
Identification of Possible Attack Attempts
Against Web Applications Utilizing Collective

Assessment of Suspicious Requests

Marek Zachara(B)

AGH University of Science and Technology, Kraków, Poland
mzachara@agh.edu.pl

Abstract. The number of web-based activities and websites is growing
every day. Unfortunately, so is cyber-crime. Every day, new vulnerabil-
ities are reported and the number of automated attacks is constantly
rising. In this article, a new method for detecting such attacks is pro-
posed, whereas cooperating systems analyze incoming requests, identify
potential threats and present them to other peers. Each host can then
utilize the knowledge and findings of the other peers to identify harmful
requests, making the whole system of cooperating servers “remember”
and share information about the existing threats, effectively “immuniz-
ing” it against them.

The method was tested using data from seven different web servers,
consisting of over three million of recorded requests. The paper also
includes proposed means for maintaining the confidentiality of the
exchanged data and analyzes impact of various parameters, including
the number of peers participating in the exchange of data. Samples of
identified attacks and most common attack vectors are also presented in
the paper.

Keywords: Websites · Applications security · Threat detection · Col-
lective decision

1 Introduction

According to a recent report by Netracft [14], the number of websites around
the world is estimated to be almost 850 million, with 150 million of them consid-
ered “active”. People rely on Internet and the websites in their daily activities,
trusting them with their data and their money.

Unfortunately, with more and more data and resources handled by websites,
they have become an attractive prey to criminals, both individuals and orga-
nized crime. It is very difficult to measure the scale of the cyber-threats, and
their impact on the companies and the economy as a whole, since there is no
commonly accepted methodology available yet. As an example, McAfee estimates
that the cost of the cybercrime reaches 1.5 % of the GDP for the Netherlands and
Germany [12]. There is also a more detailed study for the UK [2]. However, such
estimations might be imprecise, because they are based on imperfect surveys,
which may lead to a high estimation error, as explained in [4,8].
c© Springer-Verlag Berlin Heidelberg 2016
N.T. Nguyen and R. Kowalczyk (Eds.): TCCI XXII, LNCS 9655, pp. 45–59, 2016.
DOI: 10.1007/978-3-662-49619-0 3



46 M. Zachara

1.1 Vulnerability of Web Applications

The initial web sites in the 1990 s were meant primarily for publishing and dis-
semination of information. Virtually all of their resources were meant for public
access. The HTTP protocol developed then, and still used today for the trans-
port of the web pages, does not even include any means of tracking or controlling
user sessions. Today’s web sites are, however, quite different. They often gather
and control valuable data - including personal data, passwords or bank accounts.

Symantec claims that while running a thousand of vulnerability scans per
day, they found approximately 76 % of the scanned websites to have at least one
unpatched vulnerability, with 20 % of the servers having critical vulnerabilities
[21]. In another report [22], WhiteHat Security stated that 86 % of the web
applications they tested had at least one serious vulnerability, with an average
of 56 vulnerabilities per web application.

It can be assumed, that one of the reasons for the low security of web applica-
tions is their uniqueness. While the underlying operating systems, web servers,
firewalls, and databases are usually well known and tested products, that are
subject to continuous scrutiny by thousands of users, a web application is often
on its own, with its security depending primarily on the owner and developers’
skills and will.

1.2 Malware and Automated Attacks

The massive amount of websites, and their availability over the Internet, led
to a rise of automated methods and tools for scanning and possibly breaking
into them. Bot-nets and other malware are often targeting websites for known
vulnerabilities. For example, Symantec in one of their previous reports stated
that in just the single month of May in 2012 the LizaMoon toolkit was responsible
for at least a million successful SQL Injections attacks, and that approximately
63 % of websites used to distribute malware were actually legitimate websites
compromised by attackers.

Easy access to information and ready-made tools for scanning and exploita-
tion of websites’ vulnerabilities resulted in a large number of individuals, collec-
tively known as “script kiddies” attempting random break-in attempts against
them, using the same tools downloaded from the Internet.

