
ReproTizer: A Fully Implemented Software
Requirements Prioritization Tool

Philip Achimugu, Ali Selamat(&), and Roliana Ibrahim

Faculty of Computing, Universiti Teknologi Malaysia,
81310 Johor Bahru, Johor, Malaysia

check4philo@gmail.com, {aselamat,roliana}@utm.my

Abstract. Before software is developed, requirements are elicited. These
requirements could be over-blown or under-estimated in a way that meeting the
expectations of stakeholders becomes a challenge. To develop a software that
precisely meets the expectations of stakeholders, elicited requirements need to
be prioritized. When requirements are prioritized, contract breaches such as
budget over-shoot, exceeding delivery time and missing out important
requirements during implementation can be totally avoided. A number of
techniques have been developed but these techniques do not addresses some of
the crucial issues associated with real-time prioritization of software require-
ments such as computational complexities and high time consumption rate,
inaccurate rank results, inability of dealing with uncertainties or missing weights
of requirements, scalability problems and rank update issues. To address these
problems, a tool known as ReproTizer (Requirements Prioritizer) is proposed to
engender real-time prioritization of software requirements. ReproTizer consist of
a WS (Weight Scale) which avails project stakeholders the ability to perceive the
influence, different requirements weights may have on the final results. The WS
combines a single relative weight decision matrices to determine the weight
vectors of requirements with an aggregation operator (AO) which computes the
global weights of requirements. The tool was tested for scalability, computa-
tional complexity, accuracy, time consumption and rank updates. Results of the
performance evaluation showed that the tool is highly reliable (98.89 % accu-
racy), scalable (prioritized over 1000 requirements), less time consumption and
complexity ranging from 500–29,804 milliseconds (ms) of total prioritization
time and able to automatically update ranks whenever changes occurs.
Requirements prioritization, a multi-criteria decision making task is therefore an
integral aspect of the requirements engineering phase of the development life
cycle phases. It is used for software release planning and leads to the devel-
opment of software systems based on the preferential requirements of
stakeholders.

Keywords: Software � Requirements � Prioritization � Tool � Stakeholders

Submitted to Transactions on Computational Collective Intelligence (TCCI) Journal.

© Springer-Verlag Berlin Heidelberg 2016
N.T. Nguyen and R. Kowalczyk (Eds.): TCCI XXII, LNCS 9655, pp. 80–105, 2016.
DOI: 10.1007/978-3-662-49619-0_5

1 Introduction

During requirement elicitation, there are more prospective requirements specified for
implementation by relevant stakeholders with limited time and resources. Therefore, a
meticulously selected set of requirements must be considered for implementation and
planning for software releases with respect to available resources. This process is
referred to as requirements prioritization. It is considered to be a complex multi-criteria
decision making process (Perini et al. 2013).

There are so many advantages of prioritizing requirements before architecture
design or coding. Prioritization aids the implementation of a software system with
preferential requirements of stakeholders (Ahl 2005; Thakurta 2012). Also, the chal-
lenges associated with software development such as limited resources, inadequate
budget, insufficient skilled programmers among others makes requirements prioriti-
zation really important (Karlsson et al. 2007). It can help in planning for software
releases since not all the elicited requirements can be implemented in a single release
due to some of these challenges (Berander et al. 2006; Karlsson and Ryan 1997). It also
enhances budget control and scheduling (Perini et al. 2013). Therefore, determining
which, among a pool of requirements to be implemented first and the order of
implementation is necessary to avoid breach of contract or agreement during the
development processes. Furthermore, software products that are developed based on
prioritized requirements can be expected to have a lower probability of being rejected.
To prioritize requirements, stakeholders will have to compare them in order to deter-
mine their relative importance through a weight scale which is eventually used to
compute the prioritized requirements (Kobayashi and Maekawa 2001). These com-
parisons becomes complex with increase in the number of requirements (Kassel and
Malloy 2003).

Software system’s acceptability level is mostly determined by how well the
developed system has met or satisfied the specified requirements. Hence, eliciting and
prioritizing appropriate requirements and scheduling right releases with the correct
functionalities are a critical success factor for building formidable software systems. In
other words, when vague or imprecise requirements are implemented, the resulting
system will fall short of user’s or stakeholder’s expectations. Many software devel-
opment projects have enormous prospective requirements that may be practically
impossible to deliver within the expected time frame and budget (Perini et al. 2013;
Tonella et al. 2012). It therefore becomes highly necessary to source for appropriate
measures for planning and rating requirements in an efficient way.

A number of techniques have been proposed in the literature by authors and
scholars, yet many areas of improvement have also been identified to optimize the
prioritization processes. With the advent of Internet and quest for software that can
service distributed organizations, the number of stakeholders in large-scale projects
have drastically increased and requirements are beginning to possess the attributes of
evolving due to innovation, technological advancement or business growth. Therefore,
prioritization techniques should be able to generate an ordered list of requirements
based on the relative weights provided by the project stakeholders at any point during
the development life cycle (Perini et al. 2013; Ahl 2005).

ReproTizer: Software Requirements Prioritization Tool 81

The rest of the paper is organized as follows: Sect. 2 discusses the related works
while Sect. 3 describes the proposed technique. Section 4 presents an illustrative
example of the proposed technique and Sect. 5 describes the attributes of the support
tool. Section 6 presents performance evaluation of ReproTizer; Sect. 7 compares the
strengths of ReproTizer over existing ones while Sect. 8 concludes the paper and
identify areas for future research.

