
Tool Demonstration: JOANA

Jürgen Graf(B), Martin Hecker, Martin Mohr, and Gregor Snelting

Karlsruhe Institute of Technology, Karlsruhe, Germany
{graf,martin.hecker,martin.mohr,gregor.snelting}@kit.edu

Abstract. JOANA is a tool for information flow control, which can
handle full Java with unlimited threads and scales to ca. 100 kLOC.
JOANA uses a new algorithm for checking probabilistic noninterfer-
ence, named RLSOD. JOANA uses a stack of sophisticated program
analysis techniques which minimise false alarms. JOANA is open source
(joana.ipd.kit.edu) and offers an Eclipse GUI as well as an API.

The current tool demonstration paper concentrates on JOANA’s
precision. Effects of flow-sensitivity, context-sensitivity, and object-
sensitivity are explained, as well as precision gains from the new RLSOD
criterion.

Keywords: Information flow control · Probabilistic noninterference ·
Program analysis

1 Introduction

JOANA is a tool for information flow control (IFC), which discovers all
confidentiality and integrity leaks in Java programs. JOANA is open source
(joana.ipd.kit.edu). In this tool demonstration paper, we concentrate on the pre-
cision of JOANA. JOANA is based on sophisticated program analysis (points-to
analysis, exception analysis, program dependence graphs), can handle full Java
with unlimited threads, and scales to ca. 100 kLOC. JOANA minimizes false
alarms through flow- context- field- object- time- and lock-sensitive analysis
algorithms. JOANA guarantees to find all explicit, implicit, possibilistic, and
probabilistic leaks. The theoretical foundations have been described in [2,5,10].
The GUI and specific usage aspects have been described in [3,4,6–9].

Figure 1 shows the JOANA Eclipse plugin. In the source code, input and
output are annotated with security levels (“High” i.e. secret, or “Low” i.e. public;
only input and output need annotations). The program contains a probabilistic
leak, because the running time of the loop depends on secret input, and thus
the probability that “POST” is printed instead of “STPO” due to interleaving
depends on secret input. The leak is highlighted in the source code (full details
on a leak are available on demand). JOANA allows arbitrary security lattices
(not just “High” and “Low”). It can check confidentiality as well as integrity; in
this paper we concentrate on confidentiality.

JOANA analyses Java bytecode and uses IBM’s WALA analysis frontend;
recently, a frontend for Android bytecode was added. JOANA offers various
c© Springer-Verlag Berlin Heidelberg 2016
F. Piessens and L. Viganò (Eds.): POST 2016, LNCS 9635, pp. 89–93, 2016.
DOI: 10.1007/978-3-662-49635-0 5

http://pp.ipd.kit.edu/projects/joana/
http://pp.ipd.kit.edu/projects/joana/

90 J. Graf et al.

Fig. 1. JOANA GUI, discovering a probabilistic leak

options for analysis precision (e.g. object-sensitive points-to analysis, time-
sensitive backward slicing). It was thus able to provide security guarantees for
several examples from the literature which are considered difficult. More interest-
ing is perhaps the successful analysis of an experimental e-voting system devel-
oped by Küsters et al. [7]. In a scalability study, the full source code of the
HSQLDB database was analysed; analysis needed one day on a standard PC.

1 void main () :
2 read (H) ;
3 i f (H < 1234)
4 pr in t (0) ;
5 L = H;
6 pr in t (L) ;

1 void main () :
2 f o rk thread 1 () ;
3 f o rk thread 2 () ;
4 void thread 1 () :
5 read (L) ;
6 pr in t (L) ;
7 void thread 2 () :
8 read (H) ;
9 L = H;

1 void main () :
2 f o rk thread 1 () ;
3 f o rk thread 2 () ;
4 void thread 1 () :
5 longCmd ;
6 pr in t (”PO”) ;
7 void thread 2 () :
8 read (H) ;
9 while (H != 0)

10 H−−;
11 pr in t (”ST”) ;

Fig. 2. Some leaks. Left: explicit and implicit, middle: possibilistic, right: probabilistic.