1.3 The Tools for Battling the Attacks

The reason why firewalls do not protect websites from harmful requests is that
their ability is only to filter traffic at the lower layers of the OSI model (usually
up to layer 5 for stateful firewalls), while the identification of harmful requests
is only possible at layer 7. There are specialized firewalls, known as Web Appli-
cation Firewalls (WAF) [15,16], but their adoption is limited, primarily because
of the time and cost required to configure and maintain them.

There are two broad classes of methods employed for battling attack attempts
and identification of the harmful data arriving at the server. The first group



Collective Assessment of Suspicious Requests 47

consists of various signature-related methods, similar to the popular anti-virus
software. Some examples are provided in [7,19]. These methods try to identify
known malicious attack patterns on the basis of their knowledge (provided a
priori). The primary benefit of such methods is the low number of false-positive
alarms. Their primary drawback is the inability to identify new threats and new
attack vectors, until they are evaluated by some entity (e.g. a security expert),
and introduced into the knowledge database. Within the fast-changing Internet
threat environment, they provide very limited protection against attackers, as
vulnerabilities are exploited often within hours of their disclosure (citing the
Symantec report again [21]: “Within four hours of the Heartbleed vulnerability
becoming public in 2014, Symantec saw a surge of attackers stepping up to
exploit it”).

The second group of methods relies on various types of heuristics to identify
potential threats in real time. This approach has been employed for network
traffic analysis and intrusion detection [5,17] with SNORT [18] being the well-
known open source implementation of such Intrusion Detection Systems (IDS).
Although there have been a number of attempts to utilize similar approach
in order to secure websites [3,11], these methods usually rely on very simple
heuristics and a simple decision tree. There is also a method developed by the
author of this article that utilizes weighted graph for modeling and storage of
users’ typical page-traversing paths that has been presented in [23].

1.4 Rationale for the Collective Assessment

All these methods previously described rely on local evaluation and assessment
of the requests, utilizing the knowledge either provided or acquired at a single
web server. However, the rise of automated tools and malware led to a situation
where the same attack vectors, or even the same requests are used to scan and
attack various unrelated websites. Establishing a method of sharing the informa-
tion between web servers about encountered malicious requests could therefore
provide substantial benefits in protecting the websites against these attacks.

2 The Principles of the Method

The attacks on web applications/web servers are usually done either by manip-
ulating parameters sent with a request (parameter tampering) or by requesting
URLs different to these expected by the application (forceful browsing). A good
account on specific attacks and their impact can be found in [6]. An example of
such attacks are presented in Fig. 1, where the attacker is apparently trying to
identify, at various possible locations, a presence of phpMyAdmin - a commonly
used web-based database management module.

The web server’s log files are usually the easiest way to retrieve information
about the requests arriving at the server, allowing for easy parsing and identifi-
cation of suspicious requests. They have been widely used for this purpose [1,9],
and the reference implementation of the proposed method also utilizes the log
files as the source of information.



48 M. Zachara

Fig. 1. Sample users’ sessions extracted from a web server’s log file, with attack
attempts marked by red background (Color figure online)

A high-level overview of the proposed method is presented in Fig. 2. As can
be seen there, each server maintains its own list of suspicious requests, which is
published for other servers to download. On the other hand, the server retrieves
similar lists from other peers and keep cached copies of them. Each new request
arriving at the server is evaluated against these lists, which constitute the server’s
knowledge about the currently observed attack patterns. Requests that are con-
sidered as potentially harmful are then reported to the administrator.

Fig. 2. Overview of the data flow for the collective identification process.



Collective Assessment of Suspicious Requests 49

2.1 The Key Concepts of the Proposed Method

This method relies on the fact that most attacks are automated. They are per-
formed either by malware (like LizaMoon mentioned before), or “script kiddies”
who download and use ready-made attack tool-kits. These two groups have the
ability to perform attacks attempts on a large scale. However, these attacks are
usually identical, or very similar to each other. Since they are performed by pro-
grams and usually rely on one or just a few attack vectors, they generate similar
requests to a large number of web servers.