2 Related Work

Many requirements prioritization techniques exist in the literature. All of these tech-
niques utilize a ranking process to prioritize candidate requirements. The ranking
process is usually executed by assigning weights across requirements based on
pre-defined criteria, such as value of the requirements perceived by relevant stake-
holders or the cost of implementing each requirement. From the literature; analytic
hierarchy process (AHP) is the most prominently used technique. However, this
technique suffers bad scalability. This is due to the fact that, AHP executes ranking by
considering the criteria that are defined through an assessment of the relative priorities
between pairs of requirements. This becomes impracticable as the number of
requirements increases. It also does not support requirements evolution or rank updates
but provide efficient or reliable results (Karlsson et al. 1998). Also, all techniques suffer
from rank updates issue. This term refers to the inability of a technique to update rank
status of ordered requirements whenever a requirement is added or deleted from the list.
Prominent techniques that suffer from this limitation are PHandler (Babar et al. 2015),
Case base ranking (Perini et al. 2013); Interactive genetic algorithm prioritization
technique (Tonella et al. 2012); Binary search tree (Karlsson et al. 1998); Cost value
approach (Karlsson and Ryan 1997) and EVOLVE (Greer and Ruhe 2004). Further-
more, existing techniques are prone to computational errors (Ramzan et al. 2011)
probably due to lack of robust algorithms. Karlsson et al. (1998) conducted some
researches where certain prioritization techniques were empirically evaluated. From
their research, they reported that, most of the prioritization techniques apart from AHP
and bubble sorts produce unreliable or misleading results while AHP and bubble sorts
were also time consuming. The authors then posited that; techniques like hierarchy
AHP, spanning tree, binary search tree, priority groups produce unreliable results and
are difficult to implement. Babar et al. (2011) were also of the opinion that, techniques
like requirement triage, value intelligent prioritization and fuzzy logic based techniques
are also error prone due to their reliance on experts and are time consuming too.
Planning game has a better variance of numerical computation but suffer from rank
updates problem. Wieger’s method and requirement triage are relatively acceptable and
adoptable by practitioners but these techniques do not support rank updates in the event
of requirements evolution as well. Lim and Finkelstein (2012) proposed a method
known as StakeRare which stands for Stakeholder Recommender assisted method for
requirements elicitation. It is a requirements prioritization method for large projects,
where stakeholders can be in different locations and rank requirements based on a
5-point Likert scale. The authors also implemented the concept of StakeRare method
into a support tool known as StakeSource2.0 (Lim et al. 2011), which is a web-based

82 P. Achimugu et al.

tool that supports the StakeRare method. However, the method and tool were not tested
for large scale prioritization of requirements. The focus was more on numbers of
stakeholders than requirements. Additionally, the proposed approach and tool was not
tested with various requirements and scenarios of different organizations.

Our motivation for proposing an improved method and tool arose from the limi-
tations of existing techniques as enumerated below:

(i) Scalability: Techniques like AHP, pairwise comparisons and bubblesort suffer
from scalability problems because, requirements are compared based on possible
pairs causing n (n − 1)/2 comparisons (Karlsson et al. 1998). For example, when
the number of requirements is doubled in a list, other techniques will only
require double the effort or time for prioritization while AHP, pairwise com-
parisons and bubblesort techniques will require four times the effort or time. This
is bad scalability.

(ii) Computational complexity: Most of the existing prioritization techniques are
actually time consuming in the real world (Karlsson et al. 1998). Ahl (2005)
executed a comprehensive experimental evaluation of five different prioritization
techniques namely; AHP, binary search tree, planning game, $100 (cumulative
voting) and a new method which combines planning game and AHP (PgcAHP),
to determine their ease of use, accuracy and scalability. The author went as far as
determining the average time taken to prioritize 13 requirements across 14
stakeholders with these techniques. At the end of the experiment; it was
observed that, planning game was the fastest while AHP was the slowest.
Planning game prioritized 13 requirements in about 2.5 min while AHP prior-
itized the same number of requirements in about 10.5 min. In other words,
planning game technique took only 11.5 s to compute the priority scores of one
requirement across 14 stakeholders while AHP consumed 48.5 s to accomplish
the same task due to pair comparisons.

(iii) Rank updates: Perini et al. (2013) defined rank update as ‘anytime’ prioritiza-
tion; that is, the ability of a technique to automatically update ranks anytime a
requirement is included or excluded from the list. This situation has to do with
requirements evolution. Therefore, existing prioritization techniques are inca-
pable of updating or reflecting rank status whenever a requirement is introduced
or deleted from the rank list. Therefore, it does not support iterative updates.
This is very critical because, decision making and selection processes cannot
survive without iterations. Therefore, a good and reliable prioritization technique
should be one that supports rank updates. This limitation seems to cut across
most existing techniques.

(iv) Error proneness: Existing prioritization techniques are also prone to errors
(Ramzan et al. 2011). This could be due to the fact that, the rules governing the
requirements prioritization processes in the existing techniques are not robust
enough. This has also led to the generation of unreliable prioritization results
because; such results do not reflect the true ranking of requirements from
stakeholder’s point of view or assessment after the ranking process. Therefore
robust algorithms are required to generate reliable prioritization results.

ReproTizer: Software Requirements Prioritization Tool 83

(v) Lack of fully implemented support tools: From the literature, it was observed
that most existing prioritization techniques have not been really implemented for
real-life scenarios probably because of the complexities associated with priori-
tizations and the time required for generating prioritized requirements. There-
fore, there is need to implement algorithms that will improve or support
requirements prioritization at commercial or industrial level (Peng 2008;
Racheva et al. 2008; Ramzan et al. 2009). Before these algorithms can work
efficiently, the methods for capturing requirements in an unambiguous way must
be well thought of (Grunbacher et al. 2003) since the output of prioritization
processes depend on the input and the aim is to plan for software releases
(Barney et al. 2006) as well as the successful development of software products
in line with negotiated or prioritized requirements (Olson and Rodgers 2002).

3 Proposed Technique

The proposed technique consist of six steps (Fig. 1). The first step is to input the
consensus requirements and the criteria describing the expected functionalities of each
requirement into ReproTizer. The second step determines the relative value of
requirements by indicating the preference weights against requirements using the weight
scale (WS) in Table 1. The third step calculates the requirements priority vector, nor-
malize the respective weights and calculate the global weights of requirements (Weight
vector). The fourth step elicits the performance of each requirements with respect to the
global weights, using a classical weighted average decision matrix (WADM). The fifth
and sixth step aggregates and determine the ranks of requirements respectively.

The WS was designed to handle prioritization in both real time and fuzzy conditions.
We consider a finite collection of requirements X = {R11, R12…. R1k} that has to be

Eigen
Vectors

Preference weights

Actual ranking Performance Scores

Aggregated weights
Normalized

weights

Reciprocal vectors

w2w1 wk⋅⋅⋅⋅⋅

Data entry (Elicited
requirements)
R12R11 R1k⋅⋅⋅⋅⋅
R22R21 R2k⋅⋅⋅⋅⋅

RN2RN1 RNk⋅⋅⋅⋅⋅
Ri2Ri1 Rik⋅⋅⋅⋅⋅ S2S1 SN⋅⋅⋅⋅⋅

Fig. 1. Proposed technique

84 P. Achimugu et al.

ranked against one each other. Our approach consist of set of input R11, R12, …, R1k,
associated with their respective weights w1, w2, …, wk that represents stakeholders’
preferences and a WADM required to calculate the global scores across requirements.
The requirement (R11 …, R21…, …, Rnk) represent input data that are ranked using the
AO and stored in the database. In this approach, we assume that, the stakeholder’s
preferences are expressed as relative weights, which are values between 5 and 1.

