On Improvements of Low-Deterministic Security

Joachim Breitner, Jiirgen Graf, Martin Hecker™), Martin Mohr,
and Gregor Snelting

Karlsruhe Institute of Technology, Karlsruhe, Germany
{breitner,graf,martin.hecker,martin.mohr,gregor.snelting}@kit.edu

Abstract. Low-security observable determinism (LSOD), as introduced
by Roscoe and Zdancewic [18,24], is the simplest criterion which guar-
antees probabilistic noninterference for concurrent programs. But LSOD
prohibits any, even secure low-nondeterminism. Gifthorn developed an
improvement, named RLSOD, which allows some secure low-nondeter-
minism, and can handle full Java with high precision [5].

In this paper, we describe a new generalization of RLSOD. By
applying aggressive program analysis, in particular dominators for multi-
threaded programs, precision can be boosted and false alarms minimized.
We explain details of the new algorithm, and provide a soundness proof.
The improved RLSOD is integrated into the JOANA tool; a case study
is described. We thus demonstrate that low-deterministic security is a
highly precise and practically mature software security analysis method.

Keywords: Information flow control - Probabilistic noninterference -
Program analysis

1 Introduction

Information flow control (IFC) analyses a program’s source or byte code for leaks,
in particular violations of confidentiality and integrity. IFC algorithms usually
check some form of noninterference; sound IFC algorithms guarantee to find all
possible leaks. For multi-threaded programs, probabilistic noninterference (PN)
as introduced in [19-21] is the established security criterion. Many algorithms
and definitional variations for PN have been proposed, which vary in soundness,
precision, scalability, language restrictions, and other features.

One of the oldest and simplest criteria which enforces PN is low-security
observational determinism (LSOD), as introduced by Roscoe [18], and improved
by Zdancewic, Huisman, and others [10,24]. For LSOD, a relatively simple static
check can be devised; furthermore LSOD is scheduler independent — which is a
big advantage. However Huisman and other researchers found subtle problems
in earlier LSOD algorithms, so Huisman concluded that scheduler-independent
PN is not feasible [9]. Worse, LSOD strictly prohibits any, even secure low-
nondeterminism — which kills LSOD from a practical viewpoint.

© Springer-Verlag Berlin Heidelberg 2016
F. Piessens and L. Vigand (Eds.): POST 2016, LNCS 9635, pp. 68-88, 2016.
DOI: 10.1007/978-3-662-49635-0_4

On Improvements of Low-Deterministic Security 69

It is the aim of this paper to demonstrate that improvements to LSOD can be
devised, which invalidate these earlier objections. An important step was already
provided by Giffthorn [4,5] who discovered that

1. an improved definition of low-equivalent traces solves earlier soundness prob-
lems for infinite traces and nonterminating programs.

2. flow- and context-sensitive program analysis is the key to a precise and sound
LSOD algorithm.

3. the latter can naturally be implemented through the use of program depen-
dence graphs.

4. additional support by precise points-to analysis, may-happen-in-parallel
analysis, and exception analysis makes LSOD work and scale for full Java.

5. secure low-nondeterminism can be allowed by relaxing the strict LSOD cri-
terion, while maintaining soundness.

Giffhorn’s RLSOD (Relaxed LSOD) algorithm requires — like many other algo-
rithms, e.g. [20,21] — that the scheduler is probabilistic. RLSOD is integrated
into the JOANA IFC tool (joana.ipd.kit.edu), which has successfully been
applied in various projects [5-7,11,12,14].

In this paper, we describe new improvements for RLSOD, which boost preci-
sion and reduce false alarms compared to original LSOD and RLSOD. We first
recapitulate technical properties of PN, LSOD, and RLSOD. We then introduce
the improved criterion, which is based on the notion of dominance in threaded
control flow graphs. We explain the definition using examples, provide soundness
arguments, and present a case study, namely a prototypical e-voting system with
multiple threads. Our work builds heavily on our earlier contributions [5,7], but
the current paper is aimed to be self-contained.

2 Probabilistic Noninterference

IFC aims to guarantee that no violations of confidentiality or integrity may
occur. For confidentiality, usually all values in input, output, or program states

1 void main(): 1 void main(): 1 void main():
2 read(H); 2 fork thread 1(); 2 fork thread 1();
3 if (H < 1234) 3 fork thread 2(); 3 fork thread 2();
4 print(0); 4 void thread 1(): 4 void thread 1():
5 = H; 5 read(L); 5 longCmd();
6 print(L); 6 print(L); 6 print("PO");
7 void thread 2(): 7 void thread 2():
g8 read(H); 8 read(H);
o L =H o while (H 1= 0)
10 H——;

11 print("ST");

Fig. 1. Some leaks. Left: explicit and implicit, middle: possibilistic, right: probabilistic.
For simplicity, we assume that read (L) reads low variable L from a low input channel;
print (H) prints high variable H to a high output channel. Note that reads of high
variables are classified high, and prints of low variables are classified low.

70 J. Breitner et al.

are classified as “high” (secret) or “low” (public), and it is assumed that an
attacker can read all low values, but cannot see any high value.'

Figure 1 presents small but typical confidentiality leaks. As usual, variable
His “High” (secret), L is “Low” (public). Explicit leaks arise if (parts of) high
values are copied (indirectly) to low output. Implicit leaks arise if a high value can
change control flow, which can change low behaviour (see Fig. 1 left). Possibilistic
leaks in concurrent programs arise if a certain interleaving produces an explicit
or implicit leak; in Fig. 1 middle, interleaving order 5, 8, 9, 6 causes an explicit
leak. Probabilistic leaks arise if the probability of high output is influenced by
low values; in Fig. 1 right, H is never copied to L, but if the value of H is large,
probability is higher that “POST” is printed instead of “STPQ”.

2.1 Sequential Noninterference

To formalize RLSOD, let us start with the classical definition of sequential non-
interference. The classic definition assumes that a global and static classification
cl(v) of all program variables v as secret (H) or public (L) is given. Note that
flow-sensitive IFC such as RLSOD does not use a static, global classification of
variables; this will be explained below.

Definition 1 (Sequential noninterference). Let P be a program. Let s, s’ be
initial program states, let [P](s), [P](s’) be the final states after executing P in
state s resp. s'. Noninterference holds iff

s~ s’ = [P)(s) ~o [PI().

The relation s ~, s/ means that two states are low-equivalent, that is, coin-
cide on low variables: cl(v) = L = s(v) = s'(v). Classically, program input is
assumed to be part of the initial states s, s’, and program output is assumed to
be part of the final states; the definition can be generalized to work with explicit
input and output streams. Truly interactive programs lead to the problem of
termination leaks [1], which will not be explored in this paper.

2.2 Probabilistic Noninterference

In multi-threaded programs, fine-grained interleaving effects must be accounted
for, thus traces are used instead of states. A trace is a sequence of events
t = (51,01,81),(82,02,85),...,(5,,0,,8,), ..., where the o, are operations (i.e.
dynamically executed program statements ¢, ; we write stmt(o,) = ¢,). 5., s, are
the states before resp. after executing o,. For the time being we assume traces
to be terminating; subtleties of nontermination are discussed later.

