
Bart Jacobs
Christof Löding (Eds.)

 123

19th International Conference, FOSSACS 2016
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016
Eindhoven, The Netherlands, April 2–8, 2016, Proceedings

Foundations
of Software Science and
Computation StructuresLN

CS
 9

63
4

AR
Co

SS

Lecture Notes in Computer Science 9634

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M.Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Bart Jacobs • Christof Löding (Eds.)

Foundations
of Software Science and
Computation Structures
19th International Conference, FOSSACS 2016
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016
Eindhoven, The Netherlands, April 2–8, 2016
Proceedings

123

Editors
Bart Jacobs
Radboud University Nijmegen
Nijmegen
The Netherlands

Christof Löding
RWTH Aachen University
Aachen
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-49629-9 ISBN 978-3-662-49630-5 (eBook)
DOI 10.1007/978-3-662-49630-5

Library of Congress Control Number: 2016932745

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

ETAPS Foreword

Welcome to the proceedings of ETAPS 2016, which was held in Eindhoven, located in
“the world’s smartest region,” also known as the Dutch Silicon Valley. Since ETAPS’
second edition held in Amsterdam (1999), ETAPS returned to The Netherlands this
year.

ETAPS 2016 was the 19th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, consisting of five constituting conferences (ESOP, FASE, FoSSaCS, TACAS,
and POST) this year. Each conference has its own Programme Committee and its own
Steering Committee. The conferences cover various aspects of software systems,
ranging from theoretical computer science to foundations to programming language
developments, analysis tools, formal approaches to software engineering, and security.
Organizing these conferences in a coherent, highly synchronized conference program,
enables attendees to participate in an exciting event, having the possibility to meet
many researchers working in different directions in the field, and to easily attend the
talks of various conferences. Before and after the main conference, numerous satellite
workshops took place and attracted many researchers from all over the globe.

The ETAPS conferences received 474 submissions in total, 143 of which were
accepted, yielding an overall acceptance rate of 30.2 %. I thank all authors for their
interest in ETAPS, all reviewers for their peer-reviewing efforts, the Program Com-
mittee members for their contributions, and in particular the program co-chairs for their
hard work in running this intensive process. Last but not least, my congratulations to all
the authors of the accepted papers!

ETAPS 2016 was greatly enriched by the unifying invited speakers Andrew Gordon
(MSR Cambridge and University of Edinburgh, UK), and Rupak Majumdar (MPI
Kaiserslautern, Germany), as well as the conference-specific invited speakers (ESOP)
Cristina Lopes (University of California at Irvine, USA), (FASE) Oscar Nierstrasz
(University of Bern, Switzerland), and (POST) Vitaly Shmatikov (University of Texas
at Austin, USA). Invited tutorials were organised by Lenore Zuck (Chicago) and were
provided by Grigore Rosu (University of Illinois at Urbana-Champaign, USA) on
software verification and Peter Ryan (University of Luxembourg, Luxembourg) on
security. My sincere thanks to all these speakers for their inspiring and interesting talks!

ETAPS 2016 took place in Eindhoven, The Netherlands. It was organized by the
Department of Computer Science of the Eindhoven University of Technology. It was
further supported by the following associations and societies: ETAPS e.V., EATCS
(European Association for Theoretical Computer Science), EAPLS (European Asso-
ciation for Programming Languages and Systems), and EASST (European Association
of Software Science and Technology). The local organization team consisted of Mark
van den Brand, Jan Friso Groote (general chair), Margje Mommers, Erik Scheffers,
Julien Schmaltz, Erik de Vink, Anton Wijs, Tim Willemse, and Hans Zantema.

The overall planning for ETAPS is the main responsibility of the Steering
Committee, and in particular of its Executive Board. The ETAPS Steering Committee
consists of an Executive Board and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The Executive
Board consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), and Tarmo Uustalu (Tallinn). Other members of the Steering Com-
mittee are: Parosh Abdulla (Uppsala), David Basin (Zurich), Giuseppe Castagna
(Paris), Marsha Chechik (Toronto), Javier Esparza (Munich), Jan Friso Groote
(Eindhoven), Reiko Heckel (Leicester), Marieke Huisman (Twente), Bart Jacobs
(Nijmegen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Kim G. Larsen (Aalborg),
Axel Legay (Rennes), Christof Löding (Aachen), Matteo Maffei (Saarbrücken),
Pasquale Malacaria (London), Tiziana Margaria (Limerick), Andrzej Murawski
(Warwick), Catuscia Palamidessi (Palaiseau), Frank Piessens (Leuven), Jean-Francois
Raskin (Brussels), Mark Ryan (Birmingham), Julia Rubin (Massachussetts), Don
Sannella (Edinburgh), Perdita Stevens (Edinburgh), Gabriele Taentzer (Marburg), Peter
Thiemann (Freiburg), Luca Vigano (London), Igor Walukiewicz (Bordeaux), Andrzej
Wąsowski (Copenhagen), and Hongseok Yang (Oxford).

I sincerely thank all ETAPS Steering Committee members for all their work in
making the 19th edition of ETAPS a success. Moreover, thanks to all speakers,
attendees, organizers of the satellite workshops, and Springer for their support. Finally,
a big thanks to Jan Friso and his local organization team for all their enormous efforts
enabling ETAPS to take place in Eindhoven!

Joost-Pieter KatoenJanuary 2016
ETAPS SC Chair

ETAPS e.V. President

VI ETAPS Foreword

Preface

This volume contains the papers presented at the 19th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS 2016) held in
Eindhoven, The Netherlands, during April 4–7, 2016, as part of the European Joint
Conferences on Theory and Practice of Software (ETAPS). The conference is dedicated
to foundational research with a clear significance for software science and brings
together research on theories and methods to support the analysis, integration, syn-
thesis, transformation, and verification of programs and software systems.

The 24 members of the Program Committee (PC) selected 31 papers out of 85
submissions. Each submission was reviewed by at least three PC members, with the
help of external experts. After a three-day rebuttal phase, the selection was made based
on discussions via the EasyChair conference management system.

We wish to thank all authors who submitted to FoSSaCS 2016, all the PC members
for their excellent work, and the external reviewers for their thorough evaluation of the
submissions. In addition, we would like to thank the ETAPS organization for providing
an excellent environment for FoSSaCS and other conferences and workshops.

January 2016 Christof Löding
Bart Jacobs

Organization

Program Committee

Achim Blumensath TU Darmstadt, Germany
Thomas Brihaye Université de Mons, France
Arnaud Carayol Université Paris Est, France
Stéphane Demri ENS Cachan, France
Maribel Fernandez King’s College London, UK
Nate Foster Cornell University, USA
Marco Gaboardi University of Dundee, UK
Masahito Hasegawa Kyoto University, Japan
Chris Heunen University of Oxford, UK
Jan Hoffmann Carnegie Mellon University, USA
Bart Jacobs Radboud University Nijmegen, The Netherlands
Radha Jagadeesan DePaul University, USA
Bartek Klin University of Warsaw, Poland
Naoki Kobayashi University of Tokyo, Japan
Manfred Kufleitner University of Stuttgart, Germany
Orna Kupferman Hebrew University of Jerusalem, Israel
Paul Levy University of Birmingham, UK
Christof Löding RWTH Aachen University, Germany
Matteo Mio ENS Lyon, France
Sylvain Salvati Université de Bordeaux, France
Olivier Serre Université Paris Diderot, France
Colin Stirling The University of Edinburgh, UK
Nikos Tzevelekos Queen Mary University of London, UK
Daniele Varacca Université Paris Est Créteil, France

Contents

Types

Comprehensive Parametric Polymorphism: Categorical Models
and Type Theory . 3

Neil Ghani, Fredrik Nordvall Forsberg, and Alex Simpson

Guarded Dependent Type Theory with Coinductive Types 20
Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston,
Rasmus E. Møgelberg, and Lars Birkedal

Dependent Types and Fibred Computational Effects 36
Danel Ahman, Neil Ghani, and Gordon D. Plotkin

Game Semantics for Bounded Polymorphism . 55
James Laird

Recursion and Fixed-Points

Join Inverse Categories as Models of Reversible Recursion 73
Holger Bock Axelsen and Robin Kaarsgaard

A Coalgebraic View of Bar Recursion and Bar Induction. 91
Venanzio Capretta and Tarmo Uustalu

A New Foundation for Finitary Corecursion: The Locally Finite Fixpoint
and Its Properties . 107

Stefan Milius, Dirk Pattinson, and Thorsten Wißmann

Fixed-Point Elimination in the Intuitionistic Propositional Calculus 126
Silvio Ghilardi, Maria João Gouveia, and Luigi Santocanale

Verification and Program Analysis

A Theory of Monitors: (Extended Abstract) . 145
Adrian Francalanza

Contextual Approximation and Higher-Order Procedures 162
Ranko Lazić and Andrzej S. Murawski

A Theory of Slicing for Probabilistic Control Flow Graphs 180
Torben Amtoft and Anindya Banerjee

http://dx.doi.org/10.1007/978-3-662-49630-5_1
http://dx.doi.org/10.1007/978-3-662-49630-5_1
http://dx.doi.org/10.1007/978-3-662-49630-5_2
http://dx.doi.org/10.1007/978-3-662-49630-5_3
http://dx.doi.org/10.1007/978-3-662-49630-5_4
http://dx.doi.org/10.1007/978-3-662-49630-5_5
http://dx.doi.org/10.1007/978-3-662-49630-5_6
http://dx.doi.org/10.1007/978-3-662-49630-5_7
http://dx.doi.org/10.1007/978-3-662-49630-5_7
http://dx.doi.org/10.1007/978-3-662-49630-5_8
http://dx.doi.org/10.1007/978-3-662-49630-5_9
http://dx.doi.org/10.1007/978-3-662-49630-5_10
http://dx.doi.org/10.1007/978-3-662-49630-5_11

Verification of Parameterized Communicating Automata via Split-Width 197
Marie Fortin and Paul Gastin

Automata, Logic, Games

Robust Equilibria in Mean-Payoff Games. 217
Romain Brenguier

Quantifier Alternation for Infinite Words . 234
Théo Pierron, Thomas Place, and Marc Zeitoun

Synchronizing Automata over Nested Words . 252
Dmitry Chistikov, Pavel Martyugin, and Mahsa Shirmohammadi

On Freeze LTL with Ordered Attributes. 269
Normann Decker and Daniel Thoma

Regular Transformations of Data Words Through Origin Information 285
Antoine Durand-Gasselin and Peter Habermehl

Probabilistic and Timed Systems

Trace Refinement in Labelled Markov Decision Processes 303
Nathanaël Fijalkow, Stefan Kiefer, and Mahsa Shirmohammadi

Qualitative Analysis of VASS-Induced MDPs. 319
Parosh Aziz Abdulla, Radu Ciobanu, Richard Mayr, Arnaud Sangnier,
and Jeremy Sproston

Metric Temporal Logic with Counting . 335
Shankara Narayanan Krishna, Khushraj Madnani,
and Paritosh K. Pandya

Distributed Synthesis in Continuous Time . 353
Holger Hermanns, Jan Krčál, and Steen Vester

Proof Theory and Lambda Calculus

Unary Resolution: Characterizing PTIME . 373
Clément Aubert, Marc Bagnol, and Thomas Seiller

Focused and Synthetic Nested Sequents . 390
Kaustuv Chaudhuri, Sonia Marin, and Lutz Straßburger

Strong Normalizability as a Finiteness Structure via the Taylor Expansion
of k-terms . 408

Michele Pagani, Christine Tasson, and Lionel Vaux

X Contents

http://dx.doi.org/10.1007/978-3-662-49630-5_12
http://dx.doi.org/10.1007/978-3-662-49630-5_13
http://dx.doi.org/10.1007/978-3-662-49630-5_14
http://dx.doi.org/10.1007/978-3-662-49630-5_15
http://dx.doi.org/10.1007/978-3-662-49630-5_16
http://dx.doi.org/10.1007/978-3-662-49630-5_17
http://dx.doi.org/10.1007/978-3-662-49630-5_18
http://dx.doi.org/10.1007/978-3-662-49630-5_19
http://dx.doi.org/10.1007/978-3-662-49630-5_20
http://dx.doi.org/10.1007/978-3-662-49630-5_21
http://dx.doi.org/10.1007/978-3-662-49630-5_22
http://dx.doi.org/10.1007/978-3-662-49630-5_23
http://dx.doi.org/10.1007/978-3-662-49630-5_24
http://dx.doi.org/10.1007/978-3-662-49630-5_24
http://dx.doi.org/10.1007/978-3-662-49630-5_24

Reasoning About Call-by-need by Means of Types 424
Delia Kesner

Algorithms for Infinite Systems

Coverability Trees for Petri Nets with Unordered Data. 445
Piotr Hofman, Sławomir Lasota, Ranko Lazić, Jérôme Leroux,
Sylvain Schmitz, and Patrick Totzke

Shortest Paths in One-Counter Systems . 462
Dmitry Chistikov, Wojciech Czerwiński, Piotr Hofman,
Michał Pilipczuk, and Michael Wehar

The Invariance Problem for Matrix Semigroups . 479
Klaus Dräger

Order-Sorted Rewriting and Congruence Closure . 493
José Meseguer

Monads

Towards a Formal Theory of Graded Monads. 513
Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliès

Profinite Monads, Profinite Equations, and Reiterman’s Theorem 531
Liang-Ting Chen, Jiří Adámek, Stefan Milius, and Henning Urbat

Author Index . 549

Contents XI

http://dx.doi.org/10.1007/978-3-662-49630-5_25
http://dx.doi.org/10.1007/978-3-662-49630-5_26
http://dx.doi.org/10.1007/978-3-662-49630-5_27
http://dx.doi.org/10.1007/978-3-662-49630-5_28
http://dx.doi.org/10.1007/978-3-662-49630-5_29
http://dx.doi.org/10.1007/978-3-662-49630-5_30
http://dx.doi.org/10.1007/978-3-662-49630-5_31

Types

Comprehensive Parametric Polymorphism:
Categorical Models and Type Theory

Neil Ghani1, Fredrik Nordvall Forsberg1(B), and Alex Simpson2

1 Department of Computer and Information Sciences, University of Strathclyde,
Glasgow, UK

{neil.ghani,fredrik.nordvall-forsberg}@strath.ac.uk
2 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

alex.simpson@fmf.uni-lj.si

Abstract. This paper combines reflexive-graph-category structure for
relational parametricity with fibrational models of impredicative poly-
morphism. To achieve this, we modify the definition of fibrational
model of impredicative polymorphism by adding one further ingredi-
ent to the structure: comprehension in the sense of Lawvere. Our main
result is that such comprehensive models, once further endowed with
reflexive-graph-category structure, enjoy the expected consequences of
parametricity. This is proved using a type-theoretic presentation of the
category-theoretic structure, within which the desired consequences of
parametricity are derived. The formalisation requires new techniques
because equality relations are not available, and standard arguments
that exploit equality need to be reworked.

1 Introduction

According to Strachey [26], a polymorphic program is parametric if it applies the
same uniform algorithm at all instantiations of its type parameters. Reynolds [23]
proposed relational parametricity as a mathematical model of parametric poly-
morphism. Relational parametricity is a powerful mathematical tool with many
useful consequences; see [13,21,27] for numerous examples.

The polymorphic lambda-calculus, λ2, (a.k.a. System F) was introduced
independently by Girard [11] and Reynolds [22]. It serves as a model type theory
for (impredicative) polymorphism, and thus provides a significant testing ground
for ideas on relational parametricity. In this paper we address the question:

What is the fundamental category-theoretic structure needed to model
relational parametricity for λ2, which is both (i) minimal, in assuming
as little structure as possible; but (ii) strong enough to ensure the expected
consequences of parametricity hold?

It is perhaps surprising that this question does not yet have an established
answer. On the one hand, category-theoretic models for λ2 were developed
many years ago by Seely [25]. They are studied systematically as λ2 fibra-
tions in Jacobs [15]. On the other, the fundamental category-theoretic structure
c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 3–19, 2016.
DOI: 10.1007/978-3-662-49630-5 1

4 N. Ghani et al.

needed to model relational parametricity is also known. The crucial ingredient
is the notion of reflexive graph category which appeared implicitly in Ma and
Reynolds [19], was used explicitly by O’Hearn and Tennent [20], and Robinson
and Rosolini [24], and reached maturity in the parametricity graphs of Dunphy
and Reddy [7,8].

To obtain minimal structure for relational parametricity for λ2, it is natural
to combine the structure of λ2 fibrations with that of parametricity graphs.
This results in the notion of λ2 parametricity graph, which we define in Sect. 3.
Sadly, λ2 parametricity graphs enjoy the expected properties of parametricity
only in the special case that the underlying category is well-pointed. (Similar
observations, for different but related notions of model, are made in [6–8].) Since
well-pointedness rules out many categories of interest in semantics (e.g., functor
categories) this limits the generality of the theory.

One way of circumventing the restriction to well-pointed categories was pro-
posed by Birkedal and Møgelberg [6], who developed a more elaborate category-
theoretic structure, which overcomes the limitation by modelling Plotkin and
Abadi’s logic for parametricity [21]. This method of modelling the combination
of λ2 with an extraneous logic has been refined and simplified by Hermida [12].
Nonetheless, it does not enjoy the simplicity in conception of combining the
structure of category-theoretic models of λ2 with that of parametricity graphs.

To obtain our minimal structure, we retain the original idea of combining
parametricity graphs with category-theoretic models of λ2. However, we imple-
ment this in a perhaps unexpected way. We modify the notion of λ2 model.
We ask for λ2 fibrations to additionally satisfy Lawvere’s comprehension prop-
erty. Not only are the resulting comprehensive λ2 fibrations natural in their own
right as models of λ2, but, when combined with parametricity-graph structure to
form comprehensive λ2 parametricity graphs, they do indeed enjoy all expected
consequences of parametricity.

Sections 2 and 3 define comprehensive λ2 fibrations and comprehensive λ2
parametricity graphs respectively. In Sect. 4, we present a type theory λ2R, cor-
responding to our category-theoretic structure, which provides a simple system
for reasoning about parametricity. The type theory λ2R is similar to Dunphy’s
System P [7], and Abadi, Cardelli and Curien’s System R [1], to which it is
compared in Sect. 7.

In Sect. 5, we develop the technical machinery needed to reason in λ2R. A key
obstacle is that the system does not include equality relations. This means that
graph relations, which are a crucial ingredient in standard arguments involving
relational parametricity, are not in general definable. In Sect. 5, we instead iden-
tify two forms of pseudograph relations, whose subtle interrelationship allows
us to establish the consequences we need. One kind of pseudograph relation
is immediately definable using the fibrational structure built into the notion of
parametricity graph. The other type of pseudograph requires opfibrational struc-
ture. We use an impredicative encoding to show that opfibrational structure is
definable in λ2R, and hence always present in comprehensive λ2 parametricity
graphs. In Sect. 6, we finally apply the technical machinery and establish that
the expected consequences of relational parametricity are indeed derivable in
λ2R, and hence hold in comprehensive λ2 parametricity graphs.

Comprehensive Parametric Polymorphism: Categorical Models 5

In summary, the main contributions of this work are:

(i) The definition of comprehensive λ2 fibrations as models of λ2.
(ii) The definition of a new category-theoretic notion of model of relational para-

metricity, obtained by combining parametricity graphs and comprehensive
λ2 fibrations into comprehensive λ2 parametricity graphs.

(iii) The extraction of λ2R as the type theory intrinsic to comprehensive λ2
parametricity graphs.

(iv) The derivation of the expected consequences of parametricity in λ2R, and
hence in comprehensive λ2 parametricity graphs. This requires novel tech-
niques: establishing the opfibration property of comprehensive λ2 para-
metricity graphs, and the use of pseudograph relations.

In the category-theoretic parts of the paper, we assume familiarity with fibred
category theory, for which Jacobs [15] is our main reference. Nevertheless, a
substantial portion of the paper is presented in purely type-theoretic terms, and
may be read without reference to the accompanying category-theoretic material.

2 Comprehensive λ2 Fibrations

In Fig. 1, we recall the polymorphic λ-calculus λ2. We use x, y, . . . to range over
term variables, and α, β, . . . to range over type variables. Our presentation has
four judgements: Γ ctxt , stating that Γ is a well-formed context; Γ � A type ,

stating that A is a well-formed type in context Γ ; Γ � t : A , stating that the
term t has type A in context Γ ; and judgemental equality Γ � t1 = t2 : A . We
assume β and η-equalities for both term abstraction, λ, and type abstraction, Λ.
Equality is also assumed to be a congruence relation, although the rules guar-
anteeing this have been omitted from Fig. 1 for brevity.

A minor departure from many presentations of λ2 is that we interleave type
variables and term variables in a single context. This approach is not only nat-
ural, but indeed standard when λ2 is considered in the context of dependent
type theory; for example, when derived as an instance of a pure type system [3].
Since there is no dependency of λ2 types on term variables, such interleaving
is syntactically vacuous. Nevertheless, we shall see below that its presence does
have semantic implications.

We next recall the standard category-theoretic notion of λ2 fibration, which
models λ2. We directly restrict the definition to the split case to circumvent
coherence issues that would otherwise arise, cf. [15].

Definition 1 (λ2 fibration). A λ2 fibration is a split fibration p : T → C,
where the base category C has finite products, and the fibration:

(i) is fibred cartesian closed;
(ii) has a split generic object U [15, Definition 5.2.1] — we write Ω for p U ;
(iii) and has fibred-products along projections X × Ω � X in C.

6 N. Ghani et al.

Context formation rules:

· ctxt
Γ ctxt

Γ, α ctxt
(α /∈ Γ)

Γ ctxt Γ A type

Γ, x : A ctxt
(x /∈ Γ)

Type formation rules:

Γ α type
(α ∈ Γ)

Γ A type Γ B type

Γ A → B type

Γ, α A type

Γ α. A type

Term typing rules:

Γ x : A
(x : A ∈ Γ)

Γ, x : A t : B

Γ λx. t : A → B
Γ s : A → B Γ t : A

Γ s t : B

Γ, α t : A

Γ Λα. t : ∀α. A

Γ t : ∀α. A Γ B type

Γ t[B] : A[α → B]

Judgemental equality:

Γ (λx. t)u = t[x → u] : B Γ t = λx. tx : A → B
(x /∈ Γ)

Γ (Λα. t)[U] = t[α → U] : A[α → U] Γ t = Λα. t[α] : ∀α. A
(α /∈ Γ)

Fig. 1. The type system λ2

Moreover, the reindexing functors given by the splitting are required to preserve
the above-specified structure in fibres on the nose.

The above definition differs slightly from [15, Definition 8.4.3(b)] in that we do
not include fibred coproducts in condition (iii). These are not needed to model
λ2, and their existence is anyway derivable in parametric models.

In a λ2 fibration, we write TX for the fibre category over X. We also use X as
a subscript when referring to structure in TX ; e.g., 1X is the specified terminal
object in TX , and ⇒X is the exponential structure in TX . Given f : X � Y
in C, we write f∗ for the reindexing functor TY → TX , and A∗f : f∗A � A
for the specified cartesian lifting of f relative to A. We also write

∏
Ω for the

specified right adjoint, given by (iii), to reindexing functors π∗
1 : TX → TX×Ω .

We recall in outline the semantic interpretation of λ2 in a λ2 fibration T → C.
A context Θ = α1, . . . , αn of type variables is interpreted as the n-fold product
�Θ� = Ωn in C. A type A in type-variable context Θ is then interpreted as an
object �A�Θ of T over �Θ�, defined by induction on the structure of A, using
cartesian closure for function types, fibred products for universal types, and the
reindexing (πi)∗ U of the generic object along the projection πi : Ωn � Ω
to interpret αi over �Θ�. Finally, the interpretation of a term Γ � t : A is

Comprehensive Parametric Polymorphism: Categorical Models 7

obtained by splitting Γ into its component contexts: Θ of type variables, and Δ
of term variables. Then Δ = x1 : A1, . . . , xm : Am is interpreted as the product
�Δ�Θ = �A1�Θ × · · · × �Am�Θ in the fibre over �Θ�, and t is interpreted as a
morphism �t�Γ : �Δ�Θ

� �A�Θ in T�Θ�.
In the above outline, one sees that the structure of a λ2 fibration fits uneasily

alongside our mixed contexts of interleaved type and term variables, since these
have to be separated to define the semantic interpretation. In dependent type
theory, where no such separation is possible, a more direct semantic interpre-
tation is achieved using Lawvere’s comprehension property [18] to model the
process of context extension [14]. It is natural to apply the same idea to λ2.

Definition 2 (Comprehensive λ2 fibration). A λ2 fibration p : T → C is
comprehensive if it enjoys the comprehension property [15, Definition 10.4.7]:
the terminal-object functor X �→ 1X : C → T has a specified right adjoint
K : T → C.

Requiring a specified right adjoint maintains consistency with our policy of work-
ing with split fibrational structure. Given A in TX , we write κA : KA � X
for the ‘projection’ map obtained by applying p to the counit 1KA

� A in T.
To show that comprehensive λ2 fibrations permit a direct, inductive-on-

syntax semantic interpretation, we present the interpretation of λ2 types in
detail. A context Γ ctxt is interpreted as an object �Γ � of C; and a type
Γ � A type is interpreted as an object �A�Γ in T�Γ �. These are defined by mutual
induction, together with maps πα

Γ : �Γ � � Ω for every context Γ containing α.

�·� = 1 �α�Γ = (πα
Γ)∗ U πα

Γ, α =π2

�Γ, α� = �Γ � × Ω �A → B�Γ = �A�Γ ⇒�Γ � �B�Γ πα
Γ, β =πα

Γ ◦ π1 (β �=α)

�Γ, x : A� = K�A�Γ �∀α.A� =
∏

Ω
�A�Γ, α πα

Γ, x:A =πα
Γ ◦ κ�A�Γ

Having made the above definitions, a term Γ � t : A is interpreted as a global ele-
ment �t�Γ :1�Γ �

� �A�Γ in T�Γ �. The definition, which we omit, is a straight-
forward induction on the derivation of Γ � t : A.

The appropriateness of comprehensive λ2 fibrations as a notion of model for
λ2 is supported by soundness and completeness results.

Theorem 3 (Soundness for λ2). If Γ � t1 = t2 : A then, in every compre-
hensive λ2 fibration, we have �t1�Γ = �t2�Γ .

Theorem 4 (Full completeness for λ2). There exists a comprehensive λ2
fibration satisfying:

(i) for every type Γ � A type, every global point 1�Γ �
� �A�Γ is the denota-

tion �t�Γ of some term Γ � t : A; and
(ii) for all terms Γ � t1, t2 : A satisfying �t1�Γ = �t2�Γ , we have Γ � t1 = t2 : A.

Theorem 3 is proved by a routine induction on equality derivations, and
Theorem 4 by construction of a syntactic model, which has the requisite
properties.

8 N. Ghani et al.

3 Comprehensive λ2 Parametricity Graphs

Reflexive graph categories are studied in [7,8,16,19,24] as a simple category-
theoretic structure for modelling relational parametricity. A reflexive graph cat-
egory consists of a pair of categories, V, the vertex category, and E, the edge
category, together with functors ∇1,∇2 :E → V and Δ :V → E satisfying
∇1Δ = idV = ∇2Δ. Informally, one thinks of E as a category whose objects
are binary ‘relations’ between objects of V. Then ∇1,∇2 are ‘projection’ func-
tors, and Δ maps an object to its ‘identity relation’.

We shall be guided by the following general thesis. A model of relational
parametricity, irrespective of the type theory for which it is considered, should
form a reflexive graph category, in the (2-)category of structure-preserving func-
tors between models of the type theory in question. This thesis is supported by
the following considerations. Endowing the edge category E with the categorical
structure needed to interpret types corresponds to giving types a relational inter-
pretation. The preservation of this structure by the projection functors ∇1,∇2

means that the relational interpretation commutes with the usual non-relational
interpretation of types. The preservation of structure by Δ, in combination with
the identity property discussed later, corresponds to Reynolds’ identity extension
property [23].

In the context of the present paper, we need to specialise the above recipe
to (comprehensive) λ2 fibrations. A morphism from one (comprehensive) λ2
fibration p′ :T′ → C

′ to another p :T → C is given by a pair of functors, H :T′ →
T and L :C′ → C such that p H = Lp′, and such that H,L preserve all other
specified structure (including the choice of cartesian morphisms in the splitting)
on the nose. By a reflexive graph of (comprehensive) λ2 fibrations, we thus mean
a pair of (comprehensive) λ2 fibrations with functors between them:

R(T)

∇T
1 , ΔT, ∇T

2�� � T

R(C)

pR

� �� �
∇C

1 , ΔC, ∇C
2

C

p

�

(1)

where each of the three pairs ∇T
1 ,∇C

1 and ∇T
2 ,∇C

2 and ΔT,ΔC is a morphism
of (comprehensive) λ2 fibrations, and where each of the triples ∇T

1 ,∇T
2 ,ΔT and

∇C
1 ,∇C

2 ,ΔC is a reflexive graph category. We emphasise that pR : R(T) → R(C),
in (1), is an arbitrary (comprehensive) λ2 fibration fitting into the diagram. The
notation R(·) is merely mnemonic, and does not imply that R(T) is obtained
using a particular construction from T.

One needs to add further conditions to the above structure to ensure that the
objects of R(T) behave sufficiently like relations. In [19], this was addressed by
requiring the fibre category R(T)1R(C) , over the terminal object, to coincide with

Comprehensive Parametric Polymorphism: Categorical Models 9

a particular category of logical relations over T1C
. As well as only being applicable

if T1C
has (sufficient) finite limits, this requirement also has the weakness that

it says nothing about other fibres of pR. As a result, the structure is too weak
to imply consequences of parametricity in general, see [6,24] for discussion. To
remedy this, we instead need axiomatic structure for a category of relations, in
a form that is suitable for being imposed fibrewise on pR. This is provided by
Dunphy and Reddy’s notion of parametricity graph [7,8], which we now recall.

A reflexive graph category ∇1,∇2 :E → V, Δ :V → E is said to be relational
if the functor 〈∇1,∇2〉 :E → V×V is faithful. This property allows one to think
of morphisms in E as pairs of relation-preserving maps from V. Accordingly,
we call objects of E relations, we write R : A ↔ B to mean an object R of
E with ∇1R = A and ∇2R = B, and we write f × g : R � S to mean
that there is a (necessarily unique) map h : R � S in E with ∇1h = f and
∇2h = g. A reflexive graph category satisfies the identity property if, for every
h : ΔA � ΔB in E, it holds that ∇1h = ∇2h. This allows one to think of ΔA
as an identity relation on A (although, cf. Sect. 5 for caveats). In a relational
reflexive graph category, the identity property is equivalent to the fullness of the
functor Δ. A parametricity graph is a relational reflexive graph category with the
identity property, for which the functor 〈∇1,∇2〉 :E → V×V is a fibration. The
fibration property supports the following definition mechanism. Let R : A ↔ B
be a relation in E. Then, given morphisms f : A′ � A and g : B′ � B in
V, reindexing produces an inverse image relation [f×g]−1R : A′ ↔ B′.1

The main category-theoretic definition of this paper is a fibrewise adaptation
of parametricity graph to the context of comprehensive λ2 fibrations.

Definition 5 ((Comprehensive) λ2 parametricity graph). A (comprehen-
sive) λ2 parametricity graph is a reflexive graph of (comprehensive) λ2 fibrations,
as in (1), that satisfies, for all objects W of R(C) and X of C:

(Relational) The functor 〈∇T
1 ,∇T

2 〉�R(T)W
: R(T)W → T∇C

1W ×T∇C

2W is faithful.
(Identity property) The functor ΔT �TX

:TX → R(T)ΔCX is full.
(Fibration) 〈∇T

1 ,∇T
2 〉�R(T)W

: R(T)W → T∇C

1W ×T∇C

2W is a cloven fibration.

Moreover, for every φ : W ′ � W in R(C), we require the commuting square

R(T)W
(pR)∗φ � R(T)W ′

T∇C

1W ×T∇C

2W

〈∇T
1 ,∇T

2 〉�R(T)W

�

p∗(∇C
1φ) × p∗(∇C

2φ)
� T∇C

1W ′ ×T∇C

2W ′

〈∇T
1 ,∇T

2 〉�R(T)W ′

�

(where the notation distinguishes reindexing functors determined by p and
pR) to give a cleavage-preserving fibred functor from 〈∇T

1 ,∇T
2 〉 �R(T)W

to
〈∇T

1 ,∇T
2 〉�R(T)W ′ .

1 We use (·)−1 rather than (·)∗ for reindexing to emphasise that we are in a relational
setting: 〈∇1, ∇2〉 is a preorder fibration since it is faithful.

10 N. Ghani et al.

This definition could by strengthened by asking for the parametricity-graph
fibrations to be split instead of merely cloven. Such a strengthening does not
affect any of the results in the sequel, and may seem natural given our use of
split fibrations in all previous definitions. Nevertheless, our choice of definition
reflects the fact that the weaker cloven assumption is all that is needed to avoid
coherence issues arising in the semantic interpretation of the type theory λ2R
introduced in Sect. 4 below.

It is Definition 5, with the comprehension property included, that provides
our answer to the question highlighted in the introduction. (The definition with-
out comprehension is included for comparison purposes only.)

4 A Type System for Relational Reasoning

We define a type system λ2R, suggested by the structure of comprehensive λ2
parametricity graphs. This system is similar, in many respects, to System R of
Abadi, Cardelli and Curien [1] and System P of Dunphy [7], to which we shall
compare it in Sect. 7.

The rules for λ2R are given by Fig. 1 (it extends λ2) in combination with
Fig. 2. The latter adds three new judgements: Θ rctxt says that Θ is a well-
defined relational context ; Θ � A1RA2 rel says that R is a relation between

types A1 and A2, in relational context Θ; and Θ � (t1 :A1)R(t2 :A2) is a relat-
edness judgement, asserting that t1 :A1 is related to t2 :A2 by the relation R.

Relations, in Fig. 2, are built up from a collection of relation variables ρ, . . . ,
which, for clarity, we choose to keep disjoint from type and term variables. In
the rules, we make use of three operations (·)1, (·)2 and 〈·〉, defined in Fig. 3,
which implement reflexive graph structure on syntax. The (·)i operations project
a relational context to a typing context, whereas the 〈·〉 operation acts in the
other direction. In the definition of the latter, we associate a distinct relation
variable ρα to every type variable α. Lemma 7 below states how these operations
relate typing and relational judgements.

The rules for building relational contexts and relations, in Fig. 2, require
some explanation. In adding an assertion αρβ to a relational context Θ, all
variables α, β, ρ need to be sufficiently fresh. However, the formulation of λ2R
is such that variables on the left-hand side of relations are always manipulated
separately from variables on the right. Thus, for example, α is sufficiently fresh
in αρβ, as long as α does not already occur on the left side (Θ)1 of Θ. A similar
separation principle applies also with respect to the term variables x1, x2 in
assertions (x1 :A1)R(x2 :A2). The separation principle means that one needs to
be cautious in interpreting assertions of the form αρα and (x : A)R(x : A). In
such assertions, even though the same variable appears on the left and right, the
correct intuition is that these are really two distinct variables. We have chosen
not to underline this distinction by requiring the variables to be syntactically
different, since doing so would add unnecessary syntactic clutter to the system;
for example, it would complicate the definition of the 〈·〉 operation. Instead, we

Comprehensive Parametric Polymorphism: Categorical Models 11

Relational context formation rules:

· rctxt
Θ rctxt

Θ, αρβ rctxt
(ρ /∈ Θ, α /∈ Θ1, β /∈ Θ2)

Θ rctxt Θ A1RA2 rel

Θ, (x1 : A1)R(x2 : A2) rctxt
(x1 /∈ Θ1, x2 /∈ Θ2)

Relation formation rules:

Θ αρβ rel
(αρβ ∈ Θ)

Θ A1RA2 rel Θ B1SB2 rel

Θ (A1 → B1)(R → S)(A2 → B2) rel

Θ, αρβ A1RA2 rel

Θ (∀α. A1)(∀αρβ. R)(∀β. A2) rel

Θ B1RB2 rel Θ1 t1 : A1 → B1 Θ2 t2 : A2 → B2

Θ A1([t1 × t2]
−1R)A2 rel

Relatedness rules:

Θ (x1 : A1)R(x2 : A2)
((x1 : A1)R(x2 : A2) ∈ Θ)

Θ, (x1 : A1)R(x2 : A2) (t1 : B1)S(t2 : B2)

Θ (λx1. t1 : A1 → B1)(R → S)(λx2. t2 : A2 → B2)

Θ (s1 : A1 → B1)(R → S)(s2 : A2 → B2) Θ (t1 : A1)R(t2 : A2)

Θ (s1 t1 : B1)S(s2 t2 : B2)

Θ, αρβ (t1 : A1)R(t2 : A2)

Θ (Λα. t1 : ∀α. A1) ∀αρβ. R (Λβ. t2 : ∀β. A2)

Θ (t1 : ∀α. A1) ∀αρβ. R (t2 : ∀β. A2) Θ B1SB2 rel

Θ (t1[B1] : A1[α → B1])R[αρβ → B1SB2](t2[B2] : A2[β → B2])

Θ (t1 u1 : B1)R(t2 u2 : B2)

Θ (u1 : A1)([t1 × t2]
−1R)(u2 : A2)

Θ (u1 : A1)([t1 × t2]
−1R)(u2 : A2)

Θ (t1 u1 : B1)R(t2 u2 : B2)

Θ (t1 : A1)R(t2 : A2) Θ1 t1 = s1 : A1 Θ2 t2 = s2 : A2

Θ (s1 : A1)R(s2 : A2)

Parametricity rule:

Γ (s : A) A (t : A)

Γ s = t : A

Fig. 2. The type system λ2R

12 N. Ghani et al.

The operations (−)i (for i ∈ {0, 1}) on relational contexts:

(·)i = ·
(Θ, α1ρα2)i = (Θ)i, αi

(Θ, (x1 :A1)R(x2 :A2))i = (Θ)i, xi :Ai

The operation on contexts and types:

= α = ρα

Γ, α = Γ , α ραα A → B = (A B)

Γ, x :A = Γ , (x :A) A (x :A) α. A = ∀α ραα. A

Fig. 3. Syntactic reflexive graph structure

rely on left and right positioning to make the necessary distinctions. This is
crucial in the definition of the substitution operations on relations. There are
two such operations: R[αρβ �→ ASB] substitutes, in the relation R, the type A
for all left occurrences of α, the type B for all right occurrences of β (which may
itself be α), and the relation S for all occurrences of ρ; similarly, S[x �→ s, y �→ t]
substitutes, in the relation S, the term s for all left occurrences of x, and the
term t for all right occurrences of y (which may itself be x). Note that relations
can indeed contain terms and (hence) type variables, due to the [t1 × t2]−1R
construction, where we consider t1 as occurring on the left, and t2 on the right.

Lemma 6 (Substitution lemma)

(i) If Θ � A1RA2 rel and Θ, α1ρα2 � (t1 : B1)S(t2 : B2) then
Θ � (t1[α1 �→ A1] : B1[α1 �→ A1])S[α1ρα2 �→ A1RA2](t2[α2 �→ A2] : B2[α2 �→
A2]).

(ii) If Θ � (t1 : A1)R(t2 : A2) and Θ, (x1 : A1)R(x2 : A2) � (s1 : B1)S(s2 : B2)
then Θ � (s1[x1 �→ t] : B1)S[x1 �→ t1, x2 �→ t2](s2[x2 �→ t2] : B2).

The relatedness rules of Fig. 2 include the expected rules for relations R → S
and ∀αρβ.R, which mimic the analogous type constructions in λ2. The rules
for [t1 × t2]−1R implement its intended interpretation as an inverse image con-
struction. In addition, a further rule expresses an extensionality principle for
relations with respect to judgemental equality. Such an intermixing of related-
ness judgements with equality judgements is legitimised by statement (i) of the
lemma below.

Lemma 7

(i) If Θ � (t1 : A1)R(t2 : A2) then (Θ)i � ti : Ai.
(ii) If Γ � t : A then 〈Γ 〉 � (t : A)〈A〉(t : A).

Statement (ii) of the lemma asserts that all terms enjoy the characteristic
relation-preservation property of relational parametricity. By the extensionality

Comprehensive Parametric Polymorphism: Categorical Models 13

rule, it follows that Γ � s = t : A implies 〈Γ 〉 � (s : A)〈A〉(t : A). That is, equal
terms are parametrically related. Since parametric relatedness captures a form
of behavioural equivalence, we can ask also for the converse implication to hold.
This is implemented by the parametricity rule in Fig. 2. This rule, in the general
form given, is derivable from its empty-context version: � (s : A)〈A〉(t : A)
implies � s = t : A. Thus the parametricity rule is equivalent to asking for the
relational interpretation of a closed type to act as an identity relation between
closed terms—a weak version of Reynold’s identity extension property [23]. We
discuss the relational interpretation of open types in Sect. 5.

We outline the semantic interpretation of λ2R. Given a comprehensive λ2
parametricity graph, the contexts, types and terms of λ2 are interpreted in the
comprehensive λ2 fibration p : T → C, as in Sect. 2. In addition, we inter-
pret a relational context Θ as an object �Θ� of R(C), and a syntactic rela-
tion Θ � ARB rel as a semantic relation �R�Θ : �A�(Θ)1 ↔ �B�(Θ)2 in R(T)�Θ�.
The definitions of �Θ� and �R�Θ interpret context extension, function space and
universal quantification using the structure of the comprehensive λ2 fibration
pR : R(T) → R(C), where relation variables αρβ are interpreted using the
generic object of pR. For the inverse-image relation Θ � A1([t1 × t2]−1R)A2 rel,
we have that �t1�(Θ)1 and �t2�(Θ)2 determine maps �A1�(Θ)1

� �B1�(Θ)1 and
�A2�(Θ)2

� �B2�(Θ)2 in T�(Θ)1� and T�(Θ)2� respectively. The fibration prop-
erty of 〈∇T

1 ,∇T
2 〉 �R(T)�Θ�

then gives �[t1 × t2]−1R� : �A1�(Θ)1 ↔ �A2�(Θ)2 as the
inverse image of �R� : �B1�(Θ)1 ↔ �B2�(Θ)2 along these maps.

In the above semantic interpretation, the comprehension property is needed
in order to interpret a relational context Θ as an object �Θ� of R(C), and essen-
tial use is made of this in the definition of �[t1×t2]−1R�. Were the comprehension
property of models dropped, it would be possible to rejig the semantics to inter-
pret a restricted calculus with inverse-image relations definable only in relational
contexts containing no term variables, but not full λ2R.

The semantics is supported by soundness and completeness theorems.

Theorem 8 (Soundness for λ2R). In every comprehensive λ2 parametricity
graph:

(i) if Γ � t1 = t2 : A then �t1�Γ = �t2�Γ ; and
(ii) if Θ � (t1 :A1)R(t2 :A2) then �t1�(Θ)1 × �t2�(Θ)2 :1�Θ�

� �R�Θ.

Theorem 9 (Full completeness for λ2R). There exists a comprehensive λ2
parametricity graph satisfying the following.

(i) For every type Γ � A type, every global point 1�Γ �
� �A�Γ is the deno-

tation �t�Γ of some term Γ � t : A.
(ii) For all terms Γ � t1, t2 : A satisfying �t1�Γ = �t2�Γ , we have Γ � t1 = t2 : A.
(iii) For every relation Θ � A1RA2 type, every global point 1�Θ�

� �R�Θ

arises as �t1�(Θ)1 × �t2�(Θ)2 for terms t1, t2 such that Θ � (t1 :A1)R(t2 :A2).

Theorem 8 is proved by induction on derivations. We highlight that the soundness
of the parametricity rule follows from the identity property of comprehensive λ2
parametricity graphs. Theorem 9 is proved by a term model construction.

14 N. Ghani et al.

5 Direct-Image and Pseudograph Relations

As already discussed, the parametricity rule of Fig. 2 interprets the relation
〈A〉 as an identity relation when A is a closed type. When A contains type
variables, however, this interpretation is not available. Consider an open type
α � A(α) type (where we write A(α) to highlight the occurrences of α in A).
Then we have αρα � A(α)

(〈A〉(ρ)
)
A(α) rel. However, the independent handling

of left and right variables in λ2R (forced by the semantic correspondence with
comprehensive λ2 parametricity graphs), means that the latter relation is equiv-
alent to αρβ � A(α)

(〈A〉(ρ)
)
A(β) rel; i.e., it is a family (indexed by relations

ρ) of relations between different types. Indeed, the distinctness of left and right
type variables means λ2R has no facility for formulating relations between open
types and themselves. In particular, λ2R contains no mechanism for defining
identity relations on open types. Nonetheless, the relation 〈A〉 can act as a kind
of pseudo-identity relation for type A where the parametricity rule can establish
equalities from 〈A〉-relatedness in relational contexts of the form 〈Γ 〉.

Graphs of functions are ubiquitous in standard arguments involving relational
parametricity. Since we have only pseudo-identity relations, we correspondingly
have only pseudographs available in λ2R. Suppose Γ � f : A → B. Define:

gr∗(f) := [f × idB]−1〈B〉
Clearly 〈Γ 〉 � Agr∗(f)B rel. Its defining property is that (x : A) gr∗(f) (y : B)
holds if and only if (fx :B)〈B〉(y :B). Mathematically, there is, however, another
natural pseudograph relation, for f , between A and B. This is the relation gr!(f)
defined by (x :A)gr!(f)(y :B) if there exists w :A such that (x :A)〈A〉(w :A) and
y = fw. Since, by (ii) of Lemma 7, f maps 〈A〉-related values to 〈B〉-related
values, gr!(f) ⊆ gr∗(f). However, because 〈A〉 and 〈B〉 are not identity relations,
there is no need for this inclusion to be an equality. We shall need to make use
of both forms of pseudograph relation to derive the standard consequences of
parametricity. In order to do so, we must first provide a definition of gr!(f) in
λ2R itself, and establish formal analogues of the informal observations above.

The main construction we need is that of direct-image relations [t1 × t2]!R,
dual to inverse-image relations. This is achieved using an impredicative encoding.

Theorem 10 (Direct-image relations). Using the definition

[t1 × t2]!R := [iB1 × iB2]
−1(∀αρα. ([(− ◦ t1) × (− ◦ t2)]−1(R → ρ)) → ρ)

where iB abbreviates λb. Λα. λt. t b : B → ∀α. (B→α)→α and (−◦tj) abbreviates
λ(vj : Bj → α).λ(xj : Aj).vj(t1 xj), λ2R supports the derived rules below.

Θ � A1RA2 rel
Θ1 � t1 :A1 → B1

Θ2 � t2 :A2 → B2

Θ � B1([t1 × t2]!R)B2 rel

Θ � (u1 :A1)R(u2 :A2)

Θ � (t1u1 :B1)
(
[t1 × t2]!R

)
(t2u2 :B2)

Θ�C1QC2 rel Θ1 �v1 :B1 →C1 Θ2 �v2 :B2 →C2

Θ � (u1 :B1)
(
[t1 × t2]!R

)
(u2 :B2) Θ � (v1 ◦ t1 :A1 →C1)

(
R→Q

)
(v2 ◦ t2 :A2 →C2

Θ � (v1 u1: C1)Q(v2 u2 :C2)

Comprehensive Parametric Polymorphism: Categorical Models 15

In fact, these rules are derivable without use of the parametricity rule of λ2R.

It is now straightforward to define the second form of pseudograph relation
discussed above. Suppose that Γ � f : A → B and define 〈Γ 〉 � Agr!(f)B rel by:

gr!(f) := [idA × f]!〈A〉.

To understand the relationship between the two pseudograph relations we
introduce some notation. Given R and S such that Θ � ARB rel and Θ �
ASB rel, let Θ � R ⊆ S abbreviate Θ, (x : A)R(y : B) � (x : A)S(y : B).

Lemma 11. If Γ � f : A → B then:

(i) 〈Γ 〉 � gr!(f) ⊆ gr∗(f); and
(ii) 〈Γ 〉 � (s :A) gr∗(f) (t :B) iff Γ � f s = t : B iff 〈Γ 〉 � (s :A) gr!(f) (t :B).

We comment that, in spite of item (ii), the converse inclusion to (i) does not hold
in general. Property (ii) applies only in context 〈Γ 〉, and thus implies nothing
about what happens if further relational assumptions are added.

Theorem 10 has a semantic analogue: direct image relations correspond to
opfibrational structure on comprehensive λ2 parametricity graphs.

Theorem 12. In any comprehensive λ2 parametricity graph, for every object
W of R(C), the functor 〈∇T

1 ,∇T
2 〉 �R(T)W

: R(T)W → T∇C

1W ×T∇C

2W is an opfi-
bration.

6 Consequences of Parametricity

System λ2R is strong enough to prove the familiar consequences of parametricity.

Theorem 13 (Consequences of Parametricity). System λ2R proves:

(i) The unit (terminal) type can be encoded as 1 = ∀α. α → α.
(ii) The product of A and B can be encoded as A×B = ∀α. (A → B → α) → α.
(iii) The empty (initial) type can be encoded as 0 = ∀α. α.
(iv) The sum of A and B can be encoded as A+B = ∀α. (A→α)→(B→α)→α.
(v) Existential types can be encoded as ∃α. T (α) = ∀α. (∀β. (T (β) → α)) → α.
(vi) The type ∀α. (T (α) → α) → α is the carrier of the initial T -algebra for all

functorial type expressions T (α).
(vii) The type ∃α. (α → T (α)) × α is the carrier of the final T -coalgebra for all

functorial type expressions T (α).

This result for λ2R implies that analogous category-theoretic properties (which
we do not state for lack of space) hold for comprehensive λ2 parametricity
graphs.

The proofs of (i)–(vii) follow the usual ones, see, e.g., [21], but with graph
relations replaced by pseudographs. Pseudograph relations of the form gr∗(f)
suffice in all proofs with the exception of the verification of final coalgebras, where

16 N. Ghani et al.

gr!(f) is used. In this section, we explain how this difference in the treatment of
initial algebras and final coalgebras arises. For lack of space, we focus on the use
of pseudograph relations only, and omit the (standard) supporting arguments.

Suppose Γ, α � T type. We write T (α) to highlight the occurrences of α in
T , and T (A) for the substitution T [α �→ A]. If α occurs only positively in T
(i.e., not on the left-hand side of an odd number of arrows) then it is standard
that T defines an endofunctor on types. If Γ ′ � f : A → B, where Γ ′ extends Γ ,
then we use the notation Γ ′ � T (f) : T (A) → T (B) for the functorial action of
T . This action preserves identities and composition up to judgemental equality.
In addition, the corresponding relational substitution preserves pseudo-identity
relations; i.e., 〈T 〉(〈A〉) (by which we mean the substitution 〈T 〉[αραα �→ 〈A〉])
syntactically coincides with 〈T (A)〉. Also, the functorial action lifts to relations:
if Θ � (f :A → B)(R → S)(f ′ :A′ → B′), where Θ extends 〈Γ 〉, then:

Θ � (T (f) :T (A) → T (B))(〈T 〉(R) → 〈T 〉(S))(T (f ′) :T (A′) → T (B′)).

Using these facts (which assert that T is a reflexive-graph functor [8]) one estab-
lishes the following properties of the action of 〈T 〉 on pseudograph relations.

Lemma 14. Suppose α occurs positively in Γ, α � T type and Γ ′ � f : A → B,
where Γ ′ extends Γ .

(i) 〈Γ ′〉 � 〈T 〉(gr∗(f)) ⊆ gr∗(T (f)) .
(ii) 〈Γ ′〉 � gr!(T (f)) ⊆ 〈T 〉(gr!(f)) .

Our proof of this lemma closely mirrors the proof of the Graph Lemma in [9],
which exploits the fact that graph relations can be defined either using inverse
image, analogously to gr∗(f), or using direct image, analogously to gr!(f).

We now explain how Lemma 14 bears on the proofs of the universal properties
of initial algebras and final coalgebras. Given T as above, standard constructions
produce a T -algebra and a T -coalgebra that can be shown to be weakly initial
and weakly final respectively, without invoking parametricity. The parametricity
rule is used to establish the uniqueness part of the universal property. In the
initiality and finality arguments, one is led to consider T -algebra and T -coalgebra
homomorphisms respectively:

T (A)
T (h)� T (B) T (A)

T (h′)� T (B)

A

a
�

h
� B

b
�

A

a′ �

h′
� B

b′�

where the diagrams are given by terms, in a context Γ ′ extending Γ , which
commute up to judgemental equality. Lemma 14 allows one to prove the following
crucial properties as consequences of the commutativity of the above diagrams.

〈Γ ′〉 � (a : T (A) → A)
(〈T 〉(gr∗(h)) → gr∗(h)

)
(b : T (B) → B)

〈Γ ′〉 � (a′ : A → T (A))
(
gr!(h′) → 〈T 〉(gr!(h′))

)
(b′ : B → T (B))

Comprehensive Parametric Polymorphism: Categorical Models 17

It is the orientation of the function relations above that necessitates the use of
a different type of pseudograph relation in each case. Modulo this subtlety, the
remaining proofs of initiality and finality proceed as usual, cf. [21].

7 Related and Further Work

System R of [1] and System P of [7] share with λ2R the property of having a
syntax in which function space and universal quantification are basic construc-
tions on relations. Indeed λ2R is especially similar to System P, which also has
the inverse-image-relation constructor [t1 × t2]−1R. The most significant differ-
ence is that, in System P, the formation rule for this construction is restricted:
the terms t1, t2 are not allowed to contain free term variables. However, they are
permitted to contain so-called indeterminates, which, in the semantics of System
P, range over global elements in models. This device allows System P to be used
to establish consequences of parametricity in well-pointed models [7]. In λ2R,
our general arguments for consequences of parametricity make essential use of
the possibility for t1 and t2 to contain free term variables. As already observed
in Sect. 4, the comprehension property of our models is crucial to the semantic
interpretation of inverse-image relations in such cases.

System R of [1] departs from λ2R (and System P) in two main ways. The
first is that, in System R, every type A has an associated identity relation A∗.2

A key rule of System R (written in our notation) is that Θ � x A∗ x, whenever
x : A appears anywhere in relational context Θ. This rule breaks the indepen-
dence between left and right variables in the relational judgements of λ2R. (For
example, property (i) of Lemma 7 fails.) The second difference is that System R
has an explicit syntax for defining graph relations, rather than the inverse-image
construct of λ2R (and System P), which would be more general in that con-
text. Due to the presence of both identity and graph relations, the arguments,
in System R, for consequences of parametricity proceed along standard lines [1].
However, System R currently lacks a corresponding semantic story of the kind
we have used in this paper in justification of λ2R.

In fact, the interplay between models and syntax could be pushed much fur-
ther than in the present paper. By adding primitive product types to λ2 and
λ2R, one can strengthen our full completeness results by obtaining syntactic cat-
egories that are initial in an appropriate 2-category of strict structure-preserving
morphisms of models. It would be more natural, however, to broaden both the
notion of model, by replacing splittings of fibrations with cleavages, and the
notion of morphism, by permitting non-strict structure preservation. With such
a relaxation, coherence issues arise, but one would expect to obtain (pseudo-)
initiality of the syntactic model of λ2R (without any need to extend the syntax
with products).

For lack of space we have not presented any concrete models in this paper.
In fact, any instance of the more elaborate axiomatic structure from [6] can
2 In System P, every type A is itself a relation, which, although called an “identity
relation” in [7], has the properties of the relation 〈A〉 in the present paper.

18 N. Ghani et al.

be reconstrued (albeit in a nontrivial way) as a comprehensive λ2 parametric-
ity graph. So our minimal structure at least generalises the known models of
parametricity. However, we do not know whether our structure encompasses any
genuinely new models of relational parametricity that truly exploit the (poten-
tial) added generality of our approach.

The results of the present paper should be contrasted with those of other
recent work by first two authors and colleagues [9,10]. In this paper, we have
axiomatised category-theoretic structure modelling relational parametricity for
the specific type theory λ2, where the resulting structure encompasses both
‘syntactic’ and ‘semantic’ models. In contrast, [9,10] axiomatise the category-
theoretic structure required on a ‘semantic’ model for Reynolds’ original set-
theoretic definition of relational parametricity [23] to generalise to the model.
Interestingly, the category-theoretic notion of bifibration occurs both as a cen-
tral ingredient in the axiomatisation of [9,10], and, in the guise of direct-image
relations, as a vital tool in the present paper. A novelty in the present paper is
that the bifibrational structure is derived rather than assumed.

From a type-theoretic perspective, one advantage of the approach followed in
this paper is that the passage from the original type theory (λ2) to the relational
version (λ2R) appears not to depend on specific properties of the former, other
than that essential use is made of judgemental equality in the formulation of the
parametricity rule. We believe that this potential flexibility may be useful for
transferring our methods to dependent type theories, where parametricity is an
active area of study [2,4,5,17].

The proof-relevant setting of dependent type theory, however, requires mod-
ifications to our semantic framework. In particular the relational property of
parametricity graphs must be relaxed. Ongoing work on a higher-dimensional,
proof-relevant form of parametricity may show how to remove this requirement.

Acknowledgements. We thank Bob Atkey, Claudio Hermida, Rasmus Møgelberg
and the anonymous reviewers for helpful discussions and comments. This research
was supported by EPSRC grants GR/A11731/01, EP/E016146/1, EP/K023837/1 and
EP/M016951/1.

References

1. Abadi, M., Cardelli, L., Curien, P.-L.: Formal parametric polymorphism. Theor.
Comput. Sci. 121(1&2), 9–58 (1993)

2. Atkey, R., Ghani, N., Johann, P.: A relationally parametric model of dependent
type theory. In: Jagannathan, S., Sewell, P. (eds.), POPL, pp. 503–515. ACM
(2014)

3. Barendregt, H.: Introduction to generalized type systems. J. Funct. Program. 1(2),
125–154 (1991)

4. Bernardy, J.-P., Coquand, T., Moulin, G.: A presheaf model of parametric type
theory. In: Ghica, D.R. (ed.), MFPS, ENTCS, pp. 17–33. Elsevier (2015)

5. Bernardy, J.-P., Jansson, P., Paterson, R.: Proofs for free. J. Funct. Program. 22,
107–152 (2012)

Comprehensive Parametric Polymorphism: Categorical Models 19

6. Møgelberg, E.: Categorical models for Abadi and Plotkin’s logic for parametricity.
Math. Struct. Comput. Sci. 15, 709–772 (2005)

7. Dunphy, B.: Parametricity as a notion of uniformity in reflexive graphs. Ph.D.
thesis, University of Illinois (2002)

8. Dunphy, B., Reddy, U.: Parametric limits. In: LICS, pp. 242–251 (2004)
9. Ghani, N., Johann, P., Nordvall Forsberg, F., Orsanigo, F., Revell, T.: Bifibrational

functorial semantics of parametric polymorphism. In: Ghica, D.R. (ed.) MFPS,
ENTCS, pp. 67–83. Elsevier (2015)

10. Ghani, N., Nordvall Forsberg, F., Orsanigo, F.: Parametric polymorphism — uni-
versally. In: de Paiva, V., de Queiroz, R., Moss, L.S., Leivant, D., de Oliveira, A.
(eds.) WoLLIC 2015. LNCS, vol. 9160, pp. 81–92. Springer, Heidelberg (2015)

11. Girard, J.-Y.: Interprétation fonctionelle et élimination des coupures dans
l’arithmétique d’ordre supérieur. Ph.D. thesis, University of Paris VII (1972)

12. Hermida, C.: Fibrational relational polymorphism (2006). http://maggie.cs.
queensu.ca/chermida/papers/FibRelPoly.pdf

13. Hermida, C., Reddy, U., Robinson, E.: Logical relations and parametricity – a
Reynolds programme for category theory and programming languages. ENTCS
303, 149–180 (2014)

14. Jacobs, B.: Comprehension categories and the semantics of type dependency.
Theor. Comput. Sci. 107(2), 169–207 (1993)

15. Jacobs, B.: Categorical Logic and Type Theory. Elsevier, Amsterdam (1999)
16. Kinoshita, Y., O’Hearn, P.W., Power, J., Takeyama, M., Tennent, R.D.: An

axiomatic approach to binary logical relations with applications to data refine-
ment. In: Abadi, M., Ito, T. (eds.) Theoretical Aspects of Computer Software.
LNCS, vol. 1281, pp. 191–212. Springer, Heidelberg (1997)

17. Krishnaswami, N.R., Dreyer, D.: Internalizing relational parametricity in the
extensional calculus of constructions. In: Ronchi, S., Rocca, D. (eds.) CSL, pp.
432–451 (2013)

18. Lawvere, F.W.: Equality in hyperdoctrines and comprehension schema as an
adjoint functor. Appl. Categorical Algebra 17, 1–14 (1970)

19. Ma, Q., Reynolds, J.C.: Types, abstraction, and parametric polymorphism, part 2.
In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) Mathemat-
ical Foundations of Programming Semantics. LNCS, vol. 598, pp. 1–40. Springer,
Heidelberg (1991)

20. O’Hearn, P.W., Tennent, R.D.: Parametricity and local variables. J. ACM 42(3),
658–709 (1995)

21. Plotkin, G., Abadi, M.: A logic for parametric polymorphism. In: Bezem, M.,
Groote, J.F. (eds.) Typed Lambda Calculi and Applications. LNCS, vol. 664, pp.
361–375. Springer, Heidelberg (1993)

22. Reynolds, J.: Towards a theory of type structure. In: Robinet, B. (ed.) Program-
ming Symposium. LNCS, vol. 19, pp. 408–425. Springer, Heidelberg (1974)

23. Reynolds, J.: Types, abstraction and parametric polymorphism. In: Mason, R.E.A.
(ed.), Information Processing, pp. 513–523 (1983)

24. Robinson, E.P., Rosolini, G.: Reflexive graphs and parametric polymorphism. In:
LICS, pp. 364–371. IEEE Computer Society (1994)

25. Seely, R.A.G.: Categorical semantics for higher order polymorphic lambda calculus.
J. Symbolic Logic 52, 969–989 (1987)

26. Strachey, C.: Fundamental concepts in programming languages. High. Order Sym-
bolic Comput. 13(1–2), 11–49 (2000)

27. Wadler, P.: Theorems for free! In: Stoy, J.E. (ed.) FPCA, pp. 347–359. ACM (1989)

http://maggie.cs.queensu.ca/chermida/papers/FibRelPoly.pdf
http://maggie.cs.queensu.ca/chermida/papers/FibRelPoly.pdf

Guarded Dependent Type Theory
with Coinductive Types

Aleš Bizjak1(B), Hans Bugge Grathwohl1, Ranald Clouston1,
Rasmus E. Møgelberg2, and Lars Birkedal1

1 Aarhus University, Aarhus, Denmark
{abizjak,hbugge,ranald.clouston,birkedal}@cs.au.dk
2 IT University of Copenhagen, Copenhagen, Denmark

mogel@itu.dk

Abstract. We present guarded dependent type theory, gDTT, an exten-
sional dependent type theory with a ‘later’ modality and clock quanti-
fiers for programming and proving with guarded recursive and coinductive
types. The later modality is used to ensure the productivity of recursive
definitions in a modular, type based, way. Clock quantifiers are used for
controlled elimination of the later modality and for encoding coinductive
types using guarded recursive types. Key to the development of gDTT are
novel type and term formers involving what we call ‘delayed substitutions’.
These generalise the applicative functor rules for the later modality con-
sidered in earlier work, and are crucial for programming and proving with
dependent types. We show soundness of the type theory with respect to a
denotational model.

1 Introduction

Dependent type theory is useful both for programming, and for proving properties
of elements of types. Modern implementations of dependent type theories such as
Coq [17], Nuprl [11], Agda [21], and Idris [8], have been used successfully in many
projects. However, they offer limited support for programming and proving with
coinductive types.

One of the key challenges is to ensure that functions on coinductive types
are well-defined; that is, productive with unique solutions. Syntactic guarded
recursion [12], as used for example in Coq [13], ensures productivity by requiring
that recursive calls be nested directly under a constructor, but it is well known
that such syntactic checks exclude many valid definitions, particularly in the
presence of higher-order functions.

To address this challenge, a type-based approach to guarded recursion, more
flexible than syntactic checks, was first suggested by Nakano [20]. A new modal-
ity, written � and called ‘later’ [2], allows us to distinguish between data we
have access to now, and data which we will get later. This modality must be
used to guard self-reference in type definitions, so for example guarded streams
of natural numbers are described by the guarded recursive equation

Strg
N

� N × �Strg
N

asserting that stream heads are available now, but tails only later.
c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 20–35, 2016.
DOI: 10.1007/978-3-662-49630-5 2

Guarded Dependent Type Theory with Coinductive Types 21

Types defined via guarded recursion with � are not standard coinductive types,
as their denotation is defined via models based on the topos of trees [5]. More
pragmatically, the bare addition of � disallows productive but acausal [16] func-
tions such as the ‘every other’ function that returns every second element of a
stream. Atkey and McBride proposed clock quantifiers [3] for such functions; these
have been extended to dependent types [7,19], and Møgelberg [19, Theorem2]
has shown that they allow the definition of types whose denotation is precisely
that of standard coinductive types interpreted in set-based semantics. As such,
they allow us to program with real coinductive types, while retaining productiv-
ity guarantees.

In this paper we introduce the extensional guarded dependent type theory
gDTT, which provides a framework where guarded recursion can be used not
just for programming with coinductive types but also for coinductive reasoning.

As types depend on terms, one of the key challenges in designing gDTT is
coping with elements that are only available later, i.e., elements of types of the
form �A. We do this by generalising the applicative functor structure of � to the
dependent setting. Recall the rules for applicative functors [18]:

Γ � t : A

Γ � next t : �A

Γ � f : �(A → B) Γ � t : �A

Γ � f � t : �B (1)

The first rule allows us to make later use of data that we have now. The second
allows, for example, functions to be applied recursively to the tails of streams.

Suppose now that f has type �(Πx : A.B), and t has type �A. What should
the type of f�t be? Intuitively, t will eventually reduce to some value next u, and
so the resulting type should be �(B[u/x]), but if t is an open term we may not
be able to perform this reduction. This problem occurs in coinductive reasoning:
if, e.g., A is Strg

N
, and B a property of streams, in our applications f will be a

(guarded) coinduction assumption that we will want to apply to the tail of a
stream, which has type �Strg

N
.

We hence must introduce a new notion, of delayed substitution, similar to
let-binding, allowing us to give f � t the type

� [x � t] .B

binding x in B. Definitional equality rules then allow us to simplify this type
when t has form next u, i.e., � [x � next u] .B ≡ �(B[u/x]). This construction
generalises to bind a list of variables. Delayed substitution is essential to many
examples, as shown in Sect. 3, and surprisingly the applicative functor term-
former �, so central to the standard presentation of applicative functors, turns
out to be definable via delayed substitutions, as shown in Sect. 2.

Contributions. The contributions of this paper are:

– We introduce the extensional guarded dependent type theory gDTT, and show
that it gives a framework for programming and proving with guarded recursive

22 A. Bizjak et al.

and coinductive types. The key novel feature is the generalisation of the ‘later’
type-former and ‘next’ term-former via delayed substitutions;

– We prove the soundness of gDTT via a model similar to that used in earlier
work on guarded recursive types and clock quantifiers [7,19].

We focus on the design and soundness of the type theory and restrict attention
to an extensional type theory. We postpone a treatment of an intensional version
of the theory to future work (see Sects. 7 and 8).

In addition to the examples included in this paper, we are pleased to note
that a preliminary version of gDTT has already proved crucial for formalizing a
logical relations adequacy proof of a semantics for PCF using guarded recursive
types by Paviotti et. al. [22].

Note that for space reasons many details appear only in the technical report
version of this paper [6].

2 Guarded Dependent Type Theory

gDTT is a type theory with base types unit 1, booleans B, and natural num-
bers N, along with Π-types, Σ-types, identity types, and universes. For space
reasons we omit all definitions that are standard to such a type theory; see e.g.
Jacobs [15]. Our universes are à la Tarski, so we distinguish between types and
terms, and have terms that represent types; they are called codes of types and
they can be recognised by their circumflex, e.g., N̂ is the code of the type N.
We have a map El sending codes of types to their corresponding type. We follow
standard practice and often omit El in examples, except where it is important
to avoid confusion.

Fig. 1. Judgements in gDTT.

We fix a countable set of clock variables CV = {κ1, κ2, · · · } and a single clock
constant κ0, which will be necessary to define, for example, the function hd in
Sect. 5. A clock is either a clock variable or the clock constant; they are intuitively
temporal dimensions on which types may depend. A clock context Δ,Δ′, · · · is
a finite set of clock variables. We use the judgement �Δ κ to express that either
κ is a clock variable in the set Δ or κ is the clock constant κ0. All judgements,
summarised in Fig. 1, are parametrised by clock contexts. Codes of types inhabit
universes UΔ parametrised by clock contexts similarly. The universe UΔ is only
well-formed in clock contexts Δ′ where Δ ⊆ Δ′. Intuitively, UΔ contains codes
of types that can vary only along dimensions in Δ. We have universe inclusions

Guarded Dependent Type Theory with Coinductive Types 23

from UΔ to UΔ′ whenever Δ ⊆ Δ′; in the examples we will not write these
explicitly. Note that we do not have ÛΔ : UΔ′ , i.e., these universes do not form a
hierarchy. We could additionally have an orthogonal hierarchy of universes, i.e.
for each clock context Δ a hierarchy of universes U1

Δ : U2
Δ : · · · .

All judgements are closed under clock weakening and clock substitution. The
former means that if, e.g., Γ �Δ t : A is derivable then, for any clock variable
κ �∈ Δ, the judgement Γ �Δ,κ t : A is also derivable. The latter means that if,
e.g., Γ �Δ,κ t : A is derivable and �Δ κ′ then the judgement Γ [κ′/κ] �Δ t[κ′/κ] :
A[κ′/κ] is also derivable, where clock substitution [κ′/κ] is defined as obvious.

The rules for guarded recursion can be found in Figs. 2 and 3; rules for coin-
ductive types are postponed until Sect. 4. Recall the ‘later’ type former �, which
expresses that something will be available at a later time. In gDTT we have
κ
� for each clock κ, so we can delay a type along different dimensions. As dis-
cussed in the introduction, we generalise the applicative functor structure of
each

κ
� via delayed substitutions, which allow a substitution to be delayed until

its substituent is available. We showed in the introduction how a type with a
single delayed substitution

κ
� [x � t] .A should work. However if we have a term

f with more than one argument, for example of type
κ
�(Π(x : A).Π(y : B).C),

and wish to type an application f κ© t κ© u (where κ© is the applicative functor
operation � for clock κ) we may have neither t nor u available now, and so we
need sequences of delayed substitutions to define the type

κ
�[x � t, y � u].C.

Our concrete examples of Sect. 3 will show that this issue arises in practice. We
therefore define sequences of delayed substitutions ξ. The new raw types, terms,
and delayed substitutions of gDTT are given by the grammar

A,B ::= · · · | κ
� ξA t, u ::= · · · | nextκξ.t | �̂

κ
t ξ ::= · | ξ [x � t] .

Note that we just write
κ
�A where its delayed substitution is the empty ·, and

that
κ
�ξ.A binds the variables substituted for by ξ in A, and similarly for next.

The three rules DS-Emp, DS-Cons, and Tf-� are used to construct the type
κ
�ξ.A. These rules formulate how to generalise these types to arbitrarily long
delayed substitutions. Once the type formation rule is established, the introduc-
tion rule Ty-Next is the natural one.

With delayed substitutions we can define κ© as

f κ© t � nextκ
[

g � f
x � t

]

.g x.

Using the rules in Fig. 2 we can derive the following typing judgement for κ©

Γ �Δ f :
κ
�ξ.Π(x : A).B Γ �Δ t :

κ
�ξ.A

Γ �Δ f κ© t :
κ
�ξ[x � t].B

Ty-�

When a term has the form nextκξ [x � nextκξ.u] .t, then we have enough
information to perform the substitution in both the term and its type. The rule

24 A. Bizjak et al.

TmEq-Force applies the substitution by equating the term with the result of
an actual substitution, nextκξ.t[u/x]. The rule TyEq-Force does the same for
its type. Using TmEq-Force we can derive the basic term equality

(nextκξ.f) κ© (nextκξ.t) ≡ nextκξ.(ft).

typical of applicative functors [18].
It will often be the case that a delayed substitution is unnecessary, because

the variable to be substituted for does not occur free in the type/term. This is
what TyEq- � -Weak and TmEq-Next-Weak express, and with these we can
justify the simpler typing rule

Γ �Δ f :
κ
�ξ.(A → B) Γ �Δ t :

κ
�ξ.A

Γ �Δ f κ© t :
κ
�ξ.B

In other words, delayed substitutions on the type are not necessary when we
apply a non-dependent function.

Further, we have the applicative functor identity law

(nextκξ.λx.x) κ© t ≡ t.

This follows from the rule TmEq-Next-Var, which allows us to simplify a term
nextκξ [y � t] .y to t.

Sometimes it is necessary to switch the order in the delayed substitution.
Two substitutions can switch places, as long as they do not depend on each
other; this is what TyEq- � -Exch and TmEq-Next-Exch express.

Rule TmEq-Next-Comm is not used in the examples of this paper, but it
implies the rule nextκξ [x � t] .nextκx ≡ nextκt, which is needed in Paviotti’s
PhD work.

2.1 Fixed Points and Guarded Recursive Types

In gDTT we have for each clock κ valid in the current clock context a fixed-point
combinator fixκ. This differs from a traditional fixed-point combinator in that
the type of the recursion variable is not the same as the result type; instead its
type is guarded with

κ
�. When we define a term using the fixed-point, we say that

it is defined by guarded recursion. When the term is intuitively a proof, we say
we are proving by Löb induction [2].

Guarded recursive types are defined as fixed-points of suitably guarded func-
tions on universes. This is the approach of Birkedal and Møgelberg [4], but the
generality of the rules of gDTT allows us to define more interesting dependent
guarded recursive types, for example the predicates of Sect. 3.

We first illustrate the technique by defining the (non-dependent) type of
guarded streams. Recall from the introduction that we want the type of guarded
streams, for clock κ, to satisfy the equation StrκA ≡ A × κ

�StrκA.
The type A will be equal to El(B) for some code B in some universe UΔ

where the clock variable κ is not in Δ. We then define the code Sκ
A of StrκA in the

Guarded Dependent Type Theory with Coinductive Types 25

Fig. 2. Overview of the new typing rules involving � and delayed substitutions.

universe UΔ,κ to be Sκ
A � fixκX.B ×̂ �̂

κ
X, where ×̂ is the code of the (simple)

product type. Via the rules of gDTT we can show StrκA � A × κ
�StrκA as desired.

The head and tail operations, hdκ : StrκA → A and tlκ : StrκA → κ
�StrκA are

simply the first and the second projections. Conversely, we construct streams by
pairing. We use the suggestive consκ notation which we define as

consκ : A → κ
�StrκA → StrκA consκ � λ (a : A)

(
as :

κ
�StrκA

)
. 〈a, as〉

Defining guarded streams is also done via guarded recursion, for example the
stream consisting only of ones is defined as ones � fixκx.consκ1x.

The rule TyEq-El-� is essential for defining guarded recursive types as fixed-
points on universes, and it can also be used for defining more advanced guarded
recursive dependent types such as covectors; see Sect. 3.

2.2 Identity Types

gDTT has standard extensional identity types IdA(t, u) (see, e.g., Jacobs [15])
but with two additional type equivalences necessary for working with guarded
dependent types. We write rAt for the reflexivity proof IdA(t, t). The first type
equivalence is the rule TyEq-�. This rule, which is validated by the model of
Sect. 6, may be thought of by analogy to type equivalences often considered in
homotopy type theory [24], such as

IdA×B(〈s1, s2〉 , 〈t1, t2〉) ≡ IdA(s1, t1) × IdB(s2, t2). (2)

There are two important differences. The first is that (2) is (using univalence) a
propositional type equality, whereas TyEq-� specifices a definitional type equal-
ity. This is natural in an extensional type theory. The second difference is that

26 A. Bizjak et al.

Fig. 3. New type and term equalities in gDTT. Rules TyEq-�-Weak and TmEq-
Next-Weak require that A and u are well-formed in a context without x. Rules
TyEq-�-Exch and TmEq-Next-Exch assume that exchanging x and y is allowed,
i.e., that the type of x does not depend on y and vice versa. Likewise, rule TmEq-
Next-Comm assumes that exchanging the codomains of ξ and ξ′ is allowed and that
none of the variables in the codomains of ξ and ξ′ appear in the type of u.

there are terms going in both directions in (2), whereas we would have a term
of type Idκ

�ξ.A
(nextκξ.t, nextκξ.u) → κ

�ξ.IdA(t, u) without the rule TyEq-�.
The second novel type equality rule, which involves clock quantification, will

be presented in Sect. 4.

3 Examples

In this section we present some example terms typable in gDTT. Our exam-
ples will use a term, which we call pη, of type Π(s, t : A × B).IdA(π1t, π1s) →
IdB(π2t, π2s) → IdA×B(t, s). This term is definable in any type theory with a
strong (dependent) elimination rule for dependent sums. The second property
we will use is that StrκA ≡ A × κ

�StrκA. Because hdκ and tlκ are simply first
and second projections, pη also has type Π (xs, ys : StrκA) .IdA(hdκxs, hdκys) →
Idκ

�StrκA
(tlκxs, tlκys) → IdStrκA(xs, ys).

zipWithκ Preserves Commutativity. In gDTT we define the zipWithκ function
which has the type (A → B → C) → StrκA → StrκB → StrκC by

zipWithκf � fixκφ.λxs, ys.consκ (f (hdκxs) (hdκys)) (φ κ© tlκxs κ© tlκys).

Guarded Dependent Type Theory with Coinductive Types 27

We show that commutativity of f implies commutativity of zipWithκf , i.e., that

Π(f : A → A → B). (Π(x, y : A).IdB(f x y, f y x)) →
Π(xs, ys : StrκA).IdStrκB(zipWithκf xs ys, zipWithκf ys xs)

is inhabited. The term that inhabits this type is

λf.λc.fixκφ.λxs, ys.pη (c (hdκxs) (hdκys)) (φ κ© tlκxs κ© tlκys).

Here, φ has type
κ
�(Π(xs, ys : StrκA).IdStrκB(zipWithκf xs ys, zipWithκf ys xs)) so

to type the term above, we crucially need delayed substitutions.

An Example with Covectors. The next example is more sophisticated, as it
involves programming and proving with a data type that, unlike streams, is
dependently typed. Indeed the generalised later, carrying a delayed substitu-
tion, is necessary to type even elementary programs. Covectors are the poten-
tially infinite version of vectors (lists with length). To define guarded covectors
we first need guarded co-natural numbers. The definition in gDTT is CoN

κ �
El

(
fixκX.(1̂ +̂ �̂

κ
X)

)
; this type satisfies CoN

κ ≡ 1 +
κ
� CoN

κ. Using CoN
κ we

can define the type family of covectors CoVecκ
A n � El(ĈoVecκ

A n), where

ĈoVecκ
A �fixκ

(
φ :

κ
�(CoN

κ → UΔ,κ)
)
.λ(n : CoN

κ).casen of

inl u ⇒ 1̂

inr m ⇒ A ×̂ �̂
κ(φ κ© m).

We will not distinguish between CoVecκ
A and ĈoVecκ

A. As an example of covec-
tors, we define ones of type Π(n : CoN

κ).CoVecκ
N

n which produces a covector
of any length consisting only of ones:

ones � fixκφ.λ(n : CoN
κ).casen of {inl u ⇒ inl 〈〉; inr m ⇒ 〈1, φ κ© m〉} .

Although this is one of the simplest covector programs one can imagine, it does
not type-check without the generalised later with delayed substitutions.

The map function on covectors is defined as

map : (A → B) → Π(n : CoN
κ).CoVecκ

A n → CoVecκ
B n

mapf � fixκφ.λ(n : CoN
κ).casen of

inl u ⇒ λ(x : 1).x

inr m ⇒ λ
(
p : A × κ

�[n � m].(CoVecκ
A n)

)
. 〈f (π1p) , φ κ© m κ© (π2p)〉.

It preserves composition: the following type is inhabited

Π(f : A → B)(g : B → C)(n : CoN
κ)(xs : CoVecκ

A n).
IdCoVecκ

C n(map g n (map f nxs),map (g ◦ f)nxs)

28 A. Bizjak et al.

by the term

λ(f : A → B)(g : B → C).fixκφ.λ(n : CoN
κ).casen of

inl u ⇒ λ(xs : 1).r1xs

inr m ⇒ λ(xs : CoVecκ
A(inr m)).pη (rCg(f(π1xs))) (φ κ© m κ© π2xs).

4 Coinductive Types

As discussed in the introduction, guarded recursive types on their own disallow
productive but acausal function definitions. To capture such functions we need
to be able to remove

κ
�. However such eliminations must be controlled to avoid

trivialising
κ
�. If we had an unrestricted elimination term elim :

κ
�A → A every

type would be inhabited via fixκ, making the type theory inconsistent.
However, we may eliminate

κ
� provided that the term does not depend on

the clock κ, i.e., the term is typeable in a context where κ does not appear.
Intuitively, such contexts have no temporal properties along the κ dimension,
so we may progress the computation without violating guardedness. Figure 4
extends the system of Fig. 2 to allow the removal of clocks in such a setting,
by introducing clock quantifiers ∀κ [3,7,19]. This is a binding construct with
associated term constructor Λκ, which also binds κ. The elimination term is
clock application. Application of the term t of type ∀κ.A to a clock κ is written
as t[κ]. One may think of ∀κ.A as analogous to the type ∀α.A in polymorphic
lambda calculus; indeed the basic rules are precisely the same, but we have
an additional construct prev κ.t, called ‘previous’, to allow removal of the later
modality

κ
�.

Typing this new construct prev κ.t is somewhat complicated, as it requires
‘advancing’ a delayed substitution, which turns it into a context morphism (an
actual substitution); see Fig. 5 for the definition. The judgement ρ :Δ Γ → Γ ′

expresses that ρ is a context morphism from context Γ �Δ to the context Γ ′ �Δ.
We use the notation ρ[t/x] for extending the context morphism by mapping the
variable x to the term t. We illustrate this with two concrete examples.

First, we can indeed remove later under a clock quantier:

force : ∀κ.
κ
� A → ∀κ.A force � λx.prev κ.x[κ] .

The type is correct because advancing the empty delayed substitution in
κ
� turns

it into the identity substitution ι, and Aι ≡ A. The β and η rules (Fig. 6)
ensure that force is the inverse to the canonical term λx.Λκ.nextκx[κ] of type
∀κ.A → ∀κ.

κ
� A.

Second, we may see an example with a non-empty delayed substitution in
the term prev κ.nextκλn.succ n κ© nextκ0 of type ∀κ.N. Recall that κ© is syntactic
sugar and so more precisely the term is

prev κ.nextκ
[

f � nextκλn.succ n
x � nextκ0

]

.f x. (3)

Guarded Dependent Type Theory with Coinductive Types 29

Γ Δ Γ Δ,κ A type

Γ Δ ∀κ.A type
Tf-∀

Δ ⊆ Δ Γ Δ t : ∀κ.UΔ ,κ

Γ Δ ∀ t : UΔ

Ty-∀-code

Γ Δ Γ Δ,κ t : A

Γ Δ Λκ.t : ∀κ.A
Ty-Λ

Δ κ Γ Δ t : ∀κ.A

Γ Δ t κ : A[κ /κ]
Ty-app

Γ Δ Γ Δ,κ t :
κ

Γ Δ prev κ.t : ∀κ.(A(advκ
Δ(ξ)))

Ty-prev

Fig. 4. Overview of the new typing rules for coinductive types.

Fig. 5. Advancing a delayed substitution.

Advancing the delayed substitution turns it into the substitution mapping the
variable f to the term (prev κ.nextκλn.succ n)[κ] and the variable x to the term
(prev κ.nextκ0)[κ]. Using the β rule for prev, then the β rule for ∀κ, this simplifies
to the substitution mapping f to λn.succ n and x to 0. With this we have that
the term (3) is equal to Λκ. ((λn.succ n) 0) which is in turn equal to Λκ.1.

An important property of the term prev κ.t is that κ is bound in t; hence
prev κ.t has type ∀κ.A instead of just A. This ensures that substitution of terms
in types and terms is well-behaved and we do not need the explicit substitutions
used, for example, by Clouston et al. [9] where the unary type-former � was
used in place of clocks. This binding structure ensures, for instance, that the
introduction rule Ty-Λ closed under substitution in Γ .

The rule TmEq-∀-fresh states that if t has type ∀κ.A and the clock κ does
not appear in the type A, then it does not matter to which clock t is applied,
as the resulting term will be the same. In the polymorphic lambda calculus, the
corresponding rule for universal quantification over types would be a consequence
of relational parametricity.

We further have the construct ∀̂ and the rule Ty-∀-code which witness that
the universes are closed under ∀κ.

To summarise, the new raw types and terms, extending those of Sect. 2, are

A,B ::= · · · | ∀κ.A t, u ::= · · · | Λκ.t | t[κ] | ∀̂t | prev κ.t

Finally, we have the equality rule TyEq-∀-Id analogous to the rule TyEq-
�. Note that, as in Sect. 2.2, there is a canonical term of type Id∀κ.A(t, s) →
∀κ.IdA(t[κ] , s[κ]) but, without this rule, no term in the reverse direction.

30 A. Bizjak et al.

4.1 Derivable Type Isomorphisms

The encoding of coinductive types using guarded recursive types crucially uses
a family of type isomorphisms commuting ∀κ over other type formers [3,19]. By
a type isomorphism A ∼= B we mean two well-typed terms f and g of types
f : A → B and g : B → A such that f(g x) ≡ x and g(f x) ≡ x. The first type
isomorphism is ∀κ.A ∼= A whenever κ is not free in A. The terms g = λx.Λκ.x
of type A → ∀κ.A and f = λx.x[κ0] of type A → ∀κ.A witness the isomor-
phism. Note that we used the clock constant κ0 in an essential way. The equal-
ity f(g x) ≡ x follows using only the β rule for clock application. The equality
g(f x) ≡ x follows using by the rule TmEq-∀-fresh.

The following type isomorphisms follow by using β and η laws for the con-
structs involved.

– If κ �∈ A then ∀κ.Π(x : A).B ∼= Π(x : A).∀κ.B.
– ∀κ.Σ (x : A) B ∼= Σ (y : ∀κ.A) (∀κ.B[y[κ]/x]) .

– ∀κ.A ∼= ∀κ.
κ
� A.

There is an important additional type isomorphism witnessing that ∀κ com-
mutes with binary sums; however unlike the isomorphisms above we require
equality reflection to show that the two functions are inverse to each other
up to definitional equality. There is a canonical term of type ∀κ.A + ∀κ.B →
∀κ.(A + B) using just ordinary elimination of coproducts. Using the fact that
we encode binary coproducts using Σ-types and universes we can define a term
com+ of type ∀κ.(A + B) → ∀κ.A + ∀κ.B which is a inverse to the canonical
term. In particular com+ satisfies the following two equalities which will be used
below.

com+ (Λκ.inl t) ≡ inl Λκ.t com+ (Λκ.inr t) ≡ inr Λκ.t. (4)

5 Example Programs with Coinductive Types

Let A be a type with code Â in clock context Δ and κ a fresh clock variable.
Let StrA = ∀κ.StrκA. We can define head, tail and cons functions

hd : StrA → A

tl : StrA → StrA

cons : A → StrA → StrA

hd � λxs.hdκ0 (xs[κ0])

tl � λxs.prev κ.tlκ(xs[κ])

cons � λx.λxs.Λκ.consκx (nextκ (xs[κ])).

With these we can define the acausal ‘every other’ function eoκ that removes
every second element of the input stream. It is acausal because the second ele-
ment of the output stream is the third element of the input. Therefore to type
the function we need to have the input stream always available, so clock quan-
tification must be used. The function eoκ of type StrA → StrκA is defined as

eoκ � fixκφ.λ (xs : StrA) .consκ(hd xs) (φ κ© nextκ ((tl (tl xs)))).

Guarded Dependent Type Theory with Coinductive Types 31

Definitional type equalities:

Γ Δ Δ ⊆ Δ Γ Δ,κ t : UΔ ,κ

Γ Δ El(∀ Λκ.t) ≡ ∀κ.El(t)
TyEq-∀-el

Γ Δ Γ Δ,κ A type Γ Δ t : ∀κ.A Γ Δ s : ∀κ.A

Γ Δ ∀κ.IdA(t[κ] , s[κ]) ≡ Id∀κ.A(t, s)
TyEq-∀-Id

Definitional term equalities:

Γ Δ Δ κ Γ Δ,κ t : A

Γ Δ (Λκ.t) κ ≡ t[κ /κ] : A[κ /κ]
TmEq-∀-β κ ∈ Δ Γ Δ t : ∀κ.A

Γ Δ Λκ.t[κ] ≡ t : ∀κ.A
TmEq-∀-η

κ ∈ Δ Γ Δ A type Γ Δ t : ∀κ.A Δ κ Δ κ

Γ Δ t κ ≡ t κ : A
TmEq-∀-fresh

Γ Δ Δ,κ ξ : Γ κ Γ Γ, Γ Δ,κ t : A

Γ Δ prev κ. nextκ ξ.t ≡ Λκ.t(advκ
Δ(ξ)) : ∀κ.(A(advκ

Δ(ξ)))
TmEq-prev-β

Γ Δ Γ Δ,κ t :
κ

Γ Δ,κ nextκ ((prev κ.t)[κ]) ≡ t :
κ TmEq-prev-η

Fig. 6. Type and term equalities involving clock quantification.

The result is a guarded stream, but we can easily strengthen it and define eo of
type StrA → StrA as eo � λxs.Λκ.eoκxs.

We can also work with covectors (not just guarded covectors as in Sect. 3).
This is a dependent coinductive type indexed by conatural numbers which is
the type CoN = ∀κ.CoN

κ. It is easy to define 0 and succ as 0 � Λκ.inl 〈〉 and
succ � λn.Λκ.inr (nextκ (n[κ])). Next, we can define a transport function comCoN

of type comCoN : CoN → 1 + CoN satisfying

comCoN0 ≡ inl 〈〉 comCoN(succn) ≡ inr n. (5)

This function is used to define the type family of covectors as CoVecA n �
∀κ.CoVecκ

A n where CoVecκ
A : CoN → UΔ,κ is the term

fixκφ.λ (n : CoN) .case comCoNn of
{
inl ⇒ 1̂; inr n ⇒ A×̂�̂

κ (φ κ© (nextκn))
}

.

Using term equalities (4) and (5) we can derive the type isomorphisms

CoVecA 0 ≡ ∀κ.1 ∼= 1

CoVecA (succn) ≡ ∀κ
(
A × κ

� (CoVecκ
A n)

) ∼= A × CoVecA n
(6)

which are the expected properties of the type of covectors.
A simple function we can define is the tail function

tl : CoVecA(succn) → CoVecA tl � λv.prev κ.π2 (v[κ]) .

32 A. Bizjak et al.

Note that (6) is needed to type tl. The map function of type

map : (A → B) → Π(n : CoN).CoVecA n → CoVecB n

is defined as mapf � λn.λxs.Λκ.mapκf n (xs[κ]) where mapκ is

mapκ : (A → B) → Π(n : CoN).CoVecκ
A n → CoVecκ

B n

mapκ = λf.fixκφ.λn.case comCoNn of

inl ⇒ λv.v

inr n ⇒ λv. 〈f(π1v), φ κ© (nextκn) κ© π2(v)〉.

5.1 Lifting Guarded Functions

In this section we show how in general we may lift a function on guarded recursive
types, such as addition of guarded streams, to a function on coinductive streams.
Moreover, we show how to lift proofs of properties, such as the commutativity
of addition, from guarded recursive types to coinductive types.

Let Γ be a context in clock context Δ and κ a fresh clock. Suppose A and
B are types such that Γ �Δ,κ A type and Γ, x : A �Δ,κ B type. Finally let f be
a function of type Γ �Δ,κ f : Π(x : A).B. We define L(f) satisfying the typing
judgement Γ �Δ L(f) : Π(y : ∀κ.A).∀κ. (B [y[κ] /x]) as L(f) � λy.Λκ.f (y[κ]).

Now assume that f ′ is another term of type Π(x : A).B (in the same context)
and that we have proved Γ �Δ,κ p : Π(x : A).IdB(f x, f ′ x). As above we can
give the term L(p) the type Π(y : ∀κ.A).∀κ.IdB[y[κ]/x](f(y[κ]), f ′(y[κ])). which
by using the type equality TyEq-∀-Id and the η rule for ∀ is equal to the type
Π(y : ∀κ.A).Id∀κ.B[y[κ]/x](L(f) y,L(f ′) y). So we have derived a property of lifted
functions L(f) and L(f ′) from the properties of the guarded versions f and
f ′. This is a standard pattern. Using Löb induction we prove a property of a
function whose result is a “guarded” type and derive the property for the lifted
function.

For example we can lift the zipWith function from guarded streams to coin-
ductive streams and prove that it preserves commutativity, using the result on
guarded streams of Sect. 3.

6 Soundness

gDTT can be shown to be sound with respect to a denotational model interpret-
ing the type theory. The model is a refinement of Bizjak and Møgelberg’s [7] but
for reasons of space we leave the description of a full model of gDTT for future
work. Instead, to provide some intuition for the semantics of delayed substitu-
tions, we just describe how to interpret the rule

Guarded Dependent Type Theory with Coinductive Types 33

x : A � B type � t : �A

� �[x � t].B type
(7)

in the case where we only have one clock available.
The subsystem of gDTT with only one clock can be modelled in the category

S, known as the topos of trees [5], the presheaf category over the first infinite
ordinal ω. The objects X of S are families of sets X1,X2, . . . indexed by the
positive integers, together with families of restriction functions rX

i : Xi+1 → Xi

indexed similarly. There is a functor � : S → S which maps an object X to the
object

1 !←− X1
rX
1←− X2

rX
2←− X3 ←−· · ·

where ! is the unique map into the terminal object.
In this model, a closed type A is interpreted as an object of S and the

type x : A � B type is interpreted as an indexed family of sets Bi(a), for a
in Ai together with maps rB

i (a) : Bi+1(a) → Bi(rA
i (a)). The term t in (7) is

interpreted as a morphism t : 1 → �A so ti(∗) is an element of Ai (here we write
∗ for the element of 1).

The type � �[x � t].B type is then interpreted as the object X, defined by

X1 = 1 Xi+1 = Bi(ti+1(∗)).

Notice that the delayed substitution is interpreted by substitution (reindexing) in
the model; the change of the index in the model (Bi is reindexed along ti+1(∗))
corresponds to the delayed substitution in the type theory. Further notice that if
B does not depend on x, then the interpretation of � � [x � t] .B type reduces to
the interpretation �B, which is defined to be � applied to the interpretation of B.

The above can be generalised to work for general contexts and sequences of
delayed substitutions, and one can then validate that the definitional equality
rules do indeed hold in this model.

7 Related Work

Birkedal et al. [5] introduced dependent type theory with the � modality, with
semantics in the topos of trees. The guardedness requirement was expressed
using the syntactic check that every occurrence of a type variable lies beneath
a �. This requirement was subsequently refined by Birkedal and Møgelberg [4],
who showed that guarded recursive types could be constructed via fixed-points
of functions on universes. However, the rules considered in these papers do not
allow one to apply terms of type �(Π(x : A).B), as the applicative functor
construction � was defined only for simple function spaces. They are therefore
less expressive for both programming (consider the covector ones, and function
map, of Sect. 3) and proving, noting the extensive use of delayed substitutions
in our example proofs. They further do not consider coinductive types, and so
are restricted to causal functions.

34 A. Bizjak et al.

The extension to coinductive types, and hence acausal functions, is due to
Atkey and McBride [3], who introduced clock quantifiers into a simply typed
setting with guarded recursion. Møgelberg [19] extended this work to dependent
types and Bizjak and Møgelberg [7] refined the model further to allow clock
synchronisation.

Clouston et al. [9] introduced the logic Lgλ to prove properties of terms of
the (simply typed) guarded λ-calculus, gλ. This allowed proofs about coinductive
types, but not in the integrated fashion supported by dependent type theories.
Moreover it relied on types being “total”, a property that in a dependently
typed setting would entail a strong elimination rule for �, which would lead to
inconsistency.

Sized types [14] have been combined with copatterns [1] as an alternative
type-based approach for modular programming with coinductive types. This
work is more mature than ours with respect to implementation and the demon-
stration of syntactic properties such as normalisation, and so further develop-
ment of gDTT is essential to enable proper comparison. One advantage of gDTT
is that the later modality is useful for examples beyond coinduction, and beyond
the utility of sized types, such as the guarded recursive domain equations used
to model program logics [23].

8 Conclusion and Future Work

We have described the dependent type theory gDTT. The examples we have
detailed show that gDTT provides a setting for programming and proving with
guarded recursive and coinductive types.

In future work we plan to investigate an intensional version of the type theory
and construct a prototype implementation to allow us to experiment with larger
examples. Preliminary work has suggested that the path type of cubical type
theory [10] interacts better with the new constructs of gDTT than the ordinary
Martin-Löf identity type.

Finally, we are investigating whether the generalisation of applicative func-
tors [18] to apply over dependent function spaces, via delayed substitutions,
might also apply to examples quite unconnected to the later modality.

Acknowledgements. This research was supported in part by the ModuRes Sapere
Aude Advanced Grant and DFF-Research Project 1 Grant no. 4002-00442, both from
The Danish Council for Independent Research for the Natural Sciences (FNU). Aleš
Bizjak was supported in part by a Microsoft Research PhD grant.

References

1. Abel, A., Pientka, B.: Wellfounded recursion with copatterns: A unified approach
to termination and productivity. In: ICFP, pp. 185–196 (2013)

2. Appel, A.W., Melliès, P.A., Richards, C.D., Vouillon, J.: A very modal model of a
modern, major, general type system. In: POPL, pp. 109–122 (2007)

Guarded Dependent Type Theory with Coinductive Types 35

3. Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In:
ICFP, pp. 197–208 (2013)

4. Birkedal, L., Møgelberg, R.E.: Intensional type theory with guarded recursive types
qua fixed points on universes. In: LICS, pp. 213–222 (2013)

5. Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in
synthetic guarded domain theory: step-indexing in the topos of trees. LMCS 8(4)
(2012)

6. Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.: Guarded
dependent type theory with coinductive types (2016). http://arxiv.org/abs/1601.
01586

7. Bizjak, A., Møgelberg, R.E.: A model of guarded recursion with clock synchroni-
sation. In: MFPS (2015)

8. Brady, E.: Idris, a general-purpose dependently typed programming language:
design and implementation. J. Funct. Program. 23(5), 552–593 (2013)

9. Clouston, R., Bizjak, A., Grathwohl, H.B., Birkedal, L.: Programming and reason-
ing with guarded recursion for coinductive types. In: FoSSaCS (2015)

10. Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical type theory: a construc-
tive interpretation of the univalence axiom, unpublished (2015)

11. Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F.,
Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki,
J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall Inc, Upper Saddle River, NJ, USA (1986)

12. Coquand, T.: Infinite objects in type theory. In: TYPES, pp. 62–78 (1993)
13. Giménez, E.: Codifying guarded definitions with recursive schemes. In: TYPES,

pp. 39–59 (1995)
14. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using

sized types. In: POPL, pp. 410–423 (1996)
15. Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Founda-

tions of Mathematics, vol. 141. North Holland, Amsterdam (1999)
16. Krishnaswami, N.R., Benton, N.: Ultrametric semantics of reactive programs. In:

LICS, pp. 257–266 (2011)
17. The Coq development team: the coq proof assistant reference manual. LogiCal

Project (2004). version 8.0. http://coq.inria.fr
18. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-

gram. 18(1), 1–13 (2008)
19. Møgelberg, R.E.: A type theory for productive coprogramming via guarded recur-

sion. In: CSL-LICS (2014)
20. Nakano, H.: A modality for recursion. In: LICS, pp. 255–266 (2000)
21. Norell, U.: Towards a practical programming language based on dependent type

theory. Ph.D. thesis, Chalmers University of Technology (2007)
22. Paviotti, M., Møgelberg, R.E., Birkedal, L.: A model of PCF in guarded type

theory. In: MFPS (2015)
23. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,

Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg
(2014)

24. The Univalent Foundations Program: Homotopy Type Theory: Univalent
Foundations of Mathematics, Institute for Advanced Study (2013). http://
homotopytypetheory.org/book

http://arxiv.org/abs/1601.01586
http://arxiv.org/abs/1601.01586
http://coq.inria.fr
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book

Dependent Types
and Fibred Computational Effects

Danel Ahman1(B), Neil Ghani2, and Gordon D. Plotkin1

1 LFCS, University of Edinburgh, Edinburgh, Scotland, UK
d.ahman@ed.ac.uk, gdp@inf.ed.ac.uk

2 MSP Group, University of Strathclyde, Glasgow, Scotland, UK
neil.ghani@strath.ac.uk

Abstract. We study the interplay between dependent types and gen-
eral computational effects. We define a language with both value types
and terms, and computation types and terms, where types depend only
on value terms. We use computational Σ-types to account for type-
dependency in the sequential composition of computations. Our language
design is justified by a natural class of categorical models. We account
for both algebraic and non-algebraic effects. We also show how to extend
the language with general recursion, using continuous families of cpos.

1 Introduction

While dependent types have proven very useful on their own, for both program-
ming and theorem proving, one also seeks a general way to combine them with
computational effects, such as I/O, state, continuations, or recursion, so as to
write more practical, concise, or clearer programs. However, despite the study of
each of the two fields being well advanced, their combination presents difficulties,
as recognised already by Moggi [25].

One puzzling problem is what to make of a type A(M) if M can raise an
effect. We do not know a general denotational semantics for such types, though
there may be one (there is one for local names [28]). Pragmatically, the situa-
tion depends on the nature of the computational effects considered. For effects
not requiring interaction with the program runtime, such as local names [28] or
general recursion [7], one need not restrict M , as computing A(M) then only
depends on static information. However, this does not work well in general, as
some effects, e.g., I/O, do crucially depend on interaction with the program run-
time, and so then will the computation of A(M). As one consequence, extending
a coarse-grained language, e.g., Moggi’s computational lambda calculus [24],
with dependent types seems not to give a general solution, as the natural elim-
ination rule for Π-types produces types of the form A(M) (and cf. Levy [20,
Sect. 12.4.1]).

D. Ahman—This work was funded by a University of Edinburgh PhD scholarship
and by the scholarship program Kristjan Jaak, which is funded and managed by
Archimedes Foundation in collaboration with the Estonian Ministry of Education
and Research.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 36–54, 2016.
DOI: 10.1007/978-3-662-49630-5 3

Dependent Types and Fibred Computational Effects 37

A natural move to try to solve these problems is to allow types to depend
only on value terms. This is the route we take in this paper and it does lead to a
natural general semantics. While at first such a choice might seem limiting, we
recover dependency on the statically available information about computational
effects by inspecting the structure of thunked computations.

To ensure that types depend only on values, we make a clear distinction
between values and computations, using separate classes of value types A and
computation types C, as in Call-By-Push-Value (CBPV) [20] and the Enriched
Effect Calculus (EEC) [9]. Then the variables in types range only over value
types, as desired. However, a further problem then arises: the usual typing rule

Γ � M : FA Γ, x :A � N(x) : C(x)
Γ � M to x in N(x) : C(x)

(∗)

for sequential composition of computations is not correct as x may occur freely
in C(x) in the conclusion. An evident move here is to prohibit x from occurring
freely in C, as, e.g., advocated by Levy [20, Sect. 12.4.1] and Brady [5]. However,
this seems too restrictive: to make the most of dependent types, it is desirable
for the type of an effectful program to depend on values produced by preceding
computations. As an example, consider combining monadic parsing [16] with
dependent types and applying it to the parsing of well-typed syntax. Then it is
natural to decompose the parsing of function applications into a parser for the
function and a parser for the argument, where the type of the latter crucially
depends on the domain of the type of the parsed function.

The approach we take is to keep the restricted form of (*), but to also intro-
duce computational Σ-types Σx :A.C(x), whose use is inspired by the algebraic
treatment of computational effects [31]. To explain these, suppose computa-
tion types denote algebras for the algebraic theory of boolean-valued read-only
store [35, Sect. III.A]. Now let us consider the composite effectful program

(
(return 2) ? (return 3)

)
to x in M(x)

where x :Nat � M(x) : C(x). Here we see that, after looking up the bit with ?,
this program either evaluates as M(2), which has type C(2), or as M(3), which
has type C(3). So the whole computation yields an element of the coproduct of
algebras C(2)+C(3). This pattern also recurs with other computational effects,
and dependency on value types other than natural numbers: hence the com-
putational Σ-types. These types enable us to type sequential composition by
“closing-off” the free variable x in C(x): using the hypothesis of (*) we derive

Γ, x :A � 〈x,N(x)〉 : Σx :A.C(x)

using the introduction rule for computational Σ-types, and then derive

Γ � M to x in 〈x,N(x)〉 : Σx :A.C(x)

using the restricted form of (*).

38 D. Ahman et al.

We aim to put these ideas together at a foundational level, comparable with
the levels at which the two fields have been studied separately. In contrast,
the existing work on combining dependent types with first-class computational
effects has concerned only particular kinds of effects (e.g., [7,26,28,37]). Other
authors have used dependent types in existing languages to represent effects
using DSLs (e.g., [5,13,23]). There has, however, been no work combining depen-
dent types with general, first class computational effects.

In Sect. 2, we define a small dependently-typed language with computational
effects, combining features from Martin-Löf type theory (MLTT) [22] and com-
putational languages separating values and computations, such as CBPV or
EEC. The language design we propose is justified in Sect. 3 in terms of a sound
and complete interpretation in a class of categorical models naturally combining
(i) comprehension categories arising from the semantics of dependent types; and
(ii) adjunctions arising from the semantics of computational effects. In Sect. 4,
we extend the language and its semantics with algebraic effects. In Sect. 5, we
extend the language and its semantics with general recursion.

2 A Dependently-typed Effectful Language

We now define the syntax and equational theory of our dependently-typed effect-
ful language, making a clear distinction between values and computations, at
both type and term levels: the value fragment of our language is based on MLTT;
the computational fragment is greatly influenced by CBPV and EEC.

Variables. We assume two countable sets: of value variables, ranged over by
x, y, . . .; and of computation variables, ranged over by z, The former are
treated as in MLTT: they are intuitionistic, and enjoy structural rules of weak-
ening and contraction. The latter, on the other hand, are treated linearly, as in
EEC, and play a crucial role in the elimination rule for computational Σ-types.

Types. Our value types A,B, . . . are given as in MLTT, except for the type UC
of thunks, familiar from CBPV. To keep the presentation simple and focussed
on the computational fragment of our language, we omit value sum types and
general inductive types, both of which can be easily added. Our computation
types C,D, . . . generalise those of CBPV and EEC. The grammar of types is

A ::= Nat | 1 | Σx :A.B | Πx :A.B | IdA(V, W) | UC C ::= FA | Σx :A.C | Πx :A.C

Here, FA is the type of computations returning values of type A. The compu-
tational Σ- and Π-types are the natural dependently-typed generalisations of
EEC’s computational tensor and function types: !A ⊗ C, A → C. Rules defining
well-formed value contexts � Γ and types Γ � A, Γ � C are given in Fig. 1.

Terms. We let V,W, . . . to range over value terms. These are given as in MLTT,
except for thunked computations thunk M , familiar from CBPV. Compared to
CBPV, we include both value functions and complex values to accommodate
pure programs on which the types of our language could depend. Regarding
effectful programs, we further distinguish between computation terms, ranged

Dependent Types and Fibred Computational Effects 39

over by M,N, . . . and homomorphism terms, ranged over by K,L, We dec-
orate our terms with certain type-annotations, so that we can later define the
denotational semantics on raw syntax — a standard approach in the litera-
ture [15,36]. We omit these annotations in informal discussion. The grammar of
terms is

V ::= x | zero | succV | recx.A(Vz, y1.y2.Vs,W) | � |λx :A.V |V (W)(x:A).B |
〈V,W 〉(x:A).B | fst(x:A).BV | snd(x:A).BV | thunk M |
refl V | indA(x1.x2.x3.B, y.W, V1, V2, Vp)

M ::= return V |M to x :A inC N | forceC V |λx :A.M |M(V)(x:A).C |
〈V,M〉(x:A).C |M to 〈x :A, z :C〉 inD K

K ::= z |K to x :A inC M |λx :A.K |K(V)(x:A).C |
〈V,K〉(x:A).C |K to 〈x :A, z :C〉 inD L

Well-formed value types

Γ

Γ Nat

Γ

Γ 1

Γ, x :A B

Γ Σx :A.B

Γ, x :A B

Γ Πx :A.B

Γ V : A Γ W : A

Γ IdA(V, W)

Γ C

Γ UC

Well-formed value contexts Well-formed computation types
Γ x ∈ Vars(Γ) Γ A

Γ, x :A

Γ A

Γ FA

Γ, x :A C

Γ Σx :A.C

Γ, x :A C

Γ Πx :A.C

Fig. 1. Well-formed contexts and types.

Our computation terms share many similarities with those in CBPV, but
additionally include the introduction and elimination rules for computational
Σ-types, given by pairing 〈V,M〉 and pattern-matching M to 〈x, z〉 in K, whose
syntax is similar to that for computational tensor types !A ⊗ C in EEC.

As with the linear terms in EEC, our homomorphism terms contain computa-
tion variables z used linearly. From an operational perspective, the typing rules
for homomorphism terms ensure that a computation bound to z always happens
first in a well-typed term containing it. So, when eliminating a pair 〈V,M〉, M
always happens before the rest of K in the compound term 〈V,M〉 to 〈x, z〉 in K,
thus preserving the intended left-to-right evaluation order. This use of computa-
tion variables ensures that homomorphism terms denote algebra homomorphisms
in the examples based on Eilenberg-Moore algebras of monads, or on algebraic
effects [31]: hence the name. Similar forms of linearity are also present in CBPV
with stacks [20, Sect. 2.3.4]; indeed, homomorphism terms can be viewed as a
programmer-friendly syntax for dependently-typed stack terms.

Well-typed value terms Γ � V : A, well-typed computation terms Γ � M : C,
and well-typed homomorphism terms Γ | z :C � K : D are defined in Fig. 2.

The linear use of computation variables is also reminiscent of recent work
on combining dependent and linear types in languages with distinguished intu-
itionistic and linear fragments [19,38]. That work is designed to capture the

40 D. Ahman et al.

Type conversion rules

Γ V : A Γ A = B

Γ V : B

Γ M : C Γ C = D

Γ M : D

Γ | z :C K : D1 Γ D1 = D2

Γ | z :C K : D2

Well-typed value terms

Γ x :A ∈ Γ

Γ x : A

Γ M : C

Γ thunk M : UC

Γ

Γ : 1

Γ

Γ zero : Nat

Γ V : Nat

Γ succV : Nat

Γ, x :Nat A Γ Vz : A[zero/x] Γ, y1 :Nat, y2 :A[y1/x] Vs : A[succ y1/x] Γ W : Nat

Γ recx.A(Vz, y1.y2.Vs, W) : A[W/x]

Γ V : A Γ, x :A B Γ W : B[V/x]

Γ V, W (x:A).B : Σx :A.B

Γ V : Σx :A.B

Γ fst(x:A).BV : A

Γ V : Σx :A.B

Γ snd(x:A).BV : B[fst(x:A).BV/x]

Γ, x :A V : B

Γ λx :A.V : Πx :A.B

Γ V : Πx :A.B Γ W : A

Γ V (W)(x:A).B : B[W/x]

Γ V : A

Γ refl V : IdA(V, V)

Γ, x1 :A, x2 :A, x3 : IdA(x1, x2) B Γ, y :A W : B[y/x1, y/x2, refl y/x3]
Γ V1 : A Γ V2 : A Γ Vp : IdA(V1, V2)

Γ indA(x1.x2.x3.B, y.W, V1, V2, Vp) : B[V1/x1, V2/x2, Vp/x3]

Well-typed computation terms

Γ V : A

Γ return V : FA

Γ M : FA Γ C Γ, x :A N : C

Γ M to x :A inC N : C

Γ, x :A M : C

Γ λx :A.M : Πx :A.C

Γ M : Πx :A.C Γ V : A

Γ M(V)(x:A).C : C[V/x]

Γ V : A Γ, x :A C Γ M : C[V/x]

Γ V, M (x:A).C : Σx :A.C

Γ M : Σx :A.C Γ D Γ, x :A | z :C K : D

Γ M to x :A, z :C inD K : D

Γ V : UC

Γ forceC V : C

Well-typed homomorphism terms

Γ C

Γ | z :C z : C

Γ | z1 :C K : Σx :A.D1 Γ D2 Γ, x :A | z2 :D1 L : D2

Γ | z1 :C K to x :A, z2 :D1 inD2 L : D2

Γ V : A Γ, x :A D Γ | z :C K : D[V/x]

Γ | z :C V, K (x:A).D : Σx :A.D

Γ C Γ, x :A | z :C K : D

Γ | z :C λx :A.K : Πx :A.D

Γ | z :C K : FA Γ D Γ, x :A M : D

Γ | z :C K to x :A inD M : D

Γ | z :C K : Πx :A.D Γ V : A

Γ | z :C K(V)(x:A).D : D[V/x]

Fig. 2. Well-typed terms.

adjunction models of intuitionistic linear logic [3]; in contrast, our language is
designed to capture the computational nature of certain adjunctions.

Equations. We equip our language with an equational theory, consisting of equa-
tions between well-formed types, written Γ � A = B and Γ � C = D; and well-
typed terms, written Γ � V = W : A, Γ � M = N : C and Γ | z :C � K = L : D.
The equations between types consist of reflexivity equations for Nat and 1,
and congruence rules for all the other type formers. We omit the equations
between value terms as they are standard from MLTT with natural numbers
and intensional identity types [15,22]. The rules for equations between computa-
tion and homomorphism terms are given in Fig. 3. We leave the well-typedness
assumptions about the constituent terms implicit, and omit type conversion,
equivalence, and congruence rules. Many of the equations in Fig. 3 are familiar
from EEC, modulo the dependent-typing. Compared to other computational lan-
guages, such as [24], standard equations that may seem missing from the theory,
such as associativity of sequential composition, are in fact derivable.

Dependent Types and Fibred Computational Effects 41

Equations involving thunking and forcing

Γ thunk (forceC V) = V : UC Γ forceC (thunk M) = M : C

Equations between well-typed computation terms

Γ return V to x :A inC M = M [V/x] : C Γ M to x :A inC K[return x/z] = K[M/z] : C

Γ V, M to x :A, z :C inD K = K[V/x, M/z] : D Γ (λx :A.M)(V)(x:A).C = M [V/x] : C[V/x]

Γ M to x :A, z2 :C inD K[x, z2 /z1] = K[M/z1] : D Γ M = λx :A.M(x)(x:A).C : Πx :A.C

Equations between well-typed homomorphism terms

Γ | z1 :C K to x :A inD L[return x/z2] = L[K/z2] : D

Γ | z1 :C V, K to x :A, z2 :D1 inD2 L = L[V/x, K/z2] : D2

Γ | z1 :C K to x :A, z3 :D1 inD2 L[x, z3 /z2] = L[K/z2] : D2

Γ | z1 :C (λx :A.K)(V)(x:A).D = K[V/x] : D[V/x]

Γ | z1 :C K = λx :A.K(x)(x:A).D : Πx :A.D

Fig. 3. Fragment of the equational theory.

Some meta-theory. The substitution of value terms for value variables has a
straightforward mutually recursive definition. We write A[V/x] for the substi-
tution of V for x in A. The substitution of computation and homomorphism
terms for computation variables is also routine, recursing only in the sub-terms
where linearly used computation variables can appear. We write K[M/z] for
the substitution of M for z in K. Then, standard weakening and substitution
rules for value variables are admissible for all judgments of our language. In
addition, further substitution rules for computation variables are admissible for
judgments Γ | z :C � K : D and Γ | z :C � K = L : D, covering the substitution
of both computation and homomorphism terms for computation variables.

3 Denotational Semantics

The denotational semantics of our language is based on standard fibred cate-
gory theory. To make our work more accessible, we recall some preliminaries of
this theory and suggest [18] for more details. Fibred category theory provides a
natural framework for developing the semantics of dependently-typed languages,
where: (i) functors model type-dependency; (ii) split fibrations model substitu-
tion; and (iii) closed comprehension categories model Σ- and Π-types. The ideas
we develop can also be expressed in terms of other models of dependent types,
such as categories with families, or categories with attributes [15,27].

3.1 Fibred Category Theory Preliminaries

Fibrations. Given a functor p : E −→ B, a morphism g : A −→ B is called
a Cartesian lifting of f : X −→ Y if p(g) = f and for all i : C −→ B and
j : p(C) −→ X, such that p(i) = f ◦ j in B, there exists a unique h : C −→ A
over j such that g ◦ h = i. The functor p : E −→ B is called a fibration if for
every B in E and f : X −→ p(B) in B there exists a Cartesian lifting g : A −→ B
of f in E . A morphism f : A −→ B in E is called vertical if p(A) = p(B) = X
and p(f) = idX . For any X in B, we write EX for the fibre over X, i.e., for

42 D. Ahman et al.

the subcategory of E consisting of objects over X and vertical morphisms. A
fibration is called cloven if it comes with a choice of Cartesian liftings. We
write f(B) : f∗(B) −→ B for the chosen Cartesian lifting of f : X −→ p(B). In
cloven fibrations, every B-morphism f : X −→ Y determines a reindexing func-
tor f∗ : EY −→ EX , satisfying (idX)∗ ∼= idEX

and (g ◦ f)∗ ∼= f∗ ◦ g∗. A cloven
fibration is said to be split if these two isomorphisms are identities.

Given split fibrations p : V −→ B and q : C −→ B, a split fibred functor
F : p −→ q is given by a functor F : V −→ C, such that q◦F = p and F preserves
the chosen Cartesian morphisms on-the-nose. Given two split fibred functors
F,G : p −→ q, a split fibred natural transformation α : F ⇒ G is given by a nat-
ural transformation α : F ⇒ G, in which every component of α is vertical. A split
fibred adjunction F � U : q −→ p is given by split fibred functors F : p −→ q and
U : q −→ p, together with split fibred natural transformations η : idV −→ U ◦ F
and ε : F ◦ U −→ idC , subject to the standard unit-counit laws for adjunctions.

Comprehension categories. A (split) comprehension category with unit is given by
a (split) fibration p : E −→ B, together with a comprehension-admitting terminal
object functor 1 : B −→ E , i.e., 1 has a right adjoint {−} : E −→ B; it is said to
be full when the functor A

π(−)�→ p(ε1�{−}
A) : E −→ B→ is full and faithful. For

all A in E , the B-morphism πA : {A} −→ p(A) is called a projection map. The
corresponding reindexing functor π∗

A : Ep(A) −→ E{A} is called the weakening
functor. For every comprehension category with unit p : E −→ B, we have an
isomorphism Ep(A)(1p(A), A) ∼= {g : p(A) −→ {A} |πA ◦ g = idp(A)}, for all A
in E . As a notational convention, we write s(f) : p(A) −→ {A} for the section
corresponding to the global element f : 1p(A) −→ A, given by {f} ◦ η

1�{−}
A .

A comprehension category with unit p : E −→ B is said to have dependent
products (resp. weak dependent sums) when the weakening functors π∗

A have right
adjoints ΠA (resp. left adjoints ΣA), for all A in E , satisfying the Beck-Chevalley
condition: for all Cartesian morphisms f : A −→ B, the canonical natural trans-
formation (p(f))∗ ◦ ΠB −→ ΠA ◦ {f}∗ (resp. ΣA ◦ {f}∗ −→ (p(f))∗ ◦ ΣB) is an
isomorphism. A comprehension category with unit p : E −→ B is said to have
strong dependent sums when it has weak dependent sums, s.t. for all B in E{A},

the morphism {πA(ΣAB) ◦ η
ΣA� π∗

A

B } : {B} −→ {ΣAB} is an isomorphism.

Split closed comprehension categories. In order to define fibred adjunction mod-
els in Sect. 3.2, we use a particularly well-behaved class of comprehension cate-
gories (from the perspective of interpreting type theory), namely, those that are
split and closed. A split closed comprehension category (SCCompC) is a split
full comprehension category with unit p : E −→ B, where the base category B
has a terminal object; the fibred terminal objects are preserved on-the-nose by
reindexing; and which has dependent products and strong dependent sums, for
which the isomorphisms in the Beck-Chevalley conditions are identities.

Natural numbers. A SCCompC p : E −→ B is said to support weak natural
numbers if there exists an object N in E1 and vertical morphisms zero : 11 −→ N,
succ : N −→ N, s.t. for all X in B, A in E{!∗X(N)}, hz : 1X −→ (s(!∗X(zero)))∗(A) in
EX and hs : 1{A} −→ π∗

A({!∗X(succ)}∗(A)) in E{A}, there exists h : 1{!∗X(N)} −→ A
in E{!∗X(N)}, satisfying (s(!∗X(zero)))∗(h) = hz and π∗

A({!∗X(succ)}∗(h)) = hs.

Dependent Types and Fibred Computational Effects 43

We present N axiomatically rather than using weak initial algebras since
our language and its models do not assume coproducts. Moreover, discussing
the semantics of inductive types and their fibred induction principles in full
generality [10] would digress too much from our central theme.

Identity types. Following the axiomatic presentation given by Warren [39], a
SCCompC p : E −→ B is said to support identity types, if, for all A in E , there
exists an object IdA in E{π∗

A(A)}, and rA : 1{A} −→ δ∗
A(IdA) in E{A}, such that for

all B in E{IdA} and f : 1{A} −→ (s(rA))∗({δA(IdA)}∗(B)) in E{A}, there exists
iA,B(f) : 1{IdA} −→ B in E{IdA}, satisfying (s(rA))∗({δA(IdA)}∗(iA,B(f))) = f .
These identity types are also required to satisfy a split Beck-Chevalley condition:
for all Cartesian morphisms f : A −→ B, we must have {f ′}∗(IdB) = IdA in
E{π∗

A(A)}, where f ′ : π∗
A(A) −→ π∗

B(B) is the unique mediating morphism over
{f}, arising from πB(B) : π∗

B(B) −→ B being a Cartesian morphism. As in [18,
Sect. 9.3.5], the diagonal morphisms δA arise from pullback squares of the form

3.2 Interpretation of Our Language in Fibred Adjunction Models

A fibred adjunction model is given by a SCCompC p : V −→ B, a split fibration
q : C −→ B, and a split fibred adjunction F � U : q −→ p, such that p supports
identity types and weak natural numbers (in the sense of Sect. 3.1), and q sup-
ports split dependent products and sums with respect to p as depicted in

The split dependent products and sums in q, with respect to p, are defined as
left and right adjoints to the weakening functors π∗

A : Cp(A) −→ C{A}, required
to satisfy the analogues of the split Beck-Chevalley conditions from Sect. 3.1.

Given a SCCompC p : V −→ B that supports identity types and weak nat-
ural numbers, we can always pick the identity adjunction idV � idV : V −→ V to
construct a corresponding “effect-free” fibred adjunction model. Further, we can
construct a restricted form of adjunction models (without identity types) from
models of EEC with weak natural numbers [9], i.e., from D-enriched adjunc-
tions FEEC � UEEC : E −→ D, where D is Cartesian closed and has a weak
NNO, E is D-enriched and has all D-tensors and -cotensors. These models are
based on a computational variant q : s(D, E) −→ D of the the simple fibration

44 D. Ahman et al.

p : s(D) −→ D [18, Theorem 10.5.5]. In particular, the objects of s(D, E) are pairs
(X,C) of a D-object X and a E-object C; and the morphisms (X,C) −→ (Y,D)
are pairs (f, g) of morphisms, with f : X −→ Y in D and g : X ⊗ C −→ D in E .

Interpretation. Following Streicher [36] and Hoffmann [15], we define the inter-
pretation of our language in fibred adjunction models by first giving a par-
tial interpretation function �−� on raw syntax and then proving that �−� is
defined on well-formed expressions. We do so because of the well-known issue in
interpreting dependently-typed languages: as the derivations of judgments are
not unique, due to the type conversion rules, defining the interpretation on the
derivations would require simultaneously proving that the definition is coherent.

If defined, �−� maps a context Γ to an object �Γ � in B; a pair of a context
Γ and a value type A to an object �Γ ;A� in V�Γ �; a pair of a context Γ and
computation type C to an object �Γ ;C� in C�Γ �; a pair of a context Γ and a
value term V to an object A and a morphism �Γ ;V � : 1�Γ � −→ A in V�Γ �; a
pair of a context Γ and a computation term M to an object C in C�Γ � and
a morphism �Γ ;M� : 1�Γ � −→ U(C) in V�Γ �; and a triple of a context Γ ,
a computation type C and a homomorphism term K to an object D and a
morphism �Γ ;C;K� : �Γ ;C� −→ D in C�Γ �. We define these different cases of
�−� simultaneously by induction on the depth of the argument expressions. In
the definition, it is convenient to use Kleene equality where two sides of an
equation are equal if either they are both defined and equal or they are both
undefined. For contexts, �−� is defined as

�·� 1 �Γ, x :A� {�Γ ;A�} if x �∈ Vars(Γ)

For types, we illustrate the definition of �−� with the following example cases:

�Γ ;Nat� !∗�Γ �(N) �Γ ; IdA(V,W)� (〈s(�Γ ;V �), s(�Γ ;W �)〉)∗(Id�Γ ;A�)
�Γ ;Σx :A.C� Σ�Γ ;A�(�Γ, x :A;C�) �Γ ;Πx :A.C� Π�Γ ;A�(�Γ, x :A;C�)

where the pairing morphism 〈s(�Γ ;V �), s(�Γ ;W �)〉 : �Γ � −→ {π∗
�Γ ;A�(�Γ ;A�)}

is the unique mediating morphism into the pullback square from Sect. 3.1, for
s(�Γ ;V �) and s(�Γ ;W �). We also note that �Γ ; IdA(V,W)� is conditional on the
codomains of the morphisms given by �Γ ;V � and �Γ ;W � being equal to �Γ ;A�.

For terms, we present the definition only for homomorphism terms, given by

�Γ ; C; z� � �Γ ; C�

id�Γ ;C�
−−−−→ �Γ ; C�

�Γ ; C; K to x :A inD M� � �Γ ; C�
�Γ ;C;K�
−−−−→ F (�Γ ; A�)

�Γ,x:A;M�†
−−−−−−−→ �Γ ; D�

�Γ ; C; 〈V, K〉(x:A).D� � �Γ ; C�
�Γ ;C;K�
−−−−→ s(�Γ ; V �)∗(�Γ, x :A; D�)

s(�Γ ;V �)∗(ηΣ�π∗
�Γ,x:A;D�

)

−−−−−−−−−−−−−−−−−→
s(�Γ ; V �)∗(π∗

�Γ ;A�(Σ�Γ ;A�(�Γ, x :A; D�)))
=−→ Σ�Γ ;A�(�Γ, x :A; D�)

�Γ ; C; K to 〈x :A, z :D1〉 inD2
L� � �Γ ; C�

�Γ ;C;K�
−−−−−→ Σ�Γ ;A�(�Γ, x :A; D1�)

[
�Γ,x:A;D1;L�

]

−−−−−−−−−−→ �Γ ; D2�

�Γ ; C; λx :A.K� � �Γ ; C�
λ�Γ,x:A;C;K�
−−−−−−−−−→ Π�Γ ;A�D

�Γ ; C; K(V)(x:A).D� � �Γ ; C�
=−→ s(�Γ ; V �)∗(π∗

�Γ ;A�(�Γ ; C�))

s(�Γ ;V �)∗(π∗
�Γ ;A�

(�Γ ;C;K�))

−−−−−−−−−−−−−−−−−−−−−→

s(�Γ ; V �)∗(π∗
�Γ ;A�(Π�Γ ;A�(�Γ, x :A; D�)))

s(�Γ ;V �)∗(επ∗�Π
�Γ,x:A;D�

)

−−−−−−−−−−−−−−−−→ s(�Γ ; V �)∗(�Γ, x :A; D�)

Dependent Types and Fibred Computational Effects 45

where the vertical morphisms �Γ, x : A;M�†,
[
�Γ, x : A,D1;L�

]
and λ�Γ ;C;K�

are derived using the adjunctions involved in the definition of fibred adjunction
models. Similarly to [15,36], we make some of the cases of the definition (implic-
itly) conditional on the denotations of sub-terms having a particular form, based
on the type-annotations with which we have decorated our terms.

Theorem 1 (Soundness). The partial interpretation function �−� is defined
on well-formed contexts, well-formed types and well-typed terms. In addition, the
interpretation identifies types and terms that are equal in the equational theory.

Similarly to [15,36], the proof of soundness relies on lemmas relating weak-
ening and substitution in the syntax to reindexing in fibred adjunction models.

The classifying model. We now show that the interpretation of our language in
fibred adjunction models is complete by constructing its classifying model.

First, in the classifying fibred adjunction model the objects of B are given by
equivalence classes of well-formed value contexts Γ . The morphisms Γ1 −→ Γ2

are given by equivalence classes of tuples of value terms V = (V1, . . . , Vm),
where Γ2 = y1 :B1, . . . , ym :Bm and Γ1 � Vi : Bi[V1/y1, . . . , Vi−1/yi−1], for all
1 ≤ i ≤ m.

Next, the objects of the total category V are given by equivalence classes
of value types Γ � A and its morphisms Γ1 � A −→ Γ2 � B by equivalence
classes of tuples of value terms (V , V), where V are typed as in B, and V is
typed as Γ1, x :A � V : B[V /Γ2]. The objects and morphisms of C are defined
similarly: as equivalence classes of computation types Γ � C; and as equivalence
classes of tuples of terms (V ,K), where K is typed as Γ1 | z :C � K : D[V /Γ2].
The fibrations p and q are defined by context projections, i.e., by p(Γ � A) = Γ .

The various adjunctions involved in the definition of fibred adjunction models
are defined in terms of their syntactic counterparts. For example, the split fibred
adjunction F � U : q −→ p is defined using the types FA and UC, given by

F (Γ � A) = Γ � FA F (V , V) = (V , z to y :A inFB[V/Γ2] return V [y/x])
U(Γ � C) = Γ � UC U(V ,K) = (V , thunk K[forceC x/z])

The identity types and natural numbers are also given in terms of their syntactic
counterparts: the object IdΓ �A in V{π∗

Γ �A(Γ �A)} is Γ, x :A, y :A � IdA(x, y).

Proposition 1. The above definitions, based on the syntax of our language,
constitute a fibred adjunction model, called the classifying model of our language.

Finally, we can use this result to prove the completeness of the interpretation.

Theorem 2 (Completeness). If two types or two terms of our language
are identified in all fibred adjunction models, they are equal in the equational
theory.

46 D. Ahman et al.

3.3 Fibred Adjunction Models Based on the Families Fibration

We now discuss some examples of fibred adjunction models based on the pro-
totypical model of dependent types, the families fibration p : Fam(D) −→ Set.
The objects of Fam(D) are given by pairs (X,A) of a set X and an X-indexed
family of D-objects A : X −→ ob(D); the morphisms (X,A) −→ (Y,B) are pairs
(f, {gx}x∈X) of a function f : X −→ Y and a X-indexed family of D-morphisms
{gx : A(x) −→ B(f(x))}x∈X . The functor p is defined by first projection, i.e.
by p(X,A) = X. In fact, p is a split fibration: the reindexing functors f∗ are
defined by pre-composition, i.e. by f∗(Y,B) = (X,B ◦ f) for all f : X −→ Y . In
our examples, we take D to be Set. In this case, p is a SCCompC [18, Sect. 10.5].
The examples we discuss below are instances of the following general result,
building on the fact that adjunctions can be lifted to families fibrations [18,
Example 1.8.7(i)].

Theorem 3. Given F � U : E −→ Set, such that E has both set-indexed prod-
ucts and coproducts, the fibrations p : Fam(Set) −→ Set and q : Fam(E) −→ Set,
together with the pointwise lifting of F � U , determine a fibred adjunction model.

In Theorem 3, the set-indexed products and coproducts in E are assumed to
exist in order to define the dependent products and dependent sums in q as

Π(X,A)(
∐

x∈X A(x), C) = (X,x �→ ∏
a∈A(x) C(x, a))

Σ(X,A)(
∐

x∈X A(x), C) = (X,x �→ ∐
a∈A(x) C(x, a))

The lifting F̂ � Û of F � U is defined by composition, i.e., F̂ (X,A) = (X,F ◦A).
The first collection of examples we discuss are based on Eilenberg-Moore

algebras (EM-algebras) for a monad (T, η, μ) on Set. As standard, we write SetT

for the category of EM-algebras. Its objects are given by pairs (X,α) of a set X
and a function α : TX −→ X such that α ◦ T (α) = α ◦ μX and α ◦ ηX = idX ;
its morphisms (X,α) −→ (Y, β) are given by functions f : X −→ Y such that
β ◦ T (f) = f ◦ α. There is a canonical EM-adjunction FT � UT : SetT −→ Set.

We note that SetT has both set-indexed products and coproducts: SetT is
complete [4, Theorem 4.3.1] and, assuming the axiom of choice (AC), SetT is also
cocomplete [4, Theorem 4.3.5]. We note that, without assuming AC, it would
suffice to assume that SetT has reflexive coequalizers for it to be cocomplete, as
first observed by Linton [21]. The set-indexed products in SetT are defined from
the set-indexed products in Set by

∏
i∈I(Xi, αi) = (

∏
i∈I Xi, 〈αi ◦ T (proji)〉i∈I).

As shown by Linton [21], the set-indexed coproduct
∐

i∈I(Xi, αi) can be defined
as the reflexive coequalizer e : FT (

∐
i∈I Xi) −→ ∐

i∈I(Xi, αi) of the diagram

F T (
∐

i∈I Xi)
F T ([inji ◦ηXi

]i∈I)�� F T (
∐

i∈I TXi)
μ∐

i∈I Xi
◦F T ([T (inji)]i∈I)

��
F T ([inji ◦αi]i∈I) ��

F T (
∐

i∈I Xi)

Dependent Types and Fibred Computational Effects 47

Corollary 1. Given a monad (T, η, μ) on Set, the EM-adjunction FT � UT and
the families fibration p : Fam(Set) −→ Set determine a fibred adjunction model.

A particularly well-behaved collection of fibred adjunction models arises
from the algebraic treatment of computational effects [31], namely, from mon-
ads arising from countable Lawvere theories. These are exactly the monads on
Set that are of countable rank [33, Theorem 2.8]. As discussed in [17], such
monads combine easily, in terms of combining the operations and equations
of the corresponding countable Lawvere theories. We recall that every countable
Lawvere theory L induces a category Mod(L,Set) of models of L in Set, with
an associated forgetful functor UL : Mod(L,Set) −→ Set [33]. As Set is locally
countably presentable [1], UL has a left adjoint FL, inducing an equivalence of
categories between Mod(L,Set) and SetTL , for TL = UL ◦ FL. Importantly for
us, Mod(L,Set) is both complete and cocomplete, e.g., because TL has count-
able rank and Set is complete and cocomplete, see [4, Theorem 4.3.6]. Therefore,
Mod(L,Set) has set-indexed products and set-indexed coproducts and we get:

Corollary 2. For any countable Lawvere theory L, the adjunction FL � UL and
the families fibration p : Fam(Set) −→ Set determine a fibred adjunction model.

Finally, we present two computationally motivated examples arising from
Theorem 3 and decompositions of monads (T, η, μ) on Set into adjunctions other
than FT � UT . In particular, we consider the continuations monad RR(−)

and
the global state monad ((−) × S)S . These monads can be decomposed into the
adjunctions R(−) � R(−) : Setop −→ Set and (−) × S � (−)S : Set −→ Set,
where Setop inherits set-indexed products and set-indexed coproducts trivially
from Set.

Corollary 3. The adjunctions R(−) � R(−) and (−) × S � (−)S together with
the families fibration p : Fam(Set) −→ Set determine fibred adjunction models.

4 Extending the Language with Algebraic Effects

Until now we have have not said how computational effects, such as I/O, state,
exceptions, etc., arise in our language and how programmers can program with
them. In this section, we make the source of computational effects explicit, by
drawing ideas from the algebraic treatment of computational effects [31].

4.1 Algebraic Effects in the Syntax

We begin by assuming we are given a collection of typed operation symbols

op : (xin :I) −→ O

where we call · � I the input type and xin : I � O the output type of op. We
restrict I and O to be pure value types, i.e., value types that do not contain U .

48 D. Ahman et al.

We add such operation symbols to our language by extending the syntax
of computation terms: for each operation symbol op : (xin : I) −→ O, we add
algebraic operations opC

V (x.M), for all C, and a generic effect genopV , typed as

Γ � V : I Γ � C Γ, x:O[V/xin] � M : C

Γ � op
C
V (x.M) : C

Γ � V : I

Γ � genopV : F (O[V/xin])

These operations and generic effects are in 1-to-1 correspondence, as in [30].
The operation symbols we consider can also come equipped with a collection

of equations, describing their intended computational behaviour. We extend our
language with the corresponding equations between computation terms.

Note that we allow the output types of operation symbols to depend on
input values. This additional type-dependency is useful for giving more concise
representations of collections of standard, simply-typed operations. For example,
we can use a boolean-indexed type family and two operation symbols

lookup : (xin :Bool) −→ (if xin then Nat else Bool)
update : (xin :Σx :Bool.(if x then Nat else Bool)) −→ 1

as a concise syntax for the four operations of global state with two locations:

lookuptt : 1 −→ Nat updatett : Nat −→ 1 lookupff : 1 −→ Bool updateff : Bool −→ 1

In order to make the computation terms opC
V (x.M) behave like algebraic

operations, we extend our language with a general algebraicity equation:

op : (xin :I) −→ O Γ � V : I Γ, x:O[V/xin] � M : C Γ | z :C � K : D

Γ � K[op
C
V (x.M)/z] = op

D
V (x.K[M/z]) : D

(∗∗)

Using (∗∗), we can easily prove equations familiar from languages with alge-
braic effects, e.g. the algebraicity equation for sequential composition from [34,
Sect. 3.3]:

Γ � opFA
V (x.M) to y :A inC N = opC

V (x.(M to y :A inC N)) : C

We omit handlers of algebraic effects [32] from this paper as a full account, in
which the equational properties of handlers are derived from those of homomor-
phism terms, i.e., from (∗∗), involves extending our language with a further com-
putation type former 〈A, {Vop}op〉 for user-defined algebras. To make handlers
first-class, one extends the language with the type C � D of homomorphisms,
familiar from EEC. We will report on this extension separately elsewhere.

4.2 Algebraic Effects in the Semantics

Following the definition of algebraic operations for a monad in terms of its EM-
algebras [30, Sect. 6], we say that a fibred adjunction model supports algebraic
operations if for all op : (xin :I) −→ O, there exist vertical morphisms

�op�C : Σ!∗
q(C)(�I�)(Π{!q(C)(�I�)}∗(�O�)(π

∗
{!q(C)(�I�)}∗(�O�)

(π∗
!∗
q(C)(�I�)(U(C))))) −→ U(C)

Dependent Types and Fibred Computational Effects 49

that are natural in C. When combining this naturality with the fact that U is a
split fibred functor, it can be shown that the �op�C ’s are preserved by reindexing.
If the given collection of operation symbols also comes with associated equations,
these vertical morphisms are additionally required to satisfy these equations.

The classifying model from Sect. 3.2 can be straightforwardly extended: for
any Γ = x1 :A1, . . . , xn :An and Γ � C, the vertical morphisms �op�Γ � C are

�op�Γ � C =
(
x1, . . . , xn, thunk (opC

fst x′(x.forceC ((sndx′)x)))
)

where x′ has type Σxin :I.Πx :O.UC. The naturality of these is proved by
using the equations describing the interaction between thunking and forcing,
in combination with the general algebraicity equation (∗∗) from Sect. 4.1.

Finally, we note how algebraic operations can be characterised in the fibred
adjunction models based on the families fibration and EM-algebras of a monad.

Proposition 2. The fibred adjunction models from Sect. 3.3, based on the
EM-algebras of a monad (T, η, μ) on Set, support algebraic operations if for all
operations op : (xin :I) −→ O there exists a family of natural transformations

{
�op�i : (UT (−))�O�(〈�,i〉) −→ UT (−)

}

i∈�I�(�)

5 Extending the Language with General Recursion

We now show how to extend our language with general recursion, considering it
as a computational effect to keep the MLTT fragment of our language effect-free.

5.1 Recursion in the Syntax

We start by extending our language with a new computation term, the fixed
point operation μx :UC.M . The corresponding typing rule is given by

Γ, x :UC � M : C
Γ � μx : UC.M : C

We also extend the language’s equational theory with unfolding of fixed points:

Γ � μx :UC.M = M [thunk (μx :UC.M)/x] : C

Finally, we also alter the definition of identity types IdAdisc
(V,W), restricting

them to be over discrete value types, to be able to interpret this extended lan-
guage in models based on continuous families of cpos. These discrete types are

Adisc, Bdisc ::= Nat |Σx :Adisc.Bdisc | 1 |Πx :A.Bdisc | IdAdisc
(V,W)

5.2 Domain-Theoretic Semantics for Recursion

We build the denotational semantics for the language with recursion around
the SCCompC of continuous families p : CFam(CPO) −→ CPO [18, Sect. 10.6].

50 D. Ahman et al.

Compared to [18], we use ω-complete partial orders instead of directed-complete
partial orders, because the former constitute a locally countably presentable
category, whereas the latter do not [1, Example 1.14(4)]; and we need local pre-
sentability for fibred adjunction models based on the algebraic treatment of
computational effects. An overview of the relevant domain theory can be found
in [11,29].

We recall that the objects of CFam(CPO) are pairs (X,A) of a cpo X and a
continuous functor A : X −→ CPOEP (a continuous family), treating X as a cat-
egory and valued in the category of embedding-projection pairs. The morphisms
(X,A) −→ (Y,B) are pairs (f, {gx}x∈|X|) of a continuous function f : X −→ Y
and a family of continuous functions {gx : A(x) −→ B(f(x))}x∈|X|, satisfying

x1 �X x2 =⇒ B(f(x1 �X x2))
e ◦ gx1 �B(f(x2))

A(x1) gx2 ◦ A(x1 �X x2)
e

〈xn〉 incr. ω-chain =⇒ g∨
n xn =

∨
n

(
B(f(xn �X

∨
n xn))e ◦ gxn ◦ A(xn �X

∨
n xn)p

)

The dependent products and strong dependent sums are defined by using the
cpo-indexed products

∏
X A and coproducts

∐
X A in CPO, which are given by

∐
X A =

(∐
x∈|X| |A(x)|, 〈x1, a1〉 � 〈x2, a2〉 iff x1 �X x2 and A(x1 �X x2)

e(a1) � a2

)

∏
X A =

({f : X −→∐X A | fst ◦ f = idX}, f1 � f2 iff ∀x ∈ |X|. f1(x) �∐
X A f2(x)

)

For identity types, we require A to be a continuous family of discrete cpos,
matching the changes we made in the syntax of our language, and then define

Id(X,A) =
({π∗

(X,A)(X,A)}, 〈x, a, a′〉 �→ ∐
{� | a=a′} 1

)

The discreteness of A is necessary for 〈x, a, a′〉 �→ ∐
{� | a=a′} 1 to constitute a con-

tinuous functor: if A would not be discrete, then from 〈x1, a1, a
′
1〉 � 〈x2, a2, a

′
2〉

and a1 = a′
1 it would not follow that a2 = a′

2, and vice versa, which we need for
defining the embedding-projection pair between

∐
{� | a1=a′

1} 1 and
∐

{� | a2=a′
2} 1.

For modeling computation terms involving recursion, we assume a CPO-
enriched monad (T, η, μ) on CPO, such that its EM-algebras are pointed and the
morphisms between them are strict; or equivalently, we assume that the given
monad supports a least zero-ary algebraic operation, in the sense of [30, Sect. 6].
For modeling computational Σ-types, we further assume that CPOT has reflexive
coequalizers. We can then model our computation types in the split fibration
q : CFam(CPOT) −→ CPO, defined analogously to p above. Monads satisfying
these conditions arise naturally from the algebraic treatment of computational
effects: from CPO-enriched countable Lawvere theories [17] with a least constant.

The dependent products and sums in q, with respect to p, are defined using
the cpo-indexed products and coproducts in CPOT . First, the cpo-indexed prod-
uct

∏
X C in CPOT is directly inherited from CPO, being defined on the car-

rier
∏

X(UT ◦ C). On the other hand, analogously to Sect. 3.3, the cpo-indexed
coproduct

∐
X C cannot be defined simply by taking

∐
X(UT ◦C) as the carrier.

Instead, we construct
∐

X C as the reflexive coequalizer for a diagram similar
to the one used in Sect. 3.3, with the difference that here we would use the free
algebras over cpo-indexed coproducts rather than over set-indexed coproducts.

Dependent Types and Fibred Computational Effects 51

Despite having a more complex categorical definition, the cpo-indexed
coproducts in CPOT have the same universal property as those in CPO. We
first recall Jacobs’s remark [18, Sect. 10.6] that

∐
X A results from applying

the Grothendieck construction to A. By a result of Gray [12],
∐

X A can also
be understood as the oplax colimit of A in CPO. In CPOT , the situation is
analogous:

Proposition 3.
∐

X C is the oplax colimit of C : X −→ (CPOT)EP in CPOT .

Similarly to Sect. 3.3, the split fibred adjunction F � U : q −→ p is defined
from FT � UT by post-composition, i.e., by setting F (X,A) = (X,FT ◦A), where
FT ◦ A is a continuous functor because of the CPO-enrichment of FT and the
limit-colimit coincidences in CPOEP and (CPOT)EP. U is defined analogously.

We interpret our language as discussed in Sect. 3.2, except for recursion:

�Γ ;μx :UC.M� =
(
id�Γ �, {x ∈ |1| �→ μ(gγ)}γ∈|�Γ �|

)
: (�Γ �, γ �→ 1) −→ (�Γ �, UT ◦ �Γ ;C�)

where we use the least fixed points of the family of continuous functions
{gγ : UT (�Γ ;C�)(γ) −→ UT (�Γ ;C�)(γ)}γ∈|�Γ �|, determined by a vertical mor-
phism (�Γ �, UT ◦ �Γ ;C�) −→ (�Γ �, UT ◦ �Γ ;C�) we derive from �Γ, x :UC;M�.
The least fixed points of gγ ’s are guaranteed to exist because our assumptions
about CPOT make every UT ◦ �Γ ;C� into a continuous family of pointed cpos.

Theorem 4. Given a monad (T, η, μ) on CPO satisfying the conditions given in
this section, the fibred adjunction model built from p : CFam(CPO) −→ CPO and
FT � UT is a model of the equational theory extended with fixed point unfolding.

Finally, we note that the other obvious candidate cod : CPO→ −→ CPO,
even if made split [8,14], is not a SCCompC, because of [18, Theorem 10.5.5]
and:

Proposition 4. CPO is not locally Cartesian closed.

In particular, the condition that every base change functor has to have a right
adjoint fails because some of these functors do not preserve all colimits, e.g.,
given a non-empty cpo X, the pullback of the epimorphism n �→ n : N= −→ Nω

in CPO/Nω along the constant map x �→ ω : X −→ Nω is not an epimorphism.

6 Conclusions and Future Work

We addressed the problem of finding a mathematically natural combination of
dependent types and computational effects. We were motivated by: (i) the suc-
cess similar foundations have had in driving the study of computational effects
in the simply-typed setting; and (ii) the success of dependently-typed program-
ming in generating a number of concrete attempts to combine dependent types
with computational effects. Our solution is mathematically natural, combin-
ing comprehension categories, arising from the semantics of dependent types,
with adjunctions, arising from the semantics of computational effects. It is also

52 D. Ahman et al.

general, covering a variety of algebraic and non-algebraic effects, and can be
extended to accommodate general recursion. For future work, a natural next
step is to investigate operational semantics, leading towards an implementation.

We are also working on a fibred generalisation of Atkey’s parametrised
notions of computation [2], aiming at a semantic account of the effects in
Idris [5,6].

References

1. Adamek, J., Rosicky, J.: Locally Presentable and Accessible Categories. London
Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge
(1994)

2. Atkey, R.: Algebras for parameterised monads. In: Kurz, A., Lenisa, M., Tarlecki,
A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 3–17. Springer, Heidelberg (2009)

3. Benton, P.N.: A mixed linear and non-linear logic: proofs, terms and models. In:
Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933. Springer, Heidelberg
(1995)

4. Borceux, F.: Handbook of Categorical Algebra. Categories and Structures, vol. 2.
Cambridge University Press, Cambridge (1994)

5. Brady, E.: Programming and reasoning with algebraic effects and dependent types.
In: Morrisett, G., Uustalu, T. (eds.) Proceedings of 18th International Conference
on Functional Programming, ICFP 2013, pp. 133–144. ACM (2013)

6. Brady, E.: Resource-dependent algebraic effects. In: Hage, J., McCarthy, J. (eds.)
TFP 2014. LNCS, vol. 8843, pp. 18–33. Springer, Heidelberg (2015)

7. Casinghino, C., Sjöbergberg, V., Weirich, S.: Combining proofs and programs in
a dependently typed language. In: Sewell, P. (ed.) Proceedings of 41st Annual
Symposium on Principles of Programming Languages, POPL 2014, pp. 33–45.
ACM (2014)

8. Clairambault, P., Dybjer, P.: The biequivalence of locally cartesian closed cate-
gories and martin-löf type theories. In: Ong, L. (ed.) Typed Lambda Calculi and
Applications. LNCS, vol. 6690, pp. 91–106. Springer, Heidelberg (2011)

9. Egger, J., Møgelberg, R.E., Simpson, A.: The enriched effect calculus: syntax and
semantics. J. Log. Comput. 24(3), 615–654 (2014)

10. Ghani, N., Johann, P., Fumex, C.: Indexed induction and coinduction, fibrationally.
Logical Methods Comput. Sci. 9(3:6), 1–31 (2013). doi:10.2168/LMCS-9(3:6)2013

11. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.:
Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)

12. Gray, J.W.: The categorical comprehension scheme. In: Gray, J.W. (ed.) Category
Theory, Homology Theory and Their Applications III. Lecture Notes in Mathe-
matics, vol. 99, pp. 242–312. Springer, Heidelberg (1969)

13. Hancock, P., Setzer, A.: Interactive programs in dependent type theory. In: Clote,
P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 317–331. Springer,
Heidelberg (2000)

14. Hofmann, M.: On the interpretation of type theory in locally cartesian closed. In:
Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 427–441. Springer,
Heidelberg (1995)

15. Hofmann, M.: Syntax and semantics of dependent types. In: Pitts, A.M., Dybjer,
P. (eds.) Semantics and Logics of Computation, pp. 79–130. Cambridge University
Press, Cambridge (1997)

http://dx.doi.org/10.2168/LMCS-9(3:6)2013

Dependent Types and Fibred Computational Effects 53

16. Hutton, G., Meijer, E.: Monadic parsing in Haskell. J. Funct. Program. 8(4), 437–
444 (1998)

17. Hyland, M., Plotkin, G., Power, J.: Combining effects: sum and tensor. Theor.
Comput. Sci. 357(1–3), 70–99 (2006)

18. Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics, vol. 141. North Holland, Amsterdam (1999)

19. Krishnaswami, N.R., Pradic, P., Benton, N.: Integrating linear and dependent
types. In: Walker, D. (ed.) Proceedings of 42nd Annual Symposium on Principles
of Programming Languages, POPL 2015, pp. 17–30. ACM (2015)

20. Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis. Semantics
Structures in Computation, vol. 2. Springer, Heidelberg (2004)

21. Linton, F.: Coequalizers in categories of algebras. In: Eckmann, B. (ed.) Seminar
on Triples and Categorical Homology Theory. Lecture Notes in Mathematics, vol.
80, pp. 75–90. Springer, Heidelberg (1969)

22. Martin-Löf, P.: An intuitionisitc theory of types, predicative part. In: Rose, E.,
Shepherdson, J.C. (eds.) Proceedings of Logic Colloquium 1973, pp. 73–118.
North-Holland (1975)

23. McBride, C.: Functional pearl: Kleisli arrows of outrageous fortune. J. Funct. Pro-
gram. (To appear)

24. Moggi, E.: Computational lambda-calculus and monads. In: Parikh, R. (ed.) Pro-
ceedings of 4th Annual Symposium on Logic in Computer Science, LICS 1989, pp.
14–23. IEEE (1989)

25. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
26. Nanevski, A., Morrisett, G., Birkedal, L.: Hoare type theory, polymorphism and

separation. J. Funct. Program. 18(5–6), 865–911 (2008)
27. Pitts, A.M.: Categorical logic. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E.

(eds.) Handbook of Logic in Computer Science. Algebraic and Logical Structures,
vol. 5, pp. 39–128. Oxford University Press, Oxford (2000). chap. 2

28. Pitts, A.M., Matthiesen, J., Derikx, J.: A dependent type theory with abstractable
names. In: Mackie, I., Ayala-Rincon, M. (eds.) Proceedings of 9th Workshop on
Logical and Semantic Frameworks, with Applications, LSFA 2014. ENTCS, vol.
312, pp. 19–50. Elsevier (2015)

29. Plotkin, G.: Pisa notes (on domain theory) (1983)
30. Plotkin, G., Power, J.: Semantics for algebraic operations. In: Brookes, S.,

Mislove, M. (eds.) Proceedings of 17th Conference on the Mathematical Foun-
dations of Programming Semantics, MFPS XVII. ENTCS, vol. 45, pp. 332–345.
Elsevier (2001)

31. Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002)

32. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Logical Methods Comput.
Sci. 9(4:23), 1–36 (2013). doi:10.2168/LMCS-9(4:23)2013

33. Power, J.: Countable Lawvere theories and computational effects. In: Seda, A.K.,
Hurley, T., Schellekens, M., an Airchinnigh, M.M., Strong, G.(eds.) Proceedings
of 3rd Irish Conference on the Mathematical Foundations of Computer Science
and Information Technology, MFCSIT 2004. ENTCS, vol. 161, pp. 59–71. Elsevier
(2006)

34. Pretnar, M.: The Logic and Handling of Algebraic Effects. Ph.D. thesis, School of
Informatics, University of Edinburgh (2010)

http://dx.doi.org/10.2168/LMCS-9(4:23)2013

54 D. Ahman et al.

35. Staton, S.: Instances of computational effects: an algebraic perspective. In:
Kupferman, O. (ed.) Proceedings of 28th Annual Symposium on Logic in Computer
Science, LICS 2013, pp. 519–519. IEEE, June 2013

36. Streicher, T.: Semantics of Type Theory. Birkhäuser, Boston (1991)
37. Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying higher-

order programs with the Dijkstra monad. In: Flanagan, C. (ed.) Proceedings of 34th
Conference on Programming Language Design and Implementation, PLDI 2013,
pp. 387–398. ACM (2013)

38. Vákár, M.: A categorical semantics for linear logical frameworks. In: Pitts, A. (ed.)
FOSSACS 2015. LNCS, vol. 9034, pp. 102–116. Springer, Heidelberg (2015)

39. Warren, M.A.: Homotopy Theoretic Aspects of Constructive Type Theory. Ph.D.
thesis, Department of Philosophy, Carnegie Mellon University (2008)

Game Semantics for Bounded Polymorphism

James Laird(B)

Department of Computer Science, University of Bath, Bath, UK
jiml@cs.bath.ac.uk

Abstract. We describe a denotational, intensional semantics for pro-
grams with polymorphic types with bounded quantification, in which
phenomena such as inheritance between stateful objects may be rep-
resented and studied. Our model is developed from a game semantics
for unbounded polymorphism, by establishing dinaturality properties of
generic strategies, and using them to give a new construction for inter-
preting subtyping constraints and bounded quantification. We use this
construction to give a denotational semantics for a programming lan-
guage with general references and an expressive polymorphic typing sys-
tem. We show that full abstraction fails in general in this model, but
that it holds for all terms at a rich collection of bounded types.

1 Introduction

By combining subtype and parametric polymorphism, type systems with bounded
quantification increase the expressive power of both: they may be used to write
programs which are generic, but range over a constrained set of types (a program
of type ∀X ≤ S.T may be instantiated only with a subtype of S). They have been
used to develop formal theories of key aspects of object oriented languages such as
inheritance [6]. Our aim is to develop an intensional denotational semantics for
subtyping and bounded polymorphism — i.e. a formal semantic account of the
constraints on behaviour which can be expressed in such a system. This allows
for models which combine bounded polymorphism with computational effects (in
particular, state) and, potentially, for semantics-based subtyping theories which
capture aspects of program behaviour.

Previous denotational models of bounded quantification have been based on
an extensional interpretation of polymorphism — for instance by interpreting
subtyping as inclusion of partial equivalence relations [5] or as a relation between
games [8], so that bounded quantification corresponds to a product or intersec-
tion over all instances satisfying the bound. This has generated valuable insights
into the theory of subtyping and polymorphism, but it is not clear how it may
be extended to include computational effects (for example). We take an alterna-
tive, more intrinsically intensional approach by constructing an interpretation
of bounded quantification without first specifying a subtyping relation, beyond
the requirement that it gives rise to coercion morphisms between objects: we will
subsequently show how to interpret subtyping judgements as such coercions.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 55–70, 2016.
DOI: 10.1007/978-3-662-49630-5 4

56 J. Laird

Technically, our model is based on the game semantic framework for generic
call-by-name polymorphism described in [15] and reviewed and updated in Sect. 2,
which develops earlier notions of variable game [1,12] with a new interpretation
of quantification as a relation between question and answer moves. In Sect. 3, we
extend this framework by showing that context games correspond to mixed
variance functors on games, and generic strategies to (composable) dinatural
transformations between them. In Sect. 4, we use these properties to construct
an interpretation of subtyping environments and bounded quantification. The
basic idea is to represent a bounded quantification ∀X ≤ S.T (X−,X+) as an
unbounded quantification ∀X.T (S ×X,X), so that negative occurrences of type
variables may be coerced into their bounding types by right projection: defining
the composition of strategies with free, constrained variables requires precisely
the dinaturality properties established in the previous section.

In Sect. 5 we give a semantics for a stateful programming language with a
second-order typing system based on Cardelli and Wegner’s Bounded Fun [6],
and its extensively studied fragment, System F≤(“F-sub”) [7,9] (an extension
of the second-order λ-calculus, System F [11,17] with bounded quantification).
However, these are pure type theories: the language we study is (in essence)
a conservative extension of the metalanguage with general references, and its
games model, originally defined (and proposed as a semantic basis for object
oriented programs) by Abramsky, Honda and McCusker [3]. Finally, we show
that full abstraction does not hold in our model (arguably, due to an expressive
deficit in the language and typing system) but holds for a significant fragment
determined by a simple constraint on types.

2 Second Order Game Semantics

Our games model is based on a semantics of unbounded “System F - style”
polymorphism which is essentially equivalent to that defined in [13,15], with
some minor differences in the representation of games (up to these, our model of
bounded quantification is a conservative extension). Here we recall and modify
the key definitions, referring to [15] for details and proofs.

A “n-context game” as defined in [13] is a Hyland-Ong arena — a set of
moves partitioned between two players, with a binary enabling relation defining
a directed, bipartite acyclic graph — with a further partitioning of moves into
sets of questions, answers, and i-holes for i ∈ {1, . . . , n} into which other arenas
may be instantiated, and a scoped question answer/relation — a ternary relation
on moves — q �m a means a can answer q within the scope of m — such that
Player questions are scoped by Player moves and answered by Opponent moves,
and Opponent moves are scoped by Opponent moves and answered by Player
moves.

In the following, we will work within a universal set of moves in which
enabling, labelling of moves and the question/answer relation are determined
by a fixed representation — so a context arena may be specified simply by giv-
ing a set of moves within this universe (although this is not essential for our
model of bounded quantification, it facilitates some constructions).

Game Semantics for Bounded Polymorphism 57

Definition 1. Let A be the set N∪{l, r}∪{∀i | i ∈ N}. Define the universal set
of moves U to be {w •n | w ∈ A∗ ∧ n ∈ N\{0}} — i.e. a move is a word over A
followed by a terminal symbol •n for some n ≥ 1.

Say that a sequence w ∈ A∗ is positive if it contains an even number of occur-
rences of the symbol l, and negative otherwise. If w is positive, then w•i is an
Opponent move, otherwise it is a Player move. (Given X ⊆ U , X+ is the set of
Opponent moves and X− the set of Player moves in X.)

Definition 2. We define the enabling relation 	⊆ U × U : m 	 n if there exist
sequences u, v, w with v, w not containing l, such that m = u · v and n = u · lw.

This is evidently a directed, bipartite acyclic graph on U . Source nodes (Oppo-
nent moves containing no occurrence of l) are called initial moves.

Definition 3. Moves are partitioned into questions, answers, and i-holes as
follows:

– If m = v•i where v contains no occurrences of ∀i, then m is an i-hole move.
– Otherwise, m = u∀i · v•i, for some unique v which contains no occurrences of

∀i. Then m is a question if v is negative, and an answer if v is positive.

The (ternary) scoped question/answer relation on moves is defined as follows:

– q �m a if there exists t, u, v, w such that u contains no occurrences of l and
u, v, w contain no occurrences of ∀i, and m = t∀i · u, q = t∀i · v•i and a =
∀i · w•i.

Definition 4. A game is a subset A ⊆ U such that if u•i ∈ A is a hole move
then u contains no occurrences of ∀j for j ≤ i, and if u
 m ∈ A then m = u•i.

A is a n-context game if HA(i) (the set of i-hole moves in A) is empty for i > n.

2.1 Examples

Given a n-context game A and element a ∈ A, we write a.A for {am | m ∈ A}.

– We denote the empty game (the empty set of moves) by 1.
– For each i ≤ n, {•i} (or just •i) is the n-context game containing the single

(Opponent hole) move •i, corresponding to a free type variable.
– For any indexing set I ⊆ N, the disjoint union

⋃
i∈I i.A corresponds to an

indexed product or record type.
– Let A ⇒ B denote the game l.A ∪ r.B (the disjoint union of A and B, with

the initial moves of B becoming enablers for the initial moves of A, and the
moves of A switched between Player and Opponent.

– If A is a n-context game, ∀n.A is a n − 1-context game; the Opponent i-hole
moves of A become questions, scoped by the O-initial moves of A, and the
Player i-holes of A become their answers.

58 J. Laird

In this way, we can interpret an (unbounded) second-order type (in which vari-
ables and their binders are represented as occurrences of • and ∀ with de Bruijn-
style indices) directly as a game in which the moves correspond to the paths
through the syntax tree of the type from the root to a leaf node (bound or free
variable).

For example, suppose A and B are n-context games. The game ∀n+1((A ⇒
•n+1) ⇒ (B ⇒ •n+1) ⇒ •n+1) (corresponding to the System F type ∀Xn+1.(A →
Xn+1) ⇒ (B → Xn+1) → Xn+1) consists of the initial Opponent question
∀n+1rr•n+1, which enables and scopes its two (Player) answers ∀n+1rlr•n+1 and
∀n+1lr•n+1, and the moves ∀n+1ll.A and ∀n+1rll.B, of which the moves of the
form ∀n+1llm and ∀n+1rllm where m is initial in A or B respectively, are enabled
by ∀n+1rlr•n+1 and ∀n+1lr•n+1, respectively. In other words, this is the lifted sum
game [16], used to define a computational monad, and thus a call-by-value seman-
tics in [2], which we will extend with bounded polymorphism.

2.2 Legal Sequences and Strategies

Interaction in the game may be seen as alternately choosing leaf nodes of this
syntax tree, according to rules we now describe. Define the pending question
prefix of a sequence of moves t over a 0-context arena A (if any):

– pending(sq) = sq, if q is a question,
– pending(sa) = pending(s′), if a is an answer, and pending(s) = s′q.

Definition 5. A legal sequence t on A is a finite sequence of moves in A, alter-
nating between Opponent and Player moves, equipped with a unique justification
pointer from each non-initial move to a preceding move which enables it, such
that:

– If sqs′a
 t, where q is the pending question in sqs′ then there exists a move m
in s which hereditarily justifies both q and a, such that q �m a (the bracketing
condition).

t is single threaded if it contains at most one initial move, in which case any
pointers from moves enabled by (and therefore justified by) the initial move are
considered implicit.

A strategy for a 0-context game A is a non-empty, even-prefix-closed, even-
branching set of single-threaded legal sequences on A. For each n, we define a cat-
egory G(n) in which objects are n-context games and morphisms from A to B are
strategies on ∀1 . . . ∀n(A ⇒ B) (we will also write G(0) as just G). To define com-
position in G(n), we use the following generalised notion of restriction on justi-
fied sequences: given a partial function f : A → B we may derive a function on
sequences over B — f∗ : U∗ → U∗ applies f pointwise to the moves on which it
is defined, and omits moves on which it is not defined. This extends to justified
sequences: f(n) points to f(m) in f∗(s) iff f(m) and f(n) are both defined and n
points to m in s. Where f is evident from the context, we shall write s�B for f∗(s).

Game Semantics for Bounded Polymorphism 59

Let σ† be the least set of legal sequences containing σ and closed under
interleaving. The composition of σ : A → B with τ : B → C is defined:
σ; τ = {s ∈ L∀(A⇒C) | ∃t ∈ A + B + C.t�∀(A ⇒ B) ∈ σ† ∧ t�∀(B ⇒ C) ∈
τ ∧ s = t � ∀(A ⇒ C)}. The identity on A is the set of copycat sequences
{t ∈ L∀(A⇒A) | ∀s
E t.s�A+ = s�A−}.

For any n-context games A and B, A × B = 0.A ∪ 1.B is a Cartesian
product of A and B in G(n), and A ⇒ B is an internal hom (so G(n) is
a Cartesian closed category). For each n, if A is a n-context game, and B
is a n + 1 context game, there is an evident isomorphism between the are-
nas ∀n+1(A ⇒ B) and A ⇒ ∀n+1B, yielding an evident natural correspon-
dence between G(n + 1)(Jn+1(A), B) and G(n)(A,∀n+1.B) — i.e. the inclusion
Jn+1 : G(n) → G(n + 1) has ∀n+1 as its right adjoint [15].

2.3 Instantiation

Let A be a n-context game, and B and C be i-context games, with i ≤ n.
The instantiation of B and C into the (negative and positive) i-holes of A
(respectively) is defined A(B,C)i =:

A\HA(i) ∪ {w · m | w•i ∈ HA(i)− ∧ m ∈ B} ∪ {w · m | w•i ∈ HA(i)+ ∧ m ∈ C}.

This operation behaves as one would expect for a substitution1: e.g. if A = •1 ⇒
•1 ⇒ •1 then A(B,C)1 = B ⇒ B ⇒ C. Moreover, each morphism in G(n)(A,B)
corresponds to a generic family of morphisms from A(C,C) to B(C,C) for each
n-context game C. These are defined (as in [15]) using the notion of instantiation
of a game into strategy by playing copycat between the arenas plugged into
the holes. Suppose t is a legal sequence on ∀(A(C,C)i ⇒ B(C,C)i), such that
t�∀(A ⇒ B) is a legal sequence, and sa
 t�∀(A ⇒ B), where a = v•i is a Player
answer in ∀(A ⇒ B) corresponding to a i-hole move in A ⇒ B. As t is well
bracketed, pending(s) = s′q where q = u•i is an Opponent question in ∀(A ⇒ B)
corresponding to an i-hole move in A ⇒ B. So we may define t�(pending(s), sa)
to be the projection of t onto ∀(C ⇒ C) of moves which are suffixes of u and v
(and hereditarily justified by q and a, respectively).

Definition 6. Given a strategy σ : A → B, let σ[C]i : A(C,C)i → B(C,C)i

be the set of sequences t ∈ L∀(A(C,C)i⇒B(C,C)i) such that t�∀(A ⇒ B) ∈ σ and if
sa
E t, where a is a Player i-hole move in A ⇒ B, then t�(pending(s), sa)) ∈ idC .

As shown in [15], the G(n) may be organised as an indexed cartesian closed
category of context games, in which the Jn and ∀i form an indexed adjunction.
Here we note the following result from loc. cit..

Lemma 1. [C]i is an endofunctor on G(n), such that [C]i · [D]i = [B(C,C)i]i.

1 The condition that i-hole moves contain no occurrence of ∀j for j ≤ i prevents
“capture” of the holes.

60 J. Laird

3 Generic Strategies as Dinatural Transformations

In addition to the structure defined in [15], instantiation also acts on strategies as
a (mixed variance) functor (which we will require in order to define our semantics
of bounded quantification) in the following sense:

Definition 7. Given an Opponent hole w•i ∈ H+
A (i), let pw•i

be the partial
projection on moves sending ∀lw ·n to ∀ln and ∀rw ·n to ∀rn, so that it projects
a move in ∀(A(B,C)i ⇒ A(B′, C ′)i) into ∀(C ⇒ C ′). If m ∈ H−

A (i) is a
Player hole move, then let pm be the corresponding projection from ∀(A(B,C)i ⇒
A(B′, C ′)i) into ∀(B′ ⇒ B).

Now, given morphisms σ : B′ → B, τ : C → C ′ in G(n), we may
define A(σ, τ)i : A(B,C) → A(B′, C ′) to be the set of even-length sequences
t ∈ L∀(A(B,C)⇒A(B′,C′)) such that for all even prefixes s
 t, s�∀(A ⇒ A) ∈ idA

and for any hole move m ∈ H+
i (A), p∗

m(s) ∈ σ† and for any m ∈ H−
n (A),

p∗
m(s) ∈ τ †.

Proposition 1. For any n-context game A, A(,)i is a functor from G(n)op ×
G(n) to G(n).

One might hope that for any generic n-context strategy σ : A → B, the family
{σ[C] : A(C,C)i → B(C,C)i} is a dinatural transformation [4] from A(,)i

to B(,)i — i.e. that for any morphism τ : C → D, the following diagram
commutes:

A(C,C)
σ[C] �� B(C,C)

D(C,τ)

�����
��

A(D,C)

A(τ,C) �������

A(C,τ)

�����
��

B(C,D)

A(D,D)
σ[D] �� B(D,D)

A(τ,D) �������

However, this is not the case:

Proposition 2. σ[]i is not a dinatural transformation from A(,)i to B(,)i

in general.

Proof. Take, for example, A = ∀1(•1 ⇒ •1), B = •1 ⇒ •1 and σ : ∀1(•1 ⇒ •1) →
(•1 → •1) to be the counit of the adjunction J1 � ∀1 (i.e. the copycat strategy
between A and B). At any game, ⊥ is the strategy containing only the empty
sequence. Then A(⊥, 1);σ[1];B(1,⊥) = ⊥, but A(•1,⊥);σ[•1];B(⊥, •i) �= ⊥ (it
contains a response to the initial move).

The generic strategies (in Hughes’ model of System F) which do correspond
to dinatural transaformations are characterized in [10], to which we refer for
further discussion. Here we take an alternative approach by showing that σ[]i
is dinatural with respect to a subcategory of linear morphisms.

Game Semantics for Bounded Polymorphism 61

Definition 8. A morphism σ : A → B is linear if for every initial move m in
B there is an initial move m′ in A such that msm′ ∈ σ if and only if s = ε (so
every non-empty sequence s ∈ σ contains exactly one initial move from A).

It is easy to see that the composition of linear morphisms is linear, and so for
each n we may form a subcategory GL(n) of G(n) consisting of n-context games
and linear morphisms, with an inclusion JL : GL(n) → G(n). Note that × is a
cartesian product in GL(n).

Proposition 3. σ[]i is a dinatural transformation from A · JL to B · JL.

In other words, for any linear morphism τ : C → D the dinaturality hexagon
does commute. We prove this by defining the instantiation of τ directly into σ, i.e.
σ[τ]i : A(B,B)i → D(C,C)i by replacing the identity on B with τ in Definition 6
and showing that A(C, τ)i;σ[C]i;D(τ, C)i and A(τ,B)i;σ[B]i;D(B, τ)i are both
equal to σ[τ]i. Although the composition of dinatural transformations is not, in
general, dinatural [4], by Proposition 1, those which arise by instantiation of
generic strategies do compose.

4 Semantics of Bounded Quantification

We may now use the functors and dinatural transformations derived from instan-
tiation to represent bounded quantification. A subtyping constraint of the form
Xi ≤ T , where Xi is a type variable, corresponds to the ability to subsume any
term of type Xi into the type T . Thus, in an environment where such a constraint
holds, negative occurences of Xi may be represented as the game [[T]] × •i, from
which there is a canonical coercion (left projection) into [[T]]. On the other hand,
positive occurrences of Xi are simply represented as •i (we can’t, for example,
decompose Xi into the bound T and an “unknown” extension). The difficulty is
to define a notion of composition between morphisms by “unifying” this differ-
ent treatment of positive and negative occurrences2. The key to doing so is the
following operation:

Definition 9. Let A be an n − 1-context game. Given σ : B(•n, A × •n)n →
C(A × •n, •n)n, define σ̂ : B(A × •n, A × •n)n → C(A × •n, A × •n)n as follows:
(δ : A → A × A = 〈A,A〉).

B(A × •n, A × •n)n
B(A×•n,δ×•n)n−→ B(A × •n, A × A × •n)n

σ[A×•n]n−→
C(A × A × •n, A × •n)n

C(δ×•n,A×•n)n−→ C(A × •n, A × •n)n

We illustrate by describing a setting corresponding to an environment containing
a single constrained type variable. Given a n−1-context game A, we may define
a category GA in which objects are n-context games and morphisms from B to C

2 Representing negative and positive occurrences of Xi as A × •i leads to a simple
interpretation of composition, but to the failure of bounded universal quantification
to be antitone in type bounds — i.e. we get a model of “kernel F≤” [6].

62 J. Laird

are the morphisms from B(•n, A×•n) to C(A×•n, •n) in G. The composition of
σ ∈ GA(B,C) with τ ∈ GA(C,D) is the composition of B(πr, A×•); σ̂ : B(•n, A×
•n) → C(A×•n, A×•n) with τ̂ ;D(A×•n, πr) : C(A×•n, A×•n) → D(A×•n, •n)
in G. The identity on B in GA is B(πr, πr).

Lemma 2. The operation (̂) satisfies the following properties:

1. ̂B(πr, πr) = B(A × •, A × •).
2. For σ : B(•, A × •) → C(A × •, •), σ = B(πr, A × •); σ̂;C(A × •, πr).
3. For τ : C(•, A × •) → D(A × •, •), σ̂; τ̂ = ̂B(πr, A × •); σ̂; τ̂ ;D(A × •, πr).

Proposition 4. GA is a well-defined category.

Proof. That B(πr, πr) is an identity follows from Lemma 2 (1). For associativity
of composition, suppose ρ ∈ GA(B,C), σ ∈ GA(C,D) and τ ∈ GA(D,E). Then
(ρ;σ); τ = B(πr, A × •); ̂B(πr, A × •); ρ̂; σ̂;C(A × •, πr); τ̂ ;D(πr, A × •, πr). By
Lemma 2 (3), this is equal to B(πr, A × •); ρ̂; σ̂; τ̂ ;E(πr, A × •, πr), which is
similarly equal to ρ; (σ; τ).

We also have operations on GA corresponding to bounded quantification and
instantiation: let ∀AC = ∀.C(A × •, •). Then for any 0-context game B, there is
an evident isomorphism of arenas between ∀(B ⇒ C(A × •, •)) and D ⇒ ∀AC
yielding:

Proposition 5. The inclusion JA : G → GA is left adjoint to ∀A : GA → G.
Definition 10. Given a 0-context arena D, and a linear morphism c : D → A,
representing a coercion of D into A, we define the bounded instantiation functor
sending σ : B → C to σ{c,D} : B(D,D) → C(D,D):

B(D,D)
B(D,〈c,D〉)−→ B(D,A × D)

σ[D]−→ C(D × A,D)
C(〈c,D〉,D)−→ C(D,D)

Proposition 6. {c,D} is a (Cartesian closed) functor from GA to G.
We iterate these constructions to define categories of context games for rep-

resenting types with multiple bounded free variables.