Figure 2 presents small but typical confidentiality leaks (as usual, H is “High”,
L is “Low”). Explicit leaks arise if (parts of) secret values are copied (indirectly)
to public output. Implicit leaks arise if a secret value can change control flow
(which can change public behaviour). Possibilistic leaks in concurrent programs
arise if a certain interleaving produces an explicit or implicit leak; in Fig. 2
middle, interleaving order 5,8,9,6 causes an explicit leak. Probabilistic leaks arise

Tool Demonstration: JOANA 91

if the probability of public output is influenced be secret values; in Fig. 2 right,
H is never copied to L, but if the value of H is large, probability is higher that
“POST” is printed instead of “STPO”.

2 Sequential Precision

JOANA was the first IFC tool which used program dependence graphs (PDGs).
PDGs are naturally flow- and context-sensitive. Today PDGs for (multi-
threaded) full Java are highly precise and scale up to 1 MLOC. As a prerequisite
for PDGs, a precise points-to analysis and exception analysis is necessary.

1 void main () :
2 read (H) ;
3 L = 2 ;
4 H1 = f (H) ;
5 L1 = f (L) ;
6 pr in t (L1) ;
7

8 int f (int x)
9 {return x+42;}

1 o1 = new O() ; //O1
2 o2 = new O() ; //O2
3 o1 . c = H;
4 o2 . c = L ;
5 o3 = o2 ;
6 pr in t (o3 . c) ;
7 o4 = o1 ;
8 o4 = o2 ;

1 void main () :
2 f o rk thread 1 () ;
3 f o rk thread 2 () ;
4 void thread 1 () :
5 L = 42 ;
6 read (H) ;
7 void thread 2 () :
8 pr in t (L) ;
9 L = H;

Fig. 3. Unprecise analysis causes false alarms.

A flow-insensitive analysis will ignore statement order. In Fig. 3 right, a false
alarm results if order of statements 8/9 is ignored. Flow-insensitive analysis also
ignores killing definitions as in L=H; L=42; (where the second statement can
be far from the first). A context-insensitive analysis will merge different calls
to the same function. In Fig. 3 left, a context-insensitive analysis will merge
the two calls to f and cause a false alarm. In practice, context-sensitivity is even
more important for precision than flow-sensitivity. Object-sensitivity means that
fields in different objects of the same class are distinguished. In Fig. 3 middle, an
object-insensitive analysis will merge o1 and o2 and cause a false alarm. Object-
sensitivity is difficult in case of nested or recursive object definitions, because
it interferes with points-to analysis and requires additional field-sensitivity. For
analysing object-oriented programs, the combination of context- and object-
sensitivity is essential, as in o1.c=o1.f(H); o2.c=o1.f(L);.

Points-to analysis determines for every pointer a set of objects it may point to.
In Fig. 3 middle, pt(o1) = {O1}, pt(o3) = pt(o2) = {O2}, pt(o4) = {O1, O2}.
For precision, points-to sets should be small, but of course maintain soundness.
Today, sophisticated points-to algorithms for full Java are known, however many
common approaches are not efficient for PDG-based IFC. Hence, we are exploring
sweet-spots of points-to analyses with a better precision-cost-ratio, which employ
precision only where needed. The key is to taylor the points-to analysis to the
concrete IFC query: First we build a PDG with an imprecise but cheap points-to
analysis and compute a forward slice [5] of the high statements. From this slice,
we extract the critical instances that may contain high information. In a second

92 J. Graf et al.

pass, we apply an automatically taylored points-to analysis which specifically
distinguishes the critical instances.

Another issue is exception analysis, as exceptions can generate much addi-
tional control flow and spoil precision. We implemented a null pointer analysis
which detects field accesses that never dereference null. We are currently imple-
menting an analogous checker for array accesses.

3 Probabilistic Precision

Different criteria and algorithms for probabilistic noninterference (PN) have been
proposed. The vast majority is not flow-sensitive (let alone context- or object-
sensitive), or puts unacceptable restrictions on programs (“no low statements
after high guards”); some turned out to be unsound. The simplest criterion,
LSOD (low-security observational determinism) is scheduler independent and
easy to implement as a program analysis. However LSOD strictly prohibits any,
even secure, low-nondeterminism. For example Fig. 3 right is PN according to
the original definition, but interleaving can cause low nondeterminism (in fact a
race) for statements 5 and 8, hence LSOD causes a false alarm.

