, e.g., if C firstly sends a Bye to S in both cases).

Local Protocol Projection and Endpoint FSMs. Following a top-down interpreta-
tion of formal MPST systems, Scribble syntactically projects a valid source global
protocol to a local protocol for each role. Projection essentially extracts the parts
of the global protocol in which the target role is directly involved, giving the
localised behaviour required of each role in order for a session to execute correctly
as a whole. Projecting Adder for C gives: rec X { choice at C { Add(Int, Int) to S;

Res(Int) from S; continue X; } or { Bye() to S; Bye() from S; } } . A further validation
step is performed on each projection of the source protocol for role-sensitive prop-
erties, such as reachability of all relevant protocol states per role. The validation
also restricts recursive protocols to tail recursion. A valid global protocol with valid
projections for each role is a well-formed protocol.

Building on a formal correspondence between syntactic local MPST and com-
municating FSMs, Scribble can transform the projection of any well-formed pro-
tocol for each of its roles to an equivalent Endpoint FSM (EFSM). Figure 1 (b)
depicts the EFSM of the projection for C. The nodes delineate the state space of
the endpoint in the protocol, and the transitions the explicit I/O actions between
protocol states. The notation, e.g., S!Bye() means output of message Bye() to S;
? dually denotes input.

The core features of the Scribble protocol language are based on and extend
those of [5], to which we refer the reader for formal definitions of global and
local protocols (i.e. multiparty session types). The global-local projection [4,5]
and EFSM transformation [9,20] performed by the Scribble toolchain implement
and extend those formalised in the afore-cited works to support the additional
features of Scribble (such as located choice, sequencing and subprotocols).

Hybrid Session Verification Through Endpoint API Generation. This
paper proposes a methodology for applying session types to practice that confers
communication safety through a hybrid verification approach.

Hybrid Session Verification Through Endpoint API Generation 405

Static Type Checking of I/O Behaviour. We consider the EFSMs derived from
a source global protocol to represent the behavioural aspect of the session type.
Our methodology is to generate a protocol-specific endpoint implementation API
for a target role by capturing its EFSM via the native type system of a statically
typed target language. The key points of the Endpoint API generation are:

– The Scribble toolchain is used to validate the source global protocol, project
to the local protocol, and generate the EFSM for the target role.

– Each state in the EFSM is reified as a distinct channel type in the type system
of the target language. We refer to channels of these generated types as state
channels.

– The only I/O operations permitted by a generated channel type are safe
actions according to the corresponding EFSM state in the protocol.

– The return type of each generated I/O operation is the channel type for the
next state following the corresponding transition from the current state. Per-
forming an I/O operation on a state channel returns a new instance of the
successor channel type.

Starting from a state channel of the initial protocol state and performing an
I/O operation on each state channel returned by the previous operation, the gen-
erated API statically ensures that an endpoint implementation conforms to the
encapsulated EFSM and thus observes the protocol. Consequently, the implicit
usage contract of the generated API is to use every state channel returned by an
API call exactly once up to the end of the session, to respect EFSM semantics
in terms of following state transitions linearly up to the terminal state.

Run-time Checking of Linear State Channel Usage. Due to the lack of support
for statically verifying linear usage of values or objects in most mainstream lan-
guages, we take the practical approach of checking linear usage of state channel
instances at run-time. These checks are inlined into the Endpoint API as part of
the API generation. There are two cases for state channel linearity to be violated.

Repeat Use. Every state channel instance maintains a boolean state value
indicating whether an I/O operation has been performed. The generated API
guards each I/O operation permitted by the channel type with a run-time check
on this boolean to ensure the state channel is not used more than once.

Unused. All state channels for a given session instance share a boolean state
value indicating whether the session is complete for the local endpoint. The
generated API sets this flag when a terminal operation, i.e. an I/O action lead-
ing to the terminal EFSM state, is performed. In conjunction with a language
mechanism for delimiting the scope of a session implementation, such as stan-
dard exception handling constructs, the generated API checks session completion
when program execution leaves the scope of the session.

If any state channel remains unused (possibly discarded, e.g. garbage col-
lected) on leaving the scope of a session implementation, then it is not possible
for the completion flag to be set.

406 R. Hu and N. Yoshida

Hybrid Session Safety. Together, a statically typed Endpoint API with run-time
state channel linearity checking satisfies the following properties. (1) If state
channel linearity is respected by session endpoint implementations, then com-
munication safety (in the sense of e.g. [15, error-freedom]) is statically ensured by
the generated API types. (2) Regardless of state channel linearity, any statically
type-safe endpoint implementation will never perform a message passing action
whose execution trace is not accepted by the EFSM of the generated API.

The latter is because an implementation using an Endpoint API can only
attempt a non-conformant messaging action by violating state channel linear-
ity, which the API is generated to guard against. This hybrid form of session
verification thus guarantees the absence of protocol violation errors during the
execution of a session, up to premature termination (which is always a possibility
in practice due to program errors outside of the session code or failures).

3 Hybrid Endpoint API Generation for Java

Our implementation of Endpoint API generation for Java takes an Endpoint
FSM derived from a Java-based Scribble protocol specification (i.e. a well-formed
global protocol with Java-defined payload format types), and outputs two main
protocol-specific components, the Session API and the State Channel API.

Endpoint FSMs. (EFSMs) serve as an interface between source protocol valida-
tion and projection, and the subsequent API generation. Formally, an EFSM is
a tuple (R, L, T, Σ, S, δ). R and L are the sets of role names (ranging over r, r′, ..)
and message operator names (l, l′, ..) occurring in the source local protocol, and
T is the set of payload format types (T, T ′, ..) that it declares. The alphabet Σ

is a finite set of actions {αi}i∈I , where α is either an output r!l(�T) or an input
r?l(�T) with r ∈ R, l ∈ L and each Ti ∈ T. The set of states S is a finite non-empty
set of state identifiers ranging over S, S′, ... The transition function δ is a partial
function S × Σ → S. We additionally define δ(S) = {α | ∃S′ ∈ S.δ(S, α) = S′}.

Certain properties are guaranteed for any EFSM derived from a well-formed
protocol by the Scribble toolchain. (1) There is exactly one initial state Sinit ∈ S
such that �S′ ∈ S, α ∈ Σ.δ(S′, α) = Sinit. (2) There is at most one terminal state
Sterm ∈ S such that δ(Sterm) = ∅. (3) Every S ∈ S is one of three kinds: an output
state S!, input state S?, or Sterm. An output state means δ(S) = {αi}i∈I , |I| > 0
and every αi∈I is an output; similarly for input states. (4) For each S? with
δ(S?) = {αi}i∈I , every αi∈I specifies the same r.

Session API. The generated Endpoint APIs make use of a small collection of
protocol-independent base Java classes: Role, Op, Session, SessionEndpoint and
Buf. The first three are abstract classes. We explain them below.

The main class of the Session API (referred to as the Session Class) is a
generated final subclass of the base Session class with the same name as the
source protocol, e.g. Adder (Fig. 1 (a)). Its two main purposes are as follows.

Hybrid Session Verification Through Endpoint API Generation 407

Reification of Abstract Names. Session types make use of abstract names as role
and message identifiers in types, that the type system expects to be present in
the program to drive the type checking. The Session API reifies these names
as singleton Java types. For each role or operator name n ∈ R ∪ L, we gen-
erate the following. (1) A final Java class named n that extends the relevant
base class (Role or Op). The n class has a single private constructor, and a
public static final field of type n and with name n, initialised to a single-
ton instance of this class (i.e. an eagerly initialised singleton pattern). E.g.
public static final C C = new C(); . (2) In the Session Class, a public sta-

tic final field of type n and with name n that refers to the corresponding field
constant in the n class.

The Session API is the Session Class with the role and message name classes.

Session Instantiation. As a distributed computing abstraction, a run-time ses-
sion can be considered a unit of interaction that is an instance of a session type.
Following this intuition, the API user starts an endpoint implementation by
creating a new instance of the Session Class. The Session object is used by the
API to encapsulate static information, such as the source protocol, and run-time
state related to the execution of this session, such as the session ID.

A Session object is used to create a SessionEndpoint<S, R>, parameterised
on the parent Session and target role types, as on lines 2–3 in Fig. 3 (a). The first
two constructor arguments are the Session object and the singleton generated
for the target role, from which the type parameters are inferred, and the third is
an implementation of the Scribble MessageFormatter interface for this endpoint
using the declared format types for message serialization and deserialization.
The SessionEndpoint object encapsulates the state specific to this endpoint in
the session, such as the local role and networking state.

State Channel API. Based on the aforementioned properties of EFSMs, the
core State Channel API is given by generating the channel classes for each EFSM
state according to Fig. 2 (a). In the following, we use r, l, etc. to denote both a
session type name and its generated Java type (as described above); similarly,
we use S for an EFSM state and its generated Java channel type.

An output state is generated as a SendSocket with one send method for each
outgoing transition action α: the first two parameters are the role r and operator
l singleton types, followed by the sequence of Java payload format types (ε means
the empty sequence). The return type is EndSocket (which supports no session
I/O operations) if the successor state is the terminal state, or else the channel
class generated for the successor state. Unary and non-unary input states are
treated differently. Channel class generation for unary inputs is similar to that
for outputs. The main difference is that each payload format type is generated
as a Scribble Buf type with a supertype of the payload type as a type parameter.
A Scribble Buf is a simple parameterised buffer for a single payload value, which
is written by the generated receive API code when the message is received.
Non-unary inputs are explained later (Session branches).

408 R. Hu and N. Yoshida

State kind Java state channel base class and session operation method signatures

S! SendSocket

For each α = r!l(�T) ∈ δ(S!): Tret send(r role, l op [[�T]]!)

Unary S? ReceiveSocket (|δ(S?)| = 1)

For α = r?l(�T) ∈ δ(S?): Tret receive(r role, l op [[�T]]?)

S? BranchSocket (|δ(S?)| > 1)

For α = r?l(�T) ∈ δ(S?): CS? branch(r role)

where CS? is the following CaseSocket class
CaseSocket

For each α = r?l(�T) ∈ δ(S?): Tret receive(l op, [[�T]]?)

where [[�T]]! = ε if |�T | = 0, else ‘, T1 pay1, . . .,Tn payn’

[[�T]]? = ε if |�T | = 0, else ‘, Buf<? super T1> pay1,.., Buf<? super Tn> payn’
Tret = δ(S, α) if S �= Sterm, else EndSocket

Gen. class Session operation methods

Adder C 1 Adder C 2 send(S role, Add op, Integer pay1, Integer pay2)

Adder C 3 send(S role, Bye op)

Adder C 2 Adder C 1 receive(S role, Res op, Buf<? super Integer> pay1)

Adder C 3 EndSocket receive(S role, Bye op)

Adder S 1 Adder S 1 Cases branch(C role)

Adder S 1 Cases Adder S 2 receive(Add op, Buf<? super Integer> pay1,
Buf<? super Integer> pay2)

Adder S 3 receive(Bye op)

Adder S 1 send(C role, Res op, Integer pay1)

Adder S 3 EndSocket send(C role, Bye op)

Fig. 2. (a) Java state channel class generation. (b) Generated state channel API for
the C and S roles of Adder (using the default channel class naming scheme).