Definition 11. A bounding sequence of context games A1, . . . , An is one in
which each Ai is a i−1-context game. Given such a sequence, we define categories
G(n)A1,...,Ai

(and its subcategory G(n)L
A1,...,Ai

) for each i ≤ n, in which objects
are n-context games and:

– G(n)ε = G(n).
– In G(n)A1,...,Ai+1 , morphisms from B to C are the morphisms from

B(•i, Ai+1 × •i+1)i+1 to C(Ai+1 × •i+1, •i+1) in G(n)A1,...,Ai
, with the com-

position of σ : B → C with τ : C → D defined to be the composition of
B(πr, Ai+1 × •i+1)i+1; σ̂i with τ̂i;C(Ai+1 × •i, πr) in G(n)A1,...,Ai

. The iden-
tity on B is B(πr, πr)1, . . . , (πr, πr)i+1.

Game Semantics for Bounded Polymorphism 63

Proof (by induction) that each GA1,...,Ai
is a (Cartesian closed) category follows

the proof of Proposition 4 above. For any bounding sequence A1, . . . , An, B we
have a right adjoint ∀B

n+1 : to the inclusion functor JB
n+1 : G(n)A1,...,An

→
G(n + 1)A1,...,An,B .

Definition 12. For any i < n, i-context game C and c ∈ G(n)L
A1,...,Ai−1

(C,Ai),
the instantiation functor {c, C}i from G(n)A1,...,Ai

to G(n)A1,...,Ai−1 sends D to
D(C,C)n+1 and σ : D → E to D(C, 〈c, C〉)i;σ[C]i;E(〈c, C〉, C)i. This lifts to
a functor from G(n + 1)A1,...,An

to G(n)A1,...,Ai−1,Ai+1(Ai,Ai),...,Aj(Ai,Ai) for each
n ≥ j > i, since e.g. D(Aj × •j , •j)(C,C)i = D(C,C)i(Aj(C,C)i × •j , •j)

Instantiation preserves cartesian closed structure, and also commutes with the
second-order structure, in the following sense:

Proposition 7. {c, C}i · ∀A
j = ∀A(C,C)

j · {c, C}i.

5 A Stateful Language with Bounded Quantification

So far, we have described subtyping constraints on variables, and bounded quan-
tification, without explicitly defining or discussing the semantics of the subtyp-
ing relation on games, beyond the assumption that it yields a coercing linear
morphism from a subtype to its supertype. In this sense, our semantics is some-
what independent of any particular notion of subtyping, which can be supplied
either intensionally, by a formal system of derivations for subtyping judgments
with their interpretation as coercing morphisms, or extensionally, arising from
a relation on objects in our category with a corresponding notion of coercion
(for example, Chroboczek’s notion of subtyping for games [8]). Taking the for-
mer approach, our interpretation of subtyping constraints, bounded quantifi-
cation and instantiation is sufficient to model typing systems such as Cardelli
and Wegner’s Fun [6] or System F≤[7]. However, since we also wish to describe
the behaviour of (possibly side effecting) programs in this context, we define a
stateful, call-by-value metalanguage, L≤ , with such a typing system. (The main
difference with respect to F≤as a typing system is the inclusion of explicit object
(i.e. record) types: although record types can be encoded in F≤, the semantics
of this encoding in our model is not faithful to the direct interpretation of such
types as products).

In essence, L≤ and its model are an extension with subtyping and bounded
quantification of the metalanguage with general references, L, defined with its
games model by Abramsky, Honda and McCusker [3] (from which there is a
simple translation into L≤). Raw types of L≤ are generated by the grammar:

S ::= unit | nat | S → O | ∀X ≤ O.O O ::= X | [l1 : S1, . . . , ln : Sn]

(where the li are drawn from an unbounded collection of labels). Type variables
are restricted to range over the (concrete and variable) object types O, which are
assigned to records containing (possibly side-effecting) methods typed according

64 J. Laird

to the values they may return. We can wrap any method type S in an object
type [S] with a single field, for which we omit the label (corresponding to the
lifting operation of the computational λ-calculus), and “thunk” an object type
O as the method type O = unit → O. Judgments Σ 	 T (T is a well-formed
type with free variables in Σ) are derived via the rules:

Table 1. Subtyping judgments for L≤

Table 2. Typing judgments for L≤

A subtyping context is a sequence of subtyping assumptions X1 ≤ O1, . . . , Xn ≤
On such that X1, . . . , Xi−1 	 Oi for each 1 ≤ i ≤ n. |X1 ≤ O1, . . . , Xn ≤ On| is
the sequence X1, . . . , Xn. Subtyping judgments Θ 	 T ≤ T ′ — where Θ = X1 ≤
O1, . . . , Xn ≤ On is a subtyping context and |Θ| 	 T and |Θ| 	 T ′ — are derived
according to the rules in Table 1. Note that there is a ≤-greatest object type —
the record type with no labels, for which we will write �. So (as in F≤) we can
represent unbounded quantification ∀X.O as ∀X ≤ �.O. There is no greatest
method type, however. Nor do we capture inclusion of values in the subtyping
relation, but leave it as a possible extension. The point is that the distinction
between subtyping as inclusion of values, versus extension of records, which is
blurred in the pure type theory F≤, becomes necessarily more significant in a
setting with side effects. We define the type var[S] of variables storing values of
type S to be the object type with two methods, [get : S, set : S → [unit]].

Game Semantics for Bounded Polymorphism 65

Typing judgments Θ;Γ 	 M : T — where Θ is a subtyping context, Γ is a
sequence of typing assumptions x1 : S1, . . . , xn : Sn and T is a type such that
|Θ| 	 S1, . . . , Sn, T — are derived according to the rules in Table 2 extended with
constants for arithmetic, conditional branching (If0S : nat → [S → [S → [S]]])
and reference declaration (newS : var[S]).

The operational semantics of L≤ is based on that given for L in [3]. We extend
the language with an unbounded set of constants a, b, . . . representing location
names, and define the values of this extended language by the grammar:

V ::= n | a | a.set | {l1 = M1, . . . , ln = Mn} | λx.M | ΛX.M

An environment E is a pair of a set of location names, and a partial function
from this to the set of values. The evaluation relation ⇓ between pairs (M,S) of
a closed term and environment and (V,S ′) of a value and environment is defined
in Table 3.

Table 3. Operational semantics for L≤

5.1 Denotational Semantics

The denotational semantics of L≤ extends the games interpretation of references
[3] with our model of bounded quantification. We define the denotations of types
and the subtyping relation first.

Following [2,3], we will interpret method types as indexed families of games.
That is, we interpret types with n free variables in the category Fam(G(n))

66 J. Laird

(the coproduct completion of G(n)) in which objects are set-indexed families of
objects of G(n), and morphisms from {Ai | i ∈ I} to {Bj | j ∈ J} are pairs
(f : I → J, {σi : Ai → Af(i) | i ∈ I} of a reindexing function and an indexed
family of morphisms from G(n)). Fam(G(n)) is Cartesian closed and has (small)
coproducts [2]. Defining Σ{Ai | i ∈ I} = ∀n+1(Πi∈IJn+1(Ai) ⇒ •n+1) ⇒ •n+1

(as already observed in Sect. 2, this is concretely the same as the “lifted sum”
construction used to interpret L in [3]) we have [15]:

Proposition 8. Inclusion of GL(n) in Fam(G(n)) is right adjoint to Σ .

This yields a strong monad on Fam(G(n)}. Object types are interpreted as
objects of G(n) and method types as objects of Fam(G(n)), as follows:

[[nat]]n = {1 | i ∈ N} [[unit]] = {1}
[[[l1 : S1, . . . , lm : Sm]]]n = Πi≤mΣ[[Si]]n [[S → O]]n = [[S]]n ⇒ {[[O]]n}
[[Xi]]n = •i [[∀Xn+1 ≤ O.P]]n = ∀[[O]]

n [[P]]n+1

Subtyping contexts X1 ≤ O1, . . . , Xn ≤ On are interpreted as the corresponding
bounding sequences [[O1]]0, . . . , [[On]]n−1, and subtyping judgments Θ 	 T ≤ T ′

are interpreted as linear coercing morphisms from T to T ′ in Fam(GL
[[Θ]]). The

key point here is that while Θ 	 T ≤ T ′ may have multiple derivations, they all
correspond to the same morphism.

Table 4. Denotational semantics of subyping judgments

Proposition 9. For any derivable subtyping judgment Θ 	 T ≤ T ′, there is a
unique morphism [[Θ 	 T ≤ T ′]] satisfying the rules in Table 4.

Proof. We define a notion of canonical derivation for subtyping judgments by
replacing the transitivity and reflexivity rules with:

Θ	X≤X
Θ,X≤O,Θ′	O≤O′
Θ,X≤O	X≤O′

(This is essentially Curien and Ghelli’s deterministic system for deriving subtyp-
ing judgments for F≤ [9].) We then prove that every derivation is denotationally
equivalent to a canonical derivation.

5.2 Semantics of Terms

Terms in context are interpreted as morphisms in Fam(G[[Θ]]) — terms of method
type Θ;Γ 	 M : S denote morphisms from [[Γ]] to Σ[[S]], and terms Θ;Γ 	 M : O

Game Semantics for Bounded Polymorphism 67

of object type denote morphisms from [[Γ]] to [[O]]. The operations of L are
interpreted as in the computational λ-calculus, and the constant new as the
reference cell strategy defined in [3], while subsumption, universal quantification
and instantiation are interpreted as follows:

[[Θ;Γ 	 M : O′]] = [[Θ;Γ 	 M : O]]; [[Θ 	 O ≤ O′]]
[[Θ;Γ 	 M : ∀X ≤ O.P]] = ∀[[O]]Θ

[[Θ,X ≤ O;Γ 	 M : P]]
[[Θ;Γ 	 M{O′} : P [O′/X]]] = [[Θ;Γ 	 M : ∀X ≤ O.P]]{[[Θ 	 O′ ≤ O]], [[O′]]|Θ|}

As in the semantics of subtyping judgments, these rules show how to interpret
each derivation of a typing judgment as a morphism. We need to show that any
derivation for a given term in context yields the same denotation.

Proposition 10. For any derivable typing judgment Θ;Γ 	 M : T , there is a
unique morphism [[Θ;Γ 	 M : T]].

Proof. This follows the proof in [5]. Use of the subsumption rule generates multi-
ple derivations of the same typing judgment, which are shown to be equivalent by
extending the language with a constant convert : ∀X.[∀Y ≤ X.Y → X] (denoting
the corresponding coercion), and replacing all uses of the subsumption rule with
explicit coercions using convert. Using the (di)naturality properties of convert,
we show that any two terms which correspond to the same term of L≤ obtained
by erasing all occurrences of convert have the same denotation.

We prove soundness of the operational rules using the properties of the com-
putational λ-calculus, the equations relating the cell strategy to declaration,
assignment and derefering in L [3] together with the properties of our semantics
of bounded quantification (i.e. β-reduction for type-instantiation, which follows
from Proposition 7).

Proposition 11. If M, ⇓ V ;S then [[M]] �= ⊥.

We prove computational adequacy using the approach described in [15]: defining
an approximating semantics in which each cell can be accessed a bounded number
of times, for which adequacy follows from the soundness of the operational rules
by induction; this implies adequacy for the unbounded semantics by continuity.

Proposition 12 (Computational Adequacy). [[M]] �= ⊥ implies M ⇓.
Let �T be the observational preorder at on closed terms of (closed) type T
induced by the operational semantics — i.e. M �T N if and only if for all
contexts C[: T], C[M] ⇓ implies C[N] ⇓. (Note that if S ≤ T , terms may be
observationally equivalent at type T but not at type S.) By a standard argument
from adequacy:

Corollary 1. If [[M : T]] ⊆ [[N : T]] then M �T N .

68 J. Laird

6 Full Abstraction

We now consider how closely our model reflects the observational preorder and
equivalence. First, we give a full abstraction result for a type-restricted fragment
of the language. Define the concretely bounded types by the following grammar:

S :: B | S → O | ∀X ≤ [l1 : S1, . . . , ln : Sn].O O ::= X | [l1 : S, . . . , ln : S]

That is, we require that quantification bounds are not type variables. This is a
significant constraint — it prevents the inheritance between variable types from
being represented directly as a subtyping assumption — but leaves an expressive
typing system.

Proof that every finite strategy over a concretely bounded type is definable as
a term closely follows the decomposition argument given in [15] for unbounded
polymorphism (System F) with general references. The reason for the restriction
on types is that we can eliminate negatively occuring concretely bounded quan-
tifiers by instantiating them with a type which extends their bound with a single
method of type unit — i.e. given a strategy σ : [[∀X ≤ [l1 : T1, . . . , ln : Tn].O]] →
[[T]], we can find a strategy σ′ : [[[O[l1 : T1, . . . , ln : Tn, l′ : unit]/X]]] → [[T]] such
that if σ′ is the denotation of a term x : [O[[l1 : T1, . . . , ln : Tn, l′ : unit]/X]] 	
M : T , then σ is the denotation of y : ∀X ≤ [l1 : T1, . . . , ln : Tn] 	 M [y{[l1 :
T1, . . . , ln : Tn, l′ : unit]/x]. Using this property, in conjunction with the decom-
position argument given in [15], we may show that:

Proposition 13. For any concretely bounded type T , context Γ and subtyping
context Θ, each finite strategy σ : [[Γ]]Θ → [[T]]Θ is the denotation of a term
Θ;Γ 	 M : T .

This is sufficient to establish full abstraction at concretely bounded types, follow-
ing the argument from finite definability in [3]. For any strategy σ, let comp(σ)
be the complete plays (sequences with no unanswered questions) of σ.

Theorem 1. For any terms M,N : T , where T is a concretely bounded type,
M �T N if and only if comp([[M]]) ⊆ comp([[N]]).

Finally, we give a counterexample showing that full abstraction does not hold at
all types. Consider the strategy consisting of prefixes of the sequence:

∀

1 (∀•1

2 .Σ (•2 ⇒ •2)) ⇒ Σ1)
OQ

PQ
OA

PQ
OA

PA

This strategy is not the denotation of any term X ≤ �;x : S 	 M : [unit], where
S(X) = ∀Y ≤ X.[Y → Y]. Informally, if M calls x then it must instantiate it
with a subtype of X — in the absence of further subtyping assumptions this

Game Semantics for Bounded Polymorphism 69

must be X itself, giving an object of type [X → X]. But M cannot use such a
method, as X is unbounded and does not occur anywhere else among its types.
Formally, we observe that:

Lemma 3. For any term x : S 	 M : O, where X does not occur in Γ,O
[[Γ, x : S 	 M : O]] = [[Γ, x : S 	 M [ΛY.[⊥]/x] : O]]

From this we may derive a counterexample to full abstraction. Let T = ∀X ≤
�.[(S → [unit]) → [unit]] and consider the terms M = λfT .f{�}ΛY.[⊥] and
N = λfT .f{�}ΛY.[λyY .(y ())] of type T . Evidently, M �T N , moreover the
inclusion of [[M]] in [[N]] in the games model at this type is strict — they are
separated by playing against the strategy defined above.

Proposition 14. M1 and M2 are observationally equivalent at T → [unit].

Proof. It is sufficient to show that for any term V = ΛX.λx.M : T , V {�}
ΛY.λyY .y is equivalent to V {�}ΛY.λyY .⊥. This follows from Lemma 3, since M
is (denotationally and thus observationally) equivalent to M [ΛY.[⊥]/x].

Arguably, this example shows up an expressive deficit in L≤ (and similar type
theories for bounded quantification such as F≤): it does not allow the extension
of a variable type X with further methods to create a new subtype of X —
in the absence of further assumptions, the only subtype of X is X itself, even
though X represents an object which could be extended with new fields.

7 Further Directions

Avenues for further research include:

– Our model for bounded quantification has some quite general aspects, being
based on a model of unbounded quantification in which morphisms corre-
spond to composable dinatural transformations. A systematic account of this
construction, and its coherence properties remains to be given.

– L≤ could be seen as a more general system with polymorphism at value
(method) types, extending the unbounded case [14]. Subtyping for such
types is based on inclusion of their values, sucggesting that quantifiecation
is bounded below (e.g. by the empty type).

– Extension of the full abstraction result to all types, by allowing the extension
of a variable type with further methods. This would appear to require the
capacity to declare new method labels, suggesting a role for nominal games.

– An open problem is to give a directly defined subtyping relation on games
which captures all subtyping judgments of L≤ (or F≤itself). This appears fea-
sible, notwithstanding the undecidability of subtyping in F≤(which extends
readily to L≤), since such a relation need not precisely coincide with subtyp-
ing in F≤— for example, the types � and S ⇒ � are syntactically distinct,
but semantically equivalent.

Acknowledgements. Research supported by EPSRC grant EP/K037633/1.

70 J. Laird

References

1. Abramsky, S., Jagadeesan, R.: A game semantics for generic polymorphism. Ann.
Pure Appl. Logic 133(1), 3–37 (2004)

2. Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M., Thomas, W.
(eds.) CSL 1997. LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998)

3. Abramsky, S., Honda, K., McCusker, G.: A fully abstract games semantics for
general references. In: Proceedings of the 13th Annual Symposium on Logic in
Computer Science, LICS 1998, IEEE Press (1998)

4. Bainbridge, E.S., Freyd, P.J., Scedrov, A., Scott, P.J.: Functorial polymorphism.
Theor. Comput. Sci. 70(1), 35–64 (1990)

5. Bruce, K., Longo, G.: A modest model of records, inheritance and bounded quan-
tification. Inf. Comput. 87(1/2), 196–240 (1990)

6. Cardelli, L., Wegner, P.: On understanding types, data abstraction and polymor-
phism. Comput. Surv. 17(4), 471–522 (1985)

7. Cardelli, L., Mitchell, J.C., Martini, S., Scedrov, A.: An extension of System F
with subtyping. Inf. Comput. 109(1–2), 4–56 (1994)

8. Chroboczek, J.: Game semantics and subtyping. In: Proceedings of the Fifteenth
Annual Symposium on Logic in Computer Science, pp. 192–203. IEEE press (2000)

9. Curien, P.-L., Ghelli, G.: Coherence of subsumption, minimum typing and type-
checking in F. Math. Struct. Comput. Sci. 2(1), 55–91 (1992)

10. de Lataillade, J.: Dinatural terms in System F. In: Proceedings of the 24th Annual
Symposium on Logic in Computer Science, LICS 2009, IEEE Press (2009)

11. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
12. Hughes, D.: Games and definability for System F. In: Proceedings of the Twelfth

International Syposium on Logic in Computer Science, LICS 1997, IEEE Computer
Society Press (1997)

13. Laird, J.: Game semantics for a polymorphic programming language. In: Proceed-
ings of LICS 2010, IEEE Press (2010)

14. Laird, J.: Game semantics for call-by-value polymorphism. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 187–198. Springer, Heidelberg (2010)

15. Laird, J.: Game semantics for a polymorphic programming language. J. ACM 60(4)
(2013)

16. McCusker, G.: Games and full abstraction for a functional metalanguage with
recursive types. Ph.D. thesis, Imperial College London, Published by Cambridge
University Press (1996)

17. Reynolds, J.C.: Towards a theory of type structure. In: Robinet, B. (ed.) Pro-
gramming Symposium. Lecture Notes in Computer Science, vol. 19, pp. 408–425.
Springer, Heidelberg (1974)

Recursion and Fixed-Points

Join Inverse Categories as Models of Reversible
Recursion

Holger Bock Axelsen and Robin Kaarsgaard(B)

DIKU, Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark

{funkstar,robin}@di.ku.dk

Abstract. Recently, a number of reversible functional programming
languages have been proposed. Common to several of these is the assump-
tion of totality, a property that is not necessarily desirable, and certainly
not required in order to guarantee reversibility. In a categorical setting,
however, faithfully capturing partiality requires handling it as additional
structure. Recently, Giles studied inverse categories as a model of par-
tial reversible (functional) programming. In this paper, we show how
additionally assuming the existence of countable joins on such inverse
categories leads to a number of properties that are desirable when mod-
elling reversible functional programming, notably morphism schemes for
reversible recursion, a †-trace, and algebraic ω-compactness. This gives
a categorical account of reversible recursion, and, for the latter, provides
an answer to the problem posed by Giles regarding the formulation of
recursive data types at the inverse category level.

1 Introduction

Reversible computing, that is, the study of computations that exhibit both for-
ward and backward determinism, originally grew out of the thermodynamics
of computation. Landauer’s principle states that computations performed by
some physical system (thermodynamically) dissipate heat when information is
erased, but that no dissipation is entailed by information-preserving compu-
tations [28]. This has motivated a long study of diverse reversible computa-
tion models, such as logic circuits [15], Turing machines [4,6], and many forms
of restricted automata models [27,31]. Reversibility concepts are important in
quantum computing, but are increasingly seen to be of interest in other areas as
well, including high-performance computing [33], process calculi [13], and even
robotics [34,35].

In this paper we concern ourselves with the categorical underpinnings of func-
tional reversible programming languages. At the programming language level,
reversible languages exhibit interesting program properties, such as easy pro-
gram inversion [40]. Now, most reversible languages are stateful, giving them a
fairly straightforward semantics interpretation. While functional programs are
usually easier to reason about at the meta-level, they do not have the concept of
state that imperative languages do, making their semantics interesting objects
of study.
c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 73–90, 2016.
DOI: 10.1007/978-3-662-49630-5 5

74 H.B. Axelsen and R. Kaarsgaard

Further, many reversible functional programming languages (such as
Theseus [25] and the Π-family of combinator calculi [7]) come equipped with a
tacit assumption of totality, a property that is neither required [4] nor necessar-
ily desirable as far as guaranteeing reversibility is concerned. Shedding ourselves
of the “tyranny of totality,” however, requires us to handle partiality explicitly
as additional categorical structure.

One approach which does precisely that is inverse categories, as studied
by Cockett & Lack [9] as a specialization of restriction categories, which have
recently been suggested and developed by Giles [16] as models of reversible (func-
tional) programming. In this paper, we will argue that assuming ever slightly
more structure on these inverse categories, namely the presence of countable
joins of parallel morphisms [17], gives rise to a number of additional properties
useful for modelling reversible functional programming, notably two different
notions of reversible recursion, and an account of recursive data types (via alge-
braic ω-compactness with respect to structure-preserving functors), which are
not present in the general case. This is done by adopting two different, but
complementary, views on inverse categories with countable joins as enriched cat-
egories – as CPO-categories, and as (specifically ΣMon-enriched) strong unique
decomposition categories [18,23].

Overview. The necessary background on restriction and inverse categories is pre-
sented in Sect. 2. In Sect. 3 we show that inverse categories with countable joins
are CPO-enriched, which allows us to demonstrate the existence of (reversible!)
fixed points of both morphism schemes and structure-preserving functors. In
Sect. 4 we show that inverse categories with countable joins and a join-preserving
disjointness tensor are unique decomposition categories equipped with a uniform
†-trace. Sect. 5 gives conclusions and directions for future work.

2 Background

This section gives an introduction to restriction and inverse categories (with
joins), dagger categories, and categories of partial maps as they will be used in
the remainder of this text. Unless otherwise stated, the material described in
this section can be found in standard texts on restriction and inverse category
theory (e.g., Cockett & Lack [9–11], Giles [16], Guo [17]).

We begin by recalling the definition of restriction structures and restriction
categories.

Definition 1 (Cockett & Lack, 2002). A restriction structure on a category
consists of an operator (·) on morphisms mapping each morphism f : A → B to
a morphism f : A → A (the restriction idempotent of f) such that

(i) f ◦ f = f for all morphisms f : A → B,
(ii) f ◦ g = g ◦ f whenever dom(f) = dom(g),
(iii) f ◦ g = f ◦ g whenever dom(f) = dom(g), and
(iv) h ◦ f = h ◦ f ◦ f whenever cod(f) = dom(h).

A category with a restriction structure is called a restriction category.

Join Inverse Categories as Models of Reversible Recursion 75

As a trivial example, any category can be equipped with a restriction struc-
ture given by setting f = 1A for every morphism f : A → B. However, there
are also many useful and nontrivial examples of restriction categories (see, e.g.,
Cockett & Lack [9, Sect. 2.1.3]), the canonical one being the category Pfn of sets
and partial functions. In this category, the restriction idempotent f : A → A for
a partial function f : A → B is given by the partial identity function

f(x) =
{

x if f is defined at x,
undefined otherwise.

Since we take restrictions as additional structure, we naturally want a notion of
functors that preserve this structure.

Definition 2. A functor F : C → D between restriction categories C and D is
a restriction functor if F (f) = F (f) for all morphisms f of C .

A morphism f : A → B of a restriction category is said to be total if f = 1A.
Given a restriction category C , we can form the category Total(C), consisting of
all objects and only the total morphisms of C , which embeds in C via a faithful
restriction functor. Further, a restriction category in which every restriction
idempotent splits is called a split restriction category, and, by way of the Karoubi
envelope, every restriction category C can be embedded in a split restriction
category Split(C) via a fully faithful restriction functor. Restriction categories
with restriction functors form a category, rCat.

A useful feature of restriction categories, and one we will exploit throughout
this article, is that hom-sets can be equipped with a partial order (often called
the natural partial order), defined as follows:

Proposition 1. In a restriction category C , every hom-set HomC (A,B) can be
equipped with the structure of a partial order where we let f ≤ g iff g ◦ f = f .
Further, every restriction functor F is locally monotone on this order, in the
sense that f ≤ g implies F (f) ≤ F (g).

In Pfn, this corresponds to the usual partial order on partial functions: For
f, g : A → B, f ≤ g if, for all x ∈ A, f is defined at x implies that g is defined
at x and f(x) = g(x).

A natural question to ask is when this partial order has a least element: A
sufficient condition for this is when the restriction category has a restriction zero.

Definition 3. A restriction category C has a restriction zero object 0 iff for all
objects A and B, there exists a unique morphism 0A,B : A → B that factors
through 0 and satisfies 0A,A = 0A,A.

If such a restriction zero object exists, it is unique up to (total) isomorphism.
When a given restriction category has such a restriction zero, the zero map
0A,B : A → B is precisely the least element of HomC (A,B).

Moving on to inverse categories, in order to define these we first need the
notion of a partial isomorphism:

76 H.B. Axelsen and R. Kaarsgaard

Definition 4. In a restriction category C , we say that a morphism f : A → B
is a partial isomorphism if there exists a unique morphism f◦ : B → A of C
(the partial inverse of f) such that f◦ ◦ f = f and f ◦ f◦ = f◦.

Definition 5. A restriction category C is said to be an inverse category if all
morphisms of C are partial isomorphisms.

In this manner, if we accept an intuition of restriction categories as “cate-
gories with partiality,” inverse categories are “groupoids with partiality” – and,
indeed, the category PInj of sets and partial injective functions is the canoni-
cal example of an inverse category. In fact, the Wagner-Preston representation
theorem (see, e.g., Lawson [29]) for inverse monoids can be extended to show
that every locally small inverse category can be faithfully embedded in PInj (see
Heunen [21] for the general case, or Cockett & Lack [9] for the special case of
small categories).

The analogy with groupoids goes even further; similar to how we can con-
struct a groupoid Core(C) by taking only the isomorphisms of C , every restric-
tion category C has a subcategory Inv(C) that is an inverse category, and has as
morphisms only the partial isomorphisms of C . Inverse categories with restric-
tion functors form a category, invCat.

More generally, inverse categories are dagger categories (sometimes also called
categories with involution):

Definition 6. A category C is said to be a dagger category if it is equipped with
a contravariant endofunctor (−)† : C → C op such that 1†

A = 1A for all objects
A, and f†† = f for all morphisms f .

Proposition 2. Every inverse category C is a dagger category with the dagger
functor given by A† = A on objects, and f† = f◦ on morphisms.

As is conventional, we will call f† the adjoint of f , and say that f is self-
adjoint if f = f†, and unitary if f† = f−1. In inverse categories, unitary mor-
phisms thus correspond precisely to (total) isomorphisms. For the remainder of
this text, we will use this induced dagger-structure when refering to the partial
inverse of a morphism (and write, e.g., f† rather than f◦).

A useful feature of this definition of inverse categories is that we do not need
an additional notion of an “inverse functor” as a functor that preserves partial
inverses; restriction functors suffice.

Definition 7. A functor F : C → D between dagger categories is a dagger
preserving if F (f)† = F (f†) for all morphisms f of C .

Proposition 3. Every restriction functor F : C → D between inverse cate-
gories C and D is dagger preserving.

That this holds can be seen from the fact that the property of being a partial
isomorphism is defined purely in terms of composition and restriction idempo-
tents, both of which are preserved by restriction functors.

Join Inverse Categories as Models of Reversible Recursion 77

2.1 Joins and Compatibility

Given that hom-sets of restriction (and, by extension, inverse) categories are
partially ordered, one may wonder when this partial order has joins. It turns
out, however, that it does not in the general case, and that only very simple
restriction categories have joins for arbitrary parallel morphisms. However, we
can define a meaningful notion of joins for parallel morphisms if this operation
is not required to be total, but only be defined for compatible morphisms. For
restriction categories, this compatibility relation is defined as follows:

Definition 8. Parallel morphisms f, g : A → B of a restriction category C are
said to be restriction compatible if g ◦ f = f ◦ g; if this is the case, we write
f � g. By extension, a set S ⊆ HomC (A,B) is restriction compatible if all
morphisms of S are pairwise restriction compatible.

This compatibility relation can be extended to apply to inverse categories by
requiring that morphisms be compatible in both directions:

Definition 9. Parallel morphisms f, g : A → B of an inverse category C are
said to be inverse compatible if f � g and f† � g†; if this is the case, we write
f � g . A set S ⊆ HomC (A,B) is inverse compatible if all morphisms of S are
pairwise inverse compatible.

The familiar reader will notice that this definition differs in its statement
from Guo’s [17, p. 98], who defined f � g in an inverse category C if f � g
holds in both C and C op (relying on the observation that inverse categories
are simultaneously restriction categories and corestriction categories). To avoid
working explicitly with corestriction categories, however, we will use this equiv-
alent definition instead.

We define restriction categories with (countable) joins as follows:

Definition 10 (Guo, 2012). A restriction category C is a (countable) join
restriction category if it has a restriction zero object, and satisfies that for all
(countable) restriction compatible subsets S of all hom sets HomC (A,B), there
exists a morphism

∨
s∈S s such that

(i) s ≤ ∨
s∈S s for all s ∈ S, and s ≤ t for all s ∈ S implies

∨
s∈S s ≤ t;

(ii)
∨

s∈S s =
∨

s∈S s;
(iii) f ◦ (∨

s∈S s
)

=
∨

s∈S(f ◦ s) for all f : B → X; and
(iv)

(∨
s∈S s

) ◦ g =
∨

s∈S(s ◦ g) for all g : Y → A.

In addition, we say that a restriction functor that preserves all thus con-
structed joins is a join restriction functor.

As a concrete example, Pfn has joins of all restriction compatible sets; here,
f � g iff whenever f and g are both defined at some point x, f(x) = g(x), and
the join of a set of restriction compatible partial functions F is given by
⎛

⎝
∨

f∈F

f

⎞

⎠ (x) =
{

f ′(x) if there exists an f ′ ∈ F such that f ′ is defined at x,
undefined otherwise.

78 H.B. Axelsen and R. Kaarsgaard

Notice that the compatibility relation ensures precisely that the result is a partial
function.

This, finally, allows us to define join inverse categories by narrowing the
definition above to only require the existence of joins of inverse compatible (sets
of) morphisms:

Definition 11. An inverse category C is a (countable) join inverse category if
it has a restriction zero object, and Definition 10 is satisfied for all (countable)
inverse compatible subsets S of all HomC (A,B).

Analogously to Pfn, the category PInj is a join inverse category with joins
given precisely as in Pfn, since the additional requirement that f† � g† ensures
that the resulting partial function is injective.

2.2 Categories of Partial Maps

Categories of partial maps provide a synthetic approach to partiality in a cate-
gorical setting, and was first introduced by Robinson and Rosolini [32] in 1988.
To form a category of partial maps, we consider a stable system of monics: In
a category C , a collection M of monics of C is said to be a stable system of
monics if it contains all isomorphisms of C and is closed under composition and
pullbacks (in the sense that the pullback m′ of an m : X → B in M along any
f : A → B exists and m′ ∈ M). Given such a stable system of monics M in a
category C , we can form the category of partial maps as follows:

Proposition 4. Given a category C and a stable system of monics M of C ,
we form the category of partial maps Par(C ,M) by choosing the objects to be
the objects of C , and placing a morphism (m, f) : A → B for every pair (m, f)
where m : A′ → A ∈ M and f : A′ → B is a morphism of C , as in

A′

A B

m f

factored out by the equivalence relation · ∼ · in which (m, f) ∼ (m′, f ′) if there
exists an isomorphism α : A′ → A′′ such that m′ ◦ α = m and f ′ ◦ α = f .
Composition of morphisms (m, f) : A → B and (m′, g) : B → C is given by
(m ◦ m′′, g ◦ f ′) : A → C where m′′ and f ′ arise from the pullback

A′

A′′

A B

B′

C

m

m′

m′′

f

g

f ′

where m′′ ◦ m ∈ M precisely by M closed under composition and pullbacks.

Categories of partial maps are prime examples of restriction categories; in
fact, of split restriction categories. Further, it can be shown that every restriction
category C embeds fully and faithfully and in a restriction preserving manner
into a category of partial maps [9].

Join Inverse Categories as Models of Reversible Recursion 79

3 As CPO-categories

In the present section, we will show that inverse categories with countable joins
are intrinsically CPO-enriched. This observation leads to two properties that
are highly useful for modelling reversible functional programming, namely the
existence of fixed points for both morphism schemes for recursion (that is, contin-
uous endomorphisms on hom-objects) and for locally continuous functors. The
former can be applied to model reversible recursive functions, and the latter to
model recursive data types [3]. Further, we will show that the partial inverse of
the fixed point of a morphism scheme for recursion can be computed as the fixed
point of an adjoint morphism scheme, giving a style of recursion similar to the
reversible functional programming language rfun [39].

Recall that a category C is CPO-enriched (or simply a CPO-category) if
all HomC (A,B) are pointed ω-complete partial orders (i.e., they have a least
element and satisfy that each ω-chain has a supremum), and composition is
monotone, continuous and strict. To begin, we will need the lemma below.

Lemma 1. Let C be an inverse category and f, g : A → B be parallel morphisms
of C . If f ≤ g then f � g.

This lemma allows us to show CPO-enrichment of join inverse categories:

Theorem 1. Every inverse category C with countable joins is CPO-enriched.

Proof. Let A,B be objects of C , and let {fi}i∈ω be an ω-chain in HomC (A,B)
with respect to the canonical partial ordering. By Lemma 1, all fi and fj for
i, j ∈ ω of this chain are inverse compatible, so the set F = {fi | i ∈ ω} is an
inverse compatible subset of HomC (A,B). But then we can form the supremum
of {fi}i∈ω by

sup{fi}i∈ω =
∨

f∈F

f

which is the supremum of this chain directly by definition of the join.
Let f, g : A → B and F = {fi | i ∈ ω}. Monotony of compositions holds in all

restriction categories, not just inverse categories with countable joins: Supposing
f ≤ g then g ◦ f = f , and for h : B → X,

h ◦ g ◦ h ◦ f = h ◦ g ◦ h ◦ g ◦ f = h ◦ g ◦ h ◦ g ◦ f = h ◦ g ◦ f = h ◦ f

so h ◦ f ≤ h ◦ g in HomC (A,X); the argument is analogous for postcomposition.
That composition is continuous follows directly by definition of joins, as we have

h ◦ sup{fi}i∈ω = h ◦
∨

f∈F

f =
∨

f∈F

(h ◦ f) = sup{h ◦ fi}i∈ω

for all h : B → X, and analogously for postcomposition. That composition is
strict follows by the fact that the zero map 0A,B : A → B is least in HomC (A,B),
and that g ◦ 0A,B = 0A,X for all g : B → X by the universal mapping property
of the zero object, and likewise for postcomposition. 	

80 H.B. Axelsen and R. Kaarsgaard

Recall that a functor F : C → D between CPO-categories is locally continu-
ous iff each FA,B : HomC (A,B) → HomD(FA,FB) is monotone and continuous.
Note that since all restriction functors preserve the partial order on hom-sets,
and since suprema are defined in terms of joins, join restriction functors are in
particular locally continuous.

3.1 Reversible Fixed Points of Morphism Schemes

In the following, let C be an inverse category with countable joins. We will
use the term morphism scheme to refer to a monotone and continuous function
f : HomC (A,B) → HomC (X,Y) – note that such schemes are morphisms of
CPO and not of the inverse category C , so they are specifically not required to
have inverses. Enrichment in CPO then has the following immediate corollary
by Kleene’s fixed point theorem:

Corollary 1. Every morphism scheme of the form HomC (A,B)
f−→ HomC (A,B)

has a least fixed point fix f : A → B in C .

Proof. Define fix f = sup{fn(0A,B)}; that this is the least fixed point follows by
Kleene’s fixed point theorem, as 0A,B is least in HomC (A,B). 	

Morphism schemes on their own are useful for modelling parametrized
reversible functions, i.e., functions that take other functions given at compile-time
as parameters to produce new, first-order reversible functions. Since higher-order
reversible functional programming is yet to be well-understood, parametrized
functions (as implemented in, e.g., Theseus [25]) allow for a higher degree of
abstraction and code reuse, as we know it from higher-order functional irreversible
programming. With this in mind, recursive reversible functions can be seen as least
fixed points of self-parametrized functions.

Given that we can thus model reversible recursive functions via least fixed
points of morphism schemes, a prudent question to ask is if the inverse of a
least fixed point can be computed as the least fixed point of another morphism
scheme. We will answer this in the affirmative, but to do this, we need to show
that the induced dagger functor is locally continuous.

Lemma 2. The canonical dagger functor † : C op → C is locally continuous.

Proof. Let f, g : A → B. For monotony, suppose f ≤ g, i.e., g ◦ f = f . Then

g† ◦ f† = g† ◦ f ◦ f† = g† ◦ g ◦ f ◦ f† = g ◦ f ◦ f† = g ◦ f ◦ f†

= f ◦ f† = f† ◦ f ◦ f† = f† ◦ f† = f†

so f† ≤ g† as well, as desired. For continuity, let {fi}i∈ω be an ω-chain in
HomC (A,B), and let F = {fi | i ∈ ω} be the corresponding set for this chain.

Since f ≤ ∨
f∈F f for each f ∈ F by Definition 11, we have f† ≤

(∨
f∈F f

)†
for

all f ∈ F by monotony of †, and so

Join Inverse Categories as Models of Reversible Recursion 81

sup{f†
i }i∈ω =

∨

f∈F

f† ≤
⎛

⎝
∨

f∈F

f

⎞

⎠

†

= sup{fi}†
i∈ω

by Definition 11. In the other direction, we have f† ≤ ∨
f∈F f† for all f ∈ F

by Definition 11, so by monotony of †, f = f†† ≤
(∨

f∈F f†
)†

for all f ∈ F .

But then
∨

f∈F f ≤
(∨

f∈F f†
)†

by Definition 11, and so by monotony of †, we
finally get

sup{fi}†
i∈ω =

⎛

⎝
∨

f∈F

f

⎞

⎠

†

≤
⎛

⎝
∨

f∈F

f†

⎞

⎠

††

=
∨

f∈F

f† = sup{f†
i }i∈ω

as desired. 	

With this lemma, we are able to show that the inverse of a least fixed point

of a morphism scheme can be computed as the least fixed point of an adjoint
morphism scheme:

Theorem 2. Every
morphism scheme of the form HomC (A,B)

f−→ HomC (A,B) has an adjoint mor-

phism scheme HomC (B,A)
f‡−→ HomC (B,A) such that (fix f)† = fix f‡.

Proof. Let ιA,B : HomC (A,B) → HomC (B,A) denote the family of functions
defined by ιA,B(f) = f†; each of these are monotone and continuous by Lemma 2,
and an isomorphism (with inverse ιB,A) by f†† = f . Given a morphism scheme
f : HomC (A,B) → HomC (A,B), we define f‡ = ιA,B◦f ◦ιB,A – this is monotone
and continuous since it is a (monotone and continuous) composition of monotone
and continuous functions. But since

fn
‡ = (ιA,B ◦ f ◦ ιB,A)n = ιA,B ◦ fn ◦ ιB,A

by ιB,A an isomorphism with inverse ιA,B , and since 0†
A,B = 0B,A by the uni-

versal mapping property of the zero object, we get

fix f‡ = sup{fn
‡ (0B,A)} = sup{(ιA,B ◦ fn ◦ ιB,A)(0B,A)} = sup{fn(0†

B,A)†}
= sup{fn(0A,B)†} = sup{fn(0A,B)}† = (fix f)†

as desired. 	

In modelling recursion in reversible functional programming, this theorem

states precisely that the partial inverse of a recursive reversible functions is,
itself, a recursive reversible function, and that it can be obtained by inverting
the function body and replacing recursive calls with recursive calls to the thus
constructed inverse: Coincidentally, this is precisely the inverse semantics of
recursive reversible functions in rfun [39].

82 H.B. Axelsen and R. Kaarsgaard

3.2 Algebraic ω-compactness for Free!

A pleasant property of CPO-categories is that algebraic ω-compactness – the
property that every locally continuous functor has a canonical fixed point – is
relatively easy to check for, thanks to the fixed point theorem due to Adámek [3]
and Barr [5]:

Theorem 3 (Adámek & Barr). Let C be a CPO-category with an initial
object. If C has colimits of ω-sequences of embeddings, then C is algebraically
ω-compact over CPO.

Canonical fixed points of functors are of particular interest in modelling
functional programming, since they can be used to provide interpretations for
recursive data types. In the following, we will couple this theorem with a join-
completion theorem for restriction categories to show that every inverse category
can be faithfully embedded in an algebraically ω-compact inverse category with
joins. That this succeeds rests on the following lemmas:

Lemma 3. If an inverse category C embeds faithfully in a restriction category
D , it also embeds faithfully in Inv(D).

Proof. We notice that Inv : rCat → invCat is right adjoint to the forgetful
functor U : invCat → rCat, with each component of the counit ε : U ◦ Inv →
1rCat given by the faithful inclusion functor εC : U(Inv(C)) → C (that this is an
adjunction follows by an argument entirely analogous to Core : Cat → Grpd
being right adjoint to U : Grpd → Cat). That faithful restriction functors are
preserved follows readily since restriction functors preserve partial isomorphisms,
and every restriction functor out of an inverse category factors through Inv-
inclusion by this adjunction. 	

Lemma 4. The functor Inv : rCat → invCat takes join restriction categories
to join inverse categories (and preserves join restriction functors).

The latter of these lemmas was shown by Guo [17, Lemma 3.1.27]. To ease
presentation of the completion theorem for join restriction categories due to
Cockett and Guo [8,17], we make the following notational shorthand:

Convention 12. For a restriction category C , let C denote the category of pre-
sheaves SetTotal(Split(C))op .

Note in particular that C is cocomplete and all colimits are stable under
pullback (since colimits in C are constructed object-wise in Set).

Theorem 4 (Cockett & Guo). Every restriction category C can be faithfully
embedded in a join restriction category of the form Par(C ,M̂gap).

The stable system of monics M̂gap relates to the join-completion for restric-
tion categories via M-gaps (see Cockett [8] or Guo [17, Sect. 3.2.2] for details).
We can now show the algebraic ω-compactness theorem for restriction categories:

Join Inverse Categories as Models of Reversible Recursion 83

Theorem 5. If C is a restriction category then Par(C ,M̂gap) is algebraically
ω-compact for CPO; so for join restriction functors.

Proof. Let C be a restriction category. By Theorem 4, Par(C ,M̂gap) is join
restriction category. By Adámek & Barr’s fixed point theorem and the fact
that join restriction categories are CPO-enriched (by Theorem 1) and have
a restriction zero object (which is specifically initial) by definition, it suffices
to show that Par(C ,M̂gap) has colimits of ω-diagrams of embeddings. Let
D : ω → Par(C ,M̂gap) be such a diagram of embeddings. This corresponds
to the diagram

A

D(0) D(1)

B

D(2) . . .

m0 f0 m1 f1

in C . Since C is cocomplete, this diagram has a colimiting cocone α : D ⇒
colim D such that

A

D(0) D(1)

B

D(2) . . .

colim D

m0 f0 m1 f1

αD(0)

αA
αD(1)

αB

αD(2)

commutes. Further, since colimits in C are constructed object-wise in Set, this
colimit is stable under pullbacks, so composition in Par(C ,M̂gap), corresponding
to pullbacks in C , commutes with this colimit. Thus, the family of morphisms
{(mi, αD(i+1) ◦ fi)}i∈ω is a colimiting cocone for D in Par(C ,M̂gap). 	

Finally, using this machinery, we can show how this theorem extends to
inverse categories.

Corollary 2. Every inverse category can be faithfully embedded in a join inverse
category that is algebraically ω-compact for join restriction functors.

Proof. Let C be an inverse category. Since U(C) is the exact same category
viewed as a restriction category, U(C) embeds faithfully in Par(C ,M̂gap), which
is a join restriction category by Theorem 4, and algebraically ω-compact by
Theorem 5. But then it follows by Lemma 3 that C embeds faithfully in
Inv(Par(C ,M̂gap)), which is a join inverse category by Lemma 4, and is alge-
braically ω-compact for join restriction functors (which are specifically locally
monotone and continuous) since fixed points of functors are (total) isomor-
phisms, so preserved in Inv(Par(C ,M̂gap)). 	

84 H.B. Axelsen and R. Kaarsgaard

4 As Unique Decomposition Categories

A complementary view on inverse categories with countable joins is as unique
decomposition categories, a kind of category introduced by Haghverdi [18]
equipped with a partial sum operation on Hom-sets via enrichment in the cate-
gory of Σ-monoids (shown to be symmetric monoidal by Hoshino [23]). Unique
decomposition categories (including Hoshino’s strong unique decomposition cat-
egories [23] which we will employ here) are specifically traced monoidal cate-
gories [26] if they satisfy certain conditions. This is desirable when modelling
functional programming, as traces can be used to model notions of feedback [1]
and recursion [19,20,24].

Here, we will show that inverse categories with countable joins and a join-
preserving disjointness tensor (due to Giles [16]) are strong unique decomposi-
tion categories, and satisfy the conditions required to be equipped with a trace.
We extend this result further to show that the trace is a †-trace [37], and thus
has pleasant inversion properties (the trace in PInj is well studied, cf. [2,18,22]).
This is particularly interesting given that the reversible programming language
Theseus [25] and the combinator calculus Π0 [7] both rely on a †-trace for
reversible recursion.

We begin with the definition of a Σ-monoid [18] (see also Manes & Benson [30]
where these are described as positive partial monoids):

Definition 13. A Σ-monoid (M,Σ) consists of a nonempty set M and a partial
operator Σ defined on countable families in M (say that a family {xi}i∈I is
summable if

∑
i∈I xi is defined) such that

(i) if {xi}i∈I is a countable family in M and {Ij}j∈J is a countable partitioning
of I, then {xi}i∈I is summable iff all {xi}i∈Ij and

∑
i∈Ij

xi are summable
for all j ∈ J , and in this case

∑

j∈J

∑

i∈Ij

xi =
∑

i∈I

xi ,

(ii) any family {xi}i∈I in M where I is singleton is summable with
∑

i∈I xi = xj

if I = {j}.
The class of Σ-monoids with homomorphisms preserving partial sums forms

a category, ΣMon. As such, a category C is enriched in ΣMon if all hom-sets
of C are Σ-monoids, and composition distributes over partial addition.

Lemma 5. Every inverse category with countable joins is ΣMon-enriched.

Proof (Sketch). In an inverse category C , defining
∑

i∈I

si =
∨

s∈{si|i∈I}
s

for a countable family {si}i∈I of some hom-set HomC (A,B), summability coin-
cides with inverse compatibility. That the axioms of Σ-monoids are satisfied
follows straightforwardly by Definition 11. 	

Join Inverse Categories as Models of Reversible Recursion 85

Haghverdi defines unique decomposition categories in the following way:

Definition 14 (Haghverdi). A unique decomposition category C is a sym-
metric monoidal category enriched in ΣMon such that for all finite index sets I
and all j ∈ I, there are quasi-injections ιj : Xj → ⊕i∈IXi and quasi-projections
ρj : ⊕i∈IXi → Xj satisfying

(i) ρk ◦ ιj = 1Xk
if j = k, and 0Xj ,Xk

otherwise, and
(ii) Σi∈Iιi ◦ ρi = 1⊕i∈IxXi

.

This definition is strengthened by Hoshino:

Definition 15 (Hoshino). A strong unique decomposition category is a sym-
metric monoidal category enriched in ΣMon satisfying that the identity on the
monoidal unit I is 0I,I , and 1X ⊕ 0Y,Y + 0X,X ⊕ 1Y = 1X⊕Y for all X and Y .

An elementary result is that strong unique decomposition categories are
unique decomposition categories, with their quasi injections and projections
given by ι1 = (1A⊕00,B)◦u−1

r : A → A⊕B and ρ1 = ur◦(1A⊕0B,0) : A⊕B → A,
and analogously for ι2 and ρ2 (thus extending to any finite index set).

As such, (strong) unique decomposition categories rely on a sum-like
monoidal tensor – in the context of inverse categories, such a one can be found
in Giles’ definition of a disjointness tensor [16, Definition 7.2.1].

Definition 16 (Giles). An inverse category C with a restriction zero object 0
is said to have a disjointness tensor if it is equipped with a symmetric monoidal
restriction functor − ⊕ − : C × C → C such that

(i) the restriction zero 0 is the tensor unit, and
(ii) the morphisms given by 1 = (1A ⊕ 00,B) ◦ u−1

r : A → A ⊕ B
and 2 = (00,B ⊕ 1A) ◦ u−1

l : A → B ⊕ A are jointly epic, and their partial
inverses †

1 : A ⊕ B → A and †
2 : B ⊕ A → A are jointly monic,

where ul : 0 ⊕ A → A and ur : A ⊕ 0 → A denote the left respectively the right
unitor of the symmetric monoidal tensor.

Though not required from this definition, since we are working exclusively
with join inverse categories, we make the additional assumption that the disjoint-
ness tensor is a join restriction functor. Since Giles’ definition already demands
that the zero object be the monoidal unit, and even defines i precisely like
Hoshino’s definition of ιi (one can similarly see that †

i = ρi), we can show the
following:

Theorem 6. Every inverse category with countable joins and a join-preserving
disjointness tensor is a strong unique decomposition category.

Proof. By Lemma 5, any inverse category with countable joins (and a join-
preserving disjointness tensor) is enriched in ΣMon, so it suffices to show that
the (specifically symmetric monoidal) disjointness tensor satisfies Definition 15.
That 1I,I = 0I,I follows by 10,0 = 00,0 for the (restriction) zero 0, and 1X ⊕
0Y,Y + 0X,X ⊕ 1Y = 1X⊕Y by the definition of partial sums as joins and the
additional requirement that the disjointness tensor preserves joins. 	

86 H.B. Axelsen and R. Kaarsgaard

Due to the ΣMon-enrichment on unique decomposition categories, the trace can
be constructed as a denumerable sum of morphisms, provided that morphisms
of a certain form are always summable, cf. [18, Proposition 4.0.11] and [23,
Corollary 5.4]:

Theorem 7 (Haghverdi, Hoshino). Let C be a (strong) unique decomposi-
tion category such that for every X, Y , and U and every f : X ⊕ U → Y ⊕ U ,
the sum f11 +

∑∞
n=0 f21 ◦ fn

22 ◦ f12 exists, where fij = ρj ◦ f ◦ ιi. Then C has a
uniform trace given by

TrU
X,Y (f) = f11 +

∞∑

n=0

f21 ◦ fn
22 ◦ f12 .

In a join inverse category, we say that parallel morphisms f, g : A → B are
inverse disjoint if f ◦ g = 0A,A and f† ◦ g† = 0B,B .

Lemma 6. In an inverse category, the following hold:

(i) All inverse disjoint morphisms are inverse compatible,
(ii) g � g′ and f � f ′ implies g ◦ f � g′ ◦ f ′ when dom(g) = cod(f), and
(iii) g ◦ f = g ◦ f ◦ f when dom(g) = cod(f).

This lemma allows us to show the existence of all trace sums: The core idea is to
use part (ii) of this lemma until we get morphisms that are immediately disjoint
by (iii), so inverse compatible by (i).

Lemma 7. In a join inverse category with a disjointness tensor, all morphisms
of the forms f11 or f21 ◦ fn

22 ◦ f12 for any n ∈ N and some f : X ⊕ U → Y ⊕ U
are pairwise inverse compatible.

Recall that a †-category with a trace is said to have a †-trace (see, e.g.,
Selinger [37]) if TrU

X,Y (f)† = TrU
Y,X(f†) for every morphism f : X ⊕U → Y ⊕U .

Theorem 8. Every inverse category C with countable joins and a join-
preserving disjointness tensor has a uniform †-trace.
Proof. By Theorem 6, C is a (strong) unique decomposition category, and by
Lemma 7 it has all trace sums, so it follows that C has a uniform trace. To see
that this is a †-trace, let f : X ⊕ U → Y ⊕ U be a morphism of C . We notice
that

(fij)† = (ρj ◦ f ◦ ιi)† = (†
j ◦ f ◦ i)† = †

i ◦ f† ◦ ††
j = †

i ◦ f† ◦ j = (f†)ji

and so (f11)† = (f†)11 and

(f21 ◦ fn
22 ◦ f12)† = (f12)† ◦ (fn

22)
† ◦ (f21)† = (f†)21 ◦ (f†

22)
n ◦ (f†)12

which gives us

Join Inverse Categories as Models of Reversible Recursion 87

TrU
X,Y (f)† =

(

f11 +
∑

n∈ω

f21 ◦ fn
22 ◦ f12

)†
=

(

f11 ∨
∨

n∈ω

f21 ◦ fn
22 ◦ f12

)†

=(f11)† ∨
(

∨

n∈ω

f21 ◦ fn
22 ◦ f12

)†
=(f11)† ∨

∨

n∈ω

(f12)† ◦ (fn
22)

† ◦ (f21)†

= (f†)11 ∨
∨

n∈ω

(f†)21 ◦ (f†)n
22 ◦ (f†)12 = TrU

Y,X(f†)

by definition of the partial sum as join (Lemma 5), and by (
∨

f∈F f)† =
∨

f∈F f†

by Lemma 2. 	

5 Conclusion

We have shown that inverse categories with countable joins carry with them a
few key properties that are highly useful for modelling partial reversible func-
tional programming. Notably, we have shown that any inverse category with
countable joins is CPO-enriched – from this view, we gathered that morphism
schemes have fixed points, and that the partial inverses of such fixed points can
be computed as fixed points of adjoint morphism schemes. This gave us a model
of recursion à la rfun.

Further, we were able to show that any inverse category can be embedded
in an inverse category with joins, in which all join restriction functors have
canonical fixed points. Finally, we showed that the presence of a join-preserving
disjointness tensor on an inverse category with countable joins gives us a strong
unique decomposition category, and in turn, a uniform †-trace: a model of recur-
sion à la Theseus and Π0.

Restriction categories have recently been considered as enriched categories
by Cockett & Garner [12], though their approach relied on enrichments based
on weak double categories rather than monoidal categories, as it is otherwise
usually done (including in this paper). Further, fixed points in categories with a
notion of partiality have previously been considered, notably by Fiore [14] who
also relied on order-enrichment, though his work was in categories of partial
maps directly. Finally, Giles [16] has shown the construction of a trace in inverse
categories recently, relying instead on the presence of countable disjoint sums
rather than joins (whether or not this approach leads to a †-trace is unspecified).
It should also be noted that the trace in the canonical inverse category PInj
has seen study independent of unique decomposition and restriction categories,
notably by Hines [22] and Abramsky, Haghverdi, and Scott [2].

As regards future work, since an inverse category with countable joins and
a disjointness tensor is †-traced, it can be embedded in a †-compact closed
category via the Int-construction [26,38]. It may be of interest to consider †-
compact closed categories generated in this manner, as we suspect these will be
inverse categories as well (notably, Int(PInj) is [22]) – and could provide, e.g.,
an alternative treatment of projectors as restriction idempotents, and isometries
as restriction monics (see also Selinger [36]).

88 H.B. Axelsen and R. Kaarsgaard

Additionally, while our focus in this article has been on inverse categories, we
conjecture that many of these results can be generalized to restriction categories.

Acknowledgments. We thank the anonymous reviewers for their useful comments.
An abstract of this paper was presented at the 27th Nordic Workshop on Programming
Theory held in Reykjav́ık, Iceland in October, 2015. The research was partly funded by
the Danish Council for Independent Research | Natural Sciences under the Foundations
of Reversible Computing project. We also acknowledge the support given by COST
Action IC1405 Reversible computation.

References

1. Abramsky, S.: Retracing some paths in process algebra. In: Montanari, U., Sassone,
V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 1–17. Springer, Heidelberg (1996)

2. Abramsky, S., Haghverdi, E., Scott, P.: Geometry of interaction and linear combi-
natory algebras. Math. Struct. Comput. Sci. 12(5), 625–665 (2002)

3. Adámek, J.: Recursive data types in algebraically ω-complete categories. Inf. Com-
put. 118, 181–190 (1995)

4. Axelsen, H.B., Glück, R.: What do reversible programs compute? In: Hofmann, M.
(ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)

5. Barr, M.: Algebraically compact functors. J. Pure Appl. Algebra 82(3), 211–231
(1992)

6. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–
532 (1973)

7. Bowman, W.J., James, R.P., Sabry, A.: Dagger traced symmetric monoidal cate-
gories and reversible programming. In: Proceedings of RC 2011, pp. 51–56. Ghent
University (2011). http://www.cs.indiana.edu/∼sabry/papers/cat-rev.pdf

8. Cockett, J.R.B., Guo, X.: Join restriction categories and the importance of being
adhesive (2007). http://www.mat.uc.pt/∼categ/ct2007/slides/cockett.pdf, presen-
tation at Category Theory 2007

9. Cockett, J.R.B., Lack, S.: Restriction categories I: categories of partial maps. The-
oret. Comput. Sci. 270(1–2), 223–259 (2002)

10. Cockett, J.R.B., Lack, S.: Restriction categories II: partial map classification. The-
oret. Comput. Sci. 294(1–2), 61–102 (2003)

11. Cockett, J.R.B., Lack, S.: Restriction categories III: colimits, partial limits and
extensivity. Math. Struct. Comput. Sci. 17(4), 775–817 (2007)

12. Cockett, R., Garner, R.: Restriction categories as enriched categories. Theoret.
Comput. Sci. 523, 37–55 (2014)

13. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
π-calculus. In: LICS 2013, pp. 388–397. IEEE Computer Society (2013)

14. Fiore, M.P.: Axiomatic Domain Theory in Categories of Partial Maps. Ph.D. thesis,
University of Edinburgh (1994)

15. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3–4), 219–253
(1982)

16. Giles, B.G.: An Investigation of some Theoretical Aspects of Reversible Computing.
Ph.D. thesis, University of Calgary (2014)

17. Guo, X.: Products, Joins, Meets, and Ranges in Restriction Categories. Ph.D.
thesis, University of Calgary (2012)

http://www.cs.indiana.edu/~sabry/papers/cat-rev.pdf
http://www.mat.uc.pt/~categ/ct2007/slides/cockett.pdf

Join Inverse Categories as Models of Reversible Recursion 89

18. Haghverdi, E.: A Categorical Approach to Linear Logic, Geometry of Proofs and
Full Completeness. Ph.D. thesis, Carlton University and University of Ottawa
(2000)

19. Hasegawa, M.: Models of Sharing Graphs. Ph.D. thesis, University of Edinburgh
(1997)

20. Hasegawa, M.: Recursion from cyclic sharing: traced monoidal categories and mod-
els of cyclic lambda calculi. In: de Groote, P., Hindley, J.R. (eds.) TLCA 1997.
LNCS, vol. 1210, pp. 196–213. Springer, Heidelberg (1997)

21. Heunen, C.: On the functor �2. In: Coecke, B., Ong, L., Panangaden, P. (eds.)
Computation, Logic, Games and Quantum Foundations. LNCS, vol. 7860, pp. 107–
121. Springer, Heidelberg (2013)

22. Hines, P.M.: The Algebra of Self-Similarity and its Applications. Ph.D. thesis,
University of Wales, Bangor (1998)

23. Hoshino, N.: A representation theorem for unique decomposition categories. In:
Berger, U., Mislove, M. (eds.) MFPS XXVIII. Electronic Notes in Theoretical
Computer Science, vol. 286, pp. 213–227. Elsevier (2012)

24. Hyland, M.: Abstract and concrete models for recursion. In: Grumberg, O., Nipkow,
T., Pfaller, C. (eds.) Proceedings of the NATO Advanced Study Institute on Formal
Logical Methods for System Security and Correctness, pp. 175–198. IOS Press
(2008)

25. James, R.P., Sabry, A.: Theseus: a high level language for reversible computing,
work-in-progress report at RC 2014 (2014). https://www.cs.indiana.edu/∼sabry/
papers/theseus.pdf

26. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Camb.
Philos. Soc. 119(3), 447–468 (1996)

27. Kutrib, M., Wendlandt, M.: Reversible limited automata. In: Durand-Lose, J.,
Nagy, B. (eds.) MCU 2015. LNCS, vol. 9288, pp. 113–128. Springer, Heidelberg
(2015)

28. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 183–191 (1961)

29. Lawson, M.V.: Inverse Semigroups: The Theory of Partial Symmetries. World Sci-
entific, Singapore (1998)

30. Manes, E.G., Benson, D.B.: The inverse semigroup of a sum-ordered semiring.
Semigroup Forum 31(1), 129–152 (1985)

31. Morita, K.: Two-way reversible multihead automata. Fundamenta Informaticae
110(1–4), 241–254 (2011)

32. Robinson, E., Rosolini, G.: Categories of partial maps. Inf. Comput. 79, 95–130
(1988)

33. Schordan, M., Jefferson, D., Barnes, P., Oppelstrup, T., Quinlan, D.: Reverse code
generation for parallel discrete event simulation. In: Krivine, J., Stefani, J.B. (eds.)
RC 2015. LNCS, vol. 9138, pp. 95–110. Springer, Heidelberg (2015)

34. Schultz, U.P., Bordignon, M., Støy, K.: Robust and reversible execution of self-
reconfiguration sequences. Robotica 29(1), 35–57 (2011)

35. Schultz, U.P., Laursen, J.S., Ellekilde, L., Axelsen, H.B.: Towards a domain-specific
language for reversible assembly sequences. In: Krivine, J., Stefani, J.B. (eds.) RC
2015. LNCS, vol. 9138, pp. 111–126. Springer, Heidelberg (2015)

36. Selinger, P.: Idempotents in dagger categories. In: Selinger, P. (ed.) QPL 2006.
Electronic Notes in Theoretical Computer Science, vol. 210, pp. 107–122. Elsevier
(2008)

https://www.cs.indiana.edu/~sabry/papers/theseus.pdf
https://www.cs.indiana.edu/~sabry/papers/theseus.pdf

90 H.B. Axelsen and R. Kaarsgaard

37. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B.
(ed.) New Structures for Physics. Lecture Notes in Physics, vol. 813, pp. 289–355.
Springer, Heidelberg (2011)

38. Selinger, P.: Finite dimensional Hilbert spaces are complete for dagger compact
closed categories. Logical Methods Comput. Sci. 8(3), 1–12 (2012)

39. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language.
In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer,
Heidelberg (2012)

40. Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-
interpreter. In: Proceedings of the Partial Evaluation and Program Manipulation,
pp. 144–153. ACM (2007)

A Coalgebraic View of Bar Recursion
and Bar Induction

Venanzio Capretta1 and Tarmo Uustalu2(B)

1 School of Computer Science, University of Nottingham, Nottingham, UK
venanzio.capretta@nottingham.ac.uk

2 Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
tarmo@cs.ioc.ee

Abstract. We reformulate the bar recursion and induction principles in
terms of recursive and wellfounded coalgebras. Bar induction was orig-
inally proposed by Brouwer as an axiom to recover certain classically
valid theorems in a constructive setting. It is a form of induction on non-
wellfounded trees satisfying certain properties. Bar recursion, introduced
later by Spector, is the corresponding function definition principle.

We give a generalization of these principles, by introducing the notion
of barred coalgebra: a process with a branching behaviour given by a
functor, such that all possible computations terminate.

Coalgebraic bar recursion is the statement that every barred coal-
gebra is recursive; a recursive coalgebra is one that allows definition of
functions by a coalgebra-to-algebra morphism. It is a framework to char-
acterize valid forms of recursion for terminating functional programs.
One application of the principle is the tabulation of continuous func-
tions: Ghani, Hancock and Pattinson defined a type of wellfounded trees
that represent continuous functions on streams. Bar recursion allows us
to prove that every stably continuous function can be tabulated to such
a tree, where by stability we mean that the modulus of continuity is its
own modulus. Coalgebraic bar induction states that every barred coal-
gebra is wellfounded; a wellfounded coalgebra is one that admits proof
by induction.

1 Introduction

Bar induction is a reasoning principle formulated by L. E. J. Brouwer [9,23].
He argued that it is justified in a constructive view of mathematics. Some

classical theorems that are not otherwise provable in intuitionistic mathematics,
follow from bar induction.

Intuitively, it posits a link between termination and induction. It says that
if processes of a certain class always terminate, then the class admits a form of
wellfounded induction.

Specifically, here is the original formulation of bar induction. Assume:

– Q is a decidable predicate on lists of natural numbers and Q is a bar (for every
stream σ there exists a natural n such that the list of the first n elements of
σ satisfies Q);

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 91–106, 2016.
DOI: 10.1007/978-3-662-49630-5 6

92 V. Capretta and T. Uustalu

– R is another predicate on lists of naturals, such that Q implies R (every list
satisfying Q also satisfies R) and is inductive (for every list l, if every extension
of l by one element satisfies R, then l also satisfies R);

Then the empty list satisfies R.
In this statement, streams must be interpreted as choice sequences, that

is, infinite sequences of natural numbers not necessarily given by an effective
rule. Kleene proved that bar induction implies that not all streams are com-
putable [16]. Recently, Nakata, Bezem and one of us (Uustalu) [17] proved some
interesting consequences of the principle on the relationships between some
temporal operators (some of them mixed inductive/coinductive) on branching
processes.

Later, Spector [19] formulated the principle of bar recursion that allows def-
inition of higher-order functionals (see also [10] and Chap. 5 of [4]); he exploited
the principle to give a proof of consistency of mathematical analysis. Berardi,
Bezem and Coquand [5] reformulated Spector’s principle and results; their ver-
sion was termed modified bar recursion by Berger and Oliva [6], who also gave
an analysis of the relation between the different variations.

We offer a reformulation and generalization of the principle in terms of coal-
gebras. Coalgebras are useful to model branching computational processes and
types of infinite data. In previous work [7,8] we studied the notions of recur-
sive and wellfounded coalgebras, useful to analyze recursive functions in total
functional programming and induction proofs of their properties.

Now we formulate a new notion of barred coalgebra, which characterizes
processes whose computations always terminate, or data structures whose paths
are all finite. We then state two principles as modern versions of Brouwer’s.

Coalgebraic bar recursion states that every barred coalgebra is recursive. This
allows us to define total recursive functions on a structure if we know that all
its paths are finite. We give one application to continuous functions on streams.
Ghani, Hancock and Pattinson [13] defined a type of inductive trees that repre-
sent continuous functions on streams by tabulating the outputs in their leaves.
We restrict our attention to stably continuous functions, where stability means
that the modulus of continuity is also continuous with itself as the modulus. We
show that bar recursion implies that all stably continuous functions on streams
can be tabulated.

Coalgebraic bar induction states that every barred coalgebra is wellfounded.
This allows us to reason about the process by a form of induction. The original
form of bar induction is an instantiation of this version.

We do not claim that the principles should be accepted always and in full
generality. Instead, we view them as plausible assumptions encapsulating power-
ful function definition and reasoning devices that need to be justified depending
on the exact setting where they are invoked.

The paper is organized as follows. In Sect. 2, we introduce coalgebraic bar
recursion. In Sect. 3, we apply it to tabulation of stably continuous stream func-
tions. Coalgebraic bar induction is introduced and compared to Brouwer’s prin-
ciple in Sect. 4.

A Coalgebraic View of Bar Recursion and Bar Induction 93

2 Bar Recursion

In previous work with Vene [7], we contributed to the study of recursive coal-
gebras, introduced by Osius [18] and further elaborated by Paul Taylor [20–22].
More recently, Adámek, Milius and colleagues [2,3] have made additional signif-
icant contributions.

Definition 1. A coalgebra (A,α) of an endofunctor F on a category C is called
recursive if for every algebra (C, γ) there exists a unique map f : A → C
(a coalgebra-to-algebra morphism) making the following diagram commute:

A
α ��

f

��

FA

Ff

��
C FC.γ

��

This is a useful notion in total functional programming: It guarantees that
every structured recursive diagram (that is, a coalgebra-to-algebra morphism
diagram) based on it is a definite description of a function.

In the definition, unique existence of a mediating morphism is demanded
upfront. No “more intrinsic” property of the coalgebra is invoked to guarantee
unique constructibility of the solution.

We are interested in coalgebras of functors that can be viewed as tree genera-
tors with a good notion of a path. A special class of set functors, called container
functors [1] (they are closely related to polynomial functors [12]), give tree types
that work for us.

Definition 2. A container is given by a set S of shapes and an S-indexed family
of positions for every shape. It defines a set functor �S, P � by

�S, P �X = Σs : S. P s → X.

We use containers to describe “branching types” of trees. A container (S, P)
says that there are S many “types” of branching nodes and that nodes of type
s : S have P s many children. The sets of wellfounded and non-wellfounded trees
with branching type (S, P) are described as the inductive type μX. �S, P �X (the
initial algebra) and the coinductive type νX. �S, P �X (the final coalgebra). For
the first of these to have any elements at all, there must be at least one shape
with no positions.

We demand that inhabitedness of P s is decidable for all s : S.
A coalgebra (A,α) is a process with a set of states A and a transition function

α : A → �S, P �A that generates a shape and new states in every position.
Unfolding α takes a given initial state a : A to a non-wellfounded tree. This is
the unique coalgebra morphism from (A,α) to the final coalgebra.

Recursiveness of the coalgebra is equivalent to this tree unfolding being actu-
ally wellfounded for every initial state a : A, which in other words is to say that
the unique coalgebra morphism to the final coalgebra factors through the initial

94 V. Capretta and T. Uustalu

algebra. (This was observed by Adámek, Lücke and Milius [2], who also called
this condition the halting property.)

We suggest a classically equivalent, but constructively weaker condition. This
is that, for every initial state a : A, every path in the tree unfolding of α takes
one from the root to a leaf in a finite number of steps.1

We need first some additional definitions to formalize what we mean by paths
of an element of the coalgebra.

For every state a, we define the set Pathα a of paths starting from it. At
each stage, the path chooses a position through which to proceed. Notation: We
define types and families by rules; sets of rules written with a single rule line are
inductive definitions, sets of rules written with a double rule line are coinductive
definitions.

α a = (s, h) ¬P s

end : Pathα a

α a = (s, h) p : P s π : Pathα (h p)

p ≺ π : Pathα a

The first rule states that, if we reached a shape with no positions, then we are at
a leaf of the tree and the path ends. The second rule states that we can construct
a path by choosing a position in the present shape and continuing from the new
state given by the transition in that position. This definition is coinductive, so
the path may continue forever.

Alternatively, we could define paths as functions from N; but this would
exclude finite paths, which would have to be extended by iterating a distin-
guished element. The coinductive presentation is therefore more natural and
avoids some coding. The status of general coinductive types in constructivism is
unclear. However, paths and also tree unfoldings of coalgebras of containers can
be coded with inductive and function types. So we are justified in using them.

Next we inductively define finiteness of a path. A path π is considered finite
(π ↓) if it reaches a positionless shape after a finite number of steps. The defini-
tion mirrors that of paths, but it is inductive.

α a = (s, h) ¬P s

end ↓
α a = (s, h) p : P s π : Pathα (h p) π ↓

p ≺ π ↓
Definition 3. A barred coalgebra is a coalgebra α whose all paths are finite:

∀a : A.∀π : Pathα a. π ↓ .

Note that the simpler condition that the coalgebra has no infinite paths,
although classically equivalent, is constructively weaker than finiteness of all
paths. Adopting this condition instead would make coalgebraic bar induction
too strong; it would not follow from Brouwer’s formulation anymore. Assuming
decidability of inhabitation of P s, the difference of the two conditions is exactly
Markov’s principle.
1 In our constructive setting, it might in fact be more appropriate to take the name

‘halting’ for this condition that considers individual runs one by one rather than the
whole entirety of evolutions of the process at once.

A Coalgebraic View of Bar Recursion and Bar Induction 95

We are now ready to formulate a coalgebraic version of the principle of bar
recursion. It says that finiteness of all paths of a coalgebra implies that we can
define functions by recursion. Classically this is provable, but constructively it
is just a plausible extra axiom.

Coalgebraic Bar Recursion: Every barred coalgebra is recursive.

α barred ⇒ α recursive

The converse implication does not need to be assumed: it is provable.

Proposition 1. Every recursive coalgebra of a container functor is barred.

α recursive ⇒ α barred

Proof. Assume that a coalgebra α : A → �S, P �A is recursive. Then we have the
unique coalgebra-to-algebra morphism f : A → μX. �S, P �X. For an element
a : A, finiteness of all paths from a is proved by structural induction on f a. ��

We will not define Spector’s bar recursion here. (Instead we will discuss
Brouwer’s bar induction in detail in Sect. 4.) But it corresponds to instances of
coalgebraic bar recursion for S = 1 + 1 and P (inl ∗) = 0, P (inr ∗) = A, with A
some fixed set. This means that �S, P �X ∼= 1 + (A → X). The typical case is
A = N, but Spector also considered general A. This allowed him to interpret the
general axiom of countable choice.

3 Continuous Functions on Streams

We illustrate the coalgebraic bar recursion principle by applying it to continuous
functions on streams.

A function on streams is continuous if it only uses a finite initial segment of
its input stream to determine its result.

Ghani, Hancock and Pattinson [13] defined an inductive type of trees for rep-
resenting continuous functions on streams. When applied to a stream, a function
can either immediately return a result, or read the next element of the stream
and continue the computation. In the tree representation, an immediate return is
modelled by a leaf containing the output value, a reading operation is modelled
by a node that branches according to the input value.

The statement that all continuous functions can be represented as trees in this
manner is not provable constructively without additional assumptions. Ghani,
Hancock and Pattinson give a proof of a negative version of this statement: If a
function has no tree representation, then it cannot be continuous.

We will show that, assuming coalgebraic bar recursion, the positive statement
of representability becomes provable for what we call stably continuous functions.
Stability is a natural condition, requiring that the modulus of continuity is also
continuous, with itself as its modulus.

Let SA be the type of streams (infinite sequences) of elements of type A. The
equivalence relation =n, for n a natural number, identifies streams that coincide
on the first n elements:

σ1 =n σ2 if and only if ∀i < n. σ1(i) = σ2(i).

96 V. Capretta and T. Uustalu

Definition 4. A function f : SA → B from streams of elements of type A to
results of type B is continuous if

∀σ : SA. ∃n : N. ∀σ′ : SA. σ′ =n σ → f σ′ = f σ.

So a function f is continuous on a stream σ if the value of f only depends on
the first n elements of σ, for some n. It is continuous globally if it is continuous
on every stream.

This definition corresponds to SA being assigned the prodiscrete and B the
discrete topology. This is what is appropriate for our purposes here. It can feel
limited. For B = SA, for instance, not even the identity function is continuous,
but then with the trees considered here it cannot be tabulated either.2

For other purposes, other choices can be appropriate. Brouwer’s continuity
principle states that all functions of type SN → N are continuous. It seems jus-
tified by a computational view of functions as programs: a terminating program
computes its result in a finite number of steps; during the computation it can
only read a finite number of entries from the stream. This principle can be gener-
alized to functions A → B where A and B are assigned their “native” topologies
(whereby stream types must get product topologies). However, Escardó recently
discovered that the continuity principle is inconsistent in type theory [11], so
the principle cannot be added safely to current type-theoretic foundations. The
intuitive reason is that adding the principle adds new functions to the system
and some of those are problematic. Various strands of research are investigating
weaker and more refined versions of the principle that may be safe.

For our goals, it is important that a continuous function has an explicit
modulus of continuity, the mapping that gives the length of the initial segment
of the stream needed for the computation, and that this modulus is stable, that
is, it makes consistent choices for streams that have the same initial segment.

Definition 5. A modulus of continuity for a function f : SA → B is a function
mf : SA → N such that

∀σ, σ′ : SA. σ′ =mf σ σ → f σ′ = f σ.

The modulus is stable if

∀σ, σ′ : SA. σ′ =mf σ σ → mf σ′ = mf σ.

So a modulus of continuity is stable if and only if it is its own modulus of
continuity. Stability is a reasonable assumption in the computational view of
functions:

– If, to compute f σ, we only need to read the first mf σ elements of σ; and
– σ′ coincides with σ on the first mf σ elements;

2 In a different work [14], Hancock, Pattinson and Ghani used a mixed induc-
tive/coinductive type to tabulate stream processors, i.e., continuous functions f :
SA → SB where both SA and SB are given the prodiscrete topology.

A Coalgebraic View of Bar Recursion and Bar Induction 97

– then we only need the first mf σ elements of σ′ to compute f σ′ (which is
equal to f σ);

– so it is reasonable to expect that mf σ′ = mf σ.

However, given a possibly non-stable modulus, it is not in general possible to
construct another modulus which is stable. In the case that the original modulus
is continuous, there is an algorithm to stabilize it.

Given a non-stable but continuous modulus m, we construct a new stable
modulus m̄ for the same function. We do it by truncating every stream at an
appropriate point, dictated by m, and filling in the rest of it with a fixed stream.
If A is inhabited, so we know an element, we can repeat that element in a
constant stream σ0. For every σ and every index i : N, let σ|i be its truncation
at position i, that is, the list [σ(0), . . . , σ(i − 1)]. Let ni = m (σ|i ++σ0). (The
notation ++ denotes prepending a list to a stream and also to a path.) We now
define the result of the new modulus m̄ on σ:

m̄ σ = nk where k = min{i | ni ≤ i}.

Continuity of m guarantees that m̄ is well defined: k always exists. In fact
we know that there is a j such that, if σ′ =j σ, then m σ′ = m σ. In particular,
if we choose σ′ = σ|i ++σ0 where i = max(j,m σ), we have:

ni = m σ′ = m σ ≤ i.

So, since there is at least one i such that ni ≤ i, there is a minimal one k.
In Ghani, Hancock and Pattinson’s work [13], a continuous function f : SA →

B is represented by a wellfounded tree, an element of the inductive type SFA,B

given by the rules
b : B

write b : SFA,B

g : A → SFA,B

read g : SFA,B

The idea is that an element of SFA,B is a tabulation of all the values of a
function as leaves in a tree whose finite paths have to be matched against the
input stream. The application of a tabulation gives us a continuous function:

apply : SFA,B → SA → B
apply (write b) s = b
apply (read g) (a≺ s) = apply (g a) s

The operator apply is defined by structural recursion on its tree argument.
Is there an inverse transformation, that is, a tabulation operator assigning a

tree to every continuous function,

tabulate : (SA → B) → SFA,B?

Classically, we can prove that this function exists, but the proof is not construc-
tive. Intuitively, the algorithm to obtain the tabulation should be the following.

Let f : SA → B be continuous. Then we can define:

tabulate f = write b if f “must be” constantly b
tabulate f = read (λa.tabulate (λσ.f (a≺ σ))) otherwise.

98 V. Capretta and T. Uustalu

It is of course undecidable whether f is constant. But if the function is
continuous constructively, we also have a modulus for it and can check whether
the modulus is 0 on some fixed stream (we assume A to be inhabited, so we can
construct one). This a sufficient condition for constancy.

However, it is not constructively provable that this algorithm generates a
wellfounded tree. If the modulus is stable, we can prove that the paths of the
recursive calls generated by the second equation for f are always finite. But this
is not enough to conclude that the a priori non-wellfounded tabulation tree is
wellfounded.

Ghani, Hancock and Pattinson proved a negative version of the statement:
they did not construct a tabulation operator, but proved that, if a function
cannot be tabulated, then it is not continuous.

With bar recursion, we can conclude the positive statement, using stable con-
tinuity. We provide two distinct proofs. The first proof is local: for every stably
continuous function it constructs a barred coalgebra and uses it to generate the
tabulation tree. The second proof is global: it constructs a single barred coalge-
bra on the set of all stably continuous functions and uses it to define a tabulation
operation.

3.1 Individual Tabulations

First we show how to tabulate a single stably continuous function by associating
an individual barred coalgebra to it. Let f : SA → B be a function with a stable
modulus of continuity m : SA → N. We will assume that A is inhabited and has
a distinguished element, which we can repeat in a stream σ0.

We construct a coalgebra on the functor F X = B + (A → X) with carrier
the set of lists of elements of A:

αf : ListA → B + (A → ListA)

αf l =
{
inl (f (l ++σ0)) if m (l ++ σ0) ≤ length l
inr (λa. l ++[a]) otherwise.

The coalgebra checks whether the list l is sufficient to determine the result
given by f : if the modulus of continuity on a stream starting with l is at most the
length of l, then we know that f will depend only on it. In this case, the coalgebra
terminates with the value given by f . Else, it branches into new processes for all
elements of A, lengthening the list by appending the element at the end.

Observe that the functor F is a container with shapes B + 1, a shape for
each possible leaf in B, and a single shape for the continuation. The shapes in B
have no positions: the coalgebra terminates. The single continuation shape has
positions for all possible input elements, so the set of positions is A. The paths
in Pathα l are sequences of position choices, so in this case they are sequences of
elements of A. Any such path π can be padded out to a stream of elements of
A by appending σ0 to it: pad end = σ0, pad (a≺ π) = a≺ padπ.

Lemma 1. αf is a barred coalgebra.

A Coalgebraic View of Bar Recursion and Bar Induction 99

Proof. Given l : ListA and π : Pathα l, we prove that π ↓ by induction on
m σl,π − length l where σl,π = l ++ padπ.

– If m σl,π − length l = 0, then m σl,π ≤ length l, so σl,π =m σl,π
l ++σ0. By

stability, m (l ++σ0) = m σl,π ≤ length l. Therefore αf l = inl (f (l ++σ0)) and
π = end. In this case obviously the path is finite.

– Otherwise, if m σl,π − length l > 0, then m σl,π > length l. It is impossible
that m (l ++σ0) ≤ length l because, if it were, then also m σl,π = m (l ++σ0) ≤
length l by stability. So αf l = inr (λa. l ++[a]) and π = a≺ π′ for some a : A
and π′ : Pathα (l ++[a]).
Note that σl++[a],π′ = σl,π, so m σl++[a],π′ − length (l ++[a]) = m σπ − length l−1.
Therefore π′ ↓ by the induction hypothesis and so π ↓. ��
We can now invoke bar induction on this coalgebra to tabulate f .

Theorem 1. The coalgebraic bar induction principle implies that there exists an
element tabulatef : SFA,B such that apply (tabulatef)σ = f σ for every σ : SA.

Proof. If we apply the coalgebraic bar recursion principle to the statement of
Lemma 1, we obtain that αf is a recursive coalgebra.

Notice that SFA,B is the carrier of the initial algebra of the functor F :

SFA,B = μX.B + (A → X).

The copair of the two constructors [write, read] is the actual algebra.
We can apply the defining property of recursive coalgebras to deduce that

there exists a unique function tab making the following diagram commute.

ListA
αf ��

tab

��

B + (A → ListA)

F tab

��
SFA,B B + (A → SFA,B).

[write,read]
��

We can now define the Ghani, Hancock and Pattinson representation of f by

tabulatef : SFA,B

tabulatef = tab [].

Its correctness can be checked simply by observing that, in general,

apply (tab l)σ = f (l ++σ). ��

3.2 Global Tabulation

The second way to use coalgebraic bar recursion for tabulation is to define a
coalgebra on the set of all stably continuous functions:

F = {(f,m) | m : SA → N is a stable modulus of f : SA → B}.

100 V. Capretta and T. Uustalu

We use the same functor as for the individual coalgebras of the previous section:
F X = B + (A → X). The algebra simply tests whether a function must be
constant: if it has to be, it returns its value, otherwise it branches. It does so by
checking that the modulus is 0 for σ0; it must be then be 0 for all streams by
stability.

α : F → B + (A → F)

α (f,m) =
{
inl (f σ0) if m σ0 = 0
inr (λa. (fa,ma) otherwise

where
fa σ = f (a≺ σ) and ma σ = m (a≺ σ) − 1.

In the branching case, the coalgebra reads an element of the input, a, and
returns the function fa obtained by shifting f by a. The modulus ma of fa is
one less than the modulus of f , as we do not count the prepended element a.

Lemma 2. The coalgebra α is barred.

Proof. Let π : Pathα (f,m) be a path of the coalgebra. We prove that π ↓ by
induction on m σπ where σπ = padπ.

– If m σπ = 0, then also m σ0 = 0 by stability. So α (f,m) = inl (f σ0) and
π = end.

– If m σπ > 0, then also m σ0 > 0 by stability. So α (f,m) = inr (λa. (fa,ma)).
It must then be that π = a≺ π′ for some a : A and π′ : Pathα (fa,ma). If we
then compute the modulus of the stream associated to the tail of the path,
we obtain

ma σπ′ = m (a≺ σπ′) − 1 = m σπ − 1.

Therefore π′ ↓ by the induction hypothesis, so π ↓. ��
We can now invoke bar induction on this coalgebra to construct a global

tabulation operator.

Theorem 2. The coalgebraic bar induction principle implies that there exists
a function tabulate : F → SFA,B such that, for every continuous function with
stable modulus (f,m) : F and every stream σ : SA, we have

apply (tabulate (f,m))σ = f σ.

Proof. Applying the coalgebraic bar induction principle to the result of Lemma 2,
we obtain that (F , α) is a recursive coalgebra. In particular, the following dia-
gram has a unique solution.

F α ��

tabulate

��

B + (A → F)

F tabulate

��
SFA,B B + (A → SFA,B).

[write,read]
��

The operator tabulate maps every function to a correct tabulation tree for it.
We prove this by induction on m σ0:

A Coalgebraic View of Bar Recursion and Bar Induction 101

– If m σ0 = 0, then, by commutativity of the diagram, definition of α and
continuity,

apply (tabulate (f,m))σ = apply ([write, read] (F tabulate (α (f,m))))σ

= apply ([write, read] (inl (f σ0)))σ

= apply (write (f σ0))σ

= f σ0 = f σ.

– If m σ0 > 0, then, writing σ = a≺ σ′, by commutativity of the diagram, the
definition of α and the induction hypothesis,

apply (tabulate (f,m))σ = apply ([write, read] (F tabulate (α (f,m))))σ

= apply ([write, read] (inr (λa. tabulate (fa,ma))))σ

= apply (read (λa. tabulate (fa,ma))) (a≺ σ′)
= apply (tabulate (fa,ma)))σ′

= fa σ′ = f (a≺ σ′) = f σ. ��
We finish this discussion of tabulation of continuous functions on streams by

noting that we need bar recursion for tabulation because our notion of (stable)
continuity of a function (which is the standard notion of continuity) is path-
based. It considers one stream (choice sequence) at a time and requires that
reaching an answer takes a finite number of steps. Alternatively, we could define
continuity in a way that considers the entirety of possible evolutions of the choice
process at once. This would result in a stronger notion of continuity and then a
continuous function could be tabulated without assumptions like bar recursion.

Concretely, we could define continuity as a predicate on SA → B inductively
as follows.

∀σ, σ′ : SA. f σ = f σ′

f continuous
∀a : A. (λσ. f(a≺ σ)) continuous

f continuous

Tabulation would be immediate by structural recursion on the proof of continuity
(and not exciting at all).

4 Bar Induction

We now want to give a coinductive account of the traditional formulation of bar
induction. For this purpose, the notion of wellfounded coalgebra will be useful.
Intuitively, it is a coalgebra that admits proofs of properties of its elements by
induction. This notion was introduced by Taylor [20–22], who proved that, under
weak reasonable assumptions, recursiveness and wellfoundedness of a coalgebra
are equivalent. (In a previous article [8], we gave a review of the topic and
extended it to the dual case or corecursive vs. antifounded algebras.)

102 V. Capretta and T. Uustalu

Our formulation uses the next-time operator by Jacobs [15] on subobjects
(subsets) of the carrier of a coalgebra. Let (A,α) be a coalgebra of a functor F
that preserves pullbacks along monos on a category with pullbacks along monos.
(These requirements are satisfied by container functors.)

Definition 6. Let j : U ↪→ A be a subobject of the carrier of the coalgebra. The
next-time subobject, ntα j : ntα U ↪→ A is defined by the following pullback.

ntα U
α|j ��

� �

ntα j

��

F U� �

Fj

��
A α

�� F A

The idea of this definition is that, if U is a subset of A, then ntα U is the
subset of A consisting of the elements that, after an α transition, fall into U .

In particular, suppose F is a container functor, F = �S, P �. If a : A, then
α a : F A has the form (s, h) with s : S and h : P s → A. We have that a ∈ ntα U
if, for all p : P s, h p ∈ U .

ntα U = {a : A | ∀p : P s. h p ∈ U where (s, h) = α a}

Definition 7. The coalgebra (A,α) is wellfounded if, for every subobject j :
U ↪→ A, if ntα U factors through U , then j is an isomorphism. In diagram form
this says that

ntα U ��� �

ntα j
������������ U��

j
�����������

A

=⇒ j is iso.

In simpler terms, the coalgebra is wellfounded, if ntα U ⊆ U implies A ⊆ U .
Intuitively, the defining property of wellfounded coalgebras is a generalization

of the familiar induction principle associated to initial algebras. We want to prove
that all elements of A are in the subset U . And we do this by showing that, if
all “components” of an element a : A (given by α a) are in U , so is a.

We introduce the following principle.
Coalgebraic Bar Induction: Every barred coalgebra is wellfounded.

α barred ⇒ α wellfounded

This principle says that, if all paths of a coalgebra are finite, then we can prove
its properties by induction.

The converse implication holds without extra assumptions.

Proposition 2. Every wellfounded coalgebra is barred.

α wellfounded ⇒ α barred

A Coalgebraic View of Bar Recursion and Bar Induction 103

Proof. Assume that α is wellfounded and take U to be the subset of those ele-
ments of A whose all paths are finite:

U = {a : A | ∀π : Pathα a. π ↓}.

We then have that

ntα U = {a : A | ∀p : P s. ∀π′ : Pathα (h p). π′ ↓ where (s, h) = α a}.

Suppose a ∈ ntα U ; we want to prove that a ∈ U . So assume π : Pathα a; we will
show that this path is finite. Suppose α a = (s, h). If π = end, as ¬P s, then we
conclude immediately that π ↓. If π = p ≺ π′ for some p : P s and π′ : Pathα (h p),
then we know by assumption that π′ ↓ and consequently π ↓.

We proved that ntα U ⊆ U ; therefore, by wellfoundedness of α, we have that
A ⊆ U . So all paths are finite. ��

The traditional formulation of bar induction from Brouwer is about predi-
cates on lists of natural numbers.

Brouwer’s Bar Induction:

– Let Q be a decidable predicate on lists of natural numbers. Assume that Q is
a bar: ∀σ : SN. ∃n : N. Q (σ|n).

– Let R be a predicate on lists of naturals. Assume that Q implies R and R is
inductive: ∀l : ListN. (∀p : N. R (l ++[p])) → R l.

– Then R [] holds.

We can assume that Q and R are suffix closed: ∀l : ListN.∀p : N. Q l →
Q (l ++[p]) and similarly for R. Indeed, if they are not, we can use their suffix
closures. We can define Q̂ l to hold if ∃n ≤ length l. Q (l|n) and similarly for R̂.
The new predicates Q̂ and R̂ still satisfy the assumptions of the principle and
R̂ [] ↔ R []. Also, since Q is decidable, Q being a bar implies that it is also a
“tight” bar: ∀σ : SN. ∃n : N. (∀m : N.m < n → ¬Q (σ|m)) ∧ Q (σ|n).

Instead of N, one could consider other sets in Brouwer’s bar induction. The
case of B is known as the fan “theorem” (Brouwer thought that fan theorem
and bar induction were theorems, but both are just plausible axioms; the fan
theorem is a positive version of weak König’s lemma). In principle one could
replace N with any fixed set, but the question is how justified this is from the
constructive point of view. N is special in that it is a set that can be traversed
by an infinite process.

The traditional form of bar induction follows from the coalgebraic version.

Theorem 3. Coalgebraic bar induction implies Brouwer’s bar induction.

Proof. Given Q and R satisfying the assumptions of Brouwer’s bar induction,
we define a coalgebra structure of the functor F X = 1 + (N → X) on the set
ListN.

α : ListN → 1 + (N → ListN)

α l =
{
inl ∗ if Q l
inr (λp. l ++[p]) otherwise.

104 V. Capretta and T. Uustalu

The function α is welldefined, since Q is decidable. From the assumption that Q
is a bar, we conclude that α is barred. Indeed, let π : Pathα l for some list l; we
must prove that π is finite. We consider the stream σ = l ++ padπ (using, e.g., 0
as the distinguished element of N for padding). Since Q is decidable and a bar,
σ must have a shortest finite prefix σ|n satisfying Q. If n < length l, then σ|n is
a proper prefix of l. This forces that π = end, since suffix-closedness of Q gives
us that Q l. If n ≥ length l, then l ++π = σ|n ++ end. Either way, π is finite.

Thus we can apply coalgebraic bar induction and learn that α is wellfounded.
Let U = {l : ListN | R l}. (In type theory we can use the dependent pair type

Σl : ListN. R l.) We will prove that ntα U ⊆ U from where by wellfoundedness of
α it will follow that ListN ⊆ U .

By definition
ntU = {l : ListN | α l ∈ 1 + (N → U)}

We prove that if l ∈ ntU , then l ∈ U , by cases:

– If Q l holds, then α l = inl ∗. Since Q implies R, we also have R l, that is,
l ∈ U .

– If Q l does not hold, then α l = inr (λp. l ++[p]) with l ++[p] ∈ U for every p : N.
By the assumption that R is inductive, we can derive that l ∈ U .

Therefore, since α is wellfounded, we can deduce that ListN ⊆ U , that is,
∀l : ListN. R l.

In particular, R [], as desired. ��
From Brouwer’s bar induction, coalgebraic bar induction follows for the func-

tor F X = 1 + (N → X).

Theorem 4. Brouwer’s bar induction implies coalgebraic bar induction for
F X = 1 + (N → X).

Proof. Given any set A with a barred coalgebra structure α : A → 1 + (N → A)
and a subset U of A satisfying the assumption ntα U ⊆ U of coalgebraic bar
induction.

We define a function ↘ : A → ListN → 1 + A by

a ↘ [] = inr a

a ↘ (l ++[p]) =

⎧
⎨

⎩

inl ∗ if a ↘ l = inl ∗
inl ∗ if a ↘ l = inr a′ and α a′ = inl ∗
inr (f p) if a ↘ l = inr a′ and α a′ = inr f

For any a : A, we define Qa l to hold, if a ↘ l = inl ∗, and Ra l to hold, if
a ↘ l = inl ∗ or a ↘ l = inr a′ and a′ ∈ U .

It is immediate that, for any a : A, Qa is decidable and ∀l : ListN. Qa l → Ra l.
Moreover, as α is barred, Qa is also a bar.

From ntα U ⊆ U , it also follows that Ra is inductive for all a : A.
Hence, for any given a : A, we can apply Brouwer’s bar induction, and

conclude that Ra []. Since a ↘ [] = inr a, this means that a ∈ U . ��

A Coalgebraic View of Bar Recursion and Bar Induction 105

Coalgebraic bar induction follows from Brouwer’s bar induction also for gen-
eral container functors �S, P � for which Σs : S. P s is isomorphic to a decidable
subset of N. This is proved by “approximate” branchings of type �S, P � with
branchings of type FX = 1 + (N → X).

5 Conclusions

The explicit use of bar recursion and bar induction makes it possible to encap-
sulate non-constructive aspects of arguments about non-wellfounded trees and
stream functions.

In this paper, we have defined coalgebraic versions of bar recursion and bar
induction. We find that this perspective has at least two benefits. First, we
can speak of the ingredients involved in bar recursion and bar induction using
the terminology of modern theoretical computer science, especially coalgebra.
Second, we can avoid unnecessary coding when we want to deal with types of
trees with multiple types of branching nodes, with different numbers of children.

The notion of barred coalgebra neatly fills a useful position in the range of
properties that a coalgebra may satisfy. In reasoning about the total correct-
ness of programs, it is usual to give a proof of termination for all computations
and then prove by induction that some invariant holds. This application of well-
founded induction is classically justified from termination, but is not construc-
tively valid. Bar induction is the missing principle that provides the link. Since
coalgebraic methods are becoming standard tools in programming and reasoning
about correctness, we hope that the coalgebraic formulation of bar recursion will
establish itself as a useful tool in functional programming and type theory.

Directly applying the traditional forms of bar induction and bar recursion in
concrete cases often requires a lot of encoding, namely making all nodes to be
of the same type with the same number of children, which also makes all paths
infinite, all this artificially; termination is then characterized by a predicate with
the bar property. Our formulation is more liberal and requires no encoding: nodes
of different branching degrees are allowed and termination is simply modelled
by leaves.

Acknowledgements. Capretta is grateful to the School of Computer Science that
gave him a sabbatical semester. Uustalu was supported by the ERDF funded Estonian
national CoE project EXCS and ICT national programme project Coinduction (the
latter paid also Capretta’s visit to Tallinn), the Estonian Science Foundation grant no.
9475 and the Estonian Ministry of Education and Research institutional research grant
no. IUT-3313.

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Containers: constructing strictly positive
types. Theoret. Comput. Sci. 342(1), 3–27 (2005)

2. Adámek, J., Lücke, D., Milius, S.: Recursive coalgebras of finitary functors. The-
oret. Inform. Appl. 41(4), 447–462 (2007)

106 V. Capretta and T. Uustalu

3. Adámek, J., Milius, S., Moss, L.S., Sousa, L.: Well-pointed coalgebras. Log. Meth-
ods Comput. Sci. 9(3), article 2 (2013)

4. Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types: Per-
spectives in Logic. Cambridge University Press, Cambridge (2013)

5. Berardi, S., Bezem, M., Coquand, T.: On the computational content of the axiom
of choice. J. Symb. Log. 63(2), 600–622 (1998)

6. Berger, U., Oliva, P.: Modified bar recursion. Math. Struct. Comput. Sci. 16(2),
163–183 (2006)

7. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Inf.
Comput. 204(4), 437–468 (2006)

8. Capretta, V., Uustalu, T., Vene, V.: Corecursive algebras: a study of general struc-
tured corecursion. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS,
vol. 5902, pp. 84–100. Springer, Heidelberg (2009)

9. Dummett, M.: Elements of Intuitionism, 2nd edn. Oxford Science Publications,
Oxford (2000)

10. Escardó, M.H., Oliva, P.: Selection functions, bar recursion and backward induc-
tion. Math. Struct. Comput. Sci. 20(2), 127–168 (2010)

11. Escardó, M.H., Xu, C.: The inconsistency of a Brouwerian continuity principle with
the Curry-Howard interpretation. In: Altenkirch, T. (ed.) 13th International Con-
ference on Typed Lambda Calculi and Applications, TLCA 2015, Leibniz Inter-
national Proceedings in Informatics, vol. 38, pp. 153–164. Dagstuhl Publishing,
Saarbrücken (2015)

12. Gambino, N., Hyland, M.: Wellfounded trees and dependent polynomial functors.
In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp.
210–225. Springer, Heidelberg (2004)

13. Ghani, N., Hancock, P., Pattinson, D.: Continuous functions on final coalgebras.
Electron. Notes Theoret. Comput. Sci. 164(1), 141–155 (2006)

14. Hancock, P., Pattinson, D., Ghani, N.: Representations of stream processors using
nested fixed points. Log. Methods Comput. Sci. 5(3), article 9 (2009)

15. Jacobs, B.: The temporal logic of coalgebras via Galois algebras. Math. Struct.
Comput. Sci. 12(6), 875–903 (2002)

16. Kleene, S., Vesley, R.: The Foundations of Intuitionistic Mathematics: Especially
in Relation to Recursive Functions. North-Holland, Amsterdam (1965)

17. Nakata, K., Uustalu, T., Bezem, M.: A proof pearl with the fan theorem and bar
induction. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 353–368. Springer,
Heidelberg (2011)

18. Osius, G.: Categorical set theory: a characterization of the category of sets. J. Pure
Appl. Algebra 4(1), 79–119 (1974)

19. Spector, C.: Provably recursive functionals of analysis: a consistency proof of analy-
sis by an extension of principles in current intuitionistic mathematics. In: Dekker,
F.D.E. (ed.) Recursive Function Theory: Proceedings of Symposia in Pure Math-
ematics. vol. 5, pp. 1–27. American Mathematical Society, Providence, RI (1962)

20. Taylor, P.: Intuitionistic sets and ordinals. J. Symb. Logic 61(3), 705–744 (1996)
21. Taylor, P.: Towards a unified treatment of induction, I: The general recursion

theorem. Manuscript (1996)
22. Taylor, P.: Practical Foundations of Mathematics. Cambridge Studies in Advanced

Mathematics. Cambridge University Press, Cambridge (1999)
23. Troelstra, A.: Choice Sequences. Clarendon Press, Oxford (1977)

A New Foundation for Finitary Corecursion

The Locally Finite Fixpoint and Its Properties

Stefan Milius1, Dirk Pattinson2, and Thorsten Wißmann1(B)

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
thorsten.wissmann@fau.de

2 The Australian National University, Canberra, Australia

Abstract. This paper contributes to a theory of the behaviour of “finite-
state” systems that is generic in the system type. We propose that such
systems are modeled as coalgebras with a finitely generated carrier for
an endofunctor on a locally finitely presentable category. Their behav-
iour gives rise to a new fixpoint of the coalgebraic type functor called
locally finite fixpoint (LFF). We prove that if the given endofunctor pre-
serves monomorphisms then the LFF always exists and is a subcoalgebra
of the final coalgebra (unlike the rational fixpoint previously studied by
Adámek, Milius and Velebil). Moreover, we show that the LFF is char-
acterized by two universal properties: 1. as the final locally finitely gen-
erated coalgebra, and 2. as the initial fg-iterative algebra. As instances
of the LFF we first obtain the known instances of the rational fixpoint,
e.g. regular languages, rational streams and formal power-series, regular
trees etc. And we obtain a number of new examples, e.g. (realtime deter-
ministic resp. non-deterministic) context-free languages, constructively
S-algebraic formal power-series (and any other instance of the general-
ized powerset construction by Silva, Bonchi, Bonsangue, and Rutten)
and the monad of Courcelle’s algebraic trees.

1 Introduction

Coalgebras capture many types of state based system within a uniform and math-
ematically rich framework [39]. One outstanding feature of the general theory
is final semantics which gives a fully abstract account of system behaviour. For
example, coalgebraic modelling of deterministic automata (without a finiteness
restriction on state sets) yields the set of all formal languages as a final model,
and restricting to finite automata one precisely obtains the regular languages
[38]. This correspondence has been generalized to locally finitely presentable
categories [8,20], where finitely presentable objects play the role of finite sets,
leading to the notion of rational fixpoint that provides final semantics to all mod-
els with finitely presentable carrier [30]. It is known that the rational fixpoint
is fully abstract (identifies all behaviourally equivalent states) as long as finitely
presentable objects agree with finitely generated objects in the base category

S. Milius and T. Wißmann—Supported by Deutsche Forschungsgemeinschaft (DFG)
under project MI 717/5-1.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 107–125, 2016.
DOI: 10.1007/978-3-662-49630-5 7

108 S. Milius et al.

[12, Proposition 3.12]. While this is the case in some categories (e.g. sets, posets,
graphs, vector spaces, commutative monoids), it is currently unknown in other
base categories that are used in the construction of system models, for exam-
ple in idempotent semirings (used in the treatment of context-free grammars
[43]), in algebras for the stack monad (used for modelling configurations of stack
machines [23]); or it even fails, for example in the category of finitary monads on
sets (used in the categorical study of algebraic trees [7]), or Eilenberg-Moore cat-
egories for a monad in general (the target category of generalized determinization
[41], in which the above examples live). Coalgebras over a category of Eilenberg-
Moore algebras over Set in particular provide a paradigmatic setting: automata
that describe languages beyond the regular languages consist of a finite state
set, but their transitions produce side effects such as the manipulation of a
stack. These can be described by a monad, so that the (infinite) set of system
states (machine states plus stack content) is described by a free algebra (for
that monad) that is generated by the finite set of machine states. This is for-
malized by the generalized powerset construction [41] and interacts nicely with
the coalgebraic framework we present.

Technically, the shortcoming of the rational fixpoint is due to the fact that
finitely presentable objects are not closed under quotients, so that the rational
fixpoint itself may fail to be a subcoalgebra of the final coalgebra and so identi-
fies too little behaviour. The main conceptual contribution of this paper is the
insight that also in cases where finitely presentable and finitely generated do
not agree, the locally finite fixpoint provides a fully abstract model of finitely
generated behaviour. We give a construction of the locally finite fixpoint, and
support our claim both by general results and concrete examples: we show that
under mild assumptions, the locally finite fixpoint always exists, and is indeed
a subcoalgebra of the final coalgebra. Moreover, we give a characterization of
the locally finite fixpoint as the initial iterative algebra. We then instantiate our
results to several scenarios studied in the literature.

First, we show that the locally finite fixpoint is universal (and fully abstract)
for the class of systems produced by the generalized powerset construction over
Set: every determinized finite-state system induces a unique homomorphism to the
locally finite fixpoint, and the latter contains precisely the finite-state behaviours.

Applied to the coalgebraic treatment of context-free languages, we show that
the locally finite fixpoint yields precisely the context-free languages, and real-
time deterministic context-free languages, respectively, when modelled using
algebras for the stack monad of [23]. For context-free languages weighted in
a semiring S, or equivalently for constructively S-algebraic power series [36], the
locally finite fixpoint comprises precisely those, by phrasing the results of Winter
et al. [44] in terms of the generalized powerset construction. Our last example
shows the applicability of our results beyond categories of Eilenberg-Moore alge-
bras over Set, and we characterize the monad of Courcelle’s algebraic trees over
a signature [7,16] as the locally finite fixpoint of an associated functor (on a
category of monads), solving an open problem of [7].

The work presented here is based on the third author’s master thesis in [45].
Most proofs are omitted; they can be found in the full version [33] of our paper.

A New Foundation for Finitary Corecursion 109

2 Preliminaries and Notation

Locally Finitely Presentable Categories. A filtered colimit is the colimit of
a diagram D → C where D is filtered (every finite subdiagram has a cocone in
D) and directed if D is additionally a poset. Finitary functors preserve filtered
(equivalently directed) colimits. Objects C ∈ C are finitely presentable (fp) if
the hom-functor C(C,−) preserves filtered (equivalently directed) colimits, and
finitely generated (fg) if C(C,−) preserves directed colimits of monos (i.e. colimits
of directed diagrams where all connecting morphisms are monic). Clearly any
fp object is fg, but not vice versa. Also, fg objects are closed under strong epis
(quotients) which fails for fp objects in general. A cocomplete category is locally
finitely presentable (lfp) if the full subcategory Cfp of finitely presentable objects
is essentially small, i.e. is up to isomorphism only a set, and every object C ∈ C
is a filtered colimit of a diagram in Cfp. We refer to [8,20] for further details.

It is well known that the categories of sets, posets and graphs are lfp with
finitely presentable objects precisely the finite sets, posets, graphs, respectively.
The category of vector spaces is lfp with finite-dimensional spaces being fp.
Every finitary variety is lfp (i.e. an equational class of algebras induced by finite-
arity operations or equivalently the Eilenberg-Moore category for a finitary Set-
Monad, see Sect. 4.1 later). The finitely generated objects are the finitely gener-
ated algebras, and finitely presentable objects are algebras specified by finitely
many generators and relations. This includes the categories of groups, monoids,
(idempotent) semirings, semi-modules, etc. Every lfp category has mono/strong
epi factorization [8, Proposition 1.16], i.e. every f factors as f = m · e with m
mono (denoted by �), e strong epi (denoted by �), and we call the domain
Im(f) of e the image of f . Any strong epi e has the diagonal fill-in property, i.e.
m · g = h · e with m mono and e strong epi gives a unique d such that m · d = h
and g = d · e.

Coalgebras. If H : C → C is an endofunctor, H-coalgebras are pairs (C, c) with
c : C → HC, and C is the carrier of (C, c). Homomorphisms f : (C, c) → (D, d)
are maps f : C → D such that Hf · c = d · f . This gives a category denoted by
CoalgH. If its final object exists then this final H-coalgebra (νH, τ) represents a
canonical domain of behaviours of H-typed systems, and induces for each (C, c)
a unique homomorphism, denoted by c†, giving semantics to the system (C, c).
The final coalgebra always exists provided C is lfp and H is finitary. The forgetful
functor CoalgH → C creates colimits and reflects monos and epis. A morphism
f in CoalgH is mono-carried (resp. epi-carried) if the underlying morphism in
C is monic (resp. epic). Strong epi/mono factorizations lift from C to CoalgH
whenever H preserves monos yielding epi-carried/mono-carried factorizations.
A directed union of coalgebras is the colimit of a directed diagram in CoalgH
where all connecting morphisms are mono-carried.

The Rational Fixpoint. For C lfp and H : C → C finitary let CoalgfpH denote
the full subcategory of CoalgH of coalgebras with fp carrier, and CoalglfpH the
full subcategory of CoalgH of coalgebras that arise as filtered colimits of coal-
gebras with fp carrier [30, Corollary III.13]. The coalgebras in CoalglfpH are

110 S. Milius et al.

called lfp coalgebras and for C = Set those are precisely the locally finite coal-
gebras (i.e. those coalgebras where every element is contained in a finite sub-
coalgebra). The final lfp coalgebra exists and is the colimit of the inclusion
CoalgfpH ↪→ CoalgH, and it is a fixpoint of H (see [6]) called the rational fix-
point of H. Here are some examples: the rational fixpoint of a polynomial set
functor associated to a finitary signature Σ is the set of rational Σ-trees [6],
i.e. finite and infinite Σ-trees having, up to isomorphism, finitely many subtrees
only, and one obtains rational weighted languages for Noetherian semirings S
for a functor on the category of S-modules [12], and rational λ-trees for a func-
tor on the category of presheaves on finite sets [2] or for a related functor on
nominal sets [34]. If the classes of fp and fg objects coincide in C, then the ratio-
nal fixpoint is a subcoalgebra of the final coalgebra [12, Theorem 3.12]. This is
the case in the above examples, but not in general, see [12, Example 3.15] for
a concrete example where the rational fixpoint does not identify behaviourally
equivalent states. Conversely, even if the classes differ, the rational fixpoint can
be a subcoalgebra, e.g. for any constant functor.

Iterative Algebras. If H : C → C is an endofunctor, an H-algebra (A, a :
HA → A) is iterative if every flat equation morphism e : X → HX + A where
X is an fp object has a unique solution, i.e. if there exists a unique e† : X → A
such that e† = [a, idA] · (He† +idA) ·e. The rational fixpoint is also characterized
as the initial iterative algebra [6] and is the starting point of the coalgebraic
approach to Elgot’s iterative theories [18] and to the iteration theories of Bloom
and Ésik [3,4,6,11].

3 The Locally Finite Fixpoint

The locally finite fixpoint can be characterized similarly to the rational fixpoint,
but with respect to coalgebras with finitely generated (not finitely presentable)
carrier. We show that the locally finite fixpoint always exists, and is a subcoalge-
bra of the final coalgebra, i.e. identifies all behaviourally equivalent states. As a
consequence, the locally finite fixpoint provides a fully abstract notion of finitely
generated behaviour. From now on, we rely on the following:

Assumption 3.1. Throughout the rest of the paper we assume that C is an lfp
category and that H : C → C is finitary and preserves monomorphisms.

As for the rational fixpoint, we denote the full subcategory of CoalgH comprising
all coalgebras with finitely generated carrier by CoalgfgH and have the following
notion of locally finitely generated coalgebra.

Definition 3.2. A coalgebra X
x−→ HX is called locally finitely generated (lfg)

if for all f : S → X with S finitely generated, there exist a coalgebra p : P → HP
in CoalgfgH, a coalgebra morphism h : (P, p) → (X,x) and some f ′ : S → P
such that h · f ′ = f . CoalglfgH ⊆ CoalgH denotes the full subcategory of lfg
coalgebras.

A New Foundation for Finitary Corecursion 111

Equivalently, one can characterize lfg coalgebras in terms of subobjects and
subcoalgebras, making it a generalization of of local finiteness in Set, i.e. the
property of a coalgebra that every element is contained in a finite subcoalgebra.

Lemma 3.3. X
x−→ HX is an lfg coalgebra iff for all fg subobjects S

f
X, there

exist a subcoalgebra h : (P, p) � (X,x) and a mono f ′ : S � P with h · f ′ = f ,
i.e. S is a subobject of P .

Proof. (⇒) Given some mono f : S � X, factor the induced h into some strong
epi-carried and mono-carried homomorphisms and use that fg objects are closed
under strong epis. (⇐) Factor f : S → X into an epi and a mono g : Im(f) � X
and use the diagonal fill-in property for g. ��
Evidently all coalgebras with finitely generated carriers are lfg. Moreover, lfg
coalgebras are precisely the filtered colimits of coalgebras from CoalgfgH.

Proposition 3.4. Every filtered colimit of coalgebras from CoalgfgH is lfg.

Proof (Sketch). One first proves that directed unions of coalgebras from
CoalgfgH are lfg. Now given a filtered colimit ci : Xi → C where Xi

are coalgebras in CoalgfgH, one epi-mono factorizes every colimit injection:

ci = (Xi Ti Cei mi). Using the diagonalization of the factorization one sees
that the Ti form a directed diagram of subobjects of C. Furthermore C is the
directed union of the Ti and therefore an lfg coalgebra as desired. ��
Proposition 3.5. Every lfg coalgebra (X,x) is a directed colimit of its subcoal-
gebras from CoalgfgH.

Proof. Recall from [8, ProofIofTheorem 1.70] that X is the colimit of the diagram
of all its finitely generated subobjects. Now the subdiagram given by all sub-
coalgebras of X is cofinal. Indeed, this follows directly from the fact that (X,x)
is an lfg coalgebra: for every subobject S � X, S fg, we have a subcoalgebra of
(X,x) in CoalgfgH containing S. ��
Corollary 3.6. The lfg coalgebras are precisely the filtered colimits, or equiva-
lently directed unions, of coalgebras with fg carrier.

As a consequence, a coalgebra is final in CoalglfgF if there is a unique morphism
from every coalgebra with finitely generated carrier.

Proposition 3.7. An lfg coalgebra L is final in CoalglfgH iff for every for every
coalgebra X in CoalgfgH there exists a unique coalgebra morphism from X to L.

The proof is analogous to [30, Theorem 3.14]; the full argument can be found
in [33]. Cocompleteness of C ensures that the final lfg coalgebra always exists.

Theorem 3.8. The category CoalglfgH has a final object, and the final lfg coal-
gebra is the colimit of the inclusion CoalgfgH ↪→ CoalglfgH.

112 S. Milius et al.

Proof. By Corollary 3.6, the colimit of the inclusion CoalgfgH ↪→ CoalglfgH is
the same as the colimit of the entire CoalglfgH. And the latter is clearly the final
object of CoalglfgH. ��
This theorem provides a construction of the final lfg coalgebra collecting precisely
the behaviours of the coalgebras with fg carriers. In the following we shall show
that this construction does indeed identify precisely behaviourally equivalent
states, i.e. the final lfg coalgebra is always a subcoalgebra of the final coalgebra.
Just like fg objects are closed under quotients – in contrast to fp objects – we
have a similar property of lfg coalgebras:

Lemma 3.9. Lfg coalgebras are closed under strong quotients, i.e. for every
strong epi carried coalgebra homomorphisms X � Y, if X is lfg then so is Y.

The failure of this property for lfp coalgebras is the reason why the rational
fixpoint is not necessarily a subcoalgebra of the final coalgebra and in particu-
lar the rational fixpoint in [12, Example 3.15] is an lfp coalgebra for which the
property fails.

Theorem 3.10. The final lfg H-coalgebra is a subcoalgebra of the final H-
coalgebra.

Proof. Let (L, �) be the final lfg coalgebra. Consider the unique coalgebra mor-
phism L → νH and take its factorization:

(L, �) (I, i) (νH, τ)
e

id
m

i†
, with e strong epi in C.

By Lemma 3.9, I is an lfg coalgebra and so by finality of L we have the coalgebra
morphism i† such that idL = i† · e. It follows that e is monic and therefore
an iso. ��
In other words, the final lfg H-coalgebra collects precisely the finitely generated
behaviours from the final H-coalgebra. We now show that the final lfg coalgebra
is a fixpoint of H which hinges on the following:

Lemma 3.11. For any lfg coalgebra C
c−→ HC, the coalgebra HC

Hc−−→ HHC is lfg.

Proof. Consider f : S → HC with S finitely generated. As C is lfp we know
that HC is the colimit of its fg subobjects, and so f : S → HC factors through
some subobject inq : Q � HC with Q fg and f = inq · f ′. On the other hand,
(C, c) is lfg, i.e. the directed union of its subcoalgebras from CoalgfgH. Then,
since H is finitary and mono-preserving, HC

c−→ HHC is also a directed union
and the morphism inq : Q → HC factors through some HP

Hp−−→ HHP with
(P, p) ∈ CoalgfgH via inp : (P, p) � (C, c), i.e. H inp · q = inq. Finally, we can
construct a coalgebra with fg carrier

Q + P
[q,p]−−−→ HP

Hinr−−−→ H(Q + P)

and a coalgebra homomorphism H inp · [q, p] : Q + P → HC. In the diagram

A New Foundation for Finitary Corecursion 113

S HC HHC

HP HHP

Q Q + P HP H(Q + P)

f

f ′

Hc

Hp

H inp HHinp

inq

q

inl [q,p]

[q,p]

H inr

H[q,p]

H(H inp·[q,p])

every part trivially commutes, so H inp · [q, p] is the desired homomorphism. ��
So with a proof in virtue to Lambek’s Lemma [28, Lemma 2.2], we obtain the
desired fixpoint:

Theorem 3.12. The carrier of the final lfg H-coalgebra is a fixpoint of H.

We denote the above fixpoint by (ϑH, �) and call it the locally finite fixpoint
(LFF) of H. In particular, the LFF always exists under Assumption 3.1, provid-
ing a finitary corecursion principle.

Remark 3.13. As we mentioned in the introduction the rational fixpoint of the
finitary functor H is the initial iterative algebra for H. A similar algebraic char-
acterization is possible for the LFF. One simply replaces the fp object X in the
definition of a flat equation morphism by an fg object to obtain the notion of an
fg-iterative algebra.

Theorem 3.14. The LFF is the initial fg-iterative H-algebra.

For details, see the full version [33] of our paper or [45].

Relation to the Rational Fixpoint. There are examples, where the rational
fixpoint is not a subcoalgebra of the final coalgebra. In categories, where fp and
fg objects coincide, the rational fixpoint and the LFF coincide as well (cf. the
respective colimit-construction in Sect. 2 and Theorem 3.8). In this section we
will see, under slightly stronger assumptions, that fg-carried coalgebras are quo-
tients of fp-carried coalgebras, and in particular the locally finite fixpoint is a
quotient of the rational fixpoint: namely its image in the final coalgebra.

Assumption 3.15. In addition to Assumption 3.1, assume that in the base cat-
egory C, every finitely presentable object is a strong quotient of a finitely pre-
sentable strong epi projective object and that the endofunctor H also preserves
strong epis.

The condition that every fg object is the strong quotient of a strong epi projective
often is phrased as having enough strong epi projectives [14]. This assumption is
apparently very strong but still is met in many situations:

Example 3.16

– In categories in which all (strong) epis are split, every object is projective and
any endofunctor preserves epis, e.g. in Set or VecK .

114 S. Milius et al.

– In the category of finitary endofunctors Funf(Set), all polynomial functors
are projective. The finitely presentable functors are quotients of polynomial
functors HΣ , where Σ is a finite signature.

– In the Eilenberg-Moore category SetT for a finitary monad T , strong epis are
surjective T -algebra homomorphisms, and thus preserved by any endofunctor.
In SetT , every free algebra TX is projective; this is easy to see using the
projectivity of X in Set. Every finitely generated object of SetT is a strong
quotient of some free algebra TX with X finite. For more precise definitions,
see Sect. 4.1 later.

Proposition 3.17. Every coalgebra in CoalgfgH is a strong quotient of a coal-
gebra with finitely presentable carrier.

Theorem 3.18. ϑH is the image of the rational fixpoint 	H in the final coalgebra.

Proof. Consider the factorization (H, r)
e� (B, b)

m� (νH, τ). Since 	H is the
colimit of all fp carried H-coalgebras it is an lfg coalgebra by Proposition 3.4 using
that fp objects are also fg. Hence, by Lemma 3.9 the coalgebra B is lfg, too. By
Proposition 3.7 it now suffices to show that from every (X,x) ∈ CoalgfgH there
exists a unique coalgebra morphism into (B, b). Given (X,x) in CoalgfgH, it is the
quotient q : (P, p) � (X,x) of an fp-carried coalgebra by Proposition 3.17. Hence,
we obtain a unique coalgebra morphism p† : (P, p) → (H, r). By finality of νH,
we have m ·e ·p† = x† ·q (with x† : (X,x) → (νH, τ)). So the diagonal fill-in prop-
erty induces a homomorphism (X,x) → (B, b), being the only homomorphism
(X,x) → (B, b) by the finality of νH and because m is monic. ��

4 Instances of the Locally Finite Fixpoint

We will now present a number of instances of the LFF. First note, that all the
known instances of the rational fixpoint (see e.g. [6,12,30] are also instances
of the locally finite fixpoint, because in all those cases the fp and fg objects
coincide. For example, the class of regular languages is the rational fixpoint of
2× (−)Σ on Set. In this section, we will study further instances of the LFF that
are most likely not instances of the rational fixpoint and which – to the best of
our knowledge – have not been characterized by a universal property yet:

1. Behaviours of finite-state machines with side-effects as considered by the gen-
eralized powerset construction (cf. Sect. 4.1), particularly the following.
(a) Deterministic and ordinary context-free languages obtained as the behav-

iours of deterministic and non-deterministic stack-machines, respectively.
(b) Constructively S-algebraic formal power series, i.e. the “context-free” sub-

class of weighted languages with weights from a semiring S, yielded from
weighted context-free grammars.

2. The monad of Courcelle’s algebraic trees.

A New Foundation for Finitary Corecursion 115

4.1 Generalized Powerset Construction

The determinization of a non-deterministic automaton using the powerset con-
struction is an instance of a more general framework, described by Silva, Bonchi,
Bonsangue, and Rutten [41] based on an observation by Bartels [10] (see also
Jacobs [26]). In that generalized powerset construction, an automaton with side-
effects is turned into an ordinary automaton by internalizing the side-effects in
the states. The LFF interacts well with this construction, because it precisely
captures the behaviours of finite-state automata with side effects. The notion of
side-effect is formalized by a monad, which induces the category, in which the
LFF is considered.

In the following we assume that readers are familiar with monads and
Eilenberg-Moore algebras (see e.g. [29] for an introduction). For a monad T
on C we denote by CT the category of Eilenberg-Moore algebras. Recall from [8,
Corollary 2.75] that if C is lfp (in most of our examples C is Set) and T is finitary
then CT is lfp, too, and for every fp object X the free Eilenberg-Moore algebra
TX is fp in CT . In all the examples we consider below, the classes of fp and fg
objects either provably differ or it is still unknown whether these classes coincide.

Example 4.1. In Sects. 4.4 and 4.5 we are going to make use of Moggi’s exception
monad transformer (see e.g. [15]). Let us recall that for a fixed object E, the
finitary functor (−) + E together with the unit ηX = inl : X → X + E and
multiplication μX = idX + [idE , idE] : X + E + E → X + E form a finitary
monad, the exception monad. Its algebras are E-pointed objects, i.e. objects
X, together with a morphism E → X, and homomorphisms are morphisms
preserving the pointing. So the induced Eilenberg-Moore category is just the
slice category C(−)+E ∼= E/C.

Now, given any monad T we obtain a new monad T (− + E) with obvious
unit and multiplication. An Eilenberg-Moore algebra for T (− + E) consists of
an Eilenberg-Moore algebra for T and an E-pointing, and homomorphisms are
T -algebra homomorphisms preserving the pointing [25].

Now an automaton with side-effects is modelled as an HT -coalgebra, where
T is a finitary monad on C providing the type of side-effect. For example, for
HX = 2×XΣ , where Σ is an input alphabet, 2 = {0, 1} and T the finite powerset
monad on Set, HT -coalgebras are non-deterministic automata. However, the
coalgebraic semantics using the final HT -coalgebra does not yield the usual
language semantics of non-deterministic automata. To obtain this one considers
the final coalgebra of a lifting of H to CT . Denote by U : CT → C the canonical
forgetful functor.

Definition 4.2. For a functor H : C → C and a monad T : C → C, a lifting of
H is a functor HT : CT → CT such that H · U = U · HT .

If such a (not necessarily unique) lifting exists, the generalized powerset con-
struction transforms an HT -coalgebra into a HT -coalgebra on CT : For a coal-
gebra x : X → HTX, HTX carries an Eilenberg-Moore algebra, and one uses

116 S. Milius et al.

freeness of the Eilenberg-Moore algebra TX to obtain a canonical T -algebra
homomorphism x� : (TX, μT) → HT (TX, μT). The coalgebraic language seman-
tics of (X,x) is then given by X

ηX−−→ TX
x�†
−−→νHT , i.e. by composing the unique

coalgebra morphism induced by x� with ηX . This construction yields a func-
tor T ′ : Coalg(HT) → CoalgHT mapping coalgebras X

x−→ HTX to x� and
homomorphisms f to Tf (see e.g. [12, ProofofLemma 3.27] for a proof).

Now our aim is to show that the LFF of HT characterizes precisely the
coalgebraic language semantics of all fp-carried HT -coalgebras. As the right
adjoint U preserves monos and is faithful, we know that HT preserves monos,
and as T is finitary, filtered colimits in CT are created by the forgetful functor to
C, and we therefore see that HT is finitary. Thus, by Theorem3.8, ϑHT exists
and is a subcoalgebra of νHT . By [37] and [10, Corollary 3.4.19], we know that
νHT is carried by νH equipped with a canonical algebra structure.

Now let us turn to the desired characterization of ϑHT . Formally, the coalge-
braic language semantics of all fp-carried HT -coalgebras is collected by forming

the colimit k : K → HK of the diagram CoalgfgHT
T ′
−→ CoalgHT U−→ CoalgH.

This coalgebra K is not yet a subcoalgebra of νH (for C = Set that means, not
all behaviourally equivalent states are identified in K), but taking its image in
νH we obtain the LFF:

Proposition 4.3. The image (I, i) of the unique coalgebra morphism k† : K →
νHT is precisely the locally finite fixpoint of the lifting HT .

One can also directly take the union of all desired behaviours, for C = Set:

Theorem 4.4. The locally finite fixpoint of the lifting HT comprises precisely
the images of determinized HT -coalgebras:

ϑHT =
⋃

x:X→HTX
X finite

x�†[TX] =
⋃

x:X→HTX
X finite

x�† · ηT
X [X] ⊆ νHT . (1)

This result suggests that the locally finite fixpoint is the right object to consider
in order to represent finite behaviour. We now instantiate the general theory
with examples from the literature to characterize several well-known notions as
LFF.

4.2 The Languages of Non-deterministic Automata

Let us start with a simple standard example. We already mentioned that non-
deterministic automata are coalgebras for the functor X
→ 2 × Pf(X)Σ . Hence
they are HT -coalgebras for H = 2 × (−)Σ and T = Pf the finite powerset
monad on Set. The above generalized powerset construction then instantiates
as the usual powerset construction that assigns to a given non-deterministic
automaton its determinization.

Now note that the final coalgebra for H is carried by the set L = P(Σ∗) of
all formal languages over Σ with the coalgebra structure given by o : L → 2 with

A New Foundation for Finitary Corecursion 117

o(L) = 1 iff L contains the empty word and t : L → LΣ with t(L)(s) = {w |
sw ∈ L} the left language derivative. The functor H has a canonical lifting HT

on the Eilenberg-Moore category of Pf, viz. the category of join semi-lattices.
The final coalgebra νHT is carried by all formal languages with the join semi-
lattice structure given by union and ∅ and with the above coalgebra structure.
Furthermore, the coalgebraic language semantics of x : X → HTX assigns
to every state of the non-deterministic automaton X the language it accepts.
Observe that join semi-lattices form a so-called locally finite variety, i.e. the
finitely presentable algebras are precisely the finite ones. Hence, Theorem 4.4
states that the LFF of HT is precisely the subcoalgebra of νHT formed by all
languages accepted by finite NFA, i.e. regular languages.

Note that in this example the LFF and the rational fixpoint coincide since
both fp and fg join semi-lattices are simply the finite ones. Similar character-
izations of the coalgebraic language semantics of finite coalgebras follow from
Theorem 4.4 in other instances of the generalized powerset construction from [41]
(cf. e.g. the treatment of the behaviour of finite weighted automata in [12]).

We now turn to examples that, to the best of our knowledge, cannot be
treated using the rational fixpoint.

4.3 The Behaviour of Stack Machines

Push-down automata are finite state machines with infinitely many configu-
rations. It is well-known that deterministic and non-deterministic pushdown
automata recognize different classes of context-free languages. We will character-
ize both as instances of the locally finite fixpoint, using the results from [23] on
stack machines, which can push or read multiple elements to or from the stack
in a single transition, respectively.

That is, a transition of a stack machine in a certain state consists of reading an
input character, going to a successor state based on the stack’s topmost elements
and of modifying the topmost elements of the stack. These stack operations are
captured by the stack monad.

Definition 4.5 (Stack monad, [22, Proposition 5]). For a finite set of stack
symbols Γ , the stack monad is the submonad T of the store monad (− × Γ ∗)Γ ∗

for which the elements 〈r, t〉 of TX ⊆ (X × Γ ∗)Γ ∗ ∼= XΓ ∗ × (Γ ∗)Γ ∗
satisfy the

following restriction: there exists k depending on r, t such that for every w ∈ Γ k

and u ∈ Γ ∗, r(wu) = r(w) and t(wu) = t(w)u.

Note that the parameter k gives a bound on how may of the topmost stack cells
the machine can access in one step.

Using the stack monad, stack machines are HT -coalgebras, where H = B ×
(−)Σ is the Moore automata functor for the finite input alphabet Σ and the set
B of all predicates mapping (initial) stack configurations to output values from
2, taking only the topmost k elements into account: B = {p ∈ 2Γ ∗ | ∃k ∈ N0 :
∀w, u ∈ Γ ∗, |w| ≥ k : p(wu) = p(w)} ⊆ 2Γ ∗

.
The final coalgebra νH is carried by BΣ∗

which is (modulo power laws) a
set of predicates, mapping stack configurations to formal languages. Goncharov

118 S. Milius et al.

et al. [23] show that H lifts to SetT and conclude that finite-state HT -coalgebras
match the intuition of deterministic pushdown automata without spontaneous
transitions. The languages accepted by those automata are precisely the real-
time deterministic context-free languages; this notion goes back to Harrison and
Havel [24]. We obtain the following, with γ0 playing the role of an initial symbol
on the stack:

Theorem 4.6. The locally finite fixpoint of HT is carried by the set of all maps
f ∈ BΣ∗

such that for any fixed γ0 ∈ Γ , {w ∈ Σ∗ | f(w)(γ0) = 1} is a real-time
deterministic context-free language.

Proof. By [23, Theorem 5.5], a language L is a real-time deterministic context-free
language iff there exists some x : X → HTX, X finite, with its determinization
x� : TX → HTX and there exist s ∈ X and γ0 ∈ Γ such that f = x�† · ηT

X(s) ∈
BΣ∗

and f(w)(γ0) = 1 for all w ∈ Σ∗. The rest follows by (1). ��
Just as for pushdown automata, the expressiveness of stack machines increases
when equipping them with non-determinism. Technically, this is done by consid-
ering the non-deterministic stack monad T ′, i.e. T ′ denotes a submonad of the
non-deterministic store monad Pf(−×Γ ∗)Γ ∗

, as described in [23, Sect. 6]. In the
non-deterministic setting, a similar property holds, namely that the determinized
HT ′-coalgebras with finite carrier describe precisely the context-free languages
[23, Theorem 6.5]. Combine this with (1):

Theorem 4.7. The locally finite fixpoint of HT ′
is carried by the set of all maps

f ∈ BΣ∗
such that for any fixed γ0 ∈ Γ , {w ∈ Σ∗ | f(w)(γ0) = 1} is a context-

free language.

4.4 Context-Free Languages and Constructively S-Algebraic Power
Series

One generalizes from formal (resp. context-free) languages to weighted formal
(resp. context-free) languages by assigning to each word a weight from a fixed
semiring. More formally, a weighted language – a.k.a. formal power series – over
an input alphabet X is defined as a map X∗ → S, where S is a semiring. The set
of all formal power series is denoted by S〈〈X〉〉. Ordinary formal languages are
formal power series over the boolean semiring B = {0, 1}, i.e. maps X∗ → {0, 1}.

An important class of formal power series is that of constructively S-algebraic
formal power series. We show that this class arises precisely as the LFF of the
standard functor for deterministic Moore automata H = S × (−)Σ , but on an
Eilenberg-Moore category of a Set monad. As a special case, constructively B-
algebraic series are the context-free weighted languages and are precisely the
LFF of the automata functor in the category of idempotent semirings.

The original definition of constructively S-algebraic formal power series goes
back to Fliess [19], see also [17]. Here, we use the equivalent coalgebraic charac-
terization by Winter et al. [44].

Let S〈X〉 ⊆ S〈〈X〉〉 the subset of those maps, that are 0 for all but finitely
many w ∈ X∗. If S is commutative, then S〈−〉 yields a finitary monad and

A New Foundation for Finitary Corecursion 119

thus also T = S〈− + Σ〉 by Example 4.1. The algebras for S〈−〉 are associative
S-algebras (over the commutative semiring S), i.e. S-modules together with a
monoid structure that is a module morphism in both arguments. The algebras
for T are Σ-pointed S-algebras. The following notions are special instances of
S-algebras.

Example 4.8. For S = B = {0, 1}, one obtains idempotent semirings as B-
algebras, for S = N semirings, and for S = Z ordinary rings.

Winter et al. [44, Proposition 4] show that the final H-coalgebra is carried by
S〈〈Σ〉〉 and that constructively S-algebraic series are precisely those elements of
S〈〈Σ〉〉 that arise as the behaviours of those coalgebra c : X → HS〈X〉 with finite
X, after determinizing them to some c� : S〈X〉 → HS〈X〉 (see [44, Theorem 23]).

However, this determinization is not directly an instance of the generalized
powerset construction. We shall show that the same behaviours can be obtained
by using the standard generalized powerset construction with an appropriate
lifting of H to T -algebras. Having an S-algebra structure on A and a Σ-pointing
j : Σ → A we need to define another S-algebra structure and Σ-pointing on
HA = S ×AΣ . While the S-module structure is just point-wise, we need to take
care when multiplying two elements from HA. To this end we first we define the
operation [−,−] : S × AΣ → A by

[o, δ] := i(o) +
∑

b∈Σ

(
j(b) · δ(b)

)
,

where i : S → A is the canonical map with i(s) = s ·1 with 1 the neutral element
of the monoid on A. The idea is that [o, δ] acts like a state with output o and
derivation δ. The multiplication on HA = S × AΣ is then defined by

(o1, δ1) ∗ (o2, δ2) :=
(
o1 · o2, a
→ δ1(a) · [o2, δ2] + i(o1) · δ2(a)

)
. (2)

The Σ-pointing is the obvious: a
→ (0, 	a) where 	a(a) = 1 and 	a(b) = 0 for
a �= b.

Lemma 4.9. For any w ∈ A in SetT and any HT -coalgebra structure c : A →
HT A, w and [c(w)] are behaviourally equivalent in Set.

Given a coalgebra c : X → HS〈X〉, Winter et al. [44, Proposition 14] determinize
c to some ĉ = 〈ô, δ̂〉 : S〈X〉 → HS〈X〉 with the property that for any v, w ∈
S〈X〉,

ô(v ∗ w) = ô(v) · ô(w) and δ̂(v ∗ w, a) = δ̂(v, a) ∗ w + ô(v) ∗ δ̂(w, a), (3)

and such that ĉ is a S-module homomorphism. However, the generalized powerset
construction w.r.t. T yields a coalgebra c� : S〈X +Σ〉 → HS〈X +Σ〉. The above
property, together with Lemma 4.9 and (2) implies that ĉ and c� are essentially
the same coalgebra structures:

120 S. Milius et al.

Lemma 4.10. In Set, u ∈ (S〈X〉, ĉ) and S〈inl〉(u) ∈ (S〈X + Σ〉, c�) are behav-
iourally equivalent.

It follows that ĉ† = c�† · S〈inl〉 and thus their images in νH are identical. Hence,
a formal power series is constructively S-algebraic iff it is in the image of some
c�† · S〈inl〉, and by (1), iff it is in the locally finite fixpoint of HT .

4.5 Courcelle’s Algebraic Trees

+
z +

×
� z

+
×

� ×
� z

...

Fig. 1. Solution of
ϕ(z) = z +ϕ(�×z)

For a fixed signature Σ of so called givens, a recursive pro-
gram scheme (or rps, for short) contains mutually recur-
sive definitions of new operations ϕ1, . . . , ϕk (with respec-
tive arities n1, . . . , nk). The recursive definition of ϕi may
involve symbols from Σ, operations ϕ1, . . . , ϕk and ni vari-
ables x1, . . . , xni

. The (uninterpreted) solution of an rps
is obtained by unravelling these recursive definitions, pro-
ducing a possibly infinite Σ-tree over x1, . . . , xni

for each
operation ϕi. Figure 1 shows an rps over the signature
Σ = {�/0, ×/2,+/2} and its solution. In general, an alge-
braic Σ-tree is a Σ-tree which is definable by an rps over
Σ (see Courcelle [16]). Generalizing from a signature to a finitary endofunctor
H : C → C on an lfp category, Adámek et al. [7] describe an rps as a coalgebra
for a functor Hf on H/Mndf(C), in which objects are finitary H-pointed monads
on C, i.e. finitary monads M together with a natural transformation H → M .
They introduce the context-free monad CH of H, which is an H-pointed monad
that is a subcoalgebra of the final coalgebra for Hf and which is the monad of
Courcelle’s algebraic Σ-trees in the special case where C = Set and H is a poly-
nomial functor associated to a signature Σ. We will prove that this monad is
the LFF of Hf, and thereby we characterize it by a universal property – solving
the open problem in [7].

The setting is again an instance of the generalized powerset construction,
but this time with Funf(C) as the base category in lieu of Set. Let C be an lfp
category in which the coproduct injections are monic and consider a finitary,
mono-preserving endofunctor H : C → C. Denote by Funf(C) the category of
finitary endofunctors on C. Then H induces an endofunctor H · (−) + Id on
Funf(C), denoted Ḣ and mapping an endofunctor V to the functor X
→ HV X +
X. This functor Ḣ gets precomposed with a monad on Funf(C) as we now explain.

Proposition 4.11 (Free monad, [5,9]). For a finitary endofunctor H, free
H-algebras ϕX : HFHX → FHX exist for all X ∈ C. FH itself is a finitary
monad on C, more specifically it is the free monad on H.

For example, if H is a polynomial functor associated to a signature Σ, then
FHX is the usual term algebra that contains all finite Σ-trees over the set of
generators X. Proposition 4.11 implies that H
→ FH is the object assignment
of a monad on Funf(C). The Eilenberg-Moore category of F (−) is easily seen to
be Mndf(C), the category of finitary monads on C. Here, fp and fg objects differ,
see [45, Sect. 5.4.1] for a proof.

A New Foundation for Finitary Corecursion 121

Similarly as in the case of context-free languages, we will work with the
monad E(−) = FH+(−), so we get H-pointed finitary monads as the E(−)-
algebras. This category is equivalent to a slice category: the universal property
induced by F (−) states, that for any finitary monad B the natural transforma-
tions H → B are in one-to-one correspondence with monad morphisms FH → B;
so the category H/Mndf(C) of finitary H-pointed monads on C is isomorphic to
the slice category FH/Mndf(C). This finishes the description of the base category
and we now lift the functor Ḣ to this category.

Consider an H-pointed monad (B, β : H → C) ∈ H/Mndf(C). By [21], the
endofunctor H · B + Id carries a canonical monad structure. Furthermore, we
have an obvious pointing inl · HηB : H → H · B + Id. By [32], this defines an
endofunctor on H-pointed monads, Hf : H/Mndf(C) → H/Mndf(C), which is a
lifting of Ḣ. In order to verify that Hf is finitary, we first need to know how
filtered colimits look in H/Mndf(C).

Lemma 4.12. The forgetful U : Mndf(C) → Funf(C) creates filtered colimits.

Clearly, the canonical projection functor H/Mndf(C) → Mndf(C) creates fil-
tered colimits, too. Therefore, filtered colimits in the slice category H/Mndf(C)
are formed on the level of Funf(C), i.e. object-wise. The functor Ḣ is finitary
on Funf(C) and thus also its lifting Hf is finitary. So all requirements from
Assumption 3.1 are met: we have a finitary endofunctor Hf on the lfp cate-
gory H/Mndf(C), and by [7, Corollary 2.20] Hf preserves monos since H does.
By Theorem 3.8, Hf has a locally finite fixpoint.

Remark 4.13. The final Hf-coalgebra is not of much interest, but that of a related
functor. Hf generalizes to a functor H : H/Mndc(C) → H/Mndc(C) on H-pointed
countably accessible1 monads. For any object X ∈ C, the finitary endofunctor
H(−) + X has a final coalgebra; call the carrier TX. Then T is a monad [1], is
countably accessible [7] and is the final H-coalgebra [32].

Adámek et al. [7] characterize a (guarded) recursive program scheme as a natural
transformation V → H · EV + Id with V fp (in Funf(C)), or equivalently, via the
generalized powerset construction w.r.t. the monad E(−) as an Hf-coalgebra
on the carrier EV (in Mndf(C)). These Hf-coalgebras on carriers EV where V ∈
Funf(C) is fp form the full subcategory EQ ⊆ CoalgHf. They show two equivalent
ways of constructing the monad of Courcelle’s algebraic trees for the case C = Set:
as the image of EQcolim in the final coalgebra T of Remark 4.13, and as the colimit
of EQ2, where EQ2 is the closure of EQ under strong quotients. We now provide
a third characterization, and show that the monad of Courcelle’s algebraic trees
is the locally finite fixpoint of Hf.

To this end it suffices to show that EQ2 is precisely the diagram of Hf-
coalgebras with an fg carrier. This is established with the help of the following
two technical lemmas. We now assume that C = Set.

1 A colimit is countably filtered if its diagram has for every countable subcategory a
cocone. A functor is countably accessible if it preserves countably filtered colimits.

122 S. Milius et al.

Lemma 4.14. Hf maps strong epis to morphisms carried by strong epi natural
transformations.

We have the following variation of Proposition 3.17:

Lemma 4.15. Any Hf-coalgebra b : (B, β) → Hf(B, β), with B fg, is the strong
quotient of a coalgebra from EQ.

The proof of Lemma 4.15 makes use of Lemma 4.14 as well as the following
properties:

– The fp objects in Funf(Set) are the quotients of polynomial functors.
– The polynomial functors are projective. That means that for a polynomial

functor P and any natural transformation n : K → L with surjective com-
ponents we have the following property: for every f : P → L there exists
f ′ : P → K with n · f ′ = f .

– Any fg object in H/Mndf(Set) is the quotient of some EV with V fp in
Funf(Set) and thus also of some EP with P a polynomial functor.

Note that the last property holds because H/Mndf(Set) is an Eilenberg-Moore
category and EV is the free Eilenberg-Moore algebra on the fp object V . It
follows from Lemma 4.15 that CoalgfgHf is the same category as EQ2; thus their
colimits in CoalgHf are isomorphic and we conclude:

Theorem 4.16. The locally finite fixpoint of Hf : HΣ/Mndf(Set) →
HΣ/Mndf(Set) is the monad of Courcelle’s algebraic trees, sending a set to the
algebraic Σ-trees over it.

5 Conclusions and Future Work

We have introduced the locally finite fixpoint of a finitary mono-preserving end-
ofunctor on an lfp category. We proved that this fixpoint is characterized by two
universal properties: it is the final lfg coalgebra and the initial fg-iterative alge-
bra for the given endofunctor. And we have seen many instances where the LFF
is the domain of behaviour of finite-state and finite-equation systems. In partic-
ular all previously known instances of the rational fixpoint are also instances of
the LFF, and we have obtained a number of interesting further instances not
captured by the rational fixpoint.

On a more technical level, the LFF solves a problem that sometimes makes
the rational fixpoint hard to apply. The latter identifies behaviourally equiv-
alent states (i.e. is a subcoalgebra of the final coalgebra) if the classes of fp
and fg objects coincide. This condition, however, may be false or unknown (and
sometimes non-trivial to establish) in a given lfp category. But the LFF always
identifies behaviourally equivalent states.

There are a number of interesting topics for future work concerning the LFF.
First, it should be interesting to obtain further instances of the LFF, e.g. analyz-
ing the behaviour of tape machines [23] may perhaps lead to a description of the

A New Foundation for Finitary Corecursion 123

recursively enumerable languages by the LFF. Second, syntactic descriptions of
the LFF are of interest. In works such as [12,35,40,42] Kleene type theorems and
axiomatizations of the behaviour of finite systems are studied. Completeness of
an axiomatization is then established by proving that expressions modulo axioms
form the rational fixpoint. It is an interesting question whether the theory of the
LFF we presented here may be of help as a tool for syntactic descriptions and
axiomatizations of further system types.

As we have mentioned already the rational fixpoint is the starting point for
the coalgebraic study of iterative and iteration theories. A similar path could
be followed based on the LFF and this should lead to new coalgebraic iter-
ation/recursion principles, in particular in instances such as context-free lan-
guages or constructively S-algebraic formal power series.

Another approach to more powerful recursive definition principles are
abstract operational rules (see [27] for an overview). It has been shown that
certain rule formats define operations on the rational fixpoint [13,31], and it
should be investigated whether a similar theory can be developed based on the
LFF.

Finally, in the special setting of Eilenberg-Moore categories one could base
the study of finite systems on free finitely generated algebras (rather than all fp
or all fg algebras). Does this give a third fixpoint capturing behaviour of finite
state systems with side effects besides the rational fixpoint and the LFF? And
what is then the relation between the three fixpoints? Also the parallelism in the
technical development between rational fixpoint and LFF indicates that there
should be a general theory that is parametric in a class of “finite objects” and
that allows to obtain results about the rational fixpoint, the LFF and other
possible “finite behaviour domains” as instances.

References

1. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative
theories: a coalgebraic view. Theoret. Comput. Sci. 300, 1–45 (2003)

2. Adámek, J., Milius, S., Velebil, J.: Semantics of higher-order recursion schemes.
Log. Methods Comput. Sci. 7(1:15), 43 (2011)

3. Adámek, J., Milius, S., Velebil, J.: Equational properties of iterative monads. Inf.
Comput. 208, 1306–1348 (2010)

4. Adámek, J., Milius, S., Velebil, J.: Elgot theories: a new perspective of the equa-
tional properties of iteration. Math. Struct. Comput. Sci. 21(2), 417–480 (2011)

5. Adámek, J.: Free algebras and automata realizations in the language of categories.
Comment. Math. Univ. Carolin. 015(4), 589–602 (1974)

6. Adámek, J., Milius, S., Velebil, J.: Iterative algebras at work. Math. Struct. Com-
put. Sci. 16(6), 1085–1131 (2006)

7. Adámek, J., Milius, S., Velebil, J.: On second-order iterative monads. Theoret.
Comput. Sci. 412(38), 4969–4988 (2011)

8. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge
University Press, New York (1994)

9. Barr, M.: Coequalizers and free triples. Math. Z. 116, 307–322 (1970)

124 S. Milius et al.

10. Bartels, F.: On generalized coinduction and probabilistic specification formats:
Distributive laws in coalgebraic modelling. Ph.D. thesis, Vrije Universiteit Ams-
terdam.(2004)

11. Bloom, S.L., Ésik, Z.: Iteration Theories: The Equational Logic of Iterative
Processes. EATCS Monographs on Theoretical Computer Science. Springer,
Heidelberg (1993)

12. Bonsangue, M., Milius, S., Silva, A.: Sound and complete axiomatizations of coal-
gebraic language equivalence. ACM Trans. Comput. Log. 14((1: 7)), 52.(2013)

13. Bonsangue, M.M., Milius, S., Rot, J.: On the specification of operations on the
rational behaviour of systems. In: Luttik, B., Reniers, M.A. (eds.) Proceedings of
Combined Workshop on Expressiveness in Concurrency and Structural Operational
Semantics (EXPRESS/SOS’12), Electronic Proceedings of Theoretical Computer
Science, vol. 89, pp. 3–18.(2012)

14. Borceux, F.: Handbook of Categorical Algebra: Volume 1, Basic Category Theory.
Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge (1994)

15. Cenciarelli, P., Moggi, E.: A syntactic approach to modularity in denotational
semantic. In: Proceedings of 5th CTCS. CWI Technical report.(1993)

16. Courcelle, B.: Fundamental properties of infinite trees. Theoret. Comput. Sci. 25,
95–169 (1983)

17. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn.
Springer Publishing Company, Berlin (2009)

18. Elgot, C.: Monadic computation and iterative algebraic theories. In: Rose, H.E.,
Sheperdson, J.C. (eds.) Logic Colloquium 1973, vol. 80, pp. 175–230. North-
Holland Publishers, Amsterdam (1975)

19. Fliess, M.: Sur divers produits de séries formelles. Bulletin de la Société
Mathématique de France 102, 181–191 (1974)

20. Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien. Lecture Notes in Mathe-
matics, vol. 221. Springer, Heidelberg (1971)

21. Ghani, N., Lüth, C., Marchi, F.D.: Monads of coalgebras: rational terms and term
graphs. Math. Struct. Comput. Sci. 15, 433–451 (2005)

22. Goncharov, Sergey: Trace Semantics via Generic Observations. In: Heckel, Reiko,
Milius, Stefan (eds.) CALCO 2013. LNCS, vol. 8089, pp. 158–174. Springer, Hei-
delberg (2013)

23. Goncharov, Sergey, Milius, Stefan, Silva, Alexandra: Towards a Coalgebraic Chom-
sky Hierarchy. In: Diaz, Josep, Lanese, Ivan, Sangiorgi, Davide (eds.) TCS 2014.
LNCS, vol. 8705, pp. 265–280. Springer, Heidelberg (2014)

24. Harrison, M.A., Havel, I.M.: Real-time strict deterministic languages. SIAM J.
Comput. 1(4), 333–349 (1972)

25. Hyland, M., Plotkin, G., Power, J.: Combining effects: sum and tensor. Theoret.
Comput. Sci. 357(1–3), 70–99 (2006)

26. Jacobs, Bart: A Bialgebraic Review of Deterministic Automata, Regular Expres-
sions and Languages. In: Futatsugi, Kokichi, Jouannaud, Jean-Pierre, Meseguer,
José (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060, pp. 375–404.
Springer, Heidelberg (2006)

27. Klin, B.: Bialgebras for structural operational semantics: an introduction. Theoret.
Comput. Sci. 412(38), 5043–5069 (2011)

28. Lambek, J.: A fixpoint theorem for complete categories. Math. Z. 103, 151–161
(1968)

29. MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, 2nd edn. Springer, New York.(1998)

A New Foundation for Finitary Corecursion 125

30. Milius, S.: A sound and complete calculus for finite stream circuits. In: Proceedings
of 25th Annual Symposium on Logic in Computer Science (LICS 2010), pp. 449–
458.(2010)

31. Milius, S., Bonsangue, M.M., Myers, R.S., Rot, J.: Rational operation models. Elec-
tron. Notes Theoret. Comput. Sci. 298, 257–282. In: Mislove, M. (ed.) Proceedings
of 29th conference on Mathematical Foundations of Programming Science (MFPS
XXIX).(2013)

32. Milius, S., Moss, L.S.: The category theoretic solution of recursive program
schemes. Theoret. Comput. Sci. 366, 3–59 (2006)

33. Milius, S., Pattinson, D., Wißmann, T.: A new foundation for finitary corecursion:
the locally finite fixpoint and its properties (2015).. http://arxiv.org/abs/1601.
01532

34. Milius, S., Wißmann, T.: Finitary corecursion for the infinitary lambda calculus.
In: Proceedings of 6th Conference on Algebra and Coalgebra in Computer Science,
CALCO 2015. Leibniz International Proceedings in Informatics.(2015)

35. Myers, R.: Rational coalgebraic machines in varieties: Languages, completeness and
automatic proofs. Ph.D. thesis, Imperial College London, Department of Comput-
ing.(2011)

36. Petre, I., Salomaa, A.: Algebraic systems and pushdown automata. In: Droste,
M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. Monographs
in Theoretical Computer Science. An EATCS Series, pp. 257–289.. Springer,
Heidelberg (2009)

37. Plotkin, G., Turi, D.: Towards a mathematical operational semantics. In: Proceed-
ings of 12th LICS Conference, pp. 280–291. IEEE Computer Society Press.(1997)

38. Rutten, J.J.M.M.: Automata and Coinduction. In: Sangiorgi, Davide, de Simone,
Robert (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer, Heidelberg
(1998)

39. Rutten, J.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249(1),
3–80 (2000)

40. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Quantitative kleene
coalgebras. Inf. Comput. 209(5), 822–849 (2011)

41. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.: Generalizing determinization
from automata to coalgebras. Log. Meth. Comput. Sci. 9(1), 1–27 (2013)

42. Silva, A., Bonsangue, M.M., Rutten, J.: Non-deterministic Kleene coalgebras. Log.
Meth. Comput. Sci. 6(3: 23), 39.(2010)

43. Winter, J., Bonsangue, M., Rutten, J.: Coalgebraic characterizations of context-
free languages. Log. Meth. Comput. Sci. 9(3), 1–39 (2013)

44. Winter, J., Bonsangue, M.M., Rutten, J.J.: Context-free coalgebras. J. Comput.
Syst. Sci. 81(5), 911–939 (2015)

45. Wißmann, T.: The locally finite fixpoint and its properties. Master’s the-
sis, Friedrich-Alexander Universität Erlangen-Nürnberg (April 2015). http://
thorsten-wissmann.de/theses/ma-wissmann.pdf

http://arxiv.org/abs/1601.01532
http://arxiv.org/abs/1601.01532
http://thorsten-wissmann.de/theses/ma-wissmann.pdf
http://thorsten-wissmann.de/theses/ma-wissmann.pdf

Fixed-Point Elimination in the Intuitionistic
Propositional Calculus

Silvio Ghilardi1, Maria João Gouveia2, and Luigi Santocanale3(B)

1 Dipartimento di Matematica, Università degli Studi di Milano, Milan, Italy
2 CEMAT-CIÊNCIAS, Universidade de Lisboa, 1749-016 Lisboa, Portugal

3 LIF, CNRS UMR 7279, Aix-Marseille Université, Marseille, France
luigi.santocanale@lif.univ-mrs.fr

Abstract. It is a consequence of existing literature that least and great-
est fixed-points of monotone polynomials on Heyting algebras—that is,
the algebraic models of the Intuitionistic Propositional Calculus—always
exist, even when these algebras are not complete as lattices. The rea-
son is that these extremal fixed-points are definable by formulas of the
IPC. Consequently, the µ-calculus based on intuitionistic logic is trivial,
every µ-formula being equivalent to a fixed-point free formula. We give
in this paper an axiomatization of least and greatest fixed-points of for-
mulas, and an algorithm to compute a fixed-point free formula equivalent
to a given µ-formula. The axiomatization of the greatest fixed-point is
simple. The axiomatization of the least fixed-point is more complex, in
particular every monotone formula converges to its least fixed-point by
Kleene’s iteration in a finite number of steps, but there is no uniform
upper bound on the number of iterations. We extract, out of the algo-
rithm, upper bounds for such n, depending on the size of the formula.
For some formulas, we show that these upper bounds are polynomial and
optimal.

1 Introduction

In [23] the author proved that, for each formula φ(x) of the Intuitionistic Propo-
sitional Calculus, there exists a number n ≥ 0 such that φn(x)—the formula
obtained from φ by iterating n times substitution of φ for the variable x—and
φn+2(x) are equivalent in Intuitionistic Logic. This result has, as an immediate
corollary, that a syntactically monotone formula φ(x) converges both to its least
fixed-point and to its greatest fixed-point in at most n steps. Using a modern
notation based on μ-calculi [3], we have μx.φ(x) = φn(⊥) and νx.φ(x) = φn(�).
These identities also show that a μ-calculus based on Intuitionistic Logic is triv-
ial, every μ-formula being equivalent to a fixed-point free formula.

Ruitenberg’s work [23] leaves open how to extract or estimate the least number
ρ(φ) such that φρ(φ)(x) = φρ(φ)+2(x). Yet, our motivations stem from the theory
of extremal fixed-points and μ-calculi [3]. In principle, being able to compute or
bound Ruitenberg’s number ρ(φ) might end up in an over-approximation of the
closure ordinal of φ—the least k such that μx.φ(x) = φk(⊥). For the analogous
problem with the greatest fixed-point, we shall see that the least number k such
that νx.φ(x) = φk(�) is bounded by 1, while ρ(φ) might be arbitrarily large.
c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 126–141, 2016.
DOI: 10.1007/978-3-662-49630-5 8

Fixed-Point Elimination in the Intuitionistic Propositional Calculus 127

Later in [20], the author gave an independent proof that least fixed-points of
monotone formulas are definable within Intuitionistic Logic. His proof relies on
semantics methods and on the coding of Intuitionistic Logic into Grzegorczyk’s
Logic; the proof was further refined in [21] to encompass the standard coding
of Intuitionistic Logic into its modal companion, the logic S4. Curiously, no
mention of greatest fixed-points appears in these works.

Another relevant source for this paper stem from the discovery that IPC has
uniform interpolants [22], often named bisimulation quantifiers. Together with
the deduction property of IPC, they give the category of (finitely generated)
Heyting algebras—that is, the algebraic models of the Intuitionistic Proposi-
tional Calculus—a rather strong structure, axiomatized and studied in [14,15].
It is possible to argue that in every category with similar properties the extremal
fixed-points of monotone formulas are definable. This is possible by using quan-
tified formulas analogous to the one used in [9, Sect. 3] to argue that PDL lacks
the uniform interpolation property. In this paper we exploit this idea and the
existential bisimulation quantifiers to characterize greatest fixed-points in the
Intuitionistic Propositional Calculus.

A μ-calculus is a prototypical kind of computational logic, obtained from a
base logic or algebraic system by addition of distinct forms of iteration so to
increase expressivity. This paper is part of a line of research whose goal is to
understand, under a unified perspective, why alternation-depth hierarchies of
μ-calculi are degenerate or trivial. A μ-calculus adds to an underlying logical-
algebraic system formal lgfps of formula-terms whose semantic monotonicity
can be witnessed at the syntactic level. When addition of extremal fixed-points
is iterated, formula-terms with nested extremal fixed-points are generated. The
alternation-depth hierarchy [3, Sect. 2.6] of a μ-calculus measures the complexity
of a formula-term as a function of the nesting of the different types of fixed-
points, with respect to a fixed class of models. It is well known that fixed-points
that are unguarded can be eliminated in the propositional modal μ-calculus
[18]. We can rephrase this fact by saying that the alternation-depth hierarchy of
the μ-calculus over distributive lattices is trivial, every μ-term being equivalent
to a fixed-point free term. A goal of [12] was to understand closely this result
and to generalize it. We were able to exhibit equational classes of lattices Dn—
with D0 the class of distributive lattices—where the extremal fixed-points can be
uniformly computed by iterating a formula-term n+1 times from the bottom/top
of the lattice; moreover, we showed that these uniform upper bounds are optimal.
The reasons for the degeneracy of the hierarchy can be ultimately found in the
structural theory of lattices.

As we show in this paper, the situation is quite different when the base for the
μ-calculus is Intuitionistic Logic, with its standard models the Heyting algebras.
Several ingredients contribute to the existence of a closure ordinal of each for-
mula and to its finiteness. Among them, strongness of the monotone polynomials
on Heyting algebras. This means that a monotone polynomial f : H −−→ H over
a Heyting algebra H can be considered as a functor enriched over H, when H is
consider as a closed category [16]. For some polynomials, existence and finiteness

128 S. Ghilardi et al.

of the closure ordinal is a consequence of being inflating (or expanding) and, on
the syntactic level, to a restriction to the use of conjunction that determines a
notion of disjunctive formula. As far as the greatest fixed-point is concerned,
monotone formulas uniformly converge to it after one step. A key ingredient of
the algorithm we present is creation of least fixed-points via the Rolling equation
(cf. Lemma 1), a fact already used in [10]. For Intuitionistic Logic and Heyting
algebras, where formula-terms can be semantically antitone (i.e. contravariant),
existing greatest fixed-points create least fixed-points. The most striking differ-
ence with the case of distributive lattices (and with the case of the varieties Dn)
is the absence of a finite uniform upper bound on the closure ordinals, the rate
of convergence to the least fixed-point crucially depending on the shape of the
formula.

As emphasized in [19] for the propositional modal μ-calculus, once a formula
is known to be equivalent to some other formula of smaller complexity, we should
also be able to effectively compute this second formula. Thus, the fact that the
alternation hierarchy is trivial for μ-calculi based on the IPC should not be
the end of the story. The main contribution of this paper is to achieve an effec-
tive transformation of an intuitionisitc μ-formula into an equivalent fixed-point
free intuitionisitc formula. The size of the formula might exhibit an exponential
grow during this transformation. Yet, this is mainly due, as usual, to the need
of precompiling a formula into an equivalent one in some kind of conjunctive
normal form. We might use sharing in substitutions—or introduce the appro-
priate formalism for approximants to least fixed-points—so that, if we are given
an already precompiled formula, then its least fixed-point w.r.t. the variable x
is only polynomially bigger than the original formula. For these formulas, we
instantiate this claim by explicitly giving a way of computing f(φ) such that
μx.φ(x) = φf(φ)(⊥), so that f(φ) is an upper bound to the closure ordinal of
φ. In some cases we are able to show that f(φ) is optimal, by exhibiting some
formula φ(x) such that φf(φ)−1(⊥) < μx.φ(x).

The paper is structured as follows. We recall in Sect. 2 some elementary
facts from fixed-point theory. In Sect. 3 we recall the Intuitionistic Propositional
Calculus and introduce the Intuitionistic Propositional μ-Calculus. In Sect. 4
we argue that monotone polynomials are strong and exhibit the interactions
between least fixed-points and strong functions. In Sect. 5 we use the existential
bisimulation quantifier to argue that monotone polynomials converge to their
greatest fixed-point in one step. Section 6 is the core of our paper, where we
show ho to eliminate a least fixed-point from a formula. Together with the result
in the previous Section, this leads to a procedure to eliminate off the fixed-
points from a IPCμ formula. Finally, in Sect. 7, we show how upper bounds to
closure ordinals can be extracted from the procedure elimination of the least
fixed-points. In Sect. 8 we present our final remarks.

2 Notation and Elementary Concepts

Let P and Q be posets. A function f : P −−→ Q is monotone if x ≤ y implies
f(x) ≤ f(y), for each x, y ∈ P . If f : P −−→ P is a monotone endofunction,

Fixed-Point Elimination in the Intuitionistic Propositional Calculus 129

then x ∈ P is a prefixed-point of f if f(x) ≤ x; we denote by Pref the set of
prefixed points of f . Whenever Pref has a least element, we denote it by μ.f .
Therefore, μ.f denotes the least prefixed-point of f , whenever it exists. If μ.f
exists, then it is a fixed-point of f , necessarily the least one. The notions of least
prefixed-point and of least fixed-point coincide on complete lattices or when the
least fixed-point is computed by iterating from the bottom of a lattice; for our
purposes they are interchangeable, so we shall abuse of language and refer to
μ.f as the least fixed-point of f . Dually (and abusing again of language), the
greatest fixed-point of f shall be denoted by ν.f .

Let us mention few elementary facts from fixed-point theory.

Lemma 1. Let P,Q be posets, f : P −−→ Q and g : Q −−→ P be monotone
functions. If μ.(g◦f) exists, then μ.(f◦g) exists as well and is equal to f(μ.(g◦f)).

As we do not work in complete lattices (so we are not ensured that least fixed-
points exist) we express the above statement via the equality

μ.(f ◦ g) := f(μ.(g ◦ f)) , (Roll)

where the colon emphasizes existence: if the least fixed-point in the expression
on the right exists, then this expression is the least fixed-point of f ◦g. Analogous
notations will be used later. We endow the product of two posets P and Q with
the coordinatewise ordering. Therefore a function f : P × Q −−→ R is monotone
if, as a function of two variables, it is monotone in each variable. To deal with
least fixed-points of functions of many variables, we use the standard notation:
for example, if f : P × P −−→ P is the monotone function f(x, y), then, for a
fixed p ∈ P , μx.f(x, p) denotes the least fixed-point of f(x, p). Let us recall that
the correspondence p 	→ μx.f(x, p)—noted μx.f(x, y)—is again monotone.

Lemma 2. If P is a poset and f : P × P −−→ P is a monotone mapping, then

μx.f(x, x) := μx.μy.f(x, y) . (Diag)

Lemma 3. If P and Q are posets and 〈f, g〉 : P × Q −−→ P × Q is a monotone
function, then μ.〈f, g〉 := 〈μ1, μ2〉, where

μ1 = μx.f(x, μy.g(x, y)) and μ2 = μy.g(μ1, y) . (Bekic)

3 The Intuitionistic Propositional µ-Calculus

Formulas of the Intuitionistic Propositional Calculus are generated according to
the following grammar:

φ ⇒ x | � | φ ∧ φ | ⊥ | φ ∨ φ | φ → φ , (1)

where x ranges over a countable set X of propositional variables. For the IPC,
the formulation of the consequence relation �LJ (relating a set of formulas to a
formula) goes back to Gentzen’s work on the system LJ [13]. It is well known
that Intuitionistic Logic is sound and complete w.r.t. the class of its algebraic
models, the Heyting algebras.

130 S. Ghilardi et al.

Definition 1. A Heyting algebra H is a bounded lattice (with least element
⊥ and greatest element �) equipped with a binary operation → such that the
following equations hold in H:

x ∧ (x → y) = x ∧ y , x ∧ (y → x) = x , (2)
x → x = � , x → (y ∧ z) = (x → y) ∧ (x → z) .

We can define on any Heyting algebra a partial order by saying that x ≤ y
holds when x ∨ y = y. We identify formulas of the IPC with terms of the
theory of Heyting algebras, constructed therefore from variables and using the
signature 〈�,∧,⊥,∨,→〉. For φ such a formula-term, H a Heyting algebra, and
v : X −−→ H a valuation of the propositional variables in H, let us write �φ�v

for the result of evaluating the formula in H, starting from the variables. The
soundness and completeness theorem of the IPC over Heyting algebras—see e.g.
[6]—can then be stated as follows: if Γ is a finite set of formula-terms and φ is
a formula-term, then Γ �LJ φ holds if and only if

∧
γ∈Γ �γ�v ≤ �φ�v holds, in

every Heyting algebra H and for every valuation of the propositional variables
v : X −−→ H. Given this theorem, we shall often abuse of notation and write
≤ in place of �LJ, and the equality symbol = to denote logical equivalence of
formulas.

We aim at studying extremal fixed-points on Heyting algebras. To this end,
we formalize the Intuitionistic Propositional μ-Calculus.

An occurrence of a variable x is positive in a formula-term φ if, in the syntax
tree of φ, the path from the root to the leaf labeled by this variable contains an
even number of nodes labeled by subformulas ψ1 → ψ2 immediately followed by
a node labeled by the subformula ψ1. If, on this path the number of those nodes
is odd, then we say that this occurrence of x is negative in φ. A variable x is
positive in a formula φ if each occurrence of x is positive in φ. A variable x is
negative in a formula φ if each occurrence of x is negative in φ. If we add to the
previous grammar (1) the following productions:

φ ⇒ μx.φ , φ ⇒ νx.φ ,

subject to the restriction that x is positive in φ, we obtain then a grammar for
the formulas of IPCμ, the Intuitionistic Propositional μ-Calculus. The semantics
of these formulas is the expected one. Let φ be a formula of IPCμ, and let x
be positive in φ. Let us denote by Xφ the set of variables having an occurrence
in φ. If v : Xφ \ {x } −−→ H is a valuation of all the variables of φ but x in a
complete Heyting algebra, then the function �φ�v, defined by

h 	→ �φ�v,h/x ,

is monotone, so μx.φ (resp., νx.φ) is to be evaluated over the least fixed-point
(resp., the greatest fixed-point) of this function. A sequent calculus for IPCμ is
presented in [7, Sect. 2].

Let us say that a formula φ of IPCμ is fixed-point free if it is a formula of
IPC, that is, it does not contain either of the symbols μ, ν.

Fixed-Point Elimination in the Intuitionistic Propositional Calculus 131

Proposition 1. Every formula φ of IPCμ is equivalent to a fixed-point free
formula φ′.

Proof. Clearly, the statement holds if we can show that it holds whenever φ =
μx.ψ or φ = νx.ψ, where ψ is a fixed-point free formula. For a natural number
n ≥ 0, let ψn(x) denote the formula obtained by substituting x for ψ n times.
Ruitenburg [23] proves that, for each intuitionisitic formula ψ, there exists a
number n ≥ 0 such that the formulas ψn(x) and ψn+2(x) are equivalent. If x is
positive in ψ, then instantiating x with ⊥, leads to the equivalence ψn+1(⊥) ≡
ψn(⊥), exhibiting ψn(⊥) as the least fixed-point of ψ. Similarly, ψn(�) is the
greatest fixed-point of ψ. ��
While it is an obvious step to derive the previous Proposition from Ruitenburg’s
result, there has been no attempt (as far as we know) to compute an upper
bound on n ≥ 0 such that ψn(x) and ψn+2(x) are equivalent. Nor is such an
n necessarily a tight upper bound for convergence of a formula to its least or
greatest fixed-point.

4 Strong Monotone Functions and Fixed-Points

If H is a Heyting algebra and f : H −−→ H is a monotone function, then we say
that f is strong if

x ∧ f(y) ≤ f(x ∧ y) , for any x, y ∈ H.

The interplay between fixed-points and this class of functions has already been
emphasized, mainly in the context of categorical proof-theory and semantics of
functional programming languages with inductive data types [7,8].

Lemma 4. A monotone f : H −−→ H is strong if and only if any of the following
equivalent conditions holds in H:

x ∧ f(y) ≤ f(x ∧ y) , (3)
f(x → y) ≤ x → f(y) , (4)

x → y ≤ f(x) → f(y) . (5)

The proof of these equivalences is usual in categorical algebra [17] and therefore
it is omitted here.

Definition 2. Let H be a Heyting algebra. We say that a function f : H −−→ H
is monotone polynomial if there exist a formula φ of the IPC, a variable x
positive in φ, and a valuation v : Xφ \ {x } −−→ H such that, for each h ∈ H,
we have f(h) = �φ�v,h/x.

Proposition 2. Every monotone polynomial f on a Heyting algebra is strong.

Proof. Recall that the replacement Lemma holds in the IPC: z ↔ w �LJ φ(z) ↔
φ(w). Substituting x for z and x∧ y for w, and considering that x → y �LJ x ↔

132 S. Ghilardi et al.

(x ∧ y), we derive that x → y �LJ φ(x) ↔ φ(x ∧ y). Assuming that u is positive
in φ(u), we have φ(x) ↔ φ(x∧y) �LJ φ(x) → φ(x∧y) �LJ φ(x) → φ(y), whence
x → y �LJ φ(x) → φ(y). The last relation immediately implies that Eq. (4) from
Lemma 4 holds, when f is a monotone polynomial. ��
It can be shown that the relation f(x) ∧ y = f(x ∧ y) ∧ y holds (for any x, y and)
for any polynomial on a Heyting algebra. The analogous remark for Boolean
algebras is credited to Peirce, in view of the iteration rule for existential graphs
of type Alpha, see [11].

Proposition 3. If f is a strong monotone function on H and a ∈ H, then

μ.a → f := a → μ.f , μ.a ∧ f := a ∧ μ.f . (6)

Proof. Let us argue first that first equation holds. To this end, let us set fa(x) =def

a → f(x). From f ≤ fa we have Prefa ⊆ Pref. Thus, if p ∈ Prefa , then μx.f(x) =
f(μx.f(x)) ≤ f(p) and a → μ.f ≤ a → f(p) = fa(p) ≤ p. That is, a → μ.f is below
any element of Prefa . To obtain the proposition, we need to argue that a → μ.f
belongs to Prefa . To this end, we notice that { a → p | p ∈ Pref } ⊆ Prefa , since
if f(p) ≤ p, then fa(a → p) = a → f(a → p) ≤ a → f(p) ≤ a → p, where we used
the fact that f is strong, thus (4) holds.

Let us come now to the second equation, for which we set fa(x) =def a∧ f(x).
Suppose a∧ f(p) ≤ p, so f(p) ≤ a → p. Then f(a → p) ≤ a → f(p) ≤ a → p, using
(4), whence μ.f ≤ a → p and a ∧ μ.f ≤ p. Thus we are left to argue that a ∧ μ.f
is a prefixed-point of fa. Yet, this is true for an arbitrary prefixed-point p of f:
a ∧ f(a ∧ p) ≤ a ∧ f(p) ≤ a ∧ p. ��
Corollary 1. For each n ≥ 1 and each collection fi, i = 1, . . . , n of monotone
polynomials, we have the following distribution law:

μx.
∧

i=1,...,n

fi(x) :=
∧

i=1,...,n

μx.fi(x) . (7)

Proof. For n = 1 there is nothing to prove. We suppose therefore that the
statement holds for every collection of size n ≥ 1, and prove it holds for a
collection of size n + 1. We have

μx.(fn+1(x) ∧
∧

i=1,...,n

fi(x)) := μx.μy.(fn+1(y) ∧
∧

i=1,...,n

fi(x)), by (Diag),

:= μx.((μy.fn+1(y)) ∧
∧

i=1,...,n

fi(x)), by (6),

:= (μy.fn+1(y)) ∧ μx.(
∧

i=1,...,n

fi(x)), again by (6),

:= (μy.fn+1(y)) ∧
∧

i=1,...,n

μx.fi(x), by the IH.
��

Fixed-Point Elimination in the Intuitionistic Propositional Calculus 133

The elimination of greatest fixed-points is easy for strong monotone functions
(we are thankful to the referee for pointing out the following fact, which greatly
simplifies our original argument):

Proposition 4. If f : L −−→ L is any strong monotone function on a bounded
lattice L, then f2(�) = f(�). Thus f(�) is the greatest fixed-point of f.

Proof. Indeed, we have f(�) = f(�) ∧ f(�) ≤ f(f(�) ∧ �) = f2(�). ��

5 A Digression on Fixpoints and Bisimulation Quantifiers

The connection between extremal fixed-points and bisimulation quantifiers, as
emphasized in [9], was a main motivation to tackle this research. Although in
the end our computations are independant on that, we nevertheless want to have
a closer look to the topic (the content of this section is not needed afterwards).

It was discovered in [22] that IPC has the uniform interpolation property. As
made clear from the title of [22], this property amounts to an internal existential
and universal quantification. This result was further refined in [15] to show that
any morphism between finitely generated Heyting algebras has a left and a right
adjoint. We shall be interested in Heyting algebras H[x] of polynomials with
coefficients from H, and to (the left and right adjoints to) the inclusion of H
into H[x]. The algebra of polynomials H[x] is formally defined as the coproduct
(in the category of Heyting algebras) of H with the free Heyting algebra on one
generator. The universal property gives that if h0 ∈ H, then there exists a unique
morphism �·�h0/x : H[x] −−→ H such that �x�h0/x = h0 and �h�h0/x = h, for each
h ∈ H. Thus, for f ∈ H[x] and h ∈ H, we can define f(h) = �f�h/x. It follows
from [15] that if H is finitely generated, then the inclusion ix : H −−→ H[x] has
both adjoints ∃x,∀x : H[x] −−→ H, with ∃x � ix � ∀x. In particular, we shall use
the unit relation for ∃x:

f ≤ ix(∃x(f)) , for all f ∈ H[x] .