We found that flow-sensitivity is essential for a precise LSOD, and that
LSOD can naturally be checked using PDGs for multi-threaded programs [2].
We then devised an improvement, RLSOD (relaxed LSOD), which allows low-
nondeterminism if it cannot be reached from high events. The latter can be
checked easily in the CFG. For example, Fig. 3 right is not LSOD but RLSOD,
because the 5/8 race cannot be reached from high statements. Recently, we dis-
covered that for low-nondeterministic statements s1, s2, it is enough to check high
events in the control flow regions between the immediate dominator idom(s1, s2),
and s1 (resp. s2). For example assume that in main the initial statement read(H)
is added. Then the 5/8 race can be reached from a high event, so “simple”
RLSOD causes a false alarm. But the “dominator” improvement, plus flow-
sensitivity (which respects the 8/9 order) will classify the example as secure –
which it is according to PN.

Another issue is precision of the may-happen-in-parallel analysis, which is
part of the RLSOD algorithm [2]. The current MHP analysis is context-sensitive
but ignores explicit locks; recently, experiments with a lock-sensitive MHP based
on pushdown networks [1] have begun.

4 Fine Tuning

JOANA supports a wide range of configuration options that allows experts to
fine-tune the analysis. JOANA also comes with an automated approach to infer a
reasonable configuration and additionally categorize detected leaks. Given a pro-
gram and security annotations, JOANA starts with a fast but imprecise points-to
analysis and subsequently applies more precise algorithms until either the max-
imal precision option has been reached or no leaks are detected.

Tool Demonstration: JOANA 93

JOANA helps to categorize the severity of detected information leaks as fol-
lows: (1) Flow through exceptions is ignored. Disappearing leaks are categorized
as caused by exceptions. (2) Implicit flow through control dependencies is ignored.
Leaks still detected are categorized as explicit, disappeared leaks as implicit. The
result is a noninterference guarantee or a list of information leaks with source
code location and categorization.

Acknowledgements. JOANA was partially supported by Deutsche Forschungsge-
meinschaft in the scope of SPP “Reliably Secure Software Systems”.

References

1. Gawlitza, T.M., Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.: Join-lock-
sensitive forward reachability analysis for concurrent programs with dynamic
process creation. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538,
pp. 199–213. Springer, Heidelberg (2011)

2. Giffhorn, D., Snelting, G.: A new algorithm for low-deterministic security. Int. J.
Inf. Secur. 14(3), 263–287 (2015)

3. Graf, J., Hecker, M., Mohr, M.: Using JOANA for information flow control in
Java programs - a practical guide. In: Proceedings of 6th Working Conference on
Programming Languages (ATPS 2013). Lecture Notes in Informatics (LNI), vol.
215, pp. 123–138. Springer, Heidelberg (2013)

4. Graf, J., Hecker, M., Mohr, M., Snelting, G.: Checking applications using security
APIs with JOANA. In: 8th International Workshop on Analysis of Security APIs,
July 2015

5. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Secur.
8(6), 399–422 (2009)

6. Küsters, R., Scapin, E., Truderung, T., Graf, J.: Extending and applying a frame-
work for the cryptographic verification of java programs. In: Abadi, M., Kremer,
S. (eds.) POST 2014 (ETAPS 2014). LNCS, vol. 8414, pp. 220–239. Springer, Hei-
delberg (2014)

7. Küsters, R., Truderung, T., Graf, J.: A framework for the cryptographic verifica-
tion of Java-like programs. In: 2012 IEEE 25th Computer Security Foundations
Symposium (CSF). IEEE Computer Society, June 2012

8. Mohr, M., Graf, J., Hecker, M.: JoDroid: adding android support to a static
information flow control tool. In: Gemeinsamer Tagungsband der Workshops der
Tagung Software Engineering , Dresden, Germany, 17-18 Mäarz 2015, vol. 1337 of
CEUR Workshop Proceedings, pp. 140–145. CEUR-WS.org (2015)

9. Snelting, G., Giffhorn, D., Graf, J., Hammer, C., Hecker, M., Wasserrab, D.: Check-
ing probabilistic noninterference using JOANA. IT - Inf. Technol. 56, 280–287
(2014)

10. Wasserrab, D., Lohner, D., Snelting, G.: On PDG-based noninterference and its
modular proof. In: Proceedings of PLAS 2009. ACM, June 2009

	Tool Demonstration: JOANA
	1 Introduction
	2 Sequential Precision
	3 Probabilistic Precision
	4 Fine Tuning
	References