For clarity reasons, let’s reiterate the features of the attacks performed by
malware and “script kiddies”:

– Distributed. The attacks are usually targeted towards a number of web
hosts, not at the same time, but within a limited time-frame.

– Similar. Malware and “script kiddies” both use single pieces of software with
incorporated attack vectors. This software produces identical or very similar
requests to various hosts.

– Unusual. The requests generated by the automated software are not tailored
for the specific host, so they often do not match the host’s application.

Fortunately, these features can be utilized to detect and neutralize a major
part of the threats coming from these sources. These attacks target a large num-
ber of hosts (web applications) in hope of finding a few that will be vulnerable
to the specific attack vector. In the process however, they send requests to hosts
that are either not vulnerable, or in most cases - do not have the specific module
installed. Such requests can easily be identified at these hosts as suspicious and
presented to other hosts as an example of an abnormal behavior. Other hosts,
which retrieve the information, are then aware that certain requests have been
made to a number of other hosts and were considered suspicious by them. This
knowledge, in turn, can be utilized to assess and possibly report an incoming
requests. Specific methods of such assessment will be discussed later, but it is
worth to note that a very similar mode of operation is used by our immune
system, where antigens of an infection are presented by body cells to the T-cells,
which in turn coordinate the response of the system by passing the ‘knowledge’
about the intruder to the other elements of the immune system.

2.2 The Exchange of Information

There are various means that can be employed to facilitate the exchange of
information between web servers about suspicious attacks. Large scale service
providers can opt for a private, encrypted channels of communication, but the
general security of the web would benefit from a public dissemination of such
information.

Certainly, publishing information about received requests could be a security
issue in its own right. Fortunately, it is not necessary to disclose full requests’
URLs to other peers. Since each host needs just to check if the URL it marked
as suspicious has also been reported by other hosts, it is enough if the hosts



50 M. Zachara

compare the hashes (digests) of the requests’ URLs. Hashes (like SHA1) are
generated using one-way functions and are generally deemed irreversible. Even
though findings are occasionally published about the weaknesses of certain hash-
ing methods [20], there are always algorithms available that are considered safe,
even for the storage of critical data (at the time of writing two examples are
SHA-2 and MD6). If a host only publishes hashes of the requests that it deems
suspicious, it allows other hosts to verify their findings, but at the same time
protects its potentially confidential information.

For the proposed method to work, it is enough if hosts just publish a list
of hashes of the received requests that they consider suspicious, but other data
may improve the interoperability and possible future heuristics. Therefore, it is
suggested that hosts use a structured document format, e.g. based on JSON [10].
A sample published document may look like the one in Listing 1.1. This will be
referred to as a List of Suspicious Requests, abbreviated LSR. The list presented
in Listing 1.1 is a part of a list taken from an actual running instance of the
reference implementation (and includes the mentioned additional information).

The explanation of all the elements in this LSR is provided below:

– (C) denotes the class of the information. This can either Original or Forward
from another peer.

– (A) is the age of the suspicious request, e.g. how many hours ago it was
received.

– (MD5) indicates the algorithm used and is followed by the resultant hash of
the request.

– (R) includes the actual request received and is presented here for information-
al/debug purposes only.

Listing 1.1. Sample LSR with additional debug information
{ C:O, A:57, MD5:2 cf1d3c7fe2eadb66fb2ba6ad5864326 , R:"/ pacpdvlgj.html" }
{ C:O, A:53, MD5 :2370 f28edae0afcd8d3b8ce1d671a8ac , R:"/ statsa/" }
{ C:F, A:32, MD5:2 f42d9e09e724f40cdf28094d7beae0a }
{ C:F, A:31, MD5:8 f86175acde590bf811541173125de71 }
{ C:F, A:24, MD5:eee5cd6e33d7d3deaf52cadeb590e642 }
{ C:O, A:17, MD5:bd9cdbfedca98427c80a41766f5a3783 , R:"/ Docs/ads3.html" }

2.3 Maintenance of the Lists

For the process to work as intended, each server must not only identify suspicious
requests, but also generate and publish the list of them and retrieve similar lists
from other servers. However, exchanging of the LRS leads to an issue of data
retention, and two questions need to be answered:

– How long should an LSR contain an entry about a suspicious request after
such a request was received.