Identifying h ∈ H with ix(h) ∈ H[x], we can read the above inequality as
f ≤ ∃x.f. We can identify a monotone polynomial, as defined in Definition 2, as
an element f ∈ H[x] such that �f�h0/x ≤ �f�h1/x whenever h0 ≤ h1.

Proposition 5. If f is a monotone polynomial on a finitely generated Heyting
algebra, then

ν.f := ∃x.(x ∧ (x → f(x))) . (8)

Proof. By the unit relation x ∧ x → f(x) ≤ ∃x.(x ∧ x → f(x)). Recall that evalu-
ation at p ∈ H is a Heyting algebra morphism, thus it is monotone. Therefore,
if p ∈ H is a postfixed-point of f, then by evaluating the previous inequality at
p, we have

p = p ∧ p → f(p) ≤ ∃x.(x ∧ x → f(x)) ,

134 S. Ghilardi et al.

so that ∃x.(x ∧ x → f(x)) is greater than any postfixed-point of f. Let us show
that ∃x.(x∧x → f(x)) is also a postfixed-point. To this end, it will be enough to
argue that x ∧ x → f(x) ≤ f(∃x.(x ∧ x → f(x))) in H[x]. We compute as follows:

x ∧ x → f(x) ≤ f(x) ∧ x → f(x)
≤ f(x ∧ x → f(x)), since f is strong, by (3),
≤ f(∃x.(x ∧ x → f(x))), since f is monotone. ��

In a similar fashion, we can prove that if f is a monotone polynomial on
a finitely generated Heyting algebra, then μ.f := ∀x.((f(x) → x) → x). As an
application, we give an alternative proof of Proposition 4:

Corollary 2. If f is a monotone polynomial on a Heyting algebra H, then

ν.f := f(�) . (9)

Proof. It is easy to see that if f is a monotone polynomial on a finitely generated
Heyting algebra, then ∃x.f = f(�). Thus we have

ν.f = ∃x.(x ∧ (x → f(x))) = ∃x.(x ∧ f(x)) = � ∧ f(�) = f(�) .

Therefore, if φ is a formula-term whose variables are among set x, y1, . . . , yn,
then the equation φ2(�) = φ(�) holds in the free Heyting algebra on the set
{ y1, . . . , yn }. Consequently, the equation f(�) = f2(�) holds in H, making f(�)
into the greatest fixed-point of f. ��

6 The Elimination Procedure

In this Section we present our main result, a procedure that both axiomatizes
and eliminates least fixed-points of the form μx.φ(x) with φ fixed-point free.
Together with the axiomatization of greatest fixed-points given in Sect. 5, the
procedure can be extended to a procedure to construct a fixed-point free formula
ψ equivalent to a given formula χ of the IPCμ.

Definition 3. An occurrence of the variable x is strongly positive in a formula-
term φ if there is no subformula ψ of φ of the form ψ0 → ψ1 such that x is located
in ψ0. A formula-term φ is strongly positive in the variable x if every occurrence
of x is strongly positive in φ. An occurrence of a variable x is weakly negative
in a formula-term φ if it is not strongly positive. A formula-term φ is weakly
negative in the variable x if every occurrence of x is weakly negative in φ.

Observe that a variable might be neither strongly positive nor weakly negative in
a formula-term. A second key concept for the elimination is the following notion
of disjunctive formula.

Definition 4. The set of formula-terms that are disjunctive in the variable x
is generated by the following grammar:

φ ⇒ x | β ∨ φ | φ ∨ β | α → φ | φ ∨ φ , (10)

where α and β are formulas with no occurrence of the variable x. A formula-term
φ is in normal form (w.r.t. x) if it is a conjunction of formula-terms φi, i ∈ I,
so that each φi either does not contain the variable x, or it is disjunctive in x.

Fixed-Point Elimination in the Intuitionistic Propositional Calculus 135

Notice that disjunctive formula-terms are strongly positive in x. Due to Eq. (2)
and since the usual distributive laws hold in Heyting algebras, we have the
following Lemma.

Lemma 5. Every strongly positive formula-term is equivalent to a formula-term
in normal form.

In order to compute the least fixed-point μx.φ, we take the following steps:

1. We rename all the weakly negative occurrences of x in φ to a fresh variable y,
so φ(x) = ψ(x, x/y) with ψ strongly positive in x and weakly negative in y.

2. We compute a normal form of ψ(x, y), so this formula is equivalent to a
conjunction

∧
i∈I ψi(x, y) with each ψi disjunctive in x or not containing the

variable x.
3. Strongly positive elimination. For each i ∈ I: if x has an occurrence in ψi, we

compute then a formula ψ′
i equivalent to the least fixed-point μx.ψi(x, y) and

observe that ψ′
i is weakly negative in y; otherwise, we let ψ′

i = ψi.
4. Weakly negative elimination. The formula

∧
i∈I ψ′

i(y) is weakly negative in y;
we compute a formula χ equivalent to μy.

∧
i ψ′

i(y) and return it.

The correction of the procedure relies on the following chain of equivalences:

μx.φ(x) = μy.μx.ψ(x, y) = μy.μx.
∧

i∈I

ψi(x, y), where we use (Diag)

= μy.
∧

i∈I

μx.ψi(x, y) = μy.
∧

i∈I

ψ′
i(y) = χ, where we have used (7).

6.1 Strongly positive Elimination

We tackle here the problem of computing the least fixed-point μx.φ of a formula-
term φ which is disjunctive in x. Recall that the formulas α and β appearing
in a parse tree as leaves—according to the grammar (10)—do not contain the
variable x. We call such a formula α a head subformula of φ, and such a β a side
subformula of φ, and thus we put:

Head(φ) =def {α | α is a head subformula of φ } ,

Side(φ) =def {β | β is a side subformula of φ } .

Recall that a monotone function f : P −−→ P is inflating if x ≤ f(x).

Lemma 6. The interpretation of a strongly positive disjunctive formula φ as a
function of x is inflating.

The key observation needed to prove Proposition 6 is the following Lemma on
monotone inflating functions. In the statement of the Lemma we assume that P
is a join-semilattice, and that f ∨ g is the pointwise join of the two functions f
and g.

136 S. Ghilardi et al.

Lemma 7. If f, g : P −−→ P are monotone inflating functions, then Pref∨g =
Pref◦g. Consequently, for any monotone function h : P −−→ P , we have

μ.(f ∨ g ∨ h) :=: μ.((f ◦ g) ∨ h) . (11)

Proof. Observe firstly that Pref∨g = Pref ∩ Preg. If p ∈ Pref◦g, then f(p) ≤
f(g(p)) ≤ p and g(p) ≤ f(g(p)) ≤ p, showing that p ∈ Pref∨g. Conversely, if
p ∈ Pref∨g, then p is a fixed point of both f and g, since these functions are
inflating. It follows that f(g(p)) = f(p) = p, showing p ∈ Pref◦g.

We have argued that Pref∨g coincides with Pref◦g; this implies that
Pre(f◦g)∨h = Pref∨g∨h and, from this equality, Eq. (11) immediately
follows. ��

To ease reading of the next Proposition and of its proof, let us put

[α] φ =def α → φ .

Proposition 6. If φ is a disjunctive formula-term, then

μ.φ =

⎡

⎣
∧

α∈Head(φ)

α

⎤

⎦ (
∨

β∈Side(φ)

β) . (12)

Proof. For ψ, χ formula-terms, let us write ψ ∼ χ when μ.ψ = μ.χ. We say that
a disjunctive formula ψ is reduced (w.r.t. φ) if either it is x, or it is of the form
β ∨x (or x∨β) for some β ∈ Side(φ), or of the form [α] x for some α ∈ Head(φ).
A set Φ of disjunctive formulas is reduced if every formula in Φ is reduced.

We shall compute a reduced set of disjunctive formulas Φk such that φ ∼∨
Φk. Thus let Φ0 = {φ }. If Φi is not reduced, then there is φ0 ∈ Φi which is

not reduced, thus of the form (a) β ∨ ψ (or ψ ∨ β) with ψ �= x, or (b) [α] ψ with
ψ �= x, or (c) ψ1 ∨ ψ2. According to the case (�), with � ∈ { a, b, c }, we let Φi+1

be (Φi \ {φ0 }) ∪ Ψ� where Ψ� is as follows:

Ψa = {β ∨ x, ψ }, Ψb = { [α] x, ψ }, Ψc = {ψ1, ψ2 } .

By Lemma 7, we have
∨

Φi ∼ ∨
Φi+1. Morever, for some k ≥ 0, Φk is reduced

and Φk ⊆ { [α] x | α ∈ Head(φ) } ∪ {β ∨ x | β ∈ Side(φ) } ∪ {x }. Consequently

μx.φ(x) = μx.
∨

Φk ≤ μx.(x ∨
∨

α∈Head(φ)

[α] x ∨
∨

β∈Side(φ)

β ∨ x) . (13)

On the other hand, if α ∈ Head(φ), then φ(x) = ψ1(x, [α] ψ2(x)) for some dis-
junctive formulas ψ1 and ψ2, so

[α] x ≤ [α] ψ2(x) ≤ ψ1(x, [α] ψ2(x)) = φ(x)

and, similarly, β ∨ x ≤ φ(x), whenever β ∈ Side(φ). It follows that

x ∨
∨

α∈Head(φ)

[α] x ∨
∨

β∈Side(φ)

β ∨ x ≤ φ(x) ,

Fixed-Point Elimination in the Intuitionistic Propositional Calculus 137

whence, by taking the least fixed-point in both sides of the above inequality, we
derive equality in (13). Finally, in order to obtain (12), we compute as follows:

μx.(x ∨
∨

α∈Head(φ)
[α] x ∨

∨

β∈Side(φ)
β ∨ x)

= μx.([α1] . . . [αn] x ∨ (x ∨
∨

β∈Side(φ)

β ∨ x))

by Lemma 7, with Head(φ) = {α1, . . . , αn },

= μx.(

⎡

⎣
∧

α∈Head(φ)

α

⎤

⎦ x ∨ (x ∨
∨

β∈Side(φ)

β ∨ x)),

since [α1] . . . [αn] x =
[∧

i=1,...,n αi

]
x,

= μx.(

⎡

⎣
∧

α∈Head(φ)

α

⎤

⎦ (x ∨
∨

β∈Side(φ)

β ∨ x)), by Lemma 7,

=

⎡

⎣
∧

α∈Head(φ)

α

⎤

⎦ μx.(x ∨
∨

β∈Side(φ)

β ∨ x), by Proposition 3,

=

⎡

⎣
∧

α∈Head(φ)

α

⎤

⎦ (
∨

β∈Side(φ)

β) .

��

6.2 Weakly Negative Elimination

If φ is weakly negative in x then we can write

φ(x) = ψ0(ψ1(x), . . . , ψn(x)) , (14)

for formula-terms ψ0(y1, . . . , yn) and ψi(x), i = 1, . . . , n, such that: (a) all the
variables yi are negative in ψ0; (b) for i = 1, . . . , n, x is negative ψi.

Proposition 7. Let 〈ν1, . . . , νn〉 be a collection of formula-terms denoting the
greatest solution of the system of equations { yi = ψi(ψ0(y1, . . . , yn)) | i =
1, . . . , n }. Then ψ0(ν1, . . . , νn) is a formula equivalent to μx.φ(x).

Proof. Let v : X \ {x, y1, . . . , yn } −−→ H be a partial valuation into an Heyting
algebra H, put f0 = �ψ0�v and, for i = 1, . . . , n, fi = �ψi�v. Then f0 is a monotone
function from [Hop]n to H. Here Hop is the poset with the same elements as H
but with the opposite ordering relation. Similarly, for 1 ≤ i ≤ n, fi : H −−→ Hop.
If we let f̄ = 〈fi | i = 1, . . . , n〉 ◦ f0, then f̄ : [Hop]n −−→ [Hop]n. We exploit next
the fact that (·)op is a functor, so that fop : P op −−→ Qop is the same monotone
function as f , but considered as having distinct domain and codomain. Then,
using (Roll), we can write

138 S. Ghilardi et al.

μ.(f0 ◦ 〈fi | i = 1, . . . , n〉) = f0(〈fi | i = 1, . . . , n〉 ◦ f0)
= f0(μ.̄f) = f0(ν.f̄op) , (15)

since the least fixed-point of f in P op is the greatest fixed-point of fop in P .
That is, if we consider the function 〈fi | i = 1, . . . , n〉 ◦ f0 as sending a tuple
of elements of H (as opposite to Hop) to another such a tuple, then Eq. (15)
proves that a formula denoting the least fixed-point of φ is constructible out of
formulas for the greatest solution of the system mentioned in the statement of
the Proposition. ��

As far as computing the greatest solution of the system mentioned in the
Proposition, this can be achieved by using the Bekic elimination principle, see
Lemma 3. This principle implies that solutions of systems can be constructed
from solutions of linear systems, i.e. from usual parametrized fixed-points. In
our case, as witnessed by Eq. (9), these parametrized greatest fixed-points are
computed by substituting � for the fixed-point variable. In the next Section we
shall give a more explicit description, by means of approximants, of the least
fixed-point of a weakly negative formula φ.

7 Upper Bounds on Closure Ordinals

Recall that Ruitenburg’s result [23] implies that a monotone formula converges
to its (parametrized) least fixed-point by iterating the formula n times from ⊥,
for some n ≥ 0. That is, we can always substitute μx.φ(x) for some equivalent
φn(⊥). We show, in this Section, how to extract, from the procedure just seen,
upper bounds for such a number n.

Proposition 8. If φ is a disjunctive formula and n is the cardinality of the set
Head(φ), then

μx.φ(x) = φn+1(⊥) . (16)

Proof. We have seen, in the proof of Propositon 6, that [α] x ≤ φ(x) for any
α ∈ Head(φ) and, similarly, β ∨ x ≤ φ(x) for any β ∈ Side(φ). Thus we have

∨

β∈Side(φ)

β =
∨

β∈Side(φ)

β ∨ ⊥ ≤ φ(⊥) .

Let Head(φ) = {α1, . . . , αn }. Supposing that [αi] . . . [α1] (
∨

β∈Side(φ) β) ≤
φi+1(⊥), then

[αi+1] [αi] . . . [α1] (
∨

β∈Side(φ)

β) ≤ [αi+1] (φi+1(⊥)) ≤ φ(φi+1(⊥)) = φi+2(⊥) .

Whence

μx.φ(x) =

⎡

⎣
∧

i=1,...,n

αi

⎤

⎦ (
∨

β∈Side(φ)

β) = [αn] . . . [α1] (
∨

β∈Side(φ)

β) ≤ φn+1(⊥) .

��

Fixed-Point Elimination in the Intuitionistic Propositional Calculus 139

The upper bound given in (16) is optimal: if we let φn(x) =def b∨∨
i=1,...,n ai →

x and consider the Heyting algebra of downsets of 〈P ({ 1, . . . , n }),⊆〉, then,
interpreting b as { ∅ } and ai as { s ⊆ { 1, . . . , n } | i �∈ s }, φn converges exactly
after n + 1 steps.

In order to tackle convergence of weakly negative formulas, we mention some
general statements, where we assume that all the posets have a least element.

Lemma 8. Convergence for Roll). Let f : P −−→ Q and g : Q −−→ P be
monotone functions. If μ.(f ◦ g) = (f ◦ g)n(⊥), then μ.(g ◦ f) = (g ◦ f)n+1(⊥).

Lemma 9. Convergence for Diag. Let f : P ×P −−→ P be a monotone function.
For each p ∈ P , put gp(y) = f(p, x) and h(x) = μy.gx(y). Suppose that, for each
p ∈ P , h(p) = μy.f(p, y) = gn

p (⊥) and that μx.h(x) = hm(⊥). Then μx.f(x, x) =
fnm(⊥,⊥).

For our purposes, the following Lemma provides more accurate upper bounds
than Lemma 9.

Lemma 10. Let f, g : H −−→ H be strong monotone mappings. If μ.f = fn(⊥)
and μ.g = gm(⊥), then μ.f ∧ g = (f ∧ g)n+m−1(⊥).

For the Bekic property we have a similar statement, bounding convergence
of 〈f, g〉 by (n + 1)(m + 1) − 1, with m and n being bounds on convergence of
μy.g(x, y) and μx.f(x, μy.g(x, y)), respectively. While in general this bound is
optimal, the relevant observation is, for our purposes, the following Lemma.

Lemma 11. Let {xi = fi(x1, . . . , xk) | i = 1, . . . , k} be a monotone system of
equations P on some poset with least element ⊥. Suppose that all the functions
generated under substitution from { f1, . . . , fk } ∪ {⊥} converge to their para-
metrized least fixed-point in one step. Then the least solution of this system of
equations is obtained by iterating k times 〈f1, . . . , fk〉 from (⊥, . . . ,⊥) ∈ P k.

Proposition 9. Let φ(x) be a weakly negative formula, so that we have a decom-
position of the form (14). Then φ(x) converges at its least fixed-point in at most
n + 1 steps.

Proof. Applying Lemma 11, we have

ν.(〈ψi | i = 1, . . . , n〉 ◦ ψ0) = (〈ψi | i = 1, . . . , n〉 ◦ ψ0)n(�) . (17)

Considering that

μ.φ = μ.(ψ0 ◦ 〈ψi | i = 1, . . . , n〉) = ψ0(ν.(〈ψi | i = 1, . . . , n〉 ◦ ψ0))

we can use (17) and Lemma 8 to deduce that

μ.φ = (ψ0 ◦ 〈ψi | i = 1, . . . , n〉)n+1(⊥) . ��
It is possible to combine Propositions 8 and 9 with Lemma 8 to obtain upper

bounds for all formulas. Yet, mainly due to the exponential blow-up in computing

140 S. Ghilardi et al.

an equivalent normal-form of a given formula, that is, step 2 of the procedure
described in Sect. 6, these bounds turn out to be exponential functions of the
size of the formula. It is possible on the other hand to pinpoint fragments of the
IPCμ for which we still have polynomial bounds. For example, if we define a
formula-term to be weakly disjunctive if it is generated by the grammar (10),
with the difference that we allow x to have weakly negative occurrences in α and
β, then bounds are polynomials of order 2.

8 Conclusions

As mentioned in the Introduction, a main motivation for the research described
in this paper was to provide in-depth answers to the question of why alternation-
depth hierarchies in μ-calculi collapse or are trivial. Until now, the authors dealt
with trivial alternation-depth hierarchies. The tools and ideas so far developed
still need to be tested when a hierarchy does not completely collapse at its lowest
level. In particular, and given the closeness of Intuitionistic Logic with Modal
Logic based on transitive frames, it becomes appealing to investigate further
connections with existing work on the subject [1,2,10,24].

Compared to other works, such as [20,21], we definitely took an algebraic
and constructive approach to the problem of showing definability of least fixed-
points within the IPC. Witnessing the fruitfulness of our approach, the algebra
made the goal of computing upper bounds of closure ordinals of the monotone
functions denoted by intuitionisitc formulas an accessible task. Let us notice on
the way that our work leads to an obvious decision procedure, based on any
decision procedure for IPC, for the Intuitionistic Propositional μ-Calculus. This
logic, already studied on the side of proof theory and of game semantics [7],
should also be of interest in verification, for example when transition systems
come with some ordering and upward or downward closed properties are defined
by μ-formulas, see [5].

Overall, we believe that understanding extremal fixed-points and more in gen-
eral fixed-points in an intuitionisitc setting—where sparse but surprising results
are known, see for [4] example—is still in quest for an elementary but solid theory
to be developed. The present paper is a contribution toward this goal.

References

1. Alberucci, L., Facchini, A.: The modal µ-calculus hierarchy on restricted classes of
transition systems. J. Symb. Log. 74(4), 1367–1400 (2009)

2. Alberucci, L., Facchini, A.: On modal µ-calculus and Gödel-Löb logic. Studia Log-
ica 91(2), 145–169 (2009)

3. Arnold, A., Niwiński, D.: Rudiments of µ-calculus. Elsevier, Amsterdam (2001)
4. Bauer, A., Lumsdaine, P.L.: On the Bourbaki-Witt principle in toposes. Math.

Proc. Cambridge Philos. Soc. 155, 87–99 (2013)
5. Bertrand, N., Schnoebelen, P.: Computable fixpoints in well-structured symbolic

model checking. Formal Meth. Syst. Des. 43(2), 233–267 (2013)

Fixed-Point Elimination in the Intuitionistic Propositional Calculus 141

6. Bezhanishvili, N., de Jongh, D.: Intuitionistic Logic. Technical report, Institute for
Logic, Language and Computation, Universiteit van Amsterdam, p. 25 (2006)

7. Clairambault, P.: Strong functors and interleaving fixpoints in game semantics.
RAIRO - Theory Inf. Appl. 47(1), 25–68 (2013)

8. Cockett, J.R.B., Spencer, D.: Strong categorical datatypes II: a term logic for
categorical programming. Theory Comput. Sci. 139(1&2), 69–113 (1995)

9. D’Agostino, G., Hollenberg, M.: Logical questions concerning the mu-calculus:
interpolation. Lyndon Los-Tarski. J. Symb. Log. 65(1), 310–332 (2000)

10. D’Agostino, G., Lenzi, G.: On the µ-calculus over transitive and finite transitive
frames. Theory Comput. Sci. 411(50), 4273–4290 (2010)

11. Dau, F.: Some notes on proofs with alpha graphs. In: Schärfe, H., Hitzler, P.,
Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 172–188. Springer,
Heidelberg (2006)

12. Frittella, S., Santocanale, L.: Fixed-point theory in the varieties Dn. In: Höfner,
P., Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMiCS 2014. LNCS, vol. 8428, pp.
446–462. Springer, Heidelberg (2014)

13. Gentzen, G.: Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift 39(1), 176–210 (1935)

14. Ghilardi, S., Zawadowski, M.: Sheaves, Games, and Model Completions: A Cate-
gorical Approach to Nonclassical Propositional Logics, 1st edn. Springer Publishing
Company, Heidelberg (2011)

15. Ghilardi, S., Zawadowski, M.W.: Model completions, r-Heyting categories. Ann.
Pure Appl. Log. 88(1), 27–46 (1997)

16. Kelly, G.: Basic Concepts of Enriched Category Theory. Lecture Notes in Math-
ematics, vol. 64. Cambridge University Press, Cambridge (1982). Republished on
In: Reprints in Theory and Applications of Categories, vol. 10, pp. 1–13 (2005)

17. Kock, A.: Strong functors and monoidal monads. Archiv der Mathematik XXIII
23(1), 113–120 (1972)

18. Kozen, D.: Results on the propositional mu-calculus. Theory Comput. Sci. 27,
333–354 (1983)

19. Lehtinen, K., Quickert, S.: Deciding the first levels of the modal mu alternation
hierarchy by formula construction. In: Kreutzer, S. (ed.) 24th EACSL Annual Con-
ference on Computer Science Logic, CSL September 7–10, 2015, Berlin, Germany,
vol. 41, pp. 457–471. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2015)

20. Mardaev, S.I.: Least fixed points in Grzegorczyk’s Logic and in the intuitionistic
propositional logic. Algebra Log. 32(5), 279–288 (1993)

21. Mardaev, S.I.: Convergence of positive schemes in our and S4 and Int. Algebra
Log. 33(2), 95–101 (1994)

22. Pitts, A.M.: On an interpretation of second order quantification in first order intu-
itionistic propositional logic. J. Symb. Log. 57(1), 33–52 (1992)

23. Ruitenburg, W.: On the period of sequences (an(p)) in intuitionistic propositional
calculus. J. Symb. Log. 49(3), 892–899 (1984)

24. Visser, Albert: Löb’s logic meets the µ-calculus. In: Middeldorp, Aart, Oostrom,
Vincent, Raamsdonk, Femke, Vrijer, Roel (eds.) Processes, Terms and Cycles: Steps
on the Road to Infinity. LNCS, vol. 3838, pp. 14–25. Springer, Heidelberg (2005)

Verification and Program Analysis

A Theory of Monitors

(Extended Abstract)

Adrian Francalanza(B)

CS, ICT, University of Malta, Msida, Malta
adrian.francalanza@um.edu.mt

Abstract. We develop a behavioural theory for monitors — software
entities that passively analyse the runtime behaviour of systems so as to
infer properties about them. First, we extend the monitor language and
instrumentation relation of [17] to handle piCalculus process monitor-
ing. We then identify contextual behavioural preorders that allow us to
relate monitors according to criteria defined over monitored executions of
piCalculus processes. Subsequently, we develop alternative monitor pre-
orders that are more tractable, and prove full-abstraction for the latter
alternative preorders with respect to the contextual preorders.

1 Introduction

Monitors (execution montors [32]) are software entities that are instrumented to
execute along side a program so as determine properties about it, inferred from
the runtime analysis of the exhibited (program) execution; this basic monitor
form is occasionally termed (sequence) recognisers [28]. In other settings, moni-
tors go further and either adapt aspects of the monitored program [7,11,22] or
enforce predefined properties by modifying the observable behaviour [4,15,28].
Monitors are central to software engineering techniques such as monitor-oriented
programming [16] and fail-fast design patterns [8] used in fault-tolerant systems
[19,34]; they are also used exten sively in runtime verification [27], a lightweight
verification technique that attempts to mitigate state explosion problems asso-
ciated with full-blown verification methods such as model checking.

Monitoring setups typically consist of three components: apart from the pro-
gram being monitored, P , there is the monitor itself, M , and the instrumenta-
tion, the mechanism composing the monitor with the program, P � M . The latter
gives rise to a software composition relation that has seldom been studied in its
own right. This paper investigates compositional reasoning techniques for mon-
itors performing detections (recognisers), composed using the instrumentation
relation employed in [17], for programs expressed as piCalculus processes [29,31],
a well-studied concurrency model. We set out to develop monitor preorders

M1 � M2 (1)

The research was supported by the UoM research fund CPSRP05-04 and the research
grant COST-STSM-ECOST-STSM-IC1201-170214-038253.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 145–161, 2016.
DOI: 10.1007/978-3-662-49630-5 9

146 A. Francalanza

stating that, when instrumented in the context of an arbitrary process P ,
if P � M1 exhibits certain properties, then P � M2 exhibits them as well.
Within this setup, we formalise the possible instrumentation properties one may
require from an instrumented (monitored) process, and show how these give rise
to different monitoring preorders.

Example 1. Consider the monitors M1 and M2 below. M1 monitors for output
actions on channel a with a payload that is not in the set C. Apart from detecting
the same outputs on channel a, M2 also detects outputs with payload b on
channels that are not in D (the + construct acts as an external choice [23]).

M1 = match a!x.if x �∈ C then�
M2 = (match a!x.if x �∈ C then�) + (match y!b.if y �∈ D then�)

One can argue that M2 is related to M1, i.e., M1 � M2, since all the detections
raised by M1 are also raised by M2. However, under different criteria, the two
monitors would not be related. Consider the case where a ∈ D (or b ∈ C):
for a process P exhibiting action a!b, monitor M2 may non-deterministically
fail to detect this behaviour; by contrast, M1 always detects the behaviour a!b
and, in this sense, M2 does not preserve all the properties of M1. Monitors are
also expected to interfere minimally with the execution of the analysed process,
giving rise to other criteria for relating monitors, as we will see in the sequel. �

There are various reasons why such preorders are useful. For a start, they act
as notions of refinement : they allow us to formally specify properties that are
expected of a monitor M by expressing them in terms of a monitor description,
SpecM , and then requiring that SpecM � M holds. Moreover, our preorders
provide a formal understanding for when it is valid to substitute one monitor
implementation for another while preserving elected monitoring properties. We
consider a general model that allows monitors to behave non-deterministically;
this permits us to study the cases where non-determinism is either tolerated or
considered erroneous. Indeed, there are settings where determinism is unattain-
able (e.g., distributed monitoring [18,33]). Occasionally, non-determinism is also
used to expresses under-specification in program refinement.

Although formal and intuitive, the preorders alluded to in (1) turn out to be
hard to establish. One of the principal obstacles is the universal quantification
over all possible processes for which the monitoring properties should hold. We
therefore develop alternative characterisations for these preorders, M1 ≤ M2,
that do not rely on this universal quantification over process instrumentation.
We show that such relations are sound wrt. the former monitor preorders, which
serves as a semantic justification for the alternative monitor preorders. More
importantly, however, it also allows us to use the more tractable alternative rela-
tions as a proof technique for establishing inequalities in the original preorders.
We also show that these characterisations are complete, thereby obtaining full-
abstraction for these alternative preorders.

The rest of the paper is structured as follows. Section 2 briefly overviews our
process model whereas Sect. 3 introduces our monitor language together with the
instrumentation relation. In Sect. 4 we formalise our monitor preorder relations

A Theory of Monitors 147

Syntax

P, Q ∈ Proc ::= u!v.P (output) | u?x.P (input)

| nil (nil) | if u=v thenP else Q (conditional)

| recX.P (recursion) | X (process var.)

| P Q (parallel) | new c.P (scoping)

Semantics

pOut
!d.P

c!d−−−→ P
pIn

?x.P
c?d−−−→ P [d/x]

pThn
if c=c thenP else Q

τ−−→ P
pEls

if c=d thenP else Q
τ−−→ Q

pRec
recX.P

τ−−→ P [recX.P/X]
pPar

μ−−→ P

Q
μ−−→ P Q

pCom
c!d−−−→ P

c?d−−−→ Q

Q
τ−−→ P Q

pRes

μ−−→ P

new d.P
μ−−→ new d.P

pCls
c!d−−−→ P

c?d−−−→ Q

Q
τ−−→ new d.(P Q)

pOpn
c!d−−−→ P

new d.P
c!d−−−→ P

Fig. 1. piCalculus syntax and semantics

wrt. this instrumentation. We develop our alternative preorders in Sect. 5, where
we also establish the correspondence with the other preorders. Section 6 concludes.

2 The Language

Figure 1 presents our process language, a standard version of the piCalculus.
It has the usual constructs and assumes separate denumerable sets for chan-
nel names c, d, a, b ∈ Chans, variables x, y, z ∈ Vars and process variables,
X,Y ∈ PVars, and lets identifiers u, v range over the sets, Chans ∪ Vars.
The input construct, c?x.P , the recursion construct, recX.P , and the scop-
ing construct, new c.P , are binders where the free occurrences of the variable
x, the process variable X, and the channel c resp., are bound in the guarded
body P . We write fv(P), fV(P), fn(P),bV(P),bv(P) and bn(P) for the resp.
free/bound variables, process variables and names in P . We use standard syntac-
tic conventions e.g., we identify processes up to renaming of bound names and
variables (alpha conversion). For arbitrary syntactic objects o, o′, we write o � o′

when the free names in o and o′ are disjoint e.g., P �Q means fn(P)∩fn(Q) = ∅.
The operational semantics of the language is defined by the Labelled Tran-

sition System (LTS) shown in Fig. 1. LTS judgements are of the form

148 A. Francalanza

I � P
μ−−→ P ′

where I ⊆ Chans denotes an interface of names known (or shared) by both the
process and an implicit observer (with which interactions occur), P is a closed
term, and fn(P) ⊆ I. We write I, c as a shorthand for I ∪ {c} where c �∈ I,
and generally assume a version of the Barendregt convention whereby bn(P) � I.1

For arbitrary names c, d, actions μ ∈ Actτ range over input actions, c?d, out-
put actions, c!d, and a distinguished silent action, τ (α ∈ Act ranges over exter-
nal actions, that exclude τ). The rules in Fig. 1 are fairly standard, using I for
book-keeping purposes relating to free/bound names (we elide symmetric rules
for pPar, pCom and pCls); implicitly, c, d ∈ I in rule pOut and c ∈ I in rule
pIn (but d is not necessarily in I). We use s, t ∈ Act∗ to denote traces of external
actions. Although actions do not include explicit information relating to extruded
names, this may be retrieved using I as shown in Definition 1; the absence of action
name binding (as in [24,31]) simplifies subsequent handling of traces. The evolu-
tion of I after a transition is determined exclusively by the resp. action of the tran-
sition, defined as aftr(I, μ) in Definition 1; note that both the process (through
outputs) and the implicit observer (through inputs) may extend I.

Definition 1 (Extruded Names and Interface Evolution)

ext(I, τ) def= ∅ ext(I, c!d) def= {d}\I ext(I, c?d) def= ∅
aftr(I, τ) def= I aftr(I, c!d) def= I ∪ {d} aftr(I, c?d) def= I ∪ {d}

We lift the functions in Definition 1 to traces, e.g., aftr(I, s), in the obvious
way and denote successive transitions I�P

μ1−−→ P1 and aftr(I, μ1)�P1
μ2−−→ P2 as

I �P
μ1−−→ aftr(I, μ1)�P1

μ2−−→ P2. We write I �P � μ−−→ to denote � ∃P ′ ·I �P
μ−−→ P ′

and I � P
s=⇒ Q to denote I0 � P0

μ1−−→ I1 � P1
μ2−−→ I2 � P2 . . .

μn−−→ Pn where
P0 = P , Pn = Q, I0 = I, Ii = aftr(Ii−1, μi) for i ∈ 1..n, and s is equal to
μ1 . . . μn after filtering τ labels.

Example 2. Consider Psv = recX.c?x.new d.x!d.X, modelling the idiomatic
server that repeatedly waits for requests on c and answers back on the inputted
channel with a fresh channel. We can derive the following behaviour wrt. I = {c}:

I � Psv
c?a==⇒ I, a � new d.a!d.Psv

a!d==⇒
I, a, d � Psv

c?a==⇒ I, a, d � new d.a!d.Psv
a!d′

===⇒ I, a, d, d′ � Psv

Above, bound outputs/inputs [31] are manifested as interface extensions. �

3 Monitor Instrumentation

Monitors, M,N ∈ Mon, are syntactically defined by the grammar of Fig. 2. They
may reach either of two verdicts, namely detection, �, or termination, end, denot-
ing an inconclusive verdict. Our setting is a mild generalisation to that in [17]
1 The rules in Fig. 1 still check explicitly for this; see rules pRes, pCls and pOpn.

A Theory of Monitors 149

Syntax

p, q ∈ Pat ::= u?v (input pattern) | u!v (output pattern)

w ∈ Verd ::= end (termination) | (detection)

M, N ∈ Mon ::= w (verdict) | p.M (pattern match)

| M + N (choice) | if u=v thenM else N (branch)

| recX.M (recursion) | X (monitor var.)

Monitor Semantics

mVer
w

α−−→ w
mPat

match(p, α) = σ

p.M
α−−→ Mσ

mChL M
μ−−→ M

M + N
μ−−→ M

mRec
recX.M

τ−−→ M [recX.M/X]
mChR N

μ−−→ N

M + N
μ−−→ N

mThn
if c=c thenM else N

τ−−→ M
mEls

if c=d thenM else N
τ−−→ N

Instrumented System Semantics

iMon
α−−→ P M

α−−→ M
α−−→ P

iAsyP
τ−−→ P
τ−−→ P

iTer
α−−→ P M

α−−→ M
τ−−→

α−−→ P end
iAsyM M

τ−−→ M
τ−−→

Fig. 2. Monitor syntax, semantics and Instrumentation Semantics

since monitors need to reason about communicated names so as to adequately
monitor for piCalculus processes. They are thus equipped with a pattern match-
ing construct (used to observe external actions) and a name-comparison branch-
ing construct. The remaining constructs, i.e., external branching and recursion,
are standard. Note that, whereas the syntax allows for monitors with free occur-
rences of monitor variables, monitors are always closed wrt. (value) variables,
whereby the outermost occurrence of a variable acts as a binder. E.g., in the
monitor (x?c.x!y.if y = d then end else �) pattern x?c binds variable x in the
continuation whereas pattern x!y binds variable y.

The monitor semantics is defined in terms of an LTS (Fig. 2), modeling the
analysis of the visible runtime execution of a process. Following [15,17,30], in rule
mVer verdicts are able to analyse any external action but transition to the same
verdict, i.e., verdicts are irrevocable. By contrast, pattern-guarded monitors only
transition when the action matches the pattern, binding pattern variables to the
resp. action names, match(p, α) = σ, and substituting them in the continuation,
Mσ; see rule mPat. The remaining transitions are unremarkable.

150 A. Francalanza

A monitored system, P � M , consists of a process, P , instrumented with a
monitor, M , analysing its (external) behaviour. Figure 2 defines the instrumen-
tation semantics for configurations, I � P � M , i.e., systems augmented with an
interface I, where again we assume P is closed and fn(P) ⊆ I. The LTS seman-
tics follows [7,17] and relies on the resp. process and monitor semantics of Figs. 1
and 2. In rule iMon, if the process exhibits the external action α wrt. I, and
the monitor can analyse this action, they transition in lock-step in the instru-
mented system while exhibiting same action. If, however, a process exhibits an
action that the monitor cannot analyse, the action is manifested at system level
while the monitor is terminated ; see rule iTer. Finally, iAsyP and iAsyM allow
monitors and processes to transition independently wrt. internal moves, i.e., our
instrumentation forces process-monitor synchronisation for external actions only,
which constitute our monitorable actions. We note that, as is expected of recog-
nisers, the process drives the behaviour of a monitored system: if the process
cannot α-transition, the monitored system cannot α-transition either.

Example 3. Recall Psv from Example 2. Using the semantics of Fig. 2, one can
derive the monitored execution leading to a detection below, when composed
with the monitor M1 =

(
c?y.y!z.if z=c then end else �

)
, subject to I ′ = {c, a}:

I ′ � Psv � M1
c?a · a!d=====⇒ Psv � �

Contrastingly, for the same I ′, monitoring with M2 = (y!z.if y =
a then end else �) does not lead to a detection for the same trace, because the
first action, c?a (an input) cannot pattern match with the output pattern, y!z.
In fact, rule iTer terminates the monitor after transition c?a, so as to avoid
erroneous detections.

I ′ � Psv � M2
τ−→ c?x.new d.x!d.Psv � M2

c?a−−−→ new d.a!d.Psv � end
a!d==⇒ Psv � end

(2)

For illustrative purposes, consider N = c?y.if y = c then end else y!z.c?z.�,
another monitor. We have the following (dissected) transition sequence for
I = {c}:

I � Psv � N
τ−→ · c?a−−→ I, a �

(
new d.a!d.Psv

)
� if a=c then end else a!z.c?z.� (3)

τ−→ I, a �
(
new d.a!d.Psv

)
� a!z.c?z.� (4)

a!d−−−→ (I, a, d) � Psv � c?d.� (5)
τ−→ · c?b−−→ (I, a, d, b) � new d′.b!d′.Psv � end (6)
b!d′

−−−→ (I, a, d, b, d′) � Psv � end (7)

In (3) the server (asynchronously) unfolds (pRec and iAsyP) and inputs on c the
fresh name a (pIn); the monitor can analyse c?a (mPat where match(c?y, c?a) =
{y → a}), transitioning accordingly (iMon) while learning the fresh name a

A Theory of Monitors 151

for future monitoring. At this stage, the instrumentation temporarily stalls the
process, even though it can produce the (scope extruding) output a!d. More
precisely, although the monitor cannot presently analyse a!d, the rule iTer —
which terminates the monitor execution — cannot be applied, since the monitor
can silently transition and potentially become capable of analysing the action.
This is indeed the case, (4) using mEls, resulting in the second monitoring
transition, (5) using iMon, where the monitor learns the second fresh name d,
this time originating from the monitored process. After another unfolding, the
process is ready to input on c again. However, the monitor cannot match c?b
(match(c?d, c?b) is undefined) and since the monitor cannot silently transition
either, it is terminated (iTer) while still allowing the process to proceed, (6).
In (7), verdicts allow monitored processes to execute without any hindrance. �

Example 3 highlights two conflicting instrumentation requirements. On the
one hand, monitors should interfere minimally with the execution of a mon-
itored process where, observationally, a monitored process should behave like
the original one. On the other hand, instrumentation must also ensure bona
fide detections, e.g., in (2) and (6), terminating monitoring when the observed
process behaviour does not correspond, (through rule iTer). But in order to
do this while avoiding premature termination, instrumentation needs to allow
for monitor internal computation, e.g., (4). Unfortunately, the premise caveat
M � τ−→ in rule iTer — necessary to prevent premature terminations — allows
monitors to affect (indirectly) process behaviour. For instance the monitor Ω
below:

Ω = recX.(if c=c thenX else X) Ω′ = if c=c thenΩ else Ω (8)

is divergent, i.e., Ω
τ−→ Ω′ τ−→ Ω

τ−→ . . ., and unresponsive, i.e., ∀α · Ω � α−−→
and Ω′ � α−−→. As a result, it suppresses every process external behaviour when
instrumented: for arbitrary I � P we can show I � P � Ω � α−−→ and I � P � Ω′ � α−−→
for any α, since rules iMon and iTer cannot be applied. We revisit this point
in Sect. 4. We conclude with the property stating that verdicts are irrevocable.

Theorem 1 (Definite Verdicts). I � P � w
s=⇒ Q � M implies M = w

4 Monitor Preorders

We can use the formal setting presented in Sect. 3 to develop the monitor pre-
orders discussed in the Introduction. We start by defining the monitoring pred-
icates we expect to be preserved by the preorder; a number of these predicates
rely on computations and detected computations, defined below.

Definition 2 (Detected Computations). The transition sequence

I � P � M
s=⇒ I0 � P0 � M0

τ−→ I1 � P1 � M1
τ−→ I2 � P2 � M2

τ−→ . . .

is called an s-computation if it is maximal (i.e., either it is infinite or it is finite
and cannot be extended further using τ -transitions). An s-computation is called
detected (or a detected computation along s) iff ∃n ∈ N · Mn = �. �

152 A. Francalanza

One criteria for comparing monitors considers the verdicts reached after
observing a specific execution trace produced by the process under scrutiny. The
semantics of Sect. 3 assigns a passive role to monitors, prohibiting them from influ-
encing the branching execution of the monitored process. Definition 2 thus differ-
entiates between detected computations, identifying them by the visible trace that
is dictated by the process (over which the monitor should not have any control).

Example 4. Consider P = new d.(d!‖d?.c!a‖d?.c!b), I = {c, b, a} and monitors:

M1 = c!a.� + c!b.� M2 = c!a.� + c!b.end M3 = c!a.�
M4 = c!a.� + c!b.� + c!b.end M5 = c!a.� + c!b.� + c!a.end + c!b.end

Configurations I � Mi � P for i ∈ 1..5 exhibit detecting computations along
s = c!a.ε. For trace t = c!b.ε, configurations I � Mj � P for j ∈ {1, 4, 5} detect
t-computations as well, whereas the resp. configurations with M2 and M3 do
not. Although the configuration with M1 always detects along t, those with M4

and M5 may fail to detect it along such a trace. Similarly, configuration with
M1 and M4 deterministically detect along trace s, but I � M5 � P does not. �
Example 4 suggests two types of computation detections that a monitor may
exhibit.

Definition 3 (Potential and Deterministic Detection). M potentially
detects for I �P along trace s, denoted as pd(M, I, P, s), iff there exists a detect-
ing s-computation from I � P � M . M deterministically detects for I � P along
trace s, denoted as dd(M, I, P, s), iff all s-computation from I � P � M are
detecting. �
Remark 1. If a monitored process cannot produce trace s, i.e., I � P � s=⇒, then
pd(M, I, P, s) is trivially false and dd(M, I, P, s) is trivially true for any M . �

The detection predicates of Definition 3 induce the following monitor pre-
orders (and equivalences), based on the resp. detection capabilities.

Definition 4 (Potential and Deterministic Detection Preorders)

M �pd N
def= ∀I, P, s · pd(M, I, P, s) implies pd(N, I, P, s)

M �dd N
def= ∀I, P, s · dd(M, I, P, s) implies dd(N, I, P, s)

M ∼=pdN and M ∼=ddN are the kernel equivalences induced by the resp. preorders,
i.e., M ∼=pdN

def= (M �pdN and N �pdM), and similarly for M ∼=ddN . We write
M �pdN in lieu of (M �pdN and N ��pd M) and similarly for M �ddN . �
Example 5. Recall the monitors defined in Example 4. It turns out that

M2
∼=pd M3 �pd M5

∼=pd M4
∼=pd M1 (9)

M5 �dd M2
∼=dd M3

∼=dd M4 �dd M1 (10)

Note that, whereas M5 can potentially detect more computations that M2 and
M3, (9), it can deterministically detect less computations than these monitors
(10); in fact, M5 cannot deterministically detect any computation. �

A Theory of Monitors 153

As opposed to prior work on monitors [2,10,15], the detection predicates in
Definition 3 consider monitor behaviour within an instrumented system. Apart
from acting as a continuation for the study in [17], this setup also enables us to
formally justify subtle monitor orderings, Example 6, and analyse peculiarities
brought about by the instrumentation relation, Example 7.

Example 6. Using the shorthand τ.M for recX.M where X �∈ fV(M), we have:

� ∼=pd τ.� but � �dd τ.�

For process P = Ω, defined as in (8), predicate dd(�, I, P, ε) holds trivially,
but predicate dd(τ.�, I, P, ε) does not, due of the non-detecting ε-computation
I � Ω � τ.� τ−→ · τ−→ Ω � τ.� τ−→ · τ−→ . . ., refuting the inequality ��dd τ.�. �

Example 7. Recalling the divergent monitor Ω from (8), we have:
(
end ∼=dd c!a.end

)
�dd c!a.� �dd Ω �dd � (11)

Ω + end �dd

(
Ω ∼=dd Ω + � ∼=dd recX.(τ.X + �)

)
(12)

Ω + c!a.� �pd Ω + � but Ω + c!a.� ∼=dd Ω + � (13)

In (11), every computation starting with monitor � is trivially detected. Mon-
itor Ω limits all computations to ε-computations, i.e., irrespective of I � P ,
configuration I � P � Ω exhibits no s-computations for any s where |s| > 0,
rendering dd(Ω, I, P, s) for |s| > 0 vacuously true (see Remark 1). By contrast,
dd(c!a.�, I, P, s) holds only whenever s = c!a.t (for arbitrary t) and I � P

s=⇒.
In (12), monitor Ω + end does not deterministically detect any computation:

when composed with an arbitrary I � P , it clearly can never reach a detection,
but it can neither prohibit the process from producing visible actions, as in
the case of Ω (see rules mVer, mChR and iMon). Monitor Ω + � can either
behave like Ω or transition to � after one external action observed; in both
cases, it deterministically detects all s-computation where |s| > 0. The monitor
recX.(τ.X + �) first silently transitions to (τ.recX.(τ.X + �)) + � and then
either transitions back to the original state or else transitions to � with an
external action; in either case, when composed with any process I � P , it also
deterministically detects all s-computation for |s| > 0.

In (13), although monitor Ω + c!a.� potentially detects less computations
than Ω + � (e.g., for I = {c, a, b}, P = c!b.nil and s = c!b.ε, the predicate
pd(Ω+�, I, P, s) holds but pd(Ω+c!a.�, I, P, s) does not), both deterministically
detect the same computations, i.e., all s-computation where |s| > 0. Specifically,
if a process being monitored, say I � P , can produce an action other than c!a,
the instrumentation with monitor Ω + c!a.� restrains such an action, since the
monitor cannot transition with that external action (it can only transition with
c!a) but, at the same time, it can τ -transition (see rules iMon and iTrm). �

The preorders in Definition 4 are not as discriminating as one might expect.

154 A. Francalanza

Example 8. Consider the monitor Many = x?y.� + x!y.�.

Many
∼=pd Many + Ω and Many

∼=dd Many + Ω (14)
c!a.end ∼=pd c!a.end + c!a.Ω and c!a.end ∼=dd c!a.end + c!a.Ω (15)

Intuitively, Many potentially and deterministically detects any s-computation
when |s| > 0. It turns out that Many + Ω produces the same potential and
deterministic detections, yielding the resp. equalities in (14). In (15), neither
monitor produces any potential or deterministic detections and they are thus
equivalent according to the resp. kernel equivalences of Definition 4. �

There are however settings where the equalities established in Example 8
are deemed too coarse. E.g., in (15), whereas monitor c!a.end is innocuous when
instrumented with a process, monitor c!a.end+c!a.Ω may potentially change the
observed behaviour of the process under scrutiny after the action c!a is emitted
(by suppressing external actions, as explained in Example 7); a similar argument
applies for the monitors in (14). We thus define a third monitor predicate called
transparency [5,15,28], stating that whenever a monitored process cannot per-
form an external action, it must be because the (unmonitored) process is unable
to perform that action (i.e., the monitoring does not prohibit that action).

Definition 5 (Transparency Preorder). M is transparent for I�P wrt. trace
s, denoted as tr(M,P, I, s), iff

(
I�P � M

s=⇒ Q� N and aftr(I, s) � (Q � N) � α=⇒)

implies aftr(I, s) � Q � α=⇒. We define the induced preorder as expected:

M �tr N
def= ∀I, P, s · tr(M, I, P, s) implies tr(N, I, P, s) �

Although the preorders in Definitions 4 and 5 are interesting in their own
right, we define the following relation as the finest monitor preorder in this
paper.

Definition 6 (Monitor Preorder)

M � N
def= M �pd N and M �dd N and M �tr N �

Example 9. We have Many �� Many + Ω because Many ��tr Many + Ω, since
¬tr(Many + Ω, I, P, s) for I = {c, a}, P = c!a.c!a.nil and s = c!a.ε. Similarly, we
also have c!a.end �� c!a.end + c!a.Ω. �

Inequalities from the preorders of Definitions 4 and 5 are relatively easy
to repudiate. For instance, we can use P, I and t from Example 4 as counter
examples to show that pd(M5, I, P, t) and ¬pd(M3, I, P, t), thus disproving
M5 �pd M3. However, it is much harder to show that an inequality from these
preorders holds because we need to consider monitor behaviour wrt. all possible
processes, interfaces and traces. As shown in Examples 6, 7 and 8, this often
requires intricate reasoning in terms of the three LTSs defined in Figs. 1 and 2.

A Theory of Monitors 155

5 Characterisation

We define alternative monitor preorders for which positive statements about their
inequalities are easier to establish. The new preorders are defined exclusively in
terms of the monitor operational semantics of Fig. 2, as opposed to how they are
affected by arbitrary processes as in Definition 6 (which considers also the process
and instrumentation LTSs). We show that the new preorders coincide with those
in Sect. 4. Apart from equipping us with an easier mechanism for determining the
inequalities of Sect. 4, the correspondence results provide further insight into the
properties satisfied by the preorders of Definitions 4 and 5.

We start with the potential-detection preorder. We first define a restricted
monitor LTS that disallows idempotent transitions from verdicts, w

α−−→ w: these
are redundant when considering the monitor operational semantics in isolation.
Note, however, that we can still used rule mVer, e.g., to derive � + M

α−−→r �.

Definition 7 (Restricted Monitor Semantics). A derived monitor transi-
tion, M

μ−−→r N , is the least relation satisfying the conditions M
μ−−→ N and

M �= w. M
s=⇒r N denotes a transition sequence in the restricted LTS. �

We use the restricted LTS to limit the detecting transition sequences on the
left of the implication of Definition 8. However, we permit these transitions to
be matched by transition sequences in the original monitor LTS, so as to allow
the monitor to the right of the inequality to match the sequence with a prefix of
visible actions (which can then be padded by � α−−→ � transitions as required).

Definition 8 (Alternative Potential Detection Preorder)

M �pd N
def= ∀s · M

s=⇒r � implies N
s=⇒ �

Theorem 2 (Potential-Detection Preorders). M �pd N iff M �pd N

Example 10. By virtue of Theorem 2, to show that Ω + c!a.� �pd Ω + � from

(13) of Example 7 holds, we only need to consider Ω + c!a.� c!a==⇒r �, which can
be matched by Ω+� c!a==⇒ �. Similarly, to show (x!a.if x=c then� else end) �pd

�, we only need to consider (x!a.if x=c then� else end) c!a==⇒r �, matched by
� c!a−−→ �. �

For the remaining characterisations, we require two divergence judgements.

Definition 9 (Divergence and Strong Divergence)

– M ↑ denotes that M diverges, meaning that it can produce an infinite transi-
tion sequence of τ -actions M

τ−→ M ′ τ−→ M ′′ τ−→ . . .
– M ⇑ denotes that M strongly diverges, meaning that it cannot produce finite

transition sequence of τ -actions M
τ−→ M ′ τ−→ . . . M ′′ � τ−→. �

Lemma 1. M
τ−→ implies M �= w

156 A. Francalanza

The alternative preorder for deterministic detections, Definition 11 below, is
based on three predicates describing the behaviour of a monitor M along a trace
s. The predicate blk(M, s) describes the potential for M to block before it can
complete trace s. Predicate fl(M, s) describes the potential for failing after moni-
toring trace s, i.e., an s-derivative of M reaches a non-detecting state from which
no further τ actions are possible, or it diverges (implicitly, by Lemma1, this also
implies that the monitors along the diverging sequences are never detecting).
Finally nd(M, s) states the existence of a non-detecting s-derivative of M .

Definition 10 (Monitor Block, Fail and Non-Detecting)

blk(M, s) def= ∃s1, α, s2, N · s=s1αs2 and M
s1==⇒ N � τ−→ and N � α−→

fl(M, s) def= ∃N · M
s=⇒ N and

(
(N �= � and N � τ−→) or N ↑)

nd(M, s) def= ∃N · M
s=⇒ N and N �= �

Note that blk(M, s) implicitly requires |s| ≥ 1 for the predicate to hold. �

Corollary 1. blk(M, s) implies ∀t · blk(M, st)

Definition 11 (Alternative Deterministic Detection Preorder)

M �dd N
def= ∀s ·

⎧
⎪⎨

⎪⎩

blk(N, s) implies blk(M, s) or fl(M, s)
fl(N, s) implies blk(M, s) or fl(M, s)
nd(N, s) implies nd(M, s) or blk(M, s)

We write M �dd N to denote the kernel equality (M �dd N and N �dd M). �

Theorem 3 (Deterministic-Detection Preorders). M �dd N iff M �dd N

Example 11. Consider M = c?a.end + x!b.end and N = c?a.end. By virtue of
Theorem 3, to determine M �dd N we prove M �dd N as follows:

1. We have blk(N, s) whenever s = αs′ and α �= c?a. We have two subcases:
– If match(x!b, α) is undefined, we show blk(M,αs′) by first showing that
blk(M,αε) and then generalising the result for arbitrary s′ using Corollary 1.

– If ∃σ ·match(x!b, α) = σ, we show fl(M,αs′) by first showing fl(M,αε) and
then generalising the result for arbitrary s′ using Theorem 1.

2. For any s, we have fl(N, c?a.s): we can show fl(M, c?a.s), again using
Theorem 1 to alleviate the proof burden.

3. For any s, we have nd(N, c?a.s): the required proof is analogous to the pre-
vious case. �

Example 12. Due to full abstraction (i.e., completeness), we can alternatively
disprove � �dd τ.� from Example 6 by showing that � ��dd τ.�: we can readily
argue that whereas nd(τ.�, ε), we cannot show either nd(�, ε) or blk(�, ε). �

Example 13. Recall the equalities Ω ∼=dd Ω + � ∼=dd recX.(τ.X + �) claimed in
(12) of Example 7. It is arguably easier to determine these equalities by considering
only the monitor LTSs to show that Ω �dd Ω + � �dd recX.(τ.X + �) since:

A Theory of Monitors 157

1. For any s �= ε we have ¬blk(Ω, s), ¬blk(Ω+�, s) and ¬blk(recX.(τ.X+�), s).
2. We only have fl(Ω, ε), fl(Ω + �, ε) and fl(recX.(τ.X + �), ε).
3. Similarly, we only have nd(Ω, ε), nd(Ω + �, ε) and nd(recX.(τ.X + �), ε). �

Remark 2. The alternative preorder in Definition 11 can be optimised further
using refined versions of the predicates fl(M, s) and nd(M, s) that are defined
in terms of the restricted monitor transitions of Definition 7, as in the case of
Definition 3. �

The alternative transparency preorder, Definition 13 below, is defined in
terms of divergence refusals which, in turn, rely on strong divergences from
Definition 9. Intuitively, divergence refusals are the set of actions that cannot be
performed whenever a monitor reaches a strongly divergent state following the
analysis of trace s. These actions turn out to be those that are suppressed on a
process when instrumented with the resp. monitor.

Definition 12 (Divergence Refusals)

dref(M, s) def=
{

α | ∃N · M
s=⇒ N and N ⇑ and N � α=⇒

}

Definition 13 (Alternative Transparency Preorder)

M �tr N
def= ∀s · dref(N, s) ⊆ dref(M, s)

Theorem 4 (Transparency Preorders). M �tr N iff M �tr N

Example 14. Recall monitors c!a.end and c!a.end+c!a.Ω from (15) of Example 8.
The inequality c!a.end+ c!a.Ω �tr c!a.end follows trivially from Theorem4, since
∀s ·dref(c!a.end, s) = ∅. The symmetric case, c!a.end �tr c!a.end+c!a.Ω, can also
be readily repudiated by plying Theorem4. Since dref((c!a.end+ c!a.Ω), c!a.ε) =
Act (and dref(c!a.end, c!a.ε) = ∅) we trivially obtain a violation of the set inclu-
sion requirements of Definition 13. �

Example 15. Recall again Ω + � and recX.(τ.X + �) from (12). We can differ-
entiate between these monitors from a transparency perspective, and Theorem 4
permits us to do this with relative ease. In fact, whereas dref((Ω +�), ε) = Act

(since Ω+� τ−→ Ω and dref(Ω, ε) = Act) we have dref((recX.(τ.X+�)), ε) = ∅;
for all other traces |s| ≥ 1 we obtain empty divergence refusal sets for both mon-
itors. We thus can positively conclude that Ω + � �tr recX.(τ.X + �) while
refuting recX.(τ.X + �) �tr Ω + �. �

Definition 14 (Alternative Monitor Preorder)

M � N
def= M �pd N and M �dd N and M �tr N �

Theorem 5 (Full Abstraction). M � N iff M � N

158 A. Francalanza

6 Conclusion

We have presented a theory for (recogniser) monitors that allows us to substitute
a monitor M1 in a monitored process P � M1 by another monitor M2 while
guaranteeing the preservation of a number of monitoring properties relating to
(behaviour) detection and monitor interference. The theory is compositional,
since it enables us to ensure the preservation of properties by analysing the resp.
monitors M1 and M2 in isolation, without needing to consider the process being
monitored, P (which may be arbitrarily complex). To the best of our knowledge,
it is the first monitor theory of its kind and could be used to alleviate efforts for
proving monitors correct e.g., [26]. The concrete contributions are:

1. The definition of three monitor preorders, each requiring the preservation of
different monitoring properties: Definitions 3, 4 and 5.

2. The characterisation of these preorders in terms of alternative preorders that
are more tractable, Theorems 2, 3 and 4.

Related and Future Work. The instrumentation relation we consider is adopted
from [17] and embodies synchronous instrumentation (where the external actions
constituted the monitorable actions). Synchronous instrumentation is the most
prevalent method used in monitoring tools (e.g., [1,9,14,25]) because it carries
benefits such as timely detections. There are however variants such as asynchro-
nous instrumentation (e.g., [12,20]) as well as hybrid variations (e.g., [6,7,9,30]).
Our theory should be applicable, at least in part, to these variants.

In runtime verification, three-verdict monitors [2,10,15,17] are often con-
sidered, where detections are partitioned into acceptances and rejections. The
monitors studied here express generic detections only; they are nevertheless max-
imally expressive for branching-time properties [17]. They also facilitate compar-
isons with other linear-time preorders (see below). We also expect our theory to
extend smoothly to settings with acceptances and rejections.

Our potential and deterministic detection preorders are reminiscent of the
classical may and must preorders of [13,23] and, more recently (for the deter-
ministic detection preorder), of the subcontract relations in [3,21]. However,
these relations differ from ours in a number of respects. For starters, the mon-
itor instrumentation relation of Fig. 2 assigns monitors a passive role whereas
the parallel composition relation composing processes (servers in [3,21]) with
tests (clients in [3,21]) invites tests to interact with the process being probed.
Another important difference is that testing preorders typically relate processes,
whereas our preorders are defined over the adjudicating entities i.e., the mon-
itors. The closest work in this regard is that of [3], where the authors develop
a must theory for clients. Still, there are significant discrepancies between this
must theory and our deterministic detection preorder (further to the differencies
between the detected (monitored) computations of Definition 2 and the success-
ful computations under tests of [3,13,23] as outlined above — success in the
compliance relation of [21] is even more disparate). Concretely, in our setting
we have equalities such as c!a.� ∼=dd c!a.� + c!b.end (see (10) of Example 6),

A Theory of Monitors 159

which would not hold in the setting of [3] since their client preorder is sensitive
to external choices (�dd is not because monitored executions are distinguished
by their visible trace). The two relations are in fact incomparable, since diver-
gent processes are bottom elements in the client must preorder of [3], but they
are not in �dd. In fact, we have Ω ��dd Ω + end in (12) of Example 7 or, more
clearly, Ω ��dd Ω + α.end; at an intuitive level, this is because the instrumenta-
tion relation of Fig. 2 prioritises silent actions over external actions that cannot
be matched by the monitor.

Transparency is usually a concern for enforcement monitors whereby the
visible behaviour of a monitored process should not be modified unless it vio-
lates some specified property [5,15,28]. We adapted this concept to recognisers,
whereby the process behaviour should never be suppressed by the monitor.

To our knowledge, the only body of work that studies monitoring for the
piCalculus is [5,11,22], and focusses on synthesising adaptation/enforcement
monitors from session types. The closest to our work is [5]: their definitions
of monitor correctness are however distinctly different (e.g., they are based on
branching-time equivalences) and their decomposition methods for decoupling
the monitor analysis from that of processes rely on static type-checking.

Acknowledgements. The paper benefited from discussions with Luca Aceto, Gio-
vanni Bernardi, Matthew Hennessy and Anna Ingólfsdóttir.

References

1. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.E.: Quan-
tified event automata: Towards expressive and efficient runtime monitors. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84.
Springer, Heidelberg (2012)

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
TOSEM 20(4), 14 (2011)

3. Bernardi, G., Hennessy, M.: Mutually testing processes. LMCS 11(2:1), 1–23 (2015)
4. Bielova, N., Massacci, F.: Do you really mean what you actually enforced? Edited

automata revisited. Int. J. Inf. Secur. 10(4), 239–254 (2011)
5. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring net-

works through multiparty session types. In: Beyer, D., Boreale, M. (eds.) FORTE
2013 and FMOODS 2013. LNCS, vol. 7892, pp. 50–65. Springer, Heidelberg (2013)

6. Cassar, I., Francalanza, A.: On synchronous and asynchronous monitor instrumen-
tation for actor systems. FOCLASA 175, 54–68 (2014)

7. Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study on runtime
monitoring of an autonomous research vehicle (ARV) system. In: Bartocci, E.,
et al. (eds.) RV 2015. LNCS, vol. 9333, pp. 102–117. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-23820-3 7

8. Cesarini, F., Thompson, S.: Erlang Programming. O’Reilly, Sebastopol (2009)
9. Chen, F., Roşu, G.: MOP: An efficient and generic runtime verification framework.

In: OOPSLA, pp. 569–588. ACM, (2007)
10. Cini, C., Francalanza, A.: An LTL proof system for runtime verification. In:

Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 581–595. Springer,
Heidelberg (2015)

http://dx.doi.org/10.1007/978-3-319-23820-3_7

160 A. Francalanza

11. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Self-adaptive monitors for multi-
party sessions. In: PDP, pp. 688–696. IEEE Computer Society (2014)

12. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: Runtime monitoring of synchronous
systems. In: TIME, IEEE (2005)

13. De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. TCS 34(1–2),
83–133 (1984)

14. Decker, N., Leucker, M., Thoma, D.: jUnitRV–adding runtime verification to junit.
In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 459–464.
Springer, Heidelberg (2013)

15. Falcone, Y., Fernandez, J.-C., Mounier, L.: What can you verify and enforce at
runtime? STTT 14(3), 349–382 (2012)

16. Formal Systems Laboratory. Monitor Oriented Programming. University of Illinois
at Urbana Champaign. http://fsl.cs.illinois.edu/index.php/Monitoring-Oriented
Programming

17. Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study on runtime
monitoring of an autonomous research vehicle (ARV) system. In: Bartocci, E.,
et al. (eds.) RV 2015. LNCS, vol. 9333, pp. 102–117. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-23820-3 7

18. Francalanza, A., Gauci, A., Pace, G.J.: Distributed system contract monitoring.
JLAP 82(5–7), 186–215 (2013)

19. Francalanza, A., Hennessy, M.: A theory for observational fault tolerance. JLAP
73(1–2), 22–50 (2007)

20. Francalanza, A., Seychell, A.: Synthesising correct concurrent runtime monitors.
FMSD 46(3), 226–261 (2015)

21. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Program. Lang. Syst. 31(5), 1–61 (2009)

22. Giusto, C.D., Perez, J.A.: Disciplined structured communications with disciplined
runtime adaptation. Sci. Comput. Program. 97(2), 235–265 (2015)

23. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
24. Hennessy, M.: A Distributed Pi-Calculus. Cambridge University Press, Cambridge

(2007)
25. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: A run-

time assurance approach for Java programs. FMSD 24(2), 129–155 (2004)
26. Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study on runtime

monitoring of an Autonomous Research Vehicle (ARV) system. In: Bartocci, E.,
et al. (eds.) RV 2015. LNCS, vol. 9333, pp. 102–117. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-23820-3 7

27. Leucker, M., Schallhart, C.: A brief account of runtime verification. JLAP 78(5),
293–303 (2009)

28. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4(1–2), 2–16 (2005)

29. Milner, R.: Communication and Concurrency. Prentice-Hall Inc, Upper Saddle
River (1989)

30. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Engg. 12(2), 151–197 (2005)

31. Sangiorgi, D., Walker, D.: PI-Calculus: A Theory of Mobile Processes. Cambridge
University Press, Cambridge (2001)

32. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

http://fsl.cs.illinois.edu/index.php/Monitoring-Oriented_Programming
http://fsl.cs.illinois.edu/index.php/Monitoring-Oriented_Programming
http://dx.doi.org/10.1007/978-3-319-23820-3_7
http://dx.doi.org/10.1007/978-3-319-23820-3_7

A Theory of Monitors 161

33. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: ICSE, pp. 418–427. IEEE (2004)

34. Verissimo, P., Rodrigues, L.: Distributed Systems for System Architects. Kluwer
Academic Publishers, Norwell (2001)

Contextual Approximation
and Higher-Order Procedures

Ranko Lazić and Andrzej S. Murawski(B)

DIMAP and Department of Computer Science, University of Warwick, Coventry, UK
a.murawski@warwick.ac.uk

Abstract. We investigate the complexity of deciding contextual approx-
imation (refinement) in finitary Idealized Algol, a prototypical language
combining higher-order types with state. Earlier work in the area estab-
lished the borderline between decidable and undecidable cases, and
focussed on the complexity of deciding approximation between terms
in normal form.

In contrast, in this paper we set out to quantify the impact of locally
declared higher-order procedures on the complexity of establishing con-
textual approximation in the decidable cases. We show that the obvious
decision procedure based on exhaustive β-reduction can be beaten. Fur-
ther, by classifying redexes by levels, we give tight bounds on the com-
plexity of contextual approximation for terms that may contain redexes
up to level k, namely, (k−1)-EXPSPACE-completeness. Interestingly, the
bound is obtained by selective β-reduction: redexes from level 3 onwards
can be reduced without losing optimality, whereas redexes up to order 2
are handled by a dedicated decision procedure based on game semantics
and a variant of pushdown automata.

1 Introduction

Contextual approximation (refinement) is a fundamental notion in programming
language theory, facilitating arguments about program correctness [14] as well
as supporting formal program development [5]. Intuitively, a term M1 is said
to contextually approximate another term M2, if substituting M1 for M2 in any
context will not lead to new observable behaviours. Being based on universal
quantification over contexts, contextual approximation is difficult to establish
directly. In this paper, we consider the problem of contextual approximation in
a higher-order setting with state. Contextual reasoning at higher-order types is
a recognised challenge and a variety of techniques have been proposed to address
it, such as Kripke logical relations [3] or game models [2]. In this work, we aim
to understand the impact of locally defined higher-order procedures on the com-
plexity of establishing contextual approximation. Naturally, one would expect
the complexity to grow in the presence of procedures and it should grow as the
type-theoretic order increases. We shall quantify that impact by providing tight

Research supported by EPSRC (EP/J019577/1, EP/M011801/1).

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 162–179, 2016.
DOI: 10.1007/978-3-662-49630-5 10

Contextual Approximation and Higher-Order Procedures 163

complexity bounds for contextual approximation in our higher-order framework.
The results demonstrate that, from the complexity-theoretic point of view, it is
safe to inline procedures only down to a certain level. Below that level, however,
it is possible to exploit compositionality to arrive at better bounds than those
implied by full inlining.

The vehicle for our study is Idealized Algol [1,13], the protypical language
for investigating the combination of local state with higher-order procedures.
In order to avoid obviously undecidable cases, we restrict ourselves to its fini-
tary variant IAf , featuring finite base types and no recursion (looping is allowed,
though). Both semantic and syntactic methods were used to reason about Ideal-
ized Algol [1,12] in the past. In particular, on the semantic front, there exists a
game model that captures contextual approximation (in the sense of inequational
full abstraction) via complete-play inclusion. Earlier work in the area [6,9,11]
used this correspondence to map out the borderline between decidable and unde-
cidable cases within IAf . The classification is based on type-theoretic order: a
term is of order i if its type is of order at most i and all free variables have
order less than i. We write IAi for the set of IAf -terms of order i. It turns out
that contextual approximation is decidable for terms of all orders up to 3, but
undecidable from order 4 onwards. The work on decidability has also estab-
lished accurate complexity bounds for reasoning about contextual approxima-
tion between terms in β-normal form as well as terms with the simplest possible
β-redexes, in which arguments can only be of base type. For order-3 terms,
the problem can be shown EXPTIME-complete [11], while at orders 0, 1, 2 it is
PSPACE-complete [10]. In this paper, we present a finer analysis of the decid-
able cases and consider arbitrary β-redexes. In particular, functions can be used
as arguments, which corresponds to the inlining of procedures.

We evaluate the impact of redexes by introducing a notion of their level: the
level of a β-redex (λx.M)N will be the order of the type of λx.M . Accordingly,
we can split IAi into sublanguages IAk

i , in which terms can contain redexes of level
up to k. IA0

i is then the normal-form case and IA1
i is the case of base-type argu-

ments. Obviously, the problem of contextually approximating IAk
i (i ≤ 3, k ≥ 2)

terms can be solved by β-reduction (and an appeal to the results for IA0
i), but

this is known to result in a k-fold exponential blow-up, thus implying a (k + 1)-
EXPTIME upper bound for IAk

3 . This bound turns out to be suboptimal. One
could lower it by reducing to IA1

i instead, which would shave off a single expo-
nential, but this is still insufficient to arrive at the optimal bound. It turns out,
however, that reducing IAk

3 terms to IA2
3 (all redexes up to order 3 are eliminated)

does not lead to a loss of optimality. To work out the accurate bound for the IA2
3

case, one cannot apply further β-reductions, though. Instead we devise a dedi-
cated procedure based on game semantics and pushdown automata. More specif-
ically, we introduce a variant of visibly pushdown automata [4] with ε-transitions
and show how to translate IA2

3 into such automata so that the accepted languages
are faithful representations of the term’s game semantics [1]. The translation can
be performed in exponential time and, crucially, the automata correspoding to
IA2

3-terms satisfy a boundedness property: the stack symbols pushed on the stack

164 R. Lazić and A.S. Murawski

during ε-moves can only form contiguous segments of exponential length with
respect to the term size. This allows us to solve the corresponding inclusion prob-
lem in exponential space with respect to the original term size. Consequently,
we can show that IA2

3 contextual approximation is in EXPSPACE.
The above result then implies that program approximation of IAk

3-terms is
in (k − 1)-EXPSPACE. Furthermore, we can prove matching lower bounds for
IAk

1 . The table below summarises the complexity results. The results for k ≥ 2
are new.

k = 0 k = 1 k ≥ 2

IAk
1 PSPACE-complete [10] PSPACE-complete [10] (k − 1)-EXPSPACE-complete

IAk
2 PSPACE-complete [10] PSPACE-complete [10] (k − 1)-EXPSPACE-complete

IAk
3 EXPTIME-complete [11] EXPTIME-complete [11] (k − 1)-EXPSPACE-complete

2 Idealized Algol

We consider a finitary version IAf of Idealized Algol with active expressions [1].
Its types are generated by the following grammar.

θ ::= β | θ → θ β ::= com | exp | var
IAf can be viewed as a simply-typed λ-calculus over the base types com, exp, var
(of commands, expressions and variables respectively) augmented with the con-
stants listed below

skip : com i : exp (0 ≤ i ≤ max) succ : exp → exp pred : exp → exp
ifzeroβ : exp → β → β → β seqβ : com → β → β deref : var → exp

assign : var → exp → com cellβ : (var → β) → β
while : exp → com → com mkvar : (exp → com) → exp → var

where β ranges over base types and exp = { 0, · · · ,max }. Other IAf -terms are
formed using λ-abstraction and application

Γ � M : θ → θ′ Γ � N : θ

Γ � MN : θ′
Γ, x : θ � M : θ′

Γ � λxθ.M : θ → θ′

using the obvious rules for constants and free identifiers. Each of the constants
corresponds to a different programming feature. For instance, the sequential
composition of M and N (typically denoted by M ;N) is expressed as seqβMN ,
assignment of N to M (M := N) is represented by assignMN and cellβ(λx.M)
amounts to creating a local variable x visible in M (new x in M). mkvar is
the so-called bad-variable constructor that makes it possible to construct terms
of type var with prescribed read- and write-methods. whileMN corresponds
to while M do N . We shall write Ωβ for the divergent constant that can be
defined using while 1 do skip.

The operational semantics of IAf , based on call-by-name evaluation, can be
found in [1]; we will write M ⇓ if M reduces to skip. We study the induced
contextual approximation.

Contextual Approximation and Higher-Order Procedures 165

MA×B = MA + MB MA⇒B = MA + MB

λA×B = [λA, λB] λA⇒B = [λA, λB]

A×B = A + B A⇒B = B +(IB × IA) + (A ∩ (MA × MA))

λA reverses the ownership of moves in A while preserving their kind.

Fig. 1. Constructions on arenas

Definition 1. We say that Γ � M1 : θ contextually approximates Γ � M2 : θ
if, for any context C[−] such that C[M1], C[M2] are closed terms of type com,
we have C[M1]⇓ implies C[M2]⇓. We then write Γ � M1

�∼ M2.

Even though the base types are finite, IAf contextual approximation is not decid-
able [9]. To obtain decidability one has to restrict the order of types, defined by:

ord(β) = 0 ord(θ → θ′) = max(ord(θ) + 1, ord(θ′)).

Definition 2. Let i ≥ 0. The fragment IAi of IAf consists of IAf-terms x1 :
θ1, · · · , xn : θnM : θ such that ord(θj) < i for any j = 1, · · · , n and ord(θ) ≤ i.

Contextual approximation is known to be decidable for IA1, IA2 and IA3 [11],
but it is undecidable for IA4 [9].

Definition 3. – The level of a β-redex (λxθ.M)N is the order of the type of
λxθ.M .

– A term has degree k if all redexes inside it have level at most k.
– IAk

i is the subset of IAi consisting of terms whose degree is at most k.

β-reduction can be used to reduce the degree of a term by one at an exponential
cost.

Lemma 1. Let d ≥ 1. A λ-term M of degree d can be reduced to a term M ′ of
degree d − 1 with a singly-exponential blow-up in size.

3 Games

Game semantics views computation as an exchange of moves between two play-
ers, called O and P. It interprets terms as strategies for P in an abstract game
derived from the underlying types. The moves available to players as well as the
rules of the game are specified by an arena.

Definition 4. An arena is a triple A = 〈MA, λA,�A 〉, where

– MA is a set of moves;
– λA : MA → {O,P } × {Q,A } is a function indicating to which player (O or

P) a move belongs and of what kind it is (question or answer);

166 R. Lazić and A.S. Murawski

Acom Aexp Avar

run

done

q

0 · · · max

read write(0) · · · write(max)

0 · · · max ok

Fig. 2. Arenas for base types

– �A⊆ (MA + { � }) × MA is the so-called enabling relation, which must satisfy
the following conditions:
• If � enables a move then it is an O-question without any other enabler. A

move like this is called initial and we shall write IA for the set containing
all initial moves of A.

• If one move enables another then the former must be a question and the
two moves must belong to different players.

Arenas used to interpret the base types of IAf are shown in Fig. 2: the moves
at the bottom are answer-moves. Product and function-space arenas can be
constructed as shown in Fig. 1. Given an IAf -type θ, we shall write [[θ]] for the
corresponding arena obtained compositionally from Acom, Aexp and Avar using
the ⇒ construction. Given arenas, we can play games based on a special kind of
sequences of moves. A justified sequence s in an arena A is a sequence of moves
in which every move m �∈ IA must have a pointer to an earlier move n in s such
that n �A m. n is then said to be the justifier of m. It follows that every justified
sequence must begin with an O-question.

Given a justified sequence s, its O-view �s� and P-view �s� are defined as
follows, where o and p stand for an O-move and a P-move respectively:

�ε� = ε �so� = �s�o �so t p� = �s�o p
�ε� = ε �so� = o (if o is initial) �sp� = �s�p �sp t o� = �s�p o.

A justified sequence s satisfies visibility condition if, in any prefix tm of s, if m
is a non-initial O-move then its justifier occurs in �t� and if m is a P-move then
its justifier is in �t�. A justified sequence satisfies the bracketing condition if any
answer-move is justified by the latest unanswered question that precedes it.

Definition 5. A justified sequence is a play iff O- and P -moves alternate and
it satisfies bracketing and visibility. We write PA for the set of plays in an arena
A. A play is single-threaded if it contains at most one occurrence of an initial
move.

The next important definition is that of a strategy. Strategies determine unique
responses for P (if any) and do not restrict O-moves.

Definition 6. A strategy in an arena A (written as σ : A) is a non-empty
prefix-closed subset of single-threaded plays in A such that:

Contextual Approximation and Higher-Order Procedures 167

skip : com run done
i : exp q i
succ : exp 1 ⇒ exp q q1

max
i=0 i1 ((i + 1) mod max)

pred : exp 1 ⇒ exp q q1
max
i=0 i1 ((i − 1) modmax)

ifzeroβ : exp 3 ⇒ β 2 ⇒ β 1 ⇒ β

q β a q q3 03 q1 a1 a + q β a q q3 (
max
i=1 i3) q2 a2 a

seqβ : com 2 ⇒ β 1 ⇒ β q β a q run2 done2 q1 a1 a

deref : var 1 ⇒ exp q read1
max
i=0 i1 i

assign : var 2 ⇒ exp 1 ⇒ com run q1
max
i=0 i1 write(i)2 ok2 done

cellβ : (var 1,1 ⇒ β 1) ⇒ β

q β a qq1(read1,1 01,1)
∗(max

i=0 write(i)1,1 ok1,1(read1,1 i1,1)
∗)∗a1a

mkvar : (exp 2,1 ⇒ com 2) ⇒ exp 1 ⇒ var
read q1 (

max
i=0 i1 i) + max

i=0 write(i) run2 (q2,1 i2,1)
∗ done2 ok

while : exp 2 ⇒ com 1 ⇒ com run q2 (
max
i=1 i2 run1 done1 q2)

∗ 02 done

Fig. 3. Strategies for constants. Only complete plays are specified.

(i) whenever sp1, sp2 ∈ σ and p1, p2 are P-moves then p1 = p2;
(ii) whenever s ∈ σ and so ∈ PA for some O-move o then so ∈ σ.

We write comp (σ) for the set of non-empty complete plays in σ, i.e. plays in
which all questions have been answered.

An IAf term Γ � M : θ, where Γ = x1 : θ1, · · · , xn : θn, is interpreted by a strat-
egy (denoted by [[Γ � M : θ]]) in the arena [[Γ � θ]] = [[θ1]]×· · ·× [[θn]] ⇒ [[θ]]. The
denotations are calculated compositionally starting from strategies correspond-
ing to constants and free identifiers [1]. The latter are interpreted by identity
strategies that copy moves across from one occurrence of the same arena to the
other, subject to the constraint that the interactions must be plays. Strategies
corresponding to constants are given in Fig. 3, where the induced complete plays
are listed. We use subscripts to indicate the origin of moves. Let σ : A ⇒ B
and τ : B ⇒ C. In order to compose the strategies, one first defines an auxil-
iary set σ† of (not necessarily single-threaded) plays on A ⇒ B that are special
interleavings of plays taken from σ (we refer the reader to [1] for details). Then
σ; τ : A ⇒ C can be obtained by synchronising σ† and τ on B-moves and eras-
ing them after the synchronisation. The game-semantic interpretation captures
contextual approximation as follows.

Theorem 1 [1]. Γ � M1
�∼ M2 if and only if comp [[Γ � M1]] ⊆ comp [[Γ � M2]].

Remark 1. σ† is an interleaving of plays in σ that must itself be a play in PA⇒B.
For instance, only O is able to switch between different copies of σ and this can
only happen after P plays in B. We shall discuss two important cases in detail,
namely, B = [[β]] and B = [[βk → · · · → β1 → β]].

– If B = [[β]] then a new copy of σ can be started only after the previous one is
completed. Thus σ† in this case consists of iterated copies of σ.

168 R. Lazić and A.S. Murawski

– If B = [[βk → · · · → β1 → β]] then, in addition to the above scenario, a
new copy of σ can be started by O each time P plays qi (question from
βi). An old copy of σ can be revisited with ai, which will then answer some
unanswered occurrence of qi. However, due to the bracketing condition, this
will be possible only after all questions played after that qi have been answered,
i.e. when all copies of σ opened after qi are completed. Thus, in this particular
case, σ† contains “stacked” copies of σ. Consequently, we can capture X =
{ ε } ∪ comp (σ†) in this case by equation

X = {ε} ∪ ⋃{ q A0 qi1 X ai1 A1 . . . qim X aim Am a X |
qA0qi1ai1A1 . . . qimaimAma ∈ comp (σ)}

where Aj ’s stand for (possibly empty and possibly different) segments of moves
from A. Note that, in a play of σ, qi will always be followed by ai.

4 Upper Bounds

We shall prove that contextual approximation of IA2
3 terms can be decided in

exponential space. Thanks to Lemma 1, this will imply that approximation of
IAk

3 (k ≥ 2) terms is in (k − 1)-EXPSPACE. In Sect. 5 we will show that these
bounds are tight.

This shows that by firing redexes of level higher than 3 we do not lose optimal
complexity. However, if redexes of order 2 were also executed (i.e. first-order
procedures were inlined), the problem would be reduced to IA1

3 and the implied
bound would be 2-EXPTIME, which turns out suboptimal. In what follows, we
show that contextual approximation of IA2

3 terms is in EXPSPACE. To that end,
we shall translate the terms to automata that represent their game semantics.
The alphabet of the automata will consist of moves in the corresponding games.
Recall that each occurrence of a base type in a type contributes distinct moves.
In order to represent their origin faithfully, we introduce a labelling scheme based
on subscripts.

First we discuss how to label occurrences of base types in types. Let Θ be a
type of order at most 3. Then Θ ≡ Θm → · · · → Θ1 → β and Θi’s are of order
at most 2. Consequently, for each 1 ≤ i ≤ m, we have Θi ≡ Θi,mi

→ · · · →
Θi,1 → βi and Θi,j ’s are of order at most 1. Thus, we have Θi,j ≡ βi,j,mi,j

→
· · · → βi,j,1 → βi,j . Note that the above decomposition assigns a sequence of
subscripts to each occurrence of a base type in Θ. Observe that ord(Θ) = 3 if
and only if some occurrence of a base type gets subscripted with a triple. Next
we are going to employ the subscripts to distinguish base types in IA3 typing
judgments.

Definition 7. A third-order typing template Ψ is a sequence x1 : θ1, · · · , xn :
θn, θ, where ord(θi) ≤ 2 (1 ≤ i ≤ n) and ord(θ) ≤ 3.

To label θ1, · · · , θn, θ we will use the same labelling scheme as discussed above
but, to distinguish θi’s from θ and from one another, we will additionally use
superscripts xi for the former. The labelling scheme will also be used to identify

Contextual Approximation and Higher-Order Procedures 169

moves in the corresponding game. Recall that the game corresponding to a third-
order typing template will have moves from M[[θ1]]+· · ·+M[[θn]]+M[[θ]]. The super-
and subscripts will identify their origin in a unique way.

Example 1. Let Ψ ≡ x1 : (com → exp) → var, x2 : com → exp → var, ((com →
exp) → var) → com. Here is the labelling scheme for Ψ : x1 : (comx1

1,1 → expx1
1) →

varx1 , x2 : comx2
2 → expx2

1 → varx2 , ((com1,1,1 → exp1,1) → var1) → com. In the
corresponding games, among others, we will thus have moves runx1

1,1, runx2
2 , qx2

1 ,
readx2 , run1,1,1 as well as run.

Our representation of game semantics will need to account for justification point-
ers. Due to the well-bracketing condition, pointers from answers need not be
represented explicitly. Moreover, because of the visibility condition, in our case
we only need to represent pointers from moves of the shapes qx

i,j and qi,j,k. Such
pointers must point at some moves of the form qx

i and qi,j respectively. In order
to represent a pointer we are going to place a hat symbol above both the source
and target of the pointer, i.e. we shall also use “moves”of the form q̂x

i,j , q̂i,j,k

(sources) and q̂x
i , q̂i,j (targets) - the latter hatted moves will only be used if the

former exist in the sequence. Similarly to [8], we shall represent a single play by
several sequences of (possibly hatted) moves under the following conditions:

– whenever a target-move of the kind discussed above is played, it may or may
not be hatted in the representing sequences of moves,

– if a target-move is hatted, all source-moves pointing at the target move are
also hatted,

– if a target-move is not hatted, no source-moves pointing at the move are
hatted.

Note that this amounts to representing all pointers for a selection of possible
targets, i.e. none, one or more (including all). Because the same -̂symbol is used
to encode each pointer, in a single sequence there may still be ambiguities as to
the real target of a pointer. However, among the representing plays we will also
have plays representing pointers only to single targets, which suffice to recover
pointer-related information. This scheme works correctly because only pointers
from P-moves need to be represented and the strategies are deterministic (see
the discussion at the end of Sect. 3 in [11]).

Example 2. The classic examples of terms that do need explicit pointers are the
Kierstaad terms � K1,K2 : ((com1,1,1 → com1,1) → com1) → com defined by
Ki ≡ λf (com→com)→com.f(λxcom

1 .f(λx2
com.xi)). To represent the corresponding

strategies the following sequences of moves will be used (among others).

– K1: q q1 q1,1 q1 q1,1 q1,1,1 (zero targets), q q1 q̂1,1 q1 q1,1 q̂1,1,1 (one target),
q q1 q1,1 q1 q̂1,1 q1,1,1 (one target), q q1 q̂1,1 q1 q̂1,1 q̂1,1,1 (two targets).

– K2: q q1 q1,1 q1 q1,1 q1,1,1 (zero targets), q q1 q̂1,1 q1 q1,1 q1,1,1 (one target),
q q1 q1,1 q1 q̂1,1 q̂1,1,1 (one target), q q1 q̂1,1 q1 q̂1,1 q̂1,1,1 (two targets).

170 R. Lazić and A.S. Murawski

To represent strategies corresponding to IA2
3-terms we are going to define an

extension of visibly pushdown automata [4]. The alphabet will be divided push-,
pop- and no-op-letters corresponding to possibly hatted moves. Additionally, we
will use ε-transitions that can modify stack content, albeit using a distinguished
stack alphabet.

Definition 8. Let Ψ = x1 : θ1, · · · , xm : θm, θ be a third-order typing template
and let M = M[[θ1]]+ · · ·+M[[θn]]+M[[θ]]. Below we shall refer to the various com-
ponents of M using subscripts and superscripts according to the labelling scheme
introduced earlier, also using q and a for questions and answers respectively. We
define the sets Σpush, Σpop, Σnoop as follows.

– Σpush = {qi,j,k, q̂i,j,k | qi,j,k ∈ M} ∪ {qxh
i,j , q̂xh

i,j | qxh
i,j ∈ M}

– Σpop = {ai,j,k | ai,j,k ∈ M} ∪ {axh
i,j | axh

i,j ∈ M}
– Σnoop = (M \ (Σpush ∪ Σpop)) ∪ {q̂i,j | qi,j,k ∈ M} ∪ {q̂xh

i | qxh
i,j ∈ M}

Σpush and Σpop contain exclusively P- and O-moves respectively, while we can
find both kinds of moves in Σnoop. Let us write ΣO

noop, Σ
P
noop for subsets of Σnoop

consisting of O- and P-moves respectively. The states of our automata will be
partitioned into states at which O is to move (O-states) and whose at which
P should reply (P-states). Push-moves and ε-transitions are only available at
P-states, while pop-transitions belong to O-states. No-op transitions may be
available from any kind of state. Further, to reflect determinacy of strategies,
P-states allow for at most one executable outgoing transition, which may be
labelled with an element of ΣP (push or no-op) or be silent (noop, push or pop).

Definition 9. Let Ψ be a third-order typing template. A Ψ -automaton A is a
tuple (Q,Σ, Υ, δ, i, F) such that

– Q = QO + QP is a finite set of states partitioned into O-states and P-states,
– Σ = ΣO + ΣP is the finite transition alphabet obtained from Ψ as above,

partitioned into O- and P-letters, where ΣO = Σpop+ΣO
noop and ΣP = Σpush+

ΣP
noop,

– Υ = ΥΣ + Υ ε is a finite stack alphabet partitioned into Σ-symbols and ε-
symbols,

– δ = δO
pop + δO

noop + δP is a transition function consisting of δO
pop : QO ×Σpop ×

ΥΣ ⇀ QP , δO
noop : QO × ΣO

noop ⇀ QP and δP : QP ⇀ (Σpush × QO × ΥΣ) +
(ΣP

noop × QO) + QP + (QP × Υε) + (Υε ⇀ QP),
– i ∈ QO is an initial state, and
– F ⊆ QO is a set of final states.

Ψ -automata are to be started in the initial state with empty stack. They will
accept by final state, but whenever this happens the stack will be empty any-
way. Clearly, they are deterministic. The set of words derived from runs will be
referred to as the trace-set of A, written T (A). We write L(A) for the subset of
T (A) consisting of accepted words only. The Ψ -automata to be constructed will
satisfy an additional run-time property called P-liveness: whenever the automa-
ton reaches a configuration (q, γ) ∈ QP × Υ from (i, ε), δP will provide a unique
executable transition.

Contextual Approximation and Higher-Order Procedures 171

Remark 2. In what follows we shall reason about IA2
3 terms by structural induc-

tion. The base cases are the constants and identifiers Γ, f : θ � f : θ, where
ord(θ) ≤ 2. For inductive cases, we split the rule for application into linear
application and contraction.

Γ � M : θ → θ′ Δ � N : θ

Γ,Δ � MN : θ′ ord(θ → θ′) ≤ 2
Γ, x : θ, y : θ � M : θ′

Γ, x : θ � M [x/y] : θ′

Note that the restriction on θ → θ′ is consistent with the fact that the level of
redexes cannot exceed 2 and free identifiers have types of order at most 2. The
relevant λ-abstraction rule is

Γ, x : θ � M : θ′

Γ � λxθ.M : θ → θ′ ord(θ → θ′) ≤ 3.

This stems from the fact that we are considering IA3.

Lemma 2. Let x1 : θ1, · · · , xm : θm � M : θ be an IA2
3-term and let σ = [[x1 :

θ1, · · · , xm : θm � M : θ]]. There exists a P-live (x1 : θ1, · · · , xm : θm, θ)-
automaton AM , constructible from M in exponential time, such that T (AM) and
L(AM) represent respectively σ and comp (σ) (in the sense of our representation
scheme).

Proof. Translation by structural induction in IA2
3. The base cases corresponding

to the special constants can be resolved by constructing finite automata, fol-
lowing the description of the plays in Fig. 3. For free identifiers, automata of a
similar kind have already been constructed as part of the translation of normal
forms in [11]. We revisit them below to show which moves must be marked to
represent pointers.

Let θ be a second-order type. Then x : θ � x : θ is interpreted by the identity
strategy, which has complete plays of the form

∑
q�a qqxXaxa, where X is given

by the context-free grammar below. When writing
∑

q�a, we mean summing up
over all pairs of moves of the indicated shape available in the associated arena
M such that q �M a. Below we also use the condition ∃q.qi � q to exclude
moves of the form qi that do not enable any other questions (such moves are
never targets of justification pointers).

X → ε | (
∑

qi�ai
qx
i qiY

∗
i aia

x
i)X | (

∑
qi�ai
∃q.qi�q

q̂x
i qi(Ŷi)∗aia

x
i)X

Yi → ∑
qi,j�ai,j

qi,jq
x
i,jXax

i,jai,j Ŷi → ∑
qi,j�ai,j

qi,j q̂x
i,jXax

i,jai,j

To capture X, we can construct Ax as in [11], by pushing return addresses when
reading qx

i,j , q̂
x
i,j and popping them at ax

i,j . Note that this simply corresponds to
interpreting recursion in the grammar.

λ-abstraction and contraction are interpreted by renamings of the alphabet,
so it remains to consider the hardest case of (linear) application. The rule simply
corresponds to composition: in any cartesian-closed category [[Γ,Δ � MN : θ′]]
is equal (up to currying) to [[Δ � N : θ]]; [[� λxθ.λΓ.Mx : θ → (Γ → θ′)]]. Note

172 R. Lazić and A.S. Murawski

that in our case ord(θ) ≤ 1, i.e. Remark 1 will apply and the strategy for MN
can be obtained by running the strategy for M , which will call copies of N ,
whose interleavings will obey the stack discipline. To model the interaction, let
us consider the moves on which the automata will synchronise. Since ord(θ) ≤ 1,
the moves that will interact will be of the form q, a, qi, ai from N ’s point of
view and qk, ak, qk,i, ak,i from M ’s viewpoint for some k. Thus, given AM =
(QM , ΣM , ΥM , iM , δM , FM) and AN = (QN , ΣN , ΥN , iN , δN , FN), we let AMN =
(QMN , ΣMN , ΥMN , iM , δMN , FM), where

QMN = QM + (QO
M × QN)

ΣMN = (ΣM \ {qk, ak, qk,i, ak,i}) + (ΣN \ {q0, a0, q1, a1})
ΥΣMN

MN = ΥM + ΥN

Υ ε
MN = Υ ε

M + Υ ε
N + QO

M

The decomposition of ΣMN into push-, pop- and noop-letters is inherited from
the constituent automata. We specify the transition function δMN below using
derivation rules referring to transitions in AM and AN . A push-transition reading

x and pushing γ will be labelled with
x/γ−−→. Dually,

x,γ−−→ will represent a pop. x̃
stands for any transition involving x, where x could also be ε.

– AM ’s non-interacting transitions are copied over to AMN .

s
x̃−→AM

s′

s
x̃−→AMN

s′
x ∈ (ΣM \ {qk, ak, qk,i, ak,i}) + {ε}

– M calls N (left) and N returns from the call (right).

s
qk−→AM

s′ iN
q−→AN

t

s
ε−→AMN

(s′, t)

s′ ak−→AM
s′′ t

a−→AN
f ∈ FN

(s′, t) ε−→AMN
s′′

– N ’s non-interacting transitions are copied over while keeping track of AM ’s
state.

t
x̃−→AN

t′

(s, t) x̃−→AMN
(s, t′)

s ∈ QO
M , x ∈ (ΣN \ {q0, a0, q1, a1}) ∪ {ε}

– N calls its argument (left) and the argument returns (right).

s
qk,i−−→AM

s′ t
qi−→AN

t′

(s, t)
ε/t′−−→AMN

s′

s′ ak,i−−→AM
s′′ t′ ai−→AN

t′′

s′ ε,t′−−→AMN
(s′′, t′′)

Note that the interaction involves moves that are not used to represent pointers,
i.e. whenever pointers are represented they remain the same as they were in
the original strategies, which is consistent with the definition of composition.
The states in QMN are divided into O- and P -states as follows: QO

MN = QO
M +

(QO
M ×QO

N) and QP
MN = QP

M +(QO
M ×QP

N). The correctness of the construction

Contextual Approximation and Higher-Order Procedures 173

follows from the fact that it is a faithful implementation of legal interactions
(see, e.g., [7]), as discussed in Remark 1. P-liveness follows from the fact the
constituent strategies are P-live and that the construction simulates interaction
sequences, including infinite chattering. ��
Our next step will be to analyse the shape of reachable configurations of AM .
We aim to understand how many elements of Υε can occur consecutively on the
stack.

Definition 10. Suppose (q, γ) ∈ Q×(ΥΣ ∪Υε)∗. The ε-density of γ is defined to
be the length of the longest segment in γ consisting solely of consecutive elements
from Υε.

While the size of stacks corresponding to IA2
3 terms is unbounded (consider, for

instance, x : θ � x : θ with θ = (com → com) → com), ε-density turns out to
be bounded. We shall prove that it is exponential with respect to the size of
the original term. This will be crucial to obtaining our upper bound. The main
obstacle to proving this fact is the case of composition MN . As discussed in
Remark 1, M “stacks up” copies of N and we would first like to obtain a bound
on the number of nested calls to N that are not separated by a move from Σpush

(such moves block the growth of ε-density). For this purpose, we go back to plays
and analyse sequences in which the relevant questions are pending: a pending
question is one that has been played but remains unanswered. Observe that
sequences of pending questions are always alternating. We will not be interested
in the specific questions but only in their kinds, as specified by the table below.

Question q qi, q
x qi,j , q

x
i qi,j,k, qx

i,j

Kind 0 1 2 3

Definition 11. Let s be a play. We define pend(s) to be the sequence from
{0, 1, 2, 3}∗ obtained from s by restricting it to pending questions and replacing
each question with the number corresponding to its kind.

Thus, any non-empty even-length play s, pend(s) will match the expression
0(12 + 32)∗(1 + 3). We say that the (12)-potential of s is equal to k if k is the
largest k such that pend(s) = · · · (12)k · · · . In other words, the (12)-potential of
a play is the length of the longest segment (12)k in pend(s).

Lemma 3. Let Γ � M : θ be an IA2
3-term. Then the (12)-potential of any play

in [[Γ � M]] is bounded and the bound bM is exponential in the size of M .

Lemma 3 is a key technical result needed to establish the following boundedness
property that is satisfied by automata representing IA2

3-terms.

Lemma 4. Let Γ � M : θ be an IA2
3-term and consider AM constructed in

Lemma 2. There exists a bound dM , exponential in the size of M , such that
the ε-density of configurations reachable by AM is bounded by dM .

174 R. Lazić and A.S. Murawski

Next we derive a bound on plays witnessing failure of contextual approxima-
tion in IA2

3. Consider IA2
3-terms Γ � M1,M2 : θ and let σi = [[Γ � Mi : θ]] for

i = 1, 2. Given a play, let its height be the maximum number of pending ques-
tions from Σpush occurring in any of its prefixes. Note that, for plays from σi,
this will be exactly the maximum number of symbols from ΥΣ that will appear
on the stack of AMi

at any point of its computation.

Lemma 5. There exists a polynomial p such that if compσ1 \ compσ2 is not
empty then it contains a play of height p(n1 +n2), where n1, n2 are the numbers
of states in AM1 and AM2 respectively.

Theorem 2. For IA2
3-terms Γ � M1,M2 : θ, one can decide Γ � M1

�∼ M2 in
exponential space.

Proof. Note that this boils down to testing emptiness of compσ1 \ compσ2. By
Lemma 5, it suffices to guess a play whose height is polynomial in the size of
AM1 , AM2 , i.e. exponential with respect to term size. Moreover, by Lemma 4,
the ε-density of the corresponding configurations of AM1 and AM2 will also be
exponential. Thus, in order to check whether a candidate s is accepted by AM1

and rejected by AM2 , we will only need to consider stacks of exponential size
wrt M1,M2. Consequently, the guess can be performed on the fly and verified
in exponential space. Because NEXPSPACE=EXPSPACE, the result follows.

Corollary 1. For k ≥ 2, contextual approximation of IAk
3-terms is in (k − 1)-

EXPSPACE.

5 Lower Bounds

Here we show that contextual approximation of IAk
1-terms is (k−1)-EXPSPACE-

hard for k ≥ 2. Note that this matches the upper bound shown for IAk
3-terms

and will allow us to conclude that contextual approximation in IAk
1 , IA

k
2 and IAk

3

is (k − 1)-EXPSPACE-complete. Our hardness results will rely on nesting of
function calls and iteration afforded by higher-order types. Below we introduce
the special types and terms to be used.

Let k, n ∈ N. Define the type n by 0 = com and n + 1 = n → n. Note that
ord(n) = n. Also, let Exp(k, n) be defined by Exp(0, n) = n and Exp(k + 1, n) =
2Exp(k,n). Given k ≥ 2, consider the term twicek = λxk−1.λyk−2.x(xy) : k.

Definition 12. Let k ≥ 2. Writing MnN as shorthand for M(M · · · (M
︸ ︷︷ ︸

n

N) · · ·),

let us define a family of terms {nestn,k} with f : 1, x : 0 � nestn,k : 0 by taking
nestn,k ≡ (twicen

k gk−1)gk−2 · · · g1g0, where g0 ≡ x, g1 ≡ f and gi ≡ twicei for
i > 1.

The terms have several desirable properties, summarised below.

Lemma 6. Let k ≥ 2. nestn,k belongs to IAk
2 , has polynomial size in n and is

β-reducible to fExp(k−1,n)x.

Contextual Approximation and Higher-Order Procedures 175

Note that the nested applications of f in fExp(k−1,n)x are akin to generating a
stack of height Exp(k − 1, n). We shall exploit this in our encodings. Note that,
by substituting λccom.c; c for f in fExp(k−1,n)x, we obtain a term that iterates
x as many as Exp(k, n) times, i.e. Exp(k − 1, n)-fold nesting is used to simulate
Exp(k, n)-fold iteration.

Simulating Turing Machines. Let w be an input word. Let n = |w|,
l = Exp(k − 1, n) and N = Exp(k, n). We shall consider a deterministic Tur-
ing machine T running in SPACE (l) and TIME (N) and simulate T ’s behaviour
on w. This suffices to establish SPACE (l)-hardness.

We start off with the description of an encoding scheme for configurations
of T . We shall represent them as strings of length l over an alphabet ΣT , to be
specified later. We shall write ConfigT for the subset of (ΣT)l corresponding to
configurations. The encoding of the initial configuration will be denoted by cinit
and we shall write AcceptT for the set of representations of accepting configura-
tions. Given c ∈ ConfigT , we write next(c) for the representation of the successor
of c according to T ’s transition function. Let us introduce a number of auxiliary
languages that will play an important role in the simulation. We write cR for
the reverse of c.

Definition 13. Let Σ#
T = ΣT + {#}. We define the languages L0,L1 ⊆ (ΣT)∗

and L2,L3,L4 ⊆ (Σ#
T)∗ as follows.

L0 = {cinit} L1 = AcceptT L2 = {cR # next(c) | c ∈ ConfigT }
L3 = {c# next(c)R | c ∈ ConfigT } L4 = {c# dR | c ∈ ConfigT , d �= next(c)}

Lemma 7. There exists a representation scheme for configurations of T such
that ΣT is polynomial in the size of T,w and the following properties hold.

1. There exist deterministic finite-state automata A0,A1, constructible from
T,w in polynomial time, such that L(A0) ∩ (ΣT)l = L0 and L(A1) ∩ (ΣT)l =
L1.

2. For any i = 2, 3, 4, there exists a deterministic pushdown automaton Ai, con-
structible from T,w in polynomial time, such that L(Ai) ∩ ((ΣT)l#(ΣT)l) =
Li. Moreover, transitions of the automata are given by three transition func-
tions δpush : Qpush × ΣT → Qpush × Υ , δnoop : Qpush × {#} → Qpop and
δpop : Qpop × ΣT × Υ → Qpop, the initial state belongs to Qpush and the
automaton accepts by final state. I.e., the automata will process elements of
(ΣT)l#(ΣT)l by performing push-moves first, then a noop move for # and,
finally, pop-moves.

Remark 3. Note that in the above lemma we had to use intersection with (ΣT)l

(resp. (ΣT)l#(ΣT)l) to state the correctness conditions with respect to ConfigT ,
because the automata will not be able to count up to l. However, in our argument,
we are going to use the nesting power of IAk

1 to run their transition functions for
suitably many steps (l and 2l + 1 respectively).

The significance of the languages L0,L1,L2,L3,L4 stems from the fact that they
are building blocks of two other languages, L5 and L6, which are closely related
to the acceptance of w by T .

176 R. Lazić and A.S. Murawski

Lemma 8. Consider the languages L5,L6 ⊆ (Σ#
T)∗ defined by L5 =

{cinit # cR
1 # d1 # · · · cR

N # dN # fR | cj ∈ ConfigT , f ∈ AcceptT , ∀inext(ci)=
di} and L6 = {c1 # dR

1 # · · · cN # dR
N | cj ∈ ConfigT , ∃inext(ci) �= di}. Then T

accepts w if and only if L5 �⊆ L6.

Proof. Note that if T accepts w then the sequence of (representations of the)
configurations belonging to the accepting run, in which every other representa-
tion is reversed, gives rise to a word that belongs to L5 but not to L6.

Conversely, if a word cinit # cR
1 # d1 # · · · cR

N # dN # fR ∈ L5 does not
belong to L6 then c1 = next(cinit), ci+1 = next(di) (i = 1, · · · , N − 1) and
f = next(dN). Thus, the word actually represents an accepting run on w. ��

Our hardness argument consists in translating the above lemma inside IAk
1 .

To that end, we shall show how to capture L2,L3,L4 and, ultimately, L5 and L6,
using IAk

1 terms. We shall work under the assumption that Σ#
T = {0, · · · ,max}.

Note, though, that the results can be adapted to any max > 0 by encoding
Σ#

T as sequences of exp-values. Similarly, using multiple exp-valued variables,
IA-terms can store values that are bigger than max . We shall take advantage of
such storage implicitly (e.g. for state values or stack elements), but the number
of extra variables needed for this purpose will remain polynomial.

Definition 14. We shall say that an IA-term z : exp � M : com captures L ⊆
(Σ#

T)∗ if comp ([[z � M]]) = {run qz (a1)
z qz (a2)

z · · · qz (ak)
z done | a1a2 · · · ak ∈ L}.

Example 3. The term z : exp � M# : com, where M# ≡ if z =
then skip else Ω, captures {#}. In our constructions we often write [condition]
to stand in for the assertion if (condition) then skip else Ω.

Lemma 9. There exist IAk
1-terms z : exp � M0,M1 : com, constructible from

T,w in polynomial time, capturing L0,L1 respectively.

Lemma 10. There exists an IAk
1-term z : exp � M2 : com, constructible from

T,w in polynomial time, which captures L2.

Thanks to the last two lemmas we are now ready to capture L5.

Lemma 11. There exists an IAk
1-term z : exp � M5 : com, constructible in poly-

nomial time from T,w, which captures L5.

Proof. Note that a word from L5 contains N = Exp(k, n) segments from L2.
To account for that, it suffices to use N copies of M#;M2. However, for a
polynomial-time reduction, we need to do that succinctly. Recall that nestn,k

gives us l-fold nesting of functions, where l = Exp(k − 1, n). Consequently, N -
fold iteration can be achieved by l-fold nesting of λccom.c; c. Thus, we can take

M5 ≡ M0; nestn,k[λccom.c; c/f, (M#;M2)/x];M#;M1.

To complete the hardness argument (by restating Lemma 8 using IAk
1 terms),

we also need to capture L6. Because of the existential clause in its definition we
need to use a slightly different capture scheme.

Contextual Approximation and Higher-Order Procedures 177

Lemma 12. There exists an IAk
1-term z : exp,FLAG : var � M ′

6 : com, con-
structible in polynomial time from T,w, such that comp ([[z,FLAG � M ′

6]]) =
{run qz (a1)z qz (a2)z · · · qz (ak)z done | a1a2 · · · ak ∈ L3} ∪ {run qz (a1)z qz

(a2)z · · · qz (ak)z write(1)FLAG okFLAG done | a1a2 · · · ak ∈ L4}.
Lemma 13. There exists an IAk

1-term z : exp � M6 : com, constructible in poly-
nomial time from T,w, which captures L6.

Proof. It suffices to run M ′
6 for N +1 steps and check whether the flag was set:

M6 ≡ new FLAG in (FLAG := 0; nestn,k[λccom.c; c/f, (M ′
6;M#)/x];M ′

6; [!FLAG = 1])

Theorem 3. Contextual approximation between IAk
1 terms is (k − 1)-

EXPSPACE-hard.

Proof. By Lemmas 8, 11 and 13, for any Turing machine T running in
SPACE (Exp(k − 1, n)) and TIME (Exp(k, n)) and an input word w, there exist
IAk

1-terms x : exp � M5,M6, constructible from T,w in polynomial time, such
that T accepts w if and only if M5 does not approximate M6. This implies
(k − 1)-EXPSPACE-hardness. ��

6 Conclusion

We have shown that contextual approximation in IAk
1 , IA

k
2 , IA

k
3 is (k − 1)-

EXPSPACE-complete. The algorithm that leads to these optimal bounds reduces
terms to IA2

3 (with possibly (k − 2)-fold exponential blow-up) and we use a ded-
icated EXPSPACE procedure for IA2

3 exploiting game semantics and decision
procedures for a special kind of pushdown automata. In particular, the results
show that untamed β-reduction would yield suboptimal bounds, but selective
β-reduction of redexes up to level 3 does not jeopardise complexity. The bounds
above apply to open higher-order terms, i.e. IAi (i > 0) terms, for which the
problem of contextual approximation is difficult to attack due to universal quan-
tification over contexts.

Our work also implies bounds for contextual approximation of IAk
0 terms,

i.e. closed terms of base type. Conceptually, this case is much easier, because it
boils down to testing termination. In this case our techniques can be employed
to obtain better upper bounds for IAk

0 than those for IAk
1 ((k − 1)-EXPSPACE).

For a start, like for IAk
1 , we can reduce IAk

0 terms (at (k − 2)-fold exponential
cost) to IA2

0. Then termination in IA2
0 can be checked in exponential time by

constructing pushdown automata via Lemma 2 and testing them for emptiness
(rather than inclusion). Since emptiness testing of pushdown automata can be
performed in polynomial time and the automata construction in Lemma 2 costs a
single exponential, this yields an EXPTIME upper bound for termination in IA2

0.
Consequently, termination in IAk

0 (k ≥ 2) can be placed in (k − 1)-EXPTIME,
though it is not clear to us whether this bound is optimal. For completeness,
let us just mention that termination in IA0

0 and IA1
0 is PSPACE-complete due to

178 R. Lazić and A.S. Murawski

presence of variables and looping (membership follows from the corresponding
upper bounds for contextual equivalence).

Another avenue for future work is IAk
1 , IA

k
2 , IA

k
3 contextual equivalence. Of

course, our upper bounds for approximation also apply to contextual equivalence,
which amounts to two approximation checks. However, one might expect better
bounds in this case given that our hardness argument leans heavily on testing
inclusion.

Finally, one should investigate how our results can be adapted to the call-
by-value setting. An educated guess would be that, in the analogous fragment of
ML, the reduction of redexes up to order 3 (rather than 2) should be suppressed
in order to obtain accurate complexity estimates.

References

1. Abramsky, S., McCusker, G.: Linearity, sharing, state: a fully abstract game seman-
tics for Idealized Algol with active expressions. In: O’Hearn, P.W., Tennent, R.D.
(eds.) Algol-Like Languages, pp. 297–329. Birkhaüser, Boston (1997)

2. Abramsky, S., McCusker, G.: Game semantics. In: Schwichtenberg, H., Berger, U.
(eds.) Logic and Computation, Proceedings of the 1997 Marktoberdorf Summer
School. Springer-Verlag (1998)

3. Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation indepen-
dence.In: Proceedings of POPL, pp. 340–353. ACM (2009)

4. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of STOC
2004, pp. 202–211 (2004)

5. Colvin, R., Hayes, I.J., Strooper, P.A.: Calculating modules in contextual logic
program refinement. Theory Pract. Logic Program. 8(01), 1–31 (2008)

6. Ghica, D.R., McCusker, G.: Reasoning about idealized ALGOL using regular lan-
guages. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol.
1853, p. 103. Springer, Heidelberg (2000)

7. Harmer, R.: Games and full abstraction for non-deterministic languages. Ph.D.
thesis, University of London (2000)

8. Hopkins, D., Murawski, A.S., Ong, C.-H.L.: A fragment of ML decidable by visibly
pushdown automata. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part II. LNCS, vol. 6756, pp. 149–161. Springer, Heidelberg (2011)

9. Murawski, A.S.: On program equivalence in languages with ground-type references.
In: Proceedings of IEEE Symposium on Logic in Computer Science, pp. 108–117.
Computer Society Press (2003)

10. Murawski, A.S.: Games for complexity of second-order call-by-name programs.
Theor. Comput. Sci. 343(1/2), 207–236 (2005)

11. Murawski, A.S., Walukiewicz, I.: Third-order idealized algol with iteration is decid-
able. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 202–218. Springer,
Heidelberg (2005)

12. Pitts, A.M.: Operational semantics and program equivalence. In: Barthe, G., Dyb-
jer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 378–412.
Springer, Heidelberg (2002)

Contextual Approximation and Higher-Order Procedures 179

13. Reynolds, J.C.: The essence of Algol. In: de Bakker, J.W., van Vliet, J.C. (eds.)
Algorithmic Languages, pp. 345–372. North Holland, Amsterdam (1978)

14. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and hoare-style reasoning
in a logic for higher-order concurrency. In: Proceedings of ICFP 2013, pp. 377–390
(2013)

A Theory of Slicing for Probabilistic Control
Flow Graphs

Torben Amtoft1(B) and Anindya Banerjee2

1 Kansas State University, Manhattan, KS, USA
tamtoft@ksu.edu

2 IMDEA Software Institute, Madrid, Spain
anindya.banerjee@imdea.org

Abstract. We present a theory for slicing probabilistic imperative
programs—containing random assignment and “observe” statements—
represented as control flow graphs whose nodes transform probability dis-
tributions. We show that such a representation allows direct adaptation
of standard machinery such as data and control dependence, postdomi-
nators, relevant variables, etc. to the probabilistic setting. We separate
the specification of slicing from its implementation: first we develop syn-
tactic conditions that a slice must satisfy; next we prove that any such
slice is semantically correct; finally we give an algorithm to compute the
least slice. A key feature of our syntactic conditions is that they involve
two disjoint slices such that the variables of one slice are probabilistically
independent of the variables of the other. This leads directly to a proof
of correctness of probabilistic slicing.

1 Introduction

The task of program slicing [12,14] is to remove the parts of a program that are
irrelevant in a given context. This paper addresses slicing of probabilistic impera-
tive programs which, in addition to the usual control structures, contain “random
assignment” and “observe” statements. The former assign random values from
a given distribution to variables. The latter remove undesirable combinations of
values, a feature which can be used to bias the variables according to real world
observations. The excellent survey by Gordon et al. [6] depicts many applications
of probabilistic programs.

Program slicing of deterministic imperative programs is increasingly well
understood [1,3,5,10,11]. A basic notion is that if the slice contains a program
point which depends on some other program points then these also should be
included in the slice; here “depends” typically encompasses data dependence and
control dependence. However, Hur et al. [7] recently demonstrated that in the
presence of random assignments and observations, standard notions of data and

A. Banerjee—Research supported by the US National Science Foundation (NSF).
Any opinion, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of NSF.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 180–196, 2016.
DOI: 10.1007/978-3-662-49630-5 11

A Theory of Slicing for Probabilistic Control Flow Graphs 181

control dependence no longer suffice for semantically correct (backward) slicing.
They develop a denotational framework in which they prove correct an algo-
rithm for program slicing. In contrast, this paper shows how classical notions
of dependence can be extended to give a semantic foundation for the (backward)
slicing of probabilistic programs. The paper’s key contributions are:

– A formulation of probabilistic slicing in terms of probabilistic control flow
graphs (Sect. 3) that allows direct adaptation of standard machinery such as
data and control dependence, postdominators, relevant variables, etc. to the
probabilistic setting. We also provide a novel operational semantics of proba-
bilistic control flow graphs (Sect. 4): written (v,D) ⇒ (v′,D′), the semantics
states that as “control” moves from node v to node v′ in the CFG, the prob-
ability distribution D transforms to distribution D′.

– Syntactic conditions for correctness (Sect. 5) that in a non-trivial way extend
classical work on program slicing [5], and whose key feature is that they involve
two disjoint slices; in order for the first to be a correct final result of slicing,
the other must contain any “observe” nodes sliced away and all nodes on
which they depend. We show that the variables of one slice are probabilisti-
cally independent of the variables of the other, and this leads directly to the
correctness of probabilistic slicing (Sect. 6).

– An algorithm, with running time at most cubic in the size of the program,
that computes the best possible slice (Sect. 7) in that it is contained in any
other (syntactic) slice of the program.

Our approach separates the specification of slicing from algorithms to com-
pute the best possible slice. The former is concerned with defining what is a
correct syntactic slice, such that the behavior of the sliced program is equiva-
lent to that of the original. The latter is concerned with how to compute the
best possible syntactic slice; this slice is automatically a semantically correct
slice—no separate proof is necessary.

A program’s behavior is its final probability distribution; we demand equality
modulo a constant factor so as to allow the removal of “observe” statements
that do not introduce any bias in the final distribution. This will be the case
if the variables tested by “observe” statements are independent, in the sense of
probability theory, of the variables relevant for the final value.

Full proofs of all results appear in the accompanying technical report [2].

2 Motivating Examples

Probabilistic Programs. Whereas in deterministic languages, a variable has only
one value at a given time, we consider a language where a variable may have many
different values at a given time, each with a certain probability. (Determinism is
a special case where one value has probability one, and all others have probability
zero.) We assume, to keep our development simple, that each possible value is
an integer. A more general development, somewhat orthogonal to the aims of
this paper, would allow real numbers and would require us to employ measure

182 T. Amtoft and A. Banerjee

theory (as explained in [9]); we conjecture that much will extend naturally (with
summations becoming integrals).

Similarly to [6], probabilities are introduced by the construct x := Random(ψ)
which assigns to variable x a value with probability given by the random dis-
tribution ψ which in our setting is a mapping from Z (the set of integers) to
[0, 1] such that

∑

z∈Z

ψ(z) = 1. A program phrase transforms a distribution into

another distribution, where a distribution assigns a probability to each possible
store. This was first formalized by Kozen [8] in a denotational setting. As also
in [6], we shall use the construct Observe(B) to “filter out” values which do not
satisfy the boolean expression B. That is, the resulting distribution assigns zero
probability to all stores not satisfying B, while stores satisfying B keep their
probability.

The Examples. Slicing amounts to picking a set Q of “program points” (satis-
fying certain conditions as we shall soon discuss) and then removing nodes not
in Q (as we shall formalize in Sect. 4.6). The examples all use a random distri-
bution ψ4 over {0, 1, 2, 3} where ψ4(0) = ψ4(1) = ψ4(2) = ψ4(3) = 1

4 whereas
ψ4(i) = 0 for i /∈ {0, 1, 2, 3}. The examples all consider whether it is correct
to let Q contain exactly x := Random(ψ4) and Return(x), and thus slice into a
program Px with straightforward semantics: after execution, the probability of
each possible store is given by the distribution Δ′ defined as Δ′({x �→ i}) = 1

4
if i ∈ {0, 1, 2, 3}; otherwise Δ′({x �→ i}) = 0.

Example 1. Consider the program P1
def
= 1: x := Random(ψ4); 2: y :=

Random(ψ4); 3: Observe(y ≥ 2); 4: Return(x). The distribution produced by

the first two assignments will assign probability
1
4

· 1
4

=
1
16

to each possible store

{x �→ i, y �→ j} with i, j ∈ {0, 1, 2, 3}. In the final distribution D1, a store
{x �→ i, y �→ j} with j < 2 is impossible, and for each i ∈ {0, 1, 2, 3} there are
thus only two possible stores that associate x with i: the store {x �→ i, y �→ 2},
and the store {x �→ i, y �→ 3}. Restricting to the variable x that is ultimately
returned,

D1({x �→ i}) =
3∑

j=2

D1({x �→ i, y �→ j}) =
1
16

+
1
16

=
1
8

if i ∈ {0, 1, 2, 3} (otherwise, D1({x �→ i}) = 0). We see that the probabilities in
D1 do not add up to 1 which reflects that the purpose of an Observe statement
is to cause undesired parts of the “local” distribution to “disappear” (which may
give certain branches more relative weight than other branches). We also see
that D1 equals Δ′ except for a constant factor: D1 = 0.5 · Δ′. That is, Δ′ gives
the same relative distribution over the values of x as D1 does. (An alternative
way of phrasing this is that “normalizing” the “global” distribution, as done in
[6], gives the same result for Px as for P1.) We shall therefore say that Px is a
correct slice of P1.

Thus the Observe statement is irrelevant to the final relative distribution of x.
This is because y and x are independent in D1, as formalized in Definition 3.

A Theory of Slicing for Probabilistic Control Flow Graphs 183

Example 2. Consider the program P2
def
= 1: x := Random(ψ4); 2: y :=

Random(ψ4); 3: Observe(x+y ≥ 5); 4: Return(x). Here the final distribution D2

allows only 3 stores: {x �→ 2, y �→ 3}), {x �→ 3, y �→ 2}) and {x �→ 3, y �→ 3}),

all with probability
1
16

, and hence D2({x �→ 2}) =
1
16

and D2({x �→ 3}) =
1
8
.

Thus the program is biased towards high values of x; in particular we cannot
write D2 in the form cΔ′. Hence it is incorrect to slice P2 into Px.

In this example, x and y are not independent in D2; this is as expected since the
Observe statement in P2 depends on something (the assignment to x) on which
the returned variable x also depends.

Example 3. Consider the program P3
def
= x := Random(ψ4); (if x ≥ 2 z :=

Random(ψ4); Observe(z ≥ 3)); Return(x). P3 is biased towards returning low
values of x, with the final distribution D3 given by D3({x �→ i}) = 1

4 when
i ∈ {0, 1} and D3({x �→ i}) = D3({x �→ i, z �→ 3}) = 1

16 when i ∈ {2, 3}. Hence
it is incorrect to slice P3 into Px.

The Observe statement cannot be removed: it is control dependent on the assign-
ment to x, on which the returned x also depends.

The discussion so far suggests the following tentative correctness condition
for the set Q picked by slicing:

– Q is “closed under dependency”, i.e., if a program point in Q depends on
another program point then that program point also belongs to Q;

– Q is part of a “slicing pair”: any Observe statement that is sliced away belongs
to a set Q0 that is also closed under dependency and is disjoint from Q.

The above condition will be made precise in Definition 9 (Sect. 5) which contains
a further requirement, necessary since an Observe statement may be encoded
as a potentially non-terminating loop, as the next example illustrates.

Example 4. Consider the program P4
def
= x := Random(ψ4); y := Random(ψ4);

(if x ≥ 2 (while y ≤ 5 do y := E)); Return(x) where E is an arithmetic
expression. If E is “y + 1” then the loop terminates and y’s final value is 6. In
the resulting distribution D′, for i ∈ {0, 1, 2, 3} we have D′({x �→ i}) = D′({x �→
i, y �→ 6}) = 1

4 = Δ′({x �→ i}). Thus it is correct to slice P4 into Px.
But if E is “y − 1” then the program will not terminate when x ≥ 2 (and

hence the conditional encodes Observe(x < 2)). Thus the resulting distribution
D4 is given by D4({x �→ i}) = 1

4 when i ∈ {0, 1} and D4({x �→ i}) = 0 when
i /∈ {0, 1}. Thus it is incorrect to slice P4 into Px. Indeed, Definition 9 rules out
such a slicing.

3 Control Flow Graphs

This section precisely defines the kind of CFGs we consider, as well as some key
concepts that are mostly standard (see, e.g., [3,10]). However, we also introduce
a notion (Definition 1) specific to our approach.

184 T. Amtoft and A. Banerjee

Figure 1 depicts, with the nodes numbered, the CFGs corresponding to the
programs P3 and P4 from Examples 3 and 4. We see that a node can be labeled
with an assignment x := E (x a program variable and E an arithmetic expres-
sion), with a random assignment x := Random(ψ) (we shall assume that the
probability distribution ψ contains no program variables though it would be
straightforward to allow it as in [7]), with Observe(B) (B is a boolean expres-
sion), or (though not part of these examples) with Skip. Also, there are branching
nodes with two outgoing edges. Finally, there is a unique End node Return(x)
to which there must be a path from all other nodes but which has no outgoing
edges, and a special node Start (which may have any label and is numbered 1 in
the examples) from which there is a path to all other nodes.

We let Def (v) be the variable occurring on the left hand side if v is a (random)
assignment, and let Use(v) be the variables occurring in the right hand side of an
assignment, in a boolean expression used in an Observe node or in a branching
node, or as the sole variable in a End node. We demand that all variables be
defined before they are used.

1

2

3

4

5

T
F

1

2

3

4

5
6

T
F

T F

1: x := Random(ψ4)

2: x ≥ 2

3: z := Random(ψ4)

4: Observe(z ≥ 3)

5: Return(x)

1: x := Random(ψ4)

2: y := Random(ψ4)

3: x ≥ 2

4: y ≤ 5

5: y := E

6: Return(x)

Fig. 1. The CFGs for P3 (left) and P4 (right) from Examples 3 and 4.

We say that v1 postdominates v if v1 occurs on all paths from v to End; if
also v1 �= v, v1 is a proper postdominator of v. And we say that v1 is the first
proper postdominator of v if whenever v2 is another proper postdominator of
v then all paths from v to v2 contain v1. It is easily shown that for any v with
v �= End, there is a unique first proper postdominator of v, called 1PPD(v). In
Fig. 1(right), 1PPD(1) = 2, while also nodes 3 and 6 are proper postdominators.

We say that v2 is data dependent on v1, written v1
dd→ v2, if there exists

x ∈ Use(v2) ∩ Def (v1), and there exists a non-trivial path π from v1 to v2 such
that x /∈ Def (v) for all nodes v that are interior in π. In Fig. 1(left), 1 dd→ 2. A set
of nodes Q is closed under data dependence if whenever v2 ∈ Q and v1

dd→ v2
then also v1 ∈ Q. We say that x is (Q-)relevant in v, written x ∈ rvQ(v),
if there exists v′ ∈ Q such that x ∈ Use(v′), and a path π from v to v′ such
that x /∈ Def (v1) for all v1 ∈ π \ {v′}. In Fig. 1(left), rv{4,5}(4) = {x, z} but
rv{4,5}(3) = {x}.

Next, a concept we have discovered useful for the subsequent development:

A Theory of Slicing for Probabilistic Control Flow Graphs 185

Definition 1. With v′ a postdominator of v, and Q a set of nodes, we say that
v stays outside Q until v′ iff whenever π is a path from v to v′ where v′ occurs
only at the end, π will contain no node in Q except possibly v′.

In Fig. 1(right), node 4 stays outside {1, 6} until 6 but does not stay outside
{1, 5, 6} until 6. It turns out that if v stays outside Q until v′ and Q is closed
under data dependence then v has the same Q-relevant variables as v′. Moreover,
if Q satisfies certain additional properties, the distribution at v′ (of the relevant
variables) will equal the distribution at v.

4 Semantics

In this section we shall define the meaning of the CFGs introduced in the previ-
ous section, in terms of an operational semantics that manipulates distributions
which assign probabilities to stores (Sect. 4.1). Section 4.2 defines what it means
for sets of variables to be independent wrt. a given distribution. To prepare
for the full semantics (Sect. 4.5) we define a one-step reduction (Sect. 4.3) from
which we construct a reduction which allows multiple steps but only a bounded
number of iterations (Sect. 4.4). The semantics also applies to sliced programs
and hence (Sect. 4.6) provides the meaning of slicing.

4.1 Stores and Distributions

Let U be the universe of variables. A store s is a partial mapping from U to
Z. We write s[x �→ z] for the store s′ that is like s except s′(x) = z, and write
dom(s) for the domain of s. We write S(R) for the set of stores with domain R,
and also write F for S(U). If s1 ∈ S(R1) and s2 ∈ S(R2) with R1 ∩ R2 = ∅, we
may define s1 ⊕ s2 with domain R1 ∪ R2 the natural way. With R a subset of U ,
we say that s1 agrees with s2 on R, written s1

R= s2, iff R ⊆ dom(s1) ∩ dom(s2)
and for all x ∈ R, s1(x) = s2(x). We assume that there is a function [[]] such
that [[E]]s is the integer result of evaluating E in store s and [[B]]s is the boolean
result of evaluating B in store s (the free variables of E, B must be in dom(s)).

A distribution D (we shall later also use the letter Δ) is a mapping from F
to non-negative reals with

∑
D < ∞ where

∑
D is a shorthand for

∑
s∈F D(s).

Thanks to our assumption that values are integers, and since U can be assumed
finite, F is a countable set and thus

∑
D is well-defined even without measure

theory. If
∑

D ≤ 1, implying D(s) ≤ 1 for all s, we say that D is a probability
distribution. We define D1 + D2 by stipulating (D1 + D2)(s) = D1(s) + D2(s),
and for c ≥ 0 we define cD by stipulating (cD)(s) = cD(s). We write D1 ≤ D2

iff D1(s) ≤ D2(s) for all s, and say that D = 0 iff D(s) = 0 for all s. We assume
there is a designated initial distribution, DI , such that

∑
DI = 1 (DI may be

arbitrary as all variables must be defined before they are used).
As suggested by the calculation in Example 1, we have

Definition 2. For partial store s with domain R, let D(s) =
∑

s0∈F | s
R
=s0

D(s0).

186 T. Amtoft and A. Banerjee

Observe that D(∅) =
∑

D. Say that D1 agrees with D2 on R, written D1
R= D2,

if D1(s) = D2(s) for all s ∈ S(R). If D1
R′
= D2 and R ⊆ R′ then D1

R= D2.

4.2 Probabilistic Independence

Some variables of a distribution D may be independent of others. Formally:

Definition 3 (independence). Let R1 and R2 be disjoint sets of variables. We
say that R1 and R2 are independent in D iff for all s1 ∈ S(R1) and s2 ∈ S(R2),
we have D(s1 ⊕ s2)

∑
D = D(s1)D(s2).

To motivate the definition, first observe that if
∑

D = 1 it amounts to the well-
known definition of probabilistic independence; next observe that if

∑
D > 0, it

is equivalent to the well-known definition for “normalized” probabilities:

D(s1 ⊕ s2)∑
D

=
D(s1)∑

D
· D(s2)∑

D

Trivially, R1 and R2 are independent in D if D = 0 or R1 = ∅ or R2 = ∅.

Example 5. In Example 1, {x} and {y} are independent in D1. This is since

for i ∈ {0, 1, 2, 3} and j ∈ {2, 3} we have D1({x �→ i, y �→ j}) =
1
16

so that

D1({x �→ i}) =
1
8
, D1({y �→ j}) =

1
4
, and

∑
D1 =

1
2
; we thus have the desired

equality D1({x �→ i, y �→ j})
∑

D1 =
1
32

= D1({x �→ i}) · D1({y �→ j}).

And the equality holds trivially if i /∈ {0, 1, 2, 3} or j /∈ {2, 3} since then
D1({x �→ i, y �→ j}) = 0 and either D1({x �→ i}) = 0 or D1({y �→ j}) = 0.

Example 6. In Example 2, {x} and {y} are not independent in D2. This is
since D2({x �→ 3, y �→ 3})

∑
D2 = 3

256 while D2({x �→ 3})D2({y �→ 3}) = 4
256 .

4.3 One-Step Reduction

If v has label Branch(B), with v1 (v2) the successor taken when B is true (false),
we define

– (v,D) T→ (v1,D1) where D1(s) equals D(s) when [[B]]s but is 0 otherwise;
– (v,D) F→ (v2,D2) where D2(s) is 0 when [[B]]s but equals D(s) otherwise.

Thus D = D1 + D2. Given v such that v has exactly one successor v′, the one
step reduction (v,D) → (v′,D′) is given by defining D′(s′) as follows:

Skip x := E x := Random(ψ) Observe(B)

D(s′)
∑

s∈F | s′=s[x�→[[E]]s] D(s)
∑

s∈F | s′U\{x}
= s

ψ(s′(x))D(s)

{
D(s′) if [[B]]s′

0 otherwise

If (v,D) → (v′,D′) then
∑

D′ ≤ ∑
D with equality if v is not an Observe node.

A Theory of Slicing for Probabilistic Control Flow Graphs 187

4.4 Multi-step Reduction and Loops

The key semantic relation is of the form (v,D) ⇒ (v′,D′) where v′ postdominates
v, saying that distribution D transforms to distribution D′ as “control” moves
from v to v′ along paths that may contain multiple branches and even loops
but which do not contain v′ until the end. To define that relation, we need an
auxiliary relation of the form (v,D) k⇒ (v′,D′) where k is a non-negative integer
that bounds the number of times control is allowed to move “away” from the
End node; if k = 1 then we only take into account paths that for each step
get closer to the End node, but if k = 2 we also allow paths with one cycle,
etc. (k = 0 corresponds to “⊥” in denotational semantics.) Our goal is to let D′

be a function of v, D, v′ and k, and we do so by a definition that is inductive
first in k, and next on the length of the longest acyclic path from v to v′ (proving
properties of the relation will involve a case analysis on the various clauses).

Definition 4. (k⇒) Given v and v′ where v′ postdominates v, and given k and
D, (v,D) k⇒ (v′,D′) holds when D′ is defined as follows:

1. if k = 0 then D′ = 0;
2. otherwise, if v′ = v then D′ = D;
3. otherwise, if with v′′ = 1PPD(v) we have v′ �= v′′, we recursively first find

D′′ with (v,D) k⇒ (v′′,D′′) and next find D′ with (v′′,D′′) k⇒ (v′,D′);
4. otherwise, if v has exactly one successor, which must be v′, we let D′ be such

that (v,D) → (v′,D′);
5. otherwise, if v has two successors with (v,D) T→ (v1,D1) and (v,D) F→

(v2,D2) (thus v′ postdominates v1 and v2), we recursively find D′
1 and D′

2

such that (v1,D1)
k1⇒ (v′,D′

1) and (v2,D2)
k2⇒ (v′,D′

2), and let D′ = D′
1 +D′

2.
Here ki (i = 1, 2) is given as follows: if the longest acyclic path from vi to v′

is shorter than the length of the longest acyclic path from v to v′ then ki = k,
otherwise ki = k − 1.

Example 7. Consider the CFG for P4 (Fig. 1(right)) with E chosen as “y +1”
and with Dk such that (1,DI) k⇒ (6,Dk). If i ∈ {0, 1} and j ∈ {0, 1, 2, 3} then for

all k ≥ 1 we have Dk({x �→ i, y �→ j}) =
1
16

and thus Dk({x �→ i}) =
1
4
. But if

i ∈ {2, 3} then we have Dk({x �→ i, y �→ 6}) = 0 if k ≤ 3; D4({x �→ i, y �→ 6}) =
1
16 (for y initially 3); D5({x �→ i, y �→ 6}) = 2

16 ; D6({x �→ i, y �→ 6}) = 3
16 ;

and Dk({x �→ i, y �→ 6}) = 4
16 if k ≥ 7.

Note also that for k > 0, (4,D) k⇒ (4,D′) only holds if D′ = D, since the only
path from 4 to 4 where 4 does not occur until the end is the empty path. Still, the
cycle between nodes 4 and 5 is taken into account. For if (4,D) k⇒ (6,D′) then
D′ = D′

1 + D2 where D = D1 + D2 (D2 is D restricted to states where y > 5)
and D′

1 is such that for some D′′
1 , (5,D1)

k−1⇒ (4,D′′
1) and (4,D′′

1) k−1⇒ (6,D′
1).

D′ is a monotone function of D and of k:

188 T. Amtoft and A. Banerjee

Lemma 1 (monotonicity). If (v,D1)
k1⇒ (v′,D′

1) and (v,D2)
k2⇒ (v′,D′

2) with
k1 ≤ k2 and D1 ≤ D2 then D′

1 ≤ D′
2. If (v,D) k⇒ (v′,D′) then

∑
D′ ≤ ∑

D.

Equality between
∑

D′ and
∑

D can fail due to Observe nodes (cf. Examples
1–3), or due to infinite loops (cf. Example 4) which cause k to be eventually zero.

4.5 Top-Level Semantics

Definition 5. (⇒) Given (v,D), and v′ which postdominates v, (v,D) ⇒
(v′,D′) holds when D′ is defined as follows: with Dk (for k ≥ 0) the unique
distribution such that (v,D) k⇒ (v′,Dk), let D′ = limk→∞ Dk (the limit is taken
pointwise).

Observe by Lemma 1 that Dk1 ≤ Dk2 when k1 ≤ k2; for each s we thus have
D0(s) ≤ D1(s) ≤ . . . ≤ Dk(s) ≤ Dk+1(s) ≤ . . . and hence it is well-defined to
let D′(s) = lim

k→∞
Dk(s). Also at top-level, monotonicity holds:

Lemma 2. If (v,D) ⇒ (v′,D′) then
∑

D′ ≤ ∑
D.

Example 8. Continuing Example 7, we see that the limit D′ is given as follows:
D′({x �→ i, y �→ j}) = 1

16 if i ∈ {0, 1}, j ∈ {0, 1, 2, 3}; D′({x �→ i, y �→ j}) = 1
4

if i ∈ {2, 3}, j = 6; and D′({x �→ i, y �→ j}) = 0 otherwise.

We may define the meaning of a CFG with End node Return(x) as
λv.D′({x �→ v}) where D′ is such that (Start,DI) ⇒ (Return(x),D′).

4.6 Semantics of Slicing

A slice set is a set of nodes (which must satisfy certain conditions, cf.Definition 9).
Slicing amounts to ignoring nodes not in the slice set:

Definition 6. (=⇒) Given a slice set Q, we define the semantics of the CFG
that results from slicing wrt. Q as follows:

Let (v,Δ) k=⇒ (v′,Δ′) be defined as (v,D) k⇒ (v′,D′) (Definition 4),
except that whenever v /∈ Q ∪ {End} then v is labeled Skip and the succes-
sor of v becomes 1PPD(v). And let (v,Δ) =⇒ (v′,Δ′) be defined by letting
Δ′ = lim

k→∞
Δk where for each k ≥ 0, Δk is the unique distribution such that

(v,Δ) k=⇒ (v′,Δk).

5 Conditions for Slicing

With Q the slice set, we now develop conditions for Q that ensure semantic
correctness. It is standard to require Q to be closed under data dependence, and
additionally also under some kind of “control dependence”. In this section we
first elaborate on the latter condition after which we study the extra conditions

A Theory of Slicing for Probabilistic Control Flow Graphs 189

needed in our probabilistic setting. Eventually, Definition 9 gives conditions that
involve not only Q but also another slice set Q0 containing all Observe nodes
to be sliced away. As stated in Proposition 1, these conditions are sufficient to
establish probabilistic independence of Q and Q0. This in turn is crucial for
establishing the correctness of slicing, as stated in Theorem 1 (Sect. 6).

Weak Slice Sets. Danicic et al. [5] show that various kinds of control dependence
can all be elegantly expressed within a general framework whose core is the
following notion:

Definition 7 (next observable). With Q a set of nodes, v′ is a next observ-
able in Q of v iff v′ ∈ Q ∪ {End}, and v′ occurs on all paths from v to a node in
Q ∪ {End}.

A node v can have at most one next observable in Q. It thus makes sense to
write v′ = nextQ(v) if v′ is a next observable in Q of v. We say that Q provides
next observables iff nextQ(v) exists for all nodes v. If v′ = nextQ(v) then v′ is
a postdominator of v, and if v ∈ Q ∪ {End} then nextQ(v) = v.

In the CFG for P3 (Fig. 1), letting Q = {1, 3, 5}, node 5 is a next observable
in Q of 4: all paths from 4 to a node in Q will contain 5. But no node is a
next observable in Q of 2: node 3 is not since there is a path from 2 to 5 not
containing 3, and node 5 is not since there is a path from 2 to 3 not containing
5. Therefore Q cannot be the slice set: node 1 can have only one successor in
the sliced program but we have no reason to choose either of the nodes 3 and 5
over the other as that successor. This motivates the following definition:

Definition 8 (weak slice set). We say that Q is a weak slice set iff it pro-
vides next observables, and is closed under data dependence.

While the importance of “provides next observable” was recognized already in
[1,11], Danicic et al. were the first to realize that it is the key property (together
with data dependence) to ensure semantically correct slicing. They call the prop-
erty “weakly committing” (thus our use of “weak”) and our definition differs
slightly from theirs in that we always consider End an “observable”.

It is easy to see that the empty set, as well as the set of all nodes, is a weak
slice set. Moreover, if Q1, Q2 are weak slice sets, so is Q1 ∪ Q2.

Adapting to the Probabilistic Setting. The key challenge in slicing probabilistic
programs is, as already motivated through Examples 1–4, to handle Observe
nodes. In Sect. 2 we hinted at some tentative conditions a slice set Q must
satisfy; we can now phrase them more precisely:

1. Q must be a weak slice set that contains End, and
2. there exists another weak slice set Q0 such that (a) Q and Q0 are disjoint

and (b) all Observe nodes belong to either Q or Q0.

For programs P1, P2, the control flow is linear and hence all nodes have a next
observable (so a node set that is closed under data dependence is a weak slice set).

190 T. Amtoft and A. Banerjee

For P1 we may choose Q = {1, 4} and Q0 = {2, 3} as they are disjoint, and both
closed under data dependence. Hence we may use {1, 4} as a slice set; from
Definition 6 we see that the resulting slice is 1: x := Random(ψ4); 2: Skip; 3:
Skip; 4: Return(x), which is obviously equivalent to Px as defined in Sect. 2.

Next consider the program P2 where Q should contain 4 and hence (by data
dependence) also contain 1. Now assume, in order to remove the Observe node
(and produce Px), that Q does not contain 3. Then Q0 must contain 3, and (as
Q0 is closed under data dependence) also 1. But then Q and Q0 are not disjoint,
which contradicts our requirements. Thus Q does contain 3, and hence also 2.
That is, Q = {1, 2, 3, 4}. We see that the only possible slicing is the trivial one.

Any slice for P3 will also be trivial. From 5 ∈ Q we infer (by data dependence)
that 1 ∈ Q. Assume, to get a contradiction, that 4 /∈ Q. Then 4 ∈ Q0, and for
node 2 to have a next observable in Q0 we must also have 2 ∈ Q0 which by data
dependence implies 1 ∈ Q0 which as 1 ∈ Q contradicts Q and Q0 being disjoint.
Thus 4 ∈ Q which implies 3 ∈ Q (by data dependence) and 2 ∈ Q (as otherwise
2 has no next observable in Q).

For P4, it is plausible that Q = {1, 6} and Q0 = ∅, since for all v �= 1 we
would then have 6 = nextQ(v). From Definition 6 we see that after removing
unreachable nodes, the resulting slice is: 1: x := Random(ψ4); 2: Skip; 3: Skip; 6:
Return(x). Yet, in Example 4 we saw that this is in general not a correct slice
of P4. This reveals a problem with our tentative correctness conditions; they do
not take into account that Observe nodes may be “encoded” as infinite loops.
To repair that, we demand that just like all Observe nodes must belong to either
Q or Q0, also all cycles must touch either Q or Q0. With this requirement, it is
no longer possible that Q contains only nodes 1 and 6. For if so, then Q0 would
have to contain node 4 or node 5 since these two nodes form a cycle. But then,
in order for node 3 to have a next observable in Q0, it must be the case that Q0

contains node 3, and hence (by data dependence) also node 1 which contradicts
Q and Q0 being disjoint. Thus we have motivated the following definition.

Definition 9 (slicing pair). Let Q,Q0 be sets of nodes. (Q,Q0) is a slicing
pair iff (a) Q,Q0 are both weak slice sets with End ∈ Q; (b) Q,Q0 are disjoint;
(c) all Observe nodes are in Q ∪ Q0; and (d) all cycles contain at least one
element of Q ∪ Q0.

If (Q,Q0) is a slicing pair then rvQ(v) ∩ rvQ0(v) = ∅ for all nodes v. For,
if x ∈ rvQ(v) ∩ rvQ0(v) then a definition of x, known to exist, would be in
Q ∩ Q0 which is empty. Moreover, the Q-relevant variables are probabilistically
independent (as defined in Definition 3) of the Q0-relevant variables, as stated
by the following preservation result which is one of the main contributions of
this paper in that it gives a syntactic condition for probabilistic independence:

Proposition 1 (Independence). Let (Q,Q0) be a slicing pair. Assume that
(v,D) k⇒ (v′,D′) where v′ postdominates v. If rvQ(v) and rvQ0(v) are indepen-
dent in D then rvQ(v′) and rvQ0(v

′) are independent in D′.

A Theory of Slicing for Probabilistic Control Flow Graphs 191

6 Slicing and Its Correctness

We can now precisely phrase the desired correctness result:

Theorem 1. Given a CFG with End of the form Return(x), and let (Q,Q0) be
a slicing pair. Let D′ and Δ′ be the unique distributions such that (Start,DI) ⇒
(End,D′) and (Start,DI) =⇒ (End,Δ′) where the latter denotes slicing wrt. Q
(cf. Sect. 4.6). Then there exists a real number c with 0 ≤ c ≤ 1 such that for all
v, D′({x �→ v}) = cΔ′({x �→ v}).

This follows from a more general proposition (allowing an inductive proof) stated
below, with v = Start so that (from the requirement that a variable must be
defined before it is used) R and R0 are both empty (and thus independent), with
v′ = End = Return(x) so that R′ = {x}, and with Δ = D = DI .

Proposition 2. Let (Q,Q0) be a slicing pair. Let v′ postdominate v, with R =
rvQ(v), R′ = rvQ(v′), and R0 = rvQ0(v). Assume that D is such that R and

R0 are independent in D, and that Δ is such that D
R= Δ. Let D′ and Δ′ be the

unique distributions such that (v,D) ⇒ (v′,D′) and (v,Δ) =⇒ (v′,Δ′). Then

there exists a real number c with 0 ≤ c ≤ 1 such that D′ R′
= cΔ′.

Moreover, c = 1 if v stays outside Q0 until v′ (since then the conditions for a
slicing pair guarantee that no observe nodes, or infinite loops, are sliced away).

That is, for the relevant variables, the final distribution is the same in the sliced
program as in the original program, except for a constant factor c such that∑

D′ = c
∑

Δ′.
To prove Proposition 2, we need a similar result that involves k and where the

proof of sequential composition (case 3 in Definition 4) employs Proposition 1
to ensure that the independence property still holds after the first reduction, so
that we can apply the induction hypothesis to the second reduction.

7 Computing the (Least) Slice

There always exists at least one slicing pair, with Q the set of all nodes and with
Q0 the empty set; in that case, the sliced program is the same as the original.
Our goal, however, is to find a slicing pair (Q,Q0) where Q is as small as possible
while including the End node. This section describes an algorithm BSP for doing
so. The running time of our algorithms is measured in terms of n, the number
of nodes in the graph. Note that the number of edges is at most 2n and thus
in O(n). Our algorithms use a boolean table DD∗ such that DD∗(v, v′) is true iff

v
dd→

∗
v′ where dd→

∗
is the reflexive and transitive closure of dd→. Given DD∗, it is

easy to ensure that sets are closed under data dependence, and we shall do that
in an incremental way: there exists an algorithm DDclose which given a node set
Q0 that is closed under data dependence, and a node set Q1, returns the least
set Q containing Q0 and Q1 that is closed under data dependence.

192 T. Amtoft and A. Banerjee

PN?(Q)
F ← Q ∪ {End};
foreach v ∈ V

if v ∈ F
N [v] ← v

else
N [v] ← ⊥;

C ← ∅;
while F = ∅ ∧ C = ∅

F ← ∅;
foreach edge from v /∈ Q

to v ∈ F
if N(v) = ⊥

N(v) ← N(v);
F ← F ∪ {v}

else if N(v) = N(v)
C ← C ∪ {v};

F ← F
return C

LWS(Q0)
Q ← DDclose(∅, Q0); C ← PN?(Q);
while C = ∅

Q ← DDclose(Q, C);
C ← PN?(Q)

return Q

BSP()
W ← the set of essential nodes;
foreach v ∈ W ∪ {End}

Qv ← LWS({v});
Q ← ∅; F ← QEnd;
while F = ∅

Q ← Q ∪ F ; F ← ∅;
foreach v ∈ W

if Qv ∩ Q = ∅
W ← W \{v}; F ← F ∪Qv;

Q0 ← v∈W Qv;
return (Q, Q0)

Fig. 2. Algorithms for: checking if a set provides next observables (PN?); finding the
least weak slice set containing a given set (LWS); finding the best slicing pair (BSP).

Computing the Least Weak Slice. In Fig. 2(upper right) we define a function LWS
which constructs the least weak slice set that contains a given set; it works by
successively adding nodes to the set until it is closed under data dependence,
and provides next observables.

To check the latter, we employ a function PN? as defined in Fig. 2(left): given
Q, it does a backward breadth-first search from Q ∪ {End} to find the first node
(if any) from which two nodes in that set are reachable without going through
Q; such a node must be included in any superset providing next observables.

Lemma 3. Given Q, the function PN? runs in time O(n) and returns C such
that (a) if C is empty then Q provides next observables, and (b) if C is non-empty
then C ∩ Q = ∅ and all supersets of Q that provide next observables contain C.

Lemma 4. Given Q0, the function LWS returns Q such that Q is a weak slice
set and Q0 ⊆ Q. Moreover, if Q′ is a weak slice set with Q0 ⊆ Q′, then Q ⊆ Q′.
Finally, given DD∗, LWS runs in time O(n2).

Computing the Best Slicing Pair. We now develop an algorithm BSP which
given a CFG returns a slicing pair (Q,Q0) with Q as small as possible. From
Definition 9 we know that each Observe node has to be put either in Q or in
Q0, and also that at least one node from each cycle has to be put either in Q
or in Q0. Especially the latter requirement may suggest that our algorithm will
have to explore a huge search space, but fortunately it is sufficient to consider
only the node(s) with minimal height. Here node v’s height, denoted H(v), is
the length of the shortest path(s) from v to End. This motivates

A Theory of Slicing for Probabilistic Control Flow Graphs 193

Definition 10. A node v is essential if either (a) v is an Observe node, or (b)
v belongs to a cycle π where H(v) ≤ H(v1) for all v1 ∈ π.

For disjoint weak slice sets (Q,Q0) with End ∈ Q to be a slicing pair, it is
sufficient and necessary that each essential node be placed either in Q or in Q0.

Lemma 5 (Sufficient). Let Q and Q0 be disjoint weak slice sets with End ∈ Q,
and assume that all essential nodes are in Q∪Q0. Then (Q,Q0) is a slicing pair.

Lemma 6 (Necessary). Let (Q,Q0) be a slicing pair. If v is essential then
v ∈ Q ∪ Q0.

Fig. 2 (lower right) presents the algorithm BSP that computes the best slicing
pair (Q,Q0). The idea is to built Q incrementally, initially containing only End,
and then add v whenever v is essential but cannot be placed in Q0 as then Q
and Q0 would overlap. That BSP produces the best slicing pair is captured by

Proposition 3. The algorithm BSP returns (on a given CFG) Q and Q0 such
that (Q,Q0) is a slicing pair, and if (Q′, Q′

0) is a slicing pair then Q ⊆ Q′.

After analyzing the running times, we get:

Theorem 2. For a given CFG, there is an algorithm that in time O(n3) com-
putes a slicing pair (Q,Q0) where Q ⊆ Q′ for any other slicing pair (Q′, Q′

0).

Also the algorithm given in [5] for computing (their version of) weak slices runs
in cubic time. We do not expect that there exists an algorithm with lower asymp-
totic complexity, since we need to compute data dependencies which is known
to involve computing a transitive closure.

Illustrating the Algorithms. First consider the program P1 from Example 1 where
the non-trivial true entries of DD∗ are (1, 4) (since 1 dd→ 4) and (2, 3), and where
3 is the only essential node. BSP thus computes LWS({4}) and LWS({3}). When
running LWS on {4}, initially Q = {1, 4} which is also the final value of Q
since PN?({1, 4}) returns ∅ (after a sequence of iterations where F is first {1, 4}
and next {3} and next {2} and finally ∅). Thus Q4 = {1, 4} and similarly we
get Q3 = {2, 3}. When the members of W = {3} are first examined in the
BSP algorithm, we have Q = Q4 and thus Q3 ∩ Q = ∅. Hence the while loop
terminates with Q = {1, 4} and subsequently we get Q0 = Q3 = {2, 3}.

Next consider the CFG for P4 (Fig. 1) with E containing only y free. Here
dd→ is given as follows: 1 dd→ 3, 1 dd→ 6, 2 dd→ 4, 2 dd→ 5, 5 dd→ 4, and 5 dd→ 5. Since
H(4) = 1 and H(5) = 2, node 4 is the only essential node. BSP thus has to
compute LWS({6}) and LWS({4}):

– LWS({6}): initially, Q = {1, 6} which is also the final value of Q since
PN?({1, 6}) returns ∅ (after a sequence of iterations where F is first {1, 6}
and next {3, 4} and next {2, 5} and finally ∅). Thus Q6 = {1, 6}.

194 T. Amtoft and A. Banerjee

– LWS({4}): initially, Q = {2, 4, 5}. In PN? we initially thus have F = {2, 4, 5, 6}
which causes the first iteration of the while loop to put 3 in C so that {3}
is eventually returned. Since 1 dd→ 3 holds, the next iteration of LWS will have
Q = {1, 2, 3, 4, 5} on which PN? will return ∅. Thus Q4 = {1, 2, 3, 4, 5}.

When the members of W = {4} are first examined in the BSP algorithm, we have
Q = Q6 and thus Q4∩Q = {1} �= ∅. Hence Q will equal Q6∪Q4 = {1, 2, 3, 4, 5, 6}
and as W is now empty, the loop will terminate and we get Q0 = ∅.

8 Extensions and Future Work

Section 7 presented an algorithm for computing the least syntactic slice. But
there may exist even smaller slices that are still semantically correct: recall
Example 4 where the only correct syntactic slice is the program itself (as
shown in Sect. 7) but where a much smaller slice may be semantically cor-
rect for certain instantiations of the generic “E”. Similarly, a node labeled
Observe(B) can be safely discarded if B always evaluates to true. For exam-
ple, the CFG with textual representation 1 : x := Random(ψ4); 2 : y := 7;
3 : if x ≥ 2 (4 : Observe(y = 7)); 5 : Return(x) is semantically equivalent to
the CFG containing only nodes 1 and 5. But the former has no smaller syntac-
tic slice, since if (Q,Q0) is a slicing pair with 5 ∈ Q (and thus 1 ∈ Q) then
Q = {1, 2, 3, 4, 5} as we now show. If 4 ∈ Q0 then 3 ∈ Q0 (as Q0 provides next
observables) and thus 1 ∈ Q0 which contradicts Q ∩ Q0 = ∅. Hence (as 4 must
belong to Q ∪ Q0) 4 ∈ Q; but then 2 ∈ Q (by data dependence) and 3 ∈ Q (as
Q provides next observables).

Simple analyses like constant propagation may improve the precision of
slicing even in a deterministic setting, but the probabilistic setting gives an
extra opportunity: after an Observe(B) node, we know that B holds. As richly
exploited in [7], a simple syntactic transformation often suffices to get the ben-
efits of that information, as we illustrate on the program from [7, Fig. 4] whose
CFG (in slightly modified form) is depicted in Fig. 3. In our setting, if (Q,Q0)
with 18 ∈ Q is the best slicing pair, then Q will contain everything except nodes
12, 13, 14, as can be seen as follows: 16, 17 ∈ Q by data dependence; 15 ∈ Q
as Q provides next observables; 6, 7, 8, 9 ∈ Q by data dependence; 3, 4, 5 ∈ Q
as Q provides next observables; 1, 2 ∈ Q by data dependence; also 10 ∈ Q as
otherwise 10 ∈ Q0 and thus also 9 ∈ Q0 which contradicts Q ∩ Q0 = ∅.

Alternatively, suppose we insert a node 11 labeled g := 0 between nodes 10
and 12. This clearly preserves the semantics, but allows a much smaller slice:
choose Q = {11, 15, 16, 17, 18} and Q0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. This is much
like what is arrived at (through a more complex process) in [7, Fig. 15].

Future work involves exploring a larger range of examples, and investigating
useful techniques for computing slices that are smaller than the least syntactic
slice yet semantically correct. (Of course it is in general undecidable to compute
the least semantically correct slice.) We have recently augmented our theory such
that we can ignore loops that are known (by some means) to always terminate.

A Theory of Slicing for Probabilistic Control Flow Graphs 195

1

d := R(..) 2

i := R(..) 3

i = 0

T F4

d = 0

T F

5

d = 0

T F
6

g := R(..)

7

g := R(..)

8

g := R(..)

9

g := R(..)

10

Obs(g = 0)

12

i = 0

T F

13

s := R(..)

14

s := R(..)

15

g = 0

T F

16

l := R(..)

17

l := R(..)

18

Ret(l)

Fig. 3. The program from [7, Fig. 4] (modified).

That is, for a slicing pair (Q,Q0), a cycle which cannot go on forever (or does it
with probability zero) does not need to contain a node from Q ∪ Q0.

9 Conclusion and Related Work

We have developed a theory for the slicing of probabilistic imperative programs.
We have used and extended techniques from the literature [1,3,10,11] on the
slicing of deterministic imperative programs. These frameworks, some of which
have been partly verified by mechanical proof assistants [4,13], were recently
coalesced by Danicic et al. [5] who provided solid semantic foundations to the
slicing of a large class of deterministic programs. Our extension of that work
is non-trivial in that we need to capture probabilistic independence as done in
Proposition 1 which requires two slice sets rather than just one.

We were directly inspired by Hur et al. [7] who point out the challenges
involved in the slicing of probabilistic programs, and present an algorithm which
constructs a semantically correct slice. The paper does not state whether it is
in some sense the least possible slice; neither does it address the complexity of
the algorithm. While Hur et al.’s approach differs from ours, for example it is
based on a denotational semantics for a structured language (we expect the two
semantics to coincide for CFGs of structured programs), it is not surprising that
their correctness proof also has probabilistic independence (termed “decompo-
sition”) as a key notion. Our theory separates specification and implementation
which we believe provides for a cleaner approach. But as mentioned in Sect. 8,
they incorporate powerful optimizations that we do not (yet) allow.

Acknowledgements. Thanks to Gordon Stewart for comments on earlier drafts.

196 T. Amtoft and A. Banerjee

References

1. Amtoft, T.: Slicing for modern program structures: a theory for eliminating irrel-
evant loops. Inf. Process. Lett. 106(2), 45–51 (2008)

2. Amtoft, T., Banerjee, A.: A theory of slicing for probabilistic control flow graphs.
Technical Report CIS TR 2015-1, Kansas State University, July 2015. http://
people.cis.ksu.edu/∼tamtoft/Papers/Amt+Ban:ProbSlice-2015/long.pdf

3. Ball, T., Horwitz, S.: Slicing programs with arbitrary control flow. In: Fritzson,
P.A. (ed.) AADEBUG 1993. LNCS, vol. 749, pp. 206–222. Springer, Heidelberg
(1993)

4. Blazy, S., Maroneze, A., Pichardie, D.: Verified validation of program slicing. In:
Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP 2015,
pp. 109–117. ACM, New York (2015)

5. Danicic, S., Barraclough, R.W., Harman, M., Howroyd, J.D., Kiss, Á., Laurence,
M.R.: A unifying theory of control dependence and its application to arbitrary
program structures. Theor. Comput. Sci. 412(49), 6809–6842 (2011)

6. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic program-
ming. In: Dwyer, M.B., Herbsleb, J. (eds.) ICSE, Future of Software Engineering
track, FOSE 2014, pp. 167–181. ACM, New York (2014)

7. Hur, C.-K., Nori, A.V., Rajamani, S.K., Samuel, S.: Slicing probabilistic programs.
In: Pingali, K. (ed.) Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2014, pp. 133–144. ACM,
New York (2014)

8. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22, 328–350
(1981)

9. Panangaden, P.: Labelled Markov Processes. Imperial College Press, London (2009)
10. Podgurski, A., Clarke, L.A.: A formal model of program dependences and its impli-

cations for software testing, debugging, and maintenance. IEEE Trans. Softw. Eng.
16(9), 965–979 (1990)

11. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foun-
dation for control dependence and slicing for modern program structures. ACM
Trans. Program. Lang. Syst. (TOPLAS), 29(5), Aug 2007. (A special issue with
extended versions of selected papers from the 14th European Symposium on Pro-
gramming (ESOP’05))

12. Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3, 121–189
(1995)

13. Wasserrab, D.: From Formal Semantics to Verified Slicing. Ph.D. thesis, Karlsruher
Institut für Technologie (2010)

14. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (1984)

http://people.cis.ksu.edu/~tamtoft/Papers/Amt+Ban:ProbSlice-2015/long.pdf
http://people.cis.ksu.edu/~tamtoft/Papers/Amt+Ban:ProbSlice-2015/long.pdf

Verification of Parameterized Communicating
Automata via Split-Width

Marie Fortin and Paul Gastin(B)

LSV, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
mfortin@ens-cachan.fr, gastin@lsv.ens-cachan.fr

Abstract. We study verification problems for distributed systems com-
municating via unbounded FIFO channels. The number of processes of
the system as well as the communication topology are not fixed a priori.
Systems are given by parameterized communicating automata (PCAs)
which can be run on any communication topology of bounded degree,
with arbitrarily many processes. Such systems are Turing powerful so we
concentrate on under-approximate verification. We extend the notion of
split-width to behaviors of PCAs. We show that emptiness, reachability
and model-checking problems of PCAs are decidable when restricted to
behaviors of bounded split-width. Reachability and emptiness are Exp-
time-complete, but only polynomial in the size of the PCA. We also
describe several concrete classes of bounded split-width, for which we
prove similar results.

Keywords: Parameterized distributed systems · Model checking ·
Split-width · Message sequence charts

1 Introduction

We study verification problems for parameterized communicating automata
(PCAs), which model distributed systems consisting of arbitrarily many identi-
cal processes, distributed on some communication topology. Each process runs a
copy of the same finite automaton, that can send and receive messages from other
processes through FIFO channels. Though the system may contain unboundedly
many processes, we assume that each process may only communicate with a
bounded number of other processes.

PCAs were introduced in [5] to study logical characterizations of parameter-
ized systems. They extend communicating finite-state machines [8]. While the
latter assume a fixed and known communication topology, a PCA can be run
on any communication topology of bounded degree. Communicating finite-state
machines are already Turing equivalent, and thus their verification is undecid-
able. The fact that PCAs can be run on arbitrarily large topologies induces
other sources of undecidability. For instance, a Turing machine can be simulated
on grid topologies by a PCA performing a bounded number of actions on each
process. Thus, some restrictions on the topologies are necessary. Yet, even when
c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 197–213, 2016.
DOI: 10.1007/978-3-662-49630-5 12

198 M. Fortin and P. Gastin

fixing a simple class of topologies such as pipelines, and imposing rendez-vous
synchronization, reachability of PCAs is undecidable [7].

In order to regain decidability, we focus on under-approximate verification.
The idea is to restrict the verification problems to meaningful classes C of finite
behaviors. Typically, we are interested in the following problem: given a PCA S,
is there a topology T and a behavior in C over T on which S reaches some
local/global state? Our aim is to study under-approximation classes C for which
verification problems of PCAs becomes decidable. Even when we cannot cover
all behaviors of a system with a decidable class, under-approximate verification
is still very useful to detect bugs. Usually, the classes Ci are parameterized and
cover more and more behaviors when the parameter i increases.

The behaviors of PCAs are described by finite message sequence charts
(MSC) [18], that is, graphs describing the communications between the different
processes. Each node of the graph corresponds to an action performed by some
process (sending or receiving a message), and the dependencies between the dif-
ferent actions are indicated by the edges of the graph. For model-checking, the
specifications of our systems are typically given as monadic second order logic
(MSO) or propositional dynamic logic (PDL) formulas over MSCs.

It is known that for any MSO definable class of bounded degree graphs,
having a decidable MSO theory is equivalent to having bounded tree-width [9].
This applies to classes of MSCs, and characterizes decidability of MSO model-
checking. However, showing a bound on tree-width is in general difficult. In the
case of MSCs over a fixed architecture, an alternative notion called split-width
has been introduced [1,2]. Split-width is equivalent to tree-width on MSCs, but
easier to use. It provides means to define uniform decision procedures, applying
to many well-studied restrictions of communicating finite-state machines [10].

Following this approach, we generalize the definition of split-width, and we
extend existing results over fixed architectures to the parameterized case. The
idea of split-width is to decompose an MSC into atomic pieces, that is, pairs
of matching send and receive events. This is done using two operations: split-
ting some edges between consecutive events of a same process, and dividing the
resulting graph into disjoint components. Intuitively, an MSC has bounded split-
width when this can be done while splitting a bounded number of edges at each
step, on a bounded number of processes.

We show that emptiness and reachability of PCAs restricted to MSCs of
bounded split-width are decidable. These problems are Exptime-complete but
only polynomial in the size of the PCA. Our decision procedures are based on an
interpretation of MSCs of bounded split-width into binary trees, and reductions
to tree automata verification problems.

In the extended version [16] we also prove that model-checking restricted to
bounded split-width is decidable. For MSO specifications, it has non-elementary
complexity. However, the under-approximate model-checking is respectively
Exptime-complete and 2-Exptime complete for CPDL (PDL with converse)
and ICPDL (PDL with converse and intersection). In all cases, the problem is
still polynomial in the size of the PCA.

Verification of Parameterized Communicating Automata via Split-Width 199

Further, we give several examples of concrete classes of MSCs with bounded
split-width, including existentially bounded or context-bounded behaviors, for
which we show similar decidability and complexity results. Our approach based
on split-width is generic since it can be easily adapted to other under-approxima-
tion classes.

Related Work. Various models of parameterized systems have been considered
in the literature. In several cases, the assumptions of the model are sufficient to
get decidability results without additional restrictions on the behaviors. Exam-
ples include token-passing systems [3,15], models with a global store without
locking [14], message-passing systems communicating synchronously via broad-
cast [12,13], or rendez-vous [4]. An important distinction between the latter and
PCAs is that PCAs use point-to-point communication: a process can distinguish
between its neighbors, and specify the recipients of its messages. This makes the
model more expressive, but also leads to undecidability.

The emptiness and model-checking problems for PCAs have been considered
in [6,7], respectively. Both papers assume rendez-vous synchronization, and a
fixed class of topologies: pipelines, rings, or trees. Several notions of contexts are
introduced, and decision procedures are described for the corresponding classes
of context-bounded behaviors.

In the present paper, we also address context-bounded verification, but for
unbounded FIFO channels and arbitrary topologies of bounded tree-width. In
the general case of bounded split-width, we do not assume any restriction on the
topology, but a bound on split-width already implies a bound on the tree-width
of the communication topology.

Communicating finite-state machines (over fixed topologies) have been more
extensively studied, and several restrictions are known to bring back decidability.
Our work generalizes some of them to the parameterized setting, namely, con-
text bounds (introduced in [19] for multi-stack concurrent systems), existential
bounds [17], and bounded split-width [2].

Split-width was first introduced for multi-pushdown systems [11], and then
generalized to communicating multi-pushdown systems [2].

Outline. In Sect. 2, we define topologies, PCAs, and MSCs. In Sect. 3, we
introduce split-width. In Sect. 4, we give several examples of classes of bounded
split-width, and state our results for the reachability problems of those classes.
In Sect. 5, we present in more details the decision procedures leading to these
results. In Sect. 6, we briefly present how they can be extended to decide model-
checking problems, and discuss possible extensions of our model. Most proofs
are omitted and can be found in the full version of the paper [16].

200 M. Fortin and P. Gastin

2 Parameterized Communicating Automata

We describe our formal model for communicating systems: we introduce topolo-
gies, MSCs, and parameterized communicating automata. Our definitions are
taken from [5], except that we abstract away idle processes.

a

b a

b

a

ba
b

c

a
b

c

b

d

b c

Topologies. We model distributed systems consist-
ing of an unbounded number of processes. Each
process is equipped with a bounded number of inter-
faces, through which it can communicate with other
processes. A topology is a graph, describing the con-
nections between the different processes (each of which
is represented by a node in the graph, see example on
the right). Throughout the paper, we assume a fixed
nonempty finite set N = {a, b, . . .} of interface names
(or, simply, interfaces).

Definition 1. A topology over N is a pair T = (P,) where P is the
nonempty finite set of processes and ⊆ P ×N ×N ×P is the edge relation.
We write p a b q for (p, a, b, q) ∈ , which means that the a-interface of
p is connected the b-interface of q. We require that, whenever p a b q, the
following hold:

(a) p �= q (there are no self loops),
(b) q b a p (adjacent processes are mutually connected), and
(c) for all a′, b′ ∈ N and q′ ∈ P such that p a′ b′

q′, we have a = a′ iff q = q′

(an interface is connected to at most one process, and two distinct interfaces
are connected to distinct processes).

Message Sequence Charts. The possible behaviors of our systems are
depicted as message sequence charts. A message sequence chart consists of a
set of processes, and, for each process, of a sequence of events. Each event cor-
responds to an action of the process (sending or receiving a message through a
given interface), and matching send and receive events are connected by a mes-
sage edge. Events are labeled with elements of Σ

def= {a? | a ∈ N}∪{a! | a ∈ N},
according to the type of action they execute.

Definition 2. A pre-message sequence chart (pre-MSC) over the set of inter-
faces N is a tuple M = (P,E,→,�, π, λ), where

– P and E are nonempty finite sets of processes and events, respectively.
– π : E → P is a surjective map determining the location of an event. For

p ∈ P , we let Ep
def= {e ∈ E | π(e) = p}.

– λ : E → Σ associates with each event the type of action that it executes. We
let E?

def= {e ∈ E | ∃a ∈ N .λ(e) = a?}, and E!
def= {e ∈ E | ∃a ∈ N .λ(e) = a!}.

Verification of Parameterized Communicating Automata via Split-Width 201

p1 p2 p3

a!

b?a!

b?

b!

a?

a! b?

b!a?

Fig. 1. An MSC with 3 processes

p1 p2

a!

b?

b!

a?

p1 p2 p3

a! b?

a! c?

Fig. 2. pre-MSCs that are not MSCs

– → is a union
⋃

p∈P →p, where each →p ⊆ Ep × Ep is the direct-successor
relation of some total order on Ep.

– � ⊆ E! × E? defines a bijection from E! to E?. Moreover, for each (e, f) ∈ �,
π(e) �= π(f).

Given such a pre-MSC, we define TM
def= (P, {(p, a, b, q) ∈ P × N 2 × P |

∃(e, f) ∈ Ep×Eq. (e�f∧λ(e) = a!∧λ(f) = b?) or (f�e∧λ(e) = a?∧λ(f) = b!)}).
Not all pre-MSCs correspond to actual behaviors of systems (Fig. 2). To define

MSCs, we additionally require that the events are coherently ordered, and that
communications are compatible with some topology and follow a FIFO policy.

Definition 3. A message sequence chart (MSC) over N is a pre-MSC M =
(P,E,→,�, π, λ) such that the relation ≤ def= (→ ∪ �)∗ is a partial order, and:

– TM as defined above is a topology, called the observable topology of M .
– For all e1 � e2, f1 � f2 s.t. π(ei) = π(fi), we have e1 ≤ f1 iff e2 ≤ f2 (FIFO).

An MSC M is called compatible with a topology T when TM is a subgraph
of T . Intuitively, an MSC is compatible with a topology T when it can be
interpreted as a behavior over T , in which some processes may be inactive or
may not use all their interfaces. We denote by MSC the set of all MSCs over N ,
and by MSCT the set of all MSCs compatible with a topology T .

Example 4. An example MSC is depicted in Fig. 1. The vertical lines represent
the succession of events on a given process, and �-edges are depicted by arrows.

Parameterized Communicating Automata. The idea is that each process
of a topology runs one and the same automaton, whose transitions are labeled
with actions of the form a!m, which emits a message m through interface a, or
a?m, which receives m from interface a. The acceptance condition of a parame-
terized communicating automaton is given as a boolean combination of condi-
tions of the form “at least n processes end in state s”, written 〈#(s) ≥ n〉.
Definition 5. A parameterized communicating automaton (PCA) over N is
a tuple S = (S, ι,Msg ,Δ, F) where S is the finite set of states, ι ∈ S is the
initial state, Msg is a nonempty finite set of messages, Δ ⊆ S × (Σ × Msg) × S
is the transition relation, and F is the acceptance condition, a finite boolean
combination of statements of the form 〈#(s) ≥ n〉, with s ∈ S and n ∈ N.

202 M. Fortin and P. Gastin

The size |F | of the acceptance condition of S is defined as the length of its
encoding, where all integer values are written in binary.

Let M = (P,E,→,�, π, λ) be an MSC. A run of S on M will be a mapping
ρ : E → S satisfying some requirements. Intuitively, ρ(e) is the local state of
π(e) after executing e. To determine when ρ is a run, we define another mapping,
ρ− : E → S, denoting the source state of a transition: whenever f → e, we let
ρ−(e) = ρ(f); moreover, if e is →-minimal, we let ρ−(e) = ι. With this, we say
that ρ is a run of S on M if, for all (e, f) ∈ �, there is a message m ∈ Msg
such that (ρ−(e), (λ(e),m), ρ(e)) ∈ Δ, and (ρ−(f), (λ(f),m), ρ(f)) ∈ Δ. A run
ρ is accepting if it satisfies the acceptance condition. In particular, ρ satisfies
〈#(s) ≥ n〉 when |{e ∈ E | e is →-maximal and ρ(e) = s}| ≥ n.

The set of MSCs that allow for an accepting run is denoted by L(S). Given
a topology T , we let LT (S) = L(S) ∩ MSCT .

Remark 6. We could add labels from a finite alphabet to the events of MSCs
and to the transitions of PCAs. Such labels can be handled similarly to the
λ-labeling, and all our results can easily be adapted to this setting. Similarly,
allowing internal transitions for PCAs would not add any technical difficulties.

Verification Problems. The non-emptiness problem asks, given a PCA S,
whether its language L(S) is non empty; or in other words, whether LT (S) �= ∅

for some topology T . The (local) reachability problem asks, given a PCA S and
a state s of S, whether there exists a run of S in which some process reaches
the state s. It can be seen as a special instance of the non-emptiness problem,
by modifying the acceptance condition of S to 〈#(s) ≥ 1〉.

Notice that the non-emptiness problem LT (S) �= ∅ for a fixed topology
T is already undecidable, since two finite automata connected by two queues
can easily simulate a Turing machine. Furthermore, many decidable restric-
tions over fixed topologies remain undecidable in the parameterized case: for
instance, bounding the number of contexts, or even of actions, performed by
each process, or imposing rendez-vous synchronization (even when restricted to
pipeline topologies [7]). The idea is that the unbounded number of processes can
be used to construct a PCA whose behaviors are grid-like MSCs of arbitrary
height and width (see Figs. 3 and 4). It is then easy to encode runs of a Turing
machine: the unbounded horizontal direction encodes the tape of the machine,
and the vertical direction its evolution with time.

In the remaining of the paper, we will study several decidable underapprox-
imations of the problem. For a family (Ci)i of classes of MSCs (for the concrete
families studied in Sect. 4, the index i is a tuple of integers), we define the prob-
lem C-NonEmptiness as follows (and similarly, C-Reachability):

Input: i in unary, a set of interfaces N , a PCA S over N
Question: L(S) ∩ Ci �= ∅ ?

Verification of Parameterized Communicating Automata via Split-Width 203

Fig. 3. Undecidability with pipelines
and rendez-vous synchronization

Fig. 4. Undecidability with a bounded
number of actions on each process,
using grid topologies

3 Split-Width

In this section, we introduce the notion of split-width, and state our decidability
result for MSCs of bounded split-width. The main motivation behind split-width
is that it allows to design generic decision procedures that apply to many under-
approximation classes, instead of having to develop for each class a specific
decision procedure with its complexity. Several examples of classes of MSCs
that are captured with split-width will be given in Sect. 4.

