Frank Piessens

Luca Vigano (Eds.)

ARCoSS

Principles of Security
and Trust

5th International Conference, POST 2016
Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2016
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings

ETAPS : |
EUROPEAN JOINT CONFERENCES ON l———.—._..

THEORY & PRACTICE OF SOFTWARE r
-
»
] f{

LNCS 9635

Lecture Notes in Computer Science 9635

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M.Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Frank Piessens - Luca Vigano (Eds.)

Principles of Security
and Trust

5th International Conference, POST 2016

Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016
Eindhoven, The Netherlands, April 2-8, 2016
Proceedings

@ Springer

Editors

Frank Piessens Luca Vigano

KU Leuven King’s College London
Leuven London

Belgium UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-662-49634-3 ISBN 978-3-662-49635-0 (eBook)

DOI 10.1007/978-3-662-49635-0

Library of Congress Control Number: 2016932521
LNCS Sublibrary: SL.4 — Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

ETAPS Foreword

Welcome to the proceedings of ETAPS 2016, which was held in Eindhoven, located in
“the world’s smartest region,” also known as the Dutch Silicon Valley. Since ETAPS’
second edition held in Amsterdam (1999), ETAPS returned to The Netherlands this
year.

ETAPS 2016 was the 19th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, consisting of five constituting conferences (ESOP, FASE, FoSSaCS, TACAS,
and POST) this year. Each conference has its own Programme Committee and its own
Steering Committee. The conferences cover various aspects of software systems,
ranging from theoretical computer science to foundations to programming language
developments, analysis tools, formal approaches to software engineering, and security.
Organizing these conferences in a coherent, highly synchronized conference program,
enables attendees to participate in an exciting event, having the possibility to meet
many researchers working in different directions in the field, and to easily attend the
talks of various conferences. Before and after the main conference, numerous satellite
workshops took place and attracted many researchers from all over the globe.

The ETAPS conferences received 474 submissions in total, 143 of which were
accepted, yielding an overall acceptance rate of 30.2 %. I thank all authors for their
interest in ETAPS, all reviewers for their peer-reviewing efforts, the Program Com-
mittee members for their contributions, and in particular the program co-chairs for their
hard work in running this intensive process. Last but not least, my congratulations to all
the authors of the accepted papers!

ETAPS 2016 was greatly enriched by the unifying invited speakers Andrew Gordon
(MSR Cambridge and University of Edinburgh, UK), and Rupak Majumdar (MPI
Kaiserslautern, Germany), as well as the conference-specific invited speakers (ESOP)
Cristina Lopes (University of California at Irvine, USA), (FASE) Oscar Nierstrasz
(University of Bern, Switzerland), and (POST) Vitaly Shmatikov (University of Texas
at Austin, USA). Invited tutorials were organized by Lenore Zuck (Chicago) and were
provided by Grigore Rosu (University of Illinois at Urbana-Champaign, USA) on
software verification and Peter Ryan (University of Luxembourg, Luxembourg) on
security. My sincere thanks to all these speakers for their inspiring and interesting talks!

ETAPS 2016 took place in Eindhoven, The Netherlands. It was organized by the
Department of Computer Science of the Eindhoven University of Technology. It was
further supported by the following associations and societies: ETAPS e.V., EATCS
(European Association for Theoretical Computer Science), EAPLS (European Asso-
ciation for Programming Languages and Systems), and EASST (European Association
of Software Science and Technology). The local organization team consisted of Mark
van den Brand, Jan Friso Groote (general chair), Margje Mommers, Erik Scheffers,
Julien Schmaltz, Erik de Vink, Anton Wijs, Tim Willemse, and Hans Zantema.