! A more detailed discussion of TFC attacker models can be found in e.g. [5]. Note
that JOANA allows arbitrary lattices of security classifications, not just the simple
1 =L < H = T lattice. Note also that integrity is dual to confidentiality, but will
not be discussed here. JOANA can handle both.

On Improvements of Low-Deterministic Security 71

1 void main(): 1 void main(): 1 void main():

2 = 0 2 = 0; L =0;

3 fork thread 1(); 3 fork thread 1(); 3 read(H);

a4 fork thread 2(); 4 fork thread 2(); 4 while (H2>0)

5 void thread 1(): 5 void thread 1(): 5 {H2——;}

6 L =42; 6 L =42 6 fork thread 1();
7 read(H); 7 read(H); 7 fork thread 2();
8 void thread 2(): 8 void thread 2(): 8 void thread 1():
9 L = H; o print(L); 9 L = 42;

10 print(L); 10 L =H,; 10 read(H);

11 void thread 2():
12 print(L);
13 L = H;

Fig. 2. Left: insecure program, obvious explicit leak. Middle: secure program, RLSOD
+ flow sensitivity avoid false alarm. Right: only iRLSOD avoids false alarm.

For PN, the notion of low-equivalent traces is essential. Classically, traces

are low equivalent if for every (5,,0,,s,) € t, (s/,,0,,5,) € t', it holds that

14

5, ~L g and s,,~ s,,. This definition enforces a rather restrictive lock-step
execution of both traces. Later definitions (e.g. [20]) use stutter equivalence
instead of lock-step equivalence; thus allowing one execution to run faster than
the other (“stuttering” means that one trace performs additional operations
which do not affect public behaviour). In our flow-sensitive setting, we achieve
the same effect by demanding that not only program variables are classified,
but also all program statements (cl(¢) = H or ¢l(c) = L), and thus operations
in traces: cl(o) = cl(stmt(o)). Note that it is not necessary for the engineer to
provide classifications for all program statements, as most of the cl(c) can be
computed automatically (see below). Low equivalence then includes filtering out
high operations from traces. This leads to

Definition 2 1. The low-observable part of an event is defined as

EL((E o S)) _ (§ |use(o)a07§ |def(o))7 lf CZ(Stmt(O)) =L
T €, otherwise

where def (0), use(o) are the variables defined (i.e. assigned) resp. used in o.
2. The low-observable subtrace of trace t is

EL(t) = map(EL)(filter(Ne.EL(e) # €)(t)).
3. Traces t,t" are low-equivalent, written t ~p, t', if EL(t) = EL(t').

Note that the flow-sensitive projections $|gef(0), S|use(0) are usually much
smaller than a flow-insensitive, statically defined low part of s; resulting in more
traces to be low-equivalent without compromising soundness. This subtle obser-
vation is another reason why flow-sensitive IFC is more precise.

PN is called “probabilistic”, because it essentially depends of the probabilities
for certain traces under certain inputs: P;(t) is the probability that a specific
trace t is executed under input 4; and P;([t]y) is the probability that some trace

72 J. Breitner et al.

t' € [t]r (i.e. t' ~p t) is executed under i. Note that the ¢’ € [t], cannot be
distinguished by an attacker, as all ¢’ € [t]1, have the same public behaviour.

The following PN definition is classical, and uses explicit input streams
instead of initial states. For both inputs the same initial state is assumed, but it is
assumed that all input values are classified low or high. Inputs 7, " are low equiv-
alent (i ~p, ') if they coincide on low values: cl(i,) = LAcl(i),) = L = i, =1,,.
The definition relies on our flow-sensitive ¢ ~, t’.

Definition 3 (Probabilistic noninterference). Let i,i’ be input streams; let
T(i) be the set of all possible traces of program P for input i, @ =T () UT(i).
PN holds iff

1~ i = Vteo: Pl([t]L) = Py([t}L).

That is, if we take any trace ¢ which can be produced by ¢ or ¢, the probability
that a t' € [t]r, is executed is the same under i resp. i’. In other words, proba-
bility for any public behaviour is independent from the choice of i or
' and thus cannot be influenced by secret input.

As [t], is discrete (in fact recursively enumerable), P; is a discrete probability
distribution, hence Py([t]r) = X c(y, Pi('). Thus the PN condition can be

rewritten to
iNL Z'l — Vt Z Pl(tl): Z Pi’(t/)'
t'Elt]L t'Elt]L

Applying this to Fig.1 right, we first observe that all inputs are
low equivalent as there is only high input. For any t € © there
are only two possibilities: ...print(¢‘P0’’)...print(‘‘ST’’)...€ t or
co.print(“‘ST??)...print(‘‘P0°’)...€ t. There are no other low events
or low output, hence there are only two equivalence classes [t]} =
{ | ...print(“P0”)...print(“sT”)... € ¢} and [t]2 = {t' |
...print(“ST¥)...print("P0”)... € t'}. Now if ¢ contains a small value, ¢’ a
large value, as discussed earlier P;([t]}) # Py ([t]}) as well as P;([t]2) # Py ([t]3),
hence PN is violated.

In practice, the P;([t]r) are difficult or impossible to determine. So far, only
simple Markov chains have been used to explicitely determine the P;, where the
Markow chain models the probabilistic state transitions of a program, perhaps
together with a specific scheduler [15,20]. Worse, the sums might be infinite (but
will always converge). Practical examples with explicit probabilities can be found
in [4,5]. Here, as a sanity check, we demonstrate that for sequential programs
PN implies sequential noninterference. Note that for sequential (deterministic)
programs |T'(¢)] = 1, and for the unique ¢t €; T'(i) we have P;(t) = 1.

Lemma 1. For sequential programs, probabilistic moninterference implies
sequential noninterference.

Proof. Let s ~y, s'. For sequential NI, input is part of the initial states, thus
we may conclude ¢ ~; i’ and apply the PN definition. Let ¢t/ € ©. As P is
sequential, t/ =t €; T(i) or t” =t €1 T(i'). WloG let t” = t. Due to PN,

On Improvements of Low-Deterministic Security 73

Pi([tlL) = Py ([t]r), due to sequentiality P;([t]r) = Pi(t) = Py (t') = 1, thus
Py ([t]) = Py(t') = 1. That is, with probability 1 the trace ¢ executed under
1’ is low equivalent to ¢. Thus in particular the final states in ¢ resp. ¢’ must be
low equivalent. Hence s ~, s' implies [P](s) ~1 [P](s"). 0

2.3 Low-Deterministic Security

LSOD is the oldest and still the simplest criterion which enforces PN. LSOD
demands that low-equivalent inputs produce low-equivalent traces. LSOD is
scheduler independent and implies PN (see lemma below). It is intuitively secure:
changes in high input can never change low behaviour, because low behaviour is
enforced to be deterministic. This is however a very restrictive requirement and
eventually led to popular scepticism against LSOD.

Definition 4 (Low-security observational determinism). Let i,4" be input
streams, @ as above. LSOD holds iff

i~pi = Vit €Ot ~pt.

