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ETAPS Foreword

Welcome to the proceedings of ETAPS 2016, which was held in Eindhoven, located in
“the world’s smartest region,” also known as the Dutch Silicon Valley. Since ETAPS’
second edition held in Amsterdam (1999), ETAPS returned to The Netherlands this
year.

ETAPS 2016 was the 19th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, consisting of five constituting conferences (ESOP, FASE, FoSSaCS, TACAS,
and POST) this year. Each conference has its own Programme Committee and its own
Steering Committee. The conferences cover various aspects of software systems,
ranging from theoretical computer science to foundations to programming language
developments, analysis tools, formal approaches to software engineering, and security.
Organizing these conferences in a coherent, highly synchronized conference program,
enables attendees to participate in an exciting event, having the possibility to meet
many researchers working in different directions in the field, and to easily attend the
talks of various conferences. Before and after the main conference, numerous satellite
workshops took place and attracted many researchers from all over the globe.

The ETAPS conferences received 474 submissions in total, 143 of which were
accepted, yielding an overall acceptance rate of 30.2 %. I thank all authors for their
interest in ETAPS, all reviewers for their peer-reviewing efforts, the Program Com-
mittee members for their contributions, and in particular the program co-chairs for their
hard work in running this intensive process. Last but not least, my congratulations to all
the authors of the accepted papers!

ETAPS 2016 was greatly enriched by the unifying invited speakers Andrew Gordon
(MSR Cambridge and University of Edinburgh, UK), and Rupak Majumdar (MPI
Kaiserslautern, Germany), as well as the conference-specific invited speakers (ESOP)
Cristina Lopes (University of California at Irvine, USA), (FASE) Oscar Nierstrasz
(University of Bern, Switzerland), and (POST) Vitaly Shmatikov (University of Texas
at Austin, USA). Invited tutorials were organized by Lenore Zuck (Chicago) and were
provided by Grigore Rosu (University of Illinois at Urbana-Champaign, USA) on
software verification and Peter Ryan (University of Luxembourg, Luxembourg) on
security. My sincere thanks to all these speakers for their inspiring and interesting talks!

ETAPS 2016 took place in Eindhoven, The Netherlands. It was organized by the
Department of Computer Science of the Eindhoven University of Technology. It was
further supported by the following associations and societies: ETAPS e.V., EATCS
(European Association for Theoretical Computer Science), EAPLS (European Asso-
ciation for Programming Languages and Systems), and EASST (European Association
of Software Science and Technology). The local organization team consisted of Mark
van den Brand, Jan Friso Groote (general chair), Margje Mommers, Erik Scheffers,
Julien Schmaltz, Erik de Vink, Anton Wijs, Tim Willemse, and Hans Zantema.



The overall planning for ETAPS is the main responsibility of the Steering
Committee, and in particular of its Executive Board. The ETAPS Steering Committee
consists of an Executive Board and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The Executive
Board consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), and Tarmo Uustalu (Tallinn). Other members of the Steering Com-
mittee are: Parosh Abdulla (Uppsala), David Basin (Zurich), Giuseppe Castagna
(Paris), Marsha Chechik (Toronto), Javier Esparza (Munich), Jan Friso Groote
(Eindhoven), Reiko Heckel (Leicester), Marieke Huisman (Twente), Bart Jacobs
(Nijmegen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Kim G. Larsen (Aalborg),
Axel Legay (Rennes), Christof Löding (Aachen), Matteo Maffei (Saarbrücken),
Pasquale Malacaria (London), Tiziana Margaria (Limerick), Andrzej Murawski
(Warwick), Catuscia Palamidessi (Palaiseau), Frank Piessens (Leuven), Jean-Francois
Raskin (Brussels), Mark Ryan (Birmingham), Julia Rubin (Massachussetts), Don
Sannella (Edinburgh), Perdita Stevens (Edinburgh), Gabriele Taentzer (Marburg), Peter
Thiemann (Freiburg), Luca Vigano (London), Igor Walukiewicz (Bordeaux), Andrzej
Wąsowski (Copenhagen), and Hongseok Yang (Oxford).

I sincerely thank all ETAPS Steering Committee members for all their work in
making the 19th edition of ETAPS a success. Moreover, thanks to all speakers,
attendees, organizers of the satellite workshops, and Springer for their support. Finally,
a big thanks to Jan Friso and his local organization team for all their enormous efforts
enabling ETAPS to take place in Eindhoven!

January 2016 Joost-Pieter Katoen
ETAPS SC Chair

ETAPS e.V. President
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Preface

This volume contains the papers presented at POST 2016, the 5th Conference on
Principles of Security and Trust, held April 4–5, 2016, in Eindhoven, The Netherlands,
as part of ETAPS. Principles of Security and Trust is a broad forum related to the
theoretical and foundational aspects of security and trust, and thus welcomes papers of
many kinds: new theoretical results, practical applications of existing foundational
ideas, and innovative theoretical approaches stimulated by pressing practical problems.

POST was created in 2012 to combine and replace a number of successful and long-
standing workshops in this area: Automated Reasoning and Security Protocol Analysis
(ARSPA), Formal Aspects of Security and Trust (FAST), Security in Concurrency
(SecCo), and the Workshop on Issues in the Theory of Security (WITS). A subset
of these events met jointly as an event affiliated with ETAPS 2011 under the name
Theory of Security and Applications (TOSCA).

There were 35 submissions to POST 2016, 34 research papers and one tool
demonstration paper. Each submission was reviewed by at least three Program Com-
mittee members, who in some cases solicited the help of outside experts to review the
papers. Electronic discussion was used to decide which papers to select for the
program.

The committee decided to accept 12 papers and the tool demonstration paper. In
addition to the presentations of these papers, the conference program also included an
invited talk by Vitaly Shmatikov, who was also one of the ETAPS unifying speakers.

We would like to thank the members of the Program Committee, the additional
reviewers, the POST Steering Committee, the ETAPS Steering Committee, and the
local Organizing Committee, who all contributed to the success of POST 2016. We
also thank all authors of submitted papers for their interest in POST and congratulate
the authors of accepted papers. Finally, we gratefully acknowledge the use of Easy-
Chair for organizing the submission process, the Program Committee’s work, and the
preparation of this volume.

January 2016 Frank Piessens
Luca Viganò
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Faceted Dynamic Information Flow via Control
and Data Monads

Thomas Schmitz1(B), Dustin Rhodes1, Thomas H. Austin2,
Kenneth Knowles1, and Cormac Flanagan1

1 University of California Santa Cruz, Santa Cruz, USA
tschmitz@ucsc.edu

2 San José State University, San Jose, USA

Abstract. An application that fails to ensure information flow secu-
rity may leak sensitive data such as passwords, credit card numbers, or
medical records. News stories of such failures abound. Austin and Flana-
gan [2] introduce faceted values – values that present different behavior
according to the privilege of the observer – as a dynamic approach to
enforce information flow policies for an untyped, imperative λ-calculus.

We implement faceted values as a Haskell library, elucidating their
relationship to types and monadic imperative programming. In contrast
to previous work, our approach does not require modification to the lan-
guage runtime. In addition to pure faceted values, our library supports
faceted mutable reference cells and secure facet-aware socket-like commu-
nication. This library guarantees information flow security, independent
of any vulnerabilities or bugs in application code. The library uses a con-

trol monad in the traditional way for encapsulating effects, but it also
uniquely uses a second data monad to structure faceted values. To illus-
trate a non-trivial use of the library, we present a bi-monadic interpreter
for a small language that illustrates the interplay of the control and data
monads.

1 Introduction

When writing a program that manipulates sensitive data, the programmer must
prevent misuse of that data, intentional or accidental. For example, when one
enters a password on a web form, the password should be communicated to the
site, but not written to disk. Unfortunately, enforcing these kinds of information
flow policies is problematic. Developers primarily focus on correct functionality;
security properties are prioritized only after an attempted exploit.

Just as memory-safe languages relieve developers from reasoning about
memory management (and the host of bugs resulting from its mismanagement),
information flow analysis enforces security properties in a systemic fashion.
Information flow controls require a developer to mark sensitive information, but
otherwise automatically prevent any “leaks” of this data. Formally, we call this

c© Springer-Verlag Berlin Heidelberg 2016
F. Piessens and L. Viganò (Eds.): POST 2016, LNCS 9635, pp. 3–23, 2016.
DOI: 10.1007/978-3-662-49635-0 1



4 T. Schmitz et al.

property noninterference; that is, public outputs do not depend on private
inputs1.

Secure multi-execution [9,16,23] is a relatively recent and popular informa-
tion flow enforcement technique. A program execution is split into two versions:
the “high” execution has access to sensitive information, but may only write to
private channels; the “low” execution may write to public channels, but cannot
access any sensitive information. This elegant approach ensures noninterference.

Faceted evaluation is a technique for simulating secure multi-execution with
a single process, using special faceted values that contain both a public view
and a private view of the data. With this approach, a single execution can
provide many of the same guarantees that secure multi-execution provides, while
achieving better performance.

This paper extends the ideas of faceted values from an untyped variant of
the λ-calculus [2] to Haskell and describes the implementation of faceted values
as a Haskell library. This approach provides a number of benefits and insights.

First, whereas prior work on faceted values required the development of a
new language semantics, we show how to incorporate faceted values within an
existing language via library support.

Second, faceted values fit surprisingly well (but with some subtleties) into
Haskell’s monadic structure. As might be expected, we use an IO-like monad
called FIO to support imperative updates and I/O operations. We also use a
second type constructor Faceted to describe faceted values; for example, the
faceted value 〈k ? 3 : 4〉 has type Faceted Int. Somewhat surprisingly, Faceted
turns out to also be a monad, with natural definitions of the corresponding
operations that satisfy the monad axioms [34]. These two monads, FIO and
Faceted, naturally interoperate via an associated product function [17] that
supports switching from the FIO monad to the Faceted monad when necessary
(as described in more detail below).

This library guarantees the traditional information flow security property of
termination-insensitive noninterference, independent of any bugs, vulnerabilities,
or malicious code in the client application.

Finally we present an application of this library in the form of an interpreter
for the imperative λ-calculus with I/O. This interpreter validates the expressive-
ness of the Faceted library; it also illustrates how the FIO and Faceted monads
flow along control paths and data paths respectively.

In summary, this paper contributes the following:

– We present the first formulation of faceted values and computations in a typed
context.

– We show how to integrate faceted values into a language as a library, rather
than by modifying the runtime environment.

1 We refer to sensitive values as “private” and non-sensitive values as “public”, as
confidentiality is generally given more attention in the literature on information flow
analysis. However, the same mechanism can also enforce integrity properties, such
as that trusted outputs are not influenced by untrusted inputs.



Faceted Dynamic Information Flow via Control and Data Monads 5

– We clarify the relationship between explicit flows in pure calculations (via
the Faceted monad) and implicit flows in impure computations (via the FIO
monad).

– Finally, we present an interpreter for an imperative λ-calculus with dynamic
information flow. The security of the implementation is guaranteed by our
library. Notably, this interpreter uses the impure monad (FIO) in the tra-
ditional way to structure computational effects, and uses the pure faceted
monad (Faceted) to structure values.

2 Review of Information Flow and Faceted Values

In traditional information flow systems, information is tagged with a label to
mark it as confidential to particular parties. For instance, if we need to restrict
pin to bank, we might write:

pin = 4321bank

To protect this value, we must prevent unauthorized viewers from observ-
ing it, directly or indirectly. In particular, we must defend against explicit flows
where a confidential value is directly assigned to a public variable, and implicit
flows where an observer may deduce a confidential value by reasoning about the
program’s control flow. The following code shows an explicit flow from pin to
the variable x.

pin = 4321bank

x = pin + 1

Taint tracking – in languages such as Perl and Ruby – suffices to track straight-
forward explicit flows; in contrast, implicit flows are more subtle. Continuing our
example, consider the following code, which uses a mutable IORef.

do above2K ← newIORef False

if (pin > 2000)

then writeIORef above2K True

else return ()

This code illustrates a simple implicit flow. After it runs, the value of above2K
will reflect information about pin, even though the code never directly assigns
the value of pin to above2K. There are several proposed strategies for handling
these types of flows:

1. Allow the update, but mark above2K as sensitive because it was changed
in a sensitive context. This strategy can help for auditing information flows
“in the wild” [15], but it fails to guarantee noninterference, as shown in the
Naive column of Fig. 1 (note that the naive computation results in True
when x is True).

2. Disallow the update to above2K within the context of the sensitive con-
ditional pin. When enforced at runtime, this technique becomes the no-
sensitive-upgrade strategy [1,36] illustrated in the NSU column of Fig. 1.
Note that while this technique maintains noninterference, it also terminates
the program prematurely.
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3. Ignore the update to above2K in a sensitive context, an approach first used
by Fenton [11]. This strategy guarantees noninterference by sacrificing cor-
rectness (the program’s result may not be internally consistent). We show
this strategy in the Fenton column of Fig. 1.

x = 〈k ? True :⊥〉
do Naive NSU Fenton Faceted Evaluation

y <- newIORef True y = True y = True y = True y = True

z <- newIORef True z = True z = True z = True z = True

vx <- readIORef x − − − −
when vx pc = {k} pc = {k} pc = {k} pc = {k}
(writeIORef y False) y = 〈k ? False :⊥〉 stuck ignored y = 〈k ? False : True〉

vy <- readIORef y − − −
when vy − − pc = {k}
(writeIORef z False) − − z = 〈k ? True : False〉

readIORef z − − −
Result: True stuck False 〈k ? True : False〉

Fig. 1. A computation with implicit flows.

Faceted values introduce a third aspect to sensitive data. In addition to the
sensitive value and its label, the following faceted value includes a default public
view of ‘0000’.

pin = 〈bank ? 4321 : 0000〉

Then, when we run the previous program with this faceted pin, the value of
above2K is 〈bank ? True : False〉. The bank sees the sensitive value True, but
an unauthorized viewer instead sees the default value False, giving a consistent
picture to the unauthorized viewer while still protecting sensitive data.

Label-based information flow systems reason about multiple principals by
joining labels together (e.g. 3A+4B = 7AB). In a similar manner, faceted evalua-
tion nests faceted values to represent multiple principals, essentially constructing
a tree2 mapping permissions to values:

〈k1 ? 3 : 0〉 + 〈k2 ? 4 : 0〉 = 〈k1 ? 〈k2 ? 7 : 3〉 : 〈k2 ? 4 : 0〉〉

Figure 1, adapted from Austin and Flanagan [2], demonstrates a classic code
snippet first introduced by Fenton [11]. The example uses two conditional state-
ments to evade some information flow controls. When this code runs, the private
value x leaks into the public variable z. We represent the input x, a confidential
boolean value, in faceted notation as 〈k ? False : ⊥〉 for false and 〈k ? True : ⊥〉
for true, where ⊥ means roughly ‘undefined’. Boolean reference cells y and z are

2 Alternatively, a faceted value can be interpreted as a function mapping sets of labels
to values, and the syntax above as merely a compact representation.
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initialized to True; by default, they are public to maximize the permissiveness
of these values.

When the input x is 〈k ? False : ⊥〉, the value for y remains unchanged
because the first when statement is not run. Then in the second when statement,
y is still public, and thus z also remains public because it depends only on y.
Since no private information is involved in the update to z, all information flow
strategies return the public value False as their final result.

The case where the input x is 〈k ? True : ⊥〉 is more interesting, as illustrated
in Fig. 1. Note that if the final value appears as True to public observers, then
the private value x has leaked. The strategies differ in the way they handle the
update to y in the first conditional statement. Since this update depends upon
the value of x, we must be careful to avoid the potential implicit flow from x
to y. We now compare how each approach handles this update.

In the Naive column of Fig. 1, the strategy tracks the influence of x by
applying the label k to y. Regardless, y is false during the second conditional,
so z retains its public True value. Thus, under Naive information flow control,
the result of this code sample is a public copy of x, violating noninterference.

The No-Sensitive-Upgrade approach instead terminates execution on this
update, guaranteeing termination-insensitive noninterference, but at the cost
of potentially rejecting valid programs. Stefan et al. implement this strategy in
the elegant LIO library for Haskell [32]. Our work shares the motivations of
LIO, but extends beyond the No-Sensitive-Upgrade strategy to support faceted
values, thus enabling correct execution of more programs.

The Fenton strategy forbids the update to y, but allows execution to continue.
This approach avoids abnormal termination, but it may return inaccurate results,
as shown in Fig. 1.

Faceted evaluation solves this dilemma by simulating different executions of
this program, allowing it to provide accurate results and avoid rejecting valid
programs. In the Faceted Evaluation column, we see that the update to y results
in the creation of a new faceted value 〈k ? False : True〉. Any viewer autho-
rized to see k-sensitive data3 can see the real value of y; unauthorized viewers
instead see True, thus hiding the value of x. In the second conditional assign-
ment, the runtime updates z in a similar manner and produces the final result
〈 k ? True : False 〉. In contexts with the k security label, this value will behave
as True; in other contexts, it will behave as False. This code therefore provides
noninterference, avoids abnormal termination, and provides accurate results to
authorized users.

3 Library Overview

We implement faceted computation in Haskell as a library that enforces infor-
mation flow security dynamically, using abstract data types to prevent buggy
or malicious programs from circumventing dynamic protections. In contrast, the

3 That is, authorized to see data marked as sensitive to principal k.
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original formulation [2] added faceted values pervasively to the semantics of a
dynamically-typed, imperative λ-calculus. Because of the encapsulation offered
by Haskell’s type system, we do not need to modify the language semantics. Our
library is available at https://github.com/haskell-facets/haskell-faceted.

Our library is conceptually divided into the following components:

– Pure faceted values of type a (represented by the type Faceted a).
– Imperative faceted computations (represented by the type FIO a), which can

operate on:
• faceted reference cells (represented by the type FioRef a), and
• facet-enabled file handles / sockets (represented by the type FHandle).

3.1 Pure Faceted Values: Faceted a

Figure 2 shows the public interface for the pure fragment of our library. This
fragment tracks explicit data flow information in pure computations.

type Label = String

data Faceted a

public :: a → Faceted a

faceted :: Label → Faceted a → Faceted a → Faceted a

bottom :: Faceted a

instance Monad Faceted

Fig. 2. Interface for the pure fragment of the Faceted library.

Our implementation presumes that security labels are strings, though leaving
the type of labels abstract is straightforward.

A value of type Faceted a represents multiple values, or facets, of type a.
To maintain security, the facets should not be directly observable; therefore, the
data type is abstract.

The function public injects any type a into the type Faceted a. It accepts
a value v of type a and returns a faceted value that behaves just like v for any
observer.

The function faceted constructs a value of type Faceted a from a label
k and two other faceted values priv and pub, each of type Faceted a. To any
viewer authorized to see k, the result behaves as priv; to all other observers, the
result behaves as pub (and so on, recursively).

The value bottom (abbreviated ⊥) is a member of Faceted a for any a, and
represents a lack of a value. bottom is used when a default value is necessary,
such as in a public facet. Any computation based on bottom results in bottom.

From faceted, we can define various derived constructors for creating faceted
values with minimal effort. For example:

https://github.com/haskell-facets/haskell-faceted
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makePrivate :: Label → a → Faceted a

makePrivate k v = faceted k (public v) bottom

makeFacets :: Label → a → a → Faceted a

makeFacets k priv pub = faceted k (public priv) (public pub)

The Monad instance for Faceted conveniently propagates security labels as
appropriate. For example, the following code uses Haskell’s do syntax to multiply
two values of type Faceted Int.

do x ← makeFacets"k" 7 1 -- <"k" ? 7 : 1>

y ← makeFacets "l" 6 1 -- <"l" ? 6 : 1>

return (x ∗ y) -- <"k" ? <"l" ? 42 : 7> : <"l" ? 6 : 1>>

Here, x is an Int that is extracted from (faceted "k" 7 1), either 7 or 1. The
Faceted monad instance automatically executes the remainder of the do block
twice (once for each possible value of x) before collecting the various results into
a faceted value. The situation is similar for y, so the final faceted value is a tree
with four leaves.

3.2 Faceted Reference Cells: FIO a and FioRef a

For the pure language of Sect. 3.1, information flow analysis is straightforward
because all dependencies between values are explicit; there are no implicit flows.
An implicit flow occurs when a value is computed based on side effects that
depend on private data, as in the following example, where x is an IORef with
initial value 0.

do if secret == 42 -- working in IO monad

then writeIORef x 1

else writeIORef x 2

readIORef x

The return value will be 1 if and only if secret == 42.
Suppose we opt to protect the confidentiality of secret by setting secret =

makePrivate k 42. The type of secret is now Faceted Int. Then our example
can be reformulated:

do n ← secret -- working in Faceted monad

return $ do if n == 42 -- working in IO monad

then writeIORef x 1

else writeIORef x 2

readIORef x

The outer do begins a computation in the Faceted monad, with the value 42
bound to n. This expression has type Faceted (IO Int), so it cannot be “run”
as part of a Haskell program. Thus, the pure fragment of our library described
so far prevents all implicit flows, even those that are safe.

Guided by the types, we seek a way to convert a value of type Faceted (IO a)
to a value of type IO (Faceted a). The latter could then be run to yield a value
of type Faceted a, where the facets account for any implicit flows.
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data Branch = Private Label | Public Label

type PC = [Branch]

data FIO a

instance Monad FIO

runFIO :: FIO a → PC → IO a

prod :: Faceted (FIO (Faceted a)) → FIO (Faceted a)

data FioRef a

newFioRef :: Faceted a → FIO (FioRef (Faceted a))

readFioRef :: FioRef (Faceted a) → FIO (Faceted a)

writeFioRef :: FioRef (Faceted a) → Faceted a → FIO (Faceted ())

Fig. 3. Interface for FIO and FioRef.

Faceted IO computations take place in the FIO monad (the name is short
for “Faceted I/O”). Figure 3 shows the public interface for this fragment of the
library. When faceted data influences control flow, the result of a computation
implicitly depends on the observed facets; the implementation of FIO transpar-
ently tracks this information flow.

The Monad instance for FIO allows sequencing computations in the usual way,
so FIO acts as a (limited) drop-in replacement for IO. If fio1 and fio2 each have
type FIO Int, then the following expression also has type FIO Int.

do x ← fio1

y ← fio2

return (x ∗ y)

The function runFIO converts a value of type FIO a to a value of type IO a.
The side effects in this IO computation will respect the information flow policy.

runFIO takes one additional argument: an initial value for a data structure
called pc (for “program counter label”), which is used for tracking the branching
of the computation. To guarantee security, it may be necessary to execute parts of
the program multiple times – once for observers who may view k-sensitive data,
and again for observers who may not. During the former branch of computation,
the pc will contain the value Private k; during the latter branch, it will contain
Public k.

The pc argument to runFIO allows controlling the set of observers whose
viewpoints are considered during faceted computation. The empty pc, denoted
[], will force simulation of all possible viewpoints.

A value of type FioRef a (short for “facet-aware IORef”) is a mutable refer-
ence cell where initialization, reading, and writing are all FIO computations that
operate on Faceted values and that account for implicit flows accordingly.

Figure 3 presents the public interface to FioRef a, which parallels that of
conventional reference cells of type IORef a.
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To write side-effecting code that depends on a faceted value, the Faceted
and FIO monads must be used together. The library function prod enables this
interaction.

Using these library functions, our running example finally looks as follows.

do x ← newFioRef (public 0) -- working in FIO monad

prod $ do v ← secret -- working in Faceted monad

return $ if v == 42

then writeFioRef x (public 1)

else writeFioRef x (public 2)

readFioRef x

As hinted earlier, the inner do block has type Faceted (FIO (Faceted ()))
and so cannot compose with the other actions in the outer do block. To rectify
this, the function prod is enclosing the inner do block, converting it to type FIO
(Faceted ()).

In this example, the value read from x will be faceted k 1 0, which correctly
accounts for the influence from secret. In Sect. 4, we will explain the machinery
that implements this secure behavior.

3.3 Faceted I/O: FHandle

Faceted I/O differs from reference cells in that the network and file system,
which we collectively refer to as the environment, lie outside the purview of our
programming language. The environment has no knowledge of facets and cannot
be retrofitted. Additionally, there are other programs able to read from and write
to the file system. We assume that the environment appropriately restricts other
users of the file handles, and we provide facilities within Haskell to express and
enforce the relevant information flow policy.

Figure 4 shows the core of the public interface for facet-aware file handles,
type FHandle.

data FHandle

type View = [Label]

openFileFio :: View → FilePath → IOMode → FIO FHandle

closeFio :: FHandle → FIO ()

getCharFio :: FHandle → FIO (Faceted Char)

putCharFio :: FHandle → Faceted Char → FIO ()

Fig. 4. Interface for FHandle.

We support policies that associate with each file handle h a set of labels
viewh of type View. This view indicates the confidentiality for data read from
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and written to h. Intuitively, if a view contains a label k, then that view is
allowed to see data that is confidential to k.

The function openFileFio accepts a view viewh along with a file path and
mode and returns a (computation that returns a) facet-aware handle h protected
by the policy viewh.

When writing to h via putCharFio, the view viewh describes the confiden-
tiality assured by the external environment for data written to h. In other words,
we trust that the external world will protect the data with those labels in viewh.

When reading from a handle h via getCharFio, we treat viewh as the confi-
dentiality expected by the external world for data read from h. In other words,
we certify that we protect the data received from h. For example, in the following
computation, the character read from h is observable only to views that include
labels "k" and "l".

do h ← openFileFio ["k", "l"] "/tmp/socket.0" ReadMode

getCharFio h

4 Formal Semantics

In this section, we formalize the behavior of the Haskell library as an operational
semantics and prove that it guarantees termination-insensitive noninterference.

Figures 5 and 6 show the formal syntax. The syntactic class t represents
Haskell programs, k is a label, and σ is a “store” mapping addresses a to values,
and mapping file handles h to strings of characters ch.

For ease of understanding, we separate the set of values into three syntactic
classes. FacetedValue contains values in the Faceted monad; FioAction contains

ch ∈ Character

k ∈ Label

t ∈ Term ::= x
| λx.t
| t t
| ch Character
| k Label
| F Faceted values

| returnFac t

| bindFac t t
| A FIO actions

F ∈ FacetedValue ::= public t | faceted t t t | bottom
A ∈ FioAction ::= returnFIO t | bindFIO t t | prod t

| newFioRef t | readFioRef t | writeFioRef t t
| getCharFio t | putCharFio t t

Fig. 5. Source syntax.
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a ∈ Address

h ∈ Handle

t ∈ Term ::= . . . | v
v ∈ Value ::= F | A | λx.t | ch | k | a | h

E ∈ EvalContext ::= • t | bindFac • t
σ ∈ Store = (Address → Value) ∪ (Handle → String)

Fig. 6. Runtime syntax.

computations in the impure FIO monad; and Value contains both of these, as
well as ordinary values: closures, characters, labels, addresses, and handles.

We define the operational semantics with two big-step evaluation judgments.

– t ⇓ v means that the pure Haskell expression t evaluates to the value v.
– σ,A ⇓FIO

pc σ′, v means that the Haskell program “main = runFIO A pc”
changes the store from σ to σ′ and yields the result v.

t ⇓ v Pure evaluation.

v ⇓ v
[e-val]

t[x := t1] ⇓ v

(λx.t) t1 ⇓ v
[e-app]

t not a value
t ⇓ v1

E[v1] ⇓ v2
E[t] ⇓ v2

[e-ctxt]

returnFac t ⇓ public t
[e-ret]

t2 t1 ⇓ v

bindFac (public t1) t2 ⇓ v
[e-bind-p]

v = faceted t1 (bindFac t2 t4) (bindFac t3 t4)

bindFac (faceted t1 t2 t3) t4 ⇓ v
[e-bind-f]

bindFac bottom t ⇓ bottom
[e-bind-b]

Fig. 7. Semantics (part 1).

Figure 7 depicts the pure derivation rules. These rules describe a call-by-
name λ-calculus with opaque constants and two library functions: returnFac and
bindFac. These monad operators for Faceted are particularly simple because it
is a free monad: bindFac F v replaces the public “leaves” of the faceted value
F with new faceted values obtained by calling v.

Figure 8 shows the impure derivation rules. The FIO monad operations
(defined by [f-ret] and [f-bind]) are typical of a state monad. The pc annota-
tion propagates unchanged through these trivial rules.

The next five rules define prod, whose type is:

Faceted (FIO (Faceted a)) -> FIO (Faceted a)



14 T. Schmitz et al.

t ⇓ v

σ, returnFIO t ⇓FIO
pc σ, v

[f-ret]

t1 ⇓ A1

σ0, A1 ⇓FIO
pc σ1, v1

t2 v1 ⇓ A2

σ1, A2 ⇓FIO
pc σ2, v2

σ0, bind
FIO t1 t2 ⇓FIO

pc σ2, v2
[f-bind]

t ⇓ public t′

t′ ⇓ A

σ, A ⇓FIO
pc σ′, v

σ, prod t ⇓FIO
pc σ′, v

[f-prod-p]

t ⇓ bottom

σ, prod t ⇓FIO
pc σ, bottom

[f-prod-b]

t ⇓ faceted tk t1 t2
tk ⇓ k k ∈ pc

σ, prod t1 ⇓FIO
pc σ′, v1

σ, prod t ⇓FIO
pc σ′, v1

[f-prod-f1]

t ⇓ faceted tk t1 t2
tk ⇓ k k ∈ pc

σ, prod t2 ⇓FIO
pc σ′, v2

σ, prod t ⇓FIO
pc σ′, v2

[f-prod-f2]

t ⇓ faceted tk t1 t2
tk ⇓ k k /∈ pc k /∈ pc

σ0, prod t1 ⇓FIO
pc∪{k} σ1, v1

σ1, prod t2 ⇓FIO
pc∪{k} σ2, v2

σ0, prod t ⇓FIO
pc σ2, faceted k v1 v2

[f-prod-f3]

t ⇓ F
a /∈ dom(σ)

v′ = 〈〈pc ? F : bottom〉〉
σ, newFioRef t ⇓FIO

pc σ[a := v′], a
[f-new]

t ⇓ a

σ, readFioRef t ⇓FIO
pc σ, σ(a)

[f-read]

t1 ⇓ a
t2 ⇓ F

σ′ = σ[a := 〈〈pc ? F : σ(a)〉〉]
σ, writeFioRef t1 t2 ⇓FIO

pc σ′, v
[f-write]

t ⇓ h
pc is not visible to viewh

σ, getCharFio t ⇓FIO
pc σ, bottom

[f-get-2]

t ⇓ h
L = viewh

pc is visible to L
ch1 . . . chn = σ(h)

σ′ = σ[h := ch2 . . . chn]

pc′ = L ∪ {k | k /∈ L}
v = 〈〈pc′ ? public ch1 : bottom〉〉

σ, getCharFio t ⇓FIO
pc σ′, v

[f-get]

t1 ⇓ h
L = viewh

pc is visible to L
t2 ⇓ F

ch = L(F )
σ′ = σ[h := σ(h)ch]

σ, putCharFio t1 t2 ⇓FIO
pc σ′, F

[f-put]

t1 ⇓ h
L = viewh

pc is not visible to L
t2 ⇓ F

σ, putCharFio t1 t2 ⇓FIO
pc σ, F

[f-put-2]

Fig. 8. Semantics (part 2).

The input, a faceted action, is transformed into an action that returns a faceted
value. This process is straightforward for public and bottom; the public con-
structor is simply stripped away to reveal the action underneath, while bottom
is simply transformed into a no-op. For faceted, the corresponding rule is [f-
prod-f3], where the process bifurcates into two subcomputations whose results
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are combined into a faceted result value. However, there is no need to bifurcate
repeatedly for the same label k, so the bifurcation is remembered by adding k
(or k) to the pc annotation on each subcomputation. Subsequently, the opti-
mized rules [f-prod-f1] and [f-prod-f2] will apply. Rather than bifurcating
the computation, these rules will execute only the one path of computation that
is relevant to the current pc.

The remainder of Fig. 8 shows the rules for creation and manipulation of
reference cells, and for input and output.

[f-new] describes the creation of a new faceted reference cell. To preserve
the noninterference property, the cell is initialized with a faceted value that hides
the true value from observers that should not know about the cell. The notation
〈〈• ? • : •〉〉 means:

〈〈∅ ? v1 : v2〉〉 = v1

〈〈{k} ∪ pc ? v1 : v2〉〉 = faceted k 〈〈pc ? v1 : v2〉〉 v2

〈〈{k} ∪ pc ? v1 : v2〉〉 = faceted k v2 〈〈pc ? v1 : v2〉〉

[f-read] and [f-write] read and write these reference cells. [f-read] is
simple because the values in the store σ will already be appropriately faceted.
To prevent implicit flows, [f-write] must incorporate the pc into the label of
the stored value stored.

The final rules handle input and output. Each must first confirm that the
file handle h is compatible with the current pc. The notation “pc is visible to L”
means

∀k ∈ pc, k ∈ L and ∀k ∈ pc, k /∈ L,

i.e. L is one of the views being simulated on the current branch of computation.
In [f-get], if pc is visible to L, then the first character ch1 is extracted from

the file. The result is a faceted value that behaves as ch1 for view L, but as
bottom for all other views. If pc is not visible to L, then [f-get-2] applies and
the operation is ignored; the result is simply bottom.

In [f-put], if pc is visible to L, then a character is appended to the end of the
file; otherwise, [f-put-2] applies and the operation is ignored. The appropriate
character ch must be extracted from the faceted value F using the projection
L(F ) defined below.

4.1 Termination-Insensitive Noninterference

We first define the projection L(v) of a faceted value v according to a view
L ∈ 2Label :

L(faceted k v1 v2) = L(v1) if k ∈ L

L(faceted k v1 v2) = L(v2) if k /∈ L

L(v) = v otherwise.
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Similarly, we define the projection L(σ) of a store σ according to a view L:

L(σ)(a) = L(σ(a))

L(σ)(h) =

{
σ(h) if L = viewh

ε otherwise

where ε denotes the empty string. In words, the projected store maps each
address to the projection of the stored value, and the projected store maps
each handle either to the real file contents (if the viewer is viewh) or to ε.

With these definitions of projection, we can now define noninterference.

Theorem 1 (Termination-Insensitive Noninterference).
Assume:

L(σ1) = L(σ2) σ1, A ⇓FIO
∅ σ′

1, v1 σ2, A ⇓FIO
∅ σ′

2, v2

Then:

L(σ′
1) = L(σ′

2) L(v1) = L(v2).

In other words, if we run a program with two starting stores that are identical
under the L projection, then the resulting stores and values will be identical
under the L projection.

The proof is available in the extended version of this paper [29].

5 Application: A Bi-Monadic Interpreter

To demonstrate the expressiveness of the Faceted library, we present a monadic
interpreter for an imperative λ-calculus, whose dynamic information flow secu-
rity is guaranteed by the previous noninterference theorem.

The interesting aspect about this interpreter is that it uses two distinct
monads.

– The FIO monad captures computations (called Actions in the code), and
is propagated along control flow paths in the traditional style of monadic
interpreters.

– The Faceted monad serves a somewhat different purpose, which is to encap-
sulate the many views of the underlying RawValue. Unlike FIO, this monad is
propagated along data flow paths rather than along control flow paths.

Even though the interpreter’s use of the Faceted monad is non-traditional,
faceted values need exactly this monad interface – particularly considering the
necessity of the monad-specific operation

join :: Faceted (Faceted a) → Faceted a

which, for the Faceted monad, naturally combines two layers of security labels
into a single layer.
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5.1 The Interpreted Language

The source language is an imperative call-by-value λ-calculus whose abstract
syntax is defined in Fig. 9. The language has variables, lambda abstractions,
applications, and primitive constants for manipulating reference cells, performing
I/O, and creating private values.

data Term =

Var String -- Lambdas

| Lam String Term

| App Term Term

| Const Value -- Constants

Fig. 9. Syntax for the bi-monadic interpreter.

To ensure that private characters are not printed to the output stream, our
implementation opens the stream using the empty view.

5.2 Implementation

Figure 10 shows the core of the interpreter, the function eval. As usual, it takes
an environment and a term and returns an action, which has type Action =
FIO (Faceted RawValue). The RawValue type includes characters, mutable ref-
erences, and closures.

The most interesting code is the case for an application App t1 t2 (lines
15–19 in Fig. 10). As usual, we use a do block (in the FIO monad) to compose
the sub-evaluations of t1 and t2 into faceted values v1 and v2. To extract each
underlying function (FnVal f) from the faceted value v1, we enter a second do
block (this time in the Faceted monad), and then apply f to v2 to yield a result
of type Action = FIO (Faceted RawValue), which the return (on line 19) then
injects into type Faceted (FIO (Faceted RawValue)), completing the Faceted
do block (lines 17–19). Finally, the prod function on line 17 coordinates the two
monads and simplifies the type to FIO (Faceted RawValue), which sequentially
composes with the previous sub-evaluations of t1 and t2.

The remaining language features are provided by the constants below the
interpreter itself: private, ref, deref, assign, and printChar. As for App,
these constants must use prod to perform their services securely.

Figure 11 expresses our running example from Fig. 1 as a program p in the
interpreted language (with some additional syntactic sugar); running the pro-
gram runFIO (eval env p) [] yields the expected result:

faceted "H" (public true) (public false)
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1 -- Runtime data structures.

2 data RawValue =

3 CharVal Char -- Characters

4 | RefVal (FioRef Value) -- Mutable references

5 | FnVal (Value → Action) -- Functions

6 type Value = Faceted RawValue

7 type Action = FIO Value

8 type Env = String → Value

9
10 -- Interpreter.

11 eval :: Env → Term → Action

12 eval e (Var x) = return $ e x

13 eval e (Lam x t) = return $ return $ FnVal $ λv →
14 eval (extend e x v) t

15 eval e (App t1 t2) = do v1 ← eval e t1 -- working in FIO monad

16 v2 ← eval e t2

17 prod $ do

18 FnVal f ← v1 -- working in Faceted monad

19 return $ f v2

20 eval e (Const v) = return v

21
22 -- Constants.

23 private :: RawValue

24 private = FnVal $ λv →
25 return $ faceted "H" v bottom

26 ref :: RawValue

27 ref = FnVal $ λv → do -- working in FIO monad

28 ref ← newFioRef v

29 return $ return $ RefVal ref

30 deref :: RawValue

31 deref = FnVal $ λv → prod $ do -- working in Faceted monad

32 RefVal ref ← v

33 return $ readFioRef ref

34 assign :: RawValue

35 assign = FnVal $ λv1 →
36 return $ return $ FnVal $ λv2 → prod $ do -- working in Faceted monad

37 RefVal ref ← v1

38 rv2 ← v2

39 return $ do -- working in FIO monad

40 writeFioRef ref v2

41 return v2

42 printChar :: RawValue

43 printChar = FnVal $ λv → prod $ do -- working in Faceted monad

44 CharVal c ← v

45 return $ do -- working in FIO monad

46 h ← openFileFio [] "output.txt" AppendMode

47 putCharFio h (return c)

48 closeFio h

49 return v

Fig. 10. The bi-monadic interpreter eval function.
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let x = ref (private true) in

let y = ref true in

let z = ref true in

let vx = deref x in

if (vx) {

assign y false

}

let vy = deref y in

if (vy) {

assign z false

}

deref z

Fig. 11. A sample program for the interpreter. For ease of reading, we assume the
availability of standard encodings for let and boolean operations.

6 Related Work

Most information flow mechanisms fall into one of three categories: run-time
monitors that prevent a program execution from misbehaving; static analysis
techniques that analyze the whole program and reject programs that might leak
sensitive information; and finally secure multi-execution, which protects sensitive
information by evaluating the same program multiple times.

Dynamic techniques dominated much of the early literature, such as Fenton’s
memoryless subsystems [11]. However, these approaches tend to deal poorly with
implicit flows, where confidential information might leak via the control flow of
the program; purely dynamic controls either ignore updates to reference cells
that might result in implicit leaks of information [11] or terminate the pro-
gram on these updates [1,36]; both approaches have obvious problems, but these
techniques have seen a resurgence of interest as a possible means of securing
JavaScript code, where static analysis seems to be an awkward fit [10,13,15,18].

Denning’s work [6,7] instead uses a static analysis; her work was also instru-
mental in bringing information flow analysis into the scope of programming lan-
guage research. Her approach has since been codified into different type systems,
such as that of Volpano et al. [33] and the SLam Calculus [14]. Jif [21] uses this
strategy for a Java-like language, and has become one of the more widespread
languages providing information flow guarantees. Sabelfeld and Myers [26] pro-
vide an excellent history of information flow analysis research prior to 2003.
Refer to Russo [25] for a detailed comparison of static and dynamic techniques.

Secure multi-execution [9] executes the same program multiple times repre-
senting different “views” of the data. For a simple two-element lattice of high and
low, a program is executed twice: one execution can access confidential (high)
data but can only write to authorized channels, while the other replaces all
high data with default values and can write to public channels. This approach
has since been implemented in the Firefox web browser [5] and as a Haskell
library [16].



20 T. Schmitz et al.

Rafnsson and Sablefeld [23] show an approach to handle declassification and
to guarantee transparency with secure multi-execution.

Zanarini et al. [35] notes some challenges with secure multi-execution; specif-
ically, it alters the behavior of programs violating noninterference (potentially
introducing difficult to analyze bugs), and the multiple processes might produce
outputs to different channels in a different order than expected. They further
address these challenges through a multi-execution monitor. In essence, their
approach executes the original program without modification and compares its
results to the results of the SME processes; if output of secure multi-execution
differs from the original at any point, a warning can be raised to note that the
semantics have been altered.

Faceted evaluation [2] simulates secure multi-execution by the use of spe-
cial faceted values, which track different views for data based on the security
principals involved4. While faceted evaluation cannot be parallelized as easily,
it avoids many redundant calculations, thereby improving efficiency [2]. It also
allows declassification, where private data is released to public channels. Austin
et al. [3] exploit this benefit to incorporate policy-agnostic programming tech-
niques, allowing for the specification of more flexible policies than traditionally
permitted in information flow systems.

Li and Zdancewic [19] implement an information flow system in Haskell,
embedding a language for creating secure modules. Their enforcement mecha-
nism is dynamic but relies on static enforcement techniques, effectively guaran-
teeing the security of the system by type checking the embedded code at runtime.
Their system supports declassification, a critical requirement for specifying many
real world security policies.

Russo et al. [24] provide a monadic library guaranteeing information flow
properties. Their approach includes special declassification combinators, which
can be used to restrict the release of data based on the what/when/who dimen-
sions proposed by Sabelfeld [28].

Deviese and Piessens [8] illustrate how to enforce information flow in monadic
libraries. A sequence operation e1 >> e2 is distinguished from a bind operation e1
>>= e2 in that there are no implicit flows with the >> operator. They demonstrate
the generality of their approach by applying it to classic static [33], dynamic [27],
and hybrid [12] information flow systems.

Stefan et al. [31] use a labeled IO (LIO) monad to guarantee information
flow analysis. LIO tracks the current label of the execution, which serves as an
upper bound on the labels of all data in lexical scope. IO is permitted only if it
would not result in an implicit flow. It combines this notion with the concept of a
current clearance that limits the maximum privileges allowed for an execution,
thereby eliminating the termination channel. Buiras and Russo [4] show how
lazy evaluation may leak secrets with LIO through the use of the internal timing

4 Faceted values are closely related to the value pairs used by [22]; while intended as
a proof technique rather than a dynamic enforcement mechanism, the construct is
essentially identical.
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covert channel. They propose a defense against this attack by duplicating shared
thunks.

Wadler [34] describes the use of monads to structure interpreters for effectful
languages. There has been great effort to improve the modularity of this technique,
including the application of pseudomonads [30] and of monad transformers [20].
Both of these approaches make it possible to design an interpreter’s computation
monad by composing building blocks that each encapsulate one kind of effect. Our
bi-monadic interpreter achieves a different kind of modularity by using separate
monads for effects and values. The use of a prod function, which links the two
monads together, is originally described by Jones and Duponcheel [17].

7 Conclusion

We show how the faceted values technique can be implemented as a library
rather than as a language extension. Our implementation draws on the previous
work to provide a library consisting primarily of two monads, which track both
explicit and implicit information flows. This implementation demonstrates how
faceted values look in a typed context, as well as how they might be implemented
as a library rather than a language feature. It also illustrates some of the subtle
interactions between two monads. Our interpreter shows that this library can
serve as a basis for other faceted value languages or as a template for further
Haskell work.
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Abstract. Secure multi-execution (SME) is a promising black-box tech-
nique for enforcing information flow properties. Unlike traditional sta-
tic or dynamic language-based techniques, SME satisfies noninterfer-
ence (soundness) by construction and is also precise. SME executes a
given program twice. In one execution, called the high run, the program
receives all inputs, but the program’s public outputs are suppressed. In
the other execution, called the low run, the program receives only public
inputs and declassified or, in some cases, default inputs as a replacement
for the secret inputs, but its private outputs are suppressed. This app-
roach works well in theory, but in practice the program might not be
prepared to handle the declassified or default inputs as they may dif-
fer a lot from the regular secret inputs. As a consequence, the program
may produce incorrect outputs or it may crash. To avoid this problem,
existing work makes strong assumptions on the ability of the given pro-
gram to robustly adapt to the declassified inputs, limiting the class of
programs to which SME applies.

To lift this limitation, we present a modification of SME, called asym-
metric SME or A-SME. A-SME gives up on the pretense that real pro-
grams are inherently robust to modified inputs. Instead, A-SME requires
a variant of the original program that has been adapted (by the program-
mer or automatically) to react properly to declassified or default inputs.
This variant, called the low slice, is used in A-SME as a replacement
for the original program in the low run. The original program and its
low slice must be related by a semantic correctness criteria, but beyond
adhering to this criteria, A-SME offers complete flexibility in the con-
struction of the low slice. A-SME is provably sound even when the low
slice is incorrect and when the low slice is correct, A-SME is also pre-
cise. Finally, we show that if the program is policy compliant, then its
low slice always exists, at least in theory. On the side, we also improve
the state-of-the-art in declassification policies by supporting policies that
offer controlled choices to untrustworthy programs.

1 Introduction

Secure systems often rely on information flow control (IFC) to ensure that an
unreliable application cannot leak sensitive data to public outputs. The stan-
dard IFC security policy is noninterference, which says that confidential or high
c© Springer-Verlag Berlin Heidelberg 2016
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inputs must not affect public or low outputs. Traditionally, noninterference and
related policies have been enforced using static, dynamic, or hybrid analyses
of programs [3,7,9–11,16,17,23], but it is known that such analyses cannot be
sound (reject all leaky programs) and precise (accept all non-leaky programs)
simultaneously. Secure multi-execution or SME is a promising recent technique
that attains both soundness and precision, at the expense of more computational
power [13]. Additionally, SME is a black-box monitoring technique that does not
require access to the program’s source code or binary.

Briefly, SME runs two copies of the same program, called high and low,
simultaneously. The low run is given only low (public) inputs and its high (secret)
outputs are blocked. The high run is given both low and high inputs, but its
low outputs are blocked. Neither of the two runs can both see high inputs and
produce low outputs, so SME trivially enforces noninterference. Less trivially, it
can be shown that if a program is noninterfering semantically, then SME does not
change its output behavior, so SME is also precise. SME has been implemented
and tested in at least one large application, namely the web browser Firefox [6].
As CPU cores become cheaper, we expect SME to scale better and to be applied
to other applications as well.

Whereas SME may sound like the panacea for enforcing noninterference,
its deployment in practice faces a fundamental issue: Since the low run cannot
be provided high inputs, what must it be provided instead? The original work
on SME [13] proposes providing default values like 0 or null in place of high
inputs. In their seminal work on enforcing declassification policies with SME [26],
Vanhoef et al. advocate providing policy-declassified values in place of high
inputs. In either case, the high inputs received by the low run of the program
are different from the actual high inputs and may also have different semantics.
Consequently, the program must be aware of, and robust to, changes in its high
inputs’ semantics, otherwise the low run may crash or produce incorrect outputs.
This is somewhat contrary to the spirit of SME, which aims to be sound and
precise on all (unmodified) programs.

Asymmetric SME (A-SME). The robustness requirement limits the pro-
grams to which SME can be applied in practice. To circumvent the limitation,
a better solution or method is needed. Such a solution is the primary goal of
this paper: We posit a modification of SME, called asymmetric SME or A-SME,
that gives up on the SME design of executing the same program in the high
and low runs. Instead, in A-SME, a second program that has been adapted to
use declassified inputs (or default inputs in the degenerate scenario where no
declassification is allowed) in place of regular high inputs is used for the low run.
This second program, which we call the low slice, may be constructed by the
programmer or by slicing the original program automatically.

In A-SME, the robustness assumption of SME changes to a semantic correct-
ness criteria on the low slice. This correctness criteria takes the declassification
policy into account. We prove three results: (a) Irrespective of the correctness
of the low slice, the declassification policy is always enforced by A-SME, (b) If
the low slice is correct, then A-SME is precise, and (c) If the original program
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complies with the declassification policy semantically, then its low slice exists,
at least in theory.

Our focus here is on reactive programs and declassification policies that are
specified separately from the monitored program. The rationale for this focus is
straightforward: Both web and mobile applications are inherently reactive and,
due to the open nature of the two platforms, applications cannot be trusted to
declassify sensitive information correctly in their own code.

Improving Expressiveness of Policies Enforced with SME. As a
secondary contribution, we improve the expressiveness of declassification poli-
cies in existing work on SME with declassification. Specifically, we improve upon
the work of Vanhoef et al. [26] (VGDPR in the sequel). First, we allow declas-
sification to depend on feedback from the program and, second, we allow the
sensitivity of an input’s presence to depend on policy state. We explain these
two points below.

Output Feedback. We allow policy state to depend on program outputs. This
feedback from the program to the policy permits the policy to offer the program
controlled choices in what is declassified, without having to introspect into the
state of the program. The following examples illustrate this.

Example 1. Consider a data server, which spawns a separate handler process for
every client session. A requirement may be that each handler process declassifies
(across the network) the data of at most one client, but the process may choose
which client that is. With output feedback, the handler process can produce a
special high output, seen only by the SME monitor, to name the client whose
data the process wants to access. Subsequently, the policy will deny the low run
any data not belonging to that client.

Example 2. Consider an outsourced audit process for income tax returns. A sig-
nificant concern may be subject privacy. Suppose that the process initially reads
non-identifying data about all forms (e.g., only gross incomes and pseudonyms
of subjects), and then decides which 1 % of the forms it wants to audit in detail.
With output feedback, we may enforce a very strong policy without interfering
with the audit’s functionality: The low run of the audit process can see (and,
hence, leak) the detailed data of only 1 % of all audit forms, but it can choose
which forms constitute the 1 %.

State-Dependent Input Presence. Like some prior work on SME [6], we consider
a reactive setting, where the program being monitored reacts to inputs provided
externally. In this setting, the mere presence of an input (not just its content)
may be sensitive. SME typically handles sensitive input presence by not invoking
the low run for an input whose presence is high [6,26]. Generalizing this, our
policies allow the decision of whether an input’s presence is high to depend on
the policy state (i.e., on past inputs and outputs). This is useful in some cases,
as the following example demonstrates.
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Example 3. Consider a news website whose landing page allows the visitor to
choose news feeds from topics like politics, sports, and social, and allows the
user to interact with the feed by liking news items. When the user clicks one of
these topics, its feed is displayed using AJAX, without navigating the user to
another page. On the side, untrusted third-party scripts track mouse clicks for
page analytics. A privacy-conscious user may want to hide her interaction with
certain feeds from the tracking scripts. For example, the occurrence of a mouse
click on the politics feed may be sensitive, but a similar click on the sports feed
may not. Thus, the sensitivity of mouse click presence on the page depends on
the topic being browsed, making the sensitivity state-dependent.

Contributions. To summarize, we make the following contributions:

– We introduce asymmetric SME (A-SME) that uses a program (the low slice)
adapted to process declassified values in the low run (Sect. 4). This expands
the set of programs on which declassification policies can be enforced precisely
using SME.

– We increase the expressiveness of declassification policies in SME, by support-
ing program feedback and state-dependent input presence (Sect. 3).

– We prove formally that A-SME enforcement is always secure and, given a
correct low slice, also precise (Sect. 4).

– We show that if the program conforms to the policy then its low slice exists,
at least in theory (Sect. 5).

Proofs and other technical details omitted from this paper are provided in
an appendix, available online from the authors’ homepages.

Limitations. The focus of this paper is on the foundations of A-SME; methods
for constructing the low slice are left for future work. Also, the where dimension
of declassification, which allows a program to internally declassify information
through special declassify actions, is out of the scope of this work. In the context
of SME, the where dimension has been studied by VGDPR and independently
by Rafnsson and Sabelfeld [21,22] (see Sect. 6).

2 Programming Model

We model reactive programs, i.e. programs invoked by the runtime when an input
is available from the program’s environment. In response, the program produces
a list of outputs and this input-output pattern repeats indefinitely. In processing
every input, the program may update its internal memory and during the next
invocation, the runtime passes the updated memory to the program. This allows
past inputs to affect the response to future inputs. Reactive programs are a
ubiquitous model of computing and web browsers, servers and OS shells are all
examples of reactive programs.

Let Input, Output and Memory denote the domains of inputs, outputs and
memories for programs, and let [τ ] denote a finite, possibly empty list of elements
of type τ .
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Definition 1 (Reactive program). A reactive program p is a function of type
Input × Memory �→ [Output] × Memory.

The program p accepts an input and its last memory and produces a list of
outputs and an updated memory. We deliberately avoid introducing a syntax
for reactive programs to emphasize the fact that A-SME is a black-box enforce-
ment technique that does not care about the syntax of the program it monitors.
Concretely, the program p may be written in any programming language with a
distinguished syntax for inputs and outputs.

Semantics. We use the letters i, I, O and μ to denote elements of Input,
[Input], [Output] and Memory. p(i, μ) = (O,μ′) means that the program p
when given input i in memory μ produces the list of outputs O and the new
memory μ′. A run of the program p, written E, is a finite sequence of the
form (i1, O1), . . . , (in, On). The run means that starting from some initial mem-
ory, when the program is invoked sequentially on the inputs i1, . . . , in, it pro-
duces the output lists O1, . . . , On, respectively. For E = (i1, O1), . . . , (in, On),
we define its projection to inputs E|i = i1, . . . , in and its projection to outputs
E|o = O1 ++ . . . ++On, where ++ denotes list concatenation.

Formally, the semantics of a reactive program p are defined by the judgment
I, μ −→p E (Fig. 1), which means that program p, when started in initial memory
μ and given the sequence of inputs I, produces the run E. Here, i :: I denotes
the list obtained by adding element i to the beginning of the list I. Note that if
I, μ −→p E, then E|i = I and |E| = |I|.

Fig. 1. Reactive semantics.

3 Declassification Policies

Our A-SME monitor enforces an application-specific declassification policy. This
policy may represent the requirements of the programmer, the site administra-
tor, and the hosting environment, but it must be trusted. We model the policy
as an abstract stateful program whose state may be updated on every input
and every output. The policy’s state is completely disjoint from the monitored
program’s memory, and is inaccessible to the program directly. In each state the
policy optionally produces a declassified value, which is made available to the
low run of A-SME (the low run does not receive inputs directly). By allowing the
policy state (and, hence, the declassified value) to depend on inputs, we allow
for policies that, for instance, declassify the aggregate of 10 consecutive inputs,
but not the individual inputs, as in the prior work of VGDPR. By additionally
allowing the policy state to depend on program outputs, the policy may offer
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the program choices as explained and illustrated in Sect. 1, Examples 1 and 2.
Finally, as illustrated in Example 3, the policy provides a function to decide
whether an input’s presence is high or low in a given state.

Definition 2 (Policy D). A declassification policy D is a tuple
(S, updi, updo, σ, π), where:

– S is a possibly infinite set of states. Our examples and metatheorems often
specify the initial state separately.

– updi : S × Input → S and updo : S × [Output] → S are functions used to
update the state on program input and output, respectively.

– σ : S → Bool specifies whether the presence of the last input is low or high.
When σ(s) = true, the input that caused the state to transition to s has low
presence, else it has high presence.

– π : S → Declassified is the projection or declassification function that returns
the declassified value for a given state. This value is provided as input to the
low run when σ(s) = true. Declassified is the domain of declassified values.

The model of our declassification policies is inspired by the one of VGDPR,
but our policies are more general because we allow the policy state to depend
on program outputs and to set the input presence sensitivity. While VGDPR
consider two declassification functions, one idempotent function for projecting
every input to an approximate value, and another one for releasing aggregate
information from past inputs, we fold the two into a single function π. See Sect. 6
for a detailed comparison of our model to VGDPR’s model.

Example 4 (Declassification of aggregate inputs). Our first example is taken from
VGDPR. A browsing analytics script running on an interactive webpage records
user mouse clicks to help the webpage developer optimize content placement
in the future. A desired policy might be to prevent the script from recording
every individual click and, instead, release the average coordinates of blocks of
10 mouse clicks. Listing 1 shows an encoding of this policy. The policy’s internal
state records the number of clicks and the sum of click coordinates in the vari-
ables cnt and sum, respectively. The policy’s input update function updi takes
the new coordinate x of a mouse click, and updates both cnt and sum, except on
every 10th click, when the avg (average) is updated and cnt and sum are reset.
The projection function π simply returns the stored avg. Finally, since the last
average can always be declassified, the input presence function σ always returns
true. The output update function updo is irrelevant for this example and is not
shown. (As a writing convention, we do not explicitly pass the internal state of
the policy to the functions updi, updo, σ and π, nor return it from updi and
updo. This state is implicitly accessible in the policy’s state variables.)

Example 5 (State-dependent input presence). This example illustrates the use of
the input presence function σ. The setting is that of Example 3. The policy applies
to a news website where the user can choose to browse one of three possible topics:
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Listing 1. Input aggregation

Policy state s (local variables):
cnt : int
sum : int
avg : int

Initialization: cnt = 0; sum = 0; avg = 0;
Update functions:

updi(MouseClick x) =
case cnt of

| 9 → {cnt = 0; avg = (sum + x)/10; sum = 0; }
| → {cnt = cnt + 1; sum = sum + x; }

Presence decision function:
σ() = true.

Projection function:
π() = avg.

politics, sports, or social. The declassification policy for mouse clicks is the fol-
lowing: On the sports page, mouse clicks are not sensitive; on the social page, the
average of 10 mouse click coordinates can be declassified (as in Example 4); on the
politics page, not even the existence of a mouse click can be declassified.

Listing 2 shows an encoding of this policy. The policy records the current
topic being browsed by the user in the state variable st, which may take one of
four values: initial, politics, sports and social. Upon an input (function updi), the
policy state update depends on st. For st = sports, the click’s coordinate x is
stored in the variable last click. For st = social, the policy mimics the behavior
of Example 4, updating a click counter cnt, a click coordinate accumulator sum
and the average avg once in every 10 clicks. Importantly, when st = politics, the
policy state is not updated (the input is ignored). A separate component of updi

not shown here changes st when the user clicks on topic change buttons.
The input presence function σ says that the input is high when st ∈

{politics, initial} (output is false) and low otherwise. Hence, when the user is
browsing politics, not even the presence of inputs is released.

The projection function π declassifies the last click coordinate last click when
the user is browsing sports and the average of the last block of 10 clicks stored in
avg when the user is browsing social topics. The value returned by the projection
function is irrelevant when the user is browsing politics or has not chosen a topic
(because in those states σ returns high), so these cases are not shown.

Example 6 (Output feedback: Data server). This example illustrates policy state
dependence on program output, which allows feedback from the program being
monitored to the policy. The setting is that of Example 1. A data server han-
dles the data of three clients — Alice, Bob and Charlie. The policy is that the
data of at most one of these clients may be declassified by a server process and
the process may choose this one client. An encoding of the policy is shown in
Listing 3. The policy tracks the process’ choice in the variable st, which can take
one of the four values: none (choice not yet made), alice, bob or charlie. To make
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Listing 2. State-dependent input presence

Policy state s (local variables):
st : {initial, sports, politics, social}
cnt : int
sum : int
last click : int

Initialization: st = initial; cnt = 0; sum = 0; last click = 0;
Update functions:

updi(MouseClick x) =
case st of

| sports → {last click = x; }
| social →

case cnt of
| 10 → {cnt = 1; sum = x; }
| → {cnt = cnt + 1; sum = sum + x; }

Presence decision function:
σ() =

case st of
| initial → false
| sports → true
| politics → false
| social → case cnt of | 10 → true | → false.

Projection function:
π() =

case st of
| sports → last click
| social → sum/10.

the choice, the process produces an output specifying a user whose data it wants
to declassify. The function updo records the server’s choice in st if the process
has not already made the choice (updo checks that st = none). When user data is
read (i.e., a new input from the file system appears), the input update function
updi compares st to the user whose data is read. If the two match, the read
data d is stored in the policy state variable data, else null is stored in data. The
projection function π simply declassifies the value stored in data.

Example 7 (Output feedback: Audit). This example also illustrates feedback from
the program to the policy. The setting is that of Example 2, where an untrusted
audit process is initially provided with pseudonyms and non-sensitive informa-
tion of several client records, and later it identifies a certain fraction of these
records, which must be declassified in full for further examination. We have sim-
plified the example for exposition: The audit process reads exactly 100 records
and then selects 1 record to be declassified for further examination. Pseudonyms
are simply indices into an array maintained by the policy. An encoding of the
corresponding policy is shown in Listing 4. The policy variable count counts the
number of records fed to the program so far. While count is less than 100, the
input update function updi simply stores each input record i of five fields in the
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Listing 3. Output feedback: Data server

Policy state s (local variables):
st : {none, alice, bob, charlie}
data : file

Initialization: st = none; data = null ;
Update functions:

updo(RestrictAccessTo user) =
if (st = none) then

case user of
| Alice → {st = alice; }
| Bob → {st = bob; }
| Charlie → {st = charlie; }

updi(PrivateData (user, d)) =
if (st = user) then {data = d; } else {data = null ; }

Presence decision function:
σ() = true.

Projection function:
π() = data.

array records. When count reaches 100, the output update function updo allows
the program to provide a single index idx, which identifies the record that must
be declassified in full. The full record stored at this index is transferred to the
variable declassified, the array records is erased and count is set to ∞ to encode
that the process has made its choice.

The projection function π reveals only the index and the gross income of the
last input (at index (count−1) in records) while count is not ∞. When count has
been set to ∞, the single record chosen by the process is revealed in full through
the variable declassified.

4 Asymmetric SME

We enforce the declassification policies of Sect. 3 using a new paradigm that
we call asymmetric SME (A-SME). A-SME builds on classic SME, but uses
different programs in the high and low runs (hence the adjective asymmetric).
Classic SME – as described, for example, by VGDPR – enforces a declassification
policy on a reactive program by maintaining two independent runs of the given
program. The first run, called the high run, is invoked on every new input and
is provided the new input as-is. The second run, called the low run, is invoked
for an input only when the input’s presence (as determined by the policy) is
low. Additionally, the low run is not given the original input, but a projected
(declassified) value obtained from the policy after the policy’s state has been
updated with the new input. Only high outputs are retained from the high run
(these are not visible to the adversary) and only low outputs are retained from
the low run (these are visible to the adversary). Since the low run sees only
declassified values and the high run does not produce low outputs, it must be
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Listing 4. Output feedback: Audit

Policy state s (local variables):
records : array[100] ∗ array[5]
count : int
declassified : array[5]

Initialization: records = null ; count = 0; declassified = null ;
Update functions:

updi(i) =
case count of

| 100 = return;
| x = {records[x] = i; count = x + 1; }

updo(idx) =
case count of

| 100 = {declassified = records[idx]; records = null ; count = ∞; }
| = return;

Presence decision function:
σ() = true

Projection function:
π() =

case count of
| ∞ = declassified
| = let (idx, name, address, phone, income) = records[count − 1] in (idx, income)

the case that the low outputs depend only on declassified values. This enforces
a form of noninterference.

The problem with classic SME, which we seek to address by moving to A-
SME, is that even though the low and the high runs execute the same program,
they receive completely different inputs — the high run receives raw inputs,
whereas the low runs receives inputs created by the declassification policy. This
leads to two problems. First, if the programmer is not aware that her program
will run with SME, the low run may crash because it may not be prepared to
handle the completely different types of the declassified inputs. Fundamentally, it
seems impossible for the program to automatically adapt to the different inputs
of the high and the low runs, because it gets no indication of which run it is
executing in! Second, if the program tries to enforce the declassification policy
internally (which a non-malicious program will likely do), then in the low run, the
declassification is applied twice — once by the SME monitor and then internally
by the program. In contrast, in a run without SME, the function is applied only
once. As a consequence, one must assume that the function that implements
declassification is idempotent (e.g., in VGDPR, this declassification function is
called “project” and it must be idempotent). These two limitations restrict the
scenarios in which SME can be used to enforce declassification policies.

To broaden the scope of enforcement of declassification policies with SME,
we propose to do away with requirement that the same program be executed in
the high and low runs of SME. Instead, we assume that a variant of the program
that has been carefully crafted to use declassified inputs (not the raw inputs)
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exists. This variant, called the low slice, is used in the low run instead of the
original program. The resulting paradigm is what we call asymmetric SME or
A-SME. Before delving into the details of A-SME and its semantics, we give an
intuition for the low slice.

Fig. 2. Factorization of a
program p into a declassi-
fication policy D and a low
slice pL.

Low Slice. For a program p : Input × Memory �→
[Output]×Memory, the low slice with respect to pol-
icy D is a program pL : Declassified × Memory �→
[Output]×Memory that produces the program’s low
outputs given as inputs values that have been declas-
sified in accordance with policy D. In other words,
the low slice is the part of the program that handles
only declassified data.

A question that arises is why this low slice should
even exist? Intuitively, if the program p is compliant
with policy D, then its low outputs depend only on
the output of the policy D. Hence, semantically, p
must be equivalent to a program that composes D
with some other function pL to produce low outputs (see Fig. 2). It is this pL

that we call p’s low slice. We formalize this intuition in Sect. 5 by proving that if
the program p conforms to D (in a formal sense) then pL must exist. However,
note that the low slice pL may not be syntactically extractable from the program
p by any automatic transformation, in which case the programmer’s help may
be needed to construct pL.

4.1 Semantics of A-SME

A-SME enforces a declassification policy D over a program p and its low slice
pL, together called an A-SME-aware program, written (p, pL). The semantics
of A-SME are defined by the judgment I, s, μH , μL �=⇒D

p, pL
E (Fig. 3), which

should be read: “Starting in policy state s and initial memories μH (for the high
run) and μL (for the low run), the input sequence I produces the run E under
A-SME and policy D”.

Fig. 3. Semantics of A-SME.
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We define the judgment by induction on the input sequence I. Rule A-SME-1
is the base case: When the input sequence I is empty, so is the run E (when
there is no input, a reactive program produces no output). Rules A-SME-2 and
A-SME-3 handle the case where an input is available. In both rules, the first
available input, i, is given to the policy’s input update function updi to obtain a
new policy state s′′. Then, σ(s′′) is evaluated to determine whether the input’s
presence is high or low (rules A-SME-2 and A-SME-3, respectively).

If the input’s presence is high (rule A-SME-2), then only the high run is
executed by invoking p with input i. The outputs O of this high run are used
to update the policy state to s′ (premise s′ = updo(s′′, O)). After this, the rest
of the input sequence is processed inductively (last premise). Importantly, any
low outputs in O are discarded. The notation O|H denotes the subsequence of O
containing all outputs on high (protected, non-public) channels. We assume that
each output carries an internal annotation that specifies whether its channel is
high or low, so O|H is defined.

Fig. 4. Pictorial representation
of A-SME semantics.

If the input’s presence is low (rule A-SME-
3), then in addition to executing the high run
and updating the policy state as described above,
the low slice pL is also invoked with the current
declassified value π(s′′) to produce outputs O′

and to update the low memory. Only the low out-
puts in O′ (O′|L) are retained. All high outputs
in O′ are discarded.

Figure 4 depicts A-SME semantics pictorially.
The dashed arrows denote the case where the
input’s presence is low (A-SME-3). In that case,
the low slice executes with the declassified value returned by the policy function
π. The arrow from the output O back to the policy D represents the output
feedback.

In the following two subsections we show that A-SME is (1) secure — it
enforces policies correctly and has no false negatives, and (2) precise — if pL is
a correct low slice, then its observable behavior does not change under A-SME.

4.2 Security

We prove the security of A-SME by showing that a program running under
A-SME satisfies a form of noninterference. Roughly, this noninterference says
that if we take two different input sequences that result in the same declassified
values, then the low outputs of the two runs of the program under A-SME
are the same. In other words, the low outputs under A-SME are a function of
the declassified values, so an adversary cannot learn more than the declassified
values by observing the low outputs. Importantly, the security theorem makes
no assumption about the relationship between p and pL, so security holds even if
a leaky program or a program that does not expect declassified values as inputs
is provided as pL.
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Fig. 5. Function D∗ returns values declassified by policy D during a run.

To formally specify our security criteria, we first define a function D∗ (Fig. 5)
that, given an initial policy state s and a program run E, returns the sequence
of values declassified during that run. This function is defined by induction on
E and takes into account the update of the policy state due to both inputs
and outputs in E. It is similar to a homonym in VGDPR but adds policy state
update due to outputs. Note that D∗ adds the declassified value to the result
only when the input presence is low (condition σ(s′′) = true). Equipped with
the function D∗, we state our security theorem.

Theorem 1 (Security, noninterference under D). Suppose I1, μ1 −→p E1

and I2, μ2 −→p E2 and D∗(s1, E1) = D∗(s2, E2). If I1, s1, μ1, μL �=⇒D
p, pL

E′
1

and I2, s2, μ2, μL �=⇒D
p, pL

E′
2, then E′

1|o|L = E′
2|o|L.

Proof. By induction on the length of I1 ++ I2.

The theorem says that if for two input sequences I1, I2, the two runs E1,
E2 of a program p result in the same declassified values (condition D∗(s1, E1) =
D∗(s2, E2)), then the A-SME execution of the program on I1, I2 will produce
the same low outputs (E′

1|o|L = E′
2|o|L) for any low slice pL. Note that the pre-

condition of the theorem is an equivalence on E1 and E2 obtained by execution
under standard (non-A-SME) semantics, but its postcondition is an equivalence
on E′

1 and E′
2 obtained by execution under A-SME semantics. This may look

a bit odd at first glance, but this is the intended and expected formulation of
the theorem. The intuition is that the theorem relates values declassified by the
standard semantics to the security of the A-SME semantics.

4.3 Precision

In the context of SME, precision means that for a non-leaky program, out-
puts produced under SME are equal to the outputs produced without SME. In
general, SME preserves the order of outputs at a given level, but may reorder
outputs across levels. For instance, the rule A-SME-3 in Fig. 3 places the low
outputs O′|L before the high outputs O|H . So, following prior work [26], we
prove precision with respect to each level: We show that the sequence of outputs
produced at any level under A-SME is equal to the sequence of outputs produced
at the same level in the standard (non-A-SME) execution. Proving precision for
high outputs is straightforward for A-SME.