VI ETAPS Foreword

The overall planning for ETAPS is the main responsibility of the Steering
Committee, and in particular of its Executive Board. The ETAPS Steering Committee
consists of an Executive Board and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The Executive
Board consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbriicken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Liittgen (Bamberg), Vladimiro Sassone
(Southampton), and Tarmo Uustalu (Tallinn). Other members of the Steering Com-
mittee are: Parosh Abdulla (Uppsala), David Basin (Zurich), Giuseppe Castagna
(Paris), Marsha Chechik (Toronto), Javier Esparza (Munich), Jan Friso Groote
(Eindhoven), Reiko Heckel (Leicester), Marieke Huisman (Twente), Bart Jacobs
(Nijmegen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Kim G. Larsen (Aalborg),
Axel Legay (Rennes), Christof Loding (Aachen), Matteo Maffei (Saarbriicken),
Pasquale Malacaria (London), Tiziana Margaria (Limerick), Andrzej Murawski
(Warwick), Catuscia Palamidessi (Palaiseau), Frank Piessens (Leuven), Jean-Francois
Raskin (Brussels), Mark Ryan (Birmingham), Julia Rubin (Massachussetts), Don
Sannella (Edinburgh), Perdita Stevens (Edinburgh), Gabriele Taentzer (Marburg), Peter
Thiemann (Freiburg), Luca Vigano (London), Igor Walukiewicz (Bordeaux), Andrzej
Wasowski (Copenhagen), and Hongseok Yang (Oxford).

I sincerely thank all ETAPS Steering Committee members for all their work in
making the 19th edition of ETAPS a success. Moreover, thanks to all speakers,
attendees, organizers of the satellite workshops, and Springer for their support. Finally,
a big thanks to Jan Friso and his local organization team for all their enormous efforts
enabling ETAPS to take place in Eindhoven!

January 2016 Joost-Pieter Katoen
ETAPS SC Chair
ETAPS e.V. President

Preface

This volume contains the papers presented at POST 2016, the 5th Conference on
Principles of Security and Trust, held April 4-5, 2016, in Eindhoven, The Netherlands,
as part of ETAPS. Principles of Security and Trust is a broad forum related to the
theoretical and foundational aspects of security and trust, and thus welcomes papers of
many kinds: new theoretical results, practical applications of existing foundational
ideas, and innovative theoretical approaches stimulated by pressing practical problems.

POST was created in 2012 to combine and replace a number of successful and long-
standing workshops in this area: Automated Reasoning and Security Protocol Analysis
(ARSPA), Formal Aspects of Security and Trust (FAST), Security in Concurrency
(SecCo), and the Workshop on Issues in the Theory of Security (WITS). A subset
of these events met jointly as an event affiliated with ETAPS 2011 under the name
Theory of Security and Applications (TOSCA).

There were 35 submissions to POST 2016, 34 research papers and one tool
demonstration paper. Each submission was reviewed by at least three Program Com-
mittee members, who in some cases solicited the help of outside experts to review the
papers. Electronic discussion was used to decide which papers to select for the
program.

The committee decided to accept 12 papers and the tool demonstration paper. In
addition to the presentations of these papers, the conference program also included an
invited talk by Vitaly Shmatikov, who was also one of the ETAPS unifying speakers.

We would like to thank the members of the Program Committee, the additional
reviewers, the POST Steering Committee, the ETAPS Steering Committee, and the
local Organizing Committee, who all contributed to the success of POST 2016. We
also thank all authors of submitted papers for their interest in POST and congratulate
the authors of accepted papers. Finally, we gratefully acknowledge the use of Easy-
Chair for organizing the submission process, the Program Committee’s work, and the
preparation of this volume.

January 2016 Frank Piessens
Luca Vigano

Program Committee

Alessandro Armando
Lujo Bauer

Tom Chothia
Sherman S.M. Chow
Michael Clarkson
Jason Crampton
Riccardo Focardi
Deepak Garg

Peeter Laud

Jay Ligatti

Gavin Lowe

Matteo Maffei
Catherine Meadows
Sebastian A. Modersheim
Frank Piessens
Alexander Pretschner
Willard Rafnsson
Tamara Rezk
Michael Rusinowitch
P.Y.A. Ryan
Pierangela Samarati
Deian Stefan

Nikhil Swamy
Vanessa Teague
Luca Vigano

Additional Reviewers

Bao, Long
Benitez, Sergio
Bielova, Nataliia
Chen, Yu
Chevalier, Yannick
Costa, Gabriele
Heiberg, Sven
Hess, Andreas
Kelbert, Florian

Organization

DIBRIS - University of Genoa, Italy
Carnegie Mellon University, USA
University of Birmingham, UK

Chinese University of Hong Kong, SAR China

George Washington University, USA
Royal Holloway, University of London, UK
Universita Ca’ Foscari, Venice, Italy