Under LSOD, all traces ¢ for input ¢ are low-equivalent: T'(¢) C [t]z, because
Vt' € T(i): t' ~p t. If there is more than one trace for ¢, then this must result
from high-nondeterminism; low behaviour is strictly deterministic.

Lemma 2. LSOD implies PN.

Proof. Let i~y i',t € ©. WloG let t € T().
Due to LSOD, we have T'(¢) C [t]r. As Pi(t') = 0 for ¢’ ¢ T'(4), we have

P([le)= Y P(t)= D> P(t)=1
t'elt]L

+ET(4)
and likewise Py ([t]r) = 1, so Pi([t]r) = Py ([t]z) holds. O

Zdancewic [24] proposed the first IFC analysis which checks LSOD. His con-
ditions require that

1. there are no explicit or implicit leaks,
2. no low observable operation is influenced by a data race,
3. no two low observable operations can happen in parallel.

The last condition imposes the infamous LSOD restriction, because it explicitely
disallows that a scheduler produces various interleavings which switch the order
of two low statements which may happen in parallel, and thus would generate
low nondeterminism. Besides that, the conditions can be checked by a static
program analysis; Zdancewic used a security type system.

As an example, consider Fig.2. In Fig. 2 middle, statements print (L) and
L=42 — which are both classified low — can be executed in parallel, and the
scheduler nondeterministically decides which executes first; resulting in either 42
or 0 to be printed. Thus there is visible low nondeterminism, which is prohibited
by classical LSOD. The program however is definitely secure according to PN.

74 J. Breitner et al.

3 RLSOD

In this section, we recapitulate PDGs, their application for LSOD, and the orig-
inal RLSOD improvement. This discussion is necessary in order to understand
the new improvements for RLSOD.

‘ fork thread_1 {] fork thread_2 ‘
J x thread_1 |[thread 2 H H thread 1_||
: L=42 |-—— - L=H : : L=42 f----o > print(L)
: read(L) read(H) | S l : | ~
N <7 - N ~
L B EN PN » Y Sy
o » } read(H) T ‘ print(L) ‘ ‘ read(H) }» —————— >‘ L=H ‘
} print(L) ‘q —————— { L= ‘
——» data dependence ——» data dependence

——» data dependence ~+--# control dependence ~---» control dependence
~--# control dependence — thread fork —> thread fork

— thread fork — — > inter-thread dependence ----b inter-thread dependence
— — > inter-thread dependence ~ —-—-— order conflict == order conflict

Fig. 3. Left to right: PDGs for Fig. 1 middle, and for Fig. 2 left and middle.

3.1 PDGs for IFC

Snelting et al. introduced Program Dependence Graphs (PDGs) as a device
to check integrity of software [22]. Later the approach was expanded into the
JOANA IFC project. It was shown that PDGs guarantee sequential noninterfer-
ence [23], and that PDGs provide improved precision as they are naturally flow-
and context-sensitive [7].

In this paper, we just present three PDG examples and some explanations.
PDG nodes represent program statements or expressions, edges represent data
dependencies, control dependencies, inter-thread data dependencies, or summary
dependencies. Figure 3 presents the PDGs for Fig. 1 middle, and for Fig. 2 left
and middle. The construction of precise PDGs for full languages is absolutely
nontrivial and requires additional information such as points-to analysis, excep-
tion analysis, and thread invocation analysis [7]. We will not discuss PDG details;
it is sufficient to know the Slicing Theorem:

Theorem [8]. If there is no PDG path a —* b, it is guaranteed that statement
a can never influence statement b. In particular, values computed in a cannot
influence values computed in b.

Thus all statements which might influence a specific program point b are
those on backward paths from this point, the so-called “backward slice” BS(b).
In particular, information flow a —* b is only possible if a € BS(b). There are
stronger versions of the theorem, which consider only paths which can indeed
be dynamically executed (“realizable” paths); these make a big difference in
precision e.g. for programs with procedures, objects, or threads.

On Improvements of Low-Deterministic Security 75

As an example, consider Fig.3. The left PDG has a data dependency edge
from L=H; to print (L) ;, because L is defined in line 9 (Fig. 2 left), used in line
10, there is a path in the control flow graph (CFG) from 9 to 10, and L is not
reassigned (“killed”) on the path. Thus there is a PDG path from read(H) ; to
print (L) ;, representing an illegal flow from line 7 to line 10 (a simple explicit
leak). In Fig.3 right, there is no path from L=H; to print(L); due to flow
sensitivity: no scheduler will ever execute L=H; before print(L);. Hence no
path from read(H) to print(L); exists, and it is guaranteed that the printed
value of L is not influenced by the secret H.

In general, the multi-threaded PDG can be used to check whether there
are any explicit or implicit leaks; technically it is required that no high source
is in the backward slice of a low sink. This criterion is enough to guarantee
sequential noninterference [23]. For probabilistic noninterference, according to
the Zdancewic LSOD criterion one must additionally show that public output is
not influenced by execution order conflicts such as data races, and that there is
no low nondeterminism. This can again be checked using PDGs and an additional
analysis called “May happen in paralle]” (MHP); the latter will uncover potential
execution order conflicts or races. Several precise and sound MHP algorithms for
full Java are available today.

Note that the slicing theorem does not cover physical side channels such as
power consumption profiles, nor does it cover corrupt schedulers or defective
hardware; it only covers “genuine” program behaviour.

In the following, we will need some definitions related to PDGs. For more
details on PDGs, MHP, flow- context-, object- and time-sensitivity, see [7].

Definition 5. 1. Let G = (N,—) be a PDG, where N consists of program
statements and expressions, and — comprises data dependencies, control
dependencies, summary dependencies, and inter-thread dependencies. The
(context-sensitive) backward slice forn € N is defined as

BS(n) = {m [m =7 iizeable ™
where H;ealizeable includes only context- object- and (optionally) time-
sensitive paths in the PDG [7].
2. All input and output statementsn € N are assumed to be classified as cl(n) =
H or cl(n) = L. Other PDG nodes need not be explicitely classified, but a
classification can be computed via the flow equation

c(n) = |_| cl(m).

m—n

For an operation o in a trace t, we assume stmt(o) € N and define cl(o) =
cl(stmt(o)).

3. We write MHP (n, m) if MHP analysis concludes that n and m may be exe-
cuted in parallel. Thus by interleaving there may be traces t,t' where t =

o (Bny0n,8n) - By Oy Sm) - = (5 Omy Sm) -+ 5y Oy 80) - -

76 J. Breitner et al.

Concerning ¢l it is important to note that PDGs are automatically flow-
sensitive and may contain a program variable v several times as a PDG node;
each occurence of v in N may have a different classification! Thus there is no
global classification of variables, but only the local classification cl(n) together
with the global flow constraints cl(n) = | |,,_,,, c/(m). The latter can easily be
computed or checked by a fixpoint iteration on the PDG [7].