The idea of split-width is to decompose an MSC into atomic pieces consist-
ing of a pair of matching send and receive events, using two operations: split
(removing some process edges of the MSC), and divide (separating the resulting
graph into two independent parts). This is described below as a two-player game.
First, we introduce the notion of split MSC (an MSC missing process edges).

Definition 7. A split (pre-)MSC is a tuple M = (P,O,E,→, ���,�, π, λ),
where (P,E,→∪ ���,�, π, λ) is a (pre-)MSC, ���∩→ = ∅, O ⊆ P is the set of
open processes of M , and every split process is open, i.e., {p ∈ P | (Ep)2∩��� �=
∅} ⊆ O.

The ��� edges are called elastic, and the → edges rigid. Processes of P \O are
called closed. The intuition is that an open process of M is a process that may
be missing some of its events or process edges, and an elastic edge represents a
missing part of a process between two events. Any MSC can be seen as a split
MSC, by taking O and ��� empty.

A block of a split (pre-)MSC M is a maximal connected component of (E,→)
on some open process. In particular, M has exactly |O| + |���| blocks.

Several split MSCs are depicted in Fig. 5. Elastic edges are represented by
red dotted lines. Open processes are indicated by dotted lines at their extremi-
ties. For instance, M ′ has one open process with 3 blocks, and M ′

2 has 2 open
processes, with resp. 1 and 2 blocks.

We call splitting an edge of M the action of making elastic some rigid edge
e → f of M . The resulting split MSC is M ′ = (P,O∪{π(e)}, E,→\{(e, f)}, ���∪

204 M. Fortin and P. Gastin

M

a!
b?
b!

a?

a!
b?
b!

a?

a! b?
a! b?

M

a!
b?
b!

a?

a!
b?
b!

a?

a! b?
a! b?

M1

a!
b?
b!

a?
a!

b?
b!

a?

M1

a!
b?
b!

a?
a!

b?
b!

a?

M3
a!

b?
b!

a?

M3

a!
b?
b!

a?

M4
a!

b?
b!

a?
M5

...

a! b?
a! b?

M2

a! b?
a! b?

M2

a! b? a! b? M7

Fig. 5. A split decomposition of width 4
(Color figure online)

(n) -split
(ε)

(n) -div
(B BrB)

(n1) -split
(ε, B1B1)

(n1) -div
(B Br, B Br)

(n3) -split
(B2, B2)

(n3) -div
(B Br, BrB)

(n4)
(B!, B?)

a! b? (e)

(n5)
(B?, B!)

a! b?

...

-split (n2)
(B1, ε)

-div (n2)
(B , B Br)

(n6)
(B!, B?)

(f) a! b?

(n7)
(B!)

a! b?

Fig. 6. 4-DST associated with the
decomposition of Fig. 5 (Color figure
online)

{(e, f)},�, π, λ). For instance in Fig. 5, M ′ is obtained by splitting two process
edges of M .

We say that M can be divided into M1 = (P1, O1, E1,→1, ���1, π1, λ1) and
M2 = (P2, O2, E2,→2, ���2, π2, λ2) when M1 and M2 are split (pre)-MSCs, and
E = E1 � E2, → = →1 � →2, � = �1 � �2, π = π1 � π2, λ = λ1 � λ2, and
for i ∈ {1, 2}, Oi = O ∩ Pi and ���i ⊆ (→ ∪ ���)+. For instance, in Fig. 5, M ′

can be divided into M1 and M2. A connected component of M is a split MSC
M1 = (P1, O1, E1,→1, ���1, π1, λ1) such that E1 is a connected component of
(E,→ ∪ �). Then, either M = M1 or M can be divided into M1 and some M2.

Split-Game. Let M be a split MSC with at most k blocks. A split-game with
budget k on M is a two player game in which the existential player (Eve) tries
to prove that M has split-width at most k, while the universal player (Adam)

Verification of Parameterized Communicating Automata via Split-Width 205

tries to disprove it. Eve begins by trying to disconnect M by splitting some
of its process edges, with the condition that the resulting split MSC M ′ has
at most k blocks. Adam then chooses a connected component M ′′ of M ′, and
the game resumes on M ′′. Eve wins a play if it ends in an atomic MSC, i.e. a
pair of matching send and receive events. She loses if she cannot disconnect a
non-atomic MSC without introducing more than k blocks.

The split-width of an MSC M is the minimal k such that Eve wins the split-
game with budget k on M . It is defined identically for pre-MSCs. We denote by
SWk the set of MSCs of split-width at most k.

Example 8. Eve wins the split-game with budget 4 on M (see Fig. 5). She starts
by splitting two process edges of M , which results in the split MSC M ′ with
three blocks. M ′ has two connected components, M1 and M2, providing two
choices for Adam. If he chooses M2, Eve wins by cutting the only remaining
process edge: both connected components of the resulting M ′

2 are atomic. If he
chooses M1, Eve split the middle process edge on the first process, which creates
two more blocks, and results in a total of four blocks. M ′

1 has two isomorphic
connected components, so Adam’s choices are all equivalent. Eve can then cut
the two remaining process edges while still respecting her budget of four blocks.

Shuffle and Merge. One can also give a bottom-up description of split-width.
The duals of the split and divide operations are called respectively merge (�)
and shuffle (��). �(M) is the set of split MSCs that can be obtained by making
some elastic edges of M rigid, and/or closing some of its open processes. M1��M2

is the set of split MSCs M such that M can be divided into M1 and M2.
An MSC has split-width at most k when it can be obtain by combining

atomic MSCs with shuffle and merge operations, while keeping the number of
blocks at most k at each step.

Remark 9. The notion of open and closed processes is new. Our bound on the
number of blocks (i.e. the number of open processes plus the number of elastic
edges) replaces the bound on the number of elastic edges only that was used in
[1,2] for the split-width of MSCs over fixed architectures. When the topology T
is fixed, the two definitions are equivalent since the number of open processes is
already bounded by the number of processes in T . This is no longer true in the
parameterized case. For instance, the families of MSCs defined in Figs. 3 and 4
can be decomposed into atomic pieces while using only two elastic edges, but
this introduces an unbounded number of open processes. In fact, they embed a
grid, hence they should have unbounded width.

Remark 10. For MSCs, split-width is equivalent to tree-width and clique-width:
there are linear bounds between the three measures (the proof is an easy adap-
tation from the non-parameterized case [10]). The motivation for introducing
split-width rather than using existing measures on graphs is that it allows to
take into account the specificities of MSCs, and is thus both simpler to under-
stand and to use. In particular, using tree-width or clique-width would result in
more involved automata constructions in Sect. 5.

206 M. Fortin and P. Gastin

Notice also that a bound on the split-width of an MSC M induces a bound
on the tree-width of the observable topology TM (See Theorem 20).

Decidability. The non-emptiness problem becomes decidable when restricted
to MSCs of bounded split-width. Roughly, the proof goes as follows. First, we
show that trees representing Eve’s winning strategies can be abstracted by trees
over a finite alphabet (that depends only on the bound k on split-width). Then,
we reduce the verification problems for PCAs to emptiness problems on tree
automata. The details for these constructions will be given in Sect. 5. The proof
is inspired from the non-parameterized case [2], and we show that the complexity
remains the same in our setting.

Theorem 11. SW-NonEmptiness is Exptime-complete, and only polynomial
in the number of states and transitions of the input PCA.

4 Classes of Bounded Split-Width

The decision procedures based on split-width are generic and apply to various
classes of MSCs (the main condition being that MSCs in the class have bounded
split-width). When the topology is fixed, this covers many well-studied restric-
tions [10]. In this section, we give two examples of such classes that can be gen-
eralized to the parameterized setting: existentially bounded MSCs, and context-
bounded MSCs. We also define a further extension of context-bounded MSCs,
called tile-bounded MSCs, and show that it is equivalent to bounded split-width.

Existentially Bounded MSCs. M is called existentially k-bounded when
there exists a linearization ≤lin of its events (i.e. a total order extending ≤)
such that there are at most k process or message edges going out of any prefix
of the linearization: for all g ∈ E,

∣
∣
{
(e, f) ∈ E2 | (e � f ∨ e → f) ∧ e ≤lin g <lin f

}∣
∣ ≤ k .

In the case of MSCs over a fixed topology, this is equivalent to bounding the
number of pending messages at each prefix of the linearization, which is the usual
definition of existentially bounded. This is no longer the case when considering
topologies with an unbounded number of processes. For instance, the MSC of
Fig. 3 is not existentially k-bounded. It is possible to find a linearization for
which every prefix has at most one pending message, but it is not possible to
simultaneously bound the number of non-terminated processes.

We denote by EBk the set of all existentially k-bounded MSCs over N .

Lemma 12. An existentially k-bounded MSC has split-width at most k + 2.

Proof. Eve’s strategy is as follows. She successively isolates the first events of
the linearization by splitting the process edges originating from them, until a pair

Verification of Parameterized Communicating Automata via Split-Width 207

of matching send/receive events is disconnected. Adam chooses the remaining
component, and Eve continues as before. In the split MSC obtained by isolat-
ing the first events e1 <lin . . . <lin ei of the linearization and removing the
disconnected messages, each block either consists of a single ej (1 ≤ j ≤ i),
or only contains events that occur after ei in the linearization, and is the last
block on some open process. Blocks of the first kind are necessarily send events
whose matching receive event occurs after ei, hence they correspond to pend-
ing messages at ei. Now consider a block of the second kind, and let f be its
first event. Then f must occur after ei in the linearization (otherwise, its block
would be of the first kind). Moreover, since its process is open, there must be
some e ∈ {e1, . . . , ei} such that e → f in the initial MSC. Hence, each block of
the second kind correspond to a pending process edge at ei (the edge e → f).
Thus, there are in total at most k blocks. Eve introduces at most two extra
blocks when splitting a process edge. Hence she wins with budget k + 2. ��

Eve’s winning strategy results in a tree that is word-like [2,10], i.e., at every
binary node, one of the subtree is small (bounded size). Hence, we can use word
automata instead of tree automata, resulting in a better complexity for the
verification problems.

Theorem 13. EB-NonEmptiness is Pspace-complete.

Context-Bounded MSCs. A context is an interval of events on a process, in
which only one interface is accessed, and in a single direction (send or receive).
More formally, let M = (P,E,→,�, π, λ) be an MSC. A context of M is a subset
c = {e1, . . . , en} of E such that e1 → · · · → en and λ(ei) = λ(ej) for all i, j.

An MSC M is k-context bounded when for all p ∈ P , there are contexts
c1, . . . , ci with i ≤ k such that Ep = c1 � . . .� ci. The class of k-context bounded
MSCs has unbounded split-width. Actually, this is even the case for MSCs hav-
ing a bounded number of events on every process (see Fig. 4). However, we
obtain a bound on split-width when we additionally require that the topology
has bounded tree-width.

Lemma 14. If M is a k-context-bounded MSC and TM has tree-width at most h,
then M has split-width at most k(h + 1) + 2.

We denote by CBk,h the set of all k-context bounded MSCs over topologies
of tree-width at most h.

Theorem 15. CB-NonEmptiness is Exptime-complete, and polynomial in
the number of states and transitions of the input PCA.

Tile-Bounded MSCs. We can generalize the notion of contexts introduced
above to tiles, which are independant parts of an MSC involving a bounded
number of processes. In some sense, this section gives the link between fixed
and parameterized topologies, when it comes to conditions ensuring decidabil-
ity. Intuitively, an MSC with split-width at most k over an arbitrary topology

208 M. Fortin and P. Gastin

(involving arbitrarily many processes) can be decomposed in tiles involving at
most some fixed number (k) of processes. Moreover, each tile has bounded split-
width and each process intersects at most some fixed number of tiles.

A k-tile is a split MSC T of split-width at most k and having only open
processes. In particular, T has at most k blocks, hence at most k processes.

Let M = (P,E,→,�, π, λ) be an MSC. A (k, �)-tile-decomposition of
M is a sequence T1, . . . , Tn of k-tiles such that M ∈ �(T1 �� . . . ��
Tn) and every process p ∈ P is part of at most � tiles. An MSC
is called (k, �)-tile-bounded when it admits some (k, �)-tile-decomposition.

T1

T2

T3

Example 16. A (5, 3)-decomposition with three
tiles is depicted on the right. The first and
the last process intersect with one tile, the
middle one with 3 tiles and the other two
processes intersect with two tiles. Tiles T1 and
T3 have split-width exactly 5 (note that the
first process is counted as open in T1). Tile T2

tile has split-width 4.

Example 17. A k-context bounded MSC M (see page 11) admits a (2k+2, 2|N |)-
tile-decomposition. The tile decomposition is given by defining, for each pair of
processes (p, q) connected in TM , a tile Tp,q induced by the contexts of p in
which it sends to q, and the contexts of q in which it receives from p. Notice that
a tile needs not be a connected graph. In particular, each tile has at most 2k
blocks, and can be decomposed by disconnecting one by one its messages, which
introduces at most 2 extra blocks. Each process of M takes part in at most 2|N |
tiles, one for each type (a!, a?, . . .) of contexts it has.

We obtain the same results as for context-bounded MSCs. We denote by
TBk,�,h the set of (k, �)-tile-bounded MSCs M such that TM has tree-width at
most h.

Lemma 18. Let M ∈ TBk,�,h. Then M has split-width at most 2k2�2(h + 1).

Theorem 19. TB-NonEmptiness is Exptime-complete, and polynomial in
the number of states and transitions of the input PCA.

In fact, such bounds are equivalent to bounding split-width, as shown by the
theorem below.

Theorem 20. Let M ∈ SWk. Then TM has tree-width at most k − 1, and M is
(k2 + 2k, 3|N |k)-tile-bounded.

5 Tree Interpretation

We present the decision procedures leading to our complexity results. The general
idea is to encode MSCs of bounded split-width into binary trees over a finite
alphabet, and reduce our verification problems to problems on tree automata.

Verification of Parameterized Communicating Automata via Split-Width 209

Split-Terms. The encoding of MSCs of bounded split-width into trees is based
on the bottom-up description of split-width. Recall that an MSC has split-width
at most k if it can be constructed by combining through shuffles and merges
split MSCs with at most k blocks, the starting points being atomic MSCs. This
construction can be described by a split-term, that is, a term over the following
grammar: s ::= a! � b? | �(s) | s �� s (with a, b ∈ N).

However, since the merge and shuffle operations are ambiguous, a split-term
may correspond to several MSCs. The next step is to disambiguate these oper-
ations by adding labels to the nodes of split-terms, describing respectively how
the blocks of the children are shuffled, or which blocks are merged and which
processes are closed.

Compared to the non-parameterized case [1,2], the difficulty is that the num-
ber of processes may grow arbitrarily along the DST, instead of being fixed from
the beginning – and we still need to use labels from a bounded domain. The solu-
tion comes from the distinction between open and closed processes, and the fact
that the number of open processes stays bounded. Merge and shuffle operations
only act on open processes: a merge makes some elastic edges rigid (which are
all located on open processes, by definition), and/or closes some open processes.
Similarly, a shuffle of two split MSCs M1 and M2 may only combine some pairs
of open processes of M1 and M2 by shuffling their blocks and adding elastic
edges between them. It simply takes the disjoint union of closed processes.

Thus, the disambiguated labels will focus on open processes. The idea is to
describe how many blocks each process has after the operation, and the origin
of each block.

A k-disambiguated split-term (k-DST) is a split-term in which each internal
node is labeled by a tuple of words (wp)1≤p≤m such that

∑m
p=1 |wp| ≤ k, and

– For a ��-node, the word wp ∈ {B�, Br}+ describes the composition of some
open process, where B� stands for a block coming from the left child, and Br

stands for a block coming from the right child (see for instance the label of n′

in Fig. 6 which describes the origin of the 3 blocks of the open process of M ′

in Fig. 5).
– For a �-node, the word wp ∈ {Bi | 1 ≤ i ≤ k}∗ describes how the blocks of

the p-th open process of its child are merged: Bi stands for a block resulting
from the merge of i consecutive blocks of the child. We use wp = ε to indicate
that process p is closed, merging all its blocks if any. For instance, in Figs. 5
and 6 the label (B2, B2) of node n3 indicates that on both process of M ′

3, the
two blocks are merged in M3.

– For a �-node, m ≤ 2 and the word wp ∈ {B!, B?} indicates that the p-th open
process consists of the send (resp. receive) event. If m = 2 then w1 �= w2. For
instance, n7 is labeled (B!), which means that in M7 the process of the send
event is open whereas the process of the receive event is closed.

We denote by DSTk the set of all k-DSTs. A k-DST is called valid when the
label of each node is coherent with the number of processes and blocks appearing

210 M. Fortin and P. Gastin

in the label of its child/children. For instance, we cannot have wp = B2B1 at a
�-node if its child does not have 3 blocks on process p.

A valid k-DST t can be associated with a unique split pre-MSC (which is
not necessarily a split MSC) Mt = (P,O,E,→, ���,�, π, λ), defined as follows.
E is the set of leaves of t, and λ associates with a leaf e its label. We let e � f
whenever e and f are respectively the left and right children of a same �-node.

To determine whether two leaves e and f are connected by a →-edge, we
proceed as follows. We track the block associated with leaf e, until reaching a
�-node n in which it is merged with the block on its right (see example in green
in Fig. 6). Similarly, we track the block associated with leaf f , until reaching a
�-node n′ in which it is merged with the block on its left (in blue in Fig. 6). We
set e → f if n = n′ and the blocks coincide. Similarly, we let e ��� f when no
merge ever occurs on the right of the block of e or on the left of the block of f ,
and at the root, the block of f is located just after the block of e.

We identify processes with connected components of (E,→ ∪ ���). To deter-
mine whether the process of an event e is open or closed, we walk up the tree
remembering the process of e, until reaching a �-node in which it is closed, or
the root (in which case it is open).

For example, in Figs. 5 and 6 the split pre-MSC associated with the k-DST
starting in node ni (resp. n′

i) is Mi (resp. M ′
i).

The next lemma states that the conditions for Mt to be an MSC can be
checked by a tree automaton. We denote by DSTk

msc the set of all valid k-DSTs
t such that Mt is an MSC.

Lemma 21. One can construct in space polynomial in k and |N | a deterministic
bottom-up tree automaton Ak

msc with 2O(|N |k4) states s.t. L(Ak
msc) = DSTk

msc.

From PCAs to Tree Automata. Given a PCA, we can construct a tree
automaton that accepts a tree t ∈ DSTk

msc iff Mt is accepted by the PCA.

Lemma 22. Let S = (S, ι,Msg ,Δ, F) be a PCA, and k ∈ N. There is a bottom-
up tree automaton Ak

S of size |S|O(k|F |2) such that L(Ak
S) ∩ DSTk

msc = {t ∈
DSTk

msc | Mt ∈ L(S)}. It can be constructed in space polynomial in k and |F |,
and logarithmic in |S| and |Δ|.
Proof. Ak

S guesses a run of S on Mt, and inductively checks that it is a valid
accepting run. To do so, it remembers the states of S before and after each block
in the split MSC associated with the current subtree, that is, a pair (ρ−, ρ+)
of partial functions from [k] to S. (The blocks are numbered according to their
position in the concatenation w1w2 . . . wm of the words in the label of the current
node.) In addition, for each s ∈ S appearing in F , Ak

S remembers the number ns

of closed processes that ends in state s, up to the maximal n such that 〈#(s) ≥ n〉
appears in F . A state is accepting if it satisfies F .

At leaves, Ak
S remembers the type of action executed (in Σ), and at a �-

node of the form a! � b?, it guesses a message m and transitions p
a!m−−→ p′ and

Verification of Parameterized Communicating Automata via Split-Width 211

q
b?m−−→ q′ of S. The functions ρ− and ρ+ of the �-node are initialized accordingly.

For instance, after reading a! �(B!,B?) b? and guessing the transitions, Ak
S goes

to the state where ρ−(1) = p, ρ+(1) = p′, ρ−(2) = q, ρ+(2) = q′ and ρ−, ρ+

are undefined elsewhere. After reading a! �(B?) b?, Ak
S checks that p = ι and

increments np′ , and moves to state ρ−(1) = q, ρ+(1) = q′.
The functions ρ− and ρ+ are updated at each ��- and �-node according to

the renaming of the blocks. At a �-node, Ak
S checks than whenever two blocks

b and b+1 are merged, ρ+(b) = ρ−(b+1). It also checks that each process being
closed starts in ι, and increments the counter ns of its end state s (unless it has
already reached its maximal value). ��

We then have L(S) ∩ SWk �= ∅ iff L(Ak
S ∩ Ak

msc) �= ∅, which leads to an
algorithm in time polynomial in |S| and exponential in k, |N | and |F | to decide
the non-emptiness of L(S) ∩ SWk. This proves the upperbound of Theorem 11.

Classes of Bounded Split-With. The above decision procedure can be
adapted for any class C of MSCs of split-width at most k, provided we can
construct an automaton AC that accepts only encodings of MSCs in C, and
at least one encoding for each M ∈ C. Under those assumptions, and given
a PCA S, deciding whether L(S) ∩ C = ∅ e.g. reduces to deciding whether
L(Ak

S ∩ Ak
msc ∩ AC) = ∅.

This applies in particular to existentially bounded MSCs, and context- or
tile-bounded MSCs over topologies of bounded tree-width. The construction of
AC is in all three cases based on the proof that C has split-width at most k.

Note that this would also apply for instance to any class of bounded split-
width that is recognized by a PCA.

6 Further Results

Model-Checking. The results presented in Sects. 3 and 5 can be generalized
to model-checking problems (details can be found in [16]). Our most general
decidability result states that the model-checking of PCAs against Monadic
Second-Order (MSO) formulas is decidable. The idea is to construct, for a given
specification ϕ, a tree automaton Ak

ϕ that accepts a valid k-DST t iff Mt satis-
fies ϕ. The bounded split-width model-checking problem then reduces to testing
whether L(Ak

S ∩ Ak
¬ϕ ∩ Ak

msc) = ∅, and similarly for the other classes.
However, when the specification ϕ is given by an MSO formula, the con-

struction of Ak
ϕ is non-elementary. Towards a better complexity, we study model

checking against PDL specifications. PDL is both expressive (it subsumes most
if not all temporal logics), easy to use and understand, and enjoys a very good
complexity. We show that model-checking against PDL formulas is Exptime-
complete, i.e., not harder than non-emptiness and reachability. It remains in
Exptime when we extend PDL with converse (CPDL), and is 2-Exptime-
complete for ICPDL (PDL with converse and intersection). A summary of our
results is given in Fig. 7.

212 M. Fortin and P. Gastin

Fig. 7. Complexity results. All problems are only polynomial in the number of states
and transitions of the input PCA.

Multi-pushdown Processes. Our model could be extended by adding one
or several stacks to processes, similarly to what is done in the case of fixed
architectures [2]. We could also allow several FIFO channels between any pair
of processes. This means relaxing the definition of topologies to allow loops
or multiple edges, and similarly adapt the definition of MSCs. The definition
of split-width and k-DSTs is the same, except that at �-nodes, the send and
receive events may be placed on the same process. Our decision procedures
remain correct, with an additional check by Ak

msc of the LIFO conditions on the
stacks. The results on existentially-bounded MSCs, context-bounded MSCs, or
tile decompositions are also still valid.

References

1. Aiswarya, C., Gastin, P.: Reasoning about distributed systems: WYSIWYG
(invited talk). In: FSTTCS 2014, LIPIcs, vol. 29, pp. 11–30. Leibniz-Zentrum für
Informatik (2014)

2. Aiswarya, C., Gastin, P., Narayan Kumar, K.: Verifying communicating multi-
pushdown systems via split-width. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 1–17. Springer, Heidelberg (2014)

3. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of
token-passing systems. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS,
vol. 8318, pp. 262–281. Springer, Heidelberg (2014)

4. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model
checking of rendezvous systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014.
LNCS, vol. 8704, pp. 109–124. Springer, Heidelberg (2014)

5. Bollig, B.: Logic for communicating automata with parameterized topology. In:
CSL-LICS 2014. ACM (2014)

6. Bollig, B., Gastin, P., Kumar, A.: Parameterized communicating automata: Com-
plementation and model checking. In: FSTTCS 2014, LIPIcs, vol. 29, pp. 625–637
(2014)

7. Bollig, B., Gastin, P., Schubert, J.: Parameterized verification of communicating
automata under context bounds. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.)
RP 2014. LNCS, vol. 8762, pp. 45–57. Springer, Heidelberg (2014)

8. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

9. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach. Encyclopedia of mathematics and its applications,
vol. 138. Cambridge University Press, Cambridge (2012)

Verification of Parameterized Communicating Automata via Split-Width 213

10. Cyriac, A.: Verification of Communicating Recursive Programs via Split-
width. Ph.D. thesis, ENS Cachan (2014). http://www.lsv.ens-cachan.fr/∼cyriac/
download/Thesis Aiswarya Cyriac.pdf

11. Cyriac, A., Gastin, P., Kumar, K.N.: MSO decidability of multi-pushdown systems
via split-width. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol.
7454, pp. 547–561. Springer, Heidelberg (2012)

12. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc
networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269,
pp. 313–327. Springer, Heidelberg (2010)

13. Delzanno, G., Sangnier, A., Zavattaro, G.: On the power of cliques in the para-
meterized verification of ad hoc networks. In: Hofmann, M. (ed.) FOSSACS 2011.
LNCS, vol. 6604, pp. 441–455. Springer, Heidelberg (2011)

14. Durand-Gasselin, A., Esparza, J., Ganty, P., Majumdar, R.: Model checking para-
meterized asynchronous shared-memory systems. In: Kroening, D., Păsăreanu, C.S.
(eds.) CAV 2015. LNCS, vol. 9206, pp. 67–84. Springer, Heidelberg (2015)

15. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527–550 (2003)

16. Fortin, M., Gastin, P.: Verification of parameterized communicating automata
via split-width. Technical report, LSV, ENS Cachan (2016). http://www.lsv.
ens-cachan.fr/∼gastin/mes-publis.php

17. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algo-
rithms for existentially bounded communicating automata. Inf. Comput. 204(6),
920–956 (2006)

18. ITU-TS Recommendation Z.120anb: Formal Semantics of Message Sequence
Charts (1998)

19. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

http://www.lsv.ens-cachan.fr/~cyriac/download/Thesis_Aiswarya_Cyriac.pdf
http://www.lsv.ens-cachan.fr/~cyriac/download/Thesis_Aiswarya_Cyriac.pdf
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

Automata, Logic, Games

Robust Equilibria in Mean-Payoff Games

Romain Brenguier(B)

University of Oxford, Oxford, UK
romain.brenguier@cs.ox.ac.uk

Abstract. We study the problem of finding robust equilibria in multi-
player concurrent games with mean payoff objectives. A (k, t)-robust
equilibrium is a strategy profile such that no coalition of size k can
improve the payoff of one its member by deviating, and no coalition
of size t can decrease the payoff of other players. While deciding whether
there exists such equilibria is undecidable in general, we suggest algo-
rithms for two meaningful restrictions on the complexity of strategies.
The first restriction concerns memory. We show that we can reduce the
problem of the existence of a memoryless robust equilibrium to a for-
mula in the (existential) theory of reals. The second restriction concerns
randomisation. We suggest a general transformation from multiplayer
games to two-player games such that pure equilibria in the first game
correspond to winning strategies in the second one. Thanks to this trans-
formation, we show that the existence of robust equilibria can be decided
in polynomial space, and that the decision problem is PSPACE-complete.

1 Introduction

Games are intensively used in computer science to model interactions in com-
puterised systems. Two player antagonistic games have been successfully used
for the synthesis of reactive systems. In this context, the opponent acts as a
hostile environment, and winning strategies provide controllers that ensure cor-
rectness of the system under any scenario. In order to model complex systems in
which several rational entities interact, multiplayer concurrent games come into
the picture. Correctness of the strategies can be specified with different solution
concepts, which describe formally what is a “good” strategy. In game theory,
the fundamental solution concept is Nash equilibrium [15], where no player can
benefit from changing its own strategy. The notion of robust equilibria refines
Nash equilibria in two ways: 1. a robust equilibrium is resilient, i.e. when a
“small” coalition of player changes its strategy, it can not improve the payoff
of one of its participants; 2. it is immune, i.e. when a “small” coalition changes
its strategy, it will not lower the payoff of the non-deviating players. The size of
what is considered a small coalition is determined by a bound k for resilience and
another t for immunity. When a strategy is both k-resilient and t-immune, it is
called a (k, t)-robust equilibrium. We also generalise this concept to the notion

R. Brenguier—Work supported by ERC Starting Grant inVEST (279499) and
EPSRC grant EP/M023656/1.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 217–233, 2016.
DOI: 10.1007/978-3-662-49630-5 13

218 R. Brenguier

(k, t, r)-robust equilibrium, where if t players are deviating, the others should
not have their payoff decrease by more than r.

Example. In the design of network protocols, when many users are interacting,
coalitions can easily be formed and resilient strategies are necessary to avoid
deviation. It is also likely that some clients are faulty and begin to behave unex-
pectedly, hence the need for immune strategies.

As an example, consider a program for a server that distributes files, of which
a part is represented in Fig. 1. The functions listen and send files will be run
in parallel by the server. Some choices in the design of these functions have not
been fixed yet and we wish to analyse the robustness of the different alternatives.

This program uses a table clients to keep track of the clients which are
connected. Notice that the table has fixed size 2, which means that if 3 clients
try to connect at the same time, one of them may have its socket overwritten in
the table and will have to reconnect later to get the file. We want to know what
strategy the clients should use and how robust the protocol will be: can clients
exploit the protocol to get their files faster than the normal usage, and how will
the performance of the over clients be affected.

We consider different strategies to chose between the possible alternatives in
the program of Fig. 1. The strategy that chooses alternatives 1 and 3 does not
give 1-resilient equilibria even for just two clients: Player 1 can always reconnect
just after its socket was closed, so that clients[0] points to player 1 once again.
In this way, he can deviate from any profile to never have to wait for the file.
Since the second player could do the same thing, no profile is 1-resilient (nor
1-immune). For the same reasons, the strategy 2, 3 does not give 1-resilient equi-
libria. The strategy 1, 4 does not give 1-resilient equilibria either, since player 1
can launch a new connection after player 2 to overwrite clients[1].

The strategy 2, 4 is the one that may give the best solution. We modelled the
interaction of this program as a concurrent game for a situation with 2 potential
clients in Fig. 2. The labels represent the content of the table clients: 0 means
no connection, 1 means connected with player 1 and 2 connected with player 2;
and the instruction that the function send files is executing. Because the game
is quite big we represent only the part where player 1 connects before player 2
and the rest of the graph can be deduced by symmetry. The actions of the players
are either to wait (action w) or to connect (action ch or ct). Symbol ∗ means
any possible action. Note that in the case both player try to connect at the same
time we simulate a matching penny game in order to determine which one will
be treated first, this is the reason why we have two different possible actions to
connect (ch for “head” and ct for “tail”). Clients have a positive reward when
we send them the file they requested, this corresponds for Player i to states
labelled with send(i).

If both clients try to connect in the same slot, we use a matching penny
game to decide which request was the first to arrive. For a general method to
transform a game with continuous time into a concurrent game, see [6, Chap. 6].

Robust Equilibria in Mean-Payoff Games 219

clients = new socket[2];

void listen() {
while(true) {

Socket socket = serverSocket.accept();
if(clients[0].isConnected())
//// Two possible alternatives:
| 1) clients[1] = socket;
| 2) if(socket.remoteSocketAddress()

!= clients[0].remoteSocketAddress())
| clients[1] = socket;
else

clients[0] = socket;
} }

void send_files() {
while(true) {

if(clients[0].isConnected()) {
send(clients[0]);
clients[0].close();

}
//// Two possible alternatives :
| 3) else if(clients[1].isConnected()) {
| 4) if(clients[1].isConnected()) {

send(clients[1]);
clients[1].close();

} } }

Fig. 1. Example of a server program.

[0, 0]

[1, 0]
send(1)
close(1)

[1, 2]
send(1)
close(1)

[2, 0]
send(2)

[2, 1]
send(2)

ch
,w

ct
,w

ch,ct

ct,ch

w,ct
w,ch

c
h
,
c
h

c
t
,
c
t

w,w

.

[0, 2]

∗, ∗

∗, ch∗,
ct

[0, 2]
send(2)
close(2)

[1, 2]
send(2)
close(2)

[2, 2]
send(2)
close(2)

[2, 1]
send(1)
close(1)

w,w

ch,w

ct,w

ch,ct

ct,ch

w,ct

w,ch
ch,ch

ct,ct

∗, w

Fig. 2. Example of a concurrent game
generated from the program of Fig. 1.

Related Works and Comparison with Nash Equilibria and Secure Equilibria.
Other solution concepts have been proposed as concepts for synthesis of distrib-
uted systems, in particular Nash equilibrium [4,18,19], subgame perfect equilib-
ria [10,17], and secure equilibria [12]. A subgame perfect equilibria is a particular
kind of Nash equilibria, where at any point in the game, if we forget the history
the players are still playing a Nash equilibrium. In a secure equilibria, we ask
that no player can benefit or keep the same reward while reducing the payoff of
other players by changing its own strategy. However these concepts present two
weaknesses: 1. There is no guarantee when two (or more) users deviate together.
It can happen on a network that the same person controls several devices
(a laptop and a phone for instance) and can then coordinate there behaviour. In
that case, the devices would be considered as different agents and Nash equilibria
offers no guarantee. 2. When a deviation occurs, the strategies of the equilib-
rium can punish the deviating user without any regard for payoffs of the others.
This can result in a situation where, because of a faulty device, the protocol is
totally blocked. By comparison, finding resilient equilibria with k greater than
1, ensures that clients have no interest in forming coalitions (up to size k), and
finding immune equilibria with t greater than 0 ensures that other clients will not
suffer from some agents (up to t) behaving differently from what was expected.

Note that the concept of robust equilibria for games with LTL objectives is
expressible in logics such as strategy logic [13] or ATL∗ [2]. However, satisfiability
in these logic is difficult: it is 2EXPTIME-complete for ATL∗ and undecidable for

220 R. Brenguier

strategy logic in general (2EXPTIME-complete fragments exist [14]). Moreover,
these logics cannot express equilibria in quantitative games such as mean-payoff.

Contributions. In this paper, we study the problem of finding robust equilibria
in multiplayer concurrent games. This problem is undecidable in general (see
Sect. 2.3). In Sect. 3, we show that if we look for stationary (but randomised)
strategies, then the problem can be decided using the theory of reals. We then
turn to the case of pure (but memoryful) strategies. In Sect. 4, we describe a
generic transformation from multiplayer games to two-player games. The result-
ing two-player game is called the deviator game. We show that pure equilibria in
the original game correspond to winning strategies in the second one. In Sect. 5,
we study quantitative games with mean-payoff objectives. We show that the
game obtained by our transformation is equivalent to a multidimensional mean-
payoff game. We then show that this can be reduced to a value problem with
linear constraints in multidimensional mean-payoff games. We show that this can
be solved in polynomial space, by making use of the structure of the deviator
game. In Sect. 7, we prove the matching lower bound which shows the robustness
problem is PSPACE-complete. Due to space constraints, most proofs have been
omitted from this paper; they can be found in the long version of this paper [7].

2 Definitions

2.1 Weighted Concurrent Games

We study concurrent game as defined in [2] with the addition of weights on the
edges.

Concurrent Games. A weighted concurrent game (or simply a game) G is
a tuple 〈Stat, s0, Agt,Act,Tab, (wA)A∈Agt〉, where: Stat is a finite set of states
and s0 ∈ Stat is the initial state; Agt is a finite set of players; Act is a finite
set of actions; a tuple (aA)A∈Agt containing one action aA for each player A is
called a move; Tab : Stat × ActAgt → Stat is the transition function, it associates
with a given state and a given move, the resulting state; for each player A ∈ Agt,
wA : Stat �→ Z is a weight function which assigns to each agent an integer weight.

In a game G, whenever we arrive at a state s, the players simultaneously
select an action. This results in a move aAgt; the next state of the game is then
Tab(s, aAgt). This process starts from s0 and is repeated to form an infinite
sequence of states.

An example of a game is given in Fig. 2. It models the interaction of two
clients A1 and A2 with the program presented in the introduction. The weight
functions for this game are given by wA1 = 1 in states labelled by send(1) and
wA1 = 0 elsewhere, similarly wA2 = 1 in states labelled by send(2).

Robust Equilibria in Mean-Payoff Games 221

History and Plays. A history of the game G is a finite sequence of states
and moves ending with a state, i.e. an word in (Stat · ActAgt)∗ · Stat. We write
hi the i-th state of h, starting from 0, and movei(h) its i-th move, thus h =
h0 ·move0(h) ·h1 · · · moven−1(h) ·hn. The length |h| of such a history is n+1. We
write last(h) the last state of h, i.e. h|h|−1. A play ρ is an infinite sequence of
states and moves, i.e. an element of (Stat · ActAgt)ω. We write ρ≤n for the prefix
of ρ of length n + 1, i.e. the history ρ0 · move0(ρ) · · · moven−1(ρ) · ρn.

The mean-payoff of weight w along a play ρ is the average of the weights
along the play: MPw(ρ) = lim infn→∞ 1

n

∑
0≤k≤n w(ρk). The payoff for agent

A ∈ Agt of a play ρ is the mean-payoff of the corresponding weight: payoffA(ρ) =
MPwA

(ρ). Note that it only depends on the sequence of states, and not on the
sequence of moves. The payoff vector of the run ρ is the vector p ∈ R

Agt such
that for all players A ∈ Agt, pA = payoffA(ρ); we simply write payoff(ρ) for this
vector.

Strategies. Let G be a game, and A ∈ Agt. A strategy for player A maps
histories to probability distributions over actions. Formally, a strategy is a func-
tion σA : (Stat · ActAgt)∗ · Stat → D(Act), where D(Act) is the set of probability
distributions over Act. For an action a ∈ Act, we write σA(a | h) the proba-
bility assigned to a by the distribution σ(h). A coalition C ⊆ Agt is a set of
players, its size is the number of players it contains and we write it |C|. A strat-
egy σC = (σA)A∈C for a coalition C ⊆ Agt is a tuple of strategies, one for each
player in C. We write σ−C for a strategy of coalition Agt \ C. A strategy profile
is a strategy for Agt. We will write (σ−C , σ′

C) for the strategy profile σ′′
Agt such

that if A ∈ C then σ′′
A = σ′

A and otherwise σ′′
A = σA. We write StratG(C) for the

set of strategies of coalition C. A strategy σA for player A is said deterministic
if it does not use randomisation: for all histories h there is an action a such that
σ(a | h) = 1. A strategy σA for player A is said stationary if it depends only on
the last state of the history: for all histories h, σA(h) = σA(last(h)).

Outcomes. Let C be a coalition, and σC a strategy for C. A history h is
compatible with the strategy σC if, for all k < |h| − 1, (movek(h))A = σA(h≤k)
for all A ∈ C, and Tab(hk,movek(h)) = hk+1. A play ρ is compatible with the
strategy σC if all its prefixes are. We write OutG(s, σC) for the set of plays in G
that are compatible with strategy σC of C and have initial state s, these paths
are called outcomes of σC from s. We simply write OutG(σC) when s = s0 and
OutG is the set of plays that are compatible with some strategy. Note that when
the coalition C is composed of all the players and the strategies are deterministic
the outcome is unique.

An objective Ω is a set of plays and a strategy σC is said winning for objective
Ω if all its outcomes belong to Ω.

Probability Measure Induced by a Strategy Profile. Given a strategy
profile σAgt, the conditional probability of aAgt given history h ∈ (Stat · ActAgt)∗ ·

222 R. Brenguier

Stat is σAgt(aAgt | h) =
∏

A∈Agt σA(aA | h). The probabilities σAgt(aAgt | h)
induce a probability measure on the Borel σ-algebra over (Stat · ActAgt)ω as
follows: the probability of a basic open set h · (Stat · ActAgt)ω equals the product∏n

j=1 σAgt(hAct
j,A | h≤j) if h0 = s0 and Tab(hj , h

Act
Agt,j) = hj+1 for all 1 ≤ j < n; in

all other cases, this probability is 0. By Carath?odory’s extension theorem, this
extends to a unique probability measure assigning a probability to every Borel
subset of (Stat · ActAgt)ω, which we denote by PrσAgt . We denote by EσAgt the
expectation operator that corresponds to PrσAgt , that is EσAgt(f) =

∫
f d PrσAgt

for all Borel measurable functions f : (Stat ·ActAgt)ω �→ R∪{±∞}. The expected
payoff for player A of a strategy profile σAgt is payoffA(σAgt) = EσAgt(MPwA

).

2.2 Equilibria Notions

We now present the different solution concepts we will study. Solution concepts
are formal descriptions of “good” strategy profiles. The most famous of them is
Nash equilibrium [15], in which no single player can improve the outcome for
its own preference relation, by only changing its strategy. This notion can be
generalised to consider coalitions of players, it is then called a resilient strat-
egy profile. Nash equilibria correspond to the special case of 1-resilient strategy
profiles.
Resilience [3]. Given a coalition C ⊆ Agt, a strategy profile σAgt is C-resilient
if for all agents A in C, A cannot improve her payoff even if all agents in C
change their strategies, i.e. σAgt is said C-resilient when:

∀σ′
C ∈ StratG(C). ∀A ∈ C. payoffA(σ−C , σ′

C) ≤ payoffA(σAgt)

Given an integer k, we say that a strategy profile is k-resilient if it is C-resilient
for every coalition C of size k.
Immunity [1]. Immune strategies ensure that players not deviating are not too
much affected by deviation. Formally, a strategy profile σAgt is (C, r)-immune if
all players not in C, are not worse off by more than r if players in C deviates,
i.e. when:

∀σ′
C ∈ StratG(C). ∀A ∈ Agt \ C. payoffA(σAgt) − r ≤ payoffA(σ−C , σ′

C)

Given an integer t, a strategy profile is said (t, r)-immune if it is (C, r)-immune
for every coalition C of size t. Note that t-immunity as defined in [1] corresponds
to (t, 0)-immunity.

Robust Equilibrium [1]. Combining resilience and immunity, gives the notion
of robust equilibrium: a strategy profile is a (k, t, r)-robust equilibrium if it is
both k-resilient and (t, r)-immune.

The aim of this article is to characterise robust equilibria in order to con-
struct the corresponding strategies, and precisely describe the complexity of the
following decision problem for mean-payoff games.

Robust Equilibria in Mean-Payoff Games 223

Robustness Decision Problem. Given a game G, integers k, t, rational r
does there exist a profile σAgt, that is a (k, t, r)-robust equilibrium σAgt in G?

2.3 Undecidability

We show that allowing strategies that can use both randomisation and memory
leads to undecidability. The problem of existence of Nash equilibria has been
shown to be undecidable if we put constraints on the payoffs in [19]. The proof
was improved to involve only 3 players and no constraint on the payoffs for
games with terminal-reward (the weights are non-zero only in terminal vertices
of the game) [5]. This corresponds to the particular case where k = 1, t = 0
for the robustness decision problem. Therefore, the following is a corollary of
[5, Theorem 13].

Theorem 1. For randomised strategies, the robustness problem is undecidable
even for 3 players, k = 1 and t = 0.

To recover decidability, two restrictions are natural. In the next section, we
will show that for randomised strategies with no memory, the problem is decid-
able. The rest of the article is devoted to the second restriction, which concerns
pure strategies.

3 Stationary Strategies

We use the existential theory of reals, which is the set of all existential first-order
sentences that hold in the ordered field R := (R,+, ·, 0, 1,≤), to show that the
robustness decision problem is decidable. The associated decision problem is in
the PSPACE complexity class [11]. However, since the system of equation we
produce is of exponential size, we can only show that the robustness problem for
(randomised) stationary strategies is in EXPSPACE.

Encoding of Strategies. We encode a stationary strategy σA, by a tuple of real
variables (ςs,a)s∈Stat,a∈Act ∈ R

Stat×Act such that ςs,a = σA(a | s) for all s ∈ Stat
and a ∈ Act. We then write a formula saying that these variables describe a
correct stationary strategy. The following lemma is a direct consequence of the
definition of strategy.

Lemma 1. Let (ςs,a)s∈S,a∈Act be a tuple of real variables. The mapping
σ : s, a �→ ςs is a stationary strategy if, and only if, ς is a solution of the following
equation:

μ(ς) :=
∧

s∈S

(
∑

a∈Act

ςs,a = 1 ∧
∧

a∈Act

ςs,a ≥ 0

)

224 R. Brenguier

Payoff of a Profile. We now give an equation which links a stationary strategy
profile and its payoff. For this we notice that a concurrent game where the station-
ary strategy profile has been fixed corresponds to a Markov reward process [16].
We recall that a Markov reward process is a tuple 〈S, P, r〉 where: 1. S is a set of
states; 2. P ∈ R

S×S is a transition matrix; 3. r : S �→ R is a reward function. The
expected value is then the expectation of the average reward of r. This value for
each state is described by a system of equations in [16, Theorem 8.2.6]. We reuse
these equations to obtain Theorem 2. Details of the proof are in the appendix.

Theorem 2. Let σAgt be a stationary strategy profile. The expectation for MPw

of σAgt from s is the component γs of the solution γ of the equation:

ψ(γ, σAgt, w) := ∃β ∈ R
S .

∧
s∈S

(
γs =

∑
aAgt∈ActAgt γTab(s,aAgt) · ∏

A∈Agt σA(aA | s)
)

∧∧
s∈S

(
γs + βs = w(s) +

∑
aAgt∈ActAgt βTab(s,aAgt) · ∏

A∈Agt σA(aA | s)
)

Optimal Payoff of a Deviation. We now want to keep the strategy profile
fixed but also allow deviations and investigate what is the maximum payoff
that a coalition can achieve by deviating. The system that is obtained is then a
Markov decision processes. We recall that a Markov decision process (MDP) is
a tuple 〈S,A, P, r〉, where: 1. S is a the non-empty, countable set of states. 2. A
is a set of actions. 3. P : S × A × S �→ [0, 1] is the transition relation. It is such
that for each s ∈ S \ S∃ and a ∈ A,

∑
(s,a,s′)∈S×A×S P (s, a, s′) = 1. 4. r : S �→ R

is the reward function. The optimal value is then maximal expectation that can
be obtained by a strategy. The optimal values in such systems can be described
by a linear program [16, Sect. 9.3]. We reuse this linear program to characterise
optimal values against a strategy profile C. Details of the proof can be found in
the appendix.

Theorem 3. Let σAgt be a stationary strategy profile, C a coalition, s a state
and w a weight function. The highest expectation Agt \ C can obtain for w in G
from s: supσ−C

EσC ,σ−C (MPw, s), is the smallest γs component of a solution of
the system of inequation:
φ(γ, σC , w) :=

∧
a−C∈ActAgt\C

∧
s∈S γs ≥ ∑

aC∈ActC γδ(s,aC ,a−C) ·∏A∈C σA(aA | s)
∧∧

a−C∈ActAgt\C

∧
s∈S γs ≥ w(s)−βs+

∑
aC∈ActC

(
βδ(s,aC ,a−C) · ∏

A∈C σA(aA | s)
)

Expressing the Existence of Robust Equilibria. Putting these results
together, we obtain the results. Intuitively, ψ(γ, σAgt, wA) ensures that γ cor-
respond to the payoff for σAgt of A, and φ(γ′, σ−C , wA) makes γ′ correspond to
the payoff for a deviation of σC .

Theorem 4. Let σAgt be a strategy profile.

– It is C-resilient if, and only if, it satisfies the formula:

ρ(C, σAgt) :=
∧

A∈C ∃γ, γ′. (ψ(γ, σAgt, wA) ∧ φ(γ′, σ−C , wA) ∧ (γ′ ≤ γ))

– It is C, r-immune if, and only if, it satisfies equation:

Robust Equilibria in Mean-Payoff Games 225

ι(C, σAgt) :=
∧

A
∈C ∃γ, γ′. (ψ(γ, σAgt, A) ∧ φ(γ′, σ−C ,−wA) ∧ γ − r ≤ −γ′)

– There is a robust equilibria if, and only if, the following equation is satisfiable:

∃ς ∈ R
Agt×Stat×Act. μ(ς) ∧ ∧

C⊆Agt||C|≤k ρ(C, ς) ∧ ∧
C⊆Agt||C|≤t ι(C, ς)

Theorem 5. The robustness problem is in EXPSPACE for stationary strategies.

Proof. By Theorem 4, the existence of a robust equilibria is equivalent to the
satisfiability of a formula in the existential theory of reals. This formula can be
of exponential size with respect to k and t, since a conjunction over coalitions
of these size is considered. The best known upper bound for the theory of the
reals in PSPACE [11], which gives the EXPSPACE upper bound for our problem.

4 Deviator Game

We now turn to the case of non-randomised strategies. In order to obtain simple
algorithms for the robustness problem, we use a correspondence with zero-sum
two-players game. Winning strategies has been well studied in computer science
and we can make use of existing algorithms. We present the deviator game, which
is a transformation of multiplayer game into a turn-based zero-sum game, such
that there are strong links between robust equilibria in the first one and winning
strategies in the second one. This is formalised in Theorem 6. Note that the
proofs of this section are independent from the type of objectives we consider,
and the result could be extended beyond mean-payoff objectives.

Deviator. The basic notion we use to solve the robustness problem is that
of deviators. It identifies players that cause the current deviation from the
expected outcome. A deviator from move aAgt to a′

Agt is a player D ∈
Agt such that aD �= a′

D. We write this set of deviators: Dev(aAgt, a
′
Agt) =

{A ∈ Agt | aA �= a′
A}. We extend the definition to histories and

strategies by taking the union of deviator sets, formally Dev(h, σAgt) =⋃
0≤i<|h| Dev(movei(h), σAgt(h≤i)). It naturally extends to plays: if ρ is a play,

then Dev(ρ, σAgt) =
⋃

i∈N
Dev(movei(ρ), σAgt(ρ≤i)).

Intuitively, given an play ρ and a strategy profile σAgt, deviators represent
the agents that need to change their strategies from σAgt in order to obtain the
play ρ. The intuition is formalised in the following lemma.

Lemma 2. Let ρ be a play, σAgt a strategy profile and C ⊆ Agt a coalition.
Coalition C contains Dev(ρ, σAgt) if, and only if, there exists σ′

C such that ρ ∈
OutG(ρ0, σ′

C , σ−C).

4.1 Deviator Game

We now use the notion of deviators to draw a link between multiplayer games
and a two-player game that we will use to solve the robustness problem. Given

226 R. Brenguier

a concurrent game structure G, we define the deviator game D(G) between two
players called Eve and Adam. Intuitively Eve needs to play according to an equi-
librium, while Adam tries to find a deviation of a coalition which will profit one
of its player or harm one of the others. The states are in Stat′ = Stat × 2Agt;
the second component records the deviators of the current history. The game
starts in (s0, ∅) and then proceeds as follows: from a state (s,D), Eve chooses
an action profile aAgt and Adam chooses another one a′

Agt, then the next state is
(Tab(s, a′

Agt),D ∪ Dev(aAgt, a
′
Agt)). In other words, Adam chooses the move that

will apply, but this can be at the price of adding players to the D component
when he does not follow the choice of Eve. The weights of a state (s,D) in this
game are the same than that of s in G. The construction of the deviator arena
is illustrated in Fig. 3.

We now define some transformations between the different objects used in
games G and D(G). We define projections πStat, πDev and πAct from Stat′ to Stat,
from Stat′ to 2Agt and from ActAgt×ActAgt to ActAgt respectively. They are given
by πStat(s,D) = s, πDev(s,D) = D and πAct(aAgt, a

′
Agt) = a′

Agt. We extend these
projections to plays in a natural way, letting πOut(ρ) = πStat(ρ0) ·πAct(move0(ρ)) ·
πStat(ρ1) · πAct(move1(ρ)) · · · and πDev(ρ) = πDev(ρ0) · πDev(ρ1) · · · . Note that for
any play ρ, and any index i, πDev(ρi) ⊆ πDev(ρi+1), therefore πDev(ρ) seen as a
sequence of sets of coalitions is increasing and bounded by Agt, its limit δ(ρ) =
∪i∈NπDev(ρi) is well defined. Moreover to a strategy profile σAgt in G, we can
naturally associate a strategy κ(σAgt) for Eve in D(G) such that for all histories
h by κ(σAgt)(h) = σAgt(πOut(h)).

The following lemma states the correctness of the construction of the deviator
game, in the sense that it records the set of deviators in the strategy profile
suggested by Adam with respect to the strategy profile suggested by Eve.

Lemma 3. Let G be a game and σAgt be a strategy profile and σ∃ = κ(σAgt) the
associated strategy in the deviator game.

1. If ρ ∈ OutD(G)(σ∃), then Dev (πOut(ρ), σAgt) = δ(ρ).
2. If ρ ∈ OutG and ρ′ = ((ρi,Dev(ρ≤i, σAgt)) · (σAgt(ρ≤i),movei(ρ)))i∈N then ρ′ ∈

Out D(G)(σ∃)

[0, 0],∅

[1, 0]
send(1)

close(1) ∅

[2, 1]
send(2)
{A2}

[1, 2]
send(1)
close(1)

{A1}

. . .

[0,2]
∅

[0,2]
{A2}

[0,2]
{A1}

[0,2]
{A1, A2}

(c
h,
w)
,(
ch
,w
)

(ch,w),(ch,ch)

(w,ct)
,(ch,c

t)

(w,ch),(w,ch)

(w,w),(w,ch)(w,ch),(ct,ch)

(w,w),(w,w)
(w,w),(w,ch)

. . .

. . .

. . .

. . .

Fig. 3. Part of the deviator game construction for the game of Fig. 2. Labels on the
edges correspond to the action of Eve and the action of Adam. Labels inside the states
are the state of the original game and the deviator component.

Robust Equilibria in Mean-Payoff Games 227

4.2 Objectives of the Deviator Game

We now show how to transform equilibria notions into objectives of the deviator
game. These objectives are defined so that winning strategies correspond to
equilibria of the original game. First, we define an objective Ω(C,A,G) in the
following lemma, such that a profile which ensures some quantitative goal G ⊆ R

in G against coalition C corresponds to a winning strategy in the deviator game.

Lemma 4. Let C ⊆ Agt be a coalition, σAgt be a strategy profile, G ⊆ R and A a
player. We have that for all strategies σ′

C for coalition C, payoffA(σ−C , σ′
C) ∈ G

if, and only if, κ(σAgt) is winning in D(G) for objective Ω(C,A,G) = {ρ | δ(ρ) ⊆
C ⇒ payoffA(πOut(ρ)) ∈ G}.

This lemma makes it easy to characterise the different kinds of equilibria,
using objectives in D(G). For instance, we define a resilience objective where if
there are more than k deviators then Eve has nothing to do; if there are exactly
k deviators then she has to show that none of them gain anything; and if there
are less than k then no player at all should gain anything. This is because if
a new player joins the coalition, its size remains smaller or equal to k. Similar
characterisations for immune and robust equilibria lead to the following theorem.

Theorem 6. Let G be a concurrent game, σAgt a strategy profile in G, p =
payoff(Out(σAgt)) the payoff profile of σAgt, k and t integers, and r a rational.

– The strategy profile σAgt is k-resilient if, and only if, strategy κ(σAgt) is win-
ning in D(G) for the resilience objective Re(k, p) where Re(k, p) is defined by:
Re(k, p) = {ρ | |δ(ρ)| > k} ∪{ρ | |δ(ρ)| = k ∧ ∀A ∈ δ(ρ). payoffA(πOut(ρ)) ≤
p(A)} ∪ {ρ | |δ(ρ)| < k ∧ ∀A ∈ Agt. payoffA(πOut(ρ)) ≤ p(A)}

– The strategy profile σAgt is (t, r)-immune if, and only if, strategy κ(σAgt) is
winning for the immunity objective I(t, r, p) I(t, r, p) is defined by: I(t, r, p) =
{ρ | |δ(ρ)| > t} ∪ {ρ | ∀A ∈ Agt \ δ(ρ). p(A) − r ≤ payoffA(πStat(ρ))}

– The strategy profile σAgt is a (k, t, r)-robust profile in G if, and only if, κ(σAgt)
is winning for the robustness objective R(k, t, r, p) = Re(k, p) ∩ I(t, r, p).

5 Reduction to Multidimensional Mean-Payoff Objectives

We first show that the deviator game reduces the robustness problem to a win-
ning strategy problem in multidimensional mean-payoff games. We then solve
this by requests to the polyhedron value problem of [9].

5.1 Multidimensional Objectives

Multidimensional Mean-Payoff Objective. Let G be a two-player game,
v : Stat �→ Z

d a multidimensional weight functions and I, J ⊆ [[1, d]]1 a parti-
tion of [[1, d]] (i.e. I � J = [[1, d]]). We say that Eve ensures threshold u ∈ R

d

1 We write [[i, j]] for the set of integers {k ∈ Z | i ≤ k ≤ j}.

228 R. Brenguier

if she has a strategy σ∃ such that all outcomes ρ of σ∃ are such that for all
i ∈ I, MPvi

(ρ) ≥ ui and for all j ∈ J , MPvj
(ρ) ≥ uj , where MPvj

(ρ) =
lim supn→∞

1
n

∑
0≤k≤n vj(ρk). That is, for all dimensions i ∈ I, the limit inferior

of the average of vi is greater than ui and for all dimensions j ∈ J the limit
superior of vj is greater than uj .

We consider two decision problems on these games: 1. The value problem,
asks given 〈G, v, I, J〉 a game with multidimensional mean-payoff objectives,
and u ∈ R

d, whether Eve can ensure u. 2. The polyhedron value problem, asks
given 〈G, v, I, J〉 a game with multidimensional mean-payoff objectives, and
(λ1, . . . , λn) a tuple of linear inequations, whether there exists a threshold u
which Eve can ensure and that satisfies the inequation λi for all i in [[1, d]]. We
assume that all linear inequations are given by a tuple (a1, . . . , ad, b) ∈ Q

d+1 and
that a point u ∈ R

d satisfies it when
∑

i∈[[1,d]] ai · ui ≥ b. The value problem was
showed to be coNP-complete [20] while the polyhedron value problem is Σ2P-
complete [9]. Our goal is now to reduce our robustness problem to a polyhedron
value problem for some well chosen weights.

In our case, the number d of dimensions will be equal to 4 · |Agt|. We then
number players so that Agt = {A1, . . . , A|Agt|}. Let W = max{|wi(s)| | Ai ∈
Agt, s ∈ Stat} be the maximum constant occurring in the weights of the game,
notice that for all players Ai and play ρ, −W − 1 < MPi(ρ) ≤ W . We fix
parameters k, t and define our weight function v : Stat �→ Z

d. Let i ∈ [[1, |Agt|]],
the weights are given for (s,D) ∈ Stat × 2Agt by:

1. if |D| ≤ t and Ai �∈ D, then vi(s,D) = wAi
(s);

2. if |D| > t or Ai ∈ D, then vi(s,D) = W ;
3. if |D| < k, then for all Ai ∈ Agt, v|Agt|+i(s,D) = −wAi

(s);
4. if |D| = k and Ai ∈ D, then v|Agt|+i(s,D) = −wAi

(s);
5. if |D| > k or Ai �∈ D and |D| = k, then v|Agt|+i(s,D) = W .
6. if D = ∅ then v2·|Agt|+i(s,D) = wAi

(s) = −v3·|Agt|+i(s,D);
7. if D �= ∅ then v2·|Agt|+i(s,D) = W = v3·|Agt|+i(s,D);

We take I = [[1, |Agt|]] ∪ [[2 · |Agt| + 1, 3 · |Agt|]] and J = [[|Agt| + 1, 2 · |Agt|]] ∪ [[3 ·
|Agt| + 1, 4 · |Agt|]]. Intuitively, the components [[1, |Agt|]] are used for immunity,
the components [[|Agt| + 1, 2 · |Agt|]] are used for resilience and components [[2 ·
|Agt| + 1, 4 · |Agt|]] are used to constrain the payoff in case of no deviation.

5.2 Correctness of the Objectives for Robustness

Let G be a concurrent game, ρ a play of D(G) and p ∈ R
Agt a payoff vector. The

following lemma links the weights we chose and our solution concepts.

Lemma 5. Let ρ be a play, σAgt a strategy profile and p = payoff(σAgt).

– ρ satisfies objective δ(ρ) = ∅ ⇒ MPAi
(ρ) = pi if, and only if, MP2·v|Agt|+i

(ρ) ≥
p(Ai) and MP3·v|Agt|+i

(ρ) ≥ −p(Ai).
– If ρ is an outcome of κ(σAgt) then ρ satisfies objective Re(k, p) if, and only

if, for all agents Ai, MPv|Agt|+i
(ρ) ≥ −p(Ai).

Robust Equilibria in Mean-Payoff Games 229

– If ρ is an outcome of κ(σAgt), then ρ satisfies objective I(t, r, p) if, and only
if, for all agents Ai, MPvi

(ρ) ≥ p(Ai) − r.
– If ρ is an outcome of κ(σAgt) with payoff(σAgt) = p, then play ρ satisfies

objective R(k, t, r, p) if, and only if, for all agents Ai, MPvi
(ρ) ≥ p(Ai) − r

and MPv|Agt|+i
(ρ) ≥ −p(Ai).

Putting together this lemma and the correspondence between the deviator
game and robust equilibria of Theorem 6 we obtain the following proposition.

Lemma 6. Let G be a concurrent game with mean-payoff objectives. There is a
(k, t, r)-robust equilibrium in G if, and only if, for the multidimensional mean-
payoff objective given by v, I = [[1, |Agt|]] ∪ [[2 · |Agt| + 1, 3 · |Agt|]] and J =
[[|Agt| + 1, 2 · |Agt|]] ∪ [[3 · |Agt| + 1, 4 · |Agt|]], there is a payoff vector p such that
Eve can ensure threshold u in D(G), where for all i ∈ [[1, |Agt|]], ui = p(Ai) − r,
u|Agt|+i = −p(Ai), u2·|Agt|+i = p(Ai), and u3·|Agt|+i = −p(Ai).

5.3 Formulation of the Robustness Problem as a Polyhedron Value
Problem

From the previous lemma, we can deduce an algorithm which works by querying
the polyhedron value problem. Given a game G and parameters k, t, r, we ask
whether there exists a payoff u that Eve can ensured in the game D(G) with
multidimensional mean-payoff objective given by v, I, J , and such that for all
i ∈ [[1, |Agt|]], ui + r = −u|Agt|+i = u2·|Agt|+i = −u3·|Agt|+i. As we will show in
Theorem 7 thanks to Lemma 6, the answer to this question is yes if, and only
if, there is a (k, t, r)-robust equilibrium. From the point of view of complexity,
however, the deviator game on which we perform the query can be of exponential
size compared to the original game. To describe more precisely the complexity
of the problem, we remark by applying the bound of [8, Theorem 22], that given
a query, we can find solutions which have a small representation.

Lemma 7. If there is a solution to the polyhedron value problem in D(G) then
there is one whose encoding is of polynomial size with respect to G and the
polyhedron given as input.

We can therefore enumerate all possible solutions in polynomial space. To
obtain an polynomial space algorithm, we must be able to check one solution
in polynomial space as well. This account to show that queries for the value
problem in the deviator game can be done in space polynomial with respect
to the original game. This is the goal of the next section, and it is done by
considering small parts of the deviator game called fixed coalition games.

6 Fixed Coalition Game

Although the deviator game may be of exponential size, it presents a particu-
lar structure. As the set of deviators only increases during any run, the game

230 R. Brenguier

can be seen as the product of the original game with a directed acyclic graph
(DAG). The nodes of this DAG correspond to possible sets of deviators, it is of
exponential size but polynomial degree and depth. We exploit this structure to
obtain a polynomial space algorithm for the value problem and thus also for the
polyhedron value problem and the robustness problem. The idea is to compute
winning states in one component at a time, and to recursively call the proce-
dure for states that are successors of the current component. We will therefore
consider one different game for each component.

We now present the details of the procedure. For a fixed set of deviator D,
the possible successors of states of the component Stat × D are the states in:
Succ(D) = {TabD((s,D), (mAgt,m

′
Agt)) | s ∈ Stat,mAgt,m

′
Agt ∈ Mov(s)} \ Stat×

D}. Note that the size of Succ(D) is bounded by |Stat| × |Tab|, hence it is
polynomial. Let u be a payoff threshold, we want to know whether Eve can
ensure u in D(G), for the multi-dimensional objective defined in Sect. 5.1. A
winning path ρ from a state in Stat × D is either: (1) such that δ(ρ) = D; (2) or
it reaches a state in Succ(D) and follow a winning path from there. Assume we
have computed all the states in Succ(D) that are winning. We can stop the game
as soon as Succ(D) is reached, and declare Eve the winner if the state that is
reached is a winning state of D(G). This process can be seen as a game F(D,u),
called the fixed coalition game.

In this game the states are those of (Stat×D)∪Succ(D); transitions are the
same than in D(G) on the states of Stat × D and the states of Succ(D) have
only self loops. The winning condition is identical to R(k, t, p) for the plays that
never leave (Stat × D); and for a play that reach some (s′,D′) ∈ Succ(D), it is
considered winning Eve has a winning strategy from (s′,D′) in D(G) and losing
otherwise.

In the fixed coalition game, we keep the weights previously defined for states
of Stat × D, and fix it for the states that are not in the same D component by
giving a high payoff on states that are winning and a low one on the losing ones.
Formally, we define a multidimensional weight function vf on F(D,u) by: 1. for
all s ∈ Stat, and all i ∈ [[1, 4 · |Agt|]], vf

i (s,D) = vi(s,D). 2. if (s,D′) ∈ Succ(D)
and Eve can ensure u from (s,D′), then for all i ∈ [[1, 4 · |Agt|]], vf

i (s,D′) = W .
3. if (s,D′) ∈ Succ(D) and Eve cannot ensure u from (s,D′), then for all i ∈
[[1, 4 · |Agt|]], vf

i (s,D′) = −W − 1.

Lemma 8. Eve can ensure payoff u ∈ [[−W,W]]d in D(G) from (s,D) if, and
only if, she can ensure u in the fixed coalition game F(D, p) from (s,D).

Using this correspondence, we deduce a polynomial space algorithm to check
that Eve can ensure a given value in the deviator game and thus a polynomial
space algorithm for the robustness problem.

Theorem 7. There is a polynomial space algorithm, that given a concurrent
game G, tells if there is a (k, t, r)-robust equilibrium.

Proof. We first show that there is a polynomial space algorithm to solve the
value problem in D(G). We consider a threshold u and a state (s,D). In the fixed

Robust Equilibria in Mean-Payoff Games 231

coalition game F(D,u), for each (s′,D′) ∈ Succ(D), we can compute whether it
is winning by recursive calls. Once the weights for all (s′,D′) ∈ Succ(D) have
been computed for F(D,u), we can solve the value problem in F(D,u). Thanks
to Lemma 8 the answer to value problem in this game is yes exactly when Eve
can ensure u from (s,D) in D(G). There is a coNP algorithm [20] to check the
value problem in a given game, and therefore there also is an algorithm which
uses polynomial space. The size of the stack of recursive calls is bounded by
|Agt|, so the global algorithm uses polynomial space.

We now use this to show that there is a polynomial space algorithm for
the polyhedron value problem in D(G). We showed in Lemma 7, that if the
polyhedron value problem has a solution then there is a threshold u of polynomial
size that is witness of this property. We can enumerate all the thresholds that
satisfy the size bound in polynomial space. We can then test that these thresholds
satisfy the given linear inequations, and that the algorithm for the value problem
answers yes on this input, in polynomial space thanks to the previous algorithm.
If this is the case for one of the thresholds, then we answer yes for the polyhedron
value problem. The correctness of this procedure holds thanks to Lemma 7.

We now use this to show that there is a polynomial space algorithm for the
robustness problem. Given a game G and parameters (k, t, r), we define a tuple of
linear equations, for all i ∈ [[1, |Agt|]], x2·|Agt|+i = xi + r ∧x2·|Agt|+i = −x|Agt|+i ∧
x2·|Agt|+i = −x3·|Agt|+i (each equation can be expressed by two inequations).
Thanks to Lemma 6, there is a payoff which satisfies these constraints and which
Eve can ensure in D(G) if, and only if, there is a (k, t, r)-robust equilibrium. Then,
querying the algorithm we described for the polyhedron value problem in D(G)
with our system of inequations, answers the robustness problem.

7 Hardness

In this section, we show a matching lower bound for the resilience problem. The
lower bound holds for weights that are 0 in every states except on some terminal
states where they can be 1. This is also called simple reachability objectives.

Theorem 8. The robustness problem is PSPACE-complete.

Note that we already proved PSPACE-membership in Theorem 7. We give
the construction and intuition of the reduction to show hardness and leave the
proof of correctness in the appendix. We encode QSAT formulas with n variable
into a game with 2 · n + 2 players, such that the formula is valid if, and only if,
there is n-resilient equilibria. We assume that we are given a formula of the form
φ = ∀x1.∃x2. ∀x3 ·∃xn. C1∧· · ·∧Ck, where each Ck is of the form �1,k ∨�2,k ∨�3,k

and each �j,k is a literal (i.e. xm or ¬xm for some m). We define the game Gφ as
illustrated by an example in Fig. 4. It has a player Am for each positive literal
xm, and a player Bm for each negative literal ¬xm. We add two extra players
Eve and Adam. Eve is making choices for the existential quantification and Adam
for the universal ones. When they chose a literal, the corresponding player can
either go to a sink state ⊥ or continue the game to the next quantification. Once

232 R. Brenguier

a literal has been chosen for all the variables, Eve needs to chose a literal for each
clause. The objective for Eve and the literal players is to reach ⊥. The objective
for Adam is to reach �. We ask whether there is a (n + 1)-resilient equilibrium.

To a history h = Adam1 ·X1 ·Eve2 ·X2 ·Adam3 · · · Evem ·Xm with Xi ∈ {Ai, Bi},
we associate a valuation vh, such that vh(xi) = true if Xi = Bi and vh(xi) = false
if Xi = Ai. Intuitively, Eve has to find a valuation that makes the formula hold,
while Adam tries to falsify it.

Adam

A1

B1

⊥ Eve

A2

B2

⊥ Adam

A3

B3

⊥ Eve

A4

B4

⊥ Eve

A1

A2

B3

Eve

B2

A3

A4

⊥

Fig. 4. Encoding of a formula φ = ∀x1.∃x2. ∀x3. ∃x4. (x1 ∨x2 ∨¬x3)∧ (¬x2 ∨x3 ∨x4).
The dashed edges represent the strategies in the equilibrium of the players other than
Eve.

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game
theory: robust mechanisms for rational secret sharing and multiparty computation.
In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of
Distributed Computing, pp. 53–62. ACM (2006)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM (JACM) 49(5), 672–713 (2002)

3. Aumann, R.: Acceptable points in general cooperative n-person games. Top. Math.
Econ. Game Theory Essays Honor Robert J Aumann 23, 287–324 (1959)

4. Bouyer, P., Brenguier, R., Markey, N., Ummels, M.: Concurrent games with ordered
objectives. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 301–315.
Springer, Heidelberg (2012)

5. Bouyer, P., Markey, N., Stan, D.: Mixed nash equilibria in concurrent terminal-
reward games. In: 34th International Conference on Foundation of Software Tech-
nology and Theoretical Computer Science (FSTTCS 2014). Leibniz International
Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol. 29, pp. 351–363
(2014)

6. Brenguier, R.: Nash equilibria in concurrent games: application to timed games.
Ph.D. thesis, Cachan, Ecole normale supérieure (2012)

7. Brenguier, R.: Robust equilibria in concurrent games. CoRR, http://arxiv.org/
abs/1311.7683 (2015)

8. Brenguier, R., Raskin, J.-F.: Optimal values of multidimensional mean-payoff
games (2014). https://hal.archives-ouvertes.fr/hal-00977352/

9. Brenguier, R., Raskin, J.-F.: Pareto curves of multidimensional mean-payoff games.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 251–267.
Springer, Heidelberg (2015)

10. Brihaye, T., Bruyère, V., De Pril, J.: Equilibria in quantitative reachability games.
In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 72–83. Springer,
Heidelberg (2010)

http://arxiv.org/abs/1311.7683
http://arxiv.org/abs/1311.7683
https://hal.archives-ouvertes.fr/hal-00977352/

Robust Equilibria in Mean-Payoff Games 233

11. Canny, J.: Some algebraic and geometric computations in pspace. In: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 460–467.
ACM (1988)

12. Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Games with Secure Equilibria,.
In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2004.
LNCS, vol. 3657, pp. 141–161. Springer, Heidelberg (2005)

13. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inform. Comput.
208(6), 677–693 (2010)

14. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: What makes Atl* decidable? A
decidable fragment of strategy logic. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 193–208. Springer, Heidelberg (2012)

15. Nash Jr., J.F.: Equilibrium points in n-person games. Proc. Nat. Acad. Sci. USA
36(1), 48–49 (1950)

16. Puterman, M.L.: Markov decision processes: Discrete stochastic dynamic program-
ming (1994)

17. Ummels, M.: The complexity of nash equilibria in infinite multiplayer games.
In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 20–34. Springer,
Heidelberg (2008)

18. Ummels, M., Wojtczak, D.: The complexity of nash equilibria in simple sto-
chastic multiplayer games. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp.
297–308. Springer, Heidelberg (2009)

19. Ummels, M., Wojtczak, D.: The Complexity of Nash Equilibria in Limit-Average
Games. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
482–496. Springer, Heidelberg (2011)

20. Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A., Raskin,
J.-F.: The complexity of multi-mean-payoff and multi-energy games. CoRR
abs/1209.3234 (2012)

Quantifier Alternation for Infinite Words

Théo Pierron, Thomas Place(B), and Marc Zeitoun

LaBRI, UMR 5800, University of Bordeaux, 33400 Talence, France
tplace@labri.fr

Abstract. We investigate the expressive power of the quantifier alter-
nation hierarchy of first-order logic over words. This hierarchy includes
the classes Σi (sentences having at most i blocks of quantifiers starting
with an ∃) and BΣi (Boolean combinations of Σi sentences). So far, this
expressive power has been effectively characterized for the lower levels
only. Recently, a breakthrough was made over finite words, and decidable
characterizations were obtained for BΣ2 and Σ3, by relying on a decision
problem called separation, and solving it for Σ2.

The contribution of this paper is a generalization of these results to
the setting of infinite words: we solve separation for Σ2 and Σ3, and
obtain decidable characterizations of BΣ2 and Σ3 as consequences.

Regular word languages form a robust class, as they can be defined either by
operational, algebraic, or logical means: they are exactly those that can be defined
equivalently by finite state machines (operational view), morphisms into finite
algebras (algebraic view) and monadic second order (“MSO”) sentences [4,5,8,27]
(logical view). To understand the structure of this class in depth, it is natural to
classify its languages according to their descriptive complexity. The problem is to
determine how complicated a sentence has to be to describe a given input lan-
guage. This is a decision problem parametrized by a fragment of MSO: given an
input language, can it be expressed in the fragment? This problem is called mem-
bership (is the language a member of the class defined by the fragment?).

The seminal result in this field is the membership algorithm for first-order logic
(FO) over finite words, which is arguably the most prominent fragment of MSO.
This algorithm was obtained in two steps. McNaughton and Papert [10] observed
that the languages definable in FO are exactly the star-free languages: those that
may be expressed by a regular expression in which complement is allowed while
the Kleene star is disallowed. Furthermore, an earlier result of Schützenberger [23]
shows that star-free languages are exactly the ones whose syntactic monoid is ape-
riodic. The syntactic monoid is a finite algebra that can be computed from any
input regular language, and aperiodicity can be formulated as an equation that has
to be satisfied by all elements of this algebra. Therefore, Schützenberger’s result
makes it possible to decide whether a regular language is star-free (and therefore
definable in FO by McNaughton-Papert’s result).

Following this first result, the attention turned to a deeper question: given
an FO-definable language, find the “simplest” FO-sentences that define it. The
standard complexity measure for FO sentences is their quantifier alternation,
c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 234–251, 2016.
DOI: 10.1007/978-3-662-49630-5 14

Quantifier Alternation for Infinite Words 235

which counts the number of switches between blocks of ∃ and ∀ quantifiers.
This measure is justified not only because it is intuitively difficult to understand
a sentence with many alternations, but also because the nonelementary com-
plexity of standard problems for FO [25] (e.g, satisfiability) is tied to quantifier
alternation. In summary, we classify FO definable languages by counting the
number of quantifier alternations needed to define them and we want to be able
to decide the level of a given language (which amounts to solving membership
for each level).

This leads to define the following fragments of FO: an FO sentence is Σi if
its prenex normal form has at most i blocks of ∃ or ∀ quantifiers and starts with
a block of existential ones. Note that Σi is not closed under complement (the
negation of a Σi sentence is called a Πi sentence). A sentence is BΣi if it is a
Boolean combination of Σi sentences (cf. figure). Clearly, we have Σi ⊆ BΣi ⊆
Σi+1, and these inclusions are known to be strict [3,26]: Σi � BΣi � Σi+1.

Solving membership for levels of this hierarchy is a longstanding open problem.
Following Schützenberger’s approach, it was first investigated for languages of
finite words. However, the question also makes sense for more complex structures,
in particular for the most natural extension: infinite words. Schützenberger’s
result was first generalized to infinite words by Perrin [11], and a suitable alge-
braic framework for languages of infinite words was set up by Wilke [28]. Since
a regular language of infinite words is determined by regular languages of finite
words, finding a membership algorithm for languages of infinite words does not
usually require to start over. Instead these algorithms are obtained by building
on top of the algorithms for finite words, adding new arguments, specific to infi-
nite words.

Regarding the hierarchy, membership is easily seen to be decidable for Σ1.
For BΣ1, the classical result of Simon [24] was generalized from finite to infinite
words by Perrin and Pin [12]. For finite words, membership to Σ2 is known to be
decidable [1,15], a result lifted to infinite words in [2,7]. Following these results,
the understanding of the hierarchy remained stuck for years until the framework
was extended to new and more general problems than membership.

Rather than asking whether a language is definable in a fragment F , these
problems ask what is the best F-definable “approximation” of this language
(with respect to specific criteria). The simplest example is F-separation, which
takes two regular languages as input and asks whether there exists a third lan-
guage definable in F that contains the first language and is disjoint from the
second. Separation is more general than membership: asking whether a regular
language is definable in F is the same as asking whether it can be F-separated
from its (also regular) complement. A consequence is that deciding these
more general problems is usually more challenging than deciding membership.
However, their investigation in the setting of finite words has also been very

236 T. Pierron et al.

rewarding. A good illustration is the transfer result of [18], which states that
for all i, decidability of separation for Σi entails decidability of membership for
Σi+1. Combined with an algorithm for Σ2-separation [18], this proved that Σ3

has decidable membership. This result was strengthened in [16], which shows
that Σ3-separation is decidable as well, thus obtaining decidability of member-
ship for Σ4. Finally, in [18], it was shown that BΣ2 has decidable membership by
using a generalization of separation for Σ2 and analyzing an algorithm solving
this generalization.

It remained open to know whether it was possible to generalize with the
same success this new approach to the setting of infinite words. This is the
investigation that we carry out in the paper. More precisely, we rely on the crucial
notion of Σi-chains, designed in [18] for presenting and proving membership and
separation algorithms for finite words. We generalize this concept to infinite
words and successfully use it to prove that the following problems are decidable:
Σ2-separation, Σ3-separation, and BΣ2 membership. This demonstrates that Σi-
chains remain a suitable framework for presenting arguments in the setting of
infinite words. On the other hand, new issues specific to infinite words arise, for
example, we were not able to generalize the transfer result from Σi-separation to
Σi+1-membership (as a consequence, membership for Σ4 remains open). Note
also that, for each problem, we pre-compute some information by using the
corresponding algorithm designed in [16,18] for finite words. This means that
the involved algorithms from [16,18] are used as subroutines of our algorithms.

It is worth noting that the decidability of the membership problem for BΣ2

over infinite words has been obtained independently in [9]. While the algorithm
is essentially the same as our own, its proof is completely different.

We now present the problems in depth in Sect. 1, and we solve them in the
rest of the paper. A detailed outline is provided at the end of Sect. 1. Due to lack
of space, some proofs are postponed to the full version of this paper, see [13].

1 Presentation of the Problem

In this section, we first define the quantifier alternation hierarchy of first-order
logic. Then, we present the membership problem and the separation problem.

1.1 The Quantifier Alternation Hierarchy of First-Order Logic

We fix a finite alphabet A. We denote by A+ the set of all finite nonempty
words, and by A∞ the set of all infinite words over A. We use the term “word”
for “finite word”. We call language (resp. language of infinite words) a subset of
A+ (resp. of A∞). If u is a word and v is a word (resp. an infinite word), we
denote by uv the word (resp. the infinite word) obtained by concatenating u to
the left of v. If u is a word, we denote by u∞ the infinite word uuuu · · · obtained
as the infinite concatenation of u with itself. If u is a word or an infinite word,
we denote by alph(u) the alphabet of u, i.e., the set of letters of u.

Quantifier Alternation for Infinite Words 237

First-Order Logic. Any word or infinite word can be viewed as a logical struc-
ture made of a linearly ordered sequence of positions (finite for words and infinite
for infinite words) labeled over alphabet A. In first-order logic “FO”, one can
quantify over these positions and use the following predicates.

– for each a ∈ A, a unary predicate Pa selecting all positions labeled with an a.
– a binary predicate’<’ interpreted as the (strict) linear order over the positions.

Since any FO sentence may be interpreted both on words and infinite words,
each sentence ϕ defines two objects: a language L+ = {w ∈ A+ | w |= ϕ} and a
language of infinite words L∞ = {w ∈ A∞ | w |= ϕ}. For example, the sentence
∃x∃y (x < y ∧ Pa(y)) defines the language A+a ∪ A+aA+ and the language of
infinite words A+aA∞. Thus, we may associate two classes of objects with FO:
a class of languages (we speak of FO over words) and a class of languages of
infinite words (we speak of FO over infinite words).

Quantifier Alternation. It is usual to classify FO sentences by counting the
quantifier alternations inside their prenex normal form. Let i ∈ N, a sentence is
said to be Σi (resp. Πi) if its prenex normal form has either:

– exactly i − 1 quantifier alternations (i.e., exactly i quantifier blocks) starting
with an ∃ (resp. ∀), or

– strictly less than i− 1 quantifier alternations (i.e., strictly less than i blocks).

For example, the sentence ∃x1∀x2∀x3∃x4 ϕ, with ϕ quantifier-free, is Σ3. Note
that in general, the negation of a Σi sentence is not a Σi sentence – it is called
a Πi sentence. Hence, it is also usual to define BΣi sentences as those that are
Boolean combinations of Σi and Πi sentences.

As for full first-order logic, each level Σi, Πi or BΣi defines two classes of
objects: a class of languages and a class of languages of infinite words. Therefore,
we obtain two hierarchies: a hierarchy of classes of languages and a hierarchy of
classes of languages of infinite words, both of which are known to be strict [3,26].

1.2 Decision Problems

Our objective is to investigate the quantifier alternation hierarchy of first-order
logic over infinite words. We rely on two decision problems in order to carry out
this investigation: the membership problem and the separation problem. The
input of these problems are regular languages of finite and infinite words. They
are those languages that can be equivalently defined by monadic second-order
logic, finite Büchi automata or finite Wilke algebras. We will use Wilke algebras,
whose definition is recalled in Sect. 2. Both problems are parametrized by a level
in the hierarchy and come therefore in two versions: a ‘language’ one and a
‘language of infinite words’ one. Let F be a level in the hierarchy.

238 T. Pierron et al.

Membership. The membership problem for level F is as follows:

Separation. The separation problem is more general. Given three languages or
three languages of infinite words K,L1, L2, we say that K separates L1 from L2

if L1 ⊆ K and L2 ∩K = ∅. For F a level in the hierarchy, L1 is said F-separable
from L2 if there exists an F-definable language or language of infinite words that
separates L1 from L2. Note that when F is not closed under complement (e.g.,
for F = Σi), the definition is not symmetrical: L1 may be F-separable from L2

while L2 is not F-separable from L1. The separation problem for F is as follows:

An important remark is that membership reduces to separation. A regular
language of words or infinite words is definable in F iff it is F-separable from
its (also regular) complement: separation is a more general problem than mem-
bership.

Both problems have been extensively studied in the literature. Indeed, it has
been observed that obtaining an algorithm for the membership or separation
problem associated to a particular level F usually yields a deep insight on F .
This is well illustrated by the most famous result of this kind, Schützenberger’s
Theorem [10,23], which yields a membership algorithm for FO over words. The
result was later generalized to FO over infinite words by Perrin [11]. These
results and the techniques used to obtain them provide not only a way to decide
whether a regular language of finite or infinite words is FO-definable, but also
a generic method for constructing a defining FO sentence, when possible. Since
these first results, many efforts have been devoted for obtaining membership and
separation algorithms for each level in the hierarchy. An overview of the results
is presented in the following table (omitted levels are open in all cases).

Quantifier Alternation for Infinite Words 239

Our objective is to bridge the gap between the knownledge for languages and
that for languages of infinite words. More precisely, we want to extend the results
of [16,18] to the setting of infinite words, i.e., to obtain membership algorithms
for BΣ2, Σ3 and Σ4 as well as separation algorithms for Σ2 and Σ3. We were able
to obtain these algorithms for Σ2, Σ3 and BΣ2 as stated in the next theorem.
Note that the Σ3-membership algorithm follows from its separation algorithm.
We leave open the case of Σ4-membership for languages of infinite words.

Theorem 1. The following properties hold:

(a) the separation problem is decidable for Σ2 over infinite words.
(b) the membership problem is decidable for BΣ2 over infinite words.
(c) the separation problem is decidable for Σ3 over infinite words.

Our proof of Theorem 1 consists in three algorithms, one for each item in
the theorem. An important remark is that each of these three algorithms
depends upon an algorithm of [18] or [16] solving the corresponding problem
for finite words:

– We present all algorithms in a specific framework which is adapted from the
one used in [18]. In particular, we reuse the key notion of “Σi-chain” (gener-
alized to infinite words in a straightforward way).

– We actually reuse the algorithms for finite words of [16,18] as subprocedures
in our algorithms for languages of infinite words.

The remainder of the paper is devoted to proving Theorem 1. In Sect. 2, we
recall classical notions required for our definitions and proofs: the algebraic def-
inition of regular languages of infinite words and logical preorders. In Sect. 3, we
present the general framework that we use. In particular, we introduce a notion
that will be at the core of all our algorithms: “Σi-chains” (which are adapted
and reused from [18]). We then devote a section to each algorithm: Sect. 4 to
Σ2-separation, Sect. 5 to BΣ2-membership and Sect. 6 to Σ3-separation.

2 Preliminaries

We recall some classical notions that we will need. First, we present the definition
of regular languages of infinite words in terms of Wilke algebras. Then, we define
the logical preorders that one may associate to each level Σi in the hierarchy.

2.1 Semigroups and Wilke Algebras

We briefly recall the definition of regular languages and languages of infinite
words in terms of semigroups and Wilke algebras. For details, see [12].

Semigroups. A semigroup is a set S equipped with an associative operation s ·t
(often written st). In particular, A+ equipped with concatenation is a semigroup.
Given a finite semigroup S, it is easy to see that there is an integer ω(S) (denoted
by ω when S is understood) such that for all s of S, sω is idempotent: sω = sωsω.

240 T. Pierron et al.

Given a language L and a morphism α : A+ → S, we say that L is recognized
by α if there exists F ⊆ S such that L = α−1(F). It is well-known that a
language is regular if and only if it may be recognized by a finite semigroup.

Wilke Algebras. A Wilke algebra is a pair (S+, S∞), where S+ is a semigroup
and S∞ is a set. Moreover, (S+, S∞) is equipped with two additional products:
a mixed product S+ × S∞ → S∞ mapping s, t ∈ S+, S∞ to an element st of S∞,
and an infinite product (S+)∞ → S∞ mapping an infinite sequence s1, s2, · · · ∈
(S+)∞ to an element s1s2 · · · of S∞. We require these products to satisfy all
possible forms of associativity. For s ∈ S+, we let s∞ be the infinite product
sss · · · ∈ S∞. Note that (A+, A∞) is a Wilke algebra. See [12] for further details
(we use a distinct notation from [12], where what we write sω, s∞ is noted sπ, sω,
respectively).

We say that (S+, S∞) is finite if both S+ and S∞ are. Note that even if a
Wilke algebra is finite, it is not clear how to represent the infinite product, since
the set of infinite sequences of S+ is uncountable. However, it has been shown by
Wilke [28] that the infinite product is fully determined by the mapping s �→ s∞.
This makes it possible to finitely represent any finite Wilke algebra.

Morphisms of Wilke algebras are defined in the natural way. In particular,
observe that any morphism of Wilke algebra α : (A+, A∞) → (S+, S∞) defines
two maps: a semigroup morphism α+ : A+ → S+ and a map α∞ : A∞ → S∞
(when there is no ambiguity, we shall write α(w) to mean α+(w) if w ∈ A+

or α∞(w) if w ∈ A∞). Therefore, a morphism recognizes both languages (the
languages α−1

+ (F+) for F+ ⊆ S+) and languages of infinite words (the languages
of infinite words α−1

∞ (F∞) for F∞ ⊆ S∞). A language of infinite words is regular
iff it may be recognized by a morphism into a finite Wilke algebra.

Syntactic Morphisms. It is known that given any regular language (resp. lan-
guage of infinite words) L, there exists a canonical morphism αL : A+ → S
(resp. αL : (A+, A∞) → (S+, S∞)) recognizing L. This object is called the syn-
tactic morphism of L. We refer the reader to [12] for the detailed definition of
this object. In the paper we only use two properties of the syntactic morphism.
The first is that given any regular language of infinite words L, one can com-
pute its syntactic morphism from any representation of L. We state the second
one below.

Fact 2. Let i � 1 and let L be a regular language of infinite words. Then L is
definable in BΣi iff so are all languages of words and infinite words recognized
by its syntactic morphism.

The proof of Fact 2 may be found in [12] (in fact, this holds for any class
of languages of infinite words which forms a “variety” of languages of infinite
words, not just for BΣi). In view of this, the syntactic morphism is central for
membership questions: deciding if a language is definable in BΣi amounts to
deciding a property of its syntactic morphism. This is the approach used in our
membership algorithm for BΣ2 (see Sect. 5).

Morphisms and Separation. When working on separation, we are given two
input languages or languages of infinite words. It is convenient to consider a

Quantifier Alternation for Infinite Words 241

single recognizing object for both inputs rather than two separate objects. This
is not restrictive: given two languages (resp. two languages of infinite words)
and two associated recognizing morphisms, one can define and compute a single
morphism that recognizes them both. For example, if L0 ⊆ A∞ is recognized by
α0 : (A+, A∞) → (S+, S∞) and L1 ⊆ A∞ by α1 : (A+, A∞) → (T+, T∞), then
L0 and L1 are both recognized by α : (A+, A∞) → (S+ × T+, S∞ × T∞) with
α(w) = (α0(w), α1(w)).

Alphabet Compatible Morphisms. It will be convenient to work with mor-
phisms that satisfy an additional property. A morphism α : (A+, A∞) →
(S+, S∞) is said to be alphabet compatible if for all u, v ∈ A+ ∪A∞, α(u) = α(v)
implies alph(u) = alph(v). Note that when α is alphabet compatible, for all
s ∈ S+ ∪ S∞, alph(s) is well defined as the unique B ⊆ A such that for all
u ∈ α−1(s), we have alph(u) = B (if s has no preimage then we simply set
alph(s) = ∅).

To any morphism α : (A+, A∞) → (S+, S∞), we associate a morphism β,
called the alphabet completion of α. The morphism β recognizes all languages
of infinite words recognized by α and is alphabet compatible. If α is already
alphabet compatible, then β = α. Otherwise, observe that 2A is a semigroup
with union as the multiplication and (2A, 2A) is therefore a Wilke algebra. Hence,
we let β be the morphism: β : (A+, A∞) → (S+ × 2A, S∞ × 2A) with β(w) =
(α(w), alph(w)).

2.2 Logical Preorders

To each level Σi in the hierarchy, one may associate preorders on the sets of words
and infinite words. The definition is based on the notion of quantifier rank. The
quantifier rank of a first-order formula is the length of the longest sequence of
nested quantifiers inside the formula. For example, the following sentence,

∃x Pb(x) ∧ ¬(∃y (y < x ∧ Pc(y)) ∧ (∀y∃z x < y < z ∧ Pb(y)))

has quantifier rank 3. It is well-known (and easy to show) that for a fixed k, there
is a finite number of non-equivalent first-order sentences of rank less than k.

We now define the preorders. Note that while we define two preorders for each
level Σi (one on A+, one on A∞), we actually use the same notation for both. Let
i � 1 be a level in the hierarchy and k � 1 as a quantifier rank. Given two words
w,w′ ∈ A+ (resp two infinite words w,w′ ∈ A∞), we write w �k

i w′ if and only
if any Σi sentence of rank at most k satisfied by w is satisfied by w′ as well. By
contrapositive, since the negation of a Σi sentence is in Πi, we have w �k

i w′ iff
any Πi sentence of rank at most k satisfied by w′ is also satisfied by w.

One may verify that �k
i is preorder. Moreover, it is immediate that the

preorders get refined when k or i increase: w �k+1
i w′ or w �k

i+1 w′ imply
w �k

i w′. Since a Πi+1 sentence is in Σi, w �k
i+1 w′ also implies w′ �k

i w.
Denote by ∼=k

i the equivalence generated by �k
i : w ∼=k

i w′ when w �k
i w′ and

w′ �k
i w. That is, w ∼=k

i w′ if and only if w,w′ satisfy the same Σi sentences (or

242 T. Pierron et al.

equivalently the same BΣi sentences, which are nothing but Boolean combina-
tions of Σi sentences). The following fact sums up what we just observed.

Fact 3. Let k, i � 1 and let u, v be two words or two infinite words, then

(1) u �k+1
i v ⇒ u �k

i v, (2) u ∼=k+1
i v ⇒ u ∼=k

i v (3) u �k
i+1 v ⇒ u ∼=k

i v.

We finish the section with a few properties about the preorders �k
i . The

proofs are easy and omitted (they are obtained with standard Ehrenfeucht-
Fräıssé arguments). We start with decomposition and composition lemmas.

Lemma 4 (Decomposition Lemma). Let i, k � 1 and let u, v be two words
or two infinite words such that u �k

i v. Then for any decomposition u = u1u2

of u, there exist v1, v2 such that v = v1v2, u1 �k−1
i v1 and u2 �k−1

i v2 .

Lemma 5 (Composition Lemma). Let i, k � 1, let u1, v1 be two words such
that u1 �k

i v1, and u2, v2 be either two words or two infinite words such that
u2 �k

i v2. Then u1u2 �k
i v1v2 and u∞

1 �k
i v∞

1 .

The last composition that we state is specific to infinite words.

Lemma 6. Let i, k � 1, u ∈ A+ be a word and v ∈ A∞ be an infinite word such
that v �k

i u∞. Then for any � � 2k, we have u∞ �k
i+1 u�v.

In particular we will use the special case of Lemma 6 in which i = 1. In this
case, one can verify that given u ∈ A+ and v ∈ A∞, when alph(u) = alph(v), we
have v �k

1 u∞ for any k � 1. Hence we have the following corollary of Lemma 6.

Corollary 7. Let k � 1, u ∈ A+ be a word and let v ∈ A∞ be an infinite word
such that alph(u) = alph(v). Then for any � � 2k, we have u∞ �k

2 u�v.

3 Σi-Chains for Language of Infinite Words

All algorithms for infinite words of this paper are strongly related to the finite
words algorithms of [16,18]. In particular, we adapt and reuse the key notion of
“Σi-chain” which was introduced in [18]. The section is devoted to the presen-
tation of this notion. First, we define Σi-chains. We then detail the link between
Σi-chains and our decision problems, first for Σi, then for BΣi.

Σi-Chains were initially introduced in [18] as a tool designed to investigate
the separation problem over finite words for the logics Σi and BΣi. A set of Σi-
chains can be associated to any morphism α : A+ → S into a finite semigroup S.
Intuitively, this set captures information about what Σi and BΣi can express
about the languages recognized by α (including which ones are separable with
Σi and BΣi). The definition is based on the following classical lemma.

Lemma 8. Let i, k � 1 and L1, L2 be two languages or two languages of infinite
words. Then L1 is not Σi-separable (resp. not BΣi-separable) from L2 iff for all
k � 1, there exist w1 ∈ L1 and w2 ∈ L2 such that w1 �k

i w2 (resp. w1
∼=k

i w2).

Quantifier Alternation for Infinite Words 243

Lemma 8 states simple criteria equivalent to Σi- and BΣi-separability. How-
ever, both criteria involve a quantification over all natural numbers. Therefore,
it is not immediate that they can be decided. Indeed, since both A+ and A∞

are infinite sets, �k
i and ∼=k

i are endlessly refined as k gets larger.
Σi-Chains are designed to deal with this issue. The separation problem takes

two regular languages or languages of infinite words as input. Therefore, we have
a single morphism that recognizes them both. For example, in the case of infinite
words, we have α : (A+, A∞) → (S+, S∞), with (S+, S∞) a finite Wilke algebra,
that recognizes both inputs. Intuitively, S+ and S∞ are finite abstractions of
A+ and A∞. Consequently, we may abstract the preorders �k

i on these two
finite sets: this is what Σi-chains are. For example, we say that (s, t) ∈ (S∞)2

is a Σi-chain (of length 2) for α if for all k, there exist u, v ∈ A∞ such that
α(u) = s, α(v) = t and u �k

i v. For languages of infinite words recognized by
α, it is then easy to adapt the two criteria of Lemma 8 to work directly with
the Σi-chains associated to α. In other words, we reduce separation to the (still
difficult) problem of computing the set of Σi-chains associated to a given input
morphism.

Chains. Let us now define chains. Given a finite set S, a chain over S is simply a
finite word over S (i.e., an element of S+). We shall only consider chains over S+

and over S∞, where S+ and S∞ are the two components of some Wilke algebra
(S+, S∞). A remark about notation is in order: a word is usually denoted as
the concatenation of its letters. However, since S+ is a semigroup, this would be
ambiguous: when st ∈ (S+)+, st could either mean a word with 2 letters s and t,
or the product of s and t in S+. To avoid confusion, we will write (s1, . . . , sn) for
a chain of length n. We denote chains by s̄, t̄, . . . and sets of chains by S, T ,. . .

If (S+, S∞) is a Wilke algebra, then for all n ∈ N, (S+)n is a semigroup
when equipped with the componentwise multiplication (s1, . . . , sn)(t1, . . . , tn) =
(s1t1, . . . , sntn). Moreover, the pair ((S+)n, (S∞)n) is a Wilke algebra (in which
the mixed and infinite products are defined componentwise as well).

Σi-Chains. Fix i � 1 and x ∈ {+,∞}. We associate a set of Σi-chains to any
map β : Ax → S where S is a finite set. The set Ci[β] ⊆ S+ of Σi -chains for β
is defined as follows. Let s̄ = (s1, . . . , sn) ∈ S+ be a chain. We have s̄ ∈ Ci[β] if
and only if for all k ∈ N, there exist w1, . . . , wn ∈ Ax such that:

w1 �k
i w2 �k

i · · · �k
i wn and for all j, β(wj) = sj .

We let Ci,n[β] be the restriction of this set to chains of length n: Ci,n[β] =
Ci[β] ∩ Sn.

Σi-Chains Associated to a Morphism. It follows from the definition of Σi-
chains that one may associate a set Ci[α] to any semigroup morphism α : A+ →
S. This set is exactly the set of Σi-chains associated to α as defined in [18].

Moreover, given a morphism α : (A+, A∞) → (S+, S∞) into a finite Wilke
algebra (S+, S∞), one may associate two sets of Σi-chains to α: one to the
morphism α+ : A+ → S+ (Ci[α+] ⊆ (S+)+) and one to the map α∞ : A∞ → S∞
(Ci[α∞] ⊆ (S∞)+). We may now link Σi-chains to the separation problem.

244 T. Pierron et al.

3.1 Σi-Chains and Separation for Σi

We now connect Σi-chains to the separation problem. We begin with the simplest
connection, which is between Σi-chains of length 2 and separation for Σi.

Theorem 9. Let i � 1, x ∈ {+,∞} and β : Ax → S a map into a finite set S.
Given F1, F2 ⊆ S, L1 = β−1(F1) and L2 = β−1(F2), the following are equivalent

1. L1 is not Σi-separable from L2.
2. there exist s1 ∈ F1 and s2 ∈ F2 such that (s1, s2) ∈ Ci,2[β].

Theorem 9 is a straightforward consequence of the statement for Σi in
Lemma 8. In view of the theorem, our approach for the Σi-separation prob-
lem is as follows:

– for languages, we look for an algorithm computing Ci,2[α] from an input mor-
phism α : A+ → S into a finite semigroup S.

– for languages of infinite words, we look for an algorithm computing Ci,2[α∞]
from an input morphism α : (A+, A∞) → (S+, S∞) into a finite Wilke algebra
(S+, S∞). Typically, this algorithm involves computing Ci,2[α+] first, which
can be achieved by reusing the first item, i.e., the algorithm for word lan-
guages.

This approach is exactly the one used in [16,18] to solve separation for Σ2 and
Σ3 over finite words: the following theorems are proven in these papers.

Theorem 10 (see [18]). Given as input a morphism α : A+ → S into a finite
semigroup S, one can compute the set C2,2[α] of Σ2-chains of length 2 for α.

Theorem 11 (see [16]). Given as input a morphism α : A+ → S into a finite
semigroup S, one can compute the set C3,2[α] of Σ3-chains of length 2 for α.

We generalize these two theorems in Sect. 4 (for Σ2) and Sect. 6 (for Σ3) for
infinite words by presenting two new algorithms. These algorithms both take a
morphism α : (A+, A∞) → (S+, S∞) as input and compute the sets C2,2[α∞] and
C3,2[α∞] respectively. The algorithms of Theorems 10 and 11 are reused as sub-
procedures in these new algorithms for languages of infinite words: computing
C2,2[α∞] and C3,2[α∞] requires to first compute C2,2[α+] and C3,2[α+].

Remark 12. The algorithms of Theorems 10 and 11 both work with objects
that are actually more general than Σi-chains: the Σ2 algorithm works with
“Σ2-junctures” and the Σ3 algorithm with an even more general notion: “Σ2,3-
trees”. We do not present these more general notions because we do not need
them outside of the algorithms of Theorems 10 and 11, which we use as black
boxes.

Quantifier Alternation for Infinite Words 245

3.2 Σi-Chains and Separation for BΣi

We finish by presenting the connection between the separation problem for BΣi

and Σi-chains. This time, the connection depends on the whole set of Σi-chains.
More precisely, it depends on yet another notion called alternation.

Let x ∈ {+,∞} and β : Ax → S be a map into a finite set S. We say that
a pair (s, t) ∈ S2 is Σi-alternating for β iff for all n � 1, we have (s, t)n ∈ Ci[β]
(where by (s, t)n, we mean the chain (s, t, s, t, . . . , s, t) of length 2n).

Theorem 13. Let i � 1, x ∈ {+,∞} and β : Ax → S a map into a finite
set S. Given F1, F2 ⊆ S, L1 = β−1(F1) and L2 = β−1(F2), the following are
equivalent:

1. L1 is not BΣi-separable from L2.
2. there exist s1 ∈ F1 and s2 ∈ F2 such that (s1, s2) is Σi-alternating.

The proof of Theorem 13 is based on the second part of Lemma 8. In view of
the theorem, the separation problem for BΣi reduces to the computation of the
Σi-alternating pairs, which is unfortunately open for i � 2, even on finite words.

Regarding membership however, Theorem 13 yields an immediate corollary.
For x ∈ {+,∞} and β : Ax → S a map into a finite set S, we say that β has bounded
Σi -alternation iff every Σi-alternating pair (s, t) ∈ S2 for β satisfies s = t.

Corollary 14. Let i � 1, x ∈ {+,∞} and β : Ax → S be a map into a finite
set S. Then all sets β−1(F) for F ⊆ S are BΣi-definable if and only if β has
bounded Σi-alternation.

Combining Corollary 14 with Fact 2 yields a criterion for BΣi-membership:
a regular language of finite or infinite words is definable in BΣi iff its syntactic
morphism has bounded Σi-alternation. This is used in [18] to obtain a (language)
membership algorithm for BΣ2. More precisely, the following result is proved.

Theorem 15 (see [18]). Given as input a morphism α : A+ → S into a finite
semigroup S, one can decide whether α has bounded Σ2-alternation or not.

In Sect. 5 we obtain our algorithm for BΣ2-membership over infinite words
by proving that given a morphism α : (A+, A∞) → (S+, S∞) as input, one can
decide whether α∞ has bounded Σ2-alternation or not. More precisely, we prove
that α∞ having bounded Σ2-alternation is equivalent to two decidable properties
of α. The first is that α+ has bounded Σ2-alternation (which we can decide by
Theorem 15). The second is a simple equation that (S+, S∞) needs to satisfy.

4 A Separation Algorithm for Σ2

In this section, we present an algorithm for the separation problem associated to
Σ2 over infinite words. As expected, this algorithm is based on the computation
of Σ2-chains of length 2 (see Theorem 9): we prove that given a morphism α
into a finite Wilke algebra, one can compute C2,2[α∞].

246 T. Pierron et al.

For an alphabet compatible morphism α : (A+, A∞) → (S+, S∞) into a finite
Wilke algebra, we denote by CalcΣ2(α) the set of all pairs:

(r1(s1)∞, r2(s2)ωt2) ∈ S∞ × S∞

with (r1, r2) ∈ C2,2[α+], (s1, s2) ∈ C2,2[α+], t2 ∈ α(A∞) and alph(s1) = alph(t2).
Note that this last condition is well defined since α is alphabet compatible. Recall
that s∞

1 is the infinite product s1s1 . . ., and sω
2 the idempotent power of s2 in S+.

Proposition 16. Let α : (A+, A∞) → (S+, S∞) be an alphabet compatible mor-
phism into a finite Wilke algebra (S+, S∞). Then, C2,2[α∞] = CalcΣ2(α).

A consequence of Proposition 16 is that the separation problem is decidable for
Σ2 over infinite words. Indeed, recall that for any two regular languages of infinite
words, one may compute a single alphabet compatible Wilke algebra morphism
that recognizes them both. Therefore, it follows from Theorem 9 that deciding
Σ2-separation amounts to having an algorithm that computes C2,2[α∞] from α.

We obtain this algorithm from Proposition 16 since CalcΣ2(α) may be com-
puted, given α as input. Indeed, by Theorem 10, we already know that the set
C2,2[α+] can be computed from α. Hence, we obtain the desired corollary.

Corollary 17. Over infinite words, the separation problem is decidable for Σ2.

An important remark is that we use Theorem 10 as a black box: we do not
reprove that C2,2[α+] may be computed from α+. This is not an immediate result.
In fact, the proof of [18] requires to use a framework that is more general than
Σ2-chains (that of “Σ2-junctures”) as well as arguments that are independent
from those that we are going to use to prove Proposition 16.

It remains to prove Proposition 16. We illustrate the algorithm by prov-
ing the easier inclusion: C2,2[α∞] ⊇ CalcΣ2(α) (this proves correctness: all com-
puted chains are indeed Σ2-chains). The converse inclusion (corresponding to
completeness: all Σ2-chains are computed) is available in the long version of
the paper.

Correctness Proof: C2,2[α∞] ⊇ CalcΣ2(α). Let (r1, r2) ∈ C2,2[α+], (s1, s2) ∈
C2,2[α+] and t2 ∈ α(A∞) such that alph(s1) = alph(t2). Our objective is to prove
that (r1(s1)∞, r2(s2)ωt2) ∈ C2,2[α∞]. Let k � 1. By definition, we need to find
two infinite words w1 �k

2 w2 such that α(w1) = r1(s1)∞ and α(w2) = r2(s2)ωt2.
By hypothesis, we have four words x1, x2, y1, y2 ∈ A+ such that x1 �k

2 x2,
y1 �k

2 y2, α(x1) = r1, α(x2) = r2, α(y1) = s1 and α(y2) = s2. Moreover,
we have an infinite word z ∈ A∞ such α(z) = t2 and alph(y1) = alph(z). Let
w1 = x1(y1)∞ and w2 = x2(y2)2

kωz. Observe that by definition, we have α(w1) =
r1(s1)∞ and α(w2) = r2(s2)ωt2. Therefore, it remains to prove that w1 �k

2 w2.
By Corollary 7, we obtain that (y1)∞ �k

2 (y1)2
kωz. Moreover, using y1 �k

2 y2
and z �k

2 z together with Lemma 5, we obtain (y1)2
kωz �k

2 (y2)2
kωz. Therefore,

by transitivity (y1)∞ �k
2 (y2)2

kωz. Finally, we use the fact that x1 �k
2 x2 and

Lemma 5 to conclude that x1(y1)∞ �k
2 x2(y2)2

kωz, i.e., that w1 �k
2 w2. ��

Quantifier Alternation for Infinite Words 247

5 A Membership Algorithm for BΣ2

We now present our membership algorithm for BΣ2 over infinite words. The
algorithm is stated as a decidable characterization of BΣ2 over infinite words.

Theorem 18. Let L ⊆ A∞ be regular and let α : (A+, A∞) → (S+, S∞) be the
alphabet completion of its syntactic morphism. The following are equivalent:

1. L is definable in BΣ2.
2. α∞ has bounded Σ2-alternation.
3. α+ has bounded Σ2-alternation and α satisfies the following equation:

(stω)∞ = (stω)ωst∞ for all s, t ∈ α(A+) such that alph(s) = alph(t) (1)

We know that Item 3 in Theorem 18 is decidable. Indeed, Theorem 15 states that
whether α+ has bounded Σ2-alternation is decidable (note however that this is
a difficult result of [18] whose proof is independent from that of Theorem 18).
Moreover, verifying that (1) is satisfied may be achieved by checking all possible
combinations. Therefore, we obtain the following corollary of Theorem 18.

Corollary 19. The membership problem over infinite words is decidable
for BΣ2.

It now remains to prove Theorem 18. That 2) ⇒ 1) is immediate from
Corollary 14. The most difficult (and interesting) direction is 3) ⇒ 2). Due
to lack of space, it is proved in the long version of this paper. As we did in
the previous section, we illustrate the theorem by proving the easier 1) ⇒ 3)
direction.

Proof of 1) ⇒ 3). Let L be BΣ2-definable. In particular, this means that every
language of finite or infinite words recognized by α is definable in BΣ2 (we know
from Fact 2 that it is true for the syntactic morphism of L, so this is true as well
for its alphabet completion α, as one can test the alphabet of a word in BΣ2).

Since every language recognized by α is definable in BΣ2, Corollary 14 entails
that α+ has bounded Σ2-alternation. It remains to establish Eq. (1). For s, t ∈
α(A+) such that alph(s) = alph(t), let us show that (stω)∞ = (stω)ωst∞.

Let k such that for any r ∈ S∞, α−1(r) may be defined by a BΣ2 sentence
of quantifier rank less than k (k exists since all these languages of infinite words
are definable in BΣ2). By choice of k, for any two infinite words u, v ∈ A∞, we
have u ∼=k

2 v ⇒ α(u) = α(v). Therefore, in order to conclude, it suffices to find
two infinite words u, v of images (stω)∞ and (stω)ωst∞ and such that u ∼=k

2 v.
By definition of s, t, we have words x, y ∈ A+ such that α(x) = s, α(y) = t

and alph(x) = alph(y). Let u = (xy2kω)∞ and v = (xy2kω)2
kωxy∞. It is imediate

that u and v have images (stω)∞ and (stω)ωst∞. It remains to prove that u ∼=k
2 v.

We prove that u �k
2 v and v �k

2 u. Observe that alph(xy2kω) =
alph(xy∞). Hence, we get u �k

2 v from Corollary 7. Conversely, we know that
alph((xy2kω)∞) = alph(y). Therefore, we may use Corollary 7 again to obtain
y∞ �k

2 y2kω(xy2kω)∞. That v �k
2 u is then immediate from this inequality by

Lemma 5.

248 T. Pierron et al.

6 A Separation Algorithm for Σ3

We present our algorithm for the separation problem associated to Σ3 over infi-
nite words. As for Σ2, this algorithm is based on Theorem 9: we give a procedure
computing C3,2[α∞] from an input morphism α : (A+, A∞) → (S+, S∞).

However, in this case, this computation requires a new ingredient. This new
ingredient is a generalization of Σi-chains that we call mixed chains.

Mixed Chains. Let x ∈ {+,∞} and β : Ax → S as a map into some finite set S.
We define a set M[β] ⊆ S3. Let s̄ = (s1, s2, s3) ∈ S3 be a chain over S. We have
s̄ ∈ M[β] if and only if for all k ∈ N, there exist w1, w2, w3 ∈ Ax such that,

β(w1) = s1, β(w2) = s2, β(w3) = s3 and w1 �k
2 w2 �k

3 w3

Note the definition involves both the preorder “�k
2” associated to Σ2 and the

preorder “�k
3” associated to Σ3 (hence the name “mixed chains”). An important

remark is that we will not present any algorithm for computing mixed chains.
On the other hand, our algorithm for computing C3,2[α∞] from a morphism α is
parametrized by the set of mixed chains M[α+]. That M[α+] may be computed
from α+ is a very difficult result of [16], stated below.

Theorem 20 (see [16]). Given as input a morphism α : A+ → S into a finite
semigroup S, one can compute the set M[α] of mixed chains for α.

Remark 21. The presentation of Theorem 20 is different in [16]. It is proved that
one can compute the set of “Σ2,3-trees” associated to α. Essentially Σ2,3-trees
are trees of depth 3 whose nodes are labeled by elements of a finite set S and
mixed chains are the special case when there is only a single branch in the tree.

We may now present our separation algorithm for Σ3 over infinite words. Let
α : (A+, A∞) → (S+, S∞) be an alphabet compatible morphism into a finite
Wilke algebra (S+, S∞). We define CalcΣ3(α) ⊆ (S∞)2 as the set of all pairs

(
r2(s2(t2)ω)∞, r3(s3(t3)ω)ωs1(t1)∞)

with (r2, r3) ∈ C3,2[α+], (s1, s2, s3) ∈ M[α+], (t1, t2, t3) ∈ M[α+] and alph(s1) =
alph(t1). Since we know from Theorem 20 that one may compute M[α+] from
α, it is immediate from the definition that one may compute CalcΣ3(α) from α.

Proposition 22. Let α : (A+, A∞) → (S+, S∞) be an alphabet compatible mor-
phism into a finite Wilke algebra (S+, S∞). Then, C3,2[α∞] = CalcΣ3(α).

As for Σ2, Proposition 22 immediately yields an algorithm for Σ3-separation
over infinite words. Indeed, it provides an algorithm computing C3,2[α∞] from
any alphabet compatible morphism α, which suffices to decide Σ3-separation.

Corollary 23. The separation problem over infinite words is decidable for Σ3.

Quantifier Alternation for Infinite Words 249

It remains to prove Proposition 22. We proceed as for Σ2. Again, we
only prove the easier inclusion and postpone the other to the long version of
this paper.

Proof of C3,2[α∞] ⊇ CalcΣ3(α). Let (r2, r3) ∈ C3,2[α+], (s1, s2, s3) ∈ M[α+]
and (t1, t2, t3) ∈ M[α+] be chains such that alph(s1) = alph(t1). We have to
prove that (r2(s2(t2)ω)∞, r3(s3(t3)ω)ωs1(t1)∞) ∈ C3,2[α∞]. Let k � 1, we need
to find two infinite words w2 �k

3 w3 such that α(w2) = r2(s2(t2)ω)∞ and α(w3) =
r3(s3(t3)ω)ωs1(t1)∞. The definition gives words x2, x3, y1, y2, y3, z1, z2, z3 with:

– α(xj) = rj , α(yj) = sj , α(zj) = tj
– x2 �k

3 x3, y1 �k
2 y2 �k

3 y3 and z1 �k
2 z2 �k

3 z3.

Moreover, as alph(s1) = alph(t1), we have alph(y1) = alph(z1). We define
w2 = x2(y2(z2)2

kω)∞ and w3 = x3(y3(z3)2
kω)2

kωy1z
∞
1 . It is immediate from this

definition that α(w2) = r2(s2(t2)ω)∞ and that α(w3) = r3(s3(t3)ω)ωs1(t1)∞. It
remains to prove that w2 �k

3 w3.
We first prove y1z

∞
1 �k

2 (y2(z2)2
kω)∞. Since alph(y1) = alph(z1), we may use

Corollary 7 to obtain z∞
1 �k

2 (z1)2
kω(y1(z1)2

kω)∞. By Lemma 5 and transitivity,

y1z
∞
1 �k

2 (y1(z1)2
kω)∞ �k

2 (y2(z2)2
kω)∞ (2)

We may now use (2) together with Lemma 6 to obtain that (y2(z2)2
kω)∞ �k

3

(y2(z2)2
kω)2

kωy1z
∞
1 . Using Lemma 5 and transitivity again, we obtain that

x2(y2(z2)2
kω)∞ �k

3 x3(y3(z3)2
kω)2

kωy1z
∞
1

This exactly says that w2 �k
3 w3 which concludes the proof. ��

7 Conclusion

We proved that for languages of infinite words, the separation problem is decid-
able for Σ2 and Σ3 and that the membership problem is decidable for BΣ2.
Note that using a theorem of [21], these results may be lifted to the variants of
these logics whose signature has been enriched with a predicate “+1”, that is
interpreted as the successor relation. This means that over infinite words, sep-
aration is decidable for Σ2(<,+1) and Σ3(<,+1) and membership is decidable
for BΣ2(<,+1).

A gap remains between languages and languages of infinite words: we leave
open the case of Σ4-membership for languages of infinite words while it is known
to be decidable for languages [16]. The language algorithm was based on two
ingredients: (1) the decidability of Σ3-separation [16] and (2) an effective reduc-
tion of Σi+1-membership to Σi-separation [18] (which is generic for all i � 1). In
the setting of languages of infinite words, we are missing the second result and
it is not clear whether a similar reduction exists.

250 T. Pierron et al.

Acknowledgements. This study has been carried out with financial support from
the French State, managed by the French National Research Agency (ANR) in the
frame of the “Investments for the future” Programme IdEx Bordeaux -CPU (ANR-10-
IDEX-03-02).

References

1. Arfi, M.: Polynomial operations on rational languages. In: Brandenburg, F.J.,
Vidal-Naquet, G., Wirsing, M. (eds.) STACS’87. LNCS, vol. 247, pp. 198–206.
Springer, Heidelberg (1987)

2. Bojańczyk, M.: The common fragment of ACTL and LTL. In: Amadio, R.M. (ed.)
FOSSACS 2008. LNCS, vol. 4962, pp. 172–185. Springer, Heidelberg (2008)

3. Brzozowski, J.A., Knast, R.: The dot-depth hierarchy of star-free languages is
infinite. J. Comput. Syst. Sci. 16(1), 37–55 (1978)

4. Büchi, J.R.: Weak second-order arithmetic and finite automata. Math. Logic Q.
6(1–6), 66–92 (1960)

5. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Logic,
Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), pp. 1–11.
Stanford Univ. Press, Stanford (1962)

6. Czerwiński, W., Martens, W., Masopust, T.: Efficient separability of regular lan-
guages by subsequences and suffixes. In: Fomin, F.V., Freivalds, R., Kwiatkowska,
M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 150–161. Springer,
Heidelberg (2013)

7. Diekert, V., Kufleitner, M.: Fragments of first-order logic over infinite words. The-
ory Comput. Syst. 48(3), 486–516 (2011)

8. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soc. 98(1), 21–51 (1961)

9. Kufleitner, M., Walter, T.: Level two of the quantifier alternation hierarchy over
infinite words. CoRR, abs/1509.06207 (2015)

10. McNaughton, R., Papert, S.A.: Counter-Free Automata. MIT Press, Cambridge
(1971)

11. Perrin, D.: Recent results on automata and infinite words. In: Chytil, M.P.,
Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 134–148. Springer,
Heidelberg (1984)

12. Perrin, D., Pin, J.É.: Infinite Words. Elsevier, Amsterdam (2004)
13. Pierron, T., Place, T., Zeitoun, M.: Quantifier alternation for infinite words. CoRR,

abs/1511.09011 (2015)
14. Pin, J.É.: Positive varieties and infinite words. In: Lucchesi, C.L., Moura, A.V.

(eds.) LATIN 1998. LNCS, vol. 1380, pp. 76–87. Springer, Heidelberg (1998)
15. Pin, J.É., Weil, P.: Polynomial closure and unambiguous product. Theory Com-

put.Syst. 30(4), 383–422 (1997)
16. Place, T.: Separating regular languages with two quantifier alternations. In: Pro-

ceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2015), pp. 202–213. IEEE (2015)

17. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise
testable and unambiguous languages. In: Chatterjee, K., Sgall, J. (eds.) MFCS
2013. LNCS, vol. 8087, pp. 729–740. Springer, Heidelberg (2013)

18. Place, T., Zeitoun, M.: Going higher in the first-order quantifier alternation hierar-
chy on words. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014, Part II. LNCS, vol. 8573, pp. 342–353. Springer, Heidelberg (2014)

Quantifier Alternation for Infinite Words 251

19. Place, T., Zeitoun, M.: Separating regular languages with first-order logic. In:
2014 Proceedings of the Joint Meeting of the 23rd EACSL Annual Conference
on Computer Science Logic (CSL 2014), 29th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS 2014), pp. 75:1–75:10. ACM, New York (2011)

20. Place, T., Zeitoun, M.: Separating ω-languages without quantifier alternation
(2015) (Unpublished)

21. Place, T., Zeitoun, M.: Separation and the successor relation. In preparation, long
version of [22] (2015)

22. Place, T., Zeitoun, M.: Separation and the successor relation. In: Mayr, E.W.,
Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2015). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 30, pp. 662–675. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl (2015)

23. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8(2), 190–194 (1965)

24. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) Automata Theory and
Formal Languages. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)

25. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (pre-
liminary report). In: Proceedings of the Fifth Annual ACM Symposium on Theory
of Computing, STOC 1973, pp. 1–9. ACM, New York (1973)

26. Thomas, W.: A concatenation game and the dot-depth hierarchy. In: Börger, E.
(ed.) Computation Theory and Logic. LNCS, vol. 270, pp. 415–426. Springer,
Heidelberg (1987)

27. Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates. Dokl. Akad.
Nauk SSSR 149, 326–329 (1961). In Russian

28. Wilke, T.: An Eilenberg theorem for ∞-languages. In: Leach Albert, J., Monien, B.,
Rodŕıguez Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 588–599. Springer,
Heidelberg (1991)

Synchronizing Automata over Nested Words

Dmitry Chistikov1(B), Pavel Martyugin2, and Mahsa Shirmohammadi3

1 Max Planck Institute for Software Systems (MPI-SWS),
Kaiserslautern and Saarbrücken, Germany

dch@mpi-sws.org
2 Institute of Mathematics and Computer Science,

Ural Federal University, Ekaterinburg, Russia
martuginp@gmail.com

3 University of Oxford, Oxford, UK
mahsa.shirmohammadi@cs.ox.ac.uk

Abstract. We extend the concept of a synchronizing word from deter-
ministic finite-state automata (DFA) to nested word automata (NWA):
A well-matched nested word is called synchronizing if it resets the control
state of any configuration, i.e., takes the NWA from all control states to
a single control state.

We show that although the shortest synchronizing word for an NWA,
if it exists, can be (at most) exponential in the size of the NWA, the
existence of such a word can still be decided in polynomial time. As our
main contribution, we show that deciding the existence of a short syn-
chronizing word (of at most given length) becomes PSPACE-complete (as
opposed to NP-complete for DFA). The upper bound makes a connec-
tion to pebble games and Strahler numbers, and the lower bound goes via
small-cost synchronizing words for DFA, an intermediate problem that
we also show PSPACE-complete. We also characterize the complexity of
a number of related problems, using the observation that the intersection
nonemptiness problem for NWA is EXP-complete.

1 Introduction

The concept of a synchronizing word for finite-state machines has been studied in
automata theory for more than half a century [22,25]. Given a deterministic finite
automaton (DFA) D over an input alphabet Σ, a word w is called synchronizing
for D if, no matter which state q ∈ Q the automaton D starts from, the word w
brings it to some specific state q̄ that only depends on w but not on q. Put
differently, a synchronizing word resets the state of an automaton. If the state of
D is initially unknown to an observer, then feeding D with the input w effectively
restarts D, making it possible for the observer to rely on the knowledge of the
current state henceforth.

In this paper we extend the concept of a synchronizing word to so-called
nested words. This is a model that extends usual words by imparting a par-
enthetical structure to them: some letters in a word are declared calls and
returns, which are then matched to each other in a uniquely determined “nesting”
c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 252–268, 2016.
DOI: 10.1007/978-3-662-49630-5 15

Synchronizing Automata over Nested Words 253

(non-crossing) way. On the language acceptor level, this hybrid structure (linear
sequence of letters with matched pairs) corresponds to a pushdown automaton
where every letter in the input word is coupled with the information on whether
the automaton should push, pop, or not touch the pushdown (the stack). Such
machines were first studied by Mehlhorn [17] under the name of input-driven
pushdown automata in 1980 and have recently received a lot of attention under
the name of visibly pushdown automata. The latter term, as well as the model of
nested words and nested word automata (in NWA the matching relation remains
a separate entity, while in input-driven pushdown automata it is encoded in the
input alphabet), is due to Alur and Madhusudan [1].

The tree-like structure created by matched pairs of letters occurs naturally
in many domains; for instance, nested words mimic traces of programs with
procedures (which have pairs of calls and returns), as well as documents in
eXtensible Markup Language (XML documents, ubiquitous today, have pairs of
opening and closing tags). This makes the nested words model very appealing; at
the same time, nested words and NWA enjoy many nice properties of usual words
and finite-state machines: for example, constructions of automata for operations
over languages, and many decidability properties naturally carry over to nested
words—a fact widely used in software verification (see, e.g., [6] and references
therein). This suggests that the classic concept of a synchronizing word may
have an interesting and meaningful extension in the realm of nested words.

Our Contribution and Discussion. Nested word automata are essentially an
expressive subclass of pushdown automata and, as such, define infinite-state tran-
sition systems (although the number of control states is only finite, the number
of configurations—incorporating the state of the pushdown store—is infinite).
Finding the right definition for a synchronizing nested word becomes for this rea-
son a question of relevance: in the presence of infinitely many configurations not
all of them may even have equal-length paths to a single designated one (this phe-
nomenon also arises, for instance, in weighted automata [5]). In fact, any nested
word w, given as input to an NWA, changes the stack height in a way that
does not depend on the initial control state (and can only depend on the initial
configuration if w has unmatched returns). We thus choose to define synchroniz-
ing words as those that reset the control state of the automaton and leave the
pushdown store (the stack) unchanged (Definition 1; cf. location-synchronization
in [5]). Consider, for instance, an XML processor that does not keep a heap stor-
age and invokes and terminates its internal procedures in lockstep with opening
and closing tags in the input; our definition of a synchronizing word corresponds
to an XML document that resets the local variables.

Building on this definition, we show that shortest synchronizing words for
NWA can be exponential in the size of the automaton (Example 2), in contrast
to the case of DFA: every DFA with n states, if it has a synchronizing word, also
has one of length polynomial in n. The best known worst-case upper bound on
the length of the shortest synchronizing word is (n3−n)/6, due to Pin [20]; Černý
proved in the 1960s [24] a worst-case lower bound of (n − 1)2 and conjectured

254 D. Chistikov et al.

that this is also a valid upper bound, but as of now there is a gap between his
quadratic lower bound and the cubic upper bound of Pin (see [25] for a survey).
In the case of nested words, the exponential comes from the repeated doubling
phenomenon, typical for pushdown automata.

Although the length of a synchronizing word can be exponential, it turns
out that the existence of such a word—the shortest of which, in fact, cannot
be longer than exponential—can be decided in polynomial time (Theorem3),
akin to the DFA case. However, generalizing the definition in standard ways
(synchronizing from a subset instead of all states, or to a subset of states instead
of singletons) raises the complexity to exponential time (Theorem 4); for DFA,
the complexity is polynomial space [21,22]. The lower bounds are by reduction
from the intersection nonemptiness problem, which is known to be complete for
polynomial space in the case of DFA [14] and which we observe to be complete
for exponential time over nested words (Lemma 5).

Our main technical contribution is characterizing the complexity of deciding
existence of short synchronizing words, where the bound on the length is given
as part of the input (written in binary). In the DFA case, this problem is NP-
complete as shown by Eppstein [7], and for NWA it becomes PSPACE-complete
(Theorem 6). We believe that both upper and lower bound techniques that we
use to prove this result are of interest.

Specifically, for the upper bound (Sect. 4) we first encode unranked trees
(which represent nested words) with ranked trees. This reduces the search for a
short synchronizing nested word to the search for a tree that satisfies a number
of local properties. These properties, in turn, can be captured as acceptance by a
certain tree automaton of exponential size. We show that guessing an accepting
computation for such a machine—which amounts to guessing an exponentially
large tree—can be done in polynomial space. To do this, we rely on the concept
of (black) pebbling games, developed in the theory of computational complex-
ity for the study of deterministic space-bounded computation (see, e.g., [23,
Chapter 10]). We simulate optimal strategies for trees in such games [15], whose
efficiency is determined by Strahler numbers [11]. Previous use of this technique
in formal language theory and verification is primarily associated with deriva-
tions of context-free grammars, see, e.g., [9,10] and [11] for a survey. In this body
of work, closest to ours are apparently arguments due to Chytil and Monien [3].
We believe that our key procedure—which can decide bounded nonemptiness of
succinct tree automata—may be of use in other domains as well.

Finally, for the matching polynomial-space lower bound (Sect. 5) we construct
a two-step reduction from the problem of existence of carefully synchronizing
words for partial DFA, whose hardness is known [16]. We define an intermediate
problem of small-cost synchronization for DFA, where every letter in the alpha-
bet comes with a cost and the task is to decide existence of a synchronizing word
whose total cost does not exceed the budget. We show that this natural problem
is complete for polynomial space (this strengthens previous results from [5,12],
where costs could be state-dependent). After this, we basically simulate cost-
equipped DFA with NWA, relying on the above-mentioned repeated doubling

Synchronizing Automata over Nested Words 255

phenomenon. We find it noteworthy that this “counting” feature of nested words
alone is a ground for hardness.

We mention without proof that some of our techniques naturally extend to
(going via) tree automata over ranked trees.

2 Nested Words and Nested Word Automata

A nested word of length k over a finite alphabet Σ is a pair u = (x, ν), where
x ∈ Σk and ν is a matching relation of length k: a subset ν ⊆ {−∞, 1, . . . , k} ×
{1, . . . , k,+∞} such that, first, if ν(i, j) holds, then i < j; second, for 1 ≤ i ≤
k the set μ(i) def= {j | ν(i, j) or ν(j, i)} contains at most one element; third,
whenever ν(i, j) and ν(i′, j′), it cannot be the case that i < i′ ≤ j < j′. We
assume that ν(−∞,+∞) never holds.

If ν(i, j), the position i in the word u is said to be a call, and the position j
a return. All positions from {1, . . . , k} that are neither calls nor returns are
internal. A call (a return) i is matched if ν matches it to an element of {1, . . . , k},
i.e., if μ(i) ∩ {1, . . . , k} �= ∅, and unmatched otherwise. We shall call a nested
word well-matched if it has no unmatched calls and no unmatched returns.

Define a nested word automaton (an NWA) over the input alphabet Σ as a
structure A = (Q,Γ, δ, q0, γ0), where:

– Q is a finite non-empty set of control states,
– Γ is a finite non-empty set of stack symbols,
– δ = (δcall, δint, δret), where

• δint : Q × Σ → Q is an internal transition function,
• δcall : Q × Σ → Q × Γ is a call transition function,
• δret : Γ × Q × Σ → Q is a return transition function,

– q0 ∈ Q is the initial control state, and
– γ0 ∈ Γ is the initial stack symbol.

A configuration of A is a tuple (q, s) ∈ Q × Γ∗. We write (q, s) u−→ (q′, s′) for
a nested word u if the following conditions hold. First suppose u = (x, ν) has
length 1, then:

– if 1 is an internal position, then δint(q, x) = q′ and s′ = s;
– if 1 is a call, then δcall(q, x) = (q′, γ) and s′ = sγ for some γ ∈ Γ;
– if 1 is a return, then:

• either δret(γ, q, x) = q′ and s = s′γ,
• or δret(γ0, q, x) = q′ and s = s′ = ε.

Now take as −→ the reflexive transitive closure of the union of u−→ over all nested
words u of length 1; these input words on top of the arrow are concatenated
accordingly.

Alternatively, nested words can be seen as words over an extended alphabet.
Let 〈Σ and Σ〉 be disjoint copies of Σ that contain letters of the form 〈a and
a〉, respectively, for each a ∈ Σ. Then any nested word over Σ is associated with

256 D. Chistikov et al.

a word over the nested alphabet 〈Σ ∪ Σ ∪ Σ〉. Conversely, every word w over
this nested alphabet is unambiguously associated with a matching relation νw

of length |w| where positions with elements of 〈Σ, Σ, and Σ〉 are calls, internal
positions, and returns, respectively; the word w can thus be identified with a
nested word (π(w), νw) where π projects letters back to Σ. The automaton A
can then be viewed as an ε-free pushdown automaton over the nested alphabet
〈Σ∪Σ∪Σ〉 in which the direction of stack operations (i.e., whether the automaton
pushes, pops, or does not touch the stack) is determined by whether the current
position belongs to 〈Σ, Σ, or Σ〉. Such automata are known under the names
input-driven pushdown automata and visibly pushdown automata. A path (run,
computation) of an automaton A over an input word u = a1 . . . ak, where each
ai ∈ 〈Σ ∪ Σ ∪ Σ〉, is a sequence of configurations (pi, si), i = 0, . . . , k, with
(pi−1, si−1)

ai−→ (pi, si) for all i. We will sometimes talk about words accepted
by A, in which case we implicitly assume that A comes equipped with a subset
Qf ⊆ Q; accepted are words u for which there exists a path (q0, ε)

u−→ (q̄, s)
with q̄ ∈ Qf .

3 Synchronizing Words for NWA

Informally, we call a well-matched nested word u synchronizing for an NWA A
if it takes A from all control states to some single control state. Note that the
result of feeding any well-matched word to an NWA does not depend on the
stack contents; furthermore, if (q1, s1)

u−→ (q2, s2) and u is well-matched, then
s1 = s2. This lets us extend the definition of −→ to sets of states: we write
(Q1, s)

u−→ (Q2, s) if, first, the word u is well-matched, second, for all q1 ∈ Q1

there exists a q2 ∈ Q2 such that (q1, s)
u−→ (q2, s), and, third, for every state

q2 ∈ Q2 there exists a q1 ∈ Q1 such that (q1, s)
u−→ (q2, s). If Qi = {qi}, we

write (qi, s) instead of ({qi}, s).

Definition 1. A well-matched nested word u is synchronizing for an NWA
A = (Q,Γ, δ, q0, γ0) if there exists a control state q̄ ∈ Q such that the relation
(Q, ε) u−→ (q̄, ε) holds.

By the observation above, u is synchronizing if and only if there exists a q̄ ∈ Q
such that for all q ∈ Q and for all s ∈ Γ∗ the relation (q, s) u−→ (q̄, s) holds.

Remark. Definition 1 crucially relies on the nested structure of the input word,
in that this structure determines the stack behaviour of the NWA. Extending
this definition to the general case of pushdown automata (PDA) would face
the difficulties outlined in the introduction; to the best of our knowledge, no
such extension has been proposed to date. The term “synchronization” in the
context of PDA is known to be used when referring to the agreement between
the transitions taken by the automaton and an external structure [2]: in NWA,
for example, input symbols and stack actions are synchronized (in this sense).

Synchronizing Automata over Nested Words 257

Example 2. Given n ≥ 1, we construct an NWA An with O(log n) control
states and O(1) stack symbols such that the shortest synchronizing word for An

has length exactly n.
Our construction is inductive. We first construct a family of incomplete

NWA Bn with stack symbols {x, y} and two designated states qx and qy. In Bn,
the shortest run from qx to qy is driven by some well-matched nested word w of
length n, and along this run the state qy is not visited. These NWA will be incom-
plete in the sense that their transition functions will only be partial; redirecting
all missing transitions to the initial state in would make these NWA complete.
For each n, given Bn, we construct NWA B2n+4 and B2n+5 where the length of
the shortest run between two new states in and out is exactly 2n+4 and 2n+5,
respectively. The construction of B2n+4 is depicted in Fig. 1. Here the shortest
run from in to out is over call(x) ·w · ret(x) ·call(y) ·w · ret(y) and has length 2n+4;
splitting the state qz into two states, with internal transitions pointing from one
to the other, gives us B2n+5. We call this transformation doubling. For all n ≥ 4
the NWA Bn can be constructed by several doubling transformations starting
from one of the automata B0,B1,B2,B3 (which are simply NWAs with 1, 2, 3, 4
states). The size of Bn is O(log n).

For all n ≥ 2, from the NWA Bn−2 we construct an NWA An where the
shortest synchronizing word has length exactly n. Figure 2 shows the sketch
of the construction: there are two new letters # and £ and a new absorbing
state sync. From all states q of Bn−2, the letter # resets the NWA to in whereas
£-transitions are all self-loops except in the state out where out

£−→ sync. All
missing transitions are directed to the state in (note that even in the case of DFA,
existence of synchronizing words in the presence of partial transition functions
is PSPACE-complete [16]; it is thus of utmost importance that our NWA are
complete). Observe that the shortest synchronizing word has length exactly n;
it is # · w · £ where w is the shortest word that takes Bn−2 from in to out.

Remark. Our Example 2 seems to use a “non-uniform” set of call, return, and
internal symbols, but this is easily remedied by making some of the symbols
indistinguishable. All call positions in the word are simply call, and all return
positions are ret; in figures, the letter in parentheses is the pushed or popped
stack symbol.

qx

qy

w ⇒

in

out

qz

qx

qy

w

call(x)

ret(x)

call(y)

ret(y)

Fig. 1. Doubling transformation

Bn−2

NWA An

in

outq

w

sync

#

£
#

#,£

£

#,£

Fig. 2. NWA An based on Bn−2

258 D. Chistikov et al.

In decision problems that we study in this paper, the size of an automaton is
proportional to |Γ| · |Σ| · |Q|.
Theorem 3. If an NWA A has a synchronizing word, then it has one of length
at most exponential in the size of A. Moreover, the existence of a synchronizing
word can be decided in time polynomial in the size of A.

This theorem extends a characterization of synchronizing automata from DFA:
an NWA A has a synchronizing word if and only if for every pair of states p, q
there exists a well-matched word u that synchronizes this pair, i.e., ({p, q}, ε) u−→
(q̄, ε) for some q̄.

Theorem 4. The following decision problems, with an NWA A part of the
input, are EXP-complete:

(1) Given a subset I ⊆ Q, decide if there exists a well-matched nested word u

such that (I, ε) u−→ (q̄, ε) for some state q̄ ∈ Q.
(2) Given a subset F ⊆ Q, decide if there exists a well-matched nested word u

such that (Q, ε) u−→ (F ′, ε) for some subset F ′ ⊆ F .
(3) Given subsets I ⊆ Q and F ⊆ Q, decide if there exists a well-matched nested

word u such that (I, ε) u−→ (F ′, ε) for some subset F ′ ⊆ F .

The corresponding decision problems for DFA are PSPACE-complete [21,22],
where hardness is by a reduction from the DFA intersection nonemptiness prob-
lem (see [26] for a more refined complexity analysis). In the NWA case, the
proofs are an easy adaptation of these arguments and are based on the following
observation, which can be proved by a translation from tree automata or by a
direct extension of Kozen’s proof [14]:

Lemma 5. The following problem is EXP-complete: Given NWA A1, . . . ,Am,
decide if there exists a well-matched word accepted by all Ai.

The following theorem is our main result.

Theorem 6. The following problem Short Synchronizing Nested Word is
PSPACE-complete: Given an NWA A and an integer � ≥ 1 written in binary,
decide if A has a synchronizing word u of length at most �.

The corresponding decision problem for DFA is NP-complete [7]. (Note that
deciding if the shortest synchronizing word has length exactly �, a related but
different problem, is DP-complete [18].) Since any DFA with a synchronizing
word has one of length cubic in its size, it does not matter for DFA if � is
written in binary or in unary. In contrast, as our Example 2 shows, NWA may
need an exponentially long word for synchronization; this explains the choice of
the setting above. (In the alternative version, i.e., if � is written in unary, the
problem is NP-complete: the upper bound is a guess-and-check argument, and
hardness already holds for DFA.)

Synchronizing Automata over Nested Words 259

4 Upper Bound of Theorem6

In this section, we show that the following problem is in PSPACE: Given a
nested word automaton A and an integer � ≥ 1 written in binary, decide if there
exists a synchronizing word for A of length at most �. In fact, we can also adjust
our arguments (see Subsect. 4.2) so that they give a PSPACEupper bound for
another problem: Given a nested word automaton A, two subsets of its control
states I, F ⊆ Q, and an integer � ≥ 1 written in binary, decide if there exists a
well-matched word of length at most � that takes all states in I to F .

The plan of the proof is as follows. We encode nested words using binary
trees (Subsect. 4.1), so that runs of NWA correspond to computations of tree
automata and synchronizing words to tuples of such computations (Subsect. 4.2).
Thus the task of guessing a short synchronizing word is reduced to the task of
guessing an accepting computation of a tree automaton on an unknown binary
tree of potentially exponential size (Lemma 8); this is the same as guessing an
exponentially large binary tree subject to local conditions. We prove that it’s
possible to solve this bounded nonemptiness problem in polynomial space, even if
the tree automaton in question has exponentially many states and is only given
in symbolic form (Subsect. 4.4); our solution relies on the concepts of pebble
games and Strahler numbers (Subsect. 4.3).

4.1 Binary Tree Representation of Nested Words

In this subsection we describe a representation of nested words with binary trees
used in the sequel. Because of space constraints, we only give a short summary.

Nested Words as Binary Trees. We denote the binary tree representation
of a nested word u by bin(u). The explicit construction of bin(u) is not sophisti-
cated, but we only describe the result. Nodes of bin(u) come in several different
types. We did not attempt to minimize the number of these types; different
representations are, of course, also possible.

Type Degree Notes

call-return binary 2 Associated with matched pair 〈xi, xj〉
auxiliary binary 2 Corresponds to positions i < j

call-return unary 1 Associated with matched pair 〈xi, xj〉
call-return leaf 0 Associated with matched pair 〈xi, xj〉, j = i + 1

internal leaf 0 Associated with internal letter xi

We denote the set of types by Types; each type comes with a fixed degree, which
is simply the number of children of a node. Note that auxiliary binary nodes are
not associated with any letters in the nested word, although they do correspond
to pairs of positions in it.

260 D. Chistikov et al.

In general, execute the left-to-right depth-first traversal on the tree bin(u)
and spell the letters associated with the nodes in the natural way. Specifically,
at any call-return node v associated with i < j, spell “〈xi” when entering and
“xj〉” when leaving the subtree rooted at v; at any internal leaf associated with
i, spell “xi”. The traversal of the entire tree bin(u) spells the word u, and every
subtree spells some well-matched factor.

Claim 1. For any nested word u of length � its binary tree representation bin(u)
has at most 2� − 1 nodes. Moreover, if bin(u) = bin(u′), then u = u′.

Trees as Terms over a Ranked Alphabet. We now switch the perspective
a little and look at binary tree representations as terms. Indeed, pick the ranked
alphabet

F ⊆ Types × (〈Σ × Σ〉 ∪ Σ ∪ {ε}) (1)

as follows. All elements of F have rank 0, 1, or 2, according to their first (that
is, Types-) component; the rank is simply the admissible number of children
(i.e., the degree). The second component stores the associated letter or pair of
letters, if any; the value ε corresponds to the undefined association mapping.
Since the Types-component already determines whether the second component
should carry a pair of call and return letters, a single letter, or ε, we only take
valid combinations into F .

As this term representation is essentially the same as the binary representa-
tion defined above, we shall denote it by the same symbol bin(u); that is, bin(u)
is a term over F for any non-empty well-matched word u. In what follows, we
will mostly refer to bin(u) as a tree but treat it as a term.

4.2 From Nested Word Automata to Tree Automata

From Runs of NWA to Runs of Tree Automata. Recall the definition
of a nondeterministic tree automaton over a ranked alphabet F (see, e.g., [4]):
such an automaton is a tuple T = (Q,Qf ,Δ) where Q is a finite set of states,
Qf ⊆ Q is a set of final states, and Δ is a set of transition rules. These rules
have the form f(q1, . . . , qr) �→ q where q, q1, . . . , qr ∈ Q and r ≥ 0 is the rank of
the symbol f ∈ F ; nondeterminism of T means that Δ can contain several rules
with identical left-hand sides.

The semantics of tree automata is defined in the following manner. For any
tree t over the ranked alphabet F , we assign to any node v of t a state q ∈ Q
inductively, phrasing it as “the subtree tv rooted at v evaluates to the state q”
(as the automaton is nondeterministic, the same subtree may evaluate to sev-
eral different states). The inductive assertion is that if f is the label of v, the
subtree tv evaluates to q, and its principal subtrees evaluate to q1, . . . , qr, then
the transition f(q1, . . . , qr) �→ q appears in Δ. The entire tree t is accepted if the
root of t evaluates to some final state q̄ ∈ Qf .

Synchronizing Automata over Nested Words 261

Lemma 7. For any NWA A with states Q and for all pairs p̄, q̄ ∈ Q, there
exists a tree automaton T (p̄, q̄) over the ranked alphabet F as in (1) that has the
following property: T (p̄, q̄) accepts a tree bin(u) if and only if the NWA A has
a run on u that starts in state p̄ and ends in state q̄. Moreover, T (p̄, q̄) can be
constructed from A in time polynomial in the size of A.

Synchronizing Words and Implicitly Presented Tree Automata. We
can now return to the synchronizing word problem. Suppose A is an NWA with
states Q; now a well-matched nested word u is a synchronizing word for A if and
only if there is a state q̄ ∈ Q such that for all i the tree bin(u) is accepted by the
automaton T (qi, q̄); here we assume Q = {q1, . . . , qn}. The following statement
rephrases this condition in terms of products of tree automata (the definition is
standard; see, e.g., [4, Sect. 1.3]).

Lemma 8. An NWA A with states Q = {q1, . . . , qn} has a synchronizing word
of length at most � iff there exists a state q̄ ∈ Q such that the product automaton
Aq̄ = T (q1, q̄) × . . . × T (qn, q̄) × N� accepts some tree over F . Here N� is a
tree automaton that only depends on � and Σ and accepts the set of trees of the
form bin(u) where the nested word u has length at most �.

Note that the set of states of Aq̄, which we denote by Q, is, in general, exponen-
tial in the size of A. Note, however, that (i) each state has a representation—
as a tuple of n states of T (qi, q̄) and a state of N�—polynomial in the size
of A and � and, moreover, that (ii) the following problems can be decided in
PSPACE (and, in fact, in P, although we do not need to rely on this):

(a) given a state q ∈ Q, decide if q is a final state of Aq̄;
(b) given a symbol f ∈ F of rank r and states q, q1, . . . , qr ∈ Q, decide if

f(q1, . . . , qr) �→ q is a transition in Aq̄.

We emphasize that the complexity bounds in these properties are given with
respect to the size of A and �, i.e., assuming that A and � (and not Aq̄!) are
given as input. We will use these properties (i) and (ii) in Subsect. 4.4; for
brevity, we shall simply say that Aq̄ is implicitly presented in polynomial space.

Claim 2. The automaton Aq̄ from Lemma8 is implicitly presented in polyno-
mial space and does not accept any tree with more than 2� − 1 nodes.

The second part of the claim follows from Claim1 in Subsect. 4.1.

4.3 Pebble Games and Strahler Numbers

In this subsection we recall a classic idea that we use in the proof of Lemma 9 in
the following Subsect. 4.4. We believe that the involved concepts, albeit classic,
deserve more attention from our community than they have hitherto received.

An instance of the (black) pebble game (see, e.g., [23, Chapter 10]) is defined
on a directed acyclic graph, G. The game is one-player; the player sees the graph

262 D. Chistikov et al.

G and has access to a supply of pebbles. The game starts with no pebbles on
(vertices of) the graph. A strategy in the game is a sequence of moves of the
following kinds:

(a) if all immediate predecessors of a vertex v have pebbles on them, put a
pebble on (or move a pebble to) v;

(b) remove a pebble from a vertex v.

Note that for any source v of G, the pre-condition for the move of the first kind
is always satisfied. The strategy is successful if during its execution every sink
of G carries a pebble at least once; the strategy is said to use k pebbles if the
largest number of pebbles on G during its execution is k. The (black) pebbling
number of G, denoted peb(G), is the smallest k for which there exists a successful
strategy for G using k pebbles.

The black pebbling number captures space complexity of deterministic com-
putations [13,19]. Intuitively, think of G as a circuit, where sources are circuit
inputs and sinks are circuit outputs; nodes with nonzero fan-in are gates that
compute functions of their immediate predecessors. A strategy corresponds to
computing the value of the circuit using auxiliary memory: pebbling a vertex
(i.e., putting a pebble on it) corresponds to computing the value of the gate
and storing it in memory; removing a pebble from the vertex corresponds to
removing it from the memory. The pebbling number is thus (an abstraction of)
the minimal amount of memory required to compute the value of the circuit.

Consider the case where the graph is a tree, G = t, with all edges directed
towards the root; this corresponds to formulas, say arithmetic expressions [8].
For trees, the pebbling number can be computed inductively [15]: if t is a single-
vertex tree, then peb(G) = 1; suppose t has principal subtrees t1, . . . , td and
peb(t1) ≥ peb(t2) ≥ . . . ≥ peb(td), then peb(t) = max(peb(ti) + i − 1) over
1 ≤ i ≤ d. For binary trees (where all vertices have fan-in at most two, d ≤ 2)
the pebbling number (under different names) has been studied independently
and rediscovered multiple times (although, to the best of our knowledge, no
connection with the literature on pebbling games has ever been pointed out),
see [8,11]. The value peb(t)−1 is usually called the Strahler number of the tree t
and is also known, e.g., as the Horton–Strahler number and as tree dimension;
this is the largest h such that t has a complete binary tree of height h as a minor.

In the sequel, we choose to talk about Strahler numbers but use the connec-
tion to pebble games. The key observation, following from the last characteriza-
tion or from the recurrence above, is that the Strahler number of an m-node tree
does not exceed �log2(m + 1)� − 1 (this bound is tight). This value corresponds
to the pebbling strategy that, before pebbling any vertex v of indegree 2, first
(i) recurses into the subtree with the larger Strahler number; (ii) places (induc-
tively) a pebble on its root and removes all other pebbles from this subtree;
and then (iii) recurses into the other subtree. We will use this strategy in the
following subsection.

Synchronizing Automata over Nested Words 263

4.4 Bounded Nonemptiness for Implicitly Presented Tree Automata

Here we combine the ideas from Subsects. 4.2 and 4.3 to prove the upper bound
in Theorem 6.

Lemma 9. For a tree automaton implicitly presented in polynomial space and
a number m written in binary, one can decide in PSPACE if the automaton
accepts some tree with at most m nodes.

It is crucial that m constitute part of the input, because for explicitly presented
tree automata the (non-)emptiness problem is P-complete, and an implicitly
presented automaton can be exponentially big (this would give us an EXP upper
bound, which is tight by Lemma5 if no m is given). The upper bound on the
size of the tree significantly shrinks the search space, so we refer to this problem
as bounded nonemptiness. Assuming this lemma, the proof of the upper bound
of Theorem 6 goes as follows.

Proof (upper bound of Theorem 6). Combine Lemmas 8 and 9 with the fact
that the automaton Aq̄ from the former is implicitly presented in polynomial
space. Indeed, suppose an NWA A with states Q and an integer � are given. By
Lemma 8, a synchronizing word for A of length at most � exists if and only if
there exists a state q̄ ∈ Q such that the tree automaton Aq̄ accepts some tree
over the ranked alphabet F ; recall that this is the alphabet defined by (1) in
Subsect. 4.1. First note that the state q̄ can be guessed in polynomial space. Then
recall from Claim 2 in Subsect. 4.2 that Aq̄ only accepts trees with at most 2�−1
nodes; thus deciding its emptiness reduces to deciding its bounded emptiness.
Again by Claim 2, Aq̄ is implicitly presented in polynomial space, and thus we
can apply Lemma 9 with m = 2� − 1. This concludes the proof. ��
To prove Lemma 9, we design a decision procedure using the pebbling strategy
for trees that we discussed in Subsect. 4.3.

Proof (of Lemma 9). Denote the tree automaton implicitly presented in polyno-
mial space by Aq̄, as above. We describe a procedure that guesses (with checks
done on the fly) an accepting computation of Aq̄. Since the number m is given
in binary, we cannot afford to write down the entire accepted tree, as it could
take up exponential space.

However, suppose that such a tree t exists and has m′ ≤ m nodes; we assume
without loss of generality that m = m′. Consider some pebbling strategy for t,
as defined in Subsect. 4.3. Our procedure will guess moves of this strategy on the
fly and simulate them; it will also guess the tree t in lockstep. More precisely,
we maintain the following invariant. Take any time step and any vertex v and
denote by tv the subtree of t rooted at v. If the pebbling strategy prescribes that
v should have a pebble, then our procedure keeps in memory a pair (q, k) where
q ∈ Q is a state of Aq̄ that tv evaluates to, and k is the total number of nodes
in tv. Note that any such pair (q, k) takes up space polynomial in the size of the
input: states of Aq̄ have such representations by the assumptions of the lemma,
and k never needs to grow higher than m.

264 D. Chistikov et al.

We now describe how the moves of the strategy are simulated by our pro-
cedure. Suppose the strategy prescribes placing a pebble on a vertex v; by the
rules of the pebble game, this means that all immediate predecessors v1, . . . , vd

(if any) currently have pebbles on them. By our invariant, we already keep in
memory corresponding pairs (q1, k1), . . . , (qd, kd). Our procedure now guesses
the node v, i.e., its label f ∈ F in t. Then the procedure guesses a new state,
q ∈ Q, verifies in polynomial space that f(q1, . . . , qd) �→ q is a transition in Aq̄,
and that k = k1 + . . . + kd + 1 does not exceed m. If any check is failed, the pro-
cedure declares the current nondeterministic branch rejecting; if all the checks
are passed, the procedure stores the pair (q, k). Naturally, whenever a strategy
prescribes removing a pebble from a vertex, the procedure simply erases the
corresponding pebble from the memory (in fact, since t is a tree, we can assume
that every pair (q, k) is removed immediately after its use). At some point, the
procedure guesses that the strategy can terminate; this means that the root of
the tree t carries a pebble. The procedure picks some pair (q, k) from the mem-
ory and verifies in polynomial space that the state q is indeed final in Aq̄. This
signifies acceptance of tv.

It remains to argue that the procedure only uses polynomial space. The tree t
has m nodes, so, by the upper bound on Strahler numbers, the optimal strategy
needs peb(t) ≤ �log2(m + 1)� pebbles, which is polynomial in the size of the
input. If some guessed step requires more, the strategy cannot be optimal, and
the procedure declares the branch rejecting. This completes the proof. ��
The idea of the proof of Lemma 9 can be distilled in a different form: We can
show that the bounded emptiness problem (are all trees up to a certain size
rejected?) is in PSPACE for succinct tree automata. These are tree automata
where the set of states, Q, can be exponentially large, but does not need to be
written out explicitly, and the set of transitions and the set of final states are
represented with Boolean circuits (or, alternatively, with logical formulas over
an appropriate theory). The proof follows that of Lemma9.

5 Lower Bound of Theorem6

The matching lower bound for the Short Synchronizing Nested Word
problem is established by a reduction from the small-cost synchronizing word
problem, which we introduce and prove PSPACE-complete below.

5.1 Small-Cost Synchronizing Words in DFA

For a deterministic finite automaton (DFA) D = (Q,Δ) over Σ, consider a
function cost : Σ → Z>0 that assigns positive costs to letters a ∈ Σ. This
function is naturally extended to finite words: cost(w · a) = cost(w) + cost(a)
where w ∈ Σ∗. The small-cost synchronizing word problem asks, given a DFA
equipped with a cost function and a budget ∈ Z>0 written in binary, whether
the DFA has a synchronizing word w with cost(w) ≤ budget.

Synchronizing Automata over Nested Words 265

Table 1. Summary of the transition function δ of the NWA A with Γ = {x, y,£, �}
constructed from the DFA D = (Q, Δ) over Σ. The table specifies the endpoint of all
transitions: e.g., when A is at q ∈ Q and reads call, it pushes x and stays at q.

Theorem 10. The small-cost synchronizing word problem is PSPACE-
complete.

The upper bound is guess-and-check: any synchronizing word w with cost(w) ≤
budget has |w| ≤ budget, since cost(a) ≥ 1 for all a ∈ Σ. The lower bound is by
a reduction from the careful synchronization problem. Carefully synchronizing
words [16] are a generalization of synchronizing words to finite-state automata
with a partial transition function. Theorem10 strengthens PSPACE-hardness
results for similar models [5,12]: the key difference is that in our setting the cost
function can only depend on input letters and not on individual transitions.

5.2 Reduction to Short Synchronizing Nested Word

We prove the PSPACE-hardness of Short Synchronizing Nested Word by
a reduction from the small-cost synchronizing word problem: given a DFA D =
(Q,Δ) over Σ, cost : Σ → Z>0, and budget ∈ Z>0, we find an NWA A and a
length � such that D has a synchronizing word w with cost(w) ≤ budget if and
only if A has a synchronizing nested word of length at most �.

The intuition behind the reduction is as follows. We encode the cost of each
letter a in D with the length of a particular well-matched nested word a·wa in A;
as a result, runs in D will be, in a sense, simulated by runs in A. The nested
word a · wa is associated with a special gadget that we insert as a part of A;
we denote this gadget pay(q, a) (there is a separate copy for each q ∈ Q). The
intention is that the length of a nested word read by A corresponds to the cost
of some word read by D. Obviously, there will be runs of A that have structure
deviating from the form a1 · wa1 · · · ak · wak

; we call such deviations cheating.
We will ensure that, along runs of interest, cheating is impossible: deviating
transitions will lead to another set of gadgets, denoted punish(q), q ∈ Q. When

266 D. Chistikov et al.

DFA D

1 2
a, b

b

a

⇒

NWA A

punish(1)
in

out

punish(2)
in

out

pay(2, b)

in out

err
pay(2, a)

inout

err

pay(1, b)

in out

err

pay(1, a)

in out

err1 2

t2,bt2,a

t1,a

t1,b

a

b
a b

call(£)

call(£)

call(£) call(£)

ret(£)

ret(£)

ret(£)
ret(£)

ret() ret()

p1 p2
call() call()

ret(£)
ret(£)

ret(£)

ret(£)

force
call(x)

ret(Γ)

Fig. 3. An example of the reduction to the Short Synchronizing Nested Word.
For q ∈ {1, 2}, all #-transitions from q and from all states of gadgets pay(q, a), pay(q, b),
and punish(q) lead to pq. All a, b-transitions in all states are self-loops, except in
states 1, 2. The NWA A has a synchronizing nested word of length 4·budget+|wpunish|+1
if and only if D has a synchronizing word with cost at most budget.

a run of A is punished, it is forced to read a very long nested word wpunish, which
results in exceeding the length �. On the technical level, this “forcing” means
that all shorter continuations make no progress to the synchronization objective.

We now show how to construct the NWA A following this intuition; a
small example is shown in Fig. 3. The set of states in A is Q ∪ {force} ∪⋃

q∈Q,a∈Σ(pay(q, a)∪{tq,a})∪⋃
q∈Q(punish(q)∪{pq}) where Q denotes, as above,

the set of states of the DFA D, and we abuse the notation by letting pay(q, a)
and punish(q) refer to the sets of states of the corresponding gadgets. The set of
stack symbols of A is Γ = {x, y,£,�}; the input letters are Σ∪{#} where # �∈ Σ
(as in Remark on page 6, all call and return positions are assumed to have “fake”
input letters call and ret). Table 1 describes transitions of A.

It remains to define the gadgets pay(q, a) and punish(q). Recall that they need
to let through runs on nested words wa and wpunish; deviations are considered

NWA Bk pay(q, a)

in
call(£)

out
ret(£)

err
ret(£)

error

error

error

NWA Bm punish(q)

in
call()

out
ret()

error

erro
r

error

Fig. 4. Gadgets pay(q, a) (on the left) and punish (on the right) where Bk, Bm are
described in Example 2 with k = 4 · cost(a) − 3 and m = |wpunish| − 2

Synchronizing Automata over Nested Words 267

cheating and are handled appropriately. We base the construction of pay(q, a)
and punish(q) on the family of NWA Bn from Example 2; see Fig. 4. Each gadget
has two designated local states in and out, and the shortest run from in to out is
over the nested word that we denote by va (where wa = call · va · ret) in pay(q, a)
and by vpunish (where wpunish = call·vpunish·ret) in punish(q). We pick the parameter
k = |va| in Bk in such a way that |a ·wa| = |a ·call ·va · ret| = 4 ·cost(a); note that
k = 4 · cost(a) − 3 ≥ 1, since cost(a) ≥ 1. Our choice for m in Bm will be given
below. Now recall that the NWA Bn in Example 2 had only partially defined
transition functions; we make them complete by directing all missing transitions
(shown as “errors” in Fig. 4) to in in punish and to new local states err in pay. Note
that this includes missing transitions on call (they all push x to the stack) and
missing transitions on ret (at every control state, there is a popping transition for
each γ ∈ Γ). In contrast, on input # all transitions from pay(q, a) and punish(q)
go to the state pq.

In fact, every synchronizing word is forced to have at least one occurrence
of #, otherwise the run starting from yet another state force cannot be syn-
chronized with other runs. Therefore, every synchronizing word needs to have
at least one occurrence of wpunish, and this determines our choice of � and
|wpunish|. It is natural to pick � = 1 + |wpunish| + 4 · budget; since we want to
have � < 2 · |wpunish|, we need to make sure that |wpunish| > 4 · budget + 1. We
thus choose m + 2 = |wpunish| = 4 · budget + 2 and � = 8 · budget + 3.

This completes the description of our reduction; we omit the proof of cor-
rectness because of space constraints. This reduction provides the lower bound
in Theorem 6.

Acknowledgements. The authors are grateful to Michael Wehar for comments.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 16
(2009)

2. Caucal, D.: Synchronization of pushdown automata. In: Ibarra, O.H., Dang, Z.
(eds.) DLT 2006. LNCS, vol. 4036, pp. 120–132. Springer, Heidelberg (2006)

3. Chytil, M.P., Monien, B.: Caterpillars and context-free languages. In: Choffrut, C.,
Lengauer, T. (eds.) STACS 90. LNCS, vol. 415, pp. 70–81. Springer, Heidelberg
(1990)

4. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications, 12 October
2007. http://www.grappa.univ-lille3.fr/tata

5. Doyen, L., Juhl, L., Larsen, K.G., Markey, N., Shirmohammadi, M.: Synchronizing
words for weighted and timed automata. In: 34th International Conference on
Foundation of Software Technology and Theoretical Computer Science, FSTTCS,
15–17 December 2014, New Delhi, India, pp. 121–132 (2014)

6. Driscoll, E., Thakur, A., Reps, T.: OpenNWA: a nested-word automaton library.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 665–671.
Springer, Heidelberg (2012)

http://www.grappa.univ-lille3.fr/tata

268 D. Chistikov et al.

7. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3),
500–510 (1990)

8. Ershov, A.P.: On programming of arithmetic operations. Commun. ACM 1(8), 3–9
(1958)

9. Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: a simple
and direct automaton construction. Inf. Process. Lett. 111(12), 614–619 (2011)

10. Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous
shared-memory systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 124–140. Springer, Heidelberg (2013)

11. Esparza, J., Luttenberger, M., Schlund, M.: A brief history of Strahler numbers.
In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 1–13. Springer, Heidelberg (2014)

12. Fominykh, F.M., Martyugin, P.V., Volkov, M.V.: P(l)aying for synchronization.
Int. J. Found. Comput. Sci. 24(6), 765–780 (2013)

13. Hopcroft, J.E., Paul, W.J., Valiant, L.G.: On time versus space. J. ACM 24(2),
332–337 (1977)

14. Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–
1 November, pp. 254–266 (1977)

15. Lengauer, T., Tarjan, R.E.: The space complexity of pebble games on trees. Inf.
Process. Lett. 10(4/5), 184–188 (1980)

16. Martyugin, P.: Computational complexity of certain problems related to carefully
synchronizing words for partial automata and directing words for nondeterministic
automata. Theor. Comput. Syst. 54(2), 293–304 (2014)

17. Mehlhorn, K.: Pebbling moutain ranges and its application of DCFL-recognition.
In: Proceedings Automata, Languages and Programming, 7th Colloquium,
Noordweijkerhout, The Netherland, July 14–18, pp. 422–435 (1980)

18. Olschewski, J., Ummels, M.: The complexity of finding reset words in finite
automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
568–579. Springer, Heidelberg (2010)

19. Paterson, M.S., Hewitt, C.E.: Comparative schematology. In: Record of the Project
MAC Conference on Concurrent Systems and Parallel Computation, pp. 119–127.
ACM, MIT AI Memo AIM-201 (1970). http://hdl.handle.net/1721.1/5851

20. Pin, J.-É.: On two combinatorial problems arising from automata theory.
North-Holland Math. Stud. 75, 535–548 (1983)

21. Rystsov, I.K.: Polynomial complete problems in automata theory. Inf. Process.
Lett. 16(3), 147–151 (1983)

22. Sandberg, S.: Homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)

23. Savage, J.E.: Models of Computation - Exploring the Power of Computing.
Addison-Wesley, Boston (1998)

24. Černý, J., Pirická, A., Rosenauerová, B.: On directable automata. Kybernetika
7(4), 289–298 (1971)

25. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

26. Wehar, M.: Hardness results for intersection non-emptiness. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS,
vol. 8573, pp. 354–362. Springer, Heidelberg (2014)

http://hdl.handle.net/1721.1/5851

On Freeze LTL with Ordered Attributes

Normann Decker(B) and Daniel Thoma

Institute for Software Engineering and Programming Languages,
University of Lübeck, Lübeck, Germany
{decker,thoma}@isp.uni-luebeck.de

Abstract. This paper is concerned with Freeze LTL, a temporal logic
on data words with registers. In a (multi-attributed) data word each posi-
tion carries a letter from a finite alphabet and assigns a data value to a
fixed, finite set of attributes. The satisfiability problem of Freeze LTL is
undecidable if more than one register is available or tuples of data val-
ues can be stored and compared arbitrarily. Starting from the decidable
one-register fragment we propose an extension that allows for specifying
a dependency relation on attributes. This restricts in a flexible way how
collections of attribute values can be stored and compared. This concep-
tual dimension is orthogonal to the number of registers or the available
temporal operators. The extension is strict. Admitting arbitrary depen-
dency relations, satisfiability becomes undecidable. Tree-like relations,
however, induce a family of decidable fragments escalating the ordinal-
indexed hierarchy of fast-growing complexity classes, a recently intro-
duced framework for non-primitive recursive complexities. This results
in completeness for the class Fε0 . We employ nested counter systems and
show that they relate to the hierarchy in terms of the nesting depth.

1 Introduction

A central aspect in modern programming languages and software architectures
is dynamic and unbounded creation of entities. In particular object oriented
designs rely on instantiation of objects on demand and flexible multi-threaded
execution. Finite abstractions can hardly reflect these dynamics and therefore
infinite models are very valuable for specification and analysis. This motivates
us to study the theoretical framework of words over infinite alphabets. It allows
for abstracting, e.g., the internal structure and state of particular objects or
processes while still being able to capture the architectural design in terms of
interaction and relations between dynamically instantiated program parts.

These data words, as we consider them here, are finite, non-empty sequences
w = (a1,d1)(a2,d2) . . . (an,dn) where the i-th position carries a letter ai from
a finite alphabet Σ. Additionally, for a fixed, finite set of attributes A a data
valuation di : A → Δ assigns to each attribute a data value from an infinite
domain Δ with equality.

This work was partially supported by EGIDE/DAAD-Procope (FREQS).

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 269–284, 2016.
DOI: 10.1007/978-3-662-49630-5 16

270 N. Decker and D. Thoma

Freeze LTL. In formal verification, temporal logics are widely used for for-
mulating behavioural specifications and, regarding data, the concept of storing
values in registers for comparison at different points in time is very natural. This
paper is therefore concerned with the logic Freeze LTL [8] that extends classi-
cal Linear-time Temporal Logic (LTL) by registers and was extensively studied
during the past decade. Since the satisfiability problem of Freeze LTL is unde-
cidable in general, we specifically consider the decidable fragment LTL↓

1 [7] that
is restricted to a single register and future-time modalities. More precisely, we
propose a generalisation of this fragment and study the consequences in terms
of decidability and complexity.

Considering specification and modelling, the ability of comparing tuples of
data values arbitrarily is a valuable feature. Unfortunately, this generically ren-
ders logics on data words undecidable (cf. related work below). We therefore
extend Freeze LTL by a mechanism for carefully restricting the collections of
values that can be compared in terms of a dependency relation on attributes. In
general, this does not suffice to regain decidability of the satisfiability problem.
Imposing, however, a hierarchical dependency structure such that comparison
of attribute values is carried out in an ordered fashion, we obtain a strict hierar-
chy of decidable fragments parameterised by the maximal depth of the attribute
hierarchy.

Before we exemplify this concept, let us introduce basic notation. Let Σ be
a finite alphabet and (A,�) a finite set of attributes together with a reflexive
and transitive relation � ⊆ A × A, i.e., a quasi-ordering, simply denoted A if �
is understood. We call our logic LTL↓

qo and define its syntax according to the
grammar

ϕ::=a | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕUϕ | ↓xϕ | ↑x

for letters a ∈ Σ and attributes x ∈ A. We further include common abbreviations
such as disjunction, implication or the temporal operators release (ϕ R ψ :=
¬(¬ϕU¬ψ)), weak next (Xϕ := ¬X ¬ϕ) and globally (Gϕ := false R ϕ). The
restriction of LTL↓

qo to a particular, fixed set of attributes (A,�) is denoted
LTL↓

(A,�) (or simply LTL↓
A).

In the following, we explain the idea of our extension by means of an example.
The formal semantics is defined in Sect. 2.

Example 1. Consider a system with arbitrarily many processes that can lock,
unlock and use an arbitrary number of resources. A data word over the alphabet
Σ = {lock, unlock, use, halt} can model its behaviour in terms of an interleaving
of individual actions and global signals. The corresponding data valuation can
provide specific properties of an action, such as a unique identifier for the involved
process and the resource. Let us use attributes A = {pid, res} and interpret data
values from Δ as IDs. Notice that this way, we do not assume a bound on the
number of involved entities.

Consider now the property that locked resources must not be used by foreign
processes and all locks must be released on system halt. To express this, we need
to store both the process and resource ID for every lock action and verify that

On Freeze LTL with Ordered Attributes 271

lock lock use unlock unlock lock lock use unlock halt unlock

(res) 1 2 2 2 1 1 3 3 3 9 1

(pid) 1 1 1 1 1 1 2 1 1 8 1

Fig. 1. The left word satisfies the formula from Example 1 whereas every strict prefix
does not. The right word violates the property because at position 3 use holds and the
value of res matches the one stored at position 2 but the whole valuation (3,1) differs
from (3,2), so the check ↑pid fails. Moreover, halt occurs before (1,1) was observed again
in combination with unlock.

a use involving the same resource also involves the same process. As mentioned
earlier, employing a too liberal mechanism to store multiple data values at once
breaks the possibility of automatic analysis. In our case, however, we do not
need to refer to processes independently. It suffices to consider only resources
individually and formulate that the particular process that locks a resource is the
only one using it before unlocking. This one-to-many correspondence between
processes and resources allows us to declare the attribute pid to be dependent
on the attribute res and formulate the property by the formula

G(lock → ↓pid((use ∧ ↑res→ ↑pid) ∧ ¬halt)U(unlock ∧ ↑pid)).
The freeze quantifier ↓pid stores the current value assigned to pid and also implic-
itly that of all its dependencies, res in this case. The check operator ↑x, for an
attribute x ∈ A, then verifies at some position that the current values of x and
its dependencies coincide with the information that was stored earlier. Also,
properties independent of the data can be verified within the same context, e.g.,
¬halt for preventing a shut down as long as any resource is still locked. See Fig. 1
for example words.

Using this extended storing mechanism, we can select the values of the two
attributes (↓pid) and identify and distinguish positions in a data word where
both (↑pid), a particular one of them (↑res) or a global signal (e.g., halt) occurs.
In contrast to other decidable fragments of Freeze LTL, we are thus able to store
collections of values and can compare individual values across the hierarchy
of attributes. This allows for reasoning on complex interaction of entities, also
witnessed by the high, yet decidable, complexity of the logic.

Outline and Results. We define the semantics of LTL↓
qo in Sect. 2 generalising

Freeze LTL based on quasi-ordered attribute sets. We show that every fragment
LTL↓

A is undecidable unless A has a tree-like structure, formalised as what we
call a tree-quasi-ordering.

Section 3 is devoted to nested counter systems (NCS) and an analysis of their
coverability problem. We determine its non-primitive recursive complexity in
terms of fast-growing complexity classes [20]. These classesFα are indexed by ordi-
nal numbers α and characterise complexities by fast-growing functions from the
extended Grzegorczyk hierarchy (details are provided in Sect. 3). We show that
with increasing nesting level coverability in NCS exceeds every class Fα for ordi-
nals α < ε0. By also providing a matching upper bound, we establish the following.

272 N. Decker and D. Thoma

Theorem 2 (NCS). The coverability problem in NCS is Fε0-complete.

We consider the fragment LTL↓
tqo in Sect. 4. It restricts the available dependency

relations to tree-quasi-orderings. By reducing the satisfiability problem to NCS
coverability, we obtain a precise characterisation of the decidability frontier in
LTL↓

qo. Moreover, we transfer the lower bounds obtained for NCS to the logic
setting. This leads us to a strict hierarchy of decidable fragments of LTL↓

tqo

parameterised by the depth of the attribute orderings and a completeness result
for LTL↓

tqo.

Theorem 3 (LTL↓
qo). The satisfiability problem of

– LTL↓
A is decidable if and only if A is a tree-quasi-ordering.

– LTL↓
tqo is Fε0-complete.

Related Work. The freeze [13] mechanism was introduced as a natural form
of storing and comparing (real-time) data at different positions in time [1] and
since studied extensively in different contexts, e.g., [10,11,17]. In particular linear
temporal logic employing the freeze mechanism over domains with only equality,
i.e., data words, was considered in [8] and shown highly undecidable (Σ1

1 -hard).
Therefore, several decidable fragments were proposed in the literature with com-
plexities ranging from exponential [15] and double-exponential space [6] to non-
primitive recursive complexities [7]. For the one-register fragment LTL↓

1 that
we build on here, an Fω upper bound was given in [9]. Due to its decidability
and expressiveness, it is called in [7] a “competitor” for the two-variable first-
order logic over data words FO2(∼, <,+1) studied in [3]. There, satisfiability
was reduced to and from reachability in Petri nets in double-exponential time
and polynomial time, respectively, for which recent results provide an Fω3 upper
bound [16].

Our main ambition is to incorporate means of storing and comparing collec-
tions of data values. The apparent extension of storing and comparing even only
pairs generically renders logics on data words, even those with essential restric-
tions, undecidable [3,5,14]. This applies in particular to fragments of LTL↓

1 [6].
The logic Nested Data LTL (ND-LTL) studied in [5] employs a navigation

concept based on an ordered set of attributes. It inspired our extension of Freeze
LTL but in contrast, data values in ND-LTL are not handled explicitly, result-
ing in incomparable expressiveness and different notions of natural restrictions.
While ND-LTL also features a freeze-like mechanism, it does not contain an
explicit check operator (↑). Instead, data-aware variants of temporal operators
such as U= express constraints (only) for position where the stored value is
present. For example, an ND-LTL formula G(lock → ↓pid(¬haltU=unlock)) (in
notation of this paper) requires that for every position satisfying lock there is
a future position unlock with the same data value and that ¬halt holds (at
least) on all those position in between that also carry this particular value. In
contrast, G(lock → ↓pid(¬haltU(unlock ∧ ↑pid))) asserts that at all position in

On Freeze LTL with Ordered Attributes 273

between ¬halt holds. Enforcing such constraints in ND-LTL typically requires
an additional level of auxiliary attributes.