Theorem 2 (Precision for high outputs). For any programs p and pL,
declassification policy D with initial state s, and input list I, if I, μH −→p E
and I, s, μH , μL �=⇒D

p, pL
E′, then E|o|H = E′|o|H .
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Proof. From the semantics in Figs. 1 and 3 it can be observed that the high run
of A-SME mimics (in input, memory and outputs) the execution under −→p.

To show precision for low outputs, we must assume that the low slice pL is
correct with respect to the original program p and policy D. This assumption is
necessary because A-SME uses pL to produce the low outputs, whereas standard
execution uses p to produce them. Recall that the low slice pL is intended to
produce the low outputs of p, given values declassified by policy D. We formalize
this intuition in the following correctness criteria for pL.

Definition 3 (Correct low slice/correct low pair). A program pL of type
Declassified×Memory �→ [Output]×Memory and an initial memory μL are called
a correct low pair (and pL is called a correct low slice) with respect to policy D,
initial state s, program p and initial memory μ if for all inputs I, if I, μ −→p E
and D∗(s,E) = R and R,μL −→pL

E′, then E|o|L = E′|o|L.
Based on this definition, we can now prove precision for low outputs.

Theorem 3 (Precision for low outputs). For any programs p and pL, declas-
sification policy D with initial state s and input list I, if I, μH −→p E and
I, s, μH , μL �=⇒D

p, pL
E′ and (μL, pL) is a correct low pair with respect to D, s, p

and μH , then E|o|L = E′|o|L.
The proof of this theorem relies on the following easily established lemma.

Lemma 1 (Low simulation). Let I, s, μH , μL �=⇒D
p, pL

E and D∗(s,E) = R.
If R,μL −→pL

E′, then E|o|L = E′|o|L.
Proof. By induction on I. Intuitively, the low run in A-SME is identical to the
given run under −→pL

and the high run of A-SME does not contribute any low
outputs.

Proof (of Theorem 3). Let R = D∗(s,E′) and R,μL −→pL
E′′. By Lemma 1,

E′|o|L = E′′|o|L. From Definition 3, E|o|L = E′′|o|L. By transitivity of equality,
we get that E|o|L = E′|o|L.

Theorem 4 (Precision). For any programs p and pL, declassification policy D
with initial state s and input list I, if I, μH −→p E and I, s, μH , μL �=⇒D

p, pL
E′,

and (μL, pL) is a correct low pair with respect to D, s, p and μH , then E|o|L =
E′|o|L and E|o|H = E′|o|H .

Proof. Immediate from Theorems 2 and 3.

Remark. Rafnsson and Sabelfeld [21,22] show that precision across output levels
can be obtained for SME using barrier synchronization. We speculate that the
method would generalize to A-SME as well.
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5 Existence of Correct Low Slices

In this section we show that a correct low slice (more specifically, a correct low
pair) of a program exists if the program does not leak information beyond what
is allowed by the declassification policy.

Definition 4 (No leaks outside declassification). A program p starting
from initial memory μ does not leak outside declassification in policy D and
initial state s if for any two input lists I1, I2: I1, μ −→p E1 and I2, μ −→p E2

and D∗(s,E1) = D∗(s,E2) imply E1|o|L = E2|o|L.
Theorem 5 (Existence of correct low slice). If program p, starting from
initial memory μ, does not leak outside declassification in policy D and initial
state s, then there exist pL and μL such that (μL, pL) is a correct low pair with
respect to D, s, p and μ.

We describe a proof of this theorem. Fix an initial memory μ. Define f, g
as follows: If I, μ −→p E, then f(I) = E|o|L and g(I) = D∗(s,E). Then,
Definition 4 says that f(I) is a function of g(I), meaning that there exists another
function h such that f(I) = h(g(I)). Intuitively, for a given sequence of declas-
sification values R = D∗(s,E), h(R) is the set of low outputs of p.

For lists L1, L2, let L1 ≤ L2 denote that L1 is a prefix of L2.

Lemma 2 (Monotonicity of h). If I1 ≤ I2, then h(g(I1)) ≤ h(g(I2)).

Proof. By definition, h(g(I1)) = f(I1) and h(g(I2)) = f(I2). So, we need to
show that f(I1) ≤ f(I2). Let μ, I1 −→p E1 and μ, I2 −→p E2. Since I1 ≤ I2,
E1|o|L ≤ E2|o|L, i.e., f(I1) ≤ f(I2).

We now construct the low slice pL using h. In the execution of pL, the low
memory μ′

L at any point is the list of declassified values R that have been seen
so far. We define:

μL = []
pL(r,R) = (h(R :: r) \ h(R), R :: r)

If R is the set of declassified values seen in the past, to produce the low
output for a new declassified value r, we simply compute h(R :: r) \ h(R). By
Lemma 2, h(R) ≤ h(R :: r) when R and R :: r are declassified value lists from
the same run of p, so h(R :: r)\h(R) is well-defined. We then prove the following
lemma, which completes the proof.

Lemma 3 (Correctness of construction). (μL, pL) defined above is a correct
low pair for D, s, p and μ if p, starting from initial memory μ, does not leak
outside declassification in D and initial state s.
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6 Discussion

In this section, we compare some of the fine points of A-SME and prior work on
SME. We often refer to the schemas of Fig. 6, which summarizes several flavors
of SME described in the literature.

Input Presence Levels. SME was initially designed by Devriese and Piessens [13]
to enforce noninterference on sequential programs, not reactive programs
(Fig. 6a). They implicitly assume that all inputs are low presence. Thus, there
are only two kinds of inputs — low content/low presence (denoted L) and high
content/low presence. Following [20], we call the latter “medium”-level or M-level
inputs, reserving high (H) for inputs with high presence.

Bielova et al. [6] adapted SME for enforcing noninterference in a reactive
setting. Though not explicitly mentioned in their paper, their approach assumes

Fig. 6. Flavors of SME from literature. Red denotes information at level H, blue denotes
information at level M, and black denotes information at level L. d is a default value
provided to the low run when it demands an input of higher classification (Color figure
online).
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that an input’s presence and content are classified at the same level. Conse-
quently, in their work, inputs only have levels H and L (Fig. 6b). Bielova et al.
also introduce the idea that for an input with high presence (level H), the low
run must not be executed at all and we, as well as VGDPR [26] use this idea. In
Bielova et al.’s work, an input’s presence level is fixed by the channel on which
it appears; this static assignment of input presence levels carries into all sub-
sequent work, including that of VGDPR and of Rafnsson and Sabelfeld [21,22]
(RS in the sequel). Our work relaxes this idea and permits input presence to
depend on policy state.

Input Totality. RS (Fig. 6c) consider all three input levels — L, M, and H — for
sequential programs with I/O. In their setup, programs demand inputs and can
time how long they wait before an input is available. This allows a conceptual
distinction between environments that can always provide inputs on demand
and environments that cannot. In an asynchronous reactive setting like ours,
VGDPR’s, or that of Bielova et al., this distinction is not useful.

Declassification and SME. Early work on SME, including that of Devriese
et al. and Bielova et al., did not consider declassification. RS and VGDPR added
support for declassification in the non-reactive and reactive setting, respectively.
In RS, declassification policies have two components. A coarse-grained policy, ρ,
specifies the flows allowed between levels statically and is enforced with SME.
A fine-grained mechanism allows the high run of the program to declassify data
to the low run dynamically. This mechanism routes data from a special M-level
output of the high run to an M-level input of the low run. This routing is called
the release channel and is denoted by π + r in Fig. 6c. Data on the release chan-
nel is not monitored by SME and the security theorem for such release is the
standard gradual release condition [2], which only says that declassification hap-
pens at explicit declassification points of the high run, without capturing what
is released very precisely. For instance, if Example 4 were implemented in the
framework of RS, the only formal security guarantee we would get is that any
function of the mouse clicks might have been declassified (which is not useful in
this example).

In contrast, the security theorem of VGDPR, like ours, captures the declas-
sified information at fine granularity. In VGDPR, policies declassify high inputs
using two different functions — a stateless projection function project , which
specifies both the presence level of an input and a declassified value, and a state-
ful release function release that can be used to declassify aggregate information
about past inputs. The output of the projection function (denoted π in Fig. 6d)
is provided as input to the low run in place of the high input. The decision to
pass a projected value to the low run where a high input is normally expected
results in problems mentioned at the beginning of Sect. 4, which motivated us
to design A-SME. The output of the release function (denoted r in Fig. 6d) is
passed along a release channel similar to the one in RS. We find the use of two
different channels redundant and thus we combine release and project into a sin-
gle policy function that we call π. Going beyond VGDPR, in A-SME, the policy
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state may depend on program output and the input presence may depend on
policy state. As illustrated in Sect. 3, this allows for a richer representation of
declassification policies.

Totality of the Monitored Program. Like VGDPR, we assume that the (reactive)
program being monitored is total and terminates in a finite amount of time.
This rules out leaks due to the adversary having the ability to observe lack of
progress, also called progress-sensitivity [1,18]. In contrast, RS do not make this
termination assumption. Instead, they (meaningfully) prove progress-sensitive
noninterference. This is nontrivial when the adversary has the ability to observe
termination on the low run, as a scheduler must be chosen carefully. We believe
that the same idea can be applied to both VGDPR’s and our work if divergent
behavior is permitted.

7 Related Work

(Stateful) Declassification Policies. Sabelfeld and Sands [24] survey different
methods for representing and enforcing declassification policies and provide a set
of four dimensions for declassification models. These dimensions — what, where,
when, and who — have been investigated significantly in literature. Policies often
encompass a single dimension, such as what in delimited release [23], where in
gradual release [2], or who in the context of faceted values [4], but sometimes
also encompass more than one dimension such as what and where in localized
delimited release [3], or what and who in decentralized delimited release [17]. Our
security policies encompass the what and when dimensions of declassification.
We do not consider programs with explicit declassify commands (in fact, we do
not consider any syntax for programs) and, hence, we do not consider the where
dimension of declassification [21,23,26].

In the context of security policies specified separately from code, Li and
Zdancewic [16] propose relaxed non-interference, a security property that applies
to declassification policies written in a separate language. The policies are treated
as security levels and enforced through a type system. Swamy and Hicks [25]
also define policies separate from the program. They express the policies as
security automata, using a new language called air (automata for information
release). The policies maintain their own state and transition states when a
release obligation is satisfied. When all obligations are fulfilled, the automaton
reaches an accepting state and performs a declassification. These policies are
also enforced using a type system. The language Paralocks [7] also supports
stateful declassification policies enforced by a type system. There, the policies
are represented as sets of Horn clauses, whose antecedents are called locks. Locks
are predicates with zero or more parameters and they exhibit two states: opened
(true) and closed (false). The type system statically tracks which locks are open
and which locks are closed at every program point. Chong and Myers’ conditional
declassification policies are similar, but more abstract, and also enforced using a
type system [9–11]. In the context of SME, Kashyap et al. [14] suggest, but do not
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develop, the idea of writing declassification policies as separate sub-programs.
Our work ultimately draws some lineage from this idea.

Secure Multi-execution. We discussed prior work on SME in Sect. 6. Here, we
mention some other work on related techniques. Khatiwala et al. [15] propose
data sandboxing, a technique which partitions the program into two slices, a
private slice containing the instructions handling sensitive data, and a public
slice that contains the remaining instructions and uses system call interposition
to control the outputs. The public slice is very similar to our low slice, but
Khatiwala et al. trust the low slice’s correctness for security of enforcement, while
we do not. Nonetheless, we expect that the slicing method used by Khatiwala
et al. to construct the public slice can be adapted to construct low slices for use
with A-SME.

Capizzi et al. [8] introduce shadow executions for controlling information flow
in an operating system. They suggest running two copies of an application with
different sets of inputs: a public copy, with access to the network, that is supplied
dummy values in place of the user’s confidential data, and a private copy, with
no access to the network, that receives all confidential data from the user.

Zanarini et al. [28] introduce multi-execution monitors, a combination of SME
and monitoring, aimed at reporting any actions that violate a security policy.
The multi-execution monitor runs a program in parallel with its SME-enforced
version. If the execution is secure, the two programs will run in sync, otherwise,
when one version performs an action different from the other, the monitor reports
that the program is insecure. No support for declassification is provided.

Faceted and Sensitive Values. Faceted values [4] are a more recent, dynamic
mechanism for controlling information flow. They are inspired by SME but
reduce the overhead of SME by simulating the effect of multiple runs in a single
run. To do this, they maintain values for different levels (called facets) sepa-
rately. For a two-level lattice, a faceted value is a pair of values. Declassification
corresponds to migrating information from the high facet to the low facet. We
expect that in A-SME, the use of the low slice in place of the original program
in the low run will result in a reduction of overhead (over SME), comparable to
that attained by faceted values.

Jeeves [27] is a new programming model that uses sensitive values for encap-
sulating a low- and a high-confidentiality view for a given value. Like faceted
values, sensitive values are pairs of values. They are parameterized with a level
variable which determines the view of the value that should be released to any
given sink. Jeeves’ policies are represented as declarative rules that describe
when a level variable may be set high or low. The policies enforce data confi-
dentiality, but offer no support for declassification. An extension of Jeeves with
faceted values [5] supports more expressive declassification policies, but output
feedback is still not supported.

Generic Black-Box Enforcement. Remarkably, Ngo et al. [19] have recently
shown that black-box techniques based on multi-execution can be used to enforce
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not just noninterference and declassification policies, but a large subset of what
are called hyperproperties [12]. They present a generic construction for enforc-
ing any property in this subset. Superficially, their generic construction may look
similar to A-SME, but it is actually quite different. In particular, their method
would enforce noninterference by choosing a second input sequence that results
in the same declassified values as the given input sequence to detect if there is
any discrepancy in low outputs. A-SME does not use such a construction and is
closer in spirit to traditional SME.

8 Conclusion

This paper introduces asymmetric SME (A-SME) that executes a program and
its low slice simultaneously to enforce a broad range of declassification policies.
We prove that A-SME is secure, independent of the semantic correctness of the
low slice, and also precise when the low slice is semantically correct. Moreover
we show that A-SME does not result in loss of expressiveness: If the original
program conforms to the declassification policy, then a correct low slice exists.
Additionally, we improve the expressive power of declassification policies consid-
ered in literature by allowing feedback from the program, and by allowing input
presence sensitivity to depend on the policy state.

Future Work. A-SME can be generalized to arbitrary security lattices. For each
lattice level �, a separate projection function π� could determine the values
declassified to the �-run in A-SME. For � � �′, π� should reveal less information
than π�′ , i.e., there should be some function f such that π� = f◦π�′ . Additionally,
A-SME would require a different slice of the program for every level �.

Another interesting direction for future work would be to develop an analysis
either to verify the correctness of a low slice, or to automatically construct
the low slice from a program and a policy. Verification will involve establishing
semantic similarity of the composition of the low slice and the policy with a part
of the program, which can be accomplished using static methods for relational
verification. Automatic construction of the low slice should be feasible using
program slicing techniques, at least in some cases.
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Abstract. We propose a rigorous comparison of information flow mon-
itors with respect to two dimensions: soundness and transparency.

For soundness, we notice that the standard information flow security
definition called Termination-Insensitive Noninterference (TINI) allows
the presence of termination channels, however it does not describe
whether the termination channel was present in the original program,
or it was added by a monitor. We propose a stronger notion of non-
interference, that we call Termination-Aware Noninterference (TANI),
that captures this fact, and thus allows us to better evaluate the security
guarantees of different monitors. We further investigate TANI, and state
its formal relations to other soundness guarantees of information flow
monitors. For transparency, we identify different notions from the liter-
ature that aim at comparing the behaviour of monitors. We notice that
one common notion used in the literature is not adequate since it identi-
fies as better a monitor that accepts insecure executions, and hence may
augment the knowledge of the attacker. To discriminate between mon-
itors’ behaviours on secure and insecure executions, we factorized two
notions that we call true and false transparency. These notions allow us
to compare monitors that were deemed to be incomparable in the past.

We analyse five widely explored information flow monitors: no-
sensitive-upgrade (NSU), permissive-upgrade (PU), hybrid monitor
(HM), secure multi-execution (SME), and multiple facets (MF).

1 Introduction

Motivated by the dynamic nature and an extensive list of vulnerabilities found
in web applications in recent years, several dynamic enforcement mechanisms
in the form of information flow monitors [5–7,9,12,14,17,23,27,33], have been
proposed. In the runtime monitor literature [8,13], two properties of monitors
are considered specially important: soundness and transparency. In this work, we
rigorously compare information flow monitors with respect to these two dimen-
sions. We analyse five widely explored information flow monitor techniques:
no-sensitive-upgrade (NSU) [33], permissive-upgrade (PU) [6], hybrid monitor
(HM) [14], secure multi-execution (SME) [12], and multiple facets (MF) [7].

Soundness. An information flow monitor is sound when it ensures that observ-
able outputs comply with a given information flow policy. In the case of nonin-
terference, the monitor must ensure equal observable outputs if executions start
c© Springer-Verlag Berlin Heidelberg 2016
F. Piessens and L. Viganò (Eds.): POST 2016, LNCS 9635, pp. 46–67, 2016.
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in equal observable inputs. We notice that some monitoring techniques introduce
new termination channels, whereas others don’t. The standard information flow
security definition called Termination-Insensitive Noninterference (TINI) does
not account for termination: only initial memories in which the program termi-
nates should lead to equal observable outputs. Thus, TINI allows the presence
of termination channels, however it does not describe whether the termination
channel was present in the original program, or it was added by a monitor.
Termination-Sensitive Noninterference (TSNI), on the other hand, is a stronger
policy that disallows the presence of any termination channel. However, most
information flow monitors do not satisfy TSNI. Hence, existing definitions do not
allow us to discriminate between different monitors with respect to the security
guarantees that they provide. We propose a notion of noninterference, stronger
than TINI but weaker than TSNI, that we call Termination-Aware Noninterfer-
ence (TANI), that captures the fact that the monitor does not introduce a new
termination channel, and thus allows to better evaluate the security guarantees
of different monitors. We discovered that HM, SME, and MF do satisfy TANI,
while NSU and PU do not satisfy TANI.

Example 1 (NSU introduces a termination channel). Consider the following pro-
gram, where each variable can take only two possible values: 0 and 1.

This program is leaking confidential information – upon observing output
l=0 (l=1), it’s possible to derive that h=1 (h=0). In spite of this fact, NSU allows
the execution of this program starting in a memory [h=1, l=0] and blocks the
execution otherwise, thus introducing a new termination channel.

Transparency. An information flow monitor is transparent when it preserves
program semantics if the execution complies with the policy. In the case of non-
interference, the monitor must produce the same output as an original program
execution with a value that only depends on observable inputs. We identify dif-
ferent common notions from the literature that aim at comparing the behaviour
of monitors: precision, permissiveness, and transparency. We notice that per-
missiveness is not adequate since it identifies as better a monitor that accepts
insecure executions, and hence may augment the knowledge of the attacker,
given that the attacker has knowledge based on the original executions. To dis-
criminate between monitors’ behaviours on secure and insecure executions, we
factorized two notions that we call true and false transparency. True transparency
corresponds to the standard notion of transparency in the field of runtime mon-
itoring: the ability of a monitor to preserve semantics of secure executions. An
information flow monitor is false transparent when it preserves semantics of the
original program execution that does not comply with the security policy. False
transparency might seem contradictory to soundness at first sight but this is not
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the case since information flow is not a property of one execution [2,24] but a
property of several executions, also called a hyperproperty [11,29]. These two
notions of transparency allow us to compare monitors that were deemed to be
incomparable in the past. In particular, we prove that HM is more TSNI pre-
cise (more true transparent for the set of TSNI secure programs) than NSU and
NSU is more false transparent than HM. Proofs can be found in the companion
technical report [1].

Our contributions are the following:

1. We propose a new information flow policy called termination-aware noninter-
ference (TANI) that allows us to evaluate monitors according to their sound-
ness guarantees. We prove that TANI is stronger than TINI but weaker than
TSNI that disallows any termination channels.

2. We identify two different notions of transparency that are used in the litera-
ture as the same notion and we call them true and false transparency.

3. We generalize previous results from Hedin et al. [16]: we show that dynamic
and hybrid monitors become comparable when the two flavors of transparency
are separated into true and false transparency.

4. We analyse and compare five major monitors previously proved sound for
TINI: NSU, PU, HM, SME and MF. Table 1 in Sect. 8 summarizes our results
for TANI, true and false transparency.

2 Knowledge

We assume a two-element security lattice with L � H and we use � as the least
upper bound. A security environment Γ maps program variables to security
levels. By μL we denote a projection of low variables of the memory μ, according
to an implicitly parameterized security environment Γ . The program semantics
is defined as a big-step evaluation relation (P, μ) ⇓ (v, μ′), where P is a program
that produces only one output v at the end of execution. We assume that v is
visible to the attacker at level L and that the program semantics is deterministic.
The attacker can gain knowledge while observing output v. Following Askarov
and Sabelfeld [3,4], we define knowledge as a set of low-equal memories, that
lead to the program observation v.

Definition 1 (Knowledge). Given a program P , the low part μL of an initial
memory μ, and an observation v, the knowledge for semantics relation ⇓ is a set
of memories that agree with μ on low variables and can lead to an observation
v: k⇓(P, μL, v) = {μ′ | μL = μ′

L ∧ ∃μ′′.(P, μ′) ⇓ (v, μ′′)}.
Notice that knowledge corresponds to uncertainty about the environments

in the knowledge set: any environment is a possible program input. The attacker
believes that the environments outside of the knowledge set are impossible inputs.
Upon observing a program output, the uncertainty might decrease because the
new output may render some inputs impossible. This means that the knowledge
set may become smaller, thus increasing the knowledge of the attacker.



A Taxonomy of Information Flow Monitors 49

To specify a security condition, we define what it means for an attacker not
to gain any knowledge. Given a program P , and a low part μL of an initial
memory μ, the attacker’s knowledge before the execution of the program is a set
of memories that agree with μ on low variables. This set is an equivalence class
of low-equal memories: [μ]L = {μ′ | μL = μ′

L}.

Definition 2 (Possible outputs). Given a program P and the low part μLof
an initial memory μ, a set of observable outputs for semantics relation ⇓ is:
O⇓(P, μL) = {v | ∃μ′, μ′′. μL = μ′

L ∧ (P, μ′) ⇓ (v, μ′′)}.
In the following, we don’t write the semantics relation ⇓ when we mean the

program semantics; the definitions in the rest of this section can be also used
with the subscript parameter ⇓ when semantics has to be explicit.

We now specify the security condition as follows: by observing a program
output, the attacker is not allowed to gain any knowledge.

Definition 3 (Termination-Sensitive Noninterference). Program P is
ter-mination-sensitively noninterferent for an initial low memory μL, written
TSNI(P, μL), if for all possible observations v ∈ O(P, μL), we have

[μ]L = k(P, μL, v)

A program P is termination-sensitively noninterferent, written TSNI(P ), if for
all possible initial memories μ, TSNI(P, μL).

The above definition is termination-sensitive because it does not allow an
attacker to learn the secret information from program divergence. Intuitively, if
the program terminates on all low-equal memories, and it produces the same out-
put v then it satisfies TSNI. If the program doesn’t terminate on some of the low-
equal memories, then for all possible observations v, the knowledge k(P, μL, v)
becomes a subset of [μ]L and doesn’t satisfy the definition.

Example 2. Consider Program 2. If the attacker observes that l=1, then he learns
that h was 0, and if the attacker doesn’t see any program output (divergence),
the attacker learns that h was 1. TSNI captures this kind of information leakage,
hence TSNI doesn’t hold.

Proposition 1. TSNI(P ) holds if and only if for all pairs of memories μ1 and
μ2, we have: μ1

L = μ2
L ∧∃μ′.(P, μ1) ⇓ (v1, μ′) ⇒ ∃μ′′.(P, μ2) ⇓ (v2, μ′′)∧ v1 = v2.

Termination-sensitive noninterference sometimes is too restrictive as it
requires a more sophisticated program analysis or monitoring that may
reject many secure executions of a program. A weaker security condition,
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called termination-insensitive noninterference (TINI), allows information flows
through program divergence, while still offering information flow security.

To capture this security condition, we follow the approach of Askarov and
Sabelfeld [4], by limiting the allowed attacker’s knowledge to the set of low-
equal memories where the program terminates. Since termination means that
some output is observable, a set that we call a termination knowledge, is a union
of all knowledge sets that correspond to some program output:

⋃
v′ k(P, μL, v

′).

Definition 4 (Termination-Insensitive Noninterference). Program P is
termination-insensitively noninterferent for an initial low memory μL, written
TINI(P, μL), if for all possible observations v ∈ O(P, μL), we have⋃

v′∈O(P,µL)

k(P, μL, v
′) = k(P, μL, v).

A program P is termination-insensitively noninterferent, written TINI(P ), if
for all possible initial memories μ, TINI(P, μL).

Example 3. TINI recognises the Program 2 as secure, since the attacker’s ter-
mination knowledge is only a set of low-equal memories where the program ter-
minates. For example, for μL= [l=0], only one observation l=1 is possible when
h=0, therefore TINI holds:

⋃
v′∈{1} k(P, l=0, v′) = [h=0, l=0] = k(P, l=0, 1).

Proposition 2. TINI(P ) holds if and only if for all pairs of memories μ1 and
μ2, we have: μ1

L = μ2
L ∧∃μ′.(P, μ1) ⇓ (v1, μ′)∧∃μ′′.(P, μ2) ⇓ (v2, μ′′) ⇒ v1 = v2.

3 Monitor Soundness

In this section, we consider dynamic mechanisms for enforcing information flow
security. For brevity, we call them “monitors”. The monitors we consider are
purely dynamic monitors, such as NSU and PU, hybrid monitors in the style of
Le Guernic et al. [20,21] that we denote by HM, secure multi-execution (SME),
and multiple facets monitor (MF). All the mechanisms we consider have deter-
ministic semantics denoted by ⇓M , where M represents a particular monitor. All
the monitors enforce at least termination-insensitive noninterference (TINI).1

Since TINI accepts termination channels, it also allows the monitor to intro-
duce new termination channels even if an original program did not have any. In
the next section, we will propose a new definition for soundness of information
flow monitors, capturing that a monitor should not introduce a new termina-
tion channel. But, first, we set up the similar definitions of termination-sensitive
and -insensitive noninterference for a monitored semantics. Instead of using a
subscript ⇓M for a semantics of a monitor M , we will use a subscript M .

1 This is indeed a lower bound since some monitors, like SME, also enforce termination-
and time-sensitive noninterference.
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Definition 5 (Soundness of TSNI enforcement). Monitor M soundly
enforces termination-sensitive noninterference, written TSNI(M), if for all pos-
sible programs P , TSNIM (P ).

Proposition 1 proves that this definition of TSNI soundness is equivalent to
the standard two-run definition if we substitute the original program seman-
tics with the monitor semantics. Similarly, to define a sound TINI monitor, we
restate Definition 4 of TINI with the monitored semantics. The definition below
is equivalent to the standard two-run definition (see Proposition 2).

Definition 6 (Soundness of TINI enforcement). Monitor M soundly
enforces termination-insensitive noninterference, written TINI(M), if for all
possible programs P , TINIM (P ).

This definition compares the initial knowledge and the final knowledge of the
attacker under the monitor semantics. But in practice, an attacker has also the
initial knowledge of the original program semantics (see Example 1).

4 Termination-Aware Noninterference

We propose a new notion of soundness for the monitored semantics, called
Termination-Aware Noninterference (TANI) that does not allow a monitor to
introduce a new termination channel.

Intuitively, all the low-equal memories, on which the original program termi-
nates, should be treated by the monitor in the same way, meaning the monitor
should either produce the same result for all these memories, or diverge on all
of them. In terms of knowledge, it means that the knowledge provided by the
monitor, should be smaller or equal than the knowledge known by the attacker
before running the program. Additionally, in the case the original program always
diverges, TANI holds if the monitor also always diverges or if the monitor always
terminates in the same value.

Definition 7 (Termination-Aware Noninterference). A monitor ⇓M

isTermination-Aware Noninterferent (TANI), written TANI(M), if for all pro-
grams P , initial memories μ, and possible observations v ∈ OM (P, μL), we have:

– O(P, μL) 	= ∅ =⇒ ⋃
v′∈O(P,µL)

k(P, μL, v
′) ⊆ kM (P, μL, v)

– O(P, μL) = ∅ =⇒ (OM (P, μL) = ∅ ∨ [μ]L = kM (P, μL, v))

Notice that, for the case that the original program sometimes terminate
(O(P, μL) 	= ∅)), we do not require equality of the two sets of knowledge since the
knowledge set of the monitored program can indeed be bigger than the knowl-
edge set of the attacker before running the program2. The knowledge set may
increase when a monitor terminates on the memories where the original program
did not terminate (e.g., SME from Sect. 5 provides such enforcement).
2 Remember that the bigger knowledge set corresponds to the smaller knowledge or

to the increased uncertainty.
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Example 4 (TANI enforcement). Coming back to Program 1, TANI requires
that on two low-equal memories [h=0, l=0] and [h=1, l=0] where the original
program terminates, the monitor behaves in the same way: either it terminates
on both memories producing the same output, or it diverges on both memories.

It is well-known that TSNI is a strong form of noninterference that implies
TINI. We now formally state the relations between TINI, TANI and TSNI.

Theorem 1. TSNI(M) ⇒ TANI(M) and TANI(M) ⇒ TINI(M).

5 Which Monitors Are TANI?

We now present five widely explored information flow monitors and prove
whether these monitors comply with TANI. In order to compare the monitors,
we first model all of them in the same language. Thus, our technical results are
based on a simple imperative language with one output (see Fig. 1). The lan-
guage’s expressions include constants or values (v), variables (x) and operators
(⊕) to combine them. We present the standard big-step program semantics in
Fig. 2.

Fig. 1. Language syntax

Fig. 2. Language semantics

The semantics relation of a command S is denoted by pc � (Γ, S, μ) ⇓M

(Γ ′, μ′) where pc is a program counter, M is the name of the monitor and Γ is
a security environment mapping variables to security levels. All the considered
monitors are flow-sensitive, and Γ may be updated during the monitored execu-
tion. We assume that the only output produced by the program is visible to the
attacker at level L. Since our simple language supports only one output at the
end of the program, the output rule of the monitors is defined only for pc = L,
and thus only checks the security level of an output variable x.
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No-Sensitive Upgrade (NSU). The no-sensitive upgrade approach (NSU)
first proposed by Zdancewic [33] and later applied by Austin and Flanagan [5]
is based on a purely dynamic monitor that controls only one execution of the
program. To avoid implicit information flows, the NSU disallows any upgrades
of a low security variables in a high security context. Consider Program 1: since
the purely dynamic monitor accepts its execution when h=1, it should block
the execution when h=0 to enforce TINI. NSU does so by blocking the second
execution since the low variable l is updated in a high context

Fig. 3. NSU semantics

Our NSU formalisation for a simple imperative language is similar to that
of Bichhawat et al. [10]. The main idea of NSU appears in the assign rule:
the monitor blocks “sensitive upgrades” when a program counter level pc is not
lower than the level of the assigned variable x. Figure 3 represents the semantics
of NSU monitor. We use Γ (e) as the least upper bound of all variables occurring
in expression e. If e contains no variables, then Γ (e) = L. NSU was proven to
enforce termination-insensitive noninterference (TINI) (see [5, Theorem 1]).

Example 5 (NSU is not TANI). Consider Program 1 and an initial memory [h=1,
l=0]. NSU does not satisfy TANI, since the monitor terminates only on one
memory, i.e., kM (P, μL, v) = [h=1, l=0], while the original program terminates
on both memories, low-equal to [l=0].

Permissive Upgrade (PU). The NSU approach suffices to enforce TINI, how-
ever it often blocks a program execution pre-emptively. Consider Program 3.
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This program is TINI, however NSU blocks its execution starting in memory
[h=0, l=0] because of a sensitive upgrade under a high security context.

Austin and Flanagan proposed a less-restrictive strategy called permissive
upgrade (PU) [6]. Differently from NSU, it allows the assignments of low variables
under a high security context, but labels the updated variable as partially-leaked
or ’P ’. Intuitively, P means that the content of the variable is H but it may be
L in other executions. If later in the execution, there is a branch on a variable
marked with P , or such variable is to be output, the monitor stops the execution.

Fig. 4. PU semantics

We present a permissive upgrade monitor (PU) for a two-point lattice
extended with label P with H � P . The semantics of PU is identical to the
one of NSU (see Fig. 3) except for the assign and if rules, that we present
in Fig. 4. Rule assign behaves like the assign rule of NSU, if pc � Γ (x) and
Γ (x) 	= P . Otherwise, the assigned variable is marked with P . Rule if is similar
to the rule if in NSU, but the semantics gets stuck if the variable in the test con-
dition is partially leaked. PU was proven to enforce TINI (see [6, Theorem 2]).
However, PU is not TANI since it has the same mechanism as NSU for adding
new termination channels.

Example 6 (PU is not TANI). Consider Program 1 and an initial memory [h=1,
l=0]. PU does not satisfy TANI, since the monitor terminates only on one mem-
ory, i.e., kM (P, μL, v) = [h=1, l=0], while the original program terminates on
both memories, low-equal to [l=0].

Hybrid Monitor (HM). Le Guernic et al. were the first to propose a hybrid
monitor (HM) [14] for information flow control that combines static and
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dynamic analysis. This mechanism statically analyses the non-executed branch
of each test in the program, collecting all the possibly updated variables in that
branch. The security level of such variables are then raised to the level of the
test, thus preventing information leakage.

Example 7. Consider Program 1 and its execution starting in [h=1, l=0]. This
execution is modified by HM because the static analysis discovers that variable
l could have been updated in a high security context in an alternative branch.

Fig. 5. HM semantics

The semantics of HM is identical to NSU except for the assign, if and
output rules that we show in Fig. 5. The assign rule does not have any specific
constraints. The static analysis Analysis(S, pc, Γ ) in the if rule explores variables
assigned in S and upgrades their security level according to pc. We generalize
the standard notation Γ [x �→ l] to sets of variables and use Vars(S) for the sets
of variables assigned in command S.

Analysis(S, pc, Γ ) = Γ [{y �→ pc � Γ (y) | y ∈ Vars(S)}

HM was previously proven to enforce TINI [14, Thm.1] and we prove in the
companion technical report [1] that HM satisfies TANI.

Theorem 2. HM is TANI.

Secure Multi-Execution (SME). Devriese and Piessens were the first to
propose secure multi-execution (SME) [12]. The main idea of SME is to execute
the program multiple times: one for each security level. Each execution receives
only inputs visible to its security level and a fixed default value for each input
that should not be visible to the execution. Different executions are executed
with a low priority scheduler to avoid leaks due to divergence of high executions
because SME enforces TSNI.
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Example 8 (SME “fixes” termination channels). Consider Program 4:

Assume μL = [l=0] and the default high value used by SME is h=1. Then,
there exists a memory μ′ = [h=0, l=0], low-equal to μL, on which the original
program doesn’t terminate: μ′ 	∈ ⋃

v′ k(P, μL, v
′), but SME terminates: μ′ ∈

kM (P, μL, l=0). Notice that SME makes the attacker’s knowledge smaller.

Fig. 6. SME semantics

The SME adaptation for our while language is given in Fig. 6, with executions
for levels L and H. The special value ⊥ represents the idea that no value can
be observed and we overload the symbol to also denote a memory that maps
every variable to ⊥. Using memory ⊥ we simulate the low priority scheduler of
SME in our setting: if the execution corresponding to the H security level does
not terminate, the SME semantics still terminates. In this case all the variables
with level H, which values should correspond to values obtained in the normal
execution of the program, are given value ⊥.

SME was previously proven TSNI [12, Theorem 1] and we prove that it also
enforces TANI: this can be directly inferred from our Theorem 1.

Theorem 3. SME is TANI.

Multiple Facets. Austin and Flanagan proposed multiple facets (MF) in [7].
In MF, each variable is mapped to several values or facets, one for each security
level: each value corresponds to the view of the variable from the point of view
of observers at different security levels. The main idea in MF is that if there is
a sensitive upgrade, MF semantics does not update the observable facet. Other-
wise, if there is no sensitive upgrade, MF semantics updates it according to the
original semantics.
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Example 9. Consider the TINI Program 5. In MF, the output observable at
level L (or the L facet of variable l) is always the initial value of variable l
since MF will not update a low variable in a high context. Therefore, all the
executions of Program 5 starting with l=1 are modified by MF, producing the
output l=1.

Fig. 7. Multiple Facets semantics
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Our adaptation of MF semantics is given in Fig. 7 where we use the following
notation: a faceted value, denoted 〈v1 : v2〉, is a pair of values v1 and v2. The
first value presents the view of an observer at level H and the second value
the view of an observer at level L. In the syntax, we interpret a constant v as
the faceted value 〈v : v〉. Faceted memories, ranged over μ̂, are mappings from
variables to faceted values. We use the notation μ̂(x)i (i ∈ {1, 2}) for the first
or second projection of a faceted value stored in x. As in SME, the special value
⊥ represents the idea that no value can be observed. MF was previously proven
TINI [7, Theorem 2] and we prove that it satisfies TANI.

Theorem 4. MF is TANI.

6 Precision, Permissiveness and Transparency

A number of works on dynamic information flow monitors try to analyse pre-
cision of monitors. Intuitively, precision describes how often a monitor blocks
(or modifies) secure programs. Different approaches have been taken to compare
precision of monitors, using definitions such as “precision”, “permissiveness” and
“transparency”. We propose a rigorous comparison of these definitions.

In the field of runtime monitoring, a monitor should provide two guaran-
tees while enforcing a security property: soundness and transparency. Trans-
parency [8] means that whenever an execution satisfies a property in question,
the monitor should output it without modifications3.

Precision (versus well typed programs). Le Guernic et al. [21] were among
the first to start the discussion on transparency for information flow monitors.
The authors have proved that their hybrid monitor accepts all the executions
of a program that is well typed under a flow-insensitive type system similar
to the one of Volpano et al. [31]. Le Guernic [19] names this result as partial
transparency. Russo and Sabelfeld [25] prove a similar result: they show that a
hybrid monitor accepts all the executions of a program that is well typed under
the flow-sensitive type system of Hunt and Sands [18].

Precision (versus secure programs). Devriese and Piessens [12] propose
a stronger notion, called precision, that requires a monitor to accept all the
executions of all secure programs. Notice that this definition is stronger because
not only the monitor should recognise the executions of well typed programs,
but also of secure programs that are not well typed. Devriese and Piessens have
proven that such precision guarantee holds for SME versus TSNI programs.

Transparency (versus secure executions). As a follow-up, Zanarini
et al. [32] have proven that another monitor based on SME satisfies transparency
for TSNI. This monitor accepts all the TSNI executions of a program, even if
the program itself is insecure.

3 Bauer et al. [8] actually provide a more subtle definition, saying a monitor should
output a semantically equivalent trace.
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Permissiveness (versus executions accepted by other monitors). In his
PhD thesis, Le Guernic [19] compares his hybrid monitor with another hybrid
monitor that performs a more precise static analysis, and proves an improved
precision theorem stating that whenever the first hybrid monitor accepts an
execution, the second monitor accepts it as well. Following this result, Besson
et al. [9] investigate other hybrid monitors and prove relative precision in the
style of Le Guernic, and Austin and Flanagan [6,7] use the same definition
to compare their dynamic monitors. Hedin et al. [16] name the same notion by
permissiveness and compare the sets of accepted executions: one monitor is more
permissive than another one if its set of accepted executions contains a set of
accepted executions of the other monitor.

To compare precision of different information flow monitors, we propose to
distinguish two notions of transparency. True transparency defines the secure
executions accepted by a monitor, and false transparency defines the insecure
executions accepted by a monitor.

True Transparency. We define a notion of true transparency for TINI. Intu-
itively, a monitor is true transparent if it accepts all the TINI executions of a
program.

Definition 8 (True Transparency). Monitor M is true transparent if for
any program P , and any memories μ, μ′ and output v, the following holds:

TINI(P, μL) ∧ (P, μ) ⇓ (v, μ′) ⇒ (P, μ) ⇓M (v, μ′)

There is a well-known result that a truncation automata cannot recognise
more than computable safety properties [15,28]. Since noninterference can be
reduced to a safety property that is not computable [29], and NSU and PU can
be modeled by truncation automata, it follows that they are not true transparent.
We show that the monitors of this paper, that cannot be modeled by truncation
automata, are not true transparent for TINI neither.

Example 10 (HM is not true transparent). Consider Program 5: it always ter-
minates with l=0 and hence it is secure. Any execution of this program will be
modified by HM because l will be marked as high.

Example 11 (MF is not true transparent). Consider again TINI Program 5.
The MF semantics will not behave as the original program semantics upon an
execution starting in [h=1, l=1]. The sensitive upgrade of the test will assign
faceted value [l=〈0 : 1〉] to variable l and the output will produce the low facet
of l which is 1, while the original program would produce an output 0. Hence,
this is a counter example for true transparency of MF.

Example 12 (SME is not true transparent for TINI). Since SME enforces TSNI,
it eliminates all the termination channels, therefore even if the original program
has TINI executions, SME might modify them to achieve TSNI.

Consider TINI Program 4 and an execution starting in [h=0,l=1]. SME
(with default value h=1) will diverge because it’s “low” execution will diverge
upon h=1. Therefore, SME is not true transparent for TINI.
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Even though none of the considered monitors are true transparent for TINI,
this notion allows us to define a relative true transparency to better compare the
behaviours of information flow monitors when they deal with secure executions.

Given a program P and a monitor M , we define a set of initial memories
that lead to secure terminating executions of program P , and a monitor M does
not modify these executions:

T (M,P ) = {μ | TINI(P, μL) ∧ ∃μ′, v. (P, μ) ⇓ (v, μ′) ⇒ (P, μ) ⇓M (v, μ′)}
Definition 9 (Relative True Transparency). Monitor A is more true trans-
parent than monitor B, written A ⊇T B, if for any program P , the following
holds: T (A,P ) ⊇ T (B,P ).

Austin and Flanagan [5,6] have proven that MF is more true transparent
than PU and PU is more true transparent than NSU. We restate this result in
our notations and provide a set of counterexamples showing that for no other
couple of analysed monitors relative true transparency holds.

Theorem 5. MF ⊇T PU ⊇T NSU .

Example 13 (NSU 	⊇T PU,NSU 	⊇T HM) Consider TINI Program 3: an
execution in initial memory with [h=0] is accepted by PU and HM because the
security level of l becomes low just before the output, and it is blocked by NSU
due to sensitive upgrade.

Example 14 (NSU 	⊇T SME,NSU 	⊇T MF,PU 	⊇T HM , PU 	⊇T SME and
PU 	⊇T MF ).

Program 6 is TINI since l’ does not depend on h. With initial memory
[h=0, l=1], HM, SME (with default value chosen as 0) and MF terminate with
the same output as normal execution. However, NSU will diverge due to sensitive
upgrade and PU will diverge because of the branching over a partially-leaked
variable l.

Example 15 (HM 	⊇T NSU,HM 	⊇T PU,HM 	⊇T SME,HM 	⊇T MF ). Con-
sider Program 1 and its secure execution starting in [h=1, l=1]. NSU, PU, SME
(the default value of SME does not matter in this case) and MF terminate with
the same output as original program execution, producing l=1. However, HM
modifies it because the security level of l is raised by the static analysis of the
non-executed branch.

Example 16 (SME 	⊇T NSU, SME 	⊇T PU, SME 	⊇T HM,SME 	⊇T MF ).
All the terminating executions of TINI Program 4 are accepted by NSU, PU,
HM and MF, while an execution starting in [h=0, l=1] with default value for
SME set to h=1 doesn’t terminate in SME semantics.
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Example 17 (MF 	⊇T HM). Program 7 is TINI for any execution. HM with
[h=1,l=0,l’=0] terminates with the original output because the output variable
[l’] is low. However, MF with [h=1,l=0,l’=0] doesn’t terminate.

Example 18 (MF 	⊇T SME). Program 5 is TINI for any execution. With
[h=0, l=1] it terminates in the program semantics and SME semantics (with
any default value) producing l=0. However, the MF semantics produces l=1.

Precision We have discovered that certain monitors (e.g., HM and NSU) are
incomparable with respect to true transparency. To compare them, we propose a
more coarse-grained definition that describes the monitors’ behaviour on secure
programs.

Definition 10 (Precision). Monitor M is precise if for any program P , the
following holds:

TINI(P ) ∧ ∀μ.(∃μ′, v.(P, μ) ⇓ (v, μ′) ⇒ (P, μ) ⇓M (v, μ′))

This definition requires that all the executions of secure programs are
accepted by the monitor. NSU, PU, HM and MF are not precise since they
are not true transparent. SME is precise for TSNI, and this result was proven
by Devriese and Piessens [12], however SME it not precise for TINI (see Exam-
ple 12).

To compare monitors’ behaviour on secure programs, we define a set of a
TINI programs P , where a monitor accepts all the executions of P :

P(M) = {P | TINI(P ) ∧ ∀μ.(∃μ′, v.(P, μ) ⇓ (v, μ′) ⇒ (P, μ) ⇓M (v, μ′))}

Definition 11 (Relative Precision). Monitor A is more precise than monitor
B, written A ⊇P B, if P(A) ⊇ P(B).

We have found out that no couple of the five monitors are in relative precision
relation. Below we present the counterexamples that demonstrate our findings.

Example 19 (HM 	⊇P SME). Consider TINI Program 5. All the executions of
this program are accepted by SME. However, HM modifies the program output
to default because the security level of l is upgraded to H by the static analysis
of the non-executed branch.
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Example 20 (HM 	⊇P NSU , HM 	⊇P PU). Consider the following program:

This TINI program terminates only when [h=0]. This execution is accepted
by NSU and PU, but the program output is modified by HM since HM analyses
the non-executed branch and upgrades the level of l to H.

Example 21 (HM 	⊇P MF ). Consider TINI Program 9. MF accepts all of
its executions, while HM modifies the program output to default because the
security level of l is raised to high.

The rest of relative precision counterexamples demonstrated in Table 1 of
Sect. 8 are derived from the corresponding counterexamples for relative true
transparency.

Since relative precision does not hold for any couple of monitors, we propose
a stronger definition of relative precision for TSNI programs. We first define a
set of a TSNI programs P , where a monitor accepts all the executions of P :

P∗(M) = {P | TSNI(P ) ∧ ∀μ.(∃μ′, v.(P, μ) ⇓ (v, μ′) ⇒ (P, μ) ⇓M (v, μ′))}
Definition 12 (Relative TSNI precision). A monitor A is more TSNI pre-
cise than a monitor B, written A ⊇∗

P B, if P∗(A) ⊇ P∗(B).

Theorem 6. For all programs without dead code, HM ⊇∗
P NSU,HM ⊇∗

P PU .

Notice that SME was proven to be precise for TSNI programs (see
[12, Theorem 2]), therefore SME is more TSNI precise than any other monitor.
We demonstrate this in Table 1 of Sect. 8.

False Transparency To compare monitors with respect to the amount of inse-
cure executions they accept, we propose the notion of false transparency. Notice
that false transparency violates soundness.

Definition 13 (False Transparency). Monitor M is false transparent if for
any program P , for all executions starting in a memory μ and finishing in mem-
ory μ′ with value v, the following holds:

¬TINI(P, μ) ∧ (P, μ) ⇓ (v, μ′) ⇒ (P, μ) ⇓M (v, μ′).
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Given a program P and a monitor M , we define a set of initial memories,
where a program P terminates, and a monitor M is false transparent for P :

F(M,P ) = {μ | ¬TINI(P, μL) ∧ ∃μ′, v.(P, μ) ⇓ (v, μ′) ⇒ (P, μ) ⇓M (v, μ′)}
Definition 14 (Relative False Transparency). Monitor A is more false
transparent than monitor B, denoted A ⊇F B, if for any program P , the fol-
lowing holds: F(A,P ) ⊇ F(B,P ).

Theorem 7. The following statements hold: NSU ⊇F HM , PU ⊇F NSU ,
PU ⊇F HM , SME ⊇F HM , MF ⊇F NSU , MF ⊇F PU and MF ⊇F HM .

Example 22 (NSU 	⊇F PU). Execution of Program 10 in the initial memory μ=
[h=0, l=0, l’=0] is interfering since it produces an output l=0, while an exe-
cution in the low-equal initial memory where [h=1] produces l=1. An execution
started in μ is accepted by PU but blocked by NSU.

Example 23 (NSU 	⊇F SME, PU 	⊇F SME). Execution of Program 11 start-
ing in memory [h=0, l=0] is not TINI and it is accepted by SME (with default
value h=0). However, it is rejected by NSU because of sensitive upgrade and by
PU because on the branching over a partially-leaked variable l.

Example 24 (NSU 	⊇F MF ). The following program always terminates in the
normal semantics coping the value of h into l. Hence all of its executions are
insecure. Every execution leads to a sensitive upgrade and NSU will diverge with
any initial memory. However, in the MF semantics the program will terminate
with l=0 if started with memory [h=0,l=0] since the sensitive upgrade of the
true branch will assign faceted value [l=〈0 : 0〉] to variable l. Hence, this is a
counter example for NSU being more false transparent than MF.

Example 25 (PU 	⊇F MF ). Program 11 is not TINI for all executions. However
MF with [h=1,l=1,l’=1] terminates in the same memory as normal execution,
while PU will diverge because l is marked as a partial leak.

Example 26 (HM 	⊇F NSU , HM 	⊇F PU , HM 	⊇F SME, HM 	⊇F MF ).
Consider Program 1 and an execution starting in memory [h=1, l=0]. This
execution is not secure and it is rejected by HM, however NSU, PU and MF
accept it. SME also accepts this execution in case the default value for h is 1.
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Example 27 (SME 	⊇F NSU , SME 	⊇F PU). Execution of Program 13 start-
ing in memory [h=0, l=0] is interfering and it is accepted by both NSU and
PU, producing an output l=0. However, SME (with default value chosen as 1)
modifies this execution and produces l=1.

Example 28 (SME 	⊇F MF and MF 	⊇F SME). Program 14 is not TINI if
possible values of h are 0, 1, and 2. MF with [h=1,l=1] terminates in the same
memory than normal execution but SME (with default value 0) always diverges.

On the other hand, with initial memory [h=1, l=0], SME (using default
value 1) terminates in the same memory as the normal execution, producing
l=1 but MF produces a different output l=0.

7 Related Work

In this section, we discuss the state of the art for taxonomies of information flow
monitors with respect to soundness or transparency.

For soundness, no work explicitly tries to classify information flow monitors.
However, it is folklore that TSNI, first proposed in [30], is a strong form of non-
interference that implies TINI. Since most well-known information flow monitors
are proven sound only for TINI [5–7,14,33], it is easy, from the soundness per-
spective, to distinguish SME from other monitors because SME is proven sound
for TSNI [12]. However, to the best of our knowledge, no work tries to refine
soundness in order to obtain a more fine grain classification of monitors as we
achieve with the introduction of TANI.

For transparency, Devriese and Piessens [12] prove that SME is precise for
TSNI and Zanarini et al. [32] notice that the result could be made more general
by proving that SME is true transparent for TSNI, which makes of SME an
effective enforcement [22] for TSNI. In this work, we first compare transparency
for TINI: none of the monitors that we have studied is true transparent for TINI.
Hedin et al. [16] compare hybrid (HM) and purely dynamic monitors (NSU and
PU), and conclude that for these monitors permissiveness is incomparable. By
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factorizing the notion of permissiveness, we can compare HM and NSU: HM
is more precise for TSNI than NSU and PU, and NSU and PU are more false
transparent than HM. Using the same definition of permissiveness, Austin and
Flanagan [6,7] prove that PU is more permissive than NSU and that MF is more
permissive than PU. Looking at this result and the definition of MF, our intuition
was that MF could accept exactly the same false transparent executions as NSU
and PU. However, we discovered that not only MF is more true transparent than
NSU and PU (this is an implication of Austin and Flanagan results) but also MF
is strictly more false transparent than NSU and PU. Bichhawat et al. [10] propose
two non-trivial generalizations of PU, called puP and puA, to arbitrary lattices
and show that puP and puA are incomparable w.r.t. permissiveness. It remains
an open question if puP and puA can be made comparable by discriminating
true or false transparency, as defined in our work.

8 Conclusion

In this work we proposed a new soundness definition for information flow mon-
itors, that we call Termination-Aware Noninterference (TANI). It determines
whether a monitor adds a new termination channel to the program. We have
proven that HM, SME and MF, do satisfy TANI, whereas NSU and PU intro-
duce new termination channels, and therefore do not satisfy TANI.

We compare monitors with respect to their capability to recognise secure exe-
cutions, i.e., true transparency [8]. Since it does not hold for none of the considered
monitors, we weaken this notion and define relative true transparency, that deter-
mines “which monitor is closer to being transparent”. We then propose even a more
weaker notion, called precision, that compares monitor behaviours on secure pro-
grams, and allows us to conclude that HM is more TSNI precise than NSU and PU
that previously were deemed incomparable [16]. We show that the common notion
of permissiveness is composed of relative true and false transparency and compare
all the monitors with respect to these notions in Table 1.

Table 1. Taxonomy of five major information flow monitors

For simplicity, we consider a security lattice of only two elements, however
we expect our results to generalise to multiple security levels. In future work,
we plan to compare information flow monitors with respect to other information
flow properties, such as declassification [26].
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Abstract. Low-security observable determinism (LSOD), as introduced
by Roscoe and Zdancewic [18,24], is the simplest criterion which guar-
antees probabilistic noninterference for concurrent programs. But LSOD
prohibits any, even secure low-nondeterminism. Giffhorn developed an
improvement, named RLSOD, which allows some secure low-nondeter-
minism, and can handle full Java with high precision [5].

In this paper, we describe a new generalization of RLSOD. By
applying aggressive program analysis, in particular dominators for multi-
threaded programs, precision can be boosted and false alarms minimized.
We explain details of the new algorithm, and provide a soundness proof.
The improved RLSOD is integrated into the JOANA tool; a case study
is described. We thus demonstrate that low-deterministic security is a
highly precise and practically mature software security analysis method.

Keywords: Information flow control · Probabilistic noninterference ·
Program analysis

1 Introduction

Information flow control (IFC) analyses a program’s source or byte code for leaks,
in particular violations of confidentiality and integrity. IFC algorithms usually
check some form of noninterference; sound IFC algorithms guarantee to find all
possible leaks. For multi-threaded programs, probabilistic noninterference (PN)
as introduced in [19–21] is the established security criterion. Many algorithms
and definitional variations for PN have been proposed, which vary in soundness,
precision, scalability, language restrictions, and other features.

One of the oldest and simplest criteria which enforces PN is low-security
observational determinism (LSOD), as introduced by Roscoe [18], and improved
by Zdancewic, Huisman, and others [10,24]. For LSOD, a relatively simple static
check can be devised; furthermore LSOD is scheduler independent – which is a
big advantage. However Huisman and other researchers found subtle problems
in earlier LSOD algorithms, so Huisman concluded that scheduler-independent
PN is not feasible [9]. Worse, LSOD strictly prohibits any, even secure low-
nondeterminism – which kills LSOD from a practical viewpoint.
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It is the aim of this paper to demonstrate that improvements to LSOD can be
devised, which invalidate these earlier objections. An important step was already
provided by Giffhorn [4,5] who discovered that

1. an improved definition of low-equivalent traces solves earlier soundness prob-
lems for infinite traces and nonterminating programs.

2. flow- and context-sensitive program analysis is the key to a precise and sound
LSOD algorithm.

3. the latter can naturally be implemented through the use of program depen-
dence graphs.

4. additional support by precise points-to analysis, may-happen-in-parallel
analysis, and exception analysis makes LSOD work and scale for full Java.

5. secure low-nondeterminism can be allowed by relaxing the strict LSOD cri-
terion, while maintaining soundness.

Giffhorn’s RLSOD (Relaxed LSOD) algorithm requires – like many other algo-
rithms, e.g. [20,21] – that the scheduler is probabilistic. RLSOD is integrated
into the JOANA IFC tool (joana.ipd.kit.edu), which has successfully been
applied in various projects [5–7,11,12,14].

In this paper, we describe new improvements for RLSOD, which boost preci-
sion and reduce false alarms compared to original LSOD and RLSOD. We first
recapitulate technical properties of PN, LSOD, and RLSOD. We then introduce
the improved criterion, which is based on the notion of dominance in threaded
control flow graphs. We explain the definition using examples, provide soundness
arguments, and present a case study, namely a prototypical e-voting system with
multiple threads. Our work builds heavily on our earlier contributions [5,7], but
the current paper is aimed to be self-contained.

2 Probabilistic Noninterference

IFC aims to guarantee that no violations of confidentiality or integrity may
occur. For confidentiality, usually all values in input, output, or program states

Fig. 1. Some leaks. Left: explicit and implicit, middle: possibilistic, right: probabilistic.
For simplicity, we assume that read(L) reads low variable L from a low input channel;
print(H) prints high variable H to a high output channel. Note that reads of high
variables are classified high, and prints of low variables are classified low.
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are classified as “high” (secret) or “low” (public), and it is assumed that an
attacker can read all low values, but cannot see any high value.1

Figure 1 presents small but typical confidentiality leaks. As usual, variable
H is “High” (secret), L is “Low” (public). Explicit leaks arise if (parts of) high
values are copied (indirectly) to low output. Implicit leaks arise if a high value can
change control flow, which can change low behaviour (see Fig. 1 left). Possibilistic
leaks in concurrent programs arise if a certain interleaving produces an explicit
or implicit leak; in Fig. 1 middle, interleaving order 5, 8, 9, 6 causes an explicit
leak. Probabilistic leaks arise if the probability of high output is influenced by
low values; in Fig. 1 right, H is never copied to L, but if the value of H is large,
probability is higher that “POST” is printed instead of “STPO”.

2.1 Sequential Noninterference

To formalize RLSOD, let us start with the classical definition of sequential non-
interference. The classic definition assumes that a global and static classification
cl(v) of all program variables v as secret (H) or public (L) is given. Note that
flow-sensitive IFC such as RLSOD does not use a static, global classification of
variables; this will be explained below.

Definition 1 (Sequential noninterference). Let P be a program. Let s, s′ be
initial program states, let [[P]](s), [[P]](s′) be the final states after executing P in
state s resp. s′. Noninterference holds iff

s ∼L s′ =⇒ [[P]](s) ∼L [[P]](s′).

The relation s ∼L s′ means that two states are low-equivalent, that is, coin-
cide on low variables: cl(v) = L =⇒ s(v) = s′(v). Classically, program input is
assumed to be part of the initial states s, s′, and program output is assumed to
be part of the final states; the definition can be generalized to work with explicit
input and output streams. Truly interactive programs lead to the problem of
termination leaks [1], which will not be explored in this paper.

2.2 Probabilistic Noninterference

In multi-threaded programs, fine-grained interleaving effects must be accounted
for, thus traces are used instead of states. A trace is a sequence of events
t = (s1, o1, s1), (s2, o2, s2), . . . , (sν , oν , sν), . . ., where the oν are operations (i.e.
dynamically executed program statements cν ; we write stmt(oν) = cν). sν , sν are
the states before resp. after executing oν . For the time being we assume traces
to be terminating; subtleties of nontermination are discussed later.

1 A more detailed discussion of IFC attacker models can be found in e.g. [5]. Note
that JOANA allows arbitrary lattices of security classifications, not just the simple
⊥ = L ≤ H = � lattice. Note also that integrity is dual to confidentiality, but will
not be discussed here. JOANA can handle both.
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Fig. 2. Left: insecure program, obvious explicit leak. Middle: secure program, RLSOD
+ flow sensitivity avoid false alarm. Right: only iRLSOD avoids false alarm.

For PN, the notion of low-equivalent traces is essential. Classically, traces
are low equivalent if for every (sν , oν , sν) ∈ t, (s′

ν , oν , s′
ν) ∈ t′, it holds that

sν ∼L s′
ν and sν ,∼L s′

ν . This definition enforces a rather restrictive lock-step
execution of both traces. Later definitions (e.g. [20]) use stutter equivalence
instead of lock-step equivalence; thus allowing one execution to run faster than
the other (“stuttering” means that one trace performs additional operations
which do not affect public behaviour). In our flow-sensitive setting, we achieve
the same effect by demanding that not only program variables are classified,
but also all program statements (cl(c) = H or cl(c) = L), and thus operations
in traces: cl(o) = cl(stmt(o)). Note that it is not necessary for the engineer to
provide classifications for all program statements, as most of the cl(c) can be
computed automatically (see below). Low equivalence then includes filtering out
high operations from traces. This leads to

Definition 2 1. The low-observable part of an event is defined as

EL((s, o, s)) =

{
(s |use(o), o, s |def (o)), if cl(stmt(o)) = L

ε, otherwise

where def (o), use(o) are the variables defined (i.e. assigned) resp. used in o.
2. The low-observable subtrace of trace t is

EL(t) = map(EL)(filter(λe.EL(e) �= ε)(t)).

3. Traces t, t′ are low-equivalent, written t ∼L t′, if EL(t) = EL(t′).

Note that the flow-sensitive projections s|def (o), s|use(o) are usually much
smaller than a flow-insensitive, statically defined low part of s; resulting in more
traces to be low-equivalent without compromising soundness. This subtle obser-
vation is another reason why flow-sensitive IFC is more precise.

PN is called “probabilistic”, because it essentially depends of the probabilities
for certain traces under certain inputs: Pi(t) is the probability that a specific
trace t is executed under input i; and Pi([t]L) is the probability that some trace
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t′ ∈ [t]L (i.e. t′ ∼L t) is executed under i. Note that the t′ ∈ [t]L cannot be
distinguished by an attacker, as all t′ ∈ [t]L have the same public behaviour.

The following PN definition is classical, and uses explicit input streams
instead of initial states. For both inputs the same initial state is assumed, but it is
assumed that all input values are classified low or high. Inputs i, i′ are low equiv-
alent (i ∼L i′) if they coincide on low values: cl(iν) = L∧cl(i′ν) = L =⇒ iν = i′ν .
The definition relies on our flow-sensitive t ∼L t′.

Definition 3 (Probabilistic noninterference). Let i, i′ be input streams; let
T (i) be the set of all possible traces of program P for input i, Θ = T (i) ∪ T (i′).
PN holds iff

i ∼L i′ =⇒ ∀t ∈ Θ : Pi([t]L) = Pi′([t]L).

That is, if we take any trace t which can be produced by i or i′, the probability
that a t′ ∈ [t]L is executed is the same under i resp. i′. In other words, proba-
bility for any public behaviour is independent from the choice of i or
i′ and thus cannot be influenced by secret input.

As [t]L is discrete (in fact recursively enumerable), Pi is a discrete probability
distribution, hence Pi([t]L) =

∑
t′∈[t]L

Pi(t′). Thus the PN condition can be
rewritten to

i ∼L i′ =⇒ ∀t :
∑

t′∈[t]L

Pi(t′) =
∑

t′∈[t]L

Pi′(t′).

Applying this to Fig. 1 right, we first observe that all inputs are
low equivalent as there is only high input. For any t ∈ Θ there
are only two possibilities: . . . print(‘‘PO’’). . . print(‘‘ST’’). . .∈ t or
. . . print(‘‘ST’’). . . print(‘‘PO’’). . .∈ t. There are no other low events
or low output, hence there are only two equivalence classes [t]1L =
{t′ | . . . print(“PO”) . . . print(“ST”) . . . ∈ t′} and [t]2L = {t′ |
. . . print(“ST“) . . . print(”PO”) . . . ∈ t′}. Now if i contains a small value, i′ a
large value, as discussed earlier Pi([t]1L) �= Pi′([t]1L) as well as Pi([t]2L) �= Pi′([t]2L),
hence PN is violated.

In practice, the Pi([t]L) are difficult or impossible to determine. So far, only
simple Markov chains have been used to explicitely determine the Pi, where the
Markow chain models the probabilistic state transitions of a program, perhaps
together with a specific scheduler [15,20]. Worse, the sums might be infinite (but
will always converge). Practical examples with explicit probabilities can be found
in [4,5]. Here, as a sanity check, we demonstrate that for sequential programs
PN implies sequential noninterference. Note that for sequential (deterministic)
programs |T (i)| = 1, and for the unique t ∈1 T (i) we have Pi(t) = 1.

Lemma 1. For sequential programs, probabilistic noninterference implies
sequential noninterference.

Proof. Let s ∼L s′. For sequential NI, input is part of the initial states, thus
we may conclude i ∼L i′ and apply the PN definition. Let t′′ ∈ Θ. As P is
sequential, t′′ = t ∈1 T (i) or t′′ = t′ ∈1 T (i′). WloG let t′′ = t. Due to PN,
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Pi([t]L) = Pi′([t]L), due to sequentiality Pi([t]L) = Pi(t) = Pi′(t′) = 1, thus
Pi′([t]L) = Pi′(t′) = 1. That is, with probability 1 the trace t′ executed under
i′ is low equivalent to t. Thus in particular the final states in t resp. t′ must be
low equivalent. Hence s ∼L s′ implies [[P]](s) ∼L [[P]](s′). 	


2.3 Low-Deterministic Security

LSOD is the oldest and still the simplest criterion which enforces PN. LSOD
demands that low-equivalent inputs produce low-equivalent traces. LSOD is
scheduler independent and implies PN (see lemma below). It is intuitively secure:
changes in high input can never change low behaviour, because low behaviour is
enforced to be deterministic. This is however a very restrictive requirement and
eventually led to popular scepticism against LSOD.

Definition 4 (Low-security observational determinism). Let i, i′ be input
streams, Θ as above. LSOD holds iff

i ∼L i′ =⇒ ∀t, t′ ∈ Θ : t ∼L t′.

Under LSOD, all traces t for input i are low-equivalent: T (i) ⊆ [t]L, because
∀t′ ∈ T (i) : t′ ∼L t. If there is more than one trace for i, then this must result
from high-nondeterminism; low behaviour is strictly deterministic.

Lemma 2. LSOD implies PN.

Proof. Let i ∼L i′, t ∈ Θ. WloG let t ∈ T (i).
Due to LSOD, we have T (i) ⊆ [t]L. As Pi(t′) = 0 for t′ /∈ T (i), we have

Pi([t]L) =
∑

t′∈[t]L

Pi(t′) =
∑

t′∈T (i)

Pi(t′) = 1

and likewise Pi′([t]L) = 1, so Pi([t]L) = Pi′([t]L) holds. 	

Zdancewic [24] proposed the first IFC analysis which checks LSOD. His con-

ditions require that

1. there are no explicit or implicit leaks,
2. no low observable operation is influenced by a data race,
3. no two low observable operations can happen in parallel.

The last condition imposes the infamous LSOD restriction, because it explicitely
disallows that a scheduler produces various interleavings which switch the order
of two low statements which may happen in parallel, and thus would generate
low nondeterminism. Besides that, the conditions can be checked by a static
program analysis; Zdancewic used a security type system.

As an example, consider Fig. 2. In Fig. 2 middle, statements print(L) and
L=42 – which are both classified low – can be executed in parallel, and the
scheduler nondeterministically decides which executes first; resulting in either 42
or 0 to be printed. Thus there is visible low nondeterminism, which is prohibited
by classical LSOD. The program however is definitely secure according to PN.
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3 RLSOD

In this section, we recapitulate PDGs, their application for LSOD, and the orig-
inal RLSOD improvement. This discussion is necessary in order to understand
the new improvements for RLSOD.

fork thread_1 fork thread_2

thread_2

main

control dependence

thread fork

inter-thread dependence

data dependence

read(H)read(L)

print(L)

thread_1

L = H

fork thread_2
L = 0

thread_2

main

control dependence

thread fork

inter-thread dependence

data dependence

L = H

print(L)

L = 42

read(H)

fork thread_1

thread_1

print(L)

fork thread_2
L = 0

read(H)

thread_2

L = H

main

L = 42

fork thread_1

thread_1

control dependence

thread fork

inter-thread dependence

data dependence

Fig. 3. Left to right: PDGs for Fig. 1 middle, and for Fig. 2 left and middle.

3.1 PDGs for IFC

Snelting et al. introduced Program Dependence Graphs (PDGs) as a device
to check integrity of software [22]. Later the approach was expanded into the
JOANA IFC project. It was shown that PDGs guarantee sequential noninterfer-
ence [23], and that PDGs provide improved precision as they are naturally flow-
and context-sensitive [7].

In this paper, we just present three PDG examples and some explanations.
PDG nodes represent program statements or expressions, edges represent data
dependencies, control dependencies, inter-thread data dependencies, or summary
dependencies. Figure 3 presents the PDGs for Fig. 1 middle, and for Fig. 2 left
and middle. The construction of precise PDGs for full languages is absolutely
nontrivial and requires additional information such as points-to analysis, excep-
tion analysis, and thread invocation analysis [7]. We will not discuss PDG details;
it is sufficient to know the Slicing Theorem:

Theorem [8]. If there is no PDG path a →∗ b, it is guaranteed that statement
a can never influence statement b. In particular, values computed in a cannot
influence values computed in b.

Thus all statements which might influence a specific program point b are
those on backward paths from this point, the so-called “backward slice” BS(b).
In particular, information flow a →∗ b is only possible if a ∈ BS(b). There are
stronger versions of the theorem, which consider only paths which can indeed
be dynamically executed (“realizable” paths); these make a big difference in
precision e.g. for programs with procedures, objects, or threads.
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As an example, consider Fig. 3. The left PDG has a data dependency edge
from L=H; to print(L);, because L is defined in line 9 (Fig. 2 left), used in line
10, there is a path in the control flow graph (CFG) from 9 to 10, and L is not
reassigned (“killed”) on the path. Thus there is a PDG path from read(H); to
print(L);, representing an illegal flow from line 7 to line 10 (a simple explicit
leak). In Fig. 3 right, there is no path from L=H; to print(L); due to flow
sensitivity: no scheduler will ever execute L=H; before print(L);. Hence no
path from read(H) to print(L); exists, and it is guaranteed that the printed
value of L is not influenced by the secret H.

In general, the multi-threaded PDG can be used to check whether there
are any explicit or implicit leaks; technically it is required that no high source
is in the backward slice of a low sink. This criterion is enough to guarantee
sequential noninterference [23]. For probabilistic noninterference, according to
the Zdancewic LSOD criterion one must additionally show that public output is
not influenced by execution order conflicts such as data races, and that there is
no low nondeterminism. This can again be checked using PDGs and an additional
analysis called “May happen in parallel” (MHP); the latter will uncover potential
execution order conflicts or races. Several precise and sound MHP algorithms for
full Java are available today.

Note that the slicing theorem does not cover physical side channels such as
power consumption profiles, nor does it cover corrupt schedulers or defective
hardware; it only covers “genuine” program behaviour.

In the following, we will need some definitions related to PDGs. For more
details on PDGs, MHP, flow- context-, object- and time-sensitivity, see [7].

Definition 5. 1. Let G = (N,→) be a PDG, where N consists of program
statements and expressions, and → comprises data dependencies, control
dependencies, summary dependencies, and inter-thread dependencies. The
(context-sensitive) backward slice for n ∈ N is defined as

BS(n) = {m | m →∗
realizeable n}

where →∗
realizeable includes only context- object- and (optionally) time-

sensitive paths in the PDG [7].
2. All input and output statements n ∈ N are assumed to be classified as cl(n) =

H or cl(n) = L. Other PDG nodes need not be explicitely classified, but a
classification can be computed via the flow equation

cl(n) =
⊔

m→n

cl(m).