Max Planck Institute for Software Systems, Germany

Cybernetica AS, Estonia

University of South Florida, USA
University of Oxford, UK

CISPA, Saarland University, Germany
NRL, USA

DTU, Denmark

Katholieke Universiteit Leuven, Belgium
Technische Universitdt Miinchen, Germany
Chalmers University of Technology, Sweden
Inria, France

LORIA - Inria Nancy, France

University of Luxembourg, Luxembourg
Universita degli Studi di Milano, Italy
Stanford University, USA

Microsoft Research, USA

University of Melbourne, Australia

King’s College London, UK

Kordy, Barbara

Lai, Russell W.F.
Lovat, Enrico

Merlo, Alessio
Muehlberg, Jan Tobias
Ranise, Silvio
Roenne, Peter

Zhang, Tao

Zhao, Yongjun

Contents

Information Flow

Faceted Dynamic Information Flow via Control and Data Monads
Thomas Schmitz, Dustin Rhodes, Thomas H. Austin, Kenneth Knowles,
and Cormac Flanagan

Asymmetric Secure Multi-execution with Declassification
Iulia Bolosteanu and Deepak Garg

A Taxonomy of Information Flow Monitors.
Nataliia Bielova and Tamara Rezk

On Improvements of Low-Deterministic Security
Joachim Breitner, Jiirgen Graf, Martin Hecker, Martin Mohr,
and Gregor Snelting

Tool Demonstration: JOANA
Jiirgen Graf, Martin Hecker, Martin Mohr, and Gregor Snelting
Models and Applications

Towards Fully Automatic Logic-Based Information Flow Analysis:
An Electronic-Voting Case Study
Quoc Huy Do, Eduard Kamburjan, and Nathan Wasser

Towards a Comprehensive Model of Isolation for Mitigating
Hlicit Channels
Kevin Falzon and Eric Bodden

Correct Audit Logging: Theory and Practice.
Sepehr Amir-Mohammadian, Stephen Chong, and Christian Skalka

The Value of Attack-Defence Diagrams.
Holger Hermanns, Julia Krimer, Jan Krcadl, and Mariélle Stoelinga

Protocols

Composing Protocols with Randomized Actions
Matthew S. Bauer, Rohit Chadha, and Mahesh Viswanathan

Bounding the Number of Agents, for Equivalence Too
Véronique Cortier, Antoine Dallon, and Stéphanie Delaune

http://dx.doi.org/10.1007/978-3-662-49635-0_1
http://dx.doi.org/10.1007/978-3-662-49635-0_2
http://dx.doi.org/10.1007/978-3-662-49635-0_3
http://dx.doi.org/10.1007/978-3-662-49635-0_4
http://dx.doi.org/10.1007/978-3-662-49635-0_5
http://dx.doi.org/10.1007/978-3-662-49635-0_6
http://dx.doi.org/10.1007/978-3-662-49635-0_6
http://dx.doi.org/10.1007/978-3-662-49635-0_7
http://dx.doi.org/10.1007/978-3-662-49635-0_7
http://dx.doi.org/10.1007/978-3-662-49635-0_8
http://dx.doi.org/10.1007/978-3-662-49635-0_9
http://dx.doi.org/10.1007/978-3-662-49635-0_10
http://dx.doi.org/10.1007/978-3-662-49635-0_11

X Contents

AIF-w: Set-Based Protocol Abstraction with Countable Families. 233
Sebastian Modersheim and Alessandro Bruni

Computational Soundness Results for Stateful Applied = Calculus 254
Jianxiong Shao, Yu Qin, and Dengguo Feng

Author Index 277

http://dx.doi.org/10.1007/978-3-662-49635-0_12
http://dx.doi.org/10.1007/978-3-662-49635-0_12
http://dx.doi.org/10.1007/978-3-662-49635-0_13
http://dx.doi.org/10.1007/978-3-662-49635-0_13

Information Flow

Faceted Dynamic Information Flow via Control
and Data Monads

Thomas Schmitz' ®9 | Dustin Rhodes', Thomas H. Austin?,
Kenneth Knowles!, and Cormac Flanagan?

! University of California Santa Cruz, Santa Cruz, USA
tschmitz@ucsc.edu
2 San José State University, San Jose, USA

Abstract. An application that fails to ensure information flow secu-
rity may leak sensitive data such as passwords, credit card numbers, or
medical records. News stories of such failures abound. Austin and Flana-
gan [2] introduce faceted values — values that present different behavior
according to the privilege of the observer — as a dynamic approach to
enforce information flow policies for an untyped, imperative A-calculus.