– Should the hashes received from other peers be preserved locally if the origi-
nating server does not list them anymore, and if so, for how long?



Collective Assessment of Suspicious Requests 51

Both issues are related to the load (i.e. number of requests per second) received
either by the local or the remote server. Servers with very high loads and a high
number of suspicious requests will likely prefer shorter retention times, while
niche servers may only have a few suspicious requests per week and would prefer
a longer retention period. The results of experiments presented later in this
article illustrate how the retention period may impact the quality of detection,
and more results may be obtained if the method becomes more widely adopted.

3 Implementation and Test Environment

A reference implementation has been prepared to verify the feasibility of the pro-
posed method and to prove this concept. The application has been programmed
in Java and have been tested using the data from a few real web servers. The
architecture of the application is presented in Fig. 3.

Fig. 3. The architecture of the reference implementation

The requests for unavailable resources (e.g. these that result in HTTP 4xx
response) are directly forwarded to the aggregation of suspicious requests. The
original application also includes a behavior-based anomaly detection module,
which is outside the scope of this article, but has been described in [23].

The Suspicious Activity Detector module aggregates all suspicious requests
and matches them against some pattern-based rules, to eliminate requests that
are well known and harmless but are often missing on servers. The list of requests,
together with their occurrence frequency is presented in Table 1. They can safely
be ignored and not reported to the administrator. This process is referred to as
“white-listing”.

In addition to this general white-listing, applicable for all the web sites, a
website may benefit from additional white-listing of specific pages, which could
generate false-positives. During the tests, it was found out that three of the tested
websites had a relatively large number of reports for just two URLs (see Table 2).
It is likely that the websites’ structure might had changed during the testing



52 M. Zachara

Table 1. A white-list of requests that are considered legitimate, yet often result in a
“not found” (HTTP 4xx) response.

Total number Comment

Request Not found Present

/ & index.html 1,342 161,542 Home page of a website

favicon.ico 24,899 4,067 The website’s icon

apple-touch-icon*.png 2,255 112 Icons used by IOS-based devices

robots.txt 14,728 16,712 robots.txt and sitemap.xml are

sitemap.xml 111 493 file looked for by search engines

period as both web-pages are often present in commercial websites. Such change
would also explain the number of request attempts for these missing resources.

Table 2. An additional, site-specific white-list of requests that generate a large number
of “not found”. The number of parenthesis indicate the number of affected websites
from the tested set.

Total number

Request Not found Present

/services.[html|php] 153 (3) 4,219 (1)

/contact.[html|php] 1,230 (3) 9,810 (2)

Finally, the remaining suspicious requests are formatted according to the
sample presented in Listing 1.1, and are stored in a document inside the web
server directory to be accessible by other hosts.

3.1 Reasoning

The last module (named ‘Reasoning’) receives the current request (if it is con-
sidered suspicious) and, at the same time, periodically retrieves lists of such
suspicious requests from other hosts. With each request, the module has to
decide whether it should report it for human (e.g. administrator’s) attention or
not. There are various strategies that can be implemented here, depending on
the type of application being protected and the number and the type of the
peer servers it receives the data from. Some basic strategies are discussed in the
next chapter, yet the system administrator may be willing to adjust the system’s
response depending on their own requirements.

4 Test Method and Achieved Results

For the purpose of evaluating the proposed algorithm, a number of log files
have been acquired, as listed in Table 3. These log files came from a number of



Collective Assessment of Suspicious Requests 53

Table 3. Number of lines per log file used for the test experiments. Only parseable,
validated lines were counted. Bottom row lists the number of requests that resulted in
error response 4xx or 5xx.