The future fragment ND-LTL+ was shown decidable and non-primitive recur-
sive on finite A-attributed data words for tree-(partial-)ordered attribute sets A.
However, no upper complexity bounds were provided and the developments in
this paper significantly raise the lower bounds (cf. Sect. 5). The influence of more
general attribute orderings, in particular the precise decidability frontier in that
dimension, was not investigated for ND-LTL and its fragments. Instead, the logic
was shown undecidable by exploiting the combination of future- and past-time
operators. Extending LTL↓

1 with past-time operators is also known to lead to
undecidability. ND-LTL+ stays decidable even on infinite words, which is not
the case for LTL↓

tqo since satisfiability of LTL↓
1 is already Π0

1 -complete [7].

2 Semantics and Undecidability of LTL↓
qo

By specifying dependencies between attributes from a set A in terms of a quasi-
ordering � ⊆ A × A the freeze mechanism can be used to store the values
of multiple attributes at once. The essential intuition for our generalised stor-
ing mechanism can well be obtained from the special case of a linearly ordered
attribute set [k] = {1, . . . , k} with the natural ordering ≤ for some natural num-
ber k ∈ N. In fact, many of the technical developments in this paper concerning
decidability and complexity are carried out within this setting but for concise
presentation we only provide the most general formulation that captures also
the undecidable case.

The valuations d ∈ Δ[k] in a [k]-attributed data word are essentially
sequences (or vectors) d1 . . . dk where the x-th position carries the value dx =
d(x) of attribute x ∈ [k]. Note that Example 1 matches that setting when renam-
ing res to 1 and pid to 2.

In a formula ↓xϕ the subformula ϕ is evaluated in the context of the current
value d(x) of the attribute x ∈ A and the values d(y) of all smaller attributes
y ≤ x. Thus, the prefix d1 . . . dx of the value sequence at the current position is
stored for later comparison. A check operator ↑y then compares the stored values
d1 . . . dx to the values d′

1 . . . d′
y at the current position: the check is successful if

the latter sequence is a prefix of the former, i.e. y ≤ x and d1 . . . dy = d′
1 . . . d′

y.
For the general setting of arbitrary (quasi-ordered) dependency relations

(A,�), we lift the notion of the prefix of length x to the restriction of a valuation
d : A → Δ to the downward-closure cl(x) = {y ∈ A | y � x} of x in A. This
restriction is defined as d|x : cl(x) → Δ with d|x(y) = d(y) for y � x. We denote
the set of all such partial data valuations by ΔA

⊥ = {d : cl(x) → Δ | x ∈ A}.
Partial valuations d,d′ ∈ ΔA

⊥ are compared in analogy to sequences: it must
be possible to map one onto the other such that ordering is preserved and all
values coincide. Formally, we define an equivalence relation � ⊆ ΔA

⊥ × ΔA
⊥ by

d � d′ if and only if there is a bijection h : dom(d) → dom(d′) such that,
for all attributes x ∈ dom(d) we have d(x) = d′(h(x)) and, for all attributes
y ∈ dom(d), x � y ⇔ h(x) � h(y). Notice that this requires the domains of

274 N. Decker and D. Thoma

d and d′ to be isomorphic. In the definition presented next we therefore allow
for restricting the stored valuation arbitrarily before it is matched against the
current one. In the linear case this simply means truncating the stored sequence
before comparison and intuitively it allows for removing unnecessary information
from the context.

Semantics of LTL↓
qo. For a non-empty data word w = (a1,d1) . . . (an,dn) ∈

(Σ × ΔA)+, an index 1 ≤ i ≤ n in w and a partial data valuation d ∈ ΔA
⊥ the

semantics of LTL↓
A formulae is defined inductively by

(w, i,d) |= ai

(w, i,d) |= ¬ϕ :⇔ (w, i,d) |= ϕ
(w, i,d) |= ϕ ∧ ψ :⇔ (w, i,d) |= ϕ and (w, i,d) |= ψ
(w, i,d) |= X ϕ :⇔ i + 1 ≤ n and (w, i + 1,d) |= ϕ
(w, i,d) |= ϕUψ :⇔ ∃i≤k≤n : (w, k,d) |= ψ and ∀i≤j<k : (w, j,d) |= ϕ
(w, i,d) |= ↓xϕ :⇔ (w, i,di|x) |= ϕ
(w, i,d) |= ↑x :⇔ ∃y∈A : d|y � di|x.

For formulae ϕ where every check operator ↑x is within the scope of some freeze
quantifier ↓y the stored valuation is irrelevant and we write w |= ϕ if (w, 1,d) |=
ϕ for any valuation d.

Example 4. Consider a set of attributes A = {x1, x2, x3, y1, y2} with x1 � x2 � x3
and y1 � y2 (this is an example for a tree-quasi-ordering, see below), the formula
↓x3 X(↑y2 U ↑x3) and a data word w = (a1,d1) . . . (an,dn). The formula reads as:
“Store the current values d1, d2, d3 of x1, x2, x3, respectively. Move on to the next
position. Verify that the stored value d1 appears in y1 and that d2 appears in y2
until the values d1, d2, d3 appear again in attributes x1, x2, x3, respectively.”

At the first position, the values d1 = d1(x1), d2 = d1(x2) and d3 = d1(x3)
are stored in terms of the valuation d = d1|x3 : {x1, x2, x3} → Δ since x1, x2, x3
depend on x3. Assume for the second position d2(x1) = d1(x1) = d1. The formula
↑x3 is not satisfied at the second position in the context of d since the only
attribute p ∈ A such that cl(p) is isomorphic to {x1, x2, x3} is p = x3. Then,
however, any order preserving isomorphism needs to map x1 ∈ dom(d) to x1 ∈
dom(d2) since x1 is the minimal element in both domains but d(x1) = d2(x1).
The only way to not violate the formula is hence that d2(y1) = d1(x1) and
d2(y2) = d1(x2). Then, we can choose p = x2 and have d|x2 � d2|y2 meaning
that ↑y2 is satisfied.

Undecidability. For � = {(x, x) | x ∈ A} (identity) we obtain the special case
where only single values can be stored and compared. If |A| = 1 we obtain the
one-register fragment LTL↓

1. On the other hand, if A contains three attributes
x, y, z such that x and y are incomparable and x � z � y then storing the value
of z also stores the values of x and y. This amounts to storing and comparing
the set {dx, dy} ⊂ Δ of values assigned to x and y. This is not precisely the same
as storing the ordered tuple (dx, dy) ∈ Δ × Δ but together with the ability of

On Freeze LTL with Ordered Attributes 275

storing and comparing x and y independently it turns out to be just as contagious
considering decidability.

In [3] it is shown that the satisfiability problem of two-variable first-order logic
over data words with two class relations is undecidable by reduction from Post’s
correspondence problem. We can adapt this proof and formulate the necessary
conditions for a data word to encode a solution using only the attributes x � z �
y. With ideas from [6] we can also omit using past-time operators. Moreover,
this result can be generalised to arbitrary quasi-orderings that contain three
attributes x � z � y.

The absence of such a constellation is formalised by the notion of a tree-
quasi-ordering defined as a quasi-ordering where the downward-closure of every
element is totally ordered. This precisely prohibits elements z that depend on
two independent elements x and y. The definition describes in a general way a
hierarchical, tree-like structure. Intuitively, a tree-quasi-ordering is (the reflexive
and transitive closure of) a forest of strongly connected components.

Theorem 5 (Undecidability). Let (A,�) be a quasi-ordered set of attributes
that is not a tree-quasi-ordering. Then the satisfiability problem of LTL↓

A is Σ0
1 -

complete over A-attributed data words.

As will be discussed in Sect. 4, tree-quasi-orderings represent not only neces-
sary but also sufficient conditions for the logic to be decidable.

3 Nested Counter Systems

Nested counter systems (NCS) are a generalisation of counter systems similar to
higher-order multi-counter automata as used in [2] and nested Petri nets [18]. In
this section we establish novel complexity results for their coverability problem.
A finite number of counters can equivalently be seen as a multiset M = {c1 :
n1, . . . , cm : nm} over a set of counter names C = {c1, . . . , cn}. We therefore
define NCS in the flavor of [5] as systems transforming nested multisets.

Let M(A) denote, for any set A, the set of all finite multisets of elements
of A. For k ∈ N we write [k] to denote the set {1, . . . , k} ⊂ N with the natural
linear ordering ≤. A k-nested counter system (k-NCS) is a tuple N = (Q, δ)
comprised of a finite set Q of states and a set δ ⊆ ⋃

i,j∈[k+1](Q
i×Qj) of transition

rules. For 0 ≤ i ≤ k the set Ci of configurations of level i is inductively defined
by Ck = Q and Ci−1 = Q × M(Ci). The set of configurations of N is then
CN = C0. Every element of CN can, more conveniently, be presented as a term
constructed over unary function symbols Q, constants Q and a binary operator +
that is associative and commutative. For example, the configuration (q0, {(q1, ∅) :
1, (q1, {(q2, ∅) : 2}) : 2, (q1, {(q2, ∅) : 2, (q3, {(q4, ∅) : 1}) : 1}) : 1}) can be
represented by the term q0(q1+q1(q2+q2)+q1(q2+q2)+q1(q2+q2+q3(q4))). The
operational semantics of N is now defined in terms of the transition relation → ⊆
CN ×CN on configurations given by rewrite rules. For ((q0, . . . , qi), (q′

0, . . . , q
′
j)) ∈

δ and i, j < k we let

q0(X1 + q1(. . . qi(Xi+1) . . .)) → q′
0(X1 + q′

1(. . . q
′
j(Xj+1) . . .))

276 N. Decker and D. Thoma

for any Xh ∈ M(Ch) where 1 ≤ h ≤ k and X� = ∅ for i + 2 ≤
 ≤ j + 1. For
example, a rule ((q0), (q′

0)) changes the state q0 in the example configuration
above to q′

0. A rule ((q0, q1), (q0, q1, q′
2)) adds a state q′

2 non-deterministically as
a direct child of one of the states q1 resulting in one of the three configurations

q0(q1(q′
2) + q1(q2 + q2) + q1(q2 + q2) + q1(q2 + q2 + q3(q4))),

q0(q1 + q1(q2 + q2 + q′
2) + q1(q2 + q2) + q1(q2 + q2 + q3(q4))) and

q0(q1 + q1(q2 + q2) + q1(q2 + q2) + q1(q2 + q2 + q3(q4) + q′
2)).

Moreover, a rule ((q0, q1, q3), (q0)) would remove specifically and completely the
sub-configuration q1(q2 + q2 + q3(q4)) since it does not match any other one.

The remaining cases for transitions, where (1) i < k = j, (2) i = k > j and
(3) i = k = j, are defined as expected by rules

q0(X1 + q1(. . . qi(Xi+1) . . .)) → q′
0(X1 + q′

1(. . . q
′
k−1(Xk + q′

k) . . .)) (1)
q0(X1 + q1(. . . qk−1(Xk + qk) . . .)) → q′

0(X1 + q′
1(. . . q

′
j(Xj+1) . . .)) (2)

q0(X1 + q1(. . . qk−1(Xk + qk) . . .)) → q′
0(X1 + q′

1(. . . q
′
k−1(Xk + q′

k) . . .)) (3)

respectively, where for (1) we have Xi+2 = . . . = Xk = ∅. Note that these cases
are exhaustive since the nesting depth of terms representing configurations from
CN is at most k. As usual we denote by →∗ the reflexive and transitive closure
of →. By � we denote the nested multiset ordering, i.e. M ′ � M iff M ′ can
be obtained by removing elements (or nested multisets) from M . Given two
configurations C,C ′ ∈ CN the coverability problem asks for the existence of a
configuration C ′′ ∈ CN with C ′′ � C ′ and C →∗ C ′′.

To establish our complexity results on NCS we require some notions on ordi-
nal numbers, ordinal recursive functions and respective complexity classes. We
represent ordinals using the Cantor normal form (CNF). An ordinal α < ε0 is
represented in CNF as a term α = ωα1 + . . . + ωαk over the symbol ω and the
associative binary operator + where α > α1 ≥ . . . ≥ αk. Furthermore, we denote
limit ordinals by λ. These are ordinals such that α + 1 < λ for every α < λ. We
associate them with a fundamental sequence (λn)n with supremum λ defined by

(α + ωβ+1)n := α +

n
︷ ︸︸ ︷
ωβ + . . . + ωβ and (α + ωλ′

)n := α + ωλ′
n

for ordinals β and limit ordinals λ′. Then, ε0 is the smallest ordinal α such
that α = ωα. We denote the n-th exponentiation of ω as Ωn, i.e. Ω1 := ω and
Ωn+1 := ωΩn . Consequently, (Ωn)m < Ωn is the m-th element of the fundamen-
tal sequence of Ωn. Given a monotone and expansive1 function h : N → N, a
Hardy hierarchy is an ordinal-indexed family of functions hα : N → N defined
by h0(n) := n, hα+1(n) := hα(h(n)) and hλ(n) := hλn(n). Choosing h as the
incrementing function H(n) := n + 1, the fast growing hierarchy is the family of
functions Fα(n) with Fα(n) := Hωα

(n).
1 A function f : A → A over an ordering (A, ≤) is monotone if a ≤ a′ ⇒ f(a) ≤ f(a′)

and expansive if a ≤ f(a) for all a, a′ ∈ A.

On Freeze LTL with Ordered Attributes 277

The hierarchy of fast growing complexity classes Fα for ordinals α is defined
in terms of the fast-growing functions Fα. We refer the reader to [20] for
details and only remark that F<ω is the class of primitive recursive problems
and problems in Fω,Fωω are solvable with resources bound by Ackermannian
and Hyper-Ackermannian functions, respectively. The fact most relevant for our
classification is that a basic Fα-complete problem is the termination problem of
Minsky machines M where the sum of the counters is bounded by Fα(|M|) [20].

Upper Bound. To obtain an upper bound for the coverability problem in
k-NCS we reduce it to that in priority channel systems (PCS) [12]. PCS are
comprised of a finite control and a fixed number of channels, each storing a
string to which a letter can be appended (write) and from which the first letter
can be read and removed (read). Every letter carries a priority and can be
lost at any time and any position in a channel if its successor in the channel
carries a higher or equal priority. PCS can easily simulate NCS by storing and
manipulating an NCS configuration in a channel where a state q at level i > 0 in
the NCS configuration is encoded by a letter (q, k − i) with priority k − i. E.g.,
the 3-NCS configuration q0(q1+q1(q2+q2)+q1(q2+q2+q3(q4))) can be encoded
as a channel of the form (q1, 2)(q1, 2)(q2, 1)(q2, 1)(q1, 2)(q2, 1)(q2, 1)(q3, 1)(q4, 0)
while q0 is encoded in the finite control.

Taking the highest priority for the outermost level ensures that the lossi-
ness of PCS corresponds to descending with respect to � for the encoded NCS
configuration. Thus the coverability problem in NCS directly translates to that
in PCS. The coverability (control-state reachability) problem in PCS with one
channel and k priorities lies in the class FΩ2k

[12] and we thus obtain an upper
bound for NCS coverability.

Proposition 6. Coverability in k-NCS is in FΩ2k
.

Lower Bound. We can reduce, for any k > 1, the halting problem of H(Ωk)l -
bounded Minsky machines to coverability in k-NCS with the number of states
bounded by l + c, for some constant c. This yields the following characterisation
(recall that H(Ωk+1)l = F(Ωk)l

).

Theorem 7. Coverability in (k + 1)-NCS is FΩk
-hard.

The idea is to construct a k-NCS N = (Q, δ) that can simulate the evaluation
of the Hardy function Hα(n) for α ≤ (Ωk)l in forward as well as backward
direction. It can then compute a budget that is used for simulating the Minsky
machine. Lower bounds for various models were obtained using this scheme for
Turing machines [4,12] or Minsky machines [19,21].

The following construction uses k + 1 levels of which one can be eliminated
later. We encode the ordinal parameter α of Hα(n) and its argument n ∈ N

(unary) into a configuration

Cα,n := main(s(Mα) + c(

n
︷ ︸︸ ︷
1 + . . . + 1))

278 N. Decker and D. Thoma

using control-states main, s, c, ω ∈ Q and configurations Mα defined by M0 := ∅
and Mωα+β := ω(Mα) + Mβ . For example, an ordinal α = ωω + ω2 + ω2 + 1 is
encoded by

Mα = {(ω, {(ω, {(ω, ∅) : 1}) : 1}) : 1, (ω, {(ω, ∅) : 2}) : 2, (ω, ∅) : 1}

Note that we use shorthands for readability, e.g., ωω stands for ωω1
where 1

is again short for the ordinal ω0. The construction has to fulfil the following
two properties. As NCS do not feature a zero test exact simulation cannot be
enforced but errors can be restricted to be “lossy”.

Lemma 8. For all configurations Cα,n →∗ Cα′,n′ we have Hα(n) ≥ Hα′
(n′).

The construction will, however, admit at least one run maintaining exact values.

Lemma 9. If Hα(n) = Hα′
(n′) then there is a run Cα,n →∗ Cα′,n′ .

The main challenge is simulating a computation step from a limit ordinal to an
element of its fundamental sequence, i.e., from Cα+λ,n to Cα+λn,n and conversely.
Encoding the ordinal parameter using multisets loses the ordering of the addends
of the respective CNF terms. Thus, instead of taking the last element of the CNF
term we have to select the smallest element, with respect to �, of the correspond-
ing multiset. To achieve that, we extend NCS by two operations cp and min.
Given some configuration C = q1(q2(M)) ∈ CN the operation (q1, q2)cp(q′

1, q
′
2)

copies M resulting in C ′ = q′
1(q

′
2(M1) + q′

2(M2)) with M1,M2 � M . Conversely,
given the configuration C ′ the operation (q′

1, q
′
2)min(q1, q2) results in C with

M � M1,M2.
Both operations can be implemented in a depth first search fashion using

the standard NCS operations. Based on them the selection of a smallest element
from a multiset can be simulated: all elements are copied (non-deterministically)
one by one to an auxiliary set while enforcing a descending order. Applying the
min operation in every step ensures that we either proceed indeed in descending
order or make a “lossy” error. We guess, in each step, whether the smallest
element is reached and in that case delete the source multiset. Thereby it is
ensured, that the smallest element has been selected or, again, a “lossy” error
occurs such that the selected element is now the smallest one. The additional
level in the encoding of Cα,n enables us to perform this deletion step.

A similar idea to select a smallest ordinal from a multiset is used in [19].
However, we need to handle nested structures of variable size correctly whereas
in this work the considered ordinals are below Ω3. They are represented by
a multiset of vectors of fixed length where the vectors can be compared and
modified directly in order enforce the choice of a minimal one.

We now construct an NCS simulating an Hα(s)-bounded Minsky machine
M of size s := |M| analogously to the constructions in [4,12,21]. It starts in a
configuration Cα,s to evaluate Hα(s). When it reaches C0,n for some n ≤ Hα(s)
it switches its control state and starts to simulate M using n as a budget for
the sum of the two simulated counters. Zero tests can then be simulated by

On Freeze LTL with Ordered Attributes 279

resets (deleting and creating multisets) causing a “lossy” error in case of an
actually non-zero counter. When the simulation of M reaches a final state the
NCS moves the current counter values back to the budged counter and performs
a construction similar to the one above but now evaluating Hα(s) backwards
until reaching (Cα,s)′, the initial configuration with a different control state.
If (Cα,s)′ can be reached (or even covered) no “lossy” errors occurred and the
Minsky machine M was thus simulated correctly regarding zero tests.

4 From LTL↓
tqo to NCS and Back

Theorem 5 established a necessary condition for LTL↓
A to have a decidable satisfi-

ability problem, namely that A is a tree-quasi-ordering. In the following we show
that this is also sufficient. Let LTL↓

tqo denote the fragment of LTL↓
qo restricted

to tree-quasi-ordered sets of attributes. The decidability and complexity results
for NCS can be transferred to LTL↓

tqo to obtain upper and lower bounds for the
satisfiability problem of the logic.

We show a correspondence between the nesting depth in NCS and the depths
of the tree-quasi-ordered attribute sets that thus constitutes a semantic hierarchy
of logical fragments. We provide the essential ideas in the following.

The depth of a finite tree-quasi-ordering A is the maximal length k of strictly
increasing sequences x1 � x2 � . . . � xk of attributes in A. The first observation
is that we can reduce satisfiability of any LTL↓

tqo formula over attributes A to
satisfiability of an LTL↓

[k] formula where [k] = {1, . . . , k} is an initial segment of
the natural numbers with natural linear ordering and k is the depth of A.

Proposition 10 (LTL↓
tqo to LTL↓

[k]). For a tree-quasi-ordered attribute set A

of depth k every LTL↓
A formula can be translated to an equisatisfiable LTL↓

[k]

formula of exponential size.

To reduce an arbitrary tree-quasi-ordering A of depth k we first remove
maximal strongly connected components (SCC) in the graph of A and replace
each of them by a single attribute. This does only affect the semantics of formulae
ϕ if attributes are compared that did not have an isomorphic downward-closure
in A. These cases can, however, be handled by additional constraints added to
ϕ. Data words over a thus obtained partially ordered attribute set of depth k
can now be encoded into words over the linear ordering [k] of equal depth k.
The idea is to encode a single position into a frame of positions in the fashion
of [5,14]. That way a single attribute on every level suffices. Any formula can be
transformed to operate on these frames instead of single positions at the cost of
an at most exponential blow-up.

From LTL↓
[k] to NCS. Given an LTL↓

[k] formula Φ we can now construct a
(k+1)-NCS N and two configurations Cinit, Cfinal ∈ CN such that Φ is satisfiable
if and only if Cfinal can be covered from Cinit.

The idea is to encode sets of guarantees into NCS configurations. These guar-
antees are subformulae of Φ and are guaranteed to be satisfiable. The constructed

280 N. Decker and D. Thoma

{ϕ1}

∅

∅

{ϕ2, ψ2}

{ψ3} {ϕ3}

∅

∅

{a}

→∗

{ϕ1}

{¬ ↑2}

{↑1}

{ϕ2 ∧ ψ2}

{ψ3} {ϕ3, ↑3}

{↓2ϕ2}

{¬b}

{a}
C C

1

2

3

4

5 6

7

8

9

Fig. 2. Example of a guarantee forest of depth 3 maintained and modified by the NCS
constructed for some LTL↓

[3] formula. Node enumeration (grey) is only for reference.

NCS can instantiate new guarantees and combine existing ones while maintain-
ing the invariant that there is always a data word w ∈ (Σ ×Δ[k])+ that satisfies
all of them. To ensure the invariant, the guarantees are organised in a forest of
depth k as depicted in Fig. 2.

All formulae ϕ contained in the same node v of this forest are moreover not
only satisfied by the same word w but also with respect to a common valuation
dv ∈ Δ

[k]
⊥ , i.e., (w, 1,dv) |= ϕ. Recall that valuations over linearly ordered

attributes can be seen as sequences. The forest structure now represents the
common-prefix relation between these valuations dv. For two nodes v, v′ having
a common ancestor at level i ∈ [k] in the forest, the corresponding valuations dv,
dv′ can be chosen such that they agree on attributes 1 to i. A uniquely marked
branch in the forest further represents the valuation d1 at the first position in
w. If a formula ϕ is contained in the marked node at level i in the forest then
(w, 1,d1|i) |= ϕ. In that case (w, 1,d) |= ↓iϕ holds for any d ∈ Δ

[k]
⊥ and the

formula ↓iϕ could be added to any of the nodes in the forest without violating
the invariant. Similarly, for a marked node v at level i the formulae ↑i can be
added to any node in the subtree with root v. Moreover, other atomic formulae,
Boolean combinations, and temporal operators can also be added consistently.
The NCS N can perform such modifications on the forest, represented by its
configuration, by corresponding transitions.

Example 11. Consider the two guarantee forests depicted in Fig. 2 that are
encoded in configurations C and C ′ of an NCS constructed for some LTL↓

[3]

formula. The invariant is the existence of a word w = (a,d) . . . and valuations
dv ∈ Δ[i] such that (w, 1,dv) satisfies the formulae in a node v at level i. The
forest structure relates these valuations to d (nodes marked by ✓) and each
other. E.g., (w, 1,d|1) |= ϕ1, (w, 1,d|2) |= ϕ2 and there is e with e|2 = d|2
and e(3) = d(3) s.t. (w, 1, e) |= ψ3. Let v1, . . . , v9 be the nodes of the forest
(as enumerated in the figure). Several possible operations are exemplified by
the transition between C and C ′. The formula ↑3 can be added to the node
v6 containing the formula ϕ3 since that node is checked on level 3. Similarly,
there is d3 for node v3 such that d3(1) = d(1) and hence (w,d3) |= ↑1. The
formula ↑2 cannot be added to the node v2 since it is not below the checked
node on level two. Consequently, the node can contain ¬↑2. Node v4 on level

On Freeze LTL with Ordered Attributes 281

2 does already contain ϕ2 and ψ2, meaning they are both satisfied by w and a
valuation d4 ∈ Δ[2]. Hence the same holds for their conjunction. Moreover, v4 is
checked and therefore d4 = d|2. This implies that (w,d′) |= ↓2ϕ2 for any d′ and
that the formula can be added to any node in the tree, e.g. v7.

Recall that we only need to consider subformulae of Φ and thus remain finite-
state for representing nodes. More precisely, the number of states in N is expo-
nential in the size of Φ since they encode sets of formulae.

A crucial aspect is how the NCS can consistently add formulae of the form
Xϕ. This needs to be done for all stored guarantees at once but NCS do not
have an atomic operation for modifying all states in a configuration. Therefore,
the forest is copied recursively, processing each copied node. The NCS N can
choose at any time to stop and remove the remaining nodes. That way it might
loose guarantees but maintains the invariant since only processed nodes remain
in the configuration. The forest of depth k itself could be maintained by a k-NCS
but to implement the copy operation an additional level is needed.

The initial configuration Cinit consists of a forest without any guarantees.
In a setup phase, the NCS can add branches and formulae of the form Xϕ since
they are all satisfied by any word of length 1. Once the formula Φ is encountered
in the current forest the NCS can enter a specific target state qfinal. A path
starting in Cinit and covering the configuration Cfinal = qfinal then constitutes
a model of Φ and vice versa.

Theorem 12. For tree-quasi-ordered attribute sets A with depth k satisfiability
of LTL↓

A can be reduced in exponential space to coverability in (k + 1)-NCS.

From k-NCS to LTL↓
[k]. Let N = (Q, δ) be a k-NCS. We are interested in

describing witnesses for coverability. It suffices to construct a formula ΦN that
characterises precisely those words that encode a lossy run from a configuration
Cstart to a configuration Cend. We call a sequence C0C1 . . . Cn of configurations
Cj ∈ CN a lossy run from C0 to Cn if there is a sequence of intermediate
configurations C ′

0 . . . C ′
n−1 such that Ci � C ′

i → Ci+1 for 0 ≤ i < n. Then Cend

is coverable from Cstart if and only if there is a lossy run from Cstart to some
Cn � Cend.

A configuration of a k-NCS is essentially a tree of depth k + 1 and can
be encoded into a [k]-attributed data word as a frame of positions, similar as
done to prove Proposition 10. We use an alphabet Σ where every letter a ∈ Σ
encodes, among other information, a (k+1)-tuple of states from Q, i.e., a possible
branch in the tree. Then a sequence of such letters represents a set of branches
that form a tree. The data valuations represent the information which of the
branches share a common prefix. Further, this representation is interlaced: it
only uses odd positions. The even position in between are used to represent an
exact copy of the structure but with distinct data values. We use appropriate
LTL↓

[k] formulae to express this shape. Figure 3 shows an example.
To be able to formulate the effect of transition rules without using past-

time operators we encode lossy runs reversed. Given that a data word encodes

282 N. Decker and D. Thoma

q0

q1

q2 q3

q1 q4

q5

q1

q0 q0 q0 q0 q0 q0 q0 q0
q1 q1 q1 q1 q1 q1 q4 q4

q2 q2 q3 q3 − − q5 q5

1 10 1 10 6 60 4 40

2 20 3 30 7 70 5 505 503 302 20

4 406 601 10 1 10

Fig. 3. Encoding of a 2-NCS configuration (l.) as [2]-attributed data word (r.). Instead
of letters from Σ the encoded tuples of states from Q are displayed at every position.

a sequence C0C1 . . . Cn of configurations as above we model the (reversed) con-
trol flow of the NCS N = (Q, δ) by requiring that every configuration but for the
last be annotated by some transition rule tj ∈ δ for 0 ≤ j < n. The labelling is
encoded into the letters from Σ and we impose that this transition sequence actu-
ally represents the reversal of a lossy run. That is, for every configuration Cj in the
sequence (for 0 ≤ j < n) with annotated transition rule tj there is a configuration

C ′
j+1 (not necessarily in the sequence) such that Cj

tj← C ′
j+1 � Cj+1.

For the transition tj to be executed correctly (up to lossiness) we impose
that every branch in Cj must have a corresponding branch in Cj+1. Yet, there
may be branches in Cj+1 that have no counterpart in Cj and were thus lost
upon executing tj . Shared data values are now used to establish a link between
corresponding branches: for every even position in the frame that encodes Cj

there must be an odd position in the consecutive frame (thus encoding Cj+1)
with the same data valuation. To ensure that links are unambiguous we require
that every data valuation occurs at most twice in the whole word. Depending
on the effect of the current transition the letters of linked positions are related
accordingly. E.g., for branches not affected at all by tj the letters are enforced to
be equal. This creates a chain of branches along the run that are identified: an
odd position links forward to an even one, the consecutive odd position mimics
it and links again forward.

Based on these ideas we can construct a formula satisfied precisely by words
encoding a lossy run between particular configurations. The size of the formula
is polynomial in the size of the NCS N and can be built by instantiating a
set of patterns while iterating over the transitions and states of N , requiring
logarithmic space to control the iterations.

Theorem 13. The coverability problem of k-NCS can be reduced in logarithmic
space to LTL↓

[k] satisfiability.

5 Conclusion

By Theorem 12 together with Proposition 6 and Theorem 13 with Theorem 7 we
can now characterise the complexity of LTL↓

tqo fragments as follows.

Proposition 14. Satisfiability of LTL↓
A over a tree-quasi-ordered attribute set

of depth k is in FΩ2(k+1) and FΩk
-hard.

On Freeze LTL with Ordered Attributes 283

Together with Theorem 5 this completes the proof of Theorem 3 stating that
LTL↓

tqo is the maximal decidable fragment of LTL↓
qo and Fε0-complete. The result

also shows that the complexity of the logic continues to increase strictly with
the depth of the attribute ordering.

The logics ND-LTL± were shown to be decidable by reduction to NCS [5]. Our
results thus provide a first upper bound for their satisfiability problem. Moreover,
we derive significantly improved lower bounds by applying the construction to
prove Theorem 13 analogously to ND-LTL+ and, with reversed encoding, to the
past fragment ND-LTL−. A subtle difference is that an additional attribute level
is needed in order to express the global data-aware navigation needed to enforce
the links between encoded configurations.

Corollary 15. Satisfiability of ND-LTL± with k + 1 levels is in FΩ2(k+1) and
FΩk

-hard.

PCS were proposed as a “master problem” for Fε0 [12] and indeed our upper
complexity bounds for NCS rely on them. However, they are not well suited to
prove our hardness results. This is due to PCS being based on sequences and
the embedding ordering while NCS are only based on multisets and the subset
ordering. In a sense, PCS generalise the concept of channels to multiple levels
of nesting, whereas NCS generalise the concept of counters. Hence, we believe
NCS are a valuable addition to the list of Fε0-complete models. They may serve
well to prove lower bounds for formalisms that are like Freeze LTL more closely
related to the concept of counting.

References

1. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)
2. Björklund, H., Bojańczyk, M.: Shuffle expressions and words with nested data. In:

Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 750–761. Springer,
Heidelberg (2007)

3. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Trans. Comput. Log. 12(4), 27 (2011)

4. Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel
systems. In: LICS 2008, IEEE Symposium on Logic in Computer Science, IEEE
Computer Society (2008)

5. Decker, N., Habermehl, P., Leucker, M., Thoma, D.: Ordered navigation on multi-
attributed data words. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol.
8704, pp. 497–511. Springer, Heidelberg (2014)

6. Demri, S., Figueira, D., Praveen, M.: Reasoning about data repetitions with
counter systems. In: LICS 2013, ACM/IEEE Symposium on Logic in Computer
Science, IEEE Computer Society (2013)

7. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3) (2009)

8. Demri, S., Lazic, R., Nowak, D.: On the freeze quantifier in constraint LTL: decid-
ability and complexity. In: International Symposium on Temporal Representation
and Reasoning (TIME 2005), IEEE Computer Society (2005)

284 N. Decker and D. Thoma

9. Figueira, D.: Alternating register automata on finite words and trees. Log. Meth.
Comput. Sci. 8(1) (2012)

10. Fitting, M.: Modal logics between propositional and first-order. J. Log. Comput.
12(6), 1017–1026 (2002)

11. Goranko, V.: Hierarchies of modal and temporal logics with reference pointers. J.
Logic Lang. Inf. 5(1), 1–24 (1996)

12. Haase, C., Schmitz, S., Schnoebelen, P.: The power of priority channel systems.
Logical Meth. Comput. Sci. 10(4) (2014)

13. Henzinger, T.A.: Half-order modal logic: how to prove real-time properties. In:
ACM Symposium on Principles of Distributed Computing, ACM (1990)

14. Kara, A., Schwentick, T., Zeume, T.: Temporal logics on words with multiple data
values. In: FSTTCS 2010, IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, LIPIcs, vol. 8, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2010)

15. Lazić, R.S.: Safely freezing LTL. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS
2006. LNCS, vol. 4337, pp. 381–392. Springer, Heidelberg (2006)

16. Leroux, J., Schmitz, S.: Reachability in vector addition systems demystified. In:
LICS 2015, ACM/IEEE Symposium on Logic in Computer Science, IEEE Com-
puter Society (2015)

17. Lisitsa, A., Potapov, I.: Temporal logic with predicate lambda-abstraction. In:
International Symposium on Temporal Representation and Reasoning (TIME
2005), IEEE Computer Society (2005)

18. Lomazova, I.A., Schnoebelen, P.: Some decidability results for nested petri nets.
In: Bjorner, D., Broy, M., Zamulin, A.V. (eds.) PSI 1999. LNCS, vol. 1755, pp.
208–220. Springer, Heidelberg (2000)

19. Rosa-Velardo, F.: Ordinal recursive complexity of unordered data nets. Technical
report TR-4-14, Departamento de Sistemas Informáticos y Computación, Univer-
sidad Complutense de Madrid (2014)

20. Schmitz, S.: Complexity hierarchies beyond elementary. CoRR abs/1312.5686
(2013). http://arxiv.org/abs/1312.5686

21. Schnoebelen, P.: Revisiting Ackermann-Hardness for lossy counter machines and
reset petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 616–628. Springer, Heidelberg (2010)

http://arxiv.org/abs/1312.5686

Regular Transformations of Data Words
Through Origin Information

Antoine Durand-Gasselin1 and Peter Habermehl2(B)

1 Aix Marseille Université, CNRS, Centrale Marseille, LIF UMR 7279,
Marseille, France

Antoine.Durand-Gasselin@centrale-marseille.fr
2 IRIF, Univ. Paris Diderot & CNRS, Paris, France
Peter.Habermehl@liafa.univ-paris-diderot.fr

Abstract. We introduce a class of transformations of finite data words
generalizing the well-known class of regular finite string transformations
described by MSO-definable transductions of finite strings.These trans-
formations map input words to output words whereas our transforma-
tions handle data words where each position has a letter from a finite
alphabet and a data value. Each data value appearing in the output has
as origin a data value in the input. As is the case for regular trans-
formations we show that our class of transformations has equivalent
characterizations in terms of deterministic two-way and streaming string
transducers.

1 Introduction

The theory of transformations of strings (or words) over a finite alphabet has
attracted a lot of interest recently. Courcelle [8] defined finite string transforma-
tions in a logical way using Monadic second-order definable graph transductions.
Then, a breakthrough was achieved in [9] where it was shown that these transfor-
mations are equivalent to those definable by deterministic two-way finite trans-
ducers on finite words. In [1] deterministic streaming string transducers (SST)
on finite words were introduced. This model is one-way but it is equipped with
string variables allowing to store words. It is equivalent [1] to the deterministic
two-way finite transducers and to MSO-definable transformations. Interestingly,
the motivation behind SST was the more powerful SDST model [2]. SDST work
on data words, i.e. words composed of couples of letters from a finite alphabet
and an infinite data domain. However, they do not have the same nice theoretical
properties as SST, for example they are not closed under composition because
SDST have data variables allowing to store data values and compare data values
with each other. Furthermore, there is no equivalent logical characterization.

This work was supported in part by the VECOLIB project (ANR-14-CE28-0018)
and by the PACS project (ANR-14-CE28-0002).
A. Durand-Gasselin—Part of this work was done while this author was at Technical
University Munich.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 285–300, 2016.
DOI: 10.1007/978-3-662-49630-5 17

286 A. Durand-Gasselin and P. Habermehl

In this paper, analogously to the case of string transformations of finite words,
we obtain a class of transformations of finite data words which has an MSO
characterization as well as equivalent characterizations in terms of deterministic
two-way transducers and streaming transducers. To achieve this, we allow storing
of data values in the transducers but not comparison.

As an example we consider the transformation taking a finite input word over
{#, a, b} starting and finishing with a #, together with associated data values
from the integers, like

(
#ab#abb#
124 5 671 4

)
and produces as output the word where (1)

#’s are left unchanged, and between successive #’s (2) words w in {a, b}∗ are
transformed into wRw where wR denotes the reverse image of w, and (3) the data
value associated to each a is the value of the first # and the value for b’s is the
value of the second #. So, the output for the example word is

(
#baab#bbaabb#
15115 5 445544 4

)
.

It is clear how a deterministic two-way transducer with the ability of storing
data values can realize this transformation: it stores the first data value (1) in
a data variable while outputting

(
#
1

)
, then goes to the second #, stores the

corresponding data value (5) in a second data variable, and goes back one by
one while producing

(
ba
51

)
. Then, it turns around at the first #, goes again to the

second # producing
(
ab
15

)
and restarts the same process.

Now, to realize this transformation with a deterministic streaming string
transducer one has to make with the fact that they can only go through the
input word once from left to right. Nevertheless we will introduce a model which
can realize the described transformation: in between two #′s it stores the so-far
read string and its reverse in a data word variable. As the data value of the
second #′ is not known in the beginning it uses a data parameter p instead. For
example, before the second #, the stored word will be

(
baab
p11p

)
. When reading the

second #, it then replaces p everywhere by 5 and stores the result in another
data word variable. The same repeats for the rest of the word until the end is
reached and the output contained in a data word variable.

The same transformation can also be described logically. To define trans-
formations on data words, a natural choice would be to use transducers with
origin information and their corresponding MSO transductions studied in [6].
Basically, their semantics also takes into account information about the origin
of a letter in the output, i.e. the position in the input from which it originates.
Obviously, this can be generalized to data values by defining the data value of
each output position as the data value in the input position from where the out-
put originated. This definition is however not expressive enough to handle our
example, since an input position can only be the origin of a bounded number of
output positions but the data values attached to (unboundedly many) a’s and
b’s between two successive #’s come from the same two input positions.

Therefore, in this paper, we first introduce a logical characterization of word
transformations with generalized origin information. Our logical characterization
is an extension of classical MSO transductions with an additional functional
MSO defined relation that maps each element of the interpretation (symbols
of the output word) to an element of the interpreted structure (symbols of the
input word). This generalization naturally defines transformations of data words;

Regular Transformations of Data Words Through Origin Information 287

the data value at a given position of the output is the data value carried at
the corresponding position in the input. This suffices to define the previously
described example transformation.

Interestingly, our class of transformations is captured by a natural model of
deterministic two-way transducers extended with data variables whose values can
neither be tested nor compared. By adding data word variables (as in streaming
string transducers) containing data values and parameters, we then manage,
while preserving determinism, to restrict that model to a one-way model. Data
parameters are placeholders for data values which can be stored in data word
variables and later replaced by concrete data values. We show that this one-way
model can be captured by MSO to achieve the equivalence of all three models.

2 MSO Interpretations with MSO Origin Relation

2.1 Words, Strings and Data Words

For S a set of symbols, we denote by S∗ the set of finite words (i.e. the set of
finite sequences of elements of S) over S. Given a word w, we can refer to its
length (|w|), its first symbol (w[0]), the symbol at some position i < |w| in the
word (w[i]), some of its subwords (e.g. w[i:j] with 0 ≤ i ≤ j < |w|, the subword
between positions i and j) etc. In this paper, we only consider finite words.

An alphabet (typically denoted Σ or Γ) is a finite set of symbols. Further-
more, we use a (potentially infinite) set of data values called Δ. In the sequel,
we use string to refer to a (finite) word over a finite alphabet and data word to
refer to a word over the cartesian product of a finite alphabet and a set of data
values. Since symbols of data words consist of a letter (from the finite alphabet)
and a data value, we can naturally refer to the data value at some position in a
data word, or the string corresponding to some data word. Conversely a string
together with a mapping from its position to Δ forms a data word.

A string w (over alphabet Σ) is naturally seen as a directed node-labeled
graph (rather than considering edges only connecting two successive positions,
we take the transitive closure: thus the graph is a finite linear order). The graph
is then seen as an interpreted relational structure whose domain is the positions
of w, with a binary edge predicate <, and a monadic predicate for each letter
of Σ. We denote SΣ the signature consisting of </2 and σ/1 for each σ ∈ Σ.

Any string over alphabet Σ is an interpretation over a finite domain of SΣ ,
conversely any interpretation of SΣ is a string if (1) its domain is finite, (2) <
defines a linear order and (3) at every position exactly one monadic predicate
holds. We remark that (2) and (3) can be expressed as monadic second order
(MSO) sentences. Two interpretations are isomorphic iff they are the same string.

With this logic based approach we have a very simple classical characteriza-
tion of regular languages: a language L over alphabet Σ is regular iff there exists
an MSO sentence ϕ (over signature SΣ) such that the set of interpretations of
SΣ with finite domain satisfying ϕ is the set of strings in L.

288 A. Durand-Gasselin and P. Habermehl

2.2 MSO Interpretations

Using this model theoretic characterization of strings, we can define a class of
transformations of strings. For the sake of clarity we consider transformations
of strings over alphabet Σ to strings over alphabet Γ . We now define an MSO
interpretation of SΓ in SΣ , as |Γ |+2 MSO formulas over signature SΣ : ϕ< with
two free first-order variables and ϕdom and (ϕγ)γ∈Γ with one free first-order
variable. Any interpretation IΣ (of the signature SΣ) defines an interpretation
of the structure SΓ : its domain is the set of elements of the domain of IΣ

satisfying ϕdom in IΣ , and the interpretation of the predicates over that domain
is given by the truth value of each of the other MSO formulas.

An important remark is that if the interpretation IΣ has finite domain, then
so will the constructed interpretation of SΓ . Also, since we can express in MSO
(over the signature SΓ) that the output structure is a string (with (2) and (3)),
we can also express in MSO over the signature SΣ that the output structure is a
string, hence we can decide whether for any input string our MSO interpretation
produces a string.

Above, we presented the core idea of Courcelle’s definition [8] of MSO graph
transductions. Courcelle further introduces the idea of interpreting the output
structure in several copies of the input structures. To define such a transduction,
we need to fix a finite set C of copies, the domain of the output structure will
thus be a subset of the cartesian product of the domain of the input structure
with the set of copies. The transduction consists of |C|2 + (|Γ | + 1)|C| + 1 MSO
formulas over the input structure:

– the sentence ϕindom that states whether the input structure is in the input
domain of the transduction,

– formulas ϕc
dom (with one free first-order variable) for each c in C, each stating

whether a node x in copy c is a node of the output structure,
– formulas ϕc

γ (also with one free first-order variable), for each c ∈ C and each
α ∈ Γ which states whether a node x in copy c is labelled by α,

– and formulas ϕc,d
< (with two free first-order variables, namely x, y) that states

whether there exists an edge from x in copy c to y in copy d.

The semantics of these transformations naturally provides a notion of origin:
by definition a node of the output structure is a position x in the copy c of the
input structure (such that ϕc

dom(x) is true).

2.3 Transduction of Data Words

Data words cannot be represented as finite structures (over a finite signature)
but they can be seen as strings together with a mapping of positions to data
values.

To define a data word transduction, we take a string transduction that we
extend with an MSO relation between positions in the input word and positions
in the output word. Formally we extend the definition of MSO transduction with
|C| MSO formulas (with two free first-order variables) ϕc

orig(x, y), which we call

Regular Transformations of Data Words Through Origin Information 289

the origin formulas, stating that position x in copy c (in the output string)
corresponds to position y in the input string. We further impose that for any
input word in the domain of the transformation and any x and c ∈ C such that
x in copy c is in the output of the transformation, there exists exactly one y that
validates ϕc(x, y). We remark that this restriction can be ensured in MSO (over
the input structure). Then, the data value at each output position is defined to
be the data value at the corresponding input position.

We call MSOT the class of string transformations defined as MSO inter-
pretations, and MSOT+O the class of data word transformation defined as
MSO interpretations together with origin formulas. We remark that this def-
inition of origin captures the usual origin information in the sense of [6] by
fixing ϕc

orig(x, y) ≡ (x = y).

2.4 The Running Example

Two copies suffice to define the transformation for the running example. For
clarity, we do not represent the ordering relation <, but rather the successor
relation.

input: # b a a b # b b a a b b #

copy 1: # b a a b # b b a a b b #

copy 2: b a a b b b a a b b

ϕindom states the input word starts and ends with a #. ϕ1
dom(x) is true (every

node in the first copy is part of the output), while ϕ2
dom(x) = ¬#(x) tests the

letter in the input at that position is not a #. The labeling formulas are the
identity (ϕ1

a(x) = a(x),...) —the behaviour of the formula outside the output
domain is considered irrelevant. ϕ1,1

< (x, y) = x < y, and ϕ2,2
< (x, y) checks if there

is a #-labeled position between position x and y (in the input): if so it ensures
that x < y, if not it ensures x > y. ϕ1,2(x, y) and ϕ1,2(x, y) also distinguish cases
whether there is a #-labeled position between x and y or not.

The origin information MSO formulas happen here to be the same for the
two copies ϕi(x, y) making cases on the letter x: if it is an a (resp. a b) it ensures
y is the first #-labeled position before (resp. after) position x.

2.5 Properties

Defining word transformations through MSO interpretations yields some nice
properties:

Theorem 1. MSOT+O is closed under composition.

Proof. MSOT is naturally closed under composition: given 2 mso transduc-
tions T1 and T2, (using C1 and C2 copies) we can define T1 ◦ T2 as the MSO-
interpretation T1 of the MSO-interpretation T2 of the original structure, which
is an MSO-interpretation over C1 × C2 copies.

290 A. Durand-Gasselin and P. Habermehl

In order to show the compositional closure of MSOT+O, it now suffices to
define the origin information for the composition of two transductions T1 and T2

in MSOT+O. It is clear how to define formulas ϕc
orig that relate a position in

the output with a position in the input, from the origin formulas of T1 and T2.
We just need to show these origin formulas are functional; a fact that we easily
derive from the functionality of the origin formulas of T1 and T2.

The (MSO)-typechecking problem of a transformation is defined as follows:

Input: Two MSO sentences ϕpre, ϕpost and an MSOT+O transformation T
Output: Does w |= ϕpre imply that T (w) |= ϕpost?

It consists in checking whether some property on the input implies a property
on the output, those properties are here expressed in MSO.

Theorem 2. MSO-typechecking of MSOT+O is decidable.

Proof. An MSO formula can not reason about data values. Therefore it is suf-
ficient to show that MSO-typechecking of MSOT is decidable. Since the output
is defined as an MSO interpretation of the input, it is easy to convert an MSO
formula on the output into an MSO formula on the input. We just need to check
whether the input property implies that converted output property, on any input
word, which is checking the universality of an MSO formula over finite strings.

2.6 MSO k-types

Since we present a generalisation of the classical MSO string transductions, the
machine models that are expressively equivalent to our logical definition will be
extensions of the classical machine models.

To show later that these logical transformations are captured by finite state
machines, we use the notion of MSO k-types. We crucially use this notion (more
precisely Theorem 3) to prove in Sect. 3 that we only need a finite number of
data variables (Lemma 1) to store data values originating from the input.

Given a string w, we define its k-type as the set of MSO sentences of quantifier
depth at most k (i.e. the maximum nesting of quantifiers is at most k) that hold
for w. A crucial property is that the set of MSO k-types (which we denote
Θk) is finite and defines an equivalence relation over strings which is a monöıd
congruence of finite index. We refer the reader to [11] for more details.

These k-indexed congruences satisfy the following property: two k-equivalent
strings will satisfy the same quantifier depth k MSO sentence.

We can extend this notion to MSO formulas with free first-order variables.

Theorem 3. Given two strings w1 and w2 each with two distinguished positions
x1, y1 and x2, y2. (w1, (x1, y1)) and (w2, (x2, y2)) satisfy the same MSO formulas
with quantifier depth at most k and two free first order variables if:

– w1[x1] = w2[x2] and w1[y1] = w2[y2]
– x1, y1 and x2, y2 occur in the same order in w1 and w2 (with the special case

that if x1 = y1, then x2 = y2).

Regular Transformations of Data Words Through Origin Information 291

– The k-types of the two (strict) prefixes are the same, and the k-types of the
two (strict) suffixes are the same, as well as the k-types of the two (strict)
subwords between the two positions.

Proof. Immediate with Ehrenfeucht-Fräıssé games.

3 Two-Way Transducers on Data Words

Two-way deterministic transducers on strings are known to be equivalent to MSO
string transductions [9]. Since we process data words and output data words, we
will naturally extend this model with a finite set of data variables. Notice that
the data values in the input word do not influence the finite string part of the
output. Therefore the transition function of the transducer may not perform any
test on the values of those data variables. However the output word will contain
some (if not all) data values of the input word, therefore the model may store
some data value appearing in the input word in some variable, and when an
output symbol is produced, this is done (deterministically) by combining some
letter of the output alphabet together with the data value contained in some
data variable.

We start by defining the classical two-way deterministic finite-state trans-
ducers (2dft) (with input alphabet Σ and output alphabet Γ) as a deterministic
two-way automaton whose transitions are labeled by strings over Γ . The image
of a string w by a 2dft A is defined (if w admits a run) as the concatenation of
all the labels of the transitions along that run.

Definition 1. A 2dft is a tuple (Σ,Γ,Q, q0, F, δ) where:

– Σ and Γ are respectively the finite input and output alphabets (�,� /∈ Σ)
– Q is the finite set of states, q0 the initial state, and F the set of accepting

states
– δ : Q×(Σ∪{�,�}) → Q×{+1,−1}×Γ ∗ is the (two-way, Γ ∗-labeled) transition

function

A (finite) run of a 2dft A over some string w is a finite sequence ρ of pairs of
control states Q and positions in [−1, |w|] (where −1 is supposed to be labeled by
� and |w| by �), such that: ρ(0) = (0, q0), ρ(|ρ|−1) ∈ N× F and at any position
k < |ρ| − 1 in the run, if we denote ρ(k) = (ik, qk) and ρ(k + 1) = ik+1, qk+1, we
have that δ(qk, w(ik)) = (qk+1, ik+1 − ik, uk+1) for some uk+1 ∈ Γ ∗. Informally
+1 corresponds to moving to the right in the input string and −1 to moving to
the left. The output of A over w is simply the string u1u2 . . . u|ρ|−1. We denote
T (A) the (partial) transduction from Σ∗ to Γ ∗ defined by A.

Notice that not every input string admits a finite run (since the transducer
might get stuck or loop), but if w admits a finite run, it is unique and has length
at most |Q|(|w|+2), as this run visits any position at most |Q| times. Therefore a
run can also be defined as a mapping from positions of �w� to Q≤|Q| (sequences
of states of length at most |Q|).

The next theorem states the equivalence between transformations defined by
this two-way machine model and the logical definition of string transformations.

292 A. Durand-Gasselin and P. Habermehl

Theorem 4 [9]. Any string transformation from Σ∗ to Γ ∗ defined by a 2dft can
be defined as an MSO interpretation of Γ ∗ in Σ∗ and vice versa.

Now we define our two-way machine model, two-way deterministic finite-state
transducer with data variables (2dftv) for data word transformations. We simply
extend the 2dft by adding some data variables whose values are deterministically
updated at each step of the machine.

Definition 2. A 2dftv is a tuple (Σ,Γ,Δ,Q, q0, F, V, μ, δ) where:

– Σ and Γ are respectively the input and output alphabets (�,� /∈ Σ),
– Δ is the (infinite) data domain,
– Q is the finite set of states, q0 the initial state, and F the set of accepting

states,
– V a finite set of data variables with a designated variable curr ∈ V ,
– μ : Q × Σ × (V \ {curr}) → V is the data variable update function,
– δ : Q × (Σ ∪ {�,�}) → Q × {+1,−1} × (Γ × V)∗ is the (two-way, (Γ × V)∗-

labeled) transition function.

We can define the semantics of a 2dftv like the semantics of an 2dft by
extending the notion of run. Here, a run is labeled by positions and states but
also by a valuation of the variables, i.e. a partial function β which assigns to
variables from V values from Δ. This partial function is updated in each step
(while reading a symbol different from the endmarkers � or �) according to μ and
additionally to the variable curr the current data value in the input is assigned.
The output is obtained by substituting the data variables appearing in the label
of the transition relation by their value according to β which we suppose to be
always defined (this can be checked easily). Then, naturally a 2dftv defines a
transduction from words over Σ × Δ to words over Γ × Δ.

We call 2DFTV the class of all data word transductions definable by a 2dftv.

Theorem 5. MSOT+O is included in 2DFTV.

The challenge to show the theorem is to be able to extend the MSOT to
2DFT proof from [9], so as to be able to also carry in data variables all the
necessary data values needed in the output.

We recall the key features in the proof of [9]. First, 2dft’s are explicitly
shown to be composable [7], which gives regular look-around (the ability to
test if the words to the left and to the right of the reading head are in some
regular languages) for free: a first pass rewrites the input right-to-left and adds
the regular look-ahead, and the second pass re-reverses that word while adding
the regular look-back. It is then possible (by reading that regular look-around)
to implement MSO-jumps. Given an MSO formula ϕ with 2 free variables, an
MSO-jump ϕ from position x consists in directly going to a position y such that
ϕ(x, y) holds. Using MSO-jumps 2dft can then simulate MSO transformations.

We show thereafter how to extend such a 2dft that takes as input the (look-
around enriched) string and produces its image, to a 2dftv. The proof is then

Regular Transformations of Data Words Through Origin Information 293

in three steps: first we show that a finite number of data variables is needed,
then we briefly describe how to update those data variables: each transition of
the 2dft being possibly replaced by a “fetching” of exactly one data variable,
and finally it is easy to see how to compose the preprocessing 2dft with that
produced 2dftv.

To store only a finite number of data values, we will only store those which
originate from a position on one side of the currently processed position and
that are used on the other side of the currently processed position. The following
lemma ensures a bound on the number of data variables.

Lemma 1. Let w be a data word, x a position in w, and T a transducer. Denote
k the quantifier depth of origin formulas. There are at most |Σ||Θk|2 positions
z > x such that there exists a position y < x in some copy c such that ϕc

orig(y, z)
holds, i.e. that the data value carried by y in copy c is that of z.

Proof. By contradiction, we use the pigeon hole principle. We can find two dis-
tinct positions z and z′ such that the type of the subword between x and z and
x and z′ is the same, and the type of the suffix from z is the same as the type
of the suffix from z′.

Let y a position, left of x where the data value of z is used, thus ϕc
orig(y, z)

holds. We apply Theorem3 to (w, (y, z)) and (w, (y, z′)) and therefore ϕc
orig(y, z′)

also holds, which contradicts the functionality of the relation ϕorig.
�
It seems appropriate to name our data variables using MSO types. The data

variables are thus Σ × Θk × Θk × {l, r}, (σ, τ1, τ2, l) denoting the data variable
containing the data value from the position y (in the input word which is labeled
by σ), left (l) of current positions, such that the prefix up to y has type τ1, and
the subword between y and current position has type τ2.

With an appropriate value of k′ (greater than k) the knowledge of the k′-
types of the prefix and suffix of the word from the currently processed position,
informs us for each data variable whether it contains a value or not, whether it
is used at the current position and most importantly to which data variable the
value should be transfered when a transition to the right (or the left) is taken.

Notice that when the 2dft performs a transition to the right, four things can
happen (only 2 and 3 are mutually exclusive):

1. A data value from a previous position was used for the last time and should
be discarded

2. The current data value has been used earlier and will not be used later (and
should be discarded)

3. The current data value may be used later and was not used before (and thus
should be stored)

4. A data value from a next position is first used (and thus should be stored)

The challenging part is the case (4), as we would need to fetch the data value
which we suddenly need to track. The new value is easily fetched through an
MSO jump (to the right) which is a feature introduced by [9] allowing to jump

294 A. Durand-Gasselin and P. Habermehl

to a position in the input specified by an MSO formula. In turn this jump is
implemented (thanks to the look-around carried by the input word) as a one-
way automaton that goes to the right until it reaches the position where the data
value is, and a one-way automaton that goes (left) from that position back to the
original position. The challenge is to be able to return to the current position.
Thanks to our definition, we can also describe an MSO jump that allows the
return: if we had to fetch a new data value, it is because it was first used at
the position we want to jump back to. Such a position can easily be expressed
uniquely with an MSO formula from the position we fetched our data value. We
remark that we cannot fetch data values on a per-needed basis (an MSO jump
to the position where the data is, is possible, but going back with an MSO-jump
is not), which indicates we need data variables.

In the 2dft, any transition for which case (4) happens (this information is
contained in the look-around) is replaced by two automata that go fetch (and
back) that newly needed data value.

Finally we present how this conversion should work on our example. We
need to consider 1-types. Θ1 is 2Σ : each characterizing exactly which letters are
present in the word. This means hundreds of data variables, but at any point
for this transformation, no more than 2 data values will be stored. So long as
we read a’s we should not have fetched the data value of the following #-labeled
position. When a b is read, we fetch that data value and then we can return back
to our original position: it is the first position (after the last #) in the word that
contains a b.

4 One-Way Transducers

4.1 Streaming String Transducers with Data Variables
and Parameters

We first define sstvp, i.e. streaming string transducers with data variables and
data parameters. They have the features of streaming string transducers [1,2]
extended with data variables and data parameters. Notice that in contrast to the
streaming data-string transducers from [2] sstvp can not compare data values
with each other.

Intuitively, sstvp read deterministically data words and compute an output
data word. They are equipped with data variables which store data values, para-
meters which are placeholders for data values and data word variables containing
data words which in addition to data values can also contain data parameters.
These data parameters can be replaced by data values subsequently.

Definition 3. A sstvp is a tuple (Σ,Δ, Γ,Q,X, V, P, q0, v0, δ, Ω) where:

– Σ and Γ are respectively the input and output alphabets,
– Δ is the (infinite) data domain,
– Q is the finite set of states and q0 ∈ Q the initial state,
– X is the finite set of data word variables,

Regular Transformations of Data Words Through Origin Information 295

– V is the finite set of data variables with a designated variable curr ∈ V ,
– P is the finite set of data parameters (P ∩ Δ = ∅),
– v0 : X → (Γ × P)∗ is a function representing the initial valuation of the data

word variables.
– δ is a (deterministic) transition function: δ(q, σ) = (q′, μV , μX , μP) where:

• μV : (V \ {curr}) → V is the update function of data variables,
• μX : X → (X ∪ (Γ × (V ∪ P)))∗, is the update function of data word

variables,
• μP : P × X → P ∪ V is the parameter assignment function (dependent on

the data word variable).
– Ω : Q → ((Γ × V) ∪ X)∗ is the partial output function.

The streaming string transducers of [1,2] were defined by restricting updates
to be copyless, i.e. each data word variable can appear only once in an update μX .
Here, we relax this syntactic restriction along the lines of [5] by considering only
1-bounded sstvp’s: informally, at any position the content of some data word
variable may only occur once in the output. This allows to duplicate the value
of some data word variable in two distinct data word variables, but the value of
these variables can not be later combined. It is clear that this condition can be
checked and a 1-bounded sstvp can be transformed into a syntactically copyless
sstvp one [5].

Now, we define the semantics of sstvp. A valuation of data variables βV for an
sstvp is a partial function assigning data values to data variables. A valuation
of data word variables βX is a function assigning words over Γ × (Δ ∪ P) to
data word variables. Then, a configuration of an sstvp consists of a control state
and a valuation of data and word variables (βV , βX). The initial configuration
is (q0, β0

V , v0), where β0
V is the empty function. When processing a position i in

the input word in some state q, first curr is set to the data value at that position
in the input, then the data word variables are updated according to μX , then
the data words contained in data word variables are substituted according to μP

and finally data variables are updated according to μV .
Formally, if δ(q, a) = (q′, μV , μX , μP), then from (q, βV , βX) at position i

with a letter (a, d) one goes to (q′, β′′
V , β′′′

X) where:

– β′′
V = β′

V · μV , where β′
V = βV [curr �→ d].

– β′
X = βX · μX

β′′
X(x) = β′

X(x)[v ← β′
V (v)]v∈V

β′′′
X (x) = β′′

X(x)
[

p ←
{

μP (x, p) if μP (x, p) ∈ P
β′

V (μP (x, p)) if μP (x, p) ∈ V

]

For each two data word variables x, x′, we say that x at position i flows to
x′ at position i + 1 if x ∈ μX(x′). The notion of flow can be easily extended by
transitivity, the copylessness restriction forbids that the value of some data word
variable at some position i flows more than once to some data word variable at
position j > i. When reaching the end of the input word in a configuration (q, β),

296 A. Durand-Gasselin and P. Habermehl

Fig. 1. The sstvp for the running example

a sstvp produces β(Ω(q)) if Ω(q) is defined. Then, naturally a sstvp S defines a
transduction from words in Σ × Δ to words in Γ × Δ.

The sstvp for our running example is given in Fig. 1. All data word variables
are initialized with the empty word. By convention, a variable which is not
explicitly updated is unchanged. We omit these updates for readability.

Theorem 6. Equivalence of two sstvp is decidable.

To prove this theorem we can generalize the proof of decidability of equiva-
lence of SST [2], a reduction to reachability in a non-deterministic one-counter
machine. Given two transducers we choose non-deterministically an input string,
and one conflicting position in each of the two images (of the transducers): either
they are labeled by different letters, or with attached data value originating from
two distinct positions in the input word. We keep track in the counter of the
difference between the number of produced symbols which will be part of each
output before the corresponding conflicting position. Therefore, if the counter
reaches 0 at the last letter of the input, the two transducers are different.

We call SSTVP the class of all data word transductions definable by a sstvp.

4.2 From Two-Way to One-Way Transducers

Theorem 7. 2DFTV is included in SSTVP.

Proof. (Sketch) We use ideas of [1] (based itself on Shepherdson’s translation
from 2DFA to DFA [10]) where two-way transducers are translated into stream-
ing string transducers. As they translate two-way transducers to copyless stream-
ing string transducers they have to go through an intermediate model called
heap-based transducers. Since we relax the copylessness restriction to 1-bounded-
ness we can directly translate 2dftv to sstvp. Furthermore, we have to take care
of the contents of data variables of the 2dftv. For that purpose we use data
variables and data parameters of the sstvp.

Since an sstvp does only one left-to-right pass on the input word, we can-
not revisit any position. As we process a position we need to store all relevant
information about that position possibly being later reprocessed by the two-way

Regular Transformations of Data Words Through Origin Information 297

transducer. The two-way transducer may process a position multiple times (each
time in a different state) each time with a different valuation of data variables and
producing some different word: for each state, we need to store in an appropriate
data word variable the corresponding production, the valuation of data variables
being abstracted with data parameters. Notice that not all these data word vari-
ables will be used in the output. Given a 2dftv A = (Σ,Γ,Δ,Q, q0, F, V, μ, δ),
over which we assume all accepting runs end on the last symbol, we define an
sstvp B = (Σ,Γ,Δ,Q′,X, V ′, P, q′

0, v0, δ
′, Ω) as follows:

– Q′ = Q × [Q → (Q × 2V)]

A state of the one-way transducer consists of a state of the two-way transducer
and a partial mapping from states to a pair of a state and a set of variables. As
a position i+1 is processed, the state of B contains the following information:
in which state A first reaches position i and for each state q of A what would
be the state of A when it reaches for the first time position i+1 had it started
processing position i from state q: this part is the standard Shepherdson’s
construction. The function is partial, as from position i from some states A
might never reach position i + 1 (getting stuck).
We remark that along the subrun from position i (in state q) to position i+1,
the A might store some data values in some data variables. The set of data
variables denotes the set of data variables the two-way transducer has updated
along that run.

– X = xl ∪ {xq | q ∈ Q}
At position i, variable xl will store the word produced by A until it first
reaches position i. Variable xq will store the word produced from position i
in state q until position i + 1 is first reached.

– V ′ = V ∪ {vq | v ∈ V, q ∈ Q}
At position i + 1, data variable v will contain the value of variable v of A as
it first reaches position i + 1. Assume that B reaches position i in some state
(q, f) with f(q′) = (q′′,W), and v ∈ W . Then variable vq′ will contain the
last value stored in v when A processes from position i in state q′ until it first
reaches position i + 1.

– P = {pv,q | v ∈ V, q ∈ Q}
At position i, parameter pv,q will be present only in data word variable xq,
representing that along the run of A the data value from data variable v at
position i in state q was output before i + 1 was first reached. Such a symbol
needs to be present in xq, but the data value is not yet known, hence it is
abstracted by the data parameter pv,q.

It is then easy to see how to define q′
0 and δ′ so as to preserve these invariants.

As B can not see �, B must maintain the possible output in an extra variable,
where it is supposed that the next symbol would be �.

We now detail an example (see Fig. 2) so as to give an intuition how δ′(q, σ)
is built: we will specifically focus on the value of xq1 . We denote f the second
component of q and we assume that f(q2) = (q3, {v1, v2}), f(q4) = (q5, {v2, v3}).

298 A. Durand-Gasselin and P. Habermehl

Fig. 2. An example to illustrate the transformation from A to B.

Furthermore, we assume that in A, δ(q1, σ) = (q2,−1, (γ, v2)) and δ(q3, σ) =
(q4,−1, (γ′, v2)(γ′′, v3)) and finally that δ(q5, σ) = (q6,+1, (γ′′′, v2)). Also read-
ing σ in q1 and q3 assigns the current data value to v1 (i.e. μ(q1, σ, v1) =
μ(q3, σ, v1) = curr), other data variables are not modified (i.e. μ(q1, σ, vi) =
μ(q3, σ, vi) = vi).

By the aforementioned invariants, from state q1, A will first reach the follow-
ing position in state q6 (from the σ-labeled position in state q1, it first goes left,
reaches it again in state q3, goes left again, arrives in state q5 and then moves
to the right in state q6).

If we abstract the data values, the content of the data word variable xq1

will thus be (γ, ?)xq2(γ
′, ?)(γ′′, ?)xq4(γ

′′′, ?). Now we detail data attached to the
produced letters, and the parameter assignments in the data word variables:

γ will be given the data parameter p2,q1 .
In xq2 : since a data value is assigned to v1 between q1 and q2, p1,q1 should

be substituted by that data value (which is curr) in xq2 . Other parameters in
xq2 (which are all of the form pi,q2) are substituted by the corresponding pi,q1 .

γ′ will be given the data value v2,q2 and (because v3 has not been assigned a
data value since q1) γ′′ will be assigned the data parameter p3,q1 .

In xq4 : as a data value was assigned to v2 between q2 to q3, parameter p2,q4

will be substituted by that value i.e. v2,q2 ; parameter p1,q4 will be substituted
by curr and all other parameters (which are of the form pi,q4) will be assigned
the corresponding data parameters pi,q1 .

γ′′′ should be assigned data value v2,q4 .
Therefore by reading a σ in B, we reach a state whose second component

maps q1 to (q6, {v1, v2, v3}), v1,q1 ← curr, v2,q1 ← v2,q4 , v3,q1 ← v3,q4 .

4.3 From One-Way Transducers to MSO

In order to conclude that the three models of data word transformations are
equivalent, it remains to show that our MSO transductions with MSO origin
information capture all transformations defined by the one-way model.

Theorem 8. SSTVP is included in MSOT+O.

Regular Transformations of Data Words Through Origin Information 299

The proof is very similar to that of encoding finite state automata in MSO.
Usually to show that MSO captures string transformations defined by a one-way
model one defines an output graph with Γ -labeled edges and ε-edges. We directly
give a proof that builds a (string) graph whose nodes are Γ -labeled.

Given an sstvp S we fix the set of copies C as the set of occurrences of
symbols of Γ in the variable update function.

Since S is deterministic, we will write an MSO sentence ϕ that characterizes
a run of a word in S. This formula will be of the form ∃X1, . . . Xnψ, such that
given a word w (in the domain of the transformation), there exists a unique
assignment of the Xi such that ψ holds. These second order variables consist of:

– Xq for q ∈ Q: position i ∈ Xq iff processing position i yielded state q.
– Xr for every word variable r: position i ∈ Xr iff the content of variable r will

flow in the output
– Xr1,r2 for every pair of distinct word variables r1, r2: position i ∈ Xr1,r2 iff

the content of variable r1 will flow in the output before the content of the
variable r2 that will also flow in the output.

Our sequential machine model allows easily to write such a formula ψ. With the
formula ψ, we can write formulas ϕindom, (ϕc

dom)c∈C , (ϕc
γ)c∈C , and (ϕc,d

<)c,d∈C .
We remark that second order variables Xr1,r2 have a unique valid assignment
because of the (semantic) copylessness of sstvp. These variables are typically
used to define ϕc,d

< .
To hint how to build formula ϕc

orig(x, y) we state the following simple lemma
about runs of sstvps.

Lemma 2. Given an sstvp S, an input word w and position x that produces a
symbol γ ∈ Γ that will be part of the output.

– Either γ is produced with a data variable (namely v):
In this case, there exists a unique position y ≤ x where the data value curr
was stored in some data variable and that data variable flows to data variable
v at position x.

– or γ is produced with a data parameter (namely p):
In this case, there exists a unique position z such that the data parameter
attached to γ is some pm at position z and that pm is assigned a variable vm

(or curr) at position z. There exists a unique position y ≤ q such that at
position y the data value curr was put in some data variable, which flows to
a data variable vm at position z.

The notion of “flow” is easily expressed with ψ and second order existential
quantification. The copyless semantics of sstvps ensures that to each (output)
symbols, exactly one data value (or equivalently a unique position from the
input word) is assigned to. This allows to build MSO formulas ϕc

orig that have
the desired functional property.

300 A. Durand-Gasselin and P. Habermehl

5 Conclusion

Finite string transformation have been generalized to infinite string transforma-
tions [5] and tree transformations [3,4]. It would be interesting to extend our
results to these settings by adding data values and defining transformations via
origin information. Furthermore, it would be interesting to study the pre-post
condition checking problem along the lines of [2], i.e. the problem to check that
given a transducer is it the case that each input satisfying a pre-condition defined
via some automata-model is transformed into an output satisfying a similarly
defined post-condition.

References

1. Alur, R., Černý, P.: Expressiveness of streaming string transducers. In: FSTTCS,
vol. 8, pp. 1–12 (2010)

2. Alur, R., Černý, P.: Streaming transducers for algorithmic verification of single-
pass list-processing programs. In: POPL, pp. 599–610 (2011)

3. Alur, R., D’Antoni, L.: Streaming tree transducers. In: Czumaj, A., Mehlhorn, K.,
Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 42–53.
Springer, Heidelberg (2012)

4. Alur, R., Durand-Gasselin, A., Trivedi, A.: From monadic second-order definable
string transformations to transducers. In: 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS, pp. 458–467. IEEE Computer Society (2013)

5. Alur, R., Filiot, E., Trivedi, A.: Regular transformations of infinite strings. In:
Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science,
LICS, pp. 65–74. IEEE Computer Society (2012)

6. Bojańczyk, M.: Transducers with origin information. In: Esparza, J., Fraigniaud, P.,
Husfeldt,T.,Koutsoupias, E. (eds.) ICALP2014,Part II. LNCS, vol. 8573, pp. 26–37.
Springer, Heidelberg (2014)

7. Chytil, M., Jákl, V.: Serial composition of 2-way finite-state transducers and simple
programs on strings. In: Salomaa, A., Steinby, M. (eds.) Automata, Languages and
Programming. LNCS, vol. 52, pp. 135–147. Springer, London (1977)

8. Courcelle, B.: Monadic second-order definable graph transductions: a survey. The-
oret. Comput. Sci. 126(1), 53–75 (1994)

9. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log. 2, 216–254 (2001)

10. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198–200 (1959)

11. Thomas, W.: Ehrenfeucht games, the composition method, and the monadic theory
of ordinal words. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in
Logic and Computer Science. LNCS, vol. 1261, pp. 118–143. Springer, Heidelberg
(1997)

Probabilistic and Timed Systems

Trace Refinement in Labelled Markov
Decision Processes

Nathanaël Fijalkow(B), Stefan Kiefer, and Mahsa Shirmohammadi

University of Oxford, Oxford, UK
{nathanael.fijalkow,stefan.kiefer,mahsa.shirmohammadi}@cs.ox.ac.uk

Abstract. Given two labelled Markov decision processes (MDPs), the
trace-refinement problem asks whether for all strategies of the first MDP
there exists a strategy of the second MDP such that the induced labelled
Markov chains are trace-equivalent. We show that this problem is decid-
able in polynomial time if the second MDP is a Markov chain. The
algorithm is based on new results on a particular notion of bisimulation
between distributions over the states. However, we show that the gen-
eral trace-refinement problem is undecidable, even if the first MDP is a
Markov chain. Decidability of those problems was stated as open in 2008.
We further study the decidability and complexity of the trace-refinement
problem provided that the strategies are restricted to be memoryless.

1 Introduction

We consider labelled Markov chains (MCs) whose transitions are labelled with
symbols from an alphabet L. Upon taking a transition, the MC emits the associ-
ated label. In this way, an MC defines a trace-probability function Tr : L∗ → [0, 1]
which assigns to each finite trace w ∈ L∗ the probability that the MC emits w
during its first |w| transitions. Consider the MC depicted in Fig. 1 with initial
state p0. For example, see that if in state p0, with probability 1

4 , a transition to
state pc is taken and c is emitted. We have, e.g., Tr(abc) = 1

4 · 1
4 · 1

4 . Two MCs
over the same alphabet L are called equivalent if their trace-probability functions
are equal.

The study of such MCs and their equivalence has a long history, going back to
Schützenberger [19] and Paz [16]. Schützenberger and Paz studied weighted and
probabilistic automata, respectively. Those models generalize labelled MCs, but
the respective equivalence problems are essentially the same. It can be extracted
from [19] that equivalence is decidable in polynomial time, using a technique
based on linear algebra. Variants of this technique were developed, see e.g. [8,
20]. Tzeng [21] considered the path-equivalence problem for nondeterministic
automata which asks, given nondeterministic automata A and B, whether each
word has the same number of accepting paths in A as in B. He gives an NC
algorithm1 for deciding path equivalence which can be straightforwardly adapted
to yield an NC algorithm for equivalence of MCs.
1 The complexity class NC is the subclass of P containing those problems that can be
solved in polylogarithmic parallel time (see e.g. [10]).

c© Her Majesty the Queen in Right of the United Kingdom 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 303–318, 2016.
DOI: 10.1007/978-3-662-49630-5 18

304 N. Fijalkow et al.

Fig. 1. An MC with its trace-probability func-
tion. This MC, denoted by C(A), is also used in
the reduction from universality of probabilistic
automata to MC � MDP.

Fig. 2. An MDP where the choice
of controller is relevant only in q1.
Two available moves m1,m2 are
shown with small black circles.

More recently, the efficient decidability of the equivalence problem was
exploited, both theoretically and practically, for the verification of probabilis-
tic systems, see e.g. [12–15,17]. In those works, equivalence naturally expresses
properties such as obliviousness and anonymity, which are difficult to formalize
in temporal logic. The inclusion problem for two probabilistic automata asks
whether for each word the acceptance probability in the first automaton is less
than or equal to the acceptance probability in the second automaton. Despite its
semblance to the equivalence problem, the inclusion problem is undecidable [6],
even for automata of fixed dimension [3]. This is unfortunate, especially because
deciding language inclusion is often at the heart of verification algorithms.

We study another “inclusion-like” generalization of the equivalence problem:
trace refinement in labelled Markov decision processes (MDPs). MDPs extend
MCs by nondeterminism; in each state, a controller chooses, possibly randomly
and possibly depending on the history, one out of finitely many moves2. A move
determines a probability distribution over the emitted label and the successor
state. In this way, an MDP and a strategy of the controller induce an MC.

The trace-refinement problem asks, given two MDPs D and E , whether for
all strategies for D there is a strategy for E such that the induced MCs are
equivalent. Consider the MDP depicted in Fig. 2 where in state q1 there are two
available moves; one move generates the label c with probability 1, the other
move generates d with probability 1. A strategy of the controller that chooses
the last generated label in the state q1, either c or d, with probability 1, induces
the same trace-probability function as the MC shown in Fig. 1; the MDP thus
refines that MC. The described strategy needs one bit of memory to keep track of
the last generated label. It was shown in [8] that the strategy for E may require
infinite memory, even if D is an MC. The decidability of trace refinement was
posed as an open problem, both in the introduction and in the conclusion of [8].
The authors of [8] also ask about the decidability of subcases, where D or E
are restricted to be MCs. In this paper we answer all those questions. We show

2 As in [8] we speak of moves rather than of actions, to avoid possible confusion with
the label alphabet L.

Trace Refinement in Labelled Markov Decision Processes 305

that trace refinement is undecidable, even if D is an MC. In contrast, we show
that trace refinement is decidable efficiently (in NC, hence in P), if E is an MC.
Moreover, we prove that the trace-refinement problem becomes decidable if one
imposes suitable restrictions on the strategies for D and E , respectively. More
specifically, we consider memoryless (i.e., no dependence on the history) and
pure memoryless (i.e., no randomization and no dependence on the history)
strategies, establishing various complexity results between NP and PSPACE.

To obtain the aforementioned NC result, we demonstrate a link between trace
refinement and a particular notion of bisimulation between two MDPs that was
studied in [11]. This variant of bisimulation is not defined between two states
as in the usual notion, but between two distributions on states. An exponential-
time algorithm that decides (this notion of) bisimulation was provided in [11].
We sharpen this result by exhibiting a coNP algorithm that decides bisimulation
between two MDPs, and an NC algorithm for the case where one of the MDPs is
an MC. For that we refine the arguments devised in [11]. The model considered
in [11] is more general than ours in that they also consider continuous state
spaces, but more restricted than ours in that the label is determined by the
move.

The full version of the paper is available online [1].

2 Preliminaries

A trace over a finite set L of labels is a finite sequence w = a1 · · · an of labels
where the length of the trace is |w| = n. The empty trace ε has length zero.
For n ≥ 0, let Ln be the set of all traces with length n; we denote by L∗ the set
of all (finite) traces over L.

For a function d : S → [0, 1] over a finite set S, define the norm ‖d‖ :=∑
s∈S d(s). The support of d is the set Supp(d) = {s ∈ S | d(s) > 0}. The

function d is a probability subdistribution over S if ‖d‖ ≤ 1; it is a probability
distribution if ‖d‖ = 1. We denote by subDist(S) (resp. Dist(S)) the set of all
probability subdistributions (resp. distributions) over S. Given s ∈ S, the Dirac
distribution on s assigns probability 1 to s; we denote it by ds. For a non-empty
subset T ⊆ S, the uniform distribution over T assigns probability 1

|T | to every
element in T .

2.1 Labelled Markov Decision Processes

A labelled Markov decision process (MDP) D = 〈Q,μ0, L, δ〉 consists of a finite
set Q of states, an initial distribution μ0 ∈ Dist(Q), a finite set L of labels, and
a finite probabilistic transition relation δ ⊆ Q × Dist(L × Q) where states are in
relation with distributions over pairs of labels and successors. We assume that for
each state q ∈ Q there exists some distribution d ∈ Dist(L× Q) where 〈q, d〉 ∈ δ.
The set of moves in q is moves(q) = {d ∈ Dist(L × Q) | 〈q, d〉 ∈ δ}; denote by
moves =

⋃
q∈Q moves(q) the set of all moves.

306 N. Fijalkow et al.

For the complexity results, we assume that probabilities of transitions are
rational and given as fractions of integers represented in binary.

We describe the behaviour of an MDP as a trace generator running in steps.
The MDP starts in the first step in state q with probability μ0(q). In each
step, if the MDP is in state q the controller chooses m ∈ moves(q); then, with
probability m(a, q′), the label a is generated and the next step starts in the
successor state q′.

Given q ∈ Q, denote by post(q) the set {(a, q′) ∈ Supp(m) | m ∈ moves(q)}.
A path in D is a sequence ρ = q0a1q1 . . . anqn such that (ai+1, qi+1) ∈ post(qi)
for all 0 ≤ i < n. The path ρ has the last state last(ρ) = qn; and the generated
trace after ρ is a1a2 · · · an, denoted by trace(ρ). We denote by Paths(D) the set
of all paths in D, and by Paths(w) = {ρ ∈ Paths(D) | trace(ρ) = w} the set of
all path generating w.

Strategies. A randomized strategy (or simply a strategy) for an MDP D is a
function α : Paths(D) → Dist(moves) that, given a finite path ρ, returns a prob-
ability distribution α(ρ) ∈ Dist(moves(last(ρ))) over the set of moves in last(ρ),
used to generate a label a and select a successor state q′ with probability∑

m∈moves(q) α(ρ)(m) · m(a, q′) where q = last(ρ).
A strategy α is pure if for all ρ ∈ Paths(D), we have α(ρ)(m) = 1 for some m ∈

moves; we thus view pure strategies as functions α : Paths(D) → moves. A strat-
egy α is memoryless if α(ρ) = α(ρ′) for all paths ρ, ρ′ with last(ρ) = last(ρ′); we
thus view memoryless strategies as functions α : Q → Dist(moves). A strategy α
is trace-based if α(ρ) = α(ρ′) for all ρ, ρ′ where trace(ρ) = trace(ρ′) and last(ρ) =
last(ρ′); we view trace-based strategies as functions α : L∗ × Q → Dist(moves).

Trace-Probability Function. For an MDP D and a strategy α, the probability of
a single path is inductively defined by PrD,α(q) = μ0(q) and

PrD,α(ρaq) = PrD,α(ρ) ·
∑

m∈moves(last(ρ))

α(ρ)(m) · m(a, q).

The trace-probability function TrD,α : L∗ → [0, 1] is, given a trace w, defined
by

TrD,α(w) =
∑

ρ∈Paths(w)

PrD,α(ρ).

We may drop the subscript D or α from TrD,α if it is understood. We denote
by subDisD,α(w) ∈ subDist(Q), the subdistribution after generating a traces w,
that is

subDisD,α(w)(q) =
∑

ρ∈Paths(w):last(ρ)=q

PrD,α(ρ).

We have:
TrD,α(w) = ‖subDisD,α(w)‖ (1)

A version of the following lemma was proved in [8, Lemma 1]:

Trace Refinement in Labelled Markov Decision Processes 307

Lemma 1. Let D be an MDP and α be a strategy. There exists a trace-based
strategy β such that Trα = Trβ.

Here, by Trα = Trβ we mean Trα(w) = Trβ(w) for all traces w ∈ L∗.

Labeled Markov Chains. A finite-state labeled Markov chain (MC for short)
is an MDP where only a single move is available in each state, and thus con-
troller’s choice plays no role. An MC C = 〈Q,μ0, L, δ〉 is an MDP where δ :
Q → Dist(L × Q) is a probabilistic transition function. Since MCs are MDPs,
we analogously define paths, and the probability of a single path inductively as
follows: PrC(q) = μ0(q) and PrC(ρaq) = PrC(ρ) · δ(q′)(a, q) where q′ = last(ρ).
The notations subDisC(w) and TrC are defined analogously.

2.2 Trace Refinement

Given two MDPs D and E with the same set L of labels, we say that E refines D,
denoted by D
 E , if for all strategies α for D there exists some strategy β for E
such that TrD = TrE . We are interested in the problem MDP
 MDP, which
asks, for two given MDPs D and E , whether D
 E . The decidability of this
problem was posed as an open question in [8]. We show in Theorem 2 that the
problem MDP
 MDP is undecidable.

We consider various subproblems of MDP
 MDP, which asks whether D
 E
holds. Specifically, we speak of the problem

– MDP
 MC when E is restricted to be an MC;
– MC
 MDP when D is restricted to be an MC;
– MC
 MC when both D and E are restricted to be MCs.

We show in Theorem 2 that even the problem MC
 MDP is undecidable.
Hence we consider further subproblems. Specifically, we denote by MC
 MDPm

the problem where the MDP is restricted to use only memoryless strategies,
and by MC
 MDPpm the problem where the MDP is restricted to use only
pure memoryless strategies. When both MDPs D and E are restricted to
use only pure memoryless strategies, the trace-refinement problem is denoted
by MDPpm
 MDPpm. The problem MC
 MC equals the trace-equivalence prob-
lem for MCs: given two MCs C1, C2 we have C1
 C2 if and only if TrC1 = TrC2

if and only if C2
 C1. This problem is known to be in NC [21], hence in P.

3 Undecidability Results

In this section we show:

Theorem 2. The problem MC
 MDP is undecidable. Hence a fortiori,
MDP
 MDP is undecidable.

308 N. Fijalkow et al.

Fig. 3. Sketch of the construction of the MDP D from the probabilistic automaton A,
for the undecidability result of MC � MDP. Here, p is an accepting state whereas q
is not. To read the picture, note that in p there is a transition to the state p1 with
probability x and label a: δ(p, a)(p1) = x.

Proof. To show that the problem MC
 MDP is undecidable, we establish a
reduction from the universality problem for probabilistic automata. A proba-
bilistic automaton is a tuple A = 〈Q,μ0, L, δ,F 〉 consisting of a finite set Q of
states, an initial distribution μ0 ∈ Dist(Q), a finite set L of letters, a transition
function δ : Q × L → Dist(Q) assigning to every state and letter a distrib-
ution over states, and a set F of final states. For a word w ∈ L∗ we write
disA(w) ∈ Dist(Q) for the distribution such that, for all q ∈ Q, we have that
disA(w)(q) is the probability that, after inputting w, the automaton A is in
state q. We write PrA(w) =

∑
q∈F disA(w)(q) to denote the probability that

A accepts w. The universality problem asks, given a probabilistic automaton
A, whether PrA(w) ≥ 1

2 holds for all words w. This problem is known to be
undecidable [16].

Let A = 〈Q,μ0, L, δ,F 〉 be a probabilistic automaton; without loss of gen-
erality we assume that L = {a, b}. We construct an MDP D such that A is
universal if and only if C
 D where C is the MC shown in Fig. 1. The MDP D
is constructed from A as follows; see Fig. 3.

Its set of states is Q ∪ {qc, qd}, and its initial distribution is μ0. (Here and in
the following we identify subdistributions μ ∈ subDist(Q) and μ ∈ subDist(Q ∪
{qc, qd}) if μ(qc) = μ(qd) = 0.) We describe the transitions of D using the
transition function δ of A. Consider a state q ∈ Q:

– If q ∈ F , there are two available moves mc,md; both emit a with probability
1
4 and simulate the probabilistic automaton A reading the letter a, or emit
b with probability 1

4 and simulate the probabilistic automaton A reading the
letter b. With the remaining probability of 1

2 , mc emits c and leads to qc

and md emits d and leads to qd. Formally, mc(c, qc) = 1
2 , md(d, qd) = 1

2 and
mc(e, q′) = md(e, q′) = 1

4δ(q, e)(q′) where q′ ∈ Q and e ∈ {a, b}.

Trace Refinement in Labelled Markov Decision Processes 309

– If q /∈ F , there is a single available move m such that m(d, qd) = 1
2 and

m(e, q′) = 1
4δ(q, e)(q′) where q′ ∈ Q and e ∈ {a, b}.

– The only move from qc is the Dirac distribution on (c, qc); likewise the only
move from qd is the Dirac distribution on (d, qd).

This MDP D “is almost” an MC, in the sense that a strategy α does not influence
its behaviour until eventually a transition to qc or qd is taken. Indeed, for all α
and for all w ∈ {a, b}∗ we have subDisD,α(w) = 1

4|w| disA(w). In particular, it
follows TrD,α(w) = ‖subDisD,α(w)‖ = 1

4|w| ‖disA(w)‖ = 1
4|w| . Further, if α is

trace-based we have:

TrD,α(wc) = ‖subDisD,α(wc)‖ by (1)
= subDisD,α(wc)(qc) structure of D
=

∑

q∈F

subDisD,α(w)(q) · α(w, q)(mc) · 1
2

structure of D

=
1

4|w|
∑

q∈F

disA(w)(q) · α(w, q)(mc) · 1
2

as argued above

(2)

We show that A is universal if and only if C
 D. Let A be universal. Define a
trace-based strategy α with α(w, q)(mc) = 1

2PrA(w) for all w ∈ {a, b}∗ and q ∈ F .
Note that α(w, q)(mc) is a probability as PrA(w) ≥ 1

2 . Let w ∈ {a, b}∗. We have:

TrD,α(w) =
1

4|w| as argued above

= TrC(w) Figure 1

Further we have:

TrD,α(wc) =
1

4|w|
∑

q∈F

disA(w)(q) · α(w, q)(mc) · 1
2

by (2)

=
1

4|w|
∑

q∈F

disA(w)(q) · 1
PrA(w)

· 1
4

definition of α

=
1

4|w|+1
PrA(w) =

∑

q∈F

disA(w)(q)

= TrC(wc) Figure 1

It follows from the definitions of D and C that for all k ≥ 1, we
have TrD,α(wck) = TrD,α(wc) = TrC(wc) = TrC(wck). We have∑

e∈{a,b,c,d} TrD,α(we) = TrD,α(w) = TrC(w) =
∑

e∈{a,b,c,d} TrC(we). Since
for e ∈ {a, b, c} we also proved that TrD,α(we) = TrC(we) it follows that
TrD,α(wd) = TrC(wd). Hence, as above, TrD,α(wdk) = TrC(wdk) for all k ≥ 1.
Finally, if w /∈ (a + b)∗ · (c∗ + d∗) then TrD,α(w) = 0 = TrC(w).

310 N. Fijalkow et al.

For the converse, assume that A is not universal. Then there is w ∈ {a, b}∗

with PrA(w) < 1
2 . Let α be a trace-based strategy. Then we have:

TrD,α(wc) =
1

4|w|
∑

q∈F

disA(w)(q) · α(w, q)(mc) · 1
2

by (2)

≤ 1
4|w| · 1

2
·
∑

q∈F

disA(w)(q) α(w, q)(mc) ≤ 1

=
1

4|w| · 1
2

· PrA(w) PrA(w) =
∑

q∈F

disA(w)(q)

<
1

4|w| · 1
2

· 1
2

definition of w

= TrC(wc) Figure 1

We conclude that there is no trace-based strategy α with TrD,α = TrC . By
Lemma 1 there is no strategy α with TrD,α = TrC . Hence C �
 D. �

A straightforward reduction from MDP
 MDP now establishes:

Theorem 3. The problem that, given two MDPs D and E, asks whether D
 E
and E
 D is undecidable.

4 Decidability for Memoryless Strategies

Given two MCs C1 and C2, the (symmetric) trace-equivalence relation C1
 C2

is polynomial-time decidable [21]. An MDP D under a memoryless strategy α
induces a finite MC D(α), and thus once a memoryless strategy is fixed for the
MDP, its relation to another given MC in the trace-equivalence relation
 can
be decided in P. Theorems 4 and 5 provide tight complexity bounds of the trace-
refinement problems for MDPs that are restricted to use only pure memoryless
strategies. In Theorems 6 and 7 we establish bounds on the complexity of the
problem when randomization is allowed for memoryless strategies.

4.1 Pure Memoryless Strategies

In this subsection, we show that the two problems MC
 MDPpm

and MDPpm
 MDPpm are NP-complete and Πp
2 -complete.

Membership of MC
 MDPpm in NP and MDPpm
 MDPpm in Πp
2 are

obtained as follows. Given an MC C and an MDP D, the polynomial witness
of C
 D is a pure memoryless strategy α for D. Once α is fixed, then C
 D(α)
can be decided in P. Given another MDP E , for all pure memoryless strate-
gies β of E whether there exists a polynomial witness α for E
 D such
that E(β)
 D(α) can be decided in P.

The hardness results are by reductions from the subset-sum problem and
a variant of the quantified subset-sum problem. Given a set {s1, s2, · · · , sn}

Trace Refinement in Labelled Markov Decision Processes 311

Fig. 4. The MC C in the reduction for NP-
hardness of M � MDPm.

Fig. 5. The gadget Gu for the
set {u1, · · · ,uk}.

of natural numbers and N ∈ N, the subset-sum problem asks whether there
exists a subset S ⊆ {s1, · · · , sn} such that

∑
s∈S s = N . The subset-sum prob-

lem is known to be NP-complete [7]. The quantified version of subset sum is
a game between a universal player and an existential player. Given k,N ∈ N,
the game is played turn-based for k rounds. For each round 1 ≤ i ≤ k, two
sets {s1, s2, · · · , sn} and {t1, t2, · · · , tm} of natural numbers are given. In each
round i, the universal player first chooses Si ⊆ {s1, · · · , sn} and then the exis-
tential player chooses Ti ⊆ {t1, · · · , tm}. The existential player wins if and only if

∑

s∈S1

s +
∑

t∈T1

t + · · · +
∑

s∈Sk

s +
∑

t∈Tk

t = N .

The quantified subset sum is known to be PSPACE-complete [9]. The proof
therein implies that the variant of the problem with a fixed number k of rounds
is Πp

2k-complete.
To establish the NP-hardness of MC
 MDPpm, consider an instance of subset

sum, i.e., a set {s1, · · · , sn} and N ∈ N. We construct an MC C and an MDP D
such that there exists S ⊆ {s1, · · · , sn} with

∑
s∈S s = N if and only if C
 D

when D uses only pure memoryless strategies.
The MC C is shown in Fig. 4. it generates traces in ab+ with probability N

P

and traces in ac+ with probability 1 − N
P where P = s1 + · · · + sn.

For a set {u1, · · · ,uk}, we define a gadget Gu that is an MDP with k + 2
states: u1, · · · ,uk and ub,uc; see Fig. 5. For all states ui, two moves mi,b and mi,c

are available, the Dirac distributions on (a,ub) and (a,uc). The states ub,uc

emit only the single labels b and c. The MDP D is exactly the gadget Gs for
{s1, · · · , sn} equipped with the initial distribution μ0 where μ0(si) = si

P for
all 1 ≤ i ≤ n. Choosing b in si simulates the membership of si in S by adding si

P
to the probability of generating ab+.

Theorem 4. The problem MC
 MDPpm is NP-complete.

To establish the Πp
2 -hardness of MDPpm
 MDPpm, consider an instance of

quantified subset sum, i.e., N ∈ N and two sets {s1, · · · , sn} and {t1, · · · , tm}.

312 N. Fijalkow et al.

We construct MDPs Euniv, Eexist such that the existential player wins in one
round if and only if Euniv
 Eexist restricted to use pure memoryless strategies.

Let P = s1 + · · · + sn and R = t1 + · · · + tm. Pick a small real number
0 < x < 1 so that 0 < xP ,xR,xN < 1. Pick real numbers 0 ≤ y1, y2 ≤ 1 such
that y1 + xN = y2 + xR.

The MDPs Euniv and Eexist have symmetric constructions. To simulate
the choice of the universal player, the MDP Euniv is the gadget Gs for the
set {s1, · · · , sn} where two new states sr, sy are added. The transitions in sr

and sy are the Dirac distributions on (a, sb) and (a, sc), respectively. The initial
distribution μ0 for Euniv is such that μ0(sy) = 1

2y1 and μ0(sr) = 1− 1
2 (xP + y1),

and μ0(si) = 1
2xsi for all 1 ≤ i ≤ n. Similarly, to simulate the counter-attack

of the existential player, the MDP Eexist is the gadget Gt for {t1, · · · , tm} with
two new states tr, ty. The transitions in tr and ty are the Dirac distributions
on (a, tb) and (a, tc), respectively. The initial distribution μ′

0 is μ′
0(py) = 1

2y2
and μ′

0(pr) = 1− 1
2 (xT +y2), and μ′

0(tj) = 1
2xtj for all 1 ≤ j ≤ m. Choosing b in

a set of states si by the universal player must be defended by choosing c in a right
set of states tj by existential player such that the probabilities of emitting ab+

in MDPs are equal.

Theorem 5. The problem MDPpm
 MDPpm is Πp
2 -complete.

4.2 Memoryless Strategies

In this subsection, we provide upper and lower complexity bounds for the prob-
lem MC
 MDPm: a reduction to the existential theory of the reals and a reduc-
tion from nonnegative factorization of matrices.

A formula of the existential theory of the reals is of the form
∃x1 . . . ∃xm R(x1, . . . ,xn), where R(x1, . . . ,xn) is a boolean combination of com-
parisons of the form p(x1, . . . ,xn) ∼ 0, where p(x1, . . . ,xn) is a multivariate poly-
nomial and ∼ ∈ {<,>,≤,≥, =, �=}. The validity of closed formulas (i.e., when
m = n) is decidable in PSPACE [4,18], and is not known to be PSPACE-hard.

Theorem 6. The problem MC
 MDPm is polynomial-time reducible to the exis-
tential theory of the reals, hence in PSPACE.

Given a nonnegative matrix M ∈ R
n×m, a nonnegative factorization of M is

any representation of the form M = A · W where A ∈ R
n×r and W ∈ R

r×m are
nonnegative matrices (see [2,5,22] for more details). The NMF problem asks,
given a nonnegative matrix M ∈ R

n×m and a number r ∈ N, whether there
exists a factorization M = A · W with nonnegative matrices A ∈ R

n×r and
W ∈ R

r×m. The NMF problem is known to be NP-hard, but membership in NP
is open [22].

Below, we present a reduction from the NMF problem to MC
 MDPm. To
establish the reduction, consider an instance of the NMF problem, i.e., a non-
negative matrix M ∈ R

n×m and a number r ∈ N. We construct an MC C and

Trace Refinement in Labelled Markov Decision Processes 313

Fig. 6. The MC C of the reduction from NMF to MC � MDPm.

an MDP D such that the NMF instance is a yes-instance if and only if C
 D
where D is restricted to use only memoryless strategies.

We assume, without loss of generality, that M is a stochastic matrix, that

is
m∑

j=1

M [i, j] = 1 for all rows 1 ≤ i ≤ n. We know, by [2, Sect. 5], that there

exists a nonnegative factorization of M with rank r if and only if there exist two
stochastic matrices A ∈ R

n×r and W ∈ R
r×m such that M = A · W .

The transition probabilities in the MC C encode the entries of matrix M . The
initial distribution of the MC is the Dirac distribution on qin ; see Fig. 6. There
are n+m+1 labels a1, · · · , an, b1, · · · , bm, c. The transition in qin is the uniform
distribution over {(ai, qi) | 1 ≤ i ≤ n}. In each state qi, each label bj is emitted
with probability M [i, j], and a transition to qfi is taken. In state qfi only c is
emitted. Observe that for all 1 ≤ i ≤ n and 1 ≤ j ≤ m we have TrC(ai) = 1

n
and TrC(ai · bj · c∗) = 1

nM [i, j].
The initial distribution of the MDP D is the uniform distribution

over {p1, · · · , pn}; see Fig. 7. In each pi (where 1 ≤ i ≤ n), there are r
moves mi,1,mi,2, · · · ,mi,r where mi,k(ai, �k) = 1 and 1 ≤ k ≤ r. In each �k, there
are m moves m′

k,1,m
′
k,2, · · · ,m′

k,m where m′
k,j(bj , pfi) = 1 where 1 ≤ j ≤ m. In

state pfi , only c is emitted. The probabilities of choosing the move mi,k in pi and
choosing m′

k,j in �k simulate the entries of A[i, k] and W [k, j].

Theorem 7. The NMF problem is polynomial-time reducible to MC
 MDPm,
hence MC
 MDPm is NP-hard.

Recall that it is open whether the NMF problem is in NP and whether the
existential theory of the reals is PSPACE-hard. So Theorems 6 and 7 show that
proving NP-completeness or PSPACE-completeness of MC
 MDPm requires a
breakthrough in those areas.

314 N. Fijalkow et al.

Fig. 7. The MDP D of the reduction from NMF to MC � MDPm.

5 Bisimulation

In this section we show:

Theorem 8. The problem MDP
 MC is in NC, hence in P.

We prove Theorem 8 in two steps: First, in Proposition 9 below, we establish a
link between trace refinement and a notion of bisimulation between distributions
that was studied in [11]. Second, we show that this notion of bisimulation can be
decided efficiently (in NC, hence in P) if one of the MDPs is an MC. Proposition 9
then implies Theorem 8. Along the way, we prove that bisimulation between two
MDPs can be decided in coNP, improving the exponential-time result from [11].
We rebuild a detailed proof from scratch, not referring to [11], as the authors
were unable to verify some of the technical claims made in [11].

A local strategy for an MDP D = 〈Q,μ0, L, δ〉 is a function α : Q →
Dist(moves) that maps each state q to a distribution α(q) ∈ Dist(moves(q))
over moves in q. We call α pure if for all states q there is a move m such that
α(q)(m) = 1. For a subdistribution μ ∈ subDist(Q), a local strategy α, and a
label a ∈ L, define the successor subdistribution Succ(μ,α, a) with

Succ(μ,α, a)(q′) =
∑

q∈Q

μ(q) ·
∑

m∈moves(q)

α(q)(m) · m(a, q′)

for all q′ ∈ Q. Let D = 〈QD,μD
0 , L, δD〉 and E = 〈QE ,μE

0 , L, δE〉 be two MDPs
over the same set L of labels. A bisimulation is a relation R ⊆ subDist(QD) ×
subDist(QE) such that whenever μD R μE then

– ‖μD‖ = ‖μE‖;
– for all local strategies αD there exists a local strategy αE such that for all

a ∈ L we have Succ(μD,αD, a) R Succ(μE ,αE , a);
– for all local strategies αE there exists a local strategy αD such that for all

a ∈ L we have Succ(μD,αD, a) R Succ(μE ,αE , a).

Trace Refinement in Labelled Markov Decision Processes 315

As usual, a union of bisimulations is a bisimulation. Denote by ∼ the union of
all bisimulations, i.e., ∼ is the largest bisimulation. We write D ∼ E if μD

0 ∼ μE
0 .

In general, the set ∼ is uncountably infinite, so methods for computing state-
based bisimulation (e.g., partition refinement) are not applicable. The following
proposition establishes a link between trace refinement and bisimulation.

Proposition 9. Let D be an MDP and C be an MC. Then D ∼ C if and only if
D
 C.

We often view a subdistribution d ∈ subDist(Q) as a row vector d ∈ [0, 1]Q.
For a local strategy α and a label a, define the transition matrix Δα(a) ∈
[0, 1]Q×Q with Δα(a)[q, q′] =

∑
m∈moves(q) α(q)(m) ·m(a, q′). Viewing subdistrib-

utions μ as row vectors, we have:

Succ(μ,α, a) = μ · Δα(a) (3)

In the following we consider MDPs D = 〈Q,μD
0 , L, δ〉 and E = 〈Q,μE

0 , L, δ〉
over the same state space. This is without loss of generality, since we might take
the disjoint union of the state spaces. Since D and E differ only in the initial
distribution, we will focus on D.

Let B ∈ R
Q×k with k ≥ 1. Assume the label set is L = {a1, . . . , a|L|}. For

μ ∈ subDist(Q) and a local strategy α we define a point p(μ,α) ∈ R
|L|·k such that

p(μ,α) =
(
μΔα(a1)B μΔα(a2)B · · · μΔα(a|L|)B

)
.

For the reader’s intuition, we remark that we will choose matrices B ∈ R
Q×k

so that if two subdistributions μD,μE are bisimilar then μDB = μEB. (In fact,
one can compute B so that the converse holds as well, i.e., μD ∼ μE if and
only if μDB = μEB.) It follows that, for subdistributions μD,μE and local
strategies αD,αE , if Succ(μD,αD, a) ∼ Succ(μE ,αE , a) holds for all a ∈ L then
p(μD,αD) = p(μE ,αE). Let us also remark that for fixed μ ∈ subDist(Q), the set
Pμ = {p(μ,α) | α is a local strategy} ⊆ R

|L|·k is a (bounded and convex) poly-
tope. As a consequence, if μD ∼ μE then the polytopes PμD and PμE must be
equal. In the next paragraph we define “extremal” strategies α̂, which intuitively
are local strategies such that p(μ, α̂) is a vertex of the polytope Pμ.

Let v ∈ R
|L|·k be a column vector; we denote column vectors in boldface. We

view v as a “direction”. Recall that dq is the Dirac distribution on the state q.
A pure local strategy α̂ is extremal in direction v with respect to B if

p(dq,α)v ≤ p(dq, α̂)v (4)
p(dq,α)v = p(dq, α̂)v implies p(dq,α) = p(dq, α̂) (5)

for all states q ∈ Q and all pure local strategies α.
By linearity, if (4) and (5) hold for all pure local strategies α then (4) and (5)

hold for all local strategies α. We say a local strategy α̂ is extremal with respect to B
if there is a direction v such that α̂ is extremal in direction v with respect to B.

316 N. Fijalkow et al.

Proposition 10. Let D = 〈Q,μ0, L, δ〉 be an MDP. Let B1 ∈ R
Q×k1 and B2 ∈

R
Q×k2 for k1, k2 ≥ 1. Denote by V1,V2 ⊆ R

Q the subspaces spanned by the
columns of B1,B2, respectively. Assume V1 ⊆ V2. If a local strategy α̂ is extremal
with respect to B1 then α̂ is extremal with respect to B2.

In light of this fact, we may define that α̂ be extremal with respect to a
column-vector space V if α̂ is extremal with respect to a matrix B whose column
space equals V.

The following proposition describes a vector space V so that two subdistri-
butions are bisimilar if and only if their difference (viewed as a row vector) is
orthogonal to V.

Proposition 11. Let D = 〈Q,μ0, L, δ〉 be an MDP. Let V ⊆ R
Q be the smallest

column-vector space such that

– 1 = (1 1 · · · 1)T ∈ V (where T denotes transpose) and
– Δα̂(a)u ∈ V for all u ∈ V, all labels a ∈ L and local strategies α̂ that are

extremal with respect to V.
Then for all μD,μE ∈ subDist(Q), we have μD ∼ μE if and only if μDu = μEu
for all u ∈ V.
Proposition 11 allows us to prove the following theorem:

Theorem 12. The problem that, given two MDPs D and E, asks whether D ∼ E
is in coNP.

In the following, without loss of generality, we consider an MDP D =
〈Q,μD

0 , L, δ〉 and an MC C = 〈QC ,μC
0 , L, δ〉 with QC ⊆ Q. We may view sub-

distributions μC ∈ subDist(QC) as μC ∈ subDist(Q) in the natural way. The
following proposition is analogous to Proposition 11.

Proposition 13. Let D = 〈Q,μD
0 , L, δ〉 be an MDP and C = 〈QC ,μC

0 , L, δ〉 be an
MC with QC ⊆ Q. Let V ⊆ R

Q be the smallest column-vector space such that

– 1 = (1 1 · · · 1)T ∈ V (where T denotes transpose) and
– Δα(a)u ∈ V for all u ∈ V, all labels a ∈ L and all local strategies α.

Then for all μD ∈ subDist(Q) and all μC ∈ subDist(QC), we have μD ∼ μC if
and only if μDu = μCu for all u ∈ V.
Notice the differences to Proposition 11: there we considered all extremal local
strategies (potentially exponentially many), here we consider all local strate-
gies (in general infinitely many). However, we show that one can efficiently find
few local strategies that span all local strategies. This allows us to reduce (in
logarithmic space) the bisimulation problem between an MDP and an MC to
the bisimulation problem between two MCs, which is equivalent to the trace-
equivalence problem in MCs (by Proposition 9). The latter problem is known to
be in NC [21]. Theorem 8 then follows with Proposition 9.

Trace Refinement in Labelled Markov Decision Processes 317

References

1. Full version. ArXiv CoRR: http://arxiv.org/abs/1510.09102 (2015)
2. Arora, S., Ge, R., Kannan, R., Moitra, A.: Computing a nonnegative matrix fac-

torization - provably. In: STOC, pp. 145–162. ACM (2012)
3. Blondel, V.D., Canterini, V.: Undecidable problems for probabilistic automata of

fixed dimension. Theor. Comput. Sci. 36(3), 231–245 (2003)
4. Canny, J.: Some algebraic and geometric computations in PSPACE. In: STOC, pp.

460–467 (1988)
5. Cohen, J., Rothblum, U.: Nonnegative ranks, decompositions, and factorizations

of nonnegative matrices. Linear Algebra Appl. 190, 149–168 (1993)
6. Condon, A., Lipton, R.: On the complexity of space bounded interactive proofs

(extended abstract). In: FOCS, pp. 462–467 (1989)
7. Cormen, T., Stein, C., Rivest, R., Leiserson, C.E.: Introduction to Algorithms, 2nd

edn. McGraw-Hill Higher Education, New York (2001)
8. Doyen, L., Henzinger, T.A., Raskin, J.-F.: Equivalence of labeled Markov chains.

Int. J. Found. Comput. Sci. 19(3), 549–563 (2008)
9. Fearnley, J., Jurdzinski, M.: Reachability in two-clock timed automata is PSPACE-

complete. Inf. Comput. 243, 26–36 (2015)
10. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-

completeness Theory. Oxford University Press, Oxford (1995)
11. Hermanns, H., Krčál, J., Křet́ınský, J.: Probabilistic bisimulation: naturally

on distributions. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS,
vol. 8704, pp. 249–265. Springer, Heidelberg (2014). Technical report at
http://arxiv.org/abs/1404.5084

12. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: Language equiv-
alence for probabilistic automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 526–540. Springer, Heidelberg (2011)

13. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: APEX: an ana-
lyzer for open probabilistic programs. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 693–698. Springer, Heidelberg (2012)

14. Li, L., Feng, Y.: Quantum Markov chains: description of hybrid systems, decidabil-
ity of equivalence, and model checking linear-time properties. Inf. Comput. 244,
229–244 (2015)

15. Ngo, T.M., Stoelinga, M., Huisman, M.: Confidentiality for probabilistic multi-
threaded programs and its verification. In: Jürjens, J., Livshits, B., Scandariato,
R. (eds.) ESSoS 2013. LNCS, vol. 7781, pp. 107–122. Springer, Heidelberg (2013)

16. Paz, A.: Introduction to Probabilistic Automata. Academic Press, Cambridge
(1971)

17. Peyronnet, S., De Rougemont, M., Strozecki, Y.: Approximate verification and
enumeration problems. In: Roychoudhury, A., D’Souza, M. (eds.) ICTAC 2012.
LNCS, vol. 7521, pp. 228–242. Springer, Heidelberg (2012)

18. Renegar, J.: On the computational complexity and geometry of the first-order
theory of the reals. Parts I-III. J. Symbolic Comput. 13(3), 255–352 (1992)

19. Schützenberger, M.-P.: On the definition of a family of automata. Inf. Control 4,
245–270 (1961)

http://arxiv.org/abs/1510.09102
http://arxiv.org/abs/1404.5084

318 N. Fijalkow et al.

20. Tzeng, W.: A polynomial-time algorithm for the equivalence of probabilistic
automata. SIAM J. Comput. 21(2), 216–227 (1992)

21. Tzeng, W.: On path equivalence of nondeterministic finite automata. Inf. Process.
Lett. 58(1), 43–46 (1996)

22. Vavasis, S.: On the complexity of nonnegative matrix factorization. SIAM J. Optim.
20(3), 1364–1377 (2009)

Qualitative Analysis of VASS-Induced MDPs

Parosh Aziz Abdulla1, Radu Ciobanu2, Richard Mayr2, Arnaud Sangnier3,
and Jeremy Sproston4(B)

1 Uppsala University, Uppsala, Sweden
2 University of Edinburgh, Edinburgh, UK

3 LIAFA, Univ Paris Diderot, Sorbonne Paris Cité, CNRS, Paris, France
4 University of Turin, Turin, Italy

sproston@di.unito.it

Abstract. We consider infinite-state Markov decision processes (MDPs)
that are induced by extensions of vector addition systems with states
(VASS). Verification conditions for these MDPs are described by reach-
ability and Büchi objectives w.r.t. given sets of control-states. We study
the decidability of some qualitative versions of these objectives, i.e., the
decidability of whether such objectives can be achieved surely, almost-
surely, or limit-surely. While most such problems are undecidable in gen-
eral, some are decidable for large subclasses in which either only the
controller or only the random environment can change the counter val-
ues (while the other side can only change control-states).

1 Introduction

Markov decision processes (MDPs) [14,17] are a formal model for games on
directed graphs, where certain decisions are taken by a strategic player (a.k.a.
Player 1, or controller) while others are taken randomly (a.k.a. by nature, or
the environment) according to pre-defined probability distributions. MDPs are
thus a subclass of general 2-player stochastic games, and they are equivalent to
1.5-player games in the terminology of [10]. They are also called “games against
nature”.

A run of the MDP consists of a sequence of visited states and transitions on
the graph. Properties of the system are expressed via properties of the induced
runs. The most basic objectives are reachability (is a certain (set of) control-
state(s) eventually visited?) and Büchi objectives (is a certain (set of) control-
state(s) visited infinitely often?).

Since a strategy of Player 1 induces a probability distribution of runs of
the MDP, the objective of an MDP is defined in terms of this distribution,
e.g., if the probability of satisfying a reachability/Büchi objective is at least
a given constant. The special case where this constant is 1 is a key example

P. A. Abdulla—Supported by UPMARC, Uppsala Programming for Multicore Archi-
tectures Research Center.
R. Mayr—Supported by EPSRC grant EP/M027651/1.
J. Sproston—Supported by the MIUR-PRIN project CINA and the EU ARTEMIS
Joint Undertaking under grant agreement no. 332933 (HoliDes).

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 319–334, 2016.
DOI: 10.1007/978-3-662-49630-5 19

320 P.A. Abdulla et al.

of a qualitative objective. Here one asks whether Player 1 has a strategy that
achieves an objective surely (all runs satisfy the property) or almost-surely (the
probability of the runs satisfying the property is 1).

Most classical work on algorithms for MDPs and stochastic games has focused
on finite-state systems (e.g., [11,14,19]), but more recently several classes of
infinite-state systems have been considered as well. For instance, MDPs and sto-
chastic games on infinite-state probabilistic recursive systems (i.e., probabilis-
tic pushdown automata with unbounded stacks) [13] and on one-counter sys-
tems [6,7] have been studied. Another infinite-state probabilistic model, which
is incomparable to recursive systems, is a suitable probabilistic extension of Vec-
tor Addition Systems with States (VASS; a.k.a. Petri nets), which have a finite
number of unbounded counters holding natural numbers.

Our Contribution. We study the decidability of probability-1 qualitative
reachability and Büchi objectives for infinite-state MDPs that are induced by
suitable probabilistic extensions of VASS that we call VASS-MDPs. (Most quan-
titative objectives in probabilistic VASS are either undecidable, or the solution is
at least not effectively expressible in (R,+, ∗,≤) [3]). It is easy to show that, for
general VASS-MDPs, even the simplest of these problems, (almost) sure reacha-
bility, is undecidable. Thus we consider two monotone subclasses: 1-VASS-MDPs
and P-VASS-MDPs. In 1-VASS-MDPs, only Player 1 can modify counter values
while the probabilistic player can only change control-states, whereas for P-
VASS-MDPs it is vice-versa. Still these two models induce infinite-state MDPs.
Unlike for finite-state MDPs, it is possible that the value of the MDP, in the
game theoretic sense, is 1, even though there is no single strategy that achieves
value 1. For example, there can exist a family of strategies σε for every ε > 0,
where playing σε ensures a probability ≥ 1 − ε of reaching a given target state,
but no strategy ensures probability 1. In this case, one says that the reachabil-
ity property holds limit-surely, but not almost-surely (i.e., unlike in finite-state
MDPs, almost-surely and limit-surely do not coincide in infinite-state MDPs).

We show that even for P-VASS-MDPs, all sure/almost-sure/limit-sure reach-
ability/Büchi problems are still undecidable. However, in the deadlock-free sub-
class of P-VASS-MDPs, the sure reachability/Büchi problems become decidable
(while the other problems remain undecidable). In contrast, for 1-VASS-MDPs,
the sure/almost-sure/limit-sure reachability problem and the sure/almost-sure
Büchi problem are decidable.

Our decidability results rely on two different techniques. For the sure and
almost sure problems, we prove that we can reduce them to the model-checking
problem over VASS of a restricted fragment of the modal μ-calculus that has
been proved to be decidable in [4]. For the limit-sure reachability problem in 1-
VASS-MDP, we use an algorithm which at each iteration reduces the dimension
of the considered VASS while preserving the limit-sure reachability properties.

Although we do not consider the class of qualitative objectives referring to the
probability of (repeated) reachability being strictly greater than 0, we observe that
reachability on VASS-MDPs in such a setting is equivalent to reachability on stan-
dard VASS (though this correspondence does not hold for repeated reachability).

Qualitative Analysis of VASS-Induced MDPs 321

Outline. In Sect. 2 we define basic notations and how VASS induce MDPs. In
Sects. 3 and 4 we consider verification problems for P-VASS-MDP and 1-VASS-
MDP, respectively. In Sect. 5 we summarize the decidability results (Table 1) and
outline future work. Omitted proofs can be found in [2].

2 Models and Verification Problems

Let N (resp. Z) denote the set of nonnegative integers (resp. integers). For two
integers i, j such that i ≤ j we use [i..j] to represent the set {k ∈ Z | i ≤ k ≤ j}.
Given a set X and n ∈ N \ {0}, Xn is the set of n-dimensional vectors with
values in X. We use 0 to denote the vector such that 0(i) = 0 for all i ∈ [1..n].
The classical order on Z

n is denoted ≤ and is defined by v ≤ w if and only if
v(i) ≤ w(i) for all i ∈ [1..n]. We also define the operation + over n-dimensional
vectors of integers in the classical way (i.e., for v, v′ ∈ Z

n, v + v′ is defined by
(v+v′)(i) = v(i)+v′(i) for all i ∈ [1..n]). Given a set S, we use S∗ (respectively
Sω) to denote the set of finite (respectively infinite) sequences of elements of S.
We now recall the notion of well-quasi-ordering (which we abbreviate as wqo).
A quasi-order (A,�) is a wqo if for every infinite sequence of elements a1, a2, . . .
in A, there exist two indices i < j such that ai � aj . For n > 0, (Nn,≤) is a
wqo. Given a set A with an ordering � and a subset B ⊆ A, the set B is said to
be upward closed in A if a1 ∈ B, a2 ∈ A and a1 � a2 implies a2 ∈ B.

2.1 Markov Decision Processes

A probability distribution on a countable set X is a function f : X �→ [0, 1]
such that

∑
x∈X f(x) = 1. We use D(X) to denote the set of all probability

distributions on X. We first recall the definition of Markov decision processes.

Definition 1 (MDPs). A Markov decision process (MDP) M is a tuple
〈C,C1, CP , A,→, p〉 where: C is a countable set of configurations partitioned into
C1 and CP (that is C = C1 ∪ CP and C1 ∩ CP = ∅); A is a set of actions;
→⊆ C × A × C is a transition relation; p : CP �→ D(C) is a partial function
which assigns to some configurations in CP probability distributions on C such
that p(c)(c′) > 0 if and only if c

a−→ c′ for some a ∈ A.

Note that our definition is equivalent as seeing MDPs as games played
between a nondeterministic player (Player 1) and a probabilistic player (Player
P). The set C1 contains the nondeterministic configurations (or configurations
of Player 1) and the set CP contains the probabilistic configurations (or con-
figurations of Player P). Given two configurations c, c′ in C, we write c → c′

whenever there exists a ∈ A such that c
a−→ c′. We will say that a configuration

c ∈ C is a deadlock if there does not exist c′ ∈ C such that c → c′. We use Cdf
1

(resp. Cdf
P), to denote the configurations of Player 1 (resp. of Player P) which

are not a deadlock (df stands here for deadlock free).

322 P.A. Abdulla et al.

A play of the MDP M = 〈C,C1, CP , A,→, p〉 is either an infinite sequence of
the form c0

a0−→ c1
a1−→ c2 · · · or a finite sequence c0

a0−→ c1
a1−→ c2 · · · ak−1−−−→ ck. We

call the first kind of play an infinite play, and the second one a finite play. A play
is said to be maximal whenever it is infinite or it ends in a deadlock configuration.
These latter plays are called deadlocked plays. We use Ω to denote the set of
maximal plays. For a finite play ρ = c0

a0−→ c1
a1−→ c2 · · · ak−1−−−→ ck, let ck = last(ρ).

We use Ωdf
1 to denote the set of finite plays ρ such that last(ρ) ∈ Cdf

1 .
A strategy for Player 1 is a function σ : Ωdf

1 �→ C such that, for all ρ ∈ Ωdf
1

and c ∈ C, if σ(ρ) = c then last(ρ) → c. Intuitively, given a finite play ρ, which
represents the history of the game so far, the strategy represents the choice of
Player 1 among the different possible successor configurations from last(ρ). We
use Σ to denote the set of all strategies for Player 1. Given a strategy σ ∈ Σ,
an infinite play c0

a0−→ c1
a1−→ c2 · · · respects σ if for every k ∈ N, we have that if

ck ∈ C1 then ck+1 = σ(c0
a0−→ c1

a1−→ c2 · · · ck) and if ck ∈ CP then p(ck)(ck+1) >
0. We define finite plays that respect σ similarly. Let Plays(M, c, σ) ⊆ Ω be the
set of all maximal plays of M that start from c and that respect σ.

Note that once a starting configuration c0 ∈ C and a strategy σ have been
chosen, the MDP is reduced to an ordinary stochastic process. We define an
event A ⊆ Ω as a measurable set of plays and we use P(M, c, σ,A) to denote
the probability of event A starting from c ∈ C under strategy σ. The notation
P
+(M, c,A) will be used to represent the maximal probability of event A starting

from c which is defined as P
+(M, c,A) = supσ∈ΣP(M, c, σ,A).

2.2 VASS-MDPs

Probabilistic Vector Addition Systems with States have been studied, e.g., in [3].
Here we extend this model with non-deterministic choices made by a controller.
We call this new model VASS-MDPs. We first recall the definition of Vector
Addition Systems with States.

Definition 2 (VASS). For n > 0, an n-dimensional Vector Addition System
with States (VASS) is a tuple S = 〈Q,T 〉 where Q is a finite set of control states
and T ⊆ Q × Z

n × Q is the transition relation labelled with vectors of integers.

In the sequel, we will not always make precise the dimension of the considered
VASS. Configurations of a VASS are pairs 〈q,v〉 ∈ Q×N

n. Given a configuration
〈q,v〉 and a transition t = 〈q, z, q′〉 in T , we will say that t is enabled at 〈q′′,v〉, if
q = q′′ and v+z ≥ 0. Let then En(q,v) be the set {t ∈ T | t is enabled at 〈q,v)〉}.
In case the transition t = 〈q, z, q′〉 is enabled at 〈q,v〉, we define t(q,v) = 〈q′,v′〉
where v′ = v+z. An n-dimensional VASS S induces a labelled transition system
〈C, T,→〉 where C = Q × N

n is the set of configurations and the transition
relation →⊆ C ×T ×C is defined as follows: 〈q,v〉 t−→ 〈q′,v′〉 iff 〈q′,v′〉 = t(q,v).
VASS are sometimes seen as programs manipulating integer variables, a.k.a.
counters. When a transition of a VASS changes the i-th value of a vector v, we
will sometimes say that it modifies the value of the i-th counter. We show now
in which manner we add probability distributions to VASS.

Qualitative Analysis of VASS-Induced MDPs 323

Definition 3 (VASS-MDP). A VASS-MDP is a tuple S = 〈Q,Q1, QP , T, τ〉
where 〈Q,T 〉 is a VASS for which the set of control states Q is partitioned into
Q1 and QP , and τ : T �→ N\{0} is a partial function assigning to each transition
a weight which is a positive natural number.

Nondeterministic (resp. probabilistic) choices are made from control states
in Q1 (resp. QP). The subset of transitions from control states of Q1 (resp.
control states of QP) is denoted by T1 (resp. TP). Hence T = T1 ∪TP with T1 ⊆
Q1×Z

n×Q and TP ⊆ QP ×Z
n×Q. A VASS-MDP S = 〈Q,Q1, QP , T, τ〉 induces

an MDP MS = 〈C,C1, CP , T,→, p〉 where: 〈C, T,→〉 is the labelled transition
system associated with the VASS 〈Q,T 〉; C1 = Q1 × N

n and CP = QP × N
n;

and for all c ∈ Cdf
P and c′ ∈ C, if c → c′, the probability of going from c to c′

is defined by p(c)(c′) = (
∑

{t|t(c)=c′} τ(t))/(
∑

t∈En(c) τ(t)), whereas if c �→ c′, we
have p(c)(c′) = 0. Note that the MDP MS is well-defined: when defining p(c)(c′)
in the case c → c′, there exists at least one transition in En(c) and consequently
the sum

∑
t∈En(c) τ(t) is never equal to 0. Also, we could have restricted the

weights to be assigned only to transitions leaving from a control state in QP

since we do not take into account the weights assigned to the other transitions.
A VASS-MDP is deadlock free if its underlying VASS is deadlock free.

Finally, as in [18] or [4], we will see that to gain decidability it is useful to
restrict the power of the nondeterministic player or of the probabilistic player
by restricting their ability to modify the counters’ values and hence letting them
only choose a control location. This leads to the two following definitions: a P-
VASS-MDP is a VASS-MDP 〈Q,Q1, QP , T, τ〉 such that for all 〈q, z, q′〉 ∈ T1,
we have z = 0 and a 1-VASS-MDP is a VASS-MDP 〈Q,Q1, QP , T, τ〉 such
that for all 〈q, z, q′〉 ∈ TP , we have z = 0. In other words, in a P-VASS-MDP,
Player 1 cannot change the counter values when taking a transition and, in a
1-VASS-MDP, it is Player P which cannot perform such an action.

2.3 Verification Problems for VASS-MDPs

We consider qualitative verification problems for VASS-MDPs, taking as objec-
tives control-state reachability and repeated reachability. To simplify the presen-
tation, we consider a single target control-state qF ∈ Q. However, our positive
decidability results easily carry over to sets of target control-states (while the
negative ones trivially do). Note however, that asking to reach a fixed target
configuration like 〈qF ,0〉 is a very different problem (cf. [3]).

Let S = 〈Q,Q1, QP , T, τ〉 be a VASS-MDP and MS its associated MDP.
Given a control state qF ∈ Q, we denote by �♦qF � the set of infinite plays
c0 · c1 · · · · and deadlocked plays c0 · · · · · cl of MS for which there exists an index
k ∈ N such that ck = 〈qF ,v〉 for some v ∈ N

n. Similarly, ��♦qF � characterizes
the set of infinite plays c0 · c1 · · · · of MS for which the set {i ∈ N | ci =
〈qF ,v〉 for some v ∈ N

n} is infinite. Since MS is an MDP with a countable
number of configurations, we know that the sets of plays �♦qF � and ��♦qF �
are measurable (for more details see for instance [5]), and are hence events for

324 P.A. Abdulla et al.

Fig. 1. Two 1-dimensional VASS-MDPs. The circles (resp. squares) are the control
states of Player 1 (resp. Player P). All transitions have the same weight 1. From 〈q0, 0〉,
the state qF is reached almost-surely, but not surely, due to the possible run with an
infinite loop at q0 (which has probability zero). From 〈q1, 0〉, the state qF can be reached
limit-surely (by a family of strategies that repeats the loop at q1 more and more often),
but not almost-surely (or surely), since every strategy has a chance of getting stuck at
state q2 with counter value zero.

MS . Given an initial configuration c0 ∈ Q × N
n and a control-state qF ∈ Q, we

consider the following questions:

1. The sure reachability problem: Does there exist a strategy σ ∈ Σ such that
Plays(MS , c0, σ) ⊆ �♦qF �?

2. The almost-sure reachability problem: Does there exist a strategy σ ∈ Σ such
that P(MS , c0, σ, �♦qF �) = 1?

3. The limit-sure reachability problem: Does P
+(MS , c0, �♦qF �) = 1?

4. The sure repeated reachability problem: Does there exist a strategy σ ∈ Σ
such that Plays(MS , c0, σ) ⊆ ��♦qF �?

5. The almost-sure repeated reachability problem: Does there exist a strategy
σ ∈ Σ such that P(MS , c0, σ, ��♦qF �) = 1?

6. The limit-sure repeated reachability problem: Does P
+(MS , c0, ��♦qF �) = 1?

Note that sure reachability implies almost-sure reachability, which itself implies
limit-sure reachability, but not vice-versa, as shown by the counterexamples in
Fig. 1 (see also [7]). The same holds for repeated reachability. For the sure prob-
lems, probabilities are not taken into account, and thus these problems can be
interpreted as the answer to a two player reachability game played on the transi-
tion system of S. Such games have been studied for instance in [1,4,18]. Finally,
VASS-MDPs subsume deadlock-free VASS-MDPs and thus decidability (resp.
undecidability) results carry over to the smaller (resp. larger) class.

2.4 Undecidability in the General Case

It was shown in [1] that the sure reachability problem is undecidable for (2-
dimensional) two player VASS. From this we can deduce that the sure reachabil-
ity problem is undecidable for VASS-MDPs. We now present a similar proof to
show the undecidability of the almost-sure reachability problem for VASS-MDPs.

For all of our undecidability results we use reductions from the undecidable
control-state reachability problem for Minsky machines. A Minsky machine is a
tuple 〈Q,T 〉 where Q is a finite set of states and T is a finite set of transitions
manipulating two counters, say x1 and x2. Each transition is a triple of the form
〈q, xi = 0?, q′〉 (counter xi is tested for 0) or 〈q, xi := xi + 1, q′〉 (counter xi is
incremented) or 〈q, xi := xi − 1, q′〉 (counter xi is decremented) where q, q′ ∈ Q.

Qualitative Analysis of VASS-Induced MDPs 325

Fig. 2. Encoding 〈q1, x1 := x1 + 1, q2〉 and 〈q3, x2 := x2 − 1, q4〉 and 〈q5, x1 = 0?, q6〉

Configurations of a Minsky machine are triples in Q × N × N. The transition
relation ⇒ between configurations of the Minsky machine is then defined in
the obvious way. Given an initial state qI and a final state qF , the control-
state reachability problem asks whether there exists a sequence of configurations
〈qI , 0, 0〉 ⇒ 〈q1, v1, v′

1〉 ⇒ . . . ⇒ 〈qk, vk, v′
k〉 with qk = qF . This problem is known

to be undecidable [16]. W.l.o.g. we assume that Minsky machines are deadlock-
free and deterministic (i.e., each configuration has always a unique successor)
and that the only transition leaving qF is of the form 〈qF , x1 := x1 + 1, qF 〉.

We now show how to reduce the control-state reachability problem to the
almost-sure and limit-sure reachability problems in deadlock-free VASS-MDPs.
From a Minsky machine, we construct a deadlock-free 2-dimensional VASS-MDP
for which the control states of Player 1 are exactly the control states of the
Minsky machine. The encoding is presented in Fig. 2 where the circles (resp.
squares) are the control states of Player 1 (resp. Player P), and for each edge
the corresponding weight is 1. The state ⊥ is an absorbing state from which the
unique outgoing transition is a self loop that does not affect the values of the
counters. This encoding allows us to deduce our first result.

Theorem 1. The sure, almost-sure and limit-sure (repeated) reachability prob-
lems are undecidable problems for 2-dimensional deadlock-free VASS-MDPs.

In the special case of 1-dimensional VASS-MDPs, the sure and almost-sure
reachability problems are decidable [7].

2.5 Model-Checking µ-calculus on Single-Sided VASS

It is well-known that there is a strong connection between model-checking
branching time logics and games, and in our case we have in fact undecidabil-
ity results for simple reachability games played on a VASS and for the model-
checking of VASS with expressive branching-time logics [12]. However for this
latter point, decidability can be regained by imposing some restrictions on the
VASS structure [4] as we will now recall. We say that a VASS 〈Q,T 〉 is (Q1, Q2)-
single-sided iff Q1 and Q2 represents a partition of the set of states Q such that
for all transitions 〈q, z, q′〉 in T with q ∈ Q2, we have z = 0; in other words
only the transitions leaving a state from Q1 are allowed to change the values
of the counters. In [4], it has been shown that, thanks to a reduction to games
played on a single-sided VASS with parity objectives, a large fragment of the
μ-calculus called Lsv

μ has a decidable model-checking problem over single-sided

326 P.A. Abdulla et al.

VASS. The idea of this fragment is that the “always” operator � is guarded with
a predicate enforcing the current control states to belong to Q2. Formally, the
syntax of Lsv

μ for (Q1, Q2)-single-sided VASS is given by the following grammar:
φ ::= q | X | φ∧φ | φ∨φ | ♦φ | Q2∧�φ | μX.φ | νX.φ, where Q2 stands
for the formula

∨
q∈Q2

q and X belongs to a set of variables X . The semantics
of Lsv

μ is defined as usual: it associates to a formula φ and to an environment
ε : X → 2C a subset of configurations �φ�ε. We use ε0 to denote the environment
which assigns the empty set to any variable. Given an environment ε, a variable
X ∈ X and a subset of configurations C, we use ε[X := C] to represent the
environment ε′ which is equal to ε except on the variable X, where we have
ε′(X) = C. Finally the notation �φ� corresponds to the interpretation �φ�ε0 .

The problem of model-checking single-sided VASS with Lsv
μ can then be

defined as follows: given a single-sided VASS 〈Q,T 〉, an initial configuration
c0 and a formula φ of Lsv

μ , do we have c0 ∈ �φ�?

Theorem 2 [4]. Model-checking single-sided VASS wrt. Lsv
μ is decidable.

3 Verification of P-VASS-MDPs

In [4] it is proved that parity games played on a single-sided deadlock-free VASS
are decidable (this entails the decidability of model checking Lsv

μ over single-
sided VASS). We will see here that in the case of P-VASS-MDPs, in which only
the probabilistic player can modify the counters, the decidability status depends
on the presence of deadlocks in the system.

3.1 Undecidability in Presence of Deadlocks

We point out that the reduction presented in Fig. 2 to prove Theorem 1 does not
carry over to P-VASS-MDPs, because in that construction both players have
the ability to change the counter values. However, it is possible to perform a
similar reduction leading to the undecidability of verification problems for P-
VASS-MDPs, the main difference being that we crucially exploit the fact that
the P-VASS-MDP can contain deadlocks.

We now explain the idea behind our encoding of Minsky machines into P-
VASS-MDPs. Intuitively, Player 1 chooses a transition of the Minsky machine
to simulate, anticipating the modification of the counters values, and Player P is
then in charge of performing the change. If Player 1 chooses a transition with a
decrement and the accessed counter value is actually 0, then Player P will be in
a deadlock state and consequently the desired control state will not be reached.
Furthermore, if Player 1 decides to perform a zero-test when the counter value
is strictly positive, then Player P is able to punish this choice by entering a
deadlock state. Similarly to the proof of Theorem1, Player P can test if the
value of the counter is strictly greater than 0 by decrementing it. The encoding
of the Minsky machine is presented in Fig. 3. Note that no outgoing edge of
Player 1’s states changes the counter values. Furthermore, we see that Player P

Qualitative Analysis of VASS-Induced MDPs 327

Fig. 3. Encoding 〈q1, x1 := x1 + 1, q2〉 and 〈q3, x2 := x2 − 1, q4〉 and 〈q5, x1 = 0?, q6〉

reaches the control state ⊥ if and only if Player 1 chooses to take a transition
with a zero-test when the value of the tested counter is not equal to 0. Note
that, with the encoding of the transition 〈q3, x2 := x2 − 1, q4〉, when Player P is
in the control state between q3 and q4, it can be in a deadlock if the value of the
second counter is not positive. In the sequel we will see that in P-VASS-MDP
without deadlocks the sure reachability problem becomes decidable.

From this encoding we deduce the following result.

Theorem 3. The sure, almost sure and limit sure (repeated) reachability prob-
lems are undecidable for 2-dimensional P-VASS-MDPs.

3.2 Sure (repeated) Reachability in Deadlock-Free P-VASS-MDPs

Unlike in the case of general P-VASS-MDPs, we will see that the sure (repeated)
reachability problem is decidable for deadlock-free P-VASS-MDPs. Let S =
〈Q,Q1, QP , T, τ〉 be a deadlock-free P-VASS-MDP, MS = (C,C1, CP ,→, p) its
associated MDP and qF ∈ Q a control state. Note that because the P-VASS-
MDP S is deadlock free, Player P cannot take the play to a deadlock to avoid
the control state qF , but he has to deal only with infinite plays. Since S is a
P-VASS-MDP, the VASS 〈Q,T 〉 is (QP , Q1)-single-sided. In [1,18], it has been
shown that control-state reachability games on deadlock-free single-sided VASS
are decidable, and this result has been extended to parity games in [4]. This
implies the decidability of sure (repeated) reachability in deadlock-free P-VASS-
MDPs. However, to obtain a generic way of verifying these systems, we construct
a formula of Lsv

μ that characterizes the sets of winning configurations and use
then the result of Theorem 2. Let V P

S be the set of configurations from which
the answer to the sure reachability problem (with qF as state to be reached)
is negative, i.e., V P

S = {c ∈ C | �σ ∈ Σ s.t. Plays(MS , c, σ) ⊆ �♦qF �} and
similarly let WP

S = {c ∈ C | �σ ∈ Σ s.t. Plays(MS , c, σ) ⊆ ��♦qF �}. The next
lemma relates these two sets with a formula of Lsv

μ (where QP corresponds to
the formula

∨
q∈QP

and Q1 corresponds to the formula
∨

q∈Q1
q).

Lemma 1. – V P
S = �νX.(

∨
q∈Q\{qF } q) ∧ (Q1 ∨ ♦X) ∧ (QP ∨ (Q1 ∧ �X))�.

– WP
S = �μY.νX.

(
(
∨

q∈Q\{qF } q)∧ (Q1 ∨♦X)∧ (QP ∨ (Q1 ∧�X))∨ (qF ∧QP ∧
♦Y) ∨ (qF ∧ Q1 ∧ �Y)

)
�

328 P.A. Abdulla et al.

We use (QP ∨ (Q1 ∧ �X)) instead of (QP ∨ �X) so that the formulae are in
the guarded fragment of the μ-calculus. Since the two formulae belong to Lsv

μ for
the (QP , Q1)-single-sided VASS S, decidability follows directly from Theorem2.

Theorem 4. The sure reachability and repeated reachability problem are decid-
able for deadlock free P-VASS-MDPs.

3.3 Almost-Sure and Limit-Sure Reachability in Deadlock-Free
P-VASS-MDPs

We have seen that, unlike for the general case, the sure reachability and sure
repeated reachability problems are decidable for deadlock free P-VASS-MDPs,
with deadlock freeness being necessary to obtain decidability. For the correspond-
ing almost-sure and limit-sure problems we now show undecidability, again using
a reduction from the reachability problem for two counter Minsky machines, as
shown in Fig. 4. The main difference with the construction used for the proof of
Theorem 3 lies in the addition of a self-loop in the encoding of the transitions
for decrementing a counter, in order to avoid deadlocks. If Player 1, from a con-
figuration 〈q3,v〉, chooses the transition 〈q3, x2 := x2 − 1, q4〉 which decrements
the second counter, then the probabilistic state with the self-loop is entered, and
there are two possible cases: if v(2) > 0 then the probability of staying forever
in this loop is 0 and the probability of eventually going to state q4 is 1; on the
other hand, if v(2) = 0 then the probability of staying forever in the self-loop is
1, since the other transition that leaves the state of Player P and which performs
the decrement on the second counter effectively is not available. Note that such
a construction does not hold in the case of sure reachability, because the path
that stays forever in the loop is a valid path.

Fig. 4. Encoding 〈q1, x1 := x1 + 1, q2〉 and 〈q3, x2 := x2 − 1, q4〉 and 〈q5, x1 = 0?, q6〉

This allows us to deduce the following result for deadlock free P-VASS-MDPs.

Theorem 5. The almost-sure and limit-sure (repeated) reachability problems
are undecidable for 2-dimensional deadlock-free P-VASS-MDPs.

Qualitative Analysis of VASS-Induced MDPs 329

4 Verification of 1-VASS-MDPs

In this section, we will provide decidability results for the subclass of 1-VASS-
MDPs. As for deadlock-free P-VASS-MDPs, the proofs for sure and almost-
sure problems use the decidability of Lsv

μ over single-sided VASS, whereas the
technique used to show decidability of limit-sure reachability is different.

4.1 Sure Problems in 1-VASS-MDPs

First we show that, unlike for P-VASS-MDPs, deadlocks do not matter for 1-
VASS-MDPs. The idea is that in this case, if the deadlock is in a probabilistic
configuration, it means that there is no outgoing edge (because of the property
of 1-VASS-MDPs), and hence one can add an edge to a new absorbing state,
and the same can be done for the states of Player 1. Such a construction does
not work for P-VASS-MDPs, because in that case deadlocks in probabilistic
configurations may depend on the counter values, and not just on the current
control-state.

Lemma 2. The sure (resp. almost sure, resp. limit sure) (repeated) reachability
problem for 1-VASS-MDPs reduces to the sure (resp. almost sure, resp. limit-
sure) (repeated) reachability problem for deadlock-free 1-VASS-MDPs.

Hence in the sequel we will consider only deadlock-free 1-VASS-MDPs. Let
S = 〈Q,Q1, QP , T, τ〉 be a deadlock-free 1-VASS-MDP. For what concerns the
sure (repeated) reachability problems we can directly reuse the results from
Lemma 1 and then show that the complement formulae of the ones expressed
in this lemma belong to Lsv

μ for the (Q1, QP)-single-sided VASS 〈Q,T 〉 (in fact
the correctness of these two lemmas did not depend on the fact that we were
considering P-VASS-MDPs). Theorem2 allows us to retrieve the decidability
results already expressed in [18] (for sure reachability) and [4] (for sure repeated
reachability).

Theorem 6. The sure (repeated) reachability problem is decidable for 1-VASS-
MDPs.

4.2 Almost-Sure Problems in 1-VASS-MDPs

We now move to the case of almost-sure problems in 1-VASS-MDPs. We consider
a deadlock free 1-VASS-MDP S = 〈Q,Q1, QP , T, τ〉 and its associated MDP
MS = 〈C,C1, CP ,→, p〉. We will see that, unlike for P-VASS-MDPs, it is here
also possible to characterize by formulae of Lsv

μ the two following sets: V 1
AS =

{c ∈ C | ∃σ ∈ Σ such that P(MS , c, σ, �♦qF �) = 1} and W 1
AS = {c ∈ C |

∃σ ∈ Σ such that P(MS , c, σ, ��♦qF �) = 1}, i.e. the set of configurations from
which Player 1 has a strategy to reach the control state qF , respectively to visit
infinitely often qF , with probability 1.

We begin with introducing the following formula of Lsv
μ based on the variables

X and Y : InvPre(X,Y) = (Q1 ∧ ♦(X ∧ Y)) ∨ (♦Y ∧ QP ∧ �X). Note that

330 P.A. Abdulla et al.

InvPre(X,Y) is a formula of Lsv
μ for the (Q1, QP)-single-sided VASS 〈Q,T 〉.

Intuitively, this formula represents the set of configurations from which (i) Player
1 can make a transition to the set represented by the intersection of the sets
characterized by the variables X and Y and (ii) Player P can make a transition
to the set Y and cannot avoid making a transition to the set X.

Almost Sure Reachability. We will now prove that V 1
AS can be characterized

by the following formula of Lsv
μ : νX.μY.(qF ∨InvPre(X,Y)). Note that a similar

result exists for finite-state MDPs, see e.g. [9]; this result in general does not
extend to infinite-state MDPs, but in the case of VASS-MDPs it can be applied.
Before proving this we need some intermediate results.

We denote by E the set �νX.μY.
(
qF ∨ InvPre(X,Y)

)
�ε0 . Since νX.μY.

(
qF ∨

InvPre(X,Y)
)

is a formula of Lsv
μ interpreted over the single-sided VASS 〈Q,T 〉,

we can show that E is an upward-closed set. We now need another lemma which
states that there exists N ∈ N and a strategy for Player 1 such that, from any
configuration of E, Player 1 can reach the control state qF in less than N steps
and Player P cannot take the play outside of E. The fact that we can bound
the number of steps is crucial to show that �νX.μY.

(
qF ∨ InvPre(X,Y)

)
�ε0 is

equal to V 1
AS . For infinite-state MDPs where this property does not hold, our

techniques do not apply.

Lemma 3. There exists N ∈ N and a strategy σ of Player 1 such that for all
c ∈ E, there exists a play c · c1 · c2 · . . . in Plays(MS , c, σ) satisfying the three
following properties: (1) there exists 0 ≤ i ≤ N such that ci ∈ �qF �; (2) for all
0 ≤ j ≤ i, cj ∈ E; (3) for all 0 ≤ j ≤ i, if cj ∈ CP then for all c′′ ∈ C such that
cj → c′′, we have c′′ ∈ E.

This previous lemma allows us to characterize V 1
AS with a formula of Lsv

μ . The
proof of the following result uses the fact that the number of steps is bounded,
and also the fact that the sets described by closed Lsv

μ formulae are upward-
closed. This makes the fixpoint iteration terminate in a finite number of steps.

Lemma 4. V 1
AS = �νX.μY.(qF ∨ InvPre(X,Y))�.

Since 〈Q,T 〉 is (Q1, QP)-single-sided and since the formula associated to V 1
AS

belongs to Lsv
μ , from Theorem 2 we deduce the following theorem.

Theorem 7. The almost-sure reachability problem is decidable for 1-VASS-
MDPs.

Almost Sure Repeated Reachability. For the case of almost sure repeated
reachability we reuse the previously introduced formula InvPre(X,Y). We can
perform a reasoning similar to the previous ones and provide a characterization
of the set W 1

AS .

Lemma 5. W 1
AS = �νX.InvPre(X,μY.(qF ∨ InvPre(X,Y)))�.

Qualitative Analysis of VASS-Induced MDPs 331

As previously, this allows us to deduce the decidability of the almost sure
repeated reachability problem for 1-VASS-MDP.

Theorem 8. The almost sure repeated reachability problem is decidable for 1-
VASS-MDPs.

4.3 Limit-Sure Reachability in 1-VASS-MDP

We consider a slightly more general version of the limit-sure reachability problem
with a set X ⊆ Q of target states instead of a single state qF , i.e., the standard
case corresponds to X = {qF }.

We extend the set of natural numbers N to N∗ = N
⋃{∗} by adding an

element ∗ /∈ N with ∗+j = ∗−j = ∗ and j < ∗ for all j ∈ N. We consider then the
set of vectors N

d
∗. The projection of a vector v in N

d by eliminating components
that are indexed by a natural number k is defined by projk(v)(i) = v(i) if i �= k
and projk(v)(i) = ∗ otherwise

Let Qc represent control-states which are indexed by a color. The coloring
functions coli : Q → Qc create colored copies of control-states by coli(q) = qi.

Given a 1-VASS-MDP S = 〈Q,Q1, QP , T, τ〉 of dimension d, an index k ≤ d
and a color i, the colored projection is defined as:

Projk(S, d, i) = 〈coli(Q), coli(Q1), coli(QP), projk,i(T), τk,i〉

where projk,i(T) = {projk,i(t)|t ∈ T} is the projection of the set of transitions
T and projk,i(t) = 〈coli(x), projk(z), coli(y)〉 is the projection of transition t =
〈x, z, y〉 obtained by removing component k and coloring the states x and y with
color i. The transition weights carry over, i.e., τk,i(t′) =

∑{τ(t) | projk,i(t) = t′}.
We define the functions state : Q × N

d
∗ → Q and count : Q × N

d
∗ → N

d
∗ s.t for

a configuration ci = 〈q,v〉, where q ∈ Q and v ∈ N
d
∗ we have that state(q,v) = q

and count(q,v) = v. For any two configurations c1 and c2, we write c1 ≺ c2 to
denote that state(c1) = state(c2), and there exists a nonempty set of indexes
I where for every i ∈ I , count(c1)(i) < count(c2)(i), whereas for every index
j /∈ I, 0 < j ≤ d, count(c1)(j) = count(c2)(j).

Algorithm 1 reduces the dimension of the limit-sure reachability problem for
1-VASS-MDP by a construction resembling the Karp-Miller tree [15]. It takes as
input a 1-VASS-MDP S of some dimension d > 0 with a set of target states X. It
outputs a new 1-VASS-MDP S′ of dimension d−1 and a new set of target states
X ′ such that MS can limit-surely reach X iff MS′ can limit-surely reach X ′. In
particular, in the base case where d−1 = 0, the new system S′ has dimension zero
and thus induces a finite-state MDP MS′ , for which limit-sure reachability of X ′

coincides with almost-sure reachability of X ′, which is known to be decidable in
polynomial time. Algorithm 1 starts by exploring all branches of the computation
tree of S (and adding them to S′ as the so-called initial uncolored part) until
it encounters a configuration that is either (1) equal to, or (2) strictly larger
than a configuration encountered previously on the same branch. In case (1)
it just adds a back loop to the point where the configuration was encountered

332 P.A. Abdulla et al.

previously. In case (2), it adds a modified copy of S (identified by a unique color)
to S′. This so-called colored subsystem is similar to S except that those counters
that have strictly increased along the branch are removed. The intuition is that
these counters could be pumped to arbitrarily high values and thus present no
obstacle to reaching the target. Since the initial uncolored part is necessarily
finite (by Dickson’s Lemma) and each of the finitely many colored subsystems
only has dimension d − 1 (since a counter is removed; possibly a different one
in different colored subsystems), the resulting 1-VASS-MDP S′ has dimension
d − 1. The set of target states X ′ is defined as the union of all appearances of
states in X in the uncolored part, plus all colored copies of states from X in the
colored subsystems.

Algorithm 1. Reducing the dimension of the limit-sure reachability problem.
Require: S = 〈Q, Q1, QP , T, τ〉 1-VASS-MDP, dimension d > 0, c0 = 〈q0,v〉 ∈ Q×N

d

X ⊆ Q - set of target states
Ensure: S′ = 〈Q′, Q′

1, Q
′
P , T ′, τ ′〉; c′

0 = 〈q′
0,0〉; X ′ ⊆ Q′; λ : Q′ → ((Q

⋃
Qc) × N

d
∗)

1: Q′ ← ∅; Q′
1 ← ∅; Q′

P ← ∅; T ′ ← ∅; τ ′ ← ∅;
2: new(q′); q′

0 ← q′; λ(q′) ← c0; Q′ ← {q′}; i ← 0
3: if state(λ(q′)) ∈ Q1 then Q′

1 ← {q′} else Q′
P ← {q′}

4: ToExplore ← {q′}
5: while ToExplore �= ∅ do
6: Pick and remove a q ∈ ToExplore
7: if ∃q′. q′ is previously on the same branch as q and λ(q′) ≺ λ(q) then
8: get indexes I in which the counter is increasing
9: pick and remove the first index k from I
10: i ← i + 1; // increase color index
11: new(q′′);
12: λ(q′′) ← 〈coli(state(λ(q))), projk(count(λ(q)))〉
13: if state(λ(q)) ∈ Q1 then Q′

1 ← Q′
1

⋃{q′′} else Q′
P ← Q′

P

⋃{q′′}
14: T ′ ← T ′⋃{〈q,0, q′′〉}; τ ′(〈q,0, q′′〉) = 1;
15: Q′

1 ← Q′
1

⋃
coli(Q1); Q′

P ← Q′
P

⋃
coli(QP); T ′ ← T ′⋃ projk,i(T);

16: X ′ ← X ′⋃ coli(X); τ ′ ← τ ′ ∪ τk,i
17: else
18: for every t = 〈x, z, y〉 in T such that t ∈ En(λ(q)) do
19: if ∃q′. q′ is previously on the same branch as q and t(λ(q)) = λ(q′) then
20: T ′ ← T ′⋃{〈q, z, q′〉};
21: else
22: new(q′); λ(q′) ← t(λ(q))
23: T ′ ← T ′⋃{〈q, z, q′〉}; τ ′(〈q, z, q′〉) ← τ(t)
24: if state(λ(q′)) ∈ Q1 then Q′

1 ← Q′
1

⋃{q′} else Q′
P ← Q′

P

⋃{q′}
25: if state(λ(q′)) ∈ X then X ′ ← X ′⋃{q′}
26: ToExplore ← ToExplore

⋃{q′}
27: end if
28: end for
29: end if
30: end while

Qualitative Analysis of VASS-Induced MDPs 333

Table 1. Decidability of verification problems for P-VASS-MDP, deadlock-free P-
VASS-MDP and 1-VASS-MDP. A � stands for decidable and a × for undecidable.

P-VASS-MDP df P-VASS-MDP 1-VASS-MDP

Sure reachability × (Theorem3) � (Theorem4) � (Theorem6)

Almost-sure reachability × (Theorem3) × (Theorem5) � (Theorem7)

Limit-sure reachability × (Theorem3) × (Theorem5) � (Theorem9)

Sure repeated reachability × (Theorem3) � (Theorem4) � (Theorem6)

Almost-sure repeated reachability × (Theorem3) × (Theorem5) � (Theorem8)

Limit-sure repeated reachability × (Theorem3) × (Theorem5) Open

By Dickson’s Lemma, the conditions on line 7 or line 19 of the algorithm
must eventually hold on every branch of the explored computation tree. Thus,
it will terminate.

Lemma 6. Algorithm1 terminates.

The next lemma states the correctness of Algorithm 1. Let S =
〈Q,Q1, QP , T, τ〉 be 1-VASS-MDP of dimension d > 0 with initial configura-
tion c0 = 〈q0,v〉 and X ⊆ Q a set of target states. Let S′ = 〈Q′, Q′

1, Q
′
P , T ′, τ ′〉

with initial configuration c′
0 = 〈q′

0,0〉 and set of target states X ′ ⊆ Q′ be the
(d− 1) dimensional 1-VASS-MDP produced by Algorithm1. As described above
we have the following relation between these two systems.

Lemma 7. P
+(MS , c0, �♦X�) = 1 iff P

+(MS′ , c′
0, �♦X ′�) = 1.

By applying the result of the previous lemma iteratively until we obtain a
finite-state MDP, we can deduce the following theorem.

Theorem 9. The limit-sure reachability problem for 1-VASS-MDP is decidable.

5 Conclusion and Future Work

Table 1 summarizes our results on the decidability of verification problems for
subclasses of VASS-MDP. The exact complexity of most problems is still open.
Algorithm 1 relies on Dickson’s Lemma for termination, and the algorithm decid-
ing the model-checking problem of Theorem2 additionally uses the Valk-Jantzen
construction repeatedly. However, all these problems are at least as hard as
control-state reachability in VASS, and thus EXPSPACE-hard [12].

The decidability of the limit-sure repeated reachability problem for 1-VASS-
MDP is open. A hint of its difficulty is given by the fact that there are instances
where the property holds even though a small chance of reaching a deadlock can-
not be avoided from any reachable configuration. In particular, a solution would
require an analysis of the long-run behavior of multi-dimensional random walks
induced by probabilistic VASS. However, these may exhibit strange nonregular
behaviors for dimensions ≥ 3, as described in [8] (Sect. 5).

334 P.A. Abdulla et al.

References

1. Abdulla, P.A., Bouajjani, A., d’Orso, J.: Monotonic and downward closed games.
J. Logic Comput. 18(1), 153–169 (2008)

2. Abdulla, P.A., Ciobanu, R., Mayr, R., Sangnier, A., Sproston, J.: Qualitative analy-
sis of VASS-induced MDPs. CoRR (2015). abs/1512.08824

3. Abdulla, P.A., Henda, N.B., Mayr, R.: Decisive Markov chains. Logical Meth.
Comput. Sci. 3(4) (2007)

4. Abdulla, P.A., Mayr, R., Sangnier, A., Sproston, J.: Solving parity games on integer
vectors. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency
Theory. LNCS, vol. 8052, pp. 106–120. Springer, Heidelberg (2013)

5. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

6. Brázdil, T., Brozek, V., Etessami, K.: One-counter stochastic games. In: FSTTCS
2010, LIPIcs, vol. 8, pp. 108–119. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2010)

7. Brázdil, T., Brozek, V., Etessami, K., Kučera, A., Wojtczak, D.: One-counter
Markov decision processes. In: SODA 2010, pp. 863–874. SIAM (2010)

8. Brázdil, T., Kiefer, S., Kučera, A., Novotný, P.: Long-run average behaviour of
probabilistic vector addition systems. In: LICS 2015, pp. 44–55. IEEE (2015)

9. Chatterjee, K., de Alfaro, L., Faella, M., Legay, A.: Qualitative logics and equiva-
lences for probabilistic systems. Logical Meth. Comput. Sci. 5(2) (2009)

10. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Simple stochastic parity games.
In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100–113.
Springer, Heidelberg (2003)

11. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224
(1992)

12. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Bull. EATCS
52, 244–262 (1994)

13. Etessami, K., Yannakakis, M.: Recursive Markov decision processes and recursive
stochastic games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 891–903. Springer, Heidelberg (2005)

14. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, New York
(1997)

15. Karp, R., Miller, R.: Parallel program schemata. J. Comput. Syst. Sci. 3(2), 147–
195 (1969)

16. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall,
Upper Saddle River (1967)

17. Puterman, M.L.: Markov Decision Processes. Wiley, New York (1994)
18. Raskin, J.-F., Samuelides, M., Begin, L.V.: Games for counting abstractions. In:

AVoCS 2004, Electronic Notes in Theoretical Computer Science, vol. 128(6), pp.
69–85 (2005)

19. Shapley, L.S.: Stochastic games. Proc. Nat. Acad. Sci. 39(10), 1095–1100 (1953)

Metric Temporal Logic with Counting

Shankara Narayanan Krishna1(B), Khushraj Madnani1,
and Paritosh K. Pandya2

1 Department of Computer Science and Engineering, IIT Bombay,
Mumbai 400 076, India

{krishnas,khushraj}@cse.iitb.ac.in
2 School of Technology and Computer Science,

Tata Institute of Fundamental Research, Mumbai 400 005, India
pandya@tcs.tifr.res.in

Ability to count number of occurrences of events within a specified time
interval is very useful in specification of resource bounded real time computa-
tion. In this paper, we study an extension of Metric Temporal Logic (MTL) with
two different counting modalities called C and UT (until with threshold), which
enhance the expressive power of MTL in orthogonal fashion. We confine ourselves
only to the future fragment of MTL interpreted in a pointwise manner over finite
timed words. We provide a comprehensive study of the expressive power of logic
CTMTL and its fragments using the technique of EF games extended with suit-
able counting moves. Finally, as our main result, we establish the decidability of
CTMTL by giving an equisatisfiable reduction from CTMTL to MTL. The reduc-
tion provides one more example of the use of temporal projections with over-
sampling introduced earlier for proving decidability. Our reduction also implies
that MITL extended with C and UT modalities is elementarily decidable.

1 Introduction

Temporal logics provide constructs to specify qualitative ordering between events
in time. But real time logics have the ability to specify quantitative timing
constraints between events. Metric Temporal Logic MTL is amongst the best
studied of real time logics. Its principal modality aUIb states that an event b
should occur in future within a time distance lying within interval I. Moreover,
a should hold continuously till then.

In many situations, especially those dealing with resource bounded computa-
tion, the ability to count the number of occurrences of events becomes important.
In this paper, we consider an extension of MTL with two counting modalities C
and UT (until threshold) which provide differing abilities to specify constraints
on counts on events in time intervals. The resulting logic is called CTMTL.
Modality C≥n

I φ states that the number of times formula φ holds in time interval
I (measured relative to current time point) is at least n. This is a mild general-
ization of C≥n

(0,1) φ modality studied by Rabinovich [2] in context of continuous
time MTL. The UT modality φ UI,#κ≥n ψ is like MTL until but it additionally
states that the number of time formula κ holds between now and time point

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 335–352, 2016.
DOI: 10.1007/978-3-662-49630-5 20

336 S.N. Krishna et al.

where ψ holds is at least n. Thus it extends U to simultaneously specify con-
straint on time and count of subformula. Constraining U by count of subformula
was already explored for untimed LTL by Laroussini et al. [7]. But the combi-
nation of timing and counting seems new. The following example illustrates the
use of these modalities.

Example 1. We specify some constraints to be monitored by exercise bicycle
electronics.

– Two minutes after the start of exercise, the heartbeat (number of pulses in
next 60 seconds) should be between 90 and 120. This can be stated as

�(st ⇒ (C≥90
[120,180]pulse ∧ C<120

[120,180]pulse))

– Here is one exerise routine: After start of exercise, slow peddling should be
done for 1 kilometre (marked by odometer giving 1000 pulses) and this should
be achieved in interval 1 to 2 min. After this fast peddling should be done for
3 min. This can be specified as

�(st ⇒ slowpeddleU[60,120],#odo=1000(�[0,180]fastpeddle))

In specifying requirements over hybrid systems where count of events or mode
changes are to be constrained by time intervals, our logic is quite relevant. In
an HVAC case study, we have used these operators to specify properties such
as no more than 3 switching on of motor are permitted in any one minute
time interval. Similarly, in resource bounded computation, fairness constraints
often need counting; e.g. “no more than 3 login attempted should be made
in one minute”. We believe that our operators are quite natural and useful in
requirement modelling of real time systems.

The expressiveness and decidability properties of real time logics differ con-
siderable based on nature of time. There has been considerable study of counting
MTL in continuous time [3,12]. In this paper, we consider the case of pointwise
time, i.e. CTMTL interpreted over finite timed words in a pointwise manner. We
provide a comprehensive picture of expressiveness and decidability of CTMTL
and its fragments in pointwise time and we find that this differs considerably
when compared with continuous time.

As our first main result, we show that the C and the UT modalities both
increase the expressive power of MTL but they are mutually incomparable. EF
games are a classical technique used to study expressive power of logic. [10] have
adapted EF games to MTL and shown a number of expressiveness results. In this
paper, we further extend MTL EF games with counting moves corresponding to
the C and UT modalities. We use the resulting EF theorem to characterise the
expressive powers of several fragments of CTMTL.

One attraction of pointwise MTL over finite timed words is that its satisfi-
ability is decidable [9] whereas continuous time MTL has undecidable satisfia-
bility. As our second main result, we show that MTL extended with C and UT
modalities also has decidable satisfiability. In order to prove this result, we give

Metric Temporal Logic with Counting 337

an equisatisfiable reduction from CTMTL to MTL. The reduction makes use of
the notion of temporal projections modulo oversampling introduced earlier [4]
where timed words satisfying original CTMTL formula have to be oversampled
with additional time points to satisfy corresponding MTL formula. This result
marks one more use of the technique of temporal projections. We note that our
reduction can also be applied to MITL (with both U and S) extended with C and
UT and it gives an equisatisfiable formula in MITL which is exponential in the
size of original formula. Thus, we establish that CTMITL[U,S] has elementary
satisfiability.

2 A Zoo of Timed Temporal Logics

In this section, we present the syntax and semantics of the various timed tem-
poral logics we study in this paper. Let Σ be a finite set of propositions.
A finite timed word over Σ is a tuple ρ = (σ, τ). σ and τ are sequences
σ1σ2 . . . σn and t1t2 . . . tn respectively, with σi ∈ 2Σ − ∅, and ti ∈ R≥0 for
1 ≤ i ≤ n and ∀i ∈ dom(ρ), ti ≤ ti+1, where dom(ρ) is the set of positions
{1, 2, . . . , n} in the timed word. An example of a timed word over Σ = {a, b}
is ρ = ({a, b}, 0.3)({b}, 0.7)({a}, 1.1). ρ is strictly monotonic iff ti < ti+1 for all
i, i + 1 ∈ dom(ρ). Otherwise, it is weakly monotonic. The set of finite timed
words over Σ is denoted TΣ∗.

The logic MTL extends linear temporal logic (LTL) by adding timing con-
straints to the “until” modality of LTL. We parametrize this logic by a permitted
set of time intervals denoted by Iν. The intervals in Iν can be open, half-open
or closed, with end points in N ∪ {0,∞}. Such an interval is denoted 〈a, b〉. For
example, [3, 7), [5,∞). Let t + 〈a, b〉 = 〈t + a, t + b〉.

Metric Temporal Logic. Given Σ, the formulae of MTL are built from Σ
using boolean connectives and time constrained version of the modality U as
follows: ϕ ::= a(∈ Σ)|true|ϕ ∧ ϕ|¬ϕ|ϕUIϕ where I ∈ Iν. For a timed word
ρ = (σ, τ) ∈ TΣ∗, a position i ∈ dom(ρ), and an MTL formula ϕ, the satisfaction
of ϕ at a position i of ρ is denoted (ρ, i) |= ϕ, and is defined as follows:
ρ, i |= a ↔ a ∈ σi and ρ, i |= ¬ϕ ↔ ρ, i � ϕ
ρ, i |= ϕ1 ∧ ϕ2 ↔ ρ, i |= ϕ1 and ρ, i |= ϕ2

ρ, i |= ϕ1UIϕ2 ↔ ∃j > i, ρ, j |= ϕ2, tj − ti ∈ I, and ρ, k |= ϕ1 ∀ i < k < j
ρ satisfies ϕ denoted ρ |= ϕ iff ρ, 1 |= ϕ. Let L(ϕ) = {ρ | ρ, 1 |= ϕ} denote the
language of a MTL formula ϕ. Two formulae ϕ and φ are said to be equivalent
denoted as ϕ ≡ φ iff L(ϕ) = L(φ). Additional temporal connectives are defined
in the standard way: we have the constrained future eventuality operator ♦Ia ≡
trueUIa and its dual �Ia ≡ ¬♦I¬a. We also define the next operator as OIφ ≡
⊥UIφ. Weak versions of operators are defined as ♦w

I a = a∨♦Ia,�w
I a ≡ a∧�Ia,

aUw
I b ≡ b ∨ [a ∧ (aUIb)] if 0 ∈ I, and [a ∧ (aUIb)] if 0 /∈ I.

338 S.N. Krishna et al.

Theorem 1 [9]. Satisfiability checking of MTL is decidable over finite timed
words with non-primitive-recursive complexity.

Metric Temporal Logic with Counting (CTMTL). We denote by CTMTL
the logic obtained by extending MTL with the ability to count, by endowing it
with two counting modalities C as well as UT.

Syntax of CTMTL: ϕ ::= a(∈ Σ)|true|ϕ ∧ ϕ|¬ϕ|ϕ|C≥n
I ϕ|ϕUI,ηϕ, where I ∈

Iν, n ∈ N ∪ {0} and η is a threshold formula of the form #ϕ ≥ n or #ϕ < n.
The counting modality C≥n

I ϕ is called the C modality, while ϕUI,ηϕ is called the
UT modality. Let ρ = (σ, τ) ∈ TΣ∗, i, j ∈ dom(ρ). Define

Nρ[i, I](ϕ) = {k ∈ dom(ρ) | tk ∈ ti + I ∧ ρ, k |= ϕ}, and
ρ[i, j](ϕ) = {k ∈ dom(ρ) | i < k < j ∧ ρ, k |= ϕ}.

Denote by |Nρ[i, I](ϕ)| and |ρ[i, j](ϕ)| respectively, the cardinality of Nρ[i, I](ϕ)
and ρ[i, j](ϕ). |Nρ[i, I](ϕ)| is the number of points in ρ that lie in the interval
ti+I, and which satisfy ϕ, while |ρ[i, j](ϕ)| is the number of points lying between
i and j which satisfy ϕ. Define ρ, i |= C≥n

I ϕ iff |Nρ[i, I](ϕ)| ≥ n. Likewise,
ρ, i |= ϕ1UI,#ϕ≥nϕ2 iff ∃j>i, ρ, j |= ϕ2, tj − ti ∈ I, and ρ, k |= ϕ1, ∀i < k < j
and |ρ[i, j](ϕ)| ≥ n.

Remark : The classical until operator of MTL is captured in CTMTL since
ϕUIψ ≡ ϕUI,#true≥0ψ. We can express C∼n

I and #ϕ ∼ n for ∼∈ {≤, <,>,=}
in CTMTL since C<n

I ϕ ≡ ¬C≥n
I ϕ, C>n

I ϕ ≡ C≥n+1
I ϕ, C≤n

I ϕ ≡ ¬C≥n+1
I ϕ and

#ϕ > n ≡ #ϕ ≥ n + 1, #ϕ ≤ n ≡ ¬(#ϕ > n + 1). It can be shown that
boolean combinations of threshold formulae are also expressible in CTMTL (see
[6]). Thus, aU(1,2),(#d=3∧#C<2

(0,1)b)
c is expressible in CTMTL. The nesting depth

of a CTMTL formula is the maximum nesting of C,UT operators. Formally,

– depth(ϕ1UI,#ϕ3∼nϕ2) = max(depth(ϕ1), depth(ϕ2), depth(ϕ3) + 1),
– depth(C≥n

I ϕ) = depth(ϕ) + 1, depth(ϕ ∧ ψ) = max(depth(ϕ), depth(ψ)),
– depth(¬ϕ) = depth(ϕ) and depth(a) = 0 for any a ∈ Σ.

For example, depth(aU[0,2],ηC
≥1b) with η = #[aU(0,1),#[C=2

(0,1)a∧♦(0,1),#d=2]≥1c] <

7 is 3. We obtain the following natural fragments of CTMTL as follows: We denote
by CMTL, the fragment of CTMTL obtained by using the C modality and the UI

modality. Further, C(0,u)MTL denotes the subclass of CMTL where the interval I
in C∼n

I ϕ is of the form I = 〈0, b〉. When the interval is of the form I = 〈0, 1〉, then
we denote the class by C(0,1)MTL. Note that C(0,1)MTL is the class which allows
counting in the next one unit of time. This kind of counting (unit counting in
future and past) was introduced and studied in [2] in the continuous semantics.
C(0,1)MTL is the pointwise counterpart of this logic, with only future operators.
Clearly, C(0,1)MTL ⊆ C(0,u)MTL ⊆ CMTL ⊆ CTMTL. Restricting CTMTL to the
UT modality, we obtain the fragment TMTL. Restricting the C modality to C(0,1)

or C(0,u) and also allowing the UT modality, one gets the fragments C(0,1)TMTL
and C(0,u)TMTL respectively. If we disallow the C modality, restrict the intervals

Metric Temporal Logic with Counting 339

I appearing in the formulae to non-punctual intervals of the form 〈a, b〉 (a �= b),
and restrict threshold formulae η to be of the form #true ≥ 0, then we obtain
MITL.

3 Expressiveness Hierarchy in the Counting Zoo

In this section, we study the expressiveness and hierarchy of the logics introduced
in Sect. 2. The main results of this section are the following:

Theorem 2. MTL ⊂ C0,1)MTL ⊂ C(0,u)MTL ⊂ TMTL = C(0,u)TMTL ⊂
CTMTL. Moreover, CMTL and TMTL are incomparable, and C(0,u)MTL ⊂
CMTL.

While Theorem 2 shows that there is an expressiveness gap between classical
MTL and CTMTL, we show later that both these logics are equisatisfiable. Given
ϕ ∈ CTMTL, we can construct a formula ψ ∈ MTL such that ϕ is satisfiable iff
ψ is. Note that our notion of equisatisfiability is a special one modulo temporal
projections. If ϕ is over an alphabet Σ, ψ is constructed over a suitable alphabet
Σ′ ⊇ Σ such that L(ψ), when projected over to Σ gives L(ϕ).

Theorem 3. Satisfiability Checking of CTMTL is decidable over finite timed
words.

The rest of this paper is devoted to the proofs of Theorems 2 and 3. We
establish Theorem 2 through Lemmas 1 to 4. To prove the separation between
two logics, we define model-theoretic games.

3.1 CTMTL Games

Our games are inspired from the standard model-theoretic games [1,14]. The
MTL games were introduced in [10]. We now extend these to CTMTL games.

Let (ρ1, ρ2) be a pair of timed words. We define a r-round k-counting peb-
ble Iν game on (ρ1, ρ2). The game is played on (ρ1, ρ2) by two players, the
Spoiler and the Duplicator. The Spoiler will try to show that ρ1 and ρ2 are {r, k}-
distinguishable by some formula in CTMTL1 while the Duplicator will try to show
that ρ1, ρ2 are {r, k}-indistinguishable in TMTL. Each player has r rounds and
has access to a finite set of ≤ k pebbles from a box of pebbles P in each round
of the game. Let Iν be the set of permissible intervals allowed in the game.

A configuration of the game at the start of a round p is a pair of points
(ip, jp) where ip ∈ dom(ρ1) and jp ∈ dom(ρ2). A configuration is called partially
isomorphic, denoted isop(ip, jp) iff σip

= σjp
. Exactly one of the Spoiler or the

Duplicator eventually wins the game. The initial configuration is (i1, j1), the

1 ρ1, ρ2 are {r, k}-distinguishable iff there exists a CTMTL formula ϕ having
depth(ϕ) ≤ r with max counting constant ≤ k in any threshold formula η or C
modality in ϕ such that ρ1 |= ϕ and ρ2 � ϕ or vice-versa.

340 S.N. Krishna et al.

starting positions of both the words, before the first round. A 0-round game is
won by the Duplicator iff isop(i1, j1). The r round game is played by first playing
one round from the starting position. Either the Spoiler wins the round, and the
game is terminated or the Duplicator wins the round, and now the second round
is played from this new configuration and so on. The Duplicator wins the game
only if he wins all the rounds. The following are the rules of the game in any
round. Assume that the current configuration is (ip, jp).

– If isop(ip, jp) is not true, then Spoiler wins the game, and the game is termi-
nated. Otherwise, the game continues as follows:

– The Spoiler chooses one of the words by choosing ρx, for x ∈ {1, 2}. Duplicator
has to play on the other word ρy, where x �= y. Then Spoiler plays either a UI,η

round, by choosing an interval I ∈ Iν , and a number c ≤ k of counting pebbles
to be used, or a C∼c

I round by choosing an interval I ∈ Iν and a number c ≤ k
of counting pebbles to be used. The number c is obtained from η = #ϕ ≥ c
or η = ¬(#ϕ ≥ c).
UI,η round: Given the current configuration as (ip, jp) with isop(ip, jp), then
• Spoiler chooses a position i′p ∈ dom(ρx) such that ip < i′p and (ti′

p
− tip

) ∈ I.
• The Duplicator responds by choosing j′

p ∈ dom(ρy) in the other word such
that jp < j′

p and (tj′
p
−tjp

) ∈ I. If the Duplicator cannot find such a position,
the Spoiler wins the round and the game. Otherwise, the game continues and
Spoiler chooses one of the following three options.

• ♦ Part: The round ends with the configuration (ip+1, jp+1) = (i′p, j
′
p).

• U Part: Spoiler chooses a position j′′
p in ρy such that jp < j′′

p < j′
p. The

Duplicator responds by choosing a position i′′p in ρx such that ip < i′′p < i′p.
The round ends with the configuration (ip+1, jp+1) = (i′′p , j′′

p). If Duplicator
cannot choose an i′′p , the game ends with Spoiler’s win.

• Counting Part: First, Spoiler chooses one of the two words to play in the
counting part. In his chosen word, Spoiler keeps c ≤ k pebbles from P at c
distinct positions between the points jp and j′

p (or ip and i′p depending on
the choice of the word). In response, the Duplicator also keeps c pebbles from
P at c distinct positions between the points ip and i′p (or jp and j′

p) in his
word. Spoiler then chooses a pebbled position say i′′p (note that ip < i′′p < i′p)
in the Duplicator’s word. In response, Duplicator chooses a pebbled position
j′′
p (note that jp < j′′

p < j′
p) in the Spoiler’s word, and the game continues

from the configuration (ip+1, jp+1) = (i′′p , j′′
p). At the end of the round, the

pebbles are returned to the box of pebbles P.