3.2 Relaxed LSOD

In his 2012 thesis, Giffhorn applied PDGs to PN. He showed that PDGs can
naturally be used to check the LSOD property, and provided a soundness proof
as well as an implementation for JOANA [4]. Gifthorn also found the first opti-
mization relaxing LSOD’s strict low-determinism, named RLSOD.

One issue was to plug soundness leaks which had been found in some earlier
approaches to LSOD. In particular, treatment of nontermination had proven to
be tricky. Giffhorn provided a new definition for low-equivalent traces, where
t ~yp t'iff 1. if t,¢' are both finite, as usual the low events and low memory
parts must coincide (see Definition 2); 2. if wloG ¢ is finite, ¢’ is infinite, then
this coincidence must hold up to the length of the shorter trace, and the missing
operations in t must be missing due to an infinite loop (and nothing else); 3. for
two infinite traces, this coincidence must hold for all low events, or if low events
are missing in one trace, they must be missing due to an infinite loop [5].

It turned out that the last condition not only avoids previous soundness
leaks, but can precisely be characterized by dynamic control dependencies in
traces [5]. Furthermore, the latter can soundly and precisely be statically approx-
imated through PDGs (which include all control dependencies). Moreover, the
static conditions identified by Zdancewic which guarantee LSOD can naturally
be checked by PDGs, and enjoy increased precision due to flow- context- and
object-sensitivity. Formally Giffhorn’s LSOD criterion reads as follows:

Theorem 1. Let n,n’,n” € N be PDG nodes. LSOD holds if

1. ¥n,n': c(n)=LAc(n)=H = n’ ¢ BS(n),

2. ¥n,n',n": MHP(n,n') A Jv € def(n) N (def (n') Uuse(n')) A cl(n”) =L
= n ¢ BS(n")An' & BS(n"),

3. Vn,n': MHP(n,n') = cl(n)=HVd(n')=H.

Proof. For proof and implementation details, see [5]. O

Applying this criterion to Fig.1 right, it discovers a leak according to con-
dition 3, namely low nondeterminism between lines 6 and 11; which is correct.
In Fig. 2 left, a leak is discovered according to condition 1, which is also correct
(cmp. PDG example above). In Fig. 2 middle and right, the explicit leak has dis-
appeared (thanks to flow-sensitivity), but another leak is discovered according
to condition 3: we have MHP(L = 42;, print(L);), which causes a false alarm.

The example motivates the RLSOD criterion: low nondeterminism may be
allowed, if it cannot be reached from high events. That is, there must not be

On Improvements of Low-Deterministic Security 7

a path in the control flow graph from some n”, where cl(n”) = H, to n or
n', where cl(n) = cl(n’) = L and MHP(n,n’). If there is no path from a high
event to the low nondeterminism, no high statement can ever be executed before
the nondeterministic low statements. Thus the latter can never produce visible
behaviour which is influenced by high values. This argument leads to the RLSOD
criterion, which replaces condition 3 above by

3. Vn,n': MHP(n,n') A3n”: cl(n”)=HA (0" =tpanVn’ —Epa)
= c(n)=HVed(n)=H.

This condition can be rewritten by contraposition to the more practical form

3. Yn,n': MHP(n,n') Acl(n) =LAcn')=1L
= Vn" € START —}pe nUSTART —¢pa n': cl(n”) = L.

In fact the same argument not only holds for execution order conflicts, but
also for data races: no data race may be in the backward slice of a low sink,
unless it is unreachable by high events. That is, condition 2 can be improved the
same way as condition 3, leading to

2. Vn,n/,n": MHP(n,n’) AGn"": cdd(n”)=HA 0" -&tpanVn"” —&pa)
AJv € def(n) N (def (n') Uuse(n)) A c(n”) =1L
= n,n’ ¢ BS(n").

By contraposition, we obtain the more practical form

2. Vn,n',n": MHP(n,n’) AJv € def (n) N (def (n') U use(n’))
Ac(n”) =LA (neBSn')vn' € BS(n"))
= Vn"" € START —¢pe nUSTART —ftpan': cd(n”) = L.

In fact RLSOD, as currently implemented in JOANA, uses even more pre-
cise refinements of conditions 2’ and 3’ (see [4], pp. 200ff), which we however
omit due to lack of space. Figurel right is not RLSOD, because one of the
low-nondeterministic statements, namely line 11, can be reached from the high
statement in line 8; thus criterion 3’ is violated. Indeed the example contains a
probabilistic leak. Figure 2 middle is RLSOD, because the low-nondeterminism
in line 6 resp. 9 can not be reached from any high statement (condition 3’). The
same holds for the data race between line 6 and line 9 — condition 2 is violated
(note that in this example, n’ = n'"), but 2’ holds.? Indeed the program is PN.
Figure 2 right is however not RLSOD, because the initial read (H2) will reach
any other statement. But the program is PN, because H2 does not influence any
later low statement! The example shows that RLSOD does indeed reduce false
alarms, but it effectively removes only false alarms on low paths beginning at
program start. Anything after the first high statement will usually be reachable
from that statement, and does not profit from rule 3’ resp. 2’.

2 That is, 2’ as in [4] holds; the slightly less precise, but simpler 2’ condition in the
current paper is violated, but 3’ as defined in the current paper holds. We thank
C. Hammer and his students for this subtle observation.

78 J. Breitner et al.

Still RLSOD was a big step as it allowed — for the first time — low nonde-
terminism, while basically maintaining the LSOD approach. We will not present
a formal soundness argument for RLSOD, as RLSOD is a special case of the
improvement which will be discussed in the next section.

4 Improving RLSOD

In the following, we will generalize condition 3’ to obtain a much more precise
““RLSOD” criterion. The same improvement can be applied to condition 2’ as
well — the usage of dominators (see below) and the soundness proof are essentially
“isomorphic”. It is only for reasons of space and readability that in this paper we
only describe the improvement of 3’. For the same reasons, we stick to definitions
2’ and 3’ even though JOANA uses a slightly more precise variant (see above);
the iRLSOD improvement works the same with the more precise 2’ and 3’.

To motivate the improvement, consider again Fig. 1 right (program P;) and
Fig.2 right (program P5). When comparing P; and Pa, a crucial difference
comes to mind. In Py the troublesome high statement can reach both low-
nondeterministic statements, whereas in P, the high statement can reach only
one of them. In both programs some loop running time depends on a high value,
but in Ps, the subsequent low statements are influenced by this “timing leak”
in exactly the same way, while in P; they are not.

In terms of the PN definition, remember that P; has only two low classes

[t = {¢' | ...t = print(“P0”)...print(“ST”)...} and [t]2 = {t' | ¢/ =
...print(“ST”)...print(“P0”)...}. Likewise, Py has two low classes [t]} = {t'|
t'=...L=42...print(42)...}and [t]2 = {¢' |t = ...print(0)...L=42...}.

The crucial difference is that for Py, the probability for the two classes under i
resp. 7’ is not the same (see above), but for Py, Pi([t];?) = Py ([t] ;%) holds!