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7

All requests 311,530 1,030,186 108,859 53,271 418,361 254,638 886,233

4xx and 5xx 14,861 287,394 4,017 14,281 41,706 7,381 25,885

unrelated servers, located in several countries. Due to the nature of the method,
the logs must cover the same period of time, in order to simulate a specific real
time period. All these logs cover the same period of approximately 1 year.

Based on these logs, a simulation environment was prepared, that emulated
these web servers over the specific time period. Each emulated server analyzed
its log files and published the LSR for the other servers to download. To clearly
identify the benefits of the collective detection, and eliminate the impact of
other methods, all and only requests that resulted in HTTP response 4xx (“not
available”) or 5xx (“server error”) were listed in the server’s LSR. The overall
number of such requests is presented in Table 3. Additionally, the changes in
number of these requests over consecutive weeks is illustrated in Fig. 4. As can
be seen there, these numbers can vary from week to week even by an order of a
magnitude.

Fig. 4. Change in number of requests resulting in 4xx or 5xx error response over time.
Aggregated per week for each of the server log sets.



54 M. Zachara

The results achieved with the collective detection were also compared with
the results of an analysis performed by LORG [13], an Open-Source project
designed to identify malicious requests in a web server’s log files.

Several scenarios were tested, with different configuration, in order to deter-
mine their impact on the quality of detection. These include evaluating the
impact of the number of web servers participating in the exchange and changing
how long the suspicious requests are kept in the LSRs.

4.1 The Baseline Scenario

In this scenario, all seven servers were emulated, and the LSRs kept records of
suspicious requests for 7 days. The results of the collective detection for each
server is presented in Table 4, together with the result of the LORG analysis.

Table 4. Results of the baseline scenario, number of reported suspicious requests by
LORG and collective detection, split into these which ended up as “unavail.” (4xx
and 5xx response) and these that resulted in 2xx response (“present”). The number of
reported incidents is also presented as a per mille (�) of total log entries.

LORG & CD LORG only Collective detection

Response: Present Unavail. Present Unavail. Present Unavail. Ratio

Site 1 0 3 0 0 10 1,030 3�
Site 2 23 5 148 8 150 6,411 6�
Site 3 0 0 0 0 1,430 165 15�
Site 4 0 0 28 16 0 306 6�
Site 5 0 0 19 3 259 3,143 8�
Site 6 0 0 7 1 63 1,356 6�
Site 7 0 4 43 0 47 2,000 2�

As can be seen in this table, the collective analysis results in significantly
more reported requests. The results are split into two groups - requests that
resulted in a HTTP 2xx response (“present”) and requests that did not process
correctly, with the response 4xx or 5xx sent to the client. The later are labeled
as’unavailable’ and can be safely classified as scans or attack attempts.

Some of the results, especially these related to the requests reported as harm-
ful by LORG were investigated manually, with the following findings:

– Most of the requests reported by both LORG and the collective detection
were requests for a home page, but with additional parameters intended to
alter its operation; like /?include=../../../etc/passwd.

– Majority of the requests reported by LORG but not the collective detec-
tion were actually false positives. This includes almost all of the 148 requests
resulting in “present” response from Site 2.



Collective Assessment of Suspicious Requests 55

– The unusual number of “present” responses for reported requests in Site 3 is
a result of the configuration of this website, which returned a page even for
unexpected URLs, unless they were severely malformed.

Most common examples of requests reported by the collective detection and
LORG are presented in Table 8. Since this table presents the most popular exam-
ples (every one occured several hundred times), the requests may appear quite
ordinary. Collective detection is however able to also identify more sophisticated
attacks, as illustrated in Table 5.

Table 5. Less common examples of malicious requests identified by collective detection.