For an operation o in a trace t, we assume stmt(o) ∈ N and define cl(o) =
cl(stmt(o)).

3. We write MHP(n,m) if MHP analysis concludes that n and m may be exe-
cuted in parallel. Thus by interleaving there may be traces t, t′ where t =
. . . (sn, on, sn) . . . (sm, om, sm) . . ., t′ = . . . (sm, om, sm) . . . (sn, on, sn) . . ..
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Concerning cl it is important to note that PDGs are automatically flow-
sensitive and may contain a program variable v several times as a PDG node;
each occurence of v in N may have a different classification! Thus there is no
global classification of variables, but only the local classification cl(n) together
with the global flow constraints cl(n) =

⊔
m→n cl(m). The latter can easily be

computed or checked by a fixpoint iteration on the PDG [7].

3.2 Relaxed LSOD

In his 2012 thesis, Giffhorn applied PDGs to PN. He showed that PDGs can
naturally be used to check the LSOD property, and provided a soundness proof
as well as an implementation for JOANA [4]. Giffhorn also found the first opti-
mization relaxing LSOD’s strict low-determinism, named RLSOD.

One issue was to plug soundness leaks which had been found in some earlier
approaches to LSOD. In particular, treatment of nontermination had proven to
be tricky. Giffhorn provided a new definition for low-equivalent traces, where
t ∼L t′ iff 1. if t, t′ are both finite, as usual the low events and low memory
parts must coincide (see Definition 2); 2. if wloG t is finite, t′ is infinite, then
this coincidence must hold up to the length of the shorter trace, and the missing
operations in t must be missing due to an infinite loop (and nothing else); 3. for
two infinite traces, this coincidence must hold for all low events, or if low events
are missing in one trace, they must be missing due to an infinite loop [5].

It turned out that the last condition not only avoids previous soundness
leaks, but can precisely be characterized by dynamic control dependencies in
traces [5]. Furthermore, the latter can soundly and precisely be statically approx-
imated through PDGs (which include all control dependencies). Moreover, the
static conditions identified by Zdancewic which guarantee LSOD can naturally
be checked by PDGs, and enjoy increased precision due to flow- context- and
object-sensitivity. Formally Giffhorn’s LSOD criterion reads as follows:

Theorem 1. Let n, n′, n′′ ∈ N be PDG nodes. LSOD holds if

1. ∀n, n′ : cl(n) = L ∧ cl(n′) = H =⇒ n′ �∈ BS(n),
2. ∀n, n′, n′′ : MHP(n, n′) ∧ ∃v ∈ def (n) ∩ (def (n′) ∪ use(n′)) ∧ cl(n′′) = L

=⇒ n �∈ BS(n′′) ∧ n′ �∈ BS(n′′),
3. ∀n, n′ : MHP(n, n′) =⇒ cl(n) = H ∨ cl(n′) = H.

Proof. For proof and implementation details, see [5]. 	

Applying this criterion to Fig. 1 right, it discovers a leak according to con-

dition 3, namely low nondeterminism between lines 6 and 11; which is correct.
In Fig. 2 left, a leak is discovered according to condition 1, which is also correct
(cmp. PDG example above). In Fig. 2 middle and right, the explicit leak has dis-
appeared (thanks to flow-sensitivity), but another leak is discovered according
to condition 3: we have MHP(L = 42;, print(L);), which causes a false alarm.

The example motivates the RLSOD criterion: low nondeterminism may be
allowed, if it cannot be reached from high events. That is, there must not be
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a path in the control flow graph from some n′′, where cl(n′′) = H, to n or
n′, where cl(n) = cl(n′) = L and MHP(n, n′). If there is no path from a high
event to the low nondeterminism, no high statement can ever be executed before
the nondeterministic low statements. Thus the latter can never produce visible
behaviour which is influenced by high values. This argument leads to the RLSOD
criterion, which replaces condition 3 above by

3’. ∀n, n′ : MHP(n, n′) ∧∃n′′ : cl(n′′) = H ∧ (n′′ →∗
CFG n ∨ n′′ →∗

CFG n′)
=⇒ cl(n) = H ∨ cl(n′) = H.

This condition can be rewritten by contraposition to the more practical form

3’. ∀n, n′ : MHP(n, n′) ∧ cl(n) = L ∧ cl(n′) = L
=⇒ ∀n′′ ∈ START →∗

CFG n ∪ START →∗
CFG n′ : cl(n′′) = L.

In fact the same argument not only holds for execution order conflicts, but
also for data races: no data race may be in the backward slice of a low sink,
unless it is unreachable by high events. That is, condition 2 can be improved the
same way as condition 3, leading to

2’. ∀n, n′, n′′ : MHP(n, n′) ∧∃n′′′ : cl(n′′′) = H ∧ (n′′′ →∗
CFG n ∨ n′′′ →∗

CFG n′)
∧∃v ∈ def (n) ∩ (def (n′) ∪ use(n′)) ∧ cl(n′′) = L
=⇒ n, n′ �∈ BS(n′′).

By contraposition, we obtain the more practical form

2’. ∀n, n′, n′′ : MHP(n, n′) ∧∃v ∈ def (n) ∩ (def (n′) ∪ use(n′))
∧cl(n′′) = L ∧ (

n ∈ BS(n′′) ∨ n′ ∈ BS(n′′)
)

=⇒ ∀n′′′ ∈ START →∗
CFG n ∪ START →∗

CFG n′ : cl(n′′′) = L.

In fact RLSOD, as currently implemented in JOANA, uses even more pre-
cise refinements of conditions 2’ and 3’ (see [4], pp. 200ff), which we however
omit due to lack of space. Figure 1 right is not RLSOD, because one of the
low-nondeterministic statements, namely line 11, can be reached from the high
statement in line 8; thus criterion 3’ is violated. Indeed the example contains a
probabilistic leak. Figure 2 middle is RLSOD, because the low-nondeterminism
in line 6 resp. 9 can not be reached from any high statement (condition 3’). The
same holds for the data race between line 6 and line 9 – condition 2 is violated
(note that in this example, n′ = n′′), but 2’ holds.2 Indeed the program is PN.
Figure 2 right is however not RLSOD, because the initial read(H2) will reach
any other statement. But the program is PN, because H2 does not influence any
later low statement! The example shows that RLSOD does indeed reduce false
alarms, but it effectively removes only false alarms on low paths beginning at
program start. Anything after the first high statement will usually be reachable
from that statement, and does not profit from rule 3’ resp. 2’.
2 That is, 2’ as in [4] holds; the slightly less precise, but simpler 2’ condition in the

current paper is violated, but 3’ as defined in the current paper holds. We thank
C. Hammer and his students for this subtle observation.
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Still RLSOD was a big step as it allowed – for the first time – low nonde-
terminism, while basically maintaining the LSOD approach. We will not present
a formal soundness argument for RLSOD, as RLSOD is a special case of the
improvement which will be discussed in the next section.

4 Improving RLSOD

In the following, we will generalize condition 3’ to obtain a much more precise
“iRLSOD” criterion. The same improvement can be applied to condition 2’ as
well – the usage of dominators (see below) and the soundness proof are essentially
“isomorphic”. It is only for reasons of space and readability that in this paper we
only describe the improvement of 3’. For the same reasons, we stick to definitions
2’ and 3’, even though JOANA uses a slightly more precise variant (see above);
the iRLSOD improvement works the same with the more precise 2’ and 3’.

To motivate the improvement, consider again Fig. 1 right (program P1) and
Fig. 2 right (program P2). When comparing P1 and P2, a crucial difference
comes to mind. In P2 the troublesome high statement can reach both low-
nondeterministic statements, whereas in P1, the high statement can reach only
one of them. In both programs some loop running time depends on a high value,
but in P2, the subsequent low statements are influenced by this “timing leak”
in exactly the same way, while in P1 they are not.

In terms of the PN definition, remember that P1 has only two low classes
[t]1L = {t′ | . . . t′ = print(“PO”) . . . print(“ST”) . . .} and [t]2L = {t′ | t′ =
. . . print(“ST”) . . . print(“PO”) . . .}. Likewise, P2 has two low classes [t]1L = {t′ |
t′ = . . . L = 42 . . . print(42) . . .} and [t]2L = {t′ | t′ = . . . print(0) . . . L = 42 . . .}.
The crucial difference is that for P1, the probability for the two classes under i
resp. i′ is not the same (see above), but for P2, Pi([t]

1,2
L ) = Pi′([t]1,2

L ) holds!
Technically, P2 contains a point c which dominates both low-nondeterministic

statements n ≡ L = 42;, m ≡ print(L), and all relevant high events always
happen before c. Domination means that any control flow from START to n or
m must pass through c. In P2, c is the point immediately before the first fork. In
contrast, P1 has only a trivial common dominator for the low nondeterminism,
namely the START node, and on the path from START to n ≡ print(“PO”)
there is no high event, while on the path to m ≡ print(“ST”) there is.

Intuitively, the high inputs can cause strong nondeterministic high behaviour,
including stuttering. But if LSOD conditions 1 + 2 are always satisfied, and if
there are no high events in any trace between c and n resp. m, the effect of the
high behaviour is always the same for n and m and thus “factored out”. It cannot
cause a probabilistic leak – the dominator “shields” the low nondeterminism from
high influence. Note that P2 contains an additional high statement m′ ≡ read(H)
but that is behind n (no control flow is possible from m′ to n) and thus cannot
influence the n,m nondeterminism.
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4.1 Improving Condition 3’

The above example has demonstrated that low nondeterminism may be reachable
by high events without harm, as long as these high events always happen before
the common dominator of the nondeterministic low statements. This observation
will be even more important if dynamically created threads are allowed (as in
JOANA, cmp. Sect. 5). We will now provide precise definitions for this idea.

Definition 6 (Common dominator). Let two statements n,m ∈ P be given.

1. Statement c is a dominator for n, written c dom n, if c occurs on every CFG
path from START to n.

2. Statement c is a common dominator for n,m, written c cdom (n,m), if
c dom n ∧ c dom m.

3. If c cdom (n,m) and ∀c′ cdom (n,m) : c′ dom c, then c is called an immediate
common dominator.

Efficient algorithms for computing dominators can be found in many compiler
textbooks. Intraprocedural immediate dominators are unique and give rise to
the dominator tree; for unique immediate common dominators we write c =
idom(n,m).3 Note that START itself is a (trivial) common dominator for every
n,m. iRLSOD works with any common dominator. We thus assume a function
cdom which for every statement pair returns a common dominator, and write
c = cdom(n,m). Note that the implementation of cdom may depend on the
precision requirements, but once a specific cdom is chosen, c depends solely on
n and m. We are now ready to formally define the improved RLSOD criterion.

Definition 7 (iRLSOD). iRLSOD holds if LSOD conditions 1 and 2 hold for
all PDG nodes, and if

3”. ∀n, n′ : MHP(n, n′) ∧ cl(n) = cl(n′) = L ∧ c = cdom(n, n′)
=⇒ ∀n′′ ∈ c →∗

CFG n ∪ c →∗
CFG n′ : cl(n′′) = L.

iRLSOD is most precise (generates the least false alarms) if cdom = idom,
because in this case it demands cl(n′′) = L for the smallest set of nodes “behind”
the common dominator. Figure 4 illustrates the iRLSOD definition. Note that
the original RLSOD trivially fulfils condition 3”, where cdom always returns
START . Thus iRLSOD is a true generalization.

4.2 Classification Revisited

Consider the program in Fig. 5 middle/right. This example contains a probabilis-
tic leak as follows. H influences the running time of the first while loop, hence H
influences whether line 10 or line 18 is performed first. The value of tmp2 influ-
ences the running time of the second loop, hence it also influences whether L1 or
3 In programs with procedures and threads, immediate dominators may not be unique

due to context-sensitivity [2]. Likewise, the dominator definition must be extended
if the same thread can be spawned several times. Both issues are not discussed here.



80 J. Breitner et al.

LSOD

RLSOD

iRLSODc

mn

START

... ...

while (H!=0)

print("PO")

print("ST")

P1

LSOD

RLSOD

iRLSODc

mn

START

... ...

L = H

L = 42

print(L)

while (H2>0)

P2

Fig. 4. Visualization of LSOD vs. RLSOD vs. iRLSOD. CFGs for Fig. 1 right resp.
Fig. 2 right are sketched. n/m produces low nondeterminism, c is the common domi-
nator. LSOD prohibits any low nondeterminism; RLSOD allows low nondeterminism
which is not reachable by any high events; iRLSOD allows low nondeterminism which
may be reached by high events if they are before the common dominator. The marked
regions are those affected by low nondeterminism; inside these regions no high events
are allowed. Thus iRLSOD is much more precise.

L2 is printed first. Thus H indirectly influences the execution order of the final
print statements. Indeed the program is not RLSOD, as the print statements
can be reached from the high statement in line 3 (middle). Applying iRLSOD,
the common dominator for the two print statements is line 10.

The classification of line 10 is thus crucial. Assume cl(10) = H, then this
classification automatically propagates in the PDG (due to the standard flow
equation cl(n) =

⊔
m→n cl(m)) and lines 12/13 are classified high. iRLSOD is

violated, and the probabilistic leak discovered.
But according to the flow equation, only line 3 is explicitely high and only

lines 4, 7, 8 are PDG-reachable from 3. Thus cl(10) = L. Hence iRLSOD would
be satisfied because 3,4,7,8 are before the common dominator. The leak would
go undiscovered! This is not a flaw in condition 3”, but an incompleteness in the
standard flow equation – it must be extended for low nondeterminism.

In general, the rule is as follows. The standard flow equation cl(n) =⊔
m→n cl(m) expresses the fact that if a high value can reach a PDG node m

upon which n is dependent, then the high value can also reach n. Likewise, if
there is low nondeterminism with MHP(n,m), and idom(n,m) = c, and the
path c →∗

CFG n violates iRLSOD – that is, it contains high statements – then
the high value can reach n. Thus cl(n) = H must be enforced. This rule must
be applied recursively until a fixpoint is reached.4

Definition 8 (Classification in PDGs). A PDG G = (N,→) is classified
correctly, if

1. ∀n ∈ N : cl(n) ≥ ⊔
m→n cl(m),

2. ∀n,m ∈ N : MHP(n,m) ∧ c = idom(n,m) ∧ ∃c′ ∈ c →∗
CFG n, cl(c′) = H

=⇒ cl(n) = H.
4 In case n was manually classified low, a trivial explicit leak has been discovered.

Same for the standard flow equation [7].
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In condition 1, ≥ must be used because 2 can push cl(n) higher than
⊔

m→n cl(m).
In the example, the rule enforces line 10 to be classified high, as we have
MHP(10, 18) = 6, and on the path from 6 to 10, lines 7 and 8 are high.

4.3 Soundness Arguments

Before we discuss soundness, let us point out an assumption which is standard for
PN, namely that the scheduler is truly probabilistic. In particular, it maintains
no state of its own, does not look at program variables, and the relative chance
of two threads to be scheduled next is independent of other possibly running
threads. The necessity of this assumption was stressed by various authors, e.g.
[20]. Indeed a malicious scheduler can read high values to construct an explicit
flow by scheduling, as in {H=0;||H=1;} {L=0;||L=1;}: the scheduler can leak
H by scheduling the L assignments after reading H, such that the first visible L
assignment represents H. Even if the scheduler is not malicious, but follows a
deterministic strategy which is known to the attacker, leaks can result. As an
example, consider Fig. 5 left. Assume deterministic round robin scheduling which
executes 3 basic statements per time slice. Then for H=1 statements 2,3,4,9,5 are
executed, while for H=0, statements 2,4,5,9 are executed. Thus the attacker can
observe the public event sequence 9→5 resp. 5→9, leaking H. However under the
assumption of truly probabilistic scheduling, Fig. 5 left is iRLSOD.

In the following, let t1 · · · be the set of traces beginning with t1, so that
Pi(t1 · · · ) =

∑
t=t1·t2 Pi(t) is the probability that execution under input i begins

with t1. We denote with Pi(t2 | t1) = Pi(t1 · t2)/Pi(t1 · · · ) the conditional prob-
ability that after t1, execution continues with t2. This notion extends to sets of
traces: Pi(T ′ | T ) =

∑
t∈T ′·T Pi(t)/

∑
t∈T Pi(t · · · ).

For the following soundness theorem, we assume that there is only one point
of low-nondeterminism. In this case LSOD conditions 1, 2 and 3 hold for the
whole program, except for the one point where low-nondeterminism is possible
and only the iRLSOD condition 3” holds.

Fig. 5. Left: deterministic round-robin scheduling may leak. Middle/Right: a leak
which goes undiscovered if classification of statements is incomplete.
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Theorem 2. Let iRLSOD hold for P, where P contains only one pair n, n′ of
low-nondeterministic statements: MHP(n, n′), cl(n) = cl(n′) = L.

Now let i ∼L i′, let t ∈ Θ. Then

Pi([t]L) = Pi′([t]L).

Proof. (sketch). If t contains neither n nor n′, LSOD holds and thus the PN
condition Pi([t]L) = Pi′([t]L) trivially holds.

Thus we assume, without loss of generality, that n occurs on t, and before a
possible occurence of n′. Let c = cdom(n, n′).

The iRLSOD conditions ensures that t can be decomposed as t1 · c · t2 · n · t3,
and furthermore all low events on t2 are on the control path from c to n or
n′, while any high events are from possible other threads. These other threads
cannot have any low operations in t2, as that would form another MHP-pair
with n and n′. Correspondingly, i = i1ici2ini3, where iν is consumed by tν .

Any trace t′ ∼L t necessarily contains c and n and can be decomposed
analogously and uniquely, with t′1 ∼L t1, t′2 ∼L t2 and t′3 ∼L t3 . Therefore, we
have

Pi([t]L) = Pi([t1 · · · ]L) · Pi(c · [t2]L · n · · · | [t1]L) · Pi(t3 | [t1 · c · t2]L · n).

by the chain rule for conditional probabilities, and the same for i′ = i′1i
′
ci

′
2i

′
ni′3.

We show Pi([t]L) = Pi′([t]L) by equating these factors:

– We have Pi([t1 · · · ]L) = Pi′([t1 · · · ]L): There is no low nondeterminism in
the part of the CFG that produced this initial segment of the trace, and
by the usual soundness argument for LSOD (cmp. Lemma 2), we find that
Pi([t1 · · · ]L) = 1, and analogously for i′.

– We have Pi(c · [t2]L · n · · · | [t1]L) = Pi′(c · [t2]L · n · · · | [t1]L): If there were no
other, high threads, c · t2 · n would consist exclusively of low events. Since we
assume a scheduler that does neither maintain its own state nor looks at the
value of variables, the probabilities depend only on the part of i resp. i′ that
is consumed by the trace between c and n, namely i2 resp. i′2. As t2, t

′
2 contain

only low operations, i2, i
′
2 is also classified low; and as we have i ∼L i′, i2 = i′2

must hold. Therefore the probabilities are equal.
If there are other threads, which necessarily only execute high events in

this part of the execution, then these may slow down t2 resp. t′2 (similar to
“stuttering”), but, as we assume a fair scheduler, do not change their relative
probabilities. Therefore, these differences are factored out by considering low
equivalency classes and equality holds in this case as well.

– For Pi(t3 | [t1 · c · t2]L ·n) = Pi(t3 | [t1 · c · t2]L ·n) we are again in the situation
of no low nondeterminism, as any possible nondeterminism is caused by the
MHP-pair (n, n′), so analogously to the initial segment, both probabilities are
one. 	

Note that the restriction to a single low-nondeterministic pair still covers

many applications. An inductive proof for the general case (more than one low
nondeterminism pair) is work in progress.
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Corollary 1. RLSOD is sound.

Proof. RLSOD is a special case of iRLSOD: choose cdom(n, n′) = START . 	


5 Case Study: E-Voting

In the following, we will apply RLSOD/iRLSOD to an experimental e-voting
system developed in collaboration with R. Küsters et. al. This system aims
at a provably secure e-voting software that uses cryptography to ensure com-
putational indistinguishability. To proof computational indistinguishability, the
cryptographic functions are replaced with a dummy implementation (called an
“ideal variant”). It is then checked by IFC that no explicit or implicit flow exists
between plain text, secret key and encrypted message; that is, probabilistic non-
interference holds for the e-voting system with dummy crypto implementation.
By a theorem of Küsters, noninterference of the ideal variant implies computa-
tional indistinguishability for the system with real encryption [11,12].

The example uses a multithreaded client-server architecture to send
encrypted messages over the network. It consists of 550LoC with 16 classes.
The interprocedural control flow is sketched in Fig. 6; Fig. 7 contains relevant
parts of the code. The main thread starts in class Setup in line 3ff: First it ini-
tializes encryption by generating a private and public key, then it spawns a single
Server thread before entering of the main loop. Inside the main loop it reads a
secret message from the input and spawns a Client that takes care of the secure

Fig. 6. CFG structure of the multithreaded server-client based message transfer.
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message transfer: The client encrypts the given message and subsequently sends
it via the network to the server. Note that there are multiple instances of the
client thread as a new one is started in each iteration.

There are two sources of secret (HIGH) information: (1) the value of the
parameter secret bit (line 3) that decides about the content of the message;
and (2) the private key of the encryption (line 33). Both are marked for JOANA
with a @Source annotation. By Definition 8, (2) propagates to lines 44, 46, 5, 8
and 9 which are also classified High. Likewise, (1) propagates to lines 21 and 24,
which are thus High as well.

As information sent over network is visible to the attacker, calls to the method
sendMessage (line 66f) are marked as a LOW @Sink. JOANA was started in
RLSOD mode, and – analysing the “ideal variant” – immediately guarantees
that there are no explicit or implicit leaks. However the example contains two
potential probabilistic leaks, which are both discovered by JOANA in RLSOD
mode; one is later uncovered by iRLSOD to be a false alarm.

To understand the first leak in detail, remember that this e-voting code
spawns new threads in a loop. This will cause low-nondeterminism, as the run-
ning times for the individual threads may vary and thus their relative execution
order depends on scheduling. This low-nondeterminism is (context-sensitively)
reachable from the high private-key initialization in line 44, hence RLSOD will
cause an alarm (cmp. RLSOD criterion 3). Technically, we have MHP(66, 66) ∧
cl(66) = L; that is, line 66 is low-nondeterministic with itself (because the
same thread is spawned several times). Furthermore, START →∗

CFG 44 →∗
CFG

66 ∧ cl(44) = H. Thus RLSOD criterion 3’ is violated.
Now let us apply iRLSOD to this leak. The dominator for the low-

nondeterministic message sends in line 66 is located at the loop header: 12 =
cdom(66, 66).5 Now it turns out that the initialisation of private keys lies before
this common dominator: lines 33, 44, 46, 5, 8, and 9 context-sensitively dominate
line 12. Thus by iRLSOD criterion 3”, this potential leak is uncovered to be a
false alarm: the private key initialisation is in fact secure!

The second potential probabilistic leak comes from the potential high influ-
ence by secret bit in line 21 to the low-nondeterministic message sends in
line 73. Technically, we have the PDG High chain 3 → 21 → 24 → 62 → 66,
but 66 is manually classified Low. However this second leak candidate is not
eliminated by iRLSOD, and indeed is a probabilistic leak: since the encrypt
run time may depend on the message, the scheduler will statistically generate
a specific “average” order of message send executions (remember the sched-
uler must be probabilistic). An attacker can thus watch this execution order,
and deduce information about the secret messages. Technically, iRLSOD dis-
covers this subtle leak because the high operation which accesses the secret

5 Note that in case of dynamically created threads, the definition of common domina-
tor must be extended, such that the static cdom lies before all dynamically possible
spawns. This extension for dynamic threads is not covered by definition 4, but imple-
mented in JOANA. JOANA also handles interprocedural, context-sensitive domina-
tors.
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bit lies behind the common dominator, but before the low-nondeterminism:
12 = cdom(66, 66) →∗

CFG 21 →∗
CFG 66.

JOANA must and will report this probabilistic leak. The engineer might
however decide that the leak is not dangerous. If the engineer can guarantee
that the encrypt run time does not depend on msg, the leak may be ignored.
JOANA detects both potential leaks in about 5 s on a standard PC.

6 Related Work

Zdancewic’s work [24] was the starting point for us, once Giffhorn discovered that
the Zdancewic LSOD criteria can naturally be checked using PDGs. Zdancewic
uses an interesting definition of low-equivalent traces: low equivalence is not
demanded for traces, but only for every subtrace for every low variable (“location
traces”). This renders more traces low-equivalent and thus increases precision.
But location traces act contrary to flow-sensitivity (relative order of variable
accesses is lost), and according to our experience flow-sensitivity is essential.

While strict LSOD immediately guarantees probabilistic non-interference for
any scheduler, it is much too strict for multi-threaded programs. In our current
work, we considerably improved the precision of LSOD, while giving up on full
scheduler independence (by restricting (i) RLSOD to truly probabilistic sched-
ulers). Smith [20] improves on PN based on probabilistic bisimulation, where the
latter forbids the execution time of any thread to depend on secret input. Just as
in our work, a probabilistic scheduler is assumed; the probability of any execu-
tion step is given by a markov chain. This weak probabilistic bisimulation allows
the execution time of threads to depend on secret input, as long as it is not made
observable by writing to public variables. If the execution time up to the current
point depends on secret input, their criterion allows to spawn new threads only
if they do not alter public variables. In comparison, our c cdom (n,m) based
check does allow two public operations to happen in parallel in newly spawned
threads, even if the execution time up to c (i.e.: a point at which at most one of
the two threads involved existed) depends on secret input.

Approaches for non-interference of concurrent programs based on type sys-
tems benefit from various degrees of compositionality, a good study of which is
given in [16]. Again, a probabilistic scheduler is assumed. Scheduler-independent
approaches can be found in, e.g., [13,17]. The authors each identify a natural
class of “robust” resp. “noninterfering” schedulers, which include uniform and
round-robin schedulers. They show that programs which satisfy specific possi-
bilistic notions of bisimilarity (“FSI-security” resp. “possibilistically noninter-
ferent”) remain probabilistically secure when run under such schedulers. Since
programs like Fig. 5 left are not probabilistically secure under a round-robin
scheduler, their possibilistic notion of bisimilarity require “lock-step” execution
at least for threads with low-observable behaviour. Compared to iRLSOD this
is more restrictive for programs, but less restrictive on scheduling.



86 J. Breitner et al.

Fig. 7. Relevant parts of the multithreaded encrypted message passing system with
security annotations for JOANA.
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7 Future Work

RLSOD is already part of JOANA; we currently integrate iRLSOD into the
system. We will thus be able to provide empirical precision comparisons between
iRLSOD, RLSOD, and LSOD. Another issue is a generalization of Theorem 2
for multiple MHP pairs with corresponding multiple common dominators.

One issue which might push precision even further is lock sensitivity. The
current MHP and dominator algorithms analyse thread invocations in a context-
sensitive manner, but do ignore explicit locks. We started an integration of
Müller-Olm’s lock-sensitive Dynamic Pushdown Networks [3] into MHP, which
sometimes can eliminate inter-thread dependences. The dominator computation
for multi-threaded programs could profit from lock-sensitivity as well.

8 Conclusion

JOANA can handle full Java with arbitrary threads, while being sound and scal-
ing to several 10k LOC. The decision to base PN in JOANA on low-deterministic
security was made at a time when mainstream IFC research considered LSOD too
restrictive. In the current paper we have shown that flow- and context-sensitive
analysis, together with new techniques for allowing secure low-nondeterminism,
has rehabilitated the LSOD idea.
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Abstract. JOANA is a tool for information flow control, which can
handle full Java with unlimited threads and scales to ca. 100 kLOC.
JOANA uses a new algorithm for checking probabilistic noninterfer-
ence, named RLSOD. JOANA uses a stack of sophisticated program
analysis techniques which minimise false alarms. JOANA is open source
(joana.ipd.kit.edu) and offers an Eclipse GUI as well as an API.

The current tool demonstration paper concentrates on JOANA’s
precision. Effects of flow-sensitivity, context-sensitivity, and object-
sensitivity are explained, as well as precision gains from the new RLSOD
criterion.

Keywords: Information flow control · Probabilistic noninterference ·
Program analysis

1 Introduction

JOANA is a tool for information flow control (IFC), which discovers all
confidentiality and integrity leaks in Java programs. JOANA is open source
(joana.ipd.kit.edu). In this tool demonstration paper, we concentrate on the pre-
cision of JOANA. JOANA is based on sophisticated program analysis (points-to
analysis, exception analysis, program dependence graphs), can handle full Java
with unlimited threads, and scales to ca. 100 kLOC. JOANA minimizes false
alarms through flow- context- field- object- time- and lock-sensitive analysis
algorithms. JOANA guarantees to find all explicit, implicit, possibilistic, and
probabilistic leaks. The theoretical foundations have been described in [2,5,10].
The GUI and specific usage aspects have been described in [3,4,6–9].

Figure 1 shows the JOANA Eclipse plugin. In the source code, input and
output are annotated with security levels (“High” i.e. secret, or “Low” i.e. public;
only input and output need annotations). The program contains a probabilistic
leak, because the running time of the loop depends on secret input, and thus
the probability that “POST” is printed instead of “STPO” due to interleaving
depends on secret input. The leak is highlighted in the source code (full details
on a leak are available on demand). JOANA allows arbitrary security lattices
(not just “High” and “Low”). It can check confidentiality as well as integrity; in
this paper we concentrate on confidentiality.

JOANA analyses Java bytecode and uses IBM’s WALA analysis frontend;
recently, a frontend for Android bytecode was added. JOANA offers various
c© Springer-Verlag Berlin Heidelberg 2016
F. Piessens and L. Viganò (Eds.): POST 2016, LNCS 9635, pp. 89–93, 2016.
DOI: 10.1007/978-3-662-49635-0 5

http://pp.ipd.kit.edu/projects/joana/
http://pp.ipd.kit.edu/projects/joana/


90 J. Graf et al.

Fig. 1. JOANA GUI, discovering a probabilistic leak

options for analysis precision (e.g. object-sensitive points-to analysis, time-
sensitive backward slicing). It was thus able to provide security guarantees for
several examples from the literature which are considered difficult. More interest-
ing is perhaps the successful analysis of an experimental e-voting system devel-
oped by Küsters et al. [7]. In a scalability study, the full source code of the
HSQLDB database was analysed; analysis needed one day on a standard PC.

1 void main ( ) :
2 read (H) ;
3 i f (H < 1234)
4 pr in t ( 0 ) ;
5 L = H;
6 pr in t (L ) ;

1 void main ( ) :
2 f o rk thread 1 ( ) ;
3 f o rk thread 2 ( ) ;
4 void thread 1 ( ) :
5 read (L ) ;
6 pr in t (L ) ;
7 void thread 2 ( ) :
8 read (H) ;
9 L = H;

1 void main ( ) :
2 f o rk thread 1 ( ) ;
3 f o rk thread 2 ( ) ;
4 void thread 1 ( ) :
5 longCmd ;
6 pr in t ( ”PO” ) ;
7 void thread 2 ( ) :
8 read (H) ;
9 while (H != 0)

10 H−−;
11 pr in t ( ”ST” ) ;

Fig. 2. Some leaks. Left: explicit and implicit, middle: possibilistic, right: probabilistic.

Figure 2 presents small but typical confidentiality leaks (as usual, H is “High”,
L is “Low”). Explicit leaks arise if (parts of) secret values are copied (indirectly)
to public output. Implicit leaks arise if a secret value can change control flow
(which can change public behaviour). Possibilistic leaks in concurrent programs
arise if a certain interleaving produces an explicit or implicit leak; in Fig. 2
middle, interleaving order 5,8,9,6 causes an explicit leak. Probabilistic leaks arise
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if the probability of public output is influenced be secret values; in Fig. 2 right,
H is never copied to L, but if the value of H is large, probability is higher that
“POST” is printed instead of “STPO”.

2 Sequential Precision

JOANA was the first IFC tool which used program dependence graphs (PDGs).
PDGs are naturally flow- and context-sensitive. Today PDGs for (multi-
threaded) full Java are highly precise and scale up to 1 MLOC. As a prerequisite
for PDGs, a precise points-to analysis and exception analysis is necessary.

1 void main ( ) :
2 read (H) ;
3 L = 2 ;
4 H1 = f (H) ;
5 L1 = f (L ) ;
6 pr in t (L1 ) ;
7

8 int f ( int x )
9 {return x+42;}

1 o1 = new O( ) ; //O1
2 o2 = new O( ) ; //O2
3 o1 . c = H;
4 o2 . c = L ;
5 o3 = o2 ;
6 pr in t ( o3 . c ) ;
7 o4 = o1 ;
8 o4 = o2 ;

1 void main ( ) :
2 f o rk thread 1 ( ) ;
3 f o rk thread 2 ( ) ;
4 void thread 1 ( ) :
5 L = 42 ;
6 read (H) ;
7 void thread 2 ( ) :
8 pr in t (L ) ;
9 L = H;

Fig. 3. Unprecise analysis causes false alarms.

A flow-insensitive analysis will ignore statement order. In Fig. 3 right, a false
alarm results if order of statements 8/9 is ignored. Flow-insensitive analysis also
ignores killing definitions as in L=H; L=42; (where the second statement can
be far from the first). A context-insensitive analysis will merge different calls
to the same function. In Fig. 3 left, a context-insensitive analysis will merge
the two calls to f and cause a false alarm. In practice, context-sensitivity is even
more important for precision than flow-sensitivity. Object-sensitivity means that
fields in different objects of the same class are distinguished. In Fig. 3 middle, an
object-insensitive analysis will merge o1 and o2 and cause a false alarm. Object-
sensitivity is difficult in case of nested or recursive object definitions, because
it interferes with points-to analysis and requires additional field-sensitivity. For
analysing object-oriented programs, the combination of context- and object-
sensitivity is essential, as in o1.c=o1.f(H); o2.c=o1.f(L);.

Points-to analysis determines for every pointer a set of objects it may point to.
In Fig. 3 middle, pt(o1) = {O1}, pt(o3) = pt(o2) = {O2}, pt(o4) = {O1, O2}.
For precision, points-to sets should be small, but of course maintain soundness.
Today, sophisticated points-to algorithms for full Java are known, however many
common approaches are not efficient for PDG-based IFC. Hence, we are exploring
sweet-spots of points-to analyses with a better precision-cost-ratio, which employ
precision only where needed. The key is to taylor the points-to analysis to the
concrete IFC query: First we build a PDG with an imprecise but cheap points-to
analysis and compute a forward slice [5] of the high statements. From this slice,
we extract the critical instances that may contain high information. In a second
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pass, we apply an automatically taylored points-to analysis which specifically
distinguishes the critical instances.

Another issue is exception analysis, as exceptions can generate much addi-
tional control flow and spoil precision. We implemented a null pointer analysis
which detects field accesses that never dereference null. We are currently imple-
menting an analogous checker for array accesses.

3 Probabilistic Precision

Different criteria and algorithms for probabilistic noninterference (PN) have been
proposed. The vast majority is not flow-sensitive (let alone context- or object-
sensitive), or puts unacceptable restrictions on programs (“no low statements
after high guards”); some turned out to be unsound. The simplest criterion,
LSOD (low-security observational determinism) is scheduler independent and
easy to implement as a program analysis. However LSOD strictly prohibits any,
even secure, low-nondeterminism. For example Fig. 3 right is PN according to
the original definition, but interleaving can cause low nondeterminism (in fact a
race) for statements 5 and 8, hence LSOD causes a false alarm.

We found that flow-sensitivity is essential for a precise LSOD, and that
LSOD can naturally be checked using PDGs for multi-threaded programs [2].
We then devised an improvement, RLSOD (relaxed LSOD), which allows low-
nondeterminism if it cannot be reached from high events. The latter can be
checked easily in the CFG. For example, Fig. 3 right is not LSOD but RLSOD,
because the 5/8 race cannot be reached from high statements. Recently, we dis-
covered that for low-nondeterministic statements s1, s2, it is enough to check high
events in the control flow regions between the immediate dominator idom(s1, s2),
and s1 (resp. s2). For example assume that in main the initial statement read(H)
is added. Then the 5/8 race can be reached from a high event, so “simple”
RLSOD causes a false alarm. But the “dominator” improvement, plus flow-
sensitivity (which respects the 8/9 order) will classify the example as secure –
which it is according to PN.

Another issue is precision of the may-happen-in-parallel analysis, which is
part of the RLSOD algorithm [2]. The current MHP analysis is context-sensitive
but ignores explicit locks; recently, experiments with a lock-sensitive MHP based
on pushdown networks [1] have begun.

4 Fine Tuning

JOANA supports a wide range of configuration options that allows experts to
fine-tune the analysis. JOANA also comes with an automated approach to infer a
reasonable configuration and additionally categorize detected leaks. Given a pro-
gram and security annotations, JOANA starts with a fast but imprecise points-to
analysis and subsequently applies more precise algorithms until either the max-
imal precision option has been reached or no leaks are detected.
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JOANA helps to categorize the severity of detected information leaks as fol-
lows: (1) Flow through exceptions is ignored. Disappearing leaks are categorized
as caused by exceptions. (2) Implicit flow through control dependencies is ignored.
Leaks still detected are categorized as explicit, disappeared leaks as implicit. The
result is a noninterference guarantee or a list of information leaks with source
code location and categorization.

Acknowledgements. JOANA was partially supported by Deutsche Forschungsge-
meinschaft in the scope of SPP “Reliably Secure Software Systems”.
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Abstract. Logic-based information flow analysis approaches generally
are high precision, but lack automatic ability in the sense that they
demand user interactions and user-defined specifications. To overcome
this obstacle, we propose an approach that combines the strength of
two available logic-based tools based on the KeY theorem prover: the
KEG tool that detects information flow leaks for Java programs and a
specification generation tool utilizing abstract interpretation on program
logic. As a case study, we take a simplified e-voting system and show
that our approach can lighten the user’s workload considerably, while
still keeping high precision.

Keywords: Test generation · Information flow · Invariant generation

1 Introduction

Information flow analysis has played an important role in ensuring security
for software systems and has attracted many researchers for several decades.
Most approaches analysing programs for secure information flow are either logic-
based [4,26], which is precise but not automatic and difficult to apply for large
programs, or over-approximation approaches such as type-based [1,17,24,27],
dependency graph [14] or abstract interpretation [2], which are fully automatic
with high performance but lack precision.

In this paper we propose a logic-based approach based on self-composition
[3,10] and symbolic execution [19] that makes use of abstract interpretation [7]
to obtain automation while still maintaining high precision in information flow
analysis. It combines the strength of two available logic-based tools based on the
KeY theorem prover: the KEG tool [12] that detects information flow leaks and a
specification generation tool [28,30] utilizing abstract interpretation on program
logic. The basic idea is to first analyse a target program with the specification
generation tool in order to generate necessary specifications for unbounded loops

The work has been funded by the DFG priority program 1496 “‘Reliably Secure
Software Systems”’.
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and recursive method calls and then use the KEG tool to detect information
flow leaks w.r.t. a given information flow policy. The needed loop invariants and
method contracts are automatically generated by abstraction techniques, includ-
ing array abstraction with symbolic pivots [30], based on abstract interpretation
of partitions in an array. Loop invariants are generated without user interaction
by repeated symbolic execution of the loop body and abstraction of modified
variables or, in the case of arrays, the modified array elements. The invariant
generation provides loop invariants which are often precise enough to be used in
information leak detection.

We apply our approach in analysing two versions of a simplified e-voting
system as a case study: one implementation is correct, while the other is faulty (in
the sense that an information leak can happen). We show that with the correct
implementation of the simplified e-voting program our approach does not report
any false alarms while with the faulty implementation our approach successfully
detects the leak and generates a JUnit test as witness thereof. Along with the
high precision, our approach only requires users to supply a noninterference
policy and preconditions for input data, but does not require any other user
interactions or specifications. Our main contributions are as follows: (i) the first
logic-based approach utilizing two available tools to obtain both precision and
(almost) full automation in analysing information flow security, and (ii) a case
study on noninterference of a simplified e-voting system showing the feasibility
of our approach.

The paper is structured as follows: Sect. 2 introduces fundamental tech-
niques used in our approach, i.e. symbolic execution and abstract interpretation.
Section 3 briefly presents our logic-based leak detection approach and the imple-
mentation thereof, while the approach generating loop and method specifications
is explained in Sect. 4. The combination of both tools is illustrated in Sect. 5.
Section 6 demonstrates our case study and its remarks are pointed out in Sect. 7.
Related work is discussed in Sect. 8 and finally Sect. 9 gives our conclusions and
outlines future work.

2 Background

2.1 Symbolic Execution

Symbolic execution [19] is a powerful technique widely used in program verifi-
cation, test case generation and program analysis. The main idea of symbolic
execution is to run the program with symbolic input values instead of concrete
ones. The central result of symbolic execution is a symbolic execution tree. Each
node of the tree is annotated by its symbolic state, mapping each program loca-
tion to its symbolic representation. Each path of the tree has a unique path
condition that is the conjunction of all its branch conditions and represents the
set of concrete executions having input values satisfying the path condition. If
the program does not contain unbounded loops or recursive method calls, the
symbolic execution tree is finite and covers exactly all possible concrete execu-
tions performed by the program.
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In case of unbounded loops or unbounded recursive method calls a sym-
bolic execution tree is no longer finite. One natural solution is unfolding loops or
expanding invoked method calls up to a fixed depth value, generating a symbolic
execution tree which is an under-approximation of the real program. Another
solution is to make use of specifications as proposed in [16] to achieve a finite
representation of a symbolic execution tree. This approach uses loop invariants
and method contracts to describe the effect of loops and method calls. This
approach gives a comprehensive view of the program’s behaviour and brings
scalability while still maintaining program semantics precisely. The major draw-
back of this approach is that specifications must be supplied in advance. In
many cases this is a complex task, depending mostly on the complexity of the
specific source code. Generating loop invariants as well as method specifications
automatically has been an active research topic in program analysis literature.

2.2 Abstract Interpretation

Abstract interpretation [7] is a technique used in program analysis which provides
a framework to lose precision within the analysis for a greater automation. When
combined with symbolic execution, e.g. in [29], it allows to consider abstract
symbolic values. Abstract symbolic values do not represent an unknown yet
fixed concrete value, but rather in any given model the concrete value is within
a set of possible concrete values – the abstract element. The abstract elements
form a lattice – the abstract domain.

Given two abstract symbolic values, a1 and a2, the abstract domain allows
to join their abstract elements, and the resulting abstract element a1 � a2 is a
set which encompases at least all the possible concrete values of the two input
values. This potentially loses information, as the joined element might encompase
further concrete values. Information loss also occurs when abstracting a symbolic
value v, i.e. finding an abstract element a such that all possible concrete values
of v in a given state are within a. While information loss is inevitable, it happens
in a controlled fashion and the choice of the abstract domain allows to preserve
enough information for a given task, while making the set of possible values more
feasable. A common choice is that the abstract domain has finite height, while
the set of concrete values is infinite. This makes analysis of programs tractable
and also allows fixpoint procedures, like the one presented in Sect. 4 for loop
invariant generation. Abstract domains with infinite height require a widening
operator in order to ensure fixpoint generation will terminate.

3 Detection of Information Flow Leaks

In this section we introduce a logic-based approach to detect (and generate
exploits for) information flow leaks based on self-composition and symbolic exe-
cution that has been proposed in previous work [12] by some of the authors.
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3.1 Approach

We make use of self-composition [3,10] and symbolic execution [19] to char-
acterize and formalize information flow policies, including noninterference and
delimited information release [25] as declassification. In this paper we focus on
noninterference policies, the details of delimited release are explained in [12].

Given program p and the set V of all variables of p, assume that V is par-
titioned into two subsets H and L. Program p satisfies noninterference policy
H ��L if there is no information flow from H to L. This is conventionally repre-
sented by using two program executions: p satisfies H ��L iff it holds that any
two executions of p starting in initial states that coincide on L also terminate
in two states that coincide on L. Above definition can be formalized using self-
composition technique proposed in [10]. A self-copied program of p, denoted p′, is
created by copying p′ and replacing all variables with fresh ones, such that p and
p′ do not share any memory. Let V ′, L′,H ′ be fresh copies of V,L,H accordingly.
Then H ��L can be formalized as follows:

{L
.= L′}p(V ); p′(V ′){L

.= L′} (1)

A major drawback of the formalization is that it requires program p to be
analysed twice. It can be refined by making use of symbolic execution. Let SEp

and SE′
p be symbolic execution trees of p and p′. It is obvious that SEp and SE′

p

are identical except that all variables v ∈ V (considered as symbolic inputs) in
all path conditions and symbolic states of SEp are replaced by corresponding
fresh copies v′ ∈ V ′ in SE′

p. Thus we only need to symbolically execute p once
and represent two executions of p and p′ by two symbolic execution paths of SEp

with different symbolic inputs V and V ′.
For each symbolic execution path i of SEp, we denote pci as its path con-

dition. To make explicit that the symbolic final value of each program variable
v ∈ V depends on symbolic inputs and corresponding execution path, for each
path i and variable v, we define function fv

i mapping from symbolic inputs to
symbolic final value of v. Let Np be the number of symbolic execution paths of
SEp, we construct an SMT formula having the same meaning as (1):

∧
0≤i≤j<Np

(
(
∧
v∈L

v
.= v′) ∧ pci(V ) ∧ pcj(V ′) =⇒

∧
l∈L

f l
i (V ) .= f l

j(V
′)

)
(2)

To detect leaks w.r.t noninterference policy H ��L, we build insecurity for-
mula by negating (2) and transforming the negation into disjunctive normal
form: ∨

l∈L

∨
0≤i≤j<Np

Leak(H,L, l, i, j) (3)

where

Leak(H,L, l, i, j) ≡ (
∧
v∈L

v
.= v′) ∧ pci(V ) ∧ pcj(V ′) ∧ f l

i (V ) � .= f l
j(V

′) (4)
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Information flow leaks are detected by solving each formula Leak(H,L, l, i, j)
in (4). If it is satisfiable, there exists a forbidden information flow from some
variables of H to a variable l ∈ L and the leak can be seen by comparing two
symbolic execution paths i, j. Otherwise, p is secure w.r.t the noninterference
policy H ��L if (3) is unsatisfiable.

Formula (3) can be easily extended to support detecting leaks under user-
defined preconditions. Let Pre be a precondition assumed to hold at all ini-
tial states of p. To check whether p satisfies H ��L under the assumption that
Pre holds, we only need to add two conjunctions Pre(V ) and Pre(V ′) into
Leak(H,L, l, i, j).

If p contains unbounded loops or recursive method calls, SEp is infinite and
(3) becomes unsolvable. The approach unfolding loops and expanding methods
up to a fixed depth could be employed without any user interaction. Although
it is useful in the sense that it can help to detect some leaks, it cannot find
all possible leaks and hence cannot be used for proving secure information flow.
On the other hand, the size of symbolic execution trees might be very large,
thus the analysis might be very expensive. We overcome this obstacle by mak-
ing use of specifications to get the finite form of SEp as proposed in [16]. This
approach represents loops and method calls as corresponding single nodes of a
symbolic execution tree while keeping their semantics by using loop invariants
and method contracts to contribute to relevant path conditions and to the repre-
sentation of the symbolic state. For each variable v whose values can be changed
during the execution of a loop or method call, its symbolic value is assigned by
a fresh symbolic variable at the exit point of the loop or method call. The out-
put value function fv

i as well as path conditions spi now are represented upon
VS = V ∪ Vfresh , where Vfresh is the set of all fresh symbolic variables created
during symbolically analysing p. The approach has been implemented as a sym-
bolic execution engine based on the verification system KeY [5], which we use as
the backend for our implementation. Details and examples can be found in [12].

The precision of the information flow analysis using specifications depends
mostly on the quality of the specifications. If loop invariants and method con-
tracts are not strong enough so that they allow behaviours that are not possible
in the actual program, false alarms might be raised. In the worst case when
they are wrong in the sense that they exclude existing behaviours, actual leaks
might not be detected. Wrong specifications can be avoided by verifying them
using a program verification tool. However, refining too weak specifications is a
laborious task for even an experienced user. Combining this approach with an
automatic specification generation tool is a potential direction to enhance both
precision and automation.

3.2 Implementation

Our approach has been implemented in a prototype tool named KeY Exploit
Generation (KEG)1. KEG can automatically detect leaks in Java programs

1
www.se.tu-darmstadt.de/research/projects/albia/download/exploit-generation-tool.

www.se.tu-darmstadt.de/research/projects/albia/download/exploit-generation-tool
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w.r.t user-specified information flow policies and generate exploits in form of
JUnit tests to expose them. KEG is based on KeY [5], a state-of-the-art theo-
rem prover for Java and makes use of its symbolic execution engine [16] which
supports method and loop specifications to deal with recursive method calls and
unbounded loops. KEG supports not only primitive types but also object types
and arrays (to some extent). Comprehension expressions, such as sum, max and
min, are also supported.

Figure 1 describes KEG’s work-flow. KEG checks a Java program by
analysing all specified methods w.r.t. a given information flow specification. Non-
interference is a class level policy, while declassification (delimited information
release) is a method level policy. To analyse a method m, first m is symbolically
executed (using KeY) to achieve the symbolic execution tree. Afterwards, for
each information flow policy H ��L, KEG uses the method’s path conditions
and the final symbolic values of the program locations modified by m to com-
pose insecurity formulas Leak(H,L, l, i, j). Those formulas are passed to a model
finder (in our case the SMT Solver Z3 [11]) to find concrete models satisfying
them. If a model has been found, it is used to configure the initial states of two
runs which expose a forbidden information flow. The generated exploit then sets
up two runs corresponding to two initial states and inspects the reached final
values of low variables to detect a leak. KEG outputs the exploited program as
an executable JUnit test.

Symbolically 
execute 
method

Compose all 
insecurity 
formulas

Find models 
satisfying 
formulas

Generate JUnit 
tests from 

found models

Fig. 1. Exploit generation by KEG

4 Loop Invariant Generation

4.1 KeY and Abstract Domains

The KeY tool uses symbolic execution to verify Java programs. The underlying
JavaDL calculus uses updates [5] to encapsulate state changes of variables and
models the heap memory as a special program variable. An elementary update
has the form x := t, where x is the program variable that is updated and t is a
term which is the new value for x. Parallel updates are denoted U ‖ U ′, where U
and U ′ are elementary or parallel updates. Updates can be applied to terms (or
formulas) with the {·}· operator, resulting in new terms (or formulas). As the
name implies, all elementary updates contained in a parallel update are applied
simultaneously (with the rightmost update winning in case of multiple updates
to the same variable). Therefore, for example, {x := y ‖ y := x}(2 ∗ x + y) is
equal to (2 ∗ y+ x). Updates and update applications can also be simplified: for
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example, the sequential update applications {x := y}{y := x}φ can be simplified
first to a parallel update application {x := y ‖ y := {x := y}x}φ and then the
inner update application on xcan be resolved, resulting in {x := y ‖ y := y}φ.
Further simplification gives {x := y}φ. Updates are created during symbolic
execution whenever a field or variable changes its value, e.g., this is the rule for
executing variable assignments:

assignment
Γ ⇒ {U}{x := t}[...]ϕ,Δ

Γ ⇒ {U}[x = t; ...]ϕ,Δ

The heap variable is updated with a special store function:

assignmentarray
Γ ⇒ {U}{heap := store(heap, a, i, t)}[...]ϕ,Δ

Γ ⇒ {U}[a[i] = t; ...]ϕ,Δ

Updates allow to postpone the application of state changes until the whole
program has been executed and to analyze and manipulate pending state
changes. The approach introduced in [6] uses the analysis of updates to incorpo-
rate abstract interpretation and loop invariant generation for local variables. We
use abstract function symbols to denote abstract symbolic values, as described
in Sect. 2.2.

With abstract functions it is possible to express within an update that, for
example, an integer variable has a positive value. These abstract functions are
denoted γα,z, where α is the abstract element and z ∈ Z identifies the abstract
function. A simple abstract domain for integers is pictured in Fig. 2.

�

⊥

≤ ≥

zero< >

� = Z χ�(x) = true

≤= {i ∈ Z | i ≤ 0} χ≤(x) = x ≤ 0

≥= {i ∈ Z | i ≥ 0} χ≥(x) = x ≥ 0

<= {i ∈ Z | i < 0} χ>(x) = x > 0

>= {i ∈ Z | i > 0} χ<(x) = x < 0

zero = {0} χzero(x) = x
.
= 0

∅ = {} χ⊥(x) = false

Fig. 2. Abstract domain for integers

The lattice structure allows joining updates into abstract updates that
describe a set of possible value changes. E.g., the update x := γ>,1 ‖ y := γ>,2

sets x to some positive value and y to another, possibly different, positive value.
The additional information of the γα,z symbols can be obtained by adding the
description of α to the premiss of the sequent. The description of each α is
contained in the matching characteristic function χα.
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4.2 Generation and Implementation

In [6] abstract interpretation is used to generate loop invariants for local vari-
ables. To do this, the loop is symbolically executed once and the resulting sym-
bolic program states are joined with the initial (symbolic) program state: For
each variable, the value in the update is abstracted, i.e. the smallest abstract
element that contains all possible values is determined. Then all abstract ele-
ments are joined. This is repeated until a fixpoint is found, i.e. another iteration
does not produce a weaker update.

Example 1. Consider the sequent

⇒ {i := 1}[while(i > 0) i = i-1;](i = 0)

The initial program state is expressed in the update i := 0 and symbolic
execution of one iteration leads to the sequent

⇒ {i := 0}[while(i > 0) i = i-1;](i = 0)

Both 1 and 0 are contained in ≥ thus the updates are joined to i := γ≥,0,
which is used as the pre-state in the next iteration. Another iteration produces
the update i := γ≥,0 −1 under the premiss that γ≥,0 > 0 and leads to no weaker
update.

Fields of integer type can be handled analogously and simple domains for
boolean and object variables/fields can be used.

In [29] this approach was extended to abstraction of arrays: Arrays are
regarded as split into two parts: a (potentially) modified and an unmodified
part. If the sequence of array accesses is monotonously increasing (or decreas-
ing), then each iteration moves the splitting point further and allows to abstract
all the array elements in between. With this method it is possible to generate
invariants of the form

∀i. (initial ≤ i ∧ i < id) → χa(arr[i])

where id is the index term for the array access and initial is the value of id
before the loop.

If in the loop the sequence of array access has the form a + x ∗ b in the
xth iteration of the loop for some a, b ∈ Z, then a more precise invariant is
possible that only makes a statement about the elements actually accessed. If
the sequence is not monotonous, a very weak invariant of the form

∀i. (0 ≤ i ∧ i < arr.length) → (χa(arr[i]) ∨ arr[i] = arrold [i])

can be generated, where arrold denotes the array in the state before entering
the loop for the first time.

Additional forms of invariants can be extracted from the unrolled loops in
the invariant generation for arrays and variables. These include simple abstrac-
tion over arbitrary terms, that can be used, e.g., to establish an order between
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variables. Another extension is sum invariants that can be generated if a vari-
able is modified only by summing another value inside the loop. In this case
after symbolic execution of the fixed point iteration all open branches contain
an update of the form x := γα,z + t for the variable x in question, where γα,z

is the value of x before execution of the loop body. (Also accepted are updates
x := γα,z and x := γα,z − t.) As an additional requirement all variables in t must
have the aforementioned form a + x ∗ b in the xth iteration for some a, b ∈ Z.

As it is possible that different terms are added to the variable, the execution
tree is condensed into a tree that only contains the splitting nodes and the post-
states. The splitting conditions in the inner nodes are used as conditions in the
ternary conditional expression operator when constructing the sum formula.

Example 2. Consider the sequent

⇒ {i := 1 ‖ j := 2 ‖ k := 5}[while(k > 0){
if(b) i = i + j;
else i = i + k;
k--;

}](k = 0)

This generates the invariant update i := γ>,z ‖ j := 2 ‖ k := γ≥,z and the
condensed tree has the following form:

As k has the form 5 − x in the xth iteration, it produces the invariant

i = 1 +
it∑
n=0

b ? 5-n : 2

The invariant generation uses the generated invariant directly in order to
potentially reach other loops or the same loop in a different program state and
generate further loop invariants, but also outputs JML [22]. When the invariant
is used in a proof, by application of a loop invariant rule, it is ensured that the
invariant is correct, i.e. it holds before the first execution and holds after every
iteration if it held before.

As the invariant consists of subformulas with fixed form, each is translated
separately:

– Updates of the form x := γα,z are translated into χα(x). The χ-functions can
be rewritten to JML formulas, e.g., χ>(x) would become x > 0. If several
variables share the same γ-constant, the corresponding equalities are added.

– Array invariants use the same rewriting of χ-functions.
– Sum invariants are translated into JML with the \sum operator. E.g., the sum

invariant in Example 2 is translated to

i = 1 + \sum int n; n >= 0 && n < iter; b ? 5-n : 2

If a subformula is equal to true, e.g. χ�(i), it is omitted in the JML output.
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5 Fully Automatic Approach

The logic-based information flow analysis approach proposed in Sect. 3 requires
that specifications necessary for information flow analysis, i.e. loop invariants and
method contracts, must be supplied by the user. This is usually a tough task and
requires a considerable effort. In this section we demonstrate an approach that
reduces the workload of the user towards obtaining a fully automatic analysis of
information flow for Java programs. The fundamental idea is that we leave the
task of generating loop invariants and method contracts to the tool proposed
in Sect. 4 and use these generated specifications in the information flow analysis
by KEG.

Fig. 3. Fully automatic leak detection for java programs

Figure 3 shows the combination of two tools to automatically detect informa-
tion leaks in a Java program. The solid border rectangle boxes represent auto-
matic actions performed by our tools, while the dashed border one is for manual
action done by the user. If the Java program contains unbounded loops and/or
recursive method calls, the specification generator is activated to generate corre-
sponding specifications and insert them into the original source code. Generated
specifications are also verified by a verification tool, here we use the theorem
prover KeY. Finally, the specified program is automatically analysed w.r.t. user-
defined information flow policies and other specifications (usually preconditions)
using KEG to create JUnit tests helping to demonstrate discovered leaks as well
as serving for regression tests.

6 E-Voting Case Study

In this section we present our case study on verifying the privacy property of
an e-voting system by proving the noninterference property of a simplified, ideal
Java counterpart2.

2
www.se.tu-darmstadt.de/research/projects/albia/download/e-voting-case-study/.

www.se.tu-darmstadt.de/research/projects/albia/download/e-voting-case-study/
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6.1 From Privacy to Noninterference

Our case study is a modified, extended version of the e-voting case study intro-
duced in [20,21]. In order to prove the cryptographic privacy of the votes of
honest voters, the authors constructed a cryptographic privacy game formulated
in Java. In that game, the environment (the adversary) can provide two vectors
c0 and c1 of choices of voters such that the two vectors yield the same result
according to the counting function, otherwise the game is stopped immediately.
Afterwards, the voters vote according to cb, where b is a secret bit. The adversary
tries to distinguish whether the voters voted according to c0 or to c1. If they
succeed, the cryptographic privacy property is broken. By defining this game,
instead of proving the cryptographic privacy property of the complex e-voting
system, the authors of [21] prove the noninterference property of its ideal simpli-
fied counterpart, which states that there is no information flow from secret bit
b to the public result on the bulletin board. It states that if the voting machine
computes the result correctly, then this result is independent of whether the
voters voted according to c0 or c1.

We re-implement the simplified version of the e-voting system in [20] by a
slightly more complicated version in which the system can handle an arbitrary
number of candidates rather than only two. Figure 4 depicts the core of our case
study program that includes two classes: Result wraps the result of the election
and SimplifiedEvoting reproduces the privacy game mentioned in [21]. Class
Result has one public integer array field bulletin, where bulletin[i] stores the
number of votes for candidate i. Class SimplifiedEVoting has the following fields:
a private logic variable secret as the secret bit, an integer variable n represent-
ing the number of candidates indexed by n consecutive integer number from
0 to n − 1; two integer arrays votesX, votesY as two vectors of votes supplied
by the adversary, where each array’s element i is an integer number j (ideally
0 ≤ j ≤ n−1) which mean that voter i votes for candidate j; and finally the pub-
lic variable Result that can be observed by the adversary. Method privacyGame

of class SimplifiedEvoting mimics the process that the result is computed using
one of two vectors of votes based on the value of the secret bit. Method compute

of class SimplifiedEvoting computes the result of the election using the corre-
sponding vector of votes passed as its parameter. Line 7 is the noninterference
policy claiming that there is no information flow from secret to result. To deal
with this object-sensitive noninterference policy, we implement the approach
introduced in [4]. We experiment using our approach on two versions of compute:
one is a correct implementation, while the other is faulty.

The precondition of method privacyGame is depicted in Fig. 5, enforcing that
two vectors of votes (votesX and votesY) have the same size and produce the
same result before privacyGame is executed. It also makes sure that the number
of candidates is greater than 1 and every single vote belongs to one of those
candidates.
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Fig. 4. Simplified e-voting program

Fig. 5. Precondition as JML specification of method privacyGame

6.2 Leak Detection for Correct Implementation

We first show the result of our approach for the correct implementation of method
compute as shown in Fig. 6. To check the security of the method privacyGame, it is
first symbolically executed by the KeY tool. The input file is shown in Fig. 7.

This first step symbolically executes the loop 7 times in total, opens 105 side
proofs and needs 148 s on a i5-3210M CPU with 6 GB RAM. As our system is
not optimized for speed, we suppose that it is possible to generate the invariants
in significantly less time. The output of the symbolic execution is, besides the
proof tree, a file named SimplifiedEVoting.java.mod.0, which contains the Java
file with the annotations. In Fig. 8 the result of the loop invariant generation for
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Fig. 6. Correct implementation of method compute

Fig. 7. Inputfile input.key

the loop in method compute is depicted. The invariant is generated by calling
the method compute, not by calling the method privacyGame, because the loop
invariant generation is local, in the sense that it produces invariants valid under
a given precondition. Calling privacyGame would produce two invariants, one for
each branch, which must be combined using the splitting condition distinguishing
them. This may lose precision because the splitting condition may be not fully
known, thus the generating call should be to the method containing the loop.

In the next step, the file SimplifiedEVoting.java.mod.0 is renamed to Simpli-
fiedEVoting.java and used as input for the KEG tool. KEG finished checking the
program w.r.t noninterference policy in 41 s on the same system without finding
any information flow leak.

6.3 Leak Detection for Faulty Implementation

Now we change the implemenation of method compute slightly, such that it
ignores the first element in the vector of votes when calculating the result.
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Fig. 8. Annotated SimplifiedEVoting.java.mod.0

It is obviously an incorrect implementation, in that two vector of votes votesX,
votesY can produce two different results even if the precondition of method
privacyGame holds. The faulty implementation is given in Fig. 9.

Fig. 9. Faulty implementation of method compute

For this method, the loop invariant generation opens 86 side proofs, executes
the loop 7 times in total and needs 161 s on a i5-3210M CPU with 6 GB RAM.

The KEG tool finishes checking method privacyGame calling the faulty imple-
mentation of compute in 145 s and finds a leak. It reports that there is an implicit
information flow leak caused by two different symbolic execution paths branched
by the value of secret. Using precondition of method privacyGame as in Fig. 5,
KEG generates input values for votesX and votesY in order to demonstrate the
leak as follows:
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array element at index
0 1 2 3 4 5 6 7 8

votesX 1 2 2 1 1 0 0 1 0
votesY 2 1 1 1 1 0 0 0 2

It is easy to see that the generated values of votesX and votesY bring the
same election result by using the correct version of compute, however the results
computed by the faulty method compute differ. This helps the attacker infer the
value of bit secret and break the privacy property of the e-voting system.

7 Discussion

We chose the simplified e-voting system as case study for our approach for
the following reasons: (i) its noninterference property has been verified using
a hybrid approach [21] that is not automatic and requires the program to be
modified; (ii) it is a sequential Java program having complex features of real-life
object oriented programs such as reference types, arrays and object creation; and
(iii) the program requires complex specifications containing comprehension sum
that challenge both our specification generation tool and the KEG tool.

Comprehension expressions like sum, max and min are usually not natively
supported by SMT Solver. KEG uses the SMT Solver Z3 to solve insecurity
formulas. While Z3 is very powerful, it does not natively support comprehen-
sion expressions. KEG treats sum in a similar way to the approach proposed
in [23], where each sum is translated into a self-contained function character-
ized by its axioms. The original implementation for the translation of sum (and
other comprehension expressions such as max and min) binds each expression to
a corresponding function that has two parameters describing the interval. For
example, consider the following sum expression in JML syntax:

(\sum int i ; 0 <= i && i < votes . l ength ; votes [ i ] )

This can be translated into a function call sum_0(0, votes.length-1), where
sum_0 is characterized by the following axioms:

∀x, y ∈ {0, 1, .., votes.length − 1} :
x > y ⇒ sum 0(x, y) = 0∧
x = y ⇒ sum 0(x, y) = votes[x]∧
x < y ⇒ sum 0(x, y) = votes[x] + sum 0(x + 1, y)

This translation approach is simple but versatile and can be used for all
types of comprehension expressions. The drawback of this approach is that it
does not support quantification, i.e. if sum is nested in a universal expression (as
shown at lines 3 - 7 in Fig. 5). To solve this problem, we tailor a new translation
approach for sum if it is quantified. We extend the generated sum functions
with a parameter representing the quantified variable. For example, following
quantified clause in the precondition shown in Fig. 5:
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(\ f o r a l l int i ; 0 <= i && i < n ;
(\sum int j ; 0<=j && j<votesX . l ength ; ( votesX [ j ]== i ?1 : 0 ) )

==
(\sum int j ; 0<=j && j<votesY . l ength ; ( votesY [ j ]== i ?1 : 0 ) ) )

can be translated into following expression:

∀ i ∈ {0, 1, .., n − 1} :
sum 1(0, votesX.length − 1, i) = sum 2(0, votesY.length − 1, i)

The corresponding axioms chracterising sum_1 and sum_2 are also added into
the insecurity formula. Although this approach allows quantifying over sum
expressions (also other comprehensions), it is not suitable for all instances of
sum and brings considerable extra workload for the SMT Solver. We do believe
that there is no one-size-fits-all method translating comprehension expressions
to SMT first order formulas that exists and it is necessary to optimize the trans-
lation w.r.t. each specific case.

The ability to generate invariants containing comprehension expressions (in
this case sum) was crucial in this case study in order to generate a strong enough
functional invariant so as to be able to prove noninterference with the KEG tool.
Comprehension expressions also allow the ability to be much more precise about
the value of a variable or array index term, rather than using abstraction, which
is often only an over-approximation.

In general, sums and arrays interact with each other quite nicely, in that
(i) programs often sum values based on the elements in an array (besides the
example in this case study another simple example would be calculating the sum
of all elements), but also (ii) array index terms are often sums (sometimes also
expressible as an affine term, but for example a binary tree expressed in array
form gets from index i to its left child node by adding i + 1 to the index).

Analysis of whether a comprehension expression can be used to express an
invariant is quite simple in our tool, as we can see the program updates and
branch conditions of all sequents resulting from symbolic execution of the loop
body, thus infering sums, etc. from the actual symbolic values, rather than trying
to syntactically analyse the program code.

8 Related Work

Our e-voting case study is motivated and based on the one used in [20,21]. In
that paper, the authors propose a hybrid approach combining the strengths of
an automatic tool (Joana [14]) and a deductive verification tool (KeY [5]) for
proving noninterference property of a simple e-voting system. This approach
requires programs to be extended so that the automatic tool for proving nonin-
terference can be applied without returning any false positives. The deductive
verification tool is used to prove functional properties of the e-voting program
and its extended version. While enhancing the precision of the automatic tool
Joana, the approach still needs a lot of user interaction in establishing and prov-
ing functional properties as program invariants.
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There has been a lot of research into secure information flow. Some logic-
based approaches such as [4,26] are fully precise but not fully automatic in the
sense that they require from the user not only specifications for unbounded loops
and recursive method calls but also non-trivial interactions with the theorem
prover. On the other hand, approaches based on type systems [1,17,24,27] or
those based on dependency graphs [14] are fully automatic and able to check
real-life programs due to their high performance. However, these approaches
share common drawbacks of over-approximation on actual information flow that
lead to lack of precision and resulting false positives in many cases.

Several tools for loop invariant generation have been proposed and using
abstract interpretation is among the first approaches [9]. Such tools were devel-
oped for other theorem provers, e.g. ESC/Java2 [13,18], but concentrate on
checking bounds when dealing with arrays. Other approaches which are more
precise concerning arrays either rely on syntactic analysis and restrictions [15]
or on additional information provided together with the abstract domain [8].

9 Conclusion

We proposed a novel logic-based approach towards fully automatic information
flow analysis by combining the strength of two logic-based tools. We applied it
for a simplified version of an e-voting system as case study to check noninter-
ference policy that is the counterpart of cryptographic privacy property. By the
case study result, we showed that our approach is not only precise (it can detect
the potential leak of an insecure program while not raising false positives for a
secure program) but also automatic (it only requires user to supply expressive
information flow policy and precondition describing the constraint of the initial
program state). Although the case study revolves around a relatively small pro-
gram, it is not a simple program and it is sufficient for exposing the strengths as
well as limitations of our tools, which shows that our approach is very promising
to be used for real-life programs.

For future work, we aim to extend our tools and their combination towards
analysing real-life programs, which are usually large and complex. A potential
solution is to use method contracts instead of simply expanding method calls,
which brings compositionability, scalability and analysis re-usability. Both tools
we used are adequate for this direction, in that the specification generation tool
can already generate method contracts for recursive methods [28], while the
KEG tool can use method contracts for leak detection. However, they need to
be improved in performance as well as expanding the set of language features
they support. Optimizing the specification generation towards supporting better
information flow analysis is another promising direction.

Acknowledgements. We would like to thank Richard Bubel for fruitful discussions
and comments.
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Abstract. The increased sharing of computational resources elevates
the risk of side channels and covert channels, where an entity’s security
is affected by the entities with which it is co-located. This introduces
a strong demand for mechanisms that can effectively isolate individual
computations. Such mechanisms should be efficient, allowing resource
utilisation to be maximised despite isolation.

In this work, we develop a model for uniformly describing isolation,
co-location and containment relationships between entities at multiple
levels of a computer’s architecture and at different granularities. In par-
ticular, we examine the formulation of constraints on co-location and
placement using partial specifications, as well as the cost of maintain-
ing isolation guarantees on dynamic systems. We apply the model to a
number of established attacks and mitigations.

1 Introduction

Side and covert channels (collectively, illicit channels) are fundamentally the
result of imperfect isolation, where information regarding an entity’s internal and
potentially secret state leaks to an observer through an unregulated interface.

The position of two entities relative to each other determines the type of illicit
channel that can be formed between them. For example, two processes sharing a
physical core may form a channel over the memory subsystem, whereas processes
on separate machines may form a network-based illicit channel. This leads to the
notion of co-location, where entities are said to be co-located within a medium
if they can leverage it to form illicit channels.

Co-location is often considered at the virtual-machine level in the context of
cloud computing, yet the notion of co-location as a precursor to illicit channels
extends to multiple levels of a computer’s architecture. Isolation at the virtual-
isation level is limited in that it is coarse-grained, whereas one often only has
to isolate parts of a virtual machine. In addition, the mechanisms used to build
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illicit channels can operate at a fine granularity, and their effects may not be
correctly or precisely encompassed by a coarse-grained model.