The data required for the prioritization process comes from the preference weights
of stakeholders which could be imprecise, uncertain and vague due to incomplete
information, time limitations, lack of knowledge, or understanding about the system
under development. The harmonic mean (HM) is determined to replace requirements
with missing weights. This is meant to cater for vagueness associated with require-
ments. It is a multi-criteria decision making approach for analyzing the hierarchy of the
decision-making process. The proposed approach is used to model the interaction,
dependence and feedback within groups of elements and between groups. The groups
and elements can be considered as project stakeholders and requirements respectively.
Thereafter, the relationships and values between these elements are constructed using a
decision matrix. The elements within a group can have a mutual impact on members of
the group and the other groups with respect to each of several characteristics. The
stakeholder’s judgments on the assessment of requirements in the decision-making
process always involve incomplete, imprecise, uncertain, intangible and tangible
information. Therefore, the conventional approaches seems inadequate to handle the
stakeholder’s judgments explicitly. To model the uncertainty of stakeholder’s relative
weights of requirements, harmonic mean computation is integrated into the relative
weight scoring process which makes the proposed approach avoid missing weights.
The judgment is described through weight numbers where the harmonic mean is used
to determine the weights of requirements that were not scored by the stakeholders.
Hence, the decision-making process described by the proposed approach is more
realistic and capable of generating accurate results.

3.1 Algorithmic Steps of the Computational Process

Step 1: Given a prioritization event E with Requirements R1, R2, R3, …, Rn (i.e. n –

Requirements) and Stakeholders S1, S2, S3,…, Su (i.e. u – number of Stakeholders), the

Table 1. Weight scale (WS)

Terms Numeric rating Fuzzy weights

Extremely high (EH) 5 (1,1,1)
Very high (VH) 4 (1/2, 1, 1/3)
High (H) 3 (1/5, 1/2, 1/3)
Fair (F) 2 (1/7, 1/3, 1/5)
Low (L) 1 (1/9, 1/4, 1/7)

ReproTizer: Software Requirements Prioritization Tool 85

relative or preference weights of requirements are indicated by the project stakeholders
as follows:

The weights in Table 2 is for one stakeholders across 4 requirements as an example.
For each stakeholder, the proposed approach computes a decision matrix of all the
requirements by applying Eq. 1.

rankj:si ð1Þ

Where 1� j�NoOfRequirements and

1� i�NoOfStakeholders

Step 2: The sum of the ranks of each requirement is computed across the project
stakeholders using Eq. 2.

rankSumj ¼
Xu

i¼1

rankj:si ð2Þ

Step 3: The reciprocals of the relative weights are determined to minimize the dis-
crepancies of the final ranks by using Eq. 3 and decision matrix is formed as shown in
Table 3.

reciprocalSumj ¼ 1
n

Xu

i¼1

rankj:si ð3Þ

n stands for the number of requirements undergoing prioritization.

Step 4: The Square of the matrix is computed using Eq. 4 and the sum of each row of
the matrix is calculated using Eq. 5 which will yield a result of (n × 1) matrix, known as
the Eigenvector. It represents the global weights of requirements.

SquareM ¼
Yn

i¼1

a2k

 !
ð4Þ

SumM ¼
Xn

i¼1

ak

 !
ð5Þ

Table 2. Preference weights of requirements

R1 5 EH Rn−1 Rn

R2 5 EH
R3 5 EH
R4 4 VH

86 P. Achimugu et al.

Step 5: The Eigenvectors are normalized using Eq. 6. Meaning, the sum of all the
values in the Eigenvector is calculated and used to divide each of the values in the
Eigenvector. This places all the values on a scale of 1 and the sum of all the values to 1.

@j ¼ wj

Pn

j¼1
wj ¼ 1

i ¼ 1; . . .n; j ¼ 1; . . .m ð6Þ

Step 6: This obtains the performance scores for the requirements by summing the
relative normalized weights (wj) of each requirement across the stakeholders using
Eq. 7.

pi ¼
Xn

i¼1

wj ð7Þ

4 Illustrative Example

This section presents an illustrative example for prioritizing software requirements with
the proposed approach. For the sake of clarity, let us consider 4 requirements to be
prioritized by 3 stakeholders. The requirements are usability, scalability, security and
modularity. Since this is an example, the elicited weights for step 1 is just illustrative
and represent opinions of stakeholders. In the implemented tool, the user dialog is
achieved with a simplified interface weights scale, shown in Fig. 2 but at the back end,
the calculations are performed using the computational processes described in Sect. 3.

It is important to note that in Step 1, stakeholders are only required to provide the
preference weights of requirements and the proposed technique automatically perform
relevant calculations in order to display the prioritized requirements. Table 4 presents
the illustrative preference weights of stakeholders while Table 5 shows the rank sum of
weights for the 3 stakeholders using Eq. 2. Table 6 shows the reciprocal values for the
rank sum using Eq. 3 and Eq. 4 was used to compute the square matrix of requirements

Table 3. Reciprocals of the preference weights

S1 S2 S3 … Sn
R1 1

n

Pu

i¼1
rank1:s1

1
n

Pu

i¼1
rank1:s2

1
n

Pu

i¼1
rank1:s3

… 1
n

Pu

i¼1
rank1:sn�1

R2 1
n

Pu

i¼1
rank2:s2i

1
n

Pu

i¼1
rank2:s2

1
n

Pu

i¼1
rank2:s3

… 1
n

Pu

i¼1
rank1:sn�2

R3 1
n

Pu

i¼1
rank3:s3

1
n

Pu

i¼1
rank3:s2

1
n

Pu

i¼1
rank3:s3

… 1
n

Pu

i¼1
rank1:sn�3

… … … … … …

Rn 1
n

Pu

i¼1
rankj:si

1
n

Pu

i¼1
rankj:si

1
n

Pu

i¼1
rankj:si

… rankSumn − k

ReproTizer: Software Requirements Prioritization Tool 87

as displayed in Table 7. The relative normalized decision matrix shown in Table 8 was
computed using Eqs. 5 and 6 respectively while final scores for the requirements
displayed in Table 9 were computed using Eq. 7. From the final scores of requirements,
it can be easily seen that the stakeholders ranked usability and security as the most
valued requirements followed by scalability and then modularity. In terms of the
accuracy of the proposed approach, it can be seen that the original weights provided by
the stakeholders in Table 4 is in agreement with the final scores in Table 9.