We implement faceted values as a Haskell library, elucidating their
relationship to types and monadic imperative programming. In contrast
to previous work, our approach does not require modification to the lan-
guage runtime. In addition to pure faceted values, our library supports
faceted mutable reference cells and secure facet-aware socket-like commu-
nication. This library guarantees information flow security, independent
of any vulnerabilities or bugs in application code. The library uses a con-
trol monad in the traditional way for encapsulating effects, but it also
uniquely uses a second data monad to structure faceted values. To illus-
trate a non-trivial use of the library, we present a bi-monadic interpreter
for a small language that illustrates the interplay of the control and data
monads.

1 Introduction

When writing a program that manipulates sensitive data, the programmer must
prevent misuse of that data, intentional or accidental. For example, when one
enters a password on a web form, the password should be communicated to the
site, but not written to disk. Unfortunately, enforcing these kinds of information
flow policies is problematic. Developers primarily focus on correct functionality;
security properties are prioritized only after an attempted exploit.

Just as memory-safe languages relieve developers from reasoning about
memory management (and the host of bugs resulting from its mismanagement),
information flow analysis enforces security properties in a systemic fashion.
Information flow controls require a developer to mark sensitive information, but
otherwise automatically prevent any “leaks” of this data. Formally, we call this

© Springer-Verlag Berlin Heidelberg 2016
F. Piessens and L. Vigand (Eds.): POST 2016, LNCS 9635, pp. 323, 2016.
DOI: 10.1007/978-3-662-49635-0_1

4 T. Schmitz et al.

property nomninterference; that is, public outputs do not depend on private
inputs!.

Secure multi-execution [9,16,23] is a relatively recent and popular informa-
tion flow enforcement technique. A program execution is split into two versions:
the “high” execution has access to sensitive information, but may only write to
private channels; the “low” execution may write to public channels, but cannot
access any sensitive information. This elegant approach ensures noninterference.

Faceted evaluation is a technique for simulating secure multi-execution with
a single process, using special faceted values that contain both a public view
and a private view of the data. With this approach, a single execution can
provide many of the same guarantees that secure multi-execution provides, while
achieving better performance.

This paper extends the ideas of faceted values from an untyped variant of
the A-calculus [2] to Haskell and describes the implementation of faceted values
as a Haskell library. This approach provides a number of benefits and insights.

First, whereas prior work on faceted values required the development of a
new language semantics, we show how to incorporate faceted values within an
existing language via library support.

Second, faceted values fit surprisingly well (but with some subtleties) into
Haskell’s monadic structure. As might be expected, we use an I0-like monad
called FIO to support imperative updates and I/O operations. We also use a
second type constructor Faceted to describe faceted values; for example, the
faceted value (k 7 3 : 4) has type Faceted Int. Somewhat surprisingly, Faceted
turns out to also be a monad, with natural definitions of the corresponding
operations that satisfy the monad axioms [34]. These two monads, FIO and
Faceted, naturally interoperate via an associated product function [17] that
supports switching from the FI0 monad to the Faceted monad when necessary
(as described in more detail below).

This library guarantees the traditional information flow security property of
termination-insensitive noninterference, independent of any bugs, vulnerabilities,
or malicious code in the client application.

Finally we present an application of this library in the form of an interpreter
for the imperative A-calculus with I/O. This interpreter validates the expressive-
ness of the Faceted library; it also illustrates how the FIO and Faceted monads
flow along control paths and data paths respectively.

In summary, this paper contributes the following:

— We present the first formulation of faceted values and computations in a typed
context.

— We show how to integrate faceted values into a language as a library, rather
than by modifying the runtime environment.

1 'We refer to sensitive values as “private” and non-sensitive values as “public”, as
confidentiality is generally given more attention in the literature on information flow
analysis. However, the same mechanism can also enforce integrity properties, such
as that trusted outputs are not influenced by untrusted inputs.

Faceted Dynamic Information Flow via Control and Data Monads 5

— We clarify the relationship between explicit flows in pure calculations (via
the Faceted monad) and implicit flows in impure computations (via the FI0
monad).

— Finally, we present an interpreter for an imperative A-calculus with dynamic
information flow. The security of the implementation is guaranteed by our
library. Notably, this interpreter uses the impure monad (FIO) in the tra-
ditional way to structure computational effects, and uses the pure faceted
monad (Faceted) to structure values.