In this work, we develop a holistic model of locality that considers multiple
levels of an architecture at varying granularities. This offers numerous advan-
tages over a single-level model. Finer granularity can lead to an improvement
in hardware utilisation, as fewer resources are committed to providing isolation
guarantees. The ability to compare the cost of maintaining different isolation lev-
els also allows resource allocation to be optimised dynamically, further improving
utilisation. Apart from being quantifiable, the cost of maintaining isolations must
be attributable, particularly in the case of cloud computing.

As scheduling and placement play a central role in co-location, the locality
model must also be able to describe both temporal as well as spatial aspects
of a system. Another aspect addressed by the model is the notion of partial
specification, where entities within a system (such as tenants on a cloud) only
have a partial view of their environment, and must be able to delegate their
isolation requirements to external entities.

In summary, this work:

– reconciles different aspects of isolation and co-location into a unified model
that can describe both temporal and spatial properties of a system at multiple
architectural levels,

– examines the different levels and confinement types, and their use in defining
partial specifications and isolation requirements,

– provides an operational model for migration and cost estimation, allowing
different system configurations and real-world architectures to be compared
and optimised, and

– demonstrates various applications of the model in analysing illicit channels.

2 Confinements

A modern computer architecture consists of a multitude of isolated environ-
ments, which are themselves contained within isolations, forming a hierarchy.
The following section introduces the notions of confinement and containment.

2.1 Isolation and Containment

A computer architecture comprises a number of logical and physical confine-
ments. For example, processes execute within the confines of a CPU. Confine-
ments must themselves exist within an environment, which leads to a notion of
hierarchical containment. Extending the previous example, multiple CPUs may
be confined by a single machine, which can itself form part of a network.

Definition 1 (Confinement). A confinement (equivalently, isolation or local-
ity) denotes a boundary within which a number of sub-confinements exist.
A confinement of type Γ with a name N and capability set C containing a set of
sub-confinements Sb is denoted as Γ :N(C) [Sb].



118 K. Falzon and E. Bodden

A confinement’s name is typically dictated by its type, and serves to identify it
from amongst its siblings. Capabilities are used to limit how confinements can
interact and modify each other, as will be seen in Sect. 3. The capability set can
be omitted when it is empty.

Illicit channels exploit the fact that certain confinements are imperfect, and
do not keep their sub-confinements completely isolated from each other. Thus,
confinements can be seen as introducing locality, where confinements that should
theoretically be disjoint are connected through a channel exploiting some char-
acteristic of their parent confinement.

Definition 2 (Containment and Co-Location). A confinement X is con-
tained within a confinement Γ :D(C) [Sb] if X ∈ Sb. This is denoted as X∈D. X
is said to be co-located with Y through D, written as X D←→ Y, if X∈D∧Y∈D.

The state leaked within a confinement can potentially be observed both by its
direct sub-confinements as well as their members. This gives rise to the notion
of nested containment, where X∈+ D

def= X∈D∨ ∃D′ ∈D. X∈+ D′ and nested
co-location, where X

D⇐⇒ Y
def= X∈+ D ∧ Y∈+ D.

Example 1 (Parallel Execution). Consider a CPU package with two cores (C)
sharing an L3 cache, each of which employs simultaneous multithreading (SMT)
to expose two hardware threads sharing an L1 and L2 cache. This can be mod-
elled as:

CPU
def= L3:0 [L2:0 [L1:0 [C:0 [] ,C:1 []]] ,L2:1 [L1:0 [C:2 [] ,C:3 []]]]

Two processes X and Y can be susceptible to an attack via L1 cache [28] if
∃L1:L∈+ CPU. X

L⇐⇒ Y, or via L3 cache [36] if ∃L3:L∈+ CPU. X
L⇐⇒ Y. The

latter will hold whenever the processes execute simultaneously. 
�
Note that proximity, or the depth at which two processes are co-located

within the model, does not necessarily correlate with an illicit channel’s band-
width. That is, while processes that are closer to each other can generally com-
municate at a faster rate or perform more events per unit time than others
that are further away (for example, processes sharing a cache interact with their
shared resource at a higher frequency than if they were co-located through a
network), not every interaction carries information relevant to the channel.

2.2 Types of Isolation

Illicit channels occur either at the software or hardware level [24], the former
being a product of the algorithms used, while the latter emerge from the charac-
teristics of a system’s hardware. When considering hardware-based channels, an
additional distinction between soft and hard isolation can be made [32]. Hard
isolation implies that co-locations are broken by using distinct physical hard-
ware locations, whereas soft isolation simulates distinct hardware locations by



Towards a Comprehensive Model of Isolation for Mitigating Illicit Channels 119

Table 1. Types of soft and hard isolation, and their typical containments.

Hard isolation Soft isolation

Type Description Can contain Type Description Can contain

Net Network Net, M VM Virtual machine VC, OS

M Machine L3, OS VC Virtual CPU VC, PE, Con, VM

L3 L3 Cache L2 Con Container P

L2 L2 Cache L1 PE Control group Con, P

L1 L1 Cache C P Process –

C Physical core VC, PE, Con, VM OS Operating Sys PE, Con, VM

arbitrating access to resources, hiding their characteristics. Soft isolation is guar-
anteed with respect to a defined attribute. For example, a timing channel can
be closed by masking the timing characteristics of caches [28], yet such a mitiga-
tion may not effectively address other potential illicit cache-level channels. Hard
isolation is comprehensive, but is limited by capacity [27].

Table 1 lists the soft and hard isolation types with which this work is primar-
ily concerned. Other granularities and isolation types can also be modelled. For
example, as will be seen in Sect. 5.2, monolithic caches can be decomposed into
cache sets. The confinement model places no restrictions on the types of sub-
confinements, which allows the description of partial specifications and incom-
plete system hierarchies. In practice, it follows that certain containment patterns
do not occur, and that the presence of certain confinements imply the existence
of a parent of a specific type. For example, a virtual CPU (VC) confinement
would imply the existence of a VM to which it belongs.

Hard isolations are passive elements of a system. Conversely, certain soft
isolations must be upheld through an active and ongoing process, or through
a change in policy. For example, early implementations of x86 virtualisation
incurred a constant overhead through dynamic binary rewriting [3], which has
nowadays been significantly reduced via hardware-assisted virtualisation. Sim-
ilarly, software-based approaches to securing AES added overheads [28] that
were eliminated through their implementation as a special hardware-level con-
finement [23].

3 Managing Isolations

The core operations for modifying a containment hierarchy are confinement cre-
ation, destruction and migration. The latter is modelled as moving an isolation
from one containment to another. The implementation of these operations varies
based on the isolations involved, and may require a series of compound actions
that incur multiple changes at different parts of the hierarchy. Changes to the
hierarchy are effected by agent processes.
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Definition 3 (Agent). An agent is a confinement A:N(CAg)→
T [Q], where A

denotes an agent type, N is the agent’s name, CAg is its capability set, T is a
set of confinements visible to the agent, → ⊆ T× T is a mapping defining legal
containments, and Q is a queue of idle confinements.

Agents represent scheduling components that manage confinements. For exam-
ple, an operating system’s process scheduler can be modelled as an agent confine-
ment that regulates movements between an idle queue and core confinements.
Agents can be embedded at any part of the hierarchy. For example, a network
domain controller can be modelled as an agent embedded within the network’s
hardware layer. Agents can move (or migrate) confinements using local and global
scheduling operations, described in the following sections.

3.1 Local Scheduling

Local scheduling moves a confinement between an agent’s idle queue and a target
confinement via the local-schedule (L-Sc) and local-deschedule (L-Ds) rules, the
general forms of which are defined in Fig. 1, where cap(Γ :N(C) [Sb]) → C, and
A�B

def= A∩B �= ∅. For a local-schedule operation, the agent process Ag issues
a migration operation (X � N) that moves X from its idle queue to the target
locality N, provided that the allocation is permitted (as defined by →), and that
the agent holds the appropriate capabilities. Descheduling is similar, but returns
the locality from a target confinement to the agent’s idle queue.

An agent must share a capability with the target confinement, as well as
the confinement being moved. Capability checking is modelled as an abstract
operation (an intersection between capability sets), as the concrete implemen-
tation varies by confinement. For example, destroying a process requires the
agent to have the process owner’s user rights. Similarly, virtual machines can
only be modified by agents holding the appropriate rights, which can be granted
through a number of authorisation mechanisms, such as user groups, passwords,
or polkit [2] policies.

Mutability is not modelled as an intrinsic property of a confinement, rather
it is determined by the availability of its capability to agents. While hardware
confinements such as caches are not typically disabled at runtime, an agent may

L-Sc

A:Ag(CAg)→
T [Q ∪ {X}]

Γ :N(C) [Sb] Ag ≡ X� N.Ag’ C
Ag � C C

Ag � cap(X) (X, N) ∈→
A:Ag’(CAg)→

T [Q] Γ :N(C) [Sb ∪ {X}]

L-Ds

A:Ag(CAg)→
T [Q]

Γ :N(C) [Sb ∪ {X}] Ag ≡ X� Ag.Ag’ C
Ag � C C

Ag � cap(X)

A:Ag’(CAg)→
T [Q ∪ {X}] Γ :N(C) [Sb]

Fig. 1. Local migration rules.
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want to delete their representation from the model if it is certain that the threat
of a channel through that confinement has been neutralised.

Example 2 (Round Robin Scheduler). Consider the CPU hierarchy defined in
Example 1. An agent implementing a simple round-robin scheduler with a
shared run queue can be defined as A:rr(CAg)→

T [Q], where Q contains an
ordered list of processes, and → defines the allowed mapping of processes to
physical cores. The default behaviour is to map all processes to all available
cores, giving → def= {(X,Y) | X ∈ Q,Y = C:N(C) [Sb] ,Y∈+ CPU}. Given that
↑(X) def= {Y | (X,Y) ∈→}, the scheduler can be defined as a CSP-like process
as follows:

rrQ([P | Ps] ,CA,CF) ≡C:X∈ ↑(P)∩CF
 P � X.rrQ(Ps,CA,CF \ {X}) 

P:P’∈C:Y ∈CA
 P’ � rr.rrQ(Ps | [P’] ,CA,CF ∪ {Y})

where CA is the set of all cores being managed by the scheduler, [P | Ps] is an
ordered list of processes with P as its head and Ps as its tail, and CF is the
set of idle cores. The process would thus be initialised as rrQ(Q,Cs,Cs), where
Cs = {X | C:X∈+ CPU}.

Next, consider the scenario where a security-sensitive process S is added to
Q. If the process is susceptible to a cache-level synchronous attack [28], then
one must avoid co-locating S with other processes during its execution. As for-
mulated, the scheduler will execute processes in the order specified by the idle
queue, but processes can be descheduled pre-emptively at will, meaning that
every other process can potentially execute in parallel with S. Forcing processes
to execute for an equal and fixed time-slice will cause S to potentially be co-
scheduled with the |Cs| − 1 processes that appear before and after it in the idle
queue. Finally, changing → to ensure that S always executes by itself will pre-
vent spatial co-location, at the cost of underutilised hardware. As a compromise,
→ can be varied dynamically, with the number of processes that can share cores
growing proportionately to the time elapsed since the last scheduling of S. 
�

Configurations. Reasoning about temporal locality requires the ability to
describe how a model evolves from one configuration to the next, where a con-
figuration is defined as a set of confinements. The evolution of a configuration is
determined by the agents it contains. The presence of multiple agent and vary-
ing scheduling policies mean that, in general, there is more than one legal next
configuration. This leads to the notion of a next(C) function, which returns the
set of possible configurations that can be reached from a configuration C through
a single application of a local schedule or deschedule operation (Fig. 1). This is
extended to the iterated next configuration function nextn(C), which returns
the set of configurations reachable from C in n steps, defined as follows:

next0(C) def= {C}
nextn(C) def=

{
nextn−1(C′) | C′ ∈ next(C)}
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Finally, the configuration combination operator nextn∪(C) is defined as:

nextn∪(C) def=
{
Γ :N(C) [Sb] | Γ :N(C)

[
Sb′] ∈+ Cfs

}
where Sb

def=
⋃{

Sb′′ | Γ :N(C)
[
Sb′′] ∈+ Cfs

}
and Cfs

def=
⋃ ⋃

0≤i≤n

nexti(C)

This effectively performs a union of every possible configuration reachable within
n local scheduling operations, including intermediate configurations. The result is
a graph that shows every containment combination attainable in a set sequence
of steps. This can be used to represent a system’s temporal behaviour as a
static spatial graph. A related graph can be achieved by combining each agent’s
containment mapping, giving a graph of potential containments, yet this would
over-approximate containments, as a scheduling policy may opt to only use a
subset of mappings available to it. To simplify the operation, it is assumed that
confinements can be uniquely identified by their name. Otherwise, an additional
preprocessing step can be introduced.

Example 3 (Round Robin Scheduler, revisited). In Example 2, co-location with a
security-sensitive process S was only considered with respect to a single moment
in time, yet an access-based cache-level side channel’s effects persist beyond
a process’ execution [28] until the security-sensitive memory blocks have been
flushed. Thus, simply disabling co-scheduling during S’s execution would not be
sufficient to break the channel reliably.

The duration of the residual effects of caches is independent of real time,
and is determined by cache evictions. For the pre-emptive round robin scheduler
described earlier, the position of S in the idle queue relative to an attacker
process will generally affect the illicit channel’s quality, as the probability that S’s
sensitive cache blocks become clobbered increases with the number of processes
that execute in the interim. If cache eviction patterns and process quanta are
irregular, or if a fully pre-emptive scheduling policy is used, then each core in
next∞

∪ ({CPU}) will contain Q.

L3:0

L2:1

L1:1

C:3C:2

P:SC

L2:0

L1:0

C:1

P:S

C:0

(a) No isolation at L1

L3:0

L2:1

L1:1

C:3C:2

L2:0

L1:0

C:1

P:SC

L1S:MitC

P:Clean

C:0

P:S

L1S:Mit

(b) Creation of L1S via soft isolation

Fig. 2. Cache-level co-location and mitigation via soft isolation, with arrows denoting
containment.
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Residual effects can be explicitly removed through a cache-cleaning
process [37] that invalidates cache blocks, masking their timing variations. The
process (henceforth referred to as Clean) must execute after each de-scheduling
of S. Any process using the same cache that executes concurrently with S can
potentially infer the timing state up to the point of Clean’s completion. Thus,
one must place an additional restriction on concurrent execution. If these two
conditions can be guaranteed as invariants, then the cache has effectively been
partitioned into two sub-confinements of type L1S (a soft-isolated L1), trans-
forming the hierarchy described in Fig. 2a to that illustrated by Fig. 2b (for
simplicity, S is pinned to C :0). The partitioning serves to isolate the process
S from the other processes SC (the latter being the complement of S). Note
that the processes remain co-located within L1:0, as they are still ultimately
sharing hardware locality. If the soft isolation is deemed perfect, then the L1
confinement can be destroyed. Removing Clean would lead to the partitions
being destroyed, and the L1:0 confinement being recreated. 
�

3.2 Global Scheduling

Local scheduling limits an agent in its procurement of isolation, as it can only
make use of confinements under its direct control. An agent can be supported
by additional agents external to its scope in two ways. First, an external agent
can provide isolation guarantees on the parents of confinements that are being
managed by an agent. For example, if an agent running within a virtual machine
requires a hard isolation guarantee that a process executes alone on a core, then it
must query an agent in the underlying hypervisor’s scope to ensure that the VC
confinement is placed in a dedicated C confinement. Secondly, an external agent
serves to extend the pool of available confinements, allowing confinements to be
migrated to a different scope. Building on the previous example, the hypervisor
agent can migrate VC confinements amongst cores until an isolated core is
provisioned. If the agent finds that all of its resources are committed, it can
query additional external agents for isolations on different machines.

Migrating from one agent’s scope to the next leads to the notion of global
scheduling. Broadly, global scheduling involves two steps, namely (a) identifying
a target agent which can procure the required level of isolation, and (b) migrating
the confinements required to achieve isolation. The following section details how
these tasks are performed.

Scopes and Renaming. In general, an agent will only have a partial view of
a system. Consider the containment hierarchy illustrated in Fig. 3, which rep-
resents a minimal model next∞

∪ ({Machine}) of a two-core compute node over
which two tenant virtual machines are executing. In this model, each VM has an
agent Ta0 and Ta1 running within it, whereas the infrastructure provider has an
agent Hyp running on the base system. The virtualisation confinement prevents
a tenant’s agents from enumerating the parent’s confinements through stan-
dard operating-system interfaces. In addition, even if the details of the parent’s
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confinements can somehow be inferred (for instance, through illicit channels),
the tenant’s agents would not have the necessary capabilities to alter them. For
instance, mere knowledge of the existence of additional co-located tenants would
not automatically grant a tenant’s agent control over them.

VM:1

VC:v1

A:Ta1

M:Machine

C:C1

VC:v0A:Hyp

C:C0

VC:v1

VM:0

VC:v0

A:Ta0

Fig. 3. Partial model showing agent scopes and boundaries.

While a tenant agent may be unaware of its parent environment’s confine-
ments, the converse does not hold. Containment relationships crossing a bound-
ary still require that the sub-confinement be exposed to its parent. For example,
while tenants in Fig. 3 might not be aware of the number of physical cores on
the machine, the hypervisor must have a handle to the tenants’ VC structures
in order to manage their core pinnings1.

The agent’s position within a hierarchy also determines its view of a con-
finement. For example, VC confinements managed by Hyp are seen as Cs by
processes within the tenants’ VMs. Thus, isolation requests across scopes must
be accompanied by a mechanism to rename confinements. Confinement renam-
ing is not always straightforward, such as in the case of processes, which have a
significant amount of state dispersed within their parent OS confinement that
has to be translated on migration. For instance, a process’ PID may have to be
changed on migrating to a new OS environment [1], which would alter its inter-
nal system view. A common workaround is to employ namespace mechanisms,
commonly in conjunction with containers [2], to encapsulate structures such as
PIDs and network interfaces and separate them from the common namespace of
the base OS. This ensures that a migrated process’ structures remain internally
consistent.

Isolation Constraints. A consequence of agent scoping is that changes to
external confinements need to be delegated to an agent. In addition, changes
cannot refer to specific external confinements, both due to scoping and security
reasons.

1 Introspection [19] can be used to characterise sub-confinements of a VM.
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OS:base

C:1 C:2C:0 C:3

PE:all

P:S A:AT P:SC

(a) Bare metal

OS:base

C:1 C:2C:0 C:3

PE:all VM:vm

VC:0 VC:1

P:ps A:Hyp

OS:guest

PE:allPE:sec

P:S A:AT P:SC

(b) Virtualisation

OS:base

C:1 C:2C:0 C:3

PE:all VM:vm

VC:0 VC:1

VC:0 VC:1

P:ps A:Base

OS:guest

VM:vmgPE:all

A:HypP:ps

OS:guest

PE:sec PE:all

P:S A:AT P:SC

(c) Nested virtualisation

Fig. 4. Environment nesting and indirection.

Consider a simple isolation condition isolP(), which checks whether a
process exists by itself in a C environment, defined as follows:

isolP(P:X,C:D) def= ¬∃P:Y∈+ D. X �= Y

The evaluation of isolP() varies based on the underlying system assumptions.
Figure 4a illustrates a partial next∞

∪ () graph of the CPU hierarchy from the
perspective of an agent running within a virtualised environment (or equiva-
lently, a non-virtualised, bare-metal environment). In this case, for D quantified
over all visible confinements, isolP(S,D) will fail (return false) due to processes
sharing a process control group all. To comply with the isolation requirement,
processes must be partitioned into two process groups contained in disjoint sets
of cores.

Subsequently adding a virtualisation layer produces the containment tree
shown in Fig. 4b. If multiple VMs execute in parallel, then the isolP() predicate
may fail. Thus, the hypervisor agent Hyp must be queried to ensure that cores
are allocated exclusively to the VC containing S. Given that X �→ X’ renames a
confinement X into a locally-scoped confinement X’, a second isolation condition
isolVC() is defined and sent to Hyp, where:

isolVC(C:X,C:D) def= X �→ VC:X’ ∧ ¬∃VC:Y∈D. X’ �= Y ∧ X’
D⇐⇒ Y

In this case, D is a free variable which must be bound by Hyp. As described in
the previous section, the C confinement must be renamed to a structure visible to
Hyp, namely X’ . As virtualisation and containments can potentially be nested
to an arbitrary depth (Fig. 4c), the isolVC() isolation request must be pushed
upwards in the hierarchy, until the base confinement is reached. This ensures



126 K. Falzon and E. Bodden

that the intermediate levels of indirection do not lead to co-locations. While the
use of nested virtual machines might not currently be widespread, the growing
adoption of containers will increase the occurrence of such topologies.

Finally, an isolation request may place additional constraints on co-location.
For example, tenants may request that VMs can only be co-located on a machine
if they are all owned by the same tenant. Given that X is the tenant’s machine
from its scope, and D is the base machine, this can be expressed as:

isolVM(M:X,M:D) def= X �→ VM:X’∧¬∃VM:Y∈D. X’
D⇐⇒ Y∧

tenant(X’) �= tenant(Y)

Global Migration. Global migration changes a confinement’s place within a
hierarchy by placing it under another agent’s control and modifying its map-
ping rules. Consequently, migration changes a system’s infinite configuration
next∞

∪ ().

G-Sc

A:Src(CSrc)→Src
TS [QSrc ∪ {X}] A:Dst(CDst)→Dst

TD [QDst]

Dst ∈TS Src ≡ X
isol()
� Dst.Src’ D∈+ {D’ | D’ ∈ TD}

C
Src � C

Dst
C
Src � cap(X) C

Dst � cap(D) isol(X,D)

A:Src’(CSrc)
→Src′
TS\{X} [QSrc] →Src′≡→Src \ {(X,Y) | (X,Y) ∈→Src}

A:Dst(CDst)
→Dst′
TD∪{X} [QDst ∪ {X}] →Dst′≡→Dst ∪ {(X,D)}

Fig. 5. Global migration rule.

Figure 5 defines the general rule for migrating a confinement X globally. The
source agent Src initiates a migration request to a destination agent Dst with
an isolation criterion isol(), which Dst attempts to match against its known
and controllable confinements. Following the migration, each agent updates its
containment mapping rules, with Src removing the associated mappings, and
Dst adding a rule for X’s allowed containments. The source and destination
agents can be the same, allowing confinements to be created, destroyed, or sim-
ply remapped. The rule can be modified so that X is assigned multiple parent
confinements at its destination. This allows a confinement to maintain the same
number of allocated resources across migrations.

A target agent must be within the source agent’s scope. Logics such as the
cloud calculus [25] make use of a parent() operator, which returns a handle to a
confinement’s parent. Agent discovery varies depending on the confinement level
being considered, but it generally involves mapping an agent’s identifier to its
actual address. Discovery mechanisms include broadcasts, distributed keystores
and centralised repositories. Each method has its own drawbacks in query time
and consistency. Depending on the frequency of agent discovery operations and
actual migrations, one may also consider propagating notifications of topology
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changes down a hierarchy following a migration, with lower-level agents sub-
scribing to their parent agents and receiving notifications whenever their scopes
have been altered.

4 Cost Functions and Metrics

Different configurations vary in the degree of isolation that they offer and the cost
required to maintain them. The ability to quantify these factors is essential to
the process of provisioning isolation, as it allows configurations to be compared,
and enables allocations to be optimised. When comparing system hierarchies
containing long-lived processes, one must consider the cost of maintaining a
configuration over time, rather than simply comparing a system’s instantaneous
configuration. Thus, metrics and costs should be evaluated over the next∞

∪ () of
a given hierarchy.

4.1 Metrics

Several metrics and notions of cost can be defined, including, but not limited to:

Utilisation measures the aggregate usage of a system’s capacity. Certain con-
finements can only contain a number of sub-confinements before the system’s
overall performance begins to drop. For example, consider the scenario of a
process scheduler allocating processes to cores evenly. Given that load(Y)
returns the average CPU utilisation of a process Y expressed as a fraction,
one can measure CPU utilisation for a hierarchy C as a dimensionless unit
as follows:

util(C) =
∑

C:X∈+ C
min

( ∑
P:Y ∈X

load(Y)

| {D | C:D∈+ C ∧ Y∈D} | , 1.0

)

≈
∑

C:X∈+ C
min

(
k

∑
P:Y ∈X

|↑(Y)|−1 , 1.0

)

The second formula is an approximation that can be computed statically
given an average processor usage k and the P-to-C mapping defined by an
agent’s → structure (↑() is defined in Example 2). The min function caps
each C’s usage value.

Capacity is the number of confinements of a given type in a configuration, while
total capacity is the total number of confinements in the hierarchy.

Consolidation factor is defined as capacity/utilisation, and represents the
ratio between the system’s utilisation and the number of confinements of a
given type within a hierarchy.

Pairwise co-locations counts the total number of pairs of co-located confine-
ments in a given hierarchy, and is defined as:

pairs(C) =
1
2

|
{

〈X,D,Y〉 | X,Y,D∈+ C,X �= Y,X
D←→ Y

}
|
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Containment hierarchies can be topologically sorted, and metrics can be com-
puted by performing a breadth-first search and evaluating each sub-graph, pro-
vided that costs are compositional. The evaluation of metrics is complicated by
agents’ partial system specifications. For example, a tenant can compute pairs()
within its own VM, yet this will only serve as a lower-bound, and would have
to be combined with additional information from the parent confinement.

In a cloud scenario, tenants and the cloud provider may attempt to optimise
their configurations with respect to different metrics. For example, a tenant
will want to compromise between pairwise co-locations and total capacity. Con-
versely, while a cloud provider will attempt to maximise consolidation so as to
maintain a smaller deployment, it has a lower incentive to minimise a tenant’s
total capacity if it bills its clients on the basis of committed resources.

Example 4 (Comparing architectures). A system’s containments can vary across
vendors. To illustrate, we examine two different CPUs, namely an Intel i7-4790
(Intel) with 8 hardware threads using SMT, and a hex-core AMD Phenom
II X6 (AMD). Apart from cache exclusivity, the architectures vary in that the
former has two hardware threads to each L1 containment, whereas the latter
has per-core L1 and L2 caches. This results in the following models:

Intel
def= L3:0 [{L2:i [L1:i [C:i [] ,C:i+4 []]] | 0 ≤ i ≤ 3}]

AMD
def= L3:0 [{L2:i [L1:i [C:i []]] | 0 ≤ i ≤ 5}]

Consider the case where processes must never be co-located through L1 or
L2. For the Intel hierarchy, this effectively halves the C capacity2. Assum-
ing that each system divides P processes amongst its Cs equally, util(AMD) =
min (kAMDP/6, 6.0) , and util(Intel) = min (kIntelP/4, 4.0). Thus, Intel’s
process execution time kIntel must be two thirds of kAMD in order to have equal
utilisation rates. 
�

4.2 Ongoing and Migration Costs

Configurations offer different security guarantees at different costs. Evaluating
costs and metrics on a configuration’s next∞

∪ () is a tradeoff between perfor-
mance and precision, as it avoids recomputing costs after each local migration
operation.

Given a static model, a configuration can be progressively modified until it
reaches an optimal state with respect to a property of the system. For example,
tenants within a cloud have an incentive to use resources efficiently, and cloud
providers generally attempt to provide resources to tenants with a minimum
of overhead. Thus, if no confinements are created or destroyed by the tenants’
agents, a cloud provider can alter the system’s configuration incrementally until
it reaches its lowest cost state.

2 Disabling hyperthreading was once common amongst cloud providers [33], although
Amazon EC2 has recently foregone this practice [5].
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(2)L1:l0 [L1S:s0 [] ,L1S:s1 []] | L1:l1 [P0,P1,P2]

(2 + α)L1:l0 [L1S:s0 [] ,L1S:s1 [P1]] | L1:l1 [P0,P2] (2 + α)L1:l0 [L1S:s0 [P0] ,L1S:s1 []] | L1:l1 [P1,P2]

(1 + 2α)L1:l0 [L1S:s0 [P0] ,L1S:s1 [P1]] | L1:l1 [P2]

(1 + 2α)L1:l0 [L1S:s0 [] ,L1S:s1 [P0,P1]] | L1:l1 [P2] (1 + 2α)L1:l0 [L1S:s0 [P0,P1] ,L1S:s1 []] | L1:l1 [P2]

(2α)L1:l0 [L1S:s0 [P0] ,L1S:s1 [P1,P2]] | L1:l1 [] (2α)L1:l0 [L1S:s0 [P0,P2] ,L1S:s1 [P1]] | L1:l1 []

(2α)L1:l0 [L1S:s0 [] ,L1S:s1 [P0,P1,P2]] | L1:l1 [] (2α)L1:l0 [L1S:s0 [P0,P1,P2] ,L1S:s1 []] | L1:l1 []

Fig. 6. A subset of possible global migrations between configurations.

The fluidity of cloud architectures necessitate a dynamic model, which limits
the time allowed for a system to converge to an optimum. More generally, assum-
ing that a system will remain in configuration C for a duration τ , one should
temporarily move to C′ if the cost of τC is greater than that of migrating to and
from C′ combined with the cost of maintaining τC′. An accurate characterisation
of τ enables configurations to be optimised with a minimum of migrations, yet
a system in constant flux or with very small values of τ can potentially negate
gains in migrating. Cheap migration operations can help offset the effects of τ .

Example 5. Figure 6 models migrations between various next∞
∪ () states of a

system’s L1 caches with three processes, where one of the caches has deployed
the soft isolation strategy described in Example 3. Utilisation rates are given in
brackets, assuming that (a) each L1 confinement is shared between two cores
and has a total capacity of 2, (b) each process has a utilisation factor of 1, (c) L1
confinements have zero cost, as they are built into the architecture, and (d) non-
empty L1S confinements reduce their core’s capacity to α (overhead values can
reach up to 7 % [37]). Disabling co-scheduling on the partitioned core will cause
its capacity to be halved. Utilisation is highest (2 + α) when the unmitigated
cache is at full capacity, with additional processes running within soft isolations.
The configurations with the lowest pairs() are obtained for 1 + 2α. 
�

Metrics can also be extended to encompass special purpose confinements [9]
and heterogeneous deployments, with certain configurations being cheaper or
more secure to maintain on machines with dedicated hardware.

4.3 Automatically Generating Migration Sequences

The allocation of isolations to locations within a computational hierarchy is
ultimately an exercise in scheduling. In its most general form, determining where
confinements should be placed within a system is equivalent to bin-packing, thus
eluding an efficient solution. The problem of placement is further complicated by
the addition of quality of service predicates, which would typically include limits
on capacity and utilisation. Finally, the hierarchical nature of the systems being
investigated introduces its own nuances. For example, migrating an intermediate
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node within a containment graph will have a cascading effect on the constraints
of its constituents.

The task is thus to determine a sequence of migration operations that will
move a system from a configuration C to a new configuration C′ that satisfies the
isolation and quality of service criteria that are being requested. If C′ is known,
then one can compute a sequence of migration operations leading to it using a
minimum edit distance algorithm for graphs, with migrations corresponding to
edit operations that are weighted according to the migration mechanisms’ costs.
One drawback of such an approach is that the minimum graph edit distance
cannot always be calculated efficiently [22]. More crucially, this approach requires
that C′ be identified beforehand, whereas one typically has to compute both the
migration sequence as well as the final configuration.

To break condition X
CA⇐⇒ Y:

1. find D∈+ CA.
X∈+ D ∨ X = D ∨ Y∈+ D ∨ Y = D

2. find/create CA’. ¬CA’ ∈+ CA
3. replicate path from CA to D in CA’
4. check isolation constraints and mi-

grate D to new parent in CA’

(a) Migration procedure outline

. . .

root

CA’

CA’1

CA’0

CA

CA1

CA0

. . .

Y

. . .

X

fully-isolating

relative locality
preserving

non-isolating

Global
Scheduling

(b) Migration effects by graph height

Fig. 7. Computing migration paths for breaking X
CA⇐⇒ Y.

Figure 7a provides a general outline of the steps required to break the co-
location of X and Y via a common ancestor CA within a partially-specified
hierarchy described in Fig. 7b. In the absence of efficient and exact oracles,
several steps must be approximated by heuristics, as will be discussed in the
remainder of this section. Note that the process of releasing or removing isola-
tion constraints is similar to this procedure, with a greater focus on consolidating
previously-isolated confinements back into existing confinements so as to lead to
a cheaper configuration.

Finding a Source. The impact that the migration of a confinement D will have
on a graph’s isolation constraints will vary based on the position of D within
that graph. For instance, migrating a process from one CPU core to the next
will break locality at the core level, but not at the machine level.

When attempting to reconfigure the configuration illustrated by Fig. 7b to
comply with the constraint ¬(X CA⇐⇒ Y), one finds that individual migration
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operations moving confinements outside of CA can take one of three forms,
namely: (a) fully isolating, where X and Y share no common ancestor up to
the depth of CA, (b) relative locality preserving, whereby co-location through
CA is broken, yet the confinements are still co-located within an intermediate
common confinement, and (c) non-isolating, where the structures producing co-
location through CA are preserved by the migration. Hence, the depth within the
graph at which the confinement being migrated exists determines how many co-
locations will survive migration. Consequently, for isolation to be achieved, one
must migrate a confinement on the containment path leading from CA to X or
Y. Note that in the case of multiple separate routes for co-location through CA,
one may have to migrate more than one confinement to fulfil a single isolation
constraint.

Migrations that preserve relative locality may be insecure and must be per-
formed with caution, as attacks on the locality type of CA may still be viable
were one to migrate to a location of the same type (such as the sibling CA’). Con-
versely, one cannot rely entirely on fully-isolating migrations due to the finiteness
of physical infrastructures. In the case of migrations at the same depth, such as
when migrating either X or Y, one should ideally choose a migration that results
in the lowest cost.

Finding a Target. Given that an appropriate confinement D∈+ CA has been
marked for migration, the next step is to determine a suitable destination. Triv-
ially, this must exist outside of CA. Referring to Fig. 7b, the earliest depth within
the graph to which the localities can be migrated is CA’, a confinement directly
co-located with CA.

Provided that it is of the correct type, any confinement CA′. ¬(CA′ ∈+ CA)
can serve as a destination confinement, yet a heuristic may find it reasonable
to attempt to keep migrations as local as possible. In broad terms, migration
amongst smaller localities (VC to C, or P to C) can be performed in millisec-
onds, as opposed to the migration of larger structures (P to OS, or VM to M),
which can be a thousand times slower, principally due to the involvement of the
network layers and shared storage [21].

Creating an Equivalent Environment. When migrating a confinement to
a new parent, one would generally have to create a containment graph at the
destination that matches the source’s nesting structure. In certain cases, it may
not be necessary to duplicate the full environment at the destination. For exam-
ple, when migrating a VM that is running within a second VM, one may opt
to migrate the former directly to bare metal.

Satisfying Constraints. When executing a sequence of migration operations,
one must ensure that both the end state as well as the intermediate configu-
rations do not violate any constraints that have previously been placed on the
system. Ideally, constraints are checked before any migrations are performed, and
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migrations are only carried out once it has been established that they respect all
isolation constraints. Failing this, transaction semantics must be added to migra-
tion sequences, giving the ability to dynamically roll back migration operations
and attempt to identify an alternative path.

Backtracking will introduce delays in the servicing of isolation requests, which
may not always be tolerable. If the workloads are well characterised, one may
determine that certain constraints can be temporarily relaxed. For example, a
tenant may tolerate a short-lived dip in performance, which would in turn allow
a machine to be temporarily over-provisioned whilst performing a sequence of
reconfiguration operations.

5 Applications

The following section investigates various contexts in which the model can be
applied, including runtime enforcement, as well as in the modelling and analysis
of an access-based side-channel and a replication-based timing channel mitiga-
tion.

5.1 Runtime Isolation

While co-location properties can be verified for specific scopes, the guarantees
may no longer hold after a system has been reconfigured. Runtime monitoring
serves to dynamically resolve isolation predicates that depend on confinements
at the edges of a configuration’s scope. The model can be used to define policies
within a runtime monitoring framework, where declarative restrictions on co-
locations are used to define invalid configurations. Once a bad state is detected
(such as on detecting suspicious memory access patterns [34]), the system can be
reconfigured to a correct state using migration, leading to a reactive architecture.
Alternatively, the framework can be driven by a system of leases, with isolation
being procured before a security-sensitive process executes.

5.2 Pre-emption Rate Limiting

The presented model can be used to reason about attacks at different granulari-
ties, which we demonstrate by modelling an access-driven cross-VM side-channel
attack developed by Zhang et al. [35], and its scheduler-based mitigation [32].
The attack relies on a Prime-Probe cache access pattern, similar to the attack
described in Example 2.

Consider a hypervisor managing two virtual machines, namely a victim vmv

and attacker vma. Both machines (collectively referred to as
−→
V) share a core c0.

The hypervisor agent Hyp is defined as:

A:Hyp({Cvmv , Cvma , Cc0}){(vmv,c0),(vma,c0)}
{vmv,vma,c0}

[−→
V

]
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and implemented as a process HypI defined as:

HypI ≡VM:X∈ −→
V
 X � c0.X � Hyp.HypI

The next∞
∪ () graph of the system at this coarse level of granularity would

reveal that the virtual machines are co-located through c0, yet the mechanism by
which they interfere with each other is not immediately apparent. The hierarchy
can be defined at a finer granularity by modelling L1 as a confinement of N
cache-line sets (CLS), giving L1:CLS0 [{CLS:csi [] | 0 ≤ i < N}]. Cache-lines
are invalidated as processes execute within a VC. In a fine-grained model, the
agent process is modified to map VCs to CLS confinements, signifying that
an operation running within that VC has disturbed the cache set in question
(more precise models of cache eviction policies may also be defined, yet this is
unnecessary for the purposes of this exposition). A process carried out by an
agent Ag which schedules a VC to a C, models the VM’s interactions with
CLS for R times, and then yields control of the scheduler is defined as:

run(A:Ag,L1:L,C:c,VC:vc, R) ≡ vc � c.(
CLS:cs∈L
 vc � cs)R.vc � Ag

The attack is access-based, where the attacker attempts to determine the
pattern of a victim’s memory accesses. The attacker achieves this by priming
the cache and checking its access times after the victim executes, placing its VC
vca within a cache set previously occupied by vcv, leading to the sequence:

run(Ag,CLS0,c0,vca, N).run(Ag,CLS0,c0,vcv, R)

The attacker’s resolution of the victim’s intermediate cache states is greatly
influenced by R. If a victim can be pre-empted frequently, then the attacker
can build a more precise memory access model. Conversely, large values of R
will increase the probability that other cache regions unrelated to the security-
sensitive computation under attack will have been accessed, leading to noise.
Thus, the victim vmv attempts to choose a value of R such that it maximises
the value of pairs() formed over an execution.

A mitigation against this attack [32] places a minimum running time on
virtual machines, which stops an attacker from forcing deschedules and limiting
its ability to profile a victim. By knowing the number of cache invalidations
required to achieve the desired level of isolation and the cost of performing cache
operations, one can determine a minimum VM scheduling quantum length.

A similar fine-grained cache analysis can be performed for cache colour-
ing [26], where scheduling must guarantee disjoint cache sets. An additional
related mitigation is that of the cache cleaning process (Example 3), which is
effectively a solution for the same problem using a different scheduling level.

5.3 Timing Channel Elimination

StopWatch [27] is a collection of mitigations designed to reduce the informa-
tion content of timing channels in the cloud. The approach’s mitigation centres
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on the use of replication to create R copies of each virtual machine (R ≥ 3), each
of which is placed on a different machine containing other tenants’ replicated
VMs. Clock sources on a VM are then modified to report time as a median of
its local time and that of the replicas. This ensures that a co-located attacker
will observe the same timing behaviour. Several aspects of the mitigation can
be modelled, including event synchronisation and OS-level soft isolations. This
section will focus on the VM replication and placement aspects of StopWatch.

Given a network Net of machines, the VM placement requirements of Stop-
Watch can be modelled as three invariant conditions, namely:

∀VM:v ∈+ Net. |{v’ | VM:v’∈+ Net, is replica(v’,v)
} | = R (1)

∀VM:v,M:M∈+ Net. | {v’ | VM:v’∈M, tenant(v’) = tenant(v)} | ≤ 1
(2)

∀VM:v1,VM:v2,M:M∈+ Net. v1 �= v2 ∧ v1
M←→ v2 →

¬∃VM:v3,VM:v4,M:M’∈+ Net. v3 �= v4 ∧ v3
M’←→ v4 ∧ M �= M’∧

tenant(v1) = tenant(v3) ∧ tenant(v2) = tenant(v4) (3)

The first invariant ensures that there are R replica machines within the network.
The second invariant checks that each machine has at most one virtual machine
belonging to the same tenant. The final invariant checks that any given pair of
tenants can be co-located in at most one machine.

6 Related Work

Ambient Models. A seminal work in modelling hierarchical architectures was the
calculus of mobile ambients [17], which extended process calculi with the ambi-
ent process construct. Ambients specify boundaries within which other ambients
exist and migrate. Several extensions to the original calculus were subsequently
defined, including the ability to define security zones to detect confidentiality
breaches [15], as well as to model resource allocation through a system of mark-
ers [8]. An additional extension is the cloud calculus [25].

Graph Models. Graphs allow the definition of many-to-many relationships
between a system’s entities. Graph models for VM networks can be gener-
ated automatically [11,16]. These can then be checked statically [14] to detect
violations in operational correctness, failure resilience and isolation. Additional
work focuses on making the analysis of dynamic systems more efficient through
incremental analysis [13]. The creation and application of deltas is event-
driven, triggered using hooks to a hypervisor. Challenges in dynamic monitor-
ing include asynchronous updates, non-atomic actions, unordered events and
blocking behaviour introduced by instrumentation [12]. Other approaches group
resources into colours within which data can be shared, and employ a system of
roles that can modify colour groupings and conflict rules [10].
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Scheduler-based mitigations. Scheduling policies can be exploited to form illicit
channels [32] or steal computational resources [31]. Setting a minimum time
between deschedules can undermine a side-channel by obscuring residual cache
effects [32]. Global scheduling can be used to reduce contention [31]. Efficiently
choosing migration targets is non-trivial, as placement can be constrained by
several factors in addition to isolation requirements [30]. The problem can thus
be formulated as one of constraint satisfaction. Other approaches address place-
ment as a bin-packing problem to guarantee different degrees of isolation whilst
upholding a system’s functional constraints [6]. The approach is evaluated in
terms of a competitive ratio, comparing the cost of configurations produced by
on-line scheduling against optimal placement, where cost is the number of bins
used. Heuristics can aid migration and placement [18]. Another approach uses
leases and deadlines to reserve resources and prioritise migrations [4].

Detection and generation. One challenge of policy-based defences is to cre-
ate policies. Methods have been developed for detecting certain types of leaks
through various techniques, including information flow analysis [7], abstract
interpretation [20], and data tagging and tracking [29].

7 Conclusions and Future Work

This work has investigated the modelling of temporal and spatial co-location
within the context of illicit channels, examining the issues of cost, scoping and
migration. It considered the creation of a model that can consistently reason
about a variety of heterogeneous systems through a uniform notion of contain-
ment. It also examined the challenges in allocating resources within a hierarchi-
cal architecture. These concepts were applied to the modelling and analysis of
several established attacks and defences, giving insight into their inner workings.

Future work will focus on the automated synthesis of runtime enforcement
monitors, and the integration of the model into simulation frameworks.

References

1. CRIU project page, January 2016. http://criu.org/Main Page
2. Libvirt project page, January 2016. http://libvirt.org/
3. Adams, K., Agesen, O.: A comparison of software and hardware techniques for x86

virtualization. In: Proceedings of the 12th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pp. 2–13. ASP-
LOS XII. ACM, New York (2006). http://doi.acm.org/10.1145/1168857.1168860

4. Afoulki, Z., Rouzaud-Cornabas, J.: A security-aware scheduler for virtual machines
on IaaS clouds. Technical report LIFO, ENSI de Bourges (2011)

5. Amazon: Amazon EC2 instances, April 2015. https://aws.amazon.com/ec2/
instance-types/

6. Azar, Y., Kamara, S., Menache, I., Raykova, M., Shepard, B.: Co-location-resistant
clouds. In: Proceedings of the 6th Edition of the ACM Workshop on Cloud Com-
puting Security, pp. 9–20. CCSW 2014. ACM, New York (2014). http://doi.acm.
org/10.1145/2664168.2664179

http://criu.org/Main_Page
http://libvirt.org/
http://doi.acm.org/10.1145/1168857.1168860
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
http://doi.acm.org/10.1145/2664168.2664179
http://doi.acm.org/10.1145/2664168.2664179


136 K. Falzon and E. Bodden

7. Backes, M., Kopf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: Proceedings of the 2009 30th IEEE Symposium on Security
and Privacy, SP 2009, pp. 141–153. IEEE Computer Society, Washington, DC
(2009). http://dx.doi.org/10.1109/SP.2009.18

8. Barbanera, F., Bugliesi, M., Dezani-Ciancaglini, M., Sassone, V.: A calculus of
bounded capacities. In: Saraswat, V.A. (ed.) ASIAN 2003. LNCS, vol. 2896, pp.
205–223. Springer, Heidelberg (2003)

9. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with haven. In: 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2014), pp. 267–283. USENIX Associ-
ation, Broomfield, October 2014. https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/baumann

10. Bijon, K.Z., Krishnan, R., Sandhu, R.: A formal model for isolation management in
cloud infrastructure-as-a-service. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.)
NSS 2014. LNCS, vol. 8792, pp. 41–53. Springer, Heidelberg (2014)
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Abstract. Retrospective security has become increasingly important to
the theory and practice of cyber security, with auditing a crucial compo-
nent of it. However, in systems where auditing is used, programs are typ-
ically instrumented to generate audit logs using manual, ad-hoc strate-
gies. This is a potential source of error even if log analysis techniques are
formal, since the relation of the log itself to program execution is unclear.
This paper focuses on provably correct program rewriting algorithms for
instrumenting formal logging specifications. Correctness guarantees that
the execution of an instrumented program produces sound and complete
audit logs, properties defined by an information containment relation
between logs and the program’s logging semantics. We also propose a
program rewriting approach to instrumentation for audit log generation,
in a manner that guarantees correct log generation even for untrusted
programs. As a case study, we develop such a tool for OpenMRS, a pop-
ular medical records management system, and consider instrumentation
of break the glass policies.

1 Introduction

Retrospective security is the enforcement of security, or detection of security
violations, after program execution [33,36,40]. Many real-world systems use ret-
rospective security. For example, the financial industry corrects errors and fraud-
ulent transactions not by proactively preventing suspicious transactions, but by
retrospectively correcting or undoing these problematic translations. Another
example is a hospital whose employees are trusted to access confidential patient
records, but who might (rarely) violate this trust [17]. Upon detection of such
violations, security is enforced retrospectively by holding responsible employees
accountable [41].

Retrospective security cannot be achieved entirely by traditional computer
security mechanisms, such as access control, or information-flow control. Reasons
include that detection of violations may be external to the computer system (such
as consumer reports of fraudulent transactions, or confidential patient informa-
tion appearing in news media), the high cost of access denial (e.g., preventing
emergency-room physicians from accessing medical records) coupled with high
trust of systems users (e.g., users are trusted employees that rarely violate this
trust) [42]. In addition, remediation actions to address violations may also be
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external to the computer system, such as reprimanding employees, prosecuting
law suits, or otherwise holding users accountable for their actions [41].

Auditing underlies retrospective security frameworks and has become increas-
ingly important to the theory and practice of cyber security. By maintaining a
record of appropriate aspects of a computer system’s execution, an audit log
(and subsequent examination of the audit log) can enable detection of viola-
tions, provide sufficient evidence to hold users accountable for their actions,
and support other remediation actions. For example, an audit log can be used
to determine post facto which users performed dangerous operations, and can
provide evidence for use in litigation.

However, despite the importance of auditing to real-world security, relatively
little work has focused on the formal foundations of auditing, particularly with
respect to defining and ensuring the correctness of audit log generation. Indeed,
correct and efficient audit log generation poses at least two significant chal-
lenges. First, it is necessary to record sufficient and correct information in the
audit log. If a program is manually instrumented, it is possible for developers
to fail to record relevant events. Recent work showed that major health infor-
matics systems do not log sufficient information to determine compliance with
HIPAA policies [30]. Second, an audit log should ideally not contain more infor-
mation than needed. While it is straightforward to collect sufficient information
by recording essentially all events in a computer system, this can cause perfor-
mance issues, both slowing down the system due to generating massive audit
logs, and requiring the handling of extremely large audit logs. Excessive data
collection is a key challenge for auditing [14,23,29], and is a critical factor in the
design of tools that generate and employ audit logs (e.g., spam filters [15]).

A main goal of this paper is to establish formal conditions for audit logs,
that can be used to establish correctness conditions for logging instrumenta-
tion. We define a general semantics of audit logs using the theory of information
algebra [32], and interpret both program execution traces and audit logs as infor-
mation elements. A logging specification defines the intended relation between
the information in traces and in audit logs. An audit log is correct if it satisfies
this relation. A benefit of this formulation is that it separates logging specifi-
cations from programs, rather than burying them in code and implementation
details.

Separating logging specifications from programs allows a clean declaration of
what instrumentation should accomplish, and enables algorithms for implement-
ing general classes of logging specifications that are provably correct. As we will
show, correct instrumentation of logging specifications is a safety property, hence
enforceable by security automata [38]. Inspired by related approaches to security
automata implementation [21], we focus on program rewriting to automatically
enforce correct audit instrumentation. Program rewriting has a number of prac-
tical benefits versus, for example, program monitors, such as lower OS process
management overhead.

We consider a case study of our approach, a program rewriting algorithm for
correct instrumentation of logging specifications in OpenMRS (openmrs.org), a

http://openmrs.org
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popular open source medical records software system. Our tool allows system
administrators to define logging specifications which are automatically instru-
mented in OpenMRS legacy code. Implementation details and optimizations
are handled transparently by the general program rewriting algorithm, not the
logging specification. Formal foundations ensure that logging specifications are
implemented correctly by the algorithm. In particular, we show how our system
can implement “break the glass” auditing policies.

1.1 A Motivating Example from Practice

Although audit logs contain information about program execution, they are not
just a straightforward selection of program events. Illustrative examples from
practice include so-called “break the glass policies” used in electronic medical
record systems [35]. These policies use access control to disallow care providers
from performing sensitive operations such as viewing patient records, however
care providers can “break the glass” in an emergency situation to temporarily
raise their authority and access patient records, with the understanding that sub-
sequent sensitive operations will be logged and potentially audited. One potential
accountability goal is the following:

In the event that a patient’s sensitive information is inappropriately
leaked, determine who accessed a given patient’s files due to “breaking
the glass.”

Since it cannot be predicted a priori whose information may leak, this goal can be
supported by using an audit log that records all reads of sensitive files following
glass breaking. To generate correct audit logs, programs must be instrumented
for logging appropriately, i.e., to implement the following logging specification
that we call LSH :

LSH : Record in the log all patient information file reads following a
break the glass event, along with the identity of the user that broke the
glass.

If at some point in time in the future it is determined that a specific patient P’s
information was leaked, logs thus generated can be analyzed with the following
query that we call LQH :

LQH : Retrieve the identity of all users that read P ’s information files.

The specification LSH and the query LQH together constitute an auditing policy
that directly supports the above-stated accountability goal. Their separation is
useful since at the time of execution the information leak is unknown, hence P
is not known. Thus while it is possible to implement LSH as part of program
execution, LQH must be implemented retrospectively.

It is crucial to the enforcement of the above accountability goal that LSH

is implemented correctly. If logging is incomplete then some potential recipients
may be missed. If logging is overzealous then bloat is possible and audit logs
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become “write only”. These types of errors are common in practice [30]. To
establish formal correctness of instrumentation for audit logs, it is necessary
to define a formal language of logging specifications, and establish techniques
to guarantee that instrumented programs satisfy logging specifications. That
is the focus of this paper. Other work has focused on formalisms for querying
logs [18,39], however these works presuppose correctness of audit logs for true
accountability.

1.2 Threat Model

With respect to program rewriting (i.e., automatic techniques to instrument
existing programs to satisfy a logging specification), we regard the program
undergoing instrumentation as untrusted. That is, the program source code may
have been written to avoid, confuse, or subvert the automatic instrumentation
techniques. We do, however, assume that the source code is well-formed (valid
syntax, well-typed, etc.). Moreover, we trust the compiler, the program rewriting
algorithm, and the runtime environment in which the instrumented program will
ultimately be executed. Confidentiality and non-malleability of generated audit
logs, while important, is beyond the scope of this paper.

2 A Semantics of Audit Logging

Our goal in this Section is to formally characterize logging specifications and
correctness conditions for audit logs. To obtain a general model, we leverage ideas
from the theory of information algebra [32], which is an abstract mathematical
framework for information systems. In short, we interpret program traces as
information, and logging specifications as functions from traces to information.
This separates logging specifications from their implementation in code, and
defines exactly the information that should be in an audit log. This in turn
establishes correctness conditions for audit logging implementations.

Following [38], an execution trace τ = κ0κ1κ2 . . . is a possibly infinite
sequence of configurations κ that describe the state of an executing program. We
deliberately leave configurations abstract, but examples abound and we explore
a specific instantiation for a λ-calculus in Sect. 4. Note that an execution trace
τ may represent the partial execution of a program, i.e. the trace τ may be
extended with additional configurations as the program continues execution. We
use metavariables τ and σ to range over traces.

An information algebra contains information elements X (e.g. a set of logical
assertions) taken from a set Φ (the algebra). A partial ordering is induced on Φ by
the so-called information ordering relation ≤, where intuitively for X,Y ∈ Φ we
have X ≤ Y iff Y contains at least as much information as X, though its precise
meaning depends on the particular algebra. We say that X and Y are information
equivalent, and write X = Y , iff X ≤ Y and Y ≤ X. We assume given a function
�·� that is an injective mapping from traces to Φ. This mapping interprets a given
trace as information, where the injective requirement ensures that information is
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not lost in the interpretation. For example, if σ is a proper prefix of τ and thus
contains strictly less information, then formally �σ� ≤ �τ�. We intentionally
leave both Φ and �·� underspecified for generality, though application of our
formalism to a particular logging implementation requires instantiation of them.
We discuss an example in Sect. 3.

We let LS range over logging specifications, which are functions from traces
to Φ. As for Φ and �·�, we intentionally leave the language of specifications
abstract, but consider a particular instantiation in Sect. 3. Intuitively, LS (τ)
denotes the information that should be recorded in an audit log during the
execution of τ given specification LS , regardless of whether τ actually records
any log information, correctly or incorrectly. We call this the semantics of the
logging specification LS .

We assume that auditing is implementable, requiring at least that all condi-
tions for logging any piece of information must be met in a finite amount of time.
As we will show, this restriction implies that correct logging instrumentation is
a safety property [38].

Definition 1. We require of any logging specification LS that for all traces τ
and information X ≤ LS (τ), there exists a finite prefix σ of τ such that X ≤
LS (σ).

It is crucial to observe that some logging specifications may add informa-
tion not contained in traces to the auditing process. Security information not
relevant to program execution (such as ACLs), interpretation of event data (sta-
tistical or otherwise), etc., may be added by the logging specification. For exam-
ple, in the OpenMRS system, logging of sensitive operations includes a human-
understandable “type” designation which is not used by any other code. Thus,
given a trace τ and logging specification LS , it is not necessarily the case that
LS (τ) ≤ �τ�. Audit logging is not just a filtering of program events.

2.1 Correctness Conditions for Audit Logs

A logging specification defines what information should be contained in an audit
log. In this section we develop formal notions of soundness and completeness as
audit log correctness conditions. We use metavariable L to range over audit logs.
Again, we intentionally leave the language of audit logs unspecified, but assume
that the function �·� is extended to audit logs, i.e. �·� is an injective mapping
from audit logs to Φ. Intuitively, �L� denotes the information in L, interpreted
as an element of Φ.

An audit log L is sound with respect to a logging specification LS and trace
τ if the log information is contained in LS (τ). Similarly, an audit log is complete
with respect to a logging specification if it contains all of the information in the
logging specification’s semantics. Crucially, both definitions are independent of
the implementation details that generate L.

Definition 2. Audit log L is sound with respect to logging specification LS
and execution trace τ iff �L� ≤ LS (τ). Similarly, audit log L is complete with
respect to logging specification LS and execution trace τ iff LS (τ) ≤ �L�.
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The relation to log queries. As discussed in Sect. 1.1, we make a distinction
between logging specifications such as LSH which define how to record logs,
and log queries such as LQH which ask questions of logs, and our notions of
soundness and completeness apply strictly to logging specifications. However,
any logging query must assume a logging specification semantics, hence a log
that is demonstrably sound and complete provides the same answers on a given
query that an “ideal” log would. This is an important property that is discussed
in previous work, e.g. as “sufficiency” in [6].

2.2 Correct Logging Instrumentation is a Safety Property

In case program executions generate audit logs, we write τ � L to mean that a
finite trace τ generates L, i.e. τ = κ0 . . . κn and logof (κn) = L where logof (κ)
denotes the audit log in configuration κ, i.e. the residual log after execution of
the full trace. Ideally, information that should be added to an audit log, is added
to an audit log, immediately as it becomes available. This ideal is formalized as
follows.

Definition 3. For all logging specifications LS, the trace τ is ideally instru-
mented for LS iff for all finite prefixes σ of τ we have σ � L where L is sound
and complete with respect to LS and σ.

We observe that the restriction imposed on logging specifications by Defini-
tion 1, implies that ideal instrumentation of any logging specification is a safety
property in the sense defined by Schneider [38]1.

Theorem 1. For all logging specifications LS, the set of ideally instrumented
traces is a safety property.

This result implies that e.g. edit automata can be used to enforce instrumen-
tation of logging specifications (see our Technical Report [3]). However, theory
related to safety properties and their enforcement by execution monitors [4,38]
do not provide an adequate semantic foundation for audit log generation, nor an
account of soundness and completeness of audit logs.

2.3 Implementing Logging Specifications with Program Rewriting

The above-defined correctness conditions for audit logs provide a foundation
on which to establish correctness of logging implementations. Here we consider
program rewriting approaches. Since rewriting concerns specific languages, we
introduce an abstract notion of programs p with an operational semantics that
can produce a trace τ . We write p ⇓ σ iff program p can produce execution trace
τ , either deterministically or non-deterministically, and σ is a finite prefix of τ .

A rewriting algorithm R is a (partial) function that takes a program p in
a source language and a logging specification LS and produces a new program,
1 The proofs of Theorems 1–5 in this text are omitted for brevity, but are available in

a related Technical Report [3].
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R(p,LS ), in a target language.2 The intent is that the target program is the
result of instrumenting p to produce an audit log appropriate for the logging
specification LS . A rewriting algorithm may be partial, in particular because it
may only be intended to work for a specific set of logging specifications.

Ideally, a rewriting algorithm should preserve the semantics of the program
it instruments. That is, R is semantics-preserving if the rewritten program sim-
ulates the semantics of the source code, modulo logging steps. We assume given
a correspondence relation :≈ on execution traces. A coherent definition of corre-
spondence should be similar to a bisimulation, but it is not necessarily symmetric
nor a bisimulation, since the instrumented target program may be in a different
language than the source program. We deliberately leave the correspondence
relation underspecified, as its definition will depend on the instantiation of the
model. We provide an explicit definition of correspondence for λ-calculus source
and target languages in Sect. 4.

Definition 4. Rewriting algorithm R is semantics preserving iff for all pro-
grams p and logging specifications LS such that R(p,LS ) is defined, all of the
following hold:

1. For all traces τ such that p ⇓ τ there exists τ ′ with τ :≈ τ ′ and R(p,LS ) ⇓ τ ′.
2. For all traces τ such that R(p,LS ) ⇓ τ there exists a trace τ ′ such that

τ ′ :≈ τ and p ⇓ τ ′.

In addition to preserving program semantics, a correctly rewritten program
constructs a log in accordance with the given logging specification. More pre-
cisely, if LS is a given logging specification and a trace τ describes execution
of a source program, rewriting should produce a program with a trace τ ′ that
corresponds to τ (i.e., τ :≈ τ ′), where the log L generated by τ ′ contains the
same information as LS (τ), or at least a sound approximation. Some definitions
of :≈ may allow several target-language traces to correspond to source-language
traces (as for example in Sect. 4, Definition 10). In any case, we expect that at
least one simulation exists. Hence we write simlogs(p, τ) to denote a nonempty
set of logs L such that, given a finite source language trace τ and target program
p, there exists some trace τ ′ where p ⇓ τ ′ and τ :≈ τ ′ and τ ′ � L. The name
simlogs evokes the relation to logs resulting from simulating executions in the
target language.

The following definitions then establish correctness conditions for rewriting
algorithms. Note that satisfaction of either of these conditions only implies con-
dition (1) of Definition 4, not condition (2), so semantics preservation is an
independent condition.

Definition 5. Rewriting algorithm R is sound/complete iff for all programs
p, logging specifications LS, and finite traces τ where p ⇓ τ , for all L ∈
simlogs(R(p,LS ), τ) it is the case that L is sound/complete with respect to LS
and τ .
2 We use metavariable p to range over programs in either the source or target language;

it will be clear from context which language is used.



146 S. Amir-Mohammadian et al.

3 Languages for Logging Specifications

Now we go into more detail about information algebra and why it is a good
foundation for logging specifications and semantics. We use the formalism of
information algebras to characterize and compare the information contained in
an audit log with the information contained in an actual execution. For a detailed
account of information algebra, the reader is referred to a definitive survey paper
[32]– available space disallows a detailed account here. In short, in addition to
a definition of the elements of Φ, any information algebra Φ includes two basic
operators:

– Combination: The operation X ⊗ Y combines the information in elements
X,Y ∈ Φ.

– Focusing: The operation X⇒S isolates the elements of X ∈ Φ that are relevant
to a sublanguage S, i.e. the subpart of X specified by S.

Focusing and combination must additionally satisfy certain properties (see our
Technical Report [3]). The definitions of elements X ∈ Φ, sublanguages S, com-
bination, and focusing constitute the definition of the algebra. In all cases, the
relation X ≤ Y holds iff X ⊗ Y = Y . Proving that ⊗ has been correctly defined
for an algebra implies that ≤ is a partial order [32].

3.1 Support for Various Approaches

Various approaches are taken to audit log generation and representation, includ-
ing logical [18], database [1], and probabilistic approaches [43]. Information alge-
bra is sufficiently general to contain relevant systems as instances, so our notions
of soundness and completeness can apply broadly. Here we discuss logical and
database approaches.

First Order Logic (FOL). Logics have been used in several well-developed audit-
ing systems [10,24], for the encoding of both audit logs and queries. FOL in par-
ticular is attractive due to readily available implementation support, e.g. Datalog
and Prolog.

Let Greek letters φ and ψ range over FOL formulas and let capital letters
X,Y,Z range over sets of formulas. We posit a sound and complete proof theory
supporting judgements of the form X 	 φ. In this text we assume without loss
of generality a natural deduction proof theory.

Elements of our algebra are sets of formulas closed under logical entailment.
Intuitively, given a set of formulas X, the closure of X is the set of formulas that
are logically entailed by X, and thus represents all the information contained in
X. In spirit, we follow the treatment of sentential logic as an information algebra
explored in related foundational work [32], however our definition of closure is
syntactic, not semantic.
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Definition 6. We define a closure operation C, and a set ΦFOL of closed sets
of formulas:

C(X) = {φ | X 	 φ} ΦFOL = {X | C(X) = X}
Note in particular that C(∅) is the set of logical tautologies.

Let Preds be the set of all predicate symbols, and let S ⊆ Preds be a set
of predicate symbols. We define sublanguage LS to be the set of well-formed
formulas over predicate symbols in S (and including boolean atoms T and F ,
and closed under the usual first-order connectives and binders). We will use
sublanguages to define refinement operations in our information algebra. Subset
containment induces a lattice structure, denoted S, on the set of all sublanguages,
with F = LPreds as the top element.

Now we can define the focus and combination operators, which are the fun-
damental operators of an information algebra. Focusing isolates the component
of a closed set of formulas that is in a given sublanguage. Combination closes the
union of closed sets of formulas. Intuitively, the focus of a closed set of formulas
X to sublanguage L is the refinement of the information in X to the formulas in
L. The combination of closed sets of formulas X and Y combines the information
of each set.

Definition 7. Define:

1. Focusing: X⇒S = C(X ∩ LS) where X ∈ ΦFOL, S ⊆ Preds
2. Combination: X ⊗ Y = C(X ∪ Y ) where X,Y ∈ ΦFOL

These definitions of focusing and combination enjoy a number of properties
within the algebra, as stated in the following Theorem, establishing that the
construction is a domain-free information algebra [31]. FOL has been treated as
an information algebra before, but our definitions of combination and focusing
and hence the result are novel.

Theorem 2. Structure (ΦFOL,S) with focus operation X⇒S and combination
operation X ⊗ Y forms a domain-free information algebra.

In addition, to interpret traces and logs as elements of this algebra, i.e. to
define the function �·�, we assume existence of a function toFOL(·) that injec-
tively maps traces and logs to sets of FOL formulas, and then take �·� =
C(toFOL(·)). To define the range of toFOL(·), that is, to specify how trace
information will be represented in FOL, we assume the existence of configura-
tion description predicates P which are each at least unary. Each configuration
description predicate fully describes some element of a configuration κ, and the
first argument is always a natural number t, indicating the time at which the con-
figuration occurred. A set of configuration description predicates with the same
timestamp describes a configuration, and traces are described by the union of
sets describing each configuration in the trace. In particular, the configuration
description predicates include predicate Call(t, f, x), which indicates that func-
tion f is called at time t with argument x. We will fully define toFOL(·) when
we discuss particular source and target languages for program rewriting.
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Example 1. We return to the example described in Sect. 1.1 to show how FOL
can express break the glass logging specifications. Adapting a logic programming
style, the trace of a program can be viewed as a fact base, and the logging
specification LSH performs resolution of a LoggedCall predicate, defined via the
following Horn clause we call ψH :

∀t, d, s, u.(Call(t, read, u, d) ∧ Call(s,breakGlass, u) ∧ s < t ∧ PatientInfo(d))
=⇒ LoggedCall(t, read, u, d)

Here we imagine that breakGlass is a break the glass function where u identifies
the current user and PatientInfo is a predicate specifying which files contain
patient information. The log contains only valid instances of LoggedCall given
a particular trace, which specify the user and sensitive information accessed
following glass breaking, which otherwise would be disallowed by a separate
access control policy.

Formally, we define logging specifications in a logic programming style by
using combination and focusing. Any logging specification is parameterized by
a sublanguage S that identifies the predicate(s) to be resolved and Horn clauses
X that define it/them, hence we define a functional spec from pairs (X,S) to
specifications LS , where we use λ as a binder for function definitions in the usual
manner:

Definition 8. The function spec is given a pair (X,S) and returns a FOL log-
ging specification, i.e. a function from traces to elements of ΦFOL:

spec(X,S) = λτ.(�τ� ⊗ C(X))⇒S
.

In any logging specification spec(X,S), we call X the guidelines.

The above example LSH would then be formally defined as spec(ψH ,
{LoggedCall}).

Relational Database. Relational algebra is a canonical example of an information
algebra, though we provide a different formulation than the standard one [32] since
the latter is not suited to our purpose here. We define databases D as sets of rela-
tions, where a relation X is a set of tuples. We write ((a1 : x1), ..., (an : x1))
to denote an n-ary tuple with attributes (aka label) ai associated with values xi.
Databases are elements of the information algebra, and sublanguages S are collec-
tions of sets of attributes. Each set of attributes corresponds to a specific relation.
We define focusing as the restriction to particular relations in a database, and
combination as the union of databases. Hence, letting ≤RA denote the relational
algebra information ordering, D1 ≤RA D2 iff D1 ⊗ D2 = D2. We refer to this
algebra as ΦRA. The details of our formulation and the proof that it satisfies the
required properties is given in our Technical Report [3]. Relational databases are
heavily used for storing and querying audit logs, so this formulation is crucial for
practical application of our correctness properties, as discussed in Sect. 5.
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3.2 Transforming and Combining Audit Logs

Multiple audit logs from different sources are often combined in practice. Also,
logging information is often transformed for storage and communication. For
example, log data may be generated in common event format (CEF), which
is parsed and stored in relational database tables, and subsequently exported
and communicated via JSON. In all cases, it is necessary to characterize the
effect of transformation (if any) on log information, and relate queries on various
representations to the logging specification semantics. Otherwise, it is unclear
what is the relation of log queries to log-generating programs.

To address this, information algebra provides a useful concept called
monotone mapping. Given two information algebras Ψ1 and Ψ2 with ordering
relations ≤1 and ≤2 respectively, a mapping μ from elements X,Y of Ψ1 to ele-
ments μ(X), μ(Y ) of Ψ2 is monotone iff X ≤1 Y implies μ(X) ≤2 μ(Y ). For
example, assuming that Ψ1 is our FOL information algebra while Ψ2 is relational
algebra, we can define a monotone mapping using a least Herbrand interpretation
[11], denoted H, and by positing a function attrs from n-ary predicate symbols
to functions mapping numbers 1, ..., n to labels. That is, attrs(P)(n) is the label
associated with the nth argument of predicate P. We require that if P �= Q then
attrs(P)(j) �= attrs(Q)(k) for all j, k. To map predicates to tuples we have:

tuple(P(x1, . . . , xn)) = ((attrs(P)(1) : x1), . . . , (attrs(P)(n) : xn))

Then to obtain a relation from all valid instances of a particular predicate P
given formulas X we define:

RP(X) = {tuple(P(x1, . . . , xn)) | P(x1, . . . , xn) ∈ H(X)}

Now we define the function rel which is collection of all relations obtained
from X, where P1, ...,Pn are the predicate symbols occurring in X:

rel(X) = {RP1(X), · · · , RPn
(X)}

Theorem 3. rel is a monotone mapping.

Thus, if we wish to generate an audit log L as a set of FOL formulas, but
ultimately store the data in a relational database, we are still able to main-
tain a formal relation between stored logs and the semantics of a given trace τ
and specification LS . E.g., if a log L is sound with respect to τ and LS , then
rel(�L�) ≤RA rel(LS (τ)). While the data in rel(�L�) may very well be broken
up into multiple relations in practice, e.g. to compress data and/or for query
optimization, the formalism also establishes correctness conditions for the trans-
formation that relate resulting information to the logging semantics LS (τ) by
way of the mapping. We reify this idea in our OpenMRS implementation as
discussed in Sect. 5.2.
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4 Rewriting Programs with Logging Specifications

Since correct logging instrumentation is a safety property (2.2), there are several
possible implementation strategies.For example, one coulddefinean edit automata
that enforces the property (see our Technical Report [3]), that could be imple-
mented either as a separate program monitor or using IRM techniques [21]. But
since we are interested in program rewriting for a particular class of logging spec-
ifications, the approach we discuss here is more simply stated and proven correct
than a general IRM methodology.