Fig. 2. Simplified interface weights scale of the proposed technique

Table 4. Preference weights of requirements

Usability Scalability Security Modularity

Stakeholder 1 5 5 5 5
Stakeholder 2 5 4 5 4
Stakeholder 3 5 4 5 3

Table 5. Rank sum of requirements

Usability Scalability Security Modularity

Stakeholder 1 15 15 15 15
Stakeholder 2 15 12 15 12
Stakeholder 3 15 12 15 9

Table 6. Reciprocal values of the requirements’ sum

Usability Scalability Security Modularity

Stakeholder 1 3.75 3.75 3.75 3.75
Stakeholder 2 3.75 3.00 3.75 3.00
Stakeholder 3 3.75 3.00 3.75 2.25

88 P. Achimugu et al.

5 Tool Support

The tool was implemented in C#, very similar to Java platform standard edition 7.
It takes relative weights of requirements provided by the stakeholders as input and
processes them to generate list of prioritized requirements. The tool is deployed at
http://www.pachimugu.com/. It provides a convenient way of accessing various menus
of the tool from the HTML of the page. Additionally, a pattern matching was utilized to
aid the re-weighting and re-computation of ranks whenever requirements evolves. The
tool also provides an avenue for inclusion or exclusion of stakeholders if need be using
three step process; (1) New stakeholders are added by the administrator as soon as they
get registered as users. The proposed tool can cater for as much stakeholders as
required for a particular software project. (2) The consensus requirements automatically
appears against their names so as to initiate the scoring process. (3) The relative
weights are then processed or computed to display the final ranks of requirements.
However, deleting a stakeholder also applies to the relative weights of that stakeholder
where the tool automatically re-compute the new ranks of each requirement based on
the new number of stakeholders. The tool’s main window is displayed in Fig. 3.

Considering the top-most part of the window, it can be observed that the name of
the tool is known as Requirements Prioritizer, consisting of five tabs namely; Home,
Events, Login, Sign Up and Contact. To use this tool, prospective project stakeholders
would have to first register by clicking the sign up tab to fill the required details. Once
this is done, the tools’ administrator can now view all the registered stakeholders and

Table 7. Square matrix of the requirements’ sum

Usability Scalability Security Modularity

Stakeholder 1 14.06 14.06 14.06 14.06
Stakeholder 2 14.06 9.00 14.06 9.00
Stakeholder 3 14.06 9.00 14.06 5.06

Table 8. Normalized weights

Usability Scalability Security Modularity

Stakeholder 1 0.304 0.304 0.304 0.304
Stakeholder 2 0.305 0.195 0.305 0.195
Stakeholder 3 0.333 0.213 0.333 0.120

Table 9. Performance scores

Requirements Final Scores

Usability 0.942
Scalability 0.712
Security 0.942
Modularity 0.619

ReproTizer: Software Requirements Prioritization Tool 89

http://www.pachimugu.com/

add them up. It is also the duty of the administrator to input the elicited requirements to
undergo prioritization into ReproTizer. Requirements are inputted into ReproTizer by
clicking the tab add event where the name of the project is used to save the inputted
requirements. It can be observed from the window that the tool is flexible enough to
cater for addition or deletion of requirements or stakeholders at any point in time where
ReproTizer simply updates the ranks status of requirements by displaying new ordered
list of requirements that has occurred either by adding or deleting a requirement or
stakeholder. A concept Perini et al. described as “anytime prioritization” (Perini et al.
2013). Once, all the requirements have been inputted into ReproTizer and all the
registered project stakeholders have been accepted by the administrator, the scoring of
requirements can be initiated by stakeholders who logs into ReproTizer with their
respective username and password. Figure 4 shows a window of the database where the
registered stakeholders are stored.

Once the stakeholders log into ReproTizer, they can now view the consensus
requirements in order to rank or score them. Figure 5 presents the window that shows
the individual weights of stakeholders. The assessment of these requirements lead to
the construction of a decision matrix. This is where the tradeoffs between the
requirements are displayed. ReproTizer displays both the individual and overall ratings
of each requirements. The individual weights signifies the ranks of the requirements by
one stakeholder. ReproTizer automatically calculates the overall weights of require-
ments by aggregating the scores across all project stakeholders in chronological order
(Fig. 6). If the requirements weights are inconsistent or missing, a message pops-up
warning the user.

Fig. 3. Proposed tool main window

90 P. Achimugu et al.

6 Performance Evaluation

The motivation for developing ReproTizer was as a result of the following limitations
of existing techniques as described in Sect. 2 (scalability, computational complexity,
rank updates, error proneness and lack of fully implemented support tools). Therefore,
the evaluation of ReproTizer is based on these parameters.

Fig. 4. Registered stakeholders

Fig. 5. Individual weights of requirements

ReproTizer: Software Requirements Prioritization Tool 91

Various authors have executed a comparative analysis of the different software
requirements prioritization techniques in order to measure the performance of these
techniques. In this section, some well-known requirements prioritization techniques are
considered and compared with ReproTizer based on the five evaluation criteria men-
tioned above. Consequently, scalability is measured in terms of the number of
requirements ReproTizer can accommodate at runtime. Computational complexity
measures the time consumed in executing the computational processes or calculations
of the weighted requirements to generate the prioritized list. Rank updates has to do
with the ability of ReproTizer to effect or generate new ranks whenever a requirement
or stakeholder is included or excluded from the list. Error proneness measures the
accuracy of the ranked results while lack of fully implemented support tools has to do
with the absence of tool capable of supporting real-time prioritization of software
requirements.

In order to evaluate the performance of ReproTizer, 4 experiments were conducted
with different requirements datasets. The first experiment was conducted with 20
requirements from GSMS project (A web-based Graduate Students’ information
Management System in Universiti Teknologi Malaysia) and 100 requirements from a
health information system (HIS) software. The second experiment was conducted with
200 requirements from RALIC project (an access/identity card software for university
staff and students in University College London). The third and fourth experiment were
conducted with 500 and then, 1000 requirements of an enterprise resource planning
(ERP) software package. These experiments were meant to prove the contributions of
ReproTizer with respect to the limitations highlighted in Table 10. As it can be seen, a
lot of techniques suffer scalability problems. Most techniques are only suitable for
small to medium sized software projects. To address scalability issues, Babar and
colleagues proposed an expert system known as PHandler which was able to prioritize

Fig. 6. Overall weights of requirements (Final ranks)

92 P. Achimugu et al.

up to 500 requirements; the highest so far in the literature (Babar et al. 2015). However,
if requirements run up to thousands, it is not certain that PHandler can provide desired
results on that scale. PHandler was not also tested for computational complexities, rank
updates and time consumption; although, their system was only meant to address
scalability issue inherent in existing techniques. In terms of time consumption, a