2 Review of Information Flow and Faceted Values

In traditional information flow systems, information is tagged with a label to
mark it as confidential to particular parties. For instance, if we need to restrict
pin to bank, we might write:

pin = 4321k

To protect this value, we must prevent unauthorized viewers from observ-
ing it, directly or indirectly. In particular, we must defend against explicit flows
where a confidential value is directly assigned to a public variable, and implicit
flows where an observer may deduce a confidential value by reasoning about the
program’s control flow. The following code shows an explicit flow from pin to
the variable x.
pin = 4321Pemk
X = pin + 1

Taint tracking — in languages such as Perl and Ruby — suffices to track straight-
forward explicit flows; in contrast, implicit flows are more subtle. Continuing our
example, consider the following code, which uses a mutable I0Ref.

do above2K «— newIORef False
if (pin > 2000)
then writeIORef above2K True
else return ()

This code illustrates a simple implicit flow. After it runs, the value of above2K
will reflect information about pin, even though the code never directly assigns
the value of pin to above2K. There are several proposed strategies for handling
these types of flows:

1. Allow the update, but mark above2K as sensitive because it was changed
in a sensitive context. This strategy can help for auditing information flows
“in the wild” [15], but it fails to guarantee noninterference, as shown in the
Naive column of Fig.1 (note that the naive computation results in True
when x is True).

2. Disallow the update to above2K within the context of the sensitive con-
ditional pin. When enforced at runtime, this technique becomes the no-
sensitive-upgrade strategy [1,36] illustrated in the NSU column of Fig.1.
Note that while this technique maintains noninterference, it also terminates
the program prematurely.

6 T. Schmitz et al.

3. Ignore the update to above2K in a sensitive context, an approach first used
by Fenton [11]. This strategy guarantees noninterference by sacrificing cor-
rectness (the program’s result may not be internally consistent). We show
this strategy in the Fenton column of Fig. 1.

x=(k? True: 1)

do Naive NSU | Fenton | Faceted Evaluation
y <- newIORef True y = True y = True|y = True y = True

z <- newIORef True z = True z = True|z = True z = True

vx <- readIORef x — — — —

when vx pc = {k} pc = {k}|pc = {k} pc = {k}

(writeIORef y False) ||y = (k ? False: l)| stuck | ignored |y = (k ? False : True)
vy <- readIORef y - — —

when vy — — pc = {k}
(writeIORef z False) — — z = (k ? True : False)

readIORef z — - —

Result: True stuck | False (k 7 True : False)

Fig. 1. A computation with implicit flows.

Faceted values introduce a third aspect to sensitive data. In addition to the
sensitive value and its label, the following faceted value includes a default public
view of ‘0000’.

pin = (bank ? 4321 : 0000)

Then, when we run the previous program with this faceted pin, the value of
above2K is (bank ? True : False). The bank sees the sensitive value True, but
an unauthorized viewer instead sees the default value False, giving a consistent
picture to the unauthorized viewer while still protecting sensitive data.

Label-based information flow systems reason about multiple principals by
joining labels together (e.g. 34 +48 = 745). In a similar manner, faceted evalua-
tion nests faceted values to represent multiple principals, essentially constructing
a tree? mapping permissions to values:

Figure 1, adapted from Austin and Flanagan [2], demonstrates a classic code
snippet first introduced by Fenton [11]. The example uses two conditional state-
ments to evade some information flow controls. When this code runs, the private
value x leaks into the public variable z. We represent the input x, a confidential
boolean value, in faceted notation as (k ? False : L) for false and (k ? True : 1)
for true, where 1 means roughly ‘undefined’. Boolean reference cells y and z are

2 Alternatively, a faceted value can be interpreted as a function mapping sets of labels
to values, and the syntax above as merely a compact representation.

Faceted Dynamic Information Flow via Control and Data Monads 7

initialized to True; by default, they are public to maximize the permissiveness
of these values.

When the input x is (k 7 False : 1), the value for y remains unchanged
because the first when statement is not run. Then in the second when statement,
y is still public, and thus z also remains public because it depends only on y.
Since no private information is involved in the update to z, all information flow
strategies return the public value False as their final result.