Technically, Py contains a point ¢ which dominates both low-nondeterministic
statements n = L =42;, m = print(L), and all relevant high events always
happen before ¢. Domination means that any control flow from START to n or
m must pass through c. In Py, ¢ is the point immediately before the first fork. In
contrast, P; has only a trivial common dominator for the low nondeterminism,
namely the START node, and on the path from START to n = print(“P0”)
there is no high event, while on the path to m = print(“ST”) there is.

Intuitively, the high inputs can cause strong nondeterministic high behaviour,
including stuttering. But if LSOD conditions 1 4 2 are always satisfied, and if
there are no high events in any trace between ¢ and n resp. m, the effect of the
high behaviour is always the same for n and m and thus “factored out”. It cannot
cause a probabilistic leak — the dominator “shields” the low nondeterminism from
high influence. Note that Ps contains an additional high statement m’ = read(H)
but that is behind n (no control flow is possible from m’ to n) and thus cannot
influence the n, m nondeterminism.

On Improvements of Low-Deterministic Security 79

4.1 Improving Condition 3’

The above example has demonstrated that low nondeterminism may be reachable
by high events without harm, as long as these high events always happen before
the common dominator of the nondeterministic low statements. This observation
will be even more important if dynamically created threads are allowed (as in
JOANA, cmp. Sect.5). We will now provide precise definitions for this idea.

Definition 6 (Common dominator). Let two statements n,m € P be given.

1. Statement c is a dominator for n, written ¢ dom n, if ¢ occurs on every CFG
path from START to n.

2. Statement ¢ is a common dominator for n,m, written ¢ cdom (n,m), if
c dom n A c dom m.

3. If ¢ cdom (n,m) and¥<c' cdom (n,m): ¢’ dom ¢, then c is called an immediate
common dominator.

Efficient algorithms for computing dominators can be found in many compiler
textbooks. Intraprocedural immediate dominators are unique and give rise to
the dominator tree; for unique immediate common dominators we write ¢ =
idom(n,m).3 Note that START itself is a (trivial) common dominator for every
n, m. iIRLSOD works with any common dominator. We thus assume a function
cdom which for every statement pair returns a common dominator, and write
¢ = cdom(n,m). Note that the implementation of cdom may depend on the
precision requirements, but once a specific cdom is chosen, ¢ depends solely on
n and m. We are now ready to formally define the improved RLSOD criterion.

Definition 7 (iRLSOD). iRLSOD holds if LSOD conditions 1 and 2 hold for
all PDG nodes, and if

3”. ¥n,n': MHP(n,n") Acl(n) =cl(n') = L A c = cdom(n,n’)
= V' €c—tpgnUc—tpgn':c(n”)=1L.

iRLSOD is most precise (generates the least false alarms) if cdom = idom,
because in this case it demands cl(n’") = L for the smallest set of nodes “behind”
the common dominator. Figure4 illustrates the iRLSOD definition. Note that
the original RLSOD trivially fulfils condition 3”, where cdom always returns
START. Thus iRLSOD is a true generalization.

4.2 Classification Revisited

Consider the program in Fig. 5 middle/right. This example contains a probabilis-
tic leak as follows. H influences the running time of the first while loop, hence H
influences whether line 10 or line 18 is performed first. The value of tmp2 influ-
ences the running time of the second loop, hence it also influences whether L1 or

3 In programs with procedures and threads, immediate dominators may not be unique
due to context-sensitivity [2]. Likewise, the dominator definition must be extended
if the same thread can be spawned several times. Both issues are not discussed here.

80 J. Breitner et al.

P I START Po % START

while (H250) [

while (H!=0)

iRLSOD

print(*ST")

print(PO")-+-|-g'n " om | [ALSOD |

RLSOD

LSOD LSOD

Fig. 4. Visualization of LSOD vs. RLSOD vs. iRLSOD. CFGs for Fig.1 right resp.
Fig. 2 right are sketched. n/m produces low nondeterminism, ¢ is the common domi-
nator. LSOD prohibits any low nondeterminism; RLSOD allows low nondeterminism
which is not reachable by any high events; iRLSOD allows low nondeterminism which
may be reached by high events if they are before the common dominator. The marked
regions are those affected by low nondeterminism; inside these regions no high events
are allowed. Thus iRLSOD is much more precise.

L2 is printed first. Thus H indirectly influences the execution order of the final
print statements. Indeed the program is not RLSOD, as the print statements
can be reached from the high statement in line 3 (middle). Applying iRLSOD,
the common dominator for the two print statements is line 10.

The classification of line 10 is thus crucial. Assume ¢l(10) = H, then this
classification automatically propagates in the PDG (due to the standard flow
equation cl(n) = | ,,_,, cl(m)) and lines 12/13 are classified high. iRLSOD is
violated, and the probabilistic leak discovered.

But according to the flow equation, only line 3 is explicitely high and only
lines 4, 7, 8 are PDG-reachable from 3. Thus ¢l(10) = L. Hence iRLSOD would
be satisfied because 3,4,7,8 are before the common dominator. The leak would
go undiscovered! This is not a flaw in condition 3”, but an incompleteness in the
standard flow equation — it must be extended for low nondeterminism.

In general, the rule is as follows. The standard flow equation cl(n) =
L, cl(m) expresses the fact that if a high value can reach a PDG node m
upon which n is dependent, then the high value can also reach n. Likewise, if
there is low nondeterminism with MHP(n,m), and idom(n,m) = ¢, and the
path ¢ =& pg n violates iIRLSOD - that is, it contains high statements — then
the high value can reach n. Thus cl(n) = H must be enforced. This rule must
be applied recursively until a fixpoint is reached.*

Definition 8 (Classification in PDGs). A PDG G = (N, —) is classified
correctly, if

1. Yne N:dn)>L],_,c(m),
2. ¥n,m € N: MHP(n,m) A ¢ =idom(n,m) A3c' € ¢c =&pa n,cl(d)=H
= cd(n)=H.

4 In case n was manually classified low, a trivial explicit leak has been discovered.
Same for the standard flow equation [7].

On Improvements of Low-Deterministic Security 81

In condition 1, > must be used because 2 can push cl(n) higher than | |, cl(m).
In the example, the rule enforces line 10 to be classified high, as we have
MHP(10, 18) = 6, and on the path from 6 to 10, lines 7 and 8 are high.

4.3 Soundness Arguments

Before we discuss soundness, let us point out an assumption which is standard for
PN, namely that the scheduler is truly probabilistic. In particular, it maintains
no state of its own, does not look at program variables, and the relative chance
of two threads to be scheduled next is independent of other possibly running
threads. The necessity of this assumption was stressed by various authors, e.g.
[20]. Indeed a malicious scheduler can read high values to construct an explicit
flow by scheduling, as in {H=0; | |[H=1;} {L=0;||L=1;}: the scheduler can leak
H by scheduling the L assignments after reading H, such that the first visible L
assignment represents H. Even if the scheduler is not malicious, but follows a
deterministic strategy which is known to the attacker, leaks can result. As an
example, consider Fig. 5 left. Assume deterministic round robin scheduling which
executes 3 basic statements per time slice. Then for H=1 statements 2,3,4,9,5 are
executed, while for H=0, statements 2,4,5,9 are executed. Thus the attacker can
observe the public event sequence 9—5 resp. 5—9, leaking H. However under the
assumption of truly probabilistic scheduling, Fig.5 left is iRLSOD.