Table 10. Limitations of existing techniques

Techniques and references Limitations

AHP (Saaty 1980; Karlsson et al. 1998),
Binary tree (Beg et al. 2009; Aasem et al.
2010), Case based ranking (Perini et al.
2013), Interactive requirements
prioritization (Tonella et al. 2013),
Cost-Value Ranking (Karlsson and Ryan
1997), StakeSource2.0 (Lim et al. 2011),
Fuzzy AHP (Lima et al. 2011), Quality
Functional Deployment (QFD) (Edwin
1992), Ranking, Requirement uncertainty
prioritization approach (RUPA) (Voola and
Babu 2012), Round-the-Group
Prioritization (Hatton 2008; Karlsson and
Ryan 1997), $100 Allocation or
Cumulative Voting (Berander and
Andrews 2005; Regnell et al. 2001)

Not scalable, 10–100 requirements only

Cost-Value Ranking (Karlsson and Ryan
1997), AHP (Saaty 1980; Karlsson et al.
1998), Binary search tree (Duan et al.
2009)

Time consuming

EVOLVE (Thakurta 2013, Greer and Ruhe
2004), Wiegers’ matrix approach (Duan
et al. 2009)

Computationally complex

Hierarchy AHP (Karlsson et al. 1998),
Minimal spanning tree (Karlsson et al.
1998), Multi-criteria Preference Analysis
Requirements Negotiation (MPARN)
(In and Olson 2002), Pair Wise Analysis
(Karlsson and Ryan 1997), Quality
Functional Deployment (QFD) (QFD)
(Edwin 1992), Simple multi-criteria rating
technique by swing (SMARTS) (Avesani
et al. 2005), Top ten requirements
(Berander 2004), Value based requirements
prioritization (Kukreja et al. 2012),
WinWin (Gruenbacher 2000)

Error prone

TOPSIS (Kukreja 2013; Kukreja et al. 2012),
Requirements triage (Karlsson et al. 2004),
PHandler (Babar et al. 2015)

Lack of implemented tool, do not recall or
update ranks and time consumption rate
was not measured

ReproTizer: Software Requirements Prioritization Tool 93

number of techniques are also limited in this area. Some studies confirmed that most
techniques are time consuming (Ramzan et al. 2011; Soni 2014; Kyosev 2014;
Dabbagh and Lee 2014). Specifically, AHP, cumulative voting, numerical assignment,
ranking, top-ten, Theory-W, planning game, requirements triage, Wieger’s method and
value based requirement prioritization techniques consumes a lot of time during the
prioritization process (Ramzan et al. 2011). Furthermore, the systematic literature
review executed by Achimugu et al. (2014) have it that most techniques suffer from
rank inaccuracies, computational complexities, rank updates, scalability, requirements
dependencies among others.

Requirements for software projects 1–4 were inputted into ReproTizer. This was
followed by the indication of preference weights against each requirements where
ReproTizer was automatically able to display prioritized requirements based on the
individual and overall weights of requirements. We have observed that results of
prioritization often get faulty when requirements increases due to computational
complexities and lack of efficient algorithms. However, in the case of ReproTizer,
Figs. 7a and 7b show the average accuracy and time consumed for prioritizing 20
requirements while Fig. 7c shows that ReproTizer is automatically able to update rank
status when requirements evolves. Similarly, Figs. 8a, 8b; 9a, 9b and 10a, 10b show the
average accuracy and time consumed by ReproTizer for prioritizing 200, 500 and 1000
requirements respectively while Figs. 8c, 9c and 10c confirmed that ReproTizer is
capable of updating rank status when requirements changes on a large scale. For the
time consumption, it took ReproTizer 0.39 min (23.4 s) to prioritize 500 requirements
(Fig. 9b) while 0.49 min (29.4 s) was exhausted in prioritizing 1000 requirement
(Fig. 10b). The time difference between prioritizing 500 and 1000 requirements is
1 min which is expected because the requirements are doubled. This would almost
mean that, for every 500 requirements; 1 additional minute is consumed by ReproTizer
to produce the desired results. This is good response time achieved by implementing
improved formulas and algorithms Therefore, we conclude that, a fully implemented
support tool with high accuracy, good response time and user-friendlier interface for
software requirements prioritization has been developed. Also, using a six-step
approach, ReproTizer is able to automatically calculate the weights of requirements and
perform trade-offs in all steps with minimized divergence in prioritized requirements.

97

98

99

100

5 10 15 20

A
cc

u
ra

cy
 (

%
)

Requirements

GSMS Software

RALIC Software

HIS

ERP Software

Fig. 7a. Prioritization accuracy for 20 requirements (Color figure online)

94 P. Achimugu et al.

All our experiments were carried out on a computer with a 2.4 GHz processor and
4 GB RAM. We have observed that ReproTizer consumed an average run time ranging
from 500–29,804 milliseconds (ms) to prioritize requirements on a large scale.
Table 11 shows the average runtime of three major components that constitute
ReproTizer. The average runtime for the decision matrix includes time taken for the
construction of preference weights of requirements. Similarly, average runtime for
computing the normalized decision matrix includes time taken for constructing a new
matrix which subjects the summation of all the preference weights of a requirement to 1
while the global decision matrix stands for the average time of computing the final

0
0.1
0.2
0.3
0.4
0.5

5 10 15 20

T
im

e
(S

ec
)

Requirements

GSMS Software

RALIC Software

HIS

ERP Software

Fig. 7b. Time taken for prioritizing 20 requirements (Color figure online)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25 30 35 40 45 50

R
an

k
U

p
d

at
es

Requirements

GSMS Software

RALIC Software

HIS

ERP Software

Fig. 7c. Automatic rank updates for 50 requirements (Color figure online)

ReproTizer: Software Requirements Prioritization Tool 95

weights of requirements. Among these three modules, the discrepancy rate is highly
minimal with high correlation between the relative and final weights. Therefore,
ReproTizer produces good response time with reduced complexities.