Example URL

/includes/fckeditor/editor/filemanager/upload/php/upload.php

/includes/uploadify/uploadify.swf

/index.php?m=admin&c=index&a=login&pc hash=

/wp-content/themes/felis/download.php?file=../../../wp-config.php

/?page id=\”>< script> alert(\”m3t4l&master\”);</script>

/go?to=http://pastebin.com/raw.php?i=pA3y1PSN

/cgi-bin/php-cgi?%2D%64+%61 %6C%6C%6F%77 %5F%75 %72 %6C%5F%69(...)

/asp/freeupload/uploadTester.asp

/beheer/editor/assetmanager/assetmanager.asp

Statistical analysis of the requests reported by the collective detection
resulted in identification of the most common attack vectors, which are pre-
sented in Table 6.

Table 6. Most common attack vectors identified by collective detection.

Occurences Description

10,332 Attempts to locate or use basic WordPress URLs

2,049 Requests for various /admin/ URLs (excluding WordPress)

1,679 Attempts to locate CKEditor

265 Attempts to identify or exploit WordPress xml-rpc

163 Attempts to locate OpenFlashChart

150 Direct attempt to manipulate parameters of the primary web page;

e.g. /?(...)params or /index.php?(...)params

107 Requests targeting Uploadify

43 Attempts to access PhpMyAdmin



56 M. Zachara

4.2 Impact of the LSR History Length and the Number of Peers

It is rather obvious, that the effectiveness of the detection depends on the num-
ber of peers involved in the exchange and how long they keep the history of the
suspicious requests. Table 7 presents the results of the collective assessment for
smaller group of peers. Interestingly, the overall traffic processed by the partici-
pating websites has much more impact on the final results than the number of
peers involved.

Table 7. Decrease in number of reported requests against the baseline scenario (percent
of the baseline reported request) for decreased number of peers participating in the
collective assessment.

6 peers 5 peers 4 peers 3 peers 2 peers

High-traffic sites 95.8 % 94.3 % 85.8 % 86.7 % 61.1 %

Low-traffic sites 91.7 % 77.5 % 56.3 % 37.9 % 21.8 %

The impact of the history length is presented in Fig. 5. As can be seen there,
there is very little gain in number of reported requests for history length longer
than 10 days. It seems that 5–10 days is the maximum a host would need. High-
traffic servers may need to settle for a 1–2 day history, but that still provides
substantial benefits for the collective detection.

Fig. 5. Number of suspicious request reported by each site as the function of LSR
history length.



Collective Assessment of Suspicious Requests 57

Table 8. Sample most common findings of potentially malicious requests by LORG
and collective detection.

Example URL

Detected by the collective assessment, but not by LORG

/administrator/index.php

/admin.php

/?q=user/register

/wp-admin/admin-ajax.php

/wp-login.php

/wp-login.php?action=register

/xmlrpc.php

Detected by LORG, but not the collective assessment

/pl/?page=http://www.lincos.eu/cache/mod custom/ID-RFI.txt????

/wordpress/wp-admin/load-scripts.php?c=1&load%5B%5D=hoverIntent,common,
admin-bar,svg-painter&ver=4.2.2

/?x=()

Detected by both LORG and the collective assessment

/wp-admin/admin-ajax.php?action=revslider show image&img=../wp-config.php

/?x=() { :; }; echo Content-type:text/plain;echo;echo;echo M’expr 1330 +
7’H;/bin/uname -a;echo @

/?page id=../../../../../../../../../../../../etc/passwd

/upload.asp?action=save&type=IMAGE&style=standard’%20and%201=2 %20
union%20select%20S ID,S Name,S Dir,(...)

5 Conclusions and Future Work

The method proposed in this paper aims at providing automated identification
of potentially harmful requests with the minimum level of involvement from
the system administrators. Suspicious requests are presented to other peers; i.e.
web servers, which participate in information exchange. A report of a suspicious
activity is produced when identical requests had been encountered and identified
as suspicious by other peers.