In the following, let ¢1--- be the set of traces beginning with 1, so that
Pi(ty--+) = Zt:tl_tQ P;(t) is the probability that execution under input ¢ begins
with tl. We denote with Pi (t2 | tl) = Pi (tl . tg)/Pi (tl .) the conditional pI‘Ob—
ability that after ¢1, execution continues with t5. This notion extends to sets of
traces: PAT' | T) = Yy P/ Syer Pilt).

For the following soundness theorem, we assume that there is only one point
of low-nondeterminism. In this case LSOD conditions 1, 2 and 3 hold for the
whole program, except for the one point where low-nondeterminism is possible
and only the iRLSOD condition 3” holds.

1 threadl(){ 1 threadl() { 17 thread2() {

2 if (H) { 2 tmp = 1; 18 tmp2 = 100;
3 skip; }; 3 if (H) { 19 }

4 fork Thread2(); 4 tmp = 100; 20

5 print(17); 5 21 thread3() {

6 6 fork thread2(); 22 print(L2);

7 7 while (tmp > 0) { 23 }

8 thread2() { 8 tmp = tmp — 1;

9 print(42); 9

10 } 10 tmp2 = 1;

11 fork thread3();

12 while (tmp2 > 0) {
13 tmp2 = tmp2 — 1;
14

15 print(L1);

16 }

Fig. 5. Left: deterministic round-robin scheduling may leak. Middle/Right: a leak
which goes undiscovered if classification of statements is incomplete.

82 J. Breitner et al.

Theorem 2. Let iRLSOD hold for P, where P contains only one pair n,n’ of
low-nondeterministic statements: MHP (n,n'), cl(n) = cl(n') = L.
Now let i~y i, lett € ©. Then

Bi([tle) = P ([t]L)-

Proof. (sketch). If ¢t contains neither n nor n’, LSOD holds and thus the PN
condition P;([t]r) = Py ([t]r) trivially holds.

Thus we assume, without loss of generality, that n occurs on ¢, and before a
possible occurence of n’. Let ¢ = edom(n,n’).

The iRLSOD conditions ensures that ¢t can be decomposed as t1 - ¢-to-n - t3,
and furthermore all low events on ¢y are on the control path from ¢ to n or
n/, while any high events are from possible other threads. These other threads
cannot have any low operations in to, as that would form another MHP-pair
with n and n’. Correspondingly, ¢ = 414.42iy,73, where 4, is consumed by ¢,,.

Any trace t' ~j t necessarily contains ¢ and n and can be decomposed
analogously and uniquely, with ¢} ~p, ¢1, th ~ t2 and ¢§ ~p, t3 . Therefore, we
have

Pi([tlr) = Pi[tr---12) - Pile- [to]p - n--- [[ta]r) - Pi(ts [[t - e - t2]r - m).

by the chain rule for conditional probabilities, and the same for ¢ = 4,5 5.

We show P;([t]r) = Pir([t]z) by equating these factors:

— We have Pi([t1---]r) = Pw([t1---]): There is no low nondeterminism in
the part of the CFG that produced this initial segment of the trace, and
by the usual soundness argument for LSOD (cmp. Lemma 2), we find that
Pi([t1---]) = 1, and analogously for 7'.

— We have P;(c-[to]p-n--- | [t1]r) = Pi(c-[t2]r -n--- | [t1]r): If there were no
other, high threads, c -t - n would consist exclusively of low events. Since we
assume a scheduler that does neither maintain its own state nor looks at the
value of variables, the probabilities depend only on the part of i resp. i’ that
is consumed by the trace between ¢ and n, namely iy resp. i5. As to,t contain
only low operations, is, 4, is also classified low; and as we have i ~p, i/, i5 = i}
must hold. Therefore the probabilities are equal.

If there are other threads, which necessarily only execute high events in
this part of the execution, then these may slow down ¢y resp. t5 (similar to
“stuttering”), but, as we assume a fair scheduler, do not change their relative
probabilities. Therefore, these differences are factored out by considering low
equivalency classes and equality holds in this case as well.

— For Pi(ts | [t1-c-t2]r-n) = Pi(ts | [t1-c-t2]L -n) we are again in the situation
of no low nondeterminism, as any possible nondeterminism is caused by the
MHP-pair (n,n’), so analogously to the initial segment, both probabilities are
one. O

Note that the restriction to a single low-nondeterministic pair still covers
many applications. An inductive proof for the general case (more than one low
nondeterminism pair) is work in progress.

On Improvements of Low-Deterministic Security 83

Corollary 1. RLSOD is sound.

Proof. RLSOD is a special case of iRLSOD: choose cdom(n,n’) = START. O

5 Case Study: E-Voting

In the following, we will apply RLSOD/iRLSOD to an experimental e-voting
system developed in collaboration with R. Kiisters et. al. This system aims
at a provably secure e-voting software that uses cryptography to ensure com-
putational indistinguishability. To proof computational indistinguishability, the
cryptographic functions are replaced with a dummy implementation (called an
“ideal variant”). It is then checked by IFC that no explicit or implicit flow exists
between plain text, secret key and encrypted message; that is, probabilistic non-
interference holds for the e-voting system with dummy crypto implementation.
By a theorem of Kiisters, noninterference of the ideal variant implies computa-
tional indistinguishability for the system with real encryption [11,12].

The example uses a multithreaded client-server architecture to send
encrypted messages over the network. It consists of 550LoC with 16 classes.
The interprocedural control flow is sketched in Fig. 6; Fig.7 contains relevant
parts of the code. The main thread starts in class Setup in line 3ff: First it ini-
tializes encryption by generating a private and public key, then it spawns a single
Server thread before entering of the main loop. Inside the main loop it reads a
secret message from the input and spawns a Client that takes care of the secure

RLSOD
initialize encryption
create private key
spawn
(} pew » Server

—> RN S cdom
©T771 inpresenceof :
+ dynamic threads wait for network

msg =<secretinput> | 77T ' transfer and
' spawn
RequestHandler

spawn '
p e : 4
' :
msg_enc = AN visible
encrypt(msg) ‘ " network
IR N transfer
, order °, ‘ N

+ conflict ¢

iRLSOD

Fig. 6. CFG structure of the multithreaded server-client based message transfer.

84 J. Breitner et al.

message transfer: The client encrypts the given message and subsequently sends
it via the network to the server. Note that there are multiple instances of the
client thread as a new one is started in each iteration.

There are two sources of secret (HIGH) information: (1) the value of the
parameter secret_bit (line 3) that decides about the content of the message;
and (2) the private key of the encryption (line 33). Both are marked for JOANA
with a @Source annotation. By Definition 8, (2) propagates to lines 44, 46, 5, 8
and 9 which are also classified High. Likewise, (1) propagates to lines 21 and 24,
which are thus High as well.