97.6
97.8

98
98.2
98.4
98.6
98.8

99
99.2
99.4
99.6

50 100 150 200

A
cc

ur
ac

y

Requirements

HIS RALIC Software ERP Software

Fig. 8a. Prioritization accuracy for 200 requirements (Color figure online)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

50 100 150 200

T
im

e
(S

ec
)

Requirements

HIS RALIC Software ERP Software

Fig. 8b. Time taken for prioritizing 200 requirements (Color figure online)

96 P. Achimugu et al.

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

50 100 150 200 250

R
an

k
U

pd
at

es

Requirements

HIS RALIC Software ERP Software

Fig. 8c. Automatic rank updates for 250 requirements (Color figure online)

97

97.5

98

98.5

99

99.5

100

50 100 150 200 250 300 350 400 450 500

A
cc

ur
ac

y
(%

)

Requirements

ERP Software

Fig. 9a. Prioritization accuracy for 500 requirements

ReproTizer: Software Requirements Prioritization Tool 97

0.36

0.365

0.37

0.375

0.38

0.385

0.39

50 100 150 200 250 300 350 400 450 500

T
im

e
(M

in
s)

Requirements

ERP Software

Fig. 9b. Time taken for prioritizing 500 requirements

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350 400 450 500 550

R
an

k
up

da
te

s

Requirements

ERP Software

Fig. 9c. Automatic rank updates for 550 requirements

98 P. Achimugu et al.

Fig. 10a. Prioritization accuracy for 1000 requirements

0.46

0.465

0.47

0.475

0.48

0.485

0.49

100 200 300 400 500 600 700 800 900 1000

T
im

e
(M

in
s)

Requirements

ERP Software

Fig. 10b. Time taken for prioritizing 1000 requirements

ReproTizer: Software Requirements Prioritization Tool 99

7 Comparison with Existing Techniques

The relative performance of the proposed tool with respect to other techniques is shown
in Table 12. The relative performance is measured based on the number of require-
ments, accuracy and time consumed by the techniques during requirements prioriti-
zation. From the table, PHandler is seen to be the most scalable technique in literature.
The expert system is capable of prioritizing up to 500 requirements at runtime with
average accuracy of 93.89 %. This makes PHandler system about 80 % better than
existing techniques in terms of the number of requirements it is capable of accom-
modating. However, PHandler was not tested for rank updates, time consumption and
complexity. Meaning, if requirements scale up to thousands, it is not sure if PHandler
would produce the desired results at that scale. This forms the rationale for developing
a support tool capable of prioritizing more numbers of requirements. Hence, Repro-
Tizer was developed and evaluated with 5 different software projects requirements
ranging from small, medium and to large scale. The average accuracy of ReproTizer
was 98.89 % even on a large scale. It was also able to accommodate and prioritize over

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

100 200 300 400 500 600 700 800 900 1000 1100

R
an

k
up

da
te

s

Requirements

ERP Software

Fig. 10c. Automatic rank updates for 1100 requirements

Table 11. Average runtime behaviour of the modules

Components Average time (Milliseconds)

Decision matrix 3192–3443
Normalized decision matrix 2290–894
Aggregate decision matrix 500–29,804

100 P. Achimugu et al.

1000 requirements with less complexity between 500–29,804 ms thereby producing
good response time. When compared to other techniques in literature, the capabilities
of ReproTizer are eminent. Besides, the computational processes, formulas and algo-
rithm are simple but robust enough to be used in practice. The tool has been fully
implemented and deployed online, available for use by software practitioners on
real-life basis. The performance of the proposed tool was generally evaluated based on
number of requirements, time consumption and computational complexities and rank
updates. Based on these evaluation parameters, it is clear that ReproTizer is much
better and would be beneficial in practice.

8 Conclusion/Future Work

The aim of this research was to identify the limitations of existing prioritization
techniques so as to address them. It was eventually discovered that existing techniques
actually suffer from mainly scalability problems, large disparity or disagreement
between ranked weights, rank reversals, as well as unreliable results. These were all

Table 12. Comparative analysis of prioritization techniques.

Source Technique No of
requirements

Accuracy Time
consumption

Support
tool

(Ramzan et al.
2011)

Intelligent
requirement
prioritization

Not indicated 90 % 90 Work
hours

×

(Ramzan et al.
2011)

Theory W Not indicated 80 % 160 Work
hours

×

(Perini et al. 2009) AHP 20 85 % 37 min √

(Ramzan et al.
2011)

Cumulative
voting

Not indicated 85 % 120 Work
hours

×

(Ramzan et al.
2011)

Wieger’s
method

Not indicated 85 % 100 Work
hours

×

(Perini et al. 2009) Case-Based
Ranking

20 Not
indicated

10 min √

(Perini et al. 2013) Case-Based
Ranking

25, 50, 100 80 % Not
measured

×

(Tonella et al. 2012) Interactive
GA-Based
Prioritization

26, 23, 21
and 49

97.20 % Not
measured

×

(Lim and
Finkelstein 2012;
Lim et al. 2011)

StakeRare,
StakeSource
2.0

<50 80 % Not
measured

√

(Babar et al. 2015) PHandler 14, 25, 50,
100, 200,
400, 500

93.89 Not
measured

×

This Study ReproTizer 20, 50, 100,
200, 500,
1000

98.89 % 500–
29,804 ms

(0.5–
29.804 s)

√

ReproTizer: Software Requirements Prioritization Tool 101

taken into cognizance during the course of developing ReproTizer. The method utilized
in this research consisted of intelligent algorithms implemented with C# and Micro-
softSQL server 2012. Efficient models were formulated in order to enhance the relia-
bility of the proposed approach. The developed tool was designed and implemented to
cater large requirements and stakeholders. It is easy to use with friendlier user interface,
reduced computational complexities and has addressed rank reversals issues. For the
future work, we hope to validate the tool in a real-life setting with large numbers of
stakeholders and requirements alike. Finally, the developed tool is able to classify
ranked requirements in chronological order with an accompanied graph to visualize the
prioritized results at a glance. For dependency issues, requirements are thoroughly
analyzed using factor analysis to track redundant, conflicting, independent and
dependent requirements before inputting the requirements into ReproTizer.

Acknowledgement. The Universiti Teknologi Malaysia (UTM) under Research University
funding vot number 02G31 and Ministry of Higher Education (MOHE) Malaysia under vot
number 4F550 are hereby sincerely acknowledged for providing the research funds to complete
this research.