Only the channel class corresponding to the initial EFSM state has a public
constructor (taking a single argument of type SessionEndpoint<S, R>). Every
other state channel class is only instantiated internally by the method-chaining
API: each session method is generated to return a new instance of the suc-
cessor state channel. Figure 2 (b) summarises the channel classes and session
I/O methods generated for the C and S roles of the Adder example (Fig. 1). The
API generation promotes the use of the generated utility types to direct imple-
mentations as much as possible. E.g. in Adder C 1, the two output options are
distinguished as send methods overloaded on the operator type (as well as the
payload types).

Hybrid Verification of Endpoint Implementations. Figure 3 (a) lists an
example implementation of C using the generated API in Fig. 2 (b).

Session Initiation and State Channel Chaining. Lines 1–5 are a typical preamble.
We create a new Adder session instance and a SessionEndpoint for role C.

Hybrid Session Verification Through Endpoint API Generation 409

1 Adder adder = new Adder(); // New session object

2 try (SessionEndpoint<Adder, C> se =
3 new SessionEndpoint<>(adder, C, new AdderFormatter())) {
4 se.connect(S, SocketChannel::new, hostS, portS); // TCP channel

5 Adder_C_1 s1 = new Adder_C_1(se);
6 // State channel implementation of C starting from s1 of state type C_1

7 Buf<Integer> i = new Buf<>(1); // Field i.val stores the buffer value (Integer)

8 for (int j = 0; j < N; j++)
9 s1 = s1.send(S, Add, i.val, i.val).receive(S, Res, i); // C_1 -> C_2 -> C_1

10 s1.send(S, Bye).receive(S, Bye); // C_1 -> C_3 -> EndSocket

11 } // Session completion checked at run-time when se is (auto) closed

1 Adder_S_3 add(Adder_S_1 s1, Buf<Integer> i1, Buf<Integer> i2) throws ... {
2 Adder_S_1_Cases cases = s1.branch(C); // Receives message: S_1 -> S_1_Cases

3 switch (cases.op) { // op enum field set by API according to the received message

4 case Add: return add(cases.receive(Add, i1, i2) // S_1_Cases -> S_2..

5 .send(C, Res, i1.val+i2.val), i1, i2); // .. -> S_1

6 case Bye: return cases.receive(Bye); // S_1_Cases -> S_3

7 } } // Exhaustive handling of enum cases can be generated or checked by an IDE

Fig. 3. Examples using the generated APIs from Fig. 2 (b): (a) session initiation and
endpoint implementation for C, and (b) the main loop and branch of S.

The SessionEndpoint se is used to perform the client-side connect to S (first argu-
ment) as a standard TCP channel (second). The session connection phase is con-
cluded when se is given as a constructor argument to create an initial state channel
of type Adder C 1, to commence the implementation of the C endpoint.

Lines 7–10 give a simple imperative style implementation of C that repeatedly
adds an integer, stored in the Buf<Integer> i, to itself. In each protocol state,
given by the channel class, the generated API ensures that any session operation
performed is indeed permitted by the protocol, e.g. state channel s1 permits only
a send(S, Add, int, int) or a send(S, Bye). The method-chaining API is used
as a fluent interface (the implicit state transitions are in comments), chaining
the receive onto the send Add, which returns a new instance of C 1 following
the recursive protocol. The recursion is enacted N times by the for-loop, linearly
assigning the new C 1 to the existing s1 variable in each iteration, before the final
Bye exchange after the loop terminates. Naturally, the API also allows the equiv-
alent safe implementation for a fixed N , unfolding the recursion:
s1.send(S, Add, i.val, i.val).receive(S, Res, i)..Add/Res chainedN −1more times..

.send(S, Bye).receive(S, Bye);

The flexibility of the Endpoint API as a native language API is demonstrated
by the following Fibonacci client using Adder in a different recursive method style.

Adder_C_3 fib(Adder_C_1 s1, Buf<Integer> i1, Buf<Integer> i2, int i) throws ... {
return (i < N) ? fib(s1.send(S, Add, i1.val, i1.val=i2.val) // C_1 -> C_2..

.receive(S, Res, i2), i1, i2, i+1) // .. -> C_1

: s1.send(S, Bye); } // C_1 -> C_3

While the structure of the session code in (a) corresponds quite directly to that of
the source protocol, the more obfuscated session control flow here demonstrates
the value of the session type based Endpoint API in guiding the implementation
and promoting safe protocol conformance. The Java API ensures that the nested

410 R. Hu and N. Yoshida

send - receive argument expression safely returns the endpoint to the S 1 state
for each recursive method call, and that the recursion terminates according to
the S 3 return state.

State Channel Linearity. Linear usage of every session channel object in an end-
point implementation is enforced by inlining run-time checks into the generated
Java API following the two cases of the basic approach outlined in Sect. 2.
Repeat Use of a state channel raises a LinearityException. The boolean state
indicating linear object consumption, and the associated guard method called by
every generated session operation method, are inherited from the LinearSocket

superclass of all the base channel classes in Fig. 2 (a) (except EndSocket).
Session Completion is treated by generating the SessionEndpoint object to
implement the Java AutoCloseable interface. The Endpoint API requires the user
to declare the SessionEndpoint in a try-with-resource statement (as in Fig. 3 (a),
line 2), allowing the API to check that a terminal session operation has been
performed when control flow leaves the try-statement; if not, then an excep-
tion is raised. Java IDEs, such as Eclipse, support compile-time warnings when
AutoCloseable resources are not safely handled in an appropriate try statement.

We observe that certain implementation styles using a generated API, taking
advantage of fluent method-chaining (e.g. as above), can help avoid linearity bugs
by reducing the use of intermediate protocol state variables and state channel
aliasing due to assignments.

Session Branches. The theoretical languages for which session types were
developed typically feature a special-purpose input branching primitive, e.g.
c&(r, {li : Pi}i∈I) [5], that atomically inputs a message on a channel c from role
r and, according to the received message label li, reduces to the corresponding
process continuation Pi. For languages like Java that lack such I/O primitives,
the API generation approach enables some different options.

The basic option, intended for use in standard switch patterns (or if-else
cases, etc.), separates the branch input action from the subsequent case analy-
sis on the received message operator by generating a pair of BranchSocket and
CaseSocket classes (non-unary inputs in Fig. 2 (a)). To delimit the cases of a
branch state in a type-directed manner, the API generation creates an enum
covering the permitted operators in each BranchSocket class, e.g. for S in Adder:

enum Adder_S_1_Enum implements OpEnum { Add, Bye } // Generated in Adder_S_1

Figure 3 (b) lists the main loop and branch in an implementation of S in
Adder. The branch operation of the BranchSocket s1 blocks until the message
is received, and returns the corresponding CaseSocket with the op field, of the
enum type Adder S 1 Enum, set according to the received operator. Using a switch
statement on the op enum, the user calls the appropriate receive method on
the CaseSocket to obtain the corresponding state channel continuation. The API
raises an exception if the wrong receive is used (like a cast error) thus intro-
ducing an additional run-time check to maintain this hybrid form of session type

Hybrid Session Verification Through Endpoint API Generation 411

safety. Java IDEs are, however, able to statically check exhaustive enum han-
dling, which could be supplemented by developing, e.g., an Eclipse plugin to
statically check that the receive methods are correctly matched up in basic
switch (etc.) patterns.

The alternative option supported by our implementation is the generation of
callback interfaces for branch states. These confer fully static safety for branch
handling, but require the user to program in an event-driven callback style.

4 Use Case and Further Endpoint API Generation
Features

We have used Scribble and our Java API generation to specify and implement
standardised Internet applications, such as HTTP and SMTP, as real-world use
cases. Using examples from the SMTP use case, we discuss practically motivated
extensions to the core Endpoint API generation methodology presented so far.

SMTP [18] is an Internet standard for email transmission. We have specified
a subset of the protocol in Scribble [38] that includes authenticating a secure
connection and conducting the main mail transaction. Using the generated End-
point API, it is straightforward to implement a compliant Java client (e.g. [38])
that is interoperable with existing SMTP servers.

For this section, we use the simplified excerpt from the opening stages of Smtp
in Fig. 4. On a plain TCP connection, the client (C) receives the 220 welcome
message from the Server (S) and the initiation exchange (client EHLO, and the
server 250-/250 list of service extensions) is performed. The client then starts
the negotiation to secure the channel by StartTls. Once secured, the client and
server perform the initiation exchange again (different service extensions may
now be valid), and the remainder of the session is conducted over the secure
channel. In this running example, we omit payload types for brevity.

global protocol Smtp(role C, role S) { // Main protocol decl (start of SMTP)

220 from S to C; // "220 smtp2.cc.ic.ac.uk ESMTP Exim 4.85 ..."

do Init(C, S); // First init exchange on plain TCP connection

do StartTls(C, S); // Negotiate secure connection

do Init(C, S); // Second init exchange on secure connection

... // Remainder of SMTP session over secure connection

}

global protocol Init(role C, role S) { // "Initiation exchange" subprotocol

Ehlo from C to S; // "EHLO user.test.com"

rec X { choice at S { 250d from S to C; // "250-smtp2.cc.ic.ac.uk Hello ..."

continue X; } // "250-SIZE 26214400", "250-8BITMIME", etc.

or { 250 from S to C; } } // "250 HELP" (no dash after 250)

}

global protocol StartTls(role C, role S) {
StartTls from C to S; // "STARTTLS"

220 from S to C; // "220 TLS go ahead"

}

Fig. 4. Simplified excerpt from a Scribble specification of SMTP.

412 R. Hu and N. Yoshida

State-Specific Input Futures. There are many works on extending session
type theory to support more advanced communication patterns while retaining
the desired safety properties. The API generation approach offers a platform for
exploring the application of some of these features in practice.

One extension we have implemented to the core API generation is the genera-
tion of state-specific input futures. For each unary input state, we generate: (1) a
subclass of a base InputFuture class that performs the input when forced; and (2)
an additional async method for the ReceiveSocket (Fig. 2 (a)) of this state.

Tret async(r role, l op, Buf<? super FS? > fut)

The r, l and Tret types are as for the corresponding receive method, and FS? is
the generated input future class type. In contrast to receive , async is generated
to return immediately, regardless of whether the expected message has arrived,
returning instead a new input future for this state (via the supplied Buf) and the
successor state channel. The future is forced, i.e. the input is performed, by a
sync method, which blocks the caller until the message is received and writes the
received payload values to generated fields (e.g. pay1) of the future.

Consider the Ehlo message in Init (Fig. 4) from C to S, which, in this exam-
ple, is necessarily preceded by a 220 from S to C for both occurrences of Init.
Assuming an initial state channel s1 of type Smtp C 1, we can implement this
exchange at C using the input future generated for the 220 (Smtp C 1 Future) by:
Buf<Smtp_C_1_Future> buf = new Buf<>(); // For the generated Smtp_C_1 InputFuture

s1.async(S, _220, buf).send(S, Ehlo); // S?220 "postponed"; S!Ehlo done first

String pay1 = buf.val.sync().pay1; // Postponed input done via the Smtp_C_1_Future

Calling sync on an input future implicitly forces all pending prior futures, in order,
for the samepeer role.This safely preserves theFIFOmessaging semantics between
each pair of roles in a session, and endpoint implementations using generated input
futures thus retain the same safety properties as implementations using only block-
ing receives. (With this extension, receive is simply generated as async and sync

in one step.) Repeat forcing of an input future has no effect.
Generating input futures captures aspects of several advanced session type

features, which we explain by the above example. (1) async enables safe non-
blocking input in session implementations (the key element towards event-driven
sessions [16]). async essentially allows the input transition in the local EFSM to be
decoupled in the user program from the actual message input action in safe sit-
uations. (2) Postponing input actions supports natural communication patterns
that exploit asynchronous messaging for safe permutations of I/O actions at an
endpoint [3,25]. In the example, the input future allows C to safely permute the
actions: send Ehlo first, then receive 220. (Note the reverse permutation at S is
unsafe, due to the potential for deadlock by mutual inputs.) (3) Input futures are
not linear objects (cf. state channels), so may be discarded unused, treating the
input as an affine action [24,33]. In session types, input actions are traditionally
(e.g. [14,15]) treated linearly to prevent unread messages in input queues corrupt-
ing later inputs. Here, safety is preserved by the implicit completion of pending
futures, clearing any potential garbage preceding the current future.