We specify a class of logging specifications of interest, along with a pro-
gram rewriting algorithm that is sound and complete for it. We consider a basic
λ-calculus that serves as formal setting to establish correctness of a program
rewriting approach to correct instrumentation of logging specification. We use
this same approach to implement an auditing tool for OpenMRS, described in
the next Section. The supported class of logging specifications is predicated on
temporal properties of function calls and characteristics of their arguments. This
class has practical potential since security-sensitive operations are often pack-
aged as functions or methods (e.g. in medical records software [37]), and the
supported class allows complex policies such as break the glass to be expressed.
The language of logging specifications is FOL, and we use ΦFOL to define the
semantics of logging and prove correctness of the algorithm.

4.1 Source Language

We first define a source language Λcall, including the definitions of configurations,
execution traces, and function toFOL(·) that shows how we concretely model
execution traces in FOL.

Language Λcall is a simple call-by-value λ-calculus with named functions.
A Λcall program is a pair (e, C) where e is an expression, and C is a codebase which
maps function names to function definitions. A Λcall configuration is a triple
(e, n, C), where e is the expression remaining to be evaluated, n is a timestamp (a
natural number) that indicates how many steps have been taken since program
execution began, and C is a codebase. The codebase does not change during
program execution.

The syntax of Λcall is as follows.

v ::= x | f | λx. e values
e ::= e e | v expressions
E ::= [ ] | E e | v E evaluation contexts
κ ::= (e, n, C) configurations
p ::= (e, C) programs
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The small-step semantics of Λcall is defined as follows.

β

((λx. e) v, n, C) → (e[v/x], n + 1, C)

βCall

C(f) = λx. e

(f v, n, C) → (e[v/x], n + 1, C)

Context
(e, n, C) → (e′, n′, C)

(E[e], n, C) → (E[e′], n′, C)

An execution trace τ is a sequence of configurations, and for a program
p = (e, C) and execution trace τ = κ0 . . . κn we define p ⇓ τ if and only if
κ0 = (e, 0, C) and for all i ∈ 1..n we have κi−1 → κi.

We now show how to model a configuration as a set of ground instances
of predicates, and then use this to model execution traces. We posit predi-
cates Call, App, Value, Context, and Codebase to logically denote run time
entities. For κ = (e, n, C), we define toFOL(κ) by cases, where 〈C〉n =⋃
f∈dom(C)

{Codebase(n, f , C(f))}3.

toFOL(v, n, C) = {Value(n, v)} ∪ 〈C〉n

toFOL(E[f v], n, C) = {Call(n, f , v),Context(n,E)} ∪ 〈C〉n

toFOL(E[(λx. e) v)], n, C) = {App(n, (λx.e), v),Context(n,E)} ∪ 〈C〉n

We define toFOL(τ) for a potentially infinite execution trace τ = κ0κ1 . . .
by defining it over its prefixes. Let prefix(τ) denote the set of prefixes of τ .
Then, toFOL(τ) =

⋃
σ∈prefix(τ) toFOL(σ), where toFOL(σ) = toFOL(κ0) ∪ · · · ∪

toFOL(κn), for σ = κ0 . . . κn. Function toFOL(·) is injective up to α-equivalence
since toFOL(τ) fully and uniquely describes the execution trace τ .

4.2 Specifications Based on Function Call Properties

We define a class Calls of logging specifications that capture temporal properties
of function calls, such as those reflected in break the glass policies. We restrict
specification definitions to safe Horn clauses to ensure applicability of well-known
results and total algorithms such as Datalog [11]. Specifications in Calls support
logging of calls to a specific function f that happen after functions g1, . . . ,gn are
called. Conditions on all function arguments, and times of their invocation, can be
defined via a predicate φ. Hence more precise requirements can be imposed, e.g. a
linear ordering on function calls, particular values of functions arguments, etc.

3 While Λcall expressions and evaluation contexts appear as predicate arguments, their
syntax can be written as string literals to conform to typical Datalog or Prolog
syntax.
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Definition 9. Calls is the set of all logging specifications spec(X, {
LoggedCall}) where X contains a safe Horn clause of the following form:

∀t0, . . . , tn, x0, . . . , xn . Call(t0, f , x0)
n∧

i=1

(Call(ti,gi, xi) ∧ ti < t0) ∧

φ((x0, t0), . . . , (xn, tn)) =⇒ LoggedCall(t0, f , x0).

While set X may contain other safe Horn clauses, in particular definitions of
predicates occurring in φ, no other Horn clause in X uses the predicate symbols
LoggedCall, Value, Context, Call, App, or Codebase. For convenience in the
following, we define Logevent(LS ) = f and Triggers(LS ) = {g1, ...,gn}.
We note that specifications in Calls clearly satisfy Definition 1, since precondi-
tions for logging a particular call to f must be satisfied at the time of that call.

4.3 Target Language

The syntax of target language Λlog extends Λcall syntax with a command to
track logging preconditions (callEvent(f , v)), i.e. calls to logging triggers, and a
command to emit log entries (emit(f , v)). Configurations are extended to include
a set X of logging preconditions, and an audit log L.

e ::= . . . | callEvent(f , v); e | emit(f , v); e expressions
κ ::= (e,X, n, L, C) configurations

The semantics of Λlog extends the semantics of Λcall with new rules for com-
mands callEvent(f , v) and emit(f , v), which update the set of logging precon-
ditions and audit log respectively. An instrumented program uses the set of
logging preconditions to determine when it should emit events to the audit log.
The semantics is parameterized by a guideline XGuidelines , typically taken from
a logging specification. Given the definition of Calls, these semantics would be
easy to implement using e.g. a Datalog proof engine.

Precondition

(callEvent(f , v); e,X, n, L, C) → (e,X ∪ {Call(n − 1, f , v)}, n, L, C)

Log
X ∪ XGuidelines 	 LoggedCall(n − 1, f , v)

(emit(f , v); e,X, n, L, C) → (e,X, n, L ∪ {LoggedCall(n − 1, f , v)}, C)

NoLog
X ∪ XGuidelines �	 LoggedCall(n − 1, f , v)
(emit(f , v); e,X, n, L, C) → (e,X, n, L, C)
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Note that to ensure that these instrumentation commands do not change exe-
cution behavior, the configuration’s time is not incremented when callEvent(f , v)
and emit(f , v) are evaluated. That is, the configuration time counts the number
of source language computation steps.

The rules Log and NoLog rely on checking whether XGuidelines and logging
preconditions X entail LoggedCall(n − 1, f , v). For a target language program
p = (e, C) and execution trace τ = κ0 . . . κn we define p ⇓ τ if and only if
κ0 = (e, ∅, 0, ∅, C) and for all i ∈ 1..n we have κi−1 → κi.

To establish correctness of program rewriting, we need to define a correspon-
dence relation :≈. Source language execution traces and target language execu-
tion traces correspond if they represent the same expression evaluated to the
same point. We make special cases for when the source execution is about to
perform a function application that the target execution will track or log via an
callEvent(f , v) or emit(f , v) command. In these cases, the target execution may
be ahead by one or two steps, allowing time for addition of information to the log.

Definition 10. Given source language execution trace τ = κ0 . . . κm and tar-
get language execution trace τ ′ = κ′

0 . . . κ′
n, where κi = (ei, ti, Ci) and κ′

i =
(e′

i,Xi, t
′
i, Li, C′

i), τ :≈ τ ′ iff e0 = e′
0 and either

1. em = e′
n (taking = to mean syntactic equivalence); or

2. em = e′
n−1 and e′

n = callEvent(f , v); e′ for some expressions f , v, and e′; or
3. em = e′

n−2 and e′
n = emit(f , v); e′ for some expressions f , v, and e′.

Finally, we need to define toFOL(L) for audit logs L produced by an instru-
mented program. Since our audit logs are just sets of formulas of the form
LoggedCall(t, f , v), we define toFOL(L) = L.

4.4 Program Rewriting Algorithm

Our program rewriting algorithm RΛcall takes a Λcall program p = (e, C), a log-
ging specification LS = spec(XGuidelines , {LoggedCall}) ∈ Calls, and produces
a Λlog program p′ = (e′, C′) such that e and e′ are identical, and C′ is identical to
C except for the addition of callEvent(h, v) and emit(h, v) commands. The algo-
rithm is straightforward: we modify the codebase to add callEvent(h, v) to the
definition of any function h ∈ Triggers(LS )∪{Logevent(LS )} and add emit(f , v)
to the definition of function f = Logevent(LS ).

Definition 11. For Λcall program p = (e, C) and logging specifications LS ∈
Calls, define:

RΛcall((e, C),LS ) = (e, C′)

where C′(f) =⎧⎪⎨
⎪⎩

λx.callEvent(f , x); emit(f , x); ef if f = Logevent(LS ) and C(f) = λx.ef

λx.callEvent(f , x); ef if f ∈ Triggers(LS ) and C(f) = λx.ef

C(f) otherwise
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This algorithm obeys the required properties, i.e. it is both semantics pre-
serving and sound and complete for a given logging specification.

Theorem 4. Algorithm RΛcall is semantics preserving (Definition 4).

Theorem 5 (Soundness and Completeness). Algorithm RΛcall is sound
and complete (Definitions 5).

5 Case Study on a Medical Records System

As a case study, we have developed a tool [2] that enables automatic instrumen-
tation of logging specifications for the OpenMRS system. The implementation is
based on the formal model developed in Sect. 4 which enjoys a correctness guar-
antee. The logging information is stored in a SQL database consisting of mul-
tiple tables, and the correctness of this scheme is established via the monotone
mapping defined in Sect. 3.2. We have also considered how to reduce memory
overhead as a central optimization challenge.

OpenMRS is a Java-based open-source web application for medical records,
built on the Spring Framework. Previous efforts in auditing for OpenMRS include
recording any modification to the database records as part of the OpenMRS core
implementation, and logging every function call to a set of predefined records.
The latter illustrates the relevance of function invocations as a key factor in log-
ging. Furthermore, function calls define the fundamental unit of “secure oper-
ations” in OpenMRS access control [37]. This highlights the relevance of our
Calls logging specification class, particularly as it pertains to specification of
break the glass policies, which are sensitive to authorization.

In contrast to previous auditing solutions for OpenMRS, ours allows secu-
rity administrators to define logging specifications separately from code. Our
tool automatically instruments code to correctly support these specifications.
This is more convenient, declarative, and less error prone than direct ad hoc
instrumentation of code.

System Architecture Summary. To clarify the following discussion, we briefly
summarize the architecture of our system. Logging specifications are made in
the style of Calls (Definition 9), which can be parsed into JSON objects with a
standard form recognized by our system. Instrumentation of legacy code is then
accomplished using aspect oriented programming. Parsed specifications are used
to identify join points, where the system weaves aspects supporting audit logging
into OpenMRS bytecode. These aspects communicate with a proof engine at the
joint points to reason about audit log generation, implementing the semantics
developed for Λlog in Sect. 4.3. In our deployment logs are recorded in a SQL
database, but our architecture supports other approaches via the use of listeners.

5.1 Break the Glass Policies for OpenMRS

Break the glass policies for auditing are intended to retrospectively manage
the same security that is proactively managed by access control (before the
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glass is broken). Thus it is important that we focus on the same resources in audit-
ing as those focused on by access control. The data model of OpenMRS consists
of several domains, e.g. “Patient” and “User” domains contain information about
the patients and system users respectively, and the “Encounter” domain includes
information regarding the interventions of healthcare providers with patients. In
order to access and modify the information in different domains, corresponding
service-layer functionalities are defined that are accessible through a web inter-
face. These functionalities provide security sensitive operations through which
data assets are handled. Thus, OpenMRS authorization mechanism checks user
eligibility to perform these operations [37]. Likewise, we identify these function-
alities in logging specifications, i.e. triggers and logging events are service-layer
methods that provide access to data domains, e.g., the patient and user data.

We adapt the logical language of logging specifications developed above (Def-
inition 9), with the minor extension that we allow logging of methods with more
than one argument. We note that logging specifications can include other infor-
mation specified as safe Horn clauses, e.g. ACLs. Here is a simple example of a
break the glass auditing policy specified in this form, which states that if the
glass is broken by some low-level user, and subsequently patient information is
accessed by that user, the access should be logged. The variable U refers to the
user, and the variable P refers to the patient. This specification also defines secu-
rity levels for two users, alice and admin. The predicate @< defines the usual
total ordering on integers.

loggedCall(T, getPatient, U, P) :-

call(T, getPatient, U, P), call(S, breakTheGlass, U),

@<(S, T), hasSecurityLevel(U, low).

hasSecurityLevel(admin, high).

hassecuritylevel(alice, low).

To enable these policies in practice, we have added a “break the glass” button to
a user menu in the OpenMRS GUI that can be manually activated on demand.
Activation invokes the breakTheGlass method parameterized by the user id.
We note that breaking the glass does not turn off access control in our current
implementation, which we consider a separate engineering concern that is out of
scope for this paper.

5.2 Code Instrumentation

To instrument code for log generation, we leverage the Spring Framework that
supports aspect-oriented programming (AOP). AOP is used to rewrite code
where necessary with “advice”, which in our case is before certain method invo-
cations (so-called “before advice”). Our advice checks the invoked method names
and implements the semantics given in Sect. 4.3, establishing correctness of audit
logging. Join points are automatically extracted from logging specifications, and
defined with service-level granularity in a configuration file. Weaving into byte-
code is also performed automatically by our system.
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For example, in the following excerpt of a configuration file, every interface
method of the service PatientService is a join point so before invoking each
of those methods the advice in RetroSecurityAdvice will be woven into the
control flow. The RetroSecurityAdvice is automatically generated by our sys-
tem based on the logging specification, but essentially determines whether a
method call is a trigger or a logging event and interacts with the proof engine
appropriately in each case.

<advice>

<point>org.openmrs.api.PatientService</point>

<class>

org.openmrs.module.retrosecurity.advice.RetroSecurityAdvice

</class>

</advice>

Proof Engine. According to the the semantics of Λlog, it is necessary to per-
form logical deduction, in particular resolution of LoggedCall predicates. To this
end, we have employed XSB Prolog as a proof engine, due to its reliability and
robustness. In order to have a bidirectional communication between the Java
application and the engine, InterProlog Java/Prolog SDK [27] is used.

The proof engine is initialized in a separate thread with an interface to the
main execution trace. The interface includes methods to define predicates, and to
add rules and facts. Asynchrony of the logic engine avoids blocking the “normal”
execution trace for audit logging purposes, preserving its original performance.
The interface also provides an instant querying mechanism. The instrumented
program communicates with the XSB Prolog engine as these interface methods
are invoked in advices.

Writing and Storing the Log. Asynchronous communication with the proof
engine through multi-threading enables us to modularize the deduction of the
information that we need to log, separate from the storage and retainment
details. This supports a variety of possible approaches to storing log information–
e.g., using a strict transactional discipline to ensure writing to critical log, and/or
blocking execution until log write occurs. Advice generated by the system for
audit log generation just needs to include event listeners to implement the tech-
nology of choice for log storage and retainment.

In our application, the logging information is stored in a SQL database con-
sisting of multiple tables. In case new logging information is derived by the proof
engine, the corresponding listeners in the main execution trace are notified and
the listeners partition and store the logging information in potentially multiple
tables. Correctness of this storage technique is established using the monotone
mapping rel defined in Sect. 3.2.

Consider the case where a loggedCall is derived by the proof engine given
the logging specification in Sect. 5.1. Here, the instantiation of U and P are user
and patient names, respectively, used in the OpenMRS implementation. How-
ever, logged calls are stored in a table called GetPatL with attributes time, uid,
and pid, where uid is the primary key for a User table with a uname attribute,
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and pid is the primary key for a Patient table with a patient name attribute.
Thus, for any given logging specification of the appropriate form, the monotonic
mapping rel of the following select statement gives us the exact information
content of the logging specification following execution of an OpenMRS session:

select time,"getPatient", uname, patient_name

from GetPatL, User, Patient

where GetPatL.uid = User.uid and GetPatL.pid = Patient.pid

5.3 Reducing Memory Overhead

A source of overhead in our system is memory needed to store logging precon-
ditions. We observe that a naive implementation of the intended semantics will
add all trigger functions to the logging preconditions, regardless of whether they
are redundant in some way. To optimize memory usage, we therefore aim to
refrain from adding information about trigger invocations if it is unnecessary for
future derivations of audit log information. As a simple example, in the following
logging specification it suffices to add only the first invocation of g to the set of
logging preconditions to infer the relevant logging information.

∀t0, t1, x0, x1 . Call(t0, f , x0) ∧ Call(t1,g, x1) ∧ t1 < t0 =⇒ LoggedCall(t0, f , x0).

Intuitively, our general approach is to rewrite the body of a given logging
specification in a form consisting of different conjuncts, such that the truth val-
uation of each conjunct is independent of the others. This way, the required
information to derive each conjunct is independent of the information required
for other conjuncts. Then, if the inference of a LoggedCall predicate needs a con-
junct to be derived only once during the program execution, following derivation
of that conjunct, triggers in the conjunct are “turned off”, i.e. no longer added to
logging preconditions when encountered during execution. Otherwise, the trig-
gers are never turned off. This way, we ensure that none of the invocations of
the logging event is missed.

Formally, the logging specification is rewritten in the form

∀t0, . . . , tn, x0, . . . , xn .
n∧

i=1

(ti < t0)
L∧

k=1

Qk =⇒ LoggedCall(t0,g0, x0),

where each Qk is a conjunct of literals with independent truth valuation resting
on disjointness of predicated variables. In what follows, a formal description of
the technique is given.

Consider the Definition 9. We define Ψ to be the set of all positive literals in
the body of LoggedCall excluding literals ti < t0 for all i ∈ {1, · · · , n}. Moreover,
let’s denote the set of free variables of a formula φ as FV (φ), and abuse this
notation to represent the set of free variables that exist in a set of formulas.
Next, we define the relation �FV over free variables of positive literals in Ψ ,
which represents whether they are free variables of the same literal, and extend
this transitively in the relation �TFV .
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Definition 12. Let �FV ⊆ FV (Ψ) × FV (Ψ) be a relation where α �FV β iff
there exists some literal φ ∈ Ψ such that α, β ∈ FV (φ). Then, the transitive
closure of �FV is denoted by �TFV .

Note that �TFV is an equivalence relation. Let [α]�TFV
denote the equiva-

lence class induced by �TFV over FV (Ψ), where [α]�TFV
� {β | α �TFV β}.

Intuitively, each equivalence class [α]�TFV
represents a set of free variables in Ψ

that are free in a subset of literals of Ψ , transitively. To be explicit about these
subsets of literals, we have the following definition (Definition 13). Note that
rather than representing an equivalence class using a representative α (i.e., the
notation [α]�TFV

), we may employ an enumeration of these classes and denote
each class as Ck, where k ∈ 1 · · · L. L represents the number of equivalence
classes that have partitioned FV (Ψ). In order to map these two notations, we
consider a mapping ω : FV (Ψ) → {1, · · · , L} where ω(α) = k if [α]�TFV

= Ck.

Definition 13. Let C be an equivalence class induced by �TFV . The predicate
class PC is a subset of literals of Ψ defined as PC � {φ ∈ Ψ | FV (φ) ⊆ C}. We
define the independent conjuncts as QC �

∧
φ∈PC

φ. We also denote Q[α] as Qk

if ω(α) = k. Obviously, FV (Qk) = Ck.

The above described techniques are used to implement memory overhead
mitigation in our OpenMRS retrospective security module– the same mechanism
used to perform a loggedCall query is used to check whether the independent
conjunct QC containing a trigger method is satisfiable whenever the trigger is
invoked, in which case all triggers in the conjunct are turned off, i.e. no longer
added to preconditions when called. In order to prove the correctness of our app-
roach, we have formalized a new calculus Λ′

log with memory overhead mitigation
capabilities, and shown that the generated log is the same as the log generated
in Λlog for the same programs. The reader is referred to our Technical Report
[3] for this formalization.

6 Related Work

Previous work by DeYoung et al. has studied audit policy specification for med-
ical (HIPAA) and business (GLBA) processes [19,20]. This work illustrates the
effectiveness and generality of a temporal logic foundation for audit policy speci-
fication, which is well-founded in a general theory of privacy [18]. Their auditing
system has also been implemented in a tool similar to an interactive theorem
prover [24]. Their specification language inspired our approach to logging specifi-
cation semantics. However, this previous work assumes that audit logs are given,
and does not consider the correctness of logs. Some work does consider trustwor-
thiness of logs [7], but only in terms of tampering (malleability). In contrast, our
work provides formal foundations for the correctness of audit logs, and considers
algorithms to automatically instrument programs to generate correct logs.

Other work applies formal methods (including predicate logics [10,16],
process calculi and game theory [28]) to model, specify, and enforce auditing
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and accountability requirements in distributed systems. In that work, audit logs
serve as evidence of resource access rights, an idea also explored in Aura [39] and
the APPLE system [22]. In Aura, audit logs record machine-checkable proofs of
compliance in the Aura policy language. APPLE proposes a framework based on
trust management and audit logic with log generation functionality for a limited
set of operations, in order to check user compliance.

In contrast, we provide a formal foundation to support a broad class of log-
ging specifications and relevant correctness conditions. In this respect our pro-
posed system is closely related to PQL [34], which supports program rewriting
with instrumentation to answer queries about program execution. From a tech-
nical perspective, our approach is also related to trace matching in AspectJ [1],
especially in the use of logic to specify trace patterns. However, the concern
in that work is aspect pointcut specification, not logging correctness, and their
method call patterns are restricted to be regular expressions with no conditions
on arguments, whereas the latter is needed for the specifications in Calls.

Logging specifications are related to safety properties [38] and are enforceable
by security automata, as we have shown. Hence IRM rewriting techniques could
be used to implement them [21]. However, the theory of safety properties does
not address correctness of audit logs as we do, and our approach can be viewed
as a logging-specific IRM strategy. Guts et al. [25] develop a static technique to
guarantee that programs are properly instrumented to generate audit logs with
sufficient evidence for auditing purposes. As in our research, this is accomplished
by first defining a formal semantics of auditing. However, they are interested in
evidence-based auditing for specific distributed protocols.

Other recent work [23] has proposed log filters as a required improvement to
the current logging practices in the industry due to costly resource consumption
and the loss of necessary log information among the collected redundant data.
This work is purely empirical, not foundational, but provides practical evidence
of the relevance of our efforts since logging filters could be defined as logging
specifications.

Audit logs can be considered a form of provenance: the history of computation
and data. Several recent works have considered formal semantics of provenance
[8,9]. Cheney [12] presents a framework for provenance, built on a notion of
system traces. Recently, W3C has proposed a data model for provenance, called
PROV [5], which enjoys a formal description of its specified constraints and
inferences in first-order logic, [13], however the given semantics does not cover
the relationship between the provenance record and the actual system behavior.
The confidentiality and integrity of provenance information is also a significant
concern [26].

7 Conclusion

In this paper we have addressed the problem of audit log correctness. In partic-
ular, we have considered how to separate logging specifications from implemen-
tations, and how to formally establish that an implementation satisfies a speci-
fication. This separation allows security administrators to clearly define logging
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goals independently from programs, and inspires program rewriting tools that
support correct, automatic instrumentation of logging specifications in legacy
code.

By leveraging the theory of information algebra, we have defined a semantics
of logging specifications as functions from program traces to information. By
interpreting audit logs as information, we are then able to establish correctness
conditions for audit logs via an information containment relation between log
information and logging specification semantics. These conditions allow proof
of correctness of program rewriting algorithms that automatically instrument
general classes of logging specifications.

We define a particular program rewriting strategy for a core functional cal-
culus that supports instrumentation of logging specifications expressed in first
order logic, and then prove this strategy correct. This strategy is then applied to
develop a practical tool for instrumenting logging specifications in OpenMRS,
a popular medical records system. We discuss implementation features of this
tool, including optimizations to minimize memory overhead.
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Abstract. Success or failure of attacks on high-security systems, such
as hacker attacks on sensitive data, depend on various situational con-
ditions, including the timing and success chances of single attack steps,
and concurrent countermeasures of the defender. With the existing state-
of-the-art modelling tools for attack scenarios, comprehensive consider-
ations of these conditions have not been possible. This paper introduces
Attack-Defence Diagrams as a formalism to describe intricate attack-
defence scenarios that can represent the above mentioned situational
conditions. A diagram’s semantics naturally corresponds to a game where
its players, the attacker and the defender, compete to turn the game’s
outcome from undecided into a successful attack or defence, respectively.
Attack-Defence Diagrams incorporate aspects of time, probability, and
cost, so as to reflect timing of attack steps and countermeasures, their
success chances, as well as skills and knowledge of the attacker and
defender that may increase over time with lessons learned from pre-
vious attack steps. The semantics maps on stochastic timed automata
as the underlying mathematical model in a compositional manner. This
enables an efficient what-if quantitative evaluation to deliver cost and
success estimates, as we demonstrate by a case study from the cyber-
security domain.

1 Introduction

Cyber-security is naturally understood as a 2-player game, where the system
attacker plays against the defender and where both players try to optimize their
interest, often quantified by means of a utility function. Studying such a game
provides insight in the interaction and trade-offs between various concrete secu-
rity measures: which attack scenarios carry the most risk, and what is the most
effective defence?

This view point is exploited and elaborated upon in this paper, introduc-
ing Attack Defence Diagrams (ADD). ADDs are akin to, but significantly more
expressive than attack trees and their variants like attack-defence trees [23],
attack countermeasure trees [35], and attack graphs [21]. ADDs are acyclic graphs
that express how basic steps can be combined into a game between attacker
c© Springer-Verlag Berlin Heidelberg 2016
F. Piessens and L. Viganò (Eds.): POST 2016, LNCS 9635, pp. 163–185, 2016.
DOI: 10.1007/978-3-662-49635-0 9
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and defender, competing to swing the game from being undecided (uu) over to
either a successful attack, or a successful defence of the system. This genuine
game perspective is reflected semantically by the use of three-valued logic (3VL)
to characterise the dynamic evolution of the game. In this, the local context
determines whether ’true’ or ’false’ (tt or ff) corresponds to success or defeat of
attacker, or dually defender.

The game outcome may crucially depend on aspects of time, probability, and
cost, reflecting the timing of attack steps and countermeasures, their success
chances, as well as skills, knowledge and budget of attacker and defender. This
links to ongoing and substantial [32] activities to develop cyber threat metrics
that are aimed at providing characteristics of (attacker) moves in terms of cost,
time, detection probability or success probability.

To represent these aspects, basic events in ADD are equipped with relevant
quantitative information about duration, success probability, and cost. ADD
gates then express the dynamics how attacks and defences interact and propa-
gate through the system, gradually determining the game. Apart from standard
gates like AND, OR, and their sequential versions, we introduce several new gates
and an assembly box for other gates facilitating security modelling. Also cyclic
or repetitive behaviour is supported by ADD.

From the expressiveness perspective, ADDs unite and over-arch ADVISE and
attack defence trees and graphs. ADVISE [28] is a powerful security analysis
framework with analysis capabilities for a wide number of quantitative secu-
rity metrics. However, ADVISE provides limited syntactic constructs for security
modelling. Attack trees and attack graphs do provide such syntactic aids, as
well as quantitative analysis methods. However, to the best of our knowledge,
none of the approaches thus far provides a comprehensive framework combining
cost, probability, time, defences, and choices of players in a game interpretation.
Also, we believe that current versions of attack defence trees and graphs lack
expressivity when in comes to modelling real defence measures.

The dynamic quantitative interpretation of ADDs is realized via the Modest
framework [15], a state-of-the-art stochastic modelling formalism with powerful
analysis capabilities and tool support. In the style of [27] we provide a com-
positional translation from ADD to Modest. That is, we translate each ADD
modelling construct into a Modest process and then compose these processes
to obtain the entire game model. In this way, we can analyse various security
metrics for the ADD model, for example, we can perform what-if analysis for
fixed strategies for both players and investigate game-related questions like best
responses to player actions. Section 2.2 presents security metrics in more detail.
Related work. There exists a vast body of work on game-theoretic approaches to
security analysis, ranging from games with complete information, to Bayesian
games, from competitive to cooperative games, from static to repeated games,
and from strategic games to Stackelberg games. We refer to [31] for a comprehen-
sive overview. Many of these approaches are tailored to a specific security setting,
such as network security (e.g., [29]), intrusion detection (e.g., [36]), cryptography
(e.g. [22]), or the internet-of-things (e.g., [34]).
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In contrast to these specific approaches, attack trees and their variants are
more generic, application-independent security frameworks. Their game-based
interpretations have appeared in [4], deriving Pareto optimal curves for discrete
probability and cost; and in [11] computing optimal strategies in attack trees
with multiple cost parameters. Time-dependence is not studied in [4,11]. In [6]
the return on security investment is computed by transforming attack-defence
trees into classical Matrix games. The work [37] computes, by solving a par-
tially observable MDP, the optimal responses to dynamically detected network
intrusions modelled as attack-response trees. Quantitative attack-trees analysis
is also a popular topic; we refer to [24] for an overview. Papers that consider time-
dependent behavior include [33] using Boolean logic driven Markov processes to
analyse attack probabilities for attack trees enriched with triggers; [2,3] that
develop a compositional approach exploiting symmetry to keep the underlying
stochastic models minimal; and the ADVISE framework [28]. Nevertheless, ADD
serve as an overarching notation for (at least) attack trees and ADVISE as the
essence of both modelling techniques can fully be represented by ADD.

In contrast to attack-defence trees [21,23,26,35], we do not necessarily divide
events into events of the attacker and events of the defender. Furthermore, we
do not restrict ourselves to directed acyclic graphs as the modelling techniques
presented in [24]; we allow cyclic behaviour using special reset edges and trigger
edges. In addition, we also allow for an inherited notion of time, probability, and
cost, even influencing each other.
Main Contributions. This paper proposes Attack-Defence Diagrams

– as a convenient modelling technique for security-critical systems;
– as a framework that subsumes several other attack-defence notations;
– supporting the main ingredients for security risk assessments: time, probabil-

ity and costs;
– providing explicit distinction of attacker and defender and considerations of

their conflicting intentions and their interplay;
– equipped with a formal and fully compositional semantics in terms of sto-

chastic timed automata;
– where 3VL is used to represent the status of attack and defence steps;
– with illustrative examples demonstrating feasibility of the ADD approach.

STA is a mature formalism for compositional modelling of systems exhibiting
randomness, non-determinism as well as real-time aspects. The semantics makes
it possible to harvest recent advances on tool support [16,19] for STA, through
the Modest Toolset [18]. As a result, we can apply existing tools for simulation as
well as for formal symbolic analysis of ADDs. While game-based analysis is out
of scope of this paper, we provide the conceptual basis for further foundational
results as well as advanced analysis techniques.

Organisation of the Paper. Section 2 introduces the syntax of Attack-Defence
Diagrams by example. In Sect. 3 we define the syntax formally. Section 5 is the
technical core of the paper where we define the semantics of attack-defence
graphs in terms of stochastic timed automata, briefly introduced in Sect. 4. We
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conclude the paper with a case study in Sect. 6 and a short discussion in Sect. 7.
The paper is rooted in the thesis [25].

2 A Gentle Introduction to Attack Defence Diagrams

In this section we provide an intuitive discussion of the attack defence diagram
formalism using a running example. In addition, we present a variety of principal
and practical means to derive security metrics.

2.1 ADD Basics

The central ingredients of ADDs are events. The most basic ones, basic events
(BE), indicate an atomic, unique and significant happening in a real-world sys-
tem. We distinguish triggerable and non-triggerable basic events. Triggerable BE
causally depend on other events, but non-triggerable ones do not; triggers also
appear in [33] to model instantaneous mode switches depending on a Boolean
variable. We furthermore distinguish resettable and non-resettable basic events.
The latter happen at most once, the earlier might happen several times, or even
periodically.

Example 1. As a running example, we consider a scenario where an attacker
intends to get access to an email account of a company, so as to write embar-
rassing emails. In this setting, an attempt to guess the account password can
be considered a non-triggerable BE, while the event BE of the attacker logging
into the account is a triggerable BE, since it causally depends on obtaining the
correct password.

Sending an embarrassing mail can happen only once and cannot be undone
after happening. Thus, this event is non-resettable, while checking for malware
can be performed repetitively and thus is considered resettable. ��

In the above example, a brute-force random guess of a password has a certain
probability of success, takes some time, and involves certain effort. To enable
reasoning about such quantitative aspects within ADD, the BE can be decorated
with success probabilities, with time durations, and with costs for delaying and
executing single steps. The latter may right away represent money, or an abstract
measure of skills the attacker or defender need to achieve or invest. The time
point in which an event happens, or the time duration to achieve this goal
(depending on the interpretation), is determined either randomly by sampling
from some probability distribution (time-driven BE) or by one of the players
(player-driven BE), either attacker or defender.

Example 2. A single brute-force attempt of guessing a bit string of length 128
has a success probability of 2−128. Situational conditions may dictate that every
attempt causes (estimate) cost of 0.1, and takes on average 0.25 time units to
effectuate. If only the average duration T is known, the provably best (and widely
used) model for duration is the exponential distribution with rate 1/T . ��
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We use three-valued logic (3VL) to represent the outcome of events. Basic
events start with the truth value undefined (uu), and subsequently can execute
successfully – changing to true (tt), or unsuccessfully – changing to false (ff).

Example 3. The basic event representing the above attempt executes success-
fully with probability 2−128 and unsuccessfully with the remaining probability,
after a delay sampled from an exponential distribution with rate 4. ��
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Fig. 1. An ADD representation of an attack on some email account.

Apart from basic events, so-called composed events, or gates, form an integral
part of an ADD. Gates enable the specification of complex situations, providing
means to refine them into simpler events and eventually basic events.

Example 4. Figure 1 displays an ADD for our running example. The solid edges
form a directed acyclic graph where basic events are source vertices (triangular
shaped) and gates are the remaining vertices (box shaped). If a solid edge points
from u to v, we say that u is the input of gate v. Dashed and squiggle edges
serve the purpose of resetting and triggering, as will be explained later. The
colouring indicates whether the event is driven by or belongs to attacker (red
with horizontal stripes), defender (green with vertical stripes), or is driven by
time (gray with dots). ��
Gates can roughly be considered as propagators of and operators on 3VL. Their
value is ultimately determined by the truth values of basic events. The latter
evolve in continuous-time, based on randomness as well as decisions of the play-
ers. The following gates are supported:

– Logical gates AND, OR, NOT, SWP serve as standard 3VL operators (where NOT
swaps tt and ff and SWP swaps tt and uu). The latter is included for functional
completeness, meaning that any 3VL operator is in fact supported;
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– Conditional gates COST and IF propagate the input values ff and uu
unchanged. When the input value becomes tt, the gates propagate tt given
a side-condition is currently met, and ff, otherwise. This value is propagated
as long as the input stays tt no matter how the value of the side-condition
changes afterwards. The side-condition of a COST gate is whether one of the
costs accumulated so far satisfies a specified cost bound. The side-condition
of an IF gate is whether its second input, called guard has value tt at the
moment.

– Side-effect gates TR and RE are unary operators simply propagating the input
value unchanged, thus representing logical identity. However, upon becoming
tt, these gates cause a side-effect. The TR gate triggers basic events via squiggle
edges, the RE gate resets basic events via dashed edges.

– Sequential gates SAND and SOR extend the standard AND and OR by ordering
their inputs sequentially in time. Whenever the first input of a SAND gate
becomes tt, its second input is triggered, i.e. all basic events in its subgraph
get triggered (apart from those having a squiggle edge from a TR gate within
the subgraph). Similarly, whenever the first input of an SOR gate becomes ff,
its second input is triggered.

Example 5. We are now in the position to explain how the ADD in Fig. 1
describes an attack on email accounts of a company. The goal of the attacker
is to harm the company, represented by the red sink. By the SAND gate it boils
down to first finding a juicy topic and getting access to some email account
within the company and only then sending the embarrassing emails. The order
in which the subgoals of AND are met does not matter.

Thanks to the OR gates, the subgoal get access to account can be
achieved using three different approaches. All the basic events 3, 4, 5, and 8
are associated with positive execution costs representing the effort necessary to
prepare the event. We assume the attacker has limited resources, modelled by
the COST gate. It becomes satisfied if its input OR gate becomes satisfied and
the accumulated cost at this moment is ≤ 10, i.e. attacker has not tried all
possibilities so far.

The computers in the company are nearly periodically checked for malware.
Therefore, the time-driven event 9 is executed every ≈ 5 time units. The period-
icity is guaranteed by the RE gate that resets the BE right after it executes. The
RE gate also implements the effect of the malware check – it removes the key-
logger by resetting BE 3. Thanks to a RE gate, also guessing the password may
be repeated by the attacker arbitrary many times until it is successful. However,
for every such guess, the execution cost is incurred.

The goal of the defender is to prevent sending the email, represented by
the green sink. This boils down to blocking all infected accounts before the
embarrassing emails can be sent. The accounts can be blocked only after the
company notices a suspicious activity in their building. ��

The players can decide to execute their active BE at arbitrary moments of
time (except repetitively in zero time). These decisions of the players are based
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on the evolution of the truth values of all nodes in the ADD. For instance, a
player may choose to execute a basic event at the time point when some gate
turns tt, at the time point when it turns tt for the third time, or exactly 2 time
units after it has turned false ff. The decisions may also use randomization, e.g.
executing the basic event after a random delay (uniformly) from [2, 3]. Such a
recipe when to drive basic events is called a strategy of the player; we formalize
strategies in Sect. 5.

2.2 Security Metrics

Metrics provide useful insight in the security level of the system under con-
sideration, allowing security engineers to make design decisions, e.g., where to
invest their security budget, or which security solution to implement. The ADD
framework provides support for the analysis of various metrics, and their corre-
sponding strategies.

What-if analysis. If we assume to know the strategy of both attacker and
defender, i.e. we know exactly which player-driven BE they play and when,
then we obtain a model that is fully stochastic, and we can calculate several
security metrics. These metrics can involve all quantitative attributes, namely
probability, time and cost. Typical examples for the model in Fig. 1 include:
What is the probability of a successful attack? asking about the probability that
an embarrassing email gets sent, or conversely, that it is prevented: What is
the probability of a successful defence? Due to the information contained in the
model it is also straightforward to calculate cost metrics such as What is the
expected cost of a successful attack? Apart from analyses that focus on the top
level nodes, our metrics may involve any of the BE and gates in the ADD, such
as BE 8 in Fig. 1: What is the probability of succeeding by correctly guessing the
password? With what frequency are key-loggers removed from the system? In
our running example the latter corresponds to resetting BE 3 from tt to uu. In
models that capture the long-run situation with repetitive attack attempts, we
can also ask questions such as:

What is the average number of attacks per year? How much is spent on
average per year on defence? What is the expected ratio of defended attacks?
Extending recent work on security metrics for attack trees [27] such metrics
can be combined and represented as succinct diagrams showing different attack-
defence scenarios, so as to show trade-offs among different attack strategies, for
instance for the use of an enterprise risk manager to effectively plan defence
strategies.

Game related questions. All these metrics can be similarly used in the following
game questions:

– If we know the strategy of only one player, but not of its opponent, what
is the best response strategy of the opponent for a given metrics. Suppose,
in Fig. 1 only the defender strategy is given: the defender blocks infected
accounts right after the attacker gets physical access to the server. What is
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the counter-strategy to maximize the probability of a successful attack? And:
what is the maximal probability?

– If we leave the strategies open for both players, what are their optimal strate-
gies? An optimal strategy maximizes the interest of the player, assuming that
the other player always plays a best-response strategy.

With formal preciseness, such questions are often computationally diffi-
cult [10], or even undecidable [9]. Nevertheless, we believe that heuristic or
statistical approaches [12,13] can provide useful results even for such complex
models.

3 Formal Syntax of Attack-Defence Diagrams

To formally define time-driven basic events, we use cumulative distribution func-
tions representing the occurrence probability of a basic event over time. In the
following, we call the set of all cumulative distribution functions F .

Definition 1 (Attack-Defence Diagrams). An attack-defence diagram
(ADD) is a tuple ADD = (V,E,T,Pr, C,CE,CD,D,TEdge,REdge) where

– (V,E) is a directed acyclic graph, with designated goal sink vertices att and def,
the source vertices BE ⊆ V are called basic events and all other G := V \ BE
are called gates; direct predecessors of each gate are called its inputs;

– T : G → O is the type function assigning to each gate one of the operators

O = {AND, OR, NOT, SWP, COST, IF, RE, TR, SAND, SOR};

we require that gates of type AND, OR, IF, SAND, SOR have a left and a right
input, other gates have only one input.

– Pr : BE → [0, 1] assigns to each BE the probability of a successful execution,
– C is a finite set of costs, CD : BE × C → R specifies all costs of execution of

BE, whereas CD : BE × C → R specifies all delay cost rates of BE, e.g. the
costs incurred per time unit if the execution of BE is delayed; additionally,
each vertex v labelled by COST is equipped with a bound cv ��v treshv (applied to
cost cv accumulated so far) where ��v ∈ {≤, <,≥, >,=, 
=} and treshv ∈ R

≥0.

Furthermore, each basic event BE = BEA � BED � BET either belongs to the
Attacker or to the Defender or is Time-driven. Finally, we have,

– D : BET → F that assigns to each time-driven basic event a cumulative dis-
tribution function over its positive delay, i.e. D(b)(0) = 0,

– TEdge ⊆ {v ∈ G | T(v) = TR} × BE are trigger edges from TR gates to BE;
BETr := {b ∈ BE | ∃v ∈ V : (v, b) ∈ TEdge} denotes the set of triggerable BE;

– REdge ⊆ {v ∈ G | T(v) = RE} × BE are reset edges from RE gates to BE;
BETr := {b ∈ BE | ∃v ∈ V : (v, b) ∈ REdge} denotes the set of resettable BE;
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Intuitive Semantic Interpretation. In an ADD, the successful attacks and defences
are represented by the goal gates. The goal of the attacker is to turn the att gate
(colored red in our example) to tt or to turn the def gate (colored green) to ff.
If both players meet their goal at the same time, it is considered a draw. Using
logical gates, the successful attacks and defences are decomposed into smaller
and smaller parts down to the level of basic events.

All basic events initially are set to the undefined value uu. Triggered basic
events start in the passive mode, whereas other basic event start in the active
mode. An active basic event b may execute after an arbitrary positive delay. If b is
player-driven, the delay is chosen by the corresponding player, if b is time-driven,
the delay is chosen randomly according to D(b). After the delay, the basic event
b changes its truth value to tt with probability Pr(b) and to ff with probability
1 − Pr(b). A passive basic event cannot execute. Every time unit of having a
basic event b active incurs a cost CD(b) and every execution of a basic event b
incurs a cost CE(b).

Whenever a value of a basic event changes, all gates switch to a possibly new
value in zero time according to the logical rules discussed in Sect. 2.1. Only after
this, the possible side-effects of TR and RE take place. This may again change
truth values of some basic events, in turn changing truth values of the gates.
This again may cause side-effects of some other TR and RE gates and so on. All
this happens in zero time and repeats until a fixed-point is reached. A fixed-point
is always reached since we assure that a BE never executes in zero time after
becoming active.

4 Stochastic Timed Automata

The formal semantics of ADD is based on stochastic timed automata (STA),
which are apt for this task as they feature not only non-determinism and proba-
bilism but also cost decorations, as well as clocks and sampling. This all together
is needed to properly reflect the dynamics of an ADD model as time passes.

In the following, we consider STAs as defined in [7,17]. Let Var be a set
of real-valued variables. For simplicity, Boolean, 3VL, and integer variables are
assumed to be encoded using real variables. Moreover, CK ⊆ Var is the set
of clock variables. A valuation is a function Var → R, which assigns to each
variable a concrete value. The set of all valuations is denoted by Val(Var). For
v ∈ Val(Var) and t ∈ R we denote by v + t the valuation, where all clocks are
incremented by t, i.e. (v + t)(x) := v(x) + t if x ∈ CK and (v + t)(x) := v(x) if
x ∈ Var \ CK.

To express Boolean formulas over variables, we introduce constraints. They
allow for example to compare clocks to certain points in time or to compare two
clock valuations.

Definition 2 (Constraints [17]). Constraint, denoted CS, are

ψ ::= tt | ff | ϕ ∧ ψ | ϕ ∨ ψ | x1 �� x2

where x1, x2 ∈ R ∪ Var and �� ∈ {<,≤, >,≥,=, 
=}.
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Subsequently, we write ν |=cs if the constraint cs evaluates to true under the
valuation ν. Furthermore, we consider variable assignments, denoted by Asgn,
which on their right contain arithmetic expressions or sampling expressions over
Var \ CK, e.g.

x := x + sample(F ), x := 3 + sample(Exp3), x := x ∗ y ∗ (x > y ? 1 : −1).

A sampling expression sample(F ) is an instruction, which allows random
sampling from an arbitrary probability distribution F (such as exponential with
rate 3, or uniform in the interval [1/2, π]). Specifically, in STAs one can compare
clock valuations to sampled values.

Definition 3 (Stochastic Timed Automata [17]). A stochastic timed
automaton (STA) is a tuple Aut = (Loc, �0,Act,Var,→) where Loc is a finite
set of locations, �0 is the initial location, Act is a finite set of actions, Var is
a finite set of (real-valued) variables. We write CK ⊆ Var for the set of clock
variables. →⊆ Loc × Act × CS × CS × dist(Asgn × Loc) is a finite transition
relation.

As defined above, a transition in a STA is a tuple of the form (�, a, g, d, μ).
This transition starts in location � and leads to a probability distribution μ over
assignments and successor locations. The transition labels are threefold, with a
being an action label, and g and d being constraints. Here, constraint g plays
the role of a guard (as in Dijkstra’s guarded commands), determining when
the transition is enabled, while d is a deadline constraining the time by which
progress must have been made. This is similar to invariants in classical timed
automata [1], but notably, STAs are based on timed automata with deadlines [8].

The dynamic STA behaviour is as follows. The automaton starts in the initial
location �0 with the initial valuation v0 assigning 0 to all variables. The automa-
ton waits in this location for a non-deterministically chosen amount of time t0
and takes a non-deterministically chosen transition (�0, a0, g, d, μ) ∈→ such that

– v0 + t0 |= g, i.e. after the waiting, the guard of the transition is satisfied,
– v0 + t 
|= d′ for all 0 ≤ t < t0 and all d′ such that (�0, a′, g′, d′, μ′) ∈→, i.e. no

deadline is surpassed in �0 before time t0.

Upon taking the transition, a branch of the transition, i.e. an assignment u ∈
Asgn and next location �1, is picked randomly according to the distribution μ.
The STA performs action a0 and moves into �1 with valuation v1 obtained from
v0 + t0 by performing the possibly random assignment u. The same process
repeats in �1, and so on, forming an infinite execution �0v0�1v1 · · · of the STA.

In this paper, we use deadlines of transitions only to distinguish urgent tran-
sitions with d = g from non-urgent transitions with d = ff. Similarly to modal
transition systems, we depict by solid edges the urgent transitions that must
occur as soon as the guard is satisfied; and by dashed edges the non-urgent
transitions that may be arbitrarily delayed.

Every STA defines a timed probabilistic transition system [15] that still cap-
tures both the delay non-determinism as well as transition non-determinism.
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Fig. 2. Two STAs on the left and their parallel composition on the right. Each tran-
sition is separated into two parts – the first part is labelled with an action and a
guard constraint, whereas the second one is labelled with a pair of probability and
assignments.

The non-determinism is then resolved by a scheduler yielding purely probabilis-
tic behaviour. For every scheduler σ we thus obtain a probability measure P

σ

over the space of all runs of STA.
STAs are compositional. That is, one can construct a large STA by putting

together smaller STAs, composing them via a parallel composition operator ‖.
We use common alphabet synchronisation in the style of CSP [20] or FSP [30].
An example is given in Fig. 2.

Definition 4 (‖ [17]). Let Auti = (Loci, �0i,Acti,Vari,→i) for i ∈ {1, 2} be
STAs. We call Aut1 || Aut2 = (Loc1 ×Loc2, (�01, �02),Act1 ∪Act2,Var1 ∪Var2,→)
their parallel composition where ((�1, �2), a, g, d, μ) ∈ → if and only if

– either a 
∈ Act1∩Act2 and there is (�1, a, g, d, μ1) ∈→1 such that μ = μ1 ·δ(∅,�2)

or (�2, a, g, d, μ2) ∈ →2 such that μ = μ2 ·δ(∅,�2);
– or a ∈ Act1∩Act2 and there are (�1, a, g1, d1, μ1) ∈ →1, (�2, a, g2, d2, μ2) ∈ →2

such that g = g1 ∧ g2, d = d1 ∧ d2 and μ = μ1 · μ2.

Here, the product of distributions μ1, μ2 over dist(Asgn × Loc) is defined as

(μ1 · μ2)(A, (�1, �2)) =
∑

A′⊆A

μ1(A′, �1) · μ2(A \ A′, �2).

Common alphabet synchronisation is known to be commutative and associative
modulo (timed probabilistic) bisimulation, so brackets are not needed if com-
posing more than two processes.

5 Semantics of Attack-Defence Diagrams

For this section we consider given a fixed Attack-Defence Diagram ADD =
(V,E,T,Pr, C,CE,CD,D,TEdge,REdge). We shall define the semantics of this
ADD by translating each basic event and each gate into a dedicated STA, called a
gadget in the sequel. Then, we define strategies of the attacker and the defender
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U U
propagate resets

{schedulev}v∈BE

{schedulev}v∈BE

Fig. 3. The Central component controlling the order of propagation. For simplicity,
we mention in all the STA in this section only non-trivial guards, probabilities, and
assignments. A first round of propagation is always enforced at time 0.

as additional STA components. For a given pair of strategies, the overall STA is
then constructed by composing STA of all vertices and of the two strategies. The
resulting automaton then uniquely defines the behaviour of the system under the
given pair of strategies.

5.1 Gadget Ingredients

The STA gadgets need to make sure that the 3VL values correctly propagate
through the ADD whenever the value of at least one basic event changes. In all
figures of gadgets, we use background colours to denote the current truth value
of the gadget: green for tt, red for ff, and gray for uu. To ease the understanding,
we also annotate with U (for urgent) those states where no time can pass. For
the propagation of truth values, we use several types of synchronization actions:

– for each vertex v ∈ V , we have actions uuv, ttv, and ffv signalling its value is
undefined, true, and false, respectively;

– for each resettable basic event b, we have a reset action resb, and for each
triggerable basic event b, we have a triggering action trigb.

For correctness and unambiguity of the propagation we need a distinguished
component STA called Central, depicted in Fig. 3, with a few additional syn-
chronization actions. A new round of propagation of values is started whenever
some basic events change their values. Every such basic event b indicates to
Central that propagation is needed by its action scheduleb. Afterwards, an action
propagate informs all BE to initiate the propagation. Asynchronously, every basic
event emits its current value, and each gate emits its value as soon as it receives
the values from all its inputs. After these values have propagated through the
graph underlying the ADD, the trigger gates emit all the trigb messages and so
do the reset gates, emitting resb messages. To guarantee unambiguous behaviour,
triggers occur before resets. Thus, all TR and RE gates synchronize with Central
by an action resets that separates triggers from resets.

Translating Basic Events. In Fig. 4 on the left, we depict the STA for a simple
player-driven BE that is neither triggerable, nor resettable. The BE v is active in
its initial state; at any (positive) moment of time it may choose to executev and
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Fig. 4. Translation of a basic event v. On the right, we depict the STA for a simple
player-driven BE. Below, we have the STA for a time-driven BE that is also both
triggerable and resettable. For clarity, we mark states which represent that the gate is
tt with red (with horizontal stripes), ff with green (with vertical stripes), and uu with
gray (with dots). The symbol (∗) stands for a set of updates that update each cost
variable c ∈ C by c := c+CE(v)(c)+ΔvCD(v)(c) and reset Δv := 0 where Δv is a local
clock to measure the time since the last propagation.

also indicate to Central by the schedulev action that new truth values need to
get propagated. After it receives the propagate signal, it probabilistically chooses
the new truth value and sends it out. Any later propagation results in the same
truth value. During every propagation, we also need to update the cost variables
by all the costs incurred during the time since the last propagation, measured
by a clock Δv.

The main difference between a time-driven and a player-driven BE is in the
guard on the executing transition as shown in Fig. 4 on the right. The guard
guarantees that the BE executes after a delay randomly chosen according to
the distribution D(v). Technically, the delay is sampled to a variable tv when
becoming active, along with resetting a clock cv (and Δv). At the moment when
tv = cv, the delay is over and the execution of the BE must get scheduled.

A triggerable BE starts in a passive mode and enters the active mode by a
non-urgent trigv action. Any further triggering when the BE is already active or
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even executed has no effect. A resettable BE supports additional resv actions in
all states where delaying is possible. All resv transitions bring the component to
the initial state (after scheduling new propagation if the reset changes the truth
value). Hence, after getting reset, a triggerable BE needs to get triggered again.
Similarly, after getting reset, a time-driven BE gets the random delay sampled
again. The Fig. 4 on the right depicts a BE that is both triggerable as well as
resettable.

Translating Gates. To avoid unnecessary clutter, we take the liberty to depict
slightly simplified STA for the gates. The depicted STA represent one round
of propagation. Technically, at the beginning, the initial state is entered by a
non-urgent transition propagate and each terminal state has also a non-urgent
propagate transition back to the initial state. We now discuss different gate types.

Logic gates (OR, NOT, SWP) The translation of these gates is shown in Fig. 5,
implementing the 3VL operators in a straightforward manner.

Conditional gates (IF, COST) The gates IF and COST wait for heir (left) input
(called in) to become tt. At this moment, IF becomes tt if its right input
(called g or guard) has value tt, and becomes ff, otherwise. Similarly, COST
becomes tt if its cost constraint is satisfied, and becomes ff, otherwise. The
gates is locked to this truth value until the value of in changes, even if the value
of the guard or the accumulated cost change in the meantime. To implement
this behaviour, the gate v stores the value it is locked to in a (local) variable
lv (initially being uu). The gates are depicted in Fig. 6.

Side-effect gates (TR, RE) In the logical sense, the gate TR (RE) serves as
an identity, only echoing the truth value of its input. Whenever the gate is
becoming tt, it triggers (resets) all the basic events b1, . . . , bn it is connected
to by the trigger (reset) edges. No further triggering or resetting is performed
before the input changes its truth value to ff or uu, again implemented by
storing the last value in a local variable lin. The translations are in Fig. 7.

Derivable gates (AND, SAND, SOR) We omit the explicit translations of these
gates as they can be equivalently expressed by other operators, as depicted
in Fig. 8. For the sake of efficient analysis, one may instead resort to explicit
translations of these gates into gadgets.

5.2 Strategies of the Players

To enable analyses that treat the ADD as a game between the attacker and the
defender, we need to formalize strategies that prescribe the behaviour of these
two players.

In this paper we focus on strategies that base their decisions on finite memory
about the past events. In the context of continuous-time systems, finite memory
is usually expressed by a finite-state timed automaton (as in, e.g., [10,14]). We
express a strategy of each player by a finite-state stochastic timed automaton.
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Fig. 8. Encoding operators AND, SAND, and SOR. The gate AND is easily expressed using
the 3VL version of the De Morgan rule. The gate SAND can be encoded using AND and
a TR gate: Whenever the left input becomes tt, the TR gate triggers all basic events in
the subtree of the right input (apart from those having a trigger edge incoming from
within the subgraph). Similarly, the gate SOR is encoded with such a TR gate and an
OR gate. Here, the TR gate performs the triggering whenever the left input turns ff.
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The strategies then serve as additional components that are composed together
with all the gadgets.

Intuitively, a strategy synchronizes on the actions executing the basic events
driven by the respective player. In this way, it can select the time at which the
basic events is to be executed. The STA furthermore is able to sense actions sig-
nalling the truth values within the ADD. We define these sets of actions (sensed,
respectively driven) of player P ∈ {A,D} by

Actsense := {ttv,ffv, uuv | v ∈ V } ∪ {trigb, resb | b ∈ BE}
ActPdrive := {executeb | b ∈ BEP}

We require that the component can synchronize with any action from Actsense

at any moment of time. This way, the strategy cannot block the propagation of
the truth values and can only react to it. Let us give a formal definition.

Definition 5 (Strategy). A strategy of player P ∈ {A,D} is an STA P =
(Loc, �0,Actsense ∪ ActPdrive,Var,→) such that

– P is transition-deterministic, i.e. in each state � there is always at most
one enabled transition for each action a. Precisely, for any transitions
(�, a, g1, d1, μ1) and (�, a, g2, d2, μ2) there is no valuation v where both v |= g1

and v |= g2;
– P is sense-enabled, i.e. for each state �, valuation v, and input action a ∈

Actsense, there is a non-urgent transition (�, a, g,ff, μ) such that v |= g;
– P is drive-urgent, i.e. every transitions with an action from ActPdrive is urgent;
– P is timelock-free, i.e. after taking a resb transition, σ cannot reach in zero

time a state with an outgoing transition carrying a label from ActPdrive.

Example 6. Let us illustrate the concept on our running example from Fig. 1.

tt5
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To minimize clutter, we omit in the figures all the remaining sensing transitions
that are simply self-loops. The strategy for the defender, on the left, waits for BE
5 to become tt, and then it waits for a random delay distributed exponentially
with rate 1

2 and executes BE 7. Technically, it samples the delay in its variable
td which is then compared with its clock variable cd.

The strategy for the attacker, depicted on the right, times its executions
relative to clock variable ca that is never reset. It keeps in memory whether BE
1 has failed and whether BE 6 has already been triggered. ��
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5.3 Behaviour of an Attack Defence Diagram

As the final step, we explain how the individual STA components are connected
into the overall STA that defines the semantics of ADD and thus determine the
probabilities of the observed behaviour.

Definition 6 (Semantics of ADD). Let us fix a strategy A of the attacker
and D of the defender. Further, let P1 to Pn be the gadgets of all the vertices of
ADD in an arbitrary order. The semantics of ADD with strategies A and D is
an STA

[[ADD]]A,D = ( P1 ‖ P2 ‖ · · · ‖ Pn ‖ Central ‖ A ‖ D ) .

Intuitively, the STA semantics of an ADD is a multi-way synchronization of
all stochastic timed automata resulting from the vertex-wise translation.

To express properties in ADD, we define traces that capture observable behav-
iour of the resulting STA. First, we define for each state � of the automaton
[[ADD]]A,D its truth observation θ(�) : V → {tt,ff, uu,⊥}. We set θ(�)(v) to the
respective truth value if the gadget of v is in a state of the respective colour and
to ⊥, otherwise. For each run ρ = �0v0�1v1 · · · of the automaton, we take the
sequence o0t0o1t1 · · · where each ti is the absolute time when (�i, vi) is entered
and oi := θ(�i). From this sequence we obtain trace θ(ρ) by first removing obser-
vations containing ⊥, i.e. removing all pairs o t such that o(v) = ⊥ for some v,
and then removing stuttering, i.e. replacing each maximal subsequence of the
form otot · · · ot by ot.

By construction of the gadgets and due to the properties of the strategy
automata, the resulting semantic automaton does not contain any real remaining
non-determinism that would influence the observed truth values.

Lemma 1. Let T be a measurable set1 of traces and θ−1(T ) = {runρ | θ(ρ) ∈ T}
be the corresponding runs. For any schedulers σ, σ′ in [[ADD]]A,D we have

P
σ
[[ADD]]A,D(θ−1(T )) = P

σ′
[[ADD]]A,D(θ−1(T )).

Thus, we omit schedulers and denote such unique probabilities by P
A,D
ADD(T ). The

proof of Lemma 1 follows the same line as in [25].

What-If Analysis for Fixed Strategies A and D. The operational semantics
allow us to formally capture the properties of interest, for instance

– the probability of successful attack P
A,D
ADD (TA) where TA is the set of traces

{o0t0 · · · | ∃i : oi(att) = tt ∧ ∀j ≤ i : oj(def) 
= tt} where the attacker wins,
– the expected cost of a successful attack E

A,D
ADD (Cc) /PA,D

ADD (TA) where E
A,D
ADD is

the expectation w.r.t. PA,D
ADD and Cc is a random variable assigning to every

trace the cost c accumulated before attacker wins or 0 if it does not win, or

1 The measurable space over traces is defined by the standard cylinder construction
as for finite state continuous time Markov chains, see e.g. [5].
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– the mean time to attack E
A,D
ADD (W ) /PA,D

ADD (TA) where W similarly returns the
time until a successful attack or 0 if the attacker does not win.

Lemma 1 then gives us a straightforward way to perform the analysis. Owing
to this result, we can apply an arbitrary scheduler (such as an as-soon-as-
possible uniform scheduler) and analyse the probabilities in the resulting sto-
chastic process by stochastic model checking or simulation.

Game Related Questions. Following the discussions in Sects. 1 and 2.2, let
us illustrate how the semantics of the ADD framework allows us to capture the
game related questions more formally. For this aim, we pick the fundamental
probability of a successful attack.

For a fixed strategy D, we define the best response probability by

sup
A

P
A,D
ADD (TA) or dually inf

D
P

A,D
ADD (TA) if we fixA, instead.

One possibility, how to approximate this metric algorithmically is as follows.
We obtain a conservative approximation by omitting the unknown strategy A in
the composition in Definition 6. This way, we obtain an STA that still contains
substantial non-determinism (of the attacker). Finally, we can approximate [16]
the maximum probability of the set of traces TA.

When no strategy is fixed, we define the Stackelberg value by

inf
D

sup
A

P
A,D
ADD(TA).

This value corresponds to the probability of a successful attack in the situation
when the defender first chooses publicly its strategy D and then the attacker
reacts by its best-response to this fixed strategy D.

Existing algorithms for STA so far do not allow us to compute this value or
optimal strategies of the players. This urges for application of heuristic analy-
sis techniques or for further fundamental research on games over non-Markovian
stochastic processes (in the spirit of [9,10]). In particular, understanding of struc-
ture of optimal or ε-optimal strategies is vital for obtaining analysis algorithms.

6 Case Study

In this section, we further illustrate the potential of ADD on a toy problem from
the domain of cyber-security. We also show what analysis results can be obtained
with the tool support currently available.

The Attack-Defence Diagram in Fig. 9 models a student who intends to steal
an exam, and a professor who wants to identify and report any such attempt.
This model captures three possibilities to steal an exam: to threat or to bribe the
professor’s secretary, to get access to the server at which the exam is stored, or
to steal a printout of the exam from the professor’s office. Each of these subgoals
is refined further.
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Fig. 9. Attack-Defence Diagram for the Scenario “Steal Exam”

The gate 
= tt evaluates to tt unless its input equals tt, and otherwise to
uu. Encoding this gate in 3VL is straightforward (thereby demonstrating the
practical benefits of completeness with respect to 3VL). The PAND gate (priority
AND) becomes true if the first input turns to tt before the second one, and false if
this happens in reverse order. Otherwise, this gate is undefined (uu). Encoding
this behaviour using 3VL and an IF gate is straightforward.

We specified the model in a specialized DOT-file format for which have
developed a prototypical tool to automatically translate such an ADD to Mod-
est [7,15]. The analysis is then performed using the Modest toolset [18], using
the modes tool for statistical model checking. Due to Lemma 1, the resolution of
non-determinism does not matter (we applied “as-soon-as-possible”-schedulers
with uniform resolution of non-deterministic choice). We performed 17, 000 sim-
ulation runs per configuration considered in order to achieve a significance level
below 0.01.

For this case, our analysis focus is on a what-if analysis of the success proba-
bility of the attacker (student), and the defender (i.c. the professor). We consider
the following fixed strategy of the attacker:

– The attacker first tries to get a digital copy of the exam. He tries to hack the
server after three hours and tries to guess the password four hours later.

– He starts to prepare a bribe one day after.
– He tries to break into the office again a day later. He tries to find the office

at day, and waits for the night three time units later to get the key and to
break shortly after into the office.

As the baseline strategy of the defender, we check whether it is enough for
a professor to only change his password every two weeks (which amounts to no
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change within the studied time frame). We also consider security parameters at
the campus part of the defence measures: We assume that a guard visits each
place about every seven to eight hours. We bound the time horizon by 72 time
units before the exam, in which the exam is assumed to be finished and printed.

In Fig. 10 on the left, the success probability depending on the time for the
attacker and the defender is plotted. The attacker has a chance of about 2% of
being successful with his attack within one day. After three days, he already has
a chance of more than 5%.

Fig. 10. Development of success probability over time for Defender and Attacker in the
original scenario (on the left) and after applying the countermeasures (on the right).
Thus, the graphs plot the probability that the player’s top gate evaluates to tt at time t.

In the following, we discuss the possibilities how to increase the security of the
system. As a countermeasure, we analyse a more regularly change of the password
for the server. The professor now updates the password every six hours in the
last three days before the exam takes place. In addition, we consider stronger
campus security; the guards visit each place every four to five hours instead of
every seven to eight hours.

The resulting success probabilities for attacker and defender depending on
time can be found in Fig. 10 on the right. The plot shows a significant increase
in the success probability of the defender and a slight decrease in the success
probability of the attacker – it now never reaches 5%. The latter is thus not
significantly decreased: Neither countermeasures directly influence the probabil-
ity of getting the correct exam, only the time frame to find the exam shortens.
That is why the probability that only the intruder leaves traces in the office
increases. To decrease the success probability of the attacker even further, a
countermeasure must be applied which makes it harder to get the correct exam.
For example, not to store the exam in the office or not to save its digital copy
on a server.
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7 Discussion

In this paper, we have introduced Attack-Defence Diagrams as a convenient
and very expressive modelling technique for the conflicting interests of attack-
ers and defenders of security-critical systems. ADDs come with an easy-to-use
graph-based syntax which is equipped with a compositional semantics mapping
on stochastic timed automata. This semantics is natural to interpret as a game
played between attacker and defender, where three-valued logic echoes the tri-
chotomy of the basic game steps being either undecided, or being won by either
attacker or defender. The formal link to STA makes ADDs amenable for model
checking via the Modest Toolset. Indeed, a modelling study has demonstrated
the modelling power of ADDs, and the principal effectiveness of the approach,
if fixing particular player strategies. This enables the study of what-if questions
as well as the derivation of many other useful metrics.

As already indicated there is a large spectrum of research question that arise
especially with respect to the power that players may have, if one ranges over
whole families of strategies. The ADD formalism can be seen as the semantic
nucleus for meaningful discussions and results in this respect.
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Abstract. Recently, several composition results have been established,
showing that two cryptographic protocols proven secure against a
Dolev-Yao attacker continue to afford the same security guarantees when
composed together, provided the protocol messages are tagged with the
information of which protocol they belong to. The key technical tool used
to establish this guarantee is a separation result which shows that any
attack on the composition can be mapped to an attack on one of the com-
posed protocols running in isolation. We consider the composition of pro-
tocols which, in addition to using cryptographic primitives, also employ
randomization within the protocol to achieve their goals. We show that if
the protocols never reveal a secret with a probability greater than a given
threshold, then neither does their composition, given that protocol mes-
sages are tagged with the information of which protocol they belong to.

1 Introduction

The design of correct cryptographic protocols is a highly non-trivial task, and
security flaws are often subtle. Attacks on many protocols that were previously
“proved” secure by hand, have been discovered. One approach that improves the
confidence in the correctness of security protocols is formal analysis. In order to
make the analysis amenable to automation, usually the assumption of perfect cryp-
tography is made. In this “Dolev-Yao” framework, protocol messages are symbolic
terms identified modulo an equational theory (and not bit-strings) that model
cryptographic operations. Security is then proven in the presence of an omnipo-
tent attacker that can read all messages sent on public channels by protocol partic-
ipants, remember the (potentially unbounded) communication history, and (non
deterministically) inject new messages in the network addressed to particular par-
ticipants while remaining anonymous. This Dolev-Yao model has shown to be very
successful in identifying security flaws.

Cryptographic protocols are often proven secure in isolation. In practice, how-
ever, they may be executing concurrently or sequentially, in a modular fash-
ion, with other protocols. For example, a number of security protocols involve
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a sub-protocol in which short-term secret keys are exchanged. While analyzing
such protocols, often the sub-protocol is abstracted away by assuming that the
protocol participants have successfully shared secrets. However, two cryptographic
protocols proven secure independently may not remain secure if they are executed
compositionally. The central problem is that these protocols may share some secret
data, as in the key exchange situation described above.

Hence, a number of recent papers have identified sufficient conditions under
which such protocol compositions can be proven secure — safety properties are
considered in [2,3,5,16–20,22,28–31] and indistinguishability properties in [3,4],
while [20,28,30] provide a general framework for proving that protocols com-
pose securely. Other papers [2,29] essentially show that protocol compositions
are secure if messages from one protocol cannot be confused with messages from
another protocol. [11] shows that this continues to be the case even when dishonest
participants do not tag their messages properly. This can be ensured if certain pro-
tocol transformations are made (see for example [4,17,18,22]). Essentially, these
protocol transformations require that all protocol messages are tagged with the
protocol name and protocol instance to which they belong. The exact choice of
tagging scheme depends on the desired security property; incorrect tagging can
actually make a secure protocol insecure [22]. In the computational model, the
problem of composing protocols securely has been studied in [9,10].

The focus of this paper is to extend this work on secure protocol composi-
tion to protocols that employ randomization. Randomization plays a key role
in the design of algorithmic solutions to problems arising in security. For exam-
ple, randomization is essential in implementing cryptographic primitives such as
encryption and key generation. Randomization is also used in cryptographic pro-
tocols to achieve security guarantees such as fair exchange (see [7,23]), anonymity
(see [14,25,32]), voter privacy in electronic voting (see [33]) and denial of service
prevention (see [27]).

We study the problem of when the composition of a (randomized) sub-
protocolP followedby (randomized) sub-protocolQ is secure. For non-randomized
protocols, this problem was studied in [19]. Our composition framework gener-
alizes that of [19] to handle sequential, parallel and a form of vertical composi-
tion while extending to randomized protocols. They show that if one can prove
P and Q do not reveal shared secrets when run in isolation (in that case Q is
assumed to generate fresh secret keys), then the sequential composition of P and
Q does not reveal any secret of Q if the protocol messages are tagged with the
information of which protocol they belong to. The key technical tool used to
establish this guarantee is a separation result which shows that any attack on
the composition can be mapped to an attack on one of P or Q. This is achieved
byfirst showing that, as the protocol messages are tagged, messages from one
protocol cannot be confused with the messages of the other protocol. Then an
attack trace can be simply separated into traces of P and Q. We study the same
problem for the case when P and Q are randomized protocols. Our composi-
tion framework generalizes that of [19] to handle sequential, parallel and a form
of vertical composition while extending to randomized protocols. The protocols



Composing Protocols with Randomized Actions 191

themselves are expressed in a variant of the probabilistic applied-pi calculus [26]
which is an extension of applied pi-calculus [1]. The Probabilistic applied-pi cal-
culus is a convenient formalism to describe and analyze randomized security pro-
tocols in the Dolev-Yao model.