C∼c
I round: Given the current configuration as (ip, jp) with isop(ip, jp), Spoiler

chooses an interval I ∈ Iν as well as a number c ≤ k. Spoiler then chooses one
of the words to play (say ρ1). From ip, Spoiler places c pebbles from P in the
points lying in the interval tip

+ I. In response, Duplicator also places c pebbles
from P in the points lying in tjp

+ I. Spoiler now picks a pebbled position j′
p in

the word ρ2, while Duplicator picks a pebbled position i′p in the Spoiler’s word.
The round ends with the configuration (i′p, j

′
p). At the end of the round, the

pebbles are returned to the box of pebbles P.

Metric Temporal Logic with Counting 341

Intuition on Pebbling: To give some intuition behind the pebbling, consider
#ϕ ≥ c or C≥c

I ϕ. The idea behind Spoiler keeping c pebbles on his word in
the chosen interval I is to say that these are the c points where ϕ evaluates to
true. Duplicator is expected to find c such points in his word. If Spoiler suspects
that in the Duplicator’s word, there are < c positions in I where ϕ holds good,
he picks up the appropriate pebble at the position where ϕ fails. However, any
pebbled position in Spoiler’s word will satisfy ϕ. In this case, Duplicator loses.
Similarly, if we have ¬(#ϕ ≥ c), or C<c

I ϕ, then Spoiler chooses the word (say
ρ1) on which ϕ evaluates to true ≥ c times. Then Duplicator is on ρ2. The idea
is for Spoiler to find if there exist c or more positions in the interval I in ρ1
where ϕ holds good, and if so, pebble those points. This is based on Spoiler’s
suspicion that there are at least c positions in I where ϕ evaluates to true,
violating the formula. In response, Duplicator does the same on ρ2. Spoiler will
now pick any one of the c pebbles from ρ2 and check for ¬ϕ. This is again
based on Spoiler’s belief that whichever c points Duplicator pebbles in ρ2, ¬ϕ
will evaluate to true in at least one of them. If ϕ holds at all the c points in
ρ1, then Duplicator will lose on picking any pebble from ρ1.

– We can restrict various moves according to the modalities provided by the
logic. For example, in a TMTL[♦I] game, the possible rounds are ♦I and ♦I,η.
A CMITL game has only UI ,C

≥n
I rounds, with Iν containing only non-punctual

intervals.

Game equivalence: (ρ1, i1) ≈r,k,Iν
(ρ2, j1) iff for every r-round, k-counting

pebble CTMTL game over the words ρ1, ρ2 starting from the configuration
(i1, j1), the Duplicator always has a winning strategy.

Formula equivalence: (ρ1, i1) ≡CTMTL
r,k,Iν

(ρ2, j1) iff for every CTMTL formula
ϕ of depth ≤ r having max counting constant ≤ k in the C,UT modalities,
ρ1, i1 |= ϕ ⇐⇒ ρ2, j1 |= ϕ. The proof of Theorem 4 can be found in [6].

Theorem 4. (ρ1, i1) ≈r,k,Iν
(ρ2, j1) iff (ρ1, i1) ≡CTMTL

r,k,Iν
(ρ2, j1)

We now use these games to show the separation between various logics. For
brevity, from here on, we omit Iν from the notations ≡CTMTL

r,k,Iν
, ≡CMTL

r,k,Iν
, ≡TMTL

r,k,Iν

and ≡MTL
r,Iν

.

Lemma 1. CMTL − TMTL �= ∅
Proof. Consider the formula ϕ = C≥2

(1,2)a ∈ CMTL. We show that for any choice
of n rounds and k pebbles, we can find two words ρ1, ρ2 such that ρ1 |= ϕ, ρ2 � ϕ,
but ρ1 ≡TMTL

n,k ρ2. Both ρ1, ρ2 are over Σ = {a}. Let 0 < δ < ε < 1
1010nk and

0 < κ < ε−δ
2nk . Let l be the maximum constant in N appearing in the permissible

intervals Iν . Consider the word ρ1 with nl(k + 1) = K unit intervals, with the
following time stamps as depicted pictorially (Fig. 1) and in the table.

Thus, ρ1 and ρ2 differ only in the interval (1,2): ρ1 has two points in (1,2),
while ρ2 has only one. Thus, ρ1 |= ϕ, ρ2 � ϕ.

342 S.N. Krishna et al.

Points in ρ1 ρ2

(0,1) x1 = 0.5, z1 = 0.6, y1 = 0.8 x′
1 = 0.5, z′

1 = 0.6, y′
1 = 0.8

and 2nk points between z1, y1 and 2nk points between z′
1, y′

1

that are κ apart from each other that are κ apart from each other

(1,2) x2 = 1.8 − ε, z2 = 1.8 + ε x′
2 = 1.8 − ε

(2,3) e = 2.4 + nε, y2 = 2.7 + nε z′
2 = 2.4 + nε, y′

2 = 2.7 + nε

and 2nk points between e and y2 and 2nk points between z′
2 and y′

2

that are κ apart from each other that are κ apart from each other

(i, i + 1) xi = i + 0.4 + (n − i)ε x′
i = i + 0.4 + (n − i)ε

3 ≤ i ≤ K − 1 zi = i + 0.8 + (n + i)ε + δ z′
i = i + 0.8 + (n + i)ε + δ

yi = i + 0.8 + (n + i + 1)ε and 2nkpoints y′
i = i + 0.8 + (n + i + 1)ε and 2nk points

between zi, yi that are κ apart from

each other

between zi, yi that are κ apart from

each other

Fig. 1. Words showing CMTL − TMTL �= ∅

Let seg(ip) ∈ {0, 1, . . . ,K} denote the left endpoint of the left closed, right
open unit interval containing the point ip ∈ dom(ρ1) or dom(ρ2). Our segments
are [0,1), [1,2), . . . , [K,K + 1). For instance, if the configuration at the start of
the pth round is (ip, jp) with time stamps (1.2, 3), then seg(ip) = 1, seg(jp) = 3.
The following lemma says that in any round of the game, Duplicator can either
achieve the same segment in both the words, or ensure that the difference in the
segments is at most 1. Moreover, by the choice of the words, there are sufficiently
many segments on the right of any configuration so that Duplicator can always
duplicate Spoiler’s moves for the remaining rounds, preserving the lag of one
segment.

Copy-cat strategy. Consider the pth round of the game with configuration (ip, jp).
If Duplicator can ensure that seg(ip+1)−seg(ip)=seg(jp+1)−seg(jp), then we say
that Duplicator has adopted a copy-cat strategy in the pth round. We prove the
following proposition to argue Duplicator’s win.

Proposition 1. For an n round TMTL game over the words ρ1, ρ2, the
Duplicator always has a winning strategy such that for any 1 ≤ p ≤ n, if (ip, jp)
is the initial configuration of the pth round, then |seg(ip) − seg(jp)| ≤ 1. More-
over, when |seg(ip)− seg(jp)| = 1, then there are at least (n−p)(l+1) segments
to the right on each word after p rounds, for all 1 ≤ p ≤ n.

Proof. The initial configuration has time stamps (0,0). We will play a (n, k)-
TMTL game on ρ1, ρ2. Assume that the Spoiler chooses ρ1 while the Duplicator
chooses ρ2. Since the interval [1,2] is the only one different in both the words,

Metric Temporal Logic with Counting 343

it is interesting to look at the moves where the Spoiler chooses a point in interval
(1,2). We consider the two situations possible for Spoiler to land up in a point
in interval (1,2): he can enter interval (1,2) from some point in interval (0,1),
or directly choose to enter interval (1,2) from the initial configuration with time
stamps (0,0).

Situation 1: Consider the case when from the starting configuration (i1, j1)
with time stamps (0,0), Spoiler chooses a U(1,2)#a∼c move in ρ1 and lands up at
the point x2 or z2. In response, Duplicator has to come at the point x′

2 in ρ′
2. If

(i′1, j
′
1) has time stamps (x2, x

′
2) and if Spoiler chooses to pebble between 0 and x2,

then Duplicator pebbles between 0 and x′
2; however, an identical configuration is

obtained. Note that if Spoiler pebbles ρ2, then Duplicator has it easy, since he will
pebble the same positions in ρ1. Let us hence consider obtaining the configuration
(i′1, j

′
1) with time stamps (z2, x′

2), and let Spoiler pebble ρ1. Spoiler can keep a
maximum of k pebbles in the points x1, . . . , y1, x2, while Duplicator keeps the
same number of pebbles on the points x′

1, . . . , y
′
1. In this case, Spoiler has to a

pick a pebbled position from among x′
1, . . . , y

′
1. In response, Duplicator will pick

the same position from Spoiler’s word and achieve an identical configuration.
An interesting special case is when Spoiler keeps a single pebble at x2 in ρ1. In
this case, Duplicator’s best choice is to keep his pebble at x′

1, so that the next
configuration (i2, j2) is one with time stamps (x2, x

′
1). x′

1 and x2 are topologically
similar in the sense that the distribution of points in subsequent segments have
some nice properties as given below.

Topological Similarity of Words: Consider the 2nk + 3 points xj < zj < p1j <

· · · < p2nk
j < yj in ρ1, and x′

j−1 < z′
j−1 < q1j−1 < . . . < q2nk

j−1 < y′
j−1 in ρ2, for j ∈

{2, 3, 4, . . . ,K}. Define a function f that maps points in ρ1 to topologically sim-
ilar points in ρ2. f : {xj , zj , p

1
j , . . . , p

2nk
1 , yj} → {x′

j−1, z
′
j−1, q

1
j−1, . . . , q

2nk
j−1, y

′
j−1}

by f(xj) = x′
j−1, f(zj) = z′

j−1, f(yj) = y′
j−1, f(pi

j) = qi
j−1. Let g = f−1.

(a) The current configuration has timestamps (x2, x
′
1) = (x2, f(x2)). For j ≥ 2,

if Spoiler chooses to move to any p ∈ {zj , yj , xj+2} from x2, then Duplicator
can move to f(p) from f(x2) since, for any time interval I, it can be seen that
p−x2 ∈ I iff f(p)−f(x1) ∈ I. Moreover, if Spoiler chooses to move to x3 from
x2, then Duplicator can move to z′

2 from f(x2) since, x3 − x2, z
′
2 − f(x2) ∈

(0, 1).
(b) We can extend (a) above as follows: Let the current configuration have

timestamps (p, f(p)) or (x3, z
′
2). Then it can be seen that for any q ∈

{xj , yj , zj} and interval I, q − p ∈ I iff f(q) − f(p) ∈ I, and q − x3 ∈ I
iff f(q) − z′

2 ∈ I.

The facts claimed in (a) and (b) are evident from the construction of the timed
words. They show that from a configuration (ip, jp), such that seg(ip)−seg(jp) ≤
1, Duplicator can always achieve an intermediate configuration (i′p, j

′
p) in any

UI,#a∼c such that seg(i′p) − seg(j′
p) ≤ 1. If Spoiler does not go for the until

round or the counting round, then (ip+1, jp+1) = (i′p, j
′
p). If Spoiler pebbles the

points between ip and i′p (or jp and j′
p), then Duplicator can always ensure that

344 S.N. Krishna et al.

he pebbles points f(P) in ρ2 whenever Spoiler pebbles a set of points P in ρ1.
As a result, if Spoiler chooses a point q = f(i) ∈ f(P) in ρ2, then Duplicator
can choose the point g(q) = i ∈ P achieving the configuration (ip+1, jp+1) =
(g(q), q) = (i, f(i)). By definition of f, g, we have ip+1 − jp+1 ≤ 1. Note that
Duplicator can also achieve an identical configuration if Spoiler moves ahead by
several segments from ip (thus, i′p >> ip), and pebbles a set of points that are
also present between jp and j′

p.

Situation 2: Starting from (i1, j1) with time stamps (0,0), if the Spoiler chooses
a U(0,1),#a∼c move and lands up at some point between x1 and y1, Duplicator
will play copy-cat and achieve an identical configuration. Consider the case when
Spoiler lands up at y1

2. In response, Duplicator moves to y′
1. From configura-

tion (i2, j2) with time stamps (y1, y′
1), consider the case when Spoiler initiates

a U(1,2),#a∼c and moves to z2 = 1.8 + ε < 2. In response, Duplicator moves
to the point z′

2 = 2.1 > 2. A pebble is kept at the inbetween positions x2, x
′
2

respectively in ρ1, ρ2. When Spoiler picks the pebble in Duplicator’s word, then
we obtain the configuration (i3, j3) with time stamps (x2, x

′
2). If Spoiler does

not get into the counting part/until part, the configuration obtained has time
stamps (z2, z′

2), with the lag of one segment (seg(i3) = 1, seg(j3) = 2, seg(j3)-
seg(i3)=1). We show in [6] that from (i3, j3) with time stamps either (x2, x

′
2)

or (z2, z′
2), Duplicator can either achieve an identical configuration, or achieve a

configuration with a lag of one segment.

From situations (1), (2) in Proposition 1, we know that either Duplicator achieves
an identical configuration, in which case there is no segment lag, or there is a
lag of at most one segment. The length of the words are lnk +nl = K. If Spoiler
always chooses bounded intervals (of length ≤ l), then Duplicator respects his
segment lag of 1, and the maximum number of segments that can be explored
in either word is at most nl < K. In this case, after p rounds, there are at
least K − pl ≥ nlk + nl − pl ≥ (n − p)(l + 1) segments to the right of ρ1 and
K−pl+1 segments to the right of ρ2. If Spoiler chooses an unbounded interval in
any round, then Duplicator can either enforce an identical configuration in both
situations 1 and 2, or obtain one of the configurations with time stamps (p, f(p)),
f(p) �= x′

2, or (z2, x′
2) or (x2, x

′
2), from where it is known that Duplicator wins.

Lemma 2. MTL ⊂ C(0,1)MTL ⊂ C(0,u)MTL

Proof. We show that the formula ϕ = C=2
(0,1)a ∈ C(0,1)MTL cannot be expressed

in MTL. Likewise, the formula ϕ = C≥2
(0,2)a ∈ C(0,u)MTL cannot be expressed in

C(0,1)MTL. A detailed proof of these are given in [6].

Lemma 3. (i) C(0,u)MTL ⊂ TMTL = C(0,u)TMTL = C(0,1)TMTL and
(ii) C(0,u)MTL ⊂ CMTL.

2 The argument when Spoiler lands up at x1 or a point in between x1, y1 is exactly
the same.

Metric Temporal Logic with Counting 345

Proof. (i) The first containment as well as the last two equalities follows from the
fact that the counting modality C≥n

〈0,j〉ϕ of C(0,u)MTL can be written in TMTL as
♦〈0,j〉,#ϕ≥ntrue. The strict containment of C(0,u)MTL then follows from Lemma 4.
(ii) We know that C(0,u)MTL ⊆ CMTL. This along with (i) and Lemma 1 gives the
strict containment.

Lemma 4. TMTL − CMTL �= ∅
Proof. Consider the formula ϕ = ♦(0,1),#a≥3b ∈ TMTL. We show that for any
choice of n rounds and k pebbles, we can find two words ρ1, ρ2 such that ρ2 |=
ϕ, ρ1 � ϕ, but ρ1 ≡CMTL

n,k ρ2. The words can be seen in Fig. 2 and the details in [6].

Fig. 2. The red square represents a, the block of blue lines represents a block of b’s.
There are 3 a’s in each unit interval of both ρ1 and ρ2. The difference is that ρ1 has
3 blocks of b’s in each unit interval, while ρ2 has 4 blocks of b’s in each unit interval
except the last. Clearly, ρ2 |= ϕ, ρ1 � ϕ (Color figure online).

4 Satisfiability Checking of Counting Logics

In this section, we show that CTMTL has a decidable satisfiability checking.
For this, given a formula in CTMTL we synthesize an equisatisfiable formula in
MTL, and use the decidability of MTL. We start discussing some preliminaries.
Let Σ,X be finite sets of propositions such that Σ ∩ X = ∅.

1. (Σ,X)-simple extensions. A (Σ,X)-simple extension is a timed word ρ′ =
(σ′, τ ′) over X ∪ Σ such that at any point i ∈ dom(ρ′), σ′

i ∩ Σ �= ∅. For
Σ = {a, b},X = {c, d}, ({a}, 0.2)({b, c, d}, 0.3)({b, d}, 1.1) is a (Σ,X)-simple
extension. However, ({a}, 0.2)({c, d}, 0.3)({b, d}, 1.1) is not.

2. Simple Projections. Consider a (Σ,X)-simple extension ρ. We define the sim-
ple projection of ρ with respect to X, denoted ρ \ X as the word obtained by
erasing the symbols of X from each σi. Note that dom(ρ) = dom(ρ \ X). For
example, if Σ = {a, c}, X = {b}, and ρ = ({a, b, c}, 0.2)({b, c}, 1)({c}, 1.3),
then ρ \ X = ({a, c}, 0.2)({c}, 1)({c}, 1.3). ρ \ X is thus, a timed word over
Σ. If the underlying word ρ is not a (Σ,X)-simple extension, then ρ \ X is
undefined.

3. (Σ,X)-oversampled behaviours. A (Σ,X)-oversampled behaviour is a timed
word ρ′ = (σ′, τ ′) over X ∪ Σ, such that σ′

1 ∩ Σ �= ∅ and σ′
|dom(ρ′)| ∩

Σ �= ∅. Oversampled behaviours are more general than simple exten-
sions since they allow occurrences of new points in between the first
and the last position. These new points are called oversampled points.

346 S.N. Krishna et al.

All other points are called action points. For Σ = {a, b},X = {c, d},
({a}, 0.2)({c, d}, 0.3)({a, b}, 0.7)({b, d}, 1.1) is a (Σ,X)-oversampled behav-
iour, while ({a}, 0.2)({c, d}, 0.3)({c}, 1.1) is not.

4. Oversampled Projections. Given a (Σ,X)-oversampled behaviour ρ′ =
(σ′, τ ′), the oversampled projection of ρ′ with respect to Σ, denoted ρ′ ↓ X is
defined as the timed word obtained by deleting the oversampled points, and
then erasing the symbols of X from the action points. ρ=ρ′ ↓ X is a timed
word over Σ.

A temporal projection is either a simple projection or an oversampled projection.
We now define equisatisfiability modulo temporal projections. Given MTL formu-
lae ψ and φ, we say that φ is equisatisfiable to ψ modulo temporal projections iff
there exist disjoint sets X,Σ such that (1) φ is over Σ, and ψ over Σ ∪ X, (2)
For any timed word ρ over Σ such that ρ |= φ, there exists a timed word ρ′ such
that ρ′ |= ψ, and ρ is a temporal projection of ρ′ with respect to X, (3) For any
behaviour ρ′ over Σ ∪ X, if ρ′ |= ψ then the temporal projection ρ of ρ′ with
respect to X is well defined and ρ |= φ.

If the temporal projection used above is a simple projection, we call it equi-
satisfiability modulo simple projections and denote it by φ = ∃X.ψ. If the pro-
jection in the above definition is an oversampled projection, then it is called
equisatisfiability modulo oversampled projections and is denoted φ ≡ ∃ ↓ X.ψ.
Equisatisfiability modulo simple projections are studied extensively [5,11,13]. It
can be seen that if ϕ1 = ∃X1.ψ1 and ϕ2 = ∃X2.ψ2, with X1, X2 disjoint, then
ϕ1 ∧ ϕ2 = ∃(X1 ∪ X2).(ψ1 ∧ ψ2) [8].

As in the case of simple projections, equisatisfiability modulo oversampled
projections are also closed under conjunctions when one considers the relativized
formulae. For example, consider a formula ϕ = �(0,1)a over Σ = {a, d}. Let
ψ1 = �(0,1)(a ∨ b) ∧ ♦(0,1)(b ∧ ¬a) be a formula over the extended alphabet
{a, b, d} and ψ2 = �(c ↔ �(0,1)a) ∧ c over the extended alphabet {a, c, d}. Note
that ϕ = ∃ ↓ {b}.ψ1 and ϕ = ∃ ↓ {c}.ψ2 but ϕ∧ϕ �= ∃ ↓ {b, c}.(ψ1∧ψ2) as the left
hand side evaluates to ϕ which is satisfiable while the right hand side is unsat-
isfiable. This is due to the presence of a non-action point where only b holds.
But this can easily be fixed by relativizing all the formulae over their respective
action points. ψ1 is relativized as λ1 = �(0,1)(act1 → (a∨b))∧♦(0,1)(act1∧b∧¬a)
and ψ2 is relativized as λ2 = �(act2 → (c ↔ �(0,1)(act2 → a))) ∧ act2 ∧ c where
act1 = b ∨ d ∨ a and act2 = a ∨ c ∨ d. Now, ϕ ∧ ϕ = ∃ ↓ {b, c}.(λ1 ∧ λ2).
The relativized forms of ψ1, ψ2 are called their Oversampled Normal Forms with
respect to Σ and denoted ONFΣ(ψ1) and ONFΣ(ψ2). Then it can be seen that
ϕ1 ∧ ϕ2 = ∃ ↓ {b, d}.[ONFΣ(ψ1) ∧ ONFΣ(ψ2)], and ϕ1 = ∃ ↓ {b}.ONFΣ(ψ1),
ϕ2 = ∃ ↓ {d}.ONFΣ(ψ2). The formal definition of ONFΣ(ϕ) for a formula ϕ
over Σ ∪ X can be found in [6]. Equisatisfiability modulo oversampled projec-
tions were first studied in [4] to eliminate non-punctual past from MTL over
timed words. We use equisatifiability modulo simple projections to eliminate
the C modality and oversampled projections to eliminate the UT modality from
CTMTL.

Metric Temporal Logic with Counting 347

Elimination of Counting Modalities from CTMTL. In this section, we show
how to eliminate the counting constraints from CTMTL over strictly monotonic
timed words. This can be extended to weakly monotonic timed words.

Given any CTMTL formula ϕ over Σ, we “flatten” the C,UT modalities of
ϕ and obtain a flattened formula. As an example, consider the formula ϕ =
aU[0,3](c ∧ C=1

(2,3)dU(0,1),#(d∧C=1
(0,1)e)≥1C

≥2
(0,1)e]). Replacing the counting modalities

with fresh witness propositions w1, w2, we obtain ϕflat = [aU[0,3](c ∧ w1)] ∧ T
where T = T1 ∧ T2 ∧ T3 ∧ T4, with T1 = �w[w1 ↔ C=1

(2,3)w2], T2 = �w[w2 ↔
dU(0,1),#w4≥1w3]], T3 = �w[w4 ↔ (d∧C=1

(0,1)e)], and T4 = �w[w3 ↔ C≥2
(0,1)e]. Each

temporal projection Ti obtained after flattening contains either a C modality or
a UT modality. In the following, we now show how to obtain equisatisfiable MTL
formulae corresponding to each temporal projection.

Lemma 5. The formula C≥n
〈l,∞)b is equivalent to MTL formula F〈l,∞)(b ∧ F (b ∧

. . . F b))).

We now outline the steps followed to obtain an equisatisfiable formula in MTL,
assuming C≥n

〈l,∞)b modalities have been eliminated using Lemma 5.

1. Flattening : Flatten χ obtaining χflat over Σ ∪ W , where W is the set of
witness propositions used, Σ ∩ W = ∅.

2. Eliminate Counting : Consider, one by one, each temporal definition Ti of
χflat. Let Σi = Σ∪W ∪Xi, where Xi is a set of fresh propositions, Xi∩Xj = ∅
for i �= j.
– If Ti is a temporal projection containing a C modality of the form C∼n

〈l,u〉,
or a UT modality of the form xUI,#b≤ny, then Lemma 6 synthesizes a
formula ζi ∈ MTL over Σi such that Ti ≡ ∃Xi.ζi.

– If Ti is a temporal projection containing a UT modality of the form
xUI,#b≥ny, Lemma 7 gives ζi ∈ MTL over Σi such that ONFΣ(Ti) ≡
∃ ↓ Xi.ζi.

3. Putting it all together : The formula ζ =
∧k

i=1 ζi ∈ MTL is such that

k∧

i=1

ONFΣ(Ti) ≡ ∃ ↓ X.

k∧

i=1

ζi where X =
k⋃

i=1

Xi.

Lemma 6. 1. Consider a temporal definition T = �w[a ↔ C≥n
[l,u)b], built from

Σ ∪ W . Then we synthesize a formula ζ ∈ MTL over Σ ∪ W ∪ X such that
T ≡ ∃X.ζ.

2. Consider a temporal definition T = �w[a ↔ xUI,#b≤ny], built from Σ ∪ W .
Then we synthesize a formula ζ ∈ MTL over Σ ∪W ∪X such that T ≡ ∃X.ζ.

Proof. 1. Lets consider intervals of the form [l, u). Our proof extends to all
intervals 〈l, u〉. Consider T = �w[a ↔ C≥n

[l,u)b]. Let ⊕ denote addition modulo
n + 1.

348 S.N. Krishna et al.

Intuitively, we run a global modulo n + 1 counter B (encoded using propo-
sitional variables b0, . . . , bn ∈ X) which is initialized to 0 and incremented
modulo n + 1 at every position in timed word where b occurs, else it remains
same. This is enforced by (a) and (b) below. In any interval I, there are at
least n bs iff counter takes all the values of the set {0, . . . , n} in interval I.
This is checked in (c) below.
(a) Construction of a (Σ ∪ W,X)- simple extension. We introduce a fresh

set of propositions X = {b0, b1, . . . , bn} and construct a simple extension
ρ′ = (σ′, τ ′) from ρ = (σ, τ) as follows:
– C1: σ′

1 = σ1 ∪ {b0}. If bk ∈ σ′
i and if b ∈ σi+1, σ′

i+1 = σi+1 ∪ {bk⊕1}.
– C2: If bk ∈ σ′

i and b /∈ σi+1, then σ′
i+1 = σi+1 ∪ {bk}.

– C3: σ′
i has exactly one symbol from X for all 1 ≤ i ≤ |dom(ρ)|.

(b) Formula specifying the above behaviour. The variables in X help in count-
ing the number of b’s in ρ. C1 and C2 are written in MTL as follows:

– δ1 =
n∧

k=0

�w[(Ob ∧ bk) → Obk⊕1] and δ2 =
n∧

k=0

�w[(O¬b ∧ bk) → Obk]

(c) Marking the witness ‘a’ correctly at points satisfying C≥n
[l,u)b. The index

i of bi at a chosen point gives the number of b’s seen so far since the
previous occurrence of b0. From a point i, if the interval [ti + l, ti +u) has
k elements of X, then there must be k b’s in [ti + l, ti + u). To mark the
witness a appropriately, we need to check the number of times b occurs in
[ti + l, ti +u] from the current point i. A point i ∈ dom(ρ′) is marked with
witness a iff all variables of X are present in [ti + l, ti + u), as explained

in MTL by κ = �w[a ↔ (
n∧

k=1

♦[l,u)bk)].

ζ = δ1 ∧ δ2 ∧ κ in MTL is equisatisfiable to T modulo simple projections.
2. The proof is similar to the above, details are in [6].

Lemma 7. Consider a temporal definition T = �w[a ↔ xUI,#b≥ny], built from
Σ ∪ W . Then we synthesize a formula ψ ∈ MTL over Σ ∪ W ∪ X such that
ONFΣ(T) ≡ ∃ ↓ X.ψ where ONFΣ(T) is T relativized with respect to Σ.

Proof. If I is of the form 〈l,∞), then xU〈l,∞),#b≥ny ≡ xU〈l,∞)y ∧xU#b≥ny. The
untimed threshold formula xU#b≥ny can be straightforwardly rewritten in LTL
(see [7]).

The case of bounded intervals is the most complex and requires oversam-
pling. Timed word ρ is oversampled at every integer valued time point upto the
maximum time stamp in ρ to give ρ′. All integer points are marked by a unique
proposition from C = {c0, . . . cu} in a circular fashion with first point being
marked as c0. Each ci is associated with a bounded counter Bi , which saturates
at maximum value n (encoded using propositions bi

0, . . . , b
i
n ∈ X). This counter

is reset to 0 at each occurrence of ci and it is incremented each time a b occurs.
This encoding is explained in (O1) and (O2) below and enforced by formula η
given below. Let the resultant word after the markings be ρ′.

Now, by semantics, ρ′, j |= xUI,#b≥ny iff for some p > j, ρ′, p |= y, and x
holds invariantly between j and p, and #b(ρ′[j, p]) ≥ n, i.e. number of times b
holds between j and p is ≥ n. This happens iff

Metric Temporal Logic with Counting 349

– either (case i) there is a nearest previous integer point to p called α (marked ci

for some i) and there exist integers g, h : 0 ≤ g, h ≤ n such that #b(ρ′[α, p] ≥ g
, and #b(ρ′[j, α,] ≥ h and g + h ≥ n. This happens iff for some i and 0 ≤
g, h ≤ n, we have ρ′, j |= xUI(y ∧ Bi = g) and ρ′, j |= x ∧ ¬ciU#b≥max(0,h)ci

and g + h ≥ n. This is encoded by the formula δ below.
– or, (case ii) j and p both lie inside a unit interval bounded by some [ci−1, ci].

In this case, untimed LTL formula ρ′, j |= (x ∧ (¬ ∨ ci))U#b=ny) holds. Note
that the formulae are not yet relativized, the relativized ones with details are
given below.

(1) We consider the case when the interval I is bounded and left closed right open
of the form [l, u). Our reduction below can be adapted to other kinds of bounded
intervals. Let L = u−l. Define s�t = min(s+t, n), and s⊕t = (s+t) mod (u+1).

– O1: C = {c0, c1, . . . , cu}. A point i of ρ is marked cg iff ti mod u = g. In
the absence of such a point i (such that ti is an integer value k < t|dom(ρ)|),
we add a new point i to dom(ρ) with time stamp t′i and mark it with cg iff
t′i mod u = g. Let ρc = (σc, τ c) denote the word obtained from ρ after this
marking. O1 can be easily coded in MTL (say η1).

– O2: B = ∪u
i=0B

i, where Bi = {bi
0, b

i
1, . . . b

i
n}. All the points of ρc marked ci

are marked as bi
0. Let p, q be two integer points such that p is marked ci, q is

marked ci⊕L, and no point between p, q is marked ci⊕L. p, q are L apart from
each other. Let p < r < q be such that bi

g ∈ σc
r for some g. If ci⊕L /∈ σc

r+1

and b ∈ σc
r+1, then the point r + 1 is marked bi

g�1. If ci⊕L, b /∈ σc
r+1, then the

point r + 1 is marked bi
g. Each Bi is a set of counters which are reset at ci

and counts the number of occurrences of b up to the threshold n between a ci

and the next occurrence of ci⊕L. Starting at a point marked ci with counter
bi
0, the counter increments up to n on encountering a b, until the next ci⊕L.

Further, we ensure that the counter Bi does not appear anywhere from ci⊕L

to the next ci. Let the resultant word be ρb. Let ρ′ be the word obtained after
all the markings.

(2) Formula for specifying above behaviour. We give following MTL formulae to

specify O2 . η2 =
u∧

i=0

(κ2i(1) ∧ κ2i(2) ∧ κ2i(3)) encodes O2 where

η2i(1) = �w(ci → bi
0) ∧

n∧

k=0

�w[(O(b ∧ ¬ci⊕L) ∧ bi
k) → Obi

k�1],

η2i(2) =
n∧

k=0

�w[(O(¬b ∧ ¬ci⊕L) ∧ bi
k) → Obi

k] and

η2i(3) =
u∧

i=0

�w[ci⊕L → (¬ci ∧ ¬bi)Uci], where bi =
u∨

k=0

bi
k. Let η = η1 ∧ η2.

(3) Marking the witness ‘a’ correctly at points satisfying xUI,#b≥ny. As explained
above there are two possible cases: Let act =

∨
(Σ ∪ W).

350 S.N. Krishna et al.

Fig. 3. Illustration of point j, p and the point α such that tα = �tj + l�. α is marked
with some ci since it is an integer time point. The counting of b’s is reset at ci, starting
with bi

0, and continues till ci⊕L. h is the count of b’s between α and p. To satisfy
�(a ↔ xU[l,u),#b≥ny) at j, we check that the number of b’s between j and α is ≥ n−h
when b is not true at α, and is ≥ n − h − 1 when b is true at α.

– Case(i): The formula is δ =
∨

0≤g,h≤n∧g+h≥n

δ1(g) ∧ δ2(h) where

• δ1(g) = (x ∧ ¬act)UI(y ∧ bg) and
• δ2(h) = [{(¬act∨x)∧¬ci}U#b≥h−1(ci∧b)]∨[{(¬act∨x)∧¬ci}U#b≥h(ci∧¬b)]

for h > 0 and δ2(0) = true
– Case(ii): This formula takes care of the case when timestamps of points j

and p have the same integral part. Thus λ = (x ∨ ¬act) ∧ ¬c)U#b≥ny, where
c =

∨
ck captures the required condition. Note that this case is only applicable

when the intervals are of the 〈0, u〉. For other type of intervals we omit this
case.

The formula ζ = �w(a ↔ δ ∨ λ) specifies the marking of witness
correctly in ρ′.

Thus we obtain the MTL formula ψ = η ∧ ζ. Thus, by above construction,
we get a formula ψ such that ONFΣ(T) ≡ ∃ ↓ X.ψ, where X = C ∪ B.

5 Discussion and Related Work

Within temporal and real time logics, the notion of counting has attracted con-
siderable interest. Laroussini et al. extended untimed LTL with threshold count-
ing constrained until operator. They showed that the expressiveness of LTL is
not increased by adding threshold counting but the logic becomes exponentially
more succinct. Hirshfeld and Rabinovich introduced C(0,1) operator in continu-
ous timed QTL and showed that it added expressive power. They also showed
that in continuous time, more general C〈l,u〉 operator can be expressed with
just C(0,1). Building upon this, Hunter showed that MTL with C(0,1) operator
is expressively complete w.r.t. FO[<,+1]. Thus it can also express UT operator
which is straightforwardly modelled in FO[<,+1].

In this paper, we have explored the case of MTL with counting operators
over timed words interpreted in pointwise manner. We have shown that both CI

and UT operators add expressive power to MTL. Moreover, the two operators

Metric Temporal Logic with Counting 351

are independent in the sense that neither can be expressed in terms of the other
and MTL. (We use prefixes C and T to denote a logic extended with C and
UT operators respectively). We have also shown that CMTL0,1 ⊂ CMTL0 ⊂
CMTLI ⊂ CTMTL. Moreover, it is easy to show (see [6]) that CTMTL ⊂
TPTL1. All these expressiveness results straightforwardly carry over to MTL over
infinite timed words. Thus, pointwise semantics exhibits considerable complexity
in expressiveness of operators as compared to continuous time semantics where
all these logics are equally expressive. While this may arguably be considered a
shortcoming of the pointwise models of timed behaviours, the pointwise models
have superior decidability properties making them more amenable to algorithmic
analysis. MTL already has undecidable satisfiability in continuous time whereas
it has decidable satisfiability over finite timed words in pointwise semantics.

In this paper, we have shown that MTL extended with C and UT operators
also has decidable satisfiability. The result is proved by giving an equisatisfiable
reduction from CTMTL to MTL using the technique of oversampling projections.
This technique was introduced earlier [4] and used to show that MTL[UI ,Snp]
with non-punctual past operator is also decidable in pointwise semantics. The
current paper marks one more use of the technique of oversampling projec-
tions. A closer examination of our reduction from CTMTL to MTL shows that it
can be used in presence of any other operator. Also, it does not introduce any
punctual use of UI in the reduced formula. The reduced formula is exponentially
larger than the original formula (assuming binary encoding of integer constants).
All this implies that CTMTL[UI ,Snp] is also decidable over finite timed words.
Thus, we significantly extend the frontier of decidable real time logics. More-
over, CTMITL[UNS,SNS] can be equisatisfiably reduced to MITL[Unp,Snp] and it
is decidable with at most 2-EXPSPACE complexity. The exact complexity of sat-
isfiability checking of CTMITL is open although EXPSPACE lowerbound trivially
follows from MITL and counting LTL which are syntactic subsets.

In another line of work involving counting and projection, Raskin [13]
extended MITL and event clock logic with ability to count by extending these
logics with automaton operators and adding second order quantification. The
expressiveness was shown to be that of recursive event clock automaton. These
logics were able to count over the whole model rather than a particular timed
interval. The resultant logic cannot specify constraints such as “within a time
unit (0, 1) the number of occurrences of a particular formula is k” but it can
also incorporate modulo counting. Thus Raskin’s logics and the CTMTL are
expressively incomparable.

References

1. Etessami, K., Wilke, T.: An until hierarchy for temporal logic. In: LICS, pp. 108–
117 (1996)

2. Hirshfeld, Y., Rabinovich, A.: An expressive temporal logic for real time. In:
Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 492–504.
Springer, Heidelberg (2006)

352 S.N. Krishna et al.

3. Hunter, P.: When is metric temporal logic expressively complete? In: CSL, pp.
380–394 (2013)

4. Krishna, S.N., Madnani, K., Pandya, P.K.: Partially punctual metric temporal
logic is decidable. In: TIME, pp. 174–183 (2014)

5. Kini, D.R., Krishna, S.N., Pandya, P.K.: On construction of safety signal automata
for MITL[U , S] using temporal projections. In: Fahrenberg, U., Tripakis, S. (eds.)
FORMATS 2011. LNCS, vol. 6919, pp. 225–239. Springer, Heidelberg (2011)

6. Krishna, S.N., Madnani, K., Pandya, P.K.: Metric temporal logic with counting
(2015). CoRR, abs/1512.09032

7. Laroussinie, F., Meyer, A., Petonnet, E.: Counting LTL. In: TIME, pp. 51–58
(2010)

8. Madnani, K., Krishna, S.N., Pandya, P.K.: Partially punctual metric temporal
logic is decidable (2014). http://arxiv.org/abs/1404.6965

9. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: LICS,
pp. 188–197 (2005)

10. Pandya, P.K., Shah, S.S.: On expressive powers of timed logics: comparing bound-
edness, non-punctuality, and deterministic freezing. In: Katoen, J.-P., König, B.
(eds.) CONCUR 2011. LNCS, vol. 6901, pp. 60–75. Springer, Heidelberg (2011)

11. Prabhakar, P., D’Souza, D.: On the expressiveness of MTL with past operators.
In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 322–336.
Springer, Heidelberg (2006)

12. Rabinovich, A.: Complexity of metric temporal logics with counting and the Pnueli
modalities. Theoret. Comput. Sci. 411(22–24), 2331–2342 (2010)

13. Raskin, J.F.: Logics, automata and classical theories for deciding real time. Ph.D.
thesis, Universite de Namur (1999)

14. Straubing, H.: Finite Automata, Formal Logic and Circuit Complexity. Birkhauser,
Boston (1994)

http://arxiv.org/abs/1404.6965

Distributed Synthesis in Continuous Time

Holger Hermanns1, Jan Krčál1, and Steen Vester2(B)

1 Computer Science, Saarland University, Saarbrücken, Germany
{hermanns,krcal}@cs.uni-saarland.de

2 Technical University of Denmark, Kongens Lyngby, Denmark
stve@dtu.dk

Abstract. We introduce a formalism modelling communication of dis-
tributed agents strictly in continuous-time. Within this framework, we
study the problem of synthesising local strategies for individual agents
such that a specified set of goal states is reached, or reached with at
least a given probability. The flow of time is modelled explicitly based
on continuous-time randomness, with two natural implications: First, the
non-determinism stemming from interleaving disappears. Second, when
we restrict to a subclass of non-urgent models, the quantitative value
problem for two players can be solved in EXPTIME. Indeed, the explicit
continuous time enables players to communicate their states by delaying
synchronisation (which is unrestricted for non-urgent models). In general,
the problems are undecidable already for two players in the quantitative
case and three players in the qualitative case. The qualitative undecid-
ability is shown by a reduction to decentralized POMDPs for which we
provide the strongest (and rather surprising) undecidability result so far.

1 Introduction

Distributed self-organising and self-maintaining systems are posing interesting
design challenges, and have been subject to many practical [33] as well as theo-
retical [28,29] investigations. Distributed systems interact in real time, and one
very general way to reason about their timing behaviour is to assume that arbi-
trary continuous probability distributions govern the timing of local steps as
well as of communication steps. We are interested in how foundational proper-
ties of such distributed systems differ from models where timing is abstracted.
As principal means of communication we consider symmetric handshake com-
munication, since it can embed other forms of communication faithfully [2,24]
including asynchronous and input/output-separated communication.

As an example, consider the problem of leaking a secret from a sandboxed
malware to an attacker. The behaviour of attacker and malware (and possibly
other components) are prescribed in terms of states, private transitions, labelled
synchronisation transitions, and delay transitions which model both local com-
putation times and synchronisation times. The delays are governed by arbitrary
continuous probability distributions over real time. Handshake synchronisation
is assumed to take place if all devices able to do so agree on the same transition

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 353–369, 2016.
DOI: 10.1007/978-3-662-49630-5 21

354 H. Hermanns et al.

label. Otherwise the components run fully asynchronously. The sandboxing can
be thought of as restricting the set of labels allowed to occur on synchronisation
transitions. The question we focus on is how to synthesise the component control
strategies for malware and attacker so that they reach their target (of leaking
the secret) almost surely or with at least a given probability p.

More precisely, we consider a parallel composition of n modules synchro-
nizing via handshake communication. The modules are modelled by interactive
Markov chains (IMCs) [16,18], a generalization of labelled transition systems
and of continuous time Markov chains, equipped with a well-understood compo-
sitional theory. Each module may in each state enable private actions, as well as
synchronisation actions. It is natural to view such a distributed IMC as a game
with n+1 players, where the last player controls the interleaving of the modules.
Each of the other n players controls the decisions in a single module, only based
on its local timed history containing only transitions that have occurred within
the module. On entering a state of its module, each player selects and commits
to executing one of the actions enabled. A private action is executed immediately
while a synchronisation action requires a CSP-style handshake [6], it is executed
once all modules able to perform this action have committed to it.

For representing delay distributions, we make one decisive and one techni-
cal restriction. First, we assume that each distribution is continuous. This for
instance disallows deterministic delays of, say, 3 time units. It is an important
simplification assumed along our explorations of continuous-time distributed
control. Second, we restrict to exponential distributions. This is a pure technical-
ity, since (a) our results can be developed with general continuous distributions,
at the price of excessive notational and technical overhead, and (b) exponen-
tial distributions can approximate arbitrary continuous distributions arbitrarily
close [25]. Together, these assumptions enable us to work in a setting close to
interactive Markov chains.

Apart from running in continuous time, the concepts behind distributed
IMCs are rather common. Closely related are models based on probabilistic
automata [32] or (partially observable) Markov decision processes [3,26]. In
these settings, the power of the interleaving player n + 1 is a matter of ongoing
debate [7,8,27]. The problem is that without additional (and often complicated)
assumptions this player is too powerful to be realistic, and can for instance leak
information between the other players. This is a problem, e.g. in the security
context, making model checking results overly pessimistic [13].

In sharp contrast to the discrete-time settings, in our distributed IMCs the
interleaving player n + 1 does not have decisive influence on the resulting game.
The reason is that the interleaving player can only affect the order of transitions
between two delays, but neither which transitions are taken nor what the differ-
ent players observe. This is rooted in the common alphabet synchronisation and
especially the continuous-time nature of the game: the probability of two local
modules changing state at the same time instant is zero, except if synchronising.

Example 1. We consider the model displayed on the right where the delay tran-
sitions are labelled by some rate λ. It displays a very simplistic malicious App

Distributed Synthesis in Continuous Time 355

trying to communicate a secret to an outside Attacker, despite being sandboxed.
Innocently looking action login, logout and lookup synchronise App and Att, while
the unlabelled transitions denote some private actions of the respective module.

App:

c0

t1 t2 t3 t4

b1 b2 b3 b4

λ

λ

λ λ

login
λ
lookup

logout

λλ λ

login
λ
lookup

logout

Att:

c̄1 c̄2 c̄3

t̄4

b̄4
λ

λ

login lookup

λ

λ

Initially, the App can only let time pass.
The Attacker player has no other choice
than committing to handshaking on action
login. A race of the delay transitions will
occur that at some point will lead to either
state (t1, c̄1) or (b1, c̄1), with equal proba-
bility. Say in (t1, c̄1), the App player can
only commit to action login. The synchro-
nisation will happen immediately since the
Attacker is committed to login already, lead-
ing to (t2, c̄2). Now the App player has either
to commit to action lookup or logout. The latter will induce a deadlock due to a
mismatch in players’ commitments. Instead assuming the earlier, the state syn-
chronously and immediately changes to (t3, c̄3). The Attacker player can now use
its local timed history to decide which of the private actions to pick. Whatever
it chooses, an interleaving of private actions of the two modules follows in zero
time. Unless the reachability condition considers transient states such as (t3, t̄4)
where no time is spent, the player resolving the interleaving has no influence on
the outcome.

Now, assume the reachability condition is the state set {(t4, t̄4), (b4, b̄4)}.
This corresponds to the Attacker player correctly determining the initial race
of the App, and can be considered as a leaked secret. However, according to
the explanations provided, it should be obvious that the probability of guessing
correctly (by committing properly in state c̄3) is no larger than 0.5, just because
the players are bound to decide only based on the local history. The crucial
question is: is there an algorithm to compute such probabilities, in general?

Our Contribution. This paper is the first to explore distributed cooperative
reachability games with continuous-time flow modelled explicitly. The formalism
we study is based on interactive Markov chains, which in turn has been applied
across a wide range of engineering domains. We aim at synthesising local strate-
gies for the players to reach with at least a given probability a specified set of goal
states. If this probability is 1 we call the problem qualitative, otherwise quan-
titative. We consider existential problems, asking for the existence of strategies
with these properties, and value problems, asking for strategies approximating
the given probability value arbitrarily closely. We have three main results:

1. We show that, under mild assumptions on the winning condition, in
continuous-time distributed synthesis the interleaving player has no power.

2. In general, we establish that the quantitative problems are undecidable for
two or more players, the qualitative value problem is undecidable for two or
more players and the qualitative existence problem is EXPTIME-hard for two
players and undecidable for three or more players.

356 H. Hermanns et al.

3. However, when focusing on the subclass of 2-player non-urgent distributed
IMCs, the quantitative value problem can be solved in exponential time.
Non-urgency enables changing the decisions committed to after some time.
Thus, it empowers the players to reach a distributed consensus about the
next handshake to perform by observing the only information they jointly
have access to: the advance of time.

The qualitative undecidability comes from a novel result about decentralised
partially observable Markov decision processes (DEC-POMDP), a multi-player
extensions of POMDP. While qualitative existence is decidable for POMDP [1],
we show that qualitative existence is undecidable for DEC-POMDP already for
2 players. It is to the knowledge of the authors the strongest undecidability
result for DEC-POMDPs with infinite horizon which is of its own interest. By
a reduction from DEC-POMDP to distributed IMCs that adds one player, we
get undecidability of qualitative existence for 3 or more players in distributed
IMCs. Due to space constraints, full proofs can be found in [17].

2 Distributed Interactive Markov Chains

We denote by R, R≥0, N, and N0 the sets of real numbers, non-negative real
numbers, positive integers, and non-negative integers, respectively. Furthermore,
for a finite set X, we denote by Δ(X) the set of discrete probability distributions
over X, i.e. functions f : X → [0, 1] such that

∑
x∈X f(x) = 1. Finally, for a

tuple x from a product space X1 ×· · ·×Xn and for 1 ≤ i ≤ n, we use functional
notation x(i) to denote the ith element of the tuple.

We first give a definition of a (local) module based on the formalism of
Interactive Markov Chains (IMC). Then we introduce (global) distributed IMC.

Definition 1 (IMC). An IMC (module) is a tuple (S,Act, ↪→,�, sin) where

– S is a finite set of states with an initial state sin,
– Act is a finite set of actions,
– ↪→ ⊆ S × Act × S is the action transition relation,
– � ⊆ S × Q>0 × S is the finite delay transition relation.

We write s
a

↪→ s′ when (s, a, s′) ∈ ↪→ and s
λ� s′ when (s, λ, s′) ∈ � (λ being

the rate of the transition). We say that action a is available in s if s
a

↪→ s′ for
some s′.

Definition 2 Distributed IMC. A distributed IMC is a tuple

G = ((Si,Acti, ↪→i,�i, s
in
i))1≤i≤n

of modules for players Plr = {1, ..., n}. Furthermore, by Act =
⋃

i Acti we denote
the set of all actions, and by S = S1 × ... × Sn the set of (global) states.

Intuitively, a distributed IMC moves in continuous-time from a (global) state
to a (global) state using transitions with labels from Label = Act ∪ Plr:

Distributed Synthesis in Continuous Time 357

– An action transition with label a ∈ Act corresponds to synchronous commu-
nication of all players in Sync(a) := {j ∈ Plr | a ∈ Actj} and can only be
taken when it is enabled, i.e. when all these players choose their local transi-
tions with action a at the same time. It is called a synchronisation action if
|Sync(a)| ≥ 2 and a private action if |Sync(a)| = 1.

– A delay transition of any player j ∈ Plr is taken independently by the player
after a random delay, i.e. the set of players that synchronise over label j is
Sync(j) = {j}.

Formally, the (local) choices of player j range over Cj = ↪→j ∪{⊥}. When in
(local) state s, the player may pick only a choice available in s. That is, either
an action transition of the form s

a
↪→ s′ or ⊥ if there is no such action transition.

We define global choices as C = C1 × · · · × Cn. A global choice c induces the set
En(c) = {a ∈ Act | ∀j ∈ Sync(a) : c(j) = (·, a, ·)} of actions enabled in c.

To avoid that time stops by taking infinitely many action steps in zero time,
we pose a standard assumption prohibiting cycles [14,15,19–21]: we require that
for every action a ∈ Act there is a player j ∈ Sync(a) such that the labelled
transition system (Sj , ↪→j) does not have any cycle involving action a.

The behaviour of a distributed IMC is a play, an infinite sequence

ρ = s0c0
a1,t1−−−→ s1c1

a2,t2−−−→ s2c2 · · ·
where each si ∈ S is the state after i moves, ci ∈ C is the choice of the players
in the state si, and ai+1 ∈ Label and ti+1 ∈ R≥0 are the label and the absolute
time of the next transition taken. By Play we denote the set of all plays. Which
play is taken depends on the strategies of the players, on the scheduler which
resolves interleaving of communication whenever multiple actions are enabled,
and on the rules (involving randomness) given later.

2.1 Schedulers and Strategies

First we define strategies and schedulers basing their decision on the current
local and global history, respectively. A (global) history is a finite prefix

h = s0c0
a1,t1−−−→ · · · ai,ti−−−→ si

of a play ending with a state. For given h, we get the local history of player j as

πj(h) = s′
0(j)c′

0(j) a′
1,t′

1−−−→ · · · a′
�,t′

�−−−→ s′
�(j)

where vects′
0c

′
0

a′
1,t′

1−−−→ · · · a′
�,t′

�−−−→ s′
� is the subsequence of h omitting all steps not

visible for player j, i.e. all am,tm−−−−→ smcm with j
∈ Sync(am). The set of all global
histories is denoted by Hist; the set of local histories of player j by Histj .

Example 2. Consider again Example 1. Let App be controlled by player 1 and
Att by player 2. For the following history we get corresponding local histories

h = (c0, c̄1)(⊥, login) 1,0.42−−−−→ (t1, c̄1)(login, login) login,0.42−−−−−−→ (t2, c̄2),

π1(h) = c0 ⊥ 1,0.42−−−−→ t1 login login,0.42−−−−−−→ t2, π2(h) = c̄1 login login,0.42−−−−−−→ c̄2

358 H. Hermanns et al.

Note that the attacker can neither observe the Markovian transition nor the
local state of the App. The App cannot observe the local state of the attacker
either, but it can be deduced from the local history of the App.

A strategy for player j is a measurable function σ : Histj → Δ(Cj) that
assigns to any local history h of player j a probability distribution over choices
available in the last state of h. We say that a strategy σ for player j is pure if
for all h we have σ(h)(c) = 1 for some c; and memoryless if for all h and h′ with
equal last local state we have σ(h) = σ(h′).

A scheduler is a measurable function δ : Hist×C → Δ(Act)∪{⊥} that assigns
to any global history h and global choice c a probability distribution over actions
enabled in c; or a special symbol ⊥ again denoting that no action is enabled.

Example 3. The available local choices in (t2, c̄2), the last state of h from above,
are {(t2, lookup, t3), (t2, logout , t1)} forApp and solely {(c̄2, lookup, c̄3)} forAtt. Let
the strategy of App select either choice with equal probability. If (t2, lookup, t3) is
chosen, lookup is enabled and must be picked by the scheduler σ. If (t2, logout , t1)
is chosen, no action is enabled and δ must pick ⊥, waiting for a delay transition.

2.2 Probability of Plays

Let us fix a profile of strategies σ = (σ1, . . . , σn) for individual players, and a
scheduler δ. The play starts in the initial state s0 = (sin

1 , . . . , sin
n) and inductively

evolves as follows. Let the current history be h = s0c0
a1,t1−−−→ · · · ai,ti−−−→ si.

– For the next choice ci, only players Pi := Sync(ai) involved in the last tran-
sition freely choose (we assume P0 := Plr). Hence, independently for every
j ∈ Pi, the choice ci(j) is taken randomly according to σj(πj(h)). All remain-
ing players j
∈ Pi stick to the previous choice ci(j) = ci−1(j) as for them, no
observable event happened.

– After fixing ci, there are two types of transitions:
1. If En(ci)
= ∅, the next synchronization action ai+1 ∈ En(ci) is chosen

randomly according to δ(h, ci) and taken immediately at time ti+1 := ti.
The next state si+1 satisfies for every j ∈ Plr:

si+1(j) =

{
target(ci(j)) if j ∈ Sync(ai+1),
si(j) if j
∈ Sync(ai+1).

where target(ci(j)) denotes the target of the transition chosen by player
j. In other words, players involved in synchronisation move according to
their choice, the remaining players stay in their previous states.

2. If En(ci) = ∅, a local delay transition is taken after a random delay, chosen
as follows. Each delay transition si(j)

λ� · outgoing from the current local
state of any player j is assigned randomly a real-valued delay according
to the exponential distribution with rate λ. This results in a collection
of real numbers. The transition si()

λ� s with the minimum delay d in

Distributed Synthesis in Continuous Time 359

this collection is taken. Hence, ai+1 := 	 (denoting that player 	 moves),
ti+1 := ti + d, and the next state si+1 satisfies for every j ∈ Plr:

si+1(j) =

{
s if j ∈ Sync(ai+1) = {	},

si(j) if j
∈ Sync(ai+1).

All these rules induce a probability measure Prσ,δ over the set of all plays by a
standard cylinder construction.

2.3 Distributed Synthesis Problem

We study the following two fundamental reachability problems for distributed
IMCs. Let G be a distributed IMC, T ⊆ S be a target set of states, and p be a
rational number in [0, 1]. Denoting by �T the set of plays ρ that reach a state in
T and stay there for a non-zero amount of time, we focus on:

Existence Does there exist a strategy profile σ s.t. for all schedulers δ,

Prσ,δ(�T) ≥ p ?

Value Can the value p be arbitrarily approached, i.e. do we have

sup
σ

inf
δ

Prσ,δ(�T) ≥ p ?

We refer to the general problem with p ∈ [0, 1] as quantitative. When we
restrict to p = 1, we call the problem qualitative.

3 Schedulers Are Not that Powerful

•
s0

s1

s2

s3

•
t0

t1

t2

•
u0

u1

•
v0

v1

C1 C2 C3 C4

λ

a

b

a

c

b c

The task of a scheduler is to choose among
concurrently enabled transitions, thereby resolv-
ing the non-determinism conceptually caused
by interleaving. In this section, we address the
impact of the decisions of the scheduler. We show
that despite having the ability to affect the order
in which transitions are taken in the global play,
the scheduler cannot affect what every player
observes locally. Thus, the scheduler affects neither the choices of any player nor
what synchronisation occurs. As a result, for winning objectives that are closed
under local observation equivalence, the scheduler cannot affect the probability
of winning.

Example 4. Consider the distributed IMC to the right. After the delay transition
is taken in C1 and there is synchronisation on action a, the scheduler can choose
whether there will be synchronisation on b or c first. However, it can only affect
the interleaving, not any of the local plays.

360 H. Hermanns et al.

For a play ρ = s0c0
a1,t1−−−→ s1c1

a2,t2−−−→ s2c2 · · · we define the local play πj(ρ)
of player j analogously to local histories. We define local observation equivalence
∼ over plays by setting ρ ∼ ρ′ if πj(ρ) = πj(ρ′) for all j ∈ Plr. Let us stress that
two local observation equivalent plays have exactly the same action and delay
transitions happening at the same moments of time; only the order of action
transitions happening at the same time can differ. Finally, we say that a set E
of plays is closed under local observation equivalence if for any ρ ∈ E and any ρ′

such that ρ ∼ ρ′ we have ρ′ ∈ E. It is now possible to show the following.

Theorem 1. Let E be a measurable set of plays closed under local observation
equivalence. For any strategy profile σ and schedulers δ and δ′ we have

Prσ,δ(E) = Prσ,δ′
(E).

As a result, for the rest of the paper we write Prσ(E) instead of Prσ,δ(E) since
the scheduler cannot affect the probability of the events we consider. Indeed, the
reachability objectives defined in the previous section are closed under local
observation equivalence.

Remark 1. The fact that interleaving does not have decisive impact in continuous
time may seem natural and thus possibly unsurprising to experts. Yet, the result
does not hold for many small variations of the setting we consider, e.g. neither
for asymmetric communication nor when allowing cycles of action transitions.

4 Undecidability Results

In this section, we put distributed IMCs into context of other partial-observation
models. As a result, we show that reachability quickly gets undecidable here.

Theorem 2. For distributed IMCs we have that

1. the qualitative value, quantitative value, and quantitative existence problems
are undecidable with n ≥ 2 players; and

2. the qualitative existence problem is ExpTime-hard with n = 2 players and
undecidable with n ≥ 3 players.

Theorem 2 is obtained by using two fundamental results. First, we provide
a novel (and somewhat surprising) result for decentralized POMDPs (DEC-
POMDPs) [3], an established multi-player generalization of POMDPs. We show
that the qualitative existence problem for DEC-POMDPs is undecidable already
for 2 players. This is, to the knowledge of the authors, currently the strongest
known undecidability result for DEC-POMDPs. Second, we show that distrib-
uted IMCs are not only more expressive (w.r.t. reachability) than POMDPs but
also more expressive than DEC-POMDPs. We show it by reducing reachability
in DEC-POMDPs with n players to reachability in distributed IMCs with n + 1
players. Theorem 2 follows from these two results and from known results about
POMDPs [4,12,26]. For an overview, see Table 1.

Distributed Synthesis in Continuous Time 361

Table 1. Undecidability results for reachability. Unreferenced results are shown here.

POMDPs DEC-POMDPs Distributed IMCs

Qual. Existence Dec. [1] Undec. for ≥ 2 players Undec. for ≥ 3 players

Value Undec. [12] Undec. for ≥ 1 player [12] Undec. for ≥ 2 players

Quant. Existence Undec. [26] Undec. for ≥ 1 player [26] Undec. for ≥ 2 players

Value Undec. [4] Undec. for ≥ 1 player [4] Undec. for ≥ 2 players

4.1 Decentralized POMDP (DEC-POMDP)

We start with a definition of the related formalism of decentralized POMDP [3].

Definition 3. A DEC-POMDP is a tuple (S,Plr, (Acti,Oi)1≤i≤n, P,O, sin)
where

– S is a finite set of global states with initial state sin ∈ S,
– Plr = {1, ..., n} is a finite set of players,
– Acti is a finite set of local actions of player i with Acti ∩ Actj = ∅ if j
= i,

(by Act = Act1 × · · · × Actn we denote the set of global actions),
– Oi is a finite set of local observations for player i,

(by O = O1 × · · · × On we denote the set of global observations),
– P : S × Act → Δ(S) is the transition function which assigns to a state and a

global action a probability distribution over successor states, and
– O : S × Act × S → Δ(O) is the observation function which assigns to every

transition a probability distribution over global observations.

In contrast to distributed IMCs that capture flow of time explicitly, DEC-
POMDP is a discrete-time formalism. A DEC-POMDP starts in the initial state
sin. Assuming that the current state is s, one discrete step of the process works
as follows. First, each player j chooses an action aj . Then the next state s′ is
chosen according to the probability distribution P (s,a) where a = (a1, . . . , an).
Then, each player j receives an observation oj ∈ Oj such that the observations
o = (o1, ..., on) are chosen with probability O(s,a, s′)(o). Repeating this forever,
we obtain a play which is an infinite sequence ρ = s0a0o0s1a1o1 · · · where
s0 = sin and for all i ≥ 0 it holds that si ∈ S, ai ∈ Act, and oi ∈ O. Note that
the players can only base their decisions on the sequences of observations they
receive rather than the actual sequence of states which is not available to them.
For a more complete coverage of DEC-POMDPs, see [3].

4.2 Reduction from DEC-POMDP

First we present the reduction from a DEC-POMDP P to a distributed IMC G.
In this subsection, we write Prσ

P or Prσ
G instead of Prσ to distinguish between

the probability measure in the DEC-POMDP from the probability measure in
the distributed IMC.

362 H. Hermanns et al.

Proposition 1. For a DEC-POMDP P with n players and a target set T of
states of P we can construct in polynomial time a distributed IMC G with n + 1
players and a target set T ′ of global states in G where:

∃σ : Prσ
G (�T) = p ⇐⇒ ∃σ′ : Prσ′

P (�T ′) = p.

Proof (Proof Sketch). Let us fix n and P = (S,Plr, (Acti)1≤i≤n, δ, (Oi)1≤i≤n, O)
where Plr = {1, ..., n}. Further, let Acti = {ai1, ..., aimi

} and Oi = {oi1, ..., oi�i
}

for player i ∈ Plr. The distributed IMC G has n + 1 modules, one module for
each player in P and the main module responsible for their synchronisation.
Intuitively,

– the module of every player i stores the last local observation in its state
space. Every step of P is modelled as follows: The player outputs to the main
module the action it chooses and then inputs from the main module the next
observation.

– The main module stores the global state in its state space. Every step of
P corresponds to the following: The main module inputs the actions of all
players one by one, then it randomly picks the new state and new observations
according to the rules of P based on the actions collected. The observations
are lastly output to all players, again one by one.

We construct the distributed IMC so that only the outputting player chooses
what action to output whereas the inputting player accepts whatever comes.
The construction of modules for player i is illustrated in Fig. 1 along with con-
structions for input and output. The interesting part is how an action from the
set {a1, . . . , ar} is input in a state s. Instead of waiting in s, the player travels
by delay transitions in a round-robin fashion through a cycle of r states, where
in the i-th state, only the action ai is available. Thus, the player has no influence
and must input the action that comes. By this construction, the main module
has at most one action transition in every state such that the player cannot
influence anything; other modules get no insight by observing time and thus the
players have the same power as in the DEC-POMDP. ��

4.3 Undecidability of Qualitative Existence in DEC-POMDP

Next, we show that the qualitative existence problem for DEC-POMDPs even
with n ≥ 2 players is undecidable. The proof has similarities with ideas from

m
o
d
u
le

fo
r

p
la

y
er

i oi1 · · ·
...

oij...

oi�i · · ·

out(air)

out(ai1)

out(aimi
)...

...

in(oi1)

in(oi�i
)

...

en
co

d
in

g
o
f
in

/
o
u
t

s si

sr

s1
in(ai)

in(a1)
...

in(ar)

...
=

...s

s1

s2 s3

s4

sr

λ
λ

λ
λ

λ
λ

λ

a1
a2 a3

a4

ar

s si

sr

s1
out(ai)

out(a1)
...

out(ar)

...
= s si

sr

s1
ai

a1
...

ar

...

Fig. 1. Module for player i on the left. Input and output encoding to the right.

Distributed Synthesis in Continuous Time 363

s0
s1

s2

s3

s4
P ′ P ′′

P ′′′

(n, n)

1
3

1
3

1
3

(n, n)

1
3

1
3

1
3

Fig. 2. Overall structure of P without details of P ′, P ′′ and P ′′′.

[5] where it is shown that deciding existence of sure-winning strategies in safety
games with 3 players and partial observation is undecidable. Using the ran-
domness of DEC-POMDPs we show undecidability of the qualitative existence
problem for reachability in 2-player DEC-POMDPs.

Theorem 3. It is undecidable whether for a DEC-POMDP P with n ≥ 2 play-
ers and a set T of target states in P if there exists a strategy profile σ such that
Prσ

P(�T) = 1.

Proof (Proof Sketch). We do a reduction from the non-halting problem of a
deterministic Turing machine M that starts with a blank input tape. From M
we construct a DEC-POMDP P with two players Plr = {1, 2} such that M does
not halt if and only if players 1 and 2 have strategies σ = (σ1, σ2) which ensure
that the probability of reaching a target set T is 1. Figure 2 shows the overall
structure of P without details of sub-modules P ′,P ′′ and P ′′′.

Both players have two possible observations, black and white. We depict the
observation of player 1 in the top-half and of player 2 in the bottom-half of every
state. The play starts in s0 and with probability 1, every player receives the
black observation exactly once during the play. If the play goes to s1 or s4 the
players will receive the observation at the same time and if the play goes to s3
then player 2 will receive the observation in the step after player 1 does. The
modules P ′,P ′′ and P ′′′ are designed so that:

– In P ′, a target state is reached if and only if the sequence of actions played
by both players encodes the initial configuration of M .

– In P ′′, a target state is reached with probability 1 if and only if both players
play the same infinite sequence of actions. Note that randomness is essential
to build such a module.

– In P ′′′, the target set is reached if and only if the sequences of actions played
by player 1 and 2 encode two configurations C1 and C2 of M , respectively,
such that C1 is not an accepting configuration and C2 is a successor config-
uration of C1. This can be done since a finite automaton can be constructed
that recognizes if one configuration is a successor of the other when reading
both configurations at the same time. Note that it is possible because such
configurations can only differ by a constant amount (the control state, the
tape head position and in symbols in cells near the tape head).

It can be shown by induction that if there are strategies σ1, σ2 that ensure
reaching T with probability 1 then every σi has to play the encoding of the jth

364 H. Hermanns et al.

configuration of M when it receives the black observation in the jth step. Further,
it can be shown that these strategies do ensure reaching T with probability 1 if
M does not halt on the empty input tape and do not ensure reaching T with
probability 1 if M halts. ��

5 Decidability for Non-urgent Models

In this section, we turn our attention to a subclass of distributed IMCs, called
non-urgent, that implies decidability for both the qualitative and quantitative
value problems for 2 players.

Definition 4. We call G = ((Si,Acti, ↪→i,�i, s0i))1≤i≤n non-urgent if for every
1 ≤ j ≤ n:

1. Every s ∈ Sj is of one of the following forms:
(a) Synchronisation state with at least one outgoing synchronisation action

transition and exactly one outgoing delay transition which is a self-loop.
(b) Private state with arbitrary outgoing delay transitions and private action

transitions.
2. Player j has an action ∅j ∈ Actj enabled in every synchronisation state from

Sj that allows to “do nothing” and thus postpone the synchronisation. To this
end, ∅j is also in Actk for every other player k
= j but ∅j does not appear in
↪→k. As a result, j does not take part in any synchronisation while choosing ∅j.

In a non-urgent distributed IMC, s ∈ S is called a (global) synchronisation
state if it is the initial state or all s(j) are synchronisation states. We denote
global synchronisation states by S′. All other global states S \ S′ are called
private.

Example 5. Consider the non-urgent variant of Example 1 on the right. The “do
nothing” actions are a natural concept; the only real modelling restriction is that
one cannot model a communication time-out any more, the delay transitions
from synchronisation states need to be self-loops.

App:

c0

t1 t2 t3 t4

b1 b2 b3 b4

λ

λ

λ λ λ

∅1 ∅1

login lookup

λ λ λ

∅1 ∅1

login lookup

Att:

c̄1 c̄2 c̄3

t̄4

b̄4

λ λ

∅2 ∅2

login lookup

λ

λ

Surprisingly, in this model, the secret
can be leaked with probability 1 as fol-
lows. As before, the players reach the states
(t2, c̄2) or (b2, c̄2) with equal probability.
Now, the App player can arbitrarily post-
pone the lookup by committing to action
∅1. Whenever the delay self-loop is taken,
the player can re-decide to perform lookup.
Since the self-loop is taken repetitively, the
App player is flexible in choosing the timing
of lookup. Thus, leaking the secret is simple,
e.g. by performing lookup in an odd second when in t2 and in an even second
when in b2.

For two players, we construct a general synchronisation scheme that (highly
probably) shows the players the current global state after each communication.

Distributed Synthesis in Continuous Time 365

Theorem 4. The quantitative value problem for 2-player non-urgent distributed
IMCs where the target set consists only of synchronisation states is in ExpTime.

Being a special case, also the qualitative value problem is decidable. In
essence, the problem becomes decidable because in the synchronisation states,
the players can effectively exchange arbitrary information. This resembles the
setting of [11]. The insight that observing global time provides an additional
synchronization mechanism is not novel in itself, but it is obviously burdensome
to formally capture in time-abstract models of asynchronous communication,
and thus usually not considered. For distributed IMC, it still is non-trivial to
develop; here it hinges on the non-urgency assumption. The results of [11] also
indicate that for three or more players, additional constraints on the topology
may be needed to obtain decidability.

In the rest of the section we prove Theorem 4, fixing a 2-player non-urgent
distributed IMC G = ((Si,Acti, ↪→i,�i, s0i))1≤i≤2, p ∈ [0, 1], and T ⊆ S′. We
present the algorithm based on a reduction to a discrete-time Markov decision
process and then discuss its correctness.

Markov decision process (MDP). An MDP is a tuple M = (S,A, P, s0) where S
is a finite set of states, A is a finite set of actions, P : S × A → Δ(S) is a partial
probabilistic transition function, and s0 is an initial state. An MDP is the special
case of a DEC-POMDP with 1 player that has a unique observation for each
state. A play in M is a sequence ω = s0s1 . . . of states such that P (si, ai)(si+1) >
0 for some action ai for every i ≥ 0. A history is a prefix of a play. A strategy
is a function π that to every history h · s assigns a probability distribution over
actions such that if an action a is assigned a non-zero probability, then P (s, a)
is defined. A strategy π is pure memoryless if it assigns Dirac distributions to
any history and its choice depends only on the last state of the history. When
we fix a strategy π, we obtain a probability measure Prπ over the set of plays.
For further details, see [30].

The algorithm. It works by reduction to an MDP MG = (S′, A, P, s0) where

– S′ ⊆ S is the set of global synchronisation states;
– A = C × Σ1 × Σ2 ∪ {⊥} where Σj is the set of pure memoryless strategies of

player j in G that choose ∅j in every synchronisation state;
– For an arbitrary state (s1, s2), we define the transition function as follows:

• For any (c, σ1, σ2) ∈ A, the transition P ((s1, s2), (c, σ1, σ2)) is defined if
c is available in (s1, s2) and the players agree in c on some action a, i.e.
En(c) = {a}. If defined, the distribution P ((s1, s2), (c, σ1, σ2)) assigns to
any successor state (s′

1, s
′
2) the probability that in G the state (s′

1, s
′
2) is

reached from (s1, s2) via states in S \ S′ by choosing c and then using the
pure memoryless strategy profile (σ1, σ2).

• To avoid deadlocks, the transition P ((s1, s2),⊥) is defined iff no other tran-
sition is defined in (s1, s2) and it is a self-loop, i.e. it assigns probability 1
to (s1, s2).

366 H. Hermanns et al.

The MDP MG has size exponential in |G|. Note that all target states T are
included in S′. Slightly abusing notation, let �T denote the set of plays in MG
that reach the set T . From standard results on MDPs [30], there exists an optimal
pure memoryless strategy π∗, i.e. a strategy satisfying Prπ∗

(�T) = supπ Prπ(�T).
Furthermore, such a strategy π∗ and the value v := Prπ∗

(�T) can be computed
in time polynomial in |MG |. Finally, the algorithm returns TRUE if v ≥ p and
FALSE, otherwise.

Correctness of the algorithm Let us explain why the approach is correct.

Proposition 2. The value of G is equal to the value of MG, i.e.

sup
σ

Prσ(�T) = sup
π

Prπ(�T).

Proof Sketch. As regards the ≤ inequality, it suffices to show that any strategy
profile σ can be mimicked by some strategy π. This is simple as π in MG has
always knowledge of the global state. Much more interesting is the ≥ inequality.
We argue that for any strategy π there is a sequence of local strategy profiles
σ1,σ2, . . . such that

lim
i→∞

Prσi

(�T) = Prπ(�T).

S′
2

1 2

sync ¬sync sync ¬sync

S′
1

1

2

3

∅1

c2(1, 1)

∅1

c2(2, 1)

c1(3, 1)

c2(3, 1)

c1(3, 2)

∅2

∅1

∅2

∅1

∅2

The crucial idea is that a strategy pro-
file communicates correctly (with high prob-
ability) the current global state in a syn-
chronisation state by delaying as follows.
The time is divided into phases, each of
|S′

1| ·2|S′
2| slots (where S′

i are the synchroni-
sation states of player i). We depict a phase
by the table on the right where the time
flows from top to bottom and from left to
right (as reading a book). Players 1 and 2
try to synchronise in the row and column,
respectively, corresponding to their current
states (in circle) and in each slot take the choice ci(s1, s2) optimal given the
current global state is (s1, s2); in the remaining slots they choose to do nothing.
Since the players can change their choice only at random moments of time, their
synchronising choice always stretches a bit into the successive silent slot (in a
¬sync column). The more we increase the size of each slot, the lower is the chance
that a synchronisation choice of a player stretches to the next synchronisation
slot. Thus, the lower is the chance of an erroneous synchronisation. We define
the size of the slot to increase with i and also along the play so that for any
fixed i the probability of at least one erroneous synchronisation is bounded by
κi < 1 and for i → ∞, we have κi → 0. ��

Distributed Synthesis in Continuous Time 367

6 Discussion and Conclusion

This paper has introduced a foundational framework for modelling and synthe-
sising distributed controllers interacting in continuous time via handshake com-
munication. The continuous time nature of the model induces that the interleav-
ing scheduler has in fact very little power. We studied cooperative reachability
problems for which we presented a number of undecidability results, while for
non-urgent models we established decidability of both quantitative and qualita-
tive problems for the two-player case. In the framework considered, the restric-
tion to exponential distributions is a technical vehicle, the results could have
been developed in general continuous time, e.g. by using the model of stochastic
automata [9].

Distributed IMCs can be considered as an attractive base model especially
in the context of information flow and other security-related studies. This is
because in contrast to the discrete time setting, the power of the interleaving
scheduler is no matter of debate, it can leak no essential information.

From a more general perspective, distributed synthesis of control algorithms
has received considerable attention in its entirety [22,28,29]. The asynchronous
setting with handshake synchronisation has been considered in [23]. Notably,
our assumption that players stay committed to a particular action choice for the
time in between state changes implies the necessity to let the players explicitly
solve distributed consensus problems. As done in [23], one can overcome this by
letting local players pick sets of enabled actions (or letting them change choice
with infinite speed), and then let some built-in magic pick a valid action from
the intersection, implying that whenever possible a consensus is reached for sure.
Such a change would however reintroduce the scheduler.

We should point out that distributed IMCs are not fully compositional:
We are assuming a fixed vector of modules, and do not discuss that modules
themselves may be vectors. Otherwise, we would face the phenomenon of auto-
concurrency [10], where transitions with identical synchronisation actions might
get enabled concurrently, despite not synchronising. This in turn would again
re-introduce distinguishing power of the scheduler.

Distributed Markov chains [31] constitute another recent discrete-time app-
roach where interleaving nondeterminism is tamed successfully via assumptions
on the communication structure. The observation that continuous time reduces
the power of the interleaving scheduler is not entirely new. Though not explic-
itly discussed, it underpins the model of probabilistic I/O automata (PIOA) [34]
which uses I/O communication with input-enabledness and output-determinism.
In that setting, output-determinism implies that local players have no decisive
power, and hence a continuous time Markov chain arises. We can approximate
I/O-based communication by distributed IMCs without the need for output-
determinism. The approximation is linked to arbitrarily small but non-zero
delays needed to cycle through synchronising action sets. A profound investi-
gation of the continuous-time particularities of this and other synchronisation
disciplines is considered an interesting topic for future work.

368 H. Hermanns et al.

Acknowledgements. This work is supported by the EU 7th Framework Programme
projects 295261(MEALS) and 318490 (SENSATION), by the Czech Science Founda-
tion project P202/12/G061, the DFG Transregional Collaborative Research Centre
SFB/TR 14 AVACS, and by the CDZ project 1023 (CAP).

References

1. Baier, C., Größer, M., Bertrand, N.: Probabilistic ω-automata. J. ACM 59(1), 1
(2012)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decen-
tralized control of Markov decision processes. Math. Oper. Res. 27(4), 819–840
(2002)

4. Bertoni, A., Mauri, G., Torelli, M.: Some recursively unsolvable problems relat-
ing to isolated cutpoints in probabilistic automata. In: Degano, P., Gorrieri,
R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256. Springer,
Heidelberg (1997)

5. Berwanger, D., Kaiser, L.: Information tracking in games on graphs. J. Logic Lang.
Inform. 19(4), 395–412 (2010)

6. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

7. Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O.,
Segala, R.: Analyzing security protocols using time-bounded task-PIOAs. Discrete
Event Dyn. Syst. 18(1), 111–159 (2008)

8. Cheung, L., Lynch, N.A., Segala, R., Vaandrager, F.W.: Switched PIOA: parallel
composition via distributed scheduling. Theoret. Comput. Sci. 365(1–2), 83–108
(2006)

9. D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems part I: stochastic
automata. Inf. Comput. 203(1), 1–38 (2005)

10. Droste, M., Gastin, P.: Asynchronous cellular automata for pomsets without auto-
concurrency. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol.
1119. Springer, Heidelberg (1996)

11. Genest, B., Gimbert, H., Muscholl, A., Walukiewicz, I.: Asynchronous games over
tree architectures. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part II. LNCS, vol. 7966, pp. 275–286. Springer, Heidelberg (2013)

12. Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: decidable and
undecidable problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 527–538.
Springer, Heidelberg (2010)

13. Giro, S., D’Argenio, P.R., Fioriti, L.M.F.: Distributed probabilistic input/output
automata: Expressiveness, (un)decidability and algorithms. Theoret. Comput. Sci.
538, 84–102 (2014)

14. Guck, D., Han, T., Katoen, J.-P., Neuhäußer, M.R.: Quantitative timed analysis of
interactive markov chains. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS,
vol. 7226, pp. 8–23. Springer, Heidelberg (2012)

15. Hermanns, H., Johr, S.: May we reach it? Or must we? In what time? With what
probability? In: MMB, pp. 125–140. VDE Verlag (2008)

16. Hermanns, H.: Interactive Markov Chains and The Quest for Quantified Quality.
Lecture Notes in Computer Science, vol. 2428. Springer, New York (2002)

Distributed Synthesis in Continuous Time 369

17. Hermanns, H., Vester, S., Krčál, J.: Distributed synthesis in continuous time. CoRR
abs/1601.01587 (2016)

18. Hermanns, H., Katoen, J.-P.: The how and why of interactive markov chains. In:
Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009.
LNCS, vol. 6286, pp. 311–338. Springer, Heidelberg (2010)

19. Hermanns, H., Krčál, J., Křet́ınský, J.: Compositional verification and optimization
of interactive markov chains. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR
2013 – Concurrency Theory. LNCS, vol. 8052, pp. 364–379. Springer, Heidelberg
(2013)

20. Katoen, J.-P., Klink, D., Neuhäußer, M.R.: Compositional abstraction for stochas-
tic systems. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS,
vol. 5813, pp. 195–211. Springer, Heidelberg (2009)

21. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

22. Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local speci-
fications. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 396–407. Springer, Heidelberg (2001)

23. Madhusudan, P., Thiagarajan, P.S.: A decidable class of asynchronous distributed
controllers. In: Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR
2002. LNCS, vol. 2421, pp. 145–160. Springer, Heidelberg (2002)

24. Milner, R.: Calculi for synchrony and asynchrony. Theoret. Comput. Sci. 25, 267–
310 (1983)

25. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. Courier Corporation, New York (1981)

26. Paz, A.: Introduction to Probabilistic Automata. Academic Press Inc., London
(1971)

27. Pelozo, S.S., D’Argenio, P.R.: Security analysis in probabilistic distributed proto-
cols via bounded reachability. In: Palamidessi, C., Ryan, M.D. (eds.) TGC 2012.
LNCS, vol. 8191, pp. 182–197. Springer, Heidelberg (2013)

28. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In:
Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP. LNCS, vol.
372, pp. 652–671. Springer, Heidelberg (1989)

29. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
FOCS, pp. 746–757. IEEE Computer Society (1990)

30. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, New York (2009)

31. Saha, R., Esparza, J., Jha, S.K., Mukund, M., Thiagarajan, P.S.: Distributed
markov chains. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS,
vol. 8931, pp. 117–134. Springer, Heidelberg (2015)

32. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. Ph.D. thesis, Massachusetts Institute of Technology (1995)

33. Sinopoli, B., Sharp, C., Schenato, L., Schaffert, S., Sastry, S.S.: Distributed control
applications within sensor networks. Proc. IEEE 91, 1235–1246 (2003)

34. Sue-Hwey, W., Smolka, S.A., Stark, E.W.: Composition and behaviors of proba-
bilistic I/O automata. Theoret. Comput. Sci. 176(1–2), 1–38 (1997)

Proof Theory and Lambda Calculus

Unary Resolution: Characterizing PTIME

Clément Aubert1, Marc Bagnol2, and Thomas Seiller3(B)

1 Department of Computer Science, Appalachian State University, Boone, USA
2 Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada

3 Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark
seiller@di.ku.dk

Abstract. We give a characterization of deterministic polynomial time
computation based on an algebraic structure called the resolution semi-
ring, whose elements can be understood as logic programs or sets of rewrit-
ing rules over first-order terms.This construction stems froman interactive
interpretation of the cut-elimination procedure of linear logic known as the
geometry of interaction .

This framework is restricted to terms (logic programs, rewriting rules)
using only unary symbols, and this restriction is shown to be complete for
polynomial time computation by encoding pushdown automata. Sound-
nessw.r.t.Ptime is proven thanks to a saturationmethod similar to the one
used for pushdown systems and inspired by the memoization technique.

A Ptime-completeness result for a class of logic programming queries
that uses only unary function symbols comes as a direct consequence.

Keywords: Implicit complexity · Unary queries · Logic programming ·
Geometry of interaction · Proof theory · Pushdown automata · Satura-
tion · Memoization

1 Introduction

Complexity theory classifies computational problems relatively to the amount of
time or memory needed to solve them. Complexity classes are defined as sets of
problems that can be solved by algorithms whose executions need comparable
amounts of resources. For instance, the class Ptime is the set of predicates over
binary words that can be decided by a Turing machine whose execution time is
bounded by a polynomial in the size of its input.

One of the main motivations for an implicit computational complexity (ICC)
theory is to find machine-independent characterizations of complexity classes.
The aim is to characterize classes not “by constraining the amount of resources
a machine is allowed to use, but rather by imposing linguistic constraints on the

This work was partly supported by the ANR-14-CE25-0005 Elica, the ANR-11-INSE-
0007 Rever, the ANR-10-BLAN-0213 Logoi, the ANR-11-BS02-0010 Recré, the ANR
12 JS02 006 01 project Coquas and the European Union’s Marie Sk�lodowska-Curie
Individual Fellowship (H2020-MSCA-IF-2014) 659920 - ReACT.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 373–389, 2016.
DOI: 10.1007/978-3-662-49630-5 22

http://lipn.univ-paris13.fr/~mazza/Elica/
http://www.pps.univ-paris-diderot.fr/~jkrivine/ANR/REVER/ANR_REVER/Welcome.html
http://recre.ens-lyon.fr/
http://lipn.univ-paris13.fr/~pagani/pmwiki/pmwiki.php/Coquas/Coquas

374 C. Aubert et al.

way algorithms are formulated.” [18, p. 90] This has been already achieved via
different approaches, for instance by considering restricted programming lan-
guages or computational principles [12,37,38].

A number of results in this area also arose from proof theory, through the study
of subsystems of linear logic [25]. More precisely, the Curry-Howard—or proofs
as programs—correspondence expresses an isomorphism between formal proofs
and typed programs. In this approach, once a formula Nat corresponding to the
type of binary integers is set, proofs of the formula Nat ⇒ Nat are algorithms
computing functions from integers to integers, via the cut-elimination procedure.
By considering restricted subsystems, one allows less proofs of type Nat ⇒ Nat,
hence less algorithms can be implemented, and the class of accepted proofs, or
programs, may correspond1 to some complexity class: elementary complexity [21,
29], polynomial time [11,36], logarithmic [19] and polynomial [24] space.

More recently, new methods for obtaining implicit characterizations of com-
plexity classes based on the geometry of interaction (GoI) research program [27]
have been developed. The GoI approach offers a more abstract and algebraic
point of view on the cut-elimination procedure of linear logic. One works with
a set of untyped programs represented as some geometric objects, e.g. graphs
[20,40] or generalizations of graphs [42], bounded linear maps between Hilbert
spaces (operators) [26,30,41], clauses (or “flows”) [8,28]. This set of objects
is then considered together with an abstract notion of execution, seen as an
interactive procedure: a function does not process a static input, but rather
communicate with it, asking for values, reading its answers, asking for another
value, etc. (this interactive point of view on computation has proven crucial in
characterizing logarithmic space computation [19]).

This method does not proceed by restricting a type system, but by imposing
original conditions, of an algebraic nature, on the representation of programs.
Note that one still benefits from the work in the typed case: for instance, the
representation of words used here directly comes from their representation in
linear logic. The first results in this direction were based on operator algebra [5,
6,31]. This paper considers a more syntactic flavor of the GoI interpretation,
where untyped programs are represented in the so-called resolution semiring [8],
a semiring based on the resolution rule [39] and a specific class of logic programs.
This setting presents some advantages: it avoids the heavy structure of operator
algebras theory, eases the discussions in terms of complexity (as first-order terms
have natural notions of size, height, etc.) and offers a straightforward connection
with complexity of logic programming [22]. Previous works in this direction led
to characterizations of logarithmic space predicates Logspace and co-NLog-
space [2,3], by considering restrictions on the height of variables.

The main contribution of this paper is a characterization of the class Ptime
by studying a natural limitation, the restriction to unary function symbols.
Pushdown automata are easily related to this simple restriction, for they can
be represented as logical programs satisfying this “unarity” restriction. This
implies the completeness of the model under consideration for polynomial time

1 In an extensional correspondence: they can compute the same functions.

Unary Resolution: Characterizing PTIME 375

predicates. Soundness follows from a variation of the saturation algorithm for
pushdown systems [13], inspired by S. Cook’s memoization technique [17] for
pushdown automata, that proves that any such unary logic program can be
decided in polynomial time.

Compared to other ICC characterizations of Ptime, and in particular those
coming from proof theory, this method has a simple formulation and provides
an original point of view on this complexity class. It also constitutes the first
characterization of a time-complexity class directly on the semantic side of the
GoI interpretation. Nevertheless, the results presented here can be read inde-
pendently of any knowledge of GoI.

An immediate consequence of this work is a Ptime-completeness result for
a specific class of logic programming queries corresponding to unary flows.

1.1 Outline

Section 2.1 gives the formal definition of the resolution semiring; then represen-
tation of words and programs in this structure is briefly explained (Sect. 2.2).
Section 2.3 introduce the restricted semiring that will be under study, the Stack
semiring. We believe the technical results presented in this section to be of
importance, as they describe an algebraic restriction corresponding to Ptime
and broaden previous algebraic restrictions for (co-N)Logspace.

The next two sections are respectively devoted to the completeness and
soundness results for Ptime. Proving completeness needs to first review multi-
head finite automata with pushdown stack, that characterize Ptime, and then to
represent them as elements built from the Stack semiring (Sect. 3). The sound-
ness result is then obtained by “saturating” elements of the stack semiring, so
that they become decidable with Ptime resources (Sect. 4).

Ptime-completeness of unary logic programming queries is then proved to
be implied by this result (Sect. 5).

Sketched proofs are detailed in a technical report [4] and in the second
author’s Ph.D. thesis [8].

2 The Resolution Semiring

2.1 Flows and Wirings

We begin with some reminders on first-order terms and unification theory.

Notation 1 (terms). We consider first-order terms, written t,u, v, . . ., built
from variables and function symbols with assigned finite arity. Symbols of arity
0 will be called constants.

Sets of variables and of function symbols of any arity are supposed infinite.
Variables will be noted in italics font (e.g. x, y) and function symbols in type-
writer font (e.g. c, f(·), g(·, ·)).

We distinguish a binary function symbol • (in infix notation) and a constant
symbol �. We will omit the parentheses for • and write t•u•v for t•(u•v).

376 C. Aubert et al.

We write var(t) the set of variables occurring in the term t and say that t
is closed if var(t) = ∅. The height h (t) of a term t is the maximal distance
between its root and leaves; a variable occurrence’s height in t is its distance to
the root.

We will write θt for the result of applying the substitution θ to the term t and
will call renaming a substitution α that bijectively maps variables to variables.

We focus on the resolution of equalities t = u between terms, and hence need
some definitions.

Definition 2 (Unification, Matching and Disjointness). Two terms t, u
are:

– unifiable if there exists a substitution θ—a unifier of t and u—such that θt =
θu. If any other unifier of t and u is such that there exists a substitution that
maps it to θ, we say θ is the most general unifier (MGU) of t and u;

– matchable if t′, u′ are unifiable, where t′, u′ are renamings of t, u such that
var(t′) ∩ var(u′) = ∅;

– disjoint if they are not matchable.

A fundamental result of unification theory is that when two terms are unifi-
able, a MGU exists and is computable. More specifically, the problem of decid-
ing whether two terms are unifiable is Ptime-complete [23, Theorem 1]. The
notion of MGU allows to formulate the resolution rule, a key concept of logic
programming defining the composition of Horn clauses (expressions of the form
H � B1, . . . , Bn):

Note that the condition on variables implies that we are matching U and
V rather than unifying them. In other words, the resolution rule deals with
variables as if they were bounded.

From this perspective, “flows”—defined below—are a specific type of Horn
clauses H � B, with exactly one formula B at the right of � and all the variables
of H already occurring in B. The product of flows will be defined as the resolution
rule restricted to this specific type of clauses.

Definition 3 (Flow). A flow is an ordered pair f of terms f := t ↼ u, with
var(t) ⊆ var(u). Flows are considered up to renaming: for any renaming α,
t ↼ u = αt ↼ αu.

A flow can be understood as a rewriting rule over the set of first-order terms,
acting at the root. For instance, the flow g(x) ↼ f(x) corresponds to “rewrite
terms of the form f(v) as g(v)”.

Next comes the definition of the product of flows. From the term-rewriting
perspective, this operation corresponds to composing two rules—when possi-
ble, i.e. when the result of the first rewriting rule allows the application of the

Unary Resolution: Characterizing PTIME 377

second—into a single one. For instance, one can compose the flows f1 := h(x) ↼
g(x) and f2 := g(f(x)) ↼ f(x) to produce the flow f1f2 = h(f(x)) ↼ f(x).
Notice by the way that this (partial) product is not commutative, as composing
these rules the other way around is impossible, i.e. f2f1 is not defined.

Definition 4 (Product of Flows). Let t ↼ u and v ↼ w be two flows. Suppose
we picked representatives of the renaming classes such that var(u)∩var(v) = ∅.

The product of t ↼ u and v ↼ w is defined when u and v are unifiable, with
MGU θ, as (t ↼ u)(v ↼ w) := θt ↼ θw.

We now define wirings, which are just finite sets of flows and therefore corre-
spond to logic programs. From the term-rewriting perspective they are just sets
of rewriting rules. The definition of product of flows naturally lifts to wirings.

Definition 5 (Wiring). A wiring is a finite set of flows. Their product is
defined as FG := {fg|f ∈ F, g ∈ G, fg defined}. The resolution semiring R
is the set of all wirings.

The set of wirings R indeed enjoys a structure of semiring2. We will use an
additive notation for sets of flows to highlight this situation:

– The symbol + will be used in place of ∪, and we write sets as sums of their
elements: {f1, . . . , fn} := f1 + · · · + fn.

– We denote by 0 the empty set, i.e. the unit of the sum.
– The unit for the product is the wiring I := x ↼ x.

As we will always be working within R, the term “semiring” will be used
instead of “subsemiring of R”. Finally, let us extend the notion of height to
flows and wirings, and recall the definition of nilpotency.

Definition 6 (Height). The height h(f) of a flow f = t ↼ u is defined as
max{h(t), h(u)}. A wiring’s height is defined as h(F) = max{h(f)|f ∈ F}. By
convention h(0) = 0.

Definition 7 (Nilpotency). A wiring F is nilpotent—written Nil(F)—if and
only if Fn = 0 for some n.

That standard notion of nilpotency, coming from abstract algebra, has a
specific reading in our case. In terms of logic programming, it means that all
chains obtained by applying the resolution rule to the set of clauses we consider
cannot be longer than a certain bound. From a rewriting point of view, it means
that the set of rewriting rules is terminating with a uniform bound on the length
of rewriting chains —again, we consider rewriting at the root of terms, while
general term rewriting systems [7] allow for in-context rewriting.
2 A semiring is a set R equipped with two operations + (the sum) and × (the prod-

uct), and an element 0 ∈ R such that: (R, +, 0) is a commutative monoid; (R, ×) is
a semigroup; the product distributes over the sum; and the element 0 is absorbent, i.e.
0 × r = r × 0 = 0 for all r ∈ R.

378 C. Aubert et al.

2.2 Representation of Words and Programs

This section explains and motivates the representation of words as flows. Study-
ing their interaction with wirings from a specific semiring allows to define notions
of program and accepted language. First, let us extend the binary function sym-
bol • , used to construct terms, to flows and then semirings.

Definition 8. Let u ↼ v and t ↼ w be two flows. Suppose we have chosen
representatives of their renaming classes that have disjoint sets of variables.

We define (u ↼ v) • (t ↼ w) := u • t ↼ v • w. The operation is extended to
wirings by (

∑
i fi)•(

∑
j gj) :=

∑
i,j fi •gj. Then, given two semirings A and B,

we define the semiring A•B := {∑i Fi •Gi|Fi ∈ A , Gi ∈ B}.
The operation indeed defines a semiring because for any wirings F , F ′, G and

G′, we have (F • G)(F • G) = FF ′ • GG′. Moreover, we carry on the convention
of writing A•B •C for A•(B •C).

Notation 9. We write t � u the sum t ↼ u + u ↼ t.

Definition 10 (Word Representation). We fix for the rest of this paper an
infinite set of constant symbols P (the position constants) and a finite alphabet
Σ disjoint from P with � �∈ Σ (we write Σ∗ the set of words over Σ).

Let W = c1 · · · cn ∈ Σ∗ and p = p0, p1, . . . , pn be pairwise distinct elements
of P. Writing pn+1 = p0 and cn+1 = c0 = �, we define the representation of
W associated with p0, p1, . . . , pn as the following wiring, where x and y are two
arbitrary but distinct variables:

W̄p =
n∑

i=0

ci •r•x •y •head(pi) � ci+1 •l•x •y •head(pi+1)

Position constants p0, p1, . . . , pn represent memory cells storing the symbols
�, c1, c2, The representation of words is dynamic, i.e. we may think intu-
itively of movement instructions for an automaton reading the input, getting
instructions to move from a symbol to the next (at the left, hence the l) or the
previous (to the right, hence the r). More details on this point of view will be
given in the proof of Theorem 4. A term ci • r (resp. ci • l) at position p will
be linked by flows of the representation to an element ci+1 • l at position pi+1

(resp. ci−1 •r at position pi−1).
Taking cn+1 = c0 = � reflects the Church encoding of words and make the

representation of the input circular. Flows representing the word c1 · · · cn can
be pictured as follows:

The notion of observation will be the counterpart of a program in our con-
struction. We first give a general definition, that will be instantiated later to

Unary Resolution: Characterizing PTIME 379

particular classes of observations characterizing complexity classes. The impor-
tant point is that observations cannot use any position constant, so that they
interact the same way with all the representations W̄p of a word W .

Definition 11 (Observation Semiring). We define the semirings P⊥ of flows
that do not use the symbols in P; and Σlr the semiring generated by flows of the
form c•d ↼ c′ •d′ with c, c′ ∈ Σ ∪ {�} and d, d′ ∈ {l, r}.

We define the semiring of observations as O := (Σlr • R) ∩ P⊥, and the
semiring of observations over the semiring A as O[A] := (Σlr •A) ∩ P⊥.

The following property is a consequence of the fact that observations cannot
use position constants [8, Theorem IV.5].

Theorem 1 (normativity). Let W̄p and W̄q be two representations of a word
W and O an observation. Then Nil(OW̄p) if and only if Nil(OW̄q).

How a word can be accepted by an observation can now be safely defined:
the following definition is independent of the specific choice of a representation.

Definition 12 (Accepted Language). Let O be an observation. The lan-
guage accepted by O is defined as L(O) := {W ∈ Σ∗ | ∀p, Nil(OW̄p)}.

A previous work [3] investigated the semiring of balanced wirings, that are
defined as sets of balanced—or “height-preserving”—flows.

Definition 13 (Balance). A flow f = t ↼ u is balanced if for any variable
x ∈ var(t) ∪ var(u), all occurrences of x in both t and u have the same height
(recall notations p. 4). A balanced wiring F is a sum of balanced flows and the
set of balanced wirings is written Rb.

A balanced observation is an element of O[Rb •Rb].

This simple restriction was shown to characterize (non-deterministic) loga-
rithmic space computation [3, Theorems 34-35], with a natural subclass of bal-
anced wirings corresponding to the deterministic case. The balanced restriction
won’t be further considered, even if previous results on the nilpotency problem
for balanced wirings [3, p. 54], [8, Theorem IV.12] are required to complete the
detailed proof of Theorem 5 [4,8].

2.3 The Stack Semiring

This paper deals with another restriction on flows, namely the restriction to
unary flows, i.e. defined with unary function symbols only. The semiring of
wirings composed only of unary flows is called the Stack semiring, and will
be shown to give a characterization of polynomial time computation. Below are
the needed definitions and results about this semiring, a more complete picture
is in the second author’s Ph.D. thesis [8].

Definition 14 (Unary Flows). A unary flow is a flow built using only unary
function symbols and a variable. The semiring Stack is the set of wirings of the
form

∑
i ti ↼ ui where the ti ↼ ui are unary flows.

380 C. Aubert et al.

Example 1 The flows f(f(x)) ↼ g(x) and x ↼ g(x) are both unary, while x •
f(x) ↼ g(x) and f(c) ↼ x are not.

The notion of cyclic flow is crucial to prove the characterization of polynomial
time computation. It is complementary to the nilpotency property for elements
of Stack , i.e. a wiring in Stack will be either cyclic or nilpotent.

Definition 15 (Cyclicity). A flow t ↼ u is a cycle if t and u are matchable
(Definition 2). A wiring F is cyclic if there is a k such that F k contains a cycle.

Remark 1. A flow f is a cycle iff f2 �= 0, which in turn implies fn �= 0 for all n
in the case f is unary. This does not hold in general: f = x •c ↼ d•x is a cycle
as f2 = c•c ↼ d•d �= 0, but f3 = (x •c ↼ d•x)(c•c ↼ d•d) = 0.

Theorem 2 (nilpotency). A wiring F ∈ Stack is nilpotent iff it is acyclic.

Proof (Sketch [8, Theorem II.52]). An immediate consequence of Remark 1 is
that if F is acyclic, then it is not nilpotent. The converse is a consequence of
a bound on the height of elements of Fn when F is acyclic [10]. From this, a
contradiction can be obtained by realizing that manipulating bounded height
terms built from a finite pool of symbols implies that one is wandering in a finite
set and will eventually be cycling in it.

Example 2. The following nilpotent element of Stack illustrates how the nilpo-
tency problem can be tricky to solve efficiently:

F := f1(x) ↼ f0(x)
+ f0(f1(x)) ↼ f1(f0(x))
+ f0(f0(f1(x))) ↼ f1(f1(f0(x)))
+ f0(f0(f0(x))) ↼ f1(f1(f1(x)))

Taking the sequence fxfyfz to be the integer x+2y+4z, this wiring implements
a counter from 0 to 7 in binary notation, that resets to 0 when it reaches 8. It
is clear with this intuition in mind that this wiring is cyclic. Indeed, an easy
computation shows that f0(f0(f0(x))) ↼ f0(f0(f0(x))) ∈ F 8.

Lifting this example to the case of a counter from 0 to 2n − 1, gives a wiring
for which the number of iterations needed to find a cycle is exponential in its size.
This rules out a polynomial time decision procedure for the nilpotency problem
that would simply compute iterations of a wiring until it finds a cycle.

Finally, let us define a new class of observations, based on the Stack semiring.

Definition 16 (Balanced Observation with Stack). A balanced observa-
tion with stack is an element of the semiring Ob+s := O[Stack •Rb].

Unary Resolution: Characterizing PTIME 381

3 Pushdown Automata and PTIME Completeness

Automata form a simple model of computation that can be extended in dif-
ferent ways. For instance, allowing multiple heads that can move in two direc-
tions on the input tape gives a model of computation equivalent to read-only
Turing machines. If one adds moreover a “pushdown stack” one defines “push-
down automata”, well-known to capture polynomial-time computation. Ptime-
completeness of balanced observation with stacks will be attained by encoding
pushdown automata: we recall briefly their definition and characterization of
Ptime, before sketching how to represent them as observations.

Definition 17 (Pushdown Automata (2MFA+S)). For k � 1, a pushdown
automaton (formally, a 2-way k-head finite automaton with pushdown stack
(2MFA+S(k))) is a tuple M = {S, i, A,B,�,�,�, σ} where:

– S is the finite set of states, with i ∈ S the initial state;
– A is the input alphabet, B the stack alphabet;
– � and � are the left and right endmarkers, �,�/∈ A;
– � is the bottom symbol of the stack, � /∈ B;
– σ is the transition relation, i.e. a subset of the product (S×(A��)k×B�)×(S×

{−1, 0,+1}k ×{pop, push(b)}) where A�� (resp. B�) denotes A∪{�,�} (resp.
B ∪ {�}). The instruction −1 corresponds to moving the head one cell to the
left, 0 corresponds to keeping the head on the current cell and +1 corresponds
to moving it one cell to the right. Regarding the pushdown stack, the instruction
pop means “erase the top symbol”, while, for all b ∈ B, push(b) means “write
b on top of the stack”.

The automaton rejects the input if it loops, otherwise it accepts. This condi-
tion is equivalent to the standard way of defining acceptance and rejection by
“reaching a final state” [35, Theorem 2]. Modulo another standard transforma-
tion, we restrict the transition relation so that at most one head moves at each
transition.

We used in our previous work [3,6] the characterization of Logspace and
NLogspace by 2-way k-head finite automata without pushdown stacks [43,
pp. 223–225]. The addition of a pushdown stack improves the expressiveness
of the machine model, as stated in the following theorem.

Theorem 3. Pushdown automata characterize Ptime.

Proof. Without reproving this classical result of complexity theory, we review
the main ideas supporting it.

Simulating a Ptime Turing machine with a Pushdown automata amounts to
designing an equivalent Turing machine whose movements of heads follow a
regular pattern. That permits to seamlessly simulate their contents with a push-
down stack. A complete proof [16, pp. 9–11] as well as a precise algorithm [43,
pp. 238–240] can be found in the literature.

382 C. Aubert et al.

Simulating a Pushdown automata with a Polynomial-time Turing Machine. can-
not amount to simply simulate step-by-step the automaton with the Turing
machine. The reason is that for any pushdown automaton, one can design a
pushdown automaton that recognizes the same language but runs exponentially
slower [1, p. 197]. That the pushdown automaton can accept its input after
an exponential computation time is similar with the situation of the counter
in Exmaple 2.

The technique invented by Alfred V. Aho et al. [1] and made popular by
Stephen A. Cook consists in building a “memoization table” allowing the Tur-
ing machine to create shortcuts in the simulation of the pushdown automaton,
decreasing drastically its computation time. In some cases, an automaton with
an exponentially long run can even be simulated in linear time [17].

Let us now consider the proof of Ptime-completeness for the set of balanced
observations with stacks. It relies on an encoding that is similar to the previously
developed encoding of 2-way k-head finite automata (without pushdown stack)
by flows [3, Sect. 4.1]. The only difference is the addition of a “plug-in” that
allows to represent stacks in observations.

Remember that acceptance by observations is phrased in terms of nilpo-
tency of the product OW̄p of the observation and the representation of the input
(Definition 12). Hence the computation in this model is defined as an itera-
tion: one computes by considering the sequence OW̄p, (OW̄p)2, (OW̄p)3, . . . and
the computation either ends at some point (i.e. accepts)—that is (OW̄p)n = 0
for some integer n—or loops (i.e. rejects). This iteration represents a dialogue
between the observation and its input: whereas an automaton is often thought
of as manipulating some the “passive” data, in our setting, the observation and
the word representation interact, taking turns in making the situation evolve.

Theorem 4. If L ∈ Ptime, then there exists a balanced observation with stack
O ∈ Ob+s such that L = L(O).

Proof. Let A = Σ be the input alphabet and M the 2MFA+S(k + 1) that recog-
nizes L. By Theorem 3, such a M exists, and its transition relation is encoded as
a balanced observation with stack (Definition 16). More precisely, the automaton
will be represented as an element OM of Ob+s = O[Stack • Rb] which can be
written as a sum of flows of the form

c′ •d′ •σ(x)•q′ •auxk(y′
1, . . . , y

′
k)•head(z′) ↼

c•d•s(x)•q•auxk(y1, . . . , yk)•head(z)

with

– c, c′ ∈ Σ ∪ {�} and d, d′ ∈ {l, r},
– σ a finite sequence of unary function symbols,
– s a unary function symbol,
– q, q′ two constant symbols,
– auxk and head two functions symbols of respective arity k and 1.

Unary Resolution: Characterizing PTIME 383

The intuition behind the encoding is that a configuration of a 2MFA+S(k + 1)
processing an input can be seen as a closed term

c•d•τ(�)•q•auxk(pi1 , . . . , pik)•head(pj)

where the pi are position constants representing the positions of the main pointer
(head(pj)) and of the auxiliary pointers (auxk(pi1 , . . . , pik)); the symbol q repre-
sents the state the automaton is in; τ(�) represents the current stack; the symbol
d represents the direction of the next move of the main pointer; the symbol c
represents the symbol currently read by the main pointer.

When a configuration matches the right side of the flow, the transition is
followed, leading to an updated configuration.

More precisely, the iterations of OMW̄p, the product of the encoding of M
with a word representation, is observed. Let us now explain how the basic oper-
ations of M are simulated:

Moving the Pointers. Looking back at the definition of the encoding of words
(Definition 10) gives a new reading of the action of the representation of a word:
it moves the main pointer in the required direction. From that perspective, the
position holding the symbol � in Definition 10 allows to simulate the behavior
of the endmarkers � and �.

On the other hand, the observation is not able to manipulate the position
of pointers directly (remember observations are forbidden to use the position
constants) but can change the direction symbol d, rearrange pointers (hence
changing which one is the main pointer) and modify its state and the symbol c
accordingly. For instance, a flow of the form

· · ·•auxk(x, . . . , yk)•head(y1) ↼ · · ·•auxk(y1, . . . , yk)•head(x)

encodes the instruction “swap the main pointer and the first auxiliary pointer”.
Note however that our model has no built-in way to remember the values

of the auxiliary pointers—it remembers only their positions as arguments of
auxk(· · ·)—, but this can be implemented easily using additional states.

Handling the Stack. Given a unary function symbol b(·) for each symbol b of the
stack alphabet B�, reading the stack, pushing and popping elements are easily
implemented:

· · ·•x• · · · ↼ · · ·•b(x)• · · · (Read b and pop it)
· · ·•c(b(x))• · · · ↼ · · ·•b(x)• · · · (Read b and push c)

Changing the State. Given a constant q for each state q of M , updating the state
amounts to picking the right q and q′ in the flow representing the transition.

Acceptance and Rejection. The encoding of acceptance and rejection is slightly
more delicate, as detailed in a previous article [5, Sect. 6.2.3.].

384 C. Aubert et al.

The basic idea is that acceptance in our model is defined as nilpotency, that
is to say: the absence of loops. If no transition in the automaton can be fired,
then no flow in our encoding can be unified, and the computation ends.

Conversely, a loop in the automaton will refrain the wiring from being nilpo-
tent. Loops should be represented as a re-initialization of the computation, so
that the observation performs forever the same computation when rejecting the
input. Another encoding may interfere with the representation of acceptation
as termination: an “in-place loop” triggered when reaching a particular state
would make the observation cyclic, hence preventing the observation from being
nilpotent no matter the word representation processed.

Indeed, the “loop” in Definition 17 of pushdown automata is to be read as
“perform forever the same computation”.

Observations resulting from encoding pushdown automata are sums of flows
of a particular form (shown at the beginning of the preceding proof). However,
using general observations with stack, not constrained in this way, does not
increase the expressive power: the next section is devoted to prove that the
language recognized by any observation with stack lies in Ptime.

4 Nilpotency in Stack and PTIME Soundness

We now introduce the saturation technique, which allows to decide nilpotency
of Stack elements in polynomial time. This technique relies on the fact that in
certain cases, the height of flows does not grow when computing their product.
It adapts memoization [32] to our setting: we repeatedly extend the wiring by
adding pairwise products of flows, allowing for more and more “transitions”.

Remark 2. As pointed out by a reviewer of a previous version of this work, decid-
ing the nilpotency of a unary flow is reminiscent of the problem of acyclicity for
the configuration graph of a pushdown system (PDS) [13], a problem known to
lie in Ptime [15]. However, our algorithm treats every state of the correspond-
ing PDS as initial, and would detect cycles even in non-connected components:
our problem is probably closer to the “uniform halting problem” [34], a prob-
lem known to be decidable [14, p. 10]. Whether this last problem, equivalent to
deciding the nœthériennité of a finite system rewriting suffix words, is known to
lie in Ptime, and if our Theorem 5 entails that bound, are both unknown to us.

Notation 18. Let τ and σ be sequences of unary function symbols. If h
(
τ(x)

) ≥
h

(
σ(x)

)
(reps. h

(
τ(x)

) ≤ h
(
σ(x)

)
), we say that τ(x) ↼ σ(x) is increasing (resp.

decreasing).
A wiring in Stack is increasing (resp. decreasing) if it contains only increasing

(resp. decreasing) unary flows.

Lemma 1 (stability of height). Let τ and σ be sequences of unary function
symbols. If τ is decreasing and σ is increasing, then h(τσ) ≤ max{h(τ), h(σ)}.

Unary Resolution: Characterizing PTIME 385

With this lemma in mind, we can define a shortcut operation that augments
an element of Stack by adding new flows while keeping the maximal height
unchanged. Iterating this operation, we obtain a saturated version of the ini-
tial wiring, containing shortcuts, shortcuts of shortcuts, etc. In a sense we are
designing an exponentiation by squaring procedure for elements of Stack , the
algebraic reading of memoization in our context.

Definition 19 (Saturation). If F ∈ Stack we define its increasing F ↑ := {f ∈
F |f is increasing} and decreasing F ↓ := {f ∈ F |f is decreasing} subsets. We set
the shortcut operation short(F) := F + F ↓F ↑ and its least fixpoint, which we
call the saturation of F : satur(F) :=

∑
n∈N

shortn(F) (where shortn denotes
the nth iteration of short).

The point of this operation is that it is computable in Ptime (the fixpoint is
reached in polynomial time) because of Lemma 1. This leads to a Ptime decision
procedure for nilpotency of elements of Stack .

Theorem 5 (nilpotency is in PTIME). Given any integer h, there is a pro-
cedure Nilph(·) ∈ Ptime that, given a F ∈ Stack such that h(F) ≤ h as an
input, accepts iff F is nilpotent.

Proof (Sketch [8, Theorem IV.15]). This relies on the fact that satur (·) is com-
putable in polynomial time and that the cyclicity of F and that of satur (F) are
related. More precisely F is cyclic iff either satur (F)↑ or satur (F)↓ is. Finally
one has to see that the case of increasing or decreasing wirings is easy to treat
by discarding the bottom of large stacks, which is harmless in that case.

The saturation technique can then be used to show that the language recog-
nized by an observation with stack always belongs to the class Ptime. The
important point in the proof is that, given an observation O and a representa-
tion W̄p of a word W , one can produce in polynomial time an element of Stack
whose nilpotency is equivalent to the nilpotency of OW̄p.

Proposition 1. Let O ∈ Ob+s be an observation with stack. There is a procedure
RedO(·) ∈ FPtime that, given a word W as an input, outputs a wiring F ∈ Stack
with h(F) ≤ h(O) such that F is nilpotent iff OW̄p is for any choice of p.

This is done essentially by remarking that the “balanced” part of the com-
putation can never step outside a finite computation space, so that one can
associate to each configuration a unary function symbol that is put on top of
the stack.

Theorem 6 (soundness). If O ∈ Ob+s, then L(O) ∈ Ptime.

5 Unary Logic Programming

In previous sections, we showed how the Stack semiring captures polynomial
time computation. As we already mentioned, the elements of this semiring cor-
respond to a specific class of logic programs, so that our results have a reading
in terms of complexity of logic programming [22] which we detail now.

386 C. Aubert et al.

Definition 20 (Data, Goal, Query). A unary query is Q = (D,P,G), where:

– D is a set of closed unary terms (a unary data),
– P is a an element of Stack (a unary program),
– G is a closed unary term (a unary goal).

We say that the query Q succeeds if G � can be derived combining d �
with d ∈ D and the elements of P by the resolution rule presented in Sect. 2.1,
otherwise we say the query fails. The size |Q| of the query is defined as the total
number of occurrences of symbols in it.

To apply the saturation technique directly, we need to represent all the ele-
ments of the unary query (data, program, goal) as elements of Stack . This
requires a simple encoding.

Definition 21 (Encoding Unary Queries). We suppose that for any con-
stant symbol c, we have a unary function symbol c(·). We also need two unary
functions, START(·) and ACCEPT(·). To any unary data D we associate an ele-
ment of Stack: [D] := {τ(c(x)) ↼ START(x)|τ(c) ∈ D} and to any unary goal
G = τ(c) we associate 〈G〉 := ACCEPT(x) ↼ τ(c(x)).

Note that the program part P of the query needs not to be encoded as it
is already an element of Stack . Once a query is encoded, we can tell if it is
successful or not using the language of the resolution semiring.

Lemma 2 (success). A unary query Q = (D,P,G) succeeds if and only if
ACCEPT(x) ↼ START(x) ∈ 〈G〉Pn[D] for some n.

The saturation technique then can be applied to unary queries adding to new
shortcut rules which eventually allow to decide acceptance.

Lemma 3 (saturation of unary queries). A unary query Q = (D,P,G)
succeeds if and only if ACCEPT(x) ↼ START(x) ∈ satur

(
[D] + P + 〈G〉).

Theorem 7 (PTIME-completeness). The UQuery problem (given a unary
query, is it successful?) is Ptime-complete.

Proof. The lemma above, combined with the fact that satur (·) is computable
in polynomial time3, ensures that the problem lies indeed in the class Ptime.
The hardness part follows from a variation on the encoding presented in Sect. 3
and the reduction derived from Proposition 1.

Remark 3. We presented the result in a restricted form to stay in line with the
previous sections. However, it should be clear to the reader that it would not be
impacted if we allowed: non-closed goals and data; programs with no restriction
on variables, e.g. f(x) ↼ g(y); constants in the program part of the query.
3 The bound on the running time of the procedure computing satur (·) being expo-

nential in the height, one needs to first process the query into an equivalent one
using only terms of bounded height, which can easily be done in polynomial time.

Unary Resolution: Characterizing PTIME 387

Remark 4. In terms of complexity of logic programs, we are considering the
combined complexity [22, p. 380]: every part of the query Q = (D,P,G) is
variable. If for instance we fixed P and G (thus considering data complexity), we
would have a problem that is still in Ptime, but it is unclear to us if it would
be complete. Indeed, the encoding of Sect. 3 relies on a representation of inputs
as plain programs, and on the fact that the evaluation process is a matter of
interaction between programs rather than mere data processing.

6 Perspectives

Adding a “stack plugin” to observations extends modularly previous works [2,
3,5,6] and gives the perfect tool to characterize Ptime. This modularity was
inspired by the classical addition of a stack to an automaton, allowing to
switch from Logspace to Ptime, and providing a decisive proof technique:
memoization—or exponentiation by squaring in our context—implemented as
saturation. The automata’s qualitative constraint on memory is directly repre-
sented as a syntactic restriction on flows.

In this setting, evaluation is inspired by the interactive approach to the
Curry-Howard correspondence—geometry of interaction—, which makes the
complexity parametric in the program and the input. This mechanism of compu-
tation differs from automata’s step-by-step evaluation, but that does not prevent
the simulation of pushdown automata by unary logic program.

The mechanism of pre-computation of transitions, known as memoization,
was adapted in a setting where logic programs are represented as algebraic
objects. This saturation technique computes shortcuts in a logic program to
decide its nilpotency in polynomial time. As it turns out, this is similar to the
techniques employed to solve efficiently the problem of termination of pushdown
systems.

More generally, this approach to complexity is based either on operator alge-
bra [5,6,31] or unification theory [2,3,8]: it is emerging as a meeting point for
computer science, logic and mathematics, and raises a number of perspectives.

A number of interrogations emerges naturally when considering the relations
to proof theory. First, we could consider the Church encoding of other data
types—trees for instance—and define “orthogonally” set of programs interact-
ing with them, wondering what their computational nature is. In the distance,
one may hope for a connection between our approach and ongoing work on
higher order trees and model checking [33]; all alike, one could study the inter-
action between observations and one-way integers—briefly discussed in earlier
work [3]—or non-deterministic data. Second, a still unanswered question of inter-
est is to give proof-terms representation of captured programs, i.e. observations.

Finally, it should be possible to represent functional computation (and not
only decision problems, i.e. to switch from Ptime to FPtime), by considering
a more general notion of observation that could express what an output is.
In that perspective, a good place to start should be to show that light logics
characterization results [9] can be recovered via our methods, which seems very
likely but remains to be precisely investigated.

388 C. Aubert et al.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Time and tape complexity of pushdown
automaton languages. Inform. Control 13(3), 186–206 (1968)

2. Aubert, C., Bagnol, M.: Unification and logarithmic space. In: Dowek, G. (ed.)
RTA-TLCA 2014. LNCS, vol. 8560, pp. 77–92. Springer, Heidelberg (2014)

3. Aubert, C., Bagnol, M., Pistone, P., Seiller, T.: Logic programming and logarithmic
space. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 39–57. Springer,
Heidelberg (2014)

4. Aubert, C., Bagnol, M., Seiller, T.: Memoization for unary logic programming:
Characterizing ptime. Research Report RR-8796, INRIA (2015). https://hal.
archives-ouvertes.fr/hal-01107377

5. Aubert, C., Seiller, T.: Characterizing co-NL by a group action. In: MSCS
(FirstView), pp. 1–33, December 2014

6. Aubert, C., Seiller, T.: Logarithmic space and permutations. Inf. Comput. Spec.
Issue Implicit Comput. Complex. (2015). doi:10.1016/j.ic.2014.01.018

7. Baader, F., Nipkow, T.: Term rewriting and all that. CUP, Cambridge (1998)
8. Bagnol, M.: On the Resolution Semiring. Ph.D. thesis, Aix-Marseille Université -

Institut de Mathématiques de Marseille (2014). https://hal.archives-ouvertes.fr/
tel-01215334

9. Baillot, P., Mazza, D.: Linear logic by levels and bounded time complexity. Theoret.
Comput. Sci. 411(2), 470–503 (2010)

10. Baillot, P., Pedicini, M.: Elementary complexity and geometry of interaction. Fund.
Inform. 45(1–2), 1–31 (2001)

11. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-
calculus. In: LICS, pp. 266–275. IEEE Computer Society (2004)

12. Bellantoni, S.J., Cook, S.A.: A new recursion-theoretic characterization of the poly-
time functions. Comput. Complex. 2, 97–110 (1992)

13. Carayol, A., Hague, M.: Saturation algorithms for model-checking pushdown sys-
tems. In: Ésik, Z., Fülöp, Z. (eds.), Proceedings 14th International Conference on
Automata and Formal Languages, AFL 2014, Szeged, Hungary, May 27–29, 2014.
EPTCS, vol. 151, pp. 1–24 (2014)

14. Caucal, D.: Récritures suffixes de mots. Research Report RR-0871, INRIA (1988).
https://hal.inria.fr/inria-00075683

15. Caucal, D.: On the regular structure of prefix rewriting. In: Arnold, A. (ed.) CAAP
’90. LNCS, vol. 431, pp. 87–102. Springer, Heidelberg (1990)

16. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded
computers. J. ACM 18(1), 4–18 (1971)

17. Cook, S.A.: Linear time simulation of deterministic two-way pushdown automata.
In: IFIP Congress (1), pp. 75–80. North-Holland (1971)

18. Dal Lago, U.: A short introduction to implicit computational complexity. In:
Bezhanishvili, N., Goranko, V. (eds.) ESSLLI 2010 and ESSLLI 2011. LNCS, vol.
7388, pp. 89–109. Springer, Heidelberg (2012)

19. Dal Lago, U., Schöpp, U.: Functional programming in sublinear space. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 205–225. Springer, Heidelberg (2010)

20. Danos, V.: La Logique Linéaire appliquée á l’étude de divers processus de normal-
isation (principalement du λ-calcul). Ph.D. thesis, Universit Paris VII (1990)

21. Danos, V., Joinet, J.B.: Linear logic and elementary time. Inf. Comput. 183(1),
123–137 (2003)

https://hal.archives-ouvertes.fr/hal-01107377
https://hal.archives-ouvertes.fr/hal-01107377
http://dx.doi.org/10.1016/j.ic.2014.01.018
https://hal.archives-ouvertes.fr/tel-01215334
https://hal.archives-ouvertes.fr/tel-01215334
https://hal.inria.fr/inria-00075683

Unary Resolution: Characterizing PTIME 389

22. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

23. Dwork, C., Kanellakis, P.C., Mitchell, J.C.: On the sequential nature of unification.
J. Log. Program. 1(1), 35–50 (1984)

24. Gaboardi, M., Marion, J.Y., Rocca Della Rocca, S.: An implicit characterization
of pspace. ACM Trans. Comput. Log. 13(2), 18:1–18:36 (2012)

25. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–101 (1987)
26. Girard, J.Y.: Geometry of interaction 1: Interpretation of system F. Stud. Logic

Found. Math. 127, 221–260 (1989)
27. Girard, J.Y.: Towards a geometry of interaction. In: Gray, J.W., Scedrov, A. (eds.)

Proceedings of the AMS Conference on Categories, Logic and Computer Science.
Categories in Computer Science and Logic, vol. 92, pp. 69–108. AMS (1989)

28. Girard, J.Y.: Geometry of interaction III: accommodating the additives. In: Girard,
J.Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, pp. 329–389. No. 222
in London Mathematical Society Lecture Note Series, CUP, June 1995

29. Girard, J.Y.: Light linear logic. In: Leivant, D. (ed.) Logic and Computational
Complexity. LNCS, vol. 960, pp. 145–176. Springer, Heidelberg (1995)

30. Girard, J.Y.: Geometry of interaction V: Logic in the hyperfinite factor. Theoret.
Comput. Sci. 412(20), 1860–1883 (2011)

31. Girard, J.Y.: Normativity in logic. In: Dybjer, P., Lindström, S., Palmgren, E.,
Sundholm, G. (eds.) Epistemology versus Ontology. LEUS, vol. 27, pp. 243–263.
Springer, Heidelberg (2012)

32. Glück, R.: Simulation of two-way pushdown automata revisited. In: Banerjee, A.,
Danvy, O., Doh, K.G., Hatcliff, J. (eds.) Festschrift for Dave Schmidt. EPTCS,
vol. 129, pp. 250–258 (2013)

33. Grellois, C., Melliés, P.A.: Relational semantics of linear logic and higher-order
model checking. In: Kreutzer, S. (ed.) CSL. LIPIcs, vol. 41, pp. 260–276. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2015). http://www.dagstuhl.de/
dagpub/978-3-939897-90-3

34. Huet, G., Lankford, D.: On the uniform halting problem for term rewriting
systems. Research Report RR-283, INRIA (1978). http://www.ens-lyon.fr/LIP/
REWRITING/TERMINATION/Huet Lankford.pdf

35. Ladermann, M., Petersen, H.: Notes on looping deterministic two-way pushdown
automata. Inf. Process. Lett. 49(3), 123–127 (1994)

36. Lafont, Y.: Soft linear logic and polynomial time. Theoret. Comput. Sci. 318(1),
163–180 (2004)

37. Leivant, D.: Stratified functional programs and computational complexity. In: Van
Deusen, M.S., Lang, B. (eds.) POPL, pp. 325–333. ACM Press (1993)

38. Neergaard, P.M.: A functional language for logarithmic space. In: Chin, W.-N.
(ed.) APLAS 2004. LNCS, vol. 3302, pp. 311–326. Springer, Heidelberg (2004)

39. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

40. Seiller, T.: Logique dans le facteur hyperfini : géometrie de l’interaction et
complexité. Ph.D. thesis, Université de la Méditerranée (2012), https://hal.
archives-ouvertes.fr/tel-00768403

41. Seiller, T.: A correspondence between maximal abelian sub-algebras and linear
logic fragments. ArXiv preprint abs/1408.2125, to appear in MSCS (2014)

42. Seiller, T.: Interaction graphs: Graphings. ArXiv preprint abs/1405.6331 (2014)
43. Wagner, K.W., Wechsung, G.: Computational Complexity, Mathematics and its

Applications. Springer, Heidelberg (1986)

http://www.dagstuhl.de/dagpub/978-3-939897-90-3
http://www.dagstuhl.de/dagpub/978-3-939897-90-3
http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Huet_Lankford.pdf
http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Huet_Lankford.pdf
https://hal.archives-ouvertes.fr/tel-00768403
https://hal.archives-ouvertes.fr/tel-00768403
http://www.abs/1408.2125
http://www.abs/1405.6331

Focused and Synthetic Nested Sequents

Kaustuv Chaudhuri(B), Sonia Marin, and Lutz Straßburger

Inria & LIX/École polytechnique, Palaiseau, France
{kaustuv.chaudhuri,sonia.marin,lutz.strassburger}@inria.fr

Abstract. Focusing is a general technique for transforming a sequent
proof system into one with a syntactic separation of non-deterministic
choices without sacrificing completeness. This not only improves proof
search, but also has the representational benefit of distilling sequent
proofs into synthetic normal forms. We show how to apply the focusing
technique to nested sequent calculi, a generalization of ordinary sequent
calculi to tree-like instead of list-like structures. We thus improve the
reach of focusing to the most commonly studied modal logics, the logics
of the modal S5 cube. Among our key contributions is a focused cut-
elimination theorem for focused nested sequents.

1 Introduction

The focusing technique has its origin in the foundations of logic program-
ming [1,22] and is now increasingly relevant in structural proof theory because it
improves proof search procedures [11,21] and because focused proofs have clearly
identifiable and semantically meaningful synthetic normal forms [6,8,10,31]. The
essential idea of focusing is to identify and coalesce the non-deterministic choices
in a proof, so that a proof can be seen as an alternation of negative phases, where
invertible rules are applied eagerly, and positive phases, where applications of
the other rules are confined and controlled. This, in turn, lets us abstract from
the usual unary and binary logical connectives by collapsing whole phases into
n-ary synthetic connectives. The full theory of focusing was initially developed
for the sequent calculus for linear logic [1], but it has since been extended to
a wide variety of logics [11,19,27] and proof systems [4,7]. This generality sug-
gests that the ability to transform a proof system into a focused form is a good
indication of its syntactic quality, in a manner similar to how admissibility of
cut shows that a proof system is syntactically consistent.

It is natural to ask whether the focusing technique works as well for modal
logics. Traditionally, modal logics are specified in terms of Hilbert-style axiomatic
systems, but such systems are not particularly suitable since axioms reveal none
of the structure of logical reasoning. It is well known that certain modal logics,
S5 in particular, are not representable in a variant of Gentzen’s sequent cal-
culus without sacrificing analyticity. There are two principal ways to overcome
this problem. The first is based on labeled proof systems that reify the Kripke
semantics—the frame conditions—directly as formulas in the sequents [24,29].
These “semantic formulas” are not subformulas of the end-sequent and they
c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 390–407, 2016.
DOI: 10.1007/978-3-662-49630-5 23

Focused and Synthetic Nested Sequents 391

cause the interpretation of sequents to fall outside the class of propositional
modal formulas, and for this reason, such calculi are also called external.

The second way is to use so-called internal calculi, that enrich the sequent
structure such that analyticity is preserved and such that every sequent has
an interpretation that stays inside the modal language. Well-known examples
are hypersequents [2] and display calculi [3]. A more recent development are
nested sequents [5,12,14,26], which generalize the notion of context from a list-
like structure (familiar from Gentzen’s sequent calculus) to a tree-like structure.
Like ordinary sequents, nested sequents have a straightforward interpretation in
the language of the logic, and enjoy cut admissibility (with a cut-elimination
proof that stays wholly internal to the system) and hence the usual subformula
property. Moreover, nested proof systems can be built modularly for every modal
logic in the S5 cube, in both classical and intuitionistic variants [5,20].

In this paper, we build a focused variant, with its concomitant benefits,
for all modal logics of the classical S5 cube. For simplicity we use a polarized
syntax [15] consisting of two classes of positive and negative formulas and a pair
of shift connectives to move back and forth between the classes. Crucially, we
interpret � as positive and � as negative, which differs from the polarity that
would be assigned to these connectives if they were interpreted in terms of ? and
!, respectively, from linear logic [25]. Our key technical contributions are: (1) a
purely internal proof of cut-elimination for the focused nested calculus, given
in terms of a traditional rewriting procedure to eliminate cuts (which shows
that our system is compositional and suitably continuous), and (2) a proof of
completeness of the focused system with respect to the non-focused system (and
hence to the Kripke semantics) by showing that the focused system admits the
rules of the non-focused system. It generalizes similar proofs of cut-elimination
and focusing completeness for (non-nested) sequent calculi [11,19].

To our knowledge there have been only two other attempts to apply the focus-
ing technique to modal logics. The first uses a labeled system [23], using the work
in [24] on geometric axioms to obtain systems that extend the basic modal logic
K. The cut-elimination and completeness results in [23] are obtained externally
as a reduction to LKF, a focused system for first-order logic [19]. Therefore, the
polarities of the modalities are inherited from the associated quantifiers, i.e., �

is negative and � is positive, similar to our setting. The second approach [18]
also uses nested sequents, but in a restricted form, in which the tree-structure
is reduced to a single branch. This efficiently simulates the standard sequent
system for the modal logic K, but makes both modalities positive.

Our approach uses the full power of nested sequents. and is intended as a pro-
totype for how similar focused systems may be built for other modal logic for-
malisms. After some preliminaries (Sect. 2), we start with a weakly focused proof
system (Sect. 3), where negative rules may be applied everywhere, including in
the middle of focused phases. From this system, we extract a strongly focused sys-
tem (also Sect. 3) and a synthetic system (Sect. 4) where the logical content of the
phases of focusing are abstracted from the level of formulas to the level of nested
sequents. We also sketch the cut-elimination theorem for this synthetic variant.
The synthetic design generalizes similar designs for the sequent calculus [6,31].

392 K. Chaudhuri et al.

Fig. 1. Left: Some standard modal axioms Right: Modal S5 cube

2 Modal Logics and the Nested Sequent Calculus KN

Classical modal logic is obtained from classical propositional logic by adding the
modal connectives � and �. Starting with a countable set of atoms (a, b, . . .),
the formulas (A,B, . . .) of modal logic are given by the following grammar:

A,B, ... ::= a |ā | A ∧ B | A ∨ B | �A | �A (1)

To avoid excessive syntax, formulas are kept in negation-normal form, so the
only formally negated formulas are the atoms. The negation Ā of an arbitrary
formula A is given by the De Morgan laws: ¯̄A = A, A ∧ B = Ā∨B̄ and �A = �Ā.
We also define A ⊃ B as Ā ∨ B, A ≡ B as (A ⊃ B) ∧ (B ⊃ A), � as a ∨ ā, and
⊥ as a ∧ ā (for some atom a).

Modal logics are traditionally specified using Hilbert-style axiom schemata.
The basic modal logic K, for instance, is obtained by adding the following k
axiom to the ordinary Hilbert axioms for propositional logic.

k : �(A ⊃ B) ⊃ (�A ⊃ �B) (2)

To obtain the theorems of K, we then also add two inference rules of modus
ponens and necessitation.

mp
A A ⊃ B

B
nec

A

�A
(3)

Stronger modal logics can be obtained by adding to K other axioms men-
tioning the modal connectives. In this paper, we consider the most common five
axioms d, t, b, 4 and 5, which are shown on the left in Fig. 1. Picking subsets
of these axioms lets us define thirty-two modal logics, but only fifteen of them
are non-redundant. For example, the sets {b, 4} and {t, 5} both yield the modal
logic S5. The fifteen distinct modal logics follow chains of extension from K to
S5 and can be arranged as a pair of nested cubes depicted on the right in Fig. 1;
this is sometimes called the S5 cube [13].

Focused and Synthetic Nested Sequents 393

Fig. 2. Rules for KN+ X�. The first row constitutes KN.

Let us recall the notion of nested sequents, first defined by Kashima [14]
and then independently rediscovered by Poggiolesi [26] (who called them tree-
hypersequents) and Brünnler [5]. In Gentzen’s one-sided sequent calculus, a
sequent is just a multiset of formulas; nested sequents generalize this notion
to a multiset of formulas and boxed sequents, resulting in a tree structure.

Definition 2.1. A nested sequent (Γ,Δ, . . .) is a finite multiset of formulas and
boxed sequents of the form [Δ], where Δ is itself a nested sequent. In other words,
nested sequents have the following grammar:

Γ,Δ, . . . ::=A1, . . . , Am, [Γ1], . . . , [Γn] (4)

Both m and n may be 0, in which case the sequent is empty ; when we need to
be explicit, we will use the notation ∅ to stand for an empty sequent. As is usual
in sequent calculi, we consider the comma to be associative and commutative.

Definition 2.2 (Corresponding Formulas). For any nested sequent Γ , a cor-
responding formula, written fm(Γ), gives an interpretation of Γ as a modal logic
formula. Corresponding formulas obey the following equivalences: fm(∅) ≡ ⊥,
fm(A) ≡ A, fm([Γ]) ≡ �fm(Γ), and fm(Γ1, Γ2) ≡ fm(Γ1) ∨ fm(Γ2).

Definition 2.3 (Context). An n-holed context is like a nested sequent but
contains n pairwise distinct numbered holes of the form { }i (for 1 ≤ i ≤ n) in
place of formulas. (No hole can occur inside a formula.) We depict such a context
as Γ{ }1 · · · { }n. Given such a context and n nested sequents Δ1, . . . ,Δn, we
write Γ{Δ1}1 · · · {Δn}n to stand for the nested sequent where the hole { }i (for
1 ≤ i ≤ n) in the context has been replaced by Δi, with the understanding that
if Δi is empty then the hole is simply removed. Unless there is any ambiguity,
we will omit the hole index subscripts in this paper to keep the notation light.

Definition 2.4. The depth of Γ{ }, written dp(Γ{ }), is given inductively by:
dp({ }) = 0, dp(Δ,Γ{ }) = dp(Γ{ }), and dp([Γ{ }]) = dp(Γ{ }) + 1.

Example 2.5. Let Γ{ }{ } = A, [B, { }, [{ }], C]. For the sequents Δ1 = D
and Δ2 = A, [C], we get: Γ{Δ1}{Δ2} = A, [B,D, [A, [C]], C] and Γ{∅}{Δ2} =
A, [B, [A, [C]], C]. We also have that dp(Γ{ }{Δ1}) = 1 and dp(Γ{Δ1}{ }) = 2.

394 K. Chaudhuri et al.

The basic modal logic K (as presented in [5]) is captured using nested sequents
as the cut-free proof system KN shown in the first row in Fig. 2. The deductive
system corresponding to each normal extension K + X, where X ⊆ {d, t, b, 4, 5}
is a set of modal axioms (Fig. 1), can be obtained by adding the corresponding
diamond rules X� ⊆ {d�, t�, b�, 4�, 5�} (final two rows of Fig. 2) to KN. The
5� rule has a side condition that the context in which the principal �-formula
occurs has non-zero depth, i.e., that it does not occur at the root of the conclusion
sequent.

To make the correspondence between extensions of K and the proof systems
precise, we need the following additional notion:

Definition 2.6 (45-Closure). We say that X ⊆ {d, t, b, 4, 5} is 45-closed, if:

– whenever 4 is derivable in K + X, 4 ∈ X
– whenever 5 is derivable in K + X, 5 ∈ X.

In this paper, we will always work with 45-closed axiom sets. The reason is that,
for example, the axiom 4 is not provable (without cut) in KN + {t�, 5�} even
though 4 is a theorem of the logic K + {t, 5} (which is S5). Note that this is
not a real restriction, since for every logic in the modal cube (Fig. 1) there is
a 45-closed set of axioms defining it (see [5] for details). We can now state the
soundness, completeness, and cut-admissibility for KN and its extensions.

Theorem 2.7. Let cut be the following rule:

cut
Γ{A} Γ{Ā}

Γ{∅}
Let X ⊆ {d, t, b, 4, 5} be 45-closed. For any formula A, the following are equivalent.

1. A is a theorem of K + X.
2. A is provable in KN + X� + cut.
3. A is provable in KN + X�.

The proof that 1 =⇒ 2 =⇒ 3 =⇒ 1 can be found in [5]. �

3 The Focused Systems KNwF and KNF

The essence of the focusing technique [1] is to classify formulas into positive for-
mulas, whose rules are not invertible, and negative whose rules are invertible. (As
usual, we consider a rule to be invertible if whenever the conclusion of the rule is
derivable then so are each of its premises.) Due to invertibility, when searching for
a proof it is always safe to apply—reading from conclusion to premises—a rule for a
negative formula, so these may be applied at any time. On the other hand, rules for
positive formulas may require rules on other formulas to be applied first. For exam-
ple, theKN sequent �ā,�a can only be proved by first applying the � rule, showing
that �-formulas are positive. A focused proof is one where the decision to apply a
rule to a positive formula has to be explicitly taken, which then commits the proof

Focused and Synthetic Nested Sequents 395

to continue applying rules to this focused positive formula and its immediate pos-
itive descendants (and no other formula in the sequent), which drastically reduces
the search space. The main theorem of focusing is that this strategy is complete,
i.e., every theorem has a focused proof.

We will now build such a focused version ofKN. To simplify the meta-theorems
about this system, we will adopt a polarized syntax [15] where the positive and neg-
ative formulas are grouped together in different syntactic categories and explicitly
mediated by shift connectives (↑ and ↓). As already mentioned, � is in the positive
class, and its dual � is in the negative class, unlike what would be expected if they
were interpreted in terms of the linear logic modalities ? and ! respectively. One
way of explaining this phenomenon is that the standard shallow rule k in sequent
calculus (corresponding to the promotion rule of linear logic) realises two steps at
once: accessing the formula under a � and moving the �-formulas from the con-
text next to that formula. These two steps are done by two different rules � and
k� in nested sequent systems like KN.

The rest of the formulas have ambiguous polarities and the choice does not
alter the focusing result — some reasons to pick certain polarizations can be
found in [11,19]. We arbitrarily assign all atoms to be positive (and their nega-
tions to be negative), and present the system in the strongest form, i.e., split the
conjunctions and disjunctions into positive and negative versions. Thus, polar-
ized formulas have the following grammar:

positive: P,Q, . . . ::= a | P
+∧ Q | P

+∨ Q | �P | ↓N
negative: N,M, . . . ::= ā | N

−∨ M | N
−∧ M | �N | ↑P (5)

Each column in the grammar above defines a De Morgan dual pair; note that the
negation of a positive formula is a negative formula, and vice versa. Units are
definable similarly to the non-focused case, so we have t+ = a

+∨ ↓ā, f+ = a
+∧ ↓ā,

and dually for f−/t−. When the polarity of a formula is not important, we write
it as A,B, A polarized nested sequent is the same as in the non-focused
setting, with the difference that all formulas are polarized. Likewise, a polarized
context is a polarized nested sequent where some formulas have been replaced
by holes. In the rest of this paper, we will drop the adjective “polarized” and
treat all constructs implicitly as polarized, unless otherwise indicated.

Definition 3.1 (Neutral). A formula is said to be neutral if it is a positive
formula or a negated atom. A nested sequent is neutral if it is built from multisets
of neutral formulas and boxed neutral sequents. A context Γ{ } · · · { } is neutral
if Γ{∅} · · · {∅} is neutral.

Definition 3.2. A focused sequent is of the form Γ{〈P 〉} where Γ{ } is a con-
text and P is a positive formula. The formula P is called its focus. The notion
of corresponding formula (Definition 2.2) is extended with fm(〈P 〉) ≡ fm(P).

The inference rules of the focused system KNwF (w for “weak”) are shown
in the first three rows in Fig. 3 (the basic system for K). Then, for a set
X ⊆ {d, t, b, 4, 5}, we write X�

f ⊆ {k�

f , t
�

f , b
�

f , 4
�

f , 5
�

f } for the corresponding subset

396 K. Chaudhuri et al.

Fig. 3. Focused Rules for KNF + X�
f and KNwF + X�

f . The first three rows constitute
KNwF and KNF.

of the focused diamond rules in the last two rows. Observe that the rules for
negative formulas are exactly the same as in the unfocused system, while the
rules for positive formulas can only be applied if the principal formula is in focus.
Mediating between ordinary and focused sequents are the rules dec (“decide”),
that chooses a positive formula in the conclusion and focuses on a copy of it
in the premise, and rel (“release”) that drops the focus on a shifted formula.
Since dec keeps the original positive formula in the context, there is no need
to incorporate contraction in every positive rule, like in KN. The sto (“store”)
rule removes a shift in front of a positive formula and is used to produce neutral
premises from non-neutral conclusions.

We define the system KNF to be a restriction of KNwF where the conclusion
of the dec rule is required to be neutral, as well as the contexts surrounding
the focus in all rules involving focused sequents. Thus, in KNF, the dec rule is
only applicable when no other rule is applicable (no negative rule as there is
no negative formula in a neutral sequent and no positive rule as there is no
focus), and hence we sometimes call it strongly focused. We immediately have
the following proposition:

Proposition 3.3. Let X ⊆ {d, t, b, 4, 5}. A formula A is provable in KNF + X�

f

if and only if it is provable in KNwF + X�

f .

Proof. A derivation in KNF+X�

f is by definition also a derivation in KNwF+X�

f .
Conversely, to convert a derivation in KNwF+X�

f into one in KNF+X�

f , we first
have to replace all instances of id with a sequence of applications of {�,

−∧,
+∧, sto}

followed (reading from conclusion upwards) by id, to ensure that the conclusion
of the id rule is neutral. Then, the negative rules {−∧,

−∨,�} can be permuted down
by straightforward rule permutations to ensure that dec only applies to neutral
sequents. �

Focused and Synthetic Nested Sequents 397

Fig. 4. Structural rules.

Fig. 5. Structural modal rules for axioms d, t, b, 4, 5 (where dp(Γ{ }{[Δ]}) ≥ 1 in 5[])

In order to establish the soundness and completeness of KNwF, we use the
obvious forgetful injection of the polarized syntax into the unpolarized syntax.

Definition 3.4 (Depolarization). If A is a polarized formula, then we write
�A� for the unpolarized formula obtained from A by erasing the shifts ↑ and ↓,
collapsing +∧ and −∧ into ∧, and collapsing +∨ and −∨ into ∨.

Theorem 3.5 (Soundness). Let X ⊆ {d, t, b, 4, 5}. If a formula A is provable
in KNF + X�

f , then �A� is provable in KN + X�.

Proof. By forgetting the polarity information, every KNF + X�

f proof of A is
transformed into a KN + X� proof of �A�. �

Completeness is considerably trickier. We use a technique pioneered by Lau-
rent for linear logic [16] and proceed via cut-elimination in KNwF.

3.1 Cut Elimination

In this section we will show that a collection of cuts is admissible for KNwF+X�

f .
As usual, a rule is said to be admissible if it is the case that whenever any instance
of all its premises is derivable, so is the corresponding instance of the conclusion.
In order to show the admissibility of the cut rules, it will be very useful to appeal
to a collection of other admissible and invertible rules.

Lemma 3.6. Let X ⊆ {d, t, b, 4, 5}. The rules weak, weakf , cont, and m[] (shown
in Fig. 4) are admissible for KNwF + X�

f . Moreover, the rules sto, �, −∧, and −∨
are invertible for KNwF + X�

f .

Proof. By straightforward induction on the height of the derivation. �
Note that here we use contraction only on negated atoms because that is

all that is needed in the cut-elimination proof below. One can indeed show that
the general contraction rule on arbitrary sequents (and not just formulas) is
admissible, but this requires a complicated argument for focused sequents. The
corresponding result for KN is shown in [5].

Lemma 3.7. Let X ⊆ {d, t, b, 4, 5}. If X is 45-closed, then any rule x[] in X[]

(shown in Fig. 5) is admissible for KNwF + X�

f .

398 K. Chaudhuri et al.

Fig. 6. The various cuts in KNwF+ X�
f

Proof. Analogous to the corresponding lemma for KN in [5, Lemma 9]. The full
proof can be found in [9, Lemma 3.7]. �

We are now ready to prove the admissibility of cuts. Specifically, we show all
the cuts in Fig. 6 are simultaneously admissible. The cut1 rule is our standard
cut between ordinary nested sequents, while cut2 defines a principal cut between
a focus and its dual as cut formulas. Finally, cut3 is a commutative cut for situ-
ations where the positive cut formula is not principal. Note that this collection
of cuts is just sufficiently large to make the standard cuts admissible. It is easy
to imagine many other cut-like rules, but it is not necessary—and may not even
be possible—to admit them.

Definition 3.8. The height of a formula A, written ht(A), is computed induc-
tively as follows: ht(a) = ht(ā) = 1, ht(A � B) = max(ht(A),ht(B)) + 1 where
� ∈ {+∧,

−∧,
+∨,

−∨}, and ht(©A) = ht(A) + 1 where © ∈ {�,�, ↑, ↓}. The rank of an
instance of one of the cut rules is the height of its cut formula (the P in Fig. 6).

Lemma 3.9 (Cut Reduction). Let X ⊆ {d, t, b, 4, 5} be 45-closed. For every
derivation

��
��

������D1

Γ1

��
��

������D2

Γ2
cuti −−−−−−−−−−−−−−−

Γ0

(6)

in KNwF+X�

f +{cut1, cut2, cut3}, where D1 and D2 are cut-free, there is a cut-free
derivation of Γ0 in KNwF + X�

f .

Proof. Let D1 always stand for the derivation with the positive cut formula. We
proceed by lexicographic induction: the induction hypothesis may be applied
whenever (1) the rank of the cut decreases, or (2) the rank stays the same and
a cut1 is replaced by a cut2, or (3) the rank stays the same and the height of
D1 decreases. The height of D2 does not matter for the induction. The proof is
then given in terms of a terminating rewrite sequence, written with �.

Most cases of this rewrite are standard, so we show here only certain cases
characteristic of focusing; the full list of cases can be found in [9, Lemma 3.9].

Focused and Synthetic Nested Sequents 399

– The commutative cases are simple, relying on the invertibility of the negative
rules (Lemma 3.7). Here we show the case of rel above a cut3:

D′
1

Γ{N}{P}
rel −−−−−−−−−−−−−−−−

Γ{〈↓N〉}{P}
D2

Γ{∅}{P̄}
cut3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{〈↓N〉}{∅}
�

D′
1

Γ{N}{P}

D2

Γ{∅}{P̄}
weak −−−−−−−−−−−−

Γ{N}{P̄}
cut1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{N}{∅}
rel −−−−−−−−−−−−−−−

Γ{〈↓N〉}{∅}

The resulting cut2 can be reduced because it has a smaller height.
– The cases of dec with the cut formula being principal:

D′
1

Γ{P, 〈P 〉}
dec −−−−−−−−−−−−

Γ{P}
D2

Γ{P̄}
cut1 −−−−−−−−−−−−−−−−−−−−

Γ{∅}
�

D′
1

Γ{P, 〈P 〉}
D2

Γ{P̄}
cut3 −−−−−−−−−−−−−−−−−−−−−−−

Γ{〈P 〉}
D2

Γ{P̄}
cut2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

In the resulting derivation, we first reduce the upper cut3, which is allowed
because the height is smaller. Then, we reduce the lower cut, which is allowed
because a cut2 can be used to justify a cut1 of the same rank.

– Finally, here is a characteristic case for the modal axioms, for the 4�

f rule:

D′
1

Γ{[〈�P 〉 , Δ]}
4� −−−−−−−−−−−−−−−−

Γ{〈�P 〉 , [Δ]}
D2

Γ{�P̄ , [Δ]}
cut2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{[Δ]}
�

D′
1

Γ{[〈�P 〉 , Δ]}

D2

Γ{�P̄ , [Δ]}
�−1

Γ{[P̄], [Δ]}
4[]

Γ{[[P̄], Δ]}
� −−−−−−−−−−−−−−

Γ{[�P̄ , Δ]}
cut2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{[Δ]}

The resulting cut2 can be reduced because it has a smaller height. In the right
branch, the �−1 rule is the admissible inverse of the � rule (Lemma 3.6) and
the 4[] rule is given by Lemma 3.7. �

Theorem 3.10. Let X ⊆ {d, t, b, 4, 5} be 45-closed. If a sequent Γ is provable
in KNF + X�

f + {cut1, cut2, cut3}, then it is also provable in KNF + X�

f .

Proof. Apply Lemma 3.9 to all cut instances in the derivation, starting with a
topmost one. This gives us a cut-free proof in KNwF + X�

f , from which we get a
cut-free proof in KNF + X�

f using Proposition 3.3. �

3.2 Completeness

We can now use Theorem 3.10 to show completeness of the focused systems
KNF+X�

f (and hence KNwF+X�

f) with respect to KN+X�. As an intermediate
step, we consider a variant of KN that can deal with polarized formulas. Let KN′

denote the system that is obtained from KN by adding the rules

rel
Γ{N}
Γ{↓N} sto

Γ{P}
Γ{↑P}

400 K. Chaudhuri et al.

and by duplicating the rules for ∧ and ∨ such that there is a variant for each of
+∧ and −∧, and +∨ and −∨, respectively. We immediately have the following lemma:

Lemma 3.11. A formula A is provable in KN′+X�

f if and only if �A� is provable
in KN + X�. �

We are now going to simulate KN′ + X�

f in KNwF + X�

f . For this, we need
another property of KNwF:

Lemma 3.12 (Identity Reduction). The following rule is derivable in KNwF:

gid
Γ{〈P 〉, P̄}

Proof. By straightforward induction on the height of P . Details can be found
in [9, Lemma 3.12]. �
Lemma 3.13 (Simulation). Let X ⊆ {d, t, b, 4, 5} and let A be a formula that
is provable in KN′ + X�

f . Then A is provable in KNwF + X�

f + cut1.

Proof. We show that each rule in KN′ + X�

f is derivable in KNwF + X�

f + cut1.
Then the lemma follows by replacing in the proof of A in KN′ +X�

f each instance
of a rule by the corresponding derivation in KNwF+X�

f . For the rules sto,�,
−∧,

−∨
this is trivial. We show below the cases for +∨, d�, and 4�. The others are similar,
and a full list can be found in [9, Lemma 3.13].

Γ{P,Q}
weak

Γ{P
+∨ Q, P, Q}

gid ========================

Γ{P
+∨ Q, 〈Q〉 , P, Q̄}

+∨ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{P

+∨ Q, 〈P +∨ Q〉 , P, Q̄}
dec −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{P
+∨ Q, P, Q̄}

cut1 −−
Γ{P

+∨ Q, P}

gid =====================

Γ{P
+∨ Q, 〈P 〉 , P̄}

+∨ −−−−−−−−−−−−−−−−−−−−−−−−−
Γ{P

+∨ Q, 〈P +∨ Q〉 , P̄}
dec −−−−−−−−−−−−−−−−−−−−−−−−−

Γ{P
+∨ Q, P̄}

cut1 −−−
Γ{P

+∨ Q}

Γ{�P, [P]}
sto −−−−−−−−−−−−−−−

Γ{�P, [↑P]}
� −−−−−−−−−−−−−−−

Γ{�P, �↑P}

gid ===========================

Γ{�P, [〈P 〉 , P̄],�↓P̄}
k�

f
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{�P, 〈�P 〉 , [P̄],�↓P̄}

dec −−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{�P, [P̄],�↓P̄}

rel −−−−−−−−−−−−−−−−−−−−−−−−
Γ{�P, [〈↓P̄ 〉],�↓P̄}

d�

f
−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{�P, 〈�↓P̄ 〉 ,�↓P̄}

dec −−−−−−−−−−−−−−−−−−−−−−−−−
Γ{�P,�↓P̄}

cut1 −−−
Γ{�P}

Γ{�P, [�P,Δ]}

gid ============================

Γ{�P, [〈�P 〉 ,�P̄ , Δ]}
4�

f
−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{�P, 〈�P 〉 , [�P̄ , Δ]}

dec −−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{�P, [�P̄ , Δ]}

cut1 −−−
Γ{�P, [Δ]}

Note that we make a crucial use of cut1 and Lemma 3.12. �
Theorem 3.14 (Completeness). Let X ⊆ {d, t, b, 4, 5} be 45-closed. For any
A, if �A� is provable in KN + X�, then A is provable in KNF + X�

f .

Proof. Suppose that we have a proof of �A� in KN+ X�. By Lemma 3.11, there
is a proof of A in KN′ + X�

f . Then, by Lemma 3.13, there is also a proof of A in
KNwF + X�

f + cut1. Finally, using Theorem 3.10, we get a proof in KNF + X�

f . �

Focused and Synthetic Nested Sequents 401

4 The Synthetic System

As already mentioned, the strongly focused system KNF is given as a restriction
of KNwF where the dec rule is restricted to neutral contexts. However, the cut-
elimination and admissibility theorems (3.9 and 3.10) were proved in the KNwF
system and made essential use of the admissibility of weakening by arbitrary
formulas, including negative formulas, and of the possibility of applying negative
rules even within a positive phase. This freedom simplifies the proofs of the meta-
theorems, and leaves them at least a recognizable variant of similar proofs in the
non-focused system KN. Of course, thanks to Proposition 3.3, we also have a cut-
elimination proof for KNF+X�

f , but this is not entirely satisfactory: it is not an
internal proof, i.e., a sequence of cut reductions for KNF+X�

f +{cut1, cut2, cut3}
that stays inside the system.

One possible response to this issue might be to try to redo the cut-elimination
using just KNF + X�

f , but this quickly gets rather complicated because we no
longer have access to the weakening rules (Fig. 4) in the case where the weak-
ened structure contains negative formulas. Indeed, published proofs of similar
attempts for the sequent calculus usually solve this problem by adding additional
cut rules, which greatly complicates the cut-elimination argument [11,19,28].

Fig. 7. Synthetic substructure matching

To avoid this complexity, it is better to consider the focused proof system
in a synthetic form where the logical inference rules for the various connec-
tives are composed as much as possible, so that the proof system itself contains
exactly two logical rules: one for a positive and one for a negative synthetic con-
nective [6,31]. This synthetic view moreover improves the concept of focusing
itself by showing that a focused proof consists of: (1) a selection of a certain
substructure (the generalization of subformula) of the principal formula, and
(2) the contextualization of that substructure. For positive principal formulas,
this contextualization is in the form of a check in the surrounding context for
other structures, such as dual atoms or nested sequents. For negative principal
formulas, on the other hand, contextualization amounts to asserting the pres-
ence of additional structure in the surrounding context. This design will become
clear in the explicit formulation of the synthetic version of KNF—which we call
KNS—in the rest of this section.

402 K. Chaudhuri et al.

4.1 Synthetic Substructures

For any negative formula, there is a collection of corresponding nested sequents
that represents one of the possible branches taken in a sequence of negative rules
applied to the formula. This correspondence is formally given below.

Definition 4.1 (Matching). The nested sequence Γ matches the negative
formula N , written Γ � N , if it is derivable from the rules in Fig. 7.

For the system to follow, we will use two additional sequent-like structures
that are not themselves neutral sequents.

Definition 4.2 (Extended Sequents)

– An inversion sequent is a structure of the form Γ{N} where Γ{ } is a neutral
sequent context.

– A focused sequent is a structure of the form Γ{〈Δ〉} where Γ{ } is a neutral
sequent context and Δ is a neutral sequent.

Note that in Γ{N}, there is exactly one occurrence of N as a top-level formula
anywhere; likewise, in Γ{〈Δ〉}, there is a single occurrence of the sub-structure
〈Δ〉. Hence, these extended sequent forms uniquely determine their decomposi-
tion into context (the Γ{ }) and the extended entity (the N or the 〈Δ〉).
Definition 4.3 (Corresponding Formula). A corresponding formula of a
neutral or extended sequent Γ , denoted as fm̄(Γ), is a negative formula satisfy-
ing:

fm̄(Γ,Δ) ≡ fm̄(Γ) −∨ fm̄(Δ) fm̄(P) ≡ ↑P fm̄(N) ≡ N

fm̄([Γ]) ≡ �fm̄(Γ) fm̄(〈Δ〉) ≡ ↑
(
fm̄(Δ)

)

where N ≡ M stands for (↑N̄ −∨ M) −∧ (↑M̄
−∨ N).

The system KNS consists of the rules in the first two lines of Fig. 8. For a
set X ⊆ {d, t, b, 4, 5}, we write X〈〉 ⊆ {d〈〉, t〈〉, b〈〉, 4〈〉, 5〈〉} for the corresponding
structural rules in Fig. 8, and KNS+X〈〉 for the corresponding system. It becomes
clearer that the duality between positive and negative synthetic rules amounts
to a meta-quantification over substructures: the positive rule pos〈〉 quantifies
existentially over the substructures of P̄ and pick one such Δ as a focus in the
unique premise, while the negative rule quantifies universally, and so the rule
actually consists of one premise for each way in which to prove Δ � N . Thus,
for example, if N is ā

−∧ �(b̄ −∨ ↑P), then we know that ā � N and [b̄, P] � N , so
the rule instance in this case is:

neg〈〉 Γ{ā} Γ{[b̄, P]}
Γ{ā

−∧ �(b̄ −∨ ↑P)}
It is instructive to compare KNS + X〈〉 with KNwF + X�

f (and hence also
KNF+X�

f). In the latter system, the focus 〈�P 〉 is used to drive the modal rules

Focused and Synthetic Nested Sequents 403

Fig. 8. Synthetic rules for KNS+ X〈〉. The first two rows constitute KNS.

{d�

f , k
�

f , t
�

f , b
�

f , 4
�

f , 5
�

f }. Such modal rules can be applied only a fixed number of
times before 〈�P 〉 needs to be reduced to 〈P 〉, and logical rules or the identity to
be used — which is necessary to finish the proof since foci can never be weakened.
Thus, the analysis of P is forced to be interleaved with the modal rules for �P ,
as shown by the alternation of d�

f and +∨ in the derivation on the left below. In
KNS+X〈〉, in contrast, the pos〈〉 rule itself performs the analysis of P up front to
produce a synthetic substructure; the modal rules {k〈〉, d〈〉, t〈〉, b〈〉, 4〈〉, 5〈〉} then
work entirely at the level of focused substructures, as in the derivation on the
right below.

id =======================

�(p +∨ �p), [[〈p〉 , p̄]]
k�

f
−−−−−−−−−−−−−−−−−−−−−−−−
�(p +∨ �p), [〈�p〉 , [p̄]]

+∨ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
�(p +∨ �p), [〈p +∨ �p〉 , [p̄]]

k�

f
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
�(p +∨ �p), 〈�(p +∨ �p)〉 , [[p̄]]

dec −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
�(p +∨ �p), [[p̄]]

[[p̄]] � �(p +∨ �p)

id〈〉 =======================

�(p +∨ �p), [[〈p̄〉 , p̄]]
k〈〉 −−−−−−−−−−−−−−−−−−−−−−−−

�(p +∨ �p), [〈[p̄]〉 , [p̄]]
k〈〉 −−−−−−−−−−−−−−−−−−−−−−−−−

�(p +∨ �p), 〈[[p̄]]〉 , [[p̄]]
pos〈〉 −−

�(p +∨ �p), [[p̄]]

Thus, the modal rules of KNS + X〈〉 are properly seen as structural rules
rather than logical rules.

4.2 Cut Elimination

Cut elimination for KNS+X〈〉 is achieved in a similar way to that for KNwF+X�

f .

Lemma 4.4 (Admissible Rules). The rules weak, weakf , cont, m[] (shown in
Fig. 4), restricted to neutral and extended sequents (as appropriate) are admis-
sible in KNS + X〈〉. Moreover, if X ⊆ {d, t, b, 4, 5} is 45-closed, then any rule
x[] ∈ X[] (see Fig. 5) is admissible in KNS + X〈〉.

Proof. By induction on the height of the derivation, analogous to the proofs of
Lemmas 3.6 and 3.7. �

Note that we do not allow, e.g., weakening Γ{〈Δ〉}{∅} to Γ{〈Δ〉}{N}; the
latter is, in fact, not even a well-formed KNS focused sequent. Like with KNwF,

404 K. Chaudhuri et al.

Fig. 9. Synthetic variants of the cut rule (cf. Fig. 6)

we have three cut rules for KNS, which are shown in Fig. 9. We can now give the
synthetic variant of the cut-elimination theorem.

Theorem 4.5. Let X ⊆ {d, t, b, 4, 5} be 45-closed. Each rule of
{cut〈〉1 , cut

〈〉
2 , cut

〈〉
3 } is admissible in KNS + X〈〉.

Proof. The idea of the proof is similar to that of Theorem 3.10, using a reduc-
tion similar to that of Lemma 3.9. However, in the synthetic case there is
a complication because the inverse of the negative rule neg〈〉 is not admis-
sible in KNS + X〈〉. The cut reduction argument therefore has to work at
the level of synthetic derivations. We show two illustrative examples here.
The first is the case where the cut formula is principal in both derivations:

Δ � P̄

D

Γ{P, 〈Δ〉}
pos〈〉 −−−−−−−−−−−−−−−−−−−−−−−

Γ{P}

⎧
⎪⎨

⎪⎩
DΔ

Γ{Δ}

⎫
⎪⎬

⎪⎭
Δ�P̄

neg〈〉 −−−−−−−−−−−−−−−−−−−
Γ{P̄}

cut〈〉
1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{∅} �

D

Γ{P, 〈Δ〉}
D2

Γ{P̄}
cut〈〉

3
−−−−−−−−−−−−−−−−−−−−−−−

Γ{〈Δ〉}
DΔ

Γ{Δ}
cut〈〉

2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

The instance of cut
〈〉
3 can be reduced because the height is smaller, while

that of cut
〈〉
2 can be reduced because a cut

〈〉
2 can justify a cut

〈〉
1 of the

same rank. The other illustrative case is for permuting a cut
〈〉
3 past a rel〈〉.

⎧
⎪⎨

⎪⎩
DΔ

Γ{Δ}{P}

⎫
⎪⎬

⎪⎭
Δ�Q̄

neg〈〉 −−−−−−−−−−−−−−−−−−−−−−
Γ{Q̄}{P}

rel〈〉 −−−−−−−−−−−−−−
Γ{〈Q〉}{P}

D2

Γ{∅}{P̄}
cut〈〉

3
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− �

Γ{〈Q〉}{∅}

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

DΔ

Γ{Δ}{P}

D2

Γ{∅}{P̄}
weak

Γ{Δ}{P̄}
cut〈〉

1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{Δ}{∅}

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
Δ�Q̄

neg〈〉 −−−
Γ{Q̄}{∅}

rel〈〉 −−−−−−−−−−−−−
Γ{〈Q〉}{∅}

The instance of weak is justified by Lemma 4.4. The remainder of the cases
of the proof have to be adjusted similarly. The full proof can be found in
[9, Theorem 4.5]. �

It is worth remarking that this cut-elimination proof did not have to mention
any logical connectives, and was instead able to factorize all logical reasoning in
terms of the matching. This means that the matching judgement can be modified
at will without affecting the nature of the cut argument, as long as it leaves the
structure of nested sequents untouched. This makes our result modular in yet

Focused and Synthetic Nested Sequents 405

another way, in addition to the modularity obtained by means of the structural
rules for foci. Indeed, we can obtain a similarly synthetic version of identity
reduction (Lemma 3.12).

Lemma 4.6 (Identity Reduction). The following rule is derivable in KNS.

sid〈〉
Γ{〈Δ〉,Δ}

Proof. By induction on the structure of the focus, 〈Δ〉. The full proof can be
found in [9, Lemma 4.6]. �

Showing KNS + X〈〉 sound and complete with respect to KN + X� is fairly
straightforward and the details are omitted here. Soundness follows directly from
replacing the KNS sequent Γ{〈Δ〉} with the KNF sequent Γ{

〈
fm̄(Δ)

〉
} and then

interpreting the KNS+X〈〉 proof in KNF+X�

f , using matching derivation (Fig. 7)
to determine how to choose between the two +∨ rules. For completeness, we can
follow the strategy of Lemma 3.13 nearly unchanged. However, like with the cut-
elimination proof, we have to avoid appeals to weakening with negative formulas
by using the synthetic form of neg〈〉.

5 Perspectives

We have presented strongly focused and synthetic systems for all modal logics in
the classical S5-cube. We used the formalism of nested sequents as carrier, but we
are confident that something similar can be achieved for hypersequents, for exam-
ple based on the work of Lellmann [17]. We chose nested sequents over hyperse-
quents for two reasons. First, the formula interpretation of a nested sequent is
the same for all logics in the S5-cube, which simplifies the presentation of the
meta-theory. Second, due to the close correspondence between nested sequents
and prefixed tableaux [12] we can from our work directly extract focused tableau
systems for modal logics. Furthermore, even though we spoke in this paper only
about classical modal logic, we are confident that the same results can also be
obtained for the intuitionistic variant of the modal S5-cube [29], if we start from
the non-focused systems in [30].

One extension that would be worth considering would be relaxing the restric-
tion that there can be at most one focus in a KNF or KNS proof. Allowing
multiple foci would take us from ordinary focusing to multi-focusing, which is
well known to reveal more parallelism in sequent proofs [10]. It has been shown
that a certain well chosen multi-focusing system can yield syntactically canoni-
cal representatives of equivalence classes of sequent proofs for classical predicate
logic [8]. Extending this approach to the modal case seems promising.

406 K. Chaudhuri et al.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Logic
Comput. 2(3), 297–347 (1992)

2. Avron, A.: The method of hypersequents in the proof theory of propositional non-
classical logics. In: Logic: From Foundations to Applications: European Logic Col-
loquium, pp. 1–32. Clarendon Press (1996)

3. Belnap Jr., N.D.: Display logic. J. Philos. Logic 11, 375–417 (1982)
4. Brock-Nannestad, T., Schürmann, C.: Focused natural deduction. In: Fermüller,

C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 157–171. Springer,
Heidelberg (2010)

5. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Logic 48(6),
551–577 (2009)

6. Chaudhuri, K.: Focusing strategies in the sequent calculus of synthetic connectives.
In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol.
5330, pp. 467–481. Springer, Heidelberg (2008)

7. Chaudhuri, K., Guenot, N., Straßburger, L.: The focused calculus of structures.
In: Computer Science Logic: 20th Annual Conference of the EACSL. Leibniz
International Proceedings in Informatics (LIPIcs), pp. 159–173. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, Sept 2011

8. Chaudhuri, K., Hetzl, S., Miller, D.: A multi-focused proof system isomorphic to
expansion proofs. J. Logic Comput., June 2014. doi:10.1093/logcom/exu030

9. Chaudhuri, K., Marin, S., Straßburger, L.: Focused and Synthetic Nested Sequents.
Technical report, Inria (2016). https://hal.inria.fr/hal-01251722

10. Chaudhuri, K., Miller, D., Saurin, A.: Canonical sequent proofs via multi-focusing.
In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) IFIP-TCS 2008. IFIP,
vol. 273, pp. 383–396. Springer, Heidelberg (2008)

11. Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and
backward chaining in the inverse method. J. Autom. Reasoning 40(2–3), 133–177
(2008)

12. Fitting, M.: Prefixed tableaus and nested sequents. Ann. Pure Appl. Logic 163,
291–313 (2012)

13. Garson, J.: Modal logic. Stanford University, In The Stanford Encyclopedia of
Philosophy (2008)

14. Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Logica. 53(1),
119–136 (1994)

15. Laurent, O.: Étude de la Polarisation en Logique. Ph.D. thesis, Univiversit Aix-
Marseille II (2002)

16. Laurent, O.: A proof of the focalization property in linear logic (2004) (Unpublished
note)

17. Lellmann, B.: Axioms vs hypersequent rules with context restrictions: theory and
applications. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS,
vol. 8562, pp. 307–321. Springer, Heidelberg (2014)

18. Lellmann, B., Pimentel, E.: Proof search in nested sequent calculi. In: Davis, M.,
Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR-20 2015. LNCS, vol. 9450, pp.
558–574. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7 39

19. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and clas-
sical logics. Theoret. Comput. Sci. 410(46), 4747–4768 (2009)

20. Marin, S., Straßburger, L.: Label-free modular systems for classical and intuition-
istic modal logics. In: Advances in Modal Logic (AIML-10) (2014)

http://dx.doi.org/10.1093/logcom/exu030
https://hal.inria.fr/hal-01251722
http://dx.doi.org/10.1007/978-3-662-48899-7_39

Focused and Synthetic Nested Sequents 407

21. McLaughlin, S., Pfenning, F.: Imogen: focusing the polarized inverse method for
intuitionistic propositional logic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
LPAR 2008. LNCS (LNAI), vol. 5330, pp. 174–181. Springer, Heidelberg (2008)

22. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation
for logic programming. Ann. Pure Appl. Logic 51, 125–157 (1991)

23. Miller, D., Volpe, M.: Focused labeled proof systems for modal logic. In: Davis,
M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR-20 2015. LNCS, vol. 9450,
pp. 266–280. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7 19

24. Negri, S.: Proof analysis in modal logic. J. Philos. Logic 34(5–6), 507–544 (2005)
25. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Math. Struct.

Comput. Sci. 11, 511–540 (2001). Notes to an invited talk at the Workshop on
Intuitionistic Modal Logics and Applications (IMLA 1999)

26. Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In:
Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards Mathematical Philoso-
phy. Trends in Logic, vol. 28, pp. 31–51. Springer, New York (2009)

27. Reed, J., Pfenning, F.: Focus-preserving embeddings of substructural logics in intu-
itionistic logic. Draft manuscript, January 2010

28. Simmons, R.J.: Structural focalization. ACMTrans. Comput. Log. 15(3), 21:1–21:33
(2014)

29. Simpson, A.: The proof theory and semantics of intuitionistic modal logic. Ph.D
thesis, University of Edinburgh (1994)

30. Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal logics.
In: Pfenning, F. (ed.) FOSSACS 2013 (ETAPS 2013). LNCS, vol. 7794, pp. 209–224.
Springer, Heidelberg (2013)

31. Zeilberger, N.: Focusing and higher-order abstract syntax. In: Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL, San Francisco, California, USA, January 7–12, pp. 359–369. ACM
(2008)

http://dx.doi.org/10.1007/978-3-662-48899-7_19

Strong Normalizability as a Finiteness Structure
via the Taylor Expansion of λ-terms

Michele Pagani1(B), Christine Tasson1(B), and Lionel Vaux2(B)

1 Université Paris Diderot, CNRS, IRIF UMR 8243, 75205 Paris, France
{michele.pagani,christine.tasson}@pps.univ-paris-diderot.fr

2 Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373,
13453 Marseille, France

lionel.vaux@univ-amu.fr

Abstract. In the folklore of linear logic, a common intuition is that
the structure of finiteness spaces, introduced by Ehrhard, semantically
reflects the strong normalization property of cut-elimination.

We make this intuition formal in the context of the non-deterministic
λ-calculus by introducing a finiteness structure on resource terms, which
is such that a λ-term is strongly normalizing iff the support of its Taylor
expansion is finitary.

An application of our result is the existence of a normal form for the
Taylor expansion of any strongly normalizable non-deterministic λ-term.

1 Introduction

It is well-known that sets and relations can be presented as a category of mod-
ules and linear functions over the boolean semi-ring, giving one of the simplest
semantics of linear logic. In [10] (see also [9]), it is shown how to generalize
this construction to any complete1 semi-ring R and yet obtain a model of linear
logic. In particular, the composition of two matrices φ ∈ RA×B and ψ ∈ RB×C

is given by the usual matrix multiplication:

(φ;ψ)a,c :=
∑

b∈B

φa,b · ψb,c (1)

The semi-ring R must be complete because the above sum might be infinite.
This is an issue, because it prevents us from considering standard vector spaces,
which are usually constructed over “non-complete” fields like reals or complexes.

In order to overcome this problem, Ehrhard introduced the notion of finite-
ness space [3]. A finiteness space is a pair of a set A and a set A (called finiteness
structure in Definition 7) of subsets of A which is closed under a notion of dual-
ity. The point is that, for any field K (resp. any semi-ring), the set of vectors in
KA whose support2 is in A constitutes a vector space (resp. a module) over K.

Supported by French ANR Project Coquas (number ANR 12 JS02 006 01).
1 A semi-ring is complete if any sum, even infinite, is well-defined.
2 The support of v ∈ KA is the set of those a ∈ A such that the scalar va is non-null.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 408–423, 2016.
DOI: 10.1007/978-3-662-49630-5 24

Strong Normalizability as a Finiteness Structure 409

Moreover, any two matrices φ ∈ KA×B and ψ ∈ KB×C whose supports are in
resp. A � B and B � C (the finiteness structures associated with the linear
arrow) compose, because the duality condition on the supports makes the terms
in the sum of Eq. (1) be zero almost everywhere. This gives rise to a category
which is a model of linear logic and its differential extension.

The notion of finiteness space seems strictly related to the property of nor-
malization. Already in [3], it is remarked that the coKleisli category of the expo-
nential comonad is a model of simply typed λ-calculus, but it is not cpo-enriched
and thus cannot interpret (at least in a standard way) fixed-point combinators,
so neither PCF nor untyped λ-calculus. Moreover, in the setting of differential
nets, Pagani showed that the property of having a finitary interpretation cor-
responds to an acyclicity criterion (called visible acyclicity [12]) which entails
the normalization property of the cut-elimination procedure [11], while there are
examples of visibly cyclic differential nets which do not normalize.

The goal of this paper is to shed further light on the link between finiteness
spaces and normalization, this time considering the non-deterministic untyped
λ-calculus. Since we deal with λ-terms and not with linear logic proofs (or dif-
ferential nets), we will speak about formal power series rather than matrices at
the semantical level. This corresponds to move from the morphisms of a lin-
ear category to those of its coKleisli construction. Moreover, following [7], we
describe the monomials of these power series as resource terms in normal form.
The benefit of this setting is that the interpretation of a λ-term M as a power
series [|M |] can be decomposed in two distinct steps: first, the term M is associ-
ated with a formal series M∗ of resource terms possibly with redexes, called the
Taylor expansion of M (see Table 1a); second, one reduces each resource term t
appearing in the support T (M) of M∗ into a normal form NF(t) and sum up
all the results, that is (M∗

t denotes the coefficient of t in M∗):

[|M |] =
∑

t∈T (M)

M∗
t · NF(t) (2)

The issue about the convergence of infinite sums appears in Eq. (2) because
there might be an infinite number of resource terms in T (M) reducing to the
same normal form and thus possibly giving infinite coefficients to the formal
series [|M |]. Ehrhard and Regnier proved in [7] that this is not the case for
deterministic λ-terms, however the situation gets worse in presence of non-
deterministic primitives. If we allow sums M+N representing potential reduction
to M or N , then one can construct terms evaluating to a variable y an infinite
number of times, like (where Θ denotes Turing’s fixed-point combinator):

(Θ) λx.(x + y) →∗
β (Θ) λx.(x + y) + y →∗

β (Θ) λx.(x + y) + y + y →∗
β . . . (3)

We postpone to Examples 1 and 4 a more detailed discussion of (Θ) λx.(x + y),
however we can already guess that this interplay between infinite reductions and
non-determinism may produce infinite coefficients.