Hybrid Session Verification Through Endpoint API Generation 413

Interfaces for Abstract I/O States. The SMTP use case raised a practical
issue in generating Java State Channel APIs from session types. While formal
syntactic session types offer a structural abstraction of communication behav-
iour by focusing on the I/O actions between implicit protocol states, the API
generation reifies these states explicitly as nominal Java types. Nominal channel
types can be good for protocol documentation (the default numbering scheme
for states can be replaced by a user-supplied mapping to more meaningful class
names); this example, however, shows a situation where the nominal types limit
code reuse within a session implementation using Endpoint APIs as generated so
far. The repeated initiation exchange is factored out in the Scribble as a subpro-
tocol (Init), but the two exchanges correspond to distinct parts of the resulting
EFSM as a whole, and are thus generated as distinct “unrelated” channel types,
preventing this pattern from being factored out in the implementation code.

To address this issue, our approach is to supplement the nominal Java channel
types by generating interfaces for abstract I/O states, which we explain through
the current example. There are four main elements:
(1) For every I/O action, we generate an Action Interface named according to
its session type characterisation. E.g. In S$250 means input of 250 from S:
interface In_S$250<_S1 extends Succ_In_S$250> { _S1 receive(S role, _250 op); }

Each Action Interface is parameterised on a corresponding Successor Interface.
(2) For every I/O action, we generate a Successor Interface, to be implemented
by every I/O State Interface (explained next) that succeeds the action. E.g.
interface Succ_Out_S$Ehlo { // For all I/O States that may succeed an S!Ehlo..

default Branch_S250_250d<?, ?> to(Branch_S250_250d<?, ?> c) {
return (Branch_S250_250d<?, ?>) this; // Generated cast

} } // ..i.e. the input branch between 250 and 250d

Every Successor Interface is generated with a default to “cast” method for each
I/O state that implements it: in the above, only Branch S250 250d (see next).
(3) For every state, we generate a Send, Receive or Branch/Case I/O State Inter-
face named according to its session type characterisation, e.g. Branch S250 250d

is a branch state for the cases of 250 and 250d from S (the action suffixes are
ordered lexically). This interface: (a) extends all the Successor Interfaces for the
actions that lead to a state with this I/O characterisation; (b) extends all the
Action Interfaces permitted by this state; and (c) is parameterised on each of its
possible successors, passed through to the corresponding Action Interface.
interface Branch_S250_250d<_S1 extends Succ_In_S$250,_S2 extends Succ_In_S$250d>

extends Succ_Out_S$Ehlo, Succ_In_S$250d { // (a) Can succeed S!Ehlo or S?250d

public static final Branch_S$250d$_250<?, ?> cast = null; // Used for "to" casts

Case_S$250d$_250<_S1, _S2> branch(S role);
} // Branch states are generated as a pair of Branch/Case I/O State Interfaces

interface Case_S250_250d<_S1 extends Succ_In_S$250, _S2 extends Succ_In_S$250d>
extends In_S$250<_S1>, In_S$250d<_S2> { ... } // (b) Can do S?250 or S?250d

(4) Finally, each concrete channel class (e.g. Smtp C 3) implements its charac-
terising I/O State Interface, instantiating the generic parameters to its concrete
successors. The other contents of the channel class are generated as previously.

414 R. Hu and N. Yoshida

1 Succ_In_S$250 doInit(Send_S$Ehlo<?> s) { // Take a S!Ehlo chan; return succ(S?250)

2 Branch_S250_250d<?, ?> b = s.send(S, Ehlo).to(Branch_S250_250d.cast);
3 for (Cases_S250_250d<?, ?> c = b.branch(S); true; c = b.branch(S))
4 switch (c.getOp()) {
5 case _250: return c.receive(S, _250);
6 case _250d: { b = c.receive(S, _250d).to(Branch_S250_250d.cast); break; }
7 } } // (Message payloads omitted in this running example for brevity)

Fig. 5. Using the generated I/O interfaces to factor out the initiation exchange.

class Smtp_C_3 implements Branch_S250_250d<Smtp_C_4, Smtp_C_3> {..} // Init #1

class Smtp_C_7 implements Branch_S250_250d<Smtp_C_8, Smtp_C_7> {..} // Init #2

The naming scheme for these generated I/O interfaces is not dissimilar to for-
mal notations for session types, but restricted to the current state and immediate
actions, with the continuations captured in the successor type parameters.

Using the State Channel API generated for C, including the I/O interfaces as
above, we factor out one method to implement both initiation exchanges in Fig. 5.
The method accepts any state channel with the Send S$Ehlo I/O State Interface
and performs the send . This returns the Successor Interface Succ Out S$Ehlo, for
which the only I/O State Interface (in this example) is Branch S250 250d. Hence
the call to the generated to on line 2, although operationally a run-time type
cast on the state channel reference, is a safe cast as it is guaranteed to be valid
for all possible successor states at this point. The cast returns a state channel
with this interface, and the branch is implemented using a switch according to
the relevant I/O State Interfaces. We directly return the Succ In S$250 Successor
Interface after receiving the 250 in the first case.
doInit(// Second init exchange on secure channel

doInit(new Smtp_C_1(se).async(S, _220) // First init exchange on plain TCP

.to(Send_S$StartTls.cast).send(S,StartTls).to(Receive_S$220.cast).async(S,_220)

.to(Send_S$Ehlo.cast).wrapClient(S, SSLSocketChannelWrapper::new) // SSL/TLS

)....; // Remainder of session

As doInit is implemented using I/O State Interfaces only, it can be reused to
perform both initiation exchanges as above. Unfortunately, because the return
type of doInit is just Succ In S$250, which may concretely be the state after the
first initiation exchange (send StartTls) or the second (remainder of session),
safety of the immediately subsequent to casts relies on the run-time check. How-
ever, all to casts can in fact be eliminated from both doInit and the above by
reimplementing doInit, leveraging type inference for generics, with the signature:
<S1 extends Branch_S250_250d<S2, S1>, S2 extends Succ_In_S$250> // S2 is bound..

S2 doInit(Send_S$Ehlo<S1> s) throws ... //..as the successor of the 250 case

5 Related Work

Much programming languages research based on session types has been devel-
oped in the past decade: see [42] for a comprehensive survey. Some of the most
closely related work was mentioned in Sect. 1; here we give additional discussions.

Hybrid Session Verification Through Endpoint API Generation 415

Static Session Type Checking. A static MPST system uses local types to type
check programs (binary session types are the special case of two-party MPST).
An implementation of static session type checking, following standard presenta-
tions [4,14,15], typically requires two key elements: (1) a syntactic correspon-
dence between local type constructors and I/O language primitives, and (2) a
mechanism, such as linear or uniqueness typing, or restrictions on pointer/ref-
erence aliasing, that enables precise tracking of channel endpoints through the
control flow of the program. Hu, et al. [17] is an extension of Java for binary ses-
sion types, and [39] for multiparty session types, along these lines. Both introduce
new syntax for declaring session types and special session constructs to facilitate
typing, with an additional analysis to deal with aliasing of channels. Without
such extensions, it is difficult to perform static session type checking in a lan-
guage like Java without being extremely conservative in the programs that pass
type checking. Our API generation approach confers benefits of session types
directly to native Java programming, and can be readily generalised for other
existing languages.

Other session-based systems that would also require syntax extensions or
annotations to be implemented as static typing for most mainstream languages
include: Mungo [26] and Bica [13] based on typestates in Java; Links [21,22]
and Jolie [19] for Web services; Pabble [31] and ParTypes [23] based on indexed
dependent types for parallel programs. We believe our hybrid API generation
approach is a practical alternative for applying various forms of behavioural
types. Implementations of static session typing in Haskell [34,35] are able to ben-
efit from rich typing features (here, indexed parameterised monads) to ensure
session linearity without language extensions, but with various usability trade-
offs. In [27], session code is restricted to a single channel to simplify the treatment
of linearity. Outside of API generation, combining static and run-time mecha-
nisms for session safety is being explored in other settings: [32] is an ML library
for binary sessions with a focus on type inference, and [36] for actors in Scala.
Dynamic Session Verification and Code Generation From Session Types. Run-
time monitoring of I/O actions [8,28,29] is the primary verification method in
Scribble [37], and is subject to the common tradeoffs of dynamic verification
(Sect. 1). Monitoring can be applied directly to existing languages, but end-
point implementations must still use a specific API or be instrumented with
appropriate hooks for the monitor to intercept the actions. Monitoring also ver-
ifies only the observed execution trace, not the implementation itself. Our light-
weight hybrid verification approach allows certain benefits of static typing to be
reclaimed for free, including static protocol error detection, up to the linearity
condition on state channels, and other IDE assistance for session programming,
such as code generation (e.g. session method completion, branch case enumera-
tion) and partial static checking of linearity (e.g. unused state channel variables).

The code generation framework in [30] (Sect. 1) works by targetting a specific
context, that is, parallel MPI programs in C. In contrast, our API generation
approach uses session types for lighter-weight generation of types, rather than
final programs. Programming using a generated Endpoint API is amenable to

416 R. Hu and N. Yoshida

varied user implementations in terms of local control flow style (e.g. imperative
or functional) and concurrency (e.g. multithreaded or event-driven) via standard
Java language features and existing libraries.

We thank Gary Brown and Matthew Arrott for collaborations, and Julien Lange
for comments. This work is partially supported by EPSRC EP/K034413/1,
EP/K011715/1, and EP/L00058X/1; and by EU FP7 612985 (UPSCALE).