Contributions: Our first composition result is for the composition of one session
of P and one session of Q. We show that if P (in isolation) is secure with probability
at least p (i.e., the shared secrets are not leaked) and Q is secure with probability
at least q, then the composed protocol is secure with probability at least pq, pro-
vided the protocol messages are tagged with the information of the protocol to
which they belong. Although we exploit some techniques used in [19] to establish
this result, there are important differences. First, the separation result in [19] does
not carry over to the randomized setting. This is because an attack on the compo-
sition of P and Q is no longer a trace, but is instead a tree, as the protocol itself
makes random choices. As a consequence, in different branches representing differ-
ent resolutions of the randomized coin tosses, it is possible that the attacker may
choose to send different messages (See Example 4). In such a case, an attack on the
composition of P and Q cannot be separated into an attack on P and an attack on
Q. Instead, we show that if there is an attack on the composition of P and Q then
either we can extract an attack on P which succeeds with probability > p or there
is an attack on Q which succeeds with probability > q.

Another challenge manifested in the context of randomized protocols is that
one must consider adversaries whose actions do not depend on the result of pri-
vate coin tosses made by protocol participants, as observed in [8,12,13,15,21,24].
In order to faithfully model the privacy of coin tosses, we mandate that an attacker
always take the same actions in any two different probabilistic branches in a run of
a protocol if its views of the protocol run in the two branches is exactly the same.
This restriction is adopted from [8,12,13,15,21,24], and is the first formalization
of this concept within the applied-pi calculus. As demonstrated in Example 3, this
class of attackers allows privacy guarantees, typically modeled as indistinguisha-
bility properties, to instead be modeled as reachablility properties. Considering
a more restricted class of attackers imposes additional challenges in our setting,
as membership in this sub-class of attackers must be maintained when mapping
attack traces on composed protocols to attacks traces on the individual protocols
constituting the composition.

Our second composition result concerns multiple sessions of the composed pro-
tocol. Here, we would like to show that if n sessions of P are secure with prob-
ability at least p and n sessions of Q are secure with probability at least q then
n sessions of the composed protocol are secure with probability at least pq, pro-
vided the protocol messages are tagged with the information of which protocol
they belong to. Indeed, a similar result is claimed in [19] for the non-randomized
protocols. Unfortunately, this result is not valid even for nonrandomized proto-
cols and we exhibit a simple example which contradicts this desired result (See
Example 6). Essentially, the reason for this failure is that, in the claimed result,
the n sessions of Q are assumed to generate fresh shared secrets in every session;
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but P may not be guaranteeing this freshness. Thus, messages of one session can
get confused with messages of other sessions. We establish a weaker composition
result in which we assume that the messages of each session of Q are tagged with
a unique session identifier in addition to the protocol identifier. The use of session
identifiers ensures that the messages of one session cannot be confused with other
sessions.

Finally, we also consider the case for protocols containing an unbounded num-
ber of sessions. For this case, we observe that a composition result is only possible
when P and Q are secure with probability exactly 1. This is because if m sessions of
a protocol leak a secret with probability r > 0 then by running mk sessions we can
amplify the probability of leaking the secret. This probability approaches 1 as we
increase k. We show that if an unbounded number of sessions of P are secure with
probability 1 and anunbounded number of sessions ofQ are securewith probability
1 then an unbounded number of sessions of the composed protocol are secure with
probability 1, if the protocol messages are tagged with the information of which
protocol they belong to and the messages of each session of Q are tagged with a
unique session identifier.

The paper is organized as follows. In Sect. 2 we give relevant background infor-
mation. Section 3 presents our processes algebra for randomized protocols and
Sect. 4 gives our main composition results. Section 5 shows how this result can be
extended to protocols with multiple sessions.

2 Preliminaries

We will start by discussing some standard notions from probability theory, Markov
Chains and Markov Decision Processes. A process algebra for modeling security
protocols with coin tosses will then be presented in Sect. 3. This process algebra
closely resembles that of [26], which extends the applied π-calculus by the inclu-
sion of a new operator for probabilistic choice. Following [19], our process calculus
will also include several limitations necessary to achieve our results. In particular,
conditionals no longer include else branches and we consider only a single public
channel.

2.1 Probability Spaces, Markov Chains

We will assume the reader is familiar with probability spaces and Markov chains
and give only the necessary definitions. A (sub)-probability space on S is a tuple
Ω = (X,Σ, μ) where Σ is a σ-algebra on X and μ : Σ → [0, 1] is a countably
additive function such that μ(∅) = 0 and μ(X) ≤ 1. The set Σ is said to be the
set of events and μ the (sub)-probability measure of Ω. For F ∈ Σ, the quantity
μ(F ) is said to be the probability of the event F . If μ(X) = 1 then we call μ a
probabilitymeasure.Given two (sub)-probabilitymeasuresμ1 andμ2 on ameasure
space (S,Σ) as well as a real number p ∈ [0, 1], the convex combination μ1 +p μ2

is the (sub)-probability measure μ such that for each set F ∈ Σ we have μ(F ) =
p · μ1(F ) + (1 − p) · μ2(F ). The set of all discrete probability distributions over S
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will be denoted by Dist(S). Given any x ∈ S, the Dirac measure on S, denoted δx,
is the discrete probability measure μ such that μ(x) = 1.

A discrete-time Markov chain (DTMC) is used to model systems which exhibit
probabilistic behavior. Formally, a DTMC is a tuple M = (Z, zs,Δ) where Z is a
countable set of states, zs the initial state and Δ : Z ↪→ Dist(Z) is the (partial)
transition function which maps Z to a (discrete) probability distribution over Z.
Informally, the process modeled by M evolves as follows. The process starts in
the state zs. After i execution steps, if the process is in the state z, the process
moves to state z′ at execution step (i + 1) with probability Δ(z)(z′). For the rest
of the paper, we will assume that for each state z, if Δ(z) is defined, then the set
{z′ | Δ(z)(z′) > 0} is finite. An execution of M is a (finite or infinite) sequence
z0 −→ z1 −→ z2 · · · such that z0 = zs and for each i ≥ 0, Δ(zi)(zi+1) > 0. The
function Δ can be extended to a probability measure on the σ-algebra genereted
by the set of all executions of M.

2.2 Partially Observable Markov Decision Processes (POMDP)s

POMDPs are used to model processes which exhibit both probabilistic and non-
deterministic behavior, where the states of the system are only partially observ-
able. Formally, an POMDP is a tuple M = (Z, zs, Act,Δ,≡) where Z is a count-
able set of states, zs ∈ Z is the initial state, Act is a (countable) set of actions,
Δ : Z×Act ↪→ Dist(Z) is a partial function called the probabilistic transition rela-
tion and ≡ is an equivalence relation on Z. Furthermore, we assume that for any
action α and two states z1 and z2 such that z1 ≡ z2, Δ(z1, α) is defined iff Δ(z2, α)
is defined. As a matter of notation, we shall write z

α−→ μ whenever Δ(z, α) = μ.
A POMDP is like a DTMC except that at each state z, there is a choice amongst
several possible probabilistic transitions. The choice of which probabilistic transi-
tion to trigger is resolved by an attacker. Informally, the process modeled by M
evolves as follows. The process starts in the state zs. After i execution steps, if the
process is in the state z, then the attacker chooses an action α such that z

α−→ μ
and the process moves to state z′ at the (i + 1)-st step with probability μ(z′). The
choice of which action to take is determined by the view of the execution observed
by the attacker thus far.

An execution ρ in the POMDP M is a (finite or infinite) sequence z0
α1−→ z1

α2−→
z2 · · · such that z0 = zs and for each i ≥ 0, zi

αi+1−−−→ μi+1 and μi+1(zi+1) >
0. The set of all finite executions of M will be denoted by Exec(M) and the set
of all infinite executions will be denoted by Exec∞(M). If ρ = z0

α1−→ z1
α2−→

z2 · · · αm−−→ zm is a finite execution then we write last(ρ) = zm and say the length
of ρ, denoted |ρ| is m. An execution ρ1 is said to be a one-step extension of the
execution ρ = z0

α1−→ z1
α2−→ z2 · · · αm−−→ zm if there exists αm+1 and zm+1 such

that ρ1 = z0
α1−→ z1

α2−→ z2 · · · αm−−→ zm
αm+1−−−−→ zm+1. In this case, we say that

ρ1 extends ρ by (αm+1, zm+1). An execution is called maximal if it is infinite or
if it is finite and has no one-step extension. For an execution ρ = z0

α1−→ z1
α2−→

z2 · · · αm−−→ zm we write tr(ρ) to represent the trace of ρ, defined as the sequence
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z0/≡ α1−→ z1/≡ α2−→ z2/≡ · · · αm−−→ zm/≡. The set of all traces is denotedTrace(M).
Informally, a trace models the view of the attacker.

As discussed above, the choice of which transition to take in an execution
is resolved by an attacker. Formally, an attacker A : Trace(M) ↪→ Act is a
partial function. An attacker A resolves all non-determinism and the resulting
behavior can be described by a DTMC MA = (Exec(M), zs,Δ

A) where for each
ρ ∈ Exec(M),ΔA(ρ) is the discrete probability distribution on Exec(M) such that
ΔA(ρ) is defined if and only if Δ(last(ρ),A(ρ)) is defined. If defined then

ΔA(ρ)(ρ1) =

⎧⎪⎨
⎪⎩

Δ(last(ρ), α)(z)
α = A(ρ), z = last(ρ1),
and ρ1 extends ρ by (α, z).

0 otherwise

POMDPs and State-Based Safety Properties. Given a POMDP M =
(Z, zs, Act,Δ,≡), a set Ψ ⊆ Z is said to be a state-based safety property. An exe-
cution κ ∈ Exec(MA) is said to satisfy Ψ if for each state ρ = z0

α1−→ z1
α2−→

z2 · · · αm−−→ zm in κ is such that zj ∈ Ψ for all 0 ≤ j ≤ m. We say M satisfies Ψ with
probability ≥ p against the attacker A (written MA |=p Ψ) if the measure of the
set {κ |κ is an execution of MA and κ 	|= Ψ} in the DTMC MA is > 1−p. We say
that M satisfies Ψ with probability ≥ p (written M |=p Ψ) if for all adversaries
A, MA |=p Ψ .

2.3 Equational Theories and Frames

A signature F contains a finite set of function symbols, each with an associated
arity. We assume a countably infinite set of special constant symbols N , which we
call names and use to represent data generated freshly during a protocol execu-
tion. Variable symbols are the union of two disjoint sets X and Xw which will be
used as protocol and frame variables, respectively. It is required that variable sym-
bols are disjoint from F . Terms are built by the application of function symbols to
variables and terms in the standard way. Given a signature F and Y ⊆ X ∪ Xw,
we use T (F ,Y) to denote the set of terms built over F and Y. The set of variables
occurring in a term is denoted by vars(t). A ground term is one that contains no
free variables.

A substitution σ is a function that maps variables to terms. The set dom(σ) =
{x ∈ X ∪ Xw | σ(x) 	= x} is said to be the domain of the substitution σ. For the
rest of the paper, each substitution will have a finite domain. A substitution σ with
domain {x1, ..., xk} will be denoted as {x1 �→ t1, ..., xk �→ tk} if σ(xi) = ti. The
set {t1, .., tk} shall be denoted by ran(σ). A substitution σ is said to be ground if
every term in ran(σ) is ground and a substitution with an empty domain shall be
denoted as ∅. A substitution can be extended to terms in the usual way. We shall
write tσ for the term obtained by applying the substitution σ to the term t.

Our process algebra is parameterized by a non-trivial equational theory
(F , E), where E is a set of F-Equations. By a F-Equation, we mean a pair
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l = r where l, r ∈ T (F \ N ,X ) are terms that do not contain names. Two terms
s and t are said to be equal with respect to an equational theory (F , E), denoted
s =E t, if E � s = t in the first order theory of equality. For equational theories
defined in the preceding manner, if two terms containing names are equivalent,
they will remain equivalent when the names are replaced by arbitrary terms. We
often identify an equational theory (F , E) by E when the signature is clear from
the context. Processes are executed in an environment that consists of a frame ϕ
and a binding substitution σ. Formally, σ : X → T (F) is a binding substitution
that binds the variables of the processes and ϕ : Xw → T (F) is called a frame.

Two frames ϕ1 and ϕ2 are said to be statically equivalent if dom(ϕ1) =
dom(ϕ2) and for all r1, r2 ∈ T (F\N ,Xw) we have r1ϕ1 =E r2ϕ1 iff r1ϕ2 =E r2ϕ2.
Intuitively, two frames are statically equivalent if an attacker cannot distinguish
between the information they contain. A term t ∈ T (F) is deducible from a frame
ϕ with recipe r ∈ T (F \ N , dom(ϕ)) in equational theory E, denoted ϕ �r

E t, if
rϕ =E t. We often omit r and E and write ϕ � t if they are clear from the context.

For the rest of the paper, Fb and Fc are signatures with disjoint sets of func-
tion symbols and (Fb, Eb) and (Fc, Ec) are non-trivial equational theories. The
combination of these two theories will be (F , E) = (Fb ∪ Fc, Eb ∪ Ec).

3 Process Syntax and Semantics

Our process syntax and semantics is similar to that of [19] with the addition of an
operator for probabilistic choice. It can also been seen as a variant of [26].

Process Syntax: For technical reasons, we assume a countably infinite set of
labels L and an equivalence relation ∼ on L that induces a countably infinite set
of equivalence classes. For l ∈ L, [l] denotes the equivalence class of l. We use
Lb and Lc to range over subsets of L such that Lb ∩ Lc = ∅ and both Lb and
Lc are closed under ∼. We assume each equivalence class contains a countably
infinite number of labels. Each connective in our grammar will come with a label
from L, which will later be used to identify the process performing a protocol step
after a composition takes place. The equivalence relation will be used to mask the
information an attacker can obtain from the internal actions of a process, in the
sense that, when an action with label l is executed, the attacker will only be able
to infer [l].

The syntax of processes is introduced in Fig. 1. It begins by introducing what
we call basic processes, which we will denote by B,B1, B2, ...Bn . In the definition
of basic processes, p ∈ [0, 1], l ∈ L, x ∈ X and ci ∈ {�, s = t}∀i ∈ {1, ..., k} where
s, t ∈ T (F \ N ,X ). In the case of the assignment rule (x := t)l, we addition-
ally require that x 	∈ vars(t). Intuitively, basic processes will be used to represent
the actions of a particular protocol participant. 0l is a process that does nothing
and νxl is the process that creates a fresh name and binds it to x. The process
(x := t)l assigns the term t to the variable x. The test process [c1 ∧ ... ∧ ck]l ter-
minates if ci is � or ci is s = t where s =E t for all i ∈ {1, ..., k} and otherwise,
if some ci is s = t and s 	=E t, the process deadlocks. The process in(x)l reads a
term t from the public channel and binds it to x and the process out(t)l outputs a
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Basic Processes
B ::= 0l νxl (x := t)l [c1 ∧ ... ∧ ck]l in(x)l out(t)l (B ·l B) (B ⊕l

p B)

Basic Contexts
D[�] ::= � B D[�] ·l B B ·l D[�] D[�] ⊕l

p D[�]

Contexts [ai ∈ {νx, (x := t)}]

C[�1, ..., �m] ::= al1
1 · ... · aln

n · (D1[�1]|ln+1D2[�2]|ln+2 ...|ln+m−1Dm[�m])

Fig. 1. Process Syntax

term on the public channel. The processes P ·l Q sequentially executes P followed
by Q whereas the process P ⊕l

p Q behaves like P with probability p and like Q with
probability 1 − p.

In Fig. 1, basic processes are extended to include a special process variable
� and �1, ...,�m are used to represent distinct processes variables. The result-
ing object is a basic context, which we will denote by D[�], D1[�], D2[�], ...,
Dn[�]. Notice that only a single process variable can appear in a basic context.
D1[B1] denotes the process that results from replacing every occurrence of � in
D1 by B1. A context is then a sequential composition of fresh variable creations
and variable assignments followed by the parallel composition of a set of basic
contexts. The prefix of variable creations and assignments is used to instanti-
ate data common to one or more basic contexts. In the definition of contexts,
a ∈ {νx, (x := t)}. A process is nothing but a context that does not contain any
process variables. We will use C,C1, C2, ..., Cn to denote contexts and P , Q or R
to denote processes. For a context C[�1, ...,�m] and basic processes B1, ..., Bm,
C[B1, ..., Bm] denotes the process that results from replacing the each process
variable �i by Bi. The binding constructs in a process are assignment, input and
fresh name creation. When a variable is bound in B1, all occurrences of the vari-
able in B2 are bound in B1 · B2. However, in B1 ⊕p B2, a variable can occur
free in B1 and bound in B2, or vice versa. A process containing no free variables
is called ground.

Definition 1. A context C[�1, ...,�m] = a1 · ... · an · (D1[�1]|...|Dm[�m]) is said
to be well-formed if every operator has a unique label and for any labels l1 and l2
occurring in Di and Dj for i, j ∈ {1, 2, ...,m}, i 	= j iff [l1] 	= [l2].

For the remainder of this paper, contexts are assumed to be well-formed.
A process that results from replacing process variables in a context by basic
processes is also assumed to be well-formed. Unless otherwise stated, we will
always assume that all of the labels from a basic process come from the same
equivalence class.
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Convention 1. For readability, we will omit process labels when they are not rel-
evant in a particular setting. Whenever new actions are added to a process, their
labels are assumed to be fresh and not equivalent to any existing labels of that process.

The following example illustrates how protocol with randomized actions can
be modeled using our process syntax.

Example 1. In a simple DC-net protocol, two parties Alice and Bob want to
anonymously publish two confidential bits mA and mB, respectively. To achieve
this, Alice and Bob agree on three private random bits k0, k1 and sb and output
a pair of messages according to the following scheme. In our specification of the
protocol, all of the private bits will be generated by Alice.

If sb = 0 Alice: MA,0 = k0 ⊕ mA, MA,1 = k1
Bob: MB,0 = k0, MB,1 = k1 ⊕ mB

If sb = 1 Alice: MA,0 = k0, MA,1 = k1 ⊕ mA

Bob: MB,0 = k0 ⊕ mB , MB,1 = k1

From the protocol output, the messages mA and mB can be retrieved as MA,0⊕
MB,0 and MA,1⊕MB,1. The party to which the messages belong, however, remains
unconditionally private, provided the exchanged secrets are not revealed. This pro-
tocol can be modeled using the following equational theory.

Fb = {0, 1,⊕, enc, dec, 〈, 〉, fst, snd}
Eb = {dec(enc(m, k), k) = m, x ⊕ 0 = x x ⊕ x = 0

x ⊕ y = y ⊕ x (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)
fst(〈x, y〉) = x snd(〈x, y〉) = y}

The role of Alice in this protocol is defined in our process syntax as

A = A0 · (mA := 0 ⊕ 1
2

mA := 1)·
((sb := 0) · out(enc(sb, k)) · out(〈k0 ⊕ mA, k1〉)⊕ 1

2

(sb := 1) · out(enc(sb, k)) · out(〈k0, k1 ⊕ mA〉))
A0 = (k0 = 0 ⊕ 1

2
k0 = 1) · (k1 = 0 ⊕ 1

2
k1 = 1) · out(enc(〈k0, k1〉, k))

We now give the specification of Bob’s protocol B1 | B2 below.

B0 = in(z0) · in(z1) · (k0 = fst(dec(z0, k)))·
(k1 = snd(dec(z1, k))) · (sb = dec(z1, k))

B1 = B0 · (mB = 0 ⊕ 1
2

mB = 1) · out(enc(mB , k)) · [sb = 0] · out(〈k0, k1 ⊕ mB〉)
B2 = B0 · in(z2) · (mB = dec(z2, k)) · [sb = 1] · out(〈k0 ⊕ mB, k1〉)
Notice that the output of Bob depends on the value of Alice’s coin flip. Because our
process calculus does not contain else branches, the required functionality is sim-
ulated using the parallel and test operators. Also notice that the communication
between Alice and Bob in the above specification requires a pre-established secret
key k. This key can be established by first running some key exchange protocol,
which in our case, will be modeled by a context C[�1,�2,�3] = νk · (�1|�2|�3).
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INPUT

r ∈ T (F \ N , X ) ϕ �r t x �∈ dom(σ)

(in(x)l, ϕ, σ)
(r,[l])−−−−→ δ(0,ϕ,σ∪{x�→t})

NEW

x �∈ dom(σ) n is a fresh name

(νxl, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ,σ∪{x�→n})

OUTPUT

vars(t) ⊆ dom(σ)

(out(t)l, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ∪{w(|dom(ϕ)|+1,[l]) �→tσ},σ)

TEST

∀i ∈ {1, ..., n}, ci is � or ci is s = t where vars(s, t) ⊆ dom(σ) and sσ =E tσ

([c1 ∧ ... ∧ cn]l, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ,σ)

ASSIGN

vars(t) ⊆ dom(σ) x �∈ dom(σ)

((x := t)l, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ,σ∪{x�→tσ})

NULL

(Q0, ϕ, σ)
α−→ μ

(0 ·l Q0, ϕ, σ)
α−→ μ

SEQUENCE

Q0 �= 0 (Q0, ϕ, σ)
α−→ μ

(Q0 ·l Q1, ϕ, σ)
α−→ μ ·l Q1

PBRANCH (Q1 ⊕l
p Q2, ϕ, σ)

(τ,[l])−−−−→ δ(Q1,ϕ,σ) +p δ(Q2,ϕ,σ)

PARALLELL

(Q0, ϕ, σ)
α−→ μ

(Q0|lQ1, ϕ, σ)
α−→ μ|lQ1

PARALLELR

((Q1, ϕ, σ)
α−→ μ

(Q0|lQ1, ϕ, σ)
α−→ Q0|lμ

Fig. 2. Process semantics

Process Semantics:Given a process P , an extended process is a 3-tuple (P,ϕ, σ)
whereϕ is a frame andσ is a binding substitution. Semantically, a groundprocessP
is a POMDP [[P ]] = (Z, zs, Act,Δ,≡), where Z is the set of all extended processes,
zs is (P, ∅, ∅), Act = (T (F \ N ,Xw) ∪ {τ},L/ ∼) and Δ is a partial function from
extended processes to Act. We now give some additional notation preceding our
formal definitions of Δ and ≡. By μ ·l Q, we mean the distribution μ1 such that
μ1(P ′, ϕ, σ) = μ(P,ϕ, σ) if P ′ is P ·lQ and 0 otherwise. The distributions μ|lQ and
Q|lμ are defined analogously. The definition of Δ is given in Fig. 2. Observe that
we write (P,ϕ, σ) α−→ μ if Δ((P,ϕ, σ), α) = μ. Δ is well-defined, as basic processes
are deterministic and each equivalence class on L identifies a unique basic process.
Given an extended process η, let enabled(η) denote the set of all (§, [l]) such that
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(P,ϕ, σ)
(§,[l])−−−→ μ, § ∈ T (F \ N ,Xw) ∪ {τ} and l is the label of an input or output

action. Using this, we lift our notion of equivalence on frames from Sect. 2.3 to
an equivalence ≡ on extended processes by requiring that two extended processes
η = (P,ϕ, σ) and η′ = (P ′, ϕ′, σ′) are equivalent if enabled(η) = enabled(η′) and
ϕ =E ϕ′.

Definition 2. An extended process (Q,ϕ, σ) preserves the secrecy of x ∈ vars(Q)
in the equational theory (F , E), denoted (Q,ϕ, σ) |=E x, if there is no r ∈
T (F \ N , dom(ϕ)) such that ϕ �r

E xσ. We write Secret(x), for x ∈ vars(Q),
to represent the set of states of [[Q]] that preserve the secrecy of x. We also write
Secret({x1, ..., xn}) to denote Secret(x1) ∩ ... ∩ Secret(xn). We will often omit the
braces {, } for ease of notation.

Notation 1. Note that for process P and variables x1, ..., xn ∈ vars(P ),
Secret({x1, ..., xn}) is a safety property of [[P ]]. We shall write
P |=E,p Secret({x1, ..., xn}) whenever [[P ]] |=p Secret({x1, ..., xn}).

Example 2. Consider the DC-net protocol defined in Example 1. The correctness
property of the protocol is that, after the completion of the protocol, the origin of
the participants messages can be determined with probability at most 1

2 . That is,
an attacker can do no better than guess which position Alice’s message appears in.
This is the same as asserting that an attacker cannot infer the value of the secret bit
sb. In our process semantics, this can be modeled as a secrecy property as follows.
Let A′ = A·S where S = in(z)·[z = sb]·νs·out(s) and define C = νk ·(A′|B1|B2).
The inclusion of S in Alice’s specification requires an attacker to correctly identify
the message that belongs to Alice to derive the secret value s. Therefore, if the
statement νk · (A′|B1|B2) |=Eb, 12

Secret(s) is valid, no attacker can do better than
guess which message belongs to Alice.

4 Composition Results for Single Session Protocols

We are now ready to present our first composition results. Our focus here will begin
with the scenario where two principals run a key establishment protocol over the
signature Fc after which each principal uses the established secret to communi-
cate in a protocol over the signature Fb. We will then show how this result can be
extended to protocols operating over the same signature, provided the messages of
each protocol are tagged. Before formalizing our first result, we show how a simple
DC-net protocol using Diffie-Hellman (DH) for key exchange can be modeled in
our composition framework. Using the results from Theorem 1, the security guar-
antees of each sub-protocol are achieved for the full protocol.

Example 3. Consider the processes A′, B1 and B2, as defined in Example 2. Recall
that these processes describe a simple DC-net protocol designed to guarantee the
anonymity of the protocol’s participants. Further recall that the sub-protocols for
Alice (A′) and Bob (B1, B2) require a pre-established shared symmetric key k. A
formal specification of the DH key exchange protocol to establish this key is given
below. This process is parameterized by the signature Fc = {g} and equations
Ec = {(gx)y = (gy)x}.
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C[�0,�1,�2] = νy · in(a) · (Ak · �0|(k := ay) · �1|(k := ay) · �2|out(gy))
Ak = νx · out(gx) · in(b) · (k := bx)

Now if C[[�], [�], [�]] preserves the secrecy of the shared key k and νk ·
(A′|B1|B2) preserves the secrecy of k and s with probability at least 1

2 , then the
composed protocol C[A′, B1, B2] preserves the secrecy of s with probability at least
1
2 . That is, if the DC-net specification does not reveal which message belongs to
Alice, then neither does the DC-net protocol using DH key exchange to establish
a secret communication channel between Alice and Bob.

We now give our main result.

Theorem 1. Let C[�1, ...,�n] = νk1 · ... · νkm · (D1[�1] | D2[�2] | ... | Dn[�n])
be a context over Fc with labels from Lc, B1, B2, ..., Bn be basic processes over Fb

with labels from Lb, q1, q2 ∈ [0, 1] and xs ∈ ⋃n
i=1 vars(Bi) \ vars(C) such that:

1. fv(C) = ∅ and fv(Bi) ⊆ {xi}
2. vars(C) ∩ vars(Bi) ⊆ {xi} for i ∈ {1, ..., n}
3. C[B1, ..., Bn] is ground
4. C[[�]l0 , ..., [�]ln ] |=Ec,q1 Secret(x1, ..., xn) where l0, ..., ln ∈ Lb

5. νk · (x1 := k) · ... · (xn := k) · (B1|...|Bn) |=Eb,q2 Secret(x1, ..., xn, xs)

Then C[B1, ..., Bn] |=E,q1q2 Secret(xs).

Before describing the proof ideas behind Theorem 1, we highlight some of the
proof challenges in the following example.

Example 4. Consider the signatures Fa = {c} and Fb = {h} where c is a constant
and h is a 1-ary function symbol. Let Ea = Eb = ∅ and C[�1,�2] = C1 ·�1|C2 ·�2

be the context such that:

C1 = νxk · (out1(xk) ⊕ 1
2

out2(c))

C2 = νyk · (out3(yk) ⊕ 1
2

out4(c))

Essentially C1 generates xk and with probability 1
2 decides to reveal it. C2

generates yk and with probability 1
2 decides to reveal it. In both cases, when the

fresh values are not revealed, a constant is output in its place. Consider the basic
processes B1 and B2 defined as follows

B1 = in5(x) · [x = xk] · νxs · out6(xs)

B2 = in7(y) · [y = h(yk)] · νxs · out8(xs)

Consider the process P = C[B1, B2] and let C ′
1, C

′
2, σ, , ϕ1, ϕ2, ϕ12, σ

f , ϕf
1 , ϕf

2

and ϕf
12 be defined as follows:
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C ′
1 = out1(xk) ⊕ 1

2
out2(c)

C ′
2 = out3(yk) ⊕ 1

2
out4(c)

σ = {xk �→ k1, yk �→ k2}
ϕ0 = {w1 → c}
ϕ1 = {w1 → k1}
ϕ2 = {w1 → c, w2 → k2}
ϕ00 = {w1 → c, w2 → c}
ϕ10 = {w1 → k1, w2 → c}

ϕ12 = {w1 → k1, w2 → k2}
ϕ02 = {w1 → k1, w2 → c}
σf
1 = {xk �→ k1, yk �→ k2, x �→ k1, xs �→ k3}

σf
2 = {xk �→ k1, yk �→ k2, y �→ h(k1), xs �→ k3}

ϕf
1 = {w1 → k1, w2 → c, w4 �→ k3}

ϕf
2 = {w1 → c, w2 → k2, w6 �→ k3}

ϕf
12 = {w1 → k1, w2 → k2, w4 �→ k3}

The execution of P shown in Fig. 3 reveals xs with probability 3
4 . Observe that

the transitions out of the states labeling (B1|B2, ϕ1, σ) involve transitions of B1

while the transitions out of (B1|B2, ϕ2, σ) involve transitions of B2. If we try to
fire the same transitions out of (B1|B2, ϕ2, σ) as in (B1|B2, ϕ1, σ) the process will
deadlock because the attacker cannot deduce xk in ϕ2. From this, it is easy to see
that the execution shown in Fig. 3 cannot be written as an interleaving of one exe-
cution of C1|C2 and one execution of B1|B2. As a result, the proof technique of [19]
is not immediately applicable. Nevertheless, we will be able to show that P keeps
xs secret with probability at least 1

4 .
In the execution of P shown in Fig. 3, the attacker performs different actions

depending of the result of coin toss made by C1. When C1 outputs a nonce, B1 is
scheduled before B2. When C1 outputs the constant c, B2 is executed first. Such
an attack is valid, even when considering our restricted class of adversaries. The
reason is that the attacker can infer the result of the coin toss in C1 by observing
what is output.

The proof of Theorem 1 will utilize an extension of the seperation result from
[19], which intuitively says that for a context C and a basic process B, if the compo-
sition C[B], where C and B are over disjoint signatures and derive a set of variables
with probability q, can be transformed into the composition C ′[B′], where C ′ and
B′ represent α-renamings of C and B, such that vars(C ′) ∩ vars(B′) = ∅ and the
same secret derivation guarantees are achieved. Given this result, an attacker for
a composition of C[B] can be transformed into an attacker for a composition of
two protocols C ′ and B′ over disjoint variables. From this attacker A, we need to
construct and an attacker A′ for one of the sub-protocols C ′ or B′. Because C ′ and
B′ are simply α-renamings of C and B, A′ is sufficient for contradicting a secrecy
guarantee about one of the sub-protocols C or B. One of the challenges in con-
structing A′ is that the attacker A may use terms over Fb ∪ Fc. That is, it may
construct inputs using terms output by both of the sub-protocols C ′ and B′. Our
technique is to transform A into what we call a “pure”attacker, that constructs its
inputs for actions of C ′ (resp B′) using only terms output by actions of C ′ (resp
B′). We define this concept formally. Given a set of labels L closed under ∼, let
X L

w = {wi,[l] | wi,[l] ∈ Xw ∧ l ∈ L ∧ i ∈ N}
Definition 3. Let L be a set of labels closed under ∼ and F be a signature. An
attacker A for a process P is said to be pure with respect to (L,F) if whenever A
chooses the action (r, [l]) we have r ∈ T (F ,X L

w ).



202 M.S. Bauer et al.

(P, ∅, ∅)

(C′
1.B1|C′

2.B2, ∅, σ)

(B1|C′
2.B2, ϕ1, σ) (B1|C′

2.B2, ϕ0, σ)

(B1|B2, ϕ12, σ) (B1|B2, ϕ10, σ) (B1|B2, ϕ02, σ) (B1|B2, ϕ00, σ)

τ∗, 1

out1, 1
2 out2, 1

2

out3, 1
2 out4, 1

2 out3, 1
2 out4, 1

2

( , ϕf
12, σf

1 )

in5.out6, 1

( , ϕf
1 , σf

1 )

in5.out6, 1

( , ϕf
2 , σf

2 )

in7.out8, 1

Fig. 3. Execution of P . The solid edges are transitions of the context C and dotted edges
are transitions of the basic processes B1, B2. For convenience, the edges in the drawn
execution tree may compose of more than 1 action. The recipes used in in3 and in5 are
w1 and h(w2) respectively. The transition probabilities also label the edges.

For the kind of compositions we consider in Theorem 1, for example C ′[B′], an
attacker can be transformed into one that is pure with respect to both of the sub-
protocols C ′[�] and B′. This construction follows from the techniques outlined in
[19].

We are now ready to describe the crux of our composition theorem. The fun-
damental technical challenge of this result is to show that, for some context C[�],
process B and set of secrets S, if C[[�]] |=q1 Secret(S) and B |=q2 Secret(S), then
C[B] |=q1q2 Secret(S). In light of the preceding results, one must transform a pure
attacker for a composed protocol C[B] that reveals some secret values with prob-
ability ≥ 1− q1q2 into an attacker for one of the sub-protocols C or B that derives
the secret values with probability at least 1− q1 or 1− q2, respectively. This essen-
tially boils down to proving that an attacker for the asynchronous product of two
POMDP’s M1 and M2, denoted M1 ⊗ M2, can be transformed into an attacker
for either M1 or M2. This is achieved by transforming the attacker A for M1 ⊗M2

into an attacker A′ with the following two properties:

– A′ executes all of the actions from M1 before executing any actions from M2.
– For any two executions ρ, ρ′ ∈ Exec((M1 ⊗M2)A′

), if the projection of ρ and ρ′

onto their components from Mi (for i ∈ {1, 2}) produces two equivalent traces
and A′ picks an action from Mi, then A′(tr(ρ)) = A′(tr(ρ′)).

– A′ derives the secret values in S with probability greater than or equal to that
of the attacker A.

The details of this construction are quite involved, and can be found in the
accompanying technical report [6]. As a result of Theorem 1, one can reason about



Composing Protocols with Randomized Actions 203

protocols composed sequentially by taking a context with a single basic context
where a single hole appears at the end. The same is true for protocols composed
in parallel, as given by Corollary 1. In this setting, one considers a context built
over two basic contexts. One basic context contains only a hole, while the other
contains no holes.

Corollary 1. Let C be a basic process over Fc with labels from Lc and B be a basic
processes over Fb with labels from Lb and q1, q2 ∈ [0, 1] such that:

1. vars(C) ∩ vars(B) = ∅
2. C |=Ec,q1 Secret(xc) for xc ∈ vars(C)
3. B |=Eb,q2 Secret(xb) for xb ∈ vars(B)

Then (C|B) |=E,q1q2 Secret(xb, xc).

It is important to point out that the security guarantees of the composed
process may in fact be stronger than what we can prove utilizing Theorem 1. This
is because we always assume the worst case in that context assigns the same secret
values to each basic process. As a result, our composition result will in some cases
lead to only an under-approximation on the probability that a set of variables is
kept secret, as shown by the following example:

Example 5. Consider the signatures Fb = {h} and Fc = {} with empty equational
theories and the context defined as follows:

C[�1,�2] = νk1 · νk2 · (([x1 := k1] ⊕ 1
2

[x1 := k2]) · �1 | [x2 := k2] · �2)

Essentially, the context generates shared secrets x1 and x2 for two sub-
protocols �1 and �2 to be run in parallel. For the sub-protocol �1, it sets the secret
x1 to k1 with probability 1

2 and to k2 with probability 1
2 . In the second sub-protocol,

the shared secret x2 is set to k2. Now consider the sub-protocols B1 and B2 defined
as follows:

B1 = out(h(x1)) ⊕ 1
2

0

B2 = in(z) · [z = h(x2)] · νxs · out(xs)

B1 outputs h(x1) with probability 1
2 and with probability 1

2 does nothing. B2

checks if the attacker can construct h(x2) before revealing xs. It is easy to see that
C[B1, B2] reveals xs with probability 1

4 . This is because the attacker can construct
h(x2) when x1 and x2 are equal (which happens with probability 1

2 ) and when B1

reveals h(x1) (which also happens with probability 1
2 ). In-fact, we can easily show

that C[B1, B2] keeps xs secret with probability exactly 3
4 . However, Theorem 1 can

only show C[B1, B2] keeps xs secret with probability 1
2 , since in our composition

results, we assume that x1 and x2 get the same secret name.
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It is often necessary for protocols to share basic cryptographic primitives, such
as functions for encryption, decryption and hashing. We extend our composition
result to such protocols. The key ingredient for composition in this context is tag-
ging, a syntactic transformation of a protocol and its signature, designed to ensure
secure composition. Essentially, tagging a protocol appends a special identifier to
each of the messages that it outputs. When the protocol performs an input, it will
recursively test all subterms in the input message to verify their tags are consistent
with the protocol’s tag. One limitation with tagging is that its correctness largely
depends on the signature in question. As in [19], we will limit the class of crypto-
graphic primitives we consider to symmetric encryption and a hash function, with
the understanding that our results can be extended to primitives for asymmetric
encryption.

Let C be a context and B be a basic process, both over the equational theory
(Fenc, Eenc) where Fenc = {enc, dec, h} and Eenc = {dec(enc(m, rn, k), k) =
m}. To securely compose C and B, the terms occurring in each protocol must be
tagged by function symbols from disjoint equational theories. The tagging of two
protocols will be done in two steps. To begin, a signature renaming function d will
be applied to each of C and B with distinct values of d ∈ {b, c}. The function d

transforms a context C over the signature (Fenc, Eenc) to a context Cd by replacing
every occurrence of the function symbols enc, dec and h in C by encd, decd and
hd, respectively. The resulting context Cd is over the signature (Fd

enc, E
d
enc), for

Fd
enc = {encd, decd, hd} and Ed

enc = {decd(encd(m, rn, k), k) = m}. Given Cc

and Bb over the disjoint signatures Fc
enc and Fb

enc, the tagging function � � is then
applied to Cc and Bb, generating the the tagged versions of C and B. We omit the
details of this function but note that our tagging scheme is similar to that of [4].
The full details can be found in the technical report [6].

Essentially the tagging scheme enforces the requirement that, whenever a pro-
tocol manipulates a term, that term should be tagged with the identifier of the
protocol. This is achieving by prefixing every atomic action in a tagged protocol
with a conjunction of tests such that, if the terms manipulated by the atomic action
meet the aforementioned requirement, the tests will pass. Otherwise, the tests will
fail and further protocol actions will be blocked. Tagging is a means to enforce the
disjointness condition on the context and basic process signatures in Theorem 1.
In particular, we can show that an attack on a composition of two tagged protocols
originating from the same signature can be mapped to an attack on the composi-
tion of the protocols when the signatures are explicitly made disjoint. Given this,
we can prove an analogous result to Theorem 1 for tagged protocols.

Theorem 2. Let C[�1, ...,�n] = νk1 · ... ·νkm · (D1[�1] | D2[�2] | ... | Dn[�n]) be
a context over Fenc with labels from Lc, B1, B2, ..., Bn be basic processes over Fenc

with labels from Lb, q1, q2 ∈ [0, 1] and xs ∈ ⋃n
i=1 vars(Bi) \ vars(C) such that:

– fv(C) = ∅ and fv(Bi) ⊆ {xi}
– vars(C) ∩ vars(Bi) ⊆ {xi} for i ∈ {1, ..., n}
– C[B1, ..., Bn] is ground
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– C[[�]l0 , ..., [�]ln ] |=Eenc,q1 Secret(x1, ..., xn) where l0, ..., ln ∈ Lb

– νk · (x1 := k) · ... · (xn := k) · (B1|...|Bn) |=Eenc,q2 Secret(x1, ..., xn, xs).

Then �Cc[Bb
1, ..., B

b
n]� |=Eenc∪Etag,q1q2 Secret(xs).

5 Replication

In this section, we extend our composition result to protocols that can run multiple
sessions.1 We will begin by considering processes that contain only a bounded ver-
sion of the replication operator. The bounded replication operator has an explicit
bound that limits the number of times a process can replicate. We limit ourselves
to processes that contain only a single occurrence of this replication operator. This
restriction is not limiting for the applications we consider and it will simplify the
proofs. It is, however, possible to extends our results to a more general setting in
which a process can contain multiple occurrences of the replication operator.

We will start by showing that if the protocols C = νk1 · ... · νkm

· !n(C[�1]|...|C[�l]) and !n(B1|...|Bl) are proven secure with probability at least
p and q, respectively, then the composition νk1 · ... · νkm·!n(C[B1]|...|C[Bl]) is
secure with probability at least pq, provided the protocol messages are tagged with
both a protocol identifier and a unique session identifier. A similar result (with the
absence of the session identifier), has been claimed in [19] for nonrandomized proto-
cols (with p and q both being 1). However, we discovered a simple counterexample,
which works for the case of two sessions. Essentially the reason for this attack is
that protocol messages from one session can be confused with messages from the
other session.

Example 6. Consider the signaturesFb = {h, c} andFa = {}where c is a constant,
h is a 1-ary function symbol and E = Ea ∪ Eb = ∅. We will consider two sessions
of the composed protocol.

Let P be the process defined as:

P = νk1 · νk2·!2(P1|P2)

where P1 = (xk := k1) and P2 = (yk := k2). Let Q be the process defined as:

Q = !2(νk · ((xk := k) · Q1|(yk := k) · Q2))

Q1 = (in(y) · ([y = c] · outl(h(xk))|[y = h(xk)] · νxs · outl
′
(xs))

Q2 = 0.

Clearly, P keeps xk and yk secret with probability 1 and Q keeps xk, yk and xs

secret with probability 1. Theorem 3 from [19] would imply that xs is kept secret
by W = νk1 ·νk2·!2(P1 ·Q1 | P2 ·Q2) in both sessions of the protocol. However, we
can show that this is not the case. The reason is as follows. In both sessions of the

1 n sessions of P will be denoted by !nP.
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composed protocol, xk gets the same value. In the first session of the composed
protocol, when y is input by Q1, attacker sends the constant c. Thereafter, the
attacker learns h(xk) because Q1 outputs it. In the second session of the composed
protocol, the attacker sends h(xk) to Q1; the check [y = h(xk)] succeeds and the
attacker learns xs in this session.

In process calculus terms, this attack can be realized by the execution:

(W, ∅, ∅) →∗ (W ′, ∅, σ′) →∗ (W ′′, ϕ′′, σ′′)

where

W ′ = (Q1
1|Q2

1)
σ′ = {k1 �→ n1, k2 �→ n2, x

1
k �→ n1, y

1
k �→ n2,

x2
k �→ n1, y

2
k �→ n2}

W ′′ = 0
σ′′ = σ′ ∪ {y1 �→ c, y2 �→ h(n1), x2

s �→ n3}
ϕ′′ = {wl �→ h(n1), wl′ �→ n3}

Note above that we have used superscripts on variables xk, yk, y and xs in the
substitutions to indicate their values in different sessions. Essentially in this exe-
cution in (W ′, ∅, σ′), P is finished in both sessions and assigned xk and yk the same
values in both sessions. The role Q2 is also finished in both sessions. Q1

1 is the first
session of Q1 and Q2

1 is the second session of Q1. Now in Q1
1, the attacker inputs c

for y resulting in Q1
1 leaking h(n1). In Q2

1, the attacker can input h(n1) and learn
the value of xs generated.

Formally, a context containing bounded replication is defined as

C[�1, ...,�m] : : = al1
1 · ... · aln

n ·!ln(D1[�1]|ln+1D2[�2]|ln+2 ...|ln+m−1Dm[�m])

where a ∈ {νx, (x := t)} and n ≥ 2 is a natural number. The semantics for this
bounded replication operator is given in Fig. 4, where i, j ∈ N are used to denoted
the smallest previously unused indices. We will use P (i) to denote that process
that results from renaming each occurrence of x ∈ vars(P ) to xi for i ∈ N. When
P (i) or P (j) is relabeled freshly as in Fig. 4, the new labels must all belong to the
same equivalence class (that contains only those labels). The notation x∗ denotes
the infinite set {x0, x1, x2, ...}.

Our semantics imposes an explicit variable renaming with each application of
a replication rule. The reason for this is best illustrated through an example. Con-
sider the process !min(x) · P and the execution

(!min(x) · P, ∅, ∅) →∗ (in(x) · P |!m−1in(x) · P,ϕ, {x �→ t} ∪ σ)

where variable renaming does not occur. This execution corresponds to the
attacker replicating !min(x) · P , running one instance of in(x) · P and then repli-
cating !min(x) · P again. Note that, because x is bound at the end of the above
execution, the semantics of the input action cause the process to deadlock at
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B-REPLICATION

n > 2 l′ is a fresh label P (i) is relabeled freshly

(!lnP, ϕ, σ)
(τ,[l])−−−−→ δ

(P (i)|l′ !l
n−1P,ϕ,σ)

B-REPLICATIONn=2

l′ is a fresh label P (i), P (j) are relabeled freshly

(!l2P, ϕ, σ)
(τ,[l])−−−−→ δ

(P (i)|l′ P (j),ϕ,σ)

Fig. 4. Bounded Replication semantics

in(x). In other words, an attacker can only effective run one copy of !min(x) ·P for
any process of the form !min(x) ·P . It is also convenient to consider this restricted
version of α-renaming in view of secrecy. In particular, if a variable is α-named
arbitrarily with each application of “B-REPLICATION”, then the definition of
!lnP keeping x ∈ vars(P ) secret becomes unclear, or at least more complicated.

As mentioned in Example 6, our composition result must prevent messages
from one session of a process with bounded replication from being confused with
messages from another sessions. We achieve this in the following way. Our com-
posed processes will contain an occurrence of νλ directly following the occurrence
of a bounded replication operator. This freshly generated “session tag” will then be
used to augment tags occurring in the composed processes. We have the following
result.

Theorem 3. LetC[�1, ...,�n] = νk1·...·νkm·!uνλ·(D1[�1] |D2[�2] | ... |Dn[�n])
be a context overFenc with labels fromLc,B1, B2, ..., Bn be basic processes overFenc

with labels from Lb, q1, q2 ∈ [0, 1] and xs ∈ ⋃n
i=1 vars(Bi) \ vars(C) such that:

– fv(C) = ∅ and fv(Bi) ⊆ {xi}
– vars(C) ∩ vars(Bi) ⊆ {xi} for i ∈ {1, ..., n}
– λ 	∈ vars(P ) ∪ vars(Q)
– C[B1, ..., Bn] is ground
– C[[�]l0 , ..., [�]ln ] |=Eenc,q1 Secret(x1, ..., xn) where l0, ..., ln ∈ Lb

– νk · (x1 := k) · ... · (xn := k)·!m(B1|...|Bn) |=Eenc,q2 Secret(x1, ..., xn, x∗
s)

Then �νk1 · ... · νkm·!uνλ · (Dc
1[B

(b,λ)
1 ] | Dc

2[B
(b,λ)
2 ] | ... |

Dc
n[B(b,λ)

n ])� |=Eenc∪Etag,q1q2 Secret(x∗
s).

As a final result, we will show how protocols containing unbounded replication
can be composed. That is, we will consider processes over the following grammar.

C[�1, ...,�m] : : = al1
1 · ... · aln

n ·!l(D1[�1]|ln+1D2[�2]|ln+2 ...|ln+m−1Dm[�m])

where a ∈ {νx, (x := t)}. The semantics of this new replication operator are
given in Fig. 5, where again, i ∈ N is the smallest previously unused index.
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REPLICATIONN

l′ is a fresh label P (i) is relabeled freshly

(!lP, ϕ, σ)
(r,l)−−−→ δ(P (i)|l′ !lP,ϕ,σ)

Fig. 5. Replication semantics

As before, when P (i) is relabeled freshly, the new labels must all belong to the
same equivalence class.

As previously eluded to, we cannot state a result in the style of
Theorem 3 with non-trivial probabilities. This is because, in the unbounded set-
ting, a attacker can always amplify the probability of deriving a secret by running
an attack on more sessions of a protocol. Such a restriction makes our result for
unbounded processes almost identical to that of Theorem 6 from [19]. Our result,
however, has two main advantages. It elimiates the still applicable attack of Exam-
ple 6 while considering a richer class of processes.

Theorem 4. Let C[�1, ...,�n] = νk1 ·...·νkm·!νλ·(D1[�1] | D2[�2] | ... | Dn[�n])
be a context overFenc with labels fromLc,B1, B2, ..., Bn be basic processes overFenc

with labels from Lb and xs ∈ ⋃n
i=1 vars(Bi) \ vars(C) such that:

– fv(C) = ∅ and fv(Bi) ⊆ {xi}
– vars(C) ∩ vars(Bi) ⊆ {xi} for i ∈ {1, ..., n}
– λ 	∈ vars(P ) ∪ vars(Q)
– C[B1, ..., Bn] is ground
– C[[�]l0 , ..., [�]ln ] |=Eenc,1 Secret(x1, ..., xn) where l0, ..., ln ∈ Lb

– νk · (x1 := k) · ... · (xn := k)·!m(B1|...|Bn) |=Eenc,1 Secret(x1, ..., xn, x∗
s)

Then �νk1 ·...·νkm·!νλ·(Dc
1[B

(b,λ)
1 ] | Dc

2[B
(b,λ)
2 ] | ... | Dc

n[B(b,λ)
n ])� |=Eenc∪Etag,1

Secret(x∗
s).

6 Conclusions

We have studied the problem of securely composing two randomized security pro-
tocols. For one session, we show that if P is secure with probability p and Q is
secure with probability q then the composed protocol is secure with probability at
least pq if the protocol messages are tagged with the information of which protocol
they belong to. The same result applies to multiple sessions except that in addi-
tion the protocol messages of Q also need to be tagged with session identifiers. The
focus of this work has been secrecy properties. In terms of future work, we plan to
investigate when composition of randomized security protocols preserve indistin-
guishability properties.



Composing Protocols with Randomized Actions 209

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
28th ACM Symposium on Principles of Programming Languages (POPL 2001), pp.
104–115 (2001)

2. Andova, S., Cremers, C.J.F., Gjøsteen, K., Mauw, S., Mjølsnes, S.F., Radomirovic,
S.: A framework for compositional verification of security protocols. Inform. Com-
put. 206(2–4), 425–459 (2008)

3. Arapinis, M., Cheval, V., Delaune, S.: Composing security protocols: from confiden-
tiality to privacy. http://arxiv.org/pdf/1407.5444v3.pdf

4. Arapinis, M., Cheval, V., Delaune, S.: Verifying privacy-type properties in a modular
way. In: 25th IEEE Computer Security Foundations Symposium (CSF 2012), pp.
95–109. IEEE Computer Society Press, Cambridge (2012)

5. Arapinis, M., Delaune, S., Kremer, S.: From one session to many: dynamic tags
for security protocols. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008.
LNCS (LNAI), vol. 5330, pp. 128–142. Springer, Heidelberg (2008)

6. Bauer, M.S., Chadha, R., Viswanathan, M.: Composing Protocol with Randomized
Actions. Technical report, University of Illinois at Urbana-Champaign, Department
of Computer Science (2016)

7. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: A fair protocol for signing con-
tracts. IEEE Trans. Inf. Theory 36(1), 40–46 (1990)

8. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, P., Segala, R.:
Task-structured probabilistic I/O automata. In: Workshop on Discrete Event Sys-
tems (2006)

9. Canetti, R.: Universally composable security: a new paradigm for cryptographic pro-
tocols. In: Naor, M. (ed.) 42nd IEEE Symposium on Foundations of Computer Sci-
ence (FOCS 2001), pp. 136–145. IEEE Computer Society Press (2001)

10. Canetti, R., Herzog, J.C.: Universally composable symbolic analysis of mutual
authentication and key-exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006)

11. Carbone, M., Guttman, J.D.: Sessions and separability in security protocols. In:
Basin, D., Mitchell, J.C. (eds.) POST 2013 (ETAPS 2013). LNCS, vol. 7796, pp.
267–286. Springer, Heidelberg (2013)

12. Chadha, R., Sistla, A.P., Viswanathan, M.: Model checking concurrent programs
with nondeterminism and randomization. In: the International Conference on Foun-
dations of Software Technology and Theoretical Computer Science, pp. 364–375
(2010)

13. Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the sched-
uler. Information and Computation (2010) to appear

14. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient
untraceability. J. Cryptology 1(1), 65–75 (1988)

15. Cheung, L.: Reconciling Nondeterministic and Probabilistic Choices. PhD thesis,
Radboud University of Nijmegen (2006)

16. Chevalier, C., Delaune, S., Kremer, S.: Transforming password protocols to com-
pose. In: 31st Conference on Foundations of Software Technology and Theoretical
Computer Science, Leibniz International Proceedings in Informatics, pp. 204–216.
Leibniz-Zentrum für Informatik (2011)

17. Cortier, V., Delaitre, J., Delaune, S.: Safely composing security protocols. In:
Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 352–363. Springer,
Heidelberg (2007)

http://arxiv.org/pdf/1407.5444v3.pdf


210 M.S. Bauer et al.

18. Cortier, V., Delaune, S.: Safely composing security protocols. Formal Methods in
System Design 34(1), 1–36 (2009)
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Abstract. Bounding the number of agents is a current practice when
modeling a protocol. In 2003, it has been shown that one honest agent
and one dishonest agent are indeed sufficient to find all possible attacks,
for secrecy properties. This is no longer the case for equivalence proper-
ties, crucial to express many properties such as vote privacy or untrace-
ability.

In this paper, we show that it is sufficient to consider two honest
agents and two dishonest agents for equivalence properties, for deter-
ministic processes with standard primitives and without else branches.
More generally, we show how to bound the number of agents for arbi-
trary constructor theories and for protocols with simple else branches.
We show that our hypotheses are tight, providing counter-examples for
non action-deterministic processes, non constructor theories, or protocols
with complex else branches.

1 Introduction

Many decision procedures and tools have been developed to automati-
cally analyse cryptographic protocols. Prominent examples are ProVerif [8],
Avispa [3], Scyther [18], or Tamarin [21], which have been successfully applied to
various protocols of the literature. When modeling a protocol, it is common and
necessary to make some simplifications. For example, it is common to consider a
fix scenario with typically two honest and one dishonest agents. While bounding
the number of sessions is known to be an unsound simplification (attacks may
be missed), bounding the number of agents is a common practice which is typi-
cally not discussed. In 2003, it has been shown [15] that bounding the number of
agents is actually a safe practice for trace properties. One honest agent and one
dishonest agent are sufficient to discover all possible attacks against secrecy (for
protocols without else branches). The reduction result actually holds for a large
class of trace properties that encompasses authentication: if there is an attack
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then there is an attack with b + 1 agents where b is the number of agents used
to state the security property.

Trace properties are typically used to specify standard properties such as
confidentiality or authentication properties. However, privacy properties such
as vote privacy [19] or untraceability [2], or simply properties inherited from
cryptographic games [16] (e.g. strong secrecy) are stated as equivalence prop-
erties. For example, Alice remains anonymous if an attacker cannot distinguish
between a session with Alice from a session with Bob. When studying equivalence
properties, the practice of bounding the number of agents has been continued.
For example, most of the example files provided for equivalence in the ProVerif
development [6] model only two or three agents.

The objective of this paper is to characterise when it is safe to bound the
number of agents, for equivalence properties. In case of secrecy expressed as
a trace property, bounding the number of agents is rather easy. If there is an
attack then there is still an attack when projecting all honest agents on one
single honest agent, and all dishonest agents on one single dishonest agent. This
holds because the protocols considered in [15] do not have else branches: the
conditionals only depend on equality tests that are preserved by projection.

Such a proof technique no longer works in case of equivalence. Indeed, an
attack against an equivalence property may precisely rely on some disequality,
which is not preserved when projecting several names on a single one. Consider
for example a simple protocol where A authenticates to B by sending him her
name, a fresh nonce, and a hash of these data.

A → B : A,B,N, h(A,N)

Let’s denote this protocol by P (A,B). This is clearly a wrong authentication
protocol but let assume we wish to know whether it preserves A’s privacy. In
other words, is it possible for the attacker to learn whether A or A′ is talking?
That is, do we have P (A,B) equivalent to P (A′, B)? We need A �= A′ to observe
an attack, otherwise the two processes are identical. This example shows in
particular that it is not possible to consider one honest agent and one dishonest
agent as for trace properties.

Another issue comes from non deterministic behaviours. Non equivalence
between P and Q is typically due to some execution that can be run in P and
not in Q due to some failed test, that is, some disequality. Even if we maintain
this disequality when projecting, maybe the projection enables new behaviours
for Q, rendering it equivalent to P . Since non-determinism is usually an arte-
fact of the modelling (in reality most protocols are perfectly deterministic), we
assume in this paper action-deterministic protocols: the state of the system is
entirely determined by the behaviour of the attacker. Such determinacy hypothe-
ses already appear in several papers, in several variants [5,10,11].

Our Contribution. We show that for equivalence, four agents are actually suf-
ficient to detect attacks, for action-deterministic protocols without else branches
and for the standard primitives. We actually provide a more general result,
for arbitrary constructor theories and for protocols with (some) else branches.



Bounding the Number of Agents, for Equivalence Too 213

Equational theories are used to model cryptographic primitives, from standard
ones (e.g. encryption, signature, or hash) to more subtle ones such as blind signa-
tures [19] or zero-knowledge proofs [4]. The notion of constructor theories (where
agents can detect when decryption fails) has been introduced by Blanchet [7]. It
captures many cryptographic primitives and in particular all the aforementioned
ones, although associative and commutative properties (e.g. exclusive or) are out
of their scopes since we assume the exchanged messages do not contain destruc-
tors. Else branches are often ignored when studying trace properties since most
protocols typically abort when a test fails. However, a privacy breach may pre-
cisely come from the observation of a failure or from the observation of different
error messages. A famous example is the attack found on the biometric French
passport [12]. We therefore consider protocols with simple else branches, where
error messages may be emitted in the else branches.

Our general reduction result is then as follows. We show that, for arbi-
trary constructor theories and action-deterministic protocols with simple else
branches, we may safely bound the number of agents to 4b + 2 where b is the
blocking factor of the theory under consideration. Any theory has a (finite) block-
ing factor and the theories corresponding to standard primitives have a blocking
factor of 1. Moreover, in case protocols do not have else branches, then the num-
ber of agents can be further reduced to 2b + 2 (b + 1 honest agents and b + 1
dishonest agents), yielding a bound of 2 honest agents and 2 dishonest agents
for protocols using standard primitives.

We show moreover that our hypotheses are tight. For example, and rather
surprisingly, it is not possible to bound the number of agents with the pure
equational theory dec(enc(x, y), y) (assuming the function symbol dec may occur
in messages as well). Similarly, we provide counter-examples when processes are
not action-deterministic or when processes have non simple else branches.

Due to lack of space, the reader is referred to the companion technical
report [17] for the missing proofs and additional details.

Related Work. Compared to the initial work of [15] for trace properties, we
have considered the more complex case of equivalence properties. Moreover, we
consider a more general framework with arbitrary constructor theories and pro-
tocols with (simple) else branches. Our proof technique is inspired from the
proof of [14], where it is shown that if there is an attack against equivalence
for arbitrary nonces, then there is still an attack for a fix number of nonces.
Taking advantage of the fact that we bound the number of agents rather than
the number of nonces, we significantly extend the result: (simple) else branches;
general constructor theories with the introduction of the notion of b-blocking
factor; general action-deterministic processes (instead of the particular class of
simple protocols, which requires a particular structure of the processes); and
protocols with phase (to model more game-based properties).
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2 Model for Security Protocols

Security protocols are modelled through a process algebra inspired from the
applied pi calculus [1]. Participants in a protocol are modelled as processes,
and the communication between them is modelled by means of the exchange of
messages that are represented by terms.

2.1 Term Algebra

We consider two infinite and disjoint sets of names: N is the set of basic names,
which are used to represent keys, nonces, whereas A is the set of agent names,
i.e. names which represent the agents identities. We consider two infinite and
disjoint sets of variables, denoted X and W. Variables in X typically refer to
unknown parts of messages expected by participants while variables in W are
used to store messages learnt by the attacker. Lastly, we consider two disjoint
sets of constant symbols, denoted Σ0 and Σerror. Constants in Σ0 will be used
for instance to represent nonces drawn by the attacker and this set is assumed
to be infinite, while constants in Σerror will typically refer to error messages.
We assume a signature Σ, i.e. a set of function symbols together with their
arity. The elements of Σ are split into constructor and destructor symbols, i.e.
Σ = Σc � Σd. We denote Σ+ = Σ � Σ0 � Σerror, and Σ+

c = Σc � Σ0 � Σerror.
Given a signature F , and a set of atomic data A, we denote by T (F ,A) the

set of terms built from atomic data A by applying function symbols in F . Terms
without variables are called ground. We denote by T (Σ+

c ,N ∪ A ∪ X ) the set of
constructor terms. The set of messages MΣ is some subset of ground constructor
terms. Given a set of atomic data A, an A-renaming is a function ρ such that
dom(ρ) ∪ img(ρ) ⊆ A. We assume MΣ as well as T (Σ+

c ,N ∪ A ∪ X )\MΣ to
be stable under any A-renaming and (Σ0 ∪Σerror)-renaming. Intuitively, being a
message or not should not depend on a particular constant or name.

Example 1. The standard primitives (symmetric and asymmetric encryption,
signature, pair, and hash) are typically modelled by the following signature.

Σstd = {enc, dec, shks, aenc, adec, pub, priv, sign, checksign, h, 〈〉, proj1, proj2, eq}.

The symbols enc and dec (resp. aenc and adec) of arity 2 represent symmetric
(resp. asymmetric) encryption and decryption whereas shks, pub, priv are con-
structor keys of arity 1. Pairing is modelled using 〈 〉 of arity 2, whereas pro-
jection functions are denoted proj1 and proj2 (both of arity 1). Signatures are
represented by sign of arity 2 with an associated verification operator checksign
of arity 3. Hash functions are modelled by h, of arity 1. Finally, we consider the
function symbol eq to model equality test. This signature is split into two parts:
we have that Σc = {enc, aenc, h, sign, shks, pub, priv, 〈 〉} and Σd = Σstd�Σc.

We denote vars(u) the set of variables that occur in a term u. The application
of a substitution σ to a term u is written uσ, and we denote dom(σ) its domain.
The positions of a term are defined as usual. The properties of cryptographic
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primitives are modelled through a rewriting system, i.e. a set of rewriting rules
of the form g(t1, . . . , tn) → t where g is a destructor, and t, t1, . . . , tn are con-
structor terms. A term u can be rewritten in v if there is a position p in u, and
a rewriting rule g(t1, . . . , tn) → t such that u|p = g(t1, . . . , tn)θ for some substi-
tution θ. Moreover, we assume that t1θ, . . . , tnθ as well as tθ are messages. We
only consider sets of rewriting rules that yield a convergent rewriting system.
We denote u↓ the normal form of a given term u.

A constructor theory E is given by a signature Σ together with a notion of
messages MΣ , and a finite set of rewriting rules R (as decribed above) that
defines a convergent rewriting system.

Example 2. The properties of the standard primitives are reflected through the
theory Estd induced by the following convergent rewriting system:

dec(enc(x, y), y) → x proji(〈x1, x2〉) → xi with i ∈ {1, 2}.
adec(aenc(x, pub(y)), priv(y)) → x checksign(sign(x, priv(y)), x, pub(y)) → ok
eq(x, x) → ok

We may consider MΣ to be T (Σ+
c ,N ∪ A) the set of all ground constructor

terms. We may as well consider only terms with atomic keys for example.

Constructor theories are flexible enough to model all standard primitives.
However, such a setting does not allow one to model for instance a decryption
algorithm that never fails and always returns a message (e.g. dec(m, k)).

For modelling purposes, we split the signature Σ into two parts, namely Σpub

and Σpriv, and we denote Σ+
pub = Σpub � Σ0 � Σerror. An attacker builds his own

messages by applying public function symbols to terms he already knows and
that are available through variables in W. Formally, a computation done by the
attacker is a recipe, i.e. a term in T (Σ+

pub,W).

2.2 Process Algebra

We assume an infinite set Ch = Ch0 � Chfresh of channels used to communicate,
where Ch0 and Chfresh are infinite and disjoint. Intuitively, channels of Chfresh are
used to instantiate channels when they are generated during the execution of
a protocol. They should not be part of a protocol specification. Protocols are
modelled through processes using the following grammar:

P,Q = 0 | let x = v inP else 0 | new n.P
| in(c, u).P | let x = v inP else out(c, err) | (P | Q)
| out(c, u).P | ! new c′.out(c, c′).P | i: P

where c, c′ ∈ Ch, x ∈ X , n ∈ N , err ∈ Σerror, and i ∈ N. We have that u is
a constructor term, i.e. u ∈ T (Σ+

c ,N ∪ A ∪ X ) whereas v can be any term in
T (Σ+,N ∪ A ∪ X ).

Most of the constructions are rather standard. We may note the special
construct ! new c′.out(c, c′). P that combines replication with channel restric-
tion. The goal of this construct, first introduced in [5], is to support repli-
cation while preserving some form of determinism, as formally defined later.
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Our calculus allows both message filtering in input actions as well as explicit
application of destructor symbols through the let construction. The process
“let x = v inP elseQ” tries to evaluate v and in case of success the process
P is executed; otherwise the process is blocked or an error is emitted depending
on what is indicated in Q. The let instruction together with the eq theory intro-
duced in Example 2 can encode the usual “if then else” construction. Indeed, the
process if u = v then P else Q can be written as let x = eq(u, v) inP elseQ. Since
P can be executed only if no destructor remains in the term eq(u, v), this implies
that u and v must be equal. Our calculus also introduces a phase instruction, in
the spirit of [9], denoted i: P . Some protocols like e-voting protocols may pro-
ceed in phase. More generally, phases are particularly useful to model security
requirements, for example in case the attacker interacts with the protocol before
being given some secret.

We denote by fv(P ) (resp. fc(P )) the set of free variables (resp. channels)
that occur in a process P , i.e. those that are not in the scope of an input or a
let construction (resp. new construction). A basic process built on a channel c is
a process that contains neither | (parallel) nor ! (replication), and such that all
its inputs/outputs take place on the channel c.

Example 3. The Denning Sacco protocol [20] is a key distribution protocol rely-
ing on symmetric encryption and a trusted server. It can be described informally
as follows, in a version without timestamps:

1. A → S : A,B
2. S → A : {B,Kab, {Kab, A}Kbs

}Kas

3. A → B : {Kab, A}Kbs

where {m}k denotes the symmetric encryption of a message m with key k. Agent
A (resp. B) communicates to a trusted server S, using a long term key Kas

(resp. Kbs), shared with the server. At the end of a session, A and B should be
authenticated and should share a session key Kab.

We model the Denning Sacco protocol as follows. Let k be a name in N ,
whereas a and b are names from A. We denote by 〈x1, . . . , xn−1, xn〉 the term
〈x1, 〈. . . 〈xn−1, xn〉〉〉. The protocol is modelled by the parallel composition of
three basic processes PA, PB , and PS built respectively on c1, c2, and c3. They
correspond respectively to the roles of A, B, and S.

PDS =! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB | ! new c3.out(cS , c3).PS

where processes PA, PB, and PS are defined as follows.

– PA = out(c1, 〈a, b〉).in(c1, enc(〈b, xAB , xB〉, shks(a))).out(c1, xB)
– PB = in(c2, enc(〈yAB , a〉, shks(b)))
– PS = in(c3, 〈a, b〉). new k.out(c3, enc(〈b, k, enc(〈k, a〉, shks(b))〉, shks(a))).

2.3 Semantics

The operational semantics of a process is defined using a relation over configu-
rations. A configuration is a tuple (P; φ; i) with i ∈ N, and such that:
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– P is a multiset of ground processes;
– φ = {w1 � m1, . . . ,wn � mn} is a frame, i.e. a substitution where w1, . . . ,wn

are variables in W, and m1, . . . , mn are messages, i.e. terms in MΣ .

Intuitively, i is an integer that indicates the current phase; P represents the
processes that still remain to be executed; and φ represents the sequence of
messages that have been learnt so far by the attacker.

We often write P instead of 0: P or ({0: P}; ∅; 0). The operational semantics
of a process P is induced by the relation α→ over configurations as defined in
Fig. 1.

In (i: in(c, u).P ∪ P; φ; i)
in(c,R)−−−−→ (i: Pσ ∪ P; φ; i) where R is a recipe such

that Rφ↓ is a message, and Rφ↓ = uσ for σ with dom(σ) = vars(u).
Const

(i: out(c, cst).P ∪ P; φ; i)
out(c,cst)−−−−−→ (i: P ∪ P; φ; i) with cst ∈ Σ0 ∪ Σerror.

Out (i: out(c, u).P ∪ P; φ; i)
out(c,w)−−−−−→ (i: P ∪ P; φ ∪ {w � u}; i)

with w a fresh variable from W, and u ∈ MΣ � (Σ0 ∪ Σerror).
Sess

(i: ! new c′.out(c, c′).P ∪ P; φ; i)
sess(c,ch)−−−−−−→ (i: P{ch/c′} ∪ i: ! new c′.out(c, c′).P ∪ P; φ; i)

with ch a fresh name from Chfresh.

Let (i: letx = v inP elseQ ∪ P; φ; i)
τ−→ (i: P{v↓/x} ∪ P; φ; i) when v↓ ∈ MΣ .

Let-Fail (i: letx = v inP elseQ ∪ P; φ; i)
τ−→ (i: Q ∪ P; φ; i) when v M∈�↓ Σ .

Null (i: 0 ∪ P; φ; i)
τ−→ (P; φ; i)

Par (i: (P | Q) ∪ P; φ; i)
τ−→ (i: P ∪ i: Q ∪ P; φ; i)

New (i: newn.P ∪ P; φ; i)
τ−→ (i: P{n′

/n} ∪ P; φ; i) with n′ a fresh name from N .

Move (P; φ; i)
phase i′
−−−−→ (P; φ; i′) with i′ > i.

Phase (i: i′: P ∪ P; φ; i)
τ−→ (i′: P ∪ P; φ; i)

Clean (i: P ∪ P; φ; i′) τ−→ (P; φ; i′) when i′ > i.

Fig. 1. Semantics for processes

The rules are quite standard and correspond to the intuitive meaning of the
syntax given in the previous section. When a process emits a message m, we
distinguish the special case where m is a constant (Const rule), in which case
the constant m appears directly in the trace instead of being stored in the frame.
This has no impact on the intuitive behaviour of the process but is quite handy in
the proofs. Regarding phases (rules Move, Phase, and Clean), the adversary
may move to a subsequent phase whenever he wants while processes may move
to the next phase when they are done or simply disappear if the phase is over.

Given a sequence of actions α1 . . . αn, the relation α1...αn−−−−−→ between configu-
rations is defined as the transitive closure of α→. Given a sequence of observable
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action tr, we denote C tr=⇒ C′ when there exists a sequence α1, . . . , αn for some n
such that C α1...αn−−−−−→ C′, and tr is obtained from this sequence by removing all
the unobservable τ actions.