The case where the input x is (k ? True : L) is more interesting, as illustrated
in Fig. 1. Note that if the final value appears as True to public observers, then
the private value x has leaked. The strategies differ in the way they handle the
update to y in the first conditional statement. Since this update depends upon
the value of x, we must be careful to avoid the potential implicit flow from x
to y. We now compare how each approach handles this update.

In the Naive column of Fig.1, the strategy tracks the influence of x by
applying the label k to y. Regardless, y is false during the second conditional,
so z retains its public True value. Thus, under Naive information flow control,
the result of this code sample is a public copy of x, violating noninterference.

The No-Sensitive-Upgrade approach instead terminates execution on this
update, guaranteeing termination-insensitive noninterference, but at the cost
of potentially rejecting valid programs. Stefan et al. implement this strategy in
the elegant LIO library for Haskell [32]. Our work shares the motivations of
LIO, but extends beyond the No-Sensitive-Upgrade strategy to support faceted
values, thus enabling correct execution of more programs.

The Fenton strategy forbids the update to y, but allows execution to continue.
This approach avoids abnormal termination, but it may return inaccurate results,
as shown in Fig. 1.

Faceted evaluation solves this dilemma by simulating different executions of
this program, allowing it to provide accurate results and avoid rejecting valid
programs. In the Faceted Evaluation column, we see that the update to y results
in the creation of a new faceted value (k ? False : True). Any viewer autho-
rized to see k-sensitive data® can see the real value of y; unauthorized viewers
instead see True, thus hiding the value of x. In the second conditional assign-
ment, the runtime updates z in a similar manner and produces the final result
(k?True:False). In contexts with the k security label, this value will behave
as True; in other contexts, it will behave as False. This code therefore provides
noninterference, avoids abnormal termination, and provides accurate results to
authorized users.

3 Library Overview
We implement faceted computation in Haskell as a library that enforces infor-

mation flow security dynamically, using abstract data types to prevent buggy
or malicious programs from circumventing dynamic protections. In contrast, the

3 That is, authorized to see data marked as sensitive to principal k.

8 T. Schmitz et al.

original formulation [2] added faceted values pervasively to the semantics of a
dynamically-typed, imperative A-calculus. Because of the encapsulation offered
by Haskell’s type system, we do not need to modify the language semantics. Our
library is available at https://github.com/haskell-facets/haskell-faceted.

Our library is conceptually divided into the following components:

— Pure faceted values of type a (represented by the type Faceted a).
— Imperative faceted computations (represented by the type FIO a), which can
operate on:
o faceted reference cells (represented by the type FioRef a), and
e facet-enabled file handles / sockets (represented by the type FHandle).

3.1 Pure Faceted Values: Faceted a

Figure 2 shows the public interface for the pure fragment of our library. This
fragment tracks explicit data flow information in pure computations.

type Label = String

data Faceted a

public :: a — Faceted a
faceted :: Label — Faceted a — Faceted a — Faceted a
bottom :: Faceted a

instance Monad Faceted

Fig. 2. Interface for the pure fragment of the Faceted library.

Our implementation presumes that security labels are strings, though leaving
the type of labels abstract is straightforward.

A value of type Faceted a represents multiple values, or facets, of type a.
To maintain security, the facets should not be directly observable; therefore, the
data type is abstract.

The function public injects any type a into the type Faceted a. It accepts
a value v of type a and returns a faceted value that behaves just like v for any
observer.

The function faceted constructs a value of type Faceted a from a label
k and two other faceted values priv and pub, each of type Faceted a. To any
viewer authorized to see k, the result behaves as priv; to all other observers, the
result behaves as pub (and so on, recursively).

The value bottom (abbreviated L) is a member of Faceted a for any a, and
represents a lack of a value. bottom is used when a default value is necessary,
such as in a public facet. Any computation based on bottom results in bottom.