References

1. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring net-
works through multiparty session types. In: Beyer, D., Boreale, M. (eds.) FORTE
2013 and FMOODS 2013. LNCS, vol. 7892, pp. 50–65. Springer, Heidelberg (2013)

2. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010)

3. Chen, T., Dezani-Ciancaglini, M., Yoshida, N.: On the preciseness of subtyping in
session types. In: PPDP 2014, pp. 135–146. ACM (2014)

4. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: A gentle introduc-
tion to multiparty asynchronous session types. In: Bernardo, M., Johnsen, E.B.
(eds.) Formal Methods for Multicore Programming. Lecture Notes in Computer
Science, vol. 9104, pp. 146–178. Springer, Switzerland (2015)

5. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 760, 1–65
(2015)

6. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: PPDP 2012,
pp. 139–150. ACM Press (2012)

7. Demangeon, R., Honda, K.: Full abstraction in a subtyped pi-Calculus with linear
types. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
280–296. Springer, Heidelberg (2011)

8. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and Python. In: Formal Methods in System Design, pp. 1–29 (2015)

9. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol.
7211, pp. 194–213. Springer, Heidelberg (2012)

10. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol.
7966, pp. 174–186. Springer, Heidelberg (2013)

11. Gay, S., Hole, M.: Subtyping for session types in the Pi-Calculus. Acta Informatica
42(2/3), 191–225 (2005)

12. Gay, S., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Program. 20(1), 19–50 (2010)

13. Gay, S., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modular ses-
sion types for distributed object-oriented programming. In: POPL 2010, pp. 299–
312. ACM (2010)

14. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, p. 122. Springer, Heidelberg (1998)

Hybrid Session Verification Through Endpoint API Generation 417

15. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008, pp. 273–284. ACM (2008). (Full version to appear in JACM)

16. Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., Honda, K.: Type-safe eventful
sessions in Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 329–
353. Springer, Heidelberg (2010)

17. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in Java. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg
(2008)

18. IETF. Simple Mail Transfer Protocol. https://tools.ietf.org/html/rfc5321
19. Jolie homepage. http://www.jolie-lang.org/
20. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical

choreographies. In: POPL 2015, pp. 221–232. ACM Press (2015)
21. Lindley, S., Morris, J.G.: A semantics for propositions as sessions. In: Vitek, J.

(ed.) ESOP 2015. LNCS, vol. 9032, pp. 560–584. Springer, Heidelberg (2015)
22. Links homepage. http://groups.inf.ed.ac.uk/links/
23. Lopez, H.A., Marques, E.R.B., Martins, F., Ng, N., Santos, C., Vasconcelos, V.T.,

Yoshida, N.: Protocol-based verification of message-passing parallel programs. In:
OOPSLA 2015, pp. 280–298. ACM (2015)

24. Mostrous, D., Vasconcelos, V.T.: Affine sessions. In: Kühn, E., Pugliese, R. (eds.)
COORDINATION 2014. LNCS, vol. 8459, pp. 115–130. Springer, Heidelberg
(2014)

25. Mostrous, D., Yoshida, N.: Session typing and asynchronous subtyping for the
higher-order π-calculus. Inf. Comput. 241, 227–263 (2015)

26. Mungo homepage. http://www.dcs.gla.ac.uk/research/mungo/
27. Neubauer, M., Thiemann, P.: An implementation of session types. In: Jayaraman,

B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 56–70. Springer, Heidelberg (2004)
28. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty

conversations. In: BEAT 2014, EPTCS, vol. 162, pp. 19–26 (2014)
29. Neykova, R., Yoshida, N.: Multiparty session actors. In: Kühn, E., Pugliese, R.

(eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 131–146. Springer, Heidelberg
(2014)

30. Ng, N., de Figueiredo Coutinho, J.G., Yoshida, N.: Protocols by default. In: Franke,
B. (ed.) CC 2015. LNCS, vol. 9031, pp. 212–232. Springer, Heidelberg (2015)

31. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming
with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 202–218. Springer, Heidelberg (2012)

32. Padovani, L.: A Simple Library Implementation of Binary Sessions (Unpublished).
https://hal.archives-ouvertes.fr/hal-01216310

33. Pfenning, F., Griffith, D.: Polarized substructural session types. In: Pitts, A. (ed.)
FOSSACS 2015. LNCS, vol. 9034, pp. 3–22. Springer, Heidelberg (2015)

34. Pucella, R., Tov, J.A.: Haskell session types with (almost) no class. In: Haskell
2008, pp. 25–36. ACM (2008)

35. Sackman, M., Eisenbach, S.: Session types in haskell (Unpublished). http://pubs.
doc.ic.ac.uk/session-types-in-haskell/

36. Scalas, A., Yoshida, N.: Lightweight session types in Scala (Unpublished). http://
www.doc.ic.ac.uk/research/technicalreports/2015/#7

37. Scribble homepage. http://www.scribble.org
38. Session types use cases: SMTP (Scribble). https://github.com/epsrc-abcd/

session-types-use-cases/tree/master/Simple%20Mail%20Tranfer%20Protocol/
scribble

https://tools.ietf.org/html/rfc5321
http://www.jolie-lang.org/
http://groups.inf.ed.ac.uk/links/
http://www.dcs.gla.ac.uk/research/mungo/
https://hal.archives-ouvertes.fr/hal-01216310
http://pubs.doc.ic.ac.uk/session-types-in-haskell/
http://pubs.doc.ic.ac.uk/session-types-in-haskell/
http://www.doc.ic.ac.uk/research/technicalreports/2015/#7
http://www.doc.ic.ac.uk/research/technicalreports/2015/#7
http://www.scribble.org
https://github.com/epsrc-abcd/session-types-use-cases/tree/master/Simple%20Mail%20Tranfer%20Protocol/scribble
https://github.com/epsrc-abcd/session-types-use-cases/tree/master/Simple%20Mail%20Tranfer%20Protocol/scribble
https://github.com/epsrc-abcd/session-types-use-cases/tree/master/Simple%20Mail%20Tranfer%20Protocol/scribble

418 R. Hu and N. Yoshida

39. Sivaramakrishnan, K.C., Nagaraj, K., Ziarek, L., Eugster, P.: Efficient session type
guided distributed interaction. In: Clarke, D., Agha, G. (eds.) COORDINATION
2010. LNCS, vol. 6116, pp. 152–167. Springer, Heidelberg (2010)

40. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and ses-
sions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013)

41. Wadler, P.: Proposition as sessions. In: ICFP 2012, pp. 273–286 (2012)
42. Survey on languages based on behavioural types. http://www.di.unito.it/

∼padovani/BETTY/BETTY WG3 state of art.pdf
43. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In:

Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Heidelberg (2014)

http://www.di.unito.it/~padovani/BETTY/BETTY_WG3_state_of_art.pdf
http://www.di.unito.it/~padovani/BETTY/BETTY_WG3_state_of_art.pdf

PVAIR: Partial Variable Assignment
InterpolatoR

Pavel Jančík2, Leonardo Alt1, Grigory Fedyukovich1, Antti E.J. Hyvärinen1,
Jan Kofroň2(B), and Natasha Sharygina1

1 University of Lugano, Lugano, Switzerland
{leonardo.alt,grigory.fedyukovich,antti.hyvarinen,natasha.sharygina}@usi.ch
2 Faculty of Mathematics and Physics Department of Distributed and Dependable

Systems, Charles University in Prague, Prague, Czech Republic
{pavel.jancik,jan.kofron}@d3s.mff.cuni.cz

Abstract. Despite its recent popularity, program verification has to
face practical limitations hindering its everyday use. One of these issues
is scalability, both in terms of time and memory consumption. In this
paper, we present Partial Variable Assignment InterpolatoR (PVAIR)
– an interpolation tool exploiting partial variable assignments to signif-
icantly improve performance when computing several specialized Craig
interpolants from a single proof. Subsequent interpolant processing dur-
ing the verification process can thus be more efficient, improving scalabil-
ity of the verification as such. We show with a wide range of experiments
how our methods improve the interpolant computation in terms of their
size. In particular, (i) we used benchmarks from the SAT competition and
(ii) performed experiments in the domain of software upgrade checking.

1 Introduction

Symbolic model-checking algorithms rely on expressing a verification problem as
a logical formula and determining whether the formula satisfies a given property.
Many sub-tasks of model-checking, such as computing safe inductive invariants
for programs and summarizing functionality with respect to properties criti-
cal to program correctness, rely on over-approximating parts of the formula.
To keep the formal verification manageable and the run time low it is critical
that the over-approximations are suitable for the model-checking task at hand.
Craig interpolation [7] is a process for computing over-approximations of first-
order formulas that has proven useful in both program verification and auto-
matic approximation refinement [15]. The idea in applying Craig interpolation
in model checking is to reduce the over-approximation process into finding a
compact interpolant I such that I is satisfied by all models of the part being
over-approximated but still entails the properties of interest with respect to the
rest of the formula. The Labeled Interpolation System (LIS) [8] is a widely used

This work was partially supported by the Grant Agency of the Czech Republic project
14-11384S and by the SNF projects number 200020_163001 and 200021_153402.

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. Wąsowski (Eds.): FASE 2016, LNCS 9633, pp. 419–434, 2016.
DOI: 10.1007/978-3-662-49665-7_25

420 P. Jančík et al.

framework for computing Craig interpolants in propositional logic from a res-
olution refutation. The flexibility of LIS allows it to be used in a variety of
verification tasks that place additional requirements for the interpolants [18].

In some tasks, (e.g., when proving safety of certain types of program updates
or speeding up model-checking with parallel computing) it is useful to compute
over-approximations of the formula under assumptions which are specific to the
particular application problem. However, the LIS framework in its original form
does not allow for computing interpolants under assumptions. There are several
reasons why such focused interpolants would be beneficial in particular in the LIS
framework. Firstly, the focused interpolants are in general smaller and therefore
more manageable for the model checker. Secondly, the properties of interpolants
provided by the LIS framework, such as the path interpolation property [13], can
be preserved in the focused interpolants. Thirdly, several focused interpolants
can be computed from a single resolution refutation, while constructing a reso-
lution refutation is computationally expensive. In [12], we introduced an inter-
polation system exploiting partial variable assignments to improve efficiency of
interpolant computation. We proved that following a set of requirements put on
labeling during interpolation results in interpolants with the path interpolation
property, which is required by some verification tools, e.g. [1], to work.

This paper presents the Partial Variable Assignment InterpolatoR (PVAIR),
the first implementation that is able to construct such focused interpolants. The
implementation is based on the Labeled Partial Assignment Interpolation System
(LPAIS) [12], an extension of LIS which supports focusing the interpolant in the
manner required by the verification applications. The PVAIR solution is generic
and can be used in various model checking-based scenarios. In this paper, in
addition to providing the description of the tool architecture, we also report
an initial experimental study on how the interpolants constructed with PVAIR
behave in different example tasks. The results show a significant improvement in
both interpolant size and the overall model checking time, suggesting that the
approach is viable for constructing focused interpolants.

The general intuition behind the applications of PVAIR is that sometimes
a symbolic model checker can provide a partial truth assignment for the for-
mula being verified, coming from the knowledge of the program structure and
meaning of the variables. As a result, some constraints of the formula can
get satisfied; the LPAIS framework allows for removing such clauses during
the interpolant computation. This improves the interpolation in two ways: the
interpolation becomes faster, and the resulting interpolant can be significantly
smaller. Because of the latter the interpolants can be handled in a more effi-
cient way during the subsequent computation. PVAIR is built on top of the
open-source tool PeRIPLO [18], which provides resolution proofs and is able to
optimize the proofs for interpolation through transformations. PeRIPLO has
been used in various verification projects, including function summarization in
eVolCheck [10] and FunFrog [22], both as an interpolation engine and as a
SAT solver.

PVAIR: Partial Variable Assignment InterpolatoR 421

We experimentally studied the performance of PVAIR on a set of its potential
applications. We compared it to PeRIPLO during computation of a summary for
a particular function using eVolCheck. In this experiment, PVAIR was used to
rule out the program paths that do not call the function. We also applied PVAIR
in more generic settings, when constructing interpolation problems from a sub-
set of the SAT Competition benchmarks. This experiment resembles closely the
scenario of computing focused interpolants for a divide-and-conquer approach for
parallel model checking. In both types of benchmarks, we report a substantial
reduction in interpolant sizes. As shown in the eVolCheck use case, smaller
interpolants also result in considerably faster upgrade-checking steps.