Definition 1. Given a configuration C = (P; φ; i), we denote trace(C) the set
of traces defined as follows:

trace(C) = {(tr, φ′) | C tr=⇒ (P; φ′; i′) for some configuration (P; φ′; i′)}.

Example 4. Let CDS = (PDS; ∅; 0) with PDS as defined in Example 3. We have
that (tr, φ) ∈ trace(CDS) where tr, and φ are as described below:

– tr = sess(cA, ch1).sess(cB , ch2).sess(cS , ch3).out(ch1,w1).in(ch3,w1).
out(ch3,w2).in(ch1,w2).out(ch1,w3).in(ch2,w3); and

– φ = {w1 � 〈a, b〉, w2 � enc(〈b, k, enc(〈k, a〉, shks(b))〉, shks(a)),
w3 � enc(〈k, a〉, shks(b))}.

This trace corresponds to a normal execution of the Denning Sacco protocol.

2.4 Action-Determinism

As mentioned in introduction, we require processes to be deterministic. We pro-
vide in Sect. 4.3 an example showing why the number of agents may not be
bound when processes are not deterministic. We consider a definition similar to
the one introduced in [5], extended to process with phase.

Definition 2. A configuration C is action-deterministic if whenever C tr−→
(P; φ; i), and i: α.P and i: β.Q are two elements of P with α, β instruction of
the form in(c, u), out(c, u) or new c′.out(c, c′) then either the underlying channels
c differ or the instructions are not of the same nature (that is, α, β are not both
an input, nor both an output, nor both channel creations).

A process P is action-deterministic if C = (P ; φ; 0) is action-deterministic
for any frame φ.

For such protocols, the attacker knowledge is entirely determined (up to α-
renaming) by its interaction with the protocol.

Lemma 1. Let C be an action-deterministic configuration such that C tr=⇒ C1

and C tr=⇒ C2 for some tr, C1 = (P1; φ1; i1), and C2 = (P2; φ2; i2). We have that
i1 = i2, and φ1 and φ2 are equal modulo α-renaming.

2.5 Trace Equivalence

Many privacy properties such as vote-privacy or untraceability are expressed as
trace equivalence [2,19]. Intuitively, two configurations are trace equivalent if an
attacker cannot tell with which of the two configurations he is interacting. We
first introduce a notion of equivalence between frames.
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Definition 3. Two frames φ1 and φ2 are in static inclusion, written φ1 
s φ2,
when dom(φ1) = dom(φ2), and:

– for any recipe R ∈ T (Σ+
pub,W), we have that Rφ1↓ ∈ MΣ implies that

Rφ2↓ ∈ MΣ; and
– for any recipes R,R′ ∈ T (Σ+

pub,W) such that Rφ1↓, R′φ1↓ ∈ MΣ, we have
that: Rφ1↓ = R′φ1↓ implies Rφ2↓ = R′φ2↓.

They are in static equivalence, written φ1 ∼ φ2, if φ1 
s φ2 and φ2 
s φ1.

An attacker can see the difference between two sequences of messages if he
is able to perform some computation that succeeds in φ1 and fails in φ2; or if he
can build a test that leads to an equality in φ1 and not in φ2 (or conversely).

Example 5. Consider φ1 = φ∪{w4 � enc(m1, k)} and φ2 = φ∪{w4 � enc(m2, k
′)}

where φ has been introduced in Example 4. The terms m1, m2 are public con-
stants in Σ0, and k′ is a fresh name in N . We have that the two frames φ1 and φ2

are statically equivalent. Intuitively, at the end of a normal execution between
honest participants, an attacker can not make any distinction between a public
constant m1 encrypted with the session key, and another public constant m2

encrypted with a fresh key k′ that has never been used.

Trace equivalence is the active counterpart of static equivalence. Two config-
urations are trace equivalent if, however they behave, the resulting sequences of
messages observed by the attacker are in static equivalence.

Definition 4. Let C and C′ be two configurations. They are in trace equivalence,
written C ≈ C′, if for every (tr, φ) ∈ trace(C), there exist (tr′, φ′) ∈ trace(C′) such
that tr = tr′, and φ ∼ φ′ (and conversely).

Note that two trace equivalent configurations are necessary at the same
phase. Of course, this is not a sufficient condition.

Example 6. The process PDS presented in Example 3 models the Denning
Sacco protocol. Strong secrecy of the session key, as received by the agent B,
can be expressed by the following equivalence: P 1

DS ≈ P 2
DS, where P 1

DS and
P 2

DS are defined as follows. Process P 1
DS is process PDS with the instruction

1: out(c2, enc(m1, yAB)) added at the end of the process PB ; and P 2
DS is as the

protocol PDS with the instruction 1: new k.out(c2, enc(m2, k)) at the end of PB.
The terms m1 and m2 are two public constants from Σ0, and we use the phase
instruction to make a separation between the protocol execution, and the part
of the process that encodes the security property.

While the key received by B cannot be learnt by an attacker, strong secrecy
of this key is not guaranteed. Indeed, due to the lack of freshness, the same
key can be sent several times to B, and this can be observed by an attacker.
Formally, the attack is as follows. Consider the sequence:

tr′ = tr.sess(cB , ch4).in(ch4,w3).phase 1.out(ch2,w4).out(ch4,w5)

where tr has been defined in Example 4. The attacker simply replays an old
session. The resulting (uniquely defined) frames are:
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– φ′
1 = φ ∪ {w4 � enc(m1, k), w5 � enc(m1, k)}; and

– φ′
2 = φ ∪ {w4 � enc(m2, k

′), w5 � enc(m2, k
′′)}.

Then (tr′, φ′
1) ∈ trace(P 1

DS) and (tr′, φ′
2) ∈ trace(P 2

DS). However, we have that
φ′
1 �∼ φ′

2 since w4 = w5 in φ′
1 but not in φ′

2. Thus P 1
DS and P 2

DS are not in trace
equivalence. To avoid this attack, the original protocol relies on timestamps.

3 Results

Our main goal is to show that we can safely consider a bounded number of agents.
Our result relies in particular on the fact that constructor theories enjoy the
property of being b-blockable, which is defined in Sect. 3.2. Our main reduction
result is then stated in Sect. 3.3 with a sketch of proof provided in Sect. 3.4.
We first start this section with a presentation of our model for an unbounded
number of agents.

3.1 Modelling an Unbounded Number of Agents

In the previous section, for illustrative purposes, we considered a scenario that
involved only 2 honest agents a and b. This is clearly not sufficient when perform-
ing a security analysis. To model an unbounded number of agents, we introduce
some new function symbols Σag = {ag, hon, dis}, each of arity 1. The term ag(a)
with a ∈ A will represent the fact that a is an agent, hon(a) and dis(a) are
intended to represent honest and compromised agents respectively. This distinc-
tion is used in protocol description to state the security property under study:
typically, we wish to ensure security of data shared by honest agents. These
symbols are private and not available to the attacker. We thus consider a term
algebra as defined in Sect. 2. We simply assume in addition that Σag ⊆ Σc∩Σpriv,
and that our notion of messages contains at least {ag(a), hon(a), dis(a) | a ∈ A}.

Example 7. Going back to the Denning Sacco protocol presented in Example 3,
we consider now a richer scenario.

P ′
A = in(c1, ag(zA)).in(c1, ag(zB)).1: PA

P ′
B = in(c2, ag(zA)).in(c2, ag(zB)).1: PB

P ′
S = in(c3, ag(zA)).in(c3, ag(zB)).1: PS

where PA, PB, and PS are as defined in Example 3 after replacement of the
occurrences of a (resp. b) by zA (resp. zB). Then the process P ′

DS models an
unbounded number of agents executing an unbounded number of sessions:

P ′
DS =! new c1.out(cA, c1).P ′

A | ! new c2.out(cB , c2).P ′
B | ! new c3.out(cS , c3).P ′

S

It is then necessary to provide an unbounded number of honest and dishonest
agent names. This is the purpose of the following frame.

Definition 5. Given an integer n, the frame φhd(n) = φa(n) � φh(n) � φd(n) is
defined as follows:
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– φa(n) = {wh
1 � ah

1 ; . . . ; wh
n � ah

n; wd
1 � ad

1; . . . ; wd
n � ad

n};
– φh(n) = {whag

1 � ag(ah
1 ); whon

1 � hon(ah
1 ); . . . ; whag

n � ag(ah
n); whon

n � hon(ah
n)};

– φd(n) = {wdag
1 � ag(ad

1); wdis
1 � dis(ad

1); . . . ; wdag
n � ag(ad

n); wdis
n � dis(ad

n)};
where ah

i , and ad
i (1 ≤ i ≤ n) are pairwise different names in A.

Of course, to model faithfully compromised agents, it is important to reveal
their keys to the attacker. This can be modelled through an additional process K
that should be part of the initial configuration.

Example 8. Going back to our running example, we may disclose keys through
the following process.

K =! new c′.out(cK , c′).in(c′, dis(x)).out(c′, shks(x)).

This process reveals all the keys shared between the server and a compromised
agent. Strong secrecy of the exchanged key can be expressed by the following
family of equivalences with n ≥ 0:

(P ′
DS | ! new c′

2.out(c
′
B , c′

2).P
′
1 | K; φhd(n); 0)

≈
(P ′

DS | ! new c′
2.out(c

′
B , c′

2).P
′
2 | K; φhd(n); 0)

where P ′
1 and P ′

2 are processes that are introduced to model our strong secrecy
property as done in Example 6.

P ′
1 = in(c′

2, hon(zA)).in(c′
2, hon(zB)).

1: in(c′
2, enc(〈yAB , zA〉, shks(zB))).

2: out(c′
2, enc(m1, yAB))

P ′
2 = in(c′

2, hon(zA)).in(c′
2, hon(zB)).

1: in(c′
2, enc(〈yAB , zA〉, shks(zB))).

2: new k′.out(c′
2, enc(m2, k

′))

Our reduction result applies to a rather large class of processes. However,
we have to ensure that their executions do not depend on specific agent names.
Moreover, we consider processes with simple else branches: an else branche can
only be the null process or the emission of an error message.

Definition 6. A protocol P is a process such that fv(P ) = ∅, and fc(P ) ∩
Chfresh = ∅. We also assume that P does not use names in A. Moreover, the
constants from Σerror only occur in the else part of a let instruction in P .

Example 9. Considering Σerror = ∅, it is easy to see that the processes

P ′
DS | ! new c′

2.out(c
′
B , c′

2).P
′
i | K

with i ∈ {1, 2} are protocols. They only have trivial else branches.
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3.2 Blocking Equational Theories

We aim at reducing the number of agents. To preserve equivalence, our reduction
has to preserve equalities as well as disequalities. It also has to preserve the fact
of being a message or not. We introduce the notion of b-blockable theories: a
theory is b-blockable if it is always sufficient to leave b agents unchanged to
preserve the fact of not being a message.

Definition 7. A constructor theory E is b-blockable if for any term
t ∈ T (Σ+,N ∪ A)�MΣ in normal form, there exists a set of names A ⊆ A of
size at most b such that for any A-renaming ρ with (dom(ρ) ∪ img(ρ)) ∩ A = ∅,
we have that tρ↓ �∈ MΣ.

Example 10. Let eq2 ∈ Σd be a symbol of arity 4, and ok ∈ Σc be a constant.
Consider the two following rewriting rules:

eq2(x, x, y, z) → ok and eq2(x, y, z, z) → ok

This theory can be used to model disjonction. Intuitively, eq2(u1, u2, u3, u4)
can be reduced to ok when either u1 = u2 or u3 = u4. Note that this theory
is not 1-blockable. Indeed, the term t = eq2(a, b, c, d) is a witness showing that
keeping one agent name unchanged is not sufficient to prevent the application
of a rewriting rule on tρ (for any renaming ρ that leaves this name unchanged).
Actually, we will show that this theory is 2-blockable.

A constructor theory is actually always b-blockable for some b.

Proposition 1. Any constructor theory E is b-blockable for some b ∈ N.

We note b(E) the blocking factor of E . This is the smallest b such that the
theory E is b-blockable. Actually, not only all the theories are b-blockable for
some b, but this bound is quite small for most of the theories that are used to
model cryptographic primitives.

Example 11. The theory Estd given in Example 2 is 1-blockable whereas the
theory given in Example 10 is 2-blockable. These results are an easy consequence
of Lemma 2 stated.

The blocking factor of a constructor theory is related to the size of critical tuples
of the theory.

Definition 8. A constructor theory E with a rewriting system R has a critical
set of size k if there exist k distinct rules �1 → r1, . . . , �k → rk in R, and a
substitution σ such that �1σ = . . . = �kσ.

Lemma 2. If a constructor theory E has no critical set of size k + 1 with k ≥ 0
then it is k-blockable.

This lemma is a consequence of the proof of Proposition 1 (see [17]). From
this lemma, we easily deduce that many theories used in practice to model
security protocols are actually 1-blockable. This is the case of the theory Estd

and many variants of it. We may for instance add function symbols to model
blind signatures, or zero-knowledge proofs.
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3.3 Main Result

We are now able to state our main reduction result.

Theorem 1. Let P , Q be two action-deterministic protocols built on a construc-
tor theory E. If (P ; φhd(n0); 0) ≈ (Q; φhd(n0); 0) where n0 = 2b(E)+1 and b(E)
is the blocking factor of E, we have that

(P ; φhd(n); 0) ≈ (Q; φhd(n); 0) for any n ≥ 0.

Moreover, when P and Q have only let construction with trivial else branches
considering n0 = b(E) + 1 is sufficient.

This theorem shows that whenever two protocols are not in trace equivalence,
then they are already not in trace equivalence for a relatively small number
of agents that does not depend on the protocols (but only on the underlying
theory).

Example 12. Continuing our running example, thanks to Theorem 1, we only
have to consider 4 agents (2 honest agents and 2 dishonest ones) for the theory
Estd introduced in Example 2, that corresponds to the standard primitives. There-
fore we only have to perform the security analysis considering φa(2)�φh(2)�φd(2)
as initial frame.

This reduction result bounds a priori the number of agents involved in an
attack. However, due to our setting, the resulting configurations are not written
in their usual form (e.g. compromised keys are emitted through process K instead
of being included in the initial frame). We show that it is possible to retrieve the
equivalences written in a more usual form, after some clean-up transformations
and some instantiations. This step is formalised in Proposition 2. We first define
the notion of key generator process. The purpose of such a process is to provide
long-term keys of compromised agents to the attacker.

Definition 9. A key generator is an action-deterministic process K with no
phase instruction in it. Moreover, for any n ∈ N, we assume that there exists
φK(n) with no occurrence of symbols in Σag, and such that:

– Cn
K = (K; φhd(n); 0) tr=⇒ (K ′; φhd(n) � φK(n); 0) for some tr and K ′;

– img(φ) ⊆ img(φK(n)) for any (P; φhd(n) � φ; 0) reachable from Cn
K .

Such a frame φK(n) is called a n-saturation of K, and its image, i.e. img(φK(n)),
is uniquely defined.

Intuitively, the attacker knowledge no longer grows once the frame φK(n)
has been reached. Then two processes P | K and Q | K are in trace equiva-
lence for some initial knowledge φhd(n0) if, and only if, P ′ and Q′ are in trace
equivalence with an initial knowledge enriched with φK(n0) and P ′ and Q′ are
the instantiations of P and Q considering 2n0 agents (n0 honest agents and n0

dishonest ones).
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Proposition 2. Consider 2n processes of the form (1 ≤ i ≤ n):

P ′
i =! new c′

i.out(ci, c
′
i).in(c

′
i, x

1
i (z

1
i )). . . . .in(c′

i, x
ki
i (zki

i )).1: Pi(z1i , . . . , zki
i )

Q′
i =! new c′

i.out(ci, c
′
i).in(c

′
i, x

1
i (z

1
i )). . . . .in(c′

i, x
ki
i (zki

i )).1: Qi(z1i , . . . , zki
i )

where each Pi (resp. Qi) is a basic process built on c′
i, and xj

i ∈ {ag, hon, dis}
for any 1 ≤ j ≤ ki, and the ci for 1 ≤ i ≤ n are pairwise distinct. Moreover, we
assume that ag, hon and dis do not occur in Pi, Qi (1 ≤ i ≤ n). Let n0 ∈ N, and
K be a key generator such that fc(K) ∩ {c1, . . . , cn} = ∅. We have that:

(K � {P ′
i |1 ≤ i ≤ n}; φhd(n0); 0) ≈ (K � {Q′

i|1 ≤ i ≤ n}; φhd(n0); 0)
if, and only if,

(
n⋃

i=1

Pi; φa(n0) � φK(n0); 0) ≈ (
n⋃

i=1

Qi; φa(n0) � φK(n0); 0)

where φK(n0) is a n-saturation of K, and

Pi = {! new c′
i.out(c

i

z1i ,...,z
ki
i

, c′
i).1: Pi(z

1
i , . . . , zki

i )|x1i (z1
i ), . . . , x

ki
i (zki

i ) ∈ img(φhd(n0))};

Qi = {! new c′
i.out(c

i

z1i ,...,z
ki
i

, c′
i).1: Qi(z

1
i , . . . , zki

i )|x1i (z1
i ), . . . , x

ki
i (zki

i ) ∈ img(φhd(n0))}.

Example 13. Using more conventional notations for agent names and after
applying Proposition 2, we deduce the following equivalence:

(PDS � P ′
1; φ0; 0) ≈ (PDS � P ′

2; φ0; 0)

where

– φ0 = {wa � a; wb � b; wc � c; wd � d; wkc � shks(c); wkd � shks(d)};

– PDS =

⎧⎨
⎩

! new c1.out(cA,zA,zB
, c1).PA(zA, zB) zA, zB ∈ {a, b, c, d}

| ! new c2.out(cB,zA,zB
, c2).PB(zA, zB)

| ! new c3.out(cS,zA,zB
, c3).PS(zA, zB)

⎫⎬
⎭

– P ′
i = { ! new c′

2.out(c
′
B,zA,zB

, c′
2).P

′
i (zA, zB) | zA, zB ∈ {a, b} }.

This corresponds to the standard scenario with 2 honest agents and 2 dishonest
ones when assuming that agents may talk to themselves.

3.4 Sketch of proof of Theorem1

First, thanks to the fact that we consider action-deterministic processes, we can
restrict our attention to the study of the following notion of trace inclusion, and
this is formally justified by the lemma stated below.

Definition 10. Let C and C′ be two configurations. We say that C is trace
included in C′, written C 
 C′, if for every (tr, φ) ∈ trace(C), there exists
(tr′, φ′) ∈ trace(C′) such that tr = tr′, and φ 
s φ′.

Lemma 3. Let C and C′ be two action-deterministic configurations. We have
C ≈ C′, if, and only if, C 
 C′ and C′ 
 C.
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Given two action-deterministic configurations C and C′ such that C �
 C′, a
witness of non-inclusion is a trace tr for which there exists φ such that (tr, φ) ∈
trace(C) and:

– either there does not exist φ′ such that (tr, φ′) ∈ trace(C′) (intuitively, the
trace tr cannot be executed in C′);

– or such a φ′ exists and φ �
s φ′ (intuitively, the attacker can observe that a
test succeeds in φ and fails in φ′).

Second, we show that we can restrict our attention to witnesses of non-
inclusion that have a special shape: in case a constant from Σerror is emitted,
this happens only at the very last step. In other words, this means that we
may assume that the rule Let-Fail is applied at most once, at the end of
the execution. More formally, a term t is Σerror-free if t does not contain any
occurrence of error for any error ∈ Σerror. This notion is extended as expected to
frames, and traces.

Lemma 4. Let P and Q be two action-deterministic protocols, and φ0 and ψ0

be two frames that are Σerror-free. If (P ; φ0; 0) �
 (Q; ψ0; 0) then there exists a
witness tr of this non-inclusion such that:

– either tr is Σerror-free;
– or tr is of the form tr′.out(c, error) with tr′ Σerror-free and error ∈ Σerror.

This lemma relies on the fact that else branches are simple: at best they yield the
emission of a constant in Σerror but they may not trigger any interesting process.

We can then prove our key result: it is possible to bound the number of
agents needed for an attack. To formally state this proposition, we rely on the
frame φhd(n) as introduced in Definition 5. Theorem 1 then easily follows from
Proposition 3.

Proposition 3. Let E be a constructor theory, and P and Q be two action-
deterministic protocols such that (P ; φhd(n); 0) �
 (Q; φhd(n); 0) for some n ∈ N.
We have that

(P ; φhd(n)ρ; 0) �
 (Q; φhd(n)ρ; 0)

for some A-renaming ρ such that φh(n)ρ (resp. φd(n)ρ) contains at most 2b(E)+1
distinct agent names, and φh(n)ρ and φd(n)ρ do not share any name.

Proof. (sketch). Of course, when n ≤ 2b(E)+1, the result is obvious. Otherwise,
let tr be a witness of non-inclusion for (P ; φhd(n); 0) �
 (Q; φhd(n); 0). Thanks to
Lemma 4, we can assume that tr is either Σerror-free or of the form tr′.out(c, error)
for some error ∈ Σerror. This means that the trace tr can be executed from
(P ; φhd(n); 0) without using the rule Let-Fail at least up to its last visible
action.

Considering a renaming ρ0 that maps any honest agent name h to h0, and any
dishonest agent name d to d0, we still have that the trace trρ0 can be executed
from (P ; φhd(n)ρ0; 0) at least up to its last visible action. Indeed, this renaming
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preserves equality tests and the property of being a message. Now, to ensure that
the trace can still not be executed in the Q side (or maintaining the fact that the
test under consideration still fails), we may need to maintain some disequalities,
and actually at most b(E) agent names have to be kept unchanged for this
(remember that our theory is b(E)-blockable). Moreover, in case P executes its
else branch, we have also to maintain some disequalities from the P side, and
again we need at most to preserve b(E) agent names for that. We do not know
whether those names for which we have to maintain distinctness correspond to
honest or dishonest agents, but in any case considering 2b(E) + 1 of each sort is
sufficient. ��

The following example illustrates why we may need 2b(E) + 1 agents of a
particular sort (honest or dishonest) to carry out the proof as explained above.

Example 14. We also consider two constants error1, error2 ∈ Σerror. In processes P
and Q below, we omit the channel name for simplicity. We may assume that all
input/outputs occur on a public channel c.

P = in(hon(x1)).in(hon(x2)).in(hon(x3)).in(hon(x4)).let z1 = eq(x1, x2) in
let z2 = eq(x3, x4) in 0 else out(error1)

else out(error2)

The process Q is as P after having swapped the two tests, and the two
constants error1 and error2.

Q = in(hon(x1)).in(hon(x2)).in(hon(x3)).in(hon(x4)).let z1 = eq(x3, x4) in
let z2 = eq(x1, x2) in 0 else out(error2)

else out(error1)

We have that P �≈ Q. To see this, we may consider a trace where x1, x2, x3,
and x4 are instantiated using distinct agent names. However, any trace where
x1 = x2 or x3 = x4 (or both), does not allow one to distinguish these two
processes. It is thus important to block at least one agent name among x1, x2,
and one among x3, x4. This will ensure that both P and Q trigger their first else
branch. Then, the remaining agent names can be mapped to the same honest
agent name. Thus, applying our proof technique we need b + b + 1 honest agent
names (and here b = 1). Note however that a tighter bound may be found for
this example since 2 distinct honest agent names are actually sufficient. Indeed,
choosing x1 = x3 and x2 = x4 allows one to establish non-equivalence. But such
a choice would not be found following our technique.

Actually, we can show that there is no attack that requires simultaneously 2b+1
honest agents and 2b + 1 dishonest agents. We could elaborate a tighter bound,
at the cost of having to check more equivalences.

4 Tightness of Our Hypothesis

Our class of protocols is somewhat limited in the sense that we consider processes
that are action-deterministic, with simple else branches, and constructor theo-
ries. The counter-examples developed in this section actually suggest that our
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hypotheses are tight. We provide impossibility results for protocols in case
any of our hypotheses is removed, that is, we provide counter-examples for
processes with complex else branches, or non constructor theories, or non action-
deterministic protocols.

4.1 Complex Else Branches

A natural extension is to consider processes with more expressive else branches.
However, as soon as messages emitted in else branches may rely (directly or
indirectly) on some agent names, this may impose some disequalities between
arbitrary many agent names. This negative result already holds for the standard
secrecy property expressed as a reachability requirement.

Formally, we show that we can associate, to any instance of PCP (Post Cor-
respondance Problem), a process P (that uses only standard primitives) such
that P reveals a secret s for n agents if, and only if, the corresponding PCP
instance has a solution of length smaller than n. Therefore computing a bound
for the number of agents needed to mount an attack is as difficult as computing a
bound (regarding the length of its smallest solution) for the PCP instance under
study. Computing such a bound is undecidable since otherwise we would get a
decision procedure for the PCP problem by simply enumerating all the possible
solutions until reaching the bound.

Property 1. There is an execution (P ; φhd(n); 0)
tr.out(c,w)
======⇒ (P; φ � {w � s}; 0)

if, and only if, the instance of PCP under study admits a solution of length at
most n.

An instance of PCP over the alphabet A is given by two sets of tiles U =
{ui | 1 ≤ i ≤ n} and V = {vi | 1 ≤ i ≤ n} where ui, vi ∈ A∗. A solution of PCP is
a non-empty sequence i1, . . . , ip over {1, . . . , n} such that ui1 . . . uip = vi1 . . . vip .
Deciding whether an instance of PCP admits a solution is well-known to be
undecidable, and thus there are instances for which a bound on the size of
a solution is not computable. We describe here informally how to build our
process P made of several parts. For the sake of clarity, we simply provide the
informal rules of the protocol. It is then easy (but less readable) to write the
corresponding process. First, following the construction proposed e.g. in [15], we
write a process PPCP that builds and outputs all the terms of the form:

enc(〈〈u, v〉, �〉, k)

where u = ui1 . . . uip , v = vi1 . . . vip , and � is a list of agent names of length p
that can be encoded using pairs. The key k is supposed to be unknown from
the attacker. This can be easily done by considering rules of the form (where
concatenation can be encoded using nested pairs):

ag(z), enc(〈〈x, y〉, z�〉, k) → enc(〈〈x.ui, y.vi〉, 〈z, z�〉〉, k)

for any pair of tiles (ui, vi).



228 V. Cortier et al.

We then need to check whether a pair 〈u, v〉 embedded in the term
enc(〈〈u, v〉, �〉, k) is a solution of PCP.

enc(〈〈x, x〉, z〉, k), enc(z, kdiff) → s

Second, to build our counter-example, we write a process that relies on some
else branches to ensure that a list � is made of distinct elements. The idea is that
enc(�, kdiff) is emitted if, and only if, elements in � are distinct agent names.

ag(x) → enc(〈x,⊥〉, kdiff)

ag(x), ag(y), enc(〈x, z〉, kdiff), enc(〈y, z〉, kdiff)
x�=y−−−→ enc(〈x, 〈y, z〉〉, kdiff)

The first rule allows us to generate list of length 1 whereas the second rule gives
us the possibility to build list of greater length, like [a1, a2, . . . , an] as soon as
the sublists [a1, a3, . . . , an] and [a2, a3, . . . , an] have been checked, and a1 and a2

are distinct agent names. The rule u
t1 �=t2−−−→ v is the informal description for the

following process: on input u and if t1 �= t2 then emit v. This can be encoded in
our framework as explained in Sect. 2.3.

The formalisation of these rules yields a process P that satisfies Property 1,
and it is not difficult to write a process P that satisfies in addition our action-
determinism condition. This encoding can be adapted to show a similar result
regarding trace equivalence. We may also note that this encoding works if we
consider an execution model in which agents are not authorised to talk to them-
selves. In such a case, we even do not need to rely explicitly on else branches.

4.2 Pure Equational Theories

We now show that it is actually impossible to bound the number of agents for
non constructor theories. This impossibility result already holds for the standard
equational theory Eenc: dec(enc(x, y), y) = x.

To prove our result, given a list � of pairs of agent names, we build two terms
tP (�) and tQ(�) using the function symbols enc, dec, the public constant c0, and
some agent names a1, . . . , an in A. The terms tP (�) and tQ(�) are such that they
are equal as soon as two agent names of a pair in � are identical.

Property 2. The terms tP (�) and tQ(�) are equal modulo Eenc if, and only if,
there exists a pair (a, b) in � such that a = b.

The terms tP (�) and tQ(�) are defined inductively as follows:

– tP (�) = dec(enc(c0, a), b) and tQ(�) = dec(enc(c0, b), a) when � = [(a, b)];
– In case � = (a, b) :: �′ with �′ non-empty, we have that

tX(�) = dec(enc(c0, dec(enc(a, t1), t2)), dec(enc(b, t1), t2))

where m, t1 and t2 are such that tX(�′) = dec(enc(c0, t1), t2) and X ∈ {P,Q}.
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For illustration purposes, the term tP (�0) for �0 = [(a2, a3), (a1, a3), (a1, a2)]
is depicted below. A subtree whose root is labelled with n having subtrees t1
and t2 as children represents the term dec(enc(n, t1), t2). The term tQ(�0) is the
same as tP (�0) after permutation of the labels on the leaves.

a1 a2 a1 a2 a1 a2 a1 a2

a1 a3 a1 a3

a2 a3

c0

First, we may note that tP (�0) = tQ(�0) when a1 = a2. Now, in case a1 = a3,
we obtain tP (�0) = tQ(�0) = dec(enc(c0, a2), a3), and we have that tP (�0) =
tQ(�0) = c0 when a2 = a3. These are the only cases where tP (�0) and tQ(�0)
are equal modulo Eenc. More generally, we can show that tP (�) and tQ(�) enjoy
Property 2.

Now we may rely on these terms to build two processes Pn and Qn such that
(Pn; φhd(n0); 0) �≈ (Qn; φhd(n0); 0) if, and only if, n0 ≥ n. These processes are
as follows:

Pn = in(c, ag(z1)) . . . in(c, ag(zn)).out(c, tP (�))
Qn = in(c, ag(z1)) . . . in(c, ag(zn)).out(c, tQ(�))

where � is a list of length n(n − 1)/2 which contains all the pairs of the form
(zi, zj) with i < j.

Note that in case n0 < n, in any execution, we are thus forced to use twice
the same agent names, and thus the resulting instances of tP (�) and tQ(�) will be
equal modulo Eenc. In case we have sufficiently many distinct agent names, the
resulting instances of tP (�) and tQ(�) will correspond to distinct public terms.
Hence, in such a case trace equivalence does not hold.

Note that, for sake of simplicity, our encoding directly relies on the agent
names, but a similar encoding can be done using for instance shks(a) instead
of a so that agent names will not be used in key position.

4.3 Beyond Action-Deterministic Processes

Another natural extension is to get rid of the action-determinism condition, or
at least to weaken it in order to consider processes that are determinate (as
defined e.g. in [10]). This is actually not possible. The encoding is quite similar
to the one presented in Sect. 4.1. Since we have no easy way to ensure that all
the terms of the form enc(�, kdiff) will contain distinct elements, the encoding is
more involved.

To prove our result, we show that given an instance of PCP, it is possible
to build two processes P and Q (that use only standard primitives and no else
branch) that are in equivalence for n agents if, and only if, the corresponding
PCP instance has a solution of length at most n.

Property 3. (P ; φhd(n); 0) �≈ (Q; φhd(n); 0) if, and only if, the instance of PCP
under study admits a solution of length at most n.
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Our process P is quite similar to the one described in Sect. 4.1. Note that
the test x �= y has been removed, and a public constant yes has been added
inside each encryption. The presence of such a constant is not mandatory when
defining P but will become useful when defining Q.

enc(〈〈x, x〉, z〉, k), enc(〈zb, z〉, kcheck)
zb=yes−−−−→ ok (1)

ag(x) −−−→ enc(〈yes, 〈x,⊥〉〉, kcheck) (2)

ag(x), ag(y), enc(〈zb, 〈x, z〉〉, kcheck), −−−→ enc(〈yes, 〈x, 〈y, z〉〉〉, kcheck) (3)
enc(〈z′

b, 〈y, z〉〉, kcheck)

Then, Q is quite similar except that we replace the test zb = yes by zb = no
and we consider in addition three other versions of the last protocol rule (rule (3))
giving us a way to generate encryption containing the flag no. More precisely,
we consider the following rule with ϕ equal to x = y (rule 3a), zb = no (rule 3b),
and z′

b = no (rule 3c).

ag(x), ag(y), enc(〈zb, 〈x, z〉〉, kcheck), ϕ−→ enc(〈no, 〈x, 〈y, z〉〉〉, kcheck)enc(〈z′
b, 〈y, z〉〉, kcheck)

Putting all these rules together and considering randomised encryption to
avoid spurious equalities to happen, this yields two processes P and Q that
actually satisfy Property 3.
Proof sketch. (⇐) if PCP has a solution of length at most n, it is possible to
build the term enc(〈u, v〉, �〉, k) corresponding to this solution with u = v and �
of length at most n. Moreover, we can assume that � is made of distinct elements.
Hence, the additional rules in Q will not be really useful to generate a certificate
on the list � with the flag set to no. Actually, only enc(〈yes, �〉, kcheck) will be
generated, and thus P will emit ok and Q will not be able to mimic this step.

(⇒) Now, if PCP has no solution of length at most n, then either PCP has no
solution at all, and in such a case, the part where P and Q differ is not reachable,
and thus the processes are in trace equivalence. Now, assuming that PCP has a
solution of length n′ with n′ > n, the only possibility to distinguish P from Q
is to build the term enc(〈yes, �〉, kcheck) with � of length n′. This term will allow
us to trigger the rule (1) in P but not in Q. The problem is that � contains a
duplicate entry, and due to this, at some point it would be possible to mimic
what is done in P using rule (3) with the additional rule (3a), and to pursue the
construction of this certificate relying on (3b) and (3c). This will allow Q to go
through the rule (1) as P did. ��

5 Conclusion

We have shown that we can bound the number of agents for a large class of pro-
tocols: action-deterministic processes with simple else branches and constructor
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theories, which encompasses many primitives. The resulting bound is rather
small in general. For example, 4 agents are sufficient for standard primitives
and processes without else branches. Our assumptions are rather tight. Surpris-
ingly, such a reduction result does not hold in case processes are not action-
deterministic, or if they include more complex else branches, or else for more
general equational theories. This draws a thin line between our result (where
terms with destructors may not be sent) and a more general framework.

Our result applies for any equivalence between two processes. This allows us
to cover various security properties such as strong secrecy or anonymity. How-
ever, assuming deterministic processes discards the encoding of some properties
such as unlinkability. We devise in [17] an alternative encoding to check for
unlinkability in our framework, considering only deterministic processes.

Our reduction result enlarges the scope of some existing decidability results.
For example, [13] provides a decision procedure for an unbounded number of
sessions, for processes that use at most one variable per rule. In case an arbitrary
number of agents is considered, one or two variables are typically used simply
to describe the agents. Bounding the number of agents is therefore needed to
consider non trivial protocols.

The proof of our reduction result is inspired from [14], which shows how to
bound the number of nonces. Taking advantage of the properties of agent names,
we extend [14] to processes with simple else branches, action-determinism and
general constructor theories. As future work, we plan to study how to generalize
both results in a framework that would allow to bound several types of data.
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Abstract. Abstraction based approaches like ProVerif are very efficient
in protocol verification, but have a limitation in dealing with stateful pro-
tocols. A number of extensions have been proposed to allow for a limited
amount of state information while not destroying the advantages of the
abstraction method. However, the extensions proposed so far can only
deal with a finite amount of state information. This can in many cases
make it impossible to formulate a verification problem for an unbounded
number of agents (and one has to rather specify a fixed set of agents).
Our work shows how to overcome this limitation by abstracting state
into countable families of sets. We can then formalize a problem with
unbounded agents, where each agent maintains its own set of keys. Still,
our method does not loose the benefits of the abstraction approach, in
particular, it translates a verification problem to a set of first-order Horn
clauses that can then be efficiently verified with tools like ProVerif.

1 Introduction

A very successful idea in protocol verification, most prominently in the ProVerif
tool, is an abstraction approach that over-approximates every possible protocol
behavior by a set of first-order Horn clauses, rather than considering the set
of reachable states [2,12]. The benefit is that one completely avoids the state-
explosion problem (i.e., that the number of reachable state grows exponentially
with the number of sessions) and allows one to even deal with an unbounded
number of sessions. The fact that this approach “throws away” the state space
does indeed not hurt the modeling and analysis for most protocols: typically,
the amount of context needed to participate in a protocol is contained within a
session, and all information that is shared across different sessions is immutable
like agent names and long-term keys.

We run into limitations with this approach, however, when we consider pro-
tocols that use some kind of long-term information that can be changed across
multiple sessions of the protocol. As an example, a web server maintains a data-
base of ordered goods, or a key server stores valid and revoked keys. In the
case of a key server, some actions can just be performed while the key is valid,
but as soon as this key is revoked, the same actions are disabled. This behav-
ior does not directly work with the Horn-clause approach, because they have
c© Springer-Verlag Berlin Heidelberg 2016
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the monotonicity property of classic logics: what is true cannot become false by
learning more information. This is at odds with any “non-monotonic” behavior,
i.e., that something is no longer possible after a particular event has occurred.

Several works have proposed extensions of the abstraction approach by
including a limited amount of state information, so as to allow the analysis
of stateful protocols, without destroying the large benefits of the approach. The
first was the AIF tool that allows one to declare a fixed number N of sets [10].
One can then specify a transition system with an unbounded number of con-
stants. These constants can be added to, and removed from, each of the sets
upon transitions, and transitions can be conditioned by set memberships. The
main idea is here that one can abstract these constants by their set membership,
i.e., partitioning the constants into 2N equivalence classes for a system with N
sets. The AIF tool generates a set of Horn clauses using this abstraction, and
can use either ProVerif or the first-order theorem prover SPASS [13] to check
whether a distinguished symbol attack can be derived from the Horn clauses. The
soundness proof shows that if the specified transition system has an attack state
then attack can be derived from the corresponding Horn clause model. There
are two more approaches that similarly bring state information into ProVerif:
StatVerif [1] and Set-π [4]. We discuss them in the related work.

While AIF is an infinite state approach, it has the limitation to a fixed number
N of sets. For instance, when modeling a system where every user maintains its
own set of keys, one needs to specify a fixed number of users, so as to arrive at
a concrete number N of sets. The main contribution of AIF-ω is to overcome
precisely this limitation and instead allow for specifying N families of sets, where
each family can consist of a countably infinite number of sets. For instance, we
may declare that User is an infinite set and define a family ring(User) of sets
so that each user a ∈ User has its own set of keys ring(a). To make this feasible
with the abstraction approach, we however need to make one restriction: the
sets of a family must be pairwise disjoint, i.e., ring(a) ∩ ring(b) = ∅ for any two
users a and b. In fact, we do allow for AIF-ω specifications that could potentially
violate this property, but if the disjointness is violated, it counts as an attack.

The contributions of this work are the formal development and soundness
proof of this countable-family abstraction. It is in fact a generalization of the AIF
approach. Besides this generalization, AIF-ω has also a direct practical advantage
in the verification tool: experiments show for instance that the verification for
infinitely many agents in an example is more efficient than the finite enumeration
of agents in AIF. In fact, the infinite agents specification has almost the same
run time as the specification with a single agent for each role in AIF.

The rest of this paper is organized as follows. In Sect. 2 we formally define
AIF-ω and introduce preliminaries along the way. In Sect. 3 we define the abstrac-
tion and translation to Horn clauses and prove the soundness in Sect. 4. We dis-
cuss how to encode the approach in SPASS and ProVerif as well as experimental
results in Sect. 5. We discuss related work and conclude in Sect. 6.
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2 Formal Definition of AIF-ω

We go right into the definition of the AIF-ω language, and introduce all prelim-
inaries along the way. An AIF-ω specification consists of the following sections:
declaring user-defined types, declaring families of sets, declaring function and
fact symbols, and finally defining the transition rules. We explain these concepts
step-by-step and for concreteness illustrate it with the running example of a
keyserver adapted from our previous paper [10].

2.1 Types

An AIF-ω specification starts with a declaration of user-defined types. These
types can either be given by a complete enumeration (finite sets), or using the
operator “. . . ” one can declare that the type contains a countable number of
elements. Finally, we can also build the types as the union of other types. For
the keyserver example, let us define the following types:

Honest = {a, b, . . .} Dishon = {i, p, . . .} User = Honest ∪ Dishon
Server = {s, . . .} Agent = User ∪ Server Status = {valid, revoked}

This declares the type Honest to be a countably infinite set that contains the
constants a and b. Similarly Dishon and Server are defined. It may be intuitively
clear that in this declaration, the sets Honest and Dishon should be disparate
types, but to make the “. . . ” notation formally precise, we give each type T
an extensional semantics [[T ]]. To that end, for each “. . . ”, we introduce new
constants t1, t2, . . . so that for the running example we have for instance:

[[Honest ]] = {a, b} ∪ {honestn | n ∈ N} [[Dishon]] = {s, p} ∪ {dishonn | n ∈ N}
Comparing AIF-ω with the previous language AIF, the ability to define infi-

nite types and families of sets over these types, are the essential new features.
Drastically speaking, “. . . ” is thus what you could not do in AIF. The complexity
of this paper however suggests that it is not an entirely trivial generalization.

Besides the user-defined types, we also have two built-in types: Value and
Untyped . The type Value is the central type of the approach, because all sets
of the system can only contain elements of type value, and all freshly created
elements must be of type value. It is thus exactly those entities that we later
want to replace by abstract equivalence classes. Let thus A = {absn | n ∈ N} be
a countable set of constants (again disjoint from all others) and [[Value]] = A.
Second, we have also the “type” Untyped . Below, we define the set of ground
terms TΣ that includes all constants and composed terms that can be built using
function symbols. We want the type Untyped to summarize arbitrary such terms,
and thus define [[Untyped ]] = TΣ .

2.2 Sets

The core concept of AIF-ω is using sets of values from A to model simple “data-
bases” that can be queried and modified by the participants of the protocols.



236 S. Mödersheim and A. Bruni

These sets can even be shared between participants, and the modeler has a great
freedom on how to use them. For our running example we want to declare sets
for the key ring of every user, and for every server a database that contains for
all users the currently valid and revoked keys:

ring(User !) db(Server !,User !,Status!)

This declares two families of sets, the first family consists of one set ring(c) for
every c ∈ [[User ]] and the second family consists of one set db(c1, c2, c3) for every
c1 ∈ [[Server ]], c2 ∈ [[User ]], and c3 ∈ [[Status]].

The exclamation mark behind the types in the set declaration has a cru-
cial meaning: with this the modeler defines a uniqueness invariant on the state
space, namely that the sets of this family will be pairwise disjoint for that
parameter. In the example, ring(c1 ) ∩ ring(c2 ) = ∅ for any c1 �= c2, and
db(c1 , c2 , c3 ) ∩ db(c′

1 , c′
2 , c′

3 ) = ∅ if (c1, c2, c3) �= (c′
1, c

′
2, c

′
3). This invariant is

part of the definition of the transition system: it is an attack, if a state is reach-
able in which the invariant is violated.

An important requirement of AIF-ω is that all family parameters of infi-
nite type must have the uniqueness invariant. Thus, it is not allowed to declare
ring(Agent), because [[Agent ]] is infinite. However, it is allowed to declare
db(Server !,Agent !,Status) since [[Status]] is finite. This declaration with non-
unique Status could be specified using two families dbvalid(Server !,Agent !) and
dbrevoked (Server !,Agent !) instead. We thus regard non-unique arguments of a
finite type as syntactic sugar that is compiled away in AIF-ω.

Since non-unique arguments are syntactic sugar, let us assume for the rest
of the paper an AIF-ω specification (like in the running example) where all set
parameters have the uniqueness invariant (i.e., the ! symbol). Let us denote
the families of sets in general as s1, . . . , sN where N is the number of declared
families, i.e., in the example, N = 2 with s1 = ring and s2 = db. We thus have for
every 1 ≤ i ≤ N the uniqueness invariant that si(a1, . . . , an) ∩ si(b1, . . . , bn) = ∅
whenever (a1, . . . , an) �= (b1, . . . , bn).

2.3 Functions, Facts, and Terms

Finally the user can declare a set of functions and facts (predicates) with their
arities. For the example let us have:

Functions: inv/1, sign/2, pair/2 Facts: iknows/1, attack/0

Intuitively, inv(pk) represents the private key corresponding to public key pk ,
sign(inv(pk),m) represents a digital signature on message m with private key
inv(pk), pair is for building pairs of messages; iknows(m) expresses that the
intruder knows m, and attack represents a flag we raise as soon as an attack has
occurred (and we later ask whether attack holds in any reachable state).

Definition 1. Let Σ consist of all function symbols, the extension [[T ]] of any
user-defined type T , and the values A (where all constants are considered as
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function symbols with arity 0). Let V be a set of variables disjoint from Σ. We
define TΣ(V ) to be the set of terms that can be built from Σ and V ⊆ V, i.e.,
the least set that contains V and such that f(t1, . . . , tn) ∈ TΣ(V ) if t1, . . . , tn ∈
TΣ(V ) and f/n ∈ Σ. When V = ∅, we also just write TΣ, and we call this the
set of ground terms. A fact (over Σ and V ) has the form f(t1, . . . , tn) where
f/n is a fact symbol and t1, . . . , tn ∈ TΣ(V ).

2.4 Transition Rules

The core of an AIF-ω specification is the definition of its transition rules that
give rise to an infinite-state transition system, where each state is a set of facts
and set conditions (as defined below). The initial state is simply the empty set of
facts and set conditions. We proceed as follows: we first give the formal definition
of syntax and semantics of rules. We then discuss the details at hand of the rules
of the running example. Finally, we give a number of restrictions on rules that
we need for the abstraction approach in the following section.

In the following we often speak of the type of a variable (and may write
X : T ); this is because variables occur only within rules (not within states) and
are then always declared as part of the rule parameters.

Definition 2. A positive set condition has the form t ∈ si(A1, . . . , An) where t
is either a constant of A or a variable of type Value, the family si of sets has
been declared as si(T1!, . . . , Tn!), and each Ai is either an element of [[Ti]] or a
variable of type T ′

i with [[T ′
i ]] ⊆ [[Ti]]. A positive set condition is called ground if

it contains no variables. A negative set condition has the form t /∈ si( ) where t
and si are as before.

A state is a finite set of ground facts and ground positive set conditions.
A transition rule r has the form

r(X1: T1, . . . , Xn: Tn) = LF · S+ · S− =[F ]⇒ RF · RS

where

1. X1, . . . , Xn are variables and T1, . . . , Tn are their types;
We often abbreviate (X1: T1, . . . , Xn: Tn) by X: T ;

2. The Xi are exactly the variables that occur in the rule
3. LF and RF are sets of facts;
4. S+ and RS are sets of positive set conditions;
5. S− is a set of negative set conditions;
6. F is a set of variables that are of type Value and they do not occur in LF ,

S+, or S−.
7. For every untyped variable that occurs in RF , it also occurs in LF .

Let VA denote the subset of the Xi that have type Value.
A rule r gives rise to a state-transition relation ⇒r where S ⇒σ

r S′ holds for
states S and S′ and a substitution σ iff
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– σ has domain {X1, . . . , Xn} and σ(Xi) ∈ [[Ti]] for each 1 ≤ i ≤ n;
– (LF · S+)σ ⊆ S,
– For every negative set condition X /∈ si( ) of S−, state S does not contain

σ(X) ∈ si(a1, . . . , am) for any (a1, . . . , am).
– S′ = (S \ σ(S+)) ∪ σ(RF ) ∪ σ(RS),
– σ(F ) are fresh constants from A (i.e. they do not occur in S or the AIF-ω

specification).

A state S is called reachable using the set of transition rules R, iff ∅ ⇒∗
R S.

Here ⇒R is the union of ⇒·
r for all r ∈ R (ignoring substitution σ) and ·∗ is

the reflexive transitive closure. 
�
Intuitively, a rule r can be applied under match σ if the left-hand side facts
σ(LF ) and positive set conditions σ(S+) are present in the current state, and
none of the negative conditions σ(S−) holds. Upon transition we remove the
matched set conditions σ(S+) and replace them with the right-hand side set
conditions σ(RS) and facts σ(RF ). The semantics ensures that all reachable
states are ground, because σ must instantiate all variables with ground terms.
The semantics defines facts to be persistent, i.e., when present in a state, then
also in all successor states. Thus only set conditions can be “taken back”.

To illustrate the AIF-ω rules more concretely, we now discuss the rules of the
key server example. We first look at the three rules that describe the behavior
of honest users and servers:

keyReg(A: User ,S : Server ,PK : Value) =
=[PK ]⇒ iknows(PK ) · PK ∈ ring(A) · PK ∈ db(S ,A, valid)

userUpdateKey(A: Honest ,S : Server ,PK : Value,NPK : Value) =
PK ∈ ring(A) · iknows(PK)
=[NPK ]⇒ NPK ∈ ring(A) · iknows(sign(inv(PK ), pair(A,NPK )))

serverUpdateKey(A: User, S: Server, PK: V alue,NPK: V alue) =
iknows(sign(inv(PK ), pair(A,NPK ))) · PK ∈ db(S ,A, valid) · NPK /∈ db( )
⇒ PK ∈ db(S ,A, revoked) · NPK ∈ db(S ,A, valid) · iknows(inv(PK ))

Intuitively, the keyReg rule describes an “out-of-band” key registration, e.g. a
physical visit of a user A at an authority S. Here, the left-hand side of the rule
is empty: the rule can be applied in any state. Upon the arrow, we have PK ,
meaning that in this transition we create a fresh value from A that did not occur
previously. Intuitively this is a new public key that the user A has created. We
directly give the intruder this public key, as it is public. The two set conditions
formalize that the key is added to the key ring of A and that the server S stores
PK as a valid key for A in its database. Of course, the user A should also know
the corresponding private key inv(PK ), but we do not explicitly express this
(and rather later make a special rule for dishonest agents). Note that, having
no prerequisites, this rule can be applied in any state, and thus every user can
register an unbounded number of keys with every server.

The userUpdateKey rule now describes that an honest user (for the behavior
of dishonest users, see below) can update any of its current keys PK (the require-
ment iknows(PK) is explained below) by creating a new key NPK and sending
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an update message sign(inv(PK ), pair(A,NPK )) to the server, signing the new
key with the current key. As it is often done, this example does not explicitly
model sending messages on an insecure channel and rather directly adds it to
the intruder knowledge (see also the model of receiving a message in the next
rule). Further, NPK is added to the key ring of A. Finally, observe that the
set condition PK ∈ ring(A) is not repeated on the right-hand side. This means
that PK is actually removed from the key ring. Of course this is a simplistic
example: in a real system, the update would include some kind of confirmation
message from the server, and the user would not throw away the current key
before receiving the confirmation.

The third rule serverUpdateKey formalizes how a server processes such an
update message: it will check that the signing key PK is currently registered as
a valid key and that NPK is not yet registered, neither as valid nor as revoked.
If so, it will register NPK as a valid key for A in its database. PK is now
removed from the database of valid keys for A, because PK ∈ db(S ,A, valid) is
not present on the right-hand side; PK is added to the revoked keys instead.
Note that the check NPK /∈ db( ) on the left-hand side actually models a server
that checks that no server of Server has seen this key so far.1 As a particular
“chicane”, we finally give the intruder the private key to every revoked key. This
is modeling that we want the protocol to be secure (as we define shortly) even
when the intruder can get hold of old private keys.

Remaining rules of the example model the behavior of dishonest agents and
define what constitutes an attack:

iknowsAgents(A: Agent) = ⇒ iknows(A)
sign(M1 ,M2 : Untyped) = iknows(M1 ) · iknows(M2 ) ⇒ iknows(sign(M1 ,M2 ))
open(M1 ,M2 : Untyped) = iknows(sign(M1 ,M2 )) ⇒ iknows(M2 )
pair(M1 ,M2 : Untyped) = iknows(M1 ) · iknows(M2 ) ⇒ iknows(pair(M1 ,M2 ))
proj (M1 ,M2 : Untyped) = iknows(pair(M1 ,M2 )) ⇒ iknows(M1 ) · iknows(M2 )
dishonKey(A: Dishon,PK : Value) = iknows(PK ) · PK ∈ ring(A)

⇒ iknows(inv(PK )) · PK ∈ ring(A)
attdef (A: Honest ,S : Server) = iknows(inv(PK )) · PK∈db(S ,A,valid) ⇒attack

The first rules are basically a standard Dolev-Yao intruder for the operators we
use (i.e., the intruder has access to all algorithms like encryption and signing, but
cannot break cryptography and can thus apply the algorithms only to messages
and keys he knows). The rule dishonKey expresses that the intruder gets the
private key to all public keys registered in the name of a dishonest agent. This
reflects the common model that all dishonest agents work together. Finally the
rule attdef defines security indirectly by specifying what is an attack: when the
intruder finds out a private key that some server S considers currently as a

1 If one would rather like to model that servers cannot see which keys the other servers
consider as valid or revoked, one runs indeed into the boundaries of AIF-ω here. This
is because in this case one must accept that at least a dishonest agent can register
the same key at two different servers, violating the uniqueness invariant. If one wants
to model such systems, one must resort to finitely many servers.
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valid key of an honest agent A. One may give more goals, especially directly
talking about authentication—note that this secrecy goal implicitly refers to
authentication, as the intruder would for instance have a successful attack if he
manages to get a server S to accept as the public key of an honest agent any
key to which the intruder knows the private key. For an in-depth discussion of
formalizing authentication goals, see [4].

2.5 Restrictions and Syntactic Sugar

There are a few forms of rules that are problematic for the treatment in the
abstraction approach later. Actually, problematic rules may also indicate that
the modeler could have made a mistake (i.e. has something different in mind than
what the rule formally means). Most of the problematic rules are either paradox
(and thus useless) or can be compiled into non-problematic variants as syntactic
sugar. We first define problematic, or inadmissible, rules, then discuss what is
problematic about them and how they are handled. Afterwards, we assume to
deal only with admissible rules.

Definition 3. A rule r(X:Type) = LF · S+ · S− =[F ]⇒ RF · RS is called
inadmissible, if any of the following holds:

1. Either X ∈ si(. . .) occurs in S+ or X /∈ si( ) occurs in S−, but X does not
occur in LF , or

2. X ∈ si(A1, . . . , An) occurs in S+ and X /∈ si( ) occurs in S−, or
3. both X ∈ si(A1, . . . , An) and X ∈ si(A′

1, . . . , A
′
n) occur in S+ for

(A′
1, . . . , A

′
n) �= (A1, . . . , An), or

4. both X ∈ si(A1, . . . , An) and X ∈ si(A′
1, . . . , A

′
n) occur in RS for

(A′
1, . . . , A

′
n) �= (A1, . . . , An), or

5. X ∈ Si(A1, . . . , An) occurs in RS and neither:
– X ∈ F , nor
– X /∈ si( , . . . , ) occurs in S−, nor
– X ∈ si(A′

1, . . . , A
′
n) occurs in S+;

For the rest of this paper, we consider only admissible rules.
Also we define the distinguished semantics as the following restriction of the

⇒ relation: S ⇒σ
r S′ additionally requires that σ(X) �= σ(Y ) for any distinct

variables X,Y ∈ VA. 
�
Condition (1) is in fact completely fine in a specification and it only causes

problems in the abstraction approach later (since set conditions are removed
from the rules and put into the abstraction of the data). To “rule out” such an
occurrence without bothering the modeler, the AIF-ω compiler simply introduces
a new fact symbol occurs/1 and adds occurs(X) on the left-hand and right-hand
side of every rule for every X ∈ VA of the rule. (In the running example, the rule
userUpdateKey has iknows(PK) on the left-hand side, simply because without
it, it would satisfy condition (1); since in this example the intruder knows all
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public keys, this is the easiest way to ensure admissibility without introducing
occurs.)

Condition (2) means that the rule is simply never applicable. The compiler
refuses it as this is a clear specification error.

An example for condition (3) is the rule: r(. . .) = X ∈ s1(A)·X ∈ s1(B) ⇒ . . .
Recall that our uniqueness invariant forbids two distinct sets of the same family
(like s1 here) to have an element in common. So this rule cannot be applicable
in any state that satisfies the invariant unless σ(A) = σ(B). As this may be a
specification error, the compiler also refuses this with the suggestion to unify
A and B. Similarly, condition (4) forbids the same situation on the right-hand
side, as for σ(A) �= σ(B) the invariant would be violated. Also in this case, the
compiler refuses the rule with the suggestion to unify A and B.

An example of a rule that is inadmissible by condition (5) is the following:

r(X: Value) = p(X) =⇒ X ∈ s1(a)

The problem here is that we insert X into s1(a) without checking if possibly
X is already member of another set of the s1 family. Suppose for instance the
state S = {p(c), c ∈ s1(b)} is reachable, then r is applicable and produces state
S = {p(c), c ∈ s1(a), c ∈ s1(b)} violating the invariant that the sets belonging to
the same family are pairwise disjoint. However, note that r is only potentially
problematic: it depends on whether we can reach a state in which both p(c) and
c ∈ s1(. . .) holds for some constant c ∈ A, otherwise r is fine.

The AIF-ω compiler indeed allows for such inadmissible rules that potentially
violate the invariant, but transforms them into the following two admissible rules:

r1(X: Value) = p(X) · X /∈ s1( ) =⇒ X ∈ s1(a)
r2(X: Value, A: T ) = p(X) · X ∈ s1(A) =⇒ attack

where T is the appropriate type for the parameter of s1. Thus, we have turned
this into one rule for the “safe” case (r1) where X is not previously in any set
of s1, and one for the “unsafe” case (r2) where X is already in s1 and applying
the original rule r would lead to a violation of the invariant (unless σ(A) = a);2

in this case we directly raise the attack flag. Note that neither r1 nor r2 still
have the problem of condition (5). The compiler simply performs such case splits
until no rule has the problem of condition (5) anymore. We thus allow the user
to specify rules that would potentially violate the invariant, but make it part of
the analysis that no reachable state actually violates it.

Finally, consider the restriction to a distinguished semantics of Definition 3.
Here is an example why the standard semantics of Definition 2 can make things
very tricky:

r(. . .) = p(X,Y ) · X ∈ s1(a) · Y ∈ s1(a) → X ∈ s1(a)

2 In fact, we are here over-careful as the case σ(A) = a in the second rule would still
be fine; but a precise solution in general would require inequalities—which we leave
for future work.
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Suppose the state S = {p(c, c) · c ∈ s1(a)} is reachable, then the rule clearly is
applicable in S (with σ(X) = σ(Y ) = c), but the rule tells us that Y should be
removed from s1(a) while X stays in there. (Here, the semantics tells us that the
positive X ∈ s1(a) “wins”, and the successor state is also S.) However, it would
be quite difficult to handle such cases in the abstraction and it would further
complicate the already complex set of conditions of Definition 3.

Therefore we like to work in the following with the distinguished semantics
of Definition 3, where the instantiation σ(X) = σ(Y ) in the above example
is simply excluded. To make this possible without imposing the restriction on
the modeler, the AIF-ω compiler applies the following transformation step. We
check in every rule for every pair of variables X,Y ∈ VA whether σ(X) = σ(Y )
is possible, i.e. neither X nor Y is in the fresh variables, and left-hand side
memberships of X and Y do not contradict each other. (Observe that in none
of the rules of the running example, such a unification of two VA variables is
possible.) If the rule does not prevent X = Y , the AIF-ω compiler generates a
variant of the rule where Y is replaced by X. Thus, we do not loose the case
X = Y even when interpreting the rules in the distinguished semantics.

As a fruit of all this restriction we can prove that admissible rules cannot
produce a reachable state that violates the invariant:

Lemma 1. Considering only admissible rules in the distinguished semantics.
Then there is no reachable state S and constant c ∈ A such that S contains both
c ∈ si(a1, . . . , an) and c ∈ si(a′

1, . . . , a
′
n) for any (a1, . . . , an) �= (a′

1, . . . , a
′
n).

Proof. By induction over reachability. The property trivially holds for the initial
state. Suppose S is a reachable state with the property, and S ⇒σ

r S′. Suppose
S′ contains both c ∈ si(a1, . . . , an) and c ∈ si(a′

1, . . . , a
′
n). Since S enjoys the

property, at least one of the two set conditions has been introduced by the
transition. Thus there is a value variable X in r and σ(X) = c, and X ∈
si(A1, . . . , An) is in RS and either σ(Aj) = aj or σ(Aj) = a′

j , so without loss
of generality, assume σ(Aj) = aj . By excluding (4) of Definition 3, RS cannot
contain another set condition X ∈ si(A′

1, . . . , A
′
n) (such that σ(A′

j) = a′
j), so

c ∈ si(a′
1, . . . , a

′
n) must have been present in S already. By excluding (5), we

have however either of the following cases:

– X /∈ si( ) is in S−, but that clearly contradicts the fact that σ(X) ∈
si(a′

1, . . . , a
′
n) is in S.

– X ∈ si(B1, . . . , Bn) is in S+, and by excluding (3) and (2) this is the only
positive or negative condition for X on the si family. This means that only
σ(Bj) = a′

j is possible, so c ∈ si(a′
1, . . . , a

′
n) actually gets removed from the

state upon transition, and is no longer present in S′.
– X ∈ F , but that is also absurd since then σ(X) cannot occur in S.

So in all cases, we get to a contradiction, so we cannot have c being a member
of two sets of the si family. 
�



AIF-ω: Set-Based Protocol Abstraction with Countable Families 243

3 Abstraction

We now define a translation from AIF-ω rules to Horn clauses augmented with
a special kind of rules, called term implication. (We show in a second step how
to encode these term implication rules into Horn clauses, to keep the approach
easier to grasp and to work with.) The basic idea is that we abstract the constants
of A into equivalence classes that are easier to work with. In fact, in the classic
AIF, we had finitely many equivalence classes, but in AIF-ω we have a countable
number of equivalence classes, due to the countable families of sets.

The abstraction of a constant c ∈ A for a state S shall be (e1, . . . , eN ) where
ei represents the set membership for the family si: either ei = 0 if c belongs to
no member of si or ei = si(a1, . . . , an) if ei belongs to set si(a1, . . . , an) in S.
For instance in a state with set conditions

{c1 ∈ db(a, s, revoked), c2 ∈ db(b, s, valid), c2 ∈ ring(b)}

the abstraction of c1 is (0 , db(a, s, revoked)) and similarly the abstraction of c2
is (ring(b), db(b, s, valid)). Thus, we do not distinguish concrete constants in the
abstraction whenever they have the same set memberships.

The second main idea (as in other Horn-clause based approaches) is to for-
mulate Horn clauses that entail all facts (under the abstraction) that hold in any
reachable state. This is like merging all states together into a single big state.

3.1 Translation of the Rules

We first define how admissible AIF-ω rules are translated into Horn clauses and
then show in the next section that this is a sound over-approximation (in the
distinguished semantics).

Definition 4. For the translation, we use the same symbols as declared by the
user in AIF-ω plus the following:

– new untyped variables Ei,X for X ∈ VA and 1 ≤ i ≤ N .
– a new function symbol val/N (where N is the number of families of sets)
– new fact symbols isT i/1 for every user-defined type Ti,
– and finally the infix fact symbol � /2.

For an admissible AIF-ω rule

r(X1: T1, . . . , Xm: Tm) = LF · S+ · S− =[F ]⇒ RF · RS

define its translation into a Horn clause [[r]] as follows.

Li(X) =

⎧⎪⎨
⎪⎩

si(A1, . . . , An) if X ∈ si(A1, . . . , An) occurs in S+

0 if X /∈ si( ) occurs in S−
Ei,X otherwise
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Ri(X) =

⎧⎪⎨
⎪⎩

si(A1, . . . , An) if X ∈ si(A1, . . . , An) occurs in RS

Ei,X otherwise, if Li(X) = Ei,X and t /∈ F

0 otherwise

L(X) = (L1(X), . . . , LN (X))
R(X) = (R1(X), . . . , RN (X))

λ = [X 
→ val(L(X)) | X ∈ VA]
ρ = [X 
→ val(R(X)) | X ∈ VA]
C = {λ(X) � ρ(X) | X ∈ VA \ F, and λ(X) �= ρ(X)}

Types = {isT i(Xi) | Ti is a user defined type}
[[r]] = Types · λ(LF ) → ρ(RF ) · C

where → is the “normal implication” in Horn clauses. We keep the set opera-
tor · from AIF-ω in our notation, denoting in Horn clauses simply conjunction.
Finally, note that our Horn clauses have in general more than one fact as con-
clusion, but this is of course also just syntactic sugar.

We give the translation for the behavior of the honest agents in the running
example (other rules are similar and shown in the appendix for completeness).

[[keyReg ]] = isUser(A) · isServer(S ) → iknows(val(ring(A), db(S ,A, valid)))
[[userUpdateKey ]] = isHonest(A) · isServer(S ) · iknows(val(ring(A),Edb,PK ))

→ iknows(sign(inv(val(0 ,Edb,PK )), pair(A, val(ring(A), 0 )))) ·
(val(ring(A),Edb,PK ) � val(0 ,Edb,PK ))

[[serverUpdateKey ]] = isUser(A) · isServer(S ) ·
iknows(sign(inv(val(Ering,PK , db(S ,A, valid))), pair(A, val(Ering,NPK , 0 ))))
→ iknows(inv(val(Ering,PK , db(S ,A, revoked)))) ·
(val(Ering,PK , db(S ,A, valid)) � val(Ering,PK , db(S ,A, revoked))) ·
(val(Ering,NPK , 0 ) � val(Ering,NPK , db(S ,A, valid)))

First note that all right-hand side variables of the Horn clauses also occur on the
left-hand side; this is in fact the reason to introduce the typing facts like isUser .
In fact, the variables of each Horn clause are implicitly universally quantified (e.g.
in ProVerif) and we explicitly add these quantifiers when translating to SPASS.
Thus, [[keyReg ]] expresses that the intruder knows all those values (public keys)
that are in the key ring of a user A and registered as valid for A at server S.

For the [[userUpdateKey ]] rule, let us first look at the abstraction of the
involved keys PK and NPK . We have L(PK ) = (ring(A),Edb,PK ) (we write the
family name db rather than its index for readability) and R(PK ) = (0 ,Edb,PK ).
This reflects that the rule operates on any key in the key ring of an honest agent
A, where the variable Edb,PK then is a placeholder for what status the key has
in the database. The fact that in the original transition system, the key PK
gets removed from the key ring when applying this rule, is reflected by the 0
component in the right-hand side abstraction: this is any key that is not in the
key-ring but has the same status for db as on the left-hand side. Actually, in the
key update message that the agent produces for the signing key inv(PK ) it holds



AIF-ω: Set-Based Protocol Abstraction with Countable Families 245

that PK is no longer in the key ring. The Horn clause reflects that: for every
value in the ring of an honest user, the intruder gets the key update message
with the same key removed from the key ring (but with the same membership
in db). Finally, the � fact here intuitively expresses that everything that is true
about an abstract value val(ring(A), Edb,PK) is also true about val(0, Edb,PK).
We formally define this special meaning of � below.

3.2 Fixedpoint Definition

We define the fixedpoint for the Horn clauses in a standard way, where we give
a special meaning to the s � t facts: for every fact C[s] that the fixedpoint
contains, also C[t] must be contained. We see later how to encode this (and the
typing facts) for existing tools like ProVerif and SPASS.

Definition 5. Let

– Types = {isTi(c) | c ∈ [[Ti]] for every user-defined type Ti}.
– For a set of ground facts Γ , let Timplies(Γ ) = {C[t] | s � t ∈ Γ ∧ C[s] ∈ Γ}

where C[·] is a context, i.e. a “term with a hole”, and C[t] means filling the
hole with term t.

– For any Horn clause r = A1 . . . An → C1 . . . Cm, define
Apply(r)(Γ ) = {σ(Ci) | σ(A1) ∈ Γ, . . . , σ(An) ∈ Γ, 1 ≤ i ≤ m}.

For a set of Horn clauses R, we define the least fixed-point LFP(R) as the least
closed set Γ that contains Types and is closed under Timplies and Apply(r) for
each r ∈ R.

For our running example we can describe the “essential” fixedpoint as follows,
for every A ∈ [[Honest]], D ∈ [[Dishon]] and S ∈ [[Server]]:

val(ring(A), 0) � val(ring(A), db(S,A, valid))
val(ring(A), 0) � val(0, 0)
val(ring(A), db(S,A, valid)) � val(0, db(S,A, valid))
val(0, 0) � val(0, db(S,A, valid))
val(0, db(S,A, valid)) � val(0, db(S,A, revoked))
val(ring(D), 0) � val(ring(D), db(S,D, valid))
val(ring(D), db(S,D, valid)) � val(ring(D), db(S,D, revoked))
iknows(val(ring(A), 0))
iknows(sign(inv(val(0, 0)), pair(A, val(ring(A), 0))))
iknows(inv(0, db(S,A, revoked)))
iknows(val(ring(D), 0))iknows(inv(val(ring(D), 0)))

Here, we have omitted the type facts, “boring” intruder deductions, and conse-
quences of � (i.e., when C[s] and s � t omit C[t]). Note that the � facts reflect
the “life cycle” of the keys.
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4 Soundness

We now show that the fixedpoint of Definition 5 represents a sound over-approxi-
mation of the transition system defined by an AIF-ω specification: if an attack
state is reachable in the transition system, then the fixedpoint will contain the
fact attack. The inverse is in general not true, i.e., we may have attack in the
fixedpoint while the transition system has no attack state. However, soundness
thus gives us the guarantee that the system is correct, if the fixedpoint does not
contain attack. To show soundness we take several steps:

– We first annotate in the transition system in every state all occurring con-
stants c ∈ A with the equivalence class that they shall be abstracted to.

– We then give a variant of the rules that correctly handles these labels.
– We can then eliminate all set conditions s ∈ . . . and s /∈ . . . from the transition

rules and states, since this information is also present in the labels.
– Finally, we show for any fact that occurs in a reachable state, the fixedpoint

contains its abstraction (i.e., replacing any labeled concrete constant with
just its label).

Note that the first three steps are isomorphic transformations of the state transi-
tion system, i.e., we maintain the same set of reachable states only in a different
representation.

4.1 The Labeled Concrete Model

The basic idea of our abstraction is that every constant c ∈ A shall be abstracted
by what sets it belongs to, i.e., two constants that belong to exactly the same
sets will be identified in the abstraction. The first step is that in every reachable
state S, we shall label every occurring constant c ∈ A with this equivalence class.
Note that upon state transitions, the equivalence class of a constant can change,
since its set memberships can.

Definition 6. Given a state S and a constant c ∈ A that occurs in S. Then the
N -tuple (e1, . . . , eN ) is called the correct label of c in S if for every 1 ≤ i ≤ N
either

– ei = 0 and c ∈ si(a1, . . . , an) does not occur in S for any a1, . . . , an, or
– ei = si(a1, . . . , an) and c ∈ si(a1, . . . , an) occurs in S and c ∈ si(a′

1, . . . , a
′
n)

does not occur in S for any (a′
1, . . . , a

′
n) �= (a1, . . . , an).

We write c@l for constant c annotated with label l.

Note that, at this point, the label is merely an annotation and it can be applied
correctly to every constant c ∈ A in every reachable state S, because by Lemma 1,
c can never be in more than one set of the same family, i.e., c ∈ si(a1, . . . , an)
and c ∈ si(a′

1, . . . , a
′
N ) cannot occur in the same state S.
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4.2 Labeled Transition Rules

While, in the previous definition, the labels are just an annotation that decorate
each state, we now show that we can actually modify the transition rules so that
they “generate” the labels on the right-hand side, and “pattern match” existing
labels on the left-hand side.