The method may significantly hinder the modus operandi of most malware,
due to the fact that after the few initial attempts to attack a number of servers,
it will become increasingly difficult for a malware to successfully attack new
ones. The servers will recognize the attacks because of the knowledge acquired
from their peers. This way, the whole system will develop an immune response
similar to the one observed in living organisms.

Emulation-based evaluation of the method, utilizing real data acquired from
seven web servers showed that the median ratio of reports were 0,6 % of all
the requests. This translates to an average of 5–10 suspicious requests per day



58 M. Zachara

brought to the administrators’ attention, which is an acceptable level, making
analysis of the log files feasible.

Analysis of the data also showed, that most of these request can be grouped
into a few common attack vectors. For example, attempts to locate WordPress
specific web pages accounted for almost 2/3 of all the reported attempts. Another
10 % were attempts to locate CKEditor - a commonly used module, but having
numerous vulnerabilities. An administrator can thus easily reduce the number
of reported attempts, by an order of magnitude, if they know they do not have
the specific module, nor care about such probing attempts.

Achieved results were compared to LORG, an open source software designed
to identify attack attempts by analyzing the URLs of the incoming requests.
Surprisingly, a major part of LORG’s findings were identified as false positives.
It was due to the fact, that two of the websites used large and complicated
forms that resulted in a long array of parameters passed with the requests,
which were considered suspicious by LORG. LORG also did not identify any
scans/probes that did not have an arguments sent along with the URL. This
is due to the nature of its analysis, yet they constituted the majority of the
identified attempts.

In terms of the computational power required for the described method, the
reference single-thread implementation (in Java) was able to process over 30,000
requests (log entries) per second on a typical PC (Intel, 4 GHz). It shall therefore
not add a significant workload for the web server.

The method described in this paper can provide substantial benefits to the
security of websites right now. It also opens new paths of research that could
lead to its further refinement or specialized applications. The development of
the decision algorithm will presumably provide the most benefits for the system,
since improvement to the local reasoning and identification of the suspicious
request will reduce the amount of data exchanged between the peers and will
speed up each assessment. By introducing local user tracking and their behavior
analysis, the system could also be able to distinguish “blind” scans (which are
usually less harmful) from targeted attack attempts. This may be a benefit
for high-traffic sites, however will likely result in a delayed detection of attack
attempts for the group of servers participating in the data exchange network.

References

1. Agosti, M., Crivellari, F., Di Nunzio, G.: Web log analysis: a review of a decade of
studies about information acquisition, inspection and interpretation of user inter-
action. Data Min. Knowl. Disc. 24(3), 663–696 (2012)

2. Anderson, R., Barton, C., Böhme, R., Clayton, R., Van Eeten, M.J., Levi, M.,
Moore, T., Savage, S.: Measuring the cost of cybercrime. In: Böhme, R. (ed.) The
Economics of Information Security and Privacy, pp. 265–300. Springer, Heidelberg
(2013)

3. Auxilia, M., Tamilselvan, D.: Anomaly detection using negative security model
in web application. In: 2010 International Conference on Computer Information
Systems and Industrial Management Applications (CISIM), pp. 481–486 (2010)



Collective Assessment of Suspicious Requests 59

4. Florêncio, D., Herley, C.: Sex, lies and cyber-crime surveys. In: Schneier, B. (ed.)
Economics of Information Security and Privacy III, pp. 35–53. Springer, Heidelberg
(2013)

5. Garćıa-Teodoro, P., Dı́az-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-
based network intrusion detection: techniques, systems and challenges. Comput.
Secur. 28(1–2), 18–28 (2009)

6. van Goethem, T., Chen, P., Nikiforakis, N., Desmet, L., Joosen, W.: Large-scale
security analysis of the web: challenges and findings. In: Holz, T., Ioannidis, S.
(eds.) Trust 2014. LNCS, vol. 8564, pp. 110–126. Springer, Heidelberg (2014)