2 Preliminaries and Background Theory

A literal is a Boolean variable l or its negation l̄. A clause is a disjunction over
a set of literals. We use angle brackets 〈Θ〉 to denote the clause built from the
literals in set Θ. A propositional formula in Conjunctive Normal Form (CNF)
is a conjunction (or equivalently set) of clauses. A resolution proof for a set
of clauses Φ is a rooted DAG with each node having either no antecedents (leaf
node) or exactly two antecedents (inner node). Each node in the resolution proof
is associated with node clause; from now on we use proof node and corresponding
node clause equivalently. A leaf node corresponds to an input clause from Φ. Each
inner node with two antecedents 〈Θ1, p〉 and 〈Θ2, p̄〉 has node clause 〈Θ1, Θ2〉,
thus representing a resolution where p is the pivot variable.

Given an unsatisfiable CNF formula Φ and its (A,B)-partitioning into A ∧ B
parts, a Craig interpolant [7] is a formula I such that I is implied by A (|= A ⇒
I), unsatisfiable with B (|= B ∧ I ⇒ ⊥), and defined over common symbols
(variables) of A and B. An interpolant can be seen as an over-approximation of
A still being strong enough to be unsatisfiable with B.

Example 1: Figure 1 shows a resolution refutation proof for CNF formula Φ =
〈l1 ∨ l2〉 ∧ 〈l̄3 ∨ l6〉 ∧ 〈l̄1 ∨ l5〉 ∧ 〈l1 ∨ l3〉 ∧ 〈l̄2 ∨ l̄6〉 ∧ 〈l̄4 ∨ l̄5〉 ∧ 〈l̄2 ∨ l4〉 ∧ 〈l̄1 ∨ l2〉.
Assume a (A,B)-partitioning with A consisting of the conjunction of the first
three clauses and B of the remaining five clauses. There might not be just a
single interpolant for an unsatisfiable formula; many different ones of various
strengths can exist. Formula I1 ≡ (l1 ∨ [(l6 ∨ l3) ∧ (l6 ∨ l2)]) ∧ (l1 ∨ l5) is one of
the possible interpolants which can be computed from the proof in Fig. 1 using
LIS. Figure 2 shows how McMillan’s interpolant I2 ≡ (l1 ∨ l2)∧ (l̄3 ∨ l6)∧ (l̄1 ∨ l5)
can be derived (after constant propagation) from the proof in Fig. 1, e.g., by LIS
or LPAIS with an empty assignment. Note that for convenience we write the
partial interpolant associated to a particular node of the proof into brackets.

As an over-approximation, Craig interpolants express properties for all
models of the formula. However, this might be unnecessarily strong for some
applications. For example, while constructing a function summary through inter-
polation, it is possible to consider only the models corresponding to the paths
going via the summarized function. Based on the encoding of the function body,

422 P. Jančík et al.

Fig. 1. Refutation resolution proof; the clauses
from A-part and B-part are in dashed and full
boxes, respectively.

Fig. 2. McMillan’s interpolant.

a variable assignment blocking all the other paths can be derived. This applies
also for the case of Abstract Reachability Graphs (ARGs). The label of a partic-
ular ARG node is an over-approximation of reachable states at that node. Since
the paths in ARG which do not go via the node cannot influence the reachable
states at that node, for each node it is possible to compute variable assignment
blocking these paths; in other words, the assignment permits only the models
corresponding to paths via the node. The node labels are computed by interpo-
lation, however it is actually enough to compute a formula that is an interpolant
for the models consistent with the assignment.

Focused Interpolants. A Partial Variable Assignment (PVA) π assigns value
True resp. False to some variables from formula Φ; alternatively, PVA can be
seen as a conjunction of literals. Given a partial variable assignment π, a set
of clauses A can be partitioned into Aπ – a subset of clauses from A satisfied
by the assignment, and the remaining clauses Aπ which are not satisfied by π.
For a given unsatisfiable formula Φ, its partitioning into A ∧ B and a partial
variable assignment π, a Partial Variable Assignment Interpolant [12], shortly
focused interpolant, is a formula I such that π |= A ⇒ I and π |= B ∧ I ⇒ ⊥
and I is defined over unassigned shared variables between Aπ and Bπ, i.e., the
symbols common to the π-unsatisfied parts of A and B. In other words, it is an
interpolant, but only for models which agree on the values of variables assigned
by π. Due to the weakened requirements, the focused interpolants can be of a
smaller size compared to the Craig interpolants. The focused interpolants can
be alternatively seen as Craig interpolants for the unsatisfied parts of the input
– sub-problem, i.e., for Aπ ∧ Bπ where literals falsified by the assignment are
removed.

Example 1 (cont.): Let us assume assignment π ≡ l̄2 (i.e., assigning False to
variable l2) and the set of clauses from our previous example. Given the assign-
ment, B can be split into Bπ ≡ 〈l̄2 ∨ l̄6〉∧〈l̄2 ∨ l4〉 and Bπ ≡ 〈l̄4 ∨ l̄5〉∧〈l̄1 ∨ l2〉.
Aπ is empty thus Aπ ≡ 	 and Aπ ≡ A.

Craig and focused interpolants differ in the variables which could occur in
the interpolant. The shared variables between A and B (i.e., those that can
appear in a Craig interpolant) are l1, l2, l5 and l6. Since focused interpolants
consider for the shared variables only unsatisfied parts of A resp. B (i.e., Aπ and

PVAIR: Partial Variable Assignment InterpolatoR 423

Bπ), fewer variables are shared; in our example only l1 and l5 could appear in
a focused interpolant, which are those which can appear in a Craig interpolant
for the sub-problem.

Given an assignment and a Craig interpolant, an alternative way to reduce
the interpolant size is to assign the values inside the interpolant formula and
propagate the Boolean constants. In this case the interpolants from the above
example result in I1[π] ≡ (l1 ∨ [(l6 ∨ l3)∧ l6])∧ (l1 ∨ l5) and I2[π] ≡ l1 ∧ (l3 ∨ l6)∧
(l1 ∨ l5). None of them is a valid focused interpolant since both contain variable
l6. Note that I2[π] can be equivalently rewritten as l1 ∧ l5 ∧ (l3 ∨ l6)x; in gen-
eral, such a transformation requires a complex analysis and not all interpolants
can be transformed into focused interpolants as I1 shows. This means that the
aforementioned techniques can be used to reduce the size of the formula, however
not to compute focused interpolants. Below we introduce a method to compute
focused interpolants for propositional logic which produces interpolants smaller
than the approach above.

Table 1. Labeled Partial Assignment Interpolation System

Labeled Partial Assignment Interpolation System (LPAIS) — an extension of
the Labeled Interpolation System [8] — yields focused interpolants from the
resolution refutation of A ∧ B.

In LPAIS, each literal in the clauses of the resolution proof is assigned a
label a, b, ab, or d+. Labels a, b, and ab have the same meaning as in LIS,
while the label d+ is used for the literals from the assignment π. The lattice
of labels is defined by the Hasse diagram in Fig. 3. The labels are specified
via a labeling function Lab; e.g., Lab(v2, p) is the label of literal p at node v2
of the proof. The label of a literal in an inner node v is computed using join
operator
 (defined by Fig. 3) from the labels of the literal in the antecedent
nodes (Lab(v, l) = Lab(v1, l)
 Lab(v2, l), where v1 and v2 are the antecedent
nodes of v). Formal definition of labeling function as well as the requirements
that labels must satisfy are described in [12].

Example 1 (cont.): Figure 4 shows how LPAIS assigns labels to literals; the label
of a literal is shown as superscript. When choosing the strongest possible labeling,

424 P. Jančík et al.

Fig. 3. Lattice of labels (�). Fig. 4. Labeled proof and rules to be applied at proof
nodes.

LPAIS yields, for empty assignments, McMillan’s interpolants; in particular, only
variables occurring in Aπ but not in Bπ are labeled a (i.e., l6), all the others
(except for the literals from the assignment) re-labeled b.

The labeled partial assignment interpolation system assigns a partial inter-
polant [I] to each proof node according to the rules described in Table 1. The
partial interpolants of the leaf nodes are directly constructed from the node
clauses (it means those forming A ∧ B) using the rules in the upper part of
Table 1. The applied Hyp-∗ rule is determined by the set inclusion check in the
middle column; in particular by occurrence of the node clause in Aπ, Aπ, Bπ

and Bπ. A partial interpolant for the Hyp-Aπ rule, defined as 〈Θ〉|b,π, represents
a clause which is created from the node clause 〈Θ〉 by omitting the literals over
the π-assigned variables and those whose label differs from b. In particular node
clause 〈l̄ b

3 ∨ l a
6 〉 yields partial interpolant 〈l̄ b

3 ∨ l a
6 〉|b,π ≡ [l3]. The leaf nodes

with clauses satisfied by π have the partial interpolant 	.
For inner nodes, the rule from Table 1 is chosen based on the labels of the

pivot in the antecedents (denoted by v1 and v2). Note the Res-d+ rules, which
correspond to the case where the pivot is satisfied by the assignment in one
of the antecedents. In these cases, the partial interpolant is the same as the
partial interpolant in the antecedent not being satisfied by the assignment; due

Fig. 5. Focused interpolant Iπ, using labeling of Fig. 4.

PVAIR: Partial Variable Assignment InterpolatoR 425

to such nodes the size of the LPAIS interpolant is smaller compared to the LIS
interpolant.

Example 1 (cont.): Figure 5 shows how focused interpolant Iπ ≡ l1 ∨ l̄3 for our
example can be derived. Note the dotted arrows at nodes corresponding to Res-
d+ resolutions; they highlight the antecedents whose partial interpolants are
ignored and their sub-trees do not contribute to final focused interpolant. Also
note that the focused interpolant Iπ is smaller compared to both I1[π] and I2[π]
from the examples above.

An assignment applied onto (interpolant) formula (i.e., if I[π] is computed)
can reduce the size of the formula only if the assigned variable appears in the
(interpolant) formula (i.e., the variable has to be shared). However, LPAIS reduce
the size of the interpolants even if the assigned variable does not appear in the
interpolant, since the reduction is done as a part of interpolant computation and
not as a post-processing step.

PVAIR implements the LPAIS framework. The tool can generate the McMil-
lan’s [16], Pudlák’s [17], and McMillan’s′ [8] interpolants and their equivalents in
presence of assignments. Additionally, PVAIR supports constructing different
interpolants by providing different labelings for the literals in the leaves. The
relative logical strength of interpolants constructed with LPAIS from the same
resolution refutation is determined by the labeling function used. For instance,
the McMillan’s focused interpolants are sufficiently strong to have the path-
interpolation property.

3 The Tool Architecture

The PVAIR architecture is shown in Fig. 6. It takes a propositional formula,
its (A,B)-partitioning, and a partial variable assignment as input and produces
focused interpolants if the input formula is unsatisfiable. The input can be pro-
vided either in a file in the SMT-LIB 2.0 format or via a C++ API.