References

Perini, A., Ricca, F., Susi, A., Bazzanella, C.: An empirical study to compare the accuracy of
AHP and CBRanking techniques for requirements prioritization. In: Proceedings of the Fifth
International Workshop on Comparative Evaluation in Requirements Engineering, pp. 23–35.
IEEE (2007)

Ruhe, G., Eberlein, A., Pfahl, D.: Trade-off analysis for requirements selection. Int. J. Softw.
Eng. Knowl. Eng. 13(4), 345–366 (2003)

Ahl, V.: An experimental comparison of five prioritization methods–investigating ease of use,
accuracy and scalability. Master’s thesis, School of Engineering, Blekinge Institute of
Technology, Sweden, August 2005

Berander, P., Khan, K.A., Lehtola, L.: Towards a research framework on requirements
prioritization. In: Proceedings of Sixth Conference on Software Engineering Research and
Practice in Sweden (SERPS 2006), October 2006

Kobayashi, M., Maekawa, M.: Need-based requirements change management. In: Proceedings of
ECBS 2001 Eighth Annual IEEE International Conference and Workshop on the Engineering
of Computer Based Systems, pp. 171–178 (2001)

Kassel, N.W., Malloy, B.A.: An approach to automate requirements elicitation and specification.
In: Proceedings of the 7th IASTED International Conference on Software Engineering and
Applications, Marina Del Rey, CA, USA, 3–5 November 2003

Perini, A., Susi, A., Avesani, P.: A machine learning approach to software requirements
prioritization. IEEE Trans. Softw. Eng. 39(4), 445–460 (2013)

Tonella, P., Susi, A., Palma, F.: Interactive requirements prioritization using a genetic algorithm.
Inf. Softw. Technol. Inf. Softw. Technol. 55, 173–187 (2012)

Babar, M.I., Ghazali, M., Jawawi, D.N., Shamsuddin, S.M., Ibrahim, N.: PHandler: an expert
system for a scalable software requirements prioritization process. Knowl.-Based Syst. 84,
179–202 (2015)

102 P. Achimugu et al.

Kaur, G., Bawa, S.: A survey of requirement prioritization methods. Int. J. Eng. Res. Technol.
2(5), 958–962 (2013)

Voola, P., Babu, A.: Requirements uncertainty prioritization approach: a novel approach for
requirements prioritization. Softw. Eng. Int. J. (SEIJ) 2(2), 37–49 (2012)

Thakurta, R.: A framework for prioritization of quality requirements for inclusion in a software
project. Softw. Qual. J. 21, 573–597 (2012)

Ramzan, M., Jaffar, A., Shahid, A.: Value based intelligent requirement prioritization (VIRP):
expert driven fuzzy logic based prioritization technique. Int. J. Innovative Comput. 7(3),
1017–1038 (2011)

Perini, A., Ricca, F., Susi, A.: Tool-supported requirements prioritization: comparing the AHP
and CBRank method. Inf. Softw. Technol. 51, 1021–1032 (2009)

Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach. Inf.
Softw. Technol. 46(4), 243–253 (2004)

Franceschini, F., Rupil, A.: Rating scales and prioritization in QFD. Int. J. Qual. Reliab. Manage.
16(1), 85–97 (1999)

Karlsson, J., Wohlin, C., Regnell, B.: An evaluation of methods for prioritizing software
requirements. Inf. Softw. Technol. 39(14), 939–947 (1998)

Kukreja, N., Payyavula, S., Boehm, B., Padmanabhuni, S.: Value-based requirements
prioritization: usage experiences. Procedia Comput. Sci. 16, 806–813 (2012)

Kukreja, N.: Decision theoretic requirements prioritization: a two-step approach for sliding
towards value realization. In: Proceedings of the 2013 International Conference on Software
Engineering, pp. 1465–1467. IEEE Press (2013)

Dabbagh, M., Lee, S.: An approach for integrating the prioritization of functional and
nonfunctional requirements. Sci. World J. (2014)

Voola, P., Vinaya Babu, A.: Interval evidential reasoning algorithm for requirements
prioritization. In: Satapathy, S.C., Avadhani, P.S., Abraham, A. (eds.) Proceedings of the
InConINDIA 2012. AISC, vol. 132, pp. 915–922. Springer, Heidelberg (2012)

Aasem, M., Ramzan, M., Jaffar, A.: Analysis and optimization of software requirements
prioritization techniques. In: 2010 International Conference on Information and Emerging
Technologies (ICIET), pp. 1–6. IEEE (2010)

Racheva, Z., Daneva, M., Herrmann, A., Wieringa, R.: A conceptual model and process for
client-driven agile requirements prioritization. In: 2010 Fourth International Conference on
Research Challenges in Information Science (RCIS), pp. 287–298. IEEE (2010)

Otero, C., Dell, E., Qureshi, A., Otero, L.: A quality-based requirement prioritization framework
using binary inputs. In: 2010 Fourth Asia International Conference on
Mathematical/Analytical Modelling and Computer Simulation (AMS), pp. 187–192. IEEE
(2010)

Carod, N., Cechich, A.: Cognitive-driven requirements prioritization: a case study. In: 2010 9th
IEEE International Conference on Cognitive Informatics (ICCI), pp. 75–82. IEEE (2010)

Gaur, V., Soni, A., Bedi, P.: An agent-oriented approach to requirements engineering. In: 2010
IEEE 2nd International Advance Computing Conference (IACC), pp. 449–454 (2010)

Beg, M., Verma, R., Joshi, A.: Reduction in number of comparisons for requirement
prioritization using B-Tree. In: IEEE International Advance Computing Conference, 2009,
IACC 2009, pp. 340–344. IEEE (2009)

Hatton, S.: Choosing the right prioritisation method. In: 19th Australian Conference on Software
Engineering, 2008, ASWEC 2008, pp. 517–526. IEEE (2008)

Daneva, M., Herrmann, A.: Requirements prioritization based on benefit and cost prediction: a
method classification framework. In: EUROMICRO-SEAA, pp. 240–247. IEEE (2008a)

ReproTizer: Software Requirements Prioritization Tool 103

Beg, R., Abbas, Q., Verma, R.P.: An approach for requirement prioritization using b-tree. In:
First International Conference on Emerging Trends in Engineering and Technology, 2008,
ICETET 2008, pp. 1216–1221. IEEE (2008)

Laurent, P., Cleland-Huang, J., Duan, C.: Towards automated requirements triage. In: 15th IEEE
International Requirements Engineering Conference, 2007, RE 2007, pp. 131–140 (2007)

Avesani, P., Bazzanella, C., Perini, A., Susi, A.: Facing scalability issues in requirements
prioritization with machine learning techniques. In: RE 2005, pp. 297–306 (2005)

Avesani, P., Bazzanella, C., Perini, A., Susi, A.: Supporting the requirements prioritization
process: a machine learning approach. In: Proceedings of 16th International Conference on
Software Engineering and Knowledge Engineering, SEKE 2004, pp. 306–311. KSI Press,
Banff (2004)

Moisiadis, F.: The Fundamentals of prioritizing requirements. In: Proceedings of Systems
Engineering Test and Evaluation Conference, SETE 2002 (2002)

Aaron, K.M., Paul, N., Anton, A.I.: Prioritizing legal requirements. In: Second International
Workshop on Requirements Engineering and Law, 2009, RELAW 2009, pp. 27–32. IEEE
(2009)