7. Han, E.E.: Detection of web application attacks with request length module and
regex pattern analysis. In: Genetic and Evolutionary Computing: Proceedings of
the Ninth International Conference on Genetic and Evolutionary Computing, 26–
28 August 2015, Yangon, Myanmar, vol. 2, pp. 157. Springer, Switzerland (2015)

8. Hyman, P.: Cybercrime: it’s serious, but exactly how serious? Commun. ACM
56(3), 18–20 (2013)

9. Iváncsy, R., Vajk, I.: Frequent pattern mining in web log data. Acta Polytechnica
Hungarica 3(1), 77–90 (2006)

10. JSON: a lightweight data-interchange format. http://www.json.org
11. Kruegel, C., Vigna, G., Robertson, W.: A multi-model approach to the detection

of web-based attacks. Comput. Netw. 48(5), 717–738 (2005)
12. McAfee: Net Losses: Estimating the Global Cost of Cybercrime (2014). http://

www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime2.pdf
13. Muller, J.: Implementation of a Framework for Advanced HTTPD Logfile Security

Analysis, Master’s thesis (2012)
14. Netcraft: Web Server Survey (2015). http://news.netcraft.com/archives/2013/11/

01/november-2013-web-server-survey.html
15. OWASP: Web Application Firewall. https://www.owasp.org/index.php/Web

Application Firewall
16. Pa�lka, D., Zachara, M.: Learning web application firewall - benefits and caveats.

In: Tjoa, A.M., Quirchmayr, G., You, I., Xu, L. (eds.) ARES 2011. LNCS, vol.
6908, pp. 295–308. Springer, Heidelberg (2011)

17. Rieck, K., Laskov, P.: Language models for detection of unknown attacks in net-
work traffic. J. Comput. Virol. 2(4), 243 (2007)

18. Roesch, M.: Snort: lightweight intrusion detection for networks. In: LISA, USENIX,
pp. 229–238 (1999)

19. Salama, S.E., Marie, M.I., El-Fangary, L.M., Helmy, Y.K.: Web server logs pre-
processing for web intrusion detection. Comput. Inf. Sci. 4(4), p123 (2011)

20. Stevens, M.: Advances in hash function cryptanalysis. ERCIM News 2012(90),
26–27 (2012)

21. Symantec: Internet Security Threat Report (2015). http://www.symantec.com/
security response/publications/threatreport.jsp

22. WhiteHat: Website Security Statistics Report (2013). http://info.whitehatsec.
com/2013-website-security-report.html

23. Zachara, M.: Collective detection of potentially harmful requests directed at web
sites. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS, vol.
8733, pp. 384–393. Springer, Heidelberg (2014)

http://www.json.org
http://www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime2.pdf
http://www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime2.pdf
http://news.netcraft.com/archives/2013/11/01/november-2013-web-server-survey.html
http://news.netcraft.com/archives/2013/11/01/november-2013-web-server-survey.html
https://www.owasp.org/index.php/Web_Application_Firewall
https://www.owasp.org/index.php/Web_Application_Firewall
http://www.symantec.com/security_response/publications/threatreport.jsp
http://www.symantec.com/security_response/publications/threatreport.jsp
http://info.whitehatsec.com/2013-website-security-report.html
http://info.whitehatsec.com/2013-website-security-report.html

	Identification of Possible Attack Attempts Against Web Applications Utilizing Collective Assessment of Suspicious Requests
	1 Introduction
	1.1 Vulnerability of Web Applications
	1.2 Malware and Automated Attacks
	1.3 The Tools for Battling the Attacks
	1.4 Rationale for the Collective Assessment

	2 The Principles of the Method
	2.1 The Key Concepts of the Proposed Method
	2.2 The Exchange of Information
	2.3 Maintenance of the Lists

	3 Implementation and Test Environment
	3.1 Reasoning

	4 Test Method and Achieved Results
	4.1 The Baseline Scenario
	4.2 Impact of the LSR History Length and the Number of Peers

	5 Conclusions and Future Work
	References