When a verification tool decides to compute interpolants (e.g., to
obtain either function summaries in the case of upgrade-checking and over-
approximations of reachable states for covering checks) it constructs an input
formula Φ which encodes the program being verified. Further, based on the way
the input formula is constructed, the verification tool decides how to partition
it (e.g., to obtain a summary of a given function) and which partial variable
assignment to use (e.g., depending on the changes detected in the new version
of the program). These inputs are then passed to the PVAIR tool.

The workflow of the PVAIR tool is as follows. First, the input formula is
passed to the PeRIPLO-based preprocessing module. Since the formula can be
in an arbitrary form, it is transformed into CNF (the top box in Fig. 6) using an
efficient, structure-sharing version of the Tseitin encoding [25]. Its satisfiability
is then determined using the MiniSAT 2.2.0 solver [9].

In the case of an unsatisfiable input, an initial refutation is extracted from the
solver in the compact MiniSAT internal proof format. The format is then trans-
formed into a resolution DAG to allow more efficient handling of the proof (Proof

426 P. Jančík et al.

Fig. 6. PVAIR architecture.

Construction). In particular, using the resolution DAG form, the proof can be
compressed using well-known proof reduction techniques such as structural hash-
ing or pivot recycling [19,20] available in PeRIPLO (Proof Reduction). The
proof reduction techniques can be enabled/disabled via a configuration file or
API.

Once the resolution proof R is computed, it is passed together with the
partitionings and variable assignments to the interpolation engine (the bottom
box in Fig. 6). From this point on, any number of partial variable assignments
πi and partitionings Pi (into Ai ∧ Bi) can be given as input to the tool and
used to construct the corresponding interpolants Ii. Note that in any case only
one SAT-solver call will be made during the entire execution. The first step
inside the PVA interpolation engine is labeling all the literals in A ∧ B. The
d+Labeler will distribute d+ labels among the literals according to the assigned
variables, whereas the LIS will label the remaining literals according to the
partitioning and the selected LIS-based interpolation algorithm (which can be
chosen in the configuration file or via API). When the labeling is complete,
it is used together with the partitioning and resolution proof R to compute
interpolants (Interpolant Construction).

The construction starts by computing partial interpolants (according to the
upper part of Table 1) for the leaf nodes of the refutation. The computation
then proceeds from the leaves to the root node. In each inner node, depending
on the label of the pivot, a partial interpolant of the node is computed by
combining the partial interpolants from the antecedent nodes (the bottom part of
Table 1). During the interpolant construction partial interpolants are optimized

PVAIR: Partial Variable Assignment InterpolatoR 427

using Boolean constant propagation and structural sharing (hashing). The final
interpolant is computed in the root node.

For the details on PVAIR usage, we refer the reader to the Tutorial section
of the tool web page available at http://verify.inf.usi.ch/pvair.

Fig. 7. Comparison of interpolant sizes computed without variable assignment [x] and
with one variable assigned [y] (left) and five variables assigned (right).

4 Experiments

We ran PVAIR on two types of experiments: (1) SAT Competition benchmarks
and (2) computational problems generated by the eVolCheck tool during ver-
ification procedure. To demonstrate the tool performance, we measured the size
of produced interpolants and its effect on the total verification time.

4.1 SAT Competition

From the way focused interpolants are computed by PVAIR it is obvious that
they are smaller compared to the Craig interpolants. In this part we illustrate
the actual difference. Compared to experiments on functions summaries in the
latter part, SAT Competition provides us with a larger set of more heterogeneous
kinds of benchmarks. This helps one to see how the reduction of the size varies
among inputs from different domains.

For experiments, we chose 47 unsatisfiable benchmarks from the SAT Compe-
tition1 from all categories – 12 from the Application (APP), 11 from the Crafted
(CRF), and 24 from the Random (RND) sets. Since the benchmarks are not
partitioned, we generated six partitionings for each benchmark; we simulated
the typical way the path interpolants are computed, i.e., we randomly chose n,
first n clauses of the benchmark belonged to the A-part, the remaining clauses
to the B-part. No assignment is given by authors of the benchmarks, thus for
each partitioning we generated five random variable assignments consisting of a

1 http://www.satcompetition.org/.

http://verify.inf.usi.ch/pvair
http://www.satcompetition.org/

428 P. Jančík et al.

single, five, resp. twenty assigned variables. Assignments of various sizes indicate
how the reduction scales w.r.t. the number of assigned variables.

Since focused interpolants can be seen as Craig interpolants for a sub-problem,
for each pair of partitioning and assignment, we created the sub-problem instance
and used PVAIR to computed the Craig interpolant. Sub-problems are simpler
compared to the benchmark from which they were generated, so interpolants for
sub-problems are typically smaller compared to Craig interpolants of the bench-
mark. However, the interpolant for each sub-problem is computed from a different
refutation proof; in contrast to focused interpolants which, for a particular bench-
mark, are all computed from the same proof. The path interpolation property [13],
which is often exploited during program model checking, might be missing in this
case.

As to the interpretation of the results: No assignment reflects the state-of-the-
art approaches, where Craig interpolants are used directly. Focused interpolants
show how the size of the interpolants can be reduced if the model checker (i.e.,
a tool generation the input) provides a reasonable assignment together with a
partitioning. The interpolants for a sub-problem can be seen as an alternative to
focused interpolants because of their similar meaning, however these interpolants
lack the properties of the focused ones.

For comparison, we use McMillan’s interpolants – a widely used approach.
The proof reduction techniques were disabled; we used the default PeRIPLO
settings. All benchmarks were run on a Linux blade server with Xeon X5687 CPU
using the timeout of 60 min and the memory limit of 20GB using the Parallel
environment [24].

Figure 7 compares the sizes of the computed interpolants. Each point in the
graph corresponds to a single partitioning of a benchmark; the x-axis represents
the interpolant size if no assignment is provided (Craig interpolant) while the
y-axis represents the size of the focused interpolants with a single (resp. five)
assigned variable(s). For presentation clarity, the y-axis is the average size of all
five random assignments generated for a given partitioning. The values on axes
represent millions of nodes if an interpolant is represented as DAG (counting
literals and Boolean operators). The orange dashed line shows the average size
of Craig interpolants for sub-problems. This illustrates what price is paid by
focused interpolants for the path interpolation property and a single SAT solver
call. Both graphs show interesting reduction in size for focused interpolants as
well as substantially larger reduction in case of five assigned variables. In both
graphs the same partition of the same benchmark share the same x-value, thus
it is possible, especially for the larger ones, to compare their reductions.

Table 2. Average interpolant sizes by category and number of assigned variables.

PVAIR: Partial Variable Assignment InterpolatoR 429

Table 2 summarizes the results shown in the graphs above, reporting precise
numbers. The table on the left-hand side compares the sizes of focused inter-
polants to Craig interpolants (in the No assignment row). The No assignment
row shows the average size of Craig interpolants for a given benchmark type.
The remaining rows show the relative sizes of focused interpolants w.r.t. the
No assignment row. The application benchmarks exhibit a smaller reduction
compared to the other types, and even for twenty assigned variables, the inter-
polants are half in the size of the Craig interpolants. The table on the right-hand
side compares the sizes of Craig interpolants for the benchmark with the Craig
interpolants for sub-problems (corresponding to the assignments used in the left
table). The table shows that these interpolants are on average smaller compared
to the focused ones. The more variables are assigned, the bigger the difference is.
While the sizes are comparable for a few assigned variables, the price paid for the
path interpolation property of focused interpolants is high for larger assignments
(e.g., twenty variables).

Time and memory demands are crucial properties of each interpolation tool.
The reduction in overall running time and required memory roughly correspond
to the reduction of interpolant sizes; e.g., PVAIR is 11 % faster and requires 9 %
less memory on average if a single variable is assigned. The time and memory
savings occur as well during the interpolant computation phase due to smaller
interpolants being handled.

4.2 Applying PVAIR for Checking Software Upgrades

The usefulness of PVAIR is motivated by the tremendous role of interpolation
in model checking. One of the possible applications of PVAIR is checking soft-
ware upgrades by means of function summarization [23] implemented in the tool
eVolCheck. Given a program S and an assertion a, eVolCheck verifies S
with respect to a (i.e., proves that S ∧¬a is unsatisfiable) and, for each function
call in S, it constructs the interpolant and treats it as a function summary. In [21]
we show that even if the constructed function summary is an over-approximation
of the function behavior of S, it preserves the safety of the assertion a in S.

eVolCheck validates the computed function summaries to over-
approximate the behavior of the corresponding functions of a program upgrade,
U . In that context, programs S and U must have a non-empty set of common
function calls. eVolCheck traverses this set starting from the deepest level of
the (unwound during preprocessing) function call-tree and checks whether each
original function summary still over-approximates the new behavior of the cor-
responding function. If there is a function call, the original summary of which
does not over-approximate the new behavior, eVolCheck propagates the check
to the caller function. If there is no function to propagate then U is unsafe. If
at some depth of the unwound call-tree all the function summaries are proven
to be valid, then U is safe, and eVolCheck reconstructs the summaries for the
modified function calls.

Applying PVAIR to eVolCheck. Consider the case when U is obtained
from S by removing some functionality. Then by construction, the original

430 P. Jančík et al.

summaries of S are still valid over-approximation of the new function behav-
ior in U . But at the same time, they might be unnecessarily general and con-
sume excessive memory. While the use of the original summaries does not break
soundness of the further upgrade checking, it is practical to refresh (and possibly
shrink) the summaries to become more accurate with respect to U .

The refreshed summaries may be used to verify a further updated program
W that additionally may introduce new functionality with respect to U . On
the other hand, the summaries may be also used to speed up verification of a
new assertion b, implanted in the code of U [21]. To enable both scenarios, the
constructed summaries need to be externally stored and further migrated across
the verification runs. Thus, the size of the summary also becomes important.

While eVolCheck does not provide a way to refresh summaries except of
complete re-verification of U from scratch, PVAIR becomes particularly useful.
Let ΔS,U denote the behavioral difference of S and U , i.e., the set of behaviors
of S not present in U . If the set ΔS,U is non-empty, it could be exploited by
PVAIR to generate the partial interpolants that represent new summaries for
each function in U . These updated summaries are still guaranteed to preserve
safety of the assertion a in U .

Experiments. We experimented with PVAIR on a set of 10 pairs of different
benchmarks written in C. Notably, all benchmarks used non-linear arithmetic
operations. After the required propositional encoding (i.e., bit-blasting), the
resulting large-size formulae have been a bottleneck for solving and interpolation
using the original eVolCheck approach.

In our experiments, for each pair of programs, S and U , we obtained U from
the corresponding S by assigning guards in some conditional expressions. In
particular, we replaced if P do A else do B by assume(P); A. This is equivalent
to assigning P = true, and ΔS,U consists of the behaviors specified by assume(¬
P); B. For simplicity, in our experiments, we assumed that ΔS,U affected only a
single function f .

The results of our experiments are shown in Table 3. For each S and U , we
identified ΔS,U and obtained the set of conditional expressions to be assigned
in S (column #var. assigned). Then we performed two steps: (1) constructed
the summary of f without/with ΔS,U ; and (2) validated the corresponding sum-
maries of f with respect to the new code in U . This experiment illustrates to
what extent:

– the use of PVAIR yields smaller summaries compared to the ones by
PeRIPLO,

– the use of smaller summaries improves the overall performance of eVol-
Check.