From faceted, we can define various derived constructors for creating faceted
values with minimal effort. For example:

https://github.com/haskell-facets/haskell-faceted

Faceted Dynamic Information Flow via Control and Data Monads 9

makePrivate :: Label — a — Faceted a
makePrivate k v = faceted k (public v) bottom

makeFacets :: Label — a — a — Faceted a
makeFacets k priv pub = faceted k (public priv) (public pub)

The Monad instance for Faceted conveniently propagates security labels as
appropriate. For example, the following code uses Haskell’s do syntax to multiply
two values of type Faceted Int.

do x «— makeFacets"k" 7 1 - <"k" 2 7 : 1>
y <« makeFacets "1" 6 1 -- <"1" 2 6 : 1>
return (x * y) = MM 2 <ML 2 42 0 > s <L 2 6 8 15>

Here, = is an Int that is extracted from (faceted "k" 7 1), either 7 or 1. The
Faceted monad instance automatically executes the remainder of the do block
twice (once for each possible value of x) before collecting the various results into
a faceted value. The situation is similar for y, so the final faceted value is a tree
with four leaves.

3.2 Faceted Reference Cells: FIO a and FioRef a

For the pure language of Sect. 3.1, information flow analysis is straightforward
because all dependencies between values are explicit; there are no implicit flows.
An implicit flow occurs when a value is computed based on side effects that
depend on private data, as in the following example, where x is an I0Ref with
initial value 0.

do if secret == 42 -- working in IO monad
then writeIORef x 1
else writeIORef x 2
readIORef x

The return value will be 1 if and only if secret == 42.

Suppose we opt to protect the confidentiality of secret by setting secret =
makePrivate k 42. The type of secret is now Faceted Int. Then our example
can be reformulated:

do n «+ secret -— working in Faceted monad
return $ do if n == 42 -- working in IO monad
then writeIORef x 1
else writeIORef x 2
readIORef x

The outer do begins a computation in the Faceted monad, with the value 42
bound to n. This expression has type Faceted (I0 Int), so it cannot be “run”
as part of a Haskell program. Thus, the pure fragment of our library described
so far prevents all implicit flows, even those that are safe.

Guided by the types, we seek a way to convert a value of type Faceted (I0 a)
to a value of type I0 (Faceted a). The latter could then be run to yield a value
of type Faceted a, where the facets account for any implicit flows.

10 T. Schmitz et al.

data Branch = Private Label | Public Label
type PC [Branch]

data FIO0 a
instance Monad FIO

runFI0 :: FI0 a — PC — I0 a
prod :: Faceted (FIO (Faceted a)) — FIO (Faceted a)

data FioRef a

newFioRef :: Faceted a — FIO (FioRef (Faceted a))

readFioRef :: FioRef (Faceted a) — FIO (Faceted a)

writeFioRef :: FioRef (Faceted a) — Faceted a — FIO (Faceted ())

Fig. 3. Interface for FI0 and FioRef.

Faceted I0 computations take place in the FIO monad (the name is short
for “Faceted I/O”). Figure 3 shows the public interface for this fragment of the
library. When faceted data influences control flow, the result of a computation
implicitly depends on the observed facets; the implementation of FIO transpar-
ently tracks this information flow.

The Monad instance for FI0 allows sequencing computations in the usual way,
so FIO0 acts as a (limited) drop-in replacement for I0. If fiol and fio2 each have
type FI0 Int, then the following expression also has type FI0 Int.

do x « fiol
y « fio2
return (x * y)

The function runFI0 converts a value of type FIO a to a value of type I0 a.
The side effects in this I0 computation will respect the information flow policy.

runFI0 takes one additional argument: an initial value for a data structure
called pe (for “program counter label”), which is used for tracking the branching
of the computation. To guarantee security, it may be necessary to execute parts of
the program multiple times — once for observers who may view k-sensitive data,
and again for observers who may not. During the former branch of computation,
the pc will contain the value Private k; during the latter branch, it will contain
Public k.

The pc argument to runFIO allows controlling the set of observers whose
viewpoints are considered during faceted computation. The empty pc, denoted
[1, will force simulation of all possible viewpoints.

A value of type FioRef a (short for “facet-aware I0Ref”) is a mutable refer-
ence cell where initialization, reading, and writing are all FI0 computations that
operate on Faceted values and that account for implicit flows accordingly.

Figure 3 presents the public interface to FioRef a, which parallels that of
conventional reference cells of type I0Ref a.

Faceted Dynamic Information Flow via Control and Data Monads 11

To write side-effecting code that depends on a faceted value, the Faceted
and FIO0 monads must be used together. The library function prod enables this
interaction.

Using these library functions, our running example finally looks as follows.

do x « newFioRef (public 0) -- working in FIO monad
prod $ do v « secret -- working in Faceted monad
return $ if v == 42

then writeFioRef x (publi