Svahnberg, M., Karasira, A.: A study on the importance of order in requirements prioritisation.
In: 2009 Third International Workshop on Software Product Management (IWSPM), pp. 35–
41. IEEE (2009)

Tonella, P., Susi, A., Palma, F.: Using interactive GA for requirements prioritization. In: 2010
Second International Symposium on Search Based Software Engineering (SSBSE), pp. 57–
66. IEEE (2010)

Bebensee, T., van de Weerd, I., Brinkkemper, S.: Binary priority list for prioritizing software
requirements. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp. 67–78.
Springer, Heidelberg (2010)

Duan, C., Laurent, P., Cleland-Huang, J., Kwiatkowski, C.: Towards automated requirements
prioritization and triage. Requir. Eng. 14(2), 73–89 (2009)

Carod, N., Cechich, A.: Requirements Prioritization Techniques (2001)
Karlsson, L., Thelin, T., Regnell, B., Berander, P., Wohlin, C.: Pair-wise comparisons versus

planning game partitioning-experiments on requirements prioritisation techniques. Empir.
Softw. Eng. 12(1), 3–33 (2007)

Lehtola, L., Kauppinen, M.: Suitability of requirements prioritization methods for market-driven
software product development. Softw. Process Improv. Pract. 11(1), 7–19 (2006)

Berander, P., Andrews, A.: Requirements prioritization. In: Aurum, A., Wohlin, C. (eds.)
Engineering and Managing Software Requirements, pp. 69–94. Springer, Heidelberg (2005)

Lehtola, L., Kauppinen, M., Kujala, S.: Requirements prioritization challenges in practice. In:
Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 497–508. Springer,
Heidelberg (2004)

Karlsson, J., Ryan, K.: A cost-value approach for prioritizing requirements. IEEE Softw. 14,
67–74 (1997)

Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
Herrmann, A., Daneva, M.: Requirements prioritization based on benefit and cost prediction: an

agenda for future research. In: RE 2008, pp. 125–134. IEEE Computer Society (2008b)
Wiegers, K.E.: First things first: prioritizing requirements. Softw. Dev. 7(9) (1999). www.

processimpact.com/pubs.shtml#requirements
Regnell, B., Host, M., Dag, J.: An industrial case study on distributed prioritization in

market-driven requirements engineering for packaged software. Requir. Eng. 6, 51–62 (2001)

104 P. Achimugu et al.

http://www.processimpact.com/pubs.shtml%23requirements
http://www.processimpact.com/pubs.shtml%23requirements

Edwin, D.: Quality function deployment for large systems. In: International Engineering
Management Conference 1992, Eatontown, NJ, USA, 25–28 October 1992

Olson, H., Rodgers, T.: Multi-criteria preference analysis for systematic requirements negoti-
ation. In: COMPSAC 2002, pp. 887–892 (2002)

Berander, P.: Prioritization of Stakeholder Needs in Software Engineering. Understanding and
Evaluation. Licenciate Thesis, Blekinge Institute of Technology, Sweden, Licentiate Series,
12 (2004)

Karlsson, J., Olsson, S., Ryan, K.: Improved practical support for large scale requirements
prioritizing. J. Requir. Eng. 2, 51–67 (1997)

Peng, S.: Sample selection: an algorithm for requirements prioritization. ACM (2008)
Racheva, Z., Daneva, M., Buglione, L.: Supporting the dynamic reprioritization of requirements

in agile development of software products. In: Second International Workshop on Software
Product Management, 2008, IWSPM 2008, pp. 49–58. IEEE (2008)

Lim, S.L., Finkelstein, A.: StakeRare: using social networks and collaborative filtering for
large-scale requirements elicitation. IEEE Trans. Softw. Eng. 38(3), 707–735 (2012)

Kyosev, T.H.: Comparing Requirements Prioritization Methods in Industry: A study of the
Effectiveness of the Ranking Method, the Binary Search Tree Method and the Wiegers
Matrix. MSc Thesis, Negometrix BV, Germany (2014)

Babar, M., Ramzan, M., Ghayyur, S.: Challenges and future trends in software requirements
prioritization. In: 2011 International Conference on Computer Networks and Information
Technology (ICCNIT), pp. 319–324. IEEE (2011)

Gruenbacher, P.: Collaborative requirements negotiation with easy winwin. In: Proceedings of
2nd International Workshop on the Requirements Engineering Process, Greenwich London,
September 2000

Lima, D.C., Freitas, F., Campos, G., Souza, J.: A fuzzy approach to requirements prioritization.
In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS, vol. 6956, pp. 64–69. Springer,
Heidelberg (2011)

Barney, S., Aurum, A., Wohlin, C.: Quest for a silver bullet: creating software product value
through requirements selection. In: 32nd EUROMICRO Conference on Software Engineering
and Advanced Applications, SEAA 2006. pp. 274–281. IEEE (2006)

Karlsson, L., Berander, P., Regnell, B., Wohlin,C.: Requirements prioritization: an experiment
on exhaustive pair wise comparisons versus planning game partitioning. In: Proceedings of
Empirical Assessment in Software Engineering (EASE 2004), Edinburgh, Scotland (2004)

Grunbacher, P., Halling, M., Biffl, S., Kitapci, H., Boehm, B.: Repeatable quality assurance
techniques for requirements negotiations. In: Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, 9 p. IEEE (2003)

Ramzan, M., Arfan, J., AlIliad, I., Anwar, S., Shahid, A.: Value based fuzzy requirement
prioritization and its evaluation framework. In: Fourth International Conference on Innovative
Computing, Information and Control. pp. 1464–1468 (2009)

Achimugu, P., Selamat, A., Ibrahim, R., Mahrin, M.N.R.: A systematic literature review of
software requirements prioritization research. Inf. Softw. Technol. 56(6), 568–585 (2014)

Lim, S.L., Damian, D., Finkelstein, A.: StakeSource 2.0: using social networks of stakeholders to
identify and prioritise requirements. In: Proceedings of the 33rd International Conference on
Software Engineering, pp. 1022–1024. ACM (2011)

Soni, A.: An evaluation of requirements prioritisation methods. Int. J. Innovative Res. Adv. Eng.
1(10), 402–411 (2014)

ReproTizer: Software Requirements Prioritization Tool 105

	ReproTizer: A Fully Implemented Software Requirements Prioritization Tool
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Technique
	3.1 Algorithmic Steps of the Computational Process

	4 Illustrative Example
	5 Tool Support
	6 Performance Evaluation
	7 Comparison with Existing Techniques
	8 Conclusion/Future Work
	Acknowledgement
	References