We collected the size of the resulting interpolants and total verification time needed
to perform steps (1) and (2). We used the Pudlák interpolation algorithm [17] to
construct the “orig” interpolants (the ones constructed without ΔS,U).

As can be seen from the table, the use of PVAIR helped eVolCheck to
make the function summaries up to 60 % smaller compared to the ones produced

PVAIR: Partial Variable Assignment InterpolatoR 431

Table 3. eVolCheck verification statistics.

C program Interpolant (function summary) size Verification time (sec)

name # var. # var. # var. # cl. # cl. boot. boot. upgr. upgr.
assigned orig. PVAI orig PVAI orig. PVAI orig. PVAI

Test 0 3 vars 15227 62.61% 45192 62.21% 18.93 99.17% 4.025 65.96%

Test 1 1 var 23273 78.46% 69330 78.31% 10.36 99.24% 4.034 77.79%

Test 2 2 vars 31278 59.19% 93345 58.98% 8.71 100.32% 3.878 57.61%

Test 3 1 var 12236 63.80% 36219 63.31% 7.34 100.12% 1.256 71.50%
Test 4 2 vars 20447 74.57% 60852 74.37% 12.40 101.94% 2.982 81.35%

Test 5 3 vars 24716 32.50% 73659 32.05% 12.20 102.94% 3.855 39.46%

Test 6 3 vars 33076 37.89% 98739 37.58% 12.63 102.16% 7.951 40.05%

Test 7 1 var 12478 57.47% 36945 56.91% 8.88 100.29% 2.350 57.96%
Test 8 1 var 21201 50.42% 63114 50.04% 14.46 97.55% 3.706 50.94%

Test 9 2 vars 20314 39.71% 60453 39.22% 21.42 101.26% 4.581 40.30%

by PeRIPLO (columns #var. orig vs. #var. PVAI, and #cl. orig vs. #cl.
PVAI), while taking almost no additional time (columns boot. orig. vs. boot.
PVAI). Furthermore, eVolCheck spent up to 60 % less effort in the validating
step (columns upgr. orig. vs. upgr. PVAI), in which the model checker finally
confirmed that the new code is safe. In other words, in the considered verification
scenario and driven by PVAIR, eVolCheck improved both, the size of the
summaries and the overall verification time, without sacrificing soundness of the
entire model checking procedure.

5 Related Work

This section compares the PVAIR approach with various techniques for reducing
the size of an interpolant based on variable assignments, proof compression, and
interpolant post-processing.

Variable Assignments. Given a variable assignment, the most straightforward
way to reduce the interpolant size is to apply the assignment directly onto the
interpolant formula and propagate Boolean constants. This idea is used in the
UFO [1] tool. Due to the tight integration into the interpolation process, LPAIS
yields smaller interpolants compared to this simple approach. Since the assign-
ment is considered by LPAIS already during the interpolant construction, this
results in larger parts of the interpolant being cut away.

Proof Compression. Interpolants are often derived from a resolution proof and
therefore their size is roughly proportional to the size of the proof. Several
methods for compressing a resolution proof exist [2,4,6,11,19]. Different vari-
ants of these techniques are applied in PdTRAV [5] verification framework, the
PeRIPLO tool, and the Skeptik [3] proof transformer, just to name a few exam-
ples. In this work, the reduction of the interpolant size is based on the fact that

432 P. Jančík et al.

only a proof of the unsatisfied part of the input formula is needed. Since the omit-
ted (i.e., satisfied) parts can be important w.r.t. other assignments, the proof
compression techniques cannot remove these parts from the proof. As a result,
these techniques are orthogonal and PVAIR can benefit from proof compression
if applied.

Interpolant Post-processing. Once an interpolant is computed, various techniques
can be used to reduce its size. Such techniques include constant propagation,
structural sharing, and various equivalence and subsumption checks. PdTRAV,
for example, internally uses BDD-based sweeping to detect the equivalences
and balancing/rewriting over And-Inverter Graphs [14] representation to further
reduce the size of an interpolant. Any such post-processing technique producing
smaller equivalent formulae can be applied to the interpolants produced by the
PVAIR tool.

6 Conclusions

In this paper we presented the PVAIR interpolation tool, which exploits partial
variable assignments obtained from an application-specific source to compute
focused interpolants. The tool uses the extension of the labeled interpolation
system, LPAIS, to construct the interpolants from a resolution refutation. We
presented a potential application for the focused interpolants, in particular in
software upgrade checking where we require the path interpolation property.
We performed an initial study using a wide range of experiments varying the
size of the partial variable assignment. The results show a good improvement
compared to the baseline and suggest that the approach taken for computing
focused interpolants has significant potential in reducing the interpolant size and
model checking time. In the future we plan to integrate the PVAIR tool into
a concrete implementation of a parallel model checker as well as to study other
applications of model checking where partial assignments arise naturally.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From under-approximations to over-
approximations and back. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 157–172. Springer, Heidelberg (2012)

2. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Linear-time
reductions of resolution proofs. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS,
vol. 5394, pp. 114–128. Springer, Heidelberg (2009)

3. Boudou, J., Fellner, A., Woltzenlogel Paleo, B.: Skeptik: a proof compression sys-
tem. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) ĲCAR 2014. LNCS, vol.
8562, pp. 374–380. Springer, Heidelberg (2014)

4. Boudou, J., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs
by lowering subproofs. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX
2013. LNCS, vol. 8123, pp. 59–73. Springer, Heidelberg (2013)

PVAIR: Partial Variable Assignment InterpolatoR 433

5. Cabodi, G., Loiacono, C., Vendraminetto, D.: Optimization techniques for craig
interpolant compaction in unbounded model checking. In: DATE, pp. 1417–1422
(2013)

6. Cotton, S.: Two techniques for minimizing resolution proofs. In: Strichman, O.,
Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 306–312. Springer, Heidelberg
(2010)

7. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. Symbol. Logic 22, 269–285 (1957)

8. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–
145. Springer, Heidelberg (2010)

9. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

10. Fedyukovich, G., Sery, O., Sharygina, N.: eVolCheck: incremental upgrade checker
for C. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 292–307. Springer, Heidelberg (2013)

11. Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Compression of propositional reso-
lution proofs via partial regularization. In: Bjørner, N., Sofronie-Stokkermans, V.
(eds.) CADE 2011. LNCS, vol. 6803, pp. 237–251. Springer, Heidelberg (2011)

12. Jancik, P., Kofroň, J., Rollini, S.F., Sharygina, N.: On interpolants and variable
assignments. In: FMCAD, pp. 123–130 (2014)

13. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006)

14. Kuehlmann, A., Ganai, M.K., Paruthi, V.: Circuit-based Boolean reasoning. In:
DAC, pp. 232–237 (2001)

15. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

16. McMillan, K.L.: An interpolating theorem prover. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004)

17. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. Symbol. Logic 62, 981–998 (1997)

18. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
a framework for producing effective interpolants in SAT-based software verification.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol.
8312, pp. 683–693. Springer, Heidelberg (2013)

19. Rollini, S.F., Bruttomesso, R., Sharygina, N., Tsitovich, A.: Resolution proof trans-
formation for compression and interpolation. Formal Methods Syst. Des. 45, 1–41
(2014)

20. Rollini, S.F., Sery, O., Sharygina, N.: Leveraging interpolant strength in model
checking. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
193–209. Springer, Heidelberg (2012)

21. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based function summaries
in bounded model checking. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC
2011. LNCS, vol. 7261, pp. 160–175. Springer, Heidelberg (2012)

22. Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: bounded model checking with
interpolation-based function summarization. In: Chakraborty, S., Mukund, M.
(eds.) ATVA 2012. LNCS, vol. 7561, pp. 203–207. Springer, Heidelberg (2012)

434 P. Jančík et al.

23. Sery, O., Fedyukovich, G., Sharygina, N.: Incremental upgrade checking by means
of interpolation-based function summaries. In: FMCAD, pp. 114–121 (2012)

24. Tange, O.: GNU parallel - the command-line power tool. In: The USENIX Maga-
zine, pp. 42–47 (2011)

25. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic,
pp. 115–125. Plenum, New York (1969)

Author Index

Alt, Leonardo 419
Álvarez-Palomo, José M. 305
Arendt, Thorsten 122
Aspinall, David 325

Baier, Christel 287
Basu, Samik 13
Bolignano, Pauline 214
Bultan, Tevfik 13

Chechik, Marsha 122
Chen, Taolue 269
Chiriţă, Claudia Elena 359
Chrszon, Philipp 287
Corrodi, Claudio 31

De Carlos, Xabier 104, 141
de Putter, Sander 383
Debreceni, Csaba 104
Dubslaff, Clemens 287
Durán, Francisco 305

Esparza, Javier 342

Fedyukovich, Grigory 419
Feng, Yuan 269
Fiadeiro, José Luiz 359
Futatsugi, Kokichi 377

Gerhold, Marcus 251

Henrio, Ludovic 66
Heußner, Alexander 31
Hindle, Abram 231
Hoffmann, Philipp 342
Hu, Raymond 401
Hyvärinen, Antti E.J. 419

Jančík, Pavel 419
Jensen, Thomas 214
Johnsen, Einar Broch 49

Kaliszyk, Cezary 325
Klüppelholz, Sascha 287

Kofroň, Jan 419
Kosmatov, Nikolai 179
Kulankhina, Oleksandra 66

Le Gall, Pascale 179
Léchenet, Jean-Christophe 179
Lee, Ming-Chang 49
Li, Han 197
Li, Siqi 66
Lin, Jia-Chun 49
Lochau, Malte 158

Madelaine, Eric 66
Mendialdua, Xabier 104
Moreno-Delgado, Antonio 305

Nierstrasz, Oscar 3

Ogata, Kazuhiro 377
Orejas, Fernando 359

Plöger, Jennifer 122
Poskitt, Christopher M. 31

Ráth, István 104
Richerzhagen, Björn 158
Riesco, Adrián 377
Rosenblum, David S. 269
Rubin, Julia 122

Sagardui, Goiuria 141
Sajedi Badashian, Ali 231
Schnabel, Thomas 158
Schürr, Andy 158
Semeráth, Oszkár 87
Sharygina, Natasha 419
Siles, Vincent 214
Stoelinga, Mariëlle 251
Stroulia, Eleni 231
Strüber, Daniel 122
Su, Guoxin 269

Taentzer, Gabriele 122
Thiagarajan, P.S. 269
Trujillo, Salvador 104, 141

Varró, Dániel 87, 104
Vörös, András 87

Wang, Lei 197
Wang, Xinchen 197

Weckesser, Markus 158
Wijs, Anton 383

Yoshida, Nobuko 401
Yu, Ingrid Chieh 49

436 Author Index

	ETAPS Foreword
	Preface
	Organization
	Contents
	Keynote Paper
	The Death of Object-Oriented Programming
	1 Introduction
	2 Bring Models Closer to Code
	3 Exploit Domain Models in the IDE
	4 Link the Code to Its Ecosystem
	5 Conclusion
	References

	Concurrent and Distributed Systems
	Automated Choreography Repair
	1 Introduction
	2 Repairing Singularity OS Channel Contracts
	3 Choreography Realizability
	4 Choreography Repair
	4.1 Differences Between C and I^{C}_{1}
	4.2 Repair by Relaxation
	4.3 Repair by Restriction
	4.4 Iterative Algorithm