As information sent over network is visible to the attacker, calls to the method
sendMessage (line 66f) are marked as a LOW @Sink. JOANA was started in
RLSOD mode, and — analysing the “ideal variant” — immediately guarantees
that there are no explicit or implicit leaks. However the example contains two
potential probabilistic leaks, which are both discovered by JOANA in RLSOD
mode; one is later uncovered by iRLSOD to be a false alarm.

To understand the first leak in detail, remember that this e-voting code
spawns new threads in a loop. This will cause low-nondeterminism, as the run-
ning times for the individual threads may vary and thus their relative execution
order depends on scheduling. This low-nondeterminism is (context-sensitively)
reachable from the high private-key initialization in line 44, hence RLSOD will
cause an alarm (cmp. RLSOD criterion 3). Technically, we have MHP (66, 66) A
cl(66) = L; that is, line 66 is low-nondeterministic with itself (because the
same thread is spawned several times). Furthermore, START —¢ pe 44 —5pe
66 A cl(44) = H. Thus RLSOD criterion 3’ is violated.

Now let us apply iRLSOD to this leak. The dominator for the low-
nondeterministic message sends in line 66 is located at the loop header: 12 =
cdom(66,66).> Now it turns out that the initialisation of private keys lies before
this common dominator: lines 33, 44, 46, 5, 8, and 9 context-sensitively dominate
line 12. Thus by iRLSOD criterion 3”7, this potential leak is uncovered to be a
false alarm: the private key initialisation is in fact secure!

The second potential probabilistic leak comes from the potential high influ-
ence by secret_bit in line 21 to the low-nondeterministic message sends in
line 73. Technically, we have the PDG High chain 3 — 21 — 24 — 62 — 66,
but 66 is manually classified Low. However this second leak candidate is not
eliminated by iRLSOD, and indeed is a probabilistic leak: since the encrypt
run time may depend on the message, the scheduler will statistically generate
a specific “average” order of message send executions (remember the sched-
uler must be probabilistic). An attacker can thus watch this execution order,
and deduce information about the secret messages. Technically, iRLSOD dis-
covers this subtle leak because the high operation which accesses the secret

5 Note that in case of dynamically created threads, the definition of common domina-
tor must be extended, such that the static cdom lies before all dynamically possible
spawns. This extension for dynamic threads is not covered by definition 4, but imple-
mented in JOANA. JOANA also handles interprocedural, context-sensitive domina-
tors.

On Improvements of Low-Deterministic Security 85

bit lies behind the common dominator, but before the low-nondeterminism:
12 = ¢dom(66,66) =& pe 21 =& pg 66.

JOANA must and will report this probabilistic leak. The engineer might
however decide that the leak is not dangerous. If the engineer can guarantee
that the encrypt run time does not depend on msg, the leak may be ignored.
JOANA detects both potential leaks in about 5s on a standard PC.

6 Related Work

Zdancewic’s work [24] was the starting point for us, once Gifthorn discovered that
the Zdancewic LSOD criteria can naturally be checked using PDGs. Zdancewic
uses an interesting definition of low-equivalent traces: low equivalence is not
demanded for traces, but only for every subtrace for every low variable (“location
traces”). This renders more traces low-equivalent and thus increases precision.
But location traces act contrary to flow-sensitivity (relative order of variable
accesses is lost), and according to our experience flow-sensitivity is essential.

While strict LSOD immediately guarantees probabilistic non-interference for
any scheduler, it is much too strict for multi-threaded programs. In our current
work, we considerably improved the precision of LSOD, while giving up on full
scheduler independence (by restricting (i) RLSOD to truly probabilistic sched-
ulers). Smith [20] improves on PN based on probabilistic bisimulation, where the
latter forbids the execution time of any thread to depend on secret input. Just as
in our work, a probabilistic scheduler is assumed; the probability of any execu-
tion step is given by a markov chain. This weak probabilistic bisimulation allows
the execution time of threads to depend on secret input, as long as it is not made
observable by writing to public variables. If the execution time up to the current
point depends on secret input, their criterion allows to spawn new threads only
if they do not alter public variables. In comparison, our ¢ cdom (n,m) based
check does allow two public operations to happen in parallel in newly spawned
threads, even if the execution time up to ¢ (i.e.: a point at which at most one of
the two threads involved existed) depends on secret input.

Approaches for non-interference of concurrent programs based on type sys-
tems benefit from various degrees of compositionality, a good study of which is
given in [16]. Again, a probabilistic scheduler is assumed. Scheduler-independent
approaches can be found in, e.g., [13,17]. The authors each identify a natural
class of “robust” resp. “noninterfering” schedulers, which include uniform and
round-robin schedulers. They show that programs which satisfy specific possi-
bilistic notions of bisimilarity (“FSI-security” resp. “possibilistically noninter-
ferent”) remain probabilistically secure when run under such schedulers. Since
programs like Fig.5 left are not probabilistically secure under a round-robin
scheduler, their possibilistic notion of bisimilarity require “lock-step” execution
at least for threads with low-observable behaviour. Compared to iRLSOD this
is more restrictive for programs, but less restrictive on scheduling.

86 J. Breitner et al.

1 public class Setup {

2

3 public static void setup(@Source boolean secret bit) { // HIGH input
4 // Public—key encryption functionality for Server

5 Decryptor serverDec = new Decryptor();

6 Encryptor serverEnc = serverDec.getEncryptor();

7 // Creating the server

8 Server server = new Server(serverDec, PORT);

9 new Thread(server).start();

10

11 // The adversary decides how many clients we create
12 while (Environment.untrustedInput() != 0) {

13 // determine the value the client encrypts:

14 // the adversary gives two values

15 byte[] msgl = Environment.untrustedInputMessage();
16 byte[] msg2 = Environment.untrustedInputMessage();
17 if (msgl.length != msg2.length) { break; }

18

19 byte[] msg = new byte[msgl.length];
20 for(int i = 0; i < msgl.length; +41i)
21 msgli] = (secret_bit 7 msgl[i] : msg2[i]);
22
23 // spawn new client thread
24 Client client = new Client(serverEnc, msg, HOST, PORT);
25 new Thread(client).start();
26 }
27}
28 }
29

30 public class KeyPair {

31 public byte[] publicKey;

32 @Source

33 public byte[] privateKey; // HIGH value
34 }

36 public final class Decryptor {

38 private byte[] privKey;

39 private byte[] publKey;

40 private MessagePairList log = new MessagePairList();
41

42 public Decryptor() {

43 // initialize public and secret (HIGH) keys
44 KeyPair keypair = CryptoLib.pke generateKeyPair();
45 publKey = copyOf(keypair.publicKey);

46 privKey = copyOf(keypair.privateKey);
a7}

48

49

50

51 }

52

53 public class Client implements Runnable {
54

55 private byte[] msg; private Encryptor enc;
56 private String hostname; private int port;
57

58

59 @Override

60 public void run() {

61 // encrypt

62 byte[] msg enc = enc.encrypt(msg);

63 N

64 // send

65 long socketID = Network.openConnection(hostname, port);
66 Network.sendMessage(socketID, msg enc);
67 Network.closeConnection(socketID);

68 }

69 }

70

71 public class Network {

72

73 @Sink // LOW output
74 public static void sendMessage(long socketID, byte[] msg) throws NetworkError {

6}

Fig. 7. Relevant parts of the multithreaded encrypted message passing system with
security annotations for JOANA.