One can then wonder whether there are interesting classes of terms where
the coefficients of the associated power series can be kept finite. Ehrhard proved

410 M. Pagani et al.

Fig. 1. Main results of the paper

in [4] that the terms typable by a non-deterministic variant of Girard’s System
F have always finite coefficients. A by-product of our results is Corollary 39,
which is a generalization of Ehrhard’s result: every strongly normalizable non-
deterministic λ-term can be interpreted by a power series with finite coefficients.

The main focus of our paper is however in the means used for obtaining this
result rather than on the result itself. The proof in [4] is based on a finiteness
structure S over the set of resource terms Δ, such that any term M typable in
System F has the support T (M) of its Taylor expansion in S. We show that this
method can be both generalized and strengthened in order to characterize strong
normalization via finiteness structures. Namely, we give sufficient conditions on
a finiteness structure S over Δ such that for every non-deterministic λ-term
M : (i) if M is strongly normalizable, then T (M) ∈ S (Corollary 30); (ii) if
T (M) ∈ S, then M is strongly normalizable (Theorem 36).

Contents. Section 2 gives the preliminary definitions: the non-deterministic
λ-calculus, its Taylor expansion into formal series of resource terms and the
notion of finiteness structure. The proof of Item (i) splits into Sects. 3 and 4,
using an intersection type system (Table 2) for characterizing strong normaliza-
tion. Section 5 gives the proof of Item (ii) and Sect. 6 concludes with Corollary 39
about the finiteness of the coefficients of the power series of strongly normalizable
terms. Figure 1 sums up the main results of the paper.

2 Preliminaries

2.1 Non-deterministic λ-calculus Λ+

The non-deterministic λ-calculus is defined by the following grammar3:

λ-terms Λ+ : M := x | λx.M | (M)M | M + M

subject to α-equivalence and to the following identities:

M + N = N + M, (M + N) + P = M + (N + P),

λx.(M + N) = λx.M + λx.N, (M + N) P = (M)P + (N) P.

3 We use Krivine’s notation with the standard conventions, see [8] for reference.

Strong Normalizability as a Finiteness Structure 411

The last two equalities state that abstraction is a linear operation (i.e. com-
mutes with sums) while application is linear only in the function but not in the
argument (i.e. (P) (M + N) �= (P) M + (P) N). Notice also that the sum is
not idempotent: M + M �= M . This is a crucial feature for making a difference
between terms reducing to a value once, twice, more times or an infinite number
of times (see the discussion about Eq. (3) in the Introduction).

Although this follows an old intuition from linear logic, the first extension of
the λ-calculus with (a priori non idempotent) sums subject to these identities
was, as far as we know, the differential λ-calculus of Ehrhard and Regnier [5].
This feature is now quite standard in the literature following this revival of
quantitative semantics.

The (capture avoiding) substitution of a term for a variable is defined as
usual and β-reduction →β is defined as the context closure of:

(λx.M) N →β M [N/x] .

We denote as →∗
β the reflexive-transitive closure of →β .

Example 1. Some λ-terms which will be used in the following are:

Δ := λx. (x)x, Ω := (Δ)Δ, Δ3 := λx. (x)xx, Ω3 := (Δ3)Δ3,

Θ := (λxy. (y) (x) xy)λxy. (y) (x)xy.

The term Ω is the prototypical diverging term, reducing to itself in one single
β-step. Ω3 is another example of diverging term, producing terms of greater
and greater size: Ω3 →β (Ω3)Δ3 →β (Ω3)Δ3Δ3 →β . . . It will be used in
Remark 37 to prove the subtlety of characterizing strong normalization with
finiteness spaces. The Turing fixed-point combinator Θ has been used in the
Introduction to construct (Θ) λx.(x + y) as an example of non-deterministic
λ-term morally reducing to normal forms with infinite coefficients (Eq. (3)).
Notice that, by abstraction linearity, (Θ) λx.(x+y) = (Θ) (λx.x+λx.y), however
(Θ) (λx.x+λx.y) �= (Θ) λx.x+(Θ) λx.y, because application is not linear in the
argument. This distinction is crucial: the latter term reduces to ((Θ) λx.x) + y,
with (Θ) λx.x reducing to itself without producing any further occurence of y.

2.2 Resource Calculus Δ and Taylor Expansion

The syntax. Resource terms and bags are given by mutual induction:

resource terms Δ : s := x | λx.s | 〈s〉 s bags Δ! : s := 1 | s · s

subject to both α-equivalence and permutativity of (·): we most often write
[s1, . . . , sn] for s1 · (· · · · (sn · 1) · · ·) and then [s1, . . . , sn] = [sσ(1), . . . , sσ(n)] for
any permutation σ. In other words, bags are finite multisets of terms.

Linear Extension. Let R be a rig (a.k.a. semi-ring). Of particular interest are
the rigs B := ({0, 1} ,max,min) of booleans, N := (N,+,×) of non-negative

412 M. Pagani et al.

Table 1. Definition of the Taylor expansion ()∗ and of its support T ()

integers and Q := (Q,+,×) of rational numbers. We denote as R[[Δ]] (resp.
R[[Δ!]]) the set of all formal (finite or infinite) linear combinations of resource
terms (resp. bags) with coefficients in R. If a ∈ R[[Δ]] (resp. a ∈ R[[Δ!]]) and
s ∈ Δ (resp. s ∈ Δ!), then as ∈ R (resp. as ∈ R) denotes the coefficient of s
in a (resp. s in a). As is well-known, R[[Δ]] is endowed with a structure of R-
module, where addition and scalar multiplication are defined component-wise,
i.e. for a, b ∈ R[[Δ]] and α ∈ R: (a + b)s := as + bs, and (αa)s := αas. We will
write |a| ⊆ Δ for the support of a: |a| = {s ∈ Δ; as �= 0}.

Moreover, each resource calculus constructor extends to R[[Δ]] component-
wise, i.e. for any a, a1, . . . , an ∈ R[[Δ]] and a ∈ R[[Δ!]], we set:

λx.a :=
∑

s∈Δ asλx.s, 〈a〉 a :=
∑

s∈Δ, s∈Δ! asas 〈s〉 s,

[a1, . . . , an] :=
∑

s1,...,sn∈Δ (a1)s1
· · · (an)sn

[s1, . . . , sn] .

Notice that the last formula is coherent with the notation of the concatenation
of bags as a product since it expresses a distributivity law. In particular, we
denote an := [a, . . . , a]

︸ ︷︷ ︸
n

and if Q ⊆ R, a! :=
∑

n∈N

1
n!a

n.

In the case R = B, notice that B[[Δ]] is the power-set lattice P (Δ), so that
we can use the set-theoretical notation: e.g. writing s ∈ a instead of as �= 0, or
a ∪ b for a + b. Also, in that case the preceding formulas lead to: for a, b ⊆ Δ,
t ∈ Δ, a ⊆ Δ!: λx.a := {λx.s; s ∈ a}, a! := {[s1, · · · , sn] ; s1, · · · , sn ∈ a},
〈t〉 a := {〈t〉 s; s ∈ a} and 〈a〉 a :=

⋃ {〈s〉 a; s ∈ a}.

Taylor expansion. Ehrhard and Regnier have used in [7] the rig of rational
numbers to express the λ-terms as formal combinations in Q[[Δ]]. We refer to
this translation ()∗ : Λ+ 	→ Q[[Δ]] as the Taylor expansion and we recall it in
Table 1a by structural induction. The supports of these expansions can be seen
as a map T () : Λ+ 	→ B[[Δ]] and directly defined by induction as in Table 1b.

Example 2. From the above definitions we have:

Δ∗ =
∑

n

1
n!

λx. 〈x〉 xn, Δ3
∗ =

∑

n,m

1
n!m!

λx. 〈〈x〉 xn〉 xm.

Strong Normalizability as a Finiteness Structure 413

Let us denote as δn (resp. δn,m) the term λx. 〈x〉 xn (resp. λx. 〈〈x〉 xn〉 xm). We
can then write:

Ω∗ =
∑

k

1
k!

∑

n0,...,nk

1
n0! · · · nk!

〈δn0〉 [δn1 , . . . , δnk
] , (4)

Ω3
∗ =

∑

k

1
k!

∑

n0,...,nk
m0,...,mk

1
n0!m0! · · · nk!mk!

〈δn0,m0〉 [δn1,m1 , . . . , δnk,mk
] . (5)

It is clear that the resource terms appearing with non-zero coefficients in M∗

describe the structure of M taking an explicit number of times the argument of
each application, and this recursively. The rôle of the rational coefficients will
be clearer once defined the reduction rules over Δ (see Example 5).

Operational Semantics. Let us write degx(t) for the number of free occurrences
of a variable x in a resource term t. We define the differential substitution of a
variable x with a bag [s1, . . . , sn] in a resource term t, denoted ∂xt · [s1, . . . , sn]:
it is a finite formal sum of resource terms, which is zero whenever degx(t) �= n;
otherwise it is the sum of all possible terms obtained by linearly replacing each
free occurrence of x with exactly one si, for i = 1, . . . , n. Formally,

∂xt · [s1, . . . , sn] :=

⎧
⎨

⎩

∑

f∈Sn

t
[
sf(1)/x1, . . . , sf(n)/xn

]
if degx(t) = n,

0 otherwise,
(6)

where Sn is the group of permutations over n = {1, . . . , n} and x1, . . . , xn is
any enumeration of the free occurrences of x in t, so that t

[
sf(i)/xi

]
denotes

the term obtained from t by replacing the i-th free occurrence of x with sf(i).
Then, we give a linear extension of the differential substitution: if a ∈ R[[Δ]] and
a ∈ R[[Δ!]], we set: ∂xa · a =

∑
t∈Δ,s∈Δ! at as∂xt · s.

The resource reduction →r is then the smallest relation satisfying:

〈λx.t〉 [s1, . . . , sn] →r ∂xt · [s1, . . . , sn]

and moreover linear and compatible with the resource calculus constructors.
Spelling out these two last conditions: for any t, u ∈ Δ, s ∈ Δ!, a, b ∈ R[[Δ]],
α ∈ R \ {0}, whenever t →r a, we have: (compatibility) λx.t →r λx.a, 〈t〉 s →r

〈a〉 s, 〈u〉 t · s →r 〈u〉 a · s, and (linearity) αt + b →r αa + b.

Proposition 3 ([7]). Resource reduction →r is confluent over the whole R[[Δ]]
and it is normalizing on the sums in R[[Δ]] having a finite support.

Proposition 3 shows that any single resource term t ∈ Δ has a unique normal
form that we can denote as NF(t). What about possibly infinite linear combina-
tions in R[[Δ]]? We would like to extend the normal form operator component-
wise, as follows:

NF(a) :=
∑

t∈Δ

at · NF(t) (7)

414 M. Pagani et al.

Example 4. The sum in Eq. (7) can be undefined for general a ∈ R[[Δ]]. Take
a = λx.x + 〈λx.x〉 [λx.x] + 〈λx.x〉 [〈λx.x〉 [λx.x]] + . . . : any single term of this
sum reduces to λx.x, hence NF(a)λx.x is infinite.

Another example is given by the Taylor expansion of the term in Eq. (3):
one can check that the sum defining NF

(
((Θ) λx.(x + y))∗)

y
following Eq. (7)

is infinite because, for all n ∈ N, there is a resource term of the form
〈tn〉 [(λx.x)n, λx.y] ∈ T ((Θ) λx.(x + y)), reducing to y. A closer inspection of
the resulting coefficients (that we do not develop here) moreover shows that this
infinite sum has unbounded partial sums in Q, hence it diverges in general.

In fact, Corollary 39 ensures that if a is the Taylor expansion of a strongly
normalizing non-deterministic λ-term then Eq. (7) is well-defined.

Example 5. Recall the expansions of Example 2 and consider ((Δ) λx.x)∗ =∑
n,k

1
n!k! 〈λx. 〈x〉 [xn]〉 [

(λx.x)k
]
. The resource reduction applied to a term

of this sum gives zero except for k = n + 1; in this latter case we get
(n+1)! 〈λx.x〉 [(λx.x)n]. Hence we have: ((Δ) λx.x)∗ →r

∑
n

1
n! 〈λx.x〉 [(λx.x)n],

because the coefficient (n + 1)! generated by the reduction step is erased by the
fraction 1

k! in the definition of Taylor expansion. Then, the term 〈λx.x〉 [(λx.x)n]
reduces to zero but for n = 1, in the latter case giving λx.x. So we have:
NF(((Δ) λx.x)∗) = λx.x = (NF((Δ) λx.x))∗.

The commutation between computing normal forms and Taylor expansions
has been proven in general for deterministic λ-terms [6]4 and witnesses the solid-
ity of the definitions. The general case for Λ+ is still an open issue.

Example 6. Recall the notation of Eq. (4) from Example 2 expressing the sum
Ω∗. All terms with n0 �= k + 1 reduce to zero in one step. For n0 = k + 1, we
have that a single term rewrites to

∑
f∈Sk

〈
δnf(1)

〉 [
δnf(2) , . . . , δnf(k)

]
, which is

a sum of terms still in T (Ω), but with smaller size w.r.t. the redex. Therefore,
every term of Ω∗ eventually reduces to zero, after a reduction sequence whose
length depends on the initial size of the term, and whose elements are sums with
supports in T (Ω). This is in some sense the way Taylor expansion models the
unbounded resource consumption of the loop Ω →β Ω in λ-calculus.

We postpone the discussion of the reduction of Ω3
∗ until Remark 37.

2.3 Finiteness Structures Induced by Antireduction

Let us get back to Eq. (7), and consider it pointwise: for all s ∈ Δ in normal
form, we want to set NF(a)s =

∑
t∈Δ at · NF(t)s. Notice that this series can be

obtained as the inner product between a and the vector ↑s with (↑s)t = NF(t)s:
one can think of s as a test, that a passes whenever the sum converges.

There is one very simple condition that one can impose on a formal series to
ensure its convergence: just assume there are finitely many non-zero terms. This
seemingly dull remark is in fact the starting point of the definition of finiteness

4 The statement proven in [6] is actually more general, because it considers (possibly
infinite) Böhm trees instead of the normal forms.

Strong Normalizability as a Finiteness Structure 415

spaces, introduced by Ehrhard [3] and discussed in the Introduction. The basic
construction is that of a finiteness structure:

Definition 7 ([3]). Let A be a fixed set. A structure on A is any set of subsets
A ⊆ P (A). For all subsets a and a′ ⊆ A, we write a ⊥ a′ whenever a∩a′ is finite.
For all structure A ⊆ P (A), we define its dual A⊥ = {a ⊆ A; ∀a′ ∈ A, a ⊥ a′}.
A finiteness structure on A is any such A⊥ .

Notice that: A ⊆ A⊥⊥, also A ⊆ A′ entails A′⊥ ⊆ A⊥ , hence A⊥ = A⊥⊥⊥.
Let C0 = {|↑s | ; s ∈ Δ, in normal form} ⊆ P (Δ), we obtain that |a| ∈ C0

⊥

iff Eq. (7) involves only pointwise finite sums. So, one is led to focus on support
sets only, leaving out coefficients entirely. Henceforth, unless specified otherwise,
we will thus stick to the case of R = B, and use set-theoretical notations only.
This approach of ensuring the normalization of Taylor expansion via a finiteness
structure was first used by Ehrhard [4] for a non-deterministic variant of System
F . Our paper strengthens Ehrhard’s result in several directions. In order to
state them, we introduce a construction of finiteness structures on Δ induced
by anticones for the reduction order defined as follows:

Definition 8. For all s, t ∈ Δ, we write t ≥ s whenever there exists a reduction
t →∗

r a with s ∈ a.

It should be clear that this defines a partial order relation (in particular we
have antisymmetry because →r terminates).

Definition 9. If a ⊆ Δ, ↑a := {t ∈ Δ; ∃s ∈ a, t ≥ s} is the cone of antireduc-
tion over a.5 For any structure T ⊆ P (Δ), we write � (T) = {↑a ; a ∈ T}.

We can consider the elements of T as tests, and say a set a ⊆ Δ passes a test
a′ ∈ T iff a ⊥ ↑a ′. The structure of sets that pass all tests is exactly � (T)⊥ .
Then Ehrhard’s result can be rephrased as follows:

Theorem 10 ([4]). If M ∈ Λ+ is typable in System F then T (M) ∈ � (Ssgl)
⊥

where Ssgl := {{s} ; s ∈ Δ}.
Notice that, in contrast with the definition of C0, Ssgl is in fact not restricted

to normal forms. Our paper extends this theorem in three directions: first, one
can relax the condition that M is typed in System F and require only that M
is strongly normalizable; second, the same result can be established for sets of
“tests” larger (hence more demanding) than Ssgl; third, the implication can
be reversed for a suitable set of tests T, i.e. M is strongly normalizable iff
T (M) ∈ � (T)⊥ (and we do need T to provide more tests than just singletons:
see Remark 37). In order to state our results precisely, we need to introduce a
few more notions.

Definition 11. We say that a resource term s is linear whenever each bag appear-
ing in s has cardinality 1. A set a of resource terms is said linear whenever all its
elements are linear. We say a is bounded whenever there exists a number n ∈ N
bounding the cardinality of all bags in all terms in a. We then write
5 Observe that

�
⏐{s} = ↑s (up to the identification of B[[Δ]] with P (Δ)).

416 M. Pagani et al.

Table 2. The intersection type assignment system D+ for Λ+

L := {a ⊆ Δ; a linear} and B := {a ⊆ Δ; a bounded} .

We also denote as � (M) the subset of the linear resource terms in T (M). Notice
that � (M) is always non-empty and can be directly defined by replacing the defini-
tion of T ((M)N) in Table 1b with: � ((M)N) := {〈s〉 [t] ; s ∈ � (M) , t ∈ � (N)}.
Observe that Ssgl,L ⊆ B.

We can sum up our results Corollary 30 and Theorem 36 as follows:

Theorem 12. Let M ∈ Λ+:

– If M is strongly normalizing, then T (M) ∈ � (T)⊥ as soon as T ⊆ B.
– If T (M) ∈ � (T)⊥ with L ⊆ T, then M is strongly normalizing.

3 Strongly Normalizing Terms Are D+ Typable

Intersection types are well known, as well as their relation with normalizability.
We refer to [2] for the original system with subtyping characterizing the set of
strongly normalizing λ-terms, and [1,8] for simpler systems. However, as far as
we know, the literature about intersection types for non-deterministic λ-calculi
is less well established and in fact we could find no previous characterization of
strong normalization in a non-deterministic setting. Hence, we give in Table 2 a
variant of Krivine’s system D [8], characterizing the set of strongly normalizing
terms in Λ+. In this section, we only prove that strongly normalizing terms are
typable (Theorem 14): the reverse implication follows from the rest of the paper
(see Fig. 1). These techniques are standard.

Strong Normalizability as a Finiteness Structure 417

Remark 13. Krivine’s original System D does not have (�) and (+), but it has
the two usual elimination rules for intersection (here derivable). The rule (+) is
necessary to account for non-determinism, however adding just (+) to System
D is misbehaving. We can find terms M and N , and a context Γ such that
(M) N is typable in System D with (+) under the context Γ but M is not: take
Γ = x : A → B∩B′, y : A → B∩B′′, z : A, observe that (x + y) z = (x) z+(y) z,
and thus Γ � (x + y) z : B but x + y is not typable in Γ . This is the reason why
we introduce subtyping.

Theorem 14. For all M ∈ Λ+, if M is strongly normalizable, then there exists
a derivable judgement Γ � M : A in system D+.

Proof (Sketch). For M a strongly normalizable term, let l (M) be the maximum
length of a reduction from M , and s (M) the number of symbols occurring in M .
By well-founded induction on the pair (l (M) , s (M)) we prove that there exists
nM ∈ N such that for all type B and all n ≥ nM , there is a context Γ and a
sequence (A1, . . . , An) of types such that Γ � M : A1 → · · · → An → B.

The proof splits depending on the structure of M . In case M = M1 +M2, we
apply the induction hypothesis on both M1 and M2 and conclude by rule (�)
and a contravariance property: Γ � M : A whenever Γ ′ � M : A and Γ � Γ ′.

In case of head-redexes, i.e. M = ((λx.N) P)M1 · · · Mq, we apply the induc-
tion hypothesis on M ′ = (N [P/x]) M1 · · · Mq and on P . Then, we conclude via
a subject expansion lemma stating that: Γ � (λx.N) P M1 · · · Mn : A, whenever
Γ � (N [P/x]) M1 · · · Mn : A and there exists B such that Γ � P : B.

The other cases are similar to the first one. ��

4 D+ Typable Terms Are Finitary

This section proves Corollary 30, giving sufficient conditions (to be dispersed,
hereditary and expandable, see resp. Definitions 23, 26 and 27) over a structure
T in order to have all cones ↑a for a ∈ T dual to the Taylor expansion of any
strongly normalizing non-deterministic λ-term.

It is easy to check that these conditions are satisfied by the structures B
of bounded sets and L of sets of linear terms (Definition 11). Moreover, as an
immediate corollary one gets also that any subset T ⊆ B is also such that
T (M) ∈ � (T)⊥ for any strongly normalizable term M ∈ Λ+, so getting the
first Item of Theorem 12.

Thanks to previous Theorem 14 we can prove Corollary 30 by a realizability
technique on the intersection type system D+. For a fixed structure S, we asso-
ciate with any type A a realizer ‖A‖S (Definition 18). In the case S is adapted
(Definition 17), we can prove that ‖A‖S contains the Taylor expansion of any
term of type A and that it is contained in S (Theorem 21). These definitions
and theorem are adapted from Krivine’s proof for System D [8].

The crucial point is then to find structures S which are adapted : here is our
contribution. The structures that we study have the shape � (T)⊥ , so that we are
speaking of the interaction with cones of anti-reducts of tests in a structure T.

418 M. Pagani et al.

Intuitively, T is a set of tests that can be passed by any term typable in System
D+ (hence by any strongly normalizing term). We prove (Lemma 29) that for a
structure T, being dispersed, hereditary and expandable is sufficient to guarantee
that the dual structure � (T)⊥ is adapted, then achieving Corollary 30.

Definition 15 (Functional). Given two structures S,S′ ⊆ P (Δ), we define
the structure S → S′ :=

{
f ⊆ Δ; ∀a ∈ S, 〈f〉 a! ∈ S′}.

Definition 16 (Saturation). Let S,S′ ⊆ P (Δ). We say S′ is S-saturated if
∀e, f0, . . . , fn ∈ S,

〈
∂xe · f0

!
〉

f1
! . . . fn

! ∈ S′ implies 〈λx.e〉 f0
! f1

! . . . fn
! ∈ S′.

Definition 17 (Adaptedness). For all S ⊆ P (Δ) we set Sh :=
{{x} ; x ∈ V} ∪ {〈x〉 a1

! · · · an
!; x ∈ V, n > 0 and ∀i, ai ∈ S

}
and say S is

adapted if:

1. S is S-saturated;
2. Sh ⊂ (S → Sh) ⊂ (Sh → S) ⊂ S;
3. S is closed under finite unions: ∀b, b′ ∈ S, b ∪ b′ ∈ S.

Definition 18 (Realizers). Let S ⊆ P (Δ). To each type A of System D+, we
associate a structure ‖A‖S defined inductively (X being a propositional variable):

‖X‖S := S, ‖A → B‖S := ‖A‖S → ‖B‖S , ‖A ∩ B‖S := ‖A‖S ∩ ‖B‖S .

Lemma 19. Let S be an adapted structure, then for every type A, ‖A‖S is
S-saturated, closed under finite unions and Sh ⊆ ‖A‖S ⊆ S.

Lemma 20 (Adequacy). If S ⊆ P (Δ) is adapted, x1 : A1, . . . , xn : An � M :
B and for all 1 ≤ i ≤ n, ai ∈ ‖Ai‖S, then ∂x1,...,xn

T (M) · a1
!, . . . , an

! ∈ ‖B‖S.

Proof (Sketch). By structural induction on the derivation of x1 : A1, . . . , xn :
An � M : B. The cases where the last rule is (→i) or (+) use respectively the
facts that the realizers are saturated and closed by finite unions. The case where
the last rule is (�) is an immediate consequence of the induction hypothesis and
of a lemma stating that A � B implies ‖A‖S ⊆ ‖B‖S. ��
Theorem 21. If S ⊆ P (Δ) is adapted and M is typable in System D+, then
T (M) ∈ S.

Proof. Let Γ � M : B. For any x : A in Γ , {x} ∈ Sh ⊂ ‖A‖S by Lemma 19
and Definition 17. Hence, T (M) = ∂x1,...,xn

T (M) · {x1}!, . . . , {xn}! ∈ ‖B‖S by
Lemma 20. Again by Lemma 19, ‖B‖S ⊆ S, so T (M) ∈ S. ��

Now we look for conditions to ensure that a structure S is adapted. These
conditions (Definitions 23, 26 and 27) are quite technical but they are easy to
check, in particular the structures B and L enjoy them (Remark 28).

Definition 22. The height h (s) of a resource term s is defined inductively:
h (x) := 1, h (λx.s) := 1 + h (s) and h (〈s0〉 [s1, . . . , sn]) := 1 + maxi(h (si)).

Strong Normalizability as a Finiteness Structure 419

Definition 23 (Dispersed). A set a ⊆ Δ is dispersed whenever for all n ∈
N, and all finite set V of variables, the set {s ∈ a; h (s) ≤ n and fv (s) ⊆ V } is
finite. A structure S is dispersed whenever ∀a ∈ S, a is dispersed.

Definition 24. Let s ∈ Δ and x �∈ fv (s). We define immediate subterm pro-
jections πxs ∈ P (Δ), π0s ∈ P (Δ), π1s ∈ P

(
Δ!

)
and π1s ∈ P (Δ) as follows:

– if s = λx.t then πxs = {t}; otherwise πxs = ∅;
– if s = 〈t〉 u then π0s = {t}, π1s = {u}, π1s = |u|; otherwise π0s = π1s =

π1s = ∅.
Observe that up to α-conversion and the hypothesis x �∈ fv (s), the abstraction
case is exhaustive. These functions obviously extend to sets of terms, up to some
care about free variables. If V ⊆ V is a set of variables, we write ΔV for the set
of resource λ-terms with free variables in V .

Definition 25. For all V ⊆ V and a ⊆ ΔV , let

π0a :=
⋃

s∈a

π0s ⊆ ΔV , π1a :=
⋃

s∈a

π1s ⊆ ΔV !
, π1a :=

⋃

s∈a

π1s ⊆ ΔV ,

and if moreover x �∈ V , then let πxa :=
⋃

s∈a πxs ⊆ ΔV ∪{x}.

Definition 26 (Hereditary). A structure S ⊆ P (Δ) is said to be hereditary
if, S is downwards closed, and for all a ∈ S, π0a ∈ S, π1a ∈ S and for all
x ∈ V \ fv (a), πxa ∈ S.

Definition 27 (Expandable). A structure S ⊆ P (Δ) is said to be expand-
able if, for all x ∈ V and all a ∈ S, we have {〈s〉 [x] ; s ∈ a} ∈ S.

Remark 28. The structures Ssgl (Theorem 10) and L, B (Definition 11) are
dispersed and expandable. The last two are also hereditary, while Ssgl is not.

Lemma 29. For any structure T which is dispersed, hereditary and expandable,
we have that � (T)⊥ is adapted.

Proof (Sketch). One has to prove the three conditions of Definition 17. Heredity
and dispersion are used to obtain saturation (Condition 1). The inclusions of
Condition 2 need all hypotheses and an auxiliary lemma proving that � (T)⊥

h ⊆
� (T)⊥ , for which dispersion is crucial. Finally, the closure under finite unions
(Condition 3) is satisfied by all finiteness structures. ��
Corollary 30. Let T ⊆ P (Δ) be dispersed, hereditary and expandable. For
every strongly normalizable term M , we have T (M) ∈ � (T)⊥ . Hence, this holds
for T ∈ {L,B} and for any of their subsets, such as Ssgl ⊂ B.

Proof. The general statement follows from Theorems 14 and 21 and Lemma 29.
Remark 28 implies T (M) ∈ � (T)⊥ for T ∈ {B,L}. The rest of the statement
follows because, for any structures S,S′, S ⊆ S′ implies S′⊥ ⊆ S⊥ . ��

420 M. Pagani et al.

5 Finitary Terms Are Strongly Normalizing

In this section we prove Theorem 36, giving a sufficient condition for a structure
T to be able to test strong normalization. The condition is that T includes at
least L, i.e. the set of all sets of linear terms6.

The proof is by contraposition, suppose that M is divergent, then T (M)
is not dual to some cone ↑a , with a ∈ L. The proof enlightens two kinds of
divergence in λ-calculus: the one generated by looping terms: Ω →β Ω →β . . .
and the other generated by infinite reduction sequences (Mi)i∈N with an infinite
number of different terms: Ω3 →β (Ω3)Δ3 →β ((Ω3)Δ3)Δ3 →β . . . (see
Example 1).

In the first case, the cone
�
⏐�(Ω) of the linear expansion (Definition 11) of

the looping term Ω suffices to show up the divergence, since T (Ω) ∩ �
⏐�(Ω) is

infinite. Indeed the Taylor expansion of a looping term, say T (Ω), is a kind of
“contractible space”, where any resource term reduces to a smaller term within
the same Taylor expansion or vanishes (see Example 6). In particular, there are
unboundedly large resource terms reducing to the linear expansion �(Ω).

In the case of an infinite reduction sequence of different terms, one should
take, basically, the cone of all linear expansions of the terms occurring in the
sequence: the linear expansion of a single term (or of a finite set of terms) might
not suffice to test this kind of divergence. For example, T (Ω3)∩�

⏐�(Ω3) is finite,
while T (Ω3) ∩ �

⏐{�(Ω3), �((Ω3)Δ3), . . . } is infinite, so T (Ω3) /∈� (L)⊥ .
In the presence of the non-deterministic sum +, we have a third kind of diver-

gence, which is given by infinite reduction sequences of terms (Mi)i∈N which are
pairwise different but whose Taylor expansion support repeats infinitely many
times: consider, e.g., the reducts of (Θ) (λx.x + y). We prove that this kind of
divergence is much more similar to a loop rather than to a sequence of different
λ-terms. In particular, there is a single linear resource term (depending on the
reduction sequence) whose cone is able to show up the divergence. Indeed, most
of the effort in the proof of Theorem 36 is devoted to deal with this kind of “loop-
ing Taylor expansion”. Namely, Definition 31 gives a notion of non-deterministic
reduction ⇀ allowing Lemma 35, which is the key statement used in the proof
of Theorem 36 for dealing with both the divergence of looping terms (like Ω)
and that of looping Taylor expansions (like (Θ) (λx.x + y)).

We introduce a reduction rule ⇀ on Λ+ which corresponds to one step of
β-reduction and a potential loss of some addenda in a term. For that, we need an
order � on Λ+ expressing this loss. For instance, (Θ) (λx.x + y)+y � (Θ) λx.x,
thus (Θ) (λx.x + y) ⇀∗ (Θ) λx.x, and similarly, (Θ) (λx.x + y) ⇀∗ y.

Definition 31 (Partial reduction). We write M ⇀ N if there exists P such
that M →β P and P � N , where the partial order � over Λ+ is defined as
the least order such that M � M + N ; N � M + N and if M � N then:
M + P � N + P , λx.M � λx.N , (M) P � (N) P , and (P)M � (P) N .

6 This condition can be slightly weakened replacing L with: {a ⊆ Δ; a linear and
fv (a) finite}. However, we prefer to stick to the more intuitive definition of L.

Strong Normalizability as a Finiteness Structure 421

A reduction M ⇀ N is at top level if M = (λx.M ′)M ′′ → M ′[M ′′/x] � N .

Write s > t whenever s ≥ t (Definition 8) and s �= t: this is a strict partial order
relation.

Lemma 32. If M ⇀ N and t ∈ T (N), then there exists s ∈ T (M) such that
s ≥ t. If moreover, M ⇀ N is at top level, then s > t.

Lemma 33. Let M ⇀ N and u ∈ Δ. If T (N)∩↑u is infinite, then T (M)∩↑u
is also infinite.

Definition 34. The height h (M) of a term M ∈ Λ+ is defined induc-
tively as follows: h (x) := 1, h (λx.M) := 1 + h (M), h ((M)N) := 1 +
max(h (M) ,h (N)) and h (M + N) := max(h (M) ,h (N)).

Lemma 35. Let (Mi)i∈N be a sequence. If ∀i ∈ N, Mi ⇀ Mi+1 and
(h (Mi))i∈N is bounded, then there exists a linear term t such that T (M0) ∩ ↑t
is infinite.

Proof (Sketch). First, it is sufficient to address the case of a sequence (Si)i∈N of
simple terms (i.e. without + as the top-level constructor) such that Si ⇀ Si+1

for all i ∈ N and (h (Si))i∈N is bounded. Besides, by Lemma 33, it is sufficient
to have T (Si0) ∩ ↑t infinite for some i0 ∈ N.

Then, by induction on h = max {h (Si) ; i ∈ N}, we show that there exists
i0 ∈ N and a sequence (sj)j∈N ∈ T (Si0)

N such that s0 is linear and, for all
j ∈ N, sj+1 > sj . Since > is a strict order relation, this implies that the set
{sj ; j ∈ N} ⊆ T (Si0) ∩ ↑s0 is infinite.

First assume that there are infinitely many top level reductions. Observe
that, since h (Si) ≤ h and fv (Si) ⊆ fv (S0) for all i, the set {T (Si) ; i ∈ N} is
finite. Hence there exists an index i0 ∈ N such that {i ∈ N; T (Si) = T (Si0)}
is infinite. As there are infinitely many top level reductions, there are i1 and i2
such that i0 < i1 < i2, the reduction i1 is at top level and T (Si2) = T (Si0).
We inductively define the required sequence by choosing arbitrary s0 ∈ � (Si0) ⊆
T (Si0), and by iterating Lemma 32: for sj ∈ T (Si0) = T (Si2), we obtain
sj+1 ∈ T (Si0) with sj+1 > sj since the reduction i1 is at top level.

Now assume that there are only finitely many top level reductions. Let i1 be
such that no reduction Si ⇀ Si+1 with i ≥ i1 is at top level. Either for all
i ≥ i1, Si = λx.M ′

i with M ′
i ⇀ M ′

i+1, and we conclude by applying the induc-
tion hypothesis to the sequence (M ′

i+i1
)i∈N; or for all i ≥ i1, Si = (M ′

i) N ′
i so

that (M ′
i)i≥i1 and (N ′

i)i≥i1 are sequences of terms, at least one of them involving
infinitely many partial reductions. In this case, assume for instance that we can
extract from (M ′

i)i≥i1 an infinite subsequence (M ′
φ(i))i∈N of partial reductions. It

provides i′0 and a sequence (s′
j) ∈ T (M ′

φ(i′
0)

)N with s′
0 linear and, s′

j+1 > s′
j . Fix

t ∈ �(N ′
φ(i′

0)
) arbitrarily. So we set i0 = φ(i′0) and sj =

〈
s′

j

〉
[t] for all j ∈ N. ��

Theorem 36. Let T be a structure such that L ⊆ T. If T (M) ∈ � (T)⊥ then
M is strongly normalizable. In particular, this holds for T ∈ {L,B}.

422 M. Pagani et al.

Proof. Assume that (Mi)i∈N is such that M = M0 and for all i, Mi →β Mi+1.
We prove that T (M) �∈ � (T)⊥ by exhibiting a ∈ T such that T (M) �⊥ ↑a .

If (h (Mi))i∈N is bounded, then fix a = {t} with t given by Lemma 35.
Otherwise, ∀i ∈ N, fix ti ∈ � (Mi) such that h (ti) = h (Mi). Lemma 32

implies that there is si ∈ T (M) such that si ≥ ti. Denote by s (s) the num-
ber of symbols occurring in s. Since there is no duplication in reduction →r it
should be clear that if s ≥ t then s (s) ≥ s (t). Besides, s (s) ≥ h (s). There-
fore, since {h (Mi) ; i ∈ N} is unbounded, {h (ti) ; i ∈ N}, {s (ti) ; i ∈ N} and
{s (si) ; i ∈ N} are unbounded. Fix a =

⋃
i∈N � (Mi) ∈ T, we have proved that

T (M) ∩ ↑a is infinite. ��
Notice that the structure Ssgl of singletons used in [4] does not enjoy the

hypothesis of Theorem 36 (L �⊂ Ssgl). In fact:

Remark 37. We prove that T (Ω3) ∈ � (Ssgl)
⊥ , although Ω3 is not normalizing.

Recall from Example 2, that the support of the Taylor expansion of Ω3 is made
of terms of the form 〈δn0,m0〉 [δn1,m1 , . . . , δnk,mk

] (for k, ni,mi ∈ N). Write Δh =
{〈δ−,−〉 [. . . δ−,− . . .] · · · [. . . δ−,− . . .] with h bags}: in particular T (Ω3) = Δ1.
One can easily check that if s ∈ Δh and s ≥ s′, then s′ ∈ Δh′ with h ≤ h′. A
careful inspection of such reductions shows that they are moreover reversible: for
all s′ ∈ Δh′ and all h ≤ h′ there is exactly one s ∈ Δh such that s ≥ s′. It follows
that Δ1∩ ↑ s is either empty or a singleton. Therefore T (Ω3) ∈ � (Ssgl)

⊥ .

6 Conclusion

We achieved all implications of Fig. 1, but the rightmost one, concerning the
finiteness of the coefficients in the normal form of the Taylor expansion of a
strongly normalizing λ-term (recall Eq. (2) in the Introduction).

Thanks to the definition of cones (Definition 9) we immediately have the
following lemma, which is the last step to Corollary 39.

Lemma 38. Let T be a structure. If T (M) ∈ � (T)⊥ , then ∀t ∈ ⋃
T,

NF(T (M))t is finite.

Applying Corollary 30 and Lemma 38 to a structure like B or Ssgl, we get:

Corollary 39. Given a non-deterministic λ-term M , if M is strongly normal-
izable, then NF(T (M))t is finite for all t ∈ Δ.

References

1. van Bakel, S.: Complete restrictions of the intersection type discipline. Theor. Com-
put. Sci. 102(1), 135–163 (1992). http://dx.doi.org/10.1016/0304-3975(92)90297-S

2. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the
completeness of type assignment. JSL 48, 931–940 (1983)

3. Ehrhard, T.: Finiteness spaces. Math. Struct. Comput. Sci. 15(04), 615–646 (2005)

http://dx.doi.org/10.1016/0304-3975(92)90297-S

Strong Normalizability as a Finiteness Structure 423

4. Ehrhard, T.: A finiteness structure on resource terms. In: Proceedings of the 25th
Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11–14 July
2010, Edinburgh, United Kingdom, pp. 402–410. IEEE Computer Society (2010).
http://dx.doi.org/10.1109/LICS.2010.38

5. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theor. Comput. Sci.
309(1), 1–41 (2003)

6. Ehrhard, T., Regnier, L.: Böhm trees, Krivine’s Machine and the Taylor expansion
of lambda-terms. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE
2006. LNCS, vol. 3988, pp. 186–197. Springer, Heidelberg (2006)

7. Ehrhard, T., Regnier, L.: Uniformity and the Taylor expansion of ordinary lambda-
terms. Theor. Comput. Sci. 403(2–3), 347–372 (2008)

8. Krivine, J.L.: Lambda-Calculus, Types and Models. Ellis Horwood, Chichester
(1993)

9. Laird, J., Manzonetto, G., McCusker, G., Pagani, M.: Weighted relational models
of typed lambda-calculi. In: Proceedings of 28th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS 2013), pp. 25–28, New Orleans, USA, pp.
301–310, June 2013

10. Lamarche, F.: Quantitative domains and infinitary algebras. Theor. Comput. Sci.
1, 37–62 (1992)

11. Pagani, M.: The cut-elimination theorem for differential nets with promotion. In:
Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 219–233. Springer, Heidelberg
(2009)

12. Pagani, M.: Visible acyclic differential nets, Part I: Semantics. Ann. Pure Appl.
Logic 163(3), 238–265 (2012)

http://dx.doi.org/10.1109/LICS.2010.38

Reasoning About Call-by-need
by Means of Types

Delia Kesner(B)

Université Paris-Diderot, SPC, IRIF, CNRS, Paris, France
kesner@pps.univ-paris-diderot.fr

Abstract. We first develop a (semantical) characterization of call-by-
need normalization by means of typability, i.e. we show that a term is
normalizing in call-by-need if and only if it is typable in a suitable sys-
tem with non-idempotent intersection types. This first result is used to
derive a new completeness proof of call-by-need w.r.t. call-by-name. Con-
cretely, we show that call-by-need and call-by-name are observationally
equivalent, so that in particular, the former turns out to be a correct
implementation of the latter.

1 Introduction

There is a real gap between the well-known operational semantics of the call-
by-name λ-calculus and the actual implementations of lazy functional languages
such as Miranda or Haskell. Indeed, call-by-name re-evaluates an argument each
time it is used – an operation which is quite expensive – while lazy languages store
the value of an argument the first time it is evaluated, thus avoiding the need
for any subsequent re-evaluations. For example, consider the term t0 = Δ(II),
where Δ = λx.xx and I = λz.z. Call-by-name duplicates the argument II,
while lazy languages first reduces II to the value I so that further uses of this
argument do not need any more to evaluate it again.

However, lazy languages should not be confused with call-by-value: values
are only consumed in the former when they are needed/required, thus completely
ignoring the other arguments. E.g. if t1 = (λz.I)(II), the argument II is evalu-
ated in call-by-value to produce the final answer I, whereas this evaluation does
not take place in any lazy language (see e.g. [2,3,9,13]). Said differently, lazy
languages do not compute unneeded terms, and terms should not be duplicated
unless and until they have been reduced to values.

According to the previous paragraphs, lazy languages cannot be modeled by
call-by-name, nor by call-by-value; they are indeed specified by call-by-need, due
to Wadsworth [30], and extensively studied e.g. in [1–3,9,13,25].

Despite the fact that the equational theories of call-by-name and call-by-need
are not the same [2], call-by-need is observationally equivalent (i.e. sound and
complete w.r.t.) to call-by-name. The completeness result, operationally devel-
oped e.g. in [2,25], is quite involved and makes use of different syntactical tools
such as commutation diagrams, sharing, residual theory and standardization.
c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 424–441, 2016.
DOI: 10.1007/978-3-662-49630-5 25

Reasoning About Call-by-need by Means of Types 425

In this paper we make use of typing systems to provide a semantical argument
showing that call-by-need and call-by-name are observationally equivalent. More
precisely, we develop a new completeness proof of call-by-need w.r.t. call-by-name
which follows from two different implications: every term having a normal form in
call-by-name is typable and every typable term has a normal form in call-by-need.
The second implication is obtained from a stronger characterization property
stating that the set of typable terms and the set of call-by-need normalizing
terms are the same. This result is completely new, and quite surprising, and
constitutes one of the main contributions of this work.

In order to achieve our goal we use intersection types, originally introduced
in [11], being able to provide models of the λ-calculus [4], and characterizations
of head [10] as well as weakly [8,10] and strongly normalizing λ-terms [22]. Typ-
ically, intersection types are idempotent [4]. However, in the last years, growing
interest has been devoted to non-idempotent intersection types [6,19], since they
allow for reasoning about quantitative properties of terms, both from a syntac-
tical and a semantical point of view. Different assignment systems with non-
idempotent intersection types have been studied in the literature for different
purposes [5,7,14,15,18,20,21,23,26,27].

Reasoning about call-by-name and call-by-need is achieved in this paper by
introducing two (non-idempotent) typing systems, called V and A respectively.
System V (resp. A) characterizes the set of name (resp. need) normalizing terms,
i.e. a term t is typable in system V (resp. A) if and only if t is normalizing in
call-by-name (resp. call-by-need). While our characterization of call-by-name
normalization can be seen as a simple adaptation of the existing one for head-
normalization [15], this is, to the best of our knowledge, the first time that
call-by-need normalization is characterized by means of semantical/logical tools.

Non-idempotent intersection types provide a full characterizations of call-by-
name/need normalizing terms by using very simple combinatorial arguments, no
reducibility technique are used. More precisely, there is a measure, defined on
type derivations, which strictly decreases during name/needed reduction. This
gives quantitative information about call-by-name/need reduction sequences.

The following list summarizes the more important points of our work:

1. We provide a characterization of name-normalization by adapting an existing
one for head-normalization.

2. We develop a completely new characterization of need-normalization by
means of typability. This characterization, as well as the one for name-
normalization, is arithmetical, i.e. no reducibility arguments are needed.

3. Based on the previous points, we show that call-by-need and call-by-name are
observationally equivalent, so that in particular, we obtain a new (semantical)
completeness proof of call-by-need w.r.t. call-by-name.

Related Works: Besides all the aforementioned works that use intersection types
to characterize operational properties of λ-calculi, two other works make use of
typing systems to reason about lazy languages. In [24], the resource conscious
character of linear logic is used to explain call-by-need in the spirit of the Curry-
Howard isomorphism. In [16] non-idempotent intersection types are related to

426 D. Kesner

needed redexes: a redex r in a term t is needed iff r, or some residual of r, is
reduced in every reduction of t to normal form. Despite the use of similar typing
techniques to identify needed redexes in well-typed terms, no full characterization
of needed normalization is obtained in [16].

Structure of the Paper: Section 2 introduces syntax and operational semantics
of call-by-name and call-by-need. Section 3 defines non-idempotent type assign-
ment disciplines for both calculi. Section 4 (resp. Sect. 5) gives a characterization
of name (resp. need)-normalizing terms by means of the intersection type sys-
tems introduced in Sect. 3. Section 6 presents the completeness proof by using
the semantical/logical arguments developed in the previous sections. Section 7
concludes and suggests some further directions of research.

2 Call-by-name and Call-by-need

This section describes the syntax and the operational semantics of our languages.
We start by introducing call-by-name in the setting of the lambda-calculus, as
done in the seminal work of Plotkin [28]. Given a countable infinite set of symbols
x, y, z, . . ., we define terms, values and name contexts as follows:

Terms t, u ::= x | tu | λx.t
Values v ::= λx.t
Name contexts E ::= � | E t

The set of terms is denoted by Ta. We write I for the identity function λx.x. The
sets of free and bound variables of a term t, written respectively fv(t) and bv(t),
are defined as usual. We work with the standard notion of α-conversion i.e.
renaming of bound variables for abstractions. Substitutions are (finite) func-
tions from variables to terms denoted by {x1/u1, . . . , xn/un} (n ≥ 0). Applica-
tion of the substitution σ to the term t, written tσ, is defined on α-equivalence
classes, as usual, so that capture of free variables cannot hold.

The call-by-name calculus is given by the set of terms Ta and the reduc-
tion relation →name, which is the closure by name contexts E of the rewriting
rule (λx.t)u �→β t{x/u}. An example of name-reduction sequence is

(λf.fI(fI))(λw.(II)w) →name (λw.(II)w)I((λw.(II)w)I) →name

(II)I((λw.(II)w)I) �3
name (λw.(II)w)I →name (II)I →name II →name I

Remark that t →name t′ implies fv(t) ⊇ fv(t′), and notice that reduction is weak,
so that we never reduce under λ-abstractions, which are considered to be values.

The call-by-need calculus we use in this paper was introduced in [1]. It is
more concise than previous specifications of call-by-need [2,3,9,25], but it is
operationally equivalent to them, so that the results of this paper could also be
presented by using other alternative specifications.

Reasoning About Call-by-need by Means of Types 427

Given a countable infinite set of symbols x, y, z, . . . we define different syn-
tactic categories for terms, values, list contexts, answers and need contexts:

Terms t, u ::= x | tu | λx.t | t[x/u]
Values v ::= λx.t
List contexts L ::= � | L[x/t]
Answers A ::= L[λy.t]
Need contexts M, N ::= � | Nt | N[x/t] | N[[x]][x/M]

Terms of the form t[x/u] are closures, and [x/u] is said to be an explicit
substitution (ES). The set of all the terms is denoted by Te; remark that
Ta ⊂ Te. The notions of free and bound variables are defined as expected, in
particular, fv(t[x/u]) := fv(t)\{x}∪fv(u), fv(λx.t) := fv(t)\{x}, bv(t[x/u]) :=
bv(t) ∪ {x} ∪ bv(u) and bv(λx.t) := bv(t) ∪ {x}.

We use N[t] (resp. L[t]) for the term obtained by replacing the hole of N (resp.
L) by the term t. We use the special notation N[[u]] or L[[u]] when the free variables
of u are not captured by the context, i.e. there are no abstractions or explicit
substitutions in the context that binds the free variables of u. Thus for example,
given N = (�x)[x/z], we have (yx)[x/z] = N[y] = N[[y]], but (xx)[x/z] = N[x]
cannot be written as N[[x]]. Notice the use of this special notation in the last case
of needed contexts, an example of such case being (xy)[y/t][x/�].

The call-by-need calculus, introduced in [1], is given by the set of terms
Te and the reduction relation →need, the union of →dB and →lsv, which are,
respectively, the closure by need contexts N of the following rewriting rules:

L[λx.t]u �→dB L[t[x/u]]
N[[x]][x/L[v]] �→lsv L[N[[v]][x/v]]

An example of need-reduction sequence is

(λx1.I(x1I))(λy.Iy) →dB (I(x1I))[x1/λy.Iy] →dB

x2[x2/x1I][x1/λy.Iy] →lsv x2[x2/(λx3.Ix3)I][x1/λy.Iy] →dB

x2[x2/(Ix3)[x3/I]][x1/λy.Iy] →dB x2[x2/x4[x4/x3][x3/I]][x1/λy.Iy] →lsv

x2[x2/x4[x4/I][x3/I]][x1/λy.Iy] →lsv x2[x2/I[x4/I][x3/I]][x1/λy.Iy] →lsv

I[x2/I][x4/I][x3/I][x1/λy.Iy]

As for call-by-name, reduction preserves free variables, i.e. t →need t′ implies
fv(t) ⊇ fv(t′). Notice that call-by-need reduction is also weak, so that answers
are not need-reducible. Among the free variables of terms we distinguish the set
of needed free variables, defined as follows:

nv(x) := {x} nv(tu) := nv(t)

nv(λx.t) := ∅ nv(t[y/u]) :=
{

(nv(t) \ {y}) ∪ nv(u) if y ∈ nv(t)
nv(t) \ {y} if y /∈ nv(t)

A useful property about needed free variables can be stated as follows:

Lemma 1. Let t ∈ Te. Then x ∈ nv(t) if and only if there exists N s.t. t = N[[x]].

428 D. Kesner

Thus for example, for t = x1[x1/x2y][x2/x3y
′], we have x3 ∈ nv(t) and

t = N[[x3]], for N = x1[x1/x2y][x2/�y′].
We now need some general notions applicable to any reduction system R. We

denote by �R (resp. →+
R) the reflexive-transitive (resp. transitive) closure

of any given reduction relation →R. A term t is in R-normal form, written
t ∈ R-nf, if there is no t′ s.t. t →R t′; and t has an R-normal form iff there
is t′ ∈ R-nf such that t �R t′. A term t is said to be weakly R-normalizing,
or R-normalizing, written t ∈ WN (R), iff t has an R-nf.

It is well-known that the set of Ta-terms that are in name-nf can be charac-
terized by the following grammar:

Na ::= λx.t | Nva Nva ::= x | Nva t

Similarly, Te-terms in need-nf can be specified by the following grammar:

Ne ::= L[λx.t] | Nae
Nae ::= x | Nae t | Nae[x/u] x /∈ nv(Nae) | Nae[x/Nae] x ∈ nv(Nae)

Lemma 2. Let t ∈ Te. Then t ∈ Ne iff t is in need-nf.

Proof. The proof proceeds by first showing that t ∈ Nae iff t is in need-nf and t
is not an answer. Then the statement of the lemma follows. ♦

In order to relate need-nfs with name-nfs we use the following function ↓

defined on Te-terms.

x↓ := x (λx.t)↓ := λx.t↓

(tu)↓ := t↓u↓ t[x/u]↓ := t↓{x/u↓}

Notice that x ∈ nv(t) implies x ∈ nv(t↓).

Lemma 3. Let t ∈ Te. Then t in need-nf implies t↓ in name-nf.

Proof. We first remark that t{x/u} ∈ Nva iff t ∈ Nva and x /∈ nv(t), or t and u
are in Nva and x ∈ nv(t). The proof then proceeds by showing the following two
statements by induction on the grammars.

1) t ∈ Nae implies t↓ ∈ Nva 2) t ∈ Ne implies t↓ ∈ Na

(1) (a). If t = x ∈ Nae, then the statement is straightforward. (b). If t = t1t2 ∈
Nae, where t1 ∈ Nae, then the i.h. gives t1

↓ ∈ Nva so that t↓ = t1
↓t2↓ ∈ Nva.

(c). If t = t1[x/t2] ∈ Nae, where t1 ∈ Nae, then the i.h. gives t1
↓ ∈ Nva.

We distinguish two cases. If x /∈ nv(t1), then t↓ = t1
↓{x/t2

↓} ∈ Nva. If
x ∈ nv(t1), then necessarily t2 ∈ Nva, so that the i.h. gives t2

↓ ∈ Nva. Then,
t↓ = t1

↓{x/t2
↓} ∈ Nva.

(2) (a). If t = L[λx.u] ∈ Ne, then t↓ is necessarily an abstraction so that t↓ ∈ Na.
(b). If t ∈ Ne comes from t ∈ Nae, then we apply the previous point. ♦

Reasoning About Call-by-need by Means of Types 429

3 Non-idempotent Intersection Types

Our results rely on typability of terms in suitable systems with non-idempotent
intersection types. This section introduces such type systems. The first one,
called V (for values), characterizes the set of name-normalizing terms; it extends
the one in [15] which characterizes the set of head normalizing terms in λ-calculus.
The second one, called A (for answers), characterizes the set of need-normalizing
terms; it extends the one in [18] which characterizes the set of head-linear nor-
malizing terms in λ-calculus with explicit substitutions.

In order to introduce the type systems, let us first introduce the notion of
type. We denote finite multisets by double curly brackets, so that {{ }} denotes
the empty multiset; {{a, a, b}} denotes a multiset having two occurrences of the
element a and one occurrence of b. We use
 for multiset union. Given a con-
stant type a which denotes answers, and a countable infinite set of base types
α, β, γ, . . ., we consider types and multiset types defined by the following
grammars:

Types τ, σ, ρ ::= a | α | M→τ
Multiset types M ::= {{τi}}i∈I where I is a finite set

The type {{ }} plays the rôle of the universal ω type in [8,10]. Remark that types
are strict [12,29], i.e. the right-hand sides of functional types are never multisets.
Moreover, they make use of standard notations for multisets, as in [15], so that
{{σ, σ, τ}} needs to be understood as the intersection type σ ∧ σ ∧ τ , where the
symbol ∧ is commutative and associative but non-idempotent, i.e. σ ∧ σ and
σ are not equivalent.

Type assignments, written Γ,Δ, are functions from variables to multiset
types, assigning the empty multiset to all but a finite set of the variables. The
domain of Γ is dom(Γ) := {x | Γ (x) �= {{ }}}. The union of type assignments,
written Γ + Δ, is a type assignment defined by (Γ + Δ)(x) := Γ (x)
 Δ(x),
where
 denotes multiset union; thus, dom(Γ + Δ) = dom(Γ) ∪ dom(Δ). An
example is {x:{{σ}}, y:{{τ}}} + {x:{{σ′}}, z:{{τ ′}}} = {x:{{σ, σ′}}, y:{{τ}}, z:{{τ ′}}}.
For convenience, we write +i∈IΓi for a finite union of type assignments (where
I = ∅ gives an empty function), instead of the more traditional notation Σi∈IΓi.
When dom(Γ) and dom(Δ) are disjoint we use Γ ;Δ instead of Γ +Δ, and we write
x:{{σi}}i∈I ;Γ , even when I = ∅, for the assignment (x:{{σi}}i∈I ;Γ)(x) = {{σi}}i∈I

and (x:{{σi}}i∈I ;Γ)(y) = Γ (y) if y �= x. We denote by Γ \\x the assignment
(Γ \\x)(x) = {{ }} and (Γ \\x)(y) = Γ (y) if y �= x. We write x#Γ iff x /∈ dom(Γ).

Type judgments have the form Γ t:τ , where Γ is a type assignment, t
is a term and τ is a type. The V-type system (V for value) for Ta-terms is
given by the typing rules in Fig. 1 and the A-type system (A for answer) for
Te-terms is given by the typing rules in Fig. 2. System V can be seen as the
restriction of system A to Ta-terms. Given S ∈ {V,A}, a (type) derivation in
S is a tree obtained by applying the (inductive) rules of the system S. We write
Φ �S Γ t:τ if there is a derivation Φ in system S typing t, i.e. ending in the

430 D. Kesner

Fig. 1. The non-idempotent intersection type system V for terms in Ta

Fig. 2. The non-idempotent intersection type system A for terms in Te

type judgment Γ t:τ . A term t is typable in S iff there is a derivation in S
typing t. The size of a type derivation Φ is a natural number sz(Φ) denoting
the number of nodes of the tree Φ.

The constant type a in rules (val) and (ans) is used to type values and
answers respectively, and rule (cut) of system A may also type answers (when
τ = a and t = L[λx.t′]). The axiom (ax) is relevant (there is no weakening) and
the rules (→ e) and (cut) are multiplicative; both characteristics being related
to the resource aware semantics of the underlying calculus. A particular case of
rule (→ e) (resp. (cut)) is when I = ∅: the subterm u occurring in the typed
term tu (resp t[x/u]) turns out to be untyped. Thus for example, if Ω is the
(untypable) non-terminating term (λz.zz)(λz.zz), then from the type derivation
of x:{{σ}} λy.x:{{ }}→σ we can construct one for x:{{σ}} (λy.x)Ω:σ, and from
the type derivation of x:{{σ}} x:σ we can construct one for x:{{σ}} x[y/Ω]:σ.
A major difference between system V and the one in [15] is the rule (val) which
types any kind of abstraction. Indeed, given Δ = λx.xx, the abstraction λx.ΔΔ
–not being head-normalizing in λ-calculus– is typable in our type system (which
characterizes name-normalizing terms) but is not typable in [15] (which charac-
terizes head-normalizing terms). The same remark applies to the rule (ans) in

Reasoning About Call-by-need by Means of Types 431

system A with respect to the one in [18]. Here is an example of typing derivation
in system A.

It is worth noticing that system A is a conservative extension of system V:

Lemma 4. Let t ∈ Ta. Then Φ �V Γ t:σ iff Φ �A Γ t:σ.

A last remark of this section concerns relevance. Indeed, given Φ �S Γ t:σ,
not every free variable in t necessarily appears in the domain of Γ . More precisely,
both systems enjoy the following property, that can be easily shown by induction
on derivations.

Lemma 5. Let S ∈ {V,A}. If Φ �S Γ t:σ then dom(Γ) ⊆ fv(t).

4 Characterization of name-normalizing Terms

In this section we adapt the (standard) characterization of head-normalizing
terms of the λ-calculus to our call-by-name calculus, i.e. we show that a term t
is name-normalizing iff t is typable in system V.

The characterization is split in two parts. The first one shows that typable
terms in system V are name-normalizing, a result which is based on a weighted
subject reduction property. In contrast to similar results for idempotent intersec-
tion type systems, which are typically based on reducibility arguments, quantita-
tive information of type derivations, obtained by means of non-idempotent types,
provides a completely combinatorial proof. This is exactly the place where the
quantitative approach by means of non-idempotent types makes the difference.
The second part of the characterization shows that name-normalizing terms are
typable in V, and is based on a subject expansion property.

We start with the subject reduction property which uses the following lemma.

Lemma 6 (Substitution). If Φt�Vx:{{σi}}i∈I ;Γ t:τ and (Φi
u�VΔi u:σi)i∈I

then there exists a derivation Φt{x/u} s.t. Φt{x/u}�V Γ +i∈I Δi t{x/u}:τ . More-
over, sz(Φt{x/u}) = sz(Φt) +i∈I sz(Φi

u) − |I|.
Proof. By induction on Φt. Let Φt �V x:{{σi}}i∈I ;Γ λy.u:a so that Γ = ∅ and
I = ∅. Since Φt{x/u} �V ∅ λy.u{x/u}:a, we conclude because ∅ = Γ +i∈∅ Δi.
The other cases are similar to those of the λ-calculus (see for example [7]). ♦

Subject reduction can now be stated in the following form.

Theorem 1 (Weighted Subject Reduction for name). Let Φ �V Γ t:τ . If
t →name t′, then there exists Φ′ s.t. Φ′ �V Γ t′:τ . Moreover, sz(Φ) > sz(Φ′).

432 D. Kesner

Proof. By induction on Φ. The proof proceeds as that of the λ-calculus [7]. It is
worth noticing that when t = (λx.u)u′, the subterm λx.u is necessarily typed in
Φ using rule (→ i), so that Lemma 6 can be applied to conclude. ♦

In order to show that name-normalizing terms are V-typable we use a subject
expansion property, which needs the following lemma.

Lemma 7 (Reverse Substitution). If Φt{x/u} �V Γ t{x/u}:τ , then ∃Γ0,
∃Φt, ∃I, ∃(Δi)i∈I , ∃(σi)i∈I , ∃(Φi

u)i∈I such that Γ = Γ0 +i∈I Δi, and Φt �V
x : {{σi}}i∈I ;Γ0 t:τ and (Φi

u �V Δi u:σi)i∈I .

Proof. By induction on Φt{x/u}. Suppose Φt{x/u} �V ∅ λy.u:a so that Γ = ∅.
There are two cases to consider: (1) t = λy.v and u = v{x/u}. Then Φt �V
∅ λy.v:a, where Γ0 = ∅ and I = ∅ so that the property trivially holds. (2)
t = x and u = λy.v. Then Φt �V x : {{a}} x:a, Φu �V λy.v:a, so that we let
Γ0 = ∅, I = {1}, σ1 = a and Δ1 = ∅ and Γ = ∅ = Γ0 + Δ1.

All the other cases proceed as the one of the λ-calculus [7]. ♦

Theorem 2 (Subject Expansion for name). Let Φ′ �V Γ t′:τ . If t →name t′,
then there exists Φ s.t. Φ �V Γ t:τ .

Proof. By induction on Φ′ using Lemma 7. ♦

We can now state the following full characterization result of this section:

Theorem 3. Let t ∈ Ta. Then, Φ �V Γ t:τ iff t ∈ WN (name).

Proof. Let Φ �V Γ t:τ . Then name-reduction necessarily terminates by
Theorem 1 and thus t ∈ WN (name).

Let t ∈ WN (name) so that t �k
name t′, where t′ ∈ name-nf. We proceed by

induction on k. If k = 0 (i.e. t = t′), then t is a name-nf. We have two cases.

– If t = λy.v, then the property trivially holds with Γ = ∅ and τ = a.
– If t = xt1 . . . tn (n ≥ 0), let Γ = {x:{{τ}}}, where τ = {{ }}→· · · → {{ }}→α (α

is any base type and τ contains n occurrences of {{ }}). By the rule (ax) and n
applications of (→ e) we obtain a derivation in V ending in Γ xt1 . . . tn:α.

Otherwise, let t →name u �k
name t′. By the i.h. we have a derivation in V ending

in Γ u:τ . Thus by Theorem 2 the same holds form t. ♦

5 Characterization of need-normalizing Terms

This section gives a characterization of need-normalizing terms by means of
A-typability, i.e. we show that a term t is need-normalizing iff t is typable in
system A. At first sight, this result follows the same lines of Sect. 4, however, it
is much trickier and requires the development of special tools dealing with need
contexts. To the best of our knowledge, this is the first time that call-by-need
normalization is characterized by means of typing technology.

Reasoning About Call-by-need by Means of Types 433

Similarly to the call-by-name case, we split the characterization proof in two
parts and we use subject reduction and expansion properties to show them. More
precisely, the first part of the characterization states that typable terms in system
A are normalizing in call-by-need, a result based on a weighted subject reduction
property, obtained by using quantitative information of the (non-idempotent)
type derivations of system A. The second part of the characterization states
that need-normalizing terms are typable in system A, a property based on the
subject expansion property.

In contrast to the call-by-name case, handling need-reduction is quite
involved, particularly due to the use of contexts in the rewriting rules defining the
relation. To deal with this difficulty, we introduce a technical tool which consists
in extending system A (cf. Sect. 3) with typing rules for list contexts (Fig. 3).
The type judgments have the form Γ � L � Δ, where Γ,Δ are type assignments
and L is a list context. The left-hand side Γ of a judgment Γ � L � Δ is a type
assignment for the (typed) free variables of L, while the right-hand side Δ is a
type assignment for the term which is supposed to fill in the hole of L. These
rules should then be considered modulo α-conversion. Notice the use of two dif-
ferent kinds of assignments in the second type rule: the assignments (Δi)i∈I are
used to type the copies of u affecting the free occurrences of x in the list L, while
(Δj)j∈J are used to type the copies of u affecting the free occurrences of x in
the term which will fill the hole of L.

Fig. 3. Extending the intersection type system A to list contexts

The following lemma decomposes a type derivation of a term L[t] into one
derivation for the context L and another one for the term t. Reciprocally, context
and term derivations can be combined if their types coincide. The proof can be
done by induction on L.

Lemma 8. ΦL[t] �A Λ L[t] : σ iff ∃Γ , ∃Π, ∃Δ, ∃ΦL, ∃Φt, such that Λ = Γ +Π
and ΦL �A Γ � L � Δ and Φt �A Δ;Π t : σ. Moreover, sz(ΦL[t]) = sz(ΦL) +
sz(Φt) − 1.

Combining different derivable typing judgments of the same list context by
means of multiset union yields a derivable typing judgment. Moreover, their sizes
can be related using the notion of height, defined on list contexts as follows:
height(�) := 1 and height(L′[y/v]) := height(L′) + 1.

434 D. Kesner

Lemma 9. If (Φj
L�AΓj � L � Δj)j∈J , then there exists a derivation ΦL s.t. ΦL�A

+j∈JΓj � L � +j∈JΔj. Moreover, sz(ΦL) = +j∈Jsz(Φ
j
L)−(height(L) ·(|J |−1)).

Proof. Notice that the statement also holds in the case J = ∅. The proof is by
induction on L (see the Appendix for details). ♦

To achieve the proof of the Weighted Subject Reduction property for the
need-calculus, we first need to guarantee soundness of the (partial) substitution
operation used in our framework, i.e. if N[[x]] and u are typable, then N[[u]] is
typable too. Moreover, |K| elements of the multiset type {{σi}}i∈I associated to
x in the type derivation of N[[x]] are consumed, for some K ⊆ I.

Lemma 10 (Partial Substitution). If ΦN[[x]] �A x:{{σi}}i∈I ;Γ N[[x]]:τ and
(Φi

u�AΔi u:σi)i∈I then ∃ΦN[[u]] s.t. ΦN[[u]]�Ax:{{σi}}i∈I�K ;Γ +k∈K Δk N[[u]]:τ ,
for some K ⊆ I where sz(ΦN[[u]]) = sz(ΦN[[x]]) +k∈K sz(Φk

u) − |K|.
Proof. By induction on typing derivations (a similar proof appears in [17]). ♦

To complete the subject reduction argument we still need to guarantee that
every needed variable of a typed term is necessarily typed, a property which is
specified by means of the following lemma.

Lemma 11. If Φ �A Γ N[[x]]:τ , then ∃Γ ′, ∃I �= ∅, and ∃(σi)i∈I such that
Γ = x : {{σi}}i∈I ;Γ ′.

Proof. By induction on N. The base case N = � is straightforward. We only
show here the interesting inductive case N[[x]] = N1[[y]][y/N2[[x]]], for which Φ has
necessarily the following form, where Γ = Π +j∈J Δj .

By the i.h. on the left derivation we have J �= ∅. By the i.h. on the right
derivations Δj = x : {{τ i

j}}i∈Ij ;Δ
′
j and Ij �= ∅ for all j ∈ J . Moreover, Π = x :

{{τk}}k∈K ;Π ′, where K could be empty. Then

Π +j∈J Δj = (x : {{τk}}k∈K ;Π ′) +j∈J (x : {{τ i
j}}i∈Ij ;Δ

′
j) =

x : {{τk}}k∈K +j∈J x : {{τ i
j}}i∈Ij ; (Π

′ +j∈J Δ′
j)

The property then holds for {{σi}}i∈I = {{τk}}k∈K +j∈J {{τ i
j}}i∈Ij and Γ ′ =

Π ′ +j∈J Δ′
j . We have I �= ∅ since J �= ∅ and Ij �= ∅ for all j ∈ J . ♦

Subject reduction can now be stated in a combinatorial way, by using the
sz() measure on derivations defined in Sect. 3.

Theorem 4 (Weighted Subject Reduction for need). Let Φ�A Γ t:τ . If
t →need t′, then there exists Φ′ s.t. Φ′ �A Γ t′:τ . Moreover, sz(Φ) > sz(Φ′).

Proof. By induction on t →need t′, using Lemmas 8, 9, 10 and 11. We refer the
interested reader to the Appendix for full details of the proof. ♦

Reasoning About Call-by-need by Means of Types 435

To show that need-normalizing terms are A-typable we use a subject expan-
sion property, which needs the following lemma.

Lemma 12 (Reverse Partial Substitution). Let N[[x]], s be terms s.t.
x /∈ fv(s) and ΦN[[s]] �A Γ N[[s]]:τ . Then ∃Γ0, ∃ΦN[[x]], ∃I, ∃(Δi)i∈I , ∃(σi)i∈I ,
∃(Φi

s)i∈I s.t. Γ = Γ0 +i∈I Δi and ΦN[[x]] �A x : {{σi}}i∈I + Γ0 N[[x]]:τ and
(Φi

s �A Δi s:σi)i∈I .

Proof. By induction on the structure of N[[s]].

– If N = �, then N[[s]] = s and the result holds, for Γ0 = ∅, |I| = 1 and σ1 = τ .
– If N = λy.M then the property is straightforward by the i.h. (since y /∈ fv(s)

by α-conversion).
– If N = Mr then N[[s]] = M[[s]]r and by construction Γ = Π +j∈J Γj and ΦM[[s]] �

Π M[[s]]:{{ρj}}j∈J →τ and (Φj
r � Γj r:ρj)j∈J . By the i.h. Π = Π0 +i∈I Δi

where x : {{σi}}i∈I + Π0 M[[x]]:{{ρj}}j∈J → τ and (Δi s:σi)i∈I . Then, by
the rule (→ e), x : {{σi}}i∈I + Π0 +j∈J Γj M[[x]]r:τ . The result then holds for
Γ0 := Π0 +j∈J Γj .

– If N = rM then N[[s]] = rM[[s]] and by construction Γ = Π +j∈J Γj and Φr �

Π r:{{ρj}}j∈J →τ and (Φj
M[[s]] � Γj M[[s]]:ρj)j∈J . By the i.h. for each j ∈ J ,

Γj = Γ j
0 +i∈Ij Γ j

i where x : {{σi}}i∈Ij + Γ j
0 M[[x]]:ρj and (Γ j

i s:σi)i∈Ij . Let
I := ∪j∈JIj . Then, by the rule (→ e), Π +j∈J (x : {{σi}}i∈Ij + Γ j

0) rM[[x]]:τ .
Note that Π +j∈J (x : {{σi}}i∈Ij + Γ j

0) = x : {{σi}}i∈I + Π +j∈J Γ j
0 . The result

then holds for Γ0 := Π +j∈J Γ j
0 .

– All the remaining cases are similar to the previous ones. ♦

Theorem 5 (Subject Expansion for need). Let Φ′ �A Γ t′:τ . If t →need t′,
then there exists Φ s.t. Φ �A Γ t:τ .

Proof. By induction on Φ′ using Lemmas 8, 9 and 12. ♦

To state the full characterization result of this section, we still need to relate
typing of Te-terms in system A with typing of Ta-terms in system V.

Lemma 13. Let t ∈ Te. Then Φ �V Γ t↓:σ implies Φ′ �A Γ t:σ.

Proof. By induction on t.

– If t = x, then t↓ = x. The derivation Φ has the form x : {{σ}} x:σ so that Φ′

has also the form x : {{σ}} x:σ.
– If t = λx.u, then t↓ = λx.u↓. We have Γ = Δ \\x and σ = Δ(x) → τ ,

where Δ \\x λx.u↓:Δ(x) → τ is necessarily derivable from a derivation
Φu �V Δ u↓:τ . The i.h. gives Φ′

u �A Δ u:τ so that we construct Φ′ �A
Δ \\x λx.u:Δ(x)→τ which concludes the proof.

– If t = t1t2, then the proof proceeds by induction as in the previous case.
– If t = t1[x/t2], then t↓ = t1

↓{x/t2
↓}. By Lemma 7 we know that Γ = Γ0 +i∈I

Δi and Φt1↓ �V x : {{σi}}i∈I ;Γ0 t1
↓:τ and (Φi

t2↓ �V Δi t2
↓:σi)i∈I . The i.h.

then gives Φ′
t1 �A x : {{σi}}i∈I ;Γ0 t1:τ and (Φ′i

t2 �A Δi t2:σi)i∈I . We then
conclude Φ′

t �A Γ t1[x/t2]:τ by using rule (cut). ♦

436 D. Kesner

We can now state the full characterization result, which is one of the main
results of this paper. The implication “typable terms in system A are need-
normalizing” is obtained through the weighted subject reduction, which provides
a completely combinatorial argument of this property, as in the call-by-name
case. This is exactly the advantage provided by the quantitative approach based
on non-idempotent types, which makes the difference with a qualitative system
based on idempotent intersection types.

Theorem 6. Let t ∈ Te. Then, Φ �A Γ t:τ iff t ∈ WN (need).

Proof. Let Φ�Γ t:τ . Then need-reduction necessarily terminates by Theorem 4
so that t ∈ WN (need).

Let t ∈ WN (need), so that t �k
need t′, where t′ ∈ need-nf. We proceed by

induction on k. If k = 0 (i.e. t = t′), then t is in need-nf. By Lemma 3 t↓ is in
name-nf. Then Φ �V Γ t↓:σ by Theorem 3 and Φ �A Γ t:σ by Lemma 13.

Otherwise, let t →need u →k
need t′. By the i.h. we have Φ′ �A Γ u:τ , thus by

Theorem 5 we obtain Φ �A Γ t:τ . ♦

6 Soundness and Completeness

This section uses the two characterization results developed in Sects. 4 and 5
to prove soundness and completeness of call-by-need w.r.t call-by-name. More
precisely, a call-by-name interpreter stops in a value if and only if the call-by-need
interpreter stops in an answer. This implies that call-by-need and call-by-name
are observationally equivalent, so that in particular call-by-need turns out to be
a correct implementation of call-by-name.

Lemma 14. Let t ∈ Ta. Then t ∈ WN (need) ⇔ t ∈ WN (name).

Proof. Let t ∈ WN (need). Then Φ�A Γ t:τ holds by Theorem 6, and Φ�V Γ
t:τ holds by Lemma 4, thus we get t ∈ WN (name) by Theorem 3. Conversely, let
t ∈ WN (name). Then Φ �V Γ t:τ holds by Theorem 3, so that Φ �A Γ t:τ
holds by Lemma 4, and thus we get t ∈ WN (need) by Theorem 6. ♦

Given a reduction relation R on a term language T , and an associated notion
of context for the term language T , we define t to be observationally equiv-
alent to u, written t ∼=R u, if and only if C[t] ∈ WN (R) ⇔ C[s] ∈ WN (R)
for every context C. Since we work with two different term languages Ta and Te,
we first need to introduce their associated notions of contexts C and C′, which
represent, respectively, contexts without and with explicit substitutions.

C ::= � | λx.C | C t | t C
C′ ::= � | λx.C′ | C′ t | t C′ | C′[x/t] | t[x/C′]

We can thus conclude with the last main result of the paper.

Reasoning About Call-by-need by Means of Types 437

Corollary 1. For all terms t and u in Ta, t ∼=name u iff t ∼=need u.

Proof. First of all let us consider the relation =B, which is the least equivalence
relation generated by the axiom (λx.t1)t2 = t1[x/t2]. We remark that when t
is typable in A, and t =B t′, then t′ is typable in A. This means that we can
indistinctly quantify over the two sort of contexts C and C′ previously defined:
indeed, from the set of all the contexts C we can construct the set of all the
contexts C′, and vice-versa. The proof of the corollary then proceeds as follows.
Take t, u ∈ Ta. Then t ∼=name u iff (definition)
C[t] ∈ WN (name) ⇔ C[u] ∈ WN (name) for every context C iff (Theorem 3)
C[t] is typable in V ⇔ C[u] is typable in V for every context C iff (Lemma 4)
C[t] is typable in A ⇔ C[u] is typable in A for every context C iff (Remark)
C′[t] is typable in A ⇔ C′[u] is typable in A for every context C′ iff (Theorem 6)
C′[t] ∈ WN (need) ⇔ C′[u] ∈ WN (need) for every context C′ iff (definition)
t ∼=need u. ♦

7 Conclusion

This paper gives the first full characterization of call-by-need normalization by
means of intersection types. This result, together with the full characterization
of call-by-name normalization, provides a new completeness proof for call-by-
need, which is only based on logical arguments and does not make use of any
complicated notion of rewriting. The use of non-idempotent types allows us to
obtain the result in a combinatorial way, by providing quantitative information
about reduction sequences, and without resorting to any reducibility argument.

The paper only considers a core language for call-by-need, but it would be
interesting to consider other constructors of lazy languages, e.g. data construc-
tors, case-expressions and Haskell’s seq operators. Moreover, the results in the
paper could be extended to the cyclic call-by-need letrec calculus as well as to
full (strong) need normal forms (ongoing work).

Last but not least, we would also like to use the ideas in [16] in order to
relate call-by-need and needed reduction by means of intersection types.

A Appendix

Lemma 9. If (Φj
L �A Γj � L � Δj)j∈J , then ΦL �A +j∈JΓj � L � +j∈JΔj. More-

over, sz(ΦL) = +j∈Jsz(Φ
j
L) − (height(L) · (|J | − 1)).

Proof. The proof is by induction on L. The case L = � is straightforward since
Γj = Δj = ∅ so that +j∈JΓj = +j∈JΔj = ∅. We have sz(Φ�) = 1 = |J | − |J | +
1 = |J | − [1 · (|J | − 1)] = +j∈Jsz(Φ

j
�) − (height(�) · (|J | − 1)).

Let L = L′[y/u]. Then for each j ∈ J , the derivation Φj
L has the following

form, where Γj = Πj +i∈Kj�Hj
Λj

k and Δj = Δ′
j ; y : {{σh}}h∈Hj

.

438 D. Kesner

By the i.h. we have ΦL′�+j∈J(y : {{σk}}k∈Kj
;Πj) � L′ � +j∈JΔ′

j , but +j∈J(y :
{{σk}}k∈Kj

;Πj) = y : {{σk}}j∈J,k∈Kj
; +j∈JΠj . We thus construct the derivation

ΦL:

We conclude with the first statement since +j∈JΓj = +j∈JΠj +j∈J,i∈Kj�Hj

Λj
k and +j∈JΔj = +j∈JΔ′

j , y : {{σh}}j∈J,h∈Hj
. Moreover:

sz(ΦL) = sz(ΦL′) +j∈J,i∈Kj�Hj sz(Φ
Ψ

j,i
u
) + 1 =i.h.

+j∈Jsz(ΦL′)− (height(L′) · (|J | − 1)) +j∈J,i∈Kj�Hj sz(Φ
Ψ

j,i
u
) + 1 =i.h.

+j∈Jsz(ΦL′) +j∈J,i∈Kj�Hj sz(Φ
Ψ

j,i
u
) + |J | − [(height(L′) + 1) · (|J | − 1)] =

+j∈Jsz(ΦL)− (height(L) · (|J | − 1)) ♦

Theorem 4 (Weighted Subject Reduction for need). Let Φ �A Γ t:τ . If
t →need t′, then there exists Φ′ s.t. Φ′ �A Γ t′:τ . Moreover, sz(Φ) > sz(Φ′).

Proof. By induction on t →need t′.

– If t = L[λx.u]s →dB L[u[x/s]] = t′, then one shows Φ′ � Γ t′:τ and sz(Φ) >
sz(Φ′) by induction on L. See the first case of Lemma 2 in [17] (pp. 19).

– If t = N[[x]][x/L[u]] →lsv L[N[[u]][x/u]] = t′, then the derivation Φ has the
following form, where Γ = Γ0 +i∈I Δi.

By Lemma 8, for all i ∈ I, there exist Πi
1,Π

i
2,Π

i
3 such that Φi

L � Πi
1 � L � Πi

2,
Φi

u � Πi
2;Π

i
3 u : σi and Δi = Πi

1 + Πi
3.

Then, from the derivations ΦN[[x]] and (Φi
u)i∈I we get, by Lemma 10, a deriva-

tion ΦN[[u]] � x : {{σi}}i∈I\K ;Γ0 +k∈K (Πk
2 ;Πk

3) N[[u]] : σ for some K ⊆ I.
Therefore, we can construct the following derivation ΦN[[u]][x/u].

The last sequent can be written Γ0 + (+i∈IΠ
i
2; +i∈IΠ

i
3) N[[u]][x/u] : σ.

Now, from ΦN[[x]] and Lemma 11 we know that I �= ∅. We can
thus apply Lemma 9 to (Φi

L)i∈I and we get ΦL � +i∈IΠ
i
1 � L � +i∈IΠ

i
2.

We can thus apply Lemma 8 to ΦL and ΦN[[u]][x/u], obtaining Φ′ �
Γ0 +i∈I Π1

1 +i∈I Πi
3 L[N[[u]][x/u]] : σ.

Reasoning About Call-by-need by Means of Types 439

We can then conclude with the first statement since Γ0 +i∈I Π1
1 +i∈I Πi

3 =
Γ0 +i∈I Δi = Γ as required. Moreover, for the second one, we have two
equalities:

sz(Φ) = sz(ΦN[[x]]) +i∈I sz(Φi
L[u]) + 1 =L.8

sz(ΦN[[x]]) +i∈I (sz(Φi
L) + sz(Φi

u) − 1) + 1 =
sz(ΦN[[x]]) +i∈I sz(Φi

L) +i∈I sz(Φi
u) − (|I| − 1) = Z − (|I| − 1)

and

sz(Φ′) =L.8 sz(ΦL) + sz(ΦN[[u]][x/u]) − 1 =
sz(ΦL) + sz(ΦN[[u]]) +i∈I\K sz(Φi

u) + 1 − 1 =
sz(ΦL) + sz(ΦN[[u]]) +i∈I\K sz(Φi

u) =L.10

sz(ΦL) + sz(ΦN[[x]]) +k∈K sz(Φk
u) − |K| +i∈I\K sz(Φi

u) =L.9

+i∈Isz(Φi
L) − [height(L) · (|I| − 1)] + sz(ΦN[[x]]) +i∈I sz(Φi

u) − |K| =
sz(ΦN[[x]]) +i∈I sz(Φi

L) +i∈I sz(Φi
u) − [height(L) · (|I| − 1)] − |K| =

Z − [height(L) · (|I| − 1)] − |K|

To conclude, we know by Lemma 10 that K �= ∅. Therefore, |I| − 1 ≤
height(L) · (|I| − 1) so that Z − (|I| − 1) ≥ Z − [height(L) · (|I| − 1)] >
Z − [height(L) · (|I|−1)]−|K|. We thus conclude sz(Φ) > sz(Φ′) as required.

– If t = N1[[x]][x/N2[u]] →need N1[[x]][x/N2[u′]] = t′ comes from N[u] →need N[u′],
then Φ has the following form, where Γ = Γ0 +i∈I Δi.

By the i.h. both Πi
N2[u]

� Δi N2[u′]:σi and sz(Φi
N2[u]

) > sz(Πi
N2[u]

) hold for
all i ∈ I. The first statement gives Φ′ � Γ0 +i∈I Δi N1[[x]][x/N2[u′]]:τ . The
second one gives sz(Φ) > sz(Φ′) since I �= ∅ holds by Lemma 11.

– The cases t = N[u]v →need N[u′]v = t′ and t = N[u][x/v] →need N[u′][x/v] = t′

coming from N[u] →need N[u′] are straightforward inductive cases. ♦

References

1. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: ICFP.
ACM Press (2014)

2. Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. J. Funct. Program.
7(3), 265–301 (1997)

3. Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: The call-by-need
lambda calculus. In: POPL, pp. 233–246. ACM Press (1995)

4. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the
completeness of type assignment. Bull. Symbolic Logic 48, 931–940 (1983)

5. Bernadet, A., Lengrand, S.: Non-idempotent intersection types and strong normal-
isation. Logical Methods Comput. Sci. 9(4:3), 1–46 (2013)

6. Boudol, G., Curien, P.-L., Lavatelli, C.: A semantics for lambda calculi with
resources. Math. Struct. Comput. Sci. 9(4), 437–482 (1999)

440 D. Kesner

7. Bucciarelli, A., Kesner, D., Ronchi Della Rocca, S.: The inhabitation problem for
non-idempotent intersection types. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS
2014. LNCS, vol. 8705, pp. 341–354. Springer, Heidelberg (2014)

8. Cardone, F., Coppo, M.: Two extension of Curry’s type inference system. In:
Odifreddi, P. (ed.) Logic and Computer Science. APIC Series, vol. 31, pp. 19–75.
Academic Press, New York (1990)

9. Chang, S., Felleisen, M.: The call-by-need lambda calculus, revisited. In: Seidl, H.
(ed.) ESOP 2012. LNCS, vol. 7211, pp. 128–147. Springer, Heidelberg (2012)

10. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Functional characters of solvable
terms. Math. Logic Q. 27(2–6), 45–58 (1981)

11. Coppo, M., Dezani-Ciancaglini, M.: A new type-assignment for lambda terms.
Archiv für Math. Logik Grundlagenforschung 19, 139–156 (1978)

12. Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality theory
for the λ-calculus. Notre Dame J. Formal Logic 21, 685–693 (1980)

13. Danvy, O., Zerny, I.: A synthetic operational account of call-by-need evaluation.
In: PPDP, pp. 97–108. ACM Press (2013)

14. De Benedetti, E., Ronchi Della Rocca, S.: Bounding normalization time through
intersection types. In: ITRS 2012, EPTCS, pp. 48–57 (2013)

15. de Carvalho, D.: Sémantiques de la logique linéaire et temps de calcul. Thèse de
doctorat, Université Aix-Marseille II (2007)

16. Gardner, P.: Discovering needed reductions using type theory. In: Hagiya, M.,
Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 555–574. Springer, Heidelberg
(1994)

17. Kesner, D., Ventura, D.: Quantitative types for intuitionistic calculi. Technical
report (2014). https://hal.archives-ouvertes.fr/hal-00980868

18. Kesner, D., Ventura, D.: Quantitative types for the linear substitution calculus. In:
Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 296–310.
Springer, Heidelberg (2014)

19. Kfoury, A.J.: A linearization of the lambda-calculus and consequences. Technical
report, Boston Universsity (1996)

20. Kfoury, A.J.: A linearization of the lambda-calculus and consequences. J. Logic
Comput. 10(3), 411–436 (2000)

21. Kfoury, A.J., Wells, J.B.: Principality and type inference for intersection types
using expansion variables. Theor. Comput. Sci. 311(1–3), 1–70 (2004)

22. Krivine, J.-L.: Lambda-Calculus, Types and Models. Ellis Horwood, Hemel Hemp-
stead (1993)

23. Mairson, H., Neergaard, P.M.: Types, potency, idempotency: why nonlinearity and
amnesia make a type system work. In: ICFP, pp. 138–149. ACM (2004)

24. Maraist, J., Odersky, M., Turner, D.N., Wadler, P.: Call-by-name, call-by-value,
call-by-need and the linear lambda calculus. Theoret. Comput. Sci. 228(1–2), 175–
210 (1999)

25. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. J. Funct.
Program. 8(3), 275–317 (1998)

26. Pagani, M., Ronchi Della Rocca, S.: Linearity, non-determinism and solvability.
Fundam. Informaticae 103, 358–373 (2010)

27. Pagani, M., della Rocca, S.R.: Solvability in resource lambda-calculus. In: Ong, L.
(ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 358–373. Springer, Heidelberg (2010)

https://hal.archives-ouvertes.fr/hal-00980868

Reasoning About Call-by-need by Means of Types 441

28. Plotkin, G.D.: Call-by-Name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975)

29. van Bakel, S.: Complete restrictions of the intersection type discipline. Theor.
Comput. Sci. 102(1), 135–163 (1992)

30. Wadsworth, C.: Semantics and Pragmatics of the Lambda Calculus. PH.D. thesis,
Oxford University (1971)

Algorithms for Infinite Systems

Coverability Trees for Petri Nets
with Unordered Data

Piotr Hofman1, S�lawomir Lasota2, Ranko Lazić3, Jérôme Leroux4,
Sylvain Schmitz1(B), and Patrick Totzke3

1 LSV, ENS Cachan & CNRS, Université Paris-Saclay, Cachan, France
schmitz@lsv.ens-cachan.fr

2 University of Warsaw, Warsaw, Poland
3 DIMAP, Department of Computer Science, University of Warwick, Coventry, UK

4 LaBRI, CNRS, Paris, France

Abstract. We study an extension of classical Petri nets where tokens
carry values from a countable data domain, that can be tested for equal-
ity upon firing transitions. These Unordered Data Petri Nets (UDPN) are
well-structured and therefore allow generic decision procedures for several
verification problems including coverability and boundedness.

We show how to construct a finite representation of the coverability set
in terms of its ideal decomposition. This not only provides an alternative
method to decide coverability and boundedness, but is also an important
step towards deciding the reachability problem. This also allows to answer
more precise questions about the reachability set, for instance whether
there is a bound on the number of tokens on a given place (place bound-
edness), or if such a bound exists for the number of different data values
carried by tokens (place width boundedness).

We provide matching Hyper-Ackermann bounds on the size of cover-
ability trees and on the running time of the induced decision procedures.

1 Introduction

Unordered data Petri nets (UDPN [15]) extend Petri nets by decorating tokens
with data values taken from some countable data domain D. These values act as
pure names: they can only be compared for equality or non-equality upon firing
transitions. Such systems can model for instance distributed protocols where
process identities need to be taken into account [21]. UDPNs also coincide with
the natural generalisation of Petri nets in the framework of sets with atoms [3].
In spite of their high expressiveness, UDPNs fit in the large family of Petri net

P. Hofman—Partially funded by the Polish National Science Centre grant
2013/09/B/ST6/01575 and by Labex Digicosme, Université Paris-Saclay, project
VERICONISS.
S. Lasota—Partially funded by the Polish National Science Centre grant
2012/07/B/ST6/01497.
R. Lazić and P. Totzke—Partially supported by the EPSRC grant EP/M011801/1.
S. Schmitz—Partially supported by the ANR grant ANR-14-CE28-0005 prodaq and
by the Leverhulme Trust Visiting Professorship VP1-2014-041.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 445–461, 2016.
DOI: 10.1007/978-3-662-49630-5 26

446 P. Hofman et al.

Fig. 1. A short taxonomy of some well-structured extensions of Petri nets. Complexities
in violet refer to the coverability and termination problems, and can be taken as proxies
for expressiveness; the exact complexities of coverability and termination in ν-Petri nets
and UDPNs are unknown at the moment. Place boundedness is decidable below the
yellow line and undecidable above. As indicated by the dashed arrows, freshness can
be enforced using a dense linear order or whole-place operations (Colour figure online).

extensions among the well-structured ones [1,7]. As such, they still enjoy decision
procedures for several verification problems, prominently safety (through the
coverability problem) and termination.

Unordered data Petri nets have an interesting position in the taxonomy of
well-structured Petri net extensions (see Fig. 1). Indeed, all their extensions forgo
the decidability of the reachability problem (whether a target configuration is
reachable) and of the place boundedness problem (whether the number of tokens
in a given place can be bounded along all runs): this is the case of ν-Petri
nets [21] that allow to create fresh data values, of ordered data Petri nets [15]
that posit a dense linear ordering on D, and of unordered data nets [15] that allow
to perform ‘whole-place’ operations, which move and/or duplicate all the tokens
from a place to another. By contrast, it is currently open whether reachability is
decidable in UDPNs, and a consequence of our results in this paper is that place
boundedness is decidable—which is a significant first step if we wish to adapt to
UDPNs some of the known algorithms for reachability in Petri nets [13,18].

Contributions. In this paper, we show how to construct finite coverability trees
for UDPNs, adapting the existing construction of Karp and Miller [12] for Petri
nets. Such trees are constructed forward from an initial configuration like reach-
ability trees, but approximate the latter by accelerating sequences of transitions
and explicitly manipulating limits of reachable configurations as downwards-
closed sets (see Sect. 4.1). We rely for all this on a general theory for represent-
ing downwards-closed sets as finite unions of ideals developed by Finkel and
Goubault-Larrecq [9] for this exact purpose (see Sect. 3).

Coverability Trees for Petri Nets with Unordered Data 447

Coverability trees contain a wealth of information about the system at hand,
and allow to answer various coverability and boundedness questions—allowing us
to derive a new result: the place boundedness problem is decidable for UDPNs,
and so are its variants, like place width- and place depth boundedness (see
Sect. 2). We also establish in Sect. 5 matching ‘hyper-Ackermannian’ lower and
upper bounds on the size of UDPNs coverability trees. This yields Fωω upper
bounds for the already mentioned decidable problems in UDPNs, in terms of
the fast-growing complexity classes (Fα)α from [23]. These complexity results
rely largely on the work of Rosa-Velardo [20] on the complexity of coverability
in unordered data nets. Due to space constraints, most proof details are omitted
but can be found online in the full version of the paper available from https://
hal.inria.fr/hal-01252674.

Related Work. A coverability tree construction has already been undertaken by
Rosa-Velardo, Martos-Salgado, and de Frutos-Escrig [22] in the case of ν-Petri
nets, and inescapably there are many similarities between their work and ours.
Our construction does however not merely remove freshness constraints from
theirs: (1) we start a new and rely on a strong invariant on the form of ideals
in UDPN coverability trees, which leads to significant simplifications but would
be markedly difficult to extract from Rosa-Velardo et al.’s [22] construction, and
(2) coverability trees are not necessarily finite for ν-Petri nets (place boundedness
is indeed undecidable [21]), which means that our termination argument and
complexity bounds are entirely new considerations.

Like Rosa-Velardo et al. [22] we rely on the work of Finkel and Goubault-
Larrecq [9] on forward analysis of well-structured systems. Finkel and Goubault-
Larrecq provide in particular an abstract generic procedure, but without
guarantee of termination in general, and their framework needs to be instan-
tiated for each specific class of systems.

2 Model

Our presentation of unordered data Petri nets differs from the original one [15] on
two counts: we work with an equivalent formalism with more of a vector addition
system [12] flavour, and because we need to work with ideals we define the syntax
and the semantics on extended configurations, which allow for infinitely many
different data values and infinite counts.

Let Z and N denote the sets of integers and non-negative integers respectively,
and complete them as Zω

def= Z�{ω} and Nω
def= N�{ω} with a new top element

ω with ω > z and z + ω = ω + z = ω for all z in Z. Given a dimension k
in N, we denote the projection into the ith component of a vector v ∈ Z

k
ω by

v[i] and define the product ordering and sum over Z
k
ω componentwise: u ≤ v if

u[i] ≤ v[i] for all 1 ≤ i ≤ k, and (u + v)[i] def= u[i] + v[i] for all 1 ≤ i ≤ k. We
write 0 for the vector with 0 on all components.

Data Vectors. Fix some countable domain D of data values and a dimension k in
N. A data vector is a function f :D → Z

k
ω. Data vectors can be partially ordered

https://hal.inria.fr/hal-01252674
https://hal.inria.fr/hal-01252674

448 P. Hofman et al.

and summed pointwise: f ≤ g if f(d) ≤ g(d) for all d in D, and (f + g)(d) def=
f(d) + g(d) for all d in D. As usual we write f < g if f ≤ g and f(d) < g(d) for
some d in D. For a subset K ⊆ {1, . . . , k} we write f�K for the projection of f

into components in K: for all d in D, f�K(d) def= (f(d))�K . The support of a data
vector f is Supp0(f) def= {d ∈ D | f(d) �= 0}; f is finitely supported if Supp0(f)
is finite. We say that a data vector f is non-negative if f(d) belongs to N

k
ω for

all d in D. It is finite if f(d) belongs to Z
k for all d and it is finitely supported.

We call bijections σ : D → D (data) permutations and write fσ for the com-
position of a permutation σ and a data vector f . If two data vectors f, g satisfy
f = gσ for some permutation σ, we say f and g are equal up to permutation
and write f ≡ g.

In the sequel we will consider sets of data vectors that are finite up to per-
mutation: a set X of data vectors is finite up to permutation if there is a finite
subset X ′ of X such that every f ∈ X is equal up to permutation to some
f ′ ∈ X ′. Note that if X is closed under permutations then X ′ can be used as its
finite presentation; any such finite set X ′ we call representative of X.

Definition 2.1 (UDPN). An unordered data Petri net (UDPN) is a finite set

T of finite data vectors. A transition is a data vector t
def
= fσ, where f ∈ T

and σ is a data permutation. There is a step f
t−→ g between non-negative data

vectors f, g if g = f + t for some transition t. Note that this enforces that
f(d) + t(d) ≥ 0 for all d in D since g is non-negative. We simply write f −→ g if
f

t−→ g for some transition t and let ∗−→ denote the transitive and reflexive closure
of −→.

A configuration is a finite non-negative data vector f , i.e. f(d) belongs to
N

k for all d in D, and f(d) = 0 for almost all d in D. We write Confs for
the set of configurations and note that Confs is closed under UDPN steps. The
reachability set from a given vector f is defined as

Reach(f)
def
= {g ∈ Confs | f

∗−→ g}. (1)

Observe that UDPNs over any domain with cardinality |D| = 1 are classical
vector addition systems [12]. Notice also that, the set of transitions in an UDPN
is finite up to permutations of D and that the step relation is closed under
permutations: For every non-negative data vector f , transition t and permutation
σ we have that

f
t−→ g implies fσ

tσ−→ gσ. (2)

Example 2.2. For the domain D
def= N and k

def= 2, consider a 2-dimensional
UDPN T = {t1, t2}, with vectors t1, t2 defined as t1 : 0
→ (1, 0) and t1 : n
→
(0, 0) for all n > 0, and t2 : 0
→ (−1,−1), t2 : 1
→ (1, 1) and t2 : n
→ (0, 0) for
all n > 1.

The configuration f0 with f0 : 0
→ (1, 1) and f0 : n
→ (0, 0) for n > 0,
has infinitely many t1-successors. Namely, gi

def= f0 + t1σi for every permutation

Coverability Trees for Petri Nets with Unordered Data 449

Fig. 2. A place/transition representation of the UDPN of Example 2.2 in the style
of [11,21]. Different data values are depicted though differently coloured tokens in
places (the circles), and through differently named variables in transitions (the boxes
and arrows).

σi that swaps 0 and i ∈ D. However, there are only two such successors up to
permutation because gi ≡ gj for all i, j > 0. The reachability set of f0 is

Reach(f0) =

⎧
⎨

⎩
g

∃d1, d2, . . . , dm ∈ D ∃n1, n2, . . . , nm ∈ N

g(d1) = (n1, 1) and ∀1 < i ≤ m, g(di) = (ni, 0),
∀d ∈ D \ {d1, d2, . . . , dm} g(d) = (0, 0)

⎫
⎬

⎭
. (3)

In the sequel, we present UDPNs only up to permutation in matrix form
by juxtaposing the vectors from their finite supports: we write t1

def=
[
1
0

]
, t2

def=
[−1 1

−1 1

]
and f0

def=
[
1
1

]
. The t1-successors of f0 are g0 =

[
2
1

]
and gi =

[
1
1

]
+[

1
0

]
=

[
1 1
1 0

]
for i �= 0. The latter is depicted in Fig. 2 in the style of coloured

place/transition nets. The reachability set of f0 can be written as Reach(f0) ={[
n0 n1 ··· nm
1 0 ··· 0

] | m ≥ 0, n0, . . . , nm ≥ 1
}
.

Embeddings. We say that a data vector f embeds into a data vector g and write
f g (resp. f � g) if there exists an injection π:D → D such that f ≤ gπ
(resp. f < gπ). The injection π itself is called an embedding (of f into g) and
a permutation embedding in case it is bijective. Given a set of configurations C,
its downward-closure ↓C is {f ∈ Confs | ∃g ∈ C . f g}, and as usual a set C
is downwards-closed if ↓C = C.

Finitely supported data vectors are isomorphic to finite multisets of vec-
tors in Z

k
ω when working up to data permutation. Moreover, on permutation

classes of finitely supported data vectors, the embedding ordering coincides with
the usual embedding ordering over finite multisets of vectors; in consequence,
UDPN configurations are well-quasi-ordered by the embedding ordering. Thus
an UDPN defines a quasi-ordered transition system (Confs,−→,), which satis-
fies a (strong) compatibility condition as shown in the following lemma. Together
with the fact that (Confs,) is a wqo, this entails that it is a well-structured
transition system in the sense of [1,7].

Lemma 2.3. (Strong Strict Compatibility). Let f, f ′, g be configurations.
If f f ′ (resp. f � f ′) and f −→ g, then there exists a configuration g′ with
f ′ −→ g′ and g g′ (resp. g � g′).

Proof. Consider a finite data vector t such that f
t−→ g, and a permutation

π of D such that f ≤ f ′π (recall that, when working with finitely supported
data vectors, embeddings can be assumed to be permutations). We claim that

450 P. Hofman et al.

g′ def= f ′ + tπ−1 satisfies f ′ tπ−1

−−−→ g′ and g ≤ g′π. Indeed, for all d in D, noting
e

def= π(d),

g(d) = f(d) + t(d) ≤ f ′(π(d)) + t(d) = f ′(e) + t(π−1(e)) = g′(e) = g′(π(d)) .

Furthermore, assuming f < f ′π, for at least one d in D the above inequality is
strict. ��

Decision Problems. For the purpose of verification, we are interested in standard
decision problems for UDPN, including reachability (does f

∗−→ g hold for given
configurations f and g?), coverability (given configurations f, g, does there exists
g′ � g s.t. f

∗−→ g′?), and boundedness (is Reach(f) finite up to permutation?).
While the decidability of reachability remains open, well-structuredness of

UDPN (and some basic effectiveness assumptions) implies that the coverabil-
ity and boundedness problems are decidable using the generic algorithms from
[1,7]. In fact, decidability holds more generally for ordered data Petri nets
[15, Theorm 4.1]. For the coverability problem, Rosa-Velardo [20, Theorem 1]
proved an HyperAckermann upper bound (Fωω in the hierarchy from [23];
see Sect. 5), while Lazić et al. [15, Theorem 5.2] proved a Tower lower bound
(F3 in the same hierarchy). The complexity of the boundedness problem has not
been studied before. Furthermore, the following, more precise variant of bound-
edness called place boundedness was not known to be decidable:

Input: An UDPN, a configuration f , and a set of coordinates K ⊆ {1, . . . , k}.
Question: Is {g�K | g ∈ Reach(f)} finite up to permutation?

In the presence of an infinite data domain D, place boundedness can be fur-
ther refined: even if infinitely many configurations are reachable, the system can
still be bounded in the sense that there exists a bound on the number of different
data values in reachable configurations; Rosa-Velardo and de Frutos-Escrig [21]
call this bounded width. Similarly, there may exist some bound on the multiplici-
ties with which any data value occurs, while the number of different data values
is unbounded; Rosa-Velardo and de Frutos-Escrig [21] call this bounded depth.

We formalise the resulting decision problems in our notation as follows. The
place width boundedness problem is given as:

Input: An UDPN, a configuration f , and a set of coordinates K ⊆ {1, . . . , k}.
Question: Is {|Supp0(g�K)| | g ∈ Reach(f)} finite?

The place depth boundedness problem is the following:

Input: An UDPN, a configuration f , and a set of coordinates K ⊆ {1, . . . , k}.
Question: Is {g�K(d) | g ∈ Reach(f), d ∈ D} finite?

If the answer to the depth (width) boundedness problem is positive we call those
components i ∈ K depth (width) bounded.

Coverability Trees for Petri Nets with Unordered Data 451

Example 2.4. From the initial configuration f0 =
[
1
1

]
, the UDPN from

Example 2.2 can reach any configuration of the form
[

n
1

]
in n many t1-steps,

all exercised on the same data value. Similarly, any configuration of the form[
1 1 ··· 1
1 0 ··· 0

]
with a support of size n + 1 can be reached after a sequence of n

transitions t1, each exercised on a different data value. Consequently, the first
component is neither depth nor width bounded.

However, any reachable configuration g will satisfy
∑

d∈D
g(d)[2] = 1. In Petri

net parlance, there is always exactly one token in the second place. The system
is thus place bounded for K

def= {2}.

The main contribution of this paper is the effective computability of a suitable
abstraction of the classical coverability tree construction [12] for UDPNs. This
provides a way to decide all variants of the boundedness problem mentioned
above. We summarise the consequences of our construction below.

Theorem 2.5. In UDPNs, place depth boundedness implies place width
boundedness. In consequence, place depth boundedness coincides with place
boundedness.

Theorem 2.6. The boundedness, place boundedness, and place width bounded-
ness problems for UDPNs are in Fωω , i.e. in HyperAckermann.

Let us emphasise the importance of decidability of place boundedness: first,
the problem is undecidable in all the extensions of UDPNs in Fig. 1. Moreover,
in the case of Petri nets, the decidability of place boundedness plays a crucial
role in the decidability proofs for reachability [13,14,16,18], hence Theorem 2.6
provides one of the basic building blocks for future attempts at proving the
decidability of reachability for UDPNs.

3 Simple Ideals

A key observation about all decision problems mentioned in the previous section
is that they do not require computing the reachability set: they can all be solved
given some suitable representation of the cover [9], defined as

Cover(f) def= ↓Reach(f), (4)

for f the initial configuration. Indeed, coverability reduces to checking whether
g ∈ Cover(f), boundedness to checking whether Cover(f) is finite up to permu-
tation of D, and place boundedness to checking whether {g�K | g ∈ Cover(f)}
is finite up to permutation of D. The main property of the coverability tree we
construct in Sect. 4 is that we can extract a suitable representation of Cover(f).

Ideals and Clovers. We refer the reader to the work of Finkel and Goubault-
Larrecq [8,9] for details; it suffices to say that downwards-closed sets of con-
figurations can be represented as finite unions of so-called configuration ideals.
Formally, a configuration ideal J is a non-empty, downwards-closed, and directed

452 P. Hofman et al.

set of configurations; this last condition means that, if f and f ′ are configurations
in J , then there exists h in J with f h and f ′ h. Crucially for algorith-
mic considerations, a configuration ideal J can in turn be represented as the
downward-closure

J = ↓g
def= {h ∈ Confs | h g} (5)

of a non-negative data vector g having a finite range: g(D) is a finite subset
of N

k
ω. We can check that every such ↓g is a configuration ideal (see [8,9] for

the converse): it is non-empty and downwards-closed by definition, and we can
check it is also directed. Indeed, if f , f ′ are configurations and π, π′ are injections
with f ≤ gπ and f ′ ≤ gπ′, then since f and f ′ are finitely supported we can
assume π and π′ to be permutations, and we can define a configuration h ≤ g
such that f ≤ hπ and f ′ ≤ hπ′: set h as the pointwise least upper bound
h(d)[i] def= max(f(π−1(d))[i], f ′(π′−1(d))[i]) ≤ g(d)[i] for all d and 1 ≤ i ≤ k.

Cover(f), being downwards-closed, is represented by a finite set of representa-
tions of configuration ideals, called Clover(f) by Finkel and Goubault-Larrecq:

Cover(f) =
⋃

{↓g | g ∈ Clover(f)} .

Clover(f) is determined uniquely up to permutation, and contains -maximal
data vectors g satisfying ↓g ⊆ Cover(f); for further details see [8,9]. In the
following we identify a configuration ideal J = ↓g with its representation g.

Remark 3.1 (Ideals for Petri nets). For readers familiar with Karp and Miller’s
coverability trees for Petri nets, observe that configuration ideal representations
generalise the notion of ‘extended markings’, which are vectors in N

k
ω. Also,

Clover(f) for a Petri net can be computed as the set of vertex labels in its
coverability tree—this will also be our case.

Simple Ideals. Crucially, it turns out that we do not need general configura-
tion ideals for our coverability trees for UDPNs. We only need to consider the
downward-closures ↓g of non-negative vectors g (cf. (5)), where the set of vectors
appearing infinitely often as g(d), when d ranges over D, is a singleton {I} for
some vector I in {0, ω}k (instead of a finite subset of Nk

ω for general configura-
tion ideals). Put differently, given such a vector I, we define the I-support of
a data vector f as SuppI(f) def= {d ∈ D | f(d) �= I}, and define an I-simple
ideal (representation) as a non-negative data vector with finite I-support. In
particular, a finitely supported non-negative data vector is a 0-simple ideal. We
write M , N , . . . to denote simple ideals. A simple ideal M can be represented
concretely as a pair M = 〈m, I〉 where m is the finite multiset of vectors in N

k
ω

obtained from M by restriction to its I-support.

Example 3.2. We represent simple ideals similarly as configurations, using the
additional last column for the I part. Continuing with the UDPN of Example 2.2,
its cover is the downward-closure of a single I-simple ideal:

Clover(f0) =
[

ω
1

∣
∣ ω
0

]
, Cover(f0) = ↓[

ω
1

∣
∣ ω
0

]
,

where I
def= (ω, 0). The I-support of the ideal has one element, mapped to (ω, 1).

Coverability Trees for Petri Nets with Unordered Data 453

Note that UDPN steps map I-simple ideals to I-simple ideals. Lemma 3.3
formally states the relation between steps of ideals and steps of configurations
in the downward closures. The next lemma shows that I-simple ideals can only
have finitely many successors up to permutation. This property will later be used
to define coverability trees of finite branching degree.

Lemma 3.3. Let M,M ′ be I-simple ideals such that M −→ M ′. Then for every
configuration c′ ∈ ↓M ′ there exist configurations c ∈ ↓M and c′′ ∈ ↓M ′ with
c −→ c′′ and c′ c′′.

Proof. Suppose M
t−→ M ′ for a finite data vector t. The data vector f

def= c′ − t
satisfies f ≤ M but f(d) can possibly be negative for some data value d; therefore
we can not simply put c

def= f . A way to fix this is to define c by

c(d)[i] def= max(0, x(d)[i]), for all d ∈ D and all coordinates i.

Thus defined, c satisfies c ≤ M , and setting c′′ def= c + t satisfies c′ ≤ c′′ as
required. ��
Lemma 3.4. Let M be a simple ideal. The set {N | M −→ N} of successors of
M is finite up to permutation and has a representative with cardinality bounded
by (|SuppI(M)| + maxt∈T |Supp0(t)|)! · |T |2.
Proof. Consider an UDPN defined by the finite set T of data vectors. Fix an I-
simple ideal M , and denote by S the I-support of M . We will be now considering
S-permutations, by which we mean those data permutations π that satisfy π(d) =
d for all d ∈ S. Equality and finiteness up to S-permutation can be defined
exactly as for plain permutations.

A crucial but simple observation is that the set of transitions of the UDPN
is finite up to S-permutation. Indeed, assume wlog. that S is disjoint from the
supports of all vectors in T . Consider the finite set T ′ that contains all data
vectors tσ, where t ∈ T and permutation σ swaps some subset of S with some
subset of the support of t. Then every transition of the UDPN is of the form
t′π, where t′ ∈ T ′ and π is an S-permutation. Regarding the size of this new
UDPN, there are at most

∑
t∈T (|S| + |Supp0(t)|)! such permutations σ, hence

|T ′| ≤ ∑
t∈T (|S| + |Supp0(t)|)! · |T |.

Now we use the extension, to simple ideals, of the closure of the step relation
under permutations, cf. Eq. (2), to derive a strengthening of our claim, namely
finiteness of the successors of M up to S-permutations. Consider an arbitrary

step M
t′π−−→ N of M ; by Eq. (2) we get

M = Mπ−1 t′
−→ Nπ−1

(the equality holds as π is an S-permutation). Therefore N is equal up to S-
permutation to some T ′-successor of M . As T ′ is finite, the set of T ′-successors
of M is finite and bounded by |T ′|, which implies our claim. ��

454 P. Hofman et al.

A consequence of our construction of coverability trees in Sect. 4, and of the
complexity analysis conducted in Sect. 5, is the following core result:

Theorem 3.5. Given an UDPN and an initial configuration f , an ideal repre-
sentation Clover(f) of Cover(f) is computable in Fωω . Furthermore, Clover(f)
contains only simple ideals.

Theorem 3.5, together with the following proposition, easily imply
Theorems 2.5 and 2.6 (below Clover(f)�K

def= {g�K | g ∈ Clover(f)}):

Proposition 3.6. Fix K ⊆ {1, . . . , k}. An UDPN is width-bounded iff
Clover(f)�K contains only finitely supported vectors. An UDPN is depth-bounded
iff Clover(f)�K contains only finite vectors.

Proof. The former equivalence, as well as the if direction of the latter one, follow
by finiteness of Clover(f)�K . It remains to argue that place depth-boundedness
forces Clover(f)�K to contain only finite vectors. Indeed, a non-finite simple ideal
has necessarily ω at some component, which implies depth-unboundedness. ��

The remaining part of the paper is devoted to the proof of Theorem3.5.
In Sect. 4, we present an algorithmic construction of the coverability tree, and
show its termination and correctness. Then in Sect. 5 we provide upper and lower
bounds on the size of the coverability tree.

4 Representing a Cover

We will show that, analogously to the classical construction of Karp and Miller
[12] for vector addition systems, the cover set of any UDPN configuration can
be effectively represented in the form of a finite coverability tree, where nodes
are labelled by simple ideals.

For a given initial ideal the construction of a coverability tree amounts to
iteratively computing successors (up to permutation), applying symbolic accel-
eration steps when a strictly dominating pair M � M ′ appears on a branch, and
terminating a branch if a label embeds into one of its ancestors.

4.1 Accelerations

The idea behind acceleration steps is that due to monotonicity (Lemma 2.3), any
finite sequence of steps

M0
t1−→ M1

t2−→ . . .
tk−→ Mk (6)

such that M0 � Mk can be extended indefinitely. Such an unfolding may have
two distinct kinds of effect: Firstly, it may unboundedly increase components in
data values already contained in the initial I-support (we call this effect depth
acceleration). Secondly, it may increase an unbounded number of ‘fresh’ data
values, outside of the initial I-support (we call this effect width acceleration).

Coverability Trees for Petri Nets with Unordered Data 455

Our construction only accelerates increasing sequences as above when there is a
permutation (i.e. bijective) embedding of M0 into Mk.

As a building block we shall use the usual vector acceleration: for two non-
negative vectors v,v′ ∈ N

k
ω with v′ ≤ v, define a new vector acc(v′,v), for

1 ≤ i ≤ k by:

acc(v′,v)[i] def=

{
v[i], if v′[i] = v[i],
ω, if v′[i] < v[i].

Definition 4.1 (Depth and Width Acceleration). For I-simple ideals M ′,
M and a permutation π with M ′ < Mπ, or equivalently M ′π−1 < M , the depth
acceleration of M ′,M, π is the I-simple ideal defined by

Mdepth(d)
def
= acc(M ′(π−1(d)),M(d)), for all data values d ∈ D.

For d ∈ D such that M ′(π−1(d)) = I < M(d), put Id
def
= acc(M ′(π−1(d)),M(d));

the width acceleration of M ′,M, π, d is the Id-simple ideal defined by

Mwidth(d)
def
=

{
Id, if M(d) = I

M(d), otherwise,

By definition, M < Mdepth,Mwidth.

4.2 Coverability Trees

By Lemma 3.4 we can compute for any I-simple ideal M a successor representa-
tive, namely a finite set such that every successor of M is equal up to permutation
to some element of this set.

For the sake of simplicity, we choose a conservative policy of application of
accelerations: first, a proper nesting is imposed, in the sense that two different
accelerated paths are either disjoint, or contained one in the other; second, a
depth-accelerated path can not contain another accelerated path, while a width-
accelerated path can. However, as width accelerations strictly increase the I
part, a width-accelerated path is never contained in another accelerated path.
Therefore the only allowed inclusion is when a depth-accelerated path is included
in a width-accelerated one.

Definition 4.2 (Coverability Tree). A coverability tree is a tree with nodes
labelled by simple ideals such that the following criteria are satisfied.

1. A node with label N is a leaf iff it has an ancestor with label N ′ � N .
2. Otherwise, suppose an interior node N has an ancestor N ′ such that both N ′,

N are I-simple and N ′ � N . Let P denote the path from N ′ to N in the tree,
including N ′ and N .
(a) Suppose N ′(π−1(d)) = I < N(d) for some permutation π with N ′π < N

and d ∈ D; and for every node in P that is a depth acceleration of some
nodes M ′,M , both M ′ and M belong to P. Then N has exactly one child
labelled by the width acceleration of N ′, N, π, d.

456 P. Hofman et al.

(b) Otherwise, if P contains no acceleration then N has exactly one child
labelled by the depth acceleration of N ′, N, π, for some permutation π
with N ′π < N .

3. Otherwise, if a node N satisfies none of the above criteria then its set of
children is the successor representative of N .

Remark 4.3. Note that Definition 4.2 does not determine the coverability tree
unambiguously: the choice of a permutation π in points 2(a) and 2(b) is not
unique.

Remark 4.4. The condition in point 1 in Definition 4.2 implies that no branch of
a coverability tree contains two different nodes with the same label. We identify
a node with its label in the sequel.

Example 4.5. We pick some coverability tree for the UDPN from Example 2.2
rooted in the configuration f0. There is a branch with labels (up to permutation)

f0=
[
1
1

∣
∣ 0
0

]
, f1=

[
2
1

∣
∣ 0
0

]
, f2=

[
ω
1

∣
∣ 0
0

]
, f3=

[
ω 1
0 1

∣
∣ 0
0

]
, f4=

[
ω 1
0 1

∣
∣ ω
0

]
, f5=

[
ω 1 1
0 1 0

∣
∣ ω
0

]
,

where f2 is a depth acceleration (of f0, f1), f4 is a width acceleration (of f0, f3),
and all other nodes are the result of successor steps from their parent. The node
f5 is a leaf because f5 f4.

Correctness. A coverability tree is finite (termination), and represents the cover
of its root node (completeness and soundness). These required properties are
proven in detail in the full paper:

– Finiteness is proven by first exhibiting a wqo for the specific type of I-simple
ideals that appears on coverability trees. This wqo depends on the existence of
permutation embeddings, a property that on its own does not induce a well-
quasi-ordering over the set of all I-simple ideals. Our termination argument
is further refined to derive complexity bounds; see Sect. 5.2.

– The completeness proof relies on the monotonicity of steps over simple ideals,
and shows that all the elements in Cover(f) are covered by some simple ideal
in any coverability tree.

– Soundness is the most delicate property to establish. Its crux is that neither
width nor depth accelerations may take us outside the cover of the initial
configuration.

5 Complexity Bounds

In the section, we prove lower and upper bounds on the resources needed by the
construction of the coverability tree. We refer the reader to [24,25] for gentle
introductions to the techniques employed to prove these results. The enormous
complexities involved in our construction require to use fast-growing complexity
classes [23], which we present succinctly in Sect. 5.1 and in more details in the full
paper, before showing hyper-Ackermannian upper and lower bounds in Sects. 5.2
and 5.3.

Coverability Trees for Petri Nets with Unordered Data 457

5.1 Fast-Growing Complexity

In order to express the non-elementary functions required for our complexity
statements, we shall employ a family of subrecursive functions (hα)α indexed by
ordinals α known as the Hardy hierarchy.

Ordinal Terms. We use ordinal terms α in Cantor Normal Form (CNF), which
can be written as terms α = ωα1 + · · ·+ωαn where α1 ≥ · · · ≥ αn are themselves
written in CNF. Using such notations, we can express any ordinal below ε0, the
minimal fixpoint of x = ωx. The ordinal 0 is obtained when n = 0; otherwise if
αn = 0 the ordinal α is a successor ordinal ωα1 + · · · + ωαn−1 + 1, and if αn > 0
the ordinal α is a limit ordinal. We usually write λ to denote limit ordinals.

Fundamental Sequences. For all x in N and limit ordinals λ, we use a standard
assignment of fundamental sequences λ(0) < λ(1) < · · · < λ(x) < · · · < λ with
supremum λ. Fundamental sequences are defined by transfinite induction by:

(γ + ωβ+1)(x) def= γ + ωβ · (x + 1) , (γ + ωλ′
)(x) def= γ + ωλ′(x) . (7)

For instance, ω(x) = x + 1, ω2(x) = ω · (x + 1), ωω(x) = ωx+1, etc.

The Hardy Hierarchy. Let h:N → N be a strictly increasing function. The Hardy
functions (hα:N → N)α are defined by transfinite induction on their ordinal
indices by

h0(x) def= x , hα+1(x) def= hα(h(x)) , hλ(x) def= hλ(x)(x) . (8)

Observe that hk(x) for a finite k is simply the kth iterate of h. For limit ordinals
λ, hλ(x) performs a form of diagonalisation: for instance, setting H(x) def= x + 1
the successor function, Hω(x) = Hx+1(x) = 2x + 1, Hω2

(x) = 2x+1(x + 1)−1
is a function of exponential growth, while Hω3

is a non elementary function
akin to a tower of exponentials of height x, Hωω

is a non primitive-recursive
function with growth similar to the Ackermann function, and Hωωω

is a non
multiply-recursive function characteristic of hyper-Ackermannian complexity.

Complexity Classes. Following [23], we can define complexity classes for compu-
tations with time or space resources bounded by Hardy functions of the size of
the input. We concentrate in this paper on the HyperAckermann complexity
class. Let FMR denote the set of multiply-recursive functions and let h be any
multiply-recursive strictly increasing function, then [23, Theorem 4.2]:

HyperAckermann
def= Fωω =

⋃

m∈FMR

DTime(hωωω

(m(n))) (9)

is the set of decision problems solvable with resources bounded by an hyper-
Ackermannian function applied to a multiply-recursive function m of the size of
the input. This class is closed under multiply-recursive reductions, and several
problems are known to be complete for it (see Sect. 6.2 of [23] for a survey),
including coverability in unordered data nets [20].

458 P. Hofman et al.

5.2 Upper Bounds

We focus on the worst-case norm of the constructed simple ideals, from which
bounds on the total size of the coverability tree and the complexity upper bound
in Theorem 3.5 can both be derived.

Norms of Simple Ideals. For a vector u in Z
k
ω, its norm is its maximal finite

absolute value: ‖v‖ def= max{|v[i]| | 1 ≤ i ≤ k ∧ v[i] �= ω}. Observe that,
if I is in {0, ω}k, then ‖I‖ = 0. For an I-simple ideal M , and thus for
finitely supported ones in particular, we define its norm as the maximum
between the cardinality of its support and the maximal norm of its vectors:
‖M‖ def= max{|SuppI(M)|, ‖M(d)‖ | d ∈ D}. Note that the vectors for data
d outside the support have all norm 0. In the full paper, we exhibit a bound
B

def= hωωk+3

(‖f0‖) on the norms of all the simple ideals constructed in a cover-
ability tree rooted by f0 as defined in Definition 4.2, where h also depends on
the UDPN:

Theorem 5.1. The norms of the simple ideals in a coverability tree rooted in
a configuration f0 for a k-dimensional UDPN T are bounded by hωωk+3

(‖f0‖),
where h(x) is an elementary function of x, k, and ‖T ‖.

The main technical ingredients for Theorem 5.1 are combinatorial statements
on the lengths of so-called controlled bad sequences proven by Rosa-Velardo [20,
Appendix A] for finite multisets of vectors of natural numbers. Our proofs require
however a substantial amount of work on top of that of Rosa-Velardo’s for two
reasons: we work with extended vectors in N

k
ω, and use permutation embeddings

rather than just plain embeddings.

Relating Norms with Sizes and Complexity. The norm ‖M‖ ≤ B of a simple
ideal M is directly related to the size of its concrete binary representation: the
latter needs at most ‖M‖ · k · (�log‖M‖� + 1) bits for the I supported part
of the ideal and k bits for the I vector itself. We can also bound the length of
the branches in our coverability trees: there are indeed at most (B + 2)kB · 2k

different simple ideals with norm ≤ B, and no two interior nodes on a branch are
labelled by the same ideal due to condition 1 in Definition 4.2 (see Remark 4.4).
Finally, by Lemma 3.4, the branching degree of the coverability tree is bounded
by an exponential function (B + ‖T ‖)! · |T |2 in B and the size of T . These three
observations combined allow to bound the size of the coverability tree:

Theorem 5.2 (Size of Coverability Trees). The size of a coverability tree
built from an initial configuration f0 for a k-dimensional UDPN T is bounded
by an elementary function of B, k, and the size of T .

Theorem 5.2 along with Eq. (9) and the completeness and soundness of cov-
erability trees yields the proof of Theorem3.5, using the fact that Fωω is closed
under elementary reductions [23, Theorem 4.7].

Coverability Trees for Petri Nets with Unordered Data 459

5.3 Lower Bounds

The sheer complexity bounds we just obtained on the size of coverability trees
beg the question whether they are the best possible. We show in Theorem 5.3
that, indeed, the size of coverability trees for a family of UDPNs is provably non
multiply-recursive, matching essentially the statement of Theorem 5.2:

Theorem 5.3 (Hyper-Ackermannian Coverability Trees). There exists
families of O(k)-sized UDPNs (Tk)k and O(k + log n)-sized initial configurations

(fk,n)k,n, whose coverability trees are of size at least Hωωk

(n).

Hardy Computations. As detailed in the full paper, we prove Theorem5.3 by
‘implementing’ the computation of Hardy functions Hωωk

in nets Tk. The main
idea, first developed in [11,24], is to see the equations in (8) for 0 < α as rewriting
rules operating on pairs (α, n):

(α + 1, n) → (α, n + 1) , (λ, n) → (λ(n), n) . (10)

Note that a sequence (α0, n0) → (α1, n1) → · · · → (αi, ni) → · · · of rewriting
steps maintains Hαi(ni) = Hα0(n0) for all i, and must eventually terminate at
some rank
 with α� = 0 since αi > αi+1 for all i, and then n� = Hα0(n0).

Using a natural representation of ordinals α < ωωk

as finite multisets of
vectors also employed by Rosa-Velardo [20], a pair (α, n) can be encoded as a
configuration of Tk, and the rewriting rules of (10) can be implemented on such
codes by steps of Tk. This is however not a perfect implementation: many incor-
rect computations yielding results different from Hωωk

(n) = Hωωk−1·(n+1)
(n)

are possible. The crucial point is that there exists a perfect computation in Tk,
of length at least Hωωk

(n). Furthermore, this computation does not allow any
acceleration step, and has therefore to occur as such in any coverability tree.

6 Concluding Remarks

In this paper, we have presented a procedure to construct coverability trees for
UDPNs in the style of Karp and Miller [12]. This yields decision procedures for
coverability and several variants of the boundedness problem including place-
boundedness, depth- and width place-boundedness. Besides its interest for the
formal verification of UDPNs, this paves the way towards future attempts at
proving the decidability of reachability along the lines developed for Petri nets
in [13,14,16,18].

We have derived hyper-Ackermannian upper bounds on the complexity of our
construction, and shown that such enormous complexities are actually attained
on some UDPNs. Note that this however does not provide a lower bound

– on the size of Clover(f), for which the best known bound is an Ackermannian
lower bound adapted from the case of Petri nets [4], nor

460 P. Hofman et al.

– on the complexity of the various boundedness problems on UDPNs, for which
the best lower bound is hardness for Tower = F3, adapted from the cover-
ability problem [15].

We actually suspect that much lower complexities that HyperAckermann
could be obtained for the coverability and boundedness problems. For instance,
in the case of Petri nets, coverability trees have a worst-case Ackermannian
size [4,6], but coverability, boundedness, and place-boundedness are all Exp-
Space-complete [2,5,17,19].

References

1. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inform. and Comput. 160(1–2), 109–127
(2000)

2. Blockelet, M., Schmitz, S.: Model checking coverability graphs of vector addition
systems. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp.
108–119. Springer, Heidelberg (2011)

3. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Logic. Meth.
Comput. Sci. 10(3:4), 1–44 (2014)

4. Cardoza, E., Lipton, R.J., Meyer, A.R.: Exponential space complete problems for
Petri nets and commutative semigroups: preliminary report. In: STOC 1976, pp.
50–54. ACM (1976)

5. Demri, S.: On selective unboundedness of VASS. J. Comput. Syst. Sci. 79(5), 689–
713 (2013)

6. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and
primitive-recursive bounds with Dickson’s Lemma. In: LICS 2011, pp. 269–278.
IEEE Press (2011)

7. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

8. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I: completions.
In: STACS 2009. LIPIcs, vol. 3, pp. 433–444. LZI (2009)

9. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part II: complete
WSTS. Logic. Meth. Comput. Sci. 8(3:28), 1–35 (2012)

10. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing
Petri net extensions. Inform. and Comput. 195(1–2), 1–29 (2004)

11. Haddad, S., Schmitz, S., Schnoebelen, P.: The ordinal recursive complexity of
timed-arc Petri nets, data nets, and other enriched nets. In: LICS 2012, pp. 355–
364. IEEE Press (2012)

12. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

13. Kosaraju, S.R.: Decidability of reachability in vector addition systems. In: Pro-
ceedings STOC 1982, pp. 267–281. ACM (1982)

14. Lambert, J.L.: A structure to decide reachability in Petri nets. Theor. Comput.
Sci. 99(1), 79–104 (1992)

15. Lazić, R., Newcomb, T., Ouaknine, J., Roscoe, A., Worrell, J.: Nets with tokens
which carry data. Fund. Inform. 88(3), 251–274 (2008)

16. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In:
LICS 2015, pp. 56–67. IEEE Press (2015)

Coverability Trees for Petri Nets with Unordered Data 461

17. Lipton, R.: The reachability problem requires exponential space. Technical Report
62, Yale University (1976)

18. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Pro-
ceedings STOC 1981, pp. 238–246. ACM (1981)

19. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci. 6(2), 223–231 (1978)

20. Rosa-Velardo, F.: Ordinal recursive complexity of unordered data nets. Technical
Report TR-4-14, Departamento de Sistemas Informáticos y Computación, Uni-
versidad Complutense de Madrid (2014). http://antares.sip.ucm.es/frosa/docs/
complexityUDN.pdf

21. Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and complexity of Petri nets
with unordered data. Theor. Comput. Sci. 412(34), 4439–4451 (2011)

22. Rosa-Velardo, F., Martos-Salgado, M., de Frutos-Escrig, D.: Accelerations for the
coverability set of Petri nets with names. Fund. Inform. 113(3–4), 313–341 (2011)

23. Schmitz, S.: Complexity hierarchies beyond elementary. ACM Trans. Comput.
Theor. (2016) (to appear). http://arxiv.org/abs/1312.5686

24. Schmitz, S., Schnoebelen, P.: Algorithmic aspects of WQO theory. Lecture notes
(2012).http://cel.archives-ouvertes.fr/cel-00727025

25. Schmitz, S., Schnoebelen, P.: The power of well-structured systems. In: D’Argenio,
P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052,
pp. 5–24. Springer, Heidelberg (2013)

26. Schnoebelen, P.: Revisiting Ackermann-hardness for lossy counter machines and
reset Petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 616–628. Springer, Heidelberg (2010)

http://antares.sip.ucm.es/frosa/docs/complexityUDN.pdf
http://antares.sip.ucm.es/frosa/docs/complexityUDN.pdf
http://arxiv.org/abs/1312.5686
http://cel.archives-ouvertes.fr/cel-00727025

Shortest Paths in One-Counter Systems

Dmitry Chistikov1(B), Wojciech Czerwiński2, Piotr Hofman3,
Micha�l Pilipczuk2, and Michael Wehar4

1 Max Planck Institute for Software Systems (MPI-SWS),
Kaiserslautern and Saarbrücken, Germany

dch@mpi-sws.org
2 Institute of Informatics, University of Warsaw, Warsaw, Poland

{wczerwin,michal.pilipczuk}@mimuw.edu.pl
3 Laboratoire Spécification et Vérification (LSV),

ENS Cachan & CNRS, Paris, France
piotr.hofman@lsv.ens-cachan.fr

4 Department of Computer Science and Engineering,
University at Buffalo, Buffalo, USA

mwehar@buffalo.edu

Abstract. We show that any one-counter automaton with n states, if
its language is non-empty, accepts some word of length at most O(n2).
This closes the gap between the previously known upper bound of O(n3)
and lower bound of Ω(n2). More generally, we prove a tight upper bound
on the length of shortest paths between arbitrary configurations in one-
counter transition systems (weaker bounds have previously appeared in
the literature).

1 Introduction

Extremal combinatorial questions are ubiquitous in today’s theory of computing:
How many steps does an algorithm take in the worst case when traversing a data
structure? How large is the most compact automaton for a formal language?
While some specific questions of this form are best seen as standalone puzzles,
only interesting for their own sake, others can be used as basic building blocks
for more involved arguments.

We look into the following extremal problem: Given a one-counter automaton
A with n states, how long can the shortest word accepted by A be? It is folklore
that, unless the language of A is empty, A accepts some word of length at most
polynomial in n. This fact and a number of related results of similar form have

The main part of these results was obtained during Autobóz’15, the annual research
camp of Warsaw automata group. During the work on these results, Mi. Pilipczuk
held a post-doc position at Warsaw Centre of Mathematics and Computer Science
and was supported by the Foundation for Polish Science via the START stipend pro-
gramme. P. Hofman was supported by Labex Digicosme, Univ. Paris-Saclay, project
VERICONISS. W. Czerwiński acknowledges a partial support by the Polish National
Science Centre grant 2013/09/B/ST6/01575.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 462–478, 2016.
DOI: 10.1007/978-3-662-49630-5 27

Shortest Paths in One-Counter Systems 463

appeared as auxiliary lemmas in the literature on formal languages, analysis of
infinite-state systems, and applications of formal methods [12, Lemma 6], [11,
Sect. 8.1], [8, Lemma 5], [1, Lemma 11], [9, Lemmas 28 and 29], [7, Sect. 5].

A closer inspection reveals that the arguments behind these results deliver (or
can deliver) an upper bound of O(n3), while the best known lower bound comes
from examples of one-counter automata with shortest accepted words of length
Θ(n2). In other words, the true value is at least quadratic and at most cubic.

The main result of this paper is that we close this gap by showing a quadratic
upper bound, O(n2). We also extend this result to a more general reachability
setting: in any one-counter (transition) system with n control states, whenever
there is a path from a configuration α to a configuration β—recall that config-
urations are pairs of the form (q, c) where q ∈ Q is the control state, |Q| = n,
and c is a counter value, a nonnegative integer—there is also a path from α to β
that has length at most O(n2 +n ·max(cα, cβ)) where cα and cβ are the counter
values of α and β. We discuss our contribution in more detail in Sect. 2.

Related Work and Motivation. Reachability is a fundamental problem in
theoretical computer science and in its applications in verification, notably via
analysis of infinite-state systems [2,4,14,17]. Among such systems, counter-based
models of computation are a standard abstraction that has attracted a lot of
attention [3]; machines with a single counter are, of course, the most basic. Nev-
ertheless, while our main motivation has been purely theoretical, we note that
bounds on the length of shortest paths in one-counter systems have appeared as
building blocks in the literature on rather diverse topics.

More specifically, a polynomial upper bound is used by Etessami et al. [8]
in an analysis of probabilistic one-counter systems (which are equivalent to so-
called discrete-time quasi-birth-death processes, QBDs). They prove that in the
(q, 1) � (q′, 0)-reachability setting the counter does not need to grow higher
than n2 and provide examples showing that this bound is tight. However, they
only deduce upper bounds of n3 and n4 on the length of shortest paths without
and with zero tests, respectively. A simple corollary shows that if a state q can
eventually reach a state q′ with a non-zero probability, then this probability is
lower-bounded by p poly(n) where p is the smallest among positive probabilities
associated with transitions. This becomes a step in the proof that a (decomposed)
Newton’s method approximates termination probabilities of the system in time
polynomial in its size, n; the results of the present paper reduce the (theoretical)
worst-case upper bounds on the number of steps roughly by a factor of n.

In a subsequent work, Hofman et al. [9] reuse the auxiliary lemmas on the
length of shortest paths from [8] and show that (strong and weak) trace inclusion
for a one-counter system and a finite-state process is decidable in PSPACE (and
is, in fact, PSPACE-complete).

One may note that a stronger upper bound of O(n3) on the length of shortest
paths can be derived from the above bound on the largest needed counter value
even in the presence of zero tests. This value, O(n3), seems to be a recurring
theme in the literature on one-counter systems; it already appears in the pumping
lemma for one-counter languages due to Latteux [13] as the pumping constant : a

464 D. Chistikov et al.

number N such that any accepted word longer than N can be pumped. In fact,
the formulation in [13] does not permit removals of factors from an accepted
word, but even such a version would only yield the same upper bound of O(n3)
on the length of shortest paths. While the arguments of the present paper do not
lead to an improvement in the pumping constant for one-counter languages, we
nevertheless show that in the reachability setting the optimal value (the length
of the shortest path) is actually O(n2).

A cubic upper bound on the largest needed counter value (for the reachability
setting) in one-counter systems without zero tests, also known as one-counter
nets, appears in the work of Lafourcade et al. [11,12]. This result is applied in
the context of the Dolev-Yao intruder model, where the question of whether a
passive eavesdropper (an intruder) can obtain a piece of information is reduced
to the decision problem for a deduction system. For several such systems,
Lafourcade et al. show that, under certain assumptions, the problem is decidable
in polynomial time. They construct a one-counter system where states represent
terms from a finite set and the counter value corresponds to the number of appli-
cations of a free unary function symbol to a term. After this, the upper bound
on counter values along shortest paths is extended to an upper bound on the
size of terms that can be used in a minimal deductive proof; needless to say, an
improvement in the upper bound extends in a natural way.

Finally, we would like to mention the work of Alur and Černý [1], who use
a related model of one-counter systems with counter values in Z and without
zero tests. They reduce the equivalence problem for so-called streaming data-
string transducers to (q, 0) � (q′, 0)-reachability in such counter systems: the
transducers produce output at the end of the computation, and the counter is
used to track the accumulated distance between a distinguished pair of symbols
in the output. Since these transducers are designed to model list-manipulating
programs (in two syntactically restricted models), decision procedures for equiv-
alence of such programs can rely on the upper bounds for shortest paths to
efficiently prune the search space. In [1], the upper bound on the path length is
the familiar O(n3); this gives an upper bound on the length of smallest coun-
terexamples to equivalence. Our upper bound of O(n2) extends to this model
of counter systems too; because of space constraints, details are only given in
the full version of the paper. The reduction to reachability in one-counter sys-
tems was recently implemented by Thakkar et al. [16] on top of ARMC, an
abstraction-refinement model checker [15], for the purpose of verifying retrans-
mission protocols over noisy channels.

2 Summary

One-Counter Systems. In this paper we work in the framework of one-counter
systems, which are an abstract version of one-counter automata. More precisely,
they are one-counter automata without input alphabet (see below).

Formally, a one-counter system (OCS) O consists of a finite set of states Q,
a set of non-zero transitions T>0 ⊆ Q × {−1, 0, 1} × Q, and a set of zero tests

Shortest Paths in One-Counter Systems 465

T=0 ⊆ Q×{0, 1}×Q. A configuration of the OCS O is a pair in Q×N. We define
a binary relation −→ on the set Q×N as follows: (p, c) −→ (q, c+d) whenever (i)
c ≥ 1 and (p, d, q) ∈ T>0 or (ii) c = 0 and (p, d, q) ∈ T=0. The reflexive transitive
closure of −→ is denoted by −→ ∗; we say that a configuration β is reachable
from α if α −→ ∗β. This reachability is witnessed by a path in OCS O, which is
simply a path in the infinite directed graph with vertices Q×N and edge relation
−→ ; vertices and edges along the path can be repeated. The length of the path
is the number of (not necessarily distinct) edges that occur on it.

Our Contribution. We first formulate our results in terms of one-counter sys-
tems. Our first result is on paths between configurations with zero counter values.

Theorem 1. Let O be a one-counter system with n states. Suppose a configura-
tion β = (pβ , 0) is reachable from a configuration α = (pα, 0) in O. Then O has
a path from α to β of length at most 14n2.

We then generalize the result to arbitrary source and target configurations.

Theorem 2. Let O be a one-counter system with n states. Suppose a configu-
ration β = (pβ , cβ) is reachable from a configuration α = (pα, cα) in O. Then
O has a path from α to β of length at most 14n2 + n · max(cα, cβ).

The proof of Theorem 1 is the main technical contribution of this work. For
this reason, in this extended abstract we focus on proving Theorem 1, while the
reasoning leading to Theorem 2, as well as an extension to OCS with negative
counter values, can be found in the full version of the paper. The full version
contains also the proofs of all the statements marked with ♠.

One-Counter Automata. We now restate our contribution in terms of one-
counter automata (which are the original motivation for this work).

Take any finite set Σ. The set of all finite words over Σ is denoted by Σ∗,
and the empty word by ε. A (nondeterministic) one-counter automaton A over
Σ is a one-counter system where every transition t ∈ T>0 ∪ T=0 is associated
with a label, λ(t) ∈ Σ ∪ {ε}, and where some subsets I ⊆ Q and F ⊆ Q are
distinguished as sets of initial and final states respectively. The labeling function
λ is extended from transitions to edges −→ and to paths in a natural way; the
automaton accepts all words that are labels of paths from I ×{0} to F ×N. The
language of a one-counter automaton A is the set of all words accepted by A.

Corollary 1 (♠). Let A be a nondeterministic one-counter automaton with n
states. If the language of A is non-empty, then A accepts some word of length
at most 14n2.

As a concrete example, from Corollary 1 it follows that any nondeterministic
one-counter automaton that accepts the singleton unary language {an} —a basic
version of counting to n— must have at least Ω(

√
n) states. This lower bound

is tight and shows that nondeterminism does not help to “count to n”, because
deterministic one-counter automata can also do this using Θ(

√
n) states [5].

466 D. Chistikov et al.

Lower Bounds. As we already said, the lower bound on the length of the
shortest path is Ω(n2). We present constructions of OCS that match the upper
bounds of Theorems 1 and 2. Note that Examples 1 and 2 seem to use different
phenomena.

Example 1. [5,8] Consider an OCS O1 with 2n states: p1, . . . , pn and q1, . . . , qn.
Let O1 have, for 1 ≤ i < n, transitions (pi,+1, pi+1) and (qi, 0, qi+1), as well as
(qn,−1, q1) and (pn, 0, q1). All the transitions are non-zero, except for transition
(p1,+1, p2), which is a zero test. This OCS is deterministic: every configuration
has at most one outgoing transition. The only path from (p1, 0) to (q1, 0) has
length n2.

Example 2. [8] Let k and m be coprime and let OCS O′
2 have states p0, . . . , pk−1,

q0, . . . , qm−1, and s1, s2. Let O′
2 have, for all 0 ≤ i < k and 0 ≤ j < m, non-zero

transitions (pi,+1, pi+1mod k) and (qj ,−1, qj+1modm), a non-zero (p0,−1, q1),
and zero tests (s1,+1, p1), (q0, 0, s2). Now paths from (s1, 0) to (s2, 0) correspond
to solutions of x ·k−y ·m = 0; the shortest path takes the first cycle x = m times
and the second cycle y = k times. Exiting the second cycle uses an additional
transition, making the length 2km + 1. Setting k = n and m = n − 1 gives an
OCS O2 with 2n+1 states where not only does the shortest path have quadratic
length, but all such paths also need to use quadratic counter values.

Example 3. This example justifies the need for the term n · max(cα, cβ) in
Theorem 2. Modify O1 from Example 1 as follows. Add states a1, . . . , an,
b1, . . . , bn and the following non-zero transitions: (an,−1, a1), (bn,+1, b1), and,
for all 0 ≤ i < n, (ai, 0, ai+1) and (bi, 0, bi+1). For each of these non-zero transi-
tion, apart from (an,−1, a1), introduce also the same transition as a zero test.
Finally, add two more zero tests: (an, 0, p1) and (q1, 0, b1). Thus, the obtained
OCS O3 has 4n states. Observe that every path in O3 from (a1, cα) to (bn, cβ) has
to go through (an, 0) and (b1, 0) and thus has length at least n2 +n(cα + cβ +2).

3 Challenges and Techniques

We now discuss shortly the intuition behind our approach to proving Theorem 1,
and where the main challenges lie.

The first, obvious observation is as follows: if some configuration appears
more than once on a path, then the segment between any two appearances of this
configuration can safely be removed. If we apply this modification exhaustively,
then on each “level” — a set of configurations with the same counter value — we
cannot see more than n configurations. If the maximum counter value observed
on some path were bounded by O(n), then we would immediately obtain a
quadratic upper bound on its length. Unfortunately, this is not the case: as
Example 2 shows, the counter values in the shortest accepting path can be as
large as quadratic. Hence, applying this observation in a straightforward manner
cannot lead to any upper bound better than cubic.

Instead, we perform an involved surgery on the path. The first idea is to
start with a path ρ◦ that is not the shortest, but uses the fewest zero tests;

Shortest Paths in One-Counter Systems 467

the observation above shows that their number is bounded by n. Each subpath
between two consecutive zero tests is called an arc, and we aim at modifying
each arc separately to make it short. An arc is called low if it contains only
configurations with counter values at most 5n, and high otherwise. The total
length of low arcs can again be bounded by O(n2) by just excluding repeated
configurations, so it suffices to focus on high arcs.

Suppose ρ is a high arc. Since we observe high counter values on ρ, one can
easily find a positive cycle σ+ in the early parts of ρ, and a negative cycle σ−

in the late parts of ρ. Here by a cycle we mean a sequence of transitions that
starts and ends in the same state, and the cycle is positive/negative if the total
effect it has on the counter during its traversal is positive/negative. Let A be the
(positive) effect of σ+ on the counter, and −B be the (negative) effect of σ−.

Now comes the crucial idea of the proof: we can modify ρ by pumping σ+ and
σ− up many times, thus effectively “lifting” the central part of the path (called
cap) to counter levels where there is no threat of hitting counter value zero while
performing modifications (see Fig. 1, p. 11). More importantly, the cap can now
be unpumped “modulo gcd(A,B)” in the following sense: we can exhaustively
remove subpaths between configurations that have the same state and whose
counter values are congruent modulo gcd(A,B). The reason is that any change
in the total effect of the cap on the counter that is divisible by gcd(A,B) can be
compensated by adjusting the number of times we pump cycles σ+ and σ−. In
particular, the length of the cap becomes reduced to at most gcd(A,B) · n, at
the cost of pumping σ+ and σ− several times.

By performing this operation (we call it normalization) on all high arcs,
we make them normal. After this, we apply an involved amortization scheme to
show that the total length of normal arcs is at most quadratic in n. This requires
very delicate arguments for bounding (i) the total length of the caps and (ii) the
total length of the pumped cycles σ+ and σ− throughout all the normal arcs.
In particular, for this part of the proof to work we need to assert a number of
technical properties of normal arcs; we ensure that these properties hold when
we perform the normalization. Most importantly, whenever for two arcs the
corresponding cycles σ+ (or σ−) lie in the same strongly connected component
of the system (looking at the graph induced only by non-zero transitions), we
stipulate that in both arcs σ+ (or σ−) actually refer to the same cycle. The final
amortization is based on the analysis of pairs of strongly connected components
to which σ+ and σ− belong, for all normal arcs.

At least as of now, arguments of this flavor (inspired by amortized analysis
reasoning) are not typical for formal language theory and are more characteristic
of the body of work on algorithms and data structures; see, e.g., [6,10].

4 Preliminaries

In this paper N stands for the set of nonnegative integers. For any set X and a
word w ∈ X∗, the length of w = x1 . . . xn, denoted len(w), is the number n of
symbols in w. For k ∈ N and a word w, by wk we denote the word w repeated

468 D. Chistikov et al.

k times. For two positive integers x, y, by gcd(x, y) and lcm(x, y) we denote the
greatest common divisor and the least common multiple of x and y, respectively.
Recall that x · y = gcd(x, y) · lcm(x, y).

We now give all definitions related to one-counter systems that we need later.
For the reader’s convenience, concepts from Sect. 2 are defined anew.

A one-counter system (OCS) O consists of a finite set of states Q, a set of
non-zero transitions T>0 ⊆ Q × {−1, 0, 1} × Q, and a set of zero tests T=0 ⊆
Q × {0, 1} × Q. The set of transitions is T = T>0 ∪ T=0. For a transition t =
(q, d, q′) ∈ T , by src(t) and targ(t) we denote q and q′, i.e., the source and the
target state of t respectively. Further, the effect of the transition t = (q, d, q′)
is the number d; we write eff(t) = d. We extend this notion to sequences of
transitions: eff(t1 . . . tm) =

∑m
i=1 eff(ti). A configuration of the OCS O is a

pair in Q ×N. The state of a configuration (q, c) is the state q; we also say that
configuration (q, c) has state q, and write st((q, c)) = q. The counter value of
configuration (q, c) is the number c; we write cnt((q, c)) = c.

A transition t = (q, d, q′) ∈ T can be fired in a configuration γ = (q, c) if
either t ∈ T>0 and c > 0 or t ∈ T=0 and c = 0. In other words, zero tests can
be fired only if the counter value is zero, and non-zero transitions can be fired
only if the counter value is positive. The result of firing (q, d, q′) in (q, c) is the
configuration γ′ = (q′, c + d). We then write γ

t−→ γ′.
A path ρ of the OCS O is a sequence of pairs

(γ1, t1)(γ2, t2) . . . (γm, tm) ∈ ((Q × N) × T)∗

such that for every i ∈ {1, . . . , m−1} we have γi
ti−→ γi+1 and there exists a con-

figuration γm+1 such that γm
tm−→ γm+1. The length of this path is m. The source

of ρ, denoted by src(ρ), is γ1; we also say that ρ starts in its source. Similarly,
the target of ρ, denoted by targ(ρ), is γm+1; we say that ρ finishes in its target.
Note that now the source and target are configurations, rather than individual
states; the path is from its source to its target. All γ2, . . . , γm are called interme-
diate configurations. We also say that configurations γ1, γ2, . . . , γm+1 appear on
ρ; note that the target of ρ also appears on ρ. Finally, when such a path exists,
the configuration γm+1 is said to be reachable from the configuration γ1.

The projection of a path ρ is the sequence of its transitions t1t2 . . . tm; we
write proj(ρ) = t1t2 . . . tm. We follow the convention of denoting paths by ρ and
sequences of transitions by σ. The effect of a path ρ is eff(ρ) = eff(proj(ρ)).
A sequence of transitions σ = t1t2 . . . tm is fireable in a configuration γ1 if
there exists a path ρ = (γ1, t1)(γ2, t2) . . . (γm, tm). This path ρ is called the
fastening of σ at γ1, denoted ρ = fasten(γ1, σ). Note that in particular
proj(fasten(γ, σ)) = σ for every γ in which σ is fireable.

A sequence of transitions t1t2 . . . tm is consistent if for all i ∈ {1, . . . , m−1} it
holds that targ(ti) = src(ti+1). Note that a sequence of transitions fireable in
some configuration is always consistent, but the other implication does not hold
in general. We extend the notation src(·) and targ(·) to consistent sequences of
transitions: src(t1t2 . . . tm) = src(t1) and targ(t1t2 . . . tm) = targ(tm). The
sources and targets of the transitions of t1t2 . . . tm are visited on t1t2 . . . tm.

Shortest Paths in One-Counter Systems 469

A cycle σ is a consistent sequence of non-zero transitions that starts and
finishes in the same state q. This q is called the base state of the cycle σ. If the
effect of σ is positive (resp. negative), then it is a positive (resp. negative) cycle.
A cycle σ is called simple if every state is visited at most once on σ, except for
the base of σ, which is visited only at the start and at the end.

5 Proof of Theorem 1

5.1 Proof Overview and Notation

Let us fix the OCS O we work with; let Q be its state set and let n = |Q|.
Suppose ρ0 is a path from α to β, and let ρ0 be chosen such that it has the
smallest possible number of configurations with counter value zero. Note that ρ0
does not have to be the shortest path between α and β. The first step is to divide
ρ0 into subpaths, called arcs, between consecutive configurations with counter
value zero. Then we modify the arcs separately. If a counter value in an arc does
not exceed 5n, then we say that the arc is low, otherwise it is high. The low arcs
will not be changed at all, and the reason is that we can bound quadratically the
total number of configurations with counter value at most 5n using the following
straightforward proposition. It is similar, in the spirit, to pumping lemmas, but
simply removes a part of the path.

Proposition 1. Suppose ρ = (γ1, t1)(γ2, t2) . . . (γm, tm) is a path from α to β.
Suppose further that for some i and j with 1 ≤ i < j ≤ m + 1 it holds that
γi = γj, where γm+1 is such that γm

tm−→ γm+1. Consider

ρ′ = (γ1, t1)(γ2, t2) . . . (γi−1, ti−1)(γj , tj)(γj+1, tj+1) . . . (γm, tm).

Then ρ′ is also a path from α to β.

However, the high arcs will be heavily modified. Roughly speaking, if an arc
is high, then it contains both a positive cycle near its beginning and a negative
cycle near its end. We can use these cycles to pump the middle part of the path
as much up as we like. Thus, the modified path will consist of a short prefix; then
several iterations of a positive cycle pumping it up; then a so called cap: a part
of the path with only high counter values; then several iterations of a negative
cycle pumping it down; and finally a short suffix. We show in the sequel how
to perform this construction in such a way that the total length of pumping
cycles, short prefixes and suffixes, and caps is quadratic. The construction itself
(with arc-level length estimates) is presented in the following Subsect. 5.2, and
the upper bound on the length of the entire path is given in Subsect. 5.3.

Transition multigraph. One can view a transition (p, c, q) ∈ Q×{−1, 0, 1}×Q
also as an edge (p, q) ∈ Q × Q labelled by a number c ∈ {−1, 0, 1}. In the proof
we will many times switch back and forth between these two perspectives. In
order to keep the mathematical precision we introduce a bit of notation.

470 D. Chistikov et al.

The transition multigraph G = (V,E,) of an OCS consists of a set of
nodes V , a multiset of directed edges E, and a labeling 	 : E → {−1, 0, 1}.
Set V equals the set of states Q. Every non-zero transition t = (p, c, q) ∈ T>0

in O gives rise to an edge e = (u, v) ∈ E with 	(e) = c. Note that the definition
of the transition multigraph does not take into account the zero transitions.

In the proof we pay a special attention to strongly connected components
(SCCs) of G. Recall that two vertices p, q ∈ V are said to communicate if G has
a walk from p to q and a walk from q to p. Communication is an equivalence
relation, and its equivalence classes are called the strongly connected components
of G. Let S be the set of all strongly connected components of G. For a strongly
connected component S ∈ S, by nS we denote the number of vertices in S. We
say that a cycle σ is contained in S if each state appearing on σ belongs to S.
Note that every cycle is contained in some SCC, and a simple cycle contained
in S has length at most nS . We say that an SCC S is positively enabled if it
contains a cycle that has a positive effect. Similarly, S is negatively enabled if
it contains a cycle that has a negative effect. Note that an SCC S can be both
positively and negatively enabled.

Lemma 1 (♠). Let G be a transition multigraph of an OCS and S a positively
(respectively, negatively) enabled SCC. Then there exists a positive (respectively,
negative) cycle σ contained in S that is simple.

For every positively enabled SCC S we distinguish one, arbitrarily chosen,
simple cycle with positive effect contained in S; we denote it by σ+

S . Its exis-
tence is guaranteed by Lemma 1. Similarly, for every negatively enabled S we
distinguish one simple cycle with negative effect contained in S, and we denote
it by σ−

S . The base states of these cycles are chosen arbitrarily.

5.2 Normal Paths

A path is an arc if both its source and target have counter value zero, but
all its intermediate configurations have counter values strictly larger than zero.
An arc (or a path) is low if all its configurations (including the target) have
counter values strictly smaller than 5n. An arc ρ is (S, T)-normal, where S and
T are some SCCs of the transition multigraph, if it admits the following normal
decomposition (see Fig. 1, p. 11):

ρ = ρpref ρup ρcap ρdown ρsuff,

where

– ρpref and ρsuff are low;
– proj(ρup) = (σup)k for some k ∈ N, where σup = σ+

S ;
– proj(ρdown) = (σdown)� for some 	 ∈ N, where σdown = σ−

T ;
– st(src(ρcap)) is the base state of σup; and
– st(targ(ρcap)) is the base state of σdown.

Shortest Paths in One-Counter Systems 471

We say that an arc ρ is normal if it is (S, T)-normal for some S, T ∈ S. See Fig. 1
for an illustration. Then a path ρ′ is normal if it is a concatenation of normal
arcs (possibly for different pairs (S, T)) and low arcs.

In the remaining part of the proof we will show that if β is reachable from α,
where cnt(α) = cnt(β) = 0, then there exists a short normal path from α to
β. We start by analyzing a single arc. The following lemma, which is the most
technically involved step in this paper, shows that we can restrict ourselves to
normal arcs that have a very special structure.

Lemma 2 (♠). If cnt(α) = cnt(β) = 0 and there exists an arc from α to β,
then there exists an arc ρ from α to β which is either low or normal. Moreover, in
the case when ρ is normal, a normal decomposition ρ = ρpref ρup ρcap ρdown ρsuff
can be chosen such that:

(i) proj(ρup) = (σup)a, eff(σup) = A for some a,A ∈ N;
(ii) proj(ρdown) = (σdown)b, eff(σdown) = −B for some b,B ∈ N;
(iii) a · A ≤ 2 · len(ρcap) + 2 · lcm(A,B);
(iv) b · B ≤ 2 · len(ρcap) + 2 · lcm(A,B);
(v) no infix of proj(ρcap) is a cycle with effect divisible by gcd(A,B);
(vi) cnt(targ(ρup)),cnt(src(ρdown)) > n; and
(vii) all configurations appearing on ρpref and ρsuff are pairwise different.

We now explain some intuition behind this statement. First note that, by con-
dition (vii), the total number of configurations appearing on ρpref and ρsuff
is at most 5n · n, since n is the number of states of the OCS O and both
of these paths are low (so counter values 5n and above do not occur). Thus,
len(ρpref) + len(ρsuff) ≤ 5n2. Second, we can conclude from condition (v)
that every state q ∈ Q can occur in configurations appearing in ρcap at most
gcd(A,B) times; hence, len(ρcap) ≤ n · gcd(A,B) ≤ n2. Finally, condition (i)
implies len(ρup) ≤ a ·n; if, for instance, a ≤ const ·n, then len(ρup) ≤ const ·n2;
similarly, len(ρdown) ≤ const · n2. Combined together, these bounds would in
this case show that len(ρ) is at most quadratic in n.

However, this reasoning would be insufficient for our purposes, since the
number of normal arcs itself can be linear in n. This motivates more subtle
upper bounds (iii) and (iv) and the fine-grained choice of parameter in (v). We
show how to use Lemma 2 to obtain a quadratic upper bound on the size of the
entire path in the following Subsect. 5.3; the remainder of the present subsection
provides an intuitive sketch of the proof of Lemma 2.

Fix configurations α and β such that cnt(α) = cnt(β) = 0 and there exists
an arc from α to β. If there is a low arc from α to β, then there is nothing to
prove, so assume that all the arcs from α to β are not low. Let ρ◦ be such an
arc of the shortest possible length; then ρ◦ is not low. Let

ρ◦ = (γ1, t1) . . . (γm, tm),

where α = γ1 and γm
tm−→ γm+1 = β. Since ρ◦ is shortest possible, from

Proposition 1 we infer that configurations γ1, γ2, . . . , γm+1 are pairwise different.

472 D. Chistikov et al.

Fig. 1. A normal decomposition of an arc

Since ρ◦ is not low, for each k = 0, 1, 2, . . . , 5n we can distinguish the first
configuration γik on ρ◦ that has counter value k. Consider configurations γik

for 2n ≤ k ≤ 3n. Among these configurations, some state p repeats in two
configurations γik and γik′ , for some 2n ≤ k < k′ ≤ 3n. This means that the part
of ρ◦ between γik and γik′ corresponds to a cycle σ in the transition multigraph.
This cycle has a positive effect on the counter, and hence it is contained in a
positively enabled strongly connected component S ∈ S. Recall that we cannot
simply pump the cycle σ in order to create ρup, because by the definition of a
normal arc, the cycle that creates ρup has to be the pre-chosen cycle σ+

S assigned
to S. This, however, poses no real difficulty for the following reason. Since p
is contained in the same strongly connected component as σ+

S , we can travel
through S from p to the base of σ+

S , then pump it arbitrarily many times, and
then go back to p. The part ρdown is defined in a symmetric manner.

More precisely, the consecutive parts ρpref, ρup, ρcap, ρdown and ρsuff are
defined as follows; the reader is advised to check the description against Fig. 2
while reading. First, ρpref is constructed by taking the prefix of ρ◦ up to config-
uration γik , and then traveling along a path σpq within S from p to q, the base
state of σ+

S . Then we repeat cycle σ+
S a number of times, say a, thus creating

ρup. The reader should think of a as of a variable, because the possibility of
changing this number will be essential for the constructions to follow. Note that
we chose k so that k ≥ 2n in order to make sure that during these manipulations
we never hit nonpositive counter values.

In a symmetrical manner we define ρsuff and ρdown. First, we find a configu-
ration γjk̄ on ρ◦ such that it has some counter value k̄ with 2n ≤ k̄ ≤ 3n, all the
configurations later on ρ◦ have smaller counter values, and its state p̄ belongs to a
negatively enabled strongly connected component T . Let q̄ be the base state of σ−

T .
Then ρsuff is the suffix of ρ◦ starting from γjk̄ , with a path σq̄p̄ appended in the
front, where σq̄p̄ leads from q̄ to p̄ within T . Also, ρdown is constructed by repeating
σ−

T a number of times, say b. We denote A = eff(σ+
S) and −B = eff(σ−

T).

Shortest Paths in One-Counter Systems 473

Fig. 2. The normalization procedure applied to an arc. Parts ρpref, ρup, ρcap, ρdown,
ρsuff are depicted in green, blue, grey, red, and orange, respectively, as in Fig. 1 (Color
figure online)

The middle part of the path, i.e. ρcap, is constructed as follows. First, we
follow a path σqp from q to p within T in order to get back to the original
path. Then we repeat the cycle (σpqσqp) exactly gcd(A,B) − 1 times, so that
the total number of times paths σpq and σqp are traversed is gcd(A,B). It is
necessary that the total effect on the counter value from traversing these paths
is divisible by gcd(A,B), so that this effect can be compensated for by select-
ing a and b appropriately. Then we follow the infix of the original path up to
configuration γjk̄ . Afterwards, a symmetric construction follows: we repeat the
cycle (σp̄q̄σq̄p̄) exactly gcd(A,B) − 1 times, and then travel from p̄ to q̄ using
σp̄q̄. It can be easily seen that one can choose numbers a and b so that the whole
construction indeed yields a path from α to β. Here we use the fact that all
numbers divisible by gcd(A,B) can be represented as nonnegative combinations
of A and −B, i.e., a · A − b · B for some a, b ∈ N.

Finally, we modify ρcap by unpumping it “modulo gcd(A,B)” exhaustively:
as long as there are two configurations that have the same state, and their counter
values are congruent modulo gcd(A,B), we remove the whole subpath between
these configurations. When performing such an operation, the total effect of ρcap
on the counter changes by a number divisible by gcd(A,B). Hence, by adjusting
once more the numbers a and b we can compensate for this change.

From the description above, it should be relatively clear that the construction
yields a normal path satisfying all the conditions apart from the quantitative

474 D. Chistikov et al.

ones: (iii) and (iv). For this, some arithmetic calculations are needed to ensure
that we can choose a and b small enough so that (iii) and (iv) hold, while all
the necessary properties of a and b are satisfied. We remark that in this sketch
we have glossed over some technicalities that are used to satisfy conditions (iii)
and (iv).

5.3 Length of Shortest Paths

Let α and β be such as in the statement of Theorem 1. Let ρ◦ be a path from α
to β that has the minimum possible number of intermediate configurations with
counter value zero. Let all these intermediate configurations with counter value
zero be γ2, . . . , γk, where γ1 = α and γk+1 = β. For i = 1, 2, . . . , k, let ρi

◦ be the
subpath of ρ◦ between configurations γi and γi+1. Then ρi

◦ is an arc from γi to
γi+1. By Lemma 2, there exists also an arc ρi from γi to γi+1 that is either low
or is normal and admits a normal decomposition satisfying properties (i)–(vii).
If ρi is low, choose ρi to be the shortest possible low arc from γi to γi+1. If ρi is
normal, let

ρi = ρi
pref ρi

up ρi
cap ρi

down ρi
suff

be its normal decomposition. Our goal for the rest of the proof is to show that
ρ = ρ1 . . . ρk, which is clearly a path from α to β, has length at most 14n2. Note
that ρ has the same number of configurations with counter value zero as ρ◦.
Let N ⊆ {1, 2, . . . , k} be the set of indices i for which ρi is normal, and let
L = {1, 2, . . . , k} \ N be the set of indices i for which ρi is low.

First we show that the sum of the lengths of low parts of ρ (more precisely, of
low arcs, of ρi

pref and ρi
suff) is small. The following claim follows from a simple

application of Proposition 1.

Lemma 3 (♠). The following inequality holds:
∑

i∈L
len(ρi) +

∑

i∈N
(len(ρi

pref) + len(ρi
suff)) ≤ 5n2.

Now we will estimate the length of the rest of the path ρ. First, however, we
have to prepare a toolbox of lemmas. We introduce the following notation. For
S, T ∈ S, let N(S,T) ⊆ N be the set of all those indices i for which ρi is (S, T)-
normal. Moreover, let N(S,·) =

⋃
T ′∈S N(S,T ′) and N(·,T) =

⋃
S′∈S N(S′,T).

Lemma 4 (♠). Let S, T ∈ S. Suppose i ∈ N(S,·) and j ∈ N(·,T) for some i, j
with 1 ≤ i < j ≤ k. Then there are no two configurations δi and δj appearing
on ρi

cap and ρj
cap respectively such that st(δi) = st(δj) and cnt(δi) − cnt(δj)

is divisible by gcd(eff(σ+
S),−eff(σ−

T)).

In the proof of Lemma 4 we observe that if such configurations δi and δj

existed, then one could repeat σ+
S on ρi and σ−

T on ρj more times so that the
“lifted” configurations δi and δj would have the same counter value. Then we
could cut the whole part of the path between them, thus reducing the number
of configurations with counter value zero; this would be a contradiction with the
choice of ρ◦. The following lemma is a simple corollary of Lemma 4.

Shortest Paths in One-Counter Systems 475

Lemma 5 (♠). Let S, T ∈ S. Then |N(S,T)| ≤ gcd(eff(σ+
S),−eff(σ−

T)).

Total length of caps. We have now all the necessary ingredients to establish
the desired upper bounds on the lengths of caps. Recall that for a strongly
connected component S ∈ S we denote by nS the number of vertices in S.

Lemma 6. Let S, T ∈ S, let AS = eff(σ+
S) and let BT = −eff(σ−

T). Then:
∑

i∈N(S,·)

len(ρi
cap) ≤ AS · n; (1)

∑

i∈N(·,T)

len(ρi
cap) ≤ n · BT ; (2)

moreover ,
∑

i∈N
len(ρi

cap) ≤ n2. (3)

Proof. For (1), assume towards a contradiction that
∑

i∈N(S,·) len(ρi
cap) > AS ·n.

Then by the pigeonhole principle there exists two configurations δ and δ′ on the
paths ρi

cap for i ∈ N(S,·) which have the same state and the same counter value
modulo AS . Assume w.l.o.g. that δ is earlier in the path than δ′. By property (v)
of Lemma 2, configurations δ and δ′ cannot appear in the same path ρi

cap. Indeed,
otherwise the projection of the part of ρi

cap between δ to δ′ would be a cycle
with effect divisible by AS , so also by gcd(AS ,−eff(σ−

T)), where T is the SCC
for which ρi is (S, T)-normal. Therefore they have to belong to different arcs.
Let δ belong to ρi and δ′ belong to ρj , where j ∈ N(S,T) for some T ∈ S.
However, by Lemma 4, there are no two configurations δ and δ′ on ρi and ρj ,
respectively, such that their states are the same and the difference in counter
values is divisible by gcd(AS ,−eff(σ−

T)). Contradiction, as δ and δ′ are such
configurations: the difference of its counter values is divisible by AS , so also
by gcd(AS ,−eff(σ−

T)). Thus (1) is proved, and (2) follows from a symmetric
reasoning. The bound (3) follows by summing (1) through all S ∈ S and using
the facts that eff(σ+

S) ≤ nS and
∑

S∈S nS = n.
�

Total length of positive and negative cycles. We now show that the total
sum of the lengths of ρi

up and ρi
down is at most 8n2. This is the case where we

need the key estimations (iii) and (iv) in Lemma 2.

Lemma 7. The following inequalities hold:
∑

i∈N
len(ρi

up) ≤ 4n2,
∑

i∈N
len(ρi

down) ≤ 4n2.

Proof. We show how to bound the sum of lengths of paths ρi
up. For any S ∈ S,

let us denote AS = eff(σ+
S) and BS = −eff(σ−

S). For each i ∈ N , let Si, Ti ∈ S
be such that ρi is (Si, Ti)-normal, and let Li = len(ρi

cap). By Lemma 2 we know

476 D. Chistikov et al.

that eff(ρi
up) ≤ 2Li + 2 · lcm(ASi

, BTi
). Since proj(ρi

up) = (σ+
Si

)a for some
integer a, we have

len(ρi
up) = eff(ρi

up)·
len(σ+

Si
)

eff(σ+
Si

)
≤ eff(ρi

up)·
nSi

ASi

≤ (2Li+2·lcm(ASi
, BTi

))· nSi

ASi

.

Hence,
∑

i∈N
len(ρi

up) ≤ 2
∑

i∈N

Li nSi

ASi

+ 2
∑

i∈N

lcm(ASi
, BTi

) · nSi

ASi

. (4)

We will separately estimate the first and the second term. First we focus on
∑

i∈N
Li nSi

ASi
. Let us fix some specific S ∈ S. We have

∑

i∈N(S,·)

Li nSi

ASi

=
nS

AS
·

∑

i∈N(S,·)

Li ≤ nS

AS
· AS · n = nS · n,

where the inequality follows from Lemma 6(1). Thus

∑

i∈N

Li nSi

ASi

=
∑

S∈S

∑

i∈N(S,·)

Li nSi

ASi

≤
∑

S∈S

nS · n = n2. (5)

In order to estimate the second term, fix some S, T ∈ S. Note that lcm(x,y)
x =

xy
gcd(x,y)·x = y

gcd(x,y) for all positive integers x, y. Now we have

∑

i∈N(S,T)

BTi
· nSi

gcd(ASi
, BTi

)
=

∑

i∈N(S,T)

BT · nS

gcd(AS , BT)
= |N(S,T)| · BT · nS

gcd(AS , BT)

≤ gcd(AS , BT) · BT · nS

gcd(AS , BT)
= BT · nS ≤ nT · nS ,

where the first inequality follows from Lemma 5 and the second one from the
fact that the effect of a path is bounded by its length. Therefore,

∑

i∈N

BTi
· nSi

gcd(ASi
, BTi

)
=

∑

S,T∈S

∑

i∈N(S,T)

BTi
· nSi

gcd(ASi
, BTi

)

≤
∑

S,T∈S

nT · nS =
∑

S∈S

nS ·
∑

T∈S

nT = n2. (6)

By connecting equations (4), (5) and (6) we obtain
∑

i∈N
len(ρi

up) ≤ 2n2 + 2n2 = 4n2.

The upper bound on the sum of lengths of paths ρi
down is obtained analogously,

using Lemma 6(2) instead of Lemma 6(1).
�

Shortest Paths in One-Counter Systems 477

Combining bounds of Lemma 3, Lemma 6(3), and Lemma 7, we conclude that

len(ρ) ≤ 5n2 + n2 + 4n2 + 4n2 ≤ 14n2,

which completes the proof of Theorem 1.

Acknowledgements. The authors are grateful to Christoph Haase and Aditya
Kanade for discussions and comments.

References

1. Alur, R., Černý, P.: Streaming transducers for algorithmic verification of single-
pass list-processing programs. In: Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011,
Austin, TX, USA, 26–28 January 2011, pp. 599–610 (2011)

2. Atig, M.F., Bouajjani, A., Kumar, K.N., Saivasan, P.: On bounded reachability
analysis of shared memory systems. In: 34th International Conference on Foun-
dation of Software Technology and Theoretical Computer Science, FSTTCS 2014,
15–17 December 2014, New Delhi, India, pp. 611–623 (2014)

3. Barrett, C., Demri, S., Deters, M.: Witness runs for counter machines. In: Fontaine,
P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp. 120–
150. Springer, Heidelberg (2013)

4. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

5. Chistikov, D.: Notes on counting with finite machines. In: 34th International Con-
ference on Foundation of Software Technology and Theoretical Computer Science,
FSTTCS 2014, 15–17 December 2014, New Delhi, India, pp. 339–350 (2014)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms
2nd (edn.) The MIT Press and McGraw-Hill Book Company. ISBN 0-262-03293-7
(2001)

7. Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger
LTL. J. Log. Comput. 19(6), 1541–1575 (2009)

8. Etessami, K., Wojtczak, D., Yannakakis, M.: Quasi-birth-death processes, tree-like
QBDs, probabilistic 1-counter automata, and pushdown systems. Perform. Eval.
67(9), 837–857 (2010)

9. Hofman, P., Mayr, R., Totzke, P.: Decidability of weak simulation on one-counter
nets. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS
2013, New Orleans, LA, USA, 25–28 June 2013, pp. 203–212 (2013)

10. Kozen, D.C.: Design and Analysis of Algorithms. Texts and Monographs in Com-
puter Science. Springer, New York (1992). ISBN: 978-3-540-97687-5

11. Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for AC-like equa-
tional theories with homomorphisms. Research report LSV-04-16, Laboratoire
Spécification et Vérification, ENS Cachan, France, p. 69, November 2004. http://
www.lsv.ens-cachan.fr/Publis/RAPPORTS LSV/PS/rr-lsv-2004-16.rr.ps

12. Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for AC -like equational
theories with homomorphisms. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp.
308–322. Springer, Heidelberg (2005)

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PS/rr-lsv-2004-16.rr.ps
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PS/rr-lsv-2004-16.rr.ps

478 D. Chistikov et al.

13. Latteux, M.: Langages à un compteur. J. Comput. Syst. Sci. 26(1), 14–33 (1983)
14. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In:

30th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS 2015,
6–10 July 2015, Kyoto, Japan, pp. 56–67 (2015)

15. Podelski, A., Rybalchenko, A.: ARMC: the logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 245–259. Springer, Heidelberg (2007)

16. Thakkar, J., Kanade, A., Alur, R.: Transducer-based algorithmic verification of
retransmission protocols over noisy channels. In: Beyer, D., Boreale, M. (eds.)
FORTE 2013 and FMOODS 2013. LNCS, vol. 7892, pp. 209–224. Springer, Hei-
delberg (2013)

17. Thomas, W.: The reachability problem over infinite graphs. In: Frid, A., Morozov,
A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 12–18.
Springer, Heidelberg (2009)

The Invariance Problem for Matrix Semigroups

Klaus Dräger(B)

EECS, Queen Mary University of London, London, UK
klaus.draeger@gmail.com

Abstract. The question of whether a given subspace of Q
d can be

reached from a starting vector using linear transformations from a given
finite set is well known to be undecidable in dimension 3 and above.
We show that, in contrast, the invariance problem, i.e. the question of
whether it is possible to remain inside a given subspace indefinitely using
linear transformations from a given finite set, is decidable.

1 Introduction

The classic subspace reachability problem for matrix semigroups is the following.

– Given: A finite set A ⊆ Md(Q) of matrices, a linear subspace U ⊆ Q
d, and a

vector x0 ∈ Q
d.

– Question: Starting from x0, can we reach U by applying a finite sequence
of matrices from A? That is, do there exist M1, . . . , Mk ∈ A such that
Mk · · · M1x0 ∈ U?