	5 Case Studies
	6 Related Work
	7 Conclusion
	References

	A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs
	1 Introduction
	2 SCOOP and its Execution Models
	3 A Graph-Based Semantic Model for the SCOOP Family
	4 Toolchain for the Workbench
	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters
	1 Introduction
	2 Background
	2.1 Modeling Deployed Systems Using Real-Time ABS
	2.2 YARN: Yet Another Resource Negotiator

	3 Formal Model of the ABS-YARN Framework
	3.1 Modeling ResourceManager (RM)
	3.2 Modeling ApplicationMaster (AM)
	3.3 Modeling Containers

	4 Performance Evaluation and Validation
	4.1 Validation Results in the Uniform Scenario
	4.2 Validation Results in the Exponential Scenario

	5 Related Work
	6 Conclusion and Future Work
	References

	Integrated Environment for Verifying and Running Distributed Components
	1 Introduction
	2 Background
	2.1 Grid Component Model and ProActive Platform
	2.2 pNets
	2.3 Peterson's Leader Election Algorithm

	3 Graphical Designer
	3.1 Architecture Specification
	3.2 Behavior Specification

	4 Behavior Verification
	4.1 From Application Design to pNets
	4.2 From pNets to Model-Checking

	5 Code Generation and Execution
	5.1 Executable Code Generation
	5.2 Code Execution

	6 Related Work
	7 Discussion and Perspectives
	References

	Model-Driven Development
	Iterative and Incremental Model Generation by Logic Solvers
	1 Introduction
	2 Preliminaries
	2.1 Domain Metamodel
	2.2 Well-Formedness Constraints
	2.3 Partial Snapshots

	3 Incremental Model Generation by Approximations
	3.1 Metamodel Pruning
	3.2 Constraint Pruning and Approximation
	3.3 Incremental Model Generation by Iterative Solver Calls

	4 Measurements
	5 Related Work
	6 Conclusion and Future Work
	References

	Automated Model Merge by Design Space Exploration
	1 Introduction
	2 Preliminaries
	2.1 From Model Comparison to Model Merge
	2.2 A Motivating Model Merge Scenario

	3 Model Merge by Design Space Exploration: Concepts
	3.1 Conceptual Overview
	3.2 Key Aspects of Exploration Process

	4 Elaboration of Model Merge on an Example
	4.1 Operations and Goals
	4.2 Conflict Detection in a Sample Exploration Step
	4.3 A Merge Scenario on the Motivating Example

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	RuleMerger: Automatic Construction of Variability-Based Model Transformation Rules
	1 Introduction
	2 Running Example
	3 Preliminaries: Variability-Based Model Transformation
	4 Framework
	4.1 Clone Detection
	4.2 Clustering
	4.3 Merge Construction

	5 Instantiating RuleMerger
	6 Evaluation
	6.1 Methods and Set-Up
	6.2 Results and Discussion
	6.3 Threats to Validity and Limitations

	7 Related Work
	8 Conclusion and Future Outlook
	References

	Two-Step Transformation of Model Traversal EOL Queries for Large CDO Repositories
	1 Introduction
	2 Operation with CDO Repositories
	3 CDO-QT
	3.1 Query Language Independent Metamodel
	3.2 CDO-QT Design
	3.3 From EOL to QLI Model
	3.4 From QLI Model to SQL
	3.5 Executing the Query

	4 Evaluation
	4.1 Discussion
	4.2 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	References

	Mind the Gap! Automated Anomaly Detection for Potentially Unbounded Cardinality-Based Feature Models
	1 Introduction
	2 Cardinality-Based Feature Models
	2.1 Background
	2.2 Analysis of Cardinality-Based Feature Models

	3 Automated Anomaly Detection for CFM
	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	References

	Analysis and Bug Triaging
	Cut Branches Before Looking for Bugs: Sound Verification on Relaxed Slices
	1 Introduction
	2 Motivation and Running Examples
	3 The Considered Language and Its Semantics
	4 Relaxed Program Slicing
	4.1 Control and Data Dependences
	4.2 Assertion Dependence and Relaxed Slices
	4.3 Soundness of Relaxed Slicing

	5 Verification on Relaxed Slices
	6 Related Work
	7 Conclusion
	References

	The Influences of Edge Instability on Change Propagation and Connectivity in Call Graphs
	1 Introduction
	2 Change Propagation
	2.1 Propagation Scope
	2.2 Edge Instability
	2.3 Statistics with Six Open Source Software

	3 Connectivity
	4 Features of Call Graphs and Evolution Model
	4.1 Preferential Attachment
	4.2 Callers of New Nodes
	4.3 Evolution Model for Software

	5 Related Work
	6 Conclusions
	References

	Modeling and Abstraction of Memory Management in a Hypervisor
	1 Introduction
	2 Memory Management in Hypervisors
	3 The Concrete Hypervisor Model
	3.1 Global State
	3.2 Page Tables
	3.3 Concrete Transitions
	3.4 SPT Invariants

	4 The Abstract Hypervisor Model
	4.1 Link Between the Concrete and the Abstract Model
	4.2 Abstract Transitions
	4.3 Properties

	5 Related Work
	6 Conclusion
	References

	Crowdsourced Bug Triaging: Leveraging Q&A Platforms for Bug Assignment
	1 Introduction
	2 Literature Review
	3 A Social Bug-Triaging Model
	3.1 Social Metrics of Expertise
	3.2 A Bug-Specific Social Metric of Expertise
	3.3 A Recency-Aware, Social and Subject-Aware Expertise Metric

	4 Evaluation
	4.1 Experiment Setup
	4.2 Comparison to State of the Art
	4.3 Implementation
	4.4 Performance of Variant Social Metrics of Expertise
	4.5 Performance of the RA_SSA_Z_score_{u,b}

	5 Analysis
	6 Conclusions and Future Work
	References

	Probabilistic and Stochastic Systems
	Model-Based Testing of Probabilistic Systems
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Input/Output Systems
	2.2 Paths and Traces
	2.3 Adversaries and Trace Distributions

	3 Testing with pIOTS
	3.1 Test Generation
	3.2 Test Evaluation

	4 Conformance, Soundness and Completeness
	4.1 Probabilistic Input/Output Conformance pioco
	4.2 Soundness and Completeness

	5 Experimental Validation
	5.1 Binary Exponential Backoff
	5.2 IEEE 1394 FireWire Root Contention Protocol

	6 Conclusions and Future Work
	References

	An Iterative Decision-Making Scheme for Markov Decision Processes and Its Application to Self-adaptive Systems
	1 Introduction
	2 Formal Model and Value-Iteration Method
	3 Iterative Decision-Making Scheme
	3.1 IDMS Preview and Example
	3.2 Data Structure and Parameter Estimation
	3.3 Confident Optimality
	3.4 Metrics and Tradeoff

	4 Application to Self-adaptive System
	4.1 Rainbow Framework
	4.2 Embedding IDMS into Rainbow

	5 Simulation-Based Experiment
	5.1 Methodology and Setting
	5.2 Experimental Data and Concrete Tradeoffs

	6 Related Work
	7 Conclusions
	References

	Family-Based Modeling and Analysis for Probabilistic Systems -- Featuring PROFEAT
	1 Introduction
	2 Modeling Families of Systems: The PROFEAT Language
	2.1 Feature Modeling
	2.2 Parametrization

	3 Implementation
	3.1 Translation of Feature-Specific Constructs
	3.2 All-in-One and One-by-One Translation

	4 Experimental Studies
	4.1 The Producer-Consumer Example
	4.2 Feature-Aware Case Studies
	4.3 Benchmark Suite Examples

	5 Conclusions
	References

	Statistical Model Checking of e-Motions Domain-Specific Modeling Languages
	1 Introduction
	2 Preliminaries
	2.1 The e-Motions System
	2.2 Maude
	2.3 Maude Representation of e-Motions Models and Metamodels
	2.4 The VeStA/PVeStA Tool

	3 PVeStA-Compliant Representation of e-Motions Models
	3.1 Un-quantified-non-determinism-free e-Motions Systems
	3.2 Modifications of Maude Rules
	3.3 e-SMC: e-Motions & PVeStA Integration

	4 Case Study: A Simple Messaging System
	5 Related Work
	6 Conclusions
	References

	Proof and Theorem Proving
	Towards Formal Proof Metrics
	1 Introduction
	1.1 From Software Metrics to Proof Metrics

	2 Programming Formal Proofs
	2.1 Formal Proof Developments, Abstractly

	3 Six Simple Proof Metrics
	3.1 WTM: Weighted Theorems per Module
	3.2 DIT: Depth in Tree
	3.3 NOC: Number of Children
	3.4 CBM: Coupling Between Modules
	3.5 TDM: Total Dependencies for Module
	3.6 LCOM: Lack of Cohesion in Module

	4 Properties of Proof Metrics
	5 Experimental Study
	5.1 Large Proof Development Examples
	5.2 Distribution of Cohesion and Coupling
	5.3 LCOM, TDM, and WTM over Time
	5.4 Case Study: HOL Light Refactoring
	5.5 Theorem Size and the Number of Dependencies

	6 Conclusions
	References

	Reduction Rules for Colored Workflow Nets
	1 Introduction
	2 Workflow Nets and Colored Workflow Nets
	2.1 A Colored Version of the Insurance Claim Example
	2.2 Summaries and Equivalence
	2.3 Free Choice Workflow Nets

	3 Reduction Rules
	4 Reduction Procedure
	4.1 Summarizing the Example
	4.2 Extension to Generalized Soundness

	5 Experimental Evaluation
	6 Conclusion
	References

	Many-Valued Institutions for Constraint Specification
	1 Introduction
	2 Soft-Constraint Specification in Institutions
	2.1 Institutions
	2.2 Generalising the Truth Space
	2.3 The First-Order Soft-Constraint RL-institution
	2.4 The CSP(I) RL-institution of Soft CSP over I

	3 Soft Constraints for Service-Oriented Computing
	4 History and Value Systems
	4.1 History Matters
	4.2 Changing the Truth Space

	5 Conclusions and Future Work
	References

	CafeInMaude: A CafeOBJ Interpreter in Maude
	1 Introduction
	2 Using CafeInMaude
	2.1 Executing CafeOBJ Specifications
	2.2 Using Maude Commands
	2.3 Extending CafeOBJ
	2.4 Limitations

	3 Concluding Remarks and Ongoing Work
	References

	Verification
	Verifying a Verifier: On the Formal Correctness of an LTS Transformation Verification Technique
	1 Introduction
	2 Related Work
	3 Verifying Single LTS Transformations
	3.1 LTS Transformation and LTS Equivalence
	3.2 Analysing a Transformation Rule

	4 Verifying Sets of Dependent LTS Transformations
	4.1 LTS Networks and Their Transformation
	4.2 Analysing Transformations of an LTS Network

	5 Conclusions
	References

	Hybrid Session Verification Through Endpoint API Generation
	1 Introduction
	2 Overview
	3 Hybrid Endpoint API Generation for Java
	4 Use Case and Further Endpoint API Generation Features
	5 Related Work
	References

	PVAIR: Partial Variable Assignment InterpolatoR
	1 Introduction
	2 Preliminaries and Background Theory
	3 The Tool Architecture
	4 Experiments
	4.1 SAT Competition
	4.2 Applying PVAIR for Checking Software Upgrades

	5 Related Work
	6 Conclusions
	References

	Author Index