On Improvements of Low-Deterministic Security 87

7 Future Work

RLSOD is already part of JOANA; we currently integrate iRLSOD into the
system. We will thus be able to provide empirical precision comparisons between
iRLSOD, RLSOD, and LSOD. Another issue is a generalization of Theorem 2
for multiple MHP pairs with corresponding multiple common dominators.

One issue which might push precision even further is lock sensitivity. The
current MHP and dominator algorithms analyse thread invocations in a context-
sensitive manner, but do ignore explicit locks. We started an integration of
Miiller-Olm’s lock-sensitive Dynamic Pushdown Networks [3] into MHP, which
sometimes can eliminate inter-thread dependences. The dominator computation
for multi-threaded programs could profit from lock-sensitivity as well.

8 Conclusion

JOANA can handle full Java with arbitrary threads, while being sound and scal-
ing to several 10k LOC. The decision to base PN in JOANA on low-deterministic
security was made at a time when mainstream IFC research considered LSOD too
restrictive. In the current paper we have shown that flow- and context-sensitive
analysis, together with new techniques for allowing secure low-nondeterminism,
has rehabilitated the LSOD idea.

Acknowledgements. This work was partially supported by Deutsche Forschungsge-
meinschaft in the scope of SPP “Reliably Secure Software Systems”, and by BMBF in
the scope of the KASTEL project.

References

1. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008.
LNCS, vol. 5283, pp. 333-348. Springer, Heidelberg (2008)

2. De Sutter, B., Van Put, L., De Bosschere, K.: A practical interprocedural domi-
nance algorithm. ACM Trans. Program. Lang. Syst. 29(4), 19 (2007)

3. Gawlitza, T.M., Lammich, P., Miiller-Olm, M., Seidl, H., Wenner, A.: Join-lock-
sensitive forward reachability analysis for concurrent programs with dynamic
process creation. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538,
pp. 199-213. Springer, Heidelberg (2011)

4. Gifthorn, D.: Slicing of concurrent programs and its application to information flow
control. Ph.D. thesis, Karlsruher Institut fiir Technologie, Fakultéat fiir Informatik,
May 2012

5. Giffhorn, D., Snelting, G.: A new algorithm for low-deterministic security. Int. J.
Inf. Secur. 14(3), 263-287 (2015)

6. Graf, J., Hecker, M., Mohr, M., Snelting, G.: Checking applications using security
APIs with JOANA. In: 8th International Workshop on Analysis of Security APIs.
http://www.dsi.unive.it /focardi/ASA8/

http://www.dsi.unive.it/focardi/ASA8/

88

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

J. Breitner et al.

Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Secur.
8(6), 399-422 (2009)

Horwitz, S., Prins, J., Reps, T.: On the adequacy of program dependence graphs
for representing programs. In: Proceedings POPL 1988. pp. 146-157. ACM, New
York, NY, USA (1988)

Huisman, M., Ngo, T.: Scheduler-specific confidentiality for multi-threaded pro-
grams and its logic-based verification. In: Proceedings Formal Verification of
Object-Oriented Systems (2011)

Huisman, M., Worah, P., Sunesen, K.: A temporal logic characterisation of obser-
vational determinism. In: Proceedings of the 19th CSFW, pp. 3. IEEE (2006)
Kiisters, R., Scapin, E., Truderung, T., Graf, J.: Extending and applying a frame-
work for the cryptographic verification of java programs. In: Abadi, M., Kremer,
S. (eds.) POST 2014 (ETAPS 2014). LNCS, vol. 8414, pp. 220-239. Springer, Hei-
delberg (2014)

Kiisters, R., Truderung, T., Graf, J.: A framework for the cryptographic verifica-
tion of Java-like programs. In: 2012 IEEE 25th Symposium on Computer Security
Foundations (CSF). IEEE Computer Society (2012)

Mantel, H., Sudbrock, H.: Flexible Scheduler-independent security. In: Gritzalis,
D., Prenecel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp.
116-133. Springer, Heidelberg (2010)

Mohr, M., Graf, J., Hecker, M.: JoDroid: adding android support to a static
information flow control tool. In: Gemeinsamer Tagungsband der Workshops der
Tagung Software Engineering 2015, Dresden, Germany, 17-18 Mé&arz 2015, vol.
1337, pp. 140-145, CEUR Workshop Proceedings. CEUR-WS.org (2015)

Ngo, T.M.: Qualitative and quantitative information flow analysis for multi-
threaded programs. Ph.D. thesis, University of Enschede (2014)

Popescu, A., Hélzl, J., Nipkow, T.: Formalizing probabilistic noninterference. In:
Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 259-275. Springer,
Heidelberg (2013)

Popescu, A., Holzl, J., Nipkow, T.: Noninterfering schedulers. In: Heckel, R., Milius,
S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 236-252. Springer, Heidelberg (2013)
Roscoe, A.W., Woodcock, J.C.P., Wulf, L.: Non-interference through determinism.
In: Gollmann, Dieter (ed.) ESORICS 1994. LNCS, vol. 875. Springer, Heidelberg
1994

éabel%eld, A., Sands, D.: Probabilistic noninterference for multi-threaded pro-
grams. In: Proceedings of the 13th IEEE Computer Security Foundations Work-
shop (CSFW 2000) 3-5 July 2000, Cambridge, pp. 200-214 (2000)

Smith, G.: Improved typings for probabilistic noninterference in a
multi-threaded language. J. Comput. Secur. 14(6), 591-623 (2006).
http://iospress.metapress.com/content /4wt8erpeseqkcOdf

Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: Proceedings of POPL 1998, pp. 355-364. ACM, January 1998
Snelting, G.: Combining slicing and constraint solving for validation of measure-
ment software. In: Cousot, Radhia, Schmidt, D.A. (eds.) SAS 1996. LNCS, vol.
1145. Springer, Heidelberg (1996)

Snelting, G., Robschink, T., Krinke, J.: Efficient path conditions in dependence
graphs for software safety analysis. ACM Trans. Softw. Eng. Methodol. 15(4),
410-457 (2006)

Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proceedings CSFW, pp. 29-43. IEEE (2003)

http://iospress.metapress.com/content/4wt8erpe5eqkc0df

	On Improvements of Low-Deterministic Security
	1 Introduction
	2 Probabilistic Noninterference
	2.1 Sequential Noninterference
	2.2 Probabilistic Noninterference
	2.3 Low-Deterministic Security

	3 RLSOD
	3.1 PDGs for IFC
	3.2 Relaxed LSOD

	4 Improving RLSOD
	4.1 Improving Condition 3'
	4.2 Classification Revisited
	4.3 Soundness Arguments

	5 Case Study: E-Voting
	6 Related Work
	7 Future Work
	8 Conclusion
	References