This problem is known to be undecidable for d ≥ 3 [11]. In this paper, we
consider a temporal dual, the invariance problem:

– Given: A finite set A ⊆ Md(Q) of matrices, a linear subspace U ⊆ Q
d, and a

vector x0 ∈ Q
d.

– Question: Starting from x0, can we remain in U indefinitely, using matrices
from A? That is, does there exist a sequence M1,M2, . . . such that, for all
k ∈ N, Mk ∈ A and Mk · · · M1x0 ∈ U?

The main result of this paper is that, unlike the reachability problem, the invari-
ance problem is decidable.

The temporal duality becomes clearer when thinking about the negation of
the properties: Consider the infinite-state transition system S = (Qd, x0, A) with
transitions Q

d → Q
d defined by the given set A of matrices, and the formula

ϕU ≡ r1 · x = . . . = rk · x = 0 defining the subspace U in terms of a basis
(r1, . . . , rk) of its orthogonal complement, then a solution to the reachability
problem is a counterexample to the LTL assertion S � �¬ϕU (stating that
S will always be outside U), while a solution to the invariance problem is a
counterexample to the LTL assertion S � ♦¬ϕU (stating that S will eventually
be outside U). Note the existential character of the problem: we are asking about
satisfiability of the invariant. The universal version (the question of validity) can
easily be shown to be also decidable; see Sect. 4.3.
c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 479–492, 2016.
DOI: 10.1007/978-3-662-49630-5 28

480 K. Dräger

As a technical aside, when we talk about a matrix semigroup in this paper,
we mean a sub-semigroup G of Mn(Q) equipped with a particular generating set
A. For the reachability problem, this detail is irrelevant (all that is required is
the existence of some M ∈ G with Mx0 ∈ U), but it matters for the invariance
problem. Consider the case x0 = (1, 1, 0)T , U = {(x, y, 0)T | x, y ∈ Q}, and
A1 = {M1,M3}, A2 = {M2,M3}, where

M1 =

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ ,M2 =

⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ ,M3 =

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ .

Both A1 and A2 generate the natural permutation representation of the symmet-
ric group S3, but the invariance problem for x0, U,A1 has a solution Mω

1 ∈ Aω
1 ,

while there is no solution for x0, U,A2.

1.1 Attacking the Invariance Problem

There is an intuitively obvious approach to the invariance problem, which pro-
ceeds as follows:

– Expand the tree of words w ∈ A∗.
– Abort any branch M1 . . . Mk with Mk · · · M1x0 /∈ U ; if there are no more

branches left, then there is no solution.
– If for some branch M1 . . . Mk we have Mk · · · M1x0 = 0, we have a solution,

since 0 ∈ U is fixed by any M ∈ A (i.e. M1 . . . Mkw will do for any w ∈ Aω).

However, this method is not complete. The result which allows us to fix it is a
pumping lemma for solution prefixes: there is a bound N depending only on |A|
and dim U such that any word w ∈ Aω has a prefix uv � w with

– |uv| ≤ N , and
– (u, v) is dominating in a sense defined below, which in particular implies that

v is nonempty and if w is a solution to the invariance problem, then so is uvω.

Once we have this, the decision problem reduces to checking finitely many pairs
(u, v), as in the algorithm in Fig. 1.

Example 1. Let x0 = (1, 0, 0, 0)T ∈ Q
4, U = {(x, y, z, 0)T | x, y, z ∈ Q}, and

A = {P,Q,R} with

P =

⎛

⎜
⎜
⎝

1 2 0 0
0 0 1 2
2 1 0 0
0 0 2 1

⎞

⎟
⎟
⎠ , Q =

⎛

⎜
⎜
⎝

0 −1 0 2
−1 0 2 0
2 0 −1 0
0 2 0 −1

⎞

⎟
⎟
⎠ , R =

⎛

⎜
⎜
⎝

0 0 −1 2
−1 0 2 0
0 1 0 0
2 0 0 −1

⎞

⎟
⎟
⎠ .

Figure 2 shows the beginning of a breadth-first exploration for this example; one
solution to the invariance problem is the periodic sequence PQR(RPPQPQ)ω,
corresponding to the dominating prefix (PQR,RPPQPQ).

The Invariance Problem for Matrix Semigroups 481

Fig. 1. Finding a trace remaining inside U , starting from x0. Exploration follows a
breadth-first strategy in order to find a minimal-length solution. The details of the
notions of pumpability and dominating prefix, and proof that such a prefix exists for
any sufficiently long branch, are given in Sects. 2 and 3.

Fig. 2. The first few layers of the running example

482 K. Dräger

2 Preliminaries

2.1 Setting

Throughout this paper, we work within Q
d for some d ∈ N. We assume the linear

subspace U ⊆ Q
d, starting vector x0 ∈ U , and finite non-empty set of matrices

A ⊆ Md(Q) to be arbitrary but fixed, subject to the non-triviality condition

MU � U for all M ∈ A.

If there is some M violating this condition, then Mω is a trivial solution to
the invariance problem.

We use A∗ and Aω for the sets of finite and infinite words over A, respectively,
and ε for the empty word. For x ∈ Q

n, S ⊆ Q
n, and w = M1 . . . Mk ∈ A∗,

w(x) := Mk · · · M1x and w(S) := {w(x) | x ∈ S}. A word p ∈ A∗ is a prefix
of w = M1 . . . Mk ∈ A∗ (resp. w = M1M2 . . . ∈ Aω), denoted by p � w, iff
p = M1 . . . Mj for some j ≤ k (resp. some j ∈ N).

Definition 1. Let w = M1 . . . Mk ∈ A∗. Associated with w are the following
subspaces of Q

n:

– the source space S(w) = {x ∈ Q
n | p(x) ∈ U for each prefix p � w}, and

– the target space T (w) = w(S(w)).

The following elementary properties of S(), T () are used throughout the
proof of the main result:

Lemma 1. For all u, v, w ∈ A∗,

(i) S(uv) = {x ∈ S(u) | u(x) ∈ S(v)} ⊆ S(u), with equality iff T (u) ⊆ S(v),
(ii) T (uv) = v(T (u) ∩ S(v)) ⊆ T (v), with equality if T (u) ⊇ S(v),
(iii) dim T (uvw) ≤ dim T (v).

Proof

(i) Since any prefix of uv is either a prefix of u or a word of the form up, where
p is a prefix of v, we have

S(uv) = {x ∈ Q
n | p(x) ∈ U for all p � uv}

= {x ∈ Q
n | p(x) ∈ U for all p � u and p(u(x)) ∈ U for all p � v}

= {x ∈ Q
n | x ∈ S(u) and u(x) ∈ S(v)},

which is obviously a subspace of S(u). Equality holds iff for all x ∈ S(u),
u(x) is in S(v), iff T (u) ⊆ S(v).

(ii) Using uv(x) = v(u(x)), we get

T (uv) = v(u(S(uv)))
= v(u({x ∈ S(u) | u(x) ∈ S(v)}))
= v({u(x) | x ∈ S(u) and u(x) ∈ S(v)})
= v(T (u) ∩ S(v))
⊆ v(S(v)) = T (v).

If T (u) ⊇ S(v), the inclusion in the last line holds with equality.

The Invariance Problem for Matrix Semigroups 483

(iii) By (ii), T (uvw) ⊆ T (vw), and we have

dim T (uvw) ≤ dim T (vw)
= dim w(T (v) ∩ S(w))
≤ dim w(T (v))
≤ dim T (v),

where in the last step we use that dim f(V) ≤ dim V for any linear map f
and vector space V .
�

If w = M1M2 . . . ∈ Aω is an infinite word, then due to Lemma 1(i), the
source spaces of its prefixes form a descending chain S(ε) ⊇ S(M1) ⊇ . . .; since
the lattice of subspaces satisfies the descending chain condition, this chain has a
limit, S(w), the space of all vectors whose w-orbit remains in U . The invariance
problem obviously amounts to checking the existence of an infinite word w with
x0 ∈ S(w).

Definition 2. A word q ∈ A∗ is pumpable if q �= ε and T (q) ⊆ S(q).
A dominating prefix of a (finite or infinite) word w is a pair (p, q) such that

pq is a proper prefix of w and q is pumpable.

Any word which has a dominating prefix can then be disregarded due to the
following lemma.

Lemma 2. Let p, q ∈ A∗. If q is pumpable, then

(i) S(qk) = S(q) for all k ≥ 1,
(ii) S(pqk) = S(pq) for all k ≥ 1, and
(iii) if pq is a prefix of a word w ∈ Aω, and w is a solution to the invariance

problem for x0, U,A, then so is pqω.

Proof

(i) We use induction on k. The assertions holds trivially for k = 1; for the
step k → k + 1, from T (q) ⊆ S(q) = S(qk) we get, using Lemma 1(i), that
S(q) = S(qqk) = S(qk+1).

(ii) From (i) and Lemma 1(i) we have
S(pq) = {x ∈ S(p) | p(x) ∈ S(q)} = {x ∈ S(p) | p(x) ∈ S(qk)} = S(pqk).

(iii) S(pqω) is the limit of (S(pqk))k≥1, which by (ii) equals the constant
sequence (S(pq))k≥1, and therefore S(pqω) = S(pq). Since pq is a prefix
of w, and x0 ∈ S(w), we get
x0 ∈ S(w) ⊆ S(pq) = S(pqω).
�

Our goal now is to show that there is a bound N such that any word w with
|w| > N has a dominating prefix (p, q) with |pq| ≤ N .

Definition 3. A word w ∈ A∗ is

– essential if it has no dominating prefix,
– S-minimal of dimension k if S(w) � S(p) for each proper prefix p � w and

dim S(w) = k,

484 K. Dräger

– T -minimal of dimension k if k = dim T (w) < dim T (p) for each proper prefix
p � w,

– S-essential (resp. T -essential) of dimension k if it is both essential and S-
minimal (resp. T -minimal) of dimension k.

We will omit the dimension for the last three properties when it is irrelevant.

Example. Continuing from the partial exploration shown in Fig. 2, Table 1 con-
tains the source and target spaces for some selected words occurring in the tree,
and whether or not they are S-minimal. All the words in the figure are essential.

Table 1. Some source and target spaces occurring in the running example

w S(w) T (w) S-minimal

ε {(x, y, z, 0)T } {(x, y, z, 0)T } yes, dimension 3

P {(x, y, 0, 0)T } {(x + 2y, 0, 2x + y, 0)T } yes, dimension 2

Q {(x, 0, z, 0)T } {(0, 2z − x, 2x − z, 0)T } yes, dimension 2

R {(0, y, z, 0)T } {(−z, 2z, y, 0)T } yes, dimension 2

PQ {(x, y, 0, 0)T } {(0, 3x, 3y, 0)T } no

QR {(x, 0, z, 0)T } {(z − 2x, 4x − 2z, 2z − x, 0)T } no

PQP {(x, 0, 0, 0)T } {(6x, 0, 3x, 0)T } yes, dimension 1

PQR {(x, y, 0, 0)T } {(−3y, 6y, 3x, 0)T } no

PQRQ {(x, 0, 0, 0)T } {(0, 6y,−3x, 0)T } yes, dimension 1

The plan now is to prove that there are only finitely many essential words,
using the following factorization.

Definition 4. The S-factorization F (w) of a word w ∈ A∗ is a finite sequence of
nonempty finite words defined as follows. If w = ε, then F (w) = (). For w �= ε, let
p � w be the shortest prefix of w for which S(p) = S(w), and (q1, . . . , qk) = F (q),
where q is the suffix with w = pq; then F (w) = (p, q1, . . . , qk). Note that since
we require MU � U for all M ∈ A, we have U = S(ε) � S(w) for all w �= ε,
which ensures that p �= ε.

For infinite w ∈ Aω, we get an infinite version of this factorization by core-
cursively defining F (w) = (p1, p2, . . .), where p1 is the shortest prefix of w with
S(p1) = S(w), and (p2, . . .) = F (q) for the infinite suffix q with w = pq.

Note that actually computing the infinite factorization (even incrementally)
would generally not be feasible (since a decrease in dimension S(uM) � S(u)
could occur after an arbitrarily long prefix u, we could not determine p1 based
on any finite prefix u, unless S(u) happens to be {0}), but we will just need
its existence and some of its properties. However, in case w is periodic, we can
compute F (w):

The Invariance Problem for Matrix Semigroups 485

Example 2. Consider the word w = uvω with u = PQR, v = RPPQPQ
from Example 1. A quick calculation gives that S(v) = T (v) = S(vω) =
{(0, 0, z, 0)T | z ∈ Q}. Since u(x0) ∈ S(v), we get that x0 ∈ S(p), and therefore
dim S(p) ≥ 1, for any prefix p � w.

On the other hand, since P,Q,R are invertible, we have that dimS(pv) =
dim T (pv) ≤ dim T (v) = 1 for any word p, so that the dimension of each factor in
F (w) must be 1. Since w is periodic, the same will be true for the factorization.
In fact, we get

F (PQR(RPPQPQ)ω) = (PQR,RP, PQ,PQR,PPQ,PQR, . . .)

3 Deciding Satisfiability

We now show that there are only finitely many essential words, and derive upper
bounds on their number and length, from which the main result follows.

3.1 Finiteness of the Set of Essential Words

Lemma 3. If w ∈ A∗ is S-minimal of dimension k, then it is also T -minimal
of some dimension j ≤ k. As a direct corollary, if w is S-essential of dimension
k, then it is also T -essential of some dimension j ≤ k.

Proof. That dim T (w) ≤ dim S(w) follows directly from T (w) = w(S(w)). If
w = ε, then it is trivially T -minimal.

Otherwise, w = vM for some v ∈ A∗ and M ∈ A. By Lemma 1(iii), it suffices
to show dim T (w) < dim T (v). Since w is S-minimal, S(w) = S(vM) � S(v),
and thus T (v) � S(M) by Lemma 1(i). Therefore

dim T (vM) = dimM(T (v) ∩ S(M)) by Lemma 1(ii)
≤ dim (T (v) ∩ S(M))
< dim T (v),

i.e. w is T -minimal.
The corollary follows by just adding non-existence of dominating prefixes of

w to both the assumption and conclusion.
�
Theorem 1. Let w = vM be a non-empty essential word, where v ∈ A∗ and
M ∈ A. Let the S-factorization of v be F (v) = (p1, . . . , pm). Then

(i) each pi is T -essential,
(ii) if w is T -minimal of dimension k, then each pi is T -minimal of some dimen-

sion di > k, and
(iii) pi �= pj for i �= j.

486 K. Dräger

Proof

(i) By construction of the S-factorization, each pi is S-minimal. By Lemma 3,
it is also T -minimal.
Suppose pi is not essential, then it has a dominating prefix (r, s). This
implies that (p1 . . . pi−1r, s) is a dominating prefix for the essential word w,
contradiction.

(ii) We already have that each pi is S-minimal and thus T -minimal by Lemma 3;
it remains to show dim T (pi) > dim T (w). This follows because pi is a factor
of v, so dim T (pi) ≥ dim T (v) by Lemma 1(iii), and dimT (v) > dim T (w)
due to T -minimality of w.

(iii) Suppose pi = pj for some i < j. By the definition of F (v) we then have
S(pi . . . pm) = S(pi) = S(pj) = S(pj . . . pm) ; furthermore, since the spaces
(S(pi . . . pk)) form a descending chain, we have in fact S(pi) = S(pi . . . pk)
for all i ≤ k ≤ m, and in particular S(pi) = S(pi . . . pj−1) = S(pi . . . pm).
This implies

T (pi . . . pj−1) ⊆ S(pj . . . pm) by Lemma 1(i)
= S(pj)
= S(pi)
= S(pi . . . pj−1).

Therefore (p1 . . . pi−1, pi . . . pj−1) is a dominating prefix for w, contradic-
tion.
�

This theorem allows us to prove finiteness of the set of essential words by
induction on the codimension c(w) := dimU − dim T (w). It also enables us to
derive upper bounds on their number and length, for which we need the following
definition.

Definition 5

– The arrangement function a : N → N is given by

a(n) =
n∑

i=0

n!
i!

;

it is the number of sequences from a set of n elements with no repeated element.
Note that a(n)/n! converges to Euler’s number e from below, in particular
a(n) ≤ 3n! for all n.

– The numbers Ni for i ∈ N are defined by Ni =

{
1 for i = 0
|A| · a(Ni−1) otherwise.

– The numbers Li for i ∈ N are defined by Li =

{
0 for i = 0
Ni−1Li−1 + 1 otherwise.

Theorem 2. We have the following bounds on the numbers and lengths of essen-
tial words w, based on their codimension c(w) = dim U − dim T (w).

The Invariance Problem for Matrix Semigroups 487

(i) There are at most Ni T -essential words w of codimension c(w) ≤ i.
(ii) A T -essential word of codimension i has length ≤ Li.
(iii) There at most N1+dimU essential words, and none of them is longer than

L1+dimU .

Proof

(i) We proceed by induction on i. For i = 0, the empty word ε is trivially T -
essential. Since T (ε) = U and ε � w for all w ∈ A∗, it is the only T -essential
word of dimension dimU , i.e. codimension 0.
For i → i + 1, by the induction hypothesis there are at most Ni T -essential
words of codimension c(w) ≤ i. By Theorem 1, any T -essential word w
of codimension i + 1 has a factorization w = p1 . . . pnM in which the pj

are pairwise distinct and T -essential of codimension ≤ i, and M ∈ A. The
number of such factorizations is at most |A|·a(Ni) = Ni+1, and they include
the ones for words of codimension ≤ i, giving the upper bound Ni+1 for the
number of T -essential words w of codimension c(w) ≤ i + 1.

(ii) As in (i), we argue inductively using Theorem 1. For i = 0, the only T -
essential word ε of codimension 0 has length 0 = L0.
For i → i+1, the decomposition in Theorem 1 consists of at most Ni words,
each of length at most Li, plus the final letter, giving a total length of at
most NiLi + 1 = Li+1.

(iii) As in (i) and (ii), we get from Theorem 1 that any non-empty essential
word has a factorization into (at most NdimU) pairwise T -essential words
of length at most LdimU and a single trailing M ∈ A. The number of such
factorizations is at most N1+dimU , and their length is bounded by L1+dimU ,
by the same argument as before.
�

3.2 Decidability of the Invariance Problem

The main result now follows immediately from the bounds established in the
previous section.

Theorem 3. Algorithm 1 terminates. It returns FAIL if and only if there is no
solution to the invariance problem.

Proof. Let w = M1M2 . . . ∈ Aω be any infinite word. By Theorem 2, w has an
essential prefix m(w) = M1 . . . Mk of maximal length |m(w)| ≤ L1+dimU (note
that the empty word is always essential, so m(w) exists). Then M1 . . . Mk+1

has a dominating prefix (p, q). We must have that pq = m(w) and there is no
shorter dominating prefix, since otherwise m(w) would also fail to be essential.
Due to the properties of dominating prefixes, x0 ∈ S(m(w)) if and only if pqω is
a solution to the invariance problem. Therefore we have two cases.

If there is no solution to the invariance problem, then for any branch w, x0

cannot be in S(m(w)), i.e. the branch will be discarded before reaching depth
|m(w)| ≤ L1+dimU . By König’s lemma, only finitely many words are explored,
and the algorithm returns FAIL.

488 K. Dräger

If there is a solution w, then x0 ∈ S(p) for every prefix p � w, and the
algorithm keep exploring until it reaches depth |m(w)| for one such w, at which
point the dominating prefix is discovered and returned.
�

4 Further Remarks and Variations

4.1 Computing All Possible Initial Vectors

The algorithm we gave can be easily adapted to solve the following, more general
problem:

– Given: A finite set A ⊆ Md(Q) of matrices, and a subspace U ⊆ Q
d.

– Question: From which starting vectors x0 can we remain in U indefinitely,
using matrices from A? That is, for which x0 ∈ Q

d does there exist a sequence
M1,M2, . . . such that, for all k ∈ N, Mk ∈ A and Mk · · · · · M1x0 ∈ U?

Essentially, all that has to be changed is to remove the special treatment of x0

and collect all the pairs which would have been returned into a set P , as in
Fig. 3.

Fig. 3. Finding all starting vectors from which the invariance problem has a solution.

4.2 Locations

The transition system (Qd, x0, A) can be extended using a finite set L of control
locations, giving (L × Q

d, (l0, x0), T) for a finite set T ⊆ L × Mn(Q) × L. The
main properties of words w ∈ A∗ can still be used as before, the main difference
being that a pumpable word q is now additionally required to label a cycle in
the location graph.

The algorithm then proceeds as before, except that nodes are labeled with
states (l, x) ∈ L × Q

d, and only successors using matrices which are available in
l are considered.

The Invariance Problem for Matrix Semigroups 489

4.3 The Universal Version

The question whether the invariant given by U is valid, i.e. whether w(x0) ∈ U
for all w ∈ A∗, is also decidable, and is in fact easier than the problem we have
dealt with in the previous sections. Again, the basic idea is to expand the tree
of words w ∈ A∗ in a breadth-first order. While doing so, we can

(i) as soon as we encounter a counterexample w(x0) /∈ U , return w;
(ii) cut any branch v if v(x0) is a linear combination of vectors we have previously

explored.

The reason for (ii) is that, if y := v(x0) = λ1x1+· · ·+λnxn, then due to linearity
for any w ∈ A∗, w(y) = λ1w(x1) + · · · + λnw(xn); in particular, if w(y) /∈ U
for some w ∈ A∗, then there is some i for which w(xi) is also not in U . Since
we use breadth-first search, xi = ui(x0) for some word ui which is smaller than
v in the length-lexicographic order. Thus for any counterexample which we lose
by discarding y, there is a length-lexicographically shorter one. In particular, if
there are any counterexamples, then the length-lexicographically minimal one
among them cannot be lost and will be found by the search.

Fig. 4. Checking validity of the invariant U , starting from x0.

5 Summary and Future Work

5.1 Summary

We presented a solution to the invariance problem for matrix semigroups, i.e. the
question of an infinite sequence of matrices satisfying a given linear invariant.

490 K. Dräger

We gave an algorithm to find a solution if one exists, and proved its termina-
tion. The latter relied on the analysis of various properties of words in matrix
semigroups and their interaction. In particular, we showed that for any finite set
A of matrices and subspace U , there is a bound N such that any word of length
> N has a dominating prefix, reducing the problem to a finite one (Fig. 4).

5.2 Related Work

Matrix semigroups are a rich source of problems [3,11], including many surpris-
ingly complicated decision problems. Among these are the scalar reachability
problem (undecidable in dimension 3 and above [3]), which is the problem of
reaching a subspace of codimension 1 from a starting vector using matrices from
a given semigroup, and the vector reachability problem, in which the target is
a single vector. A special case of the latter, for a single generating matrix, is
the orbit problem which was shown to be decidable by Kannan and Lipton [5].
A closely related problem to the universal version of the invariance problem
(Sect. 4.3) is the question of boundedness, which is undecidable [1].

One source of the complexity of such problems is that, in contrast to similar
models like vector addition systems [4,6,9], the behaviour of matrix semigroups
has inherently nonlinear aspects; for example, the simple 3-dimensional matrix⎛

⎝
1 2 1
0 1 1
0 0 1

⎞

⎠ has the orbit {(n2, n, 1)T | n ∈ N}. This ability to reflect polynomial

relationships connects problems like scalar reachability to known undecidable
ones, like solvability of diophantine equations [10].

This complexity extends to various related models. Polynomial Register
Machines [2] generalize vector addition systems with polynomial update func-
tions (with integer coefficients); while this leads to undecidability in most cases,
in dimension 1 reachability turns out to be decidable (in fact PSPACE-complete).
Iteration of piecewise affine maps [7,8], similarly to matrix semigroups, involves
a choice between affine-linear transformations, but this choice is deterministic
based on the current variable values; the (vector) reachability problem is unde-
cidable in general, but decidability is still open in dimension 1.

5.3 Future Work

There are a number of interesting ways to extend these results. Among them
are:

Complexity Bounds. From the proof of decidability we get the upper bound
L∞ ≤ 1+NdimU (1+NdimU−1(. . . (1+N0) . . .) for the exploration depth, where
N0 = 1 and Ni+1 ≤ 3 · |A| ·Ni!, for a total of dimU nested factorials. This implies
a complexity upper bound of O(2L∞) for the algorithm. It would be interesting
to see how much this can be improved, and what lower bounds can be found.

The Invariance Problem for Matrix Semigroups 491

Polyhedral Invariants. The invariant in this paper was given as a linear subspace
U , corresponding to a conjunction of linear equations. Generalizing this to linear
inequalities leads to the question of whether we can find a sequence of matrices
from A which allows us to remain inside a given polyhedron. This adds significant
complications; in particular, it is not the case that a descending sequence of
polyhedra P0 ⊇ P1 ⊇ . . . stabilizes after finitely many steps, so notions like the
S-factorization cannot simply be translated to this setting. It is not clear at all
whether this more general question is decidable.

Guards. The control structure of the transition system (Qd, x0, A) is relatively
simple in that any transition is enabled at any time. Adding control location
already changes this, but the values of the vector x in a state (l, x) still have no
influence on the control flow. This changes with the introduction of application
conditions or guards: linear equations or inequalities which have to be satisfied
before the associated transition can be taken. Note that equation guards can be
translated into extra dimensions in such a way that guard violations translate
into (extended) invariance violations, so that they don’t increase expressivity;
inequalities on the other hand make for an interesting addition.

Games. Since both the existential and (as seen in Sect. 4.3) the universal version
of the invariance problem are decidable, it is natural to ask what can be done
about an alternating version. This would amount to considering games in which
two players �,♦ take turns applying matrices from given sets A�, A♦ to the
current vector x, with the goal of preserving and violating the invariant U ,
respectively.

Acknowledgements. The author is part supported by EPSRC project
EP/K032011/1.

References

1. Blondel, V.D., Tsitsiklis, J.N.: The boundedness of all products of a pair of matrices
is undecidable. Syst. Control Lett. 41(2), 135–140 (2000)

2. Finkel, A., Göller, S., Haase, C.: Reachability in register machines with polynomial
updates. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 409–
420. Springer, Heidelberg (2013)

3. Halava, V., Harju, T., Hirvensalo, M.: Undecidability bounds for integer matrices
using claus instances. Technical report 766 (2006)

4. Hopcroft, J., Pansiot, J.-J.: On the reachability problem for 5-dimensional vector
addition systems. Theor. Comput. Sci. 8(2), 135–159 (1979)

5. Kannan, R., Lipton, R.J.: Polynomial-time algorithm for the orbit problem. J.
ACM 33(4), 808–821 (1986)

6. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

7. Kurganskyy, O., Potapov, I.: Reachability problems for pams. CoRR,
abs/1510.04121 (2015)

492 K. Dräger

8. Kurganskyy, O., Potapov, I., Sancho-Caparrini, F.: Reachability problems in low-
dimensional iterative maps. Int. J. Found. Comput. Sci. 19(04), 935–951 (2008)

9. Leroux, J.: Vector addition systems reachability problem (a simpler solution). In:
Voronkov, A. (ed.)Turing-100. The Alan Turing Centenary. EasyChair Proceedings
in Computing, vol. 10, pp. 214–228. EasyChair (2012)

10. Matiyasevich, Y.: Hilbert’s Tenth Problem. With a foreword by Martin Davis. MIT
Press, Cambridge (1993)

11. Potapov, I.: From post systems to the reachability problems for matrix semigroups
and multicounter automata. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.)
DLT 2004. LNCS, vol. 3340, pp. 345–356. Springer, Heidelberg (2004)

Order-Sorted Rewriting and Congruence Closure

José Meseguer(B)

Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, USA

meseguer@illinois.edu

Abstract. Order-sorted type systems supporting inheritance hierar-
chies and subtype polymorphism are used in theorem proving, AI, and
declarative programming. The satisfiability problems for the theories of:
(i) order-sorted uninterpreted function symbols, and (ii) of such symbols
modulo a subset Δ of associative-commutative ones are reduced to the
unsorted versions of such problems at no extra computational cost. New
results on order-sorted rewriting are needed to achieve this reduction.

Keywords: Order-sorted rewriting · Congruence closure · Satisfiability

1 Introduction

For greater expressiveness and efficiency, type systems supporting inheritance
hierarchies and subtype polymorphism are used in many areas such as resolu-
tion theorem proving, e.g., [26,32], declarative logic and rule-based languages,
e.g., [4,9,10,29], and artificial intelligence, e.g., [8,29]. Order-sorted (OS) equa-
tional logic, e.g., [15,21], is a logical framework supporting inheritance hierar-
chies and subtype polymorphism widely used for these purposes. Therefore, the
development of decision procedures for OS theories is of interest in all these
areas. I focus here on decision procedures for the OS theory of uninterpreted
function symbols, which in an unsorted setting is decided by congruence closure
algorithms [7,24,27]. However, for greater expressiveness one can allow some of
the function symbols, say in a subsignature Δ ⊆ Σ, to be interpreted by some
axioms BΔ. For example, for an unsorted subsignature Δ ⊆ Σ of binary function
symbols, congruence closure algorithms modulo the axioms ACΔ, asserting the
associativity and commutativity of all symbols in Δ have been given in [2,19,22].
Therefore, I also study satisfiability in the OS theory (Σ,ACΔ) of uninterpreted
function symbols Σ modulo ACΔ.

The most obvious approach would be to develop an order-sorted congruence
closure algorithm along the lines of [11] and then extended it to the modulo AC
case. However, the main, somewhat surprising message of this paper is that such
OS congruence closure algorithms are not needed at all : the already existing
and efficient unsorted congruence closure algorithms in [7,24,27] and congru-
ence closure modulo ACΔ in [2,19,22] and tools supporting them can be reused
without change and at no extra cost to solve the corresponding OS satisfiability
problems.
c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 493–509, 2016.
DOI: 10.1007/978-3-662-49630-5 29

494 J. Meseguer

A Simple Example. Consider the following order-sorted signature Σ

with sorts A,B,C, subsorts A,C < B, f subsort-polymorphic with typings
f : A → A and f : C → C, and a binary + with typing + : AA → A. Its so-
called theory of uninterpreted function symbols is just the order-sorted equational
theory (Σ, ∅) with empty set of equations, whose class of models, OSAlgΣ , is
that of all order-sorted Σ-algebras detailed in Sect. 2. Is the formula

(�) a = b ∧ b = c ∧ f(f(a)) = f(a) ∧ a + f(f(a)) �= f(a) + a

(Σ, ∅)-satisfiable? The standard way to answer this question if Σ were unsorted
would be to: (1) compute the congruence closure of the first three equations; and
(2) test the last inequality using such a congruence closure. Since, as pointed out
in [2,12,16], unsorted congruence closure algorithms are ground Knuth-Bendix
completion algorithms [18], an obvious way to try to answer this question would
be to try to complete the first three equations into an equivalent set of confluent
and terminating rewrite rules. But this runs into serious trouble. An order-
sorted Knuth-Bendix completion algorithm such as [13] will orient a = b and
b = c as b → a and b → c because rules must be sort-decreasing, i.e., rewrite
to a term of equal or lower sort. This then generates the critical pair a = c,
which is unorientable, so completion fails. Notice also that replacement of equals
by equals does not hold in an order-sorted setting: from a = b we cannot derive
f(a) = f(b), because f(b) doesn’t type. These difficulties were clearly felt by the
authors of [11], the only order-sorted congruence closure algorithm I am aware
of, which is quite complex and is not a Knuth-Bendix completion. They say:

An approach using rewriting [. . .] fails due to the well-known problem that
rewriting with order-sorted rewrite rules may create ill-typed terms.

Let us now widen the problem into one of satisfiability modulo AC by making the
+ symbol associative-commutative. That is, we consider the axioms AC+ = {x+
y = y+x, (x+y)+z = x+(y+z)}, with x, y, z of sort A, and ask: is the formula
(�) (Σ,AC+)-satisfiable? For this case, I am not aware of any order-sorted AC-
congruence closure algorithm, but unsorted, ground-AC-completion-based ones
exist [2,19,22]. The trouble, again, is that order-sorted AC-completion as in [13]
fails miserably in the same way (a = c cannot be oriented).

Order-Sorted Rewriting and Congruence Closure 495

Wouldn’t it be nice if we could completely ignore all sort information in the
above two OS satisfiability problems and solve them as unsorted problems using
standard (and efficient!) congruence closure [7,24,27] and congruence closure
modulo AC [2,19,22] algorithms? If this reduction method were sound, we could
easily settle the (Σ, ∅)- and (Σ,AC+)-satisfiability of (�): the confluent and ter-
minating rules R = {a → b, c → b, f(f(b)) → f(b)} play the role of a “congruence
closure” for the first three equations, and also of an AC+-congruence closure.
Since the disequality a + f(f(a)) �= f(a) + a reduces to b + f(b) �= f(b) + b, the
formula (�) is (Σ, ∅)-satisfiable. However, since b + f(b) =AC+ f(b) + b, (�) is
(Σ,AC+)-unsatisfiable. But is this reduction to unsorted satisfiability sound?

Initial Algebra Semantics of Uninterpreted Satisfiability. Ignoring the
sort information of an OS signature Σ is captured by a signature map u : Σ �
(f : s1 . . . sn → s) �→ (f : U n. . . U → U) ∈ Σu, where U is the single “universe”
sort in the unsorted signature Σu. As further detailed at the end of Sect. 2, u
induces a reduct map of algebras in the opposite direction, |u : AlgΣu � A �→
A|u ∈ OSAlgΣ , making each unsorted algebra A into and order-sorted one A|u,
and such that for a set of ground OS Σ-equations E we have the equivalence:
A|u |= E ⇔ A |= E. In particular, the E-initial unsorted Σu-algebra TΣu/E is
mapped to the OS Σ-algebra TΣu/E |u and, since TΣu/E |u |= E, there is a unique
OS homomorphism h : TΣ/E → TΣu/E |u from the E-initial OS Σ-algebra TΣ/E .

But the proof of Theorem5 shows that, for equations E and disequations
D, the conjunction

∧
E ∧ ∧

D is satisfiable iff TΣ(C)/E |= ∧
E ∧ ∧

D, where
the variables C of E ∪ D are seen as fresh new constants added to Σ to get
a supersignature Σ(C) ⊇ Σ, so that

∧
E ∧ ∧

D becomes a ground formula.
This gives us, in model-theoretic terms, the key to verify the soundness of
the hoped-for reduction of the satisfiability for the theory of OS uninterpreted
function symbols to that of the unsorted theory of uninterpreted function sym-
bols: this reduction method will be sound if and only if the OS homomorphism
h : TΣ(C)/E → TΣ(C)u/E |u is injective. In proof-theoretic terms this injectivity
will hold if and only if for all ground Σ-equation u = v we have the equiva-
lence: (Σ,E) u = v ⇔ (Σu, E) u = v. The (⇒) direction is obvious, but
the (⇐) direction is a non-trivial new result that follows from several conser-
vativity theorems that I prove in Sects. 3.2 and 4.1 by factoring the signature
map u : Σ → Σu through a sequence Σ ↪→ Σ� → Σ̂ → Σu of increasingly
simpler order-sorted, many-sorted and finally unsorted signatures and relating
equational and rewriting deductions at all these levels.

The Plot Thickens. The soundness of the hoped-for reduction to the unsorted
case for satisfiability modulo ACΔ is a thornier issue. As before, the reduc-
tion will be sound if and only if for ground Σ-equations E the unique Σ-
homomorphism h : TΣ/E∪ACΔ

→ TΣu/E∪ACΔu |u from the initial E ∪ ACΔ-
algebra TΣ/E∪ACΔ

is injective. But some of the conservativity theorems along
the above sequence of signature maps Σ ↪→ Σ� → Σ̂ → Σu needed to make h
injective actually break down in the ACΔ case. The problem has to do with the
translation of the equations ACΔ along these signature maps. At the unsorted

496 J. Meseguer

level of Σu the translated equations ACΔu , are more general and therefore
identify more terms than the original OS equations ACΔ. Consider a simple
example: the equation a + b = b + a does not type in our example signature
Σ, but it types in the supersignature Σ� ⊇ Σ, which for our running exam-
ple is depicted in Sect. 3.1. The AC equations ACΔ in our example are just
associativity and commutativity of + : A A → A and therefore apply only
to terms of sort A. Instead, the AC equations ACΔu are unsorted, and apply
to all terms. This means that a + b =ACΔu b + a, but since b does not have
sort A, we have a + b �=ACΔ

b + a. It also means that the homomorphism
h′ : TΣ�/E∪ACΔ

→ TΣu/E∪ACΔu |u in general is not injective. However, all hope
is not lost. As a direct consequence of Corollary 2 in Sect. 3.2, there is an isomor-
phism α : TΣ/E∪ACΔ

∼= TΣ�/E∪ACΔ
|Σ to the Σ-reduct of TΣ�/E∪ACΔ

and this
shows that the homomorphism h : TΣ/E∪ACΔ

→ TΣu/E∪ACΔu |u that we need
to prove injective for the reduction to be sound is up to isomorphism a restric-
tion of h′ to TΣ/E∪ACΔ

, which could be injective even if h′ is not. Lemma 3 in
Sect. 4.1 and the highly non-trivial Theorem8 in Sect. 5 save the day: it follows
from them that h is indeed injective and the reduction is also sound for the
AC case. To the best of my knowledge the results on reducing order-sorted to
unsorted satisfiability and on order-sorted rewriting and equality are new.

The paper is organized as follows. After some preliminaries in Sect. 2, the
new results on order-rewriting and equality are given in Sect. 3. The reductions
of satisfiability in the theory of OS uninterpreted function symbols (resp. OS
uninterpreted function symbols modulo AC) to satisfiability in their respective
unsorted theories is given in Sect. 4 (resp. Sect. 5). Related work and conclusions
are discussed in Sect. 6. Due to space limitations no proofs are given; they can
be found in the Technical Report [20].

2 Preliminaries on Order-Sorted Algebra

The following material is adapted from [21], which generalizes [15]. It summarizes
the basic notions of order-sorted algebra needed in the rest of the paper.

Definition 1. A many-sorted signature is a pair Σ = (S,Σ), with S a set of
sorts, and Σ and S∗ × S-indexed set Σ = {Σw,s}w,s∈S∗×S of operation symbols,
where S∗ denotes the free monoid generated by S. We denote each f ∈ Σw,s as
f : w → s. In particular, a constant of sort s is an operation a : ε → s, with ε
the empty word.

An order-sorted (OS) signature is a triple Σ = (S,≤, Σ) with (S,≤) a poset
and (S,Σ) a many-sorted signature. Ŝ = S/≡≤, the quotient of S under the
equivalence relation ≡≤ = (≤ ∪ ≥)+, is called the set of connected components
of (S,≤). Note that a many-sorted signature Σ is the special case where the
poset (S,≤) is discrete, i.e., s ≤ s′ iff s = s′.

The order ≤ and equivalence ≡≤ are extended to sequences of same length
in the usual way, e.g., s′

1 . . . s′
n ≤ s1 . . . sn iff s′

i ≤ si, 1 ≤ i ≤ n. Σ is called

Order-Sorted Rewriting and Congruence Closure 497

sensible1 if for any two f : w → s, f : w′ → s′ ∈ Σ, with w and w′ of same
length, we have w ≡≤ w′ ⇒ s ≡≤ s′.

For connected components [s1], . . . , [sn], [s] ∈ Ŝ

f
[s1]...[sn]
[s] = {f : s′

1 . . . s′
n → s′ ∈ Σ | s′

i ∈ [si], 1 ≤ i ≤ n, s′ ∈ [s]}

denotes the family of “subsort polymorphic” operators f . �
Definition 2. For Σ = (S,Σ) a many-sorted signature, a Σ-algebra is an
S-indexed set A = {As}s∈S together with an assignment of: (i) to each constant
a : ε → s of sort s an element Aa ∈ As, and (ii) to each operation f : w → s,
with w = s1 . . . sn, n ≥ 1, a function Af :w→s : Aw → As, where, by convention,
As1...sn = As1 × . . . × Asn

.
For Σ = (S,≤, Σ) an OS signature, an order-sorted Σ-algebra A is a many-

sorted (S,Σ)-algebra A such that:

– whenever s ≤ s′, then we have As ⊆ As′ , and
– whenever f : w → s, f : w′ → s′ ∈ f

[s1]...[sn]
[s] and a ∈ Aw ∩ Aw′

, then we have
Af :w→s(a) = Af :w′→s′(a).

A many-sorted Σ-homomorphism h : A → B is an S-indexed family of
functions h = {hs : As → Bs}s∈S such that: (i) for a : ε → s, hs(Aa) = Ba, and
(ii) for f : w → s with w �= ε, Af ;hs = hw;Bf .

An order-sorted Σ-homomorphism h : A → B is a many-sorted (S,Σ)-
homomorphism such that whenever [s] = [s′] and a ∈ As ∩ As′ , then we have
hs(a) = hs′(a). We call h injective, resp. surjective, resp. bijective, iff for each
s ∈ S hs is injective, resp. surjective, resp. bijective. We call h an isomorphism
if there is another order-sorted Σ-homomorphism g : B → A such that for each
s ∈ S, hs; gs = 1As

, and gs;hs = 1Bs
, with 1As

, 1Bs
the identity functions on

As, Bs. This defines a category OSAlgΣ. �
Theorem 1 [21]. The category OSAlgΣ has an initial algebra. Furthermore, if
Σ is sensible, then the term algebra TΣ with:

– if a : ε → s then a ∈ TΣ,s (ε denotes the empty string),
– if t ∈ TΣ,s and s ≤ s′ then t ∈ TΣ,s′ ,
– if f : s1 . . . sn → s and ti ∈ TΣ,si

1 ≤ i ≤ n, then f(t1, . . . , tn) ∈ TΣ,s,

is initial, i.e., there is a unique Σ-homomorphism to each Σ-algebra.

For [s] ∈ Ŝ, TΣ,[s] denotes the set TΣ,[s] =
⋃

s′∈[s] TΣ,s′ . Similarly, TΣ will
(ambiguously) denote both the above-defined S-sorted set and the set TΣ =

1 The notion of a sensible signature is a minimal syntactic requirement to avoid exces-
sive ambiguity. For example, a many-sorted signature Σ with sorts A, B and C,
constant a : ε → A and operations f : A → B and f : A → C is not sensible and
therefore is intrinsically ambiguous: the term f(a) has both sorts B and C, which
are completely different sorts.

498 J. Meseguer

⋃
s∈S TΣ,s. We say that an OS signature Σ has non-empty sorts iff for each

s ∈ S, TΣ,s �= ∅. We will assume throughout that Σ has non-empty sorts.
An S-sorted set X = {Xs}s∈S of variables, satisfies s �= s′ ⇒ Xs ∩ Xs′ = ∅,

and the variables in X are always assumed disjoint from all constants in Σ. The
Σ-term algebra on variables X, TΣ(X), is the initial algebra for the signature
Σ(X) obtained by adding to Σ the variables X as extra constants. Since a Σ(X)-
algebra is just a pair (A,α), with A a Σ-algebra, and α an interpretation of the
constants in X, i.e., an S-sorted function α ∈ [X→A], the Σ(X)-initiality of
TΣ(X) can be expressed as the following corollary of Theorem 1:

Theorem 2 (Freeness Theorem). If Σ is sensible, for each A ∈ OSAlgΣ and
α ∈ [X→A], there exists a unique Σ-homomorphim, α : TΣ(X) −→ A extending
α, i.e., such that for each s ∈ S and x ∈ Xs we have xαs = αs(x).

The first-order language of equational Σ-formulas2 is defined in the usual
way: its atoms are Σ-equations t = t′, where t, t′ ∈ TΣ(X)[s] for some [s] ∈
Ŝ and each Xs is assumed countably infinite. The set Form(Σ) of equational
Σ-formulas is then inductively built from atoms by: conjunction (∧), disjunction
(∨) negation (¬), and universal (∀x:s) and existential (∃x:s) quantification with
sorted variables x:s ∈ Xs for some s ∈ S. The literal ¬(t = t′) is denoted t �= t′.

Given a Σ-algebra A, a formula ϕ ∈ Form(Σ), and an assignment α ∈
[Y →A], with Y = fvars(ϕ) the free variables of ϕ, we define the satisfaction
relation A,α |= ϕ inductively as usual: for atoms, A,α |= t = t′ iff tα = t′α; for
Boolean connectives it is the corresponding Boolean combination of the satis-
faction relations for subformulas; and for quantifiers: A,α |= (∀x :s) ϕ (resp.
A,α |= (∃x : s) ϕ) holds iff for all a ∈ As (resp. some a ∈ As) we have
A,α�{(x:s, a)} |= ϕ, where the assignment α�{(x:s, a)} extends α by mapping
x:s to a. Finally, A |= ϕ holds iff A,α |= ϕ holds for each α ∈ [Y →A], where
Y = fvars(ϕ). We say that ϕ is valid (or true) in A iff A |= ϕ. We say that ϕ is
satisfiable in A iff ∃α ∈ [Y →A] such that A,α |= ϕ, where Y = fvars(ϕ).

An order-sorted equational theory is a pair T = (Σ,E), with E a set of
Σ-equations. OSAlg(Σ,E) denotes the full subcategory of OSAlgΣ with objects
those A ∈ OSAlgΣ such that A |= E, called the (Σ,E)-algebras. OSAlg(Σ,E)

has an initial algebra TΣ/E [21], further discussed in Sect. 3. Given T = (Σ,E)
and ϕ ∈ Form(Σ), we call ϕ T -valid, written E |= ϕ, iff A |= ϕ for each
A ∈ OSAlg(Σ,E). We call ϕ T -satisfiable iff there exists A ∈ OSAlg(Σ,E) with
ϕ satisfiable in A. Note that ϕ is T -valid iff ¬ϕ is T -unsatisfiable.

Σ = ((S,≤), Σ) is a subsignature of Σ′ = ((S′,≤′), Σ′), denoted Σ ⊆ Σ′,
iff (S,≤) ⊆ (S′,≤′) is a subposet inclusion, and Σ ⊆ Σ′. A signature map
H : Σ → Σ′ is a monotonic function H : (S,≤) → (S′,≤′) of the underlying
posets of sorts together with a mapping H : Σ � (f : s1 . . . sn → s) �→ (H(f) :

2 There is only an apparent lack of predicate symbols. To express a predicate p(x1 :
s1, . . . , xn:sn), add a new sort Truth with a constant tt , and with {Truth} a separate
connected component, and view p as a function symbol p : s1, . . . , sn → Truth. An
atomic formula p(t1, . . . , tn) is then expressed as the equation p(t1, . . . , tn) = tt .

Order-Sorted Rewriting and Congruence Closure 499

H(s1) . . . H(sn) → H(s)) ∈ Σ′. H induces a map H : Form(Σ) → Form(Σ′). A
signature inclusion Σ ⊆ Σ′ defines a signature map Σ ↪→ Σ′ : f �→ f .

A signature map H : Σ → Σ′ induces a functor in the opposite direction
|H : OSAlgΣ′ � B �→ B |H ∈ OSAlgΣ , where the H-reduct B |H has: (i)

for each s ∈ S, (B |H)s = BH(s); and (ii) for each f : s1 . . . sn → s in Σ,
(B |H)f = BH(f). For H : Σ ↪→ Σ′ a signature inclusion, B |H is denoted B |Σ .
For B ∈ OSAlgΣ′ and ϕ ∈ Form(Σ) with fvars(ϕ) = ∅ we have [21]:

(†) B |= H(ϕ) ⇔ B |H |= ϕ.

3 Order-Sorted Rewriting and Equality

Given an OS signature Σ = ((S,≤), Σ), a Σ-rewrite rule3 is a sequent l → r

with l, r ∈ TΣ(X)[s] for some [s] ∈ Ŝ. An order-sorted term rewriting system
(OSTRS) is then a pair (Σ,R) with R a set of Σ-rewrite rules.

Since, as shown in the Introduction, replacement of equals for equals and
standard rewriting break down in the order-sorted case, we should define rewrit-
ing deductions with an OSTRS not by means of the reflexive-transitive closure
→∗

R of the rewrite relation →R, but by means of an inference system with two
kinds of sequents: sequents t → t′, where t, t′ ∈ TΣ(X)[s], [s] ∈ Ŝ, corresponding
to one-step application of rules, and sequents t →� t′, where t, t′ ∈ TΣ(X)[s],
[s] ∈ Ŝ, corresponding to more complex rewriting deductions. The symbol →�

is close enough to →∗ to suggest that: (i) it plays a role similar to a reflex-
ive transitive-closure in the unsorted case, but (ii) in general it is different
from such a closure. For example, for Σ the signature in the Introduction and
R = {a → b, b → c}, we can derive f(a) →� f(c), but there is no sequence of
one-step rewrites from f(a) to f(c). We then define two kinds of rewriting deduc-
tions: (Σ,R) t → t′ and (Σ,R) t →� t′, as those sequents derivable from
(Σ,R) by a finite application of the following inference rules, where σ denotes
an S-sorted substitution, i.e., an S-sorted function σ ∈ [X→TΣ(X)]:

Reflexivity
t →� t

Subsumption t → t′
t →� t′

Transitivity t →� t′ t′ →� t′′
t →� t′′

Congruence u1 →� u′
1 . . . un →� u′

n

f(u1, . . . , un) →� f(u′
1, . . . , u

′
n)

where f(u1, . . . , un), f(u′
1, . . . , u

′
n) ∈ TΣ(X)

Replacement
tσ → t′σ

where t → t′ ∈ R

3 For greater generality no restriction is placed on the variables of l and r.

500 J. Meseguer

The first three and the last inference rule are standard, but the Congru-
ence rule is more subtle. We can better understand these rules by means of
our running example (Σ,R). The sequent f(a) →� f(b) is not derivable: the
attempt to obtain it by applying Replacement with rule a → b, Subsump-
tion to get a →� b, and then Congruence fails, because of the side condition,
since f(b) �∈ TΣ(X). To see what can be derived, consider the derivation of the
sequent f(a) →� f(c). Since we have rules a → b and b → c, we can derive
a →� c by two applications of Replacement followed by Subsumption and
one application of Transitivity. Then Congruence gives us:

a →� c

f(a) →� f(c)

Note the interesting fact that f(a) is typed with f : A → A, and f(c) is typed
with f : C → C. We can think of Congruence as a “tunneling rule.” f(a) →�

f(c) cannot be obtained by composing one-step rewrites: failed attempts such as
that for deriving f(a) →� f(b) make it impossible; but we can “tunnel through”
such failed attempts and obtain a more complex sequent like f(a) →� f(c) when
the left- and right-hand sides are well-formed terms in TΣ(X).

The above inference system yields as a special case a sound and complete
inference system for order-sorted equational logic: we just view an order-sorted
equational theory (Σ,E) as the OSTRS (Σ,R(E)), where R(E) = {t → t′ | t =
t′ ∈ E ∨ t′ = t ∈ E}. That is, equality steps are viewed as either left-to-right
or right-to-left rewrite steps. We then have:

Definition 3. Given an order-sorted equational theory (Σ,E) with Σ sensible,
its equational deduction relation, denoted (Σ,E) u = v, or just E u = v, is
defined by the equivalence:

(Σ,E) u = v ⇔ (Σ,R(E)) u →� v.

Theorem 3 (Soundness and Completeness) [21] Theorem 24. For Σ sensible
and E ∪ {u = v} a set of Σ-equations we have the equivalence:

(Σ,E) u = v ⇔ (Σ,E) |= u = v

The above theorem has as a corollary the construction of the initial algebra
TΣ/E for the category OSAlg(Σ,E) of (Σ,E)-algebras. Assuming Σ sensible,
TΣ/E , has an easy definition. Note that the relation E u = v induces an
equivalence relation =E on each set TΣ,[s], [s] ∈ Ŝ. We then define TΣ/E,s′ =
{[t]=E

∈ TΣ,[s]/=E | [t]=E
∩TΣ,s′ �= ∅} for each s′ ∈ [s], and define each operation

f : s1 . . . sn → s ∈ Σ by the map ([t1]=E
, . . . , [t1]=E

) �→ [f(t′1, . . . , t
′
n)]=E

, where
t′i ∈ [ti]=E

∩ TΣ,si
, 1 ≤ i ≤ n, showing it does not depend on the choice of t′i’s.

3.1 Kind-Complete OS-Rewriting and Equational Deduction

The order-sorted rewrite relation t →� t′ is obviously quite impractical and hard
to implement. For this reason, given an OSTRS (Σ,R) several conditions on

Order-Sorted Rewriting and Congruence Closure 501

either Σ or R have been sought to be able to perform rewriting computations in
essentially the standard and efficient way in which it is performed in an unsorted
or many-sorted TRS. Two such conditions, going back to [14], are to either: (i)
require that the rules R are sort-decreasing, i.e., for each l → r ∈ R and S-sorted
substitution σ, if lσ ∈ TΣ,s then rσ ∈ TΣ,s (this can be checked by the method
explained in [17]); or (ii) if R is not sort-decreasing, extend Σ with new “retract
operators” rs,s′ : s → s′, s, s′ ∈ [s], s �≤ s′, to catch typing errors, add to R “error
recovery” rules of the form rs,s′(x:s′) → x:s′, and force sort-decreasingness of R
by replacing each not sort-decreasing u → v ∈ R by suitable rules of the form
uσ → rs,s′(vσ), where σ may lower the sorts of some variables.

Conditions (i) or in its defect (ii) work and can be shown to be conservative in
a certain sense [14]. However, they have serious limitations. Sort decreasingness is
a strong condition that may be impossible to achieve for some OSTRS arising in
practice; and if the solution with retracts is adopted, an unpleasant consequence
is that we change the models, including the initial ones, since retracts add new
operations and new error terms to the original sorts.

All these limitations can be avoided —while allowing rewriting with rules
R and equational deduction with equations E to be performed in the stan-
dard way— by using a faithful embedding of order-sorted equational logic into
membership equational logic (MEL) [3,21]. MEL introduces a typing distinction
between sorts s ∈ S, which may be related by subsort relations just as in the
order-sorted way, and the kind �[s] associated to each connected component
[s] ∈ Ŝ, which is above all sorts in [s]. An ill-formed term like f(b) in the OS
signature of the Introduction has no sort, but has kind �[B]. In this way, the
earlier side condition in the Congruence rule in Sect. 3 can be avoided.

The faithfulness of this embedding of logics means in particular that both
initial models and equational deduction are preserved ([21], Corollary 28). How-
ever: (i) the proof in [21] is model-theoretic; (ii) it focuses on the equational
logic level, and does not deal with the more general rewriting logic level; and
(iii) it assumes that the entire MEL framework is adopted. Can the essential
advantages of this embedding be still obtained while remaining at the order-
sorted level? The answer is yes! Since: (i) this solution plays a key role in the
treatment of satisfiability for the theory of OS uninterpreted function symbols
in Sect. 4, and (ii) having a much simpler theory of OS rewriting is useful in
its own right, I give a detailed treatment of it below. The key idea is to use
a signature transformation Σ �→ Σ� extending any OS signature Σ into one
whose components have a top sort, understood as the kind of that component.
The essential point is that Σ� belongs to a class of order-sorted signatures called
kind complete where both rewriting and equational deduction can be performed
in the standard way.

Definition 4. An OS signature Σ = ((S,≤), Σ) is called kind-complete iff each
connected component [s] ∈ Ŝ has a top sort �[s], called its kind, with �[s] ≥ s′

for each s′ ∈ [s], and any non-empty subsort-polymorphic family f
[s1]...[sn]
[s] ⊆ Σ

502 J. Meseguer

includes the typing f : �[s1], . . . ,�[sn] → �[s]. Note that any many-sorted Σ —
and in particular any unsorted (i.e., single-sorted) Σ— is trivially kind-complete.

Any OS signature Σ can be extended to a kind-complete one by a transfor-
mation Σ �→ Σ�. Σ� is constructed in two-steps: (i) we first associate to the
order-sorted signature ((S,≤), Σ) the many-sorted signature Σ̂ = (Ŝ	, Σ̂), where
Ŝ	 = {�[s] | [s] ∈ Ŝ}, and with f : �[s1] . . . �[sn] → �[s] ∈ Σ̂ iff f

[s1]...[sn]
[s] �= ∅;

and (ii) we then define Σ� = ((S � Ŝ	,≤�), Σ � Σ̂), where ≤� ∩S2 = ≤, and
for each �[s] ∈ Ŝ	 we have s′ <� �[s] for each s′ ∈ [s]. That is, we add �[s] as
a top sort above each s′ ∈ [s] and add the new typing f : �[s1] . . . �[sn] → �[s]

for each f
[s1]...[sn]
[s] �= ∅.

For Σ the signature in the Introduction, Σ� is as follows:

Instead, the many-sorted signature Σ̂ in this example happens to be unsorted,
and is obtained by keeping only the sort �[B] in the above figure, with the
operations f and + and constants a, b, c of of sort �[B], and removing all other
sorts and operations in the figure. In summary, Σ� is the signature obtained by
adding a new top sort �[s] on top of each connected component [s] and “lifting”
to those top sorts all operations and constants, whereas Σ̂ is the many sorted
signature obtained when we remove from Σ� all sorts except the newly added
top sorts of the form �[s] for each [s].

We then have subsignature inclusions: Σ ⊆ Σ� and Σ̂ ⊆ Σ�. Note that, by
construction, if Σ is sensible, both Σ̂ and Σ� are also sensible; and that the
initial algebra TΣ� is preserved by reducts, i.e., we have:

TΣ� |Σ = TΣ and TΣ� |Σ̂ = TΣ̂ .

For kind-complete signatures, rewriting, and in particular equational deduc-
tion, can be performed in the standard, sorted way. Recall the usual notation to
denote term positions, subterms, decompositions and term replacement from [6]:
(i) positions in a term viewed as a tree are marked by strings p ∈ N

∗ specifying
a path from the root, (ii) t|p denotes the subterm of term t at position p, (iii)

Order-Sorted Rewriting and Congruence Closure 503

t = t[t|p]p denotes a decomposition of t into a context t[]p and its subterm t|p,
and (iv) t[u]p denotes the result of replacing subterm t|p at position p by u.

Definition 5. Let (Σ,R) be an OSTRS with Σ sensible and kind-complete. The
one-step R-rewrite relation u →R v holds between u, v ∈ TΣ(X)[s], [s] ∈ Ŝ, iff
there is a rewrite rule t → t′ ∈ R, a substitution σ ∈ [X→TΣ(X)], and a term
position p in u such that u = u[tσ]p and v = u[t′σ]p.

We denote by →+
R the transitive closure of →R, and by →∗

R the reflexive-
transitive closure of →R, and write (Σ,R) u →∗

R v to make Σ explicit.
(Σ,R) is called terminating iff →R is a well-founded relation; and is called

confluent iff whenever t →∗
R u and t →∗

R v there exists w such that u →∗
R w and

v →∗
R w. (Σ,R) is called convergent iff it is both confluent and terminating. If

(Σ,R) is convergent, each Σ-term t rewrites by some t →∗
R t!R to a unique term

t!R, called its R-canonical form, that cannot be further rewritten.

When Σ is kind-complete, if u ∈ TΣ(X)[s], t → t′ ∈ R, and u = u[tσ]p ∈
TΣ(X)[s], then we always have u[t′σ]p ∈ TΣ(X)[s]. That is, →R never produces
ill-formed terms, so that in the above definition of →R the requirement the
v ∈ TΣ(X)[s] is unnecessary and does not have to be checked. Indeed, for kind-
complete signatures order-sorted rewriting becomes standard sorted rewriting :

Lemma 1. Let (Σ,R) be an OSTRS with Σ sensible and kind-complete. Then
we have the equivalence:

(Σ,R) u →� v ⇔ (Σ,R) u →∗
R v.

Corollary 1. Let Σ be a sensible and kind-complete OS signature, and E∪{u =
v} a set of Σ-equations. Then we have the equivalence:

(Σ,E) u = v ⇔ (Σ,R(E)) u →∗
R(E) v.

3.2 Conservativity Results

The whole point of the signature transformation Σ �→ Σ� is to replace complex
deductions of the form (Σ,R) u →� v by simple rewrite sequences u →∗

R v in
the extended OSTRS (Σ�, R). But is this sound?

Theorem 4. Let (Σ,R) be an OSTRS with Σ sensible. Then for any u, v ∈
TΣ(X)[s], [s] ∈ Ŝ we have the equivalence:

(Σ,R) u →� v ⇔ (Σ�, R) u →∗
R v.

Corollary 2. Let Σ be a sensible OS signature and E ∪ {u = v} a set of Σ-
equations. Then we have the equivalences:

(Σ,E) u = v ⇔ (Σ�, E) u = v ⇔ (Σ�, R(E)) u →∗
R(E) v.

Since, besides the subsignature inclusion Σ ⊆ Σ�, we also have the inclusion
Σ̂ ⊆ Σ�, we have a further conservativity result:

504 J. Meseguer

Lemma 2. Let Σ be a sensible OS signature and (Σ̂, R) a many-sorted TRS.
Then for any u, v ∈ TΣ̂(X)	[s] , �[s] ∈ Ŝ	, where X = {X	[s]}	[s]∈Ŝ�

, we have

(Σ̂, R) u →∗
R v iff (Σ�, R) u →∗

R v. As an immediate consequence, for
E ∪ {u = v} a set of Σ̂-equations, we have the equivalence:

(Σ̂, E) u = v ⇔ (Σ�, E) u = v.

4 Order-Sorted (Σ, ∅)-QF-Satisfiability

In theorem proving the theory (Σ, ∅), whose category of algebras is OSAlgΣ ,
is called the theory of uninterpreted function symbols Σ. As remarked in
Definition 1, a many-sorted signature Σ is a special case of an order-sorted sig-
nature, and an unsorted signature is a many-sorted signature where S = {U}
is a singleton set. Let QFForm(Σ) ⊆ Form(Σ) denote the set of quantifier-free
Σ-formulas, i.e., formulas with no quantifiers. When Σ is unsorted, (Σ, ∅)-QF-
satisfiability, i.e., (Σ, ∅)-satisfiability for any ϕ ∈ QFForm(Σ) is decidable [1].
The goal of this section is to show that the same holds for any sensible OS sig-
nature Σ by a reduction method. This can be done by two reductions. The first
reduces this decidability problem to that of the OS word problem, which is the
problem of whether, given a sensible OS signature Σ and a finite set E ∪{u = v}
of ground Σ-equations, E u = v holds or not. The desired first reduction is as
follows:

Theorem 5. (Σ, ∅)-QF-satisfiability is decidable for any sensible order-sorted
signature Σ iff the OS word problem is decidable.

The proof follows from the more general Theorem 7 in Sect. 5, which deals
with the OS word problem modulo equations B. The theorem’s algorithmic con-
tent mirrors its proof: ϕ =

∨
1≤i≤n(

∧
Ei ∧ ∧

Di) in DNF with the Ei equalities
and the Di disequalities is satisfiable iff, when we view the variables in ϕ as
fresh new constants C, there is an i, 1 ≤ i ≤ n, such that Ei � u = v for each
u �= v ∈ Di. Furthermore,

∧
Ei ∧ ∧

Di is satisfiable iff TΣ(C)/Ei
|= ∧

Ei ∧ ∧
Di.

The second reduction is from the OS word problem to the unsorted word
problem. This is broken into two reductions: (i) of the many-sorted word problem
to the unsorted word problem in Sect. 4.1, and (ii) of the OS word problem to
the many-sorted word problem in Sect. 4.2.

For Σ unsorted and E ∪{u = v} a finite set of ground Σ-equations it is well-
known that the word problem E u = v can be decided by a congruence closure
algorithm [7,24,27]. What the various such algorithms have in common is that
they are all instances (by applying difference strategies) of the same abstract
congruence closure algorithm in the sense of [2], which is summarized below.

4.1 Abstract Congruence Closure

What the abstract congruence closure algorithm in [2] captures is what all con-
crete congruence closure algorithms have in common: they all are efficient, spe-
cialized ground Knuth-Bendix completion algorithms [2,12,16,18]: they all begin

Order-Sorted Rewriting and Congruence Closure 505

with a set E of ground equations, and return a set R of convergent ground rewrite
rules R equivalent to E (on a possibly extended signature). We can then decide
the word problem E u = v by checking the syntactic equality u!R = v!R.

The key notion of abstract congruence closure in [2] is then as follows:

Definition 6. [2] For Σ an unsorted signature and E a finite set of ground
Σ-equations, an abstract congruence closure for E is a set R of ground con-
vergent Σ(K)-rewrite rules, where K is a finite set of new constants, such
that: (i) they are either of the form c → c′, with c, c′ ∈ K, or of the form
f(c1, . . . , cn) → c, with c1, . . . , cn, c ∈ K, f ∈ Σ with n ≥ 0 arguments; (ii) for
each c ∈ K there is a ground Σ-term t such that t!R = c!R; and (iii) for any
ground Σ-equation u = v we have E u = v iff we have the syntactic equality
u!R = v!R.

The paper [2] then gives an abstract congruence closure algorithm described
by six inference rules, with an optional seventh, such that: (i) takes as input a
triple (∅, E, ∅) with E is a set of ground Σ-equations; (ii) operates on triples
of the form (K ′, E′, R′) with E′ (resp. R′) the current Σ(K ′)-equations (resp.
Σ(K ′)-rules); and (iii) terminates with a triple of the form (K, ∅, R) such that
R is a congruence closure for E. The name abstract congruence closure is well-
deserved: the algorithms in [7,24,27], and two other ones, are all shown to be
instantiations of the abstract algorithm by applying the inference rules with
different strategies, so that both the operation of each algorithm and its actual
complexity are faithfully captured by the corresponding instantiation [2].

We need to decide the many-sorted word problem as a step for deciding
the more general order-sorted one. But the many-sorted word problem can be
easily reduced to the unsorted one by means of the signature transformation
Σ � (f : s1 . . . sn → s) �→ (f : U n. . . U → U) ∈ Σu, where Σ = (S,Σ) is a
many-sorted signature. Then all boils down to the following lemma:

Lemma 3. For Σ a sensible many-sorted signature and E a set of regular
Σ-equations —i.e., t and t′ have the same variables for each t = t′ ∈ E— we
have (Σ,E) u = v iff (Σu, Eu) (u = v)u, where for any Σ-equation t = t′,
(t = t′)u leaves the terms unchanged but regards all variables as unsorted.

This lemma has a very practical consequence: we can use an unsorted con-
gruence closure algorithm to solve the many-sorted word problem at no extra
cost : no changes are needed either to the input E or to the unsorted algorithm.

4.2 Deciding OS (Σ, ∅)-QF-Satisfiability

For any sensible OS signature Σ we have reduced the decidability of the (Σ, ∅)-
QF-satisfiability problem to that of the OS word problem in Theorem5. And
in Lemma 3 we have reduced the many-sorted word problem to the unsorted
word problem, which is decidable by a congruence closure algorithm. To prove
the decidability of the OS (Σ, ∅)-QF-satisfiability problem and obtain a correct
algorithm for it we just need to reduce the OS word problem to the many-sorted
word problem. For this, the conservativity results in Sect. 3.2 are crucial:

506 J. Meseguer

Theorem 6. Let Σ be a sensible OS signature and E ∪{u = v} a set of ground
Σ-equations. Then we have the equivalence:

(Σ,E) u = v ⇔ (Σ̂, E) u = v.

The decidability of the OS (Σ, ∅)-QF-satisfiability problem goes back to [11];
but the reduction achieved by Theorem5, Lemma 3 and Theorem 6 yields a
new, very simple algorithm. Either by already having ϕ in DNF or by using
a DPLL(Σ, ∅) solver, deciding the satisfiability of ϕ boils down to finding a
satisfiable conjunction

∧
E ∧ ∧

D, with E (resp. D) a finite sets of equations
(resp. disquations), which can be viewed as a ground Σ(C)-formula by adding
C = fvars(ϕ) as new constants. Then, satisfiability of

∧
E ∧ ∧

D is decided by:

1. regarding at no cost
∧

E ∧ ∧
D as a ground Σ(C)u-formula,

2. computing a congruence closure R for E in the usual way [7,24,27], and
3. checking the syntactic inequality u!R �≡ v!R for each u �= v ∈ D.

Therefore we can reuse the same algorithms and tools used in the unsorted
case at no extra cost : the input to such algorithms and the algorithms or tools
themselves need no changes, and the complexity is that of the unsorted case.

5 Order-Sorted (Σ,ACΔ)-QF-Satisfiability

Let Σ be a sensible OS signature with Δ ⊆ Σ made exclusively of binary function
symbols, say, g, h, . . ., each of the form g : s s → s for some sorts s ∈ S, and
with any typing of any such g in Σ necessarily a typing in Δ, i.e., Δ and (Σ −
Δ) share no symbols. Assume that each non-empty subsort-polymorphic family
g
[s] [s]
[s] ⊆ Δ has always a biggest possible typing g : sg sg → sg such that for

any other typing g : s s → s in g
[s] [s]
[s] we have s ≤ sg. The equations: ACg =

{g(x, y) = g(y, x), g(x, g(y, z)) = g(g(x, y), z)}, with x, y, z of sort sg, express the
associativity-commutativity (AC) of the subsort-polymorphic family g

[s] [s]
[s] . We

require that the axioms ACg are sort-preserving, that is, that for each S-sorted
substitution σ and each sort s ∈ S we have: g(x, y)σ ∈ TΣ(X)s ⇔ g(y, x)σ ∈
TΣ(X)s, and g(x, g(y, z))σ ∈ TΣ(X)s ⇔ g(g(x, y), z)σ ∈ TΣ(X)s, which can
be easily checked by the method explained in [17]. Let ACΔ denote the set
ACΔ =

⋃
g∈Δ ACg making all symbols in Δ AC. Call (Σ,ACΔ) the OS theory

of Σ uninterpreted function symbols Σ modulo ACΔ. When Σ = Δ is unsorted
and has a single symbol +, this is called the theory of commutative semigroups.

We can generalize the above setting by replacing (Δ,ACΔ) by any OS theory
(Δ,B) with Δ sensible and considering any sensible supersignature Σ ⊇ Δ with
Δ and Σ − Δ not sharing any symbols. Call (Σ,B) the theory of uninterpreted
function symbols Σ modulo B. We can then reduce the decidability of the (Σ,B)-
QF-satisfiabilty problem to that of the OS word problem modulo B, defined as
the problem of whether given any Σ ⊇ Δ as above, and a set E ∪ {u = v} of
ground Σ-equations, E ∪ B u = v holds or not. The reduction is as follows:

Order-Sorted Rewriting and Congruence Closure 507

Theorem 7. For any (Δ,B) and Σ ⊇ Δ as above, (Σ,B)-QF-satisfiability is
decidable iff the OS word problem modulo B is decidable.

For Σ ⊇ Δ unsorted, there are AC congruence closure algorithms for the the-
ory (Σ,ACΔ) [2,19,22] that decide the word problem modulo ACΔ and there-
fore, by above Theorem 7, the unsorted (Σ,ACΔ)-QF-satisfiability problem. In
the spirit of Sect. 4, the main goal of this section is to reduce the decidability
of the OS (Σ,ACΔ)-QF-satisfiability problem to that of its unsorted version,
and to furthermore reuse the same unsorted AC congruence closure algorithms
in [2,19,22] to decide at no extra cost and with the same complexity the OS
(Σ,ACΔ)-QF-satisfiability problem.

The decidability of OS (Σ,ACΔ)-QF-satisfiability has already been reduced
to that of the OS word problem modulo ACΔ, now we just need to reduce the
OS word problem modulo ACΔ to the unsorted word problem modulo ACΔu .

This is achieved in two steps. First, we reduce the many-sorted word problem
modulo AC Δ̂ to the unsorted word problem modulo ACΔu using the Σ̂ �→ Σu

transformation of Sect. 4.1. This first reduction is easy: the equations AC Δ̂ are
regular. Therefore, if E ∪ {u = v} is a finite set of ground many-sorted Σ̂-
equations, the equations E∪AC Δ̂ are also regular and the conditions of Lemma3
apply. We then reduce the OS word problem modulo ACΔ to the many-sorted
word problem modulo AC Δ̂. The Δ̂-equations AC Δ̂ are obtained from the OS
Δ-equations in ACΔ by replacing each variable x:s by the variable x:�[s]. That
is, for E ∪{u = v} a finite set of ground Σ-equations must show the equivalence:

(Σ,E ∪ ACΔ) u = v ⇔ (Σ̂, E ∪ AC Δ̂) u = v

which, by Corollary 2, reduces to proving the equivalence:

(Σ�, E ∪ ACΔ) u = v ⇔ (Σ̂, E ∪ AC Δ̂) u = v

which, by Lemma 2, follows as a special case from the more general theorem:

Theorem 8. Let Σ ⊇ Δ be a sensible OS supersignature, R a set of Σ-rewrite
rules, and u, v ∈ TΣ(X). Then we have the equivalence:

(Σ�, R∪R(ACΔ)) u →∗
R∪R(ACΔ) v ⇔ (Σ�, R∪R(AC Δ̂)) u →∗

R∪R(AC
Δ̂
) v.

6 Related Work and Conclusions

[11] presents the only order-sorted congruence closure algorithm I am aware
of. It provides a good solution under some extra assumptions on Σ, but it
requires a quite complex congruence generation method and has worse com-
plexity, O(n2), than the best O(n log(n)) unsorted algorithms. The papers
[2,12,16,19,22] present the view of congruence closure as completion. In par-
ticular, I have used abstract congruence closure [2] and AC-congruence closure
[2,19,22]. The modular combination of congruence closure, AC congruence, and

508 J. Meseguer

polynomial ring congruence closure algorithms for different symbols and its rela-
tion to the Nelson-Oppen combination method [23,25] is studied in [31]. Likewise,
the combination of AC congruence closure with other satisfiability algorithms
using the Shostak combination method [28] is studied in [5] The first general
study I know of satisfiability modulo theories in an order-sorted setting is [30].

The above-mentioned work has influenced and motivated the present one.
The good news is that we get all the benefits of order-sorted (Σ, ∅)- and
(Σ,ACΔ)-satisfiability for free, with no added computational cost and being
able to reuse unsorted tools. At a more theoretical level, the order-sorted rewrit-
ing and equality results presented here are also good news and belong to the
foundations of such an area. Future work will focus on exploiting these results
at the tool level.

Acknowledgements. Partially supported by NSF Grant CNS 13-19109. I thank
Maria Paola Bonacina for suggested improvements.

References

1. Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland Publishing
Company, Amsterdam (1954)

2. Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. J. Autom.
Reasoning 31(2), 129–168 (2003)

3. Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theoret. Comput. Sci. 236, 35–132 (2000)

4. Clavel, M., Durán, F., Eker, S., Meseguer, J., Lincoln, P., Mart́ı-Oliet, N., Talcott,
C.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

5. Conchon, S., Contejean, E., Iguernelala, M.: Canonized rewriting and ground AC
completion modulo Shostak theories : design and implementation. Logical Methods
Comput. Sci. 8(3), 1–29 (2012)

6. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 243–320. North-Holland Pub-
lishing Company, Amsterdam (1990)

7. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpressions
problem. J. ACM 27(4), 758–771 (1980)

8. Frisch, A.M.: The substitutional framework for sorted deduction: fundamental
results on hybrid reasoning. Artif. Intell. 49(1–3), 161–198 (1991)

9. Futatsugi, K., Diaconescu, R.: CafeOBJ Report. World Scientific, Singapore (1998)
10. Futatsugi, K., Goguen, J., Jouannaud, J.P., Meseguer, J.: Principles of OBJ2. In:

Proceedings of POPL 1985, pp. 52–66. ACM (1985)
11. Gallier, J., Isakowitz, T.: Order-sorted congruence closure. Technical report CIS-

686, UPenn (1988). http://repository.upenn.edu/cis reports/686
12. Gallier, J.H., Narendran, P., Plaisted, D.A., Raatz, S., Snyder, W.: An algorithm

for finding canonical sets of ground rewrite rules in polynomial time. J. ACM 40(1),
1–16 (1993)

13. Gnaedig, I., Kirchner, C., Kirchner, H.: Equational completion in order-sorted
algebras. Theoret. Comput. Sci. 72(2–3), 169–202 (1990)

http://repository.upenn.edu/cis_reports/686

Order-Sorted Rewriting and Congruence Closure 509

14. Goguen, J., Jouannaud, J.P., Meseguer, J.: Operational semantics of order-sorted
algebra. In: Brauer, W. (ed.) Automata, Languages and Programming. LNCS, vol.
194, pp. 221–231. Springer, Heidelberg (1985)

15. Goguen, J., Meseguer, J.: Order-sorted algebra I. Theoret. Comput. Sci. 105, 217–
273 (1992)

16. Kapur, D.: Shostak’s congruence closure as completion. In: Comon, H. (ed.) RTA
1997. LNCS, vol. 1232, pp. 23–37. Springer, Heidelberg (1997)

17. Kirchner, C., Kirchner, H., Meseguer, J.: Operational semantics of OBJ3. In: Lep-
istö, T., Salomaa, A. (eds.) Automata, Languages and Programming. LNCS, vol.
317, pp. 287–301. Springer, Heidelberg (1988)

18. Knuth, D., Bendix, P.: Simple word problems in universal algebra. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra. Pergamon Press, Oxford
(1970)

19. Marché, C.: On ground AC-completion. In: Book, R.V. (ed.) RTA 1991. LNCS,
vol. 488, pp. 411–422. Springer, Heidelberg (1991)

20. Meseguer, J.: Order-sorted rewriting and congruence closure. Technical report, C.S.
Department, University of Illinois at Urbana-Champaign, June 2015. http://hdl.
handle.net/2142/78008

21. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

22. Narendran, P., Rusinowitch, M.: Any ground associative-commutative theory has
a finite canonical system. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp.
423–434. Springer, Heidelberg (1991)

23. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

24. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM 27(2), 356–364 (1980)

25. Oppen, D.C.: Complexity, convexity and combinations of theories. Theoret. Com-
put. Sci. 12, 291–302 (1980)

26. Schmidt-Schauss, M.: Computational Aspects of Order-Sorted Logic with Term
Declarations. LNCS (LNAI), vol. 395. Springer, Heidelberg (1989)

27. Shostak, R.E.: An algorithm for reasoning about equality. Commun. ACM 21(7),
583–585 (1978)

28. Shostak, R.E.: Deciding combinations of theories. J. ACM 31(1), 1–12 (1984)
29. Smolka, G., Aı̈t-Kaci, H.: Inheritance hierarchies: semantics and unification. J.

Symb. Comput. 7(3/4), 343–370 (1989)
30. Tinelli, C., Zarba, C.G.: Combining decision procedures for sorted theories. In:

Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 641–653.
Springer, Heidelberg (2004)

31. Tiwari, A.: Combining equational reasoning. In: Ghilardi, S., Sebastiani, R. (eds.)
FroCoS 2009. LNCS, vol. 5749, pp. 68–83. Springer, Heidelberg (2009)

32. Walther, C.: A mechanical solution of Schubert’s steamroller by many-sorted res-
olution. Artif. Intell. 26(2), 217–224 (1985)

http://hdl.handle.net/2142/78008
http://hdl.handle.net/2142/78008

Monads

Towards a Formal Theory of Graded Monads

Soichiro Fujii1, Shin-ya Katsumata2(B), and Paul-André Melliès3

1 Department of Computer Science, The University of Tokyo, Tokyo, Japan
2 RIMS, Kyoto University, Kyoto, Japan

sinya@kurims.kyoto-u.ac.jp
3 Laboratoire PPS, CNRS, Univ. Paris Diderot, Sorbonne Paris Cité, Paris, France

Abstract. We initiate a formal theory of graded monads whose pur-
pose is to adapt and to extend the formal theory of monads developed
by Street in the early 1970’s. We establish in particular that every graded
monad can be factored in two different ways as a strict action transported
along a left adjoint functor. We also explain in what sense the first con-
struction generalizes the Eilenberg-Moore construction while the second
construction generalizes the Kleisli construction. Finally, we illustrate
the Eilenberg-Moore construction on the graded state monad induced
by any object V in a symmetric monoidal closed category C .

1 Introduction

An important principle in categorical semantics is that lax algebraic structures
are transported along left adjoint functors. This principle is a bit abstract and
not so well known, so let us explain what it means. Suppose that we pick a
2-monad T on the 2-category Cat of categories and a category B equipped with
a lax algebra structure of the 2-monad T , provided by the functor

∗B : TB −→ B

Suppose moreover that the category B is related to a category A by adjunc-
tion where the functor L : A → B is left adjoint to the functor R : B → A , in
the following way:

A

L

��⊥ B

R

��

In that case, the composite functor

∗A := R ◦ ∗B ◦ TL : TA −→ A

provides a lax algebra structure on the category A inherited from the lax algebra
structure of the category B. This basic observation was inspired by homotopy
theory and played a central rôle in the early development by Melliès of tensorial

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 513–530, 2016.
DOI: 10.1007/978-3-662-49630-5 30

514 S. Fujii et al.

logic [9,10,15]. A particularly important instance is the following one. Every
monoidal category (M ,⊗, I) induces a 2-monad

T = A �→ M × A : Cat −→ Cat

on the category Cat. An algebra (in the strict sense) of the 2-monad T is a
functor

∗ : M × C −→ C (1)

which satisfies the equations:

m ∗ (n ∗ A) = (m ⊗ n) ∗ A A = I ∗ A (2)

for all objects m,n of the category M and every object A of the category C .
As such, a strict T -algebra is the same thing as an action of the monoidal
category (M ,⊗, I) over the category C . By way of comparison, a lax T -algebra
structure on a category C is a functor (1) where the equalities (2) are replaced
by a family of morphisms

μm,n,A : m ∗ (n ∗ A) → (m ⊗ n) ∗ A ηA : A → I ∗ A

natural in objects m,n of the category M and in the object A of the category C ,
and making the three coherence diagrams commute for all objects m,n, p of the
category M and all objects A of the category C :

m ∗ (n ∗ (p ∗ A))
m∗μn,p ��

μm,n

��

m ∗ ((n ⊗ p) ∗ A)

μm,n⊗p

��
(m ⊗ n) ∗ (p ∗ A)

μm⊗n,p

�� (m ⊗ n ⊗ p) ∗ A

I ∗ (m ∗ A)
μI,m

������������

m ∗ A

η
������������ id �� m ∗ A

m ∗ (I ∗ A)
μm,I

������������

m ∗ A

η
������������ id �� m ∗ A

So, a lax T -algebra defines what is traditionally called a lax action of the
monoidal category M on the category C . Now, suppose that the category B is
equipped with an action

� : M × B −→ B.

In that case, the category A inherits a lax action

∗ : M × A −→ A

along the left adjoint functor L, defined as the composite

m ∗ A := R(m � LA).

Towards a Formal Theory of Graded Monads 515

Since adjunctions L � R and actions � : M × B → B are ubiquitous in pro-
gramming language semantics, this inheritance property implies that the notion
of lax action is just as central in the theory.

Note that in the particular case when the monoidal category M coincides
with the terminal category 1, a lax action of M on a category C is the same
thing as a monad S on the category C , with (S, μ′, η′) defined as

SA := I ∗ A μ′
A := μI,I,A : SSA → SA η′

A := ηA : A → SA

For that reason, Melliès found convenient to introduce the terminology of para-
metric monad in his work on tensorial logic [10,13]. One additional reason for
choosing that terminology was that the dual notion of parametric comonad
appeared at about the same time in his work with Grellois on higher-order
model-checking [6]. The idea of developing a general theory of parametric mon-
ads for effect systems and of parametric comonads for resource systems emerged
at this point and was announced in [12] as an algebraic counterpart to the works
on implicit complexity [4] and on linear dependent types [5]. At about the same
time, Petricek, Orchard and Mycroft designed the syntax and semantics of a
calculus which can explicitly manage resource usage based on the structure of
graded comonads [17]. The concept and terminology of parametric monad was
then taken up and popularised by Katsumata [8] with a series of new applica-
tions to the semantics of effect systems. Milius, Pattinson and Schröder applied
graded monads to extend the trace semantics of coalgebras with the concept of
trace length [16].

The combination of these works raised a lot of interest in the community
and established the notion of parametric monad as an important concept of
the discipline. We thus feel useful and timely to join forces and to develop a
formal theory of parametric monads inspired by the seminal work by Street [21]
on formal monads in 2-categories. However, before doing that, we will explain
in Sect. 2 why we decided to revise the original terminology and to call graded
monad what we used to call parametric monad. As we will see, the change
of terminology is justified mathematically, and the terminology seems to be
convenient in itself1.

Using the new terminology, one of the main contributions of the paper will
be to establish that given a monoidal category (M ,⊗, I), every graded monad

∗ : M × A −→ A

is the graded monad
m ∗ A := R(m � LA) (3)

1 It should be noted that the notion of M -graded monad is the same thing as a lax
2-functor ΣM → Cat from the bicategory ΣM with one object ∗ obtained by
“suspending” the monoidal category M , to the 2-category Cat. For that reason, we
consider that the notion of lax action and of graded monad (in its full generality)
deserves to be traced back to the seminal work by Bénabou on bicategories [2].

516 S. Fujii et al.

associated to an adjunction

A

L

��⊥ B

R

��

and to a strict action

� : M × B −→ B.

of the monoidal category (M ,⊗, I) on the category B. Following an original idea
by Street [20], we will establish that the factorisation (3) can be performed in
two different ways. One recovers in the particular case M = 1 the factorisation
of a monad S = R ◦ L as an adjunction L � R using either the category B of
Eilenberg-Moore algebras, or the Kleisli category B associated to the monad S.
As we will see in Sects. 3.1 and 3.2, the constructions of the Eilenberg-Moore
category and of the Kleisli category are more involved in the case of a graded
monad. In particular, in order to recover the expected universal characteriza-
tions of Eilenberg-Moore and Kleisli objects in the more general case of graded
monads, the category B has to be considered as an object of the 2-category of
M -categories, where by M -category, we mean a category C equipped with a
strict action of M .

Since the Eilenberg-Moore and Kleisli constructions are a bit formal, we
find it instructive to illustrate them with a specific example. Besides the original
example of the continuation monad treated in [15], an original motivation for the
notion of graded monad emerged in the study of the local state monad [14,18]. As
we will see in Sect. 3.1, an interesting aspect of the theory is that an Eilenberg-
Moore algebra of a graded monad ∗ : M × A → A , which we call a graded
algebra, is defined as a functor A : M → A equipped with a family of morphisms

hm,n : m ∗ An → Am⊗n

natural in m,n ∈ M and making the diagrams below commute

I ∗ Am

hI,m

����
��

��
��

�

Am

μI

		���������
id �� Am

m ∗ (n ∗ Ap)

μm,n

��

m∗hn,p �� m ∗ An⊗p

hm,n⊗p

��
(m ⊗ n) ∗ Ap

hm⊗n,p �� Am⊗n⊗p

for all objects m,n, p of the monoidal category (M ,⊗, I). In particular, in the
case A = Set, the category B of Eilenberg-Moore algebras of the graded
monad ∗ can be seen as a category of covariant presheaves over M with an
extra structure provided by the family of morphisms hm,n.

We will illustrate the construction with an example: suppose given a sym-
metric monoidal closed category (C ,⊗,�, I) equipped with an object V , where
V stands for values. The category C is then equipped with a parametric monad

∗ : Inj × C −→ C

Towards a Formal Theory of Graded Monads 517

where (Inj,+, 0) denotes the monoidal category with natural numbers

[m] = {0, . . . , m − 1}

seen as finite sets as objects, and injections f : [m] → [n] as morphisms. We
will often write m for the object [m]. The lax action of the monoidal category
(Inj,+, 0) over the category C is defined as

n ∗ A := V ⊗n � (V ⊗n ⊗ A)

where we write V ⊗n for the object V to the tensorial power n:

V ⊗n := V ⊗ · · · ⊗ V.

We show that, in the particular case when C = Set, the category B of algebras
of the graded monad ∗ : Inj × Set → Set coincides with the category of S-
algebras for a monad S on the presheaf category [Inj, Set]. The monad S is
moreover described by a Lawvere theory with arities L in the sense of [14]
which is presented by generators and relations in the Appendix.

We believe that these constructions are interesting in themselves. They also
contribute to the general theory of graded monads, and more generally, of para-
metric notions of effects and resources.

Plan of the Paper. We start by explaining in Sect. 2 why it makes sense to call
graded monads what we used to call parametric monads. Then, we describe
in Sect. 3 the Eilenberg-Moore construction (see Sect. 3.1) and the Kleisli con-
struction (see Sect. 3.2) for graded monads. After that, in Sect. 4 we provide a
2-categorical perspective on our construction, by proving that we indeed defined
the Eilenberg-Moore and Kleisli objects in the sense of Street. We illustrate the
construction by applying it in Sect. 5 to the Inj-graded state monad S on the
category Set. In particular, we present by generators and relations the Lawvere
theory characterizing the graded S-algebras of the graded state monad S as
covariant presheaves over Inj with an extra structure.

2 Parametric Monads Are Graded Monads

Quite obviously, the terminology “graded” comes from the ring-theoretic concept
of “graded ring”. Let (R,+, 0,×, 1) be a ring and N be the additive monoid
on natural numbers. An N-grading on R is an N-indexed family (Am)m∈N of
abelian groups such that R =

⊕
m∈N Am and such that the following holds for

all m,n ∈ N:
{x × y | x ∈ Am, y ∈ An} ⊆ Am+n. (4)

From these conditions, it follows that 1 ∈ A0 and A0 is a subring of R. An
N-graded ring is a pair of a ring R and an N-grading (Am)m∈N on it.

An N-grading (Am)m∈N on R, which is the primary data of the N-graded
ring, depicts a monoid-like structure in Ab. It consists of (1) multiple carrier

518 S. Fujii et al.

objects Am given for each grade m ∈ N, (2) a unit group homomorphism r0 :
Z → A0 at grade 0, which corresponds to 1 ∈ A0, and (3) a family of grade-
respecting multiplications rm,n : Am ⊗ An → Am+n, which are restrictions of
the multiplication (×) : R ⊗ R → R by the condition (4). These morphisms
satisfy the usual unit and associativity laws. We thus call such a structure an
N-graded monoid in Ab [19], and identify it with a lax monoidal functor of type
(N,+, 0) → (Ab,⊗,Z), because both structures carry exactly the same data.
More generally, for M a monoidal category, we define an M -graded monoid in a
monoidal category C to be a lax monoidal functor of type M → C . Of course,
ordinary monoids coincide with 1-graded monoids.

A M -graded monad onA may be then defined as an M -graded monoid in the
strict monoidal category ([A ,A], ◦, Id) of endofunctors on A , in the style of [19,
Sect. 1.1]. An easy calculation shows that M -graded monads on A bijectively
correspond to lax M -actions on A in the previous section, and to M -parametric
monads on A as they are called in [8,10,13]. Following this correspondence,
in the rest of the paper we use the terminology “graded monad” instead of
“parametric monad”. The main reason for this change is that it makes it easy to
relate categorical concepts around graded monads and algebraic concepts around
graded rings. For instance, one easily sees that the concept of graded algebra of
a graded monad, introduced in the previous section, is a categorical analogue of
the concept of graded module over a graded ring.

3 Adjunction Pairs Induced from Graded Monads

Throughout this section we fix a monoidal category (M ,⊗, I), which we will
consider strict for convenience, together with an M -graded monad T = (∗, μ, η)
on a given category A . We have explained in the introduction that every adjunc-
tion L � R : B → A combined with a strict M -action � on the category B
induces an M -graded monad m ∗ a = R(m � La) on the category A . Espe-
cially, when M = 1, this reduces to the well-known fact that the adjunction
L � R induces a monad R ◦ L. Conversely, a natural question is whether one
can derive any M -graded monad T = (∗, μ, η) on a category A as the result of
“deforming” a strict M -action � on a category B along a suitable adjunction
L � R with L : A → B. Just as in the case of monads, we provide two answers,
each of them corresponding to a different construction of the category B as the
category A T of Eilenberg-Moore algebras, or as the Kleisli category AT asso-
ciated to the graded monad T. The constructions require that the category M
is small, and we thus make this hypothesis from now on. A pair of very similar
constructions have been studied by Street in a nice but not sufficiently known
paper [20] where two ordinary functors F̂ , F̃ : M → Cat are associated to a
given lax functor F : M → Cat starting from a category M . As we will see, the
two constructions adapt Street’s original constructions and mildly extend it to
allow M to be any monoidal category (seen as a one-object 2-category).

Towards a Formal Theory of Graded Monads 519

3.1 The Eilenberg-Moore Construction

Given an M -graded monad T = (∗, μ, η) over a category A , the category A T

of its Eilenberg-Moore algebras is defined in the following way.

Definition 1 (graded T-algebras). A graded T-algebra is a pair (A, h) that
consists of a functor A : M → A and of a family h of morphisms

hm,n : m ∗ An → Am⊗n

natural in m,n and making the diagrams below commute for all objects m,n, p
of M :

I ∗ Am

hI,m

����
��

��
��

�

Am

η
		���������

id �� Am

m ∗ (n ∗ Ap)

μm,n

��

m∗hn,p �� m ∗ An⊗p

hm,n⊗p

��
(m ⊗ n) ∗ Ap

hm⊗n,p �� Am⊗n⊗p

(5)

Definition 2 (homomorphisms). Given two graded T-algebras (A, h) and
(A′, h′), a homomorphism

ϕ : (A, h) −→ (A′, h′)

is defined as a natural transformation ϕ : A ⇒ A′ making the diagram below
commute for all objects m,n of M :

m ∗ An

hm,n

��

m∗ϕn �� m ∗ A′
n

h′
m,n

��
Am⊗n

ϕm⊗n �� A′
m⊗n

(6)

Definition 3 (Eilenberg-Moore construction). The categoryA T has graded
T-algebras as objects and homomorphisms between them as morphisms.

One important observation is that the category A T admits the following
strict M -action.

Definition 4 (strict action). The strict M -action

� : M × A T −→ A T

of an object p ∈ M is defined as follows: it transports a graded T-algebra (A, h)
to the graded T-algebra defined by right translation:

p � (A, h) :=
(
(Am⊗p)m∈M , (hm,n⊗p)m,n∈M

)

and it transports a homomorphism ϕ : (A, h) → (A′, h′) into the homomorphism

p � ϕ : p � (A, h) −→ p � (A′, h′)

defined by the natural transformation:

(p � ϕ)n := ϕn⊗p : An⊗p → A′
n⊗p

520 S. Fujii et al.

It is worth observing that the definition of the action of p and of q on a graded
T-algebra (A, h) ensures that the equality below (expected by the definition of
an M -action) is satisfied:

p � (q � (A, h)) = (p ⊗ q) � (A, h)

for all objects p, q of the monoidal category M .

Theorem 5. The functor uT : A T → A defined by (A, h) �→ AI has a left
adjoint fT such that the graded monad T = (∗, μ, η) coincides with the graded
monad

(m,a) �→ uT(m � (fT(a))) : M × A −→ A

derived from the adjunction fT � uT and from the M -action � on A T.

The functor fT is constructed in the following way: to any object a of the
category A , it associates the graded T-algebra fT(a) defined by the functor

fT(a) := m �→ m ∗ a : M −→ A

together with the family of morphisms

hm,n := μm,n,a : m ∗ (n ∗ a) −→ (m ⊗ n) ∗ a.

3.2 The Kleisli Construction

Given an M -graded monad T = (∗, μ, η) over a category A , the Kleisli cate-
gory AT is defined in the following way.

Definition 6 (Kleisli construction). The category AT has objects the pairs
(m,a) where m is an object of M and a is an object of A , and each hom-set is
defined by the coend formula

AT
(
(m,a), (m′, a′)

)
:=

∫ n∈M

A (a, n ∗ a′) × M (m ⊗ n,m′).

In other words, a morphism is an equivalence class of triples of the form

[n, a
f−→ n ∗ a′,m ⊗ n

w−→ m′]

modulo the equivalence relation defined by the coend formula. The identity mor-
phism on (m,a) is defined as

[I, a
η−→ I ∗ a,m ⊗ I

id−→ m]

and the composition of morphisms is defined as

[n′, a′ f ′
−→ n′ ∗ a′′,m′ ⊗ n′ w′

−→ m′′] ◦ n, a
f−→ n ∗ a′,m ⊗ n

w−→ m′]

:= [n ⊗ n′, a
f−→ n ∗ a′ n∗f ′

−−−→ n ∗ n′ ∗ a′′ μn,n′−−−→ (n ⊗ n′) ∗ a′′,

m ⊗ n ⊗ n′ w⊗n′
−−−→ m′ ⊗ n′ w′

−→ m′′].

Towards a Formal Theory of Graded Monads 521

Definition 7. We define a strict M -action � on AT by

l � (m,a) := (l ⊗ m,a)
v � [n, f, w] := [n, f, v ⊗ w] (v : l → l′, [n, f, w] : (m,a) → (m′, a′))

Theorem 8. The functor vT : A → AT defined by a �→ (I, a) has a right
adjoint gT such that the graded monad T = (∗, μ, η) coincides with the graded
monad

(m,a) �→ gT(m � (vT(a))) : M × A −→ A

derived from the adjunction vT � gT and from the M -action � on AT.

The right adjoint functor gT : AT → A is defined as gT(m,a) := m ∗ a on
objects and

gT([n, a
f−→ n ∗ a′,m ⊗ n

w−→ m′])

:= m ∗ a
m∗f−−−→ m ∗ n ∗ a′ μm,n−−−→ (m ⊗ n) ∗ a′ w∗a′

−−−→ n′ ∗ a′

on morphisms [n, a
f−→ n ∗ a′,m ⊗ n

w−→ m′] : (m,a) → (m′, a′).

3.3 Resolutions of Graded Monads

What are special about the Eilenberg-Moore and Kleisli resolutions of a graded
monad? To answer this question, we introduce a suitable category consisting
of resolutions of a graded monad, and show that Eilenberg-Moore and Kleisli
resolutions are terminal and initial objects in this category. This is an extension
of the theory of resolutions of monads to graded monads.

The key ingredient of a resolution of an M -graded monad is a category with
strict M -actions. For the categorical treatment of such categories, we introduce
the 2-category M -Cat of categories with strict M -actions. It is the Eilenberg-
Moore 2-category of the 2-monad M × (−) on Cat. We associate to it the
2-adjunction FM � UM : M -Cat → Cat that behaves as follows on 0-cells:

FM (A) := (M × A , (⊗) × A : M × M × A → M × A), UM (A ,�) := A .

Definition 9. Let T = (∗, μ, η) be an M -graded monad on A .

– A resolution of T is a tuple of a 0-cell (B,�) in M -Cat and an adjunction
l � r : B → A in Cat such that T coincides with the graded monad r(−�(l−))
derived from the adjunction l � r and the strict M -action �.

– Given two resolutions ((B,�), l � r) and ((B′,�′), l′ � r′) of T, a morphism
from the former to the latter is a 1-cell h : (B,�) → (B′,�′) in M -Cat such
that h ◦ l = l′ and r = r′ ◦ h (here UM is implicitly applied to h).

– We define the category Res(T) of resolutions of T by the above data.

522 S. Fujii et al.

4 Towards a Formal Theory of Graded Monads

We explain how Street’s formal theory of monads can be adapted in order to
characterize the two constructions of A T and of AT described in Sect. 3 as
universal constructions. In his seminal paper [21], Street developed a general
theory of monads relative to an arbitrary 2-category K, so that the usual theory
of monads is regained by instantiating K by Cat, the 2-category of categories,
functors, and natural transformations.

Definition 10. A monad T in K is given by a 0-cell k, a 1-cell T : k → k,
and 2-cells μ : T ◦ T ⇒ T of K and η : idk ⇒ T , satisfying the usual axioms
μ ◦ ηT = idT = μ ◦ Tη and μ ◦ Tμ = μ ◦ μT .

Among his various abstract developments of the theory, the notions of Eilenberg-
Moore object and Kleisli object for a monad in a 2-category will be the most
important ones to our current work. We adopt the following definition, which
appears for instance in [20]:

Definition 11. The Eilenberg-Moore object of T is a 0-cell kT such that there
is a family of isomorphisms of categories

K(x, kT) ∼= K(x, k)K(x,T)

2-natural in x ∈ K. Here the category on the right hand side is the (usual)
Eilenberg-Moore category of the monad K(x,T) on the category K(x, k).

Definition 12. The Kleisli object of T is a 0-cell kT such that there is a family
of isomorphisms of categories

K(kT, x) ∼= K(k, x)K(T,x)

2-natural in x ∈ K. Here the category on the right hand side is the (usual)
Eilenberg-Moore category of the monad K(T, x) on the category K(k, x).

Now a remarkable point is that from this simple and abstract definition, one
can reconstruct a fair amount of the well-known properties of Eilenberg-Moore
or Kleisli categories, including the existence of adjunctions which generate the
monads, and the existence and uniqueness of comparison 1-cells. The interested
reader should consult [21] for an ingenious 2-categorical manipulation achieving
this reconstruction. In what follows, however, we choose to describe the adjunc-
tions explicitly, for the sake of concreteness. As we did in Sect. 3, we suppose
here that the category M is small, a necessary condition in order to perform the
constructions of the Eilenberg-Moore and Kleisli objects.

4.1 A 2-Category for Eilenberg-Moore Objects

We introduce the 2-category E++ where the category A T of graded alge-
bras (Definition 1) arises as an Eilenberg-Moore object in it. This 2-category
is obtained by a suitable lax comma construction for the 3-category 2-Cat of 2-
categories, 2-functors, 2-natural transformations and modifications. We denote
the terminal 2-category by 1.

Towards a Formal Theory of Graded Monads 523

Definition 13. We define the 2-category E++ by the following data.

– A 0-cell of E++ is a 2-functor a : 1 → A where A is a 2-category; equivalently,
it is a pair (A, a) where a is a 0-cell of A.

– A 1-cell of E++ from (A, a) to (A′, a′) is a diagram in 2-Cat

1
a′

�
��

��
��

�
a

����
��

��
�

⇒f

A
F

�� A′

filled with a 2-natural transformation f ; equivalently, it is a pair (F, f) where
f : Fa → a′ is a 1-cell of A′.

– A 2-cell of E++ from (F, f) to (F ′, f ′) is a pair (Θ,α) where Θ : F → F ′ is
a 2-natural transformation and α is a modification of the following type:

1

a′

���
��

��
��

��
��

��

a

		
		
		
		
		
		
	

⇒
f

A
F

�� A′

�

1

a′

���
��

��
��

��
��

��

a

		
		
		
		
		
		
	

⇒
f ′

A
F ′

��

F

��⇑ Θ A′

Equivalently, α is a 2-cell of A′ of the following type:

Fa

Θa

��

f

��

⇓ α a′

F ′a
f ′

��������������������

The first projection of the data defines a 2-functor p++ : E++ → 2-Cat2,
where 2-Cat2 is the 2-category of 2-categories, 2-functors, and 2-natural trans-
formations. We take a fibrational viewpoint [1,7] and say a notion X is above I
if p++(X) = I. A first key observation is the following:

Proposition 14. Let (M ,⊗, I) be a strict monoidal category and A a category.
Then, an M -graded monad on A is the same thing as a monad in E++ on
(Cat,A), above the 2-monad M × (−) on Cat.

Thanks to this proposition, it makes sense to speculate on the Eilenberg-
Moore objects (in the sense of Street) of graded monads in this 2-category E++.
Indeed, E++ turns out to admit Eilenberg-Moore objects of graded monads, and
moreover the Eilenberg-Moore adjunction for an M -graded monad lies above
that for the 2-monad M × (−).

524 S. Fujii et al.

Proposition 15. The following is an adjunction in the 2-category E++:

(Cat,A)

(FM ,−�fT−)
��

⊥ (M -Cat, (A T,�))

(UM ,uT)

��

Proof. In general, for an adjunction L � R in 2-Cat2 and a morphism (R, r) :
(D, d) → (C, c) in E++, a left adjoint to (R, r) above L in E++ bijectively
corresponds to a left adjoint to r : c → Rd in C. By letting (R, r) be (UM , uT),
where uT is a right adjoint, we obtain the above left adjoint, lying above FM .

A long, but straightforward calculation establishes the announced result:

Theorem 16. There is a family of isomorphisms of categories

E++((X,x), (M -Cat,A T)) ∼= E++((X,x), (Cat,A))E++((X,x),T)

2-natural in (X,x) ∈ E++.

Corollary 17. Let T be a graded monad. Then ((A T,�), fT � uT) is terminal
in the category Res(T) of resolutions of T.

Proof. The idea is similar to that of Proposition 15.

4.2 A 2-Category for Kleisli Objects

We next introduce the 2-category E−− where the category AT (Definition 6)
arises as a Kleisli object in it. It turns out to be a certain dual of the 2-
category E++:

Definition 18. Define the 2-category E−− as follows.

– A 0-cell of E−− is a 2-functor a : 1 → A where A is a 2-category; equivalently,
it is a pair (A, a) where a is a 0-cell of A.

– A 1-cell of E−− from (A, a) to (A′, a′) is a diagram in 2-Cat

1
a′

�
��

��
��

�
a

����
��

��
�

⇒f

A A′
F

��

filled with a 2-natural transformation f ; equivalently, it is a pair (F, f) where
f : a → Fa′ is a 1-cell of A.

– A 2-cell of E−− from (F, f) to (F ′, f ′) is a pair (Θ,α) where Θ : F ′ → F is
a 2-natural transformation and α is a modification of the following type:

Towards a Formal Theory of Graded Monads 525

Equivalently, α is a 2-cell of A of the following type:

Fa′

⇓ α a

f

���������������������

f ′
��

F ′a′

Θa

��

Again the first projection of the data defines a 2-functor p−− : E−− →
2-Cat

op(1,2)
2 , where 2-Cat

op(1,2)
2 is the 2-category obtained by reversing both 1-

cells and 2-cells of 2-Cat2.

Proposition 19. Let (M ,⊗, I) be a strict monoidal category and A a category.
Then, an M -graded monad on A is the same thing as a monad in E−− on
(Cat,A), above the 2-comonad [M ,−] on Cat.

The 2-category E−− admits Kleisli objects of graded monads, and the Kleisli
adjunction for an M -graded monad lies above the co-Eilenberg-Moore adjunction
for the 2-comonad [M ,−]. Observe that the 2-comonad [M ,−], being right
adjoint to the 2-monad M ×(−), has as its co-Eilenberg-Moore 2-category again
the 2-category M -Cat. Let us denote VM � GM for the associated 2-adjunction.
Their behaviour on 0-cells are given as follows:

GM (C) := ([M ,C],⊗∧ : M × [M ,C] → [M ,C]), VM (C ,�) := C ,

where ⊗∧(m,C) = C(− ⊗ m).

Proposition 20. The following is an adjunction in the 2-category E−−:

(Cat,A)

(VM ,vT)
��

⊥ (M -Cat, (AT,�))

(GM ,gT(−�−))

��

Proof. We give a proof similar to Proposition 15. This time we use the following
fact: for an adjunction L � R in 2-Cat2 and a 1-cell (L, l) : (C, c) → (D, d) in
E−−, a right adjoint to (L, l) above R in E−− bijectively corresponds to a right
adjoint to l : c → Ld in C.

526 S. Fujii et al.

Theorem 21. There is a family of isomorphisms of categories

E−−((M -Cat,AT), (X,x)) ∼= E−−((Cat,A), (X,x))E−−(T,(X,x))

2-natural in (X,x) ∈ E−−.

A key to the proof of this theorem is the observation that every 1-cell [n, a
f−→

n ∗ a′,m ⊗ n
w−→ m′] of AT can be decomposed as

[n, a
f−→ n ∗ a′,m ⊗ n

w−→ m′]

= (w � vT(a′)) ◦ (m � [n, n ∗ a′ id−→ n ∗ a′, I ⊗ n
id−→ n]) ◦ (m � vT(f)).

Corollary 22. Let T be an M -graded monad. Then ((AT,�), vT � gT) is ini-
tial in the category Res(T) of resolutions of T.

5 Illustration: The Graded State Monad

Suppose given an object V in a symmetric monoidal closed category C . We start
by describing the graded state monad

S = (∗, μ, η) : Inj × C −→ C

mentioned at the end of the introduction, and defined as

n ∗ A := V ⊗n �(V ⊗n ⊗ A).

One simple way to define the graded monad S is to start from the observation
that the formula A �→ n ∗ A defines an Inj-indexed monad, defined as a functor

∗ : Inj −→ Mnd(C)

from the category Inj to the category Mnd(C) of monads over the category C ,
and monad homomorphisms between them. We write

μm,A : m ∗ (m ∗ A) −→ m ∗ A ηm,A : A −→ m ∗ A

for the multiplication and unit of the monad A �→ m ∗ A. The multiplication
μm,n,A of the graded state monad S may be then defined as the composite

m ∗ (n ∗ A)
inl∗(inr∗A) �� (m + n) ∗ ((m + n) ∗ A)

μm+n,A �� (m + n) ∗ A

where the lefthand side morphism is defined by the injection morphisms inl :
m → m + n and inr : n → m + n and where μm+n,A is the multiplication
of the monad A �→ (m + n) ∗ A. Similarly, the unit ηA : A → 0 ∗ A of the
graded monad S is defined as η 0,A which is an isomorphism. This defines the

Towards a Formal Theory of Graded Monads 527

graded monad S = (∗, μ, η). More generally, one observes that every M -indexed
monad induces an M -graded monad in this way, when the unit I of the monoidal
category (M ,⊗, I) is initial, as in the case of the category Inj.

We find instructive to explicate the notion of graded S-algebra introduced in
Sect. 3.1 in the particular case when C = Set and where V is a finite set. As in
the case of any such cartesian closed category C , the action can be rewritten as

n ∗ A = (V n ⇒ V n) × (V n ⇒ A).

Now, a graded S-algebra (A, h) is given by a functor A : Inj → Set, together
with a family h of functions

hm,n : (V m ⇒ V m) × (V m ⇒ An) −→ Am+n

subject to the axioms (5) of graded algebras. Since

(V m ⇒ V m) × (V m ⇒ An) =
∐

f∈(V m⇒V m)

(V m ⇒ An),

one can see the family h as a family of operations

〈f, n〉 : V m ⇒ An −→ Am+n.

indexed by the functions f : V m → V m and the natural numbers n. Note that
each such operation 〈f, n〉 transports V m elements of grade n into an element
of grade m + n. As such, a graded S-algebra (A, h) can be seen in terms of
multisorted universal algebra as a family (Am)m∈N of sets with sorts provided
by natural numbers m ∈ N. Following [3,11,14], the algebraic theory can be
presented by extending with the operations 〈f, n〉 the trivial Lawvere theory
with arities

Σ(Inj) op −→ [Inj, Set]

whose models are the covariant presheaves over [Inj, Set] with the genera-
tors 〈f, n〉 together with a number of equations expressing that

– the family hm,n : m ∗ An → Am⊗n is natural in m and n,
– h satisfies the Eq. (5) of a graded S-algebra.

The equations are given in the Appendix. The resulting algebraic presentation
of graded S-algebras by operations and equations enables one to establish that

Theorem 23. The canonical forgetful functor U : SetS → [Inj, Set] given by
(A, h) �→ A is monadic.

One main reason for studying the Inj-graded monad S is that it induces in this
way a monad on [Inj, Set] with arities Θ : ΣInj op → [Inj, Set] whose Lawvere
theory (S)�מ with arities Θ is a sub-theory of the Lawvere theory �מ (with same
arities) of the local state monad L presented by generators and relations in [14].
Interestingly, the resulting algebraic theory (S)�מ captures only a restricted part
of the original algebraic theory �מ since the multiplication μm,n,A does not enable

528 S. Fujii et al.

the graded algebra (Am)m∈Inj to pass states from one layer of application (m∗−)
of the graded state monad to the next layer (n ∗ −). This limitation should not
be seen as a defect but rather as a feature of the graded state monad S since it
enables us to delineate a natural fragment of the local state monad L.

Acknowledgments. The authors are grateful to the anonymous reviewer for sug-
gesting an alternative and more elegant construction of the graded state monad. The
authors are also grateful to Marco Gaboardi and to Dominic Orchard for a num-
ber of useful discussions about this work. The authors were supported by the JSPS-
INRIA Bilateral Joint Research Project CRECOGI, the second author was supported
by Grant-in-Aid No.15K00014 while the third author was partly supported by the ANR
Project Recre.

Appendix: An Algebraic Presentation of Graded
S-Algebras

Formulated in the language of multisorted universal algebra, a graded S-algebra
(A, h) is completely determined by a family (Am)m∈N of sets equipped with an
operation Av : Am → An for each injection v : m → n and with an operation
〈f, n〉 : AV m

n → Am+n for each pair of natural numbers m,n and each function
f : V m → V m. These operations should moreover satisfy the equations below.
First of all, the two functoriality equations below:

Aidm
= idAm

Aw◦v = Aw ◦ Av.

Then, the naturality equation, for all injections v : m → m′ and w : n → n′,

Av+w(〈f, n〉(ai)i∈V m) = 〈v • f, n′〉(Aw(ai′◦v))i′∈V m′ ,

where the function v • f : V m′ → V m′
is defined as

(
(v • f)(valk′)k′∈m′

)
l′ =

{(
f(valv(k))k∈m

)
l

if l′ = v(l) for some l ∈ m;
vall′ otherwise.

Then, the unit equation

〈idV 0 ,m〉 = idAm
,

for a function f : V m → V m and an injection v : m → m′ ; and finally the
associativity equation

〈f〉n+p(〈gi, p〉(ai,j)j∈V n)i∈V m = 〈f � (gi)i∈V m , p〉(ai,j)i,j∈V m+n ,

where the function

f � (gi)i∈V m : V m+n −→ V m+n

Towards a Formal Theory of Graded Monads 529

is defined as follows, for a function f : V m → V m and for a family of func-
tions (gi : V n → V n)i∈V m :

(
(f � (gi)i∈V m)(valk, walk′)k∈m,k′∈n

)
l

=

{(
f(valk)k∈m

)
l

if l ∈ m,
(
g(valk)k∈m

(walk′)k′∈n

)
l

if l ∈ n.

Homomorphisms of graded S-algebras are just families of maps ϕm : Am → A′
m

commuting with the operations introduced above.

References

1. Baković, I.: Fibrations of bicategories. Available on the ArXiV
2. Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest Category

Seminar. Lecture Notes in Mathematics, vol. 47, pp. 1–77. Springer, Heidelberg
(1967)

3. Berger, C., Melliès, P.-A., Weber, M.: Monads with arities and their associated
theories. J. Pure Appl. Algebra 216, 2029–2048 (2012)

4. Dal Lago, U.: A short introduction to implicit computational complexity. In:
Bezhanishvili, N., Goranko, V. (eds.) ESSLLI 2010 and ESSLLI 2011. LNCS, vol.
7388, pp. 89–109. Springer, Heidelberg (2012)

5. Dal Lago, U., Gaboardi, M.: Linear dependent types and relative completeness.
Log. Meth. Comput. Sci. 8(4), 12 (2012)

6. Grellois, C., Melliès, P.-A.: Relational semantics of linear logic, higher-order model
checking. In: Proceedings of CSL 2015, pp. 260–276 (2015)

7. Hermida, C.: Descent on 2-fibrations and strongly 2-regular 2-categories. Appl.
Categorical Struct. 12(5–6), 427–459 (2004)

8. Katsumata, S.-y.: Parametric effect monads and semantics of effect systems. In:
Proceedings of POPL 2014, pp. 633–645. ACM (2014)

9. Melliès, P.-A.: Towards an algebra of duality. Talk given during the workshop
Linear Logic, Ludics, Implicit Complexity, Operator Algebras, dedicated to Jean-
Yves Girard on the occasion of his 60th birthday, May 2007

10. Melliès, P.-A.: Game semantics in string diagrams. In: Proceedings of Logic In
Computer Science, LICS, Dubrovnik (2012)

11. Melliès, P.-A.: Segal condition meets computational effects. LICS (2010)
12. Melliès, P.-A.: Sharing and duplication in tensorial logic. Invited talk at the 4th

International workshop on Developments in Implicit Computational complexity
(DICE), Rome, March 2013

13. Melliès, P.-A.: Parametric monads and enriched adjunctions. Syntax and Semantics
of Low Level Languages, LOLA, Dubrovnik. Manuscript available on the author’s
webpage (2012)

14. Melliès, P.-A.: Local states in string diagrams. In: Dowek, G. (ed.) RTA-TLCA
2014. LNCS, vol. 8560, pp. 334–348. Springer, Heidelberg (2014)

15. Melliés, P.-A.: The parametric continuation monad. Festschrift in honor of Corrado
Böhm for his 90th birthday. Mathematical Structures in Computer Science (2016)

16. Milius, S., Pattinson, D., Schröder, L.: Generic trace semantics and graded monads.
Calco (2015)

17. Petricek, T., Orchard, D., Mycroft, A.: Coeffects: unified static analysis of context-
dependence. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part II. LNCS, vol. 7966, pp. 385–397. Springer, Heidelberg (2013)

530 S. Fujii et al.

18. Plotkin, G., Power, J.: Computational effects determine monads. In: Proceedings
of FoSSaCS, Grenoble (2002)

19. Smirnov, A.: Graded monads and rings of polynomials. J. Math. Sci. 151(3), 3032–
3051 (2008)

20. Street, R.: Two constructions on lax functors. Cahiers de topologie et géométrie
différentielle 13, 217–264 (1972)

21. Street, R.: The formal theory of monads. J. Pure Appl. Algebra 2(2), 149–168
(1972)

Profinite Monads, Profinite Equations,
and Reiterman’s Theorem

Liang-Ting Chen1(B), Jǐŕı Adámek1, Stefan Milius2, and Henning Urbat1

1 Institut für Theoretische Informatik,
Technische Universität Braunschweig, Braunschweig, Germany

l.chen@iti.cs.tu-bs.de
2 Lehrstuhl für Theoretische Informatik,

Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany

Abstract. Profinite equations are an indispensable tool for the alge-
braic classification of formal languages. Reiterman’s theorem states that
they precisely specify pseudovarieties, i.e. classes of finite algebras closed
under finite products, subalgebras and quotients. In this paper Reit-
erman’s theorem is generalised to finite Eilenberg-Moore algebras for a
monad T on a variety D of (ordered) algebras: a class of finite T-algebras
is a pseudovariety iff it is presentable by profinite (in-)equations. As an
application, quasivarieties of finite algebras are shown to be presentable
by profinite implications. Other examples include finite ordered algebras,
finite categories, finite ∞-monoids, etc.

1 Introduction

Algebraic automata theory investigates the relationship between the behaviour
of finite machines and descriptions of these behaviours in terms of finite algebraic
structures. For example, regular languages of finite words are precisely the lan-
guages recognised by finite monoids. And Schützenberger’s theorem [26] shows
that star-free regular languages correspond to aperiodic finite monoids, which
easily leads to the decidability of star-freeness. A generic correspondence result
of this kind is Eilenberg’s variety theorem [11]. It gives a bijective correspondence
between varieties of languages (classes of regular languages closed under boolean
operations, derivatives and homomorphic preimages) and pseudovarieties of
monoids (classes of finite monoids closed under finite products, submonoids and
quotients). Another, more syntactic, characterisation of pseudovarieties follows
from Reiterman’s theorem [23] (see also Banaschewski [6]): they are precisely
the classes of finite monoids specified by profinite equations.

In the meantime Eilenberg-type correspondences have been discovered for
other kinds of algebraic structures, including ordered monoids [19], idempotent

Liang-Ting Chen acknowledges gratefully partial support from AFOSR.
Stefan Milius acknowledges support by the Deutsche Forschungsgemeinschaft (DFG)
under project MI 717/5-1.
Jǐŕı Adámek and Henning Urbat acknowledge support by the Deutsche Forschungs-
gemeinschaft (DFG) under project AD 187/2-1.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 531–547, 2016.
DOI: 10.1007/978-3-662-49630-5 31

532 L.-T. Chen et al.

semirings [21], associative algebras over a field [24] and Wilke algebras [27],
always with rather similar proofs. This has spurred recent interest in generic
approaches to algebraic language theory that can produce such correspondences
as instances of a single result. Bojańczyk [9] extends the classical notion of
language recognition by monoids (viewed as algebraic structures over the cate-
gory of sets) to algebras for an arbitrary monad on many-sorted sets. He also
presents an Eilenberg-type theorem at this level of generality, interpreting a
result of Almeida [5] in categorical terms. Our previous work in [1–3,10] takes
an orthogonal approach: one keeps monoids but considers them in categories D
of (ordered) algebras such as posets, semilattices and vector spaces. Analysing
the latter work it becomes clear that the step from sets to more general cate-
gories D is necessary to obtain the right notion of language recognition by finite
monoids; e.g. to cover Polák’s Eilenberg-type theorem for idempotent semirings
[21], one needs to take the base category D of semilattices. On the other hand,
from Bojańczyk’s work it is clear that one also has to generalise from monoids
to other algebraic structures if one wants to capture such examples as Wilke
algebras.

The present paper is the first step in a line of work that considers a common
roof for both approaches, working with algebras for a monad T on an arbitrary
variety D of many-sorted, possibly ordered algebras.

Finite T-algebras
in D

������
������

Finite T-algebras
in SetS

(Bojańczyk [9])
����

�

Finite monoids
in D

(Adámek et. al. [1,3])
�����

Finite monoids
in Set

(Classical)

Our main contribution is a generalisation of Reiterman’s theorem, stating
that pseudovarieties of finite algebras are presentable by profinite equations, to
the more general situation of algebras for a monad. Starting with a variety D ,
we form the pro-completion of the full subcategory Df of finite algebras,

D̂ := Pro-Df .

For example, for D = sets, posets and monoids we get D̂ = Stone spaces, Priest-
ley spaces and profinite monoids. Next, we consider a monad T on D and asso-
ciate to it a monad T̂ on D̂ , called the profinite monad of T. For example, if
D = Set and T is the finite word monad (whose algebras are precisely monoids),
then T̂ is the monad of profinite monoids on the category of Stone spaces; that
is, T̂ associates to each finite Stone space (= finite set) X the space X̂∗ of profi-
nite words on X. Similarly, for the monad T of finite and infinite words on Set

Profinite Monads, Profinite Equations, and Reiterman’s Theorem 533

(whose algebras we call ∞-monoids) the profinite monad T̂ constructs the space
of profinite ∞-words.

The classical profinite equations for monoids, used for presenting pseudova-
rieties of monoids, are generalised to profinite equations u = v that are pairs of
elements of T̂Φ̂X , where Φ̂X is the free profinite D-algebra on a finite set X of
variables. Our main result is that profinite equations present precisely classes of
finite T-algebras closed under finite products, subalgebras, and quotients.

We will additionally study a somewhat unusual concept of profinite equa-
tion where in lieu of finite sets X of variables we use finite algebras X ∈ Df

of variables. The classes of finite T-algebras presented by such profinite equa-
tions are then precisely those closed under finite products, subalgebras, and
split quotients. These two variants are actually instances of a general result
(Theorem 4.12) that is parametric in a class X of “algebras of variables” in D .

The above results hold if D is a variety of algebras. In case that D is a
variety of ordered algebras, we obtain the analogous two results, working with
profinite inequations u ≤ v instead of equations. As instances we recover Reiter-
man’s original theorem [23] and its version for ordered algebras due to Pin and
Weil [20]. Another consequence of our theorem is the observation that quasiva-
rietes of finite algebras in D , i.e. subclasses of Df closed under finite products
and subalgebras, are presentable by profinite implications. Moreover, we obtain
a number of new Reiterman-type results. For example, for the monad of finite
and infinite words on Set, our Reiterman theorem shows that a class of finite ∞-
monoids is a pseudovariety iff it can be presented by equations between profinite
∞-words. Finally, we can also treat categories of T-algebras that are not vari-
eties. E.g. by taking for D the category of graphs and T the free-category monad
we essentially recover a result of Jones on pseudovarieties of finite categories [15].

2 Preliminaries

In this section we review the necessary concepts from category theory, universal
algebra and topology we will use throughout the paper. Recall that for a fini-
tary many-sorted signature Γ a variety of Γ -algebras is a full subcategory of
AlgΓ , the category of Γ -algebras, specified by equations s = t between Γ -terms.
By Birkhoff’s HSP theorem varieties are precisely the classes of algebras closed
under products, subalgebras, and quotients (= homomorphic images). Similarly,
ordered Γ -algebras are posets equipped with order-preserving Γ -operations,
and their morphisms are order-preserving Γ -homomorphisms. A quotient of an
ordered algebra B is represented by a surjective morphism e : B � A, and a
subalgebra of B is represented by an order-reflecting morphism m : A � B,
i.e. mx ≤ my iff x ≤ y. A variety of ordered Γ -algebras is a full subcategory
of Alg≤Γ , the category of ordered Γ -algebras, specified by inequations s ≤ t
between Γ -terms. By Bloom’s HSP theorem [8], varieties of ordered algebras are
precisely the classes of ordered algebras closed under products, subalgebras and
quotients.

534 L.-T. Chen et al.

Remark 2.1. For notational simplicity we restrict our attention to single-sorted
varieties. However, all definitions, theorems and proofs that follow are easily
adapted to a many-sorted setting. See also Remark 5.7 and Example 5.8.

Definition 2.2. Let D be a variety of algebras or ordered algebras.

(a) A topological D-algebra is a topological space endowed with a D-algebraic
structure such that every operation is continuous with respect to the product
topology. Morphisms of topological D-algebras are continuous D-morphisms.

(b) A topological D-algebra is profinite if it is a cofiltered limit of finite D-
algebras with discrete topology.

Notation 2.3. Throughout this paper we fix a variety D of algebras or ordered
algebras, equipped with the factorisation system of quotients and subalgebras.
We denote by D̂ the category of profinite D-algebras. We use the forgetful func-
tors

Df
�� Ĵ �� D̂

V �� D

where V forgets the topology and Ĵ views a finite D-algebra as a profinite D-
algebra with discrete topology. We will often identify A ∈ Df with ĴA.

Example 2.4. 1. Ŝet is the category Stone of Stone spaces, i.e. compact spaces
such that any two distinct elements can be separated by a clopen set.

2. Let Pos be the category of posets and monotone maps, viewed as the variety
of ordered algebras over the empty signature. Then P̂os is the category Priest
of Priestley spaces [22], i.e. ordered compact spaces such that for any two
elements u, v with u �≤ v there is a clopen upper set containing u but not v.

3. For the variety Mon of monoids, the category M̂on consists of all monoids in
Stone; that is, a topological monoid is profinite iff it carries a Stone topology.
Analogous descriptions of D̂ hold for most familiar varieties D over a finite
signature, e.g. groups, semilattices, vector spaces over a finite field; see [14].

Remark 2.5. By [14, Remark VI.2.4] the category D̂ is the pro-completion, i.e.
the free completion under cofiltered limits, of Df . Hence D̂ is dual to a locally
finitely presentable category [4], which entails the following properties:

(i) Every object A of D̂ is the cofiltered limit of all morphisms h : A → A′ with
finite codomain. More precisely, if (A ↓ Df) denotes the comma category of
all such morphisms h, the diagram

(A ↓ Df) → D̂ , h �→ A′,

has the limit A with limit projections h.
(ii) Given a cofiltered limit cone πi : A → Ai (i ∈ I) in D̂ , any morphism f : A →

B with finite codomain factors through some πi.

Lemma 2.6. D̂ has the factorisation system of surjective morphisms and injec-
tive (resp. order-reflecting) morphisms.

Profinite Monads, Profinite Equations, and Reiterman’s Theorem 535

Definition 2.7. The profinite completion of an object D ∈ D is the limit D̂ ∈ D̂
of the cofiltered diagram

(D ↓ Df) → D̂ , (h : D → D′) �→ D′

We denote the limit projection corresponding to h : D → D′ by ĥ : D̂ → D′.
Observe that D̂ = D for any D ∈ Df , and ĥ = h for any morphism h in Df .

Proposition 2.8. The maps D �→ D̂ and h �→ ĥ extend to a left adjoint for the
forgetful functor V , denoted by

·̂ : D → D̂ .

Remark 2.9. We will frequently use the following facts:

(a) Homomorphism theorem. Given morphisms e : A � B and f : A → C in D
with e surjective, there exists a morphism f ′ with f ′ · e = f iff e(a) = e(a′)
implies f(a) = f(a′) (resp. e(a) ≤ e(a′) implies f(a) ≤ f(a′)) for all a, a′ ∈
A. Moreover, if A,B,C are topological D-algebras with a compact Hausdorff
topology and e and f are continuous D-morphisms, then f ′ is continuous.

(b) The forgetful functor |−| : D → Set has a left adjoint assigning to each set
X the free D-algebra ΦX on X.

(c) Free D-algebras are projective: for any morphism f : ΦX → B and any
surjective morphism e : A � B in D there exists a morphism f ′ : ΦX → A
with e · f ′ = f . Indeed, choose a function m : |B| → |A| with e · m = id .
Then the restriction of m · f to X extends to a morphism f ′ : ΦX → A of D
with f = f ′ · e, since the morphisms on both sides agree on the generators
X.

Notation 2.10. For a monad T = (T, η, μ) on D , we write DT for the category
of T-algebras and T-homomorphisms, and DT

f for the full subcategory of finite
T-algebras. The forgetful functors are denoted by

U : DT
f → Df and UT : DT → D .

Recall that UT has a left adjoint mapping D ∈ D to its free T-algebra (TD, μD).

Remark 2.11. If T preserves surjective morphisms, the homomorphism theo-
rem applies to T-algebras. That is, if A,B,C in Remark 2.9(a) are T-algebras
and e and f are T-homomorphisms, so is f ′. Moreover the factorisation system of
D lifts to DT: every T-homomorphism h : (A,α) → (B, β) can be factorised into
a surjective T-homomorphism followed by an injective (resp. order-reflecting)
one. Quotients and subalgebras of T-algebras are taken w.r.t. this factorisation
system.

Example 2.12. We are mainly interested in monads representing structures in
algebraic language theory.

536 L.-T. Chen et al.

(a) Finite words. The classical example is the free-monoid monad T on D = Set,

TX = X∗ =
∐

n<ω

Xn.

The importance of the monad T is that functions TX → {0, 1} correspond
to languages of finite words over the alphabet X, and regular languages are
precisely the languages recognized by finite T-algebras (= finite monoids).
Bojańczyk [9] recently gave a generalisation of the classical Eilenberg the-
orem to arbitrary monads T on Set, relating pseudovarieties of finite T-
algebras to varieties of T-recognisable languages.

(b) Finite words over semilattices. From the perspective of algebraic language
theory it is natural to study monoids in algebraic categories beyond Set. For
example, let D = JSL be the variety of join-semilattices with 0, considered
as a monoidal category w.r.t. the usual tensor product. The free-monoid
monad on JSL is given by

TX = X� =
∐

n<ω

X⊗n,

the coproduct of all finite tensor powers of X, and T-algebras are precisely
idempotent semirings. In case X = PfX0 is the free semilattice on a set
X0 one has TX = PfX∗

0 , the semilattice of all finite languages over X0.
Hence semilattice morphisms from TX into the two-chain 0 < 1 correspond
again to formal languages over X0. This setting allows one to study disjunc-
tive varieties of languages in the sense of Polák [21], see [1–3]. Note that
although the variety of idempotent semirings can also be represented by
the free idempotent semiring monad T ′X = PfX∗ on Set, functions from
T ′X = PfX∗ to {0, 1} do not correpond to formal languages over X.

(c) Infinite words. The monad

TX = X∞ = X∗ + Xω

on D = Set represents languages of finite and infinite words. The unit
ηX : X → X∗ is given by inclusion, and the multiplication μX : (X∞)∞ →
X∞ is concatentation: μX(w0w1w2 . . .) = w0w1w2 . . . if all words wi are
finite, and otherwise μX(w0w1w2 . . .) = w0w1w2 . . . wj for the smallest j
with wj infinite. T-algebras are ∞-monoids, i.e. monoids with an addi-
tional ω-ary multiplication and the expected mixed associative laws. Again,
functions from TX to {0, 1} correspond to languages (of finite and infinite
words), and ω-regular languages are precisely the languages recognised by
finite ∞-monoids. This was observed by Bojańczyk [9], who also derived an
Eilenberg-type theorem for varieties of ω-regular languages and pseudovari-
eties of ∞-monoids along the lines of Wilke [27]. As in (b) one can replace
∞-monoids in Set by “idempotent ∞-semirings”, viewed as algebras for a
suitable monad on JSL, and thus extend Polák’s theorem [21] from finite
word languages to ω-regular languages. We leave the details for future work.

Profinite Monads, Profinite Equations, and Reiterman’s Theorem 537

(d) In contrast to the previous examples, the category DT is not always monadic
over Set resp. Pos. To see this, let D = Set0,1 be the variety of sets with two
constants, that is, the category of all algebras over the signature with two
constant symbols 0, 1. The full subcategory Set0 �=1, consisting of singletons
and sets with distinct constants 0 �= 1, is reflective and hence monadic over
Set0,1. However, it is not monadic over Set.

3 Profinite Monads

In this section we introduce profinite monads, our main tool for the investigation
of profinite equations and Reiterman’s theorem for T-algebras in Sect. 4.

Assumption 3.1. As in the previous section let D be a variety of algebras or
ordered algebras. Moreover, let T = (T, η, μ) be a monad on D such that T
preserves surjective morphisms.

Recall that the right Kan extension of a functor F : A → C along K : A → B
is a functor R : B → C with a universal natural transformation ε : RK → F ,
i.e. for every functor G : B → C and every natural transformation γ : GK → F
there exists a unique natural transformation γ† : G → R with γ = ε · γ†K. In
case F = K, the functor R carries a natural monad structure: the unit is given
by η̂ = (idK)† : Id → R and the multiplication by μ̂ = (ε · Rε)† : RR → R. The
monad (R, η̂, μ̂) is called the codensity monad of K, see e.g., [17].

Definition 3.2. The profinite monad of T is the codensity monad T̂ = (T̂ , η̂, μ̂)
of the functor

K = ĴU : DT
f → Df → D̂ .

Remark 3.3. A related concept was recently studied by Bojańczyk [9] who
associates to every monad T on Set a monad T on Set (rather than Ŝet =
Stone as in our setting!). Specifically, T is the monad induced by the composite
right adjoint StoneT̂ → Stone V−→ Set. Its construction also appears in the
work of Kennison and Gildenhuys [16] who investigated codensity monads for
Set-valued functors and their connection with profinite algebras.

Remark 3.4.(a) One can compute T̂X for X ∈ D̂ via the limit formula for
right Kan extensions, see e.g. [18, Theorem X.3.1]. Letting (X ↓ ĴU) denote
the comma category of all arrows f : X → A with (A,α) ∈ DT

f , the object
T̂X is the limit of the diagram

(X ↓ ĴU) → D̂ , f �→ A.

(b) For D ∈ D a morphism f : D̂ → A with (A,α) ∈ DT
f corresponds to a T-

homomorphism h : (TD, μD) → (A,α), since (TD, μD) is the free T-algebra
on D. Hence to compute T̂ D̂ one can replace (D̂ ↓ ĴU) by the category of
all h : (TD, μD) → (A,α) with (A,α) ∈ DT

f . We denote the limit cone by

h+ : T̂ D̂ → Â. (3.1)

One can restrict the diagram defining T̂ D̂ to surjective T-homomorphisms:

538 L.-T. Chen et al.

Proposition 3.5. For all D ∈ D the object T̂ D̂ is the cofiltered limit of all
finite T-algebra quotients e : (TD, μD) � (A,α).

Example 3.6 (Profinite words). For the monad TX = X∗ on D = Set the
profinite monad T̂ assigns to every finite set (= finite Stone space) X the space
T̂X = X̂∗ of profinite words over X. This is the limit in Stone of all finite
(discrete) quotient monoids of X∗. Similarly, for TX = X∞ the profinite monad
T̂ constructs the space T̂X of “profinite ∞-words” over X.

Lemma 3.7. (a) T̂ preserves cofiltered limits and surjections.

(b) Given a cofiltered limit cone hi : A → Ai (i ∈ I) in D̂ T̂, any T̂-
homomorphism h : A → B with finite codomain factors through some hi.

Remark 3.8. (a) Since T̂ preserves surjections, the factorisation system of D̂
lifts to D̂T̂, so we can speak about quotients and subalgebras of T̂-algebras.
Moreover, the homomorphism theorem holds for T̂-algebras, cf. Remark 2.11.

(b) Lemma 3.7(b) exhibits a crucial technical difference between our profinite
monad T̂ and Bojańczyk’s T, see Remark 3.3. For example, for the identity
monad T on Set, the monad T is the ultrafilter monad whose algebras are
compact Hausdorff spaces, and the factorisation property in the lemma fails.

Remark 3.9. For each finite T-algebra (A,α) the morphism α is itself a T-
homomorphism α : (TA, μA) � (A,α), and thus yields the limit projection

α+ : T̂ Â → Â

of (3.1). The unit η̂D̂ and multiplication μ̂D̂ of T̂ are determined by the following
commutative diagrams for all T-homomorphisms h : (TD, μD) → (A,α):

D̂
η̂D̂ ��

ĥηD ��
��

��
��

��
T̂ D̂

h+

��

T̂ T̂ D̂
μ̂D̂ ��

T̂ h+

��

T̂ D̂

h+

��

Â T̂ Â
α+

�� Â

(3.2)

Hence (Â, α+) is a T̂-algebra: the unit and associative law for T̂-algebras follow
by putting D = A and h = α in (3.2). Moreover, (3.2) states precisely that
h+ : (T̂ D̂, μ̂D̂) → (A,α+) is the unique T̂-homomorphism extending the map
ĥηD for every h as above.

Proposition 3.10. The maps (A,α) �→ (Â, α+) and h �→ ĥ define an isomor-
phism between the categories of finite T-algebras and finite T̂-algebras:

DT
f

∼= D̂T̂
f .

Profinite Monads, Profinite Equations, and Reiterman’s Theorem 539

4 Reiterman’s Theorem for T-Algebras

Reiterman’s theorem [6,23] states that, for any variety D of algebras, a class
of finite algebras in D is a pseudovariety, i.e. closed under finite products, sub-
objects and quotients, iff it is presented by profinite equations. Later Pin and
Weil [20] proved the corresponding result for varieties D of ordered algebras:
pseudovarieties are precisely the classes of finite algebras in D presented by
profinite inequations. In our categorical setting these two theorems represent the
case where T is chosen to be the identity monad on D . In Sect. 4.1 we intro-
duce pseudovarieties and profinite (in-)equations for arbitrary monads T on D ,
a straightforward extension of the original notions. In Sect. 4.2 we present a fur-
ther generalisation and prove the main result of this paper, Reiterman’s theorem
for finite T-algebras.

4.1 Pseudovarieties and Profinite (In-)equations

Let us start with extending the classical concept of a pseudovariety to T-algebras.

Definition 4.1. A pseudovariety of T-algebras is a class of finite T-algebras
closed under finite products, subalgebras and quotients.

Notation 4.2. Recall from Remark 2.9 the forgetful functor |−| : D → Set
and its left adjoint X �→ ΦX . For any finite T-algebra (A,α) to interpret variables
from a finite set X in A means to give a morphism h0 : ΦX → A in D , or
equivalently a T-homomorphism h : (TΦX , μΦX

) → (A,α). The corresponding
T̂-homomorphism is denoted h+ : T̂ Φ̂X → A, see Remarks 3.4 and 3.9.

Definition 4.3. 1. Let D be a variety of unordered algebras. By a profinite
equation over a finite set X of variables is meant a pair u, v ∈ T̂ Φ̂X , denoted
u = v. A finite T-algebra (A,α) satisfies u = v provided that

h+(u) = h+(v) for all T-homomorphisms h : TΦX → A.

2 Let D be a variety of ordered algebras. A profinite inequation over a finite set
X of variables is again a pair u, v ∈ T̂ Φ̂X , denoted u ≤ v. A finite T-algebra
(A,α) satisfies u ≤ v provided that

h+(u) ≤ h+(v) for all— T-homomorphisms h : TΦX → A.

A class E of profinite (in-)equations presents the class of all finite T-algebras
that satisfy all (in-)equations in E.

Lemma 4.4. Every class of finite T-algebras presented by profinite (in-)
equations forms a pseudovariety.

The proof is an easy verification. In the following subsection we show the converse
of the lemma: every pseudovariety is presented by profinite equations.

540 L.-T. Chen et al.

4.2 Reiterman’s Theorem for T-algebras

The concept of profinite (in-)equation as introduced above only considers the free
finitely generated objects ΦX of D as objects of variables. A natural variation is
to admit any finite object X ∈ Df as an object of variables. That is, we define
a profinite equation over X as a pair u, v ∈ T̂ X̂, and say that a finite T-algebra
(A,α) satisfies u = v if for every T-homomorphism h : (TX, μX) → (A,α) the T̂-
homomorphism h+ : T̂ X̂ → A merges u, v; analogously for inequations. A class
of finite T-algebras presented by such profinite equations is still closed under
finite products and subalgebras, but not necessarily under quotients. However,
it is closed under U -split quotients for the forgetful functor U : DT

f → Df , where
a surjective morphism e in DT

f is called U -split if there is a morphism m in Df

with Ue · m = id .
More generally, we introduce below for a class X of objects in D the concept

of profinite (in-)equation over X : a pair of elements of T̂ X̂ with X ∈ X . This
subsumes both of the above situations: by taking as X all free finitely generated
objects of D we recover the concept of Sect. 4.1. And the choice X = Df leads
to a new variant of Reiterman’s theorem: a characterisation of classes of finite
T-algebras closed under finite products, subalgebras and U -split quotients. The
latter can be understood as a finite analogue of Barr’s result [7], which states that
classes of T-algebras closed under products, subalgebras and U -split quotients
are in bijective correspondence with quotient monads of T.

Notation 4.5. For a class X of objects in D we denote by EX the class of all
surjective morphisms e : A � B with finite codomain such that all objects X of
X are projective w.r.t. e. That is, every morphism f : X → B factors through e.

Assumption 4.6. We assume that a class X of objects in D is given that
forms a projective presentation of Df , i.e. for every finite object A ∈ Df there
exists an object X ∈ X and a quotient e : X � A in EX .

Definition 4.7. An X -pseudovariety of T-algebras is a class of finite T-
algebras closed under finite products, subalgebras and EX -quotients, i.e. quo-
tients carried by a morphism in EX .

Example 4.8. (a) For the choice of Sect. 4.1,

X = free finitely generated objects of D ,

the class EX consists of all surjective morphisms with finite codomain, see
Remark 2.9(c). Clearly Assumption 4.6 is fulfilled since every finite object
in a variety D is a quotient of a free finitely generated one. Thus an X -
pseudovariety is simply a pseudovariety in the sense of Definition 4.1.

(b) If we choose
X = Df

then EX consists precisely of the split surjections with finite codomain.
Indeed, clearly every split surjection lies in EX . Conversely, given e : A � B

Profinite Monads, Profinite Equations, and Reiterman’s Theorem 541

in EX , apply the definition of EX to X = B and f = id . Assumption 4.6
is fulfilled because every object in Df is a split quotient of itself. A Df -
pseudovariety is a class of finite T-algebras closed under finite products,
subalgebras and U -split quotients.

Definition 4.9. 1. Let D be a variety of unordered algebras. A profinite equa-
tion over X is an expression of the form u = v with u, v ∈ T̂ X̂ and X ∈ X .
A finite T-algebra (A,α) satisfies u = v if

h+(u) = h+(v) for all T-homomorphisms h : TX → A.

2. Let D be a variety of ordered algebras. A profinite inequation over X is an
expression of the form u ≤ v with u, v ∈ T̂ X̂ and X ∈ X . A finite T-algebra
(A,α) satisfies u ≤ v if

h+(u) ≤ h+(v) for all T-homomorphisms h : TX → A.

A class E of profinite (in-)equations over X presents the class of all finite
T-algebras that satisfy all (in-)equations in E.

Remark 4.10. For any full subcategory V ⊆ DT
f closed under finite products

and subalgebras, the pro-V monad of T is the monad T̂V = (T̂V , μ̂V , η̂V) on D̂
defined by replacing in Definition 3.2 the functor U : DT

f → Df by its restriction
UV : V → Df . That is, T̂V is the right Kan extension of ĴUV along itself. In
analogy to Remark 3.4, one can describe T̂VX̂ with X ∈ D as the cofiltered limit
of the diagram of all homomorphisms h : (TX, μX) → (A,α) with (A,α) ∈ V.
The limit projections are denoted h+

V : T̂VX̂ → A. The universal property of T̂V
as a right Kan extension yields a monad morphism ϕV : T̂ → T̂V ; its component
ϕV

X̂
for X ∈ D is the unique D̂-morphism making the triangle below commute

for all h : (TX, μX) → (A,α) with (A,α) ∈ V.

T̂ X̂
ϕV

X̂ �� ��

h+

��

T̂VX̂

h+
V����

��
��

��
�

A

(4.1)

Lemma 4.11. Let V be a class of finite T-algebras closed under finite products
and subalgebras and u, v ∈ T̂ X̂ with X ∈ D .

1. Unordered case: ϕV
X̂

(u) = ϕV
X̂

(v) iff every algebra in V satisfies u = v.
2. Ordered case: ϕV

X̂
(u) ≤ ϕV

X̂
(v) iff every algebra in V satisfies u ≤ v.

Theorem 4.12 (Reiterman’s Theorem for T-algebras). A class of finite
T-algebras is an X -pseudovariety iff it is presented by profinite equations over
X (unordered case) resp. profinite inequations over X (ordered case).

542 L.-T. Chen et al.

Proof. Consider first the unordered case. The “if” direction is a straightforward
verification. For the “only if” direction let V be an X -pseudovariety.

(a) In analogy to Proposition 3.5 one can restrict the cofiltered diagram defining
T̂VX̂ to surjective homomorphismsh : TX � A. Then the limit projectionsh+

V
and the mediating map ϕV

X̂
in (4.1) are also surjective, see [25, Corollary 1.1.6].

Moreover, since ϕV is a monad morphism, the free T̂V -algebra (T̂VX̂, μ̂V
X̂

) on

X̂ can be turned into a T̂-algebra (T̂VX̂, μ̂V
X̂

· ϕV
T̂VX̂

), and ϕV
X̂

: (T̂ X̂, μ̂X̂) →
(T̂VX̂, μ̂V

X̂
· ϕV

T̂VX̂
) is a T̂-homomorphism.

(b) Let E the class of all profinite equations over X satisfied by all algebras
in V. We prove that V is presented by E, which only requires to show that
every finite T-algebra (A,α) satisfying all equations in E lies in V.

By Assumption 4.6 choose X ∈ X and a quotient e0 : X � A in EX , and
freely extend e0 to a (necessarily surjective) T-homomorphism e : TX � A.
We first show that the corresponding T̂-homomorphism e+ : T̂ X̂ → Â fac-
tors through ϕV

X̂
. Indeed, whenever ϕV

X̂
merges u, v ∈ T̂ X̂ then the profinite

equation u = v lies in E by Lemma 4.11, so e+ merges u, v since (A,α) sat-
isfies all equations in E. Since ϕV

X̂
is surjective by (a), the homomorphism

theorem (see Remark 3.8) yields a T̂-homomorphism g : T̂VX̂ → A in D̂ with
g · ϕV

X̂
= e+.

(c) By Lemma 3.7(b) the T̂-homomorphism g factors through the limit cone
defining T̂VX̂: there is a T-homomorphism h : TX → B with (B, β) ∈ V
and a T̂-homomorphism q : B → A with q ·h+

V = g. By Proposition 3.10 the
morphism q is also a T-homomorphism, and is surjective because g is.

(d) To conclude the proof it suffices to verify that q lies in EX (then (B, β) ∈ V
implies (A,α) ∈ V because V is closed under EX -quotients). Indeed: every
morphism f : Y → A with Y ∈ X factors through e0 because e0 ∈ EX , i.e.

f = e0 · k for some k : Y → X in D .

Then the diagram below commutes (for the second triangle see (3.2)) and
shows that f̂ factors through q̂ = q in D̂ , so f factors through q in D . We
conclude that q ∈ EX , as desired.

Ŷ

f̂
��

��
��

��
��

k̂ �� X̂

ê0

����

η̂X̂ �� T̂ X̂
ϕV

X̂ �� ��

e+
		

	

����			
	

T̂VX̂

g

����

h+
V

��

Â B̂q̂
				

This proves the theorem for the unordered case. The proof for the ordered case
is analogous: replace profinite equations by inequations, and use the homomor-
phism theorem for ordered algebras to construct the morphism g.

Profinite Monads, Profinite Equations, and Reiterman’s Theorem 543

5 Applications and Examples

Let us consider some examples and applications. First note that the original
Reiterman theorem and its ordered version emerge from Theorem 4.12 by taking
the identity monad T = Id and X = free finitely generated objects of D , see
Example 4.8(a). In this case we have T̂ = Id, DT = D , D̂T̂ = D̂ , and a profinite
equation u = v (resp. a profinite inequation u ≤ v) is a pair u, v ∈ Φ̂X for a
finite set X. We conclude:

Corollary 5.1 (Reiterman [23], Banaschewski [6]). Let D be a variety
of algebras. A class V ⊆ Df is a pseudovariety iff it is presented by profinite
equations over finite sets of variables.

Corollary 5.2 (Pin and Weil [20]). Let D be a variety of ordered algebras. A
class V ⊆ Df is a pseudovariety iff it is presented by profinite inequations over
finite sets of variables.

Recall from Isbell [13] that a class V ⊆ D is closed under products and
subalgebras iff it is presented by implications

∧

i∈I

si = ti ⇒ s = t

where si, ti, s, t are terms and I is a set. Choosing T to be the identity monad
and X = Df gives us the counterpart for finite algebras: by Example 4.8(b) a
Df -pseudovariety is precisely a class V ⊆ Df closed under finite products and
subalgebras, since the closure under split quotients is implied by closure under
subalgebras. Such a class could be called “quasi-pseudovariety”, but to avoid
this clumsy terminology we prefer “quasivariety of finite algebras”.

Definition 5.3. A quasivariety of finite algebras of D is a class V ⊆ Df closed
under finite products and subalgebras.

In analogy to Isbell’s result we show that quasivarieties of finite algebras are
precisely the classes of finite algebras of D presented by profinite implications.

Definition 5.4. Let X be a finite set of variables.

1. Unordered case: a profinite implication over X is an expression
∧

i∈I

ui = vi ⇒ u = v (5.1)

where I is a set and ui, vi, u, v ∈ Φ̂X . An object A ∈ Df satisfies (5.1) if for
every h : ΦX → A with ĥ(ui) = ĥ(vi) for all i ∈ I one has ĥ(u) = ĥ(v).

2. Ordered case: a profinite implication over X is an expression
∧

i∈I

ui ≤ vi ⇒ u ≤ v (5.2)

where I is a set and ui, vi, u, v ∈ Φ̂X . An object A ∈ Df satisfies (5.2) if for
every h : ΦX → A with ĥ(ui) = ĥ(vi) for all i ∈ I one has ĥ(u) ≤ ĥ(v).

544 L.-T. Chen et al.

A class P of profinite implications presents the class of all finite algebras in D
satisfying all implications in P .

Theorem 5.5. For any class V ⊆ Df the following statements are equivalent:

1. V is a quasivariety of finite algebras.
2. V is presented by profinite (in-)equations over Df .
3. V is presented by profinite implications.

Proof Sketch. 3⇒1 requires a routine verification, and 1⇒2 is Theorem 4.12. For
2⇒3 assume w.l.o.g. that V is presented by a single profinite equation u = v
with u, v elements of some X ∈ Df . Express X as a quotient q : ΦY � X for
some finite set Y . Let { (ui, vi) : i ∈ I } be the kernel of q̂ : Φ̂Y � X (consisting
of all pairs (ui, vi) ∈ Φ̂Y × Φ̂Y with q̂(ui) = q̂(vi)), and choose u′, v′ ∈ Φ̂Y with
q̂(u′) = u and q̂(v′) = v. Then a finite object A ∈ Df satisfies the profinite
equation u = v iff it satisfies the profinite implication

∧

i∈I

ui = vi ⇒ u′ = v′, (5.3)

which proves that V is presented (5.3). Analogously for the ordered case.

Example 5.6. 1. Let V ⊆ Monf be the quasivariety of all finite monoids whose
only invertible element is the unit. It is presented by the profinite implication
xω = 1 ⇒ x = 1 over the set of variables X = {x}. Here the profinite
word xω ∈ X̂∗ is interpreted, for every finite monoid M with x interpreted
as m ∈ M , as the unique idempotent power of m. Indeed, if M has no
nontrivial invertible elements, it satisfies the implication: given m �= 1 and
mk idempotent, then mk �= 1 (otherwise m has the inverse mk−1). Conversely,
if M satisfies the implication and m is invertible, then so is its idempotent
power mk. Hence mk · mk = mk implies mk = 1, so m = 1.

2. Let Pos be the variety of posets (i.e. the variety of all ordered algebras over
the empty signature). The quasivariety V ⊆ Posf of finite discrete posets is
presented by the profinite implication v ≤ u ⇒ u ≤ v over the set X = {u, v}.

Remark 5.7. As indicated before all concepts in this paper also apply to a
setting where D is a many-sorted variety of algebras or ordered algebras. In this
case an algebra is finite if the disjoint union of the underlying sets of all sorts
is a finite set. By a profinite equation over X ∈ D is a meant pair of elements
u, v in some sort s of T̂ X̂, and it is satisfied by a finite T-algebra A if for every
T-homomorphism h : TX → A the s-component of h+ : T̂ X̂ → A merges u, v.
Similarly for profinite inequations and profinite implications.

Example 5.8. Consider the variety D of directed graphs, i.e. algebras for the
two-sorted signature consisting of a sort Ob (objects), a sort Mor (morphisms)
and two unary operations s, t : Mor → Ob specifying the source and target of a
morphism. Then Cat, the category of small categories and functors, is isomor-
phic to DT for the monad T constructing the free category on a graph. Choosing

Profinite Monads, Profinite Equations, and Reiterman’s Theorem 545

X = free finitely generated graphs, Theorem 4.12 shows that every pseudovari-
ety of categories, i.e. every class of finite categories closed under finite products,
subcategories (represented by injective functors) and quotient categories (rep-
resented by surjective functors), can be specified by profinite equations over
a two-sorted set of variables. This result was essentially proved by Jones [15].
The difference is that he restricts to quotients represented by surjective functors
which are bijective on objects, and replaces subcategories by faithful functors.
Moreover, profinite equations are restricted to the sort of morphisms.

6 Conclusions and Future Work

Motivated by recent developments in algebraic language theory, we generalised
Reiterman’s theorem to finite algebras for an arbitrary monad T on a base
category D . Here D is a variety of (possibly ordered, many-sorted) algebras.
The core concept of our paper is the profinite monad T̂ of T, which makes it
possible to introduce profinite (in-)equations at the level of monads and prove
that they precisely present pseudovarieties of T-algebras.

Referring to the diagram in the Introduction, our Reiterman theorem is pre-
sented in a setting that unifies the two categorical approaches to algebraic lan-
guage theory of Bojańzcyk [9] and in our work [1–3,10]. The next step is to
also derive an Eilenberg theorem in this setting. For each monad T on a cate-
gory of sorted sets, Bojańczyk [9] proved an Eilenberg-type characterisation of
pseudovarieties of T-algebras: they correspond to varieties of T-recognisable
languages. Here by a “language” is meant a function from TX to {0, 1} for some
alphabet X, and a variety of languages is a class of such languages closed under
boolean operations, homomorphic preimages and a suitably generalised notion
of derivatives. On the other hand, as indicated in Example 2.12, one needs to
consider monoids on algebraic categories beyond Set in order to study varieties
of languages with relaxed closure properties, e.g. dropping closure under comple-
ment or intersection. The aim is thus to prove an Eilenberg theorem parametric
in a monad T on an algebraic category D . Observing that e.g. for D = Set
the monad T̂ on Stone dualises to a comonad on the category of boolean alge-
bras, we expect this can be achieved in a duality-based setting along the lines of
Gehrke, Grigorieff and Pin [12] and our work [1,3].

Throughout this paper we presented the case of ordered and unordered alge-
bras as separated but analogous developments. Pin and Weil [20] gave a uniform
treatment of ordered and unordered algebras by generalising Reiterman’s theo-
rem from finite algebras to finite first-order structures. A similar approach should
also work in our categorical framework: replace D by a variety of relational alge-
bras over a quasivariety Q of relational first-order structures, with Q = Set and
Q = Pos covering the case of algebras and ordered algebras.

Finally, observe that categories of the form DT, where D is a many-sorted
variety of algebras and T is an accessible monad, correspond precisely to locally
presentable categories. This opens the door towards an abstract treatment, and
further generalisation, of Reiterman’s theorem in purely categorical terms.

546 L.-T. Chen et al.

References

1. Adámek, J., Milius, S., Myers, R.S.R., Urbat, H.: Generalized Eilenberg theorem
I: local varieties of languages. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS).
LNCS, vol. 8412, pp. 366–380. Springer, Heidelberg (2014)

2. Adámek, J., Milius, S., Urbat, H.: Syntactic monoids in a category. In: Moss, L.S.,
Sobocinski, P. (eds.) Proceedings of CALCO 2015 (2015)

3. Adámek, J., Myers, R.S.R., Urbat, H., Milius, S.: Varieties of languages in a cate-
gory. In: Proceedings LICS 2015. IEEE (2015)

4. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge
University Press, Cambridge (1994)

5. Almeida, J.: On pseudovarieties, varieties of languages, filters of congruences,
pseudoidentities and related topics. Algebra Universalis 27(3), 333–350 (1990)

6. Banaschewski, B.: The Birkhoff theorem for varieties of finite algebras. Algebra
Universalis 17(1), 360–368 (1983)

7. Barr, M.: HSP subcategories of Eilenberg-Moore algebras. Theory Appl. Categ.
10(18), 461–468 (2002)

8. Bloom, S.L.: Varieties of ordered algebras. J. Comput. Syst. Sci. 13(2), 200–212
(1976)

9. Bojańczyk, M.: Recognisable languages over monads. In: Potapov, I. (ed.) DLT
2015. LNCS, vol. 9168, pp. 1–13. Springer, Heidelberg (2015). Full version:
http://arxiv.org/abs/1502.04898

10. Chen, L.T., Urbat, H.: A fibrational approach to automata theory. In: Moss, L.S.,
Sobocinski, P. (eds.) Proceedings of CALCO 2015 (2015)

11. Eilenberg, S.: Automata, Languages, and Machines, vol. 2. Academic Press, New
York (1976)

12. Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regu-
lar languages. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 246–257. Springer, Heidelberg (2008)

13. Isbell, J.R.: Subobjects, Adequacy, Completeness and Categories of Algebras.
Instytut Matematyczny Polskiej Akademi Nauk, Warsaw (1964)

14. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)
15. Jones, P.R.: Profinite categories, implicit operations and pseudovarieties of cate-

gories. J. Pure Appl. Algebr. 109(1), 61–95 (1996)
16. Kennison, J.F., Gildenhuys, D.: Equational completion, model induced triples and

pro-objects. J. Pure Appl. Algebr. 1(4), 317–346 (1971)
17. Linton, F.E.J.: An outline of functorial semantics. In: Eckmann, B. (ed.) Seminor

on Triples and Categorical Homology Theory. LNM, vol. 80, pp. 7–52. Springer,
Heidelberg (1969)

18. Lane, S.M.: Categories for the Working Mathematician, 2nd edn. Springer, New
York (1998)

19. Pin, J.E.: A variety theorem without complementation. Russ. Math. (Izvestija
vuzov.Matematika) 39, 80–90 (1995)

20. Pin, J.E., Weil, P.: A Reiterman theorem for pseudovarieties of finite first-order
structures. Algebra Universalis 35, 577–595 (1996)

21. Polák, L.: Syntactic semiring of a language. In: Sgall, J., Pultr, A., Kolman, P.
(eds.) MFCS 2001. LNCS, vol. 2136, p. 611. Springer, Heidelberg (2001)

22. Priestley, H.A.: Ordered topological spaces and the representation of distributive
lattices. Proc. London Math. Soc. 3(3), 507 (1972)

Profinite Monads, Profinite Equations, and Reiterman’s Theorem 547

23. Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Universalis 14(1),
1–10 (1982)

24. Reutenauer, C.: Séries formelles et algèbres syntactiques. J. Algebra 66, 448–483
(1980)

25. Ribes, L., Zalesskii, P.: Profinite Groups. A Series of Modern Surveys in Mathe-
matics. Springer, Berlin (2010)

26. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8, 190–194 (1965)

27. Wilke, T.: An Eilenberg theorem for infinity-languages. In: Proceedings of ICALP
1991, pp. 588–599 (1991)

Author Index

Abdulla, Parosh Aziz 319
Adámek, Jiří 531
Ahman, Danel 36
Amtoft, Torben 180
Aubert, Clément 373
Axelsen, Holger Bock 73

Bagnol, Marc 373
Banerjee, Anindya 180
Birkedal, Lars 20
Bizjak, Aleš 20
Brenguier, Romain 217

Capretta, Venanzio 91
Chaudhuri, Kaustuv 390
Chen, Liang-Ting 531
Chistikov, Dmitry 252, 462
Ciobanu, Radu 319
Clouston, Ranald 20
Czerwiński, Wojciech 462

Decker, Normann 269
Dräger, Klaus 479
Durand-Gasselin, Antoine 285

Fijalkow, Nathanaël 303
Fortin, Marie 197
Francalanza, Adrian 145
Fujii, Soichiro 513

Gastin, Paul 197
Ghani, Neil 3, 36
Ghilardi, Silvio 126
Gouveia, Maria João 126
Grathwohl, Hans Bugge 20

Habermehl, Peter 285
Hermanns, Holger 353
Hofman, Piotr 445, 462

Kaarsgaard, Robin 73
Katsumata, Shin-ya 513
Kesner, Delia 424
Kiefer, Stefan 303
Krčál, Jan 353
Krishna, Shankara Narayanan 335

Laird, James 55
Lasota, Sławomir 445
Lazić, Ranko 162, 445
Leroux, Jérôme 445

Madnani, Khushraj 335
Marin, Sonia 390
Martyugin, Pavel 252
Mayr, Richard 319
Melliès, Paul-André 513
Meseguer, José 493
Milius, Stefan 107, 531
Møgelberg, Rasmus E. 20
Murawski, Andrzej S. 162

Nordvall Forsberg, Fredrik 3

Pagani, Michele 408
Pandya, Paritosh K. 335
Pattinson, Dirk 107
Pierron, Théo 234
Pilipczuk, Michał 462
Place, Thomas 234
Plotkin, Gordon D. 36

Sangnier, Arnaud 319
Santocanale, Luigi 126
Schmitz, Sylvain 445
Seiller, Thomas 373
Shirmohammadi, Mahsa 252, 303
Simpson, Alex 3
Sproston, Jeremy 319
Straßburger, Lutz 390

Tasson, Christine 408
Thoma, Daniel 269
Totzke, Patrick 445

Urbat, Henning 531
Uustalu, Tarmo 91

Vaux, Lionel 408
Vester, Steen 353

Wehar, Michael 462
Wißmann, Thorsten 107

Zeitoun, Marc 234

550 Author Index

	ETAPS Foreword
	Preface
	Organization
	Contents
	Types
	Comprehensive Parametric Polymorphism: Categorical Models and Type Theory
	1 Introduction
	2 Comprehensive 2 Fibrations
	3 Comprehensive 2 Parametricity Graphs
	4 A Type System for Relational Reasoning
	5 Direct-Image and Pseudograph Relations
	6 Consequences of Parametricity
	7 Related and Further Work
	References

	Guarded Dependent Type Theory with Coinductive Types
	1 Introduction
	2 Guarded Dependent Type Theory
	2.1 Fixed Points and Guarded Recursive Types
	2.2 Identity Types

	3 Examples
	4 Coinductive Types
	4.1 Derivable Type Isomorphisms

	5 Example Programs with Coinductive Types
	5.1 Lifting Guarded Functions

	6 Soundness
	7 Related Work
	8 Conclusion and Future Work
	References

	Dependent Types and Fibred Computational Effects
	1 Introduction
	2 A Dependently-typed Effectful Language
	3 Denotational Semantics
	3.1 Fibred Category Theory Preliminaries
	3.2 Interpretation of Our Language in Fibred Adjunction Models
	3.3 Fibred Adjunction Models Based on the Families Fibration

	4 Extending the Language with Algebraic Effects
	4.1 Algebraic Effects in the Syntax
	4.2 Algebraic Effects in the Semantics

	5 Extending the Language with General Recursion
	5.1 Recursion in the Syntax
	5.2 Domain-Theoretic Semantics for Recursion

	6 Conclusions and Future Work
	References

	Game Semantics for Bounded Polymorphism
	1 Introduction
	2 Second Order Game Semantics
	2.1 Examples
	2.2 Legal Sequences and Strategies
	2.3 Instantiation

	3 Generic Strategies as Dinatural Transformations
	4 Semantics of Bounded Quantification
	5 A Stateful Language with Bounded Quantification
	5.1 Denotational Semantics
	5.2 Semantics of Terms

	6 Full Abstraction
	7 Further Directions
	References

	Recursion and Fixed-Points
	Join Inverse Categories as Models of Reversible Recursion
	1 Introduction
	2 Background
	2.1 Joins and Compatibility
	2.2 Categories of Partial Maps

	3 As CPO-categories
	3.1 Reversible Fixed Points of Morphism Schemes
	3.2 Algebraic -compactness for Free!

	4 As Unique Decomposition Categories
	5 Conclusion
	References

	A Coalgebraic View of Bar Recursion and Bar Induction
	1 Introduction
	2 Bar Recursion
	3 Continuous Functions on Streams
	3.1 Individual Tabulations
	3.2 Global Tabulation

	4 Bar Induction
	5 Conclusions
	References

	A New Foundation for Finitary Corecursion
	1 Introduction
	2 Preliminaries and Notation
	3 The Locally Finite Fixpoint
	4 Instances of the Locally Finite Fixpoint
	4.1 Generalized Powerset Construction
	4.2 The Languages of Non-deterministic Automata
	4.3 The Behaviour of Stack Machines
	4.4 Context-Free Languages and Constructively S-Algebraic Power Series
	4.5 Courcelle's Algebraic Trees

	5 Conclusions and Future Work
	References

	Fixed-Point Elimination in the Intuitionistic Propositional Calculus
	1 Introduction
	2 Notation and Elementary Concepts
	3 The Intuitionistic Propositional -Calculus
	4 Strong Monotone Functions and Fixed-Points
	5 A Digression on Fixpoints and Bisimulation Quantifiers
	6 The Elimination Procedure
	6.1 Strongly positive Elimination
	6.2 Weakly Negative Elimination

	7 Upper Bounds on Closure Ordinals
	8 Conclusions
	References

	Verification and Program Analysis
	A Theory of Monitors
	1 Introduction
	2 The Language
	3 Monitor Instrumentation
	4 Monitor Preorders
	5 Characterisation
	6 Conclusion
	References

	Contextual Approximation and Higher-Order Procedures
	1 Introduction
	2 Idealized Algol
	3 Games
	4 Upper Bounds
	5 Lower Bounds
	6 Conclusion
	References

	A Theory of Slicing for Probabilistic Control Flow Graphs
	1 Introduction
	2 Motivating Examples
	3 Control Flow Graphs
	4 Semantics
	4.1 Stores and Distributions
	4.2 Probabilistic Independence
	4.3 One-Step Reduction
	4.4 Multi-step Reduction and Loops
	4.5 Top-Level Semantics
	4.6 Semantics of Slicing

	5 Conditions for Slicing
	6 Slicing and Its Correctness
	7 Computing the (Least) Slice
	8 Extensions and Future Work
	9 Conclusion and Related Work
	References

	Verification of Parameterized Communicating Automata via Split-Width
	1 Introduction
	2 Parameterized Communicating Automata
	3 Split-Width
	4 Classes of Bounded Split-Width
	5 Tree Interpretation
	6 Further Results
	References

	Automata, Logic, Games
	Robust Equilibria in Mean-Payoff Games
	1 Introduction
	2 Definitions
	2.1 Weighted Concurrent Games
	2.2 Equilibria Notions
	2.3 Undecidability

	3 Stationary Strategies
	4 Deviator Game
	4.1 Deviator Game
	4.2 Objectives of the Deviator Game

	5 Reduction to Multidimensional Mean-Payoff Objectives
	5.1 Multidimensional Objectives
	5.2 Correctness of the Objectives for Robustness
	5.3 Formulation of the Robustness Problem as a Polyhedron Value Problem

	6 Fixed Coalition Game
	7 Hardness
	References

	Quantifier Alternation for Infinite Words
	1 Presentation of the Problem
	1.1 The Quantifier Alternation Hierarchy of First-Order Logic
	1.2 Decision Problems

	2 Preliminaries
	2.1 Semigroups and Wilke Algebras
	2.2 Logical Preorders

	3 Chains for Omega-Languages
	3.1 i-Chains and Separation for i
	3.2 i-Chains and Separation for Bi

	4 A Separation Algorithm for Sigma2
	5 A Membership Algorithm for B-Sigma2
	6 A Separation Algorithm for 3
	7 Conclusion
	References

	Synchronizing Automata over Nested Words
	1 Introduction
	2 Nested Words and Nested Word Automata
	3 Synchronizing Words for NWA
	4 Upper Bound of Theorem6
	4.1 Binary Tree Representation of Nested Words
	4.2 From Nested Word Automata to Tree Automata
	4.3 Pebble Games and Strahler Numbers
	4.4 Bounded Nonemptiness for Implicitly Presented Tree Automata

	5 Lower Bound of Theorem6
	5.1 Small-Cost Synchronizing Words in DFA
	5.2 Reduction to Short Synchronizing Nested Word

	References

	On Freeze LTL with Ordered Attributes
	1 Introduction
	2 Semantics and Undecidability of LTL"3223379 qo
	3 Nested Counter Systems
	4 From LTL"3223379 tqo to NCS and Back
	5 Conclusion
	References

	Regular Transformations of Data Words Through Origin Information
	1 Introduction
	2 MSO Interpretations with MSO Origin Relation
	2.1 Words, Strings and Data Words
	2.2 MSO Interpretations
	2.3 Transduction of Data Words
	2.4 The Running Example
	2.5 Properties
	2.6 MSO k-types

	3 Two-Way Transducers on Data Words
	4 One-Way Transducers
	4.1 Streaming String Transducers with Data Variables and Parameters
	4.2 From Two-Way to One-Way Transducers
	4.3 From One-Way Transducers to MSO

	5 Conclusion
	References

	Probabilistic and Timed Systems
	Trace Refinement in Labelled Markov Decision Processes
	1 Introduction
	2 Preliminaries
	2.1 Labelled Markov Decision Processes
	2.2 Trace Refinement

	3 Undecidability Results
	4 Decidability for Memoryless Strategies
	4.1 Pure Memoryless Strategies
	4.2 Memoryless Strategies

	5 Bisimulation
	References

	Qualitative Analysis of VASS-Induced MDPs
	1 Introduction
	2 Models and Verification Problems
	2.1 Markov Decision Processes
	2.2 VASS-MDPs
	2.3 Verification Problems for VASS-MDPs
	2.4 Undecidability in the General Case
	2.5 Model-Checking -calculus on Single-Sided VASS

	3 Verification of P-VASS-MDPs
	3.1 Undecidability in Presence of Deadlocks
	3.2 Sure (repeated) Reachability in Deadlock-Free P-VASS-MDPs
	3.3 Almost-Sure and Limit-Sure Reachability in Deadlock-Free P-VASS-MDPs

	4 Verification of 1-VASS-MDPs
	4.1 Sure Problems in 1-VASS-MDPs
	4.2 Almost-Sure Problems in 1-VASS-MDPs
	4.3 Limit-Sure Reachability in 1-VASS-MDP

	5 Conclusion and Future Work
	References

	Metric Temporal Logic with Counting
	1 Introduction
	2 A Zoo of Timed Temporal Logics
	3 Expressiveness Hierarchy in the Counting Zoo
	3.1 CTMTL Games

	4 Satisfiability Checking of Counting Logics
	5 Discussion and Related Work
	References

	Distributed Synthesis in Continuous Time
	1 Introduction
	2 Distributed Interactive Markov Chains
	2.1 Schedulers and Strategies
	2.2 Probability of Plays
	2.3 Distributed Synthesis Problem

	3 Schedulers Are Not that Powerful
	4 Undecidability Results
	4.1 Decentralized POMDP (DEC-POMDP)
	4.2 Reduction from DEC-POMDP
	4.3 Undecidability of Qualitative Existence in DEC-POMDP

	5 Decidability for Non-urgent Models
	6 Discussion and Conclusion
	References

	Proof Theory and Lambda Calculus
	Unary Resolution: Characterizing PTIME
	1 Introduction
	1.1 Outline

	2 The Resolution Semiring
	2.1 Flows and Wirings
	2.2 Representation of Words and Programs
	2.3 The Stack Semiring

	3 Pushdown Automata and PTIME Completeness
	4 Nilpotency in Stack and PTIME Soundness
	5 Unary Logic Programming
	6 Perspectives
	References

	Focused and Synthetic Nested Sequents
	1 Introduction
	2 Modal Logics and the Nested Sequent Calculus KN
	3 The Focused Systems KNwF and KNF
	3.1 Cut Elimination
	3.2 Completeness

	4 The Synthetic System
	4.1 Synthetic Substructures
	4.2 Cut Elimination

	5 Perspectives
	References

	Strong Normalizability as a Finiteness Structure via the Taylor Expansion of -terms
	1 Introduction
	2 Preliminaries
	2.1 Non-deterministic -calculus
	2.2 Resource Calculus and Taylor Expansion
	2.3 Finiteness Structures Induced by Antireduction

	3 Strongly Normalizing Terms Are D+ Typable
	4 D+ Typable Terms Are Finitary
	5 Finitary Terms Are Strongly Normalizing
	6 Conclusion
	References

	Reasoning About Call-by-need by Means of Types
	1 Introduction
	2 Call-by-name and Call-by-need
	3 Non-idempotent Intersection Types
	4 Characterization of name-normalizing Terms
	5 Characterization of need-normalizing Terms
	6 Soundness and Completeness
	7 Conclusion
	A Appendix
	References

	Algorithms for Infinite Systems
	Coverability Trees for Petri Nets with Unordered Data
	1 Introduction
	2 Model
	3 Simple Ideals
	4 Representing a Cover
	4.1 Accelerations
	4.2 Coverability Trees

	5 Complexity Bounds
	5.1 Fast-Growing Complexity
	5.2 Upper Bounds
	5.3 Lower Bounds

	6 Concluding Remarks
	References

	Shortest Paths in One-Counter Systems
	1 Introduction
	2 Summary
	3 Challenges and Techniques
	4 Preliminaries
	5 Proof of Theorem 1
	5.1 Proof Overview and Notation
	5.2 Normal Paths
	5.3 Length of Shortest Paths

	References

	The Invariance Problem for Matrix Semigroups
	1 Introduction
	1.1 Attacking the Invariance Problem

	2 Preliminaries
	2.1 Setting

	3 Deciding Satisfiability
	3.1 Finiteness of the Set of Essential Words
	3.2 Decidability of the Invariance Problem

	4 Further Remarks and Variations
	4.1 Computing All Possible Initial Vectors
	4.2 Locations
	4.3 The Universal Version

	5 Summary and Future Work
	5.1 Summary
	5.2 Related Work
	5.3 Future Work

	References

	Order-Sorted Rewriting and Congruence Closure
	1 Introduction
	2 Preliminaries on Order-Sorted Algebra
	3 Order-Sorted Rewriting and Equality
	3.1 Kind-Complete OS-Rewriting and Equational Deduction
	3.2 Conservativity Results

	4 Order-Sorted (,)-QF-Satisfiability
	4.1 Abstract Congruence Closure
	4.2 Deciding OS (,)-QF-Satisfiability

	5 Order-Sorted (,AC)-QF-Satisfiability
	6 Related Work and Conclusions
	References

	Monads
	Towards a Formal Theory of Graded Monads
	1 Introduction
	2 Parametric Monads Are Graded Monads
	3 Adjunction Pairs Induced from Graded Monads
	3.1 The Eilenberg-Moore Construction
	3.2 The Kleisli Construction
	3.3 Resolutions of Graded Monads

	4 Towards a Formal Theory of Graded Monads
	4.1 A 2-Category for Eilenberg-Moore Objects
	4.2 A 2-Category for Kleisli Objects

	5 Illustration: The Graded State Monad
	References

	Profinite Monads, Profinite Equations, and Reiterman's Theorem
	1 Introduction
	2 Preliminaries
	3 Profinite Monads
	4 Reiterman's Theorem for T-Algebras
	4.1 Pseudovarieties and Profinite (In-)equations
	4.2 Reiterman's Theorem for T-algebras

	5 Applications and Examples
	6 Conclusions and Future Work
	References

	Author Index