Definition 7. Given an AIF-ω rule r we define the corresponding labeled rule
r′ as the following modification of r:

– Every variable X ∈ VA on the left-hand side is labeled with L(X) and every
variable X ∈ VA on the right-hand side (including the fresh variables) is
labeled with R(X).

– All variables Ei,X that occur in L(X) and R(X) are added to the rule para-
meters of r′.

– For each variable X ∈ VA that occurs both on the left-hand side and the right-
hand side and where L(X) �= R(X), we augment r′ with the label modification
X@L(X) 
→ X@R(X).

The semantics of r′ is defined as follows. First, the labeling symbol @ is not
treated as a mere annotation anymore, but as a binary function symbol (so labels
are treated as a regular part of terms, including variable matching on the left-
hand side). To define the semantics of the label modifications, consider a rule

r′ = r′
0 · (X1@l1 
→ X1@r1) · . . . · (Xn@ln 
→ Xn@rn)

where r′
0 is the basis of r′ that does not contain label modifications. We define

S ⇒σ
r′ S′ iff S ⇒σ

r′
0

S′
0 and S′ is obtained from S′

0 by replacing every occurrence
of σ(Xi@li) with σ(Xi@ri) for i = 1, 2, . . . , n (in this order).

Note that the order i = 1, 2, . . . , n does not matter: the distinguished semantics
requires that all distinct variables X,X ′ ∈ VA have σ(X) �= σ(X ′) and therefore
the label replacements are on disjoint value-label pairs.

As an example, the second rule of our running example looks as follows in
the labeled model:

userUpdateKey ′(A: Honest ,S : Server ,PK : Value,NPK : Value) =
PK@(ring(A),Edb,X ) ∈ ring(A) · iknows(PK@(ring(A),Edb,X ))
=[NPK@(ring(A), 0 )]⇒ NPK@(ring(A), 0 ) ∈ ring(A) ·
iknows(sign(inv(PK@(0 ,Edb,X )), pair(A,NPK@(ring(A), 0 )))) ·
(PK@(ring(A),Edb,X ) 
→ PK@(0 ,Edb,X ));

Lemma 2. Given a set R of AIF-ω rules, and let R′ be the corresponding labeled
rules. Then R′ induces the same state space as R except that all states are
correctly labeled.

Proof. This requires two induction proofs, one showing that every R-reachable
state has its R′-reachable correspondent. The other direction, that every R′-
reachable state has an R-reachable correspondent is similar and actually not
necessary for the overall soundness, so we omit it here.
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For the initial state ∅, the statement is immediate. Suppose now S1 is an
R-reachable state, S′

1 is an R′-reachable state where S′
1 is like S1 but correctly

labeled. Suppose further S1 ⇒σ
r S2 for some r ∈ R, some substitution σ, and

some successor state S2. We show that the corresponding rule r′ ∈ R′ allows for
a transition S1 ⇒σ′τ

r′ S′
2 where S′

2 is the correctly labeled version of S2 and some
substitutions σ′ and τ .

The substitution σ′ here is an adaption of σ, because untyped variables are
substituted for terms that can contain constants from A that are labeled in S′

1

but unlabeled in S1. In fact, this label may even change upon transition, in this
case, σ′ contains the label of S′

1. Thus, σ and σ′ only differ on untyped variables.
The substitution τ is for all variables Ei,X that occur in the label variables

of r′. We show the statement for the following choice of τ : for each label variable
Ei,X that occurs in r′ (where by construction X ∈ VA is a variable that occurs
in r′ and 1 ≤ i ≤ N), we set τ(Ei,X) = ei(X) if e(X) = (e1(X), . . . , eN (X))
is the correct label of σ(X) in S1. Note that τ is a grounding substitution and
does not interfere with σ or σ′.

To prove that S1 ⇒σ′τ
r′ S′

2, we first consider the matching of r on S1 and r′

on S′
1. We have to show that despite the additional labels, essentially the same

match is still possible. Consider thus any variable X ∈ VA that occurs on the
left-hand side of r and thus X@L(X) occurs correspondingly on the left-hand
side of r′. We have to show that the correct label for σ(X) in S1 is indeed
σ(τ(L(X))). For 1 ≤ i ≤ N , we distinguish three cases:

– Li(X) = si(A1, . . . , An), then S+ of r contains the positive set condition
X ∈ si(A1, . . . , An) and thus σ(X ∈ si(A1, . . . , An)) occurs in S1. Thus
σ(τ(Li(X))) = σ(si(A1, . . . , An)) is the i-th part of the correct label of σ(X).

– Li(X) = 0, then S− of r contains the negative set condition X /∈ si( ) and thus
σ(X) ∈ si(a1, . . . , an) does not occur in S1 for any ai. Thus σ(τ(Li(X))) = 0
is the i-th part of the correct label of σ(X).

– Li(X) = Ei,X . In this case the rule neither requires nor forbids X to be
member of some set of family si. Since τ(Ei,X) = ei(X) where ei(X) is i-th
component of the correct label for σ(X), we have that σ(τ(Li(X))) = ei(X)
is the i-th component of the correct label for σ(X).

Thus in all cases, σ(τ(L(X)) is the correct label for σ(X) in S1. Since S′
1 is

correctly labeled, all occurrences of σ(X) in S′
1 are labeled σ(τ(L(X)), and

thus the rule r′ is applicable to S′
1 under σ′τ (where σ′ adapts to labels in the

substitution of untyped variables). It remains to show that under this match we
obtain the desired successor state S′

2.
To that end, we first show that for any variable X ∈ A that occurs in the

right-hand side of r, σ(τ(R(X)) is the correct label for σ(X) in S2. For 1 ≤ i ≤ N ,
we distinguish three cases:

– Ri(X) = s1(A1, . . . , An). Then X ∈ si(A1, . . . , An) occurs in RS of r and
thus σ(X ∈ si(A1, . . . , An)) is in S2. Thus σ(τ(Ri(X))) = σ(si(A1, . . . , An))
is the i-th component of the correct label for σ(X) in S2.
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– Ri(X) = 0. Then either X ∈ si(. . .) occurs in S+ or X ∈ si( ) occurs in
S−, or X is a fresh variable, and but X ∈ si(. . .) does not occur in RS,
so σ(X ∈ si(a1, . . . , an)) is not contained in S2 for any aj , and therefore
σ(τ(Ri(X))) = 0 is the i-th component of the correct label for σ(X) in S2.

– Ri(X) = Ei,X . Then the set membership of X with respect to family si does
not change on the transition, and σ(τ(Ri(X))) = ei(X) is the correct label
for σ(X) also in S2.

Thus in all cases, σ(τ(R(X))) is the correct label for σ(X) in S2. Finally, the
label replacements of r′ ensure that for all c@l that occur in S′

1 and where the
label of c has changed upon transition to S′

2 to label l′ will be updated. Thus S′
2

is the correctly labeled version of S2. 
�

4.3 Labeled Concrete Model Without Set Conditions

Since every label correctly represents the set memberships of the involved con-
stants, we can just do without set membership facts, i.e., remove from the labeled
rules the S+, S− and RS part. We obtain states that do not contain any s ∈ si(·)
conditions anymore, but only handle this information in the labels of the con-
stants. It is immediate from Lemma 2 that this changes the model only in terms
of representation:

Lemma 3. The labeled model without set conditions has the same reachable
states as the labeled model, except that states have no more explicit set conditions.

4.4 Reachable Abstract Facts

All the previous steps were only changing the representation of the model, but
besides that the models are all equivalent. Now we finally come to the actual
abstraction step that transforms the model into an abstract over-approximation.

We define a representation function η that maps terms and facts of the con-
crete model to ones of the abstract model:

Definition 8.

η(t@(e1, . . . , eN )) = val(e1, . . . , eN ) for t ∈ A ∪ VA

η(f(t1, . . . , tn)) = f(η(t1), . . . , η(tn))
for any function or fact symbol f of arity n

We show that the abstract rules allow for the derivation of the abstract
representation of every reachable fact f of the concrete model:

Lemma 4. For an AIF-ω rule set R, let R′ be the corresponding rule set in the
labeled model without, f be a fact in a reachable state of R′ (i.e. ∅ →∗

R′ S and
f ∈ S for some S). Let [[R]] be the translation into Horn clauses of the rules R
according to Definition 4, and Γ = LFP([[R]]). Then η(f) ∈ Γ .

This lemma is simply adapting the corresponding result for AIF [10], which we
omit due to the lack of space. From Lemmas 2, 3 and 4 immediately follows that
the over-approximation is sound:
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Theorem 1. Given an AIF-ω specification with rules R. If an attack state is
reachable with R, then attack ∈ LFP([[R]]).

5 Encoding in SPASS and ProVerif

We now want to use SPASS and ProVerif for checking the property attack ∈
LFP([[R]]). Three aspects in our definition of LFP need special considerations.

First, SPASS is a theorem prover for standard first-order logic FOL (and
the Horn clause resolution in ProVerif is very similar, but more geared towards
protocol verification). The problem here is that the Horn clauses [[R]] always have
the trivial model where the interpretation of all facts is set simply to true, and
in this model, attack holds. We are interested in the “least” model and terms
to be interpreted in the Herbrand universe, i.e., the free term algebra TΣ . The
common “Herbrand trick” is to try to prove the FOL formula [[R]] =⇒ attack ,
i.e., that in every model of the Horn clauses, attack is true. If that is valid, then
also in the least Herbrand model, attack is true. Vice-versa, if the formula is not
valid, then there are some models in which attack does not hold, and then also
in the least Herbrand model. This trick is also part of the setup of ProVerif.

The second difficulty is the encoding of the user-defined types. For instance,
the declaration A = {. . .} leads to the extension [[A]] = {an | n ∈ N} for some
new constant symbols an, and then by definition, LFP([[R]]) contains the infinite
set {isA(an) | n ∈ N}. We could encode this by Horn clauses

isA(mkA(0)) ∧ ∀X.isA(mkA(X)) → isA(mkA(s(X)))

for new function symbols mkA and s. Note that this encoding only makes sense
in the least Herbrand model (standard FOL allows to interpret s as the identity).
However, it easily leads to non-termination in tools. A version that works how-
ever, is simply saying ∀X.isA(mkA(X)). Interpreting this in the least Herbrand
model, X can be instantiated with any term from TΣ (which is countable).

The third and final difficulty are the � facts that have a special meaning in
LFP([[R]]): whenever both C[s] and s � t in LFP([[R]]) then also C[t] (for any
context C[·]). We can encode this into Horn clauses because we can soundly limit
the set of contexts C[·] that need to be considered: it is sufficient to consider
right-hand side facts of rules in R in which a variable X ∈ VA occurs (note
that a fact may have more than one such occurrence). Define thus the finite set
Con = {C[·] | C[X] is a RHS fact in R,X ∈ VA}. We generate the additional
Horn clauses: {∀X,Y.C[X] ∧ (X � Y ) → C[Y ] | C[·] ∈ Con} .

Lemma 5. The encoding of � into Horn clauses is correct.

Proof. Suppose C[s] and s � t are in the fixedpoint. Then C[s] is the conse-
quence of some Horn clause A → B, i.e., C[s] = σ(B) such that σ(A) is part
of the fixedpoint. We distinguish two cases. First B = C ′[X] for some X ∈ VA,
some context C ′[·] and σ(C ′[·]) = C[·], i.e., s = σ(X) is directly the instance of
a VA variable, and thus our Horn clause encoding covers C[·]. Second, the only
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other possibility for σ(B) = C[s] is that B contains an untyped variable that
matches s or a super-term of it in C[s]. By the rule shape, this untyped variable
is also part of the assumptions A. Since σ(A) is already in the fixedpoint, we
can by an inductive argument conclude that for every C0[s] of σ(A) also C0[t] is
in the fixedpoint. In both cases, we conclude that C[t] is derivable. 
�

5.1 Experimental Results

Table 1 compares the run times of our key-server example for AIF and AIF-ω,
taken on a 2.66 GHz Core 2 Duo, 8 GB of RAM. In AIF we have to specify a fixed
number of honest and dishonest users and servers, while in AIF-ω we can have an
unbounded set for each of them (denoted ω in the Figure). Observe that in AIF
the run times “explode” when increasing the number of agents. It is clear why
this happens when looking at an example: when we specify the sets ring(User)
in AIF, User needs to be a finite set (the honest and dishonest users) and this
gets first translated into n different sets when we specify n users. Since these
sets are by construction all disjoint, we can specify in AIF-ω instead ring(User !)
turning the n sets of the AIF abstraction into a single family of sets in the AIF-ω
abstraction—and then allowing even for a countably infinite set User . Observe
that the run times for AIF-ω for infinitely many agents are indeed very close
to the ones of AIF with one agent. Thus, even when dealing with finitely many
agents, AIF-ω allows for a substantial improvement of performance whenever we
can exploit the uniqueness, i.e., can specify set(Type!) instead of set(Type).

Table 1. AIF vs. AIF-ω on the key-server example.

Number of Agents Backend

Honest Dishon Server ProVerif SPASS

AIF 1 1 1 0.025 s 0.891 s

2 1 1 0.135 s 324.696 s

2 2 1 0.418 s Timeout

3 3 1 2.057 s Timeout

AIF-ω ω ω ω 0.034 s 0.941 s

The key server is in fact our simplest example, a kind of “NSPK” of stateful
protocols. We updated our suite of case studies for AIF to benefit in the same way
from the AIF-ω extension [3]. These include the ASW protocol (one of the orig-
inal motivations for developing AIF and also for extending it to AIF-ω), an in-
depth analysis of the Secure Vehicle Communication protocols SEVECOM [11],
and a model of and analysis of PKCS#11 tokens [9] that replicates the attacks
reported in [6] and verifies the proposed fixes.
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6 Conclusions

In this paper we introduced the language AIF-ω and showed how it can be
used to model cryptographic systems with unbounded numbers of agents and
databases pertaining to these agents. AIF-ω extends our previous language AIF
by introducing types with countably infinite constants and allowing families of
sets to range over such types. The only requirement to this extension is that the
sets of all infinite families are kept pairwise disjoint.

We defined the semantics of this extension and proposed an analysis tech-
nique that translates AIF-ω models into Horn clauses, which are then solved
by standard off-the-shelf resolution-based theorem provers. We proved that our
analysis is sound w.r.t. the transition system defined by the semantics: if an
attack is reachable, then it is also derivable in the Horn clause model.

Finally, the experimental results show that the clauses produced by AIF-ω,
for the protocol with unbounded agents, can be solved in running times similar
to their AIF counterparts for just one agent of each type, both in ProVerif
and SPASS. In contrast, adding agents to the bounded AIF model produces an
exponential increase in running times.

To our knowledge, this is the first work that proposes a fully automated
technique for analyzing stateful cryptographic protocols with unbounded agents.
This work is a direct extension of our previous work on AIF [10], which allows to
model infinite transition systems with bounded agents. Its relation with AIF-ω
has been extensively described throughout this paper. Another work that uses
the set-abstraction is our work on Set-π [4], which extends the Applied π-calculus
by similarly introducing a notion of a fixed number of sets. Set-π presents a
modeling interface that is more familiar to the user, and the process-calculus
specification exposes a great deal of details (e.g. locking, replications) that are
abstracted away by the AIF rules. This reduces the gap to the system imple-
mentation, but as a modeling language Set-π has essentially the same expressive
power of AIF. We believe that a similar extension can be devised for our process
algebraic interface, possibly using AIF-ω as an intermediate representation.

Another related work is StatVerif [1], which extends the Applied π-calculus
with global cells that can be accessed and modified by the processes. As the
number of cells is finite and fixed for a model, the amount of state that one
can finitely represent is limited. However, the particular encoding of StatVerif is
more precise in capturing state transitions synchronized over multiple cells. We
claim that the two approaches are orthogonal, and we have not succeeded so far
in combining the advantages of both with an encoding into Horn clauses.

The Tamarin prover [8] and its process calculus interface SAPIC [7] use mul-
tiset rewriting rules to describe cryptographic protocols, and a semi-automated
search procedure to find a solution for the models. This formalism is very expres-
sive and allows to prove security properties in stateful protocols with unbounded
agents, but expressiveness comes at the price of usability, as the search procedure
needs to be guided by introducing lemmas in the models.

Finally, we believe that bounded-agents results like [5] can be also derived
for AIF-ω, since the resolution will never run into distinguishing single agents.
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The experimental results, however, suggest that for our verification it is more
efficient to avoid the enumeration of concrete agents where possible.

The authors would like to thank Luca Viganò for the helpful comments.
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11. Mödersheim, S., Modesti, P.: Verifying sevecom using set-based abstraction. In:
Proceedings of the 7th International Wireless Communications and Mobile Com-
puting Conference, IWCMC 2011, Istanbul, Turkey, 4–8 July 2011 (2011)

12. Weidenbach, C.: Towards an automatic analysis of security protocols in first-order
logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328.
Springer, Heidelberg (1999)

13. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–
145. Springer, Heidelberg (2009)

http://www.compute.dtu.dk/~samo/aifom.html
http://www.compute.dtu.dk/~samo/aifom.html
www2.compute.dtu.dk/~samo


Computational Soundness Results for Stateful
Applied π Calculus

Jianxiong Shao, Yu Qin(B), and Dengguo Feng

Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{shaojianxiong,qin yu,feng}@tca.iscas.ac.cn

Abstract. In recent years, many researches have been done to estab-
lish symbolic models of stateful protocols. Two works among them, the
SAPIC tool and StatVerif tool, provide a high-level specification lan-
guage and an automated analysis. Their language, the stateful applied
π calculus, is extended from the applied π calculus by defining explicit
state constructs. Symbolic abstractions of cryptography used in it make
the analysis amenable to automation. However, this might overlook the
attacks based on the algebraic properties of the cryptographic algo-
rithms. In our paper, we establish the computational soundness results
for stateful applied π calculus used in SAPIC tool and StatVerif tool.

In our approach, we build our results on the CoSP framework. For
SAPIC, we embed the non-monotonic protocol states into the CoSP
protocols, and prove that the resulting CoSP protocols are efficient.
Through the embedding, we provide the computational soundness result
for SAPIC (by Theorem 1). For StatVerif, we encode the StatVerif
process into a subset of SAPIC process, and obtain the computational
soundness result for StatVerif (by Theorem 2). Our encoding shows
the differences between the semantics of the two languages. Our work
inherits the modularity of CoSP, which allows for easily extending the
proofs to specific cryptographic primitives. Thus we establish a compu-
tationally sound automated verification result for the input languages of
SAPIC and StatVerif that use public-key encryption and signatures (by
Theorem 3).

Keywords: Computational soundness · Applied π calculus · Stateful
protocols

1 Introduction

Manual proofs of security protocols that rely on cryptographic functions are
complex and known to be error-prone. The complexity that arises from their
distributed nature motivates the researches on automation of proofs. In recent
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years, many efficient verification tools [1–3] have been developed to prove log-
ical properties of protocol behaviors. To eliminate the inherent complexity of
the cryptographic operations in formal analysis, these verification tools abstract
the cryptographic functions as idealized symbolic terms that obey simple can-
celation rules, i.e., the so-called Dolev-Yao models [4,5]. Unfortunately, these
idealizations also abstract away from the algebraic properties a cryptographic
algorithm may exhibit. Therefore a symbolic formal analysis may omit attacks
based on these properties. In other words, symbolic security does not imme-
diately imply computational security. In order to remove this limitation, the
concept of Computational Soundness (CS) is introduced in [6]. From the start,
a large number of CS results over the past decade were made to show that
many of the Dolev-Yao models are sound with respect to actual cryptographic
realizations and security definitions (see, e.g., [7–15]).

More recently, formal analysis methods have been applied to stateful pro-
tocols, i.e., protocols which require non-monotonic global state that can affect
and be changed by protocol runs. Stateful protocols can be used to model hard-
ware devices that have some internal memory and security APIs, such as the
RSA PKCS#11, IBM’s CCA, or the trusted platform module. There are many
formal methods that have been used to establish symbolic model of stateful pro-
tocols [16–22]. Two works among them, the SAPIC tool [20] and StatVerif tool
[21], can provide an automated analysis of stateful protocols. Their language,
the stateful applied π calculus, is extended from the applied π calculus [23] by
defining constructs for explicitly manipulating global state. One advantage of the
stateful applied π calculus is that it provides a high-level specification language
to model stateful protocols. Its syntax and semantics inherited from the applied
π calculus can arguably ease protocol modeling. Another advantage is that the
formal verification can be performed automatically by these tools.

However, no CS works have been done for the stateful applied π calculus.
Although there are many for the original applied π calculus, e.g., see [11,15,24].
Our purpose is to establish the CS results for the input languages of the two
verification tools SAPIC and StatVerif. With our results, we can transform
their symbolically automated verification results of stateful protocols (with some
restrictions) to the computationally sound one with respect to actual crypto-
graphic realizations and security definitions. We want to establish the CS results
directly for the input languages of SAPIC and StatVerif. To achieve this, we
choose to embed them into the CoSP work [11], a general framework for concep-
tually modular CS proofs. Since the stateful applied π calculus used in SAPIC
and StatVerif are slightly different, in the following we call the former SAPIC
calculus and the latter StatVerif calculus.

Our Work. We present two CS results respectively for the stateful applied π cal-
culus used in SAPIC tool and StatVerif tool. In our approach, we first provide the
method to embed SAPIC calculus into the CoSP framework. Note that the CoSP
framework does not provide explicit state manipulation. We need to embed the
complex state constructs of stateful applied π calculus into the CoSP protocols
and make sure that the resulting CoSP protocol is efficient. By the embedding,
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we prove that the CS result of applied π calculus implies that of SAPIC calculus
(by Theorem 1). For StatVerif, we provide an encoding of StatVerif processes into
a subset of SAPIC processes and build the CS result of StatVerif calculus (by
Theorem 2). Our encoding shows the differences between the semantics of these
two languages. Finally, we establish a computationally sound automated verifi-
cation result for the input languages of SAPIC and StatVerif that use public-key
encryption and signatures (by Theorem3).

For SAPIC, we use the calculus proposed by [20] as the SAPIC calculus. It
extends the applied π calculus with two kinds of state: the functional state and
the multiset state. We set two restrictions respectively for the pattern matching
in the input constructs and for the multiset state constructs. They are necessary
for the computational execution model. We embed the SAPIC calculus into the
CoSP framework. The two kinds of state are encoded into the CoSP protocol
state (as part of the CoSP node identifiers). We have met two challenges in the
embedding. First is for the functional state. If we encode them directly as π-
terms, the resulting CoSP protocol is not efficient. Thus we transform them into
the CoSP terms which are treated as black boxes by CoSP protocols. The second
problem is for the encoding of multiset state. By our restriction of multiset state
constructs, we can transform the arguments of facts into CoSP terms and limit
the growth of the size of multiset state. We also provide an efficient CoSP sub-
protocol to implement the pattern matching in the multiset state constructs. At
last, we prove that our embedding is an efficient and safe approximation of the
SAPIC calculus, and build the CS result of SAPIC calculus upon that of applied
π calculus (by Theorem 1).

For StatVerif, we use the calculus proposed by [21] as the StatVerif calculus.
It has minor differences to SAPIC calculus. We first provide an encoding of the
StatVerif processes into a subset of SAPIC processes. Then we prove that by
using SAPIC trace properties our encoding is able to capture secrecy of stateful
protocols. With the CS result of SAPIC, we can directly obtain the CS result of
StatVerif calculus (by Theorem 2). Our encoding shows the differences between
the semantics of state constructs in these two calculi.

Note that our contribution is a soundness result for the execution models that
can manipulate state, rather than a soundness result for any new cryptographic
primitives. The advantage of our CS result is its extensibility, since we build it
on the CoSP framework and involve no new cryptographic arguments. It is easy
to extend our proofs to additional cryptographic abstractions phrased in CoSP
framework. Any computationally sound implementations for applied π calcu-
lus that have been proved in CoSP framework can be applied to our work. To
explain its extendibility, we establish a computationally sound automated verifi-
cation result for the input languages of SAPIC and StatVerif that use public-key
encryption and signatures (by Theorem3). We have verified the classic left-or-
right protocol presented in [21] by using these tools in a computationally sound
way to show the usefulness of our result.

The paper is organized as follows. In Sect. 2 we give a brief introduction to
the CoSP framework and the embedding of applied π calculus. In Sects. 3 and 4
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we respectively show the CS results of stateful applied π calculus in SAPIC and
StatVerif work. Section 5 contains a case study of the CS result of public-key
encryption and signatures. We conclude in Sect. 6.

2 Preliminaries

2.1 CoSP Framework

Our CS results are formulated within CoSP [11], a framework for conceptually
modular CS proofs. It decouples the treatment of cryptographic primitives from
the treatment of calculi. The results in [15,24] have shown that CoSP frame-
work is capable of handling CS with respect to trace properties and uniformity
for ProVerif. Several calculi such as the applied π calculus and RCF can be
embedded into CoSP [11,25] and combined with CS results for cryptographic
primitives. In this subsection, we will give a brief introduction to the CoSP
framework.

CoSP provides a general symbolic model for abstracting cryptographic prim-
itives. It contains some central concepts such as constructors, destructors, and
deduction relations.

Definition 1 (Symbolic Model). A symbolic model M = (C,N,T,D,�)
consists of a set of constructors C, a set of nonces N, a message type T over C
and N with N ⊆ T, a set of destructors D over T, and a deduction relation �
over T. A constructor C/n ∈ C is a symbol with (possible zero) arity. A nonce
N ∈ N is a symbol with zero arity. A message type T is a set of terms over
constructors and nonces. A destructor D/n ∈ D of arity n over a message type
T is a partial map Tn → T. If D is undefined on a list of message t = (t1, · · · , tn),
then D(t) = ⊥.

To unify notation of constructor or destructor F/n ∈ C∪D and nonce F ∈ N,
we define the partial function evalF : Tn → T, where n = 0 for the nonce, as
follows: If F is a constructor, evalF (t) := F (t) if F (t) ∈ T and evalF (t) := ⊥
otherwise. If F is a nonce, evalF () := F . If F is a destructor, evalF (t) := F (t)
if F (t) �= ⊥ and evalF (t) := ⊥ otherwise.

A computational implementation A of a symbolic model M is a family of algo-
rithms that provide computational interpretations to constructors, destructors,
and specify the distribution of nonces.

A CoSP protocol Π is a tree with labelled nodes and edges. Each node has a
unique identifier. It distinguishes 4 types of nodes. Computation nodes describe
constructor applications, destructor applications, and creations of nonce. Output
and input nodes describe communications with the adversary. Control nodes
allow the adversary to choose the control flow of the protocol. The computation
nodes and input nodes can be referred to by later computation nodes or output
nodes. The messages computed or received at these earlier nodes are then taken
as arguments by the later constructor/destructor applications or sent to the
adversary. A CoSP protocol is efficient if it satisfies two conditions: for any
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node, the length of the identifier is bounded by a polynomial in the length of
the path (including the total length of the edge-labels) from the root to it; there
is a deterministic polynomial-time algorithm that, given the labels of all nodes
and edges on the path to a node, computes the node’s identifier.

Given an efficient CoSP protocol Π, both its symbolic and computational
executions are defined as a valid path through the protocol tree. In the symbolic
execution, the computation nodes operate on terms, and the input (resp. out-
put) nodes receive (resp. send) terms to the symbolic adversary. The successors
of control nodes are chosen by the adversary. In the computational execution,
the computation nodes operate on bitstrings by using a computational imple-
mentation A, and the input (resp. output) nodes receive (resp. send) bitstrings
to the polynomial-time adversary. The successors of control nodes are also cho-
sen by the adversary. The symbolic (resp. computational) node trace is a list of
node identifiers if there is a symbolic (resp. computational) execution path with
these node identifiers.

Definition 2 (Trace Property). A trace property ℘ is an efficiently decidable
and prefix-closed set of (finite) lists of node identifiers. Let M = (C,N,T,D,�)
be a symbolic model and Π be an efficient CoSP protocol. Then Π symbolically
satisfies a trace property ℘ in M iff every symbolic node trace of Π is contained
in ℘. Let A be a computational implementation of M. Then (Π,A) computa-
tionally satisfies a trace property ℘ in M iff for all probabilistic polynomial-time
interactive machines A, the computational node trace is in ℘ with overwhelming
probability.

Definition 3 (Computational Soundness).Acomputational implementation
A of a symbolic modelM = (C,N,T,D,�) is computationally sound for a class P
of CoSP protocols iff for every trace property ℘ and for every efficient CoSP pro-
tocol Π ∈ P , we have that (Π,A) computationally satisfies ℘ whenever Π symbol-
ically satisfies ℘.

2.2 Embedding Applied π Calculus into CoSP Framework

Stateful applied π calculus is a variant of applied π calculus. We need to review
the original applied π calculus first. We provide its syntax in Table 1. It corre-
sponds to the one considered in [11].

In the following, we call the terms in process calculus the π-terms and terms
in CoSP the CoSP-terms, in order to avoid ambiguities. It is similar for the
other homonyms such as π-constructors. We will use fn(P ) (resp. fv(P )) for
free names (resp. free variables) in process P , i.e., the names (resp. variables)
that are not protected by a name restriction (resp. a let or an input). The
notations can also be applied to terms in process. We call a process closed or a
term ground if it has no free variables.

The calculus is parameterized over a set of π-constructors Cπ, a set of π-
destructors Dπ, and an equational theory E over ground π-terms. It requires that
the equational theory is compatible with the π-constructors and π-destructors
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Table 1. Syntax of applied π calculus

〈M, N〉 ::= terms 〈P, Q〉 ::= processes

a, b, m, n, ... names 0 nil

x, y, z, ... variables P |Q parallel

f(M1, ..., Mn) constructor applications !P replication

νn; P restriction

D ::= destructor terms out(M, N); P output

M, N, ... terms in(M, x); P input

d(D1, ..., Dn) destructor applications let x = D in P else Q let

f(D1, ..., Dn) constructor applications event e; P event

as defined in [11]. The symbolic model of applied π-calculus can be embedded
into the CoSP framework.

Definition 4 (Symbolic Model of the Applied π Calculus). For a π-
destructor d ∈ Dπ, the CoSP-destructor d′ is defined by d′(t) := d(tρ)ρ−1

where ρ is any injective map from the nonces occurring in the CoSP-terms t
to names. Let NE for adversary nonces and NP for protocol nonces be two
countably infinite sets. The symbolic model of the applied π calculus is given
by M = (C,N,T,D,�), where N := NE ∪ NP , C := Cπ, D := {d′|d ∈ Dπ},
and where T consists of all terms over C and N, and where � is the smallest
relation such that m ∈ S ⇒ S � m, N ∈ NE ⇒ S � N , and such that for any
F ∈ C ∪ D and any t = (t1, ..., tn) ∈ Tn with S � t and evalF (t) �= ⊥, we have
S � evalF (t).

The if-statement can be expressed using an additional destructor equal,
where equal(M,N) = M if M =E N and equal(M,N) = ⊥ otherwise. We
always assume equal ∈ Dπ. The destructor equal′ induces an equivalence rela-
tion ∼= on the set of CoSP-terms with x ∼= y iff equal′(x, y) �= ⊥.

For the symbolic model, we can specify its computational implementation A.
It assigns the deterministic polynomial-time algorithms Af and Ad to each π-
constructors and π-destructors, and chooses the nonces uniformly at random.

We introduce some notations for the definitions of computational and sym-
bolic π-executions. Given a ground destructor CoSP-term D′, we can evalu-
ate it to a ground CoSP-term evalCoSP (D′) by evaluating all CoSP-destructors
in the arguments of D′. We set evalCoSP (D′) := ⊥ iff any one of the CoSP-
destructors returns ⊥. Given a destructor π-term D, an assignment μ from
π-names to bitstrings, and an assignment η from variables to bitstrings with
fn(D) ⊆ dom(μ) and fv(D) ⊆ dom(η), we can computationally evaluate D
to a bitstring cevalη,μD. We set cevalη,μD := ⊥ if the application of one of
the algorithms Aπ

f or Aπ
d fails. For a partial function g, we define the function

f := g ∪ {a := b} with dom(f) = dom(g) ∪ {a} as f(a) := b and f(x) := g(x)
for x �= a.
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The computational and symbolic execution models of a π-process are defined
in [11] by using evaluation contexts where the holes only occur below parallel
compositions. The adversary is allowed to determine which process in parallel
should be proceeded by setting the evaluation context for each step of proceeding.
The execution models of π calculus are defined as follows. We take the writing
way in [11] and mark the symbolic execution model by [[...]].

Definition 5 [[6]] (Computational [[Symbolic]] Execution of π Calculus).
Let P0 be a closed process (where all bound variables and names are renamed
such that they are pairwise distinct and distinct from all unbound ones). Let A
be an interactive machine called the adversary. [[For the symbolic model, A only
sends message m if K � m where K are the messages sent to A so far.]] We define
the computational [[symbolic]] execution of π calculus as an interactive machine
ExecP0(1

k) that takes a security parameter k as argument [[interactive machine
SExecP0 that takes no argument]] and interacts with A:

Start: Let P := {P0}. Let η be a totally undefined partial function mapping
π-variables to bitstrings [[CoSP-terms]]. Let μ be a totally undefined partial func-
tion mapping π-names to bitstrings [[CoSP-terms]]. Let a1, ..., an denote the free
names in P0. Pick {ri}n

i=1 ∈ Noncesk at random [[Choose a different ri ∈ NP ]].
Set μ := μ ∪ {ai := ri}n

i=1. Send (r1, ..., rn) to A.
Main loop: Send P to A and expect an evaluation context E from the adversary.
Distinguish the following cases:

• P = E[in(M,x);P1]: Request two bitstrings [[CoSP-terms]] c,m from the
adversary. If c = cevalη,μ(M) [[c ∼= evalCoSP (Mημ)]], set η := η ∪ {x := m}
and P := E[P1].

• P = E[νa;P1]: Pick r ∈ Noncesk at random [[ Choose r ∈ NP \range μ]], set
μ := μ ∪ {a := r} and P := E[P1].

• P = E[out(M1, N);P1][in(M2, x);P2]: If cevalη,μ(M1) = cevalη,μ(M2)
[[evalCoSP (M1ημ) ∼= evalCoSP (M2ημ)]], set η := η ∪ {x := cevalη,μ(N)} [[η :=
η ∪ {x := evalCoSP (Nημ)}]] and P := E[P1][P2].

• P = E[let x = D in P1 else P2]: If m := cevalη,μ(D) �= ⊥ [[m :=
evalCoSP (Dημ)
�= ⊥]], set μ := μ ∪ {x := m} and P := E[P1]. Otherwise set P := E[P2]

• P = E[event e;P1]: Let P := E[P1] and raise the event e.
• P = E[!P1]: Rename all bound variables of P1 such that they are pairwise

distinct and distinct from all variables and names in P and in domains of η, μ,
yielding a process P̃1. Set P := E[P̃1|!P1].

• P = E[out(M,N);P1]: Request a bitstring [[CoSP-term]] c from the adver-
sary. If c = cevalη,μ(M) [[c ∼= evalCoSP (Mημ)]], set P := E[P1] and send
cevalη,μ(N) [[evalCoSP (Nημ)]] to the adversary.

• In all other cases, do nothing.

We say that a closed process computationally satisfies a π-trace property ℘ if
the list of events raised by its computational execution is in ℘ with overwhelming
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probability. Then the theorem in [11] states that for any given computationally
sound implementation of the applied π-calculus (embedded in the CoSP model),
the symbolic verification of a closed process P0 satisfying a π-trace property ℘
implies P0 computationally satisfies ℘.

3 Computational Soundness Results for SAPIC

3.1 SAPIC

The SAPIC tool was proposed in [20]. It translates SAPIC process to multiset
rewrite rules, which can be analyzed by the tamarin-prover [18]. Its language
extends the applied π calculus with two kinds of explicit state constructs. The
first kind is functional. It provides the operation for defining, deleting, retriev-
ing, locking and unlocking the memory states. The second construct allows to
manipulate the global state in the form of a multiset of ground facts. This
state manipulation is similar to the “low-level” language of the tamarin-prover
and offers a more flexible way to model stateful protocols. Moreover, the secu-
rity property of SAPIC process is expressed by trace formulas. It is expressive
enough to formalize complex properties such as injective correspondence.

Table 2. State constructs of SAPIC calculus

〈P, Q〉 ::= processes

... standard processes

insert M, N ; P insert

delete M ; P delete

lookup M as x in P else Q retrieve

lock M ; P lock

unlock M ; P unlock

[L] − [e] → [R]; P (L, R ∈ F∗) multiset state construct

Syntax. We list the two kinds of state constructs in Table 2. Tables 1 and 2
together compose the full syntax of SAPIC language. Let Σfact be a signature
that is partitioned into linear and persistent fact symbols. We can define the set
of facts as

F := {F (M1, ...,Mn)|F ∈ Σfact of arity n},

Given a finite sequence or set of facts L ∈ F∗, lfacts(L) denotes the multiset of
all linear facts in L and pfacts(L) denotes the set of all persistent facts in L. G
denotes the set of ground facts, i.e., the set of facts that do not contain variables.
Given a set L, we denote by L# the set of finite multisets of elements from L.
We use the superscript # to annotate usual multiset operation, e.g. L1 ∪# L2

denotes the multiset union of multisets L1, L2.
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Note that we do our first restriction in the input construct. In [20], the original
SAPIC language allows the input of a term in the input construct in(M,N);P .
We use the standard construct in(M,x);P instead in Table 1. We will explain it
later in Sect. 3.2.
Operational Semantics. A semantic configuration for SAPIC calculus is a
tuple (ñ, S, SMS , P, K, L). ñ is a set of names which have been restricted
by the protocol. S is a partial function associating the values to the memory
state cells. SMS ⊆ G# is a multiset of ground facts. P = {P1, ..., Pk} is a
finite multiset of ground processes representing the processes to be executed
in parallel. K is the set of ground terms modeling the messages output to the
environment (adversary). L is the set of currently acquired locks. The semantics
of the SAPIC is defined by a reduction relation → on semantic configurations.
We just list the semantics of state constructs in Fig. 1. By S(M) we denote S(N)
if ∃N ∈ dom(S), N =E M . By L\E{M} we denote L\{N} if ∃N ∈ L,M =E N .
The rest are in [20].

ñ, S, SMS
, P ∪# {insert M, N; P } , K, L → ñ, S ∪ {M := N}, SMS

, P ∪# {P } , K, L

ñ, S, SMS
, P ∪# {delete M; P } , K, L → ñ, S ∪ {M := ⊥}, SMS

, P ∪# {P } , K, L

ñ, S, SMS
, P ∪# {lookup M as x in P else Q} , K, L → ñ, S, SMS

, P ∪# {P {V/x}} , K, L if S(M) =E V

ñ, S, SMS
, P ∪# {lookup M as x in P else Q} , K, L → ñ, S, SMS

, P ∪# {Q}} , K, L if S(M) = ⊥

ñ, S, SMS
, P ∪# {lock M; P } , K, L → ñ, S, SMS

, P ∪# {P } , K, L ∪ {M} if M /∈E L

ñ, S, SMS
, P ∪# {unlock M; P } , K, L → ñ, S, SMS

, P ∪# {P } , K, L\E{M} if M ∈E L

ñ, S, SMS
, P ∪# {[L] − [e] → [R]; P } , K, L e−→ ñ, S, SMS\lfacts(L ) ∪#

R , P ∪# {P τ} , K, L

if ∃τ, L , R . τ grounding for L, R such that L =E Lτ,R =E Rτ, and lfacts(L ) ⊆# SMS
, pfacts(L ) ⊂ SMS

Fig. 1. The semantics of SAPIC

Security Property. With the operational semantics, we can give out the defi-
nition of SAPIC trace property. The set of traces of a closed SAPIC process P ,
written traces(P ), defines all its possible executions. In SAPIC, security proper-
ties are described in a two-sorted first-order logic, defined as the trace formula.
Given a closed SAPIC process P , a trace formula φ is said to be valid for P ,
written traces(P ) �∀ φ, if all the traces of P satisfies φ. φ is said to be satisfiable
for P , written traces(P ) �∃ φ, if there exists a trace of P satisfies φ. Note that
traces(P ) �∃ φ iff traces(P ) �

∀ ¬φ. It means the verification of satisfiability
can be transformed to the falsification of validity. Thus in the following, we only
consider the validity of trace formula. We can transform its definition to trace
property in the sense of Definition 2 by requiring that ℘ := {tr|tr � φ}. Then we
get the following definition of SAPIC trace property.
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Definition 7 (SAPIC Trace Property). Given a closed SAPIC process P ,
we define the set of traces of P as

traces(P ) = {[e1, ..., em]|(∅, ∅, ∅, {P}, fn(P ), ∅) −→∗ e1−→ (ñ1,S1,SMS
1 ,P1,K1,L1)

−→∗ e2−→ · · · −→∗ em−−→ (ñm,Sm,SMS
m ,Pm,Km,Lm)}

A SAPIC trace property ℘ is an efficiently decidable and prefix-closed set of
strings. A process P symbolically satisfies the SAPIC trace property ℘ if we
have traces(P ) ⊆ ℘.

3.2 CS Results of the Calculus

SAPIC language only has semantics in the symbolic model. We need to introduce
the computational execution model of SAPIC process. It is not a trivial extension
of the computational execution model of the applied π calculus in Definition 5.
We first restrict the pattern matching in the original SAPIC input construct
because for some cases, it cannot be performed by any sound computational
model. Then we set up the computational execution model for the two kinds of
global states in SAPIC. Note that the CoSP framework does not immediately
support nodes for the operation of functional states and multiset states. We will
encode them into the CoSP protocol node identifiers and mechanize the two
kinds of state constructs by using CoSP protocol tree.

First, we need to explain the restriction of the input construct. Note that we
use the standard syntax of applied π calculus as part of the syntax of SAPIC
language in Table 2. In [20], the original SAPIC process allows the input of a
term in the input construct in(M,N);P where it receives a ground term N ′

on the channel M , does a pattern matching to find a substitution τ such that
N ′ =E Nτ , and then proceeds by Pτ . However, we find that it is impossible
to embed it into the CoSP framework. As in Definition 5, the computational
execution of the calculus receives the bitstring m from the adversary. Then
the interactive machine ExecP0(1

k) should extract from m the sub-bitstrings
corresponding to the subterms in the range of τ . This is impossible for some
cases. One example is the input process P := in(c, h(x)) where the adversary
may generate a name t, compute and output the term h(t) on the channel c. It
has no computational execution model since the protocol does not know how to
bind the variable x (h(·) is not invertible). Thus in the following, we do our first
restriction that the SAPIC input construct should be in the form in(M,x).

Then we show how to embed the two kinds of states into the CoSP frame-
work and mechanize the state constructs. Our computational execution model
maintains a standard protocol state that consists of the current process P, an
environment η, and an interpretation μ as in Definition 5. Moreover, we extend
the protocol state with a set S including all the pairs (M,N) of the functional
state cells M and their associated values N , a set Λ of all the currently locked
state cells, and a multiset SMS of the current ground facts. We denote by
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dom(S) := {m|(m,n) ∈ S} the set of state cells in S (S can be seen as a
partial function and dom(S) is its domain). In each step of the execution, the
adversary receives the process P and sends back an evaluation context E where
P = E[P1] to schedule the proceeding to P1. In addition to the standard cases
operated in Definition 5, we need to mechanize the functional and multiset state
constructs according to the protocol states S, Λ, and SMS . We implement the
procedures as CoSP sub-protocols. Note that our encoding should keep the effi-
ciency of the resulting CoSP protocol and cannot introduce an unacceptable
time cost for computational execution. In the following, we respectively explain
how to embed the two kinds of state constructs.

Embedding the Functional State. For the functional state constructs in
SAPIC, the state cells and their associated values are π-terms. If we encode
them directly as π-terms in the set S, its size would grow exponentially, and the
resulting CoSP protocol is not efficient. To solve this problem, we store the state
cell M and its value N as CoSP-terms in the sets S and Λ. The CoSP-terms can
be encoded by the indexes of the nodes in which they were created (or received).
In this setting, the CoSP-terms are treated as black boxes by the CoSP protocol
with a linear size.

However, we have to pay extra cost for this setting. For a finite set of CoSP
terms, such as dom(S) or Λ, we need to formalize the decision of set-membership.
It can be done with the help of parameterized CoSP protocols, which act as sub-
protocols with formal parameters of CoSP nodes and can be plugged into another
CoSP protocol tree. Its definition is introduced in [24]. We denote by fmem the
decision of set-membership relation: if ∃ri ∈ Λ, ri

∼= r, where r is a CoSP-term,
Λ = {r1, ..., rn} is a set of CoSP-terms. It can be accomplished by a sequence of
n CoSP computation nodes for the destructor equal′ as in Fig. 2. The success-
edge of fmem(Λ; r) corresponds to each yes-edge. The failure-edge corresponds
to the no-edge of the last computation node. With this sub-protocol, we can
embed the functional state constructs in the execution model of SAPIC. The
computation steps of the embedding would not grow exponentially. Decision of
set-membership costs no more than the size of the set, which is bounded by the
reduction steps t. Thus there exists a polynomial p, such that the computation
steps of embedding is bounded by p(t).

Fig. 2. Sub-protocol fmem for decision of set-membership
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Embedding the Multiset State. For the multiset state, we keep a multiset
SMS of the current ground facts. In the execution model, we need to encode the
multiset state construct [L] − [e] → [R];P by using CoSP sub-protocol fmatch.
As in Fig. 1, the SAPIC process tries to match each fact in the sequence L to
the ground facts in SMS and, if successful, adds the corresponding instance of
facts R to SMS . We denote by fv(L) the set of variables in L that are not under
the scope of a previous binder. The variables x ∈ fv(L) should be bound by
the pattern matching. For the reason of efficiency, we store the arguments of
ground facts in SMS as CoSP-terms rather than π-terms1, as we have done in
the case of functional state. SMS can only be altered using the multiset state
construct [L]− [e] → [R];P . Given a closed SAPIC process, the maximum length
of R (counted by the number of fact symbols in R) is a constant value. In each
execution step, the multiset state construct can proceed at most once. Thus the
size of SMS is bounded by a polynomial in the number of execution steps (taken
CoSP-terms as blackboxes).

When designing the sub-protocol fmatch for the multiset state construct, we
should solve the pattern matching problem, which is similar to the previous
one in the input construct. To solve this problem, we need to do our second
restriction. In the multiset state construct [L]−[e] → [R];P , we require that: (i) it
is well-formed (Definition 12 in [20]); (ii) ∀F (M1, ...,Mn) ∈ L, either Mi ∈ fv(L)
or fv(Mi) = ∅ for all 1 ≤ i ≤ n. It means that the free variables of L can only
occur as the arguments of the facts in L. By (i), the well-formed requirement,
we have fv(R) ⊆ fv(L). Thus all the facts added into the current multiset
state SMS are ground. By (ii), we can match each variable in fv(L) to the
corresponding arguments of the ground facts in SMS and find the substitution
τ for fv(L) in the execution. Note that our second restriction is necessary for
the CS results. Otherwise, if we allow the free variables in fv(L) occur as the
subterms of the arguments of facts, it might lead to a mismatch case as we have
described in the input construct.

The second restriction does not make the multiset state construct useless.
All the examples in [20] using this construct meet our requirements. Moreover,
this style of state manipulation is the underlying specification language of the
tamarin tool [18]. Even considering our restriction, the tamarin tool is still useful
to model security protocols. The example is the NAXOS protocol for the eCK
model formalized in [18].

In the following, we will give out the sub-protocol fmatch of the pattern
matching. Since fmatch is plugged in the execution model of SAPIC, it assumes
an initial protocol state which includes an environment η, an interpretation
μ, and a multiset SMS of the current ground facts. For each multiset state
construct [L] − [e] → [R], fmatch tries to find a substitution τ ′ from fv(L)
to CoSP-terms, such that lfacts(L)η′μ ⊆# SMS and pfacts(L)η′μ ⊂ SMS ,
where η′ = η ∪ τ ′. For simplicity, we denote by f/(n, k) a π-fact such that
f/(n, k) = F (M1, ...,Mk) ∈ F and {Mi}k

i=1 are π-terms including n variables.
A π-fact f/(0, k) is ground.
1 Otherwise, the length of π-terms may grow exponentially by the iterated binding of

variables. One example is the construct !([Iter(x)] − [] → [Iter(fun(x, x))]).
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Definition 8 (Sub-protocol of Pattern Matching). Let η be a partial func-
tion mapping variables to CoSP-terms, let μ be a partial function mapping π-
names to CoSP-terms, let SMS be a multiset of facts whose arguments are CoSP-
terms. Let [L] − [e] → [R];P be a multiset state construct with our restriction.
We define the sub-protocol fmatch which contains two stages respectively for the
pattern matching of linear and persistent facts in L:
Start. For stage 1, let τ ′ be a totally undefined partial function mapping vari-
ables to CoSP-terms. Set Srest := SMS . Let Lrest := lfacts(L) and Llinear := ∅
be two multisets of π-facts.
Loop. Choose a π-fact l/(n, k) ∈# Lrest, match it to all the fact f ∈# Srest with
the same fact symbol by performing the following steps (i)–(iii). If any check in
step (ii) is failed, choose the next f ∈# Srest to match. If there is no matching
with l/(n, k) for any facts in Srest, stop and go to the failure-edge.

(i) For n variables xi in l/(n, k), pick up xi /∈ dom(η) ∪ dom(τ ′) (i.e., the free
variables in l), set τ ′′ := τ ′ ∪ {xi �→ si|1 ≤ i ≤ n, xi /∈ dom(η) ∪ dom(τ ′)}
by mapping xi to the CoSP-term si with the same position in f . This can
be done since we require free variables should be the arguments of facts.

(ii) For k arguments of l/(n, k) = F (M1, ...,Mk), use the CoSP computation
node to check whether tj ∼= evalCoSP (Mjη

′μ) for j = 1, ..., k, where tj is
the argument of f with the same position, η′ = η ∪ τ ′′. This can be done
since dom(η) ∩ dom(τ ′′) = ∅.

(iii) If all the checks in step (ii) pass, we set Lrest := Lrest\#{l/(n, k)},
Srest := Srest\#{f}, Llinear := Llinear ∪# {l/(n, k)}, and τ ′ = τ ′′. Loop
while Lrest �= ∅.

Stage 2 is similar. We perform the above algorithm of stage 1 without #. In
the Start, let τ ′ be the one we have achieved in stage 1, set Lrest := pfacts(L),
Srest := SMS , and do not change Srest in step (iii) of the Loop. If both the two
stages are successful, fmatch goes to the success-edge.

All the steps in fmatch can be performed by CoSP nodes. By the condi-
tions in step (ii), if successful, fmatch will find τ ′ and η′ = η ∪ τ ′ such that
lfacts(L)η′μ ⊆# SMS and pfacts(L)η′μ ⊂ SMS . Thus we encode the pattern
matching of multiset state construct into the CoSP sub-protocol fmatch.

Then we need to explain that the embedding way does not cost unacceptably
high. The time complexity of the above sub-protocol (measured by the CoSP
nodes) is approximately the size of SMS times the size of L. Given a closed
SAPIC process, the maximum size of L is a constant number and the size of
SMS is polynomial in the execution steps t. Thus there exists a polynomial p,
such that the computation steps of encoding is bounded by p(t).

Now we could give out the definition of computational execution model of
SAPIC in Definition 9. It is an interactive machine ExecS

P0
(1k) that executes the

SAPIC process and communicates with a probabilistic polynomial-time adver-
sary. The model maintains a protocol state as 6-tuple (P, η, μ, S, Λ, SMS). The
definition of the evaluation context is similar to that of the applied π calculus.
We write E[P ] = P ∪ {P}.
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In order to relate the symbolic and the computational semantics of a SAPIC
process, we also define an additional symbolic execution for closed SAPIC
processes as a technical tool as in [11]. It is a direct analogue of the com-
putational execution model and denoted by SExecS

P0
. The difference between

ExecS
P0

(1k) and SExecS
P0

is that the latter one operates on CoSP-terms rather
than bitstrings: It computes CoSP-terms Mημ and evalCoSP Dημ instead of bit-
strings cevalη,μ(M) and cevalη,μ(D), it compares the CoSP-terms using CoSP-
destructor ∼= instead of checking for equality of bitstrings, and it chooses a fresh
nonce r ∈ NP instead of choosing a random bitstring r as value for a new
protocol name.

Due to the limited space, we merge the Definition 10 of the symbolic execution
of SAPIC into the Definition 9 of the computational one. It is marked by [[...]].
In the main loop, we only present the cases of SAPIC state constructs. For the
standard cases, the execution model performs in the same way as the applied π
calculus model does.

Definition 9 [[10]] (Computational [[Symbolic]] Execution of SAPIC).
Let P0 be a closed SAPIC process (where all bound variables and names are
renamed such that they are pairwise distinct and distinct from all unbound
ones). Let A be an interactive machine called the adversary. We define the com-
putational [[symbolic]] execution of SAPIC calculus as an interactive machine
ExecS

P0
(1k) that takes a security parameter k as argument [[interactive machine

SExecS
P0

that takes no argument]] and interacts with A:
Start: Let P := {P0}. Let η be a totally undefined partial function mapping π-
variables to bitstrings [[CoSP-terms]], let μ be a totally undefined partial function
mapping π-names to bitstrings [[CoSP-terms]], let S be an initially empty set of
pairs of bitstrings [[CoSP-terms]]. Let SMS be an initially empty multiset of
facts whose arguments are bitstrings [[CoSP-terms]]. Let Λ be an initially empty
set of bitstrings [[CoSP-terms]]. Let a1, ..., an denote the free names in P0. Pick
{ri}n

i=1 ∈ Noncesk at random [[Choose a different ri ∈ NP ]]. Set μ := μ ∪ {ai :=
ri}n

i=1. Send (r1, ..., rn) to A.

Main loop: Send P to A and expect an evaluation context E from the adversary.
Distinguish the following cases:

• For the standard cases, the execution model performs the same way as in
Definition 5 [[6]].

• P = E[insert M,N ;P1]: Set m := cevalη,μ(M), n := cevalη,μ(N) [[m :=
evalCoSP (Mημ), n := evalCoSP (Nημ)]]. Plug in fmem to decide if ∃(r′, r) ∈
S, r′ = m [[r′ ∼= m]]. For the success-edge, set P := E[P1] and S :=
S\{(r′, r)} ∪ {(m,n)}. For the failure-edge, set P := E[P1] and S :=
S ∪ {(m,n)}.

• P = E[delete M ;P1]: Set m := cevalη,μ(M) [[m := evalCoSP (Mημ)]]. Plug
in fmem to decide if ∃(r′, r) ∈ S, r′ = m [[r′ ∼= m]]. For the success-edge, set
P := E[P1] and S := S\{(r′, r)}. For the failure-edge, set P := E[P1].

• P = E[lookup M as x in P1 else P2]: Set m := cevalη,μ(M) [[m := evalCoSP

(Mημ)]]. Plug in fmem to decide if ∃(r′, r) ∈ S, r′ = m [[r′ ∼= m]]. For the
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success-edge, set P := E[P1] and η := η ∪ {x := r}. For the failure-edge, set
P := E[P2].

• P = E[lock M ;P1]: Set m := cevalη,μ(M) [[m := evalCoSP (Mημ)]]. Plug in
fmem to decide if ∃r′ ∈ Λ, r′ = m [[r′ ∼= m]]. For the success-edge, do nothing.
For the failure-edge, set P := E[P1] and Λ := Λ ∪ {m}.

• P = E[unlock M ;P1]: Set m := cevalη,μ(M) [[m := evalCoSP (Mημ)]]. Plug
in fmem to decide if ∃r′ ∈ Λ, r′ = m [[r′ ∼= m]]. For the success-edge, set
P := E[P1] and Λ := Λ\{r′}. For the failure-edge, do nothing.

• P = E[[L] − [e] → [R];P1]: Plug in fmatch to find a substitution τ ′ from
fv(L) to bitstrings [[CoSP-terms]], such that lfacts(L)η′μ ⊆# SMS and
pfacts(L)η′μ ⊂ SMS , where η′ = η∪τ ′. For the success-edge, set P := E[P1],
SMS := SMS\#lfacts(L)η′μ ∪ Rη′μ, η := η′, and raise the event e. For the
failure-edge, do nothing.

• In all other cases, do nothing.

For a given polynomial-time interactive machine A, a closed SAPIC process
P0, and a polynomial p, let EventsS

A,P0,p(k) be the distribution for the list of
events raised within the first p(k) computational steps (jointly counted for A(1k)
and ExecS

P0
(1k)). Then the computational fulfillment of SAPIC trace properties

can be defined as follows.

Definition 11 (Computational SAPIC Trace Properties). Let P0 be a
closed process, and p a polynomial. We say that P0 computationally satisfies a
SAPIC trace property ℘ if for all polynomial-time interactive machines A and
all polynomials p, we have that Pr[EventsS

A,P0,p(k) ∈ ℘] is overwhelming in k.

Then we should explain that SExecS
P0

can be realized by a CoSP protocol
tree. The state of the machine SExecS

P0
includes a tuple (P, μ, η, S, SMS , Λ). It

is used as a node identifier. CoSP-terms should be encoded by the indexes in
the path from the root to the node in which they were created (or received).
The process P, the fact symbols in SMS , and the π-names in dom(μ) will be
encoded as bitstrings. We plug two sub-protocols, fmem and fmatch, into the
CoSP protocol respectively for the decision of set-membership in the functional
state constructs, and for the pattern matching in the multiset state constructs.
We have explained that these two sub-protocols do not introduce an unaccept-
able cost. The operation of raising event e can be realized using a control node
with one successor that sends (event, e) to the adversary. Given a sequence of
nodes ν, we denote by events(ν) the events e raised by the event nodes in ν. We
call this resulting CoSP protocol ΠS

P0
.

Definition 12. SExecS
P0

satisfies a SAPIC trace property ℘ if in a finite inter-
action with any Dolev-Yao adversary, the sequence of events raised by SExecS

P0

is contained in ℘.

Theorem 1 states the CS result of SAPIC. We present its proof in the full
version of this paper [26].
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Theorem 1 (CS in SAPIC). Assume that the computational implementation
of the applied π calculus is a computationally sound implementation (in the sense
of Definition 3) of the symbolic model of applied π calculus (Definition 4) for a
class P of protocols. If a closed SAPIC process P0 symbolically satisfies a SAPIC
trace property ℘ (Definition 7), and ΠS

P0
∈ P, then P0 computationally satisfies

℘ (Definition 11).

4 Computational Soundness Result for StatVerif

StatVerif was proposed in [21]. Its process language is an extension of the
ProVerif process calculus with only functional state constructs. StatVerif is lim-
ited to the verification of secrecy property.

In this section, we first encode the StatVerif processes into a subset of SAPIC
processes. Then we prove that our encoding is able to capture secrecy of stateful
protocols by using SAPIC trace properties. Finally with the CS result of SAPIC,
we can directly obtain the CS result for StatVerif calculus. Note that our encod-
ing way shows the differences between the semantics of state constructs in these
two calculi.

Table 3. State constructs of StatVerif calculus

〈P, Q〉 ::= processes

... standard processes

[s �→ M ] initialize

s: = M ; P assign

read s as x; P read

lock; P lock state

unlock; P unlock state

Syntax. We first review the StatVerif calculus proposed in [21]. We list the
explicit functional state constructs in Table 3. Tables 1 and 3 together compose
the full syntax of StatVerif calculus. Note that the state constructs are subject
to the following two additional restrictions:

• [s �→ M ] may occur only once for a given cell name s, and may occur only
within the scope of name restriction, a parallel and a replication.

• For every lock;P , the part P of the process must not include parallel or
replication unless it is after an unlock construct.

Operational Semantics. A semantic configuration for StatVerif is a tuple
(ñ,S,P,K). ñ is a finite set of names. S = {si := Mi} is a partial function
mapping cell names si to their associated values Mi. P = {(P1, β1), ..., (Pk, βk)}
is a finite multiset of pairs where Pi is a process and βi ∈ {0, 1} is a boolean
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indicating whether Pi has locked the state. For any 1 ≤ i ≤ k, we have at
most one βi = 1. K is a set of ground terms modeling the messages output to
the environment (adversary). The semantics of StatVerif calculus is defined by
transition rules on semantic configurations. We do a little change to the orig-
inal semantics by adding two labelled transitions for the input and output of
adversary. With these rules, we can define secrecy property without explicitly
considering the adversary processes. We list these two rules and the semantics
of state constructs in Fig. 3. The rest are in [21].

(ñ, S, P ∪ {([s M], 0)} , K) → (ñ, S ∪ {s := M}, P, K) if s ∈ ñ and s /∈ dom(S)

(ñ, S, P ∪ {(s := N; P, β)} , K) → (ñ, S ∪ {s := N}, P ∪ {(P, β)} , K) if s ∈ dom(S) and ∀(Q, β ) ∈ P, β = 0

(ñ, S, P ∪ {(read s as x; P, β)} , K) → (ñ, S, P ∪ {(P {S(s)/x}, β)} , K) if s ∈ dom(S) and ∀(Q, β ) ∈ P, β = 0

(ñ, S, P ∪ {(lock; P, 0)} , K) → (ñ, S, P ∪ {(P, 1)} , K) if ∀(Q, β ) ∈ P, β = 0

(ñ, S, P ∪ {(unlock; P, 1)} , K) → (ñ, S, P ∪ {(P, 0)} , K)

(ñ, S, P ∪ {(out(M, N); P, β)} , K)
K(N)−−−−−→ (ñ, S, P ∪ {(P, β)} , K ∪ {N}) if νñ. M

(ñ, S, P ∪ {(in(M, x); P, β)} , K)
K(M,N)−−−−−−−→ (ñ, S, P ∪ {(P {N/x}, β)} , K) if νñ. M and νñ. N

Fig. 3. The semantics of Statverif

Security Property. StatVerif is limited to the verification of secrecy property.
The secrecy property of StatVerif is defined as follows.

Definition 13 (StatVerif Secrecy Property). Let P be a closed StatVerif
process, M a message. P preserves the secrecy of M if there exists no trace of
the form:

(∅, ∅, {(P, 0)}, fn(P )) α−→∗
(ñ,S,P,K) where νñ.K � M

In the following, we encode the StatVerif processes into a subset of SAPIC
processes and obtain the CS result directly from that of SAPIC, which has
been proved in Sect. 3.2. With this encoding, we can easily embed the StatVerif
calculus into the CoSP framework. Thus we do not need to build another com-
putational execution model for StatVerif like what we have done for SAPIC.

There are many differences between the semantics of these two calculi. The
lock construct is the place in which they differ the most. For a StatVerif process
P := lock;P1, it will lock the state and all the processes in parallel cannot access
the current state cells until an unlock in P1 is achieved. For a SAPIC process
P := lock M ;P1, it will only store the π-term M in a set Λ and make sure it
cannot be locked again in another concurrent process Q := lock M ′;Q1 where
M ′ =E M until an unlock construct is achieved. Moreover, the state cells in
StatVerif calculus should be initialized before they can be accessed. It is not
required in SAPIC. Thus we should do more for a SAPIC process to simulate
the state construct in a StatVerif process.

We first define the encoding �P �b for StatVerif process P with the boolean b
indicating whether P has locked the state. Note that we only need to encode the
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0 0 = 0 P |Q 0 = P 0 Q 0 νn; P b = νn; P b !P 0 =! P 0

in (M, x) ; P b = in (M, x) ; P b out (M, N) ; P b = out (M, N) ; P b

let x = D in P else Q b = let x = D in P b else Q b event e; P b = event e; P b

[s M ] 0 = insert s, M
lock; P 0 = lock l; P 1 unlock; P 1 = unlock l; P 0

s := M ; P b =

⎧⎨
⎩

lock l; lookup s as xs in insert s, M ; unlock l; P 0 for b = 0
lookup s as xs in insert s, M ; P 1 for b = 1

where xs is a fresh variable

read s as x; P b =
lock l; lookup s as x in unlock l; P 0 for b = 0

lookup s as x in P 1 for b = 1

Fig. 4. Encoding Statverif process

StatVerif state constructs by using SAPIC functional state constructs. We leave
the standard constructs unchanged. For the sake of completeness, we list them
all in Fig. 4. The state cell initialization [s �→ M ] is represented by the construct
insert s,M . To encode the lock operation, we set a free fresh cell name l. The
lock is represented by lock l and turning the boolean b from 0 to 1. The unlock
construct is done in the opposite direction. To write a new value into an unlocked
state cell (s := M for b = 0), we need to perform 4 steps. We first lock l before
the operation. It is to ensure the state is not locked in concurrent processes. We
then read the original value in s to ensure s has been initialized. We complete
the writing operation by the construct insert s,M and finally unlock l. When
the state has been locked (s := M for b = 1), we omit the constructs lock l and
unlock l because it has been locked before and the boolean b could be turned
from 1 to 0 only by an unlock construct. The reading operation is similar where
we bind the value to x instead of a fresh variable xs.

Let O = (ñ,S,P,K) be a StatVerif semantic configuration where P =
{(Pi, βi)}k

i=1 and βi ∈ {0, 1} indicating whether Pi has locked the state. We
define the encoding �O� as SAPIC semantic configuration.

�O� =
{(

ñ,S, ∅, {�Pi�βi
}k

i=1,K, {l})
if ∃(Pi, βi) ∈ P, βi = 1,(

ñ,S, ∅, {�Pi�βi
}k

i=1,K, ∅)
if ∀(Pi, βi) ∈ P, βi = 0.

Lemma 1 states that our encoding is able to capture secrecy of StatVerif
process. Then by Theorem 2 we obtain the CS result of StatVerif through our
encoding. We present the proofs in the full version of this paper [26].

Lemma 1. Let P0 be a closed StatVerif process. Let M be a message. Set
P ′ := in(attch, x); lety = equal(x,M) in event NotSecret, where x, y are two
fresh variables that are not used in P0, attch ∈ NE is a free channel name which
is known by the adversary. We set ℘ := {e|NotSecret is not in e}. Q0 := �P ′|P0�0
is a closed SAPIC process and ℘ is a SAPIC trace property. Then we have that
P0 symbolically preserves the secrecy of M (in the sense of Definition 13) iff Q0

symbolically satisfies ℘ (in the sense of Definition 7).
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Theorem 2 (CS in StatVerif). Assume that the computational implementa-
tion of the applied π calculus is a computationally sound implementation (Def-
inition 3) of the symbolic model of the applied π calculus (Definition 4) for a
class P of protocols. For a closed StatVerif process P0, we denote by Q0 and ℘
the same meanings in Lemma 1. Thus if the StatVerif process P0 symbolically
preserves the secrecy of a message M (Definition 13) and ΠS

Q0
∈ P, then Q0

computationally satisfies ℘.

5 Case Study: CS Results of Public-Key Encryption and
Signatures

In Sects. 3 and 4, we have embedded the stateful applied π calculus used in
SAPIC and StatVerif into the CoSP framework. CoSP allows for casting CS
proofs in a conceptually modular and generic way: proving x cryptographic prim-
itives sound for y calculi only requires x+y proofs (instead of x ·y proofs without
this framework). In particular with our results, all CS proofs that have been con-
ducted in CoSP are valid for the stateful applied π calculus, and hence accessible
to SAPIC and StatVerif.

We exemplify our CS results for stateful applied π calculus by providing
the symbolic model that is accessible to the two verification tools, SAPIC and
StatVerif. We use the CS proofs in [15] with a few changes fitting for the ver-
ification mechanism in these tools. The symbolic model allows for expressing
public-key encryption and signatures.

Let C := {enc/3, ek/1, dk/1, sig/3, vk/1, sk/1, pair/2, string0/1, string1/1,
empty/0, garbageSig/2, garbage/1, garbageEnc/2} be the set of constructors.
We require that N = NE �NP for countable infinite sets NP of protocol nonces
and NE of attacker nonces. Message type T is the set of all terms T matching
the following grammar, where the nonterminal N stands for nonces.

T ::= enc(ek(N), T,N)|ek(N)|dk(N)|sig(sk(N), T,N)|vk(N)|sk(N)|
pair(T, T )|S|N |garbage(N)|garbageEnc(T,N)|garbageSig(T,N)

S ::= empty|string0(S)|string1(S)

Let D := {dec/2, isenc/1, isek/1, isdk/1, ekof/1, ekofdk/1, verify/2, issig/1,
isvk/1, issk/1, vkof/2, vkofsk/1, fst/1, snd/1, unstring0/1, equal/2} be the set
of destructors. The full description of all destructor rules is given in [15]. Let �
be defined as in Definition 4. Let M = (C,N,T,D,�) be the symbolic model.

In StatVerif, the symbolic model M can be directly achieved since the
term algebra is inherited from ProVerif, whose CS property has been proved
in [15]. In SAPIC, we formalize the symbolic model by a signature Σ :=
C ∪ D with the equational theories expressing the destructor rules. Note that
3 destructor rules are filtered out including: (i) ekofdk(dk(t)) = ek(t); (ii)
vkof(sig(sk(t1), t2, t3)) = vk(t1); (iii) vkofsk(sk(t)) = vk(t), since they are
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not subterm-convergent, which is required by SAPIC (by verification mecha-
nism of tamarin-prover). Note that these rules are all used to derive the public
key. We require that for all the signatures and private keys in communication,
they should be accompanied by their public keys. In this way, both the adversary
and the protocol will not use these rules. To show the usefulness of our symbolic
model in this section, we have verified the left-or-right protocol presented in [21]
by using SAPIC and StatVerif. In the full version of this paper [26], we provide
the scripts for the protocol.

To establish CS results, we require the protocols to fulfill several natural
conditions with respect to their use of randomness. Protocols that satisfy these
protocol conditions are called randomness-safe. Additionally, the cryptographic
implementations needs to fulfill certain conditions, e.g., that the encryption
scheme is PROG-KDM secure, and the signature scheme is SUF-CMA. Both
the protocol conditions and the implementation conditions could be found in
[15]. Then we conclude CS for protocols in the stateful applied π calculus that
use public-key encryption and signatures.

Theorem 3 (CS for Enc. and Signatures in SAPIC and StatVerif). Let
M be as defined in this section and A of M be an implementation that satis-
fies the conditions from above. If a randomness-safe closed SAPIC or StatVerif
process P0 symbolically satisfies a trace property ℘, then P0 computationally
satisfies2 ℘.

6 Conclusion

In this paper, we present two CS results respectively for the stateful applied π
calculus used in SAPIC tool and StatVerif tool. We show that the CS results of
applied π calculus implies the CS results of SAPIC calculus and of StatVerif cal-
culus. Thus for any computationally sound implementation of applied π calculus,
if the security property of a closed stateful process is verified by SAPIC tool or
StatVerif tool, it is also computationally satisfied. The work is conducted within
the CoSP framework. We give the embedding from the SAPIC calculus to CoSP
protocols. Furthermore, we provide an encoding of the StatVerif processes into
a subset of SAPIC processes, which shows the differences between the semantics
of these two calculi. As a case study, we provide the CS result for the input
languages of StatVerif and SAPIC with public-key encryption and signatures.
